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Tytuł: “Weighted automata: expressiveness and decidability”.
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4.1 Tło

Automaty ważone Automaty ważone są naturalnym modelem obliczeniowym, który zamiast roz-
poznawać słowa wejściowe przypisuje im wartości liczbowe. Tradycyjne modele przypisują każdemu
słowu jedną z dwóch wartości: 0 (odrzucenie) lub 1 (akceptacja). Automaty ważone przypisują war-
tości z szerszych dziedzin; najbardziej intuicyjny wariant — automaty probabilistyczne — przypisuje
prawdopodobieństwo akceptacji danego słowa. W ogólności dziedzina może być dowolnym prze-
miennym półpierścieniem. Wówczas automaty skończone można traktować jako automaty ważone
nad półpierścieniem boolowskim.
W niniejszym dokumencie interesują nas dwie klasy półpierścieni. Po pierwsze, ciała, a dokładniej

ciało liczb wymiernych ze standardowym dodawaniem i mnożeniem; można je dodatkowo ograniczyć
do liczb wymiernych z przedziału [0, 1] przy automatach probabilistycznych. Po drugie, półpierścienie
tropikalne, gdzie dziedzina jest zazwyczaj ograniczona do liczb całkowitych lub naturalnych, operacja
dodawania w półpierścieniu to max lub min, a mnożenie to +.
Dla obu klas półpierścieni badane problemy są często podobne, a czasem wręcz te same, lecz

stosowane techniki i teoria zazwyczaj się różnią. Nie istnieje jedno ujednolicone podejście i wydaje
się mało prawdopodobne, by takie mogło istnieć. Ten sam problem może być rozstrzygalny nad
jednym półpierścieniem i nierozstrzygalny nad innym. Na przykład równoważność automatów wa-
żonych jest rozstrzygalna w czasie wielomianowym nad ciałami [75], ale jest nierozstrzygalna nad
półpierścieniami tropikalnymi [2].
Ustalmy przemienny półpierścień S(⊕,⊙). Istnieją dwie naturalne definicje automatów ważonych

nad S(⊕,⊙), które są równoważne, ale dają różną intuicję. Zaczniemy od definicji podkreślającej
interpretację jako przekształcenia liniowe. Automat ważony to krotka A = (d,Σ, (Ma)a∈Σ, I, F ),
gdzie: d ∈ N to wymiar; Σ to skończony alfabet; każda Ma ∈ Sd×d jest macierzą przejścia; a
I, F ∈ Sd są odpowiednio wektorem początkowym i końcowym. Dla słowa a1 . . . an ∈ Σ∗ automat
zwraca wartość

I⊺ ⊙Ma1 ⊙ . . .⊙Man ⊙ F.

Mnożenie macierzy jest dobrze określone nad przemiennymi półpierścieniami. Z tego punktu widze-
nia łatwo zauważyć, że automaty ważone uogólniają liniowe ciągi rekurencyjne (LRS). Rzeczywiście,
gdy alfabet ma jedną literę, każde słowo utożsamiamy z jego długością, tzn. Σ∗ ≡ N. Zatem auto-
maty ważone nad alfabetem jednoelementowym definiują naturalnie n-ty wyraz ciągu. Gdy S(⊕,⊙)
jest ciałem liczb wymiernych, dostajemy standardową klasę LRS, gdzie typowym przykładem jest
ciąg Fibonacciego, patrz Fig. 1 oraz Section 4.2.
Druga definicja jest równoważna, niemal syntaktycznie, lecz używa innych nazw:A = (Q,Σ, (Ma)a∈Σ, I, F ).

Wymiar d zastępujemy skończonym zbiorem stanówQ, a wymiary macierzy i wektorów to |Q|. Każda
macierzMa jest interpretowana jako ważona macierz przejść między stanami. Wektory I i F przecho-
wują wagi początkowe i końcowe stanów. Wyjście automatu definiujemy wtedy tak: każdy przebieg
nad słowem wnosi do wyniku iloczyn (⊙) wszystkich wag przejść oraz wag stanu początkowego i
końcowego, a wartość automatu jest sumą (⊕) po wszystkich biegach. Dzięki prawu rozdzielności
w przemiennych półpierścieniach definicja ta jest równoważna z pierwszą, patrz Fig. 1. Łatwo też
zauważyć, że nad półpierścieniem boolowskim automaty ważone są równoważne automatom skoń-
czonym w tym sensie, że akceptowane słowa to te, którym przypisano wartość prawdy.
Drugi punkt widzenia pozwala w naturalny sposób wprowadzać ograniczenia znane z teorii auto-

matów. Przykładem jest ograniczenie unambiguous. Intuicyjnie są to automaty ważone definiujące
funkcje, które przy obliczaniu wyniku nie używają ⊕. W pierwszej definicji trudno ująć to zgrabnie
formalnie, natomiast w drugiej wystarczy powiedzieć, że dla każdego słowa istnieje co najwyżej jeden
bieg o niezerowej wadze. Więcej szczegółów poniżej.

2



p q
a | 1

a | 1 a | 2

1

1 1

r

a | 2

1

1

Rysunek 1: Przykłady automatów ważonych nad alfabetem jednoelementowym {a}. Rysunki od-
powiadają drugiej definicji, gdzie przejścia o wadze 0 i stany z wagą początkową/końcową 0 są
pominięte. Można je przekształcić do pierwszej definicji. Po prawej: wymiar d = 1, jedyna macierz
Ma = (2), I = F = (1); automat przypisuje an 7→ 2n. Po lewej: wymiar d = 2, jedyna macierz
Ma = ( 1 10 2 ) (stan p odpowiada pierwszej współrzędnej, a q drugiej), I

⊺ = (1, 0) i F ⊺ = (1, 1). Łatwo
sprawdzić przez indukcję, że po przeczytaniu an mamy I⊺(Ma)n = (1, 2n − 1), zatem automat po
lewej przypisuje an 7→ 1 + 2n − 1 = 2n.

Ambiguity Istnieje kilka podejść do definiowania podklas automatów ważonych. Jedno z nich
polega na ograniczaniu liczby przebiegów akceptujących. Dla danego A wyróżniamy cztery klasy:

• automaty unambiguous, tzn. z co najwyżej jednym biegiem akceptującym;

• automaty finitely-ambiguous, tzn. liczba biegów akceptujących jest ograniczona pewną stałą
niezależną od długości słowa;

• automaty polynomially-ambiguous, tzn. liczba biegów jest ograniczona wielomianem od dłu-
gości słowa;

• pełna klasa, nazywana w tym kontekście czasem nazywana exponentially-ambiguous.

