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Abstract

In the thesis we explore an algebraic approach to regular languages of infinite trees.
We have decided to take a two-pronged approach: to develop a concept of an algebraic
structure for infinite trees and to use it to get an effective characterization for some
properties of languages.

In the first part of the thesis we develop three algebras – two for languages of thin trees,
and one for languages of arbitrary infinite trees. We show the correspondence between
regular languages and languages recognized by our algebras.

An infinite tree is thin if it contains countably many infinite paths. Thin trees can
be seen as intermediate structures between infinite words and infinite trees. Since the
class of thin trees is simpler than the class of all trees, but at the same time robust and
interesting, we focus in the thesis on thin trees. We believe that they are a good stepping
stone on the way to understand regular languages of arbitrary infinite trees.

In the second part of the thesis we show some applications of the algebraic theory
presented in the first part. We show how to decide whether a given regular language of
thin trees is commutative, invariant under bisimulation, open in a certain topology, and
definable in the temporal logic EF. For languages of arbitrary infinite trees we show how
to decide definability in the logic EF.

Keywords: infinite trees, thin trees, regular languages,
algebraic language theory, effective characterizations

ACM Subject Classification: F. Theory of Computation
F.1.1. Models of Computation
F.4.3. Formal Languages
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Streszczenie

Celem niniejszej rozprawy jest zbadanie algebraicznego podejścia do języków regularnych
drzew nieskończonych. Realizacja tego celu przebiegła dwutorowo: poprzez zapropono-
wanie algebraicznej struktury dla drzew nieskończonych oraz uzyskanie za jej pomocą
efektywnej charakteryzacji dla pewnych własności języków.

W pierwszej części rozprawy przedstawiam trzy algebry – dwie dla języków drzew
cienkich i jedną dla języków dowolnych drzew nieskończonych. Pokazuję również zależność
pomiędzy językami regularnymi a językami rozpoznawanymi przez te algebry.

Nieskończone drzewo jest cienkie, jeśli zawiera przeliczalnie wiele gałęzi. Cienkie drzewa
mogą być traktowane jako pośrednia struktura pomiędzy słowami nieskończonymi a drze-
wami nieskończonymi. Ponieważ klasa drzew cienkich jest prostsza niż klasa wszystkich
drzew, a jednocześnie interesująca i o dobrych własnościach, część wyników rozprawy do-
tyczy drzew cienkich. Wierzę, że badanie drzew cienkich może nam pomóc lepiej zrozumieć
ogólne drzewa nieskończone.

Druga część rozprawy dotyczy zastosowań metod algebraicznych opisanych w części
pierwszej. Pokazuję jak rozstrzygać, czy dany język regularny cienkich drzew jest prze-
mienny, zamknięty na bisymulację, otwarty w standardowej topologii oraz definiowalny
w logice temporalnej EF. Ponadto dla języków dowolnych drzew nieskończonych pokazuję
jak rozstrzygać ich definiowalność w logice EF.

Słowa kluczowe: nieskończone drzewa, cienkie drzewa, języki regularne,
algebraiczna teoria języków, efektywne charakteryzacje

Klasyfikacja tematyczna ACM: F. Teoria obliczeń
F.1.1. Modele obliczeń
F.4.3. Języki formalne
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Chapter 1

Introduction

1
The most fundamental concept in the formal language theory is, of course, the language
itself.

Since it is unfeasible to represent a language explicitly as a set of words (the set could
be extremely large or simply infinite), many approaches have been developed to deal with
the problem of representation. On the one hand a representation should be succinct and
legible: one should be able to easily grasp the idea behind a particular language or its
main properties. On the other hand it should be practical: it should be a handy tool in
construction of algorithms which decide whether a given language satisfies certain non-
obvious properties.

Of course it is difficult to fulfill both of these requirements at the same time, so a
human-readable representation could be impractical as an input for a computer algorithm
and vice versa.

One way to obtain the first requirement is to divide the realm of formal languages into
classes. Not all languages have the same “difficulty” and it is sensible to provide “simpler”
forms of representations for “simpler” languages. One of such division is known as the
Chomsky hierarchy [17], and on the bottom of it reside regular languages.

Of course there is a question whether a particular language L which comes from a
class of “difficult” languages is in fact a “simple” language. We will call this the language
membership problem. Due to Rice’s theorem [32] this problem is in general undecidable.
Thus it is also interesting whether language membership problem can be effectively tested
for a particular choice of classes of “difficult” and “simple” languages.

Regular languages and their representations. In this thesis we assume that the
class of “difficult” languages is the class of regular languages. Regular languages of words
have a plethora of different representations, such as regular expressions, regular or prefix
grammars, and read-only Turing machines. In the theory of automata they are represented
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as non-deterministic or deterministic finite-state machines (automata). In logic they can
be defined by formulas of monadic second-order logic (MSO). Finally, in algebraic terms
they can be recognized by homomorphisms into finite semigroups or monoids. Different
representations are useful for different purposes, and although the usefulness of a repre-
sentation depends on the language itself, we can make some general observations: regular
expressions and MSO formulas tend to be human-readable, whereas algebraic structures
are most suited for algorithms. Finite-state automata place in the middle, trying to get
the “best of both worlds”, and serve as a common standard in the field.

We expect that a representation which is meant to be used as an input to algorithms
will somehow reveal the inner structure of a language and provide a certain form of
compositionality. Automata seem to be a reasonable choice, and in fact a large number of
algorithms use them. However, these algorithms are often far from being elegant and they
are polluted with technical details due to the nature of automata. That is where algebra
comes into play. It turns out that certain properties of languages can be elegantly expressed
as identities – simple equations on the elements of the semigroup which recognizes the
language – and validity of these identities can be easily checked.

Effective characterizations of logics. Regular languages are precisely those which
are definable by formulas of monadic second-order logic [15, 21, 41]. However, many lan-
guages can be conveniently described by formulas of simpler logics such as first-order
logic or various temporal logics. We may therefore ask whether a certain language can be
expressed in one of these simpler logics. We say that a logic has an effective characteri-
zation if the following decision problem is decidable: “given a regular language, decide if
the language can be defined using a formula of the logic”. Thus it is an instance of our
language membership problem when the class of “difficult” languages is the class of all
regular languages and the class of “simple” languages is the class of languages definable
in the logic.

In the case of word languages we have many papers devoted to the topic of effective
characterizations (see [38, 39, 18, 22, 37, 44, 34]), but arguably best known is the result
of Schützenberger [33] and McNaughton and Papert [23], which states that the following
four conditions are equivalent for a regular word language L:

(a) L can be defined by a formula of first-order logic (with order and label tests),

(b) L can be defined by a star-free regular expression (a subset of regular expressions,
which does not allow the Kleene star, but allows to use complementation),

(c) the minimal deterministic finite-state automaton of L is counter-free (i.e. it does
not contain a certain kind of loop),

(d) the syntactic monoid of L (i.e. the minimal monoid which recognizes L) does not
contain a non-trivial group.

The above theorem gives a characterization of a certain class of languages in terms of
(a) logic, (b) regular expressions, (c) automata, and (d) algebra. Conditions (c) and (d)
can be effectively tested, therefore the theorem gives an effective characterization of first-
order logic, as well as an effective characterization of star-free expressions.
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Languages of infinite trees. Not only finite words can serve as an object to study
in the theory of formal languages. The theory was generalized to include such objects as
infinite words, finite trees, and (the object in which we will be interested most) infinite
trees. We can ask the same questions which we asked in the word case: what represen-
tations of a language do we have and what are effective characterizations of wide-known
logics?

But before we go further, we should determine what is a counterpart of a regular
language? Indeed, this notion for more complicated objects is not yet as standardized
as in finite words (see for example [16] and [6]). We will stick to one possible definition,
namely that a language is regular if it can be defined by a formula of monadic second-order
logic. In fact logic behaves the most robustly in generalization to the worlds of infinite
words and (in)finite trees.

The notion of a finite-state automaton over finite trees is quite similar to the previous
one. The automata for infinite objects are not so standardized, since dealing with infinite
phenomena requires deeper insights for the acceptance condition, and we have different
possibilities: Büchi, Muller, or parity automaton to name a few (see [40]). Moreover, in
case of finite objects the syntactic algebra of a language is tightly connected with the
minimal deterministic finite-state automaton recognizing the language. Unfortunately,
deterministic automata for infinite objects are weaker that non-deterministic ones, thus
there are regular languages which are not recognized by any deterministic automaton.

The algebraic structures for infinite words are Wilke algebras and ω-semigroups. They
are quite natural extensions of semigroups for finite words. However, it is not obvious
how to develop an algebra for finite trees, since there is no natural way to succinctly
represent numerous ways a tree can grow: if we try to compose two trees horizontally, we
get a forest, but it is not clear how to compose them vertically without a certain mark in
the “upper” tree. One attempt of such algebra is forest algebra. We look closer at these
algebraic structures in the next section.

A satisfying algebraic approach to infinite trees has not been developed yet. There
are reasons to suppose that in fact it is a very difficult task. Fighting only one of the
two aforementioned obstacles (lack of deterministic automata and natural composition on
trees) is quite challenging, and infinite trees require to fight these two at the same time.
In this thesis we try to make a step forward in this battle.

The contents of the thesis. The goal of this thesis is to explore an algebraic approach
to regular languages of infinite trees. We have decided to take a two-pronged approach,
which was reflected in the structure of the thesis:

(1) To develop a concept of an algebraic structure for infinite trees, by extending forest
algebra to infinite trees – this is the subject of the first part of the thesis.

(2) To use the algebra to get an effective characterization for some logic – this is the
subject of the second part.

A good effective characterization benefits the algebra. Effective characterizations are
usually difficult problems, and require insight into the structure of the underlying algebra.
We expect that as a byproduct of an effective characterization, we would discover what
are the important ingredients of the algebra.

A good algebra benefits effective characterizations. A good algebra makes proofs easier
and statements more elegant. We expect that an effective characterization would be a good
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test for the quality of an algebraic approach. In the previously studied cases of (infinite
and finite) words and finite trees, some of the best work on algebra was devoted to effective
characterizations.

Algebras in the thesis

Since we are interested in developing an algebraic framework, we need to know what are
the ingredients of an algebra. A new kind of algebra should be given by a set of sorts (we
will work with multisort algebras), a certain number of operations on these sorts and a
set of axioms that these operations should satisfy. For instance, in the case of finite words,
there is only one sort, one operation (concatenation), and one axiom (associativity). Such
a structure, of course, is called a semigroup. Given a finite alphabet A, the set of all
non-empty words A+ is simply the free semigroup. Regular languages are those that are
recognized by morphisms from the free semigroup into a finite semigroup.

Since we want to develop an algebraic structure for recognizing formal languages of
infinite trees, it is worthwhile to examine the counterpart structures for finite trees and
infinite words.

The forest algebra. One question we must answer is: what type of trees (binary,
ranked, or unranked) we consider. Tree automata are more naturally suited to work with
binary and ranked trees, but it turns out that we obtain more robust algebra when we
deal with unranked trees (i.e. the number of successors of each node is finite, but not
bounded).

The idea used in [14] to deal with finite trees was to have a two-sorted algebra, where
one sort described forests (sequences of unranked trees), and the other sort described
contexts (forests with a hole, which is a special place to insert another forest or context).
The use of forests makes horizontal composition a natural operation. Since we work with
unranked objects, this operation is not restricted in any way. The use of contexts allows
for a vertical composition (we compose a context with a forest). It is important to note,
however, that none of sorts contains only trees, and in fact, technically speaking, forest
algebra recognizes languages of forests, not trees.

Forest algebra has been successfully applied in a number of effective characterizations,
including fragments of first-order logic [11, 10, 28] and temporal logics [4], see [5] for a
survey. An important open problem is to find an effective characterization of first-order
logic with the descendant relation (first-order with the successor relation was effectively
characterized in [2]).

Algebras for infinite words. When developing an algebraic framework for infinite
words we run into the following problem. For an alphabet A with at least two letters,
the set Aω of all infinite words is uncountable. On the other hand, the free object will
be countable, as long as the number of operations is countable. There are two solutions
to this problem: either have an uncountable number of operations, or have a free object
that is different from Aω. The first approach is called an ω-semigroup [25]. The second
approach is called a Wilke algebra [43], [42]. Like in forest algebra, a Wilke algebra is a
two-sorted object. The axioms and operations are designed so that the free object will
have all finite words on the first sort, and all ultimately periodic words on the second sort.
There is a reason why it is possible to ignore words that are not ultimately periodic. It
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turns out that any regular language in Aω is uniquely defined by the ultimately periodic
words that it contains. In this sense, a morphism from the free Wilke algebra into a finite
Wilke algebra contains all the information about a regular language of infinite words.

Infinite trees. It is clear what a finite tree is, but it may be unclear what trees we will
call infinite. In the thesis the “set of infinite trees” contains trees which: are unranked
and finitely branching (every node has a finite number of successors, but this number is
not bounded), ordered (there is an order over the successors of every node), and can have
leaves (and even be finite),

Regular trees. The set of all infinite trees is uncountable even if the alphabet A has
only one letter. However, we can still follow the approach of Wilke to deal with this
problem. The counterpart of an ultimately periodic word in the realm of infinite trees is
called a regular tree and it is a tree which has a finite number of non-isomorphic subtrees.

The first contribution of the thesis is to propose an algebraic structure, called regular-
infinite-forest algebra which is a two-sorted structure of infinite regular forests and infinite
regular contexts. Although the set of all regular trees is countable, we were not able
to propose an algebra which has a finite number of operations. This poses all sorts of
problems.

It is difficult to present an algebra. One cannot, as with a finite number of operations,
simply list the multiplication tables of the operations. Our solution is to give an algorithm
that inputs the name of the operation and produces its multiplication table. In particular,
this algorithm can be used to test validity of identities, since any identity involves a finite
number of operations.

It is difficult to prove that something is a regular-infinite-forest algebra, since there
are infinitely many axioms to check. Our solution is to define algebras as homomorphic
images of the free algebra, which guarantees that the axioms hold. We give an algorithm
that computes the syntactic algebra of a regular forest language.

We have proved that every regular language is recognized by a finite regular-infinite-
forest algebra. A significant shortcoming is that we have not proved the converse. We do
not, however, need the converse for effective characterizations. An effective characteriza-
tion begins with a regular language, and tests properties of its syntactic algebra (therefore,
algebras that recognize non-regular languages, if they exist, are never used).

Thin trees. Keeping the above issues in mind, we also followed another way. Instead of
attacking the problem in its full generality, we focused on a certain class of infinite trees
which is an intermediate step between finite trees and general infinite trees. The class is
called “thin trees” and contains all trees with countably many infinite paths, which is
equivalent to saying that they do not contain full binary tree as a minor. It turns out that
this class is quite robust.

Indeed, for this class we propose two algebraic structures: regular-thin-forest alge-
bra and unrestricted-thin-forest algebra. The former recognizes languages of regular thin
forests and the latter recognizes languages of thin forests without restriction of regularity.
The former has a finite number of operations and countably many axioms (although we
can test them by checking a finite number of properties). Moreover, we prove the theorem
that a language of thin trees is regular if and only if it is recognized by a morphism into
a regular-thin-forest algebra.
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It should be noted, that the above algebraic structures can not only be seen as gener-
alizations of forest algebra, but also as generalizations of the structures for infinite words
mentioned before. If we identify an infinite word with a thin tree of one infinite path
(i.e. a tree which does not branch), then the generalization involves adding the operation
of horizontal concatenation of trees. In such view, regular-thin-forest algebra generalizes
Wilke algebras and unrestricted-thin-forest algebra generalizes ω-semigroups.

Universal algebra. As we can see, in the thesis we deal with several different algebraic
structures. Three of them are new, and we have to present them together with definitions
of certain notions. Therefore it is useful to gather common definitions and theorems in
one place. To achieve this goal we formalize them in the language of universal algebra.

We present then the general notions behind multisort algebras. That includes homo-
morphisms, free objects, recognizability of a language, syntactic algebras and Myhill-
Nerode relations. We provide also a notion of varietes of multisort algebras and prove
a multisort version of Eilenberg Theorem [20] which shows a one-to-one correspondence
between varietes of algebras and varietes of languages.

Logics characterized in the thesis

There is an ongoing project to effectively characterize certain properties of tree languages.
A (slightly outdated) survey of effective characterizations of finite tree logics [5] states
that arguably the most important question in case of trees is as follows: does first-order
logic on trees have an effective characterization? This question has many variants, and we
know an effective characterization to only one of them (trees with successor relation). As
we see, even in the case of finite trees the problems are challenging.

Temporal logic EF. Therefore, since we are only beginning to explore the algebra
for infinite trees, it is a good idea to start with some logic that is very well understood
for finite trees. This is why for our case study we chose the temporal logic EF (which is
equivalent to XPath with only descendant operations). For finite trees, this was one of
the first nontrivial tree logics to get an effective characterization, for binary trees in [13],
and for unranked trees in [14].

We were also curious how some properties of the logic EF would extend from finite
trees to infinite trees. For instance, for finite trees, a language can be defined in the logic
EF if and only if it is closed under EF-bisimulation (a notion of bisimulation that uses
the descendant relation instead of the successor relation). We prove that in the case of
infinite trees this condition is not sufficient.

Open languages. Of course, the question whether a given language is definable by a
formula of a certain logic is not the only property worth considering. We are also interested
in effective algorithms which test other properties of regular languages of infinite forests.

Some of them are connected with a topology imposed upon the set of all infinite
forests. In this setting the basic property of a language is to test whether the language is an
open set with respect to the topology. In the thesis we present an effective characterization
of open sets for languages of thin forests.
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Commutative languages and languages invariant under bisimulation. Last but
not least, we present two simple but quite instructive properties of languages of thin
forests. We show an effective characterization of languages which are commutative (i.e.
closed under arbitrary rearranging of siblings) and languages which are invariant under
bisimulation. It is interesting to note that the identity h+g = g+h which characterizes all
commutative languages of finite forests is too weak in case of thin forests. We investigate,
however, also this “weaker” notion of commutativity.

Contribution

Part of the thesis is based on the conference paper [7] which is a joint work with my advisor
Mikołaj Bojańczyk. In the paper we have developed the regular-infinite-forest algebra and
presented an effective characterization of the temporal logic EF. Due to limited space we
had to omit the most of the examples and intuitions, as well as formal presentation of some
topics such as the model of forest automaton or the translation between forest automata
and algebra. We compensate for it in the thesis.

The rest of the contribution was previously unpublished. For the algebraic part this
includes the generalization of the theory of varietes to multisort algebras and the the-
ory of algebraic structures for thin forests. For the effective characterizations part this
includes the characterizations of the following properties of regular languages of thin
forests: commutativity, invariance under bisimulation, being open in a certain topology,
and definability in the logic EF.

The sections of this thesis which deals with thin forests are also part of the recently
accepted conference paper [8], which is a joint work with Mikołaj Bojańczyk and Michał
Skrzypczak.

The author was supported by ERC Starting Grant “SOSNA” No. 239850.
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Chapter 2

Preliminaries

2
In this chapter we present some fundamental definitions which are used throughout the
thesis. In section 2.1 we define trees, forests, contexts, and operations on them, as well
as the basic properties of thin trees. In section 2.2 we recall two ways of recognition the
languages – automata and logic. Finally, in section 2.3 we present some basic properties
of finite semigroups.

2.1 Trees and forests

A forest is an ordered sequence of trees. Forests and trees can have both infinite and
finite maximal paths. Each node must have finitely many siblings, but the number of
siblings is not bounded (we call such forests unranked). Moreover, the children of each
node are ordered. Forests are labeled , i.e. each node of a forest contains a label from a
finite alphabet A. On figure 2.1 there is a forest with a single infinite path. The labels of
nodes of this path spell out an infinite word (aab)∞ = aabaabaab · · ·

Figure 2.1

Formally, a forest over finite alphabet A is a partial map t : N+ →
A. We denote the domain of the map by dom(t) and refer to it as the
set of nodes of the tree. The domain must be closed under non-empty
prefixes, and such that for each x ∈ N∗ the set {i | xi ∈ dom(t)} is a
finite prefix of N. The empty forest (the one with the empty domain)
is denoted by 0. We use letters s, t to denote forests. The set of all
forests over A is denoted by AFor.

A forest language over A is any subset of AFor.
If x, y are two nodes of forest t, we write x ≤ y if x is a prefix

of y (we write x < y if x is a proper prefix of y). If x < y, we call y
a descendant of x and we call x an ancestor of y. If x is a maximal
node satisfying x < y, then we call y a successor (or child) of x and
we call x the parent of y. A root of a forest is a node without parent
(a forest can have many roots). A leaf is a node without successors.
Two nodes are siblings if they are both roots or if they have the same
parent.

A tree is a forest with exactly one root. Since we define a tree as a
special kind of a forest, the root of the tree is 0, which is different from
the usual definition of a tree in which a root is ε (an empty word).
For instance the full binary tree, in which every node has exactly two
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successors, has domain of 0{0, 1}∗. If t is a forest and x is a node, we write t|x for the
subtree of t rooted in x, defined as t|x(0y) = t(xy).

Since we are interested in algebraic frameworks for forests, we need a set of operations
which will allow us to build forests from basic elements (single letters). The first operation
is forest concatenation which allows us to compose forests horizontally. We denote this
operation by +. If s and t are two forests then s + t is a forest that has as many roots
as s and t combined. This operation is non-commutative. The empty forest is the neutral
element of this operation.

If t is a forest and a ∈ A, we write at for the tree with a root which is labeled with a
and has the roots of t as its successors, i.e. at(0) = a, at(0y) = t(y). Figure 2.2 shows two
forests s = a(ba0 + e0), t = c0 + d(e0 + b0 + b0), their concatenation s+ t and the tree at.
(Normally, when we write such expressions like a(ba0 + e0), we omit the zeros.)

Figure 2.2

We also need a way to compose forests vertically. For this we introduce a new object: a
forest with a special marker (called the hole) which denotes where we can append another
forest. The new object is called a context . Formally, a context over an alphabet A is a
forest over the alphabet A ∪ {�} where the label �, called the hole, occurs exactly once
and in a leaf. The set of all contexts over A is denoted by ACon. We use letters p, q to
denote contexts. The empty context is a context with a single node, which is a hole, and
is simply denoted by �.

We can compose a context p with a forest t, the result is a forest pt obtained by
replacing the hole of p with the forest t (see figure 2.3). At first this operation may look
somewhat peculiar, note that the number of successors of the parent of the hole increases
by the number of roots in t minus one.

The basic elements which we use to build forests are single-letter contexts . For a ∈ A
we denote by a� the context with a in the root and a hole below. We can treat the
operation at as a composition of the single-letter context a� with the forest t.

Figure 2.3

We can also compose a context p with another context q, the resulting context pq
satisfies (pq)t = p(qt) for all forests t. Finally, we can concatenate a forest t with a
context p, which results in a context t + p. There is also the symmetric concatenation
p+ t.
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In other words:

(a) we can concatenate two objects, as long as the result has at most one hole;

(b) we can compose two objects, as long as the first one has a hole.

A forest or context is finite if it has a finite number of nodes. The set of all finite
forests over A is denoted by AFinFor. Analogously for finite contexts we write AFinCon. The
above operations are sufficient to generate all finite forests. Since we are interested in
infinite ones, we need more operations.

We say that the context is guarded if its hole is not in a root, e.g. a(b+�) is guarded,
but ab + � is not. We denote by ACon+ the set of all guarded contexts over an alphabet
A, and ACon� = ACon − ACon+ is the set of all non-guarded contexts.

We can compose a guarded context p with itself infinitely many times, which results
in an infinite forest t, which is the unique forest which satisfies the equality pt = t. We
denote this operation by p∞. On figure 2.4 we present the context p = a(ba+ � + e) and
the forest p∞.

It is easy to see why we disallow such infinite composition of a non-guarded context.
What should the result for (a + �)∞ be? We could say that it is the forest a + a + · · ·
which is infinite to the right. But then, in the similar way, we could generate the forest
· · · + a + a which is infinite to the left. What would happen after concatenating these
two forests? We would have to suppose that the order on siblings is an arbitrary linear
ordering.

This operation is a special case of a more general operation π which takes an infinite
sequence of guarded contexts p1, p2, . . . and builds an infinite forest π(p1, p2, p3, . . .) which
is the unique forest which satisfies the equality π(p1, p2, p3, . . .) = p1 · π(p2, p3, . . .).

Figure 2.4

We define here two important types of forests, namely thin forests and regular forests.
A forest is called thin if it has countably many paths. For example, every finite forest
is thin, but the full binary tree is not. A context over A is called thin if, treated as a
forest over A ∪ {�}, it is thin. The set of all thin forests over A is denoted by AThinFor.
Analogously for thin contexts we write AThinCon = AThinCon+ ∪ AThinCon� .

A forest is called regular if it has finitely many distinct subtrees. For example the full
binary tree is regular (since its every subtree is isomorphic to the whole tree), but any
tree, in which the number of children is not bounded, is not regular. On figure 2.5 there
are three trees (we assume that every node of these trees has the same label): t1 is thin
and regular, t2 is thin, but not regular, since it has as a subtrees binary trees of every
height, and t3 (the full binary tree) is not thin, but regular.
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Figure 2.5

Of course, the irregularity of a forest can also be caused by labels. If we assign labels
from the set {a, b} to the tree t3 in such a way, that a node on depth n is labeled by a if
and only if n is prime, then clearly such tree is not regular.

We denote the set of regular forests over A by AregFor and the set of regular thin forests
by AregThinFor. Similarly for contexts.

Working at the same time with trees and forest can be quite tricky. However, we must
do this to get the advantages of these two kind of objects. Forests has the advantage
of allowing the concatenation, which is important from algebra’s point of view. On the
other had trees have exactly one root, which is convenient when we want to make a
decomposition or perform an induction.

2.1.1 Thin forests

In this section we study thin forests. The following lemma gives a characterization of
thin forests. We say that a forest t has a full binary tree as a minor if there is a set of
nodes R ⊆ dom(t) such that for every node x ∈ R there are at least two different nodes
x0, x1 ∈ R which are descendants of x, and xi is not a descendant of x1−i for i = 0, 1.
We present the definitions of ordinal-labeling and branch-labeling below. Note that the
conditions in the lemma do not depend on a labeling of a forest.

Lemma 1. For a forest t the following conditions are equivalent:

(a) t has countably many paths,

(b) t does not have a full binary tree as a minor,

(c) there exists an ordinal-labeling for the forest t,

(d) there exists a branch-labeling for the forest t.

Before we prove Lemma 1, we introduce the definitions that appear in its statement,
namely ordinal-labeling and branch-labeling. An ordinal-labeling of a tree t is a function
ρ : dom(t) → Ord which maps every node of t to an ordinal number such that for every
node x and its successors x1, . . . , xn:

(a) the numbers assigned to the successors of a node are not greater than the number
assigned to the node, i.e. ρ(xi) ≤ ρ(x);

(b) at most one successor has a number equal to ρ(x).
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Figure 2.6

On figure 2.6 there are two trees with ordinal-labelings. The white nodes are the ones
whose numbers are equal to the numbers assigned to their parents.

A branch-labeling of a tree t is a set R ⊆ dom(t) such that:

(a) for every node at most one of its successors belongs to R;

(b) on every infinite path almost all nodes belong to R.

On figure 2.6 the white nodes belong to the branch-labelings.

Proof of Lemma 1. We begin with the implication “(a)⇒ (b)”. Let t be a forest. If t has
countably many paths, then it obviously cannot have the full binary tree as a minor, since
the full binary tree has uncountably many paths.

For the implication “(b) ⇒ (c)” consider the set X ⊆ dom(t) of nodes such that
for every x ∈ X there exists an ordinal-labeling of the subtree t|x. We will show that
X = dom(t).

Suppose that there exists a node x 6∈ X such that all successors x1, . . . , xn of x belong
to X. Then for every subtree t|xi we have an ordinal-labeling ρi. We construct an ordinal-
labeling for the tree t′ = t|x by labeling nodes from t′|i according to ρi and by labeling
the root of t′ by ordinal max{ρ1(0), . . . , ρn(0)} + 1, i.e. an ordinal greater than labeling
of the root of t|xi for i = 1, . . . , n. Thus such x cannot exist, therefore every x 6∈ X has at
least one successor x′ 6∈ X. That means that from every x 6∈ X there is an infinite path
of nodes which does not belong to X.

Suppose that there exists a node x 6∈ X and an infinite path π from x which contains
all the nodes from t|x which do not belong to X. Let Y be the set of nodes which are
successors of nodes from π, but do not belong to π. For every y ∈ Y we have an ordinal-
labeling ρy defined on t|y. Let α be an ordinal greater than the label of the root of t|y
for every y ∈ Y . Again, we construct ordinal-labeling for t′ = t|x by using appropriate
labelings ρy for nodes which do not belong to the path π, and label α for every node on the
path π. Thus such x cannot exist, therefore for every x 6∈ X there exist two incomparable
descendants x′, x′′ 6∈ X.

Therefore if dom(t)−X is non-empty, then t contains the full binary tree as a minor.
Thus X = dom(t), in particular the root of t belongs to X, thus there exists an ordinal-
labeling of t.

For the implication “(c) ⇒ (d)” assume that ρ is an ordinal-labeling of the forest t.
Let R ⊆ dom(t) be the set of nodes x which satisfy ρ(x) = ρ(y) where y is the parent of x.
We show that R is a branch-labeling of the forest t. From the definition of ρ, for every
node x there is at most one successor x′ such that ρ(x) = ρ(x′), thus from the set of x’s



20 CHAPTER 2. PRELIMINARIES

successors only x′ can belong to R. Suppose that the second condition defining R is not
satisfied, i.e. there is an infinite path π = x1x2x3 . . . and an infinite increasing sequence
{ki}i≥1 such that xki 6∈ R for every i ≥ 1. Therefore ρ(xki−1) > ρ(xki), thus we obtained
an infinite decreasing sequence of ordinal numbers

ρ(xk1) > ρ(xk2) > ρ(xk3) > . . .

which is impossible.
Finally, for the implication “(d) ⇒ (a)” let R be a branch-labeling of a forest t.

Consider a mapping f which assigns for every maximal infinite path π ⊆ dom(t) the first
node x ∈ π such that x ∈ R and every descendant of x from the path π also belongs to R.
From the second condition the mapping f is defined for all maximal infinite paths. We
prove that the mapping f is injective. Suppose that there exist two maximal infinite paths
π1,π2 such that x0 = f(π1) = f(π2). Of course x0 ∈ π1∩π2∩R. Assume that π1 6= π2 and
let x1 be the maximal node which belongs to π1 ∩ π2. Since x0 ≤ x1, then x1 ∈ R and has
two successors x′ ∈ π1 and x′′ ∈ π2. From the definition of x0 these successors must both
belong to R, which is not possible. Thus π1 = π2, which proves that f is injective.

