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1 Imie i nazwisko

Filip Mazowiecki

2 Dyplomy

Stopnie naukowe

e Luty 2016 doktor nauk w dziedzinie informatyki, Uniwersytet Warszawski, tytul rozprawy:
Frontiers of tractability for recursive queries, promotorzy: Filip Murlak i Emanuel Kieronski;

e Marzec 2013 magister informatyki, Uniwersytet Warszawski, tytul pracy: Alpha-Conversion
on generalised nominal sets, promotor: Bartek Klin;

e Czerwiec 2011 magister matematyki, Uniwersytet Warszawski, tytul pracy: Continuous re-
ductions of regular languages, promotor: Filip Murlak.

3 Zatrudnienie

e Od lutego 2022 Adiunkt im. Samuela Eilenberga (assistant professor) na Uniwersytecie War-
szawskim;

e Wrzesien 2019 — Styczen 2022 research group leader w Max Planck Institute for Software
Systems;

e Grudzien 2017 — Sierpien 2019 postdoc na Uniwersytecie w Bordeaux;
e Kwiecien 2017 — Listopad 2017 postdoc na Uniwersytecie Oksfordzkim;

e Marzec 2016 — Marzec 2017 postdoc na University of Warwick.

4 Opis osiagnieé

Tytul: “Weighted automata: expressiveness and decidability”.



4.1 Tlo

Automaty wazone Automaty wazone sg naturalnym modelem obliczeniowym, ktéry zamiast roz-
poznawaé stowa wejéciowe przypisuje im wartosci liczbowe. Tradycyjne modele przypisuja kazdemu
stowu jedna z dwoch wartosei: 0 (odrzucenie) lub 1 (akceptacja). Automaty wazone przypisuja war-
tosci z szerszych dziedzin; najbardziej intuicyjny wariant — automaty probabilistyczne — przypisuje
prawdopodobienstwo akceptacji danego stowa. W ogdélnoséci dziedzina moze byé¢ dowolnym prze-
miennym poOlpierécieniem. Wéwczas automaty skonczone mozna traktowaé jako automaty wazone
nad potpierscieniem boolowskim.

W niniejszym dokumencie interesuja nas dwie klasy polpierscieni. Po pierwsze, cialta, a dokladniej
ciato liczb wymiernych ze standardowym dodawaniem i mnozeniem; mozna je dodatkowo ograniczy¢
do liczb wymiernych z przedziatu [0, 1] przy automatach probabilistycznych. Po drugie, pélpierscienie
tropikalne, gdzie dziedzina jest zazwyczaj ograniczona do liczb catkowitych lub naturalnych, operacja
dodawania w polpierscieniu to max lub min, a mnozenie to +.

Dla obu klas pélpierscieni badane problemy sa czesto podobne, a czasem wrecz te same, lecz
stosowane techniki i teoria zazwyczaj si¢ réznia. Nie istnieje jedno ujednolicone podejscie i wydaje
sie mato prawdopodobne, by takie moglo istnieé. Ten sam problem moze by¢ rozstrzygalny nad
jednym poélpierscieniem i nierozstrzygalny nad innym. Na przykitad réwnowazno$é automatéw wa-
zonych jest rozstrzygalna w czasie wielomianowym nad cialami [75], ale jest nierozstrzygalna nad
pélpierscieniami tropikalnymi [2].

Ustalmy przemienny po6lpierscien S(@, ®). Istnieja dwie naturalne definicje automatéw wazonych
nad S(®,®), ktére sa réwnowazne, ale daja rézna intuicje. Zaczniemy od definicji podkreslajacej
interpretacje jako przeksztalcenia liniowe. Automat wazony to krotka A = (d, %, (My)ees, I, F),
gdzie: d € N to wymiar; ¥ to skoficzony alfabet; kazda M, € S%? jest macierza przejicia; a
I,F € S?% sa odpowiednio wektorem poczatkowym i kohcowym. Dla stowa a; ...a, € ©* automat
zwraca wartosé

I"TOM, ®...0M,, &F.

Mnozenie macierzy jest dobrze okreslone nad przemiennymi pélpierscieniami. Z tego punktu widze-
nia latwo zauwazy¢, ze automaty wazone uogdlniaja liniowe ciagi rekurencyjne (LRS). Rzeczywidcie,
gdy alfabet ma jedna litere, kazde stowo utozsamiamy z jego dlugoscia, tzn. ¥* = N. Zatem auto-
maty wazone nad alfabetem jednoelementowym definiuja naturalnie n-ty wyraz ciagu. Gdy S(®, ®)
jest cialem liczb wymiernych, dostajemy standardowa klase LRS, gdzie typowym przykladem jest
ciag Fibonacciego, patrz Fig. [[] oraz Section

Druga definicja jest réwnowazna, niemal syntaktycznie, lecz uzywa innych nazw: A = (Q, 2, (My)aes, I, F).
Wymiar d zastepujemy skoniczonym zbiorem stanéw @), a wymiary macierzy i wektoréw to |Q|. Kazda
macierz M, jest interpretowana jako wazona macierz przejs¢ migedzy stanami. Wektory I i F' przecho-
wuja wagi poczatkowe i konicowe stanéw. Wyjscie automatu definiujemy wtedy tak: kazdy przebieg
nad stowem wnosi do wyniku iloczyn (®) wszystkich wag przej$é¢ oraz wag stanu poczatkowego i
koncowego, a warto$é automatu jest suma (@) po wszystkich biegach. Dzieki prawu rozdzielnodci
w przemiennych pélpierscieniach definicja ta jest réwnowazna z pierwsza, patrz Fig. [I} Latwo tez
zauwazy¢, ze nad polpierscieniem boolowskim automaty wazone sa réwnowazne automatom skon-
czonym w tym sensie, ze akceptowane stowa to te, ktérym przypisano wartosé prawdy.

Drugi punkt widzenia pozwala w naturalny sposéb wprowadzaé¢ ograniczenia znane z teorii auto-
matéw. Przykladem jest ograniczenie unambiguous. Intuicyjnie sa to automaty wazone definiujace
funkcje, ktore przy obliczaniu wyniku nie uzywaja ®. W pierwszej definicji trudno ujac¢ to zgrabnie
formalnie, natomiast w drugiej wystarczy powiedzie¢, ze dla kazdego stowa istnieje co najwyzej jeden
bieg o niezerowej wadze. Wiecej szczegdléw ponizej.



Rysunek 1: Przyklady automatéw wazonych nad alfabetem jednoelementowym {a}. Rysunki od-
powiadaja drugiej definicji, gdzie przejscia o wadze 0 i stany z waga poczatkowa/koncowa 0 sa
pominiete. Mozna je przeksztalcié do pierwszej definicji. Po prawej: wymiar d = 1, jedyna macierz
M, = (2), I = F = (1); automat przypisuje a™ — 2". Po lewej: wymiar d = 2, jedyna macierz
M, = (§3) (stan p odpowiada pierwszej wspdlrzednej, a ¢ drugiej), IT = (1,0) i FT = (1,1). Latwo
sprawdzi¢ przez indukcje, ze po przeczytaniu a™ mamy IT(M,)" = (1,2™ — 1), zatem automat po
lewej przypisuje a™ — 1+ 2" — 1 =2™.

