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Abstract

The main goal of this dissertation is to construct equivariant slN homology for periodic links.
For this purpose, we use the approach to slN homology via webs and foams. The rotation action
of Zm on webs and foams allows us to define equivariant Khovanov-Rozansky homology for
periodic links.

Following this definition, we deal with Reshetikhin-Turaev polynomials for the newly con-
structed equivariant homology via the newly defined difference polynomials.

In the end, we provide a periodicity criterion originating from equivariant Khovanov-Rozansky
slN homology.
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1. Introduction

Let L ⊂ S3 be a link. For m ≥ 2, we say that L is m-periodic if it is invariant under a semi-free
Zm-action on S3 and L is disjoint from the fixed point set. For a periodic link, we have a
question: how is the symmetry of the link reflected in link invariants? As an example, we have
the Murasugi formula [21] recalled in Theorem 3.6. Besides giving a useful periodicity crite-
rion, it also establishes the relation between the Alexander polynomial of L and the Alexander
polynomial of its quotient knot L̄ with respect to Zm rotation action.

Equivariant Khovanov homology for periodic links was defined in [24]. The group action on
S3 induces a well-defined group action on the Khovanov homology modules Kh(L;R). The slN -
homology for links was introduced in [12,13] by Khovanov and Rozansky as a generalization of
Khovanov homology. The first method to construct slN -homology was matrix via factorization.
Over the years, other methods were constructed, see [7,26,28]. In this thesis, the combinatorial
definition approach sketched in Section 4 turns out to be well-suited for studying periodic links.
Basically, in this approach, for any link diagram D we define a cochain complex [[D]] living in
a suitably defined foam category. To get slN homology, we pass to the category of SN -modules
where SN = Sym(X1, . . . ,XN) denotes the ring of symmetric polynomials in X1, . . . ,XN over C.
For this, we need the evaluation functor F which takes webs and sends them to SN -modules.
The goal of this thesis is to generalize the result of [4, 24] in the case of slN -homology. We
show that the action of the symmetry group Zm of the periodic link induces a Zm action on its
SN -equivariant slN -homology. Precisely, we have the following theorems which help us to define
Zm-equivariant slN -homology.

Theorem (see Proposition 5.22). Suppose D is a periodic link diagram. Then, there is an action
of Zm on [[D]] induced by rotating the resolution diagrams of D.

We note that Proposition 5.22 is stated and proved for labelled links diagrams, that is, for
link diagrams that come with an assignment of an integer between 0 and N to every component.
We return to labelling in Subsection 4.5. A classical link, unlabelled, can be viewed as a link
whose all labels are 1.

By using the evaluation functor F , we obtain a chain complex of SN -modules F([[D]]). By
Proposition 5.26, F commutes with the Zm action. The Zm action on [[D]] gives a SN [Zm]-
module structure on the modules of chain complex F([[D]]). We prove the following result.

Theorem (see Theorem 5.28). Suppose L is a Zm-periodic link and D and D′ are Zm-equivalent
m−periodic link diagrams of L then we have an induced quasi isomorphism between F([[D]])
and F([[D′]]) in the Kom(SymN [Zm]) where Kom(SymN [Zm]) is the category of bounded chain
complexes in SymN with Zm action on chain complex.

Theorem 5.28 is stated and proved only for links whose labels are equal to 1, that is, for
usual links. Next, we establish a skein spectral sequence for a change of an orbit of crossings in
slN -homology. An analogous skein spectral sequence was considered in [24] for the Khovanov
homology of a periodic link. The skein spectral sequence gives a relation between the so-called
difference slN -polynomials after a change of an orbit of crossings. Refer to Section 8 for details.

The graded Euler characteristic of the Khovanov homology is the Jones polynomial. In the
presence of a Zp`-action (with p prime) there is a refinement of the Jones polynomial, called the
difference Jones polynomials see [23]. They essentially appear as the graded Euler characteristic
associated with the eigenspaces of the action of Zp` on the Khovanov homology.

Similarly, the Euler characteristic of slN -homology gives a well-known polynomial, the Reshetikin-
Turaev polynomial, also known as the slN -polynomial. For a periodic link, we define analogs of
difference Jones polynomials in slN -homology. We call them difference slN -polynomials. We use
the skein spectral sequence to study these polynomials for the link and its mirror. Moreover,
we show that if a link where all labels are equal to 1, is pl-periodic, then the Poincaré polyno-
mial of its slN -homology admits a decomposition into a sum of polynomials with non-negative
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coefficients and satisfying specific congruence relations; see Theorem 8.17. The new periodicity
criterion cannot distinguish 3 and 4 periodic links.

The thesis is an expanded version of the paper [5] joint with Maciej Borodzik and Wojciech
Politarczyk.
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2. Khovanov homology

In this chapter, we define Khovanov homology. To define it, we first introduce some basic
concepts from knot theory and some concepts from homological algebra.

2.1. Short introduction to knot theory.

2.1.1. Introduction. This subsection is based on [31] and [1]. To understand the definition of
the Khovanov homology, we need some basic definitions and facts about knots and links.

Definition 2.1. A knot is an embedding of a circle S1 in the 3-dimensional Euclidean space or
in the 3-dimensional sphere S3.

If we embed more than one circle, we call the image a link. Generally, we are interested
in regular projections of knots (links) onto a 2-dimensional Euclidean subspace, meaning that
the projection is injective everywhere except at finitely many points, called the crossing points,
where the knot projection crosses itself once. We will call the projection diagram where we have
an over-strand and under-strand a knot (link) diagram.

Example 2.2. We have some well-known knot diagrams below

Right-handed Left-handed Figure eight knot
trefoil trefoil

A link can be given an orientation. For these intersections of over-strand and under-strand,
we have a specific name. We call these intersections positive crossing and negative crossing.
Changing the orientation of one component of a link, might affect positivity of the crossings;
however if we change the orientation of every component of the link, the positivity of all cross-
ings is preserved. We will denote n+ for the total number of positive crossings and n− for the
total number of negative crossings in a diagram.

positive negative
crossing crossing

For these two crossing we have 0 and 1 resolution of crossings. For crossing 0 we have 0
resolution 1 and for 1 resolution we have H. Furthermore, if we change under and over strand
we swap the 0- and the 1-resolutions.

Definition 2.3. The writhe ω(D) of a diagram D of an oriented knot or an oriented link is the
difference between the numbers of positive and negative crossings, i.e.,

ω(D) = n+ − n−
Definition 2.4. The reverse rK of an oriented knot K is simply the same knot with the opposite
orientation.

Change all crossing points from positive to negative and from negative to positive crossing.
The final diagram will be called the mirror image m(K) of a knot K.

Definition 2.5. The mirror image of a knot diagram is a diagram which is obtained by reflecting
the knot diagram with respect to a line R in the plane.
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We consider the following equivalence relation between knots. It applies also for links.

Definition 2.6. Two knots K1 and K2 are ambient isotopic if there is a smooth map F ∶
S3 ×[0,1] → S3 such that Fx = F∣S3×{x} is a diffeomorphism for each x ∈ [0,1], F∣S3×0 = idS3 , and
F∣S3×1(K1) =K2.

We want to understand if two knots are isotopic. The best way to understand this is by
studying knot diagrams. We have an important theorem about equivalence in knot diagrams,
but before this theorem, we need some definitions.

Definition 2.7. An isotopy of a knot projection is a continuous deformation of the knot diagram
within the plane that preserves the number and type of crossings.

Definition 2.8. There are three local moves that are called Reidemeister moves for knot diagram
equivalence.

First Reidemeister move:

↔

Second Reidemeister move:

↔

Third Reidemeister move:

↔

The following result was first proved by Reidemeister.

Theorem 2.9. Two links are ambiently isotopic if and only if their diagrams are related by a
finite number of Reidemeister moves and planar isotopies.

A knot invariant is a property of a knot diagram that does not change under Reidemeister
moves. For example, the writhe depends on the knot diagram, so it is not a knot invariant.
A knot invariant only depends on the knot. Later, we will define the Jones polynomial and
Khovanov homology. We will see that these are knot invariants.

2.2. Jones Polynomial. In this section, we will define the Jones polynomial. The Jones poly-
nomial will be important for Khovanov homology. The definition of the Jones polynomial and
its relation to Khovanov homology will be crucial to understanding concepts discussed in the
following sections. We will start with the definition of the Kauffman bracket.

Definition 2.10. (see [1]) The Kauffman bracket is a function from the set of unoriented link
diagrams in the plane to the ring of Laurent polynomials in variable q with integer coefficients.
We denote by ⟨D⟩ ∈ Z[q, q−1] the Kauffman bracket of D. The Kauffman bracket is determined
by the following three properties:
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(1) ⟨∅⟩ = 1
(2) ⟨D ⊔◯⟩ = (q−1 + q)⟨D⟩
(3) ⟨0⟩ = ⟨1⟩ − q⟨H⟩

where D is an unoriented diagram, ∅ is an empty diagram, and ⟨D⟩ is a Laurent polynomial.

The Kauffman bracket is invariant under RII and RIII moves. To make this definition invariant
for the diagram D of an oriented link L under the Reidemeister 1 move, we have to multiply ⟨D⟩
by (−1)n−qn+−2n− where n+ is the number of positive crossings and n− is the number of negative
crossings. The resulting polynomial is a knot invariant.

Definition 2.11. (see [1]) The unnormalized Jones polynomial of an oriented link L is defined
as

Ĵ(L) = (−1)n−qn+−2n−⟨D⟩,
where D is a diagram of L.

In addition, we define the normalized Jones polynomial

J(L) = Ĵ(D)(q + q−1)−1.

We generally use the unnormalized version in this paper. We assign numbers to each crossing
by 1, . . . , n. By applying 0 or 1 resolution to each crossing we get 2n diagrams that we can
index with the sequence which has 0 and 1. We call such a diagram a smoothing. With these
2n smoothings Dα where α ∈ {0,1}n, we have an n-dimensional cube. When we resolve all
crossings, we get a union of circles. To compute the unnormalized Jones polynomial, we replace
each union of k-circles with a term (−1)rαqn+−2n−+rα(q + q−1)kα .

J(L) = ∑
α∈{0,1}n

(−1)rαqn+−2n−+rα(q + q−1)kα

rα = Number of 1s in α

kα = Number of circles in the Dα

We will define Khovanov homology, but for that, we need some homological algebra.

2.3. Introduction to Homological Algebra. In this section, we use [32] for the most defini-
tions for some basic concepts of homological algebra that will be important for us

Definition 2.12. A chain complex (C●, d●) is a sequence of modules ⋯,C−2,C−1,C0,C1,C2,⋯
connected by homomorphisms dn ∶ Cn → Cn−1 where dn−1○dn = 0. We call (C ′

●, d●) a subcomplex
of (C●, d●), if C ′

i is a submodule of Ci and dn(C ′
n) ⊂ C ′

n−1.

Definition 2.13. A cochain complex is a dual notion to a chain complex, it is a (C●, d●)
sequence of modules ⋯,C−2,C−1,C0,C1,C2,⋯ connected by homomorphism dn ∶ Cn → Cn+1

where dn+1 ○ dn = 0.

We define maps between chain complexes.

Definition 2.14. Assume we have (C●, d●) and (C ′
●, d

′
●) chain complexes. A chain map F ∶

C● → C ′
● is a sequence of maps {Fn ∶ Cn → C ′

n} such that Fn−1 ○ dn = d′n ○ Fn. In the diagram,
we see that as below

Cn Cn−1

C ′
n C ′

n−1

dn

Fn Fn−1

d′n

Maps between cochain complexes can be defined similarly.
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Definition 2.15. Assume we have a chain complex (C●, d●), the homology of this sequence is
ker(dn)/ im(dn+1) and denoted by Hn(C●).

Similarly, we define cohomology.

Definition 2.16. Assume we have a cochain complex

⋯ → Cn−1 dn−1

ÐÐ→ Cn → ⋯
The cohomology of this sequence is ker(dn)/ im(dn−1) and denoted by H i(C●).

Proposition 2.17. A chain map F ∶ C● → C ′
● induces a homomorphism between the homology

groups of these two complexes.

Between two chain homotopy maps, we have equivalence also.

Definition 2.18. Suppose we have chain maps f and g between (C●, d●) and (C ′
●, d

′
●). A

chain homotopy φ between f and g is a sequence of morphisms φn ∶ Cn → C ′
n+1 such that

fn − gn = d′n+1 ○ φn + φn−1 ○ dn. We call f and g chain-homotopic chain maps and denote this
relation f ≃ g.

We can define equivalence between two chain complexes.

Definition 2.19. We say chain complexes A and B are homotopy equivalent if and only if we
have chain maps f ∶ (A●, d●) → (B●, d

′
●) and g ∶ (B●, d

′
●) → (A●, d●) such that f ○ g ≃ idB● and

g ○ f ≃ idA● .

Chain maps induce homomorphisms between the homology groups of chain complexes. Do we
have any relation between the induced maps f∗ and g∗ where chain maps are chain-homotopic?
The next proposition shows us this relation.

Proposition 2.20. If we have f and g chain-homotopic chain maps, their induced maps f∗ and
g∗ are the same on homology groups (i.e., f∗ = g∗).

Definition 2.21. Suppose M1,M2,⋯,Mn are modules over the fixed ring R, and P1, P2,⋯, Pn
are module homomorphisms. We say that

M1
P1Ð→M2

P2Ð→M3⋯
Pn−1ÐÐ→Mn

is an exact sequence if im(Pn−1) = ker(Pn).

Definition 2.22. Suppose A,B,C are modules over the fixed ring R. We say that

0→ A
iÐ→ B

pÐ→ C → 0

is a short exact sequence if i is a monomorphism, p is an epimorphism, and im(i) = ker(p).

Furthermore, we define a short exact sequence in the category of chain complexes.

Definition 2.23. Suppose A,B,C are chain complexes, and i and p are chain maps. We say
that the sequence

0→ A
iÐ→ B

pÐ→ C → 0

is a short exact sequence if the induced sequence of maps

0→ An
inÐ→ Bn

pnÐ→ Cn → 0

is a short exact sequence of modules.

Similarly, we define a long exact sequence for modules, and from the short exact sequence,
we get a long exact sequence of homology groups.
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Theorem 2.24. Suppose A,B,C are chain complexes, and we have a short exact sequence of
complexes given by:

0→ A
iÐ→ B

jÐ→ C → 0

then we obtain a long homology sequence of homology groups

⋯Hn(A) i∗Ð→Hn(B) j∗Ð→Hn(C) δÐ→Hn−1(A) i∗Ð→Hn−1(B) j∗Ð→Hn−1(C) δÐ→ ⋯

Proof. See [11, Theorem 2.16]. �

We have the same theory for cochain complexes

Theorem 2.25. Suppose A,B and C are cochain complexes, and we have a short exact sequence
of complexes given by

0→ A
iÐ→ B

jÐ→ C → 0

then we obtain a long cohomology sequence of cohomology groups

⋯Hn(A) i∗Ð→Hn(B) j∗Ð→Hn(C) δÐ→Hn+1(A) i∗Ð→Hn+1(B) j∗Ð→Hn+1(C) δÐ→ ⋯

Definition 2.26. (see 1.5.1 [32]) Assume we have E and F be graded cochain complexes and

E
fÐ→ F a chain map that preserves gradings. The mapping cone is a chain complex given in a

degree k by

Cone(f)k = Ek⊕Fk−1

with differential

∂Cone(f) = ( −∂E 0
f ∂F

) ∶ Cone(f)k → Cone(f)k+1.

We have the following lemma.

Lemma 2.27. We have a short exact sequence which includes Cone(f)

0→ F [1] iÐ→ Cone(f) pÐ→ E → 0

where F [1]n = Fn−1 , i(a) = (0, a) for a ∈ F and p(e′, a′) = −e′, so we get a long exact sequence
by Theorem 2.25

⋯ →Hd(E) H(f)ÐÐ→Hd(F ) i∗Ð→Hd(Cone(f)) p∗Ð→Hd+1(E) → ⋯

Definition 2.28. Let C be an Abelian category. A homologically graded spectral sequence is a
family of objects with differentials drp,q ∶ Erp,q → Erp−r,q+r−1 which satisfy the rule dr ○dr = 0 where

p, q, r ∈ Z. Moreover, for Er+1
p,q and Erp,q for any r we have

Er+1
p,q ≡H(Erp,q) = ker(drp,q)/ Im(drp−r,q+r−1)

For a fixed r, the family Erp,q is called the page of the spectral sequence. Here we can think
spectral sequences as a book. When we turn next page it means we increase r by 1 and take
homology of the old page.

Definition 2.29. Let Hn be a collection of objects in category C.

● We say spectral sequence weakly converges to H∗ if there is a filtration

. . . ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ . . . ⊆Hn

and isomorphism

βpq ∶ E∞
pq ≅ FpHp+q/Fp−1Hp+q

● We say spectral sequence approaches to H∗ if it weakly converges to H∗ and

Hn = ⋃FpHn and ⋂FpHn = 0
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● We say sequence converges to H∗ if it approaches to H∗ and

Hn = lim
←

(Hn/FpHn)

Convergence is denoted by Erpq Ô⇒ Hp+q

Definition 2.30. A first quadrant spectral sequence is a type of spectral sequence where all
the information or data contained in its pages is confined or concentrated within the region of
the (p, q)-plane where

p < 0 or q < 0 Ô⇒ Ep,qr = 0.

Proposition 2.31. If the r-th page is confined to the first quadrant, then the (r+1)st page will
also be so. Therefore, if the first one is, then all subsequent pages will be as well.

Proposition 2.32. For every first quadrant spectral sequence, convergence occurs at position
(p, q) starting from the r-th term where r is greater than the maximum of p and q + 1.

Ep,q
max(p,q+1)+1

= Ep,q∞

Proposition 2.33. If a first quadrant spectral sequence converges

Ep,qr Ô⇒ Hp+q

then each Hn has a filtration of length n + 1

0 = Fn+1Hn ⊂ FnHn ⊂ . . . F 1Hn ⊂ F 0Hn =Hn

We also have

● FnHn ⋍ En,0∞
● Hn/F 1Hn ⋍ E0,n

∞

2.4. Introduction to the Khovanov homology. In this paper, our main goal is to define
slN homology via web and foams. For n = 2, slN homology is called Khovanov homology. In this
subsection, we will define Khovanov homology in a basic way that will help us to understand
slN homology. We need the Khovanov bracket definition to define Khovanov homology. The
definition is similar to the Kaufmann bracket definition. In this section we generally use papers
[1] and [31].

Definition 2.34. We say that the vector space V is a graded vector space, if V can be decom-
posed into the direct sum of the form V = ⊕n∈NVn where Vn is a vector space for any n. Elements
of Vn are called homogeneous element of degree n.

Definition 2.35 (see [1, Definition 3.1]). The q dimension for this new vector space is

qdim(V ) ∶= ∑
m

qm dim(Vm)

Example 2.36. Suppose we have field F, and we have graded vector space F−1 ⊕F1, where the
subscript denotes the grading of generators. Then qdim(F−1 ⊕ F1) = q + q−1.

In this section we use vector space V = ⟨v+, v−⟩ where deg v+ = 1 and deg v+ = −1. The
qdim(V ) = q + q−1.

Definition 2.37 (see [1]). Khovanov bracket of a diagram D of a link L, denoted [[D]], is a
cochain complex of graded Z-vector spaces. It is characterized by the following properties:

(1) [[∅]] = 0→ Z→ 0
(2) [[◯ ⊔D]] = V ⊗ [[D]]
(3) [[0]] = Cone(0→ [[1]] d→ [[H]]{1} → 0)
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Here, the {1} operator is the degree shift operation V {l}m = Vm−l.
The first axiom is about empty diagram, bracket sends empty diagram to cochain complex

with 0 and Z. The second axiom says that if we have diagram D which can be written as a
disjoint sum of a circle and a diagram D′, then to calculate [[D]] we need to calculate only [[D′]].
The third axiom gives a recipe how to find the Khovanov bracket of a general link diagram. If
we have a link diagram D, the third axiom allows us to write

Ci,∗(D) = Ci,∗(D0) +Ci−1,∗(D1){1}
where D0 and D1 are the diagrams which we get them by resolving a fixed crossing by 0 and
1 respectively on the diagram D. In other words,the third axiom says that for a link diagram
D, Ci,∗(D) is the mapping cone of Ci,∗(D0) and Ci−1,∗(D1) with the map d between Ci,∗(D0)
and Ci−1,∗(D1), the map d will be defined in 2.42.