From this and the fact that dom(t) is countable we get that the number of infinite
paths in t is countable. Since the number of finite paths is of course countable, then the
number of all paths in t is countable.

The rank of a thin tree is the minimal ordinal number assigned to the root of t by
ordinal-labelings of t, i.e.

rank(t) = min{ρt(0) | ρ is a rank-labeling}.

This is well-defined due to well-foundedness of ordinals. The rank of a node x of a thin
tree is the rank of a subtree rooted in x.

Lemma 2. Let t be a thin tree. The mapping rank: dom(t)→ Ord is an ordinal-labeling.

Proof. Consider a node x and its successors x1, . . . , xn. Assume that the condition (a)
from the definition of ordinal-labeling is violated, i.e. there exists xi such that rank(x) <
rank(xi). Then there exists an ordinal-labeling ρ of t|x such that it assigns rank(x) to the
root of t|x. Then ρ(0i) ≤ ρ(0) = rank(x) < rank(xi) which leads to a contradiction.

Assume then that the condition (b) is violated, i.e. there exists xi, xj such that
rank(x) = rank(xi) = rank(xj). Then there exists an ordinal-labeling ρ of t|x such that
ρ(0) = rank(x) and without loss of generality ρ(0) < rank(xi) which also leads to a
contradiction.

Let t be a thin tree. It is clear that the rank of every leaf of t is equal to 0. Consider
a set of nodes of maximum rank in t (which is of course the rank of t). It is easy to
see that this set is a (possibly infinite) path from the root. Indeed, from condition (a)
in the definition of ordinal-labeling, every parent of a node of maximum rank has the
maximum rank, and from the condition (b) there is no node which has two successors of
the maximum rank. We call this path the spine of a tree. On figure 2.7 there are examples
of an infinite and a finite spine.

We will use ranks in inductive proofs. Suppose we want to prove a property for a thin
tree t. We will show that from the assumption that the property holds for all trees with
ranks less that rank(t) (thus for all subtrees which do not intersect the spine of t) we
get that the property holds for t. Then using transfinite induction we conclude that the
property holds for all thin trees.
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Figure 2.7

Lemma 3. The rank of a regular thin tree is a natural number.

Proof. A regular tree t has a finite number of different subtrees, therefore the set of ranks
of its nodes

S = {rank(x) | x ∈ dom(t)}

is finite. Let α0 < α1 < . . . < αn be all the ordinals from S. It is easy to see that if we
replace αi by i, we get a valid ordinal-labeling, thus rank(t) ≤ n.

Of course we cannot invert the statement of Lemma 3. For instance on figure 2.6 we
have an irregular tree with rank equal to 1.

2.1.2 Components in a forest

Let t be a forest. We say that two nodes x, y of the forest are in the same component if
the subtree t|x is a subtree of the subtree t|y and vice versa.

To a forest we associate a directed graph Gt = (Vt, Et) (we call it the component graph
of the forest) in which the set of nodes Vt contains all non-isomorphic subtrees of t and
there is an edge (t1, t2) ∈ Et if the subtree t2 is an immediate subtree of the subtree t1
(i.e. t2 = t1|x for some child x of the root of t1). The graph Gt is finite if and only if the
forest t is regular. Every component in t corresponds to a strongly connected component
in Gt.

There are two kinds of components: singleton components , which correspond to strongly
connected components in Gt of exactly one node and no edges, and connected components ,
which correspond to other strongly connected components in Gt. Note that a node x in
the forest is in singleton component if and only if t|x is not a proper subtree of t|x.

On figure 2.8 there is a tree t and the corresponding graph Gt. The tree has five
components: two connected (which correspond to strongly connected components c1, c2

in Gt) and three singleton (which correspond to s1, s2, s3). Note that the component which
corresponds to a strongly connected component c1 (of one node but with a loop edge)
is in fact connected. Note that the graph loses some information, so it is not possible to
fully reconstruct the forest t from Gt. However, it is only matter of adding the order and
multiplicity to edges of Gt.

In a regular tree the notion of a component is very useful, since the number of com-
ponents in a tree is a good inductive parameter. Note that each regular forest has finitely
many components, but the converse is not necessarily true. Indeed, if we define a family
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Figure 2.8

of trees tn for n ≥ 1 as

tn = a · · · a︸ ︷︷ ︸
n times

(t1 + a�)(t2 + a�) · · · (tn + a�)(tn+1 + a�) · · · ,

then the forest tn is not regular, but it has only one component (which contains infinite
number of nodes).

We present here two facts about components in a regular thin forest.

Lemma 4. In a regular thin forest t every connected component corresponds to a strongly
connected component in Gt which is a simple cycle, i.e. the graph induced by the nodes of
this component is a simple cycle.

Proof. Let c be the strongly connected component in Gt which corresponds to a connected
component in t. Let G′ be the graph induced by the nodes of c.

We first show that the out-degree of every node in G′ is at most 1. Let assume otherwise
– then there is a node u with at least two outgoing edges u → v1, u → v2. By adding a
path from v1 and v2 back to u, we get a full binary tree that is a minor of t, thus from
Lemma 1 the forest is not thin.

Similarly, we show that the in-degree of every node in G′ is at most 1. Since c does not
contain any isolated nodes, the out-degree and in-degree of any node is in fact exactly 1.
Since c is connected, it is indeed a simple cycle.

The rank of a regular thin tree t is a natural number (see Lemma 3). We show that in
fact this rank is equal to the maximal height of a finite full binary tree which is a minor
of t. Since it is easy to see that all the nodes from the same component of a tree have the
same rank, we can refer to it as the rank of a component . The following lemma gives us
a constructive definition of the rank of a regular thin tree.

Lemma 5. Let t be a regular thin tree. Let u be a component in t and v1, v2, . . . , vk be its
child-components (i.e. there are edges from u to v1, . . . , vk in Gt) sorted by their ranks,
that is rank(v1) ≥ rank(v2) ≥ . . . ≥ rank(vk). Then the following hold:

(a) If u is a singleton component then

rank(u) =


0 for k = 0,
rank(v1) for k = 1,
max(rank(v1), 1 + rank(v2)) for k ≥ 2.
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(b) If u is a connected component then

rank(u) =

{
0 for k = 0,
1 + rank(v1) for k ≥ 1.

(c) The components with maximum rank form a single path from the root in the compo-
nent-tree. Moreover, only the lowest component on this path can be connected.

(d) The components which are leaves in the component-tree have the rank of 0.

Proof. For proving (a) and (b) we inductively define the ranks for components, starting
from the bottom ones.

For proving (c): we know that rank(u) ≥ rank(v1). Thus if a component has maximum
rank then all its ancestor-components also have the maximum rank. Let x1 and x2 be two
components not related in descendant relation, let y be a component which is a least
common ancestor of x1 and x2 and let x′1 and x′2 be two children of y which lie on the
paths from y to x1 and x2 respectively. Since ranks of x1, x2, x′1 and x′2 are maximal and
from (a) and (b) rank(y) ≥ 1 + rank(x′1), we get that rank(y) is greater that maximal.

If y is a parent of x and both are on the path, and y is connected, then from (b)
rank(y) = 1 + rank(x), which is greater that maximal.

In case of (d) such component has no children, so we put k = 0 in (a) and (b).

2.2 Logic and automata over infinite forests

The theory of logic and automata over infinite trees discusses mostly binary (thus ranked)
trees (see [19]). On the other hand, we are mainly interested in unranked trees, since they
are more suited for the algebraic approach. In this section we introduce MSO logic and a
model of automaton over unranked infinite forests, and we show how they are related to
their widely known ranked counterparts.

We do this by using a well-known technique of encoding unranked forests by full binary
trees. The encoding we use is called first-child-next-sibling encoding, and the idea is that
a node stores, rather than a list of its children, a pointer to its first child and a pointer
to its immediate right sibling.

Let # be a special label outside of the alphabet A and t# be a full binary tree labeled
only with #. We will encode a forest over A with a full binary tree over A# = A ∪ {#}
in the following manner:

(a) the empty forest is encoded as fcns(0) = t#;

(b) a sequence of trees t1, . . . , tn where t1 = as is encoded as

fcns(t1 + . . .+ tn) = a(fcns(s), fcns(t2 + . . .+ tn)).

It is easy to see that this encoding is injective. We extend the definition to languages by
putting fcns(L) = {fcns(t) | t ∈ L}.

On the figure 2.9 there is a tree t and its first-child-next-sibling encoding fcns(t). The
presented trees are finite, but the definition also works for infinite trees. In this case on
every path from fcns(t) which from some point turns only right, we eventually see the
label #.

We will prove the following theorem (the definitions of an MSO formula and a forest
automaton are delegated to the next two sections):
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Figure 2.9

Theorem 6. For every language of forests L the following conditions are equivalent:

(a) L is recognized by a forest automaton;

(b) L is definable by an MSO formula;

(c) the first-child-next-sibling encoding of L is definable by an MSO formula;

(d) the first-child-next-sibling encoding of L is recognized by a full binary tree automaton.

Languages which satisfies conditions from Theorem 6 are called regular . Note that this
definition has nothing to do with the definition of a regular tree.

2.2.1 Monadic second-order logic

With a full binary tree t over an alphabet A we associate a relational structure of the
form (see [40])

struct(t) =
(
dom(t) = 0{0, 1}∗, succt0, succt1, {labta}a∈A

)
.

Here succt0, succ
t
1 denote respectively left and right successor relations over dom(t), i.e.

(x, x0) ∈ succt0 and (x, x1) ∈ succt1 for every node x ∈ dom(t). Additionally, for every
a ∈ A we have a labeling relation labta = {x ∈ dom(t) | t(x) = a}.

With a forest t over the alphabet A we associate a relational structure

struct(t) =
(
dom(t), succt, siblt, {labta}a∈A

)
.

Here succt is the successor relation over dom(t), i.e. succt = {(x, xi) | x, xi ∈ dom(t), i ≥
0}, and siblt is the right-sibling relation over dom(t), i.e. siblt = {(xi, xj) | x, xi, xj ∈
dom(t), i ≥ 0, j = i+ 1}. The labeling relation is defined as above.

On figure 2.9 we have for instance (x, xi) ∈ succt for i = 1, 2, 3, (x, y) ∈ siblt and
(x′, x′1) ∈ succ

fcns(t)
0 , (x′, y′) ∈ succ

fcns(t)
1 .

Let Vsing, Vset be sets of variables (respectively of singleton variables and set variables).
The syntax of monadic second-order logic is as follows: if a ∈ A, x, y ∈ Vsing, X ∈ Vset

and ϕ, ψ are MSO formulas , then the following are also MSO formulas:

a(x), x = y, x 6= y, X(x), succ0(x, y), succ1(x, y), succ(x, y), sibl(x, y), x ≤ y, x < y,

¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ, ϕ↔ ψ, ∃x ϕ, ∀x ϕ, ∃X ϕ, ∀X ϕ
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Let ηsing : Vsing → dom(t) be a mapping from the set of singleton variables to the
positions in the structure and ηset : Vset → 2dom(t) be a mapping from the set of set variables
to the sets of positions in the structure. We denote that the formula ϕ is satisfied in the
structure struct(t) regarding to the valuation η = (ηsing, ηset) by writing struct(t), η |= ϕ.
The semantics of MSO formulas is defined as follows:

struct(t), η |= a(x) if ηsing(x) is defined and ηsing(x) ∈ labta
struct(t), η |= x = y if ηsing(x), ηsing(y) are defined and ηsing(x) = ηsing(y)

struct(t), η |= X(x) if ηsing(x), ηset(X) are defined and ηsing(x) ∈ ηset(X)

struct(t), η |= succ(x, y)
if ηsing(x), ηsing(y) defined and (ηsing(x), ηsing(y)) ∈ succt

(similarly for succ0, succ1 and sibl)

struct(t), η |= ¬ϕ if struct(t), η 6|= ϕ

struct(t), η |= ϕ ∨ ψ if struct(t), η |= ϕ or struct(t), η |= ψ

struct(t), η |= ∃x ϕ
if exists x′ ∈ dom(t) such that struct(t), η′ |= ϕ

where η′sing(y) =

{
ηsing(y) for y 6= x
x′ for y = x

and η′set = ηset

struct(t), η |= ∃X ϕ

if exists X ′ ⊆ dom(t) such that struct(t), η′ |= ϕ

η′sing = ηsing and η′set(Y ) =

{
ηset(Y ) for Y 6= X
X ′ for Y = X

We also use the following syntactic sugar:

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ) ∀x ϕ ≡ ¬∃x ¬ϕ
ϕ→ ψ ≡ ¬ϕ ∨ ψ ∀X ϕ ≡ ¬∃X ¬ϕ
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ) x 6= y ≡ ¬(x = y)

Moreover, we use the descendant relation, that is the transition closure of the successor
relation:

x ≤ y ≡ ∀X X(x) ∧ (∀x′∀y′ X(x′) ∧ succ(x′, y′)→ X(y′))→ X(y)

x < y ≡ x ≤ y ∧ x 6= y

Similarly, we denote the transition closure of succ0 and succ1 by ≤0 and ≤1, respectively.
We also use the following formulas which check whether a node x is a root of the forest

and whether nodes from a set X form a maximal infinite path:

root(x) ≡ ¬∃y succ(y, x)

path(X) ≡ (∃x root(x) ∧X(x)) ∧
(
∀x X(x)→ ∃y succ(x, y) ∧X(y)

∧ (∀z succ(x, z) ∧X(z)→ z = y)
)

The language of full binary trees or forests defined by an MSO formula ϕ is the set of
all trees (forests) whose structures satisfy ϕ with the initially empty valuation:

L(ϕ) = {t | struct(t), ∅ |= ϕ}.

We say that such a language is MSO-definable or regular .

Lemma 7. For every language L of forests defined by an MSO formula, there is an MSO
formula which defines fcns(L).
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Proof. We take an MSO formula ϕ which defines L and rewrite it with the following
rules to obtain a formula ϕ′. The rewrite rules ensure that ϕ′ quantifies only over nodes
in fcns(t) which have their corresponding nodes in t and that predicates are correctly
translated:

∃x ϕ → ∃x ¬#(x) ∧ ϕ
∃X ϕ → ∃X (∀x X(x)→ ¬#(x)) ∧ ϕ

succ(x, y) → ∃z succ0(x, z) ∧ z ≤1 y

sibl(x, y) → succ1(x, y)

We also have to check that the nodes labeled with special letter # form full binary trees.
Therefore the formula which defines fcns(L) is

ϕ′ ∧ ∀x∀y #(x) ∧ (succ0(x, y) ∨ succ1(x, y))→ #(y).

2.2.2 Automata

A (non-deterministic parity) full binary tree automaton over an alphabet A is given by a
set of states Q, a transition relation ∆ ⊆ Q× Q× A× Q, an initial state qI ∈ Q, and a
parity condition Ω: Q→ {0, . . . , k}.

A run of this automaton over a full binary tree t is a labeling ρ : dom(t)→ Q of tree
nodes with states such that for every node x with two children x0, x1,

(ρ(x0), ρ(x1), t(x), ρ(x)) ∈ ∆.

For every (infinite) path π ⊆ dom(t) we consider the set Inf(π) of states which appear
infinitely many often on this path, i.e.

Inf(π) = {q ∈ Q | there are infinite number of nodes x ∈ π with ρ(x) = q}.

A run is accepting if for every (infinite) path π ⊆ dom(t), the maximum rank among
states from Inf(π), i.e. maxq∈Inf(π) Ω(q), is even. The value of a run over a tree t is a state
assigned to the root of the tree. A tree is accepted by an automaton if it has an accepting
run whose value is the initial state qI . The set of trees accepted by an automaton is called
the language recognized by the automaton.

The well-known theorem of Rabin gives a correspondence between languages of full
binary trees which are definable by an MSO formula and languages of full binary trees
which are recognized by full binary tree automata:

Theorem 8 (Rabin Tree Theorem, [29]). A language of full binary trees is MSO-definable
if and only if it is recognizable by a full binary tree automaton.

A (non-deterministic parity) forest automaton over an alphabet A is given by a set
of states Q equipped with a monoid structure, a transition relation ∆ ⊆ Q × A × Q, an
initial state qI ∈ Q and a parity condition Ω: Q → {0, . . . , k}. We use additive notation
+ for the monoid operation in Q, and we write 0 for the neutral element.

A run of this automaton over a forest t is a labeling ρ : dom(t) → Q of forest nodes
with states such that for every node x with children x1, . . . , xn

(ρ(x1) + ρ(x2) + · · ·+ ρ(xn), t(x), ρ(x)) ∈ ∆.
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Note that if x is a leaf, then the above implies (0, t(x), ρ(x)) ∈ ∆.
A run is accepting if for every (infinite) path π ⊆ dom(t), the maximum rank among

states from Inf(π) is even. The value of a run over a forest t is obtained by adding, using
+, all the states assigned to roots of the forest. A forest is accepted if it has an accepting
run whose value is the initial state qI of the automaton. The set of forests accepted by an
automaton is called the language recognized by the automaton.

Example 9. Consider a forest language

L = “there is at least one infinite path with all nodes labeled with a”.

Note that the a-labeled path does not necessarily be maximal (i.e. it may begin in any
node). This language is recognized by a forest automaton A1 with states Q = {qA, qa, qb}.
The idea is that a forest t has an accepting run of value qa if there is an a-labeled path
in t, and it has an accepting run of value qA if there is an a-labeled path in t which begins
in a root. Thus the initial state is qa.

The state qb is a monoid identity, and the monoid is given by equations:

qA + q = q + qA = qA for all q ∈ Q
qa + qa = qa + qb = qb + qa = qa

qb + qb = qb

A transition relation is as follows:

∆ = {(qA, a, qA), (qA, a/b, qa), (qa, a/b, qa), (qb, a/b, qb)},

The parity condition is given by Ω(qA) = Ω(qb) = 0 and Ω(qa) = 1. Note that every forest
has a run of value qb, but a forest t has a run of value qa only if it belongs to L. In the
later case there must be an infinite a-labeled path in t such that every node of the path
is assigned state qA.

Lemma 10. If L is a forest language such that fcns(L) is recognized by a full binary tree
automaton, then L is recognized by a forest automaton.

Proof. LetA = (A#, Q,∆, qI ,Ω) be a full binary tree automaton which recognizes fcns(L).
We can assume that we have a special state q# ∈ Q and there is only one transition which
involves special label #, namely (q#, q#,#, q#) ∈ ∆. First, we construct an auxiliary
automaton A′ which also recognizes fcns(L) but additionally it guesses for every node
x ∈ dom(t) the maximum rank which appears on the maximal suffix of the path from
root to x which descends only to the right.

We define A′ = (A#, Q
′,∆′, q′I ,Ω

′) as follows:

(a) each state remembers an additional rank, thus Q′ = Q× {0, . . . , k},

(b) q′I = (qI ,Ω(qI)),

(c) for every a ∈ A, i ∈ {0, . . . , k} and every tuple (q1, q2, a, q) ∈ ∆ we add a transition
which initializes the rank of a left-child node and ensures that the rank of a right-
child node takes into account the rank of its parent:(

(q1,Ω(q1)), (q2,max(i,Ω(q2))), a, (q, i)
)
∈ ∆′,

we also add transitions for special label #:
(
(q#, i), (q#, i),#, (q#, i)

)
∈ ∆′,
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Figure 2.10

(d) parity condition uses the additional rank:

Ω′((q, i)) = i for every q ∈ Q′, i ∈ {0, . . . , k}.

We show that the languages recognized by automata A and A′ are the same. There is a
one-to-one correspondence between the runs of these two automata which have accepting
state in the root, since the additional ranks are uniquely determined (see also figure 2.10).
Consider a tree t, a run ρ of A over t and the corresponding run ρ′ of A′ over t. Consider
a path π ⊆ dom(t) and partition it as π = π1π2π3 . . ., where every πi is a non-empty
sequence of nodes such that the first node in πi is the root or a left-child node and every
other node is a right-child node. From the conditions for every πi = x0x1 . . . xn we get
Ω′(ρ′(xi)) = max{Ω(ρ(xj)) | j ≤ i}, thus maxi Ω

′(ρ′(xi)) = maxi Ω(ρ(xi)), therefore the
run ρ is accepting if and only if the run ρ′ is accepting.

The first coordinate of state ofA′ is the exact state ofA, therefore if we put Ω′((q, i)) =
Ω(q) the acceptance would be the same. The value of the second coordinate is the max-
imum rank which appears on the portion of ancestor-path which goes through right-
children edges. Since these paths are always finite, changing Ω′((q, i)) = i will not affect
the acceptance.

Now, using A′, we construct a forest automaton B which recognizes L. The automaton
tries to guess the accepting run of the automaton A′. It labels a node x of a tree t with a
pair of states (q, q′) ∈ Q′ ×Q′ which means: I guess that the state of a node x′ in fcns(t)
which corresponds to node x is q, and that the state of the right-child of x′ is q′.

We define B = (A,Q′′,∆′′, q′′I ,Ω
′′) as follows:

(a) each label is a guess of two states or an error state, thus Q′′ = Q′ ×Q′ ∪ q⊥,

(b) q′′I = (q′I , q#),

(c) the monoid structure on states ensures that the guess of the right-child’s state is
consistent with the right-child’s guess of its state:

(q1, q2) + (q2, q3) = (q1, q3) for every q1, q2, q3 ∈ Q′′,
(·, q1) + (q2, ·) = q⊥ for every q1 6= q2,
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(d) for every a ∈ A and every tuple (q1, q2, a, q) ∈ ∆′ we add a transition which ensures
that the guess in the parent is consistent with guesses in its children:(

(q1, q#), a, (q, q2)
)
∈ ∆′′,

(e) the parity condition uses guessed state:

Ω′′((q, q′)) = Ω′(q) for every (q, q′) ∈ Q′′.

Again, there is a one-to-one correspondence between the runs of automata A′ and B
which have accepting state in the root. Consider a tree t, a run ρ of B over t and the
corresponding run ρ′ of A′ over fcns(t). Consider an infinite path π ⊆ dom(t) and the
corresponding path π′ ⊆ dom(fcns(t)). Fix a node x ∈ dom(t) and its corresponding
node x′ ∈ dom(fcns(t)). If π = x1x2x3 . . . then π′ = π1x

′
1π2x

′
2π3x

′
3 . . . where πix

′
i is a

maximal suffix of the path from root to x′i which descends only to the right. But from the
construction of A′ and B we have that

max
y∈πix′i

Ω′(ρ′(y)) = Ω′(ρ′(x′i)) = Ω′′(ρ(x)),

therefore the maximum rank which appears infinitely often on the paths π and π′ is the
same. Therefore ρ satisfies the parity condition of the automaton B if and only if ρ′ satisfies
the parity condition of the automaton A′.

2.2.3 Equivalence of recognizability by automata
and definability by MSO formulas

In this section we establish the connection between languages recognizable by tree (forest)
automata and languages definable by MSO formulas, namely that they are the same.

Lemma 11. If L is a forest language recognized by a forest automaton A, then there is
an MSO formula ϕ which defines the language L.

Proof. We will construct the formula ϕ explicitly: given a forest t, it will guess the run ρ
of the automaton A over the forest and check the acceptance conditions. The formula
guesses a family of sets Xq,r for every q, r ∈ Q. A node x belongs to the set Xq,r if it is
labeled by a state q in the run ρ and if ρ(x) + ρ(x1) + ρ(x2) + · · · + ρ(xk) = r, where
x1, . . . , xk are the siblings of x which lie to the right of x. In particular if y is the leftmost
successor of x and y ∈ Xq′,r′ , then r′ is the sum of states assigned to the successors of x,
thus (r′, t(x), q) ∈ ∆. The formula ϕ is as follows:

∃Xq,r∃Xq′,r′ · · · ∃Xq′′,r′′

∀x
(∧

(q,r) 6=(q′,r′) Xq,r(x)→ ¬Xq′,r′(x)

∧ (root(x) ∧ ¬∃y sibl(y, x))→
∨
q Xq,qI (x)

∧ ∀y (succ(x, y) ∧ ¬∃z sibl(z, y))→
∨
q′,r

∨
(r′,t(x),q)∈∆ Xq,r(x) ∧Xq′,r′(y)

∧ (¬∃y succ(x, y))→
∨
r

∨
(0,t(x),q)∈∆ Xq,r(x)

∧ ∀y sibl(x, y)→
∨
q,q′,r′ Xq,q+r′(x) ∧Xq′,r′(y)

∧ (¬∃y sibl(x, y))→
∨
q Xq,q(x)

)
∧ ∀X (path(X)→

∨
i ∃Y inf(X, Y, 2i) ∧

∧
j>2i ¬∃Y inf(X, Y, j))
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The first condition states that the sets Xq,r are pairwise disjoint. The second one states
that the value of the run is qI . The third and fourth ensures that the transition relation
is satisfied (whenever x has a successor or not). The fifth and sixth ensures that the
guesses are consistent among siblings (whenever x has a right sibling or not). The last
line encodes the accepting condition, i.e. on every infinite path the maximum rank which
appears infinitely often equals 2i. It uses the following subformula:

inf(X, Y, i) ≡ ∀x (Y (x)→ X(x) ∧ (
∨
q,Ω(q)=i Xq(x)) ∧ ∃y Y (y) ∧ x < y).

Finally, we conclude with a result which is a counterpart of Rabin Tree Theorem, but
for the forest languages.

Proof of Theorem 6: If a forest language L is recognizable by a forest automaton then
from Lemma 11 it is definable by an MSO formula. Thus from Lemma 7 the language
fcns(L) is definable by an MSO formula, therefore from Rabin Tree Theorem fcns(L) is
recognizable by a full binary tree automaton. Finally, from Lemma 10 the language L is
recognizable by a forest automaton.

2.2.4 Regular forests and regular languages

Now we are ready to present a connection between regular forests and regular languages.
First, we cite a well-known result, which is a part of Rabin Basis Theorem ([30], [40]):

Theorem 12. Every non-empty regular full binary tree language contains at least one
regular tree.

The following theorem states that a regular forest language is determined by regular
forests it contains.

Theorem 13. If two regular forest languages contain the same set of regular forests, then
they are equal.

Proof. Assume that two regular forest languages L1, L2 contain the same set of regular
forests, but L1 6= L2. Without loss of generality the language L1 − L2 is not empty, but
since the regular languages are closed under Boolean operations, this language is regular.
It is easy to see that the first-child-next-sibling encoding preserves regularity of forests,
that is t is regular if and only if fcns(t) is regular, thus from Theorem 12 there is a regular
forest t ∈ L1 − L2, which contradicts the assumption that L1 and L2 contains the same
regular forests.

2.3 Finite semigroups

A semigroup is an algebraic structure (S, ·) which consists of a set S and a binary operation
which is a mapping S × S → S denoted by ·. The operation is associative, i.e. it satisfies
the following axiom for all s, t, r ∈ S:

(s · t) · r = s · (t · r).

In the next chapter we will present the universal theory of algebraic structures in which
we will define the notion of the language recognized by an algebraic structure and the free
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algebra. Here we only mention that the free semigroup generated by an alphabet A is the
set A+ of all non-empty words over A with word concatenation as the semigroup operation.
Thus a language of non-empty finite words is regular if and only if it is recognized by a
finite semigroup.

A semigroup which has a neutral element is called a monoid and is denoted by (S, ·, 1),
where 1 is the neutral element. The free monoid generated by an alphabet A is the set A∗

of all finite words over A with an empty word being a neutral element.

2.3.1 Idempotents and Ramseyan factorizations

An element s of a semigroup S is called an idempotent if s · s = s. If s ∈ S then an
idempotent power is any idempotent of the form sn for some n ≥ 1. It turns out that in
finite semigroups every element has an idempotent power.

Lemma 14 ([26]). Let S be a finite semigroup. Then for any s ∈ S there exists an unique
idempotent power of s.

We denote by sω the unique idempotent power of s.

Let u ∈ Aω be an infinite word. A factorization of u is a sequence of non-empty
finite words {un}n≥0 ∈ (A+)∞ such that u is their concatenation, i.e. u = u0u1u2 · · · . Let
ϕ : A+ → E be a mapping into a set of colors E. A factorization u = u′u0u1 · · · is called
Ramseyan for ϕ if there is a color e ∈ E such that every continuous block of words from
the factorization (except the first word u′) is of this color, i.e.

ϕ(uiui+1 · · ·uj) = e for every 0 ≤ i ≤ j.

Theorem 15. Let ϕ : A+ → E be a mapping into a finite set of colors E. Every infinite
word u ∈ A∞ admits a Ramseyan factorization for ϕ.

Proof. We present the proof from [26]. Define a sequence of pairs (ki, Ui) where ki ∈ N
and Ui ⊆ N. First, choose U0 = N and k0 = 0. Suppose that Ui has been chosen. Since E
is finite, there exists at least one element ei ∈ E such that the set

T = {k ∈ Ui | ϕ(ukiuki+1 · · ·uk−1) = ei}

is infinite. Then define Ui+1 = T and ki+1 = minUi+1. By the above construction
ϕ(ukiuki+1 · · ·uki+j−1) = ei for all i ≥ 0 and j > 0. Again from finiteness of E there
exists e ∈ E and an infinite increasing sequence {in}n≥0 such that ein = e for every n ≥ 0.
The subsequence ki0 , ki1 , . . . gives the required factorization.

Lemma 16. Let (S, ·) be a finite semigroup. For every infinite sequence {sn}n≥0 ∈
S∞ there are two elements s, e ∈ S+ and an increasing sequence {kn}n≥1 such that
s0s1 · · · sk1−1 = s and skiski+1 · · · ski+1−1 = e for every k ≥ 1.

Proof. Let ϕ : S+ → S be a natural mapping from the finite sequences of S into S. From
Theorem 15 there exists a Ramseyan factorization for ϕ which satisfies the statement of
the lemma.
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2.3.2 Wilke algebras and ω-semigroups

Here we mention two algebras which are used to recognize the languages of infinite words.
Wilke algebra is a two-sorted algebra (S+, S∞, ·, ·,∞) with operation · : S+ × S+ → S+,
operation of mixed product · : S+×S∞ → S∞ and operation of infinite loop ∞ : S+ → S∞.
The algebra satisfies the following axioms:

(W1) (S+, ·) is a semigroup;

(W2) for every s, t ∈ S+ and u ∈ S∞, s(tu) = (st)u;

(W3) for every s, t ∈ S+, s(ts)∞ = (st)∞,

(W4) for every s ∈ S+ and n ≥ 1, (sn)∞ = s∞;

(W5) every element of S∞ can be written as st∞ with s, t ∈ S+.