Zauważmy, że definicje tych klas zależą wyłącznie od struktury automatu; z punktu widzenia
klasy istotne jest jedynie to, czy wagi są zerowe czy nie. Przynależność automatu do jednej z klas jest
bardzo dobrze zrozumiana i równoważna zakazaniu pewnych prostych wzorców [78]. Na podstawie
tych charakterystyk można wnioskować też, że są to „najważniejsze” klasy: klasy pośrednie stają
się równoważne jednej z nich. Przykładowo klasa „logarithmic-ambiguous” pokrywa się z finitely-
ambiguous.
Jeżeli automat nie należy do danej klasy, nie znaczy to, że nie istnieje automat równoważny

należący do tej klasy. Tak jest w Fig. 1, gdzie automat po lewej jest polynomially ambiguous, na-
tomiast równoważny mu automat po prawej jest unambiguous. Pojawia się więc naturalne pytanie,
czy ta hierarchia klas funkcji jest ścisła. Odpowiedź zależy od modelu automatów, a dokładniej —
od rozważanego półpierścienia. Przykładowo, dla automatów skończonych cała hierarchia zapada się
dzięki konstrukcji zbioru potęgowego (powerset construction). Dla półpierścieni tropikalnych znane
są przykłady rozdzielające klasy: istnieje automat finitely-ambiguous, którego nie można zrealizo-
wać automatami unambiguous [53, Section 3.4], oraz automat polynomially-ambiguous, którego nie
można zrealizować automatami finitely-ambiguous [52, Proposition 3.2].
Słabością tych prac jest brak uogólnionej metody dowodzenia wyników separacyjnych dla innych

funkcji realizowanych przez automaty ważone. Co więcej, nie istniał formalny dowód oddzielający
klasę polynomially-ambiguous od klasy exponentially-ambiguous.
Klasy niejednoznaczności dla automatów ważonych nad ciałami zostały po raz pierwszy szcze-

gółowo zbadane w 2017 roku [44], konkretniej w kontekście automatów probabilistycznych. Autorzy
skupili się tam na problemach decyzyjnych, nie podając przykładów rozdzielających klasy.
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a0 = 2, an+1 = (an)2
{
b0 = 1
c0 = 1

,

{
bn+1 = bn · cn
cn+1 = cn + 1.

Rysunek 2: Po lewej ciąg an = 22
n

zdefiniowany przez wielomian x2. Po prawej ciąg bn = n!,
definiowany przy pomocy pomocniczego ciągu cn = n+ 1 i układu wielomianów xy i y + 1. Liczba
zmiennych odpowiada liczbie ciągów.

Cost-register automata i ograniczenie copyless Cost-register automata (CRA) [5], znane też
jako polynomial automata [14] lub polynomial recurrent relations [76], uogólniają automaty ważone
poprzez dopuszczenie nieliniowych aktualizacji. Pomińmy formalną definicję; wystarczy myśleć, że
aktualizacje liniowe zostają zastąpione aktualizacjami zadanymi przez wielomiany. W ten sposób au-
tomaty ważone uogólniają liniowe ciągi rekurencyjne, a cost-register automata — ciągi rekurencyjne
o wielomianowej postaci, patrz Fig. 2.
Będziemy używać nazwy CRA, gdyż w tym kontekście wygodnie zdefiniować ograniczenie copy-

less, omawiane szczegółowo w dalszej części. Model CRA i ograniczenie copyless są często analizowa-
ne w kontekście modeli transduktorów [71]. Ograniczenie copyless dotyczy przejść aktualizujących:
intuicyjnie, przy jednej aktualizacji nie można użyć wartości tej samej zmiennej więcej niż raz. W
przykładach z Fig. 2 oba ciągi an i bn naruszają to ograniczenie. Dla an używamy wielomianu x2,
który formalnie jest iloczynem x · x, co wykorzystuje wartość x dwukrotnie. Dla bn zmienna y poja-
wia się zarówno w xy, jak i w y+1; bardziej intuicyjnie, wartość cn jest potrzebna dwa razy. Prosty
przykład automatu copyless to sam ciąg cn = n+ 1, gdyż definiuje go wielomian y+ 1. Uogólniając
ten przykład, można pokazać, że dowolny ciąg wielomianowy da się zdefiniować przy użyciu copyless
CRA.
Przy takim ujęciu CRA, łatwo zauważyć, że ograniczenie się do aktualizacji liniowych prowadzi

do modelu równoważnego automatom ważonym. Formalny dowód takiej równoważności znajduje się
w [5]. Podsumowując, otrzymujemy następujące klasy funkcji:

• pełna klasa CRA;

• copyless CRA;

• liniowe CRA;

• liniowe i copyless CRA.

Pierwsza z nich jest oczywiście najbardziej ekspresywna, a ostatnia — najmniej. Nie jest jednak
a priori jasne, jak porównać środkowe dwie klasy, ani jak copyless CRA oraz liniowe copyless CRA
mają się do klas definiowanych przez ograniczenia niejednoznaczności, np. automaty polynomially-
ambiguous.
Częściowe odpowiedzi pojawiają się w kilku pracach, których jestem współautorem, ale nie za-

liczyłem ich do głównych osiągnięć w tym dokumencie. W [66] i [65, Lemma 5] pokazano, że klasa
copyless CRA zawiera się w klasie liniowych CRA, czyli równoważnie — w klasie wszystkich au-
tomatów ważonych — nad dowolnym przemiennym półpierścieniem. Dowód nie jest trudny: mając
copyless CRA, budujemy liniowe CRA, którego rejestrami są wszystkie monomiany, w których każdy
rejestr występuje co najwyżej raz. Aktualizacje przejmujemy z oryginalnego CRA; dzięki ogranicze-
niu copyless, nowe aktualizacje są liniowe.
W [3, 4] pokazaliśmy, że klasa liniowych copyless CRA zawiera się, nad dowolnym półpierścieniem,
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w klasie automatów polynomially-ambiguous1. Uzupełniają to wyniki pokazujące, że liniowe copyless
CRA nie obejmują nawet klasy automatów unambiguous, patrz np. Sekcja 4 pracy przeglądowej [38].
Dalsza część dokumentu podzielona jest tematycznie. W Section 4.2 i Section 4.3 omawiam wyniki

dotyczące wyrażalności automatów ważonych i ich rozszerzeń nad ciałem liczb wymiernych oraz nad
półpierścieniami tropikalnymi. W Section 4.4 omawiam wyniki dotyczące problemów decyzyjnych
dla automatów ważonych nad ciałami.

