
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Tomasz Kazana

Security against space-restricted physical
attacks

PhD dissertation

Supervisor

dr hab. Stefan Dziembowski

Institute of Informatics
University of Warsaw

December 2012

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

December, 2012 .
date mgr Tomasz Kazana

Supervisor’s declaration:
the dissertation is ready to be reviewed

December, 2012 .
date dr hab. Stefan Dziembowski

Abstract
The dissertation introduces a new, defined by the author, model of crypto-
graphic computation, called SBA–model. Characteristic features of the model
are: space boundary, leakage and random oracle. The dissertation studies
three schemes (one-time computable pseudorandom functions, key-evolution
schemes and one-time programs) of cryptographic primitives. We show exis-
tence of these schemes in SBA–model. The results of this dissertation were
presented in [19,24,25].

Key words: pebble, one-time program, key-evolution, time-memory trade-off
AMS Classification: 94A60, 68P25.

3

Streszczenie
Rozprawa doktorska wprowadza nowy, zdefiniowany przez autora model

obliczeń kryptograficznych, nazwany SBA–modelem. Charakterystyczne ce-
chy tego modelu to ograniczona pamieć, wycieki oraz użycie losowej wyroczni.
W rozprawie badane sa trzy schematy kryptograficzne: Jednorazowe funkcje
pseudolosowe, Schemat ewolucji klucza oraz Funkcje jednorazowe (ang. One-
time computable pseudorandom function, Key-evolution schemes oraz One-
time programs). Pokazujemy istnienie ww. schematów w SBA–modelu. Wy-
niki z roprawy zostały zaprezentowane w następujących pracach: [19,24,25].

Słowa kluczowe: pebble, one-time program, key-evolution, time-memory trade-
off
Klasyfikacja AMS: 94A60, 68P25.

5

Contents

1 Introduction 11
1.1 Model of Computation (SBA–model) 13
1.2 Remark . 14
1.3 Our Results . 14

2 Preliminaries 17
2.1 Random-Oracle Labeling of a Graph. 17
2.2 Hint Lemma . 18

3 One-Time Computable Pseudorandom Functions 19
3.1 One-Time Computable Functions 20
3.2 Uncomputable functions . 23
3.3 Previous work . 24

3.3.1 Notation . 25
3.4 Definitions . 25
3.5 Random Oracle Graphs and the Pebbling Game 26

3.5.1 Pebbling Game . 26
3.5.2 Connection Between Random-Oracle Labeling and the

Pebbling Game . 27
3.6 One-time computable functions 33

3.6.1 Hardness of pebbling 35
3.6.2 The construction . 37

3.7 Arrowhead functions . 39
3.7.1 Impossibility of pebbling 40

3.8 Open problems . 41

4 Key-Evolution Schemes Resilient to Space-Bounded Leakage 43
4.1 Leakage Resilient Key Evolution: Theory vs. Practice 44
4.2 Previous work . 44

4.2.1 Our Model: Space-Bounded Leakage in the Random
Oracle Model . 46

7

4.2.2 Our Results . 48
4.2.3 Some implementation details 49
4.2.4 Organization . 50
4.2.5 Related Work . 50

4.3 Our Key-Evolution Scheme . 51
4.4 Games on Tower Graphs . 52

4.4.1 Model of Computation 52
4.4.2 Pebbling Games on Tower Graphs 53
4.4.3 Auxiliary lemmata . 54
4.4.4 The impossibility of pebbling 56
4.4.5 Connection Between Random-Oracle Labeling and the

Pebbling Game . 58
4.4.6 Proof of Theorem 3.10 64

4.5 Figures . 65

5 One time programs 67
5.1 Introduction . 67
5.2 Preliminaries . 71
5.3 One-time Program . 72
5.4 Tools . 74

5.4.1 Circuit Garbling . 74
5.4.2 Uniform Circuit Topology 77
5.4.3 One-Time Computable Pseudorandom Function (PRF) 78

5.5 One-time Compiler . 79
5.6 Universal Simulator for One-time Programs 82
5.7 Properties of the Decoder . 84
5.8 Proof of the Main Theorem 84
5.9 Circuit Indistinguishability . 86

8

List of Figures

3.1 An (M,M ′)-lambda graph for M ′ = 4 and M = 7. The sub-
graph on the left-hand side of the dashed line is an M ′-pyramid. 33

3.2 Illustration of the proof of Lemma 3.12. Double arrows indi-
cate the path π, and the disjoint paths starting from other
vertices from first row and connected to path π are indicated
with the wave arrows. 42

4.1 An N -tower graph. Note that the vertices (1, N−1), (3, N−1)
are duplicated on this picture. An (N,M)-tower graph is a
subgraph of the N -tower graph induced by its bottom M lines. 65

4.2 Pyramid graph with N vertices at the bottom 66

5.1 Garbling of a NAND gate . 75

9

10

Chapter 1

Introduction

This dissertation constructs several protocols secure against physical attacks.
Traditionally, most of the security proofs in cryptography assume the exis-
tence of devices that are completely safe. For example, we can strictly prove
the security of electronic car keys, when we assume that the adversary can
eavesdrop just what is on the air : all the communication between the car
and the remote control. However, what is inside of the key, remains secret.
In practice, however, it is very difficult to construct a physical device which
is entirely resilient to information leakage. In particular, leakage on the inter-
nals can often be obtained using side-channel attacks, that exploit physical
phenomena such as electromagnetic radiation [44,55], timing [10], power con-
sumption [43], acoustic emanations [57], and many others (see e.g. [51] for
an overview). Another case in which the adversary may obtain leakage from
cryptographic protocols is the situation when the protocols are implemented
on PCs on which the adversary can install malicious software, like the com-
puter viruses.

The above concerns give motivation for the research on protocol on un-
trusted machines. The first papers proposing algorithmic countermeasures
against the side-channel attacks came from the practitioners’ community
(e.g. [13]). Later this area attracted a lot of attention also from the theo-
reticians, starting from [38,49]. The theoretical countermeasures against the
virus attacks are known under the name bounded-retrieval model [14,22]. The-
oretical work offers rigor and provable security, at the cost of having to make
strong restrictions on the type of leakage and designing complicated schemes
to make standard reduction-based proof techniques go through (an example
of such an assumption is that only the data actually used in computation can
leak to the adversary). On the other hand, practical work focuses on simple
and efficient schemes, often at the cost of achieving only an intuitive notion
of security without formal well-specified guarantees.

11

In this dissertation, we complement the two tracks via a middle-of-the-
road approach. On one hand, we rely on the random-oracle model, acknowl-
edging the usefulness of this methodology in practice despite its theoretical
shortcomings. On the other hand, we show that even in the random-oracle
model, designing secure leakage-resilient schemes with clear and meaningful
guarantees requires great care and is susceptible to pitfalls. For example, just
assuming that leakage “cannot evaluate the random oracle” can be mislead-
ing. Instead, we define a new model in which we assume that the “leakage”
can be any arbitrary space bounded computation that can make random or-
acle calls itself. Our security proofs do not rely on the assumption that only
data used in the computation can leak.

In general, two types of adversarial models are considered in this research
area. In the passive one, the adversary can get some partial information about
the internal data stored on a cryptographic machineM. This line of research,
motivated by various side-channel attacks was initiated in the seminal papers
of Ishai et al. [38] and Micali and Reyzin [49], and followed by many recent
works [1,8,9,16–18,28,31,41,50,53,58]. Some papers have also been motivated
by the attacks of the malicious software (like viruses) against computers
[2, 3, 12, 14, 22, 23, 27]. What all these works have in common is that they
provide a formal model for reasoning about the adversary that can obtain
some information about the cryptographic secrets stored onM. It is easy to
see that some restrictions on the information that the adversary can learn is
necessary, as the adversary that has an unlimited access to the internal data
ofM can simply “leak” the internals in their entirety, which is usually enough
to completely break any type of security. A common assumption in this area
is the bounded-retrievability property, which states that the adversary can
retrieve at most some input-shrinking function f of the secret K stored on
the device, i.e. he can learn a value f(K) such that |f(K)| � |K|. The second
class of models considered in the literature [30,33,37,46] are those where the
adversary is active, which corresponds to the so-called tampering attacks. In
these models the adversary is allowed to maliciously modify the internals of
the device. For example, in the model of [37] the adversary that can tamper
a restricted number of wires of the circuit that performs the computation (in
a given time-frame), and in [33] it is assumed that a device is equipped with
a small tamper-free component. So far, all results that provided solutions
against such attacks were secure under the assumption that the virus can
download the data from the machine, but he cannot modify any information
stored on it. This dissertation provides the first schemes were the adversary
in the BRM can also modify the data stored on the machine.

We achieve security against an adversary that has complete active/passive
control over a deviceM storing cryptographic secrets, by only relying on a

12

simple physical characteristic of the device: we assume that local memory in
the device is bounded.

1.1 Model of Computation (SBA–model)
To make our statements precise, we must fix a model of computation. We
will consider an adversary that consists of two parts: a “space-bounded”
component Asmall which gets access to the internals of an attacked device and
has “bounded communication” to an external, and otherwise unrestricted,
adversary Abig. The described model will be called SBA–model. 1

Since the lower bounds on the computational complexity of functions are
usually hard to prove, it seems difficult to show any meaningful statements
in this model using purely complexity-theoretic settings. We will therefore
use the random-oracle model [7]. Recall, that in this case a hash function is
modeled as an external oracle containing a random function, and the oracle
can be queried by all the parties in the protocol (including the adversary).

We model our adversary A = (Abig,Asmall) as a pair of interactive algo-
rithms2 with oracle-access to a random-oracle H(·). The algorithm Abig will
only be restricted in the number of oracle calls made. On the other hand, we
impose the following additional restrictions on Asmall:

• s-bounded space: The total amount of space used by Asmall is bounded
by s. That is, we can accurately describe the entire configuration of
Asmall at any point in time using s bits.3

• c-bounded communication: The total number of outgoing bits commu-
nicated by Asmall is bounded by c. 4

We use the notation AH(·)(R) =
(
AH(·)
big () � AH(·)

small(R)
)
to denote the

interactive execution of Abig and Asmall, where Asmall gets input R and both
machines have access to the oracle H(·).

1The abbreviation comes from Small and Big Adversary.
2Say ITMs, interactive RAMs, . . . The exact model will not matter.
3This is somewhat different than standard space-complexity considered in complexity

theory, even when we restrict the discussion to ITMs. Firstly, the configuration of Asmall

includes the value of all tapes, including the input tape. Secondly, it includes the current
state that the machine is in and the position of all the tape heads.

4To be precise, we assume that we can completely describe the patters of outgoing
communication ofAsmall using c bits. That is,Asmall cannot convey additional information
in when it sends these bits, how many bits are sent at a given time and so on. . .

13

1.2 Remark

Using the random-oracle model in our case is a little bit tricky. To illustrate
the problem consider a following protocol for the proof of erasure: (1) V sends
to P a long random string R, (2) P replies with H(R), where H is a hash
function. Now, this protocol is obviously not secure for most of the real-life
hash functions. For example, if H is designed using the Merkle-Damgård
paradigm, then it can be computed “on fly”, and hence there is no need to
store the whole R before starting the computation of H.

On the other hand, if we model H as a random oracle, then the protocol
described above can be proven secure, as the adversary has to wait until he
gets the complete R before sending it to the oracle. We solve this problem
in the following way: we will require that the only way in which the hash
function is used is that it is applied to small inputs, i.e. if w is the length
of the output of a hash function (e.g.: w = 128) then the hash function will
have a type H : {0, 1}ξw → {0, 1}w, for some small ξ. Observe that if ξ = 2
then the function H can simply be a compression function used to construct
the hash function).

1.3 Our Results

We define the following schemes in SBA–model:

1. One-time Pseudorandom Functions.

2. Key-Evolution Scheme.

3. One-time Programs.

For details see Sections (respectively): 3.1, 4.2.1, 5.3. The main Theorems
are (respectively): 3.10, 4.1, 5.2. Introduction and informal intuitions to each
of these schemes are written in the beginings of Chapters (respectively): 3,
4, 5.

Most parts of this dissertation are covered by the following papers: [19,24,25].
These papers were supported by The European Research Council Starting
Grant, agreement CNTM-207908 (European Community’s Seventh Frame-
work Programme FP7/2007-2013).

14

Acknowledgements
Most importantly I would like to thank my advisor, dr hab. Stefan Dziem-
bowski, for constant motivation and invaluable help during the process of
writing this dissertation and for co-authoring all research papers included
in it. I am also really grateful to prof. Damian Niwinski, for many kinds of
guidance and support during the whole period of my PhD studies. I would
like to express my gratitude to: Yevgeniy Dodis, Konrad Durnoga, Zdzisław
Kręcina, Filip Mazowiecki, Maciej Obremski, Daniel Wichs and Michał Za-
jąc.

Finally I would like to thank my friends and family for strong support
during my PhD studies.

15

16

Chapter 2

Preliminaries

In this chapter we present some basic technical definitions and lemmas. The
concept of graph labeling is similar to concept of Dwork, Naor and Wee [21].
Here we present formal definition. Intuitions will follow in Chapters 3 and 4.

2.1 Random-Oracle Labeling of a Graph.
Let G = (V,E) be a DAG with |V | = N vertices. Without loss of generality,
we will just assume that V = {1, . . . , N} (we will also consider infinite graphs,
in which case we will have N =∞). We call vertices with no incoming edges
input vertices, and will assume there areM ¬ N of them. A labeling of G is a
function label(·), which assigns values label(v) ∈ {0, 1}w to vertices v ∈ V .
We call w the label-length. For any functionH : {0, 1}∗ → {0, 1}w and input-
labels R = (R1, . . . , RM) with Ri ∈ {0, 1}w, we define the (H,R)-labeling of
G as follows:

• The labels of the M distinct input vertices v1 < v2 < . . . < vM are
given by label(vi)

def= Ri.

• The label of every other vertex v is defined recursively by

label(v) def= H(label(v1), . . . , label(vd), v)

where v1 < . . . < vd are the d parents of v.

A random oracle labeling ofG is an (H,R)-labeling ofG whereH is a random-
function and R is chosen uniformly at random.

For convenience, we also define preLabel(v) def= (label(v1), . . . , label(vd), v),
where v1 < . . . < vd are the parents of v, so that label(v) = H(preLabel(v)).

17

The output vertices of G are the vertices that have no children. Let
v1, . . . , vK be the output vertices of G. Let Eval(G,H, (R1, . . . , RM)) denote
the sequence of labels (label(v1), . . . , label(vK)) of the output vertices cal-
culated with the procedure described above (withR1, . . . , RM being the labels
of the input vertices v1, . . . , vM and H being the hash function).

Our main goal is to show that computing the labeling of a graph G
requires a large amount of resources in the random-oracle model, and is
therefore difficult. We will usually (only) care about the list of random-oracle
calls made by Abig and Asmall during such an execution. We say that an
execution AH(·)(R) labels a vertex v, if a random-oracle call to preLabel(v),
is made by either Abig or Asmall.

2.2 Hint Lemma
Lemma 2.1. Let B = b1, . . . , bu be random bits. Let P be a randomized
procedure which gets a hint h ∈ H, and can adaptively query any of the bits
of B by submitting an index i and receiving bi. At the end of the execution P
outputs a subset S ⊂ {1, . . . , u} of |S| = k indices which were not previously
queried, along with guesses for all of the bits {bi|i ∈ S}. Then the probability
(over the choice of B and randomness of P) that there exists some h ∈ H
for which P(h) outputs all correct guesses is at most |H|

2k .

Proof. Fix any h ∈ H a-priori and independently of B. Then the probability
that P(h) outputs all correct guesses is 1/2k. By the union-bound, the prob-
ability that there exists some h (a-posteriori, depending on B) is therefore
at most |H|

2k .

18

Chapter 3

One-Time Computable
Pseudorandom Functions

We introduce a new cryptographic notion that we call a one-time computable
pseudorandom function (PRF), which is a PRF FK(·) that can be evaluated
on at most one input, even by an adversary who controls the device storing
the key K, as long as: (1) the adversary cannot “leak” the key K out of the
device completely (this is similar to the assumptions made in the Bounded-
Retrieval Model), and (2) the local read/write memory of the machine is
restricted, and not too much larger than the size of K. In particular, the
only way to evaluate FK(x) on such device, is to overwrite part of the key
K during the computation, thus preventing all future evaluations of FK(·) at
any other point x′ 6= x. We show that this primitive can be used to construct
schemes for password protected storage that are secure against dictionary
attacks, even by a virus that infects the machine. Our constructions rely on
the random-oracle model, and lower-bounds for graphs pebbling problems. In
this chapter we give explicite construction for SBA–model.

We show that our techniques can also be used to construct another prim-
itive, called uncomputable hash functions, which are hash functions that have
a short description but require a large amount of space to compute on any
input. We show that this tool can be used to improve the communication
complexity of proofs-of-erasure schemes, introduced recently by Perito and
Tsudik (ESORICS 2010).

In this chapter, we focus on answering the above question for new prim-
itive called a one-time computable pseudorandom function. That is, we con-
sider a device that stores a key K for a function FK(·) and allows the user
to evaluate the function at a single arbitrary input x. Moreover, even if an
adversary gains complete control of the device, he should be unable to learn
any information, beyond a single value FK(x) at a single point x. We rely

19

on the following two physical characteristics of the device M on which the
secret key K is stored: (1) M satisfies the bounded-retrievability property,
and (2) the read/write memory ofM is restricted in size and not much larger
than the size of the key K. Intuitively, the first property ensures that the
attacker cannot leak the key K out of the device, while the second prop-
erty will prevent the attacker from evaluating FK(·) at multiple inputs using
the resources of the device itself. The main application of this primitive is
a scheme for password-protected storage. We also construct another, related
primitive, that we call uncomputable hash functions, and use it construct an
improved protocol for proofs-of-erasure, a concept recently introduced in [52].

3.1 One-Time Computable Functions
In this section we informally define the concept of a one-time computable
PRF FK(·) implemented on a resource-constrained device M. Firstly, for
correctness/functinality, we need to ensure that the key K of the PRF can be
stored on the deviceM and that there is a method for honestly evaluating
FK(·) on a single arbitrary input x, using the resources of the device M.
Secondly, for security, we consider an attacker that gains control of the device
M. Such an adversary may learn the value FK(x) for some arbitrary point x,
but should not have any other information about FK(x′) for any other point
x′ 6= x.

So far we have not been very specific about the type of constraints placed
on the resources of the deviceM, and the type of control that the adversary
gets over the device. One could imagine settings in which the above would be
easy to implement. For example, if the adversary only gets black-box access
to M then we can use an arbitrary PRF to achieve the above goal; simply
have the device only perform only one evaluation of the PRF and then set
a flag to stop responding to all future inputs. However, if the adversary can
perform even relatively simple tampering attacks, it may be possible for it to
“reset” the flag on the device and thus break security of the above solution.

In this work, we consider an adversary that has complete control over the
device M. That is, for the purpose of security, we can consider the device
M itself to be a resource-constrained adversarial entity that gets the key K,
and can communicate with an external unconstrained adversary A. In this
case, we must place some constraints on the resources ofM. Firstly, we must
bound the amount of outgoing communication available to the deviceM, as
otherwise theM can just “leak” the entire key K to the external adversary
A, who can then evaluate FK(·) at arbitrarily many points. Secondly, we
must also place some limits on the computational resources available toM,

20

to prevent it from e.g. evaluating FK(x0), FK(x1) at two points x0 6= x1 and
leaking the first bit of each output to the external adversary A. In this work,
we will assume that the amount of read/write memory available to the device
M is bounded, and not much larger than the size of the key K. (The device
can have arbitrary additional read-only or write-only memory).

Putting this together, our goal is to design a PRF FK(·) which can be
efficiently evaluated at any single point x on a memory-constrained device,
but cannot be evaluated at any additional point x′ 6= x afterward. Roughly,
our main idea is to construct FK in such a way that any computation of FK(x)
has to (at least partially) destroy K, by overwriting it, and thus prevents
future computations of the function. That is, we assume that the key K
itself is stored on the read/write memory of the device and takes up m = |K|
bits of space, which is a large fraction of the total. We design the PRF in
such a way that there is an honest computation of FK(x) that uses (almost)
no extra space beyond that on which K was originally stored, but overwrites
K with various intermediate values during the computation. On the other
hand, assuming the total memory on the device is s < 2m, we show that
there is no method for computing of FK(x) at any single point x, without
erasing part of the key K and preventing evaluation at any other input. Note
that it is necessary for us to require that the key takes up more than half of
the available read/write memory of the device, as otherwise it is possible to
make a “copy” of the key that does not get damaged during the computation
FK(x). In fact, we show a stronger result along these lines, where we also allow
the adversarial memory-constrained deviceM to communicate up to c < m
bits to an external unconstrained adversary A (and we allow unbounded
communication from A to the device).

