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Metody wariacyjne, topologiczne i geometryczne w badaniu rozwi¡za« zagadnie«
eliptycznych

1



w skªad którego wchodz¡ nast¦puj¡ce publikacje:

(H1) F. Bernini, B. Bieganowski: Generalized linking-type theorem with applications to
strongly inde�nite problems with sign-changing nonlinearities,
Calc. Var. Partial Di�erential Equations, Vol. 61, Article number: 182 (2022),

(H2) B. Bieganowski: Solutions to a nonlinear Maxwell equation with two competing nonli-
nearities in R

3,
Bull. Pol. Acad. Sci. Math. 69 (2021), p. 37�60,

(H3) B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional
Schrödinger equations on bounded domains,
Topol. Methods Nonlinear Anal., Vol. 57, No, 2 (2021), p. 413�425,

(H4) B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional
Schrödinger equations on R

N ,
J. Fixed Point Theory Appl. 22, 76 (2020),

(H5) B. Bieganowski, J. Mederski: Normalized ground states of the nonlinear Schrödinger
equation with at least mass critical growth,
J. Funct. Anal., Vol. 280, Issue 11 (2021), 108989,

(H6) B. Bieganowski, J. Mederski, J. Schino: Normalized solutions to at least mass critical
problems: singular polyharmonic equations and related curl-curl problems,
J. Geom. Anal., Vol. 34, Article number: 322 (2024).

4.1. Wprowadzenie

Przedstawiony cykl publikacji dotyczy zagadnienia istnienia rozwi¡za« nieliniowych za-
gadnie« eliptycznych postaci

(1) −∆u+ V (x)u = g(x, u), x ∈ Ω,

gdzie Ω ⊂ R
N jest zbiorem otwartym, ograniczonym i spójnym lub Ω = R

N , za± f : Ω×R → R

jest pewn¡ nieliniow¡ funkcj¡. Równanie tej postaci mo»na otrzyma¢ rozpatruj¡c nieliniowe,
zale»ne od czasu, równanie Schrödingera

(2) i
∂Ψ

∂t
= −∆Ψ+ Ṽ (x)Ψ− h(x, |Ψ|)Ψ, (t, x) ∈ R× Ω.

Poszukiwanie tzw. fal stoj¡cych Ψ(t, x) = eiλtu(x) o ustalonej cz¦stotliwo±ci λ ∈ R, gdzie
u : Ω → R jest tzw. solitonem, czyli funkcj¡ zanikaj¡c¡ na brzegu Ω (lub w niesko«czono±ci,
gdy Ω = R

N), prowadzi do równania eliptycznego postaci (1) z g(x, u) = h(x, |u|)u oraz
V (x) = Ṽ (x) + λ.

Laskin ([20,21]) wyprowadziª uªamkowy odpowiednik równania (2)

(3) i
∂Ψ

∂t
= (−∆)sΨ+ Ṽ (x)Ψ− h(x, |Ψ|)Ψ, (t, x) ∈ R× Ω,

2



gdzie s ∈ (0, 1). Wówczas poszukiwanie fal stoj¡cych sprowadza si¦ do rozwi¡zania nast¦pu-
j¡cego równania uªamkowego

(4) (−∆)su+ V (x)u = g(x, u), x ∈ Ω,

b¦d¡cego nielokalnym odpowiednikiem (1).

Drug¡ motywacj¡ do studiowania rozwi¡za« równa« postaci (1) jest ukªad równa« Ma-
xwella. Niech Ω = R

3, ukªad równa« Maxwella jest postaci




∇×H = J +
∂D
∂t

div (D) = ρ
∂B
∂t

+∇× E = 0

div (B) = 0,

gdzie E oznacza pole elektryczne, B pole magnetyczne, D indukcj¦ elektryczn¡, za± H induk-
cj¦ magnetyczn¡. Ponadto J oznacza nat¦»enie pr¡du elektrycznego oraz ρ g¦sto±¢ ªadunku
elektrycznego. Powy»sze warto±ci s¡ dodatkowo zwi¡zane ze sob¡ tzw. zwi¡zki konstytutywne





D = εE + P
H =

1

µ
B −M,

gdzie P oraz M oznaczaj¡ polaryzacj¦ i magnetyzacj¦, odpowiednio. Ponadto ε i µ oznaczaj¡
przenikalno±¢ elektryczn¡ oraz przenikalno±¢ magnetyczn¡ materiaªu. Zakªadaj¡c, »e M = 0,
ρ = 0, J = 0 oraz µ ≡ 1, z powy»szych równa« otrzymujemy nast¦puj¡ce, elektromagnetyczne
równanie falowe ([36])

(5) ∇× (∇× E) + ε
∂2E
∂t2

= −∂
2P
∂t2

.

B¦dziemy poszukiwa¢ rozwi¡za« w postaci pól czasowo-harmonicznych E = E(x) cos(ωt) o

okresie T =
2π

ω
. Polaryzacja P jest nieliniow¡ funkcj¡ zale»n¡ od E . Zaªó»my, »e jest postaci

P = χ
(
⟨|E|2⟩

)
E ,

tzn. podatno±¢ dielektryczna χ zale»y jedynie od ±redniej czasowej intensywno±ci E okre±lonej
jako

⟨|E|2⟩ = 1

T

∫ T

0

|E(x, t)|2 dt = 1

2
|U|2.

W takim przypadku polaryzacja jest postaci

P = P(U(x)) cos(ωt), gdzie P(U) = χ

(
1

2
|U|2

)
U.

Wówczas (5) sprowadza si¦ do równania stacjonarnego

(6) ∇× (∇×U) + Ṽ (x)U = h(x,U), x ∈ R
3,
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gdzie h(x,U) = P(U)ω2, Ṽ (x) = −ε(x)ω2. Wówczas poszukiwanie rozwi¡za« klasycznych
szczególnej postaci

(7) U(x) =
u(r, x3)

r




−x2
x1
0


 , r =

√
x21 + x22

prowadzi do równania (1), w którym V (x) = Ṽ (x) +
1

r2
, za± g oraz h s¡ zwi¡zane relacj¡

h(x,U) = g(x, α)w, gdzie U = αw dla pewnych w ∈ R
3, |w| = 1 oraz α ∈ R (por. [2]).

Niech teraz Ω = R
N i rozpatrzmy teraz wersj¦ równania (2) z autonomiczn¡ nieliniowo±ci¡,

tzn.

(8) i
∂Ψ

∂t
= −∆Ψ+ V (x)Ψ + h(|Ψ|)Ψ, (t, x) ∈ R× R

N .

Wówczas, w szczególno±ci, g(x, u) = g(u) w (1). Wa»n¡ wªasno±ci¡ rozwi¡za« równania (8)
jest zachowywanie normy L2 w czasie, tzn. warto±¢

∫

RN

|Ψ(t, x)|2 dx

jest niezale»na od t. Ma sens zatem poszukiwanie fal stoj¡cych Ψ(t, x) = eiλtu(x) o zadanej

normie L2, ρ :=

∫

RN

u2 dx =

∫

RN

|Ψ(t, x)|2 dx, lecz nieznanej cz¦stotliwo±ci λ ∈ R. Prowadzi

to do nast¦puj¡cego, znormalizowanego wariantu problemu eliptycznego (1),

(9)





−∆u+ V (x)u+ λu = g(u),∫

RN

u2 dx = ρ > 0,

gdzie poszukiwana jest para (λ, u), za± warto±¢ ρ jest ustalona.

4.2. Istnienie rozwi¡za« zagadnie« pochodz¡cych od równa« Maxwella z nieli-
niowo±ciami zmieniaj¡cymi znak

Rozpatrzmy równanie (1) z Ω = R
N pochodz¡ce z ukªadu równa« Maxwella, tzn.

(10) −∆u+ V (x)u+
a

r2
u = f̃(x, u), x ∈ R

N ,

gdzie z potencjaªu wyodr¦bnili±my cz¦±¢ osobliw¡
a

|y|2 , gdzie x = (y, z) ∈ R
K × R

N−K , N >

K ≥ 2. Jest to uogólnienie równania pochodz¡cego z (6) na ogólny wymiar N ≥ 3 i a ∈ R

(oryginalne równanie otrzymujemy z N = 3, K = 2 oraz a = 1).

Zaªó»my na pocz¡tek, »e

(V1) V ∈ L∞(RN) jest cylindrycznie symetryczny, tj. V = V (|y|, z), ZN−K-okresowy wzgl¦-
dem z oraz

inf σ
(
−∆+

a

r2
+ V (r, x3)

)
> 0.
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Jak wspomnieli±my we wst¦pie, ªatwo przeliczy¢ równowa»no±¢ rozwi¡za« równa« (6) oraz (1)
w przypadku rozwi¡za« klasycznych. Gdy V ≡ 0 równowa»no±¢ mi¦dzy sªabymi rozwi¡zaniami
zostaªa wykazana w [15]. Gdy potencjaª V jest niezerowy i speªnia (V1) mamy nast¦puj¡ce
twierdzenie.

Twierdzenie 1 ([(H2), Theorem 1.1]). Przypu±¢my, »e N = 3, K = 2, a = 1 oraz V speª-
nia (V1). Niech ponadto f̃ : R3 × R → R b¦dzie funkcj¡ Carathéodory'ego1, O(2) × {Id}-
niezmiennicz¡ ze wzgl¦du na x ∈ R

3 speªniaj¡c¡ nierówno±¢

|f̃(x, u)| ≲ |u|+ |u|5 dla wszystkich u ∈ R oraz p.w. x ∈ R
3.

Je»eli U ∈ H1(R3;R3) postaci (7) jest, dla pewnej cylindrycznie symetrycznej funkcji u, sªa-
bym rozwi¡zaniem równania (6), to u ∈ H1(R3) oraz u jest sªabym rozwi¡zaniem równania
(10). Na odwrót, je±li u ∈ H1(R3) jest cylindrycznie symetrycznym, sªabym rozwi¡zaniem
równania (10), to U ∈ H1(R3;R3) jest sªabym rozwi¡zaniem równania (6), gdzie U jest dane
wzorem (7). Ponadto div (U) = 0.

Oznacza to, »e je»eli znajdziemy sªabe rozwi¡zanie zagadnienia eliptycznego, otrzymamy
tak»e sªabe rozwi¡zanie równania (6).

B¦dziemy rozwa»a¢ (10) z nieliniowo±ciami zmieniaj¡cymi znak. Przepiszmy zatem (10) w
postaci

(11) −∆u+ V (x)u+
a

r2
u = f(x, u)− g(x, u), x ∈ R

N .

Rozwa»amy nast¦puj¡ce zaªo»enia:

(F1) f : RN×R → R jest funkcj¡ Carathéodory'ego, ZN−K-okresow¡ wzgl¦dem z oraz O(K)×
{Id}-niezmiennicz¡, ponadto dla pewnego p ∈ (2, 2∗) zachodzi nierówno±¢

|f(x, u)| ≲ 1 + |u|p−1 dla wszystkich u ∈ R i p.w. x ∈ R
N ;

(F2) f(x, u) = o(|u|) przy u→ 0, jednostajnie ze wzgl¦du na x;

(F3) F (x, u)/|u|q → ∞ przy |u| → ∞, jednostajnie ze wzgl¦du na x, dla pewnego q ∈ (2, p),

gdzie F (x, u) :=
∫ u

0

f(x, s) ds oraz F (x, u) ≥ 0 dla wszystkich u ∈ R i p.w. x ∈ R
N ;

(F4) odwzorowanie u 7→ f(x, u)/|u|q−1 jest niemalej¡ce na (−∞, 0) oraz na (0,∞);

(G1) g : RN×R → R jest funkcj¡ Carathéodory'ego, ZN−K-okresow¡ wzgl¦dem z oraz O(K)×
{Id}-niezmiennicz¡, ponadto zachodzi nierówno±¢

|g(x, u)| ≲ 1 + |u|q−1 dla wszystkich u ∈ R i p.w. x ∈ R
N ;

(G2) g(x, u) = o(|u|) przy u→ 0, jednostajnie ze wzgl¦du na x;

1tzn. f jest mierzalna ze wzgl¦du na x ∈ R
3 oraz ci¡gªa ze wzgl¦du na u ∈ R
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(G3) odwzorowanie u 7→ g(x, u)/|u|q−1 jest nierosn¡ce na (−∞, 0) oraz na (0,∞), ponadto
g(x, u)u ≥ 0 dla wszystkich u ∈ R oraz p.w. x ∈ R

N .

Poni»sze twierdzenie zostaªo udowodnione w pracy (H2) w przypadku N = 3 i K = 2, lecz
jego uogólnienie na przypadek N > K ≥ 2 jest trywialne.

Twierdzenie 2 ([(H2), Theorem 1.2]). Przypu±¢my, »e speªnione s¡ zaªo»enia (V1), (F1)�
(F4), (G1)�(G3). Wówczas istnieje cylindrycznie symetryczne, sªabe rozwi¡zanie u ∈ H1(RN)
równania (11) b¦d¡ce rozwi¡zaniem o najmniejszej energii w±ród wszystkich cylindrycznie sy-

metrycznych rozwi¡za« speªniaj¡cych warunek
∫

RN

|a|
|y|2u

2 dx < +∞.

Jako natychmiastow¡ konsekwencj¦ Twierdze« 1 oraz 2 otrzymujemy twierdzenie o istnie-
niu szczególnego rozwi¡zania równania (6).

Twierdzenie 3 ([(H2), Theorem 1.2]). Przypu±¢my, »e N = 3, K = 2, a = 1 oraz speªnione s¡
zaªo»enia (V1), (F1)�(F4), (G1)�(G3). Wówczas istnieje sªabe rozwi¡zanie U ∈ H1(R3;R3)
równania (6) postaci (7) dla pewnej cylindrycznie symetrycznej funkcji u ∈ H1(R3). Ponadto
jest to rozwi¡zanie o najmniejszej energii w±ród wszystkich rozwi¡za« postaci (7).

Twierdzenie 2 udowodnione zostaªo w (H2) z wykorzystaniem metod wariacyjnych. Z rów-
naniem (11) stowarzyszamy tzw. funkcjonaª energii

(12) J (u) :=

∫

RN

|∇u|2 + a

|y|2u
2 + V (x)u2 dx−

∫

RN

F (x, u) dx+

∫

RN

G(x, u) dx

i oczekujemy, »e jego punkty krytyczne s¡ sªabymi rozwi¡zaniami (11). Potrzebujemy zatem
odpowiedniej przestrzeni funkcyjnej, na której J jest dobrze okre±lony i klasy C1. Poniewa»
poszukujemy rozwi¡za« cylindrycznie symetrycznych, naturaln¡ przestrzeni¡ jest

X :=

{
u ∈ H1(RN) : u = u(|y|, z) jest cylindrycznie symetryczna,

∫

RN

|a|
|y|2u

2 dx < +∞
}
.

Jest to przestrze« Hilberta wyposa»ona w norm¦

∥u∥ :=

(∫

RN

|∇u|2 + a

|y|2u
2 + V (x)u2 dx

)1/2

.

Wówczas punkty krytyczne J nazywamy sªabymi rozwi¡zaniami równania (11). W celu znale-
zienia punktów krytycznych dowodzimy najpierw twierdzenie o istnieniu tzw. ci¡gów Cerami.

Rozpatrzmy ogóln¡ przestrze« Hilberta (X, ∥ · ∥) oraz nieliniowy funkcjonaª J : X → R

postaci

J (u) =
1

2
∥u∥2 − I(u),

gdzie I : X → R jest klasy C1 i I(0) = 0. Wówczas wszystkie punkty krytyczne J le»¡ w tzw.
rozmaito±ci Nehariego

N := {u ∈ X \ {0} : J ′(u)(u) = 0}.
Otrzymujemy nast¦puj¡ce twierdzenie abstrakcyjne.
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Twierdzenie 4 ([(H2), Theorem 5.1]). Przypu±¢my, »e

(J1) istnieje promie« r > 0 taki, »e inf
∥u∥=r

J (u) > 0;

(J2)
I(tnun)
t2n

→ ∞, je±li tn → ∞ oraz un → u ̸= 0;

(J3) dla wszystkich t > 0 oraz u ∈ N zachodzi nierówno±¢

t2 − 1

2
I ′(u)(u)− I(tu) + I(u) ≤ 0.

Wówczas Γ ̸= ∅, N ̸= ∅ oraz

c := inf
N

J = inf
γ∈Γ

sup
t∈[0,1]

J (γ(t)) = inf
u∈X\{0}

sup
t≥0

J (tu) > 0,

gdzie
Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, ∥γ(1)∥ > r, J (γ(1)) < 0}.

Ponadto istnieje ci¡g Cerami dla J na poziomie c, tzn. ci¡g (un) ⊂ X taki, »e

J (un) → c, (1 + ∥un∥)J ′(un) → 0.

