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ABSTRACT

The main goal of this dissertation is to construct equivariant sl homology for periodic links.
For this purpose, we use the approach to sl homology via webs and foams. The rotation action
of Z,, on webs and foams allows us to define equivariant Khovanov-Rozansky homology for
periodic links.

Following this definition, we deal with Reshetikhin-Turaev polynomials for the newly con-
structed equivariant homology via the newly defined difference polynomials.

In the end, we provide a periodicity criterion originating from equivariant Khovanov-Rozansky
sl homology.



1. INTRODUCTION

Let L c S2 be a link. For m > 2, we say that L is m-periodic if it is invariant under a semi-free
Zom-action on S% and L is disjoint from the fixed point set. For a periodic link, we have a
question: how is the symmetry of the link reflected in link invariants? As an example, we have
the Murasugi formula [21] recalled in Theorem (3.6, Besides giving a useful periodicity crite-
rion, it also establishes the relation between the Alexander polynomial of L and the Alexander
polynomial of its quotient knot L with respect to Z,, rotation action.

Equivariant Khovanov homology for periodic links was defined in [24]. The group action on
S3 induces a well-defined group action on the Khovanov homology modules Kh(L; R). The sly-
homology for links was introduced in [12,[13] by Khovanov and Rozansky as a generalization of
Khovanov homology. The first method to construct s{y-homology was matrix via factorization.
Over the years, other methods were constructed, see |7,26,28]. In this thesis, the combinatorial
definition approach sketched in Section [4] turns out to be well-suited for studying periodic links.
Basically, in this approach, for any link diagram D we define a cochain complex [ D] living in
a suitably defined foam category. To get sl homology, we pass to the category of Sjy-modules
where Sy = Sym(X7,..., Xy) denotes the ring of symmetric polynomials in X1,..., Xy over C.
For this, we need the evaluation functor F which takes webs and sends them to Sy-modules.
The goal of this thesis is to generalize the result of [4,24] in the case of sly-homology. We
show that the action of the symmetry group Z,, of the periodic link induces a Z,, action on its
Sy-equivariant sly-homology. Precisely, we have the following theorems which help us to define
Z-equivariant sly-homology.

Theorem (see Proposition [5.22)). Suppose D is a periodic link diagram. Then, there is an action
of Zy, on [ D] induced by rotating the resolution diagrams of D.

We note that Proposition [5.22] is stated and proved for labelled links diagrams, that is, for
link diagrams that come with an assignment of an integer between 0 and N to every component.
We return to labelling in Subsection A classical link, unlabelled, can be viewed as a link
whose all labels are 1.

By using the evaluation functor F , we obtain a chain complex of Sy-modules F([[D]]). By
Proposition F commutes with the Z,, action. The Z,, action on [D]] gives a Sy[Z,]-
module structure on the modules of chain complex F([[D]]). We prove the following result.

Theorem (see Theorem . Suppose L is a Z,-periodic link and D and D’ are Z,,-equivalent
m—periodic link diagrams of L then we have an induced quasi isomorphism between F([D]))
and F([[D']) in the Kom(Sym y[Z,]) where Kom(Sym y[Zy,]) is the category of bounded chain
complexes in Symy with Z,, action on chain complex.

Theorem [5.28| is stated and proved only for links whose labels are equal to 1, that is, for
usual links. Next, we establish a skein spectral sequence for a change of an orbit of crossings in
s[y-homology. An analogous skein spectral sequence was considered in [24] for the Khovanov
homology of a periodic link. The skein spectral sequence gives a relation between the so-called
difference sly-polynomials after a change of an orbit of crossings. Refer to Section [§] for details.

The graded Euler characteristic of the Khovanov homology is the Jones polynomial. In the
presence of a Z,¢-action (with p prime) there is a refinement of the Jones polynomial, called the
difference Jones polynomials see [23]. They essentially appear as the graded Euler characteristic
associated with the eigenspaces of the action of Z, on the Khovanov homology.

Similarly, the Euler characteristic of s[y-homology gives a well-known polynomial, the Reshetikin-
Turaev polynomial, also known as the sly-polynomial. For a periodic link, we define analogs of
difference Jones polynomials in sly-homology. We call them difference sly-polynomials. We use
the skein spectral sequence to study these polynomials for the link and its mirror. Moreover,
we show that if a link where all labels are equal to 1, is p'-periodic, then the Poincaré polyno-
mial of its sly-homology admits a decomposition into a sum of polynomials with non-negative
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coefficients and satisfying specific congruence relations; see Theorem [B.17 The new periodicity
criterion cannot distinguish 3 and 4 periodic links.

The thesis is an expanded version of the paper [5] joint with Maciej Borodzik and Wojciech
Politarczyk.



2. KHOVANOV HOMOLOGY

In this chapter, we define Khovanov homology. To define it, we first introduce some basic
concepts from knot theory and some concepts from homological algebra.

2.1. Short introduction to knot theory.

2.1.1. Introduction. This subsection is based on [31] and [1]. To understand the definition of
the Khovanov homology, we need some basic definitions and facts about knots and links.

Definition 2.1. A knot is an embedding of a circle S* in the 3-dimensional Euclidean space or
in the 3-dimensional sphere S°.

If we embed more than one circle, we call the image a link. Generally, we are interested
in regular projections of knots (links) onto a 2-dimensional Euclidean subspace, meaning that
the projection is injective everywhere except at finitely many points, called the crossing points,
where the knot projection crosses itself once. We will call the projection diagram where we have
an over-strand and under-strand a knot (link) diagram.

Example 2.2. We have some well-known knot diagrams below

Right-handed Left-handed Figure eight knot
trefoil trefoil

& & @

A link can be given an orientation. For these intersections of over-strand and under-strand,
we have a specific name. We call these intersections positive crossing and negative crossing.
Changing the orientation of one component of a link, might affect positivity of the crossings;
however if we change the orientation of every component of the link, the positivity of all cross-
ings is preserved. We will denote n, for the total number of positive crossings and n_ for the
total number of negative crossings in a diagram.

A X

positive negative
crossing crossing
For these two crossing we have 0 and 1 resolution of crossings. For crossing X we have 0
resolution X and for 1 resolution we have ) (. Furthermore, if we change under and over strand
we swap the 0- and the 1-resolutions.

Definition 2.3. The writhe w(D) of a diagram D of an oriented knot or an oriented link is the
difference between the numbers of positive and negative crossings, i.e.,

w(D)=ny—n_
Definition 2.4. The reverse 7K of an oriented knot K is simply the same knot with the opposite

orientation.

Change all crossing points from positive to negative and from negative to positive crossing.
The final diagram will be called the mirror image m(K) of a knot K.

Definition 2.5. The mirror image of a knot diagram is a diagram which is obtained by reflecting
the knot diagram with respect to a line R in the plane.



We consider the following equivalence relation between knots. It applies also for links.

Definition 2.6. Two knots K7 and K5 are ambient isotopic if there is a smooth map F :
S3x[0,1] - S3 such that F, = Flgsy(zy is a diffeomorphism for each = € [0, 1], Figsyg =idgs, and
F1‘S3><1(K1) = KQ.

We want to understand if two knots are isotopic. The best way to understand this is by
studying knot diagrams. We have an important theorem about equivalence in knot diagrams,
but before this theorem, we need some definitions.

Definition 2.7. An isotopy of a knot projection is a continuous deformation of the knot diagram
within the plane that preserves the number and type of crossings.

Definition 2.8. There are three local moves that are called Reidemeister moves for knot diagram
equivalence.

First Reidemeister move:
i )

0 -

Second Reidemeister move:

Third Reidemeister move:

N / v
2K

The following result was first proved by Reidemeister.

Theorem 2.9. Two links are ambiently isotopic if and only if their diagrams are related by a
finite number of Reidemeister moves and planar isotopies.

A knot invariant is a property of a knot diagram that does not change under Reidemeister
moves. For example, the writhe depends on the knot diagram, so it is not a knot invariant.
A knot invariant only depends on the knot. Later, we will define the Jones polynomial and
Khovanov homology. We will see that these are knot invariants.

2.2. Jones Polynomial. In this section, we will define the Jones polynomial. The Jones poly-
nomial will be important for Khovanov homology. The definition of the Jones polynomial and
its relation to Khovanov homology will be crucial to understanding concepts discussed in the
following sections. We will start with the definition of the Kauffman bracket.

Definition 2.10. (see [1]) The Kauffman bracket is a function from the set of unoriented link
diagrams in the plane to the ring of Laurent polynomials in variable ¢ with integer coefficients.
We denote by (D) € Z[q,q '] the Kauffman bracket of D. The Kauffman bracket is determined
by the following three properties:



(1) (@) =1
(2) (DuO) = (¢"+q)(D)
(3) (X)=(X)-q00

where D is an unoriented diagram, @ is an empty diagram, and (D) is a Laurent polynomial.

The Kauffman bracket is invariant under RII and RIII moves. To make this definition invariant
for the diagram D of an oriented link L under the Reidemeister 1 move, we have to multiply (D)
by (-1)"-¢™ 2"~ where n, is the number of positive crossings and n_ is the number of negative
crossings. The resulting polynomial is a knot invariant.

Definition 2.11. (see [1]) The unnormalized Jones polynomial of an oriented link L is defined
as

J(L) = (-1)"¢"*"(D),

where D is a diagram of L.
In addition, we define the normalized Jones polynomial

J(L)=J(D)g+a )™

We generally use the unnormalized version in this paper. We assign numbers to each crossing
by 1,...,n. By applying 0 or 1 resolution to each crossing we get 2" diagrams that we can
index with the sequence which has 0 and 1. We call such a diagram a smoothing. With these
2" smoothings D, where a € {0,1}", we have an n-dimensional cube. When we resolve all
crossings, we get a union of circles. To compute the unnormalized Jones polynomial, we replace
each union of k-circles with a term (=1)"ag™=2"=*7a (g + g~ 1)ka,

J(L) — Z (_1)raqn+—2n_+ra (q T q—l)ka
ae{0,1}m
ro = Number of 1s in «

ko = Number of circles in the D,

We will define Khovanov homology, but for that, we need some homological algebra.

2.3. Introduction to Homological Algebra. In this section, we use [32] for the most defini-
tions for some basic concepts of homological algebra that will be important for us

Definition 2.12. A chain complex (C,,d,) is a sequence of modules --+,C_5,C_1,C, C1,Co, -
connected by homomorphisms d,, : C,, > C,,—1 where d,,_10d,, =0. We call (C\,d,) a subcomplex
of (Cs,ds), if C! is a submodule of C; and d,,(C),) c C),_;.

Definition 2.13. A cochain complex is a dual notion to a chain complex, it is a (C.,ds)
sequence of modules ---,C_o,C_1,Cy,C1,Cs, -+ connected by homomorphism d,, : C,, - Chpy1
where d,+1 o d, = 0.

We define maps between chain complexes.

Definition 2.14. Assume we have (C,,d,) and (C.,d,) chain complexes. A chain map F :
C. — C| is a sequence of maps {F,, : C,, - C}} such that F,_; od, = d], o F,,. In the diagram,
we see that as below

dn
C, — Ch

Fnl l/anl
U

G —= Ch

Maps between cochain complexes can be defined similarly.
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Definition 2.15. Assume we have a chain complex (Cl,,d,), the homology of this sequence is
ker(d,)/im(d,+1) and denoted by H,(C,).

Similarly, we define cohomology.

Definition 2.16. Assume we have a cochain complex
Ny L ﬂ, O" = ...
The cohomology of this sequence is ker(d™)/im(d" ') and denoted by H*(C*®).

Proposition 2.17. A chain map F : Cy - C. induces a homomorphism between the homology
groups of these two complezes.

Between two chain homotopy maps, we have equivalence also.

Definition 2.18. Suppose we have chain maps f and g between (C,,d,) and (C.,d.,). A
chain homotopy ¢ between f and g is a sequence of morphisms ¢, : C,, — C] ; such that
fn=Ggn =d, .0 ¢n+ ¢n_10dy,. Wecall fand g chain-homotopic chain maps and denote this
relation f ~g.

We can define equivalence between two chain complexes.

Definition 2.19. We say chain complexes A and B are homotopy equivalent if and only if we
have chain maps f : (As,de) = (B.,d.) and g : (B.,d,) — (As,ds) such that fog ~idg, and
g ° f = ZdAo

Chain maps induce homomorphisms between the homology groups of chain complexes. Do we
have any relation between the induced maps f. and g. where chain maps are chain-homotopic?
The next proposition shows us this relation.

Proposition 2.20. If we have f and g chain-homotopic chain maps, their induced maps f. and
g« are the same on homology groups (i.e., f. = g.).

Definition 2.21. Suppose M;, Mo, ---, M,, are modules over the fixed ring R, and Py, Ps,---, P,
are module homomorphisms. We say that

My 25 vy 2 e B
is an exact sequence if im(P,-1) = ker(P,).
Definition 2.22. Suppose A, B, are modules over the fixed ring R. We say that
0>A5>BE 00
is a short exact sequence if ¢ is a monomorphism, p is an epimorphism, and im(7) = ker(p).

Furthermore, we define a short exact sequence in the category of chain complexes.

Definition 2.23. Suppose A, B,C are chain complexes, and i and p are chain maps. We say
that the sequence

0-A5BLCs0
is a short exact sequence if the induced sequence of maps
0 A, B, 2% 0, >0
is a short exact sequence of modules.

Similarly, we define a long exact sequence for modules, and from the short exact sequence,
we get a long exact sequence of homology groups.
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Theorem 2.24. Suppose A, B,C are chain complezes, and we have a short exact sequence of
complezes given by:
0-A5BLC-0
then we obtain a long homology sequence of homology groups
‘* ‘)& 5 ‘* ‘* 6

< Hy(A) %> Hy(B) %> Hy(C) = Hoa (A) = Hyr(B) 7> Hoa(C) =

Proof. See [11, Theorem 2.16]. O
We have the same theory for cochain complexes

Theorem 2.25. Suppose A,B and C are cochain complexes, and we have a short exact sequence
of complexes given by

0-A5BLHC-0
then we obtain a long cohomology sequence of cohomology groups
Hn(A) Hn(B) ]* Hn(c) Hn+1(A) Hn+1(B) Jx Hn+1(C)
Definition 2.26. (see 1.5.1 [32]) Assume we have E and F be graded cochain complexes and

E EN F a chain map that preserves gradings. The mapping cone is a chain complex given in a
degree k by

Cone(f)i = Ex @ Fi—1
with differential

Ocone(f) = ( _?E 301? ) : Cone(f)x = Cone(f)ps1-

We have the following lemma.
Lemma 2.27. We have a short exact sequence which includes Cone(f)
0 F[1] % Cone(f) & E >0
where F[1], = Fy—1 , i(a) = (0,a) for a€ F and p(e’,a’) = —€’, so we get a long exact sequence
by Theorem
w > 1B 20 HY(F) s B (Cone(f)) L B (B) -

Definition 2.28. Let C be an Abelian category. A homologically graded spectral sequence is a
family of objects with differentials dy, , : B , — E7_, .. which satisfy the rule d"od" = 0 where

p,q,7 € Z. Moreover, for E”Jr1 and £, . for any r we have
By = H(E],) = ker(d) )/ Im(d)_, 1. 1)

For a fixed r, the family E} is called the page of the spectral sequence. Here we can think
spectral sequences as a book When we turn next page it means we increase r by 1 and take
homology of the old page.

Definition 2.29. Let H,, be a collection of objects in category C.

e We say spectral sequence weakly converges to H, if there is a filtration
.S F, . H,cF,H,cF,, H,c...c H,

and isomorphism
/qu pq =3 Hp+q/Fp 1Hp+q
e We say spectral sequence approaches to H, if it weakly converges to H, and

H, =\JF,H, and (F,H, =0
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o We say sequence converges to H, if it approaches to H, and
H, =lim(H,/F,H,)
Convergence is denoted by £, == Hp.,

Definition 2.30. A first quadrant spectral sequence is a type of spectral sequence where all
the information or data contained in its pages is confined or concentrated within the region of
the (p,q)-plane where

p<0org<0 = EPI=0.

Proposition 2.31. If the r-th page is confined to the first quadrant, then the (r+1)st page will
also be so. Therefore, if the first one is, then all subsequent pages will be as well.

Proposition 2.32. For every first quadrant spectral sequence, convergence occurs at position
(p,q) starting from the r-th term where r is greater than the mazimum of p and q + 1.

P,q — P9
max(p,g+1)+1 ~ E°°

Proposition 2.33. If a first quadrant spectral sequence converges
EPY = HP'
then each H™ has a filtration of length n+ 1
0=F"'H"cF"H"c...F'H"c F°H" = H"

We also have

o FM"H" = E

o« H"/F'H" = BEQ"
2.4. Introduction to the Khovanov homology. In this paper, our main goal is to define
sl homology via web and foams. For n = 2, s[y homology is called Khovanov homology. In this
subsection, we will define Khovanov homology in a basic way that will help us to understand
sly homology. We need the Khovanov bracket definition to define Khovanov homology. The

definition is similar to the Kaufmann bracket definition. In this section we generally use papers
[1] and [31].

Definition 2.34. We say that the vector space V is a graded vector space, if V' can be decom-
posed into the direct sum of the form V = &,,5V;, where V, is a vector space for any n. Elements
of V,, are called homogeneous element of degree n.

Definition 2.35 (see [1, Definition 3.1]). The ¢ dimension for this new vector space is

qdim(V) := Z q" dim(V,,)

Example 2.36. Suppose we have field F, and we have graded vector space F_; @ F;, where the
subscript denotes the grading of generators. Then qdim(F_; @ Fy) =g+ ¢~ L.

In this section we use vector space V = (vi,v_) where degv, = 1 and degv, = —1. The

qdim(V) =q+q L

Definition 2.37 (see [1]). Khovanov bracket of a diagram D of a link L, denoted [D]], is a
cochain complex of graded Z-vector spaces. It is characterized by the following properties:

(1) [2]1=0-Z-0

(2) [OuD]=Vel[D]

3) [X] - Cone(O S =12 paa) - o)
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Here, the {1} operator is the degree shift operation V{i},, = V,,_;.