Ambiguity Istnieje kilka podejsé do definiowania podklas automatéw wazonych. Jedno z nich
polega na ograniczaniu liczby przebiegéw akceptujacych. Dla danego A wyrdzniamy cztery klasy:

e automaty unambiguous, tzn. z co najwyzej jednym biegiem akceptujacym;

e automaty finitely-ambiguous, tzn. liczba biegéw akceptujacych jest ograniczona pewna stala
niezalezna od dtugosci stowa;

e automaty polynomially-ambiguous, tzn. liczba biegéw jest ograniczona wielomianem od dtu-
gosci stowa;

e pelna klasa, nazywana w tym kontekscie czasem nazywana exponentially-ambiguous.

Zauwazmy, ze definicje tych klas zaleza wylacznie od struktury automatu; z punktu widzenia
klasy istotne jest jedynie to, czy wagi sg zerowe czy nie. Przynalezno$¢ automatu do jednej z klas jest
bardzo dobrze zrozumiana i réwnowazna zakazaniu pewnych prostych wzorcéw [78]. Na podstawie
tych charakterystyk mozna wnioskowaé tez, ze sa to ,najwazniejsze” klasy: klasy posrednie staja
sie réwnowazne jednej z nich. Przykladowo klasa ,logarithmic-ambiguous” pokrywa sie z finitely-
ambiguous.

Jezeli automat nie nalezy do danej klasy, nie znaczy to, ze nie istnieje automat réwnowazny
nalezacy do tej klasy. Tak jest w Fig. |1} gdzie automat po lewej jest polynomially ambiguous, na-
tomiast réwnowazny mu automat po prawej jest unambiguous. Pojawia sie wiec naturalne pytanie,
czy ta hierarchia klas funkcji jest Scista. OdpowiedZ zalezy od modelu automatéw, a doktadniej —
od rozwazanego pélpierscienia. Przykladowo, dla automatow skonczonych cala hierarchia zapada sie
dzieki konstrukeji zbioru potegowego (powerset construction). Dla pélpierscieni tropikalnych znane
sa przyklady rozdzielajace klasy: istnieje automat finitely-ambiguous, ktérego nie mozna zrealizo-
waé automatami unambiguous [53] Section 3.4], oraz automat polynomially-ambiguous, ktérego nie
mozna zrealizowaé¢ automatami finitely-ambiguous [52, Proposition 3.2].

Staboécia tych prac jest brak uogélnionej metody dowodzenia wynikow separacyjnych dla innych
funkcji realizowanych przez automaty wazone. Co wiecej, nie istnial formalny dowdd oddzielajacy
klase polynomially-ambiguous od klasy exponentially-ambiguous.

Klasy niejednoznacznosci dla automatéw wazonych nad cialami zostaly po raz pierwszy szcze-
gétowo zbadane w 2017 roku [44], konkretniej w kontekscie automatéw probabilistycznych. Autorzy
skupili si¢ tam na problemach decyzyjnych, nie podajac przyktadéow rozdzielajacych klasy.
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Rysunek 2: Po lewej ciag a, = 22" zdefiniowany przez wielomian 2. Po prawej ciag b, = n!,
definiowany przy pomocy pomocniczego ciagu ¢, = n + 1 i ukladu wielomianéw xy i y + 1. Liczba
zmiennych odpowiada liczbie ciagéw.

Cost-register automata i ograniczenie copyless Cost-register automata (CRA) [5], znane tez
jako polynomial automata [14] lub polynomial recurrent relations [76], uogdlniaja automaty wazone
poprzez dopuszczenie nieliniowych aktualizacji. Pominmy formalna definicje; wystarczy mysleé, ze
aktualizacje liniowe zostaja zastapione aktualizacjami zadanymi przez wielomiany. W ten sposéb au-
tomaty wazone uogdlniaja liniowe ciagi rekurencyjne, a cost-register automata — ciagi rekurencyjne
o wielomianowej postaci, patrz Fig. 2]

Bedziemy uzywaé¢ nazwy CRA, gdyz w tym kontekécie wygodnie zdefiniowaé ograniczenie copy-
less, omawiane szczegotowo w dalszej czeéci. Model CRA i ograniczenie copyless sa czesto analizowa-
ne w kontekscie modeli transduktoréw [71]. Ograniczenie copyless dotyczy przejsé aktualizujacych:
intuicyjnie, przy jednej aktualizacji nie mozna uzy¢ wartosci tej samej zmiennej wiecej niz raz. W
przyktadach z Fig. [2| oba ciagi a, i b, naruszaja to ograniczenie. Dla a,, uzywamy wielomianu x2,
ktory formalnie jest iloczynem x - x, co wykorzystuje warto$¢ x dwukrotnie. Dla b,, zmienna y poja-
wia sie zaréwno w zy, jak i w y + 1; bardziej intuicyjnie, wartos¢ ¢, jest potrzebna dwa razy. Prosty
przyklad automatu copyless to sam ciag ¢, = n + 1, gdyz definiuje go wielomian y + 1. Uogdlniajac
ten przyktad, mozna pokazaé, ze dowolny ciag wielomianowy da sie zdefiniowa¢ przy uzyciu copyless
CRA.

Przy takim ujeciu CRA, tatwo zauwazy¢, Ze ograniczenie sie do aktualizacji liniowych prowadzi
do modelu réwnowaznego automatom wazonym. Formalny dowéd takiej réwnowaznosci znajduje sie
w [5]. Podsumowujac, otrzymujemy nastepujace klasy funkcji:

e pelna klasa CRA;

e copyless CRA;

e liniowe CRA;

e liniowe i copyless CRA.

Pierwsza z nich jest oczywiscie najbardziej ekspresywna, a ostatnia — najmniej. Nie jest jednak
a priori jasne, jak poréwnaé érodkowe dwie klasy, ani jak copyless CRA oraz liniowe copyless CRA
maja sie do klas definiowanych przez ograniczenia niejednoznacznoéci, np. automaty polynomially-
ambiguous.

Czesciowe odpowiedzi pojawiajg sie¢ w kilku pracach, ktorych jestem wspotautorem, ale nie za-
liczytem ich do gléwnych osiagnie¢ w tym dokumencie. W [66] i [65] Lemma 5] pokazano, ze klasa
copyless CRA zawiera sie w klasie liniowych CRA, czyli réwnowaznie — w klasie wszystkich au-
tomatéw wazonych — nad dowolnym przemiennym polpierécieniem. Dowdd nie jest trudny: majac
copyless CRA, budujemy liniowe CRA, ktorego rejestrami sa wszystkie monomiany, w ktérych kazdy
rejestr wystepuje co najwyzej raz. Aktualizacje przejmujemy z oryginalnego CRA; dzigki ogranicze-
niu copyless, nowe aktualizacje sa liniowe.

