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4. Omoéwienie osiggnieé¢ naukowych

Osiagniecia naukowe, o ktéorych mowa w art. 219 ust. 1 pkt. 2 ustawy z dnia 20 lipca
2018 r. (Dz. U. 7z 2024 1., poz. 1571 z p6zn. zm.) tworza cykl szesciu powiazanych tematycznie
artykutéw naukowych zatytutowany

Metody wariacyjne, topologiczne i geometryczne w badaniu rozwigzan zagadnien
eliptycznych



w sktad ktorego wchodza nastepujace publikacje:

(H1) F. Bernini, B. Bieganowski: Generalized linking-type theorem with applications to
strongly indefinite problems with sign-changing nonlinearities,
Calc. Var. Partial Differential Equations, Vol. 61, Article number: 182 (2022),

(H2) B. Bieganowski: Solutions to a nonlinear Mazwell equation with two competing nonli-
nearities in R,
Bull. Pol. Acad. Sci. Math. 69 (2021), p. 37-60,

(H3) B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional

Schrodinger equations on bounded domains,
Topol. Methods Nonlinear Anal., Vol. 57, No, 2 (2021), p. 413-425,

(H4) B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional
Schridinger equations on RY,
J. Fixed Point Theory Appl. 22, 76 (2020),

(H5) B. Bieganowski, J. Mederski: Normalized ground states of the nonlinear Schrédinger
equation with at least mass critical growth,
J. Funct. Anal., Vol. 280, Issue 11 (2021), 108989,

(H6) B. Bieganowski, J. Mederski, J. Schino: Normalized solutions to at least mass critical
problems: singular polyharmonic equations and related curl-curl problems,
J. Geom. Anal., Vol. 34, Article number: 322 (2024).

4.1. Wprowadzenie

Przedstawiony cykl publikacji dotyczy zagadnienia istnienia rozwiazan nieliniowych za-
gadnien eliptycznych postaci

(1) —Au+V(x)u = g(z,u), x €,

gdzie Q C RY jest zbiorem otwartym, ograniczonym i spojnym lub Q = RY zas f : QxR — R
jest pewng nieliniowg funkcja. Rownanie tej postaci mozna otrzymac rozpatrujac nieliniowe,
zalezne od czasu, réwnanie Schrodingera

KoA% ~
(2) iy = —AV + V(2)¥ — h(x, [T, (t,z) € R x Q.
Poszukiwanie tzw. fal stojacych U(t,z) = eu(z) o ustalonej czestotliwosci A € R, gdzie
u: Q — R jest tzw. solitonem, czyli funkcjg zanikajaca na brzegu Q (lub w nieskoriczonosci,
gdy Q = RY), prowadzi do réwnania eliptycznego postaci (1) z g(z,u) = h(x, |u|)u oraz
V(z)=V(x)+ A\

Laskin ([20,21]) wyprowadzil utamkowy odpowiednik réwnania (2)

(3) @%—f = (AT + V(2)U — h(z, |[O))T, (t,2) € R x Q,



gdzie s € (0,1). Wowcezas poszukiwanie fal stojacych sprowadza sie do rozwiazania nastepu-
jacego roéwnania utamkowego

(4) (A u+V(z)u=g(z,u), z€Q,
bedacego nielokalnym odpowiednikiem (1).

Druga motywacja do studiowania rozwiazan réwnan postaci (1) jest uktad rownan Ma-
xwella. Niech = R3, uklad réwnain Maxwella jest postaci

( oD
div(D) = p
oB
div (B) = 0,

\

gdzie £ oznacza pole elektryczne, B pole magnetyczne, D indukcje elektryczna, zas H induk-
cje magnetyczna. Ponadto J oznacza natezenie pradu elektrycznego oraz p gestos¢ tadunku
elektrycznego. Powyzsze wartosci sa dodatkowo zwiazane ze soba tzw. zwigzki konstytutywne
D=c£+P
1
H=-B-M,
]

gdzie P oraz M oznaczaja polaryzacje i magnetyzacje, odpowiednio. Ponadto € i u oznaczaja
przenikalnos¢ elektryczng oraz przenikalno$¢ magnetyczna materiatu. Zaktadajac, ze M =0,
p=0,J =0oraz u = 1, z powyzszych rownan otrzymujemy nastepujace, elektromagnetyczne
rownanie falowe ([36])

0*E 0*P
5 Vx(VxE& —_— = ——.
(5) X (VX >+€8t2 ot?
Bedziemy poszukiwaé¢ rozwiazain w postaci pol czasowo-harmonicznych €& = E(x) cos(wt) o

2
okresie T = 2Z. Polaryzacja P jest nieliniowa funkcja zalezna od £. Zalézmy, ze jest postaci
w

P=x (€M),

tzn. podatno$é dielektryczna x zalezy jedynie od Sredniej czasowej intensywnosci £ okreslonej
jako
1

T
2\ _ — 2 _1 2
(eF) = 7 | te. o ar = 1P

W takim przypadku polaryzacja jest postaci
1
P =P(U(x)) cos(wt), gdzie P(U) = x <§\U|2) U.

Wowczas (5) sprowadza sie do rownania stacjonarnego

(6) V x (VxU)+V(z)U = h(z,U), zeR?



gdzie h(z,U) = P(U)w? V(z) = —e(z)w?. Wowczas poszukiwanie rozwiazan klasycznych
szczegolnej postaci

(7 Ue) = 22
0

— /2 2
, T =4/x]+ 25

1

prowadzi do réwnania (1), w ktorym V(z) = V(x) + —, za$ g oraz h sa zwiazane relacja
r

h(z,U) = g(x, a)w, gdzie U = aw dla pewnych w € R*  |w| =1 oraz a € R (por. [2]).

Niech teraz = R i rozpatrzmy teraz wersje rownania (2) z autonomiczna nieliniowoscia,
tzn.

ov
(8) iS5 = —AV + V(2)U + h(|¥))T, (t,z) € R xRY.
Wowezas, w szcezegolnosei, g(x,u) = g(u) w (1). Wazna wlasnoscia rozwiazai rownania (8)
jest zachowywanie normy L? w czasie, tzn. wartosé

/ |U(t, z)|? dz
RN
ixt

jest niezalezna od t. Ma sens zatem poszukiwanie fal stojacych W(t,z) = e"*u(z) o zadanej
normie L?, p := /

R
to do nastepujacego, znormalizowanego wariantu problemu eliptycznego (1),

u? dr = / |W(t, 7)|? dz, lecz nieznanej czestotliwoéci A € R. Prowadzi
N RN

—Au+V(x)u+ Au = g(u),
(9) / u?dr = p >0,
RN
gdzie poszukiwana jest para (A, u), zas warto$¢ p jest ustalona.

4.2. Istnienie rozwigzan zagadnien pochodzacych od ré6wnan Maxwella z nieli-
niowo$ciami zmieniajgcymi znak

Rozpatrzmy rownanie (1) z Q2 = RY pochodzace z uktadu rownan Maxwella, tzn.

a ry N
(10) —Au+V(z)u+ BU= f(z,u), zeR"Y,
gdzie z potencjatu wyodrebniliémy cze$é osobliwa ﬁ, gdzie z = (y,2) € RE x RV"K N >
Yy

K > 2. Jest to uogoblnienie rownania pochodzacego z (6) na ogélny wymiar N > 3ia € R
(oryginalne réwnanie otrzymujemy z N = 3, K = 2 oraz a = 1).

Zatozmy na poczatek, ze

(V1) V € L®(R") jest cylindrycznie symetryczny, tji. V = V(|y|, 2), Z¥~-okresowy wzgle-
dem z oraz

inf o (—A + % + V(r, LE3)) > 0.
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Jak wspomnielismy we wstepie, tatwo przeliczy¢ rownowaznos$é rozwiazan rownan (6) oraz (1)
w przypadku rozwigzan klasycznych. Gdy V' = 0 réwnowaznos¢ miedzy stabymi rozwigzaniami
zostala wykazana w [15]. Gdy potencjal V jest niezerowy i spelnia (V1) mamy nastepujace
twierdzenie.

Twierdzenie 1 ([(H2), Theorem 1.1|). Przypusémy, ze N =3, K =2, a =1 oraz V spel-
nia (V1). Niech ponadto ]7: R?® x R — R bedzie funkcjq Carathéodory’ego', O(2) x {Id}-
niezmienniczq ze wzgledu na v € R® spetniajgcq nierduwnosé
|Flz,w)| < ul + [ul®  dla wszystkich u € R oraz p.w. © € R®.

Jezeli U € H*(R*;R?) postaci (7) jest, dla pewnej cylindrycznie symetrycznej funkcji u, sta-
bym rozwigzaniem réwnania (6), to u € HI(R3) oraz u jest stabym rozwigzaniem rownania
(10). Na odwrdt, jesli v € H"(R?) jest cylindrycznie symetrycznym, stabym rozwigzaniem
réwnania (10), to U € H'(R*;R?) jest stabym rozwigzaniem réwnania (6), gdzie U jest dane
wzorem (7). Ponadto div (U) = 0.

Oznacza to, ze jezeli znajdziemy stabe rozwiazanie zagadnienia eliptycznego, otrzymamy
takze stabe rozwiazanie rownania (6).

Bedziemy rozwazaé (10) z nieliniowo$ciami zmieniajacymi znak. Przepiszmy zatem (10) w
postaci

(11) —Au+ V(x)u+ :—Qu = f(x,u) — g(z,u), xRV,

Rozwazamy nastepujace zalozenia:

(F1) f:RY xR — R jest funkcja Carathéodory’ego, Z" ~*-okresowa wzgledem z oraz O(K) x
{Id}-niezmiennicza, ponadto dla pewnego p € (2,2%) zachodzi nieréwnosé
|f(z,u)| <1+ |uP~ dla wszystkich u € R i p.w. z € RY;
(F2) f(z,u) = o(|u]) przy u — 0, jednostajnie ze wzgledu na x;
(F3) F(z,u)/|u|? — oo przy |u| — oo, jednostajnie ze wzgledu na z, dla pewnego ¢ € (2, p),

gdzie F(z,u) := / f(z,s)ds oraz F(x,u) > 0 dla wszystkich u € R i p.w. z € RY;
0

(F4) odwzorowanie u — f(z,u)/|u|?"" jest niemalejace na (—oo,0) oraz na (0, 00);

(G1) g: R¥ xR — R jest funkcja Carathéodory’ego, Z"¥ ¥ -okresowa wzgledem z oraz O(K) x
{Id}-niezmiennicza, ponadto zachodzi nier6wnos¢

lg(z,u)] <14 |u|7" dla wszystkich v € R i p.w. z € RY;

(G2) g(x,u) = o(|u|) przy u — 0, jednostajnie ze wzgledu na z;

Ytzn. f jest mierzalna ze wzgledu na = € R?® oraz ciggta ze wzgledu na u € R



(G3) odwzorowanie u +— g(z,u)/|ul?"" jest nierosnace na (—oo,0) oraz na (0,00), ponadto
g(x,u)u > 0 dla wszystkich u € R oraz p.w. v € RY,

Ponizsze twierdzenie zostato udowodnione w pracy (H2) w przypadku N = 31 K = 2, lecz
jego uogodlnienie na przypadek N > K > 2 jest trywialne.

Twierdzenie 2 ([(H2), Theorem 1.2|). Przypusémy, ze spetnione sq zatozenia (V1), (F1)-
(F4), (G1)-(G3). Wéwczas istnieje cylindrycznie symetryczne, stabe rozwigzanie u € H'(R™Y)
rownania (11) bedgce rozwigzaniem o najmniejszej energii wsrod wszystkich cylindrycznie sy-

id

metrycznych rozwigzan spetniajgcych warunek / WUQ dr < +00.
RN |Y

Jako natychmiastowa konsekwencje Twierdzeri 1 oraz 2 otrzymujemy twierdzenie o istnie-
niu szczegolnego rozwiazania rownania (6).

Twierdzenie 3 ([(H2), Theorem 1.2|). Przypusémy, ze N = 3, K = 2, a = 1 oraz spelnione sq
zatozenia (V1), (F1)-(F4), (G1)-(G3). Wowczas istnieje stabe rozwigzanie U € H'(R? R?)
réwnania (6) postaci (7) dla pewnej cylindrycznie symetrycznej funkeji u € H*(R*). Ponadto
jest to rozwigzanie o najmniejszej enerqgii wrdd wszystkich rozwigzarn postaci (7).

Twierdzenie 2 udowodnione zostalo w (H2) z wykorzystaniem metod wariacyjnych. Z row-
naniem (11) stowarzyszamy tzw. funkcjonal enerqgii

a
(12) J(u) = / Vul® + —5u? + V(z)u® do — / F(z,u)dr + G(z,u)dx
RN ] RN RN
i oczekujemy, ze jego punkty krytyczne sa stabymi rozwiazaniami (11). Potrzebujemy zatem
odpowiedniej przestrzeni funkcyjnej, na ktorej J jest dobrze okreslony i klasy C'. Poniewaz
poszukujemy rozwiazan cylindrycznie symetrycznych, naturalng przestrzenia jest

lal

X = {u € H'(R"Y) : u=u(lyl,2) jest cylindrycznie symetryczna, / W?ﬂ dr < —1—00} :
RN Y

Jest to przestrzen Hilberta wyposazona w norme

1/2
ull = Vu2+iu2+qu2dx )
RN

|y|?

Wowczas punkty krytyczne J nazywamy stabymi rozwigzaniami rownania (11). W celu znale-
zienia punktow krytycznych dowodzimy najpierw twierdzenie o istnieniu tzw. ciggow Cerama.

Rozpatrzmy ogolna przestrzen Hilberta (X, || - ||) oraz nieliniowy funkcjonat J : X — R

postaci
1
T(w) = 5l - Z(w),

gdzie T : X — R jest klasy C' i Z(0) = 0. Wowezas wszystkie punkty krytyczne J leza w tzw.
rozmaitoSci Nehariego

N :={ue X\ {0} : J'(u)(u) =0}

Otrzymujemy nastepujace twierdzenie abstrakcyjne.



Twierdzenie 4 ([(H2), Theorem 5.1]). Przypusémy, ze

(J1) istnieje promien r > 0 taki, ze inf J(u) > 0;

[[ull=r

Z(tyuy)

2 — 00, jesli t, — 0o oraz u, — u # 0;
n

(J2)

(J3) dla wszystkich t > 0 oraz uw € N zachodzi nieréwnosé

?—1
2

Z'(u)(u) — Z(tu) + Z(u) < 0.

Wowczas T' # 0, N # 0 oraz

c:=inf J = inf sup J(y(t)) = inf supJ(tu) >0,
N VGFte[Ol,Dl] O(®) ueX\{0} tzlo3 (tu)

gdzie
D= {yec(0,1;X) : 1(0) =0, [1(1)] >r, T((1) <0},

Ponadto istnieje cigg Cerami dla J na poziomie c, tzn. cigg (u,) C X taki, ze

T (un) = ¢, (14 [lun[) T (un) = 0.

Twierdzenie to mozna traktowaé jako uogdlnienie [(D1), Theorem 2.1|, gdzie m.in. w zalo-
zeniu (J3) wymagana byla nieréwnosé ostra. Mozna je takze traktowaé jako wersje twierdzen
abstrakcyjnych z prac (D6) lub [33] w przypadku dodatnio okreslonego operatora, lecz bez
wymagania warunku Z(u) > 0, ktéry w naszej sytuacji nie jest spelniony.

