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Abstract

Horn knowledge bases are extensions of Datalog deductive databases without the range-
restrictedness and function-free conditions. A Horn knowledge base consists of a positive
logic program for defining intensional predicates and an instance of extensional pred-
icates. This dissertation concentrates on developing efficient methods for evaluating
queries to Horn knowledge bases. In addition, a method for evaluating queries to strat-
ified knowledge bases is also investigated. This topic has not been well studied as query
processing for Datalog-like deductive databases or the theory and techniques of logic
programming.

We begin with formulating query-subquery nets and use them to create the first
framework for developing algorithms for evaluating queries to Horn knowledge bases
with the following good properties: the approach is goal-directed; each subquery is pro-
cessed only once; each supplement tuple, if desired, is transferred only once; operations
are done set-at-a-time; and any control strategy can be used. Our intention is to in-
crease efficiency of query processing by eliminating redundant computation, increasing
adjustability (i.e., easiness in adopting advanced control strategies) and reducing the
number of accesses to the secondary storage. The framework forms a generic evalua-
tion method called QSQN. It is sound and complete, and has polynomial time data
complexity when the term-depth bound is fixed.

Next, we incorporate tail-recursion elimination into query-subquery nets in order
to formulate the QSQN-TRE evaluation method for Horn knowledge bases. The aim is
to reduce materializing the intermediate results during the processing of a query with
tail-recursion. We prove the soundness and completeness of the proposed method and
show that, when the term-depth bound is fixed, the method has polynomial time data
complexity. We then extend QSQN-TRE to obtain another evaluation method called
QSQN-rTRE, which can eliminate not only tail-recursive predicates but also intensional
predicates that appear rightmost in the bodies of the program clauses.

We also incorporate stratified negation into query-subquery nets to obtain a method
called QSQN-STR for evaluating queries to stratified knowledge bases.

We propose the control strategies DAR, DFS, IDFS and implement the methods
QSQN, QSQN-TRE, QSQN-rTRE together with these strategies. Then, we carry out
experiments to obtain a comparison between these methods (using the IDFS control
strategy) and the other well-known evaluation methods such as Magic-Sets and QSQR.
We also report experimental results of QSQN-STR using a control strategy called
IDFS2, which is a modified version of IDFS. The experimental results confirm the
efficiency and usefulness of the proposed evaluation methods.

Keywords: Horn knowledge bases, stratified knowledge bases, deductive databases,
logic programming, query processing, query optimization, magic-sets transformation,
query-subquery recursive, tail-recursion elimination, Datalog.

ACM Computing Classification System: H.2.4 (Query Processing, Query Opti-
mization, Rule-based Databases), D.1.6 (Logic Programming).
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Streszczenie1

Bazy wiedzy typu Horna sa̧ uogólnieniem dedukcyjnych baz danych Datalogu bez
ograniczeń o zakresie zmiennych i z możliwościa̧ korzystania z symboli funkcyjnych.
Baza wiedzy typu Horn sk lada siȩ z pozytywnego programu w logice definiuja̧cego
predykaty intensjonalne i instancji ekstensjonalnych predykatów. Niniejsza rozprawa
dotyczy efektywnych metod obliczania zapytań do baz wiedzy typu Horna. Omówiona
jest również metoda obliczania zapytań do stratyfikowanych baz wiedzy. Problematyka
ta nie by la do tej pory tak dobrze zbadana, jak przetwarzanie zapytań dla dedukcyjnych
baz danych czy teoria i techniki programowania w logice.

W pierwszej czȩści rozprawy formu lujemy sieci zapytań-podzapytań i omawiamy
konstrukcjȩ bazuja̧cej na takich sieciach metody obliczania zapytań do baz wiedzy typu
Horna, o nastȩpuja̧cych dobrych w lasnościach: zastosowane podej́scie jest zorientowane
na cel; każde podzapytanie jest przetwarzane tylko raz; każda krotka uzupe lniaja̧ca jest
przesy lana tylko raz, o ile jest to poża̧dane; operacje sa̧ wykonywane zbiorowo; każda
strategia sterowania może być używana. Intencja̧ tej metody jest zwiȩkszenie efekty-
wności przetwarzania zapytań poprzez wyeliminowanie zbȩdnych obliczeń, u latwienie
stosowania zaawansowanych strategii sterowania oraz zredukowanie liczby odczytów
i zapisów dyskowych. Ogólna taka metoda jest nazwana QSQN. Jest ona poprawna
i pe lna oraz ma z lożoność wielomianowa̧ wzglȩdem danych ekstensjonalnych, o ile
g lȩbokość zagnieżdżenia termów jest ograniczona.

W dalszej czȩści rozprawy przedstawiona jest technika w la̧czania eliminacji
rekurencji ogonowej do sieci zapytań-podzapytań i uzyskana w ten sposób metoda
obliczania zapytań QSQN-TRE dla baz wiedzy typu Horna. Celem takiej elimi-
nacji jest redukcja zachowywania wyników pośrednich podczas przetwarzania za-
pytań z rekurencja̧ ogonowa̧. Udowodniono, że metoda QSQN-TRE jest poprawna
i pe lna oraz ma z lożoność wielomianowa̧ wzglȩdem danych ekstensjonalnych, o
ile g lȩbokość zagnieżdżenia termów jest ograniczona. Jako rozszerzenie metody
QSQN-TRE zosta la opracowana również inna metoda obliczania zapytań o nazwie
QSQN-rTRE, która pozwala wyeliminować nie tylko predykaty ogonowo rekurencyjne,
ale również predykaty intensjonalne, wystȩpuja̧ce na końcu cia la pewnej klauzuli pro-
gramu.

Opracowane zosta ly również sieci zapytań-podzapytań i odpowiednia metoda o
nazwie QSQN-STR do obliczania zapytań do stratyfikowanych baz wiedzy. Takie bazy
wiedzy umożliwiaja̧ użycie bezpiecznych litera lów negatywnych w cia lach klauzul pro-
gramu.

Metody QSQN, QSQN-TRE i QSQN-rTRE zosta ly zaimplementowane z trzema
zaproponowanymi strategiami sterowania DAR, DFS i IDFS. Przeprowadzone zosta ly
eksperymenty maja̧ce na celu porównanie tych metod (używaja̧cych strategii sterowania
IDFS) z innymi znanymi metodami obliczania zapytań, takimi jak Magic-Sets i QSQR.
Omówione zosta ly również wyniki eksperymentów dzia lania metody QSQN-STR ze
strategia̧ sterowania IDFS2 bȩda̧ca̧ zmodyfikowana̧ wersja̧ IDFS. Wyniki przeprowad-
zonych eksperymentów potwierdzaja̧ skuteczność i przydatność opracowanych metod
obliczania zapytań.

1The abstract and keywords have been translated from English to Polish by the supervisors.
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S lowa kluczowe: Bazy wiedzy typu Horna, stratyfikowane bazy wiedzy, dedukcyjne
bazy danych, programowanie w logice, przetwarzanie zapytań, optymalizacja obliczania
zapytań, transformacja magic-sets, QSQR, eliminacja rekurencji ogonowej, Datalog.
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Chapter 1

Introduction

Query processing is an important research area in computer science and information
technology. Interest in deductive databases and methods for evaluating Datalog or
Datalog¬ queries intensified in the eighties and early nineties, but “a perceived lack
of compelling applications at the time ultimately forced Datalog research into a long
dormancy” [33]. As also observed by Huang et al. in their SIGMOD’2011 paper [33]:

“We are witnessing an exciting revival of interest in recursive Datalog queries in
a variety of emerging application domains such as data integration, information
extraction, networking, program analysis, security, and cloud computing. [. . . ]

As the list of applications above indicates, interest today in Datalog extends
well beyond the core database community. Indeed, the successful Datalog 2.0
Workshop held in March 2010 at Oxford University attracted over 100 atten-
dees from a wide range of areas (including databases, programming languages,
verification, security, and AI).”

During the last decade, rule-based query languages, including languages related to
Datalog, were also intensively studied for the Semantic Web (e.g., in [5, 10, 20, 21, 26,
27, 36, 39, 40, 52, 54]). In general, since deductive databases and knowledge bases are
widely used in practical applications, improvements for processing recursive queries are
always desirable. Due to the importance of the topic, it is worth doing further research
on the topic.

Horn knowledge bases are extensions of Datalog deductive databases without the
range-restrictedness and function-free conditions [1]. As argued in [39], the Horn frag-
ment of first-order logic plays an important role in knowledge representation and reason-
ing. A Horn knowledge base consists of a positive logic program for defining intensional
predicates and an instance of extensional predicates. When the knowledge base is too
big, not all of the extensional and intensional relations may be totally kept in the com-
puter memory and query evaluation may not be totally done in the computer memory.
In such cases, the system usually has to load (resp. unload) relations from (resp. to) the
secondary storage. Thus, in contrast to logic programming, for Horn knowledge bases
efficient access to the secondary storage is a very important aspect.

1



This dissertation studies query processing for Horn knowledge bases. Particularly,
we concentrate on developing efficient methods for evaluating queries to Horn knowledge
bases. In addition, query evaluation for stratified knowledge bases is also investigated.
This topic has not been well studied as query processing for the Datalog-like deductive
databases or the theory and techniques of logic programming.

1.1 Related Work

This section discusses related work on evaluation methods for Datalog databases and
Horn knowledge bases. The survey [50] by Ramakrishnan and Ullman provides a good
overview of deductive database systems by 1995, with a focus on implementation tech-
niques. The book [1] by Abiteboul et al. is also a good source for references. We present
here only a brief overview of the subject, which is based on [1, 39, 45].

In [69], Vieille gave the query-subquery recursive (QSQR) evaluation method
for Datalog deductive databases, which is a top-down method based on tabled
SLD-resolution and the set-at-a-time technique. The first version of QSQR [69] is in-
complete [43, 71]. As pointed out by Mohamed Yahya [39], the version given in the
book [1] is also incomplete. The work [39] corrects and generalizes the QSQR method
for Horn knowledge bases. The correction depends on clearing global “input” relations
for each iteration of the main loop. The generalized QSQR method for Horn knowl-
edge bases [39] uses the steering control of the corrected QSQR method as in the case
of Datalog but does not use adornments and annotations. It uses “input” and “an-
swer” relations consisting of tuples of terms (which may contain variables and function
symbols) as well as “supplementary” relations consisting of substitutions.

The QSQ (query-subquery) approach for Datalog queries, as presented in [1], orig-
inates from the QSQR method but allows a variety of control strategies. The QSQ
framework (including QSQR) for Datalog uses adornments to simulate SLD-resolution
in pushing constant symbols from goals to subgoals. The annotated version of QSQ
for Datalog uses annotations to simulate SLD-resolution in pushing repeats of variables
from goals to subgoals (see [1]).

The magic-sets technique [7, 8] is another formulation of tabling for Datalog de-
ductive databases. It simulates the top-down QSQR evaluation by rewriting the pro-
gram together with the given query to another equivalent one that when evaluated
using a bottom-up technique (e.g., the improved semi-naive evaluation) produces only
facts produced by the QSQR evaluation. Thus, it combines the advantages of top-
down and bottom-up techniques. Adornments are used as in the QSQR evaluation. To
simulate annotations, the magic-sets transformation is augmented with subgoal rectifi-
cation (see, e.g., [1]). For the connection between top-down and bottom-up approaches
to Datalog deductive databases we refer the reader to Bry’s work [9]. The Generalized
Supplementary Magic Sets algorithm proposed by Beeri and Ramakrishnan [8] uses
some special predicates called “supplementary magic predicates” in order to eliminate
the duplicate work during the processing. Some authors have extended the magic-
sets technique and related ones for Horn knowledge bases [49, 55, 59]. To deal with
non-range-restrictedness and function symbols, “magic predicates” are used without
adornments [55, 59].

2



To develop evaluation procedures for Horn knowledge bases one can also adapt
tabled SLD-resolution systems of logic programming to reduce the number of accesses
to secondary storage. SLD-AL resolution [70, 71] is such a system. In [71], Vieille
adapted SLD-AL resolution to Datalog deductive databases to obtain the top-down
QoSaQ evaluation method by representing (sets of) goals by means of (sets of) tuples
and translating the operations of SLD-AL on goals into operations on tuples. This
evaluation method can be implemented as a set-oriented procedure, but Vieille stated
that “We would like, however, to go even further and to claim that the practical interest
of our approach lies in its one-inference-at-a-time basis, as opposed to having a set-
theoretic basis. First, this tuple-based computational model permits a fine analysis of
the duplicate elimination issue. . . . ” [71, page 5]. Moreover, the specific techniques of
QoSaQ like “instantiation pattern”, “rule compilation”, “projection” are heavily based
on the range-restrictedness and function-free conditions.

Tabled SLD-resolution systems like OLDT [67] and linear tabulated resolu-
tion [60, 72] are also efficient computational procedures for logic programming without
redundant recomputations, but they are not directly applicable to Horn knowledge
bases to obtain efficient evaluation engines because they are not set-oriented (set-at-a-
time). In particular, the suspension-resumption mechanism and the stack-wise repre-
sentation are both tuple-oriented (tuple-at-a-time). Data structures for them are too
complex so that they must be dropped if one wants to convert the methods to efficient
set-oriented methods. One can use, e.g., XSB [57, 58] (a state-of-the-art implemen-
tation of OLDT) as a Horn knowledge base engine, but as pointed out in [28], it is
tuple-oriented and not suitable for efficient access to secondary storage. Breadth-First
XSB [28] converts XSB to a set-oriented engine [28], but it abandons some essential
features of XSB.1

Various optimization techniques have been proposed for query processing (see, e.g.,
[42, 48, 53, 61, 65]). One of them is to reduce the number of materialized intermediate
results during the processing by using tail-recursion elimination. In [53], Ross integrated
the Magic-Sets evaluation method with a form of tail-recursion elimination. It improves
the performance of query evaluation by not materializing the extension of intermediate
views.

Positive logic programs can express only monotonic queries. As many queries of
practical interest are non-monotonic, it is desirable to consider normal logic programs,
which allow negation to occur in the bodies of program clauses. A number of interesting
semantics for normal logic programs has been defined, for instance, stratified seman-
tics [2] (for stratified logic programs), stable-model semantics [30] and well-founded
semantics [29]. The survey [4] provides a good source for references on these semantics.
A normal logic program is stratifiable if it can be divided into strata such that if a
negative literal of a predicate p occurs in the body of a program clause in a stratum,
then the clauses defining p must belong to an earlier stratum. Programs in this class
have a very intuitive semantics and have been considered in [2, 6, 32, 35, 41].

Appendix A contains a more detailed description of some well-known query evalu-
ation methods for Horn knowledge bases.

1The original XSB uses depth-first search, while Breadth-First XSB [28] does not.

3



1.2 Motivation

The most well-known methods for evaluating queries to Datalog deductive databases or
Horn knowledge bases are QSQR and Magic-Sets (by Magic-Sets we mean the evalua-
tion method that combines the magic-set transformation with the improved semi-naive
bottom-up evaluation method). Both of these methods are goal-directed. As observed
by Vieille [71], the QSQR approach is like iterative deepening search. It allows re-
dundant recomputations (see [39, Remark 3.2]). On the other hand, the Magic-Sets
method applies breadth-first search. The following example shows that the breadth-
first approach is not always efficient.

Example 1.1. The order of program clauses and the order of atoms in the bodies of
program clauses may be essential, e.g., when the positive logic program that defines
intensional predicates is specified using the Prolog programming style. In such cases,
the top-down depth-first approach may be much more efficient than the breadth-first
approach. Here is such an example, in which p, q1 and q2 are intensional predicates,
r1 and r2 are extensional predicates, x, y and z are variables, ai and bi,j are constant
symbols:

− the positive logic program:

p← q1(a0, am)
p← q2(a0, am)

q1(x, y)← r1(x, y)
q1(x, y)← r1(x, z), q1(z, y)

q2(x, y)← r2(x, y)
q2(x, y)← r2(x, z), q2(z, y)

− the extensional instance (illustrated in Figure 1.1):

I(r1) = {(ai, ai+1) | 0 ≤ i < m}

I(r2) = {(a0, b1,j) | 1 ≤ j ≤ n} ∪
{(bi,j , bi+1,j) | 1 ≤ i < m− 1 and 1 ≤ j ≤ n} ∪
{(bm−1,j , am) | 1 ≤ j ≤ n}

− the query: ← p.

Notice that the depth-first approach needs only Θ(m) steps for evaluating the query,
while the breadth-first approach performs Θ(m ·n) steps. When n is comparable to m,
the difference is too big. The magic-sets transformation does not help for this case. �

Our postulate is that the breadth-first approach (including the Magic-Sets evalua-
tion method) is inflexible and not always efficient. Of course, depth-first search is not
always good either. The aim of this dissertation is to develop evaluation methods for
evaluating queries to Horn knowledge bases that are more efficient than the QSQR
evaluation method and more adjustable than the Magic-Sets evaluation method. In
particular, good methods should be not only set-oriented and goal-directed but should
also reduce computational redundancy as much as possible and allow various control
strategies.

4
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Fig. 1.1: An illustration for the extensional instance given in Example 1.1.

1.3 Contributions

In this dissertation, we make the following main contributions:

− We formulate the query-subquery nets and use them to develop the first framework
for developing algorithms for evaluating queries to Horn knowledge bases with the
following good properties:

• the approach is goal-directed,
• each subquery is processed only once,
• each supplement tuple, if desired, is transferred only once,
• operations are done set-at-a-time,
• any control strategy can be used.

The intention of our framework is to increase efficiency of query processing by elim-
inating redundant computation, increasing adjustability2 and reducing the number
of accesses to the secondary storage. The framework forms a generic evaluation
method called QSQN. It is sound and complete, and has polynomial time data com-
plexity when the term-depth bound is fixed. The results were published in [45, 46]
and presented in Chapter 3.

− We implement QSQN together with the control strategies Disk Access Reduction
(DAR) and Depth-First Search (DFS) to obtain the corresponding evaluation meth-
ods QSQN-DAR and QSQN-DFS. We also implement the Magic-Sets and QSQR
methods for comparison. The comparison is made with respect to the number of
read/write operations on relations and the execution time. The results were pub-
lished in [11].

− We propose a control strategy called Improved Depth-First Control Strategy (IDFS)
and implement QSQN together with this strategy to obtain a corresponding evalua-

2By “adjustability” we mean easiness in adopting advanced control strategies.
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tion method QSQN-IDFS. We came up to the improvement by using query-subquery
nets to observe which relations are likely to grow or saturate and which ones are not
yet affected by the computation and the other relations. Our intention is to accu-
mulate as many as possible tuples or subqueries at each node of the query-subquery
net before processing it. The details are described in Section 6.1. The comparison
between QSQN-IDFS and QSQN-DFS with respect to the number of read/write
operations on relations was published in [16].

− We make a comparison between the implemented QSQN-IDFS, QSQR and
Magic-Sets methods using representative examples that appeared in well-known
articles on deductive databases as well as new examples. The results are shown in
Chapter 6. The comparison is made with respect to the following measures:

• the number of read or write operations on relations,
• the maximum number of tuples and subqueries kept in the computer memory,
• the number of accesses to the secondary storage as well as the number of tuples

and subqueries read from or written to the secondary storage when the memory
is limited.

− We incorporate tail-recursion elimination into query-subquery nets in order to ob-
tain the QSQN-TRE evaluation method for Horn knowledge bases. The aim is to
reduce materializing the intermediate results during the processing of a query with
tail-recursion. We prove the soundness and completeness of the proposed evalua-
tion method and show that, when the term-depth bound is fixed, the QSQN-TRE
method has polynomial time data complexity. We specify the QSQN-TRE method
in detail in Section 4.1. The results were published in [17].

− We extend QSQN-TRE to obtain an evaluation method called QSQN-rTRE, which
can eliminate not only tail-recursive predicates but also intensional predicates that
appear rightmost in the bodies of the program clauses. The aim is to reduce mate-
rializing the intermediate results (when desired) during the processing. The method
was published in [14] and is presented in Section 4.2.

− We incorporate stratified negation into query-subquery nets to obtain a method
called QSQN-STR for evaluating queries to stratified knowledge bases. The pro-
posed method was published in [15] and is discussed in Chapter 5.

This dissertation was written by me, having important comments and suggestions
from my supervisors, dr hab. Linh Anh Nguyen and dr. Joanna Golińska-Pilarek.
Regarding the published works mentioned in this dissertation, the first one [46] is
an ICCCI’2012 conference paper, whose long version is the manuscript [45]. In the
works [45, 46], Nguyen and I discussed the scientific problems and solutions asso-
ciated with the study. These papers were written mainly by Nguyen and presented
by me at the ICCCI’2012 conference. I myself wrote all the remaining published
works [11, 14, 15, 16, 17] mentioned in this dissertation and presented them at the
corresponding international conferences. For these publications, I received a lot of use-
ful technical comments and suggestions from my supervisors. They also corrected the
English grammar for the drafts of my published papers as well as for this dissertation.
I myself also implemented all of the mentioned methods in Java for the comparison
between them and provided all of the experimental results.
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1.4 The Structure of This Dissertation

The rest of the dissertation is organized as follows:

Chapter 2: This chapter recalls the notions and definitions of first-order logic that
are related to the topic of this dissertation.

Chapter 3: In this chapter, we formulate the query-subquery nets framework for de-
veloping algorithms for evaluating queries to Horn knowledge bases. The framework
forms a generic evaluation method called QSQN. We present an illustrative example,
a pseudocode and properties of the evaluation algorithm.

Chapter 4: In the first section of this chapter, we present the QSQN-TRE method for
evaluating queries to Horn knowledge bases by incorporating tail-recursion elimina-
tion into query-subquery nets. We give an intuition and a formal definition of such
modified nets as well as explanations, an illustrative example and a pseudocode of
the evaluation algorithm. Furthermore, we prove the soundness and completeness
of the QSQN-TRE method. Then, we extend the QSQN-TRE method to obtain
another method called QSQN-rTRE in the next section.

Chapter 5: In this chapter, we present the QSQN-STR evaluation method for eval-
uating queries to stratified knowledge bases. Additionally, we prove the soundness
and completeness of QSQN-STR for the case without function symbols.

Chapter 6: In this chapter, we first present the IDFS control strategy, which can be
used for QSQN, QSQN-TRE and QSQN-rTRE. We then provide the experimental
results and a discussion on the performance of the proposed evaluation methods.
In order to compare our methods with the well-known evaluation methods such
that QSQR and Magic-Sets, we have implemented all of these methods. We com-
pare them using representative examples that appear in many articles on deductive
databases as well as new ones. We also report experimental results of QSQN-STR
using a control strategy called IDFS2, which is a modified version of IDFS.

Chapter 7: The final chapter draws some conclusions and indicates directions for
future work.

This dissertation includes five appendices: Appendix A discusses the well-known
methods QSQR and Magic-Sets for evaluating queries to Horn knowledge bases together
with their pros and cons. Appendix B contains a part of the proof of the completeness
of QSQN-TRE. Appendices C, D and E contain functions and procedures used for
QSQN-TRE, QSQN-rTRE and QSQN-STR, respectively. In addition, the bibliography,
the lists of figures and tables as well as an index of symbols and terms are provided at
the end of this dissertation.
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Chapter 2

Preliminaries

This chapter recalls the classical notions and definitions from first-order logic and
database theory which can be found, e.g., in [1, 37]. Most of our exposition here is
taken from Section 2 of [39], with minor modifications.

Definition 2.1. A signature for first-order logic is a tuple Σ = 〈V, C,F ,P〉 consisting
of the following pairwise disjoint sets:

− a finite set V of variable symbols,

− a finite set C of constant symbols,

− a finite set F of function symbols,

− a finite set P of predicates (also called relation symbols). �

The following notions are defined over a fixed signature, thus we shall use
Σ = 〈V, C,F ,P〉 without mentioning it further. Terms and formulas over a fixed signa-
ture are defined in the usual way as follows.

Definition 2.2 (Term). A term is defined inductively as follows:

− A variable is a term.

− A constant is a term.

− If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a
term. �

Definition 2.3 (Formula). A formula is defined inductively as follows:

− If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is a
formula (called an atomic formula or atom for short).

− If ϕ and ψ are formulas, then so are (¬ϕ), (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ) and (ϕ↔ ψ).

− If ϕ is a formula and x is a variable, then (∀xϕ) and (∃xϕ) are formulas. �

Definition 2.4 (Literal). A literal is an atom or the negation of an atom. A positive
literal is an atom. A negative literal is the negation ¬ϕ of an atom ϕ. �

Definition 2.5 (Expression). An expression is either a term, a tuple of terms, a
formula without quantifiers or a list of formulas without quantifiers. A simple expression
is either a term or an atom. �
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The term-depth of an expression is the maximal nesting depth of function symbols
occurring in that expression.

Definition 2.6 (Ground Term/Atom/Literal). A ground term is a term without
variables. A ground atom is an atom with ground terms as its arguments. A ground
literal is a literal constructed from a ground atom. �

Definition 2.7 (Interpretation/Variable Assignment). An interpretation is a pair
I = 〈D, ·I〉 consisting of

− a nonempty set D called the domain (or universe), and

− a function ·I that assigns a meaning to constant, function and predicate symbols:

• cI ∈ D for each constant symbol c ∈ C,
• fI : Dn → D for each n-ary function symbol f ∈ F ,
• pI ⊆ Dn for each n-ary predicate p ∈ P.

A variable assignment is a function α that maps variables to elements in the do-
main D, i.e., α : V → D. �

Definition 2.8 (Interpretation of a Term). Let I = 〈D, ·I〉 be an interpretation, α
a variable assignment, and t a term. The interpretation of t under I and α is an element
of the domain D defined as follows:

− if t = x then xI,α = α(x),

− if t = c then cI,α = cI ,
− if t = f(t1, . . . , tn) then (f(t1, . . . , tn))I,α = fI(tI,α1 , . . . , tI,αn ). �

Definition 2.9 (Satisfaction Relation). Let I = 〈D, ·I〉 be an interpretation, α a
variable assignment, Γ a set of formulas, ϕ, ψ formulas, and p(t1, . . . , tn) an atom. Then

I, α |= p(t1, . . . , tn) iff (tI,α1 , . . . , tI,αn ) ∈ pI
I, α |= ¬p(t1, . . . , tn) iff (tI,α1 , . . . , tI,αn ) /∈ pI
I, α |= ϕ ∧ ψ iff I, α |= ϕ and I, α |= ψ
I, α |= ϕ ∨ ψ iff I, α |= ϕ or I, α |= ψ
I, α |= ∀xϕ iff I, αxd |= ϕ for all d ∈ D
I, α |= ∃xϕ iff I, αxd |= ϕ for at least one d ∈ D

where αxd is the variable assignment such that, for every y ∈ V:

αxd(y) =

{
d if y is x,

α(y) otherwise.

The binary satisfaction relation |= between an interpretation I and a formula ϕ (or a
set of formulas Γ) is defined as follows:

I |= ϕ iff I, α |= ϕ for all assignments α : V → D,
I |= Γ iff I |= ϕ for all ϕ ∈ Γ.

If I |= ϕ then we say that I satisfies ϕ (or ϕ is true in I). If I |= ϕ (resp. I |= Γ) then
I is a model of ϕ (resp. Γ). If ϕ (resp. Γ) has a model then it is satisfiable, otherwise
it is unsatisfiable. If I |= Γ implies I |= ϕ for all interpretations I, then ϕ is a logical
consequence of Γ, denoted by Γ |= ϕ. �
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2.1 Substitution and Unification

Definition 2.10 (Substitution). A substitution is a finite set θ = {x1/t1, . . . , xk/tk},
where x1, . . . , xk are pairwise distinct variables, t1, . . . , tk are terms, and ti 6= xi for all
1 ≤ i ≤ k. The empty substitution is denoted by ε. �

In what follows, the set dom(θ) = {x1, . . . , xk} is called the domain of θ, the set
range(θ) = {t1, . . . , tk} is called the range of θ. The restriction of a substitution θ to
a set X of variables is the substitution θ|X = {(x/t) ∈ θ | x ∈ X}. The term-depth
of a substitution is the maximal nesting depth of function symbols occurring in that
substitution.

Let θ = {x1/t1, . . . , xk/tk} be a substitution and E be an expression. Then Eθ, the
instance of E by θ, is the expression obtained from E by simultaneously replacing all
occurrences of the variable xi in E by the term ti, for 1 ≤ i ≤ k.

Let θ = {x1/t1, . . . , xk/tk} and δ = {y1/s1, . . . , yh/sh} be substitutions (where
x1, . . . , xk are pairwise distinct variables, and y1, . . . , yh are also pairwise distinct vari-
ables). Then the composition θδ of θ and δ is the substitution obtained from the se-
quence {x1/(t1δ), . . . , xk/(tkδ), y1/s1, . . . , yh/sh} by deleting any binding xi/(tiδ) for
which xi = (tiδ) and deleting any binding yj/sj for which yj ∈ {x1, . . . , xk}.

A substitution θ is idempotent if θθ = θ. It is known that θ = {x1/t1, . . . , xk/tk} is
idempotent if none of x1, . . . , xk occurs in any t1, . . . , tk.

If θ and δ are substitutions such that θδ = δθ = ε, then we call them renaming
substitutions. We say that an expression E is a variant of an expression E′ if there exist
substitutions θ and γ such that E = E′θ and E′ = Eγ.

Definition 2.11 (Generality of Substitutions). A substitution θ is more general
than a substitution δ if there exists a substitution γ such that δ = θγ. �

Note that, according to this definition, θ is more general than itself.

Definition 2.12 (Unifier). Let Γ be a set of simple expressions. A substitution θ is
called a unifier for Γ if Γθ is a singleton. If Γθ = {ϕ} then we say that θ unifies Γ
(into ϕ). �

Definition 2.13 (Most General Unifier). A unifier θ for Γ is called a most general
unifier (mgu) for Γ if θ is more general than every unifier of Γ. �

There is an effective algorithm, called the unification algorithm, for checking
whether a set Γ of simple expressions is unifiable (i.e., has a unifier) and computing an
idempotent mgu for Γ if Γ is unifiable (see, e.g., [37]).

If E is an expression or a substitution then by Vars(E) we denote the set of variables
occurring in E. If ϕ is a formula then by ∀(ϕ) we denote the universal closure of ϕ,
which is the formula obtained by adding a universal quantifier for every variable having
a free occurrence in ϕ.
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2.2 Positive Logic Programs and SLD-Resolution

Definition 2.14 (Positive Program Clause). A positive (or definite) program clause
is a formula of the form ∀(A∨¬B1∨ . . .∨¬Bk) with k ≥ 0, written as A← B1, . . . , Bk,
where A, B1, . . . , Bk are atoms. A is called the head, and (B1, . . . , Bk) the body of the
program clause. If k = 0 then the clause is called a unit clause with the form A ←,
(i.e., a definite program clause with an empty body). If p is the predicate of A then
the program clause is called a program clause defining p. �

Definition 2.15 (Positive Logic Program). A positive (or definite) logic program
is a finite set of (positive) program clauses. �

Definition 2.16 (Goal). A goal (also called a negative clause) is a formula of the form
∀(¬B1 ∨ . . . ∨ ¬Bk), written as ← B1, . . . , Bk, where B1, . . . , Bk are atoms. If k = 1
then the goal is called a unary goal. If k = 0 then the goal stands for falsity and is
called the empty goal (or the empty clause) and denoted by 2. �

Definition 2.17 (Correct Answer). If P is a positive logic program and
G = ← B1, . . . , Bk is a goal, then θ is called a correct answer for P ∪ {G} if
P |= ∀((B1 ∧ . . . ∧Bk)θ). �

We now give definitions for SLD-resolution.

Definition 2.18 (SLD-Resolvent). A goal G′ is derived from a goal
G = ← A1, . . . , Ai, . . . , Ak and a program clause ϕ = (A← B1, . . . , Bh) using Ai as the
selected atom and θ as the most general unifier (mgu) if θ is an mgu for Ai and A, and
G′ = ← (A1, . . . , Ai−1, B1, . . . , Bh, Ai+1, . . . , Ak)θ. We call G′ a resolvent of G and ϕ.
If i = 1 then we say that G′ is derived from G and ϕ using the leftmost selection
function. �

Let P be a positive logic program and G be a goal.

Definition 2.19 (SLD-Derivation). An SLD-derivation from P ∪ {G} consists of
a (finite or infinite) sequence G0 = G, G1, G2, . . . of goals, a sequence ϕ1, ϕ2, . . . of
variants of program clauses of P and a sequence θ1, θ2, . . . of mgu’s such that each Gi+1

is derived from Gi and ϕi+1 using θi+1. �

Note that, each ϕi is a suitable variant of the corresponding program clause. That
is, ϕi does not have any variables which already appear in the derivation up to Gi−1.
Each program clause variant ϕi is called an input program clause.

Definition 2.20 (SLD-Refutation). An SLD-refutation of P ∪ {G} is a finite
SLD-derivation from P ∪{G} which has the empty clause as the last goal in the deriva-
tion. �

Definition 2.21 (Computed Answer). A computed answer θ for P ∪ {G} is the
substitution obtained by restricting the composition θ1 . . . θn to the variables of G,
where θ1, . . . , θn is the sequence of mgu’s occurring in an SLD-refutation of P ∪{G}. �
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Theorem 2.1 (Soundness and Completeness of SLD-Resolution [24, 63]). Let
P be a positive logic program and G be a goal. Then every computed answer for P ∪{G}
is a correct answer for P ∪ {G}. Conversely, for every correct answer θ for P ∪ {G},
using any selection function there exists a computed answer δ for P ∪ {G} such that
Gθ = Gδγ for some substitution γ. �

We will use also the following well-known lemma:

Lemma 2.2 (Lifting Lemma). Let P be a positive logic program, G be a goal, θ be
a substitution, and l be a natural number. Suppose there exists an SLD-refutation of
P ∪ {Gθ} using mgu’s θ1, . . . , θn such that the variables of the input program clauses
are distinct from the variables in G and θ and the term-depths of the goals are bounded
by l. Then there exist a substitution γ and an SLD-refutation of P ∪ {G} using the
same sequence of input program clauses, the same selected atoms and mgu’s θ′1, . . . , θ

′
n

such that the term-depths of the goals are bounded by l and θθ1 . . . θn = θ′1 . . . θ
′
nγ. �

The Lifting Lemma given in [37] does not contain the condition “the variables of the
input program clauses are distinct from the variables in G and θ” and is therefore inac-
curate (see, e.g., [3]). The correct version given above follows from the one presented,
amongst others, in [62]. For applications of this lemma in this paper, we assume that
fresh variables from a special infinite list of variables are used for renaming variables
of input program clauses in SLD-derivations, and that mgu’s are computed using a
standard method. The mentioned condition will thus be satisfied.

In a computational process, a fresh variant of a formula ϕ, where ϕ can be an
atom, a goal ← A or a program clause A ← B1, . . . , Bk (written without quantifiers),
is a formula ϕθ, where θ is a renaming substitution such that dom(θ) = Vars(ϕ) and
range(θ) consists of fresh variables that were not used in the computation (and the
input).

2.3 Definitions for Horn Knowledge Bases

Similarly as for deductive databases, we classify each predicate either as intensional
or as extensional. A generalized tuple is a tuple of terms, which may contain function
symbols and variables. A generalized relation is a set of generalized tuples of the same
arity.

Definition 2.22 (Horn Knowledge Base). A Horn knowledge base is defined to be
a pair (P, I), where P is a positive logic program for defining intensional predicates,
and I is a generalized extensional instance, which is a mapping that associates each
extensional n-ary predicate with an n-ary generalized relation. �

Note that intensional predicates are defined by a positive logic program which may
contain function symbols and not be range-restricted. From now on, we use the term
“relation” to mean a generalized relation, and the term “extensional instance” to mean
a generalized extensional instance.

Note also that, we will treat a tuple t from a relation associated with a predicate p
as the atom p(t). Thus, a relation (of tuples) of a predicate p is a set of atoms of p, and
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an extensional instance is a set of atoms of extensional predicates. Conversely, a set of
atoms of p can be treated as a relation (of tuples) of the predicate p.

Given a Horn knowledge base specified by a positive logic program P and an ex-
tensional instance I, a query to the knowledge base is a positive formula ϕ(x) without
quantifiers, where x is a tuple of all the variables of ϕ.1 A (correct) answer for the
query is a tuple t of terms of the same length as x such that P ∪ I |= ∀(ϕ(t)). When
measuring data complexity, we assume that P and ϕ are fixed, while I varies. Thus,
the pair (P,ϕ(x)) is treated as a query to the extensional instance I. We will use the
term “query” in this meaning.

