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Abstract

In this dissertation we take an algorithmic view on resource allocation problems in distributed systems.
We present a comprehensive perspective by studying a variety of distributed systems—from abstract models
of generic distributed systems, through more specific and detailed models, to real distributed computer
systems. These systems differ with respect to the nature of the resource allocation problems and with
respect to the methodologies required to effectively solve them.

Effective resource allocation in distributed systems is a fundamental problem. Computer systems require
good resource management mechanism to ensure expected functionality and expected quality of service. Even
in our everyday life we often participate in resource allocation mechanisms. The examples range from cutting
a cake at the birthday party to parliamentary elections and referendums (where the participating candidates
can be viewed as resources).

We start our discussion from considering a general computational model that describes the problem of
selecting a collective set of items for the shared use by a group of agents. This model is very general; it does
not specify what is an agent and what is an item, and, thus, can be applied to many different scenarios.
Indeed, we show that our model captures many real-life resource allocation problems. For instance, our
algorithms for this general model can be applied to recommendation systems, e.g., to select a collection
of movies for a plane, or to allocate students to sport classes based on their preferences. Our algorithms
are also applicable to the problem of finding a proportional representation of a society in some collective
decision-making body, i.e., to find winners in some modern parliamentary election systems. We analyze
multiple variants of our general problem of selecting a collective set of items.

Next, we move to more specific models of computer systems. In these models we introduce several new
elements such as jobs, processors, and the network. Each of these elements can be further described by a
set of parameters. For instance, jobs have their release times, resource requirements, and durations; further,
their durations might depend on the processors on which they are run; the processors might be identical or
heterogeneous. The network connections can be described, e.g., by bandwidth and communication latencies.
Consequently, in these models we focus on several variants of a more general problem. We ask how to schedule
jobs to minimize their aggregated completion time, with specific variants of this question depending on the
aggregation method and on the characteristics of the elements of the model. We establish computational
complexity of variants of this scheduling problem and, in particular, we show effective algorithms optimizing
jobs’ schedules. We also provide analysis of other properties of our algorithms, such as their fault-tolerance
and their game-theoretic stability.

In the last part of this dissertation we consider resource allocation problems in real implementations of
complex distributed systems. We consider two storage-based systems: HYDRAstor, which is a commercial,
distributed, scalable, high-performance, secondary storage system targeted for the enterprise market, and
our prototype implementation of a P2P backup system. We explain how the design of resource allocation
mechanisms for such complex systems is different from our previous approaches. In this part we present
and discuss relatively more complex resource allocation mechanisms; these mechanisms consist of multiple
elements and even of whole resource allocation subsystems. Further, they aim at achieving multiple
(sometimes contradicting) goals.

Keywords: distributed systems, multi-agent systems, algorithms, complexity, approximation, game
theory, social choice, cooperation, competition, proportional representation.

ACM clasification: CCS → Theory of computation → Design and analysis of algorithms
CCS → Computing methodologies → Artificial intelligence → Distributed artificial intelligence →

Multi-agent systems
CCS → Computer systems organization → Architectures → Distributed architectures



Streszczenie

W poniższej rozprawie badamy algorytmy zarządzania zasobami w systemach rozproszonych.
Przedstawiamy kompleksowe spojrzenie na tę tematykę: rozważamy różne systemy—od ogólnych,
abstrakcyjnych modeli, przez bardziej konkretne, dedykowane modele, po rzeczywiste systemy rozproszone.
Rozważane systemy różnią się specyfiką problemów zarządzania zasobami oraz metodologią, którą jest dla
tych problemów najbardziej adekwatna.

Efektywne zarządzanie zasobami w systemach rozproszonych jest problemem o fundamentalnym
znaczeniu. Systemy komputerowe wymagają dobrych mechanizmów zarządzania zasobami aby zapewnić
odpowiednią jakość usług dla użytkowników. Również w naszym codziennym życiu często uczestniczymy
w mechanizmach zarządzania zasobami. Przykłady takich mechanizmów to między innymi podział tortu
na przyjęciu urodzinowym, czy referenda, a nawet wybory parlamentarne (w tym przypadku możemy
utożsamiać kandydatów startujących w wyborach z zasobami).

W pierwszej części rozprawy rozważamy ogólny, abstrakcyjny model który opisuje problem wyboru
podzbioru pewnych obiektów, które następnie będą współdzielone przez grupę użytkowników. Ten model
jest bardzo ogólny ponieważ nie specyfikujemy kim (lub czym) dokładnie jest użytkownik i czym dokładnie
są owe obiekty. W rezultacie, rozwiązania oparte o ten model możemy zaaplikować do wielu rzeczywistych
problemów, takich jak przydział studentów, w oparciu o ich preferencje, do uniwersyteckich kursów, czy
znajdowanie właściwych rekomendacji. Takie rekomendacje mogą dotyczyć, na przykład, wyboru zbioru
filmów dostępnych na pokładzie samolotu. Nasze algorytmy znajdują takżę zastosowanie w znajdowaniu
proporcjonalnej reprezentacji dla grupy ludzi, czyli np. aby znaleźć zwycięzców w niektórych nowoczesnych
systemach wyborów parlamentarnych. W niniejszej rozprawie analizujemy wiele specyficznych wariantów
tego ogólnego zagadnienia.

W drugiej częsci rozprawy rozważamy bardziej specyficzne modele opisujące systemy komputerowe. W
tych modelach pojawiają się nowe elementy, takie jak zadania, procesory, czy sieć komputerowa. Każdy z
tych elementów może być opisany przez zbiór parametrów: zadania mają swoje czasy powstania, wymagania
zasobów, czy czasy wykonania. Długość trwania zadania może ponadto zależeć od rodzaju procesora
na którym zadanie zostało uruchomione: procesory mogą być identyczne lub heterogeniczne. Połączenia
sieciowe mogą być opisane przez przepustowość lub/i latencję komunikacji. Naturalnie w tych modelach
zadajemy również bardziej specyficzne pytania. Pytamy jak uszeregować zadania, aby zminimalizować ich
zagregowany czas zakonczenia. Specyficzne warianty tego pytania róznią się w zależności od metody agregacji
oraz w zależności od cech charakterystycznych wybranych elementów modelu. W rozważanych modelach
badamy złożoność obliczeniową różnych wariantów problemu szeregowania, w szczególności pokazując
efektywne algorytmy do optymalizacji uszeregowania zadań. W tej części rozprawy analizujemy również
inne cechy naszych algorytmów, takie jak odporność na błędy czy (teorio-growa) stabilność.

W ostatniej części rozprawy rozważamy problemy zarządzania zasobami w rzeczywistych, złożonych,
komputerowych systemach rozproszonych. Rozważamy dwa rzeczywiste systemy przechowywania danych:
HYDRAstor, który jest komercyjnym, rozproszonym, skalowalnym systemem przechowywania danych, oraz
naszą prototypową implemenację systemu do tworzenia kopii zapasowych danych, opartego o architekturę
P2P. Wyjaśniamy czym różni się projektowanie mechanizmów zarządzania zasobami dla takich systemów od
poprzednio rozważanych przypadków. W tej części prezentujemy relatywnie bardziej złożone mechanizmy
zarządzania zasobami: mechanizmy te składają się z wielu elementów, a nawet z wielu podsystemów
zarządzania zasobami. Co więcej takie podsystemy mogą mieć czasami sprzeczne ze sobą cele.

Słowa kluczowe: systemy rozproszone, systemy wieloagentowe, algorytmy, złożoność, aproksymacja,
teoria gier, wybór społeczny, kooperacja, konkurencja, proporcjonalna reprezentacja.

Klasyfikacja ACM: CCS → Teoria obliczeń → Projektowanie i analiza algorytmów
CCS → Metodologie obliczeniowe → Sztuczna inteligencja → Rozproszona sztuczna inteligencja → Systemy
wieloagentowe
CCS → Zorganizowane systemy komputerowe → Architektury → Rozproszone architektury
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Chapter 1

Introduction

In this dissertation we take an algorithmic view on resource allocation problems in
distributed systems. We present a comprehensive perspective by studying a variety
of distributed systems—from abstract models of generic distributed systems, through
more specific and detailed models, to real distributed computer systems. These
systems differ with respect to the nature of the resource allocation problems and
with respect to the methodologies required to effectively solve them.

Effective resource management is a challenge of fundamental significance that we
face in our everyday life. On one hand, we all need resources. We, as human beings,
need biological resources for a healthy living; we, as the society, need natural and
economic resources for a sustainable development; we, as organizations of various
kinds, need human resources to reach our goals. On the other hand, resources are
often limited and hard to access. For instance, some are accessible only by coordinated
cooperative groups of people equipped with expensive hardware (the examples from
our everyday life include mining or obtaining semi-manufactured resources as products
of complex industrial processes). Consequently, people make continuous efforts to
acquire and to use resources effectively.

This challenge of effective resource usage and management is also extremely
pressing in the context of computer systems. Computer systems need resources to
offer expected functionality, to offer quality of service, and to serve large numbers
of users. The resources are, however, expensive. Some are accessible only to
large cooperative coalitions of smaller systems. Such unique resources include,
for example, (i) high computational power, (ii) geographically distributed servers,
and (iii) large virtual disk space. Indeed, we already witness the phenomenon of
cooperation in computer systems provoked by the desire to obtain these unique
resources. There are organizations that consolidate their supercomputers into clouds
to obtain greater computational power (e.g., PL-Grid [242], EGEE [93], DAS [76],
GRID5000 [40]). There are vast content delivery networks designed to efficiently
distribute web content around the world (e.g., Akamai [194,226]). Further, there
are common people joining P2P storage systems to get access to geographically
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distributed disk space (e.g., Freenet [62], or previously Wuala [193]). Cooperation
is also natural in the scientific community. For example, consider PlanetLab [58]—a
system in which participating scientists from all over the world give access to their
servers to the central administration unit. After providing their servers to the system,
the scientists are allowed to run large-scale experiments using large, geographically
disperse, infrastructure. Another example is BOINC [11]—a system that lets common
people contribute the computational power of their desktop machines to research
projects from many scientific areas. BOINC is an example showing how cooperation
of common people allowed to create a distributed system with high computational
power.

Above, we argued the importance and universality of resource management
problems in general. We think, however, that effective resource management
is especially imperative in distributed systems. Indeed, distributed systems are
ubiquitous. For instance, all the examples given above concern resource management
in distributed systems. The human body is a system consisting of multiple organs, or
even billions of cells. The society is a distributed system consisting of the citizens. The
universities, or research centers, are distributed systems gathering scientists. In fact,
we often participate in resource management mechanisms in our everyday life, even
though we do not often realize we do so. The examples range from cutting a cake at a
birthday party (see [246] for a survey on the cake cutting problem), where a cake is a
resource to be shared within a system of children playing at a party, through waiting
in a queue to a post office [221], where a post office is a resource accessed by a system
of customers, to parliamentary elections and referendums, where the participating
candidates are resources to be selected for the system of citizens. Similarly, resource
management is crucial for distributed computer systems, such as computational grids,
content delivery networks, and P2P storage systems, composed of large numbers of
computational units governed by multiple (virtual) organizations.

Both in our everyday life and in computer systems, we can observe two concepts
aimed at making resource management more effective. First, there is a strong
tendency to use resources wisely, i.e., not to waste resources. Second, we observe
coordination and participation in joint efforts to acquire, maintain and use resources.
Both concepts, optimization and cooperation, may require sophisticated resource
management mechanisms.

The challenges in designing effective resource allocation mechanisms include, on
one hand, designing accurate yet simple models of appropriate business processes
and, on the other hand, designing algorithms that solve optimization tasks
regarding these models. Taking into account the fact that the participating entities
(people, organizations) may have contradicting goals, the challenge also includes
designing incentive-compatible and fair mechanisms. The stability of organizationally
distributed systems requires ensuring that each organization has an incentive to
participate in the system. In particular, we would like the profits obtained by
the system to be shared between the participating organizations in a fair and
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effective manner. Any system that fails to provide fair and well-optimized resource
management will collapse either because it will not be competitive or because the
organizations will simply have no desire to join it.

Addressing the aforementioned challenges is often hard. This is confirmed
by theoretical studies that bring many evidences for the difficulty of resource
allocation problems. For example, effective resource management may require solving
computationally difficult, NP-hard, problems. This NP-hardness might seem as an
invincible barrier, especially because distributed systems require mechanisms that
scale well and that are able to handle large input data. Worse yet, NP-hardness
of various resource allocation problems is not the only obstacle. For example,
in the multi-agent systems, where the process of making decisions is distributed,
the strategic behavior of participating agents may lead to suboptimal and socially
undesired outcomes (for example, as in the prisoner’s dilemma [254], the famous
paradox). Furthermore, stable situations in which agents have no incentive to act to
change the current state may not exist. Finally, real complex computer systems may
require whole interacting subsystems of resource management mechanisms.

In this dissertation we take up the gauntlet and argue that in practice we can often
solve resource allocation problems effectively and efficiently. On one hand, we provide
proofs of theoretical difficulty of various resource allocation problems in distributed
systems. On the other, we show effective, if not ideal, solutions that can be used in
practice. In particular, we present the following techniques:

1. We show efficient algorithms giving very good approximation guarantees for the
underlying computational problems.

2. We experimentally confirm that our algorithms very well approximate the
optimal solutions.

3. We show how to apply game-theoretic solution concepts for resource
management in various distributed systems.

4. We design new effective resource management mechanisms for some example
real-life distributed systems (these mechanism include systems’ architectures,
algorithms, and communication protocols).

We present a comprehensive, multi-perspective approach to resource allocation
problems in distributed systems. We start from an abstract high-level model
describing the problem of selecting and allocating items to agents (Part I:
Chapters 3–6). Next, we consider specific and more complex models of computer
systems and related scheduling problems (Part II: Chapters 7–9). Finally, we analyze
resource allocation problems based on real implementations in two real-life systems
(Part III: Chapters 10 and 11). We show that changing the perspective from the
general and relatively simple mathematical model to a specific and complex one
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exposes different challenges and different problems. In each case, however, we show
how the resource allocation problems can be handled effectively and efficiently.

Below we give a more detailed overview of the further parts of this dissertation.
Additionally, each part of this dissertation starts with an overview shortly describing
the considered problems and summarizing our main contributions.

Part I. We start our analysis by considering a general problem of selecting a
collective set of items ranked by the agents. Let us explain this allocation problem
through an example. Consider a company that wants to provide free sport classes
to its employees. There is a set of employees (who we refer to as the agents) and
a set of sport classes (which we refer to as the items). The company, due to a
limited budget, wants to select only K classes to be run, and then wants to assign
the employees to the classes. Naturally, the company wants its employees to be as
happy as possible with the provided classes.

This example is a specific case of the general problem of selecting a collective set
of items for the agents. In Part I we explore its several variants, corresponding to
different ways of measuring the satisfaction of the agents from the items. These
variants address the following issues:

1. We address two ways in which the agents can express their preferences regarding
each single item. On one hand, they can assign numerical values measuring
their utilities from having particular items selected. For instance, an agent can
assign utility 4 to item a1, and utility 2 to item a2, meaning that her level of
satisfaction, according to some metric, from a1 is twice as high as from a2. On
the other hand, they can express their preferences as rankings. For example,
an agent might have preference ranking a1 ≻ a3 ≻ · · · ≻ am, meaning that for
him or her a1 is the most attractive item, a3 is the second most attractive one,
and so on, until am, which is the least appealing one.