The free Wilke algebra generated by an alphabet A (generators are located in S+) is
the set of all infinite ultimately-periodic words over A (the accepting set is located in S∞).
The operations correspond to, respectively, finite words concatenation, concatenation of
a finite word to the left of an infinite word and infinite concatenation of a finite word with
itself.

An ω-semigroup (S+, S∞, ·, ·, π) is essentially Wilke algebra with the infinite loop oper-
ation generalized to an infinite product operation of infinite arity π : S∞+ → S∞. It satisfies
axioms (W1), (W2) and the following ones:

(W3′) for every s ∈ S+ and for every sequence {sn}n≥0 ∈ S∞+ ,

sπ(s0, s1, s2, . . .) = π(s, s0, s1, s2, . . .),

(W4′) for every increasing sequence {kn}n≥1 and for each sequence {sn}n≥0 ∈ S∞+ ,

π(s0s1 · · · sk1−1, sk1sk1+1 · · · sk2−1, . . .) = π(s0, s1, s2, . . .).

(W5′) every element of S∞ can be written as an infinite product of elements of S+.

The free ω-semigroup generated by an alphabet A is the set of all infinite words over A.
The infinite product operation correspond to infinite concatenation of finite words.

The following theorem gives a correspondence between finite Wilke algebras and finite
ω-semigroups.

Theorem 17 ([26]). Every finite Wilke algebra (S+, S∞, ·, ·,∞) can be equipped, in a
unique way, with a structure of finite ω-semigroup (S+, S∞, ·, ·, π) such that for every
s ∈ S, the product π(s, s, s, . . .) is equal to s∞.
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Chapter 3

Universal algebra

3
In this thesis different objects (such as words or trees, finite or infinite) are represented
by different algebraic structures. Since these structures are quite numerous, it is therefore
useful to gather common definitions and theorems in one place. That force us to take a
general approach which can be rather abstract and tedious.

In this chapter we present a general theory of these algebraic structures. The presented
notions should be known to the reader, since they are standard in the universal algebra.
However, standard structures consist of a carrier set which holds objects of one kind. Since
we need to deal with structures which can hold different kinds of objects (e.g. forests and
contexts in algebra for finite trees), we need to use the theory of multisort algebras.

In section 3.1 we present the definition of multisort algebra and standard algebraic
notions of homomorphism and free algebra. Next, we present a definition of recognizability
of a language by a multisort algebra and definitions of a syntactic algebra and Myhill-
Nerode relation.

In section 3.2 we present a notion of varietes of multisort algebras and varietes of
languages. We then prove a general version of the theorem which shows a one-to-one
correspondence between these two notions.

We illustrate the definitions with two running examples. The paragraphs which con-
tain the running examples are indicated by a bar on the left side. The first example is
the simplest algebra – a semigroup – which recognizes languages of non-empty finite
words. The second one is a two-sorted structure which recognizes languages of finite
forests, namely forest algebra, developed in [14].

3.1 Multisort algebras

As we said before, we need to work with algebraic structures which can hold objects of
different kinds in their carriers. Therefore, a natural choice is to use multisort algebras.
The next choice is to decide which sorts of an algebra contain objects which belong to the
language recognized by this algebra (only one sort, some of them, or all of them). Since
our ultimate goal is to present algebras for infinite trees which extend forest algebra, we
think that the first choice (only one sort) is the most suitable.

Multisort algebra is described by the following ingredients:

(1) Sorts. The set T contains all the names of the sorts.
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(2) Distinguished language sort τL ∈ T .

(3) Operations. Every operation is described by its arity, a list of sorts from which it
accepts arguments, and a result sort. An n-ary (n ≥ 0) operation f is denoted by

f : τ1 × · · · × τn → τ

if its i-th argument is from the sort τi ∈ T and the result is from the sort τ ∈ T .

That description is called the (multisort) signature of the multisort algebra and it is
denoted by Σ.

The signature of semigroups consists of only one sort, T = {τS}. Since there is only
one sort, it is also the distinguished language sort. The signature contains only one
binary operation · : τS × τS → τS.

The signature of forest algebras consists of two sorts, T = {τH , τV }, where τH is the
horizontal sort and τV is the vertical sort . The idea is that elements of the horizontal
sort correspond to finite forests and elements of the vertical sort correspond to finite
contexts. The distinguished sort is τH , since the algebra is used to recognize language
of forests.

The signature contains the following operations:

(a) horizontal concatenation +: τH × τH → τH and its identity element 0: ∅ → τH ,
which correspond to forest concatenation and the empty forest;

(b) vertical composition · : τV × τV → τV and its identity element � : ∅ → τV , which
correspond to context composition and the empty context;

(c) left action of vertical sort on horizontal sort · : τH×τV → τH , which corresponds
to composition of a context with a forests;

(d) two insertion operations inl , inr : τH → τV , which correspond to creating a con-
text from a forest by placing a hole next to a forest on the right or on the
left.

Multisort variants of basic definitions

A multisort set is a family of sets A = {Aτ}τ∈T indexed by the names of sorts. A multisort
set B is a subset of a multisort set A if for every τ ∈ T we have Bτ ⊆ Aτ . The cartesian
product of two multisort sets A, B is a family of sets {Aτ × Bτ}τ∈T . For two multisort
sets A, B we can define a multisort relation as a subset of cartesian product A × B.
It is an equivalence multisort relation if it satisfies the usual three conditions. For two
multisort sets A, B we can define a multisort function f : A→ B as a family of functions
{fτ : Aτ → Bτ}τ∈T .

A multisort algebra A of signature Σ consists of:

(1) a multisort set carrier(A);

(2) functions
fA : carrier(A)τ1 × · · · × carrier(A)τn → carrier(A)τ

for every operation f : τ1 × · · · × τn → τ from the signature Σ.
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Extending in a natural way definitions from universal algebra, we define a cartesian
product of two multisort algebras, a multisort subalgebra of a multisort algebra, a homo-
morphism between two multisort algebras, a multisort congruence relation, and a quotient
multisort algebra.

Terms

Let X be a multisort set which contains all variables which can appear in terms. Let A
be a multisort set, which we call a set of generators. A term is a tree with elements of
A ∪ X in leaves and with operations from the signature of the algebra in inner nodes.
The tree has to be consistent with the types of the operations: if a node x has operation
f : τ1 × · · · × τn → τ , then x has n children of types τ1, . . . , τn and x has type τ .

We denote the set of all terms over A∪X by terms(A). We define the value of a term σ
in the multisort algebra A under the valuation X → carrier(A) in the standard way.

We note that we can generalize the definition of a term to signatures with operations
of infinite arity. But then a term must be a well-founded tree.

In this chapter we write shortly σ : τ ′ → τ for a term of type τ with one variable of
type τ ′.

For instance we write σ : τV → τH for a term with a variable from the vertical sort
and result in the horizontal sort. However, in the next chapters we will write it more
verbosely as a “forest-valued term with one context-valued variable”.

Axioms

The one ingredient of a multisort algebra that we did not mention is an axiom. An axiom
is a pair of terms σ, σ′ of the same type, generated by the empty set. It is denoted by
σ = σ′.

A multisort algebra A satisfies an axiom σ = σ′ if for every valuation both terms have
the same value in the algebra.

The semigroup is defined by one axiom of associativity: s · (t · r) = (s · t) · r for
s, t, r ∈ XτS .

The forest algebra satisfies the following axioms: axioms of the horizontal monoid
(h + (g + f) = (h + g) + f and h + 0 = 0 + h = h for f, g, h ∈ XτH ), axioms of the
vertical monoid (v · (w · u) = (v · w) · u and v · � = � · v = v for v, w, u ∈ XτV ),
action axiom ((v · w) · h = v · (w · h) for v, w ∈ XτV , h ∈ XτH ) and insertion axioms
(inl(g) · h = g + h and inr(g) · h = h+ g for g, h ∈ XτH ).

Let us fix a set Ax of axioms. Two terms σ, σ′ of type τ are immediately axiom-
equivalent if there exists an axiom ρ = ρ′ from the set Ax which uses variables x1, . . . , xn
and exist terms σ1, . . . , σn and term σ0[x] such that

σ0[x← ρ[x1 ← σ1, . . . , xn ← σn]] = σ, σ0[x← ρ′[x1 ← σ1, . . . , xn ← σn]] = σ′.

Two terms σ, σ′ are axiom-equivalent if there is a sequence of terms σ = σ1, σ2, . . . , σn = σ′

such that for i = 1, . . . , n− 1 terms σi and σi+1 are immediately axiom-equivalent.
It is easy to see that axiom-equivalence of terms is a multisort congruence. We denote

it by ∼Ax.
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Free objects

Let A be a multisort algebra from the class K and let A be its set of generators. The
multisort algebra A is called free in the class K over the set A if for every multisort
algebra B from the class K and every multisort function f : A → carrier(B) there is
exactly one homomorphism α : A→ B such that α(a) = f(a) for every a ∈ A.

It is easy to see that two free algebras of the same set of generators are isomorphic,
therefore we denote by free(A) the free algebra for the set of generators A (the class K is
implicit in this denotation).

Let K be a class of all multisort algebras of signature Σ which satisfy the axioms from
the set Ax. It is easy to see that the set terms(A)/∼Ax of terms divided by all the axioms
is the free algebra.

How can one check if an algebra A from the class K is free in this class? The answer
is given in the following lemma:

Lemma 18. Let A be a multisort algebra from the class K and A be its set of generators.
Let be α : terms(A)→ A be a unique surjective homomorphism which is an identity on A
and satisfies the condition

for all σ, σ′ ∈ terms(A) α(σ) = α(σ′)⇒ σ ∼Ax σ
′.

Then A is free in the class K over the set A.

Figure 3.1

Proof. From the first theorem of isomorphism we have α = γ; β where β : terms(A)/∼Ax →
A (see figure 3.1). From the surjectiveness of α, β is also surjective. Moreover, for any
ρ, ρ′ ∈ terms(A)/∼Ax if β(ρ) = β(ρ′), then for any σ, σ′ such that γ(σ) = ρ, γ(σ′) = ρ′ we
have α(σ) = α(σ′), thus σ ∼Ax σ

′, therefore ρ = ρ′. Thus β is a bijection between a free
algebra terms(A)/∼Ax and A.

The free semigroup A+ is the set of all non-empty finite words over A with a binary
operation of word concatenation.

Let A be a finite alphabet. By A′ we denote a two-sorted set which contains no
elements in the horizontal sort and all single-letter contexts A� = {a� | a ∈ A}
in the vertical sort. The free forest algebra AFin4 is a two-sorted algebra over the
set of generators A′. The horizontal sort is a set AFinFor of all finite forests over A
(which includes an empty forest), and the vertical sort is a set AFinCon of all finite
contexts over A (which includes an empty context). The operations are: concatenation
of forests, composition of contexts, putting forest in a context (action operation), and
putting a hole next to a forest (insertion operation).

We note here that our decision of using single-letter contexts as a set of generators
for forests is an arbitrary one.
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Recognizability of languages

A (multisort) alphabet is any finite multisort set A. A language over alphabet A is any
subset L ⊆ carrier(free(A))τL . Thus a language consists of objects from the distinguished
sort τL. We say that a surjective morphism α : free(A)→ B recognizes L if there exists a
set F ⊆ carrier(B)τL such that L = α−1

τL
(F ). In other words membership t ∈ L depends

only on the value ατL(t). Such a language is said to be recognizable by a finite multisort
algebra. We note that we could omit the requirement that α is “onto”, but then in
Lemma 22 we should replace “any morphism” with “any surjective morphism”.

The algebra is often developed in such a way that languages recognizable by the finite
algebras are precisely regular languages. However, this is not always the case.

A morphism α : A+ → S from the free semigroup to a semigroup S recognizes a finite
word language L if there exists a set F ⊆ S such that L = α−1(F ). Since there is only
one sort, τL = τS. It can be proved [26] that a finite word languages is regular if and
only if it is recognized by a finite semigroup.

A morphism α : AFin4 → (H,V ) from the free forest algebra to a forest algebra (H,V )
recognizes a finite forest language L if there exists a set F ⊆ H such that L = α−1

τH
(F ).

A language consists of elements from the sort τL = τH . It can be proved [14] that a
finite forest language is regular if and only if it is recognized by a finite forest algebra.

Let L be a language over A. We define the Myhill-Nerode relation ∼L as a relation on
carrier(free(A)) as follows: let τ be a sort and s, s′ ∈ carrier(free(A))τ . Then s ∼L s′ if for
every term σ : τ → τL over A we have:

σ[x← s] ∈ L if and only if σ[x← s′] ∈ L.

Lemma 19. Myhill-Nerode relation is a congruence.

Proof. Let f : τ1×· · ·× τn → τ be an operation from the signature Σ and for i = 1, . . . , n
we have si, ti ∈ carrier(free(A))τi such that si ∼L ti. Let σ : τ → τL be any term. We build a
family of terms (i = 1, . . . , n) σi : τi → τL such that σi[x] = σ[f(t1, . . . , ti−1, x, si+1, . . . , sn)].
Then for i = 1, . . . , n we have

σi[si] ∈ L if and only if σi[ti] ∈ L

and for i = 1, . . . , n− 1 we have σi[ti] = σi+1[si+1] therefore

σ[f(s1, . . . , sn)] = σ1[s1] ∈ L if and only if σn[tn] = σ[f(t1, . . . , tn)] ∈ L,

thus f(s1, . . . , sn) ∼L f(t1, . . . , tn).

Lemma 20. Consider a multisort algebra A, a term σ : τ1 → τ2 and a set B ⊆ carrier(A)τ2.
If for s, t ∈ carrier(A)τ1 we have σ[x← s] ∈ B and σ[x← t] 6∈ B and the term σ has mul-
tiple occurrences of x, then there is another term ρ : τ1 → τ2 with exactly one occurrence
of x and ρ[x← s] ∈ B and ρ[x← t] 6∈ B.

Proof. Let n be a number of occurrences of x in the term σ. Consider the term

σ′ : τ1 × · · · × τ1︸ ︷︷ ︸
n times

→ τ2
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which is σ with occurrences of x replaced by different variables x1, . . . , xn. Consider for
i = 0, . . . , k a family of terms σ′i : ∅ → τ2 such that

σ′i = σ′[x1 ← s, . . . , xi ← s, xi+1 ← t, . . . , xn ← t].

Since σ′0 = σ[x ← t] ∈ B and B 63 σ[x ← s] = σ′n, then there is an index i (1 ≤ i ≤ n)
such that σ′i−1 ∈ B and B 63 σ′i. Therefore we put

ρ[x] = σ′[x1 ← s, . . . , xi−1 ← s, xi ← x, xi+1 ← t, . . . , xn ← t].

Let s, s′ ∈ S be two elements of a semigroup. From Lemma 20 every term σ : τS → τS
can be written as v · x · w for some v, w ∈ S1. Therefore the Myhill-Nerode relation
can be formulated as follows: s ∼L s′ if for every v, w ∈ S1 we have vsw ∈ L if and
only if vs′w ∈ L.

For forest algebra we can introduce a following relation ≈L:

(a) s ≈L t if for every context p we have ps ∈ L if and only if pt ∈ L.

(b) p ≈L q if for every forest t, we have pt ≈L qt.

We can show that it is another wording of the Myhill-Nerode relation:

Lemma 21. The relations ∼L and ≈L are the same.

Proof. If s ≈L t. Consider any term σ : τH → τH . We can factorize σ = p · x for some
context p, thus σ[s] = ps and σ[t] = pt. Thus we have s ∼L t. Similarly, if s ∼L t and
any context p we consider a term σ[x] = p · x. Since σ[s] ∈ L if and only if σ[t] ∈ L
then ps ∈ L if and only if pt ∈ L.

If p ≈L q, then for every forest t, pt ≈L qt, so from the definition for every forest t
and context r, rpt ∈ L if and only if rqt ∈ L. Consider any term σ : τV → τH , we can
factorize it σ = r · x · t for some r, t. Thus σ[p] ∈ L if and only if σ[q] ∈ L, so p ∼L q.
Similarly the other way round.

Syntactic multisort algebra

The syntactic multisort algebra of a language L is the quotient free(A)/∼L and denoted
by synt(L). The syntactic morphism is a natural morphism α : free(A)→ synt(L) defined
as α(w) = [w]∼L

.

Lemma 22. A language L over A is recognized by its syntactic morphism α. Moreover,
every surjective morphism β : free(A) → B that recognizes L can be extended by a mor-
phism γ : B→ synt(L) so that (β; γ) = α.

Proof. Let s, s′ ∈ carrier(free(A))τL . If s ∼L s′ then either both s and s′ belong to L,
or both are outside L, otherwise they could be distinguished by a simple term σ[x] = x.
Hence, the syntactic morphism recognizes L.

For the second part, there is a natural candidate for the mapping γ for s ∈ carrier(B)τ :

γτ (s) = ατ (β
−1
τ (s)).

We show that this definition is valid, i.e. for every s, s′ ∈ carrier(B)τ if βτ (s) = βτ (s
′), then

ατ (s) = ατ (s
′), Suppose otherwise that ατ (s) 6= ατ (s

′), thus there exists a term σ : τ → τL
such that exactly only one of σ[x← s], σ[x← s′] belongs to L. But βτ (s) = βτ (s

′), thus
βτL(σ[x← s]) = βτL(σ[x← s′]), which contradicts with the fact that β recognizes L.
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Moore’s algorithm

Now we present an algorithm to calculate the syntactic multisort algebra for a language
recognized by some finite multisort algebra A and a subset F ⊆ carrier(A)τL if we have
a finite number of operations in the signature. We mark iteratively all the pairs of ele-
ments which are not equivalent. First, one marks all pairs of elements from carrier(A)τL
consisting of an element of F and of an element of carrier(A)τL − F . Then one con-
siders a pair (s, s′) of elements of carrier(A)τ and marks it if there exists an operation
f : τ1×· · ·× τn → τ ′ in the signature, index j such that τj = τ , elements ti ∈ carrier(A)τi
for i 6= j such that the pair

(fA(t1, . . . , tj−1, s, tj+1, . . . , tn), fA(t1, . . . , tj−1, s
′, tj+1, . . . , tn))

is marked. We iterate until we cannot add more pairs. The following lemma shows the
correctness of the above algorithm.

Lemma 23. At the end of the algorithm a pair (s, s′) of elements from carrier(A)τ is
marked if and only if it does not belong to ∼L.

Proof. Assume that s 6∼L s′, that there is a term σ : τ → τL such that exactly one of
σ[x ← s] and σ[x ← s′] belongs to L. From Lemma 20 the term σ can have only one
occurrence of the variable x. We can factorize this term as follows: there is a number m
and operations f1, . . . , fm such that for i = 1, . . . ,m

σi[x] = fA
i (s1

i , . . . , s
ki−1
i , σi+1[x], ski+1

i , . . . , sni
i )

where fi : τ 1
i ×· · ·× τ

ni
i → τ i and τ kii = τ i+1, and finally σm+1[x] = x and τm+1 = τ . Since

σ1[x] = σ[x], then a pair (σ1[x ← s], σ1[x ← s′]) will be marked in the initial step of the
algorithm. It is easy to see that for i = 1, . . . ,m pair (σi+1[x ← s], σi+1[x ← s′]) will be
marked at the end of i-th step. Thus the pair (s, s′) will be marked at the end of m-th
step.

For the proof for the other way round we just record the operations which lead us to
marking (s, s′) and from them we construct (in the similar fashion as above) the desired
term which justifies that s 6∼L s′.

3.2 Varietes of multisort algebras
and varietes of languages

We say that two distinct elements s, s′ ∈ carrier(A)τ from the same sort τ ∈ T − {τL}
(which is different from the distinguished language sort τL) are language-equivalent if they
cannot be distinguished by any term of type τL, i.e. for every term σ : τ → τL over A we
have σ[x← s] = σ[x← s′].

From Lemma 20 we get the same definition if we restrict to terms of exactly one
occurrence of the variable x.

A multisort algebra A is called faithful if there are no two distinct elements which are
language-equivalent. Language-equivalence is a multisort equivalence relation. We define
operation faith(A) which takes a multisort algebra A and divides it by the language-
equivalence, which results in a faithful multisort algebra.
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Since the semigroup is an algebra of one sort, it is by definition always faithful.

There is a decidable condition which ensures that a forest algebra is faithful. A forest-
term is a term of type τH with no variables. A context-term is a term of type τV with
no variables. From Lemma 20 we know that every term σ : τV → τH can be written
as q · x · t for some context-term q and forest-term t. Thus, a forest algebra is faithful
if there are no two elements v, w ∈ V such that q · v · h = q · w · h for every h ∈ H,
thus it is faithful if there are no two elements v, w ∈ V such that v · h = w · h for
every h ∈ H.

Lemma 24. Every syntactic multisort algebra is faithful.

Proof. It follows from the fact that if two elements s, s′ from the same sort are language-
equivalent, then s ∼L s′.

A multisort algebra variety (see [27]) is a class V of finite faithful multisort algebras
which is closed under:

(1) cartesian products: if A,B ∈ V then A×B ∈ V;

(2) faithful quotients of multisort subalgebras: if A ∈ V and B is a multisort subalgebra
of A then faith(B) ∈ V;

(3) faithful quotients of homomorphic images: if A ∈ V and α : A→ B is a homomor-
phism then faith(α(A)) ∈ V;

We note that in the literature the term „algebra pseudovariety” is also used – to
emphasize that variety consists only of finite algebras.

A language variety is an operator V which assigns to each finite alphabet A a family
V(A) of languages over A and the following conditions hold for every alphabet A and B:

(1) V(A) is closed under Boolean operations, including complementation: if L,K ∈ V(A)
then L ∩K,L ∪K, carrier(free(A))τL − L ∈ V(A);

(2) morphic preimages: if L ∈ V(A) and α : free(B) → free(A) is a morphism then
α−1
τL

(L) ∈ V(B);

(3) quotients: if L ∈ V(A) and σ ∈ carrier(free(A ∪ {x}))τL then σ−1L ∈ V(A) where
the quotient is defined as

σ−1L = {t ∈ carrier(free(A))τL | σ[x← t] ∈ L}.

Let V be a multisort algebra variety. For each finite alphabet A we consider the class of
languages that are recognized by some multisort algebra from V (equivalently that their
syntactic multisort algebra belongs to V):

V(A) = {L ⊆ carrier(free(A))τL | synt(L) ∈ V}. (3.1)

We call the mapping V the language variety associated to V, and we denote it by Lang(V).
The following lemma shows that the mapping deserves its name.

Lemma 25. If V is a multisort algebra variety then V = Lang(V) is a language variety.
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Proof. Let L,K be two languages from V(A), recognized by morphisms f, g into two
multisort algebras A,B ∈ V:

f : free(A)→ A, g : free(A)→ B.

(1) The complement of L is also recognized by morphism f , only with complemented
accepting set:

carrier(free(A))τL − L = f−1
τL

(carrier(A)τL − fτL(L)).

The language L ∩ K is recognized by the product morphism f × g : free(A) → A × B
defined as

(f × g)(s) = (f(s), g(s)),

since
L ∩K = (f × g)−1

τL
(fτL(L) ∩ gτL(K)).

The result follows from A×B ∈ V, since V is closed under cartesian products.
(2) The preimage α−1

τL
(L) is recognized by composition (α; f) : free(B)→ A, since

α−1
τL

(L) = (α; f)−1
τL

(fτL(L)).

(3) If σ ∈ carrier(free(A ∪ {x}))τL then σ−1L is also recognized by morphism f , only
with a changed accepting set:

σ−1L = f−1
τL

({s ∈ carrier(A)τL | f(σ)[x← s] ∈ fτL(L)}).

There is a one-to-one correspondence between multisort algebra varietes and language
varietes. In order to prove it, we show that the operation Lang is bijective. First, we show
that Lang is monotonic in respect to the inclusion operation, which also show that Lang
is injective:

Lemma 26. Let V, W be two multisort algebra varietes and Lang(V) = V, Lang(W) =W.
Then V ⊆W if and only if for every alphabet A, V(A) ⊆ W(A).

Proof. The “only if” implication is obvious from the definition. For the “if” implication
let A ∈ V. Consider a natural morphism f : free(carrier(A)) → A. Let carrier(A)τL =
{s1, . . . , sn} and consider languages

Li = f−1
τL

(si).

Since the morphism f recognizes each language Li, then from Lemma 22 the syntactic
algebra Ai of Li divides the algebra A. Thus Ai ∈ V, and moreover Li ∈ V(carrier(A)) ⊆
W(carrier(A)). Therefore Ai ∈W. Since W is closed under cartesian products, thus

A1 × · · · ×An ∈W.

Consider the morphism

g : free(carrier(A))→ A1 × · · · ×An

defined as g(w) = (g1(w), . . . , gn(w)).
We show that for every two distinct elements from carrier(A) their images through g

are different. Take si, sj ∈ carrier(A)τL . Since f−1
τL

(si) ∈ Li and f−1
τL

(sj) 6∈ Li, thus gi(si) 6=
gi(sj), therefore g(si) 6= g(sj).
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Now take t, s ∈ carrier(A)τ where τ ∈ T − {τL}. Since t 6= s then from faithfulness
there exists a term σ : τ → τL such that σ[x ← t] 6= σ[x ← s]. Thus these are two
different elements from carrier(A)τL , therefore g(σ[x← t]) 6= g(σ[x← s]). It follows that
g(t) 6= g(s).

Therefore A is isomorphic to g(A), thus it is a divisor of A1× · · · ×An, so it belongs
to W.

Let L be a language variety. By L = Alg(L) we define the class of faithful multisort
algebras, such that every language over A recognized by these algebras belongs to L(A).
We want to show that in fact Lang(L) = L, which shows that Lang is surjective.

Lemma 27. Let L be a language variety. Let L′ be a multisort algebra variety generated
by syntactic algebras of languages from

⋃
L(A) where the union ranges over all finite

alphabets A. Then L′ = Alg(L).

Proof. From the definition of L = Alg(L) and L′ it is easy to show that

Lang(L) ⊆ L ⊆ Lang(L′). (3.2)

Thus from Lemma 26 we get that L ⊆ L′.
To prove the inclusion L′ ⊆ L we follow the argument from [26]. Let A ∈ L′, thus there

are multisort algebras A1, . . . ,An such that A divides A1× · · · ×An and for i = 1, . . . , n
the algebra Ai is the syntactic multisort algebra of some language Li ∈ L(Ai) over some
alphabet Ai with the syntactic morphism αi : free(Ai)→ Ai.

To prove that A ∈ L we must show that every language L ∈ carrier(free(A))τL recog-
nized by A is in L(A). Fix such language L. Observe, that the syntactic multisort algebra
S of L divides A, therefore it divides A1 × · · · ×An.

Since S divides A1 × · · · ×An, S is a quotient of a subalgebra T of A1 × · · · ×An.
Therefore T recognizes L and there exist a morphism γ : free(A) → T such that L =
γ−1
τL

(F ) for some F ⊆ carrier(T)τL .
Denote by πi : A1 × · · · ×An → Ai the projection morphism πi(s1, . . . , sn) = si and

set γi = γ; πi.
Since αi is surjective, for every letter a ∈ A we can choose an element from α−1

i (γi(a)).
By freenes of free(A) this mapping extends uniquely to a morphism. This morphism
βi : free(A) → free(Ai) satisfies γi = βi;αi. On figure 3.2 there is a commuting diagram
which illustrates the situation.

Figure 3.2

Therefore

L = γ−1(F ) =
⋃
s∈F

γ−1(s) =
⋃
s∈F

⋂
1≤i≤n

γ−1
i (si) =

⋃
s∈F

⋂
1≤i≤n

β−1
i (α−1

i (si)),
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where s = (s1, . . . , sn). In Lemma 28 we show that α−1
i (si) ∈ L(Ai). Since language

varietes are closed under morphic preimages, β−1
i (α−1

i (si)) ∈ L(A). Since they are closed
under Boolean operations, L ∈ L(A), which concludes the proof.

Lemma 28. Let L be a language variety and A a finite alphabet. Let L ∈ L(A) and
α : free(A)→ synt(L) be the syntactic morphism of L. Then for each s ∈ synt(L) we have
α−1(s) ∈ L(A).

Proof. Let s ∈ carrier(synt(L))τ . By the definition of the syntactic morphism, α−1
τ (s) is

an equivalence class of ∼L. Let w ∈ carrier(free(A))τ , then

[w]∼L
=
⋂
σ

{σ−1L | σ[w] ∈ L} −
⋃
σ

{σ−1L | σ[w] 6∈ L},

where the sums are over terms σ : τ → τ0. Now every σ−1L is in L(A). Moreover, if
σ−1L = ρ−1L then α(σ) = α(ρ), so there are only finitely many different sets σ−1L.
Therefore [w]∼L

∈ L(A), since language varietes are closed under quotients.

It is easy to see that from Lemma 27 and from (3.2) we get that Lang(L) = L. Therefore
we get the following theorem, which is a multisort version of Eilenberg Theorem [20]:

Theorem 29. The operation Lang is a bijection which establishes a one-to-one corre-
spondence between multisort algebra varietes and language varietes.

3.2.1 Identities

The reason why we are interested in the variety theory is that we want to effectively
characterize classes of forest languages that are definable in various logics, and many such
classes are varietes of languages. The algebraic approach often gives us characterizations
in terms of identities, i.e. we have a theorem which states that a language L belongs to
a certain class of languages if and only if its syntactic algebra synt(L) satisfies certain
identities. An identity has the same form as an axiom and, just like an axiom, imposes
some restrictions on an algebra.

It is easy to see that the word language L ⊆ A+ is “commutative” (i.e. membership
in L does not depend on the order of the letters), if and only if its syntactic semigroup
S = synt(L) satisfies the identity

s · t = t · s for all s, t ∈ S,

i.e. this semigroup is commutative.
Note that we can combine this identity with the semigroup axiom (s·t)·r = s·(t·r)

to get the set of axioms which defines the class of „commutative semigroups”. This
shows that the difference between identity and axiom depends on context.

Similarly, a finite forest language is “commutative” (i.e. closed under rearranging the
siblings) if and only if its syntactic forest algebra (H, V ) satisfies the identity

h+ g = g + h for all h, g ∈ H.
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It is easy to see that if a class of languages has a characterization in terms of identities,
this class is in fact a variety of languages, since the class of algebras satisfying a certain set
of identities is a multisort algebra variety. Reiterman ([31], [27]) proved that if the class
is defined by a certain kind of identities (slightly more general than defined above), then
it is an algebra variety. We believe that this theorem can be generalized to the multisort
case.



