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Abstract

While the security of blockchains hinges on their underlying architecture, this thesis em-
phasizes the necessity for a comprehensive analysis of various security aspects of systems
built upon blockchain technology. In particular, the thesis studies the reliability of rating
systems designed for blockchain trading platforms, conducts a formal analysis of algo-
rithms securing against distributed cryptography attacks, and proposes a compiler for
devices safeguarding against wire-tampering attacks.
In the context of the reliability of rating systems, the study provides insights into

the manipulability of the Fairness-Goodness-Algorithm (FGA), a system demonstrated
to be well-suited for rating graphs akin to those found in blockchain trading platforms
(Kumar et al. 2016). Our research draws a clear distinction between direct and indirect
manipulations of a selected victim node in graphs and demonstrates that the FGA is
challenging to manipulate indirectly in real-world scenarios. A collection of formal and
experimental findings is presented to substantiate and reinforce this conclusion.
In the context of security against distributed cryptography attacks, we introduce the

concept of individual cryptography, a paradigm preventing sharing or dividing secrets
needed to compute algorithms. We define a formal model for individual cryptography, and
present an example scheme in this model - a Proof of Individual Knowledge protocol. The
Proof of Individual Knowledge allows one to prove that a secret key is stored on a single
machine. Along with the protocol, we show its application to the security of electronic
voting systems implemented on blockchains.
Lastly, the thesis addresses the security of devices used in blockchain ecosystems, pre-

senting a compiler for circuits that withstand wire-tampering attacks. The wire-tampering
attacks allow an adversarial device producer or a holder to manipulate the specifications
of the device’s wires maliciously. Our solution offers provable guarantees even in the
presence of modifications to every wire of the circuit.
The results presented in this thesis underscore the need to broaden the scope of

blockchain security research beyond architectural designs, emphasizing the significance
of analyzing diverse security facets for robust and resilient blockchain ecosystems.

Keywords: Blockchain; Security; Cryptography; Hardware security; Rating Systems
Manipulations.

ACM classification: Security and privacy → Social network security and
privacy. Security and privacy → Cryptography. Security and privacy → Secu-
rity in Hardware.



Streszczenie

Gdy mówimy o bezpieczeństwie technologii blockchain, zazwyczaj mamy na myśli archi-
tekturę danego oprogramowania. Rozprawa ta wskazuje jednak na konieczność przepro-
wadzenia kompleksowej analizy różnorodnych aspektów bezpieczeństwa systemów, które
bazują na technologii blockchain. W szczególności, praca ta bada niezawodność syste-
mów pozycjonowania (ang. „rating systems”) przystosowanych do serwisów wymiany
cyfrowych aktywów (ang. „trading platforms”), przeprowadza formalną analizę algoryt-
mów zabezpieczających przed atakami kryptografii rozproszonej i bada bezpieczeństwo
urządzeń wykorzystywanych przez użytkowników technologii blockchain.
W kontekście niezawodności systemów pozycjonowania, rozprawa dokonuje szczegó-

łowej oceny manipulowalności algorytmu Fairness-Goodness-Algorithm (FGA), systemu
pozycjonowania służącego do oceny uczestników sieci analogicznych do sieci tworzonych
przez użytkowników platform wymiany cyfrowych aktywów (Kumar et al. 2016). Nasze
badania wskazują na różnicę pomiędzy manipulacjami bezpośrednimi i pośrednimi wy-
branego węzła i pokazują, że algorytm FGA jest w praktyce odporny na manipulacje
pośrednie w sieciach rzeczywistych. Rozprawa przestawia zestaw formalnych i ekspery-
mentalnych wyników, które uzasadniają tę konkluzję.
W kontekście zabezpieczeń przed atakami kryptografii rozproszonej, rozprawa wpro-

wadza pojęcie kryptografii indywidualnej (ang. „individual cryptography”) — paradyg-
matu, który chroni przed atakami pozwalającymi na współdzielenie sekretnej informacji
potrzebnej do obliczenia zadanego algorytmu. W rozprawie definiujemy formalny model
indywidualnej kryptografii i prezentujemy przykładowy schemat w tym modelu - protokół
dowodu o wiedzy indywidualnej (ang. „Proof of Individual Knowledge”). Protokół ten
pozwala udowodnić, że tajny klucz jest przechowywany fizycznie na jednym urządzeniu.
Dodatkowo prezentujemy zastosowanie naszego protokołu w zabezpieczeniach systemów
elektronicznego głosowania wdrożonych na blockchainach.
Dodatkowo rozprawa prezentuje wyniki w kontekście bezpieczeństwa urządzeń wyko-

rzystywanych przez użytkowników technologii blockchain. Rozprawa zawiera opis i for-
malny dowód bezpieczeństwa kompilatora chroniącego przed atakami na specyfikację po-
łączeń w dostarczanym urządzeniu (ang. „wire-tampering attacks”). Ataki te pozwalają
nieuczciwemu producentowi lub posiadaczowi urządzenia manipulować specyfikacją po-
łączeń urządzenia, w sposób niezgodny z zaleceniami producenta urządzenia. Nasze roz-
wiązanie oferuje dowodliwe gwarancje bezpieczeństwa, nawet w przypadku modyfikacji
dowolnej liczby przewodów w urządzeniu.
Wyniki przedstawione w rozprawie wskazują na konieczność wyjścia poza schemat

badania podstawowej architektury technologii blockchain w kontekście badania bezpie-
czeństwa systemów opartych na technologii blockchain. Tym samym, rozprawa podkre-
śla znaczenie analizy różnorodnych aspektów bezpieczeństwa środowiska aplikacyjnego i
sprzętowego technologii blockchain.
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Chapter 1

Introduction

Blockchain is a decentralized public ledger. The term “public ledger” can be understood
as a “tamperproof sequence of data that can be read and augmented by everyone” [94].
The term “decentralization” refers to the implementation of the ledger that shares infor-
mation among multiple nodes, without a need to trust a single central unit. The outburst
of interest in blockchains can be identified with the start of Bitcoin in January 2009
which was the very first implementation of a blockchain [46]. Since the release of Bitcoin,
the technology reached a broad interest in the industry and the research communities,
which are actively striving to gain a comprehensive understanding of it. The blockchain
community quickly discovered that blockchains are a natural habitat for numerous ap-
plications that reach far beyond the standard use of transferring financial assets. This
led to the construction of novel information systems. The diversity of these extensions
is vast, ranging from light-hearted ones like blockchain-based game CryptoKitties [38] to
the programs enhancing critical functions of blockchains like Payment Channel Networks
(PCNs) [89] and web platforms built to enhance trading of blockchain assets like Bitcoin
OTC [4].
The security of systems built upon blockchains inherently relies on their underlying

architecture designs. To this day, the architectures of blockchains are very often presented
in an informal form of whitepapers, with Bitcoin [97] being the primary example. Bitcoin
was built upon a Proof-of-Work concept, which assumes that new blocks of data are
appended to the ledger with an attached proof that a sufficient amount of work was
done upon creation of the blocks. The academic community naturally initiated a more
formal study of the blockchain architectures, proposing, inter alia, the Proof-of-Stake [94]
and Proof-of-Space [49] blockchains. Both of these architectures aim to lower wasted
resources compared to the energy-consuming Bitcoin. The architectures of blockchains
usually require a cryptographically secure foundation and a financial mechanism that
incentivizes its users to contribute to the platform. In this context, the users of blockchains
are granted special roles and rewarded once they accomplish tasks assigned to them [97,
94]. For example, Bitcoin miners are rewarded for sharing a single block with a valid
Proof-of-Work.
Despite the mere fact that blockchains are built upon provably or seemingly secure

cryptographic and financial architectures, to believe that the assets held by blockchains
and systems built upon blockchains are indeed safe because they make use of these archi-
tectures, is a rather näıve approach. A vast amount of results (i.a. [108, 45, 93, 59, 104,

4



36, 58]) successfully improving or attacking the blockchain technology and systems built
upon blockchains from different angles quickly proved that the holistic study of different
aspects of the security of systems based on blockchain technology is mandatory. We start
with two straightforward examples that illustrate how important is the broader context
in the discussion of the security of systems built upon blockchains. The first example
involves secret storage. Usually, blockchain-based systems assume that cryptographic se-
crets used by the blockchain users (e.g., to authorize transactions with cryptographic
signatures) are kept “safely”. But in the era of countless attacks on popular operating
systems [1], saving a secret (that protects high-stake assets) on a personal computer does
not seem to be reasonable. Given this perspective, a line of works on so-called blockchain
wallets [45] was initiated to ensure safe storage and usage of the blockchain secrets. The
second example involves the order of transactions on blockchains. The architectures of
systems based on Bitcoin (all other Proof-of-Work blockchains) often assume that pub-
licly announced transactions will take (at most) a fixed amount of time to be put on the
blockchain. But it turns out that, as the Bitcoin miners are incentivized to mine the most
rewarding transactions first, it is easy to prevent a selected transaction from being put
onchain [104, 36] simply by posting other transactions with a higher miner’s fee. For this
reason, the researchers make an attempt to find definitions and implementations of fair
miner’s fee mechanisms [104, 36].
In this thesis, we adopt the existing models for blockchain architectures and continue

the effort to analyze various aspects of the security of systems built upon blockchains. In
particular, we focus on the following research directions:

• We conduct a study of the reliability of rating systems used by blockchain trading
platforms.

• We give a formal study of algorithms that ensure security against distributed cryp-
tography attacks.

• We propose a compiler for devices that ensures security against wire-tampering
attacks.

In the remainder of this chapter, we will summarise our contributions.

Rating systems used by blockchain trading platforms. As already mentioned,
blockchains’ primary application is to store and trade digital assets, whether they are fi-
nancial or otherwise. These assets are specified and managed by various mechanisms, such
as UTXOs on Bitcoin or Non-Fungible Tokens (NFTs) on Ethereum. The asset exchange
process is rather complicated and requires advanced technical knowledge, therefore aver-
age traders may become easy targets for scam trading operations. Consequently, with the
advancement of blockchains, a whole ecosystem of web platforms has emerged to facilitate
the trading of digital assets. These platforms put a lot of effort into providing mechanisms
that aim to increase the security of a trader. Some potential risks, like unexpected exits
from transactions or artificial pumping-up of the assets prices [96] are hard to identify
using automated methods, but can be mitigated with a user-ranking system maintained
by users with verified identity. To this end, in our work, we attempt to understand how
reliable the rating systems are in the context of blockchain trading platforms. In particular,
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in Chapter 2, we analyze the problem of manipulating the Fairness-Goodness-Algorithm
(FGA) proposed by Kumar et al. [84] which is well known in the literature. FGA is a
measure of the mutual trust of nodes in a graph with weighted ratings. The measure is
defined recursively. Each of the nodes is assigned a fairness value measuring how fair is
the node with rating other nodes, and a goodness value measuring how much the node
is trusted by other nodes. Given that the primary application of FGA is to fairly and
accurately evaluate nodes in a transaction network, such as many blockchain networks,
it is crucial to understand this measure’s properties and susceptibility to manipulations.
Unfortunately, the authors of FGA proved only a very limited number of its axiomatic
properties. Also, little is known about the robustness of this measure against any ma-
nipulation efforts. In our research, we thus provide a full axiomatization of the FGA,
formally define the problem of manipulability of the FGA, and study how the FGA could
be manipulated in some practical scenarios.

Distributed cryptography attacks. Distributed cryptography allows parties to jointly
compute some function of their inputs without revealing their inputs to other parties [11].
It can be realized using multiparty-computation protocols, fully-homomorphic encryption,
or trusted execution environments. Our key observation is that distributed cryptography
may be maliciously used to share or divide knowledge of secrets used to identify users
of information systems (e.g., on the blockchain), potentially blocking the possibility of
punishing a user that leaks, sells, or leases [101] its private information to other users.
In Chapter 3, we introduce individual cryptography - a formal study of algorithms that
ensure security against distributed cryptography attacks. Individual cryptography ensures
that secret information needed to compute an algorithm is stored fully on a single ma-
chine. This concept holds potential for numerous applications, including incentivizing
participants of protocols not to disclose their secrets to other users. For concreteness, we
additionally present a Proof of Individual Knowledge protocol that forces the users to
compute extensive computation on the secret in a limited time. The protocol gives the
service provider provable guarantees that the secret is not shared or divided between a
set of parties.
To show how the Proof of Individual Knowledge may be applied to systems built upon

blockchains, we present a concept of security extension for voting systems within Decen-
tralized Autonomous Organizations (DAOs) [102]. DAOs are programs implemented on
blockchains designed to transparently and autonomously manage organisations. A fun-
damental component of these organizations is a voting mechanism enabling participants
to conduct elections or referendums periodically. Given that each DAO user is typically
associated with a secret key, the distributed cryptography can be leveraged to initially
share knowledge about the secret, in order to lease [101] control over the secret for a lim-
ited time. This, in turn, facilitates processes such as vote selling. We show how individual
cryptography may be used to prevent such attacks. For a more detailed description of
this attack, please refer to Section 3.5.

Security of devices used by blockchain users. The last aspect of the security of
the blockchain technologies that we consider is the security of devices used to store and
manage secret information needed to protect digital assets. In the era of digital assets, the
notion of possession refers to the knowledge of secret information used to bind the asset.
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This approach sets a new level of risk, as stealing a digital asset can be easier than ever
if we consider all the modern ways to hack devices used to store and manage secrets.
The blockchain wallet is one example of a device specifically designed to store the

blockchain cryptographic information. The research community pays much attention to
the security of these devices, e.g. by trying to formally understand the implications of so-
called cold-hot wallets [45], or hierarchical deterministic wallets [117], as well as postquan-
tum secure cold-hot wallets [73]. Another approach that can be taken is the study of
theoretical aspects of the security of devices modeled formally as arithmetic circuits. A
seminal series of papers introduces various theoretical security aspects of devices [76, 74,
52], including the problem of leaking secrets via side channels, the problem of device
tampering, or the problem of secure outsourcing of device production.
Following the theoretical line of work, we try to derive security in a setting similar

to the one from [74] that assumes a security model that assumes tampering with the
specification of the device. In this context, in Chapter 4 we provide a full construction
of compiler that compiles circuits into circuits secure against so-called wire-tampering
attacks. The production of electronic circuits is handled via a sequence of independent
steps. It usually starts with the design of the circuit and then the production of prefabri-
cates needed to produce the circuit (e.g., the circuit board); in the main stage, the gates
and the wires are applied to the circuit, and finally, the construction is tested. During the
application of the wire topology to the circuit, benign (non-adversarial errors) may occur
that cause computation errors [19, 27]. To counter this problem, the hardware testing
community has applied numerous heuristic techniques [19, 27] to test the input/output
behavior of the circuit. Our compiler is a method to test such circuits with provable guar-
antees efficiently. Our testing method is secure even against adversarially chosen errors
and against an unbounded number of wire tamperings applied to the circuit. Finally, as-
suming that other amendments to the implementation of the circuit (e.g., the tampering
of the gates) can be visually inspected, our tool can be used to protect against adversarial
device tampering in practice.

Publications

The following publications were used as a foundation for this thesis.

• Chapter 2 is based on the work “On Manipulating Weight Predictions in Signed
Weighted Networks” published in the proceedings of AAAI-23 [90]. All of the tech-
nical results in this chapter are my own technical contribution.

• Chapter 3 is based on the work “Individual Cryptography” published in the pro-
ceedings of CRYPTO-23 [51]. The main technical concepts presented in the chapter
came from the other authors, whereas my involvement contributed to the finaliza-
tion of the formalizations and formal proofs presented in the chapter.

• Chapter 4 is based on the introduction and the section 5 of the work “Efficiently
Testable Circuits without Conductivity” published in the proceedings of TCC-23 [9].
All of the technical results in this chapter are my own technical contribution unless
explicitly stated in the text.
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Chapter 2

On Manipulating Weight Predictions
in Signed Weighted Networks

Adversarial social network analysis studies how graphs can be rewired or otherwise ma-
nipulated to evade network analysis tools. While there is ample literature on manipulating
fundamental network analysis tools, more sophisticated tools are much less understood
in this respect. In this chapter, we focus on the problem of evading FGA—an edge weight
prediction method for signed weighted networks by [84]. Among others, this method can
be used for trust prediction in reputation systems, and was tested on real-life datasets
derived from blockchain trading platforms (Bitcoin OTC, Bitcoin Alpha) [84]. We study
the theoretical underpinnings of FGA and its computational properties in terms of ma-
nipulability. Our positive finding is that, unlike many other tools, this measure is not
only difficult to manipulate optimally, but is also difficult manipulate in practice.

2.1 The Manipulability of the FGA

Many works in the body of research on adversarial social network analysis have considered
how to manipulate classic tools of social network analysis such as centrality measures [37,
17, 115], community detection algorithms [112, 64, 33], and link and sign prediction
algorithms [67, 66]. Also, a rapidly growing body of works studies adversarial learning on
graphs using deep learning [34].
While most of the above literature focused on simple networks, in this chapter, we

consider a more complex model of weighted signed networks. In this class of networks,
links are labeled with real-valued weights representing positive or negative relations be-
tween the nodes [86, 87, 107]. An important application of signed weighted networks is
the modelling of trust networks/reputation systems, the goal of which is to avoid trans-
action risk by providing feedback data about the trustworthiness of a potential business
partner [103]. As an example, let us consider the cryptocurrency trading platform Bitcoin
OTC [84]. In this platform, users are allowed to rate their business partners on the scale
{−10,−9, . . . , 10}, and the ratings are publicly available in the form of a who-trusts-whom
network. A 6-node fragment of this network is presented in Figure 2.1.
A user who thinks of doing a transaction with another user for the first time can

use the information from such a who-trust-whom network to predict the potential risk.
Technically, given a trust network modeled as a weighted signed network, predicting trust

8



Figure 2.1: A fragment of the Bitcoin OTC network composed of nodes 993, 715, 707,
614, 1031, 762.

amounts to predicting the weights of potential new edges. A well-known edge weight
prediction method, called FGA, was proposed by [84]. FGA is based on two measures
of node behavior: the goodness that evaluates how much other nodes trust a given
node, and the fairness that captures how fair this node is in rating other nodes. Both
concepts have a mutually recursive definition that converges to a unique solution. Most
importantly, Kumar et al. showed that FGA is effective in predicting edge weights, i.e.,
the level of trust between unlinked nodes. For example, in Figure 2.1, the trust of node
1031 towards node 715 is predicted by FGA to be 2.26.
While FGA seems to be an interesting tool to apply in practice, little is known about

its resilience to malicious behaviour. In this chapter, we present the first study of manipu-
lating the FGA function by a rating fraud [28, 92]. It involves fraudulent raters to strate-
gically underrate or overrate other users for their own benefit. To magnify the strength of
the manipulation, the attacker may create and act via multiple fake user identities. Such
so called Sybil attacks are especially tempting in environments such as cryptocurrency
trading platforms where creating a new identity is affordable. Rating fraud attacks may
be direct—when targeted nodes are rated directly by the attackers—and indirect—when
the attackers try to manipulate the neighbourhood of the target nodes rather than the
target nodes themselves (see Figure 2). It is important to distinguish between direct and
indirect manipulations, as in some situations, only indirect ones will be practical. This
may be the case on e-commerce platforms such as e-Bay or trading platforms for crypto
currencies, where nodes rate each other only after completing a transaction. When a re-
tailer of expensive products is the target, the cost of a direct attack can be prohibitive.
Hence, an indirect attack becomes an attractive alternative—it may be much cheaper to
attack through the clients or business partners of such an expensive retailer (see the next
section for an example).
Our contributions can be summarised as follows:

• To analyze the theoretical underpinnings of the FGA measure, we propose the
system of basic axioms for both fairness and goodness. We prove that together they
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uniquely determine the FGA measure;

• Next, we formulate the issue of manipulating the FGA measures of some target
group of nodes as a set of computational problems. We then prove that all these
problems are NP -hard and W [2]-hard, i.e., FGA is, in general, hard to manipulate.

• Given the hardness of attacking a group of nodes, we then focus our analysis on
targeting a single node - directly or indirectly. As for an indirect attack, we show
analytically that for some class of networks (which we call minimum-k-neighbour
graphs, since we require that every node in this network has indegree and outdegree
at least k), we can bound the strength of indirect attacks. A similar result for
the direct attack gives a bound k times weaker than for the indirect case. Our
positive finding is that, in this case, FGA measure turns out to be rather difficult
to manipulate indirectly.

• In our experimental analysis, we first evaluate two benchmarks: (a) the strength of
the aforementioned direct attack, and (b) the strength of an indirect attack based
on a simple greedy approach. The latter one turns out to be very ineffective. Next,
we analyse an improved greedy approach by attacking at a larger scale in every
step. This approach, although costly, proves to be sometimes effective.

2.2 Preliminaries

A Weighted Signed Network (WSN) is a directed, weighted graph G = (V,E,W ), where
V is a set of users, E ⊆ V ×V is a set of (directed) edges, and ω : E → [1,+1] is a weight
function that to each (u, v) ∈ E assigns a value between −1 and +1 that represents
how u rates v. For any directed edge (u, v) ∈ E, let us denote by (u, v) the edge in
the opposite direction, i.e., (u, v) = (v, u). For any set of directed edges E, denote by
E = {e : e ∈ E}. Furthermore, let P be a set of pairs of nodes of cardinality n, i.e,
P = {{u1, v1}, ..., {un, vn}}. The domain of P is the set of nodes that make the pairs
in P , i.e. dom(P ) = {u : u ∈ {u, v} ∈ P}. Finally, we write Pred(v) (resp. Succ(v))
to denote the set of predecessors (resp. successors) of v (resp. u) defined as follows:
Pred(v) = {u : u ∈ (u, v) ∈ E} (resp. Succ(u) = {v : v ∈ (u, v) ∈ E}).
By [k], we denote a set {1, . . . , k}. For a square matrix Mm×m of size m, we define

||M ||∞ = max1¬i¬m
∑m
j=1mij, ||M ||1 = max1¬j¬m

∑m
i=1mij. It is also known that ||M ×

M ||∞ ¬ ||M ||∞ · ||M ||1 and ||M ×M ||∞ ¬ ||M ||1 · ||M ||1 (see https://en.wikipedia.
org/wiki/Matrix_norm).
Kumar et al. (2016) define a recursive function, FGA, that assigns to each vertex of

a weighted directed graph two values: fairness and goodness, (f(v), g(v)). The first one,
f(v), assigns a real value from range [0, 1] to v that indicates how fair this node is in
rating other nodes. The second one, g(v), assigns a value from range [−r, r] to v indicating
how much trusted this node is by other nodes (for simplicity we assume that r = 1 in our
work). We define an in-degree (indeg(u)) and out-degree (outdeg(u)) of a node u ∈ V .
indeg(u) = |{(v, u) : (v, u) ∈ E}| and outdeg(u) = |{(u, v) : (u, v) ∈ E}|. Kumar et al.’s
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Network (a) (b) (c)
node v g(v) f(v) g(v) f(v) g(v) f(v)
1 1 1 0.4 1 0.83 1
2 1 1 1 0.8 1 0.75
3 1 1 1 0.7 1 0.92
4 1 1 0.8 1 0.17 1
5 1 0.3 1 0.42

Figure 2.2: Sample networks and two types of attacks.

recursive formula for (f(v), g(v)) is as follows:

g(v) =
1

indeg(v)

∑
u∈Pred(v)

f(u) · ω(u, v) (2.1)

f(u) = 1− 1
outdeg(u)

∑
v∈Succ(u)

|ω(u, v)− g(v)|
2

, (2.2)

where g(v) = 1 for v ∈ V with indeg(v) = 0, and f(v) = 1 for v ∈ V with outdeg(v) = 0.
Kumar et al. (2016) showed that this function can be computed iteratively starting

from f (0)(u) = g(0)(u) = 1. Theorem 1 from the aforementioned work states that at each
step, t, the estimated values f (t)(u), g(t)(u) get closer to their limits f (∞)(u), g(∞)(u) and
one gets |f (∞)(u) − f (t)(u)| < 1

2t and |g
(∞)(u) − g(t)(u)| < 1

2t−1 . The FGA function can
be used for predicting the weight of some not-yet existing (or unknown) edge (u, v) ∈
V × V \ E by computing the product: ω(u, v) = f(u) · g(v).
As an example of the FGA function and how it could be attacked, let us consider

Figure 2.2. Network (a) is a benchmark, where every node rates others with the highest
possible value. In network (b), a new node 5 is used to perform a direct attack by
rating node 1 with the worst possible value of −1. This decreases the goodness of node 1
to 0.4. However, as argued in the introduction such a direct attack can be prohibitively
costly. Nevertheless, given the definition of the FGA function, node 5 can also perform an
indirect attack on node 1. This can be done, for instance, by directly attacking node 4.
As node 4 has already been rated positively by node 2, an opposite rating introduced by
5 will decrease the fairness of 2. In particular, comparing network (c) to (a) in Figure 2.2,
the fairness of 2 decreased from 1 to 0.75. This lower fairness means that node’s 2 ratings
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are less meaningful in network (c) than in network (a). Hence, the goodness of node 1
decreases to 0.83.