2. We address different ways to measure the satisfaction of a single agent from
groups of items. In the above example, since an agent is assigned to a single
item, it is natural to assume that her satisfaction from the group of selected
items is her satisfaction from the item to which she is assigned. We might
think of other ways of measuring the satisfaction of an agent. For instance, in
some scenarios it is reasonable to assume that the satisfaction of an agent from
the group of items is the sum of her satisfactions from the individual items
in that group. However, more complicated schemes exist too. For example,
an agent might use the top preferred item certainly, the second one probably,
the third one perhaps, etc., and thus her total satisfaction would be mostly
influenced by her satisfaction from the top preferred item, significantly by her
satisfaction from the second preferred item, slightly by her satisfaction from the
third preferred item, and so on.
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3. We address different ways to aggregate the satisfaction of multiple agents. For
instance, we might want to maximize the sum of the utilities of the agents (the
utilitarian approach) or to maximize the utility of the least satisfied agent (the
egalitarian approach), or to use some yet other approach.

As we advocated before, this model captures some fundamental computational
challenges from many real-life problems. Here, we only give several examples, and
for the detailed discussion we refer the reader to Chapter 3. The algorithms for the
problem of selecting a collective set of items can be used (i) in recommendation
systems [188], (ii) for determining the proportional representation of the society in
some collective body such as a parliament [47,210], (iii) for determining the optimal
locations for certain facilities (for instance, to set the locations of the hospitals in a
city) [57,145,269], and (iv) in the group activity selection problem [75] (for instance,
to select some from the many options that the conference attendees have for a free
afternoon).

We establish the computational complexity of the considered variants of the
problem of selecting a collective set of items. We show polynomial-time, FPT, and
exponential-time approximation algorithms. For some most interesting variants
we additionally assess the quality of our algorithms through experiments, using
real data describing peoples’ preferences. We show that our algorithms, when
evaluated on these data traces, approximate the optimal solutions significantly
better than indicated by the theoretical (worst-case) guarantees. Finally, some of
the most interesting variants of the problem, we show that the algorithms preserve
their high quality of approximation even if we have incomplete agents’ preferences,
truncated to a certain number of the top positions.

Part II. In the second part of this dissertation (Chapters 7–9) we consider resource
allocation problems in several more specific models. We abandon the general
notion of an item and we introduce more specialized elements, such as machines
with their processors, jobs that we intend to run on these machines, the durations
of these jobs and the time moments they were created, the strategic interactions
between the agents, an so on. These new elements allow us to consider more
specific problems and their dedicated solutions.

In this part we focus on three example problems:

1. In Chapter 7 we study strategic interactions between teams of agents competing
for an employment in a project. This chapter is an intermediate step in our
analysis—on one hand we start from a generic model that describes general
agents competing for an employment in a project and, on the other hand, we
show that this generic model can be specialized with a particular scheduling
model describing specific agents in a specific setting. Thus, our solutions from
this chapter may be applied to various natural problems.
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2. In Chapter 8 we consider a problem of finding a fair resource allocation
mechanism in a distributed system consisting of multiple organizations sharing
their infrastructures. This chapter concerns a concrete scheduling model in
which we have a number of organizations, each owning a set of processors.
The organizations merge their infrastructure and each organization can process
its own jobs on any available processor. The jobs arrive continuously but
neither their arrival pattern nor their durations are known in advance. The
organizations want to have their jobs completed as quickly as possible, but in
some busy periods there might not be enough processors to handle all incoming
jobs immediately and some organizations must wait for free processors. We
describe an algorithm that schedules the arriving jobs on the available processors
in a way that is fair to the organizations.

3. In Chapter 9 we address load balancing problems in centrally-managed,
geographically distributed systems. Similarly as in Chapter 8, we consider a
concrete model of a distributed computer system. In our model there is a
number of servers connected with a high-bandwidth network. The servers need
to process large numbers of small user requests (such as web page requests)
arriving continuously with unknown pattern. The servers can redirect requests
to be handled on other servers, but each redirection causes a certain delay. We
describe algorithms that efficiently compute which requests should be redirected
to which servers to minimize the average user waiting time.

Since our goal is to give a comprehensive view on resource allocation problems in
distributed systems, this part of the dissertation shows a diversified perspective on
several aspects of resource management.

1. We show a diversified view on the agents behavior and interaction. Chapter 7
considers strategic agents and studies their competition. Chapter 8 examines
the problem of finding a fair schedule from a cooperative game theory
standpoint. Chapter 9 describes an organizationally centralized distributed
system owned by a single entity.

2. We study different models of physical distribution of the system. Chapter 7
abstracts from the notion of a physical distribution. Chapter 8 considers
a computational grid in which the communication latencies between the
processors and the users are negligible when compared to the jobs’ processing
times. In Chapter 9 we consider a geographically distributed system in which
the communication delay of the task contributes a significant part to their total
completion time.

3. We use different techniques in analyzing our resource allocation mechanisms.
In Chapter 7 we analyze several solution concepts from game theory. We prove
the correctness of our algorithms by showing that the game-theoretic solutions
have, somehow, natural structure. Consequently, we show simple and intuitive
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exact algorithms. In Chapter 8 we analyze the parameterized complexity and
approximability of the main discrete problem. In Chapter 9, on the other hand,
we analyze the approximability of the problem in which input data is given in
the form of continuous, fully divisible loads, and continuous functions.

Part III. In the two previous parts we studied relatively simple systems for which
we could obtain theoretical models. The solutions obtained through analysis
of these models can be, then, applied in practice. For instance, we are
currently working on implementing our fair scheduling algorithms, described in
Chapter 8, in CometCloud [65], an autonomic framework for running applications
on supercomputers and in data centers. Some systems, however, are too complex
to get an accurate mathematical model, suitable for a formal study. In this part
we describe how to design resource management mechanisms for such complex
systems.

There are many reasons for which the theoretical analysis of real-life complex
systems is particularly difficult.

1. The quality of resource management mechanisms in some complex systems is
affected by a number of factors that depend on each other, and, so, no single
problem can be isolated and studied independently. For instance, let us consider
the task of designing an effective backup system, while using only inexpensive
and unreliable computers. Since we are forced to use low-end infrastructure,
we cannot relay any important functionality of the system to a small group of
computers. Indeed, such a design would be particularly vulnerable to failures.
Consequently, we want to design a P2P system, i.e., a distributed system that
consists of a network of computers, each having the same status and role.

(a) To achieve good performance of such a system, we would aim at maximizing
the concurrency of the backup operation and, so, we would aim to store our
data on as many physical machines as possible. In our system, however,
some machines may be less reliable than others and some machines may be
often unavailable; using them as storage machines might result in serious
problems, such as data unavailability or even data loss. Thus, in such a
system, the requirements concerning reliability cannot be easily decoupled
from the performance-based goals. In general, in real-life complex systems
we often face multi-criteria optimization problems [91,95,167,309] in which
single-criteria subproblems cannot be isolated, and thus the models get
deeply complicated.

(b) The daily availability of a machine might be a factor influencing whether
such a machine can be used to store data. For instance, if a machine A is
available every day between 8am and 1pm and machine B is available only
between 2pm and 10pm, then A cannot directly send its data to B. On the
other hand, if we could provide an effective asynchronous communication
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between the machines, we might decide to use low-availability machines
for storage as well. For instance, if there exists machine C that is usually
available between 11am and 4pm, then A can send its data temporarily to
C during the period of common availability; next, C can pass the data to
B as soon as B rejoins the system. Thus, the existence of a mechanism
providing asynchronous communication influences the main assumptions of
a mechanism responsible for data distribution.

2. Real-life systems are often complex and they consist of many elements. Effective
resource allocation requires managing many dependent and independent
resources, and involves many mechanisms, such as network protocols,
monitoring services, maintenance services, allocation algorithms in multiple
software components, etc. Even if these mechanisms could be treated as
black boxes and designed and studied independently from each other (which
is very often impossible), it is particularly difficult to analyze the system and
its properties as a whole.

3. Complex systems might have multiple contradicting goals. Let us, again,
consider an example of a P2P backup system. To achieve resiliency to
geographically-correlated disasters (such as earthquakes, floods, or fires) we
would like to keep data in remote locations. This, however, stays in
contradiction with the performance-oriented goals. It is not clear how to
precisely describe, in a model, this trade-off between many contradicting goals.

In addition to the above discussion, we often are not aware which elements of the
whole system are important and need to be taken into account during the design
process. Consequently, it is not only hard to provide a suitable formal analysis of
resource management mechanisms in real-life complex systems, but also it is hard
to propose simplifications that would allow one to run simulations of some parts
of the system. We can very often use wrong assumptions and miss the important
factors that need to be taken into account, simply because we are not fully aware of
them. Thus, we argue that in some real complex systems we require a methodology
that focuses on emulation rather than on simulation or formal analysis. In such
cases we need to perform the experiments on a real system, to confirm its desired
properties.

In this part of the dissertation we address the issue of designing effective
resource management mechanisms in real-life complex systems, where the formal
methodology and simulations cannot be successfully applied.

In Chapter 10 we consider a real resource allocation problem that is taken
from HYDRAstor [89,218], the commercial storage system developed by NEC
Corporation [219]. In this system we address the problem of distributing resources
between loads of various types, such as user reads and writes, reconstructions of
missing parity data, data defragmentation tasks, and other background activities.
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Since we are given an existing commercial system, our goal is to design a mechanism
that is decoupled from the rest of the system. Thus, this mechanism cannot
interfere with other parts of the system and, in particular, cannot influence the way
in which data is distributed between physical nodes. We describe a fuzzy adaptive
control mechanism for sharing resources among various types of highly-variable
loads. This mechanism ensures proper division of the total system throughput
between different categories of the tasks and maintains high resource utilization.
Additionally, it does not influence other parts of the system.

In Chapter 11 we consider a different approach to designing resource management
mechanisms. In this approach we do not want to provide a decoupled resource
management mechanism, but instead we present a whole architecture for a
P2P backup system that allows one to implement certain resource allocation
mechanisms. For instance, this architecture supports data placement strategies
that allow one to achieve certain goals, according to a given policy. These goals
include reliability to geographically correlated disasters (placing data replicas far
away from each other), performance of read/write operations (placing replicas on
strong, non-overloaded servers), or putting small burden on the network (placing
data replicas close to each other). We also present other mechanisms supporting
effective resource management, such as mechanisms allowing for asynchronous
communication.

To sum up, in this dissertation we show a comprehensive and multi-perspective
view on resource management in distributed systems. We show how to effectively
and efficiently solve the resource allocation problems. High-level contributions of this
thesis are as follows:

1. We describe new models that capture resource allocation problems, in particular
new classes of cooperative and strategic games (Chapters 3, 7, 8, and 9).

2. We analyze computational complexity of various resource allocation problems
(Chapters 4–9).

3. We show algorithms (exact, approximate, fixed parameter tractable, heuristic,
centralized, and distributed) for some fundamental problems regarding resource
allocation in distributed systems (Chapters 4–11).

4. We show how to apply non-cooperative game-theoretic (Chapter 7) and
cooperative game-theoretic (Chapter 8) solution concepts to ensure stability
of resource allocation algorithms in some example distributed systems.

5. We show how to design resource allocation mechanisms in two real-life
distributed systems—in HYDRAstor, a high-performance secondary-storage
system aimed at the enterprise market (Chapter 10), and in our prototype
implementation of a P2P backup system (Chapter 11).
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6. We perform experimental evaluation of some of our mechanisms. We
perform simulations to show good approximation properties of our algorithms
(Chapters 5, 8, and 9), and their small convergence time (Chapter 9). We
perform experiments on real systems to show that our algorithms are stable, that
they result in high resource utilization and satisfy resource allocation objectives
(Chapters 10, and 11).

We believe that three most valuable technical results presented in this thesis are
the following.

1. In Chapter 5 we show several good approximation algorithms for winner
determination under two appealing election systems—the Monroe and
Chamberlin–Courant systems. Actually, we prove stronger results, giving
guarantees on the satisfaction of agents, independently of the preference profile
or the quality of the optimal solution. For instance, for the Polish parliamentary
elections, where the the parliament consists of 460 members and the number
of candidates is approximately equal to 6000, our algorithms guarantee that
each voter is, on average, represented by a candidate that she prefers to 99%
of the candidates (in case of Chamberlin–Courant system) and to 96% of the
candidates (in case of Monroe system). We believe that our algorithms will,
eventually, make it possible to use the two appealing election systems in practice.

2. In Chapter 6 we describe approximation algorithms that run in FPT time for
the MaxCover problem. MaxCover is a very useful theoretic problem that
finds applications in several fundamental resource allocation problems.

3. In Chapter 8 we present how to apply game theoretic solution concept to create
a fair scheduling algorithm. Our algorithm operates without using the concept
of money, which makes it particularly practical. We show several practical
effective scheduling algorithms that give good fairness guarantees.

Our results have been published in the following conferences (6 of them are
currently under review in various journals):

1. P. Skowron, K. Rzadca and A. Datta. People are Processors: Coalitional
Auctions for Complex Projects (Extended Abstract). In Proceedings of
13th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2014) [282],

2. P. Skowron, P. Faliszewski and A. Slinko. Fully Proportional Representation
as Resource Allocation: Approximability Results. In Proceedings of The 2013
International Joint Conference on Artificial Intelligence (IJCAI-2013) [276],

3. P. Skowron and K. Rzadca. Non-monetary fair scheduling: a cooperative game
theory approach. In Proceedings of 25th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA-2013) [281],
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4. P. Skowron, P. Faliszewski and A. Slinko. Achieving Fully Proportional Repre-

sentation is Easy in Practice. In Proceedings of 12th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2013) [275],

5. P. Skowron, M. Biskup, L. Heldt and C. Dubnicki. Fuzzy adaptive control for
heterogeneous tasks in high-performance storage systems. In Proceedings of 6th
Annual International Systems and Storage Conference (SYSTOR-2013) [273],

6. P. Skowron and K. Rzadca. Fair Share Is Not Enough: Measuring Fairness
in Scheduling with Cooperative Game Theory. In Proceedings of 10th
International Conference on Parallel Processing and Applied Mathematics
(PPAM-2013) [279],

7. P. Skowron and K. Rzadca. Network Delay-Aware Load Balancing in Selfish and
Cooperative Distributed Systems. In Proceedings of 2013 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW-2013) [280],

8. P. Skowron and K. Rzadca. Exploring heterogeneity of unreliable machines for
P2P backup. In Proceedings of The 2013 International Conference on High
Performance Computing & Simulation (HPCS-2013) [278].

The contents of Chapter 10 are patented (US Patent 2013 nr. 20130031563, and WO
Patent 2012 nr. WO/2012/029259). Yet for the sake of clarity of the presentation we
do not include these extended results in the main text. Our results have also been
presented at a number of workshops, such as:

1. The Fourth Workshop on Cooperative Games in Multiagent Systems
(CoopMAS). Saint Paul, USA, 2013 [276,281],

2. Forum Informatyki Teoretycznej FIT (An informal annual meeting of Polish
researchers working on theoretical computer science) in Toruń, Poland in 2013
and in Jarnołtówek, Poland in 2014 [274–276],

3. 6th Multidisciplinary Workshop on Advances in Preference Handling
(M-PREF-2012). Montpellier, France, 2012 [276],

4. New Challenges in Scheduling Theory Workshop (Fréjus, France, 2012 and
Aussois, France, 2014) [280,281], and

5. The Workshop on Economic and Computational Aspects of Game Theory and
Social Choice. Warsaw, Poland, 2014 [274,282].
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Chapter 2

Preliminaries

In this chapter we introduce our notation and recall fundamental concepts from the
cooperative and strategic game theory (Section 2.1), and from the (parameterized)
complexity theory (Section 2.2). We conclude this chapter by giving a dictionary and
a brief overview of the NP-hard problems used in our further discussions (Section 2.3).

2.1 Game Theory

Throughout this dissertation we often refer to agents. Agents are autonomous,
intelligent, rational, and goal-oriented entities, which make decisions that affect the
systems that we study. Agents can represent human beings, organizations, pieces of
software, or intelligent computer systems, depending on the setting.

Game theory is a study of decision making by agents. Games formalize strategies
the agents can choose from and the outcomes of using these strategies, i.e. the results
of the players’ chosen actions. In game theory, a solution concept is a formal rule
that describes how rational agents would behave. It allows to predict the strategies
of the agents and the results of the game.