Twierdzenie to mo»na traktowa¢ jako uogólnienie [(D1), Theorem 2.1], gdzie m.in. w zaªo-
»eniu (J3) wymagana byªa nierówno±¢ ostra. Mo»na je tak»e traktowa¢ jako wersj¦ twierdze«
abstrakcyjnych z prac (D6) lub [33] w przypadku dodatnio okre±lonego operatora, lecz bez
wymagania warunku I(u) ≥ 0, który w naszej sytuacji nie jest speªniony.

Nast¦pnie, maj¡c ci¡g Cerami z powy»szego twierdzenia, stosuj¡c odpowiedni wariant
lematu o koncentracji zwarto±ci ([(H2), Corollary 7.1]) jeste±my w stanie wykaza¢, »e - z do-
kªadno±ci¡ do podci¡gu oraz z dokªadno±ci¡ do pewnych translacji - ci¡g (un) ma nietrywialn¡
sªab¡ granic¦, b¦d¡c¡ sªabym rozwi¡zaniem wyj±ciowego problemu.

Ze wzgl¦du na niezmienniczo±¢ równania (11) ze wzgl¦du na dziaªanie translacji ZN−K

wzgl¦dem z automatycznie otrzymujemy istnienie caªej orbity rozwi¡za«. W (H2) wykazu-
jemy tak»e, »e istnieje niesko«czenie wiele orbit skªadaj¡cych si¦ z rozwi¡za«. Na potrzeby
sformuªowania twierdzenia mówimy, »e dwa sªabe rozwi¡zania u1, u2 s¡ geometrycznie ró»ne,
o ile ich orbity s¡ rozª¡czne.

Twierdzenie 5 ([(H2), Theorem 8.1]). Przypu±¢my, »e speªnione s¡ zaªo»enia (V1), (F1)�
(F4), (G1)�(G3) oraz f i g s¡ nieparzyste wzgl¦dem u. Wówczas istnieje niesko«czenie wiele
par cylindrycznie symetrycznych, sªabych rozwi¡za« ±u ∈ H1(RN) równania (11) takich, »e∫

RN

|a|
|y|2u

2 <∞.

Zaªo»enie (V1) mo»e wydawa¢ si¦ ograniczaj¡ce, lecz po wnikliwej analizie dowodu rów-
nowa»no±ci sªabych rozwi¡za« okazuje si¦, »e zamiast zakªada¢, »e widmo operatora w (V1)
jest dodatnie, wystarczy zakªada¢, »e 0 nie nale»y do widma, co zaobserwowano w (H1).
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Twierdzenie 6 ([(H1), Theorem 3.1]). Twierdzenie 1 pozostaje prawdziwe, je»eli warunek o
widmie w (V1) zast¡pimy przez

0 ̸∈ σ
(
−∆+

a

r2
+ V (r, x3)

)
.

Mo»na rozwa»a¢ zatem równanie (11) w przypadku silnie nieokre±lonym, tzn. cz¦±¢ widma
operatora znajduje si¦ poni»ej 0. Jednak analiza tego przypadku jest o wiele trudniejsza i
musimy wprowadzi¢ kilka dodatkowych uproszcze«. Zakªadamy dodatkowo, »e funkcje f i
g s¡ autonomiczne (nie zale»¡ od x), g jest poprzedzona pewnym maªym parametrem λ,
za± f poza pewnym otoczeniem zera zachowuje si¦ niemal dokªadnie jak funkcja pot¦gowa.
Maªo±¢ parametru λ jest niezb¦dna zarówno do wery�kacji zaªo»e« geometrycznych (uzyskanie
istnienia ci¡gu typu Cerami), a tak»e do uzyskania ograniczono±ci ci¡gu Cerami. Dokªadniej,
rozwa»amy nast¦puj¡ce równanie

(13) −∆u+ V (x)u+
a

|y|2u = f(u)− λg(u), x ∈ R
N ,

gdzie potencjaª V speªnia warunek

(V2) V ∈ L∞(RN) jest cylindrycznie symetryczny, tj. V = V (|y|, z), ZN−K-okresowy wzgl¦-
dem z oraz

0 ̸∈ σ

(
−∆+

a

|y|2 + V (x)

)
, inf σ

(
−∆+

a

|y|2 + V (x)

)
< 0.

Przy (V2) przestrze« X ma dekompozycj¦ ortogonaln¡ X = X+⊕X− odpowiadaj¡c¡ dekom-
pozycji widma operatora na cz¦±¢ dodatni¡ i ujemn¡. Forma kwadratowa

u 7→
∫

RN

|∇u|2 + a

|y|2u
2 + V (x)u2 dx

jest dodatnio (odp. ujemnie) okre±lona na X+ (odp. na X−). Wówczas dla u± ∈ X± okre±lamy

∥u±∥2 := ±
∫

RN

|∇u|2 + a

|y|2u
2 + V (x)u2 dx

i na X norma jest zadana przez ∥u∥2 := ∥u+∥2 + ∥u−∥2, gdzie u = u+ + u− z u± ∈ X±.
Rozwa»amy zaªo»enia (F1)�(F4), (G1)�(G3) w wersji autonomicznej (tj. f i g nie zale»¡ od
x) oraz wprowadzamy dodatkowe zaªo»enie

(F5) istnieje liczba ρ > 0 taka, »e |u|p−1 ≲ |f(u)| ≲ |u|p−1 dla |u| ≥ ρ.

Funkcjonaª wariacyjny (12) jest wówczas klasy C1 i ma wówczas ogóln¡ posta¢

J (u) =
1

2
∥u+∥2 − 1

2
∥u−∥2 − I(u),

gdzie I(u) =

∫

RN

F (u) dx − λ

∫

RN

G(u) dx, G(u) :=

∫ u

0

g(s) ds. W pracy (H1) dowodzimy

nast¦puj¡cych twierdze« o istnieniu rozwi¡za«.

8



Twierdzenie 7 ([(H1), Theorem 1.2]). Zaªó»my, »e speªnione s¡ warunki (V2), (F1)�(F5),
(G1)�(G3) oraz f i g s¡ nieparzyste. Je»eli λ > 0 (w równaniu (13)) oraz ρ > 0 (w zaªo»eniu
(F5)) s¡ dostatecznie maªe, to istnieje nietrywialne rozwi¡zanie równania (13).

Jako Twierdzenia 7 oraz Twierdzenia 6 otrzymujemy natychmiastowo istnienie rozwi¡zania
dla (6).

Twierdzenie 8 ([(H1), Theorem 1.3]). Niech N = 3, K = 2 i a = 1. Przy zaªo»eniach
Twierdzenia 7 istnieje nietrywialne rozwi¡zanie równania (6) postaci (7).

Ponadto jeste±my w stanie wykaza¢ dodatkow¡ wªasno±¢ znalezionego rozwi¡zania (za-
uwa»my, »e znaj¡c U jeste±my w stanie rozwi¡za¢ caªy ukªad równa« Maxwella i obliczy¢
D(t), B(t), H(t)).

Propozycja 9 ([(H1), Proposition 6.3]). Caªkowita energia elektromagnetyczna L(t) rozwi¡-
zania znalezionego w Twierdzeniu 8 jest sko«czona i nie zale»y od czasu t, gdzie

L(t) := 1

2

∫

R3

E(t)D(t) + B(t)H(t) dx.

W celu wykazania Twierdzenia 7, musimy dobrze zrozumie¢ geometri¦ funkcjonaªu J i
znale¹¢ ci¡g minimalizuj¡cy, którego granica b¦dzie nietrywialna i oka»e si¦ rozwi¡zaniem. W
tym celu wprowadzamy istotn¡ mody�kacj¦ twierdzenia o geometrii zap¦tle« (por. [18]).

W tym celu przypomnimy poj¦cie τ -topologii wprowadzone w [18]. Rozpatrzmy rzeczy-
wist¡, o±rodkow¡ przestrze« Hilberta (X, ∥ · ∥) i zaªó»my, »e ma ona rozkªad ortogonalny
X = X+⊕X−. Wówczas ka»dy element u ∈ X mo»na zapisa¢ jednoznacznie jako u = u++u−,
gdzie u± ∈ X±. Niech (ek)

∞
k=0 b¦dzie zupeªnym ukªadem ortonormalnym w przestrzeni X−.

Wówczas na X okre±lamy now¡ norm¦ jako

|||u||| := max

{
∥u+∥,

∞∑

k=1

1

2k+1
|⟨u−, ek⟩|

}
,

za± topologi¦ generowan¡ przez |||·||| b¦dziemy oznacza¢ przez τ . Wówczas zachodz¡ nast¦puj¡ce
nierówno±ci

∥u+∥ ≤ |||u||| ≤ ∥u∥,
za± dla ci¡gów ograniczonych (un) ⊂ X mamy nast¦puj¡c¡ równowa»no±¢ (por. [18, Remark
2.1(iii)])

un
τ→ u ⇐⇒ u+n → u+ oraz u−n ⇀ u−.

Niech J : X → R b¦dzie nieliniowym funkcjonaªem. Dla u ∈ X \ X− oraz R > r > 0
wprowadzamy zbiory

S+
r :=

{
u+ ∈ X+ : ∥u+∥ = r

}

M(u) :=
{
tu+ v− : v− ∈ X−, t ≥ 0, ∥tu+ v−∥ ≤ R

}
.

Wówczas M(u) ⊂ R+u
+ ⊕X− oraz

∂M(u) =
{
v− ∈ X− : ∥v−∥ ≤ R

}
∪
{
tu+ v− : v− ∈ X−, t > 0, ∥tu+ v−∥ = R

}
.

Zakªadamy, »e

9



(A1) J jest klasy C1 oraz J (0) = 0,

(A2) J ′ jest ci¡gowo sªabo-sªabo* ci¡gªa (tzn. je±li un ⇀ u, to J ′(un) → J ′(u)).

Niech P ⊂ X \X− b¦dzie zbiorem niepustym. Zakªadamy dodatkowo, »e

(A3) istniej¡ δ > 0 oraz r > 0 takie, »e dla ka»dego u ∈ P istnieje promie« R = R(u) > r,
dla których

inf
S+
r

J > max

{
sup
∂M(u)

J , sup
|||v|||≤δ

J (v)

}
.

Niech I := [0, 1], A ⊂ X oraz h : A× I → X. Rozwa»amy nast¦puj¡ce zaªo»enia

(h1) h jest τ -ci¡gªa, tzn. h(vn, tn)
τ→ h(v, t), o ile vn

τ→ v oraz tn → t;

(h2) h(u, 0) = u dla u ∈ A;

(h3) J (u) ≥ J (h(u, t)) dla (u, t) ∈ A× I;

(h4) dla dowolnego (u, t) ∈ A×I istnieje otwarte (w przestrzeni produktowej (X, τ)×(I, | · |))
otoczenie W ⊂ X × I punktu (u, t) takie, »e {v − h(v, s) : (v, s) ∈ W ∩ (A× I)} jest
zawarty w podprzestrzeni X sko«czonego wymiaru.

Mamy wówczas nast¦puj¡ce twierdzenie.

Twierdzenie 10 ([(H1), Theorem 2.1]). Przypu±¢my, »e J speªnia (A1)�(A3). Wówczas
istnieje ci¡g (un) ⊂ X taki, »e

sup
n

J (un) ≤ c, (1 + ∥un∥)J ′(un) → 0 w X∗, inf
n
|||un||| ≥

δ

2
,

gdzie
c := inf

u∈P
inf

h∈Γ(u)
sup

u′∈M(u)

J (h(u′, 1)) ≥ inf
S+
r

J > 0

oraz
Γ(u) := {h ∈ C(M(u)× I) : h speªnia (h1)�(h4)} ≠ ∅.

Zauwa»my, »e znajdujemy ci¡g Cerami o dodatkowej wªasno±ci inf
n
|||un||| ≥

δ

2
, która po-

zwoli potem (po zastosowaniu odpowiedniej translacji) znale¹¢ nietrywialn¡ sªab¡ granic¦.

Wprowad¹my dodatkowo rozmaito±¢ Nehariego-Pankova

(14) N :=
{
u ∈ X \X− : J ′(u)(u) = 0, J ′(u)(v) = 0 for all v ∈ X−

}

oraz jej podzbiór NP := N ∩ P . Aby porówna¢ móc porówna¢ poziom c otrzymany w Twier-
dzeniu 10 wprowadzamy dodatkowe zaªo»enie

(A4) dla dowolnego u ∈ NP , v ∈ X− oraz t ≥ 0 zachodzi J (u) ≥ J (tu+ v).

10



Wówczas, je»eli dodatkowo (A4) jest speªnione, to zachodzi nierówno±¢ c ≤ inf
NP

J (por. [(H1),

Theorem 2.1]). W przypadku, gdy g ̸≡ 0, nie jest jasne, czy zaªo»enie (A4) jest speªnione.
Jednak, gdyby g ≡ 0 w (11), to mo»na sprawdzi¢, »e (A4) zachodzi z P = X+ \ {0} i mo»emy
uzyska¢ rozwi¡zanie na poziomie inf

N
J , czyli tzw. rozwi¡zanie w stanie podstawowym oraz

uzyska¢ wyniki znane wcze±niej w literaturze.

Je»eli (F1)�(F4), (G1)�(G3), to funkcjonaª wariacyjny speªnia równie» warunki (A1)�
(A3), o ile λ > 0 jest dostatecznie maªa. Aby uzyska¢ ograniczono±¢ ci¡gów Cerami musimy
dodatkowo zaªo»y¢ (F5) oraz, »e ρ > 0 w (F5) jest dostatecznie maªe (por. [(H1), Lemma
5.1]). Nast¦pnie wykorzystuj¡c odpowiedni wariant lematu o koncentracji zwarto±ci (por. [30,
Corollary 3.2, Remark 3.3], [(H1), Proposition 6.2]) znajdujemy nietrywialn¡ sªab¡ granic¦.

Cz¦±¢ ta ma swoj¡ naturaln¡ kontynuacj¦ w pracach (P10) (zastosowanie w przypadku
wektorowym, do ukªadów hamiltonowskich), (P13) (wielokrotno±¢ rozwi¡za«).

4.3. Zagadnienia znormalizowane

Rozpatrzmy teraz problem (9) z V ≡ 0. Oznaczmy

S :=

{
u ∈ L2(RN) :

∫

RN

u2 dx = ρ

}
,

za± przestrze« H1(RN) jest wyposa»ona w standardow¡ norm¦ ∥u∥ =
(
|∇u|22 + |u|22

)1/2
. Roz-

wi¡zania (9) s¡ wówczas punktami krytycznymi funkcjonaªu J : H1(RN) → R danego wzorem

J(u) =
1

2

∫

RN

|∇u|2 dx−
∫

RN

G(u) dx

na zbiorze ogranicze« S∩H1(RN), gdzieG(u) :=
∫ u

0

g(s) ds. Wówczas λ w (9) jest mno»nikiem

Lagrange'a odpowiadaj¡cym ograniczeniu S.

Wprowadzamy wykªadnik 2∗ := 2+
4

N
< 2∗, który jest znany w literaturze jako wykªadnik

L2-krytyczny. W przypadku nieliniowo±ci pot¦gowej G(u) =
1

p
|u|p, je»eli 2 < p < 2∗, to

funkcjonaª jest ograniczony z doªu na S ∩ H1(RN). Nie jest to prawd¡, gdy p > 2∗, wi¦c
potrzebujemy dodatkowego zbioru ogranicze«, na którym funkcjonaª J b¦dzie ograniczony z
doªu.

Przy odpowiednich zaªo»eniach, wszystkie rozwi¡zania (9) nale»¡ do W 2,q
loc (R

N) dla q <∞
oraz speªniaj¡ to»samo±¢ Phoºaev'a

∫

RN

|∇u|2 = 2∗
∫

RN

G(u)− λ

2
u2 dx.

Oczywi±cie speªniaj¡ one tak»e to»samo±¢ Nehariego

J ′(u)(u) + λ

∫

RN

u2 dx = 0.
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Bior¡c kombinacj¦ liniow¡ obu to»samo±ci (w taki sposób, aby wyrugowa¢ λ) otrzymujemy

M(u) :=

∫

RN

|∇u|2 dx− N

2

∫

RN

H(u) dx = 0,

gdzie H(u) := g(u)u− 2G(u). Zatem wszystkie nietrywialne rozwi¡zania le»¡ w zbiorze

M :=
{
u ∈ H1(RN) \ {0} : M(u) = 0

}
.

Wprowad¹my dodatkowo oznaczenie

D :=

{
u ∈ L2(RN) :

∫

RN

u2 dx ≤ ρ

}
.

Niech f1, f2 : R → R. B¦dziemy pisa¢ f1 ⪯ f2, o ile f1(ξ) ≤ f2(ξ) dla wszystkich ξ ∈ R

oraz dla dowolnej liczby δ > 0 istniej¡ punkty ξ1, ξ2 takie, »e |ξi| < δ, ξ1ξ2 < 0 i f1(ξi) < f2(ξi).
Nierówno±¢ f1 ⪯ f2 charakteryzuje nast¦puj¡cy lemat.