Now we define the modules that we use in the definition of Khovanov homology, see [31,
Chapter 1.3]. We begin with the definition of the space Vα.

Vα = V ⊗kα{rα + n+ − 2n−},
where α ∈ {0,1}n, and:

● kα = the number of circles in the diagram Dα,
● rα = the number of 1’s in α,
● n+ = number of positive crossings in L,
● n− = number of negative crossings in L.

We define our module now.
Ci,∗(D) = ⊕

α∈{0,1}n
i=rα−n−

Vα

Example 2.38 ([31, Figure 4]). ) For the negative Hopf link . It is easy to see that n+ = 0
and n− = 2. In particular, the cube of resolutions has the following form:

2.5. Definition of boundary map for Khovanov homology. Have defined the modules
underlying the Khovanov chain complex, we need to describe the boundary map. Consider a
cube where nodes are diagrams which we get by different resolutions. There are edges between
nodes. We define a map for the edge between two nodes which we get from different specific
resolutions. We define the map dε where ε is the edge of our cube that lies between two resolutions
that differ at one crossing. This edge can be labeled by sequences in {0,1,∗} where the height of
the ε is denoted by ∣ε∣ and is defined by the number of ’1’ in the domain of the dε. We turn edges
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into arrows by the rule * = 0 gives the tail and * = 1 gives the head. For instance, the edge
between resolutions 001 and 011 is 0∗1 and the map between them is d0∗1. Prior to defining dε,
we need to describe some elementary maps, from which dε is constructed. It might be helpful
to remind here that V is vector space which is generated by v+ and v− where deg(v+) = 1 and
deg(v−) = −1.

First, we define a map m that corresponds to merging two circles to one circle. Namely:

Definition 2.39. The multiplication map m∶V ⊗ V → V is defined as:

v+ ⊗ v+ ↦ v+

v+ ⊗ v− ↦ v−

v− ⊗ v+ ↦ v−

v− ⊗ v− ↦ 0.

We extend it linearly to V ⊗ V .

In addition to that, we define a map corresponding to splitting one circle into two circles:

Definition 2.40. The comultiplication map ∆ ∶ V → V ⊗ V is defined as:

v+ ↦ v+ ⊗ v− + v− ⊗ v+
v− ↦ v− ⊗ v−

and it can be extended linearly on V .

We define the map dε.

Definition 2.41. We define dε as the identity on the tensor factors associated to circles which
stay the same after smoothing. If two circles merge into one circle, dε is the map m on tensor
factors associated to these two circles, see Definition 2.39. Another case is when we divide one
circle into two circles, dε is the linear map ∆ on this circle, see Definition 2.42.

We are ready to define the Khovanov differentials di ∶ Ci,∗(D) → Ci+1,∗(D)

Definition 2.42. For v ∈ Vα ⊂ Ci,∗(D)
di(v) = ∑

ε
tail(ε)=α

sign(ε)dε(v)

where sign(ε) = (−1)number of 1’s to the left of the change place, see Chapter 1 of [31].

For example, suppose we have ε the edge between 010 and 011, then sign(ε) is −1 because
there is just one 1 before the change from 0 to 1 in the edge.

It can be shown that m and ∆ preserve the quantum grading, and since dε is the sum of them,
we say that dε preserve the q-grading.

With this definition, we have a lemma below:

Lemma 2.43 (see [31]). dr ○ dr−1 = 0.

The above lemma shows that di is indeed a boundary map.
We defined the chain complex, so we define Khovanov homology on this chain complex.

Definition 2.44 (see [31]). Kh∗,∗(D) = H(C∗,∗(D), d) where Kh stands for Khovanov homol-
ogy.

The graded Euler characteristic of Ci,∗(L) for a link diagram L is

∑
i

(−1)i qdim(Ci,∗(D))

This is equal to the unnormalized Jones polynomial of the knot diagram ⟨D⟩ of a link L. See [31].
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In order to say that this definition gives a well-defined link invariant, we need to show that
if we have two different diagrams D1 and D2 of the same link L, we have H(D1) ≃ H(D2). In
particular, we need to check if homology will be the same after we apply Reidemeister move to
link diagram. (See [1, Theorem 2])

Theorem 2.45. Assume we have two diagrams D1 and D2 which are connected to each other
with a finite sequence of Reidemeister move, then H(D1) ≃H(D2).

Theorem 2.45 has in fact three parts, each corresponding to a different Reidemeister move.
There exist pairs of links where they have the same Jones polynomials but have different

Khovanov homologies. This shows us that Khovanov homology is a stronger invariant.

Example 2.46 ([31, Example 3.2]). Two knots 51 and 10132 are the knots with the same Jones
polynomial but different Khovanov homology. For the unnormalized Jones polynomial, we have
Ĵ(10132) = Ĵ(51) = q−3 + q−5 + q−7 + q−15 whereas we have different Khovanov homology.

KhQ(51) = Q(0,−3) +Q(0,−5) +Q(−2,−7) +Q(−3,−11) +Q(−4,−11) +Q(−5,−15)

KhQ(10132) = Q(0,−1) +Q(0,−3) + (Q⊕Q)(−2,−5) +Q(−3,−5) +Q(−3,−9) +Q(−4,−7) +Q(−4,−9)+
Q(−5,−11) +Q(−6,−11) +Q(−7,−15),

where Qi,j means at the i and j th degree we have a copy of Q.

Definition 2.47. (see [1]) From the Khovanov homology Khi,j(L), where i is the homological
grading and j is the quantum grading, one defines the Khovanov polynomial as:

Kh(L; t, q) = ∑
i,j

dim Khi,j(L) ⋅ qjti,

which serves as a categorification of the Jones polynomial.

Remark 2.48. The unnormalized Jones polynomial is equal to the Khovanov polynomial where
we have t = −1. In other words, We have the equation Kh(K,−1, q) = J(K).

After defining the Khovanov bracket and the Jones polynomial, we define Reshetikhin–Turaev
(RT) polynomial, which is a generalization of the Jones polynomial. The RT polynomial is
computed via a diagrammatic approach, which assigns a polynomial invariant to a link diagram.
The construction begins by applying a set ofresolution rules to each crossing in a link diagram,
reducing it to a linear combination of simpler diagrams without crossings. These resolutions are
replacing a crossing with planar configurations according to specific local patterns, as illustrated
in Figure 1. After all crossings are resolved, the resulting diagrams may contain loops, caps,cups

= q1−n − q−n

= qn−1 − qn

Figure 1. Resolution of positive and negative crossing points.

and strands labelled by positive integers. The rules to evaluate the diagram are defined in the
Figure 2.
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= [n]

= [2] = [n − 1]

= + [n − 2]

+ = +

Figure 2. Evalution rules of loops, caps and cups

We have

[k] ∶= q
k − q−k
q − q−1

With this resolving and evaluating, we obtain polynomial associated to the original link diagram.
This invariant is known as the Reshetikhin–Turaev polynomial. The details of the planar graph
calculus shown in Figure 2 are explained in [20]. We only make use of the part of their calculus
involving edges labeled 1 and 2. In our diagrams, these labels are omitted, and edges labeled 2
are indicated by thick lines.

Definition 2.49. (Reshetikhin-Turaev polynomials) The polynomial invariant Pn(L) of an ori-
ented link L can be computed by selecting a planar diagram D of L and applying a resolution
to each crossing according to the specified rules in Figure 1 and take a sum of all Pn(Γ) for all
resolutions Γ.

Pn(L) = Pn(D) ∶= ∑
resolutions Γ

qα(Γ)Pn(Γ),

where α(Γ) comes from the rules in Figure 1. From the equations in Figure 2, we can get
that the definition is independent of the choice of the diagram D of a link L.

3. Periodic links

Definition 3.1. Consider a link L in S3 and a semi-free Zm action on S3, that is to say, there is
a non-empty fixed point set, such that the action is free on its complement. All the Zm actions
on S3 are classified by the solution to the Smith conjecture. In particular, if the fixed point
set of the action is one dimensional, it is an unknotted circle. We say L is m-periodic for the
semi-free Zm rotation action of order m on S3, if the set of fixed points f of action is disjoint
with L and L is invariant under the Zm action.

Similarly, we define an action for a link diagram.
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Definition 3.2. We say that the link diagram D ⊂ R2 of an m-periodic link L is m-periodic if
it is invariant under the rotation action of R2 of order m, and D is disjoint from the set of fixed
points of the action (that is, the coordinate center of R2). In other words, an m-periodic link
diagram is a diagram that is carried to itself by a rotation of (360/m)○ about the origin.

Every m-periodic link admits an m-periodic link diagram.

Example 3.3. The trefoil knot is a 3-periodic knot.

Remark 3.4. Smith’s conjecture states that a fixed point set of Zm on S3 cannot be a nontrivial
knot.

If we have a periodic knot K preserved under the Zm-action on S3, we define the quotient
knot of knot K under this action.

Definition 3.5. see [21] A quotient knot K̄ is the image of the knot K under the quotient map:

π ∶ S3 Ð→ S3/Zm
and denoted K̄ ∶= π(K). Since the action is semi-free, K̄ is also an embedded circle in S3, that
is, K̄ is a knot.

To check whether a link is periodic, one may apply one of the following criteria.

Theorem 3.6 (Murasugi Conditions, see [21]). Suppose we have K ⊂ S3 a q = pr-periodic knot
with prime p, ∆ the Alexander polynomial of K, and ∆′ the Alexander polynomial of the quotient
knot K̄. Furthermore, let l be the absolute value of the linking number of K with the symmetry
axis. Then

(1) ∆′∣∆
(2) ∆ ≡ (∆′)q(1 + t + . . . + tl−1)q−1 (mod p)

Example 3.7. The left-handed trefoil knot has period 3; the quotient knot is the unknot, and
the linking number l is 2.

● It is obvious that the first condition is satisfied, which means 1∣∆.
● The Alexander polynomial of the trefoil knot is t2 − t + 1. So we have

(1)3(1 + t2−1)3−1 = (1 + t)2 ≡ t2 − t + 1 (mod 3).

This means the second condition is satisfied.

Example 3.8. For the figure eight knot, the Alexander polynomial is −t−1 + 3 − t. Since
∆(t) = −t−1 + 3 − t is irreducible and since ∆′(1)∣∆(1) we deduce ∆′ = 1.
We have

−t−1 + 3 − t = (1 + t + . . . + tl−1)p−1 (mod 3).
We know that the Alexander polynomial is well-defined up to multiplication by powers of t. So
we take Alexander polynomial here ∆(t) = −1+ 3t− t2. Hence the polynomial on the right-hand
side should have the same degree with the polynomial on the left-hand side. Hence we should
have (l − 1)(p − 1) = 2.. We have two cases. Either l = 3, p = 2 or l = 2, p = 3. For l = 2, p = 3 on
the right-hand side. We have (1 + t)2 = 1 + 2t + t2 but

1 + 3t − t2 ≠ 1 + 2t + t2 (mod 3).

On the other hand, we have

1 + 3t − t2 ≠ 1 + t + t2 (mod 2).

This shows that figure eight knot is not p-periodic for p ≥ 3.
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Theorem 3.9 (Edmonds’ Criterion, see [6]). Assume we have K, a periodic knot of period q,
and K̄, the quotient knot of K. Then there are nonnegative integers σ such that

g(K) = qg(K̄) + (q − 1)(σ − 1)
2

.

where g(K) and g(K̄) is the Seifert genus.

Example 3.10. For a trefoil knot K, K̄ is the unknot. The trefoil knot has genus 1, and the
unknot has genus 0. If we take σ = 2, then we have 1 = 3 ⋅ 0 + 2 ⋅ 1

2 .

Edmonds’ Criterion is particularly useful for low genus knots. It shows in particular that the
quotient knot of a genus 1 periodic knot is the unknot.

Theorem 3.11 (Naik’s Criterion, see [22]). Suppose K ⊂ S3 is a p-periodic knot with p a prime
and let k > 1 whereas we denote K̄ for quotient knot of K. For Σm(K) the m-fold branched
cover of K suppose that H1(Σm(K)) has nontrivial q-torsion part, for some prime q ≠ p, and
let lq to be the least positive integer such that qlq ≡ ±1 (mod p). Then there exist non-negative
integers b1, b2, . . . such that

H1(Σm(K);Z)q/H1(Σm(K̄);Z)q = Z2b1lq
q ⊕Z2b2lq

q2 ⊕⋯.

Theorem 3.12 (HOMFLYPT Criterion, see [25]). Assume we have the unital subring R in

Z[a±, z±] where R = ⟨a, a−1, a+a
−1

z , z⟩. If a knot is p-periodic and P (a, z) is its HOMFLYPT
polynomial, then

P (a, z) ≡ P (a−1, z) (mod ⟨p, zp⟩),
where ⟨p, zp⟩ is the ideal generated by p and zp in R.

We have Borodzik-Politarczyk criterion for periodic knots.

Theorem 3.13 (Borodzik-Politarczyk Criterion, see [4, Theorem 1.1]). Assume we have a pn-
periodic knot K, where p is an odd prime. Suppose that F = Q or F = Fr for a prime r where
r ≠ p and r has the maximal order in Znp . Here since gcd(r, p) = 1 any prime r ≠ p will have
maximal order pn. Take c = 1 if F = F2 and c = 2 otherwise. The quantity s(K,F ), known as
the s-invariant of the knot K, is derived from the Lee or Bar-Natan theory see [2],[14] Then

KhP(K, t, q) = P0 +
n

∑
n=1

(pj − pj−1)Pj ,

Where P0, P1, . . . , Pn ∈ Z[q, q−1, t, t−1] are Laurent polynomials such that

(1) P0 = qs(K,F)(q+q−1)+∑∞
j=1(1+ tq2cj)S0j(t, q), and the polynomials S0j have non-negative

coefficients;
(2) Pk = ∑∞

j=1(1 + tq2cj)Skj(t, q) and the polynomials Skj have non-negative coefficients for
1 ≤ k ≤ n,

(3) Pk(−1, q) − Pk+1(−1, q) ≡ Pk(−1, q−1) − Pk+1(−1, q−1) (mod qp
n−k − q−pn−k);

The criterion is rather specific, easier to implement on a computer, than to solve by hand.
The following example is discussed in [4].

Example 3.14. Take the knot 15n1335221. This knot satisfies all periodicity criteria for p = 5
we discussed in the thesis. In particular, it satisfies the HOMFLYPT criterion for p = 5. It has
the Khovanov polynomial

q + q−1 + (1 + tq4)(t−7q−15 + 3t−6q−13 + t−5q−11 + 3t−4q−9 + t−3q−9 + 3t−2q−7 + t−1q−5

+ 3t−1q−3 + q−3 + q−1 + 3tq + t2q3 + 3t3q3 + t4q5 + 3t5q7 + t6q9 + 4(t−5q−11 + t−4q−9 + 2t−3q−7 + 2t−2q−5

+ t−1q−5 + t−1q−3 + 2tq−1 + q−3 + q−1 + 2t′2q + t3q3 + t4q5)).
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We write KhP = q + q−1 + (1 + tq4)S′01 + 4(1 + tq4)S′11 where

S′01 = t−7q−15 + 3t−6q−13 + t−5q−11 + 3t−4q−9 + t−3q−9 + 3t−2q−7 + t−1q−5

+ 3t−1q−3 + q−3 + q−1 + 3tq + t2q3 + 3t3q3 + t4q5 + 3t5q7 + t6q9

and

S′11 = t−5q−11 + t−4q−9 + 2t−3q−7 + 2t−2q−5 + t−1q−5 + t−1q−3 + 2tq−1 + q−3 + q−1 + 2t′2q + t3q3 + t4q5

According to Theorem 3.13(3), A(q) = q + q−1 + (1 + tq4)S′01(t, q) − (1 + tq4)S′11(t, q) and we
have A ∶= (A(q) −A(q−1)) mod q5 − q−5. So we have A = −10q + 5q3 − 5q7 + 10q9. Since A ≠ 0,
we need to change S′01 and S′11. We need to satisfy Theorem 3.13(1) and (2). We must have
S′11 → S′11−δ and S′01 → S′01+4δ. Here it is important that we must have non-negative coefficients
for S′11 and S′01. We have only finitely many possibilities for δ. In order to reduce the number of
possibilities, we use the following argument. Take δ = atiqj . Then, after changing S′01 and S′11,
we have A → A + aTij , where Tij = (−1)i5(−q−j−4 + q−j − qj + qj+4) mod (q5 − q−5). We deduce
that Tij = (−1)Rj′ with j′ = j mod 10 and

R1 = R5 = 5(q − q9),
R3 = 10(q3 − q7),
R7 = R9 = 5(−q − q3 + q7 + q9).

For different δ, A will change by −a1R1 − a3R3 − a7R7. Note that coefficients change based on
conditions that S′11 − δ must have non-negative coefficients. We must have coefficients

a1 ∈ {−1,0,1,2,3,4,5,6},
a3 ∈ {−3,−2,−1,0},
a7 ∈ {−4,−3,−2,−1,0,1,2}.

With these conditions, it is not possible to have A = 0. We deduce that a knot 15n1335221 is
not 5-periodic.

4. Webs, foams and categories

We have already studied Khovanov homology. Now, we want to define slN homology. Actually,
Khovanov homology is sl2 homology, but for slN homology, we have to use a more formalized
approach. We will use webs and foams.

4.1. Webs and foams.

Definition 4.1. A trivalent graph Γ is a closed one-dimensional cell complex where three edges
meet at each vertex.

Definition 4.2. In an oriented graph, the source vertex is a vertex that has zero indegree. In
other words, it is a vertex where the number of incoming edges is 0. Similarly, a sink vertex is
a vertex that has zero outdegree. In other words, it is a vertex where the number of outgoing
edges is 0.

Definition 4.3 (N-webs). A closed N web is a finite oriented trivalent graph V without sources
and sinks properly embedded in R2 We call closed N -web shortly a web. Each edge is labeled
by numbers 0, . . . ,N . An edge with the 0 label can be deleted from the web, so in some papers,
edge labeling starts from 1. The labelings of edges should satisfy an important condition called
the flow condition; see Figure 3:

● If two edges with labels a and b enter a vertex, then the outgoing edge has label a + b.
We call a vertex a merge vertex when the vertex has two incoming edges.

● If two edges with labels a and b exit from a vertex, then the incoming edge has label
a + b. Similarly, we call a vertex a split vertex when the vertex has two outgoing edges.
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a + b

a b
a + b

a b

Figure 3. The flow condition of Definition 4.3

Figure 4. Codimension 1 and 2 singular points of a foam.

In Figure 3, the web on the left has a split vertex, and the web on the right has a merge
vertex.

Remark 4.4. An empty web is just a web with no vertices and no edges.

Assume that we have two webs W0 and W1 in R2. Think of W0 in R2×{0} and W1 in R2×{1}.

Definition 4.5 (foam). Assume we have two webs W0 and W1. An N -undecorated foam F ∶W0 →
W1 is a compact, finite 2-dimensional CW-complex properly embedded in R2 × [0,1] such that:

● If x ∈ F ∖ (W0 ∪W1), then there exists a neighborhood U of x in F homeomorphic to
one of the following three models:

– a smooth point : U is homeomorphic to a disk in R2;
– a Y -shaped point (codimension 1 singularity): U is homeomorphic to the union of

three distinct rays stemming out of a common point, times (0,1);
– a cone over a 1-skeleton of a tetrahedron (codimension 2 singularity), when x is a

triple point. Compare Figure 4.
● Every facet Fi of F , i.e., a connected component of the set of smooth points, carries an

orientation and a label by an integer 0, . . . ,N ;
● a binding: compact oriented 1 dimensional manifolds. Each binding has

– an orientation that agrees with the orientation of facets with labels a and b whereas
disagrees with the orientation of facet with label a + b.

– cycling ordering of the three facets around binding: when foam embedded in R3 this
ordering must be compatible with the left-hand rule with respect to its orientation.

● Every seam Ci, which is a connected component of the set of Y -shaped points of F ,
carries an orientation;

● The orientation of every seam agrees with the orientation of precisely two adjacent facets;
if these two facets are labeled by a and b, then the third facet has the label a + b;

● The bottom boundary of each facet Fi, that is Fi ∩ (R2 × {0}), is an edge of W0 with the
same label and the orientation opposite to the orientation induced by Fi;

● The top boundary of each facet Fi, that is Fi ∩ (R2 × {1}), is an edge of W1 with the
same label and the orientation agreeing with the orientation induced by Fi;

We define the composition of foams.