In this section we review several solution concepts from non-cooperative and
cooperative game theory. These concepts commonly assume that the agents are
selfish and rational, i.e., that each agent aims at maximizing her own profit.
The cooperative approach differs from the non-cooperative one in the way agents
interact. In particular, the cooperative game theory considers scenarios where it
is possible and profitable for agents to cooperate and to form binding agreements.
Consequently, the solution concepts from the cooperative game theory aim at defining
the ways in which the total profit of the cooperative coalition should be distributed
among its participants to ensure fairness and stability of the formed coalition. The
non-cooperative game theory, on the other hand, studies scenarios where agents make
their decisions independently. Thus, in the non-cooperative view there is no concept
of a binding agreement, and, so, the solution concepts aim at predicting agents’
strategies (predicting how a game will be played) rather than describing conditions for
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profit distributions that guarantee stable agreements. For the more detailed discussion
on the cooperative and non-cooperative game theoretic solution concepts we refer the
reader to the book of Osborne and Rubinstein [231].

2.1.1 Non-Cooperative Game Theory

Formally, a game is defined by a set of agents, sets of their available strategies (also
referred to as their actions), and a set of their payoff functions (which will be defined
later). We usually denote the set of agents as N = [n], where for each n ∈ N, by
[n] we mean {1, . . . , n}. The set of actions of agent i is denoted by Si. A strategy
profile ~x is a vector of actions of all agents; i.e., ~x = 〈x1, x2, . . . , xn〉, where xi ∈ Si
for every i ∈ N . By (x′i, x−i) we denote the strategy profile x after replacing the
i-th agent’s strategy xi with x′i. We define S as the set of all strategy profiles:
S = S1 × S2 × · · · × Sn. The payoff function of agent i, fi : S → R, defines for
every strategy profile ~x = 〈x1, x2, . . . , xn〉 the payoff that agent i receives, provided
every agent j ∈ N takes action xj ; intuitively, the agents choose their strategies to
maximize their payoff.

There are many known solution concepts in the strategic game theory, some of
which we briefly describe below.

Nash Equilibrium

Perhaps the most famous solution concept in game theory is the Nash
equilibrium [217]. Intuitively, Nash Equilibrium describes a state in which no agent
can benefit from changing her strategy. In other words, in Nash Equilibrium every
agent is playing her best action, given the strategies of the others.

Definition 2.1. A strategy profile x∗ ∈ S is a Nash Equilibrium if no unilateral
deviation in strategy by any single agent is profitable for that agent. That is, x∗ ∈ S
is a Nash Equilibrium if it holds that:

∀i, xi ∈ Si : fi(xi, x
∗
−i) ≤ fi(x

∗
i , x
∗
−i).

Nash equilibria do not necessarily exist, and, indeed, this is the case for many
natural games [231]. On the other hand, we can consider the concept of a Nash
Equilibrium that is defined for mixed strategies, where players choose a probability
distribution over their actions and are interested in maximizing their expected utility.
It is natural to ask the question about the existence of Nash Equilibrium in mixed
strategies. In 1950, Nash proved one of the most famous result in game theory, saying
that under mild assumptions about the game, Nash equilibria in mixed strategies are
guaranteed to exist [217].
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Strong Nash Equilibrium

The notion of the Nash equilibrium implicitly assumes that agents cannot (or do not
want to) communicate and, thus, that they make their decisions in isolation. In many
real-life scenarios, however, this is not the case and the agents can coordinate their
strategies. For such games, Aumann [15] proposed a refinement of the concept of a
Nash Equilibrium known as the Strong Nash Equilibrium (SNE).

In the definition below we extend the notation (x′i, x−i) in a natural way so that
for a given subset of agents N ′ = {i1, . . . i|N ′|} ⊆ N and a vector of their actions
xN ′ = 〈x′i1 , . . . x

′
i|N′|
〉, by (xN ′ , x−N ′) we mean the strategy profile that we obtain after

replacing for each i ∈ N ′ the i-th agent’s strategy xi with x′i.

Definition 2.2. A strategy profile x∗ ∈ S is a Strong Nash Equilibrium (SNE) if no
unilateral deviation in strategy by any set of agents is profitable for every deviating
agent, i.e., x∗ is an SNE if:

(

∀N ′ = {i1, . . . i|N ′|} ⊆ N, xN ′ = 〈x′i1 , . . . x
′
i|N′|
〉
)(

∃i ∈ N ′
)

: fi(xN ′ , x∗−N ′) ≤ fi(x
∗).

The concept of the SNE is very restrictive and there are relatively few games for
which an SNE exists. Unfortunately, there is no result analogous to the existence of
Nash Equilibria for the case of mixed strategies. For this reason, SNE has been
criticized as being too strong. In effect, alternative, weaker, concepts, such as
coalition-proof Nash equilibrium [23] and Coalitional Farsighted (Conservative) Stable
Set [82], have been proposed. Since these two solution concepts are less common, we
recall their definitions and provide a discussion of their applications in Chapter 7,
which is the only place in this dissertation where we use them.

Pareto Efficiency

Pareto Efficiency [184], also referred to as Pareto Optimality, is another concept of
stability. It defines a state in which we cannot improve the payoff of any agent without
reducing the payoff of some other one. Thus, Pareto Efficiency also defines the concept
of global optimality: non Pareto-efficient states can undoubtedly be improved upon
with no harm to any agent.

Definition 2.3. A strategy profile x∗ ∈ S is Pareto-efficient if there exists no profile
x ∈ S such that (i) every agent under x gets at least as good a payoff as under x∗,
and (ii) there exists some agent that under x gets strictly better payoff than under x∗.
Formally, x∗ is Pareto-efficient if:

∀x ∈ S :
(

∃i ∈ N : fi(x) < fi(x
∗)
)

or
(

∀i ∈ N : fi(x) = fi(x
∗)
)

.

The concept of Pareto Efficiency is also popular in the context of multi-criteria
optimization [91,95,167]. If we want to optimize a function with several independent
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Figure 2.1: Graphical illustration of the Pareto optimal set in the context of bi-criteria
optimization. The Pareto optimal set consist of the elements marked with the cross.

criteria, we ideally want to find a Pareto optimal solution, i.e., a solution for which
there is no single criterion in which the optimization function can be improved
without reducing its quality according to some other criterion. The concept of Pareto
Efficiency is graphically illustrated in Figure 2.1.

2.1.2 Cooperative Game Theory

Cooperative game theory analyzes scenarios where agents work together to achieve
some goal. In the cooperative game theory we often refer to the sets of agents as the
coalitions. Formally, a cooperative game is defined by the set of agents N and the
characteristic function: v : 2N → R that describes how much payoff each coalition of
agents C ⊆ N can get. We assume that the empty coalition (empty set of agents)
cannot gain any payoff, v(∅) = 0. Additionally, in the cooperative game theory the
characteristic function is often assumed to satisfy superadditivity.

Definition 2.4. A set function v : 2N → R is superadditive if it satisfies the following
condition:

for every S, T ⊆ N such that S ∩ T = ∅, we have v(S ∪ T ) ≥ v(S) + v(T ).

Alternatively, it is also often assumed that the characteristic function is cohesive.

Definition 2.5. A set function v : 2N → R is cohesive if for every collection
S1, . . . , Sk of pairwise disjoint subsets of N whose union is N , it holds that:

k
∑

i=1

v(Si) ≤ v(N).

16



Intuitively, superadditivity and cohesiveness state that players can collectively achieve
a higher value than in separated coalitions. Each of these conditions is, in some
sense, a minimal natural requirement for agents to form a grand coalition, a coalition
consisting of all agents. A stronger assumption to superadditivity, is convexity.

Definition 2.6. A game is convex if v(∅) = 0 and for every S, T ⊆ N , we have:

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ).

Solution concepts in cooperative game theory define rational divisions of the total
value of the grand coalition v(N) between its members. Such divisions are often
referred to as payoff vectors. Payoff vector ~x is a vector of n nonnegative values
~x = 〈x1, x2, . . . , xn〉, where the i-th value xi denotes the payoff allocated to the i-th
agent. There are many known solution concepts in the cooperative game theory [231]
including, e.g., the stable set [212], the core [112], the kernel [77], the nucleolus [257],
and the Shapley value [265]. Below, we briefly describe those three that we use in the
further parts of this dissertation.

The Shapley Value

The Shapley value [265] is an established solution concept in the cooperative game
theory, whose goal is to define a fair division of the total value of the coalition between
its participants. The Shapley value of the player i in a coalitional game (N, v) is:

φi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!

(

v(S ∪ {i})− v(S)
)

.

We often refer to the value (v(S ∪{i})− v(S)) as the marginal contribution of the
i-th agent to the coalition S. Thus, the Shapley value of an agent i can be viewed as
a weighted marginal contribution of i. This view can be formalized by the following
alternative definition of the Shapley value [231].

Let LN denote all possible orders over the set of agents N . Each order ≺N can be
associated with a permutation of the set N , so |LN | = |N |!. For each order ≺N ∈ LN
we define ≺N(i) = {j ∈ N : j ≺N i} to be the set of all agents that precede i in the
order ≺N . The Shapley value can be expressed in the following form:

φi(v) =
1

|N |!

∑

≺N∈LN

(

v
(

≺N(i) ∪ {i}
)

− v
(

≺N(i)
)

)

. (2.1)

As we noted, this formulation has an interesting interpretation. The Shapley value,
φi(v) is the expected marginal contribution of the agent i to the grand coalition,
provided that we choose the order in which agents join uniformly at random.

The Shapley value is characterized by a number of desirable properties [129,305].
Below, we recall the first axiomatic characterization proposed by Shapley [231]: The
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Shapley value is the unique map from the set of all games to payoff vectors (naturally,
in this case 〈φ1(v), φ2(v), . . . , φn(v)〉 is a payoff vector) that satisfies the following four
properties:

Efficiency. The total value v(N) is distributed:
∑

i∈N
φi(v) = v(N).

Symmetry. If the agents i and j have the same marginal contributions, they need
to obtain the same profits:

(

∀S⊂N :i,j /∈S v(S ∪ {i}) = v(S ∪ {j})
)

⇒ φi(v) = φj(v).

Additivity. If we combine two games (N, v) and (N,w), into a new game (N, v+w),
defined as (v + w)(S) = v(S) + w(S), then for every i ∈ N , we have:

φi(v + w) = φi(v) + φi(w).

Dummy (Null player). An agent that does not increase the value of any coalition
S ⊂ N gets nothing:

(

∀S⊂N : v(S ∪ {i}) = v(S)
)

⇒ φi(v) = 0.

The Core

The core [112] is the concept from the cooperative game theory that is very closely
related to that of Strong Nash Equilibrium from the non-cooperative game theory.
The core describes the set of payoff vectors which are stable, in the sense that no
coalition of agents can deviate so that all its members are better off.

Definition 2.7. The core of the cooperative game (N, v) is the set of all payoff vectors,
such that for each such a vector ~x = 〈xi〉i∈N it holds that (i) the total value of the
coalition is distributed

∑

i xi = v(N), and (ii) there exists no coalition S ⊆ N , and
no payoff vector 〈yi〉i∈N , such that

∑

i yi = v(N) and yi > xi, for all i ∈ S.

Similarly to the Shapley value, the core can be characterized alternatively to
Definition 2.7, by the two following axioms:

Efficiency:
∑

i xi = v(N).

Coalitional rationality: ∀S ⊆ N :
∑

i xi ≥ v(S).

Consequently, the core is the set of vectors satisfying a system of linear inequalities,
and, so, it is closed and convex.The core is always well-defined, but can be empty;
emptiness of the core is analogous to the cases in non-cooperative games when Nash
equilibria do not exist.
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The Stable Set

The stable set [212] (also known as the von Neumann-Morgenstern stable set) was
one of the first solution concepts proposed for the cooperative games. The stable set
describes the set of all payoff vectors that dominate the payoff vectors from outside
the set, and, at the same time, are not dominated by any other payoff vectors from
the set.

Definition 2.8. A payoff vector ~x = 〈x1, x2, . . . , xn〉 is dominated by a payoff vector
~y = 〈y1, y2, . . . , yn〉, when ~y is preferred to ~x by all the members of some coalition C,
i.e., if there exists a coalition C 6= ∅ such that:

1. For each i ∈ C it holds that yi > xi, and

2.
∑

i∈C yi ≤ v(C).

Definition 2.9. A set S of payoff vectors is called a stable set if it satisfies two
properties:

1. No payoff vector in S is dominated by another vector in S.

2. Each payoff vector outside S is dominated by some vector from S.

The idea behind the stable set is the following. A coalition C is not satisfied with
the payoff vector when it can propose an alternative division of the total value that is
more profitable for all of its members. Such coalition may threat the stability of the
grand coalition agreement by breaking out and implementing their proposed division
without the other agents. However, coalition C will have a unilateral incentive to
break out only if the newly proposed division is stable, as otherwise other coalitions
may object to the proposal of C, and consequently, after such a sequence of objections,
some members of C may end up in a worse than initial state. If we select a payoff
vector from the stable set, then no coalition will have such unilateral incentive to
break out and implement an alternative payoff vector.

The stable set may not exist and if it exists it is usually not unique. There is an
elegant connection between the stable set and the core. First, for each cooperative
game its core is a subset of each of its stable sets (we recall that the stable set might
not be unique). Second, if the core is exactly equal to some of the games’ stable sets,
then for such game the stable set is unique, and, so, the notions of the core and of the
stable set are equivalent. Interestingly, for convex games there exists a unique stable
set that coincides with the core; also, for these games the core contains the Shapley
value.

2.2 Complexity and Algorithms

We assume familiarity with standard notions pertaining to algorithms and worst-case
complexity theory (such as definitions of the decision and optimization problems, the
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classes P and NP, many-one reductions, NP-completeness, etc.). Below we review
the most essential concepts regarding parameterized complexity and approximation
algorithms.

2.2.1 Parametrized Computational Complexity

We sometimes use results from the theory of parameterized complexity developed by
Downey and Fellows [87]. This theory allows one to single out a particular parameter
of the problem, say K, and analyze its contribution to the overall complexity of the
problem. An analogue of the class P here is the class FPT which consists of problems
that can be solved in time f(K)nO(1), where n is the size of the input instance, and
f is some computable function.

For example, consider the VertexCover problem in which we are given a graph
and our goal is to find the smallest possible subset C of vertices such that each edge of
the given graph is incident to some vertex from C. One of the natural parameters for
VertexCover is the size of the optimal solution, K = |C|. VertexCover can be
solved by an exhaustive search in time O(2KKn). (The key observation to obtain the
mentioned complexity is that each edge can be covered by only two vertices, and that
in the optimal solution all edges need to be covered.) This algorithm has exponential
running time, but the exponential part of its complexity depends only on the value
of the parameter K. Thus, VertexCover for the parameter K is fixed parameter
tractable (FPT).

From the point of view of parameterized complexity, FPT is seen as the class
of tractable problems. There is also a whole hierarchy of hardness classes, FPT ⊆
W[1] ⊆W[2] ⊆ · · ·W[P] ⊆ · · · . The standard definitions of W[1],W[2], . . . are quite
involved and so, instead of providing them here, we point the reader to appropriate
overviews [87,102,222]. However, we can also define these classes through a notion of
an appropriate reduction to their complete problems.

Definition 2.10 (Parametrized reduction [87]). Let P and P ′ be two decision
problems parameterized by natural number parameters K and K′, respectively. We
say that P reduces to P ′ through a parameterized reduction if there exist a mapping
F : P → P ′ (computable in FPT time with respect to parameter K) and two
computable functions, g : N→ N and h : N→ N, such that:

1. for each instance (I,K) ∈ P the answer to (I,K) is “yes” if and only if the
answer to F (I) = (I ′, K ′) is “yes”,

2. K and K ′ are the values of the parameters K and K′ respectively,

3. |I ′| ≤ g(K)poly(|I|), and

4. K ′ ≤ h(K).

20



The parameterized reduction (sometimes also referred to as an FPT reduction)
simultaneously preserves the instance size (point (iii) in the above definition) and the
size of the parameter (point (iv)). The size of the instance I ′ does not have to be
bounded by a polynomial of the size of I, but the exponential part of the relation
between the sizes of I and I ′ must depend only on the value of the parameter.