2.3 Axiomatization

Our first result is an axiom system that completely characterizes the FGA. First, we
present a comprehensive summary, while the details will be given afterwards.
We begin with the characterization of the goodness part of the FGA function. Recall

that the idea behind the goodness of v is that it should reflect how this node is rated by
its predecessors. Moreover, the ratings of the fairer predecessors should count more. We
translate these high-level requirements into the following axioms:

• Smooth Goodness — let all predecessors of a particular node, v ∈ V , be unanimous
in how they rate v and let their fairness be the same. Now, let us assume that
their fairness increases equally, i.e., intuitively, the nodes that rate v become more
trustworthy. Then, we require that this will result in an increase of the goodness
of v, and that this increase is proportional to the increase of the fairness of v’s
predecessors.

• Increase Weight — let the predecessors of v be all equally fair and unanimous in how
they rate v. Now, let them increase their rating of v equally. Then, we require that
the goodness of v increases and that this increase is proportional to the increase in
how v is rated.

• Monotonicity for Goodness — the predecessors with higher fairness should have
a bigger impact on the goodness of v (similarly for the predecessors with higher
weights).

• Groups for Goodness — let v be rated by k groups of the predecessors and let the
nodes in each group be homogeneous and unanimous w.r.t. v. What is then the
relationship between the impact these groups have on the goodness of v? In line
with the previous axioms, we require that the goodness of v should be equal to the
weighted average of the ratings achieved when these groups separately rate v.

• Maximal Trust — this basic condition requires that if all the predecessors of v have
the highest possible fairness and their ratings are the highest possible, then the
goodness of v should be the highest possible.

• Baseline for Goodness — a non-rated node has the goodness of 1.

Our first result is that the above axioms uniquely define the goodness part of the FGA
function.
Let us now characterise the fairness part of the FGA function. Recall that the idea

behind the fairness of v is that it should reflect how the ratings given by this node agree
with the ratings given by other nodes, i.e. how erroneous v is. In this respect, we have
the following axioms:

• Smooth Fairness — this axiom stipulates that the fairness of a node making an
average error is an average of the fairness values of nodes making extreme errors.
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• Monotonicity for Fairness — this axiom stipulates that the fairness of a node that
rates more accurately than before should rise.

• Groups for Fairness — if the nodes rated by v can be divided into k groups such
that each node in a particular group is rated by v in the same way, then the fairness
of v should be equal to the weighted average of v’s fairness in a setting where v rates
these groups separately.

• Obvious Fairness Metric — Here, we stipulate that when a node makes maximal
errors when rating all of its neighbors, its fairness should be 0, and when there is
no error, the fairness is 1.

• Baseline for Fairness — the fairness of a node that rates no one is 1.

The above axioms uniquely define the fairness part of the FGA function. In summary, all
the above axioms uniquely define the FGA function.

Theorem 1. The Smooth Goodness, Increase Weight, Monotonicity for Goodness, Maxi-
mal Trust, Groups for Goodness, Baseline for Goodness axioms, and the Smooth Fairness,
Monotonicity for Fairness, Obvious Fairness Metric, Groups for Fairness, and Baseline
for Fairness axioms uniquely define the FGA function.

2.3.1 Goodness axiomatization

Below we formally define the axioms and present the uniqueness proofs. We begin with
the characterization of goodness part of the FGA function. Let v ∈ V have all the
predecessors ui ∈ Pred(v) homogenous and unanimous w.r.t. v, i.e. they all have the
same fairness f0 and they rate v with the same rating ω0. Now, let us assume that f0 of
all the predecessors gets increased by the same amount, ∆. We require that the goodness
of the rated node v should rise proportionally to ∆ (see Figure 2.4). To formalize this
axiom, let us denote the goodness of v in such a setting by gφω ,φf (v), where φω indicates
the value of weight of the edges (ui, v), and φf indicates the value of the fairness of all
ui ∈ Pred(v).

Axiom 1 (Smooth Goodness). Let v ∈ V , such that for all ui ∈ Pred(v) it holds that
f(ui) = f0 ∧ ω(ui, v) = ω0. Then, for all ∆ ∈ R :

gω0,f0+∆(v) = gω0,f0(v) + gω0,∆(v).

Next, let us consider an analogous situation, but now the weight ω0 of the edges from
the predecessors Pred(v) to v increases by ∆ while their fairness f0 remains the same (see
Figure 2.5). This leads to the following axiom:

Axiom 2 (Increase Weight). Let v ∈ V , such that for all ui ∈ Pred(v) it holds that
f(ui) = f0 ∧ ω(ui, v) = ω0. Then, for all ∆ ∈ R:

gω0+∆,f0(v) = gω0,f0(v) + g∆,f0(v).

Next, we require that nodes with higher fairness have a higher impact on the goodness
of the rated nodes. Similarly, higher weights should result in a better rating of the target
node (see Figure 2.6).
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Figure 2.3: Axiom 6 sets a default value of the goodness to 1 for a node that has not been
rated yet.

Axiom 3 (Monotonicity for Goodness). Let u1 and u2 be two nodes rated by unanimous
and homogeneous sets of predecessors S1, S2. Si’s consist of nodes with identical fairness
fi which rate ui with identical ωi. If f1 = f2 and ω1 > ω2, then g(u1)  g(u2). Also, if
ω1 = ω2 and f1 > f2, then g(u1)  g(u2).

Monotonicity for Goodness is an analogy for the Goodness Axiom proposed by Kumar
et al. (2016). While the Goodness Axiom concerns any set of predecessors, Monotonicity
for Goodness focuses on unanimous and homogeneous sets of them.
Next, any node v ∈ V , that has the best possible rating given by each of its prede-

cessors and all its predecessors have the highest possible fairness, should have maximal
possible goodness (see Figure 2.6).

Axiom 4 (Maximal Trust). For any v ∈ V , such that for all ui ∈ Pred(v) it holds that
f(ui) = 1 ∧ ω(ui, v) = 1, for all ∆ ∈ R the goodness value of the node v is fixed to 1,
i.e. g(v) = 1.

The following axiom states that, when v ∈ V is rated by k groups, where the nodes in
each group are homogeneous and unanimous w.r.t. v, then the goodness of v should be
equal to the weighted average of the ratings achieved when these groups separately rate
v.

Axiom 5 (Groups for Goodness). Given v ∈ V , let {S1, . . . , Sk} be a partition of Pred(v),
such that for all i ∈ [k] there exists fi, ωi such that for all uj ∈ Si it holds that f(uj) =
fi ∧ ω(uj, v) = ωi. Then, it holds:

g(v) =
∑
i∈[k](|Si| · gi(v))∑

i∈[k] |Si|
,

where gi(v) denotes the rating of the node v rated only by the homogeneous and unanimous
predecessors from group i.

Finally, we have the following baseline:

Axiom 6 (Baseline for Goodness). Any v ∈ V with indeg(v) = 0 has g(v) = 1.

We will now show that the above axioms uniquely define the goodness part of the
FGA function.
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Figure 2.4: Axiom 1 says that the increase in the homogenous fairness of the unanimous
predecessors results in the proportional increase of the goodness of the rated node.

Figure 2.5: Axiom 2 says that the increase in the homogenous weight of the unanimous
predecessors results in the proportional increase of the goodness of the rated node.

Theorem 2. For any fixed fairness function f(u), the Smooth Goodness, Increase Weight,
Monotonicity for Goodness, Maximal Trust, Groups for Goodness, and Baseline for Good-
ness axioms uniquely define goodness function (2.1).

Proof. It is easy that the goodness function (2.1) meets the conditions of the above
axioms.
Now, we show that the axioms imply the goodness function (2.1). Let us define some

gw0,f0i (v) for a node v rated by homogeneous and unanimous nodes w.r.t. v. In other
words, all u ∈ Pred(v) have the same fairness f(u) = f0 and they rate v with the same
rating ω(u, v) = ω0. From Smooth Goodness and Monotonicity for Goodness and the
Cauchy’s equation [105], we know that gi(v) is linearly dependant on f(u) when ω(u, v)
is fixed to some ω0, i.e. for some constant aω0 ∈ R:

g
ω0,f(u)
i (v) = aω0 · f(u).

Again, from Increase Weight, Monotonicity for Goodness, and the Cauchy’s equation
we know that gi(v) is linearly dependant on ω(u, v) when f(u) is fixed to some f0, i.e. for
some constant bf0 ∈ R:

g
ω(u,v),f0
i (v) = ω(u, v) · bf0 .

The two equations above imply that for a set of homogeneous and unanimous pre-
decessors, gω(u,v),f(u)i (v) = gω,fi (v) = aω · f = bf · ω. Since the function g

ω(u,v),f(u)
i (v) is

defined for all ω, f ∈ R, this equality implies that for any f ̸= 0 it holds that aω = bff · ω.
Furthermore, since aω is not dependant on f by definition, then aω = c ·ω for some c ∈ R.
We conclude that for all ω, f ∈ R:

gω,fi (v) = c · f · ω.

From Maximal Trust, we get that gi(v) = f(u) · ω(u, v). Now, when a node does not
have unified predecessors, we can divide its predecessors into groups with fixed (fi, ωi).
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Figure 2.6: Axiom 3 says that fairer nodes should have a bigger impact on the goodness
of the rated nodes. In the figure, we assume that ω > 0 and node u0 has bigger fairness
than node u1. Axiom 4 says that a fully trusted node should have the goodness value
equal to 1.

From Groups for Goodness, we get:

g(v) =
∑
i∈[k](|Si| · gi(v))∑

i∈[k] |Si|
=
∑
i∈[k](|Si| · fi · ωi)∑

i∈[k] |Si|
=

=
1
in(v)

∑
u∈Pred(v)

f(u) · ω(u, v).

Additionally, from Baseline for Goodness, g(v) = 1 for v with indeg(v) = 0.

2.3.2 Fairness axiomatization

In this section, we present the axiomatization of the fairness part of the FGA function.
The fairness axiomatization is defined with respect to the rating error of nodes. We define
the error of node v rating the node u as d = |ω(v, u)− g(u)|.
Our first axiom stipulates that the fairness of a node that makes an average error

when rating other nodes is equal to the average of the fairness values of nodes in extreme
cases.

Axiom 7 (Smooth Fairness). Assume a node v rates a set of its successors S with equal
error d = |g(u) − ω(v, u)| for u ∈ S in one setting, and with an error D in another
setting, then f

d+D
2 (v) = f

d(v)+fD(v)
2 .

The following axiom states that fairness of the nodes that rate more accurately should
rise (see Figure 2.7).

Axiom 8 (Monotonicity for Fairness ). Let u1 and u2 be two nodes rating their sets of
successors S1, S2. Si consists of nodes vi rated by ui with identical error di = |g(ui) −
ω(ui, vi)|. If d1 > d2, then f(u1) ¬ f(u2).

The Monotonicity for Fairness axiom is an analogy for the Fairness Axiom in [84].
While the Fairness Axiom is defined for any set of predecessors, in our case, the Mono-
tonicity for Fairness is defined only for a set of successors Si rated with equal rate by the
node ui.
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Figure 2.7: Axiom 8 says that the fairness of a node should rise when the node gives more
precise ratings.

Figure 2.8: Axiom 11 says that a node that has not rated anyone yet should have fairness
1.

Next, we stipulate that when a node makes maximal errors when rating all of its neigh-
bors, then its fairness should be 0, and when it always agrees with the actual goodness
value of its rated nodes, then its fairness is 1 (see Figure 2.9).

Axiom 9 (Obvious Fairness Metric). Assume node v rates all its successor nodes S with
distance d = |g(u) − ω(v, u)| = 0, for u ∈ S, then f(v) = 1. Assume a node v rates all
its successor nodes S with distance d = |g(u)− ω(v, u)| = 2, for u ∈ S, then f(v) = 0.

Also, when v ∈ V rates its neighbors that can be divided to k such groups that each
node in a group is rated by v with the same distance as other nodes in this group, then
the fairness of v should be equal to the weighted average of its fairness in a setting where
v rates these groups separately.

Axiom 10 (Groups for Fairness). Given v ∈ V , let {S1, . . . , Sk} be a partition of Succ(v)
such that ∀i ∈ [k] there exists di : ∀uj∈Si |g(uj)− ω(v, uj)| = di. Then:

f(v) =
∑
i∈[k](|Si| · fi(v))∑

i∈[k] |Si|
,

where f i(v) is the fairness of v rating group i.

Finally, a baseline for node v with outdeg(v) = 0 is:

Axiom 11 (Baseline for Fairness). A node v with outdeg(v) = 0 has f(v) = 1.

Theorem 3. For fixed goodness function g(n), the Smooth Fairness, Monotonicity for
Fairness , Obvious Fairness Metric, Groups for Fairness, and Baseline for Fairness ax-
ioms uniquely define fairness function (2.2).
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Figure 2.9: Axiom 9 says that a node that rates with perfect accuracy (its rating error
d = 0 for all the nodes that it rates) should have maximal fairness equal to 1, and a node
that makes the biggest errors (its rating error d = 2 for all the nodes that it rates) should
have minimal fairness equal to 0.

Proof. It is easy that the fairness function (2.2) meets the conditions of the above axioms.
Now let us show that the above axioms define the function (2.2). Let us define fi(v) for
a node v and a group of nodes with some fixed error di = |g(u)− ω(v, u)|. From Smooth
Fairness, Monotonicity for Fairness and the Jensen’s equation [105], we know that fi(v)
is linearly dependant on di = |g(u)− ω(v, u)|, i.e. for some a, b ∈ R:

fi(v) = b+ a · di.

From Obvious Fairness Metric we get that fi(v) = 1− di/2 = 1− |g(u)− ω(v, u)|/2 for a
set of unified successors. Now when a node does not have unified successors, we can divide
its successors to groups with fixed di = |g(uj)− ω(v, uj)|. From Groups for Fairness:

f(v) =
∑
i∈[k](|Si| · fi(v))∑

i∈[k] |Si|
=
∑
i∈[k](|Si| · (1− di/2))∑

i∈[k] |Si|
=

= 1− 1
out(v)

∑
u∈Succ(v)

|g(u)− ω(v, u)|/2.

Finally, from Baseline for Fairness we get that f(v) = 1 for nodes with outdeg(v) = 0.

2.3.3 FGA axiomatization

The above results imply the final axiomatization result:

Theorem 1. The Smooth Goodness, Increase Weight, Monotonicity for Goodness, Maxi-
mal Trust, Groups for Goodness, Baseline for Goodness axioms, and the Smooth Fairness,
Monotonicity for Fairness, Obvious Fairness Metric, Groups for Fairness, and Baseline
for Fairness axioms uniquely define the FGA function.

Proof. The proof follows from the proofs of Theorems 2 and 3.

2.4 Complexity of attack

In this section we study the complexity of manipulating FGA.
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Attack models. Given G = (V,E, ω(E)), let A ⊆ V be a set of attackers. We define
two types of the A’s objectives:

• targeting potential links— here, the target set TP is composed of disconnected
pairs of nodes from V \ A:

TP ⊆ {{u, v} : u, v ∈ V \ A ∧ (u, v), (v, u) /∈ E} . (2.3)

Intuitively, the aim is to change the predicted weight of the potential links between
the pairs from TP .

• targeting nodes — here, the target set is T ⊆ V \ A. Intuitively, the goal is to
alter the targets’ reputation.

The attackers can make the following types of moves:

• edge addition — the attackers can add an edge (u, v) to G, where u ∈ A, v ∈ T ,
(u, v) /∈ E, and with the weight ω(u, v) ∈ [−1, 1]. This corresponds to the attacker
u ∈ A rating node v ∈ T for the first time.

• weight update — an attacker u ∈ A can update the weight of an existing edge
(u, v) ∈ G to some value ω(u, v) ∈ [−1, 1]. This corresponds to a modification of
the existing rating by the attacker.

All the attackers are allowed to make no more than k such moves in total. We will refer
to k as a budget.1

We will now formalize our computational problems. In the first one, the attackers aim
at modifying the predicted weights between the pairs of nodes in TP to decrease them
below (increase above) a certain threshold. This attack corresponds to breaking potential
business connections.

Problem 1 (Decrease (Increase) Mutual Trust, DMT (IMT )). Given a weighted signed
network G = (V,E, ω), a set of attacking nodes A ⊆ V , a target set of pairs of nodes TP
as defined in eq. 2.3, an intermediary set I ⊆ V , the budget k, and a threshold t ∈ [−1, 1],
decide for all {u, v} ∈ TP whether it is possible to decrease (increase) the value of either
predicted weight f(u) · g(v) or f(v) · g(u) to or below (above) the threshold t by making
no more than k edge additions or weight updates with the restriction that the attackers
u ∈ A are rating only the nodes from the intermediary set I.

In the second problem, the attackers aim at altering the goodness value of the nodes
from a target set T . This attack corresponds to spoiling the reputation of the target
nodes.

Problem 2 (Decrease (Increase) Nodes Rating, DNR (INR)). Given WSN G = (V,E, ω),
a set of attackers A ⊆ V , a target set T ⊆ V \A, an intermediary set I ⊆ V , the number
of possible moves k, and threshold t ∈ [−1, 1], decide whether it is possible, for all v ∈ T ,
to decrease (increase) the goodness of each vertex v to or below (above) threshold t by
making no more than k edge additions or weight updates with the restriction that the
attackers u ∈ A are rating only the nodes from the intermediary set I.
1We place no constraints on how the attackers distribute this budget among themselves. In an extreme

case, a single attacker can do all k actions.
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Figure 2.10: (a) The original VC problem (k = 2) with vertices V = {1, 2, 3, 4, 5}
and edges as in the picture. This set can be covered with 2 nodes - 1 and 5. (b)
The corresponding DMT instance with number of moves k = 2, threshold t = −1,
the set of attacked edges H, as in the original problem, and a new set of attacking
nodes {a1, a2, a3, a4, a5} marked with big circles for which attacking edges were created
{(a1, 1), (a2, 2), (a3, 3), (a4, 4), (a5, 5)} - each with the weight of 1. To solve this problem
one needs to modify the values of the edges {(a1, 1), (a5, 5)} to −1.

Hardness results. We first consider the NP-hardness of the DMT (IMT ) and the DNR
(INR) problems. In the proofs we will define standard polynomial time reductions [40]
that show that every instance A of a problem that is known to be NP-hard can be
transformed to an instance B of another problem in a way that the instance A can be
solved if and only if the instance B can be solved.
We start with the hardness of the DMT (IMT ).

Theorem 4. Solving the DMT (IMT ) = (G = (V,E, ω), A,TP , I, t, k) problem is NP-
hard.

Proof of Theorem 4. We reduce from the VERTEX COVER (VC) problem. In the VC
problem we are given a parameter k and a graph G = (V,E) and we need to decide
whether there exists a set of vertices, U ⊆ V , |U | ¬ k, that “cover” the set of the edges
of this graph, i.e., every edge from E is adjacent to at least one node in U .
Given the VC problem (G, k), where G = (V,E), we create an instance of our problem

DMT = (G′ = (V ′, E ′, ω), A,TP , I, t, k′), by adding, for every node v ∈ V , an attacking
node av with an edge (av, v) with weight = 1. We set the target threshold as follows:
t = −1. We set A = {av : v ∈ V }, V ′ = V ∪A, E ′ = {(av, v) : v ∈ V } (each of weight 1).
Finally, the set of intermediary vertices is I = V , and the set of attacked edges TP is E,
i.e., the set of the edges from G. We set k′ = k. See Figure 2.10 for an example.
We now need to show that the reduction is correct. Firstly, given a graph G = (V,E)

and its vertex cover of size k, i.e., U ⊆ V with U = {x1, ..., xk}, we show that its
corresponding problem, DMT , as outlined above can be solved. To this end, we modify
all of the k edges (axi , xi), where xi ∈ U , by setting each of them to −1. Now:

• due to the fact that computing (f(u), g(u)) = FGA(G, u) of a node u adjacent only
to a single directed edge results in g(u) being equal to the weight of this single edge,
then for all xi ∈ U we have g(xi) = −1;
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Figure 2.11: The corresponding DNR instance to the SC problem with target set T =
{1, 2, 3, 4} that has to be covered with at most k = 2 sets from S = {{1, 2, 3}, {1, 2}, {4}}.
In the DNR instance the set of target nodes is {1, 2, 3, 4}, the set of attacking nodes
is {a1, a2, a3}. The intermediary and helper nodes created for every set from S are
{n1, n2, n3,m1,m2,m3}. Additionally, l stabilizing nodes sji are added to each node xj,
the number of moves is k = 2, and the threshold is set to t = 1 − ϵ (with l and ϵ as
defined in the proof).

• from the definition of the FGA function, the fairness of nodes with out-degree of 0
is equal to 1. Hence, for all u ∈ V we have that f(u) = 1.

From these we conclude that all of the connections in the target set TP are decreased
to the threshold t = −1, i.e. either f(u) · g(v) = −1 or f(v) · g(u) = −1 for every pair
{u, v} ∈ TP .
For the other direction, assume that we have a solution to our problem DMT that

was created as outlined above. Recall that the set of attacking nodes is the set of newly
created nodes for the DMT instance, i.e., A = {av : v ∈ V }, and each of them is connected
with a single edge directed towards its corresponding node from V , i.e., (av, v) for v ∈ V
and weight of these edges equals 1. We observe that, from the definition of FGA and the
construction of the DMT instance, it follows that to modify the values of the predicted
connections between pairs {u, v} ∈ TP (i.e. either f(u) · g(v) or f(v) · g(u)) one needs
to modify the goodness of the nodes in dom(TP). This is because there are no outgoing
edges from the nodes in TP ; thus, fairness of the nodes in dom(TP) is constant and equal
to 1.
The goodness of the nodes in dom(TP) can be modified by changing (av, v), where

av ∈ A, or by adding some new edges between the attackers and the nodes from dom(TP).
However, to attack a single connection {u, v} ∈ TP , we have to obtain either g(u) = −1,
or g(v) = −1. To this end, since reaching g(v) = −1 is only possible when all of the edges
pointed at v have value −1, it is always necessary to modify the value of the existing edge
(av, v) as well. Specifically, whenever we can reach one of the nodes in dom(TP) with a
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Algorithm 1: Direct attack
Input: A, T = {t}, G

1 for a ∈ A do
2 add an edge (a, t), ω(a, t) = −1 to the graph G;

Algorithm 2: Indirect attack
Input: A, T = {t}, G

1 sort nodes in A by their fairness score
2 for a ∈ sorted(A) do
3 N1 ← Pred(t)
4 find a neighbor n2 ∈ Succ(n1) \ {t} of a neighbor n1 ∈ N1 that minimizes the

goodness value of t, when adding an edge (a, n2) with weight ω(a, n2) = 1 or
ω(a, n2) = −1

5 add the edge to the graph G

modified edge, we are, in fact, “marking” all of the edges pointing at this node. Each of
these edges corresponds to a pair in TP . If all the pairs are marked, then both the DMT
and VC problems are solved.

The proof for the IMT -hardness is analogous with the opposite signs of the weights
of the created/modified edges.

Figure 2.12: The comparison of direct/indirect, established/non-established attacks for
Bitcoin OTC, Bitcoin Alpha and RFA Net networks.

Secondly, we study the hardness of DNR(INR).

Theorem 5. Solving the DNR(INR) = (G = (V,E, ω), A, T, I, t, k) problem is NP-hard.

Proof of Theorem 5. We reduce from the SET COVER (SC) problem. In the SC problem,
we are given a set of sets S, a target set T , and a parameter k. We need to decide whether
it is possible to cover the target set T with at most k sets from S, i.e. whether there exists
a subset S ⊆ S of size at most k, such that for all t ∈ T , there exists Si ∈ S, such that
t ∈ Si. Given an SC problem (S, T, k), we create an instance of the DNR problem as
follows:

• the set of target nodes in the DNR problem is the set T from the SC problem;
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• For every set Si from S we create an intermediary node mi, one helper node ni,
and one link (ni,mi) and |Si| links (ni, t) for t ∈ Si, each of them with weight 1.
We denote the set of all helper nodes ni which point at the nodes mi as Nint;

• for each Si ∈ S we create an attacking node ai;

• we set the intermediary set I in the DNR problem to the set of mi nodes;

• given dmax = max {outdeg(ni) : ni ∈ Nint}, we add l = 8d3max−dmax+1 stabilising
nodes si to each target node xj ∈ T , they are required in the reduction to ensure
that the change in goodness of some target nodes will not affect the goodness of
the other target nodes too much;

• we set the target threshold in the DNR problem to be 1−ϵ, where ϵ = 1
4∗dmax(dmax+l) ,

• we set the budget to k.