Definition 4.6. Assume we have webs W0, W1 and W2. Furthermore, we have foams F01

between W0 and W1, F12 between W1 and W2. We define composition F02 of F01 and F12 as the
union of F01 and F12 along W1 where we can think of F01 as a subset of R2 × [0,1/2] and F12 as
a subset of R2 × [1/2,1].
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In our case, closed foams are crucial for us:

Example 4.7. A closed foam is the map from an empty web to an empty web.

4.2. Coloring and decorations. On webs and foams, we might have some extra structures,
namely colorings and decorations. The coloring of a web is similar to the labeling.

Definition 4.8 (coloring of a web). Let W be a web. A coloring is an assignment of a subset
Ae of P={1,2, . . . ,N} to every edge e such that ∣Ae∣ = labeling of the edge. In other words, for
every edge, we assign a subset of {1,2, . . . ,N}. This assignment should satisfy two conditions:

● We have two edges with colorings A and B enter a vertex, then the outgoing edge should
have coloring A ∪B where in particular we have A ∩B = ∅.

● We have two edges with colorings A and B exiting from a vertex, then the incoming
edge should have coloring A ∪B.

The colorings of foams are similar.

Definition 4.9 (coloring of a foam). Assume we have a foam F . A coloring is an assignment of
a subset c(f) of {1,2, . . . ,N} to a face f such that ∣c(f)∣ = labeling of the face f . The assignment
must fulfill the following compatibility condition, which generalizes the compatibility relation for
labels: at every seam where the adjacent facets f1, f2, and f3 meet—assuming the orientations
of f1 and f2 align with that of the seam—it is required that

c(f3) = c(f1) ∪ c(f2).
A colored foam is a foam with a coloring.

In addition to this structure on webs and foams, we have decorations of foams.

Definition 4.10.

● Assume we have a colored foam (F, c). We define surface Fi(c) as a union of all the
facets that contain i ∈ P . The restriction on orientations of facets ensures that Fi(c) is
also oriented.

● Assume we have a colored foam (F, c). We define surface Fij(c) as a union of all the
facets which contain i or j but not both at the same time in their colors. The restriction
on orientations of facets ensures that Fij(c) is also oriented.

Definition 4.11. Assume we have a colored foam (F, c) and we have i < j. A circle in Fi(C) ∩
Fj(C) ∩ Fij(C) is positive (respectively negative) with respect to (i, j) if it consists of positive
(respectively negative) bindings. We denote the number of positive (respectively negative) by
θ+ij(c)F (respectively θ−ij(c)F ). Furthermore, we have θij(c) = θ+ij(c) + θ−ij(c).

4.3. Decorations, degrees and evaluations.

Definition 4.12 (Degree of an undecorated foam). The degree dun(F ) for a foam F is the sum
of the following items.

● For a face f we have d(f) = a(N − a)χ(f) where a is the face label and χ is Euler
characteristic;

● For seam i which is not a circle and is surrounded by faces with labels a, b, a+ b we have
d(i) = ab + (a + b)(N − a − b);

● For a singular point p surrounded by faces with label a, b, c, a + b, b + c, a + b + c we have
d(p) = ab + bc + cm +ma + ac + bm, where m = N − a − b − c.

● At the final stage we have the formula

dN(F ) = − ∑
f facet

d(f) + ∑
i seam

d(i) − ∑
p singular points

d(p)

.

Another important definition for foams is the decoration.
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P01

P12

F01

F12

P01 ⋅ P02F02

Figure 5. Rule for gluing decorated foams.

Definition 4.13 (Decoration of a foam). Assume we have a foam F and a face f with labeling
a. A decoration is an assignement of a symmetric homogeneous polynomial pf in a variables to
the face f .

A decorated foam is a foam together with a decoration of each face. We have the composition
of foams when decoration on foams respects composition rule also. Namely, assume we have two
foams F01 and F12 with decoration P01 on face f1 of F01 and P12 on face f2 of F12. Assume that
composition happens on faces f1 and f2. Then the new face should have decoration P01 ⋅ P12.

Remark 4.14. We fix our variables for polynomials as X1,X2, . . . ,XN , and we declare that each
variable Xi has degree 2.

Definition 4.15 (Degree of decorated foam). The degree d(F ) of a decorated foam F is defined
as the sum of the undecorated degree of the foam, denoted dun(F ), and twice the total degree
of the decorations on all faces. More precisely, you add 2 ⋅ deg(Pf) for each face f , where Pf is
the polynomial decorating that face.

d(F ) = dun(F ) + 2∑
f

deg(Pf),

where the sum is taken over all faces f of the foam.

Definition 4.16 (Evaluation of a foam). The evaluation of a closed foam involves assigning a
polynomial to the foam. Assume we have a colored decorated foam (F, c). We have contributions:

s(F, c) =
N

∑
i=1

i(χ(Fi(c))
2

) + ∑
1≤i≤j≤N

θ+ij(F, c)

P (F, c) = ∏
f face of F

Pf(c(f))

Q(F, c) = ∏
1≤i≤j≤N

(Xi −Xj)
(
χ(Fij(c))

2
)

⟨F, c⟩ = (−1)s(F,c)P (F, c)
Q(F, c) .

Assume we have a decorated closed foam F , we define the evaluation of a foam F :

⟨F ⟩ = ∑
c

⟨F, c⟩,

where the sum runs over all colorings of F .

It is proved in [28] that ⟨F ⟩ is a symmetric polynomial. The next observation is made in [28];
it follows promptly from the definition of ⟨F ⟩.
Lemma 4.17. If we have two isotopic foams F1 and F2 in R2 × [0,1], then ⟨F1⟩ = ⟨F2⟩.
4.4. Foam categories. We want to define slN homology. For this, it is convenient to package
webs and foams into a category theory language.

Definition 4.18. Foam∗
N category is a category with objects formal shifts of N -webs denoted

qaW for fixed N ≥ 2, and morphisms between two webs qnW1 and qmW2 are decorated foams
from W1 to W2 with degree m − n. Composition of two foams is defined as 4.6.
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We remark that until we impose some equivalence relations on foams, the category Foam∗
N

is huge. In particular, for the moment, isotopic foams give different morphisms.
The next category is the SFoam∗

N category. We use the notation SN ∶= Sym[X1,X2, . . . ,XN ]
as the graded ring of symmetric polynomials with complex coefficients. Recall that the variables
Xi have degree 2, see 4.14.

Definition 4.19 (SFoam∗
N ). The category SFoam∗

N is the SN linear, Z-graded category with

● Objects as formal shifts qkV and their direct sums, where V is a web, q is a formal
variable, and k ∈ Z is grading.

● Morphisms as SN linear combinations of decorated foams. Foams from qa1W1⊕qa2W2 ⋅ ⋅ ⋅⊕
qakWk to qb1W ′

1 ⊕ qb2W ′
2 ⋅ ⋅ ⋅ ⊕ qblW ′

l is the l × k matrix whose i, j coefficient is SN formal
linear combination of foam between Wi and W ′

j with grading j − i. For p ∈ SN , pF

has degree deg(p) + deg(F ). In other words, Hom(qaW1, q
bW2) is the formal linear

combination of foams between W1 and W2. This means Hom(qaW1, q
bW2) is freely

generated SN module.

We defined the SFoam∗
N category. To understand it better, we define the evaluation functor

from SFoam∗
N to the category Sym∗

N of graded SN projective modules. In this category, the
modules are allowed to be infinitely generated.

Definition 4.20 (Naive evaluation functor). We have functor F̃ ∶ SFoam∗
N → Sym∗

N

● For any shifted web qaV , we have

F̃(qaV ) = HomSFoam∗

N
(∅, qaV ) = ⊕

G∈HomSFoam∗

N
(∅,qaV )

SN{dN(G)}

● For a morphism F ∶ qaV → qbW , we have the map

HomSFoam∗

N
(∅, qaV ) F̃(F )(−)∶=F○(−)ÐÐÐÐÐÐÐÐÐ→ HomSFoam∗

N
(∅, qbW )

Remark 4.21. We note that by the second item of Definition 4.19, HomSFoam∗

N
(∅, qaV ) is an

SN module.

In our assignment for a web V , we took all foams, but it is logical to expect isotopic foams
as defining the same objects, respectively the same morphisms. To overcome this problem, we
need to take a suitable quotient using foam evaluation.

Suppose we have a web V and F ′ ∈ HomSFoam∗

N
(V,∅), define

φF ′ ∶ HomSFoam∗

N
(∅, V ) → SN

φF ′(F ) = ⟨F ′ ○ F ⟩
Now we define

I(V ) = ⋂
F ′∈HomSFoam∗

N
(V,∅)

kerφF ′

Actually, I(V ) consists of all SN linear combinations of foams from ∅ to V that evaluate to zero
when capped with any foam from V to ∅.

As closed isotopic foams evaluate to the same polynomial, we have the following observation,
which we record for a future use.

Lemma 4.22. For any two isotopic foams F and F ′ from ∅ to V , F − F ′ is in I(V ).

Definition 4.23 (Evaluation functor). We define a new evaluation functor
F ∶ SFoam∗

N → SymN where SymN is a category of finitely generated graded projective modules.

● For any web qaV , we have F(qaV ) = F̃(qaV )/I(qaV ) = HomSFoam∗

N
(∅, qaV )/I(V ).
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● For morphism G ∶ V →W , we have the map

HomSFoam∗

N
(∅, V )/I(V ) F(G)(−)∶=G○(−)ÐÐÐÐÐÐÐÐÐ→ HomSFoam∗

N
(∅,W )/I(W )

It is proved in [28] that F is functor in the category in SymN . Now we define a new category
where any two isotopic foams between two webs will be in the same class.

Definition 4.24. The category of SFoamN has the same objects as SFoam∗
N , but for mor-

phisms, it is different: HomSFoamN
(V,W ) ∶= HomSFoam∗

N
(V,W )/kerF .

We need a bracket definition, and for this, we need to define a new category. In general form
we have:

Definition 4.25. For an additive category A, we denote by Kom(A) the category of bounded
cochin complexes in A and morphisms in Kom(A) are cochain maps.

Definition 4.26 (Kom(SFoamN) category). The category Kom(SFoamN) is defined as fol-
lows:

● objects are bounded cochain complexes in the SFoamN category;
● morphisms are cochain maps.

4.5. SN -equivariant slN -homology. For a link L we assign numbers between 1 and N accord-
ing to its thickness. We call this labelled link. If we do not have any label on a link we assume
all components are labelled with 1. We need to define the bracket [[D]] ∈ Kom(SFoamN) for
any labeled link diagram D. For this, we just need to define the bracket for a straight strand,
positive and negative crossing. For any diagram, we will take the tensor product of these three
diagrams.

Definition 4.27 (Bracket definition, see [7, Definition 3.3]).

● For a strand a bracket maps it to the corresponding web in homological degree zero.
● The bracket maps a positive crossing with a as an overstrand label and b as an under-

strand label, denoted as a ≥ b, to the chain complex as in Figure 6. The differential d+k
can be seen in the Figure 8.

● The bracket maps a positive crossing with b as the overstrand and a as the understrand
(i.e.,b ≥ a) to the chain complex obtained by reflecting the webs and foams (from the
case a ≥ b) along the vertical axis, and swapping the labels a and b.

● For a negative crossing, the bracket maps it to the chain complex obtained from the
corresponding positive crossing by reversing the q-degrees and homological degrees, and
reflecting the differential foams across a horizontal plane. See Figure 7.

We create a cube of resolutions to understand the bracket definition better. Let D be a
diagram with n crossings, enumerated from 1 to n and let Cr(D) denote crossing points of
diagram D. At each crossing, we have labels ai and bi. We define ci as the minimum of these
two labels and set Ci = {0, . . . , ci} for the i-th positive crossings and Ci = {−ci, . . . ,0} for the i-th
negative crossings. Similarly, we define SCi = [0, ci] and SCi = [−ci,0] for positive and negative
crossing. Moreover, we consider SCi to be a CW -complex where 0-cells are the integral points,
and 1-cells are the intervals. Define Cube(D) = ∏iCi and SCube(D) = ∏i SCi where SCube
carries a concrete CW-complex structure.

Definition 4.28 (Immediate successor). For I, I ′ ∈ Cube(D), we say I ′ is an immediate suc-
cessor of I if I and I ′ agree on all coordinates except one, and this one coordinate is one larger
than that of I.

Definition 4.29 (Sign assignment). A sign assignment s is an assignment of s(I, I ′) ∈ F2 for
any pair I and I ′ such that I ′ is an immediate successor of I.
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Figure 6. The resolution of a crossing. Here x = b(N − b) and q denotes the
quantum grading shift. The first term is at homological degree zero.
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Figure 8. The foam that is the differential d+k of the complex in Figure 6. It is
decorated by constant polynomial equal 1.

·

We want s to satisfy the following chain condition for I, I1, I2, and I12 where I1 ≠ I2, I1 and
I2 are the immediate successors of I, and I12 is the immediate successor of I1 and I2. We have

s(I, I1) + s(I, I2) + s(I1, I12) + s(I2, I12) = 1 ∈ F2
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φ

Figure 9. Reidemeister one move. To the left: the source and the target of
the map φ. To the right: the foam realizing this map (it is a product foam
everywhere except near the crossing).

Remark 4.30. Algebraically, we think of s as a cellular 1-cochain in the cellular cochain complex
C1
cell(SCube;F2) where δs is a 2-cochain with a constant value of 1.

Lemma 4.31. For any diagram D, there exists a sign assignment s. For any two assignments
s and s′, there is a coboundary such that s−s′ = δt where t is a cellular 0-cochain on SCube(D).
Moreover, t is uniquely determined if it fixes its value on (0, . . . ,0).

Proof. For a c ∈ C2
cell(SCube;F2) where c is a constant cochain with a value of 1, we have

δ(c) = 0 because the cube has an even number of rectangles. Since we take the sum of an even
number of 1’s, we get 0 in F2. Since the cube SCube(D) is contractible, we have a 1-cochain
e ∈ C1

cell(SCube;F2) such that δ(e) = c. We have e as a sign assignment s. Assume that we
have two sign assignments s and s′. We have δ(s − s′) = δ(s) − δ(s′) = 1 − 1 = 0, so s − s′ is a
1-cocycle. Again, since the cube SCube(D) is contractible, we have t such that δ(t) = s− s′. If
we have another t′ such that δ(t′) = s − s′, then we have δ(t − t′) = 0, which means t − t′ is a
cellular 0-cocycle. This implies that (t − t′)(a) = (t − t′)(b) = 0 for any point a, b that belongs
to any interval I. This means that for any points in the cube, t − t′ is equal to zero, so t − t′

is constant. �

For I ∈ Cube(D) we get web CI by taking the I(i)-th resolution in Figure 6 at the i-th
resolution for all crossing points i. Furthermore we define quantum degree for I ∈ Cube(D) and
denote it by Q(I) :

Q(I) = ∑
i∈Cr(D)

qi

where for positive crossing qi = I(i) − ci(N − ci) and for negative crossing qi = −I(i) + ci(N − ci).
In addition to the quantum grading we have homological grading. We denote it by H(I):

H(I) = ∑
i∈Cr(D)

I(i)

We get cochain complex ¯[[D]] by resolving D for all I ∈ Cube(D) and for the homological
degree s we take the formal sum of webs DI where H(I) = s. To define the differential, consider
I ∈ Cube(D) and let I ′ be an immediate successor of I, that is, I ′ differs from I only at a
single crossing. We define δ(I, I ′) as a foam given by 8, otherwise it is a product foam. The

differential in the complex ¯[[D]] is defined as (−1)s(I,I′) δ(I, I ′), where s(I, I ′) denotes the chosen
sign assignment. By construction, there is a natural identification between ¯[[D]] and [[D]].

Theorem 4.32. For any diagrams D and D′ of the link L, we have [[D]] ≃ [[D′]]. In other
words, the complexes for these two diagrams are homotopy equivalent in Kom(SFoamN).

Proof. The statement is well-known to the experts, with a few known proofs. To show how sign
assignements work, we provide a proof in two special cases. Namely, if D′ differs from D by a
single Reidemeister move, and

● The case of a Reidemeister 1 move for general labelings.
● The case of a Reidemeister 2 move for diagrams with all labels equal to 1.
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In this proof, the main issue will be clarifying signs. Namely, we will show how to relate sign
assignments on D with sign assignments on D′. In the case of non-periodic links, we do not have
a sign assignment problem, Koszul’s sign rule being sufficient. We have proof of this theorem in
[7, Theorem 3.5]. We will imitate [18, Section 7].

We denote the diagram obtained from D via a single Reidemeister 1 move with a positive
crossing by D⟨X⟩. We assume that the strand at which the Reidemeister move is done is labeled
by a > 0. We denote partial resolutions of D⟨X⟩ as D⟨V⟩, D⟨ 1⟩, . . . ,D⟨ a−1⟩, and D⟨Z⟩. Here,
by putting i we mean we label the loop which is next to the diagram by i. We can write [[D]]
as the following bicomplex

(4.33) 0→ [[D⟨V⟩]]
d+0Ð→ [[D⟨ 1⟩]]

d+1Ð→ . . .
d+aÐ→ [[D⟨Z⟩]] → 0,

Here d+i is the identity except near the relevant crossing. The foam near the crossing is given
by Figure 8. We have a chain map between [[D]] and [[D⟨X⟩]] given by

(4.34)

0 [[D]] 0 . . . 0 0

0 [[D⟨V⟩]] [[D⟨ 1⟩]] . . . [[D⟨Z⟩]] 0,

φ

d+0 d+1 d+a

Here φ is the union of the identity foams and the cup foam. It is the identity foam away from
the crossing, and the cup foam when we have a resolution for an extra crossing. In general,
we can say that the map between [[D]] and [[D⟨X⟩]] is given by (−1)d(I)φI , where d(I) is a
choice of a sign. The main issue with choosing appropriate sign assignments is to show that
the choice d(I) ≡ 0 is consistent. That is, for the rest of the proof, we will deal with sign
assignments on Cube(D) and on Cube(D⟨X⟩) so that φ is the chain homotopy map. We know
that Cube(D⟨X⟩) = Cube(D)×{0, ε,2ε, . . . , aε}. The following lemma will show us how to extend
sign assignment from Cube(D) to Cube(D′) where Cube(D′) ≅ Cube(D)×{0, ε,2ε, . . . , aε} where
ε is the sign of the new crossing.

Lemma 4.35. Suppose we have a sign assignment s for the diagram D. Assume we have
the diagram D′ with one more crossing compared to D, so we have Cube(D′) = Cube(D) ×
{0, ε,2ε, . . . , aε} where ε is the sign of an additional crossing. There exists a unique sign assign-
ment s′ for D′ satisfying the following conditions.

● The new sign assignment should be compatible with the old one, so to say for I,I ′ ∈
Cube(D) where I ′ is the immediate successor of I, we have

s′((I,0), (I ′,0)) = s(I, I ′)

● For I ∈ Cube(D)
s′((I, j), (I, j + 1)) = 0

for all j, i.e., for positive crossing j = 0, . . . , a−1 and for negative crossing j = −a, . . . ,−1.
Furthermore, suppose s1,s2 are two sign assignments on D and s1 −s2 = δ(t), denote s′1
and s′2 extensions of s1 and s2. Now define the cellular 1-cochain t′ on SCube(D′) by
t′(1, x) = t(I) for any (I, x) ∈ Cube(D). Then s′1 − s′2 = δt′.

Proof. We will prove it only for a positive added crossing; the proof for the negative crossing is
similar. We need to address the case of elements of the cube with the same last coordinate. We
set

(4.36) s′((I, j), (I ′, j)) = s(I, I ′) +
⎧⎪⎪⎨⎪⎪⎩

1 j odd

0 j even.
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To show that the choice gives actually a sign assignement, we need to check the cochain condition.
We check each case separately:

● For I ′, I ′1, I
′
2, I

′
12 ∈ Cube(D′) where these all have 0 as their last coordinate, we have

s′(I ′, I ′1) + s′(I ′, I ′2) + s′(I ′1, I ′12) + s′(I ′2, I ′12)
= s(I, I1) + s(I, I2) + s(I1, I12) + s(I2, I12) = 1.

● For I ′, I ′1, I
′
2, I

′
12 ∈ Cube(D′) where these all have j with the condition j ≠ 0 as their last

coordinate, either we have 1 or 0 in the definition 4.36. We have

s′(I ′, I ′1) + s′(I ′, I ′2) + s′(I ′1, I ′12) + s′(I ′2, I ′12)
= 1 + s(I, I1) + 1 + s(I, I2) + 1 + s(I1, I12) + 1 + s(I2, I12) = 1 in F2.