It can be shown that every query (P,ϕ(x)) can be transformed in polynomial time
to an equivalent query of the form (P ′, q(x)) over a signature extended with new in-
tensional predicates, including q. The equivalence means that, for every extensional
instance I and every tuple t of terms of the same length as x, P ∪ I |= ∀(ϕ(t)) iff
P ′ ∪ I |= ∀(q(t)). The transformation is based on introducing new predicates for defin-
ing complex subformulas occurring in the query. For example, if ϕ = p(x) ∧ r(x, y),
then P ′ = P ∪ {q(x, y)← p(x), r(x, y)}, where q is a new intensional predicate.

Without loss of generality, we will consider only queries of the form (P, q(x)), where q
is an intensional predicate. Answering such a query on an extensional instance I is to
find (correct) answers for P ∪ I ∪ {← q(x)}.

Definition 2.23. We say that a predicate p directly depends on a predicate q if the
considered program P has a clause defining p that uses q in the body. We define the
relation “depends” to be the reflexive and transitive closure of “directly depends”. �

1A positive formula without quantifiers is a formula built up from atoms using only connectives ∧
and ∨.
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Chapter 3

The Query-Subquery Net
Evaluation Method

In this chapter, we generalize the QSQ approach for Horn knowledge bases. Given a
positive logic program, we make a query-subquery net structure and use it as a flow
control network to determine which subqueries in which nodes should be processed
next. We show how the data are transferred through edges of the net. We also propose
an algorithm together with related procedures and functions for this framework. The
algorithm repeatedly selects an active edge and fires the operation for the edge to trans-
fer unprocessed data. Such a selection is decided by the adopted control strategy, which
can be arbitrary. In addition, the processing is divided into smaller steps which can be
delayed to maximize adjustability and allow various control strategies. The intention
is to increase efficiency of query processing by eliminating redundant computation, in-
creasing adjustability and reducing the number of accesses to the secondary storage.
From now on, by a “program” we mean a positive logic program.

This chapter is organized as follows. Section 3.1 presents definitions and examples
of the query-subquery net evaluation method for Horn knowledge bases. Section 3.2
presents an algorithm together with its properties. The preliminary experiments and a
discussion on the performance of the proposed method are provided later in Chapter 6.

3.1 Query-Subquery Nets

In what follows, P is a positive logic program and ϕ1, . . . , ϕm are all the program
clauses of P , with ϕi = (Ai ← Bi,1, . . . , Bi,ni), for 1 ≤ i ≤ m and ni ≥ 0. The following
definition shows how to make a QSQ-net structure from the given logic program P .

Definition 3.1 (Query-Subquery Net Structure). A query-subquery net structure
(QSQ-net structure for short) of P is a tuple (V,E, T ) such that:

− V is a set of nodes that consists of:

• input p and ans p, for each intensional predicate p of P ,
• pre filter i, filter i,1, . . . , filter i,ni , post filter i, for each 1 ≤ i ≤ m.

− E is a set of edges that consists of:
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• (filter i,1,filter i,2), . . . , (filter i,ni−1, filter i,ni), for each 1 ≤ i ≤ m,
• (pre filter i,filter i,1) and (filter i,ni , post filter i), for each 1 ≤ i ≤ m with ni ≥ 1,
• (pre filter i, post filter i), for each 1 ≤ i ≤ m with ni = 0,
• (input p, pre filter i) and (post filter i, ans p), for each 1 ≤ i ≤ m, where p is the

predicate of Ai,
• (filter i,j , input p) and (ans p,filter i,j), for each intensional predicate p and each

1 ≤ i ≤ m and 1 ≤ j ≤ ni such that Bi,j is an atom of p.

− T is a function, called the memorizing type of the net structure, mapping each
node filter i,j ∈ V such that the predicate of Bi,j is extensional to true or false. If
T (filter i,j) = false (and the predicate of Bi,j is extensional) then subqueries for
filter i,j are always processed immediately, without being accumulated at filter i,j .

If (v, w) ∈ E then we call w a successor of v, and v a predecessor of w. Note
that V and E are uniquely specified by P . We call the pair (V,E) the QSQ topological
structure of P . �

Example 3.1. Consider the following (recursive) positive logic program, where x, y
and z are variables, p is an intensional predicate, and q is an extensional predicate:

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y).

Its QSQ topological structure is illustrated in Figure 3.1. �

pre filter1
// filter1,1

// post filter1

  @@@@@@@@@@@

input p

>>}}}}}}}}}}}

  AAAAAAAAAAA
ans p

||
pre filter2

// filter2,1
// filter2,2

//

qq

post filter2

>>~~~~~~~~~~~

Fig. 3.1: The QSQ topological structure of the program given in Example 3.1.

Example 3.2. Consider the following (non-recursive) logic program, where x, y and z
are variables, p and r are intensional predicates, q, s and t are extensional predicates:

p(x, y)← q(x, z), r(z, y)
r(x, y)← s(x, y)
r(x, y)← t(x, y).

This program is a modified version of an example from [72]. Figure 3.2 illustrates the
QSQ topological structure of this program. �
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input p // pre filter1
// filter1,1

// filter1,2
//

~~

post filter1
// ans p

pre filter2
// filter2,1

// post filter2

**TTTTTTTTT

input r

55kkkkkkk

))SSSSSSS ans r

dd

pre filter3
// filter3,1

// post filter3

44jjjjjjjjj

Fig. 3.2: The QSQ topological structure of the program given in Example 3.2.

Definition 3.2 (Query-Subquery Net). A query-subquery net (QSQ-net for short)
of P is a tuple N = (V,E, T,C) such that (V,E, T ) is a QSQ-net structure of P , C is
a mapping that associates each node v ∈ V with a structure called the contents of v,
and the following conditions are satisfied:

− C(v), where v = input p or v = ans p for an intensional predicate p of P , consists
of:

• tuples(v) : a set of generalized tuples of the same arity as p,
• unprocessed(v, w) for each (v, w) ∈ E: a subset of tuples(v).

− C(v), where v = pre filter i, consists of:

• atom(v) = Ai and post vars(v) = Vars((Bi,1, . . . , Bi,ni)),

− C(v), where v = post filter i, is empty, but we assume pre vars(v) = ∅.
− C(v), where v = filter i,j and p is the predicate of Bi,j , consists of:

• kind(v) = extensional if p is extensional, and
kind(v) = intensional otherwise,
• pred(v) = p and atom(v) = Bi,j ,
• pre vars(v) = Vars((Bi,j , . . . , Bi,ni)) and

post vars(v) = Vars((Bi,j+1, . . . , Bi,ni)),
• subqueries(v): a set of pairs of the form (t, δ), where t is a generalized tuple of

the same arity as the predicate of Ai and δ is an idempotent substitution such
that dom(δ) ⊆ pre vars(v) and dom(δ) ∩Vars(t) = ∅,
• unprocessed subqueries(v) ⊆ subqueries(v),
• in the case p is intensional:

∗ unprocessed subqueries2 (v) ⊆ subqueries(v),
∗ unprocessed tuples(v) : a set of generalized tuples of the same arity as p.

− if v = filter i,j , kind(v) = extensional and T (v) = false then subqueries(v) = ∅. �

Figure 3.3 illustrates a QSQ-net of the positive logic program given in Example 3.1.
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Fig. 3.3: The QSQ-net of the program given in Example 3.1.
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By a subquery we mean a pair of the form (t, δ), where t is a generalized tuple and δ
is an idempotent substitution such that dom(δ) ∩Vars(t) = ∅.

For v = filter i,j and p being the predicate of Ai, the meaning of a subquery
(t, δ) ∈ subqueries(v) is that: for processing a goal ← p(s) with s ∈ tuples(input p)
using the program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni), unification of p(s) and Ai
as well as processing of the subgoals Bi,1, . . . , Bi,j−1 were done, amongst others, by
using a sequence of mgu’s γ0, . . . , γj−1 with the property that t = sγ0 . . . γj−1 and
δ = (γ0 . . . γj−1)|Vars((Bi,j ,...,Bi,ni ))

.

An empty QSQ-net of P is a QSQ-net of P such that all the sets of
the form tuples(v), unprocessed(v, w), subqueries(v), unprocessed subqueries(v),
unprocessed subqueries2 (v) or unprocessed tuples(v) are empty.

In a QSQ-net, if v = pre filter i or v = post filter i or (v = filter i,j and kind(v) =
extensional) then v has exactly one successor, which we denote by succ(v).

If v is filter i,j with kind(v) = intensional and pred(v) = p then v has exactly two
successors. In that case, let

succ(v) =

{
filter i,j+1 if ni > j,

post filter i otherwise,

and succ2(v) = input p. The set unprocessed subqueries(v) is used for (i.e., corre-
sponds to) the edge (v, succ(v)), while unprocessed subqueries2 (v) is used for the edge
(v, succ2(v)).

Note that if succ(v) = w then post vars(v) = pre vars(w). In particular,
post vars(filter i,ni) = pre vars(post filter i) = ∅.

The formats of data transferred through edges of a QSQ-net are specified as follows:

− data transferred through an edge of the form (input p, v), (v, input p), (v, ans p) or
(ans p, v) is a finite set of generalized tuples of the same arity as p,

− data transferred through an edge (u, v) with v = filter i,j and u not being of the
form ans p is a finite set of subqueries that can be added to subqueries(v),

− data transferred through an edge (v, post filter i) is a set of subqueries (t, ε) such
that t is a generalized tuple of the same arity as the predicate of Ai.

If (t, δ) and (t
′
, δ′) are subqueries that can be transferred through an edge to v then

we say that (t, δ) is more general than (t
′
, δ′) w.r.t. v, and that (t

′
, δ′) is less general than

(t, δ) w.r.t. v, if there exists a substitution γ such that tγ = t
′

and (δγ)|pre vars(v) = δ′.
Informally, a subquery (t, δ) transferred through an edge to v is processed as follows:

− if v = filter i,j , kind(v) = extensional and pred(v) = p then, for each t
′ ∈ I(p), if

atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t
′
) by an mgu γ then transfer

the subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)),

− if v = filter i,j , kind(v) = intensional and pred(v) = p then

• transfer the tuple t
′

such that p(t
′
) = atom(v)δ = Bi,jδ through (v, input p) to

add a fresh variant of it to tuples(input p),
• for each currently existing t

′ ∈ tuples(ans p), if atom(v)δ = Bi,jδ is unifi-
able with a fresh variant of p(t

′
) by an mgu γ then transfer the subquery

(tγ, (δγ)|post vars(v)) through (v, succ(v)),
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Algorithm 1: for evaluating a query (P, q(x)) on an extensional instance I.

1 let (V,E, T ) be a QSQ-net structure of P ; // T can be chosen arbitrarily

2 set C so that N = (V,E, T,C) is an empty QSQ-net of P ;

3 let x′ be a fresh variant of x;
4 tuples(input q) := {x′};
5 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
6 while there exists (u, v) ∈ E such that active-edge(u, v) holds do
7 select (u, v) ∈ E such that active-edge(u, v) holds;

// any strategy is acceptable for the above selection

8 fire(u, v)

9 return tuples(ans q)

• store the subquery (t, δ) in subqueries(v), and later, for each new t
′

added to
tuples(ans p), if atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t

′
) by

an mgu γ then transfer the subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)),

− if v = post filter i and p is the predicate of Ai then transfer the tuple t through
(post filter i, ans p) to add it to tuples(ans p).

Formally, the processing of a subquery is designed more sophisticatedly so that:

− every subquery or input/answer tuple that is subsumed by another one or has a
term-depth greater than a fixed bound l is ignored,

− the processing is divided into smaller steps which can be delayed at each node to
maximize adjustability and allow various control strategies,

− the processing is done set-at-a-time (e.g., for all the unprocessed subqueries accu-
mulated in a given node).

The procedure transfer(D,u, v) (on page 26) specifies the effects of transferring
data D through an edge (u, v) of a QSQ-net. If v is of the form pre filter i or post filter i
or (v = filter i,j and kind(v) = extensional and T (v) = false) then the input D
for v is processed immediately and an appropriate data Γ is produced and transferred
through (v, succ(v)). Otherwise, the input D for v is not processed immediately, but
accumulated into the structure of v in an appropriate way.

The function active-edge(u, v) (on page 28) returns true for an edge (u, v) if data
accumulated in u can be processed to produce some data to transfer through (u, v), and
returns false otherwise. If active-edge(u, v) is true then the procedure fire(u, v) (on
page 28) processes the data accumulated in u that has not been processed before to
transfer appropriate data through the edge (u, v). This procedure uses the procedure
transfer(D,u, v). Both procedures fire(u, v) and transfer(D,u, v) use a parameter l
as a term-depth bound for tuples and substitutions.

Algorithm 1 (on page 20) presents our QSQN evaluation method for Horn knowledge
bases. It repeatedly selects an active edge and fires the operation for the edge. Such a
selection is decided by the adopted control strategy, which can be arbitrary.
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3.1.1 An Illustrative Example

Example 3.3. This example illustrates Algorithm 1 step by step. Consider the fol-
lowing Horn knowledge base (P, I) and the query s(x), where p and s are intensional
predicates, q is an extensional predicate, x, y, z are variables, and a – o, u are constant
symbols:

− the positive logic program P :

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y)
s(x)← p(b, x)

− the extensional instance I (illustrated in Figure 3.4):

I(q) = {(a, b), (b, c), (c, d), (d, e), (b, f), (f, g), (b, h),
(h, g), (i, j), (j, k), (k, l), (m,n), (n, u), (n, o)}

− the query: s(x).

?>=<89:;c // ?>=<89:;d //?>=<89:;e 76540123i //?>=<89:;j // ?>=<89:;k // 76540123l

?>=<89:;a //?>=<89:;b

>>~~~~~~
//

  AAAAAA
?>=<89:;f // ?>=<89:;g GFED@ABCm // ?>=<89:;n //

  BBBBBB
?>=<89:;u

?>=<89:;h

>>|||||| ?>=<89:;o

Fig. 3.4: A graph used for Example 3.3.

The QSQ topological structure of P is presented in Figure 3.5. We give below a trace
of a run of Algorithm 1 that evaluates the query (P, s(x)) on the extensional instance I,
using term-depth bound l = 0 and the memorizing type T that maps each node v such
that kind(v) = extensional (i.e., filter1,1 and filter2,1) to false. For convenience, we
denote the edges of the net with names E1 – E17 as shown in Figure 3.5.

Algorithm 1 starts with an empty QSQ-net. It then adds a fresh variant (x1) of (x)
to the empty sets tuples(input s) and unprocessed(E14). Next, it repeatedly selects an
active edge and fires the edge. Assume that the selection is done as follows.

1. E14 −E15

After processing unprocessed(E14), the algorithm empties this set and transfers
{(x1)} through the edge E14. This produces {((x1), {x/x1})}, which is then trans-
ferred through the edge E15 and added to the empty sets subqueries(filter3,1),
unprocessed subqueries(filter3,1) and unprocessed subqueries2 (filter3,1).

2. E13

After processing unprocessed subqueries2 (filter3,1), the algorithm empties this set
and transfers {(b, x1)} through E13. This adds a fresh variant (b, x2) of the tuple
(b, x1) to the empty sets tuples(input p), unprocessed(E1) and unprocessed(E7).
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pre filter1

E2 // filter1,1

E3 // post filter1

E4

��???????????

input p

E1

>>~~~~~~~~~~~

E7

  @@@@@@@@@@@
ans p

E5

{{

E12

ss

pre filter2

E8 // filter2,1

E9 // filter2,2

E10 //

E6qq

post filter2

E11

??�����������

input s
E14

// pre filter3 E15

// filter3,1

E13

SS

E16

// post filter3 E17

// ans s

Fig. 3.5: The QSQ topological structure of the program given in Example 3.3.

input s ans s input p ans p

x1 (0) c (15) (b, x2) (2) (b, c) (9)

f (c, x3) (4) (b, f)

h (f, x4) (b, h)

d (h, x5) (c, d)

g (d, x6) (6) (f, g)

e (g, x7) (h, g)

(e, x8) (8) (d, e)

(b, d) (11)

(b, g)

(c, e)

(b, e) (13)

Table 3.1: A summary of the steps at which the data (i.e., tuples) were added to
input s, ans s, input p, ans p, respectively.
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3. E7 −E8 −E9

After processing unprocessed(E7), the algorithm empties this set and trans-
fers {(b, x2)} through the edge E7. This produces {((b, x2), {x/b, y/x2})}, which
is then transferred through the edge E8, producing {((b, x2), {y/x2, z/c}),
((b, x2), {y/x2, z/f}), ((b, x2), {y/x2, z/h})}, which in turn is then transferred
through the edge E9 and added to the empty sets subqueries(filter2,2),
unprocessed subqueries(filter2,2) and unprocessed subqueries2 (filter2,2).

4. E6

After processing unprocessed subqueries2 (filter2,2), the algorithm empties this set
and transfers {(c, x2), (f, x2), (h, x2)} through the edge E6. This adds fresh vari-
ants of these tuples, namely (c, x3), (f, x4) and (h, x5), to the sets tuples(input p),
unprocessed(E1) and unprocessed(E7). After these steps, we have:

− unprocessed(E1) = tuples(input p) = {(b, x2), (c, x3), (f, x4), (h, x5)},
− unprocessed(E7) = {(c, x3), (f, x4), (h, x5)}.

5. E7 −E8 −E9

After processing unprocessed(E7), the algorithm empties this set and transfers
{(c, x3), (f, x4), (h, x5)} through the edge E7. This produces {((c, x3), {x/c, y/x3}),
((f, x4), {x/f, y/x4}), ((h, x5), {x/h, y/x5})}, which is then transferred
through the edge E8, producing {((c, x3), {y/x3, z/d}), ((f, x4), {y/x4, z/g}),
((h, x5), {y/x5, z/g})}, which in turn is then transferred through the edge E9

and added to the sets subqueries(filter2,2), unprocessed subqueries(filter2,2) and
unprocessed subqueries2 (filter2,2). After these steps, we have:

− unprocessed subqueries(filter2,2) = subqueries(filter2,2) =
{((b, x2), {y/x2, z/c}), ((b, x2), {y/x2, z/f}), ((b, x2), {y/x2, z/h}),

((c, x3), {y/x3, z/d}), ((f, x4), {y/x4, z/g}), ((h, x5), {y/x5, z/g})},
− unprocessed subqueries2 (filter2,2) =
{((c, x3), {y/x3, z/d}), ((f, x4), {y/x4, z/g}), ((h, x5), {y/x5, z/g})}.

6. E6

After processing unprocessed subqueries2 (filter2,2), the algorithm empties this set
and transfers {(d, x3), (g, x4)} through the edge E6. This adds fresh variants of these
tuples, namely (d, x6) and (g, x7), to the sets tuples(input p), unprocessed(E1) and
unprocessed(E7). After these steps, we have:

− unprocessed(E1) = tuples(input p) = {(b, x2), (c, x3), (f, x4), (h, x5), (d, x6), (g, x7)},
− unprocessed(E7) = {(d, x6), (g, x7)}.

7. E7 −E8 −E9

After processing unprocessed(E7), the algorithm empties this set and trans-
fers {(d, x6), (g, x7)} through the edge E7. This produces {((d, x6), {x/d, y/x6}),
((g, x7), {x/g, y/x7})}, which is then transfers through the edge E8, producing
{((d, x6), {y/x6, z/e})}, which in turn is then transferred through the edge E9

and added to the sets subqueries(filter2,2), unprocessed subqueries(filter2,2) and
unprocessed subqueries2 (filter2,2). After these steps, we have:
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− unprocessed subqueries(filter2,2) = subqueries(filter2,2) = {((b, x2), {y/x2, z/c}),
((b, x2), {y/x2, z/f}), ((b, x2), {y/x2, z/h}), ((c, x3), {y/x3, z/d}),
((f, x4), {y/x4, z/g}), ((h, x5), {y/x5, z/g}), ((d, x6), {y/x6, z/e})},

− unprocessed subqueries2 (filter2,2) = {((d, x6), {y/x6, z/e})}.
8. E6

After processing unprocessed subqueries2 (filter2,2), the algorithm empties this set
and transfers {(e, x6)} through the edge E6. This adds a fresh variant (e, x8) of the
tuple {(e, x6)} to the sets tuples(input p), unprocessed(E1) and unprocessed(E7).
After these steps, we have:

− unprocessed(E1) = tuples(input p) =
{(b, x2), (c, x3), (f, x4), (h, x5), (d, x6), (g, x7), (e, x8)},

− unprocessed(E7) = {(e, x8)}.
9. E1 −E2 −E3 −E4

After processing unprocessed(E1), the algorithm empties this set and trans-
fers {(b, x2), (c, x3), (f, x4), (h, x5), (d, x6), (g, x7), (e, x8)} through the edge E1.
This produces {((b, x2), {x/b, y/x2}), ((c, x3), {x/c, y/x3}), ((f, x4), {x/f, y/x4}),
((h, x5), {x/h, y/x5}), ((d, x6), {x/d, y/x6}), ((g, x7), {x/g, y/x7}), ((e, x8), {x/e, y/x8})},
which is then transferred through the edge E2, producing {((b, c), ε), ((b, f), ε),

((b, h), ε), ((c, d), ε), ((f, g), ε), ((h, g), ε), ((d, e), ε)}, which in turn is then transferred
through the edge E3, producing {(b, c), (b, f), (b, h), (c, d), (f, g), (h, g), (d, e)}, which
in turn is then transferred through the edge E4 and added to the empty sets
tuples(ans p), unprocessed(E5) and unprocessed(E12).

10. E5

After processing unprocessed(E5), the algorithm empties this set and transfers
{(b, c), (b, f), (b, h), (c, d), (f, g), (h, g), (d, e)} through the edge E5 and adds these
tuples to the empty set unprocessed tuples(filter2,2).

11. E10 −E11

After processing unprocessed tuples(filter2,2) and unprocessed subqueries(filter2,2),
the algorithm empties these sets and transfers {((b, d), ε), ((b, g), ε), ((c, e), ε)}
through the edge E10. This produces {(b, d), (b, g), (c, e)}, which is then trans-
ferred through the edge E11 and added to the sets tuples(ans p), unprocessed(E5)
and unprocessed(E12). After these steps, we have:

− unprocessed(E12) = tuples(ans p) =
{(b, c), (b, f), (b, h), (c, d), (f, g), (h, g), (d, e), (b, d), (b, g), (c, e)},

− unprocessed(E5) = {(b, d), (b, g), (c, e)}.
12. E5

After processing unprocessed(E5), the algorithm empties this set and transfers
{(b, d), (b, g), (c, e)} through the edge E5 and adds these tuples to the empty set
unprocessed tuples(filter2,2).

13. E10 −E11

After processing unprocessed tuples(filter2,2), the algorithm empties this set and
transfers {((b, e), ε)} through the edge E10. This produces {(b, e)}, which is
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then transferred through the edge E11 and added to the sets tuples(ans p),
unprocessed(E5) and unprocessed(E12). After these steps, we have:

− unprocessed(E12) = tuples(ans p) =
{(b, c), (b, f), (b, h), (c, d), (f, g), (h, g), (d, e), (b, d), (b, g), (c, e), (b, e)},

− unprocessed(E5) = {(b, e)}.
14. E12

After processing unprocessed(E12), the algorithm empties this set and transfers
{(b, c), (b, f), (b, h), (c, d), (f, g), (h, g), (d, e), (b, d), (b, g), (c, e), (b, e)} through
the edge E12 and adds these tuples to the empty set unprocessed tuples(filter3,1).

15. E16 −E17

After processing unprocessed tuples(filter3,1) and unprocessed subqueries(filter3,1),
the algorithm empties these sets and transfers {((c), ε), ((f), ε), ((h), ε), ((d), ε),
((g), ε), ((e), ε)} through the edge E16. This produces {(c), (f), (h), (d), (g),
(e)}, which is then transferred through the edge E17 and added to the empty set
tuples(ans s).

16. E5, E7, E10

The edges E5 and E7 are still active, with unprocessed(E5) = {(b, e)} and
unprocessed(E7) = {(e, x8)}. Firing the edge E5 causes the edge E10 to become
active, but after that, firing the edges E7 and E10 does not create data to be trans-
ferred.

At this point, no edges are active (in particular, all the attributes unprocessed ,
unprocessed subqueries, unprocessed subqueries2 and unprocessed tuples of the nodes
in the net are empty sets). The algorithm terminates and returns the set
tuples(ans s) = {(c), (f), (h), (d), (g), (e)}.

Table 3.1 summarizes the effects of the steps of this trace. The numbers in bold
font indicate the corresponding steps of the trace, which are listed in Example 3.3. �

3.1.2 Relaxing Term-Depth Bound

Suppose that we want to compute as many as possible but no more than k correct
answers for a query (P, q(x)) on an extensional instance I within time limit L. Then
we can use iterative deepening search which iteratively increases term-depth bound for
atoms and substitutions occurring in the computation as follows:

1. Initialize term-depth bound l to 0 (or another small natural number).

2. Run Algorithm 1 for evaluating (P, q(x)) on I within the time limit.

3. While tuples(ans q) contains less than k tuples and the time limit was not reached
yet, do:

(a) Clear (empty) all the sets of the form tuples(input p) and subqueries(filter i,j).
(b) Increase term-depth bound l by 1.
(c) Run Algorithm 1 without Steps 1 and 2.

4. Return tuples(ans q).
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Procedure transfer(D,u, v)

Global data: a Horn knowledge base (P, I), a QSQ-net N = (V,E, T, C) of P , and
a term-depth bound l.

Input: data D to transfer through the edge (u, v) ∈ E.

1 if D = ∅ then return;

2 if u is input p then
3 Γ := ∅;
4 foreach t ∈ D do
5 if p(t) and atom(v) are unifiable by an mgu γ then
6 add-subquery(tγ, γ|post vars(v),Γ, succ(v))

7 transfer(Γ, v, succ(v))
8 else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;
9 else if v is input p or ans p then

10 foreach t ∈ D do

11 let t
′

be a fresh variant of t;

12 if t
′

is not an instance of any tuple from tuples(v) then

13 foreach t
′′ ∈ tuples(v) do

14 if t
′′

is an instance of t
′
then

15 delete t
′′

from tuples(v);

16 foreach (v, w) ∈ E do delete t
′′

from unprocessed(v, w);

17 if v is input p then

18 add t
′

to tuples(v);

19 foreach (v, w) ∈ E do add t
′

to unprocessed(v, w);
20 else
21 add t to tuples(v);

22 foreach (v, w) ∈ E do add t to unprocessed(v, w);

23 else if v is filter i,j and kind(v) = extensional and T (v) = false then
24 let p = pred(v) and set Γ := ∅;
25 foreach (t, δ) ∈ D do
26 if term-depth(atom(v)δ) ≤ l then
27 foreach t

′ ∈ I(p) do

28 if atom(v)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ then

29 add-subquery(tγ, (δγ)|post vars(v),Γ, succ(v))

30 transfer(Γ, v, succ(v))
31 else if v is filter i,j and (kind(v) = extensional and T (v) = true or kind(v) = intensional)

then
32 foreach (t, δ) ∈ D do
33 if term-depth(atom(v)δ) ≤ l then
34 if no subquery in subqueries(v) is more general than (t, δ) then
35 delete from subqueries(v) all subqueries less general than (t, δ);

36 delete from unprocessed subqueries(v) all subqueries less general than (t, δ);

37 add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
38 if kind(v) = intensional then
39 delete from unprocessed subqueries2 (v) all subqueries less general than

(t, δ);

40 add (t, δ) to unprocessed subqueries2 (v)

41 else // v is of the form post filter i
42 Γ := {t | (t, ε) ∈ D};
43 transfer(Γ, v, succ(v))
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Procedure add-subquery(t, δ,Γ, v)

Purpose: add the subquery (t, δ) to Γ, but keep in Γ only the most general subqueries
w.r.t. v.

1 if term-depth(t) ≤ l and term-depth(δ) ≤ l and no subquery in Γ is more general than
(t, δ) w.r.t. v then

2 delete from Γ all subqueries less general than (t, δ) w.r.t. v;
3 add (t, δ) to Γ

Procedure add-tuple(t,Γ)

Purpose: add the tuple t to Γ, but keep in Γ only the most general tuples.

1 let t
′

be a fresh variant of t;

2 if t
′

is not an instance of any tuple from Γ then

3 delete from Γ all tuples that are instances of t
′
;

4 add t
′

to Γ

3.2 Properties of Algorithm 1

We present below properties of Algorithm 1, which were first proved by Nguyen in [45]1.
As QSQN is a special case of QSQN-TRE specified in the next chapter2, they follow
from the corresponding properties of QSQN-TRE, which are specified and proved in
Chapter 4.

Soundness: After a run of Algorithm 1 on a query (P, q(x)) and an extensional
instance I, for every intensional predicate p of P , every computed answer
t ∈ tuples(ans p) is a correct answer in the sense that P ∪ I |= ∀(p(t)). �

Completeness: After a run of Algorithm 1 (using parameter l) on a query (P, q(x))
and an extensional instance I, for every SLD-refutation of P ∪ I ∪ {← q(x)} that
uses the leftmost selection function, does not contain any goal with term-depth
greater than l and has a computed answer θ with term-depth not greater than l,
there exists s ∈ tuples(ans q) such that xθ is an instance of a variant of s. �

Together with Theorem 2.1 (on the completeness of SLD-resolution), this property
makes a relationship between correct answers for P ∪ I ∪ {← q(x)} and the answers
computed by Algorithm 1 for the query (P, q(x)) on the extensional instance I.

For queries and extensional instances without function symbols, we take term-depth
bound l = 0 and obtain the following completeness result, which immediately follows
from the above property.

1The proofs given in [45] were later improved by me and the corresponding revision is available
at [12].

2QSQN-TRE is the same as QSQN when T (p) = false for every intensional predicate p used in P ,
where T is a function used in the definition of the QSQN-TRE structure.
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Function active-edge(u, v)

Global data: a QSQ-net N = (V,E, T, C).
Input: an edge (u, v) ∈ E.
Output: true if there is data to transfer through the edge (u, v), and false otherwise.

1 if u is pre filter i or post filter i then return false;
2 else if u is input p or ans p then return unprocessed(u, v) 6= ∅;
3 else if u is filter i,j and kind(u) = extensional then
4 return T (u) = true ∧ unprocessed subqueries(u) 6= ∅
5 else // u is of the form filter i,j and kind(u) = intensional
6 let p = pred(u);
7 if v = input p then return unprocessed subqueries2 (u) 6= ∅;
8 else return unprocessed subqueries(u) 6= ∅ ∨ unprocessed tuples(u) 6= ∅;

Procedure fire(u, v)

Global data: a Horn knowledge base (P, I), a QSQ-net N = (V,E, T,C) of P , and
a term-depth bound l.

Input: an edge (u, v) ∈ E such that active-edge(u, v) holds.

1 if u is input p or ans p then
2 transfer(unprocessed(u, v), u, v);
3 unprocessed(u, v) := ∅
4 else if u is filter i,j and kind(u) = extensional and T (u) = true then
5 let p = pred(u) and set Γ := ∅;
6 foreach (t, δ) ∈ unprocessed subqueries(u) do
7 foreach t

′ ∈ I(p) do
8 if atom(u)δ is unifiable with a fresh variant of p(t

′
) by an mgu γ then

9 add-subquery(tγ, (δγ)|post vars(u),Γ, v)

10 unprocessed subqueries(u) := ∅;
11 transfer(Γ, u, v)
12 else if u is filter i,j and kind(u) = intensional then
13 let p = pred(u) and set Γ := ∅;
14 if v = input p then
15 foreach (t, δ) ∈ unprocessed subqueries2 (u) do let p(t

′
) = atom(u)δ,

add-tuple(t
′
,Γ);

16 unprocessed subqueries2 (u) := ∅;
17 else
18 foreach (t, δ) ∈ unprocessed subqueries(u) do
19 foreach t

′ ∈ tuples(ans p) do
20 if atom(u)δ is unifiable with a fresh variant of p(t

′
) by an mgu γ then

21 add-subquery(tγ, (δγ)|post vars(u),Γ, v)

22 unprocessed subqueries(u) := ∅;
23 foreach t ∈ unprocessed tuples(u) do
24 foreach (t

′
, δ) ∈ subqueries(u) do

25 if atom(u)δ is unifiable with a fresh variant of p(t) by an mgu γ then
26 add-subquery(t

′
γ, (δγ)|post vars(u),Γ, v)

27 unprocessed tuples(u) := ∅
28 transfer(Γ, u, v)
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After a run of Algorithm 1 using l = 0 on a query (P, q(x)) and an extensional
instance I that do not contain function symbols, for every computed answer θ of
an SLD-refutation of P ∪ I ∪{← q(x)} that uses the leftmost selection function,
there exists t ∈ tuples(ans q) such that xθ is an instance of a variant of t.

Data Complexity: For a fixed query and a fixed bound l on term-depth, Algorithm 1
runs in polynomial time in the size of the extensional instance. �
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Chapter 4

Incorporating Tail-Recursion
Elimination into QSQN

Query optimization has received much attention from researchers in the database com-
munity. Several optimization methods and techniques have been developed to improve
performance of query evaluation. One of them is to reduce the number of materialized
intermediate results during the processing by using the tail-recursion elimination. The
general form of recursion requires the compiler to allocate storage on the stack at run-
time. Such a memory consumption may be costly. A call is tail-recursive if no work
remains to be done after the call returns. Tail recursion is a special case of recursion
that is semantically equivalent to the iteration construct. A tail-recursive program can
be compiled as efficiently as iterative programs by applying tail-recursion elimination.
Ross’ work [53] contains a very good example about the usefulness of tail-recursion
elimination. Let’s consider a slightly modified version of that example.

Example 4.1. Let P be the positive logic program consisting of the following clauses:

p(x, y)← e(x, z), p(z, y)
p(m,x)← t(x)

where p is an intensional predicate, e and t are extensional predicates, m is a natural
number (a constant) and x, y, z are variables. Let p(1, x) be the query, n a natural
number, and let the extensional instance I for e and t be as follows:

I(e) = {(1, 2), (2, 3), . . . , (m− 1,m), (m, 1)},
I(t) = {1, . . . , n}.

To make this example more concrete, suppose that: e(x, z) holds when there is
a way to get from town x to town z, where the towns are numbered from 1 to m and
m denotes the capital; t(x) holds when item x is available in the capital; items are
numbered from 1 to n and all items are available in the capital; p(z, y) holds if it is
possible to get from town z to a town that has item y. For the query p(1, x), the task
is to find all available items starting from town 1.

To answer the query, methods such as QSQR, QSQN, Magic-Sets would evaluate
every subquery of the form p(i, x), where 1 ≤ i ≤ m, and thus store m× n tuples (i, j)
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in the answer relation for p, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. As can be seen, for
answering the query p(1, x), we do not need to store the intermediate answer tuples
(i, j) with i > 1 for p if we apply tail-recursion elimination. We only need to store n
answer tuples (1, j) with 1 ≤ j ≤ n and m subqueries (i, x) with 1 ≤ i ≤ m for p.
That is, we need to store only m + n instead of m × n tuples. The example in Ross’
work [53] considers m = 100 towns and n = 1000 items, and it is easy to see how big
the difference is. �

In Chapter 3, we formulated the query-subquery nets and used them to develop
the first framework for developing algorithms for evaluating queries to Horn knowledge
bases. The framework forms a generic evaluation method called QSQN. The experi-
mental results in Section 6.2 for QSQN indicate the usefulness of this method. It is
desirable to study how to develop the other evaluation methods that are based on
query-subquery nets.

In this chapter, we first incorporate tail-recursion elimination into query-subquery
nets in order to formulate the QSQN-TRE evaluation method for Horn knowledge
bases. We then present another method called QSQN-rTRE, which can eliminate not
only tail-recursive predicates but also intensional predicates that appear rightmost in
the bodies of the program clauses.

The rest of this chapter is structured as follows. Section 4.1 presents the QSQN-TRE
evaluation method for Horn knowledge bases together with its properties and an il-
lustrative example. Section 4.2 discusses the QSQN-rTRE evaluation method and its
properties. The preliminary experiments and a discussion for the QSQN-TRE and
QSQN-rTRE methods are presented later in Sections 6.3 and 6.4, respectively.

4.1 QSQN with Tail-Recursion Elimination

This section presents a method called QSQN-TRE for evaluating queries to Horn knowl-
edge bases by integrating query-subquery nets with a form of tail-recursion elimination.
The aim is to reduce materializing the intermediate results during the processing of a
query with tail-recursion.

