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A Unified Approach to Opetopic Algebra
We develop an approach to opetopic sets based on algebra, that is monoids

in monoidal categories. These categories naturally assemble into bifibrations, as
do their monoidal structures. Consequently, they form monoidal bifibrations. To
expedite our constructions, we adapt several notions from the theory of ordinary
categories to the relative context, that is the 2-category Cat/S. These include
universal properties, adjoint functors, the theory of monads (including Kleisli and
Eilenberg-Moore objects, monadicity, and distributive laws), and exponential ob-
jects.

The specific structures we work with are signatures. These are sets of function
symbols, with multiple (typed) inputs and a single output. Signatures have natural
monoidal structures given by the formation of formal composites, matching outputs
to inputs. Several different categories are at play, differing in morphisms and
possible extra structure on the function symbols.

The conceptual core of our approach is the notion of a distributivity structure.
It formalizes the idea that some structures, such as trees, can have two indepen-
dent types of inputs, for example leaves and nodes. Following this intuition, we
construct monoidal signatures, which have two different monoidal structures, and
a distributivity structure between them.

Trees can be grafted into leaves of other trees, or substituted for a single node.
These operations commute with each other. This observation forms the basis of
the construction of the web monoid. This functor, mapping monoids to monoids,
is the algebraic device which allows us to construct higher dimensional opetopic
cells from lower dimensional ones, starting with points and arrows. As such it is
instrumental in our definition of opetopic sets. It is abstractly characterized by
a commutativity condition, as that for grafting and substitution, which is stated
using a distributivity structure.

We prove our approach generalizes, or is equivalent to other algebraic ap-
proaches, such as those of Hermida, Makkai and Power, and Kock, Joyal, Batanin
and Mascari. The original approach of Baez and Dolan is also of this form, and
is shown to be incorrect: it is inequivalent to those mentioned, and inconsistent
with its own pictorial intuition.

Finally, we explain the relationship between the structures we use in our work
and equational logic.

2010 AMS Mathematical Subject Classification: 18D10, 18D30, 18D50, 18C05,
18C10, 18C15, 18C20, 03G30

Keywords: Fibration, Monoidal Category, Operad, Opetope, Opetopic Set
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Jednolite Ujęcie Algebry Opetopowej
W pracy rozwijam algebraiczne podejście do zbiorów opetopowych – oparte na
monoidach w kategoriach monoidalnych. Kategorie te pochodzą z naturalnych
birozwłóknień, tak jak ich struktury monoidalne. Aby ułatwić nasze konstruk-
cje, dostosowuję kilka pojęć teorii zwykłych kategorii do kontekstu relatywnego,
tzn. 2-kategorii Cat/S. Wśród nich znajdują się własności uniwersalne, funktory
sprzężone, teoria monad (obiekty Kleisliego i Eilenberga-Moore’a, monadyczność
i prawa dystrybutywności) i obiekty wykładnicze.

Konkretne struktury, których używam, to sygnatury. Są to zbiory symboli funk-
cyjnch z kilkoma (otypowanymi) wejściami, i jednym wyjściem. Sygnatury posia-
dają naturalne struktury monoidalne polegające na tworzeniu formalnych złożeń
symboli, dopasowując wyjścia do wejść. Istnieje kilka kategorii sygnatur, różnią-
cych się morfizmami i dodatkową strukturą na symbolach.

Zasadniczą ideą tego podejścia jest pojęcie struktury dystrybutywności. For-
malizuje ona intuicję, że niektóre struktury, takie jak drzewa, mogą mieć dwa
niezależnie rodzaje wejść – na przykład liście i węzły. Podążając za tą intuicją
konstruujemy sygnatury monoidalne, które mają dwie struktury monoidalne wraz
ze strukturą dystrybutywności między nimi.

Drzewa można zszywać wzdłuż liści i korzeni, ale można również wstawić całe
drzewo za jeden węzeł. Te operacje są przemienne. Ta obserwacja jest podstawą
konstrukcji web monoidu. Ten funktor, z monoidów w monoidy, jest algebraicz-
nym urządzeniem, które pozwala nam skonstruować wyżej wymiarowe opetopowe
komórki z niżej wymiarowych, zaczynając od punktów i strzałek. Jest to podsta-
wa naszej definicji zbiorów opetopowych. Jest on abstrakcyjnie zcharakteryzowany
przez warunek przemienności, podobnym do tego dla zszywania i podstawiania dla
drzew, który wyrażony jest za pomocą struktury dystrybutywności.

Dowodzimy, że nasze podejście uogólnia, lub jest równoważne z innymi po-
dejściami, takimi jak podejście Hermidy, Makkaia i Powera, oraz Kocka, Joyala,
Batanina i Mascariego. Oryginalne podejście Baeza i Dolana też jest tej posta-
ci, i wykazujemy, że jest niepoprawne: nie jest równoważne z powyższymi i jest
sprzeczne z własną rysunkową intuicją.

Na koniec wyjaśniam związek między strukturami użytymi w pracy i logiką
równościową.

Klasyfikacja Tematyczna AMS 2010: 18D10, 18D30, 18D50, 18C05, 18C10,
18C15, 18C20, 03G30

Słowa kluczowe: Kategoria Monoidalna, Operad, Opetop, Rozwłóknienie, Zbiór
Opetopowy
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Introduction

Motivation

Higher Categories In Category Theory

A deep understanding of category theory rests on a simple foundation. It is the
fact that the category of categories1, Cat, is in fact a 2-category. The mere fact
that Cat(−,−) is a 2-functor encodes all of the algebraic properties of natural
transformations that are usually painstakingly proven independently of each other
in the first few lectures of a basic course in category theory.

Algebraic constructions in Cat paint the broad strokes of the landscape of
modern mathematics. Adjunctions provide universal constructions – a fundamen-
tal concept in all of mathematics. Monoids2 define monoidal categories, whose
monoidal products play a central role in many parts of algebra and geometry. Fi-
nally, monads express an intrinsically categorical notion of equipping objects with
extra structure.

Universal constructions in Cat (and related 2-categories) are even more sweep-
ing. The assignment of categories of algebras to monads, presheaves to categories,
the localization of categories, and the consequent Kan extensions are all examples
of operations without which modern mathematics would make little sense.

In short, understanding category theory starts with a 2-category. This pattern
repeats itself indefinitely: to understand the mentioned universal constructions in
Cat properly, one needs to work with 3-categories. In general, the understanding
of n-categories requires knowledge of (n+ 1)-categories. The internal consistency
of category theory demands the development of higher categories.

1We have chosen to ignore the eternal struggle against smallness conditions in the introduc-
tion. Someone should finally propose a serious solution to the semantic paradoxes of naive set
theory. It would not only be a profound philosophical result, but would also provide annoyance-
free foundations of mathematics. In any case, I do not look forward to using ascending chains of
Grothendieck universes.

2More correctly: pseudomonoids.
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Higher Categories In Mathematics
Homological algebra and homotopy theory have left a dominating imprint on the
mathematics of the past century. It is difficult to find a structure that is not
amenable to homotopical methods. This is both surprising and deep. It suggests
an unexpected insight into the very notion of a mathematical structure.

Nothing in the definition of rings, modules, and other classical algebraic struc-
tures suggests their susceptibility to homological algebra. And yet essentially every
structure, not only in algebra, has a homotopical interpretation and classification.
From smooth structures on manifolds, through extensions of Lie algebras and orien-
tations of sphere bundles, to group representations, abelian extensions of number
fields, and the Weil conjectures, nothing escapes the reach of homotopy theory.
Even the Riemann hypothesis would be solved by the existence of a suitable co-
homology theory over F1, the mystical field with one element [D05, Ma95]. These
classifications are effective, allowing proofs of highly nontrivial theorems, which
without these methods seem completely magical. A trivial application of Stokes’
theorem (the coincidence of the homological boundary with the geometrical one)
can be equivalent to an impossibly difficult direct calculation.

Higher categories hold a promise in explaining these phenomena in a uniform
way. The unexpected insight mentioned above is this: mathematical structures
naturally form n-categories, not just categories, and therefore so do all of their
invariants. There are several hints in this direction which we will now discuss.

Natural Categorification

The most interesting spaces are the members of some naturally defined class, such
as manifolds and CW-complexes, but spaces of things, that is moduli spaces. We
will adopt a broad view of what a moduli space can be. The space of curves stud-
ied in the in the brachistochrone problem is the moduli space of smooth curves
in a plane with an action of gravity included. This example shows that calculus
on moduli spaces can be a highly potent tool. Similarly, enumerative problems in
linear algebra can be studied by means of intersection theory on the Grassmannian
Gk(Rn), the space of all linear subspaces in Rn. This is again a form of (homo-
logical!) calculus, since Gk(Rn) is a smooth manifold. Further examples lead to
the theory of characteristic classes and deformation theory (the study of formal
neighborhoods in moduli spaces).

Most of these examples have a common theme: the points of a moduli space
naturally form a category, and not a set. Thus their space should be a category as
well, and indeed the moduli spaces studied in algebraic geometry are stacks, and
not ordinary spaces. Stacks form a 2-category. In trying to construct an invariant
of an object of a category (the space of similar such objects), we have been led to a
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2-category of all possible such invariants. At this point it would be foolish to study
individual stacks in isolation. A complete understanding of stacks includes their
place in the 3-category of 2-categories of stack-like objects. In this perspective,
the idea of studying families instead of individuals is unmistakably categorical.

The categorical demands of geometry are the same as those of category the-
ory. Mathematics requires consistent application of its principles, and if geometric
structures form categories, then their understanding necessarily involves higher
categories. Categorification is not an option, but a necessity. This process is com-
pletely natural: most algebraic geometers have no idea of what a 2-category is,
and yet the study of the moduli space of curves began with Riemann, well before
the concept of a 1-category was even formulated.

We have described one example of natural categorification: the serious study
of geometry leads to higher categorical geometrical structures. Another, simpler
example is given in the next subsection. The concept of natural categorification
should be contrasted with categorification of the ordinary sort. The natural num-
bers can be categorified to the category FinSet, of finite sets and functions. But
this does not happen automatically, and the choice of morphisms in FinSet –
whether they are all functions, or just the bijections – is left undetermined. Par-
ticular circumstances dictate differing solutions in this case.

Homotopy Theory as Higher Groupoids

The profusion of homology and cohomology theories in contemporary use arises
from the fact that every natural invariant of essentially anything (denoted X)
is a linear n-groupoid3, and the homology groups H∗(X) are simply the sets of
equivalence classes of cells in such a groupoid. This stems from a combination
of the globular and simplicial Dold-Kan correspondences [GJ99, BH81], [BHS11,
14.8.1]. The chain complexes that define most of these (co)homology theories are
equivalent to linear higher groupoids. The simplicial objects used in nonlinear
settings should be equivalent to ordinary higher groupoids.

To illustrate this point, and to provide another example of natural categorifi-
cation, consider and abelian category A. In analyzing it, short exact sequences

0 −→ A −→ B −→ C −→ 0

are of critical importance. According to the correspondences mentioned above,
these are the 2-groupoids in A in which every 1-automorphism is uniquely isomor-
phic to the identity. That there are plenty different such 2-groupoids for a fixed
C ∈ A (which represents the objects of the groupoid) should not be surprising. For

3More precisely: an n-groupoid internal to the category of abelian groups, or some other
abelian category.
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example, in the logic of Ab(Sh(X)), the categories of sheaves of abelian groups on
some topological space X, existence and uniqueness mean something very different
than in Set.

Trying to understand the 1-category A we were immediately led to a 3-category
of certain 2-groupoids in A. The higher cells correspond to chain homotopies,
homotopies of homotopies, and so on. Natural categorification is again at work.
Note that exact sequences, like moduli spaces, were discovered long before higher
categories.

In this interpretation the derived categories D(X), and homotopy categories
Ho(X) would correspond to the categories of linear higher groupoids, and plain
higher groupoids in X, respectively. Their extra structure (triangulation, en-
hancement, etc.), which has proven so intractable, would be explained by the fact
that they are themselves higher categories of higher groupoids, not just ordinary
1-categories.

In short, abstract homotopy theory should be the study of (internal) higher
groupoids and (internal) higher categories associated to these groupoids. The
most concrete expression of this suggestion is the homotopy hypothesis. It asserts
that the homotopy groupoid functor

Π: Top→ ωGpd,

from topological spaces and all higher homotopies to ω-groupoids, is an ω-equivalence,
which restricts to an n-equivalence for every n ∈ N.

The homotopy hypothesis, if true, is staggeringly powerful. Form it follow
universal properties of the groupoids Πn+k(S

k) which allow almost trivial calcula-
tions of the homotopy groups such as π3(S2) and π4(S

3), not to mention πi(S
n)

for i ≤ n.
Implicit in this picture is the fact that extracting the homotopy n-type of a

topological space amounts to a simple truncation of the ω-category Top. There
is no need to inductively add cells to kill higher homotopy groups. Everything is
taken care of by the formalism. The cellular approximation theorem, which states
that every map of CW-complexes is homotopic to a cellular map, follows from the
mere fact that the truncations of Π to lower dimensions are well defined. Other
constructions, such as Postnikov towers, are similarly simplified.

This (speculative) directness and applicability of higher categories cannot be
matched by the old formalism, which in this light appears as a clumsy veil.

Space as Algebra in Higher Categories

Our last hint is the emergence of ordinary spaces from the algebra of higher cat-
egories. The last example did this for topological spaces: they are simply the
higher groupoids. This inseparably included homotopy theory into our notion of
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spaces. There are other examples, which do not include homotopical data. One
such example is the tangle hypothesis [BD95]. It asserts that the n-category of
framed n-tangles in n+k dimensions is (n+k)-equivalent to the free weak k-tuply
monoidal n-category with duals on one object.

This means that the cells of an n-category, which is the solution to a certain
specific universal problem, are naturally identified with framed smooth manifolds.
Space appears as a natural consequence of algebraic structures (monoidal struc-
tures and duality) in higher categories.

This hypothesis has special applications in physics, and has the effect of bring-
ing the so-called defects in quantum field theory [Ka] to center stage. The impor-
tance of defects has recently been recognized by the physicists themselves [Mo14].
The defect of a point should, according to the TQFT hypothesis [BD95], com-
pletely determine a quantum field theory with no local degrees of freedom.

The Necessity of Weakness and the Problem of Coherence
Conditions
Given the transformative nature of the picture of mathematics sketched above, one
may wonder why mathematicians have not rushed into this paradise, never to leave
again. The flaming sword guarding the gates of heaven is called the problem of
coherence conditions, and no good progress on it has been made since, essentially,
forever.

The problem arises from the fact that isomorphism, when taken seriously, is a
very different concept from equality. Equalities hold, while isomorphisms need to
be specified. The details of such specifications, as it happens, matter a lot.

What is easy to construct is the theory of strict higher categories, where com-
position is associative strictly (i.e. we have an equality) at all levels. But even in
the construction of the fundamental group π1(X) one faces the problem that the
concatenation of parametrized paths is not strictly associative. In that instance,
passing to equivalence classes solves the problem. But the general problem re-
mains, and is real: the 4-category of strict 3-groupoids is not equivalent to the
4-category of homotopy 3-types. Thus the homotopy hypothesis is false for strict
higher categories.

A parallel problem, but perhaps not as sharply stated, plays itself out in pure
category theory. Universal properties define functors only with suitably strong
choice principles, allowing us to choose solutions for each instance of the problem.
The solutions to iterated universal properties, the sort of which arise in higher
categories (e.g. freely adding finite limits to a 1-category), therefore behave anal-
ogously to concatenated paths – each choice of parametrization requires further
choices, or passing to equivalence classes (the choice of a category, and then for
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each finite diagram, the choice of its limit). The latter option is not tenable,
since it leads to strictness and, as we have seen above, to the loss of structural
information.

The appropriate setting for higher categorical mathematics is that of weak
higher categories. In these structures, composition is not strictly associative, but
only up to equivalence. Thus, composition of 1-cells in a weak 2-category is as-
sociative up to isomorphism, but composition of 1-cells in a weak 3-category is
associative only up to equivalence. These associativity isomorphisms and equiv-
alences satisfy equations and isomorphisms of their own, respectively, and so on:
one additional level of conditions appears for each dimension added.

Specifying these coherence conditions is problematic. Even the coherence
conditions for a strong monoidal category – which is the same thing as a weak
2-category with a single 0-cell – are usually omitted in non-categorical literature.
This is not an option for higher dimensions, since these conditions encode crucial
homotopical data, which would otherwise be lost.

The definition of a 1-category can be crammed into a couple of lines. The defi-
nition of a weak 2-category takes a page, with functors and natural transformations
taking several more. The complete definition of a weak 3-category takes 4 pages
[G07], and a definition of a weak 4-category based on associahedra takes a comical
and tragic 51 pages [T06], not including functors or natural transformations.

There is simply no way such explicit definitions can ever enter the practice
of mainstream mathematics, barring an essential reliance on computers. These
coherence conditions, even the unknown ones in 42 dimensions, must be packaged
into a compact and practical definition. This is the challenge of higher category
theory.

The Dialectic Solution: Opetopes and Opetopic Sets
There are many proposed solutions to the problem of coherence conditions in the
literature, and as of today none of them are in working order. We will describe,
in the author’s opinion, the most elegant and promising solution to this problem.
It is important to keep in mind that this solution is speculative at this point in
time, and not guaranteed to work out. There are several serious problems with
the published and unpublished proposals in this style.

The central idea is to keep the coherence conditions implicit, and define com-
position by a universal property. This property should be flexible enough to allow
a dialectic approach to coherence conditions: every condition can be derived as
needed, on the spot. Coherence questions are answered as they arise, and no a
priori list of conditions needs to be maintained. Everything is done through the
universal property. The process of checking coherence conditions has the form of
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a game, and the universal property states that we have a winning strategy. Hence
we have called this solution “dialectic”.

Thus we are led to wonder how to define the composite of · f−→ · g−→ ·. It
should be some 1-cell, which we will predictably call g ◦ f . We will by no means
require that this arrow is unique. We will only specify what universal property
it should have. The proposals which have appeared in the literature usually have
the following form: in every possible context in which · f−→ · g−→ · is present, we
can exchange it for · g◦f−−→ ·. Thus our game has the following form: the opposing
player challenges us with contexts containing our composable arrows, and we must
respond with contexts in which these arrows are replaced with our candidate for
their composition. The universal property dictates our answers, and maintains
their consistency.

We will not solve the problem of what a “possible context” is here. The avail-
able proposals: [BD98] and the unpublished work [M04], do not seem to have
ironed out all the difficulties with this notion, as it relates to implementing uni-
versal properties describing composition. Intuitively speaking, a context in higher
category theory is a diagram of cells – since that is the only thing categories are
capable of describing. Below we will try to convey some intuition about how the
proposal of [M04] is meant to function.

First, note that commutativity in higher dimensions is rather more complicated
than in ordinary categories. The commutativity of

f

g

means that f = g, while the commutativity of

f

g

α

means essentially nothing.
Despite this vagueness, let us press on. Our definition should assert the equiv-

alence of this diagram

g ◦ f

h

α
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with some diagram of the form

f g

h

α′

To continue our parallel with games, when presented with the latter diagram, we
must find some answer with the shape of the former diagram. We are allowed to
change α to α′, but h must be kept fixed. The complete rules laid out in [M04]
are complicated, and we will not elaborate on them here.

This diagram makes sense in the context of computads, and is the result of
simply replacing · g◦f−−→ · with · f−→ · g−→ ·. This is a paradigmatic opetopic
shape, and it immediately makes clear that globular cells are not enough to express
composition through a universal property of the kind we have been describing.

The existence of identities necessitates the inclusion of such curious looking
shapes as

Associativity of such compositions would then correspond to our ability to
manipulate the diagram

in the two obvious ways, iteratively composing pairs of cells, and obtaining shapes
like

which can then be composed down to a single cell.
To discuss the combatibility of these two procedures, consider the identity cell

g ◦ f

g ◦ f

1

14



It should correspond to a cell

f g

g ◦ f

u

which would in some sense be an equivalence. Cells obtained this way are called
universal cells. These are the cells out of which the coherence conditions would be
built. For example, we could perform the following two manipulations:

f
g

g ◦ f
g ◦ f

1 f
g
u

f
g g

1 f
g
u

g

u′

the first of which shows that every cell factors through the universal composite,
and the second one shows that the composition of the factorization is the original
cell. Similar universal 3-cells (and their factorization properties) obtained from
the different ways of composing three arrows would be the coherence conditions
ensuring the associativity of composition.

As the reader can see, coherence conditions are derived objects in the opetopic
approach, and as long as we can manipulate contexts, as above, they do not need
to be mentioned.

Care must be taken with replacing single shapes with composites of cells. One
may arrive at pictures of the following sort

which do not correspond to any shapes at all. More formally, the computads
including such cells do not form a presheaf category [MZ08]. The simplest way
to stay in the realm of presheaf categories is to restrict our ability to replace cells
only to the domains of other cells. We thus declare that opetopes must have as
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codomains only single cells, and not composites. Opetopes with the “obvious” face
maps (there are no degeneracies) form a category, just like simplices. Presheaves
on this category are called opetopic sets.

The required definition of weak n-category, would be that of an opetopic set in
which every composable diagram has a composite in the sense of the equivalence
of all their contexts. Some of these contexts for g ◦ f and · f−→ · g−→ · have been
illustrated above. At the moment it is not clear if the proposals of [BD98] and
[M04] are suitable for this purpose.

This Work

The Algebraic Approaches
In this thesis we focus our attention on the algebraic approaches to opetopic sets.
These are the ones in which the replacement operation

is implemented by a monoid in a monoidal category. This includes the original
approach of [BD98], as well as that of [KJBM10], and [HMP02]. Our own approach
is also of this general form.

These types of definitions rely on the fact that free monoids in certain monoidal
categories (such as signatures, polynomial functors, etc.) consist of tree-like struc-
tures, with composition being grafting families trees by their roots into the leaves
of a single tree.

In such a situation there is another composition operation on the free monoid:
replacing a node in a tree with a whole tree, whose leaves are matched to the
children of the node. This is essentially what happens in the “operad of operads”
defined by Baez and Dolan [BD98], and what is explicitly sought in the definition
of the “multicategory of function replacement” of Hermida, Makkai, and Power
[HMP02]. The same thing happens in [KJBM10] and our approach, the web
monoid.

Defining this operation is usually very difficult. The complete proof of the
central theorem 14 in [BD98], provided for the first time in this thesis (theorem
6.2.7), is rather complicated, and draws heavily on all the results we establish up
to that point. The multicategory of function replacement likewise takes an entire
part of the [HMP02] paper, and is filled with interesting ideas, many of which we
adopt in our own arguments. The polynomial functor approach [KJBM10] uses
the results of the book [Le04].
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The web monoid is no exception. The proof of the abstract three tensors
theorem 4.1.1, takes about 12 pages. Some more setup is necessary to see that
it can be applied to our concrete situation. This is the main difference between
our approach and all the others. We formalize the idea of an additional operation
on the free monoid, and explicitly use an additional monoidal structure to turn it
into a monoid. This allows us to abstractly characterize the common features of
all the specific structures used in the algebraic approaches.

This forms the basis of our comparison theorems, presented in chapter 6. The
abstract concepts needed to define the web monoid result in a monoidal property
of the natural action of the category in which the web monoid is defined (theorem
3.4.1). Surprisingly, all three of our comparisons follow from this (and some details
specific to each approach, of course). Our abstract approach bears fruit this way:
without the concepts we introduce to define the web monoid, theorem 3.4.1 could
not be proven, and the comparisons would remain opaque.

Definitions of Opetopic Sets and Their Uniqueness
The quickest (and least informative) definition of opetopic sets is that they are
the many-to-one computads [HMZ08]. This means they are levelwise free strict
n-categories, whose cells always have exactly one generator in their codomain, and
an arbitrary cell (a formal composite of generators, including the empty composite)
in their domain. It is a nontrivial fact that this category is a presheaf category.
This exponent category is by definition the category of opetopes.

That this definition is correct and unique is part of an ongoing project, to which
this thesis contributes. There are plenty of definitions of opetopic sets, and many
are known to be equivalent. Adding to this knowledge, we prove the following
things: the informal pictures in [BD98], which started the whole subject, and
which can be formalized into mathematical structures (as is done in [KJBM10]),
do not, unfortunately, correspond to the structures presented in that paper4. They
do, however, correspond to our definition, which we prove to be equivalent to that
of Hermida, Makkai, and Power [HMP02].

That definition, in turn, is known to be equivalent to the computad definition
[HMZ08]. From there, many other equivalences are available, which we will not
review.

We also provide a construction of the category of opetopes, different and less
combinatorially involved, than the one presented in [HMP02]. Our construction
uses Artin gluing and standard category theory. It is not completely explicit, but
nonetheless affords us considerable leverage over the category of opetopes.

4Along the way we must also prove that the technical problems in [BD98] can be fixed, so
that this statement has content.
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Together these results suggest that the computad definition, and the ones equiv-
alent to it, are the unique correct formalization of the fundamental ideas of [BD98].

Contents of This Thesis
Each chapter contains an introduction designed to guide the reader through its
contents with minimal effort. They are not to be skipped. These individual intro-
ductions also tie the chapters into a single narrative from a technical perspective
(as opposed to a conceptual one, which is the role of this introduction).

In chapter 1 we adapt category theory to the relative setting, which will be used
troughout the text. Fibrations and opfibrations play an important role, but their
morphisms are immaterial, and must be discarded in favor of fibered functors.
Without this modification none of the following chapters could function.

Next we review (or rather adapt) the construction of free monoids in monoidal
fibrations certain nice properties. This is fundamental to all subsequent results,
since we will rely on the fact that this construction is the same in all the contexts
in which we will work.

At the end of the chapter we define the notion of a distributivity structure. It
is required to define the web monoid in chapter 4, and forms the conceptual basis
for all our comparison theorems in chapter 6.

In chapter 2 we define the main concrete actors of the whole affair – the various
species of signatures5. The ordinary signatures and their symmetric counterparts
are well known. To this we add signatures with nonstandard amalgamation, a
notion suggested by the structures used in [HMP02], which are essentially the
symmetric signatures with free symmetric actions (although this is an extremely
poor way to think of them), and monoidal signatures with amalgamation.

This latter category is the one which carries an obvious distributivity structure,
and allows us to instantiate the abstract web monoid construction, for use in the
construction of opetopic sets in chapter 5.

We provide all our signatures with monoidal structures and actions. This is
the main technical content of this chapter. We spend the most effort constructing
the second monoidal structure on monoidal signatures, which in turn allows the
definition of the mentioned distributivity structure.

Monoids for these monoidal structures range from the well known to the ob-
scure. Monoids in ordinary signatures are Lambek’s multicategories. Monoids in
symmetric signatures are symmetric multicategories, also known as typed sym-
metric operads. Monoids in signatures with nonstandard amalgamation are the

5According to theorem 2.6.2 this is a pun cf. [Jo86].
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(one level version of) multicategories with nonstandard amalgamation introduced
in [HMP02]. Monoids in monoidal signatures for the first monoidal structure (the
vertical structure) are multicategories with nonstandard amalgamation whose ob-
jects are the morphisms of another multicategory with nonstandard amalgamation.
Monoids for the second, horizontal, structure remain nameless.

The actions of signatures lead to their well known interpretation as polyno-
mial and analytic endofunctors. This identification is monoidal, and identifies
the various multicategories as analytic and polynomial monads. We review this
equivalence, but refer for the details to [Z10].

At the end of the chapter we review the categorical properties of signatures
needed in the other chapters.

In chapter 3 we study the non-categorical properties of signatures needed in the
later chapters. We provide tools for working with signatures with nonstandard
amalgamation without excessively comparing permutations. This saves a lot of
work, since these permutations are often unmanageably complicated.

In the last two sections we discuss an alternative description of the category
U∗Set·→·. It is critical for our later work, specifically the comparison theorems of
chapter 6. The constructions of these sections are based on the original construc-
tion of monoidal signatures, and provide some insight into their structure.

The end result of this work is theorem 3.4.1 and its corollary 3.4.2, which plays
a central role in chapter 6.

In chapter 4 we define and construct the abstract web monoid. The proof of its
existence is constructive, and split into a conceptual and technical part, for the
reader’s convenience. The instantiation of the web monoid in monoidal signatures
is obvious at this point, since all the requisite structures and properties are already
in place.

We provide an example showing that the complexity of signatures with non-
standard amalgamation is necessary if we are to capture the intuitions of [BD98].
This statement is made particularly sharp in the context of the results of chapter
6.

At the end of the chapter we prove some “combinatorial” theorems (they actu-
ally replace the combinatorics present in [HMP02]). They are used to prove that
the opetopic sets, defined in the next chapter, form a presheaf category.

In chapter 5 we define and study the opetopic sets. The definition we give is
intended to clarify the somewhat digressive style of [BD98].

Using this definition, the theory of Artin gluing, and the combinatorial theo-
rems of chapter 4 we prove that the category of opetopic sets (and related categories
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of O-opetopic sets) form a presheaf category.
This argument, in turn, allows us enough insight into the limits and colimits

in opetopic sets to explicitly construct the exponent category. We note some of its
basic properties, for use in the comparison theorems, specifically in section 6.3.

In chapter 6 we prove our comparison theorems. This chapter uses essentially all
of the material of the previous chapters, and relies on the notion of a distributivity
structure, as used in theorem 3.4.1, to make progress.

The end results are as follows: the categories of opetopes and multitopes are
isomorphic, as are the categories of opetopic and multitopic sets. The monads
used in [KJBM10] to define opetopes can be reproduced by the web monoid in
such a way that the pictorial formalism of [KJBM10] applies to our opetopes, and
therefore the multitopes.

The original approach of Baez and Dolan is, unfortunately, not equivalent to
these. We sketch this negative result after showing that the entire formalism of
[BD98] can be rigorously established. This is not obvious, as we point out several
technical problems with the original arguments. Our fixes are rather involved and
rely, again, on almost all the previous material. The main obstruction standing
in the way of equivalence is this: the sets of function symbols of a signature with
nonstandard amalgamation, and the associated symmetric signature, are different,
even though they define the same polynomial functor. Confusion between these
sets led to the problems in the original paper.

In chapter 7 we discuss the relation to logic. We review the equivalence of
(untyped) operads, finitary monads, Lawvere theories, and equational theories.

We then show how exactly these equivalences restrict to various subcategories.
Many of these subcategories are most naturally defined in one of the mentioned
approaches. Thus, operads come in flavors, such as symmetric, or freely symmetric,
and we describe the corresponding categories of Lawvere and equational theories.
Some of the more obscure comparisons, which require defining new variants of
operads, are left to other sources [SZ].

Some of these equivalences are well known, but our uniform approach, espe-
cially the use of factorization systems in Lawvere theories, is new. Among the new
results is a characterization of the equational theories corresponding to polynomial
monads cf. [CJ04]. We also obtain a series of monadicity results, which are me-
diated by the existence of a certain monoidal monad. This gives a distributivity
law, analogous to the combing distributive law used to construct the operad of
operads (corollary 6.2.5). This is what gives monadicity. We provide a formula for
one inductive step of this law, without proof.

We end the chapter by giving some examples. In particular, the existence of
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the operad of operads (and its relatives) implies that the associated (multisorted)
equational theory has as its models other equational theories.

Some of the content of this thesis has already been published. Most of chapters
2, 3 and 4, as well as section 6.1, was first published in [SZ13]. Chapter 5 and the
rest of chapter 6 are the subject of a forthcoming paper. The content of chapter 7
was first published as [SZ].

Notation

Categories, Functors and Fibers
• Concrete categories and 2-categories, such as Set or Cat will be denoted in

boldface font.

• C,D, . . . are abstract categories

• E ,F , . . . are abstract domain categories of functors (usually fibrations or
bifibrations) p : E → S

• S is an abstract base (codomain) category for objects of the slice fibrations
and bifibrations (more generally for objects of Cat/S)

• E/O, where O ∈ S is the fiber of the abstract fibration of bifibration (or just
functor) p : E → S.

• If X ∈ C, then C/X is the usual slice, as defined in [CWM98]. Thus (E/O)/X
is the slice category of a fiber, not an iterated slice.

Lists
• An abstract index i on some symbol, e.g. ai should be expanded to its im-

plicit range, which will always be determined by the context. Thus ai is a
shorthand for

a1, a2, . . . , an,

for some n ∈ N, determined by the object a.

• Double indices (i, j) are ordered lexicographically. Thus ai,j is a shorthand
for

a1,1, a1,2, . . . , a1,n1 , a2,1, a2,2, . . . a2,n2 , . . . , ak,nk
,

where k and ni ∈ N are determined by a. Note that for every specific i the
second index j is allowed to have a different range.
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• Longer indices are handled analogously.

Other Notation
• [n] = {0, . . . , n}

• (n] = {1, . . . , n}. This set carries a natural action of Sn, the n’th symmetric
group. This action extends to [n] by leaving 0 fixed.

• If O ∈ Set, then O∗ =
⋃
n∈NO

(n] – finite lists with values in O.

• Similarly O† =
⋃
n∈NO

[n] – finite lists with values in O, with a chosen first
element. We have a canonical isomorphism O† = O ×O∗.
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Chapter 1

The Setting

In this chapter we set the stage for all further constructions. Accordingly its
contents are rather varied – we must adapt a sizeable part of standard category
theory to the relative setting, i.e. to the slice 2-categories Cat/S. For this reason
we assume mastery of (not just mere familiarity with) the material in [CWM98].

The adapted elements include universal properties (including limits/colimits
and adjoint functors), the general theory of monads, including the monadicity
theorems and distributive laws, as well as relative monoidal categories.

Throughout our work, it will become clear that the property of being a fibra-
tion or opfibration (the basics of which are briefly recalled below) is a regularity
condition enabling our adaptations to take place, and not a specification of a new
fundamental 2-category. The crucial point is to allow morphisms to not preserve
the prone and supine arrows. This allows the necessary constructions mentioned
above to function in Cat/S, where all our examples live. Very few of our later
constructions would work correctly if they were carried out in 2-categories whose
1-cells preserve the prone or supine arrows.

Thus fibrations and opfibrations are nice objects in the categories Cat/S, but
not things which belong to their own 2-category.

At the end of this chapter, after discussing exponentiation in Cat/S, we discuss
a notion first introduced in [SZ13]: that of a distributivity structure. It formalizes
the following intuition: trees can be considered as function symbols having two
independent kinds of inputs. The first kind corresponds to leaves of the tree,
with the natural composition operation using these inputs being grafting. This
kind of composability is described by a monoidal structure (the substitution tensor
product cf. e.g. [FGHW08]), and composition is described by a monoid structure on
the set of trees. It leads to well known descriptions of free operads, multicategories
or (certain) equational theories, all of which will be relevant in the later chapters.

The second kinds of inputs correspond to the nodes of the tree, with the natural
operation being the replacement of a node with an entire tree. This is the basis
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for all of the algebraic constructs used in the construction of opetopic sets ([BD98,
HMP02, SZ13, KJBM10]). This is also described by a monoidal structure, whose
monoids (at least those which we will be considering) usually describe passage to
the meta-level constructions1, as was explicitly intended in [BD98].

The independence of these two kinds of inputs means that, when forming terms,
or formal composites, of function symbols using both kinds of inputs, the order is
immaterial. Thus if � describes (formal) grafting, and ⊗ describes (formal) node
replacement, then we expect an isomorphism

(A⊗ C)� (B ⊗ C) ϕ−→ (A�B)⊗ C,

since we may first formally graft A and B terms, and then formally substitute
terms from C (as is done on the right side of the isomorphism), or first formally
substitute, and then formally graft (as is done on the left side).

This is the essence of a distributivity structure, and it is formalized by requiring
the functor (−) ⊗ C to be �-monoidal. The isomorphism displayed above is just
part of this monoidal structure. Further coherence conditions which we require
are nicely packaged by a lifting condition to a naturally defined functor category.

We end this chapter by providing a theorem which characterizes distributiv-
ity structures in terms of extra data and coherence conditions, and allows us to
construct distributivity structures in practice.

1.1 The Relevant 2-categories

1.1.1 Reminders on 2-categories
We will never work with abstract 2-categories, only specific ones, as our needs
dictate. This subsection is therefore dedicated to fixing conventions.

Our notion of 2-category is the usual one, presented in [CWM98]. It coincides
with the notion of Cat-enriched categories [Ke82]. Strictly speaking, this means
there is an isomorphism of the associated 3-categories. In particular, Cat-enriched
functors are 2-functors. For a brief overview of strict n-categories, including the
mentioned isomorphism, see [Le04, chapter 1].

Universal properties. We will use limits in 2-categories, in particular products
and pullbacks. It is easiest to define them as being Cat-enriched limits [Ke82,
chapter 3]. This means that in the usual definition of a limiting cone for a functor
F : I → A [CWM98, III.4] (a 2-functor between 2-categories in our case) the arrow

A(x, lim←−F )
'−→ Cone(x, F ) = Nat(∆x, F ),

1See, for example, the first point in section 7.6.

24



is not just a natural bijection, but a natural isomorphism of categories. In 2-categorical
language, such limits are called strict 2-limits. Note that the ordinary limit-style
constructions in Cat, such as the product of categories, are in fact limits of this
type. All the 2-categorical limits in this work are of this type, unless explicitly
stated otherwise.

Set-theoretic assumptions. We postulate two Grothendieck universes U1, U2,
such that U1 ∈ U2. We let Set be the category of sets in U1 and Cat be the
2-category of categories in U2. Therefore we may write Set ∈ Cat. We shall
suppress the Ui from notation. All required notions of smallness will be clear from
their context. All the results about specific categories in this work may be proven
without recourse to Grothendieck universes. Doing so, however, would result in a
complete loss of conceptual clarity.

1.1.2 Recollections on Fibrations and Opfibrations
Definition 1.1.1. A functor p : E → S is a fibration if the following condition is
satisfied: for any u : Q→ O ∈ S and Y ∈ E there exists an arrow φ : X → Y over
u (i.e. p(φ) = u), such that for any θ and v as in the diagram below there exists a
unique ψ over v satisfying θ = φ ◦ ψ.

Z

X Y

K

Q O

∃!ψ

p

θ

φ

u ◦ v
v

u

Definition 1.1.2. Any arrow φ satisfying the above definition for fixed u and Y
is called a prone arrow over u with codomain Y .

By their universality properties prone arrows are unique up to unique isomor-
phism (mapping to an identity under p). For this reason one sometimes writes
X = u∗Y .

Remark 1.1.3. Because of the universality properties of prone maps the operation
Y 7→ u∗Y extends to a functor E/O → E/Q, called the reindexing functor.
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Example. Let C be a category with pullbacks. Then the codomain functor
C·→· → C is a fibration. The prone arrows are given by projections from the
pullback X = Y ×I J → Y . This is another reason for the notation X = u∗Y –
frequently this means that X is the pullback of Y along u.

To appreciate how general this example is, consider the fact that bounded ge-
ometric morphisms of toposes have pullbacks along all other geometric morphisms
(this is a paraphrase of B.3.3.6 of [J02]). Thus the restriction to bounded maps
BTop→ Top of the codomain functor Top·→· → Top is a fibration.

Thinking of toposes as generalized spaces, this generalizes (at least for sober
spaces) the fact that the codomain functor for topological spaces Spc·→· → Spc
is a fibration, since topological spaces have all pullbacks.

One may now add algebraic structures to these toposes (either to just the
domain or also the codomain), such as rings, modules, groups and their actions.
It is easy to check that this will still result in a fibration. Restricting it to suitable
subcategories of sheaf toposes, one obtains all the usual structures in mathematics
that allow “base change”: (sober) fiber bundles, vector bundles, principal bundles,
sheaves (possibly of modules or algebras), over all the common types of spaces
(sober spaces, various kinds of manifolds2, schemes, etc.).

Definition 1.1.4. A functor p : E → S is called an opfibration if pop is a fibration.

The analogs of prone morphisms in opfibrations are called supine morphisms.

Remark 1.1.5. The analogues of reindexing functors for opfibrations are denoted
by u∗, and sometimes called coreindexing functors.

Example. The codomain functor C·→· → C is always an opfibration. The cor-
eindexing of f : X → O along u : O → Q is just u ◦ f : X → Q.

Definition 1.1.6. A functor p : E → S is called a bifibration if it is both a fibration
and an opfibration.

We record the following well known and easy fact:

Proposition 1.1.7. The pullback in Cat of a fibration or opfibration is a fibration
or opfibration, respectively.

1.1.3 Base Change
We will need to change the base category along a functor S ′ → S. For this recall
the following elementary facts:

2Described by an appropriate sheaf of rings. This includes supermanifolds and similar objects.
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Proposition 1.1.8. The 2-category Cat has small strict 2-limits and 2-colimits.

Proof. Since the 2-category structure of Cat comes from the canonical enrichment
given by its cartesian closedness as a 1-category, the claim follows from being
small Cat-complete and cocomplete. This in turn follows from completeness and
cocompleteness as a 1-category, and sections 2.2, 3.1 and 3.10 in [Ke80].

Corollary 1.1.9. The codomain 2-functor Cat·→· → Cat, when considered as a
functor of ordinary categories3, is a fibration.

In the definition below, we similarly consider strict 2-functors as plain 1-functors.

Definition 1.1.10.

• The fibration of fibrations, Fib→ Cat is the subfibration of Cat·→· → Cat,
whose 0-cells consist of fibrations.

• The fibration of bifibrations, BF→ Cat is the subfibration of Cat·→· → Cat,
whose 0-cells consist of bifibrations.

• The 2-category of fibrations over S ∈ Cat is Fib/S, the fiber of Fib over S.

• The 2-category of bifibrations over S ∈ Cat is BF/S, the fiber of BF over
S.