● For I, I1 ∈ Cube(D) where I1 is the immediate successor of I, we have I ′ = (I, j), I ′1 =
(I1, j), I ′2 = (I, j + 1), I ′12 = (I1, j + 1). For these, we have

s′(I ′, I ′1) + s′(I ′, I ′2) + s′(I ′1, I ′12) + s′(I ′2, I ′12)
= s(I, I1) + 0/1 + 0 + 0 + s(I, I1) + 1/0 = 1 in F2.

Now, we prove the second part. Suppose we have sign assignments s1 and s2 for Cube(D).
For I and I ′ where I ′ is the immediate successor of I, we have s1(I, I ′)−s2(I, I ′) = t(I)−t(I ′).
Now we consider I ′1, I

′
2 ∈ Cube(D × {0, ε,2ε, . . . , aε}) such that I ′2 is the immediate successor of

I ′1. We have three cases:

● I ′1 = (I1, j) and I ′2 = (I2, j). For j is even, we have

s′1(I ′1, I ′2) − s′2(I ′1, I ′2) = s1(I1, I2) − s2(I1, I2) = t(I1) − t(I2) = t′(I ′1) − t′(I ′2).
● I ′1 = (I1, j) and I ′2 = (I2, j). For j is odd, we have

s′1(I ′1, I ′2) − s′2(I ′1, I ′2) = 1 + s1(I1, I2) − 1 − s2(I1, I2) = t(I1) − t(I2) = t′(I ′1) − t′(I ′2).
● In this case, we have I ′1 = (I, j) and I ′2 = (I, j + 1), then we have

s′1(I ′1, I ′2) − s′2(I ′1, I ′2) = 0 = t(I) − t(I) = t′(I ′1) − t′(I ′2).
�

With the sign assignment from Lemma 4.35, we have the following corollary:

Corollary 4.37. For any I ∈ Cube(D), the I-th component of the map φ ∶ [[D,s]] → [[D⟨V⟩,s′]]
is given by φI ∶DI →D(I,0) without any sign correction.

Proof. Let I1 ∈ Cube(D) and I2 be an immediate successor of I1. We chose I ′1 = (I1,0) and
I ′2 = (I2,0). The map d′ ○ φI1 is the composition of the foams φI1 and δ′(I ′1, I ′2) with the sign

(−1)d(I1)+s′(I′1,I′2). On the other hand, we have another map which is a composition of the foams

δ(I1, I2) and φI2 with the sign (−1)d(I2)+s(I1,I2). By Lemma 4.35, s(I1, I2) = s′(I ′1, I ′2) and we
took d(I) = 0 for any I ∈ Cube(D), this implies φ is commutative with differential for any
I ∈ Cube(D). �

In [18], it is proved that the map φ is indeed a chain homotopy equivalence. In fact, there
exist explicit foams giving the inverse map. As the sign choice for D and for D⟨V⟩ is the same,
there is no extra sign correction needed for the inverse maps either. This proves the case of
Reidemeister 1 move for general labellings.

We will now sketch the proof of the Reidemeister 2a move which means the move

D D′.
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Figure 10. The map Φ for the Reidemeister 2a move in the proof of Theo-
rem 4.32. The dashed part is the seam singularity on the foam.

does not change homotopy type of [[D]]. Recall that we have 1 for all labels here. Furthermore
we assume that the left crossing of D′ is first new crossing and right crossing is the second one.
We have Cube(D′) = Cube(D) × {0,1} × {−1,0}. We have sign assignment s of D. We can
extend this sign assignment on D′ by firstly extending it on Cube(D) × {0,1} by 4.35 and later
on Cube(D′) = Cube(D) × {0,1} × {−1,0} by 4.35. We have the following observation.

Lemma 4.38. The sign assignment s′ on Cube(D) × {1} × {−1} agrees with s.

Proof. Let I, I ′ ∈ Cube(D) with I ′ an immediate successor of I. By (4.36), we have s1((I,1), (I ′,1)) =
1 + s(I, I ′). Again by (4.36) , we obtain s′((I,1,−1), (I ′,1,−1)) = 1 + s1((I,1), (I ′,1)) =
s(I, I ′). �

We define the following cochain map

00

I

Φ

In the figure, we have the local cochain complex of [[D]] at the bottom and at the top we
have the local cochain complex of [[D′]]. Here I is the identity foam with the sign +1 and by
Lemma 4.38, Φ is a cochain map between the complex [[D]] and the subcomplex of D′ obtained
by a (−1,1)-resolution of the crossing created in the Reidemeister 2a move. In [18] it can be
seen that I ⊕Φ is a chain map. [18] gives also the description of the inverse map and the proof
that I ⊕Φ∶ [[D]] → [[D′]] is a cochain homotopy equivalence.

The description of sign assignments for the Reidemeister 2b move, drawn in Figure 11, is
the same. For the Reidemeister 3 move, we do not encounter problems with sign assignment,
because the move preserves the crossings. The sign assignment on D induces a natural sign
assignment for D′.

This implies that [[D]] ≃ [[D′]].
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D D′.

Figure 11. Reidemeister 2b move.

�

By Theorem 4.32, we know that we define the bracket independently of the diagram of a link.

Definition 4.39. (SN -equivariant Khovanov-Rozansky homology) For any diagram D of a link
L, we define the SN -equivariant Khovanov-Rozansky homology as the homology of the chain
complex F([[D]]).

5. Specialization

Recall that we have SN , the ring of symmetric polynomials in fixed N ≥ 0 variables with
complex coefficients. We know that SN is naturally isomorphic to the ring of polynomials in N
variables which are the elementary symmetric polynomials.

Theorem 5.1 (Quillen–Suslin, see [27, 30]). Every finitely generated projective module over a
polynomial ring is a free module.

5.1. Algebraic Specialization of Modules. Recall that Sym∗
N is the category of graded

projective SN -modules and SymN is the category of finitely generated graded SN projective
modules. We manipulate this category and define new one.

By Theorem 5.1, an object of SymN is a direct sum of finitely many copies of SN{qa}, where
{qa} indicates a degree shift. In other words, if we write (SN)k for the k-graded part of SN ,
then (SN{qa})k = (SN)k−a, the (k − a)-graded part of SN .

Assume we have Σ, an (unordered) N -tuple of points in C, not necessarily distinct. We denote
P (Σ) as the evaluation of P ∈ SN at Σ. Since P is symmetric polynomial P (Σ) is well defined.
Then, Σ specifies a left SN -module structure on C, via Pz = P (Σ)z, for P ∈ SN and z ∈ C. Since
C is left SN module, for any module M ∈ SymN , M ⊗SN C is C-module, that is, a vector space
over C. Furthermore, if we take M = SN then SN ⊗SN C = C.

Definition 5.2. (Specialization functor) We have a functor

evΣ ∶ SymN →Vect(C)

given by evΣ(M) →M ⊗SN C and for a morphism

F ∶M → N

evΣ(F ) ∶M ⊗SN C→ N ⊗SN C

evΣ(F )(m⊗ c) = F (m) ⊗ c
We call this a specialization functor. If Σ consists of pairwise distinct complex numbers, then
the functor is called a generic specialization functor. On the other hand, if Σ = (0, . . . ,0), then
the functor is called a singular specialization functor.

We have Zm action on evΣ(M) and on evΣ(F ) .

Definition 5.3. For g ∈ Zm g evΣ(M) = gM ⊗C and g evΣ(F )(m⊗C) = gF (m) ⊗ c.
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5.2. Algebraic Specialization of Cochain Complexes. Let M be a graded, finitely gener-
ated free SN module.

M =
m

⊕
j=1

SN{qam}

where qam denotes the grading shift with am as an integer. Between two modules SN{qam} and
SN{qan}, we have a morphism φ. We say that φ is a degree k morphism, when it is a map
SN → SN with degree k + b− a. Therefore φ is a multiplication by a homogeneous polynomial of
degree (k + an − am)/2.
Note that we have degree 2 for variables X1, . . . ,XN . Recall that the graded cochain complex is
the complex that has differentials with degree zero. Assume we have the graded cochain complex
C∗ with graded, free SN modules. Now we form two cochain complexes.

Definition 5.4 (Generic and Singular Specialization of Complexes).

● For Σ = (0, . . . ,0), we have the singular specialization C0
∗, which is obtained by applying

evΣ to C∗.
● For Σ with the set of pairwise distinct complex numbers, we have a generic specialization
Cgen∗ , which is obtained by applying evΣ to C∗.

If we have Ci = ⊕ni
j=1 SN{qaij}, then C0

i = C
gen
i = ⊕ni

j=1 C{qaij} because, as it was explained in

Subsection 5.1, SN ⊗SN C = C. The boundary maps d0
i and dgeni are equal to evΣ(d), where d is

the boundary map in Ci = ⊕ni
j=1 SN{qaij}.

Assume we have a chain complex Ci = ⊕ni
j=1 SN{qaij}, the differential map di ∶ Ci → Ci+1

is the sum of the maps di,kl ∶ SN{qaik} → SN{qai+1,l}. The map having the degree 0 is the
multiplication of a homogeneous polynomial of degree (ai+1,l − ai,k)/2. The singular evaluation
of any homogeneous polynomial of degree at (ai+1,l−ai,k)/2 can be non-zero only if ai+1,l−ai,k = 0

when we apply evΣ for Σ = (0, . . . ,0). We can deduce that with the evΣ functor, the differential
di0 of the complex Ci0 keeps the grading.

On the other hand, for the cochain complex (CiΣ, diΣ), the situation is different. Homogeneous

polynomials can be nonzero when evaluated at Σ when ai+1,l − ai,k ≥ 0. This means (CiΣ, diΣ) is
filtered.

Proposition 5.5. There exists a spectral sequence, whose first page is H∗(C0
∗) and whose ho-

mology is H∗(Cgen∗ ).

Proof. The differentials di∶Ci → Ci+1 can be decomposed as a sum di0+di1+. . . , where dis is given
by a matrix of homogeneous polynomials of degree s. After performing a generic specialization,
dis becomes the map disgen increasing the grading by 2s. That is, digen = di0gen + di1gen + . . . . The

graded part of digen is equal to di0gen.

Specialization of dis with all variables zero gives the zero map, unless s = 0. That is, di0 = di00 .
The non-zero map di00 is equal to di0gen because a degree-zero polynomial is necessarily constant.

Therefore, the graded part of digen is equal to the differential di0.

Summarizing, (C∗
gen, d

i
gen) is a filtered cochain complex, whose graded part is di0. A classical

argument shows the existence of the spectral sequence. �

5.3. Geometric Specialization. For Σ ∈ Cn, we have the evaluation for any foam F , de-
noted by ⟨F ⟩Σ, which is obtained by evaluating the polynomial ⟨F ⟩ at Σ. For any G ∈
HomSFoam∗

N
(V,∅), we have

ΦG,σ ∶ F̃(V ) → C,ΦG,σ(F ) = ⟨G ○ F ⟩Σ.

Based on this construction, we define the ΣFoamN category.

Definition 5.6. For the category ΣFoamN , the objects are the same as the objects of SFoam∗
N .

In other words, objects are webs with a formally assigned quantum grading. The morphisms
are given by HomΣFoamN

(V,W ) ∶= HomSFoam∗

N
(V,W )/IΣ(V ), where IΣ(V ) = ∩ker ΦG,Σ.
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We have a functor FΣ from the category ΣFoamN to the category of vector spaces.

Definition 5.7. FΣ(V ) = HomΣFoamN
(∅, V ) and for a map f ∶ V → W , we have FΣ(f) ∶

HomΣFoamN
(∅, V ) → HomΣFoamN

(∅,W ).

Taking specific Σ leads to special case. For Σ = (0, . . . ,0) (the singular case) we have the
0FoamN category. If the entries of Σ are all non-zero and pairwise distinct, we speak of a
generic case. Then, we will use Σ′, instead of Σ. If it is needed to distinguish between singular
and generic Σ in terms of ΣFoamN category, we will call it 0FoamN and Σ′FoamN category
respectively.

5.4. Geometric versus Algebraic Specialization. We know that both ΣFoamN and SFoamN

are quotient categories of SFoam∗
N , but the kernel is larger in ΣFoamN compared to the kernel

in SFoamN . This is because for SFoam∗
N , in the kernel, we have foams F such that ⟨F ⟩ is zero,

but on the other hand, for ΣFoamN , we mod out by those F , where ⟨F ⟩ which is zero when
evaluated on Σ. We have the following diagram of functors.

SFoamN SymN

ΣFoamN VectC

F

evΣ

FΣ

Here, VectC is a category of graded vector spaces over C.

Proposition 5.8. The diagram above is commutative.

Proof. This is the statement of [28, Proposition 4.1]. �

Based on these definitions, we define Khovanov-Rozansky slN -homology and Lee slN -homology.

Definition 5.9. For Σ = (0, . . . ,0) we have a chain complex F0([[D]]) for a link diagram D of
L. We define Khovanov-Rozansky slN -homology as the cohomology space Hk(evΣ ○F([[D]])) =
Hk(F0([[D]])) = KRk,r

N (L) of L where k is the homological grading and r is the quantum grading.
Furthermore, by 5.8 we know that algebraic and geometric specialization give the same result
so we can define Khovanov-Rozansky slN homology on the cochain complex (Ci(0,...,0), d

i
(0,...,0)).

Definition 5.10. For Σ being a set of pairwise distinct N complex numbers, we have a chain
complex FΣ([[D]]) for a link diagram D of L. We define Lee slN -homology as the cohomology

space Hk(evΣ ○F([[D]])) = Hk(FΣ([[D]])) = LeekN(L) of L where k is the homological grading.
Similarly, we can define Lee slN homology on the cochain (CiΣ, diΣ) for generic Σ.

Theorem 5.11 (Lee-Gornik spectral sequence). Let D be a link diagram. There is a spectral

sequence whose first page is KRk,r
N (L) abutting to LeekN(L).

Proof. Here take C∗ = F([[D]]) over SN . The cochain C0
∗ = F0([[D]]) and Cgen∗ = F0([[D]]) are

the specialization of C∗. The statement follows from Proposition 5.5. �

Now assume we have a link L and its mirror L′. For Khovanov homology we have Khi,j(L) ≅
Kh−i,−j(L′). For Khovanov-Rozansky homology we have a similar relation.

Proposition 5.12. For Khovanov-Rozansky slN homology we have an isomorphism KRk,r
N (L) ≅

KR−k,−r
N (L′).

Proof. Assume we have a diagram D of link L with n crossings. Enumerate Cr(D) = {1, . . . , n}.
For each vertex I, we associate F0(DI). Now assume we have a mirror diagram D′. For
I ∈ Cube(D), I = (i1, . . . , in), denote by I ′ the dual resolution (−i1, . . . ,−in) ∈ Cube(D′). The
webs D′

I′ and DI are isomorphic because D and D′ are mirrors to each other. We have a map
i ∶ F0([[D]]) → F0([[D′]]). In other words, we have i ∶ F0([[DI]]) → F0([[D′

I′]]).
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The differentials in the mirror complex are dualized. For example, if we have a differential from
F0([[DI1]]) to F0([[DI2]]) then for the mirror complex we have a differential from F0([[D′

I′2
]])

to F0([[D′
I′1
]]); and if the first differential is given by matrix A, then the second differential in

the mirror complex is given by AT . Now fix the basis of F0([[D]]). We have just showed that
F0([[D]]) and F0([[D′]]) have the same basis. If we send the basis of F0([[D′]]) to its dual basis,
that is, the basis of HomC(F0([[D]]),C) we get an isomorphism between HomC(F0([[D]]),C)
and F0([[D]]). In other words, we have

F0([[D′]]) ≅ HomC(F0([[D]]),C)
with underlying gradings reversed. By the universal coefficient theorem, since we work over the
field C, we obtain

H−k,−r(HomC(F0([[D]]),C)) =Hk,r(F0([[D]]))
so we get

Hk,r([[D]]) =H−k,−r([[D′]])
�

5.5. Computation of Lee-Gornik homology. Recall that the decoration of a foam F is an
assignment of a symmetric polynomial to every face of a foam F according to specific rules.

Definition 5.13 (Algebra of decorations). Let F be a foam and f be its face. The algebra of
decorations Af is an algebra that is generated by all possible decorations on the face f modulo
all decorations that make F a zero map in Σ′FoamN .

Theorem 5.14. Let f be the foam facet with label a. The algebra of decorations is the direct sum
of one-dimensional algebras indexed by the subsets of Σ with cardinality a. In each summand, we
have a generator 1A, which is an idempotent in Af . Furthermore, this algebra for faces should
satisfy the admissibility condition of coloring of foams in Definition 4.9. Namely, at every seam
where the adjacent facets f1, f2, and f3 meet—assuming the orientations of f1 and f2 align with
that of the seam—it is required that

A(f3) = A(f1) ∪A(f2).

Proof. [29, Lemma 4.2], [7, Lemma 2.28]
�

We define an algebra associated to a foam F . Assume we have a web W and a foam F from
W to W . Then the algebra AF is generated by all possible decorations on the foam F modulo
the decorations that evaluate to zero under FΣ.

Theorem 5.15 (See [7],Lemma 3.10). The algebra AF can be written as a direct sum of one-
dimensional summands. The summands are in bijection with colorings of all facets by a subset
of Σ as in Theorem 5.14.

To compute link homologies more effectively, we pass to the Karoubi envelope of the Σ′FoamN

category. The key reason for this is that the original chain complexes assigned to link diagrams
are generally not easy to study and with using [3, Proposition 3.3] we get chain complex in
Σ′Foam category which homology is easy to calculate.

Definition 5.16 (Karoubi envelope). Assume we have a category C. The Karoubi envelope of C
is the category obtained by formally splitting all idempotents of C. More precisely, the category
Kar(C) has objects as pairs (O, e) where O is an object in C and e ∶ O → O is an idempotent.
A morphism between (O, e) and (O′, e′) is a map f ∈ Mor(O,O′) such that f ○ e = e′ ○ f .

Consider the category Σ′FoamN and consider the identity foam F on W . As mentioned in
Theorem 5.15, a decoration on F induces a coloring on W .
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Definition 5.17. The category Kar0(Σ′FoamN) is the full subcategory of the Karoubi envelope
of Σ′FoamN whose objects are (W,FW ) where W is a web and FW is an identity foam colored
by subsets of the set of entries of Σ′.

Example 5.18 (See [26, Corollary 3.19]). We depict any web W in Kar0(Σ′FoamN) as a direct
sum of its decorations:

W ≡ ∑
D

(W,D)

where D runs through all admissible decorations.

Theorem 5.19. Let D be a diagram of a link with chain complex [[D]]Σ′ in Kar0(Σ′FoamN). In

the category Kar0(Σ′FoamN), the complex is isomorphic to the complex with trivial differentials.
Locally, we write:

(5.20)

ba

Σ′

≅ ⊕
A,B⊂Σ′

∣A∣=a
∣B∣=b

BA

≅ ⊕
k=0,...,b

⊕
A,B⊂Σ′

∣B∖A∣=k

tk
B ∖A

A ∖B

BA

AB

Proof. [7, Lemma 3.13], and [28, Lemma 5.9]
�

As we know, when we apply FΣ′ to [[D]]Σ′ , we get the slN Lee homology. Therefore, we can
compute the Lee homology of labeled links with this formula.

Theorem 5.21. Let L be a link with labels equal to 1. The Lee homology of L is isomorphic to

CN#L
. Furthermore, for each map Φ ∶ {components of L} → {1, . . . ,N}, we can assign a class

`φ ∈ LeeN(L) of homological degree

deg(`φ) = ∑
a≠b,a,b∈{1,...,n}

lk(φ−1(a), φ−1(b))

These classes generate LeeN(L).

Proof. [10, Theorem 2] �

5.6. slN -homology for periodic links. In this section, we study group action on homology.
For that, we take G = Zm. We have a group action on R2×R by rotating about the axis (0,0)×R.
Take m-periodic link L and D periodic link diagram of L.

5.6.1. Group actions on [[D]]. We want to construct the Zm-equivariant slN -homology of a
periodic link. For this, we need to prove:

● Existence of an Zm action on [[D]]
● Equivariance of the evaluation functor F , implying the existence of a Zm-action on
F([[D]])

● Independence of the action on the diagram.

Proposition 5.22. Assume we have a link diagram D. We have an action of Zm on [[D]] by
rotating resolution diagrams.

Proof. For the proof we need two lemmas.

Lemma 5.23. Let W be a web and set

G(W ) = HomSFoamN
(W,∅).