Nastepnie, majac ciag Cerami z powyzszego twierdzenia, stosujac odpowiedni wariant
lematu o koncentracji zwartosci ([(H2), Corollary 7.1]) jesteSmy w stanie wykazac¢, ze - z do-
ktadnoscia do podciagu oraz z doktadnoscia do pewnych translacji - ciag (u,) ma nietrywialna
staba granice, bedaca stabym rozwigzaniem wyjsciowego problemu.

Ze wzgledu na niezmienniczo$é réwnania (11) ze wzgledu na dzialanie translacji Z" %

wzgledem z automatycznie otrzymujemy istnienie calej orbity rozwiazan. W (H2) wykazu-
jemy takze, ze istnieje nieskoriczenie wiele orbit sktadajacych sie z rozwigzan. Na potrzeby
sformutowania twierdzenia méwimy, ze dwa stabe rozwiazania uy, us sa geometrycznie rozne,
o ile ich orbity sg roztaczne.

Twierdzenie 5 ([(H2), Theorem 8.1|). Przypusémy, ze spetnione sq zatozenia (V1), (F1)-
(F4), (G1)-(G3) oraz f i g sq nieparzyste wzgledem u. Wdowezas istnieje nieskoriczenie wiele
par cylindrycznie symetrycznych, stabych rozwiqzan tu € Hl(RN) rownania (11) takich, ze

Zaltozenie (V1) moze wydawaé sie ograniczajace, lecz po wnikliwej analizie dowodu row-
nowaznosci stabych rozwiazan okazuje sie, ze zamiast zaktadaé¢, ze widmo operatora w (V1)
jest dodatnie, wystarczy zaktada¢, ze 0 nie nalezy do widma, co zaobserwowano w (H1).
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Twierdzenie 6 ([(H1), Theorem 3.1|). Twierdzenie 1 pozostaje prawdziwe, jezeli warunek o
widmie w (V1) zastapimy przez

Og?a(—A—l—%—l—V(r,xg)).

Mozna rozwaza¢ zatem rownanie (11) w przypadku silnie nieokreslonym, tzn. cze$¢ widma
operatora znajduje si¢ ponizej 0. Jednak analiza tego przypadku jest o wiele trudniejsza i
musimy wprowadzi¢ kilka dodatkowych uproszczen. Zaktadamy dodatkowo, ze funkcje f i
g sa autonomiczne (nie zaleza od z), g jest poprzedzona pewnym malym parametrem A\,
za$ [ poza pewnym otoczeniem zera zachowuje sie niemal dokladnie jak funkcja potegowa.
Matlosé parametru A jest niezbedna zaréwno do weryfikacji zalozen geometrycznych (uzyskanie
istnienia ciagu typu Cerami), a takze do uzyskania ograniczonosci ciagu Cerami. Dokladniej,
rozwazamy nastepujace rOwnanie

(13) —Au+ V(z)u+ ‘y%u — f(u) — Ag(u), z€RY,

gdzie potencjal V' spelnia warunek

(V2) V € L®(R") jest cylindrycznie symetryczny, tj. V = V(|y|, 2), Z¥~-okresowy wzgle-
dem z oraz

0do (—A—Fﬁ—H/(az)), inf o (—A+ﬁ+‘/(az)) < 0.

Przy (V2) przestrzen X ma dekompozycje ortogonalng X = X @ X~ odpowiadajaca dekom-
pozycji widma operatora na cze$¢ dodatnig i ujemna. Forma kwadratowa

u |Vul® + %UQ + V(z)u® dz
RN ||

jest dodatnio (odp. ujemnie) okreslona na X (odp. na X ). Wowezas dla u®™ € X* okreglamy

|u®||? = & (Vul? + 2y V(z)u? dx
RN ly[?

i na X norma jest zadana przez |[ul|? := |[u™|® + |[u”||?, gdzie u = vt +u” 7z uF € X*.
Rozwazamy zalozenia (F1)—(F4), (G1)—(G3) w wersji autonomicznej (tj. f i g nie zaleza od
x) oraz wprowadzamy dodatkowe zatozenie

(F5) istnieje liczba p > 0 taka, ze |ulP~" < |f(u)| < JulP~™ dla |u| > p.

Funkcjonal wariacyjny (12) jest wowczas klasy C' i ma wowezas ogolng postaé

1 1
T(w) = S|P = 5l | = Z(w),

gdzie Z(u) = / F(u)dr — )\/ G(u)dz, G(u) = / g(s)ds. W pracy (H1) dowodzimy
RN RN 0

nastepujacych twierdzent o istnieniu rozwiazan.
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Twierdzenie 7 ([(H1), Theorem 1.2|). Zaldzmy, Ze spetnione sq warunki (V2), (F1)-(F5),
(G1)-(G3) oraz [ i g sq nieparzyste. Jezeli X > 0 (w réwnaniu (13)) oraz p > 0 (w zatoZeniu
(F5)) sq dostatecznie mate, to istnieje nietrywialne rozwigzanie réwnania (13).

Jako Twierdzenia 7 oraz Twierdzenia 6 otrzymujemy natychmiastowo istnienie rozwigzania

dla (6).

Twierdzenie 8 ([(H1), Theorem 1.3]). Niech N = 3, K = 2 i a = 1. Przy zalozeniach
Twierdzenia 7 istnieje nietrywialne rozwigzanie réwnania (6) postaci (7).

Ponadto jestesmy w stanie wykaza¢ dodatkowa wtasnos¢ znalezionego rozwiazania (za-
uwazmy, ze znajac U jesteSmy w stanie rozwigzaé¢ caly uklad rownan Maxwella i obliczy¢

D(t), B(t), H(t))-

Propozycja 9 ([(H1), Proposition 6.3|). Catkowita energia elektromagnetyczna L(t) rozwig-
zania znalezionego w Twierdzeniu 8 jest skoriczona i nie zalezy od czasu t, gdzie

£ =~ [ ewpw) + BayH() dz.

2R3

W celu wykazania Twierdzenia 7, musimy dobrze zrozumie¢ geometrie funkcjonatu J i
znalez¢ ciag minimalizujacy, ktérego granica bedzie nietrywialna i okaze si¢ rozwiazaniem. W
tym celu wprowadzamy istotnag modyfikacje twierdzenia o geometrii zapetlen (por. [18]).

W tym celu przypomnimy pojecie 7-topologii wprowadzone w [18]. Rozpatrzmy rzeczy-
wista, osrodkowa przestrzen Hilberta (X, || - ||) i zalozmy, ze ma ona rozklad ortogonalny
X = XT® X ™. Wowcezas kazdy element v € X mozna zapisa¢ jednoznacznie jako u = u™ +u",
gdzie u* € X*. Niech (er)re, bedzie zupelnym uktadem ortonormalnym w przestrzeni X .
Woéwezas na X okres§lamy nowa norme jako

0 1 -
llufll := max { (1) it I 7ek>|} :
k=1

za$ topologie generowana przez |||-|| bedziemy oznaczaé przez 7. Wowczas zachodza nastepujace
nieré6wnosci
[w* ] < lulll < Jlull,

za$ dla ciagoéw ograniczonych (u,) C X mamy nastepujgca rownowaznosé (por. [18, Remark
2.1(1i1)])

T — —
U, > u = ul —u+ orazu, —u .

Niech J : X — R bedzie nieliniowym funkcjonatem. Dla v € X \ X~ oraz R > r > 0
wprowadzamy zbiory

Sti={ut e Xt : |uT||=r}
Mu):={tut+v™ : v € X, t>0, |[tu+v || <R}.
Wowezas M(u) C Ryut @ X~ oraz
OM(u)={v-eX : |v||[<R}U{tut+v™ : v €X ", t>0, |tutv ||=R}.

Zaktadamy, ze



(A1) J jest klasy C' oraz J(0) =0
(A2) J' jest ciagowo stabo-stabo* ciggta (tzn. jesli u, — u, to J'(u,) — J'(u)).

Niech P € X \ X~ bedzie zbiorem niepustym. Zakladamy dodatkowo, ze

(A3) istnieja 6 > 0 oraz r > 0 takie, ze dla kazdego u € P istnieje promien R = R(u) > r,
dla ktorych

infj>max{ sup J, sup j(v)}.

St OM(u)  [oll<s
Niech I :=1[0,1], A C X oraz h: A x I — X. Rozwazamy nastepujace zalozenia

hl) h jest T-ciagta, tzn. h(v,,t,) — h(v,t), o ile v, = v oraz t, — t;

h2) h(u,0) = dla u € A;

(h1)
(h2)
(h3) J(u) > T (h(u,1)) dla (u,t) € A x I
(h4)

h4) dla dowolnego (u,t) € A x I istnieje otwarte (w przestrzeni produktowej (X, 7) x (1,]-]))

otoczenie W C X x I punktu (u,t) takie, ze {v — h(v,s) : (v,s) € WN(AxI)} jest
zawarty w podprzestrzeni X skonczonego wymiaru.

Mamy wowczas nastepujace twierdzenie.

Twierdzenie 10 ([(H1), Theorem 2.1]). Przypusémy, ze J spetnia (A1)-(A3). Wowczas
istnieje cigg (u,) C X taki, zZe

, J
sup J (un) < ¢, (L4 [[un])T"(un) = 0 w X7, inf fun| = 3,
gdzie
c:=inf inf sup J(h(v',1))>infJ >0
u€P hel'(u) W' €M () St
oraz

L(u) :={h e C(M(u) x I) : h spetnia (h1)-(h4)} # 0.

o
Zauwazmy, ze znajdujemy ciag Cerami o dodatkowej wtasnosci inf ||u,|| > 2 ktora po-
n

zwoli potem (po zastosowaniu odpowiedniej translacji) znalez¢ nietrywialna staba granice.
Wprowadzmy dodatkowo rozmaitoé¢ Nehariego-Pankova
(14) Ni={ue X\ X : J'(u)(u) =0, J(u)(v)=0forallve X }

oraz jej podzbior Np := N N P. Aby poréwnaé¢ moc poréwnaé poziom c¢ otrzymany w Twier-
dzeniu 10 wprowadzamy dodatkowe zalozenie

(A4) dla dowolnego u € Np, v € X~ oraz t > 0 zachodzi J(u) > J (tu + v).

10



Woweczas, jezeli dodatkowo (A4) jest spelnione, to zachodzi nier6wnosé ¢ < }\I/Ifj (por. [(H1),
P

Theorem 2.1]). W przypadku, gdy g # 0, nie jest jasne, czy zalozenie (A4) jest spelnione.
Jednak, gdyby g = 0 w (11), to mozna sprawdzi¢, ze (A4) zachodzi z P = X\ {0} i mozemy
uzyskaé¢ rozwigzanie na poziomie i/I\l/f J, czyli tzw. rozwigzanie w stanie podstawowym oraz

uzyska¢ wyniki znane wczeéniej w literaturze.

Jezeli (F'1)—(F4), (G1)—(G3), to funkcjonal wariacyjny spetnia rowniez warunki (Al)-
(A3), o ile A > 0 jest dostatecznie mata. Aby uzyskaé ograniczonos$é ciggow Cerami musimy
dodatkowo zatozy¢ (F5) oraz, ze p > 0 w (F5) jest dostatecznie mate (por. |[(H1), Lemma
5.1]). Nastepnie wykorzystujac odpowiedni wariant lematu o koncentracji zwartosci (por. [30,
Corollary 3.2, Remark 3.3|, [(H1), Proposition 6.2]) znajdujemy nietrywialna staba granice.

Czes¢ ta ma swoja naturalng kontynuacje w pracach (P10) (zastosowanie w przypadku
wektorowym, do ukladéw hamiltonowskich), (P13) (wielokrotnos¢ rozwiazan).

4.3. Zagadnienia znormalizowane

Rozpatrzmy teraz problem (9) z V' = 0. Oznaczmy

S::{u€L2(RN) :/ uzdx:p},
RN

za$ przestrzen H'(RY) jest wyposazona w standardowa norme ||ul| = (|Vul3 + |u|§)1/2. Roz-
wigzania (9) sa wowczas punktami krytycznymi funkcjonatu J : H*(RY) — R danego wzorem

() :%/RN |Vu|2dx—/RN Glu) dz

na zbiorze ograniczen SNH*(RY), gdzie G(u) := / g(s)ds. Wowcezas A w (9) jest mnoznikiem
0
Lagrange’a odpowiadajacym ograniczeniu S.
4
Wprowadzamy wyktadnik 2, := 2+ N < 2%, ktory jest znany w literaturze jako wykltadnik
1
L?-krytyczny. W przypadku nieliniowoéci potegowej G(u) = ~|ul?, jezeli 2 < p < 2,, to
p

funkcjonal jest ograniczony z dohi na S N H'(R™). Nie jest to prawda, gdy p > 2,, wiec
potrzebujemy dodatkowego zbioru ograniczen, na ktéorym funkcjonal J bedzie ograniczony z
dotu.

Przy odpowiednich zatozeniach, wszystkie rozwiazania (9) naleza do W24(RY) dla ¢ < oo
oraz spelniaja tozsamo$¢ Phozaev’a

A
/ |Vul? = 2* G(u) — §u2 dr.
RN RN

OczywiScie spelniaja one takze tozsamos$¢ Nehariego

J'(u)(u) + )\/ u? dx = 0.

RN

11



Biorac kombinacje liniowa obu tozsamosci (w taki sposob, aby wyrugowaé \) otrzymujemy

N
M(u) = /RN |Vu|2da:—§ RNH(u)dx:O,

gdzie H(u) := g(u)u — 2G(u). Zatem wszystkie nietrywialne rozwiazania leza w zbiorze
M= {ue H'RY)\ {0} : M(u)=0}.

Wprowadzmy dodatkowo oznaczenie

D::{UEL2(RN) ; / u2d$§p}.
RN

Niech fi, fo : R — R. Bedziemy pisa¢ fi =< fo, oile f1(§) < f2(€) dla wszystkich £ € R
oraz dla dowolnej liczby § > 0 istnieja punkty &3, & takie, ze |&] < 0, 1€ < 01 f1(&) < f2(&)-
Nieréwnos¢ f; =< fo charakteryzuje nastepujacy lemat.

Lemat 11 ([(H5), Lemma 2.1]). Niech fi, fo € C(R) bedq takie, ze fi(s) < fa(s) oraz | fi(s)|+
|fo(2)| < 5%+ |s|* dla wszystkich s € R. Wowczas f1 < fo wtedy i tylko wtedy, gdy

fi(u) — fo(u)dx <0
RN

dla wszystkich u € H*(RY)\ {0}.

Mozemy teraz wprowadzi¢ zalozenia, przy ktorych pracujemy.

(A1) g oraz h := H' sa ciagle oraz

|h(s)| < |s| + |s|> 7' dla wszystkich s € R.

(A2) n:=limsup G(QS) < 00.
s—0 |3 *
. G(s)
A3) lim =
( ) |s]—=o0 |8‘2*
(A4) Gls)

|s| =00 |8‘2*

(Ab) 2,H(s) < h(s)s dla wszystkich s € R.
4
(A6) NG(S) < H(s) < (2" —2)G(s) dla wszystkich s € R.

