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Abstract

The maximum matching problem is one of the most extensively studied problems
in the entire graph theory. The �rst results were published already in the 19th
century. The maximum matching problem is important not only due to its interesting
theoretical nature, but also because of a number of practical applications � ranging
from scheduling to advanced image processing. In this work we address the problem
from two perspectives � theoretical and practical. A number of novel matching
algorithms for di�erent subclasses of cubic graphs are introduced. We present a new
deterministic perfect matching algorithm for biconnected cubic graphs running in time
O(n log2 n) and a randomized version running in expected O(n log n log log3 n) time.
Both algorithms are faster than previously known algorithms. We also present two
parallel algorithms for solving perfect matching problem in bipartite cubic graphs
and bipartite planar cubic graphs. The time complexities of these algorithms are
O(log2 n) and O(log n log∗ n) time respectively, while the requirement on the number
of processors are O(n/ log n) and O(n). The �rst parallel algorithm has the same time
complexity as the previously known fastest algorithm, but utilizes less processors. The
second algorithm, on the other hand, is the fastest algorithm known to date for solving
bipartite planar cubic case.

Practical part of this work introduces implementation of a couple of matching
algorithms together with performance analysis for di�erent classes of graphs. Among
others we present a parallel implementation of algebraic maximum matching algo-
rithm for general graphs ported to a GPU architecture. This algorithm outperforms
e�cient state of the art matching algorithms for some classes of graphs.

Keywords: maximum matching, perfect matching, cubic graphs, biconnected graphs,
bipartite graphs, planar graphs, sequential and parallel algorithms.

ACM Classi�cation: F.2.2, G.2.2.





Streszczenie

Problem najliczniejszego skojarzenia jest jednym z najcz¦±ciej badanych problemów
grafowych � nie tylko ze wzgl¦du na ciekawe podªo»e teoretyczne, ale równie» ze
wzgl¦du na wiele praktycznych zastosowa«, takich jak planowanie zada« czy zaawanso-
wane metody obróbki obrazu. Pierwsze wyniki zostaªy opublikowane ju» w XIX
wieku. W niniejszej pracy problem skojarze« analizujemy w dwóch aspektach � teo-
retycznym i praktycznym. W cz¦±ci teoretycznej prezentujemy kilka nowych algory-
tmów wyznaczaj¡cych najliczniejsze skojarzenie dla ró»nych podklas grafów kubi-
cznych. Zaczynamy od deterministycznego algorytmu do wyznaczania doskonaªego
skojarzenia w dwuspójnych grafach kubicznych, dziaªaj¡cego w czasie O(n log2 n)
oraz wersji randomizowanej tego algorytmu dziaªaj¡cej w czasie O(n log n log log3 n).
Oba algorytmy s¡ najszybszymi znanymi do tej pory algorytmami sekwencyjnymi.
W dalszej cz¦±ci pracy przedstawiamy równolegªy algorytm dla problemu doskona-
ªego skojarzenia w dwudzielnych grafach kubicznych dziaªaj¡cy w czasie O(log2 n) z
wykorzystaniem O(n/ log n) procesorów oraz algorytm dla planarnych dwudzielnych
grafów kubicznych dziaªaj¡cy w czasie O(log n log∗ n) z wykorzystaniem O(n) proce-
sorów. Pierwszy z tych algorytmów ma tak¡ sam¡ zªo»ono±¢ czasow¡ jak najszybszy
znany do tej pory algorytm, ale wykorzystuje mniejsz¡ liczb¦ procesorów. Drugi jest
z kolei najszybszym znanym algorytmem dla przypadku planarnych dwudzielnych
grafów kubicznych.

W cz¦±ci po±wi¦conej zagadnieniom praktycznym prezentujemy implementacj¦
kilku algorytmów rozwi¡zuj¡cych problem najliczniejszego skojarzenia i dokonujemy
analizy wydajno±ciowej tych algorytmów w kontek±cie ró»nych klas grafów. Jednym z
prezentowanych algorytmów jest równolegªa implementacja algebraicznego algorytmu
do wyznaczania najliczniejszego skojarzenia w dowolnych grafach zrealizowana na
karcie gra�cznej. Dla pewnych klas grafów algorytm ten okazuje si¦ by¢ szybszy
od efektywnych implementacji klasycznych algorytmów sekwencyjnych. Wynik ten
daje nadziej¦ na uzyskiwanie coraz szybszych algorytmów dla problemu skojarze« w
grafach poprzez zastosowanie równolegªo±ci.

Sªowa kluczowe: najliczniejsze skojarzenia, doskonaªe skojarzenie, grafy kubiczne,
grafy dwuspójne, grafy dwudzielne, grafy planarne, algorytmy sekwencyjne i równole-
gªe.

Klasy�kacja tematyczna ACM: F.2.2, G.2.2.
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Chapter 1

Introduction

Problem de�nition. For a given graph G = (V,E) with vertex set V = {v1, v2,
. . . , vn} and edge set E = {e1, e2, . . . , em} by a matching M ⊆ E we understand any
subset of edges of the graph such that no two edges of M have a common endpoint.
Maximum matching is a matching of the maximum cardinality. Perfect matching is
a maximum matching of size |V |/2. Solving the maximum/perfect matching problem
is to �nd a maximum/perfect matching in a given graph G.

The history of the matching problem. The history of matchings goes back to
the end of the 19th century when Petersen published a pioneering paper about the
matching theory [48]. In this paper he proved that every cubic graph without bridges
has a perfect matching. The proof of the Petersen's Theorem by Frink [23] yields an
O(n2) time maximum matching algorithm. The general matching problem, however,
remained unknown to be solvable in polynomial time for decades. With time it
turned out that it is much easier to solve the bipartite graph case. Characterization
of maximum matchings in bipartite graphs was introduced in 1931 independently
by König [36] and Egerváry [18]. Their constructive proofs provided polynomial-time
algorithms for maximum matching problem in bipartite graphs � so called Hungarian
method. Over thirty years later, in 1965, Edmonds [17] provided the �rst polynomial
time algorithm for general graphs. His O(n4) algorithm, as it turned out later, was
far from optimal. In 1976 Gabow [24] showed an optimization of Edmond's algorithm
leading to O(n3) time complexity. Also Even and Kariv [19] provided an improvement
with O(min{n2.5,m

√
n log n}) time complexity. The improvement, however, greatly

complicated the algorithm. In the meantime (1973) Hopcroft and Karp [33] presented
a bipartite graph matching algorithm running in O(m

√
n) time. Seven years later

Micali and Vazirani [41] managed to provide an equivalent for general graphs with the
same time complexity. Blum [7] and Gabow and Tarjan [25] introduced an alternative
matching algorithms with the same time complexity. A number of other matching
algorithms have been proposed since that time:

• 1991, Alt, Blum, Mehlhorn and Paul [28] � bipartite matching algorithm run-
ning in time O(n3/2

√
m/ log n),

5



6 CHAPTER 1. INTRODUCTION

• 1991, Feder and Motwani [21] � bipartite matching algorithm running in time

O(
√
nm log(n2/m)

logn
),

• 2003, Fremuth-Paeger and Jungnickel [22] � generalization of Feder and Mot-
wani algorithm to general graphs,

• 2004, M. Mucha and P. Sankowski [43] � randomized matching algorithm for
general graphs running in O(nω) 1 time,

• 2006, N. J. A. Harvey [29] � simpli�cation of the algorithm by Mucha and
Sankowski.

From the theoretical standpoint the fastest maximum matching algorithm for gen-
eral, dense graphs is Harvey's [29] simpli�cation of M. Mucha and P. Sankowski [43]
algorithm. However, as it utilizes fast matrix multiplication, it does not prove to be
practical.

Although research in the area of maximum matchings has been lead for over one
hundred years it is still a challenge to implement an e�cient algorithm in general
case. That is why di�erent subclasses of graphs are of a great interest. The most
recognized subclass with vast practical applications are bipartite graphs. We have
already mentioned some results for this class of graphs. Other interesting classes are
planar and cubic graphs. All planar graphs are sparse (according to the Theorem
2.5, the number of edges in a planar graph is not greater than 3n − 3), hence the
complexity of O(m

√
n) algorithm for general graphs reduces to O(n3/2) in the planar

case. M. Mucha and P. Sankowski [42], by applying nested dissection, managed
to accommodate their algebraic matching algorithm to planar graphs obtaining an
O(nω/2) time complexity � it is the fastest theoretical matching algorithm for general
planar graphs.

Cubic graphs became of greater researchers' interest just recently. All thanks to
T. Biedl [5], who showed a linear time reduction of the maximum matching problem
in general graphs to the maximum matching problem in 3-regular (cubic) graphs. Her
result implies that any O(f(m)) maximum matching algorithm for 3-regular graphs
yields an O(f(m) + m) maximum matching algorithm for arbitrary graphs. Cubic
graphs are the simplest of all graphs for which the matching problem remains as
hard as for general case. R. Greenlaw and R. Petreschi in [27] survey algorithms for
di�erent classes of cubic graphs giving motivation for further exploration.

From the presented results it is clear that good understanding of matchings in
cubic graphs may lead to faster algorithms in general case. A number of matching
algorithms have been proposed so far for di�erent subclasses of cubic graphs. The
starting point is already mentioned Petersen's Theorem [48] and Frink's O(n2) match-
ing algorithm for bridgeless cubic graphs. In 2001 Biedl at al. [6] presented a new
algorithm for computing perfect matching in bridgeless cubic graphs which runs in
O(n log4 n) time. This algorithm is faster than any other algorithm discussed so far.
Some more results are known for cubic graphs. Biedl at al. [6] showed that it is pos-
sible to �nd a perfect matching in a planar biconnected cubic graph in linear time,

1O(nω) is an optimal matrix multiplication time. It is known that ω < 2.376.
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while Schrijver [51] provided a simple linear matching algorithm for bipartite cubic
graphs.

Parallel maximum matching algorithms. Research on parallel matching algo-
rithms began around 40 years ago, however the main theorem utilized by parallel
algebraic algorithms has been known since 1940. In 1947 W.T. Tutte [61] stated
that a graph has a perfect matching if and only if the determinant of a certain skew-
symmetric matrix with indeterminates as elements is not identically zero. This was
the starting point for randomized parallel algorithms. In 1982 A. Borodin, J. von zur
Gathen and J. Hopcroft [9] observed that it is possible, based on the Tutte's Theorem
and on the fact that computation of the determinant of numerical matrix is in NC,
to verify whether a given graph has a perfect matching. They proposed an RNC
algorithm running in O(log2 n) time.

In 1986 R. Karp, E. Upfal and A. Widgerson [35] published a paper that inspired
other researchers to consider a parallel version of the matching problem. This paper
was titled �Constructing a perfect matching is in Random NC� and it presented the
�rst parallel algorithm to actually construct a perfect matching. This algorithm runs
in O(log3 n) time and uses O(n6.5) processors.

In 1987 K. Mulmuley, U. V. Vazirani and V. V. Vazirani [44] improved R. Karp,
E. Upfal and A. Widgerson's approach by presenting a randomized algorithm based
on the Tutte's theorem.

All parallel matching algorithms for general case are in RNC class. It is not
known whether it is possible to construct a deterministic parallel matching algorithm
belonging to NC . Even a problem of constructing a single alternating path in a graph
(an alternating path approach is commonly used by sequential matching algorithms)
is not known to be in NC . That is why a lot of e�ort was spent on analyzing di�erent
subclasses of graphs.

In 1988 A. Moitra and R. C. Johnson [4] proposed a matching algorithm for inter-
val graphs that runs in O(log2 n) time and utilizes O(n6/ log n) processors. In 1989 E.
Dahlhaus, M. Karpinski and A. Lingas [16] considered planar bipartite graphs. They
proposed an O((n/2− l+

√
n) log7 n) algorithm utilizing O(n1.5 log3 n) processors (l is

the size of a maximum matching in a graph). More general class � bipartite graphs
� was considered by Pranay Chaudhuri [11] in 1994. He proposed an O(n log log2 n)
time algorithm that uses O(n3/ log log n) processors. What is interesting, this algo-
rithm is designed for a single instruction multiple data computation model (SIMD),
so the approach proposed can be realized with nowadays GPUs. M. G. Andrews, M.
J. Atallah, D. Z. Chen and D. T. Lee [4] came up in 1995 with reduction of a total
work of the matching algorithm by A. J. Moitra and R. C. Johnson [4]. The former
algorithm performs O(n5 log2 n) total work, while the new algorithm only O(n log n).
However, algorithm's execution time has been sacri�ced and increased from O(log2 n)
to O(log3 n).

In 1996 R. Sharan and A. Wigderson [54] presented a new approach to parallel
computation of perfect matchings in cubic bipartite graphs. It is somehow similar to
the sequential algorithm for computing perfect matchings in regular bipartite graphs
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by A. Schrijver [51]. The algorithm can be generalized so that it works for any
regular bipartite graph, but it becomes very complicated � O(log2 n) execution time
and O(n5.5) processors. In case of cubic graphs the requirement on the number of
processors reduces to O(n log∗ n/ log n).

Weighted case of the matching problem has been considered as well. In 2006 M.
Fayyazi, D. Kaeli and W. Meleis [20] proposed a parametrized weighted matching
algorithm for bipartite graphs running in time O(n/w) utilizing O(nmax(2w,4+w)) pro-
cessors (w >= 1). For w = 1 this leads to a linear time algorithm utilizing O(n5)
processors.

Our results. The main result presented in this work is a new perfect matching al-
gorithm for biconnected cubic graphs running in time O(n log2 n). It is faster from it's
predecessor by an O(log2 n) factor and is much simpler to implement. It is possible
to further reduce the time complexity to O(n log n log log3 n) by utilizing randomized
data structures. We also present a modi�cation of our algorithm which allows for
utilizing decremental dynamic graph connectivity data structures. There is a chance
that it will be possible to implement more e�cient decremental dynamic graph con-
nectivity data structure than currently known fully-dynamic versions, which would
lead to the faster version of our algorithm.

Some research has been done in the area of parallel matching algorithms. We
present two new parallel algorithms for subclasses of cubic graphs:

• O(log2 n)-time perfect matching algorithm for bipartite cubic graphs utilizing
O(n/ log n) processors,

• O(log n log∗ n)-time perfect matching algorithm for planar bipartite cubic graphs
using O(n) processors.

The �rst parallel algorithm has the same time complexity as the previously known
fastest algorithm, but utilizes less processors. The second algorithm, on the other
hand, is the fastest algorithm known to date for solving bipartite planar cubic case.

This work addresses also practical aspects of the maximum matching problem.
We present two matching algorithms:

• parallel implementation of M. Mucha and P. Sankowski [43] maximum matching
algorithm for general graphs adopted to a GPU architecture,

• sequential implementation of a perfect matching algorithm via reduction to the
Boolean satis�ability problem.

Experimental evaluations prove that both algorithms are useful for some classes of
graphs.

This work is based on two papers � [15] presents an O(n log2 n)-time match-
ing algorithm for biconnected cubic graphs while [56] introduces parallel algebraic
matching algorithm on a GPU.
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Organization of this work. This thesis are divided into seven chapters, includ-
ing this one. Chapter 2 presents some basic de�nitions and theorems which will be
referenced latter on. Chapter 3 describes some state of the art matching algorithms
which are addressed or improved in the following chapters. Chapter 4 addresses the
problem of computing perfect matching in biconnected cubic graphs. First Frink's
and Biedl's matching algorithms are presented. Description of our new O(n log2 n)
algorithm follows. Possible improvements of our algorithm are also suggested. Chap-
ter 5 discusses parallel construction of matching for di�erent classes of graphs. First
our new matching algorithms for bipartite cubic and bipartite planar cubic graphs
are presented. Parallel algebraic maximum matching algorithm for general class of
graphs follows. Chapter 6 addresses practical aspects of computing matchings. Two
new algorithms are introduced � a matching algorithm via Boolean satis�ability and
an adoption of a parallel algebraic matching algorithm to a GPU architecture. The
chapter is concluded with performance evaluation of di�erent matching algorithms.
Depending on the subclass of graphs being analyzed di�erent matching algorithms are
recommended. The last chapter lists some open problems related to our work. The
paper is concluded with an Appendix, which contains source codes of some algorithms
presented throughout the publication.

Acknowledgments. I would like to thank prof. Krzysztof Diks, my supervisor and
co-author of the results presented in this work. His support during my PhD studies
and help while writing this PhD thesis is invaluable. I would also like to thank my
wife Marta for tolerating my limited involvement in the daily life when putting this
work together.
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Chapter 2

De�nitions and preliminaries

In the current chapter we introduce de�nitions, naming conventions and notations.
We also present some basic theorems that are crucial to our work.

For any set S, we denote by |S| the size of S (the number of its elements). If
S is a set and |S| = n, then S[0], . . . , S[n − 1] are elements of S in some, arbitrary
order. A multi-set is a set in which elements are not necessarily unique. For a given
two sets S1 and S2, S1⊗S2 is a symmetric di�erence of those sets � it consists of all
elements which are in one of the two sets and not in their intersection.

2.1 Graphs

Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn} and edge multi-set
E = {e1, e2, . . . , em}. Each edge e = v − w ∈ E, v, w ∈ V , connects a pair of vertices
� endpoints of the edge. We say that e is incident to u and v. Any two vertices
connected by an edge are adjacent . An edge connecting vertex v to itself (e = v − v,
v ∈ V ) is called a loop. A multigraph is a graph in which any pair of vertices can be
connected by more than one edge. All graphs in this paper are undirected multigraphs
without loops . We use n to denote the number of vertices of a graph and m to denote
the number of its edges.

For a given graphG = (V,E) and a vertex u, Nv(G, u) denotes the set of all vertices
adjacent to u in G (Nv(G, u) = {w ∈ V : ∃u− w ∈ E}), Ne(G, u) denotes the set of
all edges incident to u (Ne(G, u) = {u − w ∈ E}, w ∈ V ). Analogously, for a given
edge e = u− w, Nv(G, e) denotes the set of all vertices incident to e, namely {u,w},
Ne(G, e) denotes the set of all edges adjacent to e (Ne(G, e) = Ne(G, u)∪Ne(G,w)−e).
We extend the above de�nitions to the sets of vertices and edges. For any U ⊆ V ∪E,
Nv(G,U) denotes the set of all vertices adjacent to any vertex or incident to any
edge u ∈ U (Nv(G,U) = ∪u∈UNv(G, u)); Ne(G,U) is the set of all edges incident
to any vertex or adjacent to any edge u ∈ U (Ne(G,U) = ∪u∈UNe(G, u)). When
it is clear from the context to which graph we are referring to, instead of writing
Nv(G,U) (Nv(G, u)) and Ne(G,U) (Ne(G, u)) we simply write Nv(U) (Nv(u)) and
Ne(U) (Ne(u)).

Degree of a vertex v (denoted by d(v)) is the number of edges adjacent to v. Note

11
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that d(v) not necessarily equals |Nv(v)|, as graph may have multiple edges.

For any graph G(V,E) and U ⊆ V , G[U ] denotes the vertex-induced subgraph
of G, i.e. G[U ] = G′(U,E ′), E ′ = {u − v ∈ E : u, v ∈ U}. G − U is the graph
obtained from G by removing all vertices of U (G − U = G[V − U ]). For a given
graph G(V,E), a graph induced by a vertex set V ′ ⊆ V and an edge set E ′ ⊆ E
(written as G[V ′, E ′)) is a graph with vertices from V ′ and all edges from E ′ that
have both ends in V ′ (E ′′ = {u− v ∈ E ′ : u, v ∈ V ′}.

Let G(V,E) be a graph. A path v1−v2−· · ·−vl, vk ∈ V, k ∈ {1 . . . l}, is a sequence
of vertices of the graph, such that each consecutive pair of vertices is connected by
an edge (vk − vk+1 ∈ E, k ∈ {1 . . . l − 1}). The length of a path is the number of
edges that it uses. A path is called simple if all its vertices are unique. Any path
v1 − v2 − · · · − v1 of length at least 2 is called a cycle. A cycle is simple if all its
vertices, excluding the �rst and last vertex, are unique.

A graph G = (V,E) is connected if for any pair of vertices v, w ∈ V there exists a
path v−· · ·−w. Every maximal connected subgraph of a graph is called a connected
component . Two vertices belonging to the same connected component are connected.

For a given graph G = (V,E), a bridge (or a cut-edge) e ∈ E is an edge which
removal increases the number of connected components of G. Graph is bridgeless
if it contains no bridges. An articulation point (or a cut-vertex ) v ∈ V is a vertex
of the graph which removal increases the number of connected components of G. A
connected graph is vertex biconnected (edge biconnected) if removal of any vertex
(edge) leaves the graph connected. If G is both vertex and an edge biconnected we
call it simply biconnected .

A graph G = (V,E) is called regular if there exists k > 0 such that ∀v∈V d(v) = k.
A cubic graph is a regular graph of degree 3. An almost cubic graph is a graph with
all vertices of degree not greater than 3.

A graph G = (V,E) is bipartite if there exists V1, V2 ⊆ V such that V1 ∪ V2 = V ,
V1 ∩ V2 = ∅ and ∀u−v∈Eu ∈ V1, v ∈ V2. In other words, it is possible to split the set
of vertices of the graph into two subsets V1 and V2 in such a way that all edges of
the graph have one endpoint in V1 and the other endpoint in V2. (V1, V2) is called the
bipartition of G.

Amatching of a graphG = (V,E) is a setM ⊆ E of edges such that no two distinct
edges in M have a common endpoint. Maximal matching is a matching that cannot
be extended into a bigger matching by adding some edge e ∈ E. Maximum matching
is a matching of maximum possible cardinality. Perfect matching is a matching of
size |V |

2
, i.e. every vertex of the graph has exactly one incident edge in M . An allowed

edge is an edge of the graph which belongs to some its maximum matching. For a
given matching M ⊆ E and edge e ∈ E we say that e belongs / is covered by M if
e ∈ M . Analogically, for a given vertex v ∈ V we say that v belongs / is covered by
M if v ∈ Nv(G,M). Any vertex that does not belong to the matching is called free.