One-time computable functions – a generalization. We also con-
struct a generalization of the concept described above, where a single key
K defines T different pseudorandom functions: (F1,K ,FT,K). Using the
resources of the device, the honest user can evaluate each of the function
Fi,K at a single arbitrary point (i.e. the user first chooses an arbitrary x1
and evaluates F1,K(x1), then adaptively chooses x2 and evaluates F2,K(x2)
. . .). However, even if the device is under full adversarial control, the attacker
cannot get information about any of the T functions at more than one point
– i.e. the attacker cannot get information about Fi,K(x), Fi,K(x′) for any two
distinct points x 6= x′ and the same index i.

The construction is given in Section 3.6. The maximal T that we can have
is approximately equal to c+s

2(c+s−m) (cf. (3.5)).

21

Application: Password-protected storage

Let us now describe an application of the primitives described above. Our
application is related to password-based cryptography, which is an area that
deals with the protocols where the secrets used by the parties are human-
memorizable passwords. The crucial difference between a password and a
cryptographic key is that the latter is usually assumed to be chosen uni-
formly at random from a large domain, while the former may come from
some relatively small (polynomial sized) dictionary set D. One of the main
problems in constructing the password-based protocols is that one needs to
consider the so-called offline dictionary attacks, where the adversary simply
tries to break the scheme by analyzing all of the passwords from D one-by-
one.

In this chapter we are particularly interested in designing schemes for
password-protected storage, which are schemes for secure encryption of data
using passwords. A typical scheme of this type works as follows: let π ∈ D be
a password. To encrypt a message X we apply a key-derivation function H to
π and then encrypt X with H(π) using some standard symmetric encryption
scheme (Enc,Dec). To decrypt a ciphertext C = Enc(H(π), X) one simply
calculates Dec(H(π), C).

A typical choice for H is a hash function. This solution is vulnerable to a
following offline dictionary attack. An attacker simply tries, for every π′ ∈ D
to decrypt C until he finds π′ such that Dec(H(π′), C) “makes sense”. Most
likely there will be only one such π′, and hence, with a good probability, this
will be the correct π that the user has chosen to compute C.

A common way to make this attack harder is to design H in such a way
that it is moderately expensive to compute it. The time needed to compute
H should be acceptable for a legitimate user, and to high for the adversary
if he has to do it for all passwords in D. A drawback of this solution is that
it depends on the amount of computing power available to the adversary.
Moreover, the algorithm of the adversary can be easily parallelized.

An interesting solution to this problem was proposed in [11]. Here, a com-
putation of H requires the user to solve the CAPTCHA puzzles [59], which
are small puzzles that are easy to solve by a human, and hard to solve be a
machine. A disadvantage of this solution is that it imposes additional burden
on the user (he needs to solve the CAPTCHAs when he wants to access his
data). Moreover, experience shows that designing secure CAPTCHAs gets
increasingly difficult.

In this chapter we show an alternative solution to this problem. Our
solution works in a model where the data is stored on some machine that
can be infected by a virus. In this model, the virus can get a total control over

22

the machine, but he can retrieve only c bits from it. The main idea is that
we will use a one-time computable function F (secure against an adversary
with c-bounded communication and s-bounded storage) as the key-derivation
function. To encrypt a messageX with a password π we first choose randomly
a key R for a one-time computable PRF. We then calculate K = FR(π). The
ciphertext stored on the machine is Enc(K,X). It is now clear that the honest
user can easily compute K in space bounded by c − δ. On the other hand,
the adversary can compute K only once, even if he has space c. Of course,
the adversary could use a part of the ciphertext Enc(K,X) as his additional
storage. This is not a problem if X is short (shorter than δ). If X is long, we
can solve this problem by assuming that Enc(K,X) is stored on a read-only
memory.

A problem with this solution is that if an honest user makes an error and
types in a wrong password then he does not have a chance to try another
password. This can be solved by using the generalized version of the one-time
computable functions. The scheme works as follows. First, we choose a key
K for symmetric encryption. Then, we choose randomly R and for each i =
1, . . . , T we calculateKi = FRi

(π)⊕K (where the keysRi are derived fromR).
The values that are stored on the machine are (R, (K1, . . . , KT),Enc(K,M)).
Now, to decrypt the message, the user first calculates K = FR1(π)⊕K1, and
then decrypts Enc(K,M) using K. If a user makes an error and calculates
K1 using a wrong π he still has a chance to calculate K2, and so on.

3.2 Uncomputable functions
We also introduce a notion of uncomputable hash functions, which we explain
here informally. A hash function H is (s, ε)-uncomputable, if any machine
that uses space s and takes a random input x ∈ {0, 1}∗ outputs H(x) with
probability at most ε. We say that H is s′-computable if it can be computed
in space s′. Note that in this case we assume that the adversary cannot use
any external help to compute H (using the terminology from the previous
sections: his communication is 0-bounded). Informally, we are interested in
constructing (s, ε)-uncomputable, s′-computable functions for a small ε and
s′ being only slightly larger than s.

This notion can be used to construct an improved scheme for the proof of
erasure, a concept recently introduced in [52]. Essentially the proof of erasure
is a protocol between two parties: a powerful verifier V and a weak prover P
(that can be, e.g., an embedded device). The goal of the verifier is to ensure
that the prover has erased all the data that he stores in his RAM (we assume
that P can also have a small ROM). This is done by forcing P to overwrite

23

his RAM. Let m be the size of RAM. Then, a simple proof of erasure consists
of V sending to P a random string R such that |R| = m, and then V replying
with R. In [52] the authors observe that the communication from P to V can
be reduced in the following way: instead of asking P to send the entire R,
we can just verify his knowledge of R using a protocol for the “proof of data
possession” (see, e.g., [4]). Such a protocol still requires the verifier to send
a large string R to the prover, hence the communication from the verifier
to the prover is m. Using our uncomputable functions we can reduce this
communication significantly.

Our idea as follows. Suppose we have a function H that is m-computable
and (m − δ, ε)-uncomputable (for some small δ ∈ N and a negligible ε ∈
[0, 1]). Moreover, assume that H has a short domain and co-domain, say:
H : {0, 1}w → {0, 1}w for some w � m. We can now design the following
protocol:

1. V selects X ← {0, 1}w at random and sends it to P ,

2. P calculates Y = H(X) and sends it back to V ,

3. V accepts if Y = H(X).

Clearly, an honest prover can calculate Y , since he has enough memory for
this. On the other hand, from the (m − δ, ε)-uncomputability of H we get
that a cheating prover cannot calculate Y with probability greater than ε
without overwriting m− δ bits. The total communication between P and V
has length 2w. Note, that we need to assume that an adversary that controls
the prover cannot communicate any data outside of the machine (therefore
we are interested only in protocols with 0-bounded communication). This is
because otherwise he could simply forward X to some external party that
has more memory. The same assumption needs to be made in the protocols
of [52]. What remains is to show a construction of such an H. We do it in
Section 3.7.

3.3 Previous work
Most of the related work was already described in the previous sections. In
our work we will use a technique called graph pebbling (see e.g. [56]). This
technique has already been used in cryptography in an important work of [21],
some of our methods were inspired by this paper. The assumption that the
adversary is memory-bounded has been used in the so-called bounded-storage
model [5, 26, 47]. As similar assumption was also used in [20]. The proof of

24

erasures can be viewed as a special case of the remote attestation protocols
(see [52] for a list of relevant references).

3.3.1 Notation
In our constructions we will assume that the memory is divided into blocks
of length w. We will use the following convention: the length of the strings
in bits will be denoted with lower-case letters (n, c, s and δ) and the lengths
of the strings in blocks will be denoted with the corresponding upper-case
letters (N,C, S and ∆), where, e.g., we will have n = w ·N .

For a sequence R = (R1, . . . , RN) and for indices i, j such that 1 ¬ i ¬
j ¬ N , we define R[i, . . . , j] = (Ri, . . . , Rj).

3.4 Definitions
Let WH(·) be an algorithm that takes as input R ∈ {0, 1}m and has access to
the oracle H. Let (FH

1,R,F
H
T,R) be sequence of functions that depend on H

and R. Assume that WH(·) is interactive, i.e. it may receive queries from the
outside. Let x1, . . . , xT be the sequence of queries that WH(·) received. The
algorithm WH(·) replies to such a query by issuing a special output query to
the oracle H. We assume that after receiving each xi ∈ {0, 1}∗ the algorithm
WH(·) always issues an output query to H of a form ((FH

i,R(xi), (i, xi)), out).
We say that WH(·) is a (c, s,m, q, ε, T)-onetime computable PRF if:

• WH(·) has m-bounded storage, and 0-bounded communication.

• for any AH(·)(R) that makes at most q queries to H and has s-bounded
storage and c-bounded communication, the probability that AH(·)(R)
(for a randomly chosen R← {0, 1}m) issues two queries
((FH

i,R(x), (i, x)), out) and ((FH
i,R(x′), (i, x′)), out), for x 6= x′, is at most

ε.

Basically, what this definition states is that no adversary with s-bounded
storage and c-bounded communication can compute the value of any Fi,R on
two different inputs. It may look suspicious that we defined the secrecy of a
value in terms of the hardness of guessing it, instead of using the indistin-
guishability paradigm. We now argue why our approach is ok. There are two
reasons for this. The first one is that in the schemes that we construct that
output of each FH is always equal to some output of H (i.e. the algorithm F
simply outputs on the the responses he got from H). Hence A cannot have a
“partial knowledge” of the output (either he was lucky and he queried H on

25

the “right” inputs, or not – in the latter case the output is indistinguishable
from random, from his point of view).

The second reason is that, even if it was not the case — i.e. even if FH

outputted some value y that is a more complicated function of the responses
he got from H — we could modify FH by hashing y with H (and hence if
y is “hard to guess” then H(y) would be completely random, with a high
probability).

Now, suppose that V H(·) is defined identically to WH(·) with the only
difference that it receives just one query x ∈ {0, 1}∗, and afterwards it issues
one output query ((FH(x), x), out) (for some function F that depends on
H). We say that V H(·) is an (s, w, q, δ, ε)-uncomputable hash function if:

• V H(·) has s-bounded storage, and 0-bounded communication.

• for any AH(·)(R) that makes at most q queries to H and has (s − δ)-
bounded storage and c-bounded communication, the probability that
AH(·)(R) (for a randomly chosen R← {0, 1}w) issues a query
((FH(x), xi), out) is at most ε.

3.5 Random Oracle Graphs and the Pebbling
Game

We show a connection between an adversary computing a “random oracle
graph” and a pebbling strategy for the corresponding graph. A similar con-
nection appears in [21].

3.5.1 Pebbling Game
We will consider a new variant of the pebble game that we call the “red-
black” pebble game over a graph G. Each vertex of the graph G can either
be empty, contain a red pebble, contain a black pebble, or contain both types
of pebbles. An initial configuration consists of (only) a black pebble placed
on each input vertex of G. The game proceeds in steps where, in each step,
one of the following four actions is taken:

1. A red pebble can be placed on any vertex already containing a black
pebble.

2. If all the parents of a vertex v have a red pebble on them, a red pebble
can be placed on v.

26

3. If all the parents of v have some pebble on them (red or black), a black
pebble can be placed on v.

4. A black pebble can be removed from any vertex.

We define the black-pebble complexity of a pebbling strategy to be the max-
imum number of black pebbles in use at any given time. We define the red-
pebble complexity of a pebbling strategy to be the total number of steps in
which action 1 is taken. We also define the all-pebble complexity of a pebbling
strategy to be the sum of its black- and red-pebble complexities. By heavy-
pebbles we will mean the black pebbles, or the red-pebbles that appeared on
the graph because of action 1. Note, that these are exactly the pebbles that
count when we calculate the all-pebble complexity of a strategy.

Remark 3.1. Let G be a graph with N vertices andM input vertices. Let v be
an output vertex of G and let vi1 , . . . , vid be a subset of the set of input vertices.
Suppose there exists a pebbling strategy that (1) pebbles v while keeping the
pebbles on the vertices vi1 , . . . , vid, and (2) has black-pebble complexity b and
it does not use the red pebbles, i.e. its red-pebble complexity 0. Then the value
of Eval(G,H, (R1, . . . , RM)) can be computed by a machine with bw-bounded
storage and an access to a random oracle that computes H. This is because
the only thing that the machine needs to remember are the labels of at most
b vertices (each of those labels has length at most w). The computation may
overwrite some part of the input (R1, . . . , RM), however, it does not overwrite
the input corresponding to the vertices vi1 , . . . , vid, i.e.: (Rv1 , . . . , Rvd

).

It is more complicated to show a connection in the opposite direction,
namely to prove that if a graph cannot be pebbled with a strategy with low
black- and red-complexities, then it cannot be computed by a machine with
a restricted storage and communication. We establish such a connection in
the next section.

3.5.2 Connection Between Random-Oracle Labeling and
the Pebbling Game

We now connect the random-oracle labeling of a graph G in our model of
computation to the red-black pebbling game on G. In particular, we will
show that the black-pebble complexity of the pebbling will correspond to the
space-complexity of Asmall and the red-pebble complexity corresponds to the
communication-complexity of Asmall.

Let H : {0, 1}∗ → {0, 1}w be a random oracle, and let R = (R1, . . . , RM)
be a labeling of the input-vertices of G. For any algorithms A = (Abig,Asmall)

27

we can use the execution AH(·)(R) =
(
AH(·)
big � AH(·)

small(R)
)
to construct a red-

black pebbling of the graph G. In particular, we get a transcript listing all
oracle calls made during its entire execution, and whether they were made
by Asmall or Abig.

We fix some terminology about the transcript. Given (H,R), we say that
an oracle call of the form H(label1, . . . , labeld, v) is correct
if (label1, . . . , labeld, v) = preLabel(v). An oracle is also correct if it has
a form H((label, v), out), where out is some special symbol, v is an output
vertex, and label(v) = label. We call the children v1, . . . , vd of v the input-
vertices of the oracle call, and v is the output-vertex of the oracle call.

Using the transcript (along with the description of H,R) we define the
ex-post-facto pebbling of the graph G. We do so by processing the random-
oracle calls in the transcript one-by-one starting with the earliest one, and,
for each call, we take the following steps:

Place all necessary red pebbles: A vertex v is red-necessary if, looking
at the entire transcript of all oracle calls, there exists some correct
oracle call made by Abig with v as an input-vertex, which precedes all
correct oracle calls made by Abig with v as an output-vertex.
Go through all red-necessary vertices v one-by-one and, for each one
that has a black pebble but no red pebble, put a red pebble.1

Delete all unnecessary black pebbles: A vertex v is black-necessary if
it is not red-necessary and, in the remainder of the transcript of oracle-
calls that have not yet been processed (including the current call), there
exists some correct oracle call made by Asmall with v as an input-vertex
such that:

• In the remainder of the transcript, there is no earlier correct oracle
call made by Asmall with v as an output-vertex.
• In the entire transcript, there is no earlier correct oracle call made

by Abig with v as an output-vertex.

Go through all vertices v which are not black-necessary but have a
black pebble on them, one-by-one, and remove the black pebble.2

1Note that the set of red-necessary vertices does not change throughout the process.
Intuitively, these are the vertices whose labels must be communicated by Asmall to Abig

at some point in time, and correspondingly for which we need to take pebbling-action 1
to place a red pebble on them. We choose to take this action as early as legally possible,
since it might allow us to remove related black pebbles early.

2Note that the set of black-necessary vertices can be different at different points in the

28

Process oracle call: If the current oracle call is correct and made by Asmall
(respectively Abig) with output vertex v, we put a black (respectively
red) pebble on v.

We notice that every vertex that is labeled by the execution of AH(·)(R)
gets a (red or black) pebble placed on it in the corresponding ex-post-facto
pebbling. Moreover, the order in which vertices get red/black pebbles corre-
sponds to the order in which the oracle calls are made by A.

We now show that, for any adversary A = (Asmall,Abig) which is
space/communication bounded, and which makes a bounded number of ora-
cle calls, the ex-post-facto pebbling is legal and has small space/communication
complexity.

Theorem 3.2. Let G = (V,E) be a DAG and let A = (Abig,Asmall) be
any adversarial labeling strategy in our restricted model of computation. Let
(H,R) define a random-oracle labeling of the graph G, with label-length w.
Assume that A makes at most q random-oracle queries during any execu-
tion. Then, the ex-post-facto pebbling of G corresponding to an execution of
AH(·)(R) has the following properties:

1. It is a legal pebbling (i.e. follows the rules of the red-black pebbling
game) with probability 1− q

2w over the choice of (H,R).

2. Assuming that Asmall has c-bounded communication then, for any λ
0, the red-pebble complexity is at most c+λ

w−log(q) with probability 1− 2−λ

over the choice of (H,R).

3. Assuming that Asmall has s-bounded storage and c-bounded communi-
cation then, for any λ > 0, the all-pebble complexity is at most c+s+λ

w−log(q)

with probability 1− 2−λ over the choice of (H,R).

Proof of Theorem 3.2. First, let us show part 1 of the theorem, that the ex-
post-facto pebbling is legal with probability at least 1− q

2w . Assume otherwise.
The only way that our pebbling could be illegal is if, during the processing
of a correct oracle call (made by Abig or Asmall), one of the input-vertices v
of the call does not have a pebble of the correct color (resp. red or any) on
it. Since such a pebble would never have been deleted, this can only happen
if it was never placed. That is, there must be a vertex v, which is not an
input-vertex of G, such that the execution-transcript of A contains a correct

process. Intuitively, at any point in time, a black-necessary vertex is one whose label must
be stored in the memory of Asmall since it will not be re-computed by Asmall via oracle
calls, it was never communicated to Abig, nor will it be computed by Abig in time.

29

oracle call (made by either Abig or Asmall) with v as an input vertex, which
precedes all correct oracle calls made with v as an output-vertex. Therefore,
the above must happen with probability greater than q

2w . But then, we can
define a predictor P for the values of B = (R,H) which:

Gets as hint: The index i ∈ {1, . . . , q} of the oracle-call made by AH(·)(R)
that satisfies the requirement.

Runs: Runs AH(·)(R). Answers all queries of A honestly (using access to
H,R) until the ith oracle query made by A, which is of the form
H(label1, . . . , labeld, v). By assumption, for at least one of the par-
ents vi of v, the oracle was never queried at the point preLabel(vi), yet
labeli = label(vi). Moreover, it is easy to figure out i, by computing
preLabel(vj) for each parent vj of v, without querying the oracle on
input preLabel(vi).

Outputs: The bits ofH corresponding to label(vi) at “position” preLabel(vi).

But, by Lemma 2.1, the probability of the above succeeding is at most q
2w ,

leading to a contradiction.
Next let us show part 2 of the theorem. Again, assume otherwise, that

there is some λ 0 for which the red-pebble complexity of the ex-post-
facto pebbling is r c+λ

w−log(q) with probability (strictly) greater than 2−λ.
The only way that the red-pebble complexity could be r is if there are r
distinct red-necessary vertices v. Recall that a vertex is red-necessary if the
transcript includes correct oracle call made by Abig with v as one of the
input-vertices, which precedes all correct oracle calls made by Abig with v
as an output-vertex. We call the corresponding oracle-calls red-necessary,
and there are r′ ¬ r of them (one oracle-call can make many of its input-
vertices red-necessary). The intuition is that the algorithm Abig must then
somehow predict the labels of these red-necessary vertices without querying
the appropriate input to the oracle, given the communication from Asmall as
a hint. That is, we define a predictor P for the bits of B = (R,H), which
works as follows:

Gets as hint: The value hcom ∈ {0, 1}c of all communication from Asmall
to Abig made during the execution AH(·)(R). The indices (i1, . . . , ir′) ⊆
{1, . . . , q}r

′
of the r′ red-necessary oracle-calls made by AH(·)

big during
the execution.

Runs: RunsAH(·)
big and feeds it the correct communication on behalf of Asmall

(without running Asmall at all) using the hint. For the random-oracle
queries corresponding to the indices (i1, . . . , ir′), record the labels of

30

all the input-vertices of such calls (we do not yet know which ones are
red-necessary). To answer any oracle calls of Abig, with output-vertex
v:

• Determine if the call is correct. A call is correct iff (1) it corre-
sponds to one of the stored indices ij, or (2) correct oracle calls
were previously made by Abig on all parents of v (having them
as an output-vertex) and the provided input to the current call
matches the output of all these previous calls. Note that correct-
ness can therefore be checked recursively without making any new
oracle calls.
• If the call is correct and the label of v is one of the recoded labels,

output it. Otherwise query H to answer the call.

At the end, use the transcript of all oracle calls made by Abig to deter-
mine which r vertices v1, . . . , vr are red-necessary.
The labels label(v1), . . . , label(vr) are among the recorded labels.
Compute preLabel(v1), . . . , preLabel(vr), which can be done without
querying H with these as inputs.

Outputs: The bits of H corresponding to label(v1), . . . , label(vr), at po-
sitions
preLabel(v1), . . . , preLabel(vr).

It is easy to check that, in the above process, H is never queried on the inputs
preLabel(vi) for the red-necessary vertices vi. Therefore, by Lemma 2.1, the
probability of the above succeeding is at most q

r2c

2rw ¬ 2−(r(w−log(q))−c) ¬ 2−λ,
leading to a contradiction.