The first axiom is about empty diagram, bracket sends empty diagram to cochain complex
with 0 and Z. The second axiom says that if we have diagram D which can be written as a
disjoint sum of a circle and a diagram D’, then to calculate [ D] we need to calculate only [D']).
The third axiom gives a recipe how to find the Khovanov bracket of a general link diagram. If
we have a link diagram D, the third axiom allows us to write

C* (D) = C¥*(Dy) + C4*(Dy){1}

where Dy and D; are the diagrams which we get them by resolving a fixed crossing by 0 and
1 respectively on the diagram D. In other words,the third axiom says that for a link diagram
D, C**(D) is the mapping cone of C**(Dg) and C*~%*(D;) with the map d between C**(Dy)
and C*"1*(Dy), the map d will be defined in

Now we define the modules that we use in the definition of Khovanov homology, see |31}
Chapter 1.3]. We begin with the definition of the space V.

Vo= V®alr, +ny —2n_},
where «a € {0,1}", and:

e k., = the number of circles in the diagram D,,
e 7, = the number of 1’s in a,

e 1, = number of positive crossings in L,

e n_ = number of negative crossings in L.

We define our module now. '
(D)= @ Va
ae{0,1}"
1=Ta—N_
Example 2.38 ([31, Figure 4]). ) For the negative Hopf link (). 1t is easy to see that n, =0

and n_ = 2. In particular, the cube of resolutions has the following form:
V{-3}

9 % 1% *

2, c 1, CO,

2.5. Definition of boundary map for Khovanov homology. Have defined the modules
underlying the Khovanov chain complex, we need to describe the boundary map. Consider a
cube where nodes are diagrams which we get by different resolutions. There are edges between
nodes. We define a map for the edge between two nodes which we get from different specific
resolutions. We define the map d, where € is the edge of our cube that lies between two resolutions
that differ at one crossing. This edge can be labeled by sequences in {0, 1, *} where the height of
the e is denoted by |e| and is defined by the number of ’1” in the domain of the d.. We turn edges
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into arrows by the rule * = 0 gives the tail and * = 1 gives the head. For instance, the edge
between resolutions 001 and 011 is 0 * 1 and the map between them is dy.1. Prior to defining d.,
we need to describe some elementary maps, from which d, is constructed. It might be helpful
to remind here that V' is vector space which is generated by v, and v_ where deg(v,) =1 and
deg(v-) =-1.
First, we define a map m that corresponds to merging two circles to one circle. Namely:
Definition 2.39. The multiplication map m:V ® V' — V is defined as:
U+ ® U+ = U+
Vy ® U_ > U
V- ® Uy U
v-®@vu_ — 0.
We extend it linearly to Vo V.
In addition to that, we define a map corresponding to splitting one circle into two circles:
Definition 2.40. The comultiplication map A:V -V ® V is defined as:
V+ P> Uy QU_ + V- ® Uy

Vo> U_ QU

and it can be extended linearly on V.
We define the map d..

Definition 2.41. We define d. as the identity on the tensor factors associated to circles which
stay the same after smoothing. If two circles merge into one circle, d. is the map m on tensor
factors associated to these two circles, see Definition Another case is when we divide one
circle into two circles, de is the linear map A on this circle, see Definition [2.42]

We are ready to define the Khovanov differentials d’ : C**(D) - C*1* (D)
Definition 2.42. For v eV, c C“*(D)
di(v) = Z sign(€)de(v)
€
tail(e)=a
where sign(e) — (_1)number of 1’s to the left of the change placev see Chapter 1 of I31]

For example, suppose we have ¢ the edge between 010 and 011, then sign(e) is —1 because
there is just one 1 before the change from 0 to 1 in the edge.

It can be shown that m and A preserve the quantum grading, and since d is the sum of them,
we say that d. preserve the g-grading.

With this definition, we have a lemma below:

Lemma 2.43 (see [31]). d"od" ! =0.

The above lemma shows that d is indeed a boundary map.
We defined the chain complex, so we define Khovanov homology on this chain complex.

Definition 2.44 (see [31]). Kh**(D) = H(C**(D),d) where Kh stands for Khovanov homol-
ogy.
The graded Euler characteristic of C**(L) for a link diagram L is

> (-1)* adim(C** (D))

This is equal to the unnormalized Jones polynomial of the knot diagram (D) of a link L. See [31].
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In order to say that this definition gives a well-defined link invariant, we need to show that
if we have two different diagrams D; and Dy of the same link L, we have H(D1) ~ H(D3). In
particular, we need to check if homology will be the same after we apply Reidemeister move to
link diagram. (See [1, Theorem 2])

Theorem 2.45. Assume we have two diagrams D1 and Dy which are connected to each other
with a finite sequence of Reidemeister move, then H(D1) ~ H(D3).

Theorem has in fact three parts, each corresponding to a different Reidemeister move.
There exist pairs of links where they have the same Jones polynomials but have different
Khovanov homologies. This shows us that Khovanov homology is a stronger invariant.

Example 2.46 (|31, Example 3.2]). Two knots 5; and 10;32 are the knots with the same Jones
polynomial but different Khovanov homology. For the unnormalized Jones polynomial, we have
J(10132) = J(51) = q 3 +q® + ¢ + ¢ *° whereas we have different Khovanov homology.

Khg(51) = Qo,-3) + Qo,-5) + Q(=2,-7) + Q(=3.-11) + Q=4 -11) + Q(=5.-15)
Khg(10132) = Q(o,-1) + Q(o,-3) + (Q® Q) (—2,—5) + Q(_3-5) + Q(_3,-9) + Q_a,—7) + Q4 -9y +
Q5,-11) + Q(o6,-11) + Q-7,-15);

where Q; ; means at the ¢ and j th degree we have a copy of Q.

Definition 2.47. (see [1]) From the Khovanov homology Kh/(L), where i is the homological
grading and j is the quantum grading, one defines the Khovanov polynomial as:

Kh(L;t,q) = ZdimKhi’j(L) gt
Z’7j
which serves as a categorification of the Jones polynomial.

Remark 2.48. The unnormalized Jones polynomial is equal to the Khovanov polynomial where
we have ¢t = —1. In other words, We have the equation Kh(K,-1,q) = J(K).

After defining the Khovanov bracket and the Jones polynomial, we define Reshetikhin—Turaev
(RT) polynomial, which is a generalization of the Jones polynomial. The RT polynomial is
computed via a diagrammatic approach, which assigns a polynomial invariant to a link diagram.
The construction begins by applying a set ofresolution rules to each crossing in a link diagram,
reducing it to a linear combination of simpler diagrams without crossings. These resolutions are
replacing a crossing with planar configurations according to specific local patterns, as illustrated
in Figure[l] After all crossings are resolved, the resulting diagrams may contain loops, caps,cups

XX
X)X

FiGURE 1. Resolution of positive and negative crossing points.

and strands labelled by positive integers. The rules to evaluate the diagram are defined in the
Figure [2|



15

= [n]

() - >3 [n-1]

~_ —
+ [n-2]
—

-
o T

FiGURE 2. Evalution rules of loops, caps and cups

We have i i
[k]:= =1
q—q
With this resolving and evaluating, we obtain polynomial associated to the original link diagram.
This invariant is known as the Reshetikhin—Turaev polynomial. The details of the planar graph
calculus shown in Figure [2] are explained in [20]. We only make use of the part of their calculus
involving edges labeled 1 and 2. In our diagrams, these labels are omitted, and edges labeled 2
are indicated by thick lines.

Definition 2.49. (Reshetikhin-Turaev polynomials) The polynomial invariant P, (L) of an ori-
ented link L can be computed by selecting a planar diagram D of L and applying a resolution
to each crossing according to the specified rules in Figure |1} and take a sum of all P, (T") for all
resolutions I'.
Pn(L) =P, (D)= Y ¢Op,(T),
resolutions I

where a(I") comes from the rules in Figure (I} From the equations in Figure [2| we can get

that the definition is independent of the choice of the diagram D of a link L.

3. PERIODIC LINKS

Definition 3.1. Consider a link L in S? and a semi-free Z,, action on S3, that is to say, there is
a non-empty fixed point set, such that the action is free on its complement. All the Z,, actions
on S? are classified by the solution to the Smith conjecture. In particular, if the fixed point
set of the action is one dimensional, it is an unknotted circle. We say L is m-periodic for the
semi-free Z,, rotation action of order m on S3, if the set of fixed points f of action is disjoint
with L and L is invariant under the Z,,, action.

Similarly, we define an action for a link diagram.
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Definition 3.2. We say that the link diagram D c R? of an m-periodic link L is m-periodic if
it is invariant under the rotation action of R? of order m, and D is disjoint from the set of fixed
points of the action (that is, the coordinate center of R?). In other words, an m-periodic link
diagram is a diagram that is carried to itself by a rotation of (360/m)°® about the origin.

Every m-periodic link admits an m-periodic link diagram.
Example 3.3. The trefoil knot is a 3-periodic knot.

Remark 3.4. Smith’s conjecture states that a fixed point set of Z,, on S® cannot be a nontrivial
knot.

If we have a periodic knot K preserved under the Z,,-action on S*, we define the quotient
knot of knot K under this action.

Definition 3.5. see [21] A quotient knot K is the image of the knot K under the quotient map:
7: 8% — 83T,
and denoted K := m(K). Since the action is semi-free, K is also an embedded circle in S, that
is, K is a knot.
To check whether a link is periodic, one may apply one of the following criteria.

Theorem 3.6 (Murasugi Conditions, see [21]). Suppose we have K c S% a q = p"-periodic knot
with prime p, A the Alexander polynomial of K, and A" the Alexander polynomial of the quotient
knot K. Furthermore, let | be the absolute value of the linking number of K with the symmetry
axis. Then

(1) A'lA
(2) A= (AN (1+t+...+t71)7 ! (mod p)
Example 3.7. The left-handed trefoil knot has period 3; the quotient knot is the unknot, and
the linking number [ is 2.
e It is obvious that the first condition is satisfied, which means 1]A.
e The Alexander polynomial of the trefoil knot is t? =t + 1. So we have
(D31 +* D3 =@ +8)2=t>-t+1 (mod 3).

This means the second condition is satisfied.

Example 3.8. For the figure eight knot, the Alexander polynomial is —t~' + 3 —t. Since
A(t) = —~t™1 + 3~ t is irreducible and since A’(1)|A(1) we deduce A’ = 1.
We have

7 43-t=Q+t+...+t"HP1 (mod 3).

We know that the Alexander polynomial is well-defined up to multiplication by powers of t. So
we take Alexander polynomial here A(t) = -1 + 3t —t2. Hence the polynomial on the right-hand
side should have the same degree with the polynomial on the left-hand side. Hence we should
have (I-1)(p-1) =2.. We have two cases. Either [=3,p=2orl=2,p=3. Forl=2,p=3 on
the right-hand side. We have (1 +¢)% =1+ 2t + > but

1+3t—t>+1+2t+t* (mod 3).
On the other hand, we have
1+3t-t>#1+t+t*> (mod 2).

This shows that figure eight knot is not p-periodic for p > 3.
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Theorem 3.9 (Edmonds’ Criterion, see [6]). Assume we have K, a periodic knot of period g,
and K, the quotient knot of K. Then there are nonnegative integers o such that

o(K) = gg(K) + L= N7=L),

where g(K) and g(K) is the Seifert genus.

Example 3.10. For a trefoil knot K, K is the unknot. The trefoil knot has genus 1, and the
unknot has genus 0. If we take o =2, then we have 1=3-0+2- %

Edmonds’ Criterion is particularly useful for low genus knots. It shows in particular that the
quotient knot of a genus 1 periodic knot is the unknot.

Theorem 3.11 (Naik’s Criterion, see [22]). Suppose K c S3 is a p-periodic knot with p a prime
and let k > 1 whereas we denote K for quotient knot of K. For ¥™(K) the m-fold branched
cover of K suppose that Hi(X™(K)) has nontrivial q-torsion part, for some prime q + p, and
let Iy to be the least positive integer such that gl = £1 (mod p). Then there exist non-negative
integers by, ba, ... such that

Hi(S™(K); Z) o/ H (S™(K); Z) = Z2

19 Znglq @ -
Theorem 3.12 (HOMFLYPT Criterion, see [25]). Assume we have the unital subring R in
Z[a*,z*] where R = {a,a™!, %,z). If a knot is p-periodic and P(a,z) is its HOMFLYPT
polynomial, then
P(a,2) = P(a™,2) (mod (p, 7)),
where (p, zP) is the ideal generated by p and 2P in R.
We have Borodzik-Politarczyk criterion for periodic knots.

Theorem 3.13 (Borodzik-Politarczyk Criterion, see [4, Theorem 1.1]). Assume we have a p"-
periodic knot K, where p is an odd prime. Suppose that F = Q or F =F, for a prime r where
7 # p and r has the mazimal order in Z,. Here since ged(r,p) = 1 any prime r # p will have
mazimal order p". Take ¢ =1 if F = Fy and ¢ = 2 otherwise. The quantity s(K, F), known as
the s-invariant of the knot K, is derived from the Lee or Bar-Natan theory see |2],[14] Then

KhP(K,t,q) = Py + i(pj - )P,

n=1
Where Py, P, ..., Py, € Z(q,q"*,t,t"'] are Laurent polynomials such that

(1) Py = qS(KaF)(q+q_1) +3 52 (1 +tq207)50j(t, q), and the polynomials Sp; have non-negative
coefficients; 4

(2) Py =¥32,(1+ tq*7)Sk;(t,q) and the polynomials S; have non-negative coefficients for
1<k<n,

(3) Pk:(_17Q) - Pk+1(_1>q) = Pk(_lvq_l) - Pk+1(_17q_l) (mOd qp”_k - q—p”_k);

The criterion is rather specific, easier to implement on a computer, than to solve by hand.
The following example is discussed in [4].

Example 3.14. Take the knot 15n1335221. This knot satisfies all periodicity criteria for p =5
we discussed in the thesis. In particular, it satisfies the HOMFLYPT criterion for p = 5. It has
the Khovanov polynomial

q+ q_1 +(1+ tq4)(t_7q_15 + 375_6q_13 + t_5q_11 + 3t_4q_9 + t_3q_9 + 3t_2q_7 + t_lq_5
+3t g B 3tg+ PP+ 33 P + AP 30 150 + At P g v 23T+ 272D
+ t_lq_5 + t_lq_3 + th_1 + q_3 + q_1 +2t'2q + t3q3 + t4q5)).
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We write KhP = ¢+ ¢ ™1 + (1 +t¢")S}; +4(1 +tg*)S]; where
Shy =t TP 3t 0 et P 13t et g 4 3t 2 T+t g0
+3t7 B g B g+ 3tq+ 2P + 383 + 10 + 3t°¢T + t%¢°
and
Sty = P et g 2 T v 2 gt g T g 2t g g 22+ PP + AP
According to Theorem [3.13(3), A(q) = ¢+ ¢~ 1 + (1 +tqg*)S}, (¢, q) — (1 +tg*)S],(t,q) and we
have A := (A(q) - A(¢™")) mod ¢° — ¢°. So we have A = ~10¢ + 5¢> - 5¢” + 10¢°. Since A # 0,
we need to change Sj; and S7;. We need to satisfy Theorem [3.13(1) and (2). We must have
S1y = S11 -6 and S{; - S{; +44. Here it is important that we must have non-negative coefficients
for S7; and Sj;. We have only finitely many possibilities for 4. In order to reduce the number of
possibilities, we use the following argument. Take = at'q’. Then, after changing Sj; and Si;,
we have A - A +aTjj, where Tjj = (=1)'5(-¢ 7™ + ¢ — ¢/ + ¢'**) mod (¢° - ¢°). We deduce
that T;; = (-1)R; with j' = j mod 10 and
Ri=R5=5(q-¢"),
Ry =10(¢" - ¢"),
Rr=Ry=5(-q-¢’+q" +¢").
For different §, A will change by —a; R; — asRs — ayR7. Note that coefficients change based on
conditions that S]; — ¢ must have non-negative coeflicients. We must have coefficients
ay €{-1,0,1,2,3,4,5,6},
as € {_Sa _27 _17 O}a
ar € {-4,-3,-2,-1,0,1,2}.

With these conditions, it is not possible to have A = 0. We deduce that a knot 1511335221 is
not 5-periodic.

4. WEBS, FOAMS AND CATEGORIES

We have already studied Khovanov homology. Now, we want to define sl homology. Actually,
Khovanov homology is sls homology, but for sl homology, we have to use a more formalized
approach. We will use webs and foams.

4.1. Webs and foams.

Definition 4.1. A trivalent graph I' is a closed one-dimensional cell complex where three edges
meet at each vertex.

Definition 4.2. In an oriented graph, the source vertex is a vertex that has zero indegree. In
other words, it is a vertex where the number of incoming edges is 0. Similarly, a sink vertex is
a vertex that has zero outdegree. In other words, it is a vertex where the number of outgoing
edges is 0.

Definition 4.3 (N-webs). A closed N web is a finite oriented trivalent graph V' without sources
and sinks properly embedded in R? We call closed N-web shortly a web. Each edge is labeled
by numbers 0,..., N. An edge with the 0 label can be deleted from the web, so in some papers,
edge labeling starts from 1. The labelings of edges should satisfy an important condition called
the flow condition; see Figure
e If two edges with labels a and b enter a vertex, then the outgoing edge has label a + b.
We call a vertex a merge vertex when the vertex has two incoming edges.
e If two edges with labels a and b exit from a vertex, then the incoming edge has label
a +b. Similarly, we call a vertex a split vertex when the vertex has two outgoing edges.
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F1GURE 3. The flow condition of Definition

FicURE 4. Codimension 1 and 2 singular points of a foam.

In Figure (3] the web on the left has a split vertex, and the web on the right has a merge
vertex.

Remark 4.4. An empty web is just a web with no vertices and no edges.

Assume that we have two webs Wy and Wy in R?. Think of Wy in RZ2x {0} and W; in RZx {1}.