W [3L 4] pokazalismy, ze klasa liniowych copyless CRA zawiera sie, nad dowolnym pélpierscieniem,



w klasie automatow polynomially—ambiguoueﬂ Uzupelniaja to wyniki pokazujace, ze liniowe copyless
CRA nie obejmuja nawet klasy automatéw unambiguous, patrz np. Sekcja 4 pracy przegladowe;j [38].

Dalsza cze$¢ dokumentu podzielona jest tematycznie. W Section[d.2i Section [-3lomawiam wyniki
dotyczace wyrazalnosci automatéw wazonych i ich rozszerzen nad cialem liczb wymiernych oraz nad
polpierscieniami tropikalnymi. W Section [£.4] omawiam wyniki dotyczace probleméw decyzyjnych
dla automatéw wazonych nad ciatami.

4.2 Wyrazalno$é nad ciatem liczb wymiernych

Wyniki w tej sekcji dotycza automatéw wazonych i CRA nad cialem liczb wymiernych, ale ograni-
czonych do alfabetéw jednoliterowych. Przypomnijmy, ze dla alfabetu ¥ = {a} slowa maja postaé
a™ 1 utozsamiamy je z ich dlugoscia. Automat wazony nad liczbami wymiernymi jest wiec funkcja
N — Q. Definicja macierzowa opisuje ciagi postaci a, = ITM™F. Te klase nazywamy linear recur-
rence sequences (LRS). Alternatywna, klasyczna definicja jest pojedyncze réwnanie rekurencyjne
statej glebokosci: a4k = Zf;ol ¢; - Gn4i- Przyktadowo ciag Fibonacciego spetnia F, 10 = Fi41 + F,.
Obie definicje sa efektywnie réwnowazne patrz np. [23, Proposition 2.1].

Taka perspektywa prowadzi do naturalnych pytan: jakie ciagi mozna wyrazi¢ przy uzyciu ograni-
czonych wariantéw automatéw wazonych i CRA? To jest tematem badan w pierwszej z omawianych
prac.

(A) Corentin Barloy, Nathanaél Fijalkow, Nathan Lhote, and Filip Mazowiecki.
A robust class of linear recurrence sequences.
Information and Computation, 2022 [7]; wersja konferencyjna w CSL, 2020 [6].

Pod wzgledem technicznym jest to najprostsza praca z tego zestawu i moze by¢ traktowana ja-
ko tagodne wprowadzenie do typu wynikéw prezentowanych w pozostatych czesciach. Najbardziej
intuicyjny wynik to ze w tym kontekscie klasy ciagéw odpowiadajace automatom polynomially-
ambiguous i copyless CRA sg sobie réwne. Co wiecej, sg one rownowazne z klasg LRS, ktorych
wartosci wlasne sg pierwiastkami liczb wymiernych, tzn. liczbami zespolonymi z takimi, ze z" jest
wymierne dla pewnego n € N. Wartosci wlasne sg pierwiastkami wielomianu odpowiadajacego row-
naniu rekurencyjnemu; np. ciag Fibonacciego spelia F,, o — Fj,41 — F,, = 0, co daje wielomian
22 —x —1=0, a jedng z wartoéci wlasnych jest zloty podzial ¢. Wniosek: automaty polynomially-
ambiguous i copyless CRA $ci$le mniej wyrazaja niz pelna klasa automatow wazonych, gdyz ¢™
nigdy nie jest liczba wymierna. Pozostate wyniki z pracy (A) charakteryzuja klasy LRS odpowiada-
jace innym fragmentom automatéow wazonych i CRA.

Choé¢ réwnowaznosé polynomially-ambiguous i copyless CRA w tym modelu jest elegancka, nie
byla w pelni satysfakcjonujaca: wierzyliSmy, ze dla alfabetoéw nieograniczonych klasy te réznig sie.
Niedawno udalo nam sie to pokazaé¢ w nieopublikowanej pracy [65] (nieomawianej tutaj). Warto
dodaé, ze tres¢ (A) jest inspirowana sekcja 4 pracy [69], omawianej w Section

Druga praca omawiana w tej sekcji dotyczy rozszerzen automatéw wazonych nad ciatami, rozpa-
trywanych jako klasy ciagéw. Wspominaliémy juz, ze CRA mozna postrzegaé jako rozszerzenie LRS
poprzez rekurencje zdefiniowane wielomianami; klase te nazywamy polynomially recursive sequences
(Polyrec). W literaturze pojawiaja sie jednak jeszcze dwa inne naturalne rozszerzenia automatéw
wazonych. Pierwsze pochodzi z tego ze gramatyki bezkontekstowe rozszerzaja automaty skonczone;
mozna to przenie$é¢ w $wiat automatéw wazonych [45]. Odpowiadajaca klasa ciagéw to dobrze znana
klasa holonomic sequences, patrz np. ksiazka [51]. Tam rekurencje moga uzywaé biezacego indeksu

W [3| 4] wszystkie CRA sa z zalozenia liniowe, dlatego model ten nazywany jest tam copyless CRA, co moze by¢
mylace w odniesieniu do obecnej notacji.



n po obu stronach réwnania. Przykladowo a,, = n! mozna zdefiniowaé przez a,+1 = n - a,, a liczby
Catalana spelniaja (n +2) - Cp41 = (4n + 2)C,,.

Drugie rozszerzenie pochodzi z logiki. Istnialy badania zmierzajaca do logicznej charakterystyki
automatéw wazonych, analogicznej do charakteryzacji automatéw skonczonych przez MSO. Osta-
tecznie otrzymane logiki okazaly si¢ bardziej ekspresywne niz automaty wazone [42] [55]. Intuicyjnie
kwantyfikatory 31V zastapiono operatorami sumy i illoczynu. Odpowiadajacej klasie ciagdéw nadamy
roboczo nazwe MSO sequences. Przykladami ciggdéw definiowalnych w tej klasie sa n™ oraz n!, np.

za pomocy formut:
1> 1>
Ty

r y<Lx

Intuicyjnie formula 1 przyjmuje warto$é 1 na kazdej pozycji stowa (tu a™). Wéwczas >, 1 zwraca
dlugosé stowa n, a ], Zyl bierze iloczyn n takich sktadnikow, zwracajac n™. W drugiej formule
ograniczenie y < x sprawia, ze mnozymy wszystkie liczby od 1 do n.

Naturalne pytanie brzmi: jak poréwnac trzy klasy ciaggdéw — Polyrec, holonomic sequences i MSO
sequences? Przypuszczamy, ze sa wzajemnie nieporownywalne. Jedynymi trywialnymi nieinkluzjami
sa te, ze holonomic sequences nie moga zawiera¢ ani Polyrec, ani MSO sequences ze wzgledu na
ograniczenia asymptotyczne: latwo zauwazy¢, ze holonomic sequences sa asymptotycznie ograniczone
przez 2°°% (") podezas gdy np. ciag 22" jest Polyrec (por. Fig. [2)) i da sie go réwniez zdefiniowaé w
klasie MSO sequences. W kolejnej pracy pokazujemy dwie dalsze nieinkluzje.

