
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Wojciech Czerwiński

Partially-commutative context-free graphs
PhD dissertation

Supervisor

dr hab. Sławomir Lasota

Institute of Informatics
University of Warsaw

July 2012

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation myself and
all the contents of the dissertation have been obtained by legal means.

July 13, 2012 .
date Wojciech Czerwiński

Supervisor’s declaration:
the dissertation is ready to be reviewed

July 13, 2012 .
date dr hab. Sławomir Lasota

3

Abstract

This thesis is about an extension of context-free grammars with partial commutation on
nonterminal symbols. In particular, we investigate the subclass with transitive dependence
relation and the corresponding automaton model: stateless multi-pushdown automata. The
results of the thesis are divided into three chapters.

The first chapter investigates language expressivity of concerned classes. Roughly speak-
ing, the main result states that in terms of expressivity, partially-commutative context-
free languages are incomparable with two other well-known classes of languages extending
context-free languages by a concurrent behaviour. One of these classes is trace closure of
context-free languages. The other one is languages generated by context-free grammars with
shuffle.

The last two chapters concentrate on configuration graphs of partially-commutative
context-free grammars rather than on the languages. The second chapter investigates
reachability problem for weak multi-pushdown automata, a generalisation of stateless multi-
pushdown automata. Among multiple results discussed in this chapter, the most important
ones are NP-completeness for stateless multi-pushdown automata and decidability for weak
multi-pushdown automata.

The last chapter presents a polynomial-time algorithm deciding bisimilarity in a subclass
of partially-commutative context-free graphs that subsumes both context-free graphs and
commutative context-free graphs. A specialisation of the algorithm to the class of context-
free graphs works in time O(N4 polylog(N)), which is the fastest currently known. Finally,
we obtain O(N3 polylog(N)) upper bound in the special case of simple grammars.

Keywords: Context-free graphs, partial commutativity, language expressivity, reachability
problem, bisimilarity

ACM Classification: F.1.1, F.1.2, F.3.1, F.4.2, F.4.3

4

Streszczenie

Niniejsza rozprawa dotyczy rozszerzenia gramatyk bezkontekstowych o częściową przemi-
enność symboli nieterminalnych. W szczególności badamy podklasę, w której relacja za-
leżności jest przechodnia oraz odpowiadający model automatu: bezstanowy automat wielostosowy.
Rezultaty są podzielone na trzy rozdziały.

Rozdział pierwszy bada wyrażalność językową rozważanych klas. Główny wynik pokazuje,
że wyrażalność językowa analizowanych klas oraz dwóch innych, dobrze znanych klas rozsz-
erzających języki bezkontekstowe o zachowania współbieżne, jest nieporównywalna. Pier-
wsza z tych klas to domknięcia języków bezkontekstowych ze względu na relację przemi-
enności na terminalach. Druga to języki generowane przez gramatyki bezkontekstowe z
operacją przeplotu.

Ostatnie dwa rozdziały koncentrują się na grafach konfiguracji częściowo przemiennych
gramatyk bezkontekstowych. Rozdział drugi rozważa problem osiągalności dla słabych au-
tomatów wielostosowych, uogólnienia bezstanowych automatów wielostosowych. Spośród
wielu rezultatów przedstawionych w tym rozdziale najważniejsze są NP-zupełność dla bezs-
tanowych automatów wielostosowych oraz rozstrzygalność dla słabych automatów wielostosowych.

Ostatni rozdział prezentuje algorytm wielomianowy rozstrzygający równoważność bisy-
mulacyjną w podklasie częściowo przemiennych grafów bezkontekstowych uogólniającej zarówno
grafy bezkontekstowe jak i przemienne grafy bezkontekstowe. Uszczegółowiony algorytm
dla klasy grafów bezkontekstowych ma złożoność czasową O(N4 polylog(N)) i jest najszyb-
szym aktualnie znanym. Dodatkowo uzyskaliśmy ograniczenie górne O(N3 polylog(N)) w
szczególnym przypadku gramatyk prostych.

5

Acknowledgements

First and foremost I would like to express my great thanks to my supervisor, Sławomir
Lasota. He has been always taking care of my development and constantly investing a lot
of work in that. He was available at any time during the day and responded patiently to all
my numerous questions. In fact, he was more like a friend than like an supervisor. I learned
a lot from him and I am extremely grateful for those last four years.

I would also like to thank my friend, Piotr Hofman, for an enormous amount of time
spent together on thinking, for his inspiring ideas and permanent good humour.

Furthermore, I am very grateful to Mikołaj Bojańczyk. He kept remembering about me
and encouraging me to visit summer schools and to travel abroad. I am particularly grateful
for the organisation of my visit to Dortmund.

I wish to thank Sibylle Fröschle for our common work and her welcoming me in Olden-
burg. I thank also Artur Jeż and Paweł Gawrychowski for fruitful comments about com-
pressed strings.

6

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Partially-commutative context-free graphs . 15
1.3 Results . 19
1.4 Related research . 23

2 Expressivity 27
2.1 Preliminaries . 27
2.2 Closure properties . 30
2.3 Pumping lemmas . 33
2.4 Incomparability . 39
2.5 Proofs of incomparability . 40
2.6 Open problems . 49

3 Reachability 51
3.1 Multi-pushdown automata . 52
3.2 Regular sets . 54
3.3 Results . 55
3.4 Singleton source sets . 58
3.5 NP-completeness . 61
3.6 Decidability . 71
3.7 Undecidability . 75
3.8 Relaxed regularity . 76
3.9 Open problems . 79

4 Bisimilarity 81
4.1 Bisimulation game . 81
4.2 Overview of the algorithm . 83
4.3 The refinement step . 85
4.4 Representation . 87

7

8 CONTENTS

4.5 Refinement preserves tractability . 91
4.6 Implementation . 98
4.7 Efficient algorithm for CFG . 103
4.8 Efficient algorithm for disjoint grammars . 113
4.9 Open problems . 114

Bibliography 117

Chapter 1

Introduction

The theme of the thesis is the class of partially-commutative context-free graphs. The
motivation is a search for a robust model reflecting some properties of both recursive and
concurrent programs. It should be both expressive enough to model nontrivial programs, and
tractable enough, i.e., have good algorithmic properties. Such a model could be potentially
used in the analysis of programs.

Results presented in this dissertation are divided into two main parts. In the first one
we focus on the expressiveness, in the second one we present algorithmic analysis methods.
The algorithmic part concerns the reachability problem and the bisimulation problem.

1.1 Motivation

Modelling. The concept of modelling is widely used in all sciences. The essence of this
idea is to build some approximation of reality which can be properly formalised and then
investigated much easier than the original phenomenon. What we loose is precision, but
what we gain is usually the ability to start a formal reasoning. The key issue in this field is
to develop the robust model, not too far from the reality but also simple enough to allow
relatively easy and fast deduction.

The same approach is very useful and successful in computer science. Some widely
known models are finite automaton, pushdown automaton and Turing machine. Nevertheless
there are many others, each one reflecting in different ways various aspects of computation.
The underlying motivation in creating more new ones is the need to automatically verify
correctness of programs and pinpoint the bugs. It seems that we are still at the very
beginning of the way to efficiently do automatic verification.

Context-free graphs. One of most commonly known formalisms in formal language the-
ory are context-free grammars. The most convenient from the verification and analysis point

9

10 CHAPTER 1. INTRODUCTION

of view is the Greibach normal form. As usual, a grammar consist of nonterminals, alphabet
letters (i.e., terminals) and transition rules of the form:

X
a−→ X1 . . . Xk, (1.1)

where X,X1, . . . , Xk are nonterminals and a is a letter. It is possible that right-hand side
is empty and then the transition rule has the form X

a−→ ε.

Compared to the general definition of context-free grammar, the difference is that the
alphabet letters can only occur over the transition arrow. They correspond to the transition
rules in the restricted form

X −→ aX1 . . . Xk,

where only one terminal can occur on the right-hand side on its leftmost position. In
accordance with this restriction we only consider leftmost derivations, i.e. a transition rule
can be applied only to the leftmost nonterminal. Therefore we permit for the derivation

A
a−→ BC

b−→ C
c−→ ε,

but not for
A

a−→ BC
c−→ B

b−→ ε.

This restriction is necessary when one wants that the letters labelling paths are the same as
words derived in the original definition.

We can naturally define the configuration graph. It is a labelled multigraph with vertices
being the configurations (i.e. the words over the nonterminals alphabet) and edges corre-
sponding to the transitions. Note that, formally, the configuration graph is not a graph, as
it may have many edges, labelled by a different letters, between the same pair of vertices.
We however neglect this fact, and from this point on use the term graph. We call such a
configuration graph obtained from a context-free grammar a context-free graph and the class
of all such graphs context-free graphs (CFG)1.

Example 1.1 As an illustration consider a context-free grammar in Greibach normal form
with two nonterminals: initial S and B, three letters a, b and s and three transition rules

S
a−→ SB S

s−→ ε B
b−→ ε.

An example derivation of the word a2sb2 is

S
a−→ SB

a−→ SBB
s−→ BB

b−→ B
b−→ ε,

1The shorthand CFG usually stands for context-free grammar, therefore for clarity we will always write
"context-free grammar" explicitly.

1.1. MOTIVATION 11

and the language of the grammar is the set of words ansbn, for all n ≥ 0. The configuration
graph is presented below on Figure 1.1.

S SB SBB . . .

ε B BB . . .

a a a

sss

bbb

Figure 1.1: A context-free graph.

Context-free graphs are often treated as the very basic model of recursive programs. The
underlying idea is that a transition rule X a−→ Y Z can be interpreted as a recursive call of
a process in the state Y initiated by a process in the state X. After termination of the child
process the parent process currently being in state X will start its computation from state
Z. During the recursive call, a visible action a can be observed.

Naming conventions. In this dissertation we deal with notions which are known in
different communities under different names. Therefore we have been forced in several cases
to make a choice among different terms. Here we comment on some of our definitions.

Context-free graphs are known also under the names Basic Process Algebra (BPA) and
Context-Free Processes. More generally, configuration graphs are known as Labelled Transi-
tion Systems (LTSs) or Process Graphs. We decide to choose the name Context-free graphs
as we believe it is more meaningful.

Edges in the configuration graphs we call transitions. Note a difference between a tran-
sition rule, which is a rule in the grammar, and a transition, which is an edge in the config-
uration graph, existing due to some transition rule.

Commutative context-free graphs. A concept very similar to context-free grammars
are commutative context-free grammars (implicitly assumed also to be in Greibach normal
form). They also consists of nonterminals, letters and transition rules of the form (1.1).
However, the interpretation of transition rules is different: we omit the restriction to only
left-most derivations. The intuition is that now ordering of nonterminals does not matter,
as if the concatenation was commutative. The set of languages defined by such grammars
we call the commutative context-free languages (CCFL), following [Chr93].

In this case a configuration is a multiset of nonterminals as we do not care about ordering
of nonterminals in the word. Therefore vertices of the configuration graph are multisets of
nonterminals and transitions with its labels correspond to firings of transition rules. We call

12 CHAPTER 1. INTRODUCTION

the set of so defined configuration graphs the commutative context-free graphs (CCFG).

Example 1.2 As an illustration consider the grammar from Example 1.1, interpreted as
the commutative context-free grammar. An example derivation of the word abasb is then

{S} a−→ {S,B} b−→ {S} a−→ {S,B} s−→ {B} b−→ ∅.

The language of the grammar consists of words w such that:

• w contains only letters a, b and s;

• #a(w) = #b(w), #s(w) = 1;

• all prefixes v of w fulfils #a(v) ≥ #b(v);

• all letters a precede letter s in w.

Note that the language does not contain all permutations of all words from the language of
Example 1.1, for example the word bas cannot be obtained. In general commutativity on
the level of nonterminals results in a different behaviour than commutativity on the level of
letters.

The configuration graph is shown below on Figure 1.2.

{S} {S,B} {S,B,B} . . .

∅ {B} {B,B} . . .

a a a

sss

bbb

bbb

Figure 1.2: A commutative context-free graph.

Commutative context-free graphs often serve as a basic model for concurrency. A tran-
sition rule X a−→ Y Z is interpreted as a fork operation of a process in state X with two
child processes, in states Y and Z, together with emission of a visible action a.

Commutative context-free graphs are also known as Basic Parallel Process Algebra (BPP)
or Commutative Context-Free Processes. The model is equivalent to communication-free
Petri nets.

Process Rewrite Systems. As said above, context-free graphs and commutative context-
free graphs are basic models of recursive and concurrent programs. However in the literature

1.1. MOTIVATION 13

one can find many other models suitable for modelling different aspects of the two program-
ming paradigms. In 1997 R. Mayr [May97a] proposed a very elegant unified framework
that captures the most important ones in a uniform way. Process Rewrite Systems (PRS)
includes many well known models of systems, i.e. finite state systems, context-free graphs,
commutative context-free graphs, pushdown graphs, Petri Nets and PA graphs. They all
can be presented as subclasses of the most general class, as shown on Figure 1.3.

FS (N, N)

CFG (R, N) CCFG (N, R)

Pushdown Graphs (B, N) PA (R, R) Petri Nets (N, B)

PAD (B, R) PAN (R, B)

PRS (B, B)

Figure 1.3: Process Rewrite Systems [May97a] (the notation we use is different than the
original one)

A Process Rewrite System consists, similarly like a context-free grammar, of a finite
set of nonterminals, a finite set of alphabet letters and a finite set of transition rules ∆.
Transition rules are of the form:

t1
a−→ t2, (1.2)

where a is a letter and both t1 and t2 are terms using nonterminals as constants and two
binary operations: the sequential composition ’;’ and the parallel composition ’||’. Sequential
composition t1 ; t2 means that operations in t1 have to be always performed before operations
in t2. Parallel composition t1 || t2 means that terms t1 and t2 process independently. The
idea behind sequential and parallel compositions is to model the recursive and concurrent
behaviour of a program, respectively.

Configurations of a PRS are terms, treated up to structural congruence induced by
commutativity of ’||’. Application of a transition rule to a term always concern a particular
subterm in this term. A transition rule is allowed if two conditions are fulfilled. First, no
ancestor of the subterm can be a second argument of any sequential composition. This
means intuitively that there is no operation which has to be necessary completed before
processing the subterm. Second, the subterm has to match the left-hand side of a rule, up

14 CHAPTER 1. INTRODUCTION

to mentioned structural congruence. The application of a rule is realised by replacing the
left-hand side of a rule with its right-hand side.

As shown on Figure 1.3 there are several subclasses of PRS. They differ in the scope in
which the two possible operations can be used. For every subclass it is specified if sequential
and parallel composition is allowed or disallowed on the left-hand side and on the right-hand
side of the rules 1.2. The following restriction is obeyed: if composition is allowed on the
left-hand side it has to be allowed on the right-hand side. The notation on the picture is as
follows:

• N means that composition is allowed neither on the left-hand nor on the right-hand
side of a rule;

• R means that composition is allowed only on the right-hand side of a rule;

• B means that composition is allowed on both sides.

Notation (RS , RP) means that sequential composition obeys restrictions of RS and parallel
composition obeys restrictions of RP .

The intuition behind the operations is the following. As mentioned before, parallel
composition on the right-hand side corresponds to ability of spawning child processes, and
sequential composition corresponds to ability of invoking a subroutine. On the left-hand
side both operations corresponds to some kind of communication. Parallel composition is
interpreted as synchronisation of two parallel processes, sequential composition is interpreted
as passing the return value by an invoked recursive subroutine.

Superclass of both CFG and CCFG. Among all subclasses of Process Rewrite Sys-
tems, only four have no composition permitted on the left-hand side of the rule: FS, CFG,
CCFG and PA graphs. This intuitively means that no communication is allowed.

PA (Process Algebra) graphs are very natural systems generalising both CFG and
CCFG, therefore suitable to model programs with both recursion and concurrency involved.
A drawback of PA is that its algorithmic properties are not so good as in the case of CFG

and CCFG. The reachability problem is decidable in NP2, matching the complexity of
the reachability problem for CCFG. However equivalence checking for normed3 PA is only
known to be decidable in double exponential time [HJ99], while for normed CFG and CCFG

this problem is decidable in polynomial time [HJM96a, HJM96b].
This drawback of PA class has been one of our motivations to investigate another very

natural generalisation of both CFG and CCFG, i.e., partially-commutative context-free
graphs (PCCFG)4.

2Depending on the precise formulation this problem is either NP-complete or in P, see also [May97b, LS02].
3The notion of a norm will be introduce below.
4However it would be a bit misleading to say that the class PCCFG itself admits no communication.

1.2. PARTIALLY-COMMUTATIVE CONTEXT-FREE GRAPHS 15

Trace theory. Roughly speaking, trace theory investigates words which have an ability
to partially commute their letters [Maz86, Maz88, DR95]. More precisely, except a finite
alphabet Σ we are given a symmetric and irreflexive independence relation I ⊆ Σ×Σ which
indicates which letters can commute. Let us say that two words are equivalent if one can
be obtained from the other by a series of swaps of two consecutive letters related by the
independence relation. For example, for the alphabet {a, b, c} and the independence relation
containing pairs (a, b) and (b, a) the words aabca and baaca are equivalent because of the
series of swaps:

aabca 7→ abaca 7→ baaca,

but they are not equivalent with the word aaacb. A trace is an equivalence class of the
equivalence relation defined above. Trace theory investigates languages of traces, instead of
languages of words.

One of motivations of trace theory is modelling of concurrent behaviour. In the same
way as a usual word corresponds to the behaviour of sequential process, a trace corresponds
to the behaviour of a concurrent process (or processes). This idea turned out to be very
successful and brought the novel point of view to concurrency theory.

Trace theory has been another source of motivation for us in defining and investigating
the class PCCFG. Surprisingly it seems that partial commutativity was exploited widely on
the level of letters (i.e. terminals), but no one considered by now partial commutativity on
nonterminals. This notion fits perfectly to the try of defining a superclass of both context-
free graphs and commutative context-free graphs.

1.2 Partially-commutative context-free graphs

Partially-commutative context-free graphs. As observed above transition rules of
CFG and CCFG graphs have the same form (1.1):

X
a−→ X1 . . . Xk,

but its interpretation is different. In the CFG case no nonterminals can commute, and
only the left-most one can fire a transition rule; in the CCFG case all nonterminals can
commute, so equivalently every one can fire a transition rule. The two classes of graphs
motivate a definition of a more general class of systems in which some pairs of nonterminals
can commute and some other cannot.

A partially-commutative context-free grammar consists of a finite set of nonterminals V ,
a finite set of alphabet letters Σ, a finite set of transition rules ∆ of the form (1.1) and a
symmetric irreflexive independence relation I ⊆ V × V . We say that two symbols X and Y
are independent if (X,Y) ∈ I. For simplicity we define also dependence relation D ⊆ V ×V
as D = (V ×V)\I and say that X and Y are dependent if (X,Y) ∈ D. D is thus symmetric

16 CHAPTER 1. INTRODUCTION

and reflexive.

Two words over the nonterminal alphabet are said to be equivalent, if one can be trans-
formed into another by a sequence of swaps applied to the consecutive pairs of independent
nonterminals. In other words, the relation, ∼I , is defined as the smallest equivalence relation
containing the pairs

(αX Y β, α Y X β)

for all pairs of nonterminals (X,Y) ∈ I and words α, β ∈ V ∗.

A configuration of this system is an equivalence class of relation ∼I . Note that this
corresponds to the word in the CFG case and to the multiset in the CCFG case.

The natural representation for a configuration is the partial order, in which nonterminal
X is bigger than nonterminal Y iff in every word belonging to the considered equivalence
class this particular X is before this particular Y in the word. For this to be the case, it is
necessary either that X and Y are dependent, or that there exists a sequence of nonterminals
Z1, . . . , Zk in between of X and Y such that X is dependent with Z1, Zi is dependent with
Zi+1 for i ∈ {1, . . . , k − 1}, and Zk is dependent with Y .

Example 1.3 To illustrate the above notions consider a word w = CABACDE and a
dependence relation containing pairs (A,B), (B,C), (C,D), (D,E) and the symmetric and
identity ones. A graphical illustration of the configuration [w]∼I

is presented in Figure 1.4.

C

A

B

C

A D

E

Figure 1.4: Equivalence class of word w = CABACDE

The configuration graph is defined naturally. Vertices are configurations and transitions
are of the form

[X · α]∼I

a−→ [γ · α]∼I

for some transition rule X a−→ γ in ∆ and some α ∈ V ∗.

A language of the particular configuration c is the set of words on the paths from c to the
empty configuration. For a distinguished initial nonterminal, we define the language of the
grammar as the language of the configuration consisting of this single initial nonterminal.
The class of all configuration graphs of partially-commutative context-free grammars is
called partially-commutative context-free graphs (PCCFG) and the class of languages is called

1.2. PARTIALLY-COMMUTATIVE CONTEXT-FREE GRAPHS 17

partially-commutative context-free languages (PCCFL).

Example 1.4 As an illustration consider a grammar with the following transition rules

P
a−→ WBCB̄ W

a−→ WBC B
b−→ ε B̄

b̄−→ ε

W
ā−→ C̄ C

c−→ ε C̄
c̄−→ ε

the initial nonterminal P and the independence relation I being the symmetric closure of
{B, B̄} × {C, C̄}.

The example derivation of a word a3āb3b̄c̄c3 is:

P
a−→WBCB̄

a2

−→W (BC)3B̄
ā−→ C̄(BC)3B̄ = B3B̄C̄C3 b3b̄c̄c3−→ ε,

where for simplicity instead of equivalence classes we write its representatives, concrete
words. We will use this simplifying convention from this point on.

Observe that we can assume that the prefix of the derivation in this system looks like:

P
a−→WBCB̄

a−→ . . .
a−→W (BC)nB̄ ā−→ C̄(BC)nB̄

as the nonterminal W is dependent with all other nonterminals. Configuration C̄(BC)nB̄
consists of two sets of nonterminals which are mutually independent: nonterminals B and B̄
and nonterminals C and C̄. Therefore the rest of the derivation generates an arbitrary inter-
leaving of words bnb̄ and c̄cn. We use here the notation u || v for the set of all interleavings
of words u and v.

Hence the language of the grammar equals⋃
n≥1

anā (bn b̄ || c̄ cn). (1.3)

Transitive dependence relation. Let us consider the special case of PCCFG, when the
dependence relation is assumed to be transitive. In this way we obtain a subclass, called
tPCCFG in the sequel, exhibiting multiply nice properties. The corresponding class of
languages we call tPCCFL. A major part of this thesis is devoted to investigation of this
class as it seems to be more interesting than its superclass PCCFG.

Recall that dependence relation is always reflexive and symmetric therefore in this case it
is an equivalence. The equivalence classes of the dependence relation we call threads. Thus
every nonterminal is dependent with all nonterminals from the same thread and indepen-
dent from all nonterminals belonging to other threads. Therefore the diagram (as in the
Example 1.3) of any configuration consists of several separated linear orders. Thus we may
view a configuration of a tPCCFG system as a tuple of words, one for each thread.

18 CHAPTER 1. INTRODUCTION

As an illustration, note that the dependence relation in Example 1.4 is not transitive
as (B,W), (W,C) ∈ D, but (B,C) 6∈ D. We will later show in Section 2.5, in the proof of
Theorem 2.2 that even the language (1.3) is not in tPCCFL.

Example 1.5 Consider a grammar with the following transition rules

W
a−→ WD D

c−→ B B
b−→ ε

W
ā−→ ε D

b−→ C C
c−→ ε

with the initial nonterminal W and threads {W,D}, {B} and {C}. The example derivation
of the word aaābbcc is

W
a−→WD

a−→WDD
ā−→ DD

b−→ CD = DC
b−→ CC

c−→ C
c−→ ε.

Note that every derivation has necessarily a prefix of the form

W
a−→ . . .

a−→WDn ā−→ Dn

and from Dn any interleaving of words bn and cn can be derived. Therefore the language
equals ⋃

n≥0

anā (bn || cn).

Surprisingly it is very similar to the language (1.3), which is claimed by us not to be in
tPCCFL.

Automaton model. Now we introduce an automaton model corresponding to the class
tPCCFG. We start however with a slightly more general setting of multi-pushdown au-
tomata.

A multi-pushdown automaton (MPDA) is very similar to the usual pushdown automaton,
with a slight difference: it has many stacks. In a single step it reads one input letter and
depending on the current state pops one stack symbol from a chosen stack, pushes several
new stack symbols on selected stacks and possibly changes its state. Wlog one may assume
that the stack alphabets are disjoint.

Formally, a k-stack MPDA consists of a finite set of states Q, a finite input alphabet Σ, a
finite number of pairwise-disjoint finite stack alphabets S1, . . . , Sk and finite set of transition
rules ∆ of the form:

q,X
a−→ q′, α1, . . . , αk (1.4)

such that q and q′ are states, X ∈ Si for some i ∈ {1, . . . , k}, letter a ∈ Σ and αj ∈ S∗j for
j ∈ {1, . . . , k}.

1.3. RESULTS 19

A configuration of a MPDA
〈q, α1, . . . , αk〉

consists of a state q ∈ Q together with a tuple of words (α1, . . . , αk) such that αi ∈ S∗i for
i ∈ {1, . . . , k}. Transition rules ∆ induce the transition relation on configurations as follows:

〈q, β1, . . . , βi−1, Xi βi, βi+1, . . . , βk〉
a−→ 〈q′, α1 β1, . . . , αi βi, . . . , αk βk〉

if there is a transition rule
q,Xi

a−→ q′, α1, . . . , αk

in ∆.
Consider now a special case of MPDA with only one state. Equivalently, we may assume

that the MPDA has no state, and ignore state in notation. A stateless multi-pushdown
automaton (SMPDA) corresponds to the tPCCFG system defined by the rules X a−→
α1 . . . αk with the independence relation I containing pairs of nonterminals (X,Y) ∈ I

belonging to the same stack alphabet. One can easily verify that corresponding configuration
graphs are isomorphic.

Normed subclass. It is important to distinguish one special property of systems. We
say that a nonterminal X is normed if there exists a sequence of transitions leading from
the configuration containing only one X to the empty configuration (in other words, the
language of X is nonempty). We say that a partially-commutative context-free grammar is
normed if every its nonterminal is normed.

Surprisingly, the normedness assumption usually simplifies things a lot. Many problems
undecidable in general are decidable under this assumption, or have much lower complexity.

Normedness allows us to define norm of a configuration α, as the distance to the empty
configuration, i.e. the length of the shortest word in the language of α. The norm is denoted
by |α|.

1.3 Results

The remaining part of this dissertation focuses on investigations of the properties of PCCFG

and its subclass tPCCFG. The results are divided into three chapters. Most valuable and
technically involved are presented in the second and third chapter. The first one compares
expressiveness of two described classes with other models possessing both recursive and
concurrent behaviour. The second one considers the reachability problem. The last one
investigates the bisimulation problem.

Expressivity. In Chapter 2 we compare language expressiveness of classes PCCFG and
tPCCFG with two other, well known classes of languages displaying sequential and con-

20 CHAPTER 1. INTRODUCTION

current behaviour. These classes are languages of Process Algebra graphs (PA graphs),
denoted here by PAL, and the class of trace closures of context-free languages, denoted
here by traceCFL. The former class is exactly languages of context-free grammars with
additional possibility of using the shuffle operation on the right-hand sides of the rules. By
a shuffle of two words we mean an arbitrary interleaving of these words and by a shuffle of
two languages we mean the set of all shuffles of all pairs of words from these languages. The
latter class contains all languages of the form

{w : ∃u∈L w ∼I u},

for some context-free language L and an independence relation I over its alphabet. Relation
∼I is defined like an equivalence in Section 1.1 in the paragraph describing trace theory.

The main result of Chapter 2 states that all the mentioned above classes are pairwise in-
comparable. Some of the incomparability results are obtained by applying pumping lemmas
proposed by us. Some other results seem however to require more subtle arguments.

In order to show that some class of structures K1 has stronger expressibility than other
class of structures K2 we usually point out a structure in K1 that does not have any equiv-
alent one in K2. Depending on the choice of the notion of equivalence one can get different
answers. In the case of labelled graphs the natural choice may be language equivalence
or trace equivalence. Trace equivalence is just language equivalence when we assume all
configurations to be accepting5. However, also some other behavioural equivalences are rea-
sonable candidates. One of most important is the bisimulation equivalence [Mil80, Par81],
which is finer than trace equivalence. Many others were also investigated, all lying be-
tween trace equivalence and bisimulation equivalence, forming the so-called van Glabbeek
spectrum [Gla01].

The strongest incomparability results one obtain when the coarsest notion of equivalence
is chosen. This is one of reasons why we focus on language expressibility6. Another one is
that we feel that analysis of a language is technically easier than analysis of bisimulation
semantics. Finally, it seems that the results concerning the language expressivity are of an
independent interest.

In Chapter 2 we investigate also closure properties of our two language classes of interest,
tPCCFL and PCCFL. Both classes are closed under union and shuffle. The latter one is
also closed under concatenation and additionally under homomorphic images and substitu-
tion, if a mild assumption is imposed. The former one is not closed under concatenation.
In the case of homomorphic images and substitutions we do not know the answer, however
we suppose it is negative. Both classes lack closure on inverse homomorphic images and in-
tersection with regular languages. The above facts do not need complicated methods, quite

5Trace equivalence has no connection with trace theory, it is only coincidence of names.
6It is not hard to show that for normed systems accepting by an empty configuration language equivalence

is finer than trace equivalence.