Since Cat has finite limits, and (op)fibrations are stable under pullback, we
have:

Corollary 1.1.11. The 2-categories Fib/S and BF/S have finite products.

Since the fibration property of Cat·→· → Cat comes from pullbacks in Cat,
and these same pullbacks give products in Fib/S and BF/S, we obtain:

Corollary 1.1.12 (Pullbacks Preserve Algebra). Let F : S ′ → S be a functor. The
operation E 7→ F ∗E, of pulling back along F is a 2-functor F ∗ : Fib/S → Fib/S ′,
which preserves finite products. The same statement is true for the 2-categories
BF/S.

3This is possible due to strictness.
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1.2 Universal Properties in Fibrations
The following theorem is the basis for extending colimit/left adjoint type construc-
tions from the fibers of a fibration to the whole thing. Its dual applies to limit
type constructions in opfibrations.

Theorem 1.2.1. Consider U : E → F , a morphism of fibrations over S. Let
X ∈ F/O. Then a vertical arrow X → U(M) is universal from X to U if and
only if it is universal from X to the restriction of U to E/O.

Proof. Using prone morphisms we can reduce morphisms between fibers to mor-
phisms in the fiber over O, where we assumed universality. The other implication
is trivial.

To discuss fibered colimits, we must introduce the appropriate notion of a di-
agram. We will consider only the simplest form of diagrams, that is those whose
shape remains constant from fiber to fiber. Such diagrams will suffice for all our
needs. The reader may investigate more complicated diagrams using the exponen-
tial objects defined in section 1.6. The following definition was given in [St08].

Definition 1.2.2. The fibration of diagrams of type D ∈ Cat is the pullback of
ED → SD along the constant diagram functor ∆S : S → SD.

Given this, ∆E : E → ED factors into a morphism E → ∆∗
SED over S, which we

will still call the constant diagram functor, followed by the canonical projection.
A fibered colimit of an object F of such a fibration is a vertical universal arrow
from F to the constant diagram functor ∆E (considered over S), as usual.

Corollary 1.2.3.

1. If the fibration E → S has a type of colimit (e.g. coproducts, pushouts, filtered
colimits) fiberwise, then it has the fibered version of this type of colimit.

2. If a fibration has a type of colimit fiberwise, then taking the colimit extends
to a fibered functor on the fibration of diagrams of the given type.

Proof. The needed universal property follows immediately from theorem 1.2.1,
since the constant diagram functor E → ∆∗

SED (again, considered over S) preserves
prone morphisms. The second statement is a formal consequence of the first.

Note that the condition in this corollary refers only to fibers. It is therefore
stable under pullback. Thus existence of fibered colimits is stable under pullback.

Another immediate corollary of theorem 1.2.1 is a characterization of adjoint-
ness in fibrations.
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Corollary 1.2.4. If U : E → F is a morphism of fibrations which has an adjoint
pointwise in every fiber, then U has a left adjoint in Cat/S.

Proof. By theorem 1.2.1 the usual formula, using representability or universal
properties, for extending the values F (X) of a left adjoint to a functor can be
used, and results in a fibered functor.

1.3 Fibered Monads and Their Algebras
Monads can be defined in any 2-category [CWM98]. In particular they can be
defined in Cat/S and its various sub-2-categories. We are interested in the exis-
tence of Kleisli and Eilenberg-Moore objects for such monads, and the analog of
the monadicity theorem.

Let T : E → E be a monad in Cat/S. Note that T restricts to a monad on
every fiber E/O, for O ∈ S. This suggests the following guess at the definition of
Eilenberg-Moore and Kleisli objects in Cat/S.

Definition 1.3.1.

1. The Eilenberg-Moore object for T , ET is defined as follows: objects of the
category ET are all the objects of the ordinary Eilenberg-Moore categories
(E/O)T . Morphisms in ET are the morphisms in E, which make the diagrams
for a homomorphism of algebras commute. Composition is inherited from E.
The projection ET → S is likewise inherited from E, ignoring the extra data
of the algebra structures.

2. The Kleisli object for T , ET is defined as follows: objects of the category ET
are all the objects of the ordinary Kleisli categories (E/O)T . Morphisms in
ET are defined as ET (X,Y ) = E(X,T (Y )), with composition defined as in
ordinary Kleisli categories (again, using composition in E). The projection
map ET → S is inherited from E.

Alternatively, one may define ET as the essential image of the free algebra
functor E → ET . This provides a more “concrete” construction of ET , but in
practice the above definition is necessary to perform calculations. It will be used
extensively in the following chapters.

Remark 1.3.2. Beck’s theory of distributive laws [Be69] immediately adapts to
our setting. Due to our definitions, all the calculations required to establish this
theory can be copied verbatim from the original work.

The above definitions are justified only in light of fulfilling the defining prop-
erties of Eilenberg-Moore and Kleisli objects.
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Proposition 1.3.3. With the above definitions, ET is an Eilenberg-Moore object
for T in Cat/S and ET is a Kleisli object for T in Cat/S.

Proof. The required representability property for the Eilenberg-Moore object:

Cat/S(F , ET ) ' Cat/S(F , E)Cat/S(F ,T ),

is easily verified directly, just like in the case of ordinary categories. Here Cat/S(F , T )
is the induced monad on the hom-categories. The same is true for the representabil-
ity property of the Kleisli object:

Cat/S(ET ,F) ' Cat/S(E ,F)Cat/S(T,F)

Due to our choices of 1- and 2-cells, ET is also an Eilenberg-Moore object in
Fib/S and BF/S, since the same isomorphism restricts to those 2-categories. The
same remark applies to ET .

Proposition 1.3.4.

1. If E is a fibration, then so is ET .

2. If E is an opfibration, then so is ET .

3. If T is a morphism of fibrations, then ET is a fibration.

4. If T is a morphism of opfibrations, then ET is an opfibration.

Proof. We construct the required maps, and leave checking their properties to the
reader.

Ad 1. Consider the diagram:

T (u∗X)

u∗T (X) T (X)

u∗X X

Q O

T (φX)

φT (X)

φX

u

∃!

α′

αu∗α
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We start with an algebra α : T (X)→ X overO ∈ S. Given u, as in the diagram, we
form the reindexing functor u∗ and the associated prone arrows φ(−). To construct
the required algebra structure on u∗X, we consider T (φX), and note that it factors
through φT (X), by the latter’s universal property and the fact that T is fibered.
The composite α′ = ∃! ◦ u∗α is easily seen to be a T -algebra structure on u∗X.
The required prone map in ET consists of φX and T (φX).

Ad 2. We start with X ∈ ET over Q ∈ S, and Y over O. We compute the
morphisms in ET over u : Q→ O:

ET/u(X,Y ) = E/u(X,T (Y )) = E/O(u∗X,T (Y )) = ET/O(u∗X,Y ).

This computation shows that the value of u∗ on X can be taken to coincide for
both E and ET . The resulting supine arrow in ET , as seen in E , is

X
ψX−−→ u∗X

ηu∗X−−−→ T (u∗X),

where ψX is the supine arrow over u in E for X.

Ad 3. Similarly to the above, we compute

ET/u(X,Y ) = E/u(X,T (Y )) = E/Q(X, u∗(T (Y ))) = E/Q(X,T (u∗(Y ))) = ET/Q(X, u∗Y ),

where the natural isomorphism Tu∗ ' u∗T follows from the fact that T preserves
prone maps. Again, we see that the value of u∗ on X can be taken to coincide for
both E and ET . The resulting prone map in ET , as seen in E , is

u∗Y
ηu∗Y−−−→ T (u∗Y )

'−→ u∗T (Y )
φT (Y )−−−→ T (Y ),

where φT (Y ) is the prone arrow over u for T (Y ) in E .

Ad 4. Consider the diagram

T (u∗X)

T (X) u∗T (X)

X u∗X

Q O

T (ψX)
'

α

u

u∗α
ψX

ψT (X)

α′

31



As before, we construct the coreindexing functor u∗, and the associated supine
maps ψ(−). Since T preserves supine arrows, we have a unique isomorphism
T (u∗X) ' u∗T (X), and α′ is easily seen to be a T -algebra structure on u∗X.
The required supine map in ET consists of ψX and ψT (X).

We may now state the monadicity theorem for morphisms of fibrations.

Theorem 1.3.5. Let U : E → F be a morphism of fibrations in Cat/S. Then U
is monadic iff it is fiberwise monadic.

Proof. By our construction of FT , if U is monadic then it is clearly fiberwise
monadic.

For the converse implication note that if U has left adjoints fiberwise, then by
corollary 1.2.4 it has a left adjoint F in Cat/S. Using this adjoint we obtain, by
the universal property of FT , a comparison functor E → FT . In Beck’s monadicity
theorem the inverse of the comparison functor is explicitly defined in terms U -split
coequalizers. By corollary 1.2.3 we may use the same formula here, and the re-
sult will be a fibered functor. The comparison natural transformations in Beck’s
monadicity theorem are again defined explicitly using the universal properties of
U -split coequalizers. Thus we may also define them using the formula for ordi-
nary categories. Since such data form an equivalence iff they form an equivalence
fiberwise, and we assumed the fiberwise equivalence, the proof is complete.

Corollary 1.3.6. Any variant of Beck’s monadicity theorem, such as strict, crude
or vulgar monadicity, is also valid for morphisms of fibrations.

Proof. By corollary 1.2.3 the criteria of these theorems may be checked fiberwise,
and imply fiberwise monadicity. By the above theorem this suffices for monadicity
in Cat/S.

1.4 Relative Monoidal Categories
Here we recall the definitions associated to monoidal fibrations introduced in [Z10].
The reader is referred to there for a more complete discussion, including motivating
comments and examples. We state the variants in which the coherenece morphisms
are isomorphisms, since we will only use those. For this reason we omit “lax” from
the name. Note however that this “laxness” also refers to the use of fibered functors
– such functors can be considered “lax morphisms of fibrations”, as opposed to the
usual ones, which preserve prone arrows strongly.

The reader short on patience can recreate all the definitions below according
to the following rule: take the diagrams in Cat, including the 2-cells, defining the
usual notion, and interpret them in Cat/S, as cartesian theories (i.e. substituting
×S for ×).
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1.4.1 Relative Monoidal Categories
Objects

A relative monoidal category over S ∈ Cat consists of:

1. A category E over S.

2. Equipped with two functors fibered over S:

E ×S E E S

S

⊗ I

1S

3. Three fibered natural isomorphisms:

E ×S E ×S E E ×S E

E ×S E E

⊗ ×S 1E

1E ×S ⊗ ⊗

⊗

α

S ×S E E ×S E E ×S S

E

I ×S 1E 1E ×S I

π2
⊗

π1

λ ρ

Subject to the following coherence conditions:

α

α

α⊗ 1

1⊗ α

α

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D

A⊗ ((B ⊗ C)⊗D)

33



A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B A⊗B

α

1⊗ λ ρ⊗ 1

1

and
ρI = λ−1

I

Definition 1.4.1. A monoidal fibration is a relative monoidal category which is a
fibration.

Remark 1.4.2.

1. One should think of A,B,C and D above as generalized elements of E in
Cat/S. This remark applies to all other coherence conditions in this section.

2. We will sometimes write A ⊗O B and f ⊗u g to indicate that A and B are
over O ∈ S, and f and g are over u ∈ S. We will do this especially in
contexts where several categories and monoidal structures are involved. The
previous remark shows, however, that this special notation is redundant.

3. Note that ρI and λI in the last condition above are natural transformations,
as opposed to ordinary arrows. Their components are λI(O), for O ∈ S.

4. By corollary 1.1.12 the pullback of a relative monoidal category is again a
relative monoidal category. In particular, the fibers of a relative monoidal
category are strong monoidal categories.

5. The definition 1.4.1 implies that the reindexing functors u∗ : E/O → E/Q
(see remark 1.1.3), for u : Q→ O ∈ S, are naturally lax monoidal functors.
More specifically, the pseudofunctor S → Cat associated to E takes values
in strong monoidal categories and lax monoidal functors.

6. We will usually suppress the extra data from our notation. We will add the
minimum amount of indexing to avoid ambiguity.

Morphisms

A morphism of relative monoidal categories consists of:

1. Two relative monoidal categories E → S and F → S ′.

2. A 1-cell in Cat·→· between E and F , consisting of functors F : E → F and
K : S → S ′.
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3. Fibered natural isomorphisms ϕ0 : I◦K → F ◦I, and ϕ2 : ⊗◦F×KF → F ◦⊗.

Subject to the following coherence conditions:

I(K)⊗ F (A) F (I)⊗ F (A)

F (A) F (I ⊗ A)

F (A)⊗ I(K) F (A)⊗ F (I)

F (A) F (A⊗ I)

F (A)⊗ (F (B)⊗ F (C)) (F (A)⊗ F (B))⊗ F (C)

F (A)⊗ F (B ⊗ C) F (A⊗B)⊗ F (C)

F (A⊗ (B ⊗ C)) F ((A⊗B)⊗ C)

ϕ0 ⊗ 1

λ
F (λ)

ϕ2

1⊗ ϕ0

ρ ϕ2

F (ρ)

α

1⊗ ϕ2 ϕ2 ⊗ 1

ϕ2 ϕ2

F (α)

Remark 1.4.3.

1. We allow morphisms to change base categories.

2. One should think of K as a 1-cell in Cat·→· from 1S to 1S′. This makes it
clear how to treat it as a generalized element.

3. The distinctions between the monoidal structures for E and F follow uniquely
from the notation.

4. It follows that the projection from the pullback of a relative monoidal category
(with the structure given by corollary 1.1.12) to the original is a morphism
of relative monoidal categories.
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Transformations

A transformation between two morphisms F, F ′ : E → F of relative monoidal
categories is a 2-cell F → F ′ in Cat·→·, consisting of natural transformations
τ : F → F ′ and σ : K → K ′, subject to the following conditions:

I(K) I(K ′)

F (I) F ′(I)

F (A)⊗ F (B) F ′(A)⊗ F ′(B)

F (A⊗B) F ′(A⊗B)

Iσ

ϕ0

τI

ϕ0

τA ⊗ τB

ϕ2

τA⊗B

ϕ2

Again, the distinctions between the monoidal structures (also on F, F ′) follow
uniquely from the notation.

Let us record the following obvious statement.

Proposition 1.4.4. With the above definitions, monoidal fibrations, their mor-
phisms and transformations form a 2-category, denoted MonFib.

There are obvious forgetful functors MonFib → Fib → Cat, which allow us
to define, via fibers, monoidal fibrations over a fixed base S ∈ Cat, which we will
denote MonFib/S. By construction it is a 2-category.

1.4.2 Monoids in a Relative Monoidal Category

A monoid M in a relative monoidal category E → S over an object O ∈ S is a
monoid in the ordinary monoidal category E/O, given by corollary 1.1.12. Thus,
we are given a multiplication map µ : M⊗M →M and a unit map η : I(O)→M ,
which are vertical in E , subject to the usual associativity and unit conditions.

We allow morphisms of monoids to change fibers, so a morphism of monoids is
a morphism f : M → N in E , over some u : O → Q in S, such that the following
diagram commutes:
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M ⊗M N ⊗N

M N

I(O) I(Q)

f ⊗ f

µM µN

ηM ηN

f

I(u)

With this definition of homomorphisms, monoids in E form an object of Cat/S,
denoted Mon(E), with the projection Mon(E)→ S given by f 7→ u. There is also
a fibered forgetful functor Mon(E)→ E , which forgets the multiplication and unit
maps.

For the reader’s convenience, we provide the basic properties of this construc-
tion below. Their proofs are elementary calculations.

Proposition 1.4.5. If E is a fibration over S, then so is Mon(E), and the natural
fibered forgetful functor Mon(E)→ E is a morphism of fibrations.

Proof. This follows easily from the fact that the reindexing functors u∗ are natu-
rally lax monoidal.

Proposition 1.4.6. The construction E 7→ Mon(E) is a 2-functor MonFib →
Fib, and the natural forgetful functor is actually a 2-natural transformation Mon→
U , where U : MonFib→ Fib is the natural forgetful functor.

Since MonFib is essentiallyMon(Fib) considered as an object of 2−Cat/Cat,
we can see a glimpse of the microcosm in the above proposition, as defined by Baez
and Dolan [BD98].

The definition of monoids we have given is actually predetermined by our notion
of monoids in ordinary monoidal categories:

Proposition 1.4.7. For any relative monoidal category E there is a natural iso-
morphism

Mon(Cat/S(−, E)) ' Cat/S(−,Mon(E))

1.4.3 Actions of Relative Monoidal Categories
Objects

An action of a relative monoidal category over S ∈ Cat consists of:

1. A relative monoidal category E → S and a relative category X → S.
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2. Equipped with a functor fibered over S:

E ×S X X

S

?

3. Two fibered natural isomorphisms:

E ×S E ×S X E ×S X

E ×S X X

⊗×S 1X

1E ×S ? ?

?

ψ2

S ×S X E ×S X

E

I ×S 1X

π2 ?

ψ0

Subject to the following coherence conditions:

ψ2

ψ2

α ? 1

1 ? ψ2

ψ2

A ? (B ? (C ? X))

(A⊗B) ? (C ? X)

((A⊗B)⊗ C) ? X (A⊗ (B ⊗ C)) ? X

A ? ((B ⊗ C) ? X)

A ? X I ? (A ? X)

A ? X (I ⊗ A) ? X

A ? X A ? (I ? X)

A ? X (A⊗ I) ? X

ψ0

1
λ ? 1

ψ2

1 ? ψ0

1 ψ2

ρ ? 1

Definition 1.4.8. An action of a monoidal fibration is an action of relative
monoidal categories in which X is also a fibration.
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Morphisms

A morphism of actions of relative monoidal categories consists of a (not strictly
commutative) diagram:

E ×S X X

S

S ′

F ×S′ Y Y

F ×K H

?

?

K H

τ

where

1. K is a functor.

2. H is a fibered functor over K.

3. F is a morphism of relative monoidal categories over K.

4. ? are actions of relative monoidal categories.

5. τ is a natural isomorphism ? ◦ (F ×K H)→ H ◦ ?

6. The triangles and inner trapezoids commute, but the outer square is not
required to commute.

Subject to the following coherence conditions:
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1 ? τ

τ

H(ψ2) τ

ϕ2 ? 1

ψ2

F (A) ? (F (B) ? H(X))

F (A) ? H(B ? X)

H(A ? (B ? X))

H((A⊗B) ? X)

F (A⊗B) ? H(X)

(F (A)⊗ F (B)) ? X

H(X) I ? H(X)

H(I ? X) F (I) ? H(X)

ψ0

H(ψ0) ϕ0 ? 1

τ

Transformations

A transformation of morphisms of actions of relative monoidal categories (denoted
briefly H and H ′) consists of:

1. A 2-cell ζ : H → H ′ in Cat·→·.

2. A transformation of morphisms of relative monoidal categories α : F → F ′,
with the same base (in Cat·→·) as ζ.

Subject to the following condition:

F (A) ? H(X) H(A ? X)

F ′ ? H ′ H ′(A ? X)

τ

dom(α) ? dom(ζ) dom(ζ)

where dom : Cat·→· → Cat is the domain 2-functor.
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Proposition 1.4.9. With the above definitions of 0, 1- and 2-cells, the actions
of monoidal fibrations, their morphisms and transformations form a 2-category,
denoted Act.

Remark 1.4.10.

1. Just like for relative monoidal categories, corollary 1.1.12 implies that the
pullback of an action is again an action in a natural way.

2. The canonical projection of a pullback of an action is a morphism of actions
over the functor used to construct the pullback, just as before.

1.4.4 Actions of Monoids Along an Action
Consider a monoid M over O ∈ S in a relative monoidal category E over S, acting
by ? on another relative category X over the same base. Then the monoid can act
along ? on objects in X over O.

An action of M on an object X ∈ X /O is given by a map ν : M ? X → X,
such that

M ? (M ?X) (M ⊗M) ? X M ? X

M ? X X

I ? X M ? X

X X

ψ2 µM ? 1

1 ? ν
ν

ν

ηM ? 1

νψ0

1

A homomorphism of actions is a homomorphism of monoids h : M → M ′ and
a map f : X → X ′ in X of the objects being acted upon, over the same map in S
as h, such that

M ?X M ′ ? X ′

X X ′

h ? f

ν ν ′

f
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This defines a category Act(E ,X ) of actions of monoids along an action of E
on X . The data for ⊗ and ? are understood implicitly. This category has has
a natural forgetful functor Act(E ,X ) → Mon(E), which forgets the object being
acted upon. This functor is a fibration if both E and X are fibrations (i.e. we
are dealing with an action of a monoidal fibration). Its fibers are the categories
of actions of a single monoid, and morphisms of actions which leave the monoid
fixed.

A monoidM also determines a monad T =M?(−) on X/O. The multiplication
map µT : T 2 → T is given by µT = (µM ? (−)) ◦ψ2, where µM is the multiplication
in M , and there is a similar obvious formula for the unit. This gives an alternate
characterization of the category of actions of a single monoid.

Proposition 1.4.11. The the category of actions of M along ? is equivalent to
that of T -algebras.

Proof. This is a tedious calculation using the coherence conditions and the defini-
tions of monoids and their actions.

1.4.5 The Fibered Slice
Recall that if C is a monoidal category and M ∈ Mon(C) is a monoid, then the
slice category C/M is also naturally a monoidal category, with monoidal product
of A→M and B →M defined by the composite A⊗B →M⊗M µ−→M , where ⊗
is the product in C and µ is multiplication in M . The unit is the unit of the monoid
e : I →M , and there are obvious correct choices for the coherence isomorphisms.
If C has pullbacks, these categories are fibers of the monoidal fibration C ↓ U over
Mon(C), where U :Mon(C)→ C is the forgetful functor.

This construction has a fibered analogue. Let E be a monoidal fibration over
S, and let E (→) be the fibration of diagrams of type → in E (recall definition
1.2.2). There is an obvious functor (cod) : E (→) → E sending each arrow to its
codomain. If E has pullbacks then this functor is a fibration – the fibered analogue
of a codomain fibration. As before let U : Mon(E) → E be the forgetful functor.
The structure we are looking for is the pullback of (cod) along U ,

E � U E (·→·)

Mon(E) E

U∗(cod)

U
(cod)

which is a fibration over Mon(E). Its fibers are precisely all the categories of the
form EO/M , where O ∈ B, EO is the fiber of E over O, and M is a monoid in
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EO. The above discussion gives us a monoidal structure on E � U . The monoidal
product of A → M and B → M is given by A ⊗ B → M ⊗M µ−→ M (as before)
and the unit functor is I(M) = I(O)

e−→M , the unit of multiplication in M .

1.5 Free Monoids in Monoidal Fibrations
The three tensors theorem asserts the existence of a certain extra structure on a
free monoid. To obtain this extra structure we will use an explicit construction of
the free monoid, which we recall below. The basic ideas behind this construction
seem to have been first stated explicitly in [A74]. A very general account of such
constructions was given in [Ke80]. We will follow the very brief and readable
appendix B of [BJT97], and refer the reader there for all the calculations omitted
here. The context there is a single monoidal category, but the calculations adapt
to monoidal fibrations verbatim.

Let E be a monoidal fibration over S. We wish to construct a fibered left adjoint
to the forgetful functor U :Mon(E)→ E . Our assumptions are summarized in the
following definition.

Definition 1.5.1. We say that the monoidal fibration E admits the free monoid
construction for the monoidal structure ⊗ if the following conditions are satisfied:

a) E has fiberwise finite coproducts and filtered colimits.

b) The monoidal product ⊗ preserves fibered filtered colimits in both variables,
and fibered binary coproducts in the left variable.

The condition a) is stable under pullback of fibrations, since it refers only to
fibers and the canonical projection is an isomorphism when restricted to any fiber.
By corollary 1.2.3 we obtain from a) the existence of fibered filtered colimits in E .

Let X ∈ E/O. We define

X0 = I(O)
Xn+1 = I(O) t (X ⊗Xn),

where I(O) is the unit of ⊗ in the fiber over O and t is the coproduct. We have
arrows

in : Xn → Xn+1

i0 : I(O)→ I(O) tX is the coprojection
in+1 = 1 t (1⊗ in).

We define X∞, the universe of the free monoid on X, as the colimit of the Xi:

X∞ = lim−→(X0 → X1 → X2 → X3 → · · · )
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To define multiplication we define the morphisms µn,m : Xn ⊗Xm → Xn+m:

µ0,m = λXm : I(O)⊗Xm → Xm

and for n ≥ 1 we have

Xn ⊗Xm ' (I(O) t (X ⊗Xn−1))⊗Xm ' Xm t (X ⊗Xn−1)⊗Xm,

and define

µn,m = (im,n+m, jn+m(1⊗ µn−1,m)) : Xm tX ⊗Xn−1 ⊗Xm → Xn+m,

where im,n+m : Xm → Xn+m is the inclusion (the composite of the appropriate ik),
and jk : X ⊗Xk−1 → Xk ' I tX ⊗Xk−1 is the coprojection.

By the fact that ⊗ preserves filtered colimits, and the (easily checked) compat-
ibility of the µn,m we may pass to the colimit µ : X∞ ⊗ X∞ → X∞ of the maps
in+m,∞ ◦ µn,m : Xn ⊗ Xm → X∞, where in+m,∞ : Xn+m → X∞ is the canonical
map to the colimit. We also have the unit of our monoid η : I = X0 → X∞, given
again by the canonical map to the colimit.

This construction is functorial in X. Consider a morphism f : X → Y over
u : O → Q in S. We set

f0 = I(u) : X0 = I(O)→ I(Q) = Y0
fn+1 = Iu t f ⊗u fn−1.

Again, the (obvious) compatibility implies the existence of a morphism f∞ : X∞ →
Y∞ (we define t and f∞ using corollary 1.2.3), and it can be checked that it is a
monoid homomorphism over u, with respect to µ and η.

Theorem 1.5.2. If E has fiberwise finite coproducts and ⊗ preserves fibered filtered
colimits in both variables and binary coproducts in the left variable, then the free
monoid functor is X 7→ F(X) = (X∞, µ, η) on objects, and f 7→ f∞ on morphisms.

Proof. All the calculations in appendix B of [BJT97] clearly apply in each fiber,
and η is natural in the entire fibration. The universality of η in the entire fibration
follows from theorem 1.2.1, since the forgetful functor from monoids is always a
morphism of fibrations.

We will require some additional facts about the above construction. They were
discovered in the course of the proof of the three tensors theorem, but a very similar
phenomenon was used in part 2 of [HMP02] under the name “unique readability”.
If the structures under consideration are multicategories or operads, then the free
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monoids consist of trees4 or terms. We will now see that we can “identify” the
first vertex in these trees or the first function symbol in these terms.

Proposition 1.5.3. Under the assumptions of theorem 1.5.2 the multiplication in
the free monoid µ : X∞ ⊗X∞ → X∞ has a vertical section ŝ : X∞ → X∞ ⊗X∞,
which factors as X∞

s−→ X1 ⊗ X∞
i⊗1−−→ X∞ ⊗ X∞, where i : X1 → X∞ is the

canonical map.

In fact the components of the map s (see the proof) will be more important
than either s or ŝ, which are only necessary for the application of the bootstrap
lemma 4.2.1.

Proof. We write µ1,∞ : X1⊗X∞ → X∞ for the colimit of µ1,m : X1⊗Xm → Xm+1,
from the construction above, with respect to m. Hence µ1,∞ ◦ 1⊗ im,∞ = im+1,∞ ◦
µ1,m, where ik,∞ is the canonical map Xk → X∞. Also µ1,∞ = µ ◦ i1,∞ ⊗ 1, as is
easily seen by composing both sides on the right with 1⊗ im,∞. We will construct
s : X∞ → X1 ⊗X∞ such that µ1,∞ ◦ s = 1X∞ , and define ŝ via the commutative
diagram

X∞ X1 ⊗X∞ X∞

X∞ ⊗X∞

s µ1,∞

ŝ µ

i1,∞ ⊗ 1

Since ⊗ preserves filtered colimits, it suffices to construct a compatible family of
maps sm : Xm → X1 ⊗Xm−1, for m > 0, such that µ1,m−1 ◦ sm = 1Xm . We have

Xn = I tX ⊗Xn−1

X1 ⊗Xn−1 = (I tX ⊗ I)⊗Xn−1 ' Xn−1 tX ⊗Xn−1,

and define

sn = I tX ⊗Xn−1

i0,n−1t1X⊗Xn−1−−−−−−−−−−→ Xn−1 tX ⊗Xn−1.

In these terms µ1,n−1 is easily found to be

µ1,n−1 = (in−1,n, jn(1X ⊗ 1Xn−1)) = (in−1,n, jn).

4With additional structure of course. Note also, that vertices of these trees represent oper-
ations and leaves represent inputs, and these are different parts of the structure – we are not
dealing with ordinary graphs!
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We can now calculate µ1,n−1 ◦ sn:

(in−1,n, jn) ◦ (i0,n−1 t 1X⊗Xn−1) = (i0,n, jn),

which is the identity I t X ⊗ Xn−1 → Xn. The compatibility condition for sn is
implied by the stronger condition

1⊗ in−1 ◦ sn = sn+1 ◦ in.
Expanding the definitions, it asserts the commutativity of the square

I tX ⊗Xn Xn tX ⊗Xn

I tX ⊗Xn−1 Xn−1 tX ⊗Xn−1

i0,n t 1

1 t 1⊗ in−1

i0,n−1 t 1
in−1 t 1⊗ in−1

which is obvious. We may therefore pass to the colimit, and conclude the proof.

We will call the maps s, ŝ, constructed above, the canonical sections of µ, or
unique readability morphisms. The following technical lemma is needed in the
proof of the three tensors theorem. In the context of operads it asserts the obvious
fact that the “first” vertex stays first if we multiply its tree with something on the
right (i.e. attach other trees to the leaves).

Lemma 1.5.4 (Coherence lemma). The following diagram commutes (for n > 0)

Xn ⊗Xm Xn+m X1 ⊗Xn+m−1

(X1 ⊗Xn−1)⊗Xm X1 ⊗ (Xn−1 ⊗Xm)

µn,m sn+m

sn ⊗ 1 1⊗ µn−1,m

α−1

Proof. We use the coherence theorem to ignore the coherence isomorphisms. Since
Xn ⊗ Xm is the coproduct I ⊗ Xm t X ⊗ Xn−1 ⊗ Xm it suffices to check the
commutativity on each factor. Since every sk is the identity on the second factor
it is easy to see that both second factors are j ◦ (1 ⊗ µn−1,m), where j is the
coprojection as in the construction of µ.

The second factor can be calculated as follows. The lower way is straight-
forward. It is µn−1,m ◦ i0,n−1 ⊗ 1, which is (by the unit laws for µ) im,n+m−1 :
Wm → Wn+m−1. The upper way unfortunately mixes the components, so we must
unwind one more level of definition. The relevant component of µn,m is im,n+m,
which is 1 t 1 ⊗ im−1,n+m−1. Composing it with sn+m = (i0,n+m−1, 1X⊗Xn+m−1)
yields i0,n+m−1 t 1⊗ im−1,n+m−1 = im,n+m−1, as required.
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Remark 1.5.5. From now on we will occasionally abuse notation and write ik for
any of the maps ik,l. The codomain will always be clear form context.

1.6 Some Exponentiable Objects in Cat/S
It is well known that Cat is not locally cartesian closed. Fortunately there are
enough exponentiable objects in Cat/S for our purposes.

Theorem 1.6.1. The bifibrations in the 2-category Cat/S are exponentiable.

This is well known [G64, J99]. From this theorem we can read off a description
of the exponential objects. A more detailed exposition is given in [Z10].

Consider a map 1→ S picking out an object O. Then, just by the definitions
of the various objects involved we obtain a sequence of bijections of morphisms
over S:

1 −→FE

1×S E −→F

E/O −→F

E/O −→F/O

Thus, the objects of the category FE are functors E/O → F/O, with the projection
to S sending them to O. To see what the morphisms are, consider a functor
(· → ·) −→ S picking out an arrow u : O → Q ∈ S. Repeating the previous
procedure we obtain:

(· → ·) −→FE

(· → ·)×S E −→F
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E/u −→F

E/u −→F/u

The interpretation here is not quite as clear as in the previous case. These
morphisms correspond to natural transformations fibered over u. The arrows in
E/u mapping to u should be thought of as components of the natural transfor-
mation. This strange packaging of the components results from the various type
restrictions imposed by working in a fibered context. For a precise statement of
what this means, see lemma 4.1 in [Z10]. For a hint of what this might mean
(looking at transformations fibered over an identity arrow), see propositions 1.7.3
and 1.7.5 below.

1.7 Distributivity Structures
For any category C the category of endofunctors End(C) is strict monoidal under
composition of functors. The monoidal structure is composition in diagrammatic
order (that is (x)f ◦ g means “first apply f to x, then g to (x) f”, but only if f and
g are objects of End(C)). If in addition C is itself monoidal, we obtain functors
C → End(C) which send each X ∈ C to either X⊗ (−) or (−)⊗X. We will always
be interested in the latter functor, which we will denote by R. Interestingly these
functors are always monoidal in a natural way. Namely we have

(A)(−)⊗ (X ⊗ Y ) = A⊗ (X ⊗ Y )

(A)(−)⊗ (X) ◦ (−)⊗ Y = (A⊗X)⊗ Y,

and a natural isomorphism between these two is given by α−1
A,X,Y . The unit isomor-

phism is given by the appropriate components of ρ. The coherence diagrams for
this monoidal functor are the defining coherence diagrams of a monoidal category
(as in [CWM98]), with some morphisms replaced by their inverses.

If � is yet another monoidal structure on C, then we can also define a monoidal
category End�(C) of strong �-monoidal endomorphisms of C, as follows. The
identity functor 1C has an obvious monoidal structure, and will serve as a unit.
The tensor is composition of monoidal functors. It is easy to see that the horizontal
composite of monoidal transformations is again monoidal, and so we can take as
arrows the monoidal natural transformations. This category is of course still strict
monoidal.

There is an obvious strict monoidal functor U : End�(C) → End(C), which
forgets the additional data.
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Definition 1.7.1. Let C be a category, and suppose we are given two monoidal
structures on C, denoted (�, I�, α�, λ�, ρ�) and (⊗, I⊗, α⊗, λ⊗, ρ⊗). As above, let
R denote the functor X 7→ (−) ⊗ X. A distributivity structure of ⊗ over � is
given by a lift of R to End�(C) along U , as a monoidal functor:

End�(C)

C End(C)
R

UR̃

which means that we require R = U ◦ R̃ as monoidal functors.
We can unravel this definition and state it explicitly as extra data and proper-

ties for C. First, every functor R(X) = (−)⊗X becomes �-monoidal. This gives
us isomorphisms

ϕA,B,X : (A⊗X)� (B ⊗X)→ (A�B)⊗X
ψX : I� → I� ⊗X

which make R(X) into a �-monoidal functor (which is R̃(X)). Of course for every
morphism f in C, the natural transformation R(f) = (−) ⊗ f is required to be
�-monoidal (giving R̃(f)). Second, since we require equality of R and U ◦ R̃ as
monoidal functors, we see that the isomorphisms (α⊗)−1 : R̃(X) ◦ R̃(Y )→ R̃(X ⊗
Y ) and ρ⊗ : 1C → R̃(I⊗) giving the monoidal structure of R̃ become �-monoidal
natural transformations. These properties are expressed as commuting diagrams in
theorem 1.7.8. Conversely, natural transformations5 ϕA,B,X and ψX subject to the
coherence diagrams in theorem 1.7.8 determine a unique distributivity structure.
Remark 1.7.2. For this reason we will denote distributivity structures, also in
the fibered case, by (ϕ, ψ).

Example. Let (C,⊗) be a monoidal category with finite coproducts, and suppose
that ⊗ preserves them in the left variable. Then the natural maps

A⊗X tB ⊗X → (A tB)⊗X
0 → 0⊗X

are isomorphisms which define a distributivity structure of ⊗ over t. All the
conditions are satisfied because of universality.

The preservation of products also defines a distributivity structure, but the
directions of the natural arrows are opmonoidal rather than monoidal.

5Note that at this point it is not clear that ϕ and ψ are natural in X. This is demonstrated
in next subsection.
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1.7.1 Fibered Distributivity
We will now explain how to adapt this definition to the fibered context, and give
a theorem characterizing fibered distributivity structures as concrete extra data
subject to certain coherence conditions. This theorem will allow us to construct
the most important example, the distributivity structure on monoidal signatures
with amalgamation 2.4.1, and allow us to apply the three tensors theorem there.
The coherence conditions are also used in the proof of the three tensors theorem
4.1.1, and are stated in a form conducive to that proof.

To motivate the passage from monoidal categories to monoidal fibrations, con-
sider a pullback square

(· → ·)× C C

· → · ·

where C is a monoidal category. The result is a monoidal fibration over · → ·, and
we have the following proposition.

Proposition 1.7.3. Let C,D be monoidal categories, with D considered as a
monoidal fibration over ·. Then morphisms of monoidal fibrations

(· → ·)× C D

· → · ·

are exactly pairs of monoidal functors F,G : C → D with a monoidal natural
transformation between them.

Proof. We use the usual correspondence between natural transformations and
functors from C × (· → ·). Writing out all the monoidal definitions explicitly,
one sees the equivalence of the extra data immediately.

Now consider two monoidal bifibrations E and F over S. We denote their
monoidal structures by ⊗ and �, respectively.

Definition 1.7.4. We define Hom⊗,�
S (E ,F), an object of Cat/S, as follows:
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1. Objects are objects of the exponential FE , together with a monoidal structure
on the corresponding functors E/O → F/O.

2. Morphisms are the morphisms in the exponential FE , together with a monoidal
structure on the corresponding functors E/u→ F/u (where u : O → Q ∈ S),
which restricts to the given ones upon restriction to the domain and codomain
of u.

3. Composition is inherited from FE , along with the obvious composition of
monoidal structures on functors.

4. The projection map Hom⊗,�
S (E ,F)→ S is also inherited from FE .

By the above proposition, this generalizes the construction of the category of
monoidal functors between monoidal categories. Essentially by construction we
have the following proposition.

Proposition 1.7.5. Fibered morphisms G → Hom⊗,�
S (E ,F) over S correspond to

morphisms of monoidal fibrations G ×S E → F over G → S.

Proof. Given the existence of the exponential FE , this is a trivial generalization
of the previous proposition.

Remark 1.7.6.

1. Note that the distinction between functors and natural transformations is
blurred more strongly in the fibered case than it is for ordinary categories.

2. Unfortunately, unless the structures ⊗ and � preserve the prone and supine
arrows, Hom⊗,�

S (E ,F) is not a fibration or opfibration. Since preservation
of prone and supine arrows never happens in our examples, we will have to
treat it as an ordinary object of Cat/S.

3. There is a natural forgetful fibered functor Hom⊗,�
S (E ,F) → FE , which

forgets the extra data.

We are now ready to define fibered distributivity structures. Let E be a
monoidal bifibration over S with two monoidal structures ⊗ and �. As in any cate-
gory with a cartesian closed subcategory of exponentiable objects, the exponential
EE is a monoid in Cat/S, and so in particular a monoidal fibration (even a bifibra-
tion). The operation is composition of endomorphisms. The above construction
gives us a relative monoidal category

End�S (E) = Hom�,�
S (E , E)
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of �-monoidal endofunctors of E and �-monoidal natural transformations between
them. Like before, the monoidal structure is composition – monoidal structures
on functors and natural transformations compose strictly. This makes the natural
forgetful functor End�S (E) → EE a monoidal functor (in fact a homomorphism of
monoids). This allows us to state the definition of a fibered distributivity structure
in the same form as for ordinary categories.

Definition 1.7.7. Let E be a bifibration over S with two monoidal structures ⊗ and
�. A fibered distributivity structure of ⊗ over � is given by a lift of R : E → EE ,
the exponential adjoint of ⊗ : E ×S E → E for the right variable, as a monoidal
functor, to End�S (E) along the obvious forgetful functor U : End�S (E)→ EE :

End�S (E)

E EE
R

UR̃

The map R is of course monoidal for the same reason as in the case of ordinary
categories.

Note that this is a generalization of the previous definition – a fibered distribu-
tivity structure give an ordinary distributivity structure on every fiber, together
with some compatibility conditions between the fibers.

We may unwind this definition in the same way as for ordinary categories, and
arrive at the following simple theorem, which states the practical criteria for the
construction of fibered distributivity structures.

Theorem 1.7.8. A fibered distributivity structure determines and is determined
by fibered natural transformations ϕA,B,X and ψX , as above, subject to coherence
conditions I - VII below.

• Condition I

(A⊗X)� ((B ⊗X)� (C ⊗X)) ((A⊗X)� (B ⊗X))� (C ⊗X)

(A⊗X)� (B � C)⊗X ((A�B)⊗X)� (C ⊗X)

(A� (B � C))⊗X ((A�B)� C)⊗X

α�

1� ϕB,C,X

ϕA,B�C,X

ϕA,B,X � 1

ϕA�B,C,X

α� ⊗ 1
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• Condition II

(A⊗ (X ⊗ Y ))� (B ⊗ (X ⊗ Y )) ((A⊗X)⊗ Y )� ((B ⊗X)⊗ Y )

((A⊗X)� (B ⊗X))⊗ Y

(A�B)⊗ (X ⊗ Y ) ((A�B)⊗X)⊗ Y

α⊗ � α⊗

ϕA,B,X⊗Y

ϕA⊗X,B⊗X,Y

ϕA,B,X ⊗ 1

α⊗

• Condition III

A�B

(A⊗ I⊗)� (B ⊗ I⊗) (A�B)⊗ I⊗

ρ⊗ρ⊗ � ρ⊗
ϕA,B,I⊗

• Condition IV, for every morphism f : A⊗X → Y

(I� ⊗X)� (A⊗X) I� � Y

(I� � A)⊗X

A⊗X Y

ψ−1
X � f

ϕ

λ� ⊗ 1
f

λ�

• Condition V

I� ⊗ (X ⊗ Y ) (I� ⊗X)⊗ Y I� ⊗ Y

I�

α⊗ ψ−1
X ⊗ 1

ψ−1
X⊗Y ψ−1

Y

• Condition VI
ψI⊗ = ρ⊗I�
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• Condition VII

(A⊗X)� I� A⊗X

(A⊗X)� (I� ⊗X) (A⊗ I�)⊗X

ρ�

1� ψX
ϕA,I�,X

ρ� ⊗X

Proof. First, the fact that R̃(f) is �-monoidal for all morphisms f is equivalent
to the fact that φ and ψ giving the monoidal structure for R̃(X) are natural in
X. Conditions I, IV and V II say that R̃(X) is �-monoidal. Condition IV is the
left unit condition combined with the naturality of λ�. Conditions III and V I
are the requirement that ρ : 1C → R̃(I⊗) is an �-monoidal natural transformation.
Conditions II and V say the same for (α⊗)−1 : R̃(X) ◦ R̃(Y )→ R̃(X ⊗ Y ).