In Figure 2.11, we present a sample DNR construction for the SC problem in which
T = {1, 2, 3, 4} has to be covered with at most k = 2 sets from S = {{1, 2, 3}, {1, 2}, {4}}.
We now need to show that the reduction is correct. Firstly, let us consider an SC

problem (S, T, k) and its set cover of size k, consisting of sets Si ∈ S with indexes
i ∈ {x1, . . . , xk} = U . We will show that our corresponding DNR problem created as in
the instructions above can be solved. To this end, we set new links (axi ,mxi) for i ∈ U
with weight −1.
In this case, the goodness of the intermediary node mxi decreases to a value bounded

by the factor introduced by ω((axi ,mxi)) · f(axi) = −1 · f(axi) ¬ 0 and the factor in-
troduced by ω((nxi ,mxi)) · f(nxi) ¬ 1, resulting in a value g(mxi) ¬ 12 . This implies the
decrease in the fairness value of the helper node nxi , resulting in f(nxi) ¬ 1−

1− 12
2∗outdeg(nxi )

¬

1 −
1
2

2∗dmax . Finally this decreases the goodness values of all nodes vj rated by nxi to a

value less or equal to g(vj) ¬ indeg(vj)−1
indeg(vj)

+ 1
indeg(vj)

(1 −
1
2

2∗dmax ) ¬ 1 −
1

4dmax∗indeg(vj) ¬
1 − 1

4∗dmax∗(l+dmax) ¬ 1 − ϵ. Since T is covered by the sets indexed by indices in U , then
modifying the value of the links (axi ,mxi) decreases the rating of all of the target nodes
in the DNR problem below or to the threshold.
For the other direction, assume that we have a solution to our corresponding problem

DNR. In fact, since the only allowed actions are edge additions and weight updates to the
nodes from I = {mi}i, the only way of modifying the goodness of the target nodes is by
modifying the fairness of the helper nodes ni. Either adding an edge (ai,mi) or adding
an edge (aj,mi) marks a set Si ∈ S and sets the value of the goodness of the nodes k ∈ Si
below the threshold 1 − ϵ. We need to show that it is necessary to rank the node mi to
mark any node vj ∈ Si, otherwise their goodness value will stay above threshold (i.e.
goodness(vj) > 1−ϵ for every vj ∈ Si). We achieve this result by introducing l stabilising
nodes for every vj ∈ T . From the properties of the given construction one may conclude
that marking nodes in the DNR problems implies marking sets in the set cover problem.
We will use the Theorem 6 introduced below the current proof. It shows that for a

node x, when fairness of its k rating nodes is decreased by ∆, and there are l stabilising
nodes rating it with 1, then the goodness value of the node x does not change too much
- i.e. g(x)  1− 2 k

l+k ·∆.
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Using this result we may see that even in an edge case the nodes in the target set
do not have their goodness value changed below the threshold if they are not marked
properly as mentioned before. In the edge case a node vi may be influenced by a set of
k1 nodes (denoted K), which have their fairness value indirectly changed because they
rate at most k2 nodes (denoted L) which are marked by at most k3 helper nodes which
change their fairness value by at most ∆ = 1. Note that k1, k2, k3 ¬ dmax.
In this case the goodness value of the nodes in L can be bounded by the above theorem

g(vj)  1−2 dmaxdmax+l
. This implies that the fairness of the nodes in K falls to a value not less

than f(nm)  1− dmax
dmax+l

. This fairness modification will further influence the target nodes,
but since in any scenario also for the target nodes we have g(vi)  1− 2 dmaxdmax+l

, then the
fairness value of the helper nodes will not fall below 1− dmax

dmax+l
. Finally we can conclude

that the nodes in the target set are influenced by at most g(vi)  1 − 2 dmaxdmax+l
dmax
dmax+l

.
We can see that when l is big enough, this value never reaches the threshold ϵ, i.e.
1− 2 dmax

dmax+l
dmax
dmax+l

> 1− 1
4∗dmax(dmax+l) when l > 8d

3
max − dmax.

Theorem 6. A node x that is rated by k “influencing” nodes ni (for i ∈ [k]) and by l
other “stabilising” nodes sj (for j ∈ [l]) is given and all rates are of value 1. Suppose the
fairness value of the influencing nodes decreases by at most ∆ (after all modifications in
the network), then the goodness value of the node x decreases by at most 2 k

l+k∆.

Proof. By Monotonicity for Goodness we know that the goodness value of the node x
will decrease maximally when we decrease the fairness value of all influencing nodes ni
by exactly ∆. We can estimate how the fairness value of the stabilising nodes (f (t)(si))
and the goodness value of the rated node (g(t)(x)) will change in the next iterations of
the FGA function computation.
By the FGA definition, the stabilising nodes si which rate only one node x have

f (0)(si) = 1 and f (t)(si) = 1 − |1−g(t−1)|
2 for t  1. What is more, since all ratings are

of value 1, we know that g(x)  0, and f (t)(si) = 1 − 1−g
(t−1)

2 for t  1. The goodness
value of the node x rated by k nodes ni with decreased fairness and l stabilising nodes
si, can be bounded using the above as follows - g(0)(x) = 1 and g(2t)(x)  k

k+l(1 −
∆) + l

l+k · (1 −
1−g(2t−2)
2 ) for t  1. We prove by induction that for 2t  2 we have

g(2t)(x)  1− k∆
k+l

∑2t−2
2i=0[

l
2(l+k) ]

2i. The statement trivially holds for 2t = 0. Let us assume

it holds for 2t, then for 2t + 2 we have g(2t+2)(x)  k
k+l(1 − ∆) +

l
l+k · (1 −

1−g(2t)
2 ) 

k
k+l(1 − ∆) +

l
l+k · (1 −

1−[1− k∆
k+l

∑2t−2
2i=0 [

l
2(l+k) ]

2i]

2 ) = 1 − k∆
k+l

∑2t
2i=0[

l
2(l+k) ]

2i what proves the
induction. We may also further bound this sum g(2t)(x)  1 − k∆

k+l

∑2t−2
2i=0[

l
2(l+k) ]

2i  1 −
k∆
k+l

∑2t−2
2i=0[

1
2 ]
2i  1 − 2k∆

k+l (1 − (
1
2)
t−1)  1 − 2∆ k

k+l . As stated in the preliminaries, the
goodness value quickly converges to its limit and we can write |g(2t)(x)− g(2t−1)(x)| < 1

2t ,
thus we can conclude that g(x)  1− 2∆ k

k+l .

The proof for the INR-hardness is analogous with the opposite signs of the weights of
the created/modified edges.

Parametrized complexity. Finally, we study the complexity of our problems in terms
of the W -hierarchy for the parameterized algorithms [39]. The parameterized reduc-
tions [39] transform every instance A with a parameter k of a problem known to be
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in a given parameterized complexity class into an instance B with parameter k′ of an-
other problem in a way that (a) (A, k) can be solved if and only if (B, k′) can be solved,
(b) k′ ¬ g(k) for some computable function g, (c) the running time is f(k) · |x|O(1) for
some computable f .
The following results hold in terms of the parameterized complexity:

Theorem 7. DNR(INR) parameterized by k is W [2]-hard.

Proof of Theorem 7. The Set Cover problem parameterized by the number of sets k is a
W [2]-hard problem in the W-hierarchy. Since the reduction in the proof of Theorem 5
runs in polynomial time, the budget of the DNR(INR) problem is k, this reduction is
also a parameterized reduction [39].

Theorem 8. DMT (IMT ) parameterized by k is W [2]-hard.

Proof of Theorem 8. One needs to see that a slight modification of the reduction in the
proof of the Theorem 5 is a parameterized reduction from the Set Cover problem pa-
rameterized by the number of sets k to DMT (IMT ) parameterized by the budget k. In
fact, for a Set Cover problem we can create an instance DMT (IMT ) = (G = (V,E, ω),
A,TP , I, t, k) as in the DNR(INR) reduction, but for each node x from the target set T in
the corresponding DNR problem we add a vertex x′, and we set TP = {{x, x′} : x ∈ T}.
In this case since all of the new nodes are disconnected from the graph, the only way to
break the connections between the {x, x′} links below the given threshold t is to lower
the goodness value of the nodes x ∈ T below the given threshold. Again, the reduction
runs in polynomial time, the budget of the DMT (IMT ) problem is k, this reduction is
also a parameterized reduction [39].

2.5 Bounding the strength of direct and indirect at-
tacks

In this section, we give bounds on the strength of the direct and indirect Sybil attacks,
i.e., the attacks in which the attacker creates a new node when adding a new edge. The
attacker can either rate its target directly, or make an attempt to manipulate the target’s
goodness score by rating other nodes in the network (i.e. conducting the indirect attack).
We denote by g(l)/f(l) the goodness/fairness value of a node l before the Sybil attack,

and by g′(l)/f ′(l) the goodness/fairness value of the node l after the attack. Let us define
as well ∆g(l) = g′(l) − g(l) and ∆f(l) = f ′(l) − f(l). To this end, we first define an
influence set set I(u) of a node u, that contains nodes which goodness value is affected
by changing the goodness value of the input node u. Figure 2.13 depicts an example of
the influence set of a node u in an example network.

Definition 2.5.1 (Influence Set). Given network G = (V,E, ω) and a node u ∈ V , we
define its influence set I(u) recursively. One begins with I(u) = {u}. In each iteration,
every node v ∈ V which is indirectly connected to at least one node in I(u) [i.e. each
node v ∈ V , for which ∃v′∈I(u),l∈V : (l, v′), (l, v) ∈ E)] is added to I(u). The procedure is
repeated until the set I(u) stops growing.
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Figure 2.13: The nodes from the influence set I(u) of the selected node u are marked
with yellow color. The node u is rated by an additional edge from the red node, affecting
the selected node’s goodness value. Next, the fairness value of the yellow nodes next to
the node u is affected. The nodes with the affected fairness affect the goodness value of
another pair of nodes. The process repeats until the node t is reached.

We start with the analysis of an indirect Sybil attack. Our results hold for a family of
relatively dense networks, G = (V,E, ω), in which every node has a lower bound on its
indegree and outdegree, i.e., ∀v∈V indeg(v)  k & outdeg(v)  k, and the intermediary
nodes, j ∈ V , are relatively weakly rated, i.e. ∑v∈Pred(j) |ωvj| ¬ k. We call such networks
minimum-k-neighbour networks.

Theorem 9 (Indirect Sybil attack). Assume a WSN G = (V,E, ω), where a new Sybil
node si is added that rates some intermediary node i ∈ V different than a target node
t ∈ V . Whenever ∀v∈V indeg(v)  k & outdeg(v)  k, and ∀j∈V

∑
v∈Pred(j) |ωvj| ¬ k, then

after the attack goodness value of the target node will change by no more than 2
(indeg(i)+1)·k .

Proof. Let us define set V ′ as the influence set of the target node I(t). It is easy to see
that the intermediary node i has to belong to V ′ in order to make the indirect attack
successful.
For the target node, t ∈ V ′, we can calculate how its g(t) changes with respect to

the changes introduced to the goodness of all other nodes. Here, we use the fact that the
Sybil attack is indirect, i.e., the Sybil edge is not added to t.

g(t) =
1

indeg(t)

∑
u∈Pred(t)

f(u) · ω(u, t) =

1
indeg(t)

·
∑

u∈Pred(t)
ω(u, t) ·

[
1− 1
outdeg(u)

∑
v∈Succ(u)

|ω(u, v)− g(v)|
2

]

Thus, from the triangle inequality:

|∆g(t)| ¬ 1
2 · indeg(t)

∑
u∈Pred(t)

∑
v∈Succ(u)

1
outdeg(u)

· |ω(u, t)| · |∆g(v)| ¬

1
2 · indeg(t)

∑
v:∃(t,u)∈E & (u,v)∈E

∑
u∈Succ(v)

|∆g(v)|
outdeg(v)
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Finally, we obtain that:

|∆g(t)| ¬
∑
v:∃(t,u)∈E & (u,v)∈E |∆g(v)|

2 · indeg(t)
, (2.4)

where indeg(t)  k.
Let us calculate ∆g(l) for all l ∈ V ′. We can see that whenever we introduce a new

node, si, that aims at node i in the network, then:

|∆g(i)| =
∣∣∣∣−1 +

∑
u∈Pred(i) f

′(u) · ω(u, i)
indeg(i) + 1

−
∑
u∈Pred(i) f(u) · ω(u, i)
indeg(i)

∣∣∣∣ ¬ (2.5)∣∣∣∣
∑
u∈Pred(i)∆f(u) · ω(u, i)

indeg(i)
− 1
indeg(i+ 1)

−
∑

u∈Pred(i)

f ′(u) · ω(u, i)
indeg(i)(indeg(i) + 1)

∣∣∣∣ ¬
∣∣∣∣
∑
u∈Pred(i)∆f(u) · ω(u, i)

indeg(i)

∣∣∣∣+ 2
indeg(i) + 1

For the other nodes, l ∈ V ′, that are not rated by si we have:

|∆g(l)| =
∣∣∣∣
∑
u∈Pred(l)∆f(u) · ω(u, l)

indeg(l)

∣∣∣∣
We can bound:∣∣∣∣ ∑

u∈Pred(l)

∆f(u) · ω(u, l)
indeg(l)

∣∣∣∣ ¬ 1
2 · indeg(l)

∑
v∈Pred(l),u∈Succ(v)\{l}

|ωvl| · |∆g(v)|
outdeg(v)

= (2.6)

1
2 · indeg(l)

∑
i∈V

∑
(v,l),(v,i)∈E

|ωvi|
outdeg(v)

|∆g(i)|

In a matrix form, we can thus write:

Q ¬M ×Q+
[
0 2
indeg(i)+1 0 0 0

]T
,

where Q is a vector of length |V ′| which on the l’th position has ∆g(l) for l ∈ V ′. And
M is a matrix of size |V ′| · |V ′|, and its coefficients are filled according to Equation 2.6.
Note that:

1
2 · indeg(l)

∑
v∈Pred(l),u∈Succ(v)\{l}

|ωvl|
outdeg(v)

¬ 1
2

(2.7)

This implies that ||M ||∞ ¬ 12 . On the other hand, for a given column j in the matrix M :∑
l∈V

1
2 · indeg(l)

∑
(v,l),(v,j)∈E

|ωvj|
outdeg(v)

¬

1
2k

∑
l∈V

∑
(v,l),(v,j)∈E

|ωvj|
outdeg(v)

¬ 1
2k

∑
v∈Pred(j)

|ωvj| ¬
1
2

whenever
∑
v∈Pred(j) |ωvj| ¬ k, which implies that ||M ||1 ¬ 12 . The values of ∆g(l) achieve

maximum when:

Q =M ×Q+
[
0 2
indeg(i)+1 0 0 0

]T
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But in this case, we can solve the equation system with:

Q =
1

I −M
×
[
0 2
indeg(i)+1 0 0 0

]T
Matrix M is indeed invertible due to appropriately selected nodes l ∈ V ′. What is more,
since ||M ||∞ ¬ 12 , then we can write

1
I−M = I +M +M

2 + . . . [109]. Finally, the above
quality and ||M ||1 ¬ 12 imply that:

|
∑
l∈V
∆g(l)| ¬ 4

indeg(i) + 1
. (2.8)

Now, by the Equation 2.4, and the above result |∑l∈V ∆g(l)| ¬ 4
indeg(i)+1 , we get that:

|∆g(t)| ¬ 2
(indeg(i) + 1) · k

.

Additionally, the Equation 2.4 in the above proof shows that in a minimum-k-neighbour
network the bound for the direct attack is approximately k times stronger than for the
indirect attack. That is, when we modify the goodness value of some node i by ∆, then
the value of the target node t is modified by at most ∆

k
. We summarize this observation

in the theorem below.

Theorem 10 (Direct Sybil attack). Assuming in a WSN G = (V,E, ω) where one adds
a new Sybil node rating directly some target node t, then the goodness value of the target
node t decreases by at most |∆g(t)| ¬ 3

indeg(t) .

Proof of Theorem 10. Note that the change in the goodness value of the nodes rated
directly ∆g(t) can be bounded as in the Equation 2.5 in the proof of Theorem 9. We

can thus set ∆g(t) ¬
∣∣∣∣∑u∈Pred(t)∆f(u)·ω(u,t)

indeg(t)

∣∣∣∣+ 1
indeg(t) . The Equations 2.4 and 2.8 show that

∆g(t) ¬ 2
indeg(t)(indeg(t)+1) +

1
indeg(t) , what implies the result.

2.6 Simulations

We conduct a series of simulations2 on the Bitcoin OTC, Bitcoin Alpha, and RFA Net
datasets studied by Kumar et al. (2016). They consist of weighted signed networks with
|V | = 3, 700, |E|  24, 000 each, where the proportion of positively weighted edges
is  84%. A vast majority of the nodes in each network, i.e., more than 76%, have an
indegree up to 10. Furthermore, most of the users in the networks are evaluated as fair
by the FGA function—f(v)  0.7 for 100% of the nodes (with the mean f(v) equal to
0.94). As for goodness, only less than 4% of users have a strongly positive score of more
than 0.5, and in the Bitcoin OTC network 8% of users have negative score of less than
−0.3, whereas in Bitcoin Alpha 3, 8% have goodness below −0.3. Section 2.8 presents
more statistics of the data and algorithms used in this section.
2The code package that allows running simulations presented in Sections 2.6 and 2.7 is available under

https://github.com/irtomek/WeightPredictionsCode.
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B. B. RFA
OTC Alpha Net

max 10 13 10
indeg
min 0.8 0.5 0.5

goodness
num. of 20 30 27
samples
num of 20 20 20
edges

Table 2.1: The parameters used to search
weak target nodes in the test sets. “B.”
stands for “Bitcoin”.

B. B. RFA
OTC Alpha Net

average 0.081 0.085 0.030
change
standard 0.089 0.085 0.028
deviation
min 0.010 0.008 0.009
change
max 0.300 0.298 0.131
change
median 0.053 0.042 0.021

0.75-quantile 0.111 0.121 0.041

Table 2.2: The results of Algorithm 3 on dif-
ferent datasets.

We focus on the attacks that lower the goodness of the nodes, as in the DNR problem.
In particular, each experiment was conducted on the set of attacking nodes A of size
k = {1, . . . , 7} and the target set T = {t} of size 1. The target, t ∈ T , was chosen
randomly from those nodes that have relatively high goodness (g(t)  0.50) and a low
indegree (0 < indeg(t) < 10). We study two types of the attackers:

• not-established attackers — chosen from relatively newly created nodes with 0 <
indeg < 10 and outdeg = 0). This allows for studying Sybil-style attacks; and

• established attackers — chosen from the nodes with outdeg(v) > 5 (and iteratively
choosing nodes with fairness f(v) > 0.7). This allows for studying attacks by the
nodes whose standing in the network has been built for some time.

We simulate three types of attacks:

• direct attacks— a set of attackers A of size k rates directly the target node t ∈ T .
The pseudocode is presented in Algorithm 1. Each attacker rates t using weight −1;

• indirect attacks— the attackers setA of size k rates the neighbors of the neighbors
of the target node, to minimize the goodness part of the FGA of the target node
by manipulating fairness of the targets’ neighbors. The pseudocode of the attack
is presented in the Alorithm 2. More precisely, the algorithm implements a greedy
approach, where each new edge is used to minimize the goodness of the target node
t by minimizing (or maximizing) the fairness of one of the targets’ neighbors by
directly rating the successor of the target’s neighbor with an edge of weight 1 or
−1. The algorithm performs calculations iteratively on the attackers sorted by the
value of their fairness value.

• mixed attack — k1 attacking nodes perform a direct attack and k2 perform an
indirect one, where k1 + k2 = k.

The results in Figure 2.12 are presented with a 95% confidence interval (marked with
the opaque region around the solid/dashed lines). They show how a direct/indirect attack
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Algorithm 3: Modified indirect attack
Input: A, T = {t}, G

1 sort nodes in A by their fairness score
2 while i < len(sorted(A)) do
3 a← sorted(A)[i]
4 N1 ← Pred(t)
5 find a neighbor n2 ∈ Succ(n1) \ {t} of a neighbor n1 ∈ N1 that minimizes the

goodness value of t, when adding an edge (a, n2) with weight ω(a, n2) = 1 or
ω(a, n2) = −1

6 edges len← min(SCALE ∗ len(indegree(n2),MAX, len(A)− i)
7 add edges len edges to the graph G
8 i← i+ edges len

by established/not established nodes influences the goodness of the target node (∆). For
Bitcoin OTC and Bitcoin Alpha, and RFA Net in both cases (direct and indirect attacks),
there is no significant difference between the established and not established results (solid
and dashed lines).
In Figure 2.14, we present results for a mixed setting. The individual cells of the

heatmaps show: (a) ∆1 — the absolute change of the goodness of the target node in-
troduced by the k1 direct edges; (b) ∆2 — the absolute change of the goodness of the
target node introduced by the k2 indirect edges; and (c) ∆S — the total change, i.e.,
∆S = ∆1 + ∆2. The results show that the average strength of a direct attack varies
between 0.2 and 1.2 for different k, and the average strength of the indirect attack is
lower than 0.05, i.e., significantly smaller than the average strength of a direct attack.
This result, together with the theoretical results achieved for a selected class of networks
in Section 2.5, supports the claim that attacking nodes indirectly is (significantly) more
difficult than attacking nodes directly.

2.7 Better heuristic for indirect attacks

We conduct additional tests to analyze the strength of the indirect attacks. We attempt to
strengthen the indirect attack, allowing for a greater budget for the attack. In Algorithm 3,
instead of adding only a single edge in each iteration, as in Algorithm 2, we add a series
of new edges in every iteration. In more detail, we add SCALE = 5 times more Sybil
edges than the indegree of the target node (but at most some predefined maximum
MAX = 10). We take this approach to scale up the effect of manipulating the goodness
value of the target nodes. We attack only nodes with bounded indegree, and the goodness
value bigger than some threshold. We believe these nodes are more easily manipulable
than an average node. See Table 2.1 for the details.
The analysis of the data in Table 2.2 shows that the attack using the Algorithm 3

may (but rarely does) achieve relatively strong results. To be more precise, the maximum
change of the goodness value of the target node introduced by the indirect attack in
the Bitcoin OTC and Bitcoin Alpha detasets reached the barrier of 0.3. This shows that
in general networks (in comparison to the minimum-k-neighbour networks described in
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Theorem 9) may not be strongly resistant against indirect attacks. In most cases, however,
the attack gives rather weak results (75%-quantile on all datasets is at most 0.12 with
low median of at most 0.05). The attack in all datasets influences the goodness value of
the target node by at least 0.01.

2.8 Datasets’ basic statistics

Figure 2.15 presents the histogram of the nodes sorted per indegree. Table 2.3 depicts
the number of samples that were used to simulate the direct and indirect attacks for all
sizes of the attacking sets considered. The nodes were chosen randomly from the set of
all nodes of an example network. For mixed attacks, for each k1, k2 ∈ {1, . . . , 6}, at least
26 samples were used for Bitcoin OTC, at least 12 samples were used for Bitcoin Alpha,
and at least 17 samples were used for RFA Net.

k B. B. RFA
OTC Alpha Net

1 24 24 25
2 21 24 25
3 26 24 25
4 25 24 25
5 24 24 25
6 23 24 25
7 22 24 25

Table 2.3: Number of samples used to simulate direct/indirect established/not established
attacks.

B. B. RFA
OTC Alpha Net

Size 5881 3783 9654
Edges 35592 24186 104554

Positive edges 89, 90% 93, 64% 84%
Small in-degree < 10% 87, 40% 85, 70% 76%
Fair nodes  0.95 99, 45% 99, 65% 99, 99%
Fair nodes  0.7 100% 100% 100%
Goodness score  0 85.85% 92.36% 93%
Goodness score  0.5 2.2% 3.3% 67%
Goodness score ¬ −0.3 8.2% 3.8% 0.2%

Table 2.4: Statistics of the networks used for simulations.
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Bitcoin OTC

Bitcoin Alpha

RFA Net

Figure 2.14: The results for the mixed settings in Bitcoin OTC, Bitcoin Alpha, RFA Net.
The average strength of an indirect attack is small and significantly smaller that the
average strength of a direct attack. ∆1 shows the influence of the attack with k1 direct
edges, ∆2 shows the influence of the attack with k2 indirect edges, ∆s shows the influence
of the attack with k1 direct edges and k2 indirect edges.

Figure 2.15: Histograms of indegree of the nodes of the Bitcoin OTC, Bitcoin Alpha, RFA
Net networks.
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Chapter 3

Individual Cryptography

In this chapter, we initiate a formal study of individual cryptography. Informally speaking,
an algorithm Alg is individual if, in every implementation of Alg, there always exists an
individual user with full knowledge of the cryptographic data S used by Alg. In particular,
it should be infeasible to design implementations of this algorithm that would hide S by
distributing it between a group of parties using an MPC protocol or outsourcing it to a
trusted execution environment.
Additionally, we define and construct an example primitive in the model of individual

cryptography, as well as picture its application to the security of systems built upon
blockchains. Our new primitive - a Proof of Individual Knowledge, is a tool for proving
that a given message is fully known to a single (“individual”) machine on the Internet,
i.e., it cannot be shared between a group of parties. A central technique for constructing
individual cryptographic primitives is the concept of MPC hardness. Carefully crafting
functions that are MPC-hard precludes an adversary from completing a cryptographic
task in a distributed fashion within a specific time frame.

3.1 Preventing Secret Holder from Collusions

Multiparty computation (MPC) [68, 32, 15] is a powerful cryptographic technique that
enables parties to evaluate any function securely in the presence of an adversary. It guar-
antees that nothing is revealed about the honest parties’ inputs except what can be
learned from the function’s output. MPC protocols have found countless applications in
cryptography and are one of the main tools for achieving privacy. In addition, MPC tech-
nology is becoming widely available in practice, e.g., for machine learning and blockchain
applications. While MPCs are traditionally used for the “good” with their increasing
availability in practice, there is a danger that an adversary misuses this technology to
carry out malicious tasks. Let us illustrate this with the following example.