1.3. RESULTS 21

standard techniques are sufficient.
As one of results we propose new pumping lemmas. Surprisingly it is possible to view

the pumping lemma for PCCFL and the known pumping lemmas for regular languages,
CFL and CCFL in an uniform way. Recall that the pumping lemma for regular languages
says that for a sufficiently long word w in the language L, it is possible to choose its infix
t such that w = stu and then stnu ∈ L for any n ∈ N. Call t the pumping word. It
turns out that adding sequential behaviour to the system results in the second pumping
word in the pumping lemma. Adding concurrent behaviour results in pumping words being
not infixes, but subwords of w, i.e. subsequences of the letter sequence. Finally, adding
both sequential and concurrent behaviour results, roughly speaking, in two pumping infixes.
Precise formulations are given in Chapter 2.

Reachability. As we mentioned above tPCCFG has a very natural automaton model,
stateless multi-pushdown automaton. In Chapter 3 we consider the reachability problem for
general multi-pushdown automata.

Multi-pushdown automata are Turing complete, so the reachability problem is undecid-
able for them. However it turns out that after imposing a small restrictions on the power of
automata the problem become decidable, and in some cases even NP-complete. We consider
two kinds of restrictions. The first one is normedness assumption, as discussed above. The
second one concerns the structure of states. Automaton is weak if there is a linear order on
states such that for every transition q −→ q′, state q′ is smaller or equal than state q in the
considered order. In other words there are no nontrivial loops in the structure of states.

The simplest variant of reachability asks about a possibility of reaching a target config-
uration t from a source configuration s. We investigate a generalised problem, for a source
set of configurations S and a target set of configurations T . Assuming that both S and T
are regular sets, reachability still has good complexity in many cases.

It turns out that allowing a source set to be regular usually does not increase the com-
plexity with respect to the singleton source set. Therefore we present our results assuming
that a source set is any regular set.

Our main contributions are shortly exhibited in the table below. The most important and
technically involved is the NP-completeness for normed stateless multi-pushdown automata
with regular source and target sets.

Reg point
normed unnormed

Reg Reg

stateless NP-complete
NP-complete
undecidable

weak
decidable decidable
undecidable undecidable

22 CHAPTER 1. INTRODUCTION

Bisimilarity. The bisimulation equivalence is one of fundamental behavioural equiva-
lences [Mil80, Par81]. It is the coarsest among all equivalences in the van Glabbeek spectrum
and additionally often the only decidable one (context-free graphs [GH94], commutative
context-free graphs [Hüt94]). The bisimulation equivalence may be seen as the right one
for the nondeterministic systems, precisely as the language equivalence is the right one for
deterministic systems.

Consider a configuration graph with set of vertices V and transitions labelled by letters
from alphabet Σ. A relation ≡ ⊆ V × V is a bisimulation if for all pairs of vertices p ≡ q

the following conditions are fulfilled:

• for every letter a ∈ Σ and every transition p a−→ p′ there exists a transition q a−→ q′

such that p′ ≡ q′;

• for every letter a ∈ Σ and every transition q a−→ q′ there exists a transition p a−→ p′

such that p′ ≡ q′.

The empty relation is a bisimulation and the union of bisimulations is also a bisimulation,
therefore for a fixed graph there exists the greatest bisimulation. It is called bisimulation
equivalence, or bisimilarity, and is denoted by ∼ in the sequel.

Bisimulation equivalence was intensively investigated for various classes of Process Rewrite
Systems [Srb02a]. The usual question is the following bisimulation problem: given a con-
figuration graph G and two its vertices p and q, determine whether p ∼ q. As said above,
for normed context-free graphs and normed commutative context-free graphs bisimulation
problem is decidable in polynomial time [HJM96a, HJM96b], while for normed PA graphs
the best known algorithm requires double exponential time [HJ99].

There are two main results of Chapter 4. The first one is a polynomial-time algorithm
deciding bisimilarity in the subclass of normed tPCCFG. This subclass, called disjoint, is
a superclass of both CFG and CCFG. Advantage of our algorithm is the uniform solution
for two classes: normed CFG and normed CCFG.

The second main result is the refinement of the first one: a specialisation of our algorithm
to the case of normed context-free graphs. It works in time O(N4 polylog(N)) and is the
fastest known till now7, where N is the size of the grammar. For the subcase of simple
grammars (i.e. deterministic context-free grammars) it solves the bisimulation problem
even faster, in O(N3 polylog(N)), which is also the fastest known result for this class. Note
that for simple grammars bisimilarity coincides with language equivalence.

The idea of an algorithm is to compute the bisimilarity relation in an iterative process
of computing finer and finer overapproximations. This concept is not new, it has been
used before. The first step is to find a relation ≡0, which is an overapproximation of the
bisimilarity relation. Next, every iteration starts with ≡k and computes its refinement

7The complexity is computed under the standard assumption that arithmetic operations on numbers
containing linear number of bits, are performed in constant time.

1.4. RELATED RESEARCH 23

≡k+1. Every next relation is included in the previous one, but still contains bisimulation
equivalence. Algorithm is designed in such a way that if fixed point is reached, i.e., ≡k =
≡k+1, then it is necessarily the bisimilarity relation, i.e. ≡k = ∼.

Both the initial relation and all the intermediate relations are defined on the infinite set
of configurations. In order to keep them in memory we require some finite representation.
The substantial technical difficulty was showing that in the disjoint class all the intermedi-
ate relations may be represented in such a way. It was achieved by proving the so-called
unique decomposition property of the considered relations. Roughly speaking, it says that
a relation may be represented by a set of generating equations, that define decompositions
of nonterminals.

In order to obtain low complexity it was necessary to apply some optimisations. As
generating equations are pairs of strings, possibly exponential wrt N , we need to manipulate
efficiently a long strings. We build on algorithm proposed in [ABR00] which keep string
compressed and operate on them without a recompression.

The bisimulation problem remains open for the whole class of normed tPCCFG. No
decidability result is known. On the other hand, the undecidability of bisimilarity for un-
normed tPCCFG with ε-transitions may be shown by a simple modification of the con-
struction from [Srb02d].

Articles. The class of PCCFG has been introduced in [CFL09]. Contributions described
in the dissertation have been published in a number of articles. Results presented in Chap-
ter 2 have been described in [CL12]. The results concerning the reachability problem are
shown in [CHL12]. The decision procedure for bisimilarity for disjoint grammars appeared
in [CFL09, CFL11]. In the article [CL10] the effective version of algorithm for context-free
graphs has been described, with working time O(N5). The same working time was obtained
for simple grammars. Its acceleration to O(N4 polylog(N)), and to O(N3 polylog(N)) for
simple grammars, is not published till now.

Results shown in this thesis have been developed together with coauthors of my papers,
namely Sibylle Fröschle, Piotr Hofman and Sławomir Lasota.

1.4 Related research

There was a large amount of research related to the topic of this dissertation. We present
here a brief overview, divided into three paragraphs that correspond to chapters of this
thesis respectively.

Expressivity. Various extensions of context-free languages by some kind of interleaving
have been investigated.

Languages of Process Algebra, introduced in Section 1.1, have been investigated in [Gis81,

24 CHAPTER 1. INTRODUCTION

NSS03]. In his PhD thesis Søren Christensen [Chr93] considers language properties of
commutative-context free languages. They coincide with context-free languages with the
imposed restriction that only the shuffle operation is allowed on the right-hand sides of the
rules. In [BMOT05] Dynamic Pushdown Networks, a multi-pushdown model is introduced
and its language expressibility is compared with language expressibility of Process Algebra
languages.

Much more attention has been payed to languages with partial commutativity imposed
on alphabet letters. E.g. [BBC+10] contains an overview research devoted to closure of reg-
ular languages under shuffle. Trace theory [Maz86, Maz88, DR95] widely investigates trace
languages i.e., roughly speaking, languages closed under partial commutation of alphabet
letters.

Reachability. Multi-pushdown systems are an attractive model of recursive multi-threaded
programs. This is why different instantiations of the multi-pushdown paradigm have been
appearing in the literature recently, most often in the context of formal verification. We
only mention here a few relevant positions we are aware of, without claiming completeness.
As multi-pushdown systems are a Turing-complete model of computation, they are only
applicable for verification under further tractable restrictions.

One remarkably successful restriction is imposing a bound on the number of context
switches; between consecutive context switches, the system may only perform operations on
one stack (local operations). In [QR05], the context-bounded reachability has been shown
decidable, by reduction to reachability of ordinary pushdown systems [BEM97]. This line
of research, with applications in formal verification, has been continued successfully, e.g.
in [BESS06, LR09, ABQ09].

Most often a model has global states and the restriction is imposed on the possible form
of transitions. For instance, the author of [Ati10] assume that the stacks are ordered, and
pop operation can only be performed on the first nonempty stack. Another example is the
model introduced in [BMOT05], that allows for unbounded creation of new stacks; on the
other hand, operations on each stack are local, thus no communication between threads is
allowed. Then the model was further extended and investigated e.g. in [BESS06, AB09].

Another possible approach is to replace global state space with some communication
mechanism between threads. Some successful results on analysis of multi-threaded programs
communicating via locks, in a restricted way, have been reported in [KIG05, Kah11].

As we mentioned before Process Rewrite Systems, in particular PA graphs, are also
appropriate models for recursive programs using concurrency. Reachability problem is de-
cidable in Process Rewrite Systems [May97a]. In [LS02] a nondeterministic polynomial-time
algorithm for reachability over PA graphs [BCMS01] has been provided. Later, in [KRS09]
the reachability problem has been shown decidable for whole class of Process Rewrite Sys-
tems [May97a] extended with weak control states.

1.4. RELATED RESEARCH 25

Bisimilarity. Bisimulation problem started to be considered in the late eighties and among
the first considered classes were CFG and CCFG.

Decidability for CFG was shown in [CHS95] which was an extension of previous re-
sult [BBK87] for normed CFG. For CCFG decidability was shown a bit earlier, in [CHM93].
All these results were based on the idea of a finite base, which entirely describes a bisimu-
lation relation. Existence of such a base was sufficient to show decidability.

Exact complexity bounds have been found much later. The only relatively fast result
was an 2EXPTIME upper bound for CFG [BCS95]. Jančar showed in [Jan03] PSPACE
upper bound for CCFG using the technique of distances to disabling a particular event.
Srba showed PSPACE-hardness for CCFG in [Srb02b] and for CFG [Srb02c]. Thus the
bisimulation problem for CCFG is PSPACE-complete. Recently, Kiefer showed EXPTIME
lower bound for CFG [Kie12], but the exact complexity for CFG is still unknown.

There was also a line of research leading to the fast polynomial-time algorithms for
normed subclasses of CFG and CCFG. The sequence of consecutive papers [Cau90, HS91,
HT94] improving the complexity resulted finally in the polynomial-time algorithm for normed
CFG [HJM96a]. The time complexity of the above algorithm is O(N13). The sequence of
papers [LR06, CL10] improved this bound8 to O(N5). In this thesis we present further
improvement of the algorithm from [CL10] that works in time O(N4 polylog(N)). In the
special case of simple grammars the algorithm works in time O(N3 polylog(N)).

The authors of [HJM96a] developed also the polynomial-time algorithm for the class of
normed CCFG [HJM96b]. This algorithm, is in fact the starting point for our investigations
in Chapter 4. In both cases [HJM96a] and [HJM96b] authors used the concept of iterative
refinement of an approximation of a base. When this iterative process reaches a fixed point
it turns out that a base is a correct description of bisimilarity. In [JK04] there was proposed
an algorithm working in the time O(N3), which builds on the ideas of [Jan03].

Another line of research was to analyse CFG and CCFG systems jointly. For PA, which
subsumes both systems, the only positive result is 2EXPTIME upper bound for the normed
subclass [HJ99]. No lower bound is known and it is even possible that bisimulation problem
is in P in normed PA. Another problem is deciding bisimilarity between CFG and CCFG:
given CFG and CCFG, both with a distinguished vertex, check whether these two vertices
are bisimilar. The normed case was shown to be decidable in polynomial time in [JKS10].
The unnormed case is decidable due to [JKM03], but without any elementary upper bound
on the complexity.

The bisimulation problem was investigated also for other classes of Process Rewrite
Systems. Bisimilarity of normed Pushdown Processes is decidable due to the Stirlings re-
sult [Sti96]. As the extension of his famous result, Sénizergues shown in [Sén98] decidability
for Pushdown Processes extended by deterministic ε-transitions. The best known lower
bound is EXPTIME-hardness [KM02], which can be even extended to the normed case

8The operations on numbers with linearly many bits are assumed to be performed in constant time.

26 CHAPTER 1. INTRODUCTION

(see the online version of [Srb02a]). For the subclass of Pushdown Processes with only one
stack symbol, i.e., One-Counter Processes, exact PSPACE-complete complexity is known
due to [Srb09, BGJ10]. Bisimilarity is undecidable for Petri nets, even in the normed
case [Jan95].

Chapter 2

Expressivity

This chapter considers the language classes tPCCFL and PCCFL.

Outline Section 2.1 contains preliminaries. Closure properties are considered in Sec-
tion 2.2, a pumping lemmas, useful tools for analysing languages, are introduced in Sec-
tion 2.3. In Section 2.4 the main result of this chapter is formulated: incomparability of
language classes tPCCFL and PCCFL with classes PAL and traceCFL. Section 2.5 de-
livers a proof of the above result. Finally, in Section 2.6 we discuss open problems in this
area.

2.1 Preliminaries

By an interleaving of two words w and v, of length m and n, respectively, we mean any
word u of length m + n such that its positions I = {1, . . . ,m + n} may be split into two
disjoint sets Iw and Iv such that u restricted to Iw equals w and u restricted to Iv equals
v. Let w || v denote the set of off interleavings of w and v, which is clearly a finite set. By a
shuffle of two languages L and K we mean

L ||K =
⋃

w∈L,v∈K
w || v.

Explicit swaps. In Chapter 1 we have introduced PCCFG and the class PCCFL of
languages. Recall that no ε-transition has been allowed. For convenience in this chapter we
use slightly different convention.

As mentioned in the introduction, we prefer to write derivations as a sequence of words
w1, . . . , wn instead of sequence of equivalence classes [w1]∼I

, . . . , [wn]∼I
. Now, instead of

writing w1 = w2 when [w1]∼I
= [w2]∼I

, we explicitly write a sequence of swaps showing that

27

28 CHAPTER 2. EXPRESSIVITY

w1 ∼I w2. To present this we use the ε-transitions, called swap steps, between equivalent
words. We believe that this approach is more intuitive.

From this point on in the current chapter we distinguish two kinds of transitions:

• letter transition: X β
a−→ αβ, for a transition rule X a−→ α;

• swap transition: αX Y β −→ αY X β, where X and Y are independent,

derivation can use both of them. One easily observe that after this modification generated
languages do not change.

We say that nonterminal X is active in the word Xα. Additionally we say that X is
active in the configuration if there exists a word w in this configuration such X is active in
w.

In this chapter, if the intended meaning is clear from the context, we treat often word
over nonterminals as a configuration.

Membership problem. Using the notion of derivation we can easily show the following
theorem.

Theorem 2.1. The membership problem is NP-complete both for PCCFL and tPCCFL.

NP-hardness follows easily from NP-hardness of the membership problem for CCFL,
shown in [Esp97]. The NP upper bound one obtains easily: guess a derivation of the given
word, then check in polynomial time whether it is correct.

Derivation trees. It is very convenient to use derivation trees instead of derivations
themselves. However it seems that it is not completely obvious how to define this notion
in presence of commutativity of nonterminals. Below we adopt an intuitive approach using
colours.

Fix a derivation X
w−→ ε. Clearly a configuration is a sequence of nonterminal oc-

currences. We assume that every nonterminal occurrence in a derivation will be coloured,
including occurrence of X in the initial configuration. Intuitively, a colour is intended to
represent the ’life cycle’ of one occurrence of a nonterminal during a derivation. We impose
the following simple discipline of colouring:

• if a swap transition αX Y β −→ αY X β is performed, every nonterminal occurrence in
the right-hand side configuration inherits its colour from the corresponding occurrence
of the same nonterminal on the left-hand side.

• if a letter transition X β
a−→ αβ is performed, the nonterminal occurrences in β

preserve their colours, while all the nonterminals occurrences in α get fresh colours.
Note that the colour of the occurrence of X in the beginning of Xβ disappears as a
result of the transition. We say that this disappearing colour drops the fresh colours.

2.1. PRELIMINARIES 29

Observe that nonterminal occurrences in a given configuration are always labeled with dif-
ferent colours, and that the total number of colours used in a derivation equals the number
of letter transitions.

Example 2.1 A disciplined colouring of the derivation from Example 1.5 is shown below.
Colours are 1, 2, . . . and the colouring is denoted by subscripts.

W1
a−→W2D3

a−→W4D5D3
ā−→ D5D3

b−→ C6D3 −→ D3C6
b−→ C7C6

c−→ C6
c−→ ε.

(2.1)
colour 1 drops colours 2 and 3, colour 3 drops colour 7, etc.

With the use of our colouring discipline, every derivation induces naturally a tree. The
tree nodes are all colours appearing in the derivation. The colour c1 is a parent of c2 precisely
if c1 drops c2. Every tree node c is labeled by a nonterminal. If convenient, one may think
that every node is labeled by a transition rule that made colour c disappear.

There may be many different derivations inducing the same tree. Even worse, two
derivations of different words may induce the same tree, as shown in the example below.

Example 2.2 Continuing the last example, the derivation (2.1) induces the following tree:

1 : W a−→WD

2 : W a−→WD

4 : W ā−→ ε 5 : D b−→ C

6 : C c−→ ε

3 : D b−→ C

7 : C c−→ ε

However, exactly the same tree is induced by the derivation:

W1
a−→W2D3

a−→W4D5D3
ā−→ D5D3

b−→ C6D3
c−→ D3

b−→ C7
c−→ ε

of a different word aaābcbc 6= aaābbcc. Intuitively, the words defined by subtrees rooted in
3 and 6, namely bc and c respectively, this time come in a different order. In fact all the
interleavings of these two words are allowed.

Useful properties. The examples confirm that our notion of derivation tree is more
complex than the classical one. However, trees may be still very useful for reasoning about
partially-commutative context-free languages. Observe moreover that it is possible to define
similarly notions of colours and derivation trees for PAL. We formulate here a few useful
properties which are valid for both types of derivation trees:

30 CHAPTER 2. EXPRESSIVITY

Induced subword. Given a derivation tree of a word w, every node c induces a subword
(i.e. a subsequence but not an infix in general) of w. Indeed, the subword is obtained by
concatenating only those letters from w whose colour, as a tree node, belongs to the subtree
rooted in c. We implicitly assign here to the letter of every letter transition a colour that
disappears in this transition. For instance, for both words considered in the last example,
the subword induced by the node 2 is bābc. Analogously one defines the subword induced by
a subset of nodes of a derivation tree, assuming this subset to be an antichain with respect
to the tree ancestor relation.

Infix rearrangement. The induced subword may be rearranged into an infix. Let L ∈
PCCFL and let v be the subword of w ∈ L induced by a tree node c. Clearly, w ∈ v ||u,
i.e., v is interleaved with the remaining subword u of w. Then u may be split into u = u1u2

so that u1v u2 ∈ L. Indeed, let u1 be the prefix of w preceding the first letter of v. In any
derivation, after u1, the nonterminal that labels c is clearly active. Performing the whole
derivation X v−→ ε immediately after u1 does the job.

Substitutivity. In any derivation tree, one may replace a subtree rooted in a node c by
an arbitrary derivation tree t, assumed that both c and the root of t are labeled with the
same nonterminal. The resulting tree is clearly induced by some derivation too.

2.2 Closure properties

In this section we argue that PCCFL and tPCCFL classes are closed under union and
shuffle, and PCCFL is closed under concatenation while tPCCFL is not. Then we show
that PCCFL is closed under homomorphic images and substitutions. In case of tPCCFL

we do not know the answer, however we suppose it is negative. Finally, we show that
both classes lack closure under inverse homomorphic images and intersections with regular
languages.

Comparing PCCFL with CFL, roughly speaking, one sacrifices intersection with regular
languages and inverse homomorphic images but one gains shuffle. Even if at first sight the
properties listed above do not seem exciting, one should remember that both the classes
considered here subsume also commutative context-free languages CCFL. Knowing that
CCFL lacks closure under concatenation and homomorphic images, as shown in [Chr93],
it seems that with PCCFL one retrieves these relevant closure properties. This seems to
confirm that PCCFL is a natural class of languages.

Union. Both classes are closed under union and the construction is entirely standard.

Shuffle and concatenation. Both classes are closed under shuffle and the construction
of a grammar for the shuffle L1 ||L2 is easy. Wlog assume that the grammars that generate
the two languages use distinct nonterminals. Let S1 and S2 be the initial nonterminals.

2.2. CLOSURE PROPERTIES 31

Consider the union of grammars extended with one additional initial nonterminal S. Add
additional transition rules

S
a1−→ α1S2 S

a2−→ α2S1 (2.2)

for any transition rule S1
a1−→ α1 or S2

a2−→ α2. Finally, extend independence by imposing
that whenever two nonterminals come from different grammars they are independent. This
clearly preserves transitivity of dependence.

In PCCFL, concatenation L1L2 is obtained similarly as shuffle. The only difference is
that two nonterminals coming from different grammars are always declared dependent, and
that only the left-hand transition rules in (2.2) are added. Note that concatenation is in our
setting no more natural than shuffle.

tPCCFL is not closed under concatenation, which one shows similarly as for CCFL [Chr93].
Consider L1 = {w : #a(w) = #b(w) = #c(w) ≥ 1,#d(w) = 0} and L2 = {d}. In the deriva-
tion of some w ∈ L1L2 a configuration is necessarily reached with at least two different
threads nonempty, as otherwise the language would be context-free. Thus the remaining
suffix of w is some shuffle of at least two words generated by these non-empty threads, and
only one of these words ends with d. If that subword is generated first, the whole word is
not in L1L2, which proves that L1L2 may not belong to tPCCFL.

Homomorphic images and substitutions. As we consider only Greibach grammars,
the empty word never belongs to a partially-commutative context-free language. Thus it
is natural to consider only homomorphisms h that do not contain the empty word in the
image: h(a) 6= ε for all letters a. Below we show that PCCFL is closed under images of such
homomorphisms. For tPCCFL the question is still open; we conjecture however a negative
answer.

We prefer to show a slightly stronger result: PCCFL is closed under substitutions. A
substitution s assigns to each alphabet letter a a language s(a) ∈ PCCFL. Similarly as
above, we assume that the languages s(a) do not contain the empty word. For a language L,
the substitution L[s] contains all words that may be obtained from a word in L, by replacing
each letter a with any word from s(a).

Assume a language L ∈ PCCFL, generated by a grammar G, and a substitution s.
Thus each language s(a) has its generating grammar Ga. We describe the construction of
the grammar G′ for L[s]. The nonterminals of G′ will be the union of nonterminals of G
and all grammars Ga. Wlog we assume that the nonterminal sets are disjoint.

Consider an arbitrary transition rule X a−→ α in G. Let Sa be the initial nonterminal
in Ga. For any transition rule Sa

b−→ β in Ga, we add to G′ the transition rule: X b−→ βα.
The independence in G′ is defined as the set-theoretic union of independence relations of
grammars G and Ga. Thus any pair of nonterminals coming from different grammars is
declared dependent (note that this is not achievable if the dependence has to be transitive).

The construction guarantees that G′ generates exactly L[s]. Indeed, once a transition

32 CHAPTER 2. EXPRESSIVITY

rule X b−→ βα is fired, the nonterminals of Ga block activity of other nonterminals, due to
the dependence, until a word of s(a) is generated.

We do not know whether the tPCCFL class is closed under homomorphic images;
however we suppose it is not. We conjecture that a counterexample is given by the language

L = {w : #a(w) = #b(w) = #c(w),#d(w) = 1}

together with the homomorphism h(a) = a, h(b) = b, h(c) = c, h(d) = dd.

Intersection with regular languages. Both classes PCCFL and tPCCFL lack closure
under intersection with regular languages. Let L = {w : #a(w) = #b(w) = #c(w)}. Clearly
L ∈ CCFL but L ∩ a∗b∗c∗ is not in PCCFL (and also not in PAL) according to:

Lemma 2.1. The language L = {anbncn : n ≥ 1} is not in PCCFL ∪ PAL.

Proof. Assume towards contradiction that L = {anbncn : n ≥ 1} is in PCCFL or in PAL

and apply Lemma 2.2. Observe that the two repeatable words s and t have necessarily
jointly the same number of letters a, b and c. Thus one of them has to contains two different
letters. Repeating this word twice leads to a contradiction, as the letters are no more ordered
as required by L.

It is worth noting that the lack of closure is not surprising as the emptiness problem
for intersection of a partially-commutative context-free language with a regular language is
undecidable, even if the dependence is assumed to be transitive. Roughly speaking tPCCFL

correspond to stateless multi-pushdown automata and intersection with regular language
corresponds do adding the state which makes the model Turing powerful.

Complement. Recalling that K ∩ L = K ∪ L we obtain that both classes are not closed
under complement. Otherwise they would be closed under intersection as they are closed
under union.

Inverse homomorphic images. Both classes are not closed under inverse homomorphic
images. Consider the shuffle L = L1 ||L2 of two context-free languages

L1 = {An+1SBnT : n ≥ 1} L2 = {SBnTCn : n ≥ 1},

and the homomorphism h given by h(a) = A, h(s) = SS, h(b) = BB, h(t) = TT and
h(c) = C. If h−1(L) = {an+1sbntcn : n ≥ 1} were in PCCFL then its image under
a homomorphism g(s) = b, g(t) = c, that is the language L in Lemma 2.1, would be in
PCCFL as well – a contradiction.

2.3. PUMPING LEMMAS 33

2.3 Pumping lemmas

Now we analyse how much the classical idea of pumping extends from CFL to larger classes.
Roughly speaking, the intuitive cutting and pasting in a derivation tree does not translate
to the property of a language as easily as in the case of CFL.

We formulate two different pumping lemmas. Remarkably, with one of them we complete
nicely the picture of pumping lemmas known for regular, context-free and commutative
context-free languages.

As expected, the pumping lemmas appear to be useful tool for relating the expressive
power of language classes, as we demonstrate in Section 2.4.

The pumping lemmas. The length of a word w is written |w|. To motivate our conditions
we start by recalling the pumping scheme proposed for CCFL by [Chr93]. In fact we show
slightly modified version.

(CCFL-pumping [Chr93]) There is a constant N such that if w ∈ L with
|w| > N then there exist words x, y, s such that

1. w ∈ x (s || y),

2. 1 ≤ |s| ≤ N , and

3. ∀m ≥ 0, x smy ∈ L.1

Point 1 reads as: w is a concatenation of some its prefix x and an interleaving of s and y.
We define now two new conditions on a language L.

(shuffle pumping) There is a constant N such that if w ∈ L with |w| > N

then there exist words x, y, z, s, t such that

1. w ∈ x ((s (y || t)) || z),

2. 1 ≤ |s|, |s y t| ≤ N , and

3. ∀m ≥ 0, x smy tmz ∈ L.

Point 1 reads as: there is some subword y′ of w with w ∈ x (y′ || z) and y′ ∈ s (y || t).

(concat. pumping) There is a constant N such that if w ∈ L with |w| > N

then there exist words x, y, z, s, t such that

1. w = x y z,

2. 1 ≤ |s t| ≤ N , and

3. ∀m ≥ 0, x smy tmz ∈ L.
1In [Chr93], the pumping scheme was, roughly speaking, x smy′, with y′ ∈ s || y, instead of x smy. The

proofs of both are very similar. We discuss this issue further in Remark 2.1.

34 CHAPTER 2. EXPRESSIVITY

Call the words s, t repeatable words. The difference between the two conditions concentrates
on the word y that separates the repeatable words in x smy tmz. On one hand shuffle

pumping seems weaker as y is no more an infix of w, but an arbitrary subword (subsequence).
On the other hand shuffle pumping seems stronger as the length of y is bounded.

Lemma 2.2. Every language L ∈ PCCFL ∪ PAL satisfies shuffle pumping.

Lemma 2.3. Every language L ∈ tPCCFL ∪ PAL satisfies concat. pumping.

The proofs of the above pumping lemmas are postponed to the end of this section.
Class PCCFL does not satisfy concat. pumping, as witnessed by the language from

Example 1.4. Moreover in concat. pumping one can not bound the length of the word y,
as illustrated by the following example.

Example 2.3 Consider the following language:

{anā b̄ bn : n ≥ 0} || {cnc̄ d̄ dn : n ≥ 0}

that belongs both to tPCCFL and PAL. Indeed, focus on the word

anā cnc̄ b̄ bnd̄ dn ∈ L.

The only pumping that keeps the word in L is with s = ak, t = bk, or s = ck, t = dk. In
both cases, the length of y is greater than n. On the other hand, in shuffle pumping the
length of the word y is bounded. Indeed, taking for instance

x = an−1 s = a y = ā b̄ t = b z = cnc̄ bn−1d̄ dn,

one obtains:
an−1+mā b̄ bmcnc̄ bn−1d̄ dn ∈ L, for m ≥ 0.

Relating conditions. The condition shuffle pumping is similar to the classical context-
free pumping – the difference is that words s, y, t and z are subwords, not necessarily
infixes, of w. We claim it is an elegant completion of the pumping lemmas for regular lan-
guages (RL), context-free languages (CFL) and commutative context-free languages (CCFL)
(see [Chr93]). All of these lemmas may be characterised by the following two characteristics:

1. Are there one or two pumping positions?

2. Are repeatable words infixes or subwords a given word?

The known pumping lemmas have the following characteristics:

• RL: one pumping position, a repeatable word is an infix

2.3. PUMPING LEMMAS 35

• CFL: two pumping positions, repeatable words are infixes

• CCFL: one pumping position, a repeatable word is a subword [Chr93].