Lemat 11 ([(H5), Lemma 2.1]). Niech f1, f2 ∈ C(R) b¦d¡ takie, »e f1(s) ≤ f2(s) oraz |f1(s)|+
|f2(x)| ≲ s2 + |s|2∗ dla wszystkich s ∈ R. Wówczas f1 ⪯ f2 wtedy i tylko wtedy, gdy

∫

RN

f1(u)− f2(u) dx < 0

dla wszystkich u ∈ H1(RN) \ {0}.

Mo»emy teraz wprowadzi¢ zaªo»enia, przy których pracujemy.

(A1) g oraz h := H ′ s¡ ci¡gªe oraz

|h(s)| ≲ |s|+ |s|2∗−1 dla wszystkich s ∈ R.

(A2) η := lim sup
s→0

G(s)

|s|2∗ <∞.

(A3) lim
|s|→∞

G(s)

|s|2∗ = ∞.

(A4) lim
|s|→∞

G(s)

|s|2∗ = 0.

(A5) 2∗H(s) ≤ h(s)s dla wszystkich s ∈ R.

(A6)
4

N
G(s) ≤ H(s) ≤ (2∗ − 2)G(s) dla wszystkich s ∈ R.

Gªównym wynikiem pracy (H5) jest nast¦puj¡ce twierdzenie, w którym CN,p oznacza naj-
lepsz¡ staª¡ w nierówno±ci Gagliardo-Nirenberga

(15) |u|p ≤ CN,p|∇u|δ2|u|1−δ
2 , δ = N

(
1

2
− 1

p

)
.
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Twierdzenie 12 ([(H5), Theorem 1.1]). Przypu±¢my, »e speªnione s¡ zaªo»enia (A1)�(A6)
oraz

(16) 2∗ηC2∗
N,2∗

ρ2/N < 1.

Wówczas istnieje u ∈ D ∩M taka, »e

J(u) = inf
D∩M

J > 0.

Je±li dodatkowo g jest nieparzysta, to u jest radialnie symetryczna. Przypu±¢my dodatkowo, »e
(A6, ⪯) jest speªnione.

(a) Je±li g′(s) = o(1) przy s → 0, to inf
D∩M

J = inf
S∩M

J oraz u ∈ S ∩ M jest znormalizo-

wanym rozwi¡zaniem w stanie podstawowym równania (9). Ponadto, u jest radialnie
symetryczna wzgl¦dem pewnej jednowymiarowej podprzestrzeni a�nicznej V w R

N .

(b) Je±li g jest nieparzysta, to inf
D∩M

J = inf
S∩M

J oraz u ∈ S ∩ M jest dodatnim, radialnym

rozwi¡zaniem w stanie podstawowym równania (9). Je»eli N ∈ {3, 4}, wystarcza, aby
zachodziªa jedynie nierówno±¢ nieostra H(s) ≤ (2∗ − 2)G(s) w (A6, ⪯).

Warto zaznaczy¢, »e wcze±niej nie byªo wiadomo, czy rozwi¡zania w stanie podstawowym
s¡ radialne. Ponadto nierówno±¢ (16) jest istotna tylko wtedy, gdy η > 0 w (A2), za± gdy
η = 0, jest ona automatycznie speªniona.

Do udowodnienia Twierdzenia 12 wprowadzili±my zupeªnie now¡ technik¦ minimalizacji
na dysku. Jest ona ogólna i ju» stosowana w ró»nych kontekstach, m.in. w (H6), (P9), (P12),
[9, 22, 26,31,32,38]. Poni»ej przedstawimy gªówne kroki nowego podej±cia.

Krok 1. Pokazujemy, »e inf
D∩M

J > 0. W tym kroku gªówn¡ rol¦ odgrywa nierówno±¢

Gagliardo-Nirenberga (15) oraz nierówno±¢ (16).

Krok 2. J jest koercytywny na D∩M. Wykorzystujemy tutaj gªównie warunek (A5) oraz
pokazujemy monotoniczno±¢ odwzorowania u 7→ H(u)/|u|2∗ . Czerpiemy tutaj pewne pomysªy
z prac [16], [41], jednak nie wymagamy, aby istniaªo ci¡gªe rzutowanie z H1(RN) \ {0} na M
zachowuj¡ce norm¦ L2.

Krok 3. Je»eli (un) ⊂ D ∩ M jest ci¡giem minimalizuj¡cym, to z wykorzystaniem tzw.
pro�le decomposition ([(H5), Theorem 2.6], por. [30, Theorem 1.4]) znajdujemy ci¡g translacji
(yn) ⊂ R

N taki, »e un(· + yn) zbiega sªabo i prawie wsz¦dzie do u b¦d¡cego minimizerem J
na D ∩M. Tutaj, standardowe, jednokrokowe podej±cie z wykorzystaniem lematu Lions'a o
koncentracji zwarto±ci wydaje si¦ by¢ niewystarczaj¡ce, bowiem znaleziona granica mo»e nie
le»e¢ w zbiorze M. Musimy tutaj znale¹¢ peªn¡ (by¢ mo»e niesko«czon¡) dekompozycj¦ (un),
aby znale¹¢ punkt graniczny znajduj¡cy si¦ w M (z dokªadno±ci¡ do translacji). Je»eli g jest
nieparzysta, to pracuj¡c na dysku D mo»emy ªatwo u»y¢ symetryzacji Schwartza oraz znale¹¢
nieujemny, radialny minimizer.

Krok 4. Nast¦pnie pokazujemy, »e dla v ∈ (D \ S) ∩ M zachodzi nast¦puj¡ca, kluczowa
nierówno±¢

inf
S∩M

J < J(v),
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a zatem minimizer u dla J znaleziony na D∩M tak naprawd¦ znajduje si¦ w zbiorze S ∩M.

Krok 5. Analiza mno»ników Lagrange'a λ i µ, odpowiadaj¡cych S i M odpowiednio,
pozwala wykaza¢, »e µ = 0 i w konsekwencji u jest znormalizowanym rozwi¡zaniem w stanie
podstawowym dla (9).

Dodatkowo, jako wniosek z naszego podej±cia (z Kroku 4) wynika, »e odwzorowanie ρ 7→
inf

M∩D
J = inf

M∩S
J jest ±ci±le malej¡ce. Mo»emy sprawdzi¢ tak»e dodatkowe wªasno±ci tego od-

wzorowania.

Propozycja 13 ([(H5), Proposition 2.9]). Przypu±¢my, »e speªnione s¡ zaªo»enia Twierdzenia
12. Wówczas odwzorowanie ρ 7→ inf

M∩D
J jest ci¡gªe, ±ci±le malej¡ce oraz inf

M∩D
J → ∞ przy

ρ→ 0+. Je±li ponadto η = 0 oraz

lim
u→0

G(u)/|u|2∗ = ∞,

to lim
ρ→∞

inf
M∩D

J = 0.

Rozpatrzmy teraz nast¦puj¡ce uogólnienie (9)

(17)





(−∆)mu+
µ

|y|2mu+ λu = g(u), x = (y, z) ∈ R
K × R

N−K ,
∫

RN

u2 dx = ρ > 0,

gdzie N ≥ K ≥ 2m, µ ∈ R. Równanie (9) otrzymujemy, gdy m = 1 oraz V (x) =
µ

|y|2m jest

osobliwym potencjaªem.

W przypadku, gdy µ = 0 i N > 2m - przy odpowiednich zaªo»eniach na g - znajdu-
jemy znormalizowane rozwi¡zanie w stanie podstawowym równania (17) (por. Twierdzenie 16
poni»ej), tzn. u jest rozwi¡zaniem takim, »e J0(u) = inf

M0∩S
J0, gdzie

J0(u) :=
1

2

∫

RN

|∇mu|2 dx−
∫

RN

G(u) dx,

M0 :=

{
u ∈ Hm(RN) \ {0} :

∫

RN

|∇mu|2 dx =
N

2m

∫

RN

H(u) dx

}
,

∇mu :=

{
∆m/2u gdy m jest parzyste,
∇∆(m−1)/2u gdy m jest nieparzyste.

Je»eli dodatkowo m = 1, jest ono dodatnie i radialne.

W przypadku, gdy µ > 0 sytuacja jest inna - nie istniej¡ znormalizowane rozwi¡zania
w stanie podstawowym (tj. minimizery na zbiorze Mµ ∩ S lub na Mµ ∩ D, gdzie Mµ jest
naturalnym rozszerzeniem zbioru M0 dla przypadku µ > 0). Aby rozwi¡za¢ równanie (17) z
µ ̸= 0 u»yjemy skalowania operatora poliharmonicznego. Rozpatrzmy grup¦ G(K) := O(K)×
idN−K i nast¦puj¡cy zbiór ogranicze«

M :=

{
u ∈ Hm

G(K)(R
N) \ {0} :

∫

RN

|∇mu|2 + µ

|y|2mu
2 dx =

N

2m

∫

RN

H(u) dx

}
,
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gdzieHm
G(K)(R

N) oznacza podprzestrze« funkcji G(K)-niezmienniczych wHm(RN). Pojawia si¦
jednak naturalne pytanie - czy rozwi¡zania problemu (17), które s¡ G(K)-niezmiennicze, le»¡
w zbiorze M? Tutaj tak»e odgrywa rol¦ symetria grupy G(K) - w przypadku rozwi¡za« G(K)
jeste±my w stanie pokaza¢, »e rozwi¡zania speªniaj¡ to»samo±¢ Pohoºaev'a, a w konsekwencji
le»¡ w M.

Okre±lmy

Xm :=

{
u ∈ Hm(RN) : |µ|

∫

RN

u2

|y|2m dx < +∞
}

oraz Xm
G(K) := Xm ∩Hm

G(K)(R
N).

Pierwszy, istotny wynik pracy (H6) jest nast¦puj¡cy.

Propozycja 14 ([(H6), Proposition 2.5]). Niech g̃ : R → R b¦dzie funkcj¡ ci¡gª¡ speªniaj¡c¡

|g̃(u)| ≲ |s|+ |s|2∗−1, gdy N > 2m,

dla dowolnych q ≥ 2 i α >
N(2π)N

ωN−1

zachodzi |g̃(u)| ≲ |s|+ |s|q−1(eαs
2 − 1), gdy N = 2m.

Niech u ∈ Xm
G(K) b¦dzie sªabym rozwi¡zaniem równania

(−∆)mu+
µ

|y|2mu = g̃(u).

Wówczas ∫

RN

(N − 2m)

(
|∇mu|2 + µ

|y|2mu
2

)
− 2NG̃(u) dx = 0,

gdzie G̃(u) :=
∫ u

0

g̃(s) ds.

Wiedz¡c, »e zachodzi powy»sza to»samo±¢ Pohoºaev'a, mo»emy wykaza¢, »e ka»de rozwi¡-
zanie u ∈ Xm

G(K) równania (17) nale»y do M.

Znana jest nast¦puj¡ca nierówno±¢ Hardy'ego - je±li K > 2m, to

∫

RN

u2

|y|2m dx ≤
(

Γ
(
K−2m

4

)

2mΓ
(
K+2m

4

)
)2 ∫

RN

|∇mu|2 dx,

która sugeruje, aby wprowadzi¢ nast¦puj¡ce zaªo»enie na parametr µ

(18) µ > −
(
2mΓ

(
K+2m

4

)

Γ
(
K−2m

4

)
)2

je±li K > 2m lub µ ≥ 0 je±li K = 2m.

Zauwa»my, »e zachodzi wówczas nierówno±¢

(∫

RN

|∇mu|2 + µ

|y|2mu
2 dx

)1/2

≥ τ 1/2
(∫

RN

|∇mu|2 dx
)1/2

,
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gdzie τ jest okre±lone jako

τ :=





1 +

(
2mΓ

(
K+2m

4

)

Γ
(
K−2m

4

)
)2

µ, je±li µ < 0,

1, je±li µ ≥ 0.

Rozpatrzmy nast¦puj¡ce zaªo»enia, gdzie przede�niowali±my 2∗ := 2+
4m

N
oraz 2∗ :=

2N

N − 2m
z konwencj¡ 2∗ = +∞, gdy N = 2m.

(A1') g oraz h := H ′ s¡ ci¡gªe oraz

|g(s)|+ |h(s)| ≲ |s|+ |s|2∗−1, gdy N > 2m

dla dowolnych q ≥ 2 i α >
N(2π)N

ωN−1

zachodzi |g(s)|+ |h(s)| ≲ |s|+ |s|q−1(eαs
2 − 1), gdy N = 2m

dla wszystkich s ∈ R.

(A2') η := lim sup
s→0

H(s)

|s|2∗ <∞.

(A3') lim
|s|→∞

G(s)

|s|2∗ = ∞.

(A4')
lim

|s|→∞

g(s)

|s|2∗−1
= 0, gdy N > 2m,

lim
|s|→∞

g(s)

eαs2
= 0 dla dowolnej α > 0, gdy N = 2m.

(A5') 2∗H(s) ⪯ h(s)s dla wszystkich s ∈ R \ {0}.

(A6') 0 ⪯ 4

N
G(s) ⪯ H(s) ⪯ (2∗ − 2)G(s) dla wszystkich s ∈ R \ {0}, przy czym ostatni¡

nierówno±¢ zakªadamy tylko, gdy N > 2m.

Ponadto w przypadku poliharmonicznym mamy tak»e nast¦puj¡c¡ nierówno±¢ Gagliardo-
Nirenberga

(19) |u|p ≤ CN,p|∇mu|δ2|u|1−δ
2 , δ :=

N

m

(
1

2
− 1

p

)
.

Pod¡»aj¡c opisan¡ wcze±niej metod¡ - dowodz¡c nowej wersji twierdzenia o dekompozycji ci¡-
gów ograniczonych (w wersji poliharmonicznej z potencjaªem osobliwym), por. [(H6), Theorem
4.7] - uzyskujemy nast¦puj¡ce twierdzenie o istnieniu rozwi¡za«.

Twierdzenie 15 ([(H6), Theorem 3.2]). Przypu±¢my, »e speªnione s¡ warunki (18), (A1')�
(A6') oraz

(20)
N

2m
ηC2∗

N,2∗
ρ

2m
N τ−1 < 1.
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Wówczas istniej¡ λ > 0 oraz u ∈ S ∩M takie, »e

J(u) = inf
D∩M

J = inf
S∩M

J > 0

oraz u ∈ S ∩ M jest rozwi¡zaniem (17) w Xm
G(K). Je±li dodatkowo g jest nieparzysta oraz

m = 1, to u jest nieujemne.

Gdy µ = 0, nie musimy rozwa»a¢ symetrii grupy G(K) i mo»emy wówczas znale¹¢ znor-
malizowane rozwi¡zanie w stanie podstawowym przy zaªo»eniach Twierdzenia 15. Dokªadniej,
otrzymujemy nast¦puj¡ce uogólnienie Twierdzenia 12.

Twierdzenie 16 ([(H6), Theorem 3.2]). Przypu±¢my, »e speªnione s¡ warunki (A1')�(A6')
oraz

N

2m
ηC2∗

N,2∗
ρ

2m
N < 1.

Wówczas istniej¡ λ > 0 oraz u ∈ S ∩M0 takie, »e

J0(u) = inf
D∩M0

J0 = inf
S∩M0

J0 > 0

oraz u ∈ S ∩M0 jest rozwi¡zaniem w stanie podstawowym równania (17) z µ = 0 w Hm(RN).
Je±li dodatkowo g jest nieparzysta oraz m = 1, to u jest dodatnie i radialne.

Poni»sze twierdzenie dodatkowo uzasadnia istotno±¢ symetrii G(K).

Twierdzenie 17 ([(H6), Theorem 3.2]). Niech N ≥ K > 2m, µ > 0; przypu±¢my, »e speªnione
s¡ warunki (18), (A1')�(A6') oraz

N

2m
ηC2∗

N,2∗
ρ

2m
N τ−1 < 1.

Wówczas nie istniej¡ minimizery nast¦puj¡cych zagadnie«

inf

{
J(u) : u ∈ Hm(RN) \ {0},

∫

RN

|∇mu|2 + µ

|y|2mu
2 dx =

N

2m

∫

RN

H(u) dx, u ∈ D
}
,

inf

{
J(u) : u ∈ Hm(RN) \ {0},

∫

RN

|∇mu|2 + µ

|y|2mu
2 dx =

N

2m

∫

RN

H(u) dx, u ∈ S
}
.

W szczególno±ci (17) nie posiada znormalizowanych rozwi¡za« w stanie podstawowym w Hm(RN).

Zauwa»my, »e gdy N = 3, K = 2, µ = 1, m = 1, to równanie (17) ma ±cisªy zwi¡zek z (6).
Dokªadniej, wykorzystuj¡c Twierdzenie 6 o równowa»no±ci sªabych rozwi¡za« otrzymujemy
nast¦puj¡ce twierdzenie.