(1) Consider the bilinear map

QW ∶ G(W ) × F(W ) Ð→ SN , QW (B,A) = ⟨B ○A⟩,
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where F is the evaluation functor and ⟨−⟩ denotes the evaluation of closed foams, as
described in 4.16. The map QW is nondegenerate; that is, the associated adjoint map

Qad
W ∶ F(W ) Ð→ HomSN (G(W ), SN), Qad

W (A)(B) = ⟨B ○A⟩
is a monomorphism.

(2) Let W1,W2 be webs and let F,F ′∶W1 → W2 be foams. Then F and F ′ are equal in
HomSFoamN

(W1,W2) if and only if, for every A ∈ F(W1) and B ∈ G(W2), we have

⟨B ○ F(F ) ○A⟩ = ⟨B ○ F(F ′) ○A⟩.
Proof. A direct proof is given in [5, Lemma 2.20]. �

Lemma 5.24. Let α∶ I → Diff(R2) be a loop of diffeomorphisms that is constant on some
neighborhood of ∂I and satisfies α0 = α1 = id. For any web W , define

Hα∶R2 × I → R2 × I, Hα(x, t) = (αt(x), t),
and set

Σα(W ) ∶=Hα(W × I)∶W →W.

Then Σα(W ) ∈ HomSFoamN
(W,W ) is an identity in the foam category.

Proof. To show that Σα(W ) acts as the identity map, it suffices to verify that for every A ∈ F(W )
and every B ∈ G(W ), the equality

⟨B ○Σα(W ) ○A⟩ = ⟨B ○A⟩
holds. Consider the closed foam

G = B ○Σα(W ) ○A
in R2 × I, embedded so that

A ⊂ R2 × [0, 1
3
] , Σα(W ) ⊂ R2 × [1

3 ,
2
3
] , B ⊂ R2 × [2

3 ,1] .
Define the diffeomorphism

H ∶R2 × I Ð→ R2 × I
by

H(x, t) =
⎧⎪⎪⎨⎪⎪⎩

(x, t), t ≤ 1
3 or t ≥ 2

3 ,

(α′3t−1(x), t), 1
3 ≤ t ≤ 2

3 ,

where α′ is the reparametrization of α defined on I. The diffeomorphism H carries the foam

G′ = B ○ (W × I) ○A
onto G. The evaluation of closed foams, as described in [28, Definition 2.12] is carried out in a
combinatorial manner, with the resulting value determined by the Euler characteristics of the
faces and the combinatorial data of their colorings. In particular, foams that are related by a
diffeomorphism have identical evaluations; that is,

⟨G′⟩ = ⟨G⟩.
Moreover,

⟨B ○A⟩ = ⟨G′⟩ = ⟨G⟩.
By Lemma 5.23, this implies that Σα(W ) acts as the identity morphism in HomSFoamN

(W,W ).
�

We continue the proof of Proposition 5.22. The proof follows a similar approach to that
in [24]. Let us fix a generator g ∈ Zm and denote by

ρg ∶D →D

a cobordism representing the rotation by g. We choose a specific ρg obtained as the trace of a

continuous family of rotations in R3, where the rotation angle increases linearly from 0 to 2π
m .
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More precisely, define a path

α ∶ I → Diff(R3)
such that αt is the rotation about the axis of D by the angle 2πt

m . Consider the map

Hα ∶ R3 × I → R3 × I
given by

Hα(x, t) = (αt(x), t),
and define

ρg =Hα(D × I).
Clearly,

ρg ∶D → α1(D) =D.
We have the action ρg of Zm on D, and this action induces on crossing points of link L. Thus
it reduces action on Cube(D) denoted (g, I) ↦ gI. Furthermore, we can define an action for
DI : We have gDI = DgI , where g acts on DI by rotation. Let ρg,I ∶ DI → DgI denote the
foam realizing the rotation. We need a sign assignment to construct an action on [[D]]. The
sign assignment needs to satisfy some invariance property. We define the action of g on sign
assignments via s↦ gs, where gs(gI, gI ′) = s(I, I ′). The sign assignment gs does not need to be
equal to s. But we must have gs− s = δt for some 0-cochain t. Define Gg = [[ρg,t]] The map Gg
depends on t, but by Lemma 4.31, we know that for two different t1 and t2, we have t1 = t2+a
where a is constant. There are two options. Either we fix t by requiring that t(0, . . . ,0) = 0, or
we emphasize the dependence of t by writing Gg = [[ρg,t]]. Unless specified explicitly otherwise,
we adopt the first convention. Furthermore, to be more clear for each I in Cube(D), the I-th
component of the map Gg is given by

Gg,I = (−1)t(I) ρg,I .
We need to prove that our map Gg is actually cochain map which means if d is a differential on
[[D]], then dGg = Ggd. Take resolutions I, I ′ ∈ Cube(D) such that I ′ is an immediate successor
of I. Let us have φ as the foam which gives the component of the differential from DI to DI′ .
We have the following diagram:

DI DgI

DI′ DgI′ .

(−1)t(I)ρg,I

(−1)s(I,I
′
)φ (−1)s(gI,gI

′
)gφ

(−1)t(I
′
)ρg,I′

Here the vertical maps are differentials, and the horizontal maps are given by Gg,I and Gg,I′ .
The foams ρg,I′ ○φ and gφ ○ρg,I are isotopic. By definition the coboundary of the 0-cochain t is
(δt)(I, I ′) = t(I ′)−t(I) and by the property δt = gs−s we have t(I ′)−t(I) = gs(I, I ′)−s(I, I ′) =
s(gI, gI ′) − s(I, I ′)., this shows the diagram commutes. This means Gg is a chain map in
Kom(SFoamN). Lastly, we need to prove that Gg generates an action of G. In other words, we

need to show that (Gg)m = Id. For m = 2, we have (Gg)2(DI) = (−1)t(I)+t(gI)ρg,gI ○ ρg,I . Now
for general m, we have

Gmg (DI) = (−1)t(I)+⋯+t(gm−1I)ρg,gm−1I ○ ρg,gI ○ ρg,I
Define t′(I) = t(I)+⋯+t(gm−1I). We have δ(t′) = δ(t)+ δ(tg)+⋯δ(t(gm−1)) = gs− s+ g2s−
gs + ⋯ + gms − gm−1s = 0 by telescope sum. Since δ(t′) = 0, we deduce that t′ is a constant
function. For I = (0, . . . ,0), we have t′(I) = t(I) + ⋯ + t(gm−1I), but since (0, . . . ,0) is fixed
in any action, we have t′(I) = 0 + ⋯ + 0 = 0. Hence, we have Gmg (DI) = ρg,gm−1I ○ ρg,gI ○ ρg,I .
Moreover, Lemma 5.24 shows that

ρg,gm−1I ○ ⋯ ○ ρg,gI ○ ρg,I = idDI .



36

Indeed, let β∶ I → Diff(R3) be the path of rotations, where βt rotates R3 around the axis of D
by an angle of 2πt. Using the notation of Lemma 5.24 we have

ρg,gm−1I ○ ⋯ ○ ρg,gI ○ ρg,I = Σβ(DI).
Therefore, Lemma 5.24 implies that

ρg,gm−1I ○ ⋯ ○ ρg,gI ○ ρg,I = idDI ,

as desired. Consequently,

(Gg)m = Ggm = idDI ,

which completes the proof. �

Remark 5.25. The proof that Gmg,I is the identity uses the fact that t(0, . . . ,0) = 0. Another

choice t(0, . . . ,0) = 1, if m is odd, leads to an action such that Gmg,I is minus the identity.

Note that if M is a SN -module, and Zm acts on M , then we can regard M as a SN [Zm]-
module.

Proposition 5.26. Suppose D is a periodic diagram; then, the functor F extends to a Zm-
equivariant functor with values in the category of graded SN [Zm]-modules that are free as SN
modules.

Proof. Assume we have a web V and g ∈ Zm. We want to show that gF[[V ]] = F[[gV ]] for that

firstly we show gF̃[[V ]] = F̃[[gV ]]. The web gV is obtained by rotating the web V . For the

functor F̃ , by the Definition 4.15 the degree is preserved by the group action for a foam F so
dN(F ) = dN(gF ). We have:

gF̃[[V ]] = ⊕
F ∈HomSFoam∗

N
(∅,V )

gSN{dN(F )} = ⊕
F ∈HomSFoam∗

N
(∅,V )

SN{dN(gF )}

The second equality in the above equation is the definition of the G-action on the category of
SN -modules. Setting F ′ = gF , F ′ ∈ HomSFoam∗

N
(∅, gV ) we obtain

⊕
F ∈HomSFoam∗

N
(∅,V )

SN{dN(gF )} = ⊕
A∈HomSFoam∗

N
(∅,gV )

SN{dN(A)} = F̃[[gV ]],

so indeed gF̃[[V ]] = F̃[[gV ]]. We conclude that F̃ is G-equivariant on objects. For functor F ,
we need to show that gI(V ) = I(gV ) for a web V . For F ′ and F , we have

φgF ′(gF ) = ⟨gF ′ ○ gF ⟩ = ⟨F ′ ○ F ⟩ = φF ′(F )
This means that g kerφF ′ = kerφgF ′ which implies gI(V ) = I(gV ). As we know, F(V ) =
F̃(V )/I(V ), since F̃ is G-equivariant and gI(V ) = I(gV ) we deduce that F is G-equivariant on
objects. Next, we need to prove F is G-equivariant on foams. Namely, for foam F ∶ V →W we
should have F(gF ) = gF(F ).
F(gF ):

F ∶ V →W

gF ∶ gV → gW

F(gF ) ∶ Hom(∅, gV )/I(gV ) F(gF )(−)∶=gF○(−)ÐÐÐÐÐÐÐÐÐÐ→ Hom(∅, gW )/I(gW )
On the other hand gF(F ):

F ∶ V →W

F(F ) ∶ Hom(∅, V )/I(V ) F(F )(−)∶=F○(−)ÐÐÐÐÐÐÐÐÐ→ Hom(∅,W )/I(W )

gF(F ) ∶ g(Hom(∅, V )/I(V )) gF(F )(−)∶=F○(−)ÐÐÐÐÐÐÐÐÐÐ→ g(Hom(∅,W )/I(W ))
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gF(F ) ∶ Hom(∅, gV )/I(gV ) F(gF )(−)∶=gF○(−)ÐÐÐÐÐÐÐÐÐÐ→ (Hom(∅, gW )/I(gW ))
By the above equations we see that F(gF ) = gF(F ). This proves that F is G-equivariant on

foams. Hence F is G-equivariant.
�

Definition 5.27. (see [5]) Suppose L is an m-periodic link, and D1 and D2 are two m-periodic
diagrams representing L. We say that D1 and D2 are Zm-equivariant periodic diagrams if they
are related by an equivariant isotopy — that is, an isotopy that respects the Zm-action at every
stage.

Theorem 5.28. Suppose we have two different Zm-equivalent m−periodic link diagrams D and
D′ of an m−periodic link L, then there is a chain homotopy equivalence between [[D]] and [[D′]]
in the category Kom(SFoamN) and induced quasi-isomorphism between F([[D]]) and F([[D′]])
in the category Kom(SymN [Zm]).

Proof. We know that D and D′ are connected by equivariant Reidemeister moves. We need to
use the theorem below to prove Theorem 5.28. �

Theorem 5.29. Suppose D′ is obtained from D by a single equivariant Reidemeister move.
Then this move induces a chain homotopy equivalence

φ ∶ [[D]] → [[D′]]
in a Kom(SFoamN)

F(φ) ∶ F([[D]]) → F([[D′]]),
where F(φ) is a quasi-isomorphism in the category Kom(SymN [Zm]).

Proof. We will prove this theorem later in Section 6 �

5.7. Equivariant slN -homology. By Theorem 5.28, we have the quasi-isomorphic chain com-
plex for F([[D]]) and F([[D′]]). We define the cohomology of F([[D]]) as an SN [Zm]-module
and denote this cohomology by KR∗

SN [Zm](L).

Proposition 5.30. The SN [Zm]-module structure on KR∗
SN [Zm](L) induces a CN [Zm]-module

structure on KR∗
N(L) and Lee∗N(L). The Lee-Gornik spectral sequence exists in the category of

finitely generated C[Zm]-modules.

Proof. Suppose D and D′ are m-periodic Zm-equivalent link diagrams of L. We know that D
and D′ are related to each other by a sequence of equivariant Reidemeister moves. Hence, we
have a chain homotopy equivalence h ∶ [[D]] → [[D′]] in the category of complexes SN -modules.
By Theorem 5.28, we have a quasi-isomorphism F(h) between F([[D]]) and F([[D′]]), and this
quasi-isomorphism is SN [Zm]-equivariant.

Now choose Σ a set of N complex numbers. We apply the evΣ evaluation functor. Since
evΣ is an additive functor the map hΣ = evΣ(F(h)) is a chain homotopy equivalence between
evΣ(F([[D]])) and evΣ(F([[D′]])). Specifically, hΣ induces an isomorphism between cohomology
spaces of evΣ(F([[D]])) and evΣ(F([[D′]])).

By Definition 5.3 for any g ∈ Zm, g evΣ(F(W )) = evΣ(gF(W )) for W ∈ SFoamN and
g evΣ(F(F )) = evΣ(gF(F )) for a foam F ∶W →W ′. These imply g evΣ(F([[D′]])) = evΣ(gF([[D′]])).
This shows that hΣ is Zm-equivariant. Hence [hΣ] is Zm equivariant. We deduce that the Zm
equivariant isomorphism of vector spaces is an isomorphism of C[Zm] modules. In other words,
hΣ is a quasi-isomorphism in the category of chain complexes of C[Zm] modules.

We have a Zm action on F[[D]], we have Zm-action on evΣ(F([[D′]])). For any g ∈ Zm,
g evΣ(F([[D′]] = evΣ(gF([[D′]])). This shows that we have a C[Zm] structure on KR∗

N(L) and
on Lee∗N(L). �
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Definition 5.31. Assume we have an m-periodic link. The equivariant Khovanov-Rozansky

slN -homology EKRk,r
N is the group which inherits its C[Zm] module structure from the action

of Zm on KR∗
N(L). Similarly, the equivariant Lee slN - homology ELeekN is the group Leek with

its C[Zm] module structure which comes from Zm action on Lee∗N(L).

We have a mirror property in link diagrams at this equivariant homologies also.

Proposition 5.32. Suppose L is the m-periodic link with its periodic link diagram D, and
suppose L′ is the mirror image of L. Then for any k, r, there is a map of C[Zm]-modules

EKRk,r
N (L) ≅ EKR−k,−r

N (L′)

Proof. We already set an isomorphism in Proposition 5.12 at the level of vector spaces over C.
Now we need to show this isomorphism is Zm-equivariant. We have a Zm action on Cube(D)
and on Cube(D′). For g ∈ Zm, we have (gI)′ = gI ′. Furthermore, taking a mirror of resolution
commutes with the action. We have gDI = DgI and gD′

I′ = D′
gI′ . We define i ∶ F0([[D]]) →

F0([[D′]]), i(F0(DI)) = F0(D′
I′). Now we show that i map commutes with the group action.

For g ∈ Zm
gi(F0(DI)) = gF0(D′

I′) = F0(gD′
I′) = F0(D′

(gI)′)

F0(D′
(gI)′) = F0(D′

(gI)′) = i(F0(DgI)) = i(F0g(DI)) = i(gF0(DI))

We have F0([[D]]) as C[Zm]- module. Then obviously F0([[D′]]) has the same basis. On this
basis, we can write

Φ ∶ F0([[D′]]) → HomC[Zm](F0([[D]]),C[Zm])
where Φ sends the basis of F0([[D′]]) to the dual basis of F0([[D]]). This is an isomorphism.
With the choice of basis, the differential in the chain complex F0([[D′]]) is the transpose of
the differential on F0([[D]]). Actually, HomC[Zm](F0([[D]]),C[Zm]) has the same differential

as F0([[D′]]) so Φ is actually an isomorphism of chain complexes. �

5.8. Decomposition of slN -homology. We note that EKRk,r
N and ELeekN are C[Zm]-modules.

Since the group algebra C[Zm] is semisimple, we have a decomposition:

C[Zm] =
m−1

⊕
i=0

Cξim ,

where C
ξjm

denotes the ξjm-eigenspace of C[Zm], and ξm = exp(2π
√
−1

m ) for j = 0,1, . . . ,m−1. We

express this decomposition using pairwise orthogonal idempotents, denoted as e0, e1, . . . , em−1,

where ejek = δjkej . Moreover, we have g.ej = ξjmej , and

1 =
m−1

∑
j=0

ej .

Similarly, we can decompose any C[Zm] module M :

M =
m−1

⊕
i=0

Mξim
,

where Mξim
∶= eiM is the ξim-eigenspace of M for i = 0,1, . . . ,m − 1.

Theorem 5.33. For any finitely generated C[Zm]-module M , we have

HomC[Zm](Mξjm
,Mξkm

) = 0

unless j = k.
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Proof. Assume we have a homomorphism Φ ∶M
ξjm
→Mξkm

.Then, for any morphism A ∶M →M ,

we have

M
ξjm

M
ξjm

Mξkm
Mξkm

.

A

Φ Φ

A

AΦ = ΦA, ekAΦ = ekΦA, σkekΦ = ekΦA, σkΦ = ekΦA, σkΦ = ΦA, σkΦ = Φσj , from here
we deduce σk = σj , which means k = j. We write the third equality above because we have
Aek = σkek and for the fourth equation ek behaves like Id because the projection of Mξkm

to itself
is an identity. Similarly, for the fifth equation, ek is again an identity. For the sixth equation,
we know A behaves like multiplication on the eigenspace M

ξjm
, so we can write σj instead of

A. �

Similarly, we can apply this decomposition to SN [Zm], as SN is a ring of complex polynomials.
For a chosen generator g, we have:

SN [Zm] =⊕SN,ξim , SN,ξim ∶= ejSN [Zm],

where SN,ξim is the ideal consisting of ξim. Consequently, for any finitely generated SN [Zm]
module M , we have the decomposition:

M =
m−1

⊕
i=0

Mξim
,

where Mξim
∶= eiM . Moreover, for any finitely generated SN [Zm] module M , we have:

HomC[Zm](Mξjm
,Mξkm

) = 0

unless j = k.
Now assume we have an m-periodic link diagram D. The SN -equivariant Khovanov-Rozansky

homology of D admits a decomposition into the eigenspaces of the action Zm:

Hk,r(F([[D]])) =
m−1

⊕
i=0

Hk,r
ξim

(F([[D]])).

In particular, we have a decomposition at the level of the cochain complex:

F([[D]]) =
m−1

⊕
i=0

(Fξim([[D]])).

We can continue the decomposition by grouping i < m such that we will have another com-
position. Namely, for any d dividing m, we define

Md = ⊕
0≤i<m

gcd(i,m)=m/d

Mξim
= ⊕

0≤i<m

gcd(i,d)=1

Mξi
d
.

We now define EKR∗,∗
N (L,d) for each d dividing m as follows:

EKR∗,∗
N (L,d) ∶= HomC[Zm] (C[Zm]d,EKRN(L)) ≅H∗ (C[Zm]d,EKRN(L)) .

This definition leads to the following decomposition for EKRN(L):

(5.34) EKRk,r
N (L) = ⊕

d∣m
EKRk,r,d

N (L,d).

We have this isomorphism because C[Zm] is semisimple, and so ExtiC[Zm](M,N) = 0 for i > 0 for

any C[Zm]-modules M,N . We write a similar decomposition for Lee homology. We know that

LeekN(L) depends only on the linking numbers of components of L. Since ELeekN(L) depends

on the action on LeekN(L), we need to understand the action on components of L.
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Recall that LeekN(L) was generated by classes lψ where ψ ∶ {components of L} → {1, . . . ,N}
is any coloring. Zm acts on S3 preserving L and acts on the components of L. Specifically, there
exists an action g ∈ Zm on the set of all colorings of components of L. We denote this action
(g,ψ) → gψ. We call an order of coloring the minimum number i such that giψ = ψ for all g. We

denote the order of coloring as θ(ψ). We can see lψ as a vector, and we can see ELeekN(L, θ(ψ))
as an eigenspace which is generated by the coloring with the order θ(ψ). As a result, we have
the decomposition:

ELeekN(L) = ⊕
d∣m

ELeekN(L,d).

Lemma 5.35. Suppose the group Zm acts trivially on the components of an unlabeled L. Then,
ELeekN(L,d) is trivial unless d = 1.