Remark 1.7.9. The conditions are listed in the form in which they are used in
the proof of the three tensors theorem. Condition V II will not be used in the proof.
Thus the three tensors theorem is true if we lift R to End�,LS (E), the category of
left-unital �-monoidal functors.
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Chapter 2

Bifibrations of Signatures and
Their Actions

In this chapter we construct the three basic bifibrations of signatures that will be
used throughout our work. These are the symmetric signatures, signatures with
nonstandard amalgamation, and monoidal signatures with nonstandard amalga-
mation.

All three types of signatures are constructed from ordinary multisorted (or
typed) signatures, as used in logic and universal algebra, the category of which is
denoted by Sig. These are sets of function symbols, with arbitrary arity (arity 0
indicating a constant – a nullary function). Every input, as well as the output,
of every function symbol has a specified type, and types form an additional set,
which is considered part of the structure of the signature. These types control
which outputs can be matched to which inputs, that is, which function symbols
can be composed with each other. The bifibration projection maps every signature
to its set of types, and the prone and supine arrows correspond to maps which
universally retype or refactor, respectively, the function symbols of a signature,
according to a function which changes the types.

Here is an example: the signature of “rings and modules” would have two types
– one for the elements of a ring, and another for the elements of a module, as well
as function symbols that define ring and module operations (all those derivable
from the basic ones listed in the axioms), one of which would allow the ring to act
on the module.

The requirement of matching output and input types leads directly to the
monoidal structure on ordinary signatures. If A and B are signatures with the
same set of types, then

A⊗O B

is a new signature with the same set of types, and consists of formal, correctly
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typed, composites of function symbols from A with B. Monoids for this monoidal
structure correspond to certain very specific equational theories. Returning to our
example of rings and modules, this signature has a composition map

M ⊗M →M

which maps formal composites to actual composites. This encodes the axioms of
the theory of rings and modules – the fact that addition and multiplication in rings
is associative is expressed by the formal composites

µ(µ(x1, x2), x3),

where the xi are formal variables, and

µ(x1, µ(x2, x3)),

where µ is the appropriate multiplication (or addition) map, are sent by compo-
sition M ⊗ M → M to the same function symbol in M . Associativity of the
composition map M ⊗M → M , and the other monoid axioms, express the in-
ference rules for equational logic. We will investigate equational theories in much
more detail in chapter 7.

From this basic bifibration we construct all the others. This is done with the aid
of the symmetrization monad S. This monad arises from the ability to permute the
inputs of a function symbol (while simultaneously permuting the typing). Since
permutations can be composed, we obtain a monad, which acts on the n-ary
function symbols as

S(X)n = Xn × Sn,

where Sn is the n-th symmetric group.
The symmetric signatures and signatures with nonstandard amalgamation are

defined, respectively, as the Eilenberg-Moore and Kleisli algebras for this monad.
The interpretation of symmetric signatures should be clear – these are just sig-
natues eqiupped with right Sn-actions on the n-ary function symbols, and equiv-
ariant morphisms. The traditional interpretation of Kleisli algebras as the free
algebras is, however, likely to confuse the reader. We will systematically use the
intrinsic construction of Kleisli algebras (as in [CWM98]), without reference to
the Eilenberg-Moore category. This is essential to understanding our use of these
signatures.

To understand the Kleisli algebras on their own, consider their morphisms:

X → S(Y ).
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Thus, a morphism of Kleisli algebras f : X → Y is a morphism of ordinary sig-
natures X → S(Y ). For us this means that every morphism of signatures with
nonstandard amalgamation has, in some sense, two components: a function assign-
ing function symbols to function symbols (but not a morphism of signatures, since
the typings do not match), and a parallel assignment of permutations to function
symbols, which together form a legitimate morphism of ordinary signatures.

These permutations, called amalgamation permutations, should be thought of
as follows: if a is mapped by f to (b, σ), then σ maps the inputs of b to those of a
(note the order) in a way that respects the typing. This shift in thinking may be
presented pictorially as follows. This morphism of Kleisli algebras:

f(a)

σ

a
f

should be thought of as this morphism of signatures with nonstandard amalgama-
tion

f(a)a
f

σ

Both symmetric signatures and signatures with nonstandard amalgamation are
monoidal bifibrations. This follows from abstract considerations, which are, how-
ever, too lengthy to reproduce here. We will simply write down explicit definitions
for these structures. This makes their relationship to the original structure on Sig
clear enough.
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Monoids with respect to these structures range from the well known, to the
exotic. Monoids in Sig are simply Lambek’s multicategories. Accordingly, monoids
in symmetric signatures are the symmetric multicategories, which are also known
as typed symmetric operads.

The exotic part comes from signatures with nonstandard amalgamation. These
were originally introduced (in a 2-leveled version) in part 2 of [HMP02] as mul-
ticategories with nonstandard amalgamation”. This is how the signatures SigS
got their name. A monoid in signatures with nonstandard amalgamation is a
multicategory, in which after each composition operation the inputs of the for-
mal composite (i.e. the symbols we are composing) are permuted into the actual
composite (compatibly with types). These permutations must, of course, also be
associative in an appropriate way. All this is built into the monoidal structure on
signatures with nonstandard amalgamation.

One of the central goals of this chapter is the construction of monoidal signa-
tures with amalgamation, denoted Sigma. These are constructed from signatures
with nonstandard amalgamation by base change, which makes the types of each
monoidal signature remember that they form (the set of function symbols of) a
monoid in Siga. By the ever-useful “pullbacks preserve algebra” corollary 1.1.12,
they inherit a monoidal structure ⊗ from SigS , as well as an action, called the
pullback action (we will discuss actions of signatures in a moment).

But the most important structures on Sigma must be constructed by hand.
They are the horizontal monoidal structure � (the obvious one, ⊗, is called ver-
tical), and a distributivity structure of ⊗ over �. These structures formalize the
intuitions presented in the introduction to chapter 1 – that trees can be considered
to have two independent kinds of inputs. The horizontal structure � corresponds
to leaves, and ⊗ corresponds to the nodes.

They also explain why we bother with nonstandard amalgamation (and, as
the reader will see, it is a huge bother). The inputs are defined easily enough,
but for the outputs, we must have a way to reduce a tree to a single node, so
that a tree can be matched to a node. This is exactly what the structure of a
monoid (i.e. multicategory) on the types allows us to accomplish. Unfortunately,
this monoid must have nonstandard amalgamation – if we want to replace nodes
with trees, then the lists of nodes in the incoming trees and the final result must
be permuted nontrivially. This is proven in the example in section 4.4, and stems
from the fact that nodes can have many neighbors (children and a parent), and the
elements of a list can have only two. Thus, if we want to iterate this construction,
as we must in the construction of opetopic sets, the multicategory structure on
the types must be allowed to have nonstandard amalgamation.

This is how the requirements of opetopic sets determine the bifibration Sigma
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in an essentially unique way. The results of chapter 6 reinforce this view.

Monads have algebras, as do operads, multicategories, and even ordinary cate-
gories (presheaves). These are all described as actions of a monoid along an action
of a monoidal category. Our monoids are no different: all our bifibrations come
equipped with actions, which will play a huge role in our work. For symmetric
signatures and signatures with nonstandard amalgamation, these are the so-called
“tautological actions”. They are all uniformly defined, and correspond to the usual
notion of an algebra of a symmetric multicategory (operad), or an action of a mul-
ticategory, in the case of ordinary signatures. For nonstandard amalgamation, we
simply take the permutations into account (but do not add any new ones, beyond
those coming from the monoid structure).

For monoidal signatures, the action is defined by pullback, and so is called
the pullback action. It is fiberwise isomorphic to the action of signatures with
nonstandard amalgamation.

These actions provide an important link with monads, which is contained in
theorem 2.6.2. It states that symmetric signatures are monoidally equivalent to an-
alytic functors (of many variables) and analytic natural transformations, and that
signatures with nonstandard amalgamation are monoidally equivalent to polyno-
mial functors. Especially the second kind of functor seems to be much better known
and liked than the rather exotic signatures with nonstandard amalgamation.

Theorem 2.6.2 implies that symmetric multicategories and multicategories with
nonstandard amalgamation are equivalent to analytic and polynomial monads,
respectively. This fact will play a prominent role in our comparisons in chapter 6.

We end this chapter by collecting the various categorical properties of signatures,
such as the existence and preservation of filtered colimits. This is a technical
section, and the reader may safely skip it, only to refer to its results as needed.

Notation Reminder
Recall that [n] = {0, . . . , n}, and (n] = {1, . . . , n} for n ∈ N. In particular
[n] = [0] ∪ (n] and (0] = ∅. For a set O we define O†

n = O[n], O∗
n = O(n] and

O† =
⋃
n∈NO

[n], O∗ =
⋃
n∈NO

(n]. Thus O∗ is the set of finite lists of elements of
O, and O† is the set of lists with a chosen first element.

Sn, the n-th symmetric group, acts on O†
n i O∗

n on the right by precomposition
(the lists are functions on [n]), leaving 0 fixed.

If d : [n] → O is a list, then we denote its restrictions of positive numbers by
d+ : (n]→ O, and its restriction to [0] by d− : [0]→ O. This establishes a bijection
〈(−)−; (−)+〉 : O† → O ×O∗. We have an obvious functor (−)† : Set→ Set.
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2.1 Basic Definitions

2.1.1 Ordinary Signatures
Let (−)† : Set→ Set denote the functor of finite lists with a chosen first element.
That is

X† = X ×X∗,

where (−)∗ denotes the functor of finite (possibly empty) lists.

Definition 2.1.1. The bifibration of ordinary signatures Sig→ Set is defined by
the pullback square

Sig Set·→·

Set Set

cod
(−)†

Since Set has all pullbacks, this is indeed a bifibration, owing to our introduc-
tory examples. The objects of Sig can be identified with functions

∂ : X → O†

which should be thought of as assigning typings to functions symbols from X.
The typing of f ∈ X is ∂(f) ∈ O†, and consists of an element of O – the output
type, and a list of elements of O – the input types. Thus the objects of Sig are
indeed multisorted signatures, as used in logic and universal algebra, but without
relation symbols. The morphisms are exactly what one would expect – functions
transforming function symbols along compatible type changes.

We will refer to signatures (of all the various kinds defined below) by their
codomain, and denote by Xn the set of function symbols in X which have input
lists of length exactly n – the n-ary function symbols in X.

Typing functions for signatures will be decorated by indices, to indicate which
signature they apply to, and to use currying. Thus for example

∂Xf (n)

means the evaluation at n ∈ N of the function

∂(f) : |f | → O,

in O† (where |f | is the arity of f) for the signature X, i.e. ∂ : X → O†.
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2.1.2 The Symmetrization Monad
We can define a fibered monad S : Sig→ Sig as follows:

S(X)n = Xn × Sn,

where Sn is the n-th symmetric group. The typing of (f, σ) ∈ S(X)n is defined by

∂(f, σ)+ = ∂(f)+ ◦ σ,

with the output types unchanged. This means that the permutation σ attached
to the function symbol f permutes its inputs.

The composition map S2 → S and unit 1Sig → S are defined by composition
in the symmetric groups and their units. It is clear that this defines a monad.
Since taking products commutes with taking pullbacks, the following proposition
is obvious.

Proposition 2.1.2. S is a morphism of bifibrations.

2.1.3 Signatures with Nonstandard Amalgamation, Sym-
metric Signatures

Definition 2.1.3.

1. The bifibration of symmetric signatures is the Eilenberg-Moore bifibration
SigS . It will be denoted by Sigs.

2. The bifibration of signatures with nonstandard amalgamation is the Kleisli
bifibration SigS . It will be denoted by Siga.

By propositions 1.3.4 and 2.1.2, these are indeed bifibrations over Set. The
connection with previous work is contained in the following proposition.

Proposition 2.1.4. The bifibrations of symmetric signatures and signatures with
nonstandard amalgamation are isomorphic to the objects with the same names
defined in sections 6 and 7 of [Z10].

Proof. A morphism of signatures with nonstandard amalgamation (f, σ) : A→ B
is equivalent to a morphism of Kleisli algebras f̃ : A→ S(B), with

f̃(a) = (f(a), σa) ∈ Bn × Sn = S(B)n.

Composition is easily seen to coincide in both pictures. This establishes one iso-
morphism.

The other isomorphism is even simpler: since S is just multiplication by the
symmetric groups, its algebras are families of right Sn-sets, indexed by the arity
n. This is exactly what the symmetric signatures are.
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2.2 Monoidal Structures

2.2.1 Monoidal Structure on Ordinary Signatures
If A and B are signatures over O, then we set

A⊗O B = {〈a, bi〉i : a ∈ A, bi ∈ B, ∂a(i) = ∂bi(0), for i = 1 . . . |a|},

which is to be thought of as the signature of formal composites of symbols from A
and B. Note that we allow |a| = 0, which means a nullary formal composite (no
bi)1. For the typing we set

∂A⊗OB,−
〈a,bi〉 = ∂−a

∂A⊗OB,+
〈a,bi〉 =

∐
i

∂+bi ,

which means that the output type of 〈a, bi〉 is the output type of a, and the input
types are those of the bi placed side by side, in order of increasing i.

For morphisms f, g over u : O → Q we set

f ⊗u g(〈a, bi〉) = 〈f(a), g(bi)〉,

For the unit we set I(O) = ∂IO : O → O†, which assigns to every o ∈ O the
unary typing with constant value o. This defines a fibered functor in an obvious
way.

The coherence isomorphisms α, λ, and ρ are given by

αA,B,C(〈a, 〈bi, ci,j〉〉) =〈〈a, bi〉, ci,j〉
λA(〈1∂Aa (0), a〉) =a

ρA(a) =〈a, 1∂Aa (1), . . . , 1∂Aa (n)〉,

with the double index (i, j) is ordered lexicographically.

Theorem 2.2.1. The structure given above defines a monoidal structure on the
bifibration Sig.

Proof. This is a trivial computation consisting of rearranging brackets.

1Without such composites associativity fails, among many other important things.
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2.2.2 Monoidal Structure on The Symmetrization Monad
The Operad of Symmetries

This ordinary operad is necessary to describe the monoidal structures on the monad
S and consequently on Sigs and Siga. Using it systematically will allow us to
minimize our computational effort. Let Sn be the n-th symmetric group. The
operad of symmetries S has the Sn as the sets of n-ary operations, and composition
is defined by ([Le04]):

σ ∗ (ρ1, . . . , ρn)(k1 + . . .+ ki−1 + j) = kσ−1(1) + . . .+ kσ−1(σ(i)−1) + ρi(j),

where σ ∈ Sn, ρi ∈ Ski , and 1 ≤ i ≤ n, 1 ≤ j ≤ ki
This just means that we permute n disjoint blocks according to σ, and apply

ρi in the block that was i-th in the beginning.
It will be convenient to adopt a notation which allows us to compute compo-

sitions of permutations of the form σ ∗ (ρ1, . . . , ρn) in certain cases. First we will
assume the number of blocks is fixed and equal to n. We will then write (i, j) for
the j-th entry in the i-th block. For each block the number of entries is arbitrary.
Thus, by definition, we have

σ ∗ (ρ1, . . . , ρn)(i, j) = (σ(i), ρi(j))

This will allow us to compose such permutations easily, but only if the block
lengths match. This will never be a problem, since we will always know that this
happens beforehand.

With this notation in hand we can compute compositions and inverses of per-
mutations arising from the operad of symmetries.

Lemma 2.2.2. If σ, σ′ ∈ Sn and ρi, ρ′i are permutations, such that the domains of
ρi and ρ′σ(i) are equal, then

σ′ ∗ (ρ′1, . . . , ρ′n) ◦ σ ∗ (ρ1, . . . , ρn) = (σ′ ◦ σ) ∗ (ρ′σ(1) ◦ ρ1, . . . , ρ′σ(n) ◦ ρn) (2.1)
σ ∗ (ρ1, . . . , ρn)−1(i, j) = (σ−1(i), ρ−1

σ−1(i)(j)) (2.2)

Proof. The assumptions allow us to use the double index notation. We have

σ ∗ (ρ1, . . . , ρn)(i, j) = (σ(i), ρi(j))

applying σ′ ∗ (ρ′1, . . . , ρ′n) to this (this is where we use the assumptions on the
domains) yields

(σ′(σ(i)), ρ′σ(i)(ρi(j)))

proving the first formula. The second one follows from the first by applying σ ∗
(ρ1, . . . , ρn) to both sides.
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We will occasionaly use longer indices, for example (i, j, k), but we will not
calculate with them. However such calculations would be justified, since ∗ is
associative.

The Monoidal Structure Proper

We are now ready to define the lax monoidal structure on the monad S. The
structure morphisms are defined by

S(X)⊗ S(Y )→ S(X ⊗ Y )

〈(x, σ), (yi, τi)〉 7→ (〈x, yσ−1(i)〉, σ ∗ (τi))
I → S(I)
o 7→ (o, id),

where ∗ refers to composition in the operad of symmetries S (not to be confused
with the symmetrization monad S). Note that these are not isomorphisms. This
monoidal structure can be illustrated by the picture below, following the pictorial
conventions set in the introduction.

a

b1

b2

σ

τ1, τ2

a

b1

b2

σ ∗ (τ1, τ2)

SA⊗ SB

S(A⊗B)
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Theorem 2.2.3. With the above definitions, the monad S is a monad on Sig,
considered as an object of the 2-category MonFib.

Proof. The coherence conditions are satisfied because multiplication in the operad
of symmetries is associative and unital, and one can use the formulas in lemma
2.2.2 to explicitly calculate everything2.

2.2.3 Monoidal Structures on Siga and Sigs
Given the monoidal structure on the symmetrization monad, the algebra objects
SigS and SigS are also monoidal3, for general reasons. These reasons are, unfor-
tunately, somewhat complicated in the Eilenberg-Moore case, so we will simply
write down the monoidal structures explicitly.

The Monoidal Structure on Siga
The formulas in this case are essentially the same as for Sig, but taking into
account the amalgamation permutations.

If A and B are signatures over O, then we set

A⊗O B = {〈a, bi〉 : a ∈ A, bi ∈ B, ∂a(i) = ∂bi(0), for i = 1 . . . |a|},

This formula is the same as before, and we define the typing map in exactly the
same way. For morphisms, we must know how to treat the permutations. For
morphisms f, g over u : O → Q, with permutations given by σ and τ , respectively,
we set

f ⊗u g(〈a, bi〉) = 〈f(a), g(bσ−1
a (i))〉,

and set the permutations of the morphism f ⊗u g to be

(σ ⊗u τ)〈a,bi〉 = σa ∗ (τb1 , . . . , τb|a|).

The unit object and structure maps are given by the same formulas as for Sig.

The Monoidal Structure on Sigs
We set

A⊗OB = {〈a, bi, σ〉 : a ∈ A, bi ∈ B, ∂a(i) = ∂bi(0), i = 1 . . . |a|, σ ∈ Sn, n = Σi|bi|}/ ∼,
2A significantly more complicated example of such calculations is presented in full detail in

the next section, when discussing the horizontal monoidal structure �. See also theorem 3.3 in
[SZ13].

3They have the requisite universal properties in MonFib.

65



where the equivalence relation ∼ is given by

〈a · τ, bτ(i) · στ(i), σ〉 ∼ 〈a, bi, τ ∗ (στ(1), . . . , στ(|a|)) ◦ σ〉,

where, as usual, ∗ denotes composition in the operad of symmetries.
The typing map is defined by

∂A⊗OB,−
[〈a,bi,σ〉]∼ = ∂A,−a

and the requirement that the square

Σi|bi| Σi|bi|

|bi| O

σ−1

∂A⊗OB,+

∂Bbi

commutes, where the unnamed arrow is the canonical coprojection into the coprod-
uct. This is essentially the definition we gave above, with the inputs permuted by
σ. The symmetric action is given by

[〈a, bi, σ〉]∼ · τ = [〈a, bi, σ ◦ τ〉]∼

With these definitions we obtain a well defined object A⊗O B in Sigs/O.
The unit object is defined as for ordinary signatures. The associativity and

unit isomorphisms are defined analogously to the case of ordinary signatures, at
the level of representatives of equivalence classes.

We also define the action of morphisms via representatives of equivalence
classes:

f ⊗u g([〈a, bi, σ〉]∼) = [〈f(a), g(bi), σ〉]∼

Proposition 2.2.4. The isomorphisms of proposition 2.1.4 are strict monoidal.

Proof. In both cases all the formulas are the same on both sides of the isomorphism.

Proposition 2.2.5. The canonical functor SigS → SigS is strong monoidal.

Proof. Direct computation.

This proposition will become obvious later on, once we define the tautological
actions.
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2.3 Monoidal Signatures with Amalgamation
Definition

The bifibration of monoidal signatures with amalgamation, denoted Sigma, is de-
fined by the following pullback square

Sigma Siga

Mon(Siga) SetU

where U : Mon(Siga) → Set is the functor that maps a monoid to its set of
function symbols.

Remark 2.3.1. Note that the canonical functor Siga → Sigs does not preserve
this set of function symbols, because it maps a signature X to S(X) – a significantly
larger set. This is the ultimate reason for the failure of the original Baez-Dolan ap-
proach to be equivalent to all the others. We will come back to this point throughout
section 6.2.

Thus a monoidal signature is a map X → M †, where M is the set of function
symbols of a monoid (and this monoid structure is retained). The morphisms are
maps of signatures with nonstandard amalgamation over morphisms of monoids in
Siga. It is important to keep in mind that these morphisms of monoids have their
own amalgamation permutations, which are retained. This will be important in
the construction of the second, horizontal, monoidal structure �, below.

Since pullbacks preserve algebra (corollary 1.1.12), the monoidal signatures
carry a monoidal structure, denoted by ⊗, and a strict monoidal forgetful functor
Sigma → Siga, fibered over U . This means that all the formulas we have given for
signatures with nonstandard amalgamation are also valid for Sigma, and we will
not repeat them here.

In particular, every ⊗-monoid in Sigma determines a monoid in Siga. This
applies especially to all instances of the web monoid (defined later) – if we are
dealing with a single fiber, we will not distinguish between Sigma and Siga, since
the forgetful functor Sigma → Siga is a fiberwise isomorphism.

2.3.1 The Second Monoidal Structure � on Sigma
Consider an object A ∈ Sigma over a monoid M . It has a typing A → M †, and
we can consider the output type A→ M † → M . Since M is a monoid over some
set O, it has its own typing M → O†. The composite A→ M † → M → O† gives
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us a typing of A over O. Thus every a ∈ A has two kinds of inputs and outputs.
The ones just defined will be called horizontal, the old ones will be called vertical.
As a set we define

A�M B = A⊗O B,

which means

{〈̇a, bi〉̇ : ∂M∂Aa (0)(i) = ∂M∂Bbi (0)
(0)},

where i ranges over (0, k] with k = |∂Aa (0)| (arity computed in M). We will use the
notation 〈̇ . . . 〉̇ and 〈. . .〉 to distinguish between elements of A�M B and A⊗M B.
To ease notation we will write ǎ for ∂Aa (0). We must define the typing of this set,
that is a function A�M B →M †. The output type is the composite

∂�,−
〈̇a,bi 〉̇

= A⊗O B →M ⊗O M
µ−→M,

where the arrows from A and B to M are the output types (considered as mor-
phisms in Siga with trivial amalgamation), used to define the horizontal typing,
and µ is multiplication in M . Using our notation we can write

∂�,−
〈̇a,bi 〉̇

= µ(ǎ, b̌i).

The inputs are just the inputs of a and bi concatenated in order

∂�,+
〈̇a,bi 〉̇

= [∂A,+a , ∂B,+b1
, . . . , ∂B,+bk

] : (n0 + n1 + . . . nk]→M

The reader should imagine that a and bi are arranged on a level surface (“hori-
zontally”) and all the vertical inputs (including those of a) are visible “from above”,
and are available in forming (A �M B) ⊗M C. We may illustrate this by the fol-
lowing picture:

In the above picture, the big black triangles represent function symbols. The inte-
rior triangles are the vertical inputs of different types (colors). The whole picture
is a single element of A � B, and all the interior triangles are its vertical inputs.
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The horizontal inputs, used to construct this formal composite, are implicit, and
should be imagined as dangling off the black triangles, like in the introduction.
Similarly, the outputs of either kind are not shown, since this picture will be part
of more complicated wholes, above theorem 2.4.1 and below theorem 4.1.1.

In this convention, the ⊗ monoidal structure on Sigma looks as follows:

Here we have illustrated a single element of A ⊗ B. The solid triangles are from
B, and attach to appropriately typed horizontal inputs in an element of A (the
large black triangle).

We need to describe the values of � on morphisms. It is easy to see that a
morphism in Sigma is completely described by a quintuple (f, τ, u, σ, v), where
(u, σ, v) is a homomorphism of monoids M → N in Siga over some function v in
Set, and (f, τ) is a morphism in Siga from A → M † to B → N † over u. Let f
and f ′ be two such homomorphisms. We define

f � f ′(〈̇a, b1, . . . , bk 〉̇) = 〈̇f(a), f ′(bσ−1
ǎ (1)), . . . , f

′(bσ−1
ǎ (k))〉̇

as a function. The permutation τ � τ ′ permutes the vertical inputs of the formal
composites according to τ for the inputs from a and τ ′ for inputs from the bi, and
places the blocks in which these inputs are arranged on the block belonging to its
image. Formally we define τ � τ ′ as follows

τ � τ ′〈̇a,bi 〉̇ = (1, σǎ) ∗ (τa, τ ′b1 , . . . , τ
′
bk
).

where (1, σ) means the coproduct of the identity on the singleton and σ (conjugated
by a translation to act on [2, k + 1]). Using the same notation for more general
permutations we could have written

τ � τ ′〈̇a,bi 〉̇ = (τa, σǎ ∗ (τ ′b1 , . . . , τ
′
bk
))

The entire morphism f � f ′ is now the quintuple (f � f ′, τ � τ ′, u, σ, v).
The unit I� takes values I�(M), which are defined to be ∂I�(M) : O → M † '

M ×M∗. The first factor is the output type, and ∂I�(M)(o) takes the value e(o)
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on this factor, where e : O → M is the unit of multiplication in M . The inputs
are defined to be empty for all o ∈ O.

We must define the coherence isomorphisms. Both ρ� and λ� are defined
analogously to the previous case, replacing 〈. . . 〉 with 〈̇ . . . 〉̇. They are given by

λA(〈̇1∂Mǎ (0), a〉̇) = a

ρA(a) = 〈̇a, 1∂Mǎ (1), . . . , 1∂Mǎ (|ǎ|)〉̇

We take the amalgamation permutations to be the identity, since the unit I�
has no vertical inputs. If it did, there would be no bijection between the inputs of
both sides.

The only problem is the definition of α�. The problem is that M may have
nonstandard amalgamation. That is the multiplication M ⊗O M → M need not
be strict – it can shuffle the inputs according to some nontrivial permutation. We
have used it to define the horizontal typing. Because of this the naive associativity
isomorphism A� (B�C)→ (A�B)�C is not even well defined, since the values
it “should” have are not necessarily among the elements of (A�B)� C.

The correct solution, for geometrical and other reasons4, is the following. De-
note by γ (more precisely γM) the amalgamation permutations of the multiplica-
tion map of M (that is of µ : M ⊗O M →M , which lives in Siga/O). Define

α�
A,B,C(〈̇a, 〈̇bi, ci,j 〉̇〉̇) = 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇

as a function. We leave it to the reader to see that the term on the left is well
defined. Indeed, this is the only formula which works when the horizontal inputs
of 〈̇a, bi〉̇ are all distinct.

We must define the vertical amalgamation permutations. For this consider a, bi
and ci,j as formal variables. Let κ〈̇a,〈̇bi,ci,j 〉̇〉̇ be the permutation which sends each
formal variable on the list 〈̇a, 〈̇bi, ci,j 〉̇〉̇ to itself on the list 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇. More

precisely these lists are

〈̇a, 〈̇b1, c1,1, . . . , c1,l1 〉̇ . . . 〈̇bk, ck,1, . . . , ck,lk 〉̇〉̇
〈̇〈̇a, b1, . . . , bk 〉̇, cγ−1

〈ǎ,b̌i〉
(1,1), . . . , cγ−1

〈ǎ,b̌i〉
(k,lk)
〉̇

4For example, the constructions in chapter 6 depend critically on this definition
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To define the amalgamation permutations of α�, which we will denote by π,
we make κ act on blocks of the appropriate length (the length of the inputs of each
function symbol)

π〈̇a,〈̇bi,ci,j 〉̇〉̇ = κ〈̇a,〈̇bi,ci,j 〉̇〉̇ ∗ (1(|a|], . . . 1(|ck,lk |])

thus, each block of inputs “tracks” the position of its corresponding function sym-
bol. Again, this permutation is the only well defined one when all the inputs of
a, bi and ci,j are distinct. Therefore by the (proof of the) separation principle it is
the only formula that can be natural, given what we want to do with the function
symbols.

We will now prove that α� is natural and satisfies the pentagon identity. The
rest of the proof that (�, α, λ, ρ) defines a monoidal fibration structure is very easy
and formally identical to the corresponding part of the proof for ⊗ in Siga.

Naturality of α�. We consider the diagram

A� (B � C) (A�B)� C M

A′ � (B′ � C ′) (A′ �B′)� C ′ N

α�
A,B,C

α�
A′,B′,C′

f � (g � h) (f � g)� h u

All three morphisms are over the homomorphism of monoids u. We will check that
they are equal as functions first, and then consider the amalgamation permuta-
tions. Consider the term

〈̇a, 〈̇bi, ci,j 〉̇〉̇

Applying both ways to go around the diagram we obtain

〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

1 (i,j))〉̇

and

〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

2 (i,j))〉̇

Where σ are the amalgamation permutations of u, and ξ1 and ξ2 are given as
follows5:

5The “check” symbol over the lowermost index a was replaced by ∂ due to TEX-nical issues.
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ξ1 = γN〈 ˇf(a), ˇg(b
σ−1
∂a

(i)
)〉 ◦ σ ⊗ σ〈ǎ,b̌i〉

ξ2 = σµ(ǎ,b̌i) ◦ γ
M
〈ǎ,b̌i〉

Their equality follows from the fact that u is a homomorphism of monoids – this is
the equality required from the amalgamation permutations of a homomorphism.

We are left with proving that the amalgamation permutations are equal, thus
we must prove that

π〈̇f(a),〈̇g(b
σ−1
ǎ (i)

),h(c
σ⊗σ−1

〈ǎ,b̌i〉
(i,j)

)〉̇〉̇ ◦ τ � (δ � ζ)〈̇a,〈̇bi,ci,j 〉̇〉̇ =

(τ � δ)� ζ〈̇〈̇a,bi 〉̇,cγ−1
〈ǎ,b̌i〉

(i,j)
〉̇ ◦ π〈̇a,〈̇bi,ci,j 〉̇〉̇

Both these permutations permute the input blocks of the function symbols
a, bi and ci,j, and apply some permutation inside each block. This follows from
our definitions of π and β � χ. We will prove their equality in two (concurrent)
steps: we will show that the block permutations are equal, and then that the same
permutation is applied inside each block.

To see the equality of block permutations we argue for each function symbol.
The argument for a is trivial. The arguments for bi are similar to (and simpler
than) the arguments for ci,j. We will therefore only consider those last symbols.
Each ci0,j0 is part of a larger symbol 〈̇bi0 , ci0,j 〉̇. Let us analyze what both sides do
to this block and its elements.

The left permutation applies δ� ζ〈̇bi0 ,ci0,j 〉̇ to the input block of this larger sym-
bol, and moves it to its position in 〈̇f(a), 〈̇g(bσ−1

ǎ (i)), h(cσ⊗σ−1

〈ǎ,b̌i,〉
(i,j))〉̇〉̇ (i.e. applies

(1, σǎ) to the input blocks). In particular ζci0,j0 is applied to our input block, and
it is placed on the block of h(ci0,j0) in 〈̇f(a), 〈̇g(bσ−1

ǎ (i)), h(cσ⊗σ−1

〈ǎ,b̌i,〉
(i,j))〉̇〉̇. The final

π moves the block to its position in 〈̇〈̇f(a), g(bσ−1
ǎ (i))〉̇, h(cξ−1

2 (i,j))〉̇, with ξ2 given
above.

The right permutation breaks up this bigger block, since π is applied first. By
definition of π, the input block of ci0,j0 is moved to its position in 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇.

Then we must apply (τ � δ) � ζ〈̇〈̇a,bi 〉̇,cγ−1
〈ǎ,b̌i〉

(i,j)
〉̇. Looking at the definition, we see

that ζci0,j0 is applied to our block, and then all the blocks (including those of a and
bi, which are permuted by (1, σǎ) before this) are permuted by (1, σµ(ǎ,b̌i)). This
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means that the input blocks of ci,j are permuted by σµ(ǎ,b̌i). This means that our
block lands on the block of h(ci0,j0) in 〈̇〈̇f(a), g(bσ−1

ǎ (i))〉̇, h(cξ−1
1 (i,j))〉̇.

But we know that ξ1 = ξ2. Therefore the block permutations are equal. We
have also seen that ζci0,j0 is applied to our block in both cases. Thus both permu-
tations are equal.

The pentagon identity. Since we have established naturality, we can apply the
separation principle 3.1.5. All the functors in the pentagon diagram are jointly
agreeable and separated – their values on prone morphisms (which are constructed
by pullback, as in Siga) are strict. To see separability consider a term

〈̇a, 〈̇bi, 〈̇ci,j, di,j,k 〉̇〉̇〉̇
label the inputs of a by consecutive natural numbers, starting with 0, then label
the inputs of b1 with consecutive numbers after the ones used for a. Repeat
this process until the last di,j,k is reached. Label the outputs so as to maintain
composability. This defines the needed lift. By the separation principle we are
reduced to checking the pentagon identity on function symbols.

After some amount of calculation we find that we must compare

〈̇〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇, d(1⊗γ)−1

〈ǎ,〈b̌i,či,j〉〉
◦γ−1

〈ǎ,µ(b̌i,či,j)〉
(i,j,k)〉̇

and6

〈̇〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇, d(γ⊗1)−1

〈〈̇ǎ,b̌i 〉̇,či,j〉
◦γ−1

〈µ(ǎ,b̌i),čγ−1
〈ǎ,b̌i〉

(i,j)
〉(i,j,k)

〉̇

which comes down to the equality

(1⊗ γ)−1
〈ǎ,〈b̌i,či,j〉〉

◦ γ−1
〈ǎ,µ(b̌i,či,j)〉

= (γ ⊗ 1)−1
〈〈ǎ,b̌i〉,či,j〉

◦ γ−1
〈µ(ǎ,b̌i),čγ−1

〈ǎ,b̌i〉
(i,j)

〉

This equality is satisfied by the amalgamation permutations of µ by virtue of
associativity.

2.4 Distributivity For Monoidal Signatures
We can now define the distributivity structure on Sigma which will give us the
web monoids used in the definition of opetopic sets. By theorem 1.7.8, to define a
distributivity structure we need only specify ϕA,B,X and ψX , which satisfy certain
coherence conditions.

6Note the five levels of indexing.
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By definition, ϕA,B,X : (A⊗X)� (B ⊗X)→ (A�B)⊗X maps the term

〈̇〈a, x0,1, . . . , x0,l0〉, 〈b1, x1,1, . . . , x1,l1〉, . . . , 〈bk, xk,1, . . . , xk,lk〉〉̇

to

〈〈̇a, b1, . . . , bk 〉̇, x0,1, . . . , x0,l0 , x1,1, . . . , x1,l1 , . . . , xk,1, . . . , xk,lk〉

with trivial amalgamation permutations.
ψX : I� → I� ⊗X is defined by

1o 7→ 〈1o,−〉

for o ∈ O (the set of types of M). The (−) represents an empty list, since the
vertical inputs of elements of I� are empty.

The morphism ϕ expresses the fact that the following picture, following the
pictorial conventions of subsection 2.3.1, is unambiguous. It illustrates both the
function symbols in (A � B) ⊗ X and the symbols in (A ⊗ X) � (B ⊗ X) – the
order of operations leading to this picture is irrelevant.

Theorem 2.4.1. The above definitions give Sigma a distributivity structure of ⊗
over �.

The long, but trivial, proof is given in the next subsection.

2.4.1 Proof of Theorem 2.4.1
We must check whether ϕA,B,X and ψX define a distributivity structure for Siga.
To do this we will show that they are natural and prove that they satisfy all the
coherence diagrams listed in theorem 1.7.8.

Before we dive into the calculations two remarks are in order. First, conditions
III −V II are very easy. To make our point we will leave the last diagram (which
is unnecessary anyway) as a rather trivial exercise. The only real problem is
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the complexity of the terms in conditions I and II. Our calculations for these
conditions will look somewhat like a physicist’s version of tensor calculus – crawling
with indices. To ease our problems we will use the separation principle – all the
functors involved in these conditions are agreeable and separated (as we will see).

Proposition 2.4.2. ϕA,B,X and ψX are isomorphisms, fibered natural in all vari-
ables.

Proof. The statement for ψ is obvious, as is the isomorphism part. We consider
naturality for ϕ:

(A⊗X)� (B ⊗X) (A′ ⊗X ′)� (B′ ⊗X ′)

(A�B)⊗X (A′ �B′)⊗X ′

M N

(f ⊗ h)� (g ⊗ h)

(f � g)⊗ h
ϕA,B,X ϕA′,B′,X′

u

where f, g and h are over the homomorphism u. The amalgamation permutations
of these morphisms are denoted σ, τ, δ and θ respectively. We consider a term

〈̇〈a, x0,k〉, 〈bi, xi,k〉〉̇

in (A⊗X)� (B ⊗X) and apply (f � g)⊗ h ◦ ϕA,B,X to it, obtaining

〈〈̇f(a), g(bθ−1
ǎ (i))〉̇, h(xσ�τ−1

〈̇a,bi 〉̇
(i,k))〉 (2.3)

On the other hand, we can apply (f ⊗ h)� (g ⊗ h) and obtain

〈̇〈f(a), h(x0,σ−1
a (k)〉, 〈g(bθ−1

ǎ (i)), h(xθ−1
ǎ (i),τ−1

b
θ−1
ǎ (i)

(k))〉〉̇,

which ϕA′,B′,X′ maps to

〈〈̇f(a), g(bθ−1
ǎ (1)), . . . , g(bθ−1

ǎ (k))〉̇,
h(x0,σ−1

a (1)), . . . , h(x0,σ−1
a (l0)

), h(xθ−1
ǎ (1),τ−1

b
θ−1
ǎ (1)

(1)), . . . h(xθ−1
ǎ (k),τ−1

b
θ−1
ǎ (k)

(lk)
)〉,

which is equal to term 2.3 by our definition of τ � δ (and the formula for inverses
in the operad of symmetries).

75



We must still prove that the amalgamation permutations are equal. This means
that

(σ ⊗ δ)� (τ ⊗ δ)〈̇〈a,x0,k〉,〈bi,xi,k〉〉̇ = (σ � τ)⊗ δ〈〈̇a,bi 〉̇,xi,k〉
Fortunately, we can write out both sides in this case, using just our definitions.
The left side is

(1, θǎ) ∗ (σa ∗ (δx0,k), τbi ∗ (δxi,k))

and the right side is

[(1, θǎ) ∗ (σa, τbi)] ∗ (δxi,k)

They are equal by the associativity of the operad of symmetries.

Let us see why all our functors are jointly agreeable. This is a simple conse-
quence of our formulas. Prone morphisms in Sigma are defined using Set-pullback
(just like in Siga), and are therefore strict, and the projection π : MN → M is
strict. Therefore all possible combinations of ⊗ and � on these morphisms will
have standard amalgamation – the formulas for amalgamation give identities if
they are supplied only with identities. Nonstandard amalgamation does not ap-
pear out of thin air, so to speak.

Separation can be seen, in some sense, in the same way. All our functors are
combinations of ⊗ and �, and the typing of their values is defined from the typings
of their arguments. Thus the arguments contain the simplest building blocks of
the terms we will consider. If our term is, for example 〈f, g1, . . . , gn〉 ∈ A ⊗ B,
then the simplest building blocks are f and the gi. We can attach consecutive
natural numbers to the inputs of g1, bigger numbers to the inputs of g2, and so on
up to gn. We can attach numbers to outputs of gi to maintain composability with
f – in this case they can be arbitrary. This will define a term in π∗A⊗ π∗B with
injective typing mapping to the original one when we forget the added numbers.
This proves separability of the functor ⊗ for Sigma (and Siga also). This procedure
works for terms of arbitrary complexity, in particular for those which are elements
of our diagrams7.

