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ust. 1 pkt. 2 ustawy
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O rozróżnianiu przestrzeni funkcji ciągłych.
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4.1 Wstęp

Na początku omawiania uzyskanych wyników, ustalmy używaną poniżej terminologię. Dla
przestrzeni Tichonowa X, przez Cp(X) oznaczać będziemy przestrzeń wszystkich rzeczy-
wistych funkcji ciągłych na X zaopatrzoną w topologię zbieżności punktowej. Natomiast,
ilekroć przestrzeń K będzie zwarta, to symbolem Cw(K) oznaczać będziemy przestrzeń
Banacha C(K) rozpatrywaną w topologii słabej.
Omawiane osiągnięcie naukowe wpisuje się w obszar badań współczesnej topologii

mnogościowej zwany Cp-teorią, którego obiektem zainteresowań są przestrzenie Cp(X).
Systematyczne badanie tych przestrzeni zostało zapoczątkowane w latach siedemdziesią-
tych XX wieku, z jednej strony w związku z udanym programem klasyfikacji przestrze-
ni Banacha C(K) funkcji ciągłych na zwartych przestrzeniach metrycznych K (por. [9],
[19]), z drugiej zaś strony wynikami dotyczącymi topologicznych własności słabo-zwartych
podzbiorów przestrzeni Banacha (por. [1], [10]). Wspomniane rezultaty dotyczą analizy
funkcjonalnej ale do ich otrzymania niezbędne okazały się nietrywialne rozumowania to-
pologiczne. W tym kontekście topologia zbieżności punktowej pojawia się w naturalny
sposób, bowiem jako najsłabsza ze wszystkich naturalnych topologii na zbiorze funkcji
ciągłych, dopuszcza najwięcej zbiorów zwartych. W szczególności niesie ona w sobie in-
formację o wszystkich klasach przestrzeni zwartych ważnych z punktu widzenia analizy
funkcjonalnej (np. kompakty Eberleina, Gulki, Corsona). Uświadomienie sobie tego po-
skutkowało intensywnym badaniem przestrzeni topologicznych postaci Cp(X). Pionierem
tych badań był Aleksander Archangielski i skupiona wokół niego grupa naukowa na Uni-
wersytecie Moskiewskim. Monografia Archangielskiego [3] z końca lat osiemdziesiątych
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XX w. oraz jego liczne artykuły przeglądowe (np. [4], [5], [6], [7]) ukazują dynamiczny
rozwój Cp-teorii w pierwszych kilkunastu latach jej istnienia oraz wyznaczają najważniej-
sze kierunki badawcze na przyszłość. Tematyka badawcza wówczas zapoczątkowana wciąż
pozostaje aktualna i jest dalej rozwijana. Świadczą o tym nowsze, obszerne monografie
Tkaczuka [30], [31], [32], [33], książka van Milla [20] oraz artykuły przeglądowe, np. [34],
[35].
Bez wątpienia bardzo istotnym zagadnienie w całej topologii (a także w innych ga-

łęziach matematyki) jest klasyfikacja przestrzeni topologicznych (czy ogólniej, obiektów
matematycznych) polegająca między innymi na znajdowaniu sposobów ich rozróżniania.
Nie inaczej rzecz się ma w teorii przestrzeni Cp(X). I tutaj, od samego początku, jednym
z głównych kierunków badawczych jest wypracowywanie metod pozwalających na rozróż-
nianie przestrzeni funkcyjnych od siebie. Niniejszy cykl publikacji dotyczy następujących
czterech problemów, które dotykają tego ważnego zagadnienia:

Problem 4.1. [6, Problem 4] Czy dla każdej nieskończonej przestrzeni metrycznej X,
przestrzeń Cp(X) jest homeomorficzna ze swoim kwadratem kartezjańskim Cp(X)×Cp(X)?

Problem 4.2. [H2, str. 557] Niech K będzie nieskończoną przestrzenią zwartą. Czy prze-
strzenie Cp(K) i Cw(K) muszą być niehomeomorficzne?

Problem 4.3. [3, str. 3] Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są liniowo homeomor-
ficzne. Jakie są wówczas wspólne własności topologiczne przestrzeni X i Y ?

Problem 4.4. [3, str. 3] Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są jednostajnie home-
omorficzne. Jakie są wówczas wspólne własności topologiczne przestrzeni X i Y ?

Poniżej wyjaśnimy dlaczego każdy z wymieniowych problemów faktycznie dotyczy roz-
różniania przestrzeni funkcyjnych. Omówimy też szczegółowo nasz wkład w próbę zrozu-
mienia tych problemów. O wszystkich przestrzeniach poniżej będziemy zakładać, że są
przestrzeniami Tichonowa.

4.2 O rozróżnianiu przestrzeni Cp(X) i Cp(X)×Cp(X). Publikacja
[H1].

W teorii przestrzeni funkcji ciągłych bardzo istotną rolę odgrywają pytania o faktory-
zacyjne własności przestrzeni Cp(X). Jest po temu kilka powodów. Przede wszystkim
„dobre” własności faktoryzacyjne przestrzeni Cp(X) (tj. możliwość rozkładu przestrzeni
Cp(X) na określony iloczyn kartezjański), w połączeniu z dobrze znanymi schematami
dekompozycyjnymi i twierdzeniem Borsuka-Dugunji’ego, umożliwiają konstruowanie ho-
meomorfizmów pomiędzy przestrzeniami funkcyjnymi (jest to podstawowa technika kon-
strukcji takich homeomorfizmów). Z drugiej strony, typowe przykłady nieskończenie wy-
miarowych przestrzeni liniowo-topologicznych są homeomorficzne ze swoim kwadratem
kartezjańskim. W szczególności, dość trudno wskazać przykład nieskończonej przestrzeni
Tichonowa X, dla której przestrzeń funkcji ciągłych Cp(X) nie byłaby homeomorficzna
czy nawet liniowo homeomorficzna ze swoim kwadratem Cp(X)×Cp(X). Nadmieńmy, że
pierwszy przykład nieskończenie wymiarowej przestrzeni liniowo-topologicznej, która nie
jest homeomorficzna ze swoim kwadratem został skonstruowany przez Pola [24] dopiero w
1984 roku (nie była to przestrzeń funkcji ciągłych). Warto w tym miejscu odnotować, że
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iloczyn kartezjański Cp(X) × Cp(Y ) dwóch przestrzeni funkcyjnych można rozpatrywać
jako przestrzeń funkcyjną na sumie dyskretnej X ⊕ Y . Innymi słowy, Cp(X) × Cp(Y )
można w kanoniczny sposób utożsamić z przestrzenią Cp(X ⊕Y ). Pytanie o istnienie nie-
skończonej przestrzeni X takiej, że przestrzeń Cp(X) jest topologicznie różna od swojego
kwadratu kartezjańskiego, jest więc w istocie pytaniem o możliwość rozróżnienia od siebie
przestrzeni Cp(X) i Cp(X ⊕X).
Pierwsze przykłady nieskończonych przestrzeni zwartych K, dla których Cp(K) nie

jest homeomorficzna z Cp(K) × Cp(K) zostały podane pod koniec lat osiemdziesiątych
XX w. niezależnie przez Gulkę i Marciszewskiego [11], [16]. Ponieważ przykłady te były
niemetryzowalne, więc Problem 4.1, postawiony przez Archangielskiego pod koniec lat
osiemdziesiątych ubiegłego wieku, przyciągnął uwagę specjalistów.
Dość szybko zostały podane kontrprzykłady dla homeomorfizmów liniowych (Pol [25])

lub jednostajnych (van Mill, Pol, Pelant [21]) jednak pytanie dla homeomorfizmów po-
zostawało otwarte i było wielokrotnie powtarzane w artykułach przeglądowych (np. [7,
Problem 25], [17, Problem 4.12], [23, Problem 1029]).
W pracy [H1] rozwiązujemy Problem 4.1 podając przykład przestrzeni metryzowalnej

ośrodkowej (jest to pewien zero-wymiarowy podzbiór prostej rzeczywistej) B, takiej że
przestrzeń Cp(B) nie jest homeomorficzna ze swoim kwadratem Cp(B)×Cp(B). Dokład-
niej, przestrzeń B to tak zwany sztywny zbiór Bernsteina, który zdefiniujemy poniżej. Był
on wcześniej wykorzystany przez Pola [25] w kontekście liniowych homeomorfizmów, do
udowodnienia następującego twierdzenia:

Twierdzenie 4.5. (Pol) Jeśli B jest sztywnym zbiorem Bernsteina, to przestrzenie Cp(B)
i Cp(B)× Cp(B) nie są liniowo homeomorficzne.

