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Summary

This thesis is devoted to studying the interplay between geometric, analytic and topological
properties of homeomorphisms. We discuss homeomorphisms between subsets of Rn and between
subsets of n-dimensional manifolds. We always assume n � 2. This research topic belongs to
geometric measure and function theory. Recently, it has received more attention due to possible
applications in nonlinear elasticity. We formulate new and potentially useful results about
diffeomorphisms, homeomorphisms and bi-Lipschitz and almost everywhere approximately (a. e.)
differentiable homeomorphisms.

There are five main, original results of this thesis—Theorems 1.1, 1.2, 1.3 contained in Chap-
ter 3 and Theorems 1.4 and 1.5 contained in Chapters 4 and 5, respectively. They were obtained
in collaboration with Paweł Goldstein (University of Warsaw) and Piotr Hajłasz (University of
Pittsburgh). They are contained in two yet unpublished papers [39, 40].

The first three results are from [40] and they are very similar in spirit as each concerns
gluing homeomorphisms of a certain class on an n-dimensional connected manifold Mn of
a corresponding regularity. We show that given two disjoint families of sets {Di}`i=1, {D0

i}`i=1,
Di, D

0
i ⇢ Mn, which satisfy certain regularity properties, and orientation preserving diffeomor-

phisms Fi : Di ! Mn with F (Di) = D
0
i, it is possible to find a diffeomorphism F : Mn ! Mn

such that F = Fi on Di. The proof uses some classical tools from differential geometry as well
as explicit constructions of diffeomorphims which we repetitively use in this thesis. Then, we
show an analogous result under the assumption that Fi are orientation preserving bi-Lipschitz
homeomorphisms and, eventually, that Fi are orientation preserving homeomorphisms. The
proof in these two cases is almost the same, and very similar to the diffeomorphic one, yet it
requires use of deep theorems from (algebraic) topology.

Theorems 1.4 and 1.5 from [39] discuss prescribing derivatives of diffeomorphisms and a. e.
approximately differentiable homeomorphisms, respectively. Essentially, we show that under
some mild assumptions on T : [0, 1]n ! GL(n)+, where GL(n)+ denotes the space of n ⇥ n

matrices with positive determinant, there is a diffeomorphism � of the unit cube [0, 1]n whose
derivative equals T on an arbitrarily large (in measure) subset of the cube. Moreover, � = id on
the boundary of the cube. To construct �, we use in particular the already mentioned explicit
constructions of diffeomorphisms and the Dacorogna–Moser theory of mappings with prescribed
Jacobian.

Theorem 1.5 is the most complex theorem of this thesis. Given T : [0, 1]n ! GL(n), where
GL(n) denotes the space of n⇥n invertible matrices, which satisfies some mild assumptions we
construct an a. e. homeomorphism � of the unit cube whose approximate derivative equals T a. e.
on [0, 1]n. Moreover, � = id on the boundary of the cube. We show that our assumptions on T

are necessary and sufficient, which provides a characterization of differentiability properties of
the class of a. e. differentiable homeomorphisms. The proof employs Theorem 1.4 and a certain
ingenious iteration scheme, inspired by the homeomorphic measures theorem of Oxtoby and
Ulam.

Moreover, we provide corollaries to main theorems and prove a series of technical lemmata
which may be of independent interest. This thesis also contains an appendix, in which certain
definitions (e. g., orientation on a topological manifold) or used methods (constructing diffeo-
morphisms with 1-parameter groups of diffeomorphisms) are explained.
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Streszczenie

Niniejsza rozprawa jest poświęcona badaniu związków między geometrycznymi, analitycznymi
i topologicznymi własnościami homeomorfizmów. Badamy homeomorfizmy podzbiorów Rn oraz
podzbiorów n-wymiarowych rozmaitości. Zakładamy, że n � 2. Ten obszar badań należy do
geometrycznej teorii miary i przekształceń. W ostatnim czasie zwrócono większą uwagę na tę
tematykę ze względu na możliwe zastosowania tej teorii w nieliniowej teorii sprężystości. For-
mułujemy nowe oraz użyteczne wyniki dotyczące dyfeomorfizmów, homeomorfizmów, homeo-
morfizmów bi-lipschitzowskich oraz prawie wszędzie (p. w.) aproksymatywnie różniczkowalnych
homeomorfizmów.

Niniejsza rozprawa zawiera pięć nowych wyników. Są to Twierdzenia 1.1, 1.2, 1.3 zawarte
w Rozdziale 3 oraz Twierdzenia 1.4 i 1.5 zawarte w, odpowiednio, Rozdziałach 4 i 5. Wyniki te
zostały uzyskane we współpracy z Pawłem Goldsteinem (Uniwersytet Warszawski) i Piotrem
Hajłaszem (University of Pittsburgh). Są one zawarte w dwóch nieopublikowanych jeszcze
artykułach [39, 40].

Pierwsze trzy wyniki pochodzą z [40] i są one do siebie bardzo zbliżone. Każde z tych
twierdzeń dotyczy sklejania homeomorfizmów pewnej klasy na n-wymiarowej spójnej rozmaitości
Mn o regularności odpowiadającej regularności rozpatrywanego homeomorfizmu. Pokazujemy,
że gdy mamy dane dwie rozłączne rodziny zbiorów o pewnej regularności {Di}`i=1, {D0

i}`i=1,
Di, D

0
i ⇢ Mn, oraz zachowujące orientację dyfeomorfizmy Fi : Di ! Mn spełniające warunek

F (Di) = D
0
i, da się znaleźć dyfeomorfizm F : Mn ! Mn, taki że F = Fi na Di. W dowodzie

korzystamy z klasycznych narzędzi geometrii różniczkowej oraz z konstrukcji konkretnych dyfeo-
morfizmów, wielokrotnie używanych w niniejszej rozprawie. Następnie dowodzimy analogiczny
wynik przy założeniu że Fi są zachowującymi orientację bi-lipschitzowskimi homeomorfizmami
oraz przy założeniu że Fi są zachowującymi orientację homeomorfizmami. Dowód w ostatnich
dwóch przypadkach jest niemalże identyczny oraz bardzo podobny do dowodu w przypadku
dyfeomorfizmów, jednakże wymaga on użycia głębokich twierdzeń z topologii (algebraicznej).

Twierdzenia 1.4 oraz 1.5 z [39] dotyczą zadawania pochodnej, odpowiednio, dyfeomorfizmów
oraz p.w. aproksymatywnie różniczkowalnych homeomorfizmów. Pokazujemy, że przy słabych
założeniach o T : [0, 1]n ! GL(n)+, gdzie GL(n)+ oznacza przestrzeń macierzy n⇥n o dodatnim
wyznaczniku, istnieje dyfeomorfizm � kostki jednostkowej [0, 1]n, którego pochodna jest równa
T p. w. na [0, 1]n. Ponadto � równa się identyczności na brzegu kostki. Aby skonstruować �
używamy między innymi wspomnianych już konstrukcji dyfeomorfizmów oraz teorii Dacorogni-
Mosera dotyczącej przekształceń o zadanym jakobianie.

Twierdzenie 1.5 jest najbardziej złożonym twierdzeniem niniejszej rozprawy. Mając dane
T : [0, 1]n ! GL(n), gdzie GL(n) oznacza przestrzeń odwracalnych macierzy n ⇥ n, które
spełnia pewne naturalne warunki, konstruujemy p. w. różniczkowalny homeomorfizm � kostki
jednostkowej, którego aproksymatywna pochodna równa się T p. w. na [0, 1]n. Ponadto �
równa się identyczności na brzegu kostki. Co więcej, pokazujemy że nasze założenia o T są
konieczne i wystarczające, co pozwala na scharakteryzowanie własności różniczkowych klasy p.w.
aproksymatywnie różniczkowalnych homeomorfizmów. W dowodzie używamy Twierdzenia 1.4
oraz pewnego pomysłowego schematu iteracyjnego zainspirowanego twierdzeniem Oxtoby’ego
i Ulama o homeomorficznych miarach.

Ponadto w rozprawie sformułowane są wnioski płynące z głównych twierdzeń oraz tech-
niczne lematy, które również mogą być przydatne. Rozprawa zawiera także dodatek, w którym
wyjaśnione są pewne definicje (np. orientacji na rozmaitości topologicznej) oraz użyte metody
(np. konstruowanie dyfeomorfizmów za pomocą 1-parametrowych grup dyfeomorfizmów).
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Chapter 1

Introduction

This thesis is devoted to studying the interplay between geometric, analytic and topological
properties of homeomorphisms. We discuss homeomorphisms between subsets of Rn and
between subsets of n-dimensional manifolds. We always assume n � 2. This research topic
belongs to geometric measure and function theory.

There are five main, original results of this thesis—Theorems 1.1, 1.2, 1.3 contained in
Chapter 3 and Theorems 1.4 and 1.5 contained in Chapters 4 and 5, respectively. They were
obtained in collaboration with Paweł Goldstein (University of Warsaw) and Piotr Hajłasz
(University of Pittsburgh). They are contained in two yet unpublished papers [39, 40].

We shall begin with a rough description of basic definitions and general context. Then,
we describe each main result and provide an overview of literature concerning the topic.
At the end of this introduction, we present a detailed structure of this dissertation.

1.1 General introduction

Let ⌦ denote a bounded domain in Rn for n � 2. When writing that F : ⌦ ! Rn is
a homeomorphism, we mean that F is a homeomorphism onto its image F (⌦). We shall
denote surjective mappings with ⇣, that is F : X ⇣ Y means that F (X) = Y . In
Section 2.1, notation used throughout the thesis is collected, here we shall recall some
definitions whenever we need them.

Given a homeomorphism F : ⌦ ! Rn, it is clear that for any open U ⇢ ⌦, F (U)
is open in the subspace topology of F (⌦). However, it is not clear at all why F (U) (or
F (⌦)) should be open in the topology of Rn. Indeed, the fact that f(⌦) (and hence f(U))
is open follows from a deep theorem of Brouwer on invariance of domain. This is specific to
Euclidean spaces and, in particular, means that homeomorphisms map boundary points to
boundary points and interior points to interior points. More precisely, given two bounded
domains ⌦,⌦0 ⇢ Rn and a homeomorphism F : ⌦⇣ ⌦0, Brouwer’s theorem implies that

F (@⌦) = @⌦0 and F (⌦) = ⌦0
.

This observation underlines all of our constructions of homeomorphisms. It allows us to
easily glue mappings with one another without explicitly checking what the image of a given
homeomorphism looks like as it suffices to know its behaviour only on the boundary of its
domain. We elaborate further on these key topological observations in Section 2.2.

The original proof due to Brouwer used Brouwer’s fixed point theorem and some ar-
guments from algebraic topology. Nowadays, there are more proofs available, for example

11



12 CHAPTER 1. INTRODUCTION

using the degree theory for continuous mappings (but it is interesting to note that the degree
itself was first developed by Brouwer). Degree theory, in a sense, serves as a link between
analysis and topology. Even though we will not use degree theory explicitly in the proofs
of our main results, we invoke it briefly in Appendix A.4.1 to define orientation preserving
homeomorphisms and indicate some of their properties.

Only one of the main results, Theorem 1.5, concerns approximate differentiability.
Nonetheless, this notion plays a crucial role in this dissertation and that is why we describe
the definition here.

We say that a measurable mapping f : ⌦! Rm, ⌦ ⇢ Rn is approximately differentiable
at a point x 2 ⌦ if there is a measurable set Ex and a linear mapping L(x) : Rn ! Rm

such that
lim
r!0+

|Ex \B(x, r)|
|B(x, r)| = 1 (1.1)

and
lim

Ex3y!x

|f(x)� f(y)� L(x) (x� y)|
|x� y| = 0.

In (1.1), |A| of a measurable set A denotes the Lebesgue measure of A. Condition (1.1)
means that x is a point of density 1 of the set Ex. The linear mapping L(x) is the
approximate derivative and we denote it with Daf(x) := L(x). Clearly, if a measurable
mapping f is classically differentiable at a point x, it is also approximately differentiable
at this point. The converse is not true as portrayed by the following

Example. Let D be the planar domain with an inner cusp

D =
�
(x, y) : �1 < x < 1, �1 < y <

p
|x|
 

and f : (�1, 1)2 ! R2 be defined as

f(x) =

(
x for x 2 D,

(0, 0) for x 2 (0, 1)2 \D.

The point (0, 0) is the point of density 1 of the domain D and hence f is approximately
differentiable at (0, 0) with Daf((0, 0)) = I, the identity matrix.

The notion of approximate derivative of real-valued functions appeared in 1916 in the
works of Khintchine and, independently, of Denjoy. They both studied it mainly in the
context of generalizing the definition of the integral. Khintchine in [60] introduced the
definition of approximate differentiability de facto as we have done a few paragraphs earlier
and he called it dérivée asymptotique. However, Denjoy in [26] used an equivalent definition
and he named the property dérivée approximative, which in the end caught on. Moreover,
many authors have quoted his as the original definition. The Denjoy-like definition in
modern language can be phrased in the following manner. A mapping f : ⌦! Rn, ⌦ ⇢ Rn

is approximately differentiable at a point x 2 ⌦ if there is a linear mapping L(x) : Rn ! Rm

such that x is a point of density 1 of the set
⇢
y 2 ⌦ :

|f(y)� f(x)� L(x)(y � x)|
|y � x| < "

�
.

The fact that both of these definitions are equivalent has been a folklore knowledge ever
since their introduction, we refer to [37, Appendix] for a precise proof.

Nowadays, approximate differentiability is mostly used in the context of the change of
variables theorem proved by Federer in [30] in 1944 in, see also [31, Section 3.2]. Moreover,
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approximate differentiability appears naturally in theorems concerned with the so-called
Lusin-type approximation. We will elaborate on both of these aspects in a farther part
of this introduction as well as in Section 2.9. Nonetheless, since both Sobolev and BV
mappings are a. e. approximately differentiable, studying approximate differentiability offers
also insight into properties of these two very important classes of mappings.

Some interest concerning homeomorphisms with a derivative was sparked by the theory
of nonlinear elasticity developed by Ball in the 1980s for example in [6]; see also [7, 9].
Nonlinear elasticity is devoted to study deformations of materials. Ball’s theory is based
on assuming some kind of elastic energy of the form

Z

⌦
W (Df(x)) dx

for the deformation f , belonging to an admissible class and equipped with derivative Df ,
and a function W : Mn⇥n ! R, where M

n⇥n denotes the space of n ⇥ n matrices. This
function is usually assumed to be C

1 and non-negative. The prevailing idea in Ball’s
approach is to impose on W conditions which cause the (hopefully existing) minimizers
of the elastic energy to be injective and/or orientation preserving. This approach rises
questions concerning many topological and geometric properties of mappings and it is only
natural to ask them in the context of homeomorphisms as this is a class of mappings which
describes deformations well. Ball’s theory inspired many influential ideas and theorems
contained for example in [77, 54, 55, 24].

In this dissertation, in Chapter 2, we develop methods for constructing diffeomorphisms
with certain differential and geometric properties. To do so, we combine topological ar-
guments (mainly to guarantee global injectivity) with standard analytical methods, for
example based on ordinary differential equations. I by no means claim to have invented
these arguments. We do, nonetheless, put them together in a nontrivial way to obtain
results of independ interest and often providing simpler proofs than those available in the
literature. Also, we show that they are useful building blocks for at least two purposes—for
extending and gluing homeomorphisms (in Chapter 3) as well as for prescribing derivatives
of diffeomorphisms and homeomorphisms (in Chapters 4 and 5). We also hope that these
methods could be put to use in Sobolev setting and in the field of structured deformations,
see e. g. [25, 19, 74].

1.2 Overview of Chapter 3

The content of Chapter 3 contains paper [40] which is currently in preparation. It is joint
work with Paweł Goldstein and Piotr Hajłasz and it concerns gluing of diffeomorphisms,
bi-Lipschitz homeomorphisms and homeomorphisms.

It was a straightforward question about diffeomorphisms between subsets of Rn that
prompted this part of our research. Let Bn denote the unit ball in Rn. We asked the
following

Question. Given two orientation preserving diffeomorphisms F,G : Bn ! Rn satisfying

F (B(0, 1/2)) ⇢ G(Bn), (1.2)

does there exist a diffeomorphism H : Bn ! Rn such that H = F on B(0, 1/2) and H = G

near @Bn?

Clearly, condition (1.2) is necessary and it turns out that it is also sufficient. This will
follow as a corollary to the following
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Theorem 1.1. Let Mn be an n-dimensional connected and oriented manifold of class C
k,

k 2 N [ {1}. Suppose that {Di}`i=1 and {D0
i}`i=1, Di, D

0
i ⇢ Mn, are two families of

pairwise disjoint sets and that each Di, i = 1, . . . , `, is a C
k-diffeomorphic closed ball. If

Fi : Di ⇣ D
0
i, i = 1, 2, . . . , `, are orientation preserving C

k-diffeomorphisms, then there is
a C

k-diffeomorphism F : Mn ⇣ Mn such that F |Di = Fi. Moreover, if Di and D
0
i for all

i = 1, . . . , ` are contained in the interior of a C
k-diffeomorphic closed ball K ⇢ Mn, F can

be chosen to equal identity outside K.

Note that we do not require balls in the family {Di}`i=1 to be disjoint from the balls in the
family {D0

i}`i=1. By a diffeomorphism F defined on a closed set, we mean a mapping which
can be extended to a diffeomorphism of a neighborhood of that closed set. Even though we
do know that each Fi can be extended as a diffeomorphism onto some neighborhood of Di,
it is not clear why these extensions can be glued into a global one, i. e., why an extension
F should exist.

We will see in Example 3.12 that it follows from Milnor’s seminal paper [69] that there
is a diffeomorphism F : A ! S7 defined on a standard closed annulus A ⇢ S7, which
cannot be extended to a diffeomorphism of S7. Due to the phenomenon of exotic spheres
(discovered and introduced in the cited paper of Milnor), we need to assume that Di and
D

0
i are C

k-diffeomorphic closed balls. We say that D ⇢ Mn is a C
k-diffeomorphic closed

ball if there is a C
k-diffeomorphism � : Bn ⇣ D.

We firstly show validity of Theorem 1.1 in the Euclidean setting and, to this end, we use
explicit constructions of specific diffeomorphisms described in Section 2.7. Then, a standard
argument allows us to transfer the Euclidean version to manifolds. The cornerstone of the
proof of Theorem 1.1 is a beautiful idea of Palais [83]. In a nutshell, it says that an
orientation preserving diffeomorphism defined on a diffeomorphic closed ball D ⇢ Mn can
be extended to a diffeomorphism of the entire Mn which equals identity away from D.

Let us make the following observation in the Euclidean setting: a C
k-diffeomorphism

F : B(0, %) ⇣ B(0, %) can be easily extended radially to a C
k-diffeomorphism eF : Rn ⇣ Rn.

However, it is not that immediate to see that a C
k-diffeomorphism F : B(0, %) ! Rn (let

us stress: F might not be onto the ball B(0, %)) can be extended to a C
k-diffeomorphism

of the entire Rn. Palais’ trick does this and more, as it produces an extension which equals
identity outside an arbitrarily small neighborhood of F (B(0, %)) [ B(0, %). Moreover, in
the diffeomorphic setting it is a fairly straightforward procedure, which provides a striking
contrast to the bi-Lipschitz and purely topological case, which we will discuss now.

We say that a mapping f : X ! Y between metric spaces (X, d) and (Y, %) is bi-
Lipschitz if there is a constant L > 0 such that for any p, q 2 X,

L
�1

d(p, q)  %(f(p), f(q))  Ld(p, q).

Clearly, any such map is a homeomorphism. Given an n-dimensional Lipschitz manifold
Mn, we say that a closed set D ⇢ Mn is a flat bi-Lipschitz closed ball if it is possible to
find a bi-Lipschitz homeomorphism � : Bn ⇣ D which can be extended as a bi-Lipschitz
homeomorphism onto a neighborhood of Bn. It is important to note that the assumption
on bi-Lipschitz flatness is restrictive since not every bi-Lipschitz closed ball is locally flat
as the example of the Fox-Artin ball shows, see [35] and [65, Theorem 3.7].

All in all, we prove

Theorem 1.2. Let Mn be an n-dimensional connected and oriented Lipschitz manifold.
Suppose {Di}`i=1 and {D0

i}`i=1, Di, D
0
i ⇢ Mn, are two families of pairwise disjoint flat

bi-Lipschitz closed balls. If Fi : Di ⇣ D
0
i, i = 1, 2, . . . , `, are orientation preserving bi-

Lipschitz homeomorphisms, then there is a bi-Lipschitz homeomorphism F : Mn ⇣ Mn



1.3. OVERVIEW OF CHAPTERS 4 AND 5 15

such that F |Di = Fi. Moreover, if Di and D
0
i for all i = 1, . . . , ` are contained in the

interior of a flat bi-Lipschitz closed ball K ⇢ Mn, F can be chosen to equal identity outside
K.

This result is significantly deeper than Theorem 1.1 as it depends on the bi-Lipschitz
stable homeomorphism conjecture, which is a very difficult result of Sullivan [89] from 1979,
see Section 3.4 for details.

We also prove an analogue of Theorems 1.1 and 1.2 for homeomorphisms. Given
an n-dimensional topological manifold Mn, we say that a closed set D ⇢ Mn is a flat
topological closed ball if there is a homeomorphism f : B̄n ⇣ D which can be extended
as a homeomorphism on a neighborhood of B̄n. Alexander’s horned ball (the compact set
bounded by Alexander’s horned sphere) shows that not every topological closed ball is flat,
see [2] for the original argument and [44, Example 2B.2] for a modern treatment.

Theorem 1.3. Let Mn be an n-dimensional connected and oriented topological manifold.
Suppose {Di}`i=1 and {D0

i}`i=1, Di, D
0
i ⇢ Mn, are two families of pairwise disjoint flat

topological closed balls. If Fi : Di ⇣ D
0
i, i = 1, 2, . . . , `, are orientation preserving homeo-

morphisms, then there is a homeomorphism F : Mn ⇣ Mn such that F |Di = Fi. Moreover,
if Di and D

0
i for all i = 1, . . . , ` are contained in the interior of a flat topological closed ball

K ⇢ Mn, F can be chosen to equal identity outside K.

The proof of Theorem 1.3 is essentially the same as the proof of Theorem 1.2; instead
of the bi-Lipschitz stable homeomorphism conjecture, we invoke the stable homeomorphism
conjecture. This is also a very difficult result. In dimension n = 2 it is due to Radó [86],
in n = 3 due to Moise [71]. In 1969, Kirby showed it for n > 4 in [61]. The remaining
case, n = 4, was solved by Quinn in [85] in 1982 (see page 1 and Theorem 2.2.2.). We
recommend [45] to anyone interested in the details of the rather complicated history of the
proof.

We suppose that Theorems 1.1, 1.2 and 1.3 might be useful in differential geometry
and geometric function theory on manifolds. They provide a vital piece of information that
diffeomorphisms or (bi-Lipschitz) homeomorphisms on good domains (diffeomorphic closed
balls or flat (bi-Lipschitz) balls) behave well. Moreover, as a large part of the content of
Chapter 3 hinges on deep theorems that have been known for quite a long time, I believe
that these results might also draw attention to useful topological notions that have not yet
been fully exploited from the point of view of analysis.

1.3 Overview of Chapters 4 and 5

A now classical result of Alberti [1, Theorem 1] states that given a measurable mapping
T : ⌦ ! Rn, for any " > 0, there is a function � 2 C

1
c (⌦) and a compact set K ⇢ ⌦ such

that
|⌦ \K| < " and D�(x) = T (x) for all x 2 K.

This theorem is usually called Lusin-type theorem for gradients because of the resemblance
to the classical Lusin theorem. Alberti’s proof of this theorem uses mainly standard real
analysis tools but does it in a very ingenious manner, it is constructive and hence it allows us
to construct C1 functions with prescribed derivative on an arbitrarily large set (in measure).

We were interested in learning what conditions on T suffice to construct a diffeomor-
phism with derivative equal T on a set of arbitrarily large measure. In other words, we
wanted to know for which measurable mappings T , a diffeomorphic version of Alberti’s
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theorem holds. The answer lies in the theorem below, where with GL(n)+ we denote the
space of real n⇥ n matrices with positive determinant.

Theorem 1.4. Let ⌦ ⇢ Rn be a bounded domain and F : ⌦ ! Rn an orientation pre-
serving diffeomorphism onto the bounded image F (⌦). Suppose that T : ⌦ ! GL(n)+ is
a measurable mapping such that

R
⌦ detT (x) dx  |F (⌦)|. Then for any " > 0, there exists

a C
1-diffeomorphism � : ⌦! F (⌦) with the following properties:

(a) �(x) = F (x) near @⌦;
(b) there exists a compact set K ⇢ ⌦ such that for every x 2 K, D�(x) = T (x) and

|⌦ \K| < ".

Observe that the assumption
R
⌦ detT (x) dx  |F (⌦)| is necessary. Indeed, it follows

from the already discussed Brouwer’s invariance of domain theorem, that �(⌦) = F (⌦)
and by the classical change of variables formula for any compact set K ⇢ ⌦,

|F (⌦)| = |�(⌦)| =
Z

⌦
detD�(x) dx >

Z

K
detT (x) dx. (1.3)

If
R
⌦ detT (x) dx > |F (⌦)|, then for sufficiently small " > 0, we would find K such that

Z

K
detT (x) dx > |F (⌦)|,

which in view of (1.3) leads to a contradiction.

Alberti’s theorem has not only been an inspiration to the theorem, it also plays a key
role in its proof. Nonetheless, the proof is rather involved and we also use Dacorogna-Moser
theory of prescribing Jacobians, see for example [22] and [20], some topological arguments
of Munkres [78] and explicit constructions of diffeomorphisms from Chapter 2.

The next main result discusses prescribing a derivative of an almost everywhere ap-
proximately differentiable homoemorphism. It is the most complex theorem of this thesis.
With GL(n) we denote the space of real n⇥ n invertible matrices.

Theorem 1.5. Let Q = [0, 1]n. For any measurable mapping T : Q ! GL(n) that satisfies
Z

Q

|detT (x)| dx = 1, (1.4)

there exists an a. e. approximately differentiable homeomorphism � : Q ⇣ Q such that
�|@Q = id and Da� = T a. e. Moreover,

(a) ��1 is approximately differentiable a. e. and Da��1(y) = T
�1(��1(y)) for almost all

y 2 Q;
(b) � preserves the sets of measure zero, i.e., for any A ⇢ Q,

|A| = 0 if and only if |�(A)| = 0.

(c) � is a limit of C1-diffeomorphisms �k : Q ⇣ Q, �k = id in a neighborhood of @Q,
in the uniform metric, i.e., k�� �kk1 + k��1 � ��1

k k1 ! 0 as k ! 1.

Loosely speaking, Theorem 1.5 shows that there are essentially no restrictions on deriva-
tives of a. e. approximately differentiable homeomorphisms. Measurablility of T is clearly
necessary and so is the volume constraint (1.4). This follows from the change of variables
formula proved by Federer in [30], see Theorem 2.29. We say that a mapping F satisfies
the Lusin (N) condition if F maps sets of measure zero onto sets of measure zero. This is
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an important property of mappings from both a physical point of view (it says that F does
not ‘create’ matter out of nowhere) and a theoretical one. In particular, Federer’s theorem
states that if F : ⌦ ! Rn is a homeomorphism which satisfies the Lusin (N) condition,
then for any measurable set E ⇢ ⌦,

|F (E)| =
Z

E
| detDaF (x)| dx.

Since the homeomorphism � in Theorem 1.5 does satisfy the Lusin (N) condition and maps
the unit cube onto itself, it must satisfy (1.4).

The homeomorphism � from Theorem 1.5 is a uniform limit of diffeomorphisms, which
is quite surprising. On the other hand, a. e. approximately differentiable mapping arise
naturally as limits of C

1 mappings in another metric, which we describe now. Let us
consider m,n 2 N, a measurable set E ⇢ Rn and mappings f, g : E ! Rm and identify
those which are equal a. e. Then, we introduce the Lusin metric defined as

dL(f, g) := |{x 2 ⌦ : f(x) 6= g(x)}|. (1.5)

This indeed is a metric and the space of measurable mappings is complete with respect
to it1. What is more, Lusin’s theorem implies that continuous functions are dense in this
space. If E is an open set in Rn, then it follows from Whitney’s theorem (see Lemma 2.26)
that the closure of C1(E,Rm) in metric dL is the class of mappings which are approximately
differentiable a. e. on E. Loosely speaking, the relation of the class of a. e. approximately
differentiable mappings with respect to C

1-mappings is the same as the relation of measur-
able functions with respect to continuous ones.

Theorem 1.5 provides a positive answer to a conjecture of Goldstein and Hajłasz from
[37]. In that same paper, in Theorem 1.4, they showed that there exists an a. e. approxi-
mately differentiable homeomorphism � : Q ⇣ Q such that �|@Q = id and

Da� =

2

666664

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 �1

3

777775
a. e. (1.6)

What is more, � is constructed as a limit in the uniform metric of measure preserving C
1-

diffeomorphisms �k : Q ⇣ Q, �k|@Q = id . The proof of this theorem is constructive and it
uses some of the tools that we also employ in the proof of Theorem 1.4, most notably the
Dacorogna-Moser theory of mappings with prescribed Jacobians. Nevertheless, the proof of
Theorem 1.5 is fundamentally different than the proof of [37, Theorem 1.4], mainly because
in Theorem 1.5 the prescribed derivative T (x) varies with the point x. This was also the
primary difficulty to overcome in the proof of Theorem 1.5.

A standard argument from the degree theory implies that homeomorphism � from (1.6)
is orientation preserving2 and yet its approximate Jacobian equals �1 a. e. This shows that
there is no link whatsoever between the sign of the Jacobian of an a. e. approximately dif-
ferentiable homeomorphism and the topological property of whether it preserves or reverses
orientation. This example also answered one of the questions Hajłasz posed in 2001 about
signs of Jacobians of a. e. approximately differentiable and Sobolev homeomorphisms, see
[47, Section 5.4] and [37].

1
We prove it in the Appendix, in Lemma A.1

2
We comment on it in Section A.4.1 in the Appendix. The same argument also shows that � from

Theorem 1.5 is orientation preserving.
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There is a vast literature on Jacobians of Sobolev homeomorphisms and below we shall
name a few results. In 2010 in [48] Hencl and Malý proved that in dimensions n = 2, 3
for p � 1 and for n � 4 and p > [n/2], the Jacobian of Sobolev homeomorphism cannot
change sign. In the proof, they used a topological concept called the linking number. On
the other hand, in [50] Hencl and Vejnar showed an example of a W

1,1
�
(0, 1)4, (0, 1)4

�

homeomorphism whose Jacobian changes sign. This also showed that not every Sobolev
homeomorphism can be approximated by diffeomorphisms in the Sobolev norm, which is
the so-called Ball-Evans approximation question, see [8, p. 8] for the original question and
[57, 56, 73, 49] for the interesting answers the question has already raised. The construction
of Hencl and Vejnar was later improved in [16] and [17] to provide further counterexamples.
All three of these papers relied on an ingenious use of homeomorphisms mapping certain
Cantor sets onto another Cantor sets. The question of whether Jacobian of a Sobolev
homeomorphism can change sign is still open in the case when n � 4 and p = [n/2], see
[38] for some partial results in this direction.

One should also be aware of the existence of such pathological examples as a homeo-
morphism f 2 W

1,p ((0, 1)n, (0, 1)n) for 1  p < n with Jf = 0 a. e. [46]. An even more
surprising example was published in [27]: a homeomorphism f 2 W

1,1 ((0, 1)n, (0, 1)n) for
n � 3 with zero Jacobian a. e. and whose inverse f

�1 is in W
1,1 as well and also has zero

Jacobian a. e.

Even though the quoted results in the Sobolev case bear little resemblance to Theorems
1.4 and 1.5, they provide great insight into the interplay between topological an geometric
properties and weaker than classical notions of differentiability. It is specific to the area to
mix some topological tools (like degree theory) with analytical ones and to perform iterative
constructions. Also, these results show how complex the behavior of homeomorphisms
might be and, consequently, that it is somewhat surprising that such a general result as
Theorem 1.5 holds.

To the best of my knowledge, Theorem 1.5 is the first result in which the whole deriva-
tive is prescribed. However, there have been many papers discussing diffeomorphisms and
homeomorphisms with prescribed Jacobians, beginning with a seminal Oxtoby and Ulam
paper [81]. Theorem 2 of that paper says that3

Theorem. Let µ be a Borel measure µ on the cube Q = [0, 1]n such that µ(Q) = 1,
µ({x}) = 0 for all x 2 Q, µ(@Q) = 0 and µ(U) > 0 for any non-empty open set U ⇢ Q.
Then there exists a homeomorphism h : Q ⇣ Q, h|@Q = id , such that for any Borel set
E ⇢ Q,

µ(E) = |h(E)|. (1.7)

Moreover, if such a homeomorphism h should exist, then µ needs to satisfy the conditions
above.

This theorem was later generalized to cover the case of the Hilbert cube ⇧1
i=1[0, 1] in

[80] or �-compact manifolds in [11], see also [3, Section A2.2] or [36, Chapter 7] for a modern
treatment and references therein and [43] for a nice explanation of what is so surprising
about Oxtoby and Ulam’s result.

In [76, 22] Moser and Dacorogna and Moser proved a series of theorems about existence
of diffeomorphisms with prescribed Jacobian, which we have already mentioned in this
Introduction and we will discuss in more detail in Chapter 4. One of their proofs is the
so-called flow method, a very elegant approach based on ordinary differential equations.

3
The theorem was first stated and proved by John von Neumann, but the proof remains unpublished,

see [3, p. 188]
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We recommend [20, Chapter 10] for an excellent modern overview of the theory. Let us
also quote [15, 68], which show the sharpness of assumptions appearing in the theorems
of Dacorogna and Moser. Other notable contributions to the area include [10, 100, 87]
and a recent paper [41]. The main result of [41] shows that, in general, given f 2 L

p,
p > 1, one cannot hope for a solution to detD� = f for a Sobolev homeomorphism
� 2 W

1,np. Nonetheless, by weakening the regularity of �, Theorem 1.5 allows us to find
a homeomorphism with a prescribed full derivative, not only its determinant.

The proof of Theorem 1.5 is long and constructive. We use Theorem 1.4 and a cer-
tain iteration scheme which is inspired by the quoted Oxtoby-Ulam theorem from [81] and
provides a considerable modification of their methods. Also, we employ the homeomor-
phism (1.6) from [37] to reduce the proof of Theorem 1.5 to its version with the additional
assumption that detT > 0 a. e.

Since approximating arbitrary mappings with smooth ones is ubiquitous in analysis,
we believe that Theorem 1.4 might be useful in constructing other interesting homeomor-
phisms, possibly also in Sobolev setting. On the other hand, Theorem 1.5 provides a char-
acterization of the class of a. e. approximately differentiable homeomorphisms. Supposedly,
it gives little hope for using this class in nonlinear elasticity as its differential properties
seem too wild. However, this is a very elegant result from theoretical point of view.

1.4 Structure of the thesis

Whenever I write that a given excerpt of the thesis is from either [39] or [40], I mean that
it is copied from given article with possible adjustments for a better fit to the rest of the
dissertation. I use the convention that well-known theorems quoted outside Chapter 2 or
introductions to any of the Chapters 3, 4 or 5 are quoted as lemmata or propositions.

Chapter 2 contains explanation of notation and preliminary results. We collect there
facts which are considered folklore but it is difficult to find a suitable reference for them.
In Section 2.7, we develop methods for constructing diffeomorphisms used repetitively in
the sequel. Some parts of this chapter, in particular Section 2.7, are from [39].

In Chapter 3, Theorems 1.1, 1.2 and 1.3 are proved. We follow [40].

In Chapter 4, we provide the proof of Theorem 1.4 from [39]. Moreover, we add two
corollaries of Theorem 1.4, which are not included in the quoted preprint as the paper is
already long. They are stated in Section 4.1.

In Chapter 5, we provide the proof of Theorem 1.5 from [39]. Similarly, as in case of
Theorem 1.4, we add a few corollaries for which there was no place in [39]. They are stated
in Sections 5.1 and 5.5. Also, in Section 5.1, we state two interesting open questions.

At the end of the thesis, we include the Appendix, in which we supply some additional
lemmata and proofs. In particular, in Section A.2 we explain the notion of 1-parameter
groups of diffeomorphisms and in Section A.4.1, we clarify the notion of orientation pre-
serving homeomorphisms which appears in Chapter 3.

1.5 Collaboration statement

This thesis contains results obtained in collaboration with my supervisor, Paweł Goldstein
(University of Warsaw) and Piotr Hajłasz (University of Pittsburgh). They are contained
in two yet unpublished papers [39] and [40]. This was very much a joint work and I took
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an active part in discussing ideas, checking if they work and in the process of writing them
down. Nonetheless, each of us had some more independent contributions and below I single
out mine.

In particular, I posed the question (1.2), which prompted research contained in Chap-
ter 3 ([40]). I was responsible for collecting and understanding the available literature on
stable homeomorphisms and annulus theorems (both in the locally bi-Lipschitz and topo-
logical setting) and for observing and checking that the bi-Lipschitz and topological cases
(i. e., Theorems 1.2 and 1.3) can be treated with the same methods.

My contributions included also stating and proving Theorem 1.4 on the basis of Piotr’s
idea of how to use Alberti’s theorem. Moreover, I found an important component of the
iteration scheme in the proof of Theorem 1.5 and proved a series of lemmata adapting
a certain idea of Paweł to work in our setting (this became a part of Section 5.2 of this
thesis). Also, I observed that property (a) in Theorem 1.5 holds.
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Chapter 2

Preliminaries and introductory
results

In this chapter, we collect notation used throughout the thesis, present well-known theorems
and prove technical results we will use in the sequel. Moreover, we state a few related results
that are folklore knowledge but are hard to find in the literature.

Sections 2.4–2.7 are taken from Sections 3.1–3.4 from [39] with the exception of [39,
Lemma 3.11] and [39, Proposition 3.14] as they are specific to the proof of Theorem 1.4 (they
appear here in Section 4.2). Section 2.7 contains an additional Lemma 2.17. Section 2.8 is
Section 3.6 from [39]. Section 2.9 contains a part of [39, Section 6] (the rest appears here
in Section 5.3).

Sections 2.2 and 2.3 are new and added to keep the dissertation self-contained.

2.1 General notation

In this section, notation used throughout the thesis is explained. For the convenience of the
reader, we shall recall certain notions later or introduce them only when they are needed.

Throughout the thesis we assume that n � 2. Should there be an exception to this
rule, it will be duly noted.

N and Z denote the sets of positive and all integers, respectively.

Mn stands for an n-dimensional topological oriented manifold.

⌦ always denotes an open subset of Rn or of an n-dimensional manifold Mn. By
a domain we mean an open and connected set.

Open balls in Rn are denoted with B(x, r). Sometimes we write B
n(x, r) to stress

the dimension. The unit ball and sphere in Rn are denoted with Bn := B
n(0, 1) and

Sn�1 := @Bn, respectively.

Q denotes the closed unit cube Q = [0, 1]n. If x = (x1, . . . , xn) 2 Rn, we define
kxk1 = maxi |xi|. Q̊(p, r) = {x : kx� pk1 < r} and Q(p, r) = {x : kx� pk1  r} denote
the open and the closed cube centered at p of side-length 2r. We denote with L(Q) the
side-length of cube Q.