Definition 4.5 (foam). Assume we have two webs Wy and W;. An N-undecorated foam F: Wy —
W1 is a compact, finite 2-dimensional CW-complex properly embedded in R? x [0, 1] such that:

o If x € I~ (WpuWi), then there exists a neighborhood U of z in F' homeomorphic to
one of the following three models:
— a smooth point: U is homeomorphic to a disk in R?;
— a Y-shaped point (codimension 1 singularity): U is homeomorphic to the union of
three distinct rays stemming out of a common point, times (0, 1);
— a cone over a l-skeleton of a tetrahedron (codimension 2 singularity), when z is a
triple point. Compare Figure [4]
e Every facet F; of F, i.e., a connected component of the set of smooth points, carries an
orientation and a label by an integer 0, ..., N;
e a binding: compact oriented 1 dimensional manifolds. Each binding has
— an orientation that agrees with the orientation of facets with labels a and b whereas
disagrees with the orientation of facet with label a + b.
— cycling ordering of the three facets around binding: when foam embedded in R? this
ordering must be compatible with the left-hand rule with respect to its orientation.
e Every seam C;, which is a connected component of the set of Y-shaped points of F',
carries an orientation;
e The orientation of every seam agrees with the orientation of precisely two adjacent facets;
if these two facets are labeled by a and b, then the third facet has the label a + b;
e The bottom boundary of each facet F;, that is F; n (R? x {0}), is an edge of Wy with the
same label and the orientation opposite to the orientation induced by Fj;
e The top boundary of each facet Fj, that is F; n (R? x {1}), is an edge of W, with the
same label and the orientation agreeing with the orientation induced by Fj;

We define the composition of foams.

Definition 4.6. Assume we have webs Wy, Wi and Ws. Furthermore, we have foams Fy;
between Wy and Wy, Fis between Wi and W5, We define composition Fyo of Fy1 and Fio as the
union of Fy; and Fyy along W) where we can think of Fy; as a subset of R? x [0,1/2] and F» as
a subset of R? x [1/2,1].
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In our case, closed foams are crucial for us:
Example 4.7. A closed foam is the map from an empty web to an empty web.

4.2. Coloring and decorations. On webs and foams, we might have some extra structures,
namely colorings and decorations. The coloring of a web is similar to the labeling.

Definition 4.8 (coloring of a web). Let W be a web. A coloring is an assignment of a subset
Ae of P={1,2,..., N} to every edge e such that |A.| = labeling of the edge. In other words, for
every edge, we assign a subset of {1,2,..., N}. This assignment should satisfy two conditions:

o We have two edges with colorings A and B enter a vertex, then the outgoing edge should
have coloring A u B where in particular we have An B = @.

e We have two edges with colorings A and B exiting from a vertex, then the incoming
edge should have coloring Au B.

The colorings of foams are similar.

Definition 4.9 (coloring of a foam). Assume we have a foam F. A coloring is an assignment of
asubset ¢(f) of {1,2,..., N} to a face f such that |c(f)| = labeling of the face f. The assignment
must fulfill the following compatibility condition, which generalizes the compatibility relation for
labels: at every seam where the adjacent facets f1, fa, and f3 meet—assuming the orientations
of f1 and fo align with that of the seam—it is required that

c(f3) = c(fr) vc(fz).

A colored foam is a foam with a coloring.
In addition to this structure on webs and foams, we have decorations of foams.

Definition 4.10.

e Assume we have a colored foam (F,c). We define surface F;(c) as a union of all the
facets that contain ¢ € P. The restriction on orientations of facets ensures that Fj(c) is
also oriented.

e Assume we have a colored foam (F,c). We define surface Fj;(c) as a union of all the
facets which contain ¢ or j but not both at the same time in their colors. The restriction
on orientations of facets ensures that Fj;(c) is also oriented.

Definition 4.11. Assume we have a colored foam (F,c) and we have i < j. A circle in F;(C)n
F;(C)n F;;(C) is positive (respectively negative) with respect to (i, ) if it consists of positive
(respectively negative) bindings. We denote the number of positive (respectively negative) by
07;(c)F (vespectively 0;:(c)r). Furthermore, we have 0;;(c) = 6;;(c) + 0;;(c).

4.3. Decorations, degrees and evaluations.

Definition 4.12 (Degree of an undecorated foam). The degree d“"(F') for a foam F' is the sum
of the following items.
e For a face f we have d(f) = a(N - a)x(f) where a is the face label and x is Euler
characteristic;
e For seam 7 which is not a circle and is surrounded by faces with labels a, b, a + b we have
d(i) =ab+ (a+b)(N —a-b);
e For a singular point p surrounded by faces with label a,b,c,a + b,b + ¢,a + b+ ¢ we have
d(p) = ab+bc+cm +ma+ ac+bm, where m=N-a—-b-c.
e At the final stage we have the formula

dy(F) == d(f)+ . d(i)- > d(p)

f facet i seam p singular points

Another important definition for foams is the decoration.
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FiGure 5. Rule for gluing decorated foams.

Definition 4.13 (Decoration of a foam). Assume we have a foam F' and a face f with labeling
a. A decoration is an assignement of a symmetric homogeneous polynomial p; in a variables to

the face f.

A decorated foam is a foam together with a decoration of each face. We have the composition
of foams when decoration on foams respects composition rule also. Namely, assume we have two
foams Fy; and Fio with decoration Py on face fi of Fy; and Pjo on face fy of Fio. Assume that
composition happens on faces f; and fs. Then the new face should have decoration Py - Pis.

Remark 4.14. We fix our variables for polynomials as X1, Xo,..., Xy, and we declare that each
variable X; has degree 2.

Definition 4.15 (Degree of decorated foam). The degree d(F") of a decorated foam F' is defined
as the sum of the undecorated degree of the foam, denoted d""(F'), and twice the total degree
of the decorations on all faces. More precisely, you add 2-deg(Py) for each face f, where Py is
the polynomial decorating that face.

d(F)=d"(F)+ Q;deg(Pf),

where the sum is taken over all faces f of the foam.

Definition 4.16 (Evaluation of a foam). The evaluation of a closed foam involves assigning a
polynomial to the foam. Assume we have a colored decorated foam (F,c¢). We have contributions:

s(F,c) = %z(@) + Z 9;}(}770)
i=1

1<i<j<N
P(F.e)= I Pre(f))
f face of F
(X(Fij(C)))
Q(F.c)= T[] (Xi-Xx)\ °
1<i<j<N
c) = (- s(F,c)P(Fac)
= COT ey

Assume we have a decorated closed foam F', we define the evaluation of a foam F":
(F) =) (F,c),
&

where the sum runs over all colorings of F.

It is proved in 28] that (F') is a symmetric polynomial. The next observation is made in |28];
it follows promptly from the definition of (F').

Lemma 4.17. If we have two isotopic foams Fy and Fy in R? x [0,1], then (Fy) = (F3).

4.4. Foam categories. We want to define sl homology. For this, it is convenient to package
webs and foams into a category theory language.

Definition 4.18. Foam}, category is a category with objects formal shifts of N-webs denoted
q"“W for fixed N > 2, and morphisms between two webs ¢"W; and ¢W, are decorated foams
from Wy to Wy with degree m —n. Composition of two foams is defined as
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We remark that until we impose some equivalence relations on foams, the category Foam}y,
is huge. In particular, for the moment, isotopic foams give different morphisms.

The next category is the SFoam}; category. We use the notation Sy := Sym[ X7, Xo,..., Xn]
as the graded ring of symmetric polynomials with complex coeflicients. Recall that the variables

X; have degree 2, see

Definition 4.19 (SFoam});). The category SFoam} is the Sy linear, Z-graded category with
e Objects as formal shifts ¢*V and their direct sums, where V is a web, ¢ is a formal
variable, and k € Z is grading.
e Morphisms as Sy linear combinations of decorated foams. Foams from ¢*'Wi&q*2 Wy ---@
g Wy to "W/ @ ¢*2W3--- @ ¢®* W] is the | x k matrix whose i, j coefficient is Sy formal
linear combination of foam between W; and WJ’ with grading j —i. For p € Sy, pF
has degree deg(p) + deg(F). In other words, Hom(q*Wy,¢"W5) is the formal linear
combination of foams between W; and W5. This means Hom(q“Wl,quQ) is freely
generated Sy module.

We defined the SFoam}; category. To understand it better, we define the evaluation functor
from SFoam}; to the category Symjy of graded Sy projective modules. In this category, the
modules are allowed to be infinitely generated.

Definition 4.20 (Naive evaluation functor). We have functor F : SFoam}; — Sym},
e For any shifted web ¢®V, we have

ﬁ(qav) = HomSFoam]*V (@, qav) = EB SN{dN(G)}
GeHomSFoam?V (2,q°V)

e For a morphism F : ¢*V — ¢®W, we have the map

F(F)(-)=Fo(-)

b
HomSFoam*N (@, qav) HomSFoam*N (@, q W)

Remark 4.21. We note that by the second item of Definition Homgpoam?, (2, ¢"V) is an
Sy module.

In our assignment for a web V', we took all foams, but it is logical to expect isotopic foams
as defining the same objects, respectively the same morphisms. To overcome this problem, we
need to take a suitable quotient using foam evaluation.

Suppose we have a web V and F’ € Homgpoam?, (V, @), define

Qpr HomSFoam}‘\, (@7 V) - SN

¢p(F)=(F'oF)
Now we define

I(V) = m kerqﬁpr

F’eHomSFoam}ev (V.@)

Actually, I(V') consists of all Sy linear combinations of foams from @& to V' that evaluate to zero
when capped with any foam from V to @.

As closed isotopic foams evaluate to the same polynomial, we have the following observation,
which we record for a future use.

Lemma 4.22. For any two isotopic foams F and F' from @ to V, F = F' is in [(V).

Definition 4.23 (Evaluation functor). We define a new evaluation functor
F : SFoam); - Symp where Sym is a category of finitely generated graded projective modules.

e For any web ¢®V, we have F(q®V) = F(¢*V)/I(¢°V) = Homgpoam?, (2, ¢"V)/I(V).



23

e For morphism G :V — W, we have the map

F(G)(-)=Go()

HomSFoam}*\,(gav)/I(V) HomSFoamjv(ng)/I(W)

It is proved in [28] that F is functor in the category in Sym,. Now we define a new category
where any two isotopic foams between two webs will be in the same class.

Definition 4.24. The category of SFoamy has the same objects as SFoam};, but for mor-
phisms, it is different: Homgpoam, (V, W) := Homgpoamy, (V, W)/ ker F.

We need a bracket definition, and for this, we need to define a new category. In general form
we have:

Definition 4.25. For an additive category A, we denote by Kom(A) the category of bounded
cochin complexes in A and morphisms in Kom(A) are cochain maps.

Definition 4.26 (Kom(SFoamy) category). The category Kom(SFoamy ) is defined as fol-
lows:

e objects are bounded cochain complexes in the SFoamy category;
e morphisms are cochain maps.

4.5. Sy-equivariant sly-homology. For a link L we assign numbers between 1 and N accord-
ing to its thickness. We call this labelled link. If we do not have any label on a link we assume
all components are labelled with 1. We need to define the bracket [D]] ¢ Kom(SFoamy) for
any labeled link diagram D. For this, we just need to define the bracket for a straight strand,
positive and negative crossing. For any diagram, we will take the tensor product of these three
diagrams.

Definition 4.27 (Bracket definition, see |7, Definition 3.3]).

e For a strand a bracket maps it to the corresponding web in homological degree zero.

e The bracket maps a positive crossing with a as an overstrand label and b as an under-
strand label, denoted as a > b, to the chain complex as in Figure @ The differential dj
can be seen in the Figure

e The bracket maps a positive crossing with b as the overstrand and a as the understrand
(i.e.,b > a) to the chain complex obtained by reflecting the webs and foams (from the
case a > b) along the vertical axis, and swapping the labels a and b.

e For a negative crossing, the bracket maps it to the chain complex obtained from the
corresponding positive crossing by reversing the g-degrees and homological degrees, and
reflecting the differential foams across a horizontal plane. See Figure

We create a cube of resolutions to understand the bracket definition better. Let D be a
diagram with n crossings, enumerated from 1 to n and let Cr(D) denote crossing points of
diagram D. At each crossing, we have labels a; and b;. We define ¢; as the minimum of these
two labels and set C; = {0, ..., ¢;} for the i-th positive crossings and C; = {-¢;,...,0} for the i-th
negative crossings. Similarly, we define SC; = [0, ¢;] and SC; = [—¢;, 0] for positive and negative
crossing. Moreover, we consider SC; to be a CW-complex where 0-cells are the integral points,
and 1-cells are the intervals. Define Cube(D) = ], C; and SCube(D) = []; SC; where SCube
carries a concrete CW-complex structure.

Definition 4.28 (Immediate successor). For I,I" € Cube(D), we say I’ is an immediate suc-
cessor of I if I and I' agree on all coordinates except one, and this one coordinate is one larger
than that of I.

Definition 4.29 (Sign assignment). A sign assignment 3 is an assignment of 3(I,I") € Fy for
any pair I and I’ such that I’ is an immediate successor of I.
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FIGURE 6. The resolution of a crossing. Here z = b(IN - b) and ¢ denotes the
quantum grading shift. The first term is at homological degree zero.

a a a
a a-1
d; d;
a%b qbfx % qb,l,x i}
/ b b-1
a b a b a b
a a
a-b+1
dy 1—g] dg | a-b
—q — q
a a

FiGure 7. The complex associated with a negative crossing.

A

y \

<
<«

FIGURE 8. The foam that is the differential d;, of the complex in Figure @ It is
decorated by constant polynomial equal 1.

We want s to satisfy the following chain condition for I, I, Is, and I1o where I7 # I, I; and
I, are the immediate successors of I, and [;2 is the immediate successor of I1 and I5. We have

d([,[l) +J(I,Iz) + 9(11,112) + 5(12,112) =1le ]FQ
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O

F1GURE 9. Reidemeister one move. To the left: the source and the target of
the map ¢. To the right: the foam realizing this map (it is a product foam
everywhere except near the crossing).

Remark 4.30. Algebraically, we think of s as a cellular 1-cochain in the cellular cochain complex
C! ,(SCube;Fy) where 64 is a 2-cochain with a constant value of 1.

Lemma 4.31. For any diagram D, there exists a sign assignment 3. For any two assignments
3 and 3', there is a coboundary such that 3—3" = §t where t is a cellular 0-cochain on SCube(D).
Moreover, t is uniquely determined if it fizes its value on (0,...,0).

Proof. For a c ¢ Cgell(SCube;]Fg) where ¢ is a constant cochain with a value of 1, we have
d(c) = 0 because the cube has an even number of rectangles. Since we take the sum of an even
number of 1’s, we get 0 in Fy. Since the cube SCube(D) is contractible, we have a 1-cochain
e € C! ,(SCube;Fy) such that §(e) = c. We have e as a sign assignment J. Assume that we
have two sign assignments 4 and s’. We have §(s —4") =0(4)-0(s")=1-1=0,s0 53" is a
1-cocycle. Again, since the cube SCube(D) is contractible, we have ¢ such that 6(¢) =4 -4, If
we have another Z’ such that 6(Z') = 3 — 4’, then we have §(Z - ¢") = 0, which means ¢ - ¢ is a
cellular 0-cocycle. This implies that (¢ —Z')(a) = (£ - ¢")(b) = 0 for any point a,b that belongs
to any interval I. This means that for any points in the cube, Z —Z' is equal to zero, so Z — 7’

is constant. O

For I € Cube(D) we get web C; by taking the I(i)-th resolution in Figure [6] at the i-th
resolution for all crossing points 7. Furthermore we define quantum degree for I € Cube(D) and
denote it by Q([I) :

QU= > a
1€Cr(D)
where for positive crossing ¢; = I(i) — ¢;(N — ¢;) and for negative crossing ¢; = —1(i) + ¢;(N —¢;).
In addition to the quantum grading we have homological grading. We denote it by H(I):

H(I)= > (i)
1€Cr(D)

We get cochain complex [[D] by resolving D for all I € Cube(D) and for the homological
degree s we take the formal sum of webs D; where H(I) = s. To define the differential, consider
I € Cube(D) and let I' be an immediate successor of I, that is, I’ differs from I only at a
single crossing. We define §(I,I") as a foam given by |8, otherwise it is a product foam. The
differential in the complex [ D] is defined as (1)1 §(1,1"), where s(I,1") denotes the chosen
sign assignment. By construction, there is a natural identification between [D] and [D]].

Theorem 4.32. For any diagrams D and D' of the link L, we have [D]] ~ [ D']]. In other
words, the complexes for these two diagrams are homotopy equivalent in Kom(SFoamy ).

Proof. The statement is well-known to the experts, with a few known proofs. To show how sign
assignements work, we provide a proof in two special cases. Namely, if D’ differs from D by a
single Reidemeister move, and

e The case of a Reidemeister 1 move for general labelings.
e The case of a Reidemeister 2 move for diagrams with all labels equal to 1.
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In this proof, the main issue will be clarifying signs. Namely, we will show how to relate sign
assignments on D with sign assignments on D’. In the case of non-periodic links, we do not have
a sign assignment problem, Koszul’s sign rule being sufficient. We have proof of this theorem in
[7, Theorem 3.5]. We will imitate [18, Section 7].