Glownym wynikiem pracy (H5) jest nastepujace twierdzenie, w ktorym Cy,, oznacza naj-
lepsza stala w nieréwnosci Gagliardo-Nirenberga

_ 1 1
(15) [uly < Ol Vullluli®, =N (5 _ ]3) |

12



Twierdzenie 12 ([(H5), Theorem 1.1|). Przypusémy, ze spetnione sq zalozenia (A1)-(A6)
oraz

(16) 2*nC]2Vf2*p2/N < 1.
Wowczas istnieje u € DN M taka, zZe

J(u) = inf J > 0.
DM
Jesli dodatkowo g jest nieparzysta, to u jest radialnie symetryczna. Przypusémy dodatkowo, ze
(A6, <) jest spetnione.

P / _ 1 . f _ . f . . _
(a) Jesli g'(s) = o(1) przy s — 0, to Dlrrlej SlrglMJ oraz u € S N M jest znormalizo

wanym rozwigzaniem w stanie podstawowym réwnania (9). Ponadto, u jest radialnie
symetryczna wzgledem pewnej jednowymiarowe; podprzestrzeni afinicznej Vo w RY.

b) Jesli g jest ni ta, to inf J = inf J SN est dodatns dial
(b) Jesli g jest nieparzysta, o inf dof oraz u € M jest dodatnim, radialnym

rozwigzaniem w stanie podstawowym rownania (9). Jezeli N € {3,4}, wystarcza, aby
zachodzita jedynie nieréwnosé nieostra H(s) < (2 — 2)G(s) w (A6, =<).

Warto zaznaczy¢, ze wezesniej nie byto wiadomo, czy rozwigzania w stanie podstawowym
sa radialne. Ponadto nieréwnosé (16) jest istotna tylko wtedy, gdy n > 0 w (A2), zas gdy
n = 0, jest ona automatycznie spelniona.

Do udowodnienia Twierdzenia 12 wprowadziliémy zupelnie nowa technike minimalizacji
na dysku. Jest ona ogélna i juz stosowana w roznych kontekstach, m.in. w (H6), (P9), (P12),
[9,22,26,31,32,38|. Ponizej przedstawimy gtowne kroki nowego podejscia.

Krok 1. Pokazujemy, ze Dl%l/fvl J > 0. W tym kroku gltéwna role odgrywa nieréwnoscé
Gagliardo-Nirenberga (15) oraz nier6wnosé (16).

Krok 2. J jest koercytywny na DN M. Wykorzystujemy tutaj gtéwnie warunek (A5) oraz
pokazujemy monotoniczno$é odwzorowania u — H(u)/|u|**. Czerpiemy tutaj pewne pomysty

z prac [16], [41], jednak nie wymagamy, aby istnialo ciagle rzutowanie z H*(RY) \ {0} na M
zachowujace norme L.

Krok 3. Jezeli (u,) C DN M jest ciaggiem minimalizujacym, to z wykorzystaniem tzw.
profile decomposition (|(H5), Theorem 2.6|, por. |30, Theorem 1.4]) znajdujemy ciag translacji
(y,) C RY taki, ze u,(- + y,) zbiega stabo i prawie wszedzie do u bedacego minimizerem .J
na D N M. Tutaj, standardowe, jednokrokowe podejscie z wykorzystaniem lematu Lions’a o
koncentracji zwartosci wydaje sie by¢ niewystarczajace, bowiem znaleziona granica moze nie
leze¢ w zbiorze M. Musimy tutaj znalez¢ pelng (by¢ moze nieskonczong) dekompozycje (uy,),
aby znalez¢ punkt graniczny znajdujacy sie w M (z dokladnoscia do translacji). Jezeli g jest
nieparzysta, to pracujac na dysku D mozemy tatwo uzy¢ symetryzacji Schwartza oraz znalezé
nieujemny, radialny minimizer.

Krok j. Nastepnie pokazujemy, ze dla v € (D \ &) N M zachodzi nastepujaca, kluczowa
nieré6wnos¢

inf J < J(v),
SNM

13



a zatem minimizer u dla J znaleziony na D N M tak naprawde znajduje sie w zbiorze S N M.

Krok 5. Analiza mnoznikow Lagrange’a A i p, odpowiadajacych S i M odpowiednio,
pozwala wykazaé, ze p = 0 i w konsekwencji u jest znormalizowanym rozwigzaniem w stanie
podstawowym dla (9).

Dodatkowo, jako wniosek z naszego podejscia (z Kroku 4) wynika, ze odwzorowanie p —

inf J = inf J jest $cidle malejace. Mozemy sprawdzi¢ takze dodatkowe wlasnosci tego od-
MND MNS

wzorowania.

Propozycja 13 ([(H5), Proposition 2.9|). Przypusémy, ze spetnione sq zatozenia Twierdzenia

12. Wowezas odwzorowanie p — inf J jest ciggle, Scisle malejgce oraz inf J — oo przy
MND MND

p — 07. Jesli ponadto n =0 oraz

2200,

lir% G(u)/|u

to lim inf J =0.
p—r00 MND

Rozpatrzmy teraz nastepujace uogélnienie (9)

(—A)"u+ ——u+Iu=g(u), z=(y 2) €R" xRV",
(17) Y
w?dr = p >0,
RN
gdzie N > K > 2m, p € R. Rownanie (9) otrzymujemy, gdy m = 1 oraz V(z) = % jest
y m

osobliwym potencjatem.

W przypadku, gdy o = 01 N > 2m - przy odpowiednich zalozeniach na ¢ - znajdu-
jemy znormalizowane rozwiazanie w stanie podstawowym réwnania (17) (por. Twierdzenie 16
ponizej), tzn. u jest rozwiazaniem takim, ze Jo(u) = /\/itnfs Jo, gdzie

oM

1
Jo(u) :== §/RN |V u|? dx — /RN G(u) dx,

N
My = {ueHm(RN)\{O} : / IV"ul? dr = — H(u)d:c},
RN 2m RN
m A2y gdy m jest parzyste,
Vi = (m—1)/2 {ost 1
VA u gdy m jest nieparzyste.

Jezeli dodatkowo m = 1, jest ono dodatnie i radialne.

W przypadku, gdy p > 0 sytuacja jest inna - nie istnieja znormalizowane rozwigzania
w stanie podstawowym (tj. minimizery na zbiorze M, N'S lub na M, N D, gdzie M,, jest
naturalnym rozszerzeniem zbioru My dla przypadku p > 0). Aby rozwiaza¢ rownanie (17) z
i # 0 uzyjemy skalowania operatora poliharmonicznego. Rozpatrzmy grupe G(K) := O(K) X
idy_x 1 nastepujacy zbioér ograniczen

N
Mi={ue @\ ) 5 [ IVl o= o [ ) ds).
RN

2m RN
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gdzie Hgy) (RY) oznacza podprzestrzeti funkeji G(K )-niezmienniczych w H™(RY). Pojawia sie
jednak naturalne pytanie - czy rozwiazania problemu (17), ktore sa G(K)-niezmiennicze, leza
w zbiorze M? Tutaj takze odgrywa role symetria grupy G(K) - w przypadku rozwigzan G(K)
jesteSmy w stanie pokazac, ze rozwigzania spelniajg tozsamo$é¢ Pohozaev’a, a w konsekwencji
lezg w M.

Okreslmy

2
X" = {uEHm(RN) : |,u|/ u2 dx<+oo}
BN Y7

oraz X§igy == X™ N Heje (RY).
Pierwszy, istotny wynik pracy (H6) jest nastepujacy.
Propozycja 14 (|(H6), Proposition 2.5]). Niech g : R — R bedzie funkcjg ciagla spetniajgeq

Gl < Il +1s1* 7,

gdy N > 2m,
zachodzi |§(u)| < |s| +|s|7 1 (e®” — 1), gdy N = 2m.

N(@2m)N

WN-1

dla dowolnych q > 2 1 a >

Niech u € Xg ) bedzie stabym rozwigzaniem rdwnania

(=AY + 2 = G(u).

|y [>m

Wowezas

/ (N —2m) (]Vmu\Q + 'umu2> —2NG(u) dx = 0,
RN

|y|?

gdzie G(u) := /Ou g(s)ds.

Wiedzac, ze zachodzi powyzsza tozsamos$é Pohozaev’a, mozemy wykaza¢, ze kazde rozwia-
zanie u € X, réwnania (17) nalezy do M.

Znana jest nastepujaca nieréwnosé¢ Hardy’ego - jesli K > 2m, to

2
U2 F(K—Qm

de < | ——4 2 / V™ul?d ,

/RN |y|2m = <2mr (KZQm) RN| U| T

ktora sugeruje, aby wprowadzi¢ nastepujace zalozenie na parametr p

omq (K+2m)
(18) p>— | —2—=2%] jesli K >2m lub >0 jesli K = 2m.

[ ()

Zauwazmy, ze zachodzi wowczas nieré6wnosé

1/2 1/2
(/ |V u)? + %uQ dx) > 71/2 </ |V ul? dx) :
RN || RN



gdzie T jest okreslone jako

L (me <—K*f’">) el 1 < 0
7 EKk—amy | & Jeslt fu )
r(55)

1, jesli p > 0.

2N

4
Rozpatrzmy nastepujace zalozenia, gdzie przedefiniowalismy 2, := 2+ TN oraz 2 = N _om
—2m

z konwencja 2* = +o00, gdy N = 2m.

(A1%) g oraz h := H' sg ciagte oraz
21
N(@2m)N

WN-1
zachodzi [g(s)| + |h(s)| < |s| + [s|" " (e* = 1), gdy N =2m

l9(s)| + |h(s)] < [s] + |5

gdy N > 2m
dla dowolnych ¢ > 2 i a >

dla wszystkich s € R.

H
(A2%) n:=limsup (j) < 00.
s—0 ‘3 *
. G(s)
A3 lim =
( ) |s| =00 |8‘2*
I gdy N > 2m,
(Aq) lsl=ee |8(! |
lim 2% 0 dla dowolnej a« > 0, gdy N = 2m.

|s| =00 6a52
(A5’) 2,H(s) < h(s)s dla wszystkich s € R\ {0}.

4
(A6") 0 < NG(S) < H(s) < (2" — 2)G(s) dla wszystkich s € R\ {0}, przy czym ostatnia
nierowno$¢ zaktadamy tylko, gdy N > 2m.

Ponadto w przypadku poliharmonicznym mamy takze nastepujaca nieréwnos¢ Gagliardo-
Nirenberga

m _ N (1 1
(19) july < Oy V™ ulflul} ™, 6= (5 _ ]3) |

Podazajac opisang wcze$niej metoda - dowodzac nowej wersji twierdzenia o dekompozycji cig-
gow ograniczonych (w wersji poliharmonicznej z potencjatem osobliwym), por. [(H6), Theorem
4.7] - uzyskujemy nastepujace twierdzenie o istnieniu rozwiazan.

Twierdzenie 15 ([(H6), Theorem 3.2|). Przypusémy, ze spetnione sq warunki (18), (A1°)-
(A6°) oraz

N m
(20) %UC]?Q*pQWT_l < 1.

16



Wowczas istniejg A > 0 oraz u € S N M takie, Ze

J(u) = inf J= inf J>0
DM SNM
oraz u € S N M jest rozwigzaniem (17) w Xg(ry- Jesli dodatkowo g jest nieparzysta oraz
m =1, to u jest nieujemne.

Gdy p = 0, nie musimy rozwazaé¢ symetrii grupy G(K) i mozemy wowczas znalezé znor-
malizowane rozwigzanie w stanie podstawowym przy zalozeniach Twierdzenia 15. Dokladniej,
otrzymujemy nastepujace uogoblnienie Twierdzenia 12.

Twierdzenie 16 ([(H6), Theorem 3.2|). Przypusémy, Ze spetnione sq warunki (A1°)-(A6’)
oraz

%UCN*,Z*/) N < 1.
Wowczas istniejg A > 0 oraz u € S N M takie, ze
J, = inf Jy= inf Jy >0
olu) = oty Jo = gink, Jo
oraz u € SNMy jest rozwigzaniem w stanie podstawowym réwnania (17) z =0 w Hm(]RN).
Jesli dodatkowo g jest nieparzysta oraz m = 1, to u jest dodatnie i radialne.

Ponizsze twierdzenie dodatkowo uzasadnia istotnosé¢ symetrii G(K).

Twierdzenie 17 ([(H6), Theorem 3.2]). Niech N > K > 2m, u > 0; przypusémy, ze spetnione
sq warunki (18), (A1°)-(A6’) oraz
N 2m

—nC%, pnr < 1.
2m77 N2.P

Wowezas nie istniejg minimizery nastepujgcych zagadnien
N

inf {J(u) cu € H™(RY)\ {0}, / |V ul? + %uz de = — H(u)dz, u € D} ,
RN |y’ m 2m RN

inf{J(u) : uEHm(RN)\{O},/ |V ul? + ﬁ; uzdﬂz::ﬁ H(u)dz, uES}.
RN |y [ 2m Jpw

W szczegdlnosci (17) nie posiada znormalizowanych rozwigzar w stanie podstawowym w H™(R™Y).

Zauwazmy, ze gdy N =3, K =2, p =1, m = 1, to réwnanie (17) ma $cisly zwiazek z (6).
Doktadniej, wykorzystujac Twierdzenie 6 o rownowaznosci stabych rozwigzan otrzymujemy
nastepujace twierdzenie.

Twierdzenie 18 (|(H6), Theorem 3.2|). Niech f bedzie dane przez f(aw) = g(a)w dla o € R
oraz w € R?, |w| = 1, gdzie g spetnia (A1°)-(A6’°) oraz (20). Wowczas istniejg X > 0 oraz
U € QNS takie, ze (N, U) jest stabym rozwigzaniem

Vx (VxU)+AU= f(U), xcR?

/ Ul de = p
RN

17



takim, ze E(U) = é%fDE = é%ng > 0, gdzie

F:={U:R* =R’ : U jest postaci (7)},
Hr = H'(R*R*) N F,
1
E(U) = / 5|v x U = F(U)dz, U € Hp.
R3
Ponadto N
0= {U € Hr\ {0} : / VX UPdr =" ﬁ(U)dm},
R3

R3

gdzie H(U) := f(U) - U — 2F(U) oraz F(U) := /01 f@U) - U dt.

Czes¢ ta ma swoja kontynuacje w pracach (P9), (P12).
4.4. Przejscie graniczne w réwnaniach ulamkowych przy s — 1~
Rozpatrzmy nastepujace nielokalne zagadnienie typu Dirichleta

(21) { (=AY u+V(z)u= f(z,u), =z,

u=0, reRY\Q
oraz jego lokalny odpowiednik

(22) { —Au+V(r)u= f(z,u), x€,

u =0, x € 0f.
Powyzej Q C RY jest ograniczong dziedzing (tj. zbiorem otwartym i spojnym) w R o ciaggtym
brzegu 092, N > 3oraz 1/2 < s < 1 (gdzie 1/2 jest wybrana dla ustalenia uwagi, gdyz bedziemy

zainteresowani s — 17). Ponadto, potencjal V' spehia

Ve L>(Q), igfv > 0.

Zaktadamy, ze f spelnia nastepujgce warunki.