Given topological spaces X,Y , by a homeomorphism � : X ! Y we always mean
a homeomorphism onto the image, i. e., between X and �(X). Some authors call such
mappings embeddings.

21
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Surjective mappings are denoted by F : X ⇣ Y , i. e., F (X) = Y .

If E ⇢ Rn, we call f : E ! R a function and f : E ! Rm for m = 2, 3, . . . a mapping.

Let k 2 N [ {1}. If f : ⌦ ! R is a k-times continuously differentiable function, we
write f 2 C

k(⌦). If f : ⌦! Rn is a k-times continuously differentiable mapping, we write
f 2 C

k(⌦,Rn). If f : ⌦! R is a k-times continuously differentiable function with compact
support, we write f 2 C

k
c (⌦). If f : ⌦ ! Rn is a k-times continuously differentiable

mapping with compact support, we write f 2 C
k
c (⌦,Rn).

If ⌦ is an open subset of Mn (where Mn is of class C
k, k 2 N [ {1}), we use

C
k(⌦,Mn), Ck

c (⌦,Mn) for Mn in place of Rn.

If ⌦ ⇢ Rn or ⌦ ⇢ Mn is open, then by a diffeomorphism � : ⌦! Rn (or � : ⌦! Mn)
we mean a diffeomorphism onto the image, i.e., diffeomorphism between ⌦ and �(⌦). We
say that � : ⌦ ! Rn (or � : ⌦ ! Mn) is a C

k-diffeomorphism provided that � is
a diffeomorphism and �,��1 2 C

k(⌦,Rn) (or when �,��1 2 C
k(⌦,Mn)).

A diffeomorphism of a closed set A is a mapping that extends to a diffeomorphism of
a neighborhood of A.

C(⌦) denotes the space of continuous functions on ⌦ and C(Q,Q) denotes the space of
continuous mappings defined on the unit cube Q with values in Q.

Approximate derivative is denoted by Daf(x). Given a mapping � : ⌦! Rn, ⌦ ⇢ Rn,
we denote its Jacobian by detD�(x) or by J�(x).

We say that a mapping f : ⌦ ! Rn, ⌦ ⇢ Rn, satisfies the Lusin (N) condition if it
maps sets of Lebesgue measure zero to sets of Lebesgue measure zero. Lipschitz mappings
satisfy the Lusin (N) condition.

Lebesgue measure of a set E ⇢ Rn is denoted by |E|.

The space of homeomorphisms of the unit cube Q is equipped with the uniform metric

d(�, ) = sup
x2Q

|�(x)� (x)|+ sup
x2Q

|��1(x)� �1(x)|,

see Section 2.8 for more details.

Let m,n 2 N. The space of measurable mappings f, g : E ! Rn defined on a measur-
able set E ⇢ Rm is equipped with the Lusin metric defined as

dL(f, g) := |{x 2 ⌦ : f(x) 6= g(x)}|. (2.1)

This becomes a metric if we identify mappings which are equal a. e.

If E ⇢ Rn is measurable, we say that x 2 Rn is a density point of E provided that
|B(x, r)\E|/|B(x, r)| ! 1 as r ! 0+. According to the Lebesgue differentiation theorem,
almost all points x 2 E are density points of E.

The interior and the closure of a set A is denoted by Å and A. Boundary of the set is
denoted by @A. We write A b B if A is a compact subset of B̊.

Given a set E ⇢ Rn, diamE denotes the diameter of E, i. e., diamE = supx,y2E |x�y|.

Symmetric difference of sets A and B is A M B = (A \B) [ (B \A).

The space of real n⇥ n matrices, invertible matrices and matrices with positive deter-
minant are denoted by M

n⇥n, GL(n), and GL(n)+, respectively. The identity matrix is
denoted by I. The operator and the Hilbert-Schmidt norms of A 2 M

n⇥n are denoted by
kAk and |A|, respectively. It is easy to see that kAk  |A|.

The tensor product of vectors u, v 2 Rn is the matrix u⌦ v = [uivj ]ni,j=1 2 M
n⇥n.
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2.2 Brouwer’s theorem

Theorem 2.1 (Invariance of domain). Let U be an open set in Rn and let f : U ! Rn be
a continuous, injective mapping. Then f(U) is an open set.

As we discussed in the Introduction, this theorem is of paramount importance in the
sequel. For the proof, see e.g. [32, Theorem 3.30]. If one assumes f to be a diffeomorphism,
the proof that f(U) is open is significantly easier and it essentially follows from inverse
function theorem, see [93, Theorem 22.3].

Corollary 2.2. Let ⌦ be a domain in Rn. If f : ⌦ ! Rn is a homeomorphism, then, for
any closed set K ⇢ ⌦,

f(K̊) = ˚f(K) and f(@K) = @f(K). (2.2)

Proof. By continuity of f , f
�1( ˚f(K)) is open and therefore it must be contained in K̊.

This implies that ˚f(K) ⇢ f(K̊). On the other hand, Theorem 2.1 implies that f(K̊) is
open and hence f(K̊) ⇢ ˚f(K). This yields the first equality in (2.2).

Consequently,
f(K) = f(@K) [ f(K̊) = f(@K) [ ˚f(K),

from which it follows that f(@K) = f(K) \ ˚f(K), which finishes the proof of this corollary.

In Chapter 3, where we deal with manifolds, we shall need also a version of invariance
of domain theorem for mappings between Euclidean sets and manifolds.

Corollary 2.3. Let Mn be an n-dimensional topological manifold and let � : Bn ⇣ D,
D ⇢ Mn, be a homeomorphism. Then

�(Bn) = D̊ and �(@Bn) = @D, (2.3)

where @D and D̊ denote the boundary and interior of D, respectively, in the topology of
Mn. In particular, �(Bn) is open in the topology of Mn.

Proof. It suffices to show that �(Bn) is open in the topology of Mn. Indeed, it then follows
from a similar reasoning as in Corollary 2.2 that (2.3) holds.

Take any x 2 �(Bn), we shall show that there is an open (in the topology of Mn)
neighborhood of x contained in �(Bn). There is an open (in Mn) neighborhood U contain-
ing x which is homeomorphic to Rn, i. e., a chart (U, ). Then the set U \ �(Bn) is open
in the subspace topology of �(Bn). Since � is continuous, ��1(U \ �(Bn)) is open in Rn.
The mapping

 � � : ��1(U \ �(Bn)) ! Rn

is continuous and injective. By Theorem 2.1,  (U \ �(Bn)) is an open set in Rn which
contains  (x). We choose a neighborhood V of  (x) which is contained in  (U \ �(Bn)).
Then the set  �1(V ) is an open (in the topology of Mn) neighborhood of x contained in
�(Bn). This concludes the proof.

A similar argument allows one to formulate a version of Theorem 2.1 for homeomor-
phisms between manifolds, see [44, Corollary 2B.4]. Also, note that D as in Corollary 2.3 is
closed in the topology of Mn. It is a continuous image of a compact set and hence compact.
Since a compact set in a Hausdorff space (and Mn is Hausdorff) is closed, D is closed.
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2.3 Measurability

We note here two basic observations about homeomorphisms and measurable sets. We shall
use them repetitively in the sequel and by stating and proving them, I want to stress their
importance.

Lemma 2.4. Let U ⇢ Rn be open and let � : U ! Rn be a homeomorphism. Then �
preserves Borel sets, i. e., E ⇢ U is Borel if and only if �(E) is Borel. Moreover, � maps
measurable sets onto measurable sets if and only if � satisfies the Lusin (N) condition.

Proof. For any sets A,E ⇢ U , �(A \ E) = �(A) \ �(E) and for any countable family of
sets Ai ⇢ U , �(

S
iAi) =

S
i�(Ai). Since the Borel �-field is generated by open sets under

these set operations and a homeomorphic image of an open set is open by Theorem 2.1, �
preserves Borel sets.

Any measurable set is a sum of a Borel set and a set of measure zero. Therefore, if
� satisfies the Lusin (N) condition, then it maps the Borel set onto the Borel one and the
set of measure zero onto a set of measure zero. Thus, its sum is measurable. On the other
hand, if � does not satisfy the Lusin (N) condition, there is a set Z of measure zero, Z ⇢ U ,
which is mapped onto a set of positive measure. It is well known that any set of positive
measure contains a non-measurable set as its subset1. Therefore, there is a non-measurable
subset W ⇢ �(Z), whose preimage ��1(W ) is contained in a set of measure zero and hence
is measurable but its image is not. This concludes the proof.

2.4 Linear algebra

Lemma 2.5. If A 2 GL(n) and kA�Bk < kA�1k�1, then B 2 GL(n).

Proof. Under the given assumptions kA�1
B � Ik < 1 and hence A

�1
B is invertible (the

inverse can be written as an absolutely convergent power series).

Lemma 2.6. Assume T 2 GL(n)+. Then for any " > 0, there exists a finite family of
matrices {Ai}M"

i=1 ⇢ GL(n)+ such that kAi � Ik < " for each i = 1, . . . ,M", and

T = A1 · . . . ·AM" .

Proof. GL(n)+ is a Lie group with respect to the matrix multiplication. According to [96,
Theorem 3.68], GL(n)+ is connected. Then the result follows from [96, Proposition 3.18]
which says that if U is a neighborhood of the identity element in a connected Lie group G,
then any element g 2 G can be represented as g = u1 · . . . ·uk for some k and u1, . . . , uk 2 U .

Remark 2.7. Recall that the tensor product of vectors u, v 2 Rn is the matrix u ⌦ v =
[uivj ]ni,j=1 2 M

n⇥n. It is easy to see that ku⌦ vk = |u⌦ v| = |u| |v|. Note that if U ⇢ Rn

is open and F : U ! Rn, ⌘ : U ! R are differentiable, then

D(⌘F ) = F ⌦D⌘ + ⌘DF, so kD(⌘F )k  |D⌘| |F |+ |⌘| kDFk. (2.4)
1
For a proof, see e.g. [97, Section 3.6]
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2.5 Local to global homeomorphisms

In this section, we prove a very useful lemma, Lemma 2.9, stating conditions which guar-
antee that a local homeomorphism is injective and hence a homeomorphism. We will for
example use it to glue certain diffeomorphisms together in Section 2.7.

We say that a map is proper if preimages of compact sets are compact. A local homeo-
morphism f : X ! Y is a map that is a homeomorphism in a neighborhood of each point
x 2 X. The following result is due to Ho [52, 51], see also [84, Chapter 4, Section 2.4].

Lemma 2.8. Suppose that X and Y are path-connected Hausdorff spaces, where Y is simply
connected. Then a local homeomorphism f : X ! Y is a global homeomorphism of X onto
Y if and only if f is a proper map.

Note that in general, a local homeomorphism need not be surjective, and surjectivity
is a part of the lemma. The main idea of the proof is to show that a proper local homeo-
morphism between path connected Hausdorff spaces is a covering map and then the result
follows from general facts about covering spaces, see also [59, Lemma 3.1].

If f : @Bn ! Rn is a homeomorphism (let us stress here: onto its image), then according
to the Jordan-Brouwer separation theorem f(@Bn) separates Rn into two domains, bounded
and unbounded, and f(@Bn) is their common boundary. The example of the inward Alexan-
der horned sphere2 shows that in general, the bounded component of Rn \f(@Bn) need not
be simply connected.

The next result is a version of Corollary 8.2 from [78], but our proof is different and
more elementary. Nonetheless, it still requires the Jordan-Brouwer separation theorem and
Lemma 2.8.

Lemma 2.9. Let f : Bn ! Rn be a continuous mapping such that f |@Bn is one-to-one, f |Bn

is a local homeomorphism, and the bounded component of Rn \ f(@Bn) is simply connected.
Then f : Bn ! Rn is a homeomorphism of Bn onto f(Bn).

Remark 2.10. The above result is true even if we do not assume that the bounded com-
ponent of Rn \ f(@Bn) is simply connected, but the proof requires the theory of Eilenberg-
MacLane spaces from algebraic topology, see [59, Theorem 1.2].

Proof. Denote the bounded and the unbounded components of Rn \ f(@Bn) by D and U ,
respectively. According to our assumptions, D is simply connected.

Since f(Bn) is compact, it follows that @f(Bn) ⇢ f(Bn). On the other hand, it follows
from Theorem 2.1 that f(Bn) is open and hence f(Bn)\@f(Bn) = ?, so @f(Bn) ⇢ f(@Bn) =
@U = @D.

We claim that f(Bn) ⇢ D. Suppose to the contrary that f(x) 2 U for some x 2 Bn.
Since U is unbounded and connected, there is a curve connecting f(x) to infinity inside U .
Since f(Bn) is bounded, the curve must intersect with the boundary of that set and hence
a point in U belongs to @f(Bn), which is a contradiction, because @f(Bn) ⇢ @U .

Since f(Bn) ⇢ D is an open subset of Rn, it follows that f(Bn) ⇢ D. We claim that
the mapping f : Bn ! D is proper. Indeed, if K ⇢ D is compact, then K is a closed subset
of Rn, so f

�1(K) \ Bn is closed and hence compact. On the other hand, f(@Bn) \D = ?,
which means that f

�1(K) \ @Bn = ? and that f
�1(K) \ Bn = f

�1(K) \ Bn. That is,
f
�1(K) is a compact subset of Bn. This proves that f : Bn ! D is proper. Now, Lemma 2.8

2
We briefely describe Alexander’s horned sphere in Section 3.1
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yields that f : Bn ! D is a homeomorphism onto D. That also implies that f is one-to-one
on Bn because f(@Bn) \ D = ?. Since Bn is compact, it follows that f : Bn ! Rn is
a homeomorphism onto its image.

2.6 Gluing homeomorphisms together

Throughout the dissertation we repeatedly use the following observation (c.f. [37, Lemma
3.7]) and its corollary. These two lemmata underline almost all further constructions of
homeomorphisms, as these observations make gluing of homeomorphisms so easy.

Lemma 2.11. Let ⌦ ⇢ Rn be a bounded domain and let F,G : ⌦! Rn be homeomorphisms
onto their respective images. Assume moreover that F = G near @⌦. Then F (⌦) = G(⌦).

Proof. Assume otherwise; without loss of generality we may assume that there is y 2 ⌦
such that G(y) 62 F (⌦). We can find subdomains ⌦1 b ⌦2 b ⌦ such that F = G on ⌦\⌦1.
This means that y needs to lie in ⌦1 b ⌦2 and G(y) /2 F (⌦2). However, as F = G on
⌦2 \ ⌦1, there is an x 2 ⌦2 with G(x) = F (x).

Since ⌦2 is path-connected, we may connect x and y with a curve � lying entirely in
⌦2. Recall that by Corollary 2.2, homeomorphisms F and G map interior points to interior
points and boundary points to boundary points. The curve G(�) connects G(x) = F (x),
which is an interior point of F (⌦2) with G(y), which lies outside F (⌦2) and thus G(�)
must intersect @F (⌦2) = F (@⌦2). Since F = G near @⌦2, G(�) intersects G(@⌦2). This
leads to a contradiction, because � ⇢ ⌦2.

Corollary 2.12. Assume ⌦2 ⇢ ⌦1 ⇢ Rn are bounded domains and let F : ⌦1 ! Rn,
G : ⌦2 ! Rn be homeomorphisms onto their respective images. Assume moreover that for
all x 2 ⌦2 in some neighborhood of @⌦2 we have F (x) = G(x). Then eF : ⌦1 ! Rn given
by

eF (x) =

(
F (x) for x 2 ⌦1 \ ⌦2,

G(x) for x 2 ⌦2

is a homeomorphism and F (⌦1) = eF (⌦1).

Proof. eF is a local homeomorphism since F and G are homeomorphisms and F = G

near @⌦2. Since by Lemma 2.11 eF is injective and F (⌦1) = eF (⌦1), it follows that eF is
a homeomorphism of ⌦1 onto F (⌦1).

2.7 Gluing diffeomorphisms together

This subsection is, in a sense, a forerunner of Chapter 3, as we develop here techniques for
gluing diffeomorphisms. We will also use make extensive use of these results in Chapter 4,
in the proof of Theorem 1.4.

We begin by showing that it is possible to glue a diffeomorphism and its tangent
mapping on a sufficiently small ball. Lemma 2.13 below is similar to Lemma 3.8 in [37].
However, the proof in [37] required the diffeomorphism to be at least of class C

2. We
managed to prove the results for C

1-diffeomorphisms by using a topological argument due
to Munkres [78] (Lemma 2.9 above). He used it in a similar context. We also note the
paper [99], which used a similar argument albeit in a slightly different way.
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Lemma 2.13. Suppose that � : U ! Rn is a C
k-diffeomorphism, k 2 N [ {1}, defined

on an open set U ⇢ Rn and � 2 (0, 1) is given. Then for any xo 2 U there is rxo > 0
such that B(xo, rxo) b U and that for any r 2 (0, rxo ] it is possible to find diffeomorphisms
H1, H2 : U ! Rn of class C

k satisfying

H1(x) =

(
�(xo) +D�(xo)(x� xo) for x 2 B(xo,�r),

�(x) for x 2 U \B(xo, r),
(2.5)

H2(x) =

(
�(x) for x 2 B(xo,�r),

�(xo) +D�(xo)(x� xo) for x 2 U \B(xo, r).
(2.6)

Proof. Let S(x) := �(xo) + D�(xo)(x � xo) and let � = k(D�(xo))�1k�1. Since � is
continuously differentiable, there is rxo > 0 such that B(xo, rxo) b U ,

kD�(xo)�D�(x)k <
�

4
and

|�(x)� S(x)|
|x� xo|

<
(1� �)�

4
for x 2 B(xo, rxo).

For r 2 (0, rxo ], let ⌘ 2 C
1(Rn), 0  ⌘  1, be a cut-off function such that

⌘ =

(
1 on B(xo,�r),

0 on Rn \B(xo, r),
and kD⌘k1  2

r(1� �)
.

Here kD⌘k1 stands for the supremum norm of |D⌘|.

Now, we define

H1(x) := �(x) + ⌘(x)(S(x)� �(x)) and H2(x) := S(x) + ⌘(x)(�(x)� S(x)).

Clearly, H1,2 2 C
k(U ;Rn) satisfy (2.5) and (2.6). It remains to show that H1,2 are diffeo-

morphisms. To this end, it suffices to show that DH1,2(x) is invertible for all x 2 U and
that H1,2 are homeomorphisms.

The matrices DH1,2(x) are invertible for x 2 U \B(xo, r), because H1,2 are diffeomor-
phisms in U \ B(xo, r). To show invertibility of DH1,2(x) for x 2 B(xo, r), it suffices to
show that (see Lemma 2.5):

kDH1,2(x)�D�(xo)k < � for x 2 B(xo, r). (2.7)

Note that |⌘|  1 and hence (2.4) yields kD(⌘(S � �))k  |D⌘| |S � �| + kDS � D�k.
Bearing in mind that DS(x) = D�(xo), we have

kDH1(x)�D�(xo)k
 kD�(x)�D�(xo)k+ |D⌘(x)| |S(x)� �(x)|+ kDS(x)�D�(x)k
= |D⌘(x)| |�(x)� S(x)|+ 2kD�(x)�D�(xo)k.

(2.8)

Similarly,

kDH2(x)�D�(xo)k  |D⌘(x)| |�(x)� S(x)|+ kD�(x)�D�(xo)k. (2.9)

For x 2 B(xo, r) we have |x� xo|  r < rxo and hence

|D⌘(x)| |�(x)� S(x)|+ 2kD�(x)�D�(xo)k  2

1� �

|�(x)� S(x)|
|x� xo|

+ 2 · �
4
< �,

which together with (2.8) and (2.9) proves (2.7).
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It remains to show that H1,2 : U ! Rn are homeomorphisms of U onto their respective
images.

Since the surfaces H1(@B(xo, r)) = �(@B(xo, r)) = @�(B(xo, r)) and H2(@B(xo, r)) =
@S(B(xo, r)) bound simply connected domains �(B(xo, r)) and S(B(xo, r)), and H1,2 are
local homeomorphisms (because detDH1,2 6= 0), it follows from Lemma 2.9 that H1 and
H2 are homeomorphisms of B(xo, r) onto �(B(xo, r)) and S(B(xo, r)), respectively, and
hence H1 and H2 are homeomorphisms of U onto �(U) and S(U), respectively. The proof
is complete.

The next result shows how to connect linear maps in GL(n)+ in a diffeomorphic way.
We will use it in this section, as well as in Chapters 3 and 4. However, its importance lies not
only in its usefulness. When looking at Proposition 2.14, one is prompted to ask if a similar
results holds if A1, A2 are any orientation preserving diffeomorphisms satisfying (2.10),
not necessarily linear maps. We answer this question in the positive in Corollary 3.2 in
Chapter 3.

Proposition 2.14. Fix r > 0 and ✓ 2 (0, 1), and let A1, A2 2 GL(n)+. If

A1 (B(0, ✓r)) b A2 (B(0, r)) , (2.10)

then there exists a C
1-diffeomorphism H : Rn ⇣ Rn which coincides with x 7! A1x on

B(0, ✓r) and with x 7! A2x on Rn \B(0, r).

In the proof we will need the following special case of the result (c.f. [78, Lemma 8.1]):

Lemma 2.15. Let A 2 GL(n)+. Then for any r > 0 there is % 2 (0, r) and a C
1-

diffeomorphism H : Rn ⇣ Rn such that

H(x) =

(
Ax for x 2 B(0, %),

x for x 2 Rn \B(0, r).
(2.11)

Proof. Let ⌘ 2 C
1
c (B(0, 1)), ⌘ = 1 on B(0, 1/2), and let M := k⌘k1 + kD⌘k1. For r > 0

and L 2 M
n⇥n define f(x) := ⌘(x/r)Lx. We have (see (2.4)):

Df(x) =
1

r
(Lx)⌦D⌘

⇣
x

r

⌘
+ ⌘

⇣
x

r

⌘
L,

and hence

|Df(x)|  1

r
|Lx|

���D⌘
⇣
x

r

⌘���+
���⌘
⇣
x

r

⌘��� |L| 
1

r
|L| |x|M�B(0,r)(x) +M |L|  2M |L|.

In particular,

|f(x)� f(y)|  |x� y|
Z 1

0
|Df(y + t(x� y))| dt  2M |L| |x� y|.

First we will prove the lemma under the assumption that |A � I| < (2M)�1. Let
L := A� I so that f(x) = ⌘(x/r)(A� I)x and define

HA(x) := x+ ⌘

⇣
x

r

⌘
(A� I)x = x+ f(x).

We have
kDHA(x)� Ik  |DHA(x)� I| = |Df(x)|  2M |A� I| < 1,
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so DHA(x) is invertible by Lemma 2.5. HA is also one-to-one, because for x 6= y we have

|HA(x)�HA(y)| � |x� y|� |f(x)� f(y)| � |x� y|� 2M |A� I| |x� y| > 0.

Therefore, HA is a diffeomorphism and (2.11) is true with % = r/2.

Now assume that A 2 GL(n)+ is an arbitrary matrix. According to Lemma 2.6, we
can write A = A1 · . . . ·Ak, where |Ai � I| < (2M)�1

. Then

H := HA1 � . . . �HAk : Rn ⇣ Rn

is a diffeomorphism that satisfies H(x) = x for |x| � r. Using simple induction and the
fact that the diffeomorphisms HAi satisfy (2.11) with Ai and % = r/2, one can easily check
that

H(x) = A1(A2(. . . (Ak(x) . . .)) = Ax

if x belongs to the set

B(0, r2) \A
�1
k (B(0, r2)) \ (Ak�1 �Ak)

�1(B(0, r2)) \ . . . \ (A2 � . . . �Ak)
�1(B(0, r2)).

Since this set is an open neighborhood of 0, it contains a ball B(0, %) for some 0 < % < r

and hence H satisfies (2.11).

Proof of Proposition 2.14. By composing with A
�1
2 and scaling if necessary, we can assume

that A2 = id and r = 1. Using Lemma 2.15 we can construct a diffeomorphism h2 of Rn

such that h2(x) = A1x on B(0, %) for some % 2 (0, 1) and h2(x) = x on Rn \B(0, 1). This
diffeomorphism would have desired properties if we could take % = ✓, but it may happen
that % is smaller than ✓. Thus assume that % < ✓.

To correct h2 we take a radial diffeomorphism h1 of Rn, which equals h1(x) = % ✓
�1

x

on B(0, ✓) and is identity outside B(0, 1). As a result, h2(h1(x)) = % ✓
�1

A1x on B(0, ✓)
and h2(h1(x)) = x on Rn \ B(0, 1). This diffeomorphism has all the required properties,
except that it equals % ✓�1

A1x on B(0, ✓) instead of required A1x. To correct it, we take
a radial diffeomorphism h3, which equals h3(x) = ✓ %

�1
x on A1(B(0, %)) and h3(x) = x

on Rn \B(0, 1). Such a diffeomorphism exists, because A1(B(0, %)) b B(0, 1) and because
A1(B(0, %)) under x 7! ✓%

�1
x is mapped onto A1(B(0, ✓)) b B(0, 1). Eventually, the

mapping H = h3 � h2 � h1 is the desired diffeomorphism.

It is a known fact that given any two points p, q lying in the interior of a smooth,
connected n-dimensional manifold Mn, one can find a diffeomorphism of Mn onto itself
that carries p into q and is isotopic to identity, see [70, Chapter 4]. We need a slightly
stronger folklore result, stating that given a finite family of points in a Euclidean domain,
we can rearrange them in a diffeomorphic manner so that neighborhoods of these points
are mapped by translations.

We shall use this result repetitively in Chapter 3 and in Chapter 4 in the proof of Propo-
sition 4.6. In Chapter 4, it will be crucial to know that H maps the balls by translations,
in Chapter 3, it will not. In the proof of Lemma 2.16, we use a 1-parameter group of diffeo-
morphisms generated by a certain vector field. In the Appendix, in Theorem A.2 we state
a theorem about existence and basic properties of 1-parameter groups of diffeomorphisms.

Lemma 2.16. Let {pi}Ni=1 and {qi}Ni=1 be given points in U , a domain in Rn, with pi 6= pj

and qi 6= qj for i 6= j. Then there exists an " > 0 and a C
1-diffeomorphism H : U ⇣ U ,

identity near @U , such that

H(x) = x+ (qi � pi) for x 2 B(pi, "),

i.e., H maps by translation each ball B(pi, ") onto B(qi, ") with H(pi) = qi.
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Proof. Firstly, let us consider the case N = 1 and assume for simplicity that p := p1 and
q := q1 can be connected by a segment � contained in U . We choose " > 0 so that the
2"-neighborhood of � is contained in U and find a smooth vector field X, satisfying

X =

(
0 on the set {x : dist(x, �) � 2"},
q � p on the set {x : dist(x, �)  "}.

If �t : U ⇣ U is the one-parameter family of diffeomorphisms generated by X, then
H

"
p,q := �1 is a diffeomorphism which acts as the translation by q�p on the ball B(p, ") and

maps it onto the ball B(q, "). Moreover, H"
p,q equals identity outside the 2"-neighborhood

of �. For details, see Corollary A.4 and Remark A.5 in the Appendix.

In view of path-connectedness of Euclidean domains, any two points p, q can be con-
nected with a piecewise linear curve � ⇢ U with vertices a0 = p, a1, . . . , am = q. Choose
" > 0 so that the 2"-neighborhood of � is contained in U and apply the construction
from previous paragraph to each pair of points ai, ai+1 for i = 0, . . . ,m � 1 to construct
diffeomorphisms H

"
ai,ai+1

, identity outside the 2"-neighborhood of �, such that

H
"
ai,ai+1

(x) = x+ (ai+1 � ai) for x 2 B(ai, ").

Then H
"
p,q := H

"
am�1,q � . . . �H

"
p,a1 is the desired diffeomorphism when N = 1.

For N > 1, consider firstly the case when {pi}Ni=1 \ {qi}Ni=1 = ?. We can then find
N pairwise disjoint piecewise linear curves �i, i = 1, . . . , N , connecting pi with qi, and
an " > 0 so that the 2"-neighborhoods of �i are pairwise disjoint and contained in U

and construct diffeomorphisms H
"
pi,qi from the previous paragraph. Diffeomorphism H =

H
"
pN ,qN � . . . �H"

p1,q1 is the desired map.

If {pi}Ni=1 \ {qi}Ni=1 6= ?, then we find a set of distinct points {si}Ni=1 ⇢ U , such that
{pi}Ni=1 \ {si}Ni=1 = ? and {si}Ni=1 \ {qi}Ni=1 = ?. From what we already proved, there
is a diffeomorphism H1 that translates neighborhoods of pi’s onto neighborhoods of si’s
and a diffeomorphism H2 that translates neighborhoods of si’s onto neighborhoods of qi’s.
Then H = H2 �H1 satisfies the claim of the lemma.

In the Appendix, in Lemma A.7, we present a construction of a diffeomorphism as
in Lemma 2.16 with the additional property of being measure preserving. It is a very
nice construction based on [81, Chapter 5] (see also [3, Chapter 2.2]) which generalizes
these results, as the cited authors were interested only in homeomorphisms. Below, we add
a modification of Lemma 2.16 that will be useful in Chapter 3.

Lemma 2.17. Let U be a domain in Rn and B(p, r) and B(q, %) be two disjoint closed balls
contained in U . Then there exists an orientation preserving C

1-diffeomorphism H : U ⇣ U

such that
H(B(p, r)) ⇢ B(q, %) and H = id near @U.

Proof. Without loss of generality, we can assume that U contains the origin and that
p = 0. There is ⌘ > 0 for which B(0, r + ⌘) b U and such that B(0, r + ⌘) is disjoint from
B(q, %). For the pair of points {0, q} we choose " 2 (0,min {r, %}) from Lemma 2.16 and
set � : [0,1) ! R to be a non-decreasing C

1-smooth function which satisfies

�(t) =

(
"
r if t  r,

1 if t > r + ⌘.

Then �(x) := �(|x|)x is an orientation preserving C
1-diffeomorphism of Rn which acts

like scaling by a factor "/r on B(0, r) and equals identity outside B(0, r+⌘). In particular,
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�(B(0, r)) = B(0, ") and � = id near @U . Lemma 2.16 yields a C
1-diffeomorphism H" :

U ⇣ U which maps B(0, ") onto B(q, ") b B(q, %) and such that H" = id near @U . Note
that H" acts as a translation on B(0, ") and hence it is orientation preserving. Eventually,

H := H" � �|U

is the desired C
1-diffeomorphism of U . Let us stress that it is orientation preserving as

a composition of such mappings.

Remark 2.18. It is clear that we can modify H slightly so that it satisfies H(B(p, r)) =
B(q, %) and H = id near @U .

2.8 Uniform metric

Let us denote by

d(�, ) := sup
x2Q

|�(x)� (x)|+ sup
x2Q

|��1(x)� �1(x)|

the uniform metric in the space of homeomorphisms of the unit cube Q = [0, 1]n onto itself.
It is known that the space of homeomorphisms is a complete metric space with respect to
the metric d. More precisely, we have:

Lemma 2.19. Let �k : Q ⇣ Q, k = 1, 2, . . . be a Cauchy sequence of surjective homeo-
morphisms in the uniform metric d. Then �k converges uniformly to a homeomorphism
� : Q ⇣ Q, and ��1

k converges uniformly, and the limit is equal to ��1.

Proof. Obviously �k and ��1
k are Cauchy sequences in the space of continuous mappings

C(Q,Q), thus they converge (uniformly) to some � and  2 C(Q,Q), respectively. To see
that  = ��1, fix a point x 2 Q and pass with k to the limit in the equality �k(�

�1
k (x)) = x

to prove that �( (x)) = x. We show that  (�(x)) = x in an analogous way.

Lemma 2.20. Assume that � : Q ⇣ Q is a C
1-diffeomorphism such that � = id in

a neighborhood of @Q. Then � can be approximated in the uniform metric d by a sequence
of C1-diffeomorphisms �k

d! � such that �k = id in a neighborhood of @Q.

Proof. Approximating � by convolution with a standard symmetric mollifier  " we obtain
smooth maps �" = �⇤ " that are identity near @Q and converge uniformly to � on Q. Since
detD�" ! detD� uniformly, we see that detD�" > 0 in Q, provided " > 0 is sufficiently
small. This implies that �" is a local diffeomorphism and according to Lemma 2.9 it is
a global diffeomorphism of Q onto itself. It easily follows that �" ! � in the uniform
metric d.

We add an interesting lemma, shown in [88, p. 104] which shows how natural the
uniform metric is for studying sequences of homeomorphisms of the cube. It also implies
a nice corollary about sequences of measure preserving homeomorphisms.

Lemma 2.21. Let �,�k : Q ⇣ Q be homeomorphisms. If �k converge to � uniformly on
Q, then ��1

k converge uniformly to ��1 as well and so �k converge to � in the uniform
metric d.
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Proof. We have

sup
y2Q

k��1
k (y)� ��1(y)k = sup

x2Q
k��1

k (�k(x))� ��1(�k(x))k = sup
x2Q

kx� ��1(�k(x))k.

Since ��1 is uniformly continuous on Q, ��1 � �k converge uniformly to identity and the
quantity above converges to zero. Therefore, ��1

k converge uniformly to ��1.

We say that a homeomorphism � : Q ⇣ Q is measure preserving if for any measurable
set E ⇢ Q, �(E) is also measurable and |�(E)| = |E|. We have already checked in
Lemma 2.4 that a homeomorphism maps measurable sets onto measurable sets if and only
if it satisfies the Lusin (N) condition. Clearly, a measure preserving homeomorphism must
map sets of zero measure onto sets of zero measure.

Corollary 2.22. Let �k : Q ⇣ Q be measure preserving homeomorphisms converging
uniformly to a homeomorphism � : Q ⇣ Q. Then � is also measure preserving.

Proof. By Lemma 2.21, we know that �k converge to � in the uniform metric d. The limit
in metric d of a sequence of measure preserving homeomorphisms is measure preserving,
see [37, Lemma 1.2]. Therefore, � is measure preserving.

2.9 Approximate differentiability

In this section, we discuss the basics of approximate differentiability. For brevity, we state
the definitions and most of the lemmata for scalar functions. Applying those definitions
and theorems componentwise yields corresponding facts for mappings.

Definition 2.23 (Classical definition). Let f : E ! R be a measurable function defined
on a measurable set E ⇢ Rn. We say that f is approximately differentiable at x 2 E if
there is a linear function L : Rn ! R such that for any " > 0 the set

⇢
y 2 E :

|f(y)� f(x)� L(y � x)|
|y � x| < "

�

has x as a density point.

The next result provides a useful characterization of approximate differentiability, for
the proof see [37, Proposition 5.2].

Lemma 2.24. A measurable function f : E ! R defined in a measurable set E ⇢ Rn is
approximately differentiable at x 2 E if and only if there is a measurable set Ex ⇢ E and
a linear function L : Rn ! R such that x is a density point of Ex and

lim
Ex3y!x

|f(y)� f(x)� L(y � x)|
|y � x| = 0.

If a function f is approximately differentiable at x, L is unique, and we call it ap-
proximate derivative of f at x. For the proof of uniqueness of approximate derivative, see
e. g. [29, Theorem 3, Section 6.1] or [31, Section 3.1.2]. The approximate derivative will be
denoted by Daf(x) or simply by Df(x). If f is measurable, so is Daf , see Theorem 3.1.4
in [31].
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Lemma 2.25. Assume that f, g : U ! R, U ⇢ Rn, are given measurable functions and
E ⇢ U is a measurable set. If f is approximately differentiable a. e. and f = g in E, then
g is approximately differentiable a. e. in E and

Dag(x) = Daf(x) for almost all x 2 E. (2.12)

Proof. It easily follows from Lemma 2.24 that (2.12) is satisfied whenever x 2 E is a density
point of E and a point of approximate differentiability for f . Indeed, for any such x it follows
from Lemma 2.24 that for any y ! x, y 2 E,

lim
y!x

|g(y)� g(x)�Daf(x)(y � x)|
|y � x| = lim

y!x

|f(y)� f(x)�Daf(x)(y � x)|
|y � x| = 0.

The next result was proved by Whitney [98]. It says that approximately differentiable
functions coincide with C

1 mappings on sets which are large in measure (but possibly very
twisted and with very complicated geometry).

Lemma 2.26 (Whitney). Let U ⇢ Rn be open. Then a function f : U ! R is approx-
imately differentiable a. e. if and only if for every " > 0 there is a function f" 2 C

1(Rn)
such that |{x 2 U : f(x) 6= f"(x)}| < ".

Remark 2.27. By Lemma 2.25, it is easy to see that if x 2 {f = f"} is a density point of
the set {f = f"}, then f is approximately differentiable at x and Daf(x) = Df"(x).

Remark 2.28. Let U be an open subset of Rn. Lemma 2.26 also implies that the closure of
C

1(U) in the Lusin metric dL (see (2.1) for the definition) is the class of a. e. approximately
differentiable functions. Indeed, if f : U ! R is the limit in dL of a sequence of functions
fk 2 C

1(U), then for any " > 0 there is ` 2 N such that

dL(f, f`) = |{x 2 U : f`(x) 6= f(x)}| < ".

This, by Lemma 2.26, implies that f is approximately differentiable a. e. on U .

We now state Federer’s change of variables theorem proved in [30], see also [31, Section
3.2]. The exact statement is taken from [42]. By N(�, E, y) we denote the number of points
(cardinality) of the preimage ��1(y) \ E.

Theorem 2.29 (Federer). Let � : ⌦ ! Rn be a measurable mapping defined on an open
set ⌦ ⇢ Rn. Assume that it is approximately differentiable a. e. If � satisfies the Lusin (N)
condition, then for any measurable function f : Rn ! R we have

Z

⌦
(f � �)(x)| detDa�(x)| dx =

Z

�(⌦)
f(y)N(�,⌦, y) dy. (2.13)

If � does not satisfy the Lusin (N) condition, then we can redefine � on a Borel set of
measure zero so that after the redefinition, � satisfies the Lusin (N) condition and (2.13).

To be more precise, (2.13) means that the function on the left hand side is integrable if and
only if the function on the right hand side is integrable and then we have equality.

Remark 2.30. If � does not satisfy the condition (N), we redefine it using Lemma 2.26. By
Lemma 2.26, for any k 2 N, we can find a closed set Ek ⇢ ⌦ and a mapping Fk 2 C

1(⌦,Rn)
such that

|⌦ \ Ek| < 1/k and � = Fk on Ek.
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This means that � satisfies the Lusin (N) condition on each Ek, k 2 N. Consequently, �
satisfies the Lusin (N) condition on E :=

S1
k=1Ek and E is a Borel set. For every k 2 N,

|⌦ \ E|  |
\1

k=1
⌦ \ Ek|  |⌦ \ Ek| < 1/k for every k 2 N,

which implies that |⌦ \ E| = 0. We choose xo 2 �(⌦) and set for x 2 ⌦

 (x) :=

(
�(x) for x 2 E,

xo for x 2 ⌦ \ E.

This is the required redefinition of � as it clearly satisfies the Lusin (N) condition. Moreover,
 (⌦) ⇢ �(⌦) and ⌦ \ E is Borel.

Note that if � is continuous or injective, then  need not be so. In particular, if � is
a homeomorphism, then  need not be one.