W[1] is the class of all problems for which there is a parameterized reduction to the
Clique problem (with parameter K). In the Clique problem we are given a graph G
and we ask whether in G there exists a set S of K vertices such that every two vertices
from S are connected. W[2] is the class of problems with parameterized reductions
to SetCover (with parameter K). In the SetCover problem we are given a set
of elements N and a set F of subsets of N . We ask whether there exist K subsets
from F such that each element of N belongs to at least one of these subsets. We
define and describe most relevant computational properties of the problems Clique
and SetCover in Section 2.3.

2.2.2 Approximation

Let P be an algorithmic problem where, given some instance I, the goal is to find a
solution s that maximizes a certain function f . We call such problems maximization
problems. Given an instance I of P, we refer to the value f(s) of an optimal solution s
as OPT(I) (or, sometimes, simply as OPT if the instance I is clear from the context).

Definition 2.11 (Approximation algorithm). Let β, 0 < β ≤ 1, be some fixed
constant. Let A be an algorithm, for a maximization problem P, that given an instance
I returns a solution A(I). A is called a β-approximation algorithm for the problem
P if for every instance I of P it holds that f(A(I)) ≥ βOPT(I).

Analogously, we define OPT(I) and the notion of a γ-approximation algorithm,
γ > 1, for the case of minimization problems, where the task is to find a solution
that minimizes a given goal function g. Given an instance I of such a minimization
problem P ′, a γ-approximation algorithm is required to return a solution s′ such that
g(s′) ≤ γOPT(I).

We are particularly interested in settings where it is possible to obtain arbitrarily
good approximation algorithms.

Definition 2.12 (PTAS). A polynomial time approximation scheme (PTAS) for a
maximization (minimization) problem P is an algorithm that for every ǫ > 0 provides
a polynomial (1 − ǫ)-approximation algorithm (a polynomial (1 + ǫ)-approximation
algorithm) for P.

Definition 2.13 (FPTAS). A fully polynomial time approximation scheme (FPTAS)
for a maximization (minimization) problem P is an algorithm that for every ǫ >
0, and for every instance I of P provides an (1 − ǫ)-approximation (an (1 +
ǫ)-approximation) solution for I in time polynomial in the instance size |I| and the
approximation parameter 1/ǫ.
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In our analysis we sometimes use the powerful result of Nemhauser et al. [220],
which says that greedy algorithms achieve 1 − 1

e
approximation ratio when used

to optimize nondecreasing submodular functions. Below, we explain what are the
nondecreasing and submodular functions and recall the result of Nemhauser et al..

Definition 2.14 (Nondecreasing set function). A set function z : 2N → R is
nonincreaing if for every S1 ⊆ S2 ⊆ N we have z(S1) ≤ z(S2).

Definition 2.15 (Submodular set function). Let z : 2N → R be a set function defined
for each set S ⊆ A. We say that z is submodular if for every S1 ⊆ S2 ⊆ N and every
x ∈ N \ S2 we have that:

z(S1 ∪ {x})− z(S1) ≥ z(S2 ∪ {x})− z(S2).

There are many other equivalent definitions of submodularity [220], but
throughout this dissertation we will only use the definition given above.

Theorem 2.1 (Approximating submodular functions [220]). Let z : 2N → R be a
nondecreasing submodular set function. Consider the problem P of selecting S ⊆ N
such that |S| = K and z(S) is maximal. The greedy algorithm that starts from an
empty solution S = ∅ and in each of K iterations adds to the solution the element x
that maximizes z(S ∪ {x}), is an (1− 1/e)–approximation algorithm for P.

2.3 Overview of NP-hard Problems

Below we recall definitions of, and provide some background information for, some
NP-hard problems used throughout our discussions.

We start from defining the SAT and 3-SAT problems. These are perhaps
most fundamental problems known in the complexity theory. In particular, SAT
is famous as the first known example of an NP-complete problem, as proved by
Cook in 1971 [67] and, independently, by Levin in 1973 [174]. These results were a
significant breakthrough in complexity theory. Below we provide definitions of the
two problems—these definitions will be useful in our further discussions, but we will
not use them explicitly in our proofs of hardness.

Definition 2.16. In the SAT problem we are given a propositional formula, that is
built from (i) variables, (ii) operators “and” (conjunction), “or” (disjunction), and
“not” (negation), and (iii) parentheses. We ask whether there exists an assignment of
the logical values “true”, and “false” to the variables, that the given formula is true.

Definition 2.17. The 3-SAT problem is defined analogously to the SAT problem,
with the single difference, that the propositional logic formula is given in the specific
form: it is a conjunction of clauses, each clause being a disjunction of at most three
literals, where a literal is either a variable or its negation.
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2.3.1 Covering Probelms

In many of our hardness proofs we use reductions from various covering problems,
that is, different variants of the SetCover problem, defined below.

Definition 2.18 (SetCover). An instance I of SetCover consists of set U = [n]
(called the ground set), family F = {F1, F2, . . . , Fm} of subsets of U , and of a positive
integer K. We ask if there exists a set I ⊆ [m] such that ‖I‖ ≤ K and

⋃

i∈I Fi = U .

Set-Cover remains NP-complete even if we restrict each member of U to belong
to at most two sets from F . The simple greedy algorithm that in each step selects
a set that covers the largest number of yet-uncovered elements gives approximation
guarantee O(log(n)) [60] (where n denotes the number of elements). This is the
best possible approximation ratio that a polynomial-time algorithm may achieve [98].
If the frequency of the elements, defined as the number of sets an element can
belong to, is bounded by a constant p, then an algorithm based on LP-relaxation
gives approximation guarantee equal to p [293]. Set-Cover is also hard from the
perspective of parameterized complexity. For the parameter K, denoting the number
of sets in the optimal cover, it is W[2]-complete. (Indeed, in this thesis we define
W[2] as the class of problems that FPT-reduce to Set-Cover.)

SetCover has several interesting variants.

Definition 2.19 (X3C). Exact3SetCover (X3C) is a variant of Set-Cover
where ‖U‖ is divisible by 3, each member of F has exactly three elements, and K =
‖U‖
3

.

X3C remains NP-complete even if we additionally assume three sets from F [107].
In SetCover we minimize the number of sets that we have to pick to cover

the whole ground set. Instead, we might want to maximize the number of ground
set elements that we can cover using some K sets from F . This is captured by the
MaxCover problem.

Definition 2.20 (MaxCover). In the MaxCover problem we are given a set N
of n elements, a family S = {S1, . . . , Sm} of m subsets of N , and an integer K. The
goal is to find a size-at-most-K subcollection of S that covers as many elements from
N as possible.

MaxCover is NP-hard by a simple reduction from SetCover. The greedy
algorithm that in each of K iterations adds to the solution a set that covers most
yet uncovered elements, achieves approximation ratio (1 − 1/e) [135] (the same
result can be also obtained by applying Theorem 2.1, and this is optimal unless
P = NP [98]. Surprisingly (by comparison to SetCover), there are no known
results on approximating the MaxCover problem with the bounded frequencies of
the elements. From the point of view of the parameterized complexity, MaxCover
with no bounds on frequencies of the elements is known to be W[1]-complete [126].
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There is also an FPT algorithm for MaxCover, for parameter T , i.e., the number of
elements to be covered, due to Bläser [32]. Establishing the parameterized complexity
and parameterized approximability of MaxCover with frequencies bounded by a
constant is a problem that we study in Chapter 6.

2.3.2 Graph Problems

In some hardness proofs it is convenient to take advantage of some additional
structure, for instance to use graphs. A graph G = (V,E) consists of a set of objects
V (referred to as vertices) where some pairs of objects are connected by edges (with E
denoting the set of all edges). In graph theory we distinguish undirected and directed
graphs. In the undirected graphs the edges are symmetric, that is if a vertex v is
connected by an edge e with a vertex u, it implies that u is also connected with v
by the same edge e. Consequently, in undirected graphs an edge can be defined as a
two-element subset of vertices. This is not the case for the directed graphs, where we
can rather think of the edges as of the ordered pairs of vertices. In this dissertation
we will mostly use undirected graphs. Further, we will always assume that there are
no loops in the considered graphs, that is, that a vertex cannot be connected with
itself by a single edge.

One of the basic notions regarding undirected graphs that we will further use
is the degree of a vertex, which is the number of edges adjacent to this vertex.
Similarly, for directed graphs one can define the in-degree and the out-degree of a
vertex, as the number of edges pointing at the vertex and pointing away from the
vertex, respectively.

We will be particularly interested in one specific class of undirected graphs—in
bipartite graphs.

Definition 2.21. An undirected graph G = (W,E) is bipartite if its set of vertices W
can be divided into two disjoined sets, U and V , such that every edge e ∈ E connects
some vertex from U with some vertex from V (there are no edges between any two
vertices from U , and between any two vertices from V ). Such bipartite graph will
hereinafter be denoted as G = (U ∪ V,E).

Definition 2.22. A bipartite graph G = (V ∪ U,E) is balanced if |V | = |U |.

For more details on the graph theory we refer the reader to the book of West [302].
Some graph problems are special cases of the covering problems. For instance, the

VertexCover problem defined below is a special case of the SetCover problem.

Definition 2.23 (VertexCover). In the VertexCover problem we are given an
undirected graph G = (V,E), where V = {v1, . . . , vm} and E = {e1, . . . , en}, and a
positive integer K. We ask if there is a set C of up to K vertices such that each edge
is incident to at least one vertex from C.
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Indeed, if we identify the edges with the elements and the vertices with the sets
(saying that a vertex “contains” its all incident edges), we see that VertexCover
is a special case of SetCover with the frequencies of the elements equal to two:
each edge is incident to exactly two vertices, and, so, it is contained by exactly two
sets that correspond to these vertices. However, the two problems, VertexCover
and SetCover with element frequencies equal to two, are not equivalent—in
VertexCover every pair of vertices is connected by at most one edge. This means
that for every pair of sets that correspond to two different vertices, these sets have at
most one common element. In the frequency-bounded variant of SetCover, on the
other hand, any two sets may have arbitrarily many common elements.

Analogously, the CubicVertexCover problem, defined below, is a special case
of the X3C problem with the frequencies of the elements equal to two.

Definition 2.24 (CubicVertexCover [8]). The CubicVertexCover problem
is identical to the standard VertexCover problem, except that each vertex in the
input graph has degree equal to three.

Both VertexCover and CubicVertexCover are NP-hard [8,107].
Finally, the MaxVertexCover is the special case of the MaxCover with the

frequencies of the elements equal to two (though, again, we stress that MaxCover
with frequencies bounded by two is strictly more general than MaxVertexCover.).

Definition 2.25 (MaxVertexCover [8]). In the MaxVertexCover problem we
are given an undirected graph G = (V,E), and two positive integers—K and T . We
ask if there is a set C of up to K vertices such that there exists at least T edges, each
incident to at least one vertex from C.

To the best of our knowledge, the best polynomial-time approximation algorithm
for MaxVertexCover is due to Ageev and Sviridenko [5], and achieves
approximation ratio of 3

4
. However, in various settings, it is possible to achieve better

results; we mention the papers of Han et al. [128] and of Galluccio and Nobili [106]
as examples.

From the point of view of parameterized complexity, MaxVertexCover was
first considered by Guo et al. [126], who have shown that it is W[1]-complete. The
problem was also studied by Cai [39] who gave the currently best exact algorithm for
it, and by Marx, who gave an FPT approximation scheme1 [196].

In our reductions we sometimes also use some other graph problems, which do not
have such a clear relation to the covering problems.

1The definition of an FPT approximation scheme is similar to the definition of a polynomial time
approximation, with the difference that instead of requiring a polynomial time complexity of the
algorithms we require them to run in FPT time. Thus, in case of a maximization problem P , an FPT
approximation scheme provides for every ǫ > 0 a (1− ǫ)-approximation algorithm for P , running in
FPT time. FPT approximation schemes for minimization problems are defined analogously.
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Definition 2.26 (Clique). In the Clique problem we are given an undirected graph
G = (V,E) and we ask whether there exists a subset S ⊆ V of K vertices, such that
all the vertices from S are connected in G.

Definition 2.27 (Densest-k-Subgraph). In a Densest-k-Subgraph problem
we are given an undirected graph G = (V,E) and a positive integer K. We ask for a
subgraph S with K vertices with the maximal number of edges.

Densest-k-Subgraph is a generalization of the Clique problem, from which
it follows that it is NP-hard. Furthermore, it seems that Densest-k-Subgraph
is quite hard to approximate. Khot [164] ruled out the existence of a PTAS for
the problem under standard complexity-theoretic assumptions, Bhaskara et al. [30]
showed the polynomial integrality gap, Raghavendra and Steurer [249] and
Alon et al. [9] proved that there is no polynomial-time approximation algorithm
with a constant approximation ratio, but under somewhat non-standard assumptions.
Finally, the best approximation algorithm for the problem that we know of, due to
Bhaskara et al. [29], has approximation ratio O(n1/4+ǫ), where n is the number of
vertices in the input graph.

Another variant of the Clique problem is the Maximum Edge Biclique
Problem (MEBP) problem defined below. Here, however, the connection to the
Clique problem is a bit less explicit and for the appropriate reduction we refer the
reader to the paper of Petters [239].

Definition 2.28 (MEBP). In the Maximum Edge Biclique Problem (MEBP)
we are given a balanced bipartite graph (U ∪ V,E) where U ∪ V is the set of vertices
(‖U‖ = ‖V ‖) and E is the set of edges (there are edges only between the vertices from
U and V ). We ask for a biclique (i.e., a subgraph S, such that every vertex from
U ∩ S is connected with every vertex from V ∩ S) with as many edges as possible.

According to Feige and Kogan [99], there exists a constant c such that there is
no polynomial (2c

√
lgn/n)-approximation algorithm for MEBP unless for some ǫ we

have 3-SAT ∈ DTIME(2n
3/4+ǫ

). Currently it seems unlikely that such an algorithm
for 3-SAT exists. For some of our arguments it will be more convenient to define and
use the following variant of MEBP.

Definition 2.29 (MEBP-V). In MEBP-V we are given the same input as in MEBP
and a positive integer K. We ask for a biclique S such that ‖S ∩ V ‖ = K and S
contains as many edges as possible.

Lemma 2.2. There exists a constant c such that there is no polynomial-time
(2c
√
lgn/n)-approximation algorithm for MEBP-V unless for some ǫ we have

3-SAT ∈ DTIME(2n
3/4+ǫ

).

Proof. For the sake of contradiction, let us assume that there exists a constant
c and a polynomial-time (2c

√
lgn/n)-approximation algorithm A for MEBP-V. By
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running A for every value of K ranging from 1 to ‖V ‖, we obtain a polynomial-time
(2c
√
lgn/n)-approximation algorithm for MEBP. This stays in contradiction with the

result of Feige and Kogan [99].

2.3.3 Partition and Packing Problems

In a few cases, for the sake of convenience, we also use reductions from some other
problems.

Definition 2.30 (SubsetSum). In the SubsetSum problem we are given a set
S = {x1, x2, . . . , xn} of n integers and a value x, and we ask whether there exists a
subset S ′ ⊆ S such that

∑

xi∈S′ xi = x.

The SubsetSum problem is NP-hard, but it is often considered as one of the
easiest NP-hard problems. If the values of the elements in the set S are bounded by
a constant C, a simple dynamic program solves the problem in time O(nC). Further,
SubsetSum admits a simple FPTAS [216].