Lastly, let us turn to part 3 of the theorem. Again, assume otherwise, that
there is some λ 0 for which the sum of the red-pebble and black-pebble
complexities of the ex-post-facto pebbling is z c+s+λ

w−log(q) with probability
(strictly) greater than 2−λ. The only way that this could happen is if r of
the vertices are red-necessary and if at at some point there are there are b
black-necessary vertices (note that these sets are disjoint by definition). As
the hint, we will store the value hstate which encodes the entire state of Asmall
corresponding to that point in the transcript and hcom which encodes all of
the communication from Asmall to Abig:

Gets as hint: The values hcom ∈ {0, 1}c, hstate ∈ {0, 1}s.
The indices (i1, . . . , iz′) ⊆ {1, . . . , q}

z
′
of the z′ ¬ z distinct oracle-calls

made by AH(·)
big and AH(·)

small which make some vertex red-necessary or
black-necessary.

31

Runs: First, run AH(·)
big from the beginning by feeding it the correct commu-

nication on behalf of Asmall (without running Asmall) using the hint.
Answer oracle queries as before. Once this is done, run Asmall start-
ing in the state encoded by hstate and pass it the communication on
behalf of Abig that was produced by the earlier run. We can use the
same strategy as in the last case to determine if oracle calls made by
Asmall are correct, and how to respond to them. At the end, we will
have recorded the labels of all of the red-necessary and black-necessary
vertices v1, . . . , vz, and can compute preLabel(vi) as before.

Outputs: The bits of H corresponding to label(v1), . . . , label(vr), at po-
sitions
preLabel(v1), . . . , preLabel(vz).

By Lemma 2.1, the probability of the above succeeding is at most q
z2c2s

2zw ¬
2−(r(w−log(q))−c−s) ¬ 2−λ, leading to a contradiction.

�

Lemma 3.3. Let G be a DAG with M input vertices and K output vertices.
Let r and b be arbitrary parameters. Suppose that G is such that there does
not exist a pebbling strategy such that (1) its all-pebble complexity is at most
a, and that (2) pebbles at least α output vertices (for some α ∈ {1, . . . , K}).

Then, for any c, s, w and λ such that c+s+λ
w−log(q) < a, and for any A =

(Abig,Asmall) that makes at most q oracle calls and has s-bounded space and
c-bounded communication the probability that A labels more than α−1 output
vertices is at most q · 2−w + 2−λ (where the probability is taken over the
randomness of A and the random choice of H and R).

Proof. Take any A = (Abig,Asmall) that makes at most q oracle calls and
has s-bounded space and c-bounded communication. Recall that “labeling
a vertex v” means that the adversary makes an oracle call to preLabel(v).
Note that it does not necessarily mean that the corresponding pebbling strat-
egy will every pebble v, as pebbling a vertex occurs only when the label of
v is given as an input to the oracle. Therefore we assume that A always
after learning the label label of any output vertex v issues an oracle call
H((label, v), out). This guarantees that such a v will always be pebbled.
Clearly adding this instruction does not increase the space and communica-
tion complexity of A.

Suppose we choose randomly R and H and run the experiment. Let E
denote the event that A labels more than α − 1 output vertices. For the
sake of contradiction suppose that P (E) > q · 2−w + 2−λ. Let G denote the
event that the corresponding pebbling strategy is legal and its all-pebble

32

complexity is at most c+s+λ
w−log(q) . From Theorem 3.2 (Points 1 and 3) we get

that P (G) 1 − q · 2−w − 2−λ. Therefore the probability that E and G
occurred simultaneously is positive. Hence there needs to exist an execution
of A such that the corresponding pebbling strategy that pebbles α vertices
and has all-pebble complexity at most c+s+λ

w−log(q) , which, by our assumption, is
less than c+ s. This yields a contradiction.

3.6 One-time computable functions
In this section we show specific examples of graphs that are hard to pebble
in limited space and bounded communication. Let M,M ′ be a parameters
such that M ′ < M . The (M,M ′)-lambda graph (denoted LamM

M
′) is defined

in the following way (cf. Fig. 3.1). Its set of vertices is equal to V0∪V1, where

(M ′,M ′)

%%

AA]]

(2, 2)

AA]] AA

(2,M ′)

]]

(2,M ′ + 1) // // output:
(2,M)

(1, 1)

AA

(1, 2)

]]
AA]]

AA

(1,M ′)

]]

(1,M ′ + 1)

OO
OO

(1,M)

OO

Figure 3.1: An (M,M ′)-lambda graph forM ′ = 4 andM = 7. The sub-graph
on the left-hand side of the dashed line is an M ′-pyramid.

V0 = {(i, j) : 1 ¬ i ¬ j ¬ M ′} and V1 = {1, 2} × {M ′ + 1, . . . ,M}. The set
of input vertices is equal to {1} × {1, . . . ,M}. The output vertex is (2,M).
The set of edges is equal to the following sum:

{((i− 1, j − 1), (i, j)) : (i− 1, j − 1), (i, j) ∈ V0} (3.1)
∪{((i− 1, j), (i, j)) : (i− 1, j), (i, j) ∈ V0} (3.2)
∪{((M ′,M ′), (2,M ′ + 1))}
∪{((1, j − 1), (1, j)) : (1, j − 1), (1, j) ∈ V1}
∪{((1, j), (2, j)) : (1, j), (2, j) ∈ V1}.

If M ′ = M then a (M,M)-lambda graph is defined as above, with V1 = ∅
and with the set of edges consisting only of the set in (3.1) and (3.2) above.
Its output vertex is (M,M). Such a graph is also called anM-pyramid graph.

33

Lemma 3.4. For any X < M ′ − 1 there exists a strategy that pebbles the
output vertex of LamM

M
′ that satisfies the following:

• it uses M +M ′ − 1−X black pebbles (remember that all the M input
vertices are initially pebbled with a black pebble, and therefore using
M +M ′ − 1−X means having M ′ − 1−X extra pebbles),

• it uses no red pebbles, and

• at the moment when the output vertex is pebbled there are still pebbles
on the last M −X input vertices, i.e.: vertices from the set {1}×{X+
1, . . . ,M}.

Proof. The pebbling strategy consists of the following steps:
pebble the second row of the pyramid In this step we pebble the sec-

ond row of the pyramid, i.e. the vertices from the set {2}×{2, . . . ,M ′}.
We do it by removing X pebbles from the input of the pyramid, and
by using the M ′− 1−X extra pebbles that we have. The procedure is
as follows:

1. First, we put pebbles on the vertices from the set {2}×{2, . . . , X+
1}. We do it in the following way: for j = 2, . . . , X ′ + 1 we put a
pebble on (2, j) and remove it from (1, j − 1).

2. We then put pebbles on the vertices from the set {2} × {X +
2,M ′}. We do it just using the extra pebbles, without removing
any pebble from the input. Clearly we have enough extra pebbles,
since |{2} × {X + 2,M ′}| = M ′ − 1−X.

pebble the rest of the pyramid In this step we pebble the pyramid row-
by-row, starting from the third row, and ending with the top of the
pyramid (M ′,M ′). We do it in the by executing the following procedure
for i = 3, . . . ,M ′:

• for j = i, . . . ,M ′ do the following: put a pebble on (i, j) and
remove it from (i− 1, j − 1).

pebble the rest of the graph We now pebble the rest of the graph in the
following way. First, we put a pebble on (2,M ′+ 1) and remove it from
(M ′,M ′). Then, for j = M ′ + 2, . . . ,M we put a pebble on (2, j) and
remove it from (2, j − 1). At the end of this loop there output vertex
is pebbled.

It is easy to see that the above procedure results in a correct pebbling strat-
egy. Moreover, it uses only M ′ − 1 − X extra pebbles, and it removes the
pebbles only from the first X vertices of the input.

34

3.6.1 Hardness of pebbling
Consider a configuration of the red and black pebbles on some DAG G. Let
v be a vertex of G. We say that v is input-dependent in this configuration if,
after removing all the pebbles from the input it is impossible to pebble the
vertex v. If v is not input-dependent then we say that it is input-independent.

Lemma 3.5. For M 2 consider an M-pyramid graph LamM
M and some

configuration of pebbles on it. If the output vertex (M,M) is input-dependent
then the number of heavy pebbles is at least M .

Proof. We prove it by induction on M = 2, 3, To root the induction we
first consider the case when M = 2. In this case the graph consists of 3
vertices only: 2 input vertices, and 1 output vertex. If it is input-dependent
then the output vertex is not pebbled. Hence both input vertices need to
have a pebble.

Now, let us assume the hypothesis for M − 1 and consider GM = LamM
M .

Take some configuration γ of pebbles. Denote the set of heavy pebbles in γ by
X . Let GM−1 be a subgraph of GM induced by all the vertices of GM except
of the input row (in other words: GM−1 is equal to GM with the bottom row
“cut”). Of course GM−1 is LamM−1

M−1.
Now, put black pebbles on the vertices of the input row of GM−1 in the

following way: put a pebble on a vertex v whenever v has both parents in X
(and keep the old pebbles from the configuration γ). It is easy to see that
the number of black pebbles in this new configuration is at most |X | − 1.

Clearly the resulting configuration of pebbles on GM−1 satisfies the fol-
lowing: (1) the output vertex can be pebbled from this configuration, and (2)
the output vertex on GM−1 is input-dependent (if it was not input-dependent
then also the configuration γ would not be input-dependent). Hence, by the
induction hypothesis |X | − 1 M − 1, which implies that |X | M .

Lemma 3.6. Suppose M > 2. Consider a pebbling strategy for LamM
M that

pebbles the vertex (M,M). In the first configuration in which (M,M) is input-
independent we have that: (1) the total number of the heavy pebbles that are
not on the input row is at least M −1, and (2) there is no pebble on (M,M).

Proof. Let GM = LamM
M , and let GM−1 be defined as in the proof of Lemma

3.5. Let γ be the first configuration in which (M,M) is input-independent,
and let γ′ be the configuration that directly precedes γ, i.e. the last configu-
ration that is input-dependent. Keep on the vertices of GM−1 all the pebbles
from the configuration γ. We now show that in such a configuration of the
pebbles on GM−1 the output of GM−1 is input-dependent. After showing it
we will be done: part (1) will follow directly from Lemma 3.5 (applied to

35

GM−1), and part (2) will follow from the fact that (for M − 1 > 1) if the
output vertex is input-dependent then it cannot be pebbled.

To finish the proof assume that the output of GM−1 is input-independent.
We obtain contradiction by showing that in this case also GM needs to be
input-independent. Clearly the only way in which γ′ was transformed into γ
was that a pebble was added on the input row of GM−1. However, by our
assumption the output of GM−1 (and hence also of GM) does not depend on
this row. Therefore also in the configuration γ′ the output cannot depend on
the two bottom rows of GM . This gives us a contradiction.

Lemma 3.7. Consider a pebbling strategy that pebbles the output of LamM
M
′.

As long as the vertex (M ′,M ′) has not been pebbled, there has to be a heavy
pebble on every input vertex on the second part of LamM

M
′ (i.e. the vertices

(1, j) such that j ∈ {M ′ + 1, . . . ,M}).

Proof. This follows easily from the construction of the LamM
M
′ graph: if one

removes a pebble from any vertex (1, j) such that j ∈ {M ′+ 1, . . . ,M} then
one cannot put a pebble on it in the future. Therefore it will never be possible
to pebble (2, j), and hence also (2,M).

For ` ∈ N ∪ {∞} consider a family of ` DAGs {Gk = (Vk, Ek)}`k=1 such
that every DAG in this family has the same set of input VI of input vertices.
Define V ′k = Vk \ VI . The graph G = (V,E) is a sum of {Gk = (Vk, Ek)}`k=1
if is defined as follows: the set of vertices V is equal to VI plus the disjoint
sum of the sets V ′k . More precisely:

V := VI ∪
⋃̀
k=1
{k} × Vk

The set E of edges is defined as:

E := {((k, v), (k, v′)) : v, v′ ∈ V ′k and (v, v′) ∈ Ek}
∪{(v, (k, v′)) : v ∈ VI and v′ ∈ V ′k and (v, v′) ∈ Ek}

E := {((k, v), (k, v′)) : v, v′ ∈ V ′k and (v, v′) ∈ Ek} ∪ {(v, (k, v′)) : v ∈
VI and v′ ∈ V ′k and (v, v′) ∈ Ek}. The set of input vertices of G is equal to
VI , and the set of the output vertices is equal to VO,L ∪VO,R, where VO,L and
VO,R are the sets of the output verices of GL and GR, respectively.

Lemma 3.8. Consider a family {Gk}`k=1 of (M,M ′)-lambda graphs. Let G
be a sum of the graphs in this family. Then there does not exist a pebbling
strategy with all-pebble complexity bounded by M +M ′− 2 that pebbles more
than one output of G.

36

Proof. For the sake of contradiction suppose that such a strategy exists.
Pebbling the output of LamM

M
′ requires first pebbling the top of the pyramid

graph that is a part of LamM
M
′ . Therefore there has to exist a pebbling strategy

with all-pebble complexity bounded byM+M ′−2 that pebbles two different
vertices that are the tops of the pyramids in some Gk and Gh (i.e. vertices
(k, (M ′,M ′)) and (h, (M ′,M ′))).

Clearly, at the beginning of any pebbling strategy the top of each pyramid
is dependent on the input of this pyramid. Consider the first configuration
where the top of one of the pyramids, the one belonging to Gk, say, gets
independent from the input of this pyramid. In this moment, by Lemma 3.6
the total number of the heavy pebbles that are not on the input row of Gk is
at least M ′− 1. Since in this moment the top vertex of Gh is still dependent
on the input, hence, by Lemma 3.5 the total number of the heavy primary
red pebbles and the black pebbles on Gk is at leastM ′. Therefore the number
of the heavy pebbles on the two pyramids is at least 2M ′ − 1.

On the other hand, by the second part of Lemma 3.6 the vertex (M ′,M ′)
is not yet pebbled in this configuration. Hence, by Lemma 3.7, there needs
to be a heavy pebble on every vertex from the second part of the input of Gh

and Gk, i.e. on the vertices (1, j)) such that j ∈ {M ′ + 1, . . . ,M}. Therefore
altogether we have 2M ′ − 1 + (M − M ′) = M + M ′ − 1 pebbles on the
sum of Gh and Gk. This yields a contradiction with the assumption that the
all-pebble complexity of the strategy is bounded by M +M ′ − 2.

Combining Lemma 3.3 with Lemma 3.8 we get the following.

Corollary 3.9. Consider a family {Gk}`k=1 of (M,M ′)-lambda graphs. Let
G be a sum of the graphs in this family. Then, for any s, c, w and q, such
that c+s+w

w−log(q) < M +M ′− 2, and any adversary A that has s-bounded storage
and c-bounded communication, and makes at most q queries to the oracle, the
probability that A labels more than one output of G is at most (q + 1) · 2−w.

3.6.2 The construction
In our construction the hash function will depend on an additional parameter
a. Formally, let H : {0, 1}∗×{0, 1}∗ → {0, 1}w be a function that is modeled
as a random oracle. For any a ∈ {0, 1}∗ let Ha denote a function defined as
Ha(z) = H(a, z). Let M,U and T be some positive integer parameters such
that

T <
U − 1

2∆ (3.3)

where ∆ := U −M .

37

We now construct an interactive algorithm COMPH
U ,M,T,w that has access

to a random oracle H and stores a key consisting of M blocks (of length w).
That is, the input to the algorithm is R = (R1, . . . , RM), and it behaves as
follows. Suppose it is queried on some inputs x1, . . . , xT . Then, after receiving
each xi it computes the value of

Eval(LamM−(i−1)∆
i∆+2 , H(i,xi), (R[1 + (i− 1)∆, . . . ,M]). (3.4)

The algorithm COMPH
U ,M,T,w(R) simply computes each (3.4) one-by-one for

i = 1, . . . , T . Each of these steps destroys ∆ values Rj from the input. Thus,
before the i-th step we keep in the memory only R[1+(i−1)∆, . . . ,M]. This
means that the space used by the remaining part of the input (R[1, . . . , (i−
1)∆]) is now free and it can be used as additional storage for computation.
So, just before the beginning of the i-th step the free storage (i.e. storage
not including kept fragment of the input) is bounded by ei = Ei · w, where
Ei := 1+(i−1)∆. The algorithm in the i-th step is just a simple application
of Remark 3.1 from Section 3.5.1. Observe that from Lemma 3.4 we get a
pebbling strategy that pebbles output vertex of LamM−(i−1)∆

i∆+2 using Ei extra
pebbles and removes the first (i∆ + 2) − 1 − Ei input pebbles. From the
definition of Ei we have (i∆ + 2)− 1−Ei = ∆. So, from Remark 3.1 we get
that there is an algorithm that computes (3.4) overwriting ∆ ·w first bits of
remaining input. So, after this step the algorithm can keep R[1 + i∆, . . . ,M]
to be used in the next steps.

Theorem 3.10. For any integers c, s,m,w, let U def= b c+s+w
w−log(q)c and M

def=
bm
w
c − 1. Then, for any integer T < U−1

2(U−M) the algorithm COMPH
U ,M,T,w is

a (c, s,m, q, (q + 1) · 2−w, T)-one-time computable PRF.

Asymptotically, as c, s,m� w � log(q), the maximal T becomes

T ≈ c+ s

2(c+ s−m) . (3.5)

of Theorem 3.10. Suppose (R1, . . . , RM) is chosen uniformly at random. Let
A = (Abig, Asmall) be an arbitrary adversary with oracle access to H that
has s-bounded space and c-bounded communication and makes at most q
oracle calls. Consider an execution AH(·)(R). Let E be an event that for some
i and for two different x and x′ the adversary labeled the output vertex of
LamM−(i−1)∆

i∆+2 in the (H(i,x), R)-labeling and (H(i,x′), R)-labeling. To prove the
theorem we need to show the following.

P (E) ¬ T · (q + 1) · 2−w. (3.6)

38

Fix some ĩ, and let Eĩ denote the event that E happened for i = ĩ. Let G be
equal to the sum of following infinite sequence of graphs{

LamM−(̃i−1)∆
ĩ∆+2

}
x∈{0,1}∗

.

We now show an adversary Ã with an s-bounded space and c-bounded com-
munication that has access to an oracle H̃ and makes at most q queries to it,
and satisfies the following: for a randomly-chosen R̃ = (R1+(̃i−1)∆, . . . , RM) ∈
({0, 1}w)M−(̃i−1)∆ in the execution ÃH̃(·)(R̃) the probability that the adver-
sary labels at least two different output vertices of G is equal to P (Eĩ).

The adversary Ã simulates A in the following way. First, since A “ex-
pects” the input to have length M , it fills-in the “missing” elements of R̃,
i.e. he selects randomly (R1, . . . , R(̃i−1)∆) and sets R = (R1, . . . , R(̃i−1)∆)||R̃.
Next, it simply runs A. The only thing that we need to take care of is to
“translate” the oracle queries issued by A to H into oracle queries issued by
Ã to H̃. Let Q be a query issued by A. Consider the following cases:

• Q has a form ((̃i, x), (label1, . . . , labeld, v)) (for some x, label1, . . . , labeld)
— in this case we translate it into a a query (label1, . . . , labeld, ((i, x), v),

• Q has a form or ((̃i, x), (label, v, out)) (for some x and label) — in
this case we translate it into a a query (label, ((̃i, x), v), out).

• if Q does not have any of the forms above — we translate it in some
arbitrary (deterministic and injective) way.

It is easy to see that Ã labels an output vertex ((̃i, x), v) of G if and only if
his simulated copy of A labeled v in the graph LamM−(̃i−1)∆

ĩ∆+2 . Therefore the
probability that Ã labeled two output vertices of G is equal to P (Eĩ). Now,
by Corollary 3.9 we get that this probability is at most (q+1) ·2−w as long as
s+c+w
w−log(q) < M − (̃i− 1)∆ + 1 + ĩ∆ + 1− 2 = M + ∆ = U , which is exactly the
assumption that we made in the statement of the lemma. Since E = ∪Ti=1Ei,
therefore, by the union-bound we get that P (E) ¬ T ·((q+1)·2−w). Therefore
(3.6) is proven.

3.7 Arrowhead functions
In this section we define a class of DAGs that we call the arrowhead graphs.
For every M ∈ N let ArrM be a graph consisting of defined previously M -
pyramid with one additional vertex (0, 0) and additional edge from (0, 0)

39

to (1, x) for x ∈ 1, . . .M . More precisely, ArrM = (VM , EM), where V =
{(0, 0)}∪{(i, j) : 1 ¬ i ¬ j ¬M . A graph ArrM consists of one input vertex
(0, 0) and one output vertex (M,M). The follwoing figure shows an example
of an M -arrowhead graph for M = 4. The subgraph on the upper side of the
dashed line is an M -pyramid.

output: (M,M)@@ ^^

(2, 2)

@@ ^^ @@

(2,M)

^^

(1, 1)

@@

(1, 2)

^^
@@ ^^

@@

(1,M)

^^

input: (0, 0)

VVcc HH ;;

Lemma 3.11. For any a and R = (R1, . . . , RM) the value of Eval(ArrM , H,R)
can be computed by an algorithm that has access to a random oracle H and
has (M + 1) · w-bounded storage.