We denote the diagram obtained from D via a single Reidemeister 1 move with a positive
crossing by D(p). We assume that the strand at which the Reidemeister move is done is labeled
by a > 0. We denote partial resolutions of D{) as D(Je), D(1),...,D{(q4-1), and D(P). Here,
by putting i we mean we label the loop which is next to the diagram by i. We can write [D]|
as the following bicomplex

(4.33) 0~ [Dg)] % [D()] %> .. 2 (D] 0,

Here d is the identity except near the relevant crossing. The foam near the crossing is given
by Figure[8] We have a chain map between [D]] and [D{o)]] given by

d+ dr
s ... —= [DP)] — 0,

0 > [D]]
L,

(4.34)

0 —— [D0o)] — [D{1)]

N\

Here ¢ is the union of the identity foams and the cup foam. It is the identity foam away from
the crossing, and the cup foam when we have a resolution for an extra crossing. In general,
we can say that the map between [D] and [D()] is given by (-1)*D¢;, where d(I) is a
choice of a sign. The main issue with choosing appropriate sign assignments is to show that
the choice d(I) = 0 is consistent. That is, for the rest of the proof, we will deal with sign
assignments on Cube(D) and on Cube(D(p)) so that ¢ is the chain homotopy map. We know
that Cube(D(j0)) = Cube(D)x{0,¢,2e,...,ae}. The following lemma will show us how to extend
sign assignment from Cube(D) to Cube(D’") where Cube(D’) = Cube(D)x{0, ¢, 2¢, ..., ac} where
€ is the sign of the new crossing.

Lemma 4.35. Suppose we have a sign assignment 3 for the diagram D. Assume we have
the diagram D' with one more crossing compared to D, so we have Cube(D’) = Cube(D) x
{0,¢€,2¢,...,ae} where € is the sign of an additional crossing. There exists a unique sign assign-
ment 3’ for D' satisfying the following conditions.

e The new sign assignment should be compatible with the old one, so to say for I,I' €
Cube(D) where I" is the immediate successor of I, we have

3'((1,0),(I',0)) = 3(I,I")

e For I € Cube(D)
3'((1,5),(1,j+1)) =0
for all j, i.e., for positive crossing j =0,...,a—1 and for negative crossing j = —a,...,—1.
Furthermore, suppose 31,32 are two sign assignments on D and 31— 32 = 6(t), denote 3]

and 3!, extensions of 31 and 3. Now define the cellular 1-cochain ¢’ on SCube(D’") by
2'(1,2) =¢(I) for any (I,x) € Cube(D). Then 37 — 35 =d¢".

Proof. We will prove it only for a positive added crossing; the proof for the negative crossing is
similar. We need to address the case of elements of the cube with the same last coordinate. We
set

(4.36) S(LG), (I 4)) = 5(1, 1) + {1 J odd

0 j even.
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To show that the choice gives actually a sign assignement, we need to check the cochain condition.
We check each case separately:

e For I' 11,1}, I], € Cube(D’) where these all have 0 as their last coordinate, we have
S'(I' 1)+ 8'(I', Iy) + (I, Inp) + 8" (12, 1)
= J(I,Il) + d([,[g) + 3(11,112) + 3(12,112) =1.

e For I' I{, I}, I, € Cube(D") where these all have j with the condition j # 0 as their last
coordinate, either we have 1 or 0 in the definition We have

3'(I' 1) + (I Ig) + 9" (I, Ip) + 9" (13, 115)
=1+ 3(],[1) +1+ J(I,IQ) +1+ 3(11,112) +1+ 4(127112) =1 in Fs.
e For I,I; € Cube(D) where I; is the immediate successor of I, we have I' = (1,7),I] =
(I1,7),I5=(1,j+1),I{5 = (I1,j + 1). For these, we have
3'(I'17) + 3'(I' I3) + 9" (11, Ig) + 3" (I3, I15)
=3([,[1)+0/1+0+0+3([,I;)+1/0=1 in Fy.
Now, we prove the second part. Suppose we have sign assignments 4; and 49 for Cube(D).
For I and I" where I’ is the immediate successor of I, we have 31 (I,I")-3o(I,1") = ¢(I)-Z(I").

Now we consider I7, I, € Cube(D x {0,€, 2€, ..., ae}) such that I} is the immediate successor of
I7. We have three cases:

o I{=(I1,5) and I}, = (I2,7). For j is even, we have
31 (11, 13) = 3511, I3) = 21(I1, I2) = 92(I1, I2) = 2 (1) - 2 (12) = ' (1]) - ' (13).
e I{ =(I1,7) and I} = (I2,7). For j is odd, we have
31(11, 13) = 35(11, I3) = 1+ 31(11, [2) = 1 = 32(I1, I2) = ¢ (1) - £(L2) = ' (11) - £/ (13).
e In this case, we have I{ = (1,j) and I, = (I,j + 1), then we have
3111, I3) = 95(11,13) = 0= 2(I) - 2(I) = ¢'(I]) - ¢'(13).

With the sign assignment from Lemma we have the following corollary:

Corollary 4.37. For any I € Cube(D), the I-th component of the map ¢ : [ D, 3] - [[D{)e), 4]
is given by ¢r: Di — D gy without any sign correction.

Proof. Let I € Cube(D) and Iy be an immediate successor of I;. We chose I] = (I1,0) and
I; = (I3,0). The map d' o ¢y, is the composition of the foams ¢, and 6'(I7, I5) with the sign
(-1)4)+"(11.12) - On the other hand, we have another map which is a composition of the foams
6(I1, 1) and ¢y, with the sign (-1)?(2)+(l2) By Lemma 3(I,Iz) = 8'(11,I}) and we
took d(I) = 0 for any I € Cube(D), this implies ¢ is commutative with differential for any
I € Cube(D). O

In [1§], it is proved that the map ¢ is indeed a chain homotopy equivalence. In fact, there
exist explicit foams giving the inverse map. As the sign choice for D and for D(Je) is the same,
there is no extra sign correction needed for the inverse maps either. This proves the case of
Reidemeister 1 move for general labellings.

We will now sketch the proof of the Reidemeister 2a move which means the move
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-

FIGURE 10. The map & for the Reidemeister 2a move in the proof of Theo-
rem The dashed part is the seam singularity on the foam.

does not change homotopy type of [ D]]. Recall that we have 1 for all labels here. Furthermore
we assume that the left crossing of D’ is first new crossing and right crossing is the second one.
We have Cube(D’) = Cube(D) x {0,1} x {-1,0}. We have sign assignment s of D. We can
extend this sign assignment on D’ by firstly extending it on Cube(D) x {0,1} by and later
on Cube(D") = Cube(D) x {0,1} x {-1,0} by We have the following observation.

Lemma 4.38. The sign assignment 3" on Cube(D) x {1} x {-1} agrees with 3.

Proof. Let I, 1" € Cube(D) with I’ an immediate successor of I. By (4.36)), we have 41((Z,1), (I',1)) =

1+ 3(1,I"). Again by (4.36) , we obtain s'((I,1,-1),(I',1,-1)) = 1+ 31((Z,1),(I",1)) =
(1, 1), 0

We define the following cochain map

0 — > 0

In the figure, we have the local cochain complex of [D]] at the bottom and at the top we
have the local cochain complex of [[D']. Here I is the identity foam with the sign +1 and by
Lemma ® is a cochain map between the complex [D]] and the subcomplex of D" obtained
by a (—1,1)-resolution of the crossing created in the Reidemeister 2a move. In [18] it can be
seen that I @ ® is a chain map. [18] gives also the description of the inverse map and the proof
that I ® ®:[ D] — [D'] is a cochain homotopy equivalence.

The description of sign assignments for the Reidemeister 2b move, drawn in Figure is
the same. For the Reidemeister 3 move, we do not encounter problems with sign assignment,
because the move preserves the crossings. The sign assignment on D induces a natural sign
assignment for D’.

This implies that [D] ~ [D'].
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D D

FiGURE 11. Reidemeister 2b move.

O

By Theorem we know that we define the bracket independently of the diagram of a link.

Definition 4.39. (Sy-equivariant Khovanov-Rozansky homology) For any diagram D of a link
L, we define the Sy-equivariant Khovanov-Rozansky homology as the homology of the chain
complex F([D]).

5. SPECIALIZATION

Recall that we have Sy, the ring of symmetric polynomials in fixed N > 0 variables with
complex coefficients. We know that Sy is naturally isomorphic to the ring of polynomials in N
variables which are the elementary symmetric polynomials.

Theorem 5.1 (Quillen—Suslin, see [27,130]). Every finitely generated projective module over a
polynomial Ting is a free module.

5.1. Algebraic Specialization of Modules. Recall that Sym} is the category of graded
projective Sy-modules and Sym is the category of finitely generated graded Sy projective
modules. We manipulate this category and define new one.

By Theorem an object of Sym is a direct sum of finitely many copies of Sy{q®}, where
{¢®} indicates a degree shift. In other words, if we write (Sy)* for the k-graded part of Sy,
then (Sy{q®})* = (Sy)*, the (k - a)-graded part of Sy.

Assume we have ¥, an (unordered) N-tuple of points in C, not necessarily distinct. We denote
P(X) as the evaluation of P € Sy at . Since P is symmetric polynomial P(X) is well defined.
Then, ¥ specifies a left Sy-module structure on C, via Pz = P(X)z, for P € Sy and z € C. Since
C is left Sy module, for any module M € Symy, M ®g, C is C-module, that is, a vector space
over C. Furthermore, if we take M =Sy then Sy ®s, C=C.

Definition 5.2. (Specialization functor) We have a functor
ev™ : Symy — Vect(C)
given by ev*(M) - M ®s,, C and for a morphism

F:M—-N

ev(F): M ®s, C > N ®g,, C

ev (F)(m®c) = F(m)®c

We call this a specialization functor. If 3 consists of pairwise distinct complex numbers, then
the functor is called a generic specialization functor. On the other hand, if ¥ = (0,...,0), then
the functor is called a singular specialization functor.

We have Z,, action on evZ(M) and on ev>(F) .

Definition 5.3. For g € Z,, gev*(M) = gM ® C and gev>(F)(m ® C) = gF(m) ® c.
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5.2. Algebraic Specialization of Cochain Complexes. Let M be a graded, finitely gener-
ated free Sy module.

M = @Sn{¢""}
j=1

where ¢*™ denotes the grading shift with a,, as an integer. Between two modules Sy{q¢*"} and
Sn{q¢®*}, we have a morphism ¢. We say that ¢ is a degree k morphism, when it is a map
Sy — Sy with degree k +b—a. Therefore ¢ is a multiplication by a homogeneous polynomial of
degree (k+an, —anm)/2.

Note that we have degree 2 for variables X1, ..., X. Recall that the graded cochain complex is
the complex that has differentials with degree zero. Assume we have the graded cochain complex
C, with graded, free Sy modules. Now we form two cochain complexes.

Definition 5.4 (Generic and Singular Specialization of Complexes).
e For ¥ =(0,...,0), we have the singular specialization C?, which is obtained by applying
ev™ to C,.
e For X with the set of pairwise distinct complex numbers, we have a generic specialization
C9°" which is obtained by applying ev> to C,.

If we have C; = 69?;'1 Sn{q%i}, then C? =CI" = 69?;31 C{q"} because, as it was explained in
Subsection Sn ®sy C = C. The boundary maps dy and ¢/°" are equal to ev>(d), where d is
the boundary map in C; = @7, Sny{g*7}.

Assume we have a chain complex C; = EB;”:Z'l Sn{q%i}, the differential map d* : C; - Cjyy
is the sum of the maps d;x : Sn{q**} — Sn{¢****}. The map having the degree 0 is the
multiplication of a homogeneous polynomial of degree (a1, — a;)/2. The singular evaluation
of any homogeneous polynomial of degree at (a;11;—a;)/2 can be non-zero only if a;,1 ;—a;, =0
when we apply ev™ for ¥ = (0,...,0). We can deduce that with the ev™ functor, the differential
di) of the complex C} keeps the grading.

On the other hand, for the cochain complex (C%, ZE), the situation is different. Homogeneous

polynomials can be nonzero when evaluated at ¥ when a;.1; - a;; > 0. This means (C’%,diz) is
filtered.

Proposition 5.5. There exists a spectral sequence, whose first page is H*(C?) and whose ho-
mology is H*(CI™).
Proof. The differentials d’: C* - C**! can be decomposed as a sum d0+d'' +. .., where d* is given
by a matrix of homogeneous polynomials of degree s. After performing a generic specialization,
d"® becomes the map dgen, incregsing the grading by 2s. That is, dg,,, = d’g%n + dlglen +.... The
graded part of dg,,, is equal to d’goen.

Specialization of dis with all variables zero gives the zero map, unless s = 0. That is, d = déo.
The non-zero map df)o is equal to d’° because a degree-zero polynomial is necessarily constant.

ogen :

Therefore, the graded part of dg.,, is equal to the differential dp.
Summarizing, (Cpep,, d;en) is a filtered cochain complex, whose graded part is d)). A classical
argument shows the existence of the spectral sequence. [l

5.3. Geometric Specialization. For 3 € C", we have the evaluation for any foam F', de-
noted by (F)y, which is obtained by evaluating the polynomial (F') at 3. For any G ¢
Homgpoam?, (V, @), we have

DG F(V) = C, 06 (F)=(GoF)s.
Based on this construction, we define the XFoamy category.

Definition 5.6. For the category XFoamy, the objects are the same as the objects of SFoamy,.
In other words, objects are webs with a formally assigned quantum grading. The morphisms
are given by Homsroam  (V, W) = Homgpeams, (V. W)/I5(V), where I (V) = nker ®¢ 5.
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We have a functor Fy, from the category XFoamy to the category of vector spaces.

Definition 5.7. F5 (V) = Homyroamy (2,V) and for a map f : V - W, we have Fx(f) :
HomZFoamN (®7 V) - HomEFoamN (67 W)

Taking specific ¥ leads to special case. For ¥ = (0,...,0) (the singular case) we have the
OFoampy category. If the entries of ¥ are all non-zero and pairwise distinct, we speak of a
generic case. Then, we will use ', instead of X. If it is needed to distinguish between singular
and generic ¥ in terms of YFoamy category, we will call it 0Foamy and ¥'Foamy category
respectively.

5.4. Geometric versus Algebraic Specialization. We know that both YFoam y and SFoam y
are quotient categories of SFoamy;, but the kernel is larger in ¥Foamy compared to the kernel
in SFoam . This is because for SFoam};, in the kernel, we have foams F' such that (F) is zero,
but on the other hand, for ¥Foamy, we mod out by those F, where (F') which is zero when
evaluated on 3. We have the following diagram of functors.

SFoam y F, Sym

I, L

YFoampy ﬁ) Vectc
Here, Vectc is a category of graded vector spaces over C.
Proposition 5.8. The diagram above is commutative.
Proof. This is the statement of [28, Proposition 4.1]. O
Based on these definitions, we define Khovanov-Rozansky slx-homology and Lee sly-homology.

Definition 5.9. For ¥ = (0,...,0) we have a chain complex Fo([[D]]) for a link diagram D of
L. We define Khovanov-Rozansky sly-homology as the cohomology space H*(ev> oF([D])) =
H*(Fo([P])) = KRi}T(L) of L where k is the homological grading and r is the quantum grading.
Furthermore, by we know that algebraic and geometric specialization give the same result
so we can define Khovanov-Rozansky sy homology on the cochain complex (020,...,0)’ d%o,...,o))'

Definition 5.10. For 3 being a set of pairwise distinct N complex numbers, we have a chain
complex Fx([D]]) for a link diagram D of L. We define Lee sly-homology as the cohomology
space H*(ev¥ o F([D])) = H*(F=([D])) = Leek (L) of L where k is the homological grading.
Similarly, we can define Lee sly homology on the cochain (C%,d%) for generic 3.

Theorem 5.11 (Lee-Gornik spectral sequence). Let D be a link diagram. There is a spectral
sequence whose first page is KR?}T(L) abutting to Lee?\,(L).

Proof. Here take C, = F([D]]) over Sy. The cochain C? = Fo([D]]) and C¥" = Fo([D]) are
the specialization of C. The statement follows from Proposition O

Now assume we have a link L and its mirror L'. For Khovanov homology we have Kh/ (L) =
Kh™ 7/ (L"). For Khovanov-Rozansky homology we have a similar relation.

Proposition 5.12. For Khovanov-Rozansky sl homology we have an isomorphism KRf\}r(L) =
—k,-r 7
KR (L).

Proof. Assume we have a diagram D of link L with n crossings. Enumerate Cr(D) = {1,...,n}.
For each vertex I, we associate Fo(Dy). Now assume we have a mirror diagram D’. For
I € Cube(D), I = (i1,...,iy), denote by I’ the dual resolution (-iy,...,—i,) € Cube(D"). The

webs D7, and D; are isomorphic because D and D' are mirrors to each other. We have a map
i: Fo([D]) = Fo([D']). In other words, we have i : Fo([Dr]]) = Fo([ D} 1)-
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The differentials in the mirror complex are dualized. For example, if we have a differential from
Fo([Dr, 1) to Fo([Dr,]]) then for the mirror complex we have a differential from Fo([[D’é]])

to fo([[D,i]]); and if the first differential is given by matrix A, then the second differential in

the mirror complex is given by AT. Now fix the basis of Fy([D]]). We have just showed that
Fo([[D]) and Fo([[D']]) have the same basis. If we send the basis of Fo([D']]) to its dual basis,
that is, the basis of Homc (Fo([D]]),C) we get an isomorphism between Homg (Fo([D]),C)
and Fo([[D]])- In other words, we have

Fo([D'T) = Home(Fo([D]),C)

with underlying gradings reversed. By the universal coefficient theorem, since we work over the
field C, we obtain

H™" " (Home (Fo([D]),C)) = H*" (F([D]))
so we get
H*([D]) = 57 ([D'D)
(I

5.5. Computation of Lee-Gornik homology. Recall that the decoration of a foam F' is an
assignment of a symmetric polynomial to every face of a foam F according to specific rules.

Definition 5.13 (Algebra of decorations). Let F' be a foam and f be its face. The algebra of
decorations Ay is an algebra that is generated by all possible decorations on the face f modulo
all decorations that make F' a zero map in ¥'Foamy.

Theorem 5.14. Let f be the foam facet with label a. The algebra of decorations is the direct sum
of one-dimensional algebras indexed by the subsets of X with cardinality a. In each summand, we
have a generator 14, which is an idempotent in Ay. Furthermore, this algebra for faces should
satisfy the admissibility condition of coloring of foams in Definition[4.9. Namely, at every seam
where the adjacent facets f1, fo, and f3 meet—assuming the orientations of fi and fo align with
that of the seam—it is required that

A(f3) = A(f1) v A(f2).