Okazuje się, że w sformułowaniu powyższego twierdzenia, założenie o liniowości home-
omorfizmu możemy opuścić:

Twierdzenie 4.6. (Theorem 1.1 w [H1]) Jeśli B jest sztywnym zbiorem Bernsteina, to
przestrzenie Cp(B) i Cp(B)× Cp(B) nie są homeomorficzne.

Metody użyte w pracy [25], do udowodnienia Twierdzenia 4.5 w sposób istotny wy-
korzystują liniowość odwzorowania pomiędzy przestrzeniami funkcyjnymi i bez tego zało-
żenia nie są dostępne. A zatem pomimo, że w sformułowaniu obu powyższych twierdzeń
występuje ta sama przestrzeń, dowód Twierdzenia 4.6 wymagał nowych pomysłów.
Przypomnijmy teraz konstrukcję sztywnego zbioru Bernsteina B pochodzącą od Ku-

ratowskiego [15]. Niech {(Cα, fα) : α < 2ω} będzie numeracją wszystkich par (C, f), gdzie
C jest kopią zbioru Cantora w zbiorze liczb rzeczywistych R, zaś f : C → R jest funkcją
ciągłą mającą nieprzeliczalny zbiór wartości f(C) taki, że f(C) ∩ C = ∅. Indukcyjnie
wybieramy parami różne punkty x0, y0, . . . , xα, yα, . . . takie, że xα ∈ Cα i yα ∈ f(Cα)
dla α < 2ω. Zbiór B = {xα : α < 2ω} jest sztywnym zbiorem Bernsteina. Jest to zbiór
Bernsteina w tym sensie, że zarówno B jak i R \B ma niepuste przecięcie z dowolną ko-
pią zbioru Cantora na prostej rzeczywistej. Sztywność zbioru B rozumiana jest w sensie
następującego faktu1:

1Fakt 4.7 został udowodniony w [H1]. Dowód jest jednak prostą modyfikacją dobrze znanego wcześniej
podobnego faktu, gdzie w miejscu zbioru typu Gδ występuje zbiór otwarty.
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Fakt 4.7. Jeśli G jest niepustym podzbiorem B typu Gδ, to każda funkcja ciągła f :
G→ B jest identycznością na swój obraz lub jest stała na pewnym niepustym relatywnie
otwartym podzbiorze zbioru G.

Dowód Twierdzenia 4.6 opiera się na pewnym strukturalnym rezultacie udowodnionym
wcześniej w [18]. Do jego sformułowania wygodnie będzie posługiwać się następującym
oznaczeniem bazowego otoczenia zera w przestrzeni Cp(X). Dla zbioru skończonego A ⊆
X i dodatniej liczby naturalnej m kładziemy

OX
(
A, 1
m

)
= {f ∈ Cp(X) : ∀x ∈ A |f(x)| < 1

m
}.

Poniższe twierdzenie pochodzi z pracy [18]:

Twierdzenie 4.8. Niech X i Y będą przestrzeniami metryzowalnymi. Niech n ∈ N. Przy-
puśćmy, że Φ : Cp(X) → Cp(Y ) jest homeomorfizmem przeprowadzającym funkcję stale
równą zero na funkcję stale równą zero. Wtedy przestrzeń Y możemy pokryć przeliczalnie
wieloma zbiorami Gr typu Gδ, r = 1, 2, . . . takimi, że

Dla każdego r = 1, 2, . . . , istnieją funkcje ciągłe f r1 , . . . , f
r
pr : Gr → X oraz dodatnia

liczba naturalna m takie, że, dla y ∈ Gr, mamy Φ
(
OX(A, 1m)

)
⊆ OY (y, 1n), gdzie

A = {f r1 (y), . . . , f rpr(y)}

Dowód Twierdzenia 4.6 polega na przeprowadzeniu rozumowania nie wprost. Zakłada-
jąc, że istnieje homeomorfizm Φ : Cp(B) → Cp(B ⊕ B) możemy zastosować Twierdzenie
4.8. Mówiąc w pewnym uproszczeniu, korzystając ze sztywności zbioru B (por. Fakt 4.7)
wnioskujemy, że funkcje ciągłe występujące w sformułowaniu Twierdzenia 4.8, po obcięciu
do pewnego nieprzeliczalnego zbioru typu Gδ są identycznością lub są stałe. Pozwala to
na lepszą kontrolę zachowania homeomorfizmu Φ.

Wciąż nie wiadomo, czy istnieje zwarty metryzowalny kontrprzykład na Problem 4.1.
Jednak w przypadku homeomorfizmów liniowych odpowiedniego kontrprzykładu dostar-
cza praca Pola [25]. Jest to tak zwana krzywa Cooka, czyli jednowymiarowe metryczne
kontinuum (tj. przestrzeń zwarta i spójna) M , sztywne w bardzo silnym sensie, a miano-
wicie, dla dowolnego podkontinuum C ⊆ M każda funkcja ciągła f : C → M jest stała
lub jest identycznością na swój obraz. Następujący rezultat został udowodniony w [25]:

Twierdzenie 4.9. (Pol) Jeśli M jest krzywą Cooka, to przestrzenie Cp(M) i Cp(M) ×
Cp(M) nie są liniowo homeomorficzne.

Wpracy [H1] wzmacniamy nieco powyższe twierdzenie uzyskując następujący rezultat:

Fakt 4.10. (Proposition 5.5 w [H1]) Jeśli X jest krzywą Cooka lub sztywnym zbiorem
Bernsteina, to nie istnieje ciągła liniowa surjekcja z przestrzeni Cp(X) na przestrzeń
Cp(X)× Cp(X).

Z powyższego faktu możemy w nietrudny sposób uzyskać odpowiedź na (nieopubli-
kowane) pytanie Leidermana czy dla nieskończonej zwartej metrycznej przestrzeni X,
przestrzeń Cp(X) odwzorowuje się w sposób ciągły i liniowy na przestrzeń Cp(X × X).
Okazuje się, że tak być nie musi. Mianowicie zachodzi następujące fakt:

Fakt 4.11. JeśliM jest krzywą Cooka, to nie istnieje ciągła liniowa surjekcja z przestrzeni
Cp(M) na przestrzeń Cp(M ×M).
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4.2.1 Wkład w powstanie publikacji.

Publikacja [H1] została napisana wspólnie z Witoldem Marciszewskim, niezbędne jest
więc określenie mojego indywidualnego wkładu w jej powstanie. Ze względu na pracę
Pola [25], sztywny zbiór Bernsteina był (obok krzywej Cooka) naturalnym kandydata-
mi na kontrprzykład do Problemu 4.1; jego użycie było więc naturalne. Główny pomysł
na rozwiązanie Problemu 4.1 oraz szkielet rozumowania zaprezentowanego w dowodzie
Twierdzenia 1.1 w [H1] pochodzi ode mnie. Szczegóły i aspekty techniczne, np. [H1, Lem-
ma 2.2] były dopracowywane wspólnie, w ramach dyskusji i wymiany pomysłów. Dwa
fakty, których dowody można znaleźć w [H1, Section 5], tj. Proposition 5.3 i 5.4 pocho-
dzą z pracy doktorskiej Witolda Marciszewskiego. Zdecydowaliśmy się na ich dołączenie
gdyż nigdy nie były publikowane w języku angielskim. Dowód Proposition 5.5 w [H1] jest
efektem wspólnej dyskusji przy tablicy.