2N
(F1) f:Q xR — R jest funkcja Carathéodory’ego oraz istnieje liczba p € (2, ﬁ) taka,
ze
|f(z,u)| S 1+ uP~!  dla wszystkich u € R oraz p.w. z € Q.

(F2) f(z,u) = o(u) przy u — 0, jednostajnie ze wzgledu na x € €.

(F3) lim L&Y

|u|—o0 u?

= 400 jednostajnie ze wzgledu na = € Q, gdzie F(x,u) := / f(z,t)dt.
0

(F4’) Odwzorowanie u +— f(x,u)/u jest Scisle rosnace na (—oo,0) oraz na (0,00) dla p.w.
x €
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Wiadomo, ze przy (F1')-(F4’) istnieje rozwigzanie w stanie podstawowym us € Hj($2) dla
problemu (21) oraz rozwiazanie w stanie podstawowym ug € Hy(§2) dla problemu (22) (por.
[(H3), Proposition 3.2]). Poprzez rozwiazanie w stanie podstawowym rozumiemy rozwiaza-
nie bedace minimizerem odpowiedniego funkcjonalu energii na odpowiadajacej rozmaitosci
Nehariego.

Twierdzenie 19 ([(H3), Theorem 1.2|). Istnieje cigg (s,) C (1/2,1) taki, zZe s, — 1 przy
n — 0o oraz u,, zbiega w L*(Y) do ug € Hy(Q) bedgcego rozwigzaniem w stanie podstawowym
dla problemu (22).

Uwaga 20. Mozna pokazaé, zZe zbieznosé us, do ug mamy w L"(Q2) dla 2 <v < N1

Powyzszy wynik udato sie uzyska¢ poprzez dokladna analize zachowywania sie stalych
m.in. w utamkowych nier6wnosciach Sobolewa, przy s — 17. Rozwazajac ciag (us, ), wazna jest
jego jednostajna ograniczonosé, tj. ograniczonosé ciagu norm ||lug, |5, , gdzie || - ||s, jest norma
w utamkowe]j przestrzeni Sobolewa. Pozwala to wéwczas na zastosowanie wyniku Bourgain-
Brezisa-Mironescu |7, Corollary 7] i uzyskanie granicy bedacej w przestrzeni Hy ().

Przejdzmy zatem do problemu trudniejszego, czyli rozwazanego na calej przestrzeni RY.
Doktadniej, rozpatrujemy problem

(—AYu+V(x)u= f(r,u), z&RY
23) e
~Au+V(z)u= f(z,u), xRV,
(24) { u € H'(RY).

Analogicznie jak poprzednio rozpatrujemy N > 3, 1/2 < s < 1 oraz potencjal V' spehiajacy

V e L=(RY), in&f V >0, V jest Z"-okresowy.
R
Nieliniowos$¢ f spelnia warunki analogiczne do (F1')—(F4"), tj.

(F1”) f : RY x R — R jest funkcja Carathéodory’ego, Z"-okresows ze wzgledu na x € RY

e 2N .
oraz istnieje liczba p € | 2, N1 taka, ze

|f(z,u)| <1+ uP~!  dla wszystkich u € R oraz p.w. z € Q.
(F2") f(z,u) = o(u) przy u — 0, jednostajnie ze wzgledu na z € RY.

(F3") lim F(z,u)

|u|—o00 U

= 400 jednostajnie ze wzgledu na r € R, gdzie F(z,u) := / f(z,t)dt.
0

(F4”) Odwzorowanie u — f(z,u)/u jest $cisle rosnace na (—oo,0) oraz na (0,00) dla p.w.
r € RY.

Przy powyzszych zatozeniach uzyskujemy nastepujacy wynik.
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Twierdzenie 21 ([(H4), Theorem 1.2]). Niech u, € H*(RY) bedzie rozwigzaniem w stanie
podstawowym problemu (23). Istnieje cigg (sn) C (1/2,1) taki, zZe s, — 1 przy n — oo oraz
cigg translacji (2,) C ZN takie, ze us, (- — 2,) zbiega w L (RY) do ug € H'(RY) bedgcego
rozwigzaniem w stanie podstawowym dla problemu (24).

Przy warunkach (F17)—(F4”) wiadomo, ze istnieja rozwigzania w stanie podstawowym
zaréwno dla zagadnienia lokalnego (D1), [41], jak i nielokalnego (D2), [39]. Tutaj jednak sama
analiza statych i ich zaleznosci od s nie jest wystarczajaca, bowiem nie dysponujemy wynikiem
typu [7, Corollary 7|. Niech || - ||s oznacza klasyczng norme w przestrzeni H*(RY). Najpierw
dowodzimy jednostajne; wersji lematu o koncentracji zwartosci Lions’a.

2N
Twierdzenie 22 ([(H4), Theorem 3.1|). Niech r > 0, 2 < ¢ < N

] oraz N > 3. Niech
ponadto (s,) C (1/2,1) oraz u,, € H*"(RY) spetniajq

Sn S M7

Husn

gdzie M nie zalezy od s,,. Jezeli

lim sup / |up|?dx =0,
B(y,r)

n—oo yERN

2N
to u, — 0 w LP(RY) dla wszystkich p € (2, ﬁ)

Drugim waznym wynikiem jest lokalna jednostajna zwartosé wlozen Sobolewa. Sama ana-
liza statych oraz zastosowanie |7, Corollary 7] datoby rezultat z granica w przestrzeni H. (R™).

Co istotne, jesteSmy w stanie pokazaé, ze granica, ktorg otrzymujemy, jest w przestrzeni
HY(RM).

Twierdzenie 23 ([(H4), Theorem 3.2]). Niech (s,) C (1/2,1) bedzie taki, zZe s, — 17 oraz
us, € H*"(RY) spetnia
s, s, < M,

gdzie M nie zalezy od s,. Wowczas cigg (us,) zbiega, z doktadno$ciq do podciggu, do pewnej
u € H'(RY) w przestrzeni L] (RY) dla kazdego q € [2,2N/(N — 1)) oraz punktowo prawie
wszedzie.

4.5. Opis indywidualnego wkladu w poszczegblne publikacje

(H1) F. Bernini, B. Bieganowski: Generalized linking-type theorem with applications to
strongly indefinite problems with sign-changing nonlinearities,
Calc. Var. Partial Differential Equations, Vol. 61, Article number: 182 (2022).

Jestem glownym pomystodawcy pracy (H1), ktora powstata w trakcie stazu doktoranc-
kiego F. Berniniego na Uniwersytecie Mikotaja Kopernika w Toruniu. Gtéwna czescia
pracy jest udowodnione, w znacznej mierze, przeze mnie twierdzenie abstrakcyjne o
istnieniu ciggu Cerami. Sprawdzilem takze, ze w zaproponowanym settingu, catkowita
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(H2)

(H3)

(H5)

energia elektromagnetyczna L(t) jest stala i niezalezna od czasu t. Wspolnie z F. Berni-
nim zaproponowalismy zalozenia na f i g oraz sprawdziliSmy, ze spelnione sa zalozenia
twierdzenia abstrakcyjnego, zaproponowalismy przyktady nieliniowosci f i g spelniaja-
cych te zalozenia. SprawdziliSmy, ze ciagi Cerami sg ograniczone i wykazaliSmy istnienie
nietrywialnego rozwiagzania. Jestem autorem korespondencyjnym wspomnianej pracy.

B. Bieganowski: Solutions to a nonlinear Mazwell equation with two competing nonli-
nearities in R,
Bull. Pol. Acad. Sci. Math. 69 (2021), p. 37-60.

Jestem jedynym autorem pracy (H2).

B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional
Schridinger equations on bounded domains,
Topol. Methods Nonlinear Anal., Vol. 57, No, 2 (2021), p. 413-425.

Jestem glownym pomystodawca pracy (H3). Bezposrednio po ukoriczeniu doktoratu,
w ktorym zajmowalem sie takze zagadnieniem istnienia stanéw podstawowych dla row-
nani nieliniowych z utamkowym laplasjanem, pomyslatem o sprawdzeniu, co si¢ dzieje
7 rozwigzaniami réwnania nieliniowego gdy utamek laplasjanu zbiega do 1. Pomyst ten
przedstawilem swojemu wspolpracownikowi - S. Secchi, ktory wykazal zainteresowanie
wspolpracg nad tym zagadnieniem. Zaproponowalem, aby w pierwszej kolejnosci praco-
waé w przypadku ograniczonej dziedziny. Wowczas z wykorzystaniem wyniku z pracy |7]
oraz po przeanalizowaniu zachowaniu statych wystepujacych m.in. w definicji utamko-
wego laplasjanu wzgledem s wykazaliSmy, ze rozwigzania w stanie podstawowym zbiegaja
w L?, z doktadnoscia do translacji, do rozwigzania problemu lokalnego.

B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional

Schrodinger equations on RY,
J. Fixed Point Theory Appl. 22, 76 (2020).

Praca (H4) jest naturalna kontynuacja pracy (H3). Do waznych elementow pracy na-
leza wykazane przez S. Secchi - jednostajna wersja lematu Lionsa oraz, wykazane przeze
mnie - twierdzenie o jednostajnych wlozeniach Sobolewa. Cze$¢ dotyczaca zbieznosci
rozwigzan w L2 ., z dokladnoscia do translacji, zweryfikowalismy wowczas wspolnie z
S. Secchi analogicznie do wyniku z (H3).

B. Bieganowski, J. Mederski: Normalized ground states of the nonlinear Schrodinger
equation with at least mass critical growth,
J. Funct. Anal., Vol. 280, Issue 11 (2021), 108989.

Do wspoétpracy nad zagadnieniem znormalizowanym zostatem zaproszony przez J. Me-
derskiego, ktory poszukiwal nowego podejscia wariacyjnego po znalezieniu btedu w pracy
[5] (por. corrigendum: [6]). J. Mederski zaproponowal minimalizacje na dysku w L?
(zamiast na sferze) i zweryfikowal swoj pomyst w przypadku nieliniowosci potegowe;j,
ponadkrytycznej. Po dotaczeniu do projektu, wspdlnie wypracowaliSmy zatozenia na
0g6lng nieliniowos¢, a takze rozszerzyliSmy podejscie réwniez na przypadek nieliniowosci
o wzroscie krytycznym w zerze przy zalozeniu, ze zadana norma L? rozwiazania jest
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dostatecznie mata. Zweryfikowalem takze wtasnosci tzw. ground state energy map na
dysku, tj. odwzorowania p — inf J.

MND,
B. Bieganowski, J. Mederski, J. Schino: Normalized solutions to at least mass critical

problems: singular polyharmonic equations and related curl-curl problems,
J. Geom. Anal., Vol. 34, Article number: 322 (2024).

Po sukcesie osiagnietym w pracy (H5) zaproponowatem, aby nowe podejscie minimaliza-
cji na dysku rozszerzy¢ do szerszej klasy operatorow. J. Mederski oraz J. Schino (w swojej
rozprawie doktorskiej [37]) zauwazyli, ze taka symetrie jak laplasjan ma takze potencjat
singularny typu Hardy’ego. Zaproponowatem, aby w (H5) zbadaé¢ rownania z ogélniej-

szym operatorem - operatorem poliharmonicznym (—A)™ z potemcjatem postaci D
Y

Szczegblny przypadek operatora —A + pojawia sie¢ przy poszukiwaniu roz-

| (21, 2)[?
wiazan cylindrycznie symetrycznych dla réwnan z operatorem curl-curl ([37]). Wspdlnie

z J. Schino (ktorego w tym miejscu wklad jest wiekszy, gdyz znalazt odpowiednie wzory
na calkowanie przez czesci oraz znalazl pierwszy, nie w pelni poprawny, dowod zbiez-
nosci do zera calki powierzchniowej pochodzacej od wyrazu osobliwego) wykazalismy
tozsamos$¢ Pohozaeva przy zalozeniu, ze poszukujemy rozwiazan G(K )-niezmienniczych.
Zaproponowaltem takze, aby zweryfikowaé, czy wspomniana symetria jest niezbedna. J.
Mederski zweryfikowal, ze jest to prawda, gdyz w przypadku braku symetrii problemy
minimalizacji na sferze oraz na dysku nie majg rozwigzan. Ponadto wraz z J. Schino
zaadoptowaliémy technike z (H5) do przypadku N = 2m oraz sprawdzili$émy, jakie wy-
niki o istnieniu jesteSmy w stanie uzyska¢ w przypadku réwnan z operatorem curl-curl
uzyskujac uogolnienie wyniku o istnieniu z [37]. Jestem autorem korespondencyjnym
wspomnianej pracy.

4.6. Pozostale osiggniecia naukowo-badawcze

Prace niewchodzace w sklad rozprawy doktorskiej

(P1)

(P2)

B. Bieganowski, T. Cieslak, K. Fujie, T. Senba: Boundedness of solutions to the critical
fully parabolic quasilinear one-dimensional Keller-Segel system,
Math. Nachr., Vol. 292, Issue 4 (2019), p. 724-732,

B. Bieganowski: Systems of coupled Schridinger equations with sign-changing nonli-
nearities via classical Nehari manifold approach,
Complex Var. Elliptic Equ., Vol. 64, Issue 7 (2019), p. 1237-1256,

F. Bernini, B. Bieganowski, S. Secchi: Semirelativistic Choquard equations with singu-
lar potentials and general nonlinearities arising from Hartree-Fock theory,
Nonlinear Anal., Vol. 217 (2022), 112738,

B. Bieganowski: On-line interval graphs coloring - modification of the First-Fit algo-
rithm and its performance ratio,
Discrete Math. Algorithms Appl., Vol. 14, No. 08, 2250042 (2022),
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(P5)

(P6)

(P7)

(P8)

(P9)

(P10)

(P11)

(P12)

(P13)

B. Bieganowski, T. Cieslak, J. Siemianowski: Magnetostatic levitation and two related

linear PDEs in unbounded domains,
Rep. Math. Phys., Vol. 92, Issue 2 (2023), p. 135-144,

B. Bieganowski, A. Konysz: Elliptic problems with mized nonlinearities and potentials

singular at the origin and at the boundary of the domain,
J. Fixed Point Theory Appl. 25, 83 (2023),

B. Bieganowski, T. Cieslak, J. Siemianowski: Twme-zero limits of Kaden’s spirals and
2D Euler,
zaakceptowana w Lecture Notes in Nonlinear Analysis, arXiv:2305.15356,

B. Bieganowski, A. Konysz, J. Mederski: Semiclassical states for the curl-curl problem,
Nonlinear Analysis, Vol. 255 (2025), 113756,

B. Bieganowski, P. d’Avenia, J. Schino: Fristence and dynamics of normalized solutions
to Schrodinger equations with generic double-behaviour nonlinearities,
wystana, arXiv:2405.05194,

F. Bernini, B. Bieganowski, D. Strzelecki: Note on homoclinic solutions to nonauto-
nomous Hamiltonian systems with sign-changing nonlinear part,
zaakceptowana w Topol. Methods Nonlinear Anal., arXiv:2405.20908,

L. Baldelli, B. Bieganowski, J. Mederski: Traveling waves for nonlinear Schrodinger
equations,
wystana, arXiv:2406.03910,

B. Bieganowski, O.H. Miyagaki, J. Schino: Normalized solutions to polyharmonic equ-
ations with Hardy-type potentials and exponential critical nonlinearities,
wystana, arXiv:2410.05885,

F. Bernini, B. Bieganowski, D. Strzelecki: Multiplicity of critical orbits to nonlinear,
strongly indefinite functionals with sign-changing nonlinear part,
wystana, arXiv:2410.13315.