4.2 Wyrażalność nad ciałem liczb wymiernych

Wyniki w tej sekcji dotyczą automatów ważonych i CRA nad ciałem liczb wymiernych, ale ograni-
czonych do alfabetów jednoliterowych. Przypomnijmy, że dla alfabetu Σ = {a} słowa mają postać
an i utożsamiamy je z ich długością. Automat ważony nad liczbami wymiernymi jest więc funkcją
N → Q. Definicja macierzowa opisuje ciągi postaci an = I⊺MnF . Tę klasę nazywamy linear recur-
rence sequences (LRS). Alternatywną, klasyczną definicją jest pojedyncze równanie rekurencyjne
stałej głębokości: an+k =

∑k−1
i=0 ci ·an+i. Przykładowo ciąg Fibonacciego spełnia Fn+2 = Fn+1+Fn.

Obie definicje są efektywnie równoważne patrz np. [23, Proposition 2.1].
Taka perspektywa prowadzi do naturalnych pytań: jakie ciągi można wyrazić przy użyciu ograni-

czonych wariantów automatów ważonych i CRA? To jest tematem badań w pierwszej z omawianych
prac.

(A) Corentin Barloy, Nathanaël Fijalkow, Nathan Lhote, and Filip Mazowiecki.
A robust class of linear recurrence sequences.
Information and Computation, 2022 [7]; wersja konferencyjna w CSL, 2020 [6].

Pod względem technicznym jest to najprostsza praca z tego zestawu i może być traktowana ja-
ko łagodne wprowadzenie do typu wyników prezentowanych w pozostałych częściach. Najbardziej
intuicyjny wynik to że w tym kontekście klasy ciągów odpowiadające automatom polynomially-
ambiguous i copyless CRA są sobie równe. Co więcej, są one równoważne z klasą LRS, których
wartości własne są pierwiastkami liczb wymiernych, tzn. liczbami zespolonymi z takimi, że zn jest
wymierne dla pewnego n ∈ N. Wartości własne są pierwiastkami wielomianu odpowiadającego rów-
naniu rekurencyjnemu; np. ciąg Fibonacciego spełnia Fn+2 − Fn+1 − Fn = 0, co daje wielomian
x2 − x− 1 = 0, a jedną z wartości własnych jest złoty podział ϕ. Wniosek: automaty polynomially-
ambiguous i copyless CRA ściśle mniej wyrażają niż pełna klasa automatów ważonych, gdyż ϕn

nigdy nie jest liczbą wymierną. Pozostałe wyniki z pracy (A) charakteryzują klasy LRS odpowiada-
jące innym fragmentom automatów ważonych i CRA.
Choć równoważność polynomially-ambiguous i copyless CRA w tym modelu jest elegancka, nie

była w pełni satysfakcjonująca: wierzyliśmy, że dla alfabetów nieograniczonych klasy te różnią się.
Niedawno udało nam się to pokazać w nieopublikowanej pracy [65] (nieomawianej tutaj). Warto
dodać, że treść (A) jest inspirowana sekcją 4 pracy [69], omawianej w Section 4.3.
Druga praca omawiana w tej sekcji dotyczy rozszerzeń automatów ważonych nad ciałami, rozpa-

trywanych jako klasy ciągów. Wspominaliśmy już, że CRA można postrzegać jako rozszerzenie LRS
poprzez rekurencje zdefiniowane wielomianami; klasę tę nazywamy polynomially recursive sequences
(Polyrec). W literaturze pojawiają się jednak jeszcze dwa inne naturalne rozszerzenia automatów
ważonych. Pierwsze pochodzi z tego że gramatyki bezkontekstowe rozszerzają automaty skończone;
można to przenieść w świat automatów ważonych [45]. Odpowiadająca klasa ciągów to dobrze znana
klasa holonomic sequences, patrz np. książka [51]. Tam rekurencje mogą używać bieżącego indeksu

1W [3, 4] wszystkie CRA są z założenia liniowe, dlatego model ten nazywany jest tam copyless CRA, co może być
mylące w odniesieniu do obecnej notacji.
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n po obu stronach równania. Przykładowo an = n! można zdefiniować przez an+1 = n · an, a liczby
Catalana spełniają (n+ 2) · Cn+1 = (4n+ 2)Cn.
Drugie rozszerzenie pochodzi z logiki. Istniały badania zmierzająca do logicznej charakterystyki

automatów ważonych, analogicznej do charakteryzacji automatów skończonych przez MSO. Osta-
tecznie otrzymane logiki okazały się bardziej ekspresywne niż automaty ważone [42, 55]. Intuicyjnie
kwantyfikatory ∃ i ∀ zastąpiono operatorami sumy i iloczynu. Odpowiadającej klasie ciągów nadamy
roboczo nazwę MSO sequences. Przykładami ciągów definiowalnych w tej klasie są nn oraz n!, np.
za pomocą formuł: ∏

x

∑
y

1,
∏
x

∑
y¬x

1.

Intuicyjnie formuła 1 przyjmuje wartość 1 na każdej pozycji słowa (tu an). Wówczas
∑
y 1 zwraca

długość słowa n, a
∏
x

∑
y 1 bierze iloczyn n takich składników, zwracając n

n. W drugiej formule
ograniczenie y ¬ x sprawia, że mnożymy wszystkie liczby od 1 do n.
Naturalne pytanie brzmi: jak porównać trzy klasy ciągów — Polyrec, holonomic sequences i MSO

sequences? Przypuszczamy, że są wzajemnie nieporównywalne. Jedynymi trywialnymi nieinkluzjami
są te, że holonomic sequences nie mogą zawierać ani Polyrec, ani MSO sequences ze względu na
ograniczenia asymptotyczne: łatwo zauważyć, że holonomic sequences są asymptotycznie ograniczone
przez 2poly(n), podczas gdy np. ciąg 22

n

jest Polyrec (por. Fig. 2) i da się go również zdefiniować w
klasie MSO sequences. W kolejnej pracy pokazujemy dwie dalsze nieinkluzje.

(B) Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michal Pilipczuk i Géraud
Sénizergues.
On polynomial recursive sequences.
Theory of Computing Systems (TOCS) 2021 [23]; wersja konferencyjna ICALP 2020 [22].