In this light, our condition shuffle pumping offers an elegant completion of the picture:
two pumping positions, repeatable words are subwords. In other words, adding a sequential
construction (to RL or to CCFL) results in the second pumping position. On the other hand,
adding a parallel construction (to RL or to CFL) results in changing repeatable words from
infixes to subwords. The relationships between the four pumping conditions is depicted in
the following diagram:

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I shuffle pumping

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I CFL-pumping CCFL-pumping

y
y

y
y

y
y

y
y

y
y

y
y

y
y

y

two pumping
positions RL-pumping repeatable subword

one pumping
position repeatable infix

Remark 2.1. It is worth mentioning that another pumping scheme could be used in place
of shuffle pumping in Lemma 2.2: instead of x smy tmz, one may consider

x smy′ tmz,

with w ∈ x (y′ || z) and y′ ∈ (s (y || t)). The proof would be very similar.

Common properties. Before proving lemmas we start by collecting basic facts that hold
for any language in PCCFL ∪ PAL. Assume thus a grammar, without specifying to which
class it belongs.

We say that a nonterminal is recurrent if

X
s−→ β (2.3)

for some nonempty word s, such that X appears in β. Wlog we may assume that X is active
in β. We may thus write

X
s−→ Xβ, (2.4)

which is verbally correct in case of PCCFL, and slightly abuses the notation in case of PAL

where we should rather write X ; β. We have the following characterisation:

36 CHAPTER 2. EXPRESSIVITY

Claim 2.1. A nonterminal X is recurrent if and only if some derivation tree contains a
path with two distinct nodes labeled by X.

Proof. For the if direction, consider the subtree of the derivation tree rooted in the outermost
node labeled by a X. Then obtain (2.4) as the prefix of a corresponding derivation that
ends when the transition labelling the innermost node labeled by X is fired.

For the only if direction, complete (2.4) to a derivation of a word, and the corresponding
derivation tree will satisfy the requirement.

We say that a derivation tree contains a cycle if some path contains two nodes labeled
with the same nonterminal. As a direct conclusion from Claim 2.1 one obtains the following
few facts. Below we say briefly ’at most exponential’ to mean ’at most exponential wrt the
size n of the grammar’, i.e., at most 2c·n for some constant c. The constant is to be chosen
sufficiently large, and we omit calculating its exact value.

Claim 2.2. The size of an acyclic derivation tree is at most exponential.

Indeed, on any path in acyclic derivation tree no nonterminal repeats, therefore its depth is
at most linear and the size at most exponential.

Proof of Lemma 2.2. Recall that we have to prove that all languages L ∈ PCCFL∪PAL

satisfy:

(shuffle pumping) There is a constant N such that if w ∈ L with |w| > N

then there exist words x, y, z, s, t such that

1. w ∈ x ((s (y || t)) || z),

2. 1 ≤ |s|, |s y t| ≤ N , and

3. ∀m ≥ 0, x smy tmz ∈ L.

We do a proof for L ∈ PCCFL. For L ∈ PAL the argument is essentially the same,
however the terminology and notation need to be adjusted.

Fix L and its generating grammar. Let w ∈ L be a word of length greater than expo-
nential. Consider now a derivation of a word w from the initial nonterminal, say S w−→ ε.
By Claim 2.2 we know that the induced derivation tree has a cycle. Consider the two nodes
witnessing a cycle, say c1 and c2, both labeled by the same nonterminal, say, X. Let c1 be
an ancestor of c2. Consider the prefix of the derivation that ends just before c1 disappears:

S
x−→ Xα

v−→ ε (2.5)

with w = x v. Note that X is active in Xα. Clearly v ∈ y′ || z, where y′ is the subword
induced by the node c1, and thus generated by X, and z is some word generated by α,

X
y′

−→ ε α
z−→ ε. (2.6)

2.3. PUMPING LEMMAS 37

Let y be the subword induced by the node c2. Similarly as above, distinguish the prefix of
the first derivation in (2.6) that ends just before c2 disappears:

X
s−→ Xβ

v′

−→ ε

with y′ = s v′. Similarly as above v′ ∈ y || t for the subword y induced by c2 and some word
t generated by β:

X
y−→ ε β

t−→ ε. (2.7)

We will now use the properties of derivation trees defined in Section 3.1, namely Substi-

tutivity and Infix rearrangement. Using Infix rearrangement we deduce x y′ z ∈
L:

S
x−→ Xα

y′

−→ α
z−→ ε,

and then using Substitutivity we obtain x y z ∈ L. Applying Infix rearrangement to
the subtree of c1, and then Substitutivity, we obtain x s y t z ∈ L:

S
x−→ Xα

s−→ Xβα
y−→ βα

t−→ α
z−→ ε.

Now by consecutive applications of Substitutivity one obtains x smy tmz ∈ L,

S
x−→ Xα

sm

−→ Xβmα
y−→ βmα

tm−→ α
z−→ ε,

for all m ≥ 0 as required.
The ’at most exponential’ estimation of the lengths of words s, y and t are obtained

easily. Choose the node c1 as the root of the smallest cyclic subtree of the tree induced by
the derivation of w. In other words, every subtree of the subtree rooted in c1 is acyclic.
Thus the length of the subword induced by the node c1 is at most exponential by Claim 2.2.
�

Proof of Lemma 2.3. Recall that we have to prove that all languages L ∈ tPCCFL∪PAL

satisfy:

(concat. pumping) There is a constant N such that if w ∈ L with |w| > N

then there exist words x, y, z, s, t such that

1. w = x y z,

2. 1 ≤ |s t| ≤ N , and

3. ∀m ≥ 0, x smy tmz ∈ L.

We do a proof for L ∈ tPCCFL. For L ∈ PAL the argument is essentially the same,
however the terminology and notation need to be adjusted.

38 CHAPTER 2. EXPRESSIVITY

Consider a fixed language in tPCCFL together with its generating grammar. Recall
that equivalence classes of dependence we call threads and that a configuration may be seen
as a collection of strings, one string for each thread.

Given a derivation of a word w ∈ L of length greater than exponential, we start exactly
like in the proof of Lemma 2.2. We identify in the derivation tree two nodes c1 and c2

forming a cycle, labeled with a recurrent nonterminal X, and distinguish a prefix of the
derivation that ends just before c1 disappears:

S
x−→ Xα

v−→ ε. (2.8)

Note that we may assume wlog that nonterminals appearing in β in (2.4) are all dependent
with X – otherwise, those among them that are not, can be swapped with X and made
to contribute to generating the word s (transitivity of dependence is used here). This
observation will allow us to show the split v = yz (which is stronger than v ∈ y || z). The
intuition will be as follows: y will ensureX to "disappear" from its thread, t will be generated
by β, and z will be the remaining suffix of w.

Let us analyse in more detail the derivation of the word v according to (2.8). We will pay
special attention to the thread of X. In configuration Xα, this thread is a word, say Xᾱ.
As the derivation terminates with this (and others) thread empty, at some configuration γ
in the derivation this thread eventually becomes ᾱ. Let γ be the first such configuration.
We split the derivation into:

Xα
y−→ γ

z−→ ε, (2.9)

where v = yz. Our aim is now to appropriately merge derivations (2.4) and (2.9). Clearly
X

sm

−→ Xβm. A crucial observation is that the derivation of y according to (2.9) is also
possible from Xβmα,

Xβmα
y−→ βmγ. (2.10)

To see this, recall that all of nonterminals appearing in β are dependent with X. As the
derivation of y in (2.9) only involved X and those of nonterminals in α that are independent
with X (and thus does not involve those variables appearing in α that are dependent with
X) it may be repeated in presence of βm (again, transitivity of dependence is essentially
used here).

Finally, let t be the subword induced by all the nodes in the derivation tree that appear
in β. Thus we have:

βm
tm−→ ε. (2.11)

As β becomes active once y is generated in (2.10), by merging (2.9), (2.4), (2.10) and (2.11)
we get

S
xsm

−→ Xβmα
y−→ βmγ

tm−→ γ
z−→ ε, (2.12)

so xsmytmz ∈ L for every m ≥ 0 as required. The estimation of lengths of words s and t is

2.4. INCOMPARABILITY 39

shown in exactly the same way as previously. �

Generalisation of shuffle pumping. It is possible to generalise a shuffle pumping

in a similar way as Ogden’s lemma [Ogd68] generalises pumping lemma for CFL. Precisely
the following condition is fulfilled by any language L ∈ PCCFL ∪ PAL:

(generalised shuffle pumping) There is a constant N such that if w ∈ L
with at least N distinguished positions then there exist words x, y, z, s, t such that

1. w ∈ x ((s (y || t)) || z),

2. s contains at least one distinguished position, s y t contains at most N dis-
tinguished positions, and

3. ∀m ≥ 0, x smy tmz ∈ L.

The proof is very similar to the proof of shuffle pumping. The difference is that instead
of considering the whole derivation tree one should pay special attention to the skeleton of
the tree, i.e. paths which are leading from the root to the distinguished positions. Condition
is stronger than shuffle pumping, but unfortunately it does not help much in comparing
expressiveness of PCCFL and PAL as it is fulfilled by both classes.

The condition concat. pumping cannot be generalised in this way as it has no place
for analogous restriction. In this context only pumping words s and t have bounded length
therefore speaking about distinguished positions does not change anything.

2.4 Incomparability

Now we are ready to compare the expressive power of tPCCFL and PCCFL with other
classes. All these classes are CFL with some kind of commutativity introduced. We show
that tPCCFL is a strict subclass of PCCFL and that both PAL and traceCFL are
incomparable with either PCCFL or tPCCFL. More specifically, our results are as follows:

Theorem 2.2. tPCCFL is a strict subclass of PCCFL.

Theorem 2.3. The following non-inclusions hold:

(1) tPCCFL ∩ PAL is not included in traceCFL.

(2) tPCCFL ∩ traceCFL is not included in PAL.

Theorem 2.4. The following non-inclusions hold:

(1) tPCCFL is not included in PAL ∪ traceCFL;

(2) PAL is not included in PCCFL ∪ traceCFL;

40 CHAPTER 2. EXPRESSIVITY

(3) traceCFL is not included in PCCFL ∪ PAL.

The intuition behind the differences between PCCFL, PAL and traceCFL is as fol-
lows. traceCFL is like a PCCFL, but it differs on the level on which commutativity
is introduced. PCCFL is CFL with partial commutativity on the level of nonterminals,
while traceCFL is CFL with partial commutativity on the level of letters. PAL has
commutativity on the level of nonterminals, but introduced in the other way. In PCCFL

commutativity is static, the same pair of nonterminals is either dependent or independent
completely independently of the context. In PAL it is dynamic. Commutativity depends
on the history of the given nonterminal, its ancestors, not really too much on itself. It turns
out that distinguishing PCCFL and PAL is much harder than distinguishing traceCFL

from them.

The proofs of the results are by identifying witnessing languages L1 . . .L6, as illustrated
in Figure 2.1. The pumping lemmas, namely Lemma 2.3 and Lemma 2.2, are sufficient
to prove Theorem 2.2 and Theorem 2.4(3), respectively. On the other hand they are not
sufficient for Theorem 2.3(2) and Theorem 2.4(1)–(2), as PAL satisfies both the lemmas,
and thus we have to perform a more delicate analysis of a derivation tree.

Figure 2.1: Relating the expressive power.

2.5 Proofs of incomparability

Proof of Theorem 2.2:

tPCCFL is a strict subclass of PCCFL

2.5. PROOFS OF INCOMPARABILITY 41

Proof. In Example 1.4 we have argued that the language

L1 =
⋃
n≥1

anā (bnb̄ || c̄cn)

is in PCCFL. We will apply Lemma 2.3 to demonstrate that L1 is not in tPCCFL.

Consider a word
wn = anā bnb̄ c̄cn ∈ L1.

We claim the following: for sufficiently large n, whatever a split wn = xyz is considered,
and whatever two words s, t are chosen, st 6= ε, the word xsmytmz 6∈ L1 for some m > 0.

Let a split wn = xyz be induced by two ’cutting positions’ inside wn. The intuition is
as follows: knowing that b̄ precedes c̄ in a word from L1, we are sure that all occurrences
of b precede all occurrences of c in that word. In wn there are thus three segments, the a-,
b- and c-segment, of equal lengths. As long as b̄ precedes c̄, which is always the case in any
word of the form xsmytmz (there may be not more than one b̄ or c̄), we are sure that all
the three segments are separated. Thus we can not manage keeping their equal lengths with
two cutting points only.

Proof of Theorem 2.3(1):

tPCCFL ∩ PAL is not included in traceCFL

Proof. Using the fact that commutative context-free languages (CCFL) are included both
in PAL and tPCCFL, it is enough to prove the following:

Proposition 2.1. CCFL is not included in traceCFL.

Consider the language

L2 = {abcw : #a(w) = #b(w) = #c(w) ≥ 1}.

generated by the following commutative grammar:

X1
a−→ X2 X2

b−→ X3 X3
c−→ Y

Y
a−→ Y BC Y

b−→ Y AC Y
c−→ Y AB

Y
a−→ BC Y

b−→ AC Y
c−→ AB

A
a−→ ε B

b−→ ε C
c−→ ε

We claim that L2 does not belong to traceCFL. Indeed, towards contradiction assume
that L2 is the trace closure of some context-free language L with respect to some indepen-
dence relation over {a, b, c}. Neither (a, b) nor (b, c) may be independent, as otherwise some

42 CHAPTER 2. EXPRESSIVITY

other 3-letter prefix than abc would be allowed. Further, (a, c) may not be independent ei-
ther, since otherwise abcabc ∈ L2 would entail abacbc ∈ L2. Independence being the identity,
we deduce that L2 is context-free, a clear contradiction.

Proof of Theorem 2.3(2):

tPCCFL ∩ traceCFL is not included in PAL

Proof. Consider the language L3 ∈ tPCCFL and a grammar that generates the language.

L3 =
⋃
n≥0

ans (bn || cn). (2.13)

S
a−→ SP P

b−→ C C
c−→ ε

S
s−→ ε P

c−→ B B
b−→ ε

The initial nonterminal is S and the threads are {S, P}, {B}, {C}. L3 also belongs to
traceCFL as it is the trace closure of the context-free language {ans(bc)n : n ≥ 0} with
independence {(b, c), (c, b)}.

It remains thus to show that L3 /∈ PAL. Assume that L3 ∈ PAL, aiming at deducing a
contradiction. Fix a grammar that generates L3. For simplicity think of the transition rules
of the following form (the first two we will call sequential):

X
a−→ ε X

ε−→ Y ; Z X
ε−→ Y ||Z,

clearly this kind of rules can simulate rules

X
a−→ ε X

a−→ Y ; Z X
a−→ Y ||Z.

We will exploit the property that s divides every word in L3 into two separated regions. We
partition the nonterminals into symbols that generate some word containing s, and symbols
that do not; and call them s-symbols and non-s-symbols, respectively. By Substitutivity,
each word generated by an s-symbol contains necessarily s.

Consider a derivation tree T of a word wsv ∈ L3. The unique path leading from the root
to the leaf labeled by s call the spine. Observe that an s-symbol may only appear on the
spine and a non-s-symbol may only appear outside the spine. Knowing that the number of
occurrences of a and b on both sides of the spine is the same, we deduce that

each transition rule labelling a node of the spine is necessarily sequential. (2.14)

Indeed, assume a parallel transition rule X l−→ Y ||Z labels a node of the spine. Wlog let Y
be an s-symbol. Let u, u′ be the subwords induced by the Y -node and Z-node, respectively.

2.5. PROOFS OF INCOMPARABILITY 43

Clearly there are two interleavings of u and u′ such that the letter s, appearing in u, is
placed in the interleaving in two different positions in the word u′. Thus at least one of
these interleavings must lead to violation of the condition (2.13) in a word belonging to L3.
Condition (2.14) is thus proved.

Now consider a non-s-symbol X appearing in T . The number of occurrences #a(u) of
a in all words u generated by X is necessarily the same, and the same applies to #b(u)
and #c(u). Indeed, otherwise one gets a similar contradiction as above by considering two
words induced by the X node, differing in the number of occurrences of a or b, and using
Substitutivity. As a consequence X generates a finite language which may clearly be
defined by a context-free grammar, say GX .

If we apply the last observation to the very first non-s-symbol X on every path in T

(except the spine), we obtain a tree without parallel nodes. As GX does not depend on
the particular derivation tree T chosen, and the word wsv ∈ L3 was chosen arbitrary, we
conclude that L3 is generated by a context-free grammar. The grammar is obtained by
replacing transition rules of every non-s-symbol X in G with GX . As L is clearly not
context-free we obtain a contradiction and thus complete the proof.

Proof of Theorem 2.4(1):

tPCCFL is not included in PAL ∪ traceCFL

Proof. We slightly modify the language L3:

L4 = {abcaw : w ∈ L3}.

L4 clearly belongs to tPCCFL, as L3 does, but does not belong to traceCFL, which can
be shown similarly as in the proof of Theorem 2.3(1).

Finally, the argument for L4 /∈ PAL is analogous to the proof of Theorem 2.3(2). The
additional prefix abca on the left-hand side of the spine is irrelevant for the argument.

Proof of Theorem 2.4(2):

PAL is not included in PCCFL ∪ traceCFL

Proof. Let L5 be the language over {a, b, c, s} of all words of the form wsv, where w and v
are words over {a, b, c} that fulfil the following properties:

(i) #a(w) = #b(wv) = #c(v) ≥ 1,

(ii) #a(v) = #c(w) = 0,

(iii) for every infix w′sv′ of wsv, if #a(w′) = #c(v′) then #b(w′v′) ≥ #a(w′).

44 CHAPTER 2. EXPRESSIVITY

The idea behind the language may be depicted as follows:

a

b︷ ︸︸ ︷
a . . .

b︷ ︸︸ ︷
a s︸︷︷︸

b

c . . .

︸ ︷︷ ︸
b

c c

where the braces indicate the areas where each letter b can be placed.

The language is generated by following grammar and is thus in PAL.

P
a−→ (P ||B) ; C P

s−→ ε

B
b−→ ε C

c−→ ε

L5 is clearly not in traceCFL. This section is devoted to proving:

Proposition 2.2. The language L5 is not in PCCFL.

Assume for the sake of contradiction that L5 is in PCCFL. Fix a grammar G that
generates L5. We aim at arriving at a contradiction.

We will apply the spine method similarly as before. We say that a nonterminal X is an
k-symbol if X generates some word containing at least one letter k. A nonterminal that is
both a k-symbol and an l-symbol we call a kl-symbol. A nonterminal X is k-exclusive if it
only generates words from {k}∗. Wlog we assume that each nonterminal is useful, i.e., it
appears is some derivation of a word from L5. We say that a transition is a X k−→ α is a
k-transition for a letter k.

Nonterminals that are not s-symbols we call non-s-symbols. As every word in L5 contains
exactly one letter s, at most one s-symbol may appear in a configuration in a derivation of
any word. If such an s-symbol X does appear in a configuration then all a-symbols appear
necessarily to the left of X and all c-symbols appear to the right of X. We deduce:

Claim 2.3. Every ac-symbol is an s-symbol.

(Thus only b-symbols may appear on both sides of an s-symbol.)

Claim 2.4. Every non-s-symbol has the same number of a, b and c in any word which it
generates.

Proof. Assume a non-s-symbol X generates two words u1, u2 such that #l(u1) 6= #l(u2) for
some l ∈ {a, b, c}. By Claim 2.3, for some k ∈ {a, c} it holds #k(u1) = #k(u2) = 0. We
deduce that replacing in some derivation u1 with u2 would violate the condition (i) or (ii)
above.

2.5. PROOFS OF INCOMPARABILITY 45

Denote by #l(X) the number of letters l in any word generated by X, for a non-s-symbol
X. We also define the size of symbol X:

|X| = #a(X) + #b(X) + #c(X),

i.e., the length of each word generated by X. By Claim 2.4 we immediately conclude:

Claim 2.5. There is a bound K such that |X| ≤ K for every non-s-symbol X.

Further define #l−k(X) = #l(X) −#k(X) and #l+k(X) = #l(X) + #k(X). All these
definitions extend naturally to all α ∈ V ∗ containing no s-symbols.

Fix a sufficiently large n ≥ 0 and an arbitrary derivation of

wn = anbnscn ∈ L5.

The rest of the proof is an analysis of this fixed derivation.

Claim 2.6. The derivation contains no bc-symbol that is non-s-symbol.

Proof. Assume to the sake of contradiction that a bc-symbol X that is simultaneously a non-
s-symbol appears in the derivation. As X is a c-symbol, it can not be active before the s-
transition is performed. ButX is also a b-symbol, so it has to be active at some configuration
before the s-transition is performed, because all the b letters should be generated before s
(otherwise, assuming X is only active after the s-transition, we easily obtain a different
derivation of a anbnsu with u containing b, thus violating the condition (i) above). A
contradiction.

Distinguish the configuration reached after the last a-transition, call it border configura-
tion. This configuration necessarily contains an s-symbol, say S, and thus has the form:

αS Y1 . . . Yr,

for some α and nonterminals Y1 . . . Yr. We will inspect the nonterminals Y1 . . . Yr in detail,
ending finally with a contradiction. By Claims 2.3 and 2.6 we obtain:

Claim 2.7. Each of Y1 . . . Yr is either b- or c-exclusive.

The following easy observation will be crucial in the sequel:

Claim 2.8. If Yi is c-exclusive and Yj is b-exclusive, for i < j, then Yi and Yj are indepen-
dent.

Indeed, Yj has to be active before the s-transition is performed.

46 CHAPTER 2. EXPRESSIVITY

Lemma 2.4. There exists a constant C not depending on n such that

#c+b(Y1 . . . Yr) ≥ 2n− C

and
0 ≤ #c−b(Yi . . . Yr) ≤ C, for all i ≥ 1.

The first part of the lemma together with Claim 2.5 guarantees that r is linearly depen-
dent on n, and thus may be arbitrarily large. Using the other part of Lemma 2.4 we easily
arrive at a contradiction, as follows.

At every i ≤ r consider the set Ci of c-exclusive symbols that appear among Y1 . . . Yi.
Clearly the set of c-exclusive symbols is fixed. Thus the set Ci increases only a fixed number
of times, while increasing i. As a conclusion, choosing an appropriately large n one obtains
arbitrarily distant positions i < j with Ci = Cj . Using the second part of Lemma 2.4 we
deduce that Yi . . . Yj contains arbitrarily many b-exclusive symbols. We will construct a
derivation that defines a word not in L5.

By Claim 2.8 every b-exclusive symbol among Yi . . . Yj is independent with every c-
exclusive one among Yi . . . Yj . We may thus use swap transitions to push all b-exclusive
symbols to the right of all the c-exclusive ones. If from now on one does not use swap
transitions, the word defined by this modified derivation is not in L5. Indeed, consider the
configuration that contains precisely all b-exclusive symbols among Yi . . . Yj together with
Yj+1 . . . Yr. Using the second part of Lemma 2.4 for the suffix Yj+1 . . . Yr one deduces that
the word generated by this configuration is not a suffix of any word in L5 as it contains more
b’s than c’s. This completes the proof of Proposition 2.2.

Proof of Lemma 2.4. Exactly as in the proof of Claim 2.4 one demonstrates:

Claim 2.9. Every s-symbol has a fixed difference between numbers of a, b and c in any word
which it generates.

Therefore the notation #k−l(X) is also meaningful for s-symbols X. There exists clearly
a bound K such that #k−l(X) ≤ K for every s-symbol X and k, l ∈ {a, b, c}.

Let us call the prefix of the derivation that ends in the border configuration the a-prefix.
During the proof we restrict ourselves to the special kind of derivations and then prove the
estimations by analysing the a-prefix.

Special derivations. We say that a nonterminal X traversing from its original place
to the very beginning of the configuration performs the pushing-to-front-sequence of swap
transitions i.e. sequence of the form:

Y1 . . . YkX α −→ Y1 . . . Yk−1X Yk α −→ . . .

−→ Y1X Y2 . . . Yk α −→ X Y1 . . . Yk α.

2.5. PROOFS OF INCOMPARABILITY 47

Claim 2.10. Every word w ∈ L(G) has a derivation such that every swap transitions belongs
to some pushing-to-front-sequence.

In the sequel we assume that the considered derivation of wn is of the above form.

Analysis of a-prefix. Let us fix K as the maximum of constants from Claims 2.5 and 2.9
and M as a maximal length of a right-hand side of a transition rule. Then in particular
sequence of variables on the right-hand side of any transition rule has size smaller or equal
K ·M .

Consider some letter transition of the s-symbol during the a-prefix, say S. It is of the
form

S δ
a−→ αS′ β δ

where S′ is the s-symbol. Note that sum of sizes of α and β is bounded by KM as both
these configurations contain together at most M nonterminals. Assume that S′ will become
active still in the a-prefix. Then from Claim 2.10 all symbols in β and δ cannot traverse to
its left side as they are not a-symbols (in fact they will not move). Thus number of letter
transitions before S′ will become active is bounded by KM . After these transitions the
configuration looks like:

S′ β′ β δ,

where β′ are these nonterminals which traverse to the right side of the spine because of
S′ performing its pushing-to-front-sequence of swap transitions. Thus the sum of sizes β′

and β is bounded by KM .
Therefore during the a-prefix the s-symbol cyclically makes a transition, which results

in pushing on the right side of the spine a sequence of nonterminals β and traversing to the
right side of the spine a sequence of nonterminals β′, both with bounded size. We call the
concatenation of these sequences a group. Hence before, say j-th, letter transition of the
s-symbol during the a-prefix the configuration, say γj , looks as follows:

γj = Sj βj−1 . . . β1,

where Sj is the s-symbol and sizes of all groups βi-s are bounded by KM .

Claim 2.11. For every j ≥ 1 we have #c−b(βj−1 . . . β1) ≤ K.

Proof. Note that by Claim 2.9 we have #c−b(Sj) ≥ −K. Observe also that clearly #c−b(γj) =
0. Subtracting the inequality from the equality one obtains the Claim.

After the last, saym-th, letter transition of the s-symbol during a-prefix the configuration
looks as follows:

48 CHAPTER 2. EXPRESSIVITY

αS β βm−1 . . . β1,

for some s-symbol S, α and β with bounded size and groups βm−1, . . . , β1.

From this configuration on till the end of a-prefix only a few transitions will be performed,
from α to some α′, thus the border configuration looks as follows:

γB = α′ S β βm−1 . . . β1,

where size of α′ is bounded by KM .

Proving estimations. First we focus on the first point of the lemma. As S will not
produce any letter a from Claim 2.9 follows that #b+c(S) ≤ 2K. Using the fact that
|α′| ≤ KM and that #b+c(γB) = 2n we get the first estimation with the constant KM+2K.

Now we proceed to the second point. The lower bound is simple to show as having
#c−b(Yi . . . Yr) < 0 would imply possibility of generating the word with a suffix containing
more letters b than letters c. This contradicts the properties of L5.

We focus then on deriving the upper bound. The sequence Yi . . . Yr consists of several
groups βi and exactly one incomplete group (or a part of β). Thus it is of the form:

Yi . . . Yr = Yi . . . Yi′ βj . . . β1,

for some j ≤ m − 1 such that all variables Yi . . . Yi′ belong to the group βj+1 (or β if
j = m − 1). Thus clearly by Claim 2.11 and by estimations |βj+1| ≤ KM and |β| ≤ KM

we get

#c−b(Yi . . . Yr) = #c−b(Yi . . . Yi′) + #c−b(βj . . . β1) ≤ KM +K.

This ends up the proof of the Lemma with C = max(KM + 2K,KM + K), such that
both points are fulfilled. �

Proof of Theorem 2.4(3):

traceCFL is not included in PCCFL ∪ PAL

Proof. Consider the language

L6 = {w ∈
⋃
n≥0

(
anā d̄ dn || bncn

)
: every b precedes every d and d̄ in w}. (2.15)

Clearly, L6 is the trace closure of the context-free language {(a b)nā d̄ (c d)n : n ≥ 0}, if for

2.6. OPEN PROBLEMS 49

the independence on alphabet letters one chooses the symmetric closure of:

{a, ā} × {b, c} ∪ {d̄, d} × {c}.

Using Lemma 2.2 we will show that L6 belongs neither to PCCFL nor to PAL.

Consider a word
wn = anā bncnd̄ dn

and recall that for sufficiently large n, according to Lemma 2.2 we would obtain

wn ∈ x (y′ || z) y′ ∈ s (y || t)

for a substring y′ of wn. Recall also the pumping scheme of shuffle pumping from
Lemma 2.2:

xsmytmz ∈ L6, for m ≥ 0. (2.16)

We do a sequence of simple observations. First, to keep the same number of appearances
of letters a, b, c and d, each of the four letters must appear either in s or t. Second, both
s and t are necessarily non-empty as otherwise we would observe an illegal order of letters
in (2.16), keeping in mind that in L6 every a precedes every d and every b precedes every
c and d. Third, the length of the prefix x is at most n, as otherwise both s and t would
appear to the right of ā and thus could not contain a. Thus, x contains only a. Now, d̄ is
not in x, cannot be in s or t and cannot be in z since otherwise (s and) t could not contain
d. Therefore d̄ is in y and z contains no b. As neither x nor z contains b, and wn ∈ x (y′ || z),
y′ must contain n occurrences of b, but |y′| = |syt| ≤ N , hence this is not possible. We have
thus shown that L6 does not satisfy Lemma 2.2 and therefore it does not belong to PCCFL

∪ PAL.

2.6 Open problems

There are several open problems concerning expressibility of tPCCFL and PCCFL.

Normal forms. It is not known whether Chomsky normal form and Greibach normal
form define exactly the same languages in cases of tPCCFL and PCCFL.