Definition 2.31 (BinPacking). In the BinPacking problem we are given a set
T = {t1, t2, . . . , tq} of q items and their sizes (the size of item ti is denoted si), and a
set N of n bins, each having capacity d. We ask whether it is possible to pack all the
items into the bins.

Definition 2.32 (UnaryBinPacking). This problem is identical to BinPacking
except for the fact that all input parameters are encoded in unary.

UnaryBinPacking is W[1]-hard [147] when parameterized by n, the number of
bins. We use this result to show parameterized hardness of some problems for small
values of the numeric parameters. W[1]-hardness of UnaryBinPacking is slightly
alleviated by the result of Jansen et al. [147], who showed an additive 1-approximation
algorithm running in FPT time even for BinPacking (thus, to pack the items this
algorithm uses at most one more bin than the optimal algorithm). Interestingly,
in terms of multiplicative approximation there is no PTAS for the problem under
standard complexity assumptions.
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Chapter 3

The Model and Its Applications

3.1 Overview

In this part of the dissertation we analyze the problem of selecting a “good” set of items
that can be collectively used by a group of agents. We analyze the computational
complexity of the problem, and we show effective algorithms for its different variants.
Throughout this part we use the term “item” in its most general meaning, so that items
may be movies, goods, candidates in political elections, etc. Under this interpretation,
“selecting a set of items” may correspond to many real-life scenarios, ranging from
selecting a set of movies for an airplane, through deciding which journals a university
library should subscribe, to selecting a group of people (e.g., a parliament) to represent
a society. The agents have their preferences over the items and, intuitively, the set of
items is considered “good” if it results in a high satisfaction of the agents. We explore
several natural ways of measuring the quality of a set of items and several natural
ways in which the items can be shared among the agents. We will briefly describe
our approaches in the further part of this overview.

A number of real-world problems consist of selecting a set of items for a group of
agents to jointly use. Among many natural problems that our approach addresses,
we can find the following ones.

1. Selecting a set of activities. Consider a conference where the organizers want
to set up a number of activities for the participants, for a free afternoon. The
organizers face the problem of selecting a set of good items: here the agents are
the conference participants and the items correspond to the activities that the
organizers consider for selection. Consequently, by saying that an agent i uses an
item a we mean that i attends the activity a. Clearly, the conference participants
can have diversified preferences and satisfying them all might not be possible.
If the conference organizers decide to select a single activity, it is likely that
many participants will be unhappy and will choose to stay in their hotel rooms.
To avoid such a situation, the organizers may select more, say, K ≥ 2 activities
and allow the participants to choose the preferred one. This way it is likely

31



that the number of unhappy participants will decrease. However, for obvious
reasons (e.g., the cost or logistical inconvenience), the organizers cannot decide
to select too many activities; after the careful consideration they might decide
on some particular value of K, the number of selected activities. Nevertheless,
some choices of K activities are better than the others. The organizers would
look for the best choice that would satisfy the participants most.

2. Selecting a set of (sport/language) classes for students. This example is similar
in nature to the previous one. Here, the agents are the students and the items
correspond to the (sport/language) classes. We say that a student i uses an
item a if she is assigned to the class a. The university wants to select the set
of K sport (or language) classes for the students. The selected classes are,
then, available for the students’ registration. However, in comparison with the
previous example, this one exposes an additional issue. Here it is natural to
assume that the classes have strict capacity restrictions: each item (each class)
can fit only up to some maximum number of students (agents). Consequently,
it may happen that some students will not be able to register for their most
preferred classes. Thus, in addition to selecting a good set of classes (the classes
most liked by the students), the university would look for a good assignment of
the students to the selected classes.

3. Selecting a set of movies for a plane. In this example an airline wants to
select a set of movies to provide for the passengers on the plane’s entertainment
system. Naturally, the airline would select such movies that would satisfy the
passengers most. Thus, in this case, the agents are the plane passengers and the
items correspond to the movies considered for selection. Consequently, using an
item a corresponds to watching a movie a. Since every passenger is allowed to
watch any available movie, in this example, in contrast to the previous one, the
items have no capacities. This example is, however, different from the first one
too: It is unnatural to assume that each passenger would see a single movie only
(would use a single item). It is more likely that the passengers would derive
their satisfaction based on various subsets of available movies.

4. Finding a proportional representation for a group of people. Let us consider
elections in which we want to select a set of representatives (e.g., a parliament,
or some other collective body) for a given society. At first sight, this example
might look totally different from the previous ones. However, after a careful
consideration we will see that selecting a good parliament is nothing different
from selecting a good set of items. The agents are the voters and the
items correspond to the candidates participating in the election. In this
example, however, it is less clear how the preferences of the voters over the
sets of candidates (i.e., over the possible parliaments) can look like. For
instance, even though the voters can have their precise preferences over single
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candidates, it is unclear how they can be extended to the preferences over
the committees (parliaments). Two fully proportional representation systems,
the Chamberlin–Courant system [47] and the Monroe system [210], address
this issue and present the following appealing interpretation. If we want a
parliament to proportionally represent the society, then for each voter there
should be a member of the parliament that represents this voter well. When
viewed from this perspective, we can say that an agent i (a voter i) uses an
item a if she is represented in the collective body by a. This idea was first
highlighted by Chamberlin and Courant [47] who proposed a novel election
system in which the satisfaction of the voter is defined as the satisfaction from
her best representative in the parliament. In this election system we pick a set
of candidates that satisfies the voters most. Monroe suggested a similar idea,
but in addition he required that each member of parliament represents roughly
the same number of voters [210]. Here, we just accent the intuition behind the
idea of viewing the elections systems as resource allocation and we present a
more detailed discussion in Chapter 5.

These, of course, are just several characteristic examples, and our model, formally
defined in the next section, captures fundamental computational challenges from
many other real-life problems. The above examples are all similar in nature, but
there are some substantial differences in ways in which items are shared between
agents. We can distinguish the two following basic approaches:

The disjunctive approach. In this approach every agent is allowed to use only
a single item from the selected set. This approach is natural, e.g., in the
activity selection problem, where the activities take place at the same time.
Consequently, each agent needs to choose which activity from the selected ones
he or she wants to attend. If there are no further restrictions, then, naturally,
every agent chooses her most preferred item. A special case of the disjunctive
approach, the capacitated disjunctive approach, additionally assumes that every
item has its capacity, i.e., the maximum number of agents that can comfortably
use this item. This approach is natural, e.g., in the problem of selecting a set
of (sport/language) classes, which usually have strict capacity restrictions.

The conjunctive approach. This approach is on the other extreme of the
spectrum of possibilities. Here we assume that each agent uses all the selected
items and that he derives equal parts of satisfactions from using each one
of them. Thus, e.g., if the airline wants to select K = 7 movies, then in
the conjunctive approach every agent would be interested in having all seven
selected movies compatible with her preferences. For example, the agent’s
satisfaction from the set of items could be the sum of this agent’s satisfactions
from all the selected individual items. This approach is usually adequate if
the number of selected items (e.g., the number of movies to be selected for the

33



plane) is very small. Indeed, in the movie selection example it is hard to expect
the passengers to get satisfaction from all the movies if there is, say, K = 100
of them available. They would not even have the possibility to see all of them
during one flight. On the other hand, the conjunctive approach is natural if the
selected items are in some way independent and do not exclude each other. For
instance, if we select the set of K activities for a class of students, each taking
place in a different month, then each student will be able to participate (and
derive her utility) from all the selected activities.

The two basic approaches described above are on the extreme ends of a spectrum
of possibilities. In many real-life examples one should expect much more complicated
schemes in which the agents use (and get their satisfaction from) subsets of the
selected items. For instance, in the movie selection example, a passenger watches
her top preferred movie certainly, the second one probably, the third one perhaps,
etc. Thus, we should expect that the total satisfaction of such a passenger would be
mostly influenced by her satisfaction from the top preferred movie, less influenced by
her satisfaction from the second preferred movie, even less by the third one, and so
on. Similarly, if we consider the problem of selecting K journals for the university’s
library, then a reader will typically not be interested in having only a single favorite
journal, nor in having all journals compatible with her preferences, but rather she
will be most interested in having access to some T interesting journals. Even in the
parliament, the voters might want to be represented by some top T members of the
parliament rather than by a single person.

The above observation motivates us to propose a new approach. In this new
approach the impact of each selected item on the satisfaction of an agent may depend
on the rank of this item (from the agent’s point of view) among the selected ones.
Thus, in the movie selection example, the impact of the top preferred movie on
the satisfaction of a passenger is greater than that of the second preferred movie,
and so on. If we decided to remove the passenger’s top preferred movie from the
plane’s entertainment system, then the impact of the second movie would increase
(the passenger is more likely to watch the second movie, now that her favorite one
is not available). Formally, this new approach is defined by a vector of weights, and
thus we call it a weighted approach. The first weight quantifies the impact of the top
preferred item from the selected ones on the agent’s total satisfaction. The second
weight quantifies the impact of the second preferred item, and so on. We give the
precise formal definition of the weighted approach in the following section.

In addition to considering different ways in which the items can be used by the
agents (the disjunctive, conjunctive, and the weighted approach), we also explore
several ways of measuring the satisfaction of the agents from the selected items. There
are two main ways in which the agents can express their preferences regarding the
items (their satisfactions regarding the items): either the agents can express numerical
utility values for the items, or they can rank the items from the most desirable one
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to the least desirable one. Intuitively, the numerical utility values quantify the levels
of satisfaction of the agents from using particular items.

The preference rankings (also called the preference orders) carry less information
than the numerical utilities. However, in many contexts we can only hope for the
rankings, e.g., because it is too difficult for the agents to derive their exact numerical
values for the utilities. In cases where we have only agents’ preference rankings, but
we need explicit numerical values that quantify their satisfactions from the items,
we can use a positional scoring function, a function that for a given preference order
allows one to derive numerical utilities.

Intuitively, a positional scoring function (a PSF) assigns a certain value of utility
to an item ranked at a certain position. That is, the utility of an item depends solely
on its position in the agent’s preference order. There are several particularly popular
positional scoring rules. For instance, the Borda count is a PSF which assumes that
the utility associated with an item depends linearly on the position of that item in
the ranking (with the least preferred item assigned the utility equal to 0): If there
are m items in total, then the item ranked as i-th best has utility equal to (m − i).
Another example of a popular positional scoring function is k-approval, in which the
first k items in the preference order get utility equal to 1, and all the remaining ones
get the utility equal to 0. We note that the Borda count PSF and the k-approval
PSF can be seen as two extremes. In the case of k-approval, the agents only have
extreme views regarding the items (they like them or not). In contrast, in the case of
the Borda count, they have a full linear spectrum of appreciation of the items.

Further, it is reasonable to assume that the formula for computing the satisfaction
of a single agent from the group of items depends on the way in which the items are
used by the agents. For instance, in the uncapacitated disjunctive approach, we
naturally assume that the utility of an agent from the selected set of items is just her
utility from the most preferred item in the selected set. In the capacitated disjunctive
approach this should be the utility of the item that the agent is assigned to, and in
the conjunctive approach, the sum of the agent’s utilities over all the selected items.

As we already noted, we very often deal with more complex schemes than the
disjunctive and the conjunctive one. For such cases we introduced the weighted
approach. On one hand, the weighted approach can be viewed as a technique to
describe how the items are used by the agents. On the other hand, it can be viewed
as a formula for computing the utility of the agents from the sets of items. From
the previous discussion we recall that the weighted approach is defined by the vector
of weights. The i-th weight quantifies the impact of the utility of the i-th most
preferred item in the set on the total utility of an agent. Thus, the utility of an
agent from the set of items is just an ordered weighted average [309] of her utilities
from the individual items in the set. Naturally, the weights used to compute the
ordered weighted average of the agent’s utilities are the same weights that we use to
describe the weighted approach. Consequently, we will refer to the vector of weights
that defines the weighted approach as the ordered weighted average vector (the OWA
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vector, sometimes also referred to as the OWA operator). We note that the weighted
approach is a generalization of both the conjunctive and the disjunctive approach.
Indeed, if the OWA vector has all weights equal, then the utility of each item has
the same impact on the agent’s total utility and such an OWA vector defines the
conjunctive approach. If the OWA has only the first weight greater than 0, then only
the most preferred item of a given agent affects her total utility. Consequently, such
an OWA vector defines the disjunctive approach.

Finally, there are various ways to aggregate the satisfaction of the whole groups of
agents, as well. For instance, we might want to maximize the sum of the utilities of
the agents (the utilitarian approach) or to maximize the utility of the least satisfied
agent (the egalitarian approach), or to use some yet other approach.

Apart from providing a formal specification of the new weighted model and
providing concrete examples and settings where particular OWA operators are
applicable, our goal in this part of the dissertation is to establish the computational
complexity of the problem of selecting an optimal set of items. In our computational
analysis we consider different ways in which an optimal set of items is defined. These
different ways correspond to:

1. Different classes of the agents’ utilities (e.g., explicitly given utility values, values
derived through positional scoring rules, with the focus on Borda count and
k-approval).

2. Different approaches to sharing the items (corresponding to different OWA
operators).

3. Two different approaches to aggregating the agents’ utilities: the egalitarian
and the utilitarian one1.

Our results show that in almost all cases (with the single natural exception
of the conjunctive utilitarian approach), the considered computational problem is
NP-hard. Nevertheless, we show many approaches that alleviate these hardness
results. In particular, we consider high-quality polynomial-time and exponential-time
approximation algorithms (for example, for some of our problems we show
polynomial-time and FPT approximation schemes). For some cases we experimentally
confirm the high quality of solutions found by our algorithms.

We believe that using approximation algorithms is justified for the considered
applications. For example, if we want to select a set of movies played at the same
time in a cinema, it is likely that an agent will enjoy watching a good movie even
though is is not her absolutely most favorite one. Consider another similar example:
Amazon.com may recommend you a book on gardening which may not be the best

1The egalitarian approach is usually much harder computationally. In Chapter 5 we show that
all the considered egalitarian versions of the disjunctive variant of the problem are inapproximable.
In further chapters we focus only on the utilitarian approach.
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book for you on this topic, but still full of useful advice. For such situations, Herbert
Simon [272] used the term ‘satisficing,’ instead of optimizing, to explain the behavior
of decision makers under circumstances in which an optimal solution cannot be easily
determined. On page 129 he wrote: “Evidently, organisms adapt well enough to
satisfice; they do not, in general, ‘optimize’.” Effectively, what Simon says is that the
use of approximation algorithms fits well with the human nature.

Below, we briefly summarize the remaining content of this part of the dissertation.
In the further part of this chapter we formalize our model. We specify several

natural ways in which the items can be shared among the group of agents and several
ways to measure the satisfaction of the agents. We formalize the computational
problem of selecting a set of items. Next, we present our computational results in the
three following chapters.

In Chapter 4 we focus on the weighted conjunctive approach. We show that the
problem, and its (almost) every reasonable special case is NP-hard. In many contexts,
however, we do not require perfect optimal solutions and losing only a small fraction
of optimality is an affordable price. Motivated by this observation, we focus on the
approximation algorithms for the problem. Unfortunately, we show that our problem
in its full generality is hard to approximate. Next, we consider some more specific
classes of OWA vectors, as well as some specific types of agents’ utilities. The main
message of our computational results in this chapter is that although our problem in
general is hard, it has different approximation properties depending on the class of
OWA vectors used and the nature of agents’ utilities.

In Chapter 5, we consider the disjunctive and the capacitated disjunctive
approaches to sharing the items.2 Most of our results are given for the variant in
which we get the utilities of the agents by applying the Borda count to their preference
rankings. In this approach, the problem of finding the optimal selection of the
items is both NP-hard [188,245], and hard from the perspective of the parameterized
complexity theory [27]. These hardness results hold for every reasonable positional
scoring function, both for the utilitarian and the egalitarian variant. Similarly as in
Chapter 4, here we also study the approximability of this variant of the problem.