W pracy (B) pokazujemy, że Polyrec nie może zawierać ani holonomic sequences, ani MSO
sequences. Osiągamy to, dowodząc, że ani liczby Catalana, ani ciąg nn nie mogą być zdefiniowane za
pomocą Polyrec. Pierwszy wynik jest koncepcyjnie prosty: wystarczy analiza ciągów modulo liczby
pierwsze. Okazuje się, że dla Polyrec ciągi modulo liczby pierwszej muszą być ostatecznie okresowe.
To wystarczy, ponieważ np. liczba Catalana Cn jest nieparzysta wtedy i tylko wtedy, gdy n ma
postać 2k − 1.
Drugi wynik jest koncepcyjnie znacznie trudniejszy. Najpierw trzeba było znaleźć własność cha-

rakterystyczną ciągów Polyrec, której nn nie spełnia. Wprowadzamy pojęcie cancelling polynomials.
Dla każdego ciągu Polyrec istnieje niezerowy wielomian wiążący skończoną liczbę kolejnych wartości
ciągu. Dla an = n! łatwo sprawdzić, że

an+2
an+1

=
an+1
an
+ 1,

co prowadzi do zależności
an+2an − a2n+1 − an+1an = 0.

Posiadanie cancelling polynomial nie charakteryzuje jednak Polyrec; np. dowolny ciąg bn o warto-
ściach w {−1, 1} (np. nie musi być ostatecznie okresowy) spełnia b2n − 1 = 0, co definiuje cancelling
polynomial.
Pokazujemy, że ciągi Polyrec zawsze mają cancelling polynomials, a głównym punktem pracy jest

dowód, że ciąg nn nie ma takiej zależności — każda taka zależność prowadziłaby do nienaturalnego
powiązania między kolejnymi wyrazami, co okazuje się niemożliwe.
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Na koniec warto zauważyć, że cancelling polynomial dla n! nie jest liniowy w an+2. W pracy (B)
prostym argumentem asymptotycznym pokazujemy, że nie istnieje cancelling polynomial liniowy w
wyrazie o największym indeksie. W późniejszej pracy proponujemy hipotezę, że liniowość można
uzyskać, jeśli dopuścimy funkcje wymierne zamiast wielomianów [30]. Taki wynik miałby konse-
kwencje dla górnych oszacowań złożoności problemu równoważności dla Polyrec. Obecnie wiadomo,
że problem jest PSPACE-trudny i osadzony w klasie Ackermanna [30, Section 5].

4.3 Wyrażalność nad półpierścieniami tropikalnymi

W tej sekcji omawiam wyniki dotyczące wyrażalności automatów ważonych nad półpierścieniami
tropikalnymi. Aby uniknąć technicznych subtelności, zakładamy zazwyczaj, że dziedziną są liczby
naturalne, dodawanie to min, a mnożenie to +. Niekiedy zamiast min stosuje się max; będzie to
zawsze wyraźnie zaznaczone.
Wiadomo było, że w tym kontekście automaty finitely-ambiguous mogą wyrazić więcej niż unam-

biguous [54], a automaty polynomially-ambiguous — bardziej ekspresywne niż finitely-ambiguous [53].
Wyniki te uzyskano jednak poprzez analizę konkretnych przykładów, bez ogólnej techniki dowodze-
nia niewyrażalności. To był punkt wyjścia dla kolejnej omawianej pracy.

(C) Agnishom Chattopadhyay, Filip Mazowiecki, Anca Muscholl i Cristian Riveros (wersja kon-
ferencyjna: Filip Mazowiecki i Cristian Riveros).
Pumping lemmas for weighted automata.
Logical Methods in Computer Science (LMCS) 2021 [25]; wersja konferencyjna STACS
2018 [68].

W pracy tej przedstawiamy lematy pompujące dla klas unambiguous, finitely-ambiguous oraz
polynomially-ambiguous automatów ważonych nad półpierścieniami tropikalnymi (zarówno z min,
jak i z max). Pokazujemy, jak stosować te lematy jako czarne skrzynki, aby uzyskać krótkie dowody
separacji klas. Praca zawiera również pierwsze formalne dowody rozdzielenia klasy polynomially-
ambiguous od exponentially-ambiguous. Dzięki temu pokazujemy także, że polynomially-ambiguous
automata nie zawierają klasy copyless CRA. Funkcję świadkującą te fakty przedstawiono na Fig. 3.
W pewnych sytuacjach nasze lematy można stosować także w klasach szerszych niż automaty wa-
żone, gdzie pojawiają się nieliniowe użycia operacji mnożenia (czyli dodawania w odpowiadających
półpierścieniach tropikalnych).
Główną ideą przy formułowaniu lematów pompujących było znalezienie właściwego sposobu roz-

cinania słów na części, które można pompować niezależnie. Intuicyjnie, w klasie finitely-ambiguous
powinno istnieć stałe ograniczenie na liczbę fragmentów, które mogą niezależnie wpływać na wynik.
Główna trudność polegała na odpowiednim sformułowaniu lematów; po podaniu poprawnego sfor-
mułowania dowody są bardziej techniczne niż koncepcyjne. Wyjątkiem są dowody dotyczące klasy
polynomially-ambiguous, które okazały się najtrudniejsze.
Warto zauważyć, że dla alfabetów jednoelementowych wiadomo było wcześniej, iż pełna klasa

(exponentially-ambiguous) automatów ważonych jest równoważna klasie unambiguous [58].
Ostatnia praca omawiana w tej sekcji dotyczy klasy copyless CRA. W czasie jej powstawania nie

było jasne, jak klasa ta porównuje się do klas automatów ważonych definiowanych przez ogranicze-
nia niejednoznaczności. Intuicyjnie wydawała się podobna do polynomially-ambiguous, co zostało
potwierdzone w szczególnej sytuacji w pracy (A), lecz w ogólności sytuacja jest bardziej subtelna.
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a | 1
b | 0 # | 0

a | 0
b | 1

# | 0

a | 1
b | 0

# | 0

a | 0
b | 1

a | x := x+ 1

b | y := y + 1

#
∣∣∣ x := 0y := 0

z := z +min(x, y)

x, y, z := 0

Rysunek 3: Przykład funkcji definiowalnej zarówno przez automaty ważone, jak i copyless CRA, ale
nieprzez automaty polynomially-ambiguous. Po lewej automat exponentially-ambiguous, po prawej
copyless CRA. Stany początkowe/akceptujące po lewej oznaczają wagę początkową/końcową równą
0 (dla pozostałych stanów jest to +∞, czyli zero półpierścienia). Automat po prawej zwraca z +
min(x, y). Alfabet to Σ = {a, b,#}; słowa należy czytać jako ciągi (a+b)∗ rozdzielone symbolami #.
Dla słowa w = w0#w1# . . . wn#, gdzie wi ∈ (a+ b)∗, wartość funkcji wynosi

∑n
i=0min(|wi|a, |wi|b),

gdzie |wi|a, |wi|b oznaczają liczby liter a i b w wi. Intuicja za brakiem reprezentacji polynomially-
ambiguous to że dla każdego i automat musi zdecydować, czy będzie liczyć a, czy b.