We start with the easy diagrams (the last one is an exercise).

Condition III. An element of A�B is of the form

〈̇a, bi〉̇,
7Formally we should use induction on complexity of the terms, but this only obscures the

idea. An argument essentially equivalent to the separability of F� �F� can be found in lemma
7 of [HMP02], part 2.
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where i ranges over the horizontal inputs of a. The map ρ⊗ � ρ⊗ maps this to

〈̇〈a, 1∂Aa (j)〉, 〈bi, 1∂Bbi (j′)〉〉̇,

where j and j′ range over the vertical inputs. The map ϕ maps this to

〈〈̇a, bi〉̇, 1∂Aa (j), 1∂Bbi (j
′)〉,

which is exactly what ρ⊗ does to the original term. By separability we are finished.

Condition IV. We start with

〈̇〈1∂Mǎ (0),−〉, 〈a, xi〉〉̇,

where (−) represents the empty list. There is only one a since 1∂Mǎ (0) is unary. ϕ
maps this to

〈〈̇1∂Mǎ (0), a〉̇, xi〉,

which λ� ⊗ 1 maps to

〈a, xi〉.

The final result of this way is thus f applied to the above term. The other way
around the diagram goes like this. Starting with the original term we obtain in
the first step

〈̇1∂Mǎ (0), f(〈a, xi〉)〉̇,

and then, applying λ�,

f(〈a, xi〉)

in the second step. Thus both ways agree.

Condition V. The condition says very little in our case. We start with

〈1o,−〉,

which is mapped by ψ−1 to 1o.
Alternately it is mapped by α⊗ to (surprise!)

〈〈1o,−〉,−〉,

and then by ψ−1 ⊗ 1 to
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〈1o,−〉,

which the final ψ−1 maps to 1o, thus agreeing with the first way.

Condition VI. This is entirely trivial – there is only one way to add an empty
list to a unary term. We start with 1o ∈ I� and both ψ and ρ⊗ map it to

〈1o,−〉,

by definition for ψ, and for ρ⊗ because I� has no vertical inputs.
Now we turn to the more complicated cases

Condition II. We start with a rather unwieldy

〈̇〈a, 〈xi, yi,j〉〉, 〈bk, 〈x′i′ , y′i′,j′〉〉〉̇,

which ϕ maps to

〈〈̇a, bk 〉̇, 〈xi, yi,j〉, 〈x′i′ , y′i′,j′〉〉,

which after α⊗ becomes

〈〈〈̇a, bk 〉̇, xi, x′i′〉, yi,j, y′i′,j′〉.

The other way maps the original term by α⊗ � α⊗ to

〈̇〈〈a, xi〉, yi,j〉〉, 〈〈bk, x′i′〉, y′i′,j′〉〉〉̇,

and then by ϕ to

〈〈̇〈a, xi〉, 〈bk, x′i′〉〉̇, yi,j, y′i′,j′〉.

Applying the final ϕ⊗ 1 yields

〈〈〈̇a, bk 〉̇, xi, x′i′〉, yi,j, y′i′,j′〉,

in agreement with our previous calculation.
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Condition I. Up to now we did not have to deal with any permutations acting
on terms (the other ones were taken care of by the separation principle). The first
condition is the hardest one because this is not true in this case. Fortunately, the
permutations are manageable. We begin with

〈̇〈a, xi〉, 〈̇〈bk, xk,j〉, 〈ck,l, xk,l,m〉〉̇〉̇.

The last index of each instance of x ranges over the vertical inputs of a, bk or ck,l.
The indices k and (k, l) range over horizontal inputs of a and bk.

After applying 1� ϕ to this term we obtain

〈̇〈a, xi〉, 〈〈̇bk, ck,l〉̇, xk,j, xk,l,m〉〉̇,

which ϕ maps to

〈〈̇a, 〈̇bk, ck,l〉̇〉̇, xi, x1,j, x1,l,m, . . . , x2,j, x2,l,m, . . . 〉.

We must now determine what α�⊗1 does to this term. This means looking at the
definition of the amalgamation permutations of α�, which we have denoted by π:

π〈̇a,〈̇bi,ci,j 〉̇〉̇ = κ〈̇a,〈̇bi,ci,j 〉̇〉̇ ∗ (1(|a|], . . . 1(|ck,lk |]),

where κ is the permutation that implements the movements of the function symbols
between 〈̇a, 〈̇bi, ci,j 〉̇〉̇ and 〈̇〈̇a, bi〉̇, cγ−1

〈ǎ,b̌i〉
(i,j)〉̇. Therefore α� ⊗ 1 acts on our term as

follows

〈〈̇〈̇a, bk 〉̇, cγ−1

〈ǎ,b̌k〉(k,l)
〉̇, xi, xk,j, xγ−1

〈ǎ,b̌k〉(k,l),m
〉,

where γ are the amalgamation permutations of multiplication in M .
We must determine what happens when we take the diagram the other way

around. By our typing conventions α� maps our original term to

〈̇〈̇〈a, xi〉, 〈bk, xk,j〉〉̇, 〈cγ−1

〈ǎ,b̌i〉
(k,l), xγ−1

〈ǎ,b̌k〉(k,l),m
〉〉̇,

which ϕ� 1 makes into

〈̇〈〈̇a, bk 〉̇, xi, xk,j〉, 〈cγ−1

〈ǎ,b̌i〉
(k,l), xγ−1

〈ǎ,b̌k〉(k,l),m
〉〉̇.

Applying the final ϕ we obtain

〈〈̇〈̇a, bk 〉̇, cγ−1

〈ǎ,b̌i〉
(k,l)〉̇, xi, xk,j, xγ−1

〈ǎ,b̌k〉(k,l),m
〉,

as we should. This concludes the proof of theorem 2.4.1.
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2.5 Tautological Actions
If we forget that an object of Sig has inputs (but not the output!) we obtain
an object of Set·→·, since O† ' O × O∗ gives a decomposition of the typing into
(output, inputs) – forgetting the second factor leaves us with a map A→ O, which
is an object of Set·→·. This defines a fibered forgetful functor U : Sig→ Set·→·

We can also construct a fibered functor − : Set·→· → Sig, which defines the
inputs to be empty. This is neither a left nor right adjoint to U . We will call X
the sterile signature associated to X.

Definition 2.5.1 (Tautological Action of Signatures on Set·→·). For A ∈ Sig/O
and d : X → O ∈ Set/O = Set·→·/O, we define:

A ? X = U(A⊗X) = {(a, xi) : a ∈ A, xi ∈ X, ∂Aa (i) = d(xi), i = 1, . . . , |a|},

with the map to O given by dA?X(a, xi) = ∂Aa (0).

This formula is universal for all our fibrations of signatures over Set – the same
formula (using their own respective monoidal structures) works for Sig,Siga and
Sigs. We will distinguish these actions by a subscript: ?, ?a, ?s.

The verification that this defines an action in all three cases is essentially the
same as checking that the monoidal structures satisfy the coherence conditions.
The details of this simple computation are left to the reader.

By our construction of colimits in Siga (see 2.7.1), and their preservation by
the monoidal structure by theorem 2.7.2, we immediately obtain the following
corollary.

Corollary 2.5.2. The actions ? and ?a preserve coproducts in the left variable.
They also perserve filtered colimits and reflexive coequalizers in both variables.

Proof. We need to see that all the functors in 2.5.1 preserve the listed colimits (the
construction of these colimits for Siga will be given in 2.7.1). This is simple for
−: it is cocontinuous since it has a fibered right adjoint G : Sig → Set·→·, which
is defined as follows:

G(A) = U(A \ {symbols in A with non-empty inputs}).

U trivially preserves coproducts. It preserves filtered colimits and reflexive co-
equalizers by their construction, which is given in 2.7.1.

2.5.1 The Pullback Action
Since we defined Sigma as the pullback of the monoidal fibration Siga, all of its
actions pull back as well to give actions of Sigma. The tautologous action pulls
back to the pullback action, defined by the diagram
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U∗Set·→· Set·→·

Sigma ×Mon(Siga) U
∗Set·→· Siga ×Set Set·→·

Mon(Siga) Set

U∗?a

U

?a

cod

U∗cod

Again, the formula for U∗?a is the same as the one for ?a, but the set of types (or
the codomain of d : X →M) forms a monoid in Siga. We will denote the pullback
action by ? in the sequel, and also denote U∗U (the functor Sigma → U∗Set·→·,
which forgets the vertical inputs, the pullback of the input forgetting functor for
Siga) as U . This will not cause any confusion, since the pullback action will always
be called such. Note that the formula of definition 2.5.1 is still true for the pullback
action, as is its corollary 2.5.2.

2.6 Interpretation as Endofunctors

2.6.1 Polynomial and Analytic Functors

Definition 2.6.1. Let O be a set. An analytic functor over O is a finitary functor

Set/O −→ Set/O

which weakly perserves wide pullbacks (weak means the uniqueness clause in the
relevant universal property is dropped), or equivalently preserves weak wide pull-
backs (for the definition of weak limits see [CWM98, p. 235]). A wide pullback
in a category C is simply a product (of any number of factors) in C/X for some
object X ∈ C.

A polynomial functor is an analytic functor, but which strongly preserves wide
pullbacks.

To define a categories of analytic and polynomial functors, we must specify
which natural transformations are analytic and polynomial. An analytic morphism
of analytic functors F,G over O is a natural transformation τ : F → G, which is
weakly cartesian. This means that the naturality squares

81



F (X) G(X)

F (Y ) G(Y )

τX

F (f) G(f)
τY

are weak pullbacks. A polynomial morphism between polynomial functors is a
cartesian natural transformation – the naturality squares are required to be ordi-
nary pullbacks. For polynomial functors this is not stronger that the requirement
of being weakly cartesian – polynomial functors are a full subcategory of analytic
functors [Z10, 7.19].

These functors naturally assemble into bifibrations Poly ⊂ An → Set over
Set, such that Poly/O and An/O are the categories of polynomial and ana-
lytic functors over O, respectively. These are subbifibrations of the exponential
Exp(Set·→·) = (Set·→·)Set·→· .

Since analytic and polynomial functors are closed under composition, both
Poly and An are strict monoidal, just like the bifibration of endofunctors Exp(Set·→·)

2.6.2 Relation to Signatures
The tautologous actions

?? : Sig? ×Set Set·→· → Set·→·,

where ? = a, s or is blank, have exponential adjoints, with codomain the exponen-
tial monoidal fibration Exp(Set·→·),

repa,s : Siga,s → Exp(Set·→·)

are characterized by the following theorem:

Theorem 2.6.2 (6.12 and 7.5 of [Z10]).

1. The morphism repa is full on isomorphisms, and is a monoidal equivalence
onto its essential image, which consists of polynomial functors and cartesian
natural transformations.

2. The morphism reps is full on isomorphisms, and is a monoidal equivalence
onto its essential image, which consists of analytic functors and weakly carte-
sian natural transformations.

The morphism rep (for ordinary signatures) is not full on isomorphisms.
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2.7 Categorical Properties of Signatures
In this section we collect the categorical properties of signatures necessary for
later proofs. They are elementary, and do not seem to be of intrinsic interest. The
reader may skip this section, referring back to it as necessary.

2.7.1 Colimits in Categories of Signatures
Signatures without amalgamation have very nice (co)completeness properties –
they are complete and cocomplete (both globally and fiberwise). Unfortunately
the addition of amalgamation permutations spoils some of these properties, as the
following example shows.

Let A be a signature with one binary function symbol, over a singleton set
O = {∗}. Then we have two obvious morphisms A → A – the identity and a
morphism which permutes the inputs of our function symbol. Since permutations
are invertible, these two morphisms are not coequalized by any other morphism.
Therefore Siga does not have all coequalizers (fibered or not). A similar argument
shows that signatures with amalgamation do not have a terminal object (fiberwise,
or globally).

An analogous example shows that Mon(Siga) has no terminal object, fiberwise
or globally. We now turn to the positive results:

Proposition 2.7.1. The fibration Siga has the following cocompleteness proper-
ties:

1. Small coproducts (fibered or not).

2. All (small) fibered filtered colimits.

3. Fibered reflexive coequalizers.

Proof. We leave the first item as a warm-up exercise. The other constructions
unfortunately require some work.

Filtered colimits. By corollary 1.2.3 we may restrict our attention to indi-
vidual fibers. We will consider the fiber Siga/O. There is a forgetful functor
U : Siga/O → Set/O, which forgets the input types, but not the output (it cor-
responds to the projection O† ' O × O∗ → O). The category Set/O is obviously
cocomplete. We will use it to build our colimits.

Consider a filtered diagram F : D → Siga/O. Each signature is the coproduct
of countably many signatures consisting of all the n-ary function symbols of the
original signature, for n ∈ N. Morphisms preserve arity, so this is also true for the
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entire diagram F . We may therefore assume that all the values of F consist of
signatures with function symbols of a fixed arity n ∈ N.

By cocompleteness U ◦ F has a colimiting cone τ : U ◦ F ·−→ X in Set/O. We
will show that it can be lifted to a cone in Siga/O. The fact that any such lift is
colimiting is trivial, since permutations are invertible.

If all the values of F are empty, the colimit is empty, and we are done. We
may assume that F has nonempty values. Since all the function symbols in the
values of F are n-ary, we declare that each element of X is also an n-ary symbol.
We must define the typing of each symbol and the amalgamation permutations
of the components of the colimiting cone. For each x ∈ X (which exist, since
F has nonempty values) consider its inverse image in the diagram U ◦ F – those
function symbols which map to x under the components of the colimiting cone.
These inverse images are disjoint, and therefore we can consider them separately.

Choose an f ∈ F (d) which maps to x under τd. We declare that the amalga-
mation permutations of τd are the identity for f . This gives us a typing of x. This
also determines the amalgamation permutations of all other symbols which map
to x – the diagram is filtered, and permutations are invertible, so considering only
the permutations we can get anywhere in the inverse image of x starting from f .
Such a procedure may result in a contradiction – and it does in the example we
gave above for nonexistence of coequalizers. But in our case the diagram is filtered,
so any two parallel morphisms are equalized by a third one, and no contradiction
can arise. Any two potentially different ways for getting from f to another symbol
have equal amalgamation permutations.

Reflexive coequalizers. Like in the previous case, we are lucky – the amalga-
mation permutations of the two maps f and g in the reflexive coequalizer diagram

A B

f

g

s

must be equal, since they have a common inverse (the permutations of s). Consider
the coequalizer e : U(B) → E of U(f) and U(g) (i.e. the coequalizer in Set). We
can turn E into a signature, by declaring the inputs of [b] ∈ E to be the inputs
of any of its representatives b ∈ B. Like before, no contradictions can arise from
such choices, since the permutation amalgamations for f and g are equal. We
can then make e into a morphism of signatures by declaring the amalgamation
permutations to be identities.
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The verification that this is indeed a coequalizer in Siga proceeds as above
– we first check in Set, at the level of function symbols, and then argue for the
amalgamation permutations, which in this case is trivial.

Theorem 2.7.2. The all the functors in the monoidal structures on Siga and
Sigma introduced above preserve fibered filtered colimits and fibered reflexive co-
equalizers. They also preserve coproducts in the left variable.

Proof. The second statement is obvious: the symbol a in the formal composite
〈a, bi〉, where a ∈

∐
iAi must come from exactly one Ai, and this means that the

natural map ∐
i

(Ai ⊗B)→ (
∐
i

Ai)⊗B

is an isomorphism. This is also true for �, since it is defined in terms of ⊗.
The first statement is also easy: as we have seen, fibered filtered colimits and

reflexive coequalizers in Siga are constructed, essentially, in Set. By corollary
1.2.3 this is also true for Sigma, since the projection Sigma → Siga is a fiberwise
isomorphism.

It is well known that in Set filtered colimits and reflexive coequalizers commute
with finite products. Now note that A ⊗ B, with A and B being signatures over
O, is nothing but a coproduct of finite products: lists of the form

〈a, bi〉,

with the typings of a and bi held fixed, are simply elements of the products

A(∂A(a))×B(∂B(b1))× . . .×B(∂B(bn)),

where a has arity n, and the notation C(some typing) is the set of function symbols
in the signature C with that typing.

The whole A⊗ B is just the coproduct of these products, with the sum being
over O† ⊗O†, the set of all possible compatible typings (the product above is the
summand corresponding to 〈∂A(a), ∂B(bi)〉). Since we know that filtered colimits
and reflexive coequalizers commute with other colimits, and with finite products
in Set, the whole operation A ⊗ B also preserves filtered colimits and reflexive
coequalizers, by their construction in Siga.

The same argument applies to �, since again, it is based on matching outputs
to inputs.

2.7.2 Wide Pullbacks in Categories of Signatures
Theorem 2.7.3. The categories Siga and Sigma have wide pullbacks, which are
preserved by all their monoidal structures and their associated free monoid con-
structions.
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The proof of this theorem takes the rest of this subsection. We start with a
lemma that does a lot of the work for us. Its proof is elementary category theory,
and is omitted.

Lemma 2.7.4. Let B, E ,F ,G be categories with wide pullbacks, and let the functors
p1 : E → B, p2 : F → B, p3 : G → B and F : E → G preserve them. Then:

1. The category E ×B F has wide pullbacks, and the projections to E and F
preserve them.

2. If E is a relative monoidal category over B, and the monoidal structure and
unit preserve wide pullbacks (which exist by the above point), then the relative
category of monoids Mon(E) has wide pullbacks, and the forgetful functor
Mon(E)→ E preserves them.

3. If F is over B then its pullback p∗2F : E ×B F → G ×B F also preserves wide
pullbacks.

Now suppose we can prove that Siga has wide pullbacks preserved by the pro-
jection to Set, and that the monoidal structure preserves them. Then Mon(Siga)
has wide pullbacks by the above proposition. Sigma is defined as the pullback

Sigma Siga

Mon(Siga) Set

pma

U
pa

Since U preserves pullbacks, we obtain from the above lemma that Sigma has wide
pullbacks, and its projection preserves them. By the last part of the lemma, the
vertical monoidal structure ⊗, I⊗ on Sigma also preserves wide pullbacks, since it
is a pullback of the structure on Siga.

To prove theorem 2.7.3 we need to show that Siga has wide pullbacks preserved
by the projection to Set, that its monoidal structure preserves them, and that the
horizontal structure �, I� on Sigma preserves wide pullbacks, as well as the free
monoid functor F�.

Consider a family fi : Xi → Y in Siga for which we wish to compute a pullback.
To simplify the situation, we use the functorial factorization constructed in lemma
3.2.3. Thus we write

fi = Xi
ai−→ X[i]

f̄i−→ Y,

where the first map is an isomorphism over Oi with nonstandard amalgamation,
and the second map is strict. The signature X[i] is simply X with function symbols
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retyped according to the amalgamation permutations of fi, so that f̄i : X[i] → Y
is strict, and is identical to fi at the level of function symbols.

To define
∏

Y Xi, consider the pullback of the X[i] over Y , considered as or-
dinary signatures (it is elementary to see that Sig is complete, since it has small
products and equalizers). To see that this is a pullback in Siga, consider the strict
projections pi :

∏
Y X[i]→ X[i], and their obvious compositions

πi :
∏
Y

X[i]
pi−→ X[i]

a−1
i−−→ Xi.

Note that these are maps with nonstandard amalgamation. We claim that this
defines the desired pullback in Siga. It is obvious that this is a cone, so we only
need to see that is a limiting cone. Consider any other cone gi : Z → Xi. We can
obtain a cone aigi : Z → X[i]. These maps can have nonstandard amalgamation,
but since they form a cone over Y , all the permutations are determined by the
constant f = fi ◦gi : Z → Y . Thus, the obvious and unique set map Z →

∏
Y X[i]

can be given a unique structure of a morphism in Siga, which completes our proof.
Note that the set of types for

∏
Y X[i] is

∏
O Oi, where O is the set of types for

Y and Oi are the types for Xi. Thus the projection Siga → Set preserves wide
pullbacks.

Wide Pullbacks and Monoidal Structures

Now we must show that the functors I : Set→ Siga and ⊗ : Siga×SetSiga → Siga
preserve wide pullbacks. This fact is obvious for I, since I(O) is just the set O
with a unary typing of each of its elements with itself. The functor ⊗ is not much
more difficult. The natural map∏

Y

Xi ⊗
∏
Z

Ti →
∏
Y⊗Z

Xi ⊗ Ti

is given by

〈(xi)i, ((ti)i)j〉 7→ (〈xi, ti,j〉)i,

where (xi)i is an element of
∏

Y Xi, and (ti)i are elements of
∏

Z Ti, as j ranges
over the inputs (any one) of the xi. The map above transforms a formal composite
of compatible families into a single compatible family of formal composites. It is
clearly a bijection and hence an isomorphism (whatever the amalgamation per-
mutations are on the types, we can always invert them). It is obvious that the
associativity and unit isomorphisms are compatible with the above one.

Thus it follows from point 3 of lemma 2.7.4, and the 2-functoriality of pull-
backs in Cat, that the vertical monoidal structure (⊗, I⊗) on Sigma preserves
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wide pullbacks. This leaves the horizontal structure (�, I�). Again, the unit is
easy – I�(M) is just I⊗(M) with the vertical inputs removed. It is thus obvious
that it preserves wide pullbacks. The computation for � is formally the same as
for ⊗ with 〈. . . 〉 replaced by 〈̇ . . . 〉̇. Indeed A�M B as a set is defined as A⊗O B,
where O is the set of types for M , and the typing of A and B over O is defined as

A
typing−−−−→M † output−−−−→M

typing−−−−→ O†

Thus, since we know how to compute pullbacks in Sigma in terms of those in Siga,
the natural map ∏

X

Ai �
∏
Y

Bi →
∏
X�Y

Ai �Bi

will be the same as the natural map for ⊗ at the level of function symbols. But
we already know it is a bijection in that case, and so it is an isomorphism.

Compatibility with the associativity and unit isomorphisms is again obvious.

The Free Monoid Construction and Wide Pullbacks

To finish the proof, we must show that F� preserves wide pullbacks. The compu-
tation for F� is the same as for F⊗ in both Sigma and Siga. Thus we will show
that the free monoid construction in Siga preserves wide pullbacks.

Proposition 2.7.5. The fibrations E = Siga,Sigma have the following exactness
property: if J is a diagram category describing a wide pullback, then the wide
pullback functor EJ → E preserves coproducts.

Proof. Since the proposition asserts that a certain naturally defined map is an
isomorphism, we can forget about the input typing of the function symbols, and
check for a bijection. This means applying the forgetful functor Sig→ Set·→·, to
the codomain fibration. But all of the limits and colimits involved are computed in
Set·→· at the level of function symbols. For wide pullbacks we proved this above.
For coproduts it is obvious.

Thus it suffices to show this property for the codomain fibration, where it is
clear.

The free monoid construction is defined in the same way for all our monoidal
structures by theorems 2.7.2, 2.7.1 and 1.5.2. By the free monoid formula, the
elements of F(X), where X is over O, are therefore either (but not both) of the
following

io a unit, where o ∈ O
〈x, t1, . . . , tn〉
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where x ∈ X, and the ti are terms in F(X), and n is the arity of x. Thus F(X)
consists of trees colored by function symbols in X, with arity corresponding to the
number of children of the node.

We wish to see that the natural map

F(
∏
Y

Xi)→
∏
F(Y )

F(Xi)

is an isomorphism. Like always, it suffices to check that it is a bijection. Had
proposition 2.7.5 stated that colimits along N preserve wide pullbacks, we would
be done, since every part of the formula for the free monoid would preserve them.
Unfortunately this is not true. The map above is obviously injective, as it is for
any such colimit of wide pullbacks. The problem lies in the surjectivity. A typical
element of ∏

lim−→ Aj

lim−→
j

Xi,j

consists of compatible equivalence classes ([xi])i∈I , and the representatives xi
need not all be definable over the same Aj. Thus there is no element [(xi)] in
lim−→j

∏
Aj
Xi,j that would map to it. This situation can only happen, however, if

the fibers of the Xi,j over a compatible family of elements of Aj (i.e. an element
in lim←−j Aj) grow as j increases, so that the xi can be selected in such a way that
they cannot all exist at once in the fibers of Xi,j over Aj for a single j. Otherwise
the element ([xi]i∈I) is already in lim−→j

∏
Aj
Xi,j.

In our case the fibers do not grow. To see this, consider that trees have a
height (the longest distance from the root to a leaf), and the Xn in the free monoid
construction consists precisely of trees of height at most n. Thus the elements of∏

F(Y )F(Xi) consist of families of trees of at most some specific height, since they
map to a single tree in F(Y ). Once trees this height are constructed, no new
trees of this size can appear in the later stages of the construction of F(Xi) – only
higher trees are added later on. Thus the unfortunate situation we have described
above cannot happen, and our natural map is a surjection.
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Chapter 3

Fundamental Properties of
Signatures

This chapter contains the results and constructions for signatures which are specific
to them, and are not related to general category theory. They are of critical
importance in the later chapters.

The first of these properties is the separation principle. It was abstracted from
the ideas in the proofs in part 2 of [HMP02]. It allows us to ignore the amal-
gamation permutations in Siga when comparing natural transformations between
two sufficiently nice fibered functors into that category. This simplifies later ar-
guments greatly, since the amalgamation permutations are often defined using
iterated recursion, and manageable formulas for them simply cannot be written
down. Thus we save a great deal of time avoiding iterated inductive comparisons
of permutations, of which there are more than enough already.

The next two sections contain an alternative view of U∗Set·→·, where U : Mon(Siga)→
Set is the functor which assigns to monoids their sets of function symbols. These
sections are highly technical, but unfortunately of fundamental importance. In
essence, they detail the original construction of monoidal signatures with amalga-
mation. The construction given in the previous chapter is in fact a clever and con-
venient shortcut – using it risks missing the foundational intuitions behind Sigma.
These two sections make them clearer: monoidal signatures with amalgamation
are the result of assembling the slices (Sigma/O)/M , where M is a monoid in Siga
over O, into a monoidal fibration, getting rid of the amalgamation permutations
(i.e. strictifying the structure maps A→M), and adding vertical inputs.

This is why the natural monoidal structure on the fibered slice Siga � U is
related to the horizontal structure � on Sigma – the second is obtained from the
first by a strictification procedure, which is why the formulas associated with its
construction are so complicated.

In the tradeoff between an easy and efficient construction of Sigma and a slightly
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less complicated construction of � we have chosen the former1.
We finish this chapter by discussing the monoidal property of the pullback

action. This builds in the previous two sections, and provides a reflection of the
distributivity structure on monoidal signatures in its pullback action. This may
sound rather esoteric, but in fact this property underlies all of the comparisons in
chapter 6. The main theorem of the last section, 3.4.1, states that the pullback
action is monoidal, in the sense that all of the functors (−) ? X (where d : X →
M ∈ U∗Set·→·) are coherently monoidal:

(−) ? X : (Sigma/M,�)→ (U∗Set·→·/M,⊗).

From this one may easily deduce the relation between free monoids in both fibra-
tions, as seen in corollary 3.4.2 – a result which will be repeatedly used in all three
of our comparisons in chapter 6.

3.1 The Separation Principle
We will often need to verify equality of certain natural transformations. The
problem can be split into two parts – check equality on function symbols, and on
amalgamation permutations. The first part is usually easy, but the second part is
often intractable – the formulas are just too complicated.

The separation principle is inspired by the construction of the multicategory of
function replacement in [HMP02], where the permutations are completely avoided
(at a cost of definiteness of the construction). We will settle for a little less,
exploiting naturality to get rid of the second part. Establishing naturality will be
difficult enough. We note the following trivial lemma.

Lemma 3.1.1. If in the following diagram in Sigma (or Siga) the morphisms h
and k are strict, then for a ∈ A we have σa = θh(a), where σ are the amalgamation
permutations of f and θ are the permutations of g.

A B

A′ B′

f

h
g

k

Now consider the following construction. Let M ∈ Mon(Siga) be a monoid.
We can construct a new monoid MN over the same set of types as follows. The

1The most difficult part of the argument – verifying the naturality of α� for permutations
arising from the new inputs, would be unaffected.
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universe of MN is M × N, the typing is defined by projecting onto M : M × N→
M → O†. The unit is the composite I →M 'M×{0} ↪→MN, and multiplication
is defined by

µMN〈(f, n0), (g1, n1), . . . , (gk, nk)〉 = (µM(f, g1, . . . , gk),
k∑
i=0

ni)

The fact that these formulas define a monoid follows from the fact that N is a
monoid in Set. Obviously the projection map π : MN →M is a homomorphism of
monoids. It will be essential in applications that this homomorphism is strict. In
fact we have defined a functor M 7→ MN, and π : (−)N → 1Mon(Siga) is a natural
transformation.

Let E be a fibration over Mon(Siga) and let F,G : E → Sigma be two fibered
functors. Consider the following two properties of F and G (which are to hold for
any M):

Definition 3.1.2. The functors F and G are called agreeable if for every X ∈ E
over M there is a prone morphism θ : Y → X over πM such that both F (θ) and
G(θ) are strict morphisms.

The notion of agreeability can be extended to any set of functors (we require all
of them to be strict on a single prone morphism). We will then say that functors
in this set are jointly agreeable.

Definition 3.1.3. A functor F is called separated if for some (and hence every)
prone morphism θ : Y → X over π the following holds: for every f ∈ F (X) there
is an f̃ ∈ F (Y ) in the fiber over f (i.e. mapping to f under F (θ)) whose typing is
injective.

The notion of separability can be extended to finite sets of function symbols (we
require that any finite set of function symbols can be lifted to ones with injective
typing, such that the typings of the lifted symbols are pairwise disjoint). We will
call such functors strongly separated.

Remark 3.1.4. All pairs of functors we will deal with will be agreeable and sep-
arated. In fact our functors will preserve strict morphisms, making agreeability
trivial to check.

Theorem 3.1.5 (The Separation Principle). Let E be a fibration over Mon(Siga),
let F,G : E → Sigma be two fibered functors, and let φ1, φ2 : F → G be two fibered
natural transformations whose components are equal on function symbols. If F
and G are agreeable and F is separated, then φ1 = φ2.
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Proof. We must prove equality of all components. Since they are equal on function
symbols, we must check the equality of amalgamation permutations. Consider an
f ∈ F (X) and choose a prone θ over π for which both F (θ) and G(θ) are strict.
We have the following situation:

F (Y ) G(Y )

F (X) G(X)

f̃

f

φ1
Y

φ2
Y

F (θ)
φ1
X

φ2
X

G(θ)

By separability there is an f̃ ∈ F (Y ) in the fiber over f whose typing is injective.
We know that φ1

Y and φ2
Y are equal on f̃ . Their amalgamation permutations on f̃

are uniquely determined, since its typing is injective. Thus they are equal. Now
lemma 3.1.1 implies that the amalgamation permutations are equal for f also.

The separation principle is also true for Siga. Instead of considering MN we
consider O × N for O ∈ Set.

There is considerable room in the above argument – one need not consider MN,
but some other monoid with infinite fibers over M . In our applications is also
important that the projection π has standard amalgamation. The choices we have
made work in general and make the statement of the separation principle short
enough to be applicable.

A similar argument can be used to define natural transformations between
agreeable functors, when we know what to do on function symbols. This is what
is done in part 2 of [HMP02] to construct multiplication in the multicategory of
function replacement.

3.2 An Alternative Description of U∗Set·→·

Our first result is that Siga � U (the fibered slice) is equivalent to U∗Set·→·. The
proof requires some preliminary constructions.

Lemma 3.2.1. For any M ∈ Siga/O there is a bijection {set maps X → M} '
{strict morphisms X →M over O}.

Proof. To a function X → M we assign a strict morphism, with X typed by the
composition X →M

∂−→ O†. Conversely, if the morphism is strict, then the typing
is defined by that formula, so we can forget it.
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The full subfibration of Siga � U of strict objects is defined as follows. Recall
that the objects of Siga � U are morphisms A → U(M) in Siga over some
O ∈ Set, where M is a monoid in Siga/O. An object is called strict if the
morphism A→ U(M) is strict. This fibration will be denoted by Siga � Ustr.

Corollary 3.2.2. The subfibration of Siga � U of strict objects is isomorphic to
U∗Set·→·.

Proof. The above lemma defines a bijection on objects. A morphism between
strict objects has, by lemma 3.1.1, the same amalgamation permutations as the
morphism in the base, and can therefore be regarded as a function. Conversely
any function between strict objects can be made into a morphism by setting the
amalgamation permutations to what lemma 3.1.1 says they should be. These
constructions are clearly inverse to each other.

We will now show that the subfibration of Siga � U of strict objects is in
fact fibered equivalent over Mon(Siga) to Siga � U . We will use a functorial
factorization for this purpose. This construction was first used in [HMP02] for
monoids.

Consider a morphism f : A→ B in Siga. We will factor it into two morphisms
A

ζf−→ A[f ] → B, with the first morphism an isomorphism and the second mor-
phism strict. The construction is simple: A[f ] is the same set as A, but with
typing defined by ∂A ◦ σ−1, which means ∂A[f ](a) = ∂A(a) ◦ σ−1

a , where σ are the
permutations of f , and ∂A is the original typing.

We now set the morphism ζf : A→ A[f ] to be the identity on function symbols
and have permutations given by σ. Obviously it is an isomorphism. The second
morphism acts as f on the function symbols, but is strict.

Recall that a functorial factorization is a section of the composition functor
C·→·→· −→ C·→·.

Lemma 3.2.3. The above construction uniquely defines a functorial factorization
on Siga and on Mon(Siga).

Proof. Since the morphisms are factorized into an isomorphism followed by some
other morphism, the middle of the factorization is uniquely defined by the com-
mutativity conditions. Functoriality is then trivial. It is also easy to check that
if we require the morphism ζf : A→ A[f ] to be an isomorphism of monoids, then
the middle factorization will also be a homomorphism if f was one.

This functorial factorization is not fibered in any good sense – the first mor-
phism is always over the identity, and the second is over whatever the original
morphism was over.
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Now let f : A → U(M) be an object of Siga � U . Then A[f ] → U(M) is a
strict object. Since the factorization was functorial, this defines a fibered functor
fct : Siga � U → Siga � Ustr. There is also the obvious inclusion i : Siga �
Ustr ↪→ Siga � U

Theorem 3.2.4. The above functors form an adjoint equivalence over Mon(Siga).

Proof. Save the adjoint part, this is a purely formal consequence of having a func-
torial factorization which factors a morphism into an isomorphism followed by an-
other morphism. Inclusion followed by factorization is the identity on Siga � Ustr.
A factorization followed by inclusion is isomorphic to the identity functor on
Siga � U by the following diagram:

A B

A[h] B[k]

M N

f

ζh
fct(f)

ζk

u

h k

The components ζh of the functorial factorization form an isomorphism from the
identity functor to the composite of factorization and inclusion.

For the adjunction we take the components ζ−1
h to be the counit – it is the

identity on function symbols, so we only need to worry about its amalgamation
permutations. The unit is the identity. The triangular identities then state that
the following two composites are identities

i(X)
1−→ i ◦ fct ◦ i(X)

ζ−1
i(X)−−−→ i(X)

fct(X)
1−→ fct ◦ i ◦ fct(X)

fct(ζ−1
X )

−−−−−→ fct(X)

They are true, since fct(ζ−1
h ) is the identity by lemma 3.1.1 (or direct calculation),

and ζ−1
i(X) is the identity for strict objects X.

Combining this theorem with corollary 3.2.2 we have

Theorem 3.2.5. There is an adjoint equivalence Siga � U → U∗Set·→·.
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3.3 A Monoidal Structure on U∗Set·→·

The fibration Siga � U is monoidal, and we have shown that it is equivalent to
Siga � Ustr ' U∗Set·→·. We can get a monoidal structure on the latter fibration
by the following general construction

Let C,D be categories (or fibrations over some base S), and let F : C → D,
G : D → C be an adjoint equivalence of categories (fibrations) with counit and unit
isomorphisms ε : GF → 1C and η : 1D → FG. If C is monoidal, then we can make
F and G into a monoidal equivalence using the following obvious formulas:

ID = F (IC)

A⊗D B = F (G(A)⊗C G(B))

as for the rest of the needed data (α, λ, ρ and monoidal structures on F and G),
the obvious choices are the correct ones.

Theorem 3.3.1. The above construction defines a monoidal structure on D, F
and G, for which ε and η are monoidal transformations.

Proof. Exercise. Everything follows from naturality of various transformations
except (all) diagrams involving η, where the triangular identities are also needed.

We can calculate what this structure looks like in our case. For example the
units are unchanged, since they have only unary function symbols. The associa-
tivity isomorphism is the following

αA,B,C(〈a, 〈bi, ci,j〉〉) = 〈〈a, bi〉, cγ−1
〈∂a,∂bi〉

(i,j)〉

for A,B,C in the fiber over M . ∂ denotes the structure morphisms to M , and γ
the amalgamation permutations of the multiplication map in M . This structure
will be denoted by ⊗.

Corollary 3.3.2. The functor U : (Sigma,�)→ (U∗Set·→·,⊗) is strict monoidal.

Proof. All the formulas for parts of both monoidal structures coincide.

This gives an alternative construction of Sigma – take Siga � U , strictify and
add vertical inputs. The construction by pullback is significantly more efficient.
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3.4 Monoidal Property of the Pullback Action
Consider the exponential adjoint ?̂ : U∗Set·→· → HomMon(Siga)

(Sigma,U∗Set·→·)
of the pullback action ? : Sigma × U∗Set·→· → U∗Set·→·. We have the following
theorem, which reflects the existence of a distributivity structure on Sigma in the
pullback action.

Theorem 3.4.1. This adjoint lifts to (�,⊗)-monoidal functors:

Hom�,⊗
Mon(Siga)

(Sigma,U∗Set·→·)

U∗Set·→· HomMon(Siga)
(Sigma,U∗Set·→·)

?̂

?̃

Proof. By definition 2.5.1 (which still holds true for Sigma, by corollary 1.1.12) we
have

?̂ = U∗ ◦R ◦ −,
where R is the functor X 7→ (−) ⊗X for Sigma, U∗ = HomMon(Siga)

(1, U) is the
action of U by postcomposition, and − is the sterile signature functor.

Since we have a lift R̃ ofR toEnd�Mon(Siga)
(Sigma), and U is strict (�,⊗)-monoidal

we can define ?̃ by

?̃ = U∗ ◦ R̃ ◦ −

Concretely, this gives us the following natural isomorphisms, where A,B ∈
Sigma, and X ∈ U∗Set·→·:

(A ? X)⊗ (B ? X)
φA,B,X−−−−→ (A�B) ? X

〈(a, xi,j), (b1, xi′,j′), . . . , (bk, xi′′,j′′)〉 7→ (〈̇a, b1, . . . , bk 〉̇, xm,n)

I� ? X → I⊗

(1o,−) 7→ 1o,

which are given by formulas formally identical to those for distributivity in Sigma.
They give each functor (−)?X the structure of a monoidal functor (Sigma/M,�)→
(U∗Set·→·/M,⊗) where X is over M .
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Corollary 3.4.2. The pullback action has the following properties:

1. Every functor (−) ? X maps �-monoids in Sigma/M to ⊗-monoids in
U∗Set·→·/M , where X is over M .

2. F�(I⊗) ? X ' F⊗(X). In particular, this isomorphism maps multiplication
to multiplication µ

F�
I⊗

? X ' µ
F⊗
X , and the units and counits: ηF�

I⊗
? X ' η

F⊗
X

and εI⊗ ? X ' εX .

Proof. The first point is trivial. The second one follows from the formula for free
monoids in theorem 1.5.2, the fact that ? preserves filtered colimits and coproducts
in the left variable (by corollaries 2.5.2, 1.1.12 and 1.2.3), and the fact that ? is
an action, which gives I⊗ ? X ' X. Thus (−) ? X maps the free �-monoid
construction in Sigma to the free ⊗-monoid construction in U∗Set·→·. Combining
these facts gives F�(I⊗) ?X ' F⊗(I⊗ ?X) ' F⊗(X) along with all the associated
structure.
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Chapter 4

The Web Monoid

The web monoid construction lies at the heart of our construction of opetopic sets,
the study of their structure, and all the comparison theorems. It is an algebraic
construction, in the sense that the result is a monoid in a monoidal category.
Accordingly, we only compare our work with other approaches of the same (or
similar) kind.

The specific monoids we use are instances of an abstract construction, char-
acterized by the three tensors theorem. It states that in any fibration with two
sufficiently nice, and independent monoidal structures (in the sense of distribu-
tivity structures, as explained in the introduction to chapter 1), the free monoid
F�(I⊗) has a unique ⊗-monoid structure, which commutes with the �-free monoid
structure. This commutativity condition is called the main diagram, and is made
possible by the distributivity structure. In our case this commutativity is quite
literal, at least if we interpret our monoids as monads – this is what theorem 6.1.7
amounts to.

The proof of the three tensors theorem is long and arduous. For this reason
we have split it into two parts. The first part is an outline, which contains all the
ideas and constructions needed to complete the proof. The second part consists
of the tedious computations necessary to check that the constructed structures
satisfy all the conditions of the proof, i.e. that the web monoid is indeed a monoid.

The proof is made possible by the explicit inductive construction of free monoids
we have given (theorem 1.5.2). This allows us to make an educated guess about
what the multiplication in the web monoid should be, and complete its definition
using a recursive formula, which is forced upon us by the main diagram.

In the section following the proof we give an example, showing that in the
web monoidW(M), considered as a monoid in Siga, cannot always have standard
amalgamation. It is not (usually) isomorphic to a monoid with standard amal-
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gamation, even if M is. The example is purely pictorial1, and the reason for its
existence is simple – in a tree each node can have many neighbors, and in a list of
inputs, each input can only have two. Thus, if nodes of a tree are to be treated
as inputs of function symbols, some shuffling upon replacing a node by a tree is
necessary, no matter the order in which we listed the nodes. The complexity of
nonstandard amalgamation is an unfortunate requirement, and there is no way
around it.