Twierdzenie 18 ([(H6), Theorem 3.2]). Niech f b¦dzie dane przez f(αw) = g(α)w dla α ∈ R

oraz w ∈ R
3, |w| = 1, gdzie g speªnia (A1')�(A6') oraz (20). Wówczas istniej¡ λ > 0 oraz

U ∈ Q ∩ S takie, »e (λ,U) jest sªabym rozwi¡zaniem




∇× (∇×U) + λU = f(U), x ∈ R
3,∫

RN

|U|2 dx = ρ
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takim, »e E(U) = inf
Q∩D

E = inf
Q∩S

E > 0, gdzie

F :=
{
U : R3 → R

3 : U jest postaci (7)
}
,

HF := H1(R3;R3) ∩ F ,

E(U) :=

∫

R3

1

2
|∇ ×U|2 − F (U) dx, U ∈ HF .

Ponadto

Q :=

{
U ∈ HF \ {0} :

∫

R3

|∇ ×U|2 dx =
N

2

∫

R3

H(U) dx

}
,

gdzie H(U) := f(U) ·U− 2F (U) oraz F (U) :=

∫ 1

0

f(tU) ·U dt.

Cz¦±¢ ta ma swoj¡ kontynuacj¦ w pracach (P9), (P12).

4.4. Przej±cie graniczne w równaniach uªamkowych przy s→ 1−

Rozpatrzmy nast¦puj¡ce nielokalne zagadnienie typu Dirichleta

(21)

{
(−∆)su+ V (x)u = f(x, u), x ∈ Ω,
u = 0, x ∈ R

N \ Ω

oraz jego lokalny odpowiednik

(22)

{
−∆u+ V (x)u = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω.

Powy»ej Ω ⊂ R
N jest ograniczon¡ dziedzin¡ (tj. zbiorem otwartym i spójnym) w R

N o ci¡gªym
brzegu ∂Ω,N ≥ 3 oraz 1/2 < s < 1 (gdzie 1/2 jest wybrana dla ustalenia uwagi, gdy» b¦dziemy
zainteresowani s→ 1−). Ponadto, potencjaª V speªnia

V ∈ L∞(Ω), inf
Ω
V > 0.

Zakªadamy, »e f speªnia nast¦puj¡ce warunki.

(F1') f : Ω× R → R jest funkcj¡ Carathéodory'ego oraz istnieje liczba p ∈
(
2,

2N

N − 1

)
taka,

»e
|f(x, u)| ≲ 1 + |u|p−1 dla wszystkich u ∈ R oraz p.w. x ∈ Ω.

(F2') f(x, u) = o(u) przy u→ 0, jednostajnie ze wzgl¦du na x ∈ Ω.

(F3') lim
|u|→∞

F (x, u)

u2
= +∞ jednostajnie ze wzgl¦du na x ∈ Ω, gdzie F (x, u) :=

∫ u

0

f(x, t) dt.

(F4') Odwzorowanie u 7→ f(x, u)/u jest ±ci±le rosn¡ce na (−∞, 0) oraz na (0,∞) dla p.w.
x ∈ Ω.

18



Wiadomo, »e przy (F1')�(F4') istnieje rozwi¡zanie w stanie podstawowym us ∈ Hs
0(Ω) dla

problemu (21) oraz rozwi¡zanie w stanie podstawowym u0 ∈ H1
0 (Ω) dla problemu (22) (por.

[(H3), Proposition 3.2]). Poprzez rozwi¡zanie w stanie podstawowym rozumiemy rozwi¡za-
nie b¦d¡ce minimizerem odpowiedniego funkcjonaªu energii na odpowiadaj¡cej rozmaito±ci
Nehariego.

Twierdzenie 19 ([(H3), Theorem 1.2]). Istnieje ci¡g (sn) ⊂ (1/2, 1) taki, »e sn → 1 przy
n→ ∞ oraz usn zbiega w L2(Ω) do u0 ∈ H1

0 (Ω) b¦d¡cego rozwi¡zaniem w stanie podstawowym
dla problemu (22).

Uwaga 20. Mo»na pokaza¢, »e zbie»no±¢ usn do u0 mamy w Lν(Ω) dla 2 ≤ ν <
2N

N − 1
.

Powy»szy wynik udaªo si¦ uzyska¢ poprzez dokªadn¡ analiz¦ zachowywania si¦ staªych
m.in. w uªamkowych nierówno±ciach Sobolewa, przy s→ 1−. Rozwa»aj¡c ci¡g (usn), wa»na jest
jego jednostajna ograniczono±¢, tj. ograniczono±¢ ci¡gu norm ∥usn∥sn , gdzie ∥ · ∥sn jest norm¡
w uªamkowej przestrzeni Sobolewa. Pozwala to wówczas na zastosowanie wyniku Bourgain-
Brezisa-Mironescu [7, Corollary 7] i uzyskanie granicy b¦d¡cej w przestrzeni H1

0 (Ω).

Przejd¹my zatem do problemu trudniejszego, czyli rozwa»anego na caªej przestrzeni RN .
Dokªadniej, rozpatrujemy problem

(23)

{
(−∆)su+ V (x)u = f(x, u), x ∈ R

N ,
u ∈ Hs(RN)

oraz

(24)

{
−∆u+ V (x)u = f(x, u), x ∈ R

N ,
u ∈ H1(RN).

Analogicznie jak poprzednio rozpatrujemy N ≥ 3, 1/2 < s < 1 oraz potencjaª V speªniaj¡cy

V ∈ L∞(RN), inf
RN

V > 0, V jest ZN -okresowy.

Nieliniowo±¢ f speªnia warunki analogiczne do (F1')�(F4'), tj.

(F1�) f : RN × R → R jest funkcj¡ Carathéodory'ego, ZN -okresow¡ ze wzgl¦du na x ∈ R
N

oraz istnieje liczba p ∈
(
2,

2N

N − 1

)
taka, »e

|f(x, u)| ≲ 1 + |u|p−1 dla wszystkich u ∈ R oraz p.w. x ∈ Ω.

(F2�) f(x, u) = o(u) przy u→ 0, jednostajnie ze wzgl¦du na x ∈ R
N .

(F3�) lim
|u|→∞

F (x, u)

u2
= +∞ jednostajnie ze wzgl¦du na x ∈ R

N , gdzie F (x, u) :=
∫ u

0

f(x, t) dt.

(F4�) Odwzorowanie u 7→ f(x, u)/u jest ±ci±le rosn¡ce na (−∞, 0) oraz na (0,∞) dla p.w.
x ∈ R

N .

Przy powy»szych zaªo»eniach uzyskujemy nast¦puj¡cy wynik.
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Twierdzenie 21 ([(H4), Theorem 1.2]). Niech us ∈ Hs(RN) b¦dzie rozwi¡zaniem w stanie
podstawowym problemu (23). Istnieje ci¡g (sn) ⊂ (1/2, 1) taki, »e sn → 1 przy n → ∞ oraz
ci¡g translacji (zn) ⊂ Z

N takie, »e usn(· − zn) zbiega w L2
loc(R

N) do u0 ∈ H1(RN) b¦d¡cego
rozwi¡zaniem w stanie podstawowym dla problemu (24).

Przy warunkach (F1�)�(F4�) wiadomo, »e istniej¡ rozwi¡zania w stanie podstawowym
zarówno dla zagadnienia lokalnego (D1), [41], jak i nielokalnego (D2), [39]. Tutaj jednak sama
analiza staªych i ich zale»no±ci od s nie jest wystarczaj¡ca, bowiem nie dysponujemy wynikiem
typu [7, Corollary 7]. Niech ∥ · ∥s oznacza klasyczn¡ norm¦ w przestrzeni Hs(RN). Najpierw
dowodzimy jednostajnej wersji lematu o koncentracji zwarto±ci Lions'a.

Twierdzenie 22 ([(H4), Theorem 3.1]). Niech r > 0, 2 ≤ q <
2N

N − 1
oraz N ≥ 3. Niech

ponadto (sn) ⊂ (1/2, 1) oraz usn ∈ Hsn(RN) speªniaj¡

∥usn∥sn ≤M,

gdzie M nie zale»y od sn. Je»eli

lim
n→∞

sup
y∈RN

∫

B(y,r)

|un|q dx = 0,

to un → 0 w Lp(RN) dla wszystkich p ∈
(
2,

2N

N − 1

)
.

Drugim wa»nym wynikiem jest lokalna jednostajna zwarto±¢ wªo»e« Sobolewa. Sama ana-
liza staªych oraz zastosowanie [7, Corollary 7] daªoby rezultat z granic¡ w przestrzeniH1

loc(R
N).

Co istotne, jeste±my w stanie pokaza¢, »e granica, któr¡ otrzymujemy, jest w przestrzeni
H1(RN).

Twierdzenie 23 ([(H4), Theorem 3.2]). Niech (sn) ⊂ (1/2, 1) b¦dzie taki, »e sn → 1− oraz
usn ∈ Hsn(RN) speªnia

∥usn∥sn ≤M,

gdzie M nie zale»y od sn. Wówczas ci¡g (usn) zbiega, z dokªadno±ci¡ do podci¡gu, do pewnej
u ∈ H1(RN) w przestrzeni Lq

loc(R
N) dla ka»dego q ∈ [2, 2N/(N − 1)) oraz punktowo prawie

wsz¦dzie.

4.5. Opis indywidualnego wkªadu w poszczególne publikacje

(H1) F. Bernini, B. Bieganowski: Generalized linking-type theorem with applications to
strongly inde�nite problems with sign-changing nonlinearities,
Calc. Var. Partial Di�erential Equations, Vol. 61, Article number: 182 (2022).

Jestem gªównym pomysªodawc¡ pracy (H1), która powstaªa w trakcie sta»u doktoranc-
kiego F. Berniniego na Uniwersytecie Mikoªaja Kopernika w Toruniu. Gªówn¡ cz¦±ci¡
pracy jest udowodnione, w znacznej mierze, przeze mnie twierdzenie abstrakcyjne o
istnieniu ci¡gu Cerami. Sprawdziªem tak»e, »e w zaproponowanym settingu, caªkowita
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energia elektromagnetyczna L(t) jest staªa i niezale»na od czasu t. Wspólnie z F. Berni-
nim zaproponowali±my zaªo»enia na f i g oraz sprawdzili±my, »e speªnione s¡ zaªo»enia
twierdzenia abstrakcyjnego, zaproponowali±my przykªady nieliniowo±ci f i g speªniaj¡-
cych te zaªo»enia. Sprawdzili±my, »e ci¡gi Cerami s¡ ograniczone i wykazali±my istnienie
nietrywialnego rozwi¡zania. Jestem autorem korespondencyjnym wspomnianej pracy.

(H2) B. Bieganowski: Solutions to a nonlinear Maxwell equation with two competing nonli-
nearities in R

3,
Bull. Pol. Acad. Sci. Math. 69 (2021), p. 37�60.

Jestem jedynym autorem pracy (H2).

(H3) B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional
Schrödinger equations on bounded domains,
Topol. Methods Nonlinear Anal., Vol. 57, No, 2 (2021), p. 413�425.

Jestem gªównym pomysªodawc¡ pracy (H3). Bezpo±rednio po uko«czeniu doktoratu,
w którym zajmowaªem si¦ tak»e zagadnieniem istnienia stanów podstawowych dla rów-
na« nieliniowych z uªamkowym laplasjanem, pomy±laªem o sprawdzeniu, co si¦ dzieje
z rozwi¡zaniami równania nieliniowego gdy uªamek laplasjanu zbiega do 1. Pomysª ten
przedstawiªem swojemu wspóªpracownikowi - S. Secchi, który wykazaª zainteresowanie
wspóªprac¡ nad tym zagadnieniem. Zaproponowaªem, aby w pierwszej kolejno±ci praco-
wa¢ w przypadku ograniczonej dziedziny. Wówczas z wykorzystaniem wyniku z pracy [7]
oraz po przeanalizowaniu zachowaniu staªych wyst¦puj¡cych m.in. w de�nicji uªamko-
wego laplasjanu wzgl¦dem s wykazali±my, »e rozwi¡zania w stanie podstawowym zbiegaj¡
w L2, z dokªadno±ci¡ do translacji, do rozwi¡zania problemu lokalnego.

(H4) B. Bieganowski, S. Secchi: Non-local to local transition for ground states of fractional
Schrödinger equations on R

N ,
J. Fixed Point Theory Appl. 22, 76 (2020).

Praca (H4) jest naturaln¡ kontynuacj¡ pracy (H3). Do wa»nych elementów pracy na-
le»¡ wykazane przez S. Secchi - jednostajna wersja lematu Lionsa oraz, wykazane przeze
mnie - twierdzenie o jednostajnych wªo»eniach Sobolewa. Cz¦±¢ dotycz¡c¡ zbie»no±ci
rozwi¡za« w L2

loc, z dokªadno±ci¡ do translacji, zwery�kowali±my wówczas wspólnie z
S. Secchi analogicznie do wyniku z (H3).

(H5) B. Bieganowski, J. Mederski: Normalized ground states of the nonlinear Schrödinger
equation with at least mass critical growth,
J. Funct. Anal., Vol. 280, Issue 11 (2021), 108989.

Do wspóªpracy nad zagadnieniem znormalizowanym zostaªem zaproszony przez J. Me-
derskiego, który poszukiwaª nowego podej±cia wariacyjnego po znalezieniu bª¦du w pracy
[5] (por. corrigendum: [6]). J. Mederski zaproponowaª minimalizacj¦ na dysku w L2

(zamiast na sferze) i zwery�kowaª swój pomysª w przypadku nieliniowo±ci pot¦gowej,
ponadkrytycznej. Po doª¡czeniu do projektu, wspólnie wypracowali±my zaªo»enia na
ogóln¡ nieliniowo±¢, a tak»e rozszerzyli±my podej±cie równie» na przypadek nieliniowo±ci
o wzro±cie krytycznym w zerze przy zaªo»eniu, »e zadana norma L2 rozwi¡zania jest
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dostatecznie maªa. Zwery�kowaªem tak»e wªasno±ci tzw. ground state energy map na
dysku, tj. odwzorowania ρ 7→ inf

M∩Dρ

J .

(H6) B. Bieganowski, J. Mederski, J. Schino: Normalized solutions to at least mass critical
problems: singular polyharmonic equations and related curl-curl problems,
J. Geom. Anal., Vol. 34, Article number: 322 (2024).

Po sukcesie osi¡gni¦tym w pracy (H5) zaproponowaªem, aby nowe podej±cie minimaliza-
cji na dysku rozszerzy¢ do szerszej klasy operatorów. J. Mederski oraz J. Schino (w swojej
rozprawie doktorskiej [37]) zauwa»yli, »e tak¡ symetri¦ jak laplasjan ma tak»e potencjaª
singularny typu Hardy'ego. Zaproponowaªem, aby w (H5) zbada¢ równania z ogólniej-

szym operatorem - operatorem poliharmonicznym (−∆)m z potemcjaªem postaci
µ

|y|2m .

Szczególny przypadek operatora −∆ +
1

|(x1, x2)|2
pojawia si¦ przy poszukiwaniu roz-

wi¡za« cylindrycznie symetrycznych dla równa« z operatorem curl-curl ([37]). Wspólnie
z J. Schino (którego w tym miejscu wkªad jest wi¦kszy, gdy» znalazª odpowiednie wzory
na caªkowanie przez cz¦±ci oraz znalazª pierwszy, nie w peªni poprawny, dowód zbie»-
no±ci do zera caªki powierzchniowej pochodz¡cej od wyrazu osobliwego) wykazali±my
to»samo±¢ Pohoºaeva przy zaªo»eniu, »e poszukujemy rozwi¡za« G(K)-niezmienniczych.
Zaproponowaªem tak»e, aby zwery�kowa¢, czy wspomniana symetria jest niezb¦dna. J.
Mederski zwery�kowaª, »e jest to prawd¡, gdy» w przypadku braku symetrii problemy
minimalizacji na sferze oraz na dysku nie maj¡ rozwi¡za«. Ponadto wraz z J. Schino
zaadoptowali±my technik¦ z (H5) do przypadku N = 2m oraz sprawdzili±my, jakie wy-
niki o istnieniu jeste±my w stanie uzyska¢ w przypadku równa« z operatorem curl-curl
uzyskuj¡c uogólnienie wyniku o istnieniu z [37]. Jestem autorem korespondencyjnym
wspomnianej pracy.