(D) Filip Mazowiecki i Cristian Riveros.
Copyless Cost-Register Automata: Structure, Expressiveness, and Closure Properties.
Journal of Computer and System Sciences (JCSS) 2019 [69]; wersja konferencyjna STACS
2016 [67].

W pracy (D) dokładnie analizujemy klasę copyless CRA. Artykuł dzieli się zasadniczo na dwie
części. W pierwszej pokazujemy różne własności copyless CRA — zarówno w pełnej ogólności nad
dowolnym półpierścieniem, jak i w szczególności nad półpierścieniem tropikalnym. W tej części
pokazujemy m.in., że istnieje funkcja definiowalna przez automaty polynomially-ambiguous, której
nie można zdefiniować za pomocą copyless CRA. W połączeniu z wynikami z (C) pokazuje to, że
klasy te są nieporównywalne. Ponadto zauważamy, że copyless CRA nie są domknięte ze względu
na odwracanie słowa wejściowego: istnieje copyless CRA C takie, że nie istnieje copyless CRA C′ z
własnością C(w) = C′(wr) dla dowolnego słowa w (gdzie wr oznacza słowo odwrotne). Przykładową
funkcję ilustruje Fig. 4.
W drugiej części pracy analizujemy fragment copyless CRA, który nazywamy bounded alternation

copyless CRA (BAC). Intuicyjnie „bounded alternation” odnosi się do liczby zmian między sumą i
iloczynem w obliczaniu wyniku. Jak można się spodziewać, przykład z Fig. 4 nie należy do BAC:
czytanie słów z języka (a#)∗ powoduje nieograniczoną liczbę alternacji między max a + na rejestrze
x. Klasa BAC jest jednak bogatą podklasą copyless CRA, dla której udowadniamy wiele własności
domknięcia, m.in. domknięcie ze względu na odwracanie słowa wejściowego. W innej pracy, opartej
na (D), pokazaliśmy, że BAC ma ładną charakterystykę logiczną (dla pełnej klasy copyless CRA to
wydaje się mało prawdopodobne ze względu na brak odpowiednich własności domknięć) [66].

4.4 Problemy decyzyjne dla automatów ważonych nad ciałami

W tej sekcji zajmujemy się problemami decyzyjnymi wyłącznie dla automatów ważonych nad cia-
łem liczb wymiernych Q(+, ·). Model ten został wprowadzony już w latach 60. w klasycznej pra-
cy Schützenbergera [75]. Wiele problemów można zredukować do zrozumienia zbiorów osiągalnych
obiektów. Dla słów wejściowych w = a1 . . . an ∈ Σ∗ rozważamy:
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x, y := 0

a
∣∣ x := x+ 1
y := y

b
∣∣ x := x
y := y + 1

#
∣∣ x := max{x, y}
y := 0

# | 0
a | 0
b | 0

a | 0
b | 1

# | 0
a | 1
b | 0

# | 0 # | 0

Rysunek 4: Po lewej copyless CRA, po prawej automat polynomially-ambiguous rozpoznający tę
samą funkcję. Copyless CRA zwraca max(x, y). Notacja jest analogiczna jak w Fig. 3, np. stany
początkowe i końcowe. Zauważmy, że tutaj suma to max, a nie min. Funkcja jest zdefiniowana nastę-
pująco: dla słowa w = w0#w1# . . . wn# wartość wynosi maxni=0

(
|wi|b +

∑
j>i |wj |a

)
. Pokazujemy,

że po odwróceniu słowa funkcji tej nie da się rozpoznać przez copyless CRA. Ponieważ automaty
polynomially-ambiguous są domknięte na odwracanie słowa, przykład ten rozdziela te dwie klasy.

• wartości wyjściowe, tj. zbiór S1 = {I⊺ ·Ma1 · . . . ·Man · F | w ∈ Σ∗};

• wektory konfiguracji, tj. d-wymiarowe wektory S2 = {I⊺ ·Ma1 · . . . ·Man | w ∈ Σ∗};

• macierze przejść, tj. d× d macierze S3 = {Ma1 · . . . ·Man | w ∈ Σ∗}.

Wszystkie te zbiory są trudne do opisania. Dla automatu ważonego oraz elementu si problem
przynależności (membership) pyta, czy si ∈ Si. Wiadomo, że wszystkie trzy wersje są nierozstrzy-
galne [72, 73, 44]2.
Skupiamy się na problemie s1 ∈ S1, który można przeformułować następująco: dany jest automat

ważony A oraz liczba wymierna s1; czy istnieje słowo w takie, że A(w) = s1? Gdy zastąpimy rów-
ność nierównością A(w) ¬ s1, otrzymujemy problem emptiness lub threshold. Nazwa „emptiness”
pochodzi stąd, że problem naturalnie uogólnia klasyczny problem pustki języka akceptowanego przez
automat skończony. Uogólnieniem jest problem containment, gdzie dla dwóch automatów A, B py-
tamy, czy dla każdego słowa w zachodzi A(w) ¬ B(w). Wszystkie te problemy są w ogólności
nierozstrzygalne. Co ciekawe, problem równoważności, tj. czy A(w) = B(w) dla wszystkich w, jest
rozstrzygalny w czasie wielomianowym [75].
W 2017 roku wyniki o nierozstrzygalności zostały doprecyzowane w kontekście automatów o

ograniczonej niejednoznaczności [44]. Autorzy skupili się na automatach probabilistycznych, gdzie
dziedzina to przedział [0, 1], a macierze są stochastyczne. Pokazali oni, że emptiness jest nierozstrzy-
galny już dla automatów polynomially-ambiguous (a ściślej — quadratically-ambiguous, tzn. gdy
liczba biegów jest ograniczona wielomianem kwadratowym), ale staje się rozstrzygalny dla finitely-
ambiguous automata probabilistycznych. Pierwsza praca z tej sekcji jest naturalnym rozwinięciem
tych wyników.

2Nie znaleźliśmy w literaturze osobnego odniesienia dla wersji s2 ∈ S2, ale dowody dla i = 1, 3 łatwo adaptować.
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(E) Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez i
James Worrell.
When are emptiness and containment decidable for probabilistic automata?.
Journal of Computer and System Sciences (JCSS) 2021 [40]; wersja konferencyjna ICALP
2018 [39].