Prace wchodzace w sklad rozprawy doktorskiej

(D1)

B. Bieganowski, J. Mederski: Nonlinear Schridinger equations with sum of periodic
and vanishing potentials and sign-changing nonlinearities,
Commun. Pure Appl. Anal., Vol. 17, Tssue 1 (2018), p. 143-161,

B. Bieganowski: Solutions of the fractional Schridinger equation with a sign-changing
nonlinearity,
J. Math. Anal. Appl., Vol. 450, Issue 1 (2017), p. 461-479,

B. Bieganowski: The fractional Schrodinger equation with Hardy-type potentials and
stgn-changing nonlinearities,
Nonlinear Anal., Vol. 176 (2018), p. 117-140,
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(D4) B. Bieganowski, S. Secchi: The semirelativistic Choquard equation with a local nonli-

near term,
Discrete Contin. Dyn. Syst., Vol. 37, no 7 (2019), p. 4279-4302,

(D5) B. Bieganowski, J. Mederski: Note on semiclassical states for the Schridinger equation
with nonautonomous nonlinearities, Appl. Math. Lett., Vol. 88 (2019), p. 149-155,

(D6) B. Bieganowski, J. Mederski: Bound states for the Schridinger equation with mized-
type nonlinearites, Indiana Univ. Math. J. 71 No. 1 (2022), p. 65-92.

4.7. Omoéwienie pozostalych prac
4.7.1. Problemy wariacyjne z nieliniowo$ciami zmieniajacymi znak

Rozpatrzmy funkcjonal 7 : X — R okreslony na przestrzeni Hilberta (X, ||-||). W pracach
(D1), (D2), (D3), (D4) rozpatrywalismy problemy wariacyjne o podobnej strukturze funkcjo-
natu. Doktladniej, niech funkcjonal wariacyjny bedzie postaci

T (w) = 5 lull? ~ Zw),

gdzie T : X — R jest klasy C' oraz Z(0) = 0. Wprowadzamy wowczas rozmaitos¢ Nehariego
jako

N i:={ue X\{0} : J'(u)(u)=0}.
W pracy (D1) wykazaliSmy nastepujace twierdzenie, stosowane potem m.in. w (D2), (D3),
(D4).

Twierdzenie 24 ([(D1), Theorem 2.1]). Przypusémy, ze
(J1) istnieje promien r > 0 taki, Ze HiIH1£ J(u) > 0;

Z(t,uy)
i

— 00, jesli t, — oo oraz u, — u # 0;

(J2)

(J3) dla wszystkich t € (0,00) \ {1} oraz u € N zachodzi nieréuwnosé

2 —1
2

Z'(u)(u) — Z(tu) + Z(u) < 0;
(J4) T jest koercytywny na N .

Wowczas ¢ := ijr\lffj > 0 oraz istnieje cigg Palais-Smale’a dla J na poziomie c w N, tzn. cigg

(un) C N taki, ze
J(u,) = ¢, T'(u,) — 0.

Jest to twierdzenie pozwalajace na badanie probleméw dodatnio okreslonych z nielinio-
woSciami zmieniajacymi znak, gdyz zalozenia nie wymagaja, aby Z(u) > 0. W szczegolnosci,
jesli X = HY(RY), N > 3, mozemy rozpatrywaé na przyktad

1

1
Tw) = [ ol = ZJultds,
RN D q
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gdzie 2 < g < p < 2",

W (D1) badali$my istnienie rozwiazan dla zagadnienia postaci
(25) —Au+V(2)u= f(z,u) — ['(x)|u|T%u, zcRY,
gdzie N > 3, q € [2,27), zas V spelnia zalozenia

(V.1.1) 'V = Vper + Vi, gdzie Ve, € L>®(RY) jest Z"-okresowy, za$ Vi,. € L(R™) N LN/Z(RN)
spelnia |1|im Viee(z) =0,
r|—0o0

(V.1.2) info(—A+ V(z)) > 0.

Jezeli Vj,. = 0, to wiadomo, ze widmo o(—A + V' (z)) sktada sie tylko z czesci ciaglej i jest
suma odcinkéw domknietych. W przypadku, gdy Vi, Z 0, w o(—A + V(z)) moga pojawic sie
wartodci wlasne.

Zaktadamy, ze I spelnia
(T) T € L>(R") jest Z"-okresowa oraz essinfpy I' > 0.
Ponadto rozwazamy nastepujace zalozenia na f.

(F.1.1) f:RY xR — R jest funkcja Carathéodory’ego, Z"-okresows ze wzgledu na z € RV
oraz istnieje p € (¢, 2%) taka, ze

1f(z,u)] S1+uf™ dlaveRipw. xRV

(F.1.2) f(z,u) = o(u) przy u — 0, jednostajnie ze wzgledu na x € RY.

(F.1.3) F(z,u)/u|? = oo przy |u| — oo, jednostajnie ze wzgledu na x € RY, gdzie F(z,u) =

u

f(z,s)ds.
0

(F.1.4) u s f(z,u)/|ul7" jest écidle rosngca na (—oo,0) U (0, 00).

Przy powyzszych warunkach funkcjonat J : H'(RY) — R,

T(u) = %/RN Vul? + V(@) da:—/

1
F(x,u) — -T'(z)|u|?dx
RN q

spelia warunki (J1)—(J4). Po dokonaniu skonczonej dekompozycji znalezionego ciagu Palais-
Smale’a ([(D1), Theorem 4.1]) jestesmy w stanie wykaza¢ nastepujace twierdzenie.

Twierdzenie 25 ([(D1), Theorem 1.1]). Przypusémy, ze spetnione sq warunki (V.1.1), (V.1.2),
(T), (F.1.1)-(F.1.4). Jezeli Vipe(x) < 0 dla p.w. x € RY lub Vi,e = 0, to (25) posiada roz-
wigzanie u € H'(RY) w stanie podstawowym, tj. J(u) = i/I\lffj, Ponadto u jest ciggta oraz
istnieje stata o > 0 taka, ze

lu(z)| < exp(—alz|) dla wszystkich x € RY.
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Zalozenie o znaku Vj,. jest prawie optymalne, bowiem mozemy wykazaé¢ nastepujacy fakt
0 nieistnieniu rozwigzan.

Twierdzenie 26 ([(D1), Theorem 1.2|). Przypusémy, ze (V.1.1), inf o(—A + Vper) > 0, (T'),
(F.1.1)~(F.1.4). Jezeli Vipe(x) > 0 dla p.w. x € RN, to (25) nie posiada rozwigzan w stanie
podstawowym, tj. takich, ze J(u) = i/r\l/f J.

Rozpatrzmy ulamkowy odpowiednik réwnania (25)

(26) (=A)u+V(2x)u = f(r,u) — D(x)|u|*u, »cRY

z analogicznym zestawem zalozen na cze$¢ nieliniowa, przy czym w (F.1.1) wykladnik 2*

zastepujemy przez jego nielokalny odpowiednik 2} := N3 i rozpatrujemy wymiary N > 2s.
—2s

Bedziemy rozpatrywac nastepujace zatozenia na potencjat V.

(V.1.3) V = Vyep 4+ Vige, gdzie Ve, € L(RY) jest ZN-okresowy, zas Vip. € L (RY)N LN @) (RY)
spetnia lim V,.(z) = 0.
|z|—o0
(V.1.4) essinfpy V' > 0.
(V.1.5) V € C(RY) spetnia lim V(z) = oo oraz inf V > 0.

|z|—o0 RN

Wowezas pracujemy w przestrzeni Hilberta
E® = {u € H5(RY) : / V(z)u?dx < oo},
RN

ktora przy zatozeniu (V.1.3) pokrywa sie z H*(R™), natomiast w przypadku zatozenia (V.1.5)
stanowi istotng podprzestrzeii w H*(RY). Funkcjonal energii jest dany wowczas wzorem

=5 [ Fla©OPd 5 [ Vientde— [ Pl - ol ds

W zasadzie powtarzajac dowdd Twierdzenia 25, do$¢ automatycznie uzyskujemy twierdze-
nie o istnieniu rozwigzan w stanie podstawowym w przypadku nielokalnym.

Twierdzenie 27 ([(D2), Theorem 1.1]). Przypusémy, ze s € (0,1) oraz spetnione sq warunki
(V.1.8), (V.1.4), (T), (F.1.1)~(F.1.4). Jezeli Vioo(x) < 0 dla p.w. v € RY lub Vi,. = 0, to (26)
posiada rozwigzanie u € HS(RN) w stanie podstawowym, tj. J(u) = ijr\lff J.

W przypadku, gdy Vi, = 0, uzyskujemy réwniez twierdzenie o wielokrotnosci rozwiazar,
ktore wowcezas bylo nowe takze w przypadku lokalnym s = 1.

Twierdzenie 28 ([(D2), Theorem 1.2|). Przypusémy, ze s € (0,1] oraz spetnione sq warunki
('), (F.1.1)-(F.1.4). Ponadto, jesli s = 1, to zaktadamy (V.1.1), (V.1.2), za$ jesli s < 1,
to (V.1.8), (V.1.4). Niech takze Vi,. = 0. Wowczas (26) posiada nieskoriczenie wiele par +u
geometrycznie roznych rozwigzan.
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W tym miejscu przypomnijmy, ze jesli Vi, = 0 1 u jest rozwiazaniem (26), to u(- —
z) jest takze rozwiazaniem dla dowolnego z € ZY. Mowimy zatem, ze dwa rozwigzania sg
geometrycznie rézne, o ile ich orbity wzgledem dziatania grupy Z" na H*(RY) sg rozlaczne.

Ponadto dowodzimy takze istnienia rozwigzania w przypadku koercytywnych potencjatow.

Twierdzenie 29 ([(D2), Theorem 1.3|). Przypusémy, ze s € (0,1] oraz spetnione sq wa-
runki (V.1.5), (T), (F.1.1)~(F.1.4). Wéwczas (26) posiada rozwigzanie u € E*(RY) w stanie
podstawowym, tj. J(u) = ijI\l/_fj.

Prace (D3) oraz (D4) zawieraja kolejne uogolnienia wspomnianych wynikow, odpowiednio
na zagadnienia nielokalne z utamkowym laplasjanem i osobliwym potencjalem

eAru+(vuw—§%)u—fmm»—wmwm

gdzie niezbedne bylo zastosowanie odpowiedniej nieréwnosci typu Hardy’ego (|14]), oraz na
zagadnienia nielokalne typu Choquarda

V=A+m?u—mu+ V(z)u = (/R _uw)l” dy) u|P~%u — T(z)]u]" 2,

Nz —y|Ne

gdzie wykorzystaliémy rozszerzenie typu Caffarelli’ego-Silvestre ([8]), aby zamieni¢ zagadnienie
nielokalne na problem lokalny w polprzestrzeni z warunkiem brzegowym typu Neumanna.
Dodatkowo, w pracy (P3) rozwijamy to podej$cie na potencjaly osobliwe typu Hardy’ego
(pochodzace 7 teorii Hartree-Fock’a, [11]), za$ w pracy (P2) badamy przypadek wektorowy -
przypadek dwoch (lokalnych lub nielokalnych) rownan sparowanych liniowo.

W przypadku silnie nieokreslonym, opisanym w pierwszej czesci autoreferatu (praca (H1)
potrafimy wykazaé¢ takze abstrakcyjne twierdzenie o wielokrotnosci orbit krytycznych (P13).
Do opisania wyniku potrzebujemy wprowadzi¢ pojecie przestrzeni z dyslokacjami.

Niech (X, (-, -)) bedzie osrodkows, rzeczywista przestrzenia Hilberta oraz niech 7 : X — R
bedzie nieliniowym funkcjonatem klasy C'. Przypusémy, ze X ma rozktad ortogonalny X =
Xt @ X~ oraz dla vt € X*iu=u"+u" mamy

el = fla* 1 + flu |17,

gdzie || - || jest norma indukowana przez iloczyn skalarny na X. Zal6zmy ponadto, ze J jest
postaci

TP ST
(1) Tw) = gl = 3l |~ Z(u),

gdzie T jest klasy C'. Zatézmy, ze dane jest unitarne dzialanie grupy G na X oraz podprze-
strzenie X* sa G-niezmiennicze. Méwimy, ze para (X, Q) jest przestrzenia z dyslokacjami
([42]), o ile dla dowolnych ciagow (u,,) C X, (9,) C G zachodzi

g 20, u, =0 = g,u, — 0z doktadnoscia do podciagu,
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gdzie napis g, — 0 oznacza, ze g,u — 0 dla dowolnego u € X. Wprowadzamy takze nastepu-
jaca wlasnosé

(GWCQ) jezeli (v,), (¢pn) C X sa ograniczone oraz o, L0, to Z'(vn)(pn) — 0,

. G .
gdzie ,, — 0 oznacza, ze
lim sup(u,, gp) =0

n—oo gEG

dla dowolnego ¢ € X. Dla ¢ € N oraz skoriczonego zbioru A C X definiujemy

J
[A, (] = {Zgzuz 1<y <Y, g €@, Uz‘GA}-
i=1

Mowimy wtedy, ze przestrzen z dyslokacjami (X, G) ma wtasnos¢ dyskretnosei, o ile dla do-
wolnego zbioru skonczonego A C X i dowolnej ¢ € N zachodzi

inf{|ju —u'|| : u,u’ €A L], utu}>0.

Mozna sprawdzi¢, ze H*(RY), s € (0,1] z dzialaniem Z" danym przez translacje jest prze-
strzenia z dyslokacjami z wlasnoscia dyskretnosci, patrz takze [(P13), Example 2.13, Example
2.14, Example 2.15]. Mozemy teraz sformutowa¢ wszystkie zalozenia.

(A.1.1) (X, Q) jest przestrzenia z dyslokacjami z wlasnoscig dyskretnosci oraz X = X+ @ X,
gdzie X* sa ortogonalne i G-niezmiennicze.

(A.1.2) J : X — R jest postaci (27), gdzie Z : X — R jest klasy C', T’ jest ciggowo stabo-stabo*
ciagla i spetnia (GWC), Z(0) = 0.

(A.1.3) J jest parzysty i G-niezmienniczy.
(A.1.4) crit(T) \ {0} # 0.

(A.1.5) Istnieja promienie 7,19 > 0 takie, ze

inf J >sup{J(u) : ve X, [Jut] <ro}.

[utfl=r

(A.1.6) Jezeli ||u, | — oo oraz ||u}| jest ograniczony, to J (u,) — —occ.

ol
(A.1.7) J jest ograniczony 7 gory na zbiorach ograniczonych.

Z(ut)

n
[t |2

(A.1.8) — oo, oile ||ut|| — oo (u)) jest zawarty w podprzestrzeni skoriczonego wymiaru.

(A.1.9) Kazdy ciag Palais-Smale’a dla J jest ograniczony.