Corollary 2.31. Let � : ⌦! Rn be an a. e. approximately differentiable homeomorphism.
Then for any Borel set E ⇢ ⌦,

Z

E
| detDa�(x)| dx  |�(E)|. (2.14)

Moreover, for any measurable set A ⇢ ⌦ such that � satisfies the Lusin (N) condition on A,
Z

A
| detDa�(x)| dx = |�(A)|. (2.15)

Proof. By Theorem 2.29 and Remark 2.30, there exists a mapping  : ⌦! Rn and a Borel
set of measure zero Z ⇢ ⌦ such that  = � on ⌦\Z and � satisfies the Lusin (N) condition
on ⌦ \ Z and  satisfies the Lusin (N) condition on ⌦. In particular,  (Z) has measure
zero. Also, for any Borel set E ⇢ ⌦, E \ Z is Borel and since homeomorphisms map Borel
sets onto Borel sets, �(E \ Z) =  (E \ Z) is Borel.

By Lemma 2.25, Da = Da� a. e. on ⌦ \ Z and therefore for any Borel set E ⇢ ⌦
Z

E
| detDa�(x)| dx =

Z

E\Z
| detDa�(x)| dx =

Z

E\Z
| detDa (x)| dx. (2.16)

Using (2.13) from Theorem 2.29 for the measurable function f = � (E\Z) yields
Z

E\Z
| detDa (x)| dx =

Z

 (E\Z)
N( ,⌦, y) dy. (2.17)

Now, note that since  = � on ⌦ \ Z and � is injective, for any y 2  (E \ Z) \  (Z),
there is exactly one x 2 ⌦ such that  (x) = �(x) = y. Since  (Z) is a set of measure zero,
N( ,⌦, y) = 1 a. e. on  (E \ Z).

Therefore, by (2.16) and (2.17), we get
Z

E
| detDa�(x)| dx =

Z

 (E\Z)
N( ,⌦, y) dy = | (E \ Z)| = |�(E \ Z)|  |�(E)|, (2.18)

which proves (2.14).

If A is a measurable subset of ⌦ and � satisfies the Lusin (N) condition on A, then
�(A) is measurable and so is A \ Z and �(A \ Z) =  (A \ Z). Therefore, f = � (A\Z) is
measurable. We can repeat (2.16), (2.17) with A in place of E and get as in (2.18)

Z

A
| detDa�(x)| dx = |�(A \ Z)| = |�(A)|.

Indeed, the last equality is true, since �(A) = �(A \ Z) [ �(A \ Z) and �(A \ Z) is a set
of measure zero. This proves (2.15) and finishes the proof.
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At the end of this section, we quote without proof the lemma stating that BV functions
are approximately differentiable a. e. By BVloc(Rn) we denote the class of functions of
bounded variation f : Rn ! R, i. e., functions f whose distributional derivative is a Radon
measure.

Lemma 2.32. Let f 2 BVloc(Rn). Then f is approximately differentiable a. e. on Rn.

For the proof, see Theorem 4 on p. 233–234 of [29]. As W
1,p
loc (Rn) ⇢ BVloc(Rn) for

p 2 [1,1], this lemma implies that Sobolev functions are a. e. approximately differentiable.
For the proof in the Sobolev case only, see [47, Theorem A.31].

We shall farther discuss approximate differentiability in Section 5.3. We also recom-
mend [29, Chapter 6], [47, Appendix A.7], [36, Section 4.4] and Sections 3.1 and 3.2 in [31]
for more information or another treatment of approximate differentiability.



Chapter 3

Gluing diffeomorphisms, bi-Lipschitz
homeomorphisms and
homeomorphisms

3.1 Introduction

In this chapter, we prove Theorems 1.1, 1.2 and 1.3. These are results from [40], which
is a joint work with Paweł Goldstein and Piotr Hajłasz. We shall recall their statements
in due course in this introduction. The three theorems concern orientation preserving
homeomorphisms of different regularity: diffeomorphisms, bi-Lipschitz homeomorphisms
and homeomorphisms, respectively.

Let Mn and N n be two n-dimensional topological manifolds and let ⌦ ⇢ Mn be
open. By a homeomorphism f : ⌦ ! N n we mean a homeomorphism onto the image,
i. e., a homeomorphism between ⌦ and f(⌦). Let us recall that n � 2 and that we write
F : X ⇣ Y if F is a surjective mapping onto Y . For a comprehensive list of used symbols,
see Section 2.1.

If Mn is a manifold of class C
k, k 2 N [ {1}, and A ⇢ Mn is closed, then by

a C
k-diffeomorphism F : A ! N n we mean a diffeomorphism that extends to a C

k-
diffeomorphism on an open neighborhood of A. We say that a diffeomorphism F : A ! N n

is orientation preserving if its Jacobian is positive, see [93, Proposition 21.8]. Finally,
a closed set D ⇢ Mn is a C

k-diffeomorphic closed ball if there is a C
k-diffeomorphism

F : Bn ⇣ D ⇢ Mn. In other words, if there is a C
k-diffeomorphism F : Bn(0, 1+") ! Mn

such that F (B̄n(0, 1)) = D. We can (and we shall) assume that F is orientation preserving.

We are now ready to state the first main result of this chapter.

Theorem 1.1. Let Mn be an n-dimensional connected and oriented manifold of class C
k,

k 2 N [ {1}. Suppose that {Di}`i=1 and {D0
i}`i=1, Di, D

0
i ⇢ Mn, are two families of

pairwise disjoint sets and that each Di, i = 1, . . . , `, is a C
k-diffeomorphic closed ball. If

Fi : Di ⇣ D
0
i, i = 1, 2, . . . , `, are orientation preserving C

k-diffeomorphisms, then there is
a C

k-diffeomorphism F : Mn ⇣ Mn such that F |Di = Fi. Moreover, if Di and D
0
i for all

i = 1, . . . , ` are contained in the interior of a C
k-diffeomorphic closed ball K ⇢ Mn, F can

be chosen to equal identity outside K.

Note that we do not assume that the sets in the family {Di}`i=1 are disjoint from the sets
in the family {D0

i}`i=1. Among many possible corollaries based on Theorem 1.1, below we
state two in Euclidean setting, which are useful due to their elementary statements.

36
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Corollary 3.1. Let k 2 N[ {1} and let D1 and D2, D2 ⇢ D̊1 ⇢ Rn, be C
k-diffeomorphic

closed balls, k 2 N [ {1}. Let F : Rn \ D̊1 ! Rn be an orientation preserving C
k-

diffeomorphism that can be extended to a C
k-diffeomorphism of the entire Rn. Suppose that

G : D2 ! Rn is a C
k-diffeomorphism. If the diffeomorphisms have disjoint images, i. e.,

G(D2)\F (Rn \ D̊1) = ?, then there is a C
k-diffeomorphism H : Rn ⇣ Rn that agrees with

F on Rn \ D̊1 and with G on D2.

Observe that the assumption about the existence of a diffeomorphic extension of F

is necessary. Indeed, if we only assumed existence of a diffeomorphic extension of F to
Rn \{0}, then Milnor’s theorem [69, Theorem 5] would yield a counterexample when n = 7
(see Example 3.12).

Corollary 3.2. Let k 2 N[{1} and let D1 and D2, D1, D2 ⇢ Rn, be two C
k-diffeomorphic

closed balls and F,G : D̊2 ! Rn be two C
k-diffeomorphisms. Suppose that

D1 ⇢ D̊2 and F (D1) ⇢ G(D̊2).

Then there is a C
k-diffeomorphism H : D̊2 ! Rn such that H = F on D1 and H = G near

@D2.

As mentioned in Section 1.2, the question if Corollary 3.2 is true prompted this part of
research. It is a good moment to observe that in Section 2.7, we already proved a few results
about gluing diffeomorphisms in Rn. We can glue a diffeomorphism and its tangent mapping
on a sufficiently small ball (Lemma 2.13) and a linear mapping A 2 GL(n)+ with identity
on a sufficiently small ball as well (Lemma 2.15). In the case of linear A1, A2 2 GL(n)+

mappings, which behave well under scaling and re-scaling, it is then easy to show that if
only for some r > 0, A1(B(0, r)) b A2(B(0, 1)), then there is a C

1-diffeomorphism H of
Rn, which coincides with x 7! A1x on the smaller ball and with x 7! A2x outside the bigger
ball. This is Proposition 2.14. Corollary 3.2 shows that a similar result can be obtained
for diffeomorphisms.

In the proof of Theorem 1.1 we use techniques developed in the classical papers in
geometric topology [78, 83, 82]. The heart of the proof (and the whole chapter) is the
trick of Palais from [83]. Essentially, it says that an orientation preserving diffeomorphism
defined on a diffeomorphic closed ball D ⇢ Mn can be extended to a diffeomorphism of
the entire Mn which equals identity away from D. We shall also use some constructions
from Chapter 2.

We now leave the comfortable world of Ck-regularity to tackle a version of Theorem 1.1
in bi-Lipschitz and, then, purely topological setting. The lack of smoothness implies for
example that it is more difficult to define orientation on a manifold and what it means for
a homeomorphism to be orientation preserving. Here, we assume the reader is familiar with
these notions, if not, we refer to the short explanation of these definitions in the Appendix
in Section A.4.1.

Theorem 1.2. Let Mn be an n-dimensional connected and oriented Lipschitz manifold.
Suppose {Di}`i=1 and {D0

i}`i=1, Di, D
0
i ⇢ Mn, are two families of pairwise disjoint flat

bi-Lipschitz closed balls. If Fi : Di ⇣ D
0
i, i = 1, 2, . . . , `, are orientation preserving bi-

Lipschitz homeomorphisms, then there is a bi-Lipschitz homeomorphism F : Mn ⇣ Mn

such that F |Di = Fi. Moreover, if Di and D
0
i for all i = 1, . . . , ` are contained in the

interior of a flat bi-Lipschitz closed ball K ⇢ Mn, F can be chosen to equal identity outside
K.

We say that D is a flat bi-Lipschitz closed ball if there is a bi-Lipschitz homeomorphism
F : B̄n ⇣ D that can be extended to a bi-Lipschitz mapping on a neighborhood of B̄n. Not
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every bi-Lipschitz image of a closed ball is flat. One counterexample is the Fox-Artin ball,
as originally observed by Gehring in [35] and proved by Martin in [65, Theorem 3.7]. This is
a thickening of a standard Fox-Artin arc in R3, see [33]. The Fox-Artin ball is a bi-Lipschitz
image of a closed ball, i. e., it equals F (B3) for some bi-Lipschitz homeomorphism F .
However, there is no homeomorphic extension of F onto a neighborhood of B3 and hence,
clearly, no bi-Lipschitz extension. This follows from a lack of sufficiently good simple-
connectedness properties of the complement of the Fox-Artin ball.

On the other hand, it follows from the Schönflies theorem for Lipschitz maps [95,
Theorem A] that on the plane every bi-Lipschitz closed ball is flat, and hence the assumption
on bi-Lipschitz flatness is superfluous for n = 2. To an interested reader, we recommend
papers [23, 63] for recent related results.

Remark 3.3. In the last sentence of Theorem 1.2, it suffices to assume that K is a bi-
Lipschitz image of a closed ball and not necessarily a flat bi-Lipschitz ball. Indeed, if Di, D

0
i

for i = 1, . . . , ` are contained in the interior of a bi-Lipschitz image of a closed ball K 0,
then there is a flat bi-Lipschitz ball K such that Di, D

0
i ⇢ K̊ ⇢ K

0. This follows from
Corollary 2.3.

The general outline of the proof of Theorem 1.2 is similar to that for Theorem 1.1.
However, the result is much deeper as it requires the bi-Lipschitz stable homeomorphisms
theorem proved by Sullivan [89]. The proof demands from the reader expertise in algebraic
topology, not only because of how involved the topic is but also because of the style in
which the cited article is written. In 1981, Tukia and Väisälä proved rigorously most of
the theses from Sullivan’s paper in [94]. The only result they took for granted from [89] is
the existence of the Sullivan groups1. We also need the so called annulus theorem, which
is closely related to the stable homeomorphisms theorem. In the bi-Lipschitz case it was
proved in [94, Theorem 3.12].

We now state the version of Theorem 1.1 in the purely topological setting.

Theorem 1.3. Let Mn be an n-dimensional connected and oriented topological manifold.
Suppose {Di}`i=1 and {D0

i}`i=1, Di, D
0
i ⇢ Mn, are two families of pairwise disjoint flat

topological closed balls. If Fi : Di ⇣ D
0
i, i = 1, 2, . . . , `, are orientation preserving homeo-

morphisms, then there is a homeomorphism F : Mn ⇣ Mn such that F |Di = Fi. Moreover,
if Di and D

0
i for all i = 1, . . . , ` are contained in the interior of a flat topological closed ball

K ⇢ Mn, F can be chosen to equal identity outside K.

We say that D is a flat topological closed ball if there is a homeomorphism F : B̄n ⇣ D

that can be extended to a homeomorphism on a neighborhood of B̄n. As before, we can (and
we shall) assume that F is orientation preserving. Note that not every homeomorphic image
of a closed ball is flat. The classical example is the Alexander’s horned ball, see [2] for the
original argument and [44, Example 2B.2] for a modern treatment of the construction. The
complement of Alexander’s horned ball is not simply connected since in any neighborhood
of Alexander’s horned ball there are non-contractible loops, which rules out the possibility
of a homeomorphic extension.

Nonetheless, it is interesting to note that the flat topological closed balls in Rn have
a simple characterization that follows from generalized Schönflies theorem due to Mazur
[67, 66], Morse [75] and Brown [12]: A topological closed ball D is flat if and only if @D
is a topological submanifold, meaning that for every point x 2 @D there is a neighborhood
U ⇢ Rn and a homeomorphism H : U ⇣ Rn such that H(U \ @D) = Rn�1 ⇥ {0}.

1
For the precise definition of the Sullivan groups, see [94, Section 2.9]. They are explicitly used in the

construction in [94, Lemma 3.3].
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Remark 3.4. As explained in Remark 3.3, in the last sentence of Theorem 1.3, it suffices
to assume that for every i = 1, . . . , `, Di, D

0
i is contained in the interior of a homeomorphic

image of a closed ball, i. e., in a homeomorphic image of an open ball.

In the proof of Theorem 1.3, we employ the topological stable homeomorphisms and
annulus theorems. We provide bibliographical details about proofs of these theorems in
Section 3.4, when we discuss their statements.

While the above results seem very natural and possibly useful, quite surprisingly, we
could not find such results in the literature. As the proof of Theorem 1.1 is straightfor-
ward and portrays well the use of Palais’ trick, we present it separately and only later
prove Theorems 1.2 and 1.3 invoking often nearly the same arguments as in the proof of
Theorem 1.1.

In Section 3.2, we present Palais’ trick for Ck-diffeomorphisms in Rn and we then prove
Theorem 1.1 and Corollaries 3.1 and 3.2 in Section 3.3. The rest of this chapter concerns
bi-Lipschitz homeomorphisms and homeomorphisms and, for brevity, we treat those two
cases together since the arguments are the same. In Section 3.4, we discuss the stable
homeomorphisms and annulus theorems and prove Lemma 3.18, which is central to the
use of Palais’ trick in the homeomorphic setting. In Section 3.5, we prove Theorems 1.2
and 1.3.

Acknowledgement. We would like to thank Igor Belegradek for directing us to the paper
[83] of Palais.

3.2 Palais’ trick

The next result says that any C
k-diffeomorphism can be linearized to identity on a suffi-

ciently small ball.

Lemma 3.5. Suppose that H : B(0, %) ! Rn is an orientation preserving Ck-diffeomorphism
with H(0) = 0. Then there is a � 2 (0, %/2) and a C

k-diffeomorphism H1 : B(0, %) ! Rn

such that

H1(x) =

(
H(x) for x 2 B(0, %) \B(0, %/2),

x for x 2 B(0, �).
(3.1)

Proof. The mapping H1 is constructed with the help of a standard convex isotopy between
H and DH(0) and an isotopy between DH(0) and identity.

By (2.5) in Lemma 2.13, we construct a C
k-diffeomorphism G1 : B(0, %) ! Rn, which

equals x 7! DH(0)x on B(0, 3%/8) and H on B(0, %) \B(0, %/2). It is then possible to find
a � 2 (0, %/8) for which

B(0, �) b DH(0)(B(0, %/8)).

By Proposition 2.14, we find a C
1-diffeomorphism G2 : Rn ⇣ Rn such that G2(x) = x for

x 2 B(0, �) and G2(x) = DH(0)x for x 2 Rn \B(0, %/8). We then set

H1(x) =

(
G2(x) for x 2 B(0, %/4),

G1(x) for x 2 B(0, %) \B(0, %/4).

Thus defined H1 is a C
k-diffeomorphism because G2(x) = DH(0)x = G1(x) near @B(0, %/4).

Clearly, H1 satisfies (3.1).
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The next quite surprising result was proved by Palais [83] in the C
1 case. The proof

is short, elementary and beautiful.

Lemma 3.6. Suppose that H : B(0, %) ! Rn is an orientation preserving Ck-diffeomorphism
with H(0) = 0. Then for any " > 0, there is a C

k-diffeomorphism eH : Rn ⇣ Rn such that

eH(x) =

(
H(x) if x 2 B(0, ⇢),

x if dist(x,A) � ",
(3.2)

where A = B(0, ⇢) [H(B(0, ⇢)).

Remark 3.7. If eH : Rn ⇣ Rn is a diffeomorphism such that eH(0) = 0, but eH(x) 6= x

for 0 6= x 2 B(0, ⇢), then clearly eH(x) 6= x for 0 6= x 2 A and hence eH(x) 6= x in
a neighborhood of @A. Therefore, the condition eH(x) = x if dist(x,A) � " in (3.2) is
sharp.

Proof. Let " > 0 be given. By assumption, H extends to a C
k-diffeomorphism on B(0, %+

3⌧) for some ⌧ > 0; we denote this extension by H as well. By decreasing ⌧ > 0 if necessary,
we may assume that

B(0, ⇢+ 3⌧) [H(B(0, ⇢+ 3⌧)) ⇢ {x : dist(x,A) < "}.

By Lemma 3.5, there is a � 2 (0, ⇢/2) and a C
k-diffeomorphism H1 : B(0, ⇢ + 3⌧) ! Rn

such that

H1(x) =

(
H(x) if x 2 B(0, ⇢+ 3⌧) \B(0, ⇢/2),

x if x 2 B(0, �).

Let � : R ! R be a non-decreasing, smooth function satisfying

�(t) =

(
1 if t > ⇢+ 2⌧,

�(⇢+ ⌧)�1 if t < ⇢+ ⌧

and define � : Rn ⇣ Rn by �(x) := �(|x|)x. The mapping � is obviously a smooth
diffeomorphism of Rn. Note also that �(x) on B(0, ⇢ + ⌧) acts as scaling by a factor
of �(⇢ + ⌧)�1, �(B(0, ⇢ + ⌧)) = B(0, �), while �(x) = x when |x| > ⇢ + 2⌧ . Since
B(0, %+ 3⌧) ⇢ {dist(x,A) < "}, � = id in {dist(x,A) � "}.

Consider the C
k-diffeomorphism

H1 � ��1 �H�1
1 : H1(B(0, ⇢+ 3⌧)) ! Rn

. (3.3)

It is a well defined diffeomorphism, because � maps the ball B(0, ⇢+ 3⌧) onto itself. The
diffeomorphism defined in (3.3) is identity near the boundary of H1(B(0, ⇢+3⌧)), because

H1 � ��1 �H�1
1 (x) = x for x 2 H1

�
B(0, ⇢+ 3⌧) \B(0, ⇢+ 2⌧)

�
. (3.4)

Indeed, ��1 is the identity on B(0, ⇢ + 3⌧) \ B(0, ⇢ + 2⌧), so for x as in (3.4), we have
��1(H�1

1 (x)) = H
�1
1 (x). Therefore, the C

k-diffeomorphism (3.3) has the extension to
a C

k-diffeomorphism of Rn by identity:

H1 � ��1 �H�1
1

:
=

(
H1 � ��1 �H�1

1 in H1(B(0, ⇢+ 3⌧)),

id in Rn \H1(B(0, ⇢+ 3⌧)).
(3.5)

Moreover, the mapping defined in (3.5) is identity in {x : dist(x,A) � "}, because
H1(B(0, ⇢+ 3⌧)) = H(B(0, ⇢+ 3⌧)) ⇢ {dist(x,A) < "}.



3.3. PROOF OF THEOREM 1.1 41

Now, we define the C
k-diffeomorphism

H2 =
�
H1 � ��1 �H�1

1

: �
� � : Rn ! Rn

. (3.6)

Note that since � and the diffeomorphism defined in (3.5) are both equal identity in the
set {dist(x,A) � "}, so does H2.

If x 2 B(0, ⇢ + ⌧), then �(x) = �(⇢ + ⌧)�1
x and therefore �(x) 2 B(0, �). It follows

from the definition of H1 that

B(0, �) ⇢ H1(B(0, %+ 3⌧)).

Thus by (3.5) for x 2 B(0, %+ ⌧), we have

H2(x) = H1 � ��1 �H�1
1 (�(x)) = H1 � ��1(�(x)) = H1(x),

because H
�1
1 = id on B(0, �).

Finally, since H2 = H1 = H near @B(0, ⇢), we can set

eH :=

(
H2 on Rn \B(0, ⇢),

H on B(0, ⇢),

and clearly, eH is a C
k-diffeomorphism that satisfies (3.2).

Corollary 3.8. Let G : B(a, r) ⇣ B(a, r) be an orientation preserving C
k-diffeomorphism,

k 2 N [ {1}. Then for any " > 0, there is a C
k-diffeomorphism eG : Rn ⇣ Rn such that

eG(x) =

(
G(x) for x 2 B̄(a, r)

x for x 62 B(a, r + ").

Proof. If G(a) = a, it is a straightforward consequence of Lemma 3.5. If not, we construct
a C

1-diffeomorphism F : Rn ⇣ Rn such that F (G(a)) = a and F = id in Rn \B(a, r/2).
One can construct F through a 1-parameter group of diffeomorphisms generated by a com-
pactly supported vector field, see Corollary A.4 in the Appendix for a proof.

Let T (x) = x � a and G1 = T � F � G � T
�1. Then G1 is an orientation preserving

C
k-diffeomorphism of B(0, r) onto itself, G1(0) = 0. For any " > 0, we may thus apply

Lemma 3.6 to G1, obtaining a diffeomorphism eG1 : Rn ⇣ Rn such that

eG1(x) =

(
G1(x) for x 2 B(0, r),

x for x 62 B(0, r + ")

(note that G1(B(0, r)) = B(0, r)). Now, eG := F
�1 � T�1 � eG1 � T satisfies the claim of the

lemma.

3.3 Proof of Theorem 1.1

Lemma 3.9. Let {Di}`i=1, Di ⇢ Rn, be a family of pairwise disjoint C
k-diffeomorphic

closed balls and let pi 2 D̊i, i = 1, . . . , `, be given. There is "o > 0 such that for any
" 2 (0, "o) there is a diffeomorphism F" : Rn ⇣ Rn such that F"(B(pi, ")) = Di for
i = 1, . . . , ` and

F"(x) = x if dist
⇣
x,

[`

i=1
Di

⌘
� ".
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Remark 3.10. Clearly, the balls {B(pi, ")}`i=1 are pairwise disjoint and

B(pi, ") ⇢ {x : dist(x,
[`

i=1
Di)  "}.

Proof. Set "o := 1
4 mini,j dist(Di, Dj) (obviously, "o > 0) and let " 2 (0, "o). By assump-

tion, there are C
k-diffeomorphisms Hi : B(pi, ") ⇣ Di. We can additionally assume that

Hi(pi) = pi. Indeed, if Hi(pi) 6= pi, we compose Hi with a diffeomorphism of Di which is
identity near @Di and maps Hi(pi) to pi (cf. the proof of Corollary 3.8). Note that for each
i = 1, . . . , `

Ai := B(pi, ") [Hi(B(pi, "))

is a compact subset of the open set {x : dist(x,Di) < "} and hence there is "̃i > 0 such
that

{x : dist(x,Di) � "} ⇢ {x : dist(x,Ai) � "̃i}.

It follows from Lemma 3.6 with " replaced by "̃i that for each i = 1, . . . , `, there is a dif-
feomorphism eHi : Rn ⇣ Rn such that

eHi(x) =

(
Hi(x) if x 2 B(pi, "),

x if dist(x,Di) � ".

Since " < "o, the sets {dist(x,Di) < "} are pairwise disjoint and hence we can glue the
diffeomorphisms eHi to a diffeomorphism F" : Rn ⇣ Rn such that F" = eHi on B(pi, ").

In the next lemma, we shall use Lemma 2.16. Actually, we do not need to know that
the diffeomorphism H from Lemma 2.16 acts like translation on B(pi, "), it is enough to
know that the ball B(pi, ") is mapped onto the corresponding ball B(qi, "). Combining
Lemmata 3.9 and 2.16 we obtain the following result, which is a Euclidean variant of
Theorem 1.1.

Lemma 3.11. Let U ⇢ Rn be a domain. Suppose that {Di}`i=1 and {D0
i}`i=1, Di, D

0
i ⇢

U , are two families of pairwise disjoint C
k-diffeomorphic closed balls. If Fi : Di ⇣ D

0
i,

i = 1, 2, . . . , `, are orientation preserving diffeomorphisms, then there is a diffeomorphism
F : Rn ⇣ Rn such that F |Di = Fi and F = id in Rn \ U .

Proof. Let pi 2 D̊i and qi 2 D̊
0
i. There is "̃1 > 0 such that for any " 2 (0, "̃1) the compact

sets n
x : dist

⇣
x,

[`

i=1
Di

⌘
 "

o
and

n
x : dist

⇣
x,

[`

i=1
D

0
i

⌘
 "

o
(3.7)

are contained in U . By Lemma 3.9, there is "1 2 (0, "̃1) such that for any " 2 (0, "1) there
are diffeomorphisms A1, A2 : Rn ⇣ Rn which satisfy

A1(B(pi, ")) = Di, and A2(B(qi, ")) = D
0
i for i = 1, . . . , `

and that are equal to identity outside compact sets given in (3.7), respectively. Therefore,
A1 = A2 = id in Rn \ U . Let "o 2 (0, "1/2) be as in Lemma 2.16. Hence, for " 2 (0, "o)
there is a diffeomorphism H : Rn ⇣ Rn which equals identity in Rn \ U and maps each
B(qi, ") to B(pi, "). Note also that B(pi, 2") ⇢ U .

Now, for any i = 1, . . . , `,

Gi := H �A�1
2 � Fi �A1 : B(pi, ") ⇣ B(pi, ")
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is an orientation preserving diffeomorphism, thus by Corollary 3.8 there is a diffeomorphism
eGi : Rn ⇣ Rn such that eGi|B(pi,")

= Gi and eGi equals identity outside B(pi,
3
2"). Setting

G(x) =

(
eGi(x) if x 2 B(pi, 2"),

x otherwise,

we get a diffeomorphism of Rn equal to identity outside
S`

i=1B(pi,
3
2") and hence outside U .

Finally, one easily checks that the composition F = A2 �H�1 �G�A�1
1 is a diffeomorphism

of Rn which equals identity in Rn \ U (as a composition of diffeomorphisms of Rn with
this property) and coincides with Fi on Di for i = 1, . . . , `. Indeed, if x 2 Di, then
A

�1
1 (x) 2 B̄(pi, "), thus

F (x) = (A2 �H�1 �G �A�1
1 )(x) = (A2 �H�1 �Gi �A�1

1 )(x)

= (A2 �H�1 �H �A�1
2 � Fi �A1| {z }

Gi

�A�1
1 )(x) = Fi(x)

Proof of Theorem 1.1. We prove the result by reducing it to the Euclidean setting, i.e., to
the case treated in Lemma 3.11.

Let K
0 be a C

k-diffeomorphic closed ball contained in Mn which is disjoint fromS`
i=1(Di [D

0
i). We can find an orientation preserving C

k-diffeomorphism H : Mn ⇣ Mn

such that H(Di), H(D0
i) are contained in the interior of K 0. This can be done by adapting

in a standard way the Euclidean method from Lemma 2.17 to the case of a manifold. We
prove it in Lemma A.18 in the Appendix and here present a sketch of the idea.

Let us for now assume that the family {Di}`i=1 is disjoint from the family {D0
i}`i=1. For

each ball Di (and D
0
i) we create a finite chain of connected coordinate systems that connect

Di (and D
0
i) to K

0 in a way that consecutive systems have nonempty overlapping. Moreover,
we assume that the first coordinate system in the chain contains a neighborhood of Di (D0

i).
Then we construct a diffeomorphism Hi (and H

0
i) as a composition of diffeomorphisms

defined in the local coordinate systems that move the ball Di from one coordinate system to
the next one. We can guarantee that on the set where Hi or H 0

i differs from the identity, all
other diffeomorphisms Hj and H

0
j are equal identity. Finally we define H as a composition

of all diffeomorphisms Hi and H
0
i. If Di \D

0
j for some i, j 2 {1, . . . , `}, one has to slightly

modify the construction of Hi = H
0
j so that the sum Di [D

0
j is mapped into K̊

0 without
spoiling the construction of other diffeomorphisms.

Let � : Bn ⇣ K
0 be the C

k-diffeomorphism between the Euclidean ball and K
0. Set

Ei := ��1(H(Di)) and E
0
i := ��1(H(D0

i)) and bFi := ��1 � H � Fi � H
�1 � �|Ei . The

map bFi is an orientation preserving C
k-diffeomorphism, Ei and E

0
i are C

k-diffeomorphic
closed balls and bFi maps Ei onto E

0
i. Moreover, it follows from Corollary 2.3 that Ei, E

0
i

are contained in Bn. Consequently, there is a % 2 (0, 1) for which Ei, E
0
i ⇢ B(0, %) for

i = 1, . . . , `. By Lemma 3.11, there is a C
k-diffeomorphism bF : Rn ⇣ Rn which satisfies

bF |Ei = bFi and bF = id in Rn \B(0, %).

Then the composition � � bF � ��1 : K 0 ⇣ K
0 is a C

k-diffeomorphism, which equals
identity near @K 0 and thus can be extended by identity to a C

k-diffeomorphism G : Mn ⇣
Mn. Eventually, set

F := H
�1 �G �H.
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This is a C
k-diffeomorphism of Mn such that F |Di = Fi, which can be easily checked in

the same manner as in Lemma 3.11.

If all the sets Di and D
0
i for i = 1, . . . , ` are contained in a C

k-diffeomorphic closed
ball K ⇢ Mn, then K

0 can be chosen to equal K and thus H = id and F = G = id
outside K.

Example 3.12. In his celebrated article [69] introducing exotic 7-spheres, Milnor proved
the existence of an orientation preserving C

1-diffeomorphism f : S6 ⇣ S6 which is not
C

1-isotopic to identity ([69, Theorem 5]). This diffeomorphism can be extended radially to
a C

1-diffeomorphism f̃ : R7 \B(0, r) ! R7 for any r > 0. However, it cannot be extended
to a C

1-diffeomorphism of the entire R7.

Assume the contrary, i. e., that there is an orientation preserving C
1-diffeomorphism

eG : Rn ⇣ Rn with G = f on @B7. Then by Lemma 3.5, it is possible to find a C
1-

diffeomorphism G such that G = f near @B7 and G = id on B
7(0, r) for some r 2 (0, 1).

This, in turn, provides a C
1-diffeomorphism

F : S7 ⇥ [1, r] ⇣ S7 ⇥ [1, r], F (x, 1) = f(x) and F (x, r) = x.

Such a diffeomorphism need not be an isotopy (the latter must preserve the sets S7 ⇥ {t}
for t 2 [1, r]) but it is a pseudoisotopy between f and the identity. Since we discuss diffeo-
morphisms of S6, by Cerf’s pseudoisotopy-to-isotopy theorem ([18], see also [58, Theorem
2.71]) this implies that f is isotopic to the identity, which is a contradiction.

Also, if we consider S6 to be embedded into S7, we see that the same f can be ex-
tended to a C

1-diffeomorphism on an annulus A ⇢ S7 but cannot be extended to a C
1-

diffeomorphism of S7.

Proof of Corollary 3.1. Let eF denote the assumed extension of F onto Rn, i. e., eF : Rn ⇣
Rn and eF = F on Rn \ D̊1. By assumption, G(D2) ⇢ eF (D̊1) and hence eF�1(G(D2)) ⇢ D̊1.
By Lemma 3.11, we can find a C

k-diffeomorphism eH : Rn ⇣ Rn such that eH = eF�1 � G
on D2 and eH = id outside D̊1. We set

H := eF � eH.

It is clear that H is the required C
k-diffeomorphism.

The proof of Corollary 3.2 is analogous to the proof of Corollary 3.1, we provide it for
completeness.

Proof of Corollary 3.2. Note that D
0
1 := G

�1 � F (D1) ⇢ D̊2. The mapping G
�1 � F is

a C
k-diffeomorphism, which maps D1 onto D

0
1. Both D1 and D

0
1 are C

k-diffeomorphic
closed balls and are contained in D̊2. Consequently, D1, D2 ⇢ U for some domain U b D̊2.

By Lemma 3.11, we find a diffeomorphism eH : Rn ⇣ Rn such that eH = G
�1 � F on

D1 and eH = id in Rn \ U . Clearly, eH(D̊2) = D̊2 and therefore the mapping

H = G � eH|D̊2

is a well-defined C
k-diffeomorphism. Moreover, H equals F on D1 and G on D̊2 \ U , i. e.,

F = G near @D2.
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3.4 Topological local linearization

The main result of this section is Lemma 3.21, which is a homeomorphic version of Lemma 3.5.
The homeomorphic version is much more difficult as it requires stable homeomorphisms and
annulus theorems, which we discuss here.

Definition 3.13. Let % > 0. We say that a homeomorphism F : Rn ⇣ Rn (or F :
B(0, %) ⇣ B(0, %)) is stable if

F = f1 � . . . � fk (3.8)

for some k 2 N and homeomorphisms fi : Rn ⇣ Rn (fi : B(0, %) ⇣ B(0, %)) such that
fi|Ui = id for some nonempty open set Ui ⇢ Rn (Ui ⇢ B(0, %)).

We say that a homeomorphism F : Rn ⇣ Rn (or F : B(0, %) ⇣ B(0, %)) is locally
bi-Lipschitz stable if F can be written as in (3.8) for some k 2 N and for locally bi-Lipschitz
homeomorphisms fi : Rn ⇣ Rn (fi : B(0, %) ⇣ B(0, %)) such that fi|Ui = id for some
nonempty open set Ui ⇢ Rn (Ui ⇢ B(0, %)).

Remark 3.14. Without loss of generality, we assume that the Ui in the definition above
are pairwise disjoint balls with the same radius, compactly contained in B(0, %).

The stable homeomorphism theorem in the topological case in dimensions n = 2, 3 is
a classical result due to Radó [86] for n = 2 and Moise [71] for n = 3. For n > 4, it was
proved by Kirby in [61] and for n = 4 by Quinn in [85] (see page 1 and Theorem 2.2.2). For
a short explanation of the intricacies of the proof in the topological case, we refer to [45].
In the bi-Lipschitz case, the stable homeomorphism theorem was derived in [94, Theorem
3.12] from the existence of groups known as Sullivan groups, whose existence was claimed
by Sullivan in [89].

Lemma 3.15 (Stable homeomorphisms theorem). Any orientation preserving homeomor-
phism F : Rn ⇣ Rn is stable. If F is additionally locally bi-Lipschitz, then F is locally
bi-Lipschitz stable.

Corollary 3.16. An orientation preserving homeomorphism F : B(0, %) ⇣ B(0, %) is
stable. If, additionally, F is locally bi-Lipschitz, then F is also locally bi-Lipschitz stable.

Proof. Let ' : Rn ⇣ B(0, %) be an orientation preserving homeomorphism. Then eF =
'
�1�F �' is an orientation preserving homeomorphism of the entire Rn, so by Lemma 3.15

it can be decomposed as in (3.8) as

eF = f̃1 � . . . � f̃k, f̃i = id on Ui.

for some open nonempty sets Ui ⇢ Rn. We then set fi := ' � f̃i � '�1 : B(0, %) ⇣ B(0, %).
Clearly, fi = id on the open set '(Ui) and F = f1 � . . . � fk.

We can choose ' to be locally bi-Lipschitz and then eF is locally bi-Lipschitz given
a locally bi-Lipschitz F . By Lemma 3.15, each f̃i is locally bi-Lipschitz and, consequently,
so is fi. This implies that F is locally bi-Lipschitz stable and finishes the proof.

We shall show in Lemma 3.18 that it is possible to locally linearize a homeomorphism
or a bi-Lipschitz homeomorphism F of a ball B(0, %) onto itself. The assumption that
F (B(0, %)) = B(0, %) is important as it allows us to use (bi-Lipschitz) stable homeomor-
phism theorem. Before that, we recall a certain well-known fact.



46 CHAPTER 3. GLUING

Remark 3.17. If f : Bn ⇣ Bn is a homeomorphism, then for any sequence {xk}1k=1 ⇢ Bn,

lim
k!1

|xk| = 1 =) lim
k!1

|f(xk)| = 1. (3.9)

Indeed, fix " 2 (0, 1). The set f
�1(B(0, 1 � ")) is compact and hence it is contained in

a ball B(0, %) for some % 2 (0, 1). For xk 2 Bn with |xk| ! 1, there is a ko such that
for all k � ko, |xk| > %. Consequently, xk /2 f

�1(B(0, 1 � ")). Therefore, for such xk,
|f(xk)| � 1� ". The claim follows from arbitrariness of ".

Lemma 3.18. Let F : B(0, %) ⇣ B(0, %) be an orientation preserving homeomorphism.
Then for any � 2 (0, %), there is a homeomorphism bF : B(0, %) ⇣ B(0, %) such that

bF (x) =

(
F (x) for x near @B(0, %),

x for x 2 B(0, �).
(3.10)

If F is locally bi-Lipschitz, then bF is locally bi-Lipschitz as well.

Proof. By Corollary 3.16, there are homeomorphisms fi : B(0, %) ⇣ B(0, %), i = 1, . . . , k
for k 2 N, and balls Ui ⇢ B(0, %) of the same radius such that

F = f1 � . . . � fk, fi|Ui = id . (3.11)

We can find ⌧ 2 (0, 1) for which B(0, ⌧) is disjoint from Ui for every i = 1, . . . , k. It
follows from Remark 2.18 that there is a diffeomorphism  1 : B(0, %) ⇣ B(0, %) which
maps B(0, ⌧) onto U1 and equals identity near @B(0, %). Then eF1 :=  

�1
1 � f1 �  1 is

a homeomorphism of B(0, %) s. t. eF1(x) = x for x 2 B(0, ⌧) and eF1(x) = f1(x) for x near
@B(0, %). Indeed, as recalled in Remark 3.17, given any " > 0, we can find ⌘ 2 (0, ⇢ � ⌘)
such that if % � ⌘ < |x| < %, then % � " < |f1(x)| < % so that both x and f1(x) lie in the
set in which  = id . If f1 is locally bi-Lipschitz, so is eF1.

Assume that we have found eFj�1 for j = 1, . . . , k such that eFj�1 = f1 � . . . � fj�1 near
@B(0, %) and eFj�1 = id on B(0, ⌧). Then, we find a diffeomorphism  j : B(0, %) ⇣ B(0, %),
which maps B(0, ⌧) onto Uj and equals identity near @B(0, %). Then eFj :=  

�1
j � eFj�1�fj� j

is a homeomorphism of B(0, %), which equals f1 . . .�fj near @B(0, %) and identity on B(0, ⌧).
If eFj�1 is locally bi-Lipschitz, so is eFj .