Na początku wzmacniamy wynik o nierozstrzygalności emptiness, pokazując, że problem ten
jest nierozstrzygalny już dla automatów linearly-ambiguous. Następnie koncentrujemy się na proble-
mie containment dla finitely-ambiguous probabilistic automata. Identyfikujemy ograniczenie, przy
którym problem staje się rozstrzygalny, przy założeniu prawdziwości hipotezy Schanuela.
Ograniczenie to jest dość techniczne; wygodniej jest opisać je poprzez równoważny problem. Za-

miast automatów probabilistycznych można rozważać automaty ważone nad liczbami wymiernymi
nieujemnymi Q­0. Nasze ograniczenie na problem containment jest równoważne rozważaniu pro-
blemu emptiness nad Q­0 (bez wymogu stochastyczności macierzy, ale z założeniem nieujemności
wag). Szczegóły omawiamy w Sekcji 3 kolejnej pracy (F). Przypomnijmy, że dla finitely-ambiguous
automatów probabilistycznych rozstrzygalność emptiness była znana i dość prosta do wykazania [44].
Zastąpienie przedziału [0, 1] pełnymQ­0 dramatycznie zwiększa trudność problemu. Rozstrzygalność
containment dla nieograniczonych finitely-ambiguous automatów probabilistycznych (lub automatów
ważonych nad Q­0) pozostaje otwarta.
Przejdźmy do omówienia wyników i roli hipotezy Schanuela. W części o nierozstrzygalności stosu-

jemy standardowe techniki używane przy automatach ważonych [2], gdzie wiele przebiegów „zgaduje”
różne błędy w kodowaniu maszyn z licznikami. Trudność polega na takiej analizie liczby przebiegów,
aby pozostała liniowa.
Dla finitely-ambiguous główna idea polega na przepisaniu problemu do postaci układu nierów-

ności wykładniczych: skończonej sumy wyrażeń postaci

pi ·
∏
xj

q
xj
i,j ,

gdzie pi, qi,j ∈ Q­0 są stałymi, a xj są zmiennymi naturalnymi. Indeksy i odpowiadają różnym
biegom (których jest stała liczba), a qi,j są wagami prostych pętli w biegu, które występują xj razy.
Wynika to z klasycznej dekompozycji na proste cykle, znanej już w pracy Rackoffa o ograniczoności
dla VASS [74]. Dla intuicji, rozważmy przykład z pracy (E):
Czy istnieją x, y ∈ N takie, że dla danego p ∈ Q ∩ [0, 1] zachodzi

p

(
1
2

)x
3y + (1− p) 2x

(
1
3

)y
< 1,

co równoważnie można zapisać przy użyciu funkcji wykładniczej:

exp(log(p)− x log 2 + y log 3) + exp(log(1− p) + x log 2− y log 3) < 1.

Następnie rozważamy zbiór

V = {(x, y) ∈ R2 : ex + ey < 1}

oraz punkt b = (log(p), log(1− p)). Definiujemy też wektory

u = (− log 2, log 2), v = (log 3, − log 3),
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i pytamy: czy istnieją x, y ∈ N takie, że

b+ xu+ yv ∈ V ?

przedstawiamy to obrazowo w Fig. 5. Odpowiedź brzmi: tak wtedy i tylko wtedy, gdy p ̸= 12 .
Rzeczywiście, niech

C = {(x,−x) : x ∈ R}.

Dla p = 12 prosta afiniczna C + p jest styczna do niebieskiego wykresu, a zatem b+ xu+ yv /∈ V dla
wszystkich x, y. Dla p ̸= 12 istnieje δ takie, że cały odcinek pomiędzy b a b+(δ,−δ) zawiera się w V .
Ponieważ log(2) i log(3) są niezależne nad liczbami wymiernymi, zbiór

D = {xu+ yv : x, y ∈ N}

jest gęsty w C, a więc pewien punkt zbioruD+b leży pomiędzy b a b+(δ,−δ), a zatem b+xu+yv ∈ V
dla pewnych x, y ∈ N.

x

y

−3 −2 −1

−3

−2

−1

ex + ey = 1

b

u

v
V

Rysunek 5: The set V is bounded by the plot ex + ey = 1 and the point b lies on that plot.

Aby poradzić sobie z tym problemem, wyrażamy go w logice nad liczbami rzeczywistymi z funkcją
wykładniczą. Wiadomo, że logika pierwszego rzędu nad R(+, ·, exp) jest rozstrzygalna, pod warun-
kiem prawdziwości hipotezy Schanuela [60], która jest matematyczną hipotezą z teorii liczb trans-
cendentalnych.
Wersja czasopismowa pracy zawiera dodatkowo wynik dotyczący wariantu typu promise problem

dla emptiness, tzw. gap emptiness problem. Dany jest automat probabilistyczny A i liczba ε ∈
Q ∩ (0, 1), przy założeniu, że:

• albo istnieje słowo w takie, że A(w) > 12 + ε,

• albo dla wszystkich słów w mamy A(w) ¬ 12 .

Zadanie polega na rozstrzygnięciu, czy zachodzi druga alternatywa. W ogólności problem ten jest
nierozstrzygalny [33], lecz pokazujemy, że jest rozstrzygalny dla polynomially-ambiguous probabili-
stic automata. Idea algorytmu: (1) wiemy, że problem jest rozstrzygalny dla finitely-ambiguous; (2)
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można aproksymować automat polynomially-ambiguous automatem finitely-ambiguous w kontrolo-
wany sposób.
Wynik ten był zaskakujący, ponieważ zwykle problemy nierozstrzygalne dla automatów ważonych

pozostają nierozstrzygalne już dla ograniczenia polynomially-ambiguous. Stał się on motywacją dla
badania innych problemów, gdzie ograniczenie polynomially-ambiguous mogłoby spowodować że
problem staje się rozstrzygalny. Kolejna praca (F) jest bezpośrednim rozwinięciem (E) oraz innej
pracy o aproksymacjach automatów ważonych [28].

(F) Wojciech Czerwinski, Engel Lefaucheux, Filip Mazowiecki, David Purser i Markus A.
Whiteland.
The boundedness and zero isolation problems for weighted automata over nonnegative
rationals.
Wersja konferencyjna LICS 2022 [37]