Proof. |29, Lemma 4.2], [7, Lemma 2.28]
]

We define an algebra associated to a foam F. Assume we have a web W and a foam F' from
W to W. Then the algebra Ap is generated by all possible decorations on the foam F modulo
the decorations that evaluate to zero under Fx.

Theorem 5.15 (See [7],Lemma 3.10). The algebra Ap can be written as a direct sum of one-
dimensional summands. The summands are in bijection with colorings of all facets by a subset
of ¥ as in Theorem[5.17)

To compute link homologies more effectively, we pass to the Karoubi envelope of the ¥’ Foam y
category. The key reason for this is that the original chain complexes assigned to link diagrams
are generally not easy to study and with using |3, Proposition 3.3] we get chain complex in
Y'Foam category which homology is easy to calculate.

Definition 5.16 (Karoubi envelope). Assume we have a category C. The Karoubi envelope of C'
is the category obtained by formally splitting all idempotents of C'. More precisely, the category
Kar(C) has objects as pairs (O, e) where O is an object in C' and e: O — O is an idempotent.
A morphism between (O, ¢e) and (O’,¢") is a map f € Mor(O,O") such that foe=¢'o f.

Consider the category Y¥'Foamy and consider the identity foam F on W. As mentioned in
Theorem a decoration on F' induces a coloring on W.
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Definition 5.17. The category KarO(E’ Foam y) is the full subcategory of the Karoubi envelope
of X'Foamy whose objects are (W, Fyy) where W is a web and Fyy is an identity foam colored
by subsets of the set of entries of '.

Example 5.18 (See [26, Corollary 3.19]). We depict any web W in Kar’(X/Foamy) as a direct
sum of its decorations:

W = Z(W,D)
D

where D runs through all admissible decorations.

Theorem 5.19. Let D be a diagram of a link with chain complex [ D]y, in Kar’(X'Foamy). In
the category KarO(E' Foamy ), the complex is isomorphic to the complex with trivial differentials.
Locally, we write:

N ' N kBA\BA
(5:20) ﬂ/\]VZ A,Bcy /\B ,,bABcz't m

|Al=a B A=k A A
|B|=b

Proof. |7, Lemma 3.13], and |28, Lemma 5.9]
(I

As we know, when we apply Fsv to [D]]y,, we get the sl Lee homology. Therefore, we can
compute the Lee homology of labeled links with this formula.

Theorem 5.21. Let L be a link with labels equal to 1. The Lee homology of L is isomorphic to

CN*, Furthermore, for each map ® : {components of L} - {1,..., N}, we can assign a class

Ly € Leen(L) of homological degree
deg({y) = > k(¢7H(a), 07 (D))

a#b,a,be{l,....,n}
These classes generate Leen(L).

Proof. |10, Theorem 2] O

5.6. sly-homology for periodic links. In this section, we study group action on homology.
For that, we take G = Z,,. We have a group action on R?xR by rotating about the axis (0,0) xR.
Take m-periodic link L and D periodic link diagram of L.

5.6.1. Group actions on [D]]. We want to construct the Z,,-equivariant sly-homology of a
periodic link. For this, we need to prove:

e Existence of an Z,, action on [[D]]
e Equivariance of the evaluation functor F, implying the existence of a Z,,-action on

F([D)

e Independence of the action on the diagram.

Proposition 5.22. Assume we have a link diagram D. We have an action of Zy, on [D] by
rotating resolution diagrams.

Proof. For the proof we need two lemmas.
Lemma 5.23. Let W be a web and set
G(W) = Homsroam, (W, D).
(1) Consider the bilinear map
Qw:G(W)xF(W) — Sy, Qw(B,A)=(BoA),
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where F is the evaluation functor and (=) denotes the evaluation of closed foams, as
described in[4.16. The map Qw is nondegenerate; that is, the associated adjoint map
Qi F(W) — Homg, (GW), Sx), Qi (A)(B) = (B o 4)

is a monomorphism.
(2) Let Wy, Wy be webs and let F,F":Wy, — Wy be foams. Then F and F' are equal in
Homsroamy (W1, W2) if and only if, for every Ae F(W1) and B € G(W3), we have

(BoF(F)oA) = (BoF(F")o A).
Proof. A direct proof is given in [5, Lemma 2.20]. O

Lemma 5.24. Let oz I — Diff(R?) be a loop of diffeomorphisms that is constant on some
neighborhood of I and satisfies ag = a; =1id. For any web W, define

Ho:R*x I > R*xI, Ha(z,t) = (au(2),1),
and set
Ya(W)=Ho(W xI):W > W.
Then ¥4 (W') € Homsroamy (W, W) is an identity in the foam category.

Proof. To show that X, (W) acts as the identity map, it suffices to verify that for every A € F(W)
and every B € G(W), the equality

(BoXa(W)oA)=(BoA)
holds. Consider the closed foam
G=BoX,(W)oA
in R? x I, embedded so that

AcE (03], SaW)cEx[L3], Bemx[21].
Define the diffeomorphism
HR*xT —R*x T
by
ort>

(1), t<g

1 2
(a,3t71($),t), 3 Stﬁg,
where o’ is the reparametrization of o defined on I. The diffeomorphism H carries the foam

G,:BO(WXI)OA

onto G. The evaluation of closed foams, as described in |28 Definition 2.12] is carried out in a
combinatorial manner, with the resulting value determined by the Euler characteristics of the
faces and the combinatorial data of their colorings. In particular, foams that are related by a
diffeomorphism have identical evaluations; that is,

(G") =(G).

Wi

9

H(x,t) :{

Moreover,
(BoA) = (G') = (G),
By Lemma this implies that X, (V') acts as the identity morphism in Homgpoam y (W, W).
[l

We continue the proof of Proposition [5.22] The proof follows a similar approach to that
in [24]. Let us fix a generator g € Z,, and denote by
pg:D—D
a cobordism representing the rotation by g. We choose a specific p, obtained as the trace of a
continuous family of rotations in R3, where the rotation angle increases linearly from 0 to %”
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More precisely, define a path
o: I - Diff (R?)

such that oy is the rotation about the axis of D by the angle 27t

L2 Consider the map
m

Hy RExT>R3xT

given by
Ho(z,t) = (ou(),1),
and define
pg=Ho(D x1I).
Clearly,

pg:D —ai1(D)=D.

We have the action p, of Z,, on D, and this action induces on crossing points of link L. Thus
it reduces action on Cube(D) denoted (g,I) ~ gI. Furthermore, we can define an action for
Dy: We have gDy = Dy, where g acts on Dy by rotation. Let py;: Dy - Dy; denote the
foam realizing the rotation. We need a sign assignment to construct an action on [[D]]. The
sign assignment needs to satisfy some invariance property. We define the action of ¢ on sign
assignments via 4 — g4, where g3(gl,gI") = 3(I,1"). The sign assignment g4 does not need to be
equal to 4. But we must have g4 — 4 = 67 for some 0-cochain ¢. Define G, = [[py, 7] The map G,
depends on Z, but by Lemma we know that for two different 71 and <5, we have 71 =Z2+a
where a is constant. There are two options. Either we fix ¢ by requiring that Z(0,...,0) =0, or
we emphasize the dependence of Z by writing G, = [[pg, Z]]. Unless specified explicitly otherwise,
we adopt the first convention. Furthermore, to be more clear for each I in Cube(D), the I-th
component of the map G, is given by

gg,[ = (_1){(1) Pg,I-
We need to prove that our map G, is actually cochain map which means if d is a differential on
[D]), then dG, = G4d. Take resolutions I, 1’ € Cube(D) such that I’ is an immediate successor
of I. Let us have ¢ as the foam which gives the component of the differential from D; to Dy.
We have the following diagram:

_1)?(H)
DI ( ) Pg,I Dg[

(71)4(1’1,)% (-1)7UH l(_l)J(gI'gﬂ)g(ﬁ
_ .
Dy ——25 Dyp.

Here the vertical maps are differentials, and the horizontal maps are given by G, ; and G, jr.
The foams py 170 ¢ and g¢ o p, 1 are isotopic. By definition the coboundary of the 0-cochain 7 is
(62)(I,I") =Z(I")-Z(I) and by the property 67 = gs—3 we have Z(I')—Z(I) = gs(I,I')-3(1,I") =
3(gl,gI") — 3(1,1')., this shows the diagram commutes. This means G, is a chain map in
Kom(SFoamy). Lastly, we need to prove that G, generates an action of G. In other words, we
need to show that (G,)™ = Id. For m = 2, we have (G,)?(Dr) = (-1)/D+W@D . 10 p, 1. Now
for general m, we have

ves m71
g;n(DI) _ (_1)£‘(I)+ +7(g I)pg’gm—llopg,glopg,l

Define /(1) = Z(I) +--+ (g™ 'I). We have 6(2') = 6(¢) +3(Zg) +---0(Z(g"™ 1)) = gs— 3+ g%3 -
g3+ +g™s5 - g™ s = 0 by telescope sum. Since 6(¢') = 0, we deduce that ¢’ is a constant
function. For I = (0,...,0), we have #'(I) = Z(I) + -+ Z(g"™ 'I), but since (0,...,0) is fixed
in any action, we have Z'(I) = 0+ +0 = 0. Hence, we have G"(Dr) = pg gm-11 © pg,g1 © Pg,1-
Moreover, Lemma, shows that

Pg,gm-11° " © Pggl © Pg,1 =1dp,.
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Indeed, let B:1 — Diff(R3) be the path of rotations, where §; rotates R? around the axis of D
by an angle of 27t. Using the notation of Lemma we have

Pg.gm-11 "+ © Pg,g1 © pg,1 = BB(Dr).
Therefore, Lemma, implies that

Pg,gm—11° "0 PggI © Pg,I = idp,,
as desired. Consequently,
(Gg)™ =Gygm =idpy,,
which completes the proof. O

Remark 5.25. The proof that gg}I is the identity uses the fact that ¢(0,...,0) = 0. Another
choice t(0,...,0) = 1, if m is odd, leads to an action such that g;”l is minus the identity.

Note that if M is a Sy-module, and Z,, acts on M, then we can regard M as a Sy[Z,]-
module.

Proposition 5.26. Suppose D is a periodic diagram; then, the functor F extends to a Z,-
equivariant functor with values in the category of graded Sy|[Zmy,]-modules that are free as Sy
modules.

Proof. Assume we have a web V' and g € Z,. We want to show that gF[[V ] = F[[gV] for that
firstly we show gF[[V] = F[[¢gV]. The web gV is obtained by rotating the web V. For the
4

functor F, by the Definition [4.15| the degree is preserved by the group action for a foam F so
dn(F) =dn(gF). We have:

gF[V] = ® gSn{dn(F)} = ® Sn{dn(gF)}

FeHomSFoam;V (2,V) FeHomSFoam;V (2,V)

The second equality in the above equation is the definition of the G-action on the category of
Sy-modules. Setting F' = gF, F' € Homgpoam?, (2, 9V') we obtain

D Sn{dn(9F)} = S Sn{dn(4)} = FlLgV],

FEHomSFoam}ev(Q,V) AEHomSFoam}fV((z,gV)

so indeed gF[[V] = F[[gV]. We conclude that F is G-equivariant on objects. For functor F,
we need to show that gI(V) =I(gV') for a web V. For F’ and F, we have

Ggrr (9F) = (gF" 0 gF) = (F' o F) = ¢p/(F)
This means that gker¢p = ker ¢gp which implies gI(V') = I(gV). As we know, F(V) =
F(V)/I(V), since F is G-equivariant and gI(V) = I(gV) we deduce that F is G-equivariant on
objects. Next, we need to prove F is G-equivariant on foams. Namely, for foam F:V - W we
should have F(gF) = gF(F).
F(gF):
F:vV-Ww
gF gV — gW
F(gF)(=):=gFo(-)

F(gF) : Hom(a,gV)/1(gV)
On the other hand gF(F):

Hom(@, gW)/1(gW)

F: VW
F(F) : Hom(g, V)/1(V) 22O, g0 (@, W/ 1(W)

9F (F)(-)=Fo(-)

gF (F) : g(Hom(z,V)/I(V)) g(Hom(z, W)/1(W))
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F(gF)(=)=gFo(-)

9F (F) : Hom(@,9V)/1(gV) (Hom(@,gW)/1(gWV))
By the above equations we see that F(gF') = gF(F'). This proves that F is G-equivariant on

foams. Hence F is G-equivariant.
O

Definition 5.27. (see [5]) Suppose L is an m-periodic link, and D; and Dj are two m-periodic
diagrams representing L. We say that D; and Dy are Z,,-equivariant periodic diagrams if they
are related by an equivariant isotopy — that is, an isotopy that respects the Z,,-action at every
stage.

Theorem 5.28. Suppose we have two different Z.,-equivalent m—periodic link diagrams D and
D’ of an m—periodic link L, then there is a chain homotopy equivalence between [ D] and [D']]
in the category Kom(SFoamy) and induced quasi-isomorphism between F([D]) and F([D'])
in the category Kom(Sym y[Zn,]).

Proof. We know that D and D’ are connected by equivariant Reidemeister moves. We need to
use the theorem below to prove Theorem O

Theorem 5.29. Suppose D' is obtained from D by a single equivariant Reidemeister move.
Then this move induces a chain homotopy equivalence

¢:[D] - [D']
in a Kom(SFoam)
F(¢): 7([D) - F([D'D),

where F(¢) is a quasi-isomorphism in the category Kom(Sympy|[Z,]).

Proof. We will prove this theorem later in Section [0] O

5.7. Equivariant sly-homology. By Theorem we have the quasi-isomorphic chain com-
plex for F([D])) and F([[D']])). We define the cohomology of F([[D]]) as an Sy[Z,]-module
and denote this cohomology by KRgN [Zm](L)'

Proposition 5.30. The Sy[Z,]-module structure on KRgN[Zm](L) induces a CN[Zp,]-module

structure on KRN (L) and Leey(L). The Lee-Gornik spectral sequence ezists in the category of
finitely generated C[Z,]-modules.

Proof. Suppose D and D’ are m-periodic Z,,-equivalent link diagrams of L. We know that D
and D’ are related to each other by a sequence of equivariant Reidemeister moves. Hence, we
have a chain homotopy equivalence h : [ D]] = [D’] in the category of complexes Sy-modules.
By Theorem we have a quasi-isomorphism F(h) between F([[D]]) and F([[D'])), and this
quasi-isomorphism is Sy [Z, ]-equivariant.

Now choose ¥ a set of N complex numbers. We apply the ev™ evaluation functor. Since
ev” is an additive functor the map hy = ev>(F(h)) is a chain homotopy equivalence between
evZ(F([D])) and ev™(F([D'])). Specifically, hy, induces an isomorphism between cohomology
spaces of ev>(F([D])) and evZ(F([D'])).

By Definition for any g € Zmy, gev=(F(W)) = ev®(gF(W)) for W e SFoamy and
gevZ(F(F)) = ev*(gF(F)) for afoam F : W — W'. These imply gev=(F([D'])) = ev=(¢F([D'])).
This shows that hy, is Z,-equivariant. Hence [hy] is Z,, equivariant. We deduce that the Z,,
equivariant isomorphism of vector spaces is an isomorphism of C[Z,,] modules. In other words,
hy is a quasi-isomorphism in the category of chain complexes of C[Z,,] modules.

We have a Z,, action on F[D]], we have Z,,-action on ev>(F([D'])). For any g € Z,,
gev=(F([D'] = evZ(gF([D'])). This shows that we have a C[Z,,] structure on KR} (L) and
on Leey (L). O
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Definition 5.31. Assume we have an m-periodic link. The equivariant Khovanov-Rozansky
sly-homology EKRR}T is the group which inherits its C[Z,,] module structure from the action
of Zy, on KRy (L). Similarly, the equivariant Lee slx- homology ELee?V is the group Lee® with
its C[Zy,] module structure which comes from Z,, action on Leex (L).

We have a mirror property in link diagrams at this equivariant homologies also.

Proposition 5.32. Suppose L is the m-periodic link with its periodic link diagram D, and
suppose L' is the mirror image of L. Then for any k,r, there is a map of C[Z,]-modules

EKRY" (L) 2 EKR" (L)

Proof. We already set an isomorphism in Proposition [5.12] at the level of vector spaces over C.
Now we need to show this isomorphism is Z,-equivariant. We have a Z,, action on Cube(D)
and on Cube(D"). For g € Z,,, we have (gI)" = gI'. Furthermore, taking a mirror of resolution
commutes with the action. We have gDy = Dgr and gD}, = Dy We define i : Fo([D]) -
Fo([D'T), i(Fo(Dy)) = Fo(D%). Now we show that ¢ map commutes with the group action.
For g € Z,,

9i(Fo(Dr)) = Fo(Dyr) = FolgDp) = Fo(Dyry)

Fo(Digry) = Fo(Diyry) = i(Fo(Dgr)) = i(Fog(Dr)) = i(9Fo(Dr))
We have Fo([[D]]) as C[Z,,]- module. Then obviously Fo([[D']]) has the same basis. On this

basis, we can write

®: Fo([D'])) » Homgyz, 1(Fo([D]), C[Zim])

where ® sends the basis of Fo([D']) to the dual basis of Fo([[D]]). This is an isomorphism.
With the choice of basis, the differential in the chain complex Fo([D’]]) is the transpose of
the differential on Fo([D]]). Actually, Homc(z,,1(Fo([D]), C[Z,]) has the same differential
as Fo([D']) so ® is actually an isomorphism of chain complexes. ]

5.8. Decomposition of s[y-homology. We note that EKR’;\}T and ELeeﬂ“V are C[Z, ]-modules.
Since the group algebra C[Z,,] is semisimple, we have a decomposition:

—_

m—

where (ng denotes the &, -eigenspace of ClZy,], and &,, = exp(%) for j=0,1,...,m-1. We

express this decomposition using pairwise orthogonal idempotents, denoted as eg,e1,. .., €m-1,
where ejer, = djre;. Moreover, we have g.e; = §$nej, and
m—1
1= Z €j.
3=0

Similarly, we can decompose any C[Z,,] module M:
m—1
M= My
=0 "
where Mg :=e; M is the ¢! -eigenspace of M fori=0,1,...,m - 1.
Theorem 5.33. For any finitely generated C[Zy,]-module M, we have
Hom(C[Zm](M Mﬁbn) =0

&,

unless j = k.
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Proof. Assume we have a homomorphism & : M, [ i My, . Then, for any morphism A: M- M,
we have
My —= My

loo s

Mg, — Mg
AP = DA, ¢, AD = ¢, PA, 0pe,® = ¢, PA, 01, P = ¢, PA, 03P = PA, 0P = Poj, from here
we deduce o, = 0, which means k£ = j. We write the third equality above because we have
Aey, = opey, and for the fourth equation ej behaves like Id because the projection of M, k1o itself
is an identity. Similarly, for the fifth equation, e; is again an identity. For the smth equatlon
we know A behaves like multiplication on the eigenspace M€J , 50 we can write o; instead of
A. O
Similarly, we can apply this decomposition to Sy[Z,], as Sy is a ring of complex polynomials.