Proof. Using Remark 3.1 it suffices to show a strategy that pebbles ArrM
using M + 1 pebbles. The strategy works as follows.

pebble the bottom row For j = 1, . . . ,M put a pebble on (1, j).

pebble the rest of the graph For i = 2, . . . ,M do the following:
for every j = i, . . . ,M put a pebble on (j, i) and then remove a pebble
from (j − 1, i− 1).

It is easy to see that this pebbling strategy is correct, and usesM+1 pebbles.

3.7.1 Impossibility of pebbling
We now show the optimality of the strategy given in Lemma 3.11. The proof
of the following lemma is very similar to the proof of Lemma 10.2.1 in the
book of John Savage ([56]).

Lemma 3.12. Every strategy that pebbles the output of ArrM , and does not
use the red pebbles, must use at least M − 1 black pebbles.

Proof. We consider all paths from (M,M) to the first row (i.e. the set of
vertices {(1, 1), . . . , (1,M)}). We say that a path carries a pebble if at least

40

one vertex of the path has some pebble on it. If a path is not carrying a
pebble we say it is empty.

Initially all paths are empty. At the end of a game, all paths must carry a
pebble (because there is a pebble in (M,M), and (M,M) is a vertex in every
path). Therefore, there must be a first moment t in time when all paths are
carrying a pebble. Putting a pebble into graph can increase number of paths
carrying a pebble only when putting pebble on the first row. So moment t
must happen when a pebble p is put on the first row of some path π and
π is empty except of the pebble p at the bottom (cf. Figure 3.2). Let us
look at the disjoint paths starting from other vertices from first row (there
are M − 1 of them) and connected to path π. It is always possible to find
such disjoint paths (cf. Figure 3.2). Each of this M − 1 disjoint paths must
carry a pebble. Additionally, we need to count a pebble p, and a pebble on
(0, 0) (it is impossible to put a pebble on any vertex of the first row, without
having a pebble on (0, 0)). Altogether we have M + 1 pebbles. This finishes
the proof.

Combining Lemma 3.12 with Corollary 3.3 we get the following.

Corollary 3.13. For any s, λ and q, such that s+λ
w−log(q) < M + 1, and any

adversary A that has s-bounded storage and 0-bounded communication, and
makes at most q queries to the oracle, the probability that A labels the output
of ArrM is at most q · 2−w + 2−λ.

The corollaries and the lemma above imply the following.

Theorem 3.14. The hash function that takes as input R and outputs
Eval(ArrM , H,R) is ((M + 1) · w,w, q, log(q)(M + 1) + λ, q · 2−w + 2−λ)-
uncomputable.

3.8 Open problems
It would be very interesting to show any non-trivial schemes for one-time
computable and uncomputable functions without the need of the random
oracle assumption. Another interesting research direction is to find more
applications for the notions introduced in this chapter.

41

CC W_

•

CC ?G[[[[

CC ?G[[

•

CC[[

•

[[

CC

•

CC[[CCW_ CC[[[[

CC CC[[

•

CC[[

•

CCW_ CC[[[[

p

Figure 3.2: Illustration of the proof of Lemma 3.12. Double arrows indicate
the path π, and the disjoint paths starting from other vertices from first row
and connected to path π are indicated with the wave arrows.

42

Chapter 4

Key-Evolution Schemes
Resilient to Space-Bounded
Leakage

In this chapter we consider the following natural problem. Suppose a cryp-
tographic key K0 is stored on a device that leaks information. If leakage
occurs continuously, then the adversary may obtain more and more infor-
mation about the key, and eventually learn it entirely. A natural idea to
prevent this from happening is to periodically update the key i.e. to repeat-
edly apply some key evolution function f to it, obtaining a sequence of keys
K0, K1, . . . , where each Ki+1 := f(Ki). The key evolution function should
be constructed in such a way that the evolved key Ki used in period i is in-
distinguishable from uniform, even if the adversary can leak from the entire
evolution process K1 → K2 → . . .→ Ki−1. We will assume that the key evo-
lution is deterministic (i.e. it does not depend on any external randomness)
hence these keys Ki will be shared by synchronized devices, which evolve
their keys simultaneously but independently (without communication). As
we will see, the design of key-evolution functions is also intimately related
to the design of leakage-resilient stream-ciphers, and pseudo-random gener-
ators. The problem of designing such primitives been studied before, both
by the practitioners and by the theoreticians. Next, we look at several mod-
els of leakage-resilience and their results. In this chapter we give explicite
construction for SBA–model.1

1Slightly modified; details in Section 4.2.1

43

4.1 Leakage Resilient Key Evolution: Theory
vs. Practice

Theoretical work on leakage-resilience usually included a formal model for
reasoning about leakage. Usually, side-channel leakage is modeled as a family
of functions where the attacker can choose a function from the family and
learn the output of this function applied to the secret key. For example, a
popular and powerful model of Akavia et al. [1], allows the adversary to
compute arbitrary poly-time leakage functions of the internal secret key,
subject only to the constraint that the amount of data retrieved (the output-
length of the function) is bounded. Unfortunately, when it comes to key-
evolution, it is clear that security cannot be achieved in this model, even if
the adversary is restricted to leaking a single bit! In fact, just given the ability
to leak on the initial keyK1, the adversarial leakage-function can pre-compute
any future keyKi and output (say) the first bit of it. If the adversary can leak
even 1 bit in several consecutive rounds, the adversary can eventually recover
any future key Ki in full! This example (called a key-precomputation attack in
[28]) shows that, when considering the security of the key-evolution schemes,
the sole restriction that the output of the leakage function is bounded does
not suffice. However, it is also easy to see that the leakage-functions used in
the above counter-examples are extremely artificial, and are very unlikely to
model natural side-channel attacks that occur in real life. Hence, it is natural
to look for different (weaker) models for the leakage, that still cover all the
realistic attacks, but in which key-evolution schemes may exist. We survey
two such key-evolution schemes in their corresponding models of leakage. The
two schemes come from two very different point views: one theoretical with
an emphasis on models and proofs, and the other practical with an emphasis
toward efficiency and simplicity. Therefore, it is interesting to compare their
advantages and disadvantages.

4.2 Previous work
The scheme of Dziembowski and Pietrzak [28]. On the theoretical
side, [28] constructed a stream cipher (and, implicitly, a key evolution scheme)
in a formal model called “only computation leaks information”, first proposed
by Micali and Reyzin [49] and refined in [28]. In this model, the internal mem-
ory of the device is separated into two or more segments, and all computation
is divided into simpler sub-computations that access only some small subset
of these segments. The assumption is that, during each sub-computation, the
adversary can leak an arbitrary bounded-length function of only the memory

44

segments accessed by the sub-computation. In other words, during any com-
putational step, data can leak if and only if it is accessed. Pre-computation
attacks can therefore be prevented, since the adversary can never get any
global leakage of the entire state of the system needed to compute a future
key.

The actual scheme of [28] (and a related scheme of [54]) uses an alternating
structure with two memory segments accessed in alternating rounds. The
main drawback of this model is that it relies on the highly controversial
assumption that data which is not accessed cannot leak. Also, the security
of solutions in this model is highly dependent on “implementation details”
such what data is accessed when.

The scheme of Kocher [42]. On the practical side, Kocher [42] proposes
a simple and efficient solution to just use a “sufficiently complicated” cryp-
tographic hash function for the key-evolution function f . This scheme seems
intuitively secure since it’s unlikely that any natural and therefore “suffi-
ciently simple” leakage could learn anything about Ki+1 = f(Ki) from Ki

(or even from the entire key-evolution process used to derive Ki), if f is “suf-
ficiently complicated”. However, [42] does not offer any meaningful model in
which to analyze the above intuition. The main idea is to assume that the
adversarial leakage on the ith updateKi → Ki+1 can be an arbitrary function
of the entire state of that update subject to the constraints: (1) the leakage
function cannot make any random-oracle calls, (2) the output-length of the
leakage function is bounded to be just slightly smaller than the key-length
|K|. At first, it may seem that constraint (1) offers a meaningful way of cap-
turing “sufficiently simple” leakage. Unfortunately, it is not clear what this
constraint means in practice, and can lead to counter-intuitive consequences,
described next.

Since the amount of leakage tolerated by the scheme should be close to
|K|, it is natural to try to increase |K| if one would want to achieve more
leakage. Of course, that means using a key-evolution function, and therefore
hash function, with sufficiently large input-size and output-size. Assume we
start with a compression function H : {0, 1}2` → {0, 1}`, and we want to
allow key-size |K| = t` to allow for more leakage. The standard technique for
domain-extension is the Merkle-Damgård transformation [15] (and variants of
it in the indifferentiability framework) which gives a function H ′ : {0, 1}∗ →
{0, 1}`. Now, to increase the output-size, we can define H̃ : {0, 1}t` →
{0, 1}t` by H̃(K) = H(H ′(K)||1), . . . , H(H ′(K)||t). But, it is clear that, if
one leaks the `-bit value H ′(K1) used as sub-component of the key-evolution
computation K2 = H̃(K1), then one can compute all future keys Kj and

45

thus completely break the key-evolution scheme! Therefore, the scheme is
not secure with respect to even ` bits of leakage when instantiated with real-
world hash functions. Notice that the leakage-function does not perform any
complicated computation; it just leaks several consecutive bits of the internal
state, corresponding to H ′(K), which is computed as an intermediate value
during the key-evolution computation.

So we see that, although the initial scheme of Kocher provides some intu-
itive leakage-resilience properties, one runs into pitfalls when trying to model
and quantify them. In particular, by relying on the random-oracle model in
an unintended way (assuming that simple functions cannot make random
oracle calls), and assuming that leakage on a computation making random-
oracle calls only gets the input and output of such calls, one reaches a model
that doesn’t correspond to reality in a meaningful way.

The scheme of Yu Yu et al. [62] In a recent important work Yu Yu et
al. [62] propose a practical scheme whose security is based on the assump-
tions that (1) the leakage functions cannot be chosen adaptively, and (2) the
leakage function cannot evaluate the hash function (which is modeled as a
random oracle). The security of the scheme that we construct in this work
does not require these assumptions.

Other Models of Leakage-Resilience. We note that several other mod-
els of leakage resilience, with restricted leakage functions, have appeared in
the literature. For example, [38] assumes leakage functions that leak individ-
ual wires from a circuit that performs a computation. Alternatively, Faust et
al. [32] assume that leakage-function is an AC0 circuit of the internal state.
Several works consider computation that uses some small/simple leak-free
components [32,34,36,40].

4.2.1 Our Model: Space-Bounded Leakage in the Ran-
dom Oracle Model

In this chapter we propose a method for the key evolution that combines
the advantages of the Kocher’s practical scheme (efficiency and simplicity of
model, scheme) with some of the advantages of the theoretical scheme of [28]
(provable security and scalability). On a high level, we restrict the class of
leakage functions to ones that are bounded in the amount of “auxiliary work
space” used during the computation of the output. In particular, this should
model natural leakage which is unlikely to be sufficiently complex to require
much space to compute. We will analyze a variant of the Kocher key-evolution

46

scheme in the random-oracle model, but give all parties (including the leakage
functions) the ability to compute the random oracle. In particular, we define
a deterministic key-evolution function f that makes random-oracle calls to
compute Ki+1 = f(Ki). On a high level, pre-computation attacks will not be
possible because the space allowed to the leakage function is not sufficient to
pre-compute Ki+1 from Ki.

In greater detail, we model the leakage process on the key evolution as
follows. We consider an adversary A = (Asmall,Abig) consisting of two parts:
the adversary Abig corresponds to the external real-world attacker that tries
to break the scheme, and Asmall corresponds to the “space-bounded” device
which is storing and evolving the secret key while leaking partial information
to the external attacker Abig. We do not assume anything about how the
computation is implemented on the device, and thus allow the computation
Asmall itself to be adversarial. Initially, Asmall is given the random starting
key K1. Since key evolution is deterministic, this will completely specify all
future keys K2, K3, Of course, we need somehow to “force” Asmall to
perform the key evolution (if Asmall can completely “halt” the key evolution,
then he can simply keep K1 on M for a long time, and slowly retrieve it
bit-by-bit). In the passive case we could simply assume that, in time period
i, the key Ki is fully stored on the machine and therefore there is not enough
memory on the machine to store much information about any of the prior keys
from earlier time periods. However, if Asmall is active then this assumption
could be completely unreasonable as the attacker could just keep K1 on the
machine for arbitrarily many time periods and leak it entirely. Therefore, we
will introduce a special procedure that we call Verifyi, and assume that this
procedure is called in each time period i to ensure that the device is storing
the full key Ki at that point in time.

During the entire key-evolution process, Asmall can communicate with
Abig and can perform arbitrary computation (in addition to / instead of
computingKi honestly) including the ability to make random oracle calls. We
only make three restrictions: (1) the amount of data that Asmall can send to
Abig in each period is bounded (2) the space-complexity of Asmall is bounded
and not much larger then the space-complexity of the honest computation of
f , (3) the number of oracle-queries made by all parties is polynomial (no other
computational assumptions are made). (4) At the end of round i, the machine
Asmall stores the correct key Ki. We will allow unlimited communication in
the other direction Abig to Asmall.

Let us elaborate on the restrictions in more detail. Restriction (1) models
the fact that natural leakage is too simple to reveal too much data about any
single computational step. Restriction (2) models that fact that the complex-
ity of natural leakage functions is rather simple. In particular, the space-

47

complexity of leaking on the internals of a computation should not be much
larger then the amount of space actually used by the computation itself! This
seems to be a rather conservative assumption. Lastly, restriction (3) models
that all parties run in polynomial time, as is standard in cryptography, and
restriction (4) models the fact that the device itself correctly computes the
key Ki in round i.

Now that we have explained the model, let us give some intuition why
key-evolution schemes are achievable in it. Firstly, note that, in round i, the
adversary can (in principle) pre-compute any future key Ki+t in the space it
is allotted. However, we will ensure that such computation would necessarily
require the adversary to erase some data about Ki (since it cannot store all
of Ki and compute Ki+1 simultaneously with limited space) and hence it will
be unable to satisfy the requirement that Ki is stored on the system at the
end of round i.

4.2.2 Our Results
We construct a key-evolution function f that is secure in the model described
above. Let c be the amount of bits that the adversary can retrieve in each
round, and let s be the space that the adversary can use to compute the
leakage function (including the |K| bits needed to store the key K). We
show that our scheme is secure as long as

4c+ s ¬ 3 · |K|/2 (4.1)

(cf. Theorem 3.10). Let us mention two applications of our construction.

Security against passive leakages Firstly, suppose that the evolving key
Ki is stored on some device (say, a smart-card) that may leak some informa-
tion. Imagine that the device is used for (message or entity) authentication
with a trusted server that has his own copy of Ki. Suppose the adversary can
get a temporary access to the device, observe the process of key evolution
and learn some partial information about the keys. At some later point the
adversary looses access to the device. The properties of our function f will
guarantee that the future keys are unknown to the adversary assuming that
the leakage is bounded in the way described above. Since in this case the
adversary is only passive, there is no need to perform the procedure Verifyi.
It may look like the model described above is stronger than what we need
for this application, since it seems too pessimistic to assume that the ad-
versary fully controls how the keys Ki are computed on the device. It may
seem tempting to consider a weaker model, where the computation is done is

48

some honest way, and the adversary can apply the leakage functions during
the evolution process. We believe that such a restriction would not make the
proof simpler (while it would make the model more complicated). Moreover,
going to the extreme and allowing the adversary to control the computation
has the advantage that it protects us (to a certain extent) against implemen-
tation errors.

Security against active attacks in the BRM The second application
of our construction concerns the bounded-retrieval model (BRM) [14,23]. In
this model one constructs schemes where the cryptographic key K is very
large. The idea is that K can be stored on a PC that can be infected by
viruses, and, as long as the virus does not retrieve a large portion of K, the
scheme should remain secure. So far, all the work in the BRM considered
only the passive attacks, where the virus was not allowed to modify the data
on the machine. Now, consider the following problem: suppose we are using
the BRM scheme for the session-key agreement [12,23] (where a pair of users
share a secret key K), and we want to evolve the secret key K stored on the
machine, so that in total over a long period of time we can tolerate a leakage
of more than |K| bits from the machine. We show that f can be used as such
a key-evolution function. The details of the model are as follows. Suppose we
store the keys Ki on the machineM, and assume that the size of the local
memory on M is s, and the amount of bits that can be retrieved in each
key-evolution round is c, and c and s are such that (4.1) holds. SupposeM
wants to authenticate to a trusted server that has his own copy of Ki. If there
is a virus on M then we can even allow him to modify the data stored on
M. The restrictions that we impose are as follows. First, we assume that any
computation that the virus performs has to be done withinM’s memory (of
size s). Second, we somehow need to guarantee that the verification procedure
Verifyi can be performed. We do it by assuming thatM is equipped with a
small tamper-free component D that can periodically check if the contents
of the memory is “correct”. For example, D could store the values of some
hash function of K1, K2, . . . ,, and the Verifyi procedure would just consist of
hashing the contents of the memory where Ki is supposed to be stored, and
comparing the result with H(Ki).

4.2.3 Some implementation details
In this work we do not define formally the security of the concrete schemes
(like the message authentication), since we are more interested in considering
the key-evolution as an abstract procedure. Every key Ki will consist of N−1
blocks: Ki = (K0

i , . . . , K
N−1
i), each of the blocks being an output of a hash

49

function modeled as a random oracle. Hence, we can simply say that Ki is
secret if none of its blocks has every been calculated by the random oracle
(in our model calculating such a block will correspond to “labeling” a vertex
in some graph).

Of course, the key evolution scheme would be useless, if we could not use
the evolved key in some other application. In other words, after each round
i, the key evolution function should output some key κi, and in the formal
model this κi should be given to Abig “for free”. In our case we simply assume
that κi is equal to one of the blocks of Ki. Note, that it does not require any
modification of the model, since we can as well assume that κi is sent to Abig
by Asmall.

The Verifyi procedure (that verifies the knowledge of Ki) can be imple-
mented as follows: (1) the verifier (that knows Ki) sends a random value c
to the device, and (2) the device replies with v = MAC(c,Ki) (where MAC is
a tagging function of some message authentication code scheme, c is treated
as a key for the MAC, and Ki is treated as a message), (3) the verifier checks
if v = MAC(c,Ki), and if not then he aborts. Note, that we cannot hope
for more than only verifying the correctness, since in the worst case an ac-
tive adversary can anyway completely destroy the contents of the device. In
our model we will not assume anything about how MAC(c,Ki) is computed
by Asmall. For example, it will be possible that he partially “pre-computes”
it before learning c. The only property of MAC that we use is that Asmall
can compute the value of MAC(c,Ki) only if each of the blocks of Ki were
computed by him at some point earlier.

4.2.4 Organization
Our key-evolution function is defined using a special type of a graph, that
we call a tower graph. The method of translating graphs into functions is
described in Section 4.4.2. The tower-graphs and the function f are defined in
Section 4.3. The main theorem is stated in Section 4.4, which also introduces
most of the tools needed for the proof. The proof itself appears in Section
4.4.6.

4.2.5 Related Work
The theoretical countermeasures against the side-channel attacks were con-
sidered in [1, 8, 9, 16–18, 28, 31, 41, 50, 53, 58]. The schemes in the Bounded
Retrieval Model were constructed in [3, 12, 14, 22, 23, 27]. We will use the
technique called “graph pebbling” (cf. e.g. [56]), that was already used in
cryptography in [21]. Some of our techniques (esp. those used in Sections

50

4.4.1 and 4.4.5) were introduced in [21] and recently extended in [25]. We
note that, although our techniques are quite similar, the application is com-
pletely different (the main application of [25] is a construction of a scheme
for the password-protected local storage). Unfortunately, it is impossible to
use the theorems from [21, 25] in a black-box way, and therefore we needed
to non-trivially extend them. On a technical level, the main difference comes
from the fact that in [25] the total amount of leakage was bounded globally,
and in our work we need to consider continual leakage over an unbounded
number of round.

4.3 Our Key-Evolution Scheme
In this section we define our key-evolution function f . We start with defining
a special type of graphs, that we call the “tower graphs”. A graph G = (V,E)
is called an (N,M)-tower graph if V = {0, . . . ,M − 1} × {0, . . . , N − 1} and
E = {((i, j), (i + 1, j) : i ∈ {0, 1, . . . , }, j ∈ {0, . . . , N − 1}} ∪ {((i, j), (i +
1, (j − 1) mod N) : i ∈ {0, 1, . . .}, j ∈ {0, . . . , N − 1}} (cf. Fig. 4.1 in the
appendix). For i = 0, . . . , t the set Vi = {(i, 0), . . . , (i, N − 1)} is called the
ith line of G. Let Vi denote the set Vi ∪ Vi+1 ∪ · · · . Note that the set of the
input vertices of G is equal to V0. We will say that an (infinite) graph G is
an N-tower graph if it is an (N,∞)-tower graph.