(B) Michaél Cadilhac, Filip Mazowiecki, Charles Paperman, Michal Pilipczuk i Géraud
Sénizergues.
On polynomial recursive sequences.
Theory of Computing Systems (TOCS) 2021 [23]; wersja konferencyjna ICALP 2020 [22].

W pracy (B) pokazujemy, ze Polyrec nie moze zawiera¢ ani holonomic sequences, ani MSO
sequences. Osiagamy to, dowodzac, ze ani liczby Catalana, ani ciag n™ nie moga by¢ zdefiniowane za
pomoca Polyrec. Pierwszy wynik jest koncepcyjnie prosty: wystarczy analiza ciagéw modulo liczby
pierwsze. Okazuje sie, ze dla Polyrec ciagi modulo liczby pierwszej musza by¢ ostatecznie okresowe.
To wystarczy, poniewaz np. liczba Catalana C,, jest nieparzysta wtedy i tylko wtedy, gdy n ma
postaé 2F — 1.

Drugi wynik jest koncepcyjnie znacznie trudniejszy. Najpierw trzeba byto znalezé wlasnosé cha-
rakterystyczna ciagdéw Polyrec, ktorej n™ nie spelnia. Wprowadzamy pojecie cancelling polynomials.
Dla kazdego ciggu Polyrec istnieje niezerowy wielomian wiazacy skoniczona liczbe kolejnych wartosci
ciagu. Dla a,, = n! latwo sprawdzié, ze

an+2 an+1

= —|— 17
Ap+1 (079

co prowadzi do zaleznosci
2
Ap42Gn — Uy g — Gpy1Gn = 0.

Posiadanie cancelling polynomial nie charakteryzuje jednak Polyrec; np. dowolny ciag b, o warto-
$ciach w {—1,1} (np. nie musi by¢ ostatecznie okresowy) spetnia b2 — 1 = 0, co definiuje cancelling
polynomial.

Pokazujemy, ze ciagi Polyrec zawsze maja cancelling polynomials, a gtéwnym punktem pracy jest
dowdd, ze ciag n™ nie ma takiej zaleznosci — kazda taka zaleznos¢ prowadzitaby do nienaturalnego
powiazania miedzy kolejnymi wyrazami, co okazuje sie niemozliwe.



Na koniec warto zauwazy¢, ze cancelling polynomial dla n! nie jest liniowy w a,2. W pracy (B)
prostym argumentem asymptotycznym pokazujemy, ze nie istnieje cancelling polynomial liniowy w
wyrazie o najwiekszym indeksie. W pdzniejszej pracy proponujemy hipoteze, ze liniowo$¢ mozna
uzyskaé, jesli dopusécimy funkcje wymierne zamiast wielomianéw [30]. Taki wynik miatby konse-
kwencje dla gérnych oszacowan zlozonosci problemu réwnowaznosci dla Polyrec. Obecnie wiadomo,
ze problem jest PSPACE-trudny i osadzony w klasie Ackermanna [30, Section 5].

4.3 Wyrazalno$é nad pélpierscieniami tropikalnymi

W tej sekcji omawiam wyniki dotyczace wyrazalnodci automatéow wazonych nad potpierscieniami
tropikalnymi. Aby uniknaé¢ technicznych subtelnosci, zaktadamy zazwyczaj, ze dziedzina sa liczby
naturalne, dodawanie to min, a mnozenie to +. Niekiedy zamiast min stosuje sie max; bedzie to
zawsze wyraznie zaznaczone.

Wiadomo bylo, ze w tym kontekscie automaty finitely-ambiguous moga wyrazié¢ wiecej niz unam-
biguous [54], a automaty polynomially-ambiguous — bardziej ekspresywne niz finitely-ambiguous [53].
Wyniki te uzyskano jednak poprzez analize konkretnych przyktadow, bez ogdlnej techniki dowodze-
nia niewyrazalnosci. To byl punkt wyjscia dla kolejnej omawianej pracy.

(C)  Agnishom Chattopadhyay, Filip Mazowiecki, Anca Muscholl i Cristian Riveros (wersja kon-
ferencyjna: Filip Mazowiecki i Cristian Riveros).

Pumping lemmas for weighted automata.

Logical Methods in Computer Science (LMCS) 2021 [25]; wersja konferencyjna STACS
2018 [68].

W pracy tej przedstawiamy lematy pompujace dla klas unambiguous, finitely-ambiguous oraz
polynomially-ambiguous automatéw wazonych nad pélpierécieniami tropikalnymi (zaréwno z min,
jak i z max). Pokazujemy, jak stosowaé te lematy jako czarne skrzynki, aby uzyskaé krétkie dowody
separacji klas. Praca zawiera rowniez pierwsze formalne dowody rozdzielenia klasy polynomially-
ambiguous od exponentially-ambiguous. Dzieki temu pokazujemy takze, ze polynomially-ambiguous
automata nie zawieraja klasy copyless CRA. Funkcje $wiadkujaca te fakty przedstawiono na Fig. [3]
W pewnych sytuacjach nasze lematy mozna stosowaé takze w klasach szerszych niz automaty wa-
zone, gdzie pojawiaja sie nieliniowe uzycia operacji mnozenia (czyli dodawania w odpowiadajacych
poélpierscieniach tropikalnych).

Gléwna ideg przy formutowaniu lematéw pompujacych bylo znalezienie wlasciwego sposobu roz-
cinania stow na czesci, ktére mozna pompowaé niezaleznie. Intuicyjnie, w klasie finitely-ambiguous
powinno istnie¢ stale ograniczenie na liczbe fragmentow, ktére moga niezaleznie wplywaé na wynik.
Gléwna trudnosé polegata na odpowiednim sformutowaniu lematéw; po podaniu poprawnego sfor-
mutowania dowody sa bardziej techniczne niz koncepcyjne. Wyjatkiem sg dowody dotyczace klasy
polynomially-ambiguous, ktére okazaly sie najtrudniejsze.

Warto zauwazy¢, ze dla alfabetow jednoelementowych wiadomo bylo wczesniej, iz pelna klasa
(exponentially-ambiguous) automatéw wazonych jest réwnowazna klasie unambiguous [58].