4.3 O rozróżnianiu topologii punktowej i słabej w przestrze-
niach funkcji ciągłych. Publikacje [H2] i [H3].

Dla przestrzeni zwartej K, zbiór C(K) wyposażony w normę supremum, jest przestrze-
nią Banacha, którą zgodnie z tradycją oznaczać będziemy tak samo jak zbiór funkcji
ciągłych przez C(K). Oprócz topologii wyznaczonej przez normę supremum, w zbiorze
C(K) możemy rozważać dwie inne naturalne topologie: topologię słabą i topologię zbież-
ności punktowej. Tak jak wspomnieliśmy we wstępie, powstałe w ten sposób przestrzenie
topologiczne oznaczamy odpowiednio przez Cw(K) i Cp(K). Nietrudno zauważyć, że dla
nieskończonej przestrzeni zwartej K, przestrzeń Banacha C(K) nie jest homeomorficzna
ani z przestrzenią Cw(K), ani z przestrzenią Cp(K). Istotnie, przestrzeń C(K) jest metry-
zowalna, natomiast Cw(K) jest niemetryzowalna dla dowolnej nieskończonej przestrzeni
zwartej K. Przestrzeń, Cp(K) jest metryzowalna jedynie dla przeliczalnych kompaktów
K. Jednak, w odróżnieniu od przestrzeni Banacha C(K), dla dowolnej nieskończonej prze-
strzeni zwartej K, Cp(K) nie jest metryzowalna w sposób zupełny. Łatwo zauważyć, że
jeśli K jest nieskończonym kompaktem, to topologia zbieżności punktowej jest istotnie
słabsza od topologii słabej. Nie jest jednak jasne, czy przestrzenie Cp(K) i Cw(K) są
zawsze (tj. dla dowolnej nieskończonej przestrzeni zwartej K) topologicznie różne. Tym
zagadnieniem zajmujemy się w pracach [H2] i [H3] cyklu. Konkretniej, [H2] i [H3] są
motywowane pytaniem zawartym w Problemie 4.2. Możemy zapytać nieco ogólniej:

Pytanie 4.12. Czy przestrzenie Cp(K) i Cw(L) mogą być homeomorficzne dla pewnych
nieskończonych przestrzeni zwartych K i L?

Problem 4.2 został sformułowany przez nas w [H2], natomiast jego ogólniejsza wersja
w brzmieniu Pytania 4.12, w [H3]. Zarówno Problem 4.2 jak i Pytanie 4.12 w pełnej
ogólności wciąż pozostają otwarte.
Dla przestrzeni zwartej K, przez M(K) oznaczać będziemy przestrzeń znakowanych

miar Radona na K. Na mocy twierdzenia Riesza o reprezentacji, możemy utożsamiać
M(K) z przestrzenią dualną C(K)∗. Możemy teraz zauważyć, że topologie słaba i zbież-
ności punktowej są ze sobą związane w następującym sensie: Dla przestrzeni zwartej K,
przestrzeń Cw(K) jest liniowo homeomorficzna z domkniętą liniową podprzestrzenią prze-
strzeni Cp(BM(K)), gdzie BM(K) jest kulą jednostkową w przestrzeni M(K).
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Odnotujmy kilka przypadków, w których odpowiedź na Pytanie 4.2 jest (niemal) na-
tychmiastowa. Wymienione niżej obserwacje pochodzą z [H3, rozdział 3] gdzie można
znaleźć ich krótkie wyjaśnienia. Niech K będzie nieskończoną przestrzenią zwartą. Jeśli
dodatkowo K jest:

(1) przeliczalna lub

(2) spełnia |K| < |M(K)| lub
(3) jest nieośrodkową przestrzenią, na której istnieje przeliczalnie wiele funkcjonałów
rozdzielających punkty w C(K) lub

(4) jest przestrzenią rozproszoną, tzn. każdy niepusty podzbiór przestrzeni ma punkt
relatywnie izolowany,

to wówczas Cw(K) i Cp(K) nie są homeomorficzne. Ponadto, jeśli na szukany w Pytaniu
4.12 homeomorfizm narzucimy dodatkowe wymagania, np. liniowość, to na tak zmodyfi-
kowane pytanie w nietrudny sposób dostaniemy odpowiedź negatywną. Mianowicie nastę-
pujący fakt odnotowaliśmy w [H3] (zob. Proposition 3.1 w [H3] oraz uwagę następującą
po dowodzie tego faktu).

Fakt 4.13. Dla dowolnych nieskończonych przestrzeni zwartych K i L, nie istnieje ho-
meomorfizm pomiędzy Cw(K) i Cp(L), który jest jednostajnie ciągły.

Jednak co ciekawe, w przypadku podstawowych nieprzeliczalnych przestrzeni metrycz-
nych, takich jak np. przestrzeń Cantora {0, 1}ω lub odcinek jednostkowy [0, 1], odpowiedź
na Problem 4.2 jest nieoczywista i jak się wydaje nie była znana. Aby sformułować główne
rezultaty z prac [H2] i [H3] konieczne jest przypomnienie pewnych pojęć z teorii wymiaru.

Definicja 4.14. Przestrzeń normalnaX jest C-przestrzenią jeśli dla każdego ciągu (Un)n∈N
złożonego z otwartych pokryć przestrzeni X, istnieje ciąg (Vn)n∈N złożony z rodzin para-
mi rozłącznych zbiorów otwartych taki, że rodzina Vn jest wpisana w Un i

⋃
n∈N Vn jest

pokryciem przestrzeni X.

Definicja 4.15. Przestrzeń normalna X jest (silnie) przeliczalnie wymiarowa jeśli daje
się przedstawić jako przeliczalna suma (domkniętych) skończenie wymiarowych podprze-
strzeni.

Oczywiście każda przestrzeń silnie przeliczalnie wymiarowa jest przeliczalnie wymia-
rowa. Wiadomo też, że każda metryzowalna przeliczalnie wymiarowa przestrzeń jest C-
przestrzenią. W szczególności przestrzenie metryczne skończenie wymiarowe są C - prze-
strzeniami. W obrębie metrycznych kompaktów znane są przykłady C-przestrzeni, które
nie są przeliczalnie wymiarowe oraz przykłady przestrzeni przeliczalnie wymiarowych ale
nie w silnym sensie. Typowym przykładem metrycznego kompaktu, który nie jest C-
przestrzenią jest kostka Hilberta [0, 1]ω.
Możemy teraz sformułować główny rezultat pracy [H2].

Twierdzenie 4.16. [H2, Corollary 1] Jeśli K jest nieprzeliczalną metryzowalną zwartą
C-przestrzenią, to przestrzenie funkcyjne Cw(K) i Cp(K) nie są homeomorficzne.
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Założenie o nieprzeliczalności kompaktuK możemy w istocie zastąpić wymaganiem, że
K jest przestrzenią nieskończoną, gdyż jak już wcześniej odnotowaliśmy, w przypadku gdy
K jest nieskończonym kompaktem przeliczalnym, odpowiedź na Pytanie 4.12 jest łatwa
do udzielenia. W szczególności, Twierdzenie 4.16 obejmuje przypadki takich przestrzeni
jak kostka Cantora {0, 1}ω, czy kostki skończonego wymiaru [0, 1]n. W istocie, na mocy
klasycznego twierdzenia Miljutina [19], Twierdzenie 4.16 sprowadza się do następującego:

Twierdzenie 4.17. [H2, Theorem 2] Jeśli K jest zwartą metryzowalną C-przestrzenią,
to Cp(K) i Cw([0, 1]ω) nie są homeomorficzne.

Dowód powyższego twierdzenia wykorzystuje pewne idee Marciszewskiego z [18], m. in.
wersję wspomnianego już wcześniej Twierdzenia 4.8. Wymagają one jednak modyfikacji,
gdyż w odróżnieniu do pracy [18] mamy tu do czynienia ze słabą topologią. Wymaga to
użycia miar w miejsce punktów przestrzeni.
W pracy [H3], wspólnej z W. Marciszewskim, uzyskujemy następujące częściowe uogól-

nienie Twierdzenia 4.16, nawiązujące do Pytania 4.12:

Twierdzenie 4.18. [H3, Theorem 4.1] Jeśli K jest silnie przeliczalnie-wymiarową prze-
strzenią zwartą, zaś L kompaktem, dla którego Cw(L) jest homeomorficzna z Cw(M)×E,
gdzie M jest pewną nieprzeliczalną przestrzenią metryzowalną zwartą, a E pewną prze-
strzenią topologiczną, to wówczas Cp(K) i Cw(L) nie są homeomorficzne.