Identity sharing over the Internet. Imagine a service provider S that maintains
a system in which individual users U can open accounts by paying a subscription fee.
To lower this fee, the malicious users decide to open a single account and to share the
credentials S to it between each other. In this chapter, we are interested in situations
when these users are individuals A1, . . . ,Aa connected via the Internet that do not trust
each other, i.e., we are not concerned about scenarios in which the credentials are shared
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between different devices that belong to a single person, between members of one family,
or between devices that are located physically very close to each other (so the network
connection speed does not matter).
Suppose that to discourage such users from simply sharing S in plaintext, the service

provider integrates ad-hoc countermeasures such that knowledge of S suffices to damage
the account significantly. For example, if the “account” is a cryptocurrency address, then
the knowledge of S should suffice to drain the account from all the coins. Alternatively,
if it is an online storage system, then knowledge of S should permit deleting all the files.
While these countermeasures should suffice to discourage the users from sharing S in
plaintext, they are not sufficient to protect against a more sophisticated identity sharing
attack, where the malicious users share S using secret sharing and jointly emulate a single
“virtual” user U using an MPC protocol to authenticate with S.
The identity-sharing attack is similar to the “identity-lease attack” recently intro-

duced by Puddu et al. [101]. In an identity-lease attack, the attacker’s primary goal is
to temporarily outsource (“lease”) its identity to a third party, who can control it for a
specific time or purpose. As discussed in [101], this may, for instance, be problematic in
electronic voting, where identity leasing can be used to sell votes. While Puddu et al. rely
on a trusted execution environment for their attack, it is possible to carry out the same
attack using an MPC committee. Here, the committee holds secret shares of the user’s
identity and is queried by the third party to carry out the desired task (e.g., vote for a
certain party in an electronic election). For a more detailed description of the attack on
voting systems, please refer to Section 3.5.

MPC hardness. By closely examining the two previous examples, we make the follow-
ing crucial observation. Both attacks rely on the assumption that a distributed adversary
can efficiently evaluate the cryptographic task via the MPCs. Hence, to thwart these
attacks, our key idea is to make these cryptographic tasks MPC-hard. Informally, we say
that a task/function is MPC-hard if executing it securely in a distributed way takes a
significant amount of time. This implies that if a cryptographic task is MPC-hard, then
in order to run it efficiently, the parties need to execute it individually. We formalize this
new notion through a concept that we call individual cryptography.
Let us take a look at how MPC hardness may help us to prevent the previous two

attacks. In the case of the identity sharing example, the distributed adversary, i.e., a
tuple A1, . . . ,Aa of interactive machines (also called the sub-adversaries), uses an MPC
protocol to ensure that no party individually knows the credentials to authenticate with
a service provider S. Suppose the service provider will only accept an authentication
attempt if it is completed within a certain time frame. The distributed adversary now
has two options. Either it runs the authentication process via the MPC. This, however,
will fail due to MPC hardness. Alternatively, the adversary may ask one of the sub-
adversaries, say Aj, to execute the task individually, in which case Aj has to know the
credential S entirely.1 We formalize this concept via a new primitive that we call Proof
of Individual Knowledge (PIK). Informally, a PIK guarantees that the prover must know
the entire secret if it wants to get accepted by a verifier. We will provide further details
on PIKs in Sect. 3.1.2.
1Recall that in this case, the sub-adversary Aj can take full control over the account of the user,

which was something that a malicious user tries to avoid.
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Attacks via the trusted execution environment (TEE). An alternative way to
perform the aforementioned attacks is to use trusted execution environments (such as
Intel’s SGX) to accelerate the MPC (see, e.g., [7]) or to outsource secret storage in a way
similar to the one described in [101]. To make our schemes secure against such attacks,
we need to make some additional assumptions about what kind of fast computation is
infeasible in TEEs. One option is to assume that the honest users are equipped with
hardware similar to Bitcoin mining rigs that can compute a massive amount of hashes in
parallel (note that our PIK protocol is based on massive parallel computation, while the
ISS uses sequential computation). Another option is to come up with new hash functions
that are infeasible to compute quickly on TEEs (e.g., due to large memory requirements).
We leave it as future work to design such hash functions.

3.1.1 Informal description of our model

As standard in cryptographic modeling, we have to describe the adversarial model (i.e.,
the adversaries’ abilities) and specify what it means for a cryptographic task to be secure.
Let us start with the adversarial model.

The adversarial model. As our MPC-hard functions will be based on massively eval-
uating a hash function, we give the distributed adversary A1, . . . ,Aa access to a spe-
cial oracle ΩH that allows evaluating a fixed input-length hash function H : {0, 1}λ →
{0, 1}κ. The oracle accepts queries of the form (x,mode), where x ∈ {0, 1}λ and mode ∈
{fast, slow}. If mode = fast, then a query is called fast. It is called slow otherwise. Let us
give some intuition behind these two modes.
The fast queries are hash function evaluations that a sub-adversary Ab runs locally.

We assume that these evaluations can be done very fast (orders of magnitude faster
than slow queries). For example, a party may execute them using a specially designed
ASIC, such as used in the context of Bitcoin mining. We assume that the number of fast
queries is only bounded by the running time of the adversary, which is polynomial time.
On the other hand, the slow queries model an evaluation of the hash function using an
MPC protocol. In particular, this means that the sub-adversaries A1, . . . ,Aa can learn
H(x) without knowing x. Since the evaluation of a hash function using MPC technology is
conceivable much slower than using an ASIC, we assume that the budget of the adversary
for such queries is comparably small, i.e., bounded by some parameter σ.
In addition to bounding the number of slow queries that the sub-adversaries may ask

for, in our PIK application, we put an additional restriction on the sub-adversaries. We
require that they run in at most ρ communication rounds. Notice that we do not require
any bounds on the communication complexity as at the end of each round, we allow the
sub-adversaries to share any information that they currently possess.

Attacks exploiting the hash function structure. We need to stress that in the
model above, the hash function H : {0, 1}λ → {0, 1}κ needs to be chosen carefully, and
it is unrealistic to assume that λ is large. It is also important that H does not have
a structure that the adversary could exploit. A natural choice for H is a compression
function of a popular hash function (for example, in SHA-256, the compression function
is of a type H : {0, 1}728 → {0, 1}256).
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We illustrate this by the following example. Suppose H is a Merkle-Damgard-type
hash function, and let G : {0, 1}2κ → {0, 1}κ be the compression function that H is built
from, i.e., for messages of a form (S1 || S2 ||W ) (with |S1| = |S2| = |W | = κ) we have
H(S1 || S2 ||W ) = G(G(G(IV || S1) || S2) ||W ) (where IV ∈ {0, 1}κ is some fixed initial
value, and for simplicity, we omit the last block encoding message length). Now, suppose
that we want to verify if a message S consisting of two blocks (S1, S2) (both of length κ)
is stored on one machine by forcing the prover to compute a large number of hashes of a
form H(S,W ) (for multiple W ’s), which is the case for our PIK construction (see below).
Taking into account the structure of H, two sub-adversaries: A1 and A2 can now “split”
the computation as follows: the A1 first computes h = G(IV , S1), and then sends h to
A2 who can compute H(S1 || S2 ||W ) for an arbitrary number of different W ’s without
knowing S1, just by using that fact that H(S1 ||S2 ||W ) = G(G(h ||S2) ||W ). Hence, if H
is a Merkle-Damgard type of hash function, the assumption that the input of every fast
query is known to the adversary would be unrealistic. The same applies to sponge-based
hash functions and to any other hash functions that read their input blocks in an online
way and compress them to a shorter state.

Security against distributed adversaries. By using MPC-hardness, we want to
enforce that the distributed adversary must run the cryptographic task individually. More
concretely, if the adversaries manage to complete the cryptographic task within some
specified time bound (seconds in the case of PIK and hours in the case of ISS), then one
of the adversaries, say Aj, must know some secret information S completely. Hence, we
need some formal method to model “knowledge”.
The question of formalizing knowledge has a long history in cryptography, and in

particular, it has been studied in the context of “proofs of knowledge” [12], “knowledge of
exponent” [44], or “plaintext-awareness” [13]. None of these approaches considers attacks
by a distributed adversary. The most relevant to ours is the model of [13], which considers
an adversary with access to a hash function (modeled as a random oracle). It is assumed
that if an adversary A evaluated H on some input x, then A knows the input x and
the corresponding output H(x). Technically: the (input, output) pairs are later given to
an algorithm E called “knowledge extractor”. If, based on these tuples, the knowledge
extractor outputs some message S, then we assume that “A knows S” (since A could
have computed S herself just by observing the oracle queries and the replies to them).
In our case, we use the concept of a knowledge extractor but slightly adjust it in the

following way. First, we will consider knowledge extractors Eb for each of the different
adversaries Ab. Second, each such knowledge extractor takes as input the transcript of
queries T fastb that Ab has made to the oracle ΩH only in mode = fast. Put differently:
queries made by Ab in mode = slow (recall that these queries model MPC evaluations
of H with a potentially unknown input) are not given to the knowledge extractor Eb.
Finally, we say that an adversary Aj individually knows a secret S if there exists an
efficient knowledge extractor Ej such that S ∈ Ej(T fastb ).

Allowing pre-computation of the hash function. To model realistic attacks, we
do not make any assumptions about how much time the distributed adversary has before
the protocol starts. In particular, we allow the sub-adversaries to perform any distributed
computation that involves the hash function H before the beginning of the protocol. This
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will be reflected by assuming that the attack works in two phases: in the first one, called
pre-processing phase, the adversary will not be restricted in the number of slow hash
queries that she can evaluate. Such a restriction will only apply in the second, online,
phase. We protect our protocols against such pre-computation attacks by making all
hashes depend on random values that are unknown before the online phase.

3.1.2 Informal description of PIK

As outlined in the introduction, a PIK protocol should allow the prover P to convince
the verifier V that a secret S (that they both know) is stored on one machine and known
to the machine owner. This is done by forcing P to quickly reply to challenges Z from V
in a way that proves that P performed intensive computation on the entire value of S.
Since P measures the response time, it will notice any response delays that are due to
the fact that S is, in fact, distributed between different “sub-adversaries”, and it is not
stored on one machine. This distinction is made by performing a large amount of “hash
computations” on S, which in practice, for example, can be carried out via a highly
optimized ASIC.
As outlined in the previous subsection, two main parameters that characterize the

adversary are σ – the number of hashes that can be computed in such a way that no
sub-adversary learns their inputs since they are computed using MPC (in our model, this
corresponds to the “slow” queries to the oracle), and ρ – the number of communication
rounds between the Ab’s. In Sect. 3.1.1, we already explained the idea behind the slow
queries. The bound on the number of communication rounds is relatively mild in practice.
Recall that Ab’s are connected over the Internet, and hence assuming that no more than
1000 rounds of communications per second (say) are executed between them is reasonable.
Our scheme is described formally in Sect. 3.4. The reader may, in particular, look

at the diagram in Fig. 3.3 – we will refer to it while presenting our solution informally
below. Let us start with describing a simple scheme for proving knowledge of a message
consisting of one block (i.e., messages of a form S = (S1), where S1 ∈ {0, 1}λ), and
assuming that (a) the sub-adversaries cannot execute any slow queries, and (b) the sub-
adversaries cannot communicate during protocol execution. In this case, the following
idea works: the verifier sends a challenge Z to the prover, and the prover has to respond
with h = H(Z || S1). Since no slow queries are allowed, and the sub-adversaries cannot
communicate. Thus one sub-adversary, say Ab, needs to know (Z, S1). Let us now show
how to remove our artificial assumptions in the above example.

Allowing slow queries. Recall that above, we assumed that the sub-adversaries could
not perform any slow queries (i.e., no H can be computed using MPCs). We eliminate
this restriction in the following way: namely, we force the prover to perform multiple
computations of hashes on different nonces to find a nonce that leads to a hash starting
with ζ zeros. This ensures that to convince the verifier, there must be an individual
adversary Ab that makes a large number of fast queries that contain as input S1. Notice
that our approach is very similar to Bitcoin’s puzzles, except that we do it κ times to
reduce the variance in finding a solution. The nonce that is used in the ith puzzle is
denoted with W i.
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Longer messages S. Let us now discuss how to eliminate the assumption that S just
consists of one block. Let S = (S1, . . . , Sn) where n  1. Our idea is straightforward
(see also the first column on Fig. 3.3, ignoring the values at the beginning of the hashed
blocks): we apply the construction for a single block iteratively, i.e., for the ith nonce W
we let Q1 := H(Z ||W ), and then for each j = 2, . . . , n+ 1 we let Qj := H(Sj ||Qj−1).

Allowing communication between the sub-adversaries. Note that the above con-
struction is insecure if there are no restrictions on the communication between the
Ab’s. Indeed, imagine two sub-adversaries A1 and A2 and suppose S has two blocks
S = (S1, S2), with A1 holding S1 and A2 holding S2. Then these adversaries can break the
above PIK as follows: A1 computes a massive number of hashes Q2 := H(S1 ||H(Z,W ))
(for different values of W ) using fast queries to Ωfast and sends the Q2’s to A2. Sub-
adversary A2 processes every Q2 by computing Q3 := H(S2 || Q2) in order to find Q2
such that Q3 starts with ζ zeros. Once such Q2 is found, she communicates it to A2, who
checks which W this Q2 corresponds to and sends this Q to the verifier.
The above example shows that we need to restrict communication between the sub-

adversaries. As discussed in Sect. 3.1.1 we choose to do it by putting a bound ρ on the
number of rounds (an alternative approach would be to bound the communication size,
but it seems more challenging to work with in practice). In our construction, we use this
assumption by requiring that the prover needs to compute d = ρ + 1 iterations of the
procedure outlined above (cf. Fig. 3.3).

Dealing with artificial fast queries. While from the above, it is clear that one of
the sub-adversaries Ab has to know the entire S, it is not immediately clear how to
build an efficient knowledge extractor. One challenge here is that the adversary may try
to “confuse” us by making “useless” fast queries to ΩH . We address this challenge by
adding 2-bit flags to the inputs on which the hash function is evaluated. This enables the
knowledge extractor to identify starting points for efficiently extracting the most likely
values for S.

3.1.3 Related work

Using cryptography for malicious purposes has been studied before, most notably in the
context of “Cryptovirology” proposed by Young and Yung [118]. The approach of [118]
focuses on the malicious use of public-key encryption and not the MPCs. Hence, our
concept can be viewed as a natural continuation of the approach of [118] (with MPCs
being more “advanced” primitives than the public-key encryption schemes). The idea
of preventing leaking secrets has been studied extensively in a context such as traitor-
tracing, e.g., it [35, 82]. To our knowledge, none of these works considers a distributed
adversary.
On a higher level, our concept is also related to works that look at defining the notion

of “identity” in cryptography. In particular, it has some similarities to Position-Based
Cryptography [30], where an identity of a user is defined by its geographic location. This
approach is also based on measuring the prover’s response time. Still, it is assumed that
the communication is not done over the Internet but via physical signals (the whole
approach is based on the fact that the speed of electromagnetic signals is fixed). Another
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difference is that the users in [30] do not have secret credentials but are identified by their
geographic location. As already mentioned, our proof techniques are similar to those used
in the context of space-bounded cryptography, in particular in the construction of schemes
that are secure based on assumptions about the restricted memory of the adversary and
whose security relies on hash functions, see, e.g., [48, 50, 54, 3]. For the differences between
our model and the ones used in this area, see Sect. 3.1.1.

Concurrent work. In a very recent concurrent work, Kelkar et al. [81] introduce the
concept of complete knowledge. A proof of complete knowledge (PoCK) guarantees that a
single party has complete control/knowledge of its secret. This is very similar to our notion
of PIK. We emphasize that while both works aim at similar goals, there are significant
differences. Their construction of a PoCK directly achieves a zero-knowledge property. In
contrast, our basic PIK construction does not have this property (we outline a generic
transformation of any PIK into a zkPIK in Sect. 3.4.4). In addition, they also present an
implementation. On the other hand, their work is very much application-oriented. It lacks
a formal model that takes into account the many subtleties that we attempt to model with
the concept of individual cryptography (e.g., possible communication, fast/slow queries,
and taking into account how hash functions are constructed in practice). In addition, they
do not have a construction of individual secret sharing, which shows that our modeling
has applications beyond proof of knowledge.

3.2 Preliminaries

A function f : N→ R is negligible if for every positive integer c there exists an integer N
such that for every n > N we have |f(n)| ¬ n−c. A sequence of events has an overwhelming
probability if the probability of their negations is negligible. We will use the following
standard fact.

Lemma 11. For every p < 1 we have that (1− p)1/p ¬ e−1.

A pair of algorithms (Enc : {0, 1}∗×{0, 1}∗ → {0, 1}∗,Dec : {0, 1}∗×{0, 1}∗ → {0, 1}∗)
is a CPA-secure symmetric encryption scheme (see, e.g., [80]) if for every K,M ∈ {0, 1}∗
we have that Dec(K,Enc(K,M)) = M . Moreover, we require that for every poly-time
machine Dcpa1 , that takes as input 1κ, and outputs S0, S1, Y ∈ {0, 1}∗ (such that |S0| =
|S1|) an every every poly-time machine Dcpa2 it holds that:

Pr
[
D2(Y,Enc(K,S0)) = 1

]
− Pr

[
D2(Y,Enc(K,S1)) = 1

]
¬ negl(κ),

where K ←$ {0, 1}κ. We will also use the following lemma:

Lemma 12. Let κ, ζ ∈ N be arbitrary parameters (where ζ can be a function of κ). Let
U1, . . . , UC be independent random variables distributed over {0, 1} and such that for each
i we have that Pr[Ui = 1] = 2−ζ. Let U := U1+ · · ·+UC. We have that (a) if C = κ · 2ζ+1
then Pr[U ¬ κ] ¬ negl(κ) and (b) if C ¬ κ · 2ζ−1 then Pr[U  κ] ¬ negl(κ).

Proof. We will use the following versions of the Chernoff–Hoeffding bounds (see, e.g.,
Thm. 1.1 in [47]).
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Lemma 13. Let U1, . . . , UC be random variables independently distributed over [0, 1] and
let U = U1 + · · ·+ UC. Then for all ε > 0 we have

(a) Pr[U < (1− ε)E[U ]] ¬ exp(−ε2 · E[U ]/2) and

(b) Pr[U > (1 + ε)E[U ]] ¬ exp(−ε2 · E[U ]/3).

Clearly each E[Ui] = 2−ζ and hence E[U ] = C · 2−ζ . Let us start with proving Point
(a). Assume C = κ · 2ζ+1. This implies that E[U ] > κ · 2ζ+1 · 2−ζ = 2κ. Set ε := 1/4. We
get

Pr[U ¬ κ] ¬ Pr[U ¬ (1/2) · E[U ]] (3.1)
= Pr[U < (1− ε)E[U ]] (3.2)
¬ exp(−ε2 · E[U ]/2) (3.3)
= exp(−κ/16) (3.4)
¬ negl(κ). (3.5)

Hence Point (a) of Lemma 12 is proven. Let us now proceed to proving Point (b). Assume
C ¬ κ · 2ζ−1. This implies that

κ > C · 2−ζ+1 (3.6)

Set ε :=
√
9 · κ · 2ζ−5/C. Using the assumption that C ¬ κ · 2ζ−1 we get that

ε >
√
9 · κ · 2ζ−5/(κ · 2ζ−1) (3.7)

= 3/4 (3.8)

We hence get

Pr[U  κ] ¬ Pr
[
U  C · 2−ζ+1

]
(3.9)

= Pr[U  (1− 1/2)E[U ]] (3.10)
¬ Pr[U > (1− ε)E[U ]] (3.11)
¬ exp(−(9 · κ · 2ζ−5/C) · (C · 2−ζ)/2) (3.12)
= exp(−9 · κ · 2−6) (3.13)
¬ negl(−κ), (3.14)

where in Eq. (3.9) we used Eq. (3.6), in Eq. (3.11) — Eq. (3.8), and in Eq. (3.12) —
Lemma 13 (Point (b)). Hence Point (b) of Lemma 12 is proven.

3.3 The model

This section provides more details on the model already informally introduced in Sect. 3.1.1.
All protocols are executed in an asynchronous model. Every protocol is parameterized by
a security parameter 1κ and a hash function H that is modeled differently in the honest
and adversarial executions. In the honest execution, the parties access H in a black-box
way (via a standard random oracle [14]), except for Sect. 3.4.4, where a “circuit access”
to H is needed (in the construction of zkPIK).
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In the adversarial model, the malicious parties accessH via an interactive machine ΩH ,
which chooses a random function H : {0, 1}λ → {0, 1}κ (where λ and κ are parameters of
the model) and interacts with parties A1, . . . ,Aa by accepting queries of a form (x,mode),
where x ∈ {0, 1}∗ and mode ∈ {fast, slow}. If mode = fast, then a query is called fast. It is
called slow otherwise. Each query coming from a party Ab is answered to Ab with H(x)
(we also say that Ab evaluated H on input x). The execution of a protocol is divided
into the pre-computation phase and the online phase, happening one after another. We
say that ΩH is σ-bounded if the total number of slow queries answered in the online
phase is at most σ. The queries that exceed this quota are answered with ⊥. The total
number of fast queries is only bounded by the time complexity of the adversaries (i.e., it
is polynomial in κ).
The main idea is that the fast queries are “cheap” and the participants will be allowed

to send much more of them than the “expensive” slow queries (which correspond to
queries computed using MPC/TEE techniques). On the other hand, when analyzing what
the adversarial parties learned from the execution (i.e. when defining the “knowledge
extractors”, see below), only the fast queries will count. Namely, only the inputs to such
queries will be considered known to the querying party. The distinction between the pre-
computation phase and the online phase serves to model the fact that before the protocol
starts, the sub-adversaries have an unbounded (but polynomial) time and can execute
any distributed protocol. Note that the mode flag is only used for “accounting” purposes:
the actions ΩH do not depend on the value of this flag, except when defining the available
budget of queries.
At the end of the execution of a protocol, we look at the information each party

received as a result of the fast oracle queries. We define the local hash transcript of a
party Ab to be the sequence Tb of hash inputs that ΩH received from Ab (in the same
order in which they were received). Let T fastb be the sub-sequence of Tb containing only
the inputs corresponding to fast queries (call it local fast-hash transcript of a party Ab).
A (knowledge) extractor E is a deterministic poly-time machine that takes T fastb as input
and produces as output a finite set E(T fastb ) ⊂ {0, 1}∗. The extractors have block-box
access to H (via the same oracle ΩH , only using the fast queries).
For future reference, also define the global hash transcript to be the sequence T of

hash inputs that ΩH received (in the same order in which they were received). Let the
global fast-hash transcript be the sub-sequence T fast of T containing only the inputs
corresponding to fast queries.

3.4 Proofs of Individual Knowledge

We now provide formal details of the definition and the construction that were informally
presented in Sect. 3.1.

3.4.1 Definition

A Proof of Individual Knowledge (PIK) is a protocol πρ,σPIK between a prover P and a
verifier V (also denoted (P ⇆ V)), which are probabilistic poly-time machines with
access to a hash function H : {0, 1}λ → {0, 1}κ. The prover and the verifier take as input
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a pair (1κ, S), where 1κ is a security parameter and S ∈ {0, 1}∗. For ηP , ηV ∈ N, we say
that the prover and the Verfier are ηP- and ηV-bounded (respectively) if the prover and
the Verfier make at most ηP and ηV evaluations of H (respectively). We require that the
protocol is complete, i.e., if both parties are honest (and their inputs are as above), then
with overwhelming probability, the verifier outputs yes (in which case we also say that V
accepts).
The second required property is soundness. Define a (ρ, σ)-distributed adversary to

be a tuple (A1, . . . ,Aa) of poly-time interactive sub-adversaries. The honest verifier V
receives (1κ, S) as input and interacts with A1 that also receives (1κ, S) as input. Intu-
itively, A1 plays the role of the (malicious) prover from the point of view of the verifier
V . Initially, the sub-adversaries can run a per-computation phase, where they can send
an arbitrary number of slow queries to the oracle ΩH . Then, the protocol starts, and the
sub-adversaries enter the online phase in which they can make at most σ queries to the
oracle ΩH . The adversaries run in at most ρ rounds, where each of them has the following
form: (1) each sub-adversary Ab performs some local computation, at the end of which
Ab outputs a string Str b, and (2) each Str b is delivered to every other sub-adversary Ab̂.
We emphasize that we do not restrict the size of the communicated messages.
Consider an execution of a distributed adversary (A1, . . . ,Aa) against an honest veri-

fier (on input (1κ, S)). Define exec((A1, . . . ,Aa)⇆ V); 1κ;S) to be equal to (T fast1 , . . . , T fasta ,
OutV), where each T fastb is the local fast-hash transcript of Ab and OutV ∈ {yes, no} is
the output of V . We now have the following.