Wowezas otrzymujemy nastepujace twierdzenie

Twierdzenie 30 (|[(P13), Theorem 3.2|). Zatdzmy, ze spetnione sq warunki (A.1.1)—(A.1.9).
Wowcas J posiada nieskoniczenie wiele orbit krytycznych.
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Zaltozenie (A.1.4) wymaga wiedzy o istnieniu przynajmniej jednego nietrywialnego punktu
krytycznego. Warunek ten jest spelniony w wielu praktycznych zastosowaniach, lecz taczac po-
wyzsze twierdzenie z wynikami z (H1) mozemy uzyskaé¢ twierdzenia, w ktorych nie zaktadamy
z gory istnienia punktow krytycznych. Wystarczy zastapi¢ (A.1.4) przez (A3) i zamiast (A.1.9)
wymagac nieco bardziej ogélnego warunku:

(A.1.10) dowolny ciag (u,) C X spelniajacy

J (uy,) jest ograniczony z gory, (1 + ||un|))J’ (un) — 0

jest ograniczony.

Wowczas dostajemy nastepujace twierdzenie.

Twierdzenie 31 ([(P13), Theorem A.1]). Zatdzmy, ze spetnione sq warunki (A.1.1)—(A.1.3),

(A3), (A.1.1)-(A.1.8), (A.1.10). Wowczas J posiada nieskoriczenie wiele orbit krytycznych.
W przestrzeniach z dyslokacjami mozemy takze sformutowaé¢ abstrakcyjne twierdzenie o

istnieniu nietrywialnego punktu krytycznego.

Twierdzenie 32 ([(P13), Theorem A.2|). Niech (X,G) bedzie przestrzeniq z dyslokacjami,
gdzie G dziata unitarnie na X. Zatézmy, ze J jest postaci (27), gdzie X = XT @& X~ i
X* sq G-niezmiennicze. Jezeli T jest G-niezmienniczy, klasy C*, Z(0) = 0, ' jest ciggowo
stabo-stabo™ ciggla i spetnia (GWC) oraz spetnione sq warunki (A3), (A.1.10), to J posiada
nietrywialny punkt krytyczny.

W (P13) powyzsze fakty sa zastosowane do (25) oraz do (13) w sytuacji silnie nieokreslone;j.

4.7.2. Problemy wariacyjne z nieliniowo$ciami mieszanego typu

Rozpatrzmy teraz problem

(28) —Au+V(x)u = g(x,u),

gdzie V' jest potencjalem spelniajacym
(V.2.1) V € L>®(RY) jest Z"-okresowy oraz 0 znajduje sie w przerwie spektralnej o(—A+V (x)).

W przypadku materiatéw typu Kerra nieliniowo$é jest postaci
g(w,u) = T(z)|ul*u,
za$ w przypadku materialow z efektem saturacji, g jest asymptotycznie liniowa i jest postaci

Juf?

1+ |ul?

g(x,u) =T(x) u.
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Celem tego podrozdzialu rozwazenie réwnania (28) z nieliniowo$ciami mogacymi opisywac
krysztaly fotoniczne sktadajace sie z roznych materialéow o réznych nieliniowych polaryzacjach.
W szczegolnosei, checemy rozwazaé nieliniowosci typu

[(x)|ul?u r € K,
g(fE,U) = ’u‘Q 1 N

Dokladniej, zaktadamy, ze g : RY x R — R jest funkcja Carathéodory’ego, Z"-okresows ze
wzgledu na z € RY, spetniajaca nastepujace warunki.
(G.2.1) g(z,u) = o(u) przy u — 0, jednostajnie ze wzgledu na z € RY.
(G.2.2) Istnieje p € (2,2") taka, ze
lg(z,u)] <14 |ufP~!  dla wszystkich u € Ri p.w. 2 € RY,

(G.2.3) Istnieje domkniety, Z"-okresowy podzbior K C RY taki, ze |K| > 0 oraz
G(z,u)

u2

gdzie G(z,u) ::/ g(x,s)ds.
0

— 00 przy |u| — oo jednostajnie ze wzgledu na x € K,

(G.2.4) Odwzorowanie R\ {0} > u — g(z,u)/|u| € R jest niemalejace na (—oo, 0) oraz na (0, co)
dla p.w. z € RY.

(G.2.5) TIstnieja funkcja © € L(RY \ K) oraz stata a > 0 takie, ze

g(x,u) =0O(r) dla|u/>a>0oraz pw. 2 € RY\ K
u

oraz © jest Z"-okresowa.

(G.2.6) 0 nie jest wartoécia wlasna operatora —A + V(x) — O(z) na L*(RY \ K) z warunkami
brzegowymi Dirichleta.

Zauwazmy, ze warunek (G.2.3) wymusza ponadkwadratowy wzrost G w zbiorze K, za§ warunek
(G.2.5) zapewnia wzrost kwadratowy G poza zbiorem K. W przypadek K = RY mamy
do czynienia ze wzrostem ponadkwadratowym na calej dziedzinie i taki przypadek byl juz
analizowany m.in. w [12,24,29], a takze przy silniejszym warunku monotonicznosci niz (G.2.4)
w [41]. Z kolei problemy asymptotycznie liniowe byly badane m.in. w [17,23,25,27,40].

Zauwazmy, ze zalozenie (G.2.6) jest spelione, gdy K = RY. Przypusémy, ze RY \ K

jest okresowo perforowang przestrzenia, tzn. K = U (Q + 2), gdzie Q jest gladka, $ciggalng
2€ZN

i ograniczona dziedzing taka, ze (Q + 2) N Q = () dla z € Z" \ {0}. Woéwczas, z [19, Theorem

7| wiemy, ze widmo o(—A + V(z) + ©(z)) na RY \ K z warunkami Dirichleta jest absolutnie

ciagle, a wiec —A 4 V' (z) + O(z) nie zawiera wartosci wlasnych i (G.2.6) jest takze spelnione.

Wprowadzamy funkcjonal wariacyjny J : H'(RY) — R,

(29) T(u) = 1/RN VulP + Ve)ptdr = | Gl u) da.

2 RN
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Twierdzenie 33 ([(D6), Theorem 1.1|). Zatdzmy, ze spetnione sq warunki (V.2.1), (G.2.1)-
(G.2.6). Wowczas (28) posiada nietrywialne rozwigzanie u € H'(R™) takie, ze 0 < i}\lffj <

J(u) < ¢, gdzie N oznacza rozmaito$é Nehariego-Pankova (por. (14)), za$ ¢ > 0 jest pewnym
poziomem mini-maksowym.

W przypadku K = RY mozemy dodatkowo pokazaé, ze J(u) = ijI\l/’fj i w konsekwencji
znalezione rozwigzanie jest rozwigzaniem w stanie podstawowym, uzyskujemy w ten sposdb
rezultaty z [24,29].

Drugie twierdzenie dotyczy wielokrotnosci rozwiazan.

Twierdzenie 34 ([(D6), Theorem 1.2|). Zatdzmy, ze spetnione sq warunki (V.2.1), (G.2.1)-
(G.2.6) oraz g jest nieparzysta ze wzgledu na u. Wowcezas (28) posiada nieskoriczenie wiele
par £u roznych geometrycznie rozwigzani.

Twierdzenie 33 jest udowodnione w (D6) na dwa sposoby. Pierwszy sposéb to modyfi-
kacja abstrakcyjnego podejscia z prac [3,4] i wykazanie nowego, abstrakcyjnego twierdzenia
teorii punktow krytycznych dla funkcjonatow, ktére maja ponadkwadratowy wzrost jedynie
na pewnej podprzestrzeni domknietej @ C H*(R”) nieskoniczonego wymiaru. Drugi sposob,
to zastosowanie jednej z wersji twierdzenia o uogolnionej geometrii zapetlen [29].

Na potrzeby dowodu wielokrotnosci (Twierdzenie 34) wykazujemy nowe abstrakcyjne twier-
dzenie o wielokrotnosci rozwiazan, bazujac na [33].

Podobny problem na ograniczonej dziedzinie byl badany takze w (P6) w obecnosci po-
tencjalu osobliwego zaréwno we wnetrzu, jak i na brzegu dziedziny. W (P6) znaleziono takze
rozwigzania dla zagadnienia znormalizowanego w przypadku L2-podkrytycznym.

4.7.3. Zagadnienie granicy poélklasycznej
Rozpatrzmy teraz nieliniowe rownanie Schrodingera
(30) —&?Au+V(z)u =T(2)f(u), =R,
W pracy (D5) byliémy zainteresowani zagadnieniem tzw. granicy potklasycznej, czyli zagad-

nieniem istnienia i zachowywania sie rozwigzan, gdy ¢ — 07. Zauwazmy, ze W powyzszym
rOwnaniu prawa strona réwnania jest nieautonomiczna. Zatézmy, ze

(V.3.1) V,T' € L=(R") sa ciagle oraz }Rr}va >0, %QanF > 0.

Ponadto, f : R, — R jest klasy C' i spetnia nastepujace zalozenia

(F.3.1) f(u) = o(u) przy u — 07,

2N
(F.3.2) lim f}()uz = 0 dla pewnej p € (2,2%), gdzie 2" :==< N — 2’ N=z3
v U +00, N e {1,2},
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(F.3.3) istnicje 0 € (2, p] taka, 7e 0 < OF(u) < f(u)u dla u > 0, gdzie F(u) = / £(s) ds,
0

(F.3.4) odwzorowanie u f) jest niemalejace.
u

Nastepnie potrzebujemy nastepujacego, geometrycznego zwiazku pomiedzy V i I

A) Istnieje ograniczony, niepusty, otwarty i spojny zbior A ¢ RY taki, ze
Jje 08 y Y y JILY

(A1) T jest Z"-okresowa oraz istnieje zum € A taki, 7ze V(2pm) = ir/{fV < i{g}\fv oraz

[(Zmin) = sup T
RN

lub

(Ay) V jest ZN-okresowa oraz istnieje . € A taki, ze I'(#pa) = sup ' > r%%XF oraz
A

V(Zmax) = %RanV.

Uzyskujemy wowczas nastepujace twierdzenie, wykorzystujac podejscie [13].

Twierdzenie 35 ([(D5), Theorem 1.2|). Zatdzmy, Ze spetnione sq warunki (V.3.1), (F.3.1)-
(F.3.4), (A). Istnieje g > 0 taka, ze dla dowolnej e € (0,e9) rownanie (30) ma dodatnie
rozwigzanie u € H'(RY) N C(RY) oraz istniejq state C,a > 0 takie, ze u(x) < Cexp(—alz|).

Naturalnym wydaje sie takze zbadanie istnienia stanéw potklasycznych dla réwnan z ope-
ratorem V x V. Jest to celem pracy (P8). Rozpatrzmy zatem zagadnienie
eV x (VxU)+V(2)U = g(U),

gdzie € > 0 jest dostatecznie maly. Stosujac zamiane zmiennych x — ez oraz zastepujac U(e-)
przez U otrzymujemy rownanie

(31) V x (¥ x U) + Va(2)U = g(U),
gdzie V.(z) = V(ex). Szukajac rozwiazan postaci (7) problem sprowadza si¢ do rownania

(32) —Au + |y%—l—‘/;(a:)u: fw), ==(y,2) e RY =RE x RV-K

gdzie N = 3, K = 2 oraz f(a)w = g(aw) dla a € R oraz w € R? takich, ze |w| = 1. Bedziemy
jednak rozwazali rownanie (32) w wiekszej ogolnosci (w dowolnym wymiarze N > 3). Zalozmy,
ze

(V.3.2) 0 < V= ianNfV <V(0) < Vo <liminf V(z) dla pewnej liczby V,, € R.

|x|—00

Ponadto, rozpatrujemy nastepujace zatozenia.
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(F.3.1") f € C(R) oraz istnieje p € (2,2") taka, ze
[f)] S 1+ [ul”
(F.3.2") f(u) = o(u) przy u — 0.
F(u , “
(F.3.3) % — 00 przy |u| — oo, gdzie F(u) := /0 f(s)ds.

f(u)

(F.3.4’) === jest rosnaca na (—oc,0) oraz na (0, c0).

Jul

Niech G(K) := O(K) x Iy_x C O(N) oraz niech C9)(R™) oznacza przestrzeii odwzorowan
ciaglych, G(K)-niezmienniczych. Wykorzystujac technike z pracy [35] oraz wyniki regularno-
sciowe 7z [1] uzyskujemy nastepujace twierdzenie.

Twierdzenie 36 (|(P8), Theorem 1.1|). Zatdzmy, ze N > K > 3, V € CIE)I(RY) spetnia
(V.3.2) oraz zachodzq (F.3.1°)-(F.3.4°). Istnieje g > 0 taka, Ze dla dowolnej ¢ € (0,g)
réwnanie (32) ma nietrywialne stabe rozwigzanie u., ktore jest G(K)-niezmiennicze. Ponadto,
jesli f jest nieparzysta, to u. € L°(RY) jest nieujemna oraz

lim |z|"u.(z) =0
|z| =00

N—-2+,/(N—-2)2+4
5 .

dla dowolnej v <

Do zbadania asymptotycznego zachowania rozwigzan przy € — 07 potrzebujemy dodat-
kowych zatozen.

(V.3.3) lim V(z) =V < 0.

|z| =00

(V.3.4) V jest Holderowsko ciagta w 0 z pewnym wykladnikiem o > 0.

W szezegolnosci, ciaglosé V oraz (V.3.3) implikuja, ze V € L>(R").
Twierdzenie 37 ([(P8), Theorem 1.2|). Zatdzmy, ze N > K > 3, V € CIEI(RY) spetnia

(V.3.2)-(V.58.4), zachodzq (F.3.1°)-(F.5.4°) oraz f jest nieparzysta. Wowczas istnieje cigg
e, — 07 taki, zZe zachodzi jedna z dwéch mozliwosci. Albo

(a) istnieje nietrywialne stabe rozwigzanie U réwnania (32) z V. = Vi takie, Ze
U, —U(-—(0,2,)) = 0 w H (RY)
dla pewnych translacji (z,) C RN ™5 spetniajgeych e,|z,| — 00;
albo
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(b) istniejg £ > 1, () C RN’{( oraz nietrywialne stabe rozwigzania U; réwnania (32) 2
V. =V(0,27) dla pewnych 22 € RN™5 takie, ze

4
e, — > Ui(-=(0,2))) =0 wH'RY),

ponadto 2’ = lim g,2;.
n—oo

Jako wniosek z dwoch poprzednich twierdzen oraz rownowaznosci stabych rozwiazan (Twier-
dzenie 1) otrzymujemy nastepujacy wynik dotyczacy réwnania z operatorem V x V X.