W powyższym twierdzeniu, założenie o przestrzeni L wydaje się być dosyć techniczne.
Jednak, jak nietrudno się przekonać, jest ono spełnione, np. dla klasy przestrzeni zwar-
tych zawierających nieprzeliczalną metryzowalną domkniętą podprzestrzeń, równoważnie:
topologiczną kopię zbioru Cantora (zob. [H3, Corollary 4.2]). Z jednej strony Twierdzenie
4.18 jest o tyle ogólniejsze od Twierdzenia 4.16, że obejmuje także niektóre przestrzenie
niemetryzowalne. Z drugiej jednak strony wymaga nieco mocniejszego założenia o kom-
pakcie K: silna przeliczalna-wymiarowość w miejsce bycia C-przestrzenią. Interesującą
klasą przestrzeni zwartych, do których można stosować Twierdznie 4.18 jest klasa kom-
paktów Valdivii. Przypomnijmy, że dla zbioru Γ, definiujemy Σ-iloczyn prostych Σ(Γ)
jako

Σ(Γ) = {x ∈ RΓ : |{γ ∈ Γ : xγ ̸= 0}| ¬ ℵ0}.
Przestrzeń zwartą K nazywamy kompaktem Valdivii jeśli, dla pewnego Γ, istnieje zanu-
rzenie i : K ↪→ RΓ takie, że i(K)∩Σ(Γ) jest gęsty w i(K). Klasa kompaktów Valdivii jest
istotnie większa niż klasa kompaktów Corsona, tj. przestrzeni zwartych homeomorficznych
z podzbiorem pewnego Σ-iloczynu prostych rzeczywistych. Jako wniosek z Twierdzenia
4.18 możemy w szczególności wyprowadzić:

Wniosek 4.19. Jeśli K jest nieskończonym, skończenie wymiarowym kompaktem Valdi-
vii, to Cp(K) i Cw(K) nie są homeomorficzne.

Istotnie, jest to natychmiastowa konsekwencja Twierdzenia 4.18, uwag poczynionych
na początku tego rozdziału i następującej interesującej dychotomii (zob. [H3, Propo-
sition 4.4]): Każdy kompakt Valdivii jest albo rozproszony, albo zawiera nieprzeliczalną
domkniętą metryzowaną podprzestrzeń. Inną ciekawą przestrzenią (niebędącą kompaktem
Valdivii), do której ma zastosowanie Twierdzenie 4.18 jest strzałka podwójna czyli prze-
strzeń

(
(0, 1]×{0}

)
∪
(
[0, 1)×{1}

)
zaopatrzoną w topologię porządkową pochodzącą od

porządku leksykograficznego (zob. [H3, Proposition 4.6]).
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4.3.1 Własność (B)

Przyjrzyjmy się nieco bliżej przypadkowi wspomnianemu na początku rozdziału, w punk-
cie (4), tj. sytuacji gdy kompakt K jest przestrzenią rozproszoną. Przypomnijmy raz
jeszcze, że przestrzeń topologiczna X jest rozproszona, gdy każdy niepusty podzbiór X
ma punkt relatywnie izolowany. Przestrzeń X jest Frécheta-Urysohna gdy dla dowolnego
A ⊆ X i dowolnego punktu x należącego do domknięcia A, istnieje ciąg (xn)n∈ω punk-
tów ze zbioru A zbieżny do x. Dobrze wiadomo, że przestrzeń zwarta K jest rozproszona
wtedy i tylko wtedy, gdy Cp(K) jest Frécheta-Urysohna (zob. [3, Theorem III.1.2]). Z
kolei, Cw(K) nigdy (tj. dla żadnej nieskończonej przestrzeni zwartej K) nie jest Frécheta-
Urysohna. Mamy więc, że dla K będącego nieskończonym kompaktem rozproszonym,
Cp(K) i Cw(K) nie są homeomorficzne. Okazuje się, że możemy powiedzieć więcej:

Twierdzenie 4.20. [H3, Corollary 5.11 i Theorem 5.12] Załóżmy, że K i L są nie-
skończonymi przestrzeniami zwartymi. Jeśli L jest rozproszona, to Cp(K) i Cw(L) nie są
homeomorficzne. Podobnie, jeśli K jest rozproszona, to Cp(K) i Cw(L) nie są homeomor-
ficzne.

Dowód Twierdzenia 4.20 wykorzystuje m.in. następującą własność przestrzeni topolo-
gicznej.

Definicja 4.21. Powiemy, że przestrzeń topologiczna X ma własność (B) jeśli istnieje
przeliczalna rodzina {An ⊆ X : n ∈ ω} zbiorów domkniętych brzegowych taka, że dla
każdego zbioru zwartego K ⊆ X mamy K ⊆ An, dla pewnego n ∈ ω.

Własność (B) została nam zasugerowana przez T. Banakha i pojawia się po raz pierw-
szy w pracy [H3], gdzie uzyskaliśmy pierwsze rezultaty na jej temat. Własność ta w
naturalny sposób przysługuje nieskończenie-wymiarowym przestrzeniom Banacha rozwa-
żanym w słabej (bądź słabej* - dla przestrzeni dualnych) topologii. Istotnie, wystarczy
przyjąć An = nBX , gdzie BX jest kulą jednostkową w przestrzeni Banacha X. A zatem,
Cw(K) zawsze ma własność (B), o ile K jest nieskończona. Jak wykazaliśmy w [H3], dla
przestrzeni Cp(K) zachodzi następujące twierdzenie:

Twierdzenie 4.22. [H3, Theorem 5.9] Dla dowolnej przestrzeni zwartej K następujące
warunki są równoważne.

(a) K jest rozproszona,

(b) Cp(K) jest Frécheta-Urysohna,

(c) Cp(K) nie ma własności (B).

Równoważność (a) ⇔ (b) powyżej była wcześniej znana. Natomiast implikacja (b) ⇒
(c) jest prawdziwa nie tylko dla przestrzeni funkcyjnych ale dla dowolnej przestrzeni Ti-
chonowa. Twierdzenie 4.22, z jednej strony daje nam własność topologiczną (inną niż wła-
sność Frécheta-Urysohna) pozwalającą rozróżnić topologię punktową od słabej na zbiorze
funkcji ciągłych. Z drugiej strony charakteryzuje interesującą skądinąd własność (B) w
przestrzeniach Cp(K), gdzie K jest przestrzenią zwartą. Warto w tym miejscu zaznaczyć,
że charakteryzacja własności (B) w przestrzeniach Cp(X), gdzie X jest dowolną przestrze-
nią Tichonowa, o którą pytamy w [H3, Problem 5.10] została niedawno przez nas podana
we wspólnej pracy z Kacprem Kucharskim i Witoldem Marciszewskim [14].
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4.3.2 Wkład w powstanie publikacji [H3].

Publikacja [H3], podobnie jak [H1], została napisana wspólnie z Witoldem Marciszewskim.
W przypadku tej pracy nie sposób jednoznacznie wskazać na dominujący wkład którego-
kolwiek z autorów w sformułowanie bądź udowodnienie poszczególnych twierdzeń. Jak to
często ma miejsce w przypadku publikacji matematycznych, [H3] jest wynikiem wspólnych
dyskusji i wymiany pomysłów, które prowadziły do ostatecznego kształtu publikacji. W
mojej ocenie wkład obu autorów w powstanie publikacji [H3] był równy.