Definition 3.4.1. We say that πρ,σPIK is a PIK protocol sound against (ρ, σ)-distributed
adversary if there exists knowledge extractors E1, . . . , Ea such that for every (ρ, σ)-distribu-
ted adversary (A1, . . . ,Aa) and every S ∈ {0, 1}∗ we have that

Pr[OutV = yes and S ̸∈ E1(T fast1 ) ∪ · · · ∪ Ea(T fasta )] ¬ negl(κ), (3.15)

where (T fast1 , . . . , T fasta ,OutV) ←$ exec((A1, . . . ,Aa) ⇆ V); 1κ;S). We say that πρ,σPIK has
extraction efficiency (αO, αT, αS) if |E1(T fast1 ) ∪ · · · ∪ Ea(T fasta )| ¬ αO, and E operates
in time at most αT and uses space at most αS. The parameters αO, αT and αS can be
functions of some other parameters in the system.

The idea behind αO is that αO − 1 is the number of “false positives”, i.e., values in
E1(T fast1 )∪· · ·∪Ea(T fasta ) that are not equal to S. Obviously, the smaller αO is, the better.
In Sect. 3.4.4, we describe a method that, with high probability, allows to reduce the
number of such false positives to 0 in many applications.

3.4.2 Construction

In this section, we present our construction of a PIK protocol πρ,σPIK, which was already
informally described in Sect. 3.1.2. The protocol is parameterized by a “moderate hardness
parameter” ζ ∈ N and a security parameter 1κ. It uses a hash function H : {0, 1}λ →
{0, 1}κ with λ  2κ. In practice, H could be a compression function of a popular hash
function. The protocol participant takes as input S ∈ {0, 1}∗ and 1κ. We assume that
|S| is a multiple of λ − κ − 2 (if it is not the case, then one can pad S with zeros). Let
S1, . . . , Sn be such that S = (S1 || · · · || Sn) where |S1| = · · · = |Sn| = λ− κ− 2.
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Our PIK protocol is depicted in Fig. 3.2. It uses a sub-routine scratch (see also Fig. 3.1
and Fig. 3.3 for a graphical representation of the computation of scratch). The protocol
starts with the verifier sending a random challenge Z ∈ {0, 1}κ. Then, the goal of the
prover is to find κ nonces W 1, . . . ,W κ ∈ {0, 1}λ−κ−2 that convince the verifier that the
prover did a substantial amount of work for the challenge Z. This is done by requiring
that the output of every scratch(S,Z,W i) starts with ζ zeros. We have the following
definition.

Definition 3.4.2. We call a given scratch(S,Z,W ) successful if its output starts with ζ
zeros (cf. Step 2b on Fig. 3.2).

This is similar to the Bitcoin mining procedure, except that we require κ nonces to
be found (in Bitcoin κ = 1) in order to reduce the variance of the success probability.
The main idea behind scratch is that it forces the prover to sequentially compute d times
H on every block Sj of S. We also force the prover to compute scratch(S,Z,W ) on a
large number of W ’s. The search for the W i’s can be fully parallelized. The only non-
parallelizable part is the scratch procedure, which takes as input (S,Z,W ), where S is
the message, Z is the challenge, and W is the nonce.
The inputs of H in scratch start with two bits: 00 indicates that the hash is computed

on (Z,W ) (where Z is a challenge andW is a nonce), 01 indicates that the first block (S1)
is hashed (together with some Q), and 10 indicates that the hashed value Sj is one of the
subsequent blocks (i.e., j > 1). Labels 00, 01, and 10 are used to help the extractor find S
(e.g. if the extractor sees that some (01 || Ŝ1 || Q̂1) was hashed then the extractor guesses
that Ŝ1 is the first block of S and starts searching for a hash of a form (10 || Ŝ2 || Q̂2) with
Q̂2 = H(01 || Ŝ1 || Q̂1) (see Proof of Thm. 14 for the details). Note that in total scratch
computes nd+ 1 hashes H. Security of πρ,σPIK is stated in the following theorem.

Theorem 14. Let κ, n, d be as above and let ηP := (nd+1) ·2ζ+1 ·κ and ηV := (nd+1) ·κ.
Assume σ ¬ κ · 2ζ−3 and ρ ¬ d− 1. Then πρ,σPIK from Fig. 3.2 is a PIK protocol with ηP-
bounded prover and ηV-bounded verifier that is sound against a (ρ, σ)-distributed adversary
with extraction efficiency (αO, αT, αS), where

E[αO] = 2−ζ · ℓ, E[αT] = O(ℓb), and E[αS] = O(2−ζ · ℓb · |S|).

Above, ℓb is the number of hashes computed by a sub-adversary Ab, and ℓ := ℓ1+ · · ·+ ℓa.
The unit of time is a computation of H.

The proof of Thm. 14 is presented in Sect. 3.4.3. Before proceeding to it, let us comment
on the parameters in the lemma statement. When it comes to the parameters of the
honest prover and verifier, the most important ones are those denoting the “budget” for
the hash computations, i.e., ηP = (nd + 1) · 2ζ+1 · κ and ηV = (nd + 1) · κ respectively.
Note that each computation of the scratch procedure requires (nd+1) hash computations.
The verifier needs to do such a computation κ times; hence, she needs to perform only
(nd + 1) · κ hashes. For the prover, observe that each scratch attempt succeeds with
probability 2−ζ (by “succeeding” we mean finding a value that starts with ζ zeros). Since
the prover needs to be successful κ times, she needs, on average, (nd+ 1) · 2ζ · κ scratch
attempts. We set ηP to be the double of this parameter in order to make the probability
that he is successful (see Def. 3.4.2) less than κ times exponentially small.
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Procedure scratch(S,Z,W )

1. Assume S = (S1 || · · · || Sn), where each |Sj| = λ− κ− 2.

2. For k = 1 to d do:

For j = 1 to n do:

Qkj :=


H(00 || Z ||W ) if k = 1 and j = 1
H(10 || Sn ||Qk−1n ) if k ̸= 1 and j = 1
H(01 || S1 ||Qk1) if j = 2
H(10 || Sj−1 ||Qkj−1) if j > 2

3. Output H(10 || Sn ||Qdn).

Figure 3.1: Sub-routine scratch that defines a sequence of hash computations needed to
finish a single scratch attempt on input message S, challenge Z and a nonce W .

Observe also that if we substitute 2−ζ with 2 · κ · (nd+1)/ηP then the formula 2−ζ · ℓ
(appearing both in the bounds on E[αO] and E[αS]) can be rewritten as: 2·κ·(nd+1)·ℓ/ηP .
It is interesting to look at the last factor, i.e., ℓ/ηP . Recall that ℓ is the number of hashes
computed by the adversary A. On the other hand, ηP is the maximal number of hashes
computed by the honest prover. Hence, ℓ/ηP corresponds to the multiplicative advantage
of the adversary with respect to the honest prover, or, in other words, it answers the
question “How much more computing power does the adversary have compared to the
honest prover?”. In our theorem, the bounds on αO and αS grow linearly with ℓ/ηP .
Intuitively, this comes from the fact that a powerful adversary can always “mislead” the
extractor by executing a large number of scratch procedures on Ŝ ̸= S.

3.4.3 Proof of Thm. 14

Completeness.

Let us start with proving completeness. We first upper-bound the probability that the
protocol halts in Step 2 due to the fact that the budget forH computations was exhausted.
Note that this budget allows the prover to evaluate scratch ⌊ηP/(nd+ 1)⌋ = 2ζ+1 ·κ times
(since each scratch execution takes nd + 1 hash evaluations). For i = 1, . . . , 2ζ+1 · κ, let
Ui ∈ {0, 1} be equal to 1 if and only if the ith scratch execution was successful, i.e., it
produced an output that starts with κ zeros. Set U = U1 + · · · + U2ζ+1·κ. For simplicity
of the analysis assume that πρ,σPIK does not stop once all the W

j’s are found. Clearly, the
Ui’s are independent. Moreover, we have that each Pr[Ui = 1] = 2−ζ (the probability
that a random string starts with ζ zeros) and hence each E[Ui] = 2−ζ . Therefore by
Lemma 12 (Point (a)), we get that Pr[U < κ] ¬ negl(κ). Therefore with overwhelming
probability the prover finds κ values W such that scratch(S,Z,W ) starts with ζ zeros
without exhausting her hash budget, and hence she does not output ⊥. It is also easy to
see that the Verifer always accepts in such a case (since she just repeats the same scratch
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Protocol πρ,σPIK

The protocol is parameterized with a “moderate hardness” parameter ζ ¬ κ. It is
executed between the ηP-bounded prover P and the ηV-bounded verifier V . Both
parties take as input (1κ, S), where S = (S1, . . . , Sn).

1. The verifier V chooses a random challenge Z ∈ {0, 1}κ and sends it to the
prover P .

2. The prover P does the following parallel search across different values of
i = {1, . . . , κ} and nonces W i ∈ {0, 1}λ−κ−2:

(a) Let Qi := scratch(S,Z,W i).

(b) If Qi starts with ζ zeros then record W i and stop the parallel search.

The above search is done as long as the prover did not exhaust her budget
for computing hashes (recall that she can make at most ηP of them). If this
happens before the search is over, then P outputs ⊥ to V , who also outputs
⊥, and then both halt. Otherwise, we proceed to the next step.

3. The prover sends (W 1, . . . ,W κ) to the verifier.

4. Upon receiving (W 1, . . . ,W κ) the verifier outputs yes if for all i ∈ {1, . . . , κ} it
holds that the output of scratch(S,Z,W i) starts with ζ zeros. Otherwise, the
verifier outputs no.

Figure 3.2: Proof of individual knowledge (PIK) πρ,σPIK that satisfies Def. 3.4.1 (see
Thm. 14). The main procedure uses a sub-routine scratch depicted in the Figure 3.1.

computation as the prover for the W i values that she received in Step 4, and ηV hash
evaluations are needed for this computation).

Soundness.

To show soundness, let A = (A1, . . . ,Aa) be a (ρ, σ)-distributed adversary. Consider an
execution of A against an honest verifier on input (1κ, S) and let Z be the challenge
that the verifier sends in Step 1. Recall that the adversary has access to a σ-bounded
oracle ΩH that she can use to evaluate hash function H. For an arbitrary Ŝ (necessarily
equal to S), such that Ŝ = (Ŝ1 || · · · || Ŝn) (with each Ŝj ∈ {0, 1}λ−κ−2) and an arbitrary
Q̂1 ∈ {0, 1}κ a trace on T for Ŝ (starting with Q̂1) is a sequence (i1, . . . , in) such that

• T [i1] = (01 || Ŝ1 || Q̂1) and

• for every m = 2, . . . t we have: T [i1] = (10 || Ŝm ||H(T [im−1])).

Intuitively a trace is a sequence of indices on T that “look like” an attempt to evaluate a
column on Fig. 3.3 for some Ŝ. For any nonce W , an S-scratch on T for W is a sequence

i0 || (i11, . . . , i1n) || · · · || (id1, . . . , idn), (3.16)
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Figure 3.3: A diagram representing an execution of scratch((S1, . . . , Sn), Z,W ) procedure
from Fig. 3.1.

where T [i0] = (00||Z ||W ) and each (ik1, . . . , ikn) is a trace for S staring either withH(T [i0])
(if k = 1) or with H(10 || Sn || H(T [ik−1n ])) (otherwise). In other words: S-scratch is a
sequence of indices on T that correspond to an attempt to evaluate the entire diagram
on Fig. 3.3 for Ŝ = S.

Claim 1. For a hash transcript T consider two distinct nonces W and Ŵ . Let I and Î
be S-scratches on T for W and Ŵ , respectively. Then with overwhelming probability, we
have that I and Î are disjoint, i.e., there does not exist an index i that appears in both I
and Î.

sketch. Let Qki ’s and Q̂
k
i ’s be the values of the variables in the scratch procedure when

run on input (S,Z,W ) and (S,Z, Ŵ ), respectively (see Fig. 3.2 and 3.1 or the diagram
on Fig. 3.3). Suppose there exists an index i that appears in both I and Î. Obviously
T [i] cannot be of a form (00 || Z || W ), since W ̸= Ŵ . Hence T [i] must have a form
(b0 || b1 ||Sj ||Q). This means that T [i] is an output of a sequence of hashes starting with
H(00 || Z ||W ) and simultaneously, it is an output of a sequence of hashes starting with
H(00 ||Z || Ŵ ). Using this information, one can efficiently find a collision in H. Since the
probability of finding collisions in H is negligible, the probability that such W and Ŵ
can be found has to be negligible.

We will need the following definition.

Definition 3.4.3. Let W be a nonce such that there exists an S-scratch on T for W .
We call W fast if for every S-scratch (i1, . . . , im) on T for W each T [ij] is a fast query.
Otherwise, we call it slow.

We will also use the following simple fact that states that with overwhelming prob-
ability, the adversary has to compute the Qkj variables in the same order as the honest
party executing the scratch procedure.
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Claim 2. Fix some Z ∈ {0, 1}κ and W ∈ {0, 1}λ−κ−2 and let S be as above. Let Qkj ’s be
the variables computed in the scratch(S,Z,Q) procedure (see Fig. 3.1). For a global hash
transcript T

• let i10 be the first position in T on which (00 || Z ||W ) appears, and

• for k ∈ {1, . . . , d} and j ∈ {1, . . . , n} let ikj be the first position in T such that T [ikj ]
ends with Qkj .

Then with overwhelming probability the ikj ’s when sorted lexicographically by (k, j) are
monotonically increasing, i.e.,

∀
(k0,j0)
(k1,j1)

k0 < k1 ∨ ((k0 = k1) ∧ (j0 < j1)) implies that ik0j0 < i
k1
j1 . (3.17)

sketch. Let ≺ be the strict lexicographic order on (k, j)’s used in Eq. (3.17). Suppose
that there exists (k0, j0) ≺ (k1, j1) such that ik0j0  i

k1
j1 . Clearly, unless a collision in H is

found (which happens with negligible probability), all the Qkj ’s are distinct, and hence
we can assume that ik0j0 > i

k1
j1 . Without loss of generality assume that (k0, j0) immediately

precedes (k1, j1) in the “≺” order. Observe that Qk1j1 is an output of a hash function H
when evaluated on an input that contains Qk0j0 (with a convention that Q

1
0 := 00 ||Z ||W ).

But ik0j0 > i
k1
j1 means that Q

k1
j1 was submitted to the oracle before the adversary learned

Qk0j0 . Since the outputs of a random oracle are uniform over {0, 1}
κ, this happens with

negligible probability. This finishes the proof of the claim.

Claim 3. Suppose the number of fast W ’s is at most κ · 2ζ−3. Then the probability that
V(1κ, S) accepts on input S is negligible.

Proof. Recall that we assumed that σ ¬ κ · 2ζ−3 and in Claim 1 we have shown that for
distinctW and Ŵ the S-scratches forW and Ŵ are disjoint. Since Z ∈ {0, 1}κ is sampled
by the prover in the online phase, thus with overwhelming probability (00 || Z ||W ) is
sent to the oracle in the online phase. By Claim 2, this means that with overwhelming
probability, all of the S-scratches on T for W contain only queries sent to the oracle in
the online phase. Thus, the total number of slow W ’s is at most κ · 2ζ−3. Adding the fast
ones, we get that the total number C ofW ’s for which an S-scratch in T exists is at most
κ · 2ζ−2. Let W 1, . . . ,WC be these nonces.
By Claim 2, with overwhelming probability, the adversary first needs to compute the

entire S-scratch before learning whether it was successful or not. For each i ∈ {1, . . . , C}
let Ui ∈ {0, 1} be equal to 1 if and only if scratch(S,Z,W i) starts with ζ zeros. Clearly, the
Ui’s are independent and Pr[Ui = 1] = 2−ζ . Let U = U1 + · · ·+UC . Using Lemma 12, we
get that Pr[U  κ/2] ¬ negl(κ). Recall that V accepts only if she receives (W 1, . . . ,W κ)
such that each scratch(S, Z,W i) starts with ζ zeros. From the analysis above, we get
that with overwhelming probability, there exists κ− κ/2 = κ/2 values Wi such that the
corresponding value (10 || Sn ||Qdn) is not in T , or, in other words, H was not evaluated
on it. Clearly, the probability that H(10 || Sn || Qdn) starts with ζ zeros for all such Wi’s
is equal to (2−ζ)κ/2 = 2−ζ·κ/2 ¬ negl(κ).
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Before presenting our extractor E , consider the following natural construction idea.
By Claim 3, if the adversary was successful, then T fast needs to contain at least κ · 2ζ−3
S-scratches of a computation of scratch(S,Z,W ) (for some W ’s). Each such an S-scratch
contains d = ρ + 1 traces for S, where ρ is the maximal number of communication
rounds. Therefore every S-scratch contains a trace computed in a single round. As we
show formally later (see Claim 4), all the queries corresponding to such a trace had to
come from a single adversary. Hence, it should be possible to find it by scanning all T fastb ’s.
More concretely, consider an extractor that scans the transcript T fastb in order to find

elements of a form (01 || Ŝ1 || Q̂1) (for some Ŝ1 and Q̂1). Each such element is potentially
part of an attempt by Ab to compute a scratch path on a message starting with Ŝ1. The
extractor stores Ŝ1 and Q̂2 := H(01 || Ŝ1 || Q̂1). It then continues scanning the transcript
to find elements of a form (10 || Ŝ2 || Q̂2). Suppose E found such an element, and let
Q3 := H(10 || Ŝ2 || Q̂2). It then looks for elements of a form (10 || Ŝ2 || Q̂3), and so on,
until it finds n strings: (Ŝ1, . . . , Ŝn). It then outputs (Ŝ1 || · · · || Ŝn).
The above approach essentially works, although it needs some modifications. The

main challenge is that the adversary can make “fake” calls to ΩH , whose goal would be
just to mislead the extractor. Hence, a hash transcript can contain Ŝ-scratches for some
other Ŝ’s (possibly sharing a prefix with S). We deal with these problems by exploiting
the fact that in a successful execution, the adversary still needs to perform a large number
(κ · 2ζ−3) of scratch executions on real S. Our solution is presented in Fig. 3.4. The E
procedure maintains a set F containing information that can lead to finding the solution
S. The values are added to this set only with a certain probability (2−ζ). This probability
is chosen so that the most likely some S-scratch is included in F , yet, it reduces the
size of F significantly, leading to better parameters. In particular, it prevents the size of
F from becoming too large if the adversary makes lots of “fake” hash queries described
above.

Claim 4. Consider an execution of A = (A1, . . . ,Aa) against an honest verifier V on
input (1κ, S). For each b, let T fastb be the fast-hash transcript of Ab. Suppose V(1κ, S)
accepts. Then with overwhelming probability for some b, the string S is among the values
output by the knowledge extractor E(T fastb ).

Proof. Consider a global hash transcript T fast. Let W be a fast W (see Def. 3.4.3). Recall
that, since the adversary can evaluate H on the same value multiple times, there can be
multiple S-scratches on T fast forW . Let first-scratch(W, T ) denote the S-scratch composed
of the first positions on T fast forW where the given value appears on T fast. More formally,
let first-scratch(W ) be the S-scratch (i1, . . . , im) for W such that for every ij is the least
index i such that T fast[ij] = T fast[i], i.e., we have:

∀j∈{1,...,m} ∀i<ij T fast[i] ̸= T fast[ij]. (3.18)

Recall that ρ is the number of rounds, and we assumed that ρ ¬ d−1. Therefore for every
fast W and first-scratch(W ) of form as in Eq. (3.16), there needs to exist a round and an
index k such that hashes of values T [ik1], . . . , T [ikn] were all sent to ΩH in a single round.
Observe that the knowledge of each T [ikj ] is needed to compute the next value T [ikj+1] and,
because of Eq. (3.18) H(T [ikj ]) was not computed in the previous round. Since the output
of a hash can be guessed with probability 2−κ, thus with overwhelming probability, all
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Knowledge extractor E(T fastb )

1. Let ℓb := |T fastb |.

2. Let F be a set that is initially empty. Set F contains pairs of a form (Q̂, Ŝ),
where Q̂ ∈ {0, 1}κ is a hash output, and Ŝ ∈ {0, 1}∗.

3. For each i = 1, . . . , ℓb do

(a) If T fastb [i] is of a form (01 ||Ŝ ||Q̂) (for some Ŝ and Q̂) then with probability
2−ζ add a pair (H(01 || Ŝ || Q̂), Ŝ) to F (if it is not stored there yet).
Note that (01||Ŝ||Q̂) can appear more than once in T fastb . Since we want the
probability of being added to F to be the same for every string (01||Ŝ ||Q̂)
(no matter how often it appears in T fastb ), we perform this random choice
by evaluating some function ϕ : {0, 1}∗ → {0, 1} (treated as a random
oracle) such that Pr[ϕ(x) = 1] = 2−ζ . We add (H(01 || Ŝ || Q̂), Ŝ) to F if
and only it ϕ(01 || Ŝ || Q̂) = 1.

(b) If T fastb [i] is of a form (10 || Ŝ ||Q̂) (for some Ŝ and Q̂) and that there exists
a pair (Q̂, Ŝ ′) ∈ F (for some Ŝ ′ ∈ {0, 1}∗) then add (H(10||Ŝ ||Q̂), (Ŝ ′ ||Ŝ))
to F .
Additionally, if |(Ŝ ′ ||Ŝ)| = n then output (Ŝ ′ ||Ŝ) (but do not terminate),

Figure 3.4: The knowledge extractor for our PIK protocol. It preoceeds in an online
fashion, reading T fastb and outputting during the execution the “candidate” values for S.
The output of E(T fastb ) is the set of all values that were output during the execution of E .

the values T [ik1], . . . , T [ikn] had to be submitted to ΩH by single sub-adversary Ab. Hence
there must exist a trace ik1, . . . , i

k
n in first-scratch(W ) that was computed by a single sub-

adversary Ab.
By Claim 3, with overwhelming probability, the total number of fast W ’s is greater

than κ · 2ζ−3. Hence, at least κ · 2ζ−3 traces for S were computed by a single Ab. The
probability that each trace is added to F is 2−ζ . Hence, the probability that at least one
trace for S is output by some Ab is at least 1− (1− 2−ζ)κ·2

ζ−3
, which, by Lemma 11, is

at least 1− e−κ/8  1− negl(κ).

It remains to analyze the extraction efficiency of the extractor. Consider a run on E
on input Tb. We first show the following bound on the expected output size of F :

E[|F|] ¬ 2−ζ · ℓb (3.19)

(where ℓb is the number of fast hash queries of Ab). Recall that new values are added to
F by scanning all ℓb positions on T fastb in the following way:

1. if T fastb [i] is of a form (01 || Ŝ || Q̂) then a new value is added to F with probability
at most 2−ζ and
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2. if T fastb [i] is of a form (10 || Ŝ || Q̂) then a new value is added if Q̂ is a result of a
chain of hashes that started with hashing some (01 || Ŝ || Q̂′) and ϕ(01 || Ŝ || Q̂′) = 1.
Since this happens with probability 2ζ we get that the probability that (10 || Ŝ || Q̂)
is added to F is 2−ζ .

This proves (3.19). Since the values that are output by the extractor are a subset of F ,
and ℓ = ℓ1 + · · ·+ ℓb, thus we get that E[αO] = E

[
E1(T fastb ) ∪ · · · ∪ Ea(T fastb )

]
¬ 2−ζ · ℓ.

To analyze the time and space complexity of E observe that E is an online algorithm
that reads T fastb once. Assume that F is maintained using Cuckoo Hashing [98], where
in every pair (Q̂, Ŝ), the element Q̂ is treated as the key, and Ŝ is the stored value.
Thanks to this, looking up and inserting the values in F takes constant time. Thus, the
expected time complexity αT of each E is O(ℓb), and the expected space complexity αS
is O(2−ζ · ℓb · |S|). This concludes the proof.

3.4.4 Extensions

This section describes possible extensions of the basic PIK protocol from Sect. 3.4. We
leave the formalization of these extensions for future work as formally modeling attacks
in the network settings is often highly non-trivial. For example, it requires us to consider
different attack scenarios (e.g., man-in-the-middle, replay attacks, etc.) and typically
involves a detailed description of the attack model (including modeling the network and
the environment).

PIK as building block.

As mentioned in Sect. 3.1, PIK is a primitive that will usually not be used in a “stan-
dalone” way but rather as a part of a more extensive system. The main reason for this
is that the messages sent by the prover may provide some information about S. Indeed,
the definition of PIK does not mention any privacy guarantees for the prover, neither
against an external attacker nor against the verifier (who actually, in our setting from
Def. 3.4.1, knows S entirely). In this section, we describe two extensions of PIK that
address this problem. The first one (“Encrypted and Authenticated PIK”) answers the
issue of security against an external adversary, and the second one provides a version of
PIK (“zero-knowledge PIK”) that works against a verifier that does not know S. This
version of PIK does not reveal any information about S to the verifier (or any other
party).

Encrypted and Authenticated PIK (eaPIK).

Encrypted and Authenticated PIK (eaPIK) is a version of PIK where the communication
between the prover and the verifier is secured using a symmetric key K. Let us describe
this solution as a general transformation of any PIK protocol πρ,σPIK. The main idea is quite
straightforward: we let every message2 in the protocol πρ,σPIK be encrypted and authenti-
cated with a fresh key K that is shared between the prover and the verifier, sampled

2It is easy to see that in case of our protocol πρ,σPIK (see Fig. 3.2) the only message that may contain
sensitive information about S is (W 1, . . . ,Wκ) sent by the prover to the verifier in Step 3. Hence, it is
enough if only this message is encrypted.
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independently from S. Note that since we have a setup phase (for establishing S), thus
assuming that in this phase, we also generate K is very mild. To summarize: the client
and the server share the following:

• key K for encrypting messages during the execution of the PIK protocol and

• secret S that is used as the input of both parties in PIK.
Of course, as long as the prover is honest (and hence: she stores S on a single machine), she
easily convinces the verifier that she knows S. On the other hand, by the PIK properties,
a dishonest prover cannot distribute S among different sub-adversaries. It is important
to note that the PIK protocol only guarantees that S cannot be distributed, and K is not
protected similarly. Hence, any potential application accessing the server should require
the knowledge of S only, and it should not be assumed that K is stored on a single
machine.