Closure properties. Closure properties are not completely understood, it is not known
whether tPCCFL is closed under homomorphic images and substitutions, even when re-
stricting to homomorphisms such that h(a) 6= ε for all letters a. There is a related problem,
what if we allow h(a) = ε for some letters, but assume ε 6∈ h(L). Closure under homomorphic
images is closely related to the above question considering normal forms.

50 CHAPTER 2. EXPRESSIVITY

Epsilon transitions. Let us denote by tPCCFLε and PCCFLε classes with additionally
allowed ε-transitions. It is clear that than an empty word can be generated. However it
is not known whether there exists a language L ∈ (PCCFLε \ PCCFL) not containing an
empty word, similarly for the case of tPCCFL.

Remaining incomparability result. The other open question concerns Theorem 2.3. Is
it possible to complete it and write the symmetric statement:

(3) PAL ∩ traceCFL is not included in PCCFL (or in tPCCFL)?

Chapter 3

Reachability

This chapter contains several results. First, we prove decidability of reachability problem
for weak multi-pushdown automata. Weak MPDA are, roughly speaking MPDA with the
following restriction imposed on the structure of states: states may be ordered so that
transitions go only downwards with respect to the order. Our argument is based on a
suitable well order on the set of configurations, that strongly relies on the assumption that
the control states are weak.

Our second result is the main contribution of this chapter. We identify additional re-
strictions under which the problem becomes NP-complete; one such restriction is stateless
multi-pushdown systems. Our result subsumes (and gives a simpler algorithm for) the case
of communication-free Petri nets; reachability thereof is NP-complete as shown in [Esp97].
The main technical difficulty is to show existence of a polynomial witness for reachability.

As further results, we investigate forward and backward reachability sets, and prove that
the backward reachability set of a regular set of configurations is regular and computable,
while the forward reachability set needs not be regular in general. Finally, we identify the
decidability border for reachability of weak multi-pushdown systems. Roughly speaking,
the problem becomes undecidable when one asks about reachability of a given regular set of
configurations, instead of a single configuration.

The standard techniques useful for analysis of pushdown systems, like pumping or the
automaton-based approach of [BEM97], do not extend to the multi-pushdown setting. This
is why the proofs of our results must be based on new insights. The NP-membership proofs
are, roughly speaking, based on polynomial witnesses obtained by careful elimination of
’irrelevant’ transitions. On the other hand, the decidability results are based on a suitable
well order on configurations.

Outline. In Section 3.1 we recall the definition of the model of multi-pushdown automata
we work with and introduce preliminaries. Then in Section 3.2 we define and discuss the

51

52 CHAPTER 3. REACHABILITY

notion of regular set of configurations of MPDA. All the results shown in this chapter are
formulated in Section 3.3. For the aim of clarity all proofs are moved to the following
Sections 3.4-3.8, which are organised with respect to the techniques applied.

In Section 3.4 we show roughly, that it is enough to focus on singleton initial set of
configurations. Section 3.5 proves NP-completeness of the reachability problem in some
cases. This section is technically the most involved and proves the main result of this
chapter. Then, in Section 3.6 we concentrate on decidability proofs. Our proofs are based
on well orders and hence yield no reasonable complexity bound. Section 3.7 proves the
undecidability result. Further, in Section 3.8 we focus on an alternative notion of regularity
and prove that it is intractable. Finally, in Section 3.9 we discuss open problems and possible
future work.

3.1 Multi-pushdown automata

Recall the automaton model described precisely in Section 1.2 which we investigate in this
chapter. A multi-pushdown automaton (MPDA) consists of a finite set of states Q, finite
number of disjoint, finite stack alphabets S1, . . . , Sk and a finite number of transition rules
of the form:

q, X a−→ q′, α1, . . . , αk. (3.1)

In one step it reads an input letter from alphabet Σ and depending on the transition rule
pops one stack symbol from its stack, changes a state and pushes several new stack symbols
on the chosen stacks.

An MPDA is stateless if there is just one state (or equivalently no states). Transition
rules of an automaton are then of the form:

X a−→ α1, . . . , αk (3.2)

and configurations are of the form 〈β1, . . . , βk〉. As we mentioned above stateless MPDA
correspond to the tPCCFG, i.e. its configuration graphs are exactly graphs from tPCCFG.

A less severe restriction on control states is the following one. We say that an automaton
is weak if there is a partial order ≤ on its states such that every transition (3.1) satisfies
q′ ≤ q. Clearly, every stateless automaton is weak.

Example 3.1 Assuming a distinguished initial state and acceptance by all stacks empty,
weak MPDA can recognise non-context-free languages. For instance, the language

{anbncn : n ≥ 0} (3.3)

is recognised by an automaton described below. The automaton has two states q1, q2 and

3.1. MULTI-PUSHDOWN AUTOMATA 53

two stacks. The alphabets of the stacks are {X,B,D} and {C}, respectively. The starting
configuration is (q1,XD, ε). Besides the transition rules, we also present the automaton in
a diagram, using push and pop operations with natural meaning.

q1 q2

a, pop X
push XB,C

ε,

pop X

b, pop B

c, pop C

ε, pop D

q1, X
a−→ q1, XB, C

q1, X
ε−→ q1, ε, ε

q1, B
b−→ q1, ε, ε

q1, D
ε−→ q2, ε, ε

q2, C
c−→ q2, ε, ε

The automaton is weak and uses ε-transitions, which may be however easily eliminated.
Acceptance by empty stacks may be easily simulated using acceptance by states. The
language (3.3) is not recognised by a stateless automaton, as shown in Lemma 2.1.

Example 3.2 Non-context-free languages are recognised even by stateless MPDA with
singleton stack alphabets. The class of languages recognised by this subclass is called com-
mutative context-free languages [Huy83]. One example is the commutative closure of the
language of the previous example: the set of all words with the same number of occurrences
of a, b and c.

In the sequel we do not care about initial states nor about acceptance condition, as we will
focus on the configuration graph of an automaton. Furthermore, as we only consider reach-
ability problem, the labelling of transitions with input alphabet letters will be irrelevant,
thus we write −→ instead of a−→ from now on.

Using a standard terminology, we say that a MPDA is normed if for any state q and any
configuration 〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈p, ε, . . . , ε〉

for whatever state p. In general, whenever a MPDA is not assumed to be normed we call
it unnormed for clarity. Note that in all examples above the automata were normed. In
fact normedness is not a restriction as far as languages are considered. In the sequel we will
however analyse the configuration graphs, and then normedness will play a role.

Further, we say that a MPDA is strongly normed if for any state q and any configuration
〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈q, ε, . . . , ε〉

54 CHAPTER 3. REACHABILITY

containing only transitions that do not change state. Intuitively, whatever is the state q we
start in, any top-most symbol X in any stack may „disappear” without changing a state. For
stateless automata, strong normedness is the same as normedness.

3.2 Regular sets

We will consider various reachability problems in the configuration graph of a given MPDA.
Therefore, we need a finite way of describing infinite sets of configurations. A standard
approach is to consider regular sets. Below we adapt this approach to the multi-stack
scenario we deal with.

Consider the configurations of a stateless MPDA, S = S1
∗× . . .×Sk

∗. There is a natural
monoid structure in S, with pointwise identity 〈ε, . . . , ε〉 and multiplication

〈α1, . . . , αk〉 · 〈β1, . . . , βk〉 = 〈α1 β1, . . . , αk βk〉.

Call a subset L ⊆ S regular if there is a finite monoid M and a monoid morphism

γ : S→M

that recognises L, which means that L = γ−1(N) for some subset N ⊆M .

Without loss of generality one may assume that the monoid M is a product of finite
monoids M = M1 × . . .×Mk, and that

γ = γ1 × . . .× γk where γi : Si
∗ →Mi for i = 1 . . . k.

Thus we may use an equivalent but more compact representation of regular sets, based on
automata: a regular set L is given by a tuple of (nondeterministic) finite automata B1 . . .Bk
over alphabets S1 . . . Sk, respectively, together with a set

F ⊆ Q1 × . . .×Qk

of accepting tuples of states, where Qi denotes the state space of automaton Bi.
Unless stated otherwise, in the sequel we always use such representations of regular sets

of configurations. If there is more than one state, we assume a representation for every
state. In particular, when saying „polynomial wrt L”, for a regular language L, we mean
polynomial wrt the sum of sizes of automata representing L”.

Remark 3.1. Clearly, the cardinality of the set F of accepting tuples may be exponential
wrt the cardinalities of state spaces of automata Bi. However, complexities we derive in the
sequel will never depend on cardinality of F .

3.3. RESULTS 55

Example 3.3 Assume that there are two stacks. An example of properties we can define
is: „odd number of elements on the first stack and symbol A on the top of the second stack,
or an even number of the elements on the first stack and the odd number of elements on
the second stack". On the other hand, „all stacks have equal size" is not a regular property
according to our definition.

Remark 3.2. We have deliberately chosen a notion of regularity of languages of tuples
of words. Another possible approach could be to consider regular languages of words, over
the product alphabet (S1 ∪ ⊥) × . . . × (Sk ∪ ⊥), where the additional symbol ⊥ is necessary
for padding. This would yield a larger class, for instance the last language from Exam-
ple 3.3 would be regular. The price to pay would be however undecidability of the reachability
problems. The undecidability will be discussed below.

3.3 Results

Reachability. In this chapter we consider the following reachability problem:

Input: a MPDA A and two regular sets of configurations L,K ⊆ S.
Question: is there a path in the configuration graph from L to K?

We will write L A K if a path from L to K exists in the automaton A; sometimes we
will omit the subscript if A will be clear from the context. The sets L and K we call source
and target sets, respectively. We will distinguish special cases, when either L or K or both
the sets are singletons, thus obtaining four different variants of reachability altogether. For
brevity we will use symbol ’1’ for a singleton, and symbol ’reg’ for a regular set, and speak
of 1 reg reachability (when L is a singleton), reg reg reachability (the unrestricted
case), and likewise for reg 1 and 1 1.

Before stating the results, we note that all the problems we consider here are NP-hard:

Lemma 3.1. The 1 1 reachability is NP-hard for strongly normed stateless MPDA, even
if all stack alphabets are singletons.

The above fact follows immediately from NP-completeness of the reachability problem
for communication-free Petri nets, see [Esp97] for details.

Results. In presence of states, the 1 1 reachability problem is obviously undecidable,
because the model is Turing powerful. Undecidability holds even for normed MPDA. We
will thus consider only stateless or weak MPDA from now on.

We start by observing that out of four combinations of the reachability problem, it is
sufficient to consider only two, namely the reg 1 and reg reg cases. Indeed, as far as
complexity is concerned, we observe the following collapse:

1 1 = reg 1 1 reg = reg reg (3.4)

56 CHAPTER 3. REACHABILITY

independently of a restriction on automata. The first equality follows from our first result:

Lemma 3.2. Suppose A is a weak MPDA. Let L be a regular set of configurations of A and
let t be a configuration of A. Then

L A t =⇒ s A t for some s ∈ L of size polynomial wrt. A, L and t .

Indeed, the reduction from reg 1 to 1 1 is by nondeterministic guessing a source
configuration of polynomial size.

The second equality (3.4) will follow from our results listed below.
Before stating the remaining results, we summarise all of them in the table below.

We distinguish cases, corresponding to strongly normed/normed/unnormed case and state-
less/weak case. Each entry of the table contains the complexity of reg reg reachability
problem. Additionally, the complexity of reg 1 reachability problem is given in cases it is
different from the complexity of reg reg reachability.

For clarity, we do not distinguish stateless strongly normed case from stateless normed
one, as these two cases obviously coincide.

[reg 1]
strongly normed normed unnormed

reg reg

stateless NP-complete (Thm. 3.2)
[NP-compl. (Thm. 3.3)]
undecidable (Thm. 3.1)

weak NP-compl. (Thm. 3.2)
[decidable] [decidable (Thm. 3.4)]

undecid. (Thm. 3.1) undecidable

Now we discuss the results in detail. Proof of all theorems are moved to the following
sections. We first observe an apparent decidability frontier witnessed by stateless unnormed
MPDA and weak normed MPDA:

Theorem 3.1. The 1 reg reachability is undecidable for stateless unnormed MPDA and
for weak normed MPDA.

The proof is by reduction of the nonemptiness of intersection of context-free languages
and uses three stacks. The case of two stacks remains open.

Thus lack of strong normedness combined with a regular target set yields undecidability
in case of stateless automata. Surprisingly, restricting additionally:

• either the automaton to be strongly normed,

• or the target set to a singleton,

3.3. RESULTS 57

makes a huge difference for complexity of the problem, as summarised in Theorems 3.2, 3.3 and 3.4
below. In the first theorem we only assume strong normedness:

Theorem 3.2. The reg reg reachability is NP-complete for strongly normed weak MPDA.

Theorem 3.2 is the most involved result proved in this chapter. It is proved by showing
that reachability is always witnessed by a polynomial witness, obtained by careful elimination
of ’irrelevant’ transitions.

In the following two theorems we do not assume strong normedness, thus according to
Theorem 3.1 we have to restrict target set to singleton. Under such a restriction, we are able
to prove NP-completeness only in the class of stateless MPDA, while for all weak MPDA
we merely state decidability:

Theorem 3.3. The reg 1 reachability is NP-complete for stateless unnormed MPDA.

Theorem 3.4. The reg 1 reachability is decidable for weak unnormed MPDA.

Theorem 3.3 is shown similarly to Theorem 3.2, while the proof of Theorem 3.4 is based
on a well order, the point-wise extension of a variant of Higman ordering.

Reachability set. Now we consider the problem of computing the whole reachability set.
For a given automaton A, and a set L of configurations, we consider forward and backward
reachability sets of L, defined as:

{s : L A s} and {s : s A L},

respectively. It turns out that the backward reachability set may be computed under the
strong normedness assumption.

Theorem 3.5. For weak strongly normed MPDA, the backward reachability set of a regular
set is an effectively computable regular set.

Roughly speaking, we show that the backward reachability set is upward closed with
respect to the point-wise extension of a suitable variant of Higman ordering.

On the other hand, the forward reachability set needs not be regular, even in the case of
strongly normed stateless automata, as shown in the following example.

Example 3.4 Consider a stateless automaton with two stacks, over alphabets {A,X} and
{B}, and the following transition rules:

X −→ XA, B X→ ε, ε A→ ε, ε B→ ε, ε.

The set of configurations reachable from the configuration (X, ε) is not regular:

{(Ai,Bj) : i, j ∈ N} ∪ {(XAk,Bl) : k ≥ l}.

58 CHAPTER 3. REACHABILITY

Relaxed regularity. The relaxed definition of regularity, as discusses in Remark 3.2,
makes the reachability problem intractable. The following theorem is shown by reduction
from the Post Correspondence Problem:

Theorem 3.6. The 1 reg reachability is undecidable for stateless strongly normed MPDA,
under the relaxed notion of regularity.

Furthermore, the backward reachability set of a relaxed regular set is not necessarily
regular, even in stateless strongly normed MPDA, as illustrated by the following example.

Example 3.5 The automaton uses two stacks, with alphabets {A,X,B} and {C}. Every
symbol has a disappearing rule: A −→ ε, ε, and likewise for X, B and C. Additionally there
is a transition rule B −→ C. Consider the relaxed regular language

L = {(XAn,Cn) : n ≥ 0}

and its backward reachability set, say K. Let K ′ be a subset of K restricted only to
configurations having empty second stack. We claim that projection of K ′ on the alphabet
of the first stack is not regular. Indeed, as the only non-disappearing rule is B −→ C,
configurations from K ′ have on the first stack a word of the form wXAn, with at least n
occurrences of B in w.

3.4 Singleton source sets

Proof of Lemma 3.2:

Suppose A is a weak MPDA. Let L be a regular set of configurations of A and let t be a
configuration of A. Then

L A t =⇒ s A t for some s ∈ L of size polynomial wrt. A, L and t .

Proof. Consider a MPDA A and a regular set L of configurations of A. Let s ∈ L be a
source configuration and let t be an arbitrary configuration. Suppose s A t . We will show
that the size of s may be reduced, while preserving membership in L. The crucial but simple
idea of the proof will rely on an analysis of relevance of symbol occurrences, to be defined
below.

Symbol occurrences. Suppose that there is a path π from s to t , consisting of consecutive
transitions s −→ s1 −→ s2 . . . −→ sn = t . We will consider all individual occurrences of

3.4. SINGLETON SOURCE SETS 59

symbols that appear in the configurations. For instance, in the following exemplary sequence
of two-stack configurations

〈q,AA,C〉 −→ 〈q,BBA,DC〉 −→ 〈q,ABBA,DC〉 (3.5)

there are altogether 14 symbol occurrences: 3 in the first configuration, 5 in the second one
and 6 in the third one.

Recall that every transition si −→ si+1 is induced by some transition rule X −→ α of
the automaton. Then there is a distinguished occurrence of symbol X in si that is involved
in the transition. In the sequel we use the term symbol occurrence involved in a transition.

Precisely one occurrence of symbol in si is involved in the transition si −→ si+1; for every
other occurrence of a symbol in si there is a corresponding occurrence of the same symbol
in si+1. (Note that we always make a difference between corresponding symbol occurrences
from different configurations.) All remaining occurrences of symbols in si+1 are created by
the transition; we call these occurrences fresh.

We define the descendant relation as follows. All fresh symbol occurrences in si+1 are
descendants of the symbol occurrence in si involved in the transition si −→ si+1. Moreover,
a symbol occurrence in si+1 corresponding to a symbol occurrence in si is its descendant
too. We will use term descendant for the reflexive-transitive closure of the relation defined
above and the term ancestor for its inverse relation. In particular, every symbol occurrence
in t is descendant of a unique symbol occurrence in s. The descendant relation is a forest,
i.e., a disjoint union of trees.

Example 3.6 As an example, consider again the sequence of transitions (3.5), with symbol
occurrences identified by subscripts 1 . . . 14:

〈q,A1A2,C3〉 −→ 〈q,B4B5A6,D7C8〉 −→ 〈q,A9B10B11A12,D13C14〉 (3.6)

Say the transitions are induced by the following two transition rules:

q, A −→ q, BB, D q, D −→ q, A, D

The descendant relation can be presented as the following forest:

A1

B4

B5

D7

B10

B11 A9

D13 C3 C8 C14

A2 A6 A12

The symbol occurrences involved in the two transitions (3.6) are A1 in the first configuration
and D7 in the second one. The fresh symbol occurrences are B4, B5 and D7 in the second

60 CHAPTER 3. REACHABILITY

configuration, and A9 and D13 in the third one.

Relevant symbol occurrences. As the automaton A is weak, the number of transitions
in π that change state is bounded by the number of states of A. All remaining transitions
in π do not change state.

Consider all the occurrences of all symbols in all configurations along the path π, includ-
ing configurations s and t themselves. A symbol occurrence is called relevant if some of its
descendants:

• belongs to the target configuration t ; or

• is involved in some transition in π that changes state.

Otherwise, a symbol occurrences is irrelevant. In particular, all symbol occurrences in t
are relevant. Referring back to our example, all symbol occurrences appearing in (3.6) are
relevant.

Note that if t is not the empty configuration then every configuration in π contains at
least one relevant symbol occurrence. On the other side, in every configuration, the number
of relevant occurrences is always bounded by the sum of the size of t and the number of
states of A.

Small source configuration. So prepared, we are ready to prove that there is a config-
uration s ′ ∈ L of polynomial size with s ′ A t . We will rely on the following lemma:

Lemma 3.3. For any configuration s ′ obtained from s by removing some irrelevant symbol
occurrences, it holds s ′ A t .

The lemma follows from the following two observations: (1) all the transitions in π

involving symbol occurrences remaining in s ′ and their descendants may be re-done; (2) the
resulting configuration will be exactly t , as only irrelevant symbol occurrences have been
removed from s.

Recall that the language L is represented by a tuple B1 . . .Bk of deterministic finite
automata, one automaton per stack. Consider the content of a fixed ith stack in s, say
w ∈ A∗i . Let n be the number of states of Bi. The run of the automaton Bi over w labels
every position of w by some state. We will use a standard pumping argument to argue that
every block of consecutive irrelevant symbol occurrences in s may be reduced in length to
at most n. Indeed, upon every repetition of a state of Bi, the word w may be shortened by
removing the induced infix, while preserving membership in L. By repeating the pumping
argument for all blocks of consecutive irrelevant symbol occurrences in all stacks in s, one
obtains a configuration s ′, still belonging to L, of quadratic size. By Lemma 3.3 we know
that s ′ t , as required.

3.5. NP-COMPLETENESS 61

3.5 NP-completeness

Proof of Theorem 3.2:

The reg reg reachability is NP-complete for strongly normed weak MPDA.

Proof. NP-hardness follows from Lemma 3.1. The proof of membership in NP relies on the
following two core lemmas:

Lemma 3.4. The 1 1 reachability problem is in NP for strongly normed weak MPDA.

Lemma 3.5. Let A be a strongly normed weak MPDA and let L,K be regular sets of
configurations. If L K then s t for some s ∈ L and t ∈ K of size polynomial wrt. the
sizes of A, L and K.

The two lemmas easily yield a decision procedure for reg reg reachability: simply
guess configurations s ∈ L and t ∈ K of size bounded by a polynomial deduced from the
proof of Lemma 3.5, and then apply the procedure of Lemma 3.4 to check if s t .

Almost the whole rest of this section is devoted to proofs of Lemmas 3.4 and 3.5. The
first one is proved in Subsection 3.5, the second one in Subsection 3.5.

Proof of Lemma 3.4:

The 1 1 reachability problem is in NP for strongly normed weak MPDA.

Proof. Consider a MPDA A and two configurations s and t . We will define a nondetermin-
istic polynomial-time decision procedure for s A t .

Stateless assumption. For simplicity, we assume that both s and t have the same control
state. Thus we can treat transitions that lead from s to t as stateless transitions. At the
very end of the proof, we will discuss how to generalise it to the general case of strongly
normed weak MPDA.

Polynomial witness. Our aim is to show that if there is a path from s to t then there is
a path of polynomial length. So stated, the above claim may not be verbally true, even in
the case of context-free graphs, as witnessed by the following simple example.

X1 −→ X2X2 X2 −→ X3X3 . . . Xn−1 −→ XnXn Xn −→ ε (3.7)

The example scales with respect to n, and thus the shortest path from the configuration X1

to Xn is of exponential length. As a conclusion, one must use some subtle analysis in order
to be able to reduce the length of a witness of existence the path as required. Note that X1

is relevant and thus can not be simply omitted.

62 CHAPTER 3. REACHABILITY

Proof idea. As a first step towards a polynomial bound on the witness of the path from
s to t , we will modify the notion of transition. Intuitively speaking, our aim is to consider
exclusively relevant symbol occurrences.

By a subword we mean any subsequence of a given word. For instance, aaccbc is a
subword of aacabbcbcbc. Further, by a subtransition of X −→ α1, . . . , αk we mean any
X −→ β1, . . . , βk such that the following conditions hold:

• subword : βi is a subword of αi, for all i ∈ {1 . . . k}; and

• nonemptiness: β1 . . . βk 6= ε, i.e., at least one of words βi is nonempty.

Note that relying on the notion of relevance one easily deduces that whenever there is a
sequence of transitions from s to t , then there is also sequence of subtransitions. Indeed, it
is sufficient to remove irrelevant symbol occurrences in all transitions along the path from s
to t .

Clearly, the converse implication is not true in general. For instance, if we add a sym-
bols X0, A and the transition X0 −→ X1A to the Example (3.7), there is a sequence of
subtransitions from the configuration X0 to Xn, but Xn is not reachable from X0 as A never
vanishes. Our aim now it to modify the notion of subtransition in such a way that the
converse implication does hold as well, i.e., that existence of a sequence of subtransitions
implies existence of a sequence of transitions.

The idea is that irrelevant symbols (together with its descendants) have to vanish at
some moment, as in the above example symbol A. Therefore every symbol which has on the
same stack, but below, some irrelevant symbol have to let this symbol to vanish, as X0 in
the example. This means that at some moment all its descendants of this symbol have to be
at different stack. This is not the case in the above example as there is only one stack. By
careful modification of the notion of subtransition we assure that such a situation will not
have a place, i.e. no irrelevant symbol will be blocked by something above it. This requires
certain amount of boring book-keeping, as defined in detail below.

Marked subtransitions. We will need an additional copy of every stack alphabet Ai,
denoted by Āi, for i = 1 . . . k. Thus for every a ∈ Ai there is a corresponding marked symbol
ā ∈ Āi. Formally, let the ith stack alphabet be Ai ∪ Āi.

A marked subword of a word w ∈ A∗i is any word in (Ai ∪ Āi)∗ that may be obtained
from w by the following marking procedure:

• colour arbitrary occurrences in w (the idea is to colour irrelevant symbol occurrences),

• mark every occurrence that is followed by any coloured occurrence,

• and finally remove coloured occurrences.

For instance, according to the colouring aacabbcbcbc, a marked subword of aacabbcbcbc is
āāc̄cbc.

3.5. NP-COMPLETENESS 63

Remark 3.3. In this dissertation we use colouring arguments several times. The intended
meaning is always to emphasise some particular property of a nonterminal. However, the
details differ. Colouring argument is used once in Chapter 2, where a colour represents a
’life cycle’ of a nonterminal during a derivation. In the current chapter colouring argument
is used three times. Above, its goal is to distinguish these nonterminals which are irrelevant.
Similar meaning have colours in Section 3.6, in the proof of Theorem 3.4. On the other
hand, the goal of the colouring argument used in the proof of Lemma 3.5 is to distinguish
nonterminals belonging to the same line. Finally, in Chapter 4 colouring argument is used
once, in order to divide nonterminals in the proof of Lemma 4.1 into two separate groups.

Recall that a word w ∈ A∗i represents a content of the ith stack, with the left-most
symbol being the top-most. The idea of marked occurrence is that this symbol cannot be
blocking, i.e. at some moment it and its descendants have to uncover the stack below them.
Intuitively we have to remember the marking as we have to assure that removed symbol
occurrences really will have an opportunity to vanish.

A notion of marked subtransition is a natural adaptation of the notion of subtransition.
Compared to subtransitions, there are two differences: ’subword’ is replaced with ’marked
subword’; and whenever the left-side symbol is marked, then it may only put marked symbols
on its stack. Formally, a marked subtransition of X −→ α1, . . . , αk is any X −→ β1, . . . , βk

such that the following conditions hold:

• subword : βi is a marked subword of αi, for all i ∈ {1 . . . k};

• nonemptiness: β1 . . . βk 6= ε, i.e., at least one of words βi is nonempty; and

• marking inheritance: if X is marked, say X ∈ Āi, then all symbols in βi are marked.

Note that there are exponentially many different marked subtransitions, but each one is of
polynomial size. Finally, note that every subtransition is obtained from some transition by
the marking procedure as above, applied to every stack separately.

By the nonemptiness assumption on marked subtransitions we obtain a simple but crucial
observation:

Lemma 3.6. Along a sequence of marked subtransitions, the size of configuration can not
decrease.

For a configuration 〈α1, . . . , αk〉, its marked subconfiguration is any tuple 〈β1, . . . , βk〉
such that βi is a marked subword of αi for all i ∈ {1 . . . k}.

Lemma 3.7. For two configurations s and t , the following conditions are equivalent:

(1) there is a sequence of transitions from s to t ,

(2) there is a sequence of marked subtransitions from u to t , for some marked subconfigu-
ration u of s.

64 CHAPTER 3. REACHABILITY

Proof. The implication from (1) to (2) follows immediately. The sequence of marked sub-
transitions is obtained by application of the marking procedure to all transitions. For every
transition, colour in the marking procedure precisely those symbol occurrences that are
irrelevant.

Now we show the implication from (2) to (1). The proof uses strong normedness.
Assume a sequence π of marked subtransitions from u to t , for some marked subconfig-

uration u of s. Recall that each subtransition in π has its original transition of A. We claim
that there is a sequence of transitions from s to t, that contains the original transitions of
all the marked subtransitions appearing in π, and cancelling sequences

q X −→ . . . −→ 〈q, ε, . . . , ε〉 (3.8)

for some stack symbols X, existing due to strong normedness assumption.
The sequence of transitions from s to t is constructed by reversing the marking procedure.

For the ease of presentation, beside letters from Ai, we will also use coloured letters.
Start with the configuration s, with colouring of symbol occurrences induced by u, i.e.,

those symbol occurrences are coloured that are not in u. Then consecutively apply the
following rule:

• If the top-most symbol X on some stack is coloured, apply a cancelling sequence for
X.

• Otherwise, apply the original transition of the next subtransition from π, using the
colouring that appeared in the marking procedure.

For correctness, we need to show that all coloured occurrences of symbols are eventually
canceled out, as this guarantees that the final configuration is precisely t.

Let’s inspect π. As no symbol in t is marked, every marked symbol occurrence eventually
disappears as a result of firing of some subtransition. Recall that marking of a symbol X̄
disappears only if the subtransition pushes nothing on the stack of X̄. As a consequence,
every coloured symbol occurrence will eventually appear on the top of its stack. Thus the
cancelling sequence for X will be eventually applied.

Lemma 3.8. For two configurations u and v , if there is a sequence of marked subtransitions
from u to v , then there is such a sequence of polynomial length wrt the sizes of u, v and A.

Proof. From now on, we will write ’subtransitions’ instead of ’marked subtransitions’. As
we will primarily work with subtransitions, we will use the stack alphabets Ai ∪ Āi for
i ∈ {1 . . . k}.

The number of subtransitions that change state is bounded by the number of states of A,
as A is assumed to be weak. Thus it is sufficient to prove the lemma under the assumption

3.5. NP-COMPLETENESS 65

that the subtransitions do not change state. In other words, wlog we may assume A to be
stateless.