4.4 O rozróżnianiu liniowych i jednostajnych struktur w prze-
strzeniach Cp(X). Publikacje [H4] i [H5].

Poza strukturą topologiczną, przestrzeń Cp(X) wyposażona jest w naturalną struktu-
rę pierścienia topologicznego, strukturę przestrzeni liniowo-topologicznej oraz strukturę
przestrzeni jednostajnej. Możemy więc pytać o klasyfikację przestrzeni Cp(X) względem
tych struktur, lub inaczej, o sposoby rozróżniania od siebie przestrzeni Cp(X) i Cp(Y )
jako pierścieni topologicznych, przestrzeni liniowo-topologicznych czy przestrzeni jedno-
stajnych. Punkt wyjścia do rozważań w tym kierunku stanowi poniższe twierdzenie Nagaty
z 1949 roku, o którym Archangielski tak pisze w swojej monografii [3]: „Jednakże naj-
większą przewagę topologii zbieżności punktowej nad topologią zwarto-otwartą, topologią
zbieżności jednostajnej, czy innymi topologiami oddaje następujące znakomite twierdzenie
Ju. Nagaty”2

Twierdzenie 4.23. [22] Przestrzenie X i Y są homeomorficzne wtedy i tylko wtedy gdy
Cp(X) i Cp(Y ) są izomorficzne jako pierścienie topologiczne.

Innymi słowy, algebraiczno-topologiczna struktura przestrzeni Cp(X) niesie pełną in-
formację o topologii przestrzeniX. Możemy więc pytać ile informacji o przestrzeniX niosą
inne struktury w jakie wyposażona jest przestrzeń Cp(X): struktura liniowo-topologiczna,
struktura jednostajna czy jedynie struktura topologiczna. Konkretniej, możemy stawiać
pytania zawarte w Problemach 4.3 i 4.4, poszukując niezmienników liniowych czy jedno-
stajnych homeomorfizmów przestrzeni Cp(X). Takie niezmienniki umożliwiają rozróżnie-
nie struktur liniowo-topologicznych czy jednostajnych przestrzeni Cp(X) i Cp(Y ). Jest to
jeden z głównych kierunków badawczych w Cp-teorii. Poświęcona jest mu monografia [33].
Pomimo, że prace [H4] i [H5] dotyczą dwóch różnych typów izomorfizmu przestrze-

ni Cp(X) oraz zajmują się różnymi ich niezmiennikami, to są ze sobą ściśle związane.
Rozwijają bowiem ([H4] dla homeomorfizmów liniowych a [H5] dla homeomorfizmów jed-
nostajnych) tę samą metodę atakowania Problemów 4.3 i 4.4. Podejście to wydaje się być
nowe, a stosuje się do własności topologicznych przestrzeni X, które dają się wygodnie
wysłowić w terminach położenia X w swoim uzwarceniu Čecha-Stone’a βX. Przykłada-
mi tego typu własności są m.in. σ-zwartość, własności Hurewicza, Mengera i Lindelöfa
(o których nieco szerzej powiemy w podrozdziale 4.4.1), czy κ-pseudozwartość (którą to
własność omówimy w podrozdziale 4.4.2).

2[3, str. 2], tłumaczenie z języka angielskiego M.K.
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4.4.1 Liniowe homeomorfizmy przestrzeni Cp(X).

W pracy [H4] zajmujemy się Problemem 4.3 w kontekście dwóch dobrze znanych wła-
sności pokryciowych przestrzeni topologicznej: własności Mengera i własności Hurewicza.
Przypomnijmy, że przestrzeń X jest przestrzenią Mengera (mówimy też, że X ma wła-
sność Mengera) jeśli dla każdego ciągu (Un)n∈N pokryć otwartych przestrzeni X, istnieje
ciąg rodzin (Vn)n∈N taki, że Vn jest skończoną podrodziną rodziny Un oraz

⋃
n∈N Vn jest

pokryciem przestrzeni X. Przestrzeń X jest przestrzenią Hurewicza (mówimy też, że X
ma własność Hurewicza) jeśli występująca w definicji własności Mengera rodzina

⋃
n∈N Vn

jest nie tylko pokryciem ale dla każdego x ∈ X zbiór {n ∈ N : x /∈ ⋃Vn} jest skończony.
Obie własności zostały wprowadzone na początku XX w. w związku z badaniami nad
σ-zwartością i od tego czasu leżą w kręgu zainteresowań wielu badaczy (zob. np. [28]).
Główną motywacją badań podjętych w [H4] jest następujące, wciąż otwarte pytanie

Archangielskiego3 (por. [3, Problem II.2.8] lub [33, Problem 4.2.12]):

Pytanie 4.24. Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są homeomorficzne. Załóżmy
ponadto, że X jest przestrzenią Mengera. Czy wówczas Y też musi być przestrzenią Men-
gera?

Jednym z głównych rezultatów pracy [H4] jest następujące twierdzenie, które udziela
odpowiedzi na Pytanie 4.24 w ważnym przypadku homeomorfizmów liniowych.

Twierdzenie 4.25. [H4, Theorem 1.1] Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są linio-
wo homeomorficzne. Wówczas X jest przestrzenią Mengera wtedy i tylko wtedy gdy Y jest
przestrzenią Mengera.

Nietrudno zauważyć, że dla dowolnej przestrzeni X prawdziwe są następujące impli-
kacje:

X jest σ-zwarta⇒ X jest Hurewicza⇒ X jest Mengera⇒ X jest Lindelöfa (1)

Wiadomo, że nawet w obrębie przestrzeni metryzowalnych, żadna w powyższych impli-
kacji się nie odwraca. Wyjaśnijmy pokrótce jak Twierdzenie 4.25 wpisuje się we wcześniej
znane wyniki. Jednym z ważniejszych rezultatów dotyczących Problemu 4.3 jest następu-
jące, głębokie twierdzenie Veliczki:

Twierdzenie 4.26. [39] Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są liniowo homeomor-
ficzne. Wówczas X jest przestrzenią Lindelöfa wtedy i tylko wtedy gdy Y jest przestrzenią
Lindelöfa.

Na drugim krańcu własności podanych w (1) znajduje się σ-zwartość, o której stosun-
kowo łatwo można pokazać, że jest niezmiennikiem liniowych homeomorfizmów przestrzeni
Cp(X) (zob. [20, Theorem 6.9.1]). W istocie można pokazać więcej: σ-zwartość jest nie-
zmiennikiem homeomorfizmów przestrzeni Cp(X) [3, III.2]. Analogiczny do Twierdzenia
4.26 wynik dla własności Hurewicza został otrzymany przez Zdomskiego w [40]. Nasze
Twierdzenie 4.25 wyjaśnia sytuację dla, ostatniej pozostałej w (1) własności, czyli dla
własności Mengera.

3W literaturze występuje niezgodność terminologii. Własność, którą my (oraz większość współczesnych
autorów) nazywamy własnością Mengera, jest przez niektórych autorów nazywana własnością Hurewicza.
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Żeby nieco przybliżyć główną ideę stojącą za naszym podejściem przypomnijmy, że
każda ciągła liniowa surjekcja ϕ : Cp(X) → Cp(Y ) indukuje dolnie półciągłą funkcję
suppϕ : Y → [X]<ω przyporządkowującą punktowi y ∈ Y pewien niepusty skończony
podzbiór przestrzeni X. Dolna półciągłość odwzorowania suppϕ oznacza, że dla dowolne-
go zbioru otwartego U ⊆ X zbiór supp−1ϕ (U) = {y ∈ Y : suppϕ(y) ∩ U ̸= ∅} jest otwarty
w Y (zob. [20, §6.8]). Okazuje się, że funkcję suppϕ : Y → [X]<ω można przedłużyć do
dolnie półciągłej funkcji sϕ : βY → K(βX), która punktom uzwarcenia Čecha-Stone’a
βY przestrzeni Y przyporządkowuje niepuste zwarte podzbiory przestrzeni βX.4 Dodat-
kowo, jak wykazaliśmy w [H4], przestrzeń Y można pokryć przeliczalnie wieloma zbiorami
domkniętymi {An : n ∈ N} takimi, że

jeśli y ∈ clβY (An) \ An, to sϕ(y) ∩ (βX \X) ̸= ∅, dla każdego n ∈ N. (2)

Tu clβY (An) oznacza domknięcie zbioru An w βY .
Sposób działania naszej techniki zilustrujmy podając szkic dowodu następującego zna-

nego twierdzenia (zob. np. [20, Theorem 6.9.1])5:

Twierdzenie 4.27. Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są liniowo homeomorficzne.
Jeśli X jest przestrzenią σ-zwartą, to Y też jest przestrzenią σ-zwartą.