Ostatnia praca omawiana w tej sekcji dotyczy klasy copyless CRA. W czasie jej powstawania nie
bylo jasne, jak klasa ta poréwnuje sie do klas automatéw wazonych definiowanych przez ogranicze-
nia niejednoznacznosci. Intuicyjnie wydawata si¢ podobna do polynomially-ambiguous, co zostato
potwierdzone w szczegllnej sytuacji w pracy (A), lecz w ogdlnosci sytuacja jest bardziej subtelna.
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Rysunek 3: Przyklad funkcji definiowalnej zaréwno przez automaty wazone, jak i copyless CRA, ale
nieprzez automaty polynomially-ambiguous. Po lewej automat exponentially-ambiguous, po prawej
copyless CRA. Stany poczatkowe/akceptujace po lewej oznaczaja wage poczatkowa/koncowa réwna
0 (dla pozostatych stanéw jest to +oo, czyli zero pélpierécienia). Automat po prawej zwraca z +
min(z,y). Alfabet to X = {a, b, #}; stowa nalezy czytaé jako ciagi (a+b)* rozdzielone symbolami #.
Dla stowa w = wo#w1# . . . w,#, gdzie w; € (a+b)*, wartos¢ funkcji wynosi Y, min(|wj|q, |wilp),
gdzie |w;|q, |w;ilp 0znaczaja liczby liter a 1 b w w;. Intuicja za brakiem reprezentacji polynomially-
ambiguous to ze dla kazdego ¢ automat musi zdecydowaé, czy bedzie liczy¢ a, czy b.

(D)  Filip Mazowiecki i Cristian Riveros.
Copyless Cost-Register Automata: Structure, Expressiveness, and Closure Properties.

Journal of Computer and System Sciences (JCSS) 2019 [69]; wersja konferencyjna STACS
2016 [67].

W pracy (D) dokladnie analizujemy klase copyless CRA. Artykul dzieli sie zasadniczo na dwie
czedci. W pierwszej pokazujemy rézne wlasnosci copyless CRA — zaréwno w pelnej ogdlnosci nad
dowolnym polpierécieniem, jak i w szczegdlnosci nad polpierécieniem tropikalnym. W tej czesci
pokazujemy m.in., ze istnieje funkcja definiowalna przez automaty polynomially-ambiguous, ktérej
nie mozna zdefiniowaé¢ za pomoca copyless CRA. W polaczeniu z wynikami z (C) pokazuje to, ze
klasy te sa nieporéwnywalne. Ponadto zauwazamy, ze copyless CRA nie sg domkniete ze wzgledu
na odwracanie slowa wejSciowego: istnieje copyless CRA C takie, ze nie istnieje copyless CRA C' z
wlasnoscia C(w) = C’(w") dla dowolnego stowa w (gdzie w” oznacza stowo odwrotne). Przykladowa
funkcje ilustruje Fig. [4

W drugiej czesci pracy analizujemy fragment copyless CRA, ktéry nazywamy bounded alternation
copyless CRA (BAC). Intuicyjnie ,bounded alternation” odnosi si¢ do liczby zmian miedzy suma i
iloczynem w obliczaniu wyniku. Jak mozna si¢ spodziewaé, przyklad z Fig. [] nie nalezy do BAC:
czytanie stéw z jezyka (a#)* powoduje nieograniczona liczbe alternacji miedzy max a + na rejestrze
x. Klasa BAC jest jednak bogatg podklasg copyless CRA, dla ktérej udowadniamy wiele wlasnosci
domkniecia, m.in. domkniecie ze wzgledu na odwracanie stowa wejsciowego. W innej pracy, opartej
na (D), pokazaliSmy, ze BAC ma ladna charakterystyke logiczna (dla pelnej klasy copyless CRA to
wydaje sie¢ malo prawdopodobne ze wzgledu na brak odpowiednich wtasnoéci domkniec) [66].

4.4 Problemy decyzyjne dla automatéw wazonych nad ciatami

W tej sekcji zajmujemy sie problemami decyzyjnymi wylacznie dla automatéw wazonych nad cia-
tem liczb wymiernych Q(+,-). Model ten zostal wprowadzony juz w latach 60. w klasycznej pra-
cy Schiitzenbergera [75]. Wiele probleméw mozna zredukowaé do zrozumienia zbioréw osiagalnych
obiektow. Dla stéw wejsciowych w = a;y ...a, € X* rozwazamy:
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Rysunek 4: Po lewej copyless CRA, po prawej automat polynomially-ambiguous rozpoznajacy te
samg funkcje. Copyless CRA zwraca max(z,y). Notacja jest analogiczna jak w Fig. [3] np. stany
poczatkowe i konicowe. Zauwazmy, ze tutaj suma to max, a nie min. Funkcja jest zdefiniowana naste-

Tr =X

b

y=y+1

pujaco: dla stowa w = wo#Hw1# . . . wyF# warto$é wynosi max?_, <|'(Ui|b + Zj» |wj|a). Pokazujemy,
ze po odwrdceniu stowa funkcji tej nie da sie rozpoznaé przez copyless CRA. Poniewaz automaty
polynomially-ambiguous sa domkniete na odwracanie stowa, przyktad ten rozdziela te dwie klasy.

e wartosci wyjsciowe, tj. zbior Sy = {IT-M,, -...- M, - F|w € X*};
e wektory konfiguracji, tj. d-wymiarowe wektory So = {IT-M,, -...- M, |w € X*};
e macierze przejsé, tj. d x d macierze S5 = {M,, -...- M,, | w € E*}.

Wszystkie te zbiory sa trudne do opisania. Dla automatu wazonego oraz elementu s; problem
przynaleznodci (membership) pyta, czy s; € S;. Wiadomo, ze wszystkie trzy wersje sa nierozstrzy-
galne [72, [73, 447

Skupiamy sie na problemie s; € S7, ktéry mozna przeformutowaé nastepujaco: dany jest automat
wazony A oraz liczba wymierna s1; czy istnieje stowo w takie, ze A(w) = s1?7 Gdy zastapimy réw-
no$¢ nieréwnoscia A(w) < s1, otrzymujemy problem emptiness lub threshold. Nazwa emptiness”
pochodzi stad, ze problem naturalnie uogdlnia klasyczny problem pustki jezyka akceptowanego przez
automat skonczony. Uogdlnieniem jest problem containment, gdzie dla dwoch automatéw A, B py-
tamy, czy dla kazdego stowa w zachodzi A(w) < B(w). Wszystkie te problemy sa w ogélnosci
nierozstrzygalne. Co ciekawe, problem réwnowaznosci, tj. czy A(w) = B(w) dla wszystkich w, jest
rozstrzygalny w czasie wielomianowym [75].

W 2017 roku wyniki o nierozstrzygalnosci zostaly doprecyzowane w kontekscie automatéw o
ograniczonej niejednoznacznosci [44]. Autorzy skupili sie na automatach probabilistycznych, gdzie
dziedzina to przedzial [0, 1], a macierze sa stochastyczne. Pokazali oni, ze emptiness jest nierozstrzy-
galny juz dla automatéw polynomially-ambiguous (a $cislej — quadratically-ambiguous, tzn. gdy
liczba biegéw jest ograniczona wielomianem kwadratowym), ale staje si¢ rozstrzygalny dla finitely-
ambiguous automata probabilistycznych. Pierwsza praca z tej sekcji jest naturalnym rozwinieciem
tych wynikéw.

2Nie znalezliémy w literaturze osobnego odniesienia dla wersji so € So, ale dowody dla i = 1,3 tatwo adaptowad.