ZK-Proofs of Individual Knowledge.

Let us now describe a solution for a setting where S is known only to the prover. In this
case, PIK makes sense only if some publicly-available information on S is known. We
model this in the following standard way. Suppose L is an NP-language characterized by
some NP-relation ϕ : {0, 1}∗×{0, 1}∗ → {0, 1}. The verifier holds some public information
pub ∈ {0, 1}∗, while the prover has an NP-witness S ∈ {0, 1}∗ such that (S, pub) ∈ L.
A natural example of L is the language of all secret keys in some public-key encryption
scheme, with pub being the public key and S being the corresponding private key. The
goal of the prover is to convince the verifier that she knows S such that ϕ(S, pub) = 1
and that this S is stored on an individual machine. Moreover, this should be done in zero-
knowledge, i.e., without revealing additional information to the verifier about S. We call
a protocol that satisfies these requirements a ZK-Proof of Individual Knowledge (zkPIK)
for relation ϕ.
Let us now outline how to transform a public-coin PIK protocol πρ,σPIK into a zkPIK,

where by “public-coin PIK” we mean protocols where the messages of the verifier are
drawn at random, independently from S. It is easy to see that our πρ,σPIK protocol (see
Fig. 3.2) is public-coin since the only message that the verifier sends is the random chal-
lenge Z in Step 1. Our protocol works as follows. The prover and the verifier execute
πρ,σPIK with the following modification: the prover, instead of sending her messages in clear,
commits to them using a cryptographic commitment scheme [26], and later proves in
zero-knowledge [69] that she committed to messages that would make the verifier in
protocol πρ,σPIK accept. Note that the zero-knowledge proof can be executed after the mes-
sage exchange is finished; hence, the time needed to execute it does not influence the
time bounds of the original PIK protocol. Clearly, this proof can also be executed in a
non-interactive way [22], e.g., using one of the Zero-Knowledge Succinct Non-Interactive
Argument of Knowledge (zkSNARK) schemes (see, e.g., [21]). Note that this solution
assumes a generic use of zero-knowledge protocols.

Reducing the number of candidate messages.

Recall that one of the parameters in PIK is the maximal size αO of the set of “candidate
secrets Ŝ”, that besides the real value, S contains a lot of “false positives”. Moreover,
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αO can be quite large in our construction. A simple technique for eliminating the false
positives is to let the verifier publish a hash h = H ′(S) (where H ′ is some hash function
different from the one used in constructing PIK). Once h is known, everyone (including
the prover) can check for every candidate Ŝ if H ′(Ŝ) = h, and if it does not hold, eliminate
this Ŝ from the candidate set. It is easy to see that Ŝ = S passes this test, while (assuming
no collisions in H are found) all Ŝ’s such that Ŝ ̸= S get eliminated. This solution can
be proven secure in the random oracle model as long as the entropy of S (from the point
of view of an external adversary) is large enough to guarantee that the adversary cannot
guess S. This is the case, e.g., if S is a uniform random key.
Let us also discuss how h can be published. One option is to let h be sent to the verifier

by the prover during the execution of the protocol. In the case of the eaPIK protocol, h
would be encrypted by key K. Note that we do not even need the assumption that S has
high entropy since it remains hidden from the external attacker. In the case of zkPIK, h
could just be a part of the public key.

3.5 Application: Voting on Blockchain

In this section, we informally describe how individual cryptography may be used to
increase the security of voting systems on the blockchain. Voting on blockchains faces
many problems [99] that diminish its applicability to large-scale elections, including issues
with the privacy of a voter or coercion-freeness (i.e., the property that ensures that
one is not able to “sell” a vote to any other party). However, in practice, some voting
mechanisms are still implemented on blockchains, e.g., in Decentralized Autonomous
Organisations (DAOs) [102]. DAOs are programs running on blockchains designed to
manage organizations transparently and autonomously. Below, we define a model of a
voting mechanism in DAOs – the Voting-DAO.
Let us first informally describe a cryptographic signature scheme Σ = (Σ.gen,Σ.sign,

Σ.verify). We assume that all algorithms of the signature system Σ are easy to compute
in MPC. Given a security parameter κ, the algorithm Σ.gen produces a pair of random
keys (sk, pk) := Σ.gen(κ) consisting of a private and a public key. The algorithm Σ.sign
allows to create a signature σ := Σ.signsk(m), given a secret key sk and a message m.
Finally, the algorithm Σ.verify outputs a verification result b := Σ.verifypk(σ,m), given a
signature σ, a public key pk and a message m. The correctness property of the system
requires that given a correct pair of keys (sk, pk) and a messagem, the algorithm produces
a signature σ := Σ.signsk(m) that is verified as valid, i.e. Σ.verifypk(σ,m) outputs 1. The
unforgeability property of the signature requires that given a public key pk it is hard to
forge a new signature σ′ that verifies correctly on some message m′ (i.e., it is hard to
find a signature σ′ and some message m′, such that Σ.verifypk(σ

′,m′) outputs 1) without
access to the secret key sk that conforms to the given public key. A full definition of a
signature scheme can be found in [100].
We now define the Voting-DAO – a procedure that allows periodic voting on a

blockchain. We assume that the blockchain can preserve private memory3. Let us model
Voting-DAO as a program on a private blockchain that can run procedures

3Implementing private memory on a public blockchain may sound tricky, but some implementations
based on an assumption of a committee with honest majority were proposed e.g. in [16].
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(Setup,VoteInit,VoteAdd,VoteCount).

• The procedure Setup can be run only once, during initialization of the Voting-DAO
system, and allows to register a set of parties {P1, . . . ,Pn} by publishing their public
keys {pk1, . . . , pkn} that conform to some secret keys {sk1, . . . , skn} generated by
the algorithm Σ.gen.

• The procedure VoteInit is used multiple times to initiate the voting process. It
starts a clock that measures time until some deadline T . The clock can be deleted
only when the deadline T passes (see the definition of the procedure VoteCount).
The procedure VoteInit tosses and publicly announces a random nonce nonce. It
can be started only when any previously started clock is deleted.

• The procedure VoteAdd allows participants identified with their secret keys ski
to submit their vote for an option vi ∈ {0, 1}, by submitting a valid signature
Σ.signski(nonce||vi) conforming to a public key pki that was saved during initializa-
tion. The vote is saved in the private memory of the Voting-DAO, and it cannot be
overwritten. The procedure can be run when some clock is still before its deadline.

• The procedure VoteCount is run when the deadline of a not-yet-deleted clock is
over. It deletes the clock and publicly announces a voting result, which is a majority
of the votes vi published in the Voting-DAO. If none of the parties voted, it outputs
a default value of 0.

Leveraging distributed cryptography to manipulate Voting-DAO. With dis-
tributed cryptography in hand, one can easily facilitate the process of manipulating the
Voting-DAO. It is easy to see that, during a voting process modeled by the Voting-DAO,
distributed cryptography may be used to allow a party Pj to vote on behalf of party Pi
while still preserving the secrecy of its secret key ski by the party Pi and the secrecy
of vote vj by the party Pj. The parties can engage in an MPC protocol that outputs
σ := Σ.signski(nonce||vj) only to the holder of the vote vj. The party Pj can then submit
the valid vote σ to the Voting-DAO via a connection that preserves the anonymity of the
transferred information.
What is more, distributed cryptography allows the creation of a correct signature

Σ.signski(nonce||vi) without a guarantee that a single entity possesses secret information
needed to compute this ballot. For example, the secret ski may be initially secret-shared
by running the procedure Σ.gen in MPC or TEE by a set of parties. The MPC or TEE
may be designed to allow only a single party to retrieve the generated secret. This way,
one can organize an automated vote-selling machine that may control the voting process
until its users collect back their secrets.4

Preventing the distributed cryptography attacks. The Voting-DAO may be en-
hanced using an extension similar to the zkPIK described in the previous section. The pro-
cedure VoteAdd may require that along with the voting signature Σ.signski(nonce||vi),
each party should commit on time to π = PIK(ski||nonce||vi) and then later prove in ZK
that given nonce, vi and pki visible to the Voting-DAO, the committed π was computed

4This attack is similar to the automated DAO attack mentioned in [6].
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using the ski that conforms to pki. Informally speaking, this procedure will ensure that a
single party that computed the commitment to π had access to vi, nonce, and ski needed
to compute Σ.signski(nonce||vi). We postpone the formalization of the adjusted scheme
for future investigation.
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Chapter 4

Efficiently Testable Circuits without
Conductivity

The final aspect of the security of systems built upon blockchains is the security of the
devices used by blockchain users. The purpose of these devices is to increase the secu-
rity of high-stake asset management. Various approaches are taken, which involve either
leveraging trusted hardware units and devising new hardware configurations for manag-
ing blockchain assets [45, 71] or examining the security of the trusted hardware units
themselves [76, 75, 53]. For concreteness, let us delve into the management of the secret
information needed to produce signatures of transactions. Intuitively, a specialized device
capable of computing signatures that contains a memory unit shielded from any external
access [45] can improve the protection of secret information. However, ensuring the device
generates signatures according to the intended specifications poses significant challenges.
One approach is to rely on vendor-trusted modules like Trusted Platform Module [106] or
Intel’s Software Guard Extensions [116]. On the other hand, these technologies have been
shown vulnerable multiple times [70, 110, 63]. We thus take a theoretical approach to this
problem and try to understand what provable assurances can be given by the manufac-
turers of such cryptographic modules. Specifically, we provide a generic construction of a
compiler that protects implementations of devices modelled as Boolean circuits against
so-called wire-tampering attacks.
Together with Baig et al. [8], we introduced the notion of “Efficiently Testable Cir-

cuits” (ETC). It assures that any Boolean circuit C can be compiled into a pair consisting
of a circuit C ′ and a small test set T, such that the circuit C ′ is functionally equivalent to
C (i.e. the input/output behavior of a subset of input/output wires of the compiled cir-
cuit C ′ is the same as the input/output behavior of the original circuit C). Moreover, the
notion of ETCs assures that testing the input/output behaviour of the tampered circuit
C ′ on the small set of inputs T allows to check whether C ′ preserves correct input/output
behaviour on all inputs.
Although the ETC compiler above is secure against tamperings that modify even

all wires of the compiled circuits, it was built upon a strong conductivity assumption.
Conductivity assures that any duplicated wires (used to forward some value to more
than one gate) can be tampered with only a single tampering. In another work [9], we
constructed a compiler for ETCs that did not leverage the conductivity assumption. This
construction is randomized and contains a layered compression gadget. We show that
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a single test in this construction, which contains a compression gadget with λ layers,
propagates an error with probability 1/s2λ. A natural question is whether it is possible to
boost the probability of error detection in the compression gadget of this compiler, and
provide a compiler that would result in more cost-effective constructions w.r.t. the usage
of randomness.
Our contribution is a construction of a compiler, built upon the construction pre-

sented in [9], with a modified layered compression gadget. The new construction with λ

layers, boosts the probability of error detection to
(
1− (3/4)b

)λ−1
/2λ+1, assuming some

integer parameter b > 1. For sufficiently large b, the probability of error detection of our
construction is approximately 2λ−1 larger than the probability of the error detection of
the construction presented in [9].

4.1 Testability of Circuits

We start by presenting a broader context of the issue of testability of circuits.

Circuit testing. Detecting errors in circuits is of interest in various engineering and
computer science areas. In circuit manufacturing, the focus is on efficiently detecting
errors that randomly occur during production [27]. Querying circuits on a few carefully
chosen inputs and checking the output for correctness will typically detect a large fraction
of the faulty ones.

Private Circuits (PC). The cryptographic community has long focused on errors that
are intentionally introduced by an adversary, as such “tampering” or “fault attacks” can
be used to extract cryptographic secrets [20, 24]. Compared to testing in manufacturing,
protecting circuits against fault attacks is more difficult for at least two reasons: (1) the
errors are not just random but can be targeted on specific wires or gates in the circuit
(2) the errors introduced by tampering must not just be detected, but the circuit must
be prevented to leak any information.
For this challenging setting of private circuits (PC), Ishai, Prabhakaran, Sahai, and

Wagner [75] construct a circuit compiler that given (the description of) any circuit C and
some parameter k outputs (the description of) a functionally equivalent circuit Ck (i.e.,
C(X) = Ck(X) for all X) which is secure against fault attacks that can tamper with up
to k wires with each query (the faults can be persistent, so ultimately the entire circuit
can be tampered with), while blowing up the circuit size by a factor of k2. The efficacy of
the compiler can be somewhat improved by allowing some small information leakage [62].

Efficiently Testable Circuits (ETC). Efficiently testable circuits (ETC), recently
introduced in [8], consider a setting that “lies in between” testing for benign errors and
private circuits. An ETC compiler takes any Boolean circuit C : Zs2 → Zt2 and maps it to
a tuple (Ctest : Zs+s

′

2 → Zt+t
′

2 ,Ttest ⊂ Zs+s
′

2 ) where Ctest is functionally equivalent to C and
Ttest is a test set that will catch any (non-trivial) tampering on Ctest. A bit more formally,
by saying Ctest is functionally equivalent to C we mean ∀X ∈ Zs2 : Ctest(X∥0s

′
)|t = C(X)

(S|t denotes the t bit prefix of S, ∥ is concatenation and 0s is the string of s zeros).
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The security property states that if for a wire tampering τ on Ctest the tampered
circuit Cτtest output errors on at least one of the (exponentially many) inputs X∥0s

′
(i.e.,

the t bit prefix of the output is not C(X)), then Cτtest will err on at least one input in the
(small) test set:

∀τ : ∃X ∈ Zs2 s.t. C
τ
test(X∥0s)|t ̸=

=C(X)︷ ︸︸ ︷
Ctest(X∥0s

′
)|t ⇒

∃T ∈ Ttest s.t. C
τ
test(T ) ̸= Ctest(T ) (4.1)

ETC aims at detecting adversarial errors like PC, but unlike PC, this detection only
happens during a dedicated testing phase, not implicitly with every query. Thus ETC
cannot be used to replace PCs which aim to protect secrets on a device that is under
adversarial control and can be tampered with. Instead, they ensure that a circuit correctly
evaluates on all inputs, even if it was under adversarial control in the past.
Using ETC can also be useful to detect benign errors, particularly in settings where

one does not want to accept a non-trivial probability of missing a fault, which is the case
for the heuristic techniques currently deployed in circuit manufacturing. One such setting
is in space exploration where faults can be catastrophic, and to make matters worse, the
high radiation in outer space is likely to cause additional faults. Here, the ability to run
a cheap test repeatedly in a black-box way is useful.
While ETCs provide a weaker security guarantee than PCs in terms of how tampering

is detected, the construction of the ETC from [8] achieves security under a much stronger
tampering model than what is known for PCs. Furthermore, ETCs are much more efficient
and rely on weaker assumptions: the ETC compiler from [8] blows the circuit up by a
small constant factor while allowing for tampering with all wires. On the other hand,
in Private Circuits II [75], to detect tampering with k wires already requires a blow up
of k2.

Conductivity. A major restriction of both, the PC compiler [75] and the ETC compiler
from [8] is the fact that wire tamperings are assumed to be conductive: while a wire
can be tampered (set to constant 0 or 1, or toggling) arbitrarily, if this wire has fan-
out greater than 1, i.e., leads to more than one destination which can be an input to
another gate or an output wire, all must carry the same value and cannot be tampered
individually.1 This is an arguably unrealistic assumption and not does not capture actual
tampering attacks: Why should, say, cutting the wire at the input of one gate affect the
value at another gate to which this wire is connected? While any circuit can easily be
turned into a functionally equivalent one where all wires have fan-out 1 by using copy
gates COPY(b) = (b, b), applying this to the circuit produced by the compiler from [8]
will completely break its security as shown in [9]. To this end, in [9], we constructed a
compiler for ETCs that gives probabilistic guarantees for the testability of the compiled
circuit. Moreover, their compiler does not leverage the conductivity assumption.

1The conductivity assumption for the PC compiler from [75] is slightly stronger than ours, as they
additionally assume that “faults on the output side of a NOT gate propagate to the input side”.
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4.2 Our Contribution

In this chapter, we show a new construction of a compiler for ETCs that does not leverage
the conductivity assumption. Our construction builds upon the construction presented
in [9] and similarly contains a layered compression gadget. However, for λ layers of com-
pression and a parameter b, our compiler propagates any detected error with probability
1
2

(
1− (3/4)b

)λ−1
/2λ in comparison to 1/22λ achieved by the old construction. In other

words, for any circuit C compiled into a pair (Ctest,Ttest), we get a probabilistic guarantee
that:

∃T ∈ Ttest s.t. Pr
R
[Cτtest(T∥R) ̸= Ctest(T∥R)] 

(
1− (3/4)b

)λ−1
/2λ+1 (4.2)

where λ ∈ N is a parameter specifying the number of layers in the compression sub-gadget,
and b is a boosting parameter of the testing sub-gadget. A larger λ will decrease the extra
input/output wires but will increase the required number of test queries, a larger b will
increase the number of extra input/output wires but will decrease the required number
of test queries. To achieve the above guarantee of boosted probability, we formally study
how the error is propagated through each layer of the compression gadget depending on
a single bit of randomness crossed with the wire containing the error2.

Implications - size, and randomness efficiency. Below, we make a discussion of
size and randomness efficiency for a circuit of size n, λ layers of compression, and two
parameters d, b ∈ N, b < d (where d is the compression parameter, and b is the boosting

parameter). Our compiler propagates the error with probability
(
1− (3/4)b

)λ−1
/2λ+1

after a single query, it grows the circuit to the size of roughly 15n + (12n + b · n) ·[
1− (b/d)λ

]
/ (1− b/d), it uses λ · d bits of randomness for a single test, and adds ap-

proximately 4n · bλ−1/dλ + d · b/(d − b) output wires to the circuit. In comparison, the
construction from [9] propagates the error with probability 1/22λ after a single query, it
grows the circuit to the size of roughly 27n, it uses λ · d bits of randomness for a single
test, and adds approximately 4n/dλ output wires to the circuit. For concreteness, for a
circuit with approximately 15 · 109 gates, λ = 6 layers of compression, the compression
parameter d = 60, the boosting parameter b = 5, we can estimate, that our compiler will
propagate the error with probability approximately 0.002 after a single test, it will grow
the circuit approximately 35 times, it will use 360 bits of randomness, but it will add
around 4000 new output bits to the construction. On the other hand, the construction
from [9] will use the same amount of 360 bits of randomness; it will propagate the error
with probability approximately 0.00025 (around 8 times lower than our construction),
but it will grow the circuit 20 times and it will add only 2 output wires to the construc-
tion. We believe that the optimal parameters of a practical implementation of an ETC
compiler should be obtained through the engineering process combining the layers of our
construction and the construction from [9].

2In contrast, the construction from [9] studies how the error is propagated through each layer of their
construction depending on the whole vector of randomness attached to the layer. Their guarantee is
insufficient to use a single randomness bit several times to boost the probability of catching the error on
a single wire.
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Our solution in a nutshell. To obtain our construction, similarly to [9], we start with
precompiling a circuit C : Zs2 → Zt2 to a pair (Cgate,Tgate), such that Cgate is functionally
equivalent to C. What is more, after the precompilation, only a few input wires and
a large number of output wires (a few times larger than the number of gates of the
original circuit C) are added to the precompiled Cgate. The precompiled circuit Cgate has
a property that it is testable3 on the test set Tgate (cf. Equation 4.1). As in [9], we apply a
layered construction to lower the number of output wires of the precompiled construction.
We fix a compression parameter d and a boosting parameter b. To construct the layered
construction of our gadget we do the following.

• In the first layer, we group the output wires of the precompiled circuit to groups of
d wires. Then (given a randomness vector R1 = (r1,1, . . . , r1,d) attached to the first
layer) we compute product

∑
j=1,...,d zjrj for each group of wires (z1, . . . , zd). The

output of the computation of each group must be then copied b times, using the
COPY gates.

• In a layer i ∈ {2, . . . , λ − 1}, we reuse each randomness bit of a vector Ri =
(ri,1, . . . , ri,d) attached to the layer. We do this by rewiring the output from a single
group in the previous layer which was already copied b times in the previous layer.
In other words, we rewire a single output from the previous layer to b distinct
randomness bits from Ri = (ri,1, . . . , ri,d) in the layer i. This allows us to compute
the product several times on wires carrying the same information (cf. Figure 4.4
and Section 4.7). Again, the output of the computation of each product in the layer
i must be copied b times, using the COPY gates.

• The last layer of our construction is constructed similarly to the previous layers,
but the output of the product computations in the last layer is carried only by a
single wire and it is not copied b times.

To achieve the boosted security guarantee, in the Theorem 22, we study how the error
is propagated with respect to a single randomness bit ri,j in a layer i, not the whole
randomness vector Ri as in [9]. As we show in the final Theorem 23, our construction
(Ctest,Ttest) assures that (given a fixed number of additional input wires sλ):

• Either the output is wrong:

∃X ∈ Ttest : Cτtest,λ(X||0sλ) ̸= Ctest,λ(X||0sλ),

• or the testing gadget detects an inconsistency:

∃X ∈ Ttest : Pr
R←Z

sλ
2

[
Cτtest,λ(X||R) ̸= Ctest,λ(X||R)

]

(
1− (3/4)b

)λ−1
/2λ+1.

3The actual security guarantee provided by the precompiled circuit is slightly stronger than the
“testability” (cf. Equation 4.1), as we achieve a guarantee of observability of so-called “information
loss”, cf. Section 4.5.
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4.2.1 More Related Work

Testing circuits is a significant topic in hardware manufacturing, the books [19, 27] discuss
heuristics for testing and practical issues of the problem. Circuit-compilers (as used in
this chapter) which harden a circuit against some “physical attacks” in a provably secure
way were first introduced for leakage attacks (concretely, leaking values of a small number
of wires) by Ishai et al. in [77]. Based on this compiler they later also gave a compiler
to protect against tampering [75]. This line of research was continued in a sequence of
papers on tampering wires [41, 42, 65, 61] or gates [78, 57, 83]. As discussed in the
introduction, these compilers aim at protecting secrets in the circuit, while efficiently
testable circuits [8] only aim at detecting tampering in a special test phase.
Apart from compilers, a line of research was pioneered by Micali and Reyzin in [95] on

reductions or composition of cryptographic building blocks to prevent “general” leakage.
The first cryptographic primitive achieving security against a general notion of leakage
(bounded leakage) from standard cryptographic building blocks is the leakage-resilient
cipher from [55], by now we have leakage-resilient variants of most basic cryptographic
primitives including signatures [60, 25] or MACS [18], an excellent overview on the area
is [79]. Unfortunately for tampering no construction secure against general tampering –
or even a notion of what “general tampering” means – exists, where notions like the non-
malleable codes [56] are applicable. The non-malleable codes can protect data in memory
(rather than during computation) from very general classes of tampering attacks [88, 31,
2, 10, 43].
Trojans is the most powerful physical attack model, where an attacker can not just

tamper the circuit but completely replace it. Some limited provable-security results
against this class of attacks are [53, 29]. There are few attempts to use general verifi-
able computation to certify the output of circuits [5, 111].

4.3 Preliminaries

We borrow the notations and the tampering model from [9].

4.3.1 Notation for Circuits

A circuit is modeled as a Directed Acyclic Graph Cγ = (V,E) and a labeling function
γ : V → G. The vertices in V refer to gates and the directed edges in E refer to wires.
The labeling function γ assigns specific gates to the vertices, where G is the set of gates
allowed4. Each wire carries a bit from Z2, and each gate is taken from the set of allowed
gates G (including {AND,OR,XOR,COPY,NOT} and two special {in,out} gates).
For v ∈ V , let E−(v) = {(u, v) ∈ E} and E+(v) = {(v, u) ∈ E} be the sets of v’s

incoming and outgoing edges, respectively. For e = (u, v) ∈ E we define V −(e) = u and
V +(e) = v. We split the vertices into three sets V = I ∪ G ∪O, where I = {I1, I2, ..., Is}
are vertices which are assigned to in, and O = {O1, O2, ..., Ot} are these assigned to out.

4The parameter γ will be often defined only implicitly in the text, as it will be obvious from the
context.
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Given Cγ = (V,E) and an input X = (x1, . . . , xs) ∈ Zs2, we define a valuation function

valCγ ,X : V ∪ E → Z2 (4.3)

which assigns each gate the value it outputs and each wire the value it holds when the
circuit is evaluated on X. More formally the valuation function for vertices v ∈ V and
edges e ∈ E is defined as

valCγ ,X=(x1,x2,...,xs)(v) =

xi, if v = Ii.
γ(v)(valCγ ,X(E

−(v))), otherwise.

valCγ ,X(e) = valCγ ,X(V
−(e)).