Szkic dowodu. Skoro X jest σ-zwarta, to narost βX \X uzwarcenia Čecha-Stone’a prze-
strzeni X, jest zbiorem typu Gδ w βX. Możemy więc zapisać βX \ X =

⋂∞
k=1 Uk, dla

pewnych otwartych podzbiorów Uk przestrzeni βX. Funkcja sϕ : βY → K(βX) jest dol-
nie półciągła, wiec zbiory Vk = {y ∈ βY : sϕ(y) ∩ Uk ̸= ∅} są otwarte w βY . Ponieważ
βX \X ⊆ Uk, więc z własności zbiorów An wyrażonej w (2) wynika, że

(clβY (An) \ An) ⊆ Vk dla dowolnych n, k ∈ N. (3)

Dodatkowo,

Y ∩
∞⋂
k=1

Vk = ∅ (4)

gdyż X ∩ ⋂∞k=1 Uk = ∅ zaś sϕ jest przedłużeniem odwzorowania suppϕ, którego wartości
są podzbiorami przestrzeni X.
Z (3) i (4) oraz zawierania An ⊆ Y w łatwy sposób otrzymujemy, że zbiory An są

σ-zwarte, jako dopełnienia zbiorów typu Gδ w zbiorze zwartym clβX(An). Przestrzeń Y
jest więc σ-zwarta jako suma zbiorów An, gdzie n ∈ N.

Gdy σ-zwartość powyżej zastąpimy inną, pokrewną własnością, np. własnością Menge-
ra, to dowód staje się istotnie trudniejszy i wymaga dalszych pomysłów. Esencja pozostaje
jednak taka sama. W dowodzie Twierdzenia 4.25 kluczową rolę odgrywa Twierdzenie Ve-
liczki 4.26. Bowiem na mocy pewnego znanego wyniku Telgársky’ego [29, Proposition 2],

4Pomysł na przedłużenie odwzorowania suppϕ z Y na uzwarcenie Čecha-Stone’a βY pojawia się w
[H4] (por. [H4], Section 3). Nie jest on zupełnie nowy: analogiczne pomysły (o czym autor [H4] dowiedział
się już po złożeniu pracy do druku) były wcześniej wykorzystywane przez Vesko Valova dla przestrzeni
ograniczonych funkcji ciągłych (por. [37], [38]). Wydaje się jednak, że dla przestrzeni Cp(X), tj. takich
gdzie funkcje niekoniecznie są ograniczone, [H4] używa rzeczonych przedłużeń po raz pierwszy.
5Twierdzenie 4.27 jest dobrze znane ale zamieszczony tu dowód jest wedle naszej wiedzy nowy i

zaprezentowany w tym miejscu po raz pierwszy.
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pozwala ono zredukować Twierdzenie 4.25 do poniższego rezultatu, w którym zamiast
własności Mengera występuje tzw. rzutowa własność Mengera. Warto tu przypomnieć,
że przestrzeń X ma rzutową własność Mengera (odpowiednio, rzutową własność Hurewi-
cza) jeśli każdy ciągły metryczny ośrodkowy obraz przestrzeni X ma własność Mengera
(odpowiednio, Hurewicza).

Twierdzenie 4.28. [H4, Theorem 1.5] Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są linio-
wo homeomorficzne. Wtedy X ma rzutową własność Mengera wtedy i tylko wtedy, gdy Y
ma rzutową własność Mengera.

Analogicznie rzecz się ma dla rzutowej własności Hurewicza:

Twierdzenie 4.29. [H4, Theorem 1.6] Załóżmy, że przestrzenie Cp(X) i Cp(Y ) są linio-
wo homeomorficzne. Wtedy X ma rzutową własność Hurewicza wtedy i tylko wtedy, gdy
Y ma rzutową własność Hurewicza.

Charakteryzacje rzutowych własności Mengera i Hurewicza przestrzeni X w termi-
nach narostu uzwarcenia βX zostały niedawno podane w naszej wspólnej pracy z Kac-
prem Kucharskim [13]; tym samym możliwe jest stosowanie do nich wcześniej opisanej
metody wykorzystującej przedłużenie sϕ odwzorowania suppϕ. Twierdzenia 4.28 i 4.29
odpowiadają na pytania Sakai z [27].

4.4.2 Jednostajne homeomorfizmy przestrzeni Cp(X).

Metodę, którą opisaliśmy w poprzednim podrozdziale, rozwijamy w pracy [H5] dla jed-
nostajnych homeomorfizmów do badań nad Problemem 4.4. Przypomnijmy, że odwzoro-
wanie ϕ : Cp(X)→ Cp(Y ) jest jednostajnie ciągłe, gdy dla dowolnego otwartego otocznia
U funkcji stale równej zero w Cp(Y ), istnieje otwarte otoczenie V funkcji stale równej
zero w Cp(X) takie, że warunek (f − g) ∈ V pociąga (ϕ(f)− ϕ(g)) ∈ U . Odwzorowanie
ϕ : Cp(X) → Cp(Y ) jest jednostajnym homeomorfizmem gdy ϕ jest homeomorfizmem i
zarówno ϕ, jak i ϕ−1 są jednostajnie ciągłe. Nietrudno zobaczyć, że liniowy homeomorfizm
ϕ : Cp(X)→ Cp(Y ) jest jednostajnym homeomorfizmem. Wiadomo również, że jednostaj-
nie homeomorficzne przestrzeni funkcyjnie nie muszą być liniowo homeomorficzne (zob.
[7]). Podobnie jak w przypadku liniowych homeomorfizmów, jednostajny homeomorfizm
ϕ : Cp(X) → Cp(Y ) indukuje odwzorowanie K : Y → [X]<ω, które punktom przestrzeni
Y przyporządkowuje niepuste skończone podzbiory przestrzeni X. Wprawdzie tym ra-
zem odwzorowanie to nie musi być dolnie półciągłe, ale jest „dolnie Gδ-mierzalne”, tzn.
dla dowolnego zbioru otwartego U ⊆ X zbiór K−1(U) = {y ∈ Y : K(y) ∩ U ̸= ∅}
jest zbiorem typu Gδ w Y [2, Corollary 1.5]. W pracy [H5] dowodzimy, że w przypad-
ku gdy Y jest pseudozwarta (tzn. każda funkcja ciągła f : Y → R jest ograniczona), to
odwzorowanieK : Y → [X]<ω przedłuża się do odwzorowania z βY o wartościach w hiper-
przestrzeni skończonych podzbiorów βX, z zachowaniem warunku dolnej Gδ-mierzalności
(zob. [H5, Proposition 2.8]). Tak jak opisaliśmy to w sekcji 4.4.1, umożliwia to anali-
zowanie Problemu 4.4 dla własności, które w wygodny sposób można wysłowić w ter-
minach uzwarcenia Čecha-Stone’a; taką własnością, którą zajmujemy się w [H5], jest
κ-pseudozwartość. Dla ustalonej nieskończonej liczby kardynalnej κ powiemy, że prze-
strzeń X jest κ-pseudozwarta gdy dla dowolnej funkcji ciągłej f : X → Rκ, obraz f(X)
jest zwarty. Pojęcie to wprowadził Kennison w [12] jako uogólnienie psuedozwartości.
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Nietrudno bowiem pokazać, że ω-pseudozwartość jest tożsama z pseudozwartością. Po-
nadto im większa liczba kardynalna κ, tym silniejszą własność otrzymujemy. W szcze-
gólności, każda przestrzeń κ-pseudozwarta jest pseudozwarta. Tak jak sygnalizowaliśmy,
κ-pseudozwartość przestrzeniX można elegancko scharakteryzować w terminach uzwarce-
nia βX. Do wysłowienia tej charakteryzacji potrzebujemy pojęcia zbioru typu Gκ, gdzie κ
jest nieskończoną liczbą kardynalną. Ustalmy κ ­ ω. Powiemy, że podzbiór A przestrzeni
X jest zbiorem typu Gκ jeśli A jest przecięciem co najwyżej κ-wielu otwartych podzbiorów
X. Tradycyjnie zbiory typu Gω nazywamy zbiorami typu Gδ. A oto twierdzenie charak-
teryzujące6:

Twierdzenie 4.30. [26, Theorem 1] Niech κ będzie nieskończoną liczbą kardynalną. Prze-
strzeń X jest κ-pseudozwarta wtedy i tylko wtedy gdy każdy niepusty podzbiór typu Gκ w
βX ma niepuste przecięcie z X.