W pracy (F) badamy dwa problemy dla automatów ważonych nad Q­0: boundedness oraz zero
isolation. Dany automat A i słowa w1, w2, . . .; pytamy, czy istnieje ciąg słów taki, że wartości A(wi)
dążą odpowiednio do +∞ oraz do 0. Oba problemy są w ogólności nierozstrzygalne, a jednocześnie
przypuszczamy, że stają się rozstrzygalne dla automatów polynomially-ambiguous. Na pierwszy rzut
oka problemy wydają się podobne i można by oczekiwać redukcji między nimi; okazuje się jednak,
że wymagają różnych podejść.
Zaczynamy od boundedness. Pokazujemy, że problem ten jest rozstrzygalny dla liniowych co-

pyless CRA, czyli klasy zawartej w polynomially-ambiguous [4]3. Idea dowodu polega na analizie
półgrupy macierzy S3 wprowadzonych na początku tej sekcji. W ogólności S3 jest nieskończony.
Możemy przyjąć, że wagi pętli są ograniczone przez 1 — inaczej problem jest trywialny. Następ-
nie obcinamy wartości stosownie małe, co prowadzi do skończonej półgrupy. Dla niej analizujemy
szczegółowo elementy idempotentne. Dzięki twierdzeniu Simona o lasach faktoryzacji (Simon’s Fac-
torisation Forest Theorem) [77] narzucamy strukturę na świadkach nieograniczoności i redukujemy
problem do wykrywania prostych wzorców.
Dla zero isolation podejście jest odmienne. Rozważamy z pozoru bardzo prosty fragment polynomially-

ambiguous automatów ważonych, nazwany Independent-CRA. Nie definiujemy go tu formalnie, gdyż
częścią wkładu jest przeformułowanie problemu w bardziej intuicyjnym modelu. Wprowadzamy
uogólnienie znanego modelu vector addition systems (VAS) o nazwie orthant-VASS (OVAS). Kla-
syczny VAS w wymiarze d składa się ze skończonego zbioru wektorów z Zd. W OVAS dopuszczamy
wektory z Qd4 i dodatkowo dla każdego ortantu przestrzeni mamy własny skończony zbiór wektorów.
W problemach dla VAS zazwyczaj mamy dany wektor początkowy i możemy kolejno dodawać

wektory z danego zbioru, pod warunkiem, że żadna współrzędna nie spada poniżej zera. Można my-
śleć, że klasyczny VAS odpowiada OVAS, gdzie tylko dodatni ortant ma niepusty zbiór wektorów.
Typowe problemy decyzyjne pytają o osiągalność danej konfiguracji. Łatwo się spodziewać, że więk-
szość problemów dla OVAS jest nierozstrzygalna, ponieważ łatwo symulować maszyny z licznikami.
My identyfikujemy problem otwarty, którego rozstrzygalność jest równoważna rozstrzygalności zero
isolation dla ograniczonego modelu Independent-CRA: tzw. universal coverability. Dla danego OVAS
pytamy, czy z każdej konfiguracji początkowej da się dojść do ortantu dodatniego.
Nie udało nam się rozwiązać tego zagadnienia w pełnej ogólności. Pokazaliśmy jednak, że uni-

versal coverability jest rozstrzygalny w wymiarze 35.

3Wspólnie z Ismaëlem Jeckerem wierzymy, że konstrukcję można rozszerzyć na pełną klasę polynomially-
ambiguous; praca ta jest przygotowywana do publikacji i nie jest omawiana w tym dokumencie.
4Sciślej liczby postaci log r, gdzie r jest wymierne; nie wydaje się to istotną przeszkodą i pomijamy szczegóły.
5W przypadku ogólnym (przy dopuszczeniu liczb postaci log r) konieczne jest dodatkowe założenie hipotezy Scha-

nuela.
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Ostatnia praca dotyczy problemu determinisation. Można go zdefiniować nad dowolnym półpier-
ścieniem: czy dla danego automatu ważonego istnieje automat deterministyczny realizujący identycz-
ną funkcję [59]? Problem ten badano przede wszystkim nad półpierścieniami tropikalnymi; dopiero
niedawno pojawił się preprint dający pełne rozwiązanie [1]. Dla ciał rozstrzygalność została pokaza-
na w [9], a następnie szczegółowo przeanalizowana w [10]; górne ograniczenie 2-EXPTIME uzyskano
w [13]. Bazując na [9], w pracy (G) analizujemy problem determinisation dla polynomially-ambiguous
automatów ważonych.

(G) Ismaël Jecker, Filip Mazowiecki i David Purser.
Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted
Automata.
Wersja konferencyjna LICS 2024 [50].

Zaczynamy od uwagi, że matematycznie bardziej naturalny wydaje się problem unambiguisa-
tion: czy dla danego automatu ważonego istnieje automat równoważny, ale jednoznaczny. Ponieważ
determinisation jest znany jako rozstrzygalny dla automatów unambiguous, wystarczy skupić się na
unambiguisation (choć w ogólności złożoność, może być inna co pomijamy tutaj). Ten wynik bazuje
na tzw. twins property [29], którą łatwo można zaadaptować do automatów ważonych nad Q.
Elegancja klasy unambiguous wynika stąd, że intuicyjnie są to automaty, które nie używają su-

mowania w nietrywialny sposób przy obliczaniu wyniku. Główne twierdzenie, na którym opieramy
część wyników (G), pochodzi z [9]. Dla automatu A nad Q niech S1 będzie zbiorem wartości wyj-
ściowych, jak wcześniej. Autorzy dowodzą hipotezy Reutenauera, że A jest unambiguisable wtedy i
tylko wtedy, gdy S1 \ {0} zawiera się w skończenie generowanej podgrupie (ze względu na operację
mnożenia). Dla intuicji: jeśli S1 ⊆ Z, to oznacza to istnienie skończonego zbioru liczb pierwszych
P , takiego że wszystkie dzielniki pierwsze niezerowych elementów S1 należą do P . Jedna implikacja
jest trywialna: mając automat unambiguous, bierzemy podgrupę generowaną przez niezerowe wa-
gi na przejściach oraz w wektorach początkowych/końcowych. Trudność tkwi w dowodzie drugiej
implikacji.
Nasza metoda opiera się na analizie zachowania A na rodzinach słów typu (uwnv)n­1, dla

u,w, v ∈ Σ∗. Ponieważ
A(uwnv) = I ·M(u) ·M(w)n ·M(v) · F,

zrozumienie tych zachowań sprowadza się do analizy potęg macierzy.
Prowadzi to do kluczowej definicji. Macierz M nazywamy p-triangular, jeśli istnieje macierz

permutacyjna P taka, że PMP−1 jest górnotrójkątna. Automat ważony A nazywamy pumpable,
jeśli dla wszystkich u, v, w ∈ Σ∗, dla których M(v) jest p-triangular, istnieje element diagonalny d
macierzy M(v) taki, że

A(uv|A|+nw) = dn ·A(uv|A|w) dla każdego n ∈ N.