4.1.1 Definitions

Let P be a positive logic program and ϕ1, . . . , ϕm be all the program clauses of P , with
ϕi = (Ai ← Bi,1, . . . , Bi,ni), for 1 ≤ i ≤ m and ni ≥ 0.

Definition 4.1 (Tail-Recursion). A program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni), for
ni > 0, is said to be recursive whenever some Bi,j (1 ≤ j ≤ ni) has the same predicate
as Ai. If Bi,ni has the same predicate as Ai then the clause is tail-recursive and in this
case the predicate of Bi,ni is a tail-recursive predicate. �

The following definition shows how to make a QSQN-TRE structure from the given
program P .
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Definition 4.2 (QSQN-TRE Structure). A query-subquery net structure with tail-
recursion elimination (QSQN-TRE structure for short) of P is a tuple (V,E, T ) such
that:

− T is a pair (Tedb, Tidb), called the type of the net structure.

− Tidb is a function that maps each intensional predicate to true or false. (If
Tidb(p) = true then the intensional relation p will be computed using tail-recursion
elimination1. Tedb will be explained shortly.)

− V is a set of nodes that includes:

• input p and ans p, for each intensional predicate p of P ,
• pre filter i, filter i,1, . . . , filter i,ni , for each 1 ≤ i ≤ m,
• post filter i if either ϕi is not tail-recursive or Tidb(p) = false, for each 1 ≤ i ≤ m,

where p is the predicate of Ai.

− E is a set of edges that includes:

• (input p, pre filter i), for each 1 ≤ i ≤ m, where p is the predicate of Ai,
• (pre filter i,filter i,1), for each 1 ≤ i ≤ m such that ni ≥ 1,
• (filter i,1,filter i,2), . . . , (filter i,ni−1, filter i,ni), for each 1 ≤ i ≤ m,
• (filter i,ni , post filter i), for each 1 ≤ i ≤ m such that ni ≥ 1 and post filter i

exists,
• (pre filter i, post filter i), for each 1 ≤ i ≤ m such that ni = 0,
• (post filter i, ans p), for each 1 ≤ i ≤ m such that post filter i exists, where p is

the predicate of Ai,
• (filter i,j , input p), for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that the predicate p

of Bi,j is an intensional predicate,
• (ans p,filter i,j), for each intensional predicate p and 1 ≤ i ≤ m and 1 ≤ j ≤ ni

such that Bi,j is an atom of p and either (1 ≤ j < ni) or (j = ni and post filter i
exists).

− Tedb is a function that maps each filter i,j ∈ V such that the predicate of Bi,j is
extensional to true or false. (If Tedb(filter i,j) = false then subqueries for filter i,j are
always processed immediately without being accumulated at filter i,j). �

From now on, T (v) denotes Tedb(v) if v is a node filter i,j such that Bi,j is an
extensional predicate, and T (p) denotes Tidb(p) for an intensional predicate p. Thus, T
can be called a memorizing type for extensional predicates (as in QSQ-net structures),
and a tail-recursion-elimination type for intensional predicates.

We call the pair (V,E) the QSQN-TRE topological structure of P w.r.t. Tidb. The
lower part of Figure 4.1 illustrates the QSQN-TRE topological structure of the positive
logic program given in Example 3.1 w.r.t. the Tidb with Tidb(p) = true in comparison
with the QSQ topological structure of the same logic program, which is described in
the upper part of this figure.

Definition 4.3 (QSQN-TRE). A query-subquery net with tail-recursion elimina-
tion (QSQN-TRE for short) of P is a tuple N = (V,E, T,C) such that (V,E, T ) is

1It is desirable to expect that Tidb(p) = true iff p is tail-recursive w.r.t. P . However, we do not require
this condition. In particular, it is possible that Tidb(p) = false for some tail-recursive predicates p.
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pre filter1
// filter1,1

// post filter1

  @@@@@@@@@@@

input p

>>}}}}}}}}}}}

  AAAAAAAAAAA
ans p

||
pre filter2

// filter2,1
// filter2,2

//

qq

post filter2

>>~~~~~~~~~~~

pre filter1
// filter1,1

// post filter1

  @@@@@@@@@@@

input p

>>}}}}}}}}}}}

  AAAAAAAAAAA
ans p

pre filter2
// filter2,1

// filter2,2

qq

Fig. 4.1: The QSQ topological structure and the QSQN-TRE topological structure of
the program given in Example 3.1.

a QSQN-TRE structure of P , C is a mapping that associates each node v ∈ V with
a structure called the contents of v, which differs from the one for QSQN (see Defini-
tion 3.2) in that:

− If v = input p and T (p) = true then C(v) consists of:

• tuple pairs(v): a set of pairs of generalized tuples of the same arity as p,
• unprocessed(v, w) for each (v, w) ∈ E: a subset of tuple pairs(v).

− If v = filter i,ni , kind(v) = intensional, pred(v) = p and T (p) = true then
unprocessed subqueries(v) and unprocessed tuples(v) are empty (and can thus be
ignored).

A QSQN-TRE of P is empty if all the sets of the form tuple pairs(v), tuples(v),
unprocessed(v, w), subqueries(v), unprocessed subqueries(v), unprocessed subqueries2 (v)
or unprocessed tuples(v) are empty. �

If (v, w) ∈ E then w is referred to as a successor of v. Observe that:

− if v ∈ {pre filter i, post filter i} or (v = filter i,j and kind(v) = extensional) then v
has exactly one successor, which we denote by succ(v),

− if v is filter i,ni with kind(v) = intensional, pred(v) = p and T (p) = true then v has
exactly one successor, which we denote by succ2(v) = input p,

− if v is filter i,j with kind(v) = intensional, pred(v) = p and either j < ni or
T (p) = false then v has exactly two successors: succ(v) = filter i,j+1 if j < ni;
succ(v) = post filter i otherwise; and succ2(v) = input p.
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Figure 4.2 illustrates a QSQN-TRE (V,E, T,C) of the positive logic program given
in Example 3.1 with T (p) = true.

Recall that a subquery is a pair of the form (t, δ), where t is a generalized tu-
ple and δ is an idempotent substitution such that dom(δ) ∩Vars(t) = ∅. The set
unprocessed subqueries2 (v) (resp. unprocessed subqueries(v)) contains the subqueries
that were not transferred through the edge (v, succ2(v)) (resp. (v, succ(v)) – when
it exists).

Remark 4.1. For an intensional predicate p with T (p) = true, the intuition behind a
pair (t, t

′
) ∈ tuple pairs(input p) is that:

− t is a usual input tuple for p, but the intended goal at a higher level is ← p(t
′
),

− any correct answer for P ∪ I ∪ {← p(t)} is also a correct answer for
P ∪ I ∪ {← p(t

′
)},

− if a substitution θ is a computed answer of P ∪ I ∪ {← p(t)} then we will store in
ans p the tuple t

′
θ instead of tθ. �

We say that a tuple pair (t, t
′
) is more general than (t2, t

′
2), and (t2, t

′
2) is an instance

of (t, t
′
), if there exists a substitution θ such that (t, t

′
)θ = (t2, t

′
2).

For v = filter i,j and p being the predicate of Ai, the meaning of a subquery
(t, δ) ∈ subqueries(v) is as follows: if T (p) = false (resp. T (p) = true) then there
exists s ∈ tuples(input p) (resp. (s, s′) ∈ tuple pairs(input p)) such that for processing
the goal ← p(s) using the program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni), unification of
p(s) and Ai as well as processing of the subgoals Bi,1, . . . , Bi,j−1 were done, amongst
others, by using a sequence of mgu’s γ0, . . . , γj−1 with the property that t = sγ0 . . . γj−1
(resp. t = s′γ0 . . . γj−1) and δ = (γ0 . . . γj−1)|Vars((Bi,j ,...,Bi,ni ))

.

Informally, a subquery (t, δ) transferred through an edge to v is processed as follows:

− If v = filter i,j , kind(v) = extensional and pred(v) = p then, for each t
′ ∈ I(p), if

atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t
′
) by an mgu γ then transfer

the subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)).

− If v = filter i,j , kind(v) = intensional, pred(v) = p and either T (p) = false or j < ni
or p is not the predicate of Ai then

• if T (p) = false then transfer the tuple t
′

such that p(t
′
) = atom(v)δ = Bi,jδ

through (v, input p) to add its fresh variant to tuples(input p),

• else if j < ni or p is not the predicate of Ai then transfer the tuple pair (t
′
, t
′
)

such that p(t
′
) = atom(v)δ = Bi,jδ through (v, input p) to add its fresh variant

to tuple pairs(input p),

• for each currently existing t
′ ∈ tuples(ans p), if atom(v)δ = Bi,jδ is unifi-

able with a fresh variant of p(t
′
) by an mgu γ then transfer the subquery

(tγ, (δγ)|post vars(v)) through (v, succ(v)),

• store the subquery (t, δ) in subqueries(v), and later, for each new t
′

added to
tuples(ans p), if atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t

′
) by

an mgu γ then transfer the subquery (tγ, (δγ)|post vars(v)) through (v, succ(v)).
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Fig. 4.2: The QSQN-TRE of the program given in Example 3.1 with T (p) = true.
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− If v = filter i,ni , kind(v) = intensional, pred(v) = p, T (p) = true and p is the

predicate of Ai then transfer the tuple pair (t
′
, t) such that p(t

′
) = atom(v)δ = Bi,niδ

through (v, input p) to add its fresh variant to tuple pairs(input p).

− If v = post filter i and p is the predicate of Ai then transfer the tuple t through
(post filter i, ans p) to add it to tuples(ans p).

Formally, in the same way as for the QSQN method, the processing of a subquery,
an input/answer tuple or an input tuple pair in a QSQN-TRE is designed so that:

− every subquery or input/answer tuple or input tuple pair that is subsumed by
another one or has a term-depth greater than a fixed bound l is ignored,

− the processing is divided into smaller steps which can be delayed at each node to
maximize adjustability and allow various control strategies,

− the processing is done set-at-a-time (e.g., for all the unprocessed subqueries accu-
mulated in a given node).

All of the related procedures and functions are listed in Appendix C. In particular,
the procedure transfer2(D,u, v) (on pages 113-114) specifies the effects of transfer-
ring data D through an edge (u, v) of a QSQN-TRE. If v is of the form pre filter i
or post filter i or (v = filter i,j and kind(v) = extensional and T (v) = false) then the
input D for v is processed immediately and an appropriate data Γ is produced and
transferred through (v, succ(v)). Otherwise, the input D for v is not processed imme-
diately, but accumulated into the contents of v in an appropriate way.

The function active-edge(u, v) (on page 28) returns true for an edge (u, v) if the
data accumulated in u can be processed to produce some data to transfer through (u, v),
and returns false otherwise. If active-edge(u, v) is true then the procedure fire2(u, v)
(on page 112) processes the data accumulated in u that has not been processed before
to transfer appropriate data through the edge (u, v). This procedure uses the proce-
dure transfer2(D,u, v). Both the procedures fire2(u, v) and transfer2(D,u, v) use
a parameter l as a term-depth bound for tuples and substitutions.

Algorithm 2 (on page 38) presents our QSQN-TRE evaluation method for Horn
knowledge bases. It repeatedly selects an active edge and fires the operation for the edge.
Such a selection is decided by the adopted control strategy, which can be arbitrary. If
there is no tail-recursion to eliminate or T (p) = false for every intensional predicate p,
the QSQN-TRE method reduces to the QSQN evaluation method.

Example 4.2. The aim of this example is to illustrate how the QSQN-TRE method
works in detail. It uses the logic program P , the extensional instance I and the query
as in Example 3.3. The QSQN-TRE topological structure of the given program P is
illustrated in Figure 4.3. For convenience, we name the edges of the net by Ei with
1 ≤ i ≤ 14 as shown in this figure. We assume that T (p) = true, and T (v) = false for
each v = filter i,j ∈ V with kind(v) = extensional. We also assume that Algorithm 2
fires active edges in the order (E1, E3, E4, E7, E4, E7, E4, E7, E4, E8, E12, E13), which
corresponds to the IDFS control strategy specified in Chapter 6.

We give below a trace of firing each “active edges” in the above list. The list of
edges in the first row of the following steps denotes a call of the procedure fire2 for
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Algorithm 2: for evaluating a query (P, q(x)) on an extensional instance I.

1 let (V,E, T ) be a QSQN-TRE structure of P ;

// T can be chosen arbitrarily or appropriately

2 set C so that N = (V,E, T,C) is an empty QSQN-TRE of P ;

3 let x′ be a fresh variant of x;

4 if T (q) = false then

5 tuples(input q) := {x′};
6 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
7 else

8 tuple pairs(input q) := {(x′, x′)};
9 foreach (input q, v) ∈ E do unprocessed(input q, v) := {(x′, x′)};

10 while there exists (u, v) ∈ E such that active-edge(u, v) holds do

11 select (u, v) ∈ E such that active-edge(u, v) holds;

// any strategy is acceptable for the above selection

12 fire2(u, v)

13 return tuples(ans q)

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y)
s(x)← p(b, x).

pre filter1

E9 // filter1,1

E10 // post filter1

E11

!!CCCCCCCCCC

input p

E8

==zzzzzzzzzz

E4

""DDDDDDDDDD
ans p

E12

ss

pre filter2

E5 // filter2,1

E6 // filter2,2

E7rr

input s
E1

// pre filter3 E2

// filter3,1

E3

TT

E13

// post filter3 E14

// ans s

Fig. 4.3: The QSQN-TRE topological structure of the program given in Example 4.2.
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input s

tuples = {(x1)}
D1={((x1), {x/x1})}

(1). E1−E2

//
filter 3,1

subqueries = D1

(2). E3D2={((b,x2),(b,x2))}

��

filter 2,2

subqueries = D3

oo
(3). E4−E5−E6

D3={((b,x2),{y/x2,z/c}), ((b,x2),{y/x2,z/f}), ((b,x2),{y/x2,z/h})}

(4). E7 D4={((c,x3),(b,x3)), ((f,x4),(b,x4)), ((h,x5),(b,x5))}

��

input p

tuple pairs = D2

input p

tuple pairs = tuple pairs ∪D4
(5). E4−E5−E6

D5={((b,x3),{y/x3,z/d}), ((b,x4),{y/x4,z/g})} //
filter 2,2

subqueries = subqueries ∪D5

(6). E7D6={((d,x6),(b,x6)), ((g,x7),(b,x7))}

��

filter 2,2

subqueries = subqueries ∪D7

oo
(7). E4−E5−E6

D7={((b,x6),{y/x6,z/e})}

(8). E7 D8={((e,x8),(b,x8))}

��

input p

tuple pairs = tuple pairs ∪D6

input p

tuple pairs = tuple pairs ∪D8
(10). E8−E9−E10−E11

D9={(b,c), (b,f), (b,h), (b,d), (b,g), (b,e)} //
ans p

tuples = D9

(11). E12D10={(b,c), (b,f), (b,h), (b,d), (b,g), (b,e)}

��

ans s

tuples = D11

oo
(12). E13−E14

D11={(c), (f), (h), (d), (g), (e)} filter 3,1

unprocessed tuples = D10

input s ans s input p ans p

x1 (0) c (12) ((b, x2), (b, x2)) (2) (b, c) (10)

f ((c, x3), (b, x3)) (4) (b, f)

h ((f, x4), (b, x4)) (b, h)

d ((h, x5), (b, x5)) (b, d)

g ((d, x6), (b, x6)) (6) (b, g)

e ((g, x7), (b, x7)) (b, e)

((e, x8), (b, x8)) (8)

Fig. 4.4: A view of tracing the execution of Algorithm 2 on the query given in Exam-
ple 4.2.
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the first edge in the list, which triggers transferring data through the subsequent edges
of the list.

Algorithm 2 starts with an empty QSQN-TRE. It then adds a fresh variant (x1)
of (x) to the empty sets tuples(input s) and unprocessed(E1). Next, it repeatedly selects
and fires an active edge as follows (according to the order of the above list).

1. E1 −E2

After processing unprocessed(E1), the algorithm empties this set and transfers
{(x1)} through the edge E1. This produces {((x1), {x/x1})}, which is then trans-
ferred through the edge E2 and added to the empty sets subqueries(filter3,1),
unprocessed subqueries(filter3,1) and unprocessed subqueries2 (filter3,1).

2. E3

After processing unprocessed subqueries2 (filter3,1), the algorithm empties this
set, produces a pair ((b, x1), (b, x1)), transfers its fresh variant ((b, x2), (b, x2))
through E3, and adds this variant to the empty sets tuple pairs(input p),
unprocessed(E4) and unprocessed(E8).

3. E4 −E5 −E6

After processing unprocessed(E4), the algorithm empties this set and transfers
{((b, x2), (b, x2))} through the edge E4. This produces {((b, x2), {x/b, y/x2})},
which is then transferred through the edge E5, producing {((b, x2), {y/x2, z/c}),
((b, x2), {y/x2, z/f}), ((b, x2), {y/x2, z/h})}, which in turn is then transferred
through the edge E6 and added to the empty sets subqueries(filter2,2) and
unprocessed subqueries2 (filter2,2).

4. E7

After processing unprocessed subqueries2 (filter2,2), the algorithm empties this set,
produces a set of pairs {((c, x2), (b, x2)), ((f, x2), (b, x2)), ((h, x2), (b, x2))}, trans-
fers its fresh variant {((c, x3), (b, x3)), ((f, x4), (b, x4)), ((h, x5), (b, x5))} through the
edge E7, and adds this variant to the sets tuple pairs(input p), unprocessed(E4) and
unprocessed(E8). After these steps, we have:

- unprocessed(E8) = tuple pairs(input p) =

{((b, x2), (b, x2)), ((c, x3), (b, x3)), ((f, x4), (b, x4)), ((h, x5), (b, x5))},
- unprocessed(E4) = {((c, x3), (b, x3)), ((f, x4), (b, x4)), ((h, x5), (b, x5))}.

5. E4 −E5 −E6

After processing unprocessed(E4), the algorithm empties this set and trans-
fers {((c, x3), (b, x3)), ((f, x4), (b, x4)), ((h, x5), (b, x5))} through the edge E4.
This produces {((b, x3), {x/c, y/x3}), ((b, x4), {x/f, y/x4}), ((b, x5), {x/h, y/x5})},
which is then transferred through the edge E5, producing {((b, x3), {y/x3, z/d}),
((b, x4), {y/x4, z/g})}, which in turn is then transferred through the edge E6

and added to subqueries(filter2,2) and unprocessed subqueries2 (filter2,2). After these
steps, we have:

- subqueries(filter2,2) = {((b, x2), {y/x2, z/c}), ((b, x2), {y/x2, z/f}),
((b, x2), {y/x2, z/h}), ((b, x3), {y/x3, z/d}), ((b, x4), {y/x4, z/g})},
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- unprocessed subqueries2 (filter2,2) = {((b, x3), {y/x3, z/d}), ((b, x4), {y/x4, z/g})}.
6. E7

After processing unprocessed subqueries2 (filter2,2), the algorithm empties this set,
produces a set of pairs {((d, x3), (b, x3)), ((g, x4), (b, x4))}, transfers its fresh variant
{((d, x6), (b, x6)), ((g, x7), (b, x7))} through the edge E7, and adds this variant to the
sets tuple pairs(input p), unprocessed(E4) and unprocessed(E8). After these steps,
we have:

- unprocessed(E8) = tuple pairs(input p) = {((b, x2), (b, x2)), ((c, x3), (b, x3)),

((f, x4), (b, x4)), ((h, x5), (b, x5)), ((d, x6), (b, x6)), ((g, x7), (b, x7))},
- unprocessed(E4) = {((d, x6), (b, x6)), ((g, x7), (b, x7))}.

7. E4 −E5 −E6

After processing unprocessed(E4), the algorithm empties this set and trans-
fers {((d, x6), (b, x6)), ((g, x7), (b, x7))} through the edge E4. This pro-
duces {((b, x6), {x/d, y/x6}), ((b, x7), {x/g, y/x7})}, which is then transferred
through the edge E5, producing {((b, x6), {y/x6, z/e})}, which in turn is
then transferred through the edge E6 and added to subqueries(filter2,2) and
unprocessed subqueries2 (filter2,2). After these steps, we have:

- subqueries(filter2,2) = {((b, x2), {y/x2, z/c}), ((b, x2), {y/x2, z/f}),
((b, x2), {y/x2, z/h}), ((b, x3), {y/x3, z/d}),
((b, x4), {y/x4, z/g}), ((b, x6), {y/x6, z/e})},

- unprocessed subqueries2 (filter2,2) = {((b, x6), {y/x6, z/e})}.
8. E7

After processing unprocessed subqueries2 (filter2,2), the algorithm empties this set,
produces a pair {((e, x6), (b, x6))}, transfers its fresh variant {((e, x8), (b, x8))}
through the edge E7, and adds this variant to the sets tuple pairs(input p),
unprocessed(E4) and unprocessed(E8). After these steps, we have:

- unprocessed(E8) = tuple pairs(input p) = {((b, x2), (b, x2)), ((c, x3), (b, x3)),

((f, x4), (b, x4)), ((h, x5), (b, x5)), ((d, x6), (b, x6)), ((g, x7), (b, x7)), ((e, x8), (b, x8))},
- unprocessed(E4) = {((e, x8), (b, x8))}.

9. E4 −E5 −E6

After processing unprocessed(E4), the algorithm empties this set and transfers
{((e, x8), (b, x8))} through the edge E4. This produces {((b, x8), {x/e, y/x8})},
which is then transferred through the edge E5, producing nothing.

10. E8 −E9 −E10 −E11

After processing unprocessed(E8), the algorithm empties this set and transfers
the set of pairs {((b, x2), (b, x2)), ((c, x3), (b, x3)), ((f, x4), (b, x4)), ((h, x5), (b, x5)),
((d, x6), (b, x6)), ((g, x7), (b, x7)), ((e, x8), (b, x8))} through the edge E8. This
produces a set of subqueries {((b, x2), {x/b, y/x2}), ((b, x3), {x/c, y/x3}),
((b, x4), {x/f, y/x4}), ((b, x5), {x/h, y/x5}), ((b, x6), {x/d, y/x6}),
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((b, x7), {x/g, y/x7}), ((b, x8), {x/e, y/x8})}, which is then transferred through the
edge E9, producing {((b, c), ε), ((b, f), ε), ((b, h), ε), ((b, d), ε), ((b, g), ε), ((b, e), ε)},
which in turn is then transferred through the edge E10, producing {(b, c), (b, f),
(b, h), (b, d), (b, g), (b, e)}, which in turn is then transferred through the edge E11

and added to the empty sets tuples(ans p) and unprocessed(E12).

11. E12

After processing unprocessed(E12), the algorithm empties this set and transfers
{(b, c), (b, f), (b, h), (b, d), (b, g), (b, e)} through the edge E12 and adds these tuples
to the empty set unprocessed tuples(filter3,1).

12. E13 −E14

After processing the sets unprocessed subqueries(filter3,1) and
unprocessed tuples(filter3,1), the algorithm empties these sets and transfers
{((c), ε), ((f), ε), ((h), ε), ((d), ε), ((g), ε), ((e), ε)} through the edge E13. This
produces {(c), (f), (h), (d), (g), (e)}, which is then transferred through the edge E14

and added to the empty set tuples(ans s).

At this point, no edge is active (in particular, all the attributes unprocessed ,
unprocessed subqueries, unprocessed subqueries2 and unprocessed tuples of the nodes in
the net are empty sets). The algorithm terminates and returns the set of results in
tuples(ans s) = {(c), (f), (h), (d), (g), (e)}.

Figure 4.4 (on page 39) shows an intuitive view of this trace. In this figure, Di

(1 ≤ i ≤ 11) presents the data transferred through the last edge in the corresponding
list of edges. The table summarizes the steps at which the data (i.e., a set of tuples or
tuple pairs) were added to input s, ans s, input p, ans p, respectively. �

4.1.2 Soundness and Completeness

The following lemmas state a property of Algorithm 2. The proof of Lemma 4.1 is
straightforward.

Lemma 4.1. Consider a run of Algorithm 2 (using parameter l) on a query (P, q(x))
and an extensional instance I. Let v = filter i,j for some 1 ≤ i ≤ m and 1 ≤ j ≤ ni such
that if j = ni then ϕi is not tail-recursive or T (p) = false or p is not the predicate
of Ai. Let w = succ(v) and let u = filter i,j−1 if j > 1, and u = pre filter i otherwise.
Suppose that a subquery (s′, δ′) was transferred through (v, w) at some step k. Then,
there exists a subquery (s, δ) which was transferred through (u, v) at some earlier step
h < k with the property that:

− if kind(v) = extensional and pred(v) = p then there exists t
′ ∈ I(p) such that

atom(v)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ, s′ = sγ and

δ′ = (δγ)|post vars(v),

− if kind(v) = intensional and pred(v) = p then there was t
′ ∈ tuples(ans p) at step

k such that atom(v)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ, s′ = sγ

and δ′ = (δγ)|post vars(v). �

Lemma 4.2 (Soundness). Consider a run of Algorithm 2 (using parameter l) on a
query (P, q(x)) and an extensional instance I. For every intensional predicate p of P ,
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(a) if T (p) = true then, for every pair (t, t
′
) ∈ tuple pairs(input p) and every

substitution θ, if P ∪ I |= ∀(p(t)θ) then P ∪ I |= ∀(p(t′)θ),
(b) every computed answer s ∈ tuples(ans p) is a correct answer in the sense

that P ∪ I |= ∀(p(s)).

Proof. We prove this lemma by induction on the number of the step at which either the
pair (t, t

′
) was added to tuple pairs(input p) or the tuple s was added to tuples(ans p).

Consider the assertion (a) first and assume that T (p) = true.

− Suppose (t, t
′
) was added to tuple pairs(input p) with the property that t = t

′
, which

was performed by the following cases:

• at the beginning of processing the query (Step 8 of the Algorithm 2),
• when kind(filter i,j) = intensional, p = pred(filter i,j), T (p) = true and (j < ni or
p is not predicate of Ai) (Step 8 of the procedure compute-gamma (on page 111)).

Clearly, in these cases, if P∪I |= ∀(p(t)θ) then P∪I |= ∀(p(t′)θ) for every substitution θ.

− We now consider the case when Ai and Bi,ni have the same intensional predicate p
with T (p) = true. Suppose (t, t

′
) was added to tuple pairs(input p) as the result of

transferring data through the edge (filter i,ni , input p). Thus, there was a subquery

(t
′
ni , δni) ∈ unprocessed subqueries2 (filter i,ni) such that p(tni) = Bi,niδni and (t, t

′
) is

a fresh variant of (tni , t
′
ni). Let v0 = pre filter i and vj = filter i,j for 1 ≤ j ≤ ni. The

subquery (t
′
ni , δni) was added to unprocessed subqueries2 (filter i,ni) as the result of trans-

ferring a subquery (t
′
ni−1, δni−1) through the edge (vni−1,filter i,ni) with the properties

that t
′
ni = t

′
ni−1 and δni = δni−1 (Step 18 of the procedure transfer2). By Lemma 4.1,

for each j from ni − 1 to 1, there exists a subquery (t
′
j−1, δj−1) transferred through

(vj−1, vj) such that:

if kind(vj) = extensional and pred(vj) = pj then there exists t
′′
j ∈ I(pj)

such that atom(vj)δj−1 is unifiable with a fresh variant of pj(t
′′
j ) by an

mgu γj , t
′
j = t

′
j−1γj and δj = (δj−1γj)|post vars(vj),

(4.1)

if kind(vj) = intensional and pred(vj) = pj then there exists
t
′′
j ∈ tuples(ans pj) such that atom(vj)δj−1 is unifiable with a fresh vari-

ant of pj(t
′′
j ) by an mgu γj , t

′
j = t

′
j−1γj and δj = (δj−1γj)|post vars(vj).

(4.2)

Additionally, there must exist a pair (t�, t
′
�) which was added to tuple pairs(input p)

in an earlier step such that δ0 = mgu(Ai, p(t�)) and t
′
0 = t

′
�δ0. By the inductive

assumption for (a), we have that, for every substitution θ, if P ∪ I |= ∀(p(t�)θ) then
P ∪ I |= ∀(p(t′�)θ).

We prove by an inner induction on 1 ≤ j ≤ ni that, for every substitution θ:

if P ∪ I |= ∀((Bi,j , . . . , Bi,ni)δj−1θ) then P ∪ I |= ∀(p(t′j−1)θ). (4.3)

Base case (j = 1): Assume that P ∪I |= ∀((Bi,1, . . . , Bi,ni)δ0θ). Since P ∪I |= ∀(ϕi),
we have P ∪ I |= ∀((Bi,1, . . . , Bi,ni → Ai)δ0θ). It follows that P ∪ I |= ∀(Aiδ0θ). Since
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Aiδ0 = p(t�)δ0, we have P ∪ I |= ∀(p(t�)δ0θ). This implies that P ∪ I |= ∀(p(t′�)δ0θ).
Since t

′
0 = t

′
�δ0, we have that P ∪ I |= ∀(p(t′0)θ).

Induction step: Suppose the induction hypothesis holds for j < ni, i.e.

for every θ′, if P ∪ I |= ∀((Bi,j , . . . , Bi,ni)δj−1θ′) then
P ∪ I |= ∀(p(t′j−1)θ′).

(4.4)

We show that it also holds for j + 1, i.e.,

for every θ′′, if P ∪ I |= ∀((Bi,j+1, . . . , Bi,ni)δjθ
′′) then

P ∪ I |= ∀(p(t′j)θ′′).
(4.5)

Suppose

P ∪ I |= ∀((Bi,j+1, . . . , Bi,ni)δjθ
′′). (4.6)

Take θ′ = γjθ
′′.

• Consider the case kind(vj) = extensional and let pj = pred(vj). By (4.1), there
exists a fresh variant t

∗
j of some t

′′
j ∈ I(pj) such that γj = mgu(Bi,jδj−1, pj(t

∗
j )),

t
′
j = t

′
j−1γj and δj = (δj−1γj)|post vars(vj). We have that P ∪ I |= ∀(pj(t′′j )),

hence P ∪ I |= ∀(pj(t∗j )γj), which means P ∪ I |= ∀(Bi,jδj−1γj). Hence
P ∪ I |= ∀(Bi,jδj−1γjθ′′), which implies

P ∪ I |= ∀(Bi,jδj−1θ′). (4.7)

Since δj = (δj−1γj)|post vars(vj) and θ′ = γjθ
′′, we have that

(Bi,j+1, . . . , Bi,ni)δjθ
′′ = (Bi,j+1, . . . , Bi,ni)δj−1θ

′.

This together with (4.6), (4.7) and (4.4) implies P ∪I |= ∀(p(t′j−1)θ′). Since t
′
j−1θ

′ =
t
′
j−1γjθ

′′ = t
′
jθ
′′, it follows that P∪I |= ∀(p(t′j)θ′′), which completes the proof of (4.5)

for the case kind(vj) = extensional.

• Consider the case kind(vj) = intensional and let pj = pred(vj). By (4.2),
there exists a fresh variant t

∗
j of some t

′′
j ∈ tuples(ans pj) such that

γj = mgu(Bi,jδj−1, pj(t
∗
j )), t

′
j = t

′
j−1γj and δj = (δj−1γj)|post vars(vj). By the in-

ductive assumption of the outer induction for (b), we have P ∪ I |= ∀(pj(t′′j )), hence

P ∪ I |= ∀(pj(t∗j )γj), which means P ∪ I |= ∀(Bi,jδj−1γj). Analogously as for the

above case, we can derive that P∪I |= ∀(p(t′j)θ′′), which completes the proof of (4.5)
for the case kind(vj) = intensional and the proof of (4.3).

Recall that p(tni) = Bi,niδni , t
′
ni = t

′
ni−1 and δni = δni−1. By (4.3), when j = ni, we

have that, for every substitution θ, if P ∪ I |= ∀(Bi,niδni−1θ) then P ∪ I |= ∀(p(t′ni−1)θ).
Hence, if P ∪ I |= ∀(p(tni)θ) then P ∪ I |= ∀(p(t′ni)θ). Since (t, t

′
) is a fresh vari-

ant of (tni , t
′
ni), it follows that, for every substitution θ, if P ∪ I |= ∀(p(t)θ) then

P ∪ I |= ∀(p(t′)θ). This completes the proof of (a).
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Now, consider the assertion (b). Suppose that s was added to tuples(ans p) as
the result of transferring s through the edge (post filter i, ans p), which was trig-
gered by the transfer of (s, ε) through the edge (pre filter i, post filter i) if ni = 0 or
(filter i,ni , post filter i) otherwise. Let t

′
ni = s and δni = ε. Let v0 = pre filter i and

vj = filter i,j for 1 ≤ j ≤ ni. By Lemma 4.1, for each j from ni to 1, there exists a

subquery (t
′
j−1, δj−1) transferred through (vj−1, vj) such that:

if kind(vj) = extensional and pred(vj) = pj then there exists t
′′
j ∈ I(pj)

such that atom(vj)δj−1 is unifiable with a fresh variant of pj(t
′′
j ) by an

mgu γj , t
′
j = t

′
j−1γj and δj = (δj−1γj)|post vars(vj),

(4.8)

if kind(vj) = intensional and pred(vj) = pj then there exists
t
′′
j ∈ tuples(ans pj) such that atom(vj)δj−1 is unifiable with a fresh vari-

ant of pj(t
′′
j ) by an mgu γj , t

′
j = t

′
j−1γj and δj = (δj−1γj)|post vars(vj).

(4.9)

Consider the case T (p) = true. By an analogous proof as for (4.3), we have that,
for 1 ≤ j ≤ ni + 1:

for every substitution θ, if P ∪ I |= ∀((Bi,j , . . . , Bi,ni)δj−1θ) then
P ∪ I |= ∀(p(t′j−1)θ).

(4.10)

Consider the case T (p) = false. There must exist a tuple t
′
� which was added to

tuples(input p) in an earlier step such that δ0 = mgu(Ai, p(t
′
�)) and t

′
0 = t

′
�δ0. We have

that Aiδ0 = p(t
′
0). We now prove that (4.10) also holds for the case T (p) = false by an

inner induction on 1 ≤ j ≤ ni + 1.

Base case (j = 1): Assume that P ∪I |= ∀((Bi,1, . . . , Bi,ni)δ0θ). Since P ∪I |= ∀(ϕi),
we have P ∪ I |= ∀((Bi,1 ∧ . . . ∧Bi,ni → Ai)δ0θ). It follows that P∪I |= ∀(Aiδ0θ), which
means P ∪ I |= ∀(p(t′0)θ).

The induction step is similar to the one given for (4.3).

By (4.10), when j = ni + 1 and θ = ε, we have that P ∪ I |= ∀(p(t′ni)), which means
P ∪ I |= ∀(p(s)), which completes the proof of (b) and also the proof of this lemma. �

We need the following lemma for the completeness theorem. We assume that
the sets of fresh variables used for renaming variables of input program clauses in
SLD-refutations and in Algorithm 2 are disjoint.

Lemma 4.3. After a run of Algorithm 2 (using parameter l) on a query (P, q(x))
and an extensional instance I, for every intensional predicate r of P , for every
SLD-refutation of P ∪ I ∪ {← r(s)} that uses the leftmost selection function, does not
contain any goal with term-depth greater than l and has a computed answer θ with the
term-depth of sθ not greater than l,

− if T (r) = false and s ∈ tuples(input r) then there exists s′′ ∈ tuples(ans r) such that
sθ is an instance of a variant of s′′,

− if T (r) = true and (s, s′) ∈ tuple pairs(input r), then there exists s′′ ∈ tuples(ans r)
such that s′θ is an instance of a variant of s′′.
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Proof. We prove this lemma by induction on the length of the mentioned
SLD-refutation. We give bellow the proof for the case T (r) = true. The case T (r) = false
is simpler and the proof for it is given in Appendix B.