The size of the right-hand side of a marked subtransition is at least 1. Distinguish
subtransitions with the size of the right-hand side equal 1, and call them singleton subtran-
sitions. Clearly, the number of non-singleton subtransitions appearing in the sequence in
the above claim is at most equal to the size of v , thus it is sufficient to concentrate on the
following claim:

Claim 3.1. If there is a sequence of singleton subtransitions from a configuration u to v
then there is such a sequence of polynomial length.

Note that the sizes of u and v in the above claim are necessarily the same.
Now we analyse in more detail the singleton subtransitions. Note that they have the

form
X −→ Y (3.9)

as the right-hand sides contain precisely one occurrence of a symbol. Consider the strongly
connected components in the induced graph, with symbols as vertices, and singleton sub-
transitions (3.9) as edges.

Distinguish those singleton subtransitions (3.9) that stay inside one strongly connected
component (in other words, such that there is a sequence of subtransitions from Y back to
X) and call them inner singleton subtransitions. Note that the number of non-inner sub-
transitions that appear in the sequence of the last claim is polynomial (at most quadratic),
thus the last claim is equivalent to the following one:

Claim 3.2. If there is a sequence of inner singleton subtransitions from a configuration u
to v then there is such a sequence of polynomial length.

The rest of the proof is devoted to showing the last claim.
We start by doing a sequence of simplifying assumption without losing generality.
First, wlog we may assume that the relation (3.9) is transitive, as we only care about the

length of the sequence of subtransitions up to a polynomial. Thus every strongly connected
component is a directed clique.

By the type of a clique we mean the set of stacks that are represented in the clique, i.e.,
the stacks that have at least one symbol in the alphabet that belongs to the clique. We may
assume that there is no clique of singleton type. Indeed, otherwise the stack is essentially
inactive along the path, except for the top-most symbol, and thus may be ignored in our
analysis.

Further, wlog we may also assume that every clique has at most one symbol belonging
to every stack alphabet. Indeed, two different symbols from the same clique and the same
stack alphabet can easily mutate from one into the other, when being the top-most symbol
of the stack. And every symbol X may be easily made top-most by popping all symbols

66 CHAPTER 3. REACHABILITY

above X to other stacks (this is doable due to the assumption that type of cliques are not
singletons).

The simplifications lead us to the following reformulation of the last claim. Let k ≥ 1
be an integer. Assume a finite set of symbols A, each symbol X ∈ A coming with its
type type(X) ⊆ {1 . . . k} of cardinality at least 2. Consider the set of k-tuples of stacks
(A∗)k satisfying the following consistency condition: if X appears in the ith sequence then
i ∈ type(X). Consider the following transition rules: the top-most letter of some stack may
be moved to the top of some other stack, as long as the consistency is preserved.

Claim 3.3. If there is a sequence of transitions from some configuration u ∈ (A∗)k to some
configuration v ∈ (A∗)k, then there is such a sequence of polynomial length.

So formulated, the claim is fairly straightforward.
We will show a polynomial sequence of transitions that starts in u and ends in a config-

uration u ′ that has the same bottom-most symbol as v on some stack. This is sufficient, as
the same thing may be done for all other occurrences of symbols in v .

Note that we do not assume that different symbols have different types. Two symbols
we call siblings if they have the same type and this type has two elements (thus the symbols
may be placed only on two stacks).

Choose an arbitrary stack that is nonempty in v , say the ith stack, with the bottom-most
symbol X. We may assume wlog that X does not appear in u on the ith stack (otherwise, i.e.,
if some occurrences of X in u are on the ith stack, move all the occurrences of X, together
with all other symbols above them, to arbitrary other stacks).

Let the jth stack in u contain an occurrence of symbol X, for some j 6= i.
The sequence of steps from u to u ′ is the following:

1. Move all symbols above the chosen occurrence of X from the jth stack to other stacks.

2. Move all symbols from the ith stack to other stacks such that X is still on the top of
the jth stack.

3. Move the chosen occurrence of symbol X to the destination ith stack.

Clearly step 1. is always doable. We will show that step 2. is always doable as well. We
distinguish two cases.

If the symbol X is not a sibling, every other symbol may be moved, from the ith stack,
to a stack different than the ith one, in such a way that after this operation X will be still
on the top of the jth stack. Indeed, assume that a symbol Y is on the top of the ith stack.
If Y can be moved to a stack different than the jth one, we are done. Otherwise, Y can only
occur on the ith and jth stacks. According to the assumption, X and Y are not siblings,
thus there is another kth stack to which X can be moved. Then we proceed as follows: X is
moved from jth to the kth stack, next Y is moved from the ith stack to the jth stack, and
finally X is moved back from the kth stack to the jth stack.

3.5. NP-COMPLETENESS 67

As the second case, assume that X is a sibling. Assume that the top-most occurrence of
X on the jth stack has been chosen. As j 6= i, and there is a sequence of steps from u to v ,
one easily observes that no sibling of X may occur in u either on the ith stack, or above X
on the jth stack. Thus step 2. is clearly doable.

This completes the proof of Lemma 3.8 and thus also the proof of Lemma 3.4, under the
stateless assumption.

Decision procedure. Now we drop the stateless assumption. Note that the notion of
marked subconfiguration and marked subtransition may be easily adapted to transitions that
change state. We do not require however the nonemptiness condition, which is in accordance
with the intuition that irrelevant symbol occurrences are removed in the marking procedure.
Using Lemmas 3.6, 3.7 and 3.8 we will define the nondeterministic decision procedure for
strongly normed weak MPDA.

Let the two given configurations s and t have control states q and p, respectively. In the
first step, the algorithm guesses a number of marked subconfigurations t1 . . . tn−1, where n
is not greater than the number of states of A, and marked subtransitions that change state:

t1 −→ s1 t2 −→ s2 . . . tn−1 −→ sn−1

such that si and ti+1 have the same control states for i ∈ {0 . . . n− 1}. For convenience, we
write s0 instead of s and tn instead of t . In particular, we assume that the control state of
t1 is q, and the control state of sn−1 is p. Relying on Lemma 3.6, it is sufficient to consider
configurations of sizes satisfying the following inequalities:

size(si) ≤ size(ti+1) for i ∈ {1 . . . n− 1}. (3.10)

In the second phase, the algorithm guesses, for i ∈ {0 . . . n− 1}, a sequence of subtransi-
tions from si to ti+1 of length bounded by polynomial derived from the proof of Lemma 3.8;
and checks that the respective sequences of subtransitions lead from si to ti+1, as required
by Lemma 3.7.

Proof of Lemma 3.5:

Let A be a strongly normed weak MPDA and let L,K be regular sets of configurations. If
L K then s t for some s ∈ L and t ∈ K of size polynomial wrt. the sizes of A, L and
K.

Proof. Suppose A is a strongly normed weak MPDA. Let L, K be regular sets of configu-
rations of A and let π be a sequence of transitions from some configuration s ∈ L to some
configuration t ∈ K. We will demonstrate existence of configurations s ′ ∈ L and t ′ ∈ K

68 CHAPTER 3. REACHABILITY

such that t ′ is of polynomial size and s ′ t ′. Importantly, we do not have to provide any
bound on the size of s ′, as the polynomial bound follows by Lemma 3.2.

Recall the colouring discipline used in the proof of Lemma 3.4. There we have used just
one colour; here we will use an unbounded number of different colours, as described below.

The colouring discipline will apply to all configurations appearing in π. We start by
colouring all symbol occurrences in the first configuration s with different colours. Then, for
every transition s1 −→ s2 in π, assumed that s1 has been already coloured, we stipulate the
following colouring rule for s2 (recall that symbol occurrences in s2 are divided into those
corresponding to symbol occurrences in s1, and fresh ones):

• If a symbol occurrence corresponds to a symbol occurrence in s1, its colour is the same
as the colour of corresponding symbol occurrence.

• Let c be the colour of the unique occurrence of symbol in s1, say symbol X, that is
involved in the transition. All fresh symbol occurrences in s2 that appear on the same
stack as X are coloured with c; we say that they inherit the colour from X. All other
fresh symbol occurrences in s2 are coloured by new fresh colours, with the proviso
that two occurrences have the same colour if and only if they occur on the same stack.
Thus at most k−1 new fresh colours is needed for colouring fresh occurrences on other
stacks, where k is the number of stacks.

For any colour used, and for any fixed configuration, the set of all symbol occurrences
coloured with that colour we call line. Note that a line is always a subset of symbol oc-
currences on a single stack. Further, note that the cardinality of a line is not bounded in
principle, due to the inheritance of colour.

We now aim at reducing the size of the destination configuration t ′. Roughly speaking,
we will prove that s ′ t ′, for some s ′ ∈ L and t ′ ∈ K such that both the number of different
lines in t ′, and the cardinality of all lines in t ′, are polynomially bounded.

For convenience, we split colours into two disjoint subsets. A colour c is called active if
some symbol occurrence labeled by c:

• either is involved in some transition in π,

• or is a fresh symbol occurrence created by some transition in π.

Otherwise, a colour is called inactive, i.e. occurrences of this colour are present in s and are
not involved in any transition during the run. Likewise, the lines are also called active or
inactive. Note that inactive colours label suffixes of stacks in every configuration in π, and
these suffixes do not change along π. Inactive lines are clearly singletons.

Bounding the number of active lines. Consider content of some stack, say the ith
stack, in the destination configuration t ∈ K. Denote by w ∈ A∗i its prefix coloured by

3.5. NP-COMPLETENESS 69

active colours. Every active line on the ith stack corresponds to an infix of w, and thus the
colouring induces a factorisation

w = w1 · w2 · . . . · wm

determined by some m− 1 positions in w.
Recall that the language K is represented by a tuple B1 . . .Bk of finite automata, one

automaton per stack. A run of the automaton Bi over the ith stack of t labels each of the
m − 1 distinguished positions in w by a state. By a standard pumping argument, there
is a subword w′ of w, obtained by removing a number of lines from w, that contains at
most as many lines as the number of states of Bi, and such that Bi reaches the same state
after reading w and w′. By repeating the pumping argument for all stacks, one obtains
a configuration t ′ still belonging to K, that contains only a polynomial (in fact, at most
quadratic) number of active lines, as required.

We only need to show that s t ′. In this part of the proof we will use the cancelling
sequences (3.8), available due to strong normedness. Observe that every active line that
appears in π appears as the top-most one on its stack at some configuration in π. We
apply the cancelling sequence for all symbol occurrences in every active line not appearing
in t ′. In order to keep the reachability s t ′, we apply the cancelling sequence in the last
configuration in π where this line is the top-most one. Thus the disappearance of a line has
no effect for the remaining lines.

Bounding the number of inactive lines. We repeat a pumping argument similar to the
above one. Let L and K be represented by A1 . . .Ak and B1 . . .Bk, respectively. Consider
some i ≤ k and runs of automata Ai and Bi over the inactive suffix of the ith stack of t ′

(or t). The runs label every position by a pair of states of Ai and Bi, respectively. Upon a
repetition of the same pair of states, a standard pumping applies. Thus the length of every
inactive suffix in v may be reduced to at most quadratic.

Bounding the cardinalities of active lines. Consider the configuration t ′ obtained by
now, and a single active line on some ith stack in this configuration. Let v ∈ A∗i be the word
representing the line. Thus the ith stack in t ′ is of the form:

w1v w2

for some words w1, w2. Similarly as before, we aim at applying pumping inside v, to reduce
its length.

Let’s focus on symbol occurrences in v in configuration t ′ and on the corresponding
symbol occurrences in other configurations in π. Observe that all symbol occurrences in v
satisfy the following condition:

70 CHAPTER 3. REACHABILITY

the corresponding symbol occurrence in some previous configuration was freshly
created in some transition.

Some of the above-mentioned transitions have created new lines, and some not. Among
symbols in v, distinguish a subset containing only those occurrences that satisfy the following
strengthened condition:

the corresponding symbol occurrence in some previous configuration was freshly
created in some transition that created a new line that is represented in t ′.

The distinguished symbol occurrences call non-local, the others call local.

The overall number of lines in t ′ is polynomially bounded, thus the same bound applies
to the number of non-local symbol occurrences in v . We thus obtain:

Claim 3.4. There is only polynomially many non-local symbol occurrences in v.

Thus, it is sufficient to reduce the length of any block of local occurrences in v. From now
on we focus on a single maximal infix u of v that contains only local symbol occurrences.

Those transitions in π that involve a symbol occurrence corresponding to a symbol
occurrence in u use only the ith stack. Thus this set of transitions is essentially a stateless
pushdown automaton.

We aim now on modifying a fragment of a run which results in generating u without
any modification on the rest of a run. Assume v = v1u v2. We focus on the part of a run
after last modification of v2 and before pushing first symbol from v1. Let us label by symbol
X each position on u such that last modification done at this position was due to firing
transition X −→ α for symbol X exactly at this position. A segment between two positions
labelled by the same symbol can be deleted without affecting reachability. Distance between
two labelled positions (not necessarily by the same symbol) is at most equal the maximal
length of transition in the automaton.

Run of Bi labels each position of u with a state. Upon a repetition of a pair of labels:
symbol and a state, a standard pumping applies, as usual. If a length of u is more than
cubic then such a pair occurs. This completes the proof of Lemma 3.5.

Proof of Theorem 3.3:

The reg 1 reachability is NP-complete for stateless unnormed MPDA.

Proof. A straightforward adaptation of the proof of Lemma 3.4 (combined with Lemma 3.2).
Observe that irrelevant symbol occurrences must necessarily be normed, as they do not
contribute to the target configuration.

3.6. DECIDABILITY 71

3.6 Decidability

Proof of Theorem 3.4:

The reg 1 reachability is decidable for weak unnormed MPDA.

Proof. By virtue of Lemma 3.2 we may focus on the 1 1 reachability only. Fix a MPDA A
and two configurations s and t . We will describe an algorithm to decide whether s A t .
Roughly speaking, our approach is to define a suitable well order compatible with transitions,
and then apply a standard algorithm for reachability of a downward-closed set. However,
to apply the standard framework we need to introduce some additional structure in con-
figurations. This additional structure will be intuitively described as colouring of symbols,
similarly as in the proof of Lemma 3.4.

Recall the notion of relevant symbol occurrences, introduced in Section 3.4. The idea
of the proof will be based on the observation that removing some irrelevant symbol occur-
rences has no impact on reachability of a fixed target configuration (cf. Lemma 3.3 from
Section 3.4).

Fix the target configuration t . We will define coloured configurations and modified
transitions between coloured configurations. The basic intuition is that irrelevant symbol
occurrences will be coloured. Note however that we don’t know in advance which symbol
occurrences in a given configuration s are relevant and which are not, as we do not even
know if s t . Thus a colouring will have to be guessed.

Let n be the number of states of A and let m be the size of t . By a coloured configuration
we mean a configuration with some symbol occurrences coloured, such that the number of
uncoloured symbol occurrences is smaller than n + m. Formally, colouring is implemented
by extending the alphabet of every stack with its coloured copy. We define an ordering on
coloured configurations: r ′ � r if r ′ is obtained from r by removing some coloured symbol
occurrences. (In particular, if r ′ � r then both configurations are identical, when restricted
to uncoloured symbols, so every single uncoloured configuration is indeed a downward-
closed set). As the number of uncoloured occurrences is bounded, the number of blocks
of coloured occurrences is bounded likewise. The ordering � is like a Higman ordering on
words, extended in the point-wise manner to blocks of coloured occurrences. Thus one easily
shows, using Higman’s lemma:

Claim 3.5. The ordering � is a well order on set of coloured configurations with at most
n+m uncoloured symbols.

Now we define the transition rules for coloured configurations. Consider any original
transition rule δ of A. This transition rule will give rise to a number of new transition
rules that will be applicable to coloured configurations. One new transition is obtained by
colouring all symbols in δ, i.e., both the left-hand side symbol and all the right-hand side
symbol occurrences. In all other new transitions arising from δ, the left-hand side symbol

72 CHAPTER 3. REACHABILITY

is kept uncoloured. On the other hand, an arbitrary subset of the right-hand side symbol
occurrences may be coloured, under the following restriction:

if the transition δ does not change state then at least one of right-hand side
symbols must be kept uncoloured.

This corresponds to the intuition that uncoloured symbol occurrences correspond to relevant
ones.

We have thus now two transition systems: the original transition system and the coloured
one. The relationship between reachability in these two systems is stated in the following
claim (recall that the configuration t is fixed and contains no coloured symbols):

Claim 3.6. For any configuration s, s t if and only if there is some colouring s ′ of s
such that s ′ t .

Indeed, the only if direction is obtained by colouring precisely irrelevant symbol occur-
rences in s. The if direction also follows immediately, by replacing the coloured transitions
with their uncoloured original transitions.

Basing on the above claim, the algorithm for s t simply guesses a colouring s ′ of s
and then checks if s ′ t in the coloured transition system. It thus only remains to show
that the latter problem is decidable. For this we will need a compatibility property of the
coloured transitions with respect to the well order:

Claim 3.7. For every coloured configurations r ′, r and u, if r ′ � r −→ u then

• either there is a coloured configuration u ′ with r ′ −→ u ′ � u,

• or r ′ � u.

In other words, � is a variant of backward simulation with respect to −→. Indeed, if the
symbol occurrence involved in r −→ u is uncoloured, the transition may be also fired from
r ′. Otherwise, suppose that the symbol occurrence involved in r −→ u is coloured (recall
that in this case all fresh symbol occurrences are coloured). If this occurrence appears also
in r ′, it may be fired similarly as above. On the other hand, if this occurrence does not
appear in r ′, we have r ′ � u, as required.

Using the last claim we easily show decidability. The algorithm explores exhaustively a
portion of the tree of coloured configurations reachable from s ′, with the following termina-
tion condition. As the ordering � is a well order, we know that on every path eventually
two coloured configurations appear, say u ′ and u, such that u ′ precedes u and u ′ � u. Such
a pair we call domination pair. Whenever a domination pair is found on some path, the
algorithm stops lengthening this path. The well order guarantees thus that the algorithm
terminates, after computing a finite tree of coloured configurations. The algorithm answers
’yes’ if the configuration t appears in the tree.

3.6. DECIDABILITY 73

Now we prove correctness of the algorithm. Towards contradiction, suppose t is reachable
from s ′ but t is not found in the tree. Consider the shortest path π from s ′ to t , and the
domination pair u ′ � u on that path. Thus u t . Using the compatibility condition,
we deduce that u t implies u ′ t ′ for some t ′ � t , along a path not longer that the
path from u to t . By the definition of � we obtain t ′ = t . Thus the fragment of path π

from s ′ to u ′, composed with the path from u ′ to t yields a path strictly shorter than π, a
contradiction.

Proof of Theorem 3.5:

For weak strongly normed MPDA, the backward reachability set of a regular set is an effec-
tively computable regular set.

Proof. We start by splitting the set L according to the control state, into finitely many
subsets, and consider these subsets separately.

Stateless restriction. Then we observe that it is sufficient to prove the result for stateless
strongly normed MPDA. Indeed, suppose that we already know that the backward reacha-
bility set of a regular set is an effectively computable regular set, in case of stateless strongly
normed MPDA. Moreover, for any two different states q and p, the state-changing backward
step of a regular set L, i.e.,

{s : there is a transition s −→ L that changes state from q to p}

is clearly effectively computable and regular as well. Now note that there is only finitely
many possible sequences of state-changes. Taking the union over all such sequences, and
composing the two regularity-preservation properties along every sequence, one gets the
result for weak strongly normed MPDA.

Restriction to fully active paths. In order to express a second simplification, we distin-
guish a subset of paths. A path from a configuration s to t is fully active if some descendant
of every symbol occurrence in s is involved in some transition. As a second simplification,
we claim that it is sufficient to show regularity of the set of all configurations s that reach
L by a fully active path.

To prove this claim, consider any monoid homomorphism h that recognises L. Let us
denote by S the set of all configurations, S = S∗1 × . . .×S∗k . Then h : S →M for some finite
monoid M and L = h−1(N) for some subset N ⊆M .

Denote Ln = h−1(n) for n ∈ M and by Bn the backward reachability set of Ln with
respect to the fully active paths. We claim that the backward reachability set of L is the

74 CHAPTER 3. REACHABILITY

union ⋃
m,n

Bm Ln

ranging over all pairs m,n ∈M such that m ·n ∈ N is accepting. Indeed, if a configuration s
belongs to Bm Ln for some m ·n ∈ N then by a fully active path it can reach a configuration
from Lm Ln ⊆ L. From the other side, if some configuration s can reach a configuration
t ∈ L we can divide it into two parts s = s1 · s2 such that

• on a path s t configuration s1 is fully active

• configuration s2 does not make any transition.

Therefore s1 ∈ Bm and s2 ∈ Ln for some m,n ∈M such that m · n ∈ N .
As regularity of the sets Bm clearly implies regularity of L we can focus on the former

one.

The proof. Under the restriction to fully active paths, the proof is fairly easy. Let A be
a MPDA and let L be a regular set of configurations. Recall that we may assume a MPDA
to be stateless and strongly normed.

The initialised Higman ordering over words relates w′ and w if the words have the same
first letter, and the tails of w′ and w are related by the ordinary Higman ordering. Order
the configurations by the point-wise extension of the initialised Higman ordering, denoted
by �. Observe that this order is a well order.

Claim 3.8. Under the restriction to fully active paths, the backward reachability set of a
regular set L is upward closed with respect to �.

Indeed, assuming s ′ � s and s ′ t ∈ L, one deduces s t by applying the cancelling
sequences. These sequences are applicable to some descendant of every symbol occurrence
in s, as the path is fully active and the ordering is initialised. Intuitively, every symbol
which has to be cancelled occur to the top of the stack at some moment during the run.

By the above claim, the backward reachability set is determined by the minimal con-
figurations with respect to �. As � is a well order there is only finitely many minimal
configurations, and thus the backward reachability set is regular.

For effectivity, we inspect the proofs of Lemmas 3.2 and 3.5 and conclude that all the
minimal elements are of polynomial size with respect to the size of L: indeed, if s L

then s ′ L for some s ′ � s of polynomial size. It is important to notice that the path
remains fully active while decreasing the size of the source configuration. With this, the
algorithm determines the minimal elements by inspecting exhaustively all configurations s
of polynomially bounded size, and checks for every of them if s L. The restriction to only
fully active paths may be imposed by a simple encoding.

3.7. UNDECIDABILITY 75

The procedure may be implemented in exponential time as there can be at most expo-
nentially many minimal configurations.

3.7 Undecidability

Proof of Theorem 3.1:

The 1 reg reachability is undecidable for stateless unnormed MPDA and for weak normed
MPDA.

Proof. We start by considering stateless unnormed MPDAs. We reduce the problem of
checking if the intersection of two context-free languages is empty.

Assume two context-free grammars in Greibach Normal Form over an input alphabet
A. We will construct a MPDA with three stacks. Two stacks will be used to simulate
derivations of the two grammars, and the other third stack will be used for storage the
input word. Formally, the alphabet of the first and second stack are the nonterminals of the
two grammars, and the alphabet of the third stack are terminal symbols of the grammars
together with its overlined copy. For every transition rule

X→ aα (3.11)

of the first grammar, there is a transition

X −→ α, ε, a

that drops α on the first stack and a on the third one. Likewise, for every transition
rule (3.11) of the second grammar, there is a transition

X −→ ε, α, ā,

which puts ā on the third stack. The initial configuration is 〈X1,X2, ε〉, where Xi is the
initial symbol of the ith grammar. Finally, the regular language L of target configurations
constraints the first two stacks to be empty, and the third one to:

{aā : a ∈ A}∗.

One easily verifies that the intersection of the two grammars is nonempty if and only if some
configuration from L is reachable from the initial configuration.

Now we turn to weak normed MPDA. It turns out that normedness assumption does not
make reachability problem easier, in case of weak automata. Indeed, the case of stateless
unnormed MPDA easily reduces to the case of weak normed MPDA. It is sufficient to add

76 CHAPTER 3. REACHABILITY

an additional sink state, and for every symbol X two additional transitions, to enforce nor-
medness. The first one allows X to change state to the sink state. The other one allows X to
disappear in the sink state. (This is in fact a reduction of the whole case of weak unnormed
MPDA.)

3.8 Relaxed regularity

Proof of Theorem 3.6:

The 1 reg reachability is undecidable for stateless strongly normed MPDA, under the re-
laxed notion of regularity.

Proof. The proof is by reduction from the Post Correspondence Problem (PCP). For a given
instance of PCP, consisting of a finite set of pairs (si, ti) of words, i ∈ {1 . . . n}, we construct
a stateless strongly normed MPDA A and a relaxed-regular set L such that the PCP instance
has a solution

si1 si2 . . . sik = ti1 ti2 . . . tik (ij ∈ {1 . . . n} for j ∈ {1 . . . k})

if and only if there exists a path from the initial configuration of A to L. Roughly speaking,
a run of A will simply guess a PCP solution, and the target language L will be used to check
its correctness.

The main difficulty to overcome is the strong normedness requirement, which implies
that every symbol may always disappear and not contribute to the target configuration.

Half-solution. We start by restricting to only the left-hand side words si of the PCP in-
stance. We will construct a MPDA A1, and a relaxed-regular language L1 of configurations,
so that the reachable configurations of A1 belonging to L1 are essentially of the form (two
stacks):

〈i1 i2 . . . ik, si1 si2 . . . sik〉. (3.12)

In other words, one of stacks contains the sequence of indexes, and the other one contains
the concatenation of the corresponding words si.

For technical reasons we will however need four stacks and few auxiliary stack symbols.
The stack symbols of A1 are following (superscripts indicate the stack number of every
symbol):

• G1 and G4, used for ’guarding’ symbols on their stacks, as described below;

• i1 and i2, for i ∈ {1 . . . n}, representing the ith word si;

3.8. RELAXED REGULARITY 77

• a3 and a4, for a ∈ Σ, representing alphabet letters of the PCP instance.

The initial configuration is 〈G1, ε, ε, G4〉.
For a word w = a1a2 . . . am ∈ Σ∗, we write w3 to mean the word a3

1a
3
2 . . . a

3
m. Likewise

for w4. The transition rules of A1 are the following. For i ∈ {1 . . . n}, there are rules:

G1 −→ G1 i1, ε, s3
i , ε G4 −→ ε, i2, ε, G4 s4

i .

Additionally, to fulfil the strong normedness restriction we add disappearing transition rules
of the form X −→ ε, ε, ε, ε for all stack symbols.

The target set L1 is defined to contain all configurations of the form

〈G1 α1, α2, α3, G4 α4〉,

with α1 almost equal to α2 and α3 almost equal to α4. By ’almost equal’ we mean equality
modulo (ignoring) the superscripts. The set L1 is clearly relaxed-regular.

Let’s analyse possible ways of reaching a configuration from L1. Surely G1 and G4 cannot
fire the disappearing transitions, because their presence is required by L1. As G1 and G4

are always top-most on their stacks, all other symbols on these stacks are ’guarded’ – they
can not fire a disappearing transition neither. A key observation is that no symbol from
other two stacks could fire a disappearing transition:

Lemma 3.9. Every path from the initial configuration to L contains no disappearing tran-
sitions.

Proof. The precise proof of this fact needs a certain effort. Let us define the weight of a
stack symbol. The intuition behind this notion is that it counts for how many letters in
words si the particular symbol is responsible. The definition is the following:

• weight(G1) = weight(G4) = 0

• weight(i1) = weight(i2) = length(si)

• weight(a3) = weight(a4) = 1

Weight of a word is defined as the sum of weights of its letters. Note now that any config-
uration α = (G1 α1, α2, α3, G4 α4) reachable from (G1, ε, ε, G4) satisfies the following
inequalities:

SInv1(α) = weight(α1)− weight(α3) ≥ 0

SInv2(α) = weight(α4)− weight(α2) ≥ 0.

To see this it is enough to observe this both semi-invariants SInv1 and SInv2 equal 0 in
the initial configuration and that they never decrease due to performing a transition. In

78 CHAPTER 3. REACHABILITY

particular, every disappearing transition on the second or third stack increases one of the
semi-invariants. Finally, every configuration α ∈ L satisfies the equality:

SInv1(α) + SInv2(α) = 0,

as weight(α1) = weight(α2) and weight(α3) = weight(α4). Therefore both semi-invariants
are necessary equal to 0, and thus there is no possibility for disappearing transitions to be
fired.

As a conclusion we obtain:

Corollary 3.1. Consider any configuration in L1 that is reachable from the initial config-
uration, and suppose that its first and forth stacks have the form:

G1 i11 . . . i
1
k G4 a4

1 . . . a
4
m.

Then it holds:

si1 . . . sik = a1 . . . am.

Complete solution. Similarly as above, one may construct a MPDA A2 and a language
L2 for the right-hand side words ti from the PCP instance. Essentially (i.e., ignoring the
technical details) the reachable configurations of A2 intersected with L2 are (cf. (3.12)):

〈i1 i2 . . . ik, ti1 ti2 . . . tik〉.

Our final solution is to appropriately combine both MPDA and both languages.

The MPDA A is obtained by merging A1 and A2, but the first stacks are identified. Thus
A will have seven stacks altogether. In particular, symbols i1 and i2 represent now the ith
pair (si, ti). All transitions are exactly as described above, however with a different num-
bering of stacks. The language L imposes the requirements of L1 and L2, and additionally
requires that the fourth stack of A1 is almost equal to the forth stack of A2.

For describing the missing details we have to fix a new numbering of stacks. Let the first
four stacks correspond to the stacks of A1, and the remaining three stacks correspond to
the stacks of A2 different than the first one. The initial configuration of A is

〈G1, ε, ε, G4, ε, ε, G7〉.