From this example it is easy to see that the frame monoids Sn(X) for opetopic
sets X (defined in the next chapter) usually have nonstandard amalgamation for
n ≥ 2.

In the last section of this chapter we prove two combinatorial theorems. They
state the conditions under which the web monoid functor W preserves wide pull-
backs, and assert that these conditions are satisfied for Sigma. These theorems are
used in the next chapter to prove that opetopic sets form a presheaf category. They
are called combinatorial, since they do, in fact, require some combinatorial argu-
ments with trees (or equivalently terms), but more importantly, they completely
replace the extremely complicated combinatorial constructions used in part 3 of
[HMP02] to build the multitopes and prove that multitopic sets form a presheaf
category. This result can be deduced from the equivalence of opetopic and multi-
topic sets from chapter 6 and these combinatorial theorems.

The name “web monoid” comes from 2-dimensional pasting diagrams, which
look like spider webs.

4.1 The Three Tensors Theorem

Theorem 4.1.1 (The Fibered Three Tensors Theorem). If the fibration E →
B admits the free monoid construction (definition 1.5.1) for monoidal struc-
tures � and ⊗, and ⊗ distributes over � by a distributivity structure (ϕ, ψ),
then there is a unique lift of the functor F�(I⊗(−)), the free �-monoid on the
⊗-unit functor, to the category of ⊗-monoids, such that the unit of the adjunc-
tion F� a U�, ηI⊗(−) : I⊗(−) → F�(I⊗(−)) is the unit of the multiplication
ν : F�(I⊗(−)) ⊗ F�(I⊗(−)) → F�(I⊗(−)), which in turn makes the following
main diagram commute (we abbreviate F�(I⊗(−)) to W):

1It therefore applies to all other algebraic approaches equivalent to ours.
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(W ⊗W)� (W ⊗W) W �W

(W �W)⊗W

W ⊗W W

ν � ν

ϕW,W,W

µ⊗ 1W

µ

ν

In the above diagram µ is the free multiplication in F�(I⊗(−)).

The third, implicit, monoidal structure in the theorem is the coproduct, which
is assumed to exist through the free monoid construction.

Note that all the structures mentioned in this theorem are stable under pullback
– the conclusion of holds in each fiber separately.

Using the pictorial conventions of subsection 2.3.1, we can illustrate this theo-
rem, at least for signatures Sigma, as follows:

ν � ν

(µ⊗ 1)φ

ν

µ

101



4.2 Outline of The Proof
We must check that ν is unique if it exists, construct it, and verify the conditions
of the theorem. We will do the first two of these steps here, and carry out the
remaining technical calculations in the next section. These first steps contain the
key idea of the proof, while the rest consists of tedious inductive computations.

As ⊗ preserves filtered colimits we need only determine compatible components
νn : Wn⊗W →W , whereWn is the n-th stage of the construction ofW = F�(I⊗)
from theorem 1.5.2. We will prove that these components are uniquely defined
by the conditions of the theorem and define ν using these components. We begin
with a trivial lemma.

Lemma 4.2.1 (Bootstrap lemma). If the following diagram commutes,

A B

C

D E

f

g

h

k
l

where h is an isomorphism and k has a section s, then

l = g ◦ f ◦ h−1 ◦ s

In addition, if k is an isomorphism, then the diagram commutes if and only if the
above equation holds.

Applying this lemma to the main diagram and the canonical section ŝ of the
free multiplication µ : W �W →W we obtain the equation:

ν = µ ◦ (ν � ν) ◦ ϕ−1 ◦ ŝ

which must be satisfied by ν, but is unhelpful until we precompose it with in,∞ ⊗
1: Wn ⊗W →W ⊗W , and obtain the following diagram:
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(W1 ⊗W)� (Wn−1 ⊗W) (W ⊗W)� (W ⊗W) W �W

(W1 �Wn−1)⊗W (W �W)⊗W

Wn ⊗W W ⊗W W

ν � ν
ϕ−1

ŝ⊗ 1

µ

ν

ϕ−1

sn ⊗ 1

in ⊗ 1

(i1 � in−1)⊗ 1

ν1 � νn−1

νn

The boundary of this diagram provides an inductive definition of νn, starting from
ν1. The unnamed arrow is (i1 ⊗ 1) � (in−1 ⊗ 1), and all the i maps should have
an additional∞ subscript (omitted for readability). This diagram is commutative
if ν exists. The top and bottom “bigons” or “biangles” are commutative, since
by definition νn = ν ◦ in,∞ ⊗ 1, and � is a functor. The upper small rectangle
is commutative by naturality of ϕ. To prove commutativity of the lower small
rectangle note the diagram

W1 �Wn−1 W1 �W W �W

Wn W W

1� in−1 i1 � 1

sn s
in 1

ŝ

which is the lower small rectangle with s added in the middle. The left square
commutes since s is by definition the limit of 1 � in−1,∞ ◦ sn. The right square
commutes by proposition 1.5.3 (this is how we defined ŝ).

So far we have obtained that if ν exists, then the νn must satisfy

νn = µ ◦ (ν1 � νn−1)ϕ
−1(sn ⊗ 1), (4.1)

which means that any candidate for ν is uniquely determined by ν1. The equation
immediately gives the compatibility condition νn ◦ in⊗1 = νn−1 – just addWn−1⊗
W in the lower left corner of the diagram above, two analogous small rectangles
above it, and use induction. We define ν0 = ν1 ◦ i0.
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We will show in the next section that ν1 is uniquely determined by the unit
conditions. We note that

W1 ⊗W ' (I� t I⊗)⊗W ' I� ⊗W t I⊗ ⊗W

Thus the map ν1 is determined by what happens on both of these components.
The calculations in the next section give these components as

ν1 = (i0ψ
−1
W , λ⊗W)

Where i0 : I� →W .

Proposition 4.2.2 (Uniqueness of ν). If ν exists, then it is the colimit of the
arrows νn : Wn ⊗W → W, with ν0, ν1 defined above, and νk defined by induction
using equation 4.1, for k > 1.

Proof. ν is determined by the family νn = ν ◦ in,∞⊗ 1. The calculations above (or
in the next section, in the case n = 1) determine these components uniquely.

Definition 4.2.3 (The definition of ν). We define ν : W⊗W →W as the colimit
of the arrows νn : Wn ⊗W →W.

We are now left with checking that this definition works. We do so in the next
section.

4.3 Details of The Proof

4.3.1 Determination of ν1 and ν0

In this subsection we still assume that ν exists. We must prove that ν1 =
(i0ψ

−1
W , λ⊗W) as claimed above. This follows from the unit conditions. They are

I⊗ ⊗W W ⊗W W ⊗ I⊗

W

η ⊗ 1 1⊗ η

ν
λ⊗ (ρ⊗)−1

We can expand them to the following commutative diagram
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W1 ⊗W W1 ⊗W1

I⊗ ⊗W W ⊗W W ⊗ I⊗ W1 ⊗ I⊗

W

1⊗ i1

i1 ⊗ 1
j ⊗ 1

λ

ν1

1⊗ j
i1 ⊗ 11⊗ η

ν
(ρ⊗)−1(i1 ⊗ 1)

where some of the original maps was omitted for readability. Maps labeled j are co-
projections of coproducts. They are factorizations of η (hence the commutativity).
We wish to determine the dotted arrow ν1. Note that

W1 ⊗W ' (I� t I⊗)⊗W ' I� ⊗W t I⊗ ⊗W

Thus the map ν1 is determined by what happens on both of these components.
The left unit condition immediately implies that the right component is mapped
to W by λ⊗W . To see what happens to I� ⊗ W consider the top map composed
with 1 ⊗ j and the inclusion of I� ⊗ I⊗ into W1 ⊗ I⊗. An easy calculation gives
that this is 1⊗η : I�⊗I⊗ → I�⊗W followed by the inclusion I�⊗W →W1⊗W .
Consider now the right unit condition. We obtain the diagram

I� I�

I� ⊗W I� ⊗ I⊗

I� ⊗W t I⊗ ⊗W I� ⊗ I⊗ t I⊗ ⊗ I⊗

W

1⊗ η t 1⊗ η

(?, λ⊗W)
i0(ρ

⊗)−1 t (ρ⊗)−1η

ψW

1

ψI⊗
1⊗ η

We want to determine the map “?”. The unnamed maps are coprojections. On
the right components of the coproducts this diagram commutes by naturality of
λ⊗ and the condition λI⊗ = ρ−1

I⊗
. The second component of the diagonal map is

determined by the naturality of ρ⊗ applied to the inclusion I� =W0 →W1 →W .
The top square commutes by naturality of ψ. From this we obtain the equation

? ◦ ψWψ
−1
I⊗

= i0(ρ
⊗
I�
)−1

from which follows, using coherence condition VI, that the map “?” is
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i0 ◦ ψ−1
W : I� ⊗W =W0 ⊗W →W .

Note that these calculations also determine that ν0 = i0,∞ψ
−1
W , since this map is ν1

precomposed with the inclusion I�⊗W →W1⊗W , and we have just determined
exactly this composite.

From now on we use the definition 4.2.3 for ν since we have already showed
that it is the only possible choice. We still have to check that ν defines a monoid
and makes the main diagram commute. We will intensely use induction – the first
component will satisfy an appropriate equality, usually because of the coherence
conditions, and then equality for all the other components will follow by applying
the inductive definition 4.1. The original condition will be recovered by applying
the colimit functor.

4.3.2 The Unit Conditions
The left unit condition holds as part of our definition of ν, since it factors through
ν1, which was defined in part by this condition. This leaves the right unit condition.
We will prove it using induction on n starting with n = 1, which consists of the
calculations above. For the inductive step we need to check that

νn ◦ 1⊗ η = in(ρ
⊗)−1.

Consider the following diagram:

(W1 ⊗ I⊗)� (Wn−1 ⊗ I⊗) (W1 ⊗W)� (Wn−1 ⊗W) W �W

(W1 �Wn−1)⊗W

Wn ⊗W W

(W1 �Wn−1)⊗ I⊗ Wn ⊗ I⊗

µ

ϕ−1
1,n−1

1⊗ η

sn ⊗ 1

1⊗ η
inρ

−1

sn ⊗ 1
νn

ϕ−1
1,n−1

(1⊗ η)� (1⊗ η) ν1 � νn−1

W1 �Wn−1ρ−1 � ρ−1 i1 � in−1

All the regions in it commute except possibly the small triangle below νn, which
we are investigating. This follows from the naturality of ϕ (note the abbreviation
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we have introduced here), the definition of νn, and the inductive hypothesis (for
the top region). From this we obtain that

νn1⊗ η = µ(i1 � in−1)(ρ
−1 � ρ−1)ϕ−1

1,n−1(sn ⊗ 1)

using the explicit definition of µ given in theorem 1.5.2. Thus if we can check that

µ(i1 � in−1)(ρ
−1 � ρ−1)ϕ−1

1,n−1(sn ⊗ 1) = inρ
−1,

we would be done. But this comes down to the commutativity of

(W1 ⊗ I⊗)� (Wn−1 ⊗ I⊗) W1 �Wn−1 W �W W

(W1 �Wn−1)⊗ I⊗ W1 �Wn−1 Wn

Wn ⊗ I⊗ Wn

ρ−1 � ρ−1 i1 � in−1 µ

µ1,n−1
ϕ−1
1,n−1

ρ−1
1

ρ−1
sn ⊗ 1 sn

1

in

which follows from the definition of µ (top triangle), naturality of ρ⊗ (bottom
rectangle), coherence condition III (top rectangle), and proposition 1.5.3 – the
defining property of sn (bottom triangle).

4.3.3 Commutativity of the Main Diagram
We will consider the diagram

(Wn ⊗W)� (Wm ⊗W) W �W

(Wn �Wm)⊗W

Wn+m ⊗W W

νn � νm

ϕn,m

µn,m ⊗ 1W

µ

νn+m

and prove its commutativity by induction on n (for arbitrary m), starting with
n = 0. In this case µ0,m = λ� is an isomorphism, and the second part of the
bootstrap lemma 4.2.1 tells us that we must prove

νm = µ((i0 ◦ ψ−1
W )� νm)ϕ−1

0,m(λ
−1 ⊗ 1),
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since ν0 = i0 ◦ψ−1
W . After applying the unit condition for µ to the right side of the

above equation we find that it is

λ ◦ (ψ−1
W � νm)ϕ

−1
0,m(λ

−1 ⊗ 1).

But by coherence condition IV for ψ and naturality of λ� this is exactly νm, and
we are done.

The inductive hypothesis is

µ(νn−1 � νm) = νn+m−1(µn−1,m ⊗ 1)ϕn−1,m

and we must show that

µ(νn � νm) = νn+m(µn,m ⊗ 1)ϕn,m.

Expanding the left side, we can calculate 2

µ(νn � νm) = (definition of νn)
µ([µ(ν1 � νn−1)ϕ

−1
1,n−1(sn ⊗ 1)]� νm) = (functoriality of �)

µ((µ� 1) ◦ [(ν1 � νn−1)ϕ
−1
1,n−1(sn ⊗ 1)]� νm = (associvativity of µ)

µ((1� µ) ◦ (α�)−1 ◦ [(ν1 � νn−1)ϕ
−1
1,n−1(sn ⊗ 1)]� νm = (functoriality of �)

µ((1� µ) ◦ (ν1 � (νn−1 � νm)) ◦ (α�)−1 ◦ [ϕ−1
1,n−1(sn ⊗ 1)]� 1) = (inductive hypothesis)

µ(ν1 � νn+m−1(µn−1,m ⊗ 1)ϕn−1,m ◦ (α�)−1 ◦ [ϕ−1
1,n−1(sn ⊗ 1)]� 1),

similarly for the right side

νn+m(µn,m ⊗ 1)ϕn,m
=

µ((ν1 � νn+m−1)ϕ
−1
1,n+m−1(sn+m ⊗ 1))(µn,m ⊗ 1)ϕn,m.

We will show that

ϕ−1
1,n+m−1(sn+m ⊗ 1))(µn,m ⊗ 1)ϕn,m

=
(1� (µn−1,m ⊗ 1))ϕn−1,m ◦ (α�)−1 ◦ [ϕ−1

1,n−1(sn ⊗ 1)]� 1.

This follows from the commutativity of the following diagram (specifically the
commutativity of the boundary)

2Unfortunately the diagrams involved are simply too big to include here.
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(Wn ⊗W)� (Wm ⊗W) ((W1 �Wn−1)⊗W)� (Wm ⊗W) ((W1 ⊗W)� (Wn−1 ⊗W))� (Wm ⊗W)

(Wn �Wm)⊗W ((W1 �Wn−1)�Wm)⊗W (W1 ⊗W)� ((Wn−1 ⊗W)� (Wm ⊗W))

Wn+m ⊗W (W1 � (Wn−1 �Wm))⊗W (W1 ⊗W)� ((Wn−1 �Wm)⊗W)

(W1 �Wn+m−1)⊗W (W1 ⊗W)� (Wn+m−1 ⊗W)

ϕn,m ϕ1�(n−1),m

(sn � 1)⊗ 1

µn,m ⊗ 1 (α�)−1 ⊗ 1

(1� µn−1,m)⊗ 1

ϕ−1
1,n+m−1

ϕ−1
1,(n−1)�m

1� (µn−1,m ⊗ 1)

(α�)−1

1� ϕn−1,m

sn+m ⊗ 1

(sn ⊗ 1)� 1︸ ︷︷ ︸ ϕ−1
1,n−1 � 1︸ ︷︷ ︸

I
II

III

IV

This diagram commutes, since all the indicated regions commute. I and IV com-
mute by naturality of ϕ, II commutes by coherence condition I for ϕ, and III
commutes by the coherence lemma 1.5.4.

4.3.4 Associativity of ν

We will now check that ν is associative. Note that this condition has not been
used to define ν, so as we have said earlier, it is a consequence of the main diagram
and the unit conditions.

Lemma 4.3.1. The composite νn ◦ (1⊗ im) factors through in·m, as in the diagram

Wn ⊗Wm Wn ⊗W W

Wn·m

1⊗ im νn

νn,m in·m

Proof. By induction on n. For n = 1 we have ν1 = (i0ψ
−1
W , λW), and the claim

follows from the naturality of λ⊗, ψ and the fact that i0 = im ◦ i0 (recall our abuse
of notation). We obtain ν1,m = (i0ψ

−1
Wm

, λWm).
The inductive step immediately follows from this commutative diagram:
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(W1 ⊗Wm)� (Wn−1 ⊗Wm) (W1 ⊗W)� (Wn−1 ⊗W) W �W Wm �W(n−1)m

(W1 �Wn−1)⊗Wm (W �W)⊗W

Wn ⊗Wm Wn ⊗W W Wnm

νn � νn−1
ϕ−1

sn ⊗ 1

µ

νn

ϕ−1

sn ⊗ 1
1⊗ im

1⊗ im µm,(n−1)m

inm

ν1,m � νn−1,m

The top arrow implements the inductive hypothesis, and the unnamed arrows are
the obvious ones.

We will show, by induction on n, for all m, the commutativity of

Wn ⊗ (Wm ⊗W) (Wn ⊗Wm)⊗W Wnm ⊗W

Wn ⊗W W

α⊗ νn,m ⊗ 1

1⊗ νm
νn

νnm

Passing to the limit gives the desired associativity law. For n = 0 we need to show
that

i0ψ
−1
Wm

(1⊗ νm) = νm((i0ψ
−1
Wm

)⊗ 1)α⊗,

which is an easy calculation following from the fact that ψ is natural (anything
on the right of ψ−1 can be canceled), and coherence condition V . The inductive
hypothesis to be used in passing from n− 1 to n is

ν(n−1)m(νn−1,m ⊗ 1)α⊗
n−1,m = νn−1(1⊗ νm)

Again we calculate:

νn(1⊗ νm) = (definition of νn)
µ((ν1 � νn−1))ϕ

−1
1,n−1(sn ⊗ 1)(1⊗ νm) = (functoriality of �)

µ((ν1 � νn−1))ϕ
−1
1,n−1(1⊗ νm)(sn ⊗ 1) = (naturality of ϕ)

µ((ν1(1⊗ νm)� νn−1(1⊗ νm)))ϕ−1
1,n−1,m⊗w(sn ⊗ 1) = (inductive hypothesis)

µ((νm(ν1,m ⊗ 1)α⊗
1,m)� (ν(n−1)m(νn−1,m ⊗ 1)α⊗

n−1,m))
ϕ−1
1,n−1,m⊗w(sn ⊗ 1) = (diagram below)

µ(νm � ν(n−1)m)ϕ
−1
m,(n−1)m[(ν1,m � νn−1,m)⊗ 1]

(ϕ1,n−1,m ⊗ 1)α⊗
1�(n−1),m⊗w(sn ⊗ 1)
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The relevant diagram is

(W1 �Wn−1)⊗ (Wm ⊗W) ((W1 �Wn−1)⊗Wm)⊗W

(W1 ⊗ (Wm ⊗W))� (Wn−1 ⊗ (Wm ⊗W))

((W1 ⊗Wm)⊗W)� ((Wn−1 ⊗Wm)⊗W) ((W1 ⊗Wm)� (Wn−1 ⊗Wm))⊗W

(Wm ⊗W)� (W(n−1)m ⊗W) (Wm �W(n−1)m)⊗W

α⊗
1�(n−1),m

ϕ−1
1,n−1,m⊗w

ϕ−1
1,n−1,m ⊗ 1

α⊗
1,m � α⊗

n−1,m

(ν1,m ⊗ 1)� (νn−1,m ⊗ 1) (ν1,m � νn−1,m)⊗ 1
ϕ−1
1⊗m,(n−1)⊗m

ϕ−1
m,(n−1)m

The top rectangle commutes by coherence condition II for ϕ. The bottom one com-
mutes by naturality of ϕ.

We will now calculate the left side of the associativity condition. To do this we
first calculate νn,m, using the diagram from the proof of lemma 4.3.1:

νn,m = µm,(n−1)m(ν1,m � νn−1,m)ϕ
−1
1,n−1,m(sn ⊗ 1).

Putting this into

νnm(νn,m ⊗ 1)α⊗
n,m,

we obtain

νnm((µm,(n−1)m(ν1,m � νn−1,m)ϕ
−1
1,n−1,m(sn ⊗ 1))⊗ 1)α⊗

n,m.

Now consider the diagram:

(Wm ⊗W)� (W(n−1)m ⊗W) W �W

(Wm �W(n−1)m)⊗W

(Wn ⊗Wm)⊗W Wnm ⊗W W

νm � ν(n−1)m

ϕ−1
m,(n−1)m

µm,(n−1)m ⊗ 1

µ

νnmνn,m ⊗ 1
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which is commutative by the commutativity of the main diagram. The unnamed
arrow is

[(ν1,m � νn−1,m)ϕ
−1
1,n−1,m(sn ⊗ 1)]⊗ 1.

From this, we obtain that the left side of the associativity condition is

µ(νm � ν(n−1)m)ϕ
−1
m,(n−1)m[(ν1,m � νn−1,m)ϕ

−1
1,n−1,m(sn ⊗ 1)]⊗ 1 ◦ α⊗

n,m,

which is the same as the right side of the associativity condition.

4.3.5 W as a Functor
The only thing left to check is that the W(u) are homomorphisms with respect
to ν. To see this, note that by theorem 1.5.2 the map η is fibered and natural.
This means that the units of W are preserved across fibers. That theorem also
tells us that the unit of µ and µ itself are preserved, since F� is fibered, and takes
values in the category of �-monoids. The structure maps λ and ψ are preserved
by assumption.

From this it follows that ν0 is preserved, by naturality of ψ and the fact that
i0 : I� →W is preserved:

I�(Q) W0(Q)⊗QW(Q) W(Q)

I�(O) W0(O)⊗OW(O) W(O)

ψW(Q)

ψW(O)

I�(u)

ν0(Q)

ν0(O)

W0(u)⊗uW(u) W(u)

i0(Q)

i0(O)

The triangles (top and bottom) and the left square commute, as does the boundary
of the diagram (the outermost arrows). Since ψ are isomorphisms, the right square
also commutes. Similarly ν1 is preserved, since it is defined using λ⊗, ψ and i0, all
of which are preserved by assumption, and coproducts, for which the appropriate
equalities are easy to check (using corollary 1.2.3). The inductive step is taken
care of by the following lemma.
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Lemma 4.3.2 (Functoriality lemma). The following diagram commutes, for n > 0

W1(O)�OWn−1(O) W1(Q)�QWn−1(Q)

Wn(O) Wn−1(Q)

W1(u)�uWn−1(u)

sn(O) sn(Q)

Wn(u)

Proof. Expanding the definitions we have

Wn−1(O) t I⊗,O �Wn−1(O) Wn−1(Q) t I⊗,Q �Wn−1(Q)

I�,O t I⊗,O �Wn−1(O) I�,Q t I⊗,Q �Wn−1(Q)

i0,n−1(O) t 1 i0,n−1(Q) t 1

I�,u t I⊗,u �Wn−1(u)

Wn−1(u) t I⊗,u �uWn−1(u)︸ ︷︷ ︸

which commutes, since i0,n−1 is preserved, and the other vertical components are
identities.

The preservation of νn now follows by induction from the following diagram
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(W1(O)�Wn−1(O))⊗W(O) W(O)�W(O)

Wn(O)⊗W(O) W(O)

Wn(Q)⊗W(Q) W(Q)

(W1(Q)�Wn−1(Q))⊗W(Q) W(Q)�W(Q)

(W1(O)⊗W(O))� (Wn−1(O)⊗W(O))

(W1(O)⊗W(O))� (Wn−1(O)⊗W(O))

I

IIO

IIQ

III

ϕ−1
1,n−1,O ν1(O)� νn−1(O)

ϕ−1
1,n−1,Q

ν1(Q)� νn−1(Q)

(W1(u)�Wn−1(u))⊗W(u)

sn(O)⊗ 1

Wn(u)⊗W(u)

νn(O)

sn(Q)⊗ 1

νn(Q)

W(u)

µ(O)

W(u)�W(u)

µ(Q)

The dotted arrow is (W1(u) ⊗ W(u)) � (Wn−1(u) ⊗ W(u)). The reader should
imagine two copies of the main diagram defining ν(O) and ν(Q), side by side,
connected by the variousWk(u). The picture above is a flattening of that situation.
We need to check the commutativity of the central square. To do this we check
that every other region commutes. I commutes by the functoriality lemma 4.3.2,
applied to the left variable. IIO and IIQ commute by the definition of νn, and
III commutes by the fact that W(u) are �-monoid homomorphisms, which they
are by definition. We now turn to unnamed regions. The region defined by the
dotted arrow, the leftmost arrow in region I, and ϕ commutes by naturality of ϕ.
The region defined by the dotted arrow and the solid boundary of the diagram to
the right of it commutes by the inductive hypothesis. Hence the central square
commutes.

The preservation of ν now follows from the second part of corollary 1.2.3. This
completes the proof of theorem 4.1.1.
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4.4 Nonstandard Amalgamation is Necessary

The following simple example shows that the web monoid W(M) need not be
isomorphic to any monoid with standard amalgamation, even if M is standard.
Such an isomorphism amounts to being able to retype the elements of the web
monoid in such a way as to get standard amalgamation for multiplication. The
example consists purely of pictures, and hence applies to most other constructions
in the literature (for example the multicategory of function replacement).

Consider a set O of three distinct types { circle, square, triangle } and a
signature M consisting of the following function symbols: {b, c, s, t, 1c, 1s, 1t}. The
symbol b (like binary) is binary, and its typing is arbitrary, but injective. We have
fixed one such typing in the pictures below. The symbols c, s, t are unary of input
and output type circle, square and triangle, respectively. The rest of the symbols
are to be considered as identities on their respective types (we will want to consider
M as a monoid). We will draw the nonidentity symbols like this

b c s t

The shapes indicate input/output types of the symbols. We will never draw the
identity symbols.

Note that M has, because of our choice of typing, a unique structure of a
monoid in Siga (up to a choice of identity arrows, one of which we have indi-
cated), and this monoid has standard amalgamation. Below we draw part of the
multiplication table for M . It shows the result of computing µ(〈c, b〉), µ(〈b, 1t, s〉)
and µ(〈b, t, 1s〉), where µ is the multiplication map.
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The web monoid W(M) consists of formal composites of these symbols (its
universe is F�(I⊗(M))). The list of input types of a formal composite is the list
of the symbols used to build it (in “tree order”, but this is irrelevant since we will
consider all the orderings), and its output type is its composite in M (image under
the counit).

Looking at the multiplication table for M , we see that in W(M)⊗W(M) the
following elements are well-defined. Each formal composite on the right is input to
the central binary symbol in the formal composite on the left (again, other inputs
get identities):
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and all of them compose to

(this ultimately follows from the definition of νn given in equation 4.1).
Consider the amalgamation permutations of multiplication in W(M). The

above composite has four distinct types – the list of function symbols used to
build it – as do the above elements of W(M)⊗W(M) which compose to it. Thus
the amalgamation permutations are determined uniquely once we determine the
order in which these types are listed for all the four elements we are considering.
We must list them in such a way that all the amalgamation permutations arising
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from the above compositions can be taken to be the identity. But in the above
elements ofW(M)⊗W(M) the binary symbol was listed next to each nonidentity
unary symbol (because of our convention for typing tensor products). The identity
permutation preserves the “was listed next to” relation. Thus, if we want standard
amalgamation, the binary function symbol in the above formal composite must
have as neighbors all three unary symbols. Three neighbors in a list is one too
many – a contradiction.

It is easy to see that the situation above actually arises in our opetopic sets.
Therefore some pasting diagram monoids must have nonstandard amalgamation.

This example is in some sense minimal – we need at least one non-unary symbol
to obtain a contradiction, and here we use exactly one.

4.5 Combinatorial Theorems

Theorem 4.5.1 (Abstract Combinatorial Theorem). If the categories E ,B have
wide pullbacks, and the projection E → B as well as all the structures �,⊗, (ϕ, ψ)
and I⊗, I� : B → E ,F� : E → Mon�(E) preserve them, then W : B → Mon⊗(E)
preserves wide pullbacks as well.

A few remarks before the proof: when we say that a monoidal structure pre-
serves wide pullbacks, we also mean that the associativity and unit isomorphisms
are compatible with this preservation in the obvious way (similar to the one defined
below for (ϕ, ψ)). It follows from our assumptions that the categories of monoids
in E have wide pullbacks for both structures � and ⊗, and that the forgetful func-
tors create them. Note that we need I� and I⊗ to preserve wide pullbacks to state
this, as well as to state what it means for F� to preserve wide pullbacks, since we
are working in the fibered context.

It is clear what preserving wide pullbacks means for functors. For a distribu-
tivity structure (ϕ, ψ) it means that the following diagrams are commutative:

(
∏

X Ai ⊗
∏

Z Ci)� (
∏

Y Bi ⊗
∏

Z Ci)
∏

(X⊗Z)�(Y⊗Z)

(Ai ⊗ Ci)� (Bi ⊗ Ci)

(
∏

X Ai �
∏

Y Bi)⊗
∏

Z Ci
∏

(X�Y )⊗Z

(Ai �Bi)⊗ Ci

ϕ
∏
ϕAi,Bi,Ci
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I�(
∏

Y Xi)
∏

I�(Y ) I�(Xi)

I�(
∏

Y Xi)⊗ A
∏

I�(Y ) I�(Xi)⊗ A

ψA
∏
ψA

where the horizontal maps are the natural ones, defined by wide pullbacks.

Proof of theorem 4.5.1. By our assumptions the natural mapW(
∏

Y Xi)→
∏

W(Y )W(Xi)
is an isomorphism in E and preserves the ⊗-units of both monoids. We only need
to check that it is a homomorphism with respect to multiplication.

There are two ways to do this. One way is a direct computation. In the proof
of the three tensors theorem an explicit recursive formula for multiplication in W
is given 4.1, and it is obvious by induction that it is stable under wide pullbacks,
since it is constructed out of µ, ϕ, ψ,�,⊗ and the unique readability map s, all of
which are stable. The details of this approach are left to the interested reader.

Another way is to appeal to the uniqueness clause in the three tensors theorem.
Consider the diagram

(W ⊗W)� (W ⊗W) W �W

(W �W)⊗W

W ⊗W W

(ΠW ⊗ ΠW)� (ΠW ⊗ ΠW) ΠW � ΠW

(ΠW � ΠW)⊗ ΠW

ΠW ⊗ ΠW ΠW

ϕW,W,W

µ⊗ 1W

µ
Πν � Πν

µ

Πν

Where we have abbreviatedW(
∏

Y Xi) byW and
∏

W(Y )W(Xi) by ΠW . Without
the dotted lines, this diagram is commutative, since we assumed enough preserva-
tion of wide pullbacks. Since the diagonal arrows are isomorphisms in E we can,
by transport of structure, fill in the dotted arrows by a ⊗-monoid structure on
W(

∏
Y Xi) whose unit is η. Thus we can make the main diagram for W(

∏
Y Xi)

commute by using this structure. But there is only one such structure (recall that
this structure is determined by the fiber only, not the functor structure of W), so
transport of structure along the isomorphism W(

∏
Y Xi) →

∏
W(Y )W(Xi) must

result in the unique correct multiplication on W(
∏

Y Xi), and thus this isomor-
phism is in fact a homomorphism with respect to the correct multiplication.

119



Theorem 4.5.2 (Concrete Combinatorial Theorem). The fibration Sigma →Mon(Siga)
satisfies the assumptions of the abstract combinatorial theorem.

Proof. Most of the work has already been done in the proof of theorem 2.7.3. We
are only left with checking that the distributivity structure preserves wide pull-
backs. But this is obvious from the defining formulas: the natural transformation
ϕA,B,X is given by mapping

〈̇〈a, x0,1, . . . , x0,l0〉, 〈b1, x1,1, . . . , x1,l1〉, . . . , 〈bk, xk,1, . . . , xk,lk〉〉̇

to
〈〈̇a, b1, . . . , bk 〉̇, x0,1, . . . , x0,l0 , x1,1, . . . , x1,l1 , . . . , xk,1, . . . , xk,lk〉

with trivial amalgamation permutations.
It is clear that if we replace a, bi and xi,j by compatible families of symbols in

a wide pullback, the formula will remain the same. The case of ψX is similarly
trivial.
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Chapter 5

Opetopic Sets

In this chapter we construct and analyze the category of opetopic sets. We adapt
the full formalism of [BD98], defining O-opetopic sets, where O is a monoid in Siga.
We prove that the O-opetopic sets assemble into a fibration over Mon(Siga), a
fact which was implicitly used in certain constructions in [BD98]. We call this
fibration the anytopic fibration, since O is any monoid.

The opetopic sets are a special case of O-opetopic sets, corresponding to the
choice O = I, the monoid with a single type, and a single unary operation (the
identity on the single type). Since all of our arguments in this chapter work for
arbitrary O, without any simplification for ordinary opetopic sets, we retain this
generality throughout.

The O-opetopic sets for O consisting of two types and a single unary non-
identity operation between them were deemed appropriate by Baez and Dolan to
describe weak n-functors in their definition of weak higher categories. The result-
ing shapes look like opetopes multiplied by an arrow · → ·. Due to the fibration
property, the ends of this arrow correspond to opetopic sets (interpreted by Baez
and Dolan as the domain and codomain of a weak n-functor). The middle de-
scribes (at least in low dimensions) double category-style arrows between them. It
would be interesting to see if natural transformations could be definied in a similar
way. It seems to me that operads, the basic ones we have been using, are only
appropriate for this first dimension, and new ideas are required to go higher up.

With the definition of opetopic sets accounted for, we proceed with the analysis
of their category. The critical insight is that opetopic sets are constructed in stages,
dimension by dimension. Having constructed an opetopic set up to dimension n, to
proceed further, the only thing that is needed is a set Xn+1 of (n+1)-dimensional
cells, and a specification of their boundaries, called frames (these are ultimately
parallel domains and codomains, can be seen from the comparison to multitopic
sets in section 6.3). This is encoded in a function ϑn : Xn+1 → Sn(X), which
assigns each cell its frame. This is enough to determine the (n + 1)-dimensional
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frames, and repeat the procedure. It is at this point that the web monoid plays a
critical role, and it is the most complicated and subtle aspect of opetopic sets.

Despite this complication of intermediate steps, it should be clear, and in
any case it will be proven, that (n + 1)-dimensional opetopic sets arise from the
n-dimensional ones by Artin gluing:

O−OSetn+1 = Set/Sn.

This is the content of lemma 5.2.3. The complexity of opetopic sets only arises
in the construction of Sn+1 from this data. Armed with this insight, and the
combinatorial theorem 4.5.2 for the web monoid, the structure of opetopic sets is
open to analysis.

The standard theory of Artin gluing, and some simple arguments, quickly lead
to the conclusion that all the categories of finite dimensional opetopic sets O −
OSetn are presheaf toposes. This is enough to show that the whole category is a
presheaf topos, using an ad hoc argument inspired by [Ch03].

Lemma 5.2.3 also allows us to easily analyze the limits and colimits in O−OSet,
somewhat independently of the abstract arguments leading to its identification as
a presheaf category. This allows us to establish representability for a naturally
defined family of functors, whose representing objects are easily seen to be the
O-opetopes.

Since we construct the opetopes as opetopic sets first, the rigid structure of
opetopic sets is reflected in the category of opetopes. We record several results to
this end, for later use in the comparisons of chapter 6. The extent of these results
may be succinctly summarized by saying that the O-opetopes form a FOLDS
signature [M95].

5.1 The Anytopic Fibration
The following definition is an adaptation of the definition given in [BD98] to the
language used here, with more details spelled out explicitly. A comparison of the
resulting categories is sketched in section 6.2. In the definition below monoids
are denoted using boldface, and their underlying sets of signatures are denoted
normally. Thus M is a monoid, considered in the category of monoids, and M is
the underlying object.

An O-opetopic set X is given by:

1. A monoid O ∈Mon(Siga) with a set of types M ∈ Set.

2. A sequence of objects Xn ∈ Siga/Xn−1, each in the fiber over the previous
one (considered as a set), for n > 0. By definition X0 is a set.
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3. A sequence of monoids Sn ∈Mon(Siga)/Xn, for n ∈ N.

4. A sequence of functions Xn+1
ϑXn−−→ Sn for n ∈ N, and a function ϑX−1 : X0 →

M , equipped with strict prone arrows ξXn (in Mon(Siga)):

O S0 W(Sn) Sn+1

M † X†
0 S†

n X†
n+1

ξX−1

∂S0

(ϑX−1)
†

ξXn

∂Sn+1

(ϑXn )
†

∂W(Sn)

The functions ϑXn can therefore be regarded as strict morphisms of signatures
Xn → Sn.

A morphism f : X → Y of opetopic sets, where X is O-opetopic, and Y is
O′-opetopic, is:

1. A homomorphism of monoids h : O→ O′ in Siga over a function f−1 : M →
N in Set.

2. A sequence of functions fn : Xn → Yn, for n ∈ N.

These data are subject to the following conditions:

1. The morphism fn+1 : Xn+1 → Yn+1 is well defined as a strict morphism in
Siga over fn, for n > 0.

2. The induced homomorphisms f̄n : Sn → Tn make the following diagrams
commute:

O S0

O′ T0

M † X†
0

N † Y †
0

ξX−1

h

f̄0

∂S0

f †
0(ϑY−1)

†

f †
−1

(ϑX−1)
†

∂T0

ξY−1
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W(Sn) Sn+1

W(Tn) Tn+1

S†
n X†

n+1

T †
n Y †

n+1

ξXn

W(f̄n)

f̄n+1

∂Sn+1

f †
n+1(ϑYn )

†

∂W(Sn)

f̄ †
n

(ϑXn )
†

∂W(Tn)

∂Tn+1

ξYn

and

Sn Xn+1

Tn Yn+1

ϑXn

fn+1

ϑYn
f̄n

considered in Siga, for n ∈ N.

Definition 5.1.1. The category defined above will be denoted A−OSet, and will
be called the category of anytopic sets, since the monoid O is arbitrary.

There is an obvious functor A−OSet→Mon(Siga), which maps the opetopic
set X to its underlying monoid O, and maps the map f : X → Y to its underlying
homomorphism of monoids h : O→ O′.

Proposition 5.1.2. The functor pOpt : A−OSet→ Mon(Siga) defined above is
a fibration.

Proof. We construct the prone arrows. Suppose we are given a morphism h : O→
O′, and an O′-opetopic set X. We construct h∗X inductively, as follows:

(h∗X)0 = X0 ×M N

(h∗X)n+1 = Xn+1 ×Sn(X) Sn(h
∗X),
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where Sn(h∗X) is the monoid determined from h∗Xk for k < n. It is important to
note that this definition defines not only the sets of n-cells of h∗X, but also the
structure maps (h∗X)n+1 → Sn(h

∗X), by induction, as follows:

ϑh
∗X

−1 = X0 ×M N → N is the pullback projection
ϑh

∗X
n+1 = Xn+1 ×Sn(X) Sn(h

∗X)→ Sn(h
∗X) is the pullback projection.

Note that the well definedness of the next term follows from that of the previous
term. The elementary verification that this is indeed a prone arrow for pOpt over
h proceeds again by induction, and is left to the reader.

In fact the inductive step consists of showing that the truncated O-opetopic
sets, defined below 5.2.1, form a fibration, and that lemma 5.2.3 allows us to
establish this in the next dimension.

Definition 5.1.3. The functor pOpt is called the anytopic fibration. Its fiber over
O ∈ Mon(Siga) is called the category of O-opetopic sets. For the special case
O = I, the monoid with one type and one unary operation, we reserve the name
opetopic sets and the notation OSet.

5.2 The Presheaf Property
In this section we use the concrete combinatorial theorem 4.5.2 to prove that
O-opetopic sets form a presheaf category.

Definition 5.2.1 (Truncated opetopic sets). The category O−OSetk is defined,
for k ∈ N, as the category resulting from restricting n in the definition of A−OSet
to be less than or equal to k.

For example O−OSet0 is isomorphic to Set/M , where M is the set of types
of O.

Lemma 5.2.2. The monoids Sn in the definition of O−OSet determine functors
Sn : O−OSet→ Set. This functor is also defined on O−OSetk, for k ≥ n.

Proof. Sn(X) is the set of function symbols in Sn, the sequence of monoids which
determines the O-opetopic set X. The first claim follows from the definition of a
morphism in O−OSet, the second claim follows from the fact that we can define
Sn from data of dimension n and less, as is clear from the definition.

Lemma 5.2.3. O−OSetn+1 ' Set/Sn, for n ≥ 0.
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Proof. This isomorphism is obvious: to specify an object of O−OSetn+1 from an
object X ∈ O −OSetn, it suffices to give a set map ϑn+1 : Xn+1 → Sn(X). The
same goes for morphisms.

We have obvious functors in : O − OSetn → O − OSetn+1, and trn+1 : O −
OSetn+1 → O − OSetn, which, respectively, define Xn+1 = ∅ and forget Xn+1.
Under the above isomorphism the functor trn+1 corresponds to the projection
Set/Sn → O−OSetn.

Proposition 5.2.4. in a trn+1

Proof. Since in defines Xn+1 = ∅ we always have a unique set map Xn+1 → Yn+1,
which is easily checked to extend any given morphism of truncated opetopic sets
X → trn+1(Y ). Thus, to give a morphism in(X) → Y is to give a morphism
X → trn+1(Y ).

Theorem 5.2.5. The category O − OSetn has wide pullbacks, and the functor
Sn : O−OSetn → Set preserves them.