Suppose that T (r) = true and the first step of the refutation of P ∪ I ∪ {← r(s)}
uses an input program clause ϕ′i = (A′i ← B′i,1, . . . , B

′
i,ni

), which is a variant of a clause
ϕi = (Ai ← Bi,1, . . . , Bi,ni) of P , resulting in the resolvent ← (B′i,1, . . . , B

′
i,ni

)θ1. Let
θ1, . . . , θy be the sequence of mgu’s used in the refutation. By the definition of computed
answers, we have θ = (θ1 . . . θy)|Vars(s). Observe that only fresh variants of tuple pairs
were added to tuple pairs(input r). Recall the assumption that the set of variables
used for renaming variables in Algorithm 2 is disjoint with the set of variables used for
renaming variables in SLD-derivations. Hence, (Vars(s′)\Vars(s))∩Vars(θ1 . . . θy) = ∅.
It follows that

s′θ1 . . . θy = s′((θ1 . . . θy)|Vars(s)) = s′θ. (4.11)

Let % be a renaming substitution such that ϕ′i = ϕi%. Thus, B′i,j = Bi,j% for
1 ≤ j ≤ ni. We can assume that % does not use any variable occurring in s and s′.
Thus,

s = s%, (4.12)

and

s′ = s′%. (4.13)

Let k1 = 2, kni+1 = y + 1 and suppose that, for 1 ≤ j ≤ ni,

the fragment for processing ← B′i,jθ1 . . . θkj−1 of the refutation of
P ∪ I ∪ {← r(s)} uses mgu’s θkj , . . . , θkj+1−1.

(4.14)

Since θ1 = mgu(r(s), A′i) and A′i = Ai% and by (4.12), it follows that r(s)%θ1 =
r(s)θ1 = A′iθ1 = Ai%θ1 and hence %θ1 is a unifier for r(s) and Ai. Let γ0 be an
mgu Algorithm 2 used to unify r(s) and Ai when processing (s, s′) for the edge
(input r, pre filter i). Hence, there exists a substitution η0 such that

%θ1 = γ0η0. (4.15)

Let s′0 = s′γ0 and δ0 = (γ0)|post vars(pre filter i)
.

Consider the base case, which occurs when ni = 0 and the SLD-refutation has the
length one. By (4.13) and (4.15), we have that

s′θ1 = s′%θ1 = s′γ0η0 = s′0η0. (4.16)

Thus, s′θ1 is an instance of s′0. Since post vars(pre filter i) = ∅, the subquery (s′0, ε) was
transferred through the edge (pre filter i, post filter i). Hence, tuples(ans r) contains s′′

such that s′0 is an instance of a fresh variant of s′′. Since s′θ = s′θ1, it follows that, s′θ
is an instance of a variant of s′′.

Let us consider the induction step. We have that ni ≥ 1. We will refer to the data
structures used by Algorithm 2. We first prove the following remark:
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Remark 4.2. Let v = filter i,j for some 1 ≤ i ≤ m and 1 ≤ j < ni if ϕi is tail-recursive
and 1 ≤ j ≤ ni otherwise. Let u = filter i,j−1 if j > 1, and u = pre filter i otherwise.
If (s′j−1, δj−1) is a subquery transferred through (u, v) at some step and there exists a
substitution η such that

(s′, (Bi,j , . . . , Bi,ni))%θ1 . . . θkj−1 = (s′j−1, (Bi,j , . . . , Bi,ni)δj−1)η, (4.17)

then there exists a subquery (s′j , δj) transferred through (v, succ(v)) at some step and a
substitution η′ such that

(s′, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj+1−1 = (s′j , (Bi,j+1, . . . , Bi,ni)δj)η
′. (4.18)

Suppose the premises of this remark hold. Without loss of generality we assume
that:

if (kind(v) = extensional and T (v) = true) or kind(v) = intensional
then the subquery (s′j−1, δj−1) was added to subqueries(v).

(4.19)

Since B′i,j = Bi,j% and (4.17), we have that:

(← B′i,jθ1 . . . θkj−1) = (← Bi,j%θ1 . . . θkj−1) = (← Bi,jδj−1η). (4.20)

Since the term-depth of Bi,jδj−1η = B′i,jθ1 . . . θkj−1 is not greater than l, the term-
depth of Bi,jδj−1 is also not greater than l. By (4.14), (4.20) and Lifting Lemma 2.2,
we have that

there exists a refutation of P ∪I∪{← Bi,jδj−1} using the leftmost se-
lection function and mgu’s θ′kj , . . . , θ

′
kj+1−1 such that the term-depths

of goals are not greater than l and ηθkj . . . θkj+1−1 = θ′kj . . . θ
′
kj+1−1µ

for some substitution µ.

(4.21)

Consider the case when the predicate p = pred(v) of Bi,j is an extensional predi-
cate. Thus,

kj+1 = kj + 1 (4.22)

and
Bi,jδj−1θ′kj = p(t

′
)σθ′kj (4.23)

where p(t
′
)σ is the input program clause used for resolving ← Bi,jδj−1, with

t
′ ∈ I(p) and σ being a renaming substitution. Regarding the transfer of the sub-

query (s′j−1, δj−1) through (u, v), under the assumption (4.19), Algorithm 2 unifies

atom(v)δj−1 = Bi,jδj−1 with a fresh variant p(t
′
)σ′ of p(t

′
), where σ′ is a renaming

substitution, resulting in an mgu γ (by (4.23), Bi,jδj−1 and p(t
′
)σ′ are unifiable) and

then transfers the subquery (s′j−1γ, (δj−1γ)|post vars(v)) through (v, succ(v)). Let

s′j = s′j−1γ and δj = (δj−1γ)|post vars(v). (4.24)

We have that σ = σ′σ′′ for some renaming substitution σ′′ such that

σ′′ does not use variables of s′j−1, δj−1 and pre vars(v). (4.25)
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Thus Bi,jδj−1σ′′θ′kj = Bi,jδj−1θ′kj , and by (4.23) and the fact σ = σ′σ′′, we have that

(Bi,jδj−1)σ′′θ′kj = Bi,jδj−1θ′kj = p(t
′
)σθ′kj = (p(t

′
)σ′)σ′′θ′kj .

Hence, Bi,jδj−1 and p(t
′
)σ′ are unifiable using σ′′θ′kj , while γ is an mgu for them. Hence

σ′′θ′kj = γµ′ (4.26)

for some substitution µ′. Let η′ = µ′µ. We have that:

(s′, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj+1−1
= ((s′, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj−1)θkj . . . θkj+1−1
= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)ηθkj . . . θkj+1−1 (by the assumption (4.17))

= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)θ
′
kj
. . . θ′kj+1−1µ (by (4.21))

= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)σ
′′θ′kj . . . θ

′
kj+1−1µ (by (4.25))

= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)γµ
′µ (by (4.22) and (4.26))

= (s′j , (Bi,j+1, . . . , Bi,ni)δj)η
′ (by (4.24) and the fact η′ = µ′µ).

We have shown (4.18) and thus proved Remark 4.2 for the case when the predicate
of Bi,j is extensional.

Now consider the case when the predicate p of Bi,j is an intensional predicate.
By the assumption (4.19), the subquery (s′j−1, δj−1) was also added to

unprocessed subqueries2 (v). Let Bi,jδj−1 = p(t
′
j). If T (p) = true (resp. T (p) = false)

then the pair (t
′
j , t
′
j) (resp. tuple t

′
j) was transferred through the edge (v, input p),

hence there must exist some tuple pair (t, t
′
) (resp. tuple t

′
) that was added to

tuple pairs(input p) (resp. tuples(input p)) at some step such that (t, t
′
) (resp. t

′
) is

more general than a fresh variant of (t
′
j , t
′
j) (resp. t

′
j), and thus (t, t

′
)λ = (t

′
j , t
′
j)λ
′ (resp.

t
′
λ = t

′
jλ
′) for some substitution λ that uses only variables from t, t

′
(resp. t

′
) and a

renaming substitution λ′ with domain contained in Vars(t
′
j). Hence, (t, t

′
)α = (t

′
j , t
′
j)

(resp. t
′
α = t

′
j) for the substitution α = λ(λ′)−1. We can assume that α uses only

variables from t, t
′

and t
′
j (resp. t

′
and t

′
j). Thus,

Bi,jδj−1 = p(t
′
j) = p(t

′
)α if T (p) = false, (4.27)

and
Bi,jδj−1 = p(t

′
j) = p(t)α = p(t

′
)α if T (p) = true. (4.28)

By (4.21) and Lifting Lemma 2.2, it follows that there exists a refutation of
P ∪ I ∪ {← p(t)} if T (p) = true (resp. P ∪ I ∪ {← p(t

′
)} if T (p) = false) using the

leftmost selection function and mgu’s θ′′kj , . . . , θ
′′
kj+1−1 such that the term-depths of the

goals are not greater than l and

αθ′kj . . . θ
′
kj+1−1 = θ′′kj . . . θ

′′
kj+1−1β (4.29)

for some substitution β. By the inductive assumption, tuples(ans p) contains a tuple
t
′′

such that t
′
θ′′kj . . . θ

′′
kj+1−1 is an instance of a variant of t

′′
. Since

Bi,jδj−1θ′kj . . . θ
′
kj+1−1 = p(t

′
)αθ′kj . . . θ

′
kj+1−1 (by (4.27) and (4.28))

= p(t
′
)θ′′kj . . . θ

′′
kj+1−1β (by (4.29)),
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it follows that

Bi,jδj−1θ′kj . . . θ
′
kj+1−1 is an instance of a variant of p(t

′′
). (4.30)

From a certain moment there were both (s′j−1, δj−1) ∈ subqueries(v) and

t
′′ ∈ tuples(ans p). Hence, at some step Algorithm 2 unified atom(v)(δj−1) = Bi,jδj−1

with a fresh variant p(t
′′
)σ of p(t

′′
), where σ is a renaming substitution. The atom

p(t
′′
)σ does not contain variables of s′j−1, δj−1, pre vars(v) and θ′kj . . . θ

′
kj+1−1. By (4.30),

Bi,jδj−1 and p(t
′′
)σ are unifiable. Let the resulting mgu be γ and let

s′j = s′j−1γ and δj = (δj−1γ)|post vars(v). (4.31)

Algorithm 2 then transferred the subquery (s′j , δj) through (v, succ(v)).

By (4.30), Bi,jδj−1θ′kj . . . θ
′
kj+1−1 is an instance of p(t

′′
)σ. Let ρ be a substitution

with domain contained in Vars(p(t
′′
)σ) such that Bi,jδj−1θ′kj . . . θ

′
kj+1−1 = p(t

′′
)σρ. We

have that

the domain of ρ does not contain variables of s′j−1, δj−1, pre vars(v)
and θ′kj . . . θ

′
kj+1−1

(4.32)

and θ′kj . . . θ
′
kj+1−1 ∪ ρ is a unifier for Bi,jδj−1 and p(t

′′
)σ. As γ is an mgu for Bi,jδj−1

and p(t
′′
)σ, we have that

γµ′ = (θ′kj . . . θ
′
kj+1−1 ∪ ρ) (4.33)

for some substitution µ′. Let η′ = µ′µ. We have that:

(s′, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj+1−1
= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)θ

′
kj
. . . θ′kj+1−1µ (as shown before)

= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)(θ
′
kj
. . . θ′kj+1−1 ∪ ρ)µ (by (4.32))

= (s′j−1, (Bi,j+1, . . . , Bi,ni)δj−1)γµ
′µ (by (4.33))

= (s′j , (Bi,j+1, . . . , Bi,ni)δj)η
′ (by (4.31) and the fact η′ = µ′µ).

We have shown (4.18) and thus proved Remark 4.2 for the case when the predicate
of Bi,j is intensional. This completes the proof of this remark. �

Consider the case when ϕi is a tail-recursive clause. Let θ1, . . . , θh be the mgu’s used
up to the step of deriving the goal ← r(B′i,niθ1 . . . θh). Thus, kni = h+ 1.

By (4.14), after processing the atom B′i,j−1 for 2 ≤ j ≤ ni, the next goal of the
refutation of ← r(s) is ← (B′i,j , . . . , B

′
i,ni

)θ1 . . . θkj−1.
Recall that s′0 = s′γ0 and δ0 = (γ0)|post vars(pre filter i)

and k1 = 2. The subquery
(s′0, δ0) was transferred through the edge (pre filter i,filter i,1).

Consider the case ni > 1. Observe that the premises of Remark 4.2 hold for j = 1
and for the subquery (s′0, δ0) using η = η0. Hence there exists a subquery (s′1, δ1) that
was transferred through (filter i,1, succ(filter i,1)) at some step and a substitution η1 such
that

(s′, (Bi,2, . . . , Bi,ni))%θ1 . . . θk2−1 = (s′1, (Bi,2, . . . , Bi,ni)δ1)η1.

49



For each 1 < j < ni, we can apply Remark 4.2 to obtain a subquery (s′j , δj) and ηj
(for η′). It follows that, when j = ni − 1, the subquery (s′ni−1, δni−1) was transferred
through the edge (filter i,ni−1,filter i,ni) and

(s′, Bi,ni)%θ1 . . . θkni−1 = (s′ni−1, Bi,niδni−1)ηni−1 (4.34)

for some substitution ηni−1, which implies

s′%θ1 . . . θkni−1 = s′ni−1ηni−1 (4.35)

and

Bi,ni%θ1 . . . θkni−1 = Bi,niδni−1ηni−1. (4.36)

Consider the case ni = 1. The subquery (s′0, δ0) was transferred through the
edge (pre filter i,filter i,1). Since δ0 = (γ0)|post vars(pre filter i)

and post vars(pre filter i) =
Vars(Bi,1) and by (4.15), it follows that Bi,1%θ1 = Bi,1γ0η0 = Bi,1δ0η0. Together
with (4.16), it implies that (4.35) and (4.36) also hold for the case ni = 1.

Let Bi,niδni−1 = r(tni). At some step, Algorithm 2 transfered the tuple pair
(tni , s

′
ni−1) through the edge (filter i,ni , input r), hence there must exist some tuple pair

(t, t
′
) that was added to tuple pairs(input r) at some step such that (t, t

′
) is more general

than a fresh variant of (tni , s
′
ni−1), and thus (t, t

′
)λ = (tni , s

′
ni−1)λ

′ for some substitu-

tion λ that uses only variables from t, t
′

and a renaming substitution λ′ with domain
contained in Vars(tni) ∪ Vars(s′ni−1). Hence, (t, t

′
)α = (tni , s

′
ni−1) for the substitution

α = λ(λ′)−1. We can assume that α uses only variables from t, t
′
, tni and s′ni−1. Thus,

Bi,niδni−1 = r(tni) = r(t)α, (4.37)

and

s′ni−1 = t
′
α. (4.38)

Take β = αηni−1. Since B′i,ni = Bi,ni% and by (4.36), we have that:

(← B′i,niθ1 . . . θkni−1) = (← Bi,ni%θ1 . . . θkni−1)
= (← Bi,niδni−1ηni−1) (by (4.36))
= (← r(t)αηni−1) (by (4.37))
= (← r(t)β) (by the fact β = αηni−1).

(4.39)

Since the term-depth of r(t)β = B′i,niθ1 . . . θkni−1 is not greater than l, the term-

depth of r(t) is also not greater than l. By (4.14), (4.39) and Lifting Lemma 2.2, there
exists a refutation of P ∪ I ∪ {← r(t)} using the leftmost selection function and mgu’s
θ′kni

, . . . , θ′kni+1−1 such that the term-depths of goals are not greater than l and

βθkni . . . θkni+1−1 = θ′kni . . . θ
′
kni+1−1µ (4.40)

for some substitution µ. By the inductive assumption, tuples(ans r) contains a tuple s′′

such that

t
′
θ′kni . . . θ

′
kni+1−1is an instance of a variant of s′′. (4.41)
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Recall that kni+1 = y + 1. Hence,

s′θ1 . . . θy = s′θ1 . . . θkni−1θkni . . . θkni+1−1
= s′%θ1 . . . θkni−1θkni . . . θkni+1−1 (by (4.13))

= s′ni−1ηni−1θkni . . . θkni+1−1 (by (4.35))

= t
′
αηni−1θkni . . . θkni+1−1 (by (4.38))

= t
′
βθkni . . . θkni+1−1 (by the fact β = αηni−1)

= t
′
θ′kni

. . . θ′kni+1−1µ (by (4.40)).

This together with (4.41) implies that s′θ1 . . . θy is an instance of a variant of s′′.
By (4.11), it follows that s′θ is an instance of a variant of s′′.

We now consider the case when ϕi is not a tail-recursive clause. By (4.14), after
processing the atom B′i,j−1 for 2 ≤ j ≤ ni + 1, the next goal of the refutation of ← r(s)
is ← (B′i,j , . . . , B

′
i,ni

)θ1 . . . θkj−1. (If j = ni + 1 then the goal is empty.)
Similarly to the previous case, (s′0, δ0) is a subquery Algorithm 2 transferred through

(pre filter i,filter i,1) and observe that the premises of Remark 4.2 hold for j = 1 and
for the subquery (s′0, δ0) using η = η0. Hence, there exist a subquery (s′1, δ1) that was
transferred through (filter i,1, succ(filter i,1)) at some step and a substitution η1 such
that

(s′, (Bi,2, . . . , Bi,ni))%θ1 . . . θk2−1 = (s′1, (Bi,2, . . . , Bi,ni)δ1)η1.

For each 1 < j ≤ ni, we can apply Remark 4.2 to obtain a subquery (s′j , δj) and ηj
(for η′). Since post vars(filter i,ni) = ∅, it follows that, for j = ni, (s′ni , ε) is a subquery
that was transferred through (filter i,ni , post filter i) at some step and

s′%θ1 . . . θkni+1−1 = s′niηni .

Since kni+1 = y + 1 and by (4.11) and (4.13), it follows that

s′θ = s′θ1 . . . θy = s′%θ1 . . . θy = s′niηni .

Thus, s′θ is an instance of s′ni . Since (s′ni , ε) was transferred through the edge
(filter i,ni , post filter i), tuples(ans r) will contain s′′ such that s′ni is an instance of a
fresh variant of s′′. It follows that, s′θ is an instance of a variant of s′′. This completes
the proof of this lemma. �

Theorem 4.4 (Completeness). After a run of Algorithm 2 (using parameter l)
on a query (P, q(x)) and an extensional instance I, for every SLD-refutation of
P ∪ I ∪ {← q(x)} that uses the leftmost selection function, does not contain any goal
with term-depth greater than l and has a computed answer θ with term-depth not greater
than l, there exists s ∈ tuples(ans q) such that xθ is an instance of a variant of s.

This theorem immediately follows from Lemma 4.3. Together with Theorem 2.1
(on completeness of SLD-resolution) it makes a relationship between correct answers
of P ∪ I ∪ {← q(x)} and the answers computed by Algorithm 2 for the query (P, q(x))
on the extensional instance I. �

For queries and extensional instances without function symbols, we take term-depth
bound l = 0 and obtain the following completeness result, which immediately follows
from the above theorem.
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Corollary 4.5. After a run of Algorithm 2 using l = 0 on a query (P, q(x)) and
an extensional instance I that do not contain function symbols, for every computed
answer θ of an SLD-refutation of P ∪ I ∪ {← q(x)} that uses the leftmost selection
function, there exists t ∈ tuples(ans q) such that xθ is an instance of a variant of t. �

4.1.3 Data Complexity

In this section, the data complexity of Algorithm 2 is estimated, which is measured
w.r.t. the size of the extensional instance I when the query (P, q(x)) and the term-
depth bound l are fixed. The estimation is very similar to the one given in [45] for
QSQN. We include it here to make the text self-contained.

If terms are represented as sequences of symbols or as trees then there will
be a problem with complexity. Namely, unifying the terms f(x1, . . . , xn) and
f(g(x0, x0), . . . , g(xn−1, xn−1)), we get a term of exponential length. Another exam-
ple is the pair f(x1, . . . , xn, x1, . . . , xn) and f(y1, . . . , yn, g(y0, y0), . . . , g(yn−1, yn−1)). If
the term-depth bound l is used in all steps, including the ones of unification, then the
problem will not arise. But we do not want to be so restrictive.

To represent a term we use instead a rooted acyclic directed graph which is per-
mitted to have multiple ordered arcs and caches nodes representing the same subterm.
Such a graph will simply be called a DAG. As an example, the DAG of f(x, a, x) has
the root nf labeled by f , a node nx labeled by x, a node na labeled by a, and three
ordered edges outgoing from nf : the first one and the third one are connected to nx,
while the second one is connected to na.

The size of a term t, denoted by size(t), is defined to be the size of the DAG of t
(i.e., the number of nodes and edges of the DAG of t). The sizes of other term-based
expressions or data structures are defined as usual. For example, we define:

− the size of a tuple (t1, . . . , tk) to be size(t1) + . . .+ size(tk),

− the size of a set of tuples to be the sum of the sizes of those tuples,

− the size of a substitution {x1/t1, . . . , xk/tk} to be k + size(t1) + . . .+ size(tk),

− the size of a node v of a QSQN-TRE (V,E, T,C) to be the sum of the sizes of the
components of C(v).
Using DAGs to represent terms, unification of two atoms A and A′ can be done in

polynomial time in the sizes of A and A′. In the case A and A′ are unifiable, the resulting
atom and the resulting mgu have sizes that are polynomial in the sizes of A and A′.
Similarly, checking whether A is an instance of A′ can also be done in polynomial time
in the sizes of A and A′.

The following theorem estimates the data complexity of Algorithm 2, under the
assumption that terms are represented by DAGs and unification and checking instances
of atoms are done in polynomial time.

Theorem 4.6. For a fixed query and a fixed bound l on term-depth, Algorithm 2 runs
in polynomial time in the size of the extensional instance.

Proof. Consider a run of Algorithm 2 using parameter l on a query (P, q(x)) and on
an extensional instance I with size n. Here, (P, q(x)) and l are fixed. Thus, for every
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1 ≤ i ≤ m, ni is bounded by a constant. Similarly, if p is an intensional predicate
from P then the arity of p is also bounded by a constant.

Observe that the number of tuples (resp. tuple pairs) that are added to any set of
the form tuples(input p) (resp. tuple pairs(input p)) or tuples(ans p) is bounded by a
polynomial of n. The reasons are:

− intensional predicates come from P ,

− constant symbols and function symbols come from P and I,

− tuples(input p) (resp. tuple pairs(input p)) and tuples(ans p) consist of tuples (resp.
tuple pairs) with term-depth bounded by l,

− a tuple (resp. tuple pair) is added to a set of the form tuples(input p) (resp.
tuple pairs(input p)) or tuples(ans p) only when its fresh variant is not an instance
of any tuple from the set,

− a tuple (resp. tuple pair) is deleted from a set of the form tuples(input p) (resp.
tuple pairs(input p)) or tuples(ans p) only when it is an instance of a new tuple
added to the set.

For similar reasons, the number of subqueries that are added to any set of the form
subqueries(v) is also bounded by a polynomial of n.

Consequently, the sizes of sets of the form tuples(input p), tuple pairs(input p),
tuples(ans p), subqueries(v), unprocessed(v, w), unprocessed subqueries(v),
unprocessed subqueries2 (v) or unprocessed tuples(v) are bounded by a polynomial
of n. Therefore, the size of the constructed QSQN-TRE is bounded by a polynomial
of n, and any execution of procedure transfer2, procedure fire2 or function
active-edge is done in polynomial time in n.

A transfer or a firing for an edge (u, v) is done only when a new tuple (resp. tuple
pair) was added to tuples(u) (reps. tuple pairs(u)) or a new subquery was added to
subqueries(u). Thus, we can conclude that Algorithm 2 runs in polynomial time in n.

�

Corollary 4.7. Algorithm 2 with term-depth bound l = 0 is a complete evaluation
algorithm with polynomial time data complexity for the class of queries over a signature
without function symbols.

This corollary follows from Lemma 4.2 (on soundness), Corollary 4.5 (on complete-
ness) and the above theorem (on data complexity). �

4.2 QSQN with Right/Tail-Recursion Elimination

This section proposes an evaluation method called QSQN-rTRE for evaluating queries
to Horn knowledge bases, which can eliminate not only tail-recursive predicates but
also intensional predicates that appear rightmost in the bodies of the program clauses.
Particularly, the rightmost intensional predicates in the bodies of the program clauses
can be processed in the same way as for tail-recursive predicates discussed in Section 4.1.
Thus, in this section, a program clause is said to be right/tail-recursive if it is either
a tail-recursive clause or a clause with an intensional predicate that appears rightmost
in the body of that program clause.
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4.2.1 Definitions

Definition 4.4. We say that a predicate p directly rightmost-depends on a predicate q
if p directly depends on q and q appears rightmost in the bodies of some program
clauses defining p. We define the relation rightmost-depends to be the transitive closure
of “directly rightmost-depends”. �

Let P be a positive logic program and ϕ1, . . . , ϕm be all the program clauses of P ,
with ϕi = (Ai ← Bi,1, . . . , Bi,ni), for 1 ≤ i ≤ m and ni ≥ 0. The following definition
shows how to make a QSQ-Net structure with right/tail-recursion elimination from the
given positive logic program P .

Definition 4.5 (QSQN-rTRE Structure). A query-subquery net structure with
right/tail-recursion elimination (QSQN-rTRE structure for short) of P is a tuple
(V,E, T ) defined as in the case of QSQN-TRE (see Definition 4.2), except that:

− for 1 ≤ i ≤ m, post filter i ∈ V iff either ϕi is not right/tail-recursive or
Tidb(p) = false, where p is the predicate of Ai,

− E also contains (post filter i, ans pk), for each 1 ≤ i ≤ m, 1 ≤ k ≤ m and k 6= i
such that post filter i exists and the predicate pk of Ak rightmost-depends on the
predicate pi of Ai. �

As for QSQN-TRE, T (v) denotes Tedb(v) if v is a node filter i,j such that Bi,j is an
extensional predicate, and T (p) denotes Tidb(p) for an intensional predicate p. Thus, T
can be called a memorizing type for extensional predicates (as in QSQ-net structures),
and a right/tail-recursion-elimination type for intensional predicates. We call the pair
(V,E) the QSQN-rTRE topological structure of P with respect to Tidb.

Example 4.3. The upper part of Figure 4.5 illustrates a logic program and
its QSQN-TRE topological structure w.r.t. Tidb with Tidb(q) = true and
Tidb(p) = Tidb(s) = false, where q, p, s are intensional predicates, t is an extensional
predicate, x, y, z are variables and a is a constant symbol. The lower part de-
picts the QSQN-rTRE topological structure of the same program w.r.t. Tidb with
Tidb(q) = Tidb(p) = Tidb(s) = true. �

Definition 4.6 (QSQN-rTRE). A query-subquery net with right/tail-recursion elim-
ination (QSQN-rTRE for short) of P is a tuple N = (V,E, T,C) such that (V,E, T ) is
a QSQN-rTRE structure of P , C is a mapping that associates each node v ∈ V with
a structure called the contents of v, which differs from the one for QSQN-TRE in the
following:

− If v = input p and T (p) = true then C(v) consists of:

• ta pairs(v): a set of tuple-atom pairs (t, q(t
′
)), where t is a generalized tuple

of the same arity as p and q(t
′
) is an atom. A tuple-atom pair (t, q(t

′
)) means

that we are trying to solve the atom p(t), and any found answer substitution
should generate an answer for q(t

′
),

• unprocessed(v, w) for each (v, w) ∈ E: a subset of ta pairs(v).
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q(x, y)← t(x, y)
q(x, y)← t(x, z), q(z, y)

p(x, y)← q(y, x)

s(x)← p(x, a).

pre filter1
// filter1,1

// post filter1
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input q
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ans q

rr

pre filter2
// filter2,1

// filter2,2

rr

input p // pre filter3
// filter3,1

//

\\

post filter3
// ans p

rr
input s // pre filter4

// filter4,1
//

dd

post filter4
// ans s

pre filter1
// filter1,1

// post filter1
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��

��

input q

55lllllllll
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ans q

pre filter2
// filter2,1

// filter2,2

qq

input p // pre filter3
// filter3,1

[[

ans p

input s // pre filter4
// filter4,1

bb

ans s

Fig. 4.5: The QSQN-TRE and QSQN-rTRE topological structures.
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The notion of being empty is defined for QSQN-rTRE similarly as for QSQN-TRE,
where the attribute ta pairs(v) replaces the attribute tuple pairs(v). �

The notion of successor and the notations succ and succ2 are defined similarly as for
QSQN-TRE, except that: if v is post filter i then v may have more than one successor.

Now, a subquery is a pair of the form (q(t), δ), where q(t) is an atom and δ is an
idempotent substitution such that dom(δ) ∩Vars(t) = ∅.

Remark 4.3. For an intensional predicate p with T (p) = true, the intuition behind a
tuple-atom pair (t, q(t

′
)) ∈ ta pairs(input p) is that:

− t is a usual input tuple for p, but the intended goal at a higher level is ← q(t
′
),

− any correct answer for P ∪ I ∪ {← p(t)} is also a correct answer for
P ∪ I ∪ {← q(t

′
)},

− if a substitution θ is a computed answer of P ∪ I ∪ {← p(t)} then we will store the
tuple t

′
θ in ans q instead of storing the tuple tθ in ans p. �

We say that a pair (t, q(t
′
)) is more general than (t2, q(t

′
2)), and (t2, q(t

′
2)) is an

instance of (t, q(t
′
)), if there exists a substitution θ such that (t, q(t

′
))θ = (t2, q(t

′
2)).

For v = filter i,j and p being the predicate of Ai, the meaning of a subquery
(q(t), δ) ∈ subqueries(v) is as follows: if T (p) = false (resp. T (p) = true) then there
exists s ∈ tuples(input p) (resp. (s, q(s′)) ∈ ta pairs(input p)) such that for processing
the goal ← p(s) using the program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni), unification of
p(s) and Ai as well as processing of the subgoals Bi,1, . . . , Bi,j−1 were done, amongst
others, by using a sequence of mgu’s γ0, . . . , γj−1 with the property that t = sγ0 . . . γj−1
and q = p (resp. t = s′γ0 . . . γj−1) and δ = (γ0 . . . γj−1)|Vars((Bi,j ,...,Bi,ni ))

. Informally, a

subquery (q(t), δ) transferred through an edge to v is processed as follows:

− if v = filter i,j , kind(v) = extensional and pred(v) = p then, for each t
′′ ∈ I(p), if

atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t
′′
) by an mgu γ then transfer

the subquery (q(t)γ, (δγ)|post vars(v)) through (v, succ(v)),

− if v = filter i,j , kind(v) = intensional, pred(v) = p and either (T (p) = false) or
(T (p) = true and j < ni) then

• if T (p) = false then transfer the tuple t
′

such that p(t
′
) = atom(v)δ = Bi,jδ

through (v, input p) to add its fresh variant to tuples(input p),
• else if j < ni then transfer the pair (t

′
, p(t

′
)) such that p(t

′
) = atom(v)δ = Bi,jδ

through (v, input p) to add its fresh variant to ta pairs(input p),
• for each currently existing t

′ ∈ tuples(ans p), if atom(v)δ = Bi,jδ is unifi-
able with a fresh variant of p(t

′
) by an mgu γ then transfer the subquery

(q(t)γ, (δγ)|post vars(v)) through (v, succ(v)),

• store the subquery (q(t), δ) in subqueries(v), and later, for each new t
′
added to

tuples(ans p), if atom(v)δ = Bi,jδ is unifiable with a fresh variant of p(t
′
) by an

mgu γ then transfer the subquery (q(t)γ, (δγ)|post vars(v)) through (v, succ(v)),

− if v = filter i,ni , kind(v) = intensional, pred(v) = p, T (p) = true then transfer the

pair (t
′
, q(t)) such that p(t

′
) = atom(v)δ = Bi,niδ through (v, input p) to add its

fresh variant to ta pairs(input p),
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Algorithm 3: for evaluating a query (P, q(x)) on an extensional instance I.

1 let (V,E, T ) be a QSQN-rTRE structure of P ;
// T can be chosen arbitrarily or appropriately

2 set C so that N = (V,E, T,C) is an empty QSQN-rTRE of P ;

3 let x′ be a fresh variant of x;
4 if T (q) = false then
5 tuples(input q) := {x′};
6 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
7 else
8 ta pairs(input q) := {(x′, q(x′))};
9 foreach (input q, v) ∈ E do unprocessed(input q, v) := {(x′, q(x′))};

10 while there exists (u, v) ∈ E such that active-edge(u, v) holds do
11 select (u, v) ∈ E such that active-edge(u, v) holds;

// any strategy is acceptable for the above selection

12 fire3(u, v)

13 return tuples(ans q)

− if v = post filter i then transfer the subquery (q(t), ε) through (post filter i, ans q) to
add t to tuples(ans q).

Formally, like the case of QSQN and QSQN-TRE, the processing of a subquery or
an input/answer tuple or an input pair in a QSQN-rTRE is designed so that:

− every subquery or input/answer tuple or input pair that is subsumed by another
one or has a term-depth greater than a fixed bound l is ignored,

− the processing is divided into smaller steps which can be delayed at each node to
maximize adjustability and allow various control strategies,

− the processing is done set-at-a-time (e.g., for all the unprocessed subqueries accu-
mulated in a given node).

Algorithm 3 (on page 57) repeatedly selects an active edge and fires the operation for
the edge. All of the related functions and procedures used for Algorithm 3 are presented
in Appendix D. In particular, Algorithm 3 uses the function active-edge(u, v) (on
page 28), which returns true if the data accumulated in u can be processed to produce
some data to transfer through the edge (u, v). If active-edge(u, v) is true then the
procedure fire3(u, v) (on page 116) processes the data accumulated in u that has not
been processed before and transfers appropriate data through the edge (u, v). This
procedure uses the procedures add-tuple (on page 27), add-ta-pair (on page 116),
add-subquery3, compute-gamma3 (on page 115) and transfer3 (on pages 117-118).
The procedure transfer3(D,u, v) specifies the effects of transferring data D through
the edge (u, v) of a QSQN-rTRE.

Note: Regarding the QSQN-rTRE topological structure of the logic program given
in Example 4.3 (illustrated in Figure 4.5), for the query s(x), after producing a set of
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(answer) tuples, Algorithm 3 only adds these tuples to tuples(ans s). Thus, no tuple is
added to tuples(ans p) and tuples(ans q). In this case, we can exclude the nodes ans p,
ans q and the related edges from the net, but we keep them for answering other queries
of the form p(. . .) or q(. . .).

4.2.2 Properties of Algorithm 3

We present below properties of Algorithm 3. We omit their proofs as they are analogous
to the ones we have given for Lemma 4.2 (on soundness), Theorem 4.4 (on completeness)
and Theorem 4.6 (on data complexity) for QSQN-TRE.

Soundness: After a run of Algorithm 3 on a query (P, q(x)) and an extensional
instance I, for every intensional predicate p of P , every computed answer
t ∈ tuples(ans p) is a correct answer in the sense that P ∪ I |= ∀(p(t)).

Completeness: After a run of Algorithm 3 (using parameter l) on a query (P, q(x))
and an extensional instance I, for every SLD-refutation of P ∪ I ∪ {← q(x)} that
uses the leftmost selection function, does not contain any goal with term-depth
greater than l and has a computed answer θ with term-depth not greater than l,
there exists s ∈ tuples(ans q) such that xθ is an instance of a variant of s.

Data Complexity: For a fixed query and a fixed bound l on term-depth, Algorithm 3
runs in polynomial time in the size of the extensional instance.
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Chapter 5

Incorporating Stratified Negation
into QSQN

Positive logic programs can express only monotonic queries. As many queries of practi-
cal interest are non-monotonic, it is desirable to consider normal logic programs, which
allow negation to occur in the bodies of program clauses. Much research has been done
on the semantics of normal logic programs, for instance, stratified semantics [2] (for
stratified logic programs), stable-model semantics [30] and well-founded semantics [29].
In this chapter, we incorporate the concept of stratified negation into query-subquery
nets to obtain an evaluation method called QSQN-STR for dealing with the class of
stratified logic programs that are safe with respect to the leftmost selection function.
Roughly speaking, a stratified logic program can be divided into a number of layers
(called strata) such that they are evaluated sequentially. To have a firm “yes” for a
negative literal ∼B when processing the body of a program clause1, we should already
have all answers for B in a previous stage when processing an earlier stratum of the
program. For evaluating queries to stratified logic programs, we use QSQN-STR to-
gether with control strategies that are admissible w.r.t. strata’s stability. We also apply
a term-depth bound for atoms, subqueries and substitutions occurring in derivations.

The rest of this chapter is organized as follows. We give definitions for stratified
knowledge bases and the related ones in Section 5.1. The notion of QSQN-STR and
our Algorithm 4 for evaluating queries to stratified knowledge bases are specified in
Section 5.2. Some properties of Algorithm 4 are provided and proved in Section 5.3.
Preliminary experiments for QSQN-STR are provided and discussed later in Chapter 6.

5.1 Notions and Definitions

In this section, we define the notions of safe logic programs, stratified logic programs,
stratified knowledge bases and their semantics. We now give some definitions and recall
the related notions of [37, 47].