(E) Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez i
James Worrell.

When are emptiness and containment decidable for probabilistic automata?.

Journal of Computer and System Sciences (JCSS) 2021 [40]; wersja konferencyjna ICALP
2018 [39].

Na poczatku wzmacniamy wynik o nierozstrzygalnosci emptiness, pokazujac, ze problem ten
jest nierozstrzygalny juz dla automatéw linearly-ambiguous. Nastepnie koncentrujemy sie na proble-
mie containment dla finitely-ambiguous probabilistic automata. Identyfikujemy ograniczenie, przy
ktérym problem staje sig rozstrzygalny, przy zalozeniu prawdziwosci hipotezy Schanuela.

Ograniczenie to jest doé¢ techniczne; wygodniej jest opisaé je poprzez réwnowazny problem. Za-
miast automatéw probabilistycznych mozna rozwazaé automaty wazone nad liczbami wymiernymi
nieujemnymi Q. Nasze ograniczenie na problem containment jest réwnowazne rozwazaniu pro-
blemu emptiness nad Q¢ (bez wymogu stochastycznosci macierzy, ale z zalozeniem nieujemnosci
wag). Szczegdly omawiamy w Sekeji 3 kolejnej pracy (F). Przypomnijmy, ze dla finitely-ambiguous
automatéw probabilistycznych rozstrzygalno$é emptiness byla znana i do$é prosta do wykazania [44].
Zastapienie przedziatu [0, 1] pelnym Q> dramatycznie zwigksza trudnos$é problemu. Rozstrzygalnosé
containment dla nieograniczonych finitely-ambiguous automatéw probabilistycznych (lub automatéw
wazonych nad Qx() pozostaje otwarta.

Przejdzmy do omoéwienia wynikéw i roli hipotezy Schanuela. W czesci o nierozstrzygalnosci stosu-
jemy standardowe techniki uzywane przy automatach wazonych [2], gdzie wiele przebiegéw ,zgaduje”
rézne bledy w kodowaniu maszyn z licznikami. Trudno$¢ polega na takiej analizie liczby przebiegéw,
aby pozostala liniowa.

Dla finitely-ambiguous gléwna idea polega na przepisaniu problemu do postaci ukladu nieréw-
nosci wykltadniczych: skonczonej sumy wyrazen postaci

pi - 4q; 5>
zj

gdzie p;,q;; € Qo sa stalymi, a x; sa zmiennymi naturalnymi. Indeksy ¢ odpowiadaja réznym
biegom (ktérych jest stala liczba), a g; ; sa wagami prostych petli w biegu, ktére wystepuja x; razy.
Wynika to z klasycznej dekompozycji na proste cykle, znanej juz w pracy Rackoffa o ograniczonosci
dla VASS [74]. Dla intuicji, rozwazmy przyklad z pracy (E):

Czy istnieja z,y € N takie, ze dla danego p € QN [0, 1] zachodzi

1\" 1\Y
p(2> 3V + (1—p)2° <3> < 1,
co réwnowaznie mozna zapisa¢ przy uzyciu funkcji wyktadniczej:
exp(log(p) — xlog2 + ylog3) + exp(log(l —p) + zlog2 — ylog3) < 1.
Nastepnie rozwazamy zbior
V={(z,y) eR?: " +¢e¥ < 1}
oraz punkt b = (log(p), log(1 — p)). Definiujemy tez wektory

u = (—log2, log2), v = (log3, —log3),
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i pytamy: czy istnieja z,y € N takie, ze
b+zu+yveV?

przedstawiamy to obrazowo w Fig. [5| Odpowiedz brzmi: tak wtedy i tylko wtedy, gdy p # %
Rzeczywiscie, niech
C={(z,—z):z R}

Dlap = % prosta afiniczna C' + p jest styczna do niebieskiego wykresu, a zatem b+ zu+yv ¢ V dla
wszystkich x,y. Dla p # % istnieje § takie, ze caly odcinek pomiedzy b a b+ (6, —0) zawiera siec w V.
Poniewaz log(2) i log(3) sa niezalezne nad liczbami wymiernymi, zbiér

D={zu+yv:z,ye N}

jest gesty w C, a wiec pewien punkt zbioru D+b lezy pomiedzy b a b+ (6, —0), a zatem b+zu+yv € V.
dla pewnych x,y € N.

Rysunek 5: The set V' is bounded by the plot ¢” 4+ e¥ = 1 and the point b lies on that plot.

Aby poradzié sobie z tym problemem, wyrazamy go w logice nad liczbami rzeczywistymi z funkcja
wykladnicza. Wiadomo, ze logika pierwszego rzedu nad R(+, -, exp) jest rozstrzygalna, pod warun-
kiem prawdziwosci hipotezy Schanuela [60], ktéra jest matematyczna hipoteza z teorii liczb trans-
cendentalnych.

Wersja czasopismowa pracy zawiera dodatkowo wynik dotyczacy wariantu typu promise problem
dla emptiness, tzw. gap emptiness problem. Dany jest automat probabilistyczny A i liczba e €
Qn(0,1), przy zalozeniu, ze:

e albo istnieje stowo w takie, ze A(w) > % +e,

e albo dla wszystkich sléw w mamy A(w) < 3.

Zadanie polega na rozstrzygnieciu, czy zachodzi druga alternatywa. W ogdlnosci problem ten jest
nierozstrzygalny [33], lecz pokazujemy, ze jest rozstrzygalny dla polynomially-ambiguous probabili-
stic automata. Idea algorytmu: (1) wiemy, ze problem jest rozstrzygalny dla finitely-ambiguous; (2)
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mozna aproksymowaé automat polynomially-ambiguous automatem finitely-ambiguous w kontrolo-
wany sposob.

Wynik ten byl zaskakujacy, poniewaz zwykle problemy nierozstrzygalne dla automatéw wazonych
pozostaja nierozstrzygalne juz dla ograniczenia polynomially-ambiguous. Stal sie on motywacja dla
badania innych problemdw, gdzie ograniczenie polynomially-ambiguous mogloby spowodowaé ze
problem staje sie rozstrzygalny. Kolejna praca (F) jest bezposrednim rozwinieciem (E) oraz innej
pracy o aproksymacjach automatéw wazonych [28].

(F)  Wojciech Czerwinski, Engel Lefaucheux, Filip Mazowiecki, David Purser i Markus A.
Whiteland.

The boundedness and zero isolation problems for weighted automata over monnegative
rationals.

Wersja konferencyjna LICS 2022 [37]

W pracy (F) badamy dwa problemy dla automatéw wazonych nad Qso: boundedness oraz zero
isolation. Dany automat A i stowa wq, wa, . . .; pytamy, czy istnieje ciag stéw taki, ze wartosci A(w;)
daza odpowiednio do +o0o oraz do 0. Oba problemy sg w ogdlnosci nierozstrzygalne, a jednocze$nie
przypuszczamy, ze staja sie rozstrzygalne dla automatow polynomially-ambiguous. Na pierwszy rzut
oka problemy wydaja sie podobne i mozna by oczekiwaé redukcji miedzy nimi; okazuje si¢ jednak,
ze wymagaja réznych podejsé.