Finally, set eF := eFk so that F = id on B(0, �) and by (3.11), eF = F near @B(0, %). If
F is locally bi-Lipschitz, then by Corollary 3.16, each fi is locally bi-Lipschitz and hence
eFj for all j = 1, . . . , k is locally bi-Lipschitz as well. In particular, eF is locally bi-Lipschitz.

Note that eF satisfies (3.10) for � = ⌧ . To correct it, we find a diffeomorphism � :
B(0, %) ⇣ B(0, %), � = id near @B(0, %) which acts like scaling by a factor ⌧��1 on B(0, �)
(cf. proof of Lemma 3.6). Then bF := ��1 � eF � � is the required mapping. If eF is locally
bi-Lipschitz, so is bF .

Albeit we will not use it, we note an interesting corollary stating that, according to
the phrase coined in this section, a homeomorphism can be locally topologically linearized
if and only if it is stable. By stable homeomorphisms theorem, it is equivalent to being
orientation preserving.

Corollary 3.19. Let F : B(0, %) ⇣ B(0, %) be a (locally bi-Lipschitz) homeomorphism.
Then for any � 2 (0, %), there exists a (locally bi-Lipschitz) homeomorphism eF : B(0, %) ⇣
B(0, %) satisfying (3.10) if and only if F is stable (or F is locally bi-Lipschitz stable).
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Proof. Indeed, the proof of Lemma 3.18 implies that if F is (locally bi-Lipschitz) stable,
then there exists such eF . To prove the reverse implication, let r 2 (�, %) be such that eF = F

on B(0, %) \B(0, r). Then set

H(x) :=

(
x for B(0, %) \ eF (B(0, r)),

F � eF�1(x) for x 2 eF (B(0, r)).

Since eF = F on B(0, %)\B(0, r), H indeed is a homeomorphism of B(0, %)2. Then F = H� eF
and since both H and eF are equal identity on a non-empty open set in Rn, F is stable. If F
and eF are locally bi-Lipschitz, then so is H and hence F is locally bi-Lipschitz stable.

We say that a set S ⇢ Rn is a flat topological (or flat bi-Lipschitz) sphere if there is
a (bi-Lipschitz) homeomorphism F : Sn�1 ⇣ S, which extends as a (bi-Lipschitz) homeo-
morphism onto some neighborhood of Sn�1.

Lemma 3.20 (Annulus theorem). Let S1, S2 ⇢ Rn be two disjoint flat topological (or
flat bi-Lipschitz) spheres. Then the compact set bounded by S1 and S2 is (bi-Lipschitz)
homeomorphic to the annulus Bn \Bn(0, 1/2).

In the bi-Lipschitz case, the annulus theorem was proved in [94, Theorem 3.12], follow-
ing [89]. Earlier, Brown and Gluck considered the topological case and showed in [13] that
if the stable homeomorphisms theorem is true (it was not known then), so is the annulus
theorem. It follows from Corollary on page 8 and Theorem 3.5 (i). In fact, this yields
Theorem 1.3 for ` = 1. It is expected that by modification of the methods of Brown and
Gluck, one could prove Theorem 1.3 for ` > 1. We shall show it using the trick of Palais,
to which end we need the local linearization Lemma 3.21 below. In the bi-Lipschitz case
this lemma follows from [94, Theorem 3.16]; since we present the proof for topological case
we include the bi-Lipschitz one as well, as the proof is the same.

By a radial extension of a homeomorphism f : @B(0, %) ⇣ @B(0, %) we mean a mapping
f̃ : Bn ⇣ Bn defined as f̃(x) = |x|f(x/|x|) for x 6= 0 and f̃(0) = 0. It is easy to check that
f̃ is a homeomorphism and that if f is bi-Lipschitz, then so is f̃ .

Lemma 3.21. Let F : B(0, %) ! Rn, F (0) = 0, be an orientation preserving (bi-Lipschitz)
homeomorphism which can be extended as a (bi-Lipschitz) homeomorphism on a neighbor-
hood of B(0, %). There is a � 2 (0, %/2) and a (bi-Lipschitz) homeomorphism eF : B(0, %) !
Rn such that eF = F near @B(0, %) and F = id on B(0, �).

Let us stress the difference between Lemma 3.18, where we dealt with homeomorphisms
of a given ball, and Lemma 3.21. In Lemma 3.21, we linearize homeomorphisms which might
not be onto a ball. That is why we need annulus theorem.

Proof. Firstly, note that since F (0) = 0 and homeomorphisms of subsets of Rn map interior
points to interior points, there is a � 2 (0, %/2) for which B(0, 2�) ⇢ F (B(0, %)). Let
r 2 (2�, %).

The set @F (B(0, r)) = F (@B(0, r)) is a flat topological sphere; let A denote the com-
pact region between @F (B(0, r)) and @B(0, 2�). By Lemma 3.20, there is a homeomorphism
H : B(0, r) \B(0, 2�) ⇣ A and therefore

H
�1 � F : @B(0, r) ⇣ @B(0, r) and H : @B(0, 2�) ⇣ @B(0, 2�).

2
We showed it in details in Corollary 2.12
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We can find radial extensions of H�1 �F and H to homeomorphisms � : B(0, r) ⇣ B(0, r)
and  : B(0, 2�) ⇣ B(0, 2�), respectively. By Lemma 3.18, we find homeomorphisms
e� : B(0, r) ⇣ B(0, r) and e : B(0, 2�) ⇣ B(0, 2�), such that e� = � near @B(0, r) and
e� = id on B(0, 2�) and e =  near @B(0, 2�) and e = id on B(0, �). Eventually, we set

eF =

8
><

>:

F (x) for x 2 B(0, %) \B(0, r),

H(e�(x)) for x 2 B(0, r) \B(0, 2�),
e for x 2 B(0, 2�).

Since eF (B(0, r) \ B(0, 2�)) = A and H � e� agrees with F on @B(0, r) and e = H on
@B(0, 2�), eF is indeed a homeomorphism. It can be easily checked that it satisfies the
required properties.

If F is additionally assumed to be a bi-Lipschitz homeomorphism which can be extended
as a bi-Lipschitz homeomorphism on a neighborhood of B(0, %), then by Lemma 3.20 H is
a bi-Lipschitz homeomorphism and so are the radial extensions � and  . Therefore, with
the help of Lemma 3.18, e� and e are bi-Lipschitz and hence so is eF .

Note that in the statement of Lemma 3.21 we can replace ‘there is a � 2 (0, %/2)’
with ‘for any � 2 (0, %/2)’. Indeed, at the end of the proof it suffices to use the scaling
diffeomorphism � exactly like in the proof of Lemma 3.18.

3.5 Proof of Theorems 1.2 and 1.3

Lemma 3.22. Suppose that H : B(0, %) ! Rn, H(0) = 0, is an orientation preserving
(bi-Lipschitz) homeomorphism which can be extended as a (bi-Lipschitz) homeomorphism
on a neighborhood of B(0, %). Then for any " > 0, there is a (bi-Lipschitz) homeomorphism
eH : Rn ⇣ Rn such that

eH(x) =

(
H(x) if x 2 B(0, ⇢),

x if dist(x,A) � ",
(3.12)

where A = B(0, ⇢) [H(B(0, ⇢)).

Proof. Let " > 0 be given. By Lemma 3.21, there is a (bi-Lipschitz) homeomorphism
H1 : B(0, %) ! Rn and � 2 (0, %/2) such that H1 = id on B(0, �) and H1 = H near
@B(0, %). By assumption, H extends as a (bi-Lipschitz) homeomorphism on B(0, % + 3⌧)
for some ⌧ > 0 and we may assume that

B(0, ⇢+ 3⌧) [H(B(0, ⇢+ 3⌧)) ⇢ {x : dist(x,A) < "}.

As H1 = H near @B(0, %), H1 extends in the same way; we denote this extension with H1.

We define � : R ! R and � : Rn ! Rn as in the proof of Lemma 3.6. Note that
� is a diffeomorphism equal identity outside a compact set, hence it is bi-Lipschitz. The
mapping � acts as scaling by �(% + ⌧)�1, �(B(0, % + ⌧)) = B(0, �) and �(x) = x when
|x| > %+ 2⌧ .

The mapping
H1 � ��1 �H�1

1 : H1(B(0, ⇢+ 3⌧)) ! Rn
. (3.13)

is a well defined homeomorphism, because � maps the ball B(0, ⇢ + 3⌧) onto itself. As
explained in the proof of Lemma 3.6, the homeomorphism defined in (3.13) is identity near
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the boundary of H1(B(0, ⇢+3⌧)) and can be extended to a (bi-Lipschitz) homeomorphism
of Rn by identity:

H1 � ��1 �H�1
1

:
=

(
H1 � ��1 �H�1

1 in H1(B(0, ⇢+ 3⌧)),

id in Rn \H1(B(0, ⇢+ 3⌧)).
(3.14)

Now we define the (bi-Lipschitz) homeomorphism

H2 =
�
H1 � ��1 �H�1

1

: �
� � : Rn ! Rn

.

It can be checked exactly like in the proof of Lemma 3.6 that H2 = H1 on B(0, %+ ⌧) and
that H2(x) = x if dist(x,A) � ". Eventually, since H2 = H1 on B(0, % + ⌧) and H1 = H

near @B(0, %), we have H2 = H near @B(0, %) and we can set

eH :=

(
H2 on Rn \B(0, ⇢),

H on B(0, ⇢).

Then eH is a homeomorphism that satisfies (3.12). If H is bi-Lipschitz, so is H2 and so is
eH.

Following the proof of Corollary 3.8 yields

Corollary 3.23. Let G : B(a, r) ⇣ B(a, r) be an orientation preserving (bi-Lipschitz)
homeomorphism which can be extended as a (bi-Lipschitz) homeomorphism on a neighbor-
hood of B(a, r). Then for any " > 0, there is a (bi-Lipschitz) homeomorphism eG : Rn ⇣ Rn

such that eG = G on B(a, r) and eG = id outside B(a, r + ").

Next, we proceed with the proof of Theorems 1.2 and 1.3 following closely that of
Theorem 1.1.

Lemma 3.24. Let {Di}`i=1, Di ⇢ Rn, be a family of pairwise disjoint flat topological (or
flat bi-Lipschitz) closed balls and let pi 2 D̊i, i = 1, . . . , ` be given. Then there is an "o > 0
such that for any " 2 (0, "o) there is a (bi-Lipschitz) homeomorphism F" : Rn ⇣ Rn such
that F"(B(pi, ")) = Di for i = 1, . . . , ` and

F"(x) = x if dist
⇣
x,

[`

i=1
Di

⌘
� ".

Proof. Set "o := 1
4 mini,j dist(Di, Dj) and choose " 2 (0, "o). By assumption, for any

i = 1, . . . , `, there is a (bi-Lipschitz) homeomorphism Hi : B(pi, ") ⇣ Di which can be
extended as a (bi-Lipschitz) homeomorphism on a neighborhood of B(pi, "). As explained
in the proof of Lemma 3.9, we can assume that Hi(pi) = pi. Note that for each i = 1, . . . , `

Ai := B(pi, ") [Hi(B(pi, "))

is a compact subset of the open set {dist(x,Di) < "} and hence there is "̃i > 0 such that

{x : dist(x,Di) � "} ⇢ {x : dist(x,Ai) � "̃i}.

It follows from Lemma 3.22 with " replaced by "̃i that there are (bi-Lipschitz) homeomor-
phisms eHi : Rn ⇣ Rn such that

eHi(x) =

(
Hi(x) if x 2 B(pi, "),

x if dist(x,Di) � ".

Since " < "o, the sets {dist(x,Di) < "} are pairwise disjoint and hence we can glue the
(bi-Lipschitz) homeomorphisms eHi to a (bi-Lipschitz) homeomorphism F" : Rn ⇣ Rn such
that F" = eHi on B(pi, ").
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As in Section 3.3, combining Lemma 2.16 with Lemma 3.24 yields the Euclidean version
of Theorems 1.2 and 1.3. However, before we proceed, we note that each (bi-Lipschitz)
homeomorphism Fi, i = 1, . . . , ` in Theorems 1.2 and 1.3 can in fact be extended as a (bi-
Lipschitz) homeomorphism on some neighborhood of Di.

Remark 3.25. Let Mn be an oriented and connected n-dimensional topological (or bi-
Lipschitz) manifold and let D, D ⇢ Mn, be a flat topological (or flat bi-Lipschitz) closed
ball. Then the (bi-Lipschitz) homeomorphism F : D ⇣ D

0 can be extended as a (bi-
Lipschitz) homeomorphism on some neighborhood of D if and only if D0 is a flat topological
(or flat bi-Lipschitz) closed ball.

Indeed, if F can be extended as a (bi-Lipschitz) homeomorphism, then D
0 is a flat

topological (or flat bi-Lipschitz) closed ball by definition. On the other hand, if both D

and D
0 are flat topological (or flat bi-Lipschitz) closed balls, then there is " > 0 and

(bi-Lipschitz) homeomorphisms �,  : B
n(0, 1 + ") ! Mn such that �(B̄n) = D and

 (B̄n) = D
0. Then eG :=  �1 � F � �|B̄n is a (bi-Lipschitz) homeomorphism of B̄n. It

is standard to check that a radial extension yields a (bi-Lipschitz) homeomorphism G on
B

n(0, 1+"). Then  �G���1 is the required (bi-Lipschitz) homeomorphism which extends
F onto �(Bn(0, 1 + ")), which is a neighborhood of D.

Lemma 3.26. Let U ⇢ Rn be a domain. Suppose that {Di}`i=1 and {D0
i}`i=1, Di, D

0
i ⇢ U ,

are two families of pairwise disjoint flat topological (or flat bi-Lipschitz) closed balls. If
Fi : Di ⇣ D

0
i, i = 1, 2, . . . , `, are orientation preserving (bi-Lipschitz) homeomorphisms,

then there is a (bi-Lipschitz) homeomorphism F : Rn ⇣ Rn such that F |Di = Fi and
F = id in Rn \ U .

Proof. Let pi 2 D̊i and qi 2 D̊
0
i. There is "̃1 > 0 such that for any " 2 (0, "̃1) the compact

sets n
x : dist

⇣
x,

[`

i=1
Di

⌘
 "

o
and

n
x : dist

⇣
x,

[`

i=1
D

0
i

⌘
 "

o
(3.15)

are contained in U . According to Lemma 3.24, there is "1 2 (0, "̃1) such that for any
" 2 (0, "1), there are (bi-Lipschitz) homeomorphisms A1, A2 : Rn ⇣ Rn which satisfy

A1(B(pi, ")) = Di, and A2(B(qi, ")) = D
0
i for i = 1, . . . , `

and which are equal to identity outside compact sets given in (3.15), respectively. Therefore,
A1 = A2 = id in Rn \U . Let "o 2 (0, "1) be as in Lemma 2.16. Hence, for " 2 (0, "o) there
is a (bi-Lipschitz) homeomorphism H : Rn ⇣ Rn which equals identity in Rn \U and maps
each B(qi, ") to B(pi, "). Note also that B(pi, 2") ⇢ U .

By Remark 3.25, Fi can be extended as a (bi-Lipschitz) homeomorphism on a neigh-
borhood of Di. Hence, for any i = 1, . . . , `,

Gi := H �A�1
2 � Fi �A1 : B(pi, ") ⇣ B(pi, ")

is an orientation preserving (bi-Lipschitz) homeomorphism which can be extended as a (bi-
Lipschitz) homeomorphism on a neighborhood of B(pi, "). Then by Corollary 3.23 there
is a (bi-Lipschitz) homeomorphism eGi : Rn ⇣ Rn such that eGi|B(pi,")

= Gi and eGi equals
identity outside B(pi,

3
2"). Setting

G(x) =

(
eGi(x) if x 2 B(pi, 2"),

x otherwise,

we get a homeomorphism of Rn equal to identity outside
S`

i=1B(pi,
3
2"). Finally, we define

F = A2 �H�1 �G �A�1
1 , which is a (bi-Lipschitz) homeomorphism equal identity in Rn \U

(as it is a composition of diffeomorphisms of Rn with this property). It can be checked as
in the proof of Lemma 3.11 that F = Fi on Di, as required.
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Proof of Theorems 1.2 and 1.3. Like in the case of Theorem 1.1, we prove these results by
reducing them to the Euclidean setting.

Let K
0 be a flat topological (or flat bi-Lipschitz) closed ball contained in Mn which

does not intersect
S`

i=1(Di [ D
0
i). We can find an orientation preserving (bi-Lipschitz)

homeomorphism H : Mn ⇣ Mn such that H(Di), H(D0
i) are contained in the interior of

K
0. This is stated in Lemma A.19 and A.20, respectively, and can be done in a standard way

by constructing a chain of connected coordinate systems, see the proof of Theorem 1.1 for
the overview of this idea. In Section A.4.2, we present the proof of this construction in the
C

k-smooth setting which can be easily transferred to the Lipschitz and purely topological
case.

Let � : Bn ⇣ K
0 be the (bi-Lipschitz) homeomorphism between the Euclidean closed

unit ball and K
0, which can be extended as a (bi-Lipschitz) homeomorphism on a neigh-

borhood of B̄n. Set Ei := ��1(H(Di)) and E
0
i := �

�1(H(D0
i)) and

bFi := �
�1 �H � Fi �H�1 � �|Ei .

Sets Ei and E
0
i are flat topological (or flat bi-Lipschitz) closed balls. Since H � Fi is

orientation preserving, so is eFi (see Remark A.16 for details). Moreover, bFi maps each Ei

onto E
0
i. By Remark 3.25, bFi can be extended as a (bi-Lipschitz) homeomorphism onto

a neighborhood of Ei. As discussed in the proof of Theorem 1.1, Ei and E
0
i are contained

in B(0, %) for % 2 (0, 1).

By Lemma 3.26, there is a (bi-Lipschitz) homeomorphism bF : Rn ⇣ Rn, which satisfies

bF |Ei = bFi and bF = id on Rn \B(0, %).

Then the composition � � bF � ��1 : K 0 ⇣ K
0 is a (bi-Lipschitz) homeomorphism, which

equals identity near @K 0 and thus can be extended by identity to a (bi-Lipschitz) homeo-
morphism G : Mn ⇣ Mn. Eventually, set

F := H
�1 �G �H.

This is a (bi-Lipschitz) homeomorphism of Mn such that F |Di = Fi, which can be easily
checked in the same manner as in Lemma 3.11.

If all the sets Di and D
0
i for i = 1, . . . , ` are contained in a flat topological (or flat

bi-Lipschitz) closed ball K ⇢ Mn, then K
0 can be chosen to equal K and thus H = id and

F = G = id outside K.



Chapter 4

Constructing diffeomorphisms with
prescribed derivative

4.1 Introduction

This chapter is devoted to proving Theorem 1.4, which we copy below for the convenience
of the reader. This is Theorem 1.2 from [39].

Theorem 1.4. Let ⌦ ⇢ Rn be a bounded domain and F : ⌦ ! Rn an orientation pre-
serving diffeomorphism onto the bounded image F (⌦). Suppose that T : ⌦ ! GL(n)+ is
a measurable mapping such that

R
⌦ detT (x) dx  |F (⌦)|. Then for any " > 0, there exists

a C
1-diffeomorphism � : ⌦! F (⌦) with the following properties:

(a) �(x) = F (x) near @⌦;
(b) there exists a compact set K ⇢ ⌦ such that for every x 2 K, D�(x) = T (x) and

|⌦ \K| < ".

The proof of Theorem 1.4 follows [39], in particular this chapter contains a few technical
lemmata from [39] (Lemma 3.11, Proposition 3.14, Lemma 5.12, Section 3.5) as well as the
proof from Section 4 from [39]. Let us recall that in Section 1.3 it was shown that the
assumption

R
⌦ | detT (x)|  |⌦| is necessary. In Section 4.4, we include two corollaries of

Theorem 1.4, which do not appear in [39] and will be stated later in this introduction.

In Section 1.3, we have already mentioned Alberti’s theorem [1, Theorem 1], which we
state and discuss below.

Theorem 4.1 (Alberti). Let ⌦ ⇢ Rn be a bounded domain and let T : ⌦ ! Rn be
a measurable function. Then for every " > 0, there is a function � 2 C

1
c (⌦) and a compact

set K ⇢ ⌦ such that |⌦ \K| < " and D�(x) = T (x) for all x 2 K.

Actually, Alberti proved more in his Theorem 1 as he also included estimates on L
p-norm

of D� for p 2 [1,1]. In that same paper, in Theorem 3, he also proved a version of
Theorem 4.1 for T in L

1, in which he constructed � 2 BV (Rn), whose absolutely continuous
part of the derivative coincides with f Ln, where Ln denotes the n-dimensional Lebesgue
measure.

Moonens and Pfeffer in [72] showed that for any measurable function T : ⌦ ! Rn,
there exists a continuous function � 2 C(Rn), which is differentiable a. e. on ⌦ with

D� = T a. e. on ⌦ and D�(x) = 0 for x 2 Rn \ ⌦. (4.1)

52
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The main ingredient of the proof of this theorem is iteration of Theorem 4.1. Later on, in [34]
Alberti’s and Moonens and Pfeffer’s results were generalized for higher-order derivatives.

Given a measurable T : ⌦ ! GL(n) as in Theorem 1.4, we can apply Theorem 4.1
componentwise to get a continuously differentiable mapping A 2 C

1
c (⌦,Rn) and a large

compact set K ⇢ ⌦ such that DA = T on K. Since on K we have detDA = detT 6= 0, A
is a local diffeomorphism in a neighborhood of every point of K. However, we do not know
anything about its injectivity on a global scale nor even about its image. In particular,
A(Q) not need to be contained in the unit cube Q. But thanks to the fact that A is a local
diffeomorphism, we can construct a global diffeomorphism � from Theorem 1.4 with the
desired derivative on a large set. The transition from from A to � is the most difficult
part of the proof. To make this transition possible, we construct a diffeomorphism  
which coincides with F near @⌦ and whose Jacobian is close to detT . This can be done
thanks to the volume constraint

R
⌦ detT  |F (⌦)| and the Dacorogna-Moser theorem from

Section 4.2.1. In the proof of Theorem 1.4, we will also use a few constructions from
Section 2.7 to glue the global diffeomorphism  with the local diffeomorphism A.

We will use a special case of the Dacorogna-Moser theorem, see [22, Theorem 5]. The
problem of finding a diffeomorphism with a prescribed Jacobian was originally studied by
Moser in [76] in the language of differential forms. In that paper, he did not consider
any boundary conditions and introduced his seminal flow method, which uses ordinary
differential equations, see Section A.2 for some details. Later on, Dacorogna and Moser
[22] used a different approach which employed Schauder estimates for elliptic equations.
We say that f 2 C

k,↵(⌦) for k 2 N [ {0} if f 2 C
k(⌦) (or f 2 C(⌦) for k = 0) and if

the derivatives of f up to k-th order (or f itself for k = 0) are ↵-Hölder continuous, see
[20, Section 16.1] for a precise definition. In [22] it was shown that for sufficiently regular
domains ⌦, given a function f : ⌦! R, f > 0 on ⌦ and f 2 C

k,↵(⌦), it is possible to find
a diffeomorphism � of ⌦ of class C

k+1,↵ with detD� = f in ⌦, that is a diffeomorphism
with the prescribed Jacobian and the optimal regularity. Moreover, �(x) = x for x 2 @⌦.

In the excellent book [20], authors proved Theorem 10.11, in which they constructed
a diffeomorphism with no gain in regularity, that is of class C

k,↵ given f 2 C
k,↵, but

with additional control of support, i. e., if supp (f � 1) ⇢ ⌦, then supp (� � id ) ⇢ ⌦.
They used a modified version of the Moser’s flow method. Eventually, Teixeira in [90, 91]
showed, building on [5] and the already cited works, how to construct a diffeomorphism
of the optimal regularity and with the control of support, see also [62]. Other important
contributions to this area include [10, 15, 68, 100, 87, 41]. Let us stress the importance of
[15, 68] which independently showed that the Hölder regularity of f for k = 0 is necessary.
Indeed, by [15, 68] for any " > 0 there is a continuous function f : [0, 1]2 ! [1, 1 + "] for
which there is no bi-Lipschitz homeomorphism whose Jacobian equals f .

Section 4.4 contains two corollaries to Theorem 1.4. The juxtaposition of Theorem 4.1
and Moonens and Pfeffer’s result (4.1) shows that by demanding less regularity from the
function � and its derivative, one can prescribe it on a larger set (even a set of full mea-
sure). However, neither of these results says anything about injectivity of thus constructed
functions. We shall see that with the help of Theorem 1.4, one can arrive at a homeomor-
phic version of Alberti’s theorem, Theorem 4.2, in which approximate instead of classical
derivative is used.

Theorem 4.2. Suppose that ⌦ ⇢ Rn is a bounded domain and that T : ⌦ ! GL(n) is
measurable and such that

R
⌦ | detT (x)| dx  |⌦|. Then for any " > 0, there exists an a. e.

approximately differentiable homeomorphism � : ⌦⇣ ⌦ with the following properties

(a) �(x) = x near @⌦,
(b) � satisfies the Lusin (N) condition,
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(c) there exists a compact set K ⇢ ⌦ such that for almost every x 2 K, Da�(x) = T (x)
and |⌦ \K| < ".

In the proof we also employ [37, Theorem 1.4], see Proposition 4.12, which we also discussed
in Section 1.3.

To obtain the next result, we iterate Theorem 1.4 to get an a. e. injective mapping F

which is a. e. approximately differentiable with DaF = T when detT > 0. More precisely,

Theorem 4.3. Let ⌦ be a bounded domain in Rn and let T : ⌦! GL(n)+ be measurable
and such that

R
⌦ | detT (x)| dx = |⌦|. Then there exists an a. e. approximately differentiable

mapping F : ⌦! ⌦ such that

(a) F (x) = x for x 2 @⌦,
(b) F satisfies the Lusin (N) condition,
(c) F is injective a. e. on ⌦, i. e., there is a set E with |E| = |⌦| such that F |E is injective,
(d) DaF = T a. e. on ⌦.

Note that we do not claim that F (⌦) = ⌦. Nonetheless, again at a cost of regularity of the
mapping and its derivative, we gain some injectivity properties.

Section 4.4 is in a sense an introduction to Chapter 5, where we will describe a much
more involved iteration procedure which allows to construct an a. e. approximately differ-
entiable homeomorphism from Theorem 1.5. Even though Theorem 1.5 generalizes Theo-
rems 4.2 and 4.3, I believe that eventually the their statements and proofs enhance one’s
understanding of Theorem 1.5.

In Section 4.2, we present a few preliminary results needed in Section 4.3, where we
prove Theorem 1.4. In Section 4.4 we present proofs of Theorems 1.1 and 1.2.

4.2 Preliminaries for Theorem 1.4

The main results of this section are Proposition 4.6 and Corollary 4.10. We will use them in
the proof of Theorem 1.4. For the proof of Proposition 4.6 we need two technical lemmata,
Lemma 4.4 (below) and Lemma 2.16 (which has already been proved in Chapter 2). With
L(Q) we denote the side-length of a cube Q ⇢ Rn.

Lemma 4.4 (Storage lemma). Fix ` 2 Z. Assume that V is a finite family of closed cubes
V ⇢ Rn with pairwise disjoint interiors, and each cube V 2 V has the same side-length
L(V ) = 2�`. Assume that W is another finite family of closed cubes W ⇢ Rn such that

X

W2W
|W | 

X

V 2V
|V | (4.2)

and that for each W 2 W, L(W ) = 2�k for some k 2 Z, k � `. Then for each W 2 W,
there is an isometric closed cube fW , i. e., L(fW ) = L(W ), such that the cubes {fW}W2W
have pairwise disjoint interiors, and

[
W2W

fW ⇢
[

V 2V
V.

Remark 4.5. The lemma has a practical interpretation. You can place dyadic boxes
W 2 W in the storage containers V 2 V (identical and dyadic) if and only if the total
volume of the boxes W does not exceed the total volume of the storage, and no box W is
larger than a storage container.
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Proof. Let V` := V. Divide the family W into subfamilies according to the side-length:
W =

SN
i=`Wi, where Wi = {W 2 W : L(W ) = 2�i}. Clearly, (4.2) can be rewritten as

NX

i=`

X

W2Wi

|W | 
X

V 2V`

|V |. (4.3)

It follows that the number of cubes in W` is less than or equal to the number of cubes
in V`. Thus, for each W 2 W`, we can find fW 2 V` so that the cubes fW have pairwise
disjoint interiors. Clearly, W and fW are isometric.

Divide each of the cubes in the remaining family

V` \ {fW : W 2 W`} (4.4)

into 2n dyadic closed cubes of side-length 2�(`+1). Denote the resulting family of cubes by
V`+1. That is, each of the cubes in V`+1 has side-length 2�(`+1) and the number of cubes
in V`+1 equals 2n times the number of the cubes in (4.4). Clearly, (4.3) implies that

NX

i=`+1

X

W2Wi

|W | 
X

V 2V`+1

|V |,

because by removing cubes W 2 W` from W and cubes fW 2 V`, from V`, we removed
equal volumes from both sides of (4.3). Now, we can repeat the procedure described above
and match each W 2 W`+1 with a suitable cube fW 2 V`+1. We repeat the procedure
by induction. The required family {fW}W2W will be constructed after a finite number of
steps.

The next result shows in particular that if A1, A2 2 GL(n)+ and detA1 = detA2, then
it is possible to find a diffeomorphism of a ball B onto A2(B) which on a large part of B
acts like a piecewise affine map with A1 as its linear part.

Proposition 4.6. Let G ⇢ B be a measurable subset of an open ball B ⇢ Rn centered at
the origin, and let r : G ! (0,1) be any function. Let A1, A2 2 GL(n)+ satisfy

detA2 > � detA1 for some � 2 (0, 1). (4.5)

Then there is a finite family of pairwise disjoint closed balls B(pj , rj) ⇢ B such that

pj 2 G, rj < r(pj),
��G \

[
j
B(pj , rj)

�� > �|G|, (4.6)

and a diffeomorphism F : B ! A2(B) which agrees with A2 in a neighborhood of @B and

F (x) = A1x+ vj for all x 2 B(pj , rj) and some vj 2 Rn
. (4.7)

Remark 4.7. If B = B(p,R) is a ball not necessarily centered at the origin, and q 2 Rn,
but all other assumptions remain the same, then we can find balls B(pj , rj) ⇢ B satisfying
(4.6) and a diffeomorphism F : B ! Rn such that F (x) = A2(x� p)+ q in a neighborhood
of @B and F satisfies (4.7) in each of the balls B(pj , rj).

Indeed, such a diffeomorphism is obtained from Proposition 4.6 by composing with the
translations x 7! x � p in the domain and y 7! y + q in the target. Then in each of the
balls B(pj , rj) we have F (x) = A1(x� p) + vj + q = A1x+ wj , for some wj 2 Rn.
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Proof. Assume first that A1 = id . Let U = A2(B).

Before proceeding to details, let us describe the main idea of the proof. We begin by
finding a finite family of disjoint closed cubes Qi ⇢ B satisfying |G\

S
iQi| > �|G|. Working

with cubes allows us to apply Lemma 4.4 and to find translated cubes Qi + wi ⇢ A2(B)
with pairwise disjoint interiors. Then for each i we find a finite family of pairwise disjoint
balls B(pik, rik) ⇢ Q̊i. Clearly, the balls B(pik, rik) + wi ⇢ A2(B) are pairwise disjoint.
After re-enumeration, we can write

{B(pj , rj)}j := {B(pik, rik)}i,k, vj := wi if pj = pik.

Choosing the balls carefully, we can guarantee (4.6). Note that the balls B(pj , rj) + vj ⇢
A2(B) are pairwise disjoint. Then we construct a diffeomorphism F that equals A2 near
@B and satisfies F (x) = x+ vj for x 2 B(pj , rj), which is (4.7) in the case when A1 = id .

Step 1. Finding cubes. Since |U | > �|B| by (4.5), we also have |U | > ↵|B| for some ↵ 2
(�, 1). Let F` be the family of all closed dyadic cubes (i. e., with vertices at points of 2�`Zn)
of side-length 2�` that are contained in U . Clearly, the family F` is finite. We choose `
large enough to guarantee that

X

Q2F`

|Q| > �

↵
|U |. (4.8)

Let V ⇢ Rn be an open set such that

G ⇢ V ⇢ B and |V \G| < 1

2
�(↵�1|U |� |G|)

(note that ↵�1|U |� |G| > 0).

For each q 2 G consider the family Gq of all closed cubes Q = Q(q, 2�k), k 2 Z,
centered at q, that satisfy

Q ⇢ V, L(Q)  2�`
, |Q| < 1

2
�(↵�1|U |� |G|). (4.9)

The family eG :=
S

q2G Gq is a Vitali covering of G and Vitali’s covering theorem yields
a finite sub-family G0 = {Qi}N

0
i=1 ⇢ eG of pairwise disjoint cubes such that

N 0X

i=1

|Qi| �
N 0X

i=1

|Qi \G| > �|G|. (4.10)

By removing some cubes from the family G0, we can obtain a family G = {Qi}Ni=1 (so
N  N

0) such that
�

↵
|U | �

NX

i=1

|Qi| �
NX

i=1

|Qi \G| > �|G|. (4.11)

Indeed, to show this, it suffices to prove for any m the implication

m+1X

i=1

|Qi| >
�

↵
|U | =)

mX

i=1

|Qi \G| > �|G|. (4.12)

Note that
mX

i=1

|Qi|�
mX

i=1

|Qi \G| =
mX

i=1

|Qi \G|  |V \G| < 1

2
�(↵�1|U |� |G|).
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On the other hand, the hypothesis in (4.12) and the upper estimate for |Q| in (4.9) yield

mX

i=1

|Qi| >
�

↵
|U |� |Qm+1| >

�

↵
|U |� 1

2
�(↵�1|U |� |G|) = �|G|+ 1

2
�(↵�1|U |� |G|),

and hence
mX

i=1

|Qi \G| =
mX

i=1

|Qi|�
⇣ mX

i=1

|Qi|�
mX

i=1

|Qi \G|
⌘
> �|G|.

This proves the implication (4.12) and hence proves the existence of G = {Qi}Ni=1 satisfying
(4.11).

Now, (4.8) and (4.11) yield

X

Q2F`

|Q| �
NX

i=1

|Qi|.

Since L(Qi) = 2�k, k � `, it follows from Lemma 4.4 that there are vectors wi 2 Rn such
that the cubes eQi := Qi + wi have pairwise disjoint interiors and

N[

i=1

eQi ⇢
[

Q2F`
Q ⇢ U.

The cubes Qi are pairwise disjoint, but the cubes eQi need not be.

To summarize, we constructed a family of pairwise disjoint closed cubes {Qi}Ni=1, Qi ⇢
B, such that ���G \

[
i
Q̊i

��� =
���G \

[
i
Qi

��� > �|G|, (4.13)

and we constructed vectors {wi}Ni=1 such that the cubes eQi = Qi + wi ⇢ U = A2(B) have
pairwise disjoint interiors.

Step 2. Finding balls. We will now find a finite family of closed, pairwise disjoint balls
B(pj , rj), satisfying (4.6). For each i = 1, 2, . . . , N , let

Bi =
n
B(p, r) : p 2 G \ Q̊i, B(p, r) ⇢ Q̊i, r < r(p)

o
.

Vitali’s covering theorem and (4.13) yield a finite sub-family of disjoint closed balls B(pik, rik),
k = 1, . . . , Ni, so that

pik 2 G, rik < r(pik), B(pik, rik) ⇢ Q̊i,

and ���G \
[

ik
B(pik, rik)

��� > �|G|.

For each i, the balls B(pik, rik) + wi are pairwise disjoint and contained in the interior
of eQi. Since the interiors of the cubes eQi are pairwise disjoint, the balls in the family
{B(pik, rik) + wi}i,k are pairwise disjoint as well. After re-enumerating, we get a family of
balls Bj := B(pj , rj), j = 1, 2, . . . ,M that satisfy (4.6) and vectors vj 2 Rn such that the
balls B

0
j := B(pj , rj) + vj ⇢ U = A2(B) are pairwise disjoint.

Step 3. Finding the diffeomorphism F . To complete the proof in the case A1 = id , it
remains to construct a diffeomorphism F : B ! Rn which equals A2 near @B and
F (x) = x+ vj for x 2 Bj for j = 1, 2, . . . ,M .
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Fix R1 > 0 such that BR1 := B(0, R1) b B \ A2(B). Let BR2 := B(0, R2) be a ball
such that

M[

j=1

Bj ⇢ BR2 b B.

Let H1 : Rn ⇣ Rn be a radial diffeomorphism such that H1(x) = x near @B and H1(x) =
R1R

�1
2 x on BR2 . Proposition 2.14 yields a diffeomorphism H2 : Rn ⇣ Rn such that

H2 = A2 near @B and H2 = id on BR1 . Then H2 �H1 : B ⇣ A2(B) equals A2 near @B
and maps the balls Bj by scaling (with factor R1R

�1
2 ) onto balls in BR1 b A2(B).

Let aj := H2(H1(pj)) be the centers of the balls H2(H1(Bj)) and let bj := pj + vj be
the centers of the balls B

0
j = Bi + vj . Both families {aj}Mj=1 and {bj}Mj=1 are contained in

U = A2(B), and Lemma 2.16 gives " > 0 and a diffeomorphism ⇥ : U ⇣ U that equals
identity near @U and satisfies

⇥(x) = x+ bj � aj for x 2 B(aj , ").

Clearly, we can assume that
" < min

j
R1R

�1
2 rj .

Since the balls
H2(H1(Bj)) = B(aj , R1R

�1
2 rj) ⇢ U (4.14)

are pairwise disjoint, there is � > 0 such that the balls

B(aj , R1R
�1
2 rj + �) ⇢ B (4.15)

are pairwise disjoint.

For each j = 1, 2, . . . ,M , we find a diffeomorphism H
j
1 : Rn ⇣ Rn that is similar to

H1. It is a radial diffeomorphism centered at aj , it is identity outside the ball (4.15) and
it maps the ball (4.14) onto B(aj , ") by scaling centered at aj with factor "R�1

1 R2r
�1
j < 1.

Clearly, the diffeomorphism

H3 := H
1
1 �H2

1 � . . . �HM
1 : U ⇣ U

is identity near @U and maps each of the balls (4.14) onto B(aj , ") by scaling (centered at
aj). Now ⇥ �H3 �H2 �H1 : B ⇣ U equals A2 near @U and maps the balls Bj = Bj(pj , rj)
onto the balls B(bj , ") by affine maps whose linear part is scaling by factor "r�1

j .

Finally, if H4 : Rn ⇣ Rn is a diffeomorphism similar to H3 that equals identity near
@U and expands the balls B(bj , ") to B(bj , rj) = B

0
j by scaling, then the diffeomorphism

F : H4 �⇥ �H3 �H2 �H1 : B ⇣ A2(B)

is the required diffeomorphism satisfying (4.7) for A1 = id .

Step 4. The general case. Finally, suppose that A1 and A2 are arbitrary GL(n)+ mappings
satisfying (4.5). Then eA1 := id and eA2 := A

�1
1 � A2 satisfy det eA2 > � det eA1 and the

construction from Step 3 yields a family of balls Bj satisfying (4.6) and a diffeomorphism
eF : B ! eA2(B) such that

eF (x) = x+ evj for all x 2 Bj and some evj 2 Rn
.

Setting F = A1 � eF yields the desired diffeomorphism satisfying (4.7).