We will sometimes just write valX if the circuit considered is clear from the context.
The behaviour of the circuit C can be associated with the function that it evaluates, i.e.
C : Zs2 → Zt2. We can define this function as follows: C(X) = (valC,X(O1), valC,X(O2), . . . ,
valC,X(Ot)).
Additionally, we add the notation of the sequences of the input values to gates. By

(valC,X(e))e∈E−(v) we understand the sequence of the values given to v, when the circuit
is evaluated on the input X. E.g. for a gate v in a circuit C that is evaluated on 0 and 1
given input X to C, we write (valC,X(e))e∈E−(v) = 01.

4.3.2 Tampering Model

In our work, and [9], we consider an adversary who can arbitrarily tamper with every
wire of the circuit, i.e., flip its value, set it to 0, set it to 1, or leave it untampered.
Unlike [8] or [75], in [9] and this chapter, we do not take advantage of the conductivity
assumption. This means, we operate on circuits with conductivity 1, where all nodes
n ∈ V of a circuit C have fan-in and fan-out equal to an inherent fan in, fan-out of γ(n),
and all output wires of all nodes can be tampered independently. We assume that the
input circuit is not conductive. In [8], we assumed k-conductivity, i.e., a value of some
wire in the circuit could be copied to at most k distinct destinations with a restriction
that all of them must be tampered equally. Without loss of generality, every k-conductive
circuit can be transformed into a 1-conductive circuit, as by using COPY gates, every
k-conductive circuit can be turned into a non-conductive one while at most doubling the
circuit size and increasing the depth by a factor ⌈log(k)⌉.
The tampering of a wire is described by a function Z2 → Z2 from the set of possible bit

tamper functions T = {id, neg, one, zero}. The tampering of an entire circuit C = (V,E)
is defined by a function τ : E → T mapping each wire to a tampering function. We
sometimes write τe to denote τ(e) for convenience. The valuation function can now also
take the tampering τ into account:

valτX : V ∪ E → Z2.

The only difference to the (non-tampered) valuation function from Eq(4.3) is that we
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Figure 4.1: Examples of 2 − conductive (left circuit) and 1 − conductive (right circuit)
circuits. A single wire on the left circuit is copied to two destinations. The adversary can
apply only a single tampering to this wire. On the right circuit, this wire is divided into
three parts with a COPY gate. The adversary can apply separate tampering to each of
these parts.

apply the tampering to each value of an edge after it is being computed, formally:

valτCγ ,X=(x1,2,...,xs)(v) =

xi, if v = Ii.
γ(v)(valτCγ ,X(E

−(v))), otherwise.

valτCγ ,X(e) = τe(val
τ
Cγ ,X(V

−(e))).

By Cτ we can again understand a function that describes the input-output behavior
of the tampered circuit: Cτ (X) = (valτC,X(O1), val

τ
C,X(O2), ..., val

τ
C,X(Ot)).

4.4 Gate Covering Sets

In previous works [8, 9], we developed a notion of a gate covering set Tgate, that extended
the notion of a wire covering set Twire presented in [8]. A wire covering set Twire is a set of
inputs to a specific circuit, such that every wire is evaluated to both 0 and 1, given some
inputs from the test set Twire. Moreover, [8] provides a procedure that compiles every
circuit into its wire-covered version.

Definition 4.4.1 (Definition 4 from [8]). The set Twire is a wire covering set for a circuit
C if ∀ e ∈ E(C), b ∈ {0, 1} ∃ X ∈ Twire : valC,X(e) = b.

In our construction, we take advantage of the stronger notion of the gate covering set
Tgate introduced in [9]. It ensures the covering of all wires of the circuit and additionally
the covering of the pairs of wires, which are input wires to multi-input gates (in our
model, the AND,OR,XOR gates).

Definition 4.4.2 (Definition 2 from [9]). The set Tgate is a gate covering set for a circuit
C with gate assignment γ if it satisfies:

• ∀v∈V (C) : γ(v)∈{COPY,NOT,OUTPUT} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}|  2,

• ∀v∈V (C) : γ(v)∈{AND,OR} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}| = 4,

• ∀v∈V (C) : γ(v)∈{XOR} : |{(valC,X(e))e∈E−(v) : X ∈ Tgate}|  3.
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We call a circuit with a gate-covering set a gate-covered circuit. Any node in a circuit
that has enough evaluation sequences as in the Definition 4.4.2, given any test set, we
call gate-covered.

The previous work [9] shows how to transform any circuit C into its functionally
equivalent gate-covered circuit Cgate using their Algorithm 1 (we will refer to it as Algo-
rithm A in this text). For any circuit C with max fan-in 2 and n gates, the Algorithm A
adds only 5 input wires, creates a circuit of size 6n and a gate covering set Tgate of size 6.

4.5 Information Loss in Gate-Covered Circuits

Information loss. In the following, we shall discuss the propagation of the information
loss. We say that we have the information loss on a wire (or node) w in a circuit C, if one
has access to two distinct inputs X0, X1 on which the wire (node) in the circuit should
be evaluated to different bits, but is evaluated to the same bit because of the tampering
τ applied to the circuit. In other words, for some X0, X1, we have:

(
valX0,C(w) = 0 ∧ valX1,C(w) = 1

)
∧
(
valτX0,C(w) = val

τ
X1,C
(w)

)
.

Information loss is a slightly more robust notion than the evaluation error, as the tamper-
ings in a circuit may be adversarially chosen in a way that the evaluation error vanishes
during the evaluation of the circuit. E.g., imagine a wire in the tampered circuit that is
almost always evaluated to 0 in an untampered evaluation, and the adversarial tamper-
ing sets its value to constant 0. In general, it is easy for an adversary to manipulate the
(almost) always correct or (almost) always incorrect evaluations on internal wires of the
circuit. We will thus make use of the information loss - a pair of evaluations on a single
wire that ensures that this wire evaluates to both 0 and 1, and an error occurs on one
of these evaluations. We will be able to propagate the information loss through layers of
the circuit without the risk of vanishing error.

How information loss propagates in gate-covered circuits. We now show that
information loss is easily trackable in any gate-covered circuit Cgate.

For any such circuit with a gate-covering set Tgate, we show the following property:
for any tampering applied to the wires of the Cgate, either we observe an information loss
on one of the output wires of the multi-input gates AND,OR,XOR (given only the inputs
from the gate-covering set Tgate), or the output wires of the circuit are always set to a
constant value or always toggled or always correctly evaluated.
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Theorem 15. For any circuit Cgate : Zs2 → Zt2 with gate-covering set Tgate, for any
tampering function τ applied to the circuit then at least one of the following holds:

• Information loss on multi-input gates

∃X0,X1∈Tgate, n∈V (Cgate) : γ(n)∈{AND,OR,XOR} :(
valX0,Cgate(n) = 0 ∧ valX1,Cgate(n) = 1

)
∧
(
valτX0,Cgate(n) = val

τ
X1,Cgate

(n)
)

• Constant output

∃i∈[t],c∈{0,1}∀X ∈ Zs2 : C
τ
gate(X)[i] = c

• At most toggled output

∃T∈{0,1}t∀X ∈ Zs2 : C
τ
gate(X) = Cgate(X) + T

Proof. The proof follows a modular argument. For this, we need a definition of Topological
Layers of Computation on any circuit Cγ. In the definition below, we say that a wire e
is connected to a gate g in a circuit Cγ described with a DAG (denoted by predicate
connectedCγ (g, e) holds) if and only if there exists a direct connection or connection
going through a path of COPY or NOT gates between g and the predecessor of e in the
circuit.

Definition 4.5.1 (Topological Layers of Computation). For any circuit C, we recursively
define its Topological Layers of Computation:

• 0th-layer of Computation L0 = I(C)

• ith-layer of Computation Li = {g ∈ V (Cγ) : ∀e∈E−(g) : connectedCγ (g′, e) for some g′ ∈
L0 ∪ . . . ∪ Li−1 and γ(g) ∈ {XOR,AND,OR}}.

By Gi(C), we denote a subgraph induced by the layers L0, . . . ,Li of the circuit. Below
we consider C = Cgate. We run an experiment that evaluates layer by layer the tampered
C (assuming C has L+1 layers). In the i’th layer either there is an information loss and
we stop the experiment or the layer’s output is at most toggled [see event E2 below] and
the experiment proceeds to the next layer. We define the following predicates for a gate
g in layer i:

• E1(g, i) holds if g ∈ Li ∧ ∃X0,X1∈T′valX0,C(g) = 0 ∧ valX1,C(g) = 1 ∧ valτX0,C(g) =
valτX1,C(g),

• E2(g, i) holds if g ∈ Li ∧ ∀X∈Zs2
: valτX,C(g) = valX,C(g) + f

[
τ(e) : e ∈ E(Gi(C))

]
.

In the 0th-layer of the circuit, by definition of the tampering function, for any node
g ∈ L0(C): X ∈ Zs2 : val

τ
X,C(g) = valX,C(g). This implies event E2(g, 0) on any gate from

this layer. We prove the following for the tampered circuit C:

∀τ(C),i∈{1,...,L} : ∀j∈{0,...,i−1},g′∈Lj : E2(g′, j) =⇒ ∀g∈Li(C) : E1(g, i) ∨ E2(g, i)

We first study the gates of the first layer:
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• The AND gate in the 1st-layer is connected to the input gates only via a sequence of
COPY and NOT gates. The computation on this gate can be described as Pg(a, b) =
a · b. The tampered output of the gate is P̃g(a, b) = ã · b̃, where ã ∈ {a, a+ 1, 0, 1},
b̃ ∈ {b, b + 1, 0, 1}. The tampering of a wire a is set to 1 or 0 whenever there
is constant tampering on its path from the 0thlayer, a + 1 or b + 1 whenever on
the path there is an odd number of toggle tamperings, and a or b whenever there
is an even number of toggle tamperings on the path. Whenever ã = 0 ∨ b̃ = 0,
then P̃g(a, 1) = 0 and P (a, 1) = a, we get an information loss. Now, since by the
construction of the Algorithm 4, the wire P is connected via a COPY to the output,
the event E1(g, 1) occurs.
In other cases:

– if ã = 1 (or b̃ = 1), P (a, 1) = a and P̃ (a, 1) = const. (resp. P (b, 1) = b and
P̃ (b, 1) = const.) [E1(g, 1) occurs],
– when ã = a + 1 (or b̃ = b + 1), then P (1, b) = b and P̃ (1, b) = 0 (resp.
P (1, a) = 1 and P̃ (a, 1) = 0) [E1(g, 1) occurs],
– otherwise P̃ (a, b) = ab [E2(g, 1) occurs].

• A detailed analysis similar to the above applies for the OR gate. Whenever ã =
1 ∨ b̃ = 1, or both of the input wires are tampered to a constant, then the output
of the gate is constant and we get the E1(g, 1) event. Whenever at least one of the
input wires (say the wire a) is tampered to constant 0, then (for a fixed value of
the other wire) the output of the gate should switch, but does not switch. One
again achieves the E1(g, 1) event. Finally, whenever at least one of the input wires
is toggled (say the wire a), on the input a = 0, and different values of the input
wire b, the output should switch, but does not.

• The input wires of the XOR gate are also connected only via a sequence of COPY
and NOT gates to the input. We observe that Pg(a, b) = a + b, and the tampered
output P̃g(a, b) = ã+ b̃, where ã ∈ {a, a+ 1, 0, 1}, b̃ ∈ {b, b+ 1, 0, 1}.

– if ã = const. (or b̃ = const.), P (a, 0) = a and P̃ (a, 0) = const. (resp. P (0, b) = b
and P̃ (0, b) = const.) [E1(g, 1) occurs],
– when ã = a + ca, b̃ = b + cb, then P (a, b) = a + b, P̃ (a, b) = a + b + ca + cb
[E2(g, 1) occurs].

In the i’th layer, the inputs to all of the gates are, again, connected to the gates of
the previous layers only via a sequence of COPY, NOT gates. Now, once the induction
assumption holds in the layers {1, . . . , i − 1}, the event E2 on all gates assures that the
case analysis from the first layer may be repeated, but the tampered wires ã, b̃ will now
get a constant tampering 0 or 1, or a toggle bit depending on the tamperings chosen on
the edges of the graph induced by layers from the set {0, . . . , i}.
This implies that on multi-input gates of the circuit, we either get event E1 or E2.

Whenever the event E1 occurs, the information loss on one of the multi-input gates of
the circuit occurs. Otherwise only the event E2 on these gates may occur. The OUTPUT
gates of the circuit are connected via a sequence of COPY and NOT gates to the gates of
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the topological layers of computation of the circuit. If on their paths one finds a constant
tampering, then some output bit is set constant; if only toggles are found there, the
output bits are at most toggled, which concludes the last case of the Theorem.

4.5.1 Routing the Information Loss in Gate-Covered Circuits

In this section, we show that any gate-covered circuit can be converted to another gate-
covered circuit for which any information loss that appears on its multi-input gates is
routed to the output of the circuit. We present Algorithm 4 that adds a COPY gate to
the output wires of the multi-input gates in the gate-covered circuit. The added COPY
gates forward one copy of the original wires to their previous destinations and another
copy directly to the output (Fig 4.2).

a b a b

P P

Figure 4.2: Adding a COPY gate to the wire P in the Algorithm 4. This creates two wires;
the left one is connected to the previous successor of the wire P , and the right one is
sent to the output of the circuit. Algorithm 4 takes into account only the wires P which
originate at AND,OR,XOR gates in the original circuit.

Algorithm 4: Routing the Information Loss in a Gate-Covered C
Input: Cgate : Zs2 → Zt2,Tgate
Output: Ctest,0,T0

1 Initialize Ctest,0 = Cgate, T0 = Tgate
2 for g ∈ V (Cgate) do
3 if g ∈ {AND,OR,XOR} ∧ E+(g) is not an output wire of Ctest,0 then
4 Insert to Ctest,0 a COPY gate between g and V +(w).
5 One of the output wires of the new gate should go to V +(w), the other

one should be left as an additional output wire of the modified circuit.
6 return Ctest,0,T0
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Proposition 16. The Algorithm 4 transforms a gate-covered circuit Cgate : Zs2 → Zt2
with gate-covering set Tgate into another gate-covered circuit Ctest,0 : Zs2 → Zt+t02 with
additional output bits and the same gate-covering set, T0 = Tgate, where one observes for
any tampering τ of the circuit Ctest,0 at least one of the following holds:

• Information loss on output: ∃b ∈ {0, 1}, X0, X1 ∈ T0, i ∈ {1, . . . , t + t0} such
that

valX0(Ctest,0)[i] = 0, valX1(Ctest,0)[i] = 1, val
τ
X0
(Ctest,0)[i] = valτX1(Ctest,0)[i] = b

• At most toggled output

∃B∈{0,1}t∀X ∈ Zs2 ∃Y ∈ Zt02 : C
τ
test,0(X) = Cgate(X)∥Y +B||0t0

Proof. It is easy to see that the same test set T0 = Tgate is a gate covering set for the
transformed Ctest,0. Now, according to Theorem 15 in the transformed circuit:

1. Either we get information loss on one of the multi-input gates of Cgate: in this case,
one of the output wires of Ctest,0 is connected via a COPY gate to the output of the
multi-input gate. The information loss is propagated to the output of the COPY
gate.

2. Or one of the output wires of Cgate always evaluates to a constant value. We observe
an information loss on this wire, because it is wire-covered according to the defini-
tion of the gate-covering set T0. If the output wire of a gate in Cgate is an output of
one of the multi-input gates, then the information loss is propagated to the output
of the COPY gate in Ctest,0. Otherwise, the output wire in Cgate is already an output
wire in Ctest,0. The same follows when an input or an output wire of one of the
COPY gates in Ctest,0 are set to a constant.

3. Or every output wire of the gate-covered circuit Cgate is at most toggled. In this
case, if none of the output wires of the circuit Ctest,0 evaluate to a constant value
and constant tamperings were not used on the input and output wires of the COPY
gates, then all of the inputs of the transformed are at most toggled. Otherwise, if a
constant tampering was used, then we observe an information loss on the output,
what concludes the proof.

4.6 Minimizing the Number of External Wires

In the previous section, we showed that any circuit transformed into its functionally equiv-
alent gate-covered circuit allows to detect efficiently whether it behaves correctly on all
possible inputs. The testing should follow via input/output testing of a tampered version
of the transformed circuit on a limited number of inputs. The construction presented in
the Algorithm 4 adds, however, as many output wires to the transformed circuit as the
number of gates of the original circuit. This approach is impractical, as implementations
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Figure 4.3: Example gadget S∗d,b, with d = 3, b = 2.

of the circuits usually have a few billions of internal gates, but they can have only a few
thousands of input/output wires.
In [9], we proposed a construction of a layered compression gadget that allows to

lower the number of output wires while still preserving the guarantees that the errors
of computation are detectable. Each layer of their gadget compresses the number of the
wires by some factor. For a fixed parameter λ, their construction adds λ layers, each
propagating the error to the next layer with probability 12 . In summary, for λ layers, a
single test detects that an error of computation was propagated to the output of the
compressing gadget with probability5 12λ/2

λ. The layered gadget adds a fixed number of
input wires for each construction layer. These new input wires are used as randomness
input in the testing process.
In our work, we propose a layered construction that boosts the probability of the error

propagation by attempting to catch the error multiple times in each layer. At the same
time, we are able to preserve the number of the input wires with randomness used in each
layer of the construction from [9].

4.7 The Boosted Compression Gadget

To build our construction, we first define a gadget S∗d that computes a single product
tuple, i.e. the output of this gadget is defined as follows: S∗d ((zi)i=1,...,d, (ri)i=1,...,d) =∑
j=1,...,d zjrj.We use this gadget to create another gadget S∗d,b that computes the product
using the S∗d gadget and then copies its output to b output wires. The Figure 4.3 pictures
the construction of the S∗d,b gadget.
Before we proceed, let us introduce an additional notation. Given a vector R =

(r1, . . . , rd) ∈ Zd2 and a parameter b ∈ {0} ∪ [d − 1], we define a shifted vector as
R≫b = (rd−b+1, . . . , rd, r1, . . . , rd−b). For example, for R = (r1, r2, r3, r4), we have R≫1 =
(r4, r1, r2, r3), or R≫2 = (r3, r4, r1, r2). In the subsequent paragraphs, we will also use
R = R≫0.
We will now show how the S∗d,b gadgets are used to build the boosted version of the

compression gadget – the G∗n,λ,d,b gadget. Each layer i ∈ [λ] of the G∗n,λ,d,b gadget takes as
input ni−1 wires and outputs ni wires. The sub-gadgets S∗d,b in each layer have assigned
ordering numbers from the set {1, 2, . . .}.

5The probability that the error is propagated to the output is 2λ smaller than 1
2λ because of the

special method of input/output testing introduced in [9] that is required to ensure that not only the
error but the information loss is propagated through layers.
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Figure 4.4: The boosted product gadget G∗n,λ,d,b with n = 16 input wires and λ = 2 layers.
The gadget was built upon S∗d,b sub-gadgets, that take as input d = 4 wires and additional
d = 4 wires with randomness, and copies the output to b = 3 distinct locations. In the
second layer, the boosting is applied. For example the output of the third gadget in the
first layer is copied to b = 3 distinct sub-gadgets in the second layer. In the second layer,
a single randomness vector is reused b = 3 times, as it is shifted by one position in each
gadget.

• In the first layer, all of the n0 = n input wires are inputs of n0/d gadgets S∗d,b,
producing n1 = n0 · bd output wires. We can assume that n0 is divisible by d.
Otherwise, the remainder inputs can be input to some S∗d′,b with d

′ < d. Each gate
S∗d,b in the first layer is given the same randomness input vector R1.

• In a layer i ∈ {2, . . . , λ− 1}, each ni is divisible by b, as all gadgets in the i− 1’th
layer output b wires. We now require that b output wires of a k’th gadget S∗d,b of
the layer i− 1, go to S∗d,b gadgets with ordering numbers b⌊k−1d ⌋+ {1, . . . , b} in the
i’th layer as the [k− 1 mod d] + 1’th input wire of all b gadgets. In other words, in
the i’th layer, ni−1 wires output by ni−1/b gadgets S∗d,b from the layer i− 1 are sent
to at most b⌊ni−1

bd
⌋ + b gadgets S∗d,b in the layer i. In case only d′ < d of the input

wires of the last b gadgets S∗d,b are used, they are replaced with gadgets S
∗
d′,b.

• The final λ’th layer of the construction is constructed similarly as the previous
layers {2, . . . , λ− 1}, but the parameter b of the S∗d,b gadget is set to 1.

• Each gate S∗d,b in the layers i ∈ {2, . . . , λ} at the k’th position is given R≫k mod bi

as the randomness input vector.

An example illustration of the G∗n,λ,d,b gadget can be found in the Figure 4.4.

4.7.1 Instantiating the Building Blocks

We are able to instantiate all parts of the G∗n,λ,d,b gadget, by reusing the sub-gadgets
defined in [9].
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We first recall the definitions of the copying tree △m and the xoring tree ▷d from [9].
The copying tree △m is a complete binary tree with one input wire and m output wires,
where the root is the input wire, the leaves are the output wires and all internal nodes
are the COPY gates. The xoring tree ▷d is a complete binary tree with d input wires and
one output wire, where leaves are the input wires, the root is the output wire and all
internal nodes are XOR gates. The Figure 4.5 from [9] pictures the △m, ▷d sub-gadgets.

...

i1

i2

id−1

id

... · · ·

· · ·

...

· · ·

r

Figure 4.5: The instantiation of the
△,▷ gadgets with complete trees of the
COPY,XOR gates.

r2 r3r1

z1
z2
z3
z4

z1
z2

r4

z3z4

Figure 4.6: The picture shows part of a
single layer of the gadget G∗n,λ,d,b, with
d = 4, b = 2, that consist of two sub-
gadgets S∗d,b. Each of the sub-gadgets
consists of d = 4 gates of type AND,
a single xoring-tree ▷d, and a single
copying-tree △b. The randomness input
to the layer is reused by first using the
copying trees △, and then connecting
the randomness wires as the appropri-
ate inputs of the AND gates of the S∗d,b
sub-gadgets.

It is easy to see that each S∗d,b can be implemented with d gates of type AND, a single
xoring-tree ▷d, and a single copying-tree △b. A vector of input wires with randomness
in each layer of the G∗n,λ,d,b gadget can be reused by applying a copying-tree △ to each
randomness input wire, and then by connecting the output wires of the copying-trees to
appropriate inputs of the S∗d,b gadgets. Figure 4.6 illustrates how the S

∗
d,b sub-gadgets and

a single layer of the G∗n,λ,d,b gadget are implemented.

4.7.2 Algebraic Notation for Circuit Computations

To formally analyze the security guarantees of the G∗n,λ,d,b gadget, we first recall the
algebraic notation introduced in [9].
In the algebraic notation, the wires of a circuit Cγ carry elements of a ring of multi-

variate polynomials in Z2. The variables of the polynomials are held by the input gates
of the circuit. The polynomials held by the wires are recursively determined, similarly
as in the definition of the valuation function val, by extrapolating the functions assigned
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to the nodes by the labelling function γ. Each function from the set of allowed gates G
can be naturally extrapolated. For example, output of a gate AND with two input wires
carrying polynomials p1, p2 can be extrapolated as p1 · p2.
We recall that applying a tampering τ to the circuit Cγ can be easily defined in the

algebraic notation - toggling a wire is adding 1 to the polynomial of the wire, and setting
a wire to a fixed value 0(1) is defined as setting the polynomial to a constant 0(1).
In the previous work [9], we made a few observations that allowed us to concisely

describe possible outputs of their tampered gadgets. For our analysis, we will need to
analyze only the output of the ▷,△, S∗d gadgets. To this end, we repeat the analysis
presented in [9].

Proposition 17 (Proposition 4 from [9] – Output of the copying trees). Let △τ be given
r as input, and r′ be its output. Then r′ ∈ {0, 1, r, r + 1}.

In the Proposition 17, we say that output of the copying tree is either constant,
toggled, or the original value of its single input wire, depending on the number of toggling
or constant tamperings on the path from the root of the copying tree to the output wire.

Proposition 18 (Proposition 5 from [9] – Output of the xoring trees). Let a1, ..., ad be the
input values to ▷τ and p be its output. Then p = β +

∑
i=1,...,d αiai, where αi, β ∈ {0, 1}.

In the Proposition 18, we say that single output of the xoring tree is a linear combi-
nation of its input. If there is constant tampering on a path from some input wire to the
output wire, the coefficient αi of the input value ai is set to 0, the coefficient β depends
on the number of toggling tamperings and values of the constant tamperings.

Proposition 19 (Proposition 6 from [9] – Output of the multiplication gates). Let (zi, ri)
be a pair of input wires to some multiplication gate in Sτ and let multi denote the output
value of this multiplication gate. Then multi = αi(zi)ri + βi(zi), where αi, βi are linear
functions over Z2 for all i’s.

The above Proposition states that for a fixed tampering τ , the output value of the
multiplication gatemi can be described as a linear function of ri. It is a direct consequence
of the fact that, given any fixed τ on Sτ , τ(zi) ∈ {0, 1, zi, zi+1}, τ(ri) ∈ {0, 1, ri, ri+1},
the output of the multiplication gate is equal to multi = τ(zi) · τ(ri).