4.6. Pozostaªe osi¡gni¦cia naukowo-badawcze

Prace niewchodz¡ce w skªad rozprawy doktorskiej

(P1) B. Bieganowski, T. Cie±lak, K. Fujie, T. Senba: Boundedness of solutions to the critical
fully parabolic quasilinear one-dimensional Keller-Segel system,
Math. Nachr., Vol. 292, Issue 4 (2019), p. 724�732,

(P2) B. Bieganowski: Systems of coupled Schrödinger equations with sign-changing nonli-
nearities via classical Nehari manifold approach,
Complex Var. Elliptic Equ., Vol. 64, Issue 7 (2019), p. 1237�1256,

(P3) F. Bernini, B. Bieganowski, S. Secchi: Semirelativistic Choquard equations with singu-
lar potentials and general nonlinearities arising from Hartree-Fock theory,
Nonlinear Anal., Vol. 217 (2022), 112738,

(P4) B. Bieganowski: On-line interval graphs coloring - modi�cation of the First-Fit algo-
rithm and its performance ratio,
Discrete Math. Algorithms Appl., Vol. 14, No. 08, 2250042 (2022),
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(P5) B. Bieganowski, T. Cie±lak, J. Siemianowski: Magnetostatic levitation and two related
linear PDEs in unbounded domains,
Rep. Math. Phys., Vol. 92, Issue 2 (2023), p. 135�144,

(P6) B. Bieganowski, A. Konysz: Elliptic problems with mixed nonlinearities and potentials
singular at the origin and at the boundary of the domain,
J. Fixed Point Theory Appl. 25, 83 (2023),
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4.7. Omówienie pozostaªych prac

4.7.1. Problemy wariacyjne z nieliniowo±ciami zmieniaj¡cymi znak

Rozpatrzmy funkcjonaª J : X → R okre±lony na przestrzeni Hilberta (X, ∥·∥). W pracach
(D1), (D2), (D3), (D4) rozpatrywali±my problemy wariacyjne o podobnej strukturze funkcjo-
naªu. Dokªadniej, niech funkcjonaª wariacyjny b¦dzie postaci

J (u) =
1

2
∥u∥2 − I(u),

gdzie I : X → R jest klasy C1 oraz I(0) = 0. Wprowadzamy wówczas rozmaito±¢ Nehariego
jako

N := {u ∈ X \ {0} : J ′(u)(u) = 0} .
W pracy (D1) wykazali±my nast¦puj¡ce twierdzenie, stosowane potem m.in. w (D2), (D3),
(D4).

Twierdzenie 24 ([(D1), Theorem 2.1]). Przypu±¢my, »e

(J1) istnieje promie« r > 0 taki, »e inf
∥u∥=r

J (u) > 0;

(J2)
I(tnun)
t2n

→ ∞, je±li tn → ∞ oraz un → u ̸= 0;

(J3) dla wszystkich t ∈ (0,∞) \ {1} oraz u ∈ N zachodzi nierówno±¢

t2 − 1

2
I ′(u)(u)− I(tu) + I(u) < 0;

(J4) J jest koercytywny na N .

Wówczas c := inf
N

J > 0 oraz istnieje ci¡g Palais-Smale'a dla J na poziomie c w N , tzn. ci¡g

(un) ⊂ N taki, »e
J (un) → c, J ′(un) → 0.

Jest to twierdzenie pozwalaj¡ce na badanie problemów dodatnio okre±lonych z nielinio-
wo±ciami zmieniaj¡cymi znak, gdy» zaªo»enia nie wymagaj¡, aby I(u) ≥ 0. W szczególno±ci,
je±li X = H1(RN), N ≥ 3, mo»emy rozpatrywa¢ na przykªad

I(u) =
∫

RN

1

p
|u|p − 1

q
|u|q dx,
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gdzie 2 < q < p < 2∗.

W (D1) badali±my istnienie rozwi¡za« dla zagadnienia postaci

(25) −∆u+ V (x)u = f(x, u)− Γ(x)|u|q−2u, x ∈ R
N ,

gdzie N ≥ 3, q ∈ [2, 2∗), za± V speªnia zaªo»enia

(V.1.1) V = Vper + Vloc, gdzie Vper ∈ L∞(RN) jest ZN -okresowy, za± Vloc ∈ L∞(RN) ∩ LN/2(RN)
speªnia lim

|x|→∞
Vloc(x) = 0,

(V.1.2) inf σ(−∆+ V (x)) > 0.

Je»eli Vloc ≡ 0, to wiadomo, »e widmo σ(−∆+V (x)) skªada si¦ tylko z cz¦±ci ci¡gªej i jest
sum¡ odcinków domkni¦tych. W przypadku, gdy Vloc ̸≡ 0, w σ(−∆+ V (x)) mog¡ pojawi¢ si¦
warto±ci wªasne.

Zakªadamy, »e Γ speªnia

(Γ) Γ ∈ L∞(RN) jest ZN -okresowa oraz ess infRN Γ > 0.

Ponadto rozwa»amy nast¦puj¡ce zaªo»enia na f .

(F.1.1) f : RN × R → R jest funkcj¡ Carathéodory'ego, ZN -okresow¡ ze wzgl¦du na x ∈ R
N

oraz istnieje p ∈ (q, 2∗) taka, »e

|f(x, u)| ≲ 1 + |u|p−1 dla u ∈ R i p.w. x ∈ R
N .

(F.1.2) f(x, u) = o(u) przy u→ 0, jednostajnie ze wzgl¦du na x ∈ R
N .

(F.1.3) F (x, u)/|u|q → ∞ przy |u| → ∞, jednostajnie ze wzgl¦du na x ∈ R
N , gdzie F (x, u) =∫ u

0

f(x, s) ds.

(F.1.4) u 7→ f(x, u)/|u|q−1 jest ±ci±le rosn¡ca na (−∞, 0) ∪ (0,∞).

Przy powy»szych warunkach funkcjonaª J : H1(RN) → R,

J (u) =
1

2

∫

RN

|∇u|2 + V (x)u2 dx−
∫

RN

F (x, u)− 1

q
Γ(x)|u|q dx

speªnia warunki (J1)�(J4). Po dokonaniu sko«czonej dekompozycji znalezionego ci¡gu Palais-
Smale'a ([(D1), Theorem 4.1]) jeste±my w stanie wykaza¢ nast¦puj¡ce twierdzenie.

Twierdzenie 25 ([(D1), Theorem 1.1]). Przypu±¢my, »e speªnione s¡ warunki (V.1.1), (V.1.2),
(Γ), (F.1.1)�(F.1.4). Je»eli Vloc(x) < 0 dla p.w. x ∈ R

N lub Vloc ≡ 0, to (25) posiada roz-
wi¡zanie u ∈ H1(RN) w stanie podstawowym, tj. J (u) = inf

N
J . Ponadto u jest ci¡gªa oraz

istnieje staªa α > 0 taka, »e

|u(x)| ≲ exp(−α|x|) dla wszystkich x ∈ R
N .
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Zaªo»enie o znaku Vloc jest prawie optymalne, bowiem mo»emy wykaza¢ nast¦puj¡cy fakt
o nieistnieniu rozwi¡za«.

Twierdzenie 26 ([(D1), Theorem 1.2]). Przypu±¢my, »e (V.1.1), inf σ(−∆+ Vper) > 0, (Γ),
(F.1.1)�(F.1.4). Je»eli Vloc(x) > 0 dla p.w. x ∈ R

N , to (25) nie posiada rozwi¡za« w stanie
podstawowym, tj. takich, »e J (u) = inf

N
J .

Rozpatrzmy uªamkowy odpowiednik równania (25)

(26) (−∆)su+ V (x)u = f(x, u)− Γ(x)|u|q−2u, x ∈ R
N

z analogicznym zestawem zaªo»e« na cz¦±¢ nieliniow¡, przy czym w (F.1.1) wykªadnik 2∗

zast¦pujemy przez jego nielokalny odpowiednik 2∗s :=
2N

N − 2s
i rozpatrujemy wymiary N > 2s.

B¦dziemy rozpatrywa¢ nast¦puj¡ce zaªo»enia na potencjaª V .

(V.1.3) V = Vper+Vloc, gdzie Vper ∈ L∞(RN) jest ZN -okresowy, za± Vloc ∈ L∞(RN)∩LN/(2s)(RN)
speªnia lim

|x|→∞
Vloc(x) = 0.

(V.1.4) ess infRN V > 0.

(V.1.5) V ∈ C(RN) speªnia lim
|x|→∞

V (x) = ∞ oraz inf
RN

V > 0.

Wówczas pracujemy w przestrzeni Hilberta

Es :=

{
u ∈ Hs(RN) :

∫

RN

V (x)u2 dx <∞
}
,

która przy zaªo»eniu (V.1.3) pokrywa si¦ z Hs(RN), natomiast w przypadku zaªo»enia (V.1.5)
stanowi istotn¡ podprzestrze« w Hs(RN). Funkcjonaª energii jest dany wówczas wzorem

J (u) =
1

2

∫

RN

|ξ|2s|û(ξ)|2 dξ + 1

2

∫

RN

V (x)u2 dx−
∫

RN

F (x, u)− 1

q
Γ(x)|u|q dx.

W zasadzie powtarzaj¡c dowód Twierdzenia 25, do±¢ automatycznie uzyskujemy twierdze-
nie o istnieniu rozwi¡za« w stanie podstawowym w przypadku nielokalnym.

Twierdzenie 27 ([(D2), Theorem 1.1]). Przypu±¢my, »e s ∈ (0, 1) oraz speªnione s¡ warunki
(V.1.3), (V.1.4), (Γ), (F.1.1)�(F.1.4). Je»eli Vloc(x) < 0 dla p.w. x ∈ R

N lub Vloc ≡ 0, to (26)
posiada rozwi¡zanie u ∈ Hs(RN) w stanie podstawowym, tj. J (u) = inf

N
J .

W przypadku, gdy Vloc ≡ 0, uzyskujemy równie» twierdzenie o wielokrotno±ci rozwi¡za«,
które wówczas byªo nowe tak»e w przypadku lokalnym s = 1.

Twierdzenie 28 ([(D2), Theorem 1.2]). Przypu±¢my, »e s ∈ (0, 1] oraz speªnione s¡ warunki
(Γ), (F.1.1)�(F.1.4). Ponadto, je±li s = 1, to zakªadamy (V.1.1), (V.1.2), za± je±li s < 1,
to (V.1.3), (V.1.4). Niech tak»e Vloc ≡ 0. Wówczas (26) posiada niesko«czenie wiele par ±u
geometrycznie ró»nych rozwi¡za«.
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W tym miejscu przypomnijmy, »e je±li Vloc ≡ 0 i u jest rozwi¡zaniem (26), to u(· −
z) jest tak»e rozwi¡zaniem dla dowolnego z ∈ Z

N . Mówimy zatem, »e dwa rozwi¡zania s¡
geometrycznie ró»ne, o ile ich orbity wzgl¦dem dziaªania grupy Z

N na Hs(RN) s¡ rozª¡czne.

Ponadto dowodzimy tak»e istnienia rozwi¡zania w przypadku koercytywnych potencjaªów.

Twierdzenie 29 ([(D2), Theorem 1.3]). Przypu±¢my, »e s ∈ (0, 1] oraz speªnione s¡ wa-
runki (V.1.5), (Γ), (F.1.1)�(F.1.4). Wówczas (26) posiada rozwi¡zanie u ∈ Es(RN) w stanie
podstawowym, tj. J (u) = inf

N
J .

Prace (D3) oraz (D4) zawieraj¡ kolejne uogólnienia wspomnianych wyników, odpowiednio
na zagadnienia nielokalne z uªamkowym laplasjanem i osobliwym potencjaªem

(−∆)su+

(
V (x)− µ

|x|2s
)
u = f(x, u)− Γ(x)|u|q,

gdzie niezb¦dne byªo zastosowanie odpowiedniej nierówno±ci typu Hardy'ego ([14]), oraz na
zagadnienia nielokalne typu Choquarda

√
−∆+m2u−mu+ V (x)u =

(∫

RN

|u(y)|p
|x− y|N−α

dy

)
|u|p−2u− Γ(x)|u|q−2u,

gdzie wykorzystali±my rozszerzenie typu Ca�arelli'ego-Silvestre ([8]), aby zamieni¢ zagadnienie
nielokalne na problem lokalny w póªprzestrzeni z warunkiem brzegowym typu Neumanna.
Dodatkowo, w pracy (P3) rozwijamy to podej±cie na potencjaªy osobliwe typu Hardy'ego
(pochodz¡ce z teorii Hartree-Fock'a, [11]), za± w pracy (P2) badamy przypadek wektorowy -
przypadek dwóch (lokalnych lub nielokalnych) równa« sparowanych liniowo.

W przypadku silnie nieokre±lonym, opisanym w pierwszej cz¦±ci autoreferatu (praca (H1)
potra�my wykaza¢ tak»e abstrakcyjne twierdzenie o wielokrotno±ci orbit krytycznych (P13).
Do opisania wyniku potrzebujemy wprowadzi¢ poj¦cie przestrzeni z dyslokacjami.

Niech (X, ⟨·, ·⟩) b¦dzie o±rodkow¡, rzeczywist¡ przestrzeni¡ Hilberta oraz niech J : X → R

b¦dzie nieliniowym funkcjonaªem klasy C1. Przypu±¢my, »e X ma rozkªad ortogonalny X =
X+ ⊕X− oraz dla u± ∈ X± i u = u+ + u− mamy

∥u∥2 = ∥u+∥2 + ∥u−∥2,

gdzie ∥ · ∥ jest norm¡ indukowan¡ przez iloczyn skalarny na X. Zaªó»my ponadto, »e J jest
postaci

(27) J (u) =
1

2
∥u+∥2 − 1

2
∥u−∥2 − I(u),

gdzie I jest klasy C1. Zaªó»my, »e dane jest unitarne dziaªanie grupy G na X oraz podprze-
strzenie X± s¡ G-niezmiennicze. Mówimy, »e para (X,G) jest przestrzeni¡ z dyslokacjami
([42]), o ile dla dowolnych ci¡gów (un) ⊂ X, (gn) ⊂ G zachodzi

gn ̸⇀ 0, un ⇀ 0 ⇒ gnun ⇀ 0 z dokªadno±ci¡ do podci¡gu,
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gdzie napis gn ⇀ 0 oznacza, »e gnu ⇀ 0 dla dowolnego u ∈ X. Wprowadzamy tak»e nast¦pu-
j¡c¡ wªasno±¢

(GWC) je»eli (vn), (φn) ⊂ X s¡ ograniczone oraz φn
G
⇀ 0, to I ′(vn)(φn) → 0,

gdzie φn
G
⇀ 0 oznacza, »e

lim
n→∞

sup
g∈G

⟨un, gφ⟩ = 0

dla dowolnego φ ∈ X. Dla ℓ ∈ N oraz sko«czonego zbioru A ⊂ X de�niujemy

[A, ℓ] :=
{

j∑

i=1

giui : 1 ≤ j ≤ ℓ, gi ∈ G, ui ∈ A
}
.

Mówimy wtedy, »e przestrze« z dyslokacjami (X,G) ma wªasno±¢ dyskretno±ci, o ile dla do-
wolnego zbioru sko«czonego A ⊂ X i dowolnej ℓ ∈ N zachodzi

inf{∥u− u′∥ : u, u′ ∈ [A, ℓ], u ̸= u′} > 0.

Mo»na sprawdzi¢, »e Hs(RN), s ∈ (0, 1] z dziaªaniem Z
N danym przez translacje jest prze-

strzeni¡ z dyslokacjami z wªasno±ci¡ dyskretno±ci, patrz tak»e [(P13), Example 2.13, Example
2.14, Example 2.15]. Mo»emy teraz sformuªowa¢ wszystkie zaªo»enia.

(A.1.1) (X,G) jest przestrzeni¡ z dyslokacjami z wªasno±ci¡ dyskretno±ci oraz X = X+ ⊕X−,
gdzie X± s¡ ortogonalne i G-niezmiennicze.

(A.1.2) J : X → R jest postaci (27), gdzie I : X → R jest klasy C1, I ′ jest ci¡gowo sªabo-sªabo*
ci¡gªa i speªnia (GWC), I(0) = 0.

(A.1.3) J jest parzysty i G-niezmienniczy.

(A.1.4) crit(J ) \ {0} ≠ ∅.

(A.1.5) Istniej¡ promienie r, r0 > 0 takie, »e

inf
∥u+∥=r

J > sup{J (u) : u ∈ X, ∥u+∥ < r0}.

(A.1.6) Je»eli ∥u−n ∥ → ∞ oraz ∥u+n ∥ jest ograniczony, to J (un) → −∞.

(A.1.7) J jest ograniczony z góry na zbiorach ograniczonych.

(A.1.8)
I(u+n )
∥u+n ∥2

→ ∞, o ile ∥u+n ∥ → ∞ i (u+n ) jest zawarty w podprzestrzeni sko«czonego wymiaru.

(A.1.9) Ka»dy ci¡g Palais-Smale'a dla J jest ograniczony.

Wówczas otrzymujemy nast¦puj¡ce twierdzenie

Twierdzenie 30 ([(P13), Theorem 3.2]). Zaªó»my, »e speªnione s¡ warunki (A.1.1)�(A.1.9).
Wówcas J posiada niesko«czenie wiele orbit krytycznych.
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Zaªo»enie (A.1.4) wymaga wiedzy o istnieniu przynajmniej jednego nietrywialnego punktu
krytycznego. Warunek ten jest speªniony w wielu praktycznych zastosowaniach, lecz ª¡cz¡c po-
wy»sze twierdzenie z wynikami z (H1) mo»emy uzyska¢ twierdzenia, w których nie zakªadamy
z góry istnienia punktów krytycznych. Wystarczy zast¡pi¢ (A.1.4) przez (A3) i zamiast (A.1.9)
wymaga¢ nieco bardziej ogólnego warunku:

(A.1.10) dowolny ci¡g (un) ⊂ X speªniaj¡cy

J (un) jest ograniczony z góry, (1 + ∥un∥)J ′(un) → 0

jest ograniczony.