3.9. OPEN PROBLEMS 79

Except for the disappearing transitions, A has the following transition rules:

G1 −→ G1 i1, ε, s3
i , ε, ε, t

6
i , ε

G4 −→ ε, i2, ε, G4 s4
i , ε, ε, ε

G7 −→ ε, ε, ε, ε, i5, ε, G7 t7i .

The language L contains configurations of the form:

〈G1 α1, α2, α3, G4 α4, α5, α6, G7 α7〉

satisfying the following almost equalities:

α1 = α2 = α5 α3 = α4 = α6 = α7.

One can easily observe that L is reachable from the initial configuration if and only if the
PCP instance has a solution, using exactly the same techniques as before.

3.9 Open problems

Complexity of weak case. The most important remaining open problem concerns the
exact complexity of the reachability problem in the case of weak MPDA. Theorem 3.4 shows
decidability, but the only lower bound is given by Lemma 3.1. Therefore in the light or our
current knowledge even NP-completeness of this problem is possible, which would be a very
interesting result.

Two stacks. The other two open problems focus on the two stack case. Both hardness
results for the stateless case need three stacks. Indeed, NP-hardness of 1 1 reachability
shown in the Lemma 3.1 can be obtained using only three stacks. Similarly undecidability
of the 1 reg reachability in the unnormed case shown in Section 3.7 uses three stacks.
Both problems are solvable in polynomial time if there is only one stack [BEM97]. The two
stack case is not yet solved. We conjecture that it is closer to the one stack case than to the
three stack case, namely polynomial in the 1 1 case and decidable in the 1 reg case.

Model checking. Reachability is the most fundamental verification problem. A possible
further research is to investigate the more complex ones, i.e. model checking of temporal
logics or their suitable fragments.

80 CHAPTER 3. REACHABILITY

Chapter 4

Bisimilarity

This chapter is devoted to solving the bisimulation problem, i.e. given a normed tPCCFG

graph and two its vertices α and β, decide whether α ∼ β.
Its main focus is describing the polynomial-time algorithm for the above problem in the

subclass of normed tPCCFG, called disjoint tPCCFG, or shortly disjoint. This subclass
subsumes both normed CFG and normed CCFG. We pay a special attention to normed
CFG, as after a careful implementation the presented algorithm is the fastest known for this
class. Additionally we consider deterministic context-free grammars, called simple gram-
mars, for which our algorithm is faster than in the whole CFG and also the fastest known.
Deciding of bisimilarity for the whole tPCCFG remains open.

Outline. The layout of this chapter is as follows. First, in Section 4.1 we introduce a
notion of a bisimulation game, which is very useful in the analysis of bisimilarity. Then, in
Section 4.2 we show an overview of the polynomial-time algorithm for the disjoint class. In
following Sections 4.3, 4.4, 4.5 and 4.6 we describe details of the naive algorithm, working
in double exponential time. Then in Section 4.7 we show an optimised algorithm, working
in polynomial time, for the case of context-free graphs. Finally in Section 4.8 we generalise
this optimisation for the whole disjoint class. In Section 4.9 we discuss the open problems
and possible future work.

4.1 Bisimulation game

A bisimulation game [Mil89, Sti98] is played by two players: Spoiler and Duplicator. We
define it here in general for every given configuration graph, not necessary tPCCFG graph.
The game proceeds in rounds, initially its state is (α, β) for some two configurations α and
β. The intuitive goal of a Spoiler is to show that α 6∼ β and of a Duplicator contrariwise,
that α ∼ β.

81

82 CHAPTER 4. BISIMILARITY

First moves Spoiler, which choses one of two configurations: α or β, say α and some its
transition consistent with considered configuration graph, say α

a−→ α′. Then state of a
game is (α′, β) and now moves Duplicator. It has to choose the remaining configuration, in
this case β, and its transition with exactly the same letter as a label, say β a−→ β′. Then
state of a game is (α′, β′) and new turn starts.

When a player is moving from α or from β we say that he is moving on the left or right
side, respectively. Note that in every move Spoiler can change side on which he is moving1.

If at some point Duplicator has no proper move to perform then Spoiler wins. Otherwise,
if Duplicator always has a proper response or at some moment Spoiler has no move then
Duplicator wins. The relatively easy and well known fact is that indeed α ∼ β if and only
if there exists a winning strategy for Duplicator in this game starting at (α, β).

Example 4.1 To illustrate the notion of bisimilarity and bisimulation game consider
the following standard example. Let the configuration graph consists of two connected
components:

α1

α2

α3 α4

β1

β2 β3

β4 β5

a

b
c

a
a

b c

Observe that α1 6∼ β1 and we will prove this using bisimulation game by showing the
winning strategy for Spoiler from (α1, β1). First Spoiler chooses β1 and moves β1

a−→ β2.
Duplicator has no choice and he responses α1

a−→ α2. After this round state of this play
is (α2, β2). Now Spoiler changes a side to the left, i.e., chooses α2 and moves α2

c−→ α4.
Duplicator has no proper response as there is no outgoing transition from β2 labelled by
letter c. Spoiler wins.

Note that languages of α1 and β1 are exactly the same (assuming all configuration to be
accepting). So this example shows also that bisimulation relation is more distinguishing than
trace equivalence; recall that trace equivalence is just language equivalence when we assume
that all configurations are accepting. The reason behind non-equality is nondeterminism,
in above example there are two a-labelled transitions from β1. In general bisimilarity and
trace equivalences (as well as the whole van Glabbeek spectrum) coincide for deterministic
systems.

1The game without possibility of changing sides would correspond to the simulation pre-order.

4.2. OVERVIEW OF THE ALGORITHM 83

4.2 Overview of the algorithm

The main result of this chapter is the following theorem:

Theorem 4.1. The time complexity of the bisimulation problem is

• polynomial in the case of disjoint grammars;

• O(N4 polylog(N)) in case of context-free grammars;

• O(N3 polylog(N)) in case of simple grammars;

where N is the size of an input grammar.

The above complexities are realised by the same algorithm, specialised a bit in the two
latter cases. Here we give on overview of the algorithm. Then we gradually reveal more
details in the following sections.

We prefer not to define disjoint grammars here as most of the reasoning is more general.
We introduce this class later, when its properties will be necessary.

From this point on we assume all grammars in this section to be normed.

Idea. The general idea of the presented algorithm is to compute the bisimilarity relation
∼ and at the end check whether a given pair (α, β) belongs to ∼. The algorithm starts with
some relation, say ≡0, which is an overapproximation of bisimulation equivalence relation,
and iteratively refines it. The refinement step:

≡ 7→ ref(≡)

fulfils the following conditions:

• ref(≡) is included in ≡

• if the bisimilarity is included in ≡ then it is also included in ref(≡)

• if ≡ equals ref(≡) then relation ≡ is included in bisimilarity.

These conditions imply that by iteratively applying the refinement step the relation either
will be constantly an overapproximation of bisimilarity, or it will reach a fixed point at some
iteration. Then necessarily it will coincide with the bisimilarity. Precise definition of the
refinement step is presented in Section 4.3.

In the sequel we call all the relations: ≡0, ref(≡0), ref(ref(≡0)), ... the approximating
relations.

In order to apply such a framework we have to solve two problems. The first one is a
finite representation of the approximating relations. They have infinite support, so some
effort is surely needed. The second one is to assure convergence of the sequence of relations,
preferably a fast convergence.

84 CHAPTER 4. BISIMILARITY

Figure 4.1: Iterative framework of refining a relation.

Finite representation. Finite representation of relations is realised by the concept of
bases. A base B consists of

• a partition of all nonterminals into a nonempty set of primes P and a set of decom-
posables D;

• set of equations E: for every decomposable nonterminal X an equation X = αX such
that the configuration αX contains only prime nonterminals.

We say that αX is the prime decomposition of decomposable nonterminal X with respect to
B and denote this by

decB(X) = αX .

For a prime nonterminal its prime decomposition is defined just as identity: decB(X) = X.
The prime decomposition function decB can be extended to all configurations by imposing
the equation

decB(αβ) = decB(α) decB(β).

Note however that in is possible only when, intuitively, decompositions of independent non-
terminals are independent. Formally, we say that a base B is I-preserving if whenever
(Xi, Xj) ∈ I and decB(Xi) = αi, decB(Xj) = αj then αiαj = αjαi in P⊗. An I-preserving
base B defines therefore naturally a relation ≡B as follows

α ≡B β ⇐⇒ decB(α) = decB(β).

Not all relations can be represented by an I-preserving base, only those which fulfil a so
called unique decomposition property, to be defined below. In Section 4.4 we show that
indeed, all approximating relations considered in the algorithm possess this property.

Example 4.2 In order to illustrate above notions consider the relation defined on the set
of nonterminals: {X1, X2, X3, X4, X5} by the base B containing three prime nonterminals
X1, X2 and X5 and two equations X3 = X1X2 and X4 = X2X2X2.

4.3. THE REFINEMENT STEP 85

Then, for example, X3X2X2 ≡B X1X4 as

decB(X3X2X2) = decB(X3) decB(X2) decB(X2) = X1X2X2X2

= decB(X1) decB(X4) = decB(X1X4).

Note that B is clearly I-preserving as all pairs of nonterminals are dependent in the CFG

case. The above defined relation ≡B is precisely the relation ≡1 = ref(≡0) in Example 4.4.

Convergence. Fast convergence will be assured by a very easy argument. We construct
an algorithm in such a way that the representation of ref(≡) has at least one more prime
nonterminal comparing to the representation of ≡. Therefore there can be at most n − 1
iterations of refinement, where n denotes the number of all nonterminals in the grammar.

Complexity. In order to obtain a fast algorithm we have to compute refinement efficiently.
As bases are sets of pairs (X,αX), where αX can contain long strings we have to perform
fast operations on long strings. Therefore we will use some algorithmic result for compressed
strings [ABR00]. Details are given in Section 4.7.

4.3 The refinement step

Useful notions. Before we describe the refinement step, we define a few useful notions.
Transition α

a−→ β is norm reducing if |β| < |α|; we write α a−→nr β if this is the case.
Recall that relation ≡ is a congruence if it is an equivalence relation and it is compositional,
i.e., if α ≡ β and α′ ≡ β′ then αα′ ≡ ββ′. A relation is norm-preserving if whenever α and
β are related then |α| = |β|.

Expansion of a relation ≡, written as exp(≡), is a relation containing all pairs (p, q) such
that:

• for every letter a ∈ Σ and every transition p a−→ p′ there exists a transition q a−→ q′

such that p′ ≡ q′;

• for every letter a ∈ Σ and every transition q a−→ q′ there exists a transition p a−→ p′

such that p′ ≡ q′.

Note that ≡ is bisimulation if and only if ≡ is included in exp(≡).
The norm-reducing-expansion of ≡, written as nr−exp(≡), is defined precisely as the ex-

pansion, but restricted to the norm-reducing moves only. Formally, it is a relation containing
all pairs (p, q) such that:

• for every letter a ∈ Σ and every transition p a−→nr p
′ there exists a transition q a−→nr q

′

such that p′ ≡ q′;

86 CHAPTER 4. BISIMILARITY

• for every letter a ∈ Σ and every transition q a−→nr q
′ there exists a transition p a−→nr p

′

such that p′ ≡ q′.

A relation ≡ is a norm-reducing bisimulation if it is a bisimulation with respect to the norm
reducing transitions, i.e. ≡ ⊆ nr−exp(≡). We write shortly n-r-bisimulation. The empty
relation is n-r-bisimulation and union of n-r-bisimulations is an n-r-bisimulation. Therefore
for a relation ≡ there exists the greatest norm-reducing bisimulation included in ≡, we write
shortly gnrb(≡).

Note here two useful facts:

Proposition 4.1. Every n-r-bisimulation is norm-preserving.

Proof. Assume for the sake of contradiction that α ≡ β, ≡ is an n-r-bisimulation and
|α| < |β|. In this case Spoiler performs |α| steps from α to ε, Duplicator responses from
β to some β′ 6= ε. Then Spoiler wins by performing any norm reducing move from β′. A
contradiction.

Proposition 4.2. (α, β) ∈ gnrb(≡) if and only if α ≡ β and (α, β) ∈ nr−exp(gnrb(≡)).

Proof. The only-if implication is obvious. For the opposite implication, we argue (using the
only-if implication) that the relation

{(α, β) : α ≡ β and (α, β) ∈ nr−exp(gnrb(≡))}

is an n-r-bisimulation contained in ≡. As gnrb(≡) is the greatest such n-r-bisimulation the
if implication follows.

Definition. We are ready now to define the refinement step used in our algorithm:

ref(≡) = gnrb(≡ ∩ exp(≡)).

Note now that this definition indeed fulfils the three conditions imposed on the refinement
step at the beginning of Section 4.2. First, clearly ref(≡) is included in ≡. Second, assume
that ∼⊆≡. Then also ∼⊆ exp(∼) ⊆ exp(≡), so ∼⊆ (≡ ∩ exp(≡)). Additionally, if
∼⊆ R for some relation R then clearly ∼⊆ gnrb(R), so indeed ∼⊆ ref(≡). Third,
assume ref(≡) = ≡. As for every relation ≡ we have ref(≡) ⊆ (exp(≡) ∩ ≡) ⊆ ≡, in our
case clearly (exp(≡) ∩ ≡) = ≡ which implies that ≡ is a bisimulation, so is included in ∼.

In order to proceed further in describing the algorithm, we have to discuss in more details
how we represent the approximating relations. Then we will be able to explain how exactly
the refinement step is implemented.

4.4. REPRESENTATION 87

4.4 Representation

This section is devoted to explaining how the approximating relations are represented.
Assume from now on a fixed grammar: an alphabet Σ, a set of nonterminals V =

{X1, . . . , Xn} and a set of transition rules ∆. The complexity considerations are wrt the
size N of the grammar.

Assume also that set of nonterminals V = {X1, . . . , Xn} is ordered according to non-
decreasing norm: |Xi| ≤ |Xj | for i < j. If i < j we say that Xj is bigger than Xi and
write Xi < Xj . Note that |X1| is necessarily 1 and the norm of a nonterminal is at most
exponential wrt the N .

For a set S ⊆ {X1, . . . , Xn}, let us denote by S⊗ the set of all configurations containing
only nonterminals from S.

Intuition. Let ≡ be an arbitrary norm-preserving congruence in V ⊗. Intuitively nonter-
minal X should be decomposable if it is equivalent to composition of some two nonempty
configurations, i.e., X ≡ αβ, where α, β 6= ε. We prefer however a different definition, which
is slightly less restrictive.

Assume two nonterminals which are related by ≡ and not decomposable into any two
nonempty configurations wrt to ≡. We should therefore treat them as primes. We prefer
however not to have two different prime nonterminals related by ≡. To avoid such a situation
we allow decompositions consisting of only one nonterminal, but demand that nonterminals
belonging to the decomposition of Xi have indices smaller than i. Note that by imposing
the last restriction we gain the acyclicity property, i.e. it is not possible that Xi decomposes
into Xj and simultaneously Xj decomposes into Xi.

Unique decomposition. Let ≡ be an arbitrary norm-preserving congruence in V ⊗. We
say that a nonterminal Xi is decomposable wrt relation ≡ if Xi ≡ α for some configuration
α ∈ {X1, . . . , Xi−1}⊗. Otherwise we say that Xi is prime. In particular X1 is always
prime. We will typically denote set of primes by P , similarly as above. It is easy to show
by induction that every decomposable nonterminal X is related to some α ∈ P⊗; in such
a case α is a prime decomposition of X. Similarly as above we extend the decomposition
function into all configurations. We say that ≡ has the unique decomposition property if
each configuration has exactly one prime decomposition wrt ≡. While the set P of primes
may depend on the chosen ordering of variables (in case Xi ≡ Xj for i 6= j) the unique
decomposition property does not.

Note that for every norm-preserving relation ≡ if Xi ≡ αβ, where α, β 6= ε then neces-
sarily |α|, |β| < |X|, so α, β ∈ {X1, . . . , Xi−1}⊗. In other words, regarding to the natural
intuition, Xi is a decomposable nonterminal. Due to the Proposition 4.1 almost all approx-
imating relations we deal with are n-r-preserving, only the initial congruence ≡0 may not
be n-r-preserving.

88 CHAPTER 4. BISIMILARITY

It is possible to extend a definition of a unique decomposition property also for non
norm-preserving congruences. However, in this case, it is possible that a prime nonterminal
X fulfils X ≡ αβ for α, β 6= ε. In particular, then the property may be fulfilled or not,
depending on the imposed order on variables.

Bases. Recall the notion of base introduced in Section 4.2. It is thought to describe
concisely relations which have the unique decomposition property.

Here we additionally demand that for a decomposable nonterminal Xi its decomposition
αi contains only nonterminals from {X1, . . . , Xi−1}. Recall that the function decB can be
extended to all configurations from V ⊗ by imposing

decB(αβ) = decB(α) decB(β),

under the assumption the B is I-preserving.

The prime elements P of base are, a priori, arbitrarily chosen, and not to be confused
with the primes wrt a given congruence. However, an I-preserving base B naturally induces
a congruence ≡B on V ⊗: α ≡B β iff decB(α) = decB(β). It is easy to verify that primes
wrt ≡B are precisely prime nonterminals from P and that ≡B has the unique decomposition
property. Conversely, given a congruence ≡ with the latter property, one easily obtains a
base B: take primes wrt ≡ as P in the base, and the (unique) prime decompositions of
decomposable nonterminals as right-hand sides of equations Xi = αi in the base. Base
B is guaranteed to be I-preserving, by the uniqueness of decomposition XY ≡ Y X for
(X,Y) ∈ I. As these two transformations are mutually inverse, we have just shown:

Proposition 4.3. A congruence in V ⊗ has unique decomposition property iff it equals ≡B,
for an I-preserving base B.

The following fact concerning cancelling right-hand sides will be useful in the sequel.

Proposition 4.4. If a congruence ≡ has the unique decomposition property and αγ ≡ βγ

then α ≡ β.

Proof. As αγ ≡ βγ we know that its decompositions are equal: decB(αγ) = decB(βγ).
Therefore

decB(α) decB(γ) = decB(αγ) = decB(βγ) = decB(β) decB(γ).

This implies decB(α) = decB(β), so α ≡ β.

Problems with being a congruence. Possibility of representing the approximating
relations is crucial for the algorithm. We would like to have a unique decomposition property

4.4. REPRESENTATION 89

for all of them. Unfortunately it is not always the case for tPCCFG. The problem is that
they even not have to be congruences.

Example 4.3 As an illustration consider the following grammar

A
a−→ ε A′

a−→ ε B
b−→ ε B′

b−→ ε

with threads {A,B}, {A′} and {B′}. Note that bisimulation equivalence is not a congruence
in this case as A ∼ A′, B ∼ B′, but AB 6∼ A′B′.

Therefore we need to impose some restriction on the tPCCFG. As mentioned above
we aim at showing that all approximating relations are congruences which have the unique
decomposition property. This results in possibility of representing them by an I-preserving
base.

Disjoint grammars. To avoid above mentioned problems, we are forced to impose some
restriction on a grammar. We decided to consider the class called disjoint tPCCFG, shortly
disjoint, to be defined below. From now on in this chapter, if not stated otherwise, we as-
sume everywhere that we consider exclusively this class. However, we would like to strongly
emphasise that many results shown later in this thesis apply not only to the disjoint gram-
mars, they are more general. We believe that this framework may possibly be used also for
other classes included in tPCCFG, that fulfils necessary properties.

First we introduce a few notions. An alphabet of the nonterminal X is the set of letters
{a ∈ Σ : X a−→ α for some α}. An alphabet of the thread is a union of alphabets of
all its nonterminals. A singleton thread is a thread containing precisely one nonterminal,
otherwise a thread is called a non-singleton thread. A partially-commutative context-free
grammar with transitive dependence relation is disjoint if whenever alphabets of two threads
intersect then both the threads are singleton ones. In other words, the alphabet of a non-
singleton thread is disjoint from the alphabets of all other threads.

Note an important fact that both CFG and CCFG are special cases: in CFG there is
only one thread, in CCFG all threads are singleton ones.

Approximating relations. Our goal is to show that all approximating relations fulfil the
unique decomposition property.

The rough idea is to show it by proving:

≡ has unique decomposition property

⇓

ref(≡) has unique decomposition property

90 CHAPTER 4. BISIMILARITY

However, as shown by Example 4.3, the invariant so formulated is not literally true, so we
prefer to explicitly use some properties of disjoint class. We assume additional property of
the approximating relations and push it via the refinement step. The property is: relation
has to preserve all local norms, to be defined below. Therefore the schema of the proof is
rather of the form:

≡ has unique decomposition property and preserves all local norms

⇓

ref(≡) has unique decomposition property and preserves all local norms

Local norms. We define now a refined notion of norm. Let T be a set of threads. T -norm
of a configuration α, denoted |α|T , is the length k of the shortest sequence of norm-reducing
transitions α = α0

a1−→ . . .
ak−→ αk such that in αk all threads from T are empty. In other

words, T -norm is the length of the shortest path to emptying all the threads from T using
only norm-reducing transitions. If T contains all threads it is equal to the usual norm.

Our intension is to consider all the singleton threads jointly, according to the definition
of a disjoint grammar. Thus we only consider sets T that either contain all singleton threads
and no non-singleton thread, or precisely one non-singleton thread. Such sets T we call local.
The idea is that every transition from a local set of threads T can be matched only by some
nonterminal from T . Note that local sets forms forms a partition of all threads into many
singleton sets and one, possibly large set, containing all singleton threads.

T -norm induced by any such set we call local norm. To avoid confusion, the standard
norm |−| we call sometimes a global norm. Note that only the transitions that reduce global
norm are taken into account when defining the local norms. Nevertheless, in special cases
of CFG or CCFG, there is no difference between global norm and (the unique) local norm.

Proposition 4.5. Every n-r-bisimulation is local norm-preserving.

Proof. The proof is very similar to the proof of Proposition 4.1. Assume towards contradic-
tion that α ≡ β for some n-r-bisimulation ≡, but |α|T < |β|T for some local set of threads
T . Then Spoiler performs a sequence of |α|T global norm-reducing moves, which are also
T -norm reducing, and reaches a configuration α′ with |α′|T = 0. Duplicator has to response
also by global norm-reducing moves, therefore he reaches a configuration β′ with |β′|T > 0.
Then Spoiler performs any move from the set of threads T in β′ a−→ β′′. Configuration α′

has no nonterminal from threads T . Then, as the grammar is disjoint, there is no transition
from α′ by the letter a. A contradiction.

The main theorem. We are ready to formulate the main theorem of this section. To
simplify the naming we introduce the following definition.

4.5. REFINEMENT PRESERVES TRACTABILITY 91

Definition 4.1. A relation is tractable if it is a congruence with unique decomposition
property that preserves all local norms.

Remark 4.1. Note that preserving all local norms do not necessarily imply preserving the
global norm. Nevertheless it turns out that assumption of being global norm-preserving is
not required for the tractable relation.

Theorem 4.2. If a relation ≡ is tractable than its refinement ref(≡) is also tractable.

The proof of this theorem is divided into two lemmas.

Lemma 4.1. If a relation ≡ is tractable than its refinement ref(≡) is a congruence.

Lemma 4.2. If a relation ≡ is tractable and its refinement ref(≡) is a congruence then
the refinement is also tractable.

Composing together above two lemmas clearly proves Theorem 4.2. Their proofs are
shown in Section 4.5. These results are the one of main technical contributions of this
chapter, proving them requires certain amount of effort.

Remark 4.2. Having Theorem 4.2 it only suffices to know that we start with a tractable
relation ≡0. Then it is assured that all approximating relations are tractable, so in particular
they fulfil the unique decomposition property. This is really the case in the algorithm to be
presented below.

4.5 Refinement preserves tractability

Proof of Lemma 4.1

If a relation ≡ is tractable than its refinement ref(≡) is a congruence.

Proposition 4.6. Each local norm-preserving unique decomposition congruence ≡ is thread-
wise, i.e. if α ≡ β then αT ≡ βT , for any local set T of threads.

Proof. Let B be the base of ≡. Consider an arbitrary equation from B, say X = γ. If X is
from non-singleton thread, say t, then γ may contain only nonterminals from t, as ≡ is local
norm-preserving, so also |−|{t} preserving. Similarly if X belongs to the singleton thread
then γ contains only nonterminals from the singleton threads. Therefore for any local set of
threads T and any configuration α holds

αT ≡ decB(α)T .

As α ≡ β implies decB(α) = decB(β) this shows that ≡ is indeed thread-wise.

92 CHAPTER 4. BISIMILARITY

So prepared we are ready to start the proof of Lemma 4.1.

Assume an arbitrary local norm-preserving unique decomposition congruence ≡. We will
demonstrate that its refinement gnrb(≡ ∩ exp(≡)) is a congruence.

We will exploit a classical game-theoretical characterisation of bisimulation equivalence,
specialised to gnrb(≡ ∩ exp(≡)). Consider a two-player game between Spoiler and Duplica-
tor. The arena consists of all the pairs of configurations (α, β) such that (α, β) ∈ ≡ ∩ exp(≡).
The play starts in a chosen initial position and proceeds in rounds. In each round, in position
(α, β), Spoiler plays first by choosing one of α and β, say α, and a global norm-reducing
transition α a−→ α′ from the chosen configuration. The Duplicator’s response is by choosing
a (necessarily global norm-reducing) transition β a−→ β′ from the other configuration, with
the same label a. Duplicator is obliged to choose β′ with (α′, β′) ∈ ≡ ∩ exp(≡). Then the
next round of the play continues from (α′, β′).

If one of players is unable to choose a move, the other player wins the game. This will
surely happen, at latest when both configurations are finally empty. It is well known that α
and β are related by gnrb(≡ ∩ exp(≡)) if and only if Duplicator has a winning strategy in
the game starting from (α, β). In that case a memory-less winning strategy always exists;
it is represented by a bisimulation relation containing (α, β).

We will prove that gnrb(≡ ∩ exp(≡)) is a congruence. Similarly like for the bisimulation
equivalence one shows that it is an equivalence; it remains to demonstrate composition-
ality, i.e., assumed that (α, α′) and (β, β′) are in gnrb(≡ ∩ exp(≡)), we must show that
(αβ, α′β′) ∈ gnrb(≡ ∩ exp(≡)) as well. We will follow the standard lines: assumed two
winning strategies SA, SB for Duplicator in the games started in (α, α′) and (β, β′), respec-
tively, we will show how to combine the strategies into one winning strategy in the game
starting from (αβ, α′β′).

As grammar is disjoint we know that Duplicator always responds in the same thread
whenever the Spoiler’s move is in a non-singleton thread – this simple observation will be
crucial for combining the two strategies. Moreover, if Spoiler plays in a singleton thread,
the Duplicator’s response is in a (possibly different) singleton thread as well.

For simplicity, assume now that the alphabets of threads are pair-wise disjoint. In the
sequel it will be apparent that non-disjoint alphabets of singleton threads pose no additional
difficulties in the proof.

Now we consider a game starting in (αβ, α′β′). We will show existence of a Duplicator’s
winning strategy. For convenience, we will use an intuitive ’colouring’ argument. Assume
that in the course of the play all nonterminals are coloured either colour A or colour B. The
intuition is that all nonterminals derived from nonterminals in α, α′ will be coloured A while
those derived from nonterminals in β, β′ will be coloured B.

At each position, the Duplicator’s strategy will exploit either strategy SA or SB . To be
sure that it is always doable, we will show that throughout the play the following invariants
are preserved at every position (γ, γ′) of the play (by γ �A we mean γ after removing all

4.5. REFINEMENT PRESERVES TRACTABILITY 93

nonterminal occurrences that are not coloured A, and similarly γ �B):

(1) (γ �A, γ′ �A) is winning in SA and (γ �B , γ′ �B) is winning in SB ,

(2) γ ≡ γ′,

(3) (γ, γ′) ∈ exp(≡).

At every position (γ, γ′) of the play, each thread γt or γ′t is of the following form:

γt = αt1β
t
1 . . . α

t
n(t)β

t
n(t) γ′t = α′t1 β

′t
1 . . . α

′t
n′(t)β

′t
n′(t) (4.1)

where all α segments are coloured A and β segments are coloured B, and the first and the
last segment may be empty but all others are nonempty. Thus instead of invariant (2) we
prefer to show the following one, clearly implying (2):

(2’) for each thread t, n(t) = n′(t) and αti ≡ α′ti , βti ≡ β′ti for all i ≤ n(t).

Invariants (1) and (2’). The initial position of the game is (αβ, α′β′). Colour α, α′ with
colour A, and β, β′ with colour B. We will prove that the two invariants hold.

Assume the play is at a position (γ, γ′) such that the invariants (1) and (2’) hold. We will
show that Duplicator can respond to any move of Spoiler in such a way that the invariants
are preserved.

Say Spoiler chooses a global norm-reducing transition of a nonterminal X and assume
wlog that X is coloured A. Then Spoiler can also choose this move in the (α, α′)-game at
position (γ �A, γ′ �A). By (1) Duplicator’s has an answer according to SA. Note that this
move is necessarily in the same thread. By (2’), and since ≡ may not relate the empty
configuration with a nonempty one, Duplicator can perform this transition at the current
position of the combined game. Colour all new nonterminals A.

It remains to prove that the invariant holds at the new position (γ̄, γ̄′) of the game. (1) is
clearly satisfied by the choice of the moves. To prove (2’) consider any thread t that changed
during the current round of the game and the partition of γ̄t and γ̄′t into segments, cf. (4.1).
Due to (1) we know that

γ̄ �A ≡ γ̄′ �A .

By Proposition 4.6 ≡ is thread-wise, hence we obtain:

αt1 . . . α
t
n(t) = (γ̄ �A)t ≡ (γ̄′ �A)t = α′t1 . . . α

′t
n′(t).