4.2. PRELIMINARIES FOR THEOREM 1.4 59

4.2.1 The Dacorogna-Moser theorem

The aim of this section is to prove Corollary 4.10, which will be used in the sequel. To this
end, we use the following lemma, a special case of a theorem of Dacorogna and Moser [22,
Theorem 5]. This exact statement appeared also as [37, Theorem 3.1].

Lemma 4.8. Let ⌦ ⇢ Rn be a bounded domain and let f 2 C
1(⌦) be a positive function

equal 1 in a neighborhood of @⌦ such that
Z

⌦
f(x) dx = |⌦|.

Then there exists a C
1-diffeomorphism  of ⌦ onto itself that is identity on a neighborhood

of @⌦ and satisfies
J (x) = f(x) for all x 2 ⌦.

Actually, the proofs in [20] and [22] explicitly cover only the case of f 2 C
k(⌦) for some

k 2 N but they do work also for k = 1. In [21, Appendix, Lemma 2.3] (in the first edition
of the book), one can find a proof based on Moser’s flow method for k = 1.

The next result shows that if f is only integrable and positive a. e., then on a large set
we can uniformly approximate f by the Jacobian of a smooth diffeomorphism.

Lemma 4.9. Let ⌦ ⇢ Rn be a bounded domain and let f 2 L
1(⌦), f > 0 a. e., be such that

Z

⌦
f(x) dx = |⌦|.

Then for any " > 0 there exists a compact set K ⇢ ⌦ with |⌦ \ K| < ", and a C
1-

diffeomorphism  of ⌦ onto itself that is identity on a neighborhood of @⌦ and satisfies

|J (x)� f(x)| < "f(x) for all x 2 K. (4.16)

Proof. By Lusin’s theorem, we can find a compact set K ⇢ ⌦, such that |⌦ \K| < " and
f is continuous and strictly positive in K. Let

m := inf
K

f and M := sup
K

f .

Clearly, Z

K
f(x) dx = |⌦|� 2M� for some � > 0.

Let ⌦0 and ⌦00 be open sets such that

K ⇢ ⌦0 b ⌦00 b ⌦, and |⌦0 \K| < �,

We can extend f from K to a continuous function 0  f1  M that is compactly supported
in ⌦0, so
Z

⌦
f1(x) dx =

Z

⌦0\K
f1(x) dx+

Z

K
f(x) dx < |⌦0 \K| ·M + (|⌦|� 2M�) < |⌦|�M�.

Using a standard approximation of f1 by convolution, we find f2 2 C
1
c (⌦0), f2 � 0, such

that
|f(x)� f2(x)| = |f1(x)� f2(x)| <

"m

2
for all x 2 K. (4.17)
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Since the approximation by convolution preserves the L
1 norm of a non-negative function

(by Fubini’s theorem), we have
Z

⌦
f2(x) dx =

Z

⌦
f1(x) dx < |⌦|�M�. (4.18)

It is easy to see that there is f3 2 C
1(⌦) that it is strictly positive in ⌦, f3 = 1 in a

neighborhood of @⌦, f3 < "m/2 in K, and
Z

⌦
f3(x) dx < M�. (4.19)

Integrals in (4.18) and (4.19) add to a number less than |⌦| and we can find a function
f4 2 C

1
c (⌦00 \ ⌦0), f4 � 0, such that

Z

⌦
f2(x) + f3(x) + f4(x) dx = |⌦|.

Observe that the function f" := f2 + f3 + f4 2 C
1(⌦) equals f3 = 1 in a neighborhood of

@⌦ and equals f2 + f3 in K, so

|f(x)� f"(x)|  |f(x)� f2(x)|+ f3(x) < "m  "f(x) for all x 2 K.

These conditions and Lemma 4.8 imply the existence of a smooth diffeomorphism  : ⌦⇣
⌦ that is identity near the boundary and satisfies J = f", so (4.16) is satisfied.

Corollary 4.10. Let ⌦,⌦0 ⇢ Rn be bounded domains and let F : ⌦ ⇣ ⌦0 = F (⌦) be an
orientation preserving diffeomorphism. Suppose that f 2 L

1(⌦), f > 0 a. e. and
Z

⌦
f(x) dx = |⌦0|.

Then for any " > 0 there exists a compact set K ⇢ ⌦ with |⌦ \ K| < ", and a C
1-

diffeomorphism F
0 of ⌦ onto ⌦0, that equals F on a neighborhood of @⌦ and satisfies

|JF 0(x)� f(x)| < "f(x) for all x 2 K. (4.20)

Remark 4.11. The condition that F is orientation preserving is necessary. Indeed, in view
of (4.20), JF 0(x) > 0 for x 2 K, so JF 0 > 0 on ⌦, and hence JF > 0 on ⌦, because F = F

0

on an open set.

Proof. Let

g(y) =
f(F�1(y))

JF (F�1(y))
, so g(F (x))JF (x) = f(x).

It follows from the classical change of variables formula that g 2 L
1(⌦0), g > 0 a.e, and

Z

⌦0
g(y) dy =

Z

⌦
f(x) dx = |⌦0|.

Therefore, for any "0 > 0, Lemma 4.9 yields a compact set K
0 ⇢ ⌦0, |⌦0 \K 0| < "

0, and a
diffeomorphism G of ⌦0 onto itself that is identity in a neighborhood of @⌦0 and satisfies

|JG(y)� g(y)| < "
0
g(y) for all y 2 K

0
. (4.21)

Let K = F
�1(K 0). By taking "0  " sufficiently small, we can guarantee that |⌦ \K| < ".

Now the diffeomorphism F
0 = G � F : ⌦ ⇣ ⌦0 satisfies the claim of the corollary. Indeed,

F
0 = F near @⌦ and (4.21) yields

|JF 0(x)� f(x)| = |JG(F (x))JF (x)� g(F (x))JF (x)| < "
0
g(F (x))JF (x) = "

0
f(x)  "f(x),

whenever x 2 K. The proof is complete.
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4.3 Proof of Theorem 1.4

Proof of Theorem 1.4. First, we prove the theorem under the assumption that
Z

⌦
detT (x) dx = |F (⌦)|. (4.22)

The general case will then easily follow from this one.

Let 0 < " < |⌦| be given and fix � such that (1� "|⌦|�1)1/8 < � < 1.

Corollary 4.10 yields a C
1-diffeomorphism  : ⌦⇣ F (⌦) and a compact set K1 ⇢ ⌦

with |⌦ \K1| < 1
2(1� �)|⌦| such that  = F near @⌦ and

| detD (x)� detT (x)| < (1� �) detT (x) for x 2 K1. (4.23)

On the other hand, Theorem 4.1 gives us a mapping A 2 C
1
c (⌦,Rn) and a compact set

K2 ⇢ ⌦ with |⌦ \K2| < 1
2(1� �)|⌦| such that

DA(x) = T (x) for x 2 K2. (4.24)

Let G ⇢ K1 \K2 be the set of density points of K1 \K2 that belong to K1 \K2 and
observe that

|G| = |K1 \K2| > �|⌦|.
It follows from (4.23) and (4.24) that

DA(x) = T (x) and detD (x) > � detDA(x) > 0 for all x 2 G. (4.25)

Let us interrupt the proof for a moment and explain its main idea. The idea is to find
a finite family of balls — in the proof it will be the family {B(pij ,�2/nrij)}i,j — such that
we can replace  with A(x) + ⌧ij for some ⌧ij 2 Rn on each of the balls and the resulting
map � will be a diffeomorphism. Then � =  = F near @⌦ and

D�(x) = DA(x) = T (x) for x 2 G \
[

ij
B(pij ,�

2/n
rij). (4.26)

Moreover, the family of balls will be constructed in such a way that the measure of the
complement of the set in (4.26) (reproduced in the proof as (4.34)) will be less than ".
This will complete the proof. We will replace  with A(x) + ⌧ij by a sequence of diffeo-
morphic gluing. We will glue  with its affine approximation, then we will glue the affine
approximation of  with the affine approximation of A(x) + ⌧ij , which we will glue with
A(x) + ⌧ij . To this end we will use (2.5) and (2.6) in Lemma 2.13, Proposition 2.14 and
Proposition 4.6. Now, we shall return to the proof.

For any xo 2 G, there is rxo > 0 such that for all r  rxo , the following conditions hold

(a) B(xo, r) b ⌦;
(b) |B(xo, r) \G| � �|B(xo, r)|;
(c) A is a diffeomorphism on B(xo, r);
(d) DA(x) is close to DA(xo) for x 2 B(xo, r) in the sense that

sup
x2B(xo,r)

kDA(x)�DA(xo)k <

⇣
�
�1/(2n) � 1

⌘
k(DA(xo))

�1k�1; (4.27)

(e) there exists a diffeomorphism  0
xo,r : ⌦⇣ F (⌦) such that

 0
xo,r(x) =

(
 (xo) +D (xo)(x� xo) for x 2 B(xo,�1/nr),

 (x) for x 2 ⌦ \B(xo, r).
(4.28)
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Property (b) follows from the fact that xo is a density point of G. Property (c) follows
from (4.25). Property (d) is a consequence of continuity of DA. Finally, (e) follows from
Lemma 2.13.

The family of balls
B = {B(xo, r) : xo 2 G, r  rxo}

is a Vitali covering of G, so by Vitali’s covering theorem, we can choose a finite subfamily
of pairwise disjoint balls {Bi}Ni=1 so that the measure of these balls satisfies

���
N[

i=1

Bi

��� � �|G| > �
2|⌦|. (4.29)

We replace  with  0
xi,ri in each of the balls Bi = B(xi, ri). The resulting diffeomorphism

satisfies

 0(x) =

(
 (x) on ⌦ \

SN
i=1Bi,

 (xi) +D (xi)(x� xi) on B
0
i := B(xi,�1/nri).

In particular,  0 = F near @⌦.

Let r : G ! (0,1) be such that for any p 2 G and any 0 < r < r(p),

|G \B(p, r)| > �|B(p, r)| (4.30)

and there is a diffeomorphism on Rn that equals

⌥(x) =

(
A(x) on B(p,�2/nr),

A(p) +DA(p)(x� p) on Rn \B(p,�3/(2n)r).
(4.31)

Existence of such a function r is guaranteed by the fact that G consists of density points
and by formula (2.6) in Lemma 2.13 (note that A is a diffeomorphism in a neighborhood
of p, by (c) above).

Since xi 2 G, (4.25) yields that D (xi), DA(xi) 2 GL(n)+ and

detD (xi) > � detDA(xi).

This is condition (4.5) from Proposition 4.6 which we want to use to modify  0 on each of
the balls B0

i. Proposition 4.6 and Remark 4.7 give a finite family of pairwise disjoint closed
balls Bij = B(pij , rij) ⇢ B

0
i such that

pij 2 G \B
0
i, rij < r(pij),

���G \
[

j

Bij

��� > �|G \B
0
i| > �

2|B0
i| (4.32)

(the last inequality follows from (b)), and a diffeomorphism Fi : B0
i ! Rn such that

Fi(x) =  (xi) +D (xi)(x� xi) in a neighborhood of @B0
i,

and
Fi(x) = DA(xi)x+ vij for x 2 Bij and some vij 2 Rn

.

Note that Fi =  0 in a neighborhood of @B0
i. Hence, if we replace  0 with Fi on each of

the balls B0
i, we will obtain a diffeomorphism F

0 : ⌦⇣ F (⌦) which agrees with F near @⌦
and satisfies

F
0(x) = DA(xi)x+ vij for x 2 Bij and some vij 2 Rn

. (4.33)

We will now replace the affine map (4.33) with a diffeomorphism A(x) + ⌧ij , ⌧ij 2 Rn,
in two steps. In the first step, we will replace (4.33) with an affine map DA(pij)x + wij
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(on a smaller ball) using Proposition 2.14. Then we will replace this new affine map (on an
even smaller ball) with a diffeomorphism A(x) + ⌧ij using formula (2.6) from Lemma 2.13.

Let us fix A1 := DA(pij) and A2 := DA(xi) and observe that in view of (4.27),

kA1 �A2k < (��1/(2n) � 1)kA�1
2 k�1

,

which by triangle inequality and sublinearity of operator norm implies that

kA�1
2 A1k = kA�1

2 (A1 �A2) + Ik  kA�1
2 k kA1 �A2k+ 1 < �

�1/(2n)
.

Therefore,

A
�1
2 A1(B(0, 1)) b B(0,��1/(2n)) so A1(B(0,�1/nrij)) b A2(B(0,�1/(2n)rij)).

Applying Proposition 2.14 yields a diffeomorphism ⇥ij : Rn ⇣ Rn, which equals A1 on
B(0,�1/nrij) and A2 on Rn \B(0,�1/(2n)rij). Set

Hij(x) := ⇥ij(x� pij) +A2pij + vij ,

where vij were defined in (4.33). We have

Hij(x) =

8
><

>:

DA(pij)x�DA(pij)pij +DA(xi)pij + vij| {z }
!ij

on B(pij ,�1/nrij),

DA(xi)x+ vij on Rn \B(pij ,�1/(2n)rij).

Observe that according to the definition of F 0 in (4.33),

Hij = F
0 on B(pij , rij) \B(pij ,�

1/(2n)
rij), for all i and j.

Hence, if we replace F
0 with Hij on each of the balls Bij , we will obtain a diffeomorphism

F
00 : ⌦⇣ F (⌦) which agrees with F near @⌦ and satisfies

F
00(x) = DA(pij)x+ !ij for x 2 B(pij ,�

1/n
rij) and some !ij 2 Rn

.

Since rij < r(pij), (4.31) gives a diffeomorphism ⌥ij such that

⌥ij(x) =

(
A(x) for x 2 B(pij ,�2/nrij),

A(pij) +DA(pij)(x� pij) for x 2 Rn \B(pij ,�3/(2n)rij).

The translated diffeomorphism

⌥0
ij(x) := ⌥ij(x) + !ij �A(pij) +DA(pij)pij =: ⌥ij(x) + ⌧ij

satisfies

⌥0
ij(x) =

(
A(x) + ⌧ij for x 2 B(pij ,�2/nrij),

DA(pij)x+ !ij for x 2 Rn \B(pij ,�3/(2n)rij).

Observe that
⌥0

ij = F
00 on B(pij ,�

1/n
rij) \B(pij ,�

3/(2n)
rij).

Hence if we replace F
00 with ⌥0

ij on B(pij ,�1/nrij), we obtain a diffeomorphism � : ⌦ ⇣
F (⌦) which agrees with F near @⌦ and satisfies

�(x) = A(x) + ⌧ij for x 2 B(pij ,�
2/n

rij) and some ⌧ij 2 Rn
.
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Clearly, D� = DA on B(pij ,�2/nrij). Since DA = T on G by (4.25), we have that

D�(x) = T (x) for x 2 G \
[

i,j
B(pij ,�

2/n
rij) (4.34)

and it remains to show that the complement of this set has measure less that ".

Since pij 2 G and rij < r(pij), (4.30) implies that

|G \B(pij ,�
2/n

rij)| > �|B(pij ,�
2/n

rij)| = �
3|Bij |.

Therefore, the fact that the balls Bij are pairwise disjoint, (4.32) and (4.29) give
���G \

[
ij
B(pij ,�

2/n
rij)
��� > �

3
X

i,j

|Bij | > �
5
X

i

|B0
i| = �

6
X

i

|Bi| > �
8|⌦|.

Clearly, we can find a compact set K contained in the set (4.34) so that |K| > �
8|⌦| and

hence |⌦ \K| < (1� �
8)|⌦| < ". This completes the proof under the assumption (4.22).

Now we will prove the result in the general case, when
R
⌦ detT  |F (⌦)|. It is easy

to see that there is a measurable map eT : ⌦ ! GL(n)+ such that
R
⌦ det

eT = |F (⌦)|
and |{ eT 6= T}| < "/2. We proved that in this situation there is a C

1-diffeomorphism
� : ⌦ ! F (⌦) that agrees with F near @⌦ and satisfies |{D� 6= eT}| < "/2. Clearly,
|{D� 6= T}| < " and we can find a compact set K ⇢ ⌦ such that D� = T on K and
|⌦ \K| < ". The proof is complete.

4.4 Corollaries

To prove Theorem 4.2, we need the following main result from [37].

Proposition 4.12. There is a homeomorphism � : Q = [0, 1]n ⇣ Q, which satisfies the
Lusin (N) condition, �|@Q = id , such that

Da� = R :=

2

666664

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 �1

3

777775
a. e. (4.35)

and � is a limit of measure preserving C
1-diffeomorphisms �k : Q ! Q, �k = id in

a neighborhood of @Q, in the uniform metric.1

In fact, the use of Proposition 4.12 here is similar to what we are going to do in Chapter 5
in Theorem 5.2. Here, we will construct an a. e. approximately differentiable homeomor-
phism whose derivative equals R on a large part of a given set and I on a large part of its
complement. In Theorem 5.2, we will construct an a. e. approximately differentiable home-
omorphism whose derivative equals R a. e. on a given set and I a. e. on its complement.

Moreover, we need the following technical lemmata about approximate differentiability
of a composition of an a. e. approximately differentiable mapping and a bi-Lipschitz home-
omorphim. This will be generalized in Lemma 5.17 in Section 5.3 with a slightly different
method.

1
The statement of [37, Theorem 1.4] says �k|@Q = id , but the proof shows that �k = id in a neighbor-

hood of @Q.
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Lemma 4.13. Let  : ⌦⇣ ⌦ be a bi-Lipschitz homeomorphism and P : ⌦⇣ ⌦ a mapping
which is approximately differentiable a. e. on ⌦. Then at a. e. point x 2 ⌦, � = P �  is
approximately differentiable and at any such point

Da�(x) = DaP ( (x))D (x). (4.36)

Proof. We claim that (4.36) holds for any x such that  is differentiable at x and P is
approximately differentiable at  (x). By our assumptions, Rademacher’s theorem and the
fact that  �1 satisfies the Lusin (N) condition, the set of such points is of full measure.

Given any x for which P is approximately differentiable at  (x), there is a set E (x),
with  (x) being its density point, such that

lim
E (x)3z! (x)

|P ( (x))� P (z)�DaP ( (x))( (x)� z)|
| (x)� z| . (4.37)

Since  is bi-Lipschitz, x is a density point of the set Ex :=  �1(E (x)), as bi-Lipschitz
homeomorphisms map density points to density points, see [14] or [47, Lemma A.32]. There-
fore, for any y 2 Ex, y ! x, (4.37) holds for z =  (y).

Eventually, by triangle inequality,

lim
Ex3y!x

|P ( (x))� P ( (y))�DaP ( (x))D (x)(x� y)|
|x� y| 

lim
Ex3y!x

kDaP ( (x))k | (x)� (y)�D (x)(x� y)|
|x� y|

+
| (x)� (y)|

|x� y|
|P ( (x))� P ( (y))�DaP ( (x))(P ( (x))� P ( (y))|

| (x)� (y)|
= 0.

Indeed, the first term above converges to zero because  is differentiable at x and the
second because P is approximately differentiable at  (x), as explained in the paragraph
above. Note that | (x) �  (y)|/|x � y| is bounded, because  is Lipschitz. This finishes
the proof of this lemma.

Proof of Theorem 4.2. Let

T̂ (x) =

(
T (x) if detT (x) > 0,

RT (x) if detT (x) < 0,

where R is the reflection matrix defined in (4.35). Theorem 1.4 yields a diffeomorphism
 : ⌦ ⇣ ⌦,  = id near @⌦, and a compact set C ⇢ ⌦ with |⌦ \ C| < "/4 such that for
any x 2 C, D (x) = T̂ (x).

Set
C� = {x 2 C : detT (x) < 0} and C+ = {x 2 C : detT (x) > 0}.

The derivative on C+ is as required. Now, the idea is to approximate the set C� with cubes
and, in each cube, to use a version of the homeomorphism from Proposition 4.12 to correct
the prescribed derivative. In doing so, we will spoil the already prescribed derivative on
a small part of C+. We now choose these cubes. For any ⌘ > 0, it is possible to find a finite
family of closed cubes {Q⌘

i }
m(⌘)
i=1 , Q⌘

i ⇢ ⌦, with pairwise disjoint interiors such that
���� (C�) M

[m(⌘)

i=1
Q

⌘
i

���� < ⌘. (4.38)
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Let E
⌘ :=  �1

⇣Sm(⌘)
i=1 Q

⌘
i

⌘
, we choose ⌘ so that

|C� M E
⌘| < "/4, (4.39)

which is always possible due to the classical change of variables formula and absolute
continuity of integral. From now on, we will write E, Qi, m instead of E⌘, Q⌘

i , m(⌘) for
thus chosen ⌘.

For each i = 1, . . . ,m, we can construct Pi : Qi ⇣ Qi, a properly rescaled and trans-
lated copy of the homeomorphism from Proposition 4.12. That is, Pi = id on @Qi, Pi

satisfies the Lusin (N) condition and Pi is a. e. approximately differentiable with DaPi = R
a. e. on Qi. We then set

P (x) =

(
Pi(x) for x 2 Qi,

x for x 2 ⌦ \
Sm

i=1Qi.

Since Pi = id on @Qi, P is indeed a homeomorphism of ⌦. Since
Sm

i=1Qi is compactly
contained in ⌦, P equals identity near @⌦. Moreover, P satisfies the Lusin (N) condition,
is approximately differentiable a. e. on ⌦ and for a. e. x 2 E, DaP ( (x)) = R.

We claim that
� := P � 

is the required mapping, which has the required derivative at almost every point of the set
(C� \E)[ (C+ \E). This is not yet the set K from the statement of the theorem (it may
be not compact) and before we go on showing properties of �, let us check that

⌦ \ [(C� \ E) [ (C+ \ E)] = [(⌦ \ C�) [ (C� \ E)] \ [(⌦ \ C+) [ (C+ \ E)]

⇢ [(⌦ \ C�) \ (⌦ \ C+)] [ (C+ \ E) [ (C� \ E)

⇢ (⌦ \ C) [ (E \ C�) [ (C� \ E).

In the last inclusion, we used the fact that C� and C+ are disjoint and that therefore
C+ \ E ⇢ E \ C�. Consequently, by (4.39)

|⌦ \ [(C� \ E) [ (C+ \ E)]|  |⌦ \ C|+ |C� M E|  "/2.

Let us choose compact sets K1 ⇢ C� \ E, K2 ⇢ C+ \ E so that

|(C� \ E) \K1| < "/4 and |(C+ \ E) \K2| < "/4.

Then K := K1 [K2 is a compact set which satisfies

|⌦ \K| < ". (4.40)

By definition, � : ⌦⇣ ⌦ is an a. e. approximately differentiable homeomorphism which
satisfies the Lusin (N) condition and equals identity near @⌦, i. e., satisfies (a) and (b).

For almost any x 2 C� \E, D (x) = T̂ (x) = RT (x) and DaP ( (x)) = R. Note that
 is a diffeomorphism of ⌦, which equals identity near @⌦ and hence is bi-Lipschitz on ⌦.
By Lemma 4.13, for almost every point x of C� \ E,

Da�(x) = DPa( (x))D (x) = RRT (x) = T (x).

Therefore, for almost every point x of the set K1 ⇢ C� \ E, Da�(x) = T (x). Next, we
check that for almost every point x of C+ \E, D (x) = T (x) and DaP ( (x)) = I. Again
by Lemma 4.13, we see that Da�(x) = T (x). Since K2 ⇢ C+ \E, Da� = T a. e. on K2. All
in all we have shown that Da� = T on K which satisfies (4.40) and hence (c) holds.
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Before we proceed with the proof of Theorem 4.3, we state and prove a technical lemma
concerning connectedness of complements of compact sets. We will also use it in Chapter 5.

Lemma 4.14. Let E be a measurable subset of a domain ⌦ in Rn. Then for any " > 0
there is a compact set K ⇢ E such that |E \K| < " and ⌦ \K is connected.

Proof. First, let K1 ⇢ E be a compact set such that |E \K1|  "/2.

Next, let K2 ⇢ ⌦ denote a finite sum of pairwise disjoint closed cubes, K2 =
SN

i=1 Pi,
such that |K1 \ K2| < "/4. In each of the cubes Pi, let Ci denote the standard Cantor
set of positive measure, such that |Pi \ Ci| < "/(4N). Denote C =

SN
i=1Ci. Finally, set

K = K1 \ C.

Then K is obviously compact,

E \K ⇢ (E \K1) [ (K1 \K2) [ (K2 \K)

and K2 \K ⇢
SN

i=1(Pi \ Ci), thus

|E \K|  |E \K1|+ |K1 \K2|+
NX

i=1

|Pi \ Ci| < "/2 + "/4 +N"/(4N) = ".

The fact that ⌦ \K is connected follows from construction of the Cantor sets Ci. Indeed,
in each of the cubes Pi the complement of the set Ci is path-connected and contains @Pi.
It follows that any point p in ⌦ \ C can be connected to a given point q in C by a path
which intersects C in q only. Therefore, the complement of any subset of C (in particular,
of K) is path connected. (The fact that ⌦\K is connected follows also from more involved
results in topological dimension theory [53, p. 22 and p. 48].)

Proof of Theorem 4.3. The proof is inductive. We construct a family of diffeomorphisms
�k : ⌦ ⇣ ⌦ and compact sets Ek ⇢ ⌦ so that D�k = T on Ek. The sets Ek form an
increasing family so that

S
k Ek has full measure, i. e. |

S
k Ek| = |⌦|. Diffeomorphisms

�k do not converge in the uniform metric d but in the Lusin metric dL, see Section 2.1 to
recall the definitions. In the end, the limit has the required derivative T a. e. on ⌦.

We begin with �1. By Theorem 1.4, we find a diffeomorphism �1 : ⌦ ⇣ ⌦, �1 = id
near @⌦, and a compact set E

0
1 ⇢ ⌦ with |⌦ \ E0

1| < 1/4 such that D�1 = T on E
0
1. By

Lemma 4.14, we can replace E
0
1 with a compact set E1 ⇢ E

0
1 so that |⌦ \ E1| < 1/2 and

⌦ \ E1 is a domain. We shall soon comment on why ⌦ \ E1 needs to be connected.

Assume now that for i = 1, . . . , k we have found diffeomorphisms �i : ⌦⇣ ⌦, �i = id
near @⌦, and an increasing family of compact sets Ei ⇢ ⌦ such that

|⌦ \ Ei| < 2�i
, ⌦ \ Ei is a domain, D�i = T on Ei. (4.41)

Moreover, for i = 2, . . . , k,
�i = �i�1 near Ei�1. (4.42)

We shall now show that it is possible to construct a diffeomorphism �k+1 and a compact
set Ek+1 ⇢ ⌦, Ek ⇢ Ek+1 which satisfies (4.41) and (4.42) for i = k + 1.

Observe that using the assumption, (4.41), and the classical change of variables formula,
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we get
Z

⌦\Ek

| detT (x)| dx =

Z

⌦
| detT (x)| dx�

Z

Ek

| detT (x)| dx

= |⌦|�
Z

Ek

| detD�k(x)| dx = |�k(⌦)|� |�k(Ek)|

= |�k(⌦ \ Ek)|.

(4.43)

This is the moment when we need ⌦ \ Ek to be connected. Since (4.43) holds and ⌦ \ Ek

is a domain, Theorem 1.4 yields a diffeomorphism e�k+1 : ⌦ \ Ek ! Rn, e�k+1 = �k near
@(⌦ \ Ek) and a compact set K

0
k+1 ⇢ ⌦ \ Ek such that

|(⌦ \ Ek) \K 0
k+1| < 2�(k+2)

, De�k+1 = T on K
0
k+1.

Then, by Lemma 4.14, we replace K
0
k+1 with its compact subset Kk+1 ⇢ K

0
k+1 so that

|K 0
k+1 \Kk+1| < 2�(k+2) and ⌦ \ (Ek [Kk+1) is a domain.

We set Ek+1 := Ek [Kk+1 and

�k+1(x) :=

(
e�k+1(x) for x 2 ⌦ \ Ek,

�k(x) for x 2 Ek.

Since e�k+1 = �k near @Ek, �k+1 is indeed a diffeomorphism. Moreover, �k+1 satisfies
(4.42) for i = k + 1 and D�k+1 = T on Ek+1. We have already checked that ⌦ \ Ek+1 is
a domain, it remains to see that the left-most condition for i = k + 1 from (4.41) holds.
Indeed,

|⌦ \ Ek+1| = |(⌦ \ Ek) \K 0
k+1|+ |K 0

k+1 \Kk+1| < 2 · 2�(k+2) = 2�(k+1)
.

We have constructed inductively a sequence of diffeomorphisms �k : ⌦ ⇣ ⌦ and an
increasing family {Ek}1k=1 of compact sets, which satisfies |⌦ \

S1
k=1Ek| = 0 by (4.41).

Since �k+1 = �k near Ek, the sequence �k converges in the Lusin metric dL. However, this
limit is only defined up to a set of measure zero and we want to have a mapping defined
everywhere on ⌦. Therefore, we set E :=

S1
k=1Ek, choose xo 2 ⌦ \ E and define

F (x) =

8
><

>:

�k(x) for x 2 Ek,

x for x 2 @⌦,

xo for x 2 ⌦ \ E.

The mapping F is well defined everywhere on ⌦. Indeed, as {Ek}k is an increasing family
of sets and (4.42) holds, F is well defined on E. For every k = 1, 2, . . ., we have Ek ⇢ ⌦
and therefore E \ @⌦ = ?. Moreover, F (⌦) ✓ ⌦ and clearly F (x) = x for x 2 @⌦, i. e., (a)
holds.

As F = �k on Ek and �k is a diffeomorphism, for any density point x of the set Ek, F
is approximately differentiable at x with DaF (x) = �k(x), i. e., DaF (x) = T (x) a. e. on Ek.
As E =

S1
k=1Ek is a set of full measure, this means that F is approximately differentiable

a. e. on ⌦ and DaF = T a. e. on ⌦, i. e., (d) holds.

We claim that F |E is injective. Indeed, given any two distinct points x, y 2 E, we
clearly have F (x) 6= F (y) if x, y 2 Ek for some k 2 N. If x 2 Ek and y 2 E` for ` > k,
by (4.42), �` = �k on Ek and hence �k(x) = �`(x) 6= �`(y), because �` is injective.
Therefore, property (c) is true.
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Eventually, we check property (b). Let Z ⇢ ⌦ be a set of measure zero. Clearly, then
F (Z \ (⌦ \ E)) ⇢ {xo}, which is a set of measure zero. On the other hand, F (@⌦ \ Z) =
@⌦ \ Z, which also is a set of measure zero. Consequently,

|F (Z \ E)| = |
[1

k=1
�k(Z \ Ek)| 

1X

k=1

|�k(Z \ Ek)| = 0.

All in all, an image under F of a set of measure zero is a set of measure zero, which shows
that (b) holds and finishes the proof.

We cannot claim that F is classically differentiable a. e. on E. Even though Ek ⇢ Ek+1

and �k+1 = �k near Ek, it may happen that no neighborhood of Ek is contained in Ek+1.
In such a situation, we do not know if F = �k near Ek and hence we cannot say anything
about classical derivative.

Observe that such a straightforward method of iteration cannot guarantee the limit
mapping to be a homeomorphism. The problem of how to perform the iteration to construct
a homeomorphism with prescribed derivative will be the main topic of the next chapter.



Chapter 5

Constructing homeomorphisms with
prescribed approximate derivative

5.1 Introduction

In this chapter, we prove

Theorem 1.5. Let Q = [0, 1]n. For any measurable mapping T : Q ! GL(n) that satisfies
Z

Q

|detT (x)| dx = 1, (1.4)

there exists an a. e. approximately differentiable homeomorphism � : Q ⇣ Q such that
�|@Q = id and Da� = T a. e. Moreover,

(a) ��1 is approximately differentiable a. e. and Da��1(y) = T
�1(��1(y)) for almost all

y 2 Q;
(b) � preserves the sets of measure zero, i.e., for any A ⇢ Q,

|A| = 0 if and only if |�(A)| = 0.

(c) � is a limit of C1-diffeomorphisms �k : Q ⇣ Q, �k = id in a neighborhood of @Q,
in the uniform metric, i.e., k�� �kk1 + k��1 � ��1

k k1 ! 0 as k ! 1.

This is Theorem 1.4 from [39]. The proof follows [39], in particular this chapter contains
the entire Sections 5 and 7 and a large part of Section 6 (the rest appears in Chapter 2)
from [39].

Let us recapitulate here why a. e. approximately differentiable homeomorphisms are
important, as discussed in Section 1.3. Firstly, they are the class for which the change of
variables formula holds, see Theorem 2.29. Secondly, they appear naturally as limits of
diffeomorphisms in the Lusin metric, see Lemma A.1. It is also worthwhile to investigate
their properties because Sobolev and BV mappings are a. e. approximately differentiable,
see Lemma 2.32. In Section 5.3, we show a few technical lemmata about approximately
differentiable mappings used in the sequel. In particular, in Lemma 5.17 we prove a useful
version of chain rule for approximate derivative.

Let us note an important observation concerning � from Theorem 1.5. It follows from
degree theory (see Remark A.11 for details) that if at xo 2 Q we have detT (xo) < 0, then
� cannot be classically differentiable at xo. However, there is no immediate obstruction as
to why, if detT (xo) > 0, � could not be classically differentiable at xo. This motivates the
following

70
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Question 5.1. Let Q = [0, 1]n and T : Q ! GL(n)+ be a measurable mapping satisfy-
ing (1.4). Does there exist a homeomorphism � : Q ⇣ Q, �|@Q = id which is differentiable
a. e. on Q with D� = T a. e. on Q?

Our construction of � in Theorem 1.5 does not yield classical differentiability at points
in which detT > 0. To answer Question 5.1 in the positive with such an approach, one
would have to substantially modify it as to take better care of what happens in a neigh-
borhood of each point and not only at a given point.

The proof of Theorem 1.5 is long and constructive and we present here its key steps.
The first step reduces the problem to the case when detT > 0 with the help of Theorem 5.2
below. Let I be the identity matrix and

R :=

2

666664

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 �1

3

777775
. (5.1)

In Section 5.3.1, we prove the following

Theorem 5.2. Let Q = [0, 1]n and let E ⇢ Q be a measurable set. Then there exists an
almost everywhere approximately differentiable homeomorphism � of the cube Q onto itself,
such that �|@Q = id and

Da�(x) =

(
R for almost all x 2 E,

I for almost all x 2 Q \ E.
(5.2)

Moreover, � is a limit, in the uniform metric d, of measure preserving C
1-diffeomorphisms

that are identity in a neighborhood of @Q.

This is also a new result, which generalizes the main result from [37], see Proposition 4.12
for the precise statement.

We inductively show that there exists a family of orientation preserving C
1-diffeomor-

phisms �k of Q and Borel sets Ck ⇢ Q with the following properties for k � 1:

(i) �k = id near @Q;
(ii) �k+1 = �k on Ck;
(iii) D�k = T on Ck;
(iv) Ck is an increasing family of sets, C1 ⇢ C2 ⇢ · · · , with limk!1 |Ck| = 1;
(v) d(�k,�k+1) < 2�(k�1) for k � 2.

From this, it easily follows that the limit � := limk!1�k is the desired mapping, see
Section 5.4.2 for detailed explanation. However, it is not easy to construct such a family.
Below we give the flavour of the idea.

We have seen in Section 4.4, in the proof of Theorem 4.3, that a naive iteration scheme
used there is far from suitable since it fails to guarantee uniform convergence. To overcome
this difficulty, we use a much more complex iteration scheme. At each step k of the iteration,
we construct a diffeomorphism �k and a partition Pk of the unit cube, which is a refinement
of the partition Pk�1 from the previous step. Thanks to the construction of the partitions,
we can construct �k by a local modification of �k�1, which guarantees convergence of the
entire sequence in the uniform metric.

The construction of �k given �k�1 consists of two steps. Firstly, we correct the way
�k�1 distributes the measure (i. e., we correct its Jacobian) and then we repetitively apply
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Theorem 1.4 to prescribe the derivative on a larger set. This first step is necessary to
guarantee that the assumption of Theorem 1.4 holds. We develop the technique for this
in Section 5.2. It is a substantial modification of the construction of the mapping in the
proof of the homeomorphic measures theorem by Oxtoby and Ulam [81, Theorem 2]. Their
construction inspired ours.

In Section 5.5, we include a few corollaries to Theorem 1.5. Firstly, in Corollary 5.21, we
show that given T : Q ! GL(n) satisfying the weaker assumption

R
Q | detT | < 1 instead

of (1.4), it is also possible to find an a. e. approximately differentiable homeomorphism
� : Q ! Rn. Naturally, the image �(Q) cannot equal Q unless (1.4) holds and hence
if (1.4) does not hold, we cannot require � to fix the boundary of Q.

Also, a direct application of Theorem 1.5 yields

Corollary 5.3. Let Q = [0, 1]n and let f : Q ! R be measurable with f 6= 0 a. e. on Q andR
Q |f(x)| dx = 1. Then there exists an a. e. approximately differentiable homeomorphism
� : Q ⇣ Q, �@Q = id which satisfies the Lusin (N) condition and such that for any
measurable set E ⇢ Q,

|�(E)| =
Z

E
|f(x)| dx. (5.3)

This is a generalization of the homeomorphic measures theorem by Oxtoby and Ulam
proved in [81, Theorem 2] quoted in (1.7) in Section 1.3. Indeed, let µf be a measure
defined on Q with the formula

µf (E) =

Z

E
|f(x)| dx for a measurable set E ⇢ Q.

Such a measure must be equivalent to the n-dimensional Lebesgue measure (i. e., µf (E) = 0
if and only if |E| = 0). Corollary 5.3 says that given such a measure µf , we can find a home-
omorphism as in Oxtoby and Ulam’s theorem which, additionally, is a. e. approximately
differentiable. This also gives rise to an interesting

Question 5.4. Let Q = [0, 1]n and f : Q ! R be measurable with
R
Q |f(x)| dx = 1.

Does there always exist an a. e. approximately differentiable homeomorphism � : Q ⇣ Q,
�@Q = id , such that for any Borel set E ⇢ Q, (5.3) holds?

This would yield a generalization of Oxtoby and Ulam’s theorem for a measure µ

which is only absolutely continuous w. r. t. Lebesgue measure and not equivalent to it. As
discussed in Section 1.3, there is even a bi-Sobolev homeomorphism with vanishing Jacobian
a. e. [27] and hence the condition that f 6= 0 is not necessary for a construction of an a. e.
approximately differentiable homeomorphism whose Jacobian equals f .

If �k : Q ⇣ Q is a sequence of orientation preserving C
1-diffeomorphisms which con-

verge to a homeomorphism � : Q ⇣ Q in the Lusin metric, then � is approximately
differentiable a. e. and

detDa�(x) > 0 a. e. and
Z

Q

detDa�(x) dx  1,

see Lemma 5.22 for details. One can then ask, what other conditions must Da� satisfy? It
turns out that basically none.

Theorem 5.5. Let Q = [0, 1]n. For any measurable mapping T : Q ! GL(n)+ such that
Z

Q

detT (x) dx = 1,
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there exists a sequence of C1-diffeomorphisms �k : Q ⇣ Q, �k = id in a neighborhood of @Q,
that converges both in the uniform metric d and the Lusin metric dL to a homeomorphism
� : Q ⇣ Q, �|@Q = id , that is a. e. approximately differentiable and satisfies Da� = T a. e.

It is interesting to look at Theorems 1.5 and 5.5 from the point of view of nonlinear
elasticity with the following question in mind: could the class of a. e. approximately differ-
entiable homeomorphisms be useful in studying deformations? Since their derivatives can
be so general and bear no information as to the properties of the mapping itself, the answer
seems to be no. Nonetheless, the moral of these two theorems is that one should keep in
mind how complicated even uniform limits of diffeomorphisms can be.