Proof. Since d = 1, there are no other components in the decomposition. �

6. Proof of Theorem 5.29

Proof. In this proof, we have G = Zm, which acts on R2 by rotating the angle e2πi/m. Since
Reidemeister moves 1, 2 change the number of crossings, we can assume that D′ has no fewer
crossings than D. We construct φ as a family of foams φI,J for (I, J) ⊂ Cube(D) × Cube(D′)
and signs d(I, J) so that the component of φ from φI to φJ is (−1)d(I,J)φI,J .

We need to deal with two problems: a geometric one and an algebraic one.

● Geometrical problem: The group G acts on Cube(D) and on Cube(D′). The action is
the permutation of crossings. We need to form foams φI,J such that φgI,gJ is isotopic to
foam gφI,J between gDI and gDJ .

● Algebraical problem: We need to show that the sign assignment on D induces a com-
patible sign assignment on D′. Specifically, we need to show that the following diagram
commutes.

(6.1)

DI DgI

D′
J D′

gJ ,

(−1)t(I)ρg,I

(−1)d(I,J)ΦI,J (−1)d(gI,gJ)ΦgI,gJ
(−1)t

′
(J)ρ′g,J

where t is the cochain on SCube(D) defined by the property δt = s − gs. We give a proof in
three steps:

● We prove all details for a positive Reidemeister 1 move for G = Z2;
● We prove the algebra part of the Reidemeister 1 move for G = Zm;
● We sketch the geometry part and prove the algebra part of a Reidemeister 2a move and
G = Z2;

The proofs of the Reidemeister 2a move for any m and the Reidemeister 2b move are analogous,
so we do not provide them again. For the case of the Reidemeister 3 move, we have a natural
bijection between crossings of D and D′, so we do not need to extend our sign assignment. Only
a geometric part is needed, but it is similar to the discussion of the geometric part for the first
move; we omit the details.

6.1. Positive Reidemeister 1 move, Zm action for m = 2. We have a diagram D′, which is
the diagram obtained by applying an equvariant Reidemeister move, that is, two Reidemeister
1 moves to diagram D, denoted by D′ = D⟨XX⟩. Furthermore, we have D = D⟨U U⟩ and the
diagram D with one Reidemeister move applied to one crossing is denoted by D⟨UX⟩ and for the
other crossing, it is denoted by D⟨XU⟩. Since the two Reidemeister one moves are symmetric,
Z2 takes D⟨UX⟩ to D⟨XU⟩ and vice versa. We want to prove that [[D′]] ≃ [[D]].
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For the cochain complex [[D⟨XU⟩]] we have

[[D⟨XU⟩]] = {0→ [[D⟨VU⟩]] dÐ→ [[D⟨ZU⟩]] → 0},

and for [[D⟨UX⟩]] we have

[[D⟨UX⟩]] = {0→ [[D⟨UV⟩]] dÐ→ [[D⟨UZ⟩]] → 0},

In terms of Cube notation, we have relations

(6.2) Cube(D⟨XX⟩) ≅ Cube(D⟨UU⟩) × {0,1}2

Cube(D⟨UX⟩) = ⋃
x=0,1

Cube(D⟨UU⟩) × {(0, x)}

Cube(D⟨XU⟩) = ⋃
x=0,1

Cube(D⟨UU⟩) × {(x,0)}.

Here on the right-hand side of the equation, we label extra crossing points by {0,1} and
{0, x},{x,0}. We split the cochain complex [[D⟨XX⟩]]. Namely, we have

[[D⟨ZV⟩]]

0 [[D⟨VV⟩]] [[D⟨ZZ⟩]] 0

[[D⟨VZ⟩]]

We have the following maps corresponding to the non-equivariant Reidemeister moves:

φ1∶ [[D⟨UU⟩]] → [[D⟨UX⟩]] φ2∶ [[D⟨UX⟩]] → [[D⟨XX⟩]]
φ3∶ [[D⟨UU⟩]] → [[D⟨XU⟩]] φ4∶ [[D⟨XU⟩]] → [[D⟨XX⟩]]

With these maps, we have the following diagram in Kom(SFoamN)

(6.3)

[[D⟨UU⟩]]

[[D⟨UX⟩]] [[D⟨XU⟩]]

[[D⟨XX⟩]],

φ1

φ3

Gg

Gg

φ2

φ4

Gg

Here the blue arrows mean g action on the cochain complex. For example, the blue arrow
in the middle means a 180-degree rotation of diagram D⟨UX⟩. 1 In order to understand this
diagram better, we specify to a single resolution I of D.

1The notation D⟨UX⟩ might suggest that there is a problem of the orientation, but this is not the case. The
notation specifies which resolution is taken for the diagram, but not its actual position in R2.
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Lemma 6.4. For any I ∈ Cube(D), the diagram below is commutative in SFoamN .

(6.5)

D⟨UU⟩I D⟨UU⟩gI

D⟨UX⟩(I,0) D⟨XU⟩(gI,0)

D⟨XX⟩(I,0,0) D⟨XX⟩(gI,0,0).

φ1
I

ρg,I

φ3
I

φ2
(I,0)

ρg,(I,0)

φ4
(I,0)

ρg,(I,0,0)

In this diagram, the map ρg,I is the foam from the diagram with resolution in I to the diagram
with resolution in gI. We have a similar definition for ρg,(I,0) and ρg,(I,0,0).

Proof. For the above square, we consider ρg,(I,0) ○ φ1
I . This foam arises from applying φ1

I foam

and we rotate the upper side of it. On the other hand, for φ3
I ○ ρg,I we have the foam where

we take foam φ3
I and rotate its lower part. These foams are isotopic rel boundary, so they

are equivalent in the SFoamN category. The second square is similar, which means that the
diagram commutes. This proves the geometric part of our proof. �

For the algebraic part for a positive Reidemeister 1 move for Z2, we fix the sign assignment
s on D and take g ∈ Z2 as a generator from Z2. By Lemma 4.31, we have gs = s+ δt where t is
the 0-cochain on SCube(D) with the property t(0, . . . ,0) = 0. We can extend s to the diagram
D⟨XX⟩ in two ways. The first one is extending s on the diagram D⟨UX⟩ and then to D⟨XX⟩.
The second one is extending s on the diagram D⟨XU⟩ and then to D⟨XX⟩. We have a relation
between these sign assignments. We have s on D and s1 on D⟨XU⟩. Write s2 = gs1, s2 is the
sign assignment on D⟨UX⟩. We extend s1 on D⟨XX⟩ by Lemma 4.35 we denote the new sign
assignment s3. Similarly, we can extend s2 on D⟨XX⟩, and denote this new sign assignment s4.
In this way, we have constructed two sign assignments on D⟨XX⟩. For these two assignments,
there exists t′ such that we have s3(I, I ′)−s4(I, I ′) = t′(I)−t′(I ′) for any I, I ′ ∈ Cube(D⟨XX⟩)
where I ′ is an immediate successor of I.

Lemma 6.6. (a) We have gs3 = s4.
(b) If t is a 0-cochain on SCube(D) such that s − gs = ∂t, then the 0-cochain t′ on

SCube(D⟨XX⟩) defined by

t′((I, x, y)) = xy + t(I) ∈ F2,

satisfies s3 − s4 = ∂t′.
Proof. Let I ′1, I

′
2 ∈ Cube(D⟨XX⟩), where I ′2 is an immediate successor of I ′1. The action of g

switches the last two crossings. We write I ′k = (Ik, xk, yk) for k = 1,2 with Ik ∈ Cube(D),
xk, yk ∈ {0,1}.

For the action g, we have gI ′k = (gIk, yk, xk). By Lemma 4.35, we extend s3 and have

s3((I1, x1, y1), (I2, x2, y2)) =
⎧⎪⎪⎨⎪⎪⎩

0 if y2 = y1 + 1

s1((I1, x1), (I2, x2)) + y1 if y1 = y2.

Similarly,

s4((I1, x1, y1), (I2, x2, y2)) =
⎧⎪⎪⎨⎪⎪⎩

0 if x2 = x1 + 1

s2((I1, y1), (I2, y2)) + x1 if x1 = x2.

More precisely,

(6.7) s3((I1, x1, y1), (I2, x2, y2)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 y2 = y1 + 1

y1 y1 = y2 and x2 = x1 + 1

s(I1, I2) + x1 + y1 y1 = y2 and x1 = x2.
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and

(6.8) s4((I1, x1, y1), (I2, x2, y2)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x2 = x1 + 1

x1 x1 = x2 and y2 = y1 + 1

gs(I1, I2) + x1 + y1 y1 = y2 and x1 = x2.

By equations 6.7 and 6.8, we have gs3 = s4. �

For the second part of the proof, we observe

s3((I1, x1, y1), (I2, x2, y2)) − s4((I1, x1, y1), (I2, x2, y2)) =

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 x1 = x2 and y2 = y1 + 1

y1 y1 = y2 and x2 = x1 + 1

s(I1, I2) − gs(I1, I2) x1 = x2, y1 = y2.

(6.9)

In (6.9), we have exhausted all possibilities for x1, x2, y1, y2. Namely, we cannot have the case
x2 = x1+1 and y2 = y1+1. In addition to this equation with the definition t′(I, x, y) = t(I)+xy,
we have:

(6.10) δt′ = t′(I1, x1, y1) − t′(I2, x2, y2) = x1y1 + x2y2 + t(I1) − t(I2).
We want to show s3 − s4 = x1y1 + x2y2 + t(I1) − t(I2). We have two cases

● First case I1 = I2: Note that I ′2 is an immediate successor of I ′1. Since we have I ′1 ≠
I ′2, we cannot have x1 = x2 and y1 = y2 so we can have (x1, y1) = (0,0), (x2, y2) =
(0,1), (x1, y1) = (0,0), (x2, y2) = (1,0), (x1, y1) = (0,1), (x2, y2) = (1,1) or (x1, y1) =
(1,0), (x2, y2) = (1,1). For the cases where we have (x2, y2) = (1,1), s3 − s4 = 1 and
x1y1 + x2y2 + t(I1) − t(I2) = 1. For the cases where we have (x1, y1) = (0,0), s3 − s4 = 0
and x1y1 + x2y2 + t(I1) − t(I2) = 0.

● Second case I1 ≠ I2: In this case, we have x1 = x2 and y1 = y2 because I ′2 is an immediate
successor of I ′1. We have s3−s4 = s−gs = δt = t(I1)−t(I2) = x1y1+x2y2 +t(I1)−t(I2).

Continuing the proof of the algebraic part, we claim that the following diagram is commutative
in Kom(SFoamN).

(6.11)

[[D⟨UU⟩,s]] [[D⟨UU⟩,s]]

[[D⟨UX⟩,s1]] [[D⟨XU⟩,s2]]

[[D⟨XX⟩,s3]] [[D⟨XX⟩,s4]].

φ1

[[ρg ,t]]

φ3

φ2 φ4

[[ρg ,t′]]

Note that ρg,t are the same as defined in Lemma 6.4. For any I ∈ Cr(D), we show in Lemma 6.4
that the diagram is commutative in SFoam. We can generalize it in Kom(SFoam) without a
sign. We just need to show the sign that makes no problem for commutativity. By the definition
of Gρ,I , the sign we get from DI starting with φ2 ○φ1 and then through [[ρg,t′]] is (−1)t′((I,0,0)).
Similarly, when we start with [[ρg,t]] and then by φ4 ○ φ3 gives the sign of (−1)t(I). By the

definition of t′, (−1)t′((I,0,0)) = (−1)t(I). �

Lemma 6.12. The compositions φ4 ○ φ3 and φ2 ○ φ1 are equal as maps in Kom(SFoamN).

Proof. For any I ∈ Cr(D), the map φ4
I ○φ3

I is given by the foams that start with a Reidemeister
move for the first crossing and then for the second crossing, i.e., UU → XU → XX. Similarly, the
other foam φ2

I ○ φ1
I is given by the foams that start with a Reidemeister move for the second

crossing and then for the first crossing, i.e., UU→ UX→ XX. All the foams φ1
I , . . . , φ

4
I are product

foams of the identity except for the relevant crossings. �
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Denote φ as the composition φ4
I ○ φ3

I = φ2
I ○ φ1

I . It is induced by a composition of individ-
ual, non-equivariant Reidemeister moves. Specifically, φ is a (nonequivariant) chain homotopy
equivalence. The horizontal maps in 6.11 are group actions on [[D]] and [[D⟨XX⟩]]. The com-
mutativity of 6.11 implies that φ commutes with the group action. This proves the first part of
5.29 for the specific case of Reidemeister move 1 and Z2.

For the proof of the second part, we apply the evaluation functor F from the category
Kom(SFoamN) to the category Kom(SymN). The map F(φ) ∶ F([[D]]) → F([[D′]]) is a chain
homotopy equivalence. More specifically, it is a quasi-isomorphism in Kom(SymN). By Propo-
sition 5.26, Zm acts on F([[D]]) and on F([[D′]]). By 6.11 and 6.12, F(φ) commutes with the
Zm action. A Zm-equivariant quasi-isomorphism is a quasi-isomorphism in Kom(SymN [Zm]).
We have now completed the proof of Step 1.

6.2. Positive Reidemeister one move, Zm action for general m. This step is similar to
the previous one. Let D be a periodic link diagram, and D′ be the link diagram obtained by
applying the Reidemesiter one move. We again identify Cube(D′) ≡ Cube(D) × {0,1}m. For
any I ∈ Cr(D) and a generator g ∈ Zm with x1, x2, . . . , xm ∈ {0,1}, we have

g(I, x1, x2, . . . , xm) = (gI, x2, x3, . . . , xm, x1)
We define two maps φAI and φBI , φAI = φmI ○ φm−1

I ○ ⋯ ○ φ1
I where φiI is the foam that realizes the

i-th Reidemeister move as in Figure 9. For any I ∈ Cr(D), we have the following diagram.

(6.13)

D⟨U . . . U⟩I D⟨U . . . U⟩gI

D⟨X . . .X⟩(I,0,...,0) D⟨X . . .X⟩(gI,0,...,0),

φAI

ρg,I

φBI
ρg,(I,0,...,0)

This diagram is a generalization of the diagram (6.5). The geometric part of this step is
proved in the same way as in Step 1. We omit the details. We pass to the algebraic part
directly. Take s sign assignment for the diagram D, and let t be such that s − gs = δt. We get
the sign assignment s′ on Cube(D′) by Lemma 4.35.

Lemma 6.14. Assume I ′1, I
′
2 ∈ Cube(D′) and I ′2 is an immediate successor of I ′1. Write I ′1 =

(I1, x1, . . . , xm), I ′1 = (I1, y1, . . . , ym) where I1, I2 ∈ Cube(D). If xk ≠ yk for some k, then

s′(I ′1, I ′2) = xk+1 + ⋅ ⋅ ⋅ + xm.
If xk = yk for all k, then

s′(I ′1, I ′2) = x1 + ⋅ ⋅ ⋅ + xm + s(I1, I2).
Proof. Define the sign assignment s′l on diagram D′

l, which is the sign assignment obtained after
the first l Reidemeister moves. Assume xk ≠ yk for some k. By 4.35, we have:

s′k((I1, x1, . . . , xk), (I2, y1, . . . , yk)) = 0.

We continue to apply inductively for j = k + 1, . . . ,m, and by either 4.35 (if xj = 0) or (4.36) (if
xj = 1), we get

s′k((I1, x1, . . . , xk), (I2, y1, . . . , yk)) = xk+1 +⋯ + xj .
This leads to the result s′(I ′1, I ′2) = xk+1 + ⋯ + xm. Similarly, if we take x1 = y1, . . . , xm = ym,
then we can again apply induction. If xi = yi = 0 by 4.35, we have the result; if xi = yi = 1, then
by (4.36), we have the result. �

We have a generalization of Lemma 6.6.

Lemma 6.15. Assume s−gs = δt. Define the 0-cochain on SCube(D′) defined by t′(I, x1, . . . , xm) =
t(I) + x1(x2 + ⋯ + xm). Then for any I ′1, I

′
2 ∈ Cube(D′) where I ′2 is an immediate successor of

I ′1, we have

(6.16) s′(I ′1, I ′2) − s′(gI ′1, gI ′2) = t′(I ′1) − t(I ′2).
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Proof. We have two cases:

● Suppose I1 = I2 and xi = yi except for k, xk = 0, and yk = 1. By Lemma 6.14, we have

s′(I ′1, I ′2) = xk+1 + ⋅ ⋅ ⋅ + xm.
In addition to that, we have

s′(gI ′1, gI ′2) = xk+1 + ⋅ ⋅ ⋅ + xm.
Thus,

s′(I ′1, I ′2) − s′(gI ′1, gI ′2) =
⎧⎪⎪⎨⎪⎪⎩

x1 k > 1

x2 + ⋅ ⋅ ⋅ + xm k = 1.

On the other hand, for k > 1, we have

t′(I ′1) − t′(I ′2) = t(I ′1) + x1(x2 +⋯ + xm) − (t(I ′2) + x1(x2 +⋯ + xm + 1)) = x1.

For k = 1, we have

t′(I ′1) − t′(I ′2) = t(I ′1) + x1(x2 +⋯ + xm) − (t(I ′2) + (x1 + 1)(x2 +⋯ + xm)) = x2 +⋯ + xm.
● Suppose I1 ≠ I2, then xk = yk for all k. Thus, we have

s′(I ′1, I ′2) − s′(gI ′1, gI ′2) = s(I1, I2) − s(gI1, gI2).
s(I1, I2) − s(gI1, gI2) = t(I1) − t(I2)

t′(I ′1) − x1(x2 +⋯ + xm) − (t′(I ′2) − x1(x2 +⋯ + xm)) = t′(I ′1) − t′(I ′2).
The remaining part of the step is similar to part m = 2. In short, we repeat the proof of Lemma
6.12 to show that φAI and φBI induce the same map

Φ∶ [[D⟨U, . . . , U⟩]] ≃Ð→ [[D⟨X, . . . ,X⟩]].
The corresponding diagram of 6.11 is

[[D⟨U, . . . , U⟩,s]] [[D⟨U, . . . , U⟩,s]]

[[D⟨X, . . . ,X,s′⟩]] [[D⟨X, . . . ,X⟩, gs′]].
Φ

[[ρg ,t]]

Φ

[[ρg ,t′]]

The same argument as in the previous step implies that this diagram is commutative. Specif-
ically, F(φ) induces a Zm-equivariant chain homotopy equivalence, which means F(φ) is a
quasi-isomorphism in the category Kom(SymN [Zm]). �

6.3. Step 3: Reidemeister 2a move, Zm action for m = 2. Let D be a periodic link diagram,
and D′ be the link diagram obtained by applying the equivariant Reidemesiter 2a move. We
have the identification

Cube(D′) ≅ Cube(D) × {0,1} × {−1,0} × {0,1} × {−1,0}.
For I ∈ Cr(D), denote

I ′1 = (I,0,0,0,0), I ′2 = (I,1,−1,0,0), I ′3 = (I,0,0,1,−1), I ′4 = (I,1,−1,1,−1).
There are four different foams for I ′1, I

′
2, I

′
3, I

′
4. These foams are part of the I-th component of

the map φ∶ [[D]] → [[D′]], where we define φI ∶= φI,1 + φI,2 + φI,3 + φI,4.
These four foams are as follows:

● φI,1 is the identity foam;
● φI,2 is the foam from Figure 10 at the first place where the Reidemeister move is applied,

followed by the identity foam;
● φI,3 is the identity foam followed by the foam from Figure 10 for the second Reidemeister

move;
● φI,4 is the foam from Figure 10 for the first Reidemeister 2a move, followed by the foam

from Figure 10 for the second move.
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We have g ∈ Z2, where the action involves switching pairs of points. For example, gI2 = I3

because g sends (1,−1) to (0,0) and (0,0) to (1,−1). Therefore, we have

(6.17) gφI,1 = φgI,1, gφI,2 = φgI,3, gφI,3 = φgI,2, gφI,4 = φgI,4.

This implies gφI = φgI . Thus, g commutes with Φ∶ [[D]] → [[D′]] up to sign. This proves the
geometric part of step 3.

Let s be a sign assignment on diagram D. We extend s to a sign assignment s′ on D′ by
adding crossings and applying Lemma 4.35. We add x1, then x2 and x3, x4. The analogy of
Lemma 6.6 is as follows:

Lemma 6.18. Assume s − gs = ∂t. Define the 0-cochain on SCube(D′) as t′(I, x1, . . . , x4) =
t(I) + (x1 + x2)(x3 + x4). Then, s′ − gs′ = ∂t′.

Proof. Take I ′1, I
′
2 ∈ Cube(D′) such that I ′2 is an immediate successor of I ′1. Write I ′s = (Is, x1s, x2s, x3s, x4s).