Proof. By induction. We argue that the functor Sn : O −OSetn → Mon(Siga),
with values in monoids, preserves wide pullbacks. The weaker claim needed for
the theorem then follows from the construction of wide pullbacks for monoids in
subsection 2.7.2, which stated that, at the level of function symbols, all the relevant
pullbacks are constructed in Set.

For n = 0 we have O − OSet0 = Set/M , and S0(X) = O ×M† X†, so the
claim follows from the fact that wide pullbacks commute with other limits (other
pullbacks in this case) and the free monoid construction (since (−)† is isomor-
phic to the functor of finite sequences, which is a special case of the free monoid
construction).

The inductive step: we know that if T : C → D preserves wide pullbacks, and
D has wide pullbacks, then the projection D/T → D creates them. Thus we
know exactly how to compute wide pullbacks in Set/Sn. The wide pullbacks of
the sets of cells Xn are computed in Set, and by the inductive assumption, so
is Sn. Thus the functor W(Sn(−)), by the concrete combinatorial theorem 4.5.2,
preserves wide pullbacks. Sn+1 is by definition a pullback (computed in Set) of
W(Sn), and so Sn+1(−) also preserves wide pullbacks.

Corollary 5.2.6. O−OSetk is a presheaf topos.

Proof. We have O−OSet0 ' Set/M ' SetM – a presheaf topos – so we can, by
lemma 5.2.3, inductively invoke Artin gluing [CJ95, 4.1 (v)], [W74].

Corollary 5.2.7. The functor trn+1 has a right adjoint, and therefore is continuous
and cocontinuous.
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Proof. Since this functor corresponds to the projection Set/Sn → O − OSetn,
this is just part of the general theory of Artin gluing [CJ95, 4.7].
Corollary 5.2.8. The functor in : O−OSetn → O−OSetn+1 preserves projective
indecomposables.
Proof. We have O − OSetn+1(in(X),−) ' O − OSetn(X, trn+1(−)), and trn+1

preserves colimits.

Consider the diagram

O−OSet0
tr1←−− O−OSet1

tr2←−− · · · trn←−− O−OSetn
trn+1←−−− · · ·

Proposition 5.2.9. O−OSet ' lim←−O−OSetk in Cat.
Proof. Since limits can be constructed in Cat by products and equalizers, it is
enough to see that an opetopic set is the same as a compatible sequence of
truncated opetopic sets, which is obvious. The same argument works for mor-
phisms.
Theorem 5.2.10 (Existence of limits and colimits in OSet). The category O −
OSet is small complete and cocomplete.
Proof. Let F : C → O − OSet be a small diagram and let X ∈ O − OSet. For
colimits we have, by the above proposition and cocompleteness of O−OSetk:

Cone(F,X) = lim←−
n

Cone(trnF, trn(X)) =

lim←−
n

O−OSetn(lim−→ trnF, trn(X)) = O−OSet(lim←−
n

lim−→ trnF,X)

The family lim−→ trnF is compatible because trn preserves colimits. An analogous
argument works for limits, due to the continuity of trn.
Corollary 5.2.11. The inclusion O −OSetn → O −OSet preserves projective
indecomposables.
Proof. By the construction of colimits in O −OSet the truncation functor trn :
O − OSet → O − OSetn preserves colimits. It is also easy to see that it is
right adjoint to the inclusion, so the same argument as in corollary 5.2.8 can be
repeated.
Theorem 5.2.12. The category O−OSet is a presheaf category.
Proof. Choose an exponent category Ck for each O − OSetk, and let Ik ⊂ O −
OSetk be the resulting set of representables. By corollary 5.2.11 the set I =
∪kIk ⊂ O−OSet is a set of projective indecomposables. Since the Ik are strongly
generating for each O − OSetk, it is easily seen using 5.2.9 that I is strongly
generating for O − OSet. Therefore by theorem 5.26 of [Ke80] O − OSet is a
presheaf category.
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5.3 The Category of Opetopes
The above proof is abstract, and gives no indication of how the category of
O-opetopes looks. To investigate it we need further arguments. We first need
to see what the terminal opetopic set T looks like. Like all opetopic sets, it is con-
structed inductively. Starting from the terminal object in O−OSet0 = Set/M at
each step we add exactly one of each possible cell type (i.e. element of Sn(T )). This
construction can be read off of lemma 5.2.3. Thus, directly from the definition of
an opetopic set, we have

Tn =W ◦ · · · ◦ W︸ ︷︷ ︸
n times

(O).

Any cell τ ∈ Tn will be called a cell type. Since there is a unique morphism X → T
from any O-opetopic set to T we will say that cells from X mapping to τ are of
type τ .

Definition 5.3.1. For any cell type τ ∈ T we define X(τ), for X ∈ O −OSet,
to be the set of cells of type τ in X.

Since any map X → Y commutes over T i.e. preserves cell types, this defines
a functor X 7→ X(τ) from O −OSet to Set. Similarly we have types of frames
σ ∈ Sn(T ), which also define functors O−OSet→ Set.

With this in hand we can give a concrete description of limits and colimits in
O−OSet:

Theorem 5.3.2 (Construction of limits and colimits in O −OSet). Limits and
colimits in O−OSet can be computed as follows:

1. Colimits can be computed at the level of sets of cells: (lim−→F )n = lim−→Fn

2. Equalizers can be computed at the level of sets of cells

3. Products are computed at the level of types of cells: (
∏

iXi)(τ) =
∏

iXi(τ)

Proof. Since we already know that O−OSetk is cocomplete, and O−OSetk+1 =
Set/Sk, part 1 follows from general category theory and the proof of theorem
5.2.10. Part 2 follows from part 3 and the construction of equalizers from products
and pullbacks. Part 3 follows from the construction of the terminal object and the
construction of wide pullbacks in Set/Sn, along with theorem 5.2.10.

Corollary 5.3.3. The functor X 7→ X(τ) is continuous and cocontinuous.

Proof. This follows from the fact that Xn =
∐

τ∈Tn X(τ), the fact that maps of
opetopic sets preserve this decomposition, and the above description of limits and
colimits.
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Corollary 5.3.4. The functor X 7→ X(τ) is representable

Proof. The opetopic sets such that
∐

nXn ⊂ N is a finite set (the finite opetopic
sets with cells chosen from N) provide a solution set. To see this note that for each
cell x ∈ X, there is a smallest opetopic subset1 〈x〉 ⊂ X that contains x, and this
set is finite. This can be seen by induction, since 〈x〉 is just x and the union of the
subsets generated by the typing of its frame ϑX(x) – there are only finitely many
of those.

We denote the representing object by τ . This set represents X 7→ X(τ), and
hence has a universal cell of type τ , which we denote by τu ∈ τ .

Corollary 5.3.5. τ is a projective indecomposable.

Proof. Follows immediately from the previous two corollaries.

Corollary 5.3.6. The objects {τ}τ∈T constitute a strong generator for O−OSet.

Proof. Two maps X ⇒ Y differ iff they differ on some cell x ∈ X(τ) for some
τ ∈ T . Likewise a map X → Y is an isomorphism iff the maps Xn → Yn are, and
hence iff the maps X(τ)→ Y (τ) are for all τ ∈ T .

Corollary 5.3.7. In the proof of theorem 5.2.12 we may assume that I = {τ}τ∈T .

The full subcategory of O −OSet on the objects τ is therefore the exponent
identifying it as a presheaf category. What does it look like? We can describe its
generators as follows. Let τ ∈ Tn. Now consider the following composition applied
to τ :

Tn
ϑTn−−→ Sn−1(T )

∂−→ T †
n−1

pi−→ Tn−1,

where ∂ is the typing map, and pi : T †
n−1 = Tn−1×T ∗

n−1 → Tn−1 is a projection from
the list of input/output types to some specific place, which we assume nonempty
(at the very least the output type is always available). This defines a cell σ =
pi(∂(ϑ

T
n (τ))) in Tn−1 depending on τ . This operation can be performed on any

cell of type τ giving a cell of type σ. We thus obtain a natural transformation
X(τ)→ X(σ) and hence a morphism σ → τ .

Theorem 5.3.8. The subcategory of O−OSet generated by the morphisms σ → τ
defined above is full.

1in the naive sense of inclusions 〈x〉n ⊂ Xn. It will later become obvious that these are the
subobjects.
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Proof. We have τ = 〈τu〉 – τ is generated by its single universal cell. To see
this consider the inclusion i : 〈τu〉 → τ . By the universal property of τu the
map O −OSet(i,−) is an isomorphism, and hence i is an isomorphism. By the
construction of 〈τu〉, this tells us that every cell in τ is in the image of the typing
of some typing …of the typing of τu. But the maps σ → τ are just the cells τ(σ)
– which we have just seen to come from typing maps.

Definition 5.3.9. The category Opt(O) of O-opetopes is the full subcategory of
O−OSet on the objects {τ}τ∈T .

By the above discussion we have an equivalence O−OSet ' Set(Opt(O))op given
by X 7→ O−OSet(−, X)|Opt(O)

Corollary 5.3.10. In the category of O-opetopes no object has a nontrivial endo-
morphism. In particular there are no nontrivial idempotents.

Proof. Define the dimension of an opetope τ to be the unique n ∈ N such that
τ ∈ Tn (equivalently, for a general opetopic set X, the least n such that Xn+1 = ∅2).
Then by theorem 5.3.8, nonidentity maps σ → τ can exist only if dim(σ) < dim(τ).
Thus there are no nontrivial endomorphisms τ → τ .

Corollary 5.3.11. The category of O-opetopes is skeletal

Proof. Since morphisms in Opt(O) cannot decrease dimension, we must show that
if τ and σ have the same dimension and τ 6= σ, then they are not isomorphic.
But this is obvious, since the universal cells τu ∈ τ and σu ∈ σ, the only cells in
their dimension, have different types, and hence cannot be mapped to each other.
So we have in fact Opt(O)(τ , σ) = ∅ for any two different τ and σ of the same
dimension.

2It is then true that Xk = ∅ for k > n.
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Chapter 6

Comparison Theorems

In this chapter we establish the relationships between our work, and all the other
algebraic approaches to opetopes and opetopic sets. To achieve this we will draw
heavily on the results of chapter 3.

The first comparison is already almost finished. Corollary 3.4.2 establishes the
necessary isomorphisms at the level of objects (i.e. functors in this case). After
recalling the setting of [KJBM10], we fill in the remaining detail, which is that the
multiplication maps in both approaches coincide. This means that the monoids in
both approaches are isomorphic.

It is important to emphasize that our comparison necessarily exists at the level
of individual fibers, since that is how the formalism in [KJBM10] is set up. At
this level – of monads on slices of Set – both approaches are equivalent. However,
our gathering of these fibers into the bifibration Sigma → Mon(Siga) provides a
nontrivial distinction between both approaches. The fibers of Sigma are by them-
selves isomorphic to the appropriate fibers of Siga. This isomorphism includes the
monoidal structure ⊗ (the vertical one in the case of Sigma), and the associated
actions, and thus also the equivalence between signatures and polynomial endo-
functors. Once we take into account the entire category Mon(Siga) as the base
for Sigma, this equivalence no longer holds.

As we have seen in the previous chapter, the fact that W : Mon(Siga) →
Mon⊗(Sigma) is a functor (of the base of the bifibration Sigma) is essential in
the construction of the category of opetopic sets. It is also critical in its analysis,
including the construction of the category of opetopes, something which was not
achieved in [KJBM10].

The second comparison concerns the original approach of Baez and Dolan, pre-
sented in [BD98]. We begin the section by providing the first (to the author’s
knowledge) complete and rigorous proofs that the formalism of [BD98] can actu-
ally be made to work. As the reader will see, this is at least somewhat nontrivial,
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and we rely heavily on our previous results – both on the general theory of mon-
ads established in chapter 1, and on the fundamental properties of signatures from
chapter 3.

The central technical problem in [BD98] is that the “operad of operads” con-
struction is almost correct: Baez and Dolan correctly identify its function sym-
bols1, and have a good idea about what its composition map should be. But this
is unfortunately done at the level of signatures with nonstandard amalgamation
– where the symmetric actions are implicit (hidden in the morphisms). In their
setting of symmetric operads and analytic functors, this construction is invalid.

Next, we consider the relationship of this construction with our web monoid.
This is frustrated by the fact that the diagram

Siga Sigs

Set

K

where the functors to Set maps signatures to their sets of function symbols, and
the functor K is the canonical comparison between Kleisli and Eilenberg-Moore
algebras, does not commute, not even up to isomorphism.

Because of this, and the fact that sets of function symbols of a monoid become
types for both the associated web monoid and the (sliced) operad of operads,
both monoids can be considered in Sigs, or Siga, but with different types. They
cannot be isomorphic, since their sets of types are not. Despite this, the categories
of actions of both monoids are equivalent as abstract categories. Even in the
(rare) cases where we can trick the types to coincide, there is only a canonical
homomorphism, which corresponds to a forgetful functor between the categories
of actions.

We finish this section with a sketch of proof of something many have conjec-
tured (e.g. [Ch04]): the categories of Baez-Dolan opetopic sets and “the usual”
opetopic sets are not equivalent. Given the results of the last section in this chap-
ter – the equivalence of our approach to that of Hermida, Makkai, and Power –
and the huge web of equivalences including the multitopic sets, we consider our
approach to be one possible definition of the standard category of opetopic sets, to
which all others should be compared (and found equivalent, or discarded). For this
reason, we consider these results to be the end of the technical life of [BD98], with
its conceptual core being extolled by a vast body of work, including this thesis.

1But then incorrectly identify it with the set of symbols of another operad, see remark 6.2.8.
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The last section studies the relationship between opetopic sets and the multi-
topic sets constructed in [HMP02]. Its result is simple enough: the categories are
isomorphic. Establishing it, however, is rather problematic.

Multitopic sets, like opetopic sets, are constructed by iterated Arting gluing.
This is very easy to see from the arguments in part 3 of [HMP02]. We are thus
reduced to comparing the gluing procedure, which in turn rests on the following
problem: given an n-truncated opetopic set, and the corresponding multitopic
set, establish that opetopic and multitopic parallelism of (n+1)-dimensional cells
is the same thing. An affirmative answer immediately finishes the proof of the
comparison theorem.

The equivalence of parallelism follows from a comparison of frames in both
approaches, and is contained in theorem 6.3.5. Proving this theorem is the main
technical problem. After wrestling with the specific 2-level multicategories used
in [HMP02], we must finally compare the web monoid construction and the mul-
ticategory of function replacement from part 2 of [HMP02].

In general, there is no equivalence between these constructions, since their
domain categories are not equivalent. We are only able to establish a relationship
in the narrow case of applying both to the construction of opetopic and multitopic
sets. This requires, as usual, the results of chapter 3, specifically corollary 3.4.2,
a detailed analysis of the proof of the main theorem in part 2 of [HMP02] and,
quite curiously, the computation used to finish our first comparison – the proof of
theorem 6.1.7.

The end result of our work in this chapter is rather pleasing. The informal
pictures drawn in [BD98], and formalized in [KJBM10], correspond to the objects
of the category of opetopes, presheaves on which give opetopic sets. This category
is, in turn, equivalent to the multitopic sets, and therefore to a vast network of
different definitions.

We see these results as establishing a canonical version of the category of
opetopic sets and opetopes, which expresses the original intuitions of [BD98]. It
seems that all other approaches not already known to be equivalent to multitopic
sets (or some other connected approach) should be compared to this category, and
rejected if they are not equivalent. It is sad that this happens to the technical
content of the original proposal.
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6.1 Comparison to Kock, Joyal, Batanin, and
Mascari

6.1.1 The Slice Construction from [KJBM10]
There are no fibrations in [KJBM10], and thus we will be forced to restrict our
discussion to individual fibers. We will fix this in a moment, but first we will give
the original construction. Our notation for polynomial functors is as in 2.6.1.

Recall that the slice of a monoidal category by a monoid is naturally a monoidal
category. Let M ∈ Mon(Poly/O) be a polynomial monad over O. We obtain a
natural monoidal structure on (Poly/O)/M . Then monoids over M are the same
as monoids in (Poly/O)/M .

Note that free polynomial monads (free monoids) on a polynomial functor exist:
by theorems 2.6.2, 2.7.2 and proposition 2.7.1 we may apply the construction of
theorem 1.5.2. An explicit construction can be found in [KJBM10]. The same is
true for monoids (Poly/O)/M .

Remark 6.1.1. In fact Mon((Poly/O)/M) is monadic over (Poly/O)/M .

Lemma 6.1.2. (Poly/O)/M is equivalent to Set/M

Here we treat M as the corresponding set of function symbols given by theorem
2.6.2.

Proof. By theorem 2.6.2 (Poly/O)/M is equivalent to (Siga/O)/M . We have
seen in theorem 3.2.5 (upon restriction to fibers) that this category is equivalent
to Set/M .

Of course in the above proof the fact that M is a monoid plays no role. It is
only needed to construct the monoidal structure on Poly(O)/M .

We can now give the slice construction. Let M ∈Mon(Poly/O) be a polyno-
mial monad. The category (Poly/O)/M is monoidal and has a free monoid func-
tor. This gives rise to the free monoid monad TM : (Poly/O)/M → (Poly/O)/M .
By lemma 6.1.2 this is equivalent to a monad M+ : Set/M → Set/M . This monad
is polynomial (one can check this directly, but it will also follow from our results).

Definition 6.1.3. The [KJBM10] Baez-Dolan slice construction is the assignment
M 7→M+ (cf. [KJBM10, 3.18]).

By remark 6.1.1 M+ is the “operad for operads over M”, as it should be.
We can now state the comparison theorem.
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Theorem 6.1.4. For any M ∈Mon(Siga) we have an isomorphism

repa(W(M)) ' repa(M)+,

where W(M) is considered as a monoid in Siga/M with the ν multiplication.

Using theorem 2.6.2 to identify monoids in Siga with polynomial monads we
can write more clearly

W(M) 'M+

Formation of the web monoid is therefore very close to the Baez-Dolan con-
struction. However, the construction of the web monoid is completely different.

We will need to reformulate theorem 6.1.4 in order to prove it. The equivalence
between Poly and Siga is monoidal, and hence induces an equivalence between
polynomial monads and monoids in signatures. This in turn gives an equivalence
of fibered slices of these fibrations:

Siga � Usig ' Poly � Upoly
over the equivalence of monoid fibrations Mon(Siga) 'Mon(Poly). The fibers of
the fibered slice of Poly are, by construction, exactly all the categories of the form
Poly(O)/M , where M is a monoid in Poly(O). Thus we have assembled into a
fibration all the categories used in the Baez-Dolan construction. This fibration
has a free monoid monad, which will be denoted (−)+. The (−) stands for an
argument from the base: M+(X) is the free monoid on X in the fiber over M .
This is the natural way to extend the Baez-Dolan construction into a functor by
working with fibrations. It is also the same (up to equivalence) as the extension
given by hand in [KJBM10]. At this point we will forget about polynomial functors
and work exclusively with signatures.

Theorem 3.2.5 gives us an equivalence of fibration which on fibers is exactly the
equivalence asserted in lemma 6.1.2. This allows us to carry out the Baez-Dolan
construction in all fibers at once.

It should be clear that the fiber of U∗Set·→· over M ∈Mon(Siga) is isomorphic
to Set/M , the slice of Set over the set of function symbols of M . Theorem 3.2.5
gives an adjoint equivalence Siga � U ' U∗Set·→·, and hence we can view the
monad (−)+ as acting on the latter fibration. This allows us to state the fibered
version of the comparison theorem.

Theorem 6.1.5 (Comparison Theorem – Fibered Version). There is an isomor-
phism, fibered over Mon(Siga), of monad valued functors

M 7→ W(M) ? (−) : Mon(Siga)→ End(U∗Set·→·)
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and
M 7→M+(−) : Mon(Siga)→ End(U∗Set·→·),

where W is the web monoid functor, and End(U∗Set·→·) is the endomorphism
object in Cat/Mon(Siga).

The original comparison theorem 6.1.4 follows immediately from this one when
we apply the forgetful functor in each fiber to the pullback action and return to
the action of Siga on the codomain fibration. This theorem makes it clear that
the proper base category for these constructions is not Set but rather Mon(Siga),
and this cannot be easily seen without using fibrations.

This theorem also neatly summarizes the differences between our approach and
that of [KJBM10]. Their construction takes place in two different categories (or
fibrations). In each only one type of inputs is visible (vertical or horizontal in our
terminology). We have found a third fibration which sees both kinds of inputs, and
all the relevant structure in the two original fibrations. It is a somewhat amusing
fact that Sigma knows what free monoids look like in those other fibrations.

6.1.2 Proof of Theorem 6.1.5
We begin with a necessary lemma.

Lemma 6.1.6. Let ϕ be the distributivity isomorphism in Sigma, φ the isomor-
phism defined in theorem 3.4.1 and written out above corollary 3.4.2, and let a be
the associativity isomorphism for the pullback action. Then the following diagram
commutes:

[A ? (Y ? X)]⊗ [B ? (Y ? X)] [(A⊗ Y ) ? X]⊗ [(B ⊗ Y ) ? X]

[(A⊗ Y )� (B ⊗ Y )] ? X

(A�B) ? (Y ? X) [(A�B)⊗ Y ] ? X

a⊗ a

φA,B,Y ?X

φA⊗Y,B⊗Y,X

ϕA,B,Y ? X

a

where A,B, Y ∈ Sigma and X ∈ U∗Set·→·.

Proof. Direct calculation.
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The above diagram is analogous to diagram II in theorem 1.7.8. Indeed φ is in
some sense ϕ and a is in some sense α⊗ for Sigma, just like ? is in some sense ⊗
by definition 2.5.1. The analogy has to be left imprecise for the present moment,
because in forming a we need to know that the middle variable is in Sigma, and
the formula of definition 2.5.1 cannot possibly remember this.

Theorem 6.1.7. M+(−) ' W(M) ? (−) as monoids, naturally in M .

Proof. (−)+ acts as the free monoid monad on Siga � U , which is monoidally
equivalent to U∗Set·→· with the ⊗-structure, by theorem 3.2.5 and construction
of ⊗. Thus (−)+ is isomorphic to the free monoid monad on U∗Set·→·. By the
second point of the above corollary the universe of the web monoid acts as the free
⊗-monoid monad on U∗Set·→·, and a natural isomorphism drops out.

We must check whether it is an isomorphism of monads. The units are mapped
to each other by definition – in both cases they are the unit of the same adjunction
(forW this follows from corollary 3.4.2). This leaves multiplication. We must check
if ν ?X ◦a is εF⊗(X) ' εF�(I⊗) ?X. Consider the following diagram (we abbreviate
W =W(M)):

F2
⊗(X)⊗F2

⊗(X) [(W ⊗W) ? X]⊗ [(W ⊗W) ? X] (W ? X)⊗ (W ? X) F⊗(X)⊗F⊗(X)

[W ? (W ? X)]⊗ [W ? (W ? X)] [(W ⊗W)� (W ⊗W)] ? X (W �W) ? X

(W �W) ? (W ? X) [(W �W)⊗W ] ? X

W ? (W ? X) (W ⊗W) ? X W ? X

F2
⊗(X)

(ν ? X)⊗ (ν ? X)︸ ︷︷ ︸

'

a

µ ? 1

a

φ

' ⊗ '
a⊗ a

'⊗'

µ
F⊗
X

φφ
(ν � ν) ? X

ϕ ? X

(µ⊗ 1) ? X

µ ? X

ν ? X
µ
F⊗
F⊗(X)

The central square is just the main diagram starred with X. It commutes by the
definition of ν. The square above it commutes by naturality of φ. The rightmost
triangle commutes by corollary 3.4.2, as does the leftmost “bigon” or “biangle”.
The trapezoid commutes by lemma 6.1.6. The square below it commutes by natu-
rality. Since F⊗ is determined only up to natural isomorphism, the isomorphisms
marked ' are irrelevant, and can be taken to be the identity.
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Thus we see that ν ?X ◦a gives a natural homomorphism of monoids F2
⊗(X)→

F⊗(X). Since F⊗ is the free monoid monad, all such homomorphisms are deter-
mined by what they do to the unit ηF⊗(X). But by the unit conditions for ν we
see that ν ? X ◦ a ◦ ηF⊗(X) is the identity, as the following diagram shows

F⊗(X) W ? X I⊗ ? (W ? X) (I⊗ ⊗W) ? X

F2
⊗(X) W ? (W ? X) (W ⊗W) ? X

F⊗(X) W ? X

' a

' a

η
F⊗
F⊗(X) η

F�
I⊗

? 1 (η
F�
I⊗
⊗ 1) ? X

'

λ�W ? X

ν ? X

The top left rectangle commutes by 3.4.2. The right bigon commutes by the
unit conditions for ν. The top right square commutes by naturality of a. The
isomorphisms ' are again irrelevant, and can be taken to be identities. The
unnamed isomorphism is the canonical one, given by the action ?. The dashed
arrow is determined by the other composites. By the left unit condition for ? and
the commutativity of the above diagram, the map ν ?X ◦ a ◦ ηF⊗(X) is, in fact, the
identity.

By the universality of ηF⊗(X) only the counit can satisfy this equation, and
thus ν ? X ◦ a = ε

F⊗
F⊗(X) concluding the proof.

It should be clear from this argument that distributivity really does tell us that
ν commutes with µ. This is made literal by the pullback action, as we saw above.
We can also read off an endearing identity from the preceding proof: trees of trees
are the same as trees indexed by a tree.

Corollary 6.1.8. F2
�(I⊗) ' F�(I⊗)⊗F�(I⊗)

Proof. Since both objects mentioned in this isomorphism live in the same fiber
of Sigma, we may as well restrict our attention to it. This fiber is isomorphic to
the corresponding fiber of Siga. Thus theorem 2.6.2 applies, and all isomorphisms
of the induced monads originate from the corresponding signatures. But we have
seen above that F2

⊗(X) ' F⊗(X) ⊗ F⊗(X), naturally in X, in the bifibration
U∗Set·→·. Therefore this isomorphism comes from an isomorphism of signatures
F2

�(I⊗) ' F�(I⊗)⊗F�(I⊗).
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6.2 Comparison to Baez and Dolan

6.2.1 Prerequisites for the Comparison
First, we must establish, that the structures used by Baez and Dolan are the
same as ours. This is essentially a tautology, and is well known [FGHW08]. We
summarize the result in the following proposition.

Proposition 6.2.1. For every set O, the category sig(O) introduced by Baez and
Dolan is monoidally equivalent to An/O.

This result may also be deduced from the constructions in the next chapter.
Since analytic functors are equivalent to symmetric signatures, we will henceforth
work exclusively with signatures.

Remark 6.2.2. An analytic functor is or is not polynomial. In stark contrast to
this, the set of function symbols associated to such a functor may be a symmetric
signature or a signature with nonstandard amalgamation. These sets are not
naturally isomorphic, and often not isomorphic at all. This distinction is not
heeded in [BD98], and is the source of several mistakes, the most critical of which
is pointed out below in remark 6.2.8.

Theorem 6.2.3. The forgetful functor Mon(Sig)→ Sig is monadic.

Proof. This is obvious by Beck’s monadicity theorem: we have already seen that
the left adjoint exists, and U -split pairs are automatically absolute coequaliz-
ers, and so we can construct multiplication for the coequalizer by taking ten-
sor powers of the relevant pair. This shows that for any monoidal category C
with free monoids, the forgetful functor Mon(C) → C is monadic (even strictly
monadic).

Corollary 6.2.4. The forgetful functor Mon(Sigs)→ Sigs → Sig is monadic.

Note that both displayed forgetful functors are obviously monadic.

Proof. By the previous theorem, the algebras for the monad UF (which we will still
denote by F) of ordinary multicategories are exactly the ordinary multicategories.
Since the symmetrization monad S is monoidal, it lifts to the fibration of monoids
– i.e. the ordinary multicategories. We have just seen that this is the fibration of
algebras SigF . Let us denote the lifted monad by S̃ : Mon(Sig)→Mon(Sig).

Examining the definition of an S̃-algebra, we immediately see that it is a typed
symmetric operad. Thus Mon(Sigs) ' Mon(Sig)S̃ ' (SigF)S̃ . This establishes
monadicity directly from the definition.
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Corollary 6.2.5 (The Combing Distributive Law). There is a distributive law
λ : FS → SF , whose resulting composite monad SF has symmetric operads as its
algebras.

This is immediate from the proof of corollary 6.2.4, and our basic theory of
monads 1.3.2. We can describe this distributive law explicitly. An element T ∈
F(X), where X ∈ Sig/O, can be uniquely represented by either an identity 1o
on some type o ∈ O, or a composite 〈x, ti〉, where x ∈ X, the ti ∈ F(X), and i
runs through the arity of x. This property is called unique readability, and it was
established in part 2 of [HMP02] (cf. proposition 1.5.3 and lemma 1.5.4). Thus
the monoid F(X) consists of planar trees compatibly labeled by symbols of X,
matching arity to the children of a given node, and matching types across edges.
The distributive law λ is defined inductively, as follows:

T = 〈(x, σ), ti〉 ∈ FS(X)

λ(1o, id) = (1o, id)

λ(T ) = (λ0(T ), λ1(T )) ∈ F(X)× Sn
λ(T ) = (〈x, λ0(tσ−1(i)), σ ∗ (λ1(ti))〉),

where ∗ again refers to composition in the operad of symmetries. This formula
follows by direct calculation, from the inductive definition of multiplication in F
(and hence the counit of the corresponding monad), and the explicit form of the
correspondence between distributive laws and lifings of monads to algebras. With
this description we can prove the following important result.

Theorem 6.2.6. The combing distributive law is a cartesian natural transforma-
tion in the category of functors Set/O† → Set/O†.

Note that Sig/O = Set/O†, so that the statement makes sense. The intuition
for this theorem is simple – if we are given a combed tree with appropriate decora-
tions and all the permutations it has been combed with (as additional decorations),
then we can uniquely uncomb it.

Proof. By induction on tree height. For any morphism f : X → Y in Sig/O we
must show that the naturality square

FS(X) SF(X)

FS(Y ) SF(Y )

λX

FS(f) SF(f)
λY
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is a pullback in Sig/O. Since all the objects under consideration consist of deco-
rated planar trees (possibly with a permutation), and all the morphisms preserve
tree height (for λ this follows from the inductive definition above), we show that
this square is a pullback for trees of height at most n by induction. Trees of height
0 are the identity symbols 1o, for o ∈ O, with possibly a unique permutation
attached (since they are unary). For them the claim is obvious.

The inductive step: we are given (T, τ) ∈ SF(X) and T ′ = 〈(y, σ), t′i〉 ∈
FS(Y ), which satisfy

F(f)(T ) = λ0(T
′) = 〈y, t′σ−1(i)〉

τ = λ1(T
′) = σ ∗ (λ1(ti)).

By unique readability we have T = 〈x, ti〉 for some unique x ∈ X and ti ∈ F(X).
Thus f(x) = y and F(f)(ti) = t′σ−1(i). By the inductive hypothesis, there are
unique t̃i ∈ FS(X) such that SF(f)(t̃i) = t′i, λ0(t̃σ−1(i)) = ti, and λ1(t̃i) =
λ1(t

′
i). Since permutations are invertible, the unique tree we are looking for is

〈(x, σ), t̃i〉.

6.2.2 Existence of the Operad of Operads
Theorem 6.2.7 (Existence of the Operad of Operads). For any set of types O ∈
Set, the forgetful functor Mon(Sigs)/O → Sig/O = Set/O† is monadic. The
resulting monad is finitary, preserves wide pullbacks, and its structure maps are
cartesian natural transformations. Therefore it corresponds to a multicategory with
nonstandard amalgamation.

Proof. We have already seen in corollary 6.2.4 that this functor is monadic. One
may also use crude monadicity directly, as in the next theorem.

To show finitarity note that the left adjoint is the free functor for the composite
monad SF , as we have seen in the discussion above. The resulting monad acts
as this functor on ordinary signatures. We know that S preserves filtered colimits
since it consists of multiplication of the n-ary function symbols by the symmetric
group Sn. To see this for the functor F note the monoidal product ⊗ for Sig
preserves filtered colimits in both variables, and that the free monoid formula is a
colimit of a diagram of such monoidal products. Since colimits commute the claim
is proven.

Preservation of wide pullbacks: S preserves them, since it is multiplication by
the symmetric groups. The functor F is given by the free monoid formula 1.5.2 as
usual, and so the same argument as in subsection 2.7.2 applies to it – a compatible
family of trees can only sit over a tree of the same shape.

Cartesianness of the structure maps: since they arise from a cartesian distribu-
tive law, we can treat each monad S and F separately. The composite monad will
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be cartesian by the pullback lemma. For S the necessary diagrams can be checked
directly. For F this follows from an isomorphism of monadsW(O†)?a (−) ' F(−)
(given below), the first of which is explicitly cartesian. This also gives another
argument showing that F preserves wide pullbacks.

To see this isomorphism argue as follows: by our construction of colimits in
Siga and its monoidal structure, the formula for F is the same for ordinary sig-
natures and for signatures with nonstandard amalgamation (one can also see this
by appealing to the Kleisli lift coming from the combing distributive law). The
tautologous actions are also given by the same formula. By theorem 3.2.4, the
category of (Siga/O)/O† consisting of signatures with maps to O† is adjoint equiv-
alent to Sig/O – ordinary signatures over O. Since this equivalence is monoidal
(by theorem 3.3.1), multicategories with nonstandard amalgamation over O†, with
the obvious multicategory structure, are equivalent to ordinary multicategories.
The free functors for both therefore coincide, and so by theorem 6.1.4 we have
W(O†) ?a (−) ' F(−).

Remark 6.2.8. The auxiliary operad F in the proof of theorem 14 in [BD98] is
defined as Fs(O†), where Fs is the free symmetric operad functor, and O† is the
terminal symmetric signature over O (which is also the terminal symmetric operad
over O). This operad cannot be isomorphic to SF(O†), since the symmetric actions
for O† are not free. If we had SF(O†) ' Fs(O†), then the unit of the Fs adjunction
would give a morphism of symmetric signatures O† → SF(O†). However, for
O = {∗} the domain has trivial symmetric actions, and the codomain has free
actions – there can be no such morphism.

In fact Fs(O†) consists of equivalence classes of trees (trees with a permutation
of their leaves, i.e. elements of SF(O†)) arising from the relation which identifies
trees which have been combed by permutations from the isotropy groups of the
symmetric actions of O†.

Definition 6.2.9. The operad for operads over O will be denoted by MO.

By the definition of the tautologous action for Siga, the set of function symbols
of MO, as a multicategory with nonstandard amalgamation, is SF(O†). This is
the value of the corresponding monad on the terminal object in Set/O† = Sig/O.
The function symbols of MO as a symmetric operad include all the permutations
of these symbols, according to their arity, which is the number of nodes in the
corresponding tree.

Theorem 6.2.10 (Existence of Slice Operads). For any monoid M ∈Mon(Sigs)
and an algebra A ∈ Act(M), there is a monoid MA ∈Mon(Sigs)/A whose category
of algebras is equivalent to Act(M)/A.
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Proof. The free M -algebra over A can be easily seen to be given as follows: let
d : X → A ∈ Set/A. Then the free M -algebra over A on X → A is given by

M(X)
M(d)−−−→M(A)

ξ−→ A.

The requisite universal property is easily verified using the freeness of M(X) in
ordinary M -algebras. The resulting monad will be denoted MA.

We must show that Act(M)/A is monadic over Set/A. For this we use the
crude monadicity theorem. The functor in question obviously reflects isomor-
phisms – the inverse of a homomorphism of algebras is a homomorphism. We
are left with showing that we have reflexive coequalizers in Act(M)/A and the
forgetful functor preserves them.

The definition of an M -algebra over A can be restated in terms of sets and
functions between finite products of sets, making certain diagrams commute. To
see a complete definition of this sort, for an untyped operad, and over the terminal
algebra, see [May72]. The general case is more complicated, but it is clear that
this can be done. For example, the structure map can be expressed as a series of
maps

f : X(α1)× . . . X(αn)→ X(α0),

where f ∈ M is a function symbol of M with typing α ∈ O†, and X(αi) is the
fiber of X over αi ∈ O. Morphisms of algebras over A can also be restated in
this way. Since reflexive coequalizers commute with finite products in Set, we
can construct the data for an algebra over A from the data of a reflexive pair in
Act(M)/A, restated in Set, by taking coequalizers in Set, and it will satisfy the
requisite properties, since all of them are stated in terms of maps between finite
products in Set. The resulting algebra will be a coequalizer in the category of
algebras over A, since homomorphisms of algebras over A can also be expressed
as maps between finite products in Set making certain diagrams commute. This
process is essentially the construction of a quotient algebra from a congruence – we
use reflexivity to connect n-tuples of elements of X by the appropriate equivalence
relation on 1-tuples, that is, reflexivity ensures that the equivalence relation on
elements is compatible with forming products (for example, lists of elements of X
on which M can act).

Since we constructed everything in Set, the preservation of these coequalizers
by the forgetful functor to Set/A is obvious.

We must prove that the resulting monad is finitary, weakly preserves wide
pullbacks, and its structure maps are weakly cartesian. For this we analyze limits
and colimits in Act(M)/A.

SinceM as a monad is finitary, colimits preserved byM are created inM -algebras
by the forgetful functor, and Set/O is cocomplete, it follows that the category of
M -algebras has filtered colimits and all limits, and these are computed in Set/O.
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It thus follows that Act(M)/A has filtered colimits, since the projection to Act(A)
creates them. The projection Act(M)/A → Act(M) creates wide pullbacks. It
follows that wide pullbacks in Act(M)/A can be computed in Set/A, due to the
specific shape of wide pullback diagrams.

The projection Set/A → Set/O therefore creates all the limits and colimits
under consideration, and MA acts as M on the (domains of) objects of Set/A.
Thus MA preserves everything that M does, and has the same types of structure
maps. It is therefore a symmetric operad.

What this proof really shows is that the category Act(M)/A is the category of
models of a multisorted equational theory – this is what writing down an explicit
definition of an algebra over A in terms of sets, products and functions comes down
to. Monadicity is then an easy corollary.

Note that this proof does not explicitly determine the set of function symbols
of the resulting operad. The statement given in definition 12 of [BD98], that this
set is (in our notation) M ?a A ' M(A), is true if M is a multicategory with
nonstandard amalgamation (not just a symmetric one). This follows from the
definition of the tautologous actions – the set of function symbols of a multicate-
gory with nonstandard amalgamation is the value of the corresponding monad on
the terminal object. Fortunately the operad of operads is always a multicategory
with nonstandard amalgamation.

6.2.3 Comparison with the Web Monoid
The following theorem dictates the context of any comparison between the web
monoid and the operad of operads.

Theorem 6.2.11. For any multicategory with nonstandard amalgamation M we
have an equivalence of categories

Act(MO
SM) ' Act(W(M))

Proof. By definition, the algebras forMO
SM are symmetric operads over SM (with

the same fixed set of types as SM). They are freely symmetric, since the symmetric
actions for SM are free. Hence these SF -algebras live in the Kleisli category
of S. Reformulating everything in that category we see that these algebras are
multicategories with nonstandard amalgamation over M (with the same types
as M , held fixed). By by remark 6.1.1 and theorem 6.1.4 these are exactly the
algebras for W(M).

There is no isomorphism W(M) ' MO
SM , since these monoids have different

sets of types. The map M 7→ SM , while expressing the same structure, changes
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the set of function symbols. Our constructions are unfortunately sensitive to this
difference.

For M = O† there is a natural morphism W(O†)→MO =MO
O† . It is simply

the homomorphism of monads F → SF coming from the distributive law. Recall
from the proof of theorem 6.2.7 that W(O†) ' F . At the level of algebras it
corresponds to forgetting the symmetric actions Mon(Sigs)/O → Mon(Sig)/O.
An analogous map can be constructed for any M with standard amalgamation,
and again corresponds to forgetting the symmetric actions, this time for symmetric
operads over M .

6.2.4 Comparison of the Resulting Categories

Theorem 6.2.12. The category of O-opetopic sets, as defined by Baez and Dolan,
is a presheaf category.

Proof. (Sketch) Since the assignment O 7→ MO = SF(O†) preserves wide pull-
backs, as does the slicing operation (for multicategories with nonstandard amal-
gamation – since it is given by (−) ?aX in that case, cf. definition 2.5.1 in and the
results on wide pullbacks in signatures in chapter 2), the same argument, based
on Artin gluing, as in section 5.2 can be repeated – the functor of top dimensional
frames in a truncated opetopic set preserves wide pullbacks. Items 5.2.1 through
5.3.11 need only cosmetic changes to apply directly to the structures of Baez and
Dolan.

Theorem 6.2.13. The category of Baez-Dolan opetopic sets is not equivalent to
the category of opetopic sets defined above.

Proof. (Sketch) Suppose there is an equivalence OSetBD ' OSet. Since both
categories are presheaf categories, whose exponents (OptBD and Opt, respectively)
have no nontrivial endomorphisms, we obtain an equivalence OptBD ' Opt. These
categories are skeletal (by our construction), and so the equivalence is actually an
isomorphism – both OptBD and Opt are FOLDS signatures [M95]. This follows eas-
ily from the arguments in items 5.3.8-5.3.11. The isomorphism therefore identifies
their respective levels of objects OptBD,k ' Optk, for k ∈ N (these consist pre-
cisely of the k-dimensional opetopes in each approach). Let OptBD,≤n and Opt≤n
be the respective full subcategories of OptBD and Opt consisting of objects of level
at most n. Since levels of objects are preserved, the equivalence OptBD ' Opt
restricts to an equivalence OptBD,≤n ' Opt≤n.