We are now ready to define f . If we fix a hash function H and label length
w then the (N,M)-tower graph G defines a function f : {0, 1}Nw → {0, 1}Nw
in the following way. On an input K the function f computes the (H, K)-
labeling of G and it outputs (K ′1, . . . , K ′N), where each Ki is the label of
(M − 1, i). The procedure for computing f(K0, . . . , KN−1) simply computes
the labels bottom-up row-by-row in the following way:

• Set (K0
0 , . . . , K

0
N−1) := (K0, . . . , KN−1).

• For j = 1, . . . ,M − 1 do

– For i = 0, . . . , N − 1 do Kj
i := H(Kj−1

i , Kj−1
i+1 mod N , (i, j))

Observe that the time needed to compute f is roughly equal to N ·M times
the time needed to compute H, and the space needed to compute f is only
slightly larger than the space needed to store K, since we can overwrite each
(Kj

0 , . . . , K
j
N−1) with (Kj+1

0 , . . . , Kj+1
N−1) and hence re-use the space.

It is also easy to see that iterating the computation of f on the same
input a times, i.e. computing K ′ = fa(K) can be seen as computing the
labeling of an (N, aM)-tower graph, and in particular, if we want to evolve

51

the key K0 using the procedure Ki+1 = f(Ki) (for i = 0, 1, . . .) then we
can look at it as a labeling the tower infinite N -tower graph, where the keys
K1, K2, . . . appear as labels of the lines V1·M , V2·M , We will call such lines
the round-switching lines.

4.4 Games on Tower Graphs
We will show a connection between an adversary computing a “random or-
acle graph” and a pebbling game for the corresponding graph. A similar
connection appears in [21] (and in [25], see Section 4.2.5 for more on relation
between this work and [25]).

4.4.1 Model of Computation
Our main goal is to show that computing the labeling of a tower graph G
requires a large amount of resources in the random-oracle model, and is there-
fore difficult. To do so, we must fix a model of computation in which we can
make statements of the above form precise. Recall that we will usually con-
sider an adversary that consists of two parts: a “space-bounded” component
which gets access to the internals of an attacked device and has “bounded
communication” to an external, and otherwise unrestricted, adversary.

We model such a adversary A = (Abig,Asmall) as a pair of interactive al-
gorithms2 with oracle-access to a random-oracleH(·). LetM be some natural
number that we will call the round length. While executing the algorithms
the time is divided into rounds. Initially the computation is in a round 1.
The adversary Asmall is responsible for switching to next round. Namely: the
round is changed to k when Asmall calls special function
nextRoundk(label(a1) . . . label(an)), where {a1, . . . , an} is the kth round-
switching line Vk·M . A round k can be switched only to round k+ 1, in other
words the order of the round-changing calls has to be
nextRound1, nextRound2, The period between the calls nextRoundi and
nextRoundi+1 will be called the ith round. The algorithm Abig will only be
restricted in the number of oracle calls made. On the other hand, we impose
the following additional restrictions on Asmall:

• s-bounded space: The total amount of space used by Asmall is bounded
by s. That is, we can accurately describe the entire configuration of
Asmall at any point in time using s bits.3

2Say ITMs, interactive RAMs, . . . The exact model will not matter.
3This is somewhat different than standard space-complexity considered in complexity

52

• c-bounded communication: The total number of outgoing bits commu-
nicated by Asmall in each round is bounded by c. 4

Note that these restrictions imply that he total number of outgoing bits
communicated byAsmall in every round is bounded by c and there is no global
bound for communication. We use the notationAH(·)(K) =

(
AH(·)
big () � AH(·)

small(K)
)

to denote the interactive execution of Abig and Asmall, where Asmall gets in-
put K and both machines have access to the oracle H(·). In particular, we
will usually (only) care about the list of random-oracle calls made by Abig
and Asmall during such an execution. We say that an execution AH(·)(K)
labels a vertex v, if a random-oracle call to preLabel(v) is made by either
Abig or Asmall. We are now ready to state our main theorem.

Theorem 4.1. Let G be a N-tower graph and λ > 0. Suppose c, s and q
are such that 4c+s+λ

w−log(q) ¬ N +N/2, and let T be an arbitrary natural number.
Let A = (Abig,Asmall) be an adversary with c-bounded communication and s-
bounded storage that makes at most q queries to H. The probability p (taken
over the choice of (H, K)) that there exists i = 1, . . . , T−1 such that A labels
the line V(i+1)·M of G in round i is at most

q · 2−w + T · 21−λ (4.2)

The proof appears in Section 4.4.6. The necessary machinery is introduced
in the next sections.

4.4.2 Pebbling Games on Tower Graphs
We will consider a variant of the pebble game that we call the “red-black”
pebble game over an N -tower graph G = (V,E). Each vertex of the graph
G can either be empty, contain a red pebble, contain a black pebble, or
contain both types of pebbles. More precisely, if G is a tower graph, then a
pebbling configuration on G is a function γ : V → P({red, black}). Define
Red(γ) := {v : red ∈ γ(v)}, and Black(γ) := {v : black ∈ γ(v)}. If V ′ ⊆ V
then define proj(V ′) := (|V ′ ∩ V1|, . . . , |V ′ ∩ Vt|).

For a set V ′ ⊆ V denote by [V ′] the closure of V defined recursively as
follows:
theory, even when we restrict the discussion to ITMs. Firstly, the configuration of Asmall

includes the value of all tapes, including the input tape. Secondly, it includes the current
state that the machine is in and the position of all the tape heads.

4To be precise, we assume that we can completely describe the patters of outgoing
communication ofAsmall using c bits. That is,Asmall cannot convey additional information
in when it sends these bits, how many bits are sent at a given time and so on. . .

53

• if v ∈ V ′ then v ∈ [V ′],

• if all the children of v′ are in [V ′] then v′ ∈ [V ′].

An initial configuration γ1 consists of (only) a black pebble placed on
each input vertex of G. The game proceeds in steps where, in the ith step,
the configuration γi is transformed into γi+1 using one of the following four
actions:

1. A red pebble can be placed on any vertex already containing a black
pebble.

2. If both children of a vertex v have a red pebble on them, a red pebble
can be placed on v.

3. If both children of v have some pebble on them (red or black), a black
pebble can be placed on v.

4. A black pebble can be removed from any vertex.

A pebbling game is a sequence γ1 → γ2 → · · · →` of configurations. The game
is — similarly to real computational model — divided into rounds. One starts
a game in round 1. A round may be switched to u in a configuration γi if
all vertices from a line Vu·M in γi are pebbled by some pebble (technically, a
round is switched to u by issuing a request nextRoundu). This switch is not
obligatory when the specific row is pebbled. However, we require that the
order of the request is nextRound0, nextRound1, . . . ,.

We define the black-pebble complexity of a round k of a pebbling game to
be the maximum number of black pebbles on vertices in Vk·M in use at any
time of round k. More precisely if γi → · · · → γj are the configurations in
round k. Then the black pebble complexity of k is equal to maxj`=i |Black(γ`)∩
Vk·M |. If γi, . . . , γj are as above then the red pebble complexity of k is
equal to the number of times in round k in which Step 1 was applied. For
a parameter X a pebbling game is X-bounded if for every round k we have
2Rk + Bk < X, where Rk and Bk denote the red- and the black-pebble
complexities (resp.) of round k.

4.4.3 Auxiliary lemmata
We need some auxiliary definitions and lemmas. For (a0, . . . , at) ∈ {0, . . . , N}t+1

define the optimistic width of (a0, . . . , at) as: OptWidth(a0, . . . , at) := (b0, . . . , bt),
where

• b0 := a0, and

54

• for every i = 1, . . . , t we set

bi :=
{
N if bi−1 = N
min(N, bi−1 − 1 + ai) otherwise

Intuitively, the idea is that if (b1, . . . , bt) := OptWidth(a0, . . . , at) then bi’s
give an upper bound on the number of pebbles in the ith line of [V ′] (for any
V ′ ⊆ V), assuming that ai is the number of pebbles in the ith line of V ′.
Formally, this is shown in the following lemma.

Lemma 4.2. Take any set V ′ ⊆ V and let (a0, . . . , at) := proj([V ′]) and
(b0, . . . , bt) := OptWidth(proj(V ′)). For every i we have that ai ¬ bi.

Proof. The proof goes by induction on i = 0, . . . , t. Case i = 0 follows imme-
diately from the fact that the closure operation does not change the config-
uration of the pebbles on the bottom row (V0), and hence a0 = b0.

Now suppose the lemma holds for some i. The set of pebbles in the (i+1)st
line of [V ′] is equal to the sum of V ′i+1 and the pebbles P that were derived
(using the closure operation) from the pebbles in the ith line of [V ′]. By
the induction hypothesis we get that the number of pebbles in the ith line
of [V ′] is at most bi−1. Now, consider the case when bi−1 6= N . From the
definition of the closure operation it follows that |P | ¬ bi−1 − 1. Therefore
|V ′i+1∪P | ¬ |V ′i+1|+|P | ¬ ai+bi−1−1. Since the maximal value of ai+bi−1−1
cannot be greater than N we get |V ′i+1 ∪ P | ¬ min(N, ai + bi−1 − 1).

The second case (bi−1 = N) follows easily from the fact that in this case
bi = N .

A sequence (a0, . . . , at) is called wide if for some i we have ai = N . A set
V ′ ⊆ V will be called wide if proj([V ′]) is wide. We have the following simple
observation.

Lemma 4.3. For U,W ⊆ V such that U∪W is not wide define (a0, . . . , at) :=
OptWidth(proj([U∪W])) and (b0, . . . , bt) := OptWidth(proj([W])). Then, for
every i we have bi ¬ ai − |W |. In other words: adding |W | elements to U
cannot increase the values on the coordinates in OptWidth(proj([U])) by more
than |W | (as long as the resulting set U ∪W is not wide).

Proof. Suppose we add the elements of W to U one-by-one. From the defini-
tion of the closure operation it easily follows that adding one element cannot
increase OptWidth(proj([W])) by more than on each coordinate (as long as
the resulting set is not wide). Hence the statement of the lemma follows.

55

A subgraph G′ of a tower graph is a pyramid graph. if it is induced by
the set of vertices: {(i + x mod N − 1, j + y mod N) : 0 ¬ x + y ¬ N − 1}
for some i and j. The vertex (i + N, j) will be call the root of G′. We now
have the following lemma:

Lemma 4.4. Consider a pebbling game for initially empty pyramid graph.
If the root vertex is pebbled at the end of the game then there exist a config-
uration γ of the considered game with sum of red pebbles in the first row and
the black pebbles is at least N .

Proof. The argument is similar to the one appearing in the proof of Lemma
10.2.1 in [56]. We consider all paths from the root to the bottom row. We
say that a path carries a pebble if at least one vertex of the path has some
pebble on it. If a path does not carry a pebble we say it is empty.

Initially all paths are empty. At the end of strategy, all paths must carry
a pebble (because there is a pebble in the root, and root is a vertex in
every path). Putting a pebble on a pyramid according to the pebbling rules
can increase number of paths carrying a pebble only by one (this happens
obviously only when the pebble is put on the first row). Therefore, there must
exist the first configuration in time when all paths are carrying a pebble. This
must happen when a pebble p is put on the first row of some path and the
path is empty besides this one particular pebble at the bottom (on Figure
4.2 this path is indicated with double arrows). All other paths are carrying
a pebble. Let us look at the paths starting from other vertices from first row
and connected to the last pebbled path (see figure: wave arrows). Each of
this paths must carry a pebble. There are N such paths so we have at least
N pebbles on graph (at least one on every highlighted fragment of path).
Moreover: there are at least N black and red pebbles in the first row: When
a red pebble is on graph then both children are also on graph (they are red
and we do not remove the red pebbles), so when choosing representatives
for the paths we can always choose pebble from first row if only red pebbles
remained. This finishes the proof.

4.4.4 The impossibility of pebbling
Our goal is to show that — with some restrictions on red and black pebble
complexity — it is impossible to pebble any vertex in V(u+2)·M in round
u. Intuitively, it means that we cannot get any information about pebbles
from any line V(u+2)·M , before switching to round u+ 1. More precisely, the
following theorem holds:

56

Theorem 4.5. Let N, T and X be arbitrary natural numbers such that

X <
3N
2 .

Set M := 3N
2 . Suppose G is an N-tower graph. Then, for any X-bounded

pebbling game for G with round lengthM and any configuration γ that belongs
to the uth round, we have that in γ there are no pebbles on V(u+2)·M .

Proof. In an execution of a pebbling game a pebble will be called heavy if
it is a black pebble, or a red pebble placed on the graph using rule 1 (cf.
Page 54). For a round u let γiu be the last configuration of this round. We
claim that in γiu there is no pebble on V(u+2)·M . Let Au be the set of all
pebbled vertices in the configuration γiu and let Qu be the set of all pebbles
in Au except of the black pebbles lying on the line u ·M . More precisely:
Qu = Au \ (Au ∩ Vu·M ∩ Black(γ)). Set Yu := VM ·u \ VM ·(u+1)

Lemma 4.6. For every u we have:

1. Au ∩ V(u+2)·M = ∅

2. OptWidth(proj([Qu])) = (a0, . . . , aT ·M) < (N, . . . , N︸ ︷︷ ︸
u·M

, N/2, . . . , N/2︸ ︷︷ ︸
M

, 1, . . . , 1),

in particular [Qu] is not wide.

After showing this we will be done with the proof since Point 1 of Lemma
4.6 clearly implies that Theorem 4.5 holds.

Proof of Lemma 4.6. Induction on u = 1, 2, The base of the induction
holds trivially since in the initial configuration only the bottom line is peb-
bled. Let us now assume the statement holds for some u. Now we prove the
following claims for next round u+ 1:
Claim 4.7. During the entire round u+ 1 there must be at least N/2 heavy
pebbles in the subgraph Yu (i.e. the lines u ·M, . . . , (u+ 1) ·M − 1).

Proof. Let us consider any configuration γ from this round and denote the
set of heavy pebbles in X in γ by P . At the end of the round every vertex on
the (u + 1)st round-switching line V(u+1)·M will contain a pebble. Therefore
the closure [P] of heavy pebbles P from the current configuration and the
pebbles from the previous rounds Qu need to contain whole line V(u+1)·M .
This is because otherwise one would never be able to pebble V(u+1)·M in the
future (this follows easily from the definition of closure and the pebbling
game). Hence [P ∪ Qu] has to be wide and therefore (from Lemma 4.2)
OptWidth(P ∪Qu also has to be wide. On the other hand, by the induction

57

hypothesis we know that every coordinate of OptWidth(Qu) on positions
u ·M, . . . is smaller than N/2. Now, by Lemma 4.3 adding to Qu a set of
cardinality |P | cannot increase any of this coordinates by more than |P |.
Hence |P | N/2.

Claim 4.8. Through the whole round u+1 no vertex in V(u+2)·M is pebbled.

Proof. For the sake of contradiction assume that the claim is not true. So,
we have a configuration γ from round u + 1 with a pebble on some vertex
v from set V(u+2)·M . Denote by (V ′, E ′)′ the subgraph forming the pyramid
graph with root in vertex v. From Lemma 4.4 we have that before γ there
was a configuration γ′ that: had b black pebbles on V ′ and had r red pebbles
in bottom line of V ′ (which is the line V(u+2)·M−N+1 of the tower graph) and
b + s N . However from Claim 4.7 there are at least N/2 heavy pebbles
on Yu, and Yu is disjoint with the pyramid (V ′, E ′). The number of all heavy
pebbles is A := B+R < (N−R)+(N/2). Therefore in the set VM ·(u+1) ⊃ V ′

there are at most (N−R) heavy pebbles. Since b+s is bounded by the number
of heavy pebbles so we have a contradiction with the fact that b+s N .

Claim 4.9. OptWidth(proj([Qu+1])) = (a0, . . . , aT ·M)
< (N, . . . , N︸ ︷︷ ︸

u+1·M

, N/2, . . . , N/2)

Proof. Denote the configuration at the end of this round by γ and the set
of heavy pebbles in γ by P . Let P ′ denote P without black-pebbled vertices
from (u+ 1)th finishing line. From definition, we have [Qu+1] = [Qu ∪P ′]. In
γ the (u+ 1)th finishing line is pebbled. There at most R red pebbles, so at
least N −R black pebbles are on this line. So |P ′| is at most A− (N −R) =
B+ 2R−N < N/2. Similarly as at the end of proof of the Claim 4.7 adding
to Qu a set of cardinality |P ′| < N/2 cannot increase any coordinate of
OptWidth by more then |P ′|. This finishes the proof.

Claims 4.8 and 4.9 prove inductive hypothesis for u + 1. Hence we are
done.

4.4.5 Connection Between Random-Oracle Labeling and
the Pebbling Game

We now connect the random-oracle labeling of a tower graph G in our model
of computation to the red-black pebbling game on G. The idea is to show

58

that from any execution of A (with space bounded by some s, and communi-
cation bounded by some c) we can construct some pebbling game for pebble
game described before. Then, we show that (with high probability) this game
respects the rules of the game and is (B,R)-bounded (for some B,R that will
depend on c and s). We will then combine it with Theorem 4.5 to conclude
that some specific oracle calls are impossible.

The main fact about the connection is that — in every round — the black-
pebble complexity of the pebbling will correspond to the space-complexity
of Asmall and the red-pebble complexity corresponds to the communication-
complexity of Asmall.

First, let us strictly define the method of translating an execution of A
into a pebbling game. Let H : {0, 1}∗ → {0, 1}w be a random oracle,
and let K = (K1, . . . , KN) be a labeling of the input-vertices of G. For
any algorithms A = (Abig,Asmall) we can use the execution AH(·)(K) =(
AH(·)
big � AH(·)

small(K)
)
to construct a red-black pebbling of the graph G. In

particular, we get a transcript listing all oracle calls made during its entire
execution, and whether they were made by Asmall or Abig and all nextRound
calls made by Asmall.

We fix some terminology about the transcript. Given (H, K), we say that
an oracle call of the formH(label1, label2, v) is correct if (label1, label2, v) =
preLabel(v). We call the children v1, v2 of v the input-vertices of the oracle
call, and v is the output-vertex of the oracle call.

Using the transcript (along with the description of H, K) we define the
ex-post-facto pebbling of the graph G. We do so by processing the random-
oracle calls and nextRound calls in the transcript one-by-one starting with
the earliest one, and, for each call, we take the following steps:

Change round: IfAsmall calls nextRound, change round in the pebble game.

Place all necessary red pebbles: A vertex v is red-necessary if, looking
at the entire transcript of all oracle calls, there exists some correct
oracle call made by Abig with v as an input-vertex, which precedes all
correct oracle calls made by Abig with v as an output-vertex. If the
call is taken in kth round and v ∈ Vk·M then we say that v is k-red-
necessary.
Go through all red-necessary vertices v one-by-one and, for each one
check if that has a black pebble,but no red pebble. If so, put red pebble
on v.5

5Note that the set of red-necessary vertices does not change throughout the process.
Intuitively, these are the vertices whose labels must be communicated by Asmall to Abig

59

Delete all unnecessary black pebbles: A vertex v is black-necessary if
it is not red-necessary and, in the remainder of the transcript of oracle-
calls that have not yet been processed (including the current call), there
exists some correct oracle call made by Asmall with v as an input-vertex
such that:

• In the remainder of the transcript, there is no earlier correct oracle
call made by Asmall with v as an output-vertex.
• In the entire transcript, there is no earlier correct oracle call made

by Abig with v as an output-vertex.

Go through all vertices v which are not black-necessary but have a
black pebble on them, one-by-one, and remove the black pebble.6

Process oracle call: If the current oracle call is correct and made by Asmall
(respectively Abig) with output vertex v, we put a black (respectively
red) pebble on v.

We notice that every vertex that is labeled by the execution of AH(·)(K)
gets a (red or black) pebble placed on it in the corresponding ex-post-facto
pebbling (although, of course, this pebble may have been removed at some
later point). Moreover, the order in which vertices get red/black pebbles
corresponds to the order in which the oracle calls are made by A.

As mentioned before, we now show that, for any adversaryA = (Asmall,Abig)
which is space/communication bounded, and which makes a bounded num-
ber of oracle calls, the ex-post-facto pebbling is legal and has small
space/communication complexity.

Theorem 4.10. Let G be an N-tower graph. Let A = (Abig,Asmall) be any
adversarial labeling game in our restricted model of computation. Let (H, K)
define a random-oracle labeling of the graph G, with label-length w. Assume
that A makes at most q random-oracle queries during the execution. Then,
the ex-post-facto pebbling of G corresponding to an execution of AH(·)(K) has
the following properties (for any k):

at some point in time, and correspondingly for which we need to take pebbling-action 1
to place a red pebble on them. We choose to take this action as early as legally possible,
since it might allow us to remove related black pebbles early.