Wówczas dostajemy nast¦puj¡ce twierdzenie.

Twierdzenie 31 ([(P13), Theorem A.1]). Zaªó»my, »e speªnione s¡ warunki (A.1.1)�(A.1.3),
(A3), (A.1.1)�(A.1.8), (A.1.10). Wówczas J posiada niesko«czenie wiele orbit krytycznych.

W przestrzeniach z dyslokacjami mo»emy tak»e sformuªowa¢ abstrakcyjne twierdzenie o
istnieniu nietrywialnego punktu krytycznego.

Twierdzenie 32 ([(P13), Theorem A.2]). Niech (X,G) b¦dzie przestrzeni¡ z dyslokacjami,
gdzie G dziaªa unitarnie na X. Zaªó»my, »e J jest postaci (27), gdzie X = X+ ⊕ X− i
X± s¡ G-niezmiennicze. Je»eli I jest G-niezmienniczy, klasy C1, I(0) = 0, I ′ jest ci¡gowo
sªabo-sªabo* ci¡gªa i speªnia (GWC) oraz speªnione s¡ warunki (A3), (A.1.10), to J posiada
nietrywialny punkt krytyczny.

W (P13) powy»sze fakty s¡ zastosowane do (25) oraz do (13) w sytuacji silnie nieokre±lonej.

4.7.2. Problemy wariacyjne z nieliniowo±ciami mieszanego typu

Rozpatrzmy teraz problem

(28) −∆u+ V (x)u = g(x, u),

gdzie V jest potencjaªem speªniaj¡cym

(V.2.1) V ∈ L∞(RN) jest ZN -okresowy oraz 0 znajduje si¦ w przerwie spektralnej σ(−∆+V (x)).

W przypadku materiaªów typu Kerra nieliniowo±¢ jest postaci

g(x, u) = Γ(x)|u|2u,

za± w przypadku materiaªów z efektem saturacji, g jest asymptotycznie liniowa i jest postaci

g(x, u) = Γ(x)
|u|2

1 + |u|2u.
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Celem tego podrozdziaªu rozwa»enie równania (28) z nieliniowo±ciami mog¡cymi opisywa¢
krysztaªy fotoniczne skªadaj¡ce si¦ z ró»nych materiaªów o ró»nych nieliniowych polaryzacjach.
W szczególno±ci, chcemy rozwa»a¢ nieliniowo±ci typu

g(x, u) =





Γ(x)|u|2u x ∈ K,

χ|u|<1
|u|2

1 + |u|2 + χ|u|≥1
1

2
u x ∈ R

N \K.

Dokªadniej, zakªadamy, »e g : RN × R → R jest funkcj¡ Carathéodory'ego, ZN -okresow¡ ze
wzgl¦du na x ∈ R

N , speªniaj¡c¡ nast¦puj¡ce warunki.

(G.2.1) g(x, u) = o(u) przy u→ 0, jednostajnie ze wzgl¦du na x ∈ R
N .

(G.2.2) Istnieje p ∈ (2, 2∗) taka, »e

|g(x, u)| ≲ 1 + |u|p−1 dla wszystkich u ∈ R i p.w. x ∈ R
N .

(G.2.3) Istnieje domkni¦ty, ZN -okresowy podzbiór K ⊂ R
N taki, »e |K| > 0 oraz

G(x, u)

u2
→ ∞ przy |u| → ∞ jednostajnie ze wzgl¦du na x ∈ K,

gdzie G(x, u) :=
∫ u

0

g(x, s) ds.

(G.2.4) Odwzorowanie R\{0} ∋ u 7→ g(x, u)/|u| ∈ R jest niemalej¡ce na (−∞, 0) oraz na (0,∞)
dla p.w. x ∈ R

N .

(G.2.5) Istniej¡ funkcja Θ ∈ L∞(RN \K) oraz staªa a > 0 takie, »e

g(x, u)

u
= Θ(x) dla |u| ≥ a > 0 oraz p.w. x ∈ R

N \K

oraz Θ jest ZN -okresowa.

(G.2.6) 0 nie jest warto±ci¡ wªasn¡ operatora −∆ + V (x) − Θ(x) na L2(RN \K) z warunkami
brzegowymi Dirichleta.

Zauwa»my, »e warunek (G.2.3) wymusza ponadkwadratowy wzrostG w zbiorzeK, za± warunek
(G.2.5) zapewnia wzrost kwadratowy G poza zbiorem K. W przypadek K = R

N mamy
do czynienia ze wzrostem ponadkwadratowym na caªej dziedzinie i taki przypadek byª ju»
analizowany m.in. w [12,24,29], a tak»e przy silniejszym warunku monotoniczno±ci ni» (G.2.4)
w [41]. Z kolei problemy asymptotycznie liniowe byªy badane m.in. w [17,23,25,27,40].

Zauwa»my, »e zaªo»enie (G.2.6) jest speªnione, gdy K = R
N . Przypu±¢my, »e R

N \ K
jest okresowo perforowan¡ przestrzeni¡, tzn. K =

⋃

z∈ZN

(Q+ z), gdzie Q jest gªadk¡, ±ci¡galn¡

i ograniczon¡ dziedzin¡ tak¡, »e (Q+ z) ∩Q = ∅ dla z ∈ Z
N \ {0}. Wówczas, z [19, Theorem

7] wiemy, »e widmo σ(−∆+ V (x) + Θ(x)) na R
N \K z warunkami Dirichleta jest absolutnie

ci¡gªe, a wi¦c −∆+V (x)+Θ(x) nie zawiera warto±ci wªasnych i (G.2.6) jest tak»e speªnione.

Wprowadzamy funkcjonaª wariacyjny J : H1(RN) → R,

(29) J (u) :=
1

2

∫

RN

|∇u|2 + V (x)u2 dx =

∫

RN

G(x, u) dx.
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Twierdzenie 33 ([(D6), Theorem 1.1]). Zaªó»my, »e speªnione s¡ warunki (V.2.1), (G.2.1)�
(G.2.6). Wówczas (28) posiada nietrywialne rozwi¡zanie u ∈ H1(RN) takie, »e 0 < inf

N
J ≤

J (u) ≤ c, gdzie N oznacza rozmaito±¢ Nehariego-Pankova (por. (14)), za± c > 0 jest pewnym
poziomem mini-maksowym.

W przypadku K = R
N mo»emy dodatkowo pokaza¢, »e J (u) = inf

N
J i w konsekwencji

znalezione rozwi¡zanie jest rozwi¡zaniem w stanie podstawowym, uzyskujemy w ten sposób
rezultaty z [24,29].

Drugie twierdzenie dotyczy wielokrotno±ci rozwi¡za«.

Twierdzenie 34 ([(D6), Theorem 1.2]). Zaªó»my, »e speªnione s¡ warunki (V.2.1), (G.2.1)�
(G.2.6) oraz g jest nieparzysta ze wzgl¦du na u. Wówczas (28) posiada niesko«czenie wiele
par ±u ró»nych geometrycznie rozwi¡za«.

Twierdzenie 33 jest udowodnione w (D6) na dwa sposoby. Pierwszy sposób to mody�-
kacja abstrakcyjnego podej±cia z prac [3, 4] i wykazanie nowego, abstrakcyjnego twierdzenia
teorii punktów krytycznych dla funkcjonaªów, które maj¡ ponadkwadratowy wzrost jedynie
na pewnej podprzestrzeni domkni¦tej Q ⊂ H1(RN) niesko«czonego wymiaru. Drugi sposób,
to zastosowanie jednej z wersji twierdzenia o uogólnionej geometrii zap¦tle« [29].

Na potrzeby dowodu wielokrotno±ci (Twierdzenie 34) wykazujemy nowe abstrakcyjne twier-
dzenie o wielokrotno±ci rozwi¡za«, bazuj¡c na [33].

Podobny problem na ograniczonej dziedzinie byª badany tak»e w (P6) w obecno±ci po-
tencjaªu osobliwego zarówno we wn¦trzu, jak i na brzegu dziedziny. W (P6) znaleziono tak»e
rozwi¡zania dla zagadnienia znormalizowanego w przypadku L2-podkrytycznym.

4.7.3. Zagadnienie granicy póªklasycznej

Rozpatrzmy teraz nieliniowe równanie Schrödingera

(30) −ε2∆u+ V (x)u = Γ(x)f(u), x ∈ R
N .

W pracy (D5) byli±my zainteresowani zagadnieniem tzw. granicy póªklasycznej, czyli zagad-
nieniem istnienia i zachowywania si¦ rozwi¡za«, gdy ε → 0+. Zauwa»my, »e w powy»szym
równaniu prawa strona równania jest nieautonomiczna. Zaªó»my, »e

(V.3.1) V,Γ ∈ L∞(RN) s¡ ci¡gªe oraz inf
RN

V > 0, inf
RN

Γ > 0.

Ponadto, f : R+ → R jest klasy C1 i speªnia nast¦puj¡ce zaªo»enia

(F.3.1) f(u) = o(u) przy u→ 0+,

(F.3.2) lim
u→∞

f(u)

up−1
= 0 dla pewnej p ∈ (2, 2∗), gdzie 2∗ :=





2N

N − 2
, N ≥ 3

+∞, N ∈ {1, 2},
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(F.3.3) istnieje θ ∈ (2, p] taka, »e 0 < θF (u) ≤ f(u)u dla u > 0, gdzie F (u) :=
∫ u

0

f(s) ds,

(F.3.4) odwzorowanie u 7→ f(u)

u
jest niemalej¡ce.

Nast¦pnie potrzebujemy nast¦puj¡cego, geometrycznego zwi¡zku pomi¦dzy V i Γ.

(Λ) Istnieje ograniczony, niepusty, otwarty i spójny zbiór Λ ⊂ R
N taki, »e

(Λ1) Γ jest Z
N -okresowa oraz istnieje xmin ∈ Λ taki, »e V (xmin) = inf

Λ
V < inf

∂Λ
V oraz

Γ(xmin) = sup
RN

Γ

lub

(Λ2) V jest ZN -okresowa oraz istnieje xmax ∈ Λ taki, »e Γ(xmax) = sup
Λ

Γ > max
∂Λ

Γ oraz

V (xmax) = inf
RN

V .

Uzyskujemy wówczas nast¦puj¡ce twierdzenie, wykorzystuj¡c podej±cie [13].

Twierdzenie 35 ([(D5), Theorem 1.2]). Zaªó»my, »e speªnione s¡ warunki (V.3.1), (F.3.1)�
(F.3.4), (Λ). Istnieje ε0 > 0 taka, »e dla dowolnej ε ∈ (0, ε0) równanie (30) ma dodatnie
rozwi¡zanie u ∈ H1(RN) ∩ C(RN) oraz istniej¡ staªe C, α > 0 takie, »e u(x) ≤ C exp(−α|x|).

Naturalnym wydaje si¦ tak»e zbadanie istnienia stanów póªklasycznych dla równa« z ope-
ratorem ∇×∇×. Jest to celem pracy (P8). Rozpatrzmy zatem zagadnienie

ε2 ∇× (∇×U) + V (x)U = g(U),

gdzie ε > 0 jest dostatecznie maªy. Stosuj¡c zamian¦ zmiennych x 7→ εx oraz zast¦puj¡c U(ε·)
przez U otrzymujemy równanie

(31) ∇× (∇×U) + Vε(x)U = g(U),

gdzie Vε(x) = V (εx). Szukaj¡c rozwi¡za« postaci (7) problem sprowadza si¦ do równania

(32) −∆u+
u

|y|2 + Vε(x)u = f(u), x = (y, z) ∈ R
N = R

K × R
N−K ,

gdzie N = 3, K = 2 oraz f(α)w = g(αw) dla α ∈ R oraz w ∈ R
3 takich, »e |w| = 1. B¦dziemy

jednak rozwa»ali równanie (32) w wi¦kszej ogólno±ci (w dowolnym wymiarze N ≥ 3). Zaªó»my,
»e

(V.3.2) 0 < V0 := inf
RN

V ≤ V (0) < V∞ ≤ lim inf
|x|→∞

V (x) dla pewnej liczby V∞ ∈ R.

Ponadto, rozpatrujemy nast¦puj¡ce zaªo»enia.
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(F.3.1') f ∈ C(R) oraz istnieje p ∈ (2, 2∗) taka, »e

|f(u)| ≲ 1 + |u|p−1.

(F.3.2') f(u) = o(u) przy u→ 0.

(F.3.3')
F (u)

u2
→ ∞ przy |u| → ∞, gdzie F (u) :=

∫ u

0

f(s) ds.

(F.3.4')
f(u)

|u| jest rosn¡ca na (−∞, 0) oraz na (0,∞).

Niech G(K) := O(K)× IN−K ⊂ O(N) oraz niech CG(K)(RN) oznacza przestrze« odwzorowa«
ci¡gªych, G(K)-niezmienniczych. Wykorzystuj¡c technik¦ z pracy [35] oraz wyniki regularno-
±ciowe z [1] uzyskujemy nast¦puj¡ce twierdzenie.

Twierdzenie 36 ([(P8), Theorem 1.1]). Zaªó»my, »e N > K ≥ 3, V ∈ CG(K)(RN) speªnia
(V.3.2) oraz zachodz¡ (F.3.1')�(F.3.4'). Istnieje ε0 > 0 taka, »e dla dowolnej ε ∈ (0, ε0)
równanie (32) ma nietrywialne sªabe rozwi¡zanie uε, które jest G(K)-niezmiennicze. Ponadto,
je±li f jest nieparzysta, to uε ∈ L∞(RN) jest nieujemna oraz

lim
|x|→∞

|x|νuε(x) = 0

dla dowolnej ν <
N − 2 +

√
(N − 2)2 + 4

2
.

Do zbadania asymptotycznego zachowania rozwi¡za« przy ε → 0+ potrzebujemy dodat-
kowych zaªo»e«.

(V.3.3) lim
|x|→∞

V (x) = V∞ <∞.

(V.3.4) V jest Hölderowsko ci¡gªa w 0 z pewnym wykªadnikiem α > 0.

W szczególno±ci, ci¡gªo±¢ V oraz (V.3.3) implikuj¡, »e V ∈ L∞(RN).

Twierdzenie 37 ([(P8), Theorem 1.2]). Zaªó»my, »e N > K ≥ 3, V ∈ CG(K)(RN) speªnia
(V.3.2)�(V.3.4), zachodz¡ (F.3.1')�(F.3.4') oraz f jest nieparzysta. Wówczas istnieje ci¡g
εn → 0+ taki, »e zachodzi jedna z dwóch mo»liwo±ci. Albo

(a) istnieje nietrywialne sªabe rozwi¡zanie U równania (32) z Vε ≡ V∞ takie, »e

uεn − U(· − (0, zn)) → 0 w H1(RN)

dla pewnych translacji (zn) ⊂ R
N−K speªniaj¡cych εn|zn| → ∞;

albo
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(b) istniej¡ ℓ ≥ 1, (zjn) ⊂ R
N−K oraz nietrywialne sªabe rozwi¡zania Uj równania (32) z

Vε ≡ V (0, zj) dla pewnych zj ∈ R
N−K takie, »e

uεn −
ℓ∑

j=1

Uj(· − (0, zjn)) → 0 w H1(RN),

ponadto zj = lim
n→∞

εnz
j
n.

Jako wniosek z dwóch poprzednich twierdze« oraz równowa»no±ci sªabych rozwi¡za« (Twier-
dzenie 1) otrzymujemy nast¦puj¡cy wynik dotycz¡cy równania z operatorem ∇×∇×.

Twierdzenie 38 ([(P8), Theorem 1.2]). Zaªó»my, »e N = 3, K = 2, V ∈ CG(2)(R3) speªnia
(V.3.2)�(V.3.4), zachodz¡ (F.3.1')�(F.3.4') oraz g(αw) = f(α)w dla α ∈ R, w = R

3 speªnia-
j¡cych |w| = 1 (w szczególno±ci, f jest nieparzysta). Wówczas dla dostatecznie maªej ε > 0
istnieje sªabe rozwi¡zanie Uε równania (31) postaci (7); Uε ∈ L∞(R3;R3) oraz

lim
|x|→∞

|x|ν |Uε(x)| = 0

dla dowolnej ν <
N − 2 +

√
(N − 2)2 + 4

2
. Ponadto istnieje ci¡g εn → 0+ taki, »e zachodzi

jedna z dwóch mo»liwo±ci. Albo

(a) istnieje nietrywialne sªabe rozwi¡zanie U równania (31) z Vε ≡ V∞ takie, »e

Uεn −U(· − (0, zn)) → 0 w H1(R3;R3)

dla pewnych translacji (zn) ⊂ R speªniaj¡cych εn|zn| → ∞;

albo

(b) istniej¡ ℓ ≥ 1, (zjn) ⊂ R oraz nietrywialne sªabe rozwi¡zania Uj równania (31) z Vε ≡
V (0, zj) dla pewnych zj ∈ R takie, »e

Uεn −
ℓ∑

j=1

Uj(· − (0, zjn)) → 0 w H1(R3;R3),

ponadto zj = lim
n→∞

εnz
j
n.