Chapter 4

The algebra for infinite thin forests

4
In this chapter we define two algebraic objects which will allow us to deal with regular
languages of infinite thin forests. When defining an algebraic object, such as a monoid,
semigroup, ω-semigroup, Wilke algebra, or forest algebra, one gives its sorts, operations
and axioms. Once these operations and axioms are given, a set of generators (the alphabet)
determines the free object (e.g. all words and non-empty words in the case of monoids
and semigroups, all finite and infinite words and all ultimately periodic words in the case
of ω-semigroups and Wilke algebras, and finite trees and contexts in the case of forest
algebras).

The first object we define is a regular-thin-forest algebra. Its operations and axioms are
constructed in such a manner that the free object of this algebra is the set of all regular
thin forests and regular thin contexts. We denote this free algebra by

AregThin4 = (AregThinFor, AregThinCon).

In a sense regular-thin-forest algebra is a generalization of both Wilke algebras and forest
algebras.

The second object is an unrestricted-thin-forest algebra. The free object of this algebra
is the set of all thin forests and thin contexts, which we denote by

AThin4 = (AThinFor, AThinCon).

In a sense unrestricted-thin-forest algebra is a generalization of both ω-semigroups and
forest algebras.

Figure 4.1 briefly lists the operations and axioms of three algebras for forests. It can be
seen that regular-thin-forest algebra generalizes forest algebra and unrestricted-thin-forest
algebra generalizes them both.

In section 4.1 we formally define regular-thin-forest algebras and unrestricted-thin-
forest algebras. Next, in section 4.2, we prove that every (regular) thin forest and (regular)
thin context can be generated by these algebras, and the free objects are exactly those
mentioned before. Finally, in section 4.3, we present a theorem which establishes corre-
spondence between these algebras, namely that every regular-thin-forest algebra can be
uniquely extended to an unrestricted-thin-forest algebra. This theorem is a close analogue
of similar theorem for Wilke algebras and ω-semigroups.

In section 4.4 we show the correspondence between languages recognized by finite
unrestricted-thin-forest algebras and regular languages of thin forests, namely that these
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Algebra Free algebra Operations Axioms

forest algebra AFin4 finite trees
and finite contexts

+: H ×H → H
· : V × V → V
· : V ×H → H
inl , inr : H → V

(H,+, 0) is a monoid
(V, ·,�) is a monoid
v(wh) = (vw)h
inl(h)g = h+ g

regular-thin-
forest algebra

AregThin4 regular thin
trees and regular thin
contexts

∞ : V+ → H
(vw)∞ = v(wv)∞

(vn)∞ = v∞ for n ≥ 1

unrestricted-
thin-forest
algebra

AThin4 thin trees
and thin contexts

π : V∞
+ → H

π(v0, v1, v2, . . .) =
= π(v0 · · · vk1

, vk1+1 · · · vk2
, . . .)

v0π(v1, v2, . . .) = π(v0, v1, v2, . . .)

Figure 4.1

classes of languages are the same. Since regular languages of forests are uniquely deter-
mined by regular forests they contain, the above correspondence in a sense applies also
to regular-thin-forest algebras.

4.1 Regular-thin-forest algebra
and unrestricted-thin-forest algebra

Regular-thin-forest algebra and unrestricted-thin-forest algebra have much in common.
First, we formally define the former and then we we describe the differences between
these two algebras.

Regular-thin-forest algebra is a three-sorted algebra (H,V+, V�, act , inl , inr , inf ). It
consists of two monoids H and V = V+ ∪ V� (divided into a subsemigroup V+ and a
submonoid V�) along with an operation of left action act : H× (V+∪V�)→ H of V+∪V�
on H, two operations inl , inr : H → V�, and an infinite loop operation inf : V+ → H. In-
stead of writing act(h, v), we write vh (notice a reversal of arguments). Instead of writing
inf (v), we write v∞.

The above construction is based on forest algebra (see [14]). In fact we take for-
est algebra and introduce the new operation inf ; this operation corresponds to infinite
composition of contexts. However, since infinite composition is defined only for guarded
contexts, we are forced to make a distinction between guarded and non-guarded objects
also in the algebra. There are several ways to do this, e.g. in [7] we forced that no opera-
tion produces non-guarded objects, thus instead of operations inl and inr we introduced
a bigger set of operations (we do the same in chapter 5).

Here we take another approach and we divide the sort V into two parts V+ and V�
which correspond to guarded and non-guarded objects, respectively. Since this distinction
is rather technical, we can still think about the algebra as being two-sorted with sorts
V = V+ ∪ V� and H, but with every operation on V implicitly working on V+ and V�.

We will call H the horizontal monoid and V the vertical monoid .

Axioms. A regular-thin-forest algebra must satisfy the following axioms:

(A1) (H,+, 0) is a monoid with an operation + and neutral element 0,
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(A2) (V, ·,�) is a monoid with an operation · and neutral element �; it contains two
disjoint subalgebras: (V�, ·,�) is a monoid and (V+, ·) is a semigroup,

(A3) (action axiom) (vw)h = v(wh) for every v, w ∈ V , h ∈ H,

(A4) (insertion axiom) inl(h)g = h+ g, inr(h)g = g + h for every h, g ∈ H,

(A5) (vw)∞ = v(wv)∞ for v, w ∈ V , excluding the case when v, w ∈ V�,

(A6) (vn)∞ = v∞ for v ∈ V+ and every n ≥ 1.

The definition of unrestricted-thin-forest algebra is the same as regular-thin-forest al-
gebra, but the infinite loop operation is generalized by an infinite product : π : V ∞+ → H,
which has its own versions of axioms (A5) and (A6):

(A5′) for every v ∈ V+ and for every sequence {vn}n≥0 ∈ V ∞+ ,

vπ(v0, v1, v2, . . .) = π(v, v0, v1, v2, . . .),

(A6′) for every increasing sequence {kn}n≥1 and for each sequence {vn}n≥0 ∈ V ∞+ ,

π(v0v1 · · · vk1−1, vk1vk1+1 · · · vk2−1, . . .) = π(v0, v1, v2, . . .).

It is easy to see that the infinite loop operation can be expressed as v∞ = π(v, v, v, . . .).

Free objects. Given an alphabet A we define the free regular-thin-forest algebra over A,
which is denoted by AregThin4, as follows, using the operations defined in section 2.1:

(a) the horizontal monoid is the set of regular thin forests over A, with the operation
of forest concatenation;

(b) the vertical monoid is the set of regular thin contexts over A (respectively guarded
and non-guarded), with the operation of context composition;

(c) the action is the operation of composition a context with a forest;

(d) the inl operation takes a regular thin forest and transforms it into a regular thin
context with a hole to the right of all the roots in the forest (similarly for inr , but
the hole is to the left of the roots);

(e) the infinite loop operation takes a regular thin context and transforms it into a
regular thin forest by performing infinite composition.

In the same manner we define the free unrestricted-thin-forest algebra over A, which
is denoted by AThin4, by above conditions (a)–(d) without the assumption of regularity
and a condition

(e′) the infinite product operation takes an infinite sequence of thin contexts and trans-
forms it into a thin forest by performing infinite composition.

Recall that for a letter a ∈ A we denote by a� a regular thin context which consists
of one root with label a and a hole under it. We denote also A� = {a� | a ∈ A}.



50 CHAPTER 4. THE ALGEBRA FOR INFINITE THIN FORESTS

Theorem 30. The algebra AregThin4 is a regular-thin-forest algebra. Moreover, it is the
free algebra in the class of regular-thin-forest algebras over the generator set A�.

Similarly, the algebra AThin4 is an unrestricted-thin-forest algebra and the free algebra
in the class of unrestricted-thin-forest algebras over the generator set A�.

Proof. It is easy to check that AregThin4 and AThin4 satisfy the respective axioms.
Thanks to Lemma 34 and Lemmas 38, 39, the function α satisfies the premises of

Lemma 18 which characterizes the free objects. The formulations and proofs of the afore-
mentioned lemmas are delegated to section 4.2.

Faithfulness. A faithful regular-thin-forest algebra must satisfy an additional condi-
tion:

(A7) (faithfulness condition) there are no two elements v, w ∈ V such that

(a) vh = wh for all h ∈ H and

(b) (vu)∞ = (wu)∞ for all u ∈ V such that vu, wu ∈ V+.

Lemma 31. A regular-thin-forest algebra is faithful if and only if it satisfies the condi-
tion (A7).

Proof. Consider two distinct elements v, w ∈ V . The algebra is faithful if and only if
there is a forest-valued term σ with one context-valued variable x over the signature of
regular-thin-forest algebra such that σ[x ← v] 6= σ[x ← w] and x appears once in the
term (by Lemma 20). Such term can be written as either p · x · t for some context-term p
and forest-term t or as σ′[y ← (q′ · x · q′′)∞] for some forest-valued term σ′ with one
forest-valued variable and some context-terms q′, q′′. In the former case there are elements
u ∈ V and h ∈ H (generated by p and t respectively) such that u · v · h 6= u · w · h, thus
v · h 6= w · h for some h ∈ H. In the latter case there are elements u′, u′′ ∈ V (generated
by q′, q′′) such that (u′ · v · u′′)∞ 6= (u′ · w · u′′)∞. Since (u′ · v · u′′)∞ = u′(v · u′′u′)∞, thus
(v · u)∞ 6= (w · u)∞ for u = u′′u′.

We will assume in this chapter that all thin-forest algebras are faithful.
Regular-thin-forest algebra can be viewed as a generalization of Wilke algebra where

the horizontal monoid H extends the set of infinite words and the vertical monoid V
extends the set of finite words. One can observe that the faithfulness condition is very
similar to Arnold congruence [1] on finite words in the Wilke algebra. The reason why we
have to state this condition along with the congruence on the regular-thin-forest algebra is
as follows: in the Wilke algebra objects of both sorts (finite and infinite words) can belong
to the language, whereas in the regular-thin-forest algebra objects of only one sort (H)
belong to the language. This also means that if we would like to apply the general theory
from the chapter 3 to the Wilke algebras, we should allow to distinguish more language
sorts.

Syntactic sugar for insertion operations. Since insertion operations are somewhat
cumbersome to use, we can introduce two additional operations +HV : H × V → V and
+V H : V ×H → V :

h+HV v = inl(h)v, v +V H h = inr(h)v.

The images of the operation +V H on sets H×V+ and H×V� are V+ and V�, respectively.
Analogously for +HV .
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Lemma 32. The operations +HV and +HV are associative with + and preserve zero, i.e.:

(h+ g) +HV v = h+HV (g +HV v)

v +V H (h+ g) = (v +V H h) +V H g

(h+HV v) +V H g = h+HV (v +V H g)

0 +HV v = v v +V H 0 = v

Proof. First, we show that they are associative. We do only the first identity, the remaining
two are similar. Thanks to faithfulness we have to show that both sides act the same on
any f ∈ H and behave the same on any ( · u)∞ for u ∈ V . We do only the former case,
the latter is analogous:

((h+ g) +HV v)f = inl(h+ g)vf = inl(h+ g)(vf) = (h+ g) + vf = h+ (g + vf) =

= inl(h)(g + vf) = inl(h)(inl(g)(vf)) = inl(h)(inl(g)vf) =

= inl(h)(inl(g)v)f = (h+HV (inl(g)v))f = (h+HV (g +HV v))f.

They also preserve zero (again, we show the first case of the first identity):

(0 +HV v)f = inl(0)vf = inl(0)(vf) = 0 + vf = vf.

Therefore we can omit the subscripts and write + instead of +HV and +V H . We can
now verify that the operations have a desired meaning:

(h+ v + g)f = h+ vf + g and
(
(h+ v + g)u)∞ = (h+ vu+ g)∞.

Verifying satisfiability of the axioms. To check if a multisort algebra of the signature
of regular-thin-forest algebras is in fact a regular-thin-forest algebra one must verify that
the algebra satisfies the axioms. The only difficulty lies in the axiom (A6), which represents
an infinite number of axioms. However, checking this axiom can be realized by checking
one identity:

Lemma 33. The axiom (A6) is satisfied if and only if

(vω)∞ = v∞ for v ∈ V+. (4.1)

Proof. The “only if” part is obvious. The proof for the “if” part is based on the fact that
(vn)ω = vn·ω = vω, thus

(vn)∞
(4.1)
=
(
(vn)ω

)∞
= (vω)∞

(4.1)
= v∞.

Note that (4.1) involves the idempotent power, so it is not formally an axiom, since
the operation v 7→ vω is not a part of the signature.

4.2 Free objects

This section is devoted to finishing the proof of Theorem 30, i.e. that the free regular-
thin-forest algebra over A is the free object (in the sense of universal algebra) among
regular-thin-forest algebras over A when the set of generators is A�, and similarly that
the free unrestricted-thin-forest algebra is the free object among unrestricted-thin-forest
algebras.
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The algebras are generated by the alphabet. Let σ be a term without variables
over A and let α(σ) be the evaluation of this term in AregThin4 (respectively in AThin4)
with the valuation f(a) = a�.

First, we prove that the free regular-thin-forest algebra and the free unrestricted-thin-
forest algebra are generated by elements of A�, i.e. α is surjective. All trees, forests and
contexts in the following proofs are thin.

Lemma 34. For every thin forest t (thin context p) there is a term σ(t) (σ(p)) without
variables such that it evaluates in the unrestricted-thin-forest algebra over A to t (p). For
every regular thin forest t (regular thin context p) there is a term σ(t) (σ(p)) without
variables such that it evaluates in the regular-thin-forest algebra over A to t (p).

Proof. We only need prove the lemma for thin trees. Indeed, for every thin forest

t = t1 + t2 + · · ·+ tn

where ti are thin trees which are generated by terms σ(ti), the forest t is generated by a
term

σ(t) := σ(t1) + σ(t2) + · · ·+ σ(tn).

Also, every thin context p can be factorized as

p = p0a1p1 · · · anpn

for some n ≥ 0, labels on the path to the hole a1, . . . , an ∈ A and (possibly empty) non-
guarded contexts p0, . . . , pn. Thus if σ(pi) generates pi, then the context p is generated by
a term

σ(p) = σ(p0)a1σ(p1) · · · anσ(pn).

Finally, every non-guarded context p can be factorized as

p = t1 + · · ·+ tj−1 + � + tj+1 + · · ·+ tn

where ti are thin trees generated by terms σ(ti) and thus the context p is generated by a
term

σ(p) = σ(t1) + · · ·+ σ(tj−1) + � + σ(tj+1) + · · ·+ σ(tn).

We prove the lemma by induction over the rank of a thin tree t. For the induction
base observe that the empty tree is generated by the term 0. Now let t be any thin tree,
and let S be its spine. If S is finite and of size n+ 1, then t can be factorized as

a1p1a2p2 · · · anpnan+1s

where a1, . . . , an+1 ∈ A are the labels of the path S, p1, . . . , pn are (possibly empty) non-
guarded contexts and s is a forest. (See figure 4.2 where a tree ap1dp2bs is depicted.)
The ranks of every root of pi and every root of s are less than rank(t), thus by induction
assumption there are terms which generate them; let σ(pi) be a term generating pi and
let σ(s) be a term generating s. Then

σ(t) := a1σ(p1)a2σ(p2) · · · anσ(pn)an+1σ(s).

If S is infinite, then t can be factorized as

a1p1a2p2 · · ·
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Figure 4.2

where a1, a2, . . . ∈ A are the labels of the path S and p1, p2, . . . are (possibly empty) non-
guarded contexts. The ranks of every root of pi are less than rank(t), thus by induction
assumption there are terms which generate them. We concatenate them: let σ(pi) be a
term generating pi. Then the thin tree t is generated in AThin4 by a term

σ(t) := π(a1σ(p1), a2σ(p2), . . .).

If t is regular then it has a finite number of subtrees, therefore there exist two indices
i, j such that i < j and the subtree aipiai+1pi+1 · · · is equal to the subtree ajpjaj+1pj+1 · · · .
Then the regular thin tree t is generated in AregThin4 by a term

σ(t) := a1σ(p1)a2σ(p2) · · · ai−1σ(pi−1)
(
aiσ(pi)ai+1σ(pi+1) · · · aj−1σ(pj−1)

)∞
.

Terms which generate the same object are axiom-equivalent. In the realm of
finite words the associativity of concatenation operation ensures that it is of no importance
in which order we perform the operations, as long as we obtain the same word. We want
to prove now that the axioms of forest algebra ensures that the „generalized associativity”
holds, i.e. it is not important in which order we perform the operations on forests and
contexts, as long as we obtain the same objects. Since we have a fair number of operations,
the proof is quite tedious. Therefore we sometimes use the axioms implicitly, especially
associativity in horizontal and vertical monoids.

The idea of the proof is to show that every term in regular-thin-forest algebra and
unrestricted-thin-forest algebra is axiom-equivalent to some form of a canonical term.

We say that a term is a forest-term if it is of sort τH and it generates a thin forest;
it is a context-term if it is of sort τV and it generates a thin context. For simplicity of
presentation, in the following lemmas we denote by t, s forest-terms rather than forests.
Analogously p, q are context-terms, not contexts.

We say that a (possibly empty) non-guarded context-term p is a brick-context-term if
it is of form t′ + � + t′′ for some forest-terms t′, t′′.

Lemma 35. For every context-term p there is an axiom-equivalent context-term of form

p′ = p0a1p1a2p2 · · · anpn

for some n ≥ 0, letters a1, . . . , an ∈ A, and brick-context-terms p0, . . . , pn. If p is a tree-
context-term then p0 = �.

Proof. The proof goes by induction on the structure of the term p. If p = �, then the
term is in the desired form: we just put n = 0, p0 = �. If p = a�, we put n = 1, a1 = a,
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p0 = p1 = �. If p = inl(t) for some forest-term t, we put n = 0, p0 = t + �; similarly for
p = inr(t).

Finally, if p = qr for some context-terms q, r, then from the induction assumption we
have q = q0a1q1 · · · anqn, r = r0b1r1 · · · bmrm. Then p = q0a1q1 · · · an(qnr0)b1r1 · · · bmrm is
in the desired form thanks to the associativity of the vertical monoid and from the fact
that qnr0 is a brick-context-term.

Lemma 36. For every forest-term t there is an axiom-equivalent forest-term of form

t′ = t1 + t2 + · · ·+ tn

for some n ≥ 0 and non-empty tree-terms t1, . . . , tn.

Proof. The proof goes by induction on the structure of the term t. If t = t1 + t2, then we
simply use the induction assumption and the associativity of the horizontal monoid. If
t = ps for some context-term p and forest-term s, then from Lemma 35 p = p0a1p1 · · · anpn
and from induction assumption s = s1 + s2 + · · · + sm. Thus if n = 0 and p0 = �, then
t = s1 + · · · + sm. Otherwise, p0 = s′ + � + s′′ for some forest-terms s′, s′′ and from
induction assumption s′ = s′1 + · · ·+ s′m′ , s′′ = s′′1 + · · ·+ s′′m′′ , thus

t = s′1 + · · ·+ s′m′ + a1p1 · · · anpns+ s′′1 + · · ·+ s′′m′′ .

Finally, if t = (p)∞ for some guarded context-term p, then from axiom (A5), t = p(p)∞,
and we reduced it to the previous case. Similarly, if t = π(p1, p2, . . .) for some guarded
context-terms p1, p2, . . ., then from axiom (A5′) t = p1π(p2, . . .) and we also reduced it to
the previous case.

It follows from the above lemma that every brick-context-term p is axiom-equivalent
to a brick-context-term of form

p′ = t1 + . . .+ tj−1 + � + tj+1 + · · ·+ tn

for some n ≥ 0 and non-empty tree-terms t1, . . . , tn.

Lemma 37. Let t be a tree-term and S be the spine of the tree generated by t. If S is
finite, then there is a tree-term t′ axiom-equivalent to t of form

t′ = a1p1 · · · anpnan+1s (4.2)

for some n ≥ 0, letters a1, . . . , an+1 ∈ A, brick-context-terms p1, . . . , pn, and a forest-term
s such that the rank of t is the rank of an+1s and every root of the contexts generated by
p0, . . . , pn and every root of the forest generated by s has rank strictly less than the rank
of the tree generated by t.

If S is infinite then there is a tree-term t′ axiom-equivalent to t of form

t′ = π(a1p1, a2p2, . . .) (4.3)

for letters a1, a2 ∈ A and brick-context-terms p1, p2, . . . such that the rank of the tree is
the rank of every subtree generated by aipiai+1pi+1 · · · .

If S is infinite and the tree generated by t is regular, then there is a tree-term t′

axiom-equivalent to t of form

t′ = a1p1 · · · anpn(b1q1 · · · bmqm)∞ (4.4)
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for some n ≥ 0, m ≥ 1, letters a1, . . . , an, b1, . . . , bm ∈ A, and brick-context-terms
p1, . . . , pn, q1, . . . , qm such that the rank of the tree is the rank of a tree generated by
(b1q1 · · · bmqm)∞ and every root of contexts generated by p1, . . . , pn, q1, . . . , qm has rank
strictly less than the rank of the tree generated by t.

Proof. The proof goes by induction on the structure of the term t. Let t = ps for some
tree-context-term p and forest-term s. We use Lemmas 35 and 36 to find axiom-equivalent
forms of p and s, thus without loss of generality we assume that p = a1p1 · · · anpn for
n ≥ 1 and brick-context-terms p1, . . . , pn; and s = t1 + · · ·+ tm for m ≥ 0 and tree-terms
t1, . . . , tm. We consider following cases:

1. There is an index i such that rank(t) = rank(ti). By the induction assumption tree ti
is axiom-equivalent to t′i which is of form (4.2), (4.3), or (4.4). Then

t′ = a1p1 · · · an
(
pn(t1 + · · ·+ ti−1 + � + ti+1 + · · ·+ tm)

)
t′i

is also of the same form as t′i.

2. There are indices i, j, j′ and j > j′ (the case j < j′ is done analogously) such that
pi = (s1 + · · ·+ sj′−1 +�+ sj′+1 + · · ·+ sl) and rank(t) = rank(sj). By the induction
assumption we have that sj is axiom-equivalent to s′j which is of form (4.2), (4.3),
or (4.4). Then

t′ = a1p1 · · · ai(s1 + · · ·+ sj′−1 + ai+1pi+1 · · · anpns+

+ sj′+1 + · · ·+ sj−1 + � + sj+1 + · · ·+ sl)s
′
j.

3. Otherwise, if i is the greatest index such that rank(t) = rank(aipi · · · anpn), then the
tree is in the desired form (4.2).

Finally, if t = (p)∞ for some guarded tree-context-term p then from Lemma 35 we have
p = a1p1 · · · anpn and t = (a1p1 · · · anpn)∞ is in the desired form (4.4), which obviously
can be written also as (4.3). If t = π(p1, p2, . . .), then it is easy to write it in form (4.3)
using axiom (A6′).

Let us consider a tree-term of form (4.4) and call it a loop-term of size (n,m). On the
loop-term t of size (n,m) we can perform two operations. Shift of t is a loop-term of size
(n+ 1,m):

a1p1 · · · anpnb1q1(b2q2 . . . bmqmb1q1)∞,

and k-expansion of t is a loop-term of size (n, km):

a1p1 · · · anpn(b1q1 · · · bmqm · · · b1q1 · · · bmqm︸ ︷︷ ︸
k times

)∞.

From the axioms it is easy to see that both shift and k-expansion of t are axiom-equivalent
to t.

Lemma 38. Let t0, t1 be two forest-terms which generate the same forest. Then t0, t1 are
axiom-equivalent.



56 CHAPTER 4. THE ALGEBRA FOR INFINITE THIN FORESTS

Proof. From Lemma 36 we can assume that the terms generate a tree, call it t. The proof
is by induction on the rank of t. Let S be the spine of t. From Lemma 37 we get that for
i = 0, 1, ti is axiom-equivalent to t′i of certain form.

If S is finite then
t′i = ai,1pi,1 · · · ai,ni

pi,ni
ai,ni+1si

and since letters ai,1, . . . , ai,ni+1 are the labels of the spine of t, then n0 = n1 and a0,j = a1,j.
Moreover, brick-context-terms p0,j, p1,j and forest-terms s0, s1 generate the same objects
and the trees in the roots of p0,j, p1,j, s0, s1 are of smaller rank than rank(t), therefore
from the induction assumption we get that they are axiom-equivalent. Thus t′0 is axiom-
equivalent to t′1 and hence t0 is axiom-equivalent to t1.

The same reasoning applies when S is infinite and t′i are of form (4.3).
If S is infinite and t is regular, then forests-terms t0 and t1 are axiom-equivalent to two

loop-terms of sizes (n0,m0) and (n1,m1) respectively. Without loss of generality assume
that n0 ≥ n1. We shift the latter term n0 − n1 times, and we m1−i-expand the i-th term.
Therefore we have two loop-terms of sizes (n0,m0m1):

t′i = ai,1pi,1 · · · ai,n0pi,n0(bi,1qi,1 · · · bi,m0m1qi,m0m1)
∞.

By the same reasoning as above we get that t0 is axiom-equivalent to t1.

Lemma 39. Let p0, p1 be two context-terms which generate the same context. Then p0, p1

are axiom-equivalent.

Proof. From Lemma 35 we get that for i = 0, 1, pi is axiom-equivalent to

p′i = pi,0ai,1pi,1 · · · ai,ni
pi,ni

and since ai,1, . . . , ai,ni
are the labels on the path to the hole, then n0 = n1 and a0,j =

a1,j. Moreover, brick-context-terms p0,j and p1,j generate the same objects, thus applying
Lemma 38 to the trees in the roots of p0,j and p1,j we get that they are axiom-equivalent.
Thus p′0 is axiom-equivalent to p′1 and hence p0 is axiom-equivalent to p1.

4.3 Correspondence between two algebras

Algebraically, unrestricted-thin-forest algebra is a more general object, since it represents
languages of all thin forests. However, one of its drawbacks is the fact that it has an
operation of infinite arity and infinitely many axioms.

On the other hand, regular-thin-forest algebra is a finite object, but it represents
languages of regular thin forests.

But since regular languages of thin forests are uniquely determined by the regular thin
forests they contain, it is not surprising that there is a strong correspondence between
regular-thin-forest algebras and unrestricted-thin-forest algebras.

Theorem 40. Every finite regular-thin-forest algebra can be equipped, in a unique way,
with a structure of an unrestricted-thin-forest algebra.

Proof. Let (H,V+, V�) be a regular-thin-forest algebra. Consider a set Hω ⊆ H which
consists of all elements of form vw∞ for v, w ∈ V+. It is easy to see that (V+, Hω) is a
Wilke algebra. From Theorem 17 we can, in a unique way, define the operation π : V ∞+ →
Hω such that (V+, Hω) is an ω-subsemigroup. We can naturally extend the definition of
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the operation π to (H,V+, V�). Since the axioms of ω-subsemigroup regarding π are the
same as axioms of unrestricted-thin-forest algebra, we conclude that (H,V+, V�) with the
operation π is an unrestricted-thin-forest algebra.

The uniqueness of this extension follows from the fact that every extension must
map elements of V+ to some element from Hω (due to the axioms and Theorem 15).
Therefore different extensions would differ on (V+, Hω) which is impossible, since (V+, Hω)
is unique.

4.4 Recognizability by algebra and regularity

In this section we prove that languages which are recognizable by a finite unrestricted-thin-
forest algebra are precisely regular languages of thin forests. The proof of the theorem
is presented in the two following sections. In the first one we show how to calculate
a finite unrestricted-thin-forest algebra which recognizes the language L, given a non-
deterministic forest automaton which recognizes L. In the second one we show how to
construct an MSO formula which defines L, given a finite unrestricted-thin-forest algebra
which recognizes L.

Theorem 41. A language of thin forests is recognizable by a finite unrestricted-thin-forest
algebra if and only if it is regular.

In particular, an immediate consequence of this theorem is that the language of all
thin forests is regular.

4.4.1 From automaton to algebra

In this section we show how to calculate, given a non-deterministic forest automaton A,
an unrestricted-thin-forest algebra that recognizes the language recognized by A. This
algebra is called the automaton algebra.

Let us fix a non-deterministic forest automaton A, with states Q, input alphabet A,
and parity ranks {0, . . . , k}. We assume that A recognizes a language of thin forests.
Below we describe the automaton algebra (H,V ), together with associated morphism
α : AThin4 → (H, V ), which accepts the thin forests contained in the language recognized
by A.

Before describing the algebra itself, we define the morphism α. This morphism should
explain what are the intended meanings of H and V .

(a) To each thin forest t, the morphism α associates a subset of Q. A state q belongs to
α(t) if some accepting run ρ over t has value q.

(b) To each thin context p, the morphism α associates a subset of Q×{0, . . . , k}×Q. A
triple (q1, i, q2) belongs to α(p) if there exists a thin forest s and accepting run ρ over
ps such that ρ evaluates ps to q2, evaluates s to q1, and the highest rank assigned to
nodes that are ancestors of the hole is i (this rank is equal to 0 if p is non-guarded).

Therefore, the carriers of the horizontal and vertical monoids are subsets

H ⊆ P (Q), V ⊆ P (Q× {0, . . . , k} ×Q),

which are images of α on thin forests and thin contexts, respectively. These might be
proper subsets, for instance not every subset of Q has to be an image of some t. A thin
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forest belongs to L if and only if its image under α contains an accepting state, so α
recognizes L.

We say that two thin forests s, t are automaton-equivalent if the subsets associated
to these forests by the morphism α are the same. We denote it by s ∼A t. Similarly we
define automaton-equivalence for thin contexts.

Lemma 42. The relation of automaton-equivalence ∼A is a congruence with respect to
operations in the free unrestricted-thin-forest algebra.

Proof. We show it for forest concatenation and for infinite loop operation. The proof for
other operations follows the same lines.

Let t, t′, s be thin forests and t ∼A t′. We must show that t + s ∼A t′ + s. Suppose
that q ∈ α(t + s), thus there is an accepting run ρ over t + s in which the sum of states
assigned to roots of t is q′, the sum of states assigned to roots of s is q′′, and q = q′ + q′′.
The run ρ is accepting over the forest t, and since t ∼A t′, there is an accepting run ρ′

over t′ of value q′. Combining the run ρ′ over t′ with the run ρ over s we get an accepting
run over t′ + s of value q = q′ + q′′, thus q ∈ α(t′ + s).

Let p, p′ be guarded thin contexts and p ∼A p′. We must show that p∞ ∼A p′∞.
Suppose that q ∈ α(p∞), thus there is an accepting run ρ over forest p∞ of value q. For
i ≥ 1 we denote by qi−1 the sum of states assigned to the roots of the i-th (counting from
the top) instance of the context p (of course q = q0), and by ki the highest rank assigned
to nodes on the path to the i-th hole. Thus for every i ≥ 1 we have (qi−1, ki, qi) ∈ α(p),
and therefore (qi−1, ki, qi) ∈ α(p′). That means that for every i there is an accepting run
ρi of value qi−1 over p′si for some forest si which is evaluated to qi. Combining these runs
we get that q ∈ α(p′∞).