For a chosen generator g, we have:

SN[Zn] =@ Snei,» Snei, = €;SN[Zm],
where Sy is the ideal consisting of ¢ . Consequently, for any finitely generated Sy[Z,,]
module M, we have the decomposition:

m—1
M = @ Mﬁ%’
1=0

where Mg :=e;M. Moreover, for any finitely generated Sy[Z;,] module M, we have:
HomC[Zm](M Mfk ) =0

5] ’ m
unless j = k.
Now assume we have an m-periodic link diagram D. The Sy-equivariant Khovanov-Rozansky

homology of D admits a decomposition into the eigenspaces of the action Zy,:
1Y (F([D])) = %% Y (F([D])).
In particular, we have a decomposition at the level of the cochain complex:
(AP - D (%, (DD,

We can continue the decomposition by grouping i < m such that we will have another com-
position. Namely, for any d dividing m, we define

Mg= @ Mg = @ Mg
0<i<m 0<i<m
ged(i,m)=m/d ged(4,d)=1

We now define EKRy"(L,d) for each d dividing m as follows:
EKR (L, d) = Homgz,,) (C[Zn]" EKRN (L)) 2 H* (C[Zn]", EKRN(L)).
This definition leads to the following decomposition for EKRy(L):

(5.34) EKRY"(L) = @ EKRY (L, d).

dlm
We have this isomorphism because C[Z,,] is semisimple, and so Ext(C (M N) =0 fori>0 for
any C[Z,,]-modules M, N. We write a similar decomposition for Lee homology We know that
LeeX (L) depends only on the linking numbers of components of L. Since ELee%; (L) depends
on the action on Lee?V(L), we need to understand the action on components of L.
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Recall that Leek (L) was generated by classes l,, where ¢ : {components of L} —» {1,..., N}
is any coloring. Z,, acts on S% preserving L and acts on the components of L. Specifically, there
exists an action g € Z,, on the set of all colorings of components of L. We denote this action
(g9,%) - gib. We call an order of coloring the minimum number 4 such that git) = 1 for all g. We
denote the order of coloring as 6(1)). We can see I, as a vector, and we can see ELeek; (L, 0(1))
as an eigenspace which is generated by the coloring with the order (). As a result, we have
the decomposition:

ELeeh (L) = @ ELeek (L, d).
dlm

Lemma 5.35. Suppose the group Z,, acts trivially on the components of an unlabeled L. Then,
ELeeX (L, d) is trivial unless d =1.

Proof. Since d = 1, there are no other components in the decomposition. O

6. PROOF OF THEOREM [5.29]

Proof. In this proof, we have G = Z,,, which acts on R? by rotating the angle e*™/™. Since
Reidemeister moves 1, 2 change the number of crossings, we can assume that D’ has no fewer
crossings than D. We construct ¢ as a family of foams ¢y s for (I,J) c Cube(D) x Cube(D")
and signs (I, .J) so that the component of ¢ from ¢; to ¢; is (—1)d(I’J)¢[’J.
We need to deal with two problems: a geometric one and an algebraic one.
e Geometrical problem: The group G acts on Cube(D) and on Cube(D’). The action is
the permutation of crossings. We need to form foams ¢; ; such that ¢4; 47 is isotopic to
foam g¢; j between gD and gD .
e Algebraical problem: We need to show that the sign assignment on D induces a com-
patible sign assignment on D’. Specifically, we need to show that the following diagram

commutes.
(—1){(1)%,1
Dy ————— Dy
(6.1) (D7D ey, (D)X INDg 7 4
" LW 959
D, (7 ) Pg.g D/
J gJ?

where t is the cochain on SCube(D) defined by the property dt = 5 — gs. We give a proof in
three steps:

e We prove all details for a positive Reidemeister 1 move for G = Zo;

e We prove the algebra part of the Reidemeister 1 move for G = Zy,;

o We sketch the geometry part and prove the algebra part of a Reidemeister 2a move and

G = Zo;

The proofs of the Reidemeister 2a move for any m and the Reidemeister 2b move are analogous,
so we do not provide them again. For the case of the Reidemeister 3 move, we have a natural
bijection between crossings of D and D’, so we do not need to extend our sign assignment. Only
a geometric part is needed, but it is similar to the discussion of the geometric part for the first
move; we omit the details.

6.1. Positive Reidemeister 1 move, Z,, action for m = 2. We have a diagram D', which is
the diagram obtained by applying an equvariant Reidemeister move, that is, two Reidemeister
1 moves to diagram D, denoted by D’ = D(p}). Furthermore, we have D = D())) and the
diagram D with one Reidemeister move applied to one crossing is denoted by D() %) and for the
other crossing, it is denoted by D(p7)). Since the two Reidemeister one moves are symmetric,
Zsy takes D)) to D(pY)) and vice versa. We want to prove that [D']] ~ [D]).
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For the cochain complex [D({P7)] we have
[0 = {0~ [D0))] = [DFPN] 0},

and for [D{)%)] we have
[D0%)] = {0 > [DO%)] % [DOD)] - 0},

In terms of Cube notation, we have relations

(6.2) Cube(D({%)) = Cube(D()))) x {0,1}?

Cube(DOP)) = | Cube(DO))) x {(0,2)}

z=0,1

Cube(D(p))) = - ICube(Dm)) x{(x,0)}.

Here on the right-hand side of the equation, we label extra crossing points by {0,1} and
{0,2},{z,0}. We split the cochain complex [D{JoP)]. Namely, we have

[DP)e) ]

T

0 —— [D(e))] /[[D(Di))]] — 0
[DOP)]
We have the following maps corresponding to the non-equivariant Reidemeister moves:
¢:[DM)] - [DOP)] ¢*:[DOR)] ~ [DoP)]
¢*:[DM)] ~ [DG)) ] ¢ :[D))] — [Dop)]

With these maps, we have the following diagram in Kom(SFoam y)

Gy

()

O]

o, N

- [N

(D),

'

g

(6.3) (D)

Here the blue arrows mean g action on the cochain complex. For example, the blue arrow
in the middle means a 180-degree rotation of diagram D{){). E| In order to understand this
diagram better, we specify to a single resolution I of D.

IThe notation DWD) might suggest that there is a problem of the orientation, but this is not the case. The
notation specifies which resolution is taken for the diagram, but not its actual position in R2.
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Lemma 6.4. For any I € Cube(D), the diagram below is commutative in SFoamy .

D))~ nnns DO Vg1

J# |#

Pg,(I,
(6.5) DOP) 1.0y X2 DY) g1.0)

2 4
l‘f’u,m l¢<1,o>

Pg.(L0,
D) (1.0.0) A5 DO (41.0.0)-

In this diagram, the map pg s is the foam from the diagram with resolution in I to the diagram
with resolution in gI. We have a similar definition for py 70y and py (1,0,0)-

Proof. For the above square, we consider py (1,0 © ¢}. This foam arises from applying gb} foam
and we rotate the upper side of it. On the other hand, for gb? o pg,1 we have the foam where
we take foam qﬁ?j and rotate its lower part. These foams are isotopic rel boundary, so they
are equivalent in the SFoampy category. The second square is similar, which means that the
diagram commutes. This proves the geometric part of our proof. (I

For the algebraic part for a positive Reidemeister 1 move for Zg, we fix the sign assignment
4 on D and take g € Zs as a generator from Zy. By Lemma we have g4 = 3 + 67 where 7 is
the 0-cochain on SCube(D) with the property ¢(0,...,0) = 0. We can extend 4 to the diagram
D(pp) in two ways. The first one is extending 4 on the diagram D(){) and then to D{jop).
The second one is extending 4 on the diagram D(J0)) and then to D{jo). We have a relation
between these sign assignments. We have 5 on D and 41 on D{P)). Write 42 = g31, Jo is the
sign assignment on D(){). We extend 31 on D({pP) by Lemma we denote the new sign
assignment 3. Similarly, we can extend 42 on D{J0), and denote this new sign assignment 4.
In this way, we have constructed two sign assignments on D). For these two assignments,
there exists ' such that we have s3(I,I")—34(I,1") = ¢'(I)-¢'(I") for any I, I’ € Cube(D({pP))
where I’ is an immediate successor of 1.
Lemma 6.6. (a) We have g33 = 34.
(b) If ¢ is a O-cochain on SCube(D) such that 3 — g5 = 0%, then the 0-cochain Z' on
SCube(D{ppP)) defined by

2'((1,2,y)) =2y + (1) € Fy,
satisfies 33 — 34 = 07"

Proof. Let I7, I, € Cube(D(o0)), where I} is an immediate successor of I{. The action of g
switches the last two crossings. We write I}, = (I, z,yx) for k = 1,2 with I € Cube(D),

Ti, Yk € {051}
For the action g, we have gI,. = (gIk, yx, xx). By Lemma we extend 43 and have
0 if yo=1y1 +1
33((I1,1,91), (12,72, 92)) = .
( ( 31((J1,21), (I2,22)) +y1 if y1 =y
Similarly,
0 if $2=I1+1
d4 (Ilaxhyl ) -[27:1:27?/2) = .
( ) ) 32((I1,y1), (12, 92)) + 71 if 21 = 2.

More precisely,

0 ya=y1+1
(6.7) a3((L1,z1,y1), (12, 22,42)) =1 y1 =y2 and xo =1 + 1
3(I1,I2) +x1+y1 y1=y2 and x1 = 2.
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and
0 To=x1+1

(6.8) 34((I, x1,91), (12, 22,y2)) = {21 1 =29 and yo =y + 1
g3(I1, I2) +x1+y1 y1=y2 and 21 = 79

By equations and we have gd3 = 44. O

For the second part of the proof, we observe
33((I1,21,91), (12,22, 92)) = 34((L1, 21, 91), (L2, 22, y2)) =
(6.9) T xr1 =20 and yg =y + 1

=4y y1 =y2 and xg =1 + 1

3(I, I2) —g3(11,I2) @1 =22, Y1 =Y2.

In , we have exhausted all possibilities for x1,z2,y1,y2. Namely, we cannot have the case
xo =21+ 1 and y2 = y; + 1. In addition to this equation with the definition ¢'(I,x,y) = Z(I) + xy,
we have:

(6.10) 6t =t (I1,z1,71) - ¢’ (12, 2, y2) = w191 + 22y2 + Z(11) — £ (12).

We want to show 43 — 44 = z1y1 + xoy2 + £ (1) — Z(I3). We have two cases

H

e First case I = Iy: Note that I is an immediate successor of I]. Since we have I
I, we cannot have x; = x9 and y; = y2 so we can have (z1,31) = (0,0), (22,92)
(O¢1)7 ($1,y1) = (070)7(1:273/2) = (170)7 (wlayl) = (071)7(x27y2) = (171) or ($17y1)
(1,0), (z2,y2) = (1,1). For the cases where we have (x2,y2) = (1,1), 43— 344 = 1 and
x1y1 + x2y2 + Z(I1) — £(I2) = 1. For the cases where we have (x1,y1) = (0,0), 43 -34=0
and T1Y1 + x2yY2 + {(Il) - ?f([g) =0.
e Second case I # I: In this case, we have 21 = z9 and y; = y2 because [}, is an immediate
successor of I]. We have 935—-394 =3—g3 =07 =¢(11) -7 (l2) = x1y1 +x2y2 + £ (I1) — ¢ (I2).
Continuing the proof of the algebraic part, we claim that the following diagram is commutative
in Kom(SFoamy).

[D0), 5]~~~y D@9y, ]

I J»
(6.11) [DOP), 31] (D)), 32]]
|+ |

[DE), 351~ [DEoM), 241

Note that py,Z are the same as defined in Lemma . For any I € Cr(D), we show in Lemma
that the diagram is commutative in SFoam. We can generalize it in Kom(SFoam) without a
sign. We just need to show the sign that makes no problem for commutativity. By the definition
of G, 1, the sign we get from D; starting with ¢? o ¢! and then through [[p,, '] is (-1)7"((10.0)),
Similarly, when we start with [[pg,¢] and then by ¢* o 3 gives the sign of (—1){(1). By the
definition of ¢/, (-1)% ((1.0.0) = (_1)?(D, O

Lemma 6.12. The compositions ¢* o $3 and ¢* o ¢! are equal as maps in Kom(SFoamy).

Proof. For any I € Cr(D), the map qb‘} o ¢? is given by the foams that start with a Reidemeister
move for the first crossing and then for the second crossing, i.e.,)) = %) —%%. Similarly, the
other foam qb% o d)} is given by the foams that start with a Reidemeister move for the second
crossing and then for the first crossing, i.e.,)) =P —P%. All the foams qﬁ}, ... ,d)‘} are product
foams of the identity except for the relevant crossings. O
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Denote ¢ as the composition d)‘} o (;S? = gi)% o qb}. It is induced by a composition of individ-
ual, non-equivariant Reidemeister moves. Specifically, ¢ is a (nonequivariant) chain homotopy
equivalence. The horizontal maps in are group actions on [[D] and [D{P)]. The com-
mutativity of [6.11] implies that ¢ commutes with the group action. This proves the first part of
[5.29] for the specific case of Reidemeister move 1 and Zs.

For the proof of the second part, we apply the evaluation functor F from the category
Kom(SFoamy) to the category Kom(Symy ). The map F(¢): F([D]) - F([D']) is a chain
homotopy equivalence. More specifically, it is a quasi-isomorphism in Kom(Symy ). By Propo-
sition Zp, acts on F([D]) and on F([[D']). By and F(¢) commutes with the
Ly, action. A Zp,-equivariant quasi-isomorphism is a quasi-isomorphism in Kom(Sym y[Z,]).
We have now completed the proof of Step 1.

6.2. Positive Reidemeister one move, Z,, action for general m. This step is similar to
the previous one. Let D be a periodic link diagram, and D’ be the link diagram obtained by
applying the Reidemesiter one move. We again identify Cube(D’) = Cube(D) x {0,1}". For
any [ € Cr(D) and a generator g € Z,,, with x1,z9,...,2,, € {0,1}, we have

g(I,xl,.’EQ,...,$m) = (91737273737-”7~Tm7331)
We define two maps d)‘;‘ and d)IB, qﬁ‘;‘ = @7 o qﬁ}”‘l 0.0 gzﬁ} where gﬁif is the foam that realizes the
i-th Reidemeister move as in Figure @ For any I € Cr(D), we have the following diagram.

Py,
DO .. - DO ..
(6.13) Lﬁ lﬁ
Pg,(1,0,...,0)
D{p ... RP)ro,..0) : D{p ... P)g10,..0);

This diagram is a generalization of the diagram . The geometric part of this step is
proved in the same way as in Step 1. We omit the details. We pass to the algebraic part
directly. Take 4 sign assignment for the diagram D, and let Z be such that 4 — g4 = 6Z. We get
the sign assignment 4’ on Cube(D’) by Lemma

Lemma 6.14. Assume I{,I; € Cube(D") and I; is an immediate successor of I]. Write I] =
(I, z1,- - yzm), I = (11,91, - - -, Ym) where I1, Iy € Cube(D). If xy # yy for some k, then
(I, 1)) = Tpypr + - + 2.
If xp, = yp. for all k, then
JI(I{,Ié) =T+ F+ Ty + d(Il,IQ).

Proof. Define the sign assignment 4; on diagram D;, which is the sign assignment obtained after
the first [ Reidemeister moves. Assume xj, # y for some k. By we have:

52(([1,.’1)1,. . -,-’Ifk),(I%yl,- . 7?Jk)) =0.