An alternating path with respect to the matching M is a simple path in which
every second edge belongs to M . An augmenting path is an alternating path with
both ends not belonging to M .

By co(G) we denote the number of odd (size) connected components in G.
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2.1.1 General theorems without proofs

Theorem 2.1 (Tutte). Graph G = (V,E) has a perfect matching if and only if for
every U ⊆ V the number of odd connected components in G[V − U ] is less than or
equal to the cardinality of U (∀U⊆V co(G[V − U ]) ≤ |U |).

Proof. For a proof please refer to [31].

Theorem 2.2 (Hall). Let G = (V,E) be a bipartite graph with bipartition (V ′, V ′′),
|V ′| = |V ′′|. G contains a perfect matching if and only if

∀S⊆V ′|S| ≤ |Nv(G,S)|.

Proof. For a proof please refer to [14].

Theorem 2.3 (König). Every regular bipartite graph with vertices of degree at least
1 has a perfect matching.

Theorem 2.4 (Euler). Let G = (V,E) be a planar connected graph and P an em-
bedding of G in a plane. Then n−m+ f = 2, where n is the number of vertices in a
graph, m is the number of edges, f is the number of faces.

Theorem 2.5. Let G = (V,E) be a planar connected graph with at least 3 vertices.
Then |E| ≤ 3|V | − 6.

2.1.2 Cubic graphs' theorems

In this section we present a number of facts about cubic graphs that will be referenced
in the remaining chapters.

Lemma 2.6. Every cubic graph has an even number of vertices.

Proof. The number of edges in a cubic graph with n vertices equals m = 3
2
n, hence

2m = 3n. As m is an integer then n has to be even.

Lemma 2.7. Cubic graph without bridges does not have articulation points.

Proof. Let us assume otherwise that there exists a cubic graph G = (V,E) which
does not have bridges, but there is a vertex v ∈ V which is an articulation point.
Removal of v from G leads to a graph G′ = G[E − {v}] consisting of at least two
connected components. As G is cubic and v is incident to up to 3 vertices in G, there
exists a connected component V ′ in G′ which is connected to v by exactly one edge
e. Removal of e from G splits graph into two components V ′ and G− V ′, hence e is
a bridge � a contradiction.

Lemma 2.8. Every connected cubic graph without bridges is biconnected.

Proof. It follows from Lemma 2.7 that every bridgeless cubic graph has no articulation
points, hence it is biconnected.
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Lemma 2.9. Every cubic bipartite graph is biconnected.

Proof. Let us assume otherwise that there is a cubic bipartite graph G = (V,E) which
is not biconnected. Let (V1, V2) be the bipartition of G. It follows from lemma 2.7
that G has a bridge e. G[V,E − {e}] contains a connected component G′ connected
to the rest of the graph G by e. Let (V ′

1 , V
′
2) be a bipartition of G′. Assume (without

loss of generality) that the bridge e is incident to V ′
1 in G′. As G is cubic there are

3|V ′
1 | edges leaving vertices of V ′

1 . Similarly, there are 3|V ′
2 | edges leaving vertices of

V ′
2 . As all but one (namely e) edges connect vertices of V ′

1 with V ′
2 , 3|V ′

1 | = 3|V ′
2 | − 1

holds � a contradiction.

2.2 Linear algebra

Symbol R stands for the set of all real numbers, Z stands for the set of all integers
and N stands for the set of all natural numbers. For a given prime number p, Zp

stands for the �nite �eld of cardinality p consisting of elements 0, 1, . . . , p − 1. All
arithmetic operations in Zp are performed modulo p. For any ring R, Rn×m stands
for the set of all n×m matrices with elements from R. For a given matrix M ∈ Rn×m

with n columns and m rows by M [x, y], x ∈ {0, 1, . . . n− 1}, y ∈ {0, 1, . . . ,m− 1} we
denote an element of M located in x′th column and y′th row.

A zero matrix is a matrix with all elements equal zero. A zero matrix of size n×m
is written as On×m. In denotes a square identity matrix of size n× n which has ones
on the main diagonal and zeros elsewhere. These notations will be frequently used in
the pseudo-codes of the algebraic algorithms presented throughout this paper.

M ′ = M \ [x, y] is a sub-matrix of M obtained from M by removing x′th column
and y′th row. M [x, ∗] and M [∗, y] denote, respectively, x'th column and y'th row of
the matrix M .



Chapter 3

State of the art

In this chapter we sketch some state of the art matching algorithms. We start with
the description of an augmenting path approach introduced by Edmonds [17]. This
is the general approach utilized by the fastest sequential algorithms for constructing
maximum matching in both bipartite and general graphs. Latter we present Schri-
jver's algorithm [51] for constructing perfect matchings in bipartite regular graphs.
When applied to bipartite cubic graphs it provides a linear method for matching
construction. We conclude this chapter with a brief description of Sharan's parallel
matching algorithm [54] for bipartite cubic graphs. Some more state of the art results
are presented throughout the remaining chapters, including Frink's [23] and Biedl's [6]
algorithms for perfect matching construction in biconnected cubic graphs and Mucha
and Sankowski algebraic algorithm [43] for general graphs.

3.1 Augmenting path approach

The commonly used approach for constructing maximum matchings in graphs is the
one proposed by Edmond's [17]. The concept is based on the following theorem

Theorem 3.1 (Edmonds). Let G = (V,E) be a graph and M be a matching of G
(M ⊆ E). M is a maximum matching of G if and only if there is no augmenting
path in G related to M .

Proof. For a proof of this theorem please refer to [17]

All algorithms based on Edmond's approach follow the general scheme:

• Construct an initial matching M of G.

• Until there is no augmenting path in G related to M :

� Find an augmenting path P in G related to M .

� Set M = M ⊗ P which increases the size of M by 1.

15
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Searching for an augmenting path P is especially simple in case of bipartite graphs.
Let G = (V,E) be a bipartite graph with bipartition (V ′, V ′′). As each augmenting
path is of odd length, one end of P is in V ′ while the other in V ′′. To �nd P it is
su�cient to perform a graph traversal starting from all vertices v ∈ V ′ not covered
by M and alternately visit edges from E −M (when going from V ′ to V ′′) and edges
from M (when going from V ′′ to V ′). Once a vertex v ∈ V ′′ not covered by M is
encountered, an augmenting path is found. A naive implementation of Edmond's
approach for bipartite graphs requires up to |V |/2 graph traversals, hence the total
complexity of such an algorithm is O(|V ||E|). By applying a BFS traversal it is
possible to �nd a number of disjoint augmenting paths at once, which reduces the
total number of phases. This way O(

√
|V ||E|) complexity can be obtained. To further

speed up the algorithm it is possible to apply some fast heuristics for constructing an
initial matching. This way search for augmenting paths starts with some non-empty
initial matching, so less augmenting paths need to be found.

In case of general graphs the implementation of Edmond's approach is much more
complicated. Due to the odd cycles that can be encountered during the graph's
traversal it is required to handle such a special cases accordingly. Edmond proposed
a solution to the problem which shrinks odd cycles to a single vertices (this process is
known as shrinking blossoms), so that the graph traversal can continue. Once an aug-
menting path is found, all blossoms are expanded back to their original form. Apart
from the fact that implementation of general case maximum matching algorithm is
much more complicated than the bipartite case, it has been proved that the same
O(

√
|V ||E|) time complexity can be obtained.

3.2 Schrijver's algorithm

We already know from König's Theorem 2.3 that every k-regular bipartite graph has
a perfect matching. This is equivalent to the fact that edges of such a graph can be
colored using k colors so that no two incident edges have the same color. In 1999
A. Schrijver [51] presented an algorithm for k-edge coloring of such graphs in O(km)
time. This algorithm provides a linear method for constructing the perfect matching
in cubic, bipartite graphs. The core element of the Schrijver's algorithm is a O(km)
subroutine for constructing a perfect matching in a regular bipartite graph, which is
very elegant and simple to implement:

• Initialize a weight function w : E → Z such that w(e) = 1, e ∈ E.

• While G contains a cycle C = c0− c1− · · · − ck−1− c0, w(ck − c(i+1)%k) > 0, i ∈
{0, 1, . . . k − 1}:

� Split edges of C into two matchings C1 and C2.

� If the sum of weights of the edges from C1 is smaller than the sum of the
edges from C2 then swap C1 with C2.

� Increase the weight of each edge in C1 by 1 and decrease the weight of each
edge in C2 by 1.
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• Construct a perfect matching by selecting all edges e ∈ E for which w(e) > 0.

We will now prove the correctness and time complexity of this algorithm.

Theorem 3.2. Schrijver's algorithm terminates after a �nite number of steps.

Proof. Consider the following expression:

F (w) =
∑
e∈E

w(e)2

Notice that F (w) ≤ k2m, as w(e) ≤ k, e ∈ E. Once a cycle is found the sum of
weights of edges from C1 is not smaller than the sum of weights of edges from C2.
When the weights are updated, the value of F (w) increases by at least |C|:∑

e∈C1

((w(e) + 1)2 − w(e)2) +
∑
e∈C2

((w(e)− 1)2 − w(e)2) =

2(
∑
e∈C1

w(e)−
∑
e∈C2

w(e)) + |C1|+ |C2| ≥ |C|

Each update of the edges' weights results in the increase of the value of F (w) and as
the F (w) is bounded from the top, the algorithm terminates.

Theorem 3.3. Schrijver's algorithm computes a perfect matching of G.

Proof. It follows from Theorem 3.2 that Schrijver's algorithm terminates after a �nite
number of steps. Once it does a graph G′ = G[V,E ′], E ′ = {e ∈ E : w(e) > 0}
contains no cycles (as algorithm would not terminate otherwise), hence G′ is a set of
trees. We show by induction on |V | that G′ is a set of paths of length 1.

The only 2-vertex graph G′ without cycles consists of 2 vertices connected by a
single edge e, w(e) = k. Let G′ be an n+2-vertex graph without cycles. There exists
a vertex v in G′ of degree 1 (as G′ is a forest) connected by an edge e = v − w to
the rest of the graph. As d(v) = 1, edge e is of weight k. It follows that w is also of
degree 1 in G′. By removing vertices v and w from G′ we obtain an n-vertex graph
and by the induction hypothesis we get that G′′ is a set of paths of length 1. Hence
G′ is also a set of paths of length 1.

Theorem 3.4. It is possible to implement Schrijver's algorithm in O(km) time.

Proof. It follows from Theorem 3.3 that once Schrijver's algorithm terminates the
value of F (w) =

∑
e∈E w(e)2 equals to 1

2
k2n = km. A single update of weights along

a cycle C increases the value of F (w) by at least |C|, so to implement Schrijver's
algorithm in O(km) time it is su�cient to detect cycles in G and update weights of
edges in time proportional to the total length of all detected cycles. It is possible to
achieve it by applying a DFS traversal. Start the search process from any edge e such
that w(e) > 0, w(e) < k. Such an edge is incident with another edge which weight is
grater than 0 but smaller than k, so it is possible to continue the DFS search until a
cycle is encountered. Once it happens update the weights of edges on a cycle, remove
all edges of a cycle from a DFS stack and proceed with the DFS search. Once the
stack is empty start with another edge e. It is clear that the total execution time of
such an algorithm is linear in the total length of all cycles detected.
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3.3 Sharan's algorithm

Sharan's parallel matching algorithm is based on the similar idea as Schrijver's algo-
rithm, but is much more complicated. Two de�nitions need to be introduced before
we describe its structure.

A pseudo-perfect matching of a graph G is a subgraphM of G spanning all vertices
of G such that every vertex c is of odd degree in M . For a given rooted tree T with t
vertices (t > 2), a 1

3
− 2

3
cut-vertex is a vertex of T which has at least t−1

3
descendants

and at most 2t
3
descendants, including itself.

The Sharan's algorithm starts by constructing a pseudo-perfect matching M and
then modi�es it until a perfect matching is obtained. In case of cubic graphs pseudo-
perfect matching construction is simple � all edges of the graph can be selected.
As the process of converting of the pseudo-perfect matching to a perfect matching
needs to happen in parallel, the algorithm becomes complicated. We present only a
short summary of this algorithm to show the level of complication. For more detailed
description and the proof of correctness please refer to [51].

The general structure of Sharan's algorithm is the following:

• Construct a pseudo-perfect matching M of G.

• Convert M into a spanning forest of G in such a way that it remains a pseudo-
perfect matching of G.

• Convert each tree of M into a vertex-induced subgraph of G in such a way that
M remain a pseudo-perfect matching of G.

• Until M is a perfect matching:

� Find a perfect matching N in the complement of M .

� Find an augmenting cycle L in M ∪ N , such that |M ⊗ L| ≤ (1 − c)|M |,
for a constant c > 0.

� M = M ⊗ L.

To convert a pseudo-perfect matching M into a spanning forest of G, Sharan's algo-
rithm selects an arbitrary spanning forest T = (V ′, E ′) of G and computes a sym-
metric di�erence of M and the set S of all fundamental cycles of G with respect to
T .

The next phase of the algorithm converts a pseudo-perfect matching M , which is
also a forest in G, into a set of induced graphs of G. This is achieved by the function
Induced(T ):

• while M is not induced, in parallel for every tree T (V ′, E ′) in M which is not
induced:

� Root T arbitrarily at a vertex which is of degree 3 in M .

� Find a 1
3
− 2

3
cut-vertex of T , denote it by v.
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� Search for a cycle C in G[V ′] which includes v.

� If C exists then let M = M ⊗C, otherwise M = (M − T ) ∪ Induced(T −
{v}) ∪ T [S(v)].

Once an induced forest M of G, which is also a pseudo-perfect matching, is ob-
tained, the last phase of the algorithm is to remove some edges of M , so that only
perfect matching remains. This is done by logarithmic number of iterations of the
following steps:

• Compute a perfect matching N in the complement of M .

• Let H = M ∪N .

• Compute a spanning forest T of H.

• Compute symmetric di�erence of M and a set of all fundamental cycles of H.

As Sharan showed in his paper, it is possible to implement this algorithm for bipartite
cubic graphs in O(log2 n) time using (n log∗ n/ log n) processors.
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Chapter 4

Matching in biconnected cubic graphs

In this chapter we present our new algorithm for constructing a perfect matching in
biconnected cubic graphs. It runs in O(n log2 n) time. We begin with a presentation
of two historical results which make it easier to follow our approach. The �rst result
is O(n2) time algorithm by Frink [23] presented in section 4.1. It directly derives from
the Frink's proof of the Petersen's theorem. In section 4.2 we present an O(n log4 n)
matching algorithm of Biedl et al. [6]. This algorithm was the fastest matching
algorithm for biconnected cubic graphs known to date. The presentation of our result
follows in section 4.3, where we also introduce a randomized version of the algorithm
running in expected O(n log n log log3 n) time. We conclude this chapter in section 4.4
with a signi�cant modi�cation of our algorithm, which makes it possible to utilize
decremental dynamic graph connectivity data structure (instead of the fully-dynamic
version, utilized by the algorithm from the section 4.3).

4.1 Frink's algorithm

We are interested in constructing an e�cient perfect matching algorithm for bicon-
nected cubic graphs. How do we know that such a matching exists in the �rst place?
This fact was proved by Jules Petersen [48] in 1891.

Theorem 4.1 (Petersen). Let G = (V,E) be a bridgeless cubic graph. G has a perfect
matching.

Proof. Consider an arbitrary subset U ⊆ V . Let C = {C1, C2, . . . , Cl} be the set of
all connected components of G− U of odd sizes. Every Ck ∈ C is connected with U
by an odd number of edges, since G is cubic and |Ck| is odd. As G is bridgeless, Ck is
connected to U by at least 3 edges. Hence, the number of edges leaving U is at least
3|C| and (as G is cubic), |C| ≤ |U |. It follows that for every U ⊆ V co(G− U) ≤ |U |
and the Tutte's theorem (2.1) concludes the proof.

The original proof of Petersen's theorem from the 19th century is much more
complicated, as the Tutte's Theorem was not known. H. R. Brahana [10] in 1917
followed by A. Errera in 1922 managed to simplify the original proof. Finally in 1926

21
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Figure 4.1: Frink's reduction of a biconnected cubic graph. (a) Vertices c and d are to
be removed from the graph. (b) The �rst type of reduction � vertex a is connected
with e, vertex b is connected with f . (c) The second type of reduction � vertex a is
connected with f , vertex b is connected with e.

Frink [23] came up with a constructive proof that resulted in a matching algorithm
running in O(n2) time. The core of this algorithm is the following Frink's Theorem:

Theorem 4.2 (Frink). Let G(V,E) be a biconnected cubic graph. Consider an edge
p = c−d such that |Nv(c)| = 3 and |Nv(d)| = 3. Let a and b be the neighbors of vertex
c in G di�erent from d. Let e and f be the neighbors of d di�erent from c (see Figure
4.1). At least one of the two reductions of graph G consisting of removing vertices c
and d and reconnecting vertices a, b, e and f by edges a− e and b− f or a− f and
b − e (cases (b) and (c) from the Figure 4.1) leads to a biconnected cubic graph. If
|Nv(c)| ̸= 3 or |Nv(d)| ̸= 3 similar reduction of a graph is possible (see Figure 4.2).

Proof. ByA, B, E and F we denote connected components ofG[V−{c, d}] containing,
respectively, vertices a, b, e and f . As G is bridgeless (and hence p is not a bridge)

(a) (d)(b) (c)
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a

e
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e

a
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e

a

e

b b a
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Figure 4.2: Special cases of the Frink's reductions. (a) Edge c − d being reduced is
double. Reduction removes vertices c and d from the graph and reconnects a and e
with a new single edge. (b) Edge c− d is incident to 2 double edges a− c and d− e.
Reduction removes vertices c and d from the graph and adds a new double edge a−e.
(c) Edge c− d is incident to 1 double edge d− e. Reduction removes vertices c and d
from the graph and introduces two new edges a− e and b− e. (d) Edge c− d being
reduced is a triple edge. Reduction removes vertices c and d.
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there must be an edge connecting one of A or B to E or F . Without loss of generality
let us assume that A is connected with E (see Figure 4.3). Furthermore edges b− c
and d− f are not bridges in G, hence one of the three cases is possible (with respect
to isomorphism) � see Figure 4.3:

• component B is connected to F ,

• component B is connected to E and component E is connected to F ,

• component A is connected to B and component E is connected to F .

In all three cases if G[V −{c− d}] is extended with edges a− f and b− e (obtaining
graph G′), the added edges lie on some cycle in G′ (see Figure 4.4). Also, for any
pair of vertices u, v ∈ {a, b, e, f} there exists a cycle in G′ containing u and v. To
prove that G′ is biconnected it is su�cient to show that every edge r of G′ lies on
some cycle of G′. Let C be a cycle in G containing r (such a cycle exists as G is
biconnected). If C does not pass through c nor d then C is also a cycle in G′. If it
does pass through c or d then construct a cycle C ′ ⊂ G′ from C in the following way:

• if x− c− d− y ∈ C, x ∈ {a, b}, y ∈ {e, f}, remove x− c− d− y from C and add
any path from x to y in G′ not containing r (such path always exists as x and
y belong to some cycle in G′),

• if a− c− b ∈ C, remove a− c− b from C and add any path from a to b in G′

not containing r,

• if e− d− f ∈ C, remove e− d− f from C and add any path from e to f in G′

not containing r.

C ′ is a set of cycles (as C ′ was obtained from C by replacing some sub-paths) and
it contains r. It follows that every edge of G′ lies on some cycle, so the graph does
not contain any bridges. From the fact that G′ is connected and from Lemma 2.8 we
know that G′ is biconnected.

Frink's theorem allows us to construct a relatively simple perfect matching al-
gorithm for biconnected cubic graphs. We start with an input graph G and until
there are no vertices left we perform Frink's reduction against an arbitrary edge of
the graph. Once the graph contains no vertices we construct an initial empty per-
fect matching M and start the reversion process of all reductions (starting from the
vertices deleted most recently). Each reversion step can lead to one of the four basic
cases presented in the Figure 4.5 or to one of the special cases from the Figure 4.6.
Reversion process of the special cases, as well as the �rst three basic cases, is straight-
forward. They can be performed in O(1) time. The only problematic case is when
both edges belong to the perfect matching. In such a situation it is required to �nd
an alternating cycle containing at least one of these edges and update the matching
with the cycle. This operation reduces the 4th case to one of the �rst three.

It is possible to implement Frink's algorithm in O(n2) time. There are O(n)
reduction / reversion steps, each of them requires O(n) operations to be performed.
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Figure 4.3: All possible connections of biconnected components of G[V −{c−d}]. (a)
Component A is connected to component E, component B is connected to component
F . (b) Component E is connected to components A, B and F . (c) Component A is
connected to components B and E, component E is connected to component F .
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Figure 4.4: Possible connections of connected components A, B, C and D after
removal of edge c− d and addition of edges a− f and b− e.

Reduction step performs an arbitrary reduction (case (b) or (c) from the Figure 4.1)
and veri�es in O(n) time whether a graph remains biconnected (linear DFS-based
algorithm for computing biconnected components of a graph can be found in [32]). If
the graph is not biconnected, the other reduction needs to be selected.

The �rst three cases of the reversion process are simple O(1)-time procedures.
Only the last case requires O(n) time to �nd an alternating cycle in a graph. The
algorithm for constructing such a cycle can be found in [6, 57].