The following lemma is a direct consequence of Lemma 42.

Lemma 43. The function α preserves all operations of unrestricted-thin-forest algebra.
In particular, its image (H,V ) is a unrestricted-thin-forest algebra.

Lemma 44. The morphism α recognizes the same languages as the automaton A.

Proof. Let L be the language recognized by the automaton A and let q0 be the initial
state of the automaton. Let I = {h ∈ H | q0 ∈ h}. From the definition we have that
a forest t in in L if some accepting run over t has value q0. It is equivalent to say that
q0 ∈ α(t), thus α(t) ∈ I, and t ∈ α−1(I). Therefore L = α−1(I).

The operations in the algebra. For completeness we show how to effectively calculate
the operations of finite arity in the automaton algebra. We omit, however, the correctness
proof of this construction, since it is rather tedious.

Defining the operations is straightforward, keeping in mind the intended meaning of the
morphism α. We denote by TC(v) a transitive closure of v in respect to the operation ·.
Formally, (p, α, q) ∈ TC(v) if there exist a sequence of states p = qn, qn−1, . . . , q0 = q
and ranks αn, αn−1, . . . , α1 such that α = max{αn, . . . , α1} and (qi, αi, qi−1) ∈ v for every
1 ≤ i ≤ n.
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The operations are as follows:

h+ g = {p+ q | p ∈ h, q ∈ g} for h, g ∈ H,
vw = {(p,max(i, j), q) | (p, i, r) ∈ w, (r, j, q) ∈ v} for v, w ∈ V.
v∞ = {q | (p, i, p), (p, ·, q) ∈ TC(v), i is even} for v ∈ V+,
vh = {q | p ∈ h, (p, ·, q) ∈ v} for v ∈ V, h ∈ H,

inl(h) = {(q, 0, p+ q) | p ∈ h} for h ∈ H,
inr(h) = {(q, 0, q + p) | p ∈ h} for h ∈ H.

Finally, we also define the morphism:

α(a�) = {(q,Ω(p), p) | (q, a, p) ∈ ∆} for a ∈ A,
α(�) = � = {(p, 0, p) | p ∈ Q},
α(0) = 0 = {0}

Example 45. Consider the language L from Example 9, i.e. the language of forests
with at least one infinite path (not necessarily beginning in a root) with all nodes labeled
with a (call such path an a-path). It is recognized by the following unrestricted-thin-forest
algebra:

H = {ha, hb}, V = {vA, va, vb},

where α−1(ha) = L, α−1(vA) are the contexts with an a-path, α−1(va) are the contexts
without an a-path and with a path to the hole labeled with only a’s, α−1(vb) are the
contexts without an a-path and with at least one b on the path to the hole.

The operations of finite arity in the algebra are as follows:

ha + ha = ha + hb = hb + ha = ha vvA = vAv = vA for every v ∈ V
hb + hb = hb vbvb = vavb = vbva = vb

vAh = ha for every h ∈ H vava = va

vah = vbh = h for every h ∈ H
inl(ha) = inr(ha) = vA v∞a = v∞A = ha

inl(hb) = inr(hb) = va v∞b = hb

The morphism is given by: α(0) = hb, α(�) = va and α(a) = va, α(b) = vb.

4.4.2 From algebra to MSO formula

We show here an MSO formula for a language recognized by a given finite unrestricted-
thin-forest algebra and a morphism. A similar construction can be applied to obtain a
non-deterministic forest automaton, see [8]. The constructed automaton is of index (1, 3),
i.e. it uses ranks from the set {1, 2, 3}.

Let L be a thin-forest language recognized by a finite unrestricted-thin-forest algebra
(H,V ) and a morphism α : AThin4 → (H,V ). That is L = α−1(I) for some set I ⊆ H. We
construct an MSO formula ϕ which defines the language L. Let H = {h1, . . . , h|H|} and
V+ = {v1, . . . , v|V+|}.

For every forest t the formula ϕ must check whether t belongs to L. First, the formula
ensures that t is thin. It does so by constructing a branch-labeling R for t, since from
Lemma 1 a forest is thin if and only if it has a branch-labeling. The following formula
checks if the set R satisfies the two conditions from the definition of branch-labeling, i.e.
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for every two successors of each node at most one belongs to R and on every infinite path
there is a node x such that every descendant of x from this path belongs to R:

ϕR ≡ ∃R
(
∀x1∀x2∀y x1 6= x2 ∧ succ(y, x1) ∧ succ(y, x2) ∧R(x1)→ ¬R(x2)

∧ ∀X (path(X)→ ∃x X(x) ∧ ∀y x ≤ y ∧X(y)→ R(y))
)

Next, the formula guesses for every node x of the tree t the value of the morphism α on the
subtree t|x. That is, it guesses a set Xh for every h ∈ H such that x ∈ Xh if α(t|x) = h.
Additionally, it guesses a set X ′h′,h′′ for every pair h′, h′′ ∈ H such that x ∈ X ′h′,h′′ if
α(t′) = h′ and α(t′′) = h′′ where t′ is a forest which contains all left-siblings of node x as
roots, and t′′ is a forest which contains all right-siblings of x (see figure 4.3).

Figure 4.3

The final formula looks as follows:

ϕ ≡ ϕR ∧ ∃Xh1 · · · ∃Xh|H| ∃X
′
h1,h1
· · · ∃X ′h|H|,h|H|

ϕH( ~X),

where ϕH( ~X) is a formula which consists of |H|+ |H|2 free variables ~X = (Xh1 , . . . , Xh|H| ,
X ′h1,h1 , . . . , X

′
h|H|,h|H|

), which checks validity of the guessed sets. We construct the formula
ϕH incrementally:

ϕH ≡ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5.

The following formula checks that the guess in every root corresponds to an accepting
type (of course it is sufficient to check this for one root), the guessed sets are pairwise
disjoint, and every node belongs to some set.

ϕ2 ≡ ∀x
(
root(x)→

∨
h′,h,h′′∈H; h′+h+h′′∈I Xh(x) ∧X ′h′,h′′(x)

∧
∧
h6=h1 Xh(x)→ ¬Xh1(x)

∧
∧

(h′,h′′)6=(h′1,h
′′
1 ) X

′
h′,h′′(x)→ ¬X ′h′1,h′′1 (x)

∧
∨
h′,h,h′′∈H Xh(x) ∧X ′h′,h′′(x)

)
The next formula checks that the guessed sets are consistent with the horizontal operation
of the algebra. It considers three cases: a leftmost node, a rightmost node, and a pair of
immediate siblings.

ϕ3 ≡ ∀x
(
¬∃y sibl(y, x)→

∨
h′′∈H X ′α(0),h′′(x)

∧ ¬∃y sibl(x, y)→
∨
h′∈H X ′h′,α(0)(x)

∧ ∃y sibl(x, y)→
∨
h′,hx,hy ,h′′∈H Xhx(x) ∧X ′h′,hy+h′′(x) ∧Xhy(y) ∧X ′h′+hx,h′′(y)

)
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The next formula checks that the guessed sets are locally consistent with the vertical
operation of the algebra. It considers two cases: a leaf and an inner node.

ϕ4 ≡ ∀x
(
¬∃y succ(x, y)→ Xα(t(x))(x)

∧ ∃y succ(x, y)→
∨
g,h′,h,h′′∈H; g=α(t(x))(h′+h+h′′) Xg(x) ∧Xh(y) ∧Xh′,h′′(y)

)
Finally, we check that the guessed sets are consistent with the infinite vertical operation

of the algebra. This is the most involved part. The following formula fixes the infinite path
π = x0x1x2x3 . . . The setX encodes a maximal infinite path and all nodes fromX below x0

form the path π.

ϕ5 ≡ ∀X∀x0 (path(X) ∧X(x0))→ ϕ6

First, for every node xi ∈ π (i ≥ 0) the formula calculates the type vi of the context
which results from replacing in the tree t|xi the node xi+1 by the hole. These types are
represented by the sets Yv for every v ∈ V+. In other words xi ∈ Yvi if

vi = α(t(xi))(h
′ + � + h′′) and xi+1 ∈ X ′h′,h′′ .

The last step is to check whether π(v0, v1, v2, . . .) = α(t|x0).

Lemma 46. For every infinite sequence {vn}n≥0 ∈ V ∞+ there are two elements s, e ∈ V+

and an increasing sequence {kn}n≥1 such that v0v1 · · · vk1−1 = s and vkivki+1 · · · vki+1−1 = e
for every i ≥ 1.

Proof. This is an immediate consequence of Lemma 16.

From the above lemma and the axiom (A6′) if we find partition of this property, then
π(v0, v1, v2, . . .) = se∞. The formula thus guesses elements s, e and the set S which encodes
the partition of the path π in the following manner: xi ∈ S if and only if i = kj for some
j ≥ 1.

Moreover, the formula guesses a set Y ′v for every v ∈ V+ which stores the type of every
part in the partition. Let xi ∈ π and j is the index such kj ≤ i < kj+1. Then xi ∈ Y ′v′i if
v′i = vivi+1 · · · vkj+1−1.

To check whether the guessed sets correspond to a valid partition we do as follows.
First, we must ensure the local consistency: for every xi, xi+1 either i+ 1 = kj for some j
(i.e. xi+1 ∈ S) and then v′i = vi and v′i+1 = e, or i 6= kj (i.e. xi+1 6∈ S) and then v′i = viv

′
i+1.

Secondly, we must check that v′0 = s and α(t|x0) = se∞. Finally, we must ensure that the
number of parts in the partition is infinite, thus the set S is infinite.

ϕ6 ≡ ∃Yv1 · · · ∃Yv|V+| ∃Y
′
v1
· · · ∃Y ′v|V+|

∃S
∨
s,e∈V+(

∀x∀y succ(x, y) ∧X(y) ∧ x0 ≤ x→
(
∨
h′,h′′∈H X ′h′,h′′(y)↔ Yα(t(x))(h′+�+h′′)(x))

∧ (
∨
v∈V+ S(y) ∧ Yv(x) ∧ Y ′v(x) ∧ Y ′e (y)

∨ ¬S(y) ∧
∨
w,v∈V+ Yv(x) ∧ Y ′vw(x) ∧ Y ′w(y))

∧Xse∞(x0) ∧ Y ′s (x0)
)

∧ (∀x S(x)→ ∃y X(y) ∧ x < y ∧ S(y))

Lemma 47. Let t be a thin forest. If the formula ϕH( ~X) is satisfied on struct(t), then for
every node x ∈ dom(t) we have that x ∈ Xh if and only if α(t|x) = h.
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Proof. We do induction over the ranks of the forest t.
Fix a node x. If all its successors x1, . . . , xn have smaller ranks than rank(x), then

from the induction assumption xi ∈ Xhi if and only if α(t|xi) = hi. Thus from ϕ3 and ϕ4

we have that x ∈ Xh for h = t(x)(h1 + · · ·+ hn).
Otherwise, there is a path π from x of nodes which have the same rank as rank(x). If

this path is finite, we reason similarly as above.
Suppose then that the path is infinite π = x0x1x2 . . . Every successor y of xi which

does not belong to π has smaller rank than rank(x), thus from the induction assumption
y ∈ Xh if and only if α(t|y) = h. Let pi denotes the context which comes after putting hole
instead of xi+1 in t|xi . It is easy to see that xi ∈ Yvi if and only if α(pi) = vi. Therefore
we must ensure that α(π(p1, p2, . . .)) = α(t|x0). But this is the exact thing which is done
in ϕ5.

Lemma 48. The formula ϕ defines the same thin-forest language as the morphism α.

Proof. If t is a forest which is not thin, then it is not in the language, and from ϕR is not
in L(ϕ). Let t be a thin forest of type α(t) = h, thus t is in the language if and only if
h ∈ I. From Lemma 47 the guessed types of roots of t sums to a type h, then from ϕ2 we
have that t ∈ L(ϕ) if and only if h ∈ I.

Proof of Theorem 41. It is an immediate consequence of Lemma 44 and Lemma 48.

4.5 Deciding identities

We present here a general algorithm which shows how to decide if any given identity is true
in the syntactic unrestricted-thin-forest algebra of a regular thin-forest language L. (To
avoid technical difficulties we assume that identities can only use operations of finite arity.)
The algorithm is exponential in the state space of a non-deterministic forest automaton
recognizing L.

Firstly, however, we show the correspondence between the syntactic algebras of a
regular thin-forest language and regular forests from it:

Theorem 49. Let L be a regular thin-forest language with the syntactic unrestricted-
thin-forest algebra synt(L). Let synt(LR) be the syntactic regular-thin-forest algebra of the
language LR which contains all regular thin forests from L. Then synt(L) is isomorphic
with the extension of synt(LR) defined in Theorem 40.

Proof. We prove that synt(L) is an extension of synt(LR). Isomorphism follows from
Theorem 40 which states that such an extension is unique.

Therefore we must show that for every two regular thin forests s and t which are
equivalent under Myhill-Nerode relation ∼L, they are also equivalent under ∼LR

. From
the definition s ∼L t means that for every term σ from the signature of unrestricted-thin-
forest algebra we have σ[x← s] ∈ L if and only if σ[x← t] ∈ L. This is equivalent to say
that for every thin forest u over the alphabet A∪{x} we have u[x← s] ∈ L if and only if
u[x← t] ∈ L. Finally, this is equivalent to checking that two inverse images (x← s)−1(L)
and (x← t)−1(L) are equal.

From Lemma 54 these images are regular languages, thus checking they equality is
equivalent to testing whether they contain the same regular forests. Since regular thin
forests are generated by terms of regular-thin-forest algebra, it is equivalent with stating
that for every term σ from the signature of regular-thin-forest algebra σ[x ← s] ∈ L if
and only if σ[x← t] ∈ L, thus s ∼LR

t.
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In the previous section we show how to calculate in exptime, given a non-deterministic
forest automaton A, an unrestricted-thin-forest algebra that recognizes the thin-forest
language recognized by A. Note that this algebra (treated as a regular-thin-forest algebra)
recognizes the language of regular thin forests from language recognized by A. However,
it is not immediately clear that the syntactic unrestricted-thin-forest algebra and the
syntactic regular-thin-forest algebra, obtained by minimizing the above algebras, will also
have the same carriers. Theorem 49 proves this fact. Therefore in order to minimize an
unrestricted-thin-forest algebra we can apply Moore’s algorithm presented on the page 41,
using only operations of finite arity from the signature.

Theorem 50. The following problem is exptime-complete. The input is a non-determin-
istic forest automaton and an identity. The question is: is the identity true in the syntactic
unrestricted-thin-forest algebra of the language recognized by the automaton?

Proof. It is not difficult to show that the problem is exptime-hard, even for some fixed
identities. Indeed, suppose that the identity is h = g. When does this identity hold in the
syntactic thin-forest algebra of a forest language? There are two possibilities: either the
language is empty, or full. The question “is L empty or full?” is exptime-hard. This is
because the question “is L full?” is exptime-hard for non-deterministic tree automata,
by reduction from emptiness of alternating polynomial space, and the languages used in
the reduction are all non-empty.

How do prove the upper bound? The idea is as follows. We calculate in exptime the
automaton algebra and minimize it using Moore’s algorithm. Given the resulting syntactic
algebra we can test the identity by checking in polynomial time all possible valuations of
variables.

Since checking an identity in the syntactic unrestricted-thin-forest algebra of a regular
thin-forest language L is equivalent to checking it in the syntactic regular-thin-forest
algebra of L limited to regular forests, we will shortly write that we check identities in
“the syntactic thin-forest algebra” of L.
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Chapter 5

The general algebra for infinite forests

5
In this chapter we define an algebraic object which will allow us to deal with regular
languages of infinite forests. The advantage over the approach from the previous chapter
is that we are not limited to thin forests. However, the approach has a drawback: the
resulting object has an infinite number of operations and axioms.

The structure we define is a regular-infinite-forest algebra. The idea is that the free
object of this algebra is the set of all regular forests and all regular guarded contexts.

In section 5.1 we define recursion schemes, which allow us to represent the operations
in the algebra. In section 5.2 we formally define regular-infinite-forest algebras.

5.1 Recursion schemes

Recall that a forest is called regular if it has finitely many distinct subtrees. In section
2.1.2 we associated with every regular forest t its component graph Gt. We noted that if
we add the ordering and multiplicity to edges of Gt, then the forest t can be reconstructed
from Gt. Thus such augmented graph Gt is a finite representation of t. Moreover, every
augmented graph G represents some forests – we simply need to “unfold” the graph by
replacing every back-edge in the graph by an edge to a new copy of the appropriate part
of the graph G.

Let X = XH ∪ XV be a set of label variables. The set XH represents forest-sorted
variables and the set XV represents context-sorted variables. Given an augmented graph G
we can label its nodes by the elements of X, such that every node which has no outgoing
edge is labeled by a forest-sorted variable, and the remaining nodes are labeled by context-
sorted variables. We call such graph a recursion scheme.

Let φ be a recursion scheme and let η be a function (called a valuation) that maps
forest-sorted label variables to regular forests and context-sorted variables to regular
guarded contexts. We define unfoldφ[η] to be a regular forest obtained by replacing the
labels x with their values η(x) and unfolding the graph.

On figure 5.1 we depicted three recursion schemes φ1, φ2 and φ3. The recursion
scheme φ1 has a forest-sorted variable x and two context-sorted variables y′ and y′′. The
tree t results from unfolding φ1 by a valuation which maps a tree c and guarded contexts
a�, b� respectively to variables x, y′ and y′′:

t = unfoldφ1 [x← c, y′ ← a�, y′′ ← b�].
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Figure 5.1

For a regular guarded context p, we can treat the operation p∞ as a syntactic sugar
for unfoldφ2 [y ← p]. Thus the tree t can also be described as

t = unfoldφ2 [y ← a(c+ b(unfoldφ2 [y ← a�] + �))].

5.2 Regular-infinite-forest algebra

The operations and axioms of a regular-infinite-forest algebra are constructed in such a
manner that the free object over an alphabet A of this algebra is the set of all regular
forests over A and all regular guarded contexts over A. We denote this free algebra by

Areg4 = (AregFor, AregCon+).

The algebra is two-sorted with a monoid H and a semigroup V+.

Operations. There are eight basic operations in the algebra, as well as infinitely many
recursion operations.

There is a constant 0 ∈ AregFor and seven binary operations

s, t ∈ AregFor 7→ s+ t ∈ AregFor,

p, q ∈ AregCon+ 7→ pq ∈ AregCon+ ,

p ∈ AregCon+ , s ∈ AregFor 7→ ps ∈ AregFor,

p ∈ AregCon+ , s ∈ AregFor 7→ p+ s ∈ AregCon+ ,

p ∈ AregCon+ , s ∈ AregFor 7→ s+ p ∈ AregCon+ ,

p ∈ AregCon+ , s ∈ AregFor 7→ p(� + s) ∈ AregCon+ ,

p ∈ AregCon+ , s ∈ AregFor 7→ p(s+ �) ∈ AregCon+ .

If we had all contexts, instead of only guarded contexts, in the context sort, we could
replace the last four operations by two unary operations s 7→ s + � and s 7→ � + s.
However, having non-guarded contexts would cause problems for the recursion operations.

For each recursion scheme φ which uses m forest-sorted variables x1, . . . , xm and n
context-sorted variables y1, . . . , yn, there is an (m+ n)-ary recursion operation

s1, . . . , sm ∈ AregFor

p1, . . . , pn ∈ AregCon+
7→ unfoldφ[x1 ← s1, . . . , xm ← sm, y1 ← p1, . . . , yn ← pn] ∈ AregFor.
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It is easy to see that every regular forest t over alphabet A can be generated by using
as generators single-letter contexts from A� = {a� | a ∈ A}. It is sufficient to take
the augmented component graph Gt, and label each node with the appropriate variable
xa, which results in a recursion scheme φt. Then for a valuation η which maps xa to a�
for every a ∈ A, we get t = unfoldφt [η]. It is also easy to see that every guarded regular
context is also generated by A�: it suffices to construct the path to the hole in the context
and generate all remaining subtrees. Therefore Areg4 is generated by A�.

Axioms. We are now ready to define what regular-infinite-forest algebra is. It is a two
sorted structure (H, V+). The operations are the same as in each structure Areg4: eight
basic operations and infinitely many recursion operations.

We fix two disjoint countably infinite sets XH and XV of variables, which are intended
to represent forest-sorted and context-sorted variables, respectively. We write X for the
union of XH∪XV . Abusing somewhat the notation, we write X reg4 for the regular-infinite-
forest algebra where the forest (context) sort contains all regular forests (regular guarded
contexts) with labels from XH in the leaves and labels from XV in inner nodes.

The axioms of regular-infinite-forest algebra consist of all axioms which hold in X reg4.
Let φ2 and φ3 be recursion schemes which are depicted on figure 5.1. The axioms

include, for instance,
unfoldφ2(x) = unfoldφ3(x),

for each context-sorted variable x, since both sides evaluate in X reg4 to an infinite tree
xxx · · · .

We note that the basic operations of regular-infinite-forest algebra, such as concate-
nation and composition, are mainly syntactic sugar for recursion schemes:

Lemma 51. For every forest-valued term σ there is a recursion scheme φ such that
σ = unfoldφ is an axiom of regular-infinite-forest algebra.

Theorem 52. The algebra Areg4 is a regular-infinite-forest algebra. Moreover, it is the
free algebra in the class of regular-infinite-forest algebras over the generator set A�.

Proof. It is easy to see that Areg4 satisfies all axioms. We showed that Areg4 is generated
from A�. Moreover, any two terms which generate the same forest are immediately axiom-
equivalent. Thus the premises of Lemma 18 are satisfied.

5.2.1 Recognizing languages
with regular-infinite-forest algebra

In this section we prove that regular languages of infinite forests are recognizable by a
finite regular-infinite-forest algebra. We note that we do not prove the converse. We do
not, however, need it for effective characterizations presented in the thesis, since the effec-
tive characterization begins with a regular language and tests properties of its syntactic
algebra.

Given a non-deterministic forest automaton A we construct its automaton algebra
(H, V ) and morphism α into (H,V ) in the same manner as in section 4.4.1. Thus we only
present here a definition of the operation which corresponds to unfolding of recursion
schemes.
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Consider a recursion scheme φ, with variables XH ∪XV . Consider also a valuation

η : (XH , XV )→ (H,V ).

We will show how to define the value unfoldφ[η], which is a set of states, and also calculate
which states it contains. The idea is simple: we evaluate a forest automaton over a regular
forest. We take any function

γ : (XH , XV )→ Areg4 (5.1)

such that α◦γ = η. Such a function exists by assumption on α being surjective. Inside the
free algebra Areg4 we can evaluate unfoldφ[γ], which is a regular forest. We then define
unfoldφ[η] to be unfoldφ[α ◦ γ]. This definition does not depend on the choice of γ, as
shown in the following lemma (we use Lq for the set of forests that can be assigned state q
by the automaton A).

Lemma 53. Let t be a forest over XH ∪ XV and γ a valuation as in (5.1). For q ∈ Q,
membership t[γ] ∈ Lq depends only on α ◦ γ, and not on γ.

We also want to show that the value unfoldφ[η] can be calculated based on φ and η,
in time exponential in the size of the automaton. In other words, we want to find the
states q such that unfoldφ[γ] ∈ Lq. Consider first the identity valuation

id : (XH , XV )→ (XH , XV ).

Then unfoldφ[id] is a regular tree over the alphabet XH ∪XH . Now

unfoldφ[γ] ∈ Lq if and only if unfoldφ[id] ∈ γ−1Lq.

Therefore, we have reduced the problem to testing membership of a regular forest in a
regular language (regularity of γ−1Lq is witnessed by Lemma 54). This membership can
be tested in time polynomial in the size of φ and exponential in the state space of Q
(basically, the problem boils down to solving a parity game).

Lemma 54. For any language L recognized by A, and any γ as in (5.1), the language
γ−1L is recognized by an automaton polynomial in A.

Suppose that parity games can be solved in polynomial time (an open problem). In
this case, the operations in the automaton algebra can be calculated in polynomial time
(in the size of Q).

5.2.2 Deciding identities

Deciding identities in regular-infinite-forest algebra goes in the same manner as described
in section 4.5, as long as we can calculate the syntactic algebra. Thus in this section we
show how, based on the automaton algebra, we can calculate the syntactic algebra and
the syntactic morphism. Once we know this, the proof of the following theorem (including
hardness) is the same as the proof of Theorem 50:

Theorem 55. The following problem is exptime-complete. The input is a non-determin-
istic forest automaton and an identity. The question is: is the identity true in the syntactic
regular-infinite-forest algebra of the language recognized by the automaton?
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Thanks to Lemma 22, the syntactic morphism αL of the language L is obtained from
the automaton morphism α as

αL = γ ◦ α,

where γ identifies two elements g, h of the automaton algebra whenever some (equivalently,
any) forests s ∈ α−1(g) and t ∈ α−1(h) are L-equivalent (likewise for contexts). In this
section we show how to decide, in time exponential in Q, which elements of the automaton
algebra are identified by γ.

Recall that we want an exponential time algorithm that decides if an identity holds in
the syntactic regular-infinite-forest algebra. The algorithm simply tries all out all possible
valuations into elements of the automaton algebra, and tests (in at most exponential time)
if the equality holds after applying γ.

How to decide which elements of the automaton algebra are identified by γ? We only
do the construction for H. For h, g ∈ H, we want to check if there exist forests s, t over A
such that

α(s) = g, α(t) = h, s ∼L t.

By unraveling the definition of L-equivalence, we want to know if there is a forest-valued
term τ of regular-infinite-forest algebra over variables XH ∪XV and a valuation

η : (XH , XV )→ Areg4,

such that for some forest-valued variable x ∈ XH ,

τ [η[x← s]] ∈ L if and only if τ [η[x← t]] 6∈ L.

This is equivalent to asking if there is a regular forest u over the alphabet A ∪ {x} such
that

u[x← s] ∈ L if and only if u[x← t] 6∈ L.

The above can be rephrased as asking if the two inverse images

(x← s)−1(L) and (x← t)−1(L),

which are regular languages over A ∪ {x} thanks to Lemma 54, disagree on some regular
forest. Since two different regular languages must necessarily disagree on a regular forest,
this boils down to checking inequality of two regular forest languages. This inequality can
be decided in time exponential in Q. Note also that, thanks to Lemma 53, the automata
for the inverse images do not depend on the particular choice of trees s, t, but only on
their images α(s) = g, α(t) = h ∈ H.



70 CHAPTER 5. THE GENERAL ALGEBRA FOR INFINITE FORESTS



Part II

Effective characterizations





Chapter 6

Simple applications

6
In the second part of the thesis we show some applications of the algebraic theory presented
in the first part. In this chapter we start with effective characterizations of some basic
properties of thin forest languages. We show how to decide whether a given regular thin-
forest language is commutative (section 6.1), invariant under bisimulation (section 6.2),
and open in a certain topology (section 6.3). Each decision process boils down to testing
whether the syntactic forest algebra of the language satisfies a certain condition.

6.1 Commutative languages

In this section we present algebraic characterization of commutative languages. This sim-
ple example is quite instructive, since it shows that identities for infinite forests can be
easily misunderstood.

The notion of a commutative language of finite forests is quite natural: it is a language
closed under rearranging siblings. In the case of finite forests it is easy to show that a
language is commutative if and only if its syntactic forest algebra (H, V ) satisfies the
identity

h+ g = g + h for h, g ∈ H. (6.1)

However, the notion of a commutative language of infinite forests is not so natural.
First, let us consider the condition that

a language is closed under rearranging siblings finitely many times. (C1)

This is not a very useful definition, especially if we want to find an algebraic characteriza-
tion of commutativity. If identities like (6.1) are used inside more complicated terms, they
could “simultaneously” rearrange infinite number of nodes. For example, the condition
(C1) is satisfied by the language

L1 = “finitely many a-labeled nodes with a b-labeled left sibling”.

However, the language L1 does not satisfy (6.1), as witnessed by the term

σ[x] = (a� + x)∞,

which gives different results depending on whether x is mapped to a+ b or b+ a. Indeed,
σ[a+ b] ∈ L1, σ[b+ a] 6∈ L1, but if (6.1) was to be satisfied, these forests should have the
same types.
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We can strengthen our argument against condition (C1) – in fact there is no set of
identities that captures this condition, since the class of languages satisfying the condition
is not a variety of languages. Indeed for the term σ, the quotient σ−1L1 does not satisfy
the notion, since a + b ∈ σ−1L1 and b + a 6∈ σ−1L1. Thus by Theorem 29 the class of
algebras recognizing the languages satisfying (C1) is not a variety.

The second notion could be that

a language is closed under arbitrary (possibly infinitely many)
rearrangings of siblings.

(C2)

This condition is more appealing, and it will be a base for a formal definition of commuta-
tivity we present later. However, quite surprisingly, it is not captured by the identity (6.1).
Consider the language

L2 = “every node has 0 or 2 children and every path goes left
only a finite number of times”.

(6.2)

The language L2 does satisfy (6.1), however it does not satisfy (C2), as it is witnessed by
two forests

a(a+ a�)∞ ∈ L2, a(a� + a)∞ 6∈ L2.

The problem with the above example is that we would like to be able not only to
rearrange forests, but also to rearrange forests with contexts. In fact in the case of thin
forest this is all we need – a slightly more general identity

h+ v = v + h for h ∈ H, v ∈ V, (6.3)

which is equivalent to
inl(h) = inr(h) for h ∈ H.

We note, however, that in the case of general infinite forests even this identity is not
sufficient. Consider the language of full binary trees labeled with {0, 1}. We say that
a path π = x1x2x3 . . . in a full binary tree is label-consistent if for every xi ∈ π, the
concatenation of labels in nodes x1, . . . , xi is equal to the node xi, i.e.

label(x1)label(x2) · · · label(xi) = xi.

For example in a full binary tree t0 (see figure 6.1) in which every left-child is labeled
with 0 and every right-child is labeled with 1, every path is label-consistent, however in
a tree t1 in which children are labeled other way round, no path (longer than one node)
is label-consistent.

Figure 6.1
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The language

L3 = “the number of not label-consistent paths is countable”.

satisfies the identity (6.3). However, it does not satisfy (C2), since t0 ∈ L3, t1 6∈ L3, but
we can obtain t1 from t0 by changing the order of siblings in every node.

Since the identity (6.1), which looks like a natural candidate for defining commutativ-
ity, is in fact weaker, one can ask a question: what languages are defined by this identity.
We show that this identity is equivalent to the third notion of commutativity:

a language is closed under such rearranging of siblings that
on every path of a forest siblings are rearranged only finitely many times.