We continue to apply inductively for j =k +1,...,m, and by either (if ; = 0) or (4.36) (if
xj=1), we get

dk(([l,xl, . ,l’k), (Ig,yl, . ,yk)) =Lkl + + Zj.
This leads to the result 4'(I{,I}) = g1 + -+ + Ty Similarly, if we take 1 = y1,...,Zm = Ym,
then we can again apply induction. If x; = y; = 0 by we have the result; if x; = y; = 1, then
by , we have the result. O

We have a generalization of Lemma

Lemma 6.15. Assume 3—g3 = 0Z. Define the 0-cochain on SCube(D") defined by ¢'(I,x1,...,xy) =
£(I) +x1(xg + -+ + x4 ). Then for any I, 15 € Cube(D") where I} is an immediate successor of
I, we have

(6.16) o'(I1,I3) - 3" (g11, 913) = ' (17) - 2(13).
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Proof. We have two cases:
e Suppose I1 = I» and x; = y; except for k, 2 =0, and y, = 1. By Lemma [6.14] we have
(I, 1)) = Tpyr + - + 2.
In addition to that, we have
3'(gly,gl5) = Tppr + - + Ty
Thus,
a'(f@fé)—a’(gf{,gf;)={§;+m+xm o
On the other hand, for k > 1, we have
(1) - 2'(I5) = 2(I]) + 21 (20 + - + 20) — (Z(I}) + w1 (22 + - + ) + 1)) = 27
For k =1, we have
/(1) -2'(I5) =2(I]) + x1(x2 + -+ + ) — (Z(I5) + (w1 + 1) (w2 + - + 1)) = T+ + Ty
e Suppose I1 # Io, then x; =y for all k. Thus, we have
3'(I1, 1) = 9" (gI1, 913) = 3(I1, I2) = 3(g 11, g12).
3(I1,I2) = 3(gl, gl2) = Z(11) - 2 (12)
/(1) =z (o + -+ ) — (2 (15) =21 (22 + - + 100 ) = 2" (I1) = ' (I3).
The remaining part of the step is similar to part m = 2. In short, we repeat the proof of Lemma
to show that gbIA and QS? induce the same map

o:[D],... N1 5 [Dp,....0)]-
The corresponding diagram of is

(D0,...)), 3] 2 s 1Dy, 1),4]1

o o
[lpg:?'1
[Dp,....0,8")] ~~rrrnns [DP, ..., 0),95'].
The same argument as in the previous step implies that this diagram is commutative. Specif-
ically, F(¢) induces a Z,,-equivariant chain homotopy equivalence, which means F(¢) is a

quasi-isomorphism in the category Kom(Symy[Z,]). O

6.3. Step 3: Reidemeister 2a move, Z,, action for m = 2. Let D be a periodic link diagram,
and D’ be the link diagram obtained by applying the equivariant Reidemesiter 2a move. We
have the identification

Cube(D") = Cube(D) x {0,1} x {-1,0} x {0,1} x {-1,0}.
For I € Cr(D), denote
Iy =(1,0,0,0,0), Iy=(1,1,-1,0,0), I5=([,0,0,1,-1), Iy=(I,1,-1,1,-1).

There are four different foams for I7, I, I5, Ij. These foams are part of the I-th component of
the map ¢2 [[D:D id [[D’]], where we define ¢[ = ¢]71 + ¢[72 + (ﬁ[,g, + ¢[74.
These four foams are as follows:
e ¢r1 is the identity foam;
® ¢r 2 is the foam from Figure[l0at the first place where the Reidemeister move is applied,
followed by the identity foam:;
e ¢r 3 is the identity foam followed by the foam from Figure @ for the second Reidemeister
move;
e @14 is the foam from Figure [10] for the first Reidemeister 2a move, followed by the foam
from Figure [10] for the second move.
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We have g € Zs, where the action involves switching pairs of points. For example, gl = I3
because g sends (1,-1) to (0,0) and (0,0) to (1,-1). Therefore, we have

(6.17) 9o11 = Gg1,1, 91,2 = Og1.3, 9O1,3 = Pg1,2, 9P1,4 = PgI 4-

This implies g¢; = ¢gr. Thus, g commutes with ®:[D]] - [D’']] up to sign. This proves the
geometric part of step 3.

Let s be a sign assignment on diagram D. We extend 4 to a sign assignment 4’ on D’ by
adding crossings and applying Lemma We add z7, then x5 and z3,z4. The analogy of
Lemma [6.6] is as follows:

Lemma 6.18. Assume 3 — g3 = 0Z. Define the 0-cochain on SCube(D’) as ¢'(I,x1,...,14) =
Z(I) + (x1 +22) (w3 +x4). Then, 3" —gs' =0¢'.

Proof. Take I1, I}, € Cube(D") such that I} is an immediate successor of I]. Write I = (I, z1s, T2s, X35, T4s)-
By Lemma we have

Tip1 1+ + T4 T E X
! / I\ _ j+1,1 41 ]1 ]2
3'(I, 1) —{

J(Il,fg) Tj1 = Tj2 for all j
We know that if I = (I,21,...,24) € Cube(D’), then gI' = (gI,x3, 14,21, 22). Thus, we have

T31 +T41 T11 # 12 O T2] * T22
JI(I{JZ) - 5,(91.{»9[5) =321+ X021 T31 F T32 OF T41 F T42
[(Il) - 5(12) Tj1 = T2 for all J.

The proof is the same as in Lemma, In order to finish the proof of at step 3, consider
the diagram:

D, 5] 220y (D, 4]

Lo Lo
2
[[D7 j’]] -M} [[D7g,jl]]
We have already showed that the diagram above is commutative up to sign, and now by
Lemmal6.18] we conclude that this diagram is commutative. This shows that & is Z,,-equivariant.
By Theorem we know that ® is a chain homotopy equivalence. Similarly to Steps 1 and 2,
we conclude that F(®) is a quasi-isomorphism in the Kom(Symy[Z,]) category. O

7. THE SKEIN SPECTRAL SEQUENCE

7.1. Review of the Ind and Res Functors. We review the Ind and Res functors before
constructing the spectral sequence. For a finite group G, we denote BG as the category with
a single object * and Hompg(*,*) = G. If B is an additive category, we denote by B[G] =
Fun(BG, B) the category of G-objects in B. For a subgroup H of G, we have a canonical
inclusion of categories BH ¢ BG, leading to the restriction functor Res$:B[G] - B[H]. We
also have the functor Ind%: B[H] — B[G], the biadjoint functor of Res%. For C' ¢ B[H] and
D e B[G], we have

(7.1) Homp)(Indf;(C), D) = Homg4)(C, Resf (D)),
Hompg((C, nd% (D)) = HomB[H](Resg(C), D).

Assuming G/H = {g1H,g2H, ..., gpH}, then Ind%(C) can be written as the direct sum

k
(7.2) Indf(C) = DaiC,
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FIGURE 12. The k-smoothing of a positive crossing, for 0 < k£ < b < a. In order
to obtain the k-smoothing of a negative crossing, reflect the above picture about
the vertical line and switch labels.

For g € G, we can write g = g;h. If we write g = g;h’ we have g;g; € H but g; and g; can not be
in the same coset unless g; = g;. Thus for g € G there is a unique way to write g = g;h. We have

9-(=):g;C > giC, x> (h'g;'hg;) -z,
where gy, = g; - gj - b', with A’ € H and g, representing the coset of g; - g;.

7.2. Construction of the Spectral Sequence. The initial construction will be done for the
general link diagram, and later, we will focus on periodic link diagrams. Let D be a labeled link
diagram, where each link component is labeled by c € {1,2,... N}. Recall that Cr(D) is the set
of crossings.

We define the extended cube of resolutions Cube® (D). For a crossing i € Cr(D), we have
C; = {0,...,¢;} where ¢; = min(a;,b;), a; and b; are two labels at the crossing point 4, if the
crossing is positive, and C; = {-¢;,...0} if the crossing is negative. We extend C; by the
definition C; = C; U {*}. Cube* (D) is the product of the C;.

For [ ¢ Cube® (D), we define the resolution diagram D;. 1If the i-th crossing in I is equal
to %, we do not resolve the crossing. Otherwise, we resolve the crossing as in the standard
case. The resolutions are depicted in Figure see also the skein relation in Figure [ For
I € Cube™, we define supp I to be the set of crossings i € Cr(D) where (i) # *. If I, J € Cube*
and supp In supp J = @, we define I U J to be the resolution such that

I(i) iesupp T
(Tv ) (i)=4{J() iesupp J
* otherwise.

For I with support X, we define [[D+]] as a cochain complex generated by those D; for which I

and I coincide on X. Furthermore, the differential is given by foams of Figure |§| with the sign
assignment 4; inherited from the sign assignment s on D. We also define the degree for I as

degT = > I().
iesuppT

For a subset X c Cr(D), we let
A(X) ={TeCube"(D):supp T = X}, Ap(X) = {T € A(X):degT = k}

Let X c Cr(D) be a subset of positive crossings (for negative crossings, the discussion will be
similar). Set Y = Cr(D) - X. We let Cube(X), Cube(Y) be the cubes of resolution for X
and Y. In other words, we have Cube(X) = [T;cx Ci, Cube(Y) = [1;ey Ci- For Cube(D) we
have Cube(D) = Cube(X) x Cube(Y'). For I € Cube(D), we denote Ix, Iy its projections on
Cube(X) and on Cube(Y") respectively.

We introduce one more piece of notation. Assume we have I € Cube(D). Let I € Cube® (D)
be obtained by taking Iy and extending it by putting * for all crossings in Y. This means that
crossings in X are already resolved so D; has a set of crossings Y. This means (D;)r, = Dy.
We can write [ D] as the following bicomplex.
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(7.3) 0> @ [D{g VDN 2% @y [DA{g PNy 20,
TeAo(X) TeA:(X)

Here ¢ is the grading shift. The differentials d; are defined as follows. Suppose I, J € Cube(D)
are such that J is an immediate successor of I. We have two cases

e Assume Iy = Jx, the part of the differential on [D]] from I to J contributes to the
differential on [D;]. It goes from (D})r, to (D}), with the sign (-1)*) | We call
this differential part the internal differential or horizontal differential.

o Assume Iy = Jy, we set s = deg the part of the differential on [D]] that contributes
to the differential ds going from [D7] to [D7]l. In particular, it goes from (Dj)r,
to (D), with sign 3(7,J). We call this differential part the external differential or
vertical differential.

The sum of these two differentials is equal to the differential on [[D]. Therefore, we have the
following result.

Lemma 7.4. The total complex (7.3) is equal to [D]).

In general, a bicomplex leads to a spectral sequence. To obtain a bicomplex that gives rise to
a spectral sequence, we apply functor F' to (7.3)) so that it operates in an Abelian category. To
be more precise, we define the triply graded bicomplex

MD.X)H = @ FIDAN A0y,

Here ¢ is the homology grading and ¢ is the quantum grading. If X is a subset of negative
crossings, we define

M(D, X)) = @ F([D){g Py

In the bicomplex M (D, X)*%" we have an internal (horizontal) differential and the external
(vertical) differential going from M (D, X)**" to M (D, X)**16h,

Lemma 7.5. The cohomology of the total complex Tot™" M (D, X) = @®pro—r M (D, X )P4 is the
Sy -valued Khovanov-Rozansky homology of the link.

Proof. The statement is tautological. By construction Tot™" is the chain complex whose module

structure is the same as the Sy-valued sl chain complex associated with D. The total differen-
tial (the sum of the horizontal differential and the vertical differential) is the sly-differential. [

Assume that D is a Z,, periodic link diagram. Our primary focus will be on the case when
X is an orbit of crossings. In this case, Z,, acts on Cr(D) and it preserves X. For any k, this
action can be induced on Aj(X). For I € A,(X), define the isotropy group of I Iso(T) = {g €
Zm:Tog=T}. For any djm define

(7.6) AUX) = {T € Ap(X):Ts0(T) = Zg}

and denote by EZ(X) the quotient of A%(X) by the action of Z,,. Notice that for I e AY(X), the
diagram Dz is d-periodic. Furthermore, for any g € G with the group action on [[D]], we have a
map G, #[Dr 37l = [D,7 3,71, where 57 and 3 7 denote restrictions of the sign assignment
on Cube(D) to Cube(D7) and Cube(D7), respectively.

Lemma [7.4] can be generalized for an equivariant setting. Assume X is a set of crossings in
which either all crossings in X are positive or all crossings in X are negative. Additionally,
suppose X is Z,, invariant. Note that D; is d—periodic diagram for any Ie AZ(X ). We have
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the natural Zg-action on [D7]] and F([[D7]]) as defined in Proposition We define the
equivariant version of the bicomplex M (D, X)*" by
(7.7)

Dk EBTeZZ(X) Ind%;” (.7-"( [ D) {gXPO-)+ky Cs(m,d,f)) X is positive,

Dk EBTeZZ(X) Ind%;” (.7:( [[DT]]){q|X|b(N_b)_k} ® Cs(m,d,f)) X is negative.

EM(D, X)*be =

where s(m,d,T) € Fo:
(7.8) S(m7d7T) Zf(f())+{(g]0)+...+{(gm/d—llo)

Here, we take the tensor product over the ring C[Zg] and we think Sym y[Zg]-module F([Dz]])
as a right C[Z4]-module with the standard action of C on Symp. On the one-dimensional
complex vector space C;, Zg acts either trivially if j = 0 or it acts as the sign action, i.e., the

generator of Z, acts on C by multiplication by -1, if j = 1. Also, here Iy = Tv Jy for Jy =
(0,...,0) € Cube(D7) and 7 a 0-cochain on SCube(D) satisfying g4 — 3 = 97, Z((0,...,0)) =0.

Lemma 7.9. We have an isomorphism EM(D, X) 2 M (D, X) as complexes of Sn-modules.

Proof. Since we need to show they are isomorphic as S y-modules, we do not care about jhe action
of C,(,, 47y 1t is enough to show that both sides have the same J( [D+7]). For any I € Ap(X),

this 7 must be in one of A¢(X) for d|k. Furthermore, we can get this T from J € ZZ(X ) such
that gJ = T where g € Zy,/Zq. For any T for T € Ay(X), we have F(I[D7A = #([D,71) for

J e AL (X) and for g € Zum/Za. 0

Lemma 7.10. We have an isomorphism between the total complex of EM(D,X) = M (D, X)
as complexes of SN|[Zm,]-modules.

Proof. By Lemma(7.9] we need to show that the isomorphism between EM(D, X) and F([D])
as Sy-modules is Zy,-equivariant. Recall that we have g as a generator of Z,, acting on the
plane by rotation by the angle %’r Fix a sign assignment s on D, and let ¢ be the 0-cochain
satisfying 8¢ = gs — 5, £((0,...,0)) = 0. For a divisor d of m set h = ¢"™/% to be a generator
of Zg € Zy,. Take I € ZZ(X ) and consider the partial resolution D7. Define 47 to be the sign
assignment on Cube(Dyz), defined as 44(.J, J') = 3(TvJ,TvJ"). Since Dz is a d-periodic diagram,
by Proposition we can define an action of Zy on [D7]. Specifically, we let Z+ be the 0-
cochain on Cube(D7) such that hs;—s7= 77 and Z40,...,0) = 0. Corresponding to the action
of h (i.e. rotation by the angle 27”) we have the map Hy: [D7] - [D7]-

There are two maps that are induced by the action of h on [D7]]. The external one is (gg)m/ d
where G, is the action constructed in Proposition for [D]]. The other map is Hp. Since
these two maps are obtained from the same sets of foams, these two maps are actually equal up
to a sign choice. To complete the proof of Lemma we need to compare Z#(.J) and (Tv])
for J € Cube(D7). We know for any two 0-cochains 71,73 such that hs;—37= 071 = 0Z2. We can

say J > 73(J) and J = £ (Tv J) are either equal or differ by an overall sign. To understand this
sign issue, let Jo = (0,...,0) € Cube(D7), set Iy = JovI. Suppose that pg: D1, = Dgyi, is the foam
realizing the rotation of Dy, by ¢ € Z, i.e., the Ip-th component of G, is equal to (—1)5(10);)9.
Let pp = Pgmid-1, © =" © Pgly © Pl and {h(IO) = f(Io) + f(gfo) + f(gm/d_lf()), then the Iy-th
component of Hy, is equal to (—1){h(10)ph. By the proof of Proposition 7#0,...,0) =0. In
other words, the Jp-th component of Hy, is equal to pp. Therefore s(m,d, 1) = ¢,. We conclude

by . O

Proposition 7.11 (Skein spectral sequence). Let D be an m = pt-periodic labeled link diagram,
with p an odd prime and £ > 1. Let X c Cr(D) be an orbit of crossings between an a-labeled
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overstrand and a b-labeled understrand, where a > b. If 0 < u < € and X is a set of positive
crossings, we obtain, for any 1< s <|X|b, a spectral sequence with

(112)  EPUDXPT =@ @ EKRY(Dra(u, )P XD,
p°lk TeA, (D, X)

with 0 < k < p'b and

(-
f@(u,s):{l’ u> s, )\(u,s)z{qbe(_i ), u>s,
b,

p°",  otherwise, u< 8,

converging to EKR;\’;(D,pe_“). On the other hand, if X is the set of negative crossings, we
obtain a spectral sequence with

Efvl:‘(D,X,pZ—U) — @ @ EKR;\’;(DT, K(u, S))€B)\(U,S)74/_l<:q‘)(|b(1\7—b)—k‘7
Pk TeA o, (D, X)

where —p’b < k < 0.

Proof. We prove this proposition only in the positive case. Note that the total complex of
EM(D, X) is the complex of F([D])) by Lemma[7.10] We will denote the singular specialization
of EM(D, X) by EMy(D,X). We fix 0 < u < ¢ and consider the bicomplex derived from
EM(D, X):

kJ:* e_ Py k»l7*
EM**(D, X, p' ™) = Homeyz ) (ClZye] -, MG (D, X)),
On considering separately the internal (vertical) and the external (horizontal) differentials in

EM(D, X, p*~*), we obtain a spectral sequence of C[Z,, ]-modules converging to EKR (D, pi),
whose Fi-page is given by

By (D, X ) = HM (EMG ™ (D, X ™), duent)
= Homgpg, , (C[Zye] e, H> (EMS’Z’*(Q X), dvert)).

i.e., we take the vertical homology of EM(D, X,p"*). The aim of the proof is to show that this
page is isomorphic to (7.12)). Consider the decomposition of the group algebra C[Z,¢]. Recall
from Section [5.8 that

C[Zpl]pl—u = @ Cé;z .

o<i<p?
ged(i,pt)=p*

Observe that for any 0 < s < ¢ we have

sz Cla §< u,
ReSZPS (Cgig_u) - C(ﬁig,u )pe—s - ng , S>u.
pS*’U.
Therefore,
p(p™)

Z ¢ C s<u

7.13 Res,” (C[Ze]e-u) =1 ! e '

(713) 2 (ClZylyes) { B, oou

By the definition of EMy(D, X), we obtain
Ey'(D, X, p™") = Homgg, ,)(C[Zye Ly, Y (EMG™ (D, X), dvert))

Z
=@ @ Homeps,) (ClZy v, Indy?! ERR(Dp)tig XIHV0H)
pelk TeA, (D, X) v v
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Consider the right-hand side of the above equation:
Zpe k —|X|b(N=b)+k
Homegz 1 ((C[Zpe]pz-u,lndzzs EKR(D)tFq XN -0+ )
(7.1) Z - -
=" Homggz, ) (Reszzi (C[Z,e]pew ), EKR(Dp)tFq XY b>+k)
l—u
) Hom(C[Zpg]((C(f(p ),EKR(DT)tkq‘|X|b(N‘b)+’“), s <u,
- l—s
Homc[zpz](C[Zps]zs,u,EKR(DT)tkq—|X|b(N—b)+k) s>
EKR*’*(DT, 1)€B¢(p27“)tkq—|X\b(N—b)+k;’ s<u
= EKR*,*(DT’ps—u)@pe_stkq—|X|b(N—b)+k7 s>
_ EKR*’*(DT, Ii(u, 5)))‘(“’s)tkq_|X|b(N_b)+k.
The proposition follows. O

8. POLYNOMIAL INVARIANTS

8.1. Poincare polynomials of sly and Lee homology. First, we remind a common con-
struction.

Definition 8.1. Let L be a link. The LeeP  polynomial is
LeePy(L) = )" dime Gr" Leek (L)t*q",
k,r
where Gr" is the r-th graded part of the filtered Leey homology, and the Khovanov—Rozansky
polynomial KRPy(K) is the Poincaré polynomial of s[x-homology:
KRPy(L) =" t*¢" dime KRE(L).
k,r
For an m-periodic link, we modify the definition above and generalize the approach of |23].