The implementation of the Frink's algorithm � frink_matching function, is pre-
sented as Algorithm 1. It utilizes four functions � reductions, simple_reversion,
bridgeless and alternating_cycle. The �rst two functions are presented, respectively,
as Algorithms 2 and 3. Bridgeless function takes as a parameter a graph and reports
whether it contains a bridge. Alternating_cycle function takes three parameters �
a graph G = (V,E), perfect matching M ⊂ E and an edge e ∈ M . It returns an
alternating cycle C ⊂ E related to the matching M such that e ∈ C. All of the above
functions but alternating_cycle will be used by the matching algorithms presented in
the next sections. Implementation of the bridgeless function will vary from algorithm
to algorithm, leading to di�erent overall performances.

From the performance analysis of Frink's algorithm it turns out that there are



4.1. FRINK'S ALGORITHM 25

a b

c

d

e f
(a)

a b

e f

f

a b

c

d

e
(b)

a b

e f

a b

c

d

e f
(c)

a b

e f

f

a b

c

d

e
(d)

a b

e f

Figure 4.5: Reversion process of the basic Frink's reduction. (a) None of the edges
being reverted are matched � add edge c − d to the matching. (b) Edge a − e is
in the matching � remove a − e from the matching and add a − c and d − e to the
matching. (c) Edge b− f is in the matching � remove b− f from the matching and
add b − c and d − f to the matching. (d) Both edges a − e and b − f are in the
matching � �nd an alternating cycle C containing at least one of these two edges
(b − · · · − f in the example) and update the matching with C. This way case (d) is
reduced to one of the cases (a), (b) or (c).

Figure 4.6: Reversion process of the special cases presented in the Figure 4.2.
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two reasons for this algorithm not to run in linear time. The �rst reason is that each
reduction step performs linear test of graph's biconnectivity. The second reason is
the 4th case of the reversion process. It turns out, however, that it is possible to get
rid of the �rst limitation by applying recent results on dynamic graph data-structures
proposed by J. Helm, K. de Lichtenberg and M. Thorup [30]. The authors introduced,
among other dynamic algorithms, a data structure that for a given graph G allows
for insertion / deletion of vertices and edges. It also answers the question whether G
is biconnected. Each operation against the data structure takes O(log4 n) time. The
only remaining obstacle to reduce the Frink's algorithm complexity to o(n2) is the
4th case of the reversion stage.

Algorithm 1 frink_matching(G)

Require: Biconnected cubic graph G = (V,E).
Ensure: Perfect matching of G.

1: if |V | = 0 then
2: return ∅
3: else
4: v − w = E[0]
5: R = reductions(G, v − w)
6: if bridgeless(G[V − {v, w}, E ∪R[0]]) then
7: r = R[0]
8: else
9: r = R[1]
10: end if
11: M ← frink_matching(G[V − {v, w}, E ∪ r])
12: if |r ∩M | = 2 then
13: C ← alternating_cycle(G,M, r[0])
14: M ←M ⊕ C
15: end if
16: M ← (M − r) ∪ simple_reversion(G, v, w, r,M)
17: return M
18: end if

4.2 Biedl's algorithm

T. Biedl et al. [6] proposed an algorithm for constructing perfect matching in bicon-
nected cubic graphs in O(n log4 n) time. This algorithm is a clever modi�cation of
the Frink's algorithm which makes use of the following Lemma:

Lemma 4.3. For an arbitrary edge e of a biconnected cubic graph G there exists a
perfect matching in G not containing e.

Proof. As G is a biconnected cubic graph, according to Theorem 4.1 it has a perfect
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Algorithm 2 reductions(G, e)

Require: Biconnected cubic graph G = (V,E).
Require: Edge e = v − w ∈ E.
Ensure: List of possible reductions against the edge e. Each reduction is represented

as a set of edges to be added to the graph.

1: if v − w is a triple edge in G then
2: return [∅]
3: else
4: V ′ ← Nv(G, v)− w
5: W ′ ← Nv(G,w)− v
6: if |V ′| = 1 and |W ′| = 1 then
7: return [{V ′[0]−W ′[0]}]
8: else if |V ′| = 2 and |W ′| = 1 then
9: return [{V ′[0]−W ′[0], V ′[1]−W ′[0]}]
10: else if |V ′| = 1 and |W ′| = 2 then
11: return [{V ′[0]−W ′[0], V ′[0],W ′[1]}]
12: else
13: return [{V ′[0]−W ′[0], V ′[1]−W ′[1]}, {V ′[0]−W ′[1], V ′[1]−W ′[0]}]
14: end if
15: end if

matchingM . IfM contains e then we can construct an alternating cycle C containing
e and update matching M with C, so that M does not contain e.

By utilizing Lemma 4.3 it is possible to get rid of the 4th reversion case from the
Frink's algorithm. Biedl's algorithm does not perform reduction against arbitrary
edge of a graph. Instead, it �rst selects an arbitrary edge e and tries to construct
a perfect matching not containing e (from 4.3 it is known that such a matching
exists). We will refer to edge e as excluded from the matching being constructed.
Each Frink's reduction step is performed against an edge f incident to e in O(log4 n)
time by utilizing the dynamic graph biconnectivity data structure [30].

After reduction takes place (edge e has been deleted) an edge e′ � a newly added
edge incident to the endpoint of e � becomes excluded from the matching being
constructed.

It follows from Theorem 4.1 and 4.3 that reduced graph has a perfect matching
not containing e′. Frink's reductions are applied over and over again until graph
is empty. When reduction steps are being reverted, e′ never belongs to the perfect
matching, hence the 4th case of the Frink's reversions does not occur.

The above modi�cation of the Frink's algorithm leads to the O(n log4 n)-time
algorithm. Implementation of the Biedl's algorithm is presented as Algorithm 4. It
computes a perfect matching for a given bridgeless cubic graph G not containing spec-
i�ed edge e. Biedl_matching reuses reductions, bridgeless and simple_reversion
functions. Bridgeless function, however, is implemented di�erently then in case of
Frink's algorithm � it utilizes dynamic graph biconnectivity data structure [30].
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Algorithm 3 simple_reversion(G, v, w,R,M)

Require: Cubic biconnected graph G = (V,E).
Require: Pair of vertices v and w being added to G by the reversion.
Require: Set of edges R being removed from G by the reversion.
Require: Perfect matching M being extended by introduction of vertices v and w.
Ensure: Set of edges to be added to the matching M such that M remains a perfect

matching.

1: V ′ ← Nv(G, v)− w
2: W ′ ← Nv(G,w)− v
3: if R ∩M = ∅ then
4: return {v − w}
5: else if |R| = 1 then
6: return {v − V ′[0], w −W ′[0]}
7: else
8: if R[0] ∈M then
9: u′ − w′ = R[0]
10: else
11: u′ − w′ = R[1]
12: end if
13: if u′ ∈ W ′ then
14: (u′, w′) = (w′, u′)
15: end if
16: return {u− u′, w − w′}
17: end if

4.3 The new algorithm

It turns out that it is possible to perform an e�cient graph biconnectivity testing
for each reduction performed by the Frink's algorithm without utilizing complex dy-
namic biconnectivity data structures. By taking into account some biconnected cubic
graphs' properties and by applying the fully-dynamic connectivity data structure
[30] and the Sleator/Tarjan's dynamic trees [55], it is possible to solve the matching
problem faster than in O(n log4 n) time.

The fully-dynamic graph connectivity data structure supports the following oper-
ations:

• edge insertion,

• edge deletion,

• answering a question whether two given vertices of the graph are connected by
a path.

Each of the above operations takes O(log2 n) amortized time. M. Thorup [59] intro-
duced another dynamic data structure for solving the same problem which supports
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Algorithm 4 biedl_matching(G, e)

Require: Biconnected cubic graph G = (V,E).
Require: Excluded edge e = v − w ∈ E.
Ensure: Perfect matching of G not containing e.

1: if |V | = 0 then
2: return ∅
3: else
4: v′ − w′ = Ne(G, e)[0]
5: R = reductions(G, v′ − w′)
6: if bridgeless(G[V − {v′, w′}, E ∪R[0]]) then
7: r = R[0]
8: else
9: r = R[1]
10: end if
11: if Nv(G, r[0]) ∩ {v − w} = ∅ then
12: e′ ← r[1]
13: else
14: e′ ← r[0]
15: end if
16: M ← biedl_matching(G[V − {v′, w′}, E ∪ r], e′)
17: M ← (M ′ − r) ∪ simple_reversion(G, v, w, r,M)
18: return M
19: end if

the same set of operations in O(log n log log3 n) expected time per one operation.
Selecting one of these two data structures leads to a perfect matching algorithm for
biconnected cubic graphs running in O(n log2 n) time or O(n log n log log3 n) expected
time.

The second data structure used are dynamic trees of Sleator and Tarjan [55]. It
maintains a dynamic forest by supporting edge deletions and insertions in O(log n)
time per operation. It also supports computation of the nearest common ancestor of
any two vertices of a rooted tree in O(log n) time.

Both dynamic connectivity data structures from [30] and [59] maintain internally
a spanning forest T of graph G. A newly added edge e = x− y to G is added to T if
x and y were not connected in G prior to insertion of e. No other edge is removed or
added to T . In case of removal of a spanning forest edge e = x−y ∈ T , the algorithm
tries to �nd a replacement edge reconnecting components of x and y in the spanning
forest. Any operation on dynamic connectivity data structure results in O(1) edges
inserted/removed from T . Our new matching algorithm needs to know the lowest
common ancestor of some pairs of vertices in an arbitrarily rooted spanning forest of
G. To answer these questions we maintain a rooted copy of the spanning forest T in
the form of Tarjan's dynamic trees.

Our algorithm works in the following way:



30 CHAPTER 4. MATCHING IN BICONNECTED CUBIC GRAPHS

• Initialize the dynamic connectivity data structure D by adding all edges of an
input biconnected cubic graph G.

• Initialize the dynamic tree data structure T by adding all spanning tree edges
of D to T .

• Perform Biedl's algorithm but instead of using dynamic biconnectivity data
structure for verifying which of the two reductions maintains biconnectivity,
use the new approach described below.

We already know that at least one of the two possible reductions performed in each
step of the Frink's algorithm leads to a biconnected graph. Searching for the correct
reduction might be hard sometimes. However, if we �nd out that one reduction does
not preserve biconnectivity, then the Frink's theorem implies that the other reduction
is the one of our interest.

Let G = (V,E) be a biconnected cubic graph. We want to perform a reduction
against an edge c − d (see the Figure 4.1). We �rst need to remove vertices c and d
and edges a− c, b− c, c− d, d− e and d− f obtaining graph G′.

The data structure D needs to be updated accordingly. Two di�erent scenarios are
now possible � graph G′ remains connected or not (this can be veri�ed by querying
D if a is connected with b, e and f).

4.3.1 Case 1: G′ is not connected

Since graph G is biconnected, each of the removed edges (a − c, b − c, c − d, d − e
and d − f) lies on some cycle in G. As G has a cycle containing c − d, there has to
be at least one of the following paths in G′:

• between a and e,

• between a and f ,

• between b and e,

a b

c

d

e f

(a)

a b

e f

(b)

a b

e f

(c)

Figure 4.7: (a) The structure of G prior to edge deletions (every edge to be removed
lies on some cycle). (b) Reduction leading to a biconnected graph. (c) Reduction
leading to not connected graph.
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• between b and f .

Assume (without loss of generality) that G′ contains a path P connecting vertices a
and e (see Figure 4.7). A cycle in G consisting of path P and edges a− c, c− d and
d− e does not contain edges b− c and d− f , hence there has to be another cycle (or
cycles) in G containing those edges. Since G′ is not connected, there has to be a path
between b and f in G′. In order to maintain biconnectivity of the graph it is required
to connect vertex a with f and vertex b with e (the second type of connection leads to
not connected graph and it follows from the Frink's Theorem that the �rst connection
maintains biconnectivity).

4.3.2 Case 2: G′ is connected

As G′ is connected, it is possible to use Tarjan's trees to compute the lowest common
ancestor of any pair of vertices of G′ in a rooted spanning tree T being maintained.
Consider the subtree T ′ of the spanning tree T consisting of all edges spanned by
paths connecting vertices a, b, e and f in T . We need to select one of the two possible
connections of vertices a, b, e and f using new edges u and v such that every edge of
T ′ lies on some cycle in T ′ ∪ {u, v}. As we prove later, such a connection guarantees
biconnectivity of the entire reduced graph.

If we connect vertex a with e and vertex b with f , edges spanned by paths con-
necting a with e and b with f are covered by cycles of T ′ ∪ {u, v}. The only edges
in question are located between the lowest common ancestor of a and e (LCA(a, e))
and the lowest common ancestor of b and f (LCA(b, f)). There are three possible
cases depending on the relative position of LCA(a, e) and LCA(b, f) in T ′:

• LCA(a, e) = g, LCA(b, f) = h, LCA(g, h) = i, i ̸= g, h (see Figure 4.8(a),(b))
� after connecting a with f and b with e (LCA(a, f) = LCA(b, e) = i), every
edge of T ′ lies on some cycle in T ′ ∪ {u, v}.

• LCA(a, e) = i, LCA(b, f) = i (see Figure 4.8(c),(d)) � after connecting a with
e and b with f , every edge of T ′ lies on some cycle in T ′ ∪ {u, v}.

• LCA(a, e) = g, LCA(b, f) = i, LCA(g, i) = i (see Figure 4.8(e),(f); LCA(g, i) =
g is the symmetric case) � it is required to add such edges that generate cycles
containing all edges between vertices g and i in T ′. Edge w connecting vertex
g with its parent in T ′ has to be a part of the cycles as well. If a cycle ob-
tained by connecting b and f contains w (which can be tested by checking if
LCA(b, g) = g or LCA(f, g) = g) then connection of a with e and b with f is
the correct reduction. Otherwise, we have a situation presented in the Figure
4.8(e) � edges between g and h are not included in any cycle. However, by
selecting the second reduction � connection of a with f and b with e � all
edges are included in both cycles.

The only remaining thing to prove is the fact that if every edge of T ′ is included in
some cycle of T ′ ∪ {u, v}, the graph resulting from the reduction is biconnected. In
order to prove this fact it is su�cient to show that every edge of the reduced graph
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G′ lies on some cycle (according to the Theorem 2.8 a bridgeless cubic graph is also
biconnected).

It has been already shown that it is possible to perform reduction in such a way
that every edge e of T ′ ∪ {u, v} lies on some cycle. The rest of the edges remain. Let
us consider an arbitrary edge of graph G′ which is not part of the tree T ′. As G is
biconnected, there is a cycle C in G containing e. Assume (without loss of generality)
that when performing the reduction we have connected a with e and b with f . A few
cases have to be considered:

• Cycle C does not contain any of the removed edges � C is also a cycle in the
reduced graph, so e belongs to a cycle in the reduced graph.

• Cycle C contains three removed edges a− c, c− d and d− e (b− d, c− d and
d− f) � replacing those edges in C with a− e (b− f) leads to a cycle in the
reduced graph containing e.

a b
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d

e f

(a)

g h

i

(b) (c) (d)

(e) (f)
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Figure 4.8: (a) Example graph G with LCA(a, e) = g, LCA(b, f) = h and
LCA(g, h) = i. (b) Graph G′ obtained from (a) after reduction. (c) Example
graph G with LCA(a, e) = i = LCA(b, f). (d) Graph G′ obtained from (c) after
reduction. (e) Example graph G with LCA(a, e) = g, LCA(b, f) = i. (f) Graph G′

obtained from (e) after reduction.
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• C contains two removed edges a−c and b−c (d−e and d−f) � T ′ is a tree, so
there exists a path D connecting a and b in T ′ (e and f). C⊗(D∪{a−c, b−c})
is a collection of cycles containing e.

• C contains three removed edges a− c, c−d and d− f (b− c, c−d and d− e) �
T ′ is a tree, so there exists a path D connecting a and f in T ′ (b and e). C ⊗D
is a collection of cycles containing e.

• C contains four removed edges a− c, b− c, e−d and d−f � by replacing those
edges with a− e and b− f we obtain a cycle (possibly two cycles) containing e.

This completes the proof that the reduced graph remains biconnected.

The proposed algorithm requires O(n) operations of both dynamic connectivity
and dynamic tree data structures, so its total execution time is O(n log2 n) in case of
applying dynamic connectivity algorithm from [30] and O(n log n log log3 n) expected
time in case of the data structure from [59].

4.4 Utilizing decremental data structure

In this section we sketch a modi�cation of our algorithm from the previous sec-
tion which makes it possible to replace dynamic connectivity data structure with
its decremental equivalent. If the Frink's reductions didn't insert new edges to the
graph we could have directly applied a decremental dynamic connectivity data struc-
ture. In case of many problems decremental data structures are faster than fully
dynamic versions. M. Thorup proposed a decremental data structure for graph
connectivity problem [58]. It starts with n-vertex, m-edge graph and maintains
a spanning forest of the graph allowing to perform m edge deletion operations in
O(min{n2,mn log n}+

√
nm log2.5 n) expected time. In case of graphs with Ω( n2

logn
)

edges the expected execution time of a single operation is O(log n). For graphs with
Ω(n2) edges the complexity reduces to O(1). Thorup's data structure does not help
in our case, as cubic graphs are very sparse. There is a chance, however, that one
designs an e�cient decremental algorithm for biconnected cubic graphs in the future.

In order to utilize a decremental dynamic connectivity data structure, apart from
the original graph G = (V,E) we maintain a modi�ed representation of G denoted
by G′. Each vertex v of G is represented in G′ as two vertices v1 and v2 connected by
an edge v1 − v2. Each edge v − w of G is represented as four edges v1 − w1, v1 − w2,
v2−w1, v2−w2. The Figure 4.9(a) shows the representation of two vertices connected
by a single edge. Connectivity of graph G can be veri�ed by querying the decremental
dynamic connectivity data structure maintained for G′. As it is not possible to add
edges to G′ once Frink's reductions of graph G are performed, new edges of G are
stored in G′ utilizing representations of already removed edges of G. The �gure 4.10
presents changes in the graph G′ introduced by a single Frink's reduction in graph
G. Five edges are removed and two edges are added in G. Every added edge is
represented in G′ as a subset of already removed edges. Such an added edge is called
closed as it is not possible to perform further Frink's reductions against it without
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Figure 4.9: (a) Initial representation in G′ graph of two vertices v and w connected
by an edge. (b) General representation of an open edge � v1 is connected by a path
with w1, v2 with w2. In addition the two paths are joined by a �crossing�. (c) General
representation of a closed edge.

(a) (b) (c)

Figure 4.10: (a) State of graph G′ for the corresponding graph G presented in the
Figure 4.1(a). (b) State of graph G′ after performing the �rst type of the Frink's
reduction � newly added edges are represented using parts of removed edges. (d)
State of graph G′ after the second type of the Frink's reduction.

radical changes to the graph G′. A general representation of a closed edge is given in
the Figure 4.9(c).

Just like in case of the matching algorithm from the previous section, we start by
selecting an excluded edge e. A sequence of the Frinks' reductions is then performed.
Apart from the way of querying and updating the dynamic connectivity data structure
there are yet no di�erences in comparison with the algorithm utilizing fully-dynamic
connectivity data structure. The only problem is encountered when it turns out
that reduction to be performed a�ects a closed edge. In such a situation it is not
possible to update G′ to re�ect changes in G. In order to go around this problem we
extend the decremental dynamic data structure with restoration points. A restoration
point allows for restoring the state of the data structure to the moment when the
restoration point was created. Restoration points can be implemented by recording
all modi�cations made to the data structure and reverting them upon execution of a
restoration point. There is no additional performance cost (by means of asymptotic
complexity) to record changes made to the data structure. The time required to
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execute a restoration point is amortized by the process of performing operations on
the data structure. Before performing a single Frink's reduction a restoration point
needs to be created. This way it is possible to restore the state of the data structure
to the state before any Frink's reduction.

Two cases are possible when it turns out that the next reduction is to be performed
against a closed edge f � f can equal e, i.e. f is the edge from which the reduction
process started (see the Figures 4.11, 4.12), or not (see the Figure 4.13).

If f turns out to be e it means a cycle C was encountered. By executing a
restoration point which was created prior to selecting an excluded edge e it is possible
to represent all new edges of G in G′ in the open form using the subset of removed
edges. Figures 4.11 and 4.12 present the way of handling this situation depending on
the parity of the length of C.

If f is not e it means that f must have been introduced to G′ by one of the Frink's
reductions, for which restoration point has not yet been executed. Denote by r1, r2,
. . . , rk consecutive restoration points that have not yet been executed. Let rm be
the �rst restoration point for which G′ contains a closed edge f . The next Frink's
reduction to be performed a�ects edge f , so f was encountered twice by a sequence of
reductions (see Figure 4.13). Reversion point rm splits representation of the excluded
edge e in G′ into two parts � the part constructed prior to creation of rm and the
part generated afterwards. By executing the restoration point rm it is possible to use
representation of edges of G removed by the Frink's reductions after creation of rm to
turn all closed edges added to the graph after creation of rm into an open form. Edge
f is one of those edges, so it also becomes open. Now it is possible to perform the
remaining Frink's reduction. Once the graph G is empty the rest of the algorithm is
exactly the same as before.