Definition 5.1 (Safe Logic Program). A safe program clause (w.r.t. the leftmost

1Here, ∼ denotes negation w.r.t. a non-monotonic semantics.
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selection function) is an expression of the form A← B1, . . . , Bk with k ≥ 0, such that:

− A is an atom and each Bi is a literal, where negation is now denoted by ∼ instead
of ¬ (to emphasize the non-monotonic semantics),

− every variable occurring in A occurs also in B1, . . . , Bk,

− every variable occurring in a negative literal Bj in the body of a program clause
occurs also in some positive literals Bi in the body of that clause such that i < j.

A safe logic program (w.r.t. the leftmost selection function) is a finite set of safe program
clauses. �

From now on in this chapter, by a “clause” we mean a safe program clause.

Definition 5.2 (Semi-positive Logic Program). A safe logic program is called a
semi-positive logic program if it allows negation to appear in the bodies of program
clauses only before atoms of extensional predicates. �

Definition 5.3 (Stratification). Given a safe logic program P , a stratification of P
is a partition P = P1 ∪ . . . ∪ Pn such that for each 1 ≤ i ≤ n, we have the following
properties:

− if an intensional predicate p occurs in a positive literal of a clause from Pi, then the
clauses defining p must belong to P1 ∪ . . . ∪ Pi,

− if an intensional predicate p occurs in a negative literal of a clause from Pi with i > 1,
then the clauses defining p must belong to P1 ∪ . . . ∪ Pi−1.

Each Pi is called a stratum of the stratification. �

Definition 5.4 (Stratified Logic Program). A safe logic program is called a strat-
ified logic program if it has a stratification. �

Note that by the definition a program can admit several stratifications. In this
chapter, by a “program” we mean a stratified logic program (which may be a semi-
positive program) that is safe w.r.t. the leftmost selection function.

Definition 5.5 (Stratified Knowledge Base). A stratified knowledge base is de-
fined to be a pair (P, I), where P is a stratified logic program for defining intensional
predicates and I is an instance of extensional predicates. �

5.2 QSQN with Stratified Negation

Let P be a stratified logic program and ϕ1, . . . , ϕm be all the program clauses of P ,
with ϕi = (Ai ← Bi,1, . . . , Bi,ni), for 1 ≤ i ≤ m and ni ≥ 0.

Definition 5.6 (QSQN-STR Structure). A query-subquery net structure with strat-
ified negation of P , also called a QSQN-STR structure of P , is a tuple (V,E, T ) defined
as in the case of QSQN (see Definition 3.1) with the following modification:

− for each intensional predicate p and each 1 ≤ i ≤ m and 1 ≤ j ≤ ni such that Bi,j
is an atom of p, the pair (ans p,filter i,j) is an edge (i.e., belongs to E) iff Bi,j is a
positive literal.
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path(x, y)← edge(x, y)
path(x, y)← edge(x, z), path(z, y)

acyclic(x, y)← path(x, y),∼path(y, x).

pre filter1
// filter1,1

// post filter1

++VVVVVVVVVVVVVVVVVVVV

input path

77ppppppppppp

''NNNNNNNNNNN ans path

zz

tt

pre filter2
// filter2,1

// filter2,2
//

pp

post filter2

88pppppppppp

input acyclic // pre filter3
// filter3,1

//

UU

filter3,2
//

[[

post filter3
// ans acyclic

Fig. 5.1: The QSQN-STR topological structure of the program given in Example 5.1.

The pair (V,E) is called the QSQN-STR topological structure of P . �

Example 5.1. This example is a stratified logic program, which defines whether a node
is connected to another in a directed graph, but not vice versa. It is taken from [51].
Figure 5.1 illustrates the program and its QSQN-STR topological structure, where path
and acyclic are intensional predicates, edge is an extensional predicate, x, y and z are
variables. �

Definition 5.7 (QSQN-STR). A query-subquery net with stratified negation of P ,
also called a QSQN-STR of P , is a tuple N = (V,E, T,C) such that (V,E, T ) is a
QSQN-STR structure of P , and C is a mapping that associates each node v ∈ V with a
structure called the contents of v, which differs from the one for QSQN in the following:

− If v = filter i,j and p is the predicate of Bi,j then

• C(v) also contains neg(v), where neg(v) = true if Bi,j is a negative literal, and
neg(v) = false otherwise,
• atom(v) is redefined as follows: atom(v) = Bi,j if Bi,j is a positive literal, and

atom(v) = B′ if Bi,j =∼B′,
• in the case p is intensional and neg(v) = true: unprocessed tuples(v) is empty

and can thus be ignored.

The notion of being empty is defined for QSQN-STR similarly as for QSQN. �

Definition 5.8. Given a stratified logic program P = P1 ∪ . . .∪Pn and a QSQN-STR
(V,E, T,C) of P , we say that a node v ∈ V “belongs to” the layer k if v is constructed
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by some program clauses in Pk.
2 In that case, we say that the layer number of v is k,

denoted by layer(v) = k. �

Definition 5.9 (Stability of a Layer). A QSQN-STR is said to be stable up to a
layer k if every edge (u, v) of that structure such that the layer numbers of u and v are
less than or equal to k is not active, where the activeness is defined by the function
active-edge4 (on page 119), which is similar to the one for QSQN. �

Definition 5.10 (Admissibility w.r.t. Strata’s Stability). A control strategy for a
given QSQN-STR is said to be admissible w.r.t. strata’s stability if before firing any edge
(v, succ(v)) such that v = filter i,j , layer(v) = k, pred(v) = p and p is an intensional
predicate with layer(input p) = h < k, the QSQN-STR is stable up to the layer h and
the edges (v, input p) and (ans p, v) are not active. �

Algorithm 4 (on page 63) evaluates a query to a stratified knowledge base. It re-
peatedly selects an active edge and fires the operation for the edge. All the the related
functions and procedures used for Algorithm 4 are presented in Appendix E. In partic-
ular, Algorithm 4 uses the function active-edge4(u, v) (on page 119), which returns
true if the data accumulated in u can be processed to produce some data to transfer
through the edge (u, v). If active-edge4(u, v) is true then the procedure fire4(u, v)
(on page 120) processes the data accumulated in u that has not been processed before
and transfers appropriate data through the edge (u, v). This procedure uses the proce-
dure transfer4(D,u, v) (on page 121), which specifies the effects of transferring data
D through the edge (u, v) of a QSQN-STR.

The following remark states a property of Algorithm 4. It follows from the safety
condition of P . The proof is straightforward and omitted.

Remark 5.1. For every intensional predicate r used in P , if t ∈ tuples(ans r) then t
is a ground tuple (i.e., a tuple without variables). �

Recall that a subquery is a pair of the form (t, δ), where t is a generalized tuple and δ
is an idempotent substitution such that dom(δ) ∩Vars(t) = ∅. Informally, Algorithm 4
differs from Algorithm 1 (for QSQN) in “firing” an edge (u, v) as follows:

− If v = filter i,j , neg(v) = true, kind(v) = extensional and T (v) = false then for every

subquery (t, δ) transferred through the edge (u, v), if atom(v)δ /∈ {p(t′) | t′ ∈ I(p)}3
then transfer the subquery (t, δ|post vars(v)) through the edge (v, succ(v)), which is
shown in Steps 32 and 33 of the procedure transfer4 (on page 121).

− If u = filter i,j , neg(u) = true, v = succ(u), and either kind(u) = intensional
or both kind(u) = extensional and T (u) = true then for every subquery (t, δ)
from subqueries(filter i,j), if atom(u)δ /∈ {p(t′) | (t′ ∈ I(p) if kind(u) = extensional)

or (t
′ ∈ tuples(ans p) if kind(u) = intensional)}4 then transfer the subquery

(t, δ|post vars(u)) through the edge (u, v), which is shown in Steps 12, 13, 28 and 29
of the function fire4 (on page 120).

2I.e., Pk contains a clause ϕi such that v is of the form input p, pre filter i, filter i,j , post filter i, or
ans p, where p is the predicate of Ai.

3In this case, atom(v)δ is a ground atom.
4In this case, atom(v)δ is a ground atom and tuples(ans p) contains only ground tuples.
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Algorithm 4: for evaluating a query (P, q(x)) on an extensional instance I for
the stratified logic program P that is safe w.r.t. the leftmost selection function.

1 let (V,E, T ) be a QSQN-STR structure of P ;
// T can be chosen arbitrarily or appropriately

2 set C so that N = (V,E, T,C) is an empty QSQN-STR of P ;

3 let x′ be a fresh variant of x;
4 tuples(input q) := {x′};
5 foreach (input q, v) ∈ E do unprocessed(input q, v) := {x′};
6 while there exists (u, v) ∈ E such that active-edge4(u, v) holds do
7 select any edge (u, v) ∈ E such that active-edge4(u, v) holds and the

selection satisfies the admissibility w.r.t. strata’s stability;

8 fire4(u, v);

9 return tuples(ans q)

Example 5.2. The aim of this example is to illustrate how Algorithm 4 works step
by step. The program P in this example is a modified version of Example 1.1, which
is specified as follows, where p, q1 and q2 are intensional predicates, r1, r2 and s are
extensional predicates, x, y and z are variables:

q1(x, y)← r1(x, y)
q1(x, y)← r1(x, z), q1(z, y)

q2(x, y)← r2(x, y)
q2(x, y)← r2(x, z), q2(z, y)

p(x, y)← s(x, y),∼q1(x, y),∼q2(x, y).

The query is p(x, y) and the extensional instance I is specified as follows, where ai
and bi,j are constant symbols and m = n = 30:

I(r1) = {(ai, ai+1) | 0 ≤ i < m},
I(r2) = {(a0, b1,j) | 1 ≤ j ≤ n} ∪

{(bi,j , bi+1,j) | 1 ≤ i < m− 1 and 1 ≤ j ≤ n} ∪
{(bm−1,j , am) | 1 ≤ j ≤ n},

I(s) = {(a0, am), (a0, am+1)}.
We give below a trace of running Algorithm 4 for Example 5.2. Figure 5.2 illustrates

the QSQN-STR topological structure of the program P . For convenience, we name the
edges of the net by Ei (1 ≤ i ≤ 30) as shown in this figure. Assume that Algorithm 4
evaluates the query p(x, y) to the program P and the extensional instance I using a
control strategy that selects active edges for “firing” as follows.

1. Algorithm 4 starts with an empty QSQN-STR and then adds a fresh variant (x1, y1)
of (x, y) to the empty sets tuples(input p) and unprocessed(E1). This makes the
edge E1 to become active.
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Fig. 5.2: The QSQN-STR topological structure of the program given in Example 5.2.

2. After processing unprocessed(E1), the algorithm empties this set and transfers
(x1, y1) through the edge E1. This produces {((x1, y1), {x/x1, y/y1})}, which
is then transferred through the edge E2, producing {((a0, a30), {x/a0, y/a30}),
((a0, a31), {x/a0, y/a31})}, which in turn is then transferred through the edge E3

and added to the empty sets subqueries(filter5,2), unprocessed subqueries(filter5,2)
and unprocessed subqueries2 (filter5,2). The edges E4 and E16 become active.

3. After firing the active edge E4, the algorithm adds the set of tuples {(a0, a30),
(a0, a31)} to the empty sets tuples(input q1), unprocessed(E5) and unprocessed(E9).
The edge E4 is now inactive and the edges E5 and E9 become active.

4. After processing unprocessed(E5), the algorithm empties this set and transfers
{(a0, a30), (a0, a31)} through the edge E5. This produces {((a0, a30), {x/a0, y/a30}),
((a0, a31), {x/a0, y/a31})}, which is then transferred through the edge E6, pro-
ducing {((a0, a30), {y/a30, z/a1}), ((a0, a31), {y/a31, z/a1})}, which in turn is then
transferred through the edge E7 and added to the empty sets subqueries(filter2,2),
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unprocessed subqueries(filter2,2) and unprocessed subqueries2 (filter2,2). The edge E5

is now inactive and the edges E8 and E14 become active.

5. After firing the active edge E8, the algorithm adds the set of tuples {(a1, a30),
(a1, a31)} to the sets tuples(input q1), unprocessed(E5) and unprocessed(E9).

6. The algorithm repeatedly fires the active edges E5 and E8 until no new tuple is
added to tuples(input q1). After these steps, tuples(input q1) contains the set of tu-
ples {(ai, a30), (ai, a31) | 0 ≤ i ≤ 30}. Next, the algorithm fires the active edge E9

and adds the tuple (a29, a30) to the empty sets tuples(ans q1) and unprocessed(E13).
The edge E9 is now inactive and the edge E13 becomes active. Then, the algo-
rithm repeatedly fires the active edges E13 and E14 until no new tuple is added to
tuples(ans q1). As the result of these steps, tuples(ans q1) contains the set of tuples
{(ai, a30) | 0 ≤ i < 30}.

7. The remaining active edge is E16, where unprocessed subqueries(filter5,2) =
{((a0, a30), {x/a0, y/a30}), ((a0, a31), {x/a0, y/a31})}. After firing this active edge,
since tuples(ans q1) contains the tuple (a0, a30), the algorithm only adds
the subquery {((a0, a31), {x/a0, y/a31})} to the empty sets subqueries(filter5,3),
unprocessed subqueries(filter5,3) and unprocessed subqueries2 (filter5,3). The edge
E16 is now inactive and the edges E17 and E29 become active.

8. After firing the active edge E17, the algorithm adds the tuple (a0, a31) to
tuples(input q2), unprocessed(E18) and unprocessed(E22). The edge E17 is now in-
active and the edges E18 and E22 become active.

9. The algorithm repeatedly fires the edges E18 and E21 until no new tuple is
added to tuples(input q2). This makes the edge E27 to become active. After
these steps, tuples(input q2) contains the set of tuples {(a0, a31), (a30, a31)} ∪
{(bi,j , a31) | 1 ≤ i < 30 and 1 ≤ j ≤ 30}. Next, the algorithm fires the active
edge E22 without adding any tuple to tuples(ans q2). Since no tuple was added
to tuples(ans q2), firing the edge E27 does not create data to be transferred. At this
point, tuples(ans q2) = ∅.

10. The remaining active edge is E29. Since no tuple was added to tuples(ans q2),
after processing the set unprocessed subqueries(filter5,3), the algorithm makes the
edge E29 to become inactive and transfers the subquery {((a0, a31), ε)} through the
edge E29. This produces {(a0, a31)}, which is then transferred through the edge E30

and added to the empty set tuples(ans p).

At this point, no edge in the net is active. The algorithm terminates and returns
the set tuples(ans p) = {(a0, a31)}. �

5.3 Soundness and Completeness of QSQN-STR for the
Case without Function Symbols

In this section, we present the soundness and completeness of QSQN-STR for the case
without function symbols. The case with function symbols is complicated and left for
future work. We first introduce some definitions, which are based on [2, 37, 47].
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Let (P, I) be a stratified knowledge base, (V,E, T ) a QSQN-STR structure of P ,
and P1 ∪ . . . ∪ Pn a stratification of P .

Definition 5.11 (Herbrand Base).

− The Herbrand universe for (P, I), denoted by UP,I , is the set of all ground terms
which are formed by using constants and function symbols in P ∪ I;

− We define the Herbrand base for (P, I), denoted by BP,I , to be the set of all ground
atoms of the form p(t1, . . . , tn), where p is a predicate used in P ∪ I and each ti
belongs to UP,I . �

Definition 5.12 (Herbrand Interpretation). A Herbrand interpretation for (P, I)
is a subset of the Herbrand base BP,I . �

Definition 5.13. Let I be a Herbrand interpretation. If p(t) is a ground atom then:

I(p(t))
def≡ p(t) ∈ I,

I(∼p(t)) def≡ p(t) /∈ I.
�

Definition 5.14 (Immediate Consequence Operator). Let ground(P ∪ I) be the
set of all ground instances of clauses in P ∪ I and I a Herbrand interpretation for
(P, I). The immediate consequence operator of (P, I), denoted by TP,I , is defined on I
as follows:

TP,I(I) = {A | A← B1, . . . , Bk ∈ ground(P ∪ I) and I(Bi) holds for all 1 ≤ i ≤ k}.

Let TP,I ↑ ω be defined as follows:

TP,I ↑ 0 = I

TP,I ↑ (n+ 1) = TP,I(TP,I ↑ n) ∪ TP,I ↑ n, for n ∈ N

TP,I ↑ ω =
∞⋃
n=0

TP,I ↑ n.

�

Definition 5.15 (Standard Herbrand Model). Let P1 ∪ . . . ∪ Pn be a stratification
of P . We assume that P0 = ∅. Let us set

M∅,I = I
MP1,I = TP1,I ↑ ω
MP1∪P2,I = TP2,MP1,I

↑ ω
...

MP1∪...∪Pn,I = TPn,MP1∪...∪Pn−1,I
↑ ω.

We call MP,I = MP1∪...∪Pn,I the standard Herbrand model of P ∪ I. �
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It is well-known that the standard Herbrand model MP,I does not depend on the
chosen stratification for P (see, e.g., [2, Theorem 11]).

Lemma 5.1. Let (P, I) be a stratified knowledge base without function symbols and let
P = P1 ∪ . . .∪Pn be a stratification of P . During a run of Algorithm 4 using l = 0, for
every intensional predicate r of P with layer(r) = k and for every tuple t and t

′
,

a) if t ∈ tuples(ans r) then r(t) ∈MP,I ,

b) if the QSQN-STR is stable up to layer k, t ∈ tuples(input r), r(t
′
) ∈MP,I and t

′

is an instance of t then t
′ ∈ tuples(ans r).

Proof. For simplicity of the proof, MP1∪...∪Pk,I will be denoted by Mk. We assume
that P0 = ∅. We prove this lemma by induction on the number k. The base case k = 0
is trivial. For the induction step, we first prove that the layer Pk can be treated as a
positive logic program when considering p and ∼p, for p being any extensional predicate
or intensional predicate defined in a lower layer, as extensional predicates specified by
the interpretation Mk−1. For this, due to Remark 5.1 and the admissibility of the
control strategy w.r.t. strata’s stability, it is sufficient to show that, if pred(Ai) = r and
pred(filter i,j) = p with p defined in a layer with number h such that h < k then:

(i) if t ∈ tuples(ans p) then p(t) ∈Mk−1,

(ii) if (tj−1, δj−1) ∈ subqueries(filter i,j) then every p(t) ∈ Mk−1 such that p(t) is
an instance of atom(filter i,j)δj−1 was added by Algorithm 4 to tuples(ans p)
at some step before the subquery (tj−1, δj−1) is processed for the edge
(filter i,j , succ(filter i,j)).

The assertion (i) follows from the inductive assumption (a) (note that p(t) ∈MP,I

iff p(t) ∈ Mk−1). For the assertion (ii), assume that (tj−1, δj−1) ∈ subqueries(filter i,j),
p(t) ∈ Mk−1 and p(t) is an instance of atom(filter i,j)δj−1. Before the edge
(filter i,j , succ(filter i,j)) is “fired”, the subquery (tj−1, δj−1) has been processed for the
edge (filter i,j , succ2(filter i,j)) and, as a consequence, tuples(input p) contains a tuple

t
′′

that is more general than a fresh variant of atom(filter i,j)δj−1, and hence also more
general than p(t). At that moment, the QSQN-STR is stable up to the layer h. By the
inductive assumption (b) for h instead of k and p, t

′′
, t instead of r, t, t

′
, respectively,

we have that t ∈ tuples(ans p), which completes the proof of the assertion (ii).

Consider the assertion (a) and assume that the premise of the implication holds.
Since t ∈ tuples(ans r), by Lemma 4.2 (on soundness of QSQN-TRE with T (p) = false
for every intensional predicate p), t is a correct answer for Pk∪Mk−1∪{← r(t)}, treating
Pk as a positive logic program in the way described above. Since SLD-resolution (the
procedural semantics) “coincides” with the fixpoint semantics for positive logic program
(see, e.g., [31, Theorem 7]), it follows that r(t) ∈ TPk,Mk−1

↑ ω and hence r(t) ∈ Mk.
This completes the proof of the assertion (a).

Consider the assertion (b) and assume that the premises of the implication hold.
Since r(t

′
) ∈MP,I , we have that r(t

′
)∈Mk, which means r(t

′
) ∈ TPk,Mk−1

↑ω. Since the
fixpoint semantics for positive logic program “coincides” with the procedural semantics
(SLD-resolution), there exits an SLD-refutation for Pk ∪Mk−1 ∪ {← r(t

′
)} with ε as

the computed answer (treating Pk as a positive logic program).
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Since t
′

is an instance of t, there exists a substitution θ such that t
′

= tθ. By
Lifting Lemma 2.2, there exists an SLD-refutation for Pk ∪Mk−1 ∪ {← r(t)} with a
computed answer θ′ such that θ = θε = θ′δ for some substitution δ. By Theorem 4.4 (on
completeness of QSQN-TRE with T (p) = false for every intensional predicate p), tθ′ is
an instance of a fresh variant of some tuple t

′′ ∈ tuples(ans r). Since t
′
= tθ = tθ′δ is an

instance of tθ′, t′ is also an instance of t
′′
. Since t

′′
is a ground tuple (by Remark 5.1),

it follows that t
′
= t
′′
. This completes the proof of the assertion (b). �

The following theorem immediately follows from the above lemma.

Theorem 5.2 (Soundness and Completeness). Let (P, I) be a stratified knowl-
edge base without function symbols. After a run of Algorithm 4 using l = 0 on a
query (P, q(x)) and the extensional instance I, for every tuple t, t ∈ tuples(ans q)
iff q(t) ∈MP,I . �
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Chapter 6

Preliminary Experiments

In this chapter, we present the experimental results and a discussion on the perfor-
mance of the proposed methods. For this, we provide the IDFS control strategy, which
is used for QSQN, QSQN-TRE and QSQN-rTRE, and another control strategy for
QSQN-STR. Our experiments consider different kinds of logic programs, including non-
recursive, tail recursive, non-tail recursive as well as logic programs with or without
function symbols. We use typical examples from well-known articles related to deductive
databases. We also provide new examples.

All of the experiments have been performed using our Java code [13] and extensional
relations stored in a MySQL database. These experiments were performed on Windows
Server 2008 (64 bit) with Intel(R) Xeon(R) CPU E5630 2×2.53 GHz and 8GB RAM.
The package [13] also contains all of the reported experimental results. Our implemen-
tation allows queries of the form q(t), where t is a tuple of terms.

This chapter is organized as follows. Section 6.1 proposes a control strategy, called
IDFS. Sections 6.2, 6.3, 6.4 and 6.5 present the experimental settings and results for the
QSQN, QSQN-TRE, QSQN-rTRE and QSQN-STR methods, respectively. In addition,
we discuss the usefulness of the mentioned methods at the end of each section.

6.1 Improved Depth-First Control Strategy

Recall that in Algorithms 1, 2 and 3, we repeatedly select an active edge and fire the
operation for it. Such a selection is decided by the adopted control strategy, which can
be arbitrary. In [11, 45], we proposed the following control strategies:

− Disk Access Reduction (DAR), which tries to reduce the number of accesses to the
secondary storage;

− Depth-First Search (DFS), which gives priority to the order of clauses in the positive
logic program defining intensional predicates and thus allows the user to control the
evaluation to a certain extent.

All of the experimental results in this dissertation were obtained without using the
DAR and DFS control strategies. Thus, we omit the description of these strategies and
refer the reader to [11, 45] for details.
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In this section, we propose another control strategy called Improved Depth-First
Control Strategy (IDFS), which is an improved version of DFS. The idea of the im-
provement is to enter deeper cycles in the considered net first and keep looping along
the current “local” cycle as long as possible. This allows to accumulate as many as
possible tuples or subqueries at a node before processing it.

Definition 6.1 (Priority). The priority of an edge (v, w) in a net (QSQN, QSQN-TRE
or QSQN-rTRE) is a vector defined as follows:

− if v = input p and w = pre filter i then priority(v, w) = (a, b, c), where:

• a is the truth value of (ϕi contains at least one intensional predicate r in the
body),
• if a = false then b = false,

else b is the truth value of (one of those predicates r depends on p)1,
• if b = false then c = 0, else c is the modification timestamp of w,

− if v = ans p and w = filter i,j then priority(v, w) = (a, a′, b, b′, c), where:

• a is the truth value of (p is the predicate of Ai),
if (a = true) then a′ is the truth value of (j is the smallest index such that
pred(filter i,j) = p), else a′ = false,
• b is the truth value of (p depends on the predicate of Ai)

2,
if (b = true) then b′ is the truth value of (j is the smallest index such that
pred(filter i,j) = p), else b′ = false,
• c is the modification timestamp of w,

− if v is filter i,j with kind(v) = intensional then priority(v, w) = (a), where a = 2 if
w = succ2(v), and a = 1 otherwise,

− otherwise, priority(v, w) = (1).

The priorities of two edges (v, w) and (v, w′) are compared using the lexicographical
order, where false < true. �

Our IDFS control strategy follows the depth-first approach, but adopts a slight
modification. It uses a stack of edges of the considered net (QSQN, QSQN-TRE or
QSQN-rTRE) structure of P . Each of Algorithms 1, 2 and 3 together with this control
strategy for evaluating a query q(x) to a Horn knowledge base (P, I) runs as follows:

1. initialize input q and the relations of the form unprocessed(input q, v) appropri-
ately, i.e.,

− if the considered net is either QSQN or (QSQN-TRE with T (q) = false) or
(QSQN-rTRE with T (q) = false) then

• let x′ be a fresh variant of x and set tuples(input q) := {x′},
• for each edge (input q, v) of the net do unprocessed(input q, v) := {x′},

− else if the considered net is QSQN-TRE with T (q) = true then

• let x′ be a fresh variant of x and set tuple pairs(input q) := {(x′, x′)},
1Note that if b = true then p and r mutually depend on each other.
2Note that if a = true then p and the predicate of Ai mutually depend on each other.
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• for each edge (input q, v) of the net do unprocessed(input q, v) := {(x′, x′)},
− else if the considered net is QSQN-rTRE with T (q) = true then

• let x′ be a fresh variant of x and set ta pairs(input q) := {(x′, q(x′))},
• for each edge (input q, v) of the net do unprocessed(input q, v) := {(x′, q(x′))},

2. initialize the stack to the empty one and push all the edges outcoming from input q
into the stack in the increasing order w.r.t. their priorities (the lower the priority
is, the earlier the edge is pushed into the stack),

3. while the stack is not empty do:

(a) pop an edge (u, v) from the stack,
(b) if (u, v) is an “active” edge then

(b.1) if u = ans p, v = filter i,j , pred(v) = p, p is not the predicate of Ai and there
exist active edges (u′, v′) with u′ = input p then
− push (u, v) into the stack,
− set (u, v) to be the edge with the highest priority from those active

edges (u′, v′),
(b.2) “fire” the edge (u, v),
(b.3) push all the “active” edges outcoming from v into the stack in the increasing

order w.r.t. their priorities,
(b.4) if v = filter i,j , pred(v) = p, the predicate of Ai is p, the edge (v, succ2(v))3

is not “active” and there exist active edges (u′, v′) with u′ = input p then
− push (u′, v′′) into the stack, where (u′, v′′) is the edge with the highest

priority from those active edges (u′, v′),

4. return tuples(ans q).

6.2 The QSQN method

In this section, we compare the QSQN, Magic-Sets and QSQR evaluation methods with
respect to:

− the number of read/write operations on relations,

− the maximum number of tuples/subqueries kept in the computer memory,

− the number of accesses to the secondary storage when the memory is limited.

Other comparison results on the execution time are platform-dependent, and on the
number of tuples/subqueries read from or written to the secondary storage are less
representative. Thus, they are provided only online in [13].

6.2.1 Experimental Settings

For the Magic-Sets method, we implemented the Generalized Supplementary Magic
Sets algorithm [1, 8]. In our implementation, the program obtained from the magic-sets
transformation is evaluated by the improved semi-naive method [1]. The transformation
is done using adornments and the method is sound and complete for Datalog queries
(most of examples used in our experiments are Datalog queries). For application to Horn

3Recall that: if pred(v) = p then succ2(v) = input p.
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knowledge bases, we also use a term-depth bound as in the case of QSQN and QSQR.
The implemented Magic-Sets method using the term-depth bound is still sound4, has
the termination property, and returns the same set of results in answer relations as in
the case of QSQN and QSQR for the performed tests.

Regarding the QSQR method, we implemented two algorithms, which use either
the tuple-at-a-time technique or the set-at-a-time technique [39]. As the latter is more
efficient, it is used for our comparison. For an appropriate comparison with the QSQN
method, we modified the step 5 of the function resolve-using-body-atom on page 17
of [39] by checking the term-depth of a body atom before processing it.

We implemented the QSQN method together with the mentioned control strate-
gies to obtain the corresponding variants QSQN-DAR, QSQN-DFS and QSQN-IDFS.
The implemented QSQN-DAR method is not more efficient than the implemented
QSQN-IDFS method. So, we only show the experimental results of QSQN-IDFS. For
each test in our experiments, we set T (v) = false for each v = filter i,j ∈ V with
pred(v) = extensional (so that subqueries for v are always processed immediately).

When processing a 0-ary predicate p (e.g., Example 1.1), as the answer is always
binary (true or false), we break the computation for p as soon as we get the answer
true when using any of the considered evaluation methods. This optimization technique
can be generalized for other cases, but we leave it for future work.

We carry out experiments by two stages:

1. In the first stage, we assume that the computer memory is large enough to hold
all the related extensional relations as well as the intermediate relations. During
the query processing, for each operation of reading from a relation (resp. writing a
set of tuples to a relation), we increase the counter of read (resp. write) operations
on the relation by one. In a single task like firing an edge in QSQN or executing
a rule in QSQR or Magic-Sets, if more than one read operations on a specific
relation occur, we increase the counter of read operations on the relation only by
one. For counting the maximum number of tuples/subqueries kept in the computer
memory, we increase (resp. decrease) the counter of kept tuples/subqueries by one
if a tuple/subquery is added to (resp. removed from) a relation. The returned value
is the maximum value of this counter.

2. The second stage follows the first one. We limit the maximal number of tu-
ples/subqueries that can be kept in the computer memory. When the limit is at
low percentage, this usually requires load/unload operations from/to the secondary
storage. The aim of this stage is to compute the number of accesses to the sec-
ondary storage when the computer memory is restricted. We test each example by
using different limits, which are described in detail below. We also assume that the
limited available memory is enough to store at least the biggest relation during the
processing.

During the processing, whenever there is an action on a relation in the memory
(e.g., loading/reading a relation, adding/removing a set of tuples or subqueries to/from
a relation), we update its last access timestamp. If there is not enough available space
for adding a set of tuples/subqueries to an in-memory relation, we have to unload an

4We did not study whether it is complete or not.
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in-memory relation to the secondary storage. The question is: which relation among
the ones in the memory should be unloaded first? In our experiments, the strategies
for selecting a relation for unloading are based on the following criteria: Timestamp,
Relation-size and Extensional. When used alone, a criterion has the following meaning:

1. Timestamp: unload a relation that has not been used in the longest period of time;

2. Relation-size: unload a relation with the biggest size;

3. Extensional: unload an extensional relation.

Our implementation of the methods uses a priority queue to specify which in-
memory relation is selected for unloading. The user of our package [13] can choose
a list of some among the above criteria. If more than one criteria are chosen, the pref-
erence reflects their order. For example, if the strategy is specified by [Relation-size,
Timestamp], then the biggest in-memory relation is selected; if there are more than
one in-memory relations with the biggest size, the one with the smallest last-access
timestamp is selected for unloading. Of course, the relation used in the current single
task has the lowest priority for unloading, regardless of the chosen strategy.

For counting the number of read/write operations on a relation, a predicate
magic pα (resp. pα) in the Magic-Sets method is treated as the predicate input p
(resp. ans p) in the QSQR and QSQN methods.5 The number of accesses to sup-
plement relations is defined to be the number of accesses to subqueries relations in
QSQN, sup relations in QSQR and supmagic relations in Magic-Sets. The other rela-
tions are treated as temporary relations. In the QSQN method, a relation of the form
unprocessed , unprocessed subqueries, unprocessed subqueries2 or unprocessed tuples can
be implemented by a mark in the corresponding full relation (of the form tuples or
subqueries). This saves memory and the status of whether the relation is empty or not
can be kept by a flag. Thus, an execution of the function active-edge does not affect
the number of accesses to the relations.

If a non-empty relation is loaded from the secondary storage to the computer mem-
ory, we increase the counter of read operations on the relation by one. Besides, if a
relation that has been modified is unloaded from the computer memory, we save the
relation to the secondary storage and increase the number of write operations on the
relation by one. This means that unloading an extensional relation or a non-modified
relation does not affect the counter.

The limit on the number of tuples/subqueries that can be kept in the computer
memory is set as follows for each test. Let m = max{m1,m2,m3}, where m1, m2 and
m3 are the maximum numbers of tuples/subqueries kept in the memory for QSQN,
QSQR and Magic-Sets, respectively, in the case it is not restricted. Based on the value
of m, we limit the maximal number of tuples/subqueries that can be kept in the memory
sequentially to n1, n2 and n3, where: n1 ≈ 50%m, n2 ≈ 30%m, and n3 ≈ 20%m. In
some cases, when all the mentioned methods cannot be run at n2 ≈ 30%m (using any
of the strategies for unloading relations that are listed together with the test results),
we use the following restrictions: n1 ≈ 60%m, n2 ≈ 45%m and n3 ≈ 30%m.

5An adornment for an m-ary predicate p is a string α of length m made up of b (bound) and f
(free). By pα we denote the predicate p adorned by α.
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For the comparison between the QSQN, Magic-Sets and QSQR methods, we con-
sider the following experiments:

Experiment 1. In this experiment, the mentioned methods are tested on datasets with
different sizes (ranging from 400 to 10100 records (or tuples)), and their performances
are compared in order to estimate how the experimental measures are affected by the
size of the used datasets. Besides, the aim of Tests 6.1 and 6.2 is to show that, when
the positive logic program defining intensional predicates is specified using the Prolog
programming style, the QSQN-IDFS and QSQR methods (which use depth-first search)
are usually more efficient than the Magic-Sets method (which uses the breadth-first
search).

Test 6.1. This test uses the logic program, the extensional instance I and the query
given in Example 1.1. The logic program is specified as follows, where p, q1, q2 are
intensional predicates, r1, r2 are extensional predicates, x, y, z are variables and a0, am
are constant symbols:

p← q1(a0, am)
p← q2(a0, am)

q1(x, y)← r1(x, y)
q1(x, y)← r1(x, z), q1(z, y)

q2(x, y)← r2(x, y)
q2(x, y)← r2(x, z), q2(z, y).

The values of m and n for defining the extensional instance I are specified as follows:

(a) m = n = 50 (thus, r1 has 50 tuples and r2 has 2500 tuples),

(b) m = n = 100 (thus, r1 has 100 tuples and r2 has 10000 tuples).

As mentioned earlier, since the answer can only be either true or false, we break
the computation (for p) as soon as we get the answer true when using any of the
considered evaluation methods. After processing the tuple (a0, am) in input q1 and in-
serting an answer (the 0-ary tuple) into ans q1, the QSQN-IDFS method gets a positive
answer for the query p and terminates the computation. The QSQR method uses iter-
ative deepening search and terminates the computation after getting the answer true
for the query p from processing q1. Now, consider the evaluation using the Magic-Sets
method. After performing the magic-sets transformation and applying the generalized
supplementary magic sets algorithm, the improved semi-naive evaluation method con-
structs a list [R1], . . . , [Rn] of equivalence classes of intensional predicates w.r.t. their
dependency [1]. Then, it computes the instances (relations) of the predicates in [Ri] for
each 1 ≤ i ≤ n in the increasing order, treating all the predicates in [Rj ] with j < i as
extensional predicates. The predicate p belongs to the last equivalence class [Rn] and is
only processed after finishing the computation for all the other predicates. That is why
the QSQN-IDFS method (as well as the QSQR method) outperforms the Magic-Sets
method on this test.

Test 6.2. This test uses the logic program that extends the logic program in Test 6.1
with the following clause for defining an intensional predicate s:

s(x, y)← p, q1(x, z), q2(z, y).
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It uses the same extensional instance I as in Test 6.1 and the query s(x, y). Due to
a similar reason as in Test 6.1, the QSQN-IDFS and QSQR methods outperform the
Magic-Sets method on this test.

Test 6.2 may seem a bit artificial. However, the point is that breadth-first search is
inflexible, and we believe that there are many meaningful queries for which depth-first
evaluation beat breadth-first evaluation.