Sections 5.2 and 5.3 develop tools needed in the proof of Theorem 1.5. In Section 5.4,
we prove Theorem 1.5 in a series of steps for better readability. Section 5.5 consits of a few
corollaries to the main theorem, as described above.

5.2 Preliminaries for Theorem 1.5

This section consists of a series of similar lemmata of increasing complexity, whose aim is
to prove Proposition 5.16. In this proposition we construct a particular partition of a dif-
feomorphic closed cube (i. e., diffeomorphic image of a closed cube), which is instrumental
to carry out the iteration in the proof of Theorem 1.5.

Essentially, the results in this section are far-reaching modifications of the construction
of the mapping in the proof of the homeomorphic measures theorem by Oxtoby and Ulam,
see [81, Theorem 2] for the original paper or [3, Section A2.2], [36, Chapter 7] for a concise
treatment.

The original construction of Oxtoby and Ulam, [81, 3, 36], does not lead to any differ-
entiability properties of the homeomorphism, even if the measure is absolutely continuous
with respect to the Lebesgue measure (which is the case considered by us). Therefore,
in order to prove the a. e. approximate differentiability claimed in Theorem 1.5, we need
essential modifications of the argument of Oxtoby and Ulam.

Before we begin, let us recollect and introduce some notation. For a comprehensive list
of used symbols see Section 2.1.

Notation. Q denotes the unit cube in Rn, Q := [0, 1]n.

The space of homeomorphisms of the unit cube Q is equipped with the uniform metric

d(�, ) = sup
x2Q

|�(x)� (x)|+ sup
x2Q

|��1(x)� �1(x)|,

see Section 2.8 for more details.

Let m,n 2 N. The space of measurable mappings f, g : E ! Rn defined on a measur-
able set E ⇢ Rm is equipped with the Lusin metric defined as

dL(f, g) := |{x 2 ⌦ : f(x) 6= g(x)}|.

A set P is a diffeomorphic closed cube if there is a diffeomorphism ⇥ defined on a neigh-
borhood of P such that ⇥(P ) = Q. We say that P = {Pi}Ni=1 is a partition of P if
P =

SN
i=1 Pi and Pi are diffeomorphic closed cubes with pairwise disjoint interiors.

Important examples of partitions of Q are the dyadic partitions into 2nk identical cubes
of edge length 2�k, for k = 0, 1, 2, . . .
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A partition P = {Pi}Ni=1 of P is a diffeomorphic dyadic partition if there is a diffeo-
morphism ⇥ defined in a neighborhood of P and such that {⇥(Pi)}Ni=1 forms a dyadic
partition of Q. More generally, a partition P of P is diffeomorphic to a partition P0 of P 0

if P0 = {⇥(Pi) : Pi 2 P} for some diffeomorphism ⇥ defined in a neighborhood of P .

In the lemma below, we will construct the the desired diffeomorphism using a 1-
parameter group of diffeomorphisms, see Theorem A.2 for details about existence and
properties of thus defined mappings.

Lemma 5.6. Let P be a rectangular box

P = P1 [ . . . [ Pk = [0, a]⇥ [0, 1]n�1
, k � 2,

represented as the union of adjacent boxes

Pi = [ai�1, ai]⇥ [0, 1]n�1
, 0 = a0 < a1 < . . . < ak = a.

If functions f, g 2 L
1(P ), f, g > 0 a. e., are such that

Z

P
f(x) dx =

Z

P
g(x) dx, (5.4)

then there is a diffeomorphism � : P ⇣ P that is identity in a neighborhood of @P , and
such that Z

Pi

f(x) dx =

Z

�(Pi)
g(x) dx for i = 1, 2, . . . , k.

Remark 5.7. The lemma has a simple geometric interpretation. The functions f and g

are densities of absolutely continuous measures µf and µg, and (5.4) means that µf (P ) =
µg(P ). The lemma says that given the partition P1, . . . , Pk of P , we can find a diffeomorphic
partition �(P1), . . . ,�(Pk) of P , such that the corresponding cells have equal measures
µf (Pi) = µg(�(Pi)).

Proof of Lemma 5.6. The proof will be by induction with respect to k. Thus, first assume
that k = 2. Since

R
P1

f +
R
P2

f =
R
P1

g +
R
P2

g, without loss of generality, we may assume
that

R
P1

f �
R
P1

g. Let K be a compact rectangular box in the interior of P , with edges
parallel to the coordinate axes, such that

Z

P1

f(x) dx <

Z

K
g(x) dx.

By taking K sufficiently large, we may assume that the common face of P1 and P2 in-
tersects K. Let X be a smooth vector field parallel to the x1 coordinate axis, non-zero
in a neighborhood of K, zero in a neighborhood of @P , and such that X points in the
positive direction of the x1-axis whenever X 6= 0. If �t is the one-parameter family of
diffeomorphisms generated by X, then �0(P1) = P1, so

Z

P1

f(x) dx �
Z

�0(P1)
g(x) dx. (5.5)

Since the common face of P1 and P2 intersects K, X is non-zero in a neighborhood of
that intersection. Now, from a standard compactness and open covering argument recalled
below, we see that there is to such that K ⇢ �t(P1) for all t > to, so

Z

P1

f(x) dx <

Z

K
g(x) dx 

Z

�t(P1)
g(x) dx for all t > to. (5.6)
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Indeed, since �t depends continuously on the parameter t, for any x 2 K, there is a tx > 0
and "x > 0 such that for t > tx, ��t(B(x, "x)) ⇢ P1. Balls B(x, "x) for x 2 K form an
open covering of K and by compactness of K, we can choose a finite subcovering of K,
balls B(xi, "xi) for i = 1, . . . , N . Setting to := maxi txi , we see that for t > to for all x 2 K,
��t(x) 2 P1, i.e., x 2 �t(P1). This implies that K ⇢ �t(P1) for t > to.

Since the function t 7!
R
�t(P1)

g is continuous, it follows from (5.5) and (5.6) that there
is t 2 [0, to], such that � := �t satisfies

Z

P1

f(x) dx =

Z

�(P1)
g(x) dx and hence

Z

P2

f(x) dx =

Z

�(P2)
g(x) dx.

Observe that the diffeomorphism � equals identity in a neighborhood of @P , on the set
where X = 0.

We completed the proof in the case of k = 2. Suppose now that the claim is true for
all integers in {2, . . . , k} and we will prove it for k + 1.

Let us write
P = P1 [ . . . [ Pk| {z }

eP

[Pk+1 = eP [ Pk+1.

Applying the claim for two boxes, we can find a diffeomorphism �1 : P ⇣ P , that is
identity in a neighborhood of @P and such that

Z

eP
f(x) dx =

Z

�1( eP )
g(x) dx and

Z

Pk+1

f(x) dx =

Z

�1(Pk+1)
g(x) dx. (5.7)

Note that the second equality in (5.7) is as desired and our diffeomorphism � will be equal
�1 in Pk+1. However, we have to modify it in eP . The diffeomorphism �1 is orientation
preserving and hence its Jacobian J�1 = detD�1 is positive in eP . Let

g̃(x) = (g � �1)(x)J�1(x) for x 2 eP .

The change of variables formula yields
Z

eP
g̃(x) dx =

Z

eP
(g � �1)(x)J�1(x) dx =

Z

�1( eP )
g(x) dx =

Z

eP
f(x) dx,

and hence the pair of functions f and g̃ satisfies the assumption (5.4) on eP = P1 [ . . .[Pk.
Thus, the induction hypothesis yields a diffeomorphism �2 : eP ⇣ eP that is identity near
@ eP and such that for i = 1, 2, . . . , k, we have

Z

Pi

f(x) dx =

Z

�2(Pi)
g̃(x) dx =

Z

�2(Pi)
(g � �1)(x)J�1(x) dx =

Z

(�1��2)(Pi)
g(x) dx.

Therefore, the diffeomorphism � : P ⇣ P defined by
(
�1 � �2(x) if x 2 eP ,

�1(x) if x 2 Pk+1,

satisfies the claim for k+1. To see that � is a well defined diffeomorphism, note that �2 is
identity near @ eP and hence �1 ��2 = �1 near the common face of the boxes eP and Pk+1.
Also, � is identity near the boundary of P . The proof is complete.

The following corollary shows that Lemma 5.6 can be applied to diffeomorphic closed
cubes and their partitions that are diffeomorphic to the partition in Lemma 5.6.
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Corollary 5.8. Let P and its partition be as in Lemma 5.6. Let ⇥ : P ! Rn be a
diffeomorphism. Denote by eP and ePi the images of P and Pi under ⇥. If functions f, g 2
L
1( eP ), f, g > 0 a. e., are such that

Z

eP
f(x) dx =

Z

eP
g(x) dx,

then there is a diffeomorphism � : eP ⇣ eP , that is identity in a neighborhood of @ eP , and
such that Z

ePi

f(x) dx =

Z

�( ePi)
g(x) dx for i = 1, 2, . . . , k.

Proof. Using ⇥ as a change of variables we can reduce the problem to Lemma 5.6. The
induced functions on P will be

(f �⇥)(x)|J⇥(x)| and (g �⇥)(x)|J⇥(x)|.

Actually, we used a very similar argument in the proof of Lemma 5.6 and we leave easy
details to the reader.

Naturally, given a compact set K in a rectangular box P , it cannot be expected that
P \K is diffeomorphic to a cube. However, in Lemma 5.9 we show that K can be replaced
by another compact set K

0, with small measure of the symmetric difference |K M K
0|,

so that P \K 0 is a diffeomorphic closed cube. We do it by approximating K with small
balls and smoothly connecting them with thin tubes which start from one face of P , see
Figure 5.1. We will need it in Lemma 5.10 to construct a diffeomorphism as in Lemma 5.6
which additionally is identity on a large part of a given compact set.

Lemma 5.9. Let a > 0, P = [0, a] ⇥ [0, 1]n�1 be a rectangular box and F = (0, a) ⇥
(0, 1)n�2 ⇥ {0} a fixed open face of P . If K is a compact subset of P , then for any " > 0,
it is possible to find a compact set K 0 ⇢ P and a diffeomorphism  : Rn ⇣ Rn such that

K
0 \ (@P \ F ) = ?, |K M K

0| < ",  (P ) = P \K 0,

and  = id outside an arbitrarily small neighborhood of K 0.

Proof. We find a finite number of disjoint closed balls Bj contained in P̊ so that |K MS
j Bj | < "/2 (easy exercise) and a smooth curve � without self-intersections which starts

at a point of the open face F and connects all balls: the curve enters each ball once and
leaves it at another point, except the last ball that it does not leave. We can easily guarantee
that � intersects @P only at the starting point in F .

We thicken slightly the curve � to get a tube �" so that the measure of �" does not
exceed "/2. In doing so, we can guarantee that �" connects the balls and touches @P at
the face F only, in a smooth manner, see Figure 5.1. The desired compact set K

0 consists
of
S

j Bj and �". Clearly, |K M K
0| < ".

Since K
0 is diffeomorphic to a ball connected smoothly with a thin tube to the face

F of P , the set P \K 0 is diffeomorphic to a rectangular box. Intuitively speaking, diffeo-
morphism  : Rn ⇣ Rn, which maps P onto P \K 0 pushes a smooth cylinder glued to F

outside P inside this rectangular box, transforming P into P \K 0. It can be guaranteed
that  fixes points outside an arbitrarily small neighborhood of K 0.

The next lemma is an enhanced version of Lemma 5.6. We find a diffeomorphism of
a rectangular box onto itself which transforms measures of cells accordingly and, addition-
ally, equals identity on a large part of a given compact subset K of P .



5.2. PRELIMINARIES FOR THEOREM 1.5 77

F

Figure 5.1: The compact set K ⇢ P (black) is approximated by the set K
0 (grey) which

consists of a finite number of balls, connected smoothly by thin tubes to the side F of P .
The proof of Lemma 4.14 explains the shape of the set K.

Lemma 5.10. Let P , Pi, f and g be as in Lemma 5.6. Assume that K is a compact subset
of P and that the functions f and g satisfy the additional condition that

f = g a. e. on K. (5.8)

Then for any " > 0, there is a diffeomorphism � : P ⇣ P and a compact set eK ⇢ K such
that � equals identity in a neighborhood of eK [ @P , |K \ eK| < " and

Z

Pi

f(x) dx =

Z

�(Pi)
g(x) dx for i = 1, 2, . . . , k.

Proof. The main idea of the proof is applying Lemma 5.9 to each Pi to eventually remove
a set including a large part of set K and to obtain a diffeomorphic closed cube. We can then
use Corollary 5.8 to construct the desired diffeomorphism which transforms the measures
of cells and equals identity near the boundary.

By removing from K a subset A with |A| < "/2 we can assume that K̂ := K \ A is
compact and Ki := K̂ \ Pi 6= Pi for all i = 1, 2, . . . , k.

Choose a sufficiently small 0 < ⌘ < "/(2k) so that

|E| < ⌘ =)
Z

E
g(x) dx < min

i

Z

Pi\Ki

f(x) dx. (5.9)

(Since Ki 6= Pi, the minimum in (5.9) is positive.) Lemma 5.9 applied to each Pi, the
compact sets Ki and the chosen ⌘ yields diffeomorphisms  i : Rn ⇣ Rn and compact sets
K

0
i for i = 1, 2, . . . , k such that  i(Pi) = Pi \K 0

i, |Ki M K
0
i| < ⌘, and  i = id outside

an arbitrarily small neighborhood Ui of K 0
i. Also, the sets K

0
i do not intersect any of the

common faces of the partition of P and thus they are pairwise disjoint.

Since the sets K 0
i are compact and pairwise disjoint, we may guarantee that the neigh-

borhoods Ui are pairwise disjoint and hence the diffeomorphisms  i can be glued together
to a diffeomorphism  : Rn ⇣ Rn such that  =  i on each Pi.
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Consequently, if K 0 =
Sk

i=1K
0
i, then P \K 0 is diffeomorphic to P by this diffeomor-

phism  and hence it satisfies the assumptions of Corollary 5.8 for

eP = P \K 0, ePi = Pi \K 0
i.

At this point, observe that |P \K 0| = |P \K 0| = | eP |, because the boundary of K 0 is
piecewise smooth. Also, it is obvious that

P = eP [K
0 and Pi = ePi [K

0
i for i = 1, . . . , k. (5.10)

We still need to define suitable functions to use in place of f and g in Corollary 5.8. Observe
that |Ki M K

0
i| < ⌘ for each i = 1, . . . , k, yields
Z

K0
i

g(x) dx 
Z

Ki

g(x) dx+

Z

K0
i\Ki

g(x) dx

(5.9)
<

Z

Ki

g(x) dx+

Z

Pi\Ki

f(x) dx
(5.8)
=

Z

Pi

f(x) dx.

Consequently, the function

f̂(x) =
kX

i=1

 Z

Pi

f �
Z

K0
i

g

!
� ePi

(x)

| ePi|
(5.11)

is positive a. e. on eP and satisfies
Z

eP
f̂(x) dx =

Z

eP
g(x) dx. (5.12)

Indeed, since |P \K 0| = | eP |, (5.12) follows from

Z

eP
f̂(x) dx =

kX

i=1

⇣Z

Pi

f �
Z

K0
i

g

⌘
=

Z

P
f(x) dx�

Z

K0
g(x) dx

(5.4)
=

Z

P\K0
g(x) dx.

All in all, we have checked the assumptions of Corollary 5.8 for functions f̂ and g. This
corollary provides us with a diffeomorphism �0 : eP ⇣ eP , �0 = id in a neighborhood of @ eP ,
such that Z

ePi

f̂(x) dx =

Z

�0( ePi)
g(x) dx. (5.13)

Set eK = K \K
0 and

�(x) =

(
x for x 2 P \ eP ,

�0(x) for x 2 eP .

The set eK is clearly compact whereas � is a well defined diffeomorphism of P onto
itself since �0(x) = x near @ eP . We shall now check that � and eK satisfy all the desired
properties. Writing @P = (@P \ @ eP ) [ (@P \ @ eP ), we see that � = id near @P . It follows
immediately from the definition of � and P \ eP = K

0, that � = id on K
0. We can say

even more: since @K 0 ⇢ @P [ @ eP , � = id in a neighborhood of K 0 and, consequently, in
a neighborhood of eK.

Since � = �0 on ePi, (5.13) yields
Z

ePi

f̂(x) dx =

Z

�( ePi)
g(x) dx. (5.14)
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By (5.10), �(Pi) = �( ePi) [ �(K 0
i) and the two sets �( ePi) and �(K 0

i) overlap on a set of
measure zero (the image of a part of the piecewise smooth boundary of K 0

i). Hence (5.14)
yields

Z

�(Pi)
g(x) dx =

Z

�( ePi)
g(x) dx+

Z

�(K0
i)
g(x) dx =

Z

ePi

f̂(x) dx+

Z

K0
i

g(x) dx

(5.11)
=

Z

Pi

f(x) dx�
Z

K0
i

g(x) dx+

Z

K0
i

g(x) dx =

Z

Pi

f(x) dx,

as required. At last, we compute

|K \ eK| = |K \K 0| = |A \K 0|+ | bK \K 0|  |A|+
kX

i=1

|Ki M K
0
i| <

"

2
+ k⌘ < "

which finishes the proof.

Lemma 5.11. Let Q =
S2nk

j=1Qj be the dyadic partition of the unit cube Q = [0, 1]n into
cubes Qj of side-length 2�k. Let K be a compact subset of Q and f, g 2 L

1(Q), f, g > 0
a. e. be such that

Z

Q

f(x) dx =

Z

Q

g(x) dx and f(x) = g(x) for a. e. x 2 K.

Then for any " > 0, there is a diffeomorphism � : Q ⇣ Q and a compact set eK ⇢ K such
that � = id in a neighborhood of eK [ @Q, |K \ eK| < " and

Z

Qj

f(x) dx =

Z

�(Qj)
g(x) dx for j = 1, 2, . . . , 2nk.

Remark 5.12. The statement of the lemma is very similar to that of Lemma 5.10. The
main difference is that the boxes in Lemma 5.10 were arranged into a single line. This
arrangement played an important role in the proof and it is not obvious how to modify the
proof of Lemma 5.10 to cover the situation described in Lemma 5.11.

Proof of Lemma 5.11. For 1  `  n and j1, . . . , j` 2 {1, . . . , 2k} we shall denote

Pj1...j` = [(j1 � 1)2�k
, j12

�k]⇥ [(j2 � 1)2�k
, j22

�k]⇥ · · ·⇥ [(j` � 1)2�k
, j`2

�k],

Lj1...j` = Pj1...j` ⇥ [0, 1]n�`
.

The sets Pj1...j` are cubes in the dyadic partition of [0, 1]n�` and Lj1...j` are “towers” over
cubes Pj1...j` covering [0, 1]n. In particular L1, . . . , L2k result from slicing of Q along the
first coordinate like a toast bread into 2k sandwiches. If ` = n, Lj1...jn = Pj1...jn are exactly
the dyadic cubes Qj .

Our aim is to prove (by finite induction on `) the following claim:

For any ` 2 {1, 2, . . . , n} there exists a diffeomorphism  ` : Q ⇣ Q and a com-
pact set K` ⇢ K such that

 ` = id in a neighborhood of K` [ @Q, (5.15)
Z

Lj1...j`

f(x)dx =

Z

 `(Lj1...j`
)
g(x)dx for all j1, . . . , j` 2 {1, . . . , 2k}, (5.16)

|K \K`| < 2`�n
". (5.17)
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Note that for ` = n we obtain � :=  n and eK := Kn that satisfy the conditions of the
lemma (because Lj1...jn are exactly the cubes Qj), so proving the above claim suffices to
prove the lemma.

Let us first consider the case ` = 1. Then

Q = L1 [ L2 [ · · · [ L2k =

✓
0,

1

2k

�
[

1

2k
,
2

2k

�
[ · · · [


2k � 1

2k
, 1

�◆
⇥ [0, 1]n�1

is a decomposition of a rectangular box into a union of adjacent boxes, exactly as in
Lemma 5.6. By Lemma 5.10 we can find a diffeomorphism  1 : Q ⇣ Q and a compact set
K1 ⇢ K such that  1 = id in a neighborhood of K1 [ @Q,

|K \K1| < 21�n
" and

Z

Lj

f(x)dx =

Z

 1(Lj)
g(x)dx for all j 2 {1, . . . , 2k}.

Assume now that the claim holds for some `, 1  ` < n, so that there exists a diffeo-
morphism  ` : Q ⇣ Q and a compact set K` ⇢ K satisfying (5.15), (5.16), (5.17).

For any j1, . . . , j`

Z

Lj1...j`

f(x)dx =

Z

 `(Lj1...j`
)
g(x)dx =

Z

Lj1...j`

(g � `)(x)J `(x)dx =

Z

Lj1...j`

g̃`(x)dx

for g̃`(x) = (g � `)(x)J `(x). Since  ` = id near @Q, the diffeomorphism  ` is orientation
preserving and hence J ` > 0. Since  ` = id near K`, D ` = I on K`, and hence
f(x) = g(x) = g̃`(x) for a. e. x 2 K`.

Now, let us fix j1 . . . j`. Note that

Lj1...j` = Lj1...j` 1 [ Lj1...j` 2 [ · · · [ Lj1...j` 2k

= Pj1...j` ⇥
✓

0,
1

2k

�
[

1

2k
,
2

2k

�
[ · · · [


2k � 1

2k
, 1

�◆
⇥ [0, 1]n�`�1

is again a decomposition of the rectangular box Lj1...j` into a union of adjacent boxes
isometric to that in Lemma 5.6, satisfying assumptions of Lemma 5.10 for the functions
f , g̃`, and the compact set K` \ Lj1...j` . Therefore, we can find a diffeomorphism ⌥j1...j` :

Lj1...j` ⇣ Lj1...j` and a compact set eKj1...j` ⇢ K` \ Lj1...j` such that ⌥j1...j` = id in
a neighborhood of eKj1...j` [ @Lj1...j` ,

Z

Lj1...j` j`+1

f(x)dx =

Z

⌥j1...j`
(Lj1...j` j`+1

)
g̃`(x)dx for all j`+1 2 {1, . . . , 2k}

and
| (K` \ Lj1...j`) \ eKj1...j` | < 2�k` 2`�n

". (5.18)

Since the diffeomorphisms ⌥j1...j` are identity near @Lj1...j` , they agree near the bound-
ary of adjacent boxes Lj1...j` and thus we can glue them to a diffeomorphism ⌥ : Q ⇣ Q,
identity near @Q. Setting K`+1 =

S
j1...j`

eKj1...j` , we see that K`+1 ⇢ K`, that ⌥(x) = x in
a neighborhood of K`+1 and that for any j1, . . . , j`+1

Z

Lj1...j` j`+1

f(x)dx =

Z

⌥(Lj1...j` j`+1
)
g̃`(x)dx =

Z

⌥(Lj1...j` j`+1
)
(g � `)(x)J `(x)dx

=

Z

( `�⌥)(Lj1...j` j`+1
)
g(x)dx.
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Moreover, by (5.18) we can see that

|K` \K`+1| =
X

j1...j`

| (K` \ Lj1...j`) \ eKj1...j` | < 2`�n
",

which implies that

|K \K`+1| = |K \K`|+ |K` \K`+1| < 2`+1�n
".

Therefore, we set  `+1 =  ` �⌥, which is identity in a neighborhood of K`+1[@Q and
consequently satisfies the claim for `+ 1 in place of `, which completes the inductive step
and the proof.

Moreover, we immediately see that the diameters of the cubes Qj can be made arbi-
trarily small by taking large k. However, we have no control over the diameters of �(Qj).
The next proposition corrects that.

Proposition 5.13. Let Q = [0, 1]n and K be a compact subset of Q. Assume that f, g 2
L
1(Q), f, g > 0 a. e. satisfy

Z

Q

f(x) dx =

Z

Q

g(x) dx and f(x) = g(x) for a. e. x 2 K. (5.19)

Then for any " > 0, ⌘ > 0, there exist a diffeomorphic dyadic partition Q =
S2nN

j=1 Pj,
a diffeomorphism  : Q ⇣ Q and a compact set eK ⇢ K, with |K \ eK| < ⌘ such that  = id
in a neighborhood of eK [ @Q, diamPj < ", diam (Pj) < ", and

Z

Pj

f(x) dx =

Z

 (Pj)
g(x) dx, for j = 1, 2, . . . , 2nN .

Remark 5.14. Recall that here, the diffeomorphic dyadic partition means that there is
a diffeomorphism ⇥ : Q ⇣ Q such that ⇥(Qj) = Pj , where Q =

S2nN

j=1 Qj is the standard
dyadic partition of Q into 2nN identical cubes of side-length 2�N . In fact, the diffeo-
morphism ⇥ constructed in the proof will have the additional property that ⇥ = id in
a neighborhood of @Q.

Remark 5.15. The idea is to take the diffeomorphism � from Lemma 5.11 and then apply
a version of Lemma 5.11 for a diffeomorphic dyadic partition to each of the sets �(Qj)
and the inverse diffeomorphism ��1 : �(Qj) ⇣ Qj . While we do not have control of the
diameters of the sets �(Qj), after the construction described here, we will partition �(Qj)
into sets of as small diameters as we wish.

Proof. Choose k 2 N such that 2�kp
n < " and let Q =

S2nk

j=1Qj be the dyadic de-
composition into 2nk identical cubes of side-length 2�k, so diamQj < ". Let � be the
diffeomorphism and K1 ⇢ K the compact set provided by Lemma 5.11 so that � = id in
a neighborhood of K1 [ @Q, |K \K1| < ⌘/2 and

Z

Qj

f(x) dx =

Z

�(Qj)
g(x) dx for j = 1, 2, . . . , 2nk.

The diffeomorphism � is uniformly continuous in Q; let � > 0 be such that

|�(x)� �(y)| < " whenever |x� y| < �. (5.20)
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Let ` 2 N satisfy 2�(k+`)p
n < � and consider the dyadic partition Q =

S2nk

j=1

S2n`

i=1
ePij into

identical cubes of side-length 2�(`+k), so that each cube Qj is partitioned into 2n` identical
cubes ePij . Clearly, diam ePij < �.

For any j we have, bearing in mind that J� > 0,
Z

Qj

f(x) dx =

Z

�(Qj)
g(x) dx =

Z

Qj

(g � �)(x)J�(x) dx,

so if we denote g̃(x) := f(x), f̃(x) := (g � �)(x)J�(x),1 we have
Z

Qj

f̃(x) dx =

Z

Qj

g̃(x) dx.

Observe that for a. e. x 2 K1, f̃(x) = g̃(x). Indeed,

f̃(x) = (g � �)(x)J�(x) = g(x) = f(x) = g̃(x).

Applying Lemma 5.11 with Qj in place of Q, f̃ for f and g̃ for g, partition Qj =
S2n`

i=1
ePij

and the compact set K1 \ Qj yields a diffeomorphism ⇥j : Qj ⇣ Qj and a compact set
K2j ⇢ K1 \Qj such that ⇥j = id in a neighborhood of K2j [ @Qj ,

|(K1 \Qj) \K2j | < ⌘
2 2

�nk and
Z

ePij

f̃(x) dx =

Z

⇥j( ePij)
g̃(x) dx. (5.21)

Since ⇥j are identity near @Qj , they glue together to a diffeomorphism ⇥ : Q ⇣ Q,
identity near @Q. Set

eK :=
[

j
K2j ⇢ K1 ⇢ K.

By (5.21), |K1 \ eK| < ⌘/2 and consequently,

|K \ eK| = |K \K1|+ |K1 \ eK| < ⌘. (5.22)

Moreover, ⇥ = id in a neighborhood of eK. Let Pij = ⇥( ePij).

Then we check that
Z

Pij

f(x) dx =

Z

⇥( ePij)
g̃(x) dx

(5.21)
=

Z

ePij

f̃(x) dx

=

Z

ePij

(g � �)(x)J�(x) dx

=

Z

�( ePij)
g(x) dx =

Z

�(⇥�1(Pij))
g(x) dx,

so setting  = � �⇥�1 we get
Z

Pij

f(x) dx =

Z

 (Pij)
g(x) dx.

Since ⇥�1 = id and � = id in a neighborhood of eK [ @Q,  = id there, as well. We have
already checked in (5.22) that |K \ eK| < ⌘. Finally, Pij ⇢ Qj , so diamPij  diamQj < ";
also diam ePij = 2�(k+`)p

n < �, so diam (Pij) = diam�( ePij) < " by (5.20).

Note also that the partition of Q into the 2n(`+k) sets Pij is diffeomorphic to the dyadic
partition Q =

S2nk

j=1

S2n`

i=1
ePij by the diffeomorphism ⇥ : Q ⇣ Q.

1g̃ = f is not a typo; we reverse notation of f and g for a reason.
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Eventually, we will need an analogue of the previous proposition in terms of diffeo-
morphic images of cubes, which is again a consequence of the change of variables theorem.

Proposition 5.16. Let Q = [0, 1]n and ⇥ : Q ! Rn be a diffeomorphism. Let eQ = ⇥(Q)

and K be a compact subset of eQ. Suppose that f, g 2 L
1(eQ), f, g > 0 a. e. satisfy

Z

eQ
f(x) dx =

Z

eQ
g(x) dx and f(x) = g(x) for a. e. x 2 K. (5.23)

Then for any ", ⌘ > 0 there exists a diffeomorphic dyadic partition eQ =
S2nN

j=1
ePj, a diffeo-

morphism  : eQ ⇣ eQ and a compact set eK ⇢ K, with |K \ eK| < ⌘ such that  = id in
a neighborhood of eK [ @eQ, diam ePj < ", diam ( ePj) < " and

Z

ePj

f(x) dx =

Z

 ( ePj)
g(x) dx for j = 1, 2, . . . , 2nN .

5.3 Approximately differentiable mappings

In this section, we prove a few lemmata about a. e. approximately differentiable mappings.
The main result of this section is Theorem 5.22 stated in the introduction to this chapter.

The first lemma is a chain rule, which generalizes the one proved in Lemma 4.13. To
the best of my knowledge, [39] is the first place where it appears in the literature. Its proof
is similar to that of Lemma 13 in [38].

Lemma 5.17. Let U ⇢ Rn be open. Assume that f : U ! Rn is approximately differ-
entiable a. e. and detDaf(x) 6= 0 a. e. Assume that V ⇢ Rn is an open set such that
f(U) ⇢ V and g : V ! Rm is approximately differentiable a. e. Then g � f : U ! Rm is
approximately differentiable a. e. and

Da(g � f)(x) = Dag(f(x)) ·Daf(x) for almost all x 2 U . (5.24)

Proof. According to Lemma 2.26, there is a sequence of functions fk 2 C
1(Rn;Rn) and

a sequence of closed sets Ek ⇢ {fk = f} such that Ek is contained in the set of density
points of the set {fk = f}, |U \ Ek| < 1/k, and detDaf(x) 6= 0 for x 2 Ek. Note that
if x 2 Ek, then Daf(x) = Dfk(x) and hence detDfk 6= 0 in Ek. It suffices to prove that
(5.24) holds at almost all points x 2 Ek for all k.

The mapping fk is a diffeomorphism in a neighborhood of every point of Ek and hence
we can decompose Ek =

S1
i=1Wi into countably many compact sets Wi, such that f = fk

is bi-Lipschitz on Wi. Clearly, it suffices to prove that (5.24) is satisfied at almost all points
of Wi.

According to Lemma 2.26, there is a sequence of functions g` 2 C
1(Rn;Rm), and

a sequence of closed sets F` ⇢ {g` = g} such that F` is contained in the set of density
points of the set {g` = g}, and |V \ F`| < 1/`. Clearly, Dag(y) = Dg`(y) for y 2 F`.

Let Mi` := f(Wi) \ F`. Since f is bi-Lipschitz on Wi,

���f(Wi) \
1[

`=1

Mi`

��� = 0 implies that
���Wi \

1[

`=1

f
�1(Mi`)

��� = 0.
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Therefore, it suffices to prove that (5.24) is satisfied at almost all points of each of the
sets Zi` := Wi \ f

�1(Mi`). This is, however, obvious because for x 2 Zi`, f(x) = fk(x),
Daf(x) = Dfk(x), g(f(x)) = g`(f(x)), Dag(f(x)) = Dg`(f(x)) and hence

D(g` � fk)(x) = Dg`(fk(x))Dfk(x) = Dag(f(x)) ·Daf(x).

It remains to observe that since g` � fk 2 C
1, and g` � fk = g � f on Zi`, we have that

D(g` � fk)(x) = Da(g � f)(x) at all density points of Zi` and hence almost everywhere in
Zi`.

The next two lemmata will not be needed in the construction of the homeomorphism �
in Theorem 1.5. Nonetheless, we will need them to check that the constructed homeomor-
phism � satisfies (a) and (b). The first lemma below boils down to using Federer’s change
of variables, i. e., Theorem 2.29. This is Lemma 6.6 from [39], we present a differently
phrased proof for the coherence of the thesis.

Lemma 5.18. Let � : Q ⇣ Q be an a. e. approximately differentiable homeomorphism of
Q such that

R
Q | detDa�| = 1 and detDa� 6= 0 a. e. Then � preserves the sets of zero

measure, i. e., both � and ��1 satisfy the Lusin (N) condition.

Proof. Let N ⇢ Q be a set of measure zero. We claim that �(N) has measure zero as well.
It follows from the definition of measurable sets that each measurable set is contained in
a Borel one of the same measure. Therefore, there is a Borel set of measure zero N

0 ⇢ Q

such that N ⇢ N
0. Consequently, Q̊ \N 0 is Borel and so is �(Q̊ \N 0) and �(N 0), because

homeomorphisms preserve Borel sets.

By the assumptions and (2.14) in Corollary 2.31,

1 =

Z

Q

| detDa�(x)| dx =

Z

Q̊\N 0
| detDa�(x)| dx  |�(Q̊ \N 0)|  |Q| = 1.

Therefore, |�(Q̊ \ N
0)| = |�(Q̊)| = 1, which readily implies that |�(N 0)| = 0. Since

�(N) ⇢ �(N 0), �(N) is measurable and is of measure zero. This shows that � satisfies
the Lusin (N) condition.

To prove that ��1 satisfies the Lusin (N) condition, assume A ⇢ Q is a set of zero
measure. We need to show that ��1(A) has measure zero. A priori it need not be even
measurable.

Let A
0 be a Borel set of measure zero such that A ⇢ A

0 ⇢ Q. Then ��1(A0) \ Q̊ is
Borel. Again by (2.14) from Corollary 2.31,

0 
Z

��1(A0)\Q̊
| detDa�(x)| dx  |A0 \ �(Q̊)| = 0.

Since detDa� 6= 0 a. e., the set ��1(A0)\ Q̊ has measure zero, and so does the set ��1(A0).
Therefore, its subset, ��1(A), is measurable and has measure zero. This concludes the
proof that � preserves sets of measure zero.

Next, we show that the inverse of an a. e. approximately differentiable homeomorphism
which satisfies the Lusin (N) condition is also a. e. approximately differentiable. A somewhat
different proof of this lemma can be also found in [28, Corollary 5.1], we provide it here for
convenience of the reader.
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Lemma 5.19. Let U ⇢ Rn be open. Assume that � : U ! Rn is an a. e. approximately
differentiable homeomorphism satisfying the Lusin (N) condition. Then ��1 is also a. e.
approximately differentiable and

Da�
�1(y) = (Da�)

�1(��1(y)) for a. e. y 2 �(U). (5.25)

Proof. Since it suffices to prove (5.25) on every subdomain U
0 b U , and clearly,

Z

U 0
| detDa�(x)| dx = |�(U 0)| < 1,

we can assume that U is bounded and detDa� 2 L
1(U) is integrable.

Fix " > 0 and choose ⌘ so that for any |E| < ⌘,
R
E | detDa�| < ". By Lemma 2.26

and approximation of measurable sets with compact ones, we find f⌘ 2 C
1(Rn

,Rn) and
a compact set K⌘ such that

f⌘ = � and Df⌘ = Da� on K⌘ and |U \K⌘| < ⌘. (5.26)

Let

Z := {x 2 U : � is approximately differentiable at x and detDa�(x) = 0}. (5.27)

The set Z is measurable. Indeed, the function x 7! detDa�(x) is measurable (as a com-
position of a measurable mapping Da� and a continuous one). The set Z is therefore
a preimage of a Borel set {0} under a measurable mapping and hence it is measurable.

We aim to show that ��1 is approximately differentiable at density points of the set
�(K⌘ \Z) and that (5.25) holds there. This suffices to prove the lemma. Indeed, by (2.15)
in Corollary 2.31, �(Z) = 0 and thus, by the choice of ⌘,

|�(U) \ �(K⌘ \ Z)|  |�(U \K⌘)|+ |�(Z)| < ".

Consequently, approximate differentiability of ��1 a. e. on �(U) follows from arbitrariness
of ".

Observe that for any y 2 �(K⌘ \ Z), f⌘(��1(y)) = y, detDf⌘(��1(y)) 6= 0, and the
inverse function theorem implies that f⌘ is a diffeomorphism on some neighborhood of
��1(y). Denote the inverse diffeomorphism of f⌘ restricted to a neighborhood of ��1(y)
by gy so we may assume that gy is defined in By := B(y, r) for some r > 0 and f⌘ � gy = id
on By. In particular,

Dgy(z) = (Df⌘)
�1(gy(z)) for z 2 By and gy = ��1 on �(K⌘ \ Z) \By.

Take a density point y of the set �(K⌘ \ Z) and set

L := (Da�)
�1(��1(y))

(5.26)
= (Df⌘)

�1(gy(y)) = Dgy(y).

Since gy is differentiable at y,

lim
z!y,

z2�(K⌘\Z)

|��1(z)� ��1(y)� L(z � y)|
|z � y| = lim

z!y,
z2�(K⌘\Z)

|gy(z)� gy(y)� L(z � y)|
|z � y| = 0,

as for z sufficiently close to y, z 2 B(y, r), where gy is well-defined. By Lemma 2.24, this
shows that ��1 is approximately differentiable at density points of �(K⌘ \ Z) and that
(5.25) holds. As explained earlier, this finishes the proof.

Note that the difficulty in the proof of (5.25) in Lemma 5.19 lies in the situation when
the set Z defined in (5.27) has positive measure. If Z is a set of measure zero, (5.24)
in Lemma 5.17 applied for � and ��1 (after we check that ��1 is a. e. approximately
differentiable) yields the claim.



86 CHAPTER 5. CONSTRUCTING HOMEOMORPHISMS

5.3.1 Reflection on a measurable set

We are now ready to prove Theorem 5.2. It is a generalization of the main result in [37],
which was recalled as Proposition 4.12 in Section 4.4 and which we will also use here.

Proof of Theorem 5.2. Denote the function on the right hand side of (5.2) by �, so (5.2)
reads as Da� = � a. e. Note that

R� =

(
I for almost all x 2 E,

R for almost all x 2 Q \ E.

The homeomorphism � will be constructed as a limit of a sequence of measure preserving
homeomorphisms �j , where at almost every point the approximate derivative of �j will be
equal I or R; in other words, it will be equal �(x) of R�(x). The main idea behind the
construction of the sequence is as follows. If Da�j(x) = �(x), then x is a ‘good’ point.
Otherwise we have a ‘bad’ point, where Da�j(x) = R�(x). We want to modify �j in a way
that bad points will became good.