The only di�erence in the complexity analyses compared to the algorithm from
the previous section is the need of maintaining graph G′ and executing restoration
points. The time required to execute restoration points and reconstruct open edges is
amortized by the cost of performing the Frink's reductions. Hence, the total execution
time of the algorithm is O(n log n+nf(n)) where f(n) is the cost of a single operation
on the decremental dynamic connectivity data structure. The O(n log n) component
of the algorithm's complexity comes from the execution of Sleator/Tarjan's dynamic
trees. If one designed a decremental dynamic connectivity data structure for sparse
graphs running in O(log n) time per operation it would be possible to �nd perfect
matching in biconnected cubic graphs in O(n log n) time.
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(a) (b) (c)

(d) (e)

Figure 4.11: The process of performing reductions along an even cycle. The lower row
presents changes in the graph G, while the upper row contains corresponding graph
G′. Light edges represent edge e which is excluded from the matching. (a) Initial
graph G and its corresponding graph G′. (b) G and G′ after the �rst reduction along
the cycle. (c) G and G′ after the second reduction along the cycle. This reduction
introduces a double edge which has to be reduced in the way depicted in the Figure
4.2(a). (d) State of G and G′ after reduction of the double edge. (e) State of the
graphs after executing a restoration point and converting all closed edges of G′ into
open edges.
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(b)

(d)(c)

(a)

Figure 4.12: The process of performing reductions along an odd cycle. The lower
row presents changes in graph G while the upper row contains corresponding graph
G′. Light edges represent edge e which is excluded from the matching. (a) Initial
graph G and its corresponding graph G′. (b) G and G′ after the �rst reduction along
the cycle. (c) G and G′ after the second reduction along the cycle. (d) The last
reduction along the cycle leads to not biconnected graph (a vertex incident to edge
e is connected with the rest of the graph by a bridge), so this reduction is never
performed by the algorithm.
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(b)

(d)

(c)(a)

(e)

Figure 4.13: The process of reductions in case of encountering a closed edge f , di�er-
ent from e. The lower row presents changes in graph G while the upper row contains
the state of corresponding graph G′. Light edges represent an excluded edge e. (a)
Initial graph G and its corresponding graph G′. (b) The �rst sequence of reductions.
(c) Reduction rm which introduces a closed edge f . (d) The second sequence of re-
ductions. The next reduction to be performed a�ects a closed edge f . (e) In order to
make the next reduction, it is required to execute a restoration point created before
stage (c). This way, all closed edges introduced into G after stage (b) can be turned
into an open form (including f) and so the following reduction against f is possible.



Chapter 5

Parallel matching algorithms

In this chapter we introduce new parallel algorithms for constructing maximum
matching for some broad classes of graphs. We start by presenting two NC algo-
rithms for subclasses of cubic graphs. These algorithms are designed respectively
for bipartite cubic and planar bipartite cubic graphs and their execution times are
O(log2 n) and O(log n log∗ n) respectively. We conclude this chapter with a parallel
version of M. Mucha and P. Sankowski algebraic matching algorithm [43].

5.1 Bipartite cubic graphs

In this section we present a new algorithm for computing perfect matchings in bipar-
tite cubic graphs. The general approach is similar to the Frink's sequential algorithm
for biconnected cubic graphs [23]. Our algorithm runs in O(log2 n) time and utilizes
O(n/ log n) processors. It's total work � O(n log n) � is near to optimal O(n) work
of sequential algorithm by A. Schrijver [52] and utilizes less processors than the fastest
parallel algorithm (by a O(log∗(n)) factor) for solving this problem known to date
[54]. It is also much simpler to understand and implement.

Keys to our parallel algorithm are Lemma 2.9 and the Petersen's Theorem 4.1.
Lemma 2.9 states that every bipartite cubic graph is biconnected and the Petersen's
Theorem 4.1 implies that every such a graph has a perfect matching. When apply-
ing the Frink's reduction to a bipartite cubic graph, there is no need of verifying
whether the resulting graph remains biconnected. Every Frink's reduction maintains
bipartiness of a graph, hence also biconnectivity (according to Lemma 2.9). This ob-
servation allows us to provide a new sequential algorithm for bipartite cubic graphs
that is based on the Biedl's algorithm. By disabling graph's biconnectivity validation,
we obtain an optimal, linear time algorithm. The advantage of this approach over
A. Schrijver's [51] algorithm is a possibility to relatively easily turn it into a parallel
algorithm. There is also a disadvantage, however, it is not possible to adopt such an
algorithm to regular graphs of degrees larger than 3.

De�nition 5.1. Let G = (V,E) be a graph. A set of edges E ′ ⊆ E is called non-
con�icting if for any pair of distinct edges e1, e2 ∈ E ′, they are not adjacent and they
do not have a common adjacent edge ((e1 ∪Ne(G, e1)) ∩ (e2 ∪Ne(G, e2)) = ∅).

39
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Example 5.2. An example set of non-con�icting edges is presented in the Figure
5.1.

Instead of executing a single reduction at a time, our new algorithm computes a
set of non-con�icting edges and performs reductions against all of them in a single
step. Once an empty graph is obtained, it is possible to select an initial empty
matching and revert all reduction stages, executing each reversion stage in parallel.
Three simple cases of reverting a reduction step from the Figure 5.1 are presented
in the Figure 5.2. These simple reversion cases can be performed in constant time
by executing each reversion independently from each other just like in the original
Frink's algorithm.

The problem arises when it turns out that both edges introduced by a single re-
duction are matched (equivalent of the case (d) from the Figure 4.5). Before reverting
such a case, we need to modify a perfect matching so that at least one of the edges
is no more in the perfect matching. Only then we can apply a simple O(1) reversion
procedure.

Lemma 5.3. Let G(V,E) be a bipartite cubic graph and M a perfect matching of G.
G contains a perfect matching M ′, which is disjoint with M .

Proof. Consider G[V,E −M ]. Every vertex of this graph has degree 2, hence it is a
collection of cycles. All cycles are of even length, as G is bipartite. By selecting from
every cycle every second edge we obtain a perfect matching M ′ disjoint with M .

The proof of Lemma 5.3 gives us a general idea how to construct a matching M ′

disjoint with M . We can design a single reversion step in the following way:

• Revert all reductions where at most one of the edges being reverted is matched
(according to the rules (a), (b) and (c) from the Figure 4.5).

• Construct a perfect matching M ′ disjoint with the current perfect matching M .

(a) (b)

Figure 5.1: (a) An example cubic graph and a set of two non-con�icting edges (pre-
sented in bold). (b) The example graph after Frink's reductions performed against
all non-con�icting edges .
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• Revert all remaining reductions (this time none of the edges being reverted is
matched, so rule (a) from the Figure 4.5 applies).

The exemplary reversion process requiring all three steps is presented in the Figure
5.3. The general structure of our new parallel algorithm is presented as an Algorithm
5.

The �nal complexity of the algorithm depends on the implementation of the pro-
cess of �nding non-con�icting edges and the performance of constructing the disjoint
matching M ′. The following two subsections present implementation of these two
building blocks.

Non-con�icting edges selection

Depending on the number of non-con�icting edges that can be found at each step of
the algorithm, the number of recurrence calls of nc_matching function is di�erent.
Hence, apart from the performance of constructing a set of non-con�icting edges , the
crucial role plays the size of the found set.

Lemma 5.4. For a given bounded degree graph G = (V,E) it is possible to construct
an independent set of vertices of linear size in O(log∗ n) time utilizing O(n) processors.

(a) (b) (c)

Figure 5.2: Reversion process of the simple case reductions of non-con�icting edges
in parallel. Edges from the perfect matching are presented in bold. (a) None of the
edges being reverted is matched. (b) One of the edges being reverted is matched.
(c) Two of the edges being reverted are matched.
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Proof. It is su�cient to �nd a maximal independent set. Since G is a graph of
bounded degree, it can be done in O(log∗ n) time using O(n) processors [26].

Lemma 5.5. For a given cubic graph G = (V,E) it is possible to reduce the non-
con�icting edges problem to the maximal independent set of vertices problem in O(1)
time utilizing O(n) processors.

For a given biconnected cubic graph G the pseudo-code presented as Algorithm
6 constructs a non-con�icting edge set of linear size in O(log∗ n) time utilizing O(n)
processors. It calls independent_set function, which implements the parallel maximal
independent set algorithm.

Disjoint matching construction

For a given bipartite cubic graph G with a perfect matching M it is relatively easy
to construct another perfect matching M ′ disjoint with M . To do so, the following
procedure can be applied:

(d) (e)

(a) (b) (c)

Figure 5.3: The process of reverting reductions when some reductions with both edges
being reverted are in the perfect matching occur. (a) Initial state before reversion
process, one reduction has two edges matched, the other none. (b) Reduction without
matched edges is reverted, matching M is obtained. (c)MatchingM is removed from
G leading to a collection of even cycles. (d) Every second edge from all even cycles
is selected constructing a matching M ′ (M ∩M ′ = ∅). (e) The remaining reduction
is reverted.
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Algorithm 5 nc_matching(G)

Require: Cubic bipartite graph G = (V,E).
Ensure: Perfect matching of G.

1: if |V | = 0 then
2: return ∅
3: else
4: E ′ ←non-con�icting_edges(G)
5: G′ ← G
6: for all v − w in E ′ do
7: G′ ← G′[V − {v − w}] ∪ reductions(G, v, w)[0]
8: end for
9: M ← nc_matching(G′)
10: for all v − w in E ′ do
11: R← reductions(G, v, w)[0]
12: if |R ∩M | ̸= 2 then
13: M ← (M −R) ∪ simple_reversion(G, v, w,R[0],M)
14: end if
15: end for
16: M ′ ← disjoint_matching(G,M)
17: for all v − w in E ′ do
18: R← reductions(R, v, w)[0]
19: if |R ∩M | = 2 then
20: M ′ ←M ′ ∪ simple_reversion(G, v, w,R[0],M ′)
21: end if
22: end for
23: return M ′

24: end if

• Remove all edges of M from G obtaining a collection of even cycles G′.

• Orient arbitrarily all cycles of G′.

• As G is bipartite, its vertices are contained in two sets V ′ and V ′′, (V ′∪V ′′ = V )
such that every edge joins vertex of V ′ with vertex of V ′′. Matching M ′ can be
obtained by selecting all edges of G′ outgoing from the vertices of V ′.

It is obvious how to perform the �rst and the third step of the algorithm in constant
time using O(n) processors. The only nontrivial part is the parallel orientation of
the cycles. It can be completed in O(log n) time with O(n) processors by applying a
doubling technique:

• For each cycle determine a representing vertex (for example a vertex with the
highest ID).

• For each representing vertex remove an arbitrary edge incident with it. This
turns all cycles of G′ into paths starting in the representing vertices.
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Algorithm 6 non− conflicting_edges(G)

Require: Bounded degree graph G = (V,E).
Ensure: Set of non-con�icting edges of G.

1: G′(V ′, E ′)← (∅, ∅)
2: for all v − w in E do
3: V ′ ← V ′ ∪ {v − w}
4: end for
5: for all v − w in V ′ do
6: for x ∈ Nv(G, v)− {w} do
7: E ′ ← E ′ ∪ {v − w, v − x}
8: for y ∈ Nv(G, x)− {v} do
9: E ′ ← E ′ ∪ {v − w, x− y}
10: end for
11: end for
12: for x ∈ Nv(G,w)− {v} do
13: E ′ ← E ′ ∪ {v − w,w − x}
14: for y ∈ Nv(G, x)− {w} do
15: E ′ ← E ′ ∪ {v − w, x− y}
16: end for
17: end for
18: end for
19: set← independent_set(G′)
20: result← ∅
21: for all v − w in set do
22: result← result ∪ {v − w}
23: end for
24: return res

• By applying a doubling technique compute for each vertex of each cycle a dis-
tance dist from the representing vertex.

• Based on a computed distance function dist orient all edges of all cycles away
from the representing vertices (for a given edge v−w with dist[v] = dist[w]− 1
orient it from v to w).

• For every representing vertex v introduce the previously removed edge and
orient it to v.

Orientation of cycles is obtained in O(log n) time with O(n) processors, hence the
disjoint matching construction phase has the same time complexity and processors
requirement.
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Algorithm 7 disjoint_matching(G,M)

Require: Bipartite cubic graph G = (V,E).
Require: Perfect matching M of G.
Ensure: Perfect matching M ′ of G disjoint with M .

1: G← G[V,E −M ]
2: D ← compute_distance(G)
3: M ′ ← ∅
4: for all v ∈ V do
5: if D[v] is even then
6: for all u ∈ Dv(G, v) do
7: if D[v] + 1 = D[u] then
8: M ′ ←M ′ ∪ {u− v}
9: end if
10: end for
11: end if
12: end for
13: return M ′

Algorithm 8 compute_distance(G)

Require: Bipartite regular graph G = (V,E) of degree 2.
Ensure: Consecutive numbering of vertices of all cycles of a graph G.

1: R← representative(G)
2: for all v ∈ V do
3: if v = R[v] then
4: E ← E − {De(G, v)[0]}
5: end if
6: end for
7: D : V → Z← (∅ → ∅)
8: for all v ∈ V do
9: if v = R[v] then
10: D[v]← 0
11: else
12: D[v]←∞
13: end if
14: end for
15: D ← distance(G,D)
16: return D

5.1.1 Complexity analysis

In this subsection we analyze the time complexity and total work of the nc_matching
algorithm. We prove that the presented implementation executes in O(log2 n) time
with O(n) processors. Latter we show that it is possible to reduce the required number
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Algorithm 9 distance(G,D)

Require: A graph G = (V,E) which is a set of paths.
Require: A distance function D : V → Z initialized to 0 for each head of a path, to
∞ otherwise.

Ensure: A distance function D representing the distance of each vertex from its
path's head.

1: step← 1
2: while step < |V | do
3: for all v ∈ V do
4: for all u ∈ Dv(G, v) do
5: D[v]← min(D[v], D[u] + step)
6: end for
7: end for
8: M ′ = ∅
9: for all v ∈ V do
10: if |Dv(G, v)| = 2 then
11: M ′ ←M ′ ∪ {Dv(G, v)[0]−Dv(G, v)[1]}
12: end if
13: end for
14: M ←M ′

15: step← step ∗ 2
16: end while
17: return D

of processors to O(n/ log n) maintaining the same time complexity.

Lemma 5.6. For a given bipartite cubic graph G, Algorithm 5 computes a perfect
matching in O(log2 n) time using O(n) processors.

Proof. As in each recurrence execution of nc_matching function, the computed set
of non-con�icting edges is of linear size, there exists a constant 0 < g < 1, such
that the size of the graph under consideration reduces each time at least by a factor
g. Algorithm executes k recurrence levels (k ≤ log1/g n). In the k-th recursion level

the graph contains not more than ngk vertices, hence nc_matching function requires
O(log(ngk)) time to process k-th level (computation of non-con�icting edges takes
O(log∗(ngk)), construction of the disjoint matching M ′ takes O(log(ngk)) time, other
steps require O(1) time). By summing the time required by all levels we obtain:

O(log n+log ng+log ng2+ · · ·+log ngk) ≤ O(k log n) ≤ O(log1/g n log n) = O(log2 n)

Only the �rst level of recursion of the nc_matching function uses all n processors.
Once graph is being reduced the number of utilized processors decreases. If we execute
nc_matching algorithm onO(n/ log n) processors, we can reduce the total work of the
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Algorithm 10 representative(G)

Require: Bipartite regular graph G = (V,E) of degree 2.
Ensure: A mapping R : V → V from vertices of a graph G to cycles' representatives.

1: R : V → V ← (∅ → ∅)
2: for all v ∈ V do
3: R[v]← v
4: end for
5: step← 1
6: while step < |V | do
7: for all v ∈ V do
8: for all u ∈ Dv(G, v) do
9: R[v]← min(R[v], R[u])
10: end for
11: end for
12: M ′ = ∅
13: for all v ∈ V do
14: M ′ ←M ′ ∪ {Dv(G, v)[0]−Dv(G, v)[1]}
15: end for
16: M ←M ′

17: step← step ∗ 2
18: end while
19: return R

algorithm by better utilization of processors. As Lemma 5.7 states, such a reduction of
the number of processors can be obtained without sacri�cing the overall performance
of the algorithm.

Lemma 5.7. For a given bipartite cubic graph G with n vertices, Algorithm 5 can be
executed with O(n/ log n) processors in O(log2 n) time.

Proof. As the number of processors available is less than the number of vertices in the
input graph G, it is required for a number of initial recurrence levels to share a single
processor by a number of vertices. The very �rst recurrence call of the nc_matching
function needs to analyze O(log n) vertices per processor. The following calls process
O(log ng), O(log ng2), . . . vertices per processor. This increases the time required
to complete the k-th level from O(log ngk) to O(max(log ngk, gk log ngk log n)). By
summing up the times required by all recurrence levels we obtain:

Σk
m=1max(log ngk, gk log ngk log n) ≤ Σk

m=1 log ng
k + Σk

m=1g
k log ngk log n ≤

≤ log2 n+ log nΣk
m=1g

k log ngk ≤ log2 n+ log2 nΣk
m=1g

k ≤

≤ log2 n+ log2 n
1

1− g
= O(log2 n)

Hence the reduction of the number of processors from O(n) to O(n/ log n) does not
a�ect the overall asymptotic algorithm's performance.
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5.2 Planar bipartite cubic graphs

The main complexity factor of the algorithm from the previous section is the con-
struction of a disjoint perfect matching. A bipartite cubic graph, after removal of the
perfect matching M , becomes a graph consisting of a set of even length cycles G′. In
the worst case it may turn out that it consists of a single cycle of length n. In such
a case orientation of the cycle takes θ(log n) time. If only we were able to limit the
length of the cycles by a constant, it would give us a faster algorithm. We are not
able to obtain such an upper bound in general case, but if we restrict ourselves to
planar graphs, it turns out that it is possible to derive a faster solution.

Lemma 5.8. Let G be a planar bipartite cubic graph and P be an arbitrary embedding
of G in a plane. Then G has at least n

2
faces in P .

Proof. The Euler's formula 2.4 states that for any connected planar graph n−m+f =
2 holds, where n is the number of vertices, m� the number of edges, f � the number
of faces. As G is cubic m = 3

2
n. Let k be the number of connected components of G

and n1, n2, . . . , nk be the numbers of vertices in connected components, respectively.
The total number of faces of G, according to Euler's formula, is:

f + k − 1 =
l=k∑
l=1

3

2
nl − nl + 2 =

n

2
+ 2k

This proves that G has at least n
2
faces.

Lemma 5.9. Let G be a planar bipartite cubic graph and let P be an arbitrary em-
bedding of G in the plane. Then G contains a linear number of faces of size less than
or equal 6.

Proof. An n-vertex bipartite planar cubic graph has 3
2
n edges. The total length of

all faces of G is 3n, as each edge of the graph contributes twice. As G has at least n
2

faces (Lemma 5.9) the average length of the face is not larger than 3n
n/2

= 6. As there
are linearly many faces in G, the number of faces of length shorter or equal 6 is also
linear.

What we are trying to accomplish is an algorithm which, instead of reducing single
non-con�icting edges, reduces entire cycles at once. Consider an example presented
in the Figure 5.4. It shows a way of eliminating a cycle from graph G resulting in a
smaller bipartite planar cubic graph G′. Once a perfect matching M ′ is computed for
the graph G′, it is possible to revert the reduction in a constant time and compute a
perfect matching M for G. Some examples of reversion process are presented in the
Figure 5.5.

De�nition 5.10. Let G = (V,E) be a bipartite planar cubic graph. The set of disjoint
cycles C of G is called non-con�icting if for any pair of cycles C1, C2 ∈ C they do
not have an adjacent edge in common ((C1 ∪Ne(G,C1)) ∩ (C2 ∪Ne(G,C2)) = ∅).
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(a) (b) (c)

Figure 5.4: (a) An initial graph with a cycle of length 6 to be reduced. (b) The �rst
possible reduction of the cycle. All removed vertices and edges are presented in gray.
Edges added to the graph are bold. (c) The second possible reduction of the cycle.
Please notice that reductions performed preserve planarity of the graph.

Figure 5.5: Reversion process of the reduction presented in the Figure 5.4(b). Three
cases are presented: exemplary perfect matchings M ′ (top row) and a reverted reduc-
tion together with reconstructed perfect matching M (bottom row).

Just like in case of the algorithm from the previous section, which was reducing
the set of non-con�icting edges at once, it is possible to perform a parallel reduction
against all non-con�icting cycles at once. As we consider cycles of length up to 6,
each cycle can be reduced by a single processor in a constant time. The only question
is how to construct such a set of non-con�icting cycles e�ciently. For this purpose
we introduce the following approach:

• For each vertex v �nd a set of all cycles not longer than 6 containing v.

• Construct a graph G′, in which vertices represent cycles found in the previous
step (cycles found multiple times need to be added to the graph only once).
Two vertices of G′ are connected by an edge if cycles of G corresponding to that
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Algorithm 11 nc_planar_matching(G)

Require: Planar bipartite cubic graph G = (V,E).
Ensure: Perfect matching of G.

1: C ← independent_cycles(G)
2: G′(V ′, E ′)← G(V,E)
3: for all c ∈ C do
4: G′ ← G[C ′ − c, E ′ ∪ cycle_reduction(G, c)]
5: end for
6: M ← nc_planar_matching(G′)
7: for all c ∈ C do
8: M ← (M − cycle_reduction(G, c)) ∪ cycle_reversion(G, c,M)
9: end for
10: return M

Algorithm 12 independent_cycles(G)

Require: Planar bipartite cubic graph G = (V,E).
Ensure: Set of independent cycles of G.

1: G′(V ′, E ′)← (∅, ∅)
2: S ← ∅
3: for all v ∈ V do
4: for all P = v − v2 − · · · − vk − v ∈ G, k ≤ 6 do
5: if p is a simple cycle and v = min{w : w ∈ p} and v2 < vk then
6: V ′ ← V ′ ∪ {P}
7: for all w ∈ P do
8: S[w]← S[w] ∪ {P}
9: end for
10: end if
11: end for
12: end for
13: for all v ∈ V do
14: for all w ∈ Nv(G, v) ∪ {v} do
15: for all P ∈ S[v] do
16: for all Q ∈ S[w] do
17: E ′ ← E ′ ∪ {P −Q}
18: end for
19: end for
20: end for
21: end for
22: return independent_set(G′)

vertices are adjacent.

• Compute an independent set of vertices in G′. The result corresponds to the
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Algorithm 13 cycle_reduction(G,C)

Require: Planar bipartite cubic graph G = (V,E).
Require: A simple cycle C = (V ′, E ′) ⊂ G. Edges of C are ordered by the occurrence

on the cycle.
Ensure: Set of edges R such that G[V −V ′, (E−E ′)∪R] is a bipartite cubic graph.