(C3)

We prove that (6.1) and (C3) are equivalent in the case of thin and general forests.

Definitions

We start by formalizing the definition of a commutative language. We say that two forests
t0, t1 are commutatively equivalent (we denote it by t0 ∼C t1) if there exists a bijection
f : dom(t0)→ dom(t1) such that for every x, y ∈ dom(t0):

(a) the nodes x and f(x) have the same labels,

(b) the node x is a parent of y if and only if f(x) is a parent of f(y).

Note that the condition (b) implies that the node x is a root if and only if f(x) is a root.
Observe that for any node x ∈ dom(t0) trees t0|x and t1|f(x) are commutatively equivalent.

Let f : dom(t0) → dom(t1) be a bijection which shows that forests t0 and t1 are
commutatively equivalent. It is easy to see that for every node x ∈ dom(t0) which has n
children x1, . . . , xn, the node f(x) ∈ dom(t1) has also exactly n children f(x1), . . . , f(xn).
If the order f(x1), . . . , f(xn) is different than the order of these nodes in the forest t1,
then we say that the bijection f made a switch in the node x.

We say that two forests t0, t1 are weakly commutatively equivalent (we denote it by
t0 ∼WC t1) if they are commutatively equivalent and the bijection f satisfies additional
condition:

(c) on every path π ⊆ dom(t0) the bijection f makes a switch in a finite number of
nodes from π.

A forest language L is called (weakly) commutative if for every two forests t0, t1 which
are (weakly) commutatively equivalent, either both t0, t1 belong to L or none of them.

Our goal in this section is to prove the following theorems which effectively character-
izes (weakly) commutative languages:

Theorem 56. A regular thin-forest language L is weakly commutative if and only if its
syntactic thin-forest algebra satisfies the identity (6.1), i.e.

h+ g = g + h.

Theorem 57. A regular thin-forest language L is commutative if and only if its syntactic
thin-forest algebra satisfies the identity (6.3), i.e.

h+ v = v + h.
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The definition of commutativity could be rephrased also in the language of games. We
define a game, called the commutative game, which is used to test the similarity of two
forests in different degrees of commutativity.

Let t0, t1 be two forests. The commutative game over t0 and t1, denoted by G(t0, t1), is
played by two players: Spoiler and Duplicator. For convenience we add an auxiliary root
node at the top of the forest ti, which results in a tree t′i. At the very beginning Duplicator
chooses a subset of nodes S ⊆ dom(t′0), which will be fixed during the whole game. The
game has three variants depending on the degree of commutativity we want to test:

(1) the set S must be finite – that corresponds to condition (C1), i.e. finite commuta-
tivity,

(2) the set S may be arbitrary – that corresponds to condition (C2).

(3) the set S must be finite on every path of the tree t0 – that corresponds to condition
(C3), i.e. weak commutativity.

The game proceeds in rounds. The state of the game is a pair (x0, x1), which means
that there is a pebble in a node xi ∈ dom(t′i). Initially both pebbles are in the roots of the
trees t′0, t′1. A round is played as follows. If the number of children of node x0 is different
than the number of children of node x1, then Spoiler wins the whole game. Otherwise,
Duplicator chooses a bijection f which maps the children of x0 to the children of x1.
Moreover, if the node x0 was not in S, then the bijection must be monotonic in respect
to the children ordering (i.e. Duplicator has no choice).

Then Spoiler moves the pebble x0 to a child x of x0 and the pebble x1 to a child f(x).
If the labels of nodes x and f(x) are different – Spoiler wins. Otherwise, the round is
finished and a new round is played with the state updated to (x, f(x)).

It is easy to see that two forests t0, t1 are (weakly) commutatively equivalent if Dupli-
cator can survive for infinitely may rounds in the commutative game G(t0, t1) of variant
(3) and (2), respectively.

Proofs

Lemma 58. Let σ be a forest-valued term with one forest-valued variable over the sig-
nature of forest algebra and let s, t be forests. If Duplicator wins the commutative game
G(s, t), then he also wins the commutative game G(σ[x← s], σ[x← t]).

Proof. The strategy of Duplicator is very simple. Let S ⊆ dom(s) be the set which he
uses in his winning strategy in the game G(s, t). In the new game he chooses

⋃
x∈σ xS,

where the union is over all leaves with variables in σ.
As long as the children of nodes with pebbles are in σ, Duplicator choose the identity

bijection. Otherwise, he uses the strategy from the game G(s, t).

Proof of Theorems 56 and 57. The “only if” part is standard. Suppose that we want to
show that the identity (6.1) is satisfied. By unraveling the definition of the syntactic
algebra we need to show that for every term σ and every forests t, s we have

σ[x← t+ s] ∈ L if and only if σ[x← s+ t] ∈ L.

It is easy to see that Duplicator wins the commutative game on forests t+s and s+t, thus
from Lemma 58 he wins the commutative game on forests σ[x← t+ s] and σ[x← s+ t].
Therefore we get (6.1) from the fact that the language L is weakly commutative.
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To show that (6.3) is satisfied, we use faithfulness of the syntactic thin-forest algebra
and we show that the algebra satisfies the identities

h+ vg = vg + h, for v ∈ V+, h, g ∈ H,
(u(v + h))∞ = (u(h+ v))∞, for u, v ∈ V+, h ∈ H.

Again, this boils down to show that Duplicator wins the commutative game on forests
t + s and s + t for every forests s, t as well as on forests (p + t)∞ and (t + p)∞ for every
forest t and guarded context p.

The “if” part of the theorems follows directly from Lemmas 59 and 61, respectively.

Lemma 59. Suppose that identity (6.1) holds. If two forests t0, t1 are weakly commuta-
tively equivalent, then α(t0) = α(t1).

Proof. We prove the lemma for trees, the generalization for forests is straightforward. Let
f : dom(t0) → dom(t1) be a bijection which witnesses that t0 ∼WC t1. Let S ⊆ dom(t0)
be the set of nodes in which f makes a switch.

Let ρ : dom(t0) → Ord be a labeling by ordinal numbers such that for every nodes
x, y ∈ dom(t0), where x is a parent of y, we have ρ(x) ≥ ρ(y). Moreover, for every x ∈ S,
ρ(x) > ρ(y). It is easy to see that such labeling exists, since on every path only finitely
many nodes are from S.

We prove the lemma by induction on the labels ρ. Formally we prove: if trees t0|x and
t1|f(x) are weakly commutatively equivalent, then α(t0|x) = α(t1|f(x)).

The basis of induction is when every node of t0|x has the same value of ρ. Then S is
empty and trees t0|x and t1|f(x) must be equal, which results in α(t0|x) = α(t1|f(x)).

Now we do the induction step. Let r be the maximum value of ρ on the tree t0|x and
let x1, x2, . . . be nodes from dom(t0) such that ρ(xi) = r and xi ∈ S. Let σ0 be the term
which comes from the tree t0 by changing every node xi by a variable xi. Similarly, let σ1

be the term which comes from the tree t1 by changing every node f(xi) by a variable xi.
We would like to show that

α(σ0[xi ← t0|xi ]) = α(σ1[xi ← t1|f(xi)]). (6.4)

The set S, limited to the nodes from σ0 which are not variables, is empty, thus σ0 = σ1.
Let the node xi has n children y1, . . . , yn. Observe that t0|xi ∼WC t1|f(xi). Then f(xi) also
has n children and there is a bijection between two sets of children such that t0|yj ∼WC

t1|f(yj). Since xi ∈ S, then ρ(yi) < r, and from the inductive assumption we get α(t0|yj) =
α(t1|f(yj)). Together with (6.1) we get that α(t0|xi) = α(t1|f(xi)), and therefore (6.4) is
satisfied. That concludes the proof.

Note that since Lemma 59 does not assume that the forests t0, t1 are thin, the Theo-
rem 56 is also true when L is a language of forests.

Lemma 60. Let t0 and t1 be two thin trees which are commutatively equivalent. Then
rank(t0) = rank(t1).

Proof. Let f : dom(t0) → dom(t1) be a bijection which witnesses that t0 ∼WC t1 and
let ρ : dom(t0) → Ord be an ordinal-labeling which witnesses the rank of the tree t0, i.e.
ρ(0) = rank(t0). It is easy to see that the labeling ρ′ : dom(t1)→ Ord defined as

ρ′(x) = ρ(f−1(x))

is an ordinal-labeling for the tree t1. Thus rank(t1) ≤ rank(t0). The statement of the
lemma follows from the symmetry of the argument.
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Lemma 61. Suppose that identity (6.3) holds. If two thin forests t0, t1 are commutatively
equivalent, then α(t0) = α(t1).

Proof. We prove the lemma for trees, the generalization for forests is straightforward. The
proof is by induction on the rank of the trees.

First, observe that from Lemma 60, rank(t0) = rank(t1). From the same argument,
the spines of the trees have the same length. Suppose that they are infinite, the remaining
case is similar.

Let xi1, x
i
2, x

i
3, . . . be the nodes on the spine of ti which give us a decomposition ti =

pi1p
i
2p
i
3 . . ., where pij is a context with a root in xij and a hole in xij+1.

Let f : dom(t0)→ dom(t1) be a bijection which witnesses that t0 ∼WC t1. Again from
Lemma 60, f(x0

j) = x1
j for all j.

Let T ij be the multiset of trees rooted in the children of xij, but not in xij+1. Abusing
the notation slightly, we see that mapping f gives a natural bijection between T 0

j and T 1
j ,

such that for any s ∈ T 0
j , the trees s and f(s) are commutatively equivalent. Since trees

from the sets T ij have ranks smaller than rank(t0), we can use the induction assumption
to get that α(s) = α(f(s)) for every s ∈ T 0

j . Thus from (6.3) we have α(p0
j) = α(p1

j). Since

α(ti) = α(pi1p
i
2p
i
3 · · · ) = α(π(pi1, p

i
2, p

i
3, . . .)) = π(α(pi1), α(pi2), α(pi3), . . .),

we get that α(t0) = α(t1).

6.2 Languages invariant under bisimulation

The relation of bisimilarity (see [24]) is the greatest relation ∼B on trees which satisfies
the following. For every two trees t0, t1 that are bisimilar (t0 ∼B t1), the two conditions
are satisfied:

(a) they have the same label in the root,

(b) for every i = 0, 1 and for every xi ∈ dom(ti) which is a child of the root, there exists
such x1−i ∈ dom(t1−i) which is a child of the root and the trees t0|x0 and t1|x1 are
bisimilar.

We can extend this relation to forests. Two forests t0, t1 are bisimilar when for every
root in one of the trees there is a root in the other such that trees rooted in these nodes
are bisimilar.

A regular forest language L is invariant under bisimulation if for every forests t0, t1
which are bisimilar, either both t0, t1 belong to L or none.

The definition of bisimilarity could also be rephrased in terms of games. Let t0, t1
be forests. The bisimulation game over t0 and t1, denoted by G(t0, t1), is played by two
players: Spoiler and Duplicator. The game proceeds in rounds. For convenience we add an
auxiliary root node at the top of the forest ti, which results in a tree t′i. At the beginning
of each round, the state in the game is a pair of nodes (x0, x1), which means that there
is a pebble in a node xi ∈ dom(t′i). Initially both pebbles are in the roots of the trees
t′0, t′1. A round is played as follows. First Spoiler selects one of the forests ti (i = 0, 1)
and moves a pebble xi to the node x′i which is the child of xi. Then Duplicator moves
the second pebble from the node x1−i to its child x′1−i. If the labels of nodes x′0, x′1 are
different, the Spoiler wins the game. Otherwise, a new round is played with the state
updated to (x′0, x

′
1).
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It is easy to see that two forests t0, t1 are bisimilar if and only if Duplicator can survive
for infinitely many rounds in the bisimulation game G(t0, t1).

In the case of finite forests, a language L is invariant under bisimulation if and only if
its syntactic algebra satisfies the identities

h+ g = g + h and h+ h = h for h, g ∈ H.

Since a thin-forest language invariant under bisimulation is necessarily commutative, it is
clear (by the observation from the section 6.1) that the former identity should be replaced
by a more general one, resulting in the following two identities:

h+ v = v + h for v ∈ V, h ∈ H, (6.5)
h+ h = h for h ∈ H. (6.6)

However, a language

L = “finite number of infinite paths”

satisfies these identities, but is not invariant under bisimulation as witnessed by two
bisimilar forests

a∞ ∈ L, a(a∞ + a�)∞ 6∈ L.

That is why we need an additional identity

(v∞ + v)∞ = v∞ for v ∈ V+. (6.7)

The above counterexample can be generalized. On figure 6.2 there are depicted bisimilar
forests

t = (ab)∞, s =
(
a((ba)∞ + �)b((ab)∞ + �)

)∞
.

Figure 6.2

Fortunately, this and even more general examples are covered by identity (6.7):

Lemma 62. If a thin-forest algebra (H,V ) satisfies identity (6.7) then it also satisfies
identity

(v1v2 · · · vn)∞ =
(
v1(h1 + �)v2(h2 + �) · · · vn(hn + �)

)∞
where n ≥ 1, vi ∈ V , hi = (vi+1 · · · vnv1 · · · vi)∞ for i = 1, . . . , n and v1v2 · · · vn ∈ V+.
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Proof. We denote wn+1 = �, wi = vi(hi + wi+1) for i ∈ {1, . . . , n}. We will prove by
induction that for every i we have

(wi+1v1 · · · vi)∞ = hi. (6.8)

For the base of the induction (i = n):

(wn+1v1 · · · vn)∞ = (v1 · · · vn)∞ = hn.

For the inductive step we assume that (6.8) is true for i+ 1 ≤ n and we prove it for i:

(wi+1v1 · · · vi)∞ = (vi+1(hi+1 + wi+2)v1 · · · vi)∞ =

= vi+1

(
(hi+1 + wi+2)v1 · · · vi+1

)∞
=

= vi+1(hi+1 + wi+2v1 · · · vi+1)∞
(6.8)
=

= vi+1

(
(wi+2v1 · · · vi+1)∞ + wi+2v1 · · · vi+1

)∞ (6.7)
=

= vi+1(wi+2v1 · · · vi+1)∞
(6.8)
=

= vi+1hi+1 =

= vi+1(vi+2 · · · vnv1 · · · vi+1)∞ =

= (vi+1 · · · vnv1 · · · vi)∞ =

= hi.

Finally, putting i = 0 in (6.8) we get(
v1(h1 + �)v2(h2 + �) · · · vn(hn + �)

)∞
= w∞1

(6.8)
= h0 = (v1v2 · · · vn)∞.

We are ready to prove the theorem which characterizes invariance under bisimulation:

Theorem 63. A regular thin-forest language L is invariant under bisimulation if and
only if its syntactic thin-forest algebra satisfies identities (6.5)–(6.7), i.e.

h+ v = v + h,

h+ h = h,

(v∞ + v)∞ = v∞.

Proof. The “only if” part is standard and follows exactly the same lines as in the proof
of Theorems 56 and 57.

The “if” part of the theorem is more involved. Denote by LR the language which
contains all regular thin forests from L and by LE the language which contains all thin
forests which are bisimilar to forests from L. In Lemma 66 we prove that LR is invariant
under bisimulation and in Lemma 64 that LE is regular. Suppose by contradiction that L
is not invariant under bisimulation, thus LE−L (as a difference of two regular languages)
contains a regular thin forest t. Let Lt be the language of all thin forests bisimilar to t
(again from Lemma 64 its a regular language). The intersection Lt ∩L contains a regular
thin forest s. Therefore we have two bisimilar regular thin forests t, s such that s ∈ LR
and t 6∈ LR, which contradicts that LR is invariant under bisimulation.

Lemma 64. Let L be a regular language of forests. The language which contains of all
forests which are bisimilar to some forest from L is regular.
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For a proof of this lemma we need to define another type of automaton recognizing
regular languages of forests. A (non-deterministic parity) hedge automaton (see also [19])
over an alphabet A is given by a set of states Q, a transition relation ∆ ⊆ Q∗ × A × Q,
regular language LI ∈ Q∗, and a parity condition Ω: Q→ {0, . . . , k}.

A run of this automaton over a forest t is a labeling ρ : dom(t)→ Q such that for every
node x with children x1, . . . , xn the word ρ(x1)ρ(x2) · · · ρ(xn) ∈ Q∗ belongs to a regular
language Lq such that (Lq, t(x), ρ(x)) ∈ ∆. A run is accepting if for every (infinite) path
π ∈ dom(t) the maximum rank among states from Inf(π) is even. A forest is accepted if
it has an accepting run in which states assigned to roots of the forest form a word from
the language LI . The set of forests accepted by a hedge automaton is called the language
recognized by the automaton.

Theorem 65. Hedge automata recognize regular languages of forests.

Proof. First we show how, given a forest automaton A = (A,Q,∆, qi,Ω) recognizing a for-
est language L, to construct a hedge automaton B = (A,Q,∆′, LI ,Ω) also recognizing L.
For every a ∈ A and q ∈ Q we add a transition (La,q, a, q) to ∆′ such that

La,q = {q1 · · · qn ∈ Q∗ | (q1 + · · ·+ qn, a, q) ∈ ∆}.

Similarly, LI = {q1 · · · qn ∈ Q∗ | q1 + · · ·+ qn = qI}. The languages La,q and LI are regular
and it is easy to see that the language recognized by B is L.

To show that hedge automata recognize only regular languages of forests, we show
that language recognized by a hedge automaton A = (A,Q,∆, LI , Q) is regular. Let
∆ = {(La,q, a, q) | a ∈ A, q ∈ Q}. Let αa,q : Q→ Ma,q be a morphism into a monoid Ma,q

which recognizes the language La,q, i.e. La,q = α−1
a,q(Ja,q) for some set Ja,q ⊆Ma,q. Similarly

let αI : Q→MI be a morphism which recognizes LI (using JI ⊆MI). LetM be a cartesian
product of all monoids Ma,q and MI , and α : Q→M be a cartesian product of morphisms.

Let Bm = (A,M,∆′,m,Ω′) be a forest automaton. For every a ∈ A, q ∈ Q and every
element m ∈M such that m projected on the Ma,q coordinate is contained in Ja,q we add
a transition (m, a, α(q)) to ∆′. Finally we put Ω′(α(q)) = Ω(q) (a run cannot use other
elements of M , so we do not have to define Ω′ on them). Let N be the set of such elements
of M that projected on the MI coordinate are contained in JI . The above construction
is developed in such a way that the language recognized by A is a union of languages
recognized by forest automata Bm for m ∈ N , therefore it is regular.

Proof of Lemma 64. Let A = (A,Q,∆, LI ,Ω) be a hedge automaton recognizing L. We
construct hedge automaton B = (A,Q,∆′, L′I ,Ω) which recognizes the language of all
forests which are bisimilar to some forest from L. For every transition (La,q, a, q) ∈ ∆ we
have a transition (L′a,q, a, q) ∈ ∆′ such that

L′a,q = {w | exists v ∈ La,q such that v and w have the same set of letters}.

We define L′I similarly. Since L′a,q and L′I are regular (as languages of words over Q) thus B
is a hedge automaton. It is easy to see that it recognizes the desired language.

Lemma 66. Suppose that identities (6.5)–(6.7) hold. If two regular thin forests t0, t1 are
bisimilar, then α(t0) = α(t1).

The rest of this section is devoted to the proof of Lemma 66.
For a node x ∈ dom(ti) we denote by Bi(x) = [ti|x]∼B

the equivalence class under
the bisimilarity relation of the subtree rooted in x. We say that a node x ∈ dom(ti) is
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bisimilar to a node y ∈ dom(tj) if the subtrees ti|x and tj|y are bisimilar, or equivalently
Bi(x) = Bj(y). We extend the definition to paths: when π = x1x2 . . . ∈ dom(ti)

∞ is a
path, then Bi(π) = Bi(x1)Bi(x2) . . .

First assume that t0 and t1 are trees and their root components are connected. Recall
that since the trees are thin and regular, from Lemma 4 their root components correspond
to cycles in the component graphs. Thus there is a unique path which starts in the root
of t0 (respectively t1) and goes only through nodes of the root component.

Lemma 67. Let t0, t1 be two regular thin trees which are bisimilar and their root compo-
nents are connected. Let πi be a path which starts in the root of ti and goes only through
nodes of the root component. Then B0(π0) = B1(π1).

Proof. We say that a node x ∈ dom(ti) is good if it satisfies the following condition:

there are paths π and π′ from x such that Bi(π) = B0(π0) and Bi(π
′) = B1(π1). (6.9)

It is clear that if a node x is good, then every node bisimilar to x is also good. Let `
be the least common multiple of the sizes of the root components. We build a sequence
(not necessarily a path) y0, y1, . . . of good nodes from t0 such that yi+1 will be in deeper
component than yi.

Let y0 be the root of t0. It is easy to see that it is good. Indeed, the path π through
the root component is equal to π0. Moreover, since t0 is bisimilar to t1 and from the root
of t1 goes the path π1, then from y0 must go a path π′ such that B0(π′) = B1(π1).

Suppose that we constructed good nodes y0, . . . , yj. Let π and π′ be two paths from yj,
which satisfy the condition (6.9). If the component of yj is connected and both π and π′ lie
inside this component, then obviously π = π′, and thusB0(π0) = B0(π) = B0(π′) = B1(π1)
and we are done. Otherwise, one of these paths leaves the component. Without loss of
generality suppose that it is π and that it leaves the component after k nodes. Decompose
it as π = πAπB where πA is of length ` · k. Then the first node of πB is bisimilar to yj and
thus it is good. We denote this node by yj+1.

Observe that since the number of components in t0 is finite and yj+1 is in the deeper
component that yj, thus at some point this construction will lead to the desired conclusion
that B0(π0) = B1(π1).

We say that a tree t is trimmed if it does not contain a node x ∈ dom(t) from the
root component such that it has two bisimilar children x′, x′′ such that x′ is from the
root component and x′′ lies outside the root component. We denote by trim(t) a trimmed
version of t in which for every such node x′′ the subtree t|x′′ is removed. It is easy to see
that t is bisimilar to trim(t).

Lemma 68. Suppose that identities (6.5)–(6.7) hold. Let t, s be two regular thin trees
which are bisimilar, their root components are connected, s is trimmed and Lemma 66
holds for trees which have smaller number of components than t and s. Then α(t) = α(s).

Proof. Let ` be the least common multiple of the sizes of the root components of t and s.
Since (v)∞ = (vk)∞ for every k, we can assume without loss of generality that the sizes
of the root components are equal to `.

From Lemma 67 we have that B0(π0) = B1(π1). Thus subsequent labels from the root
components are the same. Denote

t = (a1p1a2p2 . . . a`p`)
∞, s = (a1p

′
1a2p

′
2 . . . a`p

′
`)
∞
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for some letters a1, . . . , a` ∈ A and non-guarded contexts p1, . . . , p`, p′1, . . . , p
′
`. We also

see that if we denote for i = 1, . . . , `

ti = piai+1pi+1 . . . a`p`t, si = p′iai+1p
′
i+1 . . . a`p

′
`s,

then ti is bisimilar to si.
Now fix i ∈ {1, . . . , `}. Let Ti be the set of trees which appear in roots of context pi.

Similarly define T ′i as the set of trees which appear in roots of context p′i. Since ti ∼B si,
then for every tree t ∈ Ti there must be a tree rooted in a root of si which is bisimilar
to t. Let Ri be as follows:

Ri = {t ∈ Ti | there is a tree t′ ∈ T ′i such that t ∼B t′}.

In other words, Ti−Ri contains those trees which must be bisimilar to ai+1si+1. Moreover,
let

gi =
∑
t∈Ri

α(t), hi =
∑

t∈Ti−Ri

α(t).

Symmetrically, we define R′i, g
′
i and h′i. Using these notations and identity (6.5), we can

express the types of contexts pi and p′i as

α(pi) = gi + hi + �, α(p′i) = g′i + h′i + �.

Since all trees from Ri (respectively R′i) have a smaller number of components than
the tree t (respectively s), we can apply the assumption and identities (6.5), (6.6) to get
gi = g′i.

Moreover, since s is trimmed, then T ′i = R′i. Otherwise, s′′ ∈ T ′i−R′i would be bisimilar
to ai+1ti+1, thus it would be bisimilar to ai+1si+1 – a contradiction. Hence h′i = 0.

Finally, every tree t′′ ∈ Ti − Ri has a smaller number of components than t and it is
bisimilar to ai+1si+1, thus from the assumption and (6.6) we get hi = α(ai+1si+1).

In conclusion, we can express the types of pi and p′i as

α(pi) = gi + hi + �, α(p′i) = gi + �.

If we denote for i = 1, . . . , `

vi = α(ai)(gi + �),

then the types of trees t and s can be expressed as

α(t) =
(
v1(h1 + �)v2(h2 + �) · · · v`(h` + �)

)∞
, α(s) = (v1v2 · · · v`)∞

with
hi = (vi+1 . . . v`v1 . . . vi)

∞.

Applying Lemma 62 we obtain α(t) = α(s).

Proof of Lemma 66. (1) First, we show how to reduce the problem to trees: we assume
that lemma is true for trees and we show that it is also true for the case when at least
one of t0, t1 has more than one root.

Let Ti be the set of types in the roots of ti, i.e. Ti = {α(ti|x) | x is a root of ti}.
From the definition of bisimilarity for i = 0, 1 for every root xi ∈ dom(ti) exists a root
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x1−i ∈ dom(t1−i) such that t0|x0 is bisimilar to t1|x1 . From the assumption we get α(t0|x0) =
α(t1|x1). Therefore T0 = T1. Thus from (6.5) and (6.6) we have α(t0) = α(t1).

(2) Let ni be the number of components in the tree ti for i = 0, 1. The proof is by
induction over the sum n0 + n1.

First, assume that the root component of t0 is a singleton component. If n0 = 1 (i.e.
t0 has only one node), then from bisimilarity also n1 = 1 and the trees are equal (thus
they have the same type). This is also the base of the induction.

Thus assume that n0, n1 > 1. Assume that the root component of t1 is also a singleton
component. From bisimilarity the trees have the same label a in their roots, so the tree ti
can be written as ti = asi for a non-empty forest si, which has ni−1 components. Now s0

and s1 are bisimilar and every tree rooted in a root of si has at most ni − 1 components.
Thus repeating reasoning from the case (1) and using induction assumption on these
smaller trees gives us that α(s0) = α(s1), and therefore α(t0) = α(t1).

Now, assume that the root component of t1 is a connected component. Again we write
ti = asi for a non-empty forest si, but this time forest s1 can have n1 components. But
since forest s0 has at most n0 − 1 components (so we can use the induction assumption),
we can repeat the above reasoning.

Finally, assume that t0 and t1 are trees and their root components are connected. From
Lemma 68 we get that α(t1) = α(trim(t1)). Since t1 is bisimilar to trim(t1), then from the
transitivity of bisimilarity relation we get that t0 is bisimilar to trim(t1) and thus from
Lemma 68, α(t0) = α(trim(t1)). Therefore α(t0) = α(t1).

We note that Lemma 66 can be also stated in slightly more general setting. Observe
that the identities (6.5)–(6.7) can be treated as additional axioms (since they do not use
the idempotent power v 7→ vω). Then the lemma can be rephrased as “if two regular forests
are bisimilar, then they are axiom-equivalent” when by “axioms” we mean (A1)–(A6) and
identities (6.5)–(6.7).

6.3 Open languages

The set of forests can be interpreted as a metric space. We define the distance between
two forests to be 2−n if n is the smallest depth where the two forests differ. Since we
have a topology, we can ask what are the open sets in this topology. The ball of center in
forest t and radius 2−n can be represented by a finite prefix of t, where all the nodes on
depth n and above are fixed. An open set is a union of balls.

We say that a forest language L is open if it is an open set in this topology.
For example the language

L = “there is a node with label a”

is open, since for any forest t ∈ L there is a node on some depth n with label a. Changing
any nodes on depth greater than n results in a tree which still belongs to L.

Also for any finite forest t the singleton language Lt = {t} is open. Indeed, if n is the
height of forest t, then there is no other forest in the ball of center in t and radius 2−(n+1).

The same topology can be imposed upon the set of thin forests. Note that the set
of all forests is a complete metric space, but the set of all thin forests is not, since a
Cauchy sequence of a-labeled full finite binary trees of increasing heights has a limit (a
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full binary tree) which is not thin. Note however, that both spaces are not compact, since
for a sequence of forests tn = a+ · · ·+ a︸ ︷︷ ︸

n times

no subsequence has a limit.

We are interested in checking whether a given regular forest language L is open. This
problem is decidable, a solution (which is folklore to the best of our knowledge) is based
on the observation that the topological closure of a forest language L is the set

closure(L) = {t | every finite prefix of t can be extended to some forest in L}.

A language L is open if and only its complement L̄ satisfies L̄ = closure(L̄). Automata
for both L̄ and closure(L̄) can be computed based on the automaton for L, and then one
can test two regular languages for equality.

The same argument works for regular languages of thin forests, since the language
of all thin forests AThinFor is regular, the complement of L in the realm of thin forests
is just L̄ ∩ AThinFor and the topological closure of L in the realm of thin forests is just
closure(L) ∩ AThinFor.

However, we present here an algebraic approach to testing whether a regular thin-
forest language is open. The main advantage of our characterization is that it can be
phrased as a single identity.

Theorem 69. A regular thin-forest language L is open if and only if its syntactic mor-
phism α : AThin4 → (H,V ) satisfies the following condition for every v ∈ V+, h ∈ H:

if v∞ ∈ α(L) then vωh ∈ α(L). (6.10)

One can extend the theory of ordered algebras (see [26]) to forest algebras. Then the
above condition could be simply stated as:

v∞ ≥ vωh for any v ∈ V+, h ∈ H. (6.11)

The notion of open sets is also applicable to the case of infinite words. It is interesting
to note that the identity (6.11) also characterizes the open languages of infinite words.
(see [26]).

Let X be an infinite set of variable names. A thin multicontext over A is a thin forest
over A ∪ X in which every variable x ∈ X appears in a leaf. The number of variables
appearing in a thin multicontext is not restricted. An open thin multicontext over A is a
thin context p such that p0 is a thin multicontext. For an (open) thin multicontext p we
denote by vars(p) ⊆ X the set of variables appearing in p.

Let p be a (open) thin multicontext and ζ : vars(p) → AThinFor be a mapping which
assigns thin forests to variables appearing in p. We denote by p[ζ] a forest which results
from replacing every variable x in p by the forest ζ(x). We say then that p is a prefix of t.

By pAThinFor we denote a language of all thin forests such that p is their prefix.
For example on figure 6.3 is depicted an open thin multicontext p with a set of variables

vars(p) = {x1, x2}. For any forest s, ps is a thin multicontext such that

psAThinFor = {a(b+ t1 + a(s+ t2)) | t1, t2 ∈ AThinFor}.