The main step in the construction of �j+1 from �j is based on the following idea. Let
B ⇢ Q be the set of bad points, i.e., Da�j = R� on B, and let G = Q \ B, so Da�j = �

a. e. in G, i.e., almost all points of G are good.

Suppose K ⇢ Q is a closed cube and assume that |K \ �j(B)| = (1 � ")|K|. Clearly,
|K \ �j(G)| = "|K|. That is, most of the cube K is covered by the image of bad points.

Note that Da�j = R� in ��1
j (K) \ B, and Da�j = � a. e. in ��1

j (K) \ G. We want
to change the derivative of �j on the bad set ��1

j (K) \B from R� to �.

Denote by  : Q ⇣ Q the homeomorphism � from Proposition 4.12. Let  : K ⇣ Q

be the standard similarity, and let

 K(y) :=

(

�1 � � (y) if y 2 K

y if y 2 Q \K.

Since  is the identity on the boundary of Q, the mapping  K is a homeomorphism of Q.
Then, we define �j+1 =  K � �j .

It follows from the chain rule, Lemma 5.17, that Da�j+1 = � a. e. in ��1
j (K) \ B, so

the bad set becomes a good one. Unfortunately, we also have that Da�j+1 = R� a. e. in
��1
j (K) \G, so the good set is bad now. However,

|��1
j (K) \B| = |K \ �j(B)| = (1� ")|K| and |��1

j (K) \G| = |K \ �j(G)| = "|K|

(because the transformation �j is measure preserving), so we changed the bad derivative
to the good one on a set of measure (1� ")|K| which is much larger than the measure "|K|
of the set where the good derivative turned bad. We iterate this procedure infinitely many
times in such a way that the measure of the set of good points converges to the measure of
the cube Q.

In fact, in the actual construction, we will use not only one cube K to modify �j , but
a finite family of cubes that approximates well the measure of the set �j(B).

By taking sufficiently small cubes we will guarantee that �j is a Cauchy sequence in
the uniform metric d. Thus, the sequence will converge to a homeomorphism � and it will
follow that � satisfies (5.2).
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Using the above idea, we will construct a sequence of measure preserving homeomor-
phisms {�j}1j=0, �j : Q ⇣ Q, �j |@Q = id , that are approximately differentiable almost
everywhere and for all j � 1 satisfy:

Da�j(x) 2 {I,R} = {�(x),R�(x)} a. e. in Q, (5.28)

|Bj |  2�j
, (5.29)

d(�j ,�j+1)  2�j+1
, |Lj |  2�j+1

,

���Bj \
1[

`=j

L`

��� = 0, (5.30)

where d is the uniform metric, Lj := {x 2 Q : �j 6= �j+1}, and the set

Bj := {x 2 Q : Da�j(x) = R�(x)}

is the set of points where the approximate derivative of �j is bad.

Before we construct such a sequence, we show that a sequence satisfying the above
conditions converges to a homeomorphism � that has all the required properties, except
for being a limit of volume preserving diffeomorphisms (we will take care of it at the end
of the proof).

Clearly, (5.30) implies convergence in the uniform metric to some homeomorphism
� : Q ⇣ Q that is identity on the boundary (see Lemma 2.19 for details).

Note that by (5.30),

Aj := Q \
1[

`=j

L`.

is an increasing sequence of measurable sets that exhaust Q up to a set of measure zero.

We have that � = �j on Aj , because �j = �j+1 = �j+2 = . . . on Aj , and hence

Da� = Da�j = � almost everywhere in Aj .

The first equality follows from Lemma 2.25 and the last equality follows (5.28), from the
definition of Bj and the fact that |Aj \ Bj | = 0 (which is a consequence of (5.30) and the
definition of Aj). Since the sets Aj exhaust Q up to a set of measure zero, Da� = � a. e.
in Q.

Therefore, it remains to construct the sequence �j with the properties described above
and after the construction is completed to prove that the homeomorphisms �j can be
approximated by volume preserving diffeomorphisms.

We will construct a sequence �j by induction as a sequence of measure preserving
homeomorphisms that are identity on the boundary, and satisfy properties (5.28) and (5.29).
Then, the properties listed in (5.30) will be verified directly, but they are not needed to
run the induction.

In the initial step we choose �0 = id : Q ⇣ Q, so obviously B0 = E (up to a set
of measure zero) and conditions (5.28) and (5.29) are satisfied. Now suppose that we
already constructed homeomorphisms �` for `  j; we will describe construction of �j+1

as a modification of �j .

The homeomorphism ��1
j is uniformly continuous on Q, so let �j > 0 be such that

|��1
j (x)� ��1

j (y)|  2�j whenever |x� y|  �j .
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Next, we choose a finite family of closed cubes Kj
i , i = 1, . . . ,mj , with pairwise disjoint

interiors, with diamK
j
i  min(�j , 2�j), and such that

Smj

i=1K
j
i well approximates the set

�j(Bj) measurewise:
�����j(Bj) M

mj[

i=1

K
j
i

����  2�(j+1)
. (5.31)

We set Lj = ��1
j (
Smj

i=1K
j
i ); then (5.31) and the fact that �j is a measure preserving

homeomorphism yields |Bj M Lj |  2�(j+1).

Note that with this choice

|Lj |  |Bj |+ |Bj M Lj |  2�j + 2�(j+1)
< 2�j+1

.

Let ji : K
j
i ⇣ Q be the standard similarity maps between the cubes and define

 j(y) :=

(
(ji )

�1 � � ji (y) if y 2 K
j
i ,

y if y 2 Q \
Smj

i=1K
j
i .

Clearly,

Da j(y) = R for almost all y 2
mj[

i=1

K
j
i = �j(Lj). (5.32)

Since the cubes Kj
i have pairwise disjoint interiors, it follows that j is a measure preserving

homeomorphism. Moreover,  j |@Q = id . Then we define �j+1 =  j � �j and clearly �j+1

is measure preserving, too, with �j+1|@Q = id . Note that  j is approximately differentiable
a. e. and detDa = ±1 a. e. on Q so by Lemma 5.17, �j+1 which is the composition of  j

with �j , is approximately differentiable a. e. on Q.

The homeomorphisms �j and �j+1 differ only on the set Lj =
S

i�
�1
j (Kj

i ). Since both
diam��1

j (Kj
i ) and diamK

j
i are at most 2�j , we have d(�j ,�j+1)  2�j+1.

Also, the definition of the set Lj and the construction of �j+1 shows that

Lj = {x 2 Q : �j(x) 6= �j+1(x)}.

It follows from Lemma 5.17 and (5.32) that

Da�j+1(x) = Da j(�j(x)) ·Da�j(x) = RDa�j(x) for almost all x 2 Lj .

Thus, Da�j+1 = � on Lj \Bj . Also,

Da�j+1(x) = Da�j(x) for almost all x 2 Q \ Lj ,

so Da�j+1 = � on (Q\Lj)\Bj . This means that the set Bj+1 of points where Da�j+1 = R�
is contained (modulo a set of measure zero) in the complement of the union of these two
sets, which is Bj M Lj , and hence

|Bj+1|  |Bj M Lj |  2�(j+1)
.

This completes the proof that �j+1 satisfies the induction hypothesis. What is left to prove
is the last part of (5.30),

���Bj \
S1

`=j L`

��� = 0.

To see that, it suffices to realize that for all k > j the mappings �k have bad derivative
Da�k = R� at almost all points of Bj \

S1
`=j L`, because �k is obtained from �j by

a sequence of modifications which happen only in
S1

`=j L`. Thus

Bj \
1[

`=j

L` ⇢
\

k�j

Bk (modulo a set of measure zero).
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Since |Bk| ! 0, it follows that
���Bj \

S1
`=j L`

��� = 0.

Now it remains to show that the homeomorphism � can be approximated in the metric
d by volume preserving diffeomorphisms that are identity in a neighborhood of @Q.

Let  k
d!  be a sequence of volume preserving diffeomorphisms,  k = id near @Q,

from Proposition 4.12. Note that the diffeomorphisms

 j,k :=

(
(ji )

�1 � k � ji (y) if y 2 K
j
i ,

y if y 2 Q \
Smj

i=1K
j
i

are volume preserving and  j,k = id near @Q. Clearly,  j,k
d!  j as k ! 1.

An easy induction on j shows that �j can be approximated in the metric d by C
1

volume preserving diffeomorphisms �j,k that are identity near @Q. If j = 0, then �0 = id

and we can take �0,k := �0. If the claim is true for j, �j,k
d! �j , then, it is easy to check

that �j+1,k :=  j,k � �j,k
d!  j � �j = �j+1. Therefore, for each j, we can find kj such

that d(�j,kj ,�j) < 2�j and hence �j,kj
d! �.

Remark 5.20. As detDa� = ±1 a. e. on Q, Lemma 5.18 implies that � satisfies the
Lusin (N) condition. It then follows from (2.15) in Corollary 2.31 that the homeomorphism
� is measure preserving. Moreover, by Lemma 5.19, ��1 is also approximately differentiable
a. e. on Q and Da��1(y) = (Da�)�1(��1(y)) for a. e. y 2 Q. The fact that � is volume
preserving can also be directly concluded from the fact that � is a limit of volume preserving
diffeomorphisms in the metric d, see [37, Lemma 1.2].

5.4 Proof of Theorem 1.5

Proof of Theorem 1.5.

5.4.1 Reduction to the case detT > 0

It suffices to prove Theorem 1.5 under an additional assumption that detT > 0 a. e. Indeed,
assume that we have already proven Theorem 1.5 under this assumption and, for a general
T , let

T̂ (x) =

(
T (x) if detT > 0,

RT (x) if detT < 0,

where R is the reflection matrix defined in (5.1). Then det T̂ = | detT | > 0 a. e. Let �̂ be the
almost everywhere approximately differentiable homeomorphism provided by Theorem 1.5
with T̂ in place of T , Da�̂ = T̂ a. e.

Let E := {detT < 0}. Note that since �̂ satisfies the Lusin (N) condition, the set
Ê := �̂(E) is measurable (because E is the union of a Borel set and a set of measure
zero). Theorem 5.2 yields an a. e. approximately differentiable homeomorphism �0 such
that �0|@Q = id and

Da�
0(x) =

(
R for a. e. x 2 Ê,

I for a. e. x 2 Q \ Ê.
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Then Lemma 5.17 implies that the composition � := �0 � �̂ is a. e. approximately differen-
tiable and satisfies the chain rule (5.24), so for a. e. x 2 Q we have

Da�(x) = Da�
0(�̂(x))Da�̂(x) =

(
RRT (x) for a. e. x 2 E,

I T (x) for a. e. x 2 Q \ E

)
= T (x). (5.33)

Obviously, �|@Q = id and, since �0 is measure preserving (see Remark 5.20) and �̂ preserves
sets of measure zero, � preserves sets of measure zero as well.

Since by Theorem 5.2 and Theorem 1.5 the homeomorphisms �0 and �̂ can be approx-
imated in the uniform metric d by C

1-diffeomorphisms �0
k and �̂k, �0

k = �̂k = id near
@Q, one can easily check that

�0
k � �̂k

d! �0 � �̂ = �.

It remains to check that ��1 is approximately differentiable a. e. on Q and Da��1(y) =
T
�1(��1)(y) for a. e. y 2 Q. Indeed, ��1 = �̂�1 � �0�1 and both �̂�1 (by Theorem 1.5)

and �0�1 (see Remark 5.20) are approximately differentiable a. e. on Q. Since we have
detDa(�0�1) 6= 0 a. e. (Remark 5.20), ��1 is approximately differentiable a. e. by Lemma 5.17.
Then applying the chain rule (5.24) to ��1 � � = I yields that the derivative of ��1 has
the required form.

This concludes the proof of Theorem 1.5 in the general case, provided we can prove it
for T such that detT > 0 a. e. in Q.

Thus, from now on, we assume that detT > 0 a. e.

5.4.2 General outline of the construction

The general plan of the proof is as follows: to construct a homeomorphism � such that
�|@Q = id and Da� = T a. e., we shall iterate the construction from Theorem 1.4 on the
smaller and smaller subsets of Q on which the derivative is not yet as required.

We inductively show that there exists a family of orientation preserving C
1-diffeomor-

phisms �k of Q and Borel sets Ck ⇢ Q with the following properties for k � 1:

(i) �k = id near @Q;
(ii) �k+1 = �k on Ck;
(iii) D�k = T on Ck;
(iv) Ck is an increasing family of sets, C1 ⇢ C2 ⇢ · · · , with limk!1 |Ck| = 1;
(v) d(�k,�k+1) < 2�(k�1) for k � 2.

The limit map � := limk!1�k is the required homeomorphism. Indeed, property (v)
implies that (�k) is a Cauchy sequence in the uniform metric d, hence its limit is a home-
omorphism as shown in Lemma 2.19. By (i), � = id on @Q. Note that � = �k on Ck by
(ii) and (iv). Therefore, Lemma 2.25 and (iii) imply that

Da� = T a. e. on
1[

k=1

Ck,

and hence Da� = T a. e. on Q, because |Ck| ! 1.

At this point, let us stress that Lemma 5.18 implies that � and ��1 satisfy the Lusin
(N) condition which is part (b) of Theorem 1.5 and that property (a) follows directly from
Lemma 5.19.
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Finally, �k are C1-diffeomorphisms, identity near @Q, that converge to � in the uniform
metric d, but according to Lemma 2.20, each �k can be approximated in the metric d by
C

1-diffeomorphisms and (c) follows.

This completes the proof of Theorem 1.5 and it remains to construct diffeomorphisms
�k and Borel sets Ck satisfying (i)-(v).

The construction of the family �k and of the sets Ck is complicated. In fact, the sets
Ck are not constructed inductively, but defined only at the end, when all the steps of the
inductive construction are concluded.

The actual inductive construction provides a quadruple (�k,Pk, Ek, Lk)1k=1:

• a diffeomorphism �k of Q onto itself; each diffeomorphism �k is constructed by a mo-
dification of �k�1,

• a partition Pk of the unit cube; the corrections leading from �k�1 to �k are done at
a small scale, i.e., within the elements of the partition Pk�1.

• a large set Ek, on which D�k = T ,

• a small set Lk ⇢ Ek�1 such that �k = �k�1 on Ek�1 \ Lk (although D�k�1 = T on
Ek�1, for technical reasons in the construction of �k from �k�1 we alter �k on the
subset Lk of Ek�1),

• the sets Ck are constructed at the very end by (5.37).

To be more precise, we have, for k � 1,

(a) a C
1-diffeomorphism �k : Q ⇣ Q, �k = id near @Q;

(b) a compact set Ek ⇢ Q such that D�k = T on Ek;
(c) 2�(k+1)

< |Q \ Ek| < 2�k;
(d) a Borel set Lk ⇢ Ek�1 for k � 2, such that �k = �k�1 on Ek�1 \ Lk and |Lk| < 2�k;
(e) a partition Pk of the unit cube, Pk = {Pki}Mk

i=1 for k � 2, such that

�k(Pk�1,i) = �k�1(Pk�1,i) for k � 3, (5.34)

|�k(Pki)| =
Z

Pki

detT (x) dx for k � 2, (5.35)

diamPki < 2�k
, diam�k(Pki) < 2�k for k � 2. (5.36)

We will show that the family of diffeomorphisms (�k) with properties (a)-(e) satisfies
conditions (i)-(v) for

Ck :=
1\

j=k

(Ej \ Lj+1) . (5.37)

Conditions (i) and (a) are the same. Clearly, Ck ⇢ Ek, which means that condition (iii) is
satisfied. Applying (d) with k + 1 in place of k, we get �k+1 = �k on Ek \ Lk+1 and since
Ck ⇢ Ek \ Lk+1, condition (ii) also holds. Since the sets Ck form an increasing family of
sets, in order to show (iv), it remains to check that limk!1 |Ck| = 1.

For the sake of this calculation, set Aj := Ej \ Lj+1. Since Lj+1 ⇢ Ej and in view of
(c) and (d),

|Q \Aj | = |Q \ Ej |+ |Lj+1| < 2�j + 2�(j+1) = 3 · 2�(j+1)
. (5.38)
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Therefore,

|Q \ Ck| =
���Q \

1\

j=k

Aj

��� =
���

1[

j=k

(Q \Aj)
��� 

1X

j=k

|Q \Aj | < 3
1X

j=k

2�(j+1) = 3 · 2�k
.

This implies that
|Ck| > 1� 3 · 2�k

and since |Ck|  1, this shows that |Ck| ! 1 and finishes the proof of (iv). It remains to
show (v).

It follows from condition (e) that for k � 3 the diffeomorphism �k is a modification of
�k�1 in each of the sets Pk�1,i, i.e., �k(Pk�1,i) = �k�1(Pk�1,i). Hence

k�k � �k�1k1  max
i

�
diam�k�1(Pk�1,i)

 
< 2�(k�1)

,

k��1
k � ��1

k�1k1  max
i

{diamPk�1,i} < 2�(k�1)
,

so d(�k,�k�1) < 2 · 2�(k�1) = 2�(k�2) and (v) follows. The proof of properties (i)-(v) is
complete2.

5.4.3 Construction of �1 and �2.

By a direct application of Theorem 1.4, we obtain a diffeomorphism �1 of the unit cube,
�1 = id near @Q, and a compact set E1 such that D�1 = T on E1 and 1/4 < |Q\E1| < 1/2.
Note that �1 and E1 satisfy conditions (a)-(e), because conditions (d) and (e) do not apply
to k = 1.

We shall now describe in detail the construction of �2, which demonstrates all the
crucial aspects of the construction of �k based on �k�1. The induction step for general k
will be described later.

In the course of the proof we use two numbers ↵ = 1/2, � = 3/4. We write ↵, �
instead of the actual fractions as we believe it makes it easier to transfer this argument to
the proof for arbitrary k. Note that |E1| > 1� ↵.

We begin with correcting the way �1 distributes measure so that we are later able to
apply Theorem 1.4 in sets of smaller diameter. To this end, we use Proposition 5.13 for the
compact set �1(E1) and functions

f(y) = detT (��1
1 (y)) detD��1

1 (y) and g(y) = 1.

We check that (5.19) is satisfied. By change of variables,
Z

Q

detT (��1
1 (y)) detD��1

1 (y) dy =

Z

��1
1 (Q)

detT (x) dx =

Z

Q

detT (x) dx =

Z

Q

1 dx.

Moreover, since D�1 = T on E1, we have f(y) = g(y) for all y 2 �1(E1). Therefore, the
assumptions of Proposition 5.13 are satisfied.

By Proposition 5.13, we get a diffeomorphism  : Q ⇣ Q, a partition R = {R2i}2
nN2

i=1

of Q and a compact set eK ⇢ �1(E1) with properties described below.
2
In the construction of �2 from �1, we modify �1 in Q, so in this step we use the trivial partition

P1 = {Q}.
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Partition R is a diffeomorphic dyadic partition and satisfies

diam (R2i) < 1/4 and diam(��1
1 (R2i)) < 1/4 (5.39)

(we use here the uniform continuity of ��1
1 ) and

Z

R2i

f(y) dy = | (R2i)|,

which after a change of variables in the integral becomes
Z

��1
1 (R2i)

detT (x) dx = | (R2i)|. (5.40)

We find ⌘ > 0 such that for any measurable set A ⇢ Q with |A| < ⌘,
R
A det D��1

1 < ↵
2
/2.

We choose eK ⇢ �1(E1) so that
|�1(E1) \ eK| < ⌘.

Moreover,  = id near eK[@Q. In view of the inequality above, setting K := ��1
1 ( eK) ⇢ E1,

we have
|E1 \K| = |��1

1 (�1(E1) \ eK)| < ↵
2
/2. (5.41)

Eventually, we set

e�2 :=  � �1 and P2 := {P2i}M2
i=1, where M2 = 2nN2 , and P2i := �

�1
1 (R2i).

Then (5.39) and (5.40) become

diam e�2(P2i) < 1/4, diam(P2i) < 1/4,

Z

P2i

detT (x) dx = |e�2(P2i)|, (5.42)

i. e., diffeomorphism e�2 satisfies (e) for k = 2 (condition (5.34) does not apply to k = 2).
Observe also that e�2 = �1 near K [ @Q. Consequently,

De�2 = T on K, e�2 = id near @Q and e�2 = �1 on K ⇢ E1. (5.43)

We construct �2 by replacing e�2 inside each P2i with a diffeomorphism �2i which has
correct derivative D�2i = T on a larger set. To this end, we would like to keep e�2 on K

unchanged and apply Theorem 1.4 to the open set P̊2i \ K. Unfortunately, this set need
not be connected and Theorem 1.4 cannot be applied. To overcome this difficulty we use
Lemma 4.14 to find a compact set eE2i ⇢ P̊2i \K so that P̊2i \ eE2i is connected and

|(P̊2i \K) \ eE2i| < ↵
2
/(2M2). (5.44)

Set

eE2 :=
M2[

i=1

eE2i ⇢ E1 and L2 := E1 \ eE2.

Clearly, eE2 is compact and summing (5.44) over i = 1, . . . ,M2 yields

|K \ eE2| < ↵
2
/2.

By (5.41), we arrive at

|L2| = |E1 \ eE2| = |E1 \K|+ |K \ eE2| < ↵
2
. (5.45)
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Consequently,
| eE2| = |E1|� |L2| > 1� ↵� ↵

2
. (5.46)

Let us stress that eE2 ⇢ K so (5.43) yields

De�2 = T on eE2 (5.47)

and
e�2 = �1 on eE2 = E1 \ L2. (5.48)

Although D�1 = T on E1, as explained earlier, the set L2 is the set on which we will
have spoiled the already prescribed derivative of �1. This is the cost we bear in order to
be able to prescribe the derivative farther. One can also think of the set eE2 as the set of
points in which the prescribed derivative survives the transition from �1 to �2.

Let us now focus on applying Theorem 1.4, i. e. , correcting the derivative of e�2. The
set

⌦2i := P̊2i \ eE2i

is open and connected. Observe that, setting ⌦2 :=
S

i⌦2i,

|⌦2| = |Q \ eE2|,

since the set ⌦2 coincides with Q\ eE2 up to a set of measure zero which consists of boundaries
of the diffeomorphic cubes P2i. We check that ⌦2i satisfies

|e�2(⌦2i)| = |e�2(P2i)|� |e�2( eE2i)|
(5.42)
=

Z

P2i

detT (x) dx�
Z

eE2i

detDe�2(x) dx

(5.47)
=

Z

P2i

detT (x) dx�
Z

eE2i

detT (x) dx =

Z

⌦2i

detT (x) dx.
(5.49)

We are now in position to use Theorem 1.4 for the domain ⌦2i and the diffeomorphism
e�2. We find a diffeomorphism �2i : ⌦2i ! e�2(⌦2i) and a compact set E

0
2i ⇢ ⌦2i such that

D�2i = T on E
0
2i, �2i = e�2 near @⌦2i and |E0

2i| > �|⌦2i|. (5.50)

Let

E
0
2 :=

M2[

i=1

E
0
2i.

Clearly, E0
2 is compact. By the third condition in (5.50), we have

|E0
2| > �|⌦2| = �|Q \ eE2|.

We replace the diffeomorphism e�2 with �2i inside each ⌦2i, setting

�2 :=

(
�2i on ⌦2i,

e�2 on Q \ ⌦2.

Observe that thanks to the second condition in (5.50), �2 is indeed a diffeomorphism.
Moreover, �2 = e�2 near

S
i @P2i. Since @Q ⇢

S
i @P2i, �2 = id near @Q, whence (a) holds.

Note that eE2 ⇢ Q\⌦2 and �2 = e�2 in a neighborhood of eE2. Hence, the first condition
in (5.50) together with (5.47) imply that

D�2 = T on Ê2 := E
0
2 [ eE2.
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We calculate

|Ê2| = |E0
2|+ | eE2| > �|Q \ eE2|+ | eE2| = �|Q|+ (1� �)| eE2|

(5.46)
> � + (1� �)(1� ↵� ↵

2) = 1� ↵(1 + ↵)(1� �)

> 1� ↵
2
,

since � > 1/(1 + ↵). Therefore, |Q \ Ê2| < ↵
2 = 1/4. By discarding some points from Ê2

if necessary, we obtain a compact set E2 ⇢ Ê2 such that 1/8 < |Q \ E2| < 1/4. Clearly,
D�2 = T on E2.

Let us check if �2 satisfies properties (a)-(e). We have already verified conditions (a),
(b) and (c). Moreover, in view of (5.42), (e) holds as well, because �2(P2i) = e�2(P2i)
((5.34) does not apply to k = 2). Since �2 = e�2 on eE2 = E1 \ L2, recalling (5.48) and
(5.45), we see that (d) also holds.

5.4.4 Construction of �k given �k�1.

Let k � 3. As in the construction of �2, we use ↵ = 1/2 and � = 3/4. We assume that
we have found �k�1 satisfying properties (a)-(e) for k� 1 instead of k and we show how to
construct �k. In fact, we only need the following properties from the previous step:

• �k�1 : Q ⇣ Q, �k�1 = id near @Q,

• D�k�1 = T on a compact set Ek�1, ↵k
< |Q \ Ek�1| < ↵

k�1,

• �k�1(Pk�1,i) =
R
Pk�1,i

detT (x) dx.

In the construction of �2 from �1, we alter �1 inside Q while keeping �2 = �1 near
@Q. In the construction of �k from �k�1 we repeat the same construction, but we alter
�k�1 inside each diffeomorphic closed cube Pk�1,i while keeping �k = �k�1 near @Pk�1,i.
Therefore, the crucial though technical difference between the construction for k � 3 is
that we do not use Proposition 5.13 (stated for a closed cube) but Proposition 5.16 (stated
for a diffeomorphic closed cube).

Define Ek�1,i := Ek�1 \ Pk�1,i for i = 1, . . . ,Mk�1. Note that Ek�1,i is compact and
that |

S
iEk�1,i| = |Ek�1|.

Let us firstly show that it suffices to construct for i = 1, . . . ,Mk�1

• a family of diffeomorphisms �ki : Pk�1,i ⇣ �k�1(Pk�1,i),

• compact sets Êki ⇢ P̊k�1,i,

• Borel sets Lki ⇢ Ek�1,i,

• a partition Pki = {Pkij}2
nNki

j=1 of Pk�1,i

such that

(1) �ki = �k�1 near @Pk�1,i;
(2) D�ki = T on Êki;
(3) |Êki| > �|Pk�1,i|+ (1� �)|Ek�1,i \ Lki|;
(4) �ki = �k�1 on Ek�1,i \ Lki and |Lki| < ↵

k
M

�1
k�1;
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(5) partition Pki is a diffeomorphic dyadic partition and satisfies for j = 1, . . . , 2nNki

|�ki(Pkij)| =
Z

Pkij

detT (x) dx

and
diamPkij < 2�k

, diam�ki(Pkij) < 2�k
.

We now define �k by setting

�k := �ki on Pk�1,i.

By condition (1), �k is indeed a diffeomorphism and �k = id near @Q, which is (a). Next,
we set

Êk :=

Mk�1[

i=1

Êki and Lk :=

Mk�1[

i=1

Lki ⇢ Ek�1.

Since D�k = D�ki = T on Êki, we have that D�k = T on Êk.

Summing (4) over i = 1, . . . ,Mk�1, we readily see that �k = �k�1 on Ek�1 \ Lk and
|Lk| < ↵

k, i. e., (d) holds. Moreover, summing (3) over i = 1, . . . ,Mk�1 and recalling that
|Ek�1| > 1� ↵

k�1 , we get

|Êk| > �|Q|+ (1� �)|Ek�1 \ Lk| > � + (1� �)(1� ↵
k�1 � ↵

k) > 1� ↵
k
,

so |Q \ Êk| < ↵
k. By discarding some points from Êk if necessary, we can find another

compact set Ek ⇢ Êk such that ↵k+1
< |Q \ Ek| < ↵

k. Clearly, D�k = T on Ek i. e.,
conditions (b) and (c) are satisfied. It remains to verify (e).

We define the partition3 Pk as the union of partitions Pki

Pk =

Mk�1[

i=1

2nNki[

j=1

{Pkij}.

After re-enumeration of the diffeomorphic cubes Pkij , we can write

Pk =
Mk[

`=1

{Pk`}, where Mk =

Mk�1X

i=1

2nNki .

Since �k = �ki on Pk�1,i, and �ki = �k�1 near @Pk�1,i, it follows that �k(Pk�1,i) =
�k�1(Pk�1,i), which is (5.34). Since Pk` = Pkij for some i, j and �k = �ki on Pk` = Pkij ⇢
Pk�1,i, condition (5) yields

|�k(Pk`)| = |�ki(Pkij)| =
Z

Pkij

detT (x) dx =

Z

Pk`

detT (x) dx,

which is (5.35). Also

diamPk` = diamPkij < 2�k and diam�k(Pk`) = diam�ki(Pkij) < 2�k
,

which is (5.36). This completes the proof of (e) and hence that of (a)-(e).

Fix any i = 1, . . . ,Mk�1. We shall now show that given �k�1, we can construct �ki

as described above. As before, we begin by correcting the way �k�1 distributes measure
3
While Pki are a diffeomorphic dyadic partitions, Pk need not be, because we might divide each of the

diffeomorphic cubes Pk�1,i into a different number of diffeomorphic dyadic cubes.
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so that the subsequent corrections from �k�1 to �k are made at a smaller scale. To this
end, we use Proposition 5.16 for the diffeomorphic closed cube �k�1(Pk�1,i), the compact
set �k�1(Ek�1,i) and functions

f(y) = detT (��1
k�1(y)) detD�

�1
k�1(y) and g(y) = 1.

We check that (5.23) is satisfied by change of variables and the inductive assumption (5.35)
for �k�1,
Z

�k�1(Pk�1,i)
detT (��1

k�1(y)) detD�
�1
k�1(y) dy =

Z

Pk�1,i

detT (x) dx
(5.35)
= |�k�1(Pk�1,i)|

=

Z

�k�1(Pk�1,i)
1 dx.

Moreover, since D�k�1 = T on Ek�1,i, we have f(y) = g(y) for all y 2 �k�1(Ek�1,i).
Therefore, assumptions of Proposition 5.16 are satisfied.

By Proposition 5.16, we get a diffeomorphism  i : �k�1(Pk�1,i) ⇣ �k�1(Pk�1,i),
a partition Rki = {Rkij}2

nNki
j=1 of �k�1(Pk�1,i) and a compact set eKi ⇢ �k�1(Ek�1,i) with

properties described below.

Partition Rki is a diffeomorphic dyadic partition and satisfies an analogue of (5.39) and
(5.40), namely

diam i(Rkij) < 2�k
, diam(��1

k�1(Rkij)) < 2�k
, (5.51)

and Z

��1
k�1(Rkij)

detT (x) dx = | i(Rkij)|. (5.52)

We find ⌘ > 0 such that for any measurable set A ⇢ Q,

|A| < ⌘ )
Z

A
detD��1

k�1 <
↵
k

2Mk�1
.

We choose a compact set eKi ⇢ �k�1(Ek�1,i) so that

|�k�1(Ek�1,i) \ eKi| < ⌘.

Moreover,  i = id near eKi [ @(�k�1(Pk�1,i)). In view of the inequality above, setting
Ki := �

�1
k�1(

eKi) ⇢ Ek�1,i, we have

|Ek�1,i \Ki| <
↵
k

2Mk�1
. (5.53)

Eventually, we set

e�ki :=  i � �k�1 in Pk�1,i and Pki := {Pkij}2
nNki

j=1 , where Pkij := �
�1
k�1(Rkij).

Then (5.51) and (5.52) become

diam e�ki(Pkij) < 2�k
, diam(Pkij) < 2�k

,

Z

Pkij

detT (x) dx = |e�ki(Pkij)|, (5.54)

i. e., diffeomorphism e�ki satisfies (5). Observe also that

e�ki = �k�1 near Ki [ @Pk�1,i so De�ki = T on Ki ⇢ Ek�1,i. (5.55)
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We will now replace e�ki inside each Pkij with a diffeomorphism �kij which has correct
derivative on a larger set.

As explained earlier, above inequality (5.44), we need to use Lemma 4.14 to get a com-
pact set eEkij ⇢ P̊kij \Ki such that P̊kij \ eEkij is connected and

|(P̊kij \Ki) \ eEkij | < ↵
k 2�nNki�1

M
�1
k�1. (5.56)

Set

eEki :=
2nNki[

j=1

eEkij ⇢ Ki and Lki := Ek�1,i \ eEki.

Clearly, eEki ⇢ P̊k�1,i. Summing (5.56) over j = 1, . . . , 2nNki yields

|Ki \ eEki| <
↵
k

2Mk�1
.

By (5.53), we arrive at

|Lki| = |Ek�1,i \Ki|+ |Ki \ eEki| < ↵
k
M

�1
k�1. (5.57)

Consequently,
| eEki| = |Ek�1,i|� |Lki| > |Ek�1,i|� ↵

k
M

�1
k�1. (5.58)

Let us stress that eEki ⇢ Ki so (5.55) yields

De�ki = T on eEki. (5.59)

and
e�ki = �k�1 on eEki = Ek�1,i \ Lki. (5.60)

Although D�k�1 = T on Ek�1,i, the set Lki is the set on which we will have spoiled
the already prescribed derivative of �k�1. On the other hand, the set eEki consists of points
in which the prescribed derivative survives the transition from �k�1 to �ki and, as we will
soon see, to �k.

We now correct the derivative of e�ki. The set

⌦kij := P̊kij \ eEkij

is open and connected. Observe that, setting ⌦ki :=
S

j ⌦kij ,

|⌦ki| = |Pk�1,i \ eEki|.

Exactly as in (5.49), invoking (5.54) and (5.59) instead of (5.42) and (5.47), we check that
⌦kij satisfies

|e�ki(⌦kij)| =
Z

⌦kij

detT (x) dx.

We are now in the position to use Theorem 1.4 for the domain ⌦kij and the diffeo-
morphism e�ki. We find a diffeomorphism �kij : ⌦kij ⇣ e�ki(⌦kij) and a compact set
E

0
kij ⇢ ⌦kij such that

D�kij = T on E
0
kij , �kij = e�ki near @⌦kij and |E0

kij | > �|⌦kij |. (5.61)
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and thus �kij(⌦kij) = e�ki(⌦kij). Let

E
0
ki :=

2nNki[

j=1

E
0
kij ⇢ P̊k�1,i.

By the third condition in (5.61), we have

|E0
ki| > �|⌦ki| = �|Pk�1,i \ eEki|.

We replace the diffeomorphism e�ki with �kij inside each ⌦kij , setting

�ki :=

(
�kij on ⌦kij ,

e�ki on Pk�1,i \ ⌦ki.

Observe that thanks to the second condition in (5.61), �ki is indeed a diffeomorphism.

Moreover, we have �ki = e�ki near @Pk�1,i ⇢
S

j @Pkij . Since e�ki = �k�1 near @Pk�1,i,
property (1) follows.

Since �ki = e�ki near
S

j @Pkij , �ki(Pkij) = e�ki(Pkij), so (5.54) proves property (5).

Note that eEki ⇢ P̊k�1,i \ ⌦ki and �ki = e�ki in a neighborhood of eEki, so the first
condition in (5.61) together with (5.59) imply that

D�ki = T on Êki := E
0
ki [ eEki ⇢ P̊k�1,i.

Note that Êki is compact as a finite sum of compact sets. This proves property (2). We
calculate

|Êki| = |E0
ki|+ | eEki| > �|Pk�1,i \ eEki|+ | eEki| = �|Pk�1,i|+ (1� �)|Ek�1,i \ Lki|,

where the last equality follows from eEki = Ek�1,i \ Lki. This proves (3).

Since �ki = e�ki on eEki = Ek�1,i \ Lki, recalling (5.60) and (5.57), we see that (4) also
holds.

We verified conditions (1)-(5) and that completes the proof of the theorem.

5.5 Corollaries

We begin this section with a corollary saying that given T : Q ! GL(n) as in Theorem 1.5
but without the volume constraint (1.4), it is still possible to construct an a. e. approxi-
mately differentiable homeomorphism with the prescribed approximate derivative equal T
but, obviously, without any boundary condition that would imply that �(Q) = Q.

Corollary 5.21. Let Q = [0, 1]n and let T : Q ! GL(n) be measurable and such that
Z

Q

| detT (x)| dx < 1.

Then there is an a. e. approximately differentiable homeomorphism � : Q ! Rn which
satisfies the Lusin (N) condition and such that Da�(x) = T (x) for a. e. x 2 Q.



100 CHAPTER 5. CONSTRUCTING HOMEOMORPHISMS

Proof. Let

M :=

✓Z

Q

| detT (x)| dx
◆1/n

and �(x) := Mx.

Then � : Q ! Rn is a diffeomorphism which maps Q onto the cube [0,M ]n.

Set eT (x) := M
�n

T (x) for x 2 Q and note that
R
Q | det eT | = 1. Then Theorem 1.5

yields an a. e. approximately differentiable homeomorphism � : Q ⇣ Q which satisfies the
Lusin (N) condition and such that

Da
e� = eT = M

�n
T a. e. on Q.

Then � := � � e� is the required mapping. Indeed, � is a homeomorphism which satisfies
the Lusin (N) condition as a composition of such mappings. As � is a bi-Lipschitz homeo-
morphism, it suffices to use the chain rule from Lemma 4.13 to see that � is approximately
differentiable a. e. on Q and that

Da�(x) = D�(e�(x))Da
e�(x) = M

n ·M�n · T (x) = T (x) for a. e. x 2 Q.

This concludes the proof.

Prescribing a Jacobian of a homeomorphism is easy once we are able to prescribe the
whole derivative, as we can see in Corollary 5.3.

Proof of Corollary 5.3. For x 2 Q, set

T (x) :=

2

666664

f(x) 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 1

3

777775
.

By Theorem 1.5, there is an a. e. approximately differentiable homeomorphism � : Q ⇣ Q,
�|@Q = id , which satisfies the Lusin (N) condition and such that Da� = T a. e. on Q.
Then detDa�(x) = f(x) a. e. on Q. By change of variables (2.15) in Corollary 2.31, (5.3)
holds.

Lemma 5.22. Let Q = [0, 1]n and let �k : Q ⇣ Q be a sequence of orientation preserving
C

1-diffeomorphisms that converge to a homeomorphism � : Q ⇣ Q in the Lusin metric dL.
Then � is approximately differentiable a. e. on Q and

detDa�(x) > 0 a. e. on Q and
Z

Q
detDa�(x) dx  1. (5.62)

Proof. It follows directly from Whitney’s theorem, i. e., Lemma 2.26, that � is approxi-
mately differentiable a. e. on Q, see Remark 2.28. Let Ek := {x 2 Q : �(x) = �k(x)}.
Clearly, |

S1
k=1Ek| = |Q|. By Remark 2.27, Da� = D�k a. e. on Ek and since detD�k > 0

on Q, we know that detDa� > 0 a. e. on Ek. Consequently, detDa� > 0 a. e. on Q.

By (2.14) in Corollary 2.31 for E = Q̊,
Z

Q

detDa�(x) dx =

Z

Q̊

detDa�(x) dx  |�(Q̊)| = 1,

which shows that (5.62) holds.
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Proof of Theorem 5.5. For T as assumed here, we have constructed in Section 5.4.2 in the
proof of Theorem 1.5 a sequence of orientation preserving C

1-diffeomorphisms �k of Q and
Borel sets Ck ⇢ Q with the following properties for k � 1:

(i) �k = id near @Q;
(ii) �k+1 = �k on Ck;
(iii) D�k = T on Ck;
(iv) Ck is an increasing family of sets, C1 ⇢ C2 ⇢ · · · , with limk!1 |Ck| = 1;
(v) d(�k,�k+1) < 2�(k�1) for k � 2.