1: R← ∅
2: for x = 0 to |C| − 1 do
3: if x is even then
4: v − w ← E ′[x]
5: E ′ ← Nv(G, v)− V ′

6: E ′′ ← Nv(G,w)− V ′

7: if |E ′| = 1 and |E ′′| = 1 then
8: R← R ∪ {E ′[0]− E ′′[0]}
9: end if
10: end if
11: end for
12: return R

Algorithm 14 cycle_reversion(G,C,M)

Require: Planar bipartite cubic graph G = (V,E).
Require: Simple cycle C = (V ′, E ′) of G.
Require: Perfect matching M of G after reduction of cycle C.
Ensure: Set of edges R which extends M to the perfect matching of G.

1: R← ∅
2: for x = 0 to |C| − 1 do
3: if x is even then
4: v − w ← E ′[x]
5: E ′ ← Nv(G, v)− V ′

6: E ′′ ← Nv(G,w)− V ′

7: if |E ′| = 1 and |E ′′| = 1 and |{E ′[0]− E ′′[0]} ∩M | = 1 then
8: R← R ∪ {v − E ′[0], w − E ′′[0]}
9: else
10: R← R ∪ {v − w}
11: end if
12: end if
13: end for
14: return R

set of non-con�icting cycles in G.

Function independent_cycles(G) presented as Algorithm 12 provides an implemen-
tation of this approach. The entire matching algorithm for bipartite planar cubic
graphs is implemented as nc_planar_matching(G) function presented as Algorithm
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11.

Lemma 5.11. For a given planar bipartite cubic graph G, Algorithm 12 computes a
set of non-con�icting cycles of linear size.

Proof. The graph G′ representing all cycles of G not longer than 6 contains all faces
of G not longer than 6, hence it follows From Lemma 5.9 that G′ is of linear size.
As G is cubic, each vertex of G′ is of bounded degree (cycles of bounded length
are incident to a constant number of cycles of bounded length), so by applying the
maximal independent set algorithm, it is possible to compute an independent set of
linear size in G′. This independent set corresponds to a set of non-con�icting cycles
in G of linear size.

Lemma 5.12. It is possible to implement the Algorithm 11 so that it runs on O(n)
processors in O(log n log∗ n) time.

Proof. As the sets of non-con�icting cycles computed by the algorithm are of linear
size there are O(log n) recursion levels. The maximal independent set algorithm
takes O(log∗ n) time to compute a single set of non-con�icting cycles , hence the
total execution time of this algorithm is O(log n log∗ n). Each parallel reduction
and reversion step of non-con�icting cycles is performed in O(1) time, as a single
reduction/reversion of a bounded-size cycle can be performed by a single processor
in constant time. The only remaining part is the construction of G′ graph. It is easy
to �nd all cycles not longer than 6 in a constant time. As graph G is cubic, the
brute-force approach to analyze all paths of length up to 6 from a given source vertex
v takes constant time. Each processor is assigned a di�erent source vertex. Once a
cycle is encountered, it can be added as a vertex to the graph G′. In order not to
create more than one vertex for the same cycle, we can impose a linear ordering on
vertices of G. If brute-force search was initiated from vertex v, a new vertex v′ is to
be added to G′ only if v is the smallest vertex on a cycle corresponding to v′ and
the second vertex on a cycle is smaller than the last one. Such a limitation uniquely
identi�es each cycle of G. To construct all edges of graph G′ it is su�cient for each
vertex v of G′ corresponding to a cycle C in G to add edges v − w where w iterates
over all vertices of G′ corresponding to cycles C ′ in G adjacent to C. As all cycles
are of bounded length it is possible to perform this step in constant time.

5.3 Algebraic algorithm for general graphs

M. Mucha and P. Sankowski [39] proposed in 2004 a new randomized algebraic max-
imum matching algorithm for bipartite graphs running in O(nω) time1. They also
managed to generalize this algorithm to all types of graphs preserving O(nω) execu-
tion time, but the generalization greatly complicated the algorithm. N. J. A. Harvey
[29], by utilizing some algebraic properties of matrices, managed to simplify the algo-
rithm by Mucha and Sankowski. The O(nω) algebraic maximum matching algorithm

1O(nω) is an optimal matrix multiplication time. It is known that ω < 2.376.
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applied to dense graphs is asymptotically faster than O(n
5
2 ) classical approach, how-

ever, because of a great complexity of utilized fast matrix multiplication procedure,
it turns out to be impractical.

By replacing fast matrix multiplication with classical multiplication the idea pro-
posed by Mucha and Sankowski leads to a simpleO(n3) algorithm for arbitrary graphs.
We will use it as a starting point for designing relatively simple parallel maximum
matching algorithm for arbitrary graphs running in O(n log n) time with O(n2) pro-
cessors. Such an approach has two advantages. Firstly, its total work of O(n3 log n)
is relatively small compared to other parallel matching algorithms. The second ad-
vantage is that it is possible to e�ciently implement it on a GPU. We will provide
such an implementation and analyze it's performance in the following chapter.

The presentation of our parallel algebraic algorithm is partitioned into four sub-
sections. The �rst subsection presents an algebraic algorithm for computing perfect
matching in bipartite graphs. The following subsection extends the algorithm to the
class of general graphs. The third subsection presents a way of computing a maximum
matching. We conclude this section with sequential and parallel implementation of
the algorithm.

5.3.1 Perfect matchings in bipartite graphs

Consider a bipartite graph G = (V,E) with bipartition (V ′, V ′′) and assume that
n = |V ′| = |V ′′| (if it does not hold, a smaller set of vertices can be extended with
adequate number of isolated vertices). The Tutte matrix T [60], [44] of size n × n
representing the graph G is de�ned as follows:

T [x, y] =

{
0 if V ′[x]− V ′′[y] ̸∈ E

ex,y if V ′[x]− V ′′[y] ∈ E

where ex,y is a unique variable. Each perfect matching M of G maps to a unique set
of n non-zero elements of matrix T corresponding to the edges of M . Determinant
of the matrix T (det(T )) is given by the following formula2:

det(T ) =
∑
σ∈Sn

sgn(σ)Πn−1
i=0 T [i, σ(i)]

Observe that graph G has a perfect matching if and only if det(T ) ̸= 0. As det(T )
is a symbolic polynomial (with variables ex,y) we can replace all variables ex,y with
random numbers obtaining a numerical matrix T ′. If determinant of T ′ is not equal
0 (it is possible to compute the determinant of T ′ using classical O(n3) algebraic
algorithm), it means that graph G has a perfect matching. It is not necessarily true
that det(T ′) = 0 means that G does not have a perfect matching, but if we perform
all computations in Zp for su�ciently large prime p, the relation �G has a perfect
matching if and only if det(T ′) ̸= 0� holds with high probability. For the exact
probability analyses please refer to [39].

2Sn is the set of all permutations σ of the numbers {0, 1, . . . , n− 1}. sgn(σ) denotes the sign of
the permutation σ: +1 if σ is an even permutation and -1 if it is odd.
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By computing det(T ′) we can convince ourselves that G has a perfect matching,
but we don't know yet how this perfect matching looks like. To construct it we need
to determine a permutation σ′, for which Πn−1

i=0 T
′[i, σ′(i)] ̸= 0.

One way to accomplish this task is to start with empty matching M ′ and check
every edge V ′[x]−V ′′[y] ∈ E if M ′ can be extended to a perfect matching using edge
V ′[x] − V ′′[y]. If det(T ′ \ [x, y]) ̸= 0 it means that V ′[x] − V ′′[y] is an allowed edge,
hence there exists a perfect matching in G containing it. We extend M ′ with the
edge V ′[x]−V ′′[y] and remove vertices V ′[x] and V ′′[y] from G. T ′ is also updated by
removing the x-th column and the y-th row. The process of selecting edges continues
until a perfect matching is constructed.

Naive computation of the determinant for each edge of G leads to the O(n5)
algorithm (in the worst case it is required to examine O(n2) edges). Fortunately,
the inverse matrix T ′−1, which can be computed in O(n3), can greatly reduce the
computations. The following dependence between the determinant of T and the
inverse of T holds:

T−1[x, y] = (−1)x+y det(T \ [y, x])
det(T )

For any non-singular matrix T , det(T ) ̸= 0, so by computing T−1 we get a fast
probabilistic mechanism for checking in constant time whether a given edge V ′[x] −
V ′′[y] is allowed (by making sure that T−1[y, x] ̸= 0). This improvement reduces time
complexity of the algorithm from O(n5) to O(n4), as an inverse matrix has to be
recomputed every time a matching being constructed is extended with a new edge.

If graph G had exactly one perfect matching, recomputation of the inverse matrix
would not be required, as all edges V ′[x]− V ′′[y] for which T−1[y, x] ̸= 0 construct a
single perfect matching. It turns out, however, that after extending a matching with
an allowed edge V ′[x]−V ′′[y], it is possible to update T−1 in O(n2) time. All we need
to do is a single Gaussian-elimination step of the y-th column and the x-th row of
the T ′ matrix:

T−1 ← T−1 − T−1[y, ∗] · T−1[∗, x]
T−1[y, x]

This leads to the O(n3) algebraic algorithm for constructing a perfect matching in a
bipartite graph.

5.3.2 Perfect matching in general graphs

In order to �nd a perfect matching in an arbitrary graph G = (V,E), some modi�ca-
tions to the algorithm from the previous section are required. First of all construction
of matrix T needs to be di�erent. In case of a bipartite graph, each vertex from V ′

has a unique column in matrix T assigned, while a vertex from V ′′ has a unique row.
Such a construction makes it impossible to match a vertex from V ′ (V ′′) with a ver-
tex from the same set. For bipartite graphs it is �ne, as there are no edges between
vertices in V ′ (V ′′). In general case, however, any pair of vertices can be connected
by an edge, so construction of the matrix T needs to take this into account. Matrix T
for general graphs has n = |V | columns and rows � vertex V [x], x ∈ {0, 1, . . . , n−1},
is assigned x'th column and x'th row. Tutte's matrix is de�ned as follows:
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T [x, y] =


0 if V [x]− V [y] ̸∈ E

ex,y if V [x]− V [y] ∈ E and x < y
−ey,x if V [x]− V [y] ∈ E and x > y

In case of bipartite graphs, a single non-zero determinant's product maps one-to-
one to a perfect matching of a graph. In general case such a mapping does not hold,
as each edge has two corresponding entries in the matrix. It turns out, however, that
there is a mapping between perfect matchings and cycle-covers3 of a graph, which
makes it possible to use the determinant of matrix T for a construction of a perfect
matching in a similar way as in case of bipartite graphs. The only modi�cation
required, when an allowed edge V [x]− V [y] is detected, is an inverse matrix update
process � in addition to a single Gaussian elimination step against row x and column
y we need to perform elimination against row y and column x.

5.3.3 Maximum matching in general graphs

If a graph under consideration does not have a perfect matching, the determinant of
matrix T is 0 and it is not possible to compute the inverse matrix. To �nd a maximum
matching using algebraic methods, we need to remove from G some vertices, so that
the remaining graph has a perfect matching. It can be achieved in terms of matrix
operations by �nding a maximum non-singular sub-matrix of T . Perform the Gaussian
elimination of the matrix T and select all rows and columns against which eliminations
were performed. The entire process takes O(n3) time.

5.3.4 Sequential implementation

In this section we de�ne all implementation stages of the O(n3) sequential algebraic
maximum matching algorithm for general graphs. It will be used in the following
section as a starting point for an implementation of a parallel version of the matching
algorithm that runs in O(n log n) time using O(n2) processors.

construction of the matrix T : For an input graph G = (V,E) with n vertices,
construct an empty matrix T with n columns and n rows. For each edge V [x]−
V [y] ∈ V pick a random integer k ∈ Zp − {0} and update two entries of the
matrix T in the following way:

T [x, y] = k, T [y, x] = k−1

This stage takes O(n2) time.

construction of the non-singular sub-matrix T ′: Construct two empty lists A
and B. Scan matrix T in the row-major order for non-zero elements. Once a
non-zero element T [x, y] is encountered, add vertices V [x] and V [y] to the lists
A and B, respectively and perform the Gaussian elimination against T [x, y]

3To read more about perfect matchings and cycle covers please refer to [29].
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and T [y, x]. Continue the scan process as long as there are some non-zero
elements left. Construct a sub-matrix T ′ of T by selecting from T only columns
corresponding to vertices from concatenated lists [A,B] and rows corresponding
to vertices from concatenated lists [B,A]. Make sure that order of columns and
rows of T ′ correspond to the order of elements in the concatenated lists (this
way no pivoting will be required in the next step of the algorithm). Up to n
non-zero elements are found during the scan process, hence the total complexity
of this stage is O(n3). Algorithm 204 presents a pseudo-code of this phase.

computation of the inverse of T ′: By performing the Gaussian elimination of the
T ′ matrix we obtain three matrices � L, R and U , where LRU = T ′, L is a
lower triangular matrix, R is a diagonal matrix and U is an upper triangular
matrix. T ′−1 can be computed as follows:

T ′−1 = U−1R−1 L−1.

LRU factorization: This step performs a linear number of Gaussian elimi-
nation steps against diagonal elements of the matrix T ′, recording at the
same time coe�cients of linear row and column combinations in L and
U matrices respectively. A single elimination step takes O(n2) time, so
it is possible to compute LRU factorization in O(n3) time. Algorithm 21
presents a pseudo-code of this phase.

inversion of the L matrix: Inversion of each row of the lower triangular ma-
trix can be done independently. The process of computing the inverse is
presented as Algorithm 22.

inversion of the R matrix: To inverse matrix R it is su�cient to compute
the inverse of each diagonal entry of R. This step takes O(n) time. The
pseudo-code is presented as Algorithm 23.

inversion of the U matrix: To inverse matrix U , we can �rst transpose it,
use L matrix inversion algorithm and then transpose the result again.
Transposition is cheap (requires O(n2) operations). The pseudo-code is
given by Algorithm 24.

U−1 R−1 L−1 multiplication: First compute S = U−1 R−1. R is diagonal, so
it is su�cient to scale each column of U−1 by a constant (it requires O(n2)
time). Afterwards compute T ′−1 = S L−1. It takes O(n3). The pseudo-
code of the multiplication function is presented as Algorithm 25.

construction of matching M : Scan edges of graph G for the corresponding non-
zero elements in the matrix T ′−1. If for a given edge e, T ′−1[x, y] ̸= 0, it means
that e is allowed. Add e to the matching M being constructed and perform
the Gaussian elimination of T ′−1 against rows and columns corresponding to
vertices adjacent to e:

T−1 ← T−1 − T−1[∗, x] · T−1[y, ∗]
T−1[y, x]

4Algorithms 20 � 35 are collected in the Appendix.
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T−1 ← T−1 − T−1[∗, y] · T−1[x, ∗]
T−1[x, y]

The pseudo-code of this phase is presented as Algorithm 26. The entire sequen-
tial algebraic matching algorithm is presented as Algorithm 27

5.3.5 Parallel implementation

In this section we turn the sequential algebraic maximum matching algorithm from
the previous section into a PRAM [34] version running in O(n log n) time and utilizing
O(n2) processors. We accomplish this by turning each step of the sequential algorithm
into a parallel version.

construction of the T matrix: By assigning a single processor to each pair of el-
ements T [x, y] and T [y, x], construction of the matrix T can be completed in
O(1) time. Each processor assigned to element T [x, y] veri�es whether x−y ∈ E
and if so two elements of matrix T are updated � T [x, y] = k, T [y, x] = k−1,
where k is a random integer from {1, . . . , p− 1}

construction of the T ′ sub-matrix: By assigning a single processor to each ele-
ment of the matrix T it is possible to �nd successive non-zero elements of T
in O(1) time. In the similar way a single Gaussian elimination step can be
performed. Construction of the T ′ matrix also takes O(1) time. The total ex-
ecution time of this phase is hence O(n). Sample pseudo-code is presented as
Algorithm 28.

inversion of the T ′ matrix: Matrix inversion can be computed in O(n log n) time.
The bottleneck is computation of L−1 and U−1.

LRU factorization: The parallel factorization in O(n) time is similar to the
parallel Gaussian elimination applied to the matrix T . The only di�erence
is the additional requirement � construction of matrices L and U , which
can be easily obtained. The sample pseudo-code is presented as Algorithm
29.

inversion of the L matrix: Fast parallel inversion of a lower triangular ma-
trix is not so simple, as there are strong dependencies between matrix
entries. By investigating the pseudo-code of the sequential implementa-
tion of this phase, one can notice that computation of entries from the
di�erent columns is independent. This allows to compute all columns in
parallel. The pseudo-code is given as Algorithm 30. Such an approach uses
O(n) processors and takes O(n2) time. The other phases of the algorithm
run in O(n) time, so it is worth trying to further speed up the inversion
of the L matrix. It is possible to compute consecutive entries of the re-
sult matrix with a parallel approach. Instead of spending O(n) time on
sequential sum computation (lines 5−7 of Algorithm 30), O(log n) parallel
phases can be executed, each of them reducing the size of the sum being
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computed by half. This provides an algorithm for computing the inverse
of the L matrix in O(n log n) time using O(n2) processors.

inversion of the R matrix: All entries of the diagonal matrix, as already no-
ticed in the previous section, can be computed independently of each other,
which leads to a simple O(1) time algorithm utilizing O(n) processors (the
pseudo-code is presented as Algorithm 31).

M ′−1 = U−1 R−1 L−1 multiplication: Multiplication of two n × n matrices can be
computed in O(n) time using O(n2) processors. This is a simple result following
from the fact that computation of each entry of the result matrix is independent.
Example pseudo-code is given as Algorithm 33. Matrix multiplication can also
be computed in polylogarithmic time, but we are interested in an approach that
provides an e�cient execution on a GPU.

Putting all phases of the PRAM algorithm together we get O(n log n) total execution
time utilizing O(n2) processors. This is much faster from the sequential O(n3) time
algorithm, however, the total work is larger by a O(log n) factor.



Chapter 6

Practical aspects of the matching

problem

The matching problem has been analyzed for over a century from many di�erent
perspectives. A number of approaches have been utilized � alternating paths, �ows,
randomization, algebraic algorithms, just to name a few. Depending on the type of
a problem being solved numerous types of graphs were considered � general graphs,
bipartite, biconnected, planar, regular, cubic. . . Over time a lot of e�cient algorithms
were proposed to solve subclasses of the general matching problem. In practice,
however, theoretically e�cient algorithms sometimes turn out to be slow or even
hardly implementable. In this chapter we analyze the practical value of some matching
algorithms and we try to answer the question how di�erent subclasses of the matching
problem can be solved e�ectively. We start with an introduction of one more algorithm
� reduction of the perfect matching problem to the boolean satis�ability problem.
Description of a porting of the parallel algebraic maximum matching algorithm from
section 5.3 to a GPU architecture follows. The chapter is concluded with performance
evaluation of di�erent matching algorithms.

6.1 Perfect matching construction via boolean satis-

�ability

When searching for an e�cient solution to the perfect matching problem in bicon-
nected cubic graphs we tried many di�erent approaches. One of them was a reduction
of the perfect matching problem to the SAT problem. Despite the lack of the the-
oretical upper bound on the complexity of such an algorithm, it turns out to be
quite e�ective in practice. We have decided to present this algorithm and provide a
performance comparison against other matching algorithms.

If a given graph G = (V,E) has a perfect matching it is possible to construct an
instance of the SAT problem, which solution encodes a perfect matching of G. For
a given graph G we are going to construct an instance of the SAT problem with |E|
variables where each edge is assigned a single variable. Variable assigned to an edge
e is evaluated to TRUE if the perfect matching being constructed contains e. For

59
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each vertex v ∈ V with incident edges Ne(G, v) = {e1, e2, . . . , ek} we generate the
following set of clauses:

e1 ∨ e2 ∨ · · · ∨ ek

∀e1,e2∈Ne(G,v),e1 ̸=e2¬e1 ∨ ¬e2
The �rst clause makes sure that for each vertex v ∈ V at least one edge incident
to v is matched. This way if SAT problem formule is satis�able we are guaranteed
that each vertex is incident to an edge from the constructed matching. The rest of
the clauses make sure that for each vertex v ∈ V at most one edge incident to it is
matched (otherwise the set of edges for which SAT variables are evaluated to TRUE
might not form a valid matching). This way any satis�able evaluation of the SAT
problem formule maps uniquely to a perfect matching of G.

The instance of the SAT problem generated for graph G = (V,E) consists of

|V |+
∑
v∈V

Ne(G, v) · (Ne(G, v)− 1)|
2

clauses

and contains
|E|+

∑
v∈V

|Ne(G, v)| · (|Ne(G, v)| − 1) literals

In case of bounded degree graphs an instance of the SAT problem is of O(n) size,
which is of the same asymptotic size as the input graph. In case of dense graphs,
however, the size of the SAT instance grows to θ(n3). We cannot expect an algorithm
with θ(n3) input to outperform other competing matching algorithms, as the size of
the SAT instance is bigger than the time complexity of the state of the art general
matching algorithms.

We can overcome this problem by �rst constructing a graph G′ with maximum
vertex degree 3, such that G has a perfect matching if and only if G′ has one. In
addition it must be possible to e�ciently convert a perfect matching of G′ to a perfect

(a)

...

...

(b)

...

...