By Lemma 6.14, we have

s′(I ′1, I ′2) =
⎧⎪⎪⎨⎪⎪⎩

xj+1,1 + ⋅ ⋅ ⋅ + x41 xj1 ≠ xj2
s(I1, I2) xj1 = xj2 for all j.

We know that if I ′ = (I, x1, . . . , x4) ∈ Cube(D′), then gI ′ = (gI, x3, x4, x1, x2). Thus, we have

s′(I ′1, I ′2) − s′(gI ′1, gI ′2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x31 + x41 x11 ≠ x12 or x21 ≠ x22

x11 + x21 x31 ≠ x32 or x41 ≠ x42

t(I1) − t(I2) xj1 = xj2 for all j.

The proof is the same as in Lemma 6.15. In order to finish the proof of 5.29 at step 3, consider
the diagram:

[[D,s]] [[D,s]]

[[D,s′]] [[D,gs′]].
Φ

[[ρg ,t]]

Φ

[[ρg ,t′]]

We have already showed that the diagram above is commutative up to sign, and now by
Lemma 6.18, we conclude that this diagram is commutative. This shows that Φ is Zm-equivariant.
By Theorem 4.32, we know that Φ is a chain homotopy equivalence. Similarly to Steps 1 and 2,
we conclude that F(Φ) is a quasi-isomorphism in the Kom(SymN [Zm]) category. �

7. The skein spectral sequence

7.1. Review of the Ind and Res Functors. We review the Ind and Res functors before
constructing the spectral sequence. For a finite group G, we denote BG as the category with
a single object ∗ and HomBG(∗,∗) = G. If B is an additive category, we denote by B[G] =
Fun(BG,B) the category of G-objects in B. For a subgroup H of G, we have a canonical
inclusion of categories BH ⊂ BG, leading to the restriction functor ResGH ∶ B[G] → B[H]. We

also have the functor IndGH ∶ B[H] → B[G], the biadjoint functor of ResGH . For C ∈ B[H] and
D ∈ B[G], we have

HomB[G](IndGH(C),D) ≅ HomB[H](C,ResGH(D)),(7.1)

HomB[G](C, IndGH(D)) ≅ HomB[H](ResGH(C),D).

Assuming G/H = {g1H,g2H, . . . , gkH}, then IndGH(C) can be written as the direct sum

(7.2) IndGH(C) =
k

⊕
i=1

giC,
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a

b

b

a

a − b + k

k

Figure 12. The k-smoothing of a positive crossing, for 0 ≤ k ≤ b ≤ a. In order
to obtain the k-smoothing of a negative crossing, reflect the above picture about
the vertical line and switch labels.

For g ∈ G, we can write g = gih. If we write g = gjh′ we have gigj ∈ H but gi and gj can not be
in the same coset unless gi = gj . Thus for g ∈ G there is a unique way to write g = gih. We have

g ⋅ (−)∶ gjC → gkC, x↦ (h′g−1
j hgj) ⋅ x,

where gk = gi ⋅ gj ⋅ h′, with h′ ∈H and gk representing the coset of gi ⋅ gj .

7.2. Construction of the Spectral Sequence. The initial construction will be done for the
general link diagram, and later, we will focus on periodic link diagrams. Let D be a labeled link
diagram, where each link component is labeled by c ∈ {1,2, . . .N}. Recall that Cr(D) is the set
of crossings.

We define the extended cube of resolutions Cube+(D). For a crossing i ∈ Cr(D), we have
Ci = {0, . . . , ci} where ci = min(ai, bi), ai and bi are two labels at the crossing point i, if the
crossing is positive, and Ci = {−ci, . . .0} if the crossing is negative. We extend Ci by the

definition Ĉi = Ci ∪ {∗}. Cube+(D) is the product of the Ĉi.

For Î ∈ Cube+(D), we define the resolution diagram DÎ . If the i-th crossing in Î is equal
to ∗, we do not resolve the crossing. Otherwise, we resolve the crossing as in the standard
case. The resolutions are depicted in Figure 12, see also the skein relation in Figure 6. For
Î ∈ Cube+, we define supp Î to be the set of crossings i ∈ Cr(D) where Î(i) ≠ ∗. If Î , Ĵ ∈ Cube+

and supp Î ∩ supp Ĵ = ∅, we define Î ∪ Ĵ to be the resolution such that

(Î ∨ Ĵ)(i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Î(i) i ∈ supp Î

Ĵ(i) i ∈ supp Ĵ

∗ otherwise.

For Î with support X, we define [[DÎ]] as a cochain complex generated by those DI for which I

and Î coincide on X. Furthermore, the differential is given by foams of Figure 8 with the sign
assignment sI inherited from the sign assignment s on D. We also define the degree for Î as

deg Î = ∑
i∈supp Î

I(i).

For a subset X ⊂ Cr(D), we let

A(X) = {Î ∈ Cube+(D)∶ supp Î =X},Ak(X) = {Î ∈ A(X)∶deg Î = k}
Let X ⊂ Cr(D) be a subset of positive crossings (for negative crossings, the discussion will be
similar). Set Y = Cr(D) − X. We let Cube(X), Cube(Y ) be the cubes of resolution for X
and Y . In other words, we have Cube(X) = ∏i∈X Ci, Cube(Y ) = ∏i∈Y Ci. For Cube(D) we
have Cube(D) = Cube(X) × Cube(Y ). For I ∈ Cube(D), we denote IX , IY its projections on
Cube(X) and on Cube(Y ) respectively.

We introduce one more piece of notation. Assume we have I ∈ Cube(D). Let Î ∈ Cube+(D)
be obtained by taking IX and extending it by putting ∗ for all crossings in Y . This means that
crossings in X are already resolved so DÎ has a set of crossings Y . This means (DÎ)IY = DI .
We can write [[D]] as the following bicomplex.
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(7.3) 0→ ⊕
Î∈A0(X)

[[DÎ]]{q
−b(N−b)∣X ∣} ±d0ÐÐ→ ⊕

Î∈A1(X)
[[DÎ]]{q

1−b(N−b)∣X ∣} ±d1ÐÐ→ . . . .

Here q is the grading shift. The differentials di are defined as follows. Suppose I, J ∈ Cube(D)
are such that J is an immediate successor of I. We have two cases

● Assume IX = JX , the part of the differential on [[D]] from I to J contributes to the

differential on [[DÎ]]. It goes from (DÎ)IY to (DÎ)JY with the sign (−1)s(I,J). We call
this differential part the internal differential or horizontal differential.

● Assume IY = JY , we set s = deg Î the part of the differential on [[D]] that contributes
to the differential ds going from [[DÎ]] to [[DĴ]]. In particular, it goes from (DÎ)IY
to (DĴ)JY with sign s(I, J). We call this differential part the external differential or
vertical differential.

The sum of these two differentials is equal to the differential on [[D]]. Therefore, we have the
following result.

Lemma 7.4. The total complex (7.3) is equal to [[D]].

In general, a bicomplex leads to a spectral sequence. To obtain a bicomplex that gives rise to
a spectral sequence, we apply functor F to (7.3) so that it operates in an Abelian category. To
be more precise, we define the triply graded bicomplex

M(D,X)k,`,h = ⊕
Î∈Ak(X)

F([[DÎ]]){q
k−∣X ∣b(N−b)}`,h.

Here ` is the homology grading and q is the quantum grading. If X is a subset of negative
crossings, we define

M(D,X)k,`,h = ⊕
Î∈Ak(X)

F([[DÎ]]){q
−k+∣X ∣b(N−b)}`,h.

In the bicomplex M(D,X)●,`,h, we have an internal (horizontal) differential and the external
(vertical) differential going from M(D,X)●,`,h to M(D,X)●+1,`,h.

Lemma 7.5. The cohomology of the total complex Totr,hM(D,X) = ⊕k+`=rM(D,X)k,`,h is the
SN -valued Khovanov-Rozansky homology of the link.

Proof. The statement is tautological. By construction Totr,h is the chain complex whose module
structure is the same as the SN -valued slN chain complex associated with D. The total differen-
tial (the sum of the horizontal differential and the vertical differential) is the slN -differential. �

Assume that D is a Zm periodic link diagram. Our primary focus will be on the case when
X is an orbit of crossings. In this case, Zm acts on Cr(D) and it preserves X. For any k, this

action can be induced on Ak(X). For Î ∈ Ak(X), define the isotropy group of Î Iso(Î) = {g ∈
Zm∶ Î ○ g = Î}. For any d∣m define

(7.6) Adk(X) = {Î ∈ Ak(X)∶ Iso(Î) = Zd}

and denote by A
d
k(X) the quotient of Adk(X) by the action of Zm. Notice that for Î ∈ Adk(X), the

diagram DÎ is d-periodic. Furthermore, for any g ∈ G with the group action on [[D]], we have a
map Gg,Î ∶ [[DÎ ,sÎ]] → [[DgÎ ,sgÎ]], where sÎ and sgÎ denote restrictions of the sign assignment s
on Cube(D) to Cube(DÎ) and Cube(DgÎ), respectively.

Lemma 7.4 can be generalized for an equivariant setting. Assume X is a set of crossings in
which either all crossings in X are positive or all crossings in X are negative. Additionally,
suppose X is Zm invariant. Note that DÎ is d−periodic diagram for any Î ∈ Adk(X). We have
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the natural Zd-action on [[DÎ]] and F([[DÎ]]) as defined in Proposition 5.22. We define the

equivariant version of the bicomplex M(D,X)k,`,h by
(7.7)

EM(D,X)k,l,● =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊕d∣k⊕Î∈Adk(X)
IndZm

Zd (F([[DÎ]]){q−∣X ∣b(N−b)+k} ⊗Cs(m,d,Î)) X is positive,

⊕d∣k⊕Î∈Adk(X)
IndZm

Zd (F([[DÎ]]){q∣X ∣b(N−b)−k} ⊗Cs(m,d,Î)) X is negative.

where s(m,d, Î) ∈ F2:

(7.8) s(m,d, Î) = t(I0) + t(gI0) +⋯ + t(gm/d−1I0)

Here, we take the tensor product over the ring C[Zd] and we think SymN [Zd]-module F([[DÎ]])
as a right C[Zd]-module with the standard action of C on SymN . On the one-dimensional
complex vector space Cj , Zd acts either trivially if j = 0 or it acts as the sign action, i.e., the

generator of Zd acts on C by multiplication by −1, if j = 1. Also, here I0 = Î ∨ J0 for J0 =
(0, . . . ,0) ∈ Cube(DÎ) and t a 0-cochain on SCube(D) satisfying gs − s = ∂t, t((0, . . . ,0)) = 0.

Lemma 7.9. We have an isomorphism EM(D,X) ≅M(D,X) as complexes of SN -modules.

Proof. Since we need to show they are isomorphic as SN -modules, we do not care about the action
of Cs(m,d,Î). It is enough to show that both sides have the same F([[DÎ]]). For any Î ∈ Ak(X),
this Î must be in one of Adk(X) for d∣k. Furthermore, we can get this Î from Ĵ ∈ Adk(X) such

that gĴ = Î where g ∈ Zm/Zd. For any Î for Î ∈ Ak(X), we have F([[DÎ]] = F([[DgĴ]]) for

J ∈ Adk(X) and for g ∈ Zm/Zd. �

Lemma 7.10. We have an isomorphism between the total complex of EM(D,X) ≅ M(D,X)
as complexes of SN [Zm]-modules.

Proof. By Lemma 7.9, we need to show that the isomorphism between EM(D,X) and F([[D]])
as SN -modules is Zm-equivariant. Recall that we have g as a generator of Zm acting on the
plane by rotation by the angle 2π

m . Fix a sign assignment s on D, and let t be the 0-cochain

satisfying ∂t = gs − s, t((0, . . . ,0)) = 0. For a divisor d of m set h = gm/d to be a generator

of Zd ⊂ Zm. Take Î ∈ Adk(X) and consider the partial resolution DÎ . Define sÎ to be the sign

assignment on Cube(DÎ), defined as sÎ(J, J ′) = s(Î∨J, Î∨J ′). Since DÎ is a d-periodic diagram,
by Proposition 5.22 we can define an action of Zd on [[DÎ]]. Specifically, we let tÎ be the 0-
cochain on Cube(DÎ) such that hsÎ − sÎ = tÎ and tÎ(0, . . . ,0) = 0. Corresponding to the action

of h (i.e. rotation by the angle 2π
d ) we have the map Hh∶ [[DÎ]] → [[DÎ]].

There are two maps that are induced by the action of h on [[DÎ]]. The external one is (Gg)m/d,
where Gg is the action constructed in Proposition 5.22 for [[D]]. The other map is Hh. Since
these two maps are obtained from the same sets of foams, these two maps are actually equal up
to a sign choice. To complete the proof of Lemma 7.10, we need to compare tÎ(J) and t(Î ∨ Ĵ)
for J ∈ Cube(DÎ). We know for any two 0-cochains t1,t2 such that hsÎ −sÎ = ∂t1 = ∂t2. We can

say J ↦ tÎ(J) and J ↦ t(Î ∨J) are either equal or differ by an overall sign. To understand this

sign issue, let J0 = (0, . . . ,0) ∈ Cube(DÎ), set I0 = J0∨ Î. Suppose that ρg ∶DI0 →DgI0 is the foam

realizing the rotation of DI0 by g ∈ Z, i.e., the I0-th component of Gg is equal to (−1)t(I0)ρg.
Let ρh = ρgm/d−1I0

○ ⋯ ○ ρgI0 ○ ρI0 and th(I0) = t(I0) + t(gI0) + ⋯ + t(gm/d−1I0), then the I0-th

component of Hh is equal to (−1)th(I0)ρh. By the proof of Proposition 5.22, tÎ(0, . . . ,0) = 0. In

other words, the J0-th component of Hh is equal to ρh. Therefore s(m,d, Î) = th. We conclude
by (7.8). �

Proposition 7.11 (Skein spectral sequence). Let D be an m = p`-periodic labeled link diagram,
with p an odd prime and ` ≥ 1. Let X ⊂ Cr(D) be an orbit of crossings between an a-labeled
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overstrand and a b-labeled understrand, where a ≥ b. If 0 ≤ u ≤ ` and X is a set of positive
crossings, we obtain, for any 1 ≤ s ≤ ∣X ∣b, a spectral sequence with

(7.12) Ek,l,●1 (D,X,p`−u) = ⊕
ps∣k

⊕
Î∈Ask(D,X)

EKR●,●
N (DÎ , κ(u, s))

⊕λ(u,s)tkq−∣X ∣b(N−b)−k,

with 0 ≤ k ≤ p`b and

κ(u, s) =
⎧⎪⎪⎨⎪⎪⎩

1, u ≥ s,
ps−u, otherwise,

λ(u, s) =
⎧⎪⎪⎨⎪⎪⎩

φ(p`−u), u ≥ s,
p`−s, u < s,

converging to EKR●,●
N (D,p`−u). On the other hand, if X is the set of negative crossings, we

obtain a spectral sequence with

Ek,l,●1 (D,X,p`−u) = ⊕
ps∣k

⊕
Î∈Asp`+k(D,X)

EKR●,●
N (DÎ , κ(u, s))

⊕λ(u,s)tkq∣X ∣b(N−b)−k,

where −p`b ≤ k ≤ 0.

Proof. We prove this proposition only in the positive case. Note that the total complex of
EM(D,X) is the complex of F([[D]]) by Lemma 7.10. We will denote the singular specialization
of EM(D,X) by EM0(D,X). We fix 0 ≤ u ≤ ` and consider the bicomplex derived from
EM(D,X):

EMk,l,∗(D,X,p`−u) ∶= HomC[Z
p`

](C[Zp`]p`−u ,EMk,l,∗
0 (D,X)).

On considering separately the internal (vertical) and the external (horizontal) differentials in
EM(D,X,p`−u), we obtain a spectral sequence of C[Zm]-modules converging to EKR∗,∗

N (D,p`−u),
whose E1-page is given by

Ek,l,∗1 (D,X,p`−u) =Hk,∗(EM∗,l,∗
0 (D,X,p`−u), dvert)

≅ HomC[Z
p`

](C[Zp`]p`−u ,Hk,∗(EM∗,l,∗
0 (D,X), dvert)).

i.e., we take the vertical homology of EM(D,X,p`−u). The aim of the proof is to show that this
page is isomorphic to (7.12). Consider the decomposition of the group algebra C[Zp`]. Recall
from Section 5.8 that

C[Zp`]p`−u = ⊕
0≤i<p`

gcd(i,p`)=pu

Cξi
p`
.

Observe that for any 0 ≤ s ≤ ` we have

Res
Z
p`

Zps (Cξj
p`−u

) = C(ξj
p`−u

)p`−s =
⎧⎪⎪⎨⎪⎪⎩

C1, s ≤ u,
C
ξj
ps−u

, s > u.

Therefore,

(7.13) Res
Z
p`

Zps (C[Zp`]p`−u) =
⎧⎪⎪⎨⎪⎪⎩

Cφ(p
`−u)

1 , s ≤ u,
C[Zps]p

`−s

ps−u , s > u.

By the definition of EM0(D,X), we obtain

Ek,l,●1 (D,X,p`−u) = HomC[Z
p`

](C[Zp`]p`−u ,Hk,∗(EM∗,l,∗
0 (D,X), dvert))

≅ ⊕
ps∣k

⊕
Î∈Ask(D,X)

HomC[Z
p`

] (C[Zp`]p`−u , Ind
Z
p`

Zps EKR(DÎ)t
kq−∣X ∣b(N−b)+k) .
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Consider the right-hand side of the above equation:

HomC[Z
p`

] (C[Zp`]p`−u , Ind
Z
p`

Zps EKR(DÎ)t
kq−∣X ∣b(N−b)+k)

(7.1)
≅ HomC[Zps ] (Res

Z
p`

Zps (C[Zp`]p`−u),EKR(DÎ)t
kq−∣X ∣b(N−b)+k)

(7.13)=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

HomC[Z
p`

](C
φ(p`−u)
1 ,EKR(DÎ)tkq−∣X ∣b(N−b)+k), s ≤ u,

HomC[Z
p`

](C[Zps]p
`−s

ps−u ,EKR(DÎ)tkq−∣X ∣b(N−b)+k) s > u

=
⎧⎪⎪⎨⎪⎪⎩

EKR∗,∗(DÎ ,1)⊕φ(p
`−u)tkq−∣X ∣b(N−b)+k, s ≤ u

EKR∗,∗(DÎ , p
s−u)⊕p`−stkq−∣X ∣b(N−b)+k, s > u

= EKR∗,∗(DÎ , κ(u, s))
λ(u,s)tkq−∣X ∣b(N−b)+k.

The proposition follows. �

8. Polynomial Invariants

8.1. Poincare polynomials of slN and Lee homology. First, we remind a common con-
struction.

Definition 8.1. Let L be a link. The LeePN polynomial is

LeePN(L) = ∑
k,r

dimC Grr LeekN(L)tkqr,

where Grr is the r-th graded part of the filtered LeeN homology, and the Khovanov–Rozansky
polynomial KRPN(K) is the Poincaré polynomial of slN -homology:

KRPN(L) = ∑
k,r

tkqr dimC KRk,r
N (L).

For an m-periodic link, we modify the definition above and generalize the approach of [23].

Definition 8.2. Assume we have an m-periodic link L and let d∣m. The equivariant Khovanov–
Rozansky polynomial, for slN -homology, is

(8.3) KRPN,d(L) = ∑
k,r

tkqr dimCd EKRk,r,d
N (L).

The equivariant Lee polynomial is:

LeePN,d(L) = ∑
k,r

dimCd Grr ELeek,dN (L)tkqr,

We have the following relation between the Khovanov–Rozansky polynomial and the equi-
variant Khovanov–Rozansky polynomial.

(8.4) KRPN(L) = ∑
d∣m

φ(d)KRPN,d(L),

where φ(d) = #{1 ≤ i ≤ d∶gcd(i, d) = 1} is Euler’s totient function.
We can compute Lee homology from Proposition 5.21. For the precise formula for the knot,

we refer to [15, Proposition 2.6]. Other references include [10,16,17,29,33].

Lemma 8.5. For any knot K, we have LeePN(K) = qsN (K)(q−N+1 + q−N+3 + ⋅ ⋅ ⋅ + qN−1), where
sN(K) is the Lewark’s sN -invariant; see [15].

We have the following statement as a consequence of Lemma 5.35.