4.7.4. Zagadnienia znormalizowane

W pracach wchodz¡cych w skªad osi¡gni¦cia habilitacyjnego (H5), (H6) badali±my pro-
blemy L2-ponadkrytyczne. W pracy (P9) zainteresowani byli±my zagadnieniem (9) z V ≡ 0

(33)





−∆u+ λu = f(u),∫

RN

|u|2 dx = ρ2,
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z praw¡ stron¡ f b¦d¡c¡ L2-podkrytyczn¡ w 0 i L2-ponadkrytyczn¡ w niesko«czono±ci. Ponie-
wa» nie zawsze zakªadamy tutaj, »e f jest nieparzysta, to pracujemy w H1(RN) = H1(RN ;R).
Jednak, gdy f jest ci¡gªa i nieparzysta, mo»emy j¡ rozszerzy¢ do funkcji okre±lonej na pªasz-
czy¹nie zespolonej

f(z) =

{
f(|z|)z/|z| dla z ∈ C \ {0},
0 dla z = 0

i wówczas pracujemy w przestrzeni H1(RN) = H1(RN ;C). Rozpatrzmy nast¦puj¡ce zaªo»enia.

(F.4.1) f jest ci¡gªa oraz |f(s)| ≲ |s|+ |s|2∗−1 dla wszystkich s ∈ R.

(F.4.2) lim
s→0

F (s)

s2
= 0, gdzie F (s) =

∫ s

0

f(t) dt.

(F.4.3) lim
s→0

F (s)

|s|2∗ = ∞.

(F.4.4) lim
|t|→∞

F (t)

|t|2∗ = 0.

(F.4.5) f(s)s ≤ 2∗F (s) dla wszystkich s ∈ R.

Wówczas F (ζ) > 0 dla pewnego ζ ̸= 0 i liczba

C0 := sup
0 ̸=s∈R

F (s)

s2 + |s|2∗ > 0

jest dobrze okre±lona. Funkcjonaª energii jest okre±lony wzorem J : H1(RN) → R

J(u) =
1

2

∫

RN

|∇u|2 dx−
∫

RN

F (u) dx,

za± na H1(RN) rozwa»amy klasyczn¡ norm¦. Dla α > 0 wprowadzamy oznaczenia

Dα :=
{
u ∈ H1(RN) : |u|2 ≤ α

}
, Sα :=

{
u ∈ H1(RN) : |u|2 = α

}
.

Ponadto dla α,R > 0,

UR(α) := {u ∈ Dα : |∇u|2 < R} , mR(α) := inf
UR(α)

J.

Niech ponadto S > 0 b¦dzie optymaln¡ staª¡ w nierówno±ci Gagliardo-Nirenberga-Sobolewa

S|u|22∗ ≤ |∇u|22.
Pierwszy wynik pracy (P9) jest nast¦puj¡cy.

Twierdzenie 39 ([(P9), Theorem 1.2]). Zaªó»my (F.4.1)�(F.4.3) oraz

(34) ρ2 <
2

N − 2

(
S

2∗C0

)N/2

.

Je±li ρn → ρ, Rn → R0 (gdzie R0 > 0 jest pewn¡ staª¡ okre±lon¡ w [(P9), (g2))]) oraz
un ∈ URn

(ρn) s¡ takie, »e J(un) → mR0
(ρ). Wówczas istniej¡ u ∈ Sρ ∩ UR0

(ρ) oraz λu > 0
takie, »e un → u z dokªadno±ci¡ do translacji i wyboru podci¡gu, J(u) = mR0

(ρ) < 0, u ma
staªy znak, nie jest nigdzie zerowe oraz (u, λu) jest rozwi¡zaniem (33).

35



Dodatkowo, standardowe argumenty pokazuj¡, »e u ∈ L∞(RN) ∩ C1,α(RN) dla ka»dej
α ∈ (0, 1) oraz u(x) → 0 przy |x| → ∞. Ponadto, mo»na zakªada¢, »e u jest radialne i
radialnie monotoniczne (poniewa» funkcja u ma staªy znak, mo»na j¡ zast¡pi¢ symetryzacj¡
Schwartza).

Naturalnym wydaje si¦ pytanie, czy znalezione w ten sposób rozwi¡zanie jest rozwi¡zaniem
w stanie podstawowym. W tym celu wprowadzimy dwa dodatkowe abstrakcyjne zaªo»enia. Dla
s > 0 i u ∈ H1(RN) \ {0} okre±lamy s ∗ u := sN/2u(s·).

(J1) Dla ka»dego u ∈ Dρ \ {0}, odwzorowanie (0,∞) ∋ s 7→ J(s ∗ u) ∈ R ma dokªadnie jedno
maksimum lokalne tu.

(J2) Zachodzi (J1) oraz dla dowolnego u ∈ Dρ\{0}, odwzorowanie (tu,∞) ∋ s 7→ J(s∗u) ∈ R

jest wkl¦sªe.

Dostajemy nast¦puj¡cy fakt.

Propozycja 40 ([(P9), Proposition 1.4]). Zaªó»my (F.4.1)�(F.4.3), (J2) oraz (34). Wówczas

mR0
(ρ) = min

{
J(u) : u ∈ Dρ oraz J |′Dρ

(u) = 0
}
.

Ponadto jeste±my w stanie wykaza¢, »e zbiór minimizerów jest orbitalnie stabilny.

Propozycja 41 ([(P9), Proposition 1.7]). Zaªó»my (F.4.1)�(F.4.3), (34) zachodz¡, f jest
nieparzysta (a wi¦c okre±lona na C) oraz istnieje q ∈ (2, 2∗) taka, »e zachodzi jeden z warunków

(F.4.6) |f(t)− f(s)| ≲ (1 + |t|+ |s|)q−2|t− s| dla t, s ∈ R,

(F.4.7) f ∈ C1(R) oraz |f ′(t)| ≲ |t|q−2 + |t|2∗−2 dla wszystkich t ∈ R.

Wówczas rozwi¡zania równania

(35)

{
i∂tΨ+∆Ψ = f(Ψ)
Ψ(·, 0) = ψ0 ∈ H1(RN ;C)

s¡ globalne oraz zbiór
G := {u ∈ UR0

(ρ) : J(u) = mR0
(ρ)}

jest orbitalnie stabilny.

Aby znale¹¢ drugie rozwi¡zanie wprowadzamy dodatkowe zaªo»enia. Niech H(t) = f(t)t−
2F (t). Zakªadamy, »e H = H1 +H2, gdzie Hj speªniaj¡ nast¦puj¡ce dwa zaªo»enia.

(H.4.1) H1, H2 ∈ C1(R) oraz istniej¡ a ∈ (2, 2∗), b ∈ (2∗, 2
∗) takie, »e

H1(t) ≲ |t|2 + |t|a, H2(t) ≲ |t|b + |t|2∗

dla t ∈ R.
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(H.4.2) Zachodz¡ nierówno±ci

2H1(t) ≤ h1(t)t ≤ aH1(t), bH2(t) ≤ h2(t)t ≤ 2∗H2(t)

dla t ∈ R, gdzie hj := H ′
j dla j ∈ {1, 2}.

Je»eli f jest nieparzysta, to zakªadamy dodatkowo, »e Hj s¡ parzyste i rozszerzamy je na
pªaszczyzn¦ zespolon¡ jako Hj(z) := Hj(|z|), z ∈ C. Analogicznie jak wcze±niej okre±lamy

M(u) :=

∫

RN

|∇u|2 dx− N

2

∫

RN

H(u) dx

i wprowadzamy zbiór ogranicze« M := {u ∈ H1(RN) \ {0} : M(u) = 0}. Ponadto Mrad :=
M∩H1

rad(R
N). Zbiór M ma nast¦puj¡ce rozbicie

M0 =

{
u ∈ M :

d2

ds2
J(s ∗ u)|s=1 = 0

}
,

M− =

{
u ∈ M :

d2

ds2
J(s ∗ u)|s=1 < 0

}
,

M+ =

{
u ∈ M :

d2

ds2
J(s ∗ u)|s=1 > 0

}
.

Otrzymujemy wówczas nast¦puj¡ce twierdzenie.

Twierdzenie 42 ([(P9), Theorem 1.9]). Zaªó»my, »e zachodz¡ (F.4.1)�(F.4.4), (H.4.1), (H.4.2),
(J1) oraz ρ > 0 jest dostatecznie maªe. Wówczas istniej¡ ũ ∈ Sρ oraz λũ > 0 takie, »e
J(ũ) = min

M−∩H1
rad

(RN )∩Dρ

J > 0 oraz (ũ, λũ) jest rozwi¡zaniem (33). Ponadto, je±li f jest niepa-

rzysta lub f |(−∞,0) ≡ 0, to J(ũ) = min
M−∩Dρ

J oraz ũ jest dodatnia i radialnie nierosn¡ca.

Ponadto jeste±my w stanie sprawdzi¢, »e znalezione rozwi¡zanie nie jest stabilne.

Propozycja 43 ([(P9), Theorem 1.11]). Zaªó»my, »e zachodz¡ zaªo»enia Twierdzenia 42, (J2),
(F.4.6) oraz f jest nieparzysta. Wówczas ũ jest silnie niestabilne.

Nast¦pnie w (P12) badali±my zagadnienie podobne do zagadnienia z (H6). Dokªadniej,
rozwa»amy nast¦puj¡cy problem

(36)





(−∆)mu+
µ

|x|2mu+ λu = ηu3 + g(u), x ∈ R
2m,

∫

R2m

u2 dx = ρ > 0,

gdzie g jest nieliniowo±ci¡ o krytycznym, wykªadniczym wzro±cie. Prawa strona jest L2-krytyczna,
gdy η > 0 lub L2-ponadkrytyczna, gdy η = 0. Ponadto µ ≥ 0.

Wprowadzamy przestrze«

Xm :=

{
u ∈ Hm(R2m) : µ

∫

R2m

u2

|x|2m dx <∞
}
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oraz jej podprzestrze« Xm
rad := Xm ∩ Hm

rad(R
2m). W szczególno±ci, gdy µ = 0, to Xm =

Hm(R2m). Funkcjonaª energii J : Xm → R stowarzyszony z (36) jest dany wzorem

J(u) =
1

2

∫

R2m

|∇mu|2 + µ

|x|2mu
2 dx−

∫

R2m

η

4
u4 +G(u) dx,

gdzie G(s) =
∫ s

0

g(t) dt. Analogicznie do wcze±niejszych rozwa»a«, wprowadzamy rozmaito±¢

M jako

M :=

{
u ∈ Xm

rad(R
2m) \ {0} :

∫

R2m

|∇mu|2 + µ

|x|2mu
2 dx =

∫

R2m

η

2
u4 +H(u) dx

}
,

gdzie H(s) = g(s)s− 2G(s). Wprowad¹my oznaczenie αm :=
2m(2π)2m

ω2m−1

. Rozpatrujemy nast¦-

puj¡ce zaªo»enia

(F.4.8) g i h := H ′ s¡ ci¡gªe, |g(s)|+ |h(s)| = O(|s|) przy s→ 0 oraz

lim
|s|→∞

(|g(s)|+ |h(s)|)/eαs2 = 0 dla wszystkich α > αm.

(F.4.9) lim
s→0

H(s)/s4 = 0.

(F.4.10) Istniej¡ β > 0 oraz p > 4 takie, »e G(s) ≥ β|s|p dla s ∈ R.

(F.4.11) 4H(s) ⪯ h(s)s dla s ∈ R \ {0}.

(F.4.12) Istnieje θ > 4 taka, »e 0 ≤ θG(s) ≤ sg(s) dla s ∈ R.

Otrzymujemy nast¦puj¡ce twierdzenie.

Twierdzenie 44 ([(P12), Theorem 1.1]). Zaªó»my, »e zachodz¡ (F.4.8)�(F.4.12),

ηC4
4ρ < 2

oraz

β >

(
(θ − 2)(p− 4)

(θ − 4)(p− 2)

) p−4

2 (
1− η

2
C4

4ρ
) 1

(p− 2)Cp
pρ
,

gdzie C4 := C2m,4, Cp := C2m,p > 0 s¡ okre±lone w (19). Wówczas istniej¡ λ > 0 oraz u ∈
S ∩M takie, »e

J(u) = inf
D∩M

J = inf
S∩M

J > 0

oraz u jest rozwi¡zaniem (44). Je±li ponadto m = 1 oraz g jest nieparzysta, to u ≥ 0.

4.7.5. Fale bie»¡ce w równaniu Schrödingera

W pracy (P11) jeste±my zainteresowani istnieniem fal bie»¡cych w równaniu Schrödingera

i∂tΦ = ∆Φ+ F (|Φ|2)Φ, (x, t) ∈ R
N × R.
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Poszukiwanie fal bie»¡cych postaci Φ(x, t) = u(x1 − ct, y), u : RN → C, x = (x1, y) ∈ R
N

prowadzi do nast¦puj¡cego równania

(37) −ic∂x1
u+∆u+ (1 + u)F (|1 + u|2) = 0, x ∈ R

N

z warunkiem u(x) → 1 przy |x| → ∞. Wykorzystuj¡c podej±cie wariacyjne (b¦d¡ce wariantem
podej±cia z [34]) uzyskujemy rezultat o istnieniu sªabych rozwi¡za« równania (37) w wymiarach
N ≥ 4, przy delikatnie sªabszych zaªo»eniach, ni» w [28]. Dokªadniej, rozwa»amy nast¦puj¡ce
zaªo»enia.

(F.5.1) F ∈ C[0,∞) jest klasy C1 w otoczeniu 1, F (1) = 0 oraz F ′(1) = −1.

(F.5.2) lim sup
s→∞

|F (s)|/s2∗−22 = 0.

W odró»nieniu od [28], nie potrzebujemy peªnej analizy koncentracji zwarto±ci, a jedynie
uogólnionej wersji lematu typu Lions'a [(P11), Lemma 1.2].

4.7.6. Niewariacyjne metody w równaniach ró»niczkowych

W pracy (P1) zajmowali±my si¦ paraboliczno-parabolicznym ukªadem równa« Kellera-
Segela w wymiarze 1, tzn.





∂tu = ∂x (a(u)∂xu− u∂xv) , w (0,∞)× (0, 1),
∂tv = ∂2xv − v + u, w (0,∞)× (0, 1),
u(0, x) = u0(x), v(0, x) = v0(x), dla x ∈ (0, 1)

z warunkiem brzegowym

∂xu = ∂xv = 0 on (0,∞)× {0, 1}.

Powy»ej, a ∈ C[0,∞) ∩ C2(0,∞) jest dodatni¡ nieliniowo±ci¡ tak¡, »e sa(s) ≲ 1 dla s ≥ 0
oraz a ̸∈ L1(1,∞). W szczególno±ci mo»emy rozwa»a¢ zagadnienie z tzw. krytyczn¡ dyfuzj¡,
czyli w przypadku a(u) = (1 + u)−1. Pokazujemy wówczas, »e - w przeciwie«stwie do wy»-
szych wymiarów - rozwi¡zanie powy»szego ukªadu jest ograniczone. Dokªadniej, otrzymujemy
nast¦puj¡ce twierdzenie.

Twierdzenie 45 ([(P1), Theorem 1.2]). Przypu±¢my, »e a jest jak powy»ej oraz (u0, v0) ∈
(W 1,∞(0, 1))2 jest par¡ nieujemnych warunków pocz¡tkowych. Wówczas rozwi¡zanie (u, v)
ukªadu jest ograniczone.

Rozpatrujemy tak»e ukªad paraboliczno-eliptyczny




∂tu = ∂x (a(u)∂xu− u∂xv) , w (0,∞)× (0, 1),
0 = ∂2xv − v + u, w (0,∞)× (0, 1),
u(0, x) = u0(x), dla x ∈ (0, 1)

z warunkiem brzegowym

∂xu = ∂xv = 0 on (0,∞)× {0, 1}.

i uzyskujemy analogiczny wynik o ograniczono±ci rozwi¡za«.
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Twierdzenie 46 ([(P1), Theorem 5.1]). Przypu±¢my, »e a jest jak powy»ej oraz u0 ∈ W 1,∞(0, 1)
jest funkcj¡ nieujemn¡. Wówczas rozwi¡zanie (u, v) ukªadu jest ograniczone.

W pracy (P5) rozwa»amy równanie eliptyczne postaci

∆u− k
∂u

∂x
− λu = 0

w zbiorze Ω = R× (0, π), które pochodzi z równa« Maxwella (przy opisie zjawiska magnetycz-
nej lewitacji). W pracach �zycznych mo»na znale¹¢ rozwi¡zania tego typu równa« wypisane
z wykorzystaniem funkcji elementarnych. W pracy jeste±my zatem zainteresowani zagadnie-
niem jednoznaczno±ci rozwi¡za« takich równa«. Dowodzimy najpierw odpowiedni¡ zasad¦
Pharmén'a-Lindelöfa.