6Note that the set of black-necessary vertices can be different at different points in the
process. Intuitively, at any point in time, a black-necessary vertex is one whose label must
be stored in the memory of Asmall since it will not be re-computed by Asmall via oracle
calls, it was never communicated to Abig, nor will it be computed by Abig in time.

60

1. It is a legal pebbling (i.e. follows the rules of the red-black pebbling
game and changes round only when appropriate condition is hold) with
probability 1− q

2w over the choice of (H, K).

2. Assuming that Asmall has c-bounded communication and that in rounds
0, . . . , k − 2 no vertices from Vk·M were pebbled in the ex-post-facto
game then, for any λ 0 the red-pebble complexity of the round k is at
most 2c+λ

w−log(q) with probability 1− 2−λ over the choice of (H, K).

3. Assuming that Asmall has s-bounded storage and c-bounded communi-
cation and that in rounds 0, . . . , k − 2 no vertices from Vk·M were
pebbled then, for any λ > 0, the sum of the red-pebble complexity and
the black-pebble complexity of the round k is at most 2c+s+λ

w−log(q) with prob-
ability 1− 2−λ over the choice of (H, K).

Proof of Theorem 4.10. First, let us show part 1 of the theorem, that the ex-
post-facto pebbling is legal with probability at least 1− q

2w . Assume otherwise.
The only way that our pebbling could be illegal is if, during the processing
of a correct oracle call or nextRound call (made by Abig or Asmall), one of the
input-vertices v of the call does not have a pebble of the correct color (resp.
red or any) on it. Since such a pebble would never have been deleted, this can
only happen if it was never placed. That is, there must be a vertex v, which
is not an input-vertex of G, such that the execution-transcript of A contains
a correct oracle call or nextRound call (made by either Abig or Asmall) with
v as an input vertex, which precedes all correct oracle calls made with v as
an output-vertex. Therefore, the above must happen with probability greater
than q

2w . But then, we can define a predictor P for the values of B = (K,H)
which:

Gets as hint: The index i ∈ {1, . . . , q} in the list of oracle-calls and nextRound
calls made by AH(·)(K) that satisfies the requirement.

Runs: Runs AH(·)(K). Answers all queries of A honestly (using access to
H, K) until the ith query made by A, which is of the form
H(label(a1), label(a2), v), or nextRound(a1, . . . , aN). By assumption,
for at least one of the arguments ai, the oracle was never queried at the
point preLabel(ai). Moreover, it is easy to figure out i, by computing
preLabel(aj) for each argument, without querying the oracle on input
preLabel(ai).

Outputs: The bits ofH corresponding to label(ai) at “position” preLabel(ai).

61

But, by Lemma 2.1, the probability of the above succeeding is at most q
2w ,

leading to a contradiction.
Next let us show part 2 of the theorem. Again, assume otherwise, that

there is some k and some λ 0 such that (a) in rounds 0, . . . , k−2 no vertices
from Vk·M were pebbled, and (b) the red-pebble complexity of round k of
the ex-post-facto pebbling is r c+λ

w−log(q) with probability (strictly) greater
than 2−λ. The only way that the red-pebble complexity of round k could be
r is if there are r distinct k-red-necessary vertices v. Recall that a vertex is
k-red-necessary if the transcript includes correct oracle call in round k made
by Abig with v as one of the input-vertices, which precedes all correct oracle
calls made by Abig with v as an output-vertex. We call the corresponding
oracle-calls k-red-necessary, and there are r′ ¬ r of them (one oracle-call
can make many of its input-vertices k-red-necessary). The intuition is that
the algorithm Abig must then somehow predict the labels of these k-red-
necessary vertices without querying the appropriate input to the oracle, given
the communication from Asmall as a hint. That is, we define a predictor P
for the bits of B = (K,H), which works as follows:

Gets as hint: The value hcom ∈ {0, 1}2c of all communication from Asmall
to Abig made during the execution AH(·)(K) of rounds k−1 and k. The
indices (i1, . . . , ir′) ⊆ {1, . . . , q}

r
′
of the r′ k-red-necessary oracle-calls

made by AH(·)
big during the execution.

Runs: Runs A for rounds 1 to k − 2, answering all queries honestly (using
access to H, K). Then runs only AH(·)

big and feeds it the correct commu-
nication on behalf of Asmall (without running Asmall) using the hint.
For the random-oracle queries corresponding to the indices (i1, . . . , ir′),
record the labels of all the input-vertices of such calls (we do not yet
know which ones are k-red-necessary). To answer any oracle calls of
Abig, with output-vertex v:

• Determine if the call is correct. A call is correct iff (1) it corre-
sponds to one of the stored indices ij, or (2) correct oracle calls
were previously made by Abig on all children of v (having them
as an output-vertex) and the provided input to the current call
matches the output of all these previous calls. Note that correct-
ness can therefore be checked recursively without making any new
oracle calls.
• If the call is correct and the label of v is one of the recoded labels,

output it. Otherwise query H to answer the call.

62

At the end, use the transcript of all oracle calls made by Abig to
determine which r vertices v1, . . . , vr are k-red-necessary. The labels
label(v1), . . . , label(vr) are among the recorded labels.
Compute preLabel(v1), . . . , preLabel(vr), which can be done without
querying H with these as inputs.

Outputs: The bits of H corresponding to label(v1), . . . , label(vr), at po-
sitions
preLabel(v1), . . . , preLabel(vr).

It is easy to check that, in the above process, H is never queried on the inputs
preLabel(vi) for the k-red-necessary vertices vi. (By assumption (a) we have
that in rounds 1 . . . k − 2 it is impossible to pebble any vertex from Vk·M .)
Therefore, by Lemma 2.1, the probability of the above succeeding is at most
q

r22c

2rw ¬ 2−(r(w−log(q))−2c) ¬ 2−λ, leading to a contradiction.
Lastly, let us turn to part 3 of the theorem. Again, assume otherwise, that

there is some λ 0 for which the sum of the red-pebble and black-pebble
complexities of the ex-post-facto pebbling of round k is z c+s+λ

w−log(q) with
probability (strictly) greater than 2−λ. The only way that this could happen
is if r of the vertices are k-red-necessary and if at at some point there are there
are b vertices that are k-black-necessary (note that these sets are disjoint by
definition). As the hint, we will store the value hstate which encodes the entire
state of Asmall corresponding to that point in the transcript and hcom which
encodes all of the communication from Asmall to Abig in rounds k− 1 and k:

Gets as hint: The values hcom ∈ {0, 1}2c, hstate ∈ {0, 1}s.
The indices (i1, . . . , iz′) ⊆ {1, . . . , q}

z
′
of the z′ ¬ z distinct oracle-calls

made by AH(·)
big and AH(·)

small which make some vertex k-red-necessary or
k-black-necessary.

Runs: First run A for rounds 1 . . . k − 2, then run AH(·)
big by feeding it the

correct communication on behalf of Asmall (without running Asmall)
using the hint. Answer oracle queries as before. Once this is done, run
Asmall starting in the state encoded by hstate and pass it the commu-
nication on behalf of Abig that was produced by the earlier run. We
can use the same game as in the last case to determine if oracle calls
made by Asmall are correct, and how to respond to them. At the end,
we will have recorded the labels of all of the k-red-necessary and k-
black-necessary vertices v1, . . . , vz, and can compute preLabel(vi) as
before.

63

Outputs: The bits of H corresponding to label(v1), . . . , label(vz), at po-
sitions
preLabel(v1), . . . , preLabel(vz).

By Lemma 2.1, the probability of the above succeeding is at most (q)z22c2s

2zw ¬
2−(z(w−log(qt))−2c−s) ¬ 2−λ, leading to a contradiction.

�

4.4.6 Proof of Theorem 3.10
Consider an execution of A and a corresponding ex-post-facto pebbling game
G. Let X denote an event that G is legal. For i = 1, . . . , T let Bi and Ri denote
the respective black- and red-pebble complexities of round i in G. Moreover,
let Yi denote the event that in the round i we have that (1) Bi + 2Ri <
N + N/2, and (2) no vertex in V(i+2)·M has been pebbled. Recall that every
vertex that is labeled gets also pebbled. Therefore we have

1− p P (Y1 ∧ · · · ∧ YT−2)
 P (X ∧ Y1 ∧ · · · ∧ YT−2)
= P (X) · P (Y1|X) · P (Y2|Y1 ∧ X) · · · · ∧ P (YT−2|Y1 ∧ · · · ∧ YT−3 ∧ X)(4.3)

Let us look at a term P (Yi|Y1 ∧ · · · ∧ Yi−1 ∧ X). Suppose Y1∧· · ·∧Yi−1∧X
occurred. The events Y1, . . .Yi−2 together imply that until round i − 2 no
pebble has been placed on any vertex in Vi·M . Hence:

• Ri ¬ 2c+λ
w−log(q) with probability at least 1−2−λ (from Part 2 of Theorem

4.10), and

• Bi + Ri ¬ 2c+s+λ
w−log(q) with probability at least 1 − 2−λ (from Part 3 of

Theorem 4.10).

Therefore we get that Bi+2Ri ¬ 4c+s+λ
w log(q) ¬ N+N/2 with probability at least

1− 21−λ. Since the events Y1, . . .Yi−1 also imply that Bj + 2Rj ¬ N + N/2
holds for every j < i, therefore we can apply Theorem 4.5 and get that with
probability 1 − 21−λ no pebble is put on any vertex in V(i+1)·M in round i.
Since we also know that the pebbling is legal (because we assumed that X
occurred), a vertex can be labeled by A only if it is pebbled. Hence Yi holds
(with probability at least 1−21−λ). From Part 1 of Theorem 4.10 we have that
P (X) 1− q

2w . Putting things together we get P (Yi|Y1 ∧ · · · ∧ Yi−1 ∧ X)

64

...
...

...
...

...
...

(4, N − 2)

__ ??

(4, N − 1)

__ ?? __

· · · (4, N − 4)

__ ??

(4, N − 3)

__ ??

(3, N − 2)

??

(3, N − 1)

__ ??

(3, 0)

__ ??

· · ·

??

(3, N − 3)

__ ??

(3, N − 2)

__

(2, N − 1)

__ ??

(2, 0)

__ ?? __

· · · (2, N − 3)

__ ??

(2, N − 2)

__ ??

(1, N − 1)

??

(1, 0)

__ ??

(1, 1)

__ ??

· · ·

??

(1, N − 2)

__ ??

(1, N − 1)

__

(0, 0)

__ ??

(0, 1)

__ ?? __

· · · (0, N − 2)

__ ??

(0, N − 1)

__ ??

Figure 4.1: An N -tower graph. Note that the vertices (1, N − 1), (3, N − 1)
are duplicated on this picture. An (N,M)-tower graph is a subgraph of the
N -tower graph induced by its bottom M lines.

1− 21−λ. Hence (4.3) is at least equal to(
1− q

2w
)
·
(
1− 21−λ

)T−2

(
1− q · 2−w

)
·
(
1− T · 21−λ

)
 1− q · 2−w − T · 21−λ

Therefore p is at most (4.2).

4.5 Figures

65

CC W_

•

CC ?G[[[[

CC ?G[[

•

CC[[

•

[[

CC

•

CC[[CCW_ CC[[[[

CC CC[[

•

CC[[

•

CCW_ CC[[[[

p

Figure 4.2: Pyramid graph with N vertices at the bottom

66

Chapter 5

One time programs

In this chapter we reinvestigate a notion of one-time programs introduced
in the CRYPTO’08 paper by Goldwasser et al. A one-time program is a
device containing a program C, with the property that the program C can be
executed on at most one input. Goldwasser et al. show how to implement one-
time programs on devices equipped with special hardware-gadgets called one-
time memory tokens. We provide an alternative construction that is based on
the following assumptions: (1) the total amount of data that can leak from
the device is bounded, and (2) the total memory on the device (available both
to the honest user and to the attacker) is also restricted, which is SBA–model
desribed before.

5.1 Introduction
A notion of one-time programs was introduced by Goldwasser et al. [35].
Informally speaking, a one-time program is a device D containing a program
C, that comes with the following property: the program C can be executed
on at most one input. In other words, any user, even a malicious one, that
gets access to D, should be able to learn the value of C(x) for exactly one x
at his choice. As argued by Goldwasser et al., one-time programs have vast
potential applications in software protection, electronic tokens and electronic
cash.

It is a simple observation that one-time programs cannot be solely software-
based, or, in other words, one always needs to make some assumptions about
the physical properties of the device D. Indeed, if we assume that the entire
contents P of D can be read freely, then an adversary can create his own
copies of D and compute C on as many inputs as he wishes. Hence, it is
natural to ask what kind of "physical assumptions” are needed to construct

67

the one-time programs. Of course, a trivial way is to go to the extreme and
assume that D is fully-trusted, i.e. the adversary cannot read or modify its
contents. Obviously, then one can simply put any program C on D, adding an
extra instruction to allow only one execution of C. Unfortunately, it turns out
that such assumption is often unrealistic. Indeed, a number of recent works
on side-channel leakage and tampering attacks have demonstrated that in
real-life constructing a leakage- and tamper-proof devices is hard, if not im-
possible.

Therefore it is desirable to base the one-time programs on weaker phys-
ical assumptions. The construction of Goldwasser et al. [35] is based on the
following physical assumption: they assume that D is equipped with special
gadgets that they call one-time memory (OTM) devices. At the deployment
of D an OTM can be initialized with a pair of values (K0, K1). The program
P that is stored on D can later ask the OTM for the value of exactly one
Ki. The main security feature of the OTMs is that the OTM under no cir-
cumstances releases both K0 and K1. Technically, it can be implemented by
(a) storing on each OTM a flag f initially set to 0, that changes its value
to 1 after the first query to this OTM, and (b) adding a requirement that
if f = 1 then an OTM answers ⊥ to every query. Under this assumption
one can construct a general complier that transforms any program C (given
as a Boolean circuit) into a one-time program that uses the OTMs. Hence,
in some sense, Goldwasser et al. [35] replace the unrealistic assumption that
the whole device D is fully secure, with a much weaker one that the OTM
gadgets on D are secure. Actually, by secure’ we mean that they are leakage-
proof (in particular: they never leak both K0 and K1) and tamper-proof (and
hence the adversary should not be allowed to tamper with f).

Our Contribution. One can, of course, still ask how reasonable it is to
assume that all the OTMs placed on D are secure, and it is natural to look
for other, perhaps more realistic, models where the transformation similar
to the one of [35] would be possible. In this chapter we propose such an
alternative model, inspired by recent work of Dziembowski et al. [25] on one-
time computable self-erasing functions. In contrast to the assumption used
by Goldwasser et al., in our model we do not assume security of individual
gadgets on D, but rather impose global restrictions on what kind of attacks
are possible.

To explain and motivate the use of the model of Dziembowski et al. [25] in
our context, let us come back to the observation that a "physical assumption”
that is obviously needed is that the adversary cannot copy the entire contents
P of D, or more precisely, that the amount of information f(P) about P that

68

leaked to the adversary is bounded. There has been lot of work recently on
modeling such bounded leakage. A common approach, that we follow in this
work, is to model it as an input shrinking function, i.e. a function f whose
output is much shorter than its input (the length c of the output of f is a
parameter called the amount of leakage). Such functions were first proposed in
cryptography in the so-called bounded-storage model of Maurer [48]. Later,
they were used to define the memory leakage occurring during the virus
attacks in the bounded-retrieval model [3, 14]. In the context of the side-
channel leakages they were first used by Dziembowski and Pietrzak [29] with
an additional restriction that the memory is divided into two separate parts
that do not leak information simultaneously, and in the full generality in the
paper of Akavia et al. [1].

Obviously, if we want to incorporate the tampering attacks into our model
then we also need some kind of a formal way to define the class of admissible
tampering attacks. To see that some kind of limitations on tampering attacks
are always needed let us first consider the broadest possible class of such
attacks, i.e. let us assume that we allow the adversary to transform the
contents P of the device in an arbitrary way. More precisely, suppose the
adversary is allowed to substitute P with some g(P), where g is an arbitrary
function chosen by him. Obviously in this case there is no hope for any
security, as the adversary can design a function g that simply calculates
"internally” (i.e.: on the device) the values of the encoded program on two
different inputs, and leaks them to the adversary (if these values are short
then this can be done even if the amount of leakage is small). Hence, some
limitations on g are always needed. Unfortunately, it is not so obvious what
kind of restrictions to use here, as currently, unlike in the case of leakage
attacks, there does not seem to be any widely-adopted model for tampering
attacks. In fact, most of the anti-tampering models either assume that some
part of the device is tamper-proof [33], or they are so strong that they permit
only very limited constructions [30].

As mentioned before, in this work we follow the approach of Dziembowski
et al. [25], where the authors model the tampering attacks by restricting the
size of memory available to the tampering function g. More precisely, we
assume that there is a general bound s on the space available on D, that
can be used by anybody who performs computations on D, including the
honest program P and the adversary. This assumption can be justified by
the following observations: (1) it is reasonable to assume that in practice
the bound on the memory size of the device is known, and no adversary can
"produce” additional space on it by tampering with it, and (2) in general
it is also reasonable to assume that the tampering function is "simple”, and
hence it cannot have a large space-complexity.

69

What remains is the describe the way in which the restrictions c on leak-
age and s on communication are combined into a single model. The way
it is done by Dziembowski et al. [25] is as follows: they model the adver-
sary as two entities: a big adversary Abig and a small adversary Asmall. The
small adversary represents the tampering function, and hence it has a full
access to the contents P of the device. It can perform any computation on
D subject to the constraint that it cannot use more memory than s. The
fact that it can leak information to the outside is modeled by allowing him
to communicate up to c bits outside of the device. This leakage information
can later be processed by the big adversary Abig that has no restrictions on
his space complexity. In order to make the model as strong as possible we
actually allow Abig to communicate with Asmall in several rounds (and we
do not impose any restriction on the amount of information communicated
by Abig back to Asmall). We apply exactly the same approach in our work.
Our main result (see 5.2) is a generic compiler that takes any circuits C and
transforms it into a one-time program P secure in the model described above.
As in the case of [25] , our result holds in the Random Oracle Model (where
we model as random oracles hash functions of fixed input lengths). For the
concrete parameters see 5.2, and 5.4 below it. Let us only remark here, that
for a fixed circuit we get that the security holds as long as s − 2nc γk,
where γ is some constant, and n is the number of input bits of the circuit.
Hence, the leakage size c has to be inversely-proportional to n. We remark
that it is probably ok for small n’s (e.g. if the input is a PIN that has for
decimal digits). In any case, for any realistic values of other parameters it is
super-logarithmic, and hence covers all attacks where the leaking value is a
scalar (e.g. the Hamming weight of the bits on the wires).

Related Work. Some related work was already described above. The fea-
sibility of implementing the scheme of Goldwasser et al. [35] was analysed by
Jarvinen et al. [39]. The model of Dziembowski et al. [25] and the pebbling
technique were also used in a subsequent paper [24] to construct leakage-
resilient key-evolution schemes. Finally, let us note that the main difference
between [25] and our work is that in [25] the authors construct a one-time
scheme for a concrete cryptographic functionality (i.e., a pseudorandom func-
tion), while here we show a generic way to implement any functionality as a
one-time program.

70

5.2 Preliminaries
Across this chapter, we often make use of boolean circuits. We use a capital
C to label such a circuit. If C has n inputs and m outputs then we identify C
with a function C : {0, 1}n → {0, 1}m. For simplicity, we confine the analysis
to the case where every gate of C has a fan-in of 2. Also, we assume that no
input wire of C is also an output wire of the circuit, and that output of any
gate cannot be simultaneously attached to input of some other gate and to
output wire of C. Each wire, including the input and output ones, and every
gate is assigned a unique label. A size of C, defined as a number of gates in
C, is denoted by |C|. Following the work of Yu et al. [61], we use Topo(C)
to represent just a connectivity graph (a topology) of C where each gate is
stripped of information about what functionality it actually implements.

We write C(x) for a result of evaluating C on a given input x, and, more
generally, A(x) for an outcome of running an algorithm A (modelled as a
Turing machine, possibly a non-deterministic one) on x. Occasionally, we
add a superscript H to A and write AH to signify that A is given access to
an oracle that computes some function H. Everywhere below it is assumed
that there exists a (programmable) random oracle H : {0, 1}∗ → {0, 1}k for
a parameter k to be specified later. Phrases: the random oracle H and the
function H are then used interchangeably.

When typesetting algorithms, we write R $← S for sampling a uniformly
random value from some set S and assigning it to a variable R. We assume
that every such sample is independent of other choices. We conform to the
common bracket notation T [i] for accessing the ith element of an array T .

We say that a function is negligible in k if it vanishes faster than the inverse
of any polynomial of k. In particularly, we use this expression to indicate that
certain event can only occur with a small, i.e. negligible, probability in some
security parameter k. Also, we often write just: a negligible probability and
omit k when this parameter is clear from context.