Lemma 8.6. If the action of Zm on the components of L is trivial, then LeePN,d is equal to
LeePN if d = 1, and LeePN,d is equal to 0 otherwise.
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The following proposition shows the relation between polynomials KRP and LeeP. Its proof
is the same as in the Khovanov case, see [4, Proposition 2.17]. See also [8, Theorem 5.1]
and [15, Proposition 5.2].

Proposition 8.7. For a link L, there are polynomials R1,R2, . . . with non-negative coefficients
such that

KRPN(L) = LeePN(L) + (1 + tq2N)R1 + (1 + tq4N)R2 + . . . .
Furthermore, for an m-periodic link L where d∣m, we have

KRPN,d(L) = LeePN,d(L) + (1 + tq2N)Rd1 + (1 + tq4N)Rd2 + . . .

for polynomials Rd1,R
d
2, . . . with non-negative coefficients.

8.2. The Reshetikhin-Turaev RTN polynomials. We recall that for a link L, the HOM-
FLYPT polynomial X(a, b) is defined by its value on the unknot and skein relation.

(8.8) aXL+(a, b) − a−1XL−(a, b) = bXL0(a, b),
where L0 is the 0 resolution, L+ is the positive crossing, and L− is the negative crossing.
Reshetikhin-Turaev is a specific case of the HOMFLYPT polynomial. For N ≥ 0 Reshetikhin-

Turaev is

(8.9) RTN(q) =X(qN , q − q−1)
The normalization of this polynomial is

RTN(unknot) = q
N − q−N
q − q−1

.

For N = 0, RT0 is the Alexander polynomial, and for N = 1, RT1 ≡ 1, and for N = 2, we
have the Jones polynomial which categorifies Khovanov homology. For N > 2, we call these
polynomials as slN polynomials of L. In [12, 13] it was proved that slN homology categorifies
the slN polynomial.

Lemma 8.10. For a link L and for KRk,r
N (L) its slN -homology, we have

RTN(L) = ∑
k,r

(−1)kqr dim KRk,r
N (L) = KRPN ∣t=−1.

The skein relation for RTN polynomial is a particular version of the skein relation of the HOM-
FLYPT polynomial.

(8.11) qN − q−N = (q − q−1)

8.3. Difference polynomials. Fix m = pl for a prime p, and let D be an m-periodic diagram
of an m-periodic link L. The slN homology of L decomposes as in (5.34). We have

RTN,j = KRPN,pj ∣t=−1,

where KRPN,d is as in (8.3).
We have the corollary that will be used in the future.

Corollary 8.12. Assume L is a pn periodic link for the prime p, and assume L′ is its mirror;
then RTN,j(L)(q) = RTN,j(L′)(q−1).

Proof. We know from Proposition 5.32 we have an isomorphism of C-vector spaces EKRk,r,m(L) =
EKR−k,−r,m(L′). Thus, by (8.3), we have

RTN,j(L)(q) = ∑
k,r

(−1)kqr dim EKR
k,r,pj
N (L) = ∑

k,r

(−1)kqr dim EKR
−k,−r,pj
N (L′)
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Make a change of variables: set k′ = −k, r′ = −r then we have

RTN,j(L)(q) = ∑
k′,r′

(−1)−k′q−r′ dim EKR
k′,r′,pj
N (L′) = ∑

k′,r′
(−1)k′(q−1)r′ dim EKR

k′,r′,pj
N (L′)

∑
k′,r′

(−1)k′(q−1)r′ dim EKR
k′,r′,pj
N (L′) = RTN,j(L)(q−1)

we have

RTN,j(L′)(q) = RTN,j(L)(q−1)
�

For Reshetikhin-Turaev, we have difference slN polynomials.

Definition 8.13. DRTN,j(D) =

⎧⎪⎪⎨⎪⎪⎩

RTN,pj(D) −RTN,pj+1(D) 0 ≤ j < `
RTN,p`(D) j = `.

Proposition 8.14. DRTN,j(D) polynomials have the following relations between each other.

(1) For j = 0 we have

qmN DRTN,0(L+) − q−mN DRTN,0(L−) = (q−m − qm)DJN,0(L0).

(2) For any 0 ≤ j < `, we have

qmN DRTN,`−j(L+) − q−mN DRTN,`−j(L−) ≡ (q−m − qm)DJN,`−j(L0) (mod qp
j − q−pj).

Proof. We use [23, Theorem 3.6]. Assume that {E∗,∗
r , dr}r≥1 is a spectral sequence of graded

finite-dimensional C-vector spaces which converge to a double-graded C-vector space H∗,∗.
Moreover, assume the spectral sequence collapses at a finite stage. Consider the Poincaré poly-
nomials of the page E∗,∗

r :

P (E∗,∗
r ) = ∑

i,j

ti+j qdimCE
i,j
r .

For a graded C-vector space V ∗, we have

qdimC V
∗ = ∑

i

qi dimC V
i.

By [19, Exercise 1.7], we conclude that for any r ≥ 1,

(8.15) P (E∗,∗
r )(−1, q) = P (E∗,∗

∞ )(−1, q) = ∑
i,j

(−1)i qdimCH
i,∗.

For a fixed pl-periodic diagram D we apply (8.15) to spectral sequences constructed in Propo-
sition 7.11. We get

P (E∗,∗
1 (p`−u))(−1, q) = P (E∗,∗

∞ )(−1, q) = RTN,`−u(D).

Recall that E∗,∗
1 (p`−u) is the first page of the homology of a diagram which is invariant under

the action of a subgroup of order pt for t ≤ ` − u smaller order. The description of E∗,∗
1 (p`−u)

implies that P (E∗,∗
1 )(−1, q) is a linear combination of polynomials RTN,j(DÎ), where Î ∈ Ak(X)

and appropriate j. Consequently,

DPN,`−u(D) = RTN,`−u(D) −RTN,`−u+1(D) =
= P (E∗,∗

1 (p`−u))(−1, q) − P (E∗,∗
1 (p`−u+1))(−1, q).

(8.16)
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we apply formula (8.16) to DPN,`−u(L+) and DPN,`−u(L+). We get

DPN,`−u(L+) =
p`

∑
k=0

`

∑
s=u

∑
Î∈As

k
(L+,X)

(−1)kq−p`(N−1)−kDPN,s−u(DÎ),

DPN,`−u(L−) =
0

∑
k=−p`

`

∑
s=u

∑
Î∈As

p`+k
(L−,X)

(−1)kqp`(N−1)+p`−kDPN,s−u(DÎ).

By Ak(L+,X) = Ap`−k(L−,X), we get

qp
`NDPN,`−u(L+) − q−p

`NDPN,`−u(L−) =
p`

∑
k=0

`

∑
s=u

∑
Î∈As

k
(L+,X)

(−1)k(qp`−k − q−p`+k)DPN,s−u(DÎ).

We know Ask(L+,X) is empty unless ps divides k. In the above equation observe that for k = 0

we have (qp` − q−p`)DRTN,`−u(L0) and for k = p` the sum is zero Hence we have

qp
`N DRTN,`−u(L+) − q−p

`N DRTN,`−u(L−) − (qp` − q−p`)DRTN,`−u(L0) =
p`−1

∑
k=1

`

∑
s=u

∑
Î∈As

k
(L+,X)

(−1)k(qp`−k − q−p`+k)DRTN,s−u(DÎ).

For u = `, since s = u and u = ` we have ` = s which implies k ≤ ps − 1 so ps can not divide k.
Hence the right-hand side is zero. We have

qp
`NDPN,0(L+) − q−p

`NDPN,0(L−) = (qp` − q−p`)DPN,0(L0),
as we want.

For 0 ≤ u < ` and for u ≤ s ≤ ` and k divisible by ps, we write k = k′ps.
p` − k = p` − k′ps = ps(p`−s − k′)

Set p`−s − k′ = A. We have

qp
`−k − q−p`+k = qpsA − q−psA = q−psA(q2psA − 1)

Since qp
u − q−pu ≡ 0 ( mod qp

u − q−pu ) , we have q2pu ≡ 1 (mod qp
u − q−pu ) Hence

qp
`−k − q−p`+k = qpsA − q−psA = q−psA(q2psA − 1) ≡ 0(modqpu − q−pu)

We deduce by the above equations

(qp`−k − q−p`+k)DRTN,s−u(DÎ) ≡ 0 (mod qp
u − q−pu).

Consequently,

qp
`N DRTN,0(L+) − q−p

`N DRTN,0(L−) ≡ (qp` − q−p`)DRTN,0(L0) (mod qp
u − q−pu).

�

8.4. Periodicity criterion. The result in this section ports the periodicity criterion of [4] to
the case of slN -homology.

Theorem 8.17. Assume L is an m = p` periodic knot with p a prime. Then, there exist
polynomials P0,P1, . . . such that

KRPN = P0 +
`

∑
j=1

(pj − pj−1)Pj .

In this equation P0, . . . are Laurent polynomials in t, q such that
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(P-1) The Laurent polynomial P0 can be presented as

P0 = qsN (L)(q1−N + q3−N + ⋅ ⋅ ⋅ + qN−1) +
∞
∑
j=1

(1 + tqNj)S0j(t, q),

while the Laurent polynomials Pk, k > 0, can be presented as

Pk =
∞
∑
j=1

(1 + tqNj)Skj(t, q).

(P-2) The Laurent polynomials Skj, k ≥ 0, from item (P-1) have non-negative coefficients.
(P-3) The polynomials Pk, k ≥ 0, satisfy the following congruence relation:

Pk(−1, q) − Pk+1(−1, q) ≡ Pk(−1, q−1) − Pk+1(−1, q−1) (mod qp
`−k − q−p`−k).

Proof. For integral k, r, we have KRk,r
N (L) = EKRk,r

N (L) as vector spaces. The latter have
decomposition as in (5.34):

EKRk,r
N (L) = ⊕

d∣m
EKRk,r,d

N (L).

We have m = p`, and we have Pj = PN,pj as the Poincaré polynomial of EKR●,●,pj
N (L). By the

(8.4), we have

KRPN(L) =
∞
∑
j=0

(pj − pj−1)Pj ,

where pj −pj−1 is the Euler’s totient function for pj . In this equation, Pj is equal to the KRPN,d
in Proposition 8.7. The sum above is finite because E1 page has modules of finite dimension
over C. Since E1 is a finite spectral sequence that degenerates in a finite page, so the Poincaré

polynomial of the page gets zero. Hence, write Sjk = Rp
j

k we have

Pj = LeePN,pj(L) +
∞
∑
k=1

(1 + tq2Nk)Sjk.

By Proposition 8.7, we know Sjk is non-negative. The computation of ELee in Lemma 8.6,
together with Lemma 8.5, gives

LeePN,p0(L) = qsN (L)(q−N+1 + q−N+3 + ⋅ ⋅ ⋅ + qN−1),
while LeePN,pj(L) = 0 for j > 0. This proves (P-1) and (P-2).

For (P-3), we use Proposition 8.14. Specifically, we have

(Pj − Pj+1)∣t=−1 = DRTN,j

where DRTN,j is a difference polynomial. Proposition 8.14 implies that changing an orbit of

crossings on a diagram does not affect DRTN,j modulo the ideal generated by qp
n−j − q−pn−j . We

get a mirror of the link by changing all orbits of crossings. Since changing the orbit of crossing

does not affect DRTN,j modulo the ideal generated by qp
n−j −q−pn−j , we stay in the same relation

after the first change, i.e., changing the orbit of the first crossing. By Corollary 8.12, we get the
result. �

8.5. Periodicity 3 and 4. Now we will show that the periodicity criteria cannot hinder a knot
from being 3 or 4 periodic. We begin with the following result.

Theorem 8.18 ([9]). If K is a knot and X is its HOMFLY-PT polynomial, then X(a, b) =
T (a, b)q(a, b) + 1, where q(a, b) is a Laurent polynomial with integer coefficients and T (a, b) =
a4 − 2a2 + 1 − a2b2 is the HOMFLY-PT polynomial for the trefoil.
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The following result is deduced from Theorem 8.18 and (8.9). Before stating it, we introduce
the following notation:

TN = q4N − 2q2N + 1 − q2N(q − q−1)2.

Corollary 8.19. For a knot K, the RTN polynomial has the form

RTN(q) = A(q)TN + 1

where A(q) is a Laurent polynomial with integer coefficients.

Lemma 8.20.

● If ζ6 is a root of unity of order 6, then TN(ζ6) = 0 unless 3∣N ;
● If ζ8 is a root of unity of order 8 and N is odd, then TN(ζ8) = 0.

Proof. We prove the ζ6-part for N ≡ 1 (mod 3) and N ≡ 2 (mod 3).

For N = 1, we have

TN = q4 − 2q2 + 1 − q2(q − q−1)2

= (q2 − 1)2 − (q3 − q)(q − q−1)

= (q2 − 1)(q2 − 1 − q2 + 1) = 0

For N ≡ 1 (mod 3), we write N = 3k + 1. We have

TN = q4(3k+1) − 2q2(3k+1) + 1 − q2(3k+1)(q − q−1)2

= q12kq4 − 2q6kq2 + 1 − q6kq2(q − q−1)2

Since (ζ6)6 = 1, we have

TN(ζ6) = (ζ6)4 − 2(ζ6)2 + 1 − (ζ6)2((ζ6) − (ζ6)−1)2 = 0

For N = 2, we have

TN = q8 − 2q4 + 1 − q4(q − q−1)2

Since (ζ6)6 = 1, we have

TN(ζ6) = (ζ6)8 − 2(ζ6)4 + 1 − (ζ6)4((ζ6) − (ζ6)−1)2

= (ζ6)2 − 2(ζ6)4 + 1 − (ζ6)4((ζ6)2 − 2 + (ζ6)−2)

= (ζ6)2 − 2(ζ6)4 + 1 − 1 + 2(ζ6)4 − (ζ6)2 = 0

For N ≡ 2 (mod 3), we write N = 3k + 2. We have

TN(ζ6) = (ζ6)4(3k+2) − 2(ζ6)2(3k+2) + 1 − (ζ6)2(3k+2)((ζ6) − (ζ6)−1)2

= (ζ6)12k(ζ6)8 − 2(ζ6)6k(ζ6)4 + 1 − (ζ6)6k(ζ6)4((ζ6) − (ζ6)−1)2

Since (ζ6)6 = 1, the last terms simplifies to

(ζ6)8 − 2(ζ6)4 + 1 − (ζ6)4((ζ6) − (ζ6)−1)2 = 0

The proof for ζ8 is essentially the same. Firstly, we show for N = 1 and later for N = 2k + 1.
We omit the details. �

Corollary 8.21. For any knot K, we have the congruences RTN(q)−RTN(q−1) ≡ 0 mod q3−q−3,
RTN(q) −RTN(q−1) ≡ 0 mod q4 − q−4.
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Proof. We start with the first part. This congruence is the same as saying that for any root of
unity ζ6 of order 6, it holds RTN(ζ6) −RTN(ζ−1

6 ) = 0. We have two cases here. The first case,
suppose that N is not a multiple of 3. By Corollary 8.19 and Lemma 8.20, we have RTN(ζ6) = 1,
so RTN(ζ6) −RTN(ζ−1

6 ) = 0. The second case, suppose 3∣N . We write the Khovanov-Rozansky
polynomial as follows, see Proposition 8.7.

KRPN(t, q) = qs(q1−N + q3−N + ⋅ ⋅ ⋅ + qN−1) +∑
j

(1 + tq2Nj)Rj(t, q).

and we have RTN(q) = KRPN(−1, q). For the term (1 + tq2Nj) for t = −1 and q = ζ6 is equal to
zero because (ζ6)6 = 0. At the same time, we have

q1−N + q3−N + ⋅ ⋅ ⋅ + qN−1 = q
N − q−N
q − q−1

.

The latter expression is zero when evaluated at a root of unity of order dividing 2N . That is to
say

RTN(ζ6) = KRPN(−1, ζ6) = 0.

For the second part, first assume that N is odd. Then, RTN(ζ8) = 1 by the same argument
combining. Again, we have RTN(ζ6) = 1 and

RTN(ζ6) = KRPN(−1, ζ6) = 0.

Now assume N is even. Assume that 4∣N then as the same argument above we have

RTN(ζ8) = KRPN(−1, ζ8) = 0.

We have only one case, namely when N = 4k + 2. Assume we split this case into two cases.
For some k we can write N = 4k + 2 = 8m + 2, and for some k we can write N = 4k + 2 = 8m − 2.
For N = 8k + 2, take ζ8 such that ζ4

8 = 1. From the formula of HOMFLYPT polynomial X(a, b)
we have RTN(q) =X(qN , q − q−1). Since ζ4

8 = 1, RTN(ζ8) =X(ζ4k+2
8 , ζ8 − ζ−1

8 ) =X(ζ2
8 , ζ8 − ζ−1

8 ) =
RT2(ζ8).

Now, RT2 is the Jones polynomial. It was proved in [4, Section 4.6] that RT2(ζ8)−RT2(ζ−1
8 ) =

0. The same proof is valid for when ζ4
8 = −1. The remaining case is when N = 8k−2 and ζ4

8 = −1.
Write X(a, b) = ∑αijaibj . Since RTN(q) =X(qN , q − q−1), we have

RTN(ζ8) −RTN(ζ−1
8 ) = ∑αijζ

Ni
8 (ζ8 − ζ−1

8 )j − ζ−Ni8 (−ζ8 + ζ−1
8 )j =

∑αij(ζ−2i
8 − ζ2i

8 )(ζ8 − ζ−1
8 )j = −RT2(ζ8) +RT2(ζ−1

8 ).
After all, RT2 is the Jones polynomial. It was proved in [4, Section 4.6] that RT2(ζ8) −

RT2(ζ−1
8 ) = 0. The same proof is valid for when ζ4

8 = 1. �

Corollary 8.22. Assume K is a knot. Set P0 = KRPN , S0j = Rj, where Rj is as in Proposi-
tion 8.7. Then S0j ,P0 satisfy the statement of Theorem 8.17 regardless of whether K is 3 or
4-periodic.

Proof. We prove this corollary just for 3-periodic knots. The proof for 4-periodic knots is similar.
Item (P-1) is satisfied by definition. By Proposition 8.7, S0j has non-negative coefficients. The
congruence (P-3) is a direct consequence of Corollary 8.21. �
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[18] M. Mackaay, M. Stošić, and P. Vaz, sl(N)-link homology (N ≥ 4) using foams and the Kapustin-Li formula,

Geom. Topol. 13 (2009), no. 2, 1075–1128.
[19] J. McCleary, A user’s guide to spectral sequences, Second, Cambridge Studies in Advanced Mathematics,

vol. 58, Cambridge University Press, Cambridge, 2001.
[20] H. Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored plane graphs,

Enseign. Math. (2) 44 (1998), no. 3-4, 325–360.
[21] K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162–174.
[22] S. Naik, New invariants of periodic knots, Math. Proc. Cambridge Philos. Soc. 122 (1997), no. 2, 281–290.
[23] W. Politarczyk, Equivariant Jones polynomials of periodic links, Journal of Knot Theory and Its Ramifications

26 (March 2017), no. 03, 1741007 (en).
[24] , Equivariant Khovanov homology of periodic links, Michigan Math. J. 68 (2019), no. 4, 859–889.
[25] J. Przytycki, On Murasugi’s and Traczyk’s criteria for periodic links, Math. Ann. 283 (1989), no. 3, 465–478.
[26] H. Queffelec and D. Rose, The sln foam 2-category: a combinatorial formulation of Khovanov-Rozansky

homology via categorical skew Howe duality, Adv. Math. 302 (2016), 1251–1339.
[27] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171.
[28] L.-H. Robert and E. Wagner, A closed formula for the evaluation of foams, Quantum Topol. 11 (2020), no. 3,

411–487.
[29] D. Rose and P. Wedrich, Deformations of colored slN link homologies via foams, Geom. Topol. 20 (2016),

no. 6, 3431–3517.
[30] A. Suslin, Projective modules over a polynomial rings are free, Sov. Math. DOkl. 17 (1976), 1160–1164.
[31] P. Turner, Five lectures on khovanov homology, Journal of Knot Theory and Its Ramifications 26 (2017),

no. 03, 1741009.
[32] C. A. Weibel, An introduction to homological algebra, 1994.
[33] H. Wu, On the quantum filtration of the Khovanov-Rozansky cohomology, Adv. Math. 221 (2009), no. 1,

54–139.


	Abstract
	1. Introduction
	2. Khovanov homology
	3. Periodic links
	4. Webs, foams and categories
	5. Specialization
	6. Proof of Theorem 5.29
	7. The skein spectral sequence
	8. Polynomial Invariants
	References