A regular language of thin forests L is open if for every forest t ∈ L there is a finite
prefix of t such that changing nodes outside of the prefix does not affect membership in L.
Thus L is open if there exists (possibly infinite) set P of finite thin multicontexts such
that

L =
⋃
p∈P

pAThinFor.
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Figure 6.3

Proof of Theorem 69. It is obvious that if L is open, then it must satisfy (6.10). Indeed,
let v ∈ V+ and let t ∈ L be a thin forest of type v∞. Thus t = r∞ for some context
r ∈ α−1(v). Since L is open, then there exists a prefix p (of depth n) of the forest t
such that pAThinFor ⊆ L. Thus rkAThinFor ⊆ L for any k ≥ n. Taking k = ωn we get
rks = rωns ∈ L for every thin forest s. Let h = α(s), then vωnh = vωh ∈ α(L).

The converse implication follows from Lemma 72, which is formulated at the end of
the section.

Let p, p′ be two thin multicontexts. We say that the thin multicontext p could be
immediately reduced to p′ if

p = qr∞ and p′ = qrωx?

for an open thin multicontext q, a thin context r, and a variable x? 6∈ vars(q). We denote
it by p → p′ (see figure 6.4). We say that p could be reduced to p′ if there is a sequence
p = p0, p1, p2, . . . , pn−1, pn = p′ of thin multicontexts such that pi could be immediately
reduced to pi+1. We denote it by p→∗ p′.

Figure 6.4

Lemma 70. Let L be a regular thin-forest language which satisfies (6.10) and let p, p′ be
two thin multicontexts. If pAThinFor ⊆ L and p→ p′, then p′AThinFor ⊆ L.

Proof. Let p = qr∞ and p′ = qrωx? where q is an open thin multicontext, r is a thin
context, and x? is a variable not in vars(q). Observe that all the variables appearing
in p are from q. Similarly, all the variables appearing in p′ (except for the additional
variable x?) are also in q.
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Let t′ be any forest from p′AThinFor and ζ : vars(p′) → AThinFor satisfies p′[ζ] = t′.
Applying ζ to thin multicontext p, we get a forest t = p[ζ] ∈ pAThinFor. Since pAThinFor ⊆ L
we get that forest t = q[ζ]r∞ is in L. From (6.10) the tree t′ = q[ζ]rωζ(x?) is also in L.
Therefore p′AThinFor ⊆ L.

Let P ′ and P ′′ be two sets of prefixes:

P ′ = {finite thin multicontext p | pAThinFor ⊆ L},
P ′′ = {finite thin multicontext p | t→∗ p for some t ∈ L}.

Lemma 71. Let L be a regular thin-forest language. For every regular thin forest t ∈ L
there is a finite thin multicontext p ∈ P ′′ which is a prefix of t.

Proof. Let t ∈ L. We prove the lemma by induction over the number of components in
the forest t, i.e. we prove the statement: if s is a subforest of t, then there is a finite thin
multicontext p such that s→∗ p.

We can assume that t is a tree, otherwise we just concatenate prefixes for the trees
which are rooted in the roots of forest t.

If the root component of the tree t is a singleton component, then t = as for some
a ∈ A and a forest s. From the inductive assumption there is a finite thin multicontext p
such that s→∗ p. Clearly, the thin multicontext ap satisfies t→∗ ap.

Let the root component of the tree t be connected. Thus t = (a1q1 · · · anqn)∞ for some
labels a1, . . . , an ∈ A and non-guarded contexts q1, . . . , qn. It is easy to see that for a
variable x?

t→ (a1q1 · · · anqn)ωx?.

Let qi = t′i + � + t′′i for some forests t′i, t
′′
i . From the inductive assumption there are

finite thin multicontexts p′i, p
′′
i such that t′i →∗ p′i and t′′i →∗ p′′i . Without loss of generality

we can assume that these thin multicontexts have different variables appearing in them,
i.e. set {x?} as well as sets vars(p′i), vars(p′′i ) for i = 1, . . . , n are pairwise mutually disjoint.
Applying these thin multicontexts ω times we get

t→∗
(
a1(p′1 + � + p′′1) · · · an(p′n + � + p′′n)

)ω
x?.

Lemma 72. Let L be a regular thin-forest language which satisfies condition (6.10).
Then L = P ′AThinFor.

Proof. Clearly P ′AThinFor ⊆ L. From Lemma 71 we have L ⊆ P ′′AThinFor when restricted
to regular forests. Finally, from Lemma 70 we have P ′′ ⊆ P ′, since for every t ∈ L we
have tAThinFor = {t} ⊆ L. Therefore

L ⊆ P ′′AThinFor ⊆ P ′AThinFor ⊆ L

when restricted to regular forests. Since both L and P ′AThinFor are regular languages and
they contain the same regular forests, they are equal.
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Chapter 7

The temporal logic EF

7
In this chapter we present another application of our algebraic approach developed in the
first part of the thesis. Namely, we present an effective characterization of the infinite
forest and tree languages that can be defined in the temporal logic EF.

An important advantage of using algebra is that an effective characterization could
be stated in terms of identities that must be satisfied in an algebra. It was shown [14]
that in the case of finite forest algebra, the effective characterization of the logic EF has
this property. The answer we provide in the case of infinite trees is mixed. In section 7.2
we prove a theorem which states that a language of infinite forests is definable in the
logic EF if and only if its syntactic forest algebra satisfies two conditions. One of them is
an identity, however, for the other condition, invariance under EF-bisimulation, we were
unable to come up with an identity (or a finite set of identities). The situation is different,
however, in the case of thin-forest languages. In section 7.3 we prove that in this case
when checking whether a thin-forest language is definable in the logic EF, the invariance
under EF-bisimulation can be replaced by testing several identities.

7.1 Logic EF

We begin by defining the logic EF and giving some examples. The logic EF is a simple
temporal logic which uses only one operator EF, whose name stands for “Exists Finally”.
The formula EFϕ means that “ϕ holds in a proper subtree” (see figure 7.1).

Figure 7.1

The natural objects which are described by the logic EF are trees, that is why we
begin with defining the semantics of EF formulas on trees. However, since our goal is to
give an algebraic characterization of languages defined by EF formulas, we will also have
to deal with EF formulas on forests.

Fix an alphabet A. The following conditions describes the set of valid tree EF formulas :
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(a) Every letter a ∈ A is a tree EF formula, which is true in trees with root label a.

(b) Tree EF formulas admit Boolean operations, including negation.

(c) If ϕ is a tree EF formula, then EFϕ is a tree EF formula, which is true in trees that
have a proper subtree where ϕ is true.

A tree t satisfies a tree EF formula ϕ if ϕ holds in the root of the tree t. We say that
a language of trees is defined by a tree EF formula ϕ if it contains precisely those trees
which satisfy ϕ.

A number of operators can be introduced as a syntactic sugar:

EF∗ϕ ≡ ϕ ∨ EFϕ, AGϕ ≡ ¬EF¬ϕ, AG∗ϕ ≡ ϕ ∧ AGϕ.

The formula EF∗ϕ is a weak version which means that “ϕ holds in a non-necessarily
proper subtree” and the formula AGϕ means that “ϕ holds in every proper subtree”, that
is “Always Globally”.

We give here some examples of tree EF formulas:

EFa, EF∗(a ∧ ¬EF>), AG∗(a→ EFb ∧ b→ EFa).

The first formula means that there is a non-root node with label a in a tree, the second
one states that there is a leaf with label a, and the third one means that every node
labeled with a has a b-labeled descendant and vice versa, in particular there is at least
one infinite path in a tree.

It is important to dispel possible wrong intuitions about the logic EF, one of them is
the intuition that EF talks about paths in trees. Consider the formula

ϕ = EF(b ∧ EFc ∧ EFd)

which states that there is a non-root node with label b which have two descendants labeled
with c and d respectively. On figure 7.2 tree t1 clearly satisfies formula ϕ, but tree t2 does
not, still both trees have the same set of paths. On the other hand tree t3 has more paths
than t1, nevertheless it also satisfies the formula. To say more, there is no tree EF formula
which differentiates these trees, i.e. every formula which is satisfied in one of t1 or t3 is
satisfied in the other (we prove it in the next section).

Figure 7.2

Since we deal with forest languages in this thesis, we will also want to define forest
languages using the logic. It is clear which forests should satisfy the formula EF∗a (some
node in the forest has label a, possibly a root). It is less clear which forests should satisfy
EFa (only non-root nodes are considered?), and even less clear which forests should satisfy
a (which root node should have label a?). Therefore we will only use Boolean combinations
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of formulas of the first kind to describe forests. That is, a forest EF formula is a Boolean
combination of formulas of the form EF∗ϕ.

Note that given a forest EF formula ϕ which defines a forest language L we can treat ϕ
as a tree EF formula. It defines a language of trees which contains precisely those trees
which are in the forest language L.

7.1.1 EF game and EF-bisimulation

We define a game, called the EF game, which is used to test the similarity of two forests
under forest formulas of EF. The name EF comes from the logic, but also, conveniently,
is an abbreviation for Ehrenfeucht–Fräıssé (see [35]).

Let t0, t1 be forests. The EF game over t0 and t1, denoted by G(t0, t1), is played by two
players: Spoiler and Duplicator. The game proceeds in rounds. At the beginning of each
round, the state in the game is a pair of forests, (t0, t1). A round is played as follows. First
Spoiler selects one of the forests ti (i = 0, 1) and its subtree si, possibly a root subtree.
Then Duplicator selects a subtree s1−i in the other tree t1−i. If the root labels a0, a1 of
s0, s1 are different, then Spoiler wins the whole game. Otherwise the round is finished, and
a new round is played with the state updated to (r0, r1) where the forest ri is obtained
from the tree si by removing the root node, i.e si = airi.

We can also describe G(t0, t1) in terms of a pebble game. For convenience, we add an
auxiliary root node at the top of the forest ti, which results in a tree t′i. In one of the
nodes xi of the tree t′i there is a pebble. The state of the game is a pair (x0, x1). Initially
both pebbles are in the roots of the trees t′0, t′1. A round is played as follows. First Spoiler
selects one of the pebbles at node xi and moves it to the node x′i which is a descendant
of xi, i.e. x′i > xi. Then Duplicator moves the second pebble from the node x1−i to its
descendant x′1−i. If the labels of nodes x′0, x

′
1 are different, the Spoiler wins the game.

Otherwise, a new round is played with the state updated to (x′0, x
′
1).

By dEF(ϕ) we denote the EF-nesting depth of EF formula ϕ. It is defined inductively:

dEF(a) = 0, dEF(ϕ ∧ ψ) = max(dEF(ϕ), dEF(ψ)),

dEF(¬ϕ) = dEF(ϕ), dEF(EFϕ) = 1 + dEF(ϕ).

The EF game is designed to reflect the structure of forest EF formulas, so the following
fact, which is proved by induction on m, should not come as a surprise.

Lemma 73. Spoiler wins the m-round EF game on forests t0 and t1 if and only if there
is a forest EF formula of EF-nesting depth m that is true in t0 but not t1.

We will also be interested in the case when the game is played for an infinite number of
rounds. If Duplicator can survive for infinitely many rounds in the EF game G(t0, t1), then
we say that the forests t0 and t1 are EF-bisimilar. A forest language L is called invariant
under EF-bisimulation if it is impossible to find two forests t0 ∈ L and t1 6∈ L that are
EF-bisimilar. In other words L is a union of equivalence classes of the EF-bisimulation
relation.

Lemma 74. Two trees t0, t1 are EF-bisimilar if and only if for every i = 0, 1 and every
proper subtree si of ti there is a proper subtree s1−i of t1−i such that s0 and s1 are EF-
bisimilar.
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It follows from Lemma 73 that if a forest language L is defined by a forest EF formula,
then it is invariant under EF-bisimulation. We show that languages which share this
property form a variety of languages.

Lemma 75. The class L of forest languages which are invariant under EF-bisimulation
is a variety of languages.

Proof. (1) Since a language invariant under EF-bisimulation is a union of equivalence
classes of EF-bisimulation relation, it is clear that L is closed under Boolean operations.

(2) Let L ∈ L(A) and α be a morphism between the free forest algebras over alphabets
B and A respectively. We will show that LB = α−1(L) ∈ L(B).

Let t0, t1 be two forests from LB which are EF-bisimilar. Let s0, s1 be their images
under α, i.e. si = α(ti). We will show that s0 and s1 are EF-bisimilar, which will conclude
the proof, since that means that s0 ∈ L if and only if s1 ∈ L, thus t0 ∈ LB if and only if
t1 ∈ LB.

To show that s0, s1 are EF-bisimilar, we will show a strategy for Duplicator in EF
game G(s0, s1). For every node x ∈ ti we define a set of nodes Imi(x), which consist of
these nodes from si, which are the image of x under α. The strategy of Duplicator will
ensure that after every Duplicator’s move the pebbles x0, x1, y0, y1 (placed on t0, t1, s0, s1

respectively) satisfy:

(a) x0 and x1 have the same label, thus Im0(x0) has the same structure as Im1(x1),

(b) yi ∈ Imi(xi), for i = 0, 1,

(c) the position of y0 within Im0(x0) is the same as position of y1 within Im1(x1), in
particular the labels of y0 and y1 are the same.

Let Spoiler move a pebble from yi to y′i. If both positions yi, y′i happen to be in the same
context Imi(xi), then Duplicator updates the position of y1−i to such node in Im1−i(x1−i)
that the condition (c) is satisfied. We make no moves in the game G(t0, t1).

Assume otherwise that y′i ∈ Imi(x
′
i) for some node x′i different from xi. It is clear that

x′i > xi and we perform a Spoiler’s move in G(t0, t1) by moving a pebble from xi to x′i.
Since t0 and t1 are EF-bisimilar, there is a Duplicator’s reply which moves a pebble from
x1−i to some x′1−i such that the condition (a) is satisfied. The strategy for Duplicator in
G(s0, s1) is to move from y1−i to a node y′1−i ∈ Im1−i(x

′
1−i) such that the condition (c) is

satisfied.

(3) Let L ∈ L(A) and σ be a forest-valued term with one forest-valued variable over
the signature of forest-algebra over A. We will show that σ−1L ∈ L(A).

Let t0, t1 be two forests from σ−1L which are EF-bisimilar. Denote s0, s1 the trees
from L such that si = σ[x← ti]. We will show that s0 and s1 are EF-bisimilar, which will
conclude the proof.

The strategy for Duplicator in G(s0, s1) is as follows. As long as Spoiler restricts his
moves to the nodes from σ[x], Duplicator simply copies Spoiler’s moves. When Spoiler
moves a pebble into one of the trees ti which are substituted for a variable x, Duplicator
also moves into the corresponding tree t1−i and now follows the Duplicator’s strategy in
the game G(t0, t1).

Let L be a forest language and αL : Areg4 → (H, V ) be its syntactic morphism. From
Lemma 75 it follows that L is invariant under EF-bisimulation if and only if every language
α−1
L (h) for h ∈ H is invariant under EF-bisimulation.
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7.1.2 EF for finite forests

For finite forests, the temporal logic EF was characterized in [14]. The result was:

Theorem 76. Let L be a regular language of finite forests. There is a forest formula of
EF that is equivalent, over finite forests, to L if and only if the syntactic forest algebra
(H, V ) of L satisfies the identities

vh = vh+ h for h ∈ H, v ∈ V , (7.1)
h+ g = g + h for g, h ∈ H. (7.2)

A corollary to the above theorem is that, for finite forests, definability in EF is equiv-
alent to invariance under EF-bisimulation. This is because two finite forests that are
EF-bisimilar can be rewritten into each other using the identities (7.1) and (7.2).

Our goal is to prove the usefulness of the algebras from chapters 4 and 5 by extending
Theorem 76 to infinite forests. It turns out that this extension cannot be straightforward
since, somewhat surprisingly, EF formulas over infinite forests can express nontrivial prop-
erties even for unary alphabets, which was not the case with finite forests.

Let us consider the alphabet A = {a}. Using the EF game it is easy to see that every
finite forest is EF-bisimilar to a single path whose length is equal to the length of the
longest path of the forest, which reduces all the questions to the finite word case.

In the case of infinite words the case is even simpler: there is only one infinite word
over the unary alphabet.

We show now that it is not easy to find such a set T of infinite forests such that every
forest is EF-bisimilar to some forest from T , but no two forests from T are EF-bisimilar
to each other.

For a forest t we can partition its set of nodes as dom(t) = S∞ ∪ S0 ∪ S1 ∪ S2 ∪ · · · ,
where Sn contains nodes x such that t|x has height n. The formula ψ≥n ≡ EFna is true
in nodes x for which t|x has height at least n. Similarly ψ=n ≡ ψ≥n ∧ ¬ψ≥n+1 is true in
nodes which are roots of trees of (finite) height equal to n.

Now consider a formula

ϕn ≡ ¬EF∗ψ=n ∧ EF∗ψ≥n+1 ∧ AG∗
(
ψ≥n+1 → EFψ≥n+1 ∧ EFψ=n−1

)
.

It states that in a forest we have Sn = ∅, thus ∅ = Sn+1 = Sn+2 = . . . However, a forest
satisfying the formula must contain a node which is a root of tree of height greater than n,
thus it must be a node from S∞. Moreover, under every node from S∞ there is another
node from S∞, and also a node from Sn−1.

Figure 7.3
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On the figure 7.3 there are three trees t0 = (a�)∞, and tn = a(an +a�)∞ for n = 1, 2.
They belong to languages defined by ϕ0, ϕ1 and ϕ2, respectively. Note, however, that for
i < j the trees ti and tj are not EF-bisimilar, since the strategy for Spoiler is as follows:

Spoiler moves in tj to a node from Sj−1. If Duplicator moves in ti to a node
from S∞, then Spoiler till the end of the game stays in ti in the set S∞; the
game will end in j moves. On the other hand, if Duplicator replies in ti with
a move to a node from Sk for k ≤ i− 1, then Spoiler till the end of the game
moves in tj; the game will end in k moves.

Note that not every infinite forest is EF-bisimilar to tn for some n. Examples of such forests
would be a(t1+t2) or a(t1+a(t2+a�))∞, or more general ones, such as a(ti1 +ti2 +. . .+tik)
for natural numbers i1, . . . , ik.

As we mentioned before, thanks to Lemma 73, we know that any language defined by a
forest EF formula is invariant under EF-bisimulation. Unlike for finite forests, the converse
does not hold. Consider, for instance the language “all finite forests”. This language is
invariant under EF-bisimulation, but it cannot be defined using a forest EF formula.

Indeed, consider two families of trees

tn = an+1b, sn = a(anb+ a�)∞,

which are depicted on figure 7.4.

Figure 7.4

Let ϕ be any forest EF formula of EF-nesting depth n. It is easy to see that Duplicator
wins the n-round EF game on trees tn and sn. His strategy is as follows: anytime Spoiler
moves to a node labeled with b, Duplicator moves to a b-labeled node in another tree. As
long as Spoiler makes a move to an a-labeled node which is in distance k from the nearest
b-labeled node, Duplicator moves to a node in another tree which is in distance k from
the nearest b-labeled node, or if this was not possible, he moves one node down.

Therefore any forest language which is defined by a forest EF formula of EF-nesting
depth n contains both trees tn and sn or none of them. Since the tree tn is finite and the
tree sn is infinite, we conclude that the language “all finite forests” is not definable in the
logic EF.

In Lemma 92, we will show a weaker form of the converse. Namely, for any fixed regular
tree t, the set of trees that are EF-bisimilar to t can be defined in EF.
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7.2 Characterization of EF for infinite forests

The fact that trees from figure 7.4 are indistinguishable by EF formulas can be rephrased
in the language of algebra (and in a somewhat more general setting): for sufficiently large n
the identity

vnh = (v + vnh)∞

is satisfied for all h ∈ H, v ∈ V+ from the syntactic algebra (H,V ) of any language
definable by a forest EF formula. Clearly we can replace the statement “for sufficiently
large n” with the idempotent power.

It turns out that with invariance under EF-bisimulation this identity fully characterizes
the logic EF on infinite forests.

Theorem 77. A regular forest (thin-forest) language L can be defined by a forest formula
of EF if and only if

(a) it is invariant under EF-bisimulation,

(b) the syntactic forest (thin-forest) algebra (H,V ) of regular part of L satisfies the
identity

vωh = (v + vωh)∞ for all h ∈ H, v ∈ V+. (7.3)

The above formulation of Theorem 77 is a little bit informal, in fact this theorem
comes in four variants, depending on whether L is a language of: (G) forests, (GR) regular
forests, (T) thin forests, (TR) regular thin forests. In the first two variants (H,V ) is a
regular-infinite-forest algebra and in the remaining variants (H,V ) is a regular-thin-forest
algebra.

First we show that the cases (G) and (T) can be reduced to (GR) and (TR) respec-
tively, and then in the remaining part of this chapter we will assume that the language L
contains only regular forests. We show how to reduce (G) to (GR), reduction of (T) to
(TR) is analogous.

Take a regular language L of forests, which satisfies the conditions of Theorem 77.
Therefore the language LR which contains regular forests from L also satisfies these con-
ditions, and since the theorem is true in case (GR), LR is definable by an EF forest
formula ϕ (when restricted to regular forests). The formula ϕ, when not restricted to reg-
ular forests, must define the language L, since should it define another regular language L′,
there would be a regular forest in (L′ − L) ∪ (L− L′).

One can ask why we use the invariance under EF-bisimulation in the statement of
Theorem 77 and not a set of identities like in Theorem 76. The fact is that in the case of
infinite forests we do not know how to express invariance under EF-bisimulation in terms
of only identities. We managed to do so in the case of thin forests, and we present the
result later. At the moment we show why the identities (7.1) and (7.2) are insufficient in
the case of infinite forests.

Consider the language L = “there is at least one (not necessarily maximal) infinite
path with all nodes labeled with a”, which we encountered before, in Example 45. The
syntactic algebra of this language satisfies the identities (7.1) and (7.2), since (under the
notation from the example) we have:

vAh = ha = ha + h = vAh+ h,

vh = h = h+ h = vh+ h for v = va, vb.
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However, the language L is not invariant under EF-bisimulation. Indeed, consider the
trees

t = (ab)∞, s =
(
a(� + (ab)∞)

)∞
,

depicted on figure 7.5.

Figure 7.5

These trees are clearly EF-bisimilar, since their every node has both a-labeled de-
scendant and b-labeled one. However, only tree s belongs to the language L, therefore
the language is not invariant under EF-bisimulation. We can add a new identity which is
necessary for the invariance:

(vw)∞ =
(
v(� + (vw)∞)

)∞ for v ∈ V+, w ∈ V .

Note that in presence of (7.1) we have
(
v(� + (vw)∞)

)∞
= (v + (vw)∞)∞, thus the

above identity can be replaced by a slightly more elegant

(vw)∞ = (v + (vw)∞)∞. (7.4)

Indeed, for h =
(
v(� + (vw)∞)

)∞ we have

h = v(� + (vw)∞)h = v(h+ �)(vw)∞
(7.1)
= v(h+ �)(vw)∞ + (vw)∞ =

= h+ (vw)∞ = (� + (vw)∞)h = ((� + (vw)∞)v)∞ = (v + (vw)∞)∞.

But again, this identity is not yet sufficient, as witnessed by the following language
over A = {a, b, c}:

L = “every infinite path which ultimately does not branch is labeled with word A∗(abc)∞”.

Clearly L satisfies identities (7.1), (7.2) and (7.4), since they preserve the set of infinite
paths which ultimately do not branch. However, it distinguishes two EF-bisimilar trees

(abc)∞ ∈ L, (acb)∞ 6∈ L.

We will prove that, in fact, adding the fourth identity

(vwu)∞ = (vuw)∞ for v ∈ V+, u, w ∈ V (7.5)

creates a set of identities which characterizes EF-bisimulation on regular thin trees. We
note that these four identities constitute a minimal (in respect to inclusion) set of identities



7.2. CHARACTERIZATION OF EF FOR INFINITE FORESTS 97

characterizing EF-bisimulation. Indeed, we already seen it in case of (7.5). Moreover, all
identities except (7.4) preserve finiteness of the number of paths in a forest, all identities
except (7.2) preserve the left-most root of a forest, and finally, all identities except (7.1)
preserve the set of roots of a forest.

We show how to test invariance under EF-bisimulation in the next section. The rest
of this section is devoted to proving Theorem 77.

7.2.1 The conditions are necessary

In this section we show that the two conditions in Theorem 77 are necessary for definability
in EF. Fix a forest language L that is definable by a forest formula of EF. Let the syntactic
morphism of the regular part of L be

αL : Areg4 → (H,V ).

Invariance under EF-bisimulation follows immediately from Lemma 73.
We now turn to condition (7.3). Let n be the idempotent power ω of V+. That is, for

every context type v ∈ V+, the types vn and vn · vn are equal. Such a power exists, since
V+ is a finite monoid. Let i · n be a multiple of n that is larger than the EF-nesting depth
of the forest formula defining L. We will show that

vi·nh = (v + vi·nh)∞ for any v ∈ V+ and h ∈ H.

This establishes (7.3), since vi·n = vn = vω. By unraveling the definition of the syntactic
regular-infinite-forest algebra, and using Fact 51, we need to show that for every guarded
context p, every forest t, every recursion scheme φ, every valuation η of the variables in
φ with elements of Areg4, and every forest-sorted z variable in φ, we have

unfoldφ[η[z ← pi·nt]] ∈ L if and only if unfoldφ[η[z ← (p+ pi·nt)∞]] ∈ L. (7.6)

We will show a stronger result, namely that Duplicator wins the (i · n)-round EF game
on the two forests

unfoldφ[η[z ← pi·nt]] and unfoldφ[η[z ← (p+ pi·nt)∞]].

To get rid of the unfolding above, we will use the following fact, which basically says that
winning the m-round game behaves like a congruence with respect to unfolding:

Lemma 78. Let φ be a recursion scheme with a single forest-sorted variable, and let s, t
be forests. If Duplicator wins the m-round EF game on s and t, then for any φ and η he
also wins the m-round EF game on

unfoldφ[η[z ← s]] and unfoldφ[η[z ← t]].

Proof. The proof is similar to the one in Lemma 58. As long as pebbles are in common
part of φ, Duplicator copies Spoiler’s moves. Otherwise, he uses his strategy of game on
s and t.

Thanks to this fact, instead of (7.6), we only have to prove that Duplicator wins the
(i · n)-round EF game on the two forests

pi·nt and (p+ pi·nt)∞.

It is not difficult to generalize the Duplicator’s strategy presented on the page 94 to a
winning strategy in the above game.
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7.2.2 The conditions are sufficient

We now show the more difficult part of Theorem 77. Let α : Areg4 → (H, V ) be the
syntactic morphism of the regular part of the language L. Suppose that the target alge-
bra satisfies condition (7.3) and that the morphism is invariant under EF-bisimulation.
From Lemma 75 languages which are invariant under EF-bisimulation form a variety of
languages, thus from Theorem 29 every language recognized by the target algebra is in-
variant under EF-bisimulation (thus any two EF-bisimilar forests have the same image
under the morphism α). For a forest t, we use the name type of h for the value α(h).
We will show that for any h ∈ H, the language Lh of forests of type h is definable by a
forest formula of EF. This shows that the two conditions in Theorem 77 are sufficient for
definability in EF.

The proof is by induction on the size of H. The induction base, when h is the only
element in H, is trivial. In this case all forests have the same type h, and the appropriate
formula is true.

We now proceed to the induction step. We say that an element h ∈ H is reachable
from g ∈ H if there is some v ∈ V with h = vg.

Lemma 79. The reachability relation is transitive and antisymmetric.

Proof. Note that reachability might not be reflexive, since V is not necessarily a monoid.
Transitivity is obvious. For antisymmetry, we first prove that invariance under EF-bisimu-
lation implies property (7.1). Indeed, since α is surjective, there must be some context p
with α(p) = v and some forest t with α(t) = t. Since the forests pt + t and pt are
EF-bisimilar, their types must be equal, and hence (7.1) holds.

Suppose that g is reachable from h, and vice versa. To prove antisymmetry, we need
to show that g = h. By assumption there are v, w ∈ V with g = wh and h = vg. Then
we have

g = wh = wvg
(7.1)
= wvg + vg = g + vg

(7.1)
= vg = h.

We say that an element h ∈ H is minimal if it is reachable from all g ∈ H. (The name
minimal, instead of maximal, is traditional in algebra. The idea is that the set of elements
reachable from h is minimal.) There is at least one minimal element, since for every v ∈ V
an element v(h1 + · · ·+hn) is reachable from each hi. Since reachability is antisymmetric,
this minimal element is unique, and we denote it using the symbol ⊥. An element h 6= ⊥
is called subminimal if the elements reachable from h are a subset of {h,⊥}.

Figure 7.6

Recall that our goal is to give, for any h ∈ H, a formula of EF that defines the set
Lh of forests with type h. Fix then some h ∈ H. We partition the set of types as follows:
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H = F ∪ {h} ∪ G, where F be the set of all elements different from h, from which h is
reachable and G be the set of all elements different from h, from which h is not reachable.
We consider three cases, shown on figure 7.6, depending on the cardinality of the set G:

(i) |G| = 0, which means that h is minimal,

(ii) |G| = 1, which means that h is subminimal, and there is exactly one subminimal
element,

(iii) |G| ≥ 2, which means that h is subminimal and there are at least two subminimal
elements or h is neither minimal nor subminimal.

Note that the first case follows from the remaining two, since a forest has type ⊥ if
and only if it has none of the other types. Therefore the formula for h = ⊥ is obtained by
negating the disjunction of the formulas for the other types. Now we treat the remaining
two cases.

Case (iii).

For this case, we use a standard method. The idea is to squash all elements from G into a
single element. Since G has at least two elements, we can use the induction assumption on
a smaller algebra. The tricky part is showing that this squashing is a congruence, which
requires dealing with the unfoldings.

Let us define the following equivalence relation on H: g ∼ f holds if either g = f or
both g, f belong to G. In other words ∼ identifies all types in G. We extend this relation
to V by setting v ∼ w if either v = w or both v, w belong to the set

W = {w ∈ V | wH ⊆ G}.

The relation ∼ is a two-sorted equivalence relation, i.e. a pair of equivalence relations,
one for each of the two sorts H and V of regular-infinite-forest algebra. The following
lemma shows that it is actually a congruence, i.e. for every operation of the algebra, the
equivalence class of the result is uniquely determined by the equivalence classes of the
arguments.

Lemma 80. The relation ∼ is a congruence.