Twierdzenie 47 ([(P5), Theorem 2.1]). Niech Ω = R×(0, π), k ∈ R oraz λ ≥ 0. Przypu±¢my,
»e u ∈ C2(Ω) speªnia

∆u− k
∂u

∂x
− λu = 0 w Ω

oraz lim inf
(x′,y′)→(x,y)

u(x′, y′) ≥ 0 dla wszystkich (x, y) ∈ ∂Ω. Niech µR := min
x2+y2=R2, (x,y)∈Ω

u(x, y).

Je»eli
lim
n→∞

µRn

Rn

= 0 dla pewnych Rn → ∞,

to u ≥ 0 w Ω.

Z powy»szego szybko wnioskujemy twierdzenie o jednoznaczno±ci.

Twierdzenie 48 ([(P5), Theorem 2.2]). Niech f : Ω → R, g, h : R → R b¦d¡ ci¡gªe, k ∈ R.
Je±li λ ≥ 0, to zagadnienie

{
∆u− k

∂u

∂x
− λu = f(x, u) in Ω,

u(x, 0) = g(x), u(x, π) = h(x) x ∈ R

posiada co najwy»ej jedno rozwi¡zanie w klasie

{
u ∈ C2(Ω) ∩ C(Ω) : lim

|(x,y)|→∞

u(x, y)

|(x, y)| = 0

}
.

W szczególno±ci, istnieje co najwy»ej jedno rozwi¡zanie w klasie u ∈ C2(Ω) ∩ Cb(Ω).

Wykorzystuj¡c odpowiedni¡ zamian¦ zmiennych, z powy»szych twierdze« mo»emy wy-
wnioskowa¢ nast¦puj¡ce twierdzenie o jednoznaczno±ci rozwi¡za« dla zagadnienia na nakªutej
póªprzestrzeni (z usuni¦tym punktem (0, 0) na brzegu).

Twierdzenie 49 ([(P5), Theorem 3.1]). Niech k > 0. Przypu±¢my, »e ũ ∈ C2(R2
+) ∩ Cb(R2

+ \
{(0, 0)}) jest rozwi¡zaniem równania

{
div

(
|(x, y)|−k∇(x,y)ũ

)
= 0 (x, y) ∈ R

2
+,

ũ(x, 0) = 0 x ̸= 0.

Wówczas ũ ≡ 0.
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Praca (P7) skupia si¦ na polach pr¦dko±ci skojarzonych ze spiralami Kadena. Spirale Ka-
dena s¡ szczególnymi przypadkami spiralnych, samopodobnych warstw wirowych (ang. vortex
sheets). Spirala Kadena jest opisana równaniem

Z(Γ, t) = R(Γ, t)eiΘ(Γ,t),

gdzie Z jest pozycj¡ na pªaszczy¹nie zespolonej, za± R i Θ s¡ dane jako

R(Γ, t) = Γ
µ

2µ−1 , Θ(Γ, t) =
t

2π
Γ

1

1−2µ ,

gdzie µ ∈ (1/2, 1) jest dana. Wówczas g¦sto±¢ miary wirowo±ci ωt na spirali jest dana wzorem
gt(s) = (2−1/µ)s1−1/µ. Gdy t→ 0+, bezdywergentne pole pr¦dko±ci odpowiadaj¡ce ωt zbiega
w L2

loc do bezdywergentnego pola pr¦dko±ci v o wirowo±ci danej jako

dω0(x1 + ix2) = αxα−1
1 χ(0,∞)(x1)δ0(x2) dx1 dx2, α = 2− 1/µ.

Wtedy v jest dane przez wzór Biot'a-Savarta [10, Theorem 2.1, Proposition 1.4]

v(x) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 dω0(y).

Pojawia si¦ wówczas naturalne pytanie, czy v rozwi¡zuje równanie typu Eulera.

Twierdzenie 50 ([(P7), Theorem 1.1]). Niech µ = 2/3. Wówczas v speªnia (w sensie dystry-
bucji)

(v · ∇)v +∇p = Y δ(0,0),

gdzie δ(0,0) jest miar¡ Diraca w (0, 0), za± Y =

∫

∂B(0,1)

1

2
|v(x)|2x− (v(x) · x)v(x) dS(x).

Z kolei dla µ ∈ (2/3, 1) nieco inne równanie jest speªnione.

Twierdzenie 51 ([(P7), Theorem 1.2]). Niech µ ∈ (2/3, 1). Wówczas v speªnia (w sensie
dystrybucji)

(v · ∇)v +∇p = (−v2, 0)γδΣ,
gdzie γ(x1, x2) = αxα−1

1 χ(0,∞)(x1)δ0(x2), za± Σ = {(x1, 0) : x1 ≥ 0}.

4.7.7. Informatyka - teoria grafów

W pracy (P4) analizie poddany byª algorytm on-line First-Fit kolorowania grafów na
grafach przedziaªowych. Praca ta zawiera obserwacje poczynione w pracy magisterskiej.

5. Informacja o aktywno±ci naukowej realizowanej w wi¦cej ni» jednej uczelni,
w szczególno±ci zagranicznej

Studia doktoranckie uko«czyªem naWydziale Matematyki i Informatyki Uniwersy-
tetu Mikoªaja Kopernika w Toruniu w 2019 roku, gdzie - od pa¹dziernika 2019 roku byªem
zatrudniony na stanowisku asystenta, a nast¦pnie (od pa¹dziernika 2023 roku) na stanowisku
adiunkta; w tej jednostce przebywam nieprzerwanie od pa¹dziernika 2020 roku na urlopie
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bezpªatnym. Od pa¹dziernika 2020 roku do ko«ca wrze±nia 2022 roku pracowaªem na stano-
wisku adiunkta w Instytucie Matematycznym Polskiej Akademii Nauk, za± od pa¹-
dziernika 2022 roku jestem zatrudniony na stanowisku adiunkta naWydziale Matematyki,
Informatyki i Mechaniki Uniwersytetu Warszawskiego. We wszystkich wspomnianych
jednostkach prowadziªem aktywn¡ dziaªalno±¢ naukow¡.

Ponadto, w 2019 roku odbyªem dwutygodniowy sta» doktorancki NAWA w University
of Milan-Bicocca pod opiek¡ prof. Simone Secchi. Ponadto odbyªem krótkie wizyty stu-
dyjne (tygodniowe): jedn¡ w Karlsruhe Institute of Technology (w 2020 r.) oraz trzy w
Polytechnic University of Bari (w 2023 r., w 2024 r. oraz w 2025 r.).

6. Informacja o osi¡gni¦ciach dydaktycznych, organizacyjnych oraz populary-
zuj¡cych nauk¦

6.1. Publikacje dydaktyczne i popularyzatorskie

(Dyd1) B. Bieganowski: Narz¦dzia informatyczne w nauczaniu przedmiotów przyrodniczych,
w: A.B. Kwiatkowska, M.M. Sysªo [red.]: Informatyka w edukacji. My±l komputacyjnie!,
Toru« 2018, ISBN: 978-83-231-4049-8

(Dyd2) B. Bieganowski, A. Dymek, D. Strzelecki: �rednie w zawodach studenckich,
Delta 12 (547), 2019, p. 18-19

(Dyd3) M. Bieganowska, B. Bieganowski: Bezpiecze«stwo kont w Internecie,
w: A.B. Kwiatkowska, M.M. Sysªo [red.]: Informatyka w edukacji. Uczniowie i nauczy-
ciele w szkole przyszªo±ci, Toru« 2022, ISBN: 978-83-8180-645-9

(Dyd4) B. Bieganowski: Metoda haszowania w podstawie programowej. Hashcat jako narz¦dzie
ªamania haszy haseª - zastosowania na lekcjach informatyki,
w: A.B. Kwiatkowska, M.M. Sysªo [red.]: Informatyka w edukacji. Edukacja informa-
tyczna - wyzwania wspóªczesnego ±wiata, Toru« 2023, ISBN: 978-83-8180-810-1

(Dyd5) R. Skiba, P. Miziuªa, D. Strzelecki, B. Bieganowski: Zbiór zada« z analizy i algebry,
edycja rozszerzona, Toru« 2024, ISBN: 978-83-6683-846-8

W pracy (Dyd1) omówione s¡ wybrane narz¦dzia informatyczne, które mog¡ by± stoso-
wane w szkoªach do realizacji podstawy programowej przedmiotów przyrodniczych (np. �-
zyka). Praca (Dyd2) sªu»y pokazaniu zastosowania twierdze« o warto±ci ±redniej w zadaniach
olimpijskich. Celem pracy (Dyd3) jest u±wiadomienie zagro»e« internetowych, których celem
mo»e by¢ konto u»ytkownika, za± praca (Dyd4) polemizuje z tre±ci¡ podstawy programowej
nauczania informatyki w kwestii sposobu wprowadzenia poj¦cia metody haszowania. Z kolei
ksi¡»ka (Dyd5) jest opracowaniem kilkuset zada« typu olimpijskiego wraz ze szczegóªowymi
rozwi¡zaniami przeznaczonym dla studentów matematyki.

6.2. Osi¡gni¦cia organizacyjne

1. Wspóªorganizacja seminarium Variational methods and PDEs w IMPAN (od pa¹dzier-
nika 2020 roku)
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2. Praca w komitecie organizacyjnym Juliusz Schauder Medal Awarding Ceremony, 5.06.2021
r., Toru«

3. Praca w komitecie organizacyjnym warsztatów Schauder Winter School: Geometric and
Topological Methods in Dynamics of PDEs, 13-15.02.2023 r., Toru«

4. Praca w komitecie organizacyjnym i naukowym Summer School on Calculus of Varia-
tions: variational and geometrical methods, 10-14.06.2024 r., Warszawa

5. Praca w komitecie organizacyjnym konferencji Symposium on Nonlinear Analysis, 17-
21.06.2024 r., Toru«

6. Wspóªorganizacja sesji Variational and topological methods in PDEs w ramach 9th Eu-
ropean Congress of Mathematics, 15-19.07.2024 r., Sewilla, Hiszpania

7. Praca w komitecie organizacyjnym konferencji Patterns in solutions to the incompressible
Euler equation, 4-9.08.2024 r., B¦dlewo

8. Praca w komitecie organizacyjnym i naukowym konferencji Variational methods in ap-
plications to PDEs, 26-30.08.2024 r., B¦dlewo

9. Praca w komitecie organizacyjnym i naukowym Workshop for young researchers in
PDEs, 27-31.01.2025 r., Warszawa

6.3. Pozostaªe

1. Czªonek Komitetu Organizacyjnego Konkursu Informatycznego Bóbr (od 2011 r.)

2. Czªonek Komitetu Okr¦gowego (toru«skiego) Olimpiady Matematycznej (od 2016 r.)

7. Inne informacje dotycz¡ce kariery zawodowej

7.1. Zaproszone referaty na konferencjach (i w ramach minisympozjów)

� 02.2025: Conference on Mathematics of Wave Phenomena (Karlsruhe); zaproszony refe-
rat (w ramach minisympozjum): Semiclassical states for the curl-curl problem

� 12.2024: 14th AIMS Conference (Abu Dhabi); dwa zaproszone referaty (w ramach mini-
sympozjów): Travelling waves for nonlinear Schrödinger equations, Multiplicity of solu-
tions to strongly inde�nite problems with sign-changing nonlinearities

� 09.2024: Warsaw Meeting in Analysis and PDEs (Warszawa); zaproszony referat: Nor-
malized ground states of the nonlinear Schrödinger equation: new minimization technique

� 06.2024: XIII Forum of Partial Di�erential Equations (B¦dlewo); zaproszony referat:
Normalized ground states of the nonlinear Schrödinger equation: new minimization tech-
nique
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� 06.2024: Symposium on Nonlinear Analysis (Toru«); zaproszony wykªad plenarny: Nor-
malized ground states of the nonlinear Schrödinger equation with at least mass critical
growth

� 05.2024: International Conference on Elliptic and Parabolic Problems (Gaeta); zapro-
szony referat (w ramach minisympozjum): Semiclassical states for the curl-curl problem

� 09.2022: Nonuniformly elliptic problems (Warszawa); zaproszony referat: Strongly inde-
�nite variational problems with sign-changing nonlinearities

� 07.2022: Topics in variational problems arising from models in physics (B¦dlewo); za-
proszony referat: Normalized ground states of the nonlinear Schrödinger equation with
at least mass critical growth

� 07.2022: Equadi� 2022 (Brno); zaproszony referat (w ramach minisympozjum): Nor-
malized ground states of the nonlinear Schrödinger equation with at least mass critical
growth

� 05.2022: School on nonlinear PDEs (Warszawa); zaproszony referat: Normalized ground
states of the nonlinear Schrödinger equation with at least mass critical growth

� 05.2022: Recent trends in nonlinear and dispersive equations: equilibria, stability, dyna-
mics (B¦dlewo); zaproszony referat: Normalized ground states of the nonlinear Schrödin-
ger equation with at least mass critical growth

� 09.2021: 12th Forum of Partial Di�erential Equations (B¦dlewo); zaproszony referat:
Normalized ground states of the nonlinear Schrödinger equation with at least mass critical
growth

� 09.2019: Jubileuszowy Zjazd Matematyków Polskich w stulecie PTM (Kraków); zapro-
szony referat (w ramach minisympozjum): Bound states for the Schrödinger equation
with mixed-type nonlinearities

� 09.2018: UMI-SIMAI-PTM Joint Meeting (Wrocªaw); zaproszony referat (w ramach
minisympozjum): Fractional Schrödinger equations with singular potentials and sign-
changing nonlinearities

� 07.2018: Young PDEers at work (Warszawa); zaproszony referat: The semirelativistic
Choquard equation with a local nonlinear term

� 05.2017: International Conference on Elliptic and Parabolic Problems (Gaeta); zapro-
szony referat (w ramach minisympozjum): Ground-state solutions for the (non-local)
Schrödinger equation with sign-changing nonlinearities

7.2. Granty, nagrody, wyró»nienia

Kierowanie grantami

� Kierownik grantu Preludium, Narodowe Centrum Nauki
(30.01.2018-29.01.2022; 2017/25/N/ST1/00531)
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� Kierownik grantu Nowe Idee 3A, IDUB, Uniwersytet Warszawski
(01.01.2023-31.12.2023; 01/IDUB/2019/94)

� Kierownik grantu Sonata, Narodowe Centrum Nauki
(27.06.2023-26.06.2026; 2022/47/D/ST1/00487)

� Czªonek Komitetu Organizacyjnego Tematycznego Programu Badawczego, IDUB, Uni-
wersytet Warszawski
(01.03.2024-28.02.2025)

Nagrody, stypendia i wyró»nienia

� Stypendium Ministra Edukacji i Nauki dla wybitnych mªodych naukowców (2023-2026)

� Stypendium Ministra Nauki i Szkolnictwa Wy»szego dla najlepszych doktorantów (2018-
2019)

� Stypendium Ministra Nauki i Szkolnictwa Wy»szego dla najlepszych studentów (2014-
2015)

� Nagroda im. J. P. Schaudera dla mªodych matematyków (2023-2024)

� Zªoty medal i nagroda pierwszego stopnia w mi¦dzynarodowych zawodach Nicolai Co-
pernici International Students Contest (2017)

� Nagroda drugiego stopnia w LIX Konkursie im. Józefa Marcinkiewicza na najlepsz¡
studenck¡ prac¦ z matematyki (2015)

� Nagroda drugiego stopnia w mi¦dzynarodowych zawodach North Countries Universities
Mathematical Competition (2015)

� Nagroda trzeciego stopnia w mi¦dzynarodowych zawodach The Mirror of William Lowell
Putnam Mathematical Competition (dwukrotnie: 2014 i 2013)

� Nagroda trzeciego stopnia w mi¦dzynarodowych zawodach International Mathematics
Competition for University Students (2014)

7.3. Recenzje dla czasopism

Recenzent artykuªów w czasopismach, m.in.: Advances in Mathematical Physics, Analysis
and Mathematical Physics, Calculus of Variations and Partial Di�erential Equations, Jour-
nal de Mathématiques Pures et Appliquées, Journal of Fixed Point Theory and Applications,
Journal of Geometric Analysis, Journal of Mathematical Physics, Mathemaical Methods in
Applied Sciences, Monatshefte für Mathematik, Nonlinear Analysis: Theory, Methods & Ap-
plications, Nonlinear Di�erential Equations and Applications NoDEA, Qualitative Theory of
Dynamical Systems, Rendiconti del Circolo Matematico di Palermo Series 2, Rocky Mountain
Journal of Mathematics, Studia Mathematica, Topological Methods in Nonlinear Analysis,
Zeitschrift für Angewandte Mathematik und Physik.

7.4. Opieka naukowa
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Promotor pomocniczny doktoranta mgr. Adama Konysza od pa¹dziernika 2024 r. na Uni-
wersytecie Mikoªaja Kopernika w Toruniu. Promotor jego pracy magisterskiej w latach 2022-
2024. Dwie wspólne prace z mgr. Konyszem zostaªy ju» opublikowane (P6), (P8).
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