Regarding optimization techniques that allow to terminate evaluation of a subquery
earlier, in the current implementation [13] we consider only the case when the subquery
is an atom of a 0-ary predicate. Such optimization techniques can also be developed
and implemented for the following cases:

1. the subquery is an atom without variables (i.e., a ground atom),

2. the subquery is the main query and the user just wants one or some answers,

3. the subquery is p(t) and a tuple that is more general than t was inserted into ans p.

Note the usefulness of the first case: when extending the QSQN method for dealing with
logic programs with safe and stratified negation, at the time of processing a negative
subquery, the subquery is without variables.

Test 6.3. This test uses the logic program from Example 3.1, which involves tail
recursion as follows:

p(x, y)← q(x, y)
p(x, y)← q(x, z), p(z, y).

The extensional instance I for q is specified as follows:

I(q) = {(a0, b1,j) | 1 ≤ j ≤ n} ∪
{(bi,j , bi+1,j) | 1 ≤ i < m and 1 ≤ j ≤ n}.

We perform this test using the following queries:

(i) p(a0, x), (ii) p(x, y).

Together with each mentioned query, we consider the following values of m and n:

(a) m = 5, n = 80; (b) m = 10, n = 150.

Experiment 2. This experiment includes the tests that concern the case with function
symbols. For a function symbol f , by fk we denote the nesting of f by k times. For
example, f3(a) = f(f(f(a))). As mentioned earlier, we use a term-depth bound l for
atoms and substitutions occurring in the computation to deal with function symbols.
We consider the following tests for this experiment.

Test 6.4. This test is taken from [14] and specified as follows, where path is an in-
tensional predicate, edge is an extensional predicate, x, y, z, w are variables, nil is a
constant symbol standing for the empty list, and cons is a function symbol standing
for the list constructor:

path(x, y, cons(x, cons(y, nil)))← edge(x, y)
path(x, y, cons(x, z))← edge(x,w), path(w, y, z).
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An atom path(x, y, z) stands for “z is a list representing a path from x to y”. We use
the following extensional instance I for edge, where a - m are constant symbols:

I(edge) = {(a, b), (a, h), (b, c), (b, f), (c, d), (d, e), (e, c), (f, g),
(g, f), (h, i), (i, i), (j, c), (j, k), (k, d), (k, l), (l,m), (m, j)}.

The query is path(x, d, y). We perform this test using the following term-depth bound l:

(a) l = 20, (b) l = 50.

Test 6.5. This test was given in [44]. It uses the following logic program:

n(x, y)← r(x, y)
n(x, y)← q(f(w), y), n(z, w), p(x, f(z))
s(x)← n(c, x)

where n, s are intensional predicates, p, q, r are extensional predicates, x, y, z, w are
variables, f is a function symbol and c is a constant symbol. We use the term-depth
bound l = 10 for this test (which can be changed before testing the package [13]). The
query is s(x) and the extensional instance is an extension of the one used in [44] and
specified as follows, using n = 20:

I(r) = {(d, e)}
I(p) = {(c, f(d))} ∪ {(bi, f(c)), (c, f(bi)) | 0 ≤ i ≤ n}
I(q) = {(f(e), a0)} ∪ {(f(ai), bi) | 0 ≤ i ≤ n} ∪ {(f(bi), ai+1) | 0 ≤ i < n} ∪

{(fk(bi), fk(ai+1)) | n ≤ i ≤ 2n− 1, k = 2(i− n) + 1} ∪
{(fk(ai), fk(bi)) | n+ 1 ≤ i ≤ 2n, k = 2(i− n)}.

Test 6.6. This test uses the following “Same Generation” logic program:

sg(x, y)← sibling(x, y)
sg(x, y)← parent(x, z), sg(z, w), parent(y, w)
sibling(x, y)← child(x, z), child(y, z)
parent(father(x), x)
parent(mother(x), x)
parent(x, y)← child(y, x)

where sg, parent and sibling are intensional predicates, child is an extensional predi-
cate, x, y, z, w are variables, father and mother are function symbols. The test uses
the term-depth bound l = 3, the query sg(x, y) and the extensional instance I for child
specified by I(child) = {(ann, john), (peter, john), (bill, john)}.

6.2.2 Results and Discussion

Table 6.1 (on page 77) presents a comparison between the QSQN (using the IDFS
control strategy), Magic-Sets and QSQR evaluation methods w.r.t. the number of ac-
cesses to the extensional and intermediate relations as well as the maximum number of
tuples/subqueries kept in the computer memory for Experiments 1 and 2. Tables 6.2
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Tests Methods
Reading (times) Writing (times) Max No. of

inp /ans /sup /edb inp /ans /sup kept tuples

QSQN-IDFS 361 (104+52+153+52) 154 (52+51+51) 204

T
e
st

6
.1

(a) Magic-Sets 721 (212+103+302+104) 301 (103+98+100) 10105

QSQR 410 (52+154+102+102) 358 (52+50+256) 356

QSQN-IDFS 711 (204+102+303+102) 304 (102+101+101) 404

(b) Magic-Sets 1421 (412+203+602+204) 601 (203+198+200) 40205

QSQR 810 (102+304+202+202) 708 (102+100+506) 706

QSQN-IDFS 484 (113+104+211+56) 210 (55+100+55) 5207

T
e
st

6
.2

(a) Magic-Sets 863 (229+158+366+110) 359 (107+148+104) 14082

QSQR 433 (56+163+108+106) 377 (55+53+269) 3454

QSQN-IDFS 934 (213+204+411+106) 410 (105+200+105) 20407

(b) Magic-Sets 1663 (429+308+716+210) 709 (207+298+204) 55657

QSQR 833 (106+313+208+206) 727 (105+103+519) 11904

QSQN-IDFS 39 (12+5+15+7) 16 (6+5+5) 2401

T
e
st

6
.3

(i
) (a) Magic-Sets 30 (7+5+11+7) 14 (5+4+5) 2401

QSQR 88 (12+24+28+24) 79 (12+9+58) 4403

QSQN-IDFS 74 (22+10+30+12) 31 (11+10+10) 12751

(b) Magic-Sets 55 (12+10+21+12) 29 (10+9+10) 12751

QSQR 168 (22+44+58+44) 149 (22+19+108) 24003

QSQN-IDFS 17 (3+5+7+2) 7 (1+5+1) 2001

T
e
st

6
.3

(i
i) (a) Magic-Sets 31 (10+7+10+4) 8 (2+4+2) 3521

QSQR 50 (10+15+15+10) 35 (5+5+25) 2803

QSQN-IDFS 27 (3+10+12+2) 12 (1+10+1) 11251

(b) Magic-Sets 41 (10+12+15+4) 13 (2+9+2) 20851

QSQR 100 (20+30+30+20) 70 (10+10+50) 18003

QSQN-IDFS 45 (3+19+21+2) 21 (1+19+1) 199

T
e
st

6
.4

(a) Magic-Sets 61 (10+22+25+4) 23 (2+19+2) 853

QSQR 190 (38+57+57+38) 133 (19+19+95) 348

QSQN-IDFS 105 (3+49+51+2) 51 (1+49+1) 949

(b) Magic-Sets 121 (10+52+55+4) 53 (2+49+2) 4063

QSQR 490 (98+147+147+98) 343 (49+49+245) 1848

QSQN-IDFS 175 (7+54+59+55) 59 (3+53+3) 811

Test 6.5 Magic-Sets 181 (11+56+58+56) 58 (3+53+2) 792

QSQR 675 (108+216+189+162) 537 (81+78+378) 3549

QSQN-IDFS 60 (15+18+25+2) 21 (3+9+9) 1864

Test 6.6 Magic-Sets 159 (47+58+44+10) 41 (13+15+13) 3790

QSQR 135 (25+50+50+10) 89 (15+9+65) 3020

Table 6.1: A comparison between QSQN, Magic-Sets and QSQR w.r.t. the number
of read/write operations on relations and the maximum number of tuples/subqueries
kept in the computer memory for the Experiments 1 and 2.
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Methods Disk Reading (inp + ans + sup + edb) / Disk Writing (inp + ans + sup )

Test 6.1 (a)
Memory limitation (corresponding to n1, n2, n3 with m = 10105 tuples)

n1 ≈ 50%m (5052 tuples) n2 ≈ 30%m (3031 tuples) n3 ≈ 20%m (2021 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0)

Magic-Set 82 (26+1+26+29) / 54 (27+1+26) 262 (67+41+105+49) / 134 (47+41+46) Not enough memory.

QSQR 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0)

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0)

Magic-Set 60 (15+0+14+31) / 29 (15+0+14) 259 (65+41+102+51) / 129 (45+41+43) Not enough memory.

QSQR 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0)

Test 6.2 (a)
Memory limitation (corresponding to n1, n2, n3 with m = 14082 tuples)

n1 ≈ 50%m (7041 tuples) n2 ≈ 30%m (4224 tuples) n3 ≈ 20%m (2816 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 2 (0+0+0+2) / 0 (0+0+0) 4 (0+1+1+2) / 10 (3+2+5) 4 (0+1+1+2) / 11 (4+2+5)

Magic-Set 21 (6+1+5+9) / 16 (8+2+6) 154 (43+17+56+38) / 95 (38+20+37) 281 (71+45+113+52) / 153 (53+48+52)

QSQR 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 58 (3+2+53)

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 2 (0+0+0+2) / 0 (0+0+0) 4 (0+1+1+2) / 7 (3+1+3) 4 (0+1+1+2) / 10 (3+2+5)

Magic-Set 21 (5+1+3+12) / 12 (6+2+4) 139 (35+17+47+40) / 78 (30+20+28) 281 (70+45+111+55) / 149 (51+48+50)

QSQR 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 0 (0+0+0) 3 (0+0+1+2) / 6 (3+1+2)

Test 6.3 (i) Memory limitation (corresponding to n1, n2, n3 with m = 4403 tuples)

(a) n1 ≈ 60%m (2641 tuples) n2 ≈ 45%m (1981 tuples) n3 ≈ 30%m (1320 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 1 (1+0+0) 7 (0+2+4+1) / 5 (1+3+1)

Magic-Set 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 1 (1+0+0) 7 (0+3+3+1) / 5 (1+3+1)

QSQR 7 (0+0+6+1) / 13 (2+0+11) 20 (2+3+13+2) / 24 (4+1+19) 43 (5+11+19+8) / 37 (7+2+28)

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 1 (1+0+0) 6 (0+2+3+1) / 5 (1+3+1)

Magic-Set 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 1 (1+0+0) 7 (0+3+3+1) / 5 (1+3+1)

QSQR 7 (0+1+1+5) / 5 (1+1+3) 32 (3+6+10+13) / 23 (5+2+16) 49 (6+12+18+13) / 38 (8+3+27)

Test 6.3 (ii) Memory limitation (corresponding to n1, n2, n3 with m = 3521 tuples)

(a) n1 ≈ 60%m (2112 tuples) n2 ≈ 45%m (1584 tuples) n3 ≈ 30%m (1056 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 2 (0+0+1+1) / 3 (1+1+1) Not enough memory.

Magic-Set 3 (1+0+1+1) / 4 (2+0+2) 4 (1+1+1+1) / 5 (2+1+2) Not enough memory.

QSQR 9 (3+0+3+3) / 7 (3+0+4) 28 (5+9+7+7) / 17 (5+3+9) Not enough memory.

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 2 (0+0+1+1) / 3 (1+1+1) Not enough memory.

Magic-Set 3 (0+0+1+2) / 5 (2+1+2) 4 (1+0+1+2) / 5 (2+1+2) Not enough memory.

QSQR 9 (1+1+2+5) / 6 (2+1+3) 23 (1+7+7+8) / 16 (4+3+9) Not enough memory.

1Table 6.2: A comparison between QSQN, Magic-Sets and QSQR for Experiment 1
w.r.t. the number of accesses to the secondary storage.
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Methods Disk Reading (inp + ans + sup + edb) / Disk Writing (inp + ans + sup )

Test 6.4 (a)
Memory limitation (corresponding to n1, n2, n3 with m = 853 tuples)

n1 ≈ 50%m (426 tuples) n2 ≈ 30%m (255 tuples) n3 ≈ 20%m (170 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 2 (0+0+1+1) / 3 (1+1+1)

Magic-Set Not enough memory. Not enough memory. Not enough memory.

QSQR 1 (0+0+0+1) / 0 (0+0+0) 25 (3+7+7+8) / 17 (4+4+9) 48 (6+14+14+14) / 31 (8+7+16)

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 2 (0+0+1+1) / 3 (1+1+1)

Magic-Set Not enough memory. Not enough memory. Not enough memory.

QSQR 1 (0+0+0+1) / 0 (0+0+0) 21 (0+7+6+8) / 16 (4+4+8) 47 (6+14+13+14) / 29 (7+7+15)

Test 6.5
Memory limitation (corresponding to n1, n2, n3 with m = 3549 tuples)

n1 ≈ 50%m (1774 tuples) n2 ≈ 30%m (1064 tuples) n3 ≈ 20%m (709 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 3 (0+0+0+3) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 4 (0+0+1+3) / 3 (2+0+1)

Magic-Set 3 (0+0+0+3) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 4 (1+0+0+3) / 3 (2+0+1)

QSQR 55 (0+8+22+25) / 47 (15+8+24) 181 (10+39+60+72) / 123 (32+28+63) Not enough memory.

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 3 (0+0+0+3) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0)

Magic-Set 3 (0+0+0+3) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 5 (0+0+0+5) / 1 (1+0+0)

QSQR 42 (0+5+10+27) / 23 (6+5+12) 161 (2+37+50+72) / 105 (26+26+53) Not enough memory.

Test 6.6
Memory limitation (corresponding to n1, n2, n3 with m = 3790 tuples)

n1 ≈ 60%m (2274 tuples) n2 ≈ 45%m (1705 tuples) n3 ≈ 30%m (1130 tuples)

Strategy for unloading: Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 7 (1+3+2+1) / 11 (3+4+4) 9 (1+3+4+1) / 12 (3+4+5)

Magic-Set 26 (5+6+11+4) / 21 (8+7+6) 36 (6+8+17+5) / 25 (9+8+8) 51 (9+12+25+5) / 27 (10+9+8)

QSQR 2 (0+0+1+1) / 4 (2+0+2) 31 (4+10+12+5) / 33 (9+6+18) 33 (4+12+12+5) / 34 (9+7+18)

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-IDFS 1 (0+0+0+1) / 0 (0+0+0) 6 (0+3+2+1) / 11 (3+4+4) 7 (0+3+3+1) / 12 (3+4+5)

Magic-Set 20 (3+5+8+4) / 20 (7+7+6) 34 (5+8+16+5) / 25 (9+8+8) 52 (9+13+25+5) / 27 (10+9+8)

QSQR 2 (0+0+0+2) / 1 (1+0+0) 25 (0+8+12+5) / 24 (7+5+12) 27 (2+11+9+5) / 29 (7+7+15)

1Table 6.3: A comparison between QSQN, Magic-Sets and QSQR for Experiment 2
w.r.t. the number of accesses to the secondary storage.
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and 6.3 (on pages 78 and 79, respectively) show a comparison between the mentioned
evaluation methods w.r.t. the number of accesses to the secondary storage.

In Table 6.1, the “Reading inp /ans /sup /edb” column means the number of
read operations on input/answer/supplement/extensional relations, respectively. Sim-
ilarly, the “Writing inp /ans /sup ” column means the number of write operations on
input/answer/supplement relations, respectively. The last column shows the maximum
number of tuples/subqueries kept in the memory for each test.

Each of Tables 6.2 and 6.3 consists of four columns: the first one displays the names
of methods, the next three columns show the numbers of read/write operations on
the secondary storage when applying the mentioned limits n1, n2, n3, respectively.
Recall that the values n1, n2, n3 are based on the value of m = max{m1,m2,m3},
where m1, m2 and m3 are the maximum numbers of tuples/subqueries kept in the
memory for QSQN, QSQR and Magic-Sets, respectively, in the case when the memory
is not restricted. A field with values “M (M1 +M2 +M3 +M4) / N (N1 +N2 +N3)”
means: M (resp. M1, M2, M3, M4) is the total number of times of reading any (resp.
input, answer, supplement, extensional) relation from the secondary storage, and N is
the number of times of writing any (resp. input, answer, supplement) relation to the
secondary storage. If there is more than one case in a test, we only show the results for
the first case (i.e., the case (a)) in these tables. The results for all cases are provided
online in [13].

As mentioned earlier, strategies for selecting an in-memory relation for unloading
when there is not enough memory are based on the criteria Timestamp, Relation-size,
Extensional. We used some of such strategies for our experiments, which are specified
in the first row of each test.

There are also other tests for the comparison between the QSQN, Magic-Sets
and QSQR methods, which are discussed in the next section and presented in Ta-
bles 6.4, 6.5 and 6.6 (on pages 85, 86 and 87, respectively).

As can be seen in Tables 6.1-6.6, the QSQR method is often worse than the QSQN
and Magic-Sets methods w.r.t. the number of accesses to the secondary storage. As
discussed in [39], QSQR uses iterative deepening search and clears input relations at
the beginning of each iteration of the main loop, thus it allows redundant recompu-
tations. In addition, the formulation of QSQR in [39] is at a logical level and uses
the same relation for the whole sequence of supplements. This requires more relation
loading/unloading when the recursive depth is high and no more memory is available.

The results in the mentioned tables also show that, there is not much difference
between the QSQN and Magic-Sets methods w.r.t. the number of accesses to the sec-
ondary storage for queries with at least one bound parameter. For queries without any
bound parameter, the number of accesses to the secondary storage in the case of the
QSQN method is often a bit smaller than in the case of the Magic-Sets method. The
reason is that, for a query like p(x, y), the QSQN method stores only a fresh variant
of (x, y) in tuples(input p) because this is the most general tuple.

There are cases as in Tests 6.1 and 6.2 for which depth-first evaluation is more
efficient than breadth-first evaluation and the QSQN-IDFS method as well as the QSQR
method outperform the Magic-Sets method. See Tables 6.1 and 6.2 for more details on
the experiments.
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6.3 The QSQN-TRE method

This section presents our experimental results on the performance of the QSQN-TRE
method in comparison with the QSQN method. The experimental measures are similar
to the ones specified in Section 6.2. Additionally, we also compute the number of tuples
and subqueries read from or written to the secondary storage for the mentioned methods
when the memory is limited.

6.3.1 Experimental Settings

As mentioned before, the QSQN and QSQN-TRE methods allow any control strategies.
In our tests, the IDFS control strategy is used for both QSQN and QSQN-TRE.

We also present the corresponding test results of the QSQR and Magic-Sets meth-
ods. A direct comparison between the QSQN-TRE method and the QSQR and Magic-
Sets methods is somehow not appropriate because the former uses tail-recursion elim-
ination, while the latter ones do not (we did not implement their variants that use
tail-recursion elimination). The purpose of including the test results of the QSQR and
Magic-Sets methods is to increase convenience for the reader in evaluating the efficiency
of QSQN-TRE in a larger context.

The experimental settings are similar to the ones specified in Section 6.2.1, except
that:

− For counting the maximum number of tuples/subqueries kept in the computer mem-
ory, we increase (resp. decrease) the counter by two if a tuple pair (t, t

′
) with t 6= t

′

is added to (resp. removed from) a relation of the form tuple pairs(input p), and
increase (resp. decrease) it by one if a tuple, a subquery or a tuple pair of the
form (t, t) is added to (resp. removed from) a relation.6 The returned value is the
maximum value of this counter.

− Regarding the second stage, the limit on the number of tuples/subqueries that
can be kept in the computer memory is set as follows for each test. Let
Mmax = max{m1,m2,m3,m4} and Mmin = min{m1,m2,m3,m4}, where m1, m2,
m3, m4 are the maximum numbers of tuples/subqueries kept in the memory when
using QSQN-TRE, QSQN, QSQR, Magic-Sets, respectively, in the case when the
memory is not restricted. Based on the value of Mmax and Mmin, we limit the
maximal number of tuples/subqueries that can be kept in the memory sequentially
to n1, n2 and n3, where n1 ≈ 60%Mmax, n2 ≈ 60%n1 and n3 ≈ 60%Mmin. In order
to avoid showing the monotonic results, in some tests, we use a different value for n2,
which is shown in the first row on each test. The user can change the limit before
testing the package [13].

In order to make a comparison between the considered evaluation methods, we use
the following tests:

Test 6.7. This test extends Test 6.1(b) by including the results of QSQN-TRE using
T (q1) = T (q2) = true and T (p) = false.

6A tuple pair of the form (t, t) can be encoded by the tuple t together with a Boolean flag.
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Test 6.8. This test is taken from Example 4.1. We consider T (p) = true (for
QSQN-TRE) and the following values of m and n:

(a) m = 20, n = 100; (b) m = 100, n = 400.

As shown in Table 6.4 (on page 85), the maximum number of kept tuples in the case
of using QSQN-TRE is much smaller than in the case of using QSQN or the other
methods.

Test 6.9. This test is a modified version of the logic program given in Example 3.3,
which is specified as follows:

p(x, y)← q(x, y)

p(x, y)← q(x, z), p(z, y)

s(x, y)← p(x, y)

where p, s are intensional predicates with T (p) = true and T (s) = false (for
QSQN-TRE), q is an extensional predicate, and x, y, z are variables. We consider
this test with the following queries and extensional instance I for q:

a) The query is s(a, x) and the extensional instance I for q is illustrated in Figure 6.1,
where a and ai,j are constant symbols, using m = 10 and n = 20.

b) The query is s(x, y) and the extensional instance I for q is specified as follows,
using n = 50: I(q) = {(ai, ai+1) | 1 ≤ i < n} ∪ {(an, a1)}.

a // a1,1 //

��

a1,2 //

��

· · · //

��

a1,n

��
a2,1 //

��

a2,2 //

��

· · · //

��

a2,n

��· · · //

��

· · · //

��

· · · //

��

· · ·

��
am,1 // am,2 // · · · // am,n

Fig. 6.1: A directed graph used for
Test 6.9(a).
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Fig. 6.2: The extensional instance used
for Test 6.14.

Test 6.10. This test involves the transitive closure of a binary relation [8, 11]. It
uses the following logic program P , where arc is an extensional predicate, path is an
intensional predicate with T (path) = true (for QSQN-TRE), and x, y, z are variables.

path(x, y)← arc(x, y)

path(x, y)← path(x, z), path(z, y).

The query is path(a0, x) and the extensional instance I for arc is specified in Figure 6.3,
where a0 and ai,j are constant symbols. We use n = 5 for this test.
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Fig. 6.3: The extensional instance used for Test 6.10.

Test 6.11. This test is taken from [22]. It uses the following “Same Generation Cousins”
program, where sgc is an intensional predicate, person, parent are extensional predi-
cates, w, x, y, z are variables.

sgc(x, x)← person(x)

sgc(x, y)← parent(x, z), sgc(z, w), parent(y, w).

The query is sgc(oliver, x), where oliver is a constant symbol referring to a person’s
name. The data for this test were generated using generate data website7. In particular,
person has 150 tuples and parent has 350 tuples.

This is a non-tail recursive logic program. In this case, the QSQN-TRE evaluation
method reduces to the QSQN method. As can be seen in Tables 6.4 and 6.6 (on pages 85
and 87, respectively) for this test, the QSQN-TRE and QSQN methods have the same
experimental results.

6.3.2 Results and Discussion

By applying tail-recursion elimination, the QSQN-TRE method reduces materializ-
ing intermediate results during the processing. Our experiments show that, due to
tail-recursion elimination, the QSQN-TRE method performs better than the QSQN
method for a certain class of queries that depend on tail-recursive predicates.

Table 6.4 (on page 85) has the same style as Table 6.1. It shows a comparison
between the QSQN-TRE, QSQN, QSQR and Magic-Sets evaluation methods w.r.t.
the number of accesses to the intermediate relations and extensional relations as well

7http://www.generatedata.com
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as the maximum number of kept tuples/subqueries in the memory for each of the
tests. Tables 6.5 and 6.6 show a comparison between the mentioned evaluation meth-
ods w.r.t. the number of accesses to the secondary storage and the number of tu-
ples/subqueries read from or written to the secondary storage. Each of these tables
consists of the following columns: the first one displays the names of methods, the next
three columns show the numbers of read/write operations on the secondary storage
as well as the numbers of tuples and subqueries read from/written to the secondary
storage when applying the mentioned limits n1, n2, n3, respectively. A field with values
“M (M1 +M2 +M3 +M4) / N (N1 +N2 +N3)” in the first line and “R / W” in the
second line means: M (resp. M1, M2, M3, M4) is the total number of times of reading
any (resp. input, answer, supplement, extensional) relation from the secondary storage,
N (resp. N1, N2, N3) is the total number of times of writing any (resp. input, answer,
supplement) relation to the secondary storage, R (resp. W ) is the number of tuples and
subqueries read from (resp. written to) the secondary storage.

As shown by the results of Tests 6.7-6.9(a) in Tables 6.4 and 6.5, if the considered
query depends on a tail-recursive predicate p such that:

− p occurs only in the last position in the bodies of the recursive clauses defining it,

− the adorned version of the logic program and the query uses only a unique adorned
version of p, which has at least one bound parameter,8

then the QSQN-TRE method usually outperforms the other methods w.r.t.

− the number of read or write operations on relations,

− the maximum number of tuples and subqueries kept in the computer memory,

− the number of accesses to the secondary storage as well as the number of tuples
and subqueries read from or written to the secondary storage when the memory is
limited.

In contrast, for queries without any bound parameter as in Test 6.9(b) and for cases
with a tail-recursive clause defining an intensional predicate p such that T (p) = true
and p occurs more then once in the clause’s body as in Test 6.10, QSQN-TRE
may be worse than QSQN. For Test 6.9(b), the reason is that, after processing a
node v = filter i,ni with p = pred(v) and T (p) = true, QSQN-TRE produces a set
of tuple pairs and accumulates them in tuple pairs(input p), which are not instances
of each other. Meanwhile, QSQN adds answers to tuples(ans p) for later processing
and transfers appropriate data through (v, input p) without adding any new tuple to
tuples(input p) because it already contains a fresh variant of (x, y) that is more general
than all the other tuples. Thus, in this case, QSQN-TRE may keep more tuples than
QSQN. See the experimental results for Tests 6.9(b) and 6.10 in Tables 6.4 and 6.6 for
more details.

As mentioned earlier, if there is no tail-recursion to eliminate or T (p) = false for
every intensional predicate p, the QSQN-TRE method reduces to the QSQN evaluation
method. In this case, they have the same executions. For instance, as can be seen in
Tables 6.4 and 6.6 for Test 6.11, the QSQN-TRE and QSQN methods return the same
experimental results.

8For details about the adorned version of the logic program, see Appendix A.
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Tests Methods
Reading (times) Writing (times) Max No. of

inp /ans /sup /edb inp /ans /sup kept tuples

QSQN-TRE 512 (204+3+203+102) 205 (102+2+101) 405

Test 6.7
QSQN 711 (204+102+303+102) 304 (102+101+101) 404

Magic-Sets 1421 (412+203+602+204) 601 (203+198+200) 40205

QSQR 810 (102+304+202+202) 708 (102+100+506) 706

QSQN-TRE 103 (41+1+40+21) 41 (20+1+20) 279

Test 6.8 QSQN 143 (41+21+60+21) 60 (20+20+20) 2160

(a) Magic-Sets 106 (22+21+42+21) 59 (19+20+20) 2160

QSQR 123 (21+41+40+21) 121 (20+20+81) 4181

QSQN-TRE 503 (201+1+200+101) 201 (100+1+100) 1199

Test 6.8 QSQN 703 (201+101+300+101) 300 (100+100+100) 40700

(b) Magic-Sets 506 (102+101+202+101) 299 (99+100+100) 40700

QSQR 603 (101+201+200+101) 601 (100+100+401) 80801

QSQN-TRE 157 (62+3+61+31) 63 (31+2+30) 1374

Test 6.9 QSQN 214 (62+31+90+31) 91 (31+30+30) 12695

(a) Magic-Sets 217 (66+32+88+31) 89 (31+29+29) 12694

QSQR 540 (62+182+176+120) 422 (62+58+302) 33397

QSQN-TRE 260 (103+3+103+51) 104 (51+2+51) 12453

Test 6.9 QSQN 115 (5+53+55+2) 55 (2+51+2) 5103

(b) Magic-Sets 130 (14+56+56+4) 56 (3+51+2) 7702

QSQR 750 (150+250+250+100) 549 (100+99+350) 10105

QSQN-TRE 82 (33+11+32+6) 32 (11+5+16) 9296

Test 6.10
QSQN 80 (26+16+32+6) 28 (6+8+14) 4373

Magic-Sets 61 (16+22+16+7) 16 (6+5+5) 4009

QSQR 78 (17+25+28+8) 56 (8+9+39) 7743

QSQN-TRE 70 (18+9+25+18) 26 (9+9+8) 825

Test 6.11
QSQN 70 (18+9+25+18) 26 (9+9+8) 825

Magic-Sets 55 (10+9+18+18) 24 (8+8+8) 825

QSQR 138 (18+36+48+36) 138 (18+16+104) 1353

Table 6.4: A comparison between the QSQN-TRE, QSQN, QSQR and Magic-Sets
methods w.r.t. the number of read/write operations on relations and the maximum
number of tuples/subqueries kept in the computer memory.
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Methods
Disk Reading (inp + ans + sup + edb) / Disk Writing (inp + ans + sup )

Number of tuples and subqueries Read from / Written to the secondary storage

Test 6.7
Memory limitation (corresponding to n1, n2 and n3)

n1 = 24123 tuples n2 = 14473 tuples n3 = 242 tuples

Strategy for unloading: Relation-size, Timestamp

QSQN-TRE 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 76 (1+0+20+55) / 75 (54+0+21)

100 / 0 100 / 0 15182 / 9882

QSQN 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 64 (31+0+1+32) / 32 (31+0+1)

100 / 0 100 / 0 5966 / 2766

Magic-Sets 65 (30+0+2+33) / 32 (31+0+1) 400 (109+60+148+83) / 199 (80+60+59) Not enough memory.

593630 / 273432 3238911 / 1325782

QSQR 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 62 (30+0+0+32) / 31 (31+0+0)

100 / 0 100 / 0 5765 / 2666

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-TRE 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 97 (1+0+41+55) / 85 (43+0+42)

100 / 0 100 / 0 15103 / 9804

QSQN 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 63 (15+0+16+32) / 33 (17+0+16)

100 / 0 100 / 0 5781 / 2683

Magic-Sets 67 (17+0+16+34) / 34 (18+0+16) 389 (97+57+151+84) / 194 (69+57+68) Not enough memory.

576917 / 266619 3143699 / 1291871

QSQR 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 97 (1+0+63+33) / 76 (3+0+73)

100 / 0 100 / 0 3435 / 247

Test 6.8 (a)
Memory limitation (corresponding to n1, n2 and n3)

n1 = 2508 tuples n2 = 2002 tuples (≈ 80%n1) n3 = 167 tuples

Strategy for unloading: Relation-size, Timestamp

QSQN-TRE 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 0 (0+0+0)

120 / 0 120 / 0 120 / 0

QSQN 2 (0+0+0+2) / 0 (0+0+0) 4 (0+1+1+2) / 3 (1+1+1) Not enough memory.

120 / 0 2140 / 2040

Magic-Sets 2 (0+0+0+2) / 0 (0+0+0) 4 (0+1+1+2) / 3 (1+1+1) Not enough memory.

120 / 0 2140 / 2040

QSQR 10 (0+8+0+2) / 24 (0+8+16) 13 (0+11+0+2) / 32 (1+11+20) Not enough memory.

12520 / 14000 15520 / 17420

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-TRE 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 0 (0+0+0) 2 (0+0+0+2) / 0 (0+0+0)

120 / 0 120 / 0 120 / 0

QSQN 2 (0+0+0+2) / 0 (0+0+0) 4 (0+1+1+2) / 3 (1+1+1) Not enough memory.

120 / 0 2140 / 2040

Magic-Sets 2 (0+0+0+2) / 0 (0+0+0) 4 (0+1+1+2) / 3 (1+1+1) Not enough memory.

120 / 0 2140 / 2040

QSQR 10 (0+1+7+2) / 24 (1+1+22) 13 (0+2+9+2) / 32 (1+2+29) Not enough memory.

2027 / 3427 3629 / 5529

Test 6.9 (a)
Memory limitation (corresponding to n1, n2 and n3)

n1 = 20038 tuples n2 = 12022 tuples n3 = 824 tuples

Strategy for unloading: Relation-size, Timestamp

QSQN-TRE 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 12 (1+0+0+11) / 10 (10+0+0)

371 / 0 371 / 0 7561 / 3680

QSQN 1 (0+0+0+1) / 0 (0+0+0) 15 (0+7+7+1) / 8 (0+7+1) Not enough memory.

371 / 0 83636 / 81039

Magic-Sets 1 (0+0+0+1) / 0 (0+0+0) 15 (0+7+7+1) / 8 (0+7+1) Not enough memory.

371 / 0 83636 / 81039

QSQR 26 (0+15+10+1) / 26 (0+6+20) 147 (14+69+32+32) / 95 (16+14+65) Not enough memory.

174290 / 82655 780985 / 153929

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-TRE 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 0 (0+0+0) 16 (0+0+5+11) / 12 (6+0+6)

371 / 0 371 / 0 6627 / 2747

QSQN 1 (0+0+0+1) / 0 (0+0+0) 2 (0+0+1+1) / 4 (2+0+2) Not enough memory.

371 / 0 372 / 574

Magic-Sets 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 3 (2+0+1) Not enough memory.

371 / 0 371 / 573

QSQR 64 (0+5+57+2) / 113 (4+3+106) 220 (27+53+99+41) / 192 (31+6+155) Not enough memory.

55578 / 44845 625214 / 87655

1Table 6.5: A comparison between QSQN-TRE, QSQN, QSQR and Magic-Sets for
Tests 6.7-6.9(a) w.r.t. the number of accesses to the secondary storage as well as the
number of tuples and subqueries read from/written to the secondary storage.
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Methods
Disk Reading (inp + ans + sup + edb) / Disk Writing (inp + ans + sup )

Number of tuples and subqueries Read from / Written to the secondary storage

Test 6.9 (b)
Memory limitation (corresponding to n1, n2 and n3)

n1 = 7471 tuples n2 = 4482 tuples n3 = 3061 tuples

Strategy for unloading: Relation-size, Timestamp

QSQN-TRE 1 (0+0+0+1) / 2 (0+1+1) Not enough memory. Not enough memory.

50 / 5000

QSQN 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 1 (0+1+0) 1 (0+0+0+1) / 1 (0+1+0)

50 / 0 50 / 2500 50 / 2500

Magic-Sets 1 (0+0+0+1) / 1 (0+1+0) 1 (0+0+0+1) / 2 (0+2+0) 1 (0+0+0+1) / 2 (0+2+0)

50 / 2500 50 / 5000 50 / 5000

QSQR 17 (0+15+1+1) / 17 (0+15+2) 91 (0+63+27+1) / 79 (0+50+29) 158 (0+107+50+1) / 118 (0+66+52)

36100 / 38550 181250 / 155500 287300 / 209750

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-TRE 2 (0+0+1+1) / 4 (2+0+2) Not enough memory. Not enough memory.

51 / 7403

QSQN 1 (0+0+0+1) / 0 (0+0+0) 1 (0+0+0+1) / 5 (2+1+2) 1 (0+0+0+1) / 5 (2+1+2)

50 / 0 50 / 2553 50 / 2553

Magic-Sets 1 (0+0+0+1) / 6 (3+1+2) 2 (1+0+0+1) / 7 (3+2+2) 2 (1+0+0+1) / 7 (3+2+2)

50 / 2652 51 / 5152 51 / 5152

QSQR 41 (0+11+15+15) / 37 (10+11+16) 189 (6+59+75+49) / 145 (34+47+64) 306 (20+104+116+66) / 230 (56+65+109)

47600 / 51810 208113 / 182291 302991 / 224827

Test 6.10
Memory limitation (corresponding to n1, n2 and n3)

n1 = 5577 tuples n2 = 3346 tuples n3 = 2405 tuples

Strategy for unloading: Relation-size, Timestamp

QSQN-TRE 3 (0+1+1+1) / 5 (1+1+3) Not enough memory. Not enough memory.

7412 / 10695

QSQN 1 (0+0+0+1) / 0 (0+0+0) 6 (0+3+2+1) / 4 (0+2+2) 12 (2+4+5+1) / 8 (1+3+4)

363 / 0 8082 / 6078 10984 / 8252

Magic-Sets 1 (0+0+0+1) / 0 (0+0+0) 6 (0+3+2+1) / 2 (0+1+1) 9 (0+4+4+1) / 3 (0+1+2)

363 / 0 8568 / 3282 11061 / 3708

QSQR 1 (0+0+0+1) / 1 (0+0+1) 9 (1+5+1+2) / 7 (2+2+3) 15 (2+7+4+2) / 12 (2+3+7)

363 / 1728 10213 / 7934 14222 / 10262

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-TRE 3 (0+1+0+2) / 4 (1+1+2) Not enough memory. Not enough memory.