Apart from the several new hardness results, we find that the utilitarian version
of the problem can be approximated with very high quality. Our algorithms give even
better results when evaluated on real data describing peoples’ preferences. We show
that our algorithms preserve their high quality even if we have incomplete data in the
form of preference orders truncated to the certain number of top positions.

In Chapter 6 we further explore the utilitarian version of the problem of selecting
the set of items with the disjunctive approach to sharing the items, but for another
measure of agents’ satisfaction. Here we consider the approval utilities of the agents,
i.e., the utilities coming from the set {0, 1}. One possible way to obtain these kind of
utilities is by applying the k-approval PSF to the agents’ preference rankings.

2For the capacitated disjunctive approach we analyze the specific case in which the capacities of
the items are equal.
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We observe that the disjunctive utilitarian version of the problem of selecting the
set of items with the approval utilities is equivalent to the MaxCover problem. In
MaxCover we are given a set N of elements and a set of subsets of N , with the
goal of selecting K subsets to cover as many elements from N as possible. Indeed, we
can see the equivalence of the problems by identifying the agents with the elements,
the subsets with the items, and the relation “approves of an item” with “belongs to
a subset”. With this identification, selecting a set of items to maximize the number
of satisfied agents (the agents that approve at least one item in the selected set) is
equivalent to selecting a set of subsets to maximize the number of covered elements.

The MaxCover problem already received a lot of attention from the scientific
community. It is known that there exists a polynomial (1 − 1/e)-approximation
algorithm for the problem [136], and that, under standard complexity assumptions,
there exists no polynomial algorithm with the better approximation guarantees [98].
Motivated by this known bound, we ask if there exist good exponential-time
approximation algorithms. Indeed, we show that there exists a whole spectrum of the
exponential approximation algorithms, with a trade-off between the computational
complexity and the approximation ratio. These algorithms have better running time
than the exact brute-force algorithm for MaxCover. At the same time, they achieve
better approximation guarantees than (1 − 1/e). We also show FPT approximation
schemes for the variants of the MaxCover problem in which each element can belong
to at most p sets (which corresponds to the requirement that each agent approves of
at most p items). Naturally, all these results apply to the considered variant of the
problem of selecting a set of items.

3.2 The Model

In this section we formally define our model and the problem of selecting a collective
set of items. We first define basic notions such as items, utilities and preference orders.
Then, we present the item selection problem in its most general variant. Finally, we
discuss several interesting special cases of our problem.

3.2.1 Agents, Alternatives, and Utilities

We assume that there is a set N = [n] of agents and a set A = {a1, . . . am} of
alternatives (also referred to as items, or candidates).3 For each agent i ∈ N and for
each alternative aj ∈ A, we have an intrinsic utility (satisfaction) ui,aj that the agent
i derives from aj . A collection of the utility vectors of all the agents is called a utility
profile.

3We will use the terms “alternative” and “item” interchangeably. We will more often us the
term alternative in the context of the disjunctive approach, and we will use the term item in the
general weighted approach. We will use the term “candidate” to refer to alternative in the context
of elections.
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Instead of providing numerical utilities, sometimes the agents express their
preferences as preference orders (also referred to as rankings). A preference order ≻ is
a strict linear order over A, i.e., a linear order of the form aπ(1) ≻ aπ(2) ≻ · · · ≻ aπ(m)

for some permutation π of [m]. From now on, we will write ≻i to denote the i-th
agent’s preference order. A collection V = (≻1, . . . ,≻n) of agents’ preference orders
is called a preference profile. For an alternative a ∈ A, by posi(a) we mean the
position of a in the i’th agent’s preference order. For example, if a is the most
preferred alternative for i then posi(a) = 1, and if a is the least preferred one then
posi(a) = m. Sometimes we will include subsets of the alternatives in the descriptions
of preference orders. For example, if A is the set of alternatives and B is some
nonempty strict subset of A, then by B ≻ A − B we mean that for the preference
order ≻ all alternatives in B are preferred to those outside of B.

Most of our techniques require the agents to provide numerical utility values. One
possible way of extracting numerical utilities from preference orders is to apply a
positional scoring function to the preference profile. A positional scoring function
(PSF) is a function αm : [m]→ N. Intuitively, a PSF assigns to an alternative ranked
in the position i, the utility value equal to αm(i). Thus, the utility of an agent i
from an alternative a solely depends on the position of a in the i’s preference ranking:
ui,aj = αm(posi(a)).

Since we use positional scoring rules to derive the utilities of the agents, it is
natural to consider non-increasing positional scoring functions. A PSF αm is an
non-increasing positional scoring function if for each i, j ∈ [m], if i < j then αm(i) ≥
αm(j)4.

Typically, we are interested in families of non-increasing positional scoring
functions, (αm)∞m=1, with one function for each possible number of candidates. In
particular, we will be interested in the Borda count PSF family αmB (i) = m− i, and in
the k-approval PSF family αmA (i) = 1 if i ≤ k, and αmA (i) = 0 otherwise. We assume
that our positional scoring functions are computable in polynomial time with respect
to m.

3.2.2 Item-Selection Problem

In this section we formulate the problem of selecting a collective set of items in its
most general form. In this general form we assume that the utility that each agent

4At this point we note that non-decreasing positional scoring functions have their applications as
well. Instead of measuring the satisfactions of the agents from the items, we can measure the level
of their unhappiness, their dissatisfaction. This way we can use an alternative optimization goal and
instead of trying to maximize the agents’ satisfaction, we can aim at minimizing their unhappiness.
A non-decreasing positional scoring functions can be used to extract from the agents’ preference
orders concrete numerical values quantifying their dissatisfactions with the items. However, for the
sake of consistency, we do not consider minimization of the dissatisfaction in this dissertation. For
a discussion on approximating dissatisfaction of the agents in this context we refer a reader to our
conference paper [277].
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derives from a set of K items is an ordered weighted average [309] of this agent’s
intrinsic utilities for these items.5

A weighted ordered average (OWA) over K numbers is a function defined through
a vector α(K) = 〈α1, . . . , αK〉 of K (nonnegative) numbers6 as follows: Let ~x =
〈x1, . . . , xK〉 be a vector of K numbers and let ~x↓ = 〈x↓1, . . . , x

↓
K〉 be the nonincreasing

rearrangement of ~x, that is, x↓i = xσ(i), where σ is any permutation of {1, . . . , K} such
that xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(K). Then we set:

OWAα(K)(~x) =

K
∑

i=1

αix
↓
i

To make the notation lighter, we write α(K)(x1, . . . , xK), instead of
OWAα(K)(x1, . . . , xK).

We will provide a more detailed discussion of OWA operators useful in our context
later; for the time being let us note that they can be used, for example, to express
the arithmetic average (through the size-K vector ( 1

K
, . . . , 1

K
)), the maximum and

minimum operators (through vectors (1, 0, . . . , 0), and (0, . . . , 0, 1), respectively) and
the median operator (through the vector that has 0s everywhere, except for the middle
position, where it has 1).

Given the above setup, we formalize our problem of computing “the most satisfying
set of K items” in the following way.

Definition 3.1. In the OWA-Winner problem we are given a set N = [n] of
agents with utilities over m items (alternatives) from the set A = {a1, . . . , am}, a
positive integer K (K ≤ m), and a K-number OWA α(K). The task is to compute a

subset W = {w1, . . . , wK} of A such that uα
(K)

ut (W ) =
∑n

i=1 α
(K)(ui,w1, . . . , ui,wK

) is
maximal.7

For a family (α(K))∞K=1 of OWAs, we write α-OWA-Winner to denote the variant
of the OWA-Winner problem where, for a given solution size K, we use OWA α(K).
From now on we will not mention the size of the OWA vector explicitly and it will
always be clear from context. We implicitly assume that OWAs in our families are
polynomial-time computable.

Finally, we will often speak of variants of OWA-Winner where agents’ utilities
are somehow restricted. In particular, by approval-based utilities we mean that each

5We note that this general form corresponds to the weighted approach to sharing items between
agents, introduced and described in the previous section.

6The standard definition of OWAs assumes normalization, that is,
∑K

i=1 αi = 1. We do not make
this assumption here for the sake of convenience; note that whether OWA vectors are normalized or
not is irrelevant to all notions and results of this work.

7Formally, what we define here should be called the utilitarian OWA-Winner problem because
we are interested in maximizing the total utility. It is also natural to consider egalitarian

OWA-Winner problem, where we maximize the utility of the worst-off agent. However, the
discussion on the egalitarian versions of our problem in this dissertation is limited to Chapter 5.
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agent’s utilities come from the set {0, 1}, and by Borda-based utilities we mean
the case where for each agent i the set of her utilities for all the items, that is,
{ui,a1, . . . , ui,am} is equal to {0, . . . , m− 1}.

Example 3.1. Let n = 6, m = 6, K = 3, A = {a1, a2, a3, a4, a5, a6}, α = (2, 1, 0),
and Borda-based utilities derived from the following rankings:

3 agents : a1 ≻ a2 ≻ a3 ≻ a5 ≻ a6 ≻ a4

2 agents : a6 ≻ a1 ≻ a4 ≻ a3 ≻ a5 ≻ a2

1 agent : a5 ≻ a4 ≻ a2 ≻ a3 ≻ a6 ≻ a1

Let us compute the score of {a1, a2, a6}. The first three agents get utility 2 ·5+4 = 14
each, the next two get 2 ·5+4 = 14 each and the last one gets 2 ·3+1 = 7. Therefore
the score of {a1, a2, a6} is 3·14+2·14+7 = 42+28+7 = 77. It can be checked that this
is the optimal set. (The next best ones are {a1, a2, a4}, {a1, a2, a5} and {a1, a5, a6} ,
all with score 75.) On the other hand, the rule defined by OWA α′ = (1, 1, 1) would
choose {a1, a2, a3}, and the Chamberlin and Courant’s rule (in our terms, the rule
defined by OWA α′′ = (1, 0, 0)) would choose {a1, a5, a6}.

3.2.3 Special Cases of the Problem

OWA-Winner is a remarkably general problem and we will usually focus on some
special cases, for particular families of OWAs. For instance, for OWA 〈1, 0, . . . , 0〉 we
obtain the disjunctive version of the problem, in which the total utility of an agent
is her utility from the most preferred selected item. This version of the problem
has particularly many applications, and—thus—is of special interest: we study this
variant in Chapters 5 and 6.

Below we give a catalog of other particularly useful OWA families (in the
description below we take K to be the dimension of the vectors to which we apply a
given OWA).

1. k-median OWA. For each k ∈ {1, . . . , K}, k-med(K) is the OWA defined by
the vector of k − 1 zeros, followed by a single one, followed by K − k zeros. It
is easy to see that k-med(K)(x1, . . . , xK) is the k-th largest number in the set
{x1, . . . , xK} and is known as the k-median of ~x. In particular, 1-med(K)(~x)
is the maximum operator, K-med(K)(~x) is the minimum operator, and if K is
odd, K+1

2
-med(K)(~x) is the median operator.

2. k-best OWA. For each k ∈ {1, . . . , K}, k-best(K) OWA is defined through the
vector of k ones followed by K−k zeros. That is, k-best(K)(~x) is the sum of the
top k values in ~x (with appropriate scaling, this means an arithmetic average
of the top k numbers). K-best(K)

K is simply the sum of all the numbers in ~x
(after scaling, the arithmetic average), and so it corresponds to the conjunctive
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version of the problem. Naturally, 1-best(K) OWA corresponds to the disjunctive
version of the problem.

3. Arithmetic progression OWA. These OWAs are defined through vectors of
the form aprog[a](K) = 〈a + (K − 1)b, a + (K − 2)b, . . . , a〉, where a ≥ 0 and
b > 0. (One can easily check that the choice of b has no impact on the outcome
of OWA-Winner; this is not the case for a, though.)

4. Geometric progression OWA. These OWAs are defined through vectors of
the form gprog[p](K) = 〈pK−1, pK−2, . . . , 1〉, where p > 1.

5. Hurwicz OWA. For each λ, 0 ≤ λ ≤ 1, this OWA is defined through vector
(λ, 0, . . . , 0, 1− λ).

Naturally, all sorts of middle-ground OWAs are possible between these particular
cases, and can be tailored for specific applications. As our natural assumption is that
highly ranked items have more impact than lower-ranked objects, we often make the
assumption that OWA vectors are nonincreasing, that is, α1 ≥ . . . ≥ αK . While
most OWA operators we consider are indeed nonincreasing, this is not the case for
k-medians (except for 1-median) and Hurwicz (except for λ = 1).

3.3 Applications of the Model

In this section we give several different scenarios where our model is applicable. In
contrast to the informal examples presented in the overview, here we give the examples
of concrete values of the parameters (e.g., OWA vectors) for concrete applications.

3.3.1 The Disjunctive Approach

The disjunctive variant of OWA-Winner has notably many applications. In
particular, the disjunctive variant of the OWA-Winner problem with the Borda
utilities corresponds to the Chamberlin–Courant’s voting rule for electing sets of
representatives [47]. For this rule, voters (agents) have Borda utilities over a
set of candidates and we wish to elect a K-member committee (for instance, a
parliament), such that each voter is represented by one member of the committee.
In other words, if we select K candidates, then a voter is “represented” by that
selected candidate that she ranks highest among the chosen ones. The idea is
that then, in the parliament, each selected candidate would have voting power
proportional to the number of voters that she represents. It is easy to see that
winner determination under Chamberlin–Courant’s voting rule corresponds exactly
to solving 1-best-OWA-Winner for the case of Borda utilities.

The Monroe’s system [210], while not precisely a specific case of the
OWA-Winner problem, is certainly related—it corresponds to the disjunctive
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capacitated version of the problem of selecting a collective set of items, where the
capacities of the items are roughly equal to n/K (with n denoting the number of
agents and K the size of the elected committee). Since in the Monore’s system each
committee member represents roughly the same number of voters, the committee
itself does not need to run weighted voting when making decisions. Similarly as
in the Chamberlin–Courant’s system, in the Monroe’s system we assume the Borda
utilities of the agents.

More generally, the 1-best-OWA-Winner problem (with and without capacities)
addresses the broad and important problem of finding a proportional representation
for a group of agents.

The above connections show that, indeed, the complexity of the disjunctive variant
of the OWA-Winner problem is interesting, can lead to progress in several other
directions, and may have impact on other applications of artificial intelligence and
computer science in general.

3.3.2 The Weighted Approach

Here we present three scenarios, with the common feature that they each focus on
some form of uncertainty about the final outcome; the impact of a selected item is
the probability that this item will be actually used by the agent.

Malfunctioning Items or Unavailable Candidates

In this model, we assume that, as in the disjunctive approach, each user only benefits
from one item, but that the items may not be working properly: if we select (off-line)
a set of items S, then (on-line) there will be a subset S+ of items that can be used,
and a set S− = S \ S+ of objects that are ‘malfunctioning’ or are ‘unavailable’ and
cannot be used. For instance, items are radio channels that can be unreachable, or
items are candidates running in an election and these candidates may finally decide
to not take a position in the elected committee, or items are parking lots that are
to be built but that can sometimes be full (see [187] for further examples of social
choice with possibly unavailable candidates). Moreover, we have a prior probability
distribution about the (un)availability of items: as in [187], we assume that each item
is available with probability p (i.i.d.). The utility an agent gets from a set of selected
items S is the value of the best available object in S, that is, of the best object in
S+. Therefore, it is the value of the item ranked in position i in S if the first i − 1
items are unavailable and the ith item is available. The expected contribution of an
item to the utility of a user is therefore proportional to p(1 − p)i−1, which leads to
the OWA defined by αi = p(1 − p)i−1, which is a geometric progression with initial
value p and coefficient 1− p.
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Uncertainty About the Number of Items Enjoyed by a User

We assume now that there is some uncertainty about the number of items that a user
will enjoy. A first possible reason is that users may have a limited capacity to enjoy
items. For instance, items are movies or books and each user has a time constraint
that will prevent him or her from enjoying all selected items. A second possible reason
is that users are reluctant to use items they don’t like enough: they will watch only
the films whose value reaches a given subjective threshold. We give here two possible
models for the choice of the OWA vectors:

• We first assume that the probability that a user enjoys i items, for 0 ≤ i ≤ K,
is uniformly distributed, that is, a user will enjoy exactly her first i items in
S with probability P (i) = 1

K+1
. Thus, she will enjoy the item ranked i if she

enjoys at least i items, which occurs with probability K−i+1
K+1

. This leads to the
OWA vector defined by αi = K− i+1 (we disregard the normalizing constant),
which is an arithmetic progression.