Zaczynamy od boundedness. Pokazujemy, ze problem ten jest rozstrzygalny dla liniowych co-
pyless CRA, czyli klasy zawartej w polynomially-ambiguous [4]ﬂ Idea dowodu polega na analizie
polgrupy macierzy Ss3 wprowadzonych na poczatku tej sekcji. W ogdlnosci S3 jest nieskonczony.
Mozemy przyjaé, ze wagi petli sa ograniczone przez 1 — inaczej problem jest trywialny. Nastep-
nie obcinamy wartosci stosownie male, co prowadzi do skonczonej pélgrupy. Dla niej analizujemy
szezegdltowo elementy idempotentne. Dzieki twierdzeniu Simona o lasach faktoryzacji (Simon’s Fac-
torisation Forest Theorem) [77] narzucamy strukture na $wiadkach nieograniczonosci i redukujemy
problem do wykrywania prostych wzorcow.

Dla zero isolation podejscie jest odmienne. Rozwazamy z pozoru bardzo prosty fragment polynomially-
ambiguous automatéw wazonych, nazwany Independent-CRA. Nie definiujemy go tu formalnie, gdyz
czeécia wkladu jest przeformulowanie problemu w bardziej intuicyjnym modelu. Wprowadzamy
uogdlnienie znanego modelu vector addition systems (VAS) o nazwie orthant-VASS (OVAS). Kla-
syczny VAS w wymiarze d sktada sie ze skonczonego zbioru wektoréw z Z¢. W OVAS dopuszczamy
wektory z Q”ﬁi dodatkowo dla kazdego ortantu przestrzeni mamy wlasny skonczony zbior wektordw.

W problemach dla VAS zazwyczaj mamy dany wektor poczatkowy i mozemy kolejno dodawaé
wektory z danego zbioru, pod warunkiem, ze zadna wspolrzedna nie spada ponizej zera. Mozna my-
§le¢, ze klasyczny VAS odpowiada OVAS, gdzie tylko dodatni ortant ma niepusty zbior wektoréw.
Typowe problemy decyzyjne pytaja o osiagalnosé danej konfiguracji. Latwo sie spodziewaé, ze wiek-
sz0$¢ probleméw dla OVAS jest nierozstrzygalna, poniewaz tatwo symulowaé¢ maszyny z licznikami.
My identyfikujemy problem otwarty, ktérego rozstrzygalnosé jest réwnowazna rozstrzygalnosci zero
isolation dla ograniczonego modelu Independent-CRA: tzw. universal coverability. Dla danego OVAS
pytamy, czy z kazdej konfiguracji poczatkowej da sie dojsé do ortantu dodatniego.

Nie udalo nam sie rozwiaza¢ tego zagadnienia w pelnej ogélnosci. Pokazaliémy jednak, ze uni-
versal coverability jest rozstrzygalny w wymiarze

3Wspélnie z Ismaélem Jeckerem wierzymy, ze konstrukcje mozna rozszerzyé¢ na pelna klase polynomially-
ambiguous; praca ta jest przygotowywana do publikacji i nie jest omawiana w tym dokumencie.

4Scislej liczby postaci logr, gdzie r jest wymierne; nie wydaje sie to istotng przeszkoda i pomijamy szczegbly.

5W przypadku ogélnym (przy dopuszczeniu liczb postaci log ) konieczne jest dodatkowe zatozenie hipotezy Scha-
nuela.
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Ostatnia praca dotyczy problemu determinisation. Mozna go zdefiniowaé¢ nad dowolnym pétpier-
$cieniem: czy dla danego automatu wazonego istnieje automat deterministyczny realizujacy identycz-
ng funkcje [59]? Problem ten badano przede wszystkim nad polpierscieniami tropikalnymi; dopiero
niedawno pojawil sie preprint dajacy pelne rozwiazanie [I]. Dla cial rozstrzygalnosé zostala pokaza-
na w [9], a nastepnie szczegdlowo przeanalizowana w [10]; gérne ograniczenie 2-EXPTIME uzyskano
w [13]. Bazujac na [9], w pracy (G) analizujemy problem determinisation dla polynomially-ambiguous
automatéw wazonych.

(G) TIsmaél Jecker, Filip Mazowiecki i David Purser.

Determinisation and Unambiguisation of Polynomially-Ambiguous Rational Weighted
Automata.

Wersja konferencyjna LICS 2024 [50)].

Zaczynamy od uwagi, ze matematycznie bardziej naturalny wydaje si¢ problem unambiguisa-
tion: czy dla danego automatu wazonego istnieje automat réwnowazny, ale jednoznaczny. Poniewaz
determinisation jest znany jako rozstrzygalny dla automatéow unambiguous, wystarczy skupic¢ sie na
unambiguisation (choé¢ w ogdlnosci zlozonos$é, moze byé inna co pomijamy tutaj). Ten wynik bazuje
na tzw. twins property [29], ktéra latwo mozna zaadaptowaé do automatéw wazonych nad Q.

Elegancja klasy unambiguous wynika stad, ze intuicyjnie sa to automaty, ktére nie uzywaja su-
mowania w nietrywialny sposob przy obliczaniu wyniku. Gléwne twierdzenie, na ktérym opieramy
czesé wynikéw (G), pochodzi z [9]. Dla automatu A nad Q niech Sy bedzie zbiorem wartosci wyj-
$ciowych, jak wczesniej. Autorzy dowodza hipotezy Reutenauera, ze A jest unambiguisable wtedy i
tylko wtedy, gdy S1 \ {0} zawiera si¢ w skoniczenie generowanej podgrupie (ze wzgledu na operacje
mnozenia). Dla intuicji: jesli S1 C Z, to oznacza to istnienie skoficzonego zbioru liczb pierwszych
P, takiego ze wszystkie dzielniki pierwsze niezerowych elementéw S naleza do P. Jedna implikacja
jest trywialna: majac automat unambiguous, bierzemy podgrupe generowana przez niezerowe wa-
gi na przejsciach oraz w wektorach poczatkowych/koficowych. Trudnoéé tkwi w dowodzie drugiej
implikacji.

Nasza metoda opiera sie na analizie zachowania A na rodzinach stéw typu (vw”v)p>1, dla
u,w,v € X*. Poniewaz

A(ww™) =T+ M(u) - M(w)" - M(v) - F,

zrozumienie tych zachowan sprowadza si¢ do analizy poteg macierzy.

Prowadzi to do kluczowej definicji. Macierz M nazywamy p-triangular, jesli istnieje macierz
permutacyjna P taka, ze PM P~ jest gérnotréjkatna. Automat wazony A nazywamy pumpable,
jesli dla wszystkich u,v,w € ¥*, dla ktérych M (v) jest p-triangular, istnieje element diagonalny d
macierzy M (v) taki, ze

A(uww ) = @ - A(uwww)  dla kazdego n € N.