Proposition 20 (Output of the S∗d gadget with applied tampering). Let p be the out-
put value of the gadget ▷τ from the construction of S∗τd which takes as input values
z1, z2, ..., zd, r1, r2, ..., rd. Then p = β(z1, ..., zd) +

∑
i=1,...,d αi(zi)ri, where αi ( βi) are lin-

ear functions over Z2.

In Proposition 20, we conclude that the output value of S∗d can be understood as a
multi-variate polynomial with the variables ri being dependant only on the αi(zi) coeffi-
cients. The Proposition 20 gives a result similar to the Proposition 7 from [9].
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4.7.3 Information Losing Tuples

Proposition 16 shows that all meaningful errors of computation will result in an infor-
mation loss on one of the output wires of the precompiled circuit. In other words, if the
tampered version of the precompiled circuit triggers an error on some internal wire on
any of the inputs, then one is able to find two inputs from the test set, such that one of
the output wires of the circuit is evaluated to the same bit, although the evaluation on
this wire should differ for these test inputs. In the following sections, we will consider how
the information loss is propagated through the boosted compression gadget G∗n,λ,d,b. For
this reason, we first recall the definition of the information-loosing tuples from [9]. The
notion of information-loosing tuples allows us to abstract the idea of the propagation of
the information loss from the computations on the circuit. The non-tampered valuations
on selected wires are denoted with the vectors Xi, and the tampered valuations on the
same wires are denoted with the vectors Yi.

Definition 4.7.1 (Definition 4 from [9] – Information-loosing tuples). We say that
(X1, ..., Xm;Y1, ..., Ym) - a tuple of n-ary vectors over Z2 - is an information-losing tuple
if there exist i, j, k, such that (Xi[k] ̸= Xj[k])∧ (Yi[k] = Yj[k]) . The triple (i, j, k) is called
an information-losing witness for (X1, ..., Xm;Y1, ..., Ym).

4.8 Propagation of the Information Loss in the Boosted
Gadget

In this section, we analyze how the information loss on an input wire of the boosted
gadget G∗n,λ,d,b is propagated through its layers. We start with analyzing the first layer of
the G∗n,λ,d,b gadget. The first layer of our gadget is composed of the S

∗
d,b sub-gadgets, each

of them connected to the same randomness vector R1. Let us start with the observation
that the sub-gadgets S∗d , which make the main part of the sub-gadgets S

∗
d,b, define a

single layer of computation sub-gadget Sd from [9]. For this reason, we first recall the
result from [9] that the information loss at one of the input wires of the Sd sub-gadget
is propagated with probability at least 1/2 to one of the output wires of the sub-gadget.
This property is assured when the randomness is tossed twice for the same layer.

Theorem 21 (Theorem 2 from [9] – Information loss propagation). Let (X1, ..., Xm;
Xτ1 , ..., X

τ
m) be an information-losing tuple. For z ∈ {1, ...,m}, let Rz, Qz be vectors in Zd2

chosen independently and uniformly at random. Let

Yz = Sd(Xz|Rz), Yz+m = Sd(Xz|Qz), Y τz = Sτd (Xτz |Rz), Y τz+m = Sτd (Xτz |Qz),

for i = 1, ..., z. Then (Y1, ..., Y2m;Y τ1 , ..., Y
τ
2m) is an information-losing tuple with proba-

bility at least 12 over (Rz, Qz)z∈{1,...,m}.

In the boosted compression gadget, once the information loss passes through one of
the sub-gadgets S∗d to its output wire in the first layer, it is copied to b input wires of
the second layer, say wires z1, . . . , zb. By the construction of the G∗n,λ,d,b gadget, in the
second layer, the wires zj ∈ {z1, . . . , zb} are connected to distinct S∗d sub-gadgets in a
way that different randomness inputs r2,j of the same randomness vector R2 are used
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to compute product zj · r2,j. This effect is achieved by shifting the randomness vector
R2 appropriately for every S∗d sub-gadget. The same reasoning applies to every pair of
subsequent layers (i− 1, i), where the layer i is connected to a randomness vector Ri.
Let us denote with Ri,j a random variable describing a single randomness input bit

at the j’th position of a random variable Ri. In contrast to the result recalled in the
Theorem 21, in the next step we study the probability of the information loss propaga-
tion through the S∗d sub-gadget over a single bit Ri,j of the randomness, not the whole
randomness input Ri.

Theorem 22 (Pointed information loss propagation). Let (X1, ..., Xm;Xτ1 , ..., X
τ
m) be

an information-loosing tuple with a witness (i, j, k), and the vectors of the tuple in Zd2.
For z ∈ {1, . . . ,m}, let Rz, Qz be vectors over Zd2 with a randomly and uniformly cho-
sen bits at position k, i.e. Rz = {rz,1, . . . , Rz,k, . . . , rz,d}, Qz = {qz,1, . . . , Qz,k, . . . , rz,d}
where Rz,k, Qz,k are random variables in Z2, and all other bits of Rz, Qz – denoted as the
Rz,k, Qz,k vectors – can be selected before randomly sampling {Rz,k, Qz,k}z∈{1,...,m}. Let

Yz = S∗d(Xz|Rz), Yz+m = S∗d(Xz|Qz)

Y τi = S
∗τ
d (X

τ
z |Rτz), Y τz+m = S∗τd (Xτz |Qτz),

for z = 1, ...,m. Then (Y1, ..., Y2m;Y τ1 , ..., Y
τ
2m) is an information-loosing tuple with

probability at least 14 over (Rz,k, Qz,k)z∈{1,...,m}.

Proof. Let us denote with o the output wire of the S∗d sub-gadget. Let (i, j, k) be a witness
of information loss for (X1, ..., Xm;Xτ1 , ..., X

τ
m). Then

(Xi[k] ̸= Xj[k]) ∧Xτi [k] = Xτj [k]. (4.4)

Let Ri, Rj be vectors with a uniformly random bit at position k. Observe, that for
either i or j (we choose i below), for any choice of randomness bits other than the
randomness bit at the k’th position - Ri,k ∈ {0, 1}d−1, the difference between the correct
and the wrong evaluation DIFFi(Ri,k, Ri,k) on this output wire can be described as:

DIFFi(Ri,k, Ri,k) = valXi|Ri,k,Ri,k(o)− val
τ
X′i|Ri,k,Ri,k

(o) = Ri,k + ϵi +
∑

t=1,...,d;t̸=k

δtri,t, (4.5)

for some ϵi, δt ∈ {0, 1}. The above implies that for any choice of Ri,k ∈ {0, 1}d−1, the
probability over Ri,k that the wrong evaluation occurs is:

Pr
[
DIFFi(Ri,k, Ri,k) = 1

]
=
1
2
.

In other words, for the index i and exactly half of the choices of Ri,k, there will occur
an error on the output wire o. If the above holds for the index i, then for the index j,
for any choice of randomness bits other than the randomness bit at the k’th position -
Rj,k ∈ {0, 1}d−1:

DIFFj(Rj,k, Rj,k) = valXj |Rj,k,Rj,k(o)− val
τ
Xj |Rj,k,Rj,k

(o) = κkRj,k + ϵj +
∑

t=1,...,d,t ̸=k
κtrj,t,
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where κt, ϵj ∈ {0, 1}. It means that for any choice of Rj,k ∈ {0, 1}d−1:

Pr
[
DIFFj(Rj,k, Rj,k) = 1

]
∈ {0, 1

2
, 1}.

Finally we know, that for any choice of Ri,k, Rj,k ∈ Zd−12 :

{1
2
} ⊆ {Pr

[
valXi|Ri,k,Ri,k(o) = 0

]
,Pr

[
valXj |Rj,k,Rj,k(o) = 0

]
} ⊆ {0, 1

2
, 1}. (4.6)

We finally observe that for a fixed Xi (including Xi = Xj), and a fixed tampering τ
applied to S∗d , for any Ri,k ∈ Zd−12 , whenever Pr

[
DIFFi(Ri,k, Ri,k) = 1

]
= 12 , then either:

1. for some b ∈ {0, 1} it holds that valτXi|Ri,k=b,Ri,k(o) ̸= valXi|Ri,k=b,Ri,k(o) and
valXi|Ri,k=b,Ri,k(o) = 0. In other words, the evaluation error happens when Ri,k = b,
and the correct evaluation should output 0. In this case, we say that flag
FLAG(Xi, Ri,k) = 0 is set; or

2. for some b ∈ {0, 1} it holds that valτXi|Ri,k=b,Ri,k(o) ̸= valXi|Ri,k=b,Ri,k(o) and
valXi|Ri,k=b,Ri,k(o) = 1. In other words, the evaluation error happens when Ri,k =
b, and the correct evaluation should output 1. In this case, we say that flag
FLAG(Xi, Ri,k) = 1 is set.

Given the above, we can estimate the probability that the output tuple (Y1, ..., Y2m;
Y τ1 , ..., Y

τ
2m) contains an information error, i.e. an event Einf-loss occurs. For any τ ap-

plied to the sub-gadget S∗d , and random variables Ri, QiRj, Qj defined as in the theo-
rem statement, we have Pr

[
valXi|Ri,k,Ri,k(o) = 0

]
= 12 , Pr

[
valXi|Qi,k,Qi,k(o) = 0

]
= 12 , and

Pr
[
DIFFj(Rj,k, Rj,k) = 1

]
∈ {0, 12 , 1}, Pr

[
DIFFj(Qj,k, Qj,k) = 1

]
∈ {0, 12 , 1}. In the analy-

sis, we show that for any choice of the order of sampling Ri,k, Qi,k, Rj,k, Qj,k, as well as
any Ri,k, Qi,k, Rj,k, Qj,k chosen before sampling Ri,k, Qi,k, Rj,k, Qj,k, the event Einf-loss will
occur with high probability.
Now, (A) EITHER the input wire at Ri,k (and Qi,k) evaluates to 1, i.e. Xi[k] equals

1 (and Xj[k] equals 0). In this case Pr
[
valXi|Ri,k,Ri,k(o) = 0

]
= 12 ; and

Pr
[
valXj |Rj,k,Rj,k(o) = 0

]
∈ {0, 1} (the same follows for Qi,k, Qi,k, and Qj,k, Qj,k).

1. Whenever FLAG(Xi, Ri,k) = FLAG(Xi, Qi,k) = b, then with high probability in
one execution we obtain a correct evaluation to b − 1, and in the other execution
we obtain an incorrect evaluation to b− 1 (since Pr

[
valXi|Ri,k,Ri,k(o) = 0

]
= 12 , and

the error occurs on b). We can conclude that Pr[Einf-loss]  12 .

2. Whenever FLAG(Xi, Ri,k) ̸= FLAG(Xi, Qi,k), and Pr
[
DIFFj(Rj,k, Rj,k) = 1

]
= 1
2

(or Pr
[
DIFFj(Qj,k, Qj,k) = 1

]
= 12), then FLAG(Xj, Rj,k) (or FLAG(Xj, Qj,k)) equals

to FLAG(Xi, Ri,k) or FLAG(Xi, Qi,k). By a similar argument as in the previous
point, we get Pr[Einf-loss]  12 .
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3. Whenever FLAG(Xi, Ri,k) ̸= FLAG(Xi, Qi,k) and both Pr
[
DIFFj(Rj,k, Rj,k) = 1

]
,

Pr
[
DIFFj(Qj,k, Qj,k) = 1

]
∈ {0, 1}. In this case, from evaluations on Xj, we get an

evaluation to some bit (either correct or incorrect). As FLAG(Xi, Ri,k) ̸= FLAG(Xi, Qi,k),
we get an evaluation to every bit (both correct and incorrect) with probability 1/2.
One of the evaluations will thus match with probability 12 the given evaluation and
we get Pr[Einf-loss]  12 .

(B) OR the input wire at Ri,k (and Qi,k) evaluates to 0, i.e. Xi[k] equals 0 (and Xj[k]
equals 1). In this case valXi|Ri,k,Ri,k(o) ∈ {0, 1} and Pr

[
valXj |Rj,k,Rj,k(o) = 0

]
= 1
2 (the

same follows for Qi,k, Qi,k, and Qj,k, Qj,k).

Whenever both Pr
[
DIFFj(Rj,k, Rj,k) = 1

]
= 12 and Pr

[
DIFFj(Qj,k, Qj,k) = 1

]
= 12 , we

have Pr[Einf-loss]  12 by the case analysis as in the point (A).
Next, we observe that two samplings of Ri,k, Qi,k will give a pair of correct evalua-

tion and an error evaluation with probability 12 . When both Pr
[
DIFFj(Rj,k, Rj,k) = 1

]
,

Pr
[
DIFFj(Qj,k, Qj,k) = 1

]
∈ {0, 1}, then sampling of Qj,k, Qj,k will match either the

correct evaluation or the wrong evaluation from sampling Ri,k, Qi,k with probability
1
2 + (1−

1
2)
1
2 = 3/4. In total, we have Pr[Einf-loss] 

3
8 .

Finally, we consider a case when for only one of Rj and Qj (say Rj) the proba-
bility that one gets an error on the output is Pr

[
DIFFj(Rj,k, Rj,k) = 1

]
= 1
2 , and for

the other one (respectively, Qj) the probability that one gets an error on the output
Pr
[
DIFFj(Qj,k, Qj,k) = 1

]
is either 0 or 1. Again, the first two samplings of Ri,k will give

a pair of correct evaluations and an error evaluation with probability 12 , and then a sam-
pling of Qj,k that is always correct or wrong will match either the correct evaluation
or the wrong evaluation from sampling Ri,k, Qi,k with probability 12 . In total, we have
Pr[Einf-loss]  14 .

4.9 The Complete Construction

The building blocks defined and the results given in the previous sections allow us to
build a boosted version of the compiler that compiles any circuit C : Zs2 → Zt2 into
another functionally equivalent circuit Ctest,λ : Zs+s

′

2 → Zt+t
′

2 such that for any non-trivial
tampering of the circuit Ctest,λ, running the testing procedure on the tampered Ctest,λ,
one always detects an error with high probability.

Theorem 23 (Testing Probability of the Boosted Circuit). On input circuit C : Zs2 → Zt2
along with parameter λ, Algorithm 5 outputs a circuit Ctest,λ : Z

s+sg+sλ
2 → Zt+tλ2 such that

for any tampering τ of Ctest,λ if

∃X ∈ Zs2 : C
τ
test,λ(X||0sg+sλ) ̸= Ctest,λ(X||0sg+sλ)

then when observing behaviour of the circuit Ctest,λ on its test set Ttest,

• Either the output is wrong:

∃X ∈ Ttest : Cτtest,λ(X||0sλ) ̸= Ctest,λ(X||0sλ),
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Algorithm 5: The Compiler
Input: C : Zs2 → Zt2, λ, d, b
Output: Ctest,λ

1 Compile circuit C into a gate-covered Cgate : Z
s+sg
2 → Zt2 with a test-set Tgate, by

running Algorithm A on it.
2 Add the COPY gates that route the information loss in the gate-covered circuit
to the testing gadget, by running Algorithm 4 on the pair Cgate,Tgate. This
procedure provides a circuit with additional t0 output bits
(Ctest,0 : Z

s+sg
2 → Zt+t02 ) and a test set T0.

3 Append the G∗n,λ,d,b gadget to the t0 wires added in the previous step, where
n = t0. This step adds sλ wires to the input of the circuit, but replaces the t0
output bits created in the previous step with tλ new output bits, producing a
circuit Ctest,λ : Z

s+sg+sλ
2 → Zt+tλ2

4 return Ctest,λ

• or the testing gadget detects an inconsistency:

∃X ∈ Ttest : Pr
R←Z

sλ
2

[
Cτtest,λ(X||R) ̸= Ctest,λ(X||R)

]
 1
2

(
1− (3/4)b

)λ−1
/2λ.

Proof. By the Proposition 16 we know that either we observe an information loss on
the first t bits of the intermediary circuit Ctest,0 or its output is toggled, or we observe
information loss on t0 wires added during Step 2 of the Algorithm 5, or the output is
always correct. Any error on the first t bits of the circuit is detected on at least one
query from T0 ⊆ Ttest (by the properties of the Algorithm A and the Proposition 16).
Next, we append the gadget G∗n,λ,d,b to the remaining n = t0 wires of the construction.
By Theorem 21, we know that the information loss survives with probability 1/2 through
the first layer of the gadget G∗n,λ,d,b when queried with fresh randomness twice. Now,
whenever the information loss passes through one of the S∗d gadgets in a layer i − 1, it
is copied to b locations in a layer i. By the construction of the G∗n,λ,d,b gadget, in each
of these locations in the layer i, the wire with the information loss is connected to an
AND gate with a distinct randomness input. Thus, by the Theorem 23, the information
loss is propagated with probability 1− (3/4)b through this layer (when queried with fresh
randomness twice). We can conclude that the information loss survives with probability
1
2

(
1− (3/4)b

)λ−1
if we query with two fresh randomness vectors in each layer. If we

query with only one random string in each layer, the error showing up on the output is
1
2

(
1− (3/4)b

)λ−1
/2λ.

Testing procedure. Given any circuit Cτtest,λ with any tampering τ on its wires we test
it by querying it on all the test inputs in Ttest along with uniformly random R ∈ Zsλ2 . We
can repeat the testing procedure κ times with fresh randomness to get the probability of

catching an error 1−
(
1− 1

2λ+1

(
1− (3/4)b

)λ−1)κ
.

Circuit parameters. For any circuit C : Zs2 → Zt2 with n gates, using the Algorithm 5
with parameter λ. The first step of the Algorithm produces a gate-covered circuit Cgate
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with 5 new input bits and a test set of size 6 and creates a circuit of size ≈ 7n gates
(see Section 4.4). The second step of the algorithm adds XOR and COPY gate to every
nonlinear gate of the circuit, adding ≈ 2 · 4n gates and roughly ≈ 4n output wires (in
the previous estimation at least 3n out of 7n gates are the COPY gates). The third step
of the algorithm replaces the 4n intermediary wires with λ · d input bits. After the first
layer n0 = 4n input wires are transformed to n1 = b · n0d output wires. In the next layers
i ∈ {2, . . . , λ−1}, ni−1 input wires are transformed to at most ni ¬ b·

(
ni−1
d
+ b

)
= ni−1d

b

+b2

output wires (see Section 4.7). In the last layer nλ ¬ 1b
(
nλ−1
d
b

+ b2
)
. In total, after applying

λ > 1 layers of the construction, the number of additional output wires can be bounded

with tλ = nλ ¬ 1
b
·
(
4n

( db )
λ + b2 ·

d
b
−( bd)

λ−1

d
b
−1

)
¬ 4n

d( db )
λ−1 + d·b

d−b . The layered compression

gadget with λ layers adds roughly (3 · 4n+ b · n)1−(
b
d)
λ

1− b
d

new gates to the circuit, whereas

at most 3 · 4n · 2 new gates6 are added by the layered construction in [9].

6[9] claimed that at most 4n · 2 gates are added to the layered construction, but this estimation
counted only AND gates, and in this chapter we take into account the AND,XOR, and the COPY gates.
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Chapter 5

Final Conclusions and Outlook

In this dissertation, we studied the security of systems built on blockchains from a few
novel viewpoints.
In the context of reliability of rating systems used by blockchain trading platforms, we

conducted in Chapter 2 a formal study of the manipulability of the Fairness-Goodnes
Algorithm (FGA). We proposed the first complete axiomatization of the FGA measure.
Our axiomatization is built upon, among others, the properties of homogeneously and
unanimously rated nodes and the properties of the rating nodes that achieve constant
rating errors. We proved that our axioms uniquely determine the FGA measure. Fur-
thermore, we studied direct and indirect manipulation attacks on the FGA measure. In
the direct attack, the attacker directly manipulates the rating of the target node. In the
indirect one, the attacker aims to manipulate a rating of the target node without directly
adding an edge to this node. We derived analytical results concerning the strength of
the direct attacks and weakness of the indirect attacks in the networks where each node
has minimum k neighbors (in and out). Finally, we experimentally analyzed the strength
of direct attacks and analyzed two different greedy algorithms for indirect attacks. The
experiments showed that FGA may be manipulated indirectly in real-life networks, but
only at a high cost.
Overall, a higher-level insight from the theoretical and experimental analysis is that

FGA is rather difficult to manipulate indirectly in real-life networks. More generally, while
worst-case hardness results are common in the literature and various other tools turned
out to be easily manipulable by well-crafted heuristics for direct attacks [17, 113, 114,
e.g.], to the best of our knowledge, our study of indirect attacks is a novel approach.
The immunity of the FGA measure against indirect attacks not only provides a good
argument for using the FGA measure in practice, but also fosters a more careful study
of other centrality measures.
In the future, it would be interesting to undertake a comparison of various candidate

measures found in existing literature with regard to their manipulability. This work could
lead to developing a more comprehensive approach to understanding the manipulability
of all weighted ranking functions. It may further examine novel ranking functions tai-
lored for blockchain trading platforms, considering factors beyond user opinions. These
additional factors include analyzing user transaction history, which may provide insights
into potential money laundering or artificial asset price inflation. Moreover, exploring the
manipulability of ranking functions based on machine learning techniques would be an
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exciting avenue of research. Lastly, we encourage investigations into the axiomatization
of ranking functions, as this could enhance our comprehension of their inherent charac-
teristics or even pave the way for creating a new ranking function with robust axiomatic
properties.
In the context of algorithms that ensure security against distributed cryptography,

we initiated the formal study of individual cryptography in Chapter 3. We achieved
individually secure constructions based on the assumption of the existence of MPC- and
TEE-hard functions. In this work, we assumed MPC- and TEE-hardness is assured by the
existence of a device that allows for massive parallel computations of a hash function on
selected inputs. Given this assumption, to visualize how to implement functionalities that
take into account the concept of individual cryptography, we formally defined the notions
of Proof of Individual Knowledge and Secret Sharing with Snitching. Informally speaking,
the Proof of Individual Knowledge ensures that some secrets are stored individually on
a single machine. It may be further used to incentivize the users not to disclose the
secret to other users, which may be particularly useful in settings like subscription fee-
based systems or online voting systems. Secret Sharing with Snitching is a primitive
that incentivizes the users not to disclose the secrets to third parties before a selected
deadline and may provide a cheaper alternative to constructions like Verifiable Delay
Functions [23].
It would be exciting to search for particular computational problems that are MPC-

or TEE-hard in practice and do not require the usage of specialized hardware (one good
candidate would be functions that require many memory lookups, as this assumption may
allow to abandon the use specialized hardware), and to improve the practical parameters
that we achieve. The new MPC-hard assumptions may lead to more practical construc-
tions, as the current ones could not be used at a larger scale, e.g., by video streaming
services that would like to prevent account sharing, as the requirement of specialized and
energy-consuming hardware may cause too high costs for individual users. The other task
is to leverage the current construction of SSS to a construction that has a formal model
for incentives, possibly achieving a construction fully integrated with the blockchain. The
mpc hardness and the concept of individual cryptography can have broad applications.
We encourage the reader to study how the MPC-hard functions may affect the secu-
rity of existing protocols (in particular, the ones that assume that secrets are secretly
generated by independent parties that are not supposed to share their knowledge) and
to make an attempt to find novel individually secure primitives. This research direction
is, in a sense, a complementary effort to the search for “MPC-friendly primitives” (see,
e.g., [72]). Finally, we see that it would be interesting to see how the concept of individ-
ual cryptography can be applied to other related concepts like colusion-freeness [85] or
collusion-detterence [91].
In the context of the security of devices used by blockchain users, we have studied

the construction of a compiler that ensures security against so-called wire-tampering
attacks in Chapter 4. We were able to construct a compiler that transforms circuits into
efficiently testable circuits with amplified (boosted) security guarantees (compared to the
guarantees achieved by [9]) at a moderate cost of an additional number of gates in the
transformed circuits. Our construction leverages the concept of testing, which ensures
security guarantees against a stronger adversary than the self-correcting construction
from [75] at a lower cost. On the other hand, the construction from [75] provides security
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through self-correction during the execution of the circuit without the need for periodical
testing. We want to stress again that constructing a highly efficient testing construction
would require exploiting the trade-off between the amplified security guarantees assured
by the layers of our construction and the size-efficiency of the layers of the construction
presented in [9].
This and the cited work [9] give a compiler for ETCs and solve one of the two open

problems given in [8], as they do not leverage the error conductivity assumption. On the
other hand, the second problem given in [8] is still open. It focuses on dealing with ETCs
that should be secure against an adversary that is able to tamper with the specification of
the gates of a tested circuit. The idea of circuit testing itself is a broad field to explore. We
particularly encourage the reader to explore a range of opportunities between the weak
testing guarantees achieved in a very strong adversarial model presented in works like [29]
and strong security guarantees in a visibly weaker security model. The whole spectrum
of possible functionalities and tampering models that lie between [29] and our work may
pave a new way for the idea of circuit testing. In [29], the authors focused on the security
of a selected functionality (PRG generator), and they allowed a very general adversary
that is able to replace the functionality of a single device with arbitrary functionality. On
the other hand, the security guarantees achieved by [29] are relatively weak (for T tests,
the adversary is allowed to output approximately 1/T wrong outputs during the usage
of the device).
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