At most the first segments αt1 and α′t1 have possibly changed during the current round, so
numbers n(t) and n′(t) may only change by one. First assume that n(t) = n′(t), thus by
assumption (2’) applied to the previous position we know

αt2 . . . α
t
n(t) ≡ α′t2 . . . α

′t
n′(t).

94 CHAPTER 4. BISIMILARITY

As ≡ has unique decomposition property by Proposition 4.4, we deduce αt1 ≡ α′t1 and thus
(2’) holds. If n(t) 6= n′(t), say n(t) > n′(t), then using the similar technique as above we get
that αt1 ≡ ε, which is a contradiction.

Invariant (3). Assume (1) and (2’) hold at a position (γ, γ′). To show that (3) holds
consider a (not necessarily global norm-reducing) transition of a nonterminal X, and assume
wlog that X is coloured A. By invariant (1) there is a corresponding position (γ �A, γ′ �A) ∈
SA, and thus (γ �A, γ′ �A) ∈ exp(≡). Then there is a response of Duplicator such that, if we
denote by γ̄ and γ̄′ the result of executing these two transitions from γ and γ′, respectively,
it holds γ̄ �A≡ γ̄′ �A. We need to show γ̄ ≡ γ̄′. But we can use cancellativity exactly as
above to obtain γ̄t ≡ γ̄′t, for every thread t, and hence γ̄ ≡ γ̄′ as required.

Singleton threads with non-disjoint alphabets. For convenience, in the proof we have
assumed that each two threads have disjoint alphabets, even if the alphabets of singleton
threads need not to be disjoint. However, a careful examination of the proof reveals that
the same pattern of proof of invariants (1), (2’) and (3) applies to the case of unrestricted
disjoint grammar definition: whenever Spoiler plays in a singleton thread, Duplicator can
always match using either strategy SA or SB , from a (possibly different) singleton thread.
Intuitively, in case of singleton threads, we do not have to take care of an order of coloured
nonterminals in threads as they are always the same. Therefore the situation is only simpler
in this case, we can simulate two winning strategies SA and SB without any problem in
singleton threads. We omit the details.

The proof of Lemma 4.1 is now completed.

Proof of Lemma 4.2

If a relation ≡ is tractable and its refinement ref(≡) is a congruence then the refinement is
also tractable.

First note that by Lemma 4.1 relation ref(≡) is a congruence. By Proposition 4.5 it pre-
serves all local norms. Therefore the only goal is to show that ref(≡) indeed fulfils the
unique decomposition property.

Notation. Let us first define a few notions connected with the cancellation properties of
considered relations.

We say that configuration α masks configuration β if any thread nonempty in β is also
nonempty in α. Therefore in configuration αβ only moves from the α part are possible.

Notation ≡ is reserved now for the relation in the statement of Lemma 4.2. Hence in this
section we use another symbol: ≈ to denote an arbitrary relation. If some congruence ≈
does not fulfil unique decomposition property then exists α ≈ β such that α ≈ α′, β ≈ β′ (so

4.5. REFINEMENT PRESERVES TRACTABILITY 95

from transitivity α′ ≈ β′), where α′ 6= β′ and α′, β′ ∈ P⊗. The other way around, if α 6= β

and α, β ∈ P⊗ then clearly ≈ does not fulfil unique decomposition property. Therefore a
counterexample to the unique decomposition property of ≈, if any, is a pair of configurations
(α, β) such that α, β ∈ P⊗, α ≈ β, α 6= β. If there exists a counterexample there is one
with minimal global norm, we call it ≈-minimal counterexample.

A binary relation R is called:

• strongly right-cancellative if whenever αγ ≈ βγ then α ≈ β;

• right-cancellative if whenever αγ ≈ βγ and both α, β mask γ then α ≈ β;

• weakly right-cancellative if whenever (αγ, βγ) is ≈-minimal counterexample and both
α, β mask γ then α ≈ β.

Structure of the proof. A reason why we introduce so many kinds of cancellation prop-
erties is that proof of Lemma 4.2 consists of the following four facts:

1. if relation ≈ is tractable than it is strongly right-cancellative;

2. if relation ≈ is strongly right-cancellative then exp(≈) is right-cancellative;

3. if relation ≈ is right-cancellative then gnrb(≈) is weakly right-cancellative;

4. if relation ≈ is a weakly right-cancellative congruence and an n-r-bisimulation then it
has unique decomposition property.

Indeed, using the first fact, we can show first that ≡ is strongly right-cancellative. Then,
using the second fact, we know that exp(≡) is right-cancellative, so ≡ ∩ exp(≡) is also
right-cancellative and clearly an equivalence relation. Therefore, using the third fact, we
know that ref(≡) = gnrb(≡ ∩ exp(≡)) is weakly right-cancellative. Finally, by the forth
fact ref(≡) has unique decomposition property. As mentioned above the only missing point
is to show that ref(≡) is tractable.

Remark 4.3. It is important to emphasise that all above facts do not need assumption that
grammar is disjoint, they are true in the whole tPCCFG class.

Now we focus on proving above facts. In fact, two first are quite immediate, the third
one needs a few arguments, while the last one accumulate the whole hardness.

First fact immediately results from Proposition 4.4.
Now we prove the second fact. We say that a transition of one of α, β is matched with a

transition of the other if the transitions are equally labelled and the resulting processes are
related by ≈. Assume that ≈ is strongly right-cancellative. Let (αγ, βγ) ∈ exp(≈) and both
α and β mask γ. We want to show that also (α, β) ∈ exp(≈). Assume arbitrary transition
α

a−→ α′, it is sufficient to show that there exists matching transition β
a−→ β′ such that

α′ ≈ β′. However we know that for every transition αγ
a−→ α′γ there exists a matching

96 CHAPTER 4. BISIMILARITY

transition of the form βγ
a−→ β′γ (as γ is masked by β) such that α′γ ≈ β′γ. Using the

strong right-cancellativity of ≈ we get that α′ ≈ β′ as needed.
Let us emphasise the third fact.

Fact 4.1. If relation ≈ is right-cancellative then gnrb(≈) is weakly right-cancellative.

Proof. Consider an ≈-minimal counterexample (αγ, βγ) such that γ is masked both by α
and β. The pair (αγ, βγ), being in gnrb(≈) satisfies the global norm-reducing expansion
wrt gnrb(≈), by the only-if implication of Proposition 4.2. Hence each n-r-transition of αγ
(βγ, resp.) is matched by a n-r-transition of βγ (αγ, resp.). As γ is always masked there
are always transitions of the form αγ

a−→ α′γ (or βγ a−→ β′γ, resp.) Furthermore, the
resulting configurations α′γ and β′γ have always the same prime decompositions, due to the
minimality of (αγ, βγ).

It follows that configurations α′, β′ have always the same prime decompositions too,
and thus are related by gnrb(≈). This proves that (α, β) ∈ nr−exp(gnrb(≈)). Due to the
right-cancellativity of ≈ we have also α ≈ β, so by the if implication of Proposition 4.2 we
deduce (α, β) ∈ gnrb(≈).

Remark 4.4. Note that in the proof of above fact relation ≈ is not necessarily congruence
and even not necessarily an equivalence relation.

Unique decomposition property. The only remaining element to prove the Lemma 4.2
is the proof of the forth fact. This fact is of the independent interest, as it proves the unique
decomposition property for some special relations. Therefore we formulate it not only for
the disjoint class, but for the whole tPCCFG.

Lemma 4.3. Consider tPCCFG. Each weakly right-cancellative congruence that is n-r-
bisimulation has the unique decomposition property.

Proof. Fix a weakly right-cancellative congruence ≈ that is a n-r-bisimulation; ≈ is thus
global norm-preserving. Recall that P ⊆ V denote primes wrt. ≈, ordered consistently with
the ordering ≤ of V . For the sake of contradiction, suppose that the unique decomposition
property does not hold, and consider a minimal ≈-counterexample (α, β).

Clearly, each global norm-reducing transition of one of α, β may be matched with a
transition of the other. Due to the minimality of the counterexample (α, β), any prime
decompositions of the resulting configurations, say α′ and β′, are necessarily identical. For
convenience assume that each right-hand side of ∆ was replaced by a prime decomposition
wrt. ≈. Thus α′, β′ must be identical.

Let t be the number of threads and let V = V1∪. . .∪Vt be the partition of V into threads.
Configuration α restricted to the ith thread we denote by αi ∈ V ∗i . Hence α = α1 . . . αt and
the order of composing the configurations αi is irrelevant.

4.5. REFINEMENT PRESERVES TRACTABILITY 97

A (n-r-)transition of α, or β, is always a transition of the first nonterminal in some αi,
or βi; such nonterminals we call active. Our considerations will strongly rely on the simple
observation: an n-r-transition of an active nonterminal X may ’produce’ only nonterminals
of strictly smaller global norm than X, thus smaller than X wrt ≤.

In Claims 4.1–4.6, to follow, we gradually restrict the possible form of (α, β).

Claim 4.1. For each i ≤ t, one of αi, βi is a suffix of the other.

Proof. Suppose that some thread i does not satisfy the requirement, and consider the longest
common suffix γ of αi and βi. Thus γ is masked in α and β. As≈ is weakly right-cancellative,
γ must be necessarily empty – otherwise we would obtain a smaller counterexample. Know-
ing that the last letters of αi and βi, say Pα, Pβ , are different, we perform a case-analysis
to obtain a contradiction. The length of a string w is written |w|.

case 1: |αi| ≥ 2, |βi| ≥ 2. After performing any pair of matching n-r-transitions, the
last letters Pα, Pβ will still appear in the resulting configurations α′, β′, thus necessarily
α′ 6= β′ – a contradiction to the minimality of (α, β).

case 2: |αi| = 1, |βi| ≥ 2 (or a symmetric one). Thus αi = Pα. As Pα is prime,
some other thread is necessarily nonempty in α. Perform any n-r-transition from that other
thread. Irrespective of a matching move in β, the last letters Pα and Pβ still appear in the
resulting configurations – a contradiction.

case 3: |αi| = |βi| = 1. Thus αi = Pα, βi = Pβ . Similarly as before, some other thread
must be nonempty both in α and β. Assume wlog. |Pα| ≥ |Pβ |. Perform any n-r-transition
in α from a thread different than i. Irrespective of a matching move in β, in the resulting
configurations α′, β′ the last letter Pα in α′i is different from the last letter (if any) in β′i –
a contradiction.

Claim 4.2. For each i ≤ t, either αi = βi, or αi = ε, or βi = ε.

Proof. By minimality of (α, β). If αi, say, is a proper suffix of βi, then a n-r-transition of αi
may not be matched in β.

A thread i is called identical if αi = βi 6= ε.

Claim 4.3. A n-r-transition of one of α, β from an identical thread may be matched only
with a transition from the same thread.

Proof. Consider an identical thread i. A n-r-transition of αi decreases |αi|. By minimality
of (α, β), |βi| must be decreased as well.

Claim 4.4. There is no identical thread.

Proof. Assume thread i is identical. Some other thread j is not as α 6= β; wlog assume
|αj | > |βj |, using Claim 4.1. Consider a n-r-transition of the active nonterminal in αi = βi

that maximises the increase of global norm on thread j. This transition, performed in α,

98 CHAPTER 4. BISIMILARITY

may not be matched in β, due to Claim 4.3, so that the global norms of αj and βj become
equal as implied by minimality of (α, β).

Claim 4.5. One of α, β, say α, has only one nonempty thread.

Proof. Consider the greatest (wrt. ≤) active nonterminal and assume wlog. that it appears
in α, hence it does not occur in β. We claim α has only one nonempty thread. Indeed, if
some other thread is nonempty, a n-r-transition of this thread can not be matched in β as
required by minimality of (α, β).

Let αi be the only nonempty thread in α, and let Pi be the active nonterminal in that
thread, αi = Piγi. The configuration γi is nonempty by primality of Pi.

Claim 4.6. |Pi| is greater than global norm of any nonterminal appearing in γi.

Proof. Consider any thread βj = Pjγj nonempty in β. We know that |Pi| ≥ |Pj | as assumed
in the proof of Claim 4.5. As the thread i is empty in β, the global norm of Pj must
be sufficiently large to ”produce” all of γi in one n-r-transition, i.e., |Pj | > |γi|. Thus
|Pi| > |γi|.

Now we easily derive a contradiction. Knowing that Pi has the greatest global norm
in α, consider the configurations Piα ≈ Piβ, and an arbitrary sequence of |Pi|+1 global
norm-reducing transitions from Piβ. We may assume that this sequence does not touch Pi
as |β| = |α| > |Pi|. Let β′ be the resulting configuration, and let α′ denote the configuration
obtained by performing some matching transitions from Piα = PiPiγi. The nonterminal Pi
may not appear in α′ (as both Pi’s at the beginning of PiPiγi were necessarily involved in the
matching transitions, and thus all nonterminals that appear in α′, including those in γi, are
of smaller global norm) while Pi clearly appears in β′. Thus α′ ≈ β′, α′ 6= β′ and |α′| = |β′|
is smaller than |α| = |β| – a contradiction to the minimality of the counterexample (α, β).
This completes the proofs of the Lemmas 4.3 and 4.2.

Remark 4.5. Note that the proof would be much simpler if one considers CFG instead
of tPCCFG. In fact already Claim 4.2 gives a contradiction in this case as it shows that
either both configurations are identical or one of them is empty. The case of CCFG is
also simpler, proof of Claim 4.1 is trivial and Claim 4.6 implies that γi is empty which
immediately results in a contradiction.

4.6 Implementation

Clearly having a base B we can easily check whether α ≡B β, which is equivalent to
decB(α) = decB(β), thus from this point on the focus on the computation of the base
of bisimilarity. At this point we know the outline of the algorithm computing this base.

4.6. IMPLEMENTATION 99

Outline of the algorithm:

(1) Compute the base B of the tractable initial congruence ≡0.

(2) Compute the base B′ of the congruence gnrb(≡B ∩ exp(≡B)).

(3) If B′ equals B then halt and return B.

(4) Assign new base B′ to B and go to step (2).

This scheme is a generalisation of the CCFG algorithm [HJM96b]. As our setting is
more general, the implementation details, to be given in this subsection, will be necessarily
more complex than in [HJM96b].

Recall that correctness of the above algorithm is guarantied by the basic properties of the
refinement scheme, mentioned in Section 4.2. In order to prove termination and to show the
implementation details we have to look closer at the prime decompositions of approximating
relations. At this moment we do not care too much about polynomial time of performing
all operations, this will be assured later in this chapter.

Initial congruence. The initial congruence ≡0 is defined as follows:

α ≡0 β ⇐⇒ |α|T = |β|T for all local sets T,

therefore it is the biggest possible relation preserving all local norms. Note that it is not
necessarily global norm-preserving, however it has a unique decomposition property. To show
that we simply describe its base B. For every local set of threads T we choose a nonterminal
X in T with a minimal index, denote it XT . Then |XT |T = 1 and clearly |XT |T ′ = 0 for
T ′ 6= T . The prime nonterminals in the base B are precisely all such nonterminals XT , one
for each local set of threads T .

Every nonterminal X has only one nonzero local norm |X|T , for the unique local set T
it belongs to. Therefore the decomposition of such nonterminal X is of the from

decB(X) = XT . . . XT︸ ︷︷ ︸
|X|T

. (4.2)

One may easily observe that the described base is indeed a unique decomposition base for
relation ≡0.

Thus we have shown how to implement the step (1).

Prime decompositions. Before going into details of implementation of steps (2) and (3)
let us derive a few properties of prime decompositions. This insight will be useful in the
further reasoning.

100 CHAPTER 4. BISIMILARITY

Compare first the base B of the tractable congruence ≡B and base B′ of its refinement
≡B′ = gnrb(≡B ∩ exp(≡B)). Clearly ≡B′ ⊆≡B . Note first that all nonterminals which
are prime in the base B are necessarily also prime in the base B′. To show this, consider
a nonterminal Xi with minimal index i, such that it is prime in B but not prime in B′.
Therefore Xi ≡B′ α for α ∈ {X1, . . . , Xi−1}⊗. But then clearly also Xi ≡B α which shows
that Xi is not prime in B. A contradiction.

Primes from B we call old primes and primes from B′ that are not primes of B we call
new primes. As shown above during the iterative process of computing the congruences

≡0, ref(≡0), ref(ref(≡0)), . . .

when nonterminal becomes prime at some moment it is prime until the end of the algorithm.
The natural question is: is it possible that at some iteration no new prime is added. We
show that if it is the case then necessarily ≡B =≡B′ .

Suppose there is no new prime, therefore the set of primes in B′ is the same as set
of primes in B. Towards contradiction assume that ≡B 6= ≡B′ . Take the decomposable
nonterminal Xi with minimal index i, such that decB(Xi) 6= decB′(Xi). Recall that both
decB(Xi), decB′(Xi) ∈ (P ∩ {X1, . . . , Xi−1})⊗, where P is a set of primes both in B and
B′. Note that

Xi ≡B decB(Xi)

and Xi ≡B′ decB′(Xi), so as ≡B′ ⊆≡B we have also

Xi ≡B decB′(Xi).

Therefore
decB(Xi) ≡B decB′(Xi),

which contradicts the fact that ≡B has unique decomposition property.

This implies that if B′ is different than B there is necessarily at least one new prime.
Therefore there can be at most n refinement steps ≡ 7→ ref(≡) such that ≡ 6= ref(≡),
where n is the number of nonterminals in the grammar. This shows termination of the
algorithm and additionally delivers an easy of implementing of the step (3) of the algorithm:
we just check if there is any new prime. The only thing which remains to show is how to
implement step (2), this however needs some additional effort.

Implementation of step (2). Assume we have a base B with prime nonterminals P and
set of equations E. We would like to compute base the B′ of ≡B′ = gnrb(≡B ∩ exp(≡B)),
i.e., a set of prime nonterminals P ′ and a set of equations E′.

We are proceeding as follows. First we assign P ′ = P , E′ = ∅ and then we are adding
appropriate nonterminals to P ′ or appropriate equations to E′. For every nonterminal

4.6. IMPLEMENTATION 101

Xi, i = 2, . . . , n, which is not an old prime, we are checking whether there exists any
configuration α ∈ (P ′ ∩ {X1, . . . , Xi−1})⊗ such that Xi ≡B′ α. If there is no one then we
add Xi to set P ′, otherwise we add the appropriate equation Xi = α to set E′. Let us
present first a naive algorithm for the above described checking, later on we will show how
to do this efficiently.

As ≡B′ is global norm-preserving there are clearly only exponentially many candidates
αi which potentially may fulfil Xi ≡B′ α. Therefore it suffices to show how we check any
particular candidate αi.

Observe that by Proposition 4.2 we know that Xi ≡B′ α if and only if

(Xi, α) ∈ ≡B ∩ exp(≡B) ∧ (Xi, α) ∈ nr−exp(≡B′).

Therefore to decide whether Xi ≡B′ α it is enough to check the following three conditions:

Conditions for deciding whether Xi ≡B′ α : (4.3)

(a) (Xi, α) ∈ ≡B
(b) (Xi, α) ∈ exp(≡B)

(c) (Xi, α) ∈ nr−exp(≡B′).

Checking conditions. Note that conditions (a) and (b) are concerning relation ≡B , while
condition (c) concerns its refinement ≡B′ . Testing condition (a) is easy, we just check
whether decB(Xi) = decB(αi). Testing condition (b) is also not hard, we check for all
letters a ∈ Σ whether:

• for all Xi
a−→ β there exists αi

a−→ γ such that decB(β) = decB(γ)

• for all αi
a−→ γ there exists Xi

a−→ β such that decB(β) = decB(γ).

The last condition (c) seems hard to check as it concerns relation ≡B′ which we still do
not know at this moment. Note however, that while checking condition for Xi we know
decompositions decB′(Xj) for all j < i. Therefore we are able to check for any β, γ ∈
{X1, . . . , Xi−1}⊗ whether β ≡B′ γ. For every a ∈ Σ and for every Xi

a−→nr β, αi
a−→nr γ

we have |β|, |γ| < |Xi| therefore indeed β, γ ∈ {X1, . . . , Xi−1}⊗. This delivers a procedure
for testing the condition (c) similarly as for condition (b); we check for all letters a ∈ Σ
whether:

• for all Xi
a−→nr β there exists αi

a−→nr γ such that decB′(β) = decB′(γ)

• for all αi
a−→nr γ there exists Xi

a−→nr β such that decB′(β) = decB′(γ).

102 CHAPTER 4. BISIMILARITY

Naive algorithm. Let us summarise the whole framework in Algorithm 1. In every loop
(P,E) denotes the old base B, while (P ′, E′) denotes the new base B′. By testB′(α, β)
we denote the procedure testing whether α ≡B′ β, which consists of checking the three
conditions from (4.3).

Algorithm 1 Naive algorithm
1: initialise B = (P,E) as the base of ≡0;
2: P ′ := P ;
3: repeat
4: E′ := ∅;
5: for all Xi ∈ ({X2, . . . , Xn} \ P) do
6: for all α such that |α| = |Xi| do
7: if test(P ′,E′)(Xi, α) then
8: E′ := E′ ∪ {(Xi = α)};
9: break the inner for loop;

10: end if
11: end for
12: if the inner for loop not broken then
13: P ′ := P ′ ∪ {Xi};
14: end if
15: end for
16: P := P ′; E := E′;
17: until P does not change

Double exponential complexity. Let us compute the complexity of the naive algorithm
outlined in Algorithm 1. Recall that n stands for the number of nonterminals in the grammar
and N is the size of the grammar. All estimations, if not stated otherwise, will be done wrt
N .

Base of ≡0 can be clearly computed in exponential time as local norms are easily com-
putable and at most exponential wrt N . We are performing at most n times the refinement
step. During each such step we process every non-prime nonterminal Xi, where we perform
at most n iterations of the outer-most for loop (at line 5). For every nonterminal Xi we
search through at most exponentially many candidates α with respect to |Xi|. Thus there
are doubly exponentially many candidates α to check. For every candidate we check con-
ditions (4.3) for a pair (Xi, α). Testing condition (a) needs O(|Xi|) operations. Indeed, we
just check whether the decompositions of Xi and α are equal, so we test strings of length
|Xi| for equality. Similarly testing conditions (b) and (c) requires performing at most N2

tests, all with at most O(|Xi|) operations. In summary, the naive algorithm works in double
exponential time.

Efficient algorithm. As we promised to obtain a much better complexity than double
exponential time we have to perform some optimisations. In fact there will be two different

4.7. EFFICIENT ALGORITHM FOR CFG 103

optimisations. Roughly speaking, the idea are as follows:

• Small number of candidates: it is not necessary to check all candidates, it is
enough to consider a small subset of them;

• Compression: it is not necessary to keep all words explicitly, we can compress them
and work on the compressed strings.

In order to explain this two ideas clearly we decide to focus on the CFG case. Later we
show how to generalise the construction to all disjoint grammars.

4.7 Efficient algorithm for CFG

The case of CFG is simpler than the general case. A configuration is a word. There is only
one local norm, which coincides with global norm, therefore we will here simply say norm.
Note also that every base B is necessarily I-preserving.

Leftmost prime factor. Let us focus on the first (leftmost) nonterminal appearing in a
configuration, that will turn out to play a crucial role in our reasoning.

Let B = (P,E) be a norm-preserving base. We say that prime nonterminal Xj ∈ P is
leftmost prime factor of Xi wrt ≡B if j < i and there exists α ∈ (P ∩ {X1, . . . , Xi−1})⊗

such that Xi ≡B Xjα. First note that it is not possible that there are two different leftmost
prime factors Xj and Xk of Xi. Indeed, otherwise Xjα ≡B Xkα

′ for some configurations
α, α′ which contradicts the unique decomposition property of ≡B . We will use the notation
lpfB(Xi) = Xj . Observe also that if β ≡B α and Xi ≡B Xjα then also Xi ≡B Xjβ.

Distinguish one fixed norm-reducing transition rule

Xi
ai−→nr αi

for every nonterminal Xi. We denote by suffixk(α) the suffix of configuration α of norm
k. Note that for some number k a configuration α may have no suffix of such norm; then
suffixk(α) is undefined.

The reason why we consider leftmost prime factors is the following proposition.

Proposition 4.7. Let B be a base. If ≡B is n-r-bisimulation and lpfB(Xi) = Xj then

Xi ≡B Xj suffix|Xi|−|Xj |(decB(αi)).

Proof. We know that
Xi ≡B Xjα,

104 CHAPTER 4. BISIMILARITY

for some configuration α. As ≡B is an n-r-bisimulation consider the Spoiler’s move Xi
ai−→nr

αi. There is necessarily a Duplicator’s response of the form Xj
ai−→nr β such that

αi ≡B β α,

so
decB(αi) = decB(β) decB(α).

Therefore decB(α) = suffix|Xi|−|Xj |(decB(αi)). Hence

α ≡B suffix|Xi|−|Xj |(decB(αi)),

which easily implies
Xi ≡B Xj suffix|Xi|−|Xj |(decB(αi)),

as required.

Small number of candidates. Now we describe the first optimisation of the procedure
of computing ≡B′ from ≡B . The crucial point is searching for candidates α such that
Xi ≡B′ α. Proposition 4.7 implies that it is enough to restrict ourself to candidates of the
form

Xj suffix|Xi|−|Xj |(decB′(αi)),

where Xi
ai−→nr αi is the distinguished norm-reducing transition. Observe that |αi| < |Xi|,

so during the search for candidates for Xi we know the decomposition decB′(αi).
Additionally note that there are two possibilities for lpfB′(Xi). Either it remains un-

changed, i.e., lpfB′(Xi) = lpfB(Xi), or it changes. If it changes then the new leftmost
prime factor must be necessarily a new prime nonterminal. Indeed, assume otherwise that
Xi ≡B Xjα and Xi ≡B′ Xkβ such that both Xj and Xk are old primes, i.e. primes wrt B.
Then

Xjα ≡B Xi ≡B Xkβ,

as ≡B′ ⊆ ≡B . This contradicts the unique decomposition property of ≡B .
Moreover, the new leftmost prime factor lpfB′(Xi) must be necessarily bigger than the

old one lpfB(Xi) wrt <. To see this assume that Xi ≡B′ Xjα is a decomposition wrt B′.
Then also

Xi ≡B Xjα.

Therefore lpfB(Xj) must necessarily be equal lpfB(Xi), so clearly lpfB(Xi) < Xj .
So prepared we modify the naive algorithm as follows. Instead of searching through all

doubly exponentially many candidates, we are checking only candidates of the form

Xj suffix|Xi|−|Xj |(decB′(αi)),

4.7. EFFICIENT ALGORITHM FOR CFG 105

where Xj either equals lpfB(Xi), or is a new prime such that Xi > Xj > lpfB(Xi).

Note that this immediately decreases the complexity from double exponential to single
exponential.

Example 4.4 Let us illustrate the algorithm on the following context-free grammar:

X1
a−→ ε X2

a−→ X1 X2
b−→ X1X1 X3

a−→ X2

X4
a−→ X3X2 X4

b−→ X4 X5
a−→ X4 X5

a−→ X3X3

We intentionally present the behaviour of the algorithm on quite complicated grammar to
make explicit some of its subtle points.

Assume an order compatible with norms of nonterminals: X1 < X2 < X3 < X4 < X5.
We fix

α1 = ε α2 = X1 α3 = X2 α4 = X3X2 α5 = X3X3

The base B0 of the initial relation ≡0 consists of one prime nonterminal X1 and equations
X2 = X1X1, X3 = X1X1X1, X4 = X1 . . . X1︸ ︷︷ ︸

6

, X5 = X1 . . . X1︸ ︷︷ ︸
7

as |X2| = 2, |X3| = 3,

|X4| = 6 and |X5| = 7.

First refinement step. Then the base B1 of relation ≡1 = ref(≡0) is computed. We start
with one prime nonterminal X1 and no equation.

First we search for decomposition of X2 wrt B1. The only candidate is

X1 suffix1(decB1(α2)) = X1X1

as X1 = lpfB0
(X2) and there are no new primes till now. One may easily verify that pair

(X2, X1X1) does not fulfil the condition (b) in 4.3 as there is no proper response for the
move X2

b−→ X1X1. Therefore X2 becomes a new prime nonterminal.

Now we search for decomposition of X3 wrt B1. There are two candidates

X1 suffix2(decB1(α3)) = X1X2

and
X2 suffix1(decB1(α3))

as X1 = lpfB0
(X3) and X2 is the new prime nonterminal. The first candidate passes all the

conditions in 4.3, while the second one is undefined as there is no suffix of X2 with norm
equal 1. Therefore we add the equation to B1: X3 = X1X2.

Then we search for decomposition of X4 wrt B1. There are also two candidates

X1 suffix5(decB1(α4)) = X1X1X2X2

106 CHAPTER 4. BISIMILARITY

and
X2 suffix4(decB1(α4)) = X2X2X2

from the same reasons as before. The first one brakes the condition (b) while the second
one passes all conditions, so we add the equation to B1: X4 = X2X2X2.

Finally we search for decomposition of X5 wrt B1. There are also two candidates

X1 suffix6(decB1(α5)) = X1X1X2X1X2

and
X2 suffix5(decB1(α5)) = X2X2X1X2

from the same reasons as before. The first one clearly brakes the condition (b). The second
one however passes conditions (a) and (b), but it does not pass condition (c). Note that
the only possible response for the transition X5

a−→ X4 is X2X2X1X2
a−→ X1X2X1X2.

However
decB1(X4) = X2X2X2 6= X1X2X1X2 = decB1(X1X2X1X2).

Therefore X5 becomes a new prime.

Second refinement step. We compute now the base B2 of relation ≡2 = ref(≡1). At
the beginning we have three prime nonterminals X1, X2 and X5 and no equation.