From this, by composition, we can construct a diagram
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Opt≤1

Opt≤2 OptBD,≤2
'

where the bottom arrow is an isomorphism. We are thus in the category of FOLDS
signatures under Opt≤1. A possible context for a FOLDS signature L is a contex
arising from a kind in an extension L→ L′. The number of kinds (objects) of L′,
as a cardinal number, giving isomorphic possible contexts in L is an invariant of
such an extension under isomorphism in the category of FOLDS signatures under
L. However the possible context

of Opt≤1 is realized by one kind in Opt≤2 and two kinds in OptBD,≤2. Due to our
construction of the exponent categories, this can be verified by direct calculation
by analyzing the number of frames in the respective terminal objects consisting
of exactly three 1-cells (making the frame binary). Such an arrangement of cells
gives rise to a unique possible context for Opt≤1, pictured informally above.

We have arrived at a contradiction, and so there can be no equivalence OSet '
OSetBD.

Remark 6.2.14. It is easy to see that the categories SetOptBD,≤n and SetOpt≤n are
exactly the truncations used in the proof of the presheaf property.

6.3 Comparison to Hermida, Makkai, and Power
In this section we prove the following:

Theorem 6.3.1. The category of opetopic sets is isomorphic to the category of
multitopic sets.

It is actually easier to prove isomorphism than equivalence. We adopt the
notation for multitipic sets introduced in part 3 of [HMP02], with the following
exceptions: we denote n-truncated multitopic sets by MltSetn, and the category
of multitopes in this paper will be the opposite of the category of multitopes in
[HMP02]. In particular we will freely alternate between Cn and Xn to refer to the
set of n-cells of the structure under consideration. Before discussing the proof of
this theorem, we note the most important corollary.
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Corollary 6.3.2. The category of opetopes is isomorphic to the category of mul-
titopes.

Proof. Since neither category has nontrivial idempotents, the equivalence of presheaf
categories SetOpt(I)op ' OSet 'MltSet ' SetMltop implies an equivalence of ex-
ponent categories. Since both Opt(I) and Mlt are skeletal and none of their
objects have nontrivial endomorphisms, this equivalence is an isomorphism.

Remark 6.3.3. In [HMP02] the category of multitopes was defined so that the
category of multitopic sets was SetMlt. We have chosen to reverse this convention,
that is multitopes in this paper are the opposite of multitopes in [HMP02].

6.3.1 Preliminary Reductions
The comparison boils down to comparing the web monoid construction to the
multicategory of function replacement from part 2 of [HMP02]. We will first show
how this comes about, and then perform the rather technical comparison of the
two constructions.

First recall that OSetn+1 ' Set/Sn by lemma 5.2.3, and OSet ' lim←−OSetk
by proposition 5.2.9. Likewise, it is evident, by the introductory discussion in part
3 of [HMP02], that MltSetn+1 ' Set/Qn (we will recall the definition of the Qn

functor below), and that MltSet ' lim←−MltSetk.
To prove the above theorem, it therefore suffices to construct a compatible

family of isomorphisms OSetn+1 'MltSetn+1, which in turn means constructing
isomorphisms Set/Sn ' Set/Qn. We will construct these isomorphisms induc-
tively, starting with the obvious isomorphisms OSet0 ' Set 'MltSet0, given by
X 7→ X0 and S 7→ C0(S), respectively.

For the inductive step we have the following lemma:

Lemma 6.3.4. Let A F−→ B G,H−−−→ C be functors. Then:

1. If F is an isomorphism, then there is a canonical isomorphism C/GF ' C/G.

2. If τ : G→ H is a natural isomorphism, then there is a canonical isomorphism
C/G ' C/H.

The proof is obvious – just compose with F and F−1 or τ and τ−1.
The above lemma reduces our problem to showing an isomorphism between Qn

and Sn along some previously constructed isomorphism OSetn →MltSetn. Note
that this means that the sets of cells – Xn and Cn(S) – will be unaffected by our
isomorphism. The set maps fn : Xn → Yn comprising morphisms will also remain
the same, since the isomorphisms indicated by the above lemma don’t alter them.
This can be summarized by saying that our isomorphism will commute with the
obvious forgetful functors to SetN (or Setn in the n-truncated case):
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OSet MltSet OSetn MltSetn

SetN Setn

' '

In particular this means that we can talk about opetopic and multitopic struc-
tures on a sequence of sets Xn. By this we simply mean objects of OSet or MltSet
(or their truncations) in the fiber over Xn. Given the above lemma, we see that
it is enough to show that, given a multitopic or opetopic structure on a sequence
{Xk}k≤n, both Qn and Sn can be computed from it, and the results are naturally
isomorphic.

The case n = 0, that is comparing Q0 and S0 over Set is easy – both definitions
hardwire this case, and both are isomorphic to the set of ordered pairs of 0-cells.
The map X1 → Q0 ' S0 gives 1-cells their domains and codomains.

The general case is described by the following theorem:

Theorem 6.3.5. Given an opetopic structure on {Xk}k≤n the generalized mul-
ticategory Dn for the associated multitopic structure on {Xk}k≤n is given by the
following pullback in Set:

W(Sn−1) Dn

S†
n−1 Sn−1 ×X∗

n−1

1× ϑ∗
n

The proof of this theorem is given in subsection 6.3.3. To give the proof,
however, we must spend next subsection explaining how the above pullback gives
Dn the structure of a generalized multicategory, that is, why the statement of the
above theorem is even correctly typed. Note also that the proof of theorem 6.3.5
is still inductive. It is true by inspection for n = 1 and to prove it for a specific n
we will assume it holds for n−1. In particular, we may assume that Qn−1 ' Sn−1.

Before any of this, let us use theorem 6.3.5 to construct an isomorphism Sn '
Qn, and thus finish the proof of the comparison theorem 6.3.1. By the pullback
lemma, the following diagram of iterated pullbacks is a pullback

W(Sn−1) Dn Sn

S†
n−1 Sn−1 ×X∗

n−1 X†
n−1

1× ϑ∗
n ϑn × 1∗
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Recall that the arrows (i.e. elements in our formalism) of Dn are exactly the
pasting diagrams Pn. The functor Qn is defined as a pullback (in Set)

Qn Pn

Cn Pn−1 × Cn−1

(d, c)
(d, c)

where d and c are the domain and codomain maps, respectively. We claim that this
pullback, is equivalent to the right square in the pullback defining Sn above. To see
this note that because of the special form of the morphism ϑn×1∗ – the 1∗ is simply
the identity on the list of input types – the elements of Sn are simply the elements
of Dn (i.e. elements of Pn) together with an output cell in Xn−1 = Cn−1, which is
parallel to the element of Dn it is paired up with. This means the output frame
of the element in Dn matches the frame of its assigned output cell. This is also
exactly the definition of Qn given above. To see this, note that by the globularity
of multitopic sets, that is the equalities dd = dc and cd = cc for both cells and
pasting diagrams, both maps Cn

(d,c)−−−→ Pn−1 × Cn−1 and Pn
(d,c)−−−→ Pn−1 × Cn−1

actually take values in Qn−1 ⊂ Pn−1 × Cn−1. But by the inductive hypothesis
Qn−1 ' Sn−1, and so parallelism in multitopic sets means equality of frames (in
the associated opetopic structure). Thus Qn ' Sn.

6.3.2 Dn as a Generalized Multicategory
We rely here in the comparison between 2-level signatures and generalized multi-
categories from section 6.5 of [Z10]

We first need to see how the construction in that theorem gives Dn the structure
of a generalized multicategory. The set Dn = (1 × ϑ∗

n)
∗W(Sn−1) is the set of

arrows of our multicategory, whereW(Sn−1) is treated as a set (the set of function
symbols in the web monoid). The pullback of the typing map gives us a morphism
Dn → Sn−1 ×X∗

n−1. Thus we define the upper level objects to be Xn−1, and the
lower level objects to be Sn−1 (considered as a set of function symbols). The map
from upper level objects to lower level objects is ϑn, which assigns to each cell its
frame. This discussion also defines an object of the category of 2-level signatures
in a natural way.

We must now define composition. We will show that the functor of pulling
back along (1 × ϑ∗

n) maps monoids in signatures to generalized multicategories.
For this, consider an arbitrary function ϑ : X → S. We will now show that the
functor (1 × ϑ∗)∗ : Siga/S → Sig2a/ϑ is almost lax monoidal, and its action on
monoids lands in generalized multicategories.
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The natural transformation (natural in A and B)

(1× ϑ∗)∗A⊗ϑ (1× ϑ∗)∗B → (1× ϑ∗)∗(A⊗S B)

given by
〈(a, y), (bi, xi)〉 7→ (〈a, bi〉, xi),

where the xi and y are the new upper level typings of the inputs, explains that
formal composites of retyped elements of two ordinary signatures can still be made
naturally compatible in ordinary signatures. This allows us to transfer composition
laws from ordinary signatures to two-level ones. Note that the upper level typing
of the inputs we are filling (y) is forgotten by this map.

We have an obvious morphism of monoidal units Iϑ → (1 × ϑ∗)∗IS, defined
using ϑ itself on the lower level objects and the identity on the upper level objects.
Unfortunately this morphism is not contained in the fiber Sig2a/ϑ since it modifies
lower level objects. For this reason our functor is not lax monoidal. It does,
however suffice for our purposes. We define the identities as the image of this
map.

Lemma 6.3.6. With the above definitions the pullback functor (1×ϑ∗)∗ : Siga/S →
Sig2a/ϑ maps monoids to generalized multicategories.

Proof. The comparison of monoidal products gives us a composition law just like
an ordinary lax monoidal functor does (we have defined the identities separately).
This gives us a notion of simultaneous composition, as defined in part 2 of [HMP02].
It is associative, since the lax monoidal functor diagram for the associativity mor-
phism actually holds for our comparison map, as a simple computation reveals.
The only problem are the unit laws. These can be checked by hand, using the
composition law. The strange form of the right unit law (as given in [HMP02])
comes from the fact that we delete y in our comparison map.

6.3.3 Proof of Theorem 6.3.5
Let us see why Dn has a chance of being a multicategory of function replacement.
First note that since we already know that Sn−1 ' Qn−1, and Qn−1 ⊂ Pn−1×Cn−1,
the lower level objects are correct – in our particular situation, due to globularity,
not all of them will be codomains, and our construction of Dn merely reflects this
restriction. Second, by the definition of the pullback action in section 2.5 and
corollary 3.4.2, we have

Dn = (1× ϑ∗
n)

∗W(Sn−1) =W(Sn−1) ?a Xn−1 = F(Xn−1), (6.1)
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so that the arrows of Dn indeed coincide with the free multicategory on the set of
(n− 1)-cells, where the cells are typed according to the typing of their frame, that
is by (n− 2)-cells.

We must now show that the multiplication defined above coincides with the one
constructed in part 2 of [HMP02]. Unfortunately there is no way to perform an
abstract comparison – the multicategory of function replacement functor is defined
on a category that is inequivalent to the domain of the web monoid functor. The
two constructions overlap only in their specific application to the construction of
the category of multitopic or opetopic sets. This forces us to examine the proof
of the main theorem in part 2 of [HMP02], to see what multiplication it actually
gives.

To begin, note that the identity arrows obviously coincide – in both cases they
are the generating arrows of the free multicategory. For our construction of Dn this
is part of corollary 3.4.2. So we only need to compare the composition maps. In
the construction of [HMP02] it is done entirely within the free multicategory, using
what are called “ample expansions”. The defining properties of the multicategory
of function replacement determine compositions uniquely for separated terms, that
is those whose typing is injective. Then one shows that any term can be separated
in a different free multicategory, that is all terms are images of separated terms
under strict morphisms of free multicategories. This, along with the requirement
of functoriality defines composition for all terms, and the construction is complete.

We will prove two things:

1. The two composition laws coincide for separated terms.

2. We can define natural ample expansions W(π) for the web monoid functor.

These two facts together imply that the construction of [HMP02] can be carried
out inside the web monoid functor. Specifically it can be carried out in the ample
expansion given by (1× ϑn)∗W(π), which is provided by W(π) (with the natural
transformation π defined below) and lemma 6.3.6. The domain of this map will
be a free multicategory by a computation analogous to the one in equation 6.1.
The projection maps which define function replacement composition for nonsepa-
rated terms are homomorphisms with respect to multiplication induced from web
monoid. Since they are defined to be homomorphisms with respect to function
replacement in [HMP02], and the compositions of separated terms agree, the two
composition maps are equal for all terms. This argument relies on the fact that
we can use arbitrary ample expansions to define function replacement, and the
results will always agree. This is part of the argument for the existence of function
replacement in [HMP02], and we will not repeat it here. It is also apparent in
that proof that functoriality for just ample expansions is enough to complete the
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construction of the multiplication map for a single datum (L,C, d). Thus we can
use for our comparison only the convenient ample expansions of Dn.

The proof of the second point is fairly trivial. Recall the separation principle
3.1. There, given a monoid M ∈ Mon(Siga), we constructed a new monoid with
the same types, given by MN =M × N together with an obvious strict projection
homomorphism π : MN →M . It is obvious that π : (−)N → 1Mon(Siga) is a natural
transformation of functors. Then the natural transformation W(π) is the sought
for natural ample expansion of W . This is proven by induction on tree height
(since W is F�(I⊗) – a set of terms, or trees) starting from the obvious fact that
MN⊗MN →M ⊗M is strict and can separate any finite set of formal composites.
It then follows that W(πM) is strict and can separate any finite set of function
symbols (which are trees or terms). The argument here is essentially the same as
in lemma 7 in part 2 of [HMP02].

The proof of the first point relies on the fact that the statement of lemma 4
in part 2 of [HMP02] is, in the separated context, equivalent to the main diagram
defining multiplication in the web monoid. Lemma 4 states that, for separated
terms, the operation of function replacement commutes with the free multiplication
in F(Xn−1). This, together with the unit laws (which we have already shown
to coincide), defines function replacement uniquely for separated terms. Note
that since F(Xn−1) is an ordinary 1-level free multicategory, we may express its
multiplication law using the monoidal structure for Siga. The main diagram states
ν commutes with the free multiplication for all terms. To see this consider the
pullback of the main diagram by (1 × ϑ∗

n). This computation, by equation 6.1,
has already been done in the proof of theorem 6.1.7. Recall that the result is the
following commutative diagram:

F2(Xn−1)⊗F2(Xn−1) F(Xn−1)⊗F(Xn−1)

F2(Xn−1) F(Xn−1)

(ν ?a Xn−1)⊗ (ν ?a Xn−1)

µF(Xn−1)

ν ?a Xn−1

µXn−1

In the above diagram we have identified (W ⊗Sn−1 W) ?a Xn−1 ' W ?a (W ?a
Xn−1) ' F2(Xn−1) analogously to equation 6.1, and by that equation we also
have (1×ϑ∗

n)
∗ν = ν ?aXn−1. It may be helpful to keep in mind that theorem 5.19

states, among others, that ν ?a Xn−1 = εF(Xn−1), the counit for the left adjoint
F . The map µXn−1 is the free multiplication in F(Xn−1) and the map µF(Xn−1)

is the free multiplication in F2(Xn−1) coming from the outermost application of
F . The monoidal structure ⊗ in the diagram above is the one in Siga/Xn−2.
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Using lemma 6.3.6 and the identification F(Xn−1) ' Dn we obtain from this the
following diagram:

(Dn ⊗ϑn Dn)⊗Xn−2 (Dn ⊗ϑn Dn) Dn ⊗Xn−2 Dn

Dn ⊗ϑn Dn Dn

ν̃ ⊗ ν̃

µ̃F(Xn−1)

ν̃

µXn−1

Where ν̃ is the multiplication on Dn induced from the web monoid, and µ̃F(Xn−1)

acts as µF(Xn−1) perserving the additional typing coming from using ⊗ϑn instead
of ⊗Sn−1 . This diagram states that ν̃ commutes with the free multiplication in Dn

for all terms. Converting it to single composition – as opposed to simultaneous
composition – which means that all inputs get identities except for one (for details
on how this is done see remark 2 at the end of section 6 in [Z10]), it states that

ν̃(µ(f, g, r), h, s) =

{
µ(f, ν̃(g, h, s), r) if s belongs to g
µ(ν̃(f, h, s), g, r) if s belongs to f

,

where r, s are numbers indicating the places of insertion, and f, g, h ∈ Dn. The
cases arise from considering which copy of ν̃ in the map ν̃⊗ ν̃ will act on the single
input. This is exactly the statement of lemma 4 in [HMP02]. Our ν̃ thus coincides,
by uniqueness, with function replacement for separated terms. This finishes the
proof of theorem 6.3.5.
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Chapter 7

The Relation to Logic

This chapter is a reflection on the various algebraic structures used by different
authors to define opetopic sets. As we have seen in the previous chapters, they
are almost the same, but differ in subtle details. The common ground for all these
structures turns out to be equational logic.

The category of algebras of a (finitary) equational theory can be equivalently
described as a category of models of a Lawvere theory or as a category of algebras
of a finitary monad on the category Set. In some cases there are also two other
descriptions available. Some categories of algebras can be described also as algebras
for a symmetric operad and some can be described as algebras for a rigid1 operad
(c.f. [HMP02, Z10]). It is well known that the categories of equational theories ET,
Lawvere theories LT and monads (on Set) Mnd are equivalent2. Its is also known
that the categories of symmetric and rigid operads are equivalent to the categories
of analytic and polynomial monads, respectively; see [Z10]. In this paper we give a
description of the subcategories of ET and of LT that correspond to the categories
of symmetric and rigid operads.

The equational theories corresponding to analytic monads are linear-regular
theories. A linear-regular theory is an equational theory that can be axiomatized
by equations having the same variables on both sides, each variable occurring ex-
actly once. A linear-regular theory T is rigid iff whenever a linear-regular equation

t(x1, . . . xn) = t(xσ(1), . . . xσ(n))

is provable in T then the permutation σ is the identity permutation. In the above
1In this chapter only, we call a “rigid operad” what was earlier called a “multicategory with

non-standard amalgamation”. This choice is motivated by the property of the equational theories
that correspond to such operads. The category of rigid operads can be identified with the full
subcategory of symmetric operads for which the symmetric actions are free.

2These correspondences preserves the notion of a “model”, i.e. the corresponding categories
of algebras in the suitable sense are canonically equivalent.
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equation t(x1, . . . xn) denotes any term with n different variables x1, . . . xn, each one
occurring exactly once and t(xσ(1), . . . xσ(n)) denotes the same term t but with vari-
ables permuted according to σ. For example, the theory of commutative monoids
is not rigid as it contains the equation

m(x1, x2) = m(x2, x1)

The category of polynomial monads PolyMnd corresponds to the category of
rigid theories RiET. The notion of a linear-regular theory was considered in
universal algebra but the notion of a rigid theory as well as that of a linear-regular
interpretation seems to be new. If all the axioms of an equational theory are
linear-regular, then the theory is linear-regular. However, the problem whether
a finite set of linear-regular equations defines a rigid theory is undecidable, (cf.
[BSZ]).

We also give a characterization of the categories of Lawvere theories that cor-
respond to the categories of analytic and polynomial monads. The category Fop,
opposite of the skeleton of the category of finite sets is the initial Lawvere the-
ory. Thus it has a unique morphism into any other Lawvere theory π : Fop → T.
The class of morphisms in the image of π closed under isomorphisms is called
the class of structural morphisms in T. The class of right orthogonal morphisms
to the structural morphisms is the class of analytic morphisms in T. A Lawvere
theory T is analytic iff the classes of structural and analytic morphisms form a
factorization system and the automorphisms of any object n in T are determined
by the automorphisms of 1. A Lawvere theory is rigid if it is analytic and the
symmetric group actions act freely on analytic operations. We show that the cat-
egories AnLT of analytic and RiLT of rigid Lawvere theories correspond to the
categories of analytic and of polynomial monads.

The following diagram illustrates the relations between the categories men-
tioned above. The vertical lines denote adjoint equivalences. Thus up to equiv-
alence of categories there are only four categories in it, one on each level. One
equivalent to the category of all finitary monads on Set, the second equivalent to
the category of semianalytic monads3 on Set, the third equivalent to the category
of analytic monads on Set, and the fourth equivalent to the category of polynomial
monads on Set. These levels are denoted by letters f , r, a, and p, respectively.
Thus all four columns of equational theories, Lawvere theories, monads and op-
erads are levelwise equivalent. These columns are denoted by letters e, l, m and
o, respectively. The vertical functors heading up are inclusions of subcategories.
The lower functors are full inclusions and the upper are inclusions that are full
on isomorphisms. The vertical functors heading down, the right adjoints to those

3This level is special, and not related to the main body of our work. We will not consider it
in this chapter. It is described in detail in [SZ].
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heading up, are monadic. All the squares in the diagram commute up to canonical
isomorphisms.

e o l m

LT

ET

Mnd f

FOp

RegLT

RegET

SanMnd r

RegOp

AnLT

LrET

AnMnd a

SOp

RiLT

RiET

PolyMnd p

RiOp
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The notation concerning categories involved is displayed in the above diagram.
The notation concerning functors is not on the diagram but it is meant to be
systematically referring to the levels and columns they ‘connect’. The horizontal
functors are denoted using letters from both columns they connect; the codomain
by the script letter, the domain by its subscript, and the level is denoted by
superscript. Thus the functor AnMnd → AnLT will be denoted by Lam. We
usually drop superscripts and often subscripts when it does not lead to confusion.
Thus we can write, for example, E = Eo = Epo : RiOp → RiET. The vertical
functors heading up are denoted by script letter P with superscript indicating the
column and subscript indicating the level of the codomain. The vertical functors
heading down are denoted by script letterQ with subscript and superscript as those
heading up. Thus we have, for example, functors P = Po = Poa : RiOp → SOp
and Q = Qf = Qmf : Mnd → AnMnd. We will also refer to various diagonal
morphisms and then we need to extend the notation concerning vertical functors
by specifying both the columns of the domain and the codomain. For example,
we write Pola : SOp→ LT to denote one such functor and its right adjoint will be
denoted by Qlof : LT → SOp. In principle this notation will leave the codomain
not always uniquely specified but in practice it it sufficient, and in fact usually
much less is needed and each time it is used it will be recalled on the spot.

In Section 7.1 we recall categories of equational theories, Lawvere theories,
monads on Set, and operads4. We also discuss some of their subcategories. In
Sections 7.2 we recall the correspondence between equational theories, Lawvere
theories, and monads. In section 7.3 we study relations between Lawvere theories
and operads. We define a functor Lo : SOp→ LT from the category of symmetric
operads the category of Lawvere theories. We identify its image and we show that
its right adjoint is monadic. We also identify the image of the category of the
rigid operads RiOp in LT. In section 7.4 we relate the result from section 7.3
to monads. We note that finitary monads are monadic over analytic ones. But
we also explain that this is a consequence of an even more fundamental fact that
there is a lax monoidal monad on the category of analytic functors. This monoidal
monad induces a distributive law. From this we obtain that finitary monads are
monadic over analytic functors. This extends a result from [Ba70]. In section 7.5
we define the embedding SOp in ET and characterize the images of both SOp
and RiOp. This gives the characterizations described at the beginning of the
introduction that solves a problem stated in [CJ04]. We end this chapter with a
section where we give some examples.

4We do not discuss the full and regular operads (the two top categories in the operadic
column). For that, we refer the reader to [SZ].
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Notation Reminder
For n ∈ N, we have n = {0, . . . , n− 1}, [n] = {0, . . . , n}, (n] = {1, . . . , n}. The set
Xn is interpreted as X(n] and it has a (natural) right action of the permutations
group Sn by composition. The skeletal category equivalent to the category of
finite sets will be denoted by F. The objects of F are sets (n], for n ∈ N. The
subcategories of F with the same objects as F but having as morphisms bijections,
surjections, and injections will be denoted by B, S, I, respectively. When Sn acts
on the set A on the right and on the set B on the left, the set A⊗nB is the usual
tensor product of Sn-sets, namely the coend

∫ Sn A×B.

7.1 Presentations of Categories of Algebras
In this section we collect several categories whose objects describe (some) categories
of algebras of finitary equational theories and whose morphisms induce functors
between such categories of algebras.

7.1.1 Equational Theories
By an equational theory we mean a pair of sets T = (L,A), L =

⋃
n∈N Ln and Ln

is the set of n-ary operations of T . The sets of operations of different arities are
disjoint. The set T r(L, ~xn) of terms of L in context ~xn = 〈x1, . . . , xn〉 is the usual
set of terms over L build with the help of variables from ~xn. We write t : ~xn for
the term t in context ~xn. Thus all the variables occurring in t are among those in
~xn. The set A is a set of equations in context t = s : ~xn, i.e. both t : ~xn and s : ~xn
are terms in context.

A morphism of equational theories, an interpretation, I : (L,A) → (L′, A′) is
given by a set of functions In : Ln → T r(L′, ~xn), for n ∈ N. In’s extend to functions
Īn : T r(L, ~xn)→ T r(L′, ~xn), for n ∈ N as follows. We drop index n in Īn when it
does not lead to confusion.

Ī(xi : ~x
n) = xi : ~x

n

for i = 1, . . . , n and

Ī(f(t1, . . . , tk) : ~x
n) = I(f)(x1 \ Ī(t1), . . . , xk \ Ī(tk)) : ~xn

for f ∈ Lk and ti ∈ T r(L, ~xn) for i = 1, . . . , k. On the right-hand side we have a
simultaneous substitution of terms ti’s for variables xi’s. Moreover, for I to be an
interpretation we require that the equations are preserved, i.e. for any t = s : ~xn

in A we have
A′ ` Ī(t) = Ī(s) : ~xn
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where A′ ` is the provability in the equational logic from axioms in the set A′. We
identify two such interpretations I and I ′ : (L,A) → (L′, A′) iff they interpret all
function symbols as provably equivalent terms, i.e.

A′ ` I(f) = I ′(f) : ~xn

for any n ∈ N and f ∈ Ln. In this way we have defined a category of equational
theories ET.

A term in context t : ~xn is regular if every variable in ~xn occurs in t at least
once. A term in context t : ~xn is linear if every variable in ~xn occurs in t at most
once. A term in context t : ~xn is linear-regular if it is both linear and regular. An
equation s = t : ~xn is regular (linear-regular) iff both s : ~xn and t : ~xn are regular
(linear-regular) terms in contexts.

A simple φ-substitution of a term in context t : ~xn along a function φ : (n]→ (k]
is a term in context denoted φ · t : ~xk such that every occurrence of the variable xi
is replaced by the occurrence of xφ(i). An α-conversion of a term in context t : ~xn is
a simple φ-substitution of a term in context along a monomorphism φ : (n]→ (k].

An equational theory T = (L,A) is a regular (linear-regular) theory iff every
equation s = t : ~xn that is a consequence of the theory T is a consequence of the set
of regular (linear-regular) consequences of T . An interpretation is a regular (linear-
regular) interpretation iff it interprets function symbols as regular (linear-regular)
terms.

A theory T = (L,A) is a rigid theory iff it is linear-regular and for any linear-
regular term in context t : ~xn whenever A ` t = τ · t : ~xn then τ is the identity
permutation. τ · t is the simple τ -substitution of a term in context t : ~xn along a
permutation τ : (n]→ (n] ∈ Sn.

Note that it is not assumed that the axioms of linear-regular theories are linear-
regular. This is to keep the notion invariant under isomorphism of theories. In
particular, if T = (L,A) is a linear-regular theory and A′ is the set of all equational
consequences of the axioms from A in the language L then the T ′ = (L,A′) is also
linear-regular. Of course T ′ is isomorphic to T . On the other hand, if the theory
has linear-regular axioms then it is linear-regular. Thus if we find a linear-regular
set of axioms of an equational theory T we can be sure that T is linear-regular.
However, it is not so easy to decide whether a theory is rigid. In fact, even if we
have a finite linear-regular presentation of a theory it is still undecidable whether
this theory is rigid or not (cf. [BSZ]).

Remark. We could also consider here strongly regular theories (c.f. [CJ95])
that correspond to monotone monads (cf. [Z10]). They are more specific than
rigid theories. However this part of correspondence is of a bit different kind. The
monotone monads are not just monads with certain additional properties but also
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with certain additional structure. The forgetful functor from monotone monads
to monads (on Set) is not full on isomorphisms. These theories and some other
theories of this kind will be treated elsewhere. We give the definition just to show
the difference between the notions in the examples below. A term in context t : ~xn
is a strongly regular iff it is linear-regular and the variables in the term t occur
in the same order as in the sequence ~xn. An equation is s = t : ~xn is a strongly
regular equation iff both terms s : ~xn and t : ~xn are strongly regular. An equational
theory T = (L,A) is a strongly regular theory iff every equation s = t : ~xn that
is a consequence of the theory T is a consequence of the set of strongly regular
consequences of T . An interpretation is a strongly regular interpretation iff it
interprets n-ary function symbols as strongly regular terms. One can easily see
that any strongly regular theory is rigid but the ‘embedding’ functor SregET −→
RiET is not even full on isomorphisms, where SregET denotes the category of
strongly regular theories and strongly regular interpretations. The examples below
show that there are rigid theories that are not strongly regular.

We denote by LrET the subcategory of ET consisting of linear-regular theories
and linear-regular interpretations. RiET denotes the full subcategory of LrET
whose objects are rigid theories. RegET is a category of regular theories and
regular interpretations. We have three inclusion functors

RiET −→ LrET −→ RegET −→ ET

with the first inclusion being full and the other two being full on isomorphisms (cf.
[Z10]).

Examples.

1. The theory of monoids has two operations m and e, of arity 2 and 0, respec-
tively and equations

m(x1,m(x2, x3)) = m(m(x1, x2), x3), m(x1, e) = x1 = m(e, x1)

By the form of these equations, this theory is strongly regular and hence it
is rigid as well.

2. The theory of monoids with anti-involution has an additional unary operation
s and additional two axioms

m(s(x1), s(x2)) = s(m(x2, x1)), s(s(x1)) = x1

This theory is not strongly regular but it can be shown that it is rigid.
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3. The theory of commutative monoids is the theory of monoids with an addi-
tional axiom

m(x1, x2) = m(x2, x1)

Thus is it linear-regular by the form of the axioms but it is obviously not
rigid.

4. The theory of sup-lattices has two operations ∨ and ⊥, of arity 2 and 0,
respectively and equations

x1 ∨ (x2 ∨ x3) = (x1 ∨ x2) ∨ x3, x1 ∨ e = x1 = e ∨ x1

x1 ∨ x1 = x1, x1 ∨ x2 = x2 ∨ x1
This theory is regular but not linear.

5. The theory of groups is not regular.

7.1.2 Lawvere Theories
By a Lawvere theory, (cf. [Lw04], [KR77]), we mean a category whose objects are
natural numbers N, so that n is a product 1n with chosen projections πni : n→ 1,
for n ∈ N and i ∈ (n]. An interpretation (or a morphism) of Lawvere theories is a
functor constant on objects, preserving the chosen projections. Lawvere theories
and their morphisms form a category that is denoted by LT.

The initial object in the category LT is the category Fop with the obvious
inclusions as projections, see introduction. The unique morphism from Fop into
any Lawvere theory T will be denoted by π : Fop −→ T. Thus for φ : (n]→ (m] in
F we have πφ = 〈πφ(i)〉 : m→ n in T.

Every equational theory has a model, and hence there is no inconsistent equa-
tional theory. But there are two equational theories that are nearly so. The termi-
nal Lawvere theory 1 has exactly one morphism between any two objects. It has
unique (up to isomorphism) one-element model. 1 is not a regular theory. It also
has some equivalent internal characterizations as the Lawvere theory (unique up
to an isomorphism) which is a groupoid or where 0 ∼= 1. The functor π : Fop −→ 1

is not faithful. There is yet another Lawvere theory with this property. It is a
subtheory of 1 in which there is no morphism 0 → 1. These categories are the
only two Lawvere theories in which 2 is the initial object.

The class of structural morphisms in T is the closure under isomorphism of the
image under π of all morphisms in F. A morphism in T is analytic iff it is right
orthogonal to all structural morphisms.

By a factorization system in a category C we mean the factorization system
in the sense of [FK72], see [CJKP97] sec 2.8, i.e. it consists of two classes of
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morphisms in C closed under isomorphisms, say E andM, such that morphisms in
E are left orthogonal to those inM, and each morphism f in C factors as f = m◦e
where e ∈ E and m ∈M.

Aut(n) is the set of automorphisms of n in T. As in any Lawvere theory T,
for n ∈ N, n is canonically isomorphic to 1n we always have a function

ρn : Sn × Aut(1)n −→ Aut(n)

such that
(σ, a1, . . . , an) 7→ a1 × . . .× an ◦ πσ

i.e. ρn sends a permutation σ and n isomorphisms of 1 to an isomorphism of n
in T. We say that T has simple automorphisms iff ρn is a bijection, for n ∈ N.
Clearly, if T has simple automorphisms then 2 is not initial in T.

A Lawvere theory T is analytic iff structural morphisms and analytic mor-
phisms form a factorization system in T and T has simple automorphisms. A
Lawvere theory T is rigid iff it is analytic and the symmetric groups Sn acting on
T(n, 1) by permuting factors act freely on analytic morphisms, for n ∈ N.

An analytic interpretation of Lawvere theories is an interpretation of Lawvere
theories that preserves analytic morphisms. Thus we have a non-full subcategory
of analytic Lawvere theories and analytic interpretations AnLT. The latter has as
a full subcategory the category RiLT of rigid Lawvere theories. We have inclusion
functors

RiLT −→ AnLT −→ LT
with the first one being a full inclusion.

We have an easy
Lemma 7.1.1. In any analytic Lawvere theory T any morphism f : n→ m has a
factorization

n m

k

f

πφ a

with a being an analytic morphism in T and φ : (k] → (n] a function. Such a
factorization is unique up to a permutation, that is if f = a′ ◦ πφ′ is another such
factorization there is σ ∈ Sk such that

φ ◦ σ = φ′, a = a′ ◦ πσ.
Proof. When T has simple automorphisms any structural morphism s : n → m
in T can be presented as (a1 × . . . , am) ◦ πφ for some function φ : (m] → (n] and
ai ∈ Aut(1) for i ∈ (m]. Thus if f = a ◦ s is a structural-analytic factorization of
f , then f = (a ◦ (a1 × . . . , am)) ◦ πφ is also one.
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7.1.3 Monads
We shall consider three categories of finitary monads on Set. The category of
all finitary monads with usual morphisms of monads will be denoted by Mnd.
A morphism of monads τ : (M, η, µ) → (M ′, η′, µ′) is a natural transformation
τ : M →M ′ such that τ ◦ ηM = ηM

′ and τ ◦ µM = µM
′ ◦ τM ′ ◦M(τ).

Recall that a finitary monad (M, η, µ) on Set is analytic iff M weakly preserves
wide pullbacks and both η and µ are weakly cartesian natural transformations.
A morphism of analytic monads on Set τ : (M, η, µ) → (M ′, η′, µ′) is a weakly
cartesian natural transformation τ that is a morphism of monads, (cf. [Jo86],
[Z10]). Recall that a finitary monad (M, η, µ) is a polynomial monad on Set iff M
preserves wide pullbacks and both η and µ are cartesian natural transformations.
Both types of functors and monads have a much more explicit description (cf.
[Jo86], [Z10]).

The categories of analytic and polynomial monads with the suitable morphisms
will be denoted by AnMnd and PolyMnd, respectively. We have two inclusion
functors

PolyMnd −→ AnMnd −→Mnd

the first one being full (cf. [Z10]), the second full on isomorphisms.

7.1.4 Operads
The symmetric operads provide yet another way of presenting models of equational
theories. This kind of presentation is usually very convenient, but the models
defined by such operads are more specific. The precise characterization of this
more specific situation is the main objective of this chapter.

Recall that a symmetric operad O consists a family of sets On, for n ∈ N, a
unit element ι ∈ O1, for any k, n, n1, . . . , nk ∈ N with n =

∑k
i=1 ni, a composition

operation
∗ : On1 × . . .×Onk

×Ok −→ On
a left action of the symmetric groups

· : Sn ×On −→ On

for n ∈ N, such that the composition is associative with unit ι and compatible with
group actions. A morphism of symmetric operads f : O → O′ is a function that
respects arities of operations, unit, compositions, and group actions. For more on
symmetric operads and their history one can consult for example [Le04], but there
the symmetric groups act on the right.

Recall that the symmetric operad of symmetries S is defined as follows. The
set of n-ary operations of S is the symmetric group Sn on which Sn act on the left
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by multiplication. The composition

? : Sn1 × . . .× Snk
× Sk −→ Sn

for (σ1, . . . , σk; τ) ∈ Sn1 × . . .× Snk
× Sk the permutation

〈σ1, . . . , σk〉 ? τ : n =
k∑
i=1

nτ(i) −→ n =
k∑
i=1

ni

is given by
〈i, r〉 7→ 〈τ(i), στ(i)(r)〉

where we consider the obvious lexicographic order on both
∑k

i=1 nτ(i) and
∑k

i=1 nτ(i).
Note that even if composition is a function between groups it is not a homomor-
phism of groups in general.

The category of rigid operads5 RiOp can be identified with the full subcategory
of symmetric operads whose objects are those operads that have all the actions of
symmetric groups free. We recall their definition below; see [HMP02], [Z10] for
more.

A rigid operad O consists of a family of sets On, for n ∈ N, a unit element
ι ∈ O1 ,for any k, n, n1, . . . , nk ∈ N with n =

∑k
i=1 ni, a composition operation

〈∗, α〉 : On1 × . . .×Onk
×Ok −→ On × Sn

such that the composition is associative with unit ι. The second part of the
operation of composition is called the amalgamation. We spell out the definition
in detail. Let a ∈ On, bi ∈ Oki for i ∈ (n], k =

∑n
i=1 ki, cj ∈ Omj

for j ∈ (k],
m =

∑k
j=1mj. The fact that ι is the unit for the composition means that

(ι, . . . , ι) ∗ a = a = a ∗ ι

and that the amalgamations in these compositions are identity permutations 1(n].
To explain associativity we need to name amalgamations for various compositions.
We write

τ = α(b1, . . . , bn; a) ∈ Sk

ρ = α(cτ(1), . . . , cτ(k); (〈b1, . . . , bn〉 ∗ a)) ∈ Sm

σi = α(ck̄i+1, . . . , ck̄i+1
; bi) ∈ Sm̌i

ξ = α(〈c1, . . . , ck̄1〉 ∗ b1, . . . , 〈ck̄n−1+1, . . . , ck̄n〉 ∗ bn; a) ∈ Sm

5The (colored) rigid operads were called “multicategories with non-standard amalgamation”
in the previous chapters. This name change is motivated by the characterization we are going
to prove in Theorem 7.5.4.
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for i ∈ (n]. Where k̄0 = 0, k̄i =
∑i

r=1 kr, for i ∈ (k] and m̌i =
∑k̄i+1

j=k̄i+1
mj. We

have m =
∑n

i=1 m̌i. Then the associativity reads

〈〈c1, . . . , ck̄1〉∗b1, . . . , 〈ck̄n−1+1, . . . , ck̄n〉∗bn〉∗a = 〈〈cτ(1), . . . , cτ(k)〉∗(〈b1, . . . , bn〉∗a)

and
(σ1 + . . .+ σn) ◦ ξ = ρ.

A morphism of rigid operads (h, σ) : O → O′ is a family of functions 〈f, σ〉 : On →
O′
n× Sn for n ∈ N that respects the unit and compositions. In detail, for the unit

ι ∈ O1 we have
h(ι) = ι, σι = id1

and for bi ∈ Oni
, a ∈ Ok we have

h(〈b1, . . . , bk〉 ∗ a) = 〈h(bσa(1)), . . . , h(bσa(k))〉 ∗ h(a)

and

α(b1,...,bk;a) ◦ σ(〈b1,...,bk〉?a) = (〈σb1 , . . . , σbk〉 ? σa) ◦ α(h(bσa(1)),...,h(bσa(k));h(a))

For more see [Z10].
We denote by SOp, RiOp the categories of symmetric and rigid operads,

respectively. We have the symmetrization functor

P : RiOp −→ SOp

such that the set on n-ary operations of the symmetric operad P(O) associated to
the rigid operad O is On × Sn. P is full and faithful.

7.2 The Equivalence of The Three Approaches
We shall recall the functors that exhibit equivalences of the following three cate-
gories ET, LT and Mnd:

ET LT Mnd
Le Ml

El Lm

As we described it in the introduction, the names of the functors are so chosen
to remember their codomains with indices remembering their domains. We often
drop the indices when it does not lead to a confusion.

Each of the above categories comes equipped with a semantic functor associ-
ating to objects of those categories their categories of models. As all monads in
Mnd are defined on Set only, we consider the models only in Set. It is well known
that the equivalences that we describe below respect those semantic functors.
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7.2.1 The Functor Le = L : ET −→ LT
Let T = (L,A) be an equational theory. A morphism n → m in L(T ) is an
m-tuple 〈[t1 : ~xn], . . . , [tm : ~xn]〉 : n → m where [ti : ~x

n] is an equivalence class of
terms is context ~xn modulo provable equivalence from axioms in A. The identity
on n is 〈[x1 : ~xn], . . . , [xn : ~xn]〉 : n→ n. The composition is given by simultaneous
substitution as follows

n m k
〈[ti : ~xn]〉i∈(m] 〈[sj : ~xm]〉j∈(k]

〈[sj(〈xi\ti〉) : ~xm]〉j∈(k]

The i-th projection on 1 is πni = 〈[xi : ~xn]〉.
Let I : T → T ′ be an interpretation. The functor L(I) is defined on a morphism

〈[t1 : ~xn], . . . , [tm : ~xn]〉 : n→ m

in L(T ) as
〈[Ī(t1) : ~xn], . . . , [Ī(tm) : ~xn]〉 : n −→ m

A routine verification shows that L is indeed a functor into LT.