Definition 8.2. Assume we have an m-periodic link L and let dlm. The equivariant Khovanov—
Rozansky polynomial, for sly-homology, is

(8.3) KRPy (L) = Y tF¢q" dime, EKRS"(L).
k,r
The equivariant Lee polynomial is:
LeePy 4(L) = > dimc, Gr” ELeelf\}d(L)tl‘C "
k,r

We have the following relation between the Khovanov—Rozansky polynomial and the equi-
variant Khovanov-Rozansky polynomial.

(8.4) KRPn(L) = ) ¢(d) KRPy 4(L),
dlm

where ¢(d) = #{1 <i <d:ged(i,d) =1} is Euler’s totient function.
We can compute Lee homology from Proposition For the precise formula for the knot,
we refer to |15, Proposition 2.6]. Other references include [10}/16,/17,129.33].

Lemma 8.5. For any knot K, we have LeeP y(K) = ¢V (N1 4 ¢~ N+3 1oy N1 where
sy(K) is the Lewark’s sy-invariant; see [15].

We have the following statement as a consequence of Lemma [5.35

Lemma 8.6. If the action of Z, on the components of L is trivial, then LeePy 4 is equal to
LeePy if d =1, and LeeP 4 is equal to 0 otherwise.
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The following proposition shows the relation between polynomials KRP and LeeP. Its proof
is the same as in the Khovanov case, see [4, Proposition 2.17]. See also [8, Theorem 5.1]
and |15, Proposition 5.2].

Proposition 8.7. For a link L, there are polynomials R1, Ra, ... with non-negative coefficients
such that

KRPy (L) = LeePn(L) + (1 + t¢*" )Ry + (1 + t¢g™)Ro + ... ..
Furthermore, for an m-periodic link L where djm, we have

KRPy (L) = LeePy g(L) + (1 +t¢*")RY + (1 + t¢*V)R3 + . ..
for polynomials R‘li, Rg, ... with non-negative coefficients.

8.2. The Reshetikhin-Turaev RTy polynomials. We recall that for a link L, the HOM-
FLYPT polynomial X (a,b) is defined by its value on the unknot and skein relation.

(8.8) aXr,(a,b) —a ' Xp_(a,b) = bXp,(a,b),

where Lg is the 0 resolution, L, is the positive crossing, and L_ is the negative crossing.
Reshetikhin-Turaev is a specific case of the HOMFLYPT polynomial. For N > 0 Reshetikhin-
Turaev is

(8.9) RTn(q) = X(¢",q-q")

The normalization of this polynomial is

" -qV

qg-qt

For N = 0, RIp is the Alexander polynomial, and for N = 1, RT} = 1, and for N = 2, we
have the Jones polynomial which categorifies Khovanov homology. For N > 2, we call these
polynomials as sy polynomials of L. In [12,|13] it was proved that sly homology categorifies
the sl polynomial.

RT y(unknot) =

Lemma 8.10. For a link L and for KRﬁ}T(L) its sl -homology, we have

RTn(L) = Y (-1)F¢" dim KR% (L) = KRPy [=—1.
k,r

The skein relation for RTN polynomial is a particular version of the skein relation of the HOM-
FLYPT polynomial.

(8.11) qNX—q‘N/\/=(q—q‘l)> <

8.3. Difference polynomials. Fix m = p' for a prime p, and let D be an m-periodic diagram
of an m-periodic link L. The sly homology of L decomposes as in (5.34). We have

Rl = KRPy s |1,

where KRPy 4 is as in ({8.3)).
We have the corollary that will be used in the future.

Corollary 8.12. Assume L is a p" periodic link for the prime p, and assume L' is its mirror;
then RT,;(L)(q) = RTn (L") (7).

Proof. We know from Proposition we have an isomorphism of C-vector spaces EKR¥™™ (L) =
EKR™%~"™(L"). Thus, by (8.3)), we have

Ry, (L)(@) = ¥(-1)q" dimEKRY ™ (L) = Y(-1)*q" dim EKR ;" (1)
feor k,r
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Make a change of variables: set k' = -k, v’ = —r then we have
RTy;(L)(q) = Y (-1)¥¢ ™ dimEKRY" 7 (L) = 3 (-1)¥ (¢71)" dim EKRY"™ 7 (L)
kl’,,-./ k/./’/r.l

> (-D)¥ (¢! dimEKRY" (L") = RTn;(L)(¢™")
kl 7'/

we have

RTn;(L")(q) = RTn (L) (¢ ")

For Reshetikhin-Turaev, we have difference sl polynomials.

RTy i (D) =RTpy i1 (D) 0<j</

Definition 8.13. DRTy ;(D) = { )
’ RTy (D) j="L.

Proposition 8.14. DRTy ;(D) polynomials have the following relations between each other.
(1) For j =0 we have

"™V DRTNo(Ls) - ¢ ™  DRTNo(L-) = (¢™ - ¢™) DIno(Lo).

(2) For any 0 < j </, we have

(7™ - ¢™)DIne—j(Lo) (mod g” —q").

Proof. We use |23, Theorem 3.6]. Assume that {E,"",d,},>1 is a spectral sequence of graded
finite-dimensional C-vector spaces which converge to a double-graded C-vector space H™**.
Moreover, assume the spectral sequence collapses at a finite stage. Consider the Poincaré poly-
nomials of the page E,":

qu DRT n - (L+) - q_mN DRTw—j(L-)

P(E}*) = Y "7 qdimg B}
/[:7].

For a graded C-vector space V*, we have

qdimg V* =" ¢' dime V.

By [19, Exercise 1.7], we conclude that for any r > 1,
(8.15) P(E;*)(-1,4) = P(ES)(-1,9) = ¥(-1) adimg H*.
i?j
For a fixed p'-periodic diagram D we apply (8.15)) to spectral sequences constructed in Propo-
sition We get
P(ET"(0"")(-1,4) = P(E%")(-1,q) = RTn-u(D).

Recall that E ’*(pé_“) is the first page of the homology of a diagram which is invariant under
the action of a subgroup of order p' for t < £ — v smaller order. The description of Ef *(pt)
implies that P(E}"")(-1,q) is a linear combination of polynomials RT y ;(D7), where TeAp(X)
and appropriate j. Consequently,

DPn (D) =RTN - (D) = RT N p—ys1(D) =

(8.16) = P(E* (0")(~1,q) - P(E}* (p 1) (-1, ).
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we apply formula (8.16) to DPy ¢—(L+) and DPy ¢—(L+). We get

p- 4 P
DPyeyo(L) =33 Y (-1 PN DFDPy (DY),
k=0s=uTeAs (L+,X)

DPy-u(L-) = Z Z >, (- 1)kqpe(N71)+kaDPN,s—u(DT)-
:—p““IeAs LX)

By Ap(L+, X) = Ape_(L-, X), we get

i i pt ot 0 i
¢" "DPy (L) - q P N DPy (L) = Z > > (DM F-¢P ) DPy (D).
=0s=uTeAs 2 (L+,X)

We know Aj (L4, X) is empty unless p® divides k. In the above equation observe that for k£ =0
we have (qpe - q’pz) DRT ¢ (Lo) and for k = p* the sum is zero Hence we have

0 i 0 L
¢" "DRTy -y (Ly) = ¢" Y DRT np—u(L-) - (¢" - ¢ 7 ) DRT v p—u(Lo) =
4 £ £
ZA Z (_1)k(qp _k_q_p +k)DRTN,S—U(DT)-

For u = ¢, since s = v and u = £ we have £ = s which implies k < p® — 1 so p® can not divide k.
Hence the right-hand side is zero. We have
¢ e ¢ W
¢’ "DPno(L.) - q P NDPyo(L-) = (¢" —q7 )DPno(Lo),

as we want.
For 0 <u < /¢ and for u < s < £ and k divisible by p®, we write k = k'p®.
—k :pf _ klps :pS(pZ—s _ k‘,)
Set p'=* - k' = A. We have
—pltk

p'—k p*A _ -p°A

PP

q - q =q =q
Since ¢*" —¢P" =0 ( mod ¢*" — ¢ P" ), we have ¢°*" =1 (mod ¢”" —¢?" ) Hence

ok S A A S A s A _ w U
PR gr A =P = g A (g - 1) = 0(modg?” - ¢7P")

‘
-k
qp

—-q
We deduce by the above equations
0 Al u U
(¢" " =q 7 ™)DRTyu(D7) =0 (mod ¢*" —¢7").
Consequently,
4 Al V4 _ L U _u
¢ " DRTno(Ly) —q P YV DRTNo(L-) = (¢" - ¢ 7 )DRTNo(Lo) (mod ¢ —q7P").

O

8.4. Periodicity criterion. The result in this section ports the periodicity criterion of [4] to
the case of sly-homology.

Theorem 8.17. Assume L is an m = p' periodic knot with p a prime. Then, there exist
polynomials Py, P1,... such that

e
KRPy =Py + Y. (p) —p/ )P;.
j=1

In this equation Py, ... are Laurent polynomials in t,q such that
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(P-1) The Laurent polynomial Py can be presented as
Po=q" ("N + V) (14 g™ S (¢ q),
j=1

while the Laurent polynomials Py, k > 0, can be presented as

[ee]

Pr = Y (L +tq"7)Sy;(t,q).
j=1

(P-2) The Laurent polynomials Sj, k>0, from item have non-negative coefficients.
(P-3) The polynomials Py, k > 0, satisfy the following congruence relation:

k -k

Pr(-1,q) = Proir(-1,¢) = Pe(-1,¢7") = Praa(-1,¢7") (mod ¢ —¢g 7).

Proof. For integral k,r, we have KR?{,T(L) = EKRIK}T(L) as vector spaces. The latter have
decomposition as in ({5.34)):
k7 k? 7d
EKRY (L) :g‘DEKRN’” (L).
m

We have m = p?, and we have P; = Py i as the Poincaré polynomial of EKRY™” g (L). By the

, we have
KRPy (L) = Y (7 -p )Py,

§=0
where p/ —p?~! is the Euler’s totient function for p’. In this equation, P;j is equal to the KRPy 4

in Proposition [8.71 The sum above is finite because E; page has modules of finite dimension
over C. Since F} is a finite spectral sequence that degenerates in a finite page, so the Poincaré

polynomial of the page gets zero. Hence, write Sj, = Rﬁj we have
P; =LeePy i (L) + 3. (1 +tg*VF) S
k=1
By Proposition we know Sji, is non-negative. The computation of ELee in Lemma
together with Lemma [8.5] gives
LeePNJ?O(L) — qSN(L)(q—N+1 + q—N+3 4ot q]\/—l)7

while LeeP y ,; (L) = 0 for j > 0. This proves|(P-1) and |(P-2)|
For |(P-3), we use Proposition Specifically, we have
(Pj = Pj1)le=-1 = DRT

where DRTy ; is a difference polynomial. Proposition implies that changing an orbit of

crossings on a diagram does not affect DRT y ; modulo the ideal generated by &g We
get a mirror of the link by changing all orbits of crossings. Since changing the orbit of crossing
does not affect DRT i ; modulo the ideal generated by " —q ", we stay in the same relation
after the first change, i.e., changing the orbit of the first crossing. By Corollary we get the
result. O

8.5. Periodicity 3 and 4. Now we will show that the periodicity criteria cannot hinder a knot
from being 3 or 4 periodic. We begin with the following result.

Theorem 8.18 (|9]). If K is a knot and X is its HOMFLY-PT polynomial, then X (a,b)
T(a,b)q(a,b) + 1, where q(a,b) is a Laurent polynomial with integer coefficients and T (a,b)
a* = 2a% + 1 - a®v? is the HOMFLY-PT polynomial for the trefoil.
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The following result is deduced from Theorem and (B.9). Before stating it, we introduce
the following notation:

Ty =" -2¢*N +1-¢*N(g-q7")%
Corollary 8.19. For a knot K, the RT  polynomial has the form
RTn(q) = A(¢)Tn +1
where A(q) is a Laurent polynomial with integer coefficients.

Lemma 8.20.

o If (g is a root of unity of order 6, then Tyn((s) =0 unless 3|N;
e If (g is a root of unity of order 8 and N is odd, then Tn((g) = 0.

Proof. We prove the (g-part for N =1 (mod 3) and N =2 (mod 3).
For N =1, we have
Tn=q"'-2¢+1-¢*(q-q ")
= (-1~ (@’ ~a)g-a7")
= (-1 -1-¢*+1)=0
For N =1 (mod 3), we write N =3k + 1. We have
Ty = g GFD) _92(k+1) L 1 _ 26k+1) (g _ o=1y2
= gt 0?1 - P (g - g )2
Since ((5)® = 1, we have
Tn(Co) = (G6)" =2(G6)? + 1= (G6)*((G6) = (¢6))* =0

For N =2, we have
Tn=¢"-2¢"+1-¢"(¢g-¢")°

Since ((5)® = 1, we have
Tn(C6) = (¢6)° =2(Ge)* + 1= (G6)*((G6) = (¢6) ™)
= (G6)" = 2(¢6) +1-(66)"((G6)* -2+ (¢6) ™)
= (¢6)*=2(Co) " +1-1+2(C)" = (¢6)* =0
For N =2 (mod 3), we write N = 3k + 2. We have
T (G6) = (G6) ) = 2(G6)* ) +1 - (G6)* PP ((G6) - (G6)™1)?

= (C6) " (¢6)® = 2(C6) ™ (C6)" + 1= (C6) ™ (¢6) " ((G6) - () ™)

Since ((s)® = 1, the last terms simplifies to
(¢6)* =2(C6)" + 1= (C6)*((G6) = (¢6)™H)? =0

The proof for (g is essentially the same. Firstly, we show for N =1 and later for N = 2k + 1.
We omit the details. O

Corollary 8.21. For any knot K, we have the congruences RT y(q)-RTn(g™') = 0 mod ¢3¢ 73,
RTn(q) -RTn(g™") =0mod ¢* —¢™*.
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Proof. We start with the first part. This congruence is the same as saying that for any root of
unity (s of order 6, it holds RTn((s) - RTn(¢5!) = 0. We have two cases here. The first case,
suppose that N is not a multiple of 3. By Corollaryand Lemma we have RTn () = 1,
so RTn(¢s) ~ RTn(¢51) = 0. The second case, suppose 3|N. We write the Khovanov-Rozansky
polynomial as follows, see Proposition 8.7}

KRPn(t,q) =¢*(¢" N +¢* N+ + ¢V ) + X (1 +ta*M)R;(t,q).
7

and we have RTn(¢) = KRPy(-1,¢). For the term (1 +t¢*N7) for t = -1 and ¢ = (g is equal to
zero because ((g)® = 0. At the same time, we have

" -qV

1-N | 3-N .., oN-1_

q q q

q-qt
The latter expression is zero when evaluated at a root of unity of order dividing 2/NV. That is to
say
RTn(¢6) = KRPN(-1,¢6) = 0.
For the second part, first assume that N is odd. Then, RTx({g) = 1 by the same argument
combining. Again, we have RT y((g) =1 and

RTn(Gs) = KRPN(-1,G6) = 0.
Now assume N is even. Assume that 4|N then as the same argument above we have
RTn(Cs) = KRPn(-1,(5) = 0.

We have only one case, namely when N = 4k + 2. Assume we split this case into two cases.
For some k we can write N =4k + 2 =8m + 2, and for some k we can write N =4k +2=8m — 2.
For N =8k + 2, take (g such that Cgl = 1. From the formula of HOMFLYPT polynomial X (a,b)
we have RTy (q) = X (¢¥,q-q). Since ¢4 = 1, RTx(Gs) = X(G2*2,Gs - G71) = X (G2, Gs - 1) =
RT2(s)-

Now, RT3 is the Jones polynomial. It was proved in [4, Section 4.6] that RT({s) -RT2((gt) =

0. The same proof is valid for when Cgl = —1. The remaining case is when N = 8k -2 and Cgl =-1.
Write X (a,b) = ¥ a;ja’t’. Since RTn(q) = X (¢",q-¢7"), we have

RTn(Cs) -RTN(G') = D o (G -G Y -GN (-G + 1) =
Yo (G - @) (Gs - G = ~RTa(Cs) + RTo(G ).

After all, RTy is the Jones polynomial. It was proved in [4, Section 4.6] that RT2((s) -
RT2(¢g!) = 0. The same proof is valid for when (g = 1. O

Corollary 8.22. Assume K is a knot. Set Py = KRPy, So; = R;, where R; is as in Proposi-
tion [8.7 Then So;, Po satisfy the statement of Theorem regardless of whether K is 3 or
4-periodic.

Proof. We prove this corollary just for 3-periodic knots. The proof for 4-periodic knots is similar.
Ttem is satisfied by definition. By Proposition So; has non-negative coefficients. The

congruence |(P-3)|is a direct consequence of Corollary O
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