Twierdzenie 38 ([(P8), Theorem 1.2|). Zaldimy, e N = 3, K =2, V € CYP(R?) spetnia
(V.3.2)~(V.3.4), zachodzq (F.3.1’)—(F.3.4°) oraz g(aw) = f(a)w dla o € R, w = R? spetnia-
jacych |w| = 1 (w szezegolnosci, f jest nieparzysta). Wowcezas dla dostatecznie matej € > 0
istnieje stabe rozwigzanie U, réwnania (31) postaci (7); U, € L™(R*; R?) oraz

lim |z|"|Us(z)] =0

|z|—o00

N—-2+,/(N—-2)2+4

jedna z dwdch mozliwosci. Albo

dla dowolnej v < . Ponadto istnieje cigg €, — 07 taki, ze zachodzi

(a) istnieje nietrywialne stabe rozwigzanie U réwnania (31) z V. =V, takie, Ze
U, —U(-—(0,2,)) = 0 w H'(R*R?)

dla pewnych translacji (z,) C R spetniajgeych €,|z,| — 00;
albo

(b) istniejg £ > 1, () C R oraz nietrywialne stabe rozwiqzania U réwnania (31) 2 V. =
V(0,27) dla pewnych 27 € R takie, ze

U., ZU (0,22) = 0 w HY(R*R?),

ponadto 2’ = lim g,2;.
n—oo

4.7.4. Zagadnienia znormalizowane

W pracach wchodzacych w sktad osiggniecia habilitacyjnego (H5), (H6) badaliémy pro-
blemy L?-ponadkrytyczne. W pracy (P9) zainteresowani bylismy zagadnieniem (9) z V =0

—Au~+ Au = f(u),
) [ o=
RN
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z prawa strong f bedaca L*-podkrytyczng w 0 i L*-ponadkrytyczna w nieskoniczonosci. Ponie-
waz nie zawsze zakladamy tutaj, ze f jest nieparzysta, to pracujemy w H'(RY) = H'(RY; R).
Jednak, gdy f jest ciggla i nieparzysta, mozemy ja rozszerzy¢ do funkcji okreslonej na plasz-

czyznie zespolonej
_ ) fU=Dz/l2l dla z € CA\ {0},
f<z)_{0 dlaz=0

i wowezas pracujemy w przestrzeni H'(RY) = H'(R"; C). Rozpatrzmy nastepujace zalozenia.

(F.4.1) f jest ciagta oraz |f(s)| < |s| + |s|* ~! dla wszystkich s € R.

(E4mhmF@)—ngmF@%:Aiﬂﬂﬁ.

5 =

s—0 S
. F(s)
. F()
F44) 1 =0.
( ) |t|1—>Hcl>o |t]?

(F.4.5) f(s)s <2"F(s) dla wszystkich s € R.

Wowcezas F(¢) > 0 dla pewnego ¢ # 0 i liczba

F
Cy := sup % > ()
0£seR S2 + |

jest dobrze okreslona. Funkcjonat energii jest okreslony wzorem J : H'(RY) — R

1
J(u) = §/RN|Vu|2d$—/RNF(u)d$,

za$ na H'(RY) rozwazamy klasyczna norme. Dla o > 0 wprowadzamy oznaczenia
Do:={uec H'R") : jup<a}, Syi={uecH'RY): |uh=a}.
Ponadto dla a, R > 0,
Ur(a) :={ue D, : |Vula <R}, mg(a):= inf J

Ur(a)
Niech ponadto S > 0 bedzie optymalng stata w nieréwnosci Gagliardo-Nirenberga-Sobolewa

Slul3. < |Vul3.

Pierwszy wynik pracy (P9) jest nastepujacy.
Twierdzenie 39 ([(P9), Theorem 1.2]). Zatozmy (F.4.1)-(F.4.3) oraz

2 s\
2 [
(34) SN2 (2*00) '

Jesli p, — p, R, — Ry (gdzie Ry > 0 jest pewnq statq okreslong w [(P9), (g92))]) oraz
u, € Ur,(pn) sq takie, zZe J(u,) — mpg,(p). Wowczas istniejg © € S, NUg,(p) oraz Az > 0
takie, ze u, — w z doktadnosciq do translacji i wyboru podciggu, J(u) = mg,(p) < 0, T ma
staty znak, nie jest nigdzie zerowe oraz (U, A\y) jest rozwigzaniem (33).
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Dodatkowo, standardowe argumenty pokazuja, ze @ € L™(RY) N C**(RY) dla kazdej
a € (0,1) oraz u(z) — 0 przy |z| — oo. Ponadto, mozna zaklada¢, ze @ jest radialne i
radialnie monotoniczne (poniewaz funkcja w ma staly znak, mozna ja zastapi¢ symetryzacja
Schwartza).

Naturalnym wydaje si¢ pytanie, czy znalezione w ten sposdb rozwiazanie jest rozwigzaniem
w stanie podstawowym. W tym celu wprowadzimy dwa dodatkowe abstrakcyjne zalozenia. Dla
s>01iue HY(RN)\ {0} okreslamy s * u := s™/2u(s-).

(J1) Dla kazdego u € D, \ {0}, odwzorowanie (0,00) 3 s — J(s*u) € R ma dokladnie jedno
maksimum lokalne ¢,,.

(J2) Zachodzi (J1) oraz dla dowolnego u € D,\ {0}, odwzorowanie (t,,00) 3 s — J(s*xu) € R
jest wkleste.

Dostajemy nastepujacy fakt.

Propozycja 40 ([(P9), Proposition 1.4|). Zatézimy (F.4.1)-(F.4.3), (J2) oraz (34). Wowczas

Mg, (p) = min {J(u) : u €D, oraz J|p (u) = O} :

Ponadto jestesmy w stanie wykazaé, ze zbiér minimizeréw jest orbitalnie stabilny.

Propozycja 41 (|(P9), Proposition 1.7]). Zatézmy (F.4.1)—(F.4.3), (34) zachodzq, f jest
nieparzysta (a wiec okreslona na C) oraz istnieje q € (2,2%) taka, ze zachodzi jeden z warunkow

(F4.6) 1F(t) — F(9)] S (1+ 1]+ st — 5| dlat,5 € R,
(F.4.7) f € CHR) oraz |f'(t)] < |92+ [t|* 2 dla wszystkich t € R.

Wowezas rozwigzania rownania

i + AT = (D)
(35) { U(-,0) = vy € H(RY;C)

sq globalne oraz zbior
G :={ucUr,(p) - J(u) =mr,(p)}

jest orbitalnie stabilny.

Aby znalez¢ drugie rozwigzanie wprowadzamy dodatkowe zalozenia. Niech H(t) = f(t)t —
2F(t). Zaktadamy, ze H = H; + H», gdzie H; spelniaja nastepujace dwa zalozenia.

(H.4.1) Hy, Hy € C'(R) oraz istnieja a € (2,2,), b € (2.,2*%) takie, ze

Hi(t) S [t + [, Ha(t) S [t + [t

dlat e R.
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(H.4.2) Zachodza nieréwnosci
dla t € R, gdzie h; := Hj dla j € {1,2}.

Jezeli f jest nieparzysta, to zaktadamy dodatkowo, ze H; sg parzyste i rozszerzamy je na
plaszczyzne zespolona jako H;(z) := H;(|z|), z € C. Analogicznie jak wczesniej okreslamy

N
M(u) := / Vul*dr — — H(u) dx
RN 2 RN

i wprowadzamy zbi6r ograniczein M := {u € H*(RY)\ {0} : M(u) = 0}. Ponadto M™¢ :=
M HEL(RY). Zbior M ma nastepujace rozbicie

T

2

d
My = {ue/\/l ; @J(s*uﬂszl :O},

2
ds?
2

d
M, = {UEM ; @J(s*uﬂszl >0}.

M_:{uEM : J(s*u)|s:1<0},

Otrzymujemy wowczas nastepujace twierdzenie.

Twierdzenie 42 (|(P9), Theorem 1.9]). Zatdzmy, ze zachodzq (F.4.1)—-(F.4.4), (H.4.1), (H.4.2),
(J1) oraz p > 0 jest dostatecznie mate. Wowczas istniejg uw € S, oraz Ay > 0 takie, Ze

J(u) = min J >0 oraz (u, \g) jest rozwigzaniem (33). Ponadto, jesli f jest niepa-
M_NHL (RN)ND,

rzysta lub f|(—s0) =0, to J(u) = Mm;% J oraz u jest dodatnia i radialnie nierosngca.
- P

Ponadto jesteSmy w stanie sprawdzié¢, ze znalezione rozwigzanie nie jest stabilne.

Propozycja 43 ([(P9), Theorem 1.11]). Zatdzmy, ze zachodzq zatozenia Twierdzenia 42, (J2),
(F.4.6) oraz f jest nieparzysta. Wowczas u jest silnie niestabilne.

Nastepnie w (P12) badali$my zagadnienie podobne do zagadnienia 7z (H6). Doktadniej,
rozwazamy nastepujacy problem

(—A)"u+ —m—u+ Au = nu’ + g(u), = €R™,
/ w?dr = p >0,
R2m

gdzie ¢ jest nieliniowoécia o krytycznym, wykladniczym wzroécie. Prawa strona jest L?-krytyczna,
gdy n > 0 lub L*-ponadkrytyczna, gdy 1 = 0. Ponadto p > 0.

Wprowadzamy przestrzen
2

XM= {uEHW(RQW) : u/ u—2d$<oo}
rem |2

2m
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- m (R*™). W szczegolnosei, gdy u = 0, to X™ =
H™(R?*™). Funkcjonal energii J : X™ — R stowarzyszony z (36) jest dany wzorem

oraz jej podprzestrzen X7, = X™ N H

1
J(u) = 5/}1@ V™ ul® + |;|L2mu2 de — /R2 Dt + G(u) dz,

4

gdzie G(s) = / g(t) dt. Analogicznie do wezesniejszych rozwazan, wprowadzamy rozmaitosé
0
M jako

M = {uexp;d(R%)\{O} : / |vmuy2+|x‘|’;mu2d:c:/ Qu4+H(u>dx},
RQm

R2m 2

2 2 2m
gdzie H(s) = g(s)s —2G(s). Wprowadzmy oznaczenie ,, := M Rozpatrujemy naste-
Wam—1
pujace zatozenia
(F.4.8) g i h:= H' sa ciagte, |g(s)| + |h(s)| = O(|s]) przy s — 0 oraz

lim (|g(s)| + |h(s)])/e*" = 0 dla wszystkich o > .

|s|—o00
. 4
(F.4.9) ll_r%H(s)/s = 0.
(F.4.10) Istnieja 8 > 0 oraz p > 4 takie, ze G(s) > f|s|? dla s € R.

(F.4.11) 4H(s) X h(s)s dla s € R\ {0}.

(F.4.12) TIstnieje 6 > 4 taka, ze 0 < 0G(s) < sg(s) dla s € R.

Otrzymujemy nastepujace twierdzenie.

Twierdzenie 44 ([(P12), Theorem 1.1|). Zatézmy, Ze zachodzq (F.4.8)-(F.4.12),
nCip < 2

oraz

> (mno-a) (-3 Gonay

gdzie Cy = Copma, Cp 1= Copyp > 0 sq okreslone w (19). Wowezas istniejg A > 0 oraz u €
SN M takie, ze

J(u)= inf J= inf J >0
DM SnM

oraz u jest rozwigzaniem (44). Jesli ponadto m = 1 oraz g jest nieparzysta, to u > 0.

4.7.5. Fale biezagce w ré6wnaniu Schrodingera

W pracy (P11) jeste$my zainteresowani istnieniem fal biezacych w rownaniu Schrodingera

i0,® = A® + F(|®|*)®, (x,t) € RY xR,
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Poszukiwanie fal biezacych postaci ®(z,t) = u(x; — ct,y), u : RY = C, 2 = (z1,9) € RY
prowadzi do nastepujacego rownania

(37) —icOpu+ Au+ (1 +u)F(|1+ul*) =0, zeRY

z warunkiem u(x) — 1 przy |z| — oo. Wykorzystujac podejscie wariacyjne (bedace wariantem
podejscia z [34]) uzyskujemy rezultat o istnieniu stabych rozwiazan réwnania (37) w wymiarach
N > 4, przy delikatnie stabszych zatozeniach, niz w [28]. Dokladniej, rozwazamy nastepujace
zatozenia.

(F.5.1) F €C[0,00) jest klasy C* w otoczeniu 1, F(1) =0 oraz F'(1) = —1.
(F.5.2) limsup |F(s)|/s* 22 = 0.

5—00

W odroznieniu od [28], nie potrzebujemy pelnej analizy koncentracji zwartosci, a jedynie
uogo6lnionej wersji lematu typu Lions’a [(P11), Lemma 1.2].

4.7.6. Niewariacyjne metody w réwnaniach rézniczkowych

W pracy (P1) zajmowaliémy sie paraboliczno-parabolicznym uktadem réownan Kellera-
Segela w wymiarze 1, tzn.

Oru = 0y (a(u)0pu — udyv) , w (0, 00) X
o =0%v —v+u, w (0, 00) X
uw(0,x) = ug(x), v(0,2) =vo(z), dlaze(0,1)

z warunkiem brzegowym
Oy,u=0,v =0 on (0,00) x {0,1}.

Powyzej, a € C[0,00) N C*(0,00) jest dodatnig nieliniowoscig taka, ze sa(s) < 1.dla s > 0
oraz a ¢ L'(1,00). W szczegélnoéci mozemy rozwazaé zagadnienie z tzw. krytyczna dyfuzja,
czyli w przypadku a(u) = (1 4+ u)~'. Pokazujemy wowczas, ze - w przeciwienstwie do wyz-
szych wymiaréw - rozwigzanie powyzszego uktadu jest ograniczone. Dokladniej, otrzymujemy
nastepujace twierdzenie.

Twierdzenie 45 ([(P1), Theorem 1.2|). Przypuiémy, ze a jest jak powyzej oraz (ug,vo) €
(Wh>(0,1))? jest parg niewjemnych warunkéw poczgtkowych. Wowczas rozwigzanie (u,v)
uktadu jest ograniczone.

Rozpatrujemy takze uktad paraboliczno-eliptyczny

Ou = 0, (a(u)dpu — ud,v),  w (0,00) X (
0= 0% —v+u, w (0,00) x (
u(0, ) = ug(x), dla z € (0,1)

z warunkiem brzegowym
O,u=0,v =0 on (0,00) x {0,1}.

i uzyskujemy analogiczny wynik o ograniczonosci rozwigzar.
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Twierdzenie 46 ([(P1), Theorem 5.1]). Prazypusémy, Ze a jest jak powyzej oraz ug € WH>(0,1)
jest funkcjq nieujemnqg. Wowczas rozwigzanie (u,v) uktadu jest ograniczone.

W pracy (P5) rozwazamy rownanie eliptyczne postaci

Au — k‘@ —du=0
ox
w zbiorze Q = R x (0, 7), ktore pochodzi z rownan Maxwella (przy opisie zjawiska magnetycz-
nej lewitacji). W pracach fizycznych mozna znalezé¢ rozwigzania tego typu réwnarn wypisane
z wykorzystaniem funkcji elementarnych. W pracy jestesmy zatem zainteresowani zagadnie-
niem jednoznacznosci rozwiagzan takich réwnan. Dowodzimy najpierw odpowiednia zasade
Pharmén’a-Lindelofa.

Twierdzenie 47 ([(P5), Theorem 2.1|). Niech Q =R x (0,7), k € R oraz A > 0. Przypusémy,
ze u € C*(Q) spelnia

0
Au—kSE —du=0 wQ
Oz
oraz liminf w(z',y') > 0 dla wszystkich (x,y) € 0Q. Niech up := min u(z,y).
(a"y")—(z,y) a2 +y?=R2, (z,y)€R
Jezeli
lim A _ 0 dla pewnych R, — oo,
n—o0 n
tou >0 wl.