As announced in 5.1, the model we adopt in the work assumes splitting an
adversary A into two components: Asmall and Abig. Both parts are interactive
algorithms with access to H, where a total number of oracle calls made
is limited. Additionally, Asmall, which can see the internals of an attacked
device, has:

• s-bounded space – a total amount of memory used by Asmall does not
exceed s bits, i.e., an entire configuration ofAsmall (contents of all tapes,
a current state, and positions of all the tape heads), at any point of
execution, can be described using s bits;

• c-bounded communication – a total number of outgoing bits sent by

71

Asmall does not exceed c, assuming that Asmall cannot convey any extra
information when communicating with Abig (e.g. by abstaining from
sending anything during some period of time).

Note that A = (Asmall,Abig) can have an unbounded computational
power. Also, the amount of bits uploaded by Abig to Asmall is not restricted.

We write AH(R) =
(
AHbig() � AHsmall(R)

)
to denote the interactive exe-

cution of Abig and Asmall, where Asmall gets R as an input. We settle on a
simplifying arrangement that the contents of memory (e.g. the data on all the
tapes) of Abig after it finishes its run form a result of this execution. In par-
ticular, any information computed by Asmall needs to be transmitted to Abig
(contributing to the communication quota) in order to be included as a part
of the result. Such an approach is justified by our real-world interpretation of
Asmall and Abig as a virus and a remote adversary controlling the virus. Here,
only the data that the external adversary can receive is considered valuable.

5.3 One-time Program
In this section, we give a strict definition of one-time programs/devices. Intu-
itively, an ideal one-time program should mimic a black-box that internally
calculates a value of some boolean circuit C. It should allow only one execu-
tion on an arbitrary input after which it self-destructs. To boot, the black-box
should not leak any information about C whatsoever. As explained in 5.4.2,
there are theoretical obstacles that make this goal impossible to achieve in
its full generality. So instead, we show that any adversary that operates a
one-time device can evaluate it on a single argument x and can hardly learn
anything more about the underlying circuit C but n, m, and |C|. It there-
fore gains some additional knowledge that goes beyond C(x), namely the
size of the circuit. Admittedly, that information is not considered substantial
in practice. 5.1 makes this property formal in terms of a simulator that is
permitted to call an oracle evaluating C only once.

Definition 5.1. Suppose that K is a fixed class of algorithms. Let C : {0, 1}n →
{0, 1}m be a boolean circuit with positive integers n and m. Let O denote an
oracle that computes C(x) given x ∈ {0, 1}n. Consider an algorithm A ∈ K
which is additionally s-bounded in space and c-bounded in communication.
A protocol P is called a (c, s, ε)–one-time program for C if both of the fol-
lowing conditions hold:

• there exists a probabilistic polynomial-time decoder Dec that given x ∈
{0, 1}n executes P using at most s bits of memory, so that Dec(x,P) =

72

C(x), except for probability ε (where the probability is taken over all
possible choices of x and P);

• there exists a simulator S with one-time oracle access to O, such that,
for any adversary A, no algorithm belonging to K can distinguish S(1n, 1m, 1|C|,A)
and A(P) with a probability greater than ε.

We note that the one-time property formulated in this way is even a
bit stronger than one might expect. For instance, it could be believed that
discovering C(x) alongside with a functionality of a single boolean gate inside
C does not grant an adversary any significant advantage. If |C| is large then
this additional knowledge barely helps to perceive how C actually looks like
as a whole. In our definition, we disallow adversary to find out anything more
than n, m, |C|, and C(x) for a single x.

Shortly, in 5.5, we construct a compiler Compilek,s (C) that, for some
parameter k, converts any boolean circuit C to a one-time program P that
can be organised into a device with s bits of memory. The main result of
this chapter is stated in the below 5.2 about Compilek,s (C). The Theorem
contains a reference to circuit obfuscation. An obscured form of C, denoted
C̃, is produced by the algorithm of Yu et al. [61], which is discussed in 5.4.2.
Making C uniform introduces a small blow-up factor (see (5.4) below) so
that C̃ is slightly larger than C.

Theorem 5.2. Let k be a security parameter. For a boolean circuit C : {0, 1}n →
{0, 1}m write |C̃| to denote a number of gates of C̃ – an obfuscated version of
C of uniform topology. Suppose there exists an oracle H : {0, 1}∗ → {0, 1}k
computing a random hash function. Assume that every algorithm in the class
K = Kq is allowed at most q calls to H, where k 4n2 log q. Then, for any
C and P ← Compilek,s (C), the protocol P is a (c, s, ε)–one-time program for
C with ε = O(q|C̃|2−k), provided that k m and

s− 2nc 16k(|C̃| log |C̃|+ 3n2 + nm) +O
(
(n+ k + log |C̃|)n

)
. (5.1)

Remark 5.3. We note that the above Theorem holds even if a potential
distinguisher is given C. Also, we impose no limits on its running time as well
as on time-complexity of the adversary. A can be computationally unbounded
but he merely subjects to restriction on the number of oracle calls made.
The construction of S is universal, i.e., it is independent of C and P so
no information about C is hardwired in S, as opposed to the solution by
Goldwasser et al. [35]. We also mention with a minor modification of our
construction we can replace the factor 2n on the left-hand side of (5.1) with
2n/ log n.

73

Remark 5.4. To interpret 5.2 for concrete parameters we can assume that
in (5.1) the big O term has only a small contribution compared to the other
parameters and thus can be neglected. Take n = m = 128 (the key and the
block size of AES), k = 50 and |C̃| = 256. With these parameters we obtain,
by (5.1), that s−256c has to be greater than approximately 7MB. Hence, e.g.,
for s = 20MB we get that the leakage c that we can tolerate is approximately
51KB.

If we consider smaller input and output size, n = m = 14, say (214 is
an approximate number of 4-decimal digits PINs), and k = 50 and |C̃| =
128, then we get that s − 28c has to be greater than approximately 200KB.
Hence, e.g., for s = 1MB we get that the leakage c that we can tolerate is
approximately 30KB.

5.4 Tools
For completeness of the exposition, we outline several existing constructions
the architecture of one-time devices builds upon – circuit obfuscation tech-
niques and one-time computable pseudorandom functions.

5.4.1 Circuit Garbling
An important landmark in the theory of multi-party computations was set
up by Yao in mid ’80s. His seminal work [60] provided the first general proto-
col that enabled two honest-but-curious users to jointly evaluate a function
f without disclosing their respective private inputs x. A so called circuit gar-
bling process accounted for an essential part of this method. Its role was to
conceal all intermediate values that occur on internal wires (in particular: on
certain input wires) of a boolean circuit representing f during computation.
Below, we follow an expository paper [45] by Pinkas and Lindell who gave
the first rigorous treatment of Yao’s protocol.

Let k be a security parameter to be determined shortly. Given a boolean
circuit C, the garbling procedure Garblek(C) converts it to a somewhat en-
crypted form and specifies how to conduct computations on the latter. First,
we associate each wire w of C (including input and output wires of C) with
two random strings Kw

0 and Kw
1 of length k. These two keys represent binary

values 0 and 1, respectively, that would appear on w if a computation took
place on C in its plain, unencrypted state. Instead, a user that evaluates a
garbled circuit, can only see either K = Kw

0 or K = Kw
1 , but he is not able to

tell which binary value K corresponds to. This way, all actual intermediate
values on internal wires can be hidden effectively.

74

To make the description of Garblek(C) complete, we need to specify how
the above strings for input wires of any gate map to values on output wires.
Pinkas and Linell [45] introduce an auxiliary encryption scheme, possibly a
non-deterministic one, (E,D) to mask this mapping. We call it a garbling
encryption scheme. It enjoys some extra properties going a little beyond
standard semantic security. In what follows, EK(·) denotes the encryption
under a keyK (similarly,DK(·) stands for the decryption usingK). We adopt
the following definition of EK based on H, which satisfies the requirements
listed by Pinkas and Lindell:

EK(M) := (H(K), r,H(K, r)⊕M) where r $← {0, 1}k. (5.2)

A double-encryption under two keys, say K1 and K2, each of length k, which
is written as EK1;K2(·) with DK1;K2(·) being the complementary double-
decryption, is a paramount ingredient of the garbling process. Departing
from the original solution [45] for technical reasons, we specify EK1;K2(·)
separately extending (5.2) with:

EK1;K2(M) := (H(K1, K2), r,H(K1, K2, r)⊕M) for r $← {0, 1}k. (5.3)

In the remainder of this work we assume that ciphertexts in a garbling en-
cryption scheme are all of length 3k as implied by (5.2) and (5.3).

Now, consider a boolean gate g of C with two input wires w1, w2, and an
output wire w3. We begin with writing down an ordinary truth table for g. We
replace each bit b appearing in the table for every wire w ∈ {w1, w2, w3} with
Kw
b . Next, we double-encrypt each entryK3 in the last column (corresponding

to w3) to EK1;K2(K3) using keys K1 and K2 from the two preceding columns.
Finally, we randomly permute 4 rows of the table and restrict attention the
right-most column. These four entries constitute the result of garbling g. 5.1
depicts how this procedure works when applied to a NAND gate.

w1 w2 w3

0 0 1
0 1 1
1 0 1
1 1 0

(a) The truth table for
a NAND gate

ga
rb

le
d

ta
bl

e

w1 w2 w3

K
w1
0 K

w2
0 EKw1

0 ;Kw2
0

(Kw3
1)

K
w1
0 K

w2
1 EKw1

0 ;Kw2
1

(Kw3
1)

K
w1
1 K

w2
0 EKw1

1 ;Kw2
0

(Kw3
1)

K
w1
1 K

w2
1 EKw1

1 ;Kw2
1

(Kw3
0)

(b) A garbled table for a NAND gate

Figure 5.1: Garbling of a NAND gate

75

The garbling routine Garblek(C) processes C gate by gate. It constructs
and collects garbled tables for each gate as described above. In overall,
Garblek(C) outputs the following information: a mapping I between plain
bits b = 0, 1 and K

ini
b for each input wire ini, a reverse map O from K

outi
b

to b for each output wire outi, and a topology Topo(C) of C with garbled
tables attached. This data is required to make evaluations of C in a garbled
form possible. Later, however, we switch to circuits of uniform topology. This
allows to embed information about underlying graph in a program that com-
putes a garbled circuit basing on a flat array of garbled tables. A summary
of Garblek(C) is given in 1.

Algorithm 1 Garbling procedure Garblek(C)
Input: a boolean circuit C : {0, 1}n → {0, 1}m, a security parameter k
Output: a circuit topology C with garbled tables, I, O – bit-to-key
mappings

1: procedure Garblek(C)
2: for each wire w of C do
3: Kw

0 , K
w
1

$← {0, 1}k
4: for each gate g of C do
5: construct a truth table for g
6: replace each bit b with Kw

b for every wire w connected to g
7: T g ← {EK1;K2(K3) | K1, K2, K3 form a row of the truth table of g}
8: end for each
9: for i← 1 to n do
10: I[i]← (K ini

0 , K
ini
1) . ini is the ith input wire of C

11: C← Topo(C) ∪ {(g, T g) | g is a gate of C}
12: for i← 1 to m do
13: O[i]← (Kouti

0 , K
outi
1) . outi is the ith output wire of C

14: return (I,C, O)
15: end procedure

The protocol for evaluating a garbled circuit on any input x is quite
straightforward. First, we use the mapping I to translate each bit b of x
appearing on an input wire w to the appropriate key Kw

b . Let Kx be a
vector composed of theseKw

b . Subsequently, we apply the following algorithm
Eval(C, O,Kx). We traverse C in the same way as in the case of ordinary
boolean circuit, that is: when we obtain keys K1 and K2 for both input
wires of any garbled gate, then we can put a proper key K3 on its output
wire. To this end, we test which of 4 entries of the garbled table is a double-
encryption under K1 and K2. If more than one ciphertext matches then the
whole computation aborts reporting an error (this can, however, happen with

76

a negligible probability). Otherwise, we decrypt that entry with DK2;K1(·)
getting K3 as a result. In the end, it suffices to consult O to map keys from
output wires of C back to plain bits.

It can be proven that Eval correctly evaluates a garbled circuit given Kx

and the computation reveals nothing more about x than C(x).

5.4.2 Uniform Circuit Topology
One of the requirements a one-time program has to stand up to is ensuring
that no eavesdropping into program’s internals is possible. It is also a com-
mon problem in practical computer science to create software invulnerable
to reverse engineering. Usually, satisfactory results can be achieved by ad-
hoc techniques that decrease readability of a program (e.g. by obscuring a
source code syntactically or inserting NOOPs). From a theoretical point of
view, however, an ideal obfuscator cannot exist. Barak et al. [6] provide an
artificial example of a family of functions that are inherently unobfuscatable.
That is, there always exists a predicate which leaks when we are given a
function in its plain form but cannot be reliably guessed if the function is
implemented as a black-box. Fortunately, some partial obfuscation is attain-
able. Yu et al. [61] describe a method for hiding a topology of a boolean
circuit C. We recall a result on their obfuscating algorithm Obfuscate(C)
below.

Theorem 5.5 (cf. Theorem 1 and Theorem 2 of Yu et al. [61]). Let C : {0, 1}n →
{0, 1}m be a boolean circuit with m = 1. Then, the obfuscating algorithm
Obfuscate(C) constructs a circuit C̃ with |C̃| = O(|C| log3 |C|) such that
C̃(x) = C(x) for all x ∈ {0, 1}n and Topo(C̃) discloses (in the information-
theoretic sense) nothing more than n, m, and |C|.

Remark 5.6. A naĂŻve application of the above Theorem leads to an ob-
fuscated circuit of uniform topology for the case where m > 1. The additional
overhead the construction then incurs is

|C̃| = O(m|C| log3 |C|) . (5.4)

The below 5.4.2 follows from the analysis given by Yu et al. [61].
Proposition The algorithm Obfuscate(C) uses at most 4|C̃| log |C̃| bits

of memory. Put differently, given n, m, and |C| it is possible to generate
a uniform topology that is common for all circuits with n-bit input, m-bit
output, and |C| gates, within space of 4|C̃| log |C̃| bits.

77

5.4.3 One-Time Computable Pseudorandom Function
(PRF)

A notion of the one-time computable pseudorandom functions was intro-
duced by Dziembowski et al. [25]. A salient development of this work is a
construction of a pseudorandom function, or, more generally, a set of n such
functions, where each function can be calculated for a single argument in
the computation model with Abig and Asmall having limited space and com-
munication. Dziembowski et al. assume the existence of the random oracle
H. The underlying idea is to store a long random key, say R, on a device
that Asmall operates on. Now, R and H determine n distinct pseudorandom
functions (FH1,R, . . . , FHn,R). It is possible to evaluate each one on any input
but the computation forces an erasure of R so that no one viably compute
both FHi,R(x) and FHi,R(x′) for any two points x 6= x′ and the same index i. The
reasoning by Dziembowski et al. [25] includes establishing a strict connection
between this model and a certain game, called a pebble game, on graphs of a
special form. That is why we occasionally use the word pebble in the context
of the one-time computable PRFs. Below, we borrow some basic definitions
from the original paper to formalise the mentioned properties.

Consider an algorithm WH that takes a key R ∈ {0, 1}µ as an input and
has access to the oracle H. Let (FH1,R, . . . , FHn,R) be a sequence of functions
depending on H and R. Assume that WH is interactive, i.e., it may receive
queries, say x1, . . . , xn, from the outside. The algorithmWH replies to such a
query by issuing a special output query to H. We assume that after receiving
each xi ∈ {0, 1}∗ the algorithm WH always issues an output query of a
form ((FHi,R(xi), (i, xi)), out). We say that an adversary breaks pebbles if a
transcript of oracle calls made during its entire execution contains two queries
((FHi,R(x), (i, x)), out) and ((FHi,R(x′), (i, x′)), out), appearing at any point, for
some index i and x 6= x′.

Definition 5.7. WH is a (c, µ, σ, q, ε, n)–one-time computable PRF if:

• WH has µ-bounded storage and 0-bounded communication;

• for any AH(R) that makes at most q queries to H and has σ-bounded
storage and c-bounded communication, the probability that AH(R) (for
a randomly chosen R $← {0, 1}µ) breaks pebbles, is at most ε.

Dziembowski et al. [25] prove the existence of the one-time computable
PRFs under some plausible assumption on parameters c, µ, σ, q, ε, and n.

The use case we investigate in the work requires a slightly stronger primi-
tive than a PRF of 5.7. In this work, we introduce an extended one-time com-
putable PRF. An observation we come out with is that the limits on memory

78

available to an adversary can be relaxed moderately. Namely, once all FHi,R
are computed on some arguments, an adversary might be given unrestricted
space, yet it still gains no advantage in breaking pebbles in the remainder
of its execution. Now, the computing phase is a time interval between the
beginning of an execution and the moment when all output queries of the
form ((FHi,R(xi), (i, xi)), out) were made (for some xi and every i = 1, . . . , n),
provided that no i appears twice in that part of transcript. The below 5.8
strengthens the notion of a one-time computable PRF.

Definition 5.8. An algorithm WH is a (c, µ, σ, q, ε, n)–one-time computable
extended PRF if:

• WH is a (c, µ, σ, q, ε, n)–one-time computable PRF;

• for any adversary AH(R) that makes at most q queries to H, has
σ-bounded storage and c-bounded communication during the comput-
ing phase, but is not bounded on space afterwards, the probability that
AH(R) breaks pebbles, is at most ε.

The theorem about the existence of the one-time computable extended
PRFs holds with essentially the same parameters as in the base theorem by
Dziembowski et al. [25]. Here, we present one more result about the existence
of the extended PRFs that provides a condition which is more convenient to
use in our particular application.

Theorem 5.9. Let c, µ, δ, q, and n be positive integers. Then, for any
ε ¬ q2−4n2

, there exists a (c, µ, µ + δ, q, ε, n)–one-time computable extended
PRF, provided that

µ 2n(δ + c+ 4 log q + 6 log ε−1 + 6) . (5.5)

5.5 One-time Compiler
In this section, we give a high-level description of what a one-time device is
made up of. A purpose of a one-time compiler is to transform an arbitrary
boolean circuit C : {0, 1}n → {0, 1}m into a deliberately obscured form ac-
companied with some additional logic (a procedure) that enables evaluations
of the circuit on every single n-bit input.

The compiler routine Compilek,s constructs a one-time program deploy-
able on a device with a grand total of s bits of writable memory (including
registers, RAM, flash memory, and any other persistent storage). We, how-
ever, introduce no extra assumptions on the amount of read-only memory

79

available. Compilek,s is allowed unrestricted use of a source of random bits,
as well as access to the aforementioned random oracle H : {0, 1}∗ → {0, 1}k
with k being a security parameter. 2 presents a listing of the one-time com-
piler procedure.

Algorithm 2 One-time compiler Compilek,s (C)
Input: a boolean circuit C : {0, 1}n → {0, 1}m, a security parameter
k m, a total amount of memory on the device s
Output: a one-time program P = (m,R,L,K,C, O,B)

1: procedure Compilek,s (C)
2: for i← 1 to n do
3: Lini $← {0, 1}k
4: Latch← Lin1 ⊕ · · · ⊕ Linn

5: Mask← H(Latch)|m
6: C̃ ← Obfuscate (C ⊕Mask)
7: (I,C, O)← Garblek(C̃)
8: Master← H(Latch,C)
9: µ← s− (12|C̃|+ 8n+ 2m)k − logm− EXEC_SIZE
10: round µ down to the largest multiple of k
11: R

$← {0, 1}µ
12: for each input wire ini of C do . ini is the ith input wire of C
13: (K ini

0 , K
ini
1)← I[i]

14: compute FHi,R(0) and FHi,R(1)
15: L[i]←

(
E
F
H
i,R(0)(L

ini), E
F
H
i,R(1)(L

ini)
)

16: K[i]← (K ini
0 ⊕ FHi,R(0) ⊕ Master, K ini

1 ⊕ FHi,R(1) ⊕ Master)
17: end for each
18: construct a boot program B that fits into space of EXEC_SIZE bits
19: return (m,R,L,K,C, O,B)
20: end procedure

Firstly, the compiler prepares (2 of 2) a set of random keys Lini , which
we refer to as latchkeys. A value Lini corresponds to the ith input wire ini of
C. A string Latch := Lin1⊕· · ·⊕Linn combines all the latchkeys into a single
key. From Latch we derive (5), by means of the oracle, one more random
value, denoted Mask, trimming the output of H to the leading m ¬ k bits.
The exact role that all these auxiliary components play should become clear
later, in 5.6. Having calculated these values, the compiler enters its main
phase in 6. There, the obfuscation algorithm is run, yet on a biased version
of C, say C∗, defined as C∗(x) := C(x)⊕Mask. At this point Mask is merely
a constant that does not depend on x. Obviously, C∗ can be viewed as a

80

boolean circuit and implemented in such a way that |C∗| = |C| (it suffices to
flip, if needed, a functionality of each gate an output wire of C is attached to,
depending on the corresponding bit of Mask). The reason behind switching
to C∗ instead of working with C directly is that the simulator from 5.2 needs
to alter an output of a circuit when interacting with an adversary. This trick
can be exercised by changing the value of Mask in a transparent way, which
is done by S in 5.6.