Zgodnie z intuicja z [9], automaty unambiguisable powinny by¢ pumpable, poniewaz nie uzywaja
sumowania w nietrywialny sposéb. Odwrotna implikacja nie jest prawdziwa w pelnej ogdlnosci z
dwéch powodow:

1. Pumpability odwotuje sie do macierzy p-triangular, ktére moga w ogdéle nie wystapi¢ w danym
automacie;

2. Pumpability gwarantuje periodyczno$é¢ tylko na stowach zawierajacych wiele kopii pewnego
fragmentu v; nie jest jasne, jak przenieé¢ te strukture na stowa pozbawione takich powtorzen,
np. stowa bezkwadratowe.
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Ograniczamy sie wiec do automatéw polynomially-ambiguous i pokazujemy, ze jesli taki auto-
mat jest pumpable, to jest réwniez unambiguisable. W tym ustawieniu macierze o odpowiedniej
strukturze idempotentnej sa (po odpowiednim przestawieniu stanéw) macierzami p-triangular, a ich
wystepowanie zapewnia twierdzenie Ramseya.

Na koniec pokazujemy, ze sprawdzenie pumpability mozna zredukowaé¢ do testu réwnowaznosci
automatéw wazonych o wyktadniczo wiekszym rozmiarze. Daje to gérne ograniczenie PSPACE. Co
wiecej, nasza procedura jest konstruktywna: jesli wejsciowy automat jest unambiguisable, konstru-
ujemy rownowazny automat unambiguous. Co zaskakujace, mimo relatywnie niskiej zlozonosci pro-
blemu decyzyjnego, automaty budowane przez nasz algorytm moga mieé¢ rozmiar ponad elementarny.
Nie podajemy dolnych ograniczen ani dla ztozonosci, ani dla rozmiaru automatu réwnowaznego.

5 Aktywnos¢é naukowa

Jestem wspoétautorem 14 artykuléw czasopismowych (2 opublikowanych przed obrona doktoratu)
oraz 32 publikacji konferencyjnych (5 przed obrona). Jako gléwne osiagniecia wybralem 7 publikacji
konferencyjnych [67, [68] [39] 22 [6l, B7, [50], z ktérych 5 posiada wersje czasopismowe [69], 25 [40), 23]
7]. Uwazam je za swoje najciekawsze osiagniecia zwiazane z modelem automatéw wazonych i jego
wariantami.

Chronologicznie pracowatem nad tymi artykulami w nastepujacych instytucjach:

e [67] i wersja czasopismowa [69]: praca powstala na Uniwersytecie Warszawskim po zlozeniu
rozprawy doktorskiej, publikacje ukazaly sie juz po obronie;

[68]: praca powstala podczas mojego postdoca na University of Warwick; wersja czasopismo-
wa [25] zostala napisana we wspélpracy z dwoma nowymi autorami podczas mojego postdoca
w Bordeaux;

[39] i wersja czasopismowa [40]: prace powstaly podczas mojego postdoca na Uniwersytecie
Oksfordzkim;

[221[6] i wersje czasopismowe [23 [7]: prace powstaly podczas mojego postdoca na Uniwersytecie
w Bordeaux;

e [37]: praca powstala, gdy bytem na stanowisku research group leader w MPI-SWS;
e [50]: praca powstala po moim powrocie na Uniwersytet Warszawski.

Moja rozprawa doktorska dotyczyta logik zwiazanych z teoria baz danych i opierata si¢ na na-
stepujacych artykutach czasopismowych [62] [12] oraz konferencyjnych [I1}, 6], 24}, 63].

Po doktoracie pracowatem gléwnie nad dwoma modelami w weryfikacji formalnej: automatami
wazonymi oraz sieciami Petriego. Wéréd prac o automatach wazonych, ktorych nie zaliczylem do
gléwnych osiagnieé, sa artykul czasopismowy [4] oraz materialy konferencyjne [66] 3, [30]. Mam tez
dwa nieopublikowane preprinty z tej dziedziny [41], 65].

Zdecydowana wiekszo$¢ moich pozostalych prac dotyczy modelu sieci Petriego. Ze wzgledu na
odmienny charakter techniczny nie uwzglednitem ich w gléwnej czeSci dokumentu. Wéréd nich znaj-
duja sie artykuly czasopismowe [32] [36] 17, 19, [57] oraz publikacje konferencyjne [311 43, [16] 34} 64
35, [18, 20} 211, (56, 26] [70, [8, 49] [15] 27].

Jestem tez wspotautorem dwoéch prac ktére sg nietypowe tematycznie wzgledem pozostatych: jed-
na dotyczy struktur dynamicznych dla automatéw czasowych [47] wraz z wersja czasopismowa [48],
druga — sieci neuronowych na grafach [40].
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6

Dydaktyka, organizacja i popularyzacja nauki

Dydaktyka

Uniwersytet Warszawski.

Koordynator:

— seminarium magisterskie: Jezyki automaty i obliczenia;

— cykl PhD open courses dla doktorantéw i studentéw magisterskich.

Cwiczenia:

Jezyki automaty i obliczenia;
— Logika dla informatykow;
— Wstep do programowania;

— Automaty na nieskonczonych stowach;

Automaty wazone.
Wyktady:

— Logika dla informatykéw;

— Automaty wazone.

University of Warwick.

Laboratorias:
— Decision Procedures.

Saarland University.
Wyktady:

— Weighted automata.

Organizacja

wspOlprzewodniczacy komitetu organizacyjnego MFCS 2025 (local organiser co-chair);

wspolorganizator LMW i LMW@CSL (Logic Mentoring Workshop at CSL) przy CSL’22,
LICS’20, LICS’19;

wspolorganizator warsztatu INFINITY przy LICS’20 i CONCUR’23;
wspolorganizator warsztatu ,,Autobéz” o automatach, logice i grach, edycje z lipca 2018 i 2020;

wspolorganizator seminarium zespotu ,,Formal Methods” w LaBRI od stycznia 2018 do lipca
2019.
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Popularyzacja

7

e Byl wywiad z nami w artykule oraz materiale wideo o sieciach Petriego w Quanta Magazine:
https://www.quantamagazine.org/an-easy-sounding-problem-yields-numbers-too-b
ig-for-our-universe-20231204/
https://www.youtube.com/watch?v=IzSs_gJDVzI

e Napisatem artykul popularnonaukowy dla ,,Delty”:
https://www.deltami.edu.pl/2018/11/jak-definiowac-ciagi-rekurencyjne/7%0A

Inne

e Bylem opiekunem jednego doktoranta: Philip Offtermatt (wsp6ipromotor: Michael Blondin).
Obronil doktorat w 2023 roku na Université de Sherbrooke.

e Bylem opiekunem dwdéch prac magisterskich: Aleksandra Wisniewskiego (obrona w 2024) i
Antoniego Pucha (obrona w 2025).
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