Figure 6.1: (a) The process of reducing degree of a vertex. To reduce a vertex of
degree k (k > 3) it is required to introduce 2(k−3) new vertices and edges. Reduction
of the entire graph leads to a new, almost-cubic graph with O(n + m) vertices and
edges. (b) The process of reconstructing a matching from a matching found for the
almost-cubic graph (matched edges are presented in bold).
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matching of G. The Figure 6.1 demonstrates the process of reducing a degree of a
vertex to up to 3 and the process of reconstructing a matching of G from a matching
of G′. Almost cubic graph G′ constructed for an input graph G = (V,E) consists of

|V |+
∑
v∈V

max(0, 2 · |Ne(G, v)| − 6) vertices

and
|E|+

∑
v∈V

max(0, 2 · |Ne(G, v)| − 6) edges

As all vertices of G′ are of degree up to 3, size of the SAT problem formule generated
for G′ is asymptotically the same as the size of G (O(|V |+ |E|)). Some more details
on reducing the degree of a graph can be found in [5].

In general, solving the SAT problem is an NP -complete task. In case of our
problem most of the clauses are in 2-CNF form (2-CNF is solvable in linear time),
which gives us some hope for relatively fast processing (however, still exponential).
The di�culty to solve an instance of the SAT problem also depends on the number
of satis�able evaluations. In general, more satis�able solutions of the SAT problem
makes it easier to �nd one of them. In our case each solution to the SAT problem
maps directly to the perfect matching of the graph, hence the number of perfect
matchings is important to us. In the 1970's Lovasz and Plummer [38] made the
following conjecture:

Conjecture 6.1 (Lovash-Plummer). Let G be an arbitrary n-vertex cubic graph with-
out a cut-edge. There exists a �xed constant c such that G has at least ec n perfect
matchings.

This conjecture has been proven for two important classes of cubic graphs �
bipartite and planar. It is deeply believed that it also holds for all cubic bridgeless
graphs. This is crucial for a SAT solver to �nd solution to the matching problem in
a reasonable amount of time.

In case a graph does not have a perfect matching at all, it may take a very
long time to determine that an instance of the SAT problem is unsatis�able. We
have executed our SAT solver based matching algorithm against a number of graphs
without a perfect matching. For many input graphs, SAT solver was able to quickly
�nd a contradiction in the input formula. In some cases, however, it failed to �nd such
a contradiction which resulted in very long execution. For one of the extreme cases an
input graph had 21 vertices and 120 edges (after reduction to an almost-cubic graph it
had 375 vertices and 474 edges). It took 42 seconds to determine there is no perfect
matching in this graph. In case of graphs with many perfect matchings, however,
SAT technique provides an e�cient algorithm for constructing a perfect matching.

6.2 Maximum matching on a GPU

Nowadays parallelism is becoming the only tool for increasing performance of compu-
tational expensive tasks. It is widely practiced to apply parallelism to speed up many



62 CHAPTER 6. PRACTICAL ASPECTS OF THE MATCHING PROBLEM

Table 6.1: Performance of a CPU implementation of the algebraic matching algorithm
Graph size Submatrix Matrix Matching Total

(# of vertices / # of edges) computation inverse construction

256 / 13 107 0.015 s 0.029 s 0.135 s 0.179 s
512 / 52 428 0.071 s 0.140 s 1.091 s 1.302 s

1 024 / 209 715 0.363 s 0.730 s 9.164 s 10.257 s
2 048 / 838 860 2.540 s 4.597 s 74.988 s 82.125 s
4 096 / 3 355 443 14.209 s 25.760 s 419.292 s 459.261 s

real-life graph based problems as well. Some of them can be easily parallelized �
breadth-�rst search is a �agship example. However, there is a class of graph problems
for which e�cient sequential algorithms have not yet been outperformed by applying
parallelism. Maximum matching is one of them.

In this section we present a practical parallel matching algorithm adopted to a
GPU architecture. Our starting point is the PRAM algorithm presented in section 5.3
which runs in O(n log n) time using O(n2) processors. We will adopt this algorithm
for GPU (Graphics Processor Unit) by taking into account nowadays hardware ar-
chitecture and by reducing the total algorithm's work to O(n3). We are not pursuing
the highly tuned implementation. We just want to prove that it is possible for some
groups of graphs to outperform e�cient sequential matching algorithms by applying
parallel computation on nowadays hardware.

Before porting the parallel algebraic matching algorithm to a GPU we �rst im-
plement it on a CPU using FFLAS-FFPACK library [3]. This library provides lin-
ear algebra algorithms over a �nite �eld which runs almost as fast as �oating point
equivalents. In order to implement maximum matching algorithm we utilized three
functions from this library. To compute a maximum non-singular sub-matrix LQUP
matrix factorization implemented as a FFPACK::LUdivine function was utilized. FF-
PACK::Invert was used to compute the matrix inverse, while FFPACK::fgemm was
used for matrix-matrix multiplication. We have executed the algorithm against ran-
dom graphs of di�erent sizes. The results obtained are presented in the Table 6.1.

CPU-based matching algorithm indeed has O(n3) time complexity � doubling
the number of vertices increases the execution time of the algorithm 8 times. It
turns out that most of the time (∼ 90%) is spent in the last phase of the algorithm
� matching construction. This phase consists of two parts � searching for non-
zero elements in the inverse matrix (to �nd the allowed edges) and performing the
inverse matrix update, which utilizes matrix-matrix multiplication function. The
cumulative execution time of the search process is O(n2), so it is marginal compared
to the matrix update. The multiplication phase, on the other hand, is quite complex
� not only it performs the total work of O(n3), but it also executes matrix-vector
multiplication O(n) times, which does not allow to reach the peak performance of a
CPU. To con�rm this statement we have performed a small experiment. We have
done a single multiplication of two 2048× 2048 matrices vs 2048 multiplications of a
2048×2048 matrix by 2048 elements vector. The total theoretical work in both cases
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Table 6.2: Execution time of the third phase of the algebraic matching algorithm
depending on the value of parameter g

Graph size / g 1 2 4 8 16 32 64 128

256 / 13 107 0.13 s 0.07 s 0.04 s 0.02 s 0.01 s 0.01 s 0.01 s 0.04 s
512 / 52 428 1.09 s 0.58 s 0.28 s 0.15 s 0.09 s 0.07 s 0.08 s 0.12 s

1 024 / 209 715 9.16 s 4.41 s 2.28 s 1.22 s 0.76 s 0.59 s 0.62 s 1.00 s
2 048 / 838 860 74.99 s 35.74 s 18.01 s 9.42 s 5.50 s 3.98 s 3.74 s 4.72 s
4 096 / 3 355 443 549 s 277 s 142 s 74 s 42 s 29 s 24 s 68 s

Table 6.3: Performance comparison of the algebraic algorithm after optimization
Graph size Old algorithm Optimized algorithm Speed up

(# of vertices / # of edges)

256 / 13 107 0.179 s 0.060 s 3.0
512 / 52 428 1.302 s 0.291 s 4.5

1 024 / 209 715 10.257 s 1.712 s 6.0
2 048 / 838 860 82.125 s 10.894 s 7.5
4 096 / 3 355 443 591.943 s 65.670 s 9.0

is the same, however the �rst algorithm executes over 80 times faster. Before porting
our algebraic algorithm to a GPU architecture we need to address this performance
issue.

Instead of updating the inverse matrix for each edge detected it is possible to
group g updates and apply them at once. When searching for the next edge to be
added to the matching not yet applied changes need to be taken into account. This
way the cost of scanning for non-zero entries increases to O(gn2) time (checking each
matrix entry requires taking into account up to g not yet applied updates), while the
number of matrix multiplications is reduced g times. The table 6.2 presents execution
times of the third phase of the algorithm depending on the value of g.

By analyzing the results of the experiment it turns out that it is optimal to select
g = θ(

√
n). By applying the optimization, the original algorithm accelerates up to 9

times (see the performance comparison presented in the Table 6.3).

Implementations of many matrix based algorithms (like matrix-matrix multipli-
cation or triangular solvers) for CPUs reach almost 100% of the theoretical hardware
performance. In case of GPUs this kind of computations turn out to be memory
bandwidth bounded which is due to the very limited size of GPU caches. Apart
from this limitation it has been recently shown [62] that it is possible to implement
many matrix based algorithms very e�ciently. V. Vasily and J. Demmel managed
to obtain over 180 G�op/s for GEMM (matrix-matrix multiplication) problem uti-
lizing a GPU with theoretical peak of 346 G�op/s. They also managed to accelerate
TRSM (triangular solver) and SYR2K (symmetric update) reaching 30% of GPU's
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peak performance. LU factorization reaches 140 G�op/s. Recent GPUs exceed 1
T�op/s, so by applying them to the algebraic maximum matching problem, it should
be possible to obtain 100x speed-up in comparison with CPU based implementation.
Unfortunately, we are not aware of any �nite �eld linear algebra package for GPUs, so
we developed a simple implementation of matrix-based parallel algebraic maximum
matching algorithm from the scratch, which is presented in the following subsection.

6.2.1 Parallel maximum matching with GPU

Asymptotic complexity of our PRAM algorithm is much better than O(n
5
2 ) Edmond's

based algorithms or O(nω) of Mucha and Sankowski algorithm. However, it doesn't
mean that the parallel algorithm will run faster in practice. In order to outperform
sequential algorithms we need to take into account a number of limitations imposed
by GPU architecture:

Non-optimal work. Our PRAM algorithm performs the total work of O(n3 log n),

which is worse than O(n
5
2 ) Edmond's approach-based algorithm or even simple

O(n3) matrix-based approach. In contrast to the PRAM theoretical model
where time complexity is the only factor of the algorithm's e�ciency, in the real
world total work also plays a crucial role. This is not only because of limited
number of available processors, but also because of communication limitations
which are not taken seriously in many theoretical models.

Insu�cient processors number. Maximum matching algorithms can be applied
to graphs with thousands of vertices. It means the PRAM algorithm presented
in section 5.3 to run with full speed requires millions of processors. Nowadays
GPUs are equipped with hundreds of computation units (128 for Nvidia GeForce
8800) that can run up to thousands of interleaved threads. It is not su�cient
for our input graphs to be processed with full parallelism. In many cases it
is possible, by reducing the number of processors utilized by the algorithm, to
reduce the total work and decrease the total execution time.

Global memory utilization. Nowadays GPUs can execute a tremendous number
of �oating point operations per second. The most recent units exceed 1 T�op/s.
At the same time the speed of GPUs' global memory stays behind � it is hardly
possible to go beyond 120 GB/s. In order to obtain the maximum memory
bandwidth one needs to adhere to many hardware restrictions � sequential
memory access is a must. If we wanted to run the matrix multiplication algo-
rithm presented in the Section 5.3.5, we would need to transfer 8 · n + 4 bytes
to compute a single matrix entry. This accounts for 8 · n3 bytes to multiply 2
matrices. Assuming the perfect global memory access pattern, we wouldn't be
able to go beyond 15 G�op/s. This is less than 3% of the peak computational
performance of GPU. In order to increase the performance we need to reduce
the global memory usage by utilizing GPU's shared memory and registers.

Processor synchronization. The SIMD model we used for designing the PRAM
algorithm assumes that all processors run with a synchronized clock. This
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guarantees that all processors execute exactly the same instruction at the same
time. In case of GPUs this is not true. GPUs are a combination of SIMD
and MIMD model � they consist of a number of asynchronous multiprocessors,
each of them containing a number of SIMD processors. In addition, each SIMD
processor runs a number of interlaced threads in order to reduce global memory
latency. Straightforward application of the PRAM algorithm would require
additional synchronization mechanisms not only within a single multiprocessor
but also between di�erent multiprocessors, which is extremely expensive.

Thread execution coherence. Each multiprocessor within a GPU is a SIMD ma-
chine executing interlaced warps of threads. SIMD model assumes that every
thread executes exactly the same instruction at the same time. GPU archi-
tecture allows for conditional instructions, loops, etc. In practice, in case of
a di�erent conditional statement evaluation by threads within the same warp,
both paths of the conditional statement are executed sequentially � once for a
group of threads evaluating the condition to true, once for the rest of threads.
In case of multi-level conditional statements and loops this situation gets even
worse. In order to obtain an e�cient algorithm it is a good practice to split
work in such a way that threads within a single warp evaluate all conditional
statements in the same way. As an example � if one wants to divide threads
into two equally sized groups, it is not a good idea to assign even threads to the
�rst set, while odd threads to the second set. In case of our algebraic maximum
matching algorithm it is not hard to do an optimal threads assignment, as there
is just a little conditional logic involved.

Thread synchronization. __sync function used in the pseudo-codes of GPU im-
plementation is responsible for synchronizing execution of all threads running
within a single multiprocessor. This instruction does not enforce cross multi-
processor synchronization. However, it still has a negative performance impact,
as it makes e�cient pipelining impossible. We already mentioned that GPU ex-
ecutes a group of threads (a warp of size m, usually 16 or 32) synchronously �
in SIMD manner. If our GPU algorithm performs group calculations in m×m
blocks it is possible to assign threads to block elements in a way eliminating the
need for some of the synchronization operations.

Shared memory organization. Shared memory within a single multiprocessor is
organized inm banks (the number of banks is equal to the size of the warp). The
i'th bank contains integers with addresses given by the formula m ·n+ i, n ∈ N.
Each bank can perform a single memory operation at a time, so if a number of
threads from a warp access shared memory from the same bank, it causes some
additional time penalty. The best situation is when there are no bank con�icts.
In order to optimize threads synchronization computations are performed in
m × m blocks, hence simultaneous access to m elements of a single column
causes a m-threads bank con�ict. This problem can be eliminated by allocating
shared memory matrices of size m+1×m+ 1, so that m consecutive elements
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of a single column, as well as of a single row, are located in di�erent banks and
no con�icts are encountered.

Section 6.2.2 presents an implementation of the PRAMmaximum matching algorithm
from section 5.3.5, which has been tuned for a GPU architecture. In order to reduce
algorithm's total work, inversion of L and U matrices are computed in O(n2) time
using O(n) processors (it saves an O(log n) factor of the algorithm's total work). In
spite of the fact that implementation of our algorithm aims at clarity rather than
performance, it is su�cient to outperform sequential matching algorithms for some
classes of graphs as presented in the performance evaluation section.

It is possible to further optimize our GPU algorithm. For more details on e�cient
implementations of matrix-based algorithms please refer to [13], [50], [37], [63].

6.2.2 Maximum matching algorithm implementation on GPU

In this section we present an adoption of the PRAM algebraic maximum matching
algorithm to a GPU architecture. Restrictions of the real hardware are taken into
account in order to present a fast, yet simple algorithm. The algorithm consists of
the same phases as the PRAM algorithm � �nding a subgraph G′ of a graph G
containing a perfect matching, computation of the inverse matrix and construction of
the matching. As the general design of the algorithm is similar to the PRAM version,
we only present GPU implementation of the following �building blocks�:

• square matrix multiplication

• Gaussian elimination,

• inversion of the lower triangular matrix.

Square matrix multiplication on GPU

By analyzing the matrix multiplication algorithm for the PRAM model it is easy to
see that the main performance issue in case of GPU is a global memory utilization.
Matrix multiplication in the PRAM approach does not require any processors' syn-
chronization � each processor computes one matrix entry and its work is independent
from the work of the others. Each processor reads 2 ·n elements from the global mem-
ory which accounts for the total 2 · n3 global memory accesses. In case of GPU this
number can be reduced by the proper utilization of shared memory and registers. As
an example, let us consider architecture of Geforce 8800 GTX. Each multiprocessor
within the GPU can run simultaneously (interlaced) up to 512 threads. Each thread
is assigned the same number of registers for storing local variables and parameters
(8192 4-byte registers are available within a single multiprocessor). All threads within
the same multiprocessor can also use 16 KB of shared memory with the same access
speed as registers. Multiprocessor runs a group of consecutive threads synchronously
(SIMD model) � such a group of threads is called a warp and is of size 16 in case
of Geforce 8800 GTX. Multiprocessor switches a group of executed threads periodi-
cally. Hardware architecture makes it possible to synchronize execution of all threads
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running on a single multiprocessor � we will use __sync instruction to denote this
operation. __sync, otherwise known as a barrier, blocks execution until all threads
within a single multiprocessor reach a barrier. Synchronization of threads running
on di�erent multiprocessors is not supported by the hardware and can be realized by
global memory synchronization algorithms. Such synchronization is very expensive
and should be rarely used. In order to reduce the e�ect of global memory transfers
our algorithm will copy small parts of the input matrices to the shared memory and
perform multiplication operations internally without accessing global memory. The
pseudo-code presented as the Algorithm 15 computes the multiplication of two in-
put matrices. By MUL_CNT we denote the number of multiprocessors within a
GPU, by THR_CNT the number of threads per multiprocessor. We assume that
THR_CNT = 256 and that the size of a warp is 16 (there is no need to synchronize
execution of each group of 16 consecutive threads).

Algorithm 15 gpu_multiplication(A,B)

Require: Two matrices A and B of size n× n to be multiplied
Ensure: Multiplication of matrices A and B
1: size←

√
THR_CNT

2: C ← 0n×n /* located in global memory */
3: A′ ← 0size×size /* located in shared memory */
4: B′ ← 0size×size /* located in shared memory */
5: for all blk such that 0 ≤ blk < MUL_CNT do
6: for all thr such that 0 ≤ thr < THR_CNT do
7: x_id← thr/size
8: y_id← thr%size
9: for x = size · blk; x < n; x+ = size ·MUL_CNT do
10: for y = 0; y < n; y+ = size do
11: sum← 0
12: for z = 0; z < n; z+ = THR_CNT do
13: A′[x_id][y_id]← A[x_id+ z][y_id+ y]
14: B′[x_id][y_id]← B[x_id+ x][y_id+ z]
15: __sync
16: for i = 0 to size− 1 do
17: sum← sum+ A′[i][y_id] ·B′[x_id][i]
18: end for
19: __sync
20: end for
21: C[x+ x_id][y + y_id] = sum%P
22: end for
23: end for
24: end for
25: end for
26: return C

The matrix multiplication algorithm divides the output matrix into 16×16 blocks
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and assigns to each block 256 threads of a single multiprocessor (lines 5�10 of Algo-
rithm 15, a single block is identi�ed by its �rst matrix entry [x, y]). Notice that size
of a block is equal to the number of threads assigned to it, so each thread can take
care of computing the value of one output matrix entry � just like it was in case of
PRAM implementation. All 256 threads share memory regions A′ and B′ in order
to reduce the global memory load. Each thread stores the result being computed in
a local variable sum (register). Consecutive blocks of A and B matrices are being
loaded to the shared memory in lines 12�14, A′ and B′ sub-matrices are then used
to update partial sums (lines 15�18). Thread synchronization executed in lines 15
and 19 is required to make sure that A′ and B′ have a correct context before using
them for computation of the partial sums.

In order to compute 16× 16 block of the result matrix this algorithm loads 32 · n
words from global memory (in comparison with 512 · n words for PRAM algorithm).
The whole matrix multiplication requires n3

8
loads compared to 2 · n3 for the PRAM

approach. What is more, all global memory accesses are sequential (threads within
a warp access consecutive memory addresses) allowing for high global memory band-
width. In order to further reduce global memory usage one can increase the size of
blocks to 32 × 32 (64 × 64 blocks are too big to �t 16 KB shared memory region).
It is also possible to utilize GPU registers for storing one of the matrices which can
additionally increase the algorithm's performance 1.

Gaussian elimination on GPU

The Gaussian elimination process can be seen as repeatedly performing two stages �
search for a non-zero matrix entry and the matrix update. The total execution time
of the sequential search is O(n2), as each matrix entry has to be analyzed not more
than once. The single matrix update process, on the other hand, requires O(n2) time
and can be described in the following way:

M ←M − C · e ·R,

where C is a column matrix (1 × n), e is a scalar, R is a row matrix (n × 1). Even,
if we reorganized the way PRAM algorithm shares work among threads, we will not
be able to reduce global memory usage, as each update phase needs to load and store
the whole matrix M .

To reduce the global memory load we need to apply the same trick as in our
experimental FFLAS-FFPACK implementation from section 6.2 � perform matrix
updates in batches. Once a number of rows and columns to be eliminated are found,
all updates can be applied at once. The pseudo code presented as Algorithm 16
implements this idea.

The main loop in lines 9 − 33 performs elimination of consecutive matrix rows
(from 0 to n− 1). Loop 10− 15 searches for a non-zero matrix entry within the row

1The performance increase in case of utilizing registers is not only due to possibility of using
larger blocks. It is also caused by GPU architecture limitations which makes it impossible for a
single thread to access two shared memory locations within a single clock cycle. Some experiment
results in this area can be found in [49].
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Algorithm 16 gpu_elimination(M)

Require: n× n matrix being eliminated
Ensure: Eliminated matrix
1: size←

√
THR_CNT

2: C ← 0size×n

3: R← 0n×size

4: E ← 0size×size

5: [P.x, P.y]← [−1,−1] /* matrix index */
6: [P ′.x, P ′.y]← [−1,−1] /* shared memory matrix index */
7: for all thr such that 0 ≤ thr < size do
8: to_reduce← 0
9: for y = 0 to n− 1 do
10: for x = thr; x < n; x+ = size do
11: val ← gpu_compute(M,E,C,R, to_reduce, x, y)
12: if val ̸= 0 then
13: [P ′.x, P ′.y]← [x, y]
14: end if
15: end for
16: __sync
17: if [P ′.x, P ′.y] ̸= [−1,−1] then
18: use P ′ element for matching / non-singular matrix construction
19: E[to_reduce]←M [P ′]
20: for z = thr; z < n; z+ = size do
21: val = gpu_compute(M,E,C,R, to_reduce, z, P ′.y)
22: C[to_reduce, z]← val
23: val = gpu_compute(M,E,C,R, to_reduce, P ′.x, z)
24: R[z, to_reduce]← val
25: end for
26: to_reduce← to_reduce+ 1
27: end if
28: if to_reduce = size then
29: P ← P ′

30: gpu_update()
31: to_reduce = 0
32: end if
33: end for
34: end for

being analyzed and stores its index into P variable. This loop is executed using only
one multiprocessor. If such an element is found matrices used for the lazy update are
computed in lines 20−25. Afterwards, if those matrices are full the lazy elimination is
performed (lines 28−32). The pseudo-code makes use of two macros � gpu_compute
and gpu_update. Gpu_compute macro calculates the current value of a given entry
of the matrix M taking into account updates stored in C, R and E. The pseudo-code
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of gpu_compute function is presented as Algorithm 17.