• Second, we assume that the values given by each user to each item are
distributed uniformly, i.i.d., on [0, 1] and that each user uses only the items
that have a value at least θ, where θ is a fixed (user-independent) threshold.
Therefore, a user enjoys the item in S ranked in position i if he or she values at

least i items at least θ, which occurs with probability
∑K

j=i

(

K
i

)

(1−θ)iθK−i,

thus leading to the following OWA vector defined by αi =
∑K

j=i

(

K
i

)

(1 −

θ)iθK−i. For instance, if K = 4 and θ = 3
4
, the OWA (omitting the

denominators) is α = (175, 67, 13, 1); for K = 4 and θ = 1
2
, we get α =

(14, 12, 5, 1); and for K = 4 and θ = 1
4
, we get α = (252, 243, 189, 81).

Ignorance About Which Item Will Be Assigned to a User

We now assume that a matching mechanism will be used posterior to the selection
of the K items. The matching mechanism used is not specified; it may also be a
randomized mechanism.

If users have a complete ignorance about the mechanism used, then it makes sense
to use known criteria for decision under complete uncertainty (see, e.g., the book of
Luce and Raiffa [190]):

• the Wald criterion assumes that agents are extremely risk-averse, and
corresponds to α = K-med(K): we, therefore, seek to maximize
∑n

i=1minwj∈W ui,wj
.

• the Hurwicz criterion is a linear combination between the worst and the best
outcomes, and corresponds to α = (λ, 0, . . . , 0, 1− λ) for some fixed λ ∈ (0, 1).
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If users still have a complete ignorance about the mechanism used except that
they know that they are guaranteed to get one of their best i items, then the Wald
and Hurwicz criteria now lead, respectively, to the OWAs α = i-med(K) and α =
(λ, 0, . . . , 0, 1− λ, 0, . . . , 0), with 1− λ in position i.

If users know that the mechanism used is a random mechanism with a uniform
distribution among the items ranked in positions 1 to i, then the choice of i-best
OWA makes sense. More generally, the matching mechanism may assign items to
agents with a probability that depends on the rank and that decreases when the rank
increases.

3.3.3 The Conjunctive Approach

In the conjunctive approach each agent derives an equal part of her satisfaction from
every selected item, and, thus, this variant corresponds to the K-best-OWA-Winner
problem. The conjunctive approach also finds its application in several settings. For
instance, in the context of parliamentary elections, if the utilities of the agents are
derived by applying the Borda count PSF to the agents’ preference rankings, the
K-best-OWA-Winner problem corresponds to winner determination in theK-Borda
rule.8

This variant is also applicable if the selected items are in some sense independent,
and thus if the fact whether an agent is going to use a selected item does not depend
on what other items have been selected (e.g., if we want to buy, for a group of agents,
the tickets for 10 movies, each played in a different month).

This conjunctive variant of the problem of selecting a collective set of items is,
however, computationally easy, and so its analysis in this dissertation is limited.

3.4 Related Work

Weighing intrinsic values by coefficients that are a function of their rank in a
list is of course not new. Ordered Weighted Average operators have been used
extensively in multicriteria decision making (MCDM), and to a lesser extent in
social choice [151]. Also, studying rank-dependent expected utility (RDEU) [248] is a
well-known research stream in decision theory, whose starting point is the construction
of models that explain Allais’ paradox: given a set of possible consequences of an
act, the contribution of a possible consequence on the agent’s RDEU is a function
of its probability and of its rank in the list of consequences ordered by decreasing
probability. While these three research streams use ranks to modify the contribution
of a criterion, an agent, or a possible consequence, in our setting they modify the

8In the K-Borda rule we select as the winners the K items (candidates) with the highest Borda
scores. The Borda score of an item (candidate) is the sum of the utilities assigned to this item by
all agents, assuming that these utilities are obtained by applying the Borda count PSF to agents’
preference rankings.
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contribution of items, our final aim being to select an optimal set of items. Since
we do not select criteria, agents or possible consequences, it is not obvious how our
results can apply to these three aforementioned research fields.

Several known settings are recovered as particular cases of our general model.
In particular, this applies to Chamberlin–Courant’s [47] and Monroe’s [210] election
systems, and to (variants of) the budgeted social choice model [188]. Computational
complexity of Chamberlin–Courant’s and Monroe’s schemes was first studied by
Procaccia et al. [245]; the parameterized complexity of the problem was analyzed
by Betzler et al. [27]. The first approximation algorithm was proposed by
Lu and Boutilier [188]. These results on approximability were extended in this chapter
and in Chapter 5.

It is quite natural to view finding proportional representation (and thus solving
1-best-OWA-Winner) as coalition structure generation problems in cooperative
games [251–253]. Here the agents are the players of a certain cooperative game,
and the value of each “coalition” of agents is the (dis)satisfaction they derive from
being assigned to a given item. The goal is to partition the set of the voters into K
disjoint coalitions (and assign distinct candidates to them) in a way that maximizes
the sum of coalition values (or, in the egalitarian setting, the value of the worst off
coalition). Formally, this is a very special case of coalition structure generation with
externalities. Externalities come from the fact that no two coalitions can be assigned
to the same candidate.

Group recommender systems (see, e.g., the work of O’Connor et al. [227] for
one of the first approaches, and the surveys of Jameson and Smyth [146] and of
Masthoff [198]) aim at recommending sets or sequences of items (such as a set of
television programs or a sequence of songs) to a group of users, based on preferences
of all group members. Two mainstream approaches exist (see [146]). The first one
is based on the construction of an ‘average user’ whose preferences are built by
aggregating the preferences of individuals in the group; next, the group of items
that are most preferred by this average user is recommended. The second approach
is based merging the recommendations made for individuals; in other words, the
recommendation for the set of agents is the set consisting of all recommendations
for the individuals. Unlike these, in our approach the decision of selecting items is
performed for the whole sets of items simultaneously. This makes the problem more
computationally intense, but allows to find better recommendations.

The facility location problem (fl) is closely related to 1-best-OWA-Winner.
In fl, however, the goal is to minimize the dissatisfaction of the agents instead
of maximizing their utility (satisfaction). Although, as far as exact solutions are
concerned both formulations are equivalent, there is a significant difference in the
quality of approximation. Some works focus on general dissatisfaction functions [101],
but most of the results were established for dissatisfactions corresponding to the
distances, and thus satisfying the triangle inequality [145,269]. Also, in fl the goal is
to minimize the dissatisfaction of the worst-off agent (the egalitarian view). The
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utilitarian version of the problem is called k-median [145]. The parameterized
complexity of the problem was analyzed by Fellows and Fernau [101]. The
approximation algorithms include [57,145,269]. Interestingly, a local-search algorithm
(which, to the best of our knowledge, is the best known approximation algorithm
for the capacitated version of fl [57]) is also a 1

2
-approximation algorithm for

maximizing nondecreasing submodular functions [220], and thus for OWA-Winner
with non-decreasing utility functions. We conclude that it would be interesting
to compare the algorithms for fl and k-median with different algorithms for
OWA-Winner on real preference traces [200].

47



48



Chapter 4

Finding a Collective Set of Items:
The Weighted Approach

In this chapter we study the problem of selecting a collective set of items, formally
defined in Chapter 3. We consider the problem both in its full generality, and for
various natural classes of the OWA vectors, and several types of agents’ utilities.

We start our analysis by discussing worst-case results in Section 4.1; then we
move on to approximability results, in Section 4.2 for the case of general utilities
(but with some focus on approval-based ones) and in Section 4.3 for the case of
Borda-based ones. We show that, in general, our problem is NP-hard, but that for the
natural class of non-increasing OWA vectors the problem can be approximated with
the ratio (1− 1/e); for other classes of OWA vectors good approximation algorithms
are rare. Nevertheless, for the case of Borda-based utilities it is possible to obtain
polynomial-time approximation schemes (PTASes) for a relatively large, interesting
family of OWA vectors, including k-median and k-best (for a fixed value of k), and
geometric progression OWA.

4.1 Computing Exact Solutions

In general, OWA-Winner is a rather difficult problem. However, as long as we seek
a size-K winner set where K is a fixed constant, then the problem is in P.

Proposition 4.1. For each fixed constant K (the size of the winner set),
OWA-Winner is in P.

Proof. For a profile with m items, there are only O(mK) sets of winners to try. We
try them all and pick one that yields highest utility.

Naturally, in practice the variant of the problem with fixed K has only limited
applicability and throughout the rest of the chapter we focus on the α-OWA-Winner
variant of the problem where K is given as part of the input and α represents a
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family of OWAs, one for each value of K. By results of Procaccia, Rosenschein and
Zohar [245] and Lu and Boutilier [188], we know that the 1-best-OWA-Winner
problem is NP-hard both for approval and for Borda-based utilities (see also
Chapters 5 and 6 for a detailed discussion). A simple reduction shows that this
result carries over to each family of k-best OWAs and k-med OWAs, where k is a
fixed positive integer, independent of the input.

Proposition 4.2. For each fixed k, k-best-OWA-Winner and
k-med-OWA-Winner are NP-complete, even if the utility profiles are restricted to
be approval-based or Borda-based.

Proof. Let k be a fixed constant. It is easy to see that k-best-OWA-Winner and
k-med-OWA-Winner are both in NP. To show NP-hardness, we give reductions
from 1-best-OWA-Winner (either with approval-based utilities or with Borda-based
utilities) to k-best-OWA-Winner and to k-med-OWA-Winner (with the same
types of utilities).

Let I be an instance of 1-best-OWA-Winner with n agents, m items, and where
we seek a winner set of size K. We form an instance I ′ of k-best-OWA-Winner that
is identical to I except that: (1) We add k − 1 special items b1, . . . , bk−1 such that
under approval-based utilities each agent i has utility 1 for each item bj , 1 ≤ j ≤ k−1,
and under Borda-based utilities, for item bj , 1 ≤ j ≤ k − 1, each agent i has utility
m+ j − 1. (2) We set the size of the desired winner set to be K ′ = K + k − 1. It is
easy to see that if there is an optimal solution W ′ for I ′ that achieves some utility x,
then there is a solution W ′′ for I ′ that uses all the k − 1 items b1, . . . , bk−1 and also
achieves utility x. Further, the set W ′′ − {b1, . . . , bk−1} is an optimal solution for I
and, for I, has utility x−

∑n
i=1

∑k−1
j=1 ui,bj = x− n

∑k−1
j=1 u1,bj .

Analogous argument shows that 1-best-OWA-Winner reduces to
k-med-OWA-Winner (also for approval-based and for Borda-based utilities).

On the other hand, it is easy to note that for K-best OWA (that is, for the family
of constant OWAs α = (1, . . . , 1)) the problem is easy.

Proposition 4.3. K-best-OWA-Winner is in P.

Proof. Let I be an input instance with m items and n agents, where we seek a winner
set of size K. It suffices to compute for each item the total utility that all the agents
would derive if this item were included in the winner set and return K items for which
this value is highest.

Indeed, if the agents’ utilities are either approval-based or Borda-based,
K-best-OWA-Winner boils down to (polynomial-time) winner determination for
K-best approval rule and for K-Borda rule [79], respectively (see also the work of
Elkind et al. [96] for a general discussion of multiwinner rules). Given this result, it
is quite interesting that already (K − 1)-best-OWA-Winner is NP-hard, both for
approval-based and for Borda-based utilities.
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Theorem 4.4. (K−1)-best-OWA-Winner is NP-complete even for approval-based
utilities.

Proof. Membership in NP is clear. We show a reduction from the VertexCover
problem. Let I be an instance of VertexCover with graph G = (V,E), where
V = {v1, . . . , vm} and E = {e1, . . . , en}, and with a positive integer K (without loss
of generality, we assume that K ≥ 3 and K < m). In I we ask if there is a set C of
up to K vertices such that each edge is incident to at least one vertex from C.

We construct an instance I ′ of (K − 1)-best-OWA-Winner in the following way.
We let the set of items be A = V and we form 2n agents, two for each edge.
Specifically, if ei is an edge connecting two vertices, call them vi,1 and vi,2, then
we introduce two agents, e1i and e2i , with the following utilities: e1i has utility 1 for
vi,1 and for vi,2, and has utility 0 for all the other items; e2i has opposite utilities—it
has utility 0 for vi,1 and for vi,2, and has utility 1 for all the remaining ones.

Let W be some set of K items (i.e., vertices) and consider the sum of the utilities
derived by the two agents e1i and e2i from W under (K − 1)-best-OWA. If neither vi,1
nor vi,2 belong to W , then the total utility of e1i and e2i is equal to K − 1 (the former
agent gets utility 0 and the latter one gets K − 1). If only one of the items, i.e.,
either vi,1 or vi,2, belongs to W , then the total utility of e1i and e2i is equal to K (the
former agent gets utility 1 and the latter one still gets K − 1). Finally, if both items
vi,1, vi,2 belong to W , then the total utility of e1i and e2i is also equal to K (the former
gets utility 2 and the latter gets utility K − 2). Thus the total utility of all agents is
equal to K ·n if and only if the answer to the instance I is “yes”. This shows that the
reduction is correct and, since the reduction is computable in polynomial time, the
proof is complete.

A variant of this result for Borda-based utilities follows by an application of
a similar idea, but the restriction to Borda-based utilities requires a much more
technical proof.

Theorem 4.5. (K − 1)-best-OWA-Winner is NP-hard even for Borda-based
utilities.

Proof. As before, it is clear that the problem is in NP, and we only show NP-hardness.
We give a reduction from VertexCover. Let I be an instance of the VertexCover
problem that consists of undirected graph G = (V,E), where V = {v1, . . . , vm} and
E = {e1, . . . , en}, and positive integer K (without loss of generality, we assume that
K ≥ 3).

From I, we construct an instance I ′ of (K − 1)-best-OWA-Winner with
Borda-based utilities as follows. We set

x = 4n(m+ 2)(K + 4)

and we let the set of items be A = V ∪ {d1, d2} ∪ H , where H = {h1, . . . , hx} and
{d1, d2} are sets of dummy items that we need to build appropriate structure of the
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utility profile. To build the set of agents N , we set

y = (n(x+m+ 2)2 + 1)

and we set N = NE ∪ N1 ∪ · · · ∪ Ny, where NE = {e11, e
2
1, . . . , e

1
n, e

2
n} contains pairs

of agents that correspond to the edges of G, and N1, . . . , Ny contain pairs of agents
needed for the construction. Specifically, every set Ni, 1 ≤ i ≤ y, consists of two
agents, f 1

i and f 2
i . We refer to the agents in the set N1 ∪ · · · ∪ Ny as the “dummy

agents.” We describe agents’ utilities through their preference orders (their utilities
are derived using the Borda PSF).

The agents in the set NE have the following preference orders. Let ei ∈ E be an
edge of the graph that connects vertices vi,1 and vi,2. Agents e1i and e2i have preference
orders:

e1i : d1 ≻ d2 ≻ V − {vi,1, vi,2} ≻ H ≻ {vi,1, vi,2},

e2i : d1 ≻ d2 ≻ {vi,1, vi,2} ≻ H ≻ V − {vi,1, vi,2}.

(Recall that when we put a set of items in a preference order, this means that this set
can be replaced by these items in an arbitrary, easily computable, way.) Each agent
f 1
i , 1 ≤ i ≤ y, has the same, fixed, preference order:

f 1
i : d1 ≻ v1 ≻ v2 · · · ≻ vm ≻ d2 ≻ h1 · · · ≻ hx.