The obfuscated circuit is garbled (7) using Yao’s method given in 1. Next,
a one-time computable extended PRF (in the sense of 5.8) is set up (10).
Actually, this step boils down to picking a random string R that determines
(together with H) said pseudorandom functions FHi,R. The embedded one-
time computable extended PRF is a primitive that protects input keys of the
garbled circuit. Namely, in order to evaluate a one-time program on some
input x = b1b2 . . . bn, one has to compute each FHi,R(bi) for i = 1, . . . , n. By
virtue of the property of extended PRFs, this computation erases an essential
portion of memory available on the device and makes evaluations of FHi,R(bi)
infeasible. The compiler, however, needs to find both: FHi,R(0) and FHi,R(1) for
all i’s (this requires a larger amount of memory than just s bits but still
Compilek,s is clearly polynomial in space and time).

Stored on the device are two encryptions of each latchkey Lini under
FHi,R(0) and FHi,R(1) as encryption keys. For this purpose, in 15 where these ci-
phertexts are accumulated in array L, we use the garbling encryption scheme
as given by (5.2). The input keys for C generated by the garbling procedure
get encoded too before being placed on the device. That is: the ith entry of
K contains, for b = 0 and 1, simple one-time pad encryptions of K ini

b under a
key FHi,R(b)⊕Master. Here, Master := H(Latch,C) is a value that depends on
all the latchkeys and the garbled circuit C. This all-or-nothing construction
ensures that a user can no sooner determine K ini

b than he has computed all
FHi,R(bi)’s. Also, this allows us to hold off the moment when an adversary can
reclaim a part of memory occupied by C and reuse it to enlarge space avail-
able for computing (or breaking) the extended PRF. In this way we control
the amount of free memory during the computing phase specified in 5.8.

A module that no physical computing device could do without and func-
tion properly is obviously its firmware. Thus, we include a machine code
B responsible for performing a bootstrap and managing computations. The
central part of B is an implementation of the decoder Dec claimed by 5.1.
The code as this one must be vastly architecture specific. That is why we
omit the details of B’s internals. The only constraint imposed on B is that it
does not exceed a reserved space of EXEC_SIZE bits total, where

EXEC_SIZE = O(k + n+ log |C̃|) . (5.6)

81

We stress that the memory B is deployed on does not necessarily need to be
read-only but is fully accessible to an adversary. It can be also assumed that
registers or CPU cache, if present on the device, count toward the size of B.

Now that we have described the one-time compiler, we present a decoder
Dec = Deck which is capable of evaluating a program produced by Compilek,s
on an arbitrary input x = b1b2 . . . bn. As the first step, Deck determines
FHi,R(bi) for each i = 1, . . . , n. This is accomplished by computing labels of
output vertices under a random oracle labeling of a certain on-line constructed
graph. The key R that settles a labeling of input vertices of this graph gets
erased during the process, and the region of memory that contained R can
be reused by Dec. Next, the decoder decrypts a matching entry of each
L[i] to find Lini . Based on these latchkeys, Dec computes Latch, Mask =
H(Latch)|m, Master = H(Latch,C), and reveals, using K[i], input garbled
keys K ini

bi
that correspond to each bit bi. Let Kx be a vector consisting of all

K
ini
bi
’s. The decoder then executes Eval(C, O,Kx) subroutine and calculates

a bitwise exclusive or of the result with Mask to obtain the final value, i.e.,
C(x). As for evaluating C, the garbled circuit kept on the device only includes
a list of garbled tables without its actual topology. Prior to running Eval,
the decoder needs to generate the unique uniform topology distinctive for
all circuits of n inputs, m outputs, and |C| gates. That is, Dec simulates
the obfuscating algorithm on such an arbitrarily chosen circuit. A memory
that has to be supplied by Dec for this step is located exactly in the same
region the key R was previously stored in. By 5.4.2, this space, which is
considered free after computing the extended PRF, has a sufficient size if
µ = |R| 4|C̃| log |C̃|. The sizes of the remaining components of P can be
easily counted: |L| = 6nk, |K| = 2nk, |C| = 12|C̃|k, and |O| = 2mk. In total,
the space that P occupies is

|P| = µ+ (12|C̃|+ 8n+ 2m)k + logm+ EXEC_SIZE , (5.7)

where we can replace EXEC_SIZE with the big O term arising from (5.6).
We state some straightforward facts about the decoder in 5.7.

5.6 Universal Simulator for One-time Programs
In this section, we focus on the more intricate part of 5.1 and describe an ex-
plicit simulator S. We employ a similar approach to the one that appears in
the work of Goldwasser et al. [35]. A notable difference, however, is that our
construction includes a component, i.e, the extended one-time computable
PRF, which does not offer a black-box security, in opposition to the afore-
mentioned OTMs. The condition (5.1) of 5.2 ensures that our replacement

82

of the OTMs, i.e., the extended one-time computable PRF, performs nearly
equally well. Namely, it is possible to achieve ε = (q + 1)2−k in 5.9 so that
the corresponding pebbles can be broken with a small probability. By the
analysis given in 5.8, the extra memory the adversary can retain in the com-
puting phase (see 5.8) can be bounded by δ = (8n+ 2m+ 1)k + EXEC_SIZE.
Now, combining (5.5) and (5.7) we get the following constraint

s− 2nc 2n(δ + 6k + 6) + (12|C̃|+ 8n+ 2m)k + logm+ EXEC_SIZE

. But (5.1) guarantees this condition is met.
Now, we give an outline of how the simulator S of 5.1 works given

1n, 1m, 1|C|, and an s-space bounded, c-communication bounded adversary
AH ∈ K . Plus, S has access to H. The simulator begins with assembling
a uniformly random circuit C ′ : {0, 1}n → {0, 1}m of size |C ′| = |C|. Then,
it runs the one-time compiler Compilek,s on C ′ obtaining a protocol P ′ =
(m,R,L,K,C, O,B). The simulator maintains two exact copies of P ′. In the
next step S starts executing AH on a copy of P ′, recording each oracle call to
H. Depending on what the resulting transcript contains, the simulator picks
one of the following paths:

1. There exists at least one index i such that none of the associated values
FHi,R(0) nor FHi,R(1) has been computed. Then, S simply outputs a result
AH has returned.

2. AH has broken pebbles (in the sense given in 5.4.3). In this case an
outcome of the simulation is again the same as the result AH has pro-
duced.

3. For each i = 1, . . . , n, the adversary AH has issued an output query
to H computing FHi,R(bi) either for bi = 0 or bi = 1 (but not both –
therefore AH has not broken pebbles). As S has learnt all these values
in the process, it can decrypt each of the latchkeys Lini just to pinpoint
for which bi the function FHi,R has been computed. All the FHi,R(bi)’s
correspond to a single value xA := b1b2 . . . bn that AH has committed
to by evaluating the extended one-time computable PRF. Thus, S is
also able to find out xA, compute C ′(xA) on its own, and query O on
argument xA. Let ∆x := C ′(xA)⊕C(xA). If ∆x happens to be 0m then
S continues by returning the value AH has outputted. Otherwise, the
simulator discards this result. Using the latchkeys and querying the
oracle H on Latch = Lin1 ⊕ · · · ⊕ Linn , the simulator determines the
genuine value of Mask = H(Latch)|m. Then, it reprograms H so that
H(Latch)|m := Mask⊕∆x. Next, S rewinds AH and runs it again on a

83

leftover copy of P ′ with substituted H. No matter which of the above
conditions 1-3 this second execution matches, an output of AH becomes
the final result of the simulation.

In 5.8 we prove that the output of S is indistinguishable from a result of
AH running on P , except for O(q|C̃|2−k) probability.

5.7 Properties of the Decoder
The below 5.10 asserts that a one-time program can be indeed executed on
a device with limited memory.

Lemma 5.10. For every k, s, a boolean circuit C : {0, 1}n → {0, 1}m, a
one-time program P produced by Compilek,s (C), and an input x, an execution
Dec(x,P) requires at most s bits of memory. Moreover, the decoder Dec runs
in polynomial time in n · s, issuing O(ns/k) queries to the random oracle H.

Over and above that, 5.11 declares that Dec fails to evaluate P at most
with a negligible probability. As a matter of fact, the compiler can produce a
flawed program prone to ambiguities that may occur when decrypting garbled
tables of C. Like in the case of garbled circuits, this can happen only rarely.

Lemma 5.11. Let k, s, C, and P be the same as in 5.10. Then it holds that
Pr(Dec(x,P) 6= C(x)) = O(|C̃|2−k), where the probability is taken over all
possible choices of input x ∈ {0, 1}n and one-time programs P for C.

5.8 Proof of the Main Theorem
Below, we provide a pending proof of 5.2 from 5.3.

Proof of 5.2. The existence of a decoder claimed in 5.2 follows from the con-
struction in Sections 5.5 and 5.7.

Now, we argue that the output of S described in 5.6 is indistinguishable
from a result of AH running on P , except for a small probability:

|Pr
(
Dist(AH(P)

)
= 1)− Pr

(
Dist(S(1n, 1m, 1|C|,AH)) = 1

)
| ¬ ε , (5.8)

where Dist is the distinguisher in question, ε = O(q|C̃|2−k), and the above
probabilities range over P ← Compilek,s (C) and all random choices of H,
AH, S, Dist. Here, we recall that Dist is given access to the base circuit C
and belongs to the class K = Kq, i.e., it has a posteriori access to H limited
to q queries.

84

It can be easily seen that except for O(q2−k) probability the second sim-
ulated execution of AH after the rewind is the same as the first one in that
AH commits to the same input xA = b1b2 . . . bn.

We define an auxiliary triple of events E1, E2, and E3, pertinent to the
execution AH(P), in the following way:

1. E1 is an event that AH has not computed some of the pseudorandom
functions of the extended PRF on any input;

2. E2 is an event that AH has broken pebbles;

3. E3 is an event that AH has computed each member function of the
extended PRF for exactly one input.

We specify E ′1, E ′2, and E ′3 analogously, with the only difference that primed
events refer to the simulated execution of AH on P ′ (where actions after the
rewind are not taken into account). These events clearly correspond to steps
1-3 of the description of S.

The left-hand side of (5.8) can be now rewritten as

|Pr(EDist)− Pr(E ′Dist)| ¬
3∑
i=1
|Pr(EDist | Ei) Pr(Ei)− Pr(E ′Dist | E ′i) Pr(E ′i)| ,

where we abbreviate the eventsDist(AH(P)
)

= 1 andDist(S(1n, 1m, 1|C|,AH)) =
1 by EDist and E ′Dist, respectively. We prove that each term of the above sum
is O(q|C̃|2−k). To this end, we establish that

|Pr(Ei)− Pr(E ′i)| = O(q|C̃|2−k) for each i = 1, 2, 3. (5.9)

Basically, these formulæ follow from the fact that the adversary himself
(note that we do not mention the distinguisher Dist here) cannot tell apart
P and P ′. Indeed, by the construction of one-time programs for two distinct
circuits of equal size, 5.5, and properties of the garbling encryption scheme
based on the random oracle H, we have that distributions of both programs
are close in statistical distance. Moreover, P and P ′ cannot be distinguished
using q queries to H except for a probability implied by (5.9).

Intuitively, we would like to say even if the results of both executions
AH(P) and AH(P ′) are given to a Dist then the distinguisher does not have
any significant advantage over AH in telling the programs apart. By (5.9) the
only thing that remains is to estimate |Pr(EDist | Ei)− Pr(E ′Dist | E ′i)| for each
i. Now, we note that (by applying 5.13 of 5.9) if either E1 or E2 (respectively,
E ′1 or E ′2 for AH(P ′)) happens then AH can hardly learn the value of Master,

85

and therefore all the input keys of the garbled circuit are indistinguishable,
except for a small probability, from random values. From this we can infer
the indistiguishability of P and P ′. As for the case when E3 (E ′3 respectively)
happens – here, with a large probability, AH can compute only one key
(either K ini

0 or K ini
1) corresponding to each input wire ini of the garbled

circuit. Having ensured this we obtain the required indistinguishability by
5.12 of 5.9.

5.9 Circuit Indistinguishability
The proof of 5.2 depends considerably on the following 5.12. The latter states
that two garbled circuits cannot be distinguished if only one key per input
wire is known. In that it resembles the proof for garbled circuits given by
Pinkas and Lindell [45] who use a standard hybrid argument to show the
required indistinguishability.

Lemma 5.12. Let x be a fixed string. Let C and C ′ be two boolean circuits
with the same number of inputs, outputs, and gates such that C(x) = C ′(x).
Write C and C′ for lists of garbled gates produced by 1 applied to C and C ′,
respectively. Consider any algorithm WH which is allowed q oracle calls to
H. Then

|Pr(WH(C, C) = 1 | E)− Pr(WH(C′, C) = 1 | E ′)| = O(q|C|2−k)

, where E (and E ′) is an event that for each input wire ini of C (C′ respec-
tively) the average-conditional min-entropy of at least one input key corre-
sponding to ini, i.e., K ini

0 or K ini
1 , conditioned on a transcript of the random

oracle calls made throughout the entire executionWH(C, C) (andWH(C′, C),
respectively), is at least k − log q.

It can be proven that if C and C′ are extended to one-time programs
containing C and C′, then the indistinguishability property still holds.

By the below 5.13 asserts that it is infeasible to break pebbles and discover
both input keys K ini

0 or K ini
1 for any input wire ini of a garbled circuit.

Lemma 5.13. Consider any one-time program outputted by Compilek,s with
fixed s and k for a circuit with n input wires and m output wires. Let µ be
the length of a random key R for the one-time computable PRF included in
this program. Set δ′ = (8n+ 2m)k + EXEC_SIZE and suppose that AH breaks
pebbles within space of µ+ δ′ + δ′′ bits. Then, the probability that AH issues
a proper call to the oracle computing Master = H(Latch,C) is at most 2−δ

′′
.

86

Bibliography

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hard-
core bits and cryptography against memory attacks. In TCC, 2009.

[2] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-
key encryption in the bounded-retrieval model. In EUROCRYPT, 2010.

[3] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryp-
tography in the bounded-retrieval model. In CRYPTO, 2009.

[4] G. Ateniese, R. D. Pietro, L. Mancini, and G. Tsudik. Scalable and
efficient provable data possession. In SecureComm, 2008.

[5] Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in the
bounded storage model. IEEE Transactions on Information Theory,
48(6), 2002.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vad-
han, and K. Yang. On the (im)possibility of obfuscating programs. In
J. Kilian, editor, Proceedings of the 21st Annual International Cryptol-
ogy Conference on Advances in Cryptology, CRYPTO ’01, pages 1–18,
London, UK, UK, 2001. Springer-Verlag.

[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and
Communications Security, 1993.

[8] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key
encryption under subgroup indistinguishability (or: Quadratic residuos-
ity strikes back). CRYPTO, 2010.

[9] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Cryptogra-
phy resilient to continual memory leakage. FOCS, 2010.

[10] D. Brumley and D. Boneh. Remote timing attacks are practical. Com-
put. Netw., 48(5):701–716, 2005.

87

[11] R. Canetti, S. Halevi, and M. Steiner. Mitigating dictionary attacks on
password-protected local storage. In CRYPTO, 2006.

[12] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish.
Intrusion-resilient key exchange in the bounded retrieval model. In TCC,
2007.

[13] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound ap-
proaches to counteract ower-analysis attacks. In M. J. Wiener, edi-
tor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 398–412. Springer, 1999.

[14] G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password
protocols in the bounded retrieval model. In TCC, 2006.

[15] I. Damgård. A design principle for hash functions. In CRYPTO, pages
416–427, 1989.

[16] F. Davì, S. Dziembowski, and D. Venturi. Leakage-resilient storage.
SCN, 2010.

[17] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikun-
tanathan. Public-key encryption schemes with auxiliary inputs. In TCC,
2010.

[18] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Cryptography
against continuous memory attacks. FOCS, 2010.

[19] K. Durnoga, S. Dziembowski, T. Kazana, and M. Zajac. One-time pro-
grams with limited memory. In (submitted to Financial Crypto), 2012.

[20] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for
fighting spam. In CRYPTO, 2003.

[21] C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work. In
CRYPTO, 2005.

[22] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In
TCC, 2006.

[23] S. Dziembowski. On forward-secure storage. In CRYPTO, 2006.

88

[24] S. Dziembowski, T. Kazana, and D. Wichs. Key-evolution schemes re-
silient to space-bounded leakage. In CRYPTO, pages 335–353, 2011.

[25] S. Dziembowski, T. Kazana, and D. Wichs. One-time computable self-
erasing functions. In TCC, pages 125–143, 2011.

[26] S. Dziembowski and U. M. Maurer. Optimal randomizer efficiency in
the bounded-storage model. J. Cryptology, 17(1), 2004.

[27] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In
FOCS, pages 227–237, 2007.

[28] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In
FOCS, 2008.

[29] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In
49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, pages 293–302, 2008.

[30] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In
ICS, 2010.

[31] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient
signatures. In TCC, 2010.

[32] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy
cases. to appear in proc. Eurocrypt 2010.

[33] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algo-
rithmic tamper-proof (atp) security: Theoretical foundations for security
against hardware tampering. In TCC, 2004.

[34] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs.
In D. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Com-
puter Science, pages 39–56. Springer, 2008.

[35] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs.
In D. Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 39–56,
2008.

[36] S. Goldwasser and G. N. Rothblum. Securing computation against con-
tinuous leakage. In CRYPTO, pages 59–79, 2010.

89

[37] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private Circuits
II: Keeping Secrets in Tamperable Circuits. In EUROCRYPT, pages
308–327, 2006.

[38] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In CRYPTO, 2003.

[39] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled
circuits for leakage-resilience: Hardware implementation and evaluation
of one-time programs. In S. Mangard and F.-X. Standaert, editors, Pro-
ceedings of the 12th International Conference on Cryptographic Hard-
ware and Embedded Systems, CHES’10, pages 383–397, 2010.

[40] A. Juma and Y. Vahlis. Protecting cryptographic keys against continual
leakage. In CRYPTO, pages 41–58, 2010.

[41] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leak-
age resilience. In ASIACRYPT, pages 703–720, 2009.

[42] P. Kocher. Design and validation strategies for obtaining assurance in
countermeasures to power analysis and related attacks. NIST Physical
Security Testing Workshop, 2005. Available at www.smartcard.co.uk/
DPAValidation.pdf.

[43] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
CRYPTO, pages 388–397, 1999.

[44] M. G. Kuhn. Compromising emanations: eavesdropping risks of com-
puter displays. PhD thesis, University of Cambridge, 2003. Technical
Report UCAM-CL-TR-577.

[45] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for
two-party computation. J. Cryptol., 22(2):161–188, Apr. 2009.

[46] F.-H. Liu and A. Lysyanskaya. Algorithmic tamper-proof security under
probing attacks. In SCN, 2010.

[47] U. M. Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. J. Cryptology, 5(1), 1992.

[48] U. M. Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. J. Cryptology, 5(1):53–66, 1992.

90

[49] S. Micali and L. Reyzin. Physically observable cryptography (extended
abstract). In M. Naor, editor, TCC, volume 2951 of Lecture Notes in
Computer Science, pages 278–296. Springer, 2004.

[50] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage.
In Advances in Cryptology - CRYPTO, August 2009.

[51] E. N. of Excellence (ECRYPT). The side channel cryptanalysis
lounge. http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html. re-
trieved on 7.04.2010.

[52] D. Perito and G. Tsudik. Secure code update for embedded devices via
proofs of secure erasure. In ESORICS, 2010.

[53] K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT,
2009.

[54] K. Pietrzak. A leakage-resilient mode of operation. In A. Joux, edi-
tor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume
5479 of Lecture Notes in Computer Science, pages 462–482. Springer,
2009.

[55] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards. In E-smart, pages 200–210,
2001.

[56] J. E. Savage. Models of Computation: Exploring the Power of Comput-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1997.

[57] A. Shamir and E. Tromer. Acoustic cryptanaly-
sis. on nosy people and noisy machines. A webpage:
http://people.csail.mit.edu/tromer/acoustic/ accessed on 27.05.2009.

[58] F.-X. Standaert, T. Malkin, and M. Yung. A unified framework for the
analysis of side-channel key recovery attacks. In EUROCRYPT, 2009.

[59] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha: Using
hard ai problems for security. In EUROCRYPT, 2003.

[60] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science,
SFCS ’86, pages 162–167, 1986.

91

[61] Y. Yu, J. Leiwo, and B. Premkumar. Hiding circuit topology from un-
bounded reverse engineers. In L. M. Batten and R. Safavi-Naini, editors,
Proceedings of the 11th Australasian conference on Information Security
and Privacy, ACISP’06, pages 171–182, 2006.

[62] Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical leakage-
resilient pseudorandom generators. In CCS: ACM Conference on Com-
puter and Communications Security., 2010. To Appear.

92