Algorithm 17 gpu_compute(M,E,C,R, reduced, x, y)

Require: An inverse of a Tutte matrix representing a graph
Require: Vector with Gaussian elimination coe�cients
Require: Matrix with Gaussian elimination coe�cients
Require: Matrix with Gaussian elimination coe�cients
Require: The number of not yet applied Gaussian eliminations
Require: Row and column index of the matrix element to be computed
Ensure: Value of the matrix entry under question after taking into account not yet

applied eliminations
1: val ←M [x, y]
2: for z = 0 to reduced do
3: val ← val + E[z] · C[z, y] ·R[x, z]
4: end for
5: return val

Notice that gpu_compute macro is executed by all threads of a single multipro-
cessor (line 11, 21, 23 of Algorithm 16). A single execution of this macro performs
up to 48 global memory access and is executed 3 · n2 times, so it does 144 · n2 global
memory operations.

Gpu_update macro is responsible for applying a number of pending updates to
the matrix M . It runs 16 updates at a time so similar approach as in the matrix
multiplication can be utilized to reduce the global memory load. Gpu_update macro
is executed by all threads within all multiprocessors (line 30 of Algorithm 16). To
update a single 16× 16 block of a matrix M it is required to load 768 global memory
words, hence the total number of global memory operations performed by gpu_update
macro is 3 · n2. It is called up to n

16
times, so the total number of global memory

operations is 3·n3

16
. The PRAM algorithm needs 3 · n3 memory accesses � 16 times

more. The pseudo-code of gpu_update function is presented as Algorithm 18.

Inversion of the lower triangular matrix on GPU

By investigating the PRAM implementation of the lower triangular matrix inversion
it turns out that in order to compute [x, y] entry of the inverse matrix it is required
to compute all [x, k] entries for k ∈ {0, . . . , y − 1} �rst. There are no dependencies
between di�erent columns of the matrix, so each multiprocessor can be assigned
a number of columns to process without the need of synchronization. The PRAM
lower matrix inversion algorithm does not require synchronous execution of processors,
so it is possible to apply that algorithm to GPU without additional modi�cations.
However, such a solution is not optimal in terms of global memory usage. By applying
the idea presented in the matrix multiplication algorithm for the GPU, the memory
load can be reduce in the following way:

The algorithm uses 256 threads on each multiprocessor to compute 16 consecutive
columns of the result matrix. The pseudo-code is presented as Algorithm 19. Line 9
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Algorithm 18 gpu_update(M,E,C,R)

Require: An inverse of a Tutte matrix representing a graph
Require: Vector with Gaussian elimination coe�cients
Require: Matrix with Gaussian elimination coe�cients
Require: Matrix with Gaussian elimination coe�cients
Ensure: An input matrix with all updates applied
1: size←

√
THR_CNT

2: C ′ ← 0size×size /* located in shared memory */
3: R′ ← 0size×size /* located in shared memory */
4: E ′ ← 0size×size /* located in shared memory */
5: for all blk such that 0 ≤ blk < MUL_CNT do
6: x_id← thr/size
7: y_id← thr%size
8: if y_id = 0 then
9: E ′[x_id] = E[x_id]
10: end if
11: for x = size · blk;x < n;x+ = size ·MUL_CNT do
12: for y = 0; y < n; y+ = size do
13: val ←M [x+ x_id][y + y_id]
14: C ′[x_id][y_id]← C[x+ x_id][y_id]
15: R′[x_id][y_id]← R[x_id][y + y_id]
16: __sync
17: for z = 0 to size− 1 do
18: val ← val + C ′[z, y_id] ·R′[x_id, z] · E ′[z]
19: end for
20: M [x+ x_id, y + y_id]← val%P
21: __sync
22: end for
23: end for
24: end for
25: return M

divides groups of 16 columns between di�erent multiprocessors while line 10 computes
consecutive 16×16 blocks. First, in lines 12−20, for each element [x, y] of the block we

compute a sum =
∑16·⌊ y

16
⌋−1

i=0 L[i, y]·L−1[x, i]. Later on, in lines 22−30, the remaining∑y
i=16·⌊ y

16
⌋ L[i, y] · L

−1[x, i] is computed, taking additional care, as L−1 entries used

for this computation are just being computed.
The PRAM version of the lower matrix inversion algorithm executed n3 global

memory accesses. The GPU version accesses the global memory only n3

16
times, which

allows for e�cient GPU utilization. This last �building block� completes GPU parallel
implementation of the maximum matching algorithm for arbitrary graphs.
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Algorithm 19 gpu_L_inverse(G)

Require: n× n lower triangular matrix L to be inverted
Ensure: Inversion of the input matrix
1: size←

√
THR_CNT

2: L−1 ← In /* located in global memory */
3: A← 0size×size /* located in shared memory */
4: B ← 0size×size /* located in shared memory */
5: for all blk such that 0 ≤ blk < MUL_CNT do
6: for all thr such that 0 ≤ thr < THR_CNT do
7: x_id← thr/size
8: y_id← thr%size
9: for x = size · blk; x < n; x+ = size ·MUL_CNT do
10: for y = 0; y < n; y+ = size do
11: val ← −L−1[x+ px, y + py]
12: for zz := 0; zz < y; zz+ = size do
13: A[px, py]← L[px+ zz, py + y]
14: B[px, py]← L−1[px+ x, py + zz]
15: __sync
16: for i := 0 to size− 1 do
17: val ← val + A[i, py] ·B[i, px]
18: end for
19: __sync
20: end for
21: A[py, px] = L[px+ y, py + y]
22: __sync
23: for yy := 0 to size− 1 do
24: if yy = py then
25: B[yy, px]← −val
26: end if
27: __sync
28: val ← val + A[py, yy] ·B[yy, px]
29: end for
30: L−1[px+ x, py + y] = B[py, px]
31: __sync
32: end for
33: end for
34: end for
35: end for
36: return L−1

6.3 Performance evaluation

In the following sub-sections we present results of our performance evaluations of the
di�erent matching algorithms. We start by introducing algorithms to be compared,
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presenting obtained results for each of them and discussing their pros and cons. At
the end of this section we compare performance of all algorithms in the context of
di�erent subclasses of graphs. Algorithms under consideration have been evaluated
against following 10 groups of graphs:

• Group A: The University of Florida Sparse Matrix Collection [47].

• Group B: A Database of Graphs in Combinatorica Format [12].

• Group C: Mathematica's GraphData collection [40].

• Group D: Collection of regular graphs generated with High productivity software
for complex networks [46].

• Group E: Collection of bipartite regular graphs generated with High productivity
software for complex networks [46].

• Group F: Dense random graphs.

• Group G: Dense graphs of di�erent sizes with a general structure presented in
the Figure 6.2.

• Group H: Dense graphs of di�erent sizes with a general structure presented in
the Figure 6.3.

• Group I: Random cubic graphs generated with High productivity software for
complex networks [46].

• Group J: Cubic graphs of di�erent sizes with a general structure presented in
the Figure 6.4.

Table 6.4 presents general characteristics of all groups of graphs.
All tests have been performed on the following machine:

• 4 cores Intel(R) Xeon(R) CPU E5420, 2.50GHz with 6 MB of cache

1 2 k

k+1 k+2 2k

2k+1 2k+2 3k

Figure 6.2: General structure of graphs from group G. A graph with 3k vertices is
presented. Vertex l ∈ {k + 1, k + 2, . . . , 2k} is connected with vertices 1, 2, . . . k,
2k + 1, 2k + 2, . . . , 3k. In addition vertex l ∈ {1, 2, . . . , k} is connected with vertex
2k + l
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Figure 6.3: General structure of test graphs from group H. For a given n, the graph
consists of a clique of size 11n connected to n cliques of size 4 by paths of length 2.

Figure 6.4: General structure of biconnected cubic graphs from group I. The edges
in bold are contained in only one matching.
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Table 6.4: The general characteristics of graph sets used as test data

characteristic A B C D E F G H I J

# of graphs 1952 399 3025 229 100 30 25 39 102 49

min. # of vertices 3 2 2 744 2596 256 330 160 10000 6000

max. # of vertices 530428 64960 6877 496790 98762 4096 3159 3200 981314 580602

av. # of vertices 23610 2646 63.99 91789 51827 1587.2 1269 1680 201183 129138

min. # of edges 1 1 1 8676 2596 65 24310 6075 15000 9000

max. # of edges 933343 97440 225226 745185 245400 8.0 mln 2.2 mln 2.4 mln 1.4 mln 870903

av. # of edges 95086 5433 465 217683 122471 812713 510255 858858 301775 193708

min. vertex degree 0.92 1.83 0.69 2.00 2.00 0.50 147 75.93 3.00 3.00

max. vertex degree 291 13.50 330 209 34.00 3932 1404 1512 3.00 3.00

av. vertex degree 10.02 3.65 5.72 9.65 6.99 576.8 564.6 793 3 3

# of regular graphs 30 265 981 229 100 0 0 0 102 49

# of bipartite graphs 1952 91 824 0 100 2 0 0 0 0

min. matching size 1 1 1 372 1298 48 165 80 5000 3000

max. matching size 169399 32479 2380 248395 49381 2048 1579 1600 490657 290301

av. matching size 9292 1278 28.45 45894 25913 782.3 634 840 100591 64569

# of perfect matchings 1078 306 1856 218 100 24 12 39 102 49

graph characteristics after converting to almost-cubic form

min. # of vertices 3 2 2 6666 2596 256 95590 23520 10000 6000

max. # of vertices 3.7 mln 287518 894079 1.6 mln 565732 32.1 mln 8.8 mln 9.6 mln 981314 580602

av. # of vertices 288799 9215 1593 417297 254462 3.2 mln 2.0 mln 3.4 mln 201183 129138

min. # of edges 1 1 1 9999 2596 65 119570 29435 15000 9000

max. # of edges 4.6 mln 363836 1.1 mln 2.0 mln 712042 40.2 mln 11.0 mln 12.0 mln 1.4 mln 870903

av. # of edges 360274 12002 1995 543191 325106 4054291.6 2.5 mln 4.2 mln 301775 193708
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• 4 GB RAM memory

• Nvidia GeForce 9800 GX 2, 1 GB

6.3.1 Boost matching algorithm with an empty initial match-

ing

The �rst algorithm that we compare is the Boost library [1] implementation of Ed-
mond's approach [17] to constructing maximum matching in general graphs. Ed-
mond's approach has been introduced in Section 3.1. The Boost library algorithm
prior to searching for augmenting paths computes the initial matching using some
fast heuristics. Such an approach greatly increases the performance of the entire
algorithm, as smaller number of augmenting paths need to be found.

In the current section we present the analysis of the Boost matching algorithm
with disabled heuristics (the initial matching is empty). We will refer to this algorithm
as a Boost matching algorithm with an empty initial matching or boost_empty for
short. Figures 6.5 and 6.6 present, respectively, execution time of the Boost algorithm
as a function of the number of vertices and edges in the test graphs. Both charts
have logarithmic scale to visualize in more detail the spread of execution time for
di�erent input graphs. The pessimistic execution time of the Boost algorithm, as
claimed by the Boost library documentation, is O(mnα(m,n)). After analyzing the
results presented in the Figure 6.5 it turns out that for the majority of graphs the
Boost algorithm requires θ(n2) time, where n stands for the number of vertices. This
behavior is expected, as most of the graphs from the test set are sparse, so m = O(n)
and O(mnα(m,n)) becomes O(n2α(m,n)), which from practical point of view is
equal to O(n2). The algorithm is also doing pretty well for many dense graphs �
runs in time o(n3). This is also expected, as it is easier to �nd short augmenting paths
in dense graphs. Only for graphs from groups G and H the worst case performance
of O(n3) is hit. When analyzing execution time of the algorithm as a function of the
number of edges, it once again turns out that for the majority of graphs computation
of the maximum matching takes quadratic time. Again, this stems from the fact that
most graphs are sparse (O(m) = O(n)).

6.3.2 Boost initial matching heuristics

Maximum matching algorithm from the Boost library comes together with two rel-
atively simple heuristics for constructing an initial matching. The �rst heuristic is
called greedy_matching. It starts with an empty matching M and scans the set of
all edges of the graph in an arbitrary order. Once an edge e ∈ E incident to not yet
matched vertices is identi�ed, M is extended with e. This algorithm runs in O(m)
time. As the matching M computed with this approach is maximal (it can't be ex-
tended by adding any edge e ∈ E), according to the Lemma 6.2, greedy_matching
heuristic is an 1/2 approximation of the maximum matching problem.

Lemma 6.2. Let G = (V,E) be an arbitrary graph, M � a maximum matching of G
and M ′ � a maximal matching of G. M ′ is a 1/2 approximation of M (2|M ′| ≥ |M |).
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Figure 6.5: Execution time of the Boost maximum matching algorithm with the
empty initial matching presented as a function of the number of vertices in the test
graphs.
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Figure 6.6: Execution time of the Boost maximum matching algorithm with the
empty initial matching presented as a function of the number of vertices in the test
graphs.
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Proof. Consider G′ = G[V,M ⊗M ′]. Every vertex of G′ is of degree not greater than
2, hence G′ is a collection of cycles C and paths P . Each cycle and path consists
of alternative edges from M and M ′, hence each cycle c ∈ C is of even length and
consists of the same number of edges from M and M ′. Each even-length path p ∈ P
also consists of the same number of edges from M and M ′. The only case when the
number of edges from sets M and M ′ di�ers are paths of odd length. Path of length
2k + 1 consists of k edges from one of the matchings and k + 1 edges from the other.
As there are no paths of length 1 (otherwise it would mean two adjacent vertices of
G are not matched in one of M or M ′ contradicting the maximality of M or M ′), the
worst case scenario are paths of length 3 with 2 edges from M and 1 edge from M ′.
Hence 2|M ′| ≥ |M |.

The second heuristic � extra_greedy_matching�also greedily extends the match-
ing M being constructed with consecutively analyzed edges. The di�erence is that
edges are not processed in an arbitrary order. Extra_greedy_matching prior to con-
structing the matching sorts all edges of the graph in increasing order with respect
to degrees of their end vertices. The intuition behind such an approach is that it
is easier to match a vertex with a high degree than a vertex with a low degree. By
matching vertices of low degree �rst we increase our chances of constructing a match-
ing which is a better approximation of the maximum matching. This heuristic runs
in O(n+m logm) time (as sorting of edges occurs) and it is also a 1/2 approximation
of the maximum matching.

In addition to the two original Boost heuristics we have also introduced the third
heuristic. We call it extra2_greedy_matching, as it is quite similar to the second
Boost heuristic. It processes vertices of the graph in the increasing order of their
degrees and extends the matching being constructed with not yet matched edges
adjacent to vertices of lowest possible degrees. Once an edge u − v is added to the
matching, vertices u and v are removed from the graph and the degrees of vertices
adjacent to them are updated. This algorithm is implemented with the clever use of
bi-direction lists, hence it's execution time is O(n + m). Figures 6.7, 6.9 and 6.11
present execution time of all three heuristics as a function of the number of vertices
in the test graphs. Figures 6.8, 6.10 and 6.12 present execution times of heuristics as
a function of the number of edges in the test graphs. Figure 6.13 presents an average
dependence between the number of edges in the graphs and the execution time.

From the Figure 6.13 it is clear that the fastest heuristic is the greedy_matching.
The slowest, on the other hand, is extra_greedy_matching. This observation is consis-
tent with the theoretical complexity analysis of these three algorithms. Greedy_match-
ing is linear and the simplest to implement, hence it turns out to be the fastest in
practice. Slightly slower is the extra2_greedy_matching, as some additional oper-
ations on bidirectional lists are performed by this algorithm. The slowest one is
extra_greedy_matching, which sorts edges of the graph with O(m logm) sorting al-
gorithm. Which of these three heuristics works the best in connection with Boost
implementation of Edmond's augmenting paths approach? Not only does the an-
swer depend on the performance of the heuristic, but also on the size of the initial
matching constructed. Figure 6.14 presents the sizes of matchings constructed by
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Figure 6.7: Execution time of greedy_matching heuristic presented as a function of
the number of vertices.
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Figure 6.8: Execution time of greedy_matching heuristic presented as a function of
the number of edges.
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Figure 6.9: Execution time of extra_greedy_matching heuristic presented as a func-
tion of the number of vertices.
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Figure 6.10: Execution time of extra_greedy_matching heuristic presented as a func-
tion of the number of edges.
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Figure 6.11: Execution time of extra2_greedy_matching heuristic presented as a func-
tion of the number of vertices.
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Figure 6.12: Execution time of extra2_greedy_matching heuristic presented as a func-
tion of the number of edges.
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Figure 6.13: Average execution time of heuristics presented as a function of the num-
ber of edges.

the three heuristics as the percentage of the maximum matching size. After ana-
lyzing Figure 6.14 it is clear that extra2_greedy_matching gives much better results
for majority of input graphs. The average sizes of the matchings constructed by
greedy_matching, extra_greedy_matching and extra2_greedy_matching are respec-
tively 92.8%, 94.8% and 99.8% of the maximum matching size. Figures 6.15 and
6.16 present execution time of the four Boost-based matching algorithms (Edmond's
matching algorithm with an empty initial matching and with initial matchings com-
puted by the three heuristics). Asymptotic complexity of the worst cases and aver-
age cases of all four algorithms is the same � O(n3) and O(n2) respectively. The
use of heuristics, however, greatly accelerates the matching algorithm. The average
speedup obtained with greedy_matching is 31.7, with extra_greedy_matching � 25,
while extra2_greedy_matching accelerates matching algorithm over 104 times. Ex-
tra_greedy_matching heuristic gives slightly better results than greedy_matching, but
as it executes longer the overall result is worse. In the following sections we are going
to consider matching heuristics only in the context of Edmond's matching approach,
so from now on the name of heuristic will refer to the Boost maximum matching
algorithm with an initial matching computed by that heuristic. The Boost matching
algorithm with an empty initial matching will be called boost_matching_empty, for
short.



6.3. PERFORMANCE EVALUATION 83

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

M
ax

im
um

 m
at

ch
in

g 
si

ze
 (

%
)

matching size

boost_greedy
boost_extra

boost_extra2
maximum matching

Figure 6.14: The size of the initial matching constructed by the heuristics presented
as a percentage of the maximum matching size.
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Figure 6.15: Execution time of the Boost matching algorithms presented as a function
of the number of vertices in the graphs.
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Figure 6.16: Execution time of the Boost matching algorithms presented as a function
of the number of edges in the graphs.

6.3.3 Perfect matching via boolean satis�ability

Another algorithm that we compare is an algorithm which reduces the matching
problem to an instance of the boolean satis�ability problem. The reduction was
presented in Section 6.1. As this algorithm is only able to construct a perfect matching
of a graph, we analyze it separately for graphs with and without a perfect matching.
Our implementation of this algorithm utilizes MiniSat [45], a minimalistic, open-
source SAT solver, developed to help researchers and developers alike to get started
on SAT.

Solving the SAT problem in general case is NP-hard, however it turns out relatively
e�cient to use a SAT solver to verify whether a graph contains a perfect matching.
For 92% of test graphs without a perfect matching SAT solver managed to come
up with the conclusion, that a graph does not contain a perfect matching within a
reasonable time (60 second time-limit). Among those 92% of graphs, SAT solver was
faster than the Boost algorithm with an empty initial matching for 86% of graphs.
The cumulative execution time against all graphs was over 13 times shorter than
in case of the Boost algorithm. The maximal speed-up obtained with a SAT-based
algorithm in comparison with Edmond's matching algorithm with an empty initial
matching is over 2000 times, while the maximal slowdown � almost 27 times.

When compared to the Boost algorithms with an initial heuristic enabled �
greedy_matching, extra_greedy_matching and extra2_greedy_matching, the results
are less impressive. The speedup was obtained for only 29%, 32.7% and 18% of
graphs respectively, while the cumulative execution time was 2.97, 2.67 and 18.34
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times longer.

There is no well de�ned structure of graphs for which SAT solver is faster than
the Boost algorithms. It is able to outperform Boost only when it is lucky to �nd an
easy proof of non-existence of a perfect matching in an input graph (like an isolated
vertex or odd-size connected component). Figures 6.17 and 6.18 present execution
time comparison of a SAT-based algorithm and selected Boost algorithms against
graphs without a perfect matching.

The second group of graphs that are considered for SAT-based matching algo-
rithm are the graphs containing perfect matchings. SAT-based algorithm, within 60
seconds time-limit, managed to compute a perfect matching for 91% of those graphs
(empty_matching computed result for 84.7% of graphs, greedy_matching for 98.3%,
extra_greedy_matching for 98.2% and extra2_greedy_matching for 99% of graphs).
Figures 6.19 and 6.20 present execution time comparison of SAT-based algorithm with
the Boost algorithms against graphs with perfect matchings. SAT-based algorithm
obtains speedup compared to the Boost algorithms for 85%, 55%, 50% and 21% of
graphs respectively. The cumulative execution time of the SAT-based algorithm is
almost 14 times shorter when compared to Boost algorithm with an empty initial
matching and respectively 1.26, 1.96 and 37 times slower when compared to Boost
algorithms with heuristics enabled. The maximal speedup of 1579, 135, 140 and 2
times respectively is obtained for a regular bipartite graphs of degree 2. There are
graphs, however, for which SAT algorithm runs much slower than Edmond's algo-
rithm. When compared to empty_matching the slowdown is 1028 times, while when
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Figure 6.17: Execution time of the SAT-based algorithm and the Boost matching
algorithms for graphs without a perfect matching presented as a function of the
number of vertices.
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compared to extra2_greedy_mathcing � 7197 times. Is it possible to characterize
the class of graphs for which SAT algorithm does well in comparison with Edmond's
approach? After analyzing the structure of the input graphs and the speedup ob-
tained it turns out that SAT-based algorithm does well for regular and bipartite
graphs of low degree. When limited to regular biconnected graphs SAT algorithm is
doing very well. Figure 6.21 presents a comparison. The cumulative execution time
of extra_greedy_matching algorithm is over 3.5 times longer than the SAT-based al-
gorithm. If matching heuristic is disabled the cumulative execution time of Boost
algorithm becomes over 89 times longer. Extra2_greedy_matching is still performing
much better and runs 6 times faster than SAT-based algorithm.