Uspenski udowodnił w [36], że pseudozwartość jest niezmiennikiem jednostajnych ho-
meomorfizmów przestrzeni Cp(X). W świetle tego rezultatu bardzo naturalne jest pytanie
postawione przez Archangielskiego w [8] (zob. [8, Question 13] lub [33, Problem 4.4.2])
czy analogicznie rzecz się ma dla κ-pseudozwartości.
Główny rezultat pracy [H5] odpowiada na to pytanie twierdząco. Zachodzi następujące:

Twierdzenie 4.31. [H5, Theorem 1.1] Dla dowolnej nieskończonej liczby kardynalnej κ,
jeśli przestrzenie Cp(X) i Cp(Y ) są jednostajnie homeomorficzne, to X jest κ-pseudozwarta
wtedy i tylko wtedy gdy Y jest κ-pseudozwarta.
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[29] R. Telgársky, On games of Topsøe, Math. Scand. 54 (1984), no. 1, 170–176.

[30] V.V. Tkachuk, A Cp-theory Problem Book. Topological and Function Spaces, Springer,
Berlin 2011.

[31] V.V. Tkachuk, A Cp-theory Problem Book. Special Features of Function Spaces, Sprin-
ger, Cham 2014.

[32] V.V. Tkachuk, A Cp-theory Problem Book. Compactness in Function Spaces, Sprin-
ger, Cham 2015.

[33] V.V. Tkachuk, A Cp-theory Problem Book. Functional Equivalencies., Springer,
Cham 2016.

[34] V.V. Tkachuk, Cp-theory in 2022, Quest. Answers Gen. Topology 41, No. 2, 75–133
(2023).

[35] V.V. Tkachuk, Sixteen years of Cp-theory, Quest. Answers Gen. Topology 35, No. 1,
1–48 (2017).

[36] V.V. Uspenskiıi, A characterization of compactness in terms of the uniform structure
in a space of functions, Uspekhi Mat. Nauk 37, 183–184 (1982).

[37] V. Valov, Spaces of bounded functions with the compact open topology, Bull. Polish
Acad. Sci. Math. 45 (1997), no. 2, 171–179.

[38] V. Valov, Spaces of bounded functions, Houst. J. Math. 25 (1999), no. 3, 501–521.
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5 Informacja o wykazywaniu się istotną aktywnością
naukową realizowaną w więcej niż jednej uczelni,
w szczególności zagranicznej.

W trakcie swojej dotychczasowej kariery prowadziłem badania naukowe w pięciu różnych
instytucjach naukowych – trzech polskich (PAN, Uniwersytet Wrocławski, Uniwersytet
Warszawski) i dwóch zagranicznych (University of Pittsburgh, Universidad de Murcia).
Czteroletni okres studiów doktoranckich spędziłem w Instytucie Matematycznym PAN.
Pod kierunkiem prof. Witolda Marciszewskiego pracowałem tam nad rozprawą doktorską,
w skład której weszły m. in. trzy publikacje7 [2], [3], [4]. Zapewne najlepszy uzyskany tam
rezultat pochodzi z pracy [4]. Jest to konstrukcja (przeprowadzona w ZFC) przestrzeni
ośrodkowej metryzowalnej X takiej, że przestrzeń Cp(X) - rzeczywistych funkcji ciągłych
na X, zaopatrzona w topologię zbieżności punktowej - nie dopuszcza słabszej σ-zwartej
topologii. Daje to pełną odpowiadź na pytanie Archangielskiego z 2000 roku.
W trakcie studiów doktoranckich odbyłem semestralny staż doktorancki na Uniwer-

sytecie Wrocławskim, gdzie moim opiekunem naukowym był prof. Grzegorz Plebanek.
Napisaliśmy wówczas wspólną pracę [1].
Po uzyskaniu stopnia naukowego doktora zostałem zatrudniony na Uniwersytecie War-

szawskim – najpierw jako asystent, a od lipca 2016 r. na stanowisku adiunkta. W trakcie
mojego zatrudnienia na Uniwersytecie Warszawskim odbyłem dwa dwuletnie zagranicz-
ne staże naukowe, podczas których korzystałem z urlopu bezpłatnego na Uniwersytecie
Warszawskim. W 2016 roku otrzymałem ofertę objęcia dwuletniego stanowiska podoktor-
skiego (post-doc) na Uniwetsytecie w Pittsburghu (USA). Pracowałem tam od 01.09.2016
do 31.08.2018, gdzie współpracowałem z prof. Paulem Gartsidem. W tym czasie powstały
prace [8],[9] i [10]. Praca [12] została przeze mnie ukończona już po powrocie z Pittsbur-
gha ale główna jej część opiera się na badaniach prowadzonych jeszcze w USA. Chciałbym
krótko przybliżyć dwa najważniejsze w mojej ocenie rezultaty z tamtego okresu, które po-
chodzą odpowiednio z prac [8] i [12]. W pracy [8] zajmujemy się zachowaniem funkcyjnej
ciasności w iloczynach kartezjańskich przestrzeni zwartych. Funkcyjna ciasność przestrzeni
topologicznej X to, mówiąc w pewnym uproszczeniu, minimalna moc zbiorów determinu-
jących ciągłość wszystkich rzeczywistych funkcji na X. Odpowiadając na pytanie Oku-
niewa z 2016 roku dowodzimy, że funkcyjna ciasność iloczynu kartezjańskiego

∏
α<2κ Xα

przestrzeni zwartych Xα, których funkcyjna ciasności nie przekracza liczby kardynalnej κ,
również nie przekracza liczby κ. Jest to odpowiednik klasycznego twierdzenia Małychina
z początku lat siedemdziesiątych XX w. dotyczącego zachowania ciasności względem ilo-
czynów kartezjańskich przestrzeni zwartych. W pracy [12] używamy gier topologicznych
do badania dziedzicznej własności Baire’a w hiperprzestrzeniach kompaktów i przestrze-
niach Pr(X) borelowskich probabilistycznych miar Radona na przestrzeni topologicznej
X. Uzyskane przez nas rezultaty pozwalają podać pierwszy przykład ośrodkowej prze-
strzeni metrycznej X niemetryzowalnej w sposób zupełny, której przestrzeń miar Pr(X)
ma dziedziczną własność Baire’a.
Po zakończeniu stażu podoktorskiego na Uniwersytecie w Pittsburghu kontynuowa-

łem pracę na Uniwersytecie Warszawskim. W 2021 roku, w drodze otwartego konkursu,

7Używana tu numeracja publikacji odwołuje się doWykazu osiągnięć naukowych, §2.8 będącego częścią
dokumentacji.