The limit map � := limk!1�k is the required homeomorphism. It is easy to see (and we
have checked it in Section 5.4.2) that � = id on @Q, that �k converge in uniform metric to
� and that Da� = T a. e. It follows from (ii) and (iv) that �k converge to � in the Lusin
metric dL as well. This finishes the proof.
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Appendix

A.1 Lusin metric

We present below Lemma 8.1 from [39], which shows that the space of measurable function
is complete with respect to the Lusin metric. Let us recall its definition. Let m,n 2 N.
The space of measurable mappings f, g : E ! Rn defined on a measurable set E ⇢ Rm is
equipped with Lusin metric defined as

dL(f, g) := |{x 2 ⌦ : f(x) 6= g(x)}|.

This is the only lemma in which we include also n = 1.

Lemma A.1. Let E ⇢ Rn, n � 1, be a measurable set of finite measure. Then the space
of measurable functions f : E ! R is complete with respect to the Lusin metric dL.

Proof. Let {fk}k be a Cauchy sequence. It suffices to show that it has a convergent subse-
quence in the metric dL. To this end, we will show that a subsequence {fk`}` such that

dL(fk` , fk`+1
) = |{fk` 6= fk`+1

}| < 2�(`+1)

is convergent. Let

A` := {fk` = fk`+1
} and C :=

1[

`=1

1\

i=`

Ai.

Note that for any `,

|E \ C| 
���E \

1\

i=`

Ai

��� 
1X

i=`

|E \Ai| < 2�`
, so |E \ C| = 0.

If x 2 C, then x 2
T1

i=`Ai for some ` and hence

fk`(x) = fk`+1
(x) = fk`+2

(x) = . . . so f(x) := lim
`!1

fk`(x)

exists for all x 2 C and hence for almost all x 2 E. In fact, f(x) = fk`(x) for x 2
T1

i=`Ai

and hence

dL(f, fk`) 
���E \

1\

i=`

Ai

��� < 2�`
,

proving that fk` ! f in the metric dL.

102
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A.2 1-parameter groups of diffeomorphisms

Throughout the thesis, we have used the very convenient method of constructing diffeo-
morphisms using 1-parameter groups of diffeomorphisms. The following theorem asserts
its validity

Theorem A.2. Let X : Rn ! Rn be a C
1-smooth vector field, which equals zero outside

a compact set K ⇢ Rn. Then there exists a family of mappings {�t}t2R, �t : Rn ⇣ Rn

which is a solution to

d

dt
�t(x) = X(�t(x)), (A.1)

�0(x) = x. (A.2)

Moreover, for each t 2 R, �t is a C
1-diffeomorphism of Rn, �t depends continuously on t

and
��t = (�t)

�1
. (A.3)

For the proof, see e.g. Theorem 1 in Chapter 5, Section 35 in [4]. The statement and proof
there are written for C

r-manifolds, r � 2.

Remark A.3. Since the right hand-side of (A.1) is smooth w. r. t. �t(x), it follows from
standard uniqueness theorems (see e.g. [4, Chapter 2, Section 3]) that given xo 2 Rn, the
mapping t 7! �t(xo) is unique.

The family {�t}t is often called a 1-parameter group of diffeomorphisms generated
by the vector field X (and we have called it so throughout the thesis). It is clear from
the statement where ‘diffeomorphisms’ and ‘1-parameter’ come from. The family {�t}t2R
indeed forms a group, in which �0 = id acts as the neutral element. More precisely, for
any s, t 2 R, �s � �t = �s+t. It is this property which implies that (A.3) holds.

Alternatively, the family {�t}t is also called the flow of the vector field X. Indeed, for
each x 2 Rn, the mapping

t 7! �t(x)

defines the trajectory of the point x. In this manner, we can see that �t maps the point x

to the point �t(x). Actually, this is the gist of the flow method used by Moser in his seminal
paper [76], which we repetitively quoted when discussing diffeomorphisms with prescribed
Jacobians. The precise statement and proof of the existence and properties of the flow of
a vector field which also depends on t can be found for example in [20, Theorem 12.1].

Corollary A.4. Let U be a bounded domain in Rn and p, q two distinct points in U which
can be connected with a segment contained in U . Then there is a C

1-diffeomorphism
F : U ⇣ U such that

F (p) = q and F = id near @U.

Proof. Let V1, V2 denote open neighborhoods of the segment connecting p with q such that
V1 b V2 b U . Then choose X : Rn ! Rn to be a smooth vector field satisfying

X =

(
0 in Rn \ V2,

q � p in V1.

Let {�t}t2R be the 1-parameter group of diffeomorphisms generated by the vector field X

according to Theorem A.2. We claim that F := �1|U is the required mapping. Indeed,
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�1 is a C
1-diffeomorphism. For xo 2 Rn \ V2, the mapping �t(xo) = xo for all t 2 R

satisfies (A.1) and it follows from uniqueness (see Remark A.3) that �1(xo) = xo for
xo 2 Rn \ V2. Therefore, �1 = id near @U and hence �1 maps U onto itself. Similary, the
mapping �t(p) = tq + (1� t)p for t 2 [0, 1] satisfies (A.1), as for any t 2 [0, 1], �t(p) 2 V1.
Therefore, again by uniqueness, �1(p) = q. This finishes the proof.

Remark A.5. Observe that F also maps by translation a small neighborhood of p onto
a small neighborhood of q. Indeed, let � denote the segment connecting p and q, then since
V1 is open, there is " > 0 for which

{x : dist(x, �) < "} b V1.

It can be checked that for any x 2 B(p, ") and for t 2 [0, 1], �t(x) = t(p�q)+x satisfies (A.1)
and hence �1 acts as a translation on B(p, ").

A.3 Measure preserving version of Lemma 2.16

In Lemma A.7 below, we construct a diffeomorphism as in Lemma 2.16 with the additional
property of being measure preserving. I believe it is an interesting and possibly useful
construction. The result is from [81, Chapter 5] and the approach from [3, Chapter 2.2]
but as both pairs of authors were only interested in homeomorphisms, they do not show
that it is possible to construct a C

1-diffeomorphism with such properties.

The heart of the proof is the following construction

Lemma A.6. Let p, q be two points in Rn. For any " 2 (0, |p � q|/2), there is a measure
preserving C

1-diffeomorphism H : Rn ⇣ Rn such that

H = id outside B
�
(p+ q)/2, |p� q|/2 + 2"

�
(A.4)

and
H(x) = x+ (q � p) for x 2 B(p, "). (A.5)

Proof. Fix " 2 (0, |p� q|/2).

Step 1. Suppose for now that n = 2. We shall construct the required mapping in the
planar case and extend the result for n > 2 in Step 2.

Suppose that p = �q. Firstly, we shall construct a measure preserving C
1-diffeomorphism

g̃p,q, which satisfies (A.4) and maps B(p, ") onto B(q, ") by rotation and then correct it so
that it satisfies (A.5).

Let ↵ : [0,1) ! R be a C
1-differentiable function which equals ⇡ on [0, |p|+ "] and 0

on [|p|+ 2",1). We define

g̃p,q(x, y) =

✓
cos↵(|(x, y)|) � sin↵(|(x, y)|)
sin↵(|(x, y)|) cos↵(|(x, y)|)

◆
·
✓
x

y

◆
.

The mapping g̃p,q : R2 ⇣ R2 acts like rotation by angle ⇡ on B(0, |p| + "), hence it maps
the ball B(p, ") onto B(q, "), and it is equal identity outside B(0, |p| + 2"). Moreover, it
follows from smoothness of ↵ that g̃p,q is C

1-differentiable and it can be easily checked
that g̃p,q is injective. Indeed, for any two distinct points x1, x2 2 R2, if |x1| 6= |x2|, then

|g̃p,q(x1)� g̃p,q(x2)| � ||g̃p,q(x1)|� |g̃p,q(x2)|| > 0.



A.3. MEASURE PRESERVING VERSION OF LEMMA 2.16 105

On the other hand, if |x1| = |x2|, then |g̃p,q(x1)� g̃p,q(x2)| = |x1 � x2| 6= 0.

Next, we show by direct computation that the Jacobian of g̃p,q equals 1. By the inverse
function theorem, this implies C

1-differentiability of g̃�1
p,q and, by the classical change of

variables formula, that g̃p,q is measure preserving. In the end, this shows that g̃p,q : R2 ⇣ R2

is a measure preserving diffeomorphism.

To simplify the notation, set u := u(x, y) := cos↵(|(x, y)|), v := v(x, y) := sin↵(|(x, y)|)
and ↵ := ↵(|(x, y)|). Clearly, u2 + v

2 = 1. Given a function f : R2 ! R, fx and fy denote
the partial derivative of f w. r. t. the first and second coordinate, respectively. We have

Dg̃p,q(x, y) =

✓
uxx+ u� vxy uyx� vyy � v

vxx+ v + uxy vyx+ uyy + u

◆
. (A.6)

It is easy to check the following identities

ux = �v↵x and uy = �v↵y, (A.7)

vx = u↵x and vy = u↵y. (A.8)

This implies that

uxvy � vxuy = �uv↵x ↵y + uv↵x ↵y = 0

uux + vvx = �uv↵x + uv↵x = 0

uuy + vvy = �uv↵y + uv↵y = 0

uvy � vuy = ↵y (u
2 + v

2) = ↵y

uxv � vxu = �↵x (u
2 + v

2) = �↵x.

(A.9)

We compute

detDg̃p,q((x, y)) = (uxx+ u� vxy)(vyx+ uyy + u)� (vxx+ v + uxy)(uyx� vyy � v)

= u
2 + v

2 + (x2 + y
2) (uxvy � vxuy) + x(uux + vvx + uvy � vuy)

+ y(uuy + vvy � uvx + uxv)
(A.9)
= 1 + x↵y � y↵x = 1.

The last equality follows from the fact that ↵ is radially symmetric and hence x↵y = y↵x.

We have shown that if p = �q, then g̃p,q satisfies the claim of Lemma A.6 except for
(A.5), as g̃p,q maps B(p, ") onto B(q, ") by rotation and not by translation. Now for any
p, q 2 R2, set

gp,q = g̃(p�q)/2, (q�p)/2

✓
x� p+ q

2

◆
+

p+ q

2
,

which is a measure preserving C
1-diffeomorphism which satisfies (A.4) and maps B(p, ")

onto B(q, ") by rotation.

Then, for any p, q 2 R2 set

h̃p,q = g p+q
2 ,q � gp, p+q

2
.

The mapping h̃p,q is a measure preserving C
1-diffeomorphism, which maps the ball B(p, ")

by translation onto the ball B(q, "). Indeed, it firstly rotates the ball B(p, ") onto the ball
B((p+ q)/2, ") and then rotates the latter onto the ball B(q, "). Clearly, it satisfies (A.4)
as well. we have constructed the mapping required in this lemma for n = 2.

Step 2. We will now describe how to construct such a mapping for n > 2. For any
a, b 2 Rn such that a = (a1, a2, 0, . . . , 0) and b = (b1, b2, 0, . . . , 0), we set

ha,b(x1, . . . , xn) := (h̃(a1,a2),(b1,b2)(x1, x2), x3, . . . , xn).
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This is a measure preserving C
1-diffeomorphism, which maps the n-dimensional ball

B
n(a, ") by translation onto the ball Bn(a, ") and such that

ha,b = id outside B
�
(a+ b)/2, |a� b|/2 + 2"

�
. (A.10)

We are now ready to discuss the general case. Let p, q by any distinct points in Rn. We
choose a 2-dimensional plane P containing p and q. Then we find ' : Rn ⇣ Rn, a composi-
tion of rotation and translation and thus a measure preserving C

1-diffeomorphism, which
maps P onto the x1 x2-plane. Therefore,

'(B(p, ")) = B('(p), ") and '(B(q, ")) = B('(q), "). (A.11)

Then
H := '

�1 � h'(p),'(q) � '.

is the required mapping. Indeed, H is a measure preserving C
1-diffeomorphism as a com-

position of such mappings. It follows from construction that H satisfies (A.5) and by (A.10)
and (A.11), (A.4) holds as well. This finishes the proof.

Lemma A.7. Let {pi}Ni=1 and {qi}Ni=1 be given points in U , a domain in Rn, with pi 6= pj

and qi 6= qj for i 6= j. Then there exists an " > 0 and a measure preserving C
1-

diffeomorphism H : U ! U , identity near @U , such that

H(x) = x+ (qi � pi) for x 2 B(pi, "),

i.e., H maps by translation each ball B(pi, ") onto B(qi, ") with H(pi) = qi.

Proof. To begin with, assume that N = 1 and that p, q 2 U satisfy

B

✓
p+ q

2
,
|p� q|

2

◆
⇢ U.

Then we find an " 2 (0, |p� q|/2) so that

B

✓
p+ q

2
,
|p� q|

2
+ 2"

◆
⇢ U. (A.12)

By Lemma A.6, we find a measure preserving C
1-diffeomorphism H

"
p,q, which maps B(p, ")

by translation onto B(q, ") and equals identity outside the ball (A.12) and hence near @U .

Next, consider p, q which can be connected by a segment in U . We find " > 0 such
that V , the 4"-neighborhood of the segment connecting p and q, is compactly contained in
U , and `+ 1 points p = ao, . . . , q = a` such that

2" < |ai � ai�1| < 4" for i = 1, . . . , `.

Then the balls (A.12) with ai�1, ai instead of p and q, respectively, are contained in V . We
then set

H
"
p,q = H

"
a`,a`�1

� . . . �H"
ao,a1 .

This is a measure preserving C
1-diffeomorphism, which maps B(p, ") onto B(q, ") by

translation.

We then have to show that the statement is true for any p, q 2 U and we do this exactly
like in Lemma 2.16. Next, the proof of the general case of N pairs of distinct points is the
same as in Lemma 2.16 as well.
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A.4 Appendix to Chapter 3

A.4.1 Orientation

In order to keep this dissertation as self-contained as possible, we shortly address in this
section the issue of what it means for a homeomorphism to be orientation preserving. Let
us firstly discuss the Euclidean setting.

Let ⌦ be a bounded domain in Rn. We say that a diffeomorphism f : ⌦ ! Rn is
orientation preserving if its Jacobian is positive on ⌦. Indeed, it is clear that the Jacobian
of a diffeomorphism cannot change sign, so this definition is well-posed. Similarly, by
Rademacher’s theorem a bi-Lipschitz homeomorphism is differentiable a. e. and hence its
Jacobian also cannot change sign (for the proof see [47, Theorem 5.22]1). We can therefore
say that a bi-Lipschitz homeomorphism f : U ! Rn is orientation preserving if its Jacobian
(defined a. e.) is non-negative a. e. However, given a homeomorphism f : U ! Rn, we can
use only topological notions. We shall provide a definition using the notion of degree. In
this very short exposition, we follow [32, Section 1.2], see also [79, Section IV.2].

We firstly define the degree for C
1 mappings. Let ⌦ ⇢ Rn be a bounded domain

in Rn and let f 2 C
1(⌦,Rn), i. e., we assume that f admits a C

1 extension to an open
set containing ⌦. With Jf we denote the Jacobian of f , i. e., Jf (x) := detDf(x). Set
Zf := {x 2 ⌦ : Jf (x) = 0} and suppose that p 2 Rn \ (f(Zf ) [ f(@⌦)). Then,

deg (f,⌦, p) :=
X

x2f�1(p)

sgn(Jf (x)), (A.13)

where deg (f,⌦, p) denotes the degree of f with respect to the domain ⌦ at a point p.
Consistently with (A.13), we can set deg (f,⌦, p) = 0 whenever p /2 f(⌦), i. e., whenever
f
�1(p) is empty.

Using Sard’s lemma, it is then possible to define the degree for C1 mappings at points
also from f(Zf )\f(@⌦) and so, more precisely, for all p 2 Rn\f(@⌦). Eventually, degree for
continuous mappings can be defined, see [32, Definition 1.18]. The transition between C

1

and continuous setting can be done by approximating continuous mappings with C
1-smooth

ones and showing that the degree is stable under homotopy.

It is clear from (A.13) that for a diffeomorphism f : ⌦! Rn, we have deg (f,⌦, p) = 1
for every p 2 f(⌦) or deg (f,⌦, p) = �1 for every p 2 f(⌦). It is more difficult to show an
analogous statement for homeomorphisms but it can be proved that

Theorem A.8. Let ⌦ be a bounded domain in Rn and let f : ⌦! Rn be a homeomorphism.
Then either

deg (f,⌦, p) = 1 for every point p 2 f(⌦) (A.14)

or
deg (f,⌦, p) = �1 for every point p 2 f(⌦). (A.15)

This follows e.g. from Theorem 3.35 and Theorem 2.3 (c) in [32]. This theorem asserts that
the following definition is well-posed.

Definition A.9. Let ⌦ be a bounded domain in Rn and let f : ⌦ ! Rn be a homeomor-
phism. We say that f is orientation preserving if (A.14) holds. We say that f is orientation
reversing if (A.15) holds.

1
The statement of this theorem assumes f to be in W 1,1

but this assumption is not used in the proof.
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A linear homeomorphism f(x) = Ax is orientation preserving if and only if detA > 0 and
orientation reversing if detA < 0.

Remark A.10. Given a bounded domain ⌦ in Rn, any homeomorphism f : ⌦ ⇣ ⌦ with
f |@⌦ = id is orientation preserving. This follows from the fact that the degree depends
only on the boundary values, see [32, Theorem 2.4]. This implies that the homeomorphism
constructed in [37] (recalled in this thesis as Proposition 4.12) as well as its generalization
from Theorem 5.2 are orientation preserving.

What is more, given any measurable T : Q ! GL(n) as in Theorem 1.5, the homeomor-
phism � we construct there also satisfies �|@Q = id and hence it is orientation preserving
as well.

Remark A.11. Suppose that ⌦ is a bounded domain and f : ⌦! Rn is a homeomorphism
which is differentiable at a point xo 2 ⌦ with Jf (xo) 6= 0. Then S(x) := Df(xo)(x� xo) +
f(xo) can be connected to f(x) via a linear homotopy. Since the degree is stable under
homotopy, see [32, Theorem 2.3 (2)], it can be shown that

deg (f,⌦, f(xo)) = deg (S,⌦, f(xo)) = sgn(Jf (xo)).

For details, see the already mentioned [47, Theorem 5.22].2 Therefore, if f is an orientation
preserving homeomorphism differentiable at a point xo, then Jf (xo) � 0.

Using the notion of orientation preserving homeomorphism between domains in Rn, we
shall now define orientation preserving homeomorphism between oriented manifolds. To
this end, we need to recall the notion of an oriented atlas.

Definition A.12 (Oriented atlas). Let Mn be an n-dimensional connected manifold. We
say that an atlas {(Ui,'i)}i2I , where Ui is an open subset of Mn and 'i : Ui ! Rn, is
oriented if for every i, j 2 I, the transition map

'i � '�1
j : 'j(Ui \ Uj) ⇣ 'i(Ui \ Uj)

is orientation preserving. More precisely, 'i � '�1
j needs to be orientation preserving on

each connected component of 'j(Ui \ Uj).

We call an oriented atlas maximal if it is maximal in the sense of inclusion, i. e., if it is
not possible to add another chart (U,') so that the enlarged atlas stays oriented.

We are now in a position to define an oriented manifold.

Definition A.13 (Oriented manifold). Let Mn be an n-dimensional connected manifold.
We say that Mn is orientable if there exists a maximal oriented atlas on Mn. An oriented
manifold Mn is then the pair of Mn and the maximal oriented atlas.

Eventually, we can define an orientation preserving homeomorphism.

Definition A.14 (Orientation preserving homeomorphism). Let Mn, N n be two oriented
n-dimensional connected manifolds. Let AM := {(Ui,'i)}i2I and AN := {(U 0

j , j)}j2J
denote the maximal oriented atlases on Mn and N n, respecitvely. We say that a home-
omorphism f : Mn ⇣ N n is orientation preserving if for every chart (U 0

j , j) 2 AN , the
chart (f�1(U 0

j), j � f) 2 AM.

2
We recall that the statement of this theorem assumes f to be in W 1,1

but this assumption is not used

in the proof.
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It is clear from the definition that a composition of orientation preserving homeomorphisms
is an orientation preserving homeomorphism.

There is more than one way to define orientation on a manifold and to say what an
orientation preserving homeomorphism is (even for homeomorphisms of Rn). Of course,
whatever the method, the resulting definitions coincide. Another standard approach is
through homology groups, see e.g. [44, Chapter 3.3]. For a concise explanation of how the
different notions agree, see the note [64].

Lemma A.15. Let Mn be an n-dimensional connected manifold with a maximal oriented
atlas A = {(Ui,'i)}i2I . Suppose that D, D ⇢ Mn, is a flat topological closed ball, i. e.,
there is " > 0 and a homeomorphism e� : B(0, 1 + ") ! Mn such that e�(Bn) = D. Then
there is � : B(0, 1 + ") ! Mn with �(Bn) = D and such that

�
�(B(0, 1 + ")),��1

�
2 A. (A.16)

Proof. It follows from Corollary 2.3 that U" := e�(B(0, 1 + ")) is open in the topology of
Mn. Therefore, the pair (U",

e��1) is a chart and if it belongs to A, then � = e� and the
proof is concluded.

If not, then given any chart (U,') 2 A, the homeomorphism

' � e� : e��1(U \ U") ⇣ '(U \ U")

is orientation reversing. Let R : B(0, 1 + ") ⇣ B(0, 1 + ") denote reflection w. r. t. the
n-th coordinate. We claim that then � = e� �R is the required mapping. Indeed, the pair
(U",��1) is also a chart and for any chart (U,') 2 A, the homeomorphism

(' � e�) �R : ��1(U \ U") ⇣ '(U \ U")

is a composition of two orientation reversing homeomorphisms, which yields an orientation
preserving one. This can be made precise by computing the degree of a composite mapping
using the multiplication theorem [32, Theorem 2.10].

Remark A.16. If � : Bn ! Mn is a parametrization of the closed topological ball D ⇢ Mn

which satisfies (A.16), we say that � is orientation preserving. It then follows directly from
Definition A.14 that if f : Mn ⇣ Mn is orientation preserving, then

� � f � ��1 : Bn ⇣ Bn

is orientation preserving.

Remark A.17. Recall another definition from Chapter 3, that of a flat bi-Lipschitz closed
ball, where the e� in the statement of Lemma A.15 is assumed to be bi-Lipschitz. If Mn

is an n-dimensional connected Lipschitz manifold with a maximal oriented atlas A and
D, D ⇢ Mn, is a flat bi-Lipschitz closed ball, then there is " > 0 and a bi-Lipschitz
homeomorphism � : B(0, 1 + ") ⇣ U" such that �(Bn) = D and (A.16) holds.

Indeed, the proof is the same as that of Lemma A.15 as the definition of a flat bi-
Lipschitz closed ball yields a bi-Lipschitz homoemorphism e� and the reflection homeomor-
phism R is also bi-Lipschitz.

A.4.2 Construction of H in the proof of Theorems 1.1, 1.2 and 1.3

Lemma A.18. Let Mn be an n-dimensional connected and oriented manifold of class C
k,

k 2 N [ {1}. Suppose that {Di}`i=1 and {D0
i}`i=1, Di, D

0
i ⇢ Mn, are two families of
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pairwise disjoint C
k-diffeomorphic closed balls. Moreover, assume that K ⇢ Mn is also

a C
k-diffeomorphic closed ball which is disjoint from Di, D

0
i for every i = 1, . . . , `. Then

there is an orientation preserving C
k-diffeomorphism H : Mn ⇣ Mn such that

H(Di) ⇢ K̊ and H(D0
i) ⇢ K̊ for every i = 1, . . . , `. (A.17)

Lemma A.19. Let Mn be an n-dimensional connected and oriented Lipschitz manifold.
Suppose {Di}`i=1 and {D0

i}`i=1, Di, D
0
i ⇢ Mn, are two families of pairwise disjoint flat bi-

Lipschitz closed balls. Moreover, assume that K ⇢ Mn is also a flat bi-Lipschitz closed ball
which is disjoint from Di, D

0
i for every i = 1, . . . , `. Then there is an orientation preserving

bi-Lipschitz homeomorphism H : Mn ⇣ Mn such that (A.17) holds.

Lemma A.20. Let Mn be an n-dimensional connected and oriented topological manifold.
Suppose {Di}`i=1 and {D0

i}`i=1, Di, D
0
i ⇢ Mn, are two families of pairwise disjoint flat

topological closed balls. Moreover, assume that K ⇢ Mn is also a flat topological closed ball
which is disjoint from Di, D

0
i for every i = 1, . . . , `. Then there is an orientation preserving

homeomorphism H : Mn ⇣ Mn such that (A.17) holds.

We prove only Lemma A.18, as the proofs of Lemma A.19 and A.20 are nearly the
same. The only difference is, of course, the regularity of the manifold and the mapping in
question. In the proof of Lemma A.18, we do not use the Ck-smoothness of the manifold for
any other purpose than to guarantee that C

k-diffeomorphisms can be defined. Therefore,
this proof can be easily adapted to the Lipschitz and purely topological setting.

The proof is standard and easy-to-believe but requires a few details. Let us therefore
recall its sketch in the proof of Theorem 1.1. In principle, construction of H follows from
Lemma 2.17. Let us for now assume that the family {Di}`i=1 is disjoint from the family
{D0

i}`i=1. For each ball Di (and D
0
i) we create a finite chain of connected coordinate sys-

tems that connect Di (and D
0
i) to K in a way that consecutive systems have nonempty

overlapping. Moreover, we assume that the first coordinate system in the chain contains
a neighborhood of Di (D0

i). Then we construct a diffeomorphism Hi (and H
0
i) as a com-

position of diffeomorphisms defined in the local coordinate systems that move the ball Di

from one coordinate system to the next one. We can guarantee that on the set where Hi

or H 0
i differs from the identity, all other diffeomorphisms Hj and H

0
j are equal identity. Fi-

nally, we define H as a composition of all diffeomorphisms Hi and H
0
i. If Di \D

0
j for some

i, j 2 {1, . . . , `}, it is not possible to guarantee that if Hi 6= id , then all H 0
j for j = 1, . . . , `

are equal identity. Hence, one has to slightly modify the construction of Hi = H
0
j so that the

sum Di[D
0
j is mapped into K̊ without spoiling the construction of other diffeomorphisms.

Proof of Lemma A.18. Step 1. We firstly explain the construction under the additional
assumption that the family {Di}`i=1 is disjoint from the family {D0

i}`i=1. It will be convenient
for now to denote D

0
i as Di for i = `+1, . . . , 2` since now there is no difference whatsoever

between the family of {Di}`i=1 and {D0
i}`i=1.

As Di for every i = 1, . . . , 2` is a C
k-diffeomorphic ball, we can find " > 0 and C

k-
diffeomorphisms �i : B(0, 1 + ") ! Mn so that �i(Bn) = Di. Let Vi := �i(B(0, 1 + ")).
By choosing smaller ", if necessary, we can guarantee that Vi are pairwise disjoint (up to
closures).

Since a connected manifold is path-connected, for every i = 1, . . . , 2`, we can find paths
�i connecting a point from D̊i to a point in K̊. Since Di are pairwise disjoint, we can choose
the paths so that for every i 6= j,

�i \ �j = ? and �i \ Vj = ?.
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Moreover, it follows from compactness that for each i = 1, . . . , 2`, we can find a finite family
of charts {(U i

m,'
i
m)}m2J(i) which covers �i so that for i 6= j, the family {U i

m}m is disjoint
from {U j

m}m. We assume that U i
1 contains the endpoint of �i which belongs to D̊i and U

i
J(i)

contains the point which belongs to K̊. Moreover, we can assume that U
i
J(i) is contained

in K̊ and that for every m � 2, U i
m intersects only U

i
m�1 and U

i
m+1.

We now construct for each i = 1, . . . , 2`, an orientation preserving C
k-diffeomorphism

Hi : Mn ⇣ Mn such that Hi(Di) ⇢ K̊
0 and

Hi = id in Mn \
�[J(i)

m=1
U

i
m [ Vi

�
.

Then H := H2` � . . . � H1 is a well-defined, orientation preserving C
k-diffeomorphism of

Mn. Note that due to the choices we have made, Hi differs from identity only on the set
on which all Hj for j 6= i are equal identity. Consequently, if j < i, then Hj does not move
Di and if j > i, then Hj does not move Hi(Di). Hence H satisfies H(Di) ⇢ K̊ for every
i = 1, . . . , 2`.

Let us fix i 2 {1, . . . , 2`}. It follows from Lemma A.15 that (Vi,��1) is a chart and
that we can assume that it belongs to the maximal oriented atlas on Mn. Therefore, it is
possible to find an open ball B(po, ro) b B(0, 1 + ") satisfying

Bn \B(po, ro) = ? and �i(B(po, ro)) b U
i
1.

By Lemma 2.17, we find a C
1-diffeomorphism ⇥o : B(0, 1+ ") ⇣ B(0, 1+ "), ⇥o = id

near @B(0, 1 + "), such that ⇥o(Bn) ⇢ B(po, ro). We then set

e o := �i �⇥o � ��1
i : Vi ⇣ Vi.

It is an orientation preserving C
k-diffeomorphism, which equals identity near @Vi so it

can be extended by identity to a diffeomorphism  o : Mn ⇣ Mn. By construction,
 o(Di) ⇢ U

i
1 and  o = id outside Vi.

Similarly, we construct for m = 1, . . . , J(i)�1 orientation preserving C
k-diffeomorphisms

 m : Mn ⇣ Mn,  m = id in Mn \ U i
m, such that

 m � . . . � 1 � o(Di) ⇢ U
i
m+1.

Set
Hi :=  J(i)�1 � . . . � 1 � o.

It is an orientation preserving C
k-diffeomorphism of Mn. Since U

i
J(i) is contained in K̊,

Hi(Di) ⇢ K̊.

This finishes the construction of Hi and the construction of H, as explained earlier.

Step 2. Now, we address the general case, when the family {Di}`i=1 is not disjoint from
the family {D0

i}`i=1. We change back the notation and for i = 1, . . . , ` we will write V
0
i , �0i

and H
0
i instead of Vi+`, �i+` and Hi+1.

If for some i, j 2 {1, . . . , `} we have Di ⇢ D
0
j (or D0

i ⇢ Dj), we construct Hi and H
0
i as

before with the exception that we simply set Hi := H
0
j (or H

0
j := Hi).

The subtlety lies in the case when

Di \Dj 6= ? but Di ( Dj nor D
0
j ( Di. (A.18)
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Since there are finitely many sets, it suffices to understand the necessary modification
when (A.18) is true for just one i and one j. Without loss of generality, we assume
that (A.18) holds for i = j = 1 and that the sets Di, D

0
i are pairwise disjoint for i = 2, . . . , `.

We choose �1 by connecting a point from D̊1 \D0
1 with a point from K̊ so that �1 does

not intersect V
0
1 nor Vi, V

0
i for i = 2, . . . , `. We do not choose �01 and we do not construct

H
0
1 but slightly modify H1 from Step 1 to take care of the sum D1 [D

0
1.

As in Step 1, we can find a chain of overlapping open sets V1, V
0
1 , U

1
1 , . . . , U

1
J(1) which

cover D1, D
0
1 and �1 and are disjoint (up to closures) from Vi, V 0

i , �i, �0i for all i = 2, . . . , `.
We assume that U

1
J(1) ⇢ K̊. More precisely, we have a chain of overlapping charts

(V1,�
�1
1 ), (V 0

1 , (�
0)�1
1 ), (U1

1 ,'1), . . . , (U
1
J(1),'J(1)).

This is in fact the same situation which we encountered in the construction of G1 in Step 1,
the only difference being a somewhat special character of the chart (V 0

1 , (�
0)�1
1 ). The

sum D1 [ D
0
1 is covered with V1 [ V2, a sum of two images of an open ball under C

k-
diffeomorphisms. We have no parametrization from Bn onto V1[V2, which makes it difficult
to map D1 [ D

0
1 into K̊ as we did in Step 1. To overcome this technical difficulty, we

construct a C
k-diffeomorphism  o, which maps D1 into V

0
1 so that  o(D1 [ D

0
1) ⇢ V

0
1 .

Even though  o(D1 [D
0
1) might not be a C

k-diffeomorphic closed ball, it is contained in
one. Therefore, we can perform a similar construction as in Step 1, which ‘pushes’ the C

k-
diffeomorphic closed ball containing  o(D1 [D

0
1) into the domain of the next coordinate

system until it ‘reaches’ K̊.

We construct  o : Mn ⇣ Mn exactly like in Step 1 so that  o = id outside V1 and
 o(D1) ⇢ V

0
1 . Therefore,  o(D1[D

0
1) ⇢ V

0
1 . As in Step 1, we chose charts so that U1

1 does
not intersect V1 and thus  o(U1

1 ) = U
1
1 .

The set ( o ��0
1)

�1( o(D1[D
0
1)) is a compact subset of B(0, 1+ ") and therefore it is

contained in a ball B(0, 1+ ⌘) for some ⌘ 2 (0, "). We can find a ball B(⇣, r) b B(0, 1+ ")
such that

B(⇣, r) \B(0, 1 + ⌘) = ? and  o � �0
1(B(⇣, r)) b  o(U

1
1 ) = U

1
1 .

Then by Lemma 2.17, we construct ⇥0 : B(0, 1 + ") ⇣ B(0, 1 + ") such that ⇥0 = id near
@B(0, 1 + ") and such that ⇥0(B(0, 1 + ⌘)) ⇢ B(⇣, r). We then set

e 0
o :=  o � �0

1 �⇥0 � (�0
1)

�1 � �1
o :  o(V

0
1) ⇣  o(V

0
1).

It is an orientation preserving C
k-diffeomorphism, which can be extended by identity to

a diffeomorphism  0
o : Mn ⇣ Mn. By construction,  0

o = id in Mn \ o(V 0
1) and

 0
o( o(D1 [D

0
1)) ⇢ U

1
1 .

In the same manner, we construct for m = 1, . . . , J(1) � 1 orientation preserving C
k-

diffeomorphisms  m : Mn ⇣ Mn,  m = id in Mn \ U1
m, such that

 m � . . . � 1 � o(D1 [D
0
1) ⇢ U

1
m+1.

Set
H1 :=  J(1)�1 � . . . � 1 � o.

It is an orientation preserving C
k-diffeomorphism of Mn. Since U

1
J(1) is contained in K̊,

H1(Di [D
0
i) ⇢ K̊.
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This finishes the construction of H1.

For i = 2, . . . , ` we construct Hi, H 0
i exactly like in Step 1. We then set

H := H
0
` �H` � . . . �H 0

2 �H2 �H1,

which is the required mapping.



Afterword

While preparing this dissertation I stumbled across a note written by William Thurston
about proof and progress in mathematics [92]. He writes there that the job of a mathemati-
cian is to increase people’s understanding of mathematics. I often found myself wondering
if I do this job well—if a proof that I have just meticulously written down does not do more
to obscure than to elucidate the reasoning behind it. I guess that the rigidity of proofs
takes away some of the fun and beauty of the ideas and theorems that I feel look so much
better in my head than on paper.

To conclude, on a perhaps slightly philosophical note, I wanted to convey some of
it—the fun (and the pain) of working on problems presented in this thesis.

It is a result of an assignment given by dr hab. Piotr Wasylczyk during his short course
on presentations in which we were asked to write a short fairy tale about the topic of our
dissertation.

⇤ ⇤ ⇤

Once upon a time in a land not that far away two sisters decided to make Christmas
cookies. It was a cozy December afternoon when they took all their cookie cutters out of
the kitchen drawer and prepared all the well known ingredients: flour, butter, honey and
a bit of cream. When the dough was already prepared, Lucy, the younger one, quickly
reached out for her favourite (though irksome to use) cutter, the reindeer. Mary, twelve
years older and at least that many times lazier, took a square-shaped cutter and set to
work as well.

- Is it your favourite cutter? - Lucy asked.
- Yes, why? - Mary replied.
- It seems a bit. . . boring.
- It is not boring at all! You see, I like squares best because of what I study.
- You don’t study squares, you study analysis. - Lucy proudly opposed (it took her

some time to memorize the name of her sister’s favourite branch of mathematics).
- That’s true! I don’t study squares, I study mappings, that is, all the things that can

happen to a square. Look - Mary said and smoothed the corners of one of the
squares so that it looked more like a disk - I deformed this square into a disk!

But by that time Lucy paid little attention since she desperately tried to glue the hind
legs, which fell off her unlucky reindeer, to the rest of its cookie body.

- It seems that your reindeer was attacked by a discontinuous mapping. . . They can
be really dangerous, they tear squares apart so that pieces that used to belong
together, do not any more.

Lucy, not yet recovered from her reindeer’s misfortune, felt convinced that she wanted to
have nothing to do with these discontinuous monstrosities.
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- Do you have your favourite mmm. . . mmaaa -
- Mapping - Mary finished her sister’s question - Yes, I do. My favourite ones are

called homeomorphisms and I’m sure you’d like them. They are continuous, of
course - she quickly added as she sensed a doubt in Lucy’s bright eyes. - And they
also have this nice property that whenever I deform a square, let’s say into a disk,
I can easily turn the disk back into the square! Such mappings are called invertible.

- That seems nice...

Lucy absent-mindedly agreed although she was still wondering why one would like to
change something and then change it back..? Then she recalled the time when she
secretly curled her hair and wanted to straighten it before her mum came home and so
her sympathy for homeomorphisms grew stronger.

- But Mary? What if something goes wrong on the way back? Like the horrible thing
you said earlier, that something will be torn apart?

- Good point, Lucy! That, fortunately, cannot happen in case of homeomorphisms.
They are continuous, invertible and the ‘way back’, as you nicely called it, has to be
continuous as well. I hope that now you will find homeomorphisms quite acceptable?

They smiled at each other and continued to cut the dough into all kinds of shapes. Mary
kept thinking about all these difficulties she has run into while trying to construct a quite
peculiar homeomorphism recently. She explained to Lucy how things work on the plane,
that is in the two-dimensional world of the kitchen table. In higher dimensions (and we
really can have more than just the three that we see) it does not get easier... Lucy,
oblivious to her sister’s troubles, kept herself happily busy with her beloved reindeer.
Only later that night, when all the cookies had already been baked and their little house
smelled of nothing but honey and cinnamon, Lucy approached Mary and said in a quiet
voice

- Mary, I don’t understand. Is your analysis like baking cookies but with weird
names?

Mary held her closer and hesitated before giving an answer.

- You see, my dear, there is a difference. When you make cookies, you really should
have your eyes wide open, shouldn’t you? And when you deal with
homeomorphisms, you sometimes have to close them. There is no other way to see
how to cut a square into thousands or millions of little squares and then how to
deform those tiny ones and shift them around inside the bigger one - with so much
care and attention that nothing gets torn apart. There is no other way to see it
unless you see it in your head.

Having said that, Mary kissed her little sister and bid her goodnight.

That night Lucy dreamt of becoming a baker and indeed she did. It was then Mary’s
turn to wonder at the fancy cake names in Lucy’s bakery. She came by the store the
more often, the more troubles she had with her homeomorphisms. And Lucy knew well
enough that mathematically tired look in her sister’s eyes—the one she got from closing
them and imagining all sorts of homeomorphic horrors. On such occasions she gave Mary
her favourite Portuguese pastry, pasteis de nata, and watched her eyes grow brighter and
less weary.
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