6013 / 8933

QSQN 1 (0+0+0+1) / 0 (0+0+0) 6 (2+1+2+1) / 4 (1+1+2) 9 (2+3+3+1) / 6 (1+2+3)

363 / 0 4737 / 4010 9174 / 6806

Magic-Sets 1 (0+0+0+1) / 0 (0+0+0) 9 (2+3+2+2) / 4 (2+1+1) 9 (2+3+2+2) / 4 (2+1+1)

363 / 0 9416 / 3767 9416 / 3767

QSQR 1 (0+0+0+1) / 0 (0+0+0) 5 (0+2+1+2) / 6 (1+1+4) 15 (1+5+6+3) / 15 (2+2+11)

363 / 0 4371 / 4459 11662 / 9626

Test 6.11
Memory limitation (corresponding to n1, n2 and n3)

n1 = 811 tuples n2 = b(n1 + n3)/2c = 653 tuples n3 = 495 tuples

Strategy for unloading: Relation-size, Timestamp

QSQN-TRE 2 (0+0+0+2) / 0 (0+0+0) 6 (0+2+0+4) / 2 (0+2+0) 9 (0+3+0+6) / 3 (0+3+0)

500 / 0 1681 / 481 2517 / 617

QSQN 2 (0+0+0+2) / 0 (0+0+0) 6 (0+2+0+4) / 2 (0+2+0) 9 (0+3+0+6) / 3 (0+3+0)

500 / 0 1681 / 481 2517 / 617

Magic-Sets 2 (0+0+0+2) / 0 (0+0+0) 6 (0+2+0+4) / 2 (0+2+0) 9 (0+3+0+6) / 3 (0+3+0)

500 / 0 1681 / 481 2517 / 617

QSQR 37 (0+17+0+20) / 2 (0+2+0) 40 (0+18+0+22) / 2 (0+2+0) 72 (0+20+5+47) / 12 (0+4+8)

11923 / 503 12731 / 503 18864 / 1322

Strategy for unloading: Extensional, Relation-size, Timestamp

QSQN-TRE 2 (0+0+0+2) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 9 (0+2+1+6) / 4 (1+2+1)

500 / 0 850 / 0 2389 / 498

QSQN 2 (0+0+0+2) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 9 (0+2+1+6) / 4 (1+2+1)

500 / 0 850 / 0 2389 / 498

Magic-Sets 2 (0+0+0+2) / 0 (0+0+0) 3 (0+0+0+3) / 0 (0+0+0) 9 (0+2+1+6) / 4 (1+2+1)

500 / 0 850 / 0 2389 / 498

QSQR 26 (0+2+2+22) / 19 (1+2+16) 64 (7+18+9+30) / 35 (9+2+24) 99 (7+19+26+47) / 53 (9+3+41)

6450 / 684 13975 / 767 18648 / 1090

1Table 6.6: A comparison between QSQN-TRE, QSQN, QSQR and Magic-Sets for
Tests 6.9(b)-6.11 w.r.t. the number of accesses to the secondary storage as well as the
number of tuples and subqueries read from/written to the secondary storage.
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6.4 The QSQN-rTRE method

This section presents our experimental results related to the efficiency of the
QSQN-rTRE method in comparison with the QSQN-TRE method. The comparison is
made with respect to the number of read/write operations on relations as well as the
maximum number of kept tuples/subqueries in the computer memory.

6.4.1 Experimental Settings

As mentioned earlier, the QSQN-rTRE method allows various control strategy. In our
tests for QSQN-rTRE, we use the IDFS control strategy. We assume that the computer
memory is large enough to load all the involved relations. During the processing, for
each operation of reading from a relation (resp. writing a set of tuples to a relation),
we increase the counter of read (resp. write) operations on this relation by one. For
counting the maximum number of tuples/subqueries kept in the computer memory,
regarding the QSQN-TRE method, we increase (resp. decrease) the counter by two
if a tuple pair (t, t

′
) with t 6= t

′
is added to (resp. removed from) a relation of the

form tuple pairs(input p), and increase (resp. decrease) it by one if a tuple, a subquery
or a tuple pair of the form (t, t) is added to (resp. removed from) a relation. For the
QSQN-rTRE method, we increase (resp. decrease) the counter of kept tuples by two
if a tuple-atom pair is added to (resp. removed from) ta pairs(input p), otherwise we
increase (resp. decrease) it by one. The returned value is the maximum value of this
counter. We consider the following tests for the comparison.

Test 6.12. This test uses the program P given in Example 4.3 with T (q) = true,
T (p) = T (s) = false for QSQN-TRE and T (q) = T (p) = T (s) = true for QSQN-rTRE.
The query is s(x) and the extensional instance I for t is as follows, where a, ai, bi are
constant symbols:

I(t) = {(a, a1)} ∪ {(ai, ai+1) | 1 ≤ i < n} ∪ {(an, a1)} ∪
{(a, b1)} ∪ {(bi, bi+1) | 1 ≤ i < n}.

We perform this test using the following values of n:

(a) n = 100, (b) n = 500, (c) n = 1000.

Test 6.13. This test uses the following logic program P , where p, q are intensional pred-
icates, t1, t2 are extensional predicates, and x, y, z are variables. In this test, we consider
the case when p and q are mutually dependent on each other with T (p) = T (q) = false
for QSQN-TRE and T (p) = T (q) = true for QSQN-rTRE.

p(x, y) ← t1(x, y)

p(x, y) ← t1(x, z), q(z, y)

q(x, y) ← t2(x, y)

q(x, y) ← t2(x, z), p(z, y).

88



Tests Methods
Reading (times) Writing (times) Max No. of

inp /ans /sup /edb inp /ans /sup kept tuples

(a)
QSQN-TRE 520 (206+5+207+102) 208 (103+3+102) 1406

T
e
st

6
.1
2

QSQN-rTRE 514 (206+1+205+102) 206 (103+1+102) 1008

(b)
QSQN-TRE 2520 (1006+5+1007+502) 1008 (503+3+502) 7006

QSQN-rTRE 2514 (1006+1+1005+502) 1006 (503+1+502) 5008

(c)
QSQN-TRE 5020 (2006+5+2007+1002) 2008 (1003+3+1002) 14006

QSQN-rTRE 5014 (2006+1+2005+1002) 2006 (1003+1+1002) 10008

(a)
QSQN-TRE 704 (201+103+298+102) 300 (100+101+99) 5248

T
e
st

6
.1
3

QSQN-rTRE 503 (201+2+198+102) 201 (100+2+99) 497

(b)
QSQN-TRE 1404 (401+203+598+202) 600 (200+201+199) 20498

QSQN-rTRE 1003 (401+2+398+202) 401 (200+2+199) 997

(c)
QSQN-TRE 2104 (601+303+898+302) 900 (300+301+299) 45748

QSQN-rTRE 1503 (601+2+598+302) 601 (300+2+299) 1497

T
e
st

6
.1
4 (a)

QSQN-TRE 25 (7+3+9+6) 9 (3+3+3) 60

QSQN-rTRE 25 (7+3+9+6) 9 (3+3+3) 60

(b)
QSQN-TRE 15 (3+3+5+4) 5 (1+3+1) 36

QSQN-rTRE 15 (3+3+5+4) 5 (1+3+1) 36

Table 6.7: A comparison between the QSQN-TRE and QSQN-rTRE methods w.r.t.
the number of read/write operations on relations and the maximum number of tu-
ples/subqueries kept in the computer memory.

The query is q(a1, x) and the extensional instance I for t1 and t2 is as follows, where ai
(1 ≤ i ≤ n) are constant symbols:

I(t1) = {(a2, a3), (a4, a5), (a6, a7), . . . , (an−2, an−1)},
I(t2) = {(a1, a2), (a3, a4), (a5, a6), . . . , (an−1, an)}.

We perform this test using the following values of n:

(a) n = 100, (b) n = 200, (c) n = 300.

Test 6.14. This test is taken from [1]. It uses the following “Reverse-Same-Generation”
(RSG) program, where rsg is an intensional predicate, flat, up, down are extensional
predicates, x, y, z, w are variables:

rsg(x, y)← flat(x, y)

rsg(x, y)← up(x, z), rsg(w, z), down(w, y).

We use a small dataset for this test, which is illustrated in Figure 6.2, where a− p are
constant symbols. We perform this test using the following queries:

(a) rsg(a, x), (b) rsg(x, y).
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This is a non-right/tail recursive logic program. As can be seen in Table 6.7, the
QSQN-rTRE and QSQN-TRE methods have the same experimental results.

6.4.2 Results and Discussion

Table 6.7 shows the comparison between the QSQN-TRE and QSQN-rTRE evaluation
methods w.r.t. the number of accesses to the relations as well as the maximum num-
ber of kept tuples/subqueries in the computer memory. In this table, the third column
means the number of read operations on input/answer/supplement/extensional rela-
tions, respectively. Similarly, the fourth column means the number of write operations
on input/answer/supplement relations, respectively. The last column shows the max-
imum number of kept tuples in the computer memory. As can be seen in this table,
by not representing intermediate results during the computation for the right/tail-
recursive cases, the QSQN-rTRE method usually outperforms the QSQN-TRE method
for a certain class of queries that depends on right/tail-recursive predicates with re-
spect to the number of accesses to the relations as well as the maximum number of
kept tuples/subqueries in the computer memory. Especially, for the case when the in-
tensional predicates are mutually (rightmost) dependent on each other as in Test 6.13,
the maximum number of kept tuples in the case of using QSQN-rTRE is much smaller
than in the case of using QSQN-TRE.

6.5 The QSQN-STR method

In this section, we present the experimental results of the QSQN-STR method and
discuss its performance. We make a comparison between the QSQN-STR method and
Datalog Educational System (DES [56], a deductive database system) with respect to
the number of generated tuples in answer relations corresponding to the intensional
predicates. We begin with the following definition.

Definition 6.2. The global-priority of an active edge (v, w) in a QSQN-STR,
where v is of the form input p, ans p or filter i,j for some p, i and j, is a vector
global-priority(v, w) = (a, b), where a and b are defined as follows:

− a = 2 if v = input p, a = 1 if v = filter i,j , and a = 0 if v = ans p,

− b is the priority of (v, w) specified in Definition 6.1 if v = input p or v = ans p, and b
is the modification timestamp of v if v = filter i,j . �

In order to satisfy the admissibility w.r.t. strata’s stability, we use a slightly modified
version of the IDFS control strategy, called IDFS2. This strategy differs from IDFS
(presented on page 69) at Steps 1 and 3. Particularly, the initial values for input q and
the relations of the form unprocessed(input q, v) used for QSQN-STR are set in the
same way as for QSQN at Step 1. The modification for Step 3 is as follows:

While the stack is not empty do:

(a) pop an edge (u, v) from the stack,

(b) if (u, v) is an “active” edge then
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(b.1) if u = ans p, v = filter i,j , pred(v) = p and p is not the predicate of Ai then9

(b.1.1) if layer(u) = layer(v) and there exist active edges (u′, v′) with u′ = input p
then10

• push (u, v) into the stack,
• set (u, v) to be the edge with the highest priority from those active

edges (u′, v′),
(b.1.2) else if layer(u) < layer(v) and there exist active edges (u′, v′) such that

layer(u′) ≤ layer(u) and layer(v′) ≤ layer(u) then11

• push (u, v) into the stack,
• set (u, v) to be the edge with the highest global-priority from those active

edges (u′, v′),
(b.1.3) else if layer(u) < layer(v) and there exist active edges (u′, v′) 6= (u, v) such

that layer(u′) ≤ layer(u) and layer(v′) > layer(u) then12

• set (u, v) = (u′′, v′′), where (u′′, v′′) is the edge with the highest
global-priority from those active edges (u′, v′) with the properties that
layer(v′′) = h and h is the smallest layer number such that h > layer(u)
and subqueries(v′′) 6= ∅,
• for each (u∗, v∗) from the remaining edges among those active edges (u′, v′)

in the increasing order w.r.t. their global-priorities do
∗ if subqueries(v∗) 6= ∅ then

- “fire” the edge (u∗, v∗),
- push (v∗, succ(v∗)) into the stack,

∗ else set unprocessed(u∗, v∗) = ∅,
(b.2) “fire” the edge (u, v),

(b.3) push all the “active” edges outcoming from v into the stack in the increasing
order w.r.t. their priorities,

(b.4) if v = filter i,j , pred(v) = p, the predicate of Ai is p, the edge (v, succ2(v)) is
not “active” and there exist active edges (u′, v′) with u′ = input p then13.

• push (u′, v′′) into the stack, where (u′, v′′) is the edge with the highest
priority from those active edges (u′, v′),

6.5.1 Experimental Settings

The number of generated tuples in an answer relation of QSQN-STR is defined to be
the maximum number of tuples that were added to that relation. For counting the
number of generated tuples in answer relations for each below test using DES, we use

9We have that layer(u) ≤ layer(v).
10In this case, the predicate of Ai and p are mutually dependent on each other.
11The goal of Steps (b.1.2) and (b.1.3) is to satisfy the admissibility w.r.t. strata’s stability before

turning to a higher layer.
12Before turning to a higher layer, “fire” all remaining active edges of the form (ans pk, v

′) in the
increasing order w.r.t. their global-priorities, for some pk such that layer(ans pk) ≤ layer(u) and
layer(v′) > layer(u).

13The aim is to accumulate as many as possible tuples in tuples(ans p) before processing it.
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the following commands:

/consult <file name>, for consulting a program, and

/trace datalog <a query>, for tracing a query.

The following tests are used for the comparison between the QSQN-STR method
and DES. Regarding the QSQN-STR method, we assume that T (v) = false for each
v = filter i,j ∈ V with pred(v) = extensional.

Test 6.15. This test is taken from Example 5.1, the query is acyclic(a, x) and the
extensional instance I for edge is as follows, where a, ai, bi, ci, di are constant symbols
and n = 50:

I(edge) = {(a, a1)} ∪ {(ai, ai+1) | 1 ≤ i < n} ∪ {(an, a1)} ∪
{(a, b1)} ∪ {(bi, bi+1) | 1 ≤ i < n} ∪ {(bn, b1)} ∪
{(ci, ci+1), (di, di+1) | 1 ≤ i < n} ∪ {(cn, c1), (dn, d1)}.

Test 6.16. This test uses a semi-positive program taken from [32]. It computes pairs
of nodes (x, y) such that y is reachable from x but not directly linked from x. In this
program, which is specified below, reachable and indirect are intensional predicates,
link is an extensional predicate, x, y and z are variables.

reachable(x, y)← link(x, y)

reachable(x, y)← link(x, z), reachable(z, y)

indirect(x, y)← reachable(x, y),∼ link(x, y).

Let the query be indirect(a, x) and the extensional instance I for link be as follows,
where a, ai, bi are constant symbols and n = 50:

I(link) = {(a, a1)} ∪ {(ai, ai+1) | 1 ≤ i < n} ∪ {(an, a1)} ∪
{(bi, bi+1) | 1 ≤ i < n} ∪ {(bn, b1)}.

Test 6.17. This test uses the “cousins at the same generation” program specified below,
which is a modified version of a program in [68]. It is a non-recursive program, where
sibling, grandparent and cousin are intensional predicates, parent is an extensional
predicate, x, y, z are variables:

sibling(x, y)← parent(z, x), parent(z, y), x \= y

grandparent(x, y)← parent(x, z), parent(z, y)

cousin(x, y)← grandparent(z, x), grandparent(z, y),∼sibling(x, y), x \= y.

In addition to the extensional and intensional predicates, our implementation can
deal with some arithmetic operators. In this program, we use the predicate \=, where
(x \= y) denotes ∼(x == y) with the meaning that x and y are not the same. For
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Intensional Generated tuples Intensional Generated tuples

relations DES QSQN-STR relations DES QSQN-STR

Test 6.15 Test 6.18

path 10200 5100 node 101 101

acyclic 100 100 reachable 5101 2550

Test 6.16 unreachable 51 51

reachable 2550 2550

indirect 49 49 Test 6.19

Test 6.17 q1 466 30

sibling 1597 544 q2 13922 0

grandparent 354 354 p 1 1

cousin 702 702

Table 6.8: A comparison between QSQN-STR and DES w.r.t. the number of the
generated tuples in answer relations corresponding to the intensional predicates.

instance, the first clause says that x and y are siblings if they have the same parents
and x is not y (i.e., they are not the same individual).

The query for this test is cousin(x, y) and the extensional instance I for parent was
generated using generate data website14, which contains 350 tuples.

Test 6.18. This test computes all pairs of disconnected nodes in a graph. It is taken
from [32], where reachable, node and unreachable are intensional predicates, link is an
extensional predicate, x, y and z are variables. The query is unreachable(a, x) and the
extensional instance I for link is the same as in Test 6.16 using n = 50. The program
is specified as follows:

reachable(x, y)← link(x, y)

reachable(x, y)← link(x, z), reachable(z, y)

node(x)← link(x, y)

node(y)← link(x, y)

unreachable(x, y)← node(x), node(y),∼reachable(x, y).

Test 6.19. The program, the extensional instance and the query for this test are taken
from Example 5.2 using m = n = 30.

6.5.2 Results and Discussion

Table 6.8 shows the comparison between QSQN-STR and DES [56] w.r.t. the maxi-
mum number of generated tuples in answer relations corresponding to the intensional

14http://www.generatedata.com
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predicates for QSQN-STR and the number of generated tuples in answer relations corre-
sponding to the intensional predicates for DES. As can be seen in this table, QSQN-STR
and DES have the same results in intensional relations for the semi-positive program in
Test 6.16. However, the number of generated tuples in the answer relations correspond-
ing to negated intensional predicates for QSQN-STR is often smaller than DES. Due
to the top-down approach of IDFS2, at the time of processing a negative literal, the
corresponding subquery contains no variables. Thus, this takes the advantage of reduc-
ing the number of generated tuples in relations corresponding to negated intensional
predicates.
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Chapter 7

Conclusions

The Horn fragment of first-order logic plays an important role in knowledge representa-
tion and reasoning. It is used as the language of definite logic programs and goals in logic
programming. Its range-restricted and function-free version is also used as the Data-
log language for deductive databases. Recently, rule-based query languages, including
languages related to Datalog, have drawn a great deal of attention from researchers,
especially as rule languages are now applied in areas such as the Semantic Web.

7.1 Summary of Contributions

We have formulated the first framework for developing algorithms for evaluating queries
to Horn knowledge bases with the properties that: the approach is goal-directed; each
subquery is processed only once and each supplement tuple, if desired1, is transferred
only once; operations are done set-at-a-time; and any control strategy can be used.

Our framework is an adaptation and a generalization of the QSQ approach of Dat-
alog for Horn knowledge bases. One of the key differences is that we do not use adorn-
ments and annotations, but use substitutions instead. This is natural for the case with
function symbols and without the range-restrictedness condition. When restricting to
Datalog queries, it groups operations on the same relation together regardless of adorn-
ments and allows to reduce the number of accesses to the secondary storage although
“joins” would be more complicated.

QSQ-nets are a more intuitive representation than the description of the QSQ ap-
proach of Datalog given in [1]. Particularly, we transform a logic program into an equiv-
alent net structure and use it to determine which set of tuples or subqueries should be
evaluated at each step, in an efficient way. Our notion of QSQ-net makes a connection
to flow networks and is intuitive for developing efficient evaluation algorithms. For ex-
ample, as shown in Chapter 4, it is easy to incorporate tail-recursion elimination and
right/tail-recursion elimination into QSQ-nets.

Our framework forms a generic evaluation method called QSQN. This method is
designed so that the query processing is divided into appropriate steps which can be
delayed to maximize adjustability and allow various control strategies. In comparison

1when T (v) = false for all nodes v of the form filter i,j with kind(v) = extensional.
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with the most well-known evaluation methods, the generic QSQN evaluation method
does not do redundant recomputations as the QSQR evaluation method and is more
adjustable and thus has essential advantages over the Magic-Sets evaluation method.

The QSQN method is much different from the QSQR method. Despite that both the
QSQN evaluation method proposed in this dissertation and the QSQR method proposed
in [39] deal with query processing for Horn knowledge bases, they are fundamentally
different:

− As discussed in [39, Remark 3.2], QSQR uses iterative deepening search and clears
input relations at the beginning of each iteration of the main loop, and thus allows
redundant recomputations. In contrast, QSQN allows any control strategies and
reduces redundant recomputations.

− Using the recursive approach, a path of recursive calls by QSQR may be long and
involves a considerable number of relations. When no more computer memory is
available, this causes many operations of loading/unloading relations from/to the
secondary storage. In contrast, the processing in QSQN is divided into smaller steps
and QSQN has the adjustability in choosing an operation for the next step. This
allows accumulating tuples/subqueries at each node of the net before processing
them together (set-at-a-time), and hence reduces the number of accesses to the
secondary storage.

The QSQN method is sound and complete, and when the term-depth bound is fixed,
it has polynomial time data complexity. Notice the significance of this: it states that
one can develop and use any control strategy for QSQN and the resulting evaluation
method is always guaranteed to be sound and complete. The properties on soundness,
completeness and data complexity of QSQN are important in the context that, without
proofs, the methods proposed in [1, 38, 69] were wrongly claimed to be complete.

We evaluated the usefulness of the generic QSQN evaluation method as follows:

− We proposed three control strategies DAR, DFS, IDFS and implemented QSQN
together with these strategies to obtain the corresponding evaluation methods
QSQN-DAR, QSQN-DFS and QSQN-IDFS. The intention of DAR is to reduce
the number of accesses to the secondary storage. However, our current implementa-
tion of the DAR control strategy is not advanced enough and the implemented
QSQN-DAR method is not more efficient than the implemented QSQN-IDFS
method. So, for comparison with the Magic-Sets and QSQR methods we used
QSQN-IDFS.

− We also implemented the Magic-Sets and QSQR methods for the comparison.

− We compared the implemented QSQN-IDFS, QSQR and Magic-Sets methods us-
ing representative examples that appeared in well-known articles on deductive
databases as well as new examples. The comparison was made w.r.t. the following
measures:

• the number of read/write operations on relations,
• the maximum number of tuples/subqueries kept in the computer memory for

the case when the memory is large enough to hold all the related extensional
relations as well as the intermediate relations,
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• the number of accesses to the secondary storage when the memory is limited.

We chose these measures because they (essentially) affect the execution time but
not vice versa, while the execution time is also affected by various optimization
techniques as well as by data management at the physical level. Comparison results
on the execution time and the number of tuples/subqueries read from or written to
the secondary storage are less representative and provided only online in [13].

Our experiments in Section 6.2 show that the QSQN-IDFS evaluation method is
more efficient than the QSQR evaluation method and as competitive as the Magic-
Sets evaluation method. In the case when the order of program clauses and the order
of atoms in the bodies of program clauses are essential as in Prolog programming,
the QSQN-IDFS evaluation method usually outperforms the Magic-Sets method. As
QSQN-IDFS is just an instance of the generic QSQN evaluation method, we conclude
that this generic method is useful.

We have incorporated tail-recursion elimination into query-subquery nets in order to
formulate the QSQN-TRE evaluation method for Horn knowledge bases, which allows
to reduce materializing intermediate results during the processing. We have proved
soundness and completeness of the QSQN-TRE evaluation method and showed that,
when the term-depth bound is fixed, the method has polynomial time data complexity.
Similarly to QSQN, our new method allows various control strategies such as DAR,
DFS and IDFS. The experimental results in Section 6.3 show that, if the considered
query depends on a tail-recursive predicate p such that:

− p occurs only in the last position in the bodies of the recursive clauses defining it,

− the adorned version of the logic program and the query uses only a unique adorned
version of p, which has at least one bound parameter,

then the QSQN-TRE method usually outperforms the other methods w.r.t.

− the number of read or write operations on relations,

− the maximum number of tuples and subqueries kept in the computer memory,

− the number of accesses to the secondary storage as well as the number of tuples
and subqueries read from or written to the secondary storage when the computer
memory is limited.

Additionally, we have proposed another method called QSQN-rTRE for evaluating
queries to Horn knowledge bases, which can eliminate not only tail-recursive predicates
proposed in Section 4.1, but also intensional predicates that appear rightmost in the
bodies of the program clauses. The aim is to reduce materializing intermediate results
for a certain class of queries that depends on right/tail-recursive predicates. Especially,
for the case when the intensional predicates are mutually (rightmost) dependent on
each other as in Test 6.13. The usefulness of this method is illustrated by empirical
results in Section 6.4.

Besides, we have incorporated stratified negation into query-subquery nets to obtain
the QSQN-STR method for evaluating queries to stratified knowledge bases. We have
proved the soundness and completeness of QSQN-STR for the case without function
symbols. The experimental results in Section 6.5 indicate the usefulness of this method.
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7.2 Future Work

As discussed in the previous chapters, although the provided methods for evaluating
queries to Horn knowledge bases or stratified knowledge bases are useful, there are some
improvements that could still be made to improve the performance of the QSQN method
and its extensions. This section briefly describes some interesting research topics, which
are worth investigating further. In the future, our work will mainly concentrate on the
following tasks:

− As mentioned earlier, QSQN and its extensions allow various control strategies, we
will develop better control strategies for QSQN, which focus on how to reduce the
number of accesses to the secondary storage as much as possible.

− A possible work would be to develop optimization techniques for QSQN in process-
ing Datalog queries by using adornments.

− Other directions would be to incorporate into QSQN the optimization tech-
niques proposed in [42, 48, 61, 65] as well as apply our evaluation methods to
the Datalog-like rule languages for the Semantic Web proposed in our previous
works [18, 19, 20, 21].

− Another area of interest for the application of the proposed methods is in working
with large datasets [25, 66].

− We will implement a variant of the Magic-Sets method without adornments and
extend our comparison to also cover that modified method. This will make a com-
prehensive comparison between the QSQN and Magic-Sets methods.

− It is desirable to consider normal logic programs, which allow negation to occur in
the bodies of program clauses. Therefore, we will extend the QSQN-STR method
for dealing with this language using the well-founded semantics [23, 34, 64].
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Appendix A

Existing Methods for Query
Evaluation

Researchers have developed a number of evaluation methods for Datalog deductive
databases or Horn knowledge bases such as QSQ [1, 69], QSQR [43, 69], QoSaQ [71] and
Magic-Sets [1, 7, 8]. These evaluation methods have both advantages and disadvantages.
In this appendix, we present in brief the most well-known methods for evaluating queries
to Datalog deductive databases or Horn knowledge bases such as QSQR and Magic-Sets.
We begin with the following example:

Example A.1. This example is taken from [8]. Consider the following positive logic
program P :

r1 : ancestor(x, y)← parent(x, y)

r2 : ansestor(x, y)← parent(x, z), ancestor(z, y)

where x, y, z are variables, parent is an extensional predicate with the meaning that
parent(x, y) is true if x is a parent of y, and ancestor is an intensional predicate with
the meaning that ancestor(x, y) is true if x is an ancestor of y.

The rule (clause) r1 says that “if x is a parent of y then x is an ancestor of y”, and
the rule r2 means “if x is a parent of z and z is an ancestor of y then x is an ancestor
of y”.

Let the query be ancestor(john, x)?, asking “John is an ancestor of whom?”. The
task is to find all the descendants of John. �

Evaluation of a query (e.g., in Example A.1) can be performed in two different ways,
which have both advantages and disadvantages. The bottom-up strategy starts from the
existing facts and infers new facts. This strategy always terminates and allows us to use
set-at-a-time operations, which may be made efficient for accessing to the secondary
storage. However, the bottom-up strategy is not goal-oriented, it can involve a lot of
irrelevant computations. The top-down strategy starts from the query as a goal and uses
rules from head to body to create more goals (i.e., subgoals). It is goal-oriented, but the
computations are performed tuple-at-a-time so that the reduction of a goal to subgoals
involves only a small amount of data, and the evaluation may not be terminated.
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For evaluation of Datalog deductive databases (or Horn knowledge bases) queries,
there are two types of information passing:

− Unification: in general, unification matches two terms t1 and t2 by finding a sub-
stitution of variables mapping M such that if M is applied to t1 and M is applied
to t2 then the results are equal.

− Sideways Information Passing Strategy (SIPS) [7, 8]: given bindings for some vari-
ables of a predicate, we can solve the predicate with these bindings and thus obtain
bindings for some other variables. These new bindings can be “passed” to another
predicate in the same rule to restrict the computation for that predicate.

An adornment for an m-ary predicate p is a string “α” of length m made up of b
(bound) and f (free), denoted by pα. By applying the SIPS for a program, we can
generate adorned rules by using predicates with some arguments bound to constants,
and the other arguments free. The general algorithm for adorning a rule is as follows [1]:

− all occurrences of each bound variable in the rule head are bound,

− all occurrences of constants are bound,

− if a variable x occurs in the rule body, then all occurrences of x in subsequent literals
are bound,

− the otherwise is free.

A different ordering of the rule body would yield different adornments. We denote
the adorned version of a program P by P ad. See [1, 8] for more details.

Example A.2. The following program is the adorned version corresponding to the
positive logic program P given in Example A.1 for the query ancestor(john, x)?:

r1 : ancestorbf (x, y)← parent(x, y)

r2 : ancestorbf (x, y)← parent(x, z), ancestorbf (z, y)

Query: ← ancestorbf (john, x)?.

We denote this adorned program by P ad. �

Restricting to query evaluation for Datalog deductive databases or Horn knowl-
edge bases, there are top-down methods such as QSQ [1, 69, 71], QSQR [39],
QoSaQ [71] and bottom-up methods such as Naive, (improved) Semi-naive evaluation
and Magic-Sets [1, 7, 8]. We now present some basic definitions of the well-known eval-
uation methods such as QSQR and Magic-Sets. The QSQ approach (including QSQR,
QoSaQ) is based on SLD-resolution, the magic-sets technique simulates QSQ. All of
the methods based on QSQ (including bottom-up methods based on magic-sets trans-
formation) are goal-directed.

A.1 Query-Subquery Recursive

The Query-Subquery (QSQ) method [69] is a top-down evaluation method based on
backward chaining. As an advantage, it tries to access only relevant facts to answer the
query.

100



The important key of this method is subquery. A goal, together with the program,
determines a query. Similarly, a subgoal, together with the program, defines a subquery.
In order to answer a query, each goal is expanded in a list of subgoals, which are then
expanded in their turn.

The QSQ method for evaluating Datalog queries is based on SLD-resolution and
executes operations in a set-oriented way. It uses the constants in the original query and
“pushes” constants from goals to subgoals in the same way as pushing selections into
joins. It uses “SIPS” to pass constants binding information from one literal to the next
in the body of a rule. During the process of QSQ query evaluation, relation instances are
stored in supplementary relations (denoted by sup0, sup1, . . . , supn). Typically, these
instances repeatedly acquire new tuples as the algorithm runs.

Query-Subquery Recursive (QSQR) is an algorithm based on the QSQ framework.
The first version of QSQR evaluation method was formulated by Vieille in [69] for
Datalog deductive databases. It is set-oriented and uses a tabulation technique. As
discussed in [39], that version is incomplete. The work [39] corrects and generalizes
the QSQR method for Horn knowledge bases to give a set-oriented depth-first search
evaluation method. The correction depends on clearing global “input” relations for each
iteration of the main loop. In their generalized version, they used substitutions instead
of adornments and annotations (but has the effects of the annotated version). To deal
with function symbols, they used a term-depth bound for atoms and substitutions
occurring in the computation. They formulated two algorithms:

− Algorithm 1 is a tuple-at-a-time method, it is a combination of depth-first search
and tabulation. In order to obtain all answers for a query, all the choices are sys-
tematically tried, and the process is repeated until no changes were made to the
global answer variables (i.e., ans ) during the last iteration of the main loop. The
global input variables (i.e., input ) are reset to empty relations for each iteration of
the main loop.

− Algorithm 2 is a reformulation of Algorithm 1 using set-at-a-time technique. The
reformulation is based on processing a set of goal atoms of the same predicate instead
of processing a single goal atom. It is a mixture of depth-first search, breadth-first
search and tabulation. By doing set-at-a-time, it reduces the number of accesses
to the secondary storage. In order to avoid keeping unnecessary information it also
uses the same variable for the whole sequence of supplements (i.e., supi).

As stated in [39], the QSQR method has some disadvantages as its approach is like
iterative deepening search. It allows redundant recomputations [39, Remark 3.2]:

“If we change Algorithm 1 by moving the call clear-input-var from the inside
of the “repeat” loop to the place before the loop then it becomes incomplete. This
was illustrated in [39, Example 3.1] and can be checked by using the implemen-
tation. Without clearing the global input relations for subsequent iterations of
the main loop there are situations when ans atoms derived in some earlier steps
cannot be exploited for the currently considered subquery to derive further results
because the subquery is subsumed by a previously considered subquery and is then
omitted. In other words, since the QSQR evaluation procedure is specified as a
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recursive function, newly derived ans atoms are not directly propagated to all
recursive calls. That is, the intermediary ans relations are somehow local to
each recursive call although the ans variables are global. This leads to the need
to clear the input relations occasionally (e.g., at the beginning of each iteration
of the main loop as in Algorithm 1, or after/before each recursive call) in order
to allow recomputations using updated ans relations. Sometimes such recompu-
tations are redundant. As observed by Vieille [71], the QSQR evaluation method
is like iterative deepening search. It has both advantages and disadvantages.”

A.2 Magic-Sets Transformation

The magic-sets technique for Datalog queries is a rule-rewriting method that generates
from a given set of rules (clauses) a new set of rules, which is equivalent to the origi-
nal set with respect to the original query. After rewriting, the new program (denoted
by Pmg) can be evaluated by a simple bottom-up algorithm, usually by the improved
semi-naive evaluation method. This approach takes the advantage of reducing irrelevant
facts and restricting the search space. Thus, it combines the advantages of top-down
and bottom-up methods.

We use the adorned program P ad given in Example A.2 to demonstrate the
magic-sets technique. From the original rules of P ad, the magic-sets technique gen-
erates a new set of rules by the following steps (see [7, 8] for more details of each
step):

1. Creating a new predicate magic pα for each pα in P ad, the arity of the new predicate
is the number of occurrences of b in the adornment α, and its arguments correspond
to the bound arguments of pα.

For example, the following magic predicates are created for the adorned pro-
gram P ad:

magic ancestorbf (x) and magic ancestorbf (z).

2. For each rule r in P ad, and for each occurrence of an adorned predicate pα in its
body, generating a magic rule defining magic pα.

For example, after generating a magic rule defining magic ancestorbf (z) from
rule r2 and the second body literal, we have:

magic ancestorbf (z)← magic ancestorbf (x), parent(x, z).

3. Modifying each rule in P ad by adding an appropriate atom of the corresponding
magic predicate to its body.

For example, after modifying rule r1, we have:

ancestorbf (x, y)← magic ancestorbf (x), parent(x, y)

and modifying rule r2, we have:

ancestorbf (x, y)← magic ancestorbf (x), parent(x, z), ancestorbf (z, y).

4. Creating the seed for the query using the corresponding magic-sets predicate.

For example, creating the seed from the query results in:
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magic ancestorbf (john).

Example A.3. The magic-sets rule-rewriting program corresponding to the adorned
program P ad given in Example A.2 is specified as follows:

r1 : magic ancestorbf (z)← magic ancestorbf (x), parent(x, z)

r2 : ancestorbf (x, y)← magic ancestorbf (x), parent(x, y)

r3 : ancestorbf (x, y)← magic ancestorbf (x), parent(x, z), ancestorbf (z, y)

r4 : magic ancestorbf (john).

We denote this rule-rewriting program by Pmg. �

There are close connections between magic-sets technique and QSQ approach. The
predicate magic pα (resp. pα) in the magic-sets technique plays the role of the predicate
input pα (resp. ans pα) in the QSQ approach.

The Generalized Supplementary Magic Sets algorithm proposed by Beeri and Ra-
makrishnan [8] uses some special predicates called “supplementary magic predicates”
in order to eliminate the duplicate work during the processing. For example, con-
sider the magic-sets rule-rewriting program Pmg presented in Example A.3. The join of
magic ancestorbf and parent in the first magic rule r1 is evaluated again in the third
magic rule r3. In order to reduce such a duplicate work, they store these results in
special predicates called supplementary magic predicates. We refer the reader to [8] for
details of this algorithm.