Z powyzszego szybko wnioskujemy twierdzenie o jednoznacznosci.
Twierdzenie 48 ([(P5), Theorem 2.2|). Niech f:Q — R, g,h : R — R bedq ciggle, k € R.
Jesli A > 0, to zagadnienie

{ Au—k%—/\U—f(x,u) in Q,
u(z,0) =g(z), u(z,m) =h(z) 2zeR

posiada co najwyze) jedno rozwigzanie w klasie {u cC*()NCQ) : hrln |(< y))‘ 0}-
7y —00

W szczegdlnodci, istnieje co najwyzej jedno rozwigzanie w klasie u € CQ( ) N Cy(Q).

Wykorzystujac odpowiedniag zamiane zmiennych, z powyzszych twierdzei mozemy wy-
wnioskowaé nastepujace twierdzenie o jednoznacznosci rozwiagzan dla zagadnienia na naktute;j
polprzestrzeni (z usunigtym punktem (0,0) na brzegu).

Twierdzenie 49 ([(P5), Theorem 3.1]). Niech k > 0. Przypusémy, ze u € C*(RY) N Co(R2\
{(0,0)}) jest rozwigzaniem réwnania

{div (@ Y[ Vayt) =0 (z,y) €RE,
u(z,0) =0 x #£0.

Wowezas u = 0.
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Praca (P7) skupia sie na polach predkosci skojarzonych ze spiralami Kadena. Spirale Ka-
dena sa szczegdlnymi przypadkami spiralnych, samopodobnych warstw wirowych (ang. vortex
sheets). Spirala Kadena jest opisana rownaniem

Z(T,t) = R(T,1)e®T,

gdzie Z jest pozycja na plaszczyznie zespolonej, zas R i © sa dane jako

p t
R(F, t) =21, @(I‘, t) = Q_F 132u’
T

gdzie p € (1/2,1) jest dana. Wowezas gesto$é miary wirowosci w; na spirali jest dana wzorem
gi(s) = (2—1/p)s'™*. Gdy t — 0%, bezdywergentne pole predkosci odpowiadajace w; zbiega
w L} . do bezdywergentnego pola predkosci v o wirowosci danej jako

dwo(z1 + ixe) = a:rf‘_lx(o,oo)(xl)éo(xg) dridry, a=2-—1/p.

Wtedy v jest dane przez wzor Biot’a-Savarta [10, Theorem 2.1, Proposition 1.4]

v(x) = ! / deo(y).

27 Jr2 |x —y|?
Pojawia sie wowczas naturalne pytanie, czy v rozwigzuje rownanie typu Eulera.

Twierdzenie 50 ([(P7), Theorem 1.1]). Niech pn = 2/3. Wowczas v spetnia (w sensie dystry-

bucji)
('U : V)U + Vp = }/5(070)7
1
gdzie 6,0y jest miarg Diraca w (0,0), zad Y = / 5 v(z)|*z — (v(z) - 2)v(z) dS(z).
8B(0,1)

Z kolei dla p € (2/3,1) nieco inne réwnanie jest spetnione.

Twierdzenie 51 ([(P7), Theorem 1.2]). Niech p € (2/3,1). Wowczas v spetnia (w sensie
dystrybucyi)
(v-V)v+ Vp = (—v2,0)76s,

gdzie y(x1, x2) = ozxi“_lx(opo)(xl)éo(xz); za$ ¥ = {(x1,0) : z; > 0}.

4.7.7. Informatyka - teoria grafow

W pracy (P4) analizie poddany byl algorytm on-line First-Fit kolorowania graféow na
grafach przedzialowych. Praca ta zawiera obserwacje poczynione w pracy magisterskiej.

5. Informacja o aktywno$ci naukowej realizowanej w wiecej niz jednej uczelni,
w szczegblnosci zagranicznej

Studia doktoranckie ukonczytem na Wydziale Matematyki i Informatyki Uniwersy-
tetu Mikotaja Kopernika w Toruniu w 2019 roku, gdzie - od pazdziernika 2019 roku bytem
zatrudniony na stanowisku asystenta, a nastepnie (od pazdziernika 2023 roku) na stanowisku
adiunkta; w tej jednostce przebywam nieprzerwanie od pazdziernika 2020 roku na urlopie
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bezptatnym. Od pazdziernika 2020 roku do konca wrzesnia 2022 roku pracowalem na stano-
wisku adiunkta w Instytucie Matematycznym Polskiej Akademii Nauk, za$ od paz-
dziernika 2022 roku jestem zatrudniony na stanowisku adiunkta na Wydziale Matematyki,
Informatyki i Mechaniki Uniwersytetu Warszawskiego. We wszystkich wspomnianych
jednostkach prowadzitem aktywna dziatalno$¢ naukowa.

Ponadto, w 2019 roku odbytem dwutygodniowy staz doktorancki NAWA w University
of Milan-Bicocca pod opiekg prof. Simone Secchi. Ponadto odbylem krotkie wizyty stu-
dyjne (tygodniowe): jedng w Karlsruhe Institute of Technology (w 2020 r.) oraz trzy w
Polytechnic University of Bari (w 2023 r., w 2024 r. oraz w 2025 r.).

6. Informacja o osiggnieciach dydaktycznych, organizacyjnych oraz populary-
zujacych nauke

6.1. Publikacje dydaktyczne i popularyzatorskie

(Dyd1l) B. Bieganowski: Narzedzia informatyczne w nauczaniu przedmiotow przyrodniczych,
w: A.B. Kwiatkowska, M.M. Systo [red.|: Informatyka w edukacji. Mysl komputacyjnie!,
Torun 2018, ISBN: 978-83-231-4049-8

(Dyd2) B. Bieganowski, A. Dymek, D. Strzelecki: Srednie w zawodach studenckich,
Delta 12 (547), 2019, p. 18-19

(Dyd3) M. Bieganowska, B. Bieganowski: Bezpieczenstwo kont w Internecie,
w: A.B. Kwiatkowska, M.M. Systo [red.|: Informatyka w edukacji. Uczniowie i nauczy-
ciele w szkole przysztosci, Torun 2022, ISBN: 978-83-8180-645-9

(Dyd4) B. Bieganowski: Metoda haszowania w podstawie programowej. Hashcat jako narzedzie
tamania haszy haset - zastosowania na lekcjach informatyks,
w: A.B. Kwiatkowska, M.M. Systo [red.|: Informatyka w edukacji. Edukacja informa-
tyczna - wyzwania wspotczesnego Swiata, Torun 2023, ISBN: 978-83-8180-810-1

(Dyd5) R. Skiba, P. Miziuta, D. Strzelecki, B. Bieganowski: Zbidr zadari z analizy i algebry,
edycja rozszerzona, Torun 2024, ISBN: 978-83-6683-846-8

W pracy (Dydl) oméwione sa wybrane narzedzia informatyczne, ktore moga by$ stoso-
wane w szkolach do realizacji podstawy programowej przedmiotéw przyrodniczych (np. fi-
zyka). Praca (Dyd2) stuzy pokazaniu zastosowania twierdzeri o wartodci sredniej w zadaniach
olimpijskich. Celem pracy (Dyd3) jest uswiadomienie zagrozen internetowych, ktorych celem
moze by¢ konto uzytkownika, za$ praca (Dyd4) polemizuje z trescia podstawy programowej
nauczania informatyki w kwestii sposobu wprowadzenia pojecia metody haszowania. Z kolei
ksiazka (Dydb) jest opracowaniem kilkuset zadan typu olimpijskiego wraz ze szczegotowymi
rozwigzaniami przeznaczonym dla studentéw matematyki.

6.2. Osiggniecia organizacyjne

1. Wspolorganizacja seminarium Variational methods and PDEs w IMPAN (od pazdzier-
nika 2020 roku)
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. Praca w komitecie organizacyjnym Juliusz Schauder Medal Awarding Ceremony, 5.06.2021
r., Torun

. Praca w komitecie organizacyjnym warsztatow Schauder Winter School: Geometric and
Topological Methods in Dynamics of PDFs, 13-15.02.2023 r., Torun

. Praca w komitecie organizacyjnym i naukowym Summer School on Calculus of Varia-
tions: vartational and geometrical methods, 10-14.06.2024 r., Warszawa

. Praca w komitecie organizacyjnym konferencji Symposium on Nonlinear Analysis, 17-
21.06.2024 r., Torun

. Wspolorganizacja sesji Variational and topological methods in PDEs w ramach 9th Eu-
ropean Congress of Mathematics, 15-19.07.2024 r., Sewilla, Hiszpania,

. Praca w komitecie organizacyjnym konferencji Patterns in solutions to the incompressible
Euler equation, 4-9.08.2024 r., Bedlewo

. Praca w komitecie organizacyjnym i naukowym konferencji Variational methods in ap-
plications to PDEs, 26-30.08.2024 r., Bedlewo

. Praca w komitecie organizacyjnym i naukowym Workshop for young researchers in
PDEs, 27-31.01.2025 r., Warszawa

6.3. Pozostale

1. Cztonek Komitetu Organizacyjnego Konkursu Informatycznego Bobr (od 2011 r.)

2. Crzlonek Komitetu Okregowego (torunskiego) Olimpiady Matematycznej (od 2016 r.)

7. Inne informacje dotyczace kariery zawodowej

7.1. Zaproszone referaty na konferencjach (i w ramach minisympozjéw)

02.2025: Conference on Mathematics of Wave Phenomena (Karlsruhe); zaproszony refe-
rat (w ramach minisympozjum): Semiclassical states for the curl-curl problem

12.2024: 14th AIMS Conference (Abu Dhabi); dwa zaproszone referaty (w ramach mini-
sympozjow): Travelling waves for nonlinear Schridinger equations, Multiplicity of solu-
tions to strongly indefinite problems with sign-changing nonlinearities

09.2024: Warsaw Meeting in Analysis and PDEs (Warszawa); zaproszony referat: Nor-
malized ground states of the nonlinear Schrodinger equation: new minimization technique

06.2024: XIII Forum of Partial Differential Equations (Bedlewo); zaproszony referat:
Normalized ground states of the nonlinear Schridinger equation: new minimization tech-
nique
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e 06.2024: Symposium on Nonlinear Analysis (Torun); zaproszony wyktad plenarny: Nor-
malized ground states of the nonlinear Schridinger equation with at least mass critical
growth

e 05.2024: International Conference on Elliptic and Parabolic Problems (Gaeta); zapro-
szony referat (w ramach minisympozjum): Semiclassical states for the curl-curl problem

e 09.2022: Nonuniformly elliptic problems (Warszawa); zaproszony referat: Strongly inde-
finite variational problems with sign-changing nonlinearities

e (07.2022: Topics in variational problems arising from models in physics (Bedlewo); za-
proszony referat: Normalized ground states of the nonlinear Schridinger equation with
at least mass critical growth

e 07.2022: Equadiff 2022 (Brno); zaproszony referat (w ramach minisympozjum): Nor-
malized ground states of the nonlinear Schridinger equation with at least mass critical
growth

e 05.2022: School on nonlinear PDEs (Warszawa); zaproszony referat: Normalized ground
states of the nonlinear Schriodinger equation with at least mass critical growth

e (5.2022: Recent trends in nonlinear and dispersive equations: equilibria, stability, dyna-
mics (Bedlewo); zaproszony referat: Normalized ground states of the nonlinear Schrédin-
ger equation with at least mass critical growth

e 09.2021: 12th Forum of Partial Differential Equations (Bedlewo); zaproszony referat:
Normalized ground states of the nonlinear Schrédinger equation with at least mass critical
growth

e 09.2019: Jubileuszowy Zjazd Matematykow Polskich w stulecie PTM (Krakow); zapro-
szony referat (w ramach minisympozjum): Bound states for the Schriodinger equation
with mized-type nonlinearities

e 09.2018: UMI-SIMAI-PTM Joint Meeting (Wroclaw); zaproszony referat (w ramach
minisympozjum): Fractional Schrodinger equations with singular potentials and sign-
changing nonlinearities

e 07.2018: Young PDEers at work (Warszawa); zaproszony referat: The semirelativistic
Choquard equation with a local nonlinear term

e 05.2017: International Conference on Elliptic and Parabolic Problems (Gaeta); zapro-
szony referat (w ramach minisympozjum): Ground-state solutions for the (non-local)
Schridinger equation with sign-changing nonlinearities

7.2. Granty, nagrody, wyrdznienia

Kierowanie grantami

e Kierownik grantu Preludium, Narodowe Centrum Nauki
(30.01.2018-29.01.2022; 2017/25/N/ST1/00531)
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e Kierownik grantu Nowe Idee 3A, IDUB, Uniwersytet Warszawski
(01.01.2023-31.12.2023; 01/IDUB/2019/94)

e Kierownik grantu Sonata, Narodowe Centrum Nauki
(27.06.2023-26.06.2026; 2022,/47/D/ST1,/00487)

e Czlonek Komitetu Organizacyjnego Tematycznego Programu Badawczego, IDUB, Uni-

wersytet Warszawski
(01.03.2024-28.02.2025)

Nagrody, stypendia i wyrdéznienia

e Stypendium Ministra Edukacji i Nauki dla wybitnych mtodych naukowcow (2023-2026)

e Stypendium Ministra Nauki i Szkolnictwa Wyzszego dla najlepszych doktorantow (2018-
2019)

e Stypendium Ministra Nauki i Szkolnictwa Wyzszego dla najlepszych studentow (2014-
2015)

e Nagroda im. J. P. Schaudera dla mtodych matematykow (2023-2024)

e Zloty medal i nagroda pierwszego stopnia w miedzynarodowych zawodach Nicolai Co-
pernici International Students Contest (2017)

e Nagroda drugiego stopnia w LIX Konkursie im. Jozefa Marcinkiewicza na najlepsza
studencka prace z matematyki (2015)

e Nagroda drugiego stopnia w miedzynarodowych zawodach North Countries Universities
Mathematical Competition (2015)

e Nagroda trzeciego stopnia w miedzynarodowych zawodach The Mirror of William Lowell
Putnam Mathematical Competition (dwukrotnie: 2014 i 2013)

e Nagroda trzeciego stopnia w miedzynarodowych zawodach International Mathematics
Competition for University Students (2014)

7.3. Recenzje dla czasopism

Recenzent artykuléw w czasopismach, m.in.: Advances in Mathematical Physics, Analysis
and Mathematical Physics, Calculus of Variations and Partial Differential Equations, Jour-
nal de Mathématiques Pures et Appliquées, Journal of Fixed Point Theory and Applications,
Journal of Geometric Analysis, Journal of Mathematical Physics, Mathemaical Methods in
Applied Sciences, Monatshefte fiir Mathematik, Nonlinear Analysis: Theory, Methods & Ap-
plications, Nonlinear Differential Equations and Applications NoDEA, Qualitative Theory of
Dynamical Systems, Rendiconti del Circolo Matematico di Palermo Series 2, Rocky Mountain
Journal of Mathematics, Studia Mathematica, Topological Methods in Nonlinear Analysis,
Zeitschrift fir Angewandte Mathematik und Physik.

7.4. Opieka naukowa
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Promotor pomocniczny doktoranta mgr. Adama Konysza od pazdziernika 2024 r. na Uni-

wersytecie Mikotaja Kopernika w Toruniu. Promotor jego pracy magisterskiej w latach 2022-
2024. Dwie wspolne prace z mgr. Konyszem zostaly juz opublikowane (P6), (P8).
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