First we search for decomposition of X3 wrt B2. The only candidate is

X1 suffix2(decB2(α3)) = X1X2

as X1 = lpfB1
(X3) and there are no new primes. One can verify that all conditions are

passed, so we add the equation X3 = X1X2.

Then we search for decomposition of X4 wrt B2. There is also only one candidate

X2 suffix4(decB2(α4)) = X2X2

as lpfB1
(X4) = X2 and there are no new primes. This candidate does not pass the con-

dition (b). Note that the only possible response for the move X4
b−→ X4 is the move

X2X2
b−→ X1X1X2, but X4 6≡B1 X1X1X2. Therefore we add X4 as a new prime.

Third refinement step. We compute now the base B3 of relation ≡3 = ref(≡2). As a
starting point we have four prime nonterminals X1, X2, X4 and X5 and no equation.

We search for decomposition of X3 wrt B3. The only candidate is

X1 suffix2(decB3(α3)) = X1X2

4.7. EFFICIENT ALGORITHM FOR CFG 107

as X1 = lpfB2
(X3) and there are no new primes. It passes all conditions, so we add equation

X3 = X1X2.
Therefore we have B2 = B3 and thus B2 is the base of bisimilarity. Thus, for example,

X3X4 ∼ X1X2X4 as

decB2(X3X4) = X1X2X4 = decB2(X1X2X4),

but X1X3 6∼ X3X2 as

decB2(X1X3) = X1X1X2 6= X1X2X2 = decB2(X3X2).

Compression. Observe that decreasing time complexity to polynomial cannot be achieved
just by restricting the searching space. The reason is that almost all manipulations on the
decompositions may concern strings of exponential length. As norm of a nonterminal can
be exponential wrt to N , even representation of ≡0 may contain exponentially long strings.
One way of overcoming this problem is using compression.

A long string may be compressed, e.g., using a Straight-Line Program (SLP), i.e. de-
terministic context-free grammar which generates only one word. In the previous version
of this algorithm [CL10] we used explicitly this compression method. We built on the ideas
from [Lif06], where the pattern matching problem for compressed strings was solved in
O(N3).

In the new version of algorithm, shown in this thesis, we use result from [ABR00]. The
important advantage of this approach is that [ABR00] provides an algorithmic toolbox to
manipulate long strings that can be used in a black-box manner. A second advantage is that
the algorithmic toolbox of [ABR00] allows for faster and more accurate operations, which
results in a better time estimation for our algorithm compared to [CL10].

The authors of [ABR00] propose a framework which allows for maintaining a family of
strings over alphabet Σ and performing operations on them. The allowed operations are
among the others:

• String(a) for a ∈ Σ: creates a new string "a";

• Concatenate(s1, s2): creates a new string s1s2 build from two previously created
strings s1, s2;

• Split(s, i): creates two new strings s[1..i] and s[(i+ 1)..|s|];

• Equal(s1, s2): checks whether s1 = s2.

All operations do not destroy any used strings. The time estimations are as follows [ABR00]:

• String: O(log |Σ|);

108 CHAPTER 4. BISIMILARITY

• Concatenate: O(logm log∗M + log |Σ|);

• Split: O(logm log∗M + log |Σ|);

• Equal: O(1);

where m is the sum of lengths of all used words and M is polynomially bounded wrt m.
However, authors use the hashing method inside the algorithm (it was used to perform a
lookup in a function Sig, see the comment on the third page of [ABR00], below Theorem
2.1.)2. Therefore the above complexities are, in fact, complexities with high probability.
To obtain the deterministic procedure one may use balanced binary trees as a dictionary,
instead of the hashing technique. As the size of the tree cannot be greater than number K
of atomic operations done so far, the complexity of the single operation would be at most
multiplied by a factor O(logK).

Note that the sum of lengths of all strings used in our algorithm is 2O(n) and clearly
|Σ| = O(N). Observe also that the total number of operations on strings in our algorithm
is polynomial wrt N and the number of atomic operations in every string operation is also
polynomial wrt N , so logK = O(logN). Moreover as M is polynomially bounded wrt
m = 2O(n) we have log∗(M) = O(log n). Therefore the time estimations in the deterministic
procedure are:

• String: O(N logN);

• Concatenate: O(N polylog(N));

• Split: O(N polylog(N));

• Equal: O(logN).

We will use the above algorithm to store and manipulate efficiently right hand-sides of
equations in E.

Efficient algorithm. We present the efficient algorithm below. We write lpftestB′(Xi, Xj)
for the procedure checking whether Xj is the leftmost prime factor of Xi wrt to ≡B′ . In fact,
this procedure checks the three conditions (4.3). We write lpfindexB(Xi) for the unique
index j such that lpfB(Xi) = Xj .

Note that in the Algorithm 2 we treat separately (at line 6) the situation when lpftest(P ′,E′)(Xi, X)
is invoked for X being the leftmost prime factor of Xi wrt B, i.e. lpf(P,E)(Xi). The rea-
son is that during the time complexity estimations we will use different arguments for the
lpftest operations at line 6 and different for the lpftest operations at line 8.

2Authors of [ABR00] also make a standard assumption that operations numbers with O(n) bits are
performed in the constant time.

4.7. EFFICIENT ALGORITHM FOR CFG 109

Algorithm 2 Efficient algorithm for CFG
1: initialise B = (P,E) as the base of ≡0;
2: P ′ := P ;
3: repeat
4: E′ := ∅;
5: for all Xi ∈ ({X2, . . . , Xn} \ P) do
6: if ¬lpftest(P ′,E′)(Xi, lpf(P,E)(Xi)) then
7: for all Xj ∈ {Xlpfindex(P,E)+1, . . . , Xi−1} ∩ (P ′ \ P) do
8: if lpftest(P ′,E′)(Xi, Xj) then
9: s := dec(P ′,E′)(αi);

10: E′ := E′ ∪ {(Xi, Xj suffix|Xi|−|Xj |(s))};
11: break the inner for loop;
12: end if
13: end for
14: if the inner for loop not broken then
15: P ′ := P ′ ∪ {Xi};
16: end if
17: else
18: X := lpf(P,E)(Xi);
19: s := dec(P ′,E′)(αi);
20: E′ := E′ ∪ {(Xi, X suffix|Xi|−|X|(s))};
21: end if
22: end for
23: P := P ′; E := E′;
24: until P does not change

110 CHAPTER 4. BISIMILARITY

Polynomial-time complexity. Let us analyse now the details of implementation and
compute the exact time complexity of the algorithm in the CFG case.

First focus on the initialisation, i.e. computing base of ≡0. As the only local norm
coincides with global norm there is only one prime nonterminal, say X1, of norm one.

For each nonterminal Y to compute its decompositionX1 . . . X1︸ ︷︷ ︸
|Y |

we just performO(log(|Y |),

so O(n) Concatenation operations. This costs O(N2 polylog(N)) for one nonterminal,
thus O(N3 polylog(N)) for the whole base.

During the Repeat loop for each approximating relation ≡B with base B we will store
decompositions decB(Xi). Moreover we will store decompositions of all the right-hand sides
of transition rules. Note that sum of nonterminals in all of them is estimated by N . There-
fore we can perform O(N) operations Concatenation and in time O(N · N polylog(N))
compute all decompositions decB(α) for all right-hand sides. As there are at most n re-
finement steps in the algorithm, the whole time for this is O(N3 polylog(N)). Further we
assume that all decompositions of right-hand sides are evaluated. Additionally we will store
some auxiliary strings, as suffixes of appropriate strings.

Note than the only nontrivial operations performed during the algorithm are lpftest

(at lines 6 and 8), computing decompositions (at lines 9 and 19) and computing right-hand
sides of equations (at lines 10 and 20).

As said above we assume that decompositions at lines 9 and 19 are already computed.

There are at most n refinement steps, in each one at most n equations are added, so
there are at most n2 invocations at lines 10 and 20. Each one needs one Split operation
and one Concatenation operation, both of them cost O(N polylog(N)). Therefore time
spent on all these operations is O(N3 polylog(N)).

Remark 4.6. Note that in the algorithm [ABR00] operation Split(s, i) splits word s ac-
cording to the length of the prefix of s. On the other hand in our framework we need an
operation which splits word according to the norm of the prefix. However, we are able to
implement the needed operation by a Split(s, i) operations from [ABR00]. We represent
every prime nonterminal X as a word

X . . .X︸ ︷︷ ︸
|X|−1

X̄.

The last letter is barred to mark the position after which new nonterminal possibly begins.
Using such a representation the split according to the length of the prefix coincides with the
split according to the norm. Moreover, using the barred letter, one simply checks if the cutting
position is correct, i.e., it corresponds to the end of some nonterminal. Implementation of
all the other operations does not have to be changed.

4.7. EFFICIENT ALGORITHM FOR CFG 111

Time complexity of lpftest. Now focus on the operation lpftest. First, count the
number of its invocations. As mentioned above, there are two places where they can be
invoked, line 6 and line 8. We consider them separately.

There are at most n refinement steps, in each of them there are at most n nonterminals
for which we are looking for the leftmost prime factor. Therefore there are at most n2

invocations of lpftest at line 6. Note now that if we invoke lpftest(Xi, Xj) at line 8 then
Xj is necessarily the new prime, for each Xj there is at most one approximating relation
for which this is true. Thus for each pair (Xi, Xj) the lpftest at line 8 can be invoked
only once during the whole algorithm. Therefore there are globally O(n2) invocations of
lpftest.

Let us compute now the time cost of one invocation of lpftestB′(Xi, Xj). It requires
to check conditions (a), (b) and (c) from (4.3). First consider (a), we have to compute
suffix|Xi|−|Xj |(decB′(αi)). Norms of Xi and Xj can be precomputed at the beginning
of the algorithm, in time O(n), as it is enough to perform O(n) arithmetic operations
on numbers with O(n) bits, which are assumed to be done in constant time each. As
mentioned above decB′(αi) we assume to be precomputed. Thus we have to concatenate
decB(Xj) = Xj with suffix|Xi|−|Xj |(decB′(αi)), i.e. invoke operation Concatenation

which takes O(N polylog(N)) time. Finally we have to check whether

decB(Xi) = decB(Xj) decB(suffix|Xi|−|Xj |(decB′(αi))).

Note however that

decB(suffix|Xi|−|Xj |(decB′(αi))) = suffix|Xi|−|Xj |(decB(αi))),

so it is equivalent to

decB(Xi) = decB(Xj) suffix|Xi|−|Xj |(decB(αi))).

To decide the above equality it is enough to apply ones Split operation, ones Concatenation

operation and ones Equal operation. Thus the cost of point (a) is O(N polylog(N)).

Focus now on condition (b). For each letter a ∈ Σ we consider transitions Xi
a−→ βk

and Xj
a−→ γl and test whether

decB(βk) = decB(γl) decB(suffix|Xi|−|Xj |(decB′(αi))),

which, as mentioned above, is equivalent to

decB(βk) = decB(γl) suffix|Xi|−|Xj |(decB(αi)). (4.4)

Therefore it is enough to perform one Split operation (of decB(αi)), at most N operations

112 CHAPTER 4. BISIMILARITY

Concatenation (one for each γl) and at most N2 operations Equal (one for each pair
(βk, γl)). Thus whole condition (b) is checked in O(N2 polylog(N)).

Condition (c) is implemented analogously. Therefore operation lpftest costs in total
O(N2 polylog(N)).

In summary, the time complexity of the presented algorithm is O(N4 polylog(N)).

Remark 4.7. It seems that the above complexity analysis is optimal, i.e. the algorithm
works in fact in time Θ(N4 polylog(N)). The below example is however intuitive, there is
no formal argument that this situation may take a place. Consider the following: there
exists a nonterminal Xi which is a leftmost prime factor of Θ(n) (say n

3) nonterminals for
Θ(n) (say n

3) bases of approximating relations. Moreover Xi has Θ(N) transition rules.
Therefore there are Θ(n2) invocations of lpftest with Xi as tested leftmost prime factor.
In each of them the Concat operation is performed Θ(N) times, so the whole complexity
is Θ(N4 polylog(N)) (as n may be chosen close to N).

Simple grammars. Recall that a simple grammar is a deterministic context-free gram-
mar, i.e. for given nonterminal X and letter a there is at most one transition rule X a−→ α.
We will show that the Algorithm 2 works in time O(N3 polylog(N)) in the case of simple
grammars. To prove this it is enough to reconsider only the time complexity of performing
lpftest in points (b) and (c), as all other operations even in the CFG case requires only
O(N3 polylog(N)).

Let us focus on the point (b). Point (c) is similar. Recall the notation from (4.4). In
the case of simple grammar there may be at most |Σ| transitions of Xi and Xj , so at most
|Σ| possible configurations γl and at most |Σ| possible pairs (βk, γl). Therefore for every
lpftest in point (b) the time cost is

• O(N polylog(N)) time for Split operations (precisely one operation);

• O(|Σ| ·N polylog(N)) time for Concatenation operations;

• O(|Σ| · polylog(N)) time for Equal operations.

Thus Split and Equal operations are performed in O(N polylog(N)) time for one lpftest,
so cost globally O(N3 polylog(N)). Therefore it only remains to focus on Concatenation

operation.
In order to estimate the total number of Concatenation operations, instead of focusing

on the particular lpftest, we choose to count them globally. For a nonterminal X, set of
out-letters is the set of all letters a ∈ Σ such that there exists a transition rule X a−→ α for
some α. An out-degree of nonterminal X, denoted out−degree(X), is the cardinality of set
of out-letters for X. For a simple grammar clearly

∑
X∈V

out−degree(X) = O(N). (4.5)

4.8. EFFICIENT ALGORITHM FOR DISJOINT GRAMMARS 113

Note that during lpftestB(Xi, Xj) there are at most out−degree(Xj) invocations of op-
eration Concatenation, one for each transition rule Xj

a−→ γl. Observe also that in
order to pass an lpftestB′(Xi, Xj) nonterminals Xi and Xj have necessarily have exactly
the same sets of out-letters, as otherwise they would not be related by any relation of the
form gnrb(≡ ∩ exp(≡)). Therefore we may check this as a precondition of the lpftest

(the time cost is at most O(N) for a single lpftest, so negligible) and assume for further
considerations that sets of out-letters of Xi and Xj are always equal in the lpftest.

In order to estimate the total number of these operations first focus on the lpftest op-
erations at line 8. Recall that it is performed at most once for every pair (Xi, Xj) during the
whole algorithm. Thus for a fixed nonterminal X operation of the form lpftestB(Xi, X)
may be performed at most n times in the whole algorithm. During them at most n ·
out−degree(X) Concatenation operations may be done. Hence, by (4.5), the total num-
ber of invocations of Concatenation at line 8 is estimated by O(n · N), i.e. the time
consumed is O(N3 polylog(N)).

Now consider lpftest at line 6. For any base B the number of performed Concatena-

tion operations in the single lpftestB(Xi, Xj) may be at most equal out−degree(Xj) =
out−degree(Xi). Thus, using (4.5) the whole number of these operations at one refinement
step is O(N) and, at the whole algorithm O(N · n). Hence the total time consumed is
O(N3 polylog(N)). This completes the proof.

4.8 Efficient algorithm for disjoint grammars

Here we show that optimisations used in Section 4.7 may be generalised to the whole disjoint
class.

Small number of candidates. In order to restrict the number of candidates we use
similar techniques as for CFG.

Assume we are computing the base B′ = (P ′, E′) and we have to find a candidate α such
that Xi ≡B′ α. Similarly as above we distinguish a global norm-reducing transition rule:

Xi
ai−→nr αi

for every nonterminal Xi. As ≡B′ is n-r-bisimulation, for a Spoiler’s move Xi
ai−→nr αi

Duplicator has to response α ai−→nr β such that

decB′(αi) = decB′(β).

due to some transition rule X ai−→nr γ. Decompositions decB′(Xj) are already computed
for all j < i, so decB′(αi), decB′(X) and decB′(γ) may be also computed. Therefore for

114 CHAPTER 4. BISIMILARITY

every candidate α there exists a transition rule X ai−→nr γ such that

decB′(α) = decB′(X) δ

and
decB′(αi) = decB′(γ) δ

for some sequence of nonterminals δ. Let us denote such α a predecessor of αi with respect
to B′. Therefore the set of possible candidates is just a set of predecessors wrt B′, its
cardinality is a most equal the number of transition rules.

Algorithm. Computation of every such α is clear, we perform all operations separately
for each local set of threads. For these containing non-singleton threads we proceed like
in CFG case, for the unique one containing all singleton threads we only need to perform
suitable arithmetic operations on the number of nonterminals.

Checking if the particular candidate is performed by testing conditions 4.3. One may
easily verify that all of them can be realised by computing appropriate equalities separately
for every local set of threads. Also in this procedure for non-singleton threads we follow the
technique used in CFG case and for singleton threads we perform only arithmetic operations
on the number of nonterminals. Since theses number can have at most O(N) bits the time
cost of all operations is surely polynomially bounded wrt N . Therefore described algorithm
for disjoint grammars is working in the polynomial time.

Remark 4.8. Note that the fact that ≡0 is not necessarily global norm-preserving does not
generate any problems. We use the norm-preservation assumption only for relations being a
refinement of some congruence, i.e., necessarily an n-r-bisimulation.

4.9 Open problems

Even faster algorithm for normed CFG. There is a natural question about existence
of even faster algorithm. We find this question well-motivated, as we believe that obtaining
a faster decision procedure may bring better understanding of the bisimilarity relation on
normed CFG.

Extension to normed tPCCFG. Decidability of bisimilarity is open in the whole class
tPCCFG. The main problem is that bisimilarity does not have to be a congruence, as shown
in Example 4.3. Therefore many natural algebraic methods (like guessing a base) seem not
to be useful at all.

There are known systems in which bisimilarity is decidable, but not necessarily a con-
gruence. One such case are Pushdown Processes. However, in the recent proof of decidabil-
ity [Jan12] Jančar retrieves an algebraic structure due to a reduction to first-order grammars.

4.9. OPEN PROBLEMS 115

The other case is normed PA. Maybe some insights from there could be helpful to obtain
decidability of normed tPCCFG. We suppose that a possible attempt at a proof could rely
on combinatorial analysis of the possible form of pairs of bisimilar configurations.

Weak bisimilarity. The other question is decidability of weak bisimulation problem, i.e.,
bisimulation problem in the presence of epsilon transitions. Showing an algorithm seems to
be hard, as even for normed CCFG the decidability of weak bisimilarity is a well known
and important open problem since early nineties.

The situation is different in the unnormed case. By an easy adaptation of the argument
of [Srb02d] for PA graphs, one can show undecidability of the weak bisimulation problem
for unnormed tPCCFG. Maybe this result can be strengthened to the normed case.

116 CHAPTER 4. BISIMILARITY

Bibliography

[AB09] Mohamed Faouzi Atig and Ahmed Bouajjani. On the Reachability Problem for
Dynamic Networks of Concurrent Pushdown Systems. In RP, pages 1–2, 2009.

[ABQ09] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-Bounded
Analysis for Concurrent Programs with Dynamic Creation of Threads. In
TACAS, pages 107–123, 2009.

[ABR00] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in
dynamic texts. In SODA, pages 819–828, 2000.

[Ati10] Mohamed Faouzi Atig. From Multi to Single Stack Automata. In CONCUR,
pages 117–131, 2010.

[BBC+10] Jean Berstel, Luc Boasson, Olivier Carton, Jean-Eric Pin, and Antonio Restivo.
The expressive power of the shuffle product. Inf. Comput., 208(11):1258–1272,
2010.

[BBK87] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Decidability of
Bisimulation Equivalence for Processes Generating Context-Free Languages. In
PARLE (2), pages 94–111, 1987.

[BCMS01] O. Burkart, D. Caucal, F Moller, and B. Steffen. Verification of infinite struc-
tures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[BCS95] Olaf Burkart, Didier Caucal, and Bernhard Steffen. An Elementary Bisimulation
Decision Procedure for Arbitrary Context-Free Processes. In MFCS, pages 423–
433, 1995.

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of
Pushdown Automata: Application to Model-Checking. In CONCUR, pages
135–150, 1997.

[BESS06] Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejcek. Reacha-
bility analysis of multithreaded software with asynchronous communication. In

117

118 BIBLIOGRAPHY

Software Verification: Infinite-State Model Checking and Static Program Anal-
ysis, 2006.

[BGJ10] Stanislav Böhm, Stefan Göller, and Petr Jancar. Bisimilarity of One-Counter
Processes Is PSPACE-Complete. In CONCUR, pages 177–191, 2010.

[BMOT05] Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili. Regular Symbolic
Analysis of Dynamic Networks of Pushdown Systems. In CONCUR, pages 473–
487, 2005.

[Cau90] Didier Caucal. Graphes canoniques de graphes algébriques. ITA, 24:339–352,
1990.

[CFL09] Wojciech Czerwinski, Sibylle B. Fröschle, and Slawomir Lasota. Partially-
Commutative Context-Free Processes. In CONCUR, pages 259–273, 2009.

[CFL11] Wojciech Czerwinski, Sibylle B. Fröschle, and Slawomir Lasota. Partially-
commutative context-free processes: Expressibility and tractability. Inf. Com-
put., 209(5):782–798, 2011.

[CHL12] Wojciech Czerwiński, Piotr Hofman, and Sławomir Lasota. Reachability problem
for weak multi-pushdown automata. Accepted to CONCUR 2012., 2012.

[CHM93] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation Equiva-
lence is Decidable for Basic Parallel Processes. In CONCUR, pages 143–157,
1993.

[Chr93] Søren Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, Department of Computer Science, University of Edinburgh, 1993.

[CHS95] Søren Christensen, Hans Hüttel, and Colin Stirling. Bisimulation Equivalence is
Decidable for All Context-Free Processes. Inf. Comput., 121(2):143–148, 1995.

[CL10] Wojciech Czerwinski and Slawomir Lasota. Fast equivalence-checking for normed
context-free processes. In FSTTCS, pages 260–271, 2010.

[CL12] Wojciech Czerwiński and Sławomir Lasota. Partially-commutative context-free
languages. Submitted., 2012.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors. Book of Traces. World Scien-
tific, Singapore, 1995.

[Esp97] J. Esparza. Petri Nets, Commutative Context-Free Grammars, and Basic Par-
allel Processes. Fundam. Inform., 31(1):13–25, 1997.

[GH94] Jan Friso Groote and Hans Hüttel. Undecidable Equivalences for Basic Process
Algebra. Inf. Comput., 115(2):354–371, 1994.

BIBLIOGRAPHY 119

[Gis81] Jay L. Gischer. Shuffle Languages, Petri Nets, and Context-Sensitive Grammars.
Commun. ACM, 24(9):597–605, 1981.

[Gla01] R.J. van Glabbeek. The linear time – branching time spectrum I; the semantics
of concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier, 2001.

[HJ99] Yoram Hirshfeld and Mark Jerrum. Bisimulation Equivanlence Is Decidable for
Normed Process Algebra. In ICALP, pages 412–421, 1999.

[HJM96a] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A Polynomial Algorithm for
Deciding Bisimilarity of Normed Context-Free Processes. Theor. Comput. Sci.,
158(1&2):143–159, 1996.

[HJM96b] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A Polynomial-Time Algo-
rithm for Deciding Bisimulation Equivalence of Normed Basic Parallel Processes.
Mathematical Structures in Computer Science, 6(3):251–259, 1996.

[HS91] Hans Hüttel and Colin Stirling. Actions Speak Louder than Words: Proving
Bisimilarity for Context-Free Processes. In LICS, pages 376–386, 1991.

[HT94] Dung T. Huynh and Lu Tian. Deciding Bisimilarity of Normed Context-Free
Processes is in Σp2. Theor. Comput. Sci., 123(2):183–197, 1994.

[Hüt94] Hans Hüttel. Undecidable Equivalences for Basic Parallel Processes. In TACS,
pages 454–464, 1994.

[Huy83] Dung T. Huynh. Commutative Grammars: The Complexity of Uniform Word
Problems. Information and Control, 57(1):21–39, 1983.

[Jan95] Petr Jancar. Undecidability of Bisimilarity for Petri Nets and Some Related
Problems. Theor. Comput. Sci., 148(2):281–301, 1995.

[Jan03] Petr Jancar. Strong Bisimilarity on Basic Parallel Processes is PSPACE-
complete. In LICS, pages 218–, 2003.

[Jan12] Petr Jancar. Bisimulation Equivalence for First-Order Grammars. Accepted to
LICS 2012., 2012.

[JK04] Petr Jancar and Martin Kot. Bisimilarity on normed basic parallel processes can
be decided in time O(n3). In Proceedings of the Third International Workshop
on Automated Verification of Infinite-State Systems (AVIS’04), 2004.

[JKM03] Petr Jancar, Antonín Kucera, and Faron Moller. Deciding Bisimilarity between
BPA and BPP Processes. In CONCUR, pages 157–171, 2003.

120 BIBLIOGRAPHY

[JKS10] Petr Jancar, Martin Kot, and Zdenek Sawa. Complexity of deciding bisimilarity
between normed BPA and normed BPP. Inf. Comput., 208(10):1193–1205, 2010.

[Kah11] Vineet Kahlon. Reasoning about Threads with Bounded Lock Chains. In CON-
CUR, pages 450–465, 2011.

[Kie12] Stefan Kiefer. BPA Bisimilarity is EXPTIME-hard. CoRR, abs/1205.7041, 2012.

[KIG05] Vineet Kahlon, Franjo Ivancic, and Aarti Gupta. Reasoning About Threads
Communicating via Locks. In CAV, pages 505–518, 2005.

[KM02] Antonín Kucera and Richard Mayr. On the Complexity of Semantic Equiva-
lences for Pushdown Automata and BPA. In MFCS, pages 433–445, 2002.

[KRS09] Mojmír Kretínský, Vojtech Rehák, and Jan Strejcek. Reachability is decidable
for weakly extended process rewrite systems. Inf. Comput., 207(6):671–680,
2009.

[Lif06] Yury Lifshits. Solving Classical String Problems an Compressed Texts. In Com-
binatorial and Algorithmic Foundations of Pattern and Association Discovery,
2006.

[LR06] Slawomir Lasota and Wojciech Rytter. Faster Algorithm for Bisimulation Equiv-
alence of Normed Context-Free Processes. In MFCS, pages 646–657, 2006.

[LR09] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods in System Design, 35(1):73–97,
2009.

[LS02] Denis Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes.
Theor. Comput. Sci., 274(1-2):89–115, 2002.

[May97a] Richard Mayr. Process rewrite systems. Electr. Notes Theor. Comput. Sci.,
7:185–205, 1997.

[May97b] Richard Mayr. Tableau Methods for PA-Processes. In TABLEAUX, pages 276–
290, 1997.

[Maz86] Antoni W. Mazurkiewicz. Trace Theory. In Advances in Petri Nets, pages
279–324, 1986.

[Maz88] Antoni W. Mazurkiewicz. Basic notions of trace theory. In REX Workshop,
pages 285–363, 1988.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

BIBLIOGRAPHY 121

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[NSS03] M.-J. Nederhof, G. Satta, and S. Shieber. Partially Ordered Multiset Context-
Free Grammars And Free-Word-Order Parsing. In Proc. 8th Intl Workshop on
Parsing Technologies, pages 171–182, 2003.

[Ogd68] William F. Ogden. A Helpful Result for Proving Inherent Ambiguity. Mathe-
matical Systems Theory, 2(3):191–194, 1968.

[Par81] David Michael Ritchie Park. Concurrency and Automata on Infinite Sequences.
In Theoretical Computer Science, pages 167–183, 1981.

[QR05] Shaz Qadeer and Jakob Rehof. Context-Bounded Model Checking of Concurrent
Software. In TACAS, pages 93–107, 2005.

[Sén98] Géraud Sénizergues. Decidability of Bisimulation Equivalence for Equational
Graphs of Finite Out-Degree. In FOCS, pages 120–129, 1998.

[Srb02a] Jirí Srba. Roadmap of Infinite Results. Bulletin of the EATCS, 78:163–175, 2002.
see also an updated online version on http://www.brics.dk/~srba/roadmap/.

[Srb02b] Jirí Srba. Strong Bisimilarity and Regularity of Basic Parallel Processes Is
PSPACE-Hard. In STACS, pages 535–546, 2002.

[Srb02c] Jirí Srba. Strong Bisimilarity and Regularity of Basic Process Algebra Is
PSPACE-Hard. In ICALP, pages 716–727, 2002.

[Srb02d] Jirí Srba. Undecidability of Weak Bisimilarity for PA-Processes. In Develop-
ments in Language Theory, pages 197–208, 2002.

[Srb09] Jirí Srba. Beyond Language Equivalence on Visibly Pushdown Automata. Log-
ical Methods in Computer Science, 5(1), 2009.

[Sti96] Colin Stirling. Decidability of bisimulation equivalence for normed pushdown
processes. In CONCUR, pages 217–232, 1996.

[Sti98] Colin Stirling. The Joys of Bisimulation. In MFCS, pages 142–151, 1998.

http://www.brics.dk/~srba/roadmap/

	Introduction
	Motivation
	Partially-commutative context-free graphs
	Results
	Related research

	Expressivity
	Preliminaries
	Closure properties
	Pumping lemmas
	Incomparability
	Proofs of incomparability
	Open problems

	Reachability
	Multi-pushdown automata
	Regular sets
	Results
	Singleton source sets
	NP-completeness
	Decidability
	Undecidability
	Relaxed regularity
	Open problems

	Bisimilarity
	Bisimulation game
	Overview of the algorithm
	The refinement step
	Representation
	Refinement preserves tractability
	Implementation
	Efficient algorithm for CFG
	Efficient algorithm for disjoint grammars
	Open problems

	Bibliography