Example A.4. We give below the rewritten set of optimized rules for the program Pmg

given in Example A.3 using the generalized supplementary magic-sets algorithm [8]:

supmagic22(x, z)← magic ancestorbf (x), parent(x, z)

ancestorbf (x, y)← magic ancestorbf (x), parent(x, y)

ancestorbf (x, y)← supmagic22(x, z), ancestor
bf (z, y)

magic ancestorbf (z)← supmagic22(x, z)

magic ancestorbf (john).

�

After performing the magic-sets transformation using the generalized supplemen-
tary algorithm as in Example A.4, the obtained program can be evaluated by a bottom-
up method such as the improved semi-naive evaluation method. In this case, the im-
proved semi-naive evaluation method constructs a list [R1], . . . , [Rn] of equivalence
classes of intensional predicates with respect to their dependency [1]. Then, it computes
the instances (relations) of the predicates in [Ri] for each 1 ≤ i ≤ n in the increasing
order, treating all the predicates in [Rj ] with j < i as extensional predicates.

Both QSQR and Magic-Sets are the most well-known methods for evaluating queries
to Datalog deductive databases or Horn knowledge bases. They are goal-directed. How-
ever, they have some disadvantages:
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− the QSQR approach uses iterative deepening search and it allows redundant recom-
putations (e.g., see [39, Remark 3.2]),

− the Magic-Sets method applies breadth-first search and it is not always efficient (e.g.,
see Example 1.1).

It is worth developing other methods for evaluating queries to Horn knowledge
bases, which are more efficient than QSQR and more adjustable than Magic-Sets.
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Appendix B

Proof of Lemma 4.3 for the Case
T(r) = false

We present here the proof of Lemma 4.3 for the case T (r) = false. The proof is very
similar to the one for QSQN given by Nguyen in [45] and our revision [12], except for
the case when the predicate p of Bi,j is an intensional predicate. In this case, T (p) can
be either true or false. We present the full proof for this case here to make the text
self-contained. We assume that the sets of fresh variables used for renaming variables
of input program clauses in SLD-refutations and in Algorithm 2 are disjoint.

Proof. Suppose that T (p) = false. Recall that we prove the lemma by induction on
the length of the mentioned SLD-refutation. Let θ1, . . . , θy be the sequence of mgu’s
used in the refutation. We have that r(s)θ1 . . . θy = r(s)θ. Suppose that the first
step of the refutation of P ∪ I ∪ {← r(s)} uses an input program clause ϕ′i = (A′i ←
B′i,1, . . . , B

′
i,ni

), which is a variant of a program clause ϕi = (Ai ← Bi,1, . . . , Bi,ni) of P ,
resulting in the resolvent ← (B′i,1, . . . , B

′
i,ni

)θ1. Let k1 = 2, kni+1 = y + 1 and suppose
that, for 1 ≤ j ≤ ni,

the fragment for processing ← B′i,jθ1 . . . θkj−1 of the refutation of
P ∪ I ∪ {← r(s)} uses mgu’s θkj , . . . , θkj+1−1.

(B.1)

Thus, after processing the atom B′i,j−1 for 2 ≤ j ≤ ni+1, the next goal of the refutation
of ← r(s) is ← (B′i,j , . . . , B

′
i,ni

)θ1 . . . θkj−1. (If j = ni + 1 then the goal is empty.)
Let % be a renaming substitution such that ϕ′i = ϕi%. Thus, B′i,j = Bi,j% for

1 ≤ j ≤ ni. We can assume that % does not use any variable occurring in s. Thus,

s = s%. (B.2)

Since θ1 = mgu(r(s), A′i) and A′i = Ai% and by (B.2), it follows that r(s)%θ1 =
r(s)θ1 = A′iθ1 = Ai%θ1 and hence %θ1 is a unifier for r(s) and Ai. Let γ0 be an mgu Al-
gorithm 2 used to unify r(s) with Ai when processing s for the edge (input r, pre filter i).
Thus, there exists a substitution η0 such that γ0η0 = %θ1.

Let t0 = sγ0 and δ0 = (γ0)|post vars(pre filter i)
.

Consider the base case, which occurs when ni = 0 and the SLD-refutation has the
length one. By (B.2) and the fact γ0η0 = %θ1, we have that

sθ1 = s%θ1 = sγ0η0 = t0η0. (B.3)
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Thus, sθ1 is an instance of t0. Since post vars(pre filter i) = ∅, the subquery (t0, ε) was
transferred through the edge (pre filter i, post filter i). Hence, tuples(ans r) contains s′′

such that t0 is an instance of a fresh variant of s′′. Since sθ = sθ1, it follows that, sθ is
an instance of a variant of s′′.

Let us consider the induction step. We have that ni ≥ 1. We will refer to the data
structures used by Algorithm 2. We first prove the following remark:

Remark B.1. Let 1 ≤ j ≤ ni, v = filter i,j, u = filter i,j−1 if j > 1, and u = pre filter i
otherwise. If (tj−1, δj−1) is a subquery transferred through (u, v) at some step and there
exists a substitution η such that

(Ai, (Bi,j , . . . , Bi,ni))%θ1 . . . θkj−1 = (r(tj−1), (Bi,j , . . . , Bi,ni)δj−1)η, (B.4)

then there exist a subquery (tj , δj) transferred through (v, succ(v)) at some step and a
substitution η′ such that

(Ai, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj+1−1 = (r(tj), (Bi,j+1, . . . , Bi,ni)δj)η
′. (B.5)

Suppose the premises of this remark hold. Without loss of generality we assume
that:

if (kind(v) = extensional and T (v) = true) or kind(v) = intensional
then the subquery (tj−1, δj−1) was added to subqueries(v).

(B.6)

Since B′i,j = Bi,j% and (B.4), we have that:

(← B′i,jθ1 . . . θkj−1) = (← Bi,j%θ1 . . . θkj−1) = (← Bi,jδj−1η). (B.7)

Since the term-depth of Bi,jδj−1η = B′i,jθ1 . . . θkj−1 is not greater than l, the term-
depth of Bi,jδj−1 is also not greater than l. By (B.1), (B.7) and Lifting Lemma 2.2 we
have that

there exists a refutation of P ∪ I ∪ {← Bi,jδj−1} using the leftmost
selection function and mgu’s θ′kj , . . . , θ

′
kj+1−1 such that the term-depths

of goals are not greater than l and ηθkj . . . θkj+1−1 = θ′kj . . . θ
′
kj+1−1µ for

some substitution µ.

(B.8)

Consider the case when the predicate p = pred(v) of Bi,j is an extensional predi-
cate. Thus,

kj+1 = kj + 1 (B.9)

and

Bi,jδj−1θ′kj = p(t
′
)σθ′kj (B.10)

where p(t
′
)σ is the input program clause used for resolving ← Bi,jδj−1, with t

′ ∈ I(p)
and σ being a renaming substitution. Regarding the transfer of the subquery (tj−1, δj−1)
through (u, v), under the assumption (B.6), Algorithm 2 unifies atom(v)δj−1 = Bi,jδj−1
with a fresh variant p(t

′
)σ′ of p(t

′
), where σ′ is a renaming substitution, resulting in an
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mgu γ (by (B.10), Bi,jδj−1 and p(t
′
)σ′ are unifiable) and then transfers the subquery

(tj−1γ, (δj−1γ)|post vars(v)) through (v, succ(v)). Let

tj = tj−1γ and δj = (δj−1γ)|post vars(v). (B.11)

We have that σ = σ′σ′′ for some renaming substitution σ′′ such that

σ′′ does not use variables of tj−1, δj−1 and pre vars(v). (B.12)

Thus Bi,jδj−1σ′′θ′kj = Bi,jδj−1θ′kj , and by (B.10) and the fact σ = σ′σ′′, we have that

(Bi,jδj−1)σ′′θ′kj = Bi,jδj−1θ′kj = p(t
′
)σθ′kj = (p(t

′
)σ′)σ′′θ′kj .

Hence, Bi,jδj−1 and p(t
′
)σ′ are unifiable using σ′′θ′kj , while γ is an mgu for them. Hence

σ′′θ′kj = γµ′ (B.13)

for some substitution µ′. Let η′ = µ′µ. We have that:

(Ai, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj+1−1

= ((Ai, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj−1)θkj . . . θkj+1−1

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)ηθkj . . . θkj+1−1 (by the assumption (B.4))

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)θ
′
kj
. . . θ′kj+1−1µ (by (B.8))

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)σ
′′θ′kj . . . θ

′
kj+1−1µ (by (B.12))

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)γµ
′µ (by (B.9) and (B.13))

= (r(tj), (Bi,j+1, . . . , Bi,ni)δj)η
′ (by (B.11) and the fact η′ = µ′µ).

We have shown (B.5) and thus proved Remark B.1 for the case when the predicate
of Bi,j is extensional.

Now consider the case when the predicate p of Bi,j is an intensional predicate.
By the assumption (B.6), the subquery (tj−1, δj−1) was also added to

unprocessed subqueries2 (v). Let Bi,jδj−1 = p(t
′
j). If T (p) = true (resp. T (p) = false)

then the pair (t
′
j , t
′
j) (resp. tuple t

′
j) was transferred through the edge (v, input p), hence

there must exist some tuple pair (t, t
′
) (resp. tuple t

′
) more general than a fresh variant

of (t
′
j , t
′
j) (resp. t

′
j) that was added to tuple pairs(input p) (resp. tuples(input p)) at some

step, and thus (t, t
′
)λ = (t

′
j , t
′
j)λ
′ (resp. t

′
λ = t

′
jλ
′) for some substitution λ that uses

only variables from t, t
′
(resp. t

′
) and a renaming substitution λ′ with domain contained

in Vars(t
′
j). Hence, (t, t

′
)α = (t

′
j , t
′
j) (resp. t

′
α = t

′
j) for the substitution α = λ(λ′)−1.

We can assume that α uses only variables from t, t
′

and t
′
j (resp. t

′
and t

′
j). Thus,

Bi,jδj−1 = p(t
′
j) = p(t

′
)α if T (p) = false, (B.14)

and
Bi,jδj−1 = p(t

′
j) = p(t)α = p(t

′
)α if T (p) = true. (B.15)
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By (B.8) and Lifting Lemma 2.2, it follows that there exists a refutation of
P ∪ I ∪ {← p(t)} if T (p) = true (resp. P ∪ I ∪ {← p(t

′
)} if T (p) = false) using the

leftmost selection function and mgu’s θ′′kj , . . . , θ
′′
kj+1−1 such that the term-depths of the

goals are not greater than l and

αθ′kj . . . θ
′
kj+1−1 = θ′′kj . . . θ

′′
kj+1−1β (B.16)

for some substitution β. By the inductive assumption, tuples(ans p) contains a tuple
t
′′

such that t
′
θ′′kj . . . θ

′′
kj+1−1 is an instance of a variant of t

′′
. Since

Bi,jδj−1θ′kj . . . θ
′
kj+1−1 = p(t

′
)αθ′kj . . . θ

′
kj+1−1 (by (B.14) and (B.15))

= p(t
′
)θ′′kj . . . θ

′′
kj+1−1β (by (B.16)),

it follows that

Bi,jδj−1θ′kj . . . θ
′
kj+1−1 is an instance of a variant of p(t

′′
). (B.17)

From a certain moment there were both (tj−1, δj−1) ∈ subqueries(v) and
t
′′ ∈ tuples(ans p). Hence, at some step Algorithm 2 unified atom(v)(δj−1) = Bi,jδj−1

with a fresh variant p(t
′′
)σ of p(t

′′
), where σ is a renaming substitution. The atom p(t

′′
)σ

does not contain variables of tj−1, δj−1, pre vars(v) and θ′kj . . . θ
′
kj+1−1. By (B.17),

Bi,jδj−1 and p(t
′′
)σ are unifiable. Let the resulting mgu be γ and let

tj = tj−1γ and δj = (δj−1γ)|post vars(v). (B.18)

Algorithm 2 then transferred the subquery (tj , δj) through (v, succ(v)).
By (B.17), Bi,jδj−1θ′kj . . . θ

′
kj+1−1 is an instance of p(t

′′
)σ. Let ρ be a substitution

with domain contained in Vars(p(t
′′
)σ) such that Bi,jδj−1θ′kj . . . θ

′
kj+1−1 = p(t

′′
)σρ. We

have that

the domain of ρ does not contain variables of tj−1, δj−1, pre vars(v) and
θ′kj . . . θ

′
kj+1−1

(B.19)

and θ′kj . . . θ
′
kj+1−1 ∪ ρ is a unifier for Bi,jδj−1 and p(t

′′
)σ. As γ is an mgu for Bi,jδj−1

and p(t
′′
)σ, we have that

γµ′ = (θ′kj . . . θ
′
kj+1−1 ∪ ρ) (B.20)

for some substitution µ′. Let η′ = µ′µ. We have that:

(Ai, (Bi,j+1, . . . , Bi,ni))%θ1 . . . θkj+1−1

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)θ
′
kj
. . . θ′kj+1−1µ (as shown before)

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)(θ
′
kj
. . . θ′kj+1−1 ∪ ρ)µ (by (B.19))

= (r(tj−1), (Bi,j+1, . . . , Bi,ni)δj−1)γµ
′µ (by (B.20))

= (r(tj), (Bi,j+1, . . . , Bi,ni)δj)η
′ (by (B.18) and the fact η′ = µ′µ).
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We have shown (B.5) and thus proved Remark B.1 for the case when the predicate
of Bi,j is intensional. This completes the proof of this remark. �

Recall that t0 = sγ0 and δ0 = (γ0)|post vars(pre filter i)
and k1 = 2. The subquery

(t0, δ0) was transferred through the edge (pre filter i,filter i,1). Observe that the premises
of Remark B.1 hold for j = 1 and for the subquery (t0, δ0) using η = η0. Hence there
exist a subquery (t1, δ1) transferred through (filter i,1, succ(filter i,1)) at some step and
a substitution η1 such that

(Ai, (Bi,2, . . . , Bi,ni))%θ1 . . . θk2−1 = (r(t1), (Bi,2, . . . , Bi,ni)δ1)η1.

For each 1 < j ≤ ni, we can apply Remark B.1 to obtain a subquery (tj , δj) and ηj
(for η′). Since post vars(filter i,ni) = ∅, it follows that, for j = ni, we have that (tni , ε)
is a subquery transferred through (filter i,ni , post filter i) at some step and

Ai%θ1 . . . θkni+1−1 = r(tni)ηni .

Since kni+1 = y + 1 and θ = (θ1 . . . θy)|Vars(s), it follows that

r(s)θ = r(s)θ1 . . . θy = A′iθ1 . . . θy = Ai%θ1 . . . θy = r(tni)ηni .

Thus, sθ is an instance of tni . Since (tni , ε) was transferred through the edge
(filter i,ni , post filter i), tuples(ans r) contains s′′ such that tni is an instance of a fresh
variant of s′′. It follows that, sθ is an instance of a variant of s′′. This completes the
proof of Lemma 4.3 for the case T (r) = false. �
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Appendix C

Functions and Procedures Used
for Algorithm 2

In this section, we present a list of all functions and procedures that are related to
the processing of Algorithm 2 (on page 38) such as fire2 and transfer2. They are
modified versions of procedures used for Algorithm 1. The related procedures used for
fire2 and transfer2 such as add-tuple-pair and compute-gamma are also listed.

Procedure add-tuple-pair(t, t
′
,Γ)

Purpose: add the pair of tuples (t, t
′
) to Γ, but keep in Γ only the most general

pairs.

1 let (t2, t
′
2) be a fresh variant of (t, t

′
);

2 if (t2, t
′
2) is not an instance of any pair from Γ then

3 delete from Γ all pairs that are instances of (t2, t
′
2);

4 add (t2, t
′
2) to Γ

Procedure compute-gamma

Purpose: a macro used in procedure fire2

1 if T (p) = false then
2 foreach (t, δ) ∈ unprocessed subqueries2 (u) do

3 let p(t
′
) = atom(u)δ;

4 add-tuple(t
′
,Γ)

5 else if (j < ni) or (p is not the predicate of Ai) then
6 foreach (t, δ) ∈ unprocessed subqueries2 (u) do

7 let p(t
′
) = atom(u)δ;

8 add-tuple-pair(t
′
, t
′
,Γ)

9 else
10 foreach (t, δ) ∈ unprocessed subqueries2 (u) do

11 let p(t
′
) = atom(u)δ;

12 add-tuple-pair(t
′
, t,Γ)
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Procedure fire2(u, v)

Global data: a Horn knowledge base (P, I), a QSQN-TRE N = (V,E, T,C)

of P , and a term-depth bound l.

Input: an edge (u, v) ∈ E such that active-edge(u, v) holds.

1 if u is input p or ans p then

2 transfer2(unprocessed(u, v), u, v);

3 unprocessed(u, v) := ∅
4 else if u is filter i,j and kind(u) = extensional and T (u) = true then

5 let p = pred(u) and set Γ := ∅;
6 foreach (t, δ) ∈ unprocessed subqueries(u) do

7 foreach t
′ ∈ I(p) do

8 if atom(u)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ then

9 add-subquery(tγ, (δγ)|post vars(u),Γ, v)

10 unprocessed subqueries(u) := ∅;
11 transfer2(Γ, u, v)

12 else if u is filter i,j and kind(u) = intensional then

13 let p = pred(u) and set Γ := ∅;
14 if v = input p then

15 compute-gamma;

16 unprocessed subqueries2 (u) := ∅;
17 else

18 foreach (t, δ) ∈ unprocessed subqueries(u) do

19 foreach t
′ ∈ tuples(ans p) do

20 if atom(u)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ

then

21 add-subquery(tγ, (δγ)|post vars(u),Γ, v)

22 unprocessed subqueries(u) := ∅;
23 if unprocessed tuples(u) 6= ∅ then

24 foreach t ∈ unprocessed tuples(u) do

25 foreach (t
′
, δ) ∈ subqueries(u) do

26 if atom(u)δ is unifiable with a fresh variant of p(t) by an mgu

γ then

27 add-subquery(t
′
γ, (δγ)|post vars(u),Γ, v)

28 unprocessed tuples(u) := ∅

29 transfer2(Γ, u, v)
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Procedure transfer2(D,u, v) 1/2

Global data: a Horn knowledge base (P, I), a QSQN-TRE N = (V,E, T, C)
of P , and a term-depth bound l.

Input: data D to transfer through the edge (u, v) ∈ E.

1 if D = ∅ then return;

2 if u is input p and T (p) = true then
3 Γ := ∅;
4 foreach (t, t

′
) ∈ D do

5 if p(t) and atom(v) are unifiable by an mgu γ then

6 add-subquery(t
′
γ, γ|post vars(v),Γ, succ(v))

7 transfer2(Γ, v, succ(v))

8 else if v is input p and T (p) = true then

9 foreach (t, t
′
) ∈ D do

10 let (t2, t
′
2) be a fresh variant of (t, t

′
);

11 if (t2, t
′
2) is not an instance of any pair from tuple pairs(v) then

12 foreach (t3, t
′
3) ∈ tuple pairs(v) do

13 if (t3, t
′
3) is an instance of (t2, t

′
2) then

14 delete (t3, t
′
3) from tuple pairs(v);

15 foreach (v, w) ∈ E do delete (t3, t
′
3) from unprocessed(v, w);

16 add (t2, t
′
2) to tuple pairs(v);

17 foreach (v, w) ∈ E do add (t2, t
′
2) to unprocessed(v, w);

18 else if v is filter i,ni, kind(v) = intensional, pred(v) = p and T (p) = true then

19 foreach (t, δ) ∈ D do
20 if term-depth(atom(v)δ) ≤ l then
21 if no subquery in subqueries(v) is more general than (t, δ) then
22 delete from subqueries(v) all subqueries less general than (t, δ);
23 delete from unprocessed subqueries2 (v) all subqueries less general

than (t, δ);
24 add (t, δ) to both subqueries(v) and unprocessed subqueries2 (v)

25 else if u is input p then
26 Γ := ∅;
27 foreach t ∈ D do
28 if p(t) and atom(v) are unifiable by an mgu γ then
29 add-subquery(tγ, γ|post vars(v),Γ, succ(v))

30 transfer2(Γ, v, succ(v))

31 else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;
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Procedure transfer2(D,u, v) (continued) 2/2

32 else if v is input p or ans p then
33 foreach t ∈ D do

34 let t
′

be a fresh variant of t;

35 if t
′

is not an instance of any tuple from tuples(v) then

36 foreach t
′′ ∈ tuples(v) do

37 if t
′′

is an instance of t
′
then

38 delete t
′′

from tuples(v);

39 foreach (v, w) ∈ E do delete t
′′

from unprocessed(v, w);

40 if v is input p then

41 add t
′

to tuples(v);

42 foreach (v, w) ∈ E do add t
′

to unprocessed(v, w);
43 else
44 add t to tuples(v);
45 foreach (v, w) ∈ E do add t to unprocessed(v, w);

46 else if v is filter i,j and kind(v) = extensional and T (v) = false then
47 let p = pred(v) and set Γ := ∅;
48 foreach (t, δ) ∈ D do
49 if term-depth(atom(v)δ) ≤ l then

50 foreach t
′ ∈ I(p) do

51 if atom(v)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ

then
52 add-subquery(tγ, (δγ)|post vars(v),Γ, succ(v))

53 transfer2(Γ, v, succ(v))
54 else if v is filter i,j and (kind(v) = extensional and T (v) = true or

kind(v) = intensional) then
55 foreach (t, δ) ∈ D do
56 if term-depth(atom(v)δ) ≤ l then
57 if no subquery in subqueries(v) is more general than (t, δ) then
58 delete from subqueries(v) all subqueries less general than (t, δ);
59 delete from unprocessed subqueries(v) all subqueries less general

than (t, δ);
60 add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
61 if kind(v) = intensional then
62 delete from unprocessed subqueries2 (v) all subqueries less

general than (t, δ);
63 add (t, δ) to unprocessed subqueries2 (v)

64 else // v is of the form post filter i
65 Γ := {t | (t, ε) ∈ D};
66 transfer2(Γ, v, succ(v))
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Appendix D

Functions and Procedures Used
for Algorithm 3
In this section, we present a list of all functions and procedures that are used for
Algorithm 3 (on page 57). This algorithm uses the function active-edge(u, v) (on
page 28) and the procedure fire3(u, v) (on page 116). The related procedures such as
add-subquery3, add-ta-pair, compute-gamma3 and transfer3 are also listed. They
are modified versions of procedures used for Algorithm 2.

Procedure add-subquery3(q(t), δ,Γ, v)

Purpose: add the subquery (q(t), δ) to Γ, but keep in Γ only the most general
subqueries w.r.t. v.

1 if term-depth(t) ≤ l and term-depth(δ) ≤ l and no subquery in Γ is more
general than (q(t), δ) w.r.t. v then

2 delete from Γ all subqueries less general than (q(t), δ) w.r.t. v;
3 add (q(t), δ) to Γ

Procedure compute-gamma3

Purpose: a macro used in procedure fire3

1 if T (p) = false then
2 foreach (q(t), δ) ∈ unprocessed subqueries2 (u) do

3 let p(t
′
) = atom(u)δ;

4 add-tuple(t
′
,Γ)

5 else if (j < ni) then
6 foreach (q(t), δ) ∈ unprocessed subqueries2 (u) do

7 let p(t
′
) = atom(u)δ;

8 add-ta-pair(t
′
, p(t

′
),Γ)

9 else
10 foreach (q(t), δ) ∈ unprocessed subqueries2 (u) do

11 let p(t
′
) = atom(u)δ;

12 add-ta-pair(t
′
, q(t),Γ)
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Procedure add-ta-pair(t, q(t
′
),Γ)

Purpose: add the (tuple-atom) pair (t, q(t
′
)) to Γ, but keep in Γ only the most

general pairs.

1 let (t2, t
′
2) be a fresh variant of (t, t

′
);

2 if (t2, q(t
′
2)) is not an instance of any pair from Γ then

3 delete from Γ all pairs that are instances of (t2, q(t
′
2));

4 add (t2, q(t
′
2)) to Γ

Procedure fire3(u, v)

Global data: a Horn knowledge base (P, I), a QSQN-rTRE N = (V,E, T,C)
of P , and a term-depth bound l.

Input: an edge (u, v) ∈ E such that active-edge(u, v) holds.

1 if u is input p or ans p then
2 transfer3(unprocessed(u, v), u, v);
3 unprocessed(u, v) := ∅
4 else if u is filter i,j and kind(u) = extensional and T (u) = true then
5 let p = pred(u) and set Γ := ∅;
6 foreach (q(t), δ) ∈ unprocessed subqueries(u) do
7 foreach t

′ ∈ I(p) do
8 if atom(u)δ is unifiable with a fresh variant of p(t

′
) by an mgu γ then

9 add-subquery3(q(t)γ, (δγ)|post vars(u),Γ, v)

10 unprocessed subqueries(u) := ∅;
11 transfer3(Γ, u, v)
12 else if u is filter i,j and kind(u) = intensional then
13 let p = pred(u) and set Γ := ∅;
14 if v = input p then
15 compute-gamma3;
16 unprocessed subqueries2 (u) := ∅;
17 else
18 foreach (q(t), δ) ∈ unprocessed subqueries(u) do
19 foreach t

′ ∈ tuples(ans p) do
20 if atom(u)δ is unifiable with a fresh variant of p(t

′
) by an mgu γ

then
21 add-subquery3(q(t)γ, (δγ)|post vars(u),Γ, v)

22 unprocessed subqueries(u) := ∅;
23 if unprocessed tuples(u) 6= ∅ then
24 foreach t ∈ unprocessed tuples(u) do
25 foreach (q(t

′
), δ) ∈ subqueries(u) do

26 if atom(u)δ is unifiable with a fresh variant of p(t) by an mgu
γ then

27 add-subquery3(q(t
′
)γ, (δγ)|post vars(u),Γ, v)

28 unprocessed tuples(u) := ∅
29 transfer3(Γ, u, v)
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Procedure transfer3(D,u, v) 1/2

Global data: a Horn knowledge base (P, I), a QSQN-rTRE N = (V,E, T,C)
of P , and a term-depth bound l.

Input: data D to transfer through the edge (u, v) ∈ E.

1 if D = ∅ then return;

2 if u is input p and T (p) = true then
3 Γ := ∅;
4 foreach (t, q(t

′
)) ∈ D do

5 if p(t) and atom(v) are unifiable by an mgu γ then

6 add-subquery3(q(t
′
)γ, γ|post vars(v),Γ, succ(v))

7 transfer3(Γ, v, succ(v))

8 else if v is input p and T (p) = true then

9 foreach (t, q(t
′
)) ∈ D do

10 let (t2, t
′
2) be a fresh variant of (t, t

′
);

11 if (t2, q(t
′
2)) is not an instance of any pair from ta pairs(v) then

12 foreach (t3, q(t
′
3)) ∈ ta pairs(v) do

13 if (t3, q(t
′
3)) is an instance of (t2, q(t

′
2)) then

14 delete (t3, q(t
′
3)) from ta pairs(v);

15 foreach (v, w) ∈ E do

16 delete (t3, q(t
′
3)) from unprocessed(v, w)

17 add (t2, q(t
′
2)) to ta pairs(v);

18 foreach (v, w) ∈ E do add (t2, q(t
′
2)) to unprocessed(v, w);

19 else if v is filter i,ni, kind(v) = intensional, pred(v) = p and T (p) = true then

20 foreach (q(t), δ) ∈ D do
21 if term-depth(atom(v)δ) ≤ l then
22 if no subquery in subqueries(v) is more general than (q(t), δ) then
23 delete from subqueries(v) and unprocessed subqueries2 (v) all

subqueries less general than (q(t), δ);
24 add (q(t), δ) to both subqueries(v) and unprocessed subqueries2 (v)

25 else if u is input p then
26 Γ := ∅;
27 foreach t ∈ D do
28 if p(t) and atom(v) are unifiable by an mgu γ then
29 add-subquery3(p(t)γ, γ|post vars(v),Γ, succ(v))

30 transfer3(Γ, v, succ(v))
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Procedure transfer3(D,u, v) (continued) 2/2

31 else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;
32 else if v is input p or ans p then
33 foreach t ∈ D do
34 let t

′
be a fresh variant of t;

35 if t
′

is not an instance of any tuple from tuples(v) then
36 foreach t

′′ ∈ tuples(v) do
37 if t

′′
is an instance of t

′
then

38 delete t
′′

from tuples(v);

39 foreach (v, w) ∈ E do delete t
′′

from unprocessed(v, w);

40 if v is input p then
41 add t

′
to tuples(v);

42 foreach (v, w) ∈ E do add t
′

to unprocessed(v, w);
43 else
44 add t to tuples(v);
45 foreach (v, w) ∈ E do add t to unprocessed(v, w);

46 else if v is filter i,j and kind(v) = extensional and T (v) = false then
47 let p = pred(v) and set Γ := ∅;
48 foreach (q(t), δ) ∈ D do
49 if term-depth(atom(v)δ) ≤ l then
50 foreach t

′ ∈ I(p) do
51 if atom(v)δ is unifiable with a fresh variant of p(t

′
) by an mgu γ

then
52 add-subquery3(q(t)γ, (δγ)|post vars(v),Γ, succ(v))

53 transfer3(Γ, v, succ(v))
54 else if v is filter i,j and (kind(v) = extensional and T (v) = true or

kind(v) = intensional) then
55 foreach (q(t), δ) ∈ D do
56 if term-depth(atom(v)δ) ≤ l then
57 if no subquery in subqueries(v) is more general than (q(t), δ) then
58 delete from subqueries(v) and unprocessed subqueries(v) all

subqueries less general than (q(t), δ);
59 add (q(t), δ) to both subqueries(v) and unprocessed subqueries(v);
60 if kind(v) = intensional then
61 delete from unprocessed subqueries2 (v) all subqueries less

general than (q(t), δ);
62 add (q(t), δ) to unprocessed subqueries2 (v)

63 else // v is of the form post filter i
64 Γ := {t | (q(t), ε) ∈ D};
65 transfer3(Γ, v, ans q)
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Appendix E

Functions and Procedures Used
for Algorithm 4

Algorithm 4 (on page 63) repeatedly selects an active edge and fires the operation
for the edge and uses the function active-edge4(u, v) (on page 119), which returns
true if the data accumulated in u can be processed to produce some data to transfer
through the edge (u, v). If active-edge4(u, v) is true then the procedure fire4(u, v)
(on page 120) processes the data accumulated in u that has not been processed before
and transfers appropriate data through the edge (u, v). The procedure fire4 uses the
procedures add-tuple and add-subquery (on page 27) and transfer4(D,u, v) (on
page 121), which specifies the effects of transferring data D through the edge (u, v) of
a QSQN-STR.

Function active-edge4(u, v)

Global data: a QSQN-STR N = (V,E, T,C).

Input: an edge (u, v) ∈ E.

Output: true if there is data to transfer through the edge (u, v), and false

otherwise.

1 if u is pre filter i or post filter i then return false;

2 else if u is input p or ans p then return unprocessed(u, v) 6= ∅;
3 else if u is filter i,j and kind(u) = extensional then

4 return T (u) = true ∧ unprocessed subqueries(u) 6= ∅
5 else // u is of the form filter i,j and kind(u) = intensional

6 let p = pred(u);

7 if v = input p then return unprocessed subqueries2 (u) 6= ∅;
8 else if neg(u) = true then return unprocessed subqueries(u) 6= ∅;
9 else return unprocessed subqueries(u) 6= ∅ ∨ unprocessed tuples(u) 6= ∅;
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Procedure fire4(u, v)

Global data: a stratified logic program P , an extensional instance I, a QSQN-STR
N = (V,E, T, C) of P , and a term-depth bound l.

Input: an edge (u, v) ∈ E such that active-edge(u, v) holds.

1 if u is input p or ans p then
2 transfer4(unprocessed(u, v), u, v);
3 unprocessed(u, v) := ∅
4 else if u is filter i,j and kind(u) = extensional and T (u) = true then
5 let p = pred(u) and set Γ := ∅;
6 foreach (t, δ) ∈ unprocessed subqueries(u) do
7 if neg(u) = false then

8 foreach t
′ ∈ I(p) do

9 if atom(u)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ then

10 add-subquery(tγ, (δγ)|post vars(u),Γ, v)

11 else

12 if atom(u)δ /∈ {p(t′) | t′ ∈ I(p)} then
13 add-subquery(t, δ|post vars(u),Γ, v)

14 unprocessed subqueries(u) := ∅;
15 transfer4(Γ, u, v)

16 else if u is filter i,j and kind(u) = intensional then
17 let p = pred(u) and set Γ := ∅;
18 if v = input p then

19 foreach (t, δ) ∈ unprocessed subqueries2 (u) do let p(t
′
) = atom(u)δ, add-tuple(t

′
,Γ);

20 unprocessed subqueries2 (u) := ∅;
21 else
22 foreach (t, δ) ∈ unprocessed subqueries(u) do
23 if neg(u) = false then

24 foreach t
′ ∈ tuples(ans p) do

25 if atom(u)δ is unifiable with a fresh variant of p(t
′
) by an mgu γ then

26 add-subquery(tγ, (δγ)|post vars(u),Γ, v)

27 else

28 if atom(u)δ /∈ {p(t′) | t′ ∈ tuples(ans p)} then
29 add-subquery(t, δ|post vars(u),Γ, v)

30 unprocessed subqueries(u) := ∅;
31 if neg(u) = false then
32 foreach t ∈ unprocessed tuples(u) do

33 foreach (t
′
, δ) ∈ subqueries(u) do

34 if atom(u)δ is unifiable with a fresh variant of p(t) by an mgu γ then

35 add-subquery(t
′
γ, (δγ)|post vars(u),Γ, v)

36 unprocessed tuples(u) := ∅

37 transfer4(Γ, u, v)
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Procedure transfer4(D,u, v)

Global data: a stratified logic program, an extensional instance I, a QSQN-STR N = (V,E, T, C)
of P , and a term-depth bound l.

Input: data D to transfer through the edge (u, v) ∈ E.

1 if D = ∅ then return;

2 if u is input p then
3 Γ := ∅;
4 foreach t ∈ D do
5 if p(t) and atom(v) are unifiable by an mgu γ then
6 add-subquery(tγ, γ|post vars(v),Γ, succ(v))

7 transfer4(Γ, v, succ(v))
8 else if u is ans p then unprocessed tuples(v) := unprocessed tuples(v) ∪D;
9 else if v is input p or ans p then

10 foreach t ∈ D do
11 let t

′
be a fresh variant of t;

12 if t
′

is not an instance of any tuple from tuples(v) then
13 foreach t

′′ ∈ tuples(v) do
14 if t

′′
is an instance of t

′
then

15 delete t
′′

from tuples(v);

16 foreach (v, w) ∈ E do delete t
′′

from unprocessed(v, w);

17 if v is input p then
18 add t

′
to tuples(v);

19 foreach (v, w) ∈ E do add t
′

to unprocessed(v, w);
20 else
21 add t to tuples(v);
22 foreach (v, w) ∈ E do add t to unprocessed(v, w);

23 else if v is filter i,j and kind(v) = extensional and T (v) = false then
24 let p = pred(v) and set Γ := ∅;
25 foreach (t, δ) ∈ D do
26 if term-depth(atom(v)δ) ≤ l then
27 if neg(v) = false then
28 foreach t

′ ∈ I(p) do
29 if atom(v)δ is unifiable with a fresh variant of p(t

′
) by an mgu γ then

30 add-subquery(tγ, (δγ)|post vars(v),Γ, succ(v))

31 else
32 if atom(v)δ /∈ {p(t′) | t′ ∈ I(p)} then
33 add-subquery(t, δ|post vars(v),Γ, succ(v))

34 transfer4(Γ, v, succ(v))
35 else if v is filter i,j and (kind(v) = extensional and T (v) = true or kind(v) = intensional) then
36 foreach (t, δ) ∈ D do
37 if term-depth(atom(v)δ) ≤ l then
38 if no subquery in subqueries(v) is more general than (t, δ) then
39 delete from subqueries(v) all subqueries less general than (t, δ);
40 delete from unprocessed subqueries(v) all subqueries less general than (t, δ);
41 add (t, δ) to both subqueries(v) and unprocessed subqueries(v);
42 if kind(v) = intensional then
43 delete from unprocessed subqueries2 (v) all subqueries less general than (t, δ);

add (t, δ) to unprocessed subqueries2 (v)

44 else // v is of the form post filter i
45 Γ := {t | (t, ε) ∈ D};
46 transfer4(Γ, v, succ(v))
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