Zgodnie z intuicją z [9], automaty unambiguisable powinny być pumpable, ponieważ nie używają
sumowania w nietrywialny sposób. Odwrotna implikacja nie jest prawdziwa w pełnej ogólności z
dwóch powodów:

1. Pumpability odwołuje się do macierzy p-triangular, które mogą w ogóle nie wystąpić w danym
automacie;

2. Pumpability gwarantuje periodyczność tylko na słowach zawierających wiele kopii pewnego
fragmentu v; nie jest jasne, jak przenieść tę strukturę na słowa pozbawione takich powtórzeń,
np. słowa bezkwadratowe.
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Ograniczamy się więc do automatów polynomially-ambiguous i pokazujemy, że jeśli taki auto-
mat jest pumpable, to jest również unambiguisable. W tym ustawieniu macierze o odpowiedniej
strukturze idempotentnej są (po odpowiednim przestawieniu stanów) macierzami p-triangular, a ich
występowanie zapewnia twierdzenie Ramseya.
Na koniec pokazujemy, że sprawdzenie pumpability można zredukować do testu równoważności

automatów ważonych o wykładniczo większym rozmiarze. Daje to górne ograniczenie PSPACE. Co
więcej, nasza procedura jest konstruktywna: jeśli wejściowy automat jest unambiguisable, konstru-
ujemy równoważny automat unambiguous. Co zaskakujące, mimo relatywnie niskiej złożoności pro-
blemu decyzyjnego, automaty budowane przez nasz algorytm mogą mieć rozmiar ponad elementarny.
Nie podajemy dolnych ograniczeń ani dla złożoności, ani dla rozmiaru automatu równoważnego.

5 Aktywność naukowa

Jestem współautorem 14 artykułów czasopismowych (2 opublikowanych przed obroną doktoratu)
oraz 32 publikacji konferencyjnych (5 przed obroną). Jako główne osiągnięcia wybrałem 7 publikacji
konferencyjnych [67, 68, 39, 22, 6, 37, 50], z których 5 posiada wersje czasopismowe [69, 25, 40, 23,
7]. Uważam je za swoje najciekawsze osiągnięcia związane z modelem automatów ważonych i jego
wariantami.
Chronologicznie pracowałem nad tymi artykułami w następujących instytucjach:

• [67] i wersja czasopismowa [69]: praca powstała na Uniwersytecie Warszawskim po złożeniu
rozprawy doktorskiej, publikacje ukazały się już po obronie;

• [68]: praca powstała podczas mojego postdoca na University of Warwick; wersja czasopismo-
wa [25] została napisana we współpracy z dwoma nowymi autorami podczas mojego postdoca
w Bordeaux;

• [39] i wersja czasopismowa [40]: prace powstały podczas mojego postdoca na Uniwersytecie
Oksfordzkim;

• [22, 6] i wersje czasopismowe [23, 7]: prace powstały podczas mojego postdoca na Uniwersytecie
w Bordeaux;

• [37]: praca powstała, gdy byłem na stanowisku research group leader w MPI-SWS;

• [50]: praca powstała po moim powrocie na Uniwersytet Warszawski.

Moja rozprawa doktorska dotyczyła logik związanych z teorią baz danych i opierała się na na-
stępujących artykułach czasopismowych [62, 12] oraz konferencyjnych [11, 61, 24, 63].
Po doktoracie pracowałem głównie nad dwoma modelami w weryfikacji formalnej: automatami

ważonymi oraz sieciami Petriego. Wśród prac o automatach ważonych, których nie zaliczyłem do
głównych osiągnięć, są artykuł czasopismowy [4] oraz materiały konferencyjne [66, 3, 30]. Mam też
dwa nieopublikowane preprinty z tej dziedziny [41, 65].
Zdecydowana większość moich pozostałych prac dotyczy modelu sieci Petriego. Ze względu na

odmienny charakter techniczny nie uwzględniłem ich w głównej części dokumentu. Wśród nich znaj-
dują się artykuły czasopismowe [32, 36, 17, 19, 57] oraz publikacje konferencyjne [31, 43, 16, 34, 64,
35, 18, 20, 21, 56, 26, 70, 8, 49, 15, 27].
Jestem też współautorem dwóch prac które są nietypowe tematycznie względem pozostałych: jed-

na dotyczy struktur dynamicznych dla automatów czasowych [47] wraz z wersją czasopismową [48],
druga — sieci neuronowych na grafach [46].
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6 Dydaktyka, organizacja i popularyzacja nauki

Dydaktyka

• Uniwersytet Warszawski.

Koordynator:

– seminarium magisterskie: Języki automaty i obliczenia;

– cykl PhD open courses dla doktorantów i studentów magisterskich.

Ćwiczenia:

– Języki automaty i obliczenia;

– Logika dla informatyków;

– Wstęp do programowania;

– Automaty na nieskończonych słowach;

– Automaty ważone.

Wykłady:

– Logika dla informatyków;

– Automaty ważone.

• University of Warwick.

Laboratoria:

– Decision Procedures.

• Saarland University.

Wykłady:

– Weighted automata.

Organizacja

• współprzewodniczący komitetu organizacyjnego MFCS 2025 (local organiser co-chair);

• współorganizator LMW i LMW@CSL (Logic Mentoring Workshop at CSL) przy CSL’22,
LICS’20, LICS’19;

• współorganizator warsztatu INFINITY przy LICS’20 i CONCUR’23;

• współorganizator warsztatu „Autobóz” o automatach, logice i grach, edycje z lipca 2018 i 2020;

• współorganizator seminarium zespołu „Formal Methods” w LaBRI od stycznia 2018 do lipca
2019.
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Popularyzacja

• Był wywiad z nami w artykule oraz materiale wideo o sieciach Petriego w Quanta Magazine:
https://www.quantamagazine.org/an-easy-sounding-problem-yields-numbers-too-b
ig-for-our-universe-20231204/
https://www.youtube.com/watch?v=IzSs_gJDVzI

• Napisałem artykuł popularnonaukowy dla „Delty”:
https://www.deltami.edu.pl/2018/11/jak-definiowac-ciagi-rekurencyjne/%0A

7 Inne

• Byłem opiekunem jednego doktoranta: Philip Offtermatt (współpromotor: Michael Blondin).
Obronił doktorat w 2023 roku na Université de Sherbrooke.

• Byłem opiekunem dwóch prac magisterskich: Aleksandra Wiśniewskiego (obrona w 2024) i
Antoniego Pucha (obrona w 2025).
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Reachability in fixed dimension vector addition systems with states. In Igor Konnov and Lau-
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[44] Nathanaël Fijalkow, Cristian Riveros, and James Worrell. Probabilistic automata of bounded
ambiguity. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference on
Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85 of
LIPIcs, pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[45] Pierre Ganty and Elena Gutiérrez. The parikh property for weighted context-free grammars. In
38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2018), volume 122 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 32:1–32:20, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[46] Floris Geerts, Filip Mazowiecki, and Guillermo A. Pérez. Let’s agree to degree: Comparing
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