Proof. We only do the case for unfoldings of recursion schemes. Fix an (m,n)-ary recursion
scheme φ. We need to show that for any elements

g1 ∼ f1, . . . , gm ∼ fm, v1 ∼ w1, . . . , vn ∼ wn

respectively from H and V we have

unfoldφ[g1, . . . , gm, v1, . . . , vn] ∼ unfoldφ[f1, . . . , fm, w1, . . . , wn]. (7.7)

If all equivalent elements are equal (i.e. gi = fi, vi = wi), then (7.7) is obvious. If it is not
the case, then we have that for some i either gi, fi ∈ G or vi, wi ∈ W . We claim that in
this situation both unfolds belong to G. It is true, since every unfold which uses g ∈ G
can be decomposed as τ [η] · g for some term τ and valuation η and from the definition
of G we have V g ⊆ G. Similarly, every unfold which uses v ∈ W can be decomposed as
τ1[η1] · v · τ2[η2] and V vH ⊆ G.
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Let β be the function which maps an element of the forest algebra (H, V ) to its
equivalence class. By the above lemma, β is a homomorphism

β : (H,V )→ (H, V )/∼,

where the elements of the regular-infinite-forest algebra on the right hand side are equiv-
alence classes under ∼, and the operations are inherited from (H,V ). Note also the same
forests are mapped to h by α and by β◦α. Therefore, we can use the induction assumption,
applied to the homomorphism

β ◦ α : Areg4 → (H, V )/∼,

to obtain a formula for the set of forests that are mapped to h by α.

Case (ii).

We now consider the case when h is the unique subminimal element.
Recall that F is the set of all elements different from h, from which h is reachable. In

other words, F is the set of all elements from H beside h and ⊥. Thanks to the case (iii),
for every f ∈ F we have a formula ϕf that defines the set Lf of forests with type f . We
write ϕF for the disjunction

∨
f∈F ϕf .

Recall that the two nodes x, y of a regular forest t are in the same component if the
subtree t|x is a subtree of the subtree t|y and vice versa. We have two kinds of components:
connected and singleton. Since any two nodes in the same component are EF-bisimilar
(i.e. their subtrees are EF-bisimilar), we conclude that two nodes in the same component
have the same type. Therefore, we can speak of the type of a component. A regular tree
is called prime if it has exactly one component with a type outside F . Note that the
component with a type outside F must necessarily be the root component (the one that
contains the root), since no type from F is reachable from types outside F . Depending
on the kind of the root component, a prime tree is called a connected prime or singleton
prime.

Figure 7.7

The profile of a prime tree t is a pair in P (F ) × (A ∪ P (A)) defined as follows. On
the first coordinate, we store the set G ⊆ F of types of components with a type in F . On
the second coordinate, we store the labels that appear in the root component. If the tree
is connected prime, this is a set B ⊆ A of labels (possibly containing a single label), and
if the tree is singleton prime, this is a single label b ∈ A. In the first case, the profile is
called a connected profile, and in the second case the profile is called a singleton profile.
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Figure 7.7 shows the component graph of a connected prime tree with connected profile
({f1, f2, f3}, {a, b, c}).

It turns out that the profile of a prime tree determines its type.

Lemma 81. All prime trees with the same profile have the same type.

Proof. Let s, t be prime trees. Let G be the first coordinate of the profile, and let
{s1, . . . , sk} be all the subtrees of s with types in F , likewise for {t1, . . . , tn} in t. By
property (7.1) we can assume that {α(s1), . . . , α(sk)} = G = {α(t1), . . . , α(tn)}.

We modify the tree t by replacing every subtree ti with some tree sj with the same
type (α(ti) = α(sj)). This operation does not change the type of t. The resulting tree t′

is EF-bisimilar to tree s, and therefore has the same type, since α is invariant under
EF-bisimulation.

Therefore it is meaningful to define the set profh of profiles of prime trees of type h.
Since every prime tree has a type from the set {h,⊥}, the remaining profiles are profiles
of prime trees of type ⊥.

Lemma 82. Let π be a profile. There is a tree EF formula ϕπ such that

• Every prime tree with profile π satisfies ϕπ.

• Every regular tree satisfying ϕπ has type h if π ∈ profh and ⊥ otherwise.

Proof. First consider the case when the profile π is a singleton profile (G, b). The for-
mula ϕπ says that the root label is b, all proper subtrees have types in G, and any type in
G appears in some proper subtree. Since the types in G all belong to F , we are allowed
to use formulas ϕg that define the forests with type g. Note that these are forest EF
formulas, but we treat them here as tree EF formulas. Therefore, having profile (G, b) is
defined by the following formula ϕ(G,b):

b ∧ AG
∨
g∈G

ϕg ∧
∧
g∈G

EFϕg.

Note that the formula above satisfies a stronger property than required by the propo-
sition, since it describes exactly the trees with profile (G, b), i.e. we could strengthen the
second property in the proposition to “any regular tree satisfying ϕ(G,b) is a tree of pro-
file (G, b)”. This will not, however, be the case in the construction below for connected
profiles.

We now consider the case when the profile π is a connected profile (G,B). Let us
collect some properties of a prime tree t with this profile. Below we use the term “type of
a node” to refer to the type of the node’s subtree. Recall that for I ⊆ F , we write ϕI for
the disjunction

∨
f∈I ϕf . From the definition of a prime tree, a node in a prime tree is in

the root component if and only if it has a type outside F . In particular, the tree t has a
type outside F :

¬ϕF . (7.8)

Since the profile is (G,B), we know that all nodes outside the root component have a
type in G, which is stated by the formula:

AG∗(ϕF → ϕG). (7.9)
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In (7.9), we could have used AG instead of AG∗, since the root of the tree is guaranteed
to have a type outside F .

Again from the definition of the profile, we know that all nodes in the root component
have a label in B:

AG∗
(
¬ϕF →

∨
b∈B

b
)
. (7.10)

Since the root component is connected, any node in the root component has proper
descendant that is still in the root component. In particular, a node in the root component
has proper descendants in the root component with all labels from B.

AG∗
(
¬ϕF →

∧
b∈B

EF(b ∧ ¬ϕF )
)
. (7.11)

In the same way, any node in the root component has proper descendants with all possible
types from G.

AG∗
(
¬ϕF →

∧
g∈G

EFϕg
)
. (7.12)

Let ϕ(G,B) be the conjunction of the formulas (7.8)–(7.12). From the discussion above we
obtain the first property required by the proposition: any prime tree with profile (G,B)
satisfies ϕ(G,B). We now proceed to show the second property, namely that any regular
tree satisfying ϕ(G,B) has type h if (G,B) ∈ profh and ⊥ otherwise.

Let t be a regular tree that satisfies the formulas (7.8)–(7.12). Let t1, . . . , tm be all
the subtrees of t that have types in F , this set is finite since t is regular. Let b1, . . . , bn
be all the labels in B. Let us define the following tree (depicted for n = m = 2 on figure
7.8).

s =
(
b1b2 · · · bn(� + t1 + · · ·+ tm)

)∞
.

Figure 7.8

The types of the trees t1, . . . , tm are included in G thanks to (7.9). These types are
actually exactly G, thanks to (7.12) and (7.8). Therefore, s is a connected prime tree with
profile (G,B), and so it has type h if (G,B) ∈ profh and ⊥ otherwise. We will complete
the proof by showing that the trees t and s are EF-bisimilar, even when t is not prime.

Why are s and t EF-bisimilar? Suppose that at the beginning of a round in the EF
game, we have a subtree s′ of s and a subtree t′ of t. Duplicator’s strategy is to preserve
the following invariant:

If the type of s′ or t′ is in F , then the types of s′ and t′ are equal. Otherwise,
the types of both s′ and t′ are outside F , and the trees have the same root
labels.
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As a side note observe that the formula ϕ(G,B) is in fact a forest EF formula, thus we
could strengthen the second property in the proposition to “any regular forest satisfying
ϕ(G,B) has type h if (G,B) ∈ profh and ⊥ otherwise”. We will not use this fact, however.

We now turn our attention from prime trees to arbitrary regular forests. Let t be
a forest. The formula which says when the type is h works differently, depending on
whether t has a prime subtree or not. This case distinction can be done in EF, since not
having a prime subtree is expressed by the formula AG∗ϕF .

There is no prime subtree. We write
∑
{g1, . . . , gn} for g1 + · · ·+ gn. By invariance

under EF-bisimulation, this value does not depend on the order or multiplicity of elements
in the set. Suppose

∑
G = ⊥ and t has subtrees with each type in G. Thanks to (7.1),

the type of t satisfies α(t) +
∑
G = α(t), and hence α(t) = ⊥. Therefore, a condition

necessary for having type h is

¬
∨

G⊆F,
∑
G=⊥

∧
g∈G

EF∗ϕg. (7.13)

By the same reasoning, a condition necessary for having type h is∨
G⊆F,

∑
G=h

∧
g∈G

EF∗ϕg. (7.14)

It is not difficult to show that conditions (7.13) and (7.14) are also sufficient for a forest
with no prime subtrees to have type h.

There is a prime subtree. As previously, a forest t with type h cannot satisfy (7.13).
What other conditions are necessary? It is forbidden to have a subtree with type ⊥.
Thanks to Lemma 82, t must satisfy:

¬
∨

π 6∈profh

EF∗ϕπ. (7.15)

Since t has a prime subtree, its type is either h or ⊥. Suppose that t has a subtree
with type f ∈ F such that f + h = ⊥. By (7.1), we would have α(t) + f = α(t), which
implies that the type of t is ⊥. Therefore, t must satisfy

¬
∨

f∈F, f+h=⊥

EF∗ϕf . (7.16)

Let us define C to be the labels that preserve h, i.e. the labels a ∈ A such that
α(a)h = h. If a forest has type h, then it cannot have a subtree as where a 6∈ C and s
has type h or ⊥. This is stated by the formula:

AG∗
∧
c6∈C

(c→ AGϕF ). (7.17)

As we have seen, conditions (7.13) and (7.15)–(7.17) are necessary for a forest with
a prime subtree t having type h. In the following lemma, we show that the conditions
are also sufficient. This completes the analysis of case (ii) of the proof of Theorem 77,
since it gives a formula that characterizes the set Lh of forests whose type is the unique
subminimal element h.
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Lemma 83. A regular forest with a prime subtree has type h if it satisfies conditions (7.13)
and (7.15)–(7.17).

Proof. By induction on the number of components in a forest t with a type outside F ,
we show that if t satisfies conditions (7.13) and (7.15)–(7.17), its type is not ⊥. This gives
the statement of the lemma, since a forest with a prime subtree cannot have a type in F ,
so it has type h.

The induction base is when t is prime (so it has exactly one component with a type
outside F ). The type must be h, since ⊥ is ruled out by (7.15).

Consider now the induction step. Suppose first that t is a concatenation of trees
t1 + · · · + tn. Suppose that the statement holds for t1, . . . , tn, which have types G =
{f1, . . . , fn} and ⊥ 6∈ G. The type of t is

∑
G. If G ⊆ F , then (7.13) implies that

∑
G is

not ⊥. If h ∈ G, then (7.16) implies that
∑
G = h.

It remains to show the lemma when t is a tree. If the root component is a singleton
component, a simple argument shows that the type of t is not ⊥. We are left with the case
when t is a tree where the root component is connected. Let a1, . . . , an be the labels in
the root component. Let t1, . . . , tm be all the subtrees of t that have a smaller number of
components with a type outside F , and let f1, . . . , fm be their types. Since t is not prime,
some fi is h. Since the root component is connected, each node in the root component
has a descendant with type h. Therefore, by (7.17), all the labels a1, . . . , an belong to C.

It is not difficult to show that t is EF-bisimilar to, and thus has the same type as, the
tree

s =
(
a1 · · · an(� + t1 + · · ·+ tm)

)∞
.

By (7.16), we have h = h+ f1 + · · ·+ fm. Therefore, the tree s has the same type as(
a1 · · · an(� + ti)

)∞
.

Let v = α(a1 · · · an). Our goal is to show that (v(� + h))∞ = h. By assumption on
a1, . . . , an ∈ C, we have vh = h. In particular, vωh = h. Finally

(v(� + h))∞ = v(v + h)∞ = v(v + vωh)∞
(7.3)
= vvωh = h.

The last equality is the only time we use identity (7.3) in this thesis.

7.3 Checking invariance under EF-bisimulation

In this section we show how to check whether a given regular language of regular (thin)
forests is invariant under EF-bisimulation.

Theorem 84. It is decidable, given a forest automaton A, if there exist two EF-bisimilar
regular forests, of which only one is accepted by A.

We note that, using the reasoning similar to this in proof of Theorem 63, this result
could be stated also for languages of (thin) forests, if the following conjecture (similar to
Lemma 64) should be true:

Conjecture 85. Let L be a regular language of forests. The language which contains of
all forests which are EF-bisimilar to some forest from L is regular.
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We present a solution in the case of thin forests and in the general case. For thin
forests the invariance under EF-bisimulation could be expressed in terms of identities:

Theorem 86. A regular language of regular thin forests is invariant under EF-bisimulation
if and only if its syntactic regular-thin-forest algebra (H, V ) satisfies the identities (7.1)
and (7.4), i.e.

vh+ h = vh,

(v + (vw)∞)∞ = (vw)∞,

as well as identities

h+ v = v + h for h ∈ H, v ∈ V , (7.18)
(vwu)∞ = (vuw)∞ for v, w, u ∈ V, vwu ∈ V+. (7.19)

The last identity can be rephrased in a more general way:

Lemma 87. Let a thin-forest algebra (H,V ) satisfy (7.19). Then

(v1v2 · · · vn)∞ = (vπ(1)vπ(2) · · · vπ(n))
∞

for every permutation π of {1, . . . , n} and every v1, . . . , vn ∈ V such that v1v2 · · · vn ∈ V+.

Proof. Observe that for any v, w1, w2, u ∈ V such that vw1w2u ∈ V+ we have

(v w1 w2u)∞
(7.19)
= (vw2 u w1)∞

(7.19)
= (vw2w1u)∞.

Now the lemma follows from the fact that every permutation is a product of adjacent
transpositions.

However, in the case of general forests we do not know how to express the condition
using only identities. Before we formulate a theorem, we need a definition of a multicon-
text.

An n-ary multicontext over variables x1, . . . , xn is a regular forest over alphabet A ∪
{x1, . . . , xn} where the variables x1, . . . , xn are allowed only in leaves. We allow multiple
(possibly infinitely many) occurrences of each variable. Given forests s1, . . . , sn and an n-
ary multicontext p, the forest p(s1, . . . , sn) over A is defined in the natural way. Therefore,
an n-ary multicontext is a notation for the unfolding of a recursion scheme φ that has
free forest-valued variables x1, . . . , xn, and some context-valued variables already bound
by a valuation:

p(s1, . . . , sn) = unfoldφ[η[x1 ← s1, . . . , xn ← sn]]. (7.20)

An n-ary multicontext is called prime if, when treated as a forest over the alphabet
A∪ {x1, . . . , xn}, it has one root component, and also all of the non-variable nodes are in
this component. An example of a 4-ary prime multicontext is given on figure 7.9.

We say that two multicontexts are EF-bisimilar if they are EF-bisimilar when treated
as forests over the alphabet A ∪ {x1, . . . , xn}.

By using the morphism α : Areg4 → (H,V ), an n-ary multicontext naturally induces
a function Hn → H. Under the notation from (7.20), this is the function

(α(s1), . . . , α(sn)) 7→ α(unfoldφ[η[x1 ← s1, . . . , xn ← sn]]).
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Figure 7.9

Since α is a morphism, the above definition does not depend on the choice of s1, . . . , sn.
We say that a morphism satisfies the cyclic representative condition if for every letters

a1, . . . , an ∈ A and multicontext variables x1, . . . , xm, every multicontext that is EF-
bisimilar to

p = (a1 · · · an(� + x1 + · · ·+ xm))∞

induces the same transformation Hm → H.
We are now ready to state the necessary and sufficient conditions for invariance under

EF-bisimulation.

Theorem 88. A morphism into a regular-infinite-forest algebra is invariant under EF-
bisimulation if and only if its target algebra satisfies identities (7.1), (7.2), (7.4), i.e.

vh = vh+ h,

h+ g = g + h,

(vw)∞ = (v + (vw)∞)∞,

and the morphism satisfies the cyclic representative condition.

We prove Theorems 86 and 88 in the next section. Since for thin forests the identities
can be decided thanks to Theorem 50, this completes the proof of Theorem 84 in this
case.

Then, in section 7.3.2, we show how to decide if the syntactic morphism of the language
recognized by A satisfies the cyclic representative condition. This completes the proof of
Theorem 84 in the general case, since identities can be decided thanks to Theorem 55.

7.3.1 Proof of the characterization theorems

In this section we prove Theorems 86 and 88. We do this simultaneously, since most of
the arguments are the same in both cases. The only differences in proofs are places when
we use either the cyclic representative condition or identities (7.18), (7.19).

The “only if” part of the proofs is quite obvious. The rest of this section is devoted to
the “if” part.

We want to show that if regular forests s and t are EF-bisimilar, then they have the
same types, i.e. α(s) = α(t). The proof is by induction on the number of components in
s plus the number of components in t.

Lemma 89. Without loss of generality, we can assume that s and t are regular trees.

Proof. Let s1, . . . , sn be all subtrees in s and t1, . . . , tm be all subtrees in t. By using
identities (7.1) and (7.2) we have

α(s)
(7.1)
= α(s) + α(s1) + · · ·+ α(sn)

(7.2)
= α(s1) + · · ·+ α(sn).
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Similarly α(t) = α(t1) + · · ·+ α(tm). Since s and t are EF-bisimilar, then every si is EF-
bisimilar to some ŝi ∈ {t1, . . . , tm} and every ti is EF-bisimilar to some t̂i ∈ {s1, . . . , sn}.
Suppose we proved the proposition for trees. Then α(si) = α(ŝi) and α(ti) = α(t̂i), thus
{α(s1), . . . , α(sn)} = {α(t1), . . . , α(tm)}. Therefore α(s) = α(t).

The induction base is when both trees s and t have a single component. If s is finite,
then it has a single node a. In this case t also has to be a, since this is the only tree that
is EF-bisimilar to a. (Note that we cannot check label in a root of a tree, but we can
check whether a tree is of height 1 and check label in a leaf.) Suppose now that s and t
are infinite. Let a1, . . . , an be the labels that appear in s (and therefore also in t). It is
easy to see that s and t are EF-bisimilar to a tree u = (a1 · · · an�)∞. All of trees s, t, u
can be treated as prime multicontexts of arity 0.

In the case of general trees, by the cyclic representative condition, both s and t have
the same type.

In the case of thin trees, from Lemma 4, s = (aπ(1) · · · aπ(n)�)∞ for some permutation
π of {1, . . . , n}. Applying Lemma 87 we get that α(s) = α(u). Analogously we get that
α(t) = α(u).

We now do the induction step. Let s1, . . . , sn be all the subtrees of s that have fewer
components than s. In other words, there is a prime n-ary multicontext p such that

s = p(s1, . . . , sn).

Likewise, we distinguish all subtrees t1, . . . , tk inside t that have fewer components than t,
and find a prime k-ary multicontext q with

t = q(t1, . . . , tk).

Since the trees s and t are EF-bisimilar, each tree si must be EF-bisimilar to some
subtree ŝi of t. By the induction assumption, we know that the trees si and ŝi have the
same type (since si has fewer components than s and ŝi has no more components than t).
Likewise, each tree ti has the same type as some subtree t̂i of s.

By applying (7.1) in the same manner as in Lemma 89, we conclude that if either p or
q is finite then s and t have the same type. We are left with the case when both p and q
are infinite prime multicontexts. Suppose first that

(1) for some i, the tree ŝi has the same number of components as t; and

(2) for some j, the tree t̂j has the same number of components as s.

We use the same notion of reachability on types as was used in Lemma 79. From (1) we
conclude that the tree ŝi is in the root component of t, and therefore the type of both si
and ŝi is reachable from the type of t. Since si is a subtree of s, we conclude that the type
of s is reachable from the type of t. Reasoning in the same way from (2) we conclude that
type of t is reachable from the type of s. Therefore, by Lemma 79, the types of s and t
are equal (note that Lemma 79 used (7.1)).

Suppose now that one of (1) or (2) does not hold, say (1) does not hold (the other
case is symmetric).

Lemma 90. Without loss of generality, we can assume that n ≤ k and

s = p(t1, . . . , tn).
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Proof. Consider the tree ŝ = p(ŝ1, . . . , ŝn). Since we replaced trees with EF-bisimilar ones,
ŝ is bisimilar to s. Since we replaced trees with ones of the same type, ŝ has the same
type as s. So it is enough to prove the result for ŝ and t.

Since (1) does not hold, then every ŝi is equal to some tj. Rename the subtrees t1, . . . , tk
such that {ŝ1, . . . , ŝn} = {t1, . . . , tn′} for some n′ ≤ min(n, k). After possibly renaming
variables in p, the tree ŝ has the form p(t1, . . . , tn′), like in the statement of the lemma.

What about the trees tn+1, . . . , tk that do not appear in s? Each of these is EF-bisimilar
to one of s, t1, . . . , tn. For those that are EF-bisimilar to some ti ∈ {t1, . . . , tn}, we use the
tree instead. Therefore, we can without loss of generality assume that

t = q(s, t1, . . . , tn).

Lemma 91. Any label a ∈ A that appears in q also appears in p.

Proof. Let a ∈ A be a label in q and consider the following strategy for Spoiler in the
game over the trees s and t: he picks t and in that tree, some occurrence of a in the
root component. Duplicator, in his response, cannot pick a node inside any of the trees
t1, . . . , tn, since none of these is EF-bisimilar to a tree in the root component of t, since
(1) does not hold. Therefore, he must pick a node inside p.

Figure 7.10

Let a1, . . . , ai be the labels that appear in q. Thanks to the above lemma, the labels
that appear in p are a1, . . . , ai as well as possibly some other labels, say ai+1, . . . , aj for
some j ≥ i. Therefore the trees s, t look like on figure 7.10. Let us define the following
two contexts

x = a1 · · · ai(� + t1 + · · ·+ tn), y = ai+1 · · · aj�.

In the case of general trees, by using the cyclic representative condition, it is not
difficult to show that type of s is the same as the type of (xy)∞. Again using this condition,
one shows that the type of t is the same as the type of (x(�+ s))∞, which is the same as
the type of (x(� + (xy)∞))∞. Therefore, we conclude that the types of s and t are equal
by identity (7.4).

In the case of thin trees, observe that from Lemma 4 every tree with a connected
component in the root can be written as

u =
(
b1(t′1 + � + t′′1) · · · bm(t′m + � + t′′m)

)∞
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for some m ≥ 1, letters b1, . . . , bm ∈ A, and thin forests t′1, t
′′
1, . . . , t

′
m, t

′′
m. From the iden-

tities we conclude that for every v1, . . . , vm ∈ V+ and h1, . . . , hm, g1, . . . , gm ∈ H we have(
v1(h1 + � + g1) · · · vm(hm + � + gm)

)∞ (7.19)
=

=
(
v1 · · · vm(h1 + � + g1) · · · (hm + � + gm)

)∞
=

=
(
v1 · · · vm(h1 + · · ·+ hm + � + gm + · · ·+ g1)

)∞ (7.18)
=

=
(
v1 · · · vm(� + h1 + · · ·+ hm + g1 + · · ·+ gm)

)∞
.

That shows that the type of u is the same as the type of(
b1 · · · bm(� + t′1 + · · ·+ t′m + t′′1 + · · ·+ t′′m)

)∞
Using identities (7.19) and (7.18) we can further rearrange letters bi and trees from forests
t′i, t

′′
i . From this it is easy to show that α(s) = α((xy)∞) and α(t) = α((x(� + s))∞).

7.3.2 Deciding the cyclic representative condition

Let us fix an automaton A, with states Q and input alphabet A. There are two morphisms
that are associated with A.

The first morphism is the automaton morphism α : Areg4 → (H, V ), as defined in
chapter 5. Recall that elements of H are subsets of Q.

The second morphism is the syntactic morphism αL : Areg4 → (HL, VL). We will say
type of t for the value αL(t). Our goal in this section is to decide if αL satisfies the cyclic
representative condition.

A counterexample to the condition is a sequence a1, . . . , an ∈ A, types h1, . . . , hm ∈ H
and a multicontext q that is EF-bisimilar to

p = (a1 · · · an(� + x1 + · · ·+ xm))∞

such that the types
p(h1, . . . , hm), q(h1, . . . , hm).

are different under the syntactic congruence in (H, V ) induced by the language recognized
by A. We can assume that h1, . . . , hm are all distinct, since it does not make sense to use
the same type under different variables. We also can assume that a1, . . . , an are all distinct
(otherwise, instead of q we could use the multicontext obtained from p by removing
duplicates from a1 · · · an).

We try to find a counterexample for each possible choice of a1, . . . , an and h1, . . . , hm.
Enumerating all possible sequences h1, . . . , hm is one of the reason why this method is
doubly exponential, since the size of H is exponential in Q.

To simplify the proof, we assume that for each type h ∈ H there is a label ah such
that the tree ah has type h. Therefore, searching for a counterexample comes down to
checking if there is some forest that is EF-bisimilar to

t = (a1 · · · an(� + ah1 + · · ·+ ahn))∞.

but has a different type than t, under the syntactic congruence. Let Lt be the set of
forests that are EF-bisimilar to t. We want to know if all forests from Lt are syntactically
equivalent to t. This boils down to testing inclusion of two regular languages, since the
language Lt is regular (and even definable in EF), by the following lemma.
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Lemma 92. Let t be a regular tree. The set of trees that are EF-bisimilar to t is definable
by an EF formula ϕt.

Proof. The proof is by induction on the number of components in t. Let t1, . . . , tm be the
subtrees of t that have fewer components than t. By induction assumption, we already
have formulas ϕt1 , . . . , ϕtm , where the formula ϕti defines a language of trees EF-bisimilar
to ti. The formula is constructed in similar fashion as in Lemma 82.

Suppose first that the root of t is in a singleton component, i.e. all proper subtrees
of t are among t1, . . . , tm. Let a be the root label of t. The following formula defines Lt:

a ∧ AG
∨
i≤m

ϕti ∧
∧
i≤m

EFϕti .

Suppose now that the root of t is in a connected component. Let a1, . . . , an be the
labels that appear in the root component of t. Denote by ϕT the disjunction

∨
i≤m ϕti .

The formula for Lt is

¬ϕT ∧ AG∗
(
¬ϕT →

(∨
i≤n

ai ∧
∧
i≤n

EF(ai ∧ ¬ϕT ) ∧
∧
i≤m

EFϕti

))
.



Chapter 8

Conclusions

8
In the thesis we presented some algebraic tools suited for regular languages of infinite
forests and we used them to give effective characterizations of several properties of such
languages. In this final chapter we shortly discuss some our approaches that did not give
us results, some recent work, and some ideas for future work.

Algebras with a finite number of operations

We are only beginning to study algebra for infinite forests. During the work on the paper [7]
we concluded that we are not ready to propose the “right” framework (or at least one of
the “right” frameworks). This is still true. The main shortcoming is that regular-infinite-
forest algebra has an infinite number of operations and, consequently, an infinite number
of axioms. This poses all sort of problems, and although we showed that the algebra is
useful despite them, the algebra is far from being elegant.

We note that other researchers who study algebraic approach to infinite forests also
are fighting these problems (see for example the work of Blumensath [3]).

During the research, we tried another approach and we investigated what would hap-
pen if we intentionally restricted the set of operations in regular-infinite-forest algebra to
a certain finite subset. That would, obviously, result in restricting the class of forest lan-
guages which our algebra works with, but this could at the same time make the problem
of designing the framework more tractable. We noted that all the identities we had used
so far did not required recursion schemes other than p∞, thus we looked at the algebra
which was a forest algebra equipped with an additional operation p∞. It turned out that
the class of languages recognizable by such algebra was quite robust. This is how the idea
of thin-forest algebra came to life.

We also tried other approaches. We thought that the limitation that contexts can have
only one hole might be too strict for infinite objects, so we tried to modify thin-forest
algebra by allowing richer context sort. For instance, in one of such modifications we
allowed to have multiple (but finite) occurrences of hole, but still only one type of hole
(thus a composition of a context p with a forest t results in a forest in which every hole
of p is replaced with t). This is indeed a richer algebra than thin-forest algebra, since
for instance a full binary tree with root and every left-child labeled with a and every
right-child labeled with b can be expressed as

a(a� + b�)∞.

However, we still could not get every forest. For example a full binary tree over {a, b, c}
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such that no child has a label equal to the label of its parent is not expressible in the
modified algebra. We also could not find any robust definition of the free algebra.

The question remains whether there is an extension of thin-forest algebra, which re-
sults in an algebra with a finite number of operations, which recognizes a robust class of
languages.

Other effective characterizations

One of effective characterizations presented in this thesis is testing whether a given regular
language of infinite forests is definable by a formula of the temporal logic EF. Basing on
this characterization, ten Cate and Facchini [36] presented a topological characterization
of the logic EF.

A natural idea for future work is finding effective characterizations for other logics. For
instance [12] describes characterizations of logics EX, EF and EF+EX for binary trees.
Since a formula of the logic EX examines a forest up to a finite depth, the characterization
of this logic in case of infinite forests is exactly the same as in case of finite ones. An
interesting open question is to give a characterization for the logic EF+EX.

We tried to characterize the logic AF, in which the operator EF is replaced by the
operator “Always Finally”: AFϕ means that for every path the formula ϕ is satisfied
somewhere on the path. Unfortunately, the similarity between the logics AF and EF
seems to be elusive, and we were not able to find an effective characterization for the logic
AF, even for finite trees. It may be the case that our algebras which use contexts with
only one hole are more suited for checking properties which can be rephrased as a game
between two players who move a single pebble down a forest. This game does not work
for the logic AF.

We also presented effective characterizations for several simple properties of regular
languages of thin forests, like testing commutativity and invariance under bisimulation.
The open question is how to check these properties on regular languages of infinite forests
which are not necessarily thin.

Apart from logics that have been considered for finite trees, there are some interesting
logics for infinite trees, which do not have counterparts for finite trees. An important ex-
ample here is weak monadic second-order logic (WMSO), in which we allow quantification
only over finite sets. In the recent work with Bojańczyk and Skrzypczak [8] we tried to
tackle this problem, and we gave an effective characterization of regular languages of thin
forests which are definable by WMSO formulas when treated as languages of all forests.
The paper also presents some topological properties of thin forests, which show that in
various meanings they are not as rich as all infinite forests.

In the thesis we also showed an effective characterizations of regular languages of thin
forests which are open in the standard topology. This was significantly extended by the
work of Bojańczyk and Place [9], who presented an effective characterization of the regular
languages of (all) infinite forests, which are Boolean combinations of open languages.
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