17



otrzymałem stypendium naukowe hiszpańskiego programu Maŕıa Zambrano, w ramach
którego w okresie 01.01.2023–31.12.2024 objąłem stanowisko badawcze na Uniwersytecie
w Murcji (Hiszpania). Moim mentorem podczas tego stażu był prof. Antonio Avilés, z
którym podjąłem owocną współpracę. Jej efektem były trzy wspólne artykuły naukowe
[16], [17] i [18], gdzie uzyskaliśmy szereg interesujących wyników. Przykładowo, w pracy
[18] zajmujemy się klasą kompaktów będących LΣ(¬ ω)-przestrzeniami. Przypomnijmy,
że przestrzeń X jest LΣ(¬ ω)-przestrzenią jeśli istnieje przestrzeń metryczna ośrodkowa
M oraz górnie półciągła wielowartościowa surjekcja p : M → X o zwartych metryzowal-
nych wartościach. Zwarte LΣ(¬ ω)-przestrzenie po raz pierwszy pojawiły się na początku
lat dziewięćdziesiątych XX w. w pracach Tkaczuka i Tkaczenki jako naturalne uogólnienie
przestrzeni metryzowalnie rozwłóknialnych, tzn. takich, dla których istnieje ciągłe odwzo-
rowanie na przestrzeń metryczną mające metryzowalne warstwy. W [18] odpowiadamy na
szereg otwartych pytań stawianych w literaturze na temat LΣ(¬ ω)-przestrzeni. Między
innymi konstruujemy ośrodkowy kompakt Rosenthala (tj. przestrzeń homeomorficzną ze
zwartym podzbiorem funkcji pierwszej klasy Baire’a na pewnej przestrzeni polskiej, z
topologią zbieżności punktowej), który nie jest LΣ(¬ ω). Odpowiada to na pytanie Ku-
bisia, Okuniewa i Szeptyckiego z 2006 roku. W pracy [16] odpowiadamy na niedawne
pytanie Tkaczuka dowodząc, że każda rozproszona podprzestrzeń Σ-iloczynu przestrzeni
z pierwszym aksjomatem przeliczalności, która ma własność Lindelöfa jest σ-zwarta. Pra-
ca [17] zawiera nowe charakteryzacje klasy NY -kompaktów, czyli przestrzeni zwartych
zanurzalnych w σ-iloczyny przestrzeni zwartych metryzowalnych. Podajemy też przykład
jednostajnego kompaktu Eberleina, który nie zanurza się w iloczyn kartezjański prze-
strzeni zwartych metryzowalnych w taki sposób, że σ-iloczyn tych przestrzeni jest gęsty
w obrazie względem zanurzenia. Odpowiada to na pytanie Kubisia i Leidermana z 2004
roku oraz niedawne pytanie Hájka i Russo.

6 Informacja o osiągnięciach dydaktycznych, organi-
zacyjnych oraz popularyzujących naukę.

6.1 Prowadzone zajęcia dydaktyczne

Podczas swojej dotychczasowej kariery naukowo-dydaktycznej prowadziłem szereg zajęć
dla studentów różnych etapów kształcenia. W przeważającej części były to zajęcia dydak-
tyczne prowadzone na Uniwersytecie Warszawskim - zarówno na macierzystym Wydziale
Matematyki, Informatyki i Mechaniki, jak i usługowe zajęcia z matematyki na innych wy-
działach UW: geologii; chemii; dziennikarstwa, informacji i bibliologii. Podczas swojego
dwuletniego pobytu na Uniwersytecie w Pittsburghu, w ramach pozycji podoktorskiej,
prowadziłem tam zajęcia z matematyki dla miejscowych studentów. Były to ogólnouczel-
niane kursy rachunku różniczkowego i całkowego (MATH 0220 i MATH 0230) oraz kurs
z topologii przeznaczony dla doktorantów matematyki.
Z ważniejszych prowadzonych przeze mnie zajęć warto wymienić następujące:

• Wykład zeWstępu do Matematyki, obowiązkowy na pierwszym roku kierunku mate-
matyka na Uniwersytecie Warszawskim. Zajęcia te prowadziłem dwukrotnie w roku
akademickim 2018/19 i 2019/20.

18



• Wykład z Topologii I, obowiązkowy na drugim roku kierunku matematyka na Uni-
wersytecie Warszawskim. Zajęcia te prowadziłem dwukrotnie w roku akademickim
2020/21 i 2021/22.

• Seminarium magisterskie Topologia i teoria mnogości na Uniwersytecie Warszaw-
skim. Seminarium prowadziłem przez trzy kolejne lata, w roku akademickim 2019/20,
2020/21 i 2021/22.

• Wykład monograficzny Topologia przestrzeni funkcyjnych przeznaczony dla dokto-
rantów i studentów etapu magisterskiego na kierunku matematyka na Uniwersytecie
Warszawskim. Zajęcia te prowadziłem w roku akademickim 2020/21.

• Wykład z topologii dla doktorantów prowadzony na Uniwersytecie w Pittsburghu
w roku akademickim 2017/18.

W poniższej tabeli znajduje się zbiorcze zestawienie wszystkich prowadzonych przeze
mnie dotychczas zajęć dydaktycznych.

Nazwa przedmiotu Typ zajęć Jednostka organizacyjna
Sumaryczna
liczba godzin

Matematyka ćwiczenia Wydział Geologii UW 90
Matematyka A ćwiczenia Wydział Chemii UW 240
Analiza matematyczna I.1 ćwiczenia Wydział MIM UW 120
Analiza matematyczna I.2 ćwiczenia Wydział MIM UW 120
Wstęp do matematyki ćwiczenia Wydział MIM UW 150
Topologia I ćwiczenia Wydział MIM UW 180
Wstęp do matematyki wykład Wydział MIM UW 60
Topologia i teoria mnogości seminarium Wydział MIM UW 180
Topologia przestrzeni funk-
cyjnych

wykład Wydział MIM UW 30

Topologia przestrzeni funk-
cyjnych

ćwiczenia Wydział MIM UW 30

Topologia I wykład Wydział MIM UW 60
Matematyka 0 ćwiczenia Wydział Chemii UW 90
Matematyka konwersatorium Wydział DIB UW 96
MATH 0230 – Analytic
Geometry & Calculus 2

wykład University of Pittsburgh 180

MATH 0220 – Analytic
Geometry & Calculus 1

wykład University of Pittsburgh 45

MATH 2700 – Topology 1 wykład University of Pittsburgh 45

6.2 Opieka nad pracami dyplomowymi

1. 2023, wypromowana praca magisterska pt. „Charakteryzacje pewnych własności
pokryciowych w terminach narostów uzwarceń”, autor pracy: Kacper Kucharski.

2. 2024, wypromowana praca magisterska pt. „Własności pokryciowe i przestrzenie
funkcyjne”, autor pracy: Tomasz Jabłczyński.
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3. Od lipca 2025 opieka nad kolejnymi dwiema pracami magisterskich. Przewidywany
termin obrony obu prac: wrzesień 2026.

6.3 Recenzowanie prac dyplomowych

Dotychczas byłem recenzentem trzech prac magisterskich, obronionych na Uniwersyte-
cie Warszawskim. Pracy pt. Zasada ”Trefl” - warianty i zastosowania, napisanej przez
Jakuba Andruszkiewicza, pracy pt. Gra Mengera versus gra zwarto-otwarta, napisanej
przez Jakuba Radziwilskiego oraz pracy pt. Własność gamma w produktach przestrzeni
napisanej przez Patryka Gresztę.

6.4 Kształcenie kadry naukowej

Od października 2023 roku pełnię funkcję promotora pomocniczego pana mgr. Kacpra
Kucharskiego, który kształci się w Szkole Doktorskiej Nauk Ścisłych i Przyrodniczych
Uniwersytetu Warszawskiego.

7 Inne ważne informacje dotyczące kariery zawodo-
wej.

7.1 Nagrody i wyróżnienia

1. Trzecia nagroda w 54-tym konkursie im. Józefa Marcinkiewicza na najlepszą pracę
studencką, PTM, 2010.

2. Nagroda indywidualna III stopnia rektora Uniwersytetu Warszawskiego, Uniwersy-
tet Warszawski, 2020.

3. Dwuletnie stypendium badawcze Maŕıa Zambrano na Uniwersytecie w Murcji otrzy-
mane w ramach otwartego konkursu o zasięgu globalnym, Ministerio de Universida-
des, Gobierno de España, 2023–2024.

7.2 Działalność recenzencka związana z badaniami naukowymi

Wponiższej tabeli prezentujemy liczbę recenzji wykonanych dla poszczególnych czasopism
naukowych.
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Nazwa czasopisma Liczba recencji
Studia Mathematica 1

Fundamenta Mathematicae 1
Mathematische Nachrichten 1

RACSAM 1
Indagationes Mathematicae 1

Journal of Mathematical Analysis and Applications 1
Topology and its Applications 4
Colloquium Mathematicum 2

Topological Methods in Nonlinear Analysis 1
Quaestiones Mathematicae 1

European Journal of Mathematics 5
FILOMAT 1

Hacettepe Journal of Mathematics and Statistics 1
Journal of Mathematics and Applications 1
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