Once a set of considered graphs is further limited to cubic graphs SAT-based algo-
rithm speed-ups over 85% of cases for greedy_matching and extra_greedy_matching
algorithms. Compared to extra2_greedy_matching the speedup is obtained for 82%
of cases. The cumulative execution time is now over 170 times shorter when com-
pared to empty_matching and around 12 times shorter compared to greedy_matching
and extra_greedy_matching. The execution time of extra2_greedy_matching is still
around 3 times faster. How is it possible that total execution time of the SAT-based
algorithm is 3 times longer than the extra2_greedy_matching and at the same time
SAT-based algorithm accelerates 82% of cases? For most graphs SAT-based algorithm
runs faster than all Boost algorithms, however there are graphs for which the execu-
tion time is much longer. The worst case scenario from the Figure 6.22 presents 290
times slow-down. Figure 6.23 presents execution time of the considered algorithms
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Figure 6.18: Execution time of the SAT-based algorithm and the Boost matching
algorithms for graphs without a perfect matching presented as a function of the
number of edges.



6.3. PERFORMANCE EVALUATION 87

 1

 10

 100

 1000

 10000

 100000

 100  1000  10000  100000

E
xe

cu
tio

n 
tim

e 
(h

s)

vertex #

boost_matching_empty
boost_matching_extra

minisat

Figure 6.19: Execution time of the SAT-based algorithm and the Boost matching
algorithms for graphs containing a perfect matching presented as a function of the
number of vertices in graphs.
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Figure 6.20: Execution time of the SAT-based algorithm and the Boost matching
algorithms for graphs with a perfect matching presented as a function of the number
of edges in graphs.
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Figure 6.21: Execution time of the SAT-based algorithm and the Boost matching
algorithms for regular bipartite graphs with a perfect matching presented as a function
of the number of vertices. Input graphs do not include graphs from Group J.
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Figure 6.22: Execution time of the SAT-based algorithm and the Boost matching
algorithms for biconnected cubic graphs presented as a function of the number of
vertices. Input graphs do not include graphs from Group J.
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Figure 6.23: Execution time of the SAT-based algorithm and the Boost matching
algorithms for graphs from group J presented as a function of the number of vertices
in graphs.

 1

 10

 100

 1000

 10000

 2  3  4  5  6  7  8  9  10

sp
ee

d-
up

average vertex degree

SAT vs boost_matching_empty
SAT vs boost_greedy_matching
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against graphs from group J . For these graphs all Edmond's algorithms run in O(n2)
time, while SAT-based algorithm runs in O(n2 log2 n).

The size of the matching problem converted to the SAT format depends in square
on the average vertex degree of an input graph. For dense graphs with θ(n) vertices
and θ(n2) edges the input graph turns into θ(n3)-size SAT problem. The intuition
suggests that once an average degree of vertices in a graph increases, the chance that
SAT-based algorithm provides speed-up vanishes. The results of the experiments
con�rm this conjecture. Figure 6.24 presents the speedup obtained by SAT-based
matching algorithm for regular biconnected graphs as a function of the degree of
graphs.

6.3.4 GPU-based algebraic matching algorithm

The last but not least algorithm to be analyzed is a parallel maximum matching
algorithm on GPU. This algorithm was presented in section 6.2. Its execution time
depends on the number of vertices in a graph and the size of the maximum match-
ing rather than the number of edges. Figures 6.25 and 6.26 present, respectively,
execution time of this algorithm as a function of the number of vertices and edges.
The theoretical cubic dependence between the number of vertices and execution time
is con�rmed in practice. This dependence is even more visible when graphs under
consideration are limited to those with perfect matchings � see Figure 6.27. At the
same time there is no dependence between the number of edges and the execution
time (the scatter ranges from O(m) to O(m3)).
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Figure 6.25: Execution time of the GPU-based algebraic matching algorithm pre-
sented as a function of the number of vertices.
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Figure 6.26: Execution time of the GPU-based algebraic matching algorithm pre-
sented as a function of the number of edges
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Figure 6.27: Execution time of the GPU-based algebraic matching algorithm against
graphs with a perfect matching presented as a function of the number of vertices
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Figure 6.28: Comparison of the GPU-based algebraic matching algorithm and Boost
algorithms against all test graphs presented as a function of the number of vertices
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Figure 6.29: Comparison of the GPU-based algebraic matching algorithm and the
Boost algorithms against graphs from groups G and H. In case of graphs from
group G, GPU-based algorithm outperforms original Boost algorithms (both with
and without initial heuristics), while it is still slower than extra2_greedy_matching.
In case of graphs from group H, GPU-based algorithms outperforms all algorithms.
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Figure 6.28 compares execution time of the GPU-based algebraic algorithm against
three versions of Edmond's algorithm. It is not surprising that in general the Boost al-
gorithms outperform matrix-based approach. As Figure 6.5 presents empty_matching
algorithm runs for majority of cases in O(n2) time, while matrix-based approach is
always θ(n3). Parallel implementation of the algebraic algorithm is much faster from
the sequential counterpart, however the number of processors available in nowadays
GPU units is not polynomial in the number of graphs' vertices. In case of huge
sparse graphs it is not possible to outperform the Boost sequential algorithms, which
are asymptotically faster. As Figure 6.29 presents, however, there are graphs for
which GPU-based algorithm outperforms all Boost-based algorithms.

6.4 Summary

Figure 6.30 presents asymptotic average case performance of analyzed matching algo-
rithms in general case. Algebraic matching algorithm runs in O(n3), while the rest of
algorithms inO(n2). The fastest algorithm in average case is extra2_greedy_matching.
The worst case scenarios are presented in the Figure 6.31. This time all algorithm
have the running time of O(n3). The order of Boost algorithms didn't change. The
slowest is the empty_matching, while the fastest � extra2_greedy_matching. This
time, however, GPU-based algebraic matching algorithm becomes the fastest.

When nothing is known about the structure of the input graphs the safest approach
is to apply the classical matching algorithm based on Edmond's approach utilizing
a good heuristic for computing initial matching. When, on the other hand, it is
known that input graphs are dense and a stable computation time is required (for
instance it might be crucial for some on-line problems to compute a matching within
a given limited time) GPU-based algebraic algorithms might be useful. For dense
graphs our implementation of the algebraic algorithm provides a speedup of only
few times compared to extra2_greedy_matching, but highly tuned implementations
should provide much more impressive results. Also, as we are witnessing a continues
increase of GPU units performance, it is an additional source of speedup in the future.
The algebraic algorithm can also be distributed to a number of GPU units.

Figures 6.32 and 6.33 present, respectively, asymptotic average and worst case per-
formances of the matching algorithms against biconnected cubic graphs. This time
algebraic algorithm is not presented, as it has no chances of being useful in case of
sparse graphs. Instead, SAT-based algorithm and two specialized algorithms for bi-
connected cubic graphs are presented � Biedl et al. [6] O(n log4 n) algorithm and our
new matching algorithm presented in section 4.3. In the average case the fastest are
extra2_greedy_matching and SAT-based algorithms. SAT-based algorithm is slightly
slower, but both algorithms run in linear time. In case of SAT-based algorithm lin-
ear execution time can be easily explained. Each edge of biconnected cubic graph
is allowed, hence once a SAT-based algorithm selects the �rst edge to the perfect
matching being constructed, it never needs to change this decision. Removal of the
two matched vertices from biconnected cubic graph generates four vertices with degree
2. As biconnected cubic graphs are believed to contain exponentially many perfect
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Figure 6.30: Average case performance of the matching algorithms in general case.

matchings, so with high probability any of the edges adjacent to those 4 vertices of
degree 2 belong to some perfect matching. The following selections of edges into a
perfect matching being constructed increase the number of vertices of degree 1 and
2, which further simpli�es the next decisions. As extra2_greedy_matching heuristic
analyses edges adjacent to vertices of lowest possible degrees and during the execution
it updates the order of vertices to be analyzed, similar arguments as for SAT-based
algorithm applies. The slowest algorithms on the average are the original Boost al-
gorithms. Greedy_matching and extra_greedy_matching increase the performance
of the Edmond's matching approach, but they still run in O(n2) time. Algorithm
utilizing greedy_matching heuristic is slightly faster from extra_greedy_matching, as
all vertices in the input graphs are of the same degree and the sorting of edges only
increases the runtime of the algorithm. Somewhere in between those two perfor-
mance extremes � O(n) and O(n2) are found O(n log4 n) and O(n log2 n) matching
algorithms for biconnected cubic graphs.

When the algorithms are executed against worst case graphs from the group
J , SAT-based and extra2_greedy_matching do not run in linear time any longer.
Extra2_greedy_matching reaches O(n2) execution time, but it remains the fastest
among Boost-based algorithms. SAT-based algorithm becomes the slowest algorithm
� its asymptotic time complexity matches θ(n2 log2 n). The fastest algorithm for
computing perfect matching in biconnected cubic graphs is our new O(n log2 n) algo-
rithm presented in section 4.3.
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Figure 6.31: Worst case performance of the matching algorithms in general case.
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Figure 6.32: Average case performance of the matching algorithms against bicon-
nected cubic graphs.
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Figure 6.33: Worst case performance of the matching algorithms against biconnected
cubic graphs.



Chapter 7

Open problems

In this chapter we present some open problems and other issues related to this work.

Nested dissection for planar graphs. M. Mucha and P. Sankowski in [42]
proposed a modi�cation to the algebraic algorithm for computing maximum
matching. By applying the Separator Theorem for planar graphs it is possible
to reorder the Tutte's matrix in such a way that the Gaussian elimination takes
O(n

ω
2 ) time. M. Mucha and P. Sankowski showed a maximum matching algo-

rithm for planar graphs running in the same time. It would be interesting to
try this approach with GPUs and obtain a fast parallel algorithm for solving
maximum matching problem in case of planar graphs.

Fast algorithm for sparse graphs. The total work of the algebraic matching
algorithm depends only on the number of vertices in an input graph. Is there a
way to design a practical parallel algorithm with better running time for sparse
graphs? Sparse matrix computation techniques might be applicable, see [8] [2].

Weighted matching. Is it possible to implement an e�cient parallel algorithm for
solving weighted maximum matching problem?

Multi GPU maximum matching. Our GPU matching algorithm was imple-
mented with a single GPU in mind. It is interesting to try to distribute the
algorithm to multi GPUs.

Linear time perfect matching algorithm for biconnected cubic graphs.
The question posted by T. Biedl et al. whether there is a linear time algorithm
for solving the perfect matching problem for biconnected cubic graphs remains
unanswered.
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Chapter 8

Appendix

Algorithm 20 non− singular_submatrix(T )

Require: An n× n Tutte matrix T
Ensure: Maximal non-singular sub-matrix of T
1: A← ∅
2: B ← ∅
3: T ′ ← T
4: for x = 0 to n− 1 do
5: for y = 0 to n− 1 do
6: if T [x, y] ̸= 0 then
7: A← A ∪ {x}
8: B ← B ∪ {y}
9: T ′′ ← T
10: r ← T [x, y]−1

11: for x′ = 0 to n− 1 do
12: for y′ = 0 to n− 1 do
13: T [x′, y′]← T [x′, y′]− T ′′[x, y′] · T ′′[x′, y] · r
14: end for
15: end for
16: end if
17: end for
18: end for
19: A′ ← A ∪B
20: B′ ← B ∪ A
21: R← 0|A′|×|B′|
22: for x = 0 to |A′| − 1 do
23: for y = 0 to |B′| − 1 do
24: R[x, y]← T ′[A′[x], B′[y]]
25: end for
26: end for
27: return R
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Algorithm 21 LRU_factorization(T )

Require: An n× n matrix T
Ensure: LRU factorization of T
1: L← In×n

2: R← In×n

3: U ← In×n

4: for x = 0 to n− 1 do
5: rev ← T [i, i]−1

6: for x = i+ 1 to n− 1 do
7: for y = i+ 1 to n− 1 do
8: T [x, y]← T [x, y]− T [x, i] · T [i, y] · rev
9: end for
10: end for
11: R[i, i]← −rev
12: for x = i+ 1 to n− 1 do
13: U [x, i]← T [x, i] · rev
14: end for
15: for y = i+ 1 to n− 1 do
16: L[i, y]← T [i, y] · rev
17: end for
18: end for
19: return L, R, U

Algorithm 22 L_inversion(L)

Require: An n× n lower triangular matrix L
Ensure: An inverse of L
1: L′ ← 0n×n

2: for y = 0 to n− 1 do
3: for x = 0 to y − 1 do
4: sum← 0
5: for z = 0 to y − 1 do
6: sum← sum+ L[z, y] · L′[x, z]
7: end for
8: L′[x, y]← −sum
9: end for
10: end for
11: return L′
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Algorithm 23 R_inversion(R)

Require: An n× n diagonal matrix R
Ensure: An inverse of R
1: R′ ← 0n×n

2: for i = 0 to n− 1 do
3: R′[i, i]← R[i, i]−1

4: end for
5: return R′

Algorithm 24 transposition(T )

Require: An n× n matrix T
Ensure: Transposition of matrix T
1: T ′ ← 0n×n

2: for x = 0 to n− 1 do
3: for y = 0 to n− 1 do
4: T ′[x, y]← T [y, x]
5: end for
6: end for
7: return T ′

Algorithm 25 multiplication(A,B)

Require: An n× n matrices A and B
Ensure: Multiplication of A and B
1: C ← 0n×n

2: for x = 0 to n− 1 do
3: for y = 0 to n− 1 do
4: sum← 0
5: for z = 0 to n− 1 do
6: sum← sum+ A[z, y] ·B[x, z]
7: end for
8: C[x, y]← sum
9: end for
10: end for
11: return C
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Algorithm 26 edge_selection(T, T−1)

Require: An n× n Tutte matrix T representing a graph G with a perfect matching
Require: An inverse of matrix T
Ensure: Perfect matching of G
1: M ← ∅
2: for x = 0 to n− 1 do
3: for y = 0 to n− 1 do
4: if T [x, y] ̸= 0 and T−1[x, y] ̸= 0 then
5: M ←M ∪ {x− y}
6: T ′ ← T−1

7: rev ← T−1[x, y]−1

8: for x′ = 0 to n− 1 do
9: for y′ = 0 to n− 1 do
10: T−1[x′, y′]← T−1[x′, y′]− T ′[x, y′] · T ′[x′, y] · rev
11: end for
12: end for
13: T ′ ← T−1

14: rev ← T−1[y, x]−1

15: for x′ = 0 to n− 1 do
16: for y′ = 0 to n− 1 do
17: T−1[x′, y′]← T−1[x′, y′]− T ′[y, y′] · T ′[x′, x] · rev
18: end for
19: end for
20: end if
21: end for
22: end for
23: return M
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Algorithm 27 algebraic_matching(G)

Require: A graph G = (V,E)
Ensure: Maximum matching M of G
1: T ← 0|V |×|V |
2: for x = 0 to |V | − 1 do
3: for y = 0 to |V | − 1 do
4: if V [x]− V [y] ∈ E then
5: k = rand(0, p− 1)
6: T [x, y] = k
7: T [y, x] = k−1

8: end if
9: end for
10: end for
11: T ′ ← non− singular_submatrix(T )
12: L,R, U ← LRU_factorization(T ′)
13: L−1 ← L_inversion(L)
14: R−1 ← R_inversion(R)
15: U−1 ← transposition(L_inversion(transposition(U)))
16: T ′−1 ← multiplication(multiplication(L−1, R−1), U−1)
17: M ← edge_selection(T ′, T ′−1)
18: return M



104 CHAPTER 8. APPENDIX

Algorithm 28 parallel_non− singular_submatrix(T )

Require: An n× n Tutte matrix representing an input graph
Ensure: Maximal non-singular sub-matrix of T
1: A← ∅
2: B ← ∅
3: T ′ ← T
4: repeat
5: [v, w]← [−1,−1]
6: for all x such that 0 ≤ x < n do
7: for all y such that 0 ≤ y < n do
8: if T [x, y] ̸= 0 then
9: [v, w]← [x, y] /* write of a single arbitrary processor is successful */
10: end if
11: end for
12: end for
13: if [v, w] ̸= [−1,−1] then
14: A← A ∪ {v}
15: B ← B ∪ {w}
16: for all x such that 0 ≤ x < n do
17: for all y such that 0 ≤ y < n do
18: T [x, y]← T [x, y]− T [v, y] · T [x,w] · T [v, w]−1

19: end for
20: end for
21: end if
22: until [v, w] = [−1,−1]
23: A′ ← A ∪B
24: B′ ← B ∪ A
25: T ′′ ← 0|A′|×|B′|
26: for all x such that 0 ≤ x < |A′| do
27: for all y such that 0 ≤ y < |B′| do
28: T ′′[x, y]← T ′[A′[x], B′[y]]
29: end for
30: end for
31: return T ′′
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Algorithm 29 parallel_LRU_factorization(T )

Require: An n× n matrix T to be factorized
Ensure: LRU factorization of T
1: L← 0n×n

2: R← 0n×n

3: U ← 0n×n

4: for i = 0 to n− 1 do
5: rev = T [i, i]−1

6: R[i, i]← −T [i, i]
7: for all x such that i < x < n do
8: for all y such that i < y < n do
9: T [x, y]← T [x, y]− T [x, i] · T [i, y] · rev
10: end for
11: end for
12: for all x such that i < x < n do
13: U [x, i]← T [x, i] · rev
14: end for
15: for all y such that i < y < n do
16: L[i, y]← T [i, y] · rev
17: end for
18: end for
19: return L, R, U

Algorithm 30 parallel_L_Inversion(L)

Require: An n× n lower triangular matrix L
Ensure: An inverse of L
1: L′ ← 0n×n

2: for y = 0 to n− 1 do
3: for all x such that 0 ≤ x < y do
4: sum← 0
5: for z = 0 to y − 1 do
6: sum← sum+ L[z, y] · L′[x, z]
7: end for
8: L′[x, y]← −sum
9: end for
10: end for
11: return L′
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Algorithm 31 parallel_R_Inversion(R)

Require: An n× n diagonal matrix R
Ensure: An inverse of R
1: for all i such that 0 ≤ i < n do
2: R[i, i]← R[i, i]−1

3: end for
4: return R

Algorithm 32 parallel_transposition(T )

Require: An n× n matrix T
Ensure: A transposition of matrix T
1: T ′ ← 0n×n

2: for all x such that 0 ≤ x < n do
3: for all y such that 0 ≤ y < n do
4: T ′[x, y]← T [y, x]
5: end for
6: end for
7: return T ′

Algorithm 33 parallel_multiplication(A,B)

Require: An n× n matrices A and B
Ensure: A multiplication of matrices A and B
1: C ← 0n×n

2: for all x such that 0 ≤ x < n do
3: for all y such that 0 ≤ y < n do
4: sum← 0
5: for z = 0 to n− 1 do
6: sum← sum+ A[z, y] ·B[x, z]
7: end for
8: C[x, y]← sum
9: end for
10: end for
11: return C
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Algorithm 34 parallel_edge_selection(T, T−1)

Require: An n× n Tutte matrix T representing a graph G
Require: An inverse of T
Ensure: A maximum matching of a graph G
1: M ← ∅
2: repeat
3: [v, w]← [−1,−1]
4: for all x such that 0 ≤ x < n do
5: for all y such that 0 ≤ x < n do
6: if T [x, y] ̸= 0 and T−1[x, y] ̸= 0 then
7: [v, w]← [x, y] /* write of a single arbitrary processor is successful */
8: end if
9: end for
10: end for
11: if [v, w] ̸= [−1,−1] then
12: M ←M ∪ {v − w}
13: rev ← T−1[v, w]−1

14: for all x such that 0 ≤ x < n do
15: for all y such that 0 ≤ y < n do
16: T−1[x, y]← T−1[x, y]− T−1[v, y] · T−1[x,w] · rev
17: end for
18: end for
19: rev ← T−1[w, v]−1

20: for all x such that 0 ≤ x < n do
21: for all y such that 0 ≤ y < n do
22: T−1[x, y]← T−1[x, y]− T−1[w, y] · T−1[x, v] · rev
23: end for
24: end for
25: end if
26: until [v, w] = [−1,−1]
27: return M



108 CHAPTER 8. APPENDIX

Algorithm 35 parallel_algebraic_matching(G)

Require: A graph G = (V,E)
Ensure: A maximum matching M of G
1: T ← 0|V |×|V |
2: for all x such that 0 ≤ x < |V | do
3: for all y such that 0 ≤ y < |V | do
4: if V [x]− V [y] ∈ E then
5: k = rand(1, p− 1)
6: T [x, y] = k
7: T [y, x] = k−1

8: end if
9: end for
10: end for
11: T ′ ← parallel_non− singular_submatrix(T )
12: L,R, U ← parallel_LRU_factorization(T ′)
13: L−1 ← parallel_L_inversion(L)
14: R−1 ← parallel_R_inversion(R)
15: U−1 ← parallel_transposition(parallel_L_inversion(parallel_transposition(U)))
16: T ′−1 ← parallel_multiplication(parallel_multiplication(L−1, R−1), U−1)
17: M ← parallel_edge_selection(T ′, T ′−1)
18: return M
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