7.2.2 The Functor El = E : LT −→ ET
Let T be a Lawvere theory. Then T(n, 1) is the set of n-ary operations of the
theory E(T), for n ∈ N. The set of axioms E(T) contains a linear-regular axiom

g(x1, . . . , xn) = f(f1(x1, . . . , xn1), . . . , fk(x1+∑k−1
i ni

, . . . , xn)) : ~x
n

for any morphisms f, fi, g in T such that f ◦ (f1 × . . .× fk) = g holds in T, and a
linear axiom

xi = πni (x1, . . . , xn) : ~x
n

for any n ∈ N and i ∈ (n]. An interpretation of Lawvere theories F : T → T′

induces an interpretation of equational theories E(F ) such that

E(F )(f) = F (f)(x1, . . . , xn) : ~x
n

for f : n→ 1 in T.
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7.2.3 The Functor Lm = L : Mnd −→ LT
For a monad M = (M, η, µ), the category L(M) is the dual of the full subcategory
of the Kleisli category for M , spanned by the natural numbers. In detail, for a
monad M we define the hom’s in the category L(M) as

L(M)(n,m) = Set((m],M((n]))

for n,m ∈ N. The compositions and identities are like in Kleisli category. The
projection

πni : (1] −→M((n])

sends 1 to η(n](i), for n ∈ N and i ∈ (n].
For a morphism of monads τ : (M, η, µ) −→ (M ′, η′, µ′) and a morphism f : n→

m in L(M) we put
L(τ)(f)(i) = τ(n](f(i))

for i ∈ (m].

7.2.4 The Functor Ml =M : LT −→Mnd
For a Lawvere theory T, we define the monad M(T) using coends. We put

M(T)(X) =

∫ n∈F
Xn ×T(n, 1)

for X ∈ Set. The unit of M(T) is

ηT
X : X →M(T)(X)

sends x ∈ X to the class of the element 〈id1, x̄〉 where id1 is the identity on 1 in
T and x̄ : (1] → X is the function picking x, i.e. x̄(1) = x. The iterated functor
M2(T) is given, for X in Set by

M2(T)(X) =

∫ m,n1,...,nm∈F
Xn ×T(n1, 1)× . . .×T(nm, 1)×T(m, 1)

where n =
∑m

i=1 ni. The multiplication of the monad M(T)

µT
X :M2(T)(X) −→M(T)(X)

is defined on components

Xn ×T(n1, 1)× . . .T(nm, 1)×T(m, 1) −→ Xn ×T(n, 1)

by composition, i.e. for f : m→ 1, f1 : n1 → 1, . . . , fm : nm → 1 in T and ~x : (n]→
X

µT
X(~x, f1, . . . , fm, f) = 〈~x, f ◦ (f1 × . . .× fm)〉

where again n =
∑m

i=1 ni.
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7.3 Lawvere Theories vs Operads
In this section we study the relations between Lawvere theories and operads, both
symmetric and rigid. We shall describe the adjunction Pa a Qf and the properties
of the embeddings Pa and Pp.

RiOp SOp LTP Pa

Qf

Pp

7.3.1 The Functor Pa : SOp→ LT
Let O be a symmetric operad: ι, ·, ∗ denote the unit, symmetric groups actions,
and compositions in O, respectively. We define a Lawvere theory Pa(O) as follows.
The set of objects of Pa(O) is the set of natural numbers N. A morphism from n
to m is an equivalence class of spans

r

n m

φ 〈f, gi〉i∈m

such that φ : (r] → (n] is a function, f : (r] → (m] is a monotone function, ri =
|f−1(i)| and we have gi ∈ Ori for i ∈ (m] and r =

∑m
i=1 ri. Two spans 〈φ, f, gi〉

and 〈φ′, f ′, g′j〉 are equivalent iff f = f ′, and there are permutations σi ∈ Sri for
i ∈ (m]

r

n m

r′

φ 〈f, gi〉i∈m

φ′ 〈f ′, g′i〉i∈m

Σiσi

such that
gi = σi · g′i, φ ◦

∑
i

σi = φ′
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By
∑

i σi : r → r we mean the permutation that is formed by placing permutations
σi ‘one after another’. Thus, it respects the fibers of f , i.e. f ◦

∑
i σi = f . Clearly,

we shall deal with the spans when we perform constructions on morphisms in
Pa(O), but when we consider equalities between spans we shall invoke the above
equivalence relation.

The composition 〈φ′′, f ′′, g′′j 〉 : n → k of two morphism 〈φ, f, gi〉 : n → m and
〈φ′, f ′, g′j〉 : m→ k is defined as follows. In the diagram

(7.1)

r′′

r r′

n m k

φ′′
φ̄ 〈f ′′, g′′j 〉f̄

φ

〈f, gi〉
φ′

〈f ′, g′j〉

the square is a pullback of f along φ′. The function f̄ is chosen so that it is
monotone. We put f ′′ = f ′ ◦ f̄ , φ′′ = φ ◦ φ̄, and g′′j = g′j ∗ 〈gφ(l)〉l∈f−1(j).

The identity on n is the span

n

n n

idn 〈idnι〉

As S1 contains the identity permutation only, any span equivalent to an identity
span is actually equal to it.

The projection πni : n→ 1 on i-th coordinate is the span

1

n 1

ī 〈id, ι〉

where i ∈ (n] and ī(1) = i.
For a morphism of symmetric operads h : O → O′ we define a functor

Pa(h) : Pa(O) −→ Pa(O′)
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so that for a morphism 〈φ, f, gi〉 : n→ m in Pa(O) we define a morphism

Pa(h)(〈φ, f, gi〉) = 〈φ, f, h(gi)〉 : n→ m

in Pa(O′).
This ends the definition of the functor Pa.

7.3.2 The Functor Qf : LT −→ SOp
Let T be a Lawvere theory. The operad Qf (T) consists of operations of T, i.e.
morphisms to 1. In detail it can be described as follows. The set of n-ary operations
Qf (T)n is the set of n-ary operations T(n, 1) of T, for n ∈ N. The action

· : Sn ×Qf (T)n −→ Qf (T)n

is given, for f ∈ T(n, 1) and σ ∈ Sn, by

σ · f = f ◦ πσ

The identity of Qf (T) is ι = id1 ∈ T(1, 1). The composition

∗ : Qf (T)n1 × . . .×Qf (T)nk
×Qf (T)k −→ Qf (T)n

is given, for f ∈ Qf (T)k and fi ∈ Qf (T)ni
, where i ∈ (k], n =

∑
i∈k ni, by

〈f1, . . . , fk〉 ∗ f = f ◦ (f1 × . . . ,×fk)

where f1 × . . . ,×fk is defined using the chosen projections in T and ◦ is the
composition in T.

If F : T → T′ is a morphism of Lawvere theories then the map of symmetric
operads

Qf (F ) : Qf (T)→ Qf (T′)

is defined, for f ∈ Qf (T)n, by

Qf (F )(f) = F (f)

This ends the definition of the functor Qf .

7.3.3 The Adjunction Pa a Qf and the Properties of the
Functor Pa

We note for the record
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Proposition 7.3.1. The functors Pa : SOp −→ LT and Qf : LT → SOp are
well defined.

We have an easy

Lemma 7.3.2. Let O be a symmetric operad and n ∈ N. An automorphism on n
in Pa(O) is represented by a span of the following form

n

n n

φ 〈idn, ai〉

where φ : (n] → (n] is a bijection, ai ∈ O1 is an invertible operation, i.e. there
is bi ∈ O1 such that ai ∗ bi = ι = bi ∗ ai for i ∈ (n]. It is the unique span in its
equivalence class.

Proof. Consider a pair of morphisms in Pa(O)

r r

n n n

φ 〈f, gj〉

φ′

〈f ′, hi〉

that are inverse one to the other. As the above composition is an identity it
follows that φ and f ′ are epi. Thus, because of the other composition φ′ and f
are surjections, as well. As pulling back along a surjection reflects injections, all
functions φ, f , φ′ and f ′ must be also injective and hence bijective. Then it is easy
to see that gφ′(j) is an inverse of hj for j ∈ (n].

Proposition 7.3.3. We have an adjunction Pa a Qf . The functor Pa is faithful.

Proof. We first show that Pa a Qf . For a symmetric operad O the unit is

ηO : O −→ Qf (Pa(O))

On 3 g 7→ 〈idn, !, g〉

For Lawvere theory T the counit is

εT : PaQf (T) −→ T

〈φ, f, gi〉 7→ (g1 × . . .× gm) ◦ πφ
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We verify the triangular equalities. For g ∈ Qf (T)n = T(n, 1) we have

Qf (εT) ◦ ηQf (T)(g) =

= Qf (εT)(〈idn, !, g〉) =

= g ◦ πidn = g

For 〈φ, f, gi〉 ∈ Pa(O) we have

εPa(O) ◦ Pa(ηO)(〈φ, f, gi〉) =

= εPa(O)(〈φ, f, 〈idri , !, gi〉〉) =

= (〈idr1 , !, g1〉 × . . .× 〈idrm , !, gm〉) ◦ πφ =

= 〈φ, f, gi〉

As the unit ηO is mono, Pa is faithful.

Proposition 7.3.4. The functor Pa is faithful, full on isomorphisms and its es-
sential image is the category of analytic Lawvere theories AnLT i.e. it factorizes
as an equivalence of categories Lo followed by P la

LT

AnLT SOp

P la

Lo

Pa

Proof. Recall that we have a unique morphism of Lawvere theories from the initial
theory π : Fop → Pa(O). For a function φ : (m] → (n], πφ the morphism πφ is
represented by the span of the form

m

n m

φ 〈idm, ι〉

The class of the structural morphisms in Pa(O) is the closure under isomorphism
of the class of morphisms {πφ : φ ∈ F}. It is easy to see that the structural
morphisms in Pa(O) are (represented by) the spans of the form
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m

n m

φ 〈idn, ai〉

where φ is any function and ai is an invertible unary operation, for i ∈ (m]. Thus
by Lemma 7.3.2, a morphism is an isomorphism in Pa(O) iff it is represented by
a span as above with φ being a bijection.

The analytic morphisms in Pa(O) are (represented by) the spans of the form

n

n m

φ 〈f, gi〉

where φ is a bijection.
Clearly, both classes contain isomorphisms and are closed under composition.
Any morphism 〈φ, f, gi〉 : n → m in Pa(O) has a structural-analytic factoriza-

tion as follows

r r

n r n

φ 〈idr, ι〉
idr

〈f, gi〉

Thus to show that structural and analytic morphisms form a factorization system
it remains to show that structural morphisms are left orthogonal to the analytic
morphisms. Let

n r m

k m

k r′ 1

ψ

φ

〈idk, aj〉

φ′ 〈!, g′〉

〈f, hi〉

idm

〈!, g〉

σ
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be a commutative square in Pa(O) with left vertical morphism 〈φ, idr, ai〉 being a
structural map and right vertical morphism 〈idm, !, g〉 an analytic map. We have
chosen the right bottom to be 1 to simplify notation but the general case is similar.
The commutation means that r = r′ and there is a permutation σ ∈ Sr such that

ψ = φ ◦ φ′ ◦ σ

and
〈aφ′(1), . . . , aφ′(r)〉 ∗ g′ = σ · (〈h1, . . . , hm〉 ∗ g)

Putting into the square a diagonal morphism 〈φ′ ◦ σ, f, h̄i〉

n r m

k r m

k r′ 1

ψ

φ

〈idk, aj〉

φ′ 〈!, g′〉

〈f, hi〉

idm

〈!, g〉σ

idr

φ′ ◦ σ

〈f, h̄i〉

where
h̄i = 〈a−1

φ′◦σ(l)〉l∈f−1(i) ∗ hi

we see that the permutations idr and σ show that both triangles commute. It is
not difficult to see that this diagonal filling is unique. Thus analytic morphisms are
indeed right orthogonal to the structural ones and Pa(O) is an analytic Lawvere
theory.

From the description of the functor Pa(h) : Pa(O) → Pa(O′) and the descrip-
tion of the structure of Pa(O) it is clear that Pa(h) sends the analytic (structural)
morphisms to the analytic (structural) ones. Thus Pa(h) is an analytic interpre-
tation of Lawvere theories.

Now let T be any Lawvere theory. As the class of analytic morphisms in T
is right orthogonal to a class of morphisms, it is closed under finite products and
isomorphisms. In particular, a composition of an analytic morphism f : n → 1 in
T with a permutation morphism πσ with σ ∈ Sn is again an analytic morphism.
Thus the analytic operations of any Lawvere theory T form a symmetric operad.
The composition 〈f1, . . . , fn〉 ∗ f is defined to be f ◦ (f1× . . .× fn) and the action
of σ ∈ Sn on an analytic morphism f : n → 1 is σ · f = f ◦ πσ. The unit is the
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identity morphism on 1. So defined the symmetric part of the operad T will be
denoted as Ts. We have an inclusion morphism of symmetric operads

Ts → Qf (T)

By adjunction we get a morphism

ψT : Pa(Ts) −→ T

Clearly, ψT is bijective on objects. If T is analytic then ψT is full (faithful) since
the structural-analytic factorization exists (is unique and π : F → T is faithful),
see Lemma 7.1.1.

If I : T→ T′ is an analytic interpretation between any Lawvere theories, then
the diagram

P(Ts) P(T′s)

T T′

P(Is)

ψT

I

ψT′

commutes, where Is is the obvious restriction of I to Ts. Thus the essential
image of Pa is indeed the category of analytic Lawvere theories and analytic inter-
pretations. An isomorphic interpretation of Lawvere theories is always analytic.
Therefore Pa is full on isomorphisms.

We have

Proposition 7.3.5. The functor Qf : LT→ SOp is monadic.

Proof. We shall verify that Qf satisfies the assumptions of Beck monadicity theo-
rem. By Proposition 7.3.3, Qf has a left adjoint. It is easy to see that Qf reflects
isomorphisms. We shall verify that LT has and Qf preserves Qf -contractible
coequalizers.

Let I, I ′ : T′ → T be a pair of interpretations between Lawvere theories so that

Qf (T′) Qf (T) O

Qf (I)

Qf (I ′)

r
q

s
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is a split coequalizer in SOp. We define a Lawvere theory TO so that a morphism
from n to m in TO is an m-tuple 〈g1, . . . , gm〉 with gi ∈ On, for i = 1, . . . ,m. The
compositions and the identities in TO are defined in the obvious way from the
compositions and the unit in O. The projections π̄ni in TO are the images of the
projections πni in T, i.e. π̄ni = q(πni ).

The functor q̃ : T→ TO is defined, for f : n→ m in T, as

q̃(f) = 〈q(πm1 ◦ f), . . . , q(πmm ◦ f)〉

First we verify, that TO has finite products. For this, it is enough to verify
that 〈f1, . . . , fn〉 ∗ π̄ni = fi, where ∗ is the composition in the operad O. The
uniqueness of the morphism into the product is obvious from the construction.
We have routine calculations

〈f1, . . . , fn〉 ∗ π̄ni =

q ◦ s(〈f1, . . . , fn〉 ∗ q(πni )) =

〈q ◦ s(f1), . . . , q ◦ s(fn)〉 ∗ (q ◦ s ◦ q(πni )) =

〈q ◦ s(f1), . . . , q ◦ s(fn)〉 ∗ (q ◦Op(I) ◦ r(πni )) =

〈q ◦ s(f1), . . . , q ◦ s(fn)〉 ∗ (q ◦Op(I ′) ◦ r(πni )) =

〈q ◦ s(f1), . . . , q ◦ s(fn)〉 ∗ (q(πni )) =

q(〈s(f1), . . . , s(fn)〉 ∗ πni ) =

q(s(fi)) = fi

It is obvious that q̃ is a morphism of Lawvere theories and that Qf (q̃) = q. It
remains to verify that q̃ is a coequalizer in LT. Let p : T → S be a morphism in
LT coequalizing I and I ′

T′ T TO

S

I

I ′

q̃

p k̃

The morphismQf (p) coequalizesQf (I) andQf (I ′) in SOp. Thus there is a unique
morphism k in SOp making the triangle on the right
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Qf (T′) Qf (T) TO

Qf (S)

Qf (I)

Qf (I ′)

q

Qf (p)
k

commute. We define the functor k̃ so that

k̃(〈f1, . . . , fn〉) = 〈k(f1), . . . , k(fn)〉

for any morphism 〈f1, . . . , fn〉 in TO. The verification that k̃ is the required unique
functor is left to the reader.

7.3.4 The Functor Pp : RiOp→ LT
The composition of the functors Pa ◦ P has a simpler description than Pa alone.
We shall denote this composition by Pp : RiOp → LT. For a rigid operad O we
define the Lawvere theory as follows. The morphism are spans

r

n m

φ 〈f, gi〉

such that φ is a function, f is a monotone function, ri = |f−1(i)| and we have
gi ∈ Ori , for i ∈ m and r =

∑
i∈m ri. We do not make any identifications of

spans! The compositions of spans are defined like the compositions of representees
of the morphisms in case of symmetric operads but twisted by an amalgamating
permutation as follows.

Let 〈φ, f, gi〉 : n→ m and 〈φ′, f ′, g′j〉 : m→ k be two spans. Their composition
is the span 〈φ′′, f ′′, g′′j 〉 : n→ k defined from the diagram below

(7.2)

r′′

r r′

n m k

φ′′
φ̄ 〈f ′′, g′′j 〉f̄

φ

〈f, gi〉
φ′

〈f ′, g′j〉
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where the square is a pullback of f along φ′. The function f̄ is so chosen that
it is monotone. We put f ′′ = f ′ ◦ f̄ , φ′′ = φ ◦ φ̄ ◦ (σ1 + . . . + σk), and g′′j =
〈gφ′(l)〉l∈f ′−1(j) ∗ g′j. The permutation σi is the amalgamating permutation for the
composition 〈gφ′(l)〉l∈f ′−1(j) ∗ g′j, for i ∈ (k].

Proposition 7.3.6. The functor Pp : RiOp −→ LT is isomorphic to Pa ◦ P and
its essential image contains rigid Lawvere theories and analytic morphisms between
them.

Proof. The first statement should be clear. As P is full and faithful, Pp is faithful
and full on analytic morphisms. The image of P consists of those symmetric
operads for which the symmetric group actions are free. Thus the image of Pp
consists of those analytic Lawvere theories in which the symmetric actions are free
on analytic operations, i.e. it consists of the rigid Lawvere theories.

We end this section pointing out to yet another property of analytic Lawvere
theories. Let T be a category with finite products. A morphism p : n → m in T
is a projection iff there is a morphism p′ : n→ m′ so that the diagram

m n m′p p′

is a product in T . We call such a diagram a decomposition of n. A decomposition is
trivial iff m or m′ is the terminal object (i.e. 0 if T is a Lawvere theory), otherwise
it is non-trivial. An object is indecomposable if it does not have a non-trivial
decomposition.

Proposition 7.3.7. 1 is indecomposable in any analytic Lawvere theory.

Proof. It is enough to show that for any symmetric operad O, 1 is indecomposable
in Pa(O). Consider the following diagram
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m+m′

s

m 1 m′

r r′

m m′

φ̄

〈!, g〉

im

〈idm, ι〉

〈f, gi〉

φ φ′

〈f ′, g′i〉

〈idm′ , ι〉

im′

We assume that the morphisms 〈φ, f, gi〉i, 〈φ′, f ′, g′j〉j are projections making 1 into
a product in Pa(O). We also have two canonical projections from m+m′ to m and
m′. The morphism 〈φ̄, !, g〉 is a morphism into the product making both triangle
commute.

From the commutations of the triangles easily follows that

gi ∗ 〈g, . . . , g〉 = ι = g′j ∗ 〈g, . . . , g〉

for i ∈ (m] and j ∈ (m′]. This means that gi = g′j = g−1 ∈ O1 for i ∈ (m] and
j ∈ (m′] and hence r = m, r′ = m′, f = idm, f ′ = idm′ . Moreover, s = 1 and
! = id1. Now commutativity says that there are σ ∈ Sm and σ′ ∈ Sm′ such that
im ◦ σ = φ̄ ◦ φ and im′ ◦ σ′ = φ̄ ◦ φ′. This is possible only if m+m′ = 1.

It follows immediately from this proposition that the Lawvere theory of Jonsson-
Tarski algebras is not analytic.

7.4 Finitary Monads vs Operads

First we explain the diagram

179



LT Mnd

SOp AnMnd

RiOp PolyMnd

Ml

Pa = Pola Pma
Ma

o

P = Pop
Mp

o

Pmp

commuting up to isomorphisms, with Pma and Pmp being inclusions and Ml is the
equivalence of categories defined in 7.2. The remaining two horizontal functors are
also equivalences of categories. We recall them below (cf. [Z10]).

For a set X we consider Xn as the set of functions X(n]. Then the permutation
group Sn acts naturally of Xn on the right by composition. For a symmetric
operad O, the monad Ma

o(O) on a set X is defined as

Ma
o(O)(X) =

∑
n∈N

Xn ⊗n On

Thus in Xn ⊗n On we identify 〈~x ◦ σ, f〉 with 〈~x, σ · f〉 for f ∈ On, ~x : (n] → X
and σ ∈ Sn.

For a rigid operad O the monad Mp
o(O) on a set X is defined as

Mp
o(O)(X) =

∑
n∈N

Xn ×On

For more detailed description see for example [Z10]. One can also find there the
commutation of the lower square in the above diagram.

The commutation of the upper square is the content of the following proposi-
tion.

Proposition 7.4.1. The square of categories and functors

LT Mnd

SOp AnMnd

Ml

Pa = Pola Pma
Ma

o

commutes up to an isomorphism.
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Proof. Let O be a symmetric operad. We need to define a natural isomorphism
κ, so that

κO :Ma
o(O) −→MlPa(O)

is an isomorphism of monads natural in O. The component of κO at a set X

κOX :
∑
n∈N

Xn ⊗On −→
∫ n∈F

Xn × P(O)(n, 1)

is given by

[~x, a] 7→ [~x, (idn, !, a)]

where ~x : (n]→ X, a ∈ On and (idn, !, a) is a span

n

n 1

idn 〈!, a〉

The verification that so defined κ is indeed a natural isomorphism is left for the
reader.

7.4.1 The Functor Qm
f : Mnd→ AnMnd

As the horizontal functors in the above diagram are equivalences of categories it
follows from Proposition 7.3.5 that the embedding functor i : AnMnd → Mnd
has a right adjoint

Qmf : Mnd→ AnMnd

which is monadic. In other words, any finitary monad on Set is an algebra for a
monad on the category of analytic monads. We could define the functor Qmf and
the related monad V̄ on AnMnd directly, but we shall derive it from the more
fundamental situation.

Let β : B → F be the inclusion functor. It induces the following diagram of
categories and functors that we describe below
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Mnd =Mon(End) End SetF

AnMnd =Mon(An) An SetB

F

B

Û iF

U iB

βia (−)a Lanβ β∗Pma Qmf Mon((−)a)

VV̄ Mon(V)=

β∗ is the functor of composing β. It has a left adjoint Lanβ, the left Kan extension
along β. For C ∈ SetB it is given by the coend formula

Lanβ(C)(X) =

∫ n∈F
Xn × C(n]

The equivalences

iF : SetF −→ End, iB : SetB −→ An

are defined by left Kan extensions that might be given by the following formulas

iF(G)(X) =

∫ n∈F
Xn ×G(n], iB(C)(X) =

∑
n∈N

Xn ⊗n C(n]

where G ∈ SetF and C ∈ SetB.
Then the functor ia : An→ End is just an inclusion and its right adjoint (−)a

is given by the formula
F a(X) =

∑
n∈N

Xn ⊗n F (n]

for F ∈ End. (−)a is associating to functors and natural transformations their
‘analytic parts’.

Note that both An and End are strict monoidal categories with tensor given
by composition, and ia is a strict monoidal functor. Thus its right adjoint (−)a
has a unique lax monoidal structure making the adjunction ia a (−)a a monoidal
adjunction. This in turn gives us a monoidal monad (V, η, µ) on An.

We have (cf. [Z]) a 2-natural transformation U

MonCat Cat

Mon

| − |

U

182



where MonCat is the 2-category of monoidal categories, lax monoidal func-
tors, and monoidal transformations; Mon is the 2-functor associating monoids
to monoidal categories, | − | is the forgetful functor forgetting the monoidal struc-
ture, and U is a 2-natural transformation whose component at a monoidal category
M is the forgetful functor from monoids in M to the underlying category of M :
UM : Mon(M)→ |M |.

Applying U to the monoidal adjunction and ia a (−)a and monoidal monad V
we get an adjunction between categories of monoids and a monad on Mon(An).
The unnamed arrow is Mon(ia). But the monoids in End and An are monads
and hence we get the left most adjunction Qmf a Pma that we were looking for
together with the monad (V̄, η̄, µ̄) on the category of analytic monads.

There are free monads on finitary functors (cf. [Ba70]) and free analytic monads
on analytic functors (cf. [Z10]). Therefore, the functors Û and U have left adjoints
F̂ and F , respectively. The adjunctions F a U and F̂ a Û induce monads M
and M̂, respectively. M̂ is the finitary version of what is called ‘the monad for
all monads’ in [Ba70]. Putting this additional data to the above diagram and
simplifying it at the same time we get a diagram

Mnd End

AnMnd An

Pma Qmf ia (−)a

Û

F̂

U

F

V̄ V

M

M̂

In the above diagram the square of the right adjoints commutes. Thus, the square
of the left adjoint commutes as well. This shows in particular that the free monad
on an analytic functor is analytic.

The monad V̄ is a lift of a monad V to the category of M-algebras AnMnd
and, by [Be69], we obtain

Theorem 7.4.2. The monad M for analytic monads distributes over the monad
V for finitary functors, i.e. we have a distributive law

λ : MV −→ VM
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The category of algebras of the composed monad VM on AnMnd is equivalent to
the category Mnd of all finitary monads on Set.

Remark. We arrived at the above theorem with essentially no calculations at
all. It has obvious positive aspects but it does not give an idea what the above
distributive law is like. We shall present below explicit formulas how to calculate
the values of some functors mentioned above and we shall also describe the coher-
ence morphism ϕ on the monoidal monad V. This coherence morphism generates
the distributive law λ. λ is an analog of the combing distributive law 6.2.5.

First we describe the adjunction ia a (−)a. We shall drop the inclusion ia when
possible. Let A ∈ An and G ∈ End and X be a set. The analytic functor A is
given by its coefficients. Its value at X is

A(X) =
∑
n∈N

Xn ⊗n An

where An is an Sn-set for n ∈ N. The value of Ga at X is

Ga(X) =
∑
n∈N

Xn ⊗n G(n]

Thus
V(A)(X) = Aa(X) =

∑
n,m∈N

Xn ⊗n (n]m ⊗m Am

The unit of the adjunction ia a (−)a at X

(ηA)X : A(X) −→ Aa(X)

is given by
[~x, a] 7→ [~x, idn, a]

where ~x : (n]→ X and a ∈ An.
The counit of the adjunction at X

(εG)X :
∑
n∈N

Xn ⊗n G(n] −→ G(X)

is given by
[~x, t] 7→ G(~x)(t)

where ~x : (n]→ X and t ∈ G(n].
The multiplication in the monad V

(µA)X :
∑

n,m,k∈N

Xn ⊗n (n]m ⊗m (m]k ⊗k Ak −→
∑
n,k∈N

Xn ⊗n (n]k ⊗k Ak

184



is given by composition
[~x, g, f, a] 7→ [~x, g ◦ f, a]

where ~x : (n] → X, g : (m] → (n], f : (k] → (m], and a ∈ Ak. This ends the
definition of the monad V.

Now we shall describe the monoidal structure on V.
If B is another analytic functor, the n-th coefficient of the composition A ◦ B

is given by

(A ◦B)n =
∑

m,n1,...,nm∈N,
∑m

i=1 ni=n

(Sn ×Bn1 × . . .×Bnm × Am)/∼n

where the equivalence relation ∼n is such that for σ ∈ Sn, σi ∈ Sni
, τ ∈ Sm,

bi ∈ Bi, for i ∈ (m] and a ∈ Am we have

〈σ, σ1 · b1, . . . , σm · bm, τ · a〉 ∼n 〈σ ◦ (〈σ1, . . . , σm〉 ? τ), bτ(1), . . . , bτ(m), a〉

where ? is the composition in the operad of symmetries Sym.
The n-th coefficient of V(A) ◦ V(A) is given by

(V(A)◦V(A))n =
∑

m,ni,ki∈N,
∑m

i=1 ni=n

(Sn×(n1]
k1⊗k1Ak1×. . .×(nm]km⊗kmAkm×Am)/∼n

and the n-th coefficient of V(A2) is given by

(V(A2))n =
∑

m,k,ki∈N,
∑m

i=1 ki=k

(n]k × Ak1 × . . .× Akm × Am

The coherence morphism ϕ for V at the n-th coefficient of the functor A is

ϕn : (V(A) ◦ V(A))n −→ (V(A2))n

is given by

〈σ, [σ1, a1], . . . , [σm, am], τ, a〉 7→ 〈σ ◦ (〈σ1, . . . , σm〉 ? τ), aτ(1) . . . aτ(m), a〉

Note that this map is well defined at the level of equivalence classes.
As the functor (−)a : End→ An is monadic every finitary functor is a V-algebra

on an analytic functor. For G in End the corresponding algebra map αG at set X

αG(X) : V((G)a)(X) =
∑
n,m∈N

Xn⊗n (n]m⊗mG(m) −→
∑
n∈N

Xn⊗nG(n) = (G)a(X)

is given by
(~x, f, t) 7→ (~x,G(f)(t))

where ~x : (n]→ X, f : (m]→ (n], t ∈ G(m).
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7.5 Equational Theories vs Operads
In this section we study the relations between equational theories and operads,
both symmetric and rigid. In particular, we shall describe the adjunctionQeof a Poea
and the properties of the embeddings Es and Eri.

RiOp SOp ETP Poea

Qoef

Poep

7.5.1 The Functor Poea : SOp→ ET
We start by defining the functor Poea . Let O be a symmetric operad. We define
an equational theory Poea (O) = (L,A). As the set of n-ary function symbols we
put Ln = On for n ∈ N. The set of axioms A contains the following equations in
context:

1. ι(x1) = x1 : ~x
1 where ι ∈ O1 is the unit of the operad O;

2. f(f1(x1, . . . , xk1), . . . , fm(xkm−1+1, . . . , xkm)) = (〈f1, . . . , fm〉 ∗ f)(x1, . . . xk) :
~xk

where f ∈ Om, fi ∈ Oki for i ∈ 1, . . . ,m, k =
∑m

i=1 ki;

3. f(xσ(1), . . . , xσ(n)) = (σ · f)(x1, . . . , xn) : ~xn for all f ∈ On and σ ∈ Sn.

Clearly, all equations are linear-regular and hence the theory Poea (O) is linear-
regular.

Suppose that h : O → O′ is a morphism of symmetric operads. We define the
interpretation

Poea (h) : Poea (O) −→ Poea (O′)

For f ∈ On we put

Poea (h)(f) = (h(f)(x1, . . . , xn) : ~x
n),

for n ∈ N.

Proposition 7.5.1. The following triangle
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ET LT

SOp

Le

Poea Pa

commutes up to a natural isomorphism.

Proof. Let O be a symmetric operad. We define a functor

ψO : Pa(O) −→ LePoea (O)

by
[φ, !, f ] : n→ 1 7→ [f(xφ(1), . . . xφ(m)) : ~x

n]

where φ : (m]→ (n], f ∈ Om. The extension of this definition to morphisms with
arbitrary codomains is obvious but it only complicates the notation.

ψO is clearly bijective on objects. Since every term in Poea (O) is provably equal
to a simple term (=operation applied to variables), ψO is full.

We shall show that ψO is faithful. This is where combinatorics meets equational
logic. Suppose we have two morphisms 〈φ, !, g〉, 〈φ′, !, g′〉 in Pa(O)

m

n 1

m′

m

φ 〈!, g〉

φ′ 〈!, g′〉

σ

σ′

φ̄

such that ψO(φ, !, g) = ψO(φ
′, !, g′). This means that the theory Poea O) proves

g(xφ(1), . . . , xφ(m)) = g′(xφ′(1), . . . , xφ′(m′)) : ~x
n

Since Poea (O) is linear-regular theory, m = m′ and there are permutations
σ, σ′ ∈ Sm and a function φ̄ : (m]→ (n] such that Poea (O) proves

g(xσ(1), . . . , xσ(m)) = g′(xσ′(1), . . . , xσ′(m)) : ~x
m

and
φ = φ̄ ◦ σ, φ′ = φ̄ ◦ σ′
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Thus Poea (O) proves

g(x1, . . . , xm) = g′(xσ−1σ′(1), . . . , xσ−1σ′(m)) : ~x
m

and
g(x1, . . . , xm) = (σ−1σ′) · g′(x1, . . . , xm) : ~xm

The last equality holds only if

g = (σ−1σ′) · g′

holds in O. But this together with φ′ = φ ◦ σ−1 ◦ σ′ means that

(φ, !, g) = (φ′, !, g′)

in Pa(O). Thus ψO is faithful as well.

Next we identify the image of the functor Poea .

Proposition 7.5.2. The functor Poea is faithful, full on isomorphisms and its
essential image is the category of linear-regular theories LrET i.e. it factorizes as
an equivalence of categories Eo followed by Pea

ET

LrET SOp

Pea

Eo

Poea

Proof. As Le is an equivalence of categories, the fact that Poea is faithful and full
on isomorphisms follows from Proposition 7.5.1 and the same properties of the
functor Pa stated in Proposition 7.3.3.

Let I : Poea (O) −→ Poea (O′) be a linear-regular interpretation. We shall define
hI : O −→ O′ such that Poea (hI) = I. For f ∈ On, I(f) : ~xn is a linear-regular term
in Poea (O′). As in Poea (O′) every (linear-regular) term is provably equal to a simple
(linear-regular) term (just one function symbol), we can assume that already

I(f) = f̄(xσ(1), . . . , xσ(n)) : ~x
n

holds, where f̄ ∈ O′. We put
hI(f) = σ · f̄

The verification that Poea (hI) = I is left for the reader.
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Let T = (L,A) be a linear-regular theory. We shall define a symmetric operad
O such that T is isomorphic to Eo(O). The set of n-ary operations On is the set
of linear-regular terms in context ~xn modulo provable equations from the set of
axioms A. The group Sn acts of On by permuting variables

σ · [t(x1, . . . , xn) : ~xn] = [t(xσ(1), . . . , xσ(n)) : ~x
n]

The unit in O1 is the term [x1 : ~x
1]. The composition in O is defined by ‘disjoint

substitution’ i.e. before substituting terms we need to perform α-conversion to
make the result of the substitution a linear-regular term. For example substituting
terms in contexts [t1(x1, x2) : ~x2], [t2 : ~x0] and [t3(x1, x2, x3) : ~x3] into the term
[t(x1, x2, x3) : ~x

3] we get

[t(t1(x1, x2), t2, t3(x3, x4, x5)) : ~x
5]

We hope that this explains the composition in O better than a formal definition.
It should be clear that O is a symmetric operad.

There is an interpretation I : T → Poea (O) sending an operation f ∈ Ln to the
term in context

[[f(x1, . . . , xn) : ~x
n)](~xn) : ~xn)]

Note that the term in context [f(x1, . . . , xn) : ~x
n] is just a symbol of the theory

Poea (O). There is also an interpretation I ′ : Poea (O) → T sending an operation
[f(x1, . . . , xn) : ~xn)] ∈ On to the same thing but considered this time a term
in context [f(x1, . . . , xn) : ~xn)] of the theory T . These two interpretations are
mutually inverse. Thus T is isomorphic to Poea (O) in ET, as required.

7.5.2 The Functor Poep : RiOp→ ET
Now we define the functor Poep . Let O be a rigid operad. We define an equational
theory Poep (O) = (L,A). As the set of n-ary function symbols in Poep (O) we put
Ln = On, for n ∈ N. The set of axioms A contains the following equations in
context:

1. ι(x1) = x1 : ~x
1 where ι ∈ O1 is the unit of the operad O;

2. f(f1(x1, . . . , xk1), . . . , fm(xkm−1+1, . . . , xkm)) = (〈f1, . . . , fm〉∗f)(xσ(1), . . . , xσ(k))
where f ∈ Om, fi ∈ Oki for i ∈ 1, . . . ,m, k =

∑m
i=1 ki, and σ ∈ Sk is the

amalgamation for this composition.

Clearly, all equations are linear-regular and hence the theory Poep (O) is linear-
regular.
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Suppose that (h, σ) : O → O′ is a morphism of rigid operads. We define the
interpretation Poep (h, σ) : Poep (O) −→ Poep (O′). For n ∈ N and f ∈ On we put

Poep (h, σ)(f) = (h(f)(xσf (1), . . . , xσf (n)) : ~x
n)

Proposition 7.5.3. The functor Poep : RiOp → ET is faithful, full on isomor-
phisms and its essential image is the category of rigid theories RiET.

Proof. As Le : ET → LT is an equivalence of categories and P : RiOp → SOp
is full and faithful, the fact that Poep is faithful and full on analytic morphisms
(and hence also on isomorphisms) follows from Proposition 7.5.1 and the same
properties of the functor Polp : RiOp→ LT stated in Proposition 7.3.6.

It remains to show that an equational theory is rigid iff it is of form Poep (O)
for a symmetric operad O whose actions on operations are free. In the equational
theory Poep (O) every term is equivalent to a function symbol f ∈ On applied to
some variables. Let us fix n ∈ N and f ∈ On. Assume that for some σ ∈ Sn, the
theory Poep (O) proves

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) : ~x
n.

This means that in the Lawvere theory Polp (O)(n, 1) we have equalities of analytic
morphisms

(idn, !, f) = (σ, !, f) = (idn, !, f) ◦ πσ.

But, by Proposition 7.3.6, the actions of Sn on analytic morphisms in Polp (O)(n, 1)
are free, i.e. σ is the identity. Since f was arbitrary, Poep (O) is indeed a rigid
equational theory.

The following Corollary corrects a statement from [CJ95] (cf. [CJ04]) con-
cerning the characterization of equational theories corresponding to polynomial
monads.

Corollary 7.5.4. The equivalence of categories

ET Mnd
Ml ◦ Le

restricts to the equivalence between the category of rigid equational theories and
the category of finitary polynomial monads on Set

RiET PolyMnd
Me
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7.6 Comments and Examples
1. The “operad of operads”MO, proved to exist in theorem 6.2.7, by definition

corresponds to the monad of symmetric operads with a fixed set of types
O. The associated equational theory has as its models symmetric operads,
i.e. other equational theories. Therefore we can say that the theory of linear-
regular equational theories is a rigid equational theory.
Similarly, the web monoid W(M) corresponds, by 6.1.1 and 6.1.4, to the
rigid equational theory of rigid equational theories with the same types as
M , with a linear-regular interpretation in (the theory corresponding to) M ,
holding the types fixed.

2. The equations expressing commutation of two operations are linear-regular.
Therefore all operations in a theory T commute iff they do in its analytic
part T a. However, the analytic part of an equational theory (or its monad
on Set) is usually much bigger than the original equational theory. For
example, if T is a finitary monad on Set then the value of its analytic part
on one element set is the coproduct of the symmetrized free T algebras on
finitely many generators

Ta(1) =
∑
n∈N

1n ⊗n T (n) =
∑
n∈N

T (n)/Sn

Thus it is not so surprising that theories arising in this way might be of
interest only in special circumstances, preferably when the theory we start
with is very small.

3. The categories SOp and LT are complete and cocomplete. The functor
Pa : SOp→ LT preserves all colimits as a left adjoint and it also preserves
all connected limits. However, it does not preserve the terminal object. The
terminal object is the value of Qf : LT → SOp on the terminal Lawvere
theory. We describe it below.

4. Recall that 1 denotes the terminal equational theory. It has one constant,
say e, and can be axiomatized by a single axiom: x1 = e : ~x1. As a Lawvere
theory it is the category that has exactly one morphism between any two
objects. As Qef : ET → LrET is a right adjoint, it preserves the terminal
object. Hence Qef (1), the linear-regular part 1, is the terminal linear-regular
theory. It is the theory of commutative monoids. It is best seen at the
level of Lawvere theories. Both theories, Qef (1) and the theory of commu-
tative monoids, are linear-regular and, for any n, have exactly one analytic
morphism

a : n→ 1
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In case of the theory of monoids it is given by

x1, . . . , xn 7→ x1 · . . . · xn

5. As we mentioned in Section 2, 1 considered as a Lawvere theory has a proper
subtheory, in which 0 6∼= 1. As equational theory it has no function symbols,
and can be axiomatized by a single axiom: x1 = x2 : ~x

2. The linear-regular
part of this theory is the theory of commutative semigroups.

6. The embedding of the strongly regular theories into all equational theories
has a right adjoint, Q, as well. The values Q on the terminal equational
theory 1 is the terminal strongly regular theory, i.e. the theory of monoids.

7. As we saw above the Lawvere theory for monoids Tmon is analytic. Thus
it is an image under Lo : SOp → AnLT of a symmetric operad. It can be
easily shown that any analytic morphism

a : n→ 1

in Tmon is of the form

x1, . . . , xn 7→ xσ(1) · . . . · xσ(n)

where σ ∈ Sn, i.e. it is a multiplication of all variables in any order. Thus
the operad Ts

mon (see the proof of Proposition 7.3.4 for notation (−)s) is the
operad of symmetries, (cf. [Le04]), and hence the theory of monoids Tmon is
the image of the operad of symmetries under Lo.

8. The Lawvere theory for monoids with anti-involution Tmai is analytic, as
well. Any analytic morphism

a : n→ 1

in Tmai is of form

x1, . . . , xn 7→ sε1(xσ(1)) · . . . · sεn(xσ(n))

where σ ∈ Sn, and εi ∈ {0, 1}, for i = 1, . . . , n, and s0(x) = x, s1(x) = s(x).
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