Similarly, each agent f 2
i , 1 ≤ i ≤ y, has preference order:

f 2
i : d2 ≻ vm ≻ vm−1 · · · ≻ v1 ≻ d1 ≻ h1 · · · ≻ hx.

Finally, in the instance I ′ we seek a set of winners of size K +2. This means that
we use (K + 1)-best-OWA to compute the aggregated utility that an agent derives
from a set of winners.

This concludes the description of the reduction and it is clear that it is
polynomial-time computable. Before we prove that it is correct, let us make several
observations. Let W be some optimal solution for I ′. We claim that W does not
contain any of the items from H . For the sake of contradiction, assume that some
h ∈ H belongs to W . Since d1 and d2 are ranked ahead of h in every preference order
(and in some preference orders d1 is first and d2 is second, so their utility cannot be
ignored by the (K+1)-best-OWA), we infer that d1 and d2 must belong to W as well
(otherwise we would obtain higher utility by replacing h with one of d1 and d2 in W ).
Let v be some item from V that does not belong to W . If we replace h with v in
W then the total utility of the dummy agents increases by at least 2y. Why is this
so? Consider some pair Ni, 1 ≤ i ≤ y of dummy agents. Item h is either the lowest
ranked member of W for both f 1

i and f 2
i or for neither. We consider these cases:

• h is the lowest-ranked winner for both the agents in Ni. Replacing h
with v means that either some other member h′ of H ∩W becomes the lowest
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ranked winner for both f 1
i and f 2

i , or d2 becomes the lowest ranked winner for
f 1
i and d1 becomes the lowest ranked winner for f 2

i . In either case, both f 1
i

and f 2
i obtain utility higher by at least one from v than from the item that

became the new lowest-ranked winner. Thus, the total utility yielded by these
two agents increases by at least two.

• h is not the lowest-ranked winner for either agent in Ni. In this case,
since both agents rank v higher than h and replacing h with v does not change
the lowest-ranked winner for either of the agents, their total utility also increases
at least by two.

Since there are y pairs of agents, the total utility increases by at least 2y. Since the
total utility of the agents from NE is lower than 2n(x+m+2)2 < 2y, we see that after
the change the total utility of all the agents increases. Thus, we get a contradiction
and we conclude that W does not contain any of the agents from H .

Next, we claim that both d1 and d2 belong to W . We give a detailed argument
for d1 only; the case of d2 is analogous. For the sake of contradiction, assume that
d1 does not belong to W . Let vk be an item from W such that for each vj , j < k, vj
does not belong to W . By our assumptions, for each agent f 2

i , 1 ≤ i ≤ y, vk is the
lowest-ranked winner from W . Thus, if we replace vk with d1 in W , then the utility
of each agent f 2

i will not change, whereas the utility of each agent f 1
i will increase.

Further, the utility of each agent from NE will increase. Thus, by replacing vk with
d1, we can increase the total utility of the agents. We reach a contradiction and we
conclude that d1 must have been a member of W . An analogous argument shows that
d2 belongs to W as well.

As the result of the above reasoning, we infer that each set of winners consists
of d1, d2, and K items from V . Whenever both d1 and d2 are included in the set of
winners and neither item from H is, the total utility of the dummy agents is the same,
irrespective which items from V are selected. With these observations, we now show
that the answer for the input VertexCover instance is “yes” if and only if there is
a size-(K + 2) winner set for I ′ that for agents in the set NE yields total utility at
least nx(K + 4).

(⇒) Let us assume that there exists a cover C for I, that is, a set C of K vertices
such that each edge is incident to at least one vertex from C. We show that winner
set W = C∪{d1, d2} gives total utility of every two agents e1i and e2i , 1 ≤ i ≤ n, equal
to at least x(K + 4). Pick some arbitrary i, 1 ≤ i ≤ n, and let vi,1 and vi,2 be the
two vertices connected by edge ei. If both vi,1 and vi,2 belong to C, then e2i obtains
utility at least x for each item in {vi,1, vi,2, d1, d2} (at least utility 4x in total). On the
other hand, e1i obtains utility at least x for each item in W − {vi,1, vi,2}. This gives
utility at least Kx. Altogether, both agents get utility at least x(K + 4). If only one
of the items vi,1 and vi,2, say vi,1, belongs to C, then e2i obtains utility at least 3x (at
least x for every item from {vi,1, d1, d2}), and e1i obtains utility at least (K + 1)x (at
least 2x from items d1 and d2, and at least (K − 1)x from the K − 1 members of C
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that e1i ranks on the top positions). Again, both agents get utility at least x(K + 4).
Thus the total utility of the agents in NE in the optimal solution must be at least
nx(K + 4).

(⇐) Assume that W is some optimal solution for I ′ and that for the agents in NE

it yields utility at least nx(K +4). By previous discussion, we know that W contains
d1, d2, and K members of V . We set C = W \ {d1, d2}. Let us fix some arbitrary i,
1 ≤ i ≤ n. Let vi,1 and vi,2 be the two vertices connected by edge ei. We observe that
underW , the total utility of agents e1i and e2i is at most (x+m+2)(K+4)+mK. To see
this, let z be the number of items from {vi,1, vi,2} that are included in C and note that
(1) for the upper bound we can disregard the OWA that we use, (2) there are x+m+2
items and so we can upper-bound the utility derived from each item by x+m+2, (3)
altogether, the items from W are ranked on at most K + 2− z top-(m+ 2) positions
by e1i (we upper-bound their total utility by (K+2−z)(x+m+2)) and at most 2+z
top-(m+2) positions by e2i (we upper-bound their total utility by (2+z)(x+m+2)),
and (4) the items from W are ranked on at most z bottom-m positions by e1i (we
upper-bound their total utility by zm) and on K − z bottom-m positions by e2i (we
upper-bound their total utility by (K− z)m). When we sum up these upper bounds,
we get (x+m+ 2)(K + 4)+mK. However, for our argument we also need an upper
bound on the total utility of e1i and e2i under the assumption that neither vi,1 nor
vi,2 belongs to C. In this case, the upper bound is (x +m + 2)(K + 3) +mK. We
obtain it in the same way as the previous bound, except that we note that due to
our (K +1)-best-OWA, the utility derived by e1i can take into account at most K +1
agents from the top-(m+ 2) positions of the preference order of e1i .

Based on these upper bounds, we will now show that if the total utility derived
from W by the agents in NE is at least nx(K+4), then C must correspond to a cover
of all the edges of G. To this end, consider a situation where there is at least one
edge ei such that neither of the vertices that it connects belongs to C. By using our
upper bounds, in this case the total utility of the agents from NE can be at most:

(K + 3)(x+m+ 2) + (n− 1)(K + 4)(x+m+ 2) + nmK

= (x+m+ 2)(K + 3 + (n− 1)(K + 4)) + nmK

= (x+m+ 2)(n(K + 4)− 1) + nmK

= xn(K + 4) + n(m+ 2)(K + 4)− (x+m+ 2) + nmK

= xn(K + 4) + 0.25x− (x+m+ 2) + nmK

< xn(K + 4)

(The last two lines follow directly from the definition of x.) So, from the assumption
that C is not a solution for I, we obtain that the total utility of the agents in NE

must be lower than nx(K + 4), which contradicts our assumption. Thus C is a
correct solution for I and, so, I is a yes-instance of VertexCover. This completes
the proof.
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Using a proof that combines the ideas of the proofs of Theorems 4.2 and 4.4, we
show that indeed OWA-Winner is NP-hard for a large class of natural OWAs. This
time, for the sake of simplicity, we give a proof for the approval-based utilities only.

Theorem 4.6. Fix an OWA family α, such that there exists p such that for every K
we have α

(K)
p > α

(K)
p+1; α-OWA-Winner is NP-hard for approval-based utilities.

Proof. We give a reduction from the CubicVertexCover problem. Let I be an
instance of CubicVertexCover with graph G = (V,E), where V = {v1, . . . , vm}
and E = {e1, . . . , en}, and positive integer K. Each vertex in G has degree exactly
equal to three. W.l.o.g., we assume that n > 3. We ask if there is a set C of up to K
vertices such that each edge is incident to at least one vertex from C.

We construct an instance I ′ of α-OWA-Winner. In I ′ we set N = E (the agents
correspond to the edges), A = V ∪ {b1, b2, . . . bp−1} (there are (p − 1) dummy items;
other items correspond to the vertices), and we seek a collection of items of size
K + p− 1. Each agent ei, ei ∈ E, has utility 1 exactly for all the dummy items and
for two vertices that ei connects and for each of the dummy items (for the remaining
items ei has utility 0). In effect, each agent has utility 1 for exactly p + 1 items.

We claim that I is a yes-instance of CubicVertexCover if and only if there
exists a solution for I ′ with the total utility at least n

∑p
i=1 αi + (3K − n)αp+1.

(⇒) If there is a vertex cover C of size K for G, then by selecting the items
W = C ∪ {b1, b2, . . . bp−1} we obtain the required utility of the agents. Indeed, for
every agent ei there are at least p items in W for which i gives value 1 (the p − 1
dummy items and at least one vertex incident to ei). These items contribute the value
n
∑p

i=1 αi to the total agents’ utility. Additionally, since every non-dummy item has
value 1 for exactly 3 agents, and since every agent has at most (p+1) items with value
1, there are exactly (3K−n) agents that have exactly (p+1) items in W with values
1. Thus, these (3K − n) agents (thanks these items that they rank at the (p+ 1)’th
position) additionally contribute (3K − n)αp+1 to the total utility. Altogether, the
agents’ utility is n

∑p
i=1 αi + (3K − n)αp+1, as claimed.

(⇐) Let us assume that there is a set of (K + p − 1) items with total utility at
least n

∑p
i=1 αi + (3K − n)αp+1. In I ′ we have (p − 1) items that have value 1 for

each of the n agents, and every other item has value 1 for exactly 3 agents. Thus the
sum of the utilities of K + p − 1 items (without applying the OWA operator yet) is
at most (p− 1)n+3K = pn+(3K−n). In effect, the total utility of the agents (now
applying the OWA operator) is n

∑p
i=1 αi + (3K − n)αp+1 only if for each agent ei

the solution contains p items with utility 1. Since there are only p− 1 dummy items,
it means that for each agent ei there is a vertex vj in the solution such that ej is
incident to vj . That is, I is a yes-instance of CubicVertexCover.

The above theorem applies directly, for example, to the families of geometric
progression OWAs and arithmetic progression OWAs.
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Corollary 4.7. The problems gprog[p]-OWA-Winner (for each p > 1) and
aprog[a]-OWA-Winner (for each a > 0) are NP-complete.

In fact, the following theorem (whose proof builds upon the above constructions)
shows an even stronger NP-hardness result.

Theorem 4.8. Fix an OWA family α, such that for every K, α(K) is nonincreasing
and nonconstant; α-OWA-Winner is NP-hard for approval-based utilities.

Proof sketch. We give a reduction from CubicVertexCover. Let I be an instance
of CubicVertexCover with graph G = (V,E), where V = {v1, . . . , vm} and E =
{e1, . . . , en}, and with positive integer K.

Now let us consider α(2K); since α(2K) is nonincreasing and nonconstant, one of
the two following conditions must hold.

1. There exists p ≤ K such that α(2K)
p > α

(2K)
p+1 .

2. There exists p > K such that α(2K)
p > α

(2K)
p+1 , and for every p ≤ K, we have

α
(2K)
p = α

(2K)
p+1 .

If (1) is the case then we use a reduction similar to that in the proof of Theorem 4.6.
The only difference is that apart from the set D1 of (p−1) dummy items (ranked first
by all agents), we introduce the set D2 of (2K−p+1) dummy items and (2K−p+1)
sets N1, N2, . . . , N2K−p+1, each consisting of 2n dummy agents. The dummy items
from D2 are introduced only to fill-up the solution up to 2K members. The dummy
agents from Ni have utility 1 for each of the items from D1 and for the i’th item from
D2 (they have utility 0 for all the other items). This is to enforce that the items from
D2 are selected in the optimal solution. The further part of the reduction is as in the
proof of Theorem 4.6.

If (2) is the case, then we use a reduction similar to that in the proof of
Theorem 4.4. We let the set of items be A = V ∪D1∪D2, where D1, |D1| = p+1−K,
and D2, |D2| = 2K−p−1 are sets of dummy items that we need for our construction.
Similarly as in the proof of Theorem 4.4, for each edge ei ∈ E we introduce two
agents e1i and e2i . Here, however, we additionally need the set F of (2n + 1) dummy
agents. Each dummy agent from F assigns utility 1 to each dummy item from D2

and utility 0 to the remaining items—consequently, since |F | > 2n, each dummy
item from D2 must be selected to every optimal solution. Further, each non-dummy
agent assigns utility 1 to each dummy agent from D1—this way we ensure that every
item from D1 must be selected to every optimal solution. Finally, the utilities of
the non-dummy agents for the non-dummy items are defined exactly as in the proof
of Theorem 4.4. This ensures that the optimal solution, apart from D1 and D2, will
contain the non-dummy items that correspond to the vertices from the optimal vertex
cover.
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By the above discussion, we conjecture that the family of constant OWAs, that is,
the family of K-best OWAs, is the only natural family for which α-OWA-Winner
is in P. We leave this conjecture as a natural follow-up question.

Even though almost all the practical variants of OWA-Winner are
computationally hard, we still might be in a position where it is necessary to obtain an
exact solution for a given OWA-Winner instance and the brute-force algorithm from
Proposition 4.1 is too slow. In such a case, it might be possible to use an integer linear
programming (ILP) formulation of the problem, given below. We believe that this
ILP formulation is interesting in its own right and, in particular, that it is interesting
future work to experimentally assess the size of instances for which it yields solutions
in reasonable amount of time.

Theorem 4.9. OWA-Winner reduces to computing a solution for the following
integer linear program.

minimize
n
∑

i=1

m
∑

j=1

K
∑

k=1

αkui,ajxi,j,k

subject to:

(a) :
m
∑

i=1

xi = K

(b) : xi,j,k ≤ xj , i ∈ [n]; j, k ∈ [K]

(c) :
m
∑

j=1

xi,j,k = 1 , i ∈ [n]; k ∈ [K]

(d) :
K
∑

k=1

xi,j,k = 1 , i ∈ [n]; j ∈ [m]

(e) :
m
∑

j=1

ui,ajxi,j,k ≥
m
∑

j=1

ui,ajxi,j,(k+1) , i ∈ [n]; k ∈ [K − 1]

(f) : xi,j,k ∈ {0, 1} , i ∈ [n]; j, k ∈ [K]

(g) : xj ∈ {0, 1} , j ∈ [m]

Proof. Consider an input instance with n agents N = [n] and m items A =
{a1, . . . , am}, where we seek a winner set of size K, under OWA α = (α1, . . . , αK).
For each i ∈ N , aj ∈ A, we write ui,aj to denote the utility that agent i derives from
item aj .

We form an instance of ILP with the following variables: (1) For each i ∈ N ,
j ∈ [m], and k ∈ [K], there is an indicator variable xi,j,k (intuitively, we interpret
xi,j,k = 1 to mean that for agent i, item aj is the k-th most preferred one among
those selected for the solution). (2) For each j ∈ [m], there is an indicator variable xj
(intuitively, we interpret xj = 1 to mean that aj is included in the solution). Given
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these variables (and assuming that we enforce their intuitive meaning), the goal of
our ILP is to maximize the function

∑n
i=1

∑m
j=1

∑K
k=1 αkui,ajxi,j,k.

We require that our variables are indeed indicator variables and, thus, take values
from the set {0, 1} only (constraints (f) and (g)). We require that the variables of the
form xi,j,k are internally consistent. (constraint (c) says that each agent ranks only
one of the candidates from the solution as k-th best, constraint (d) say that there
is no agent i and item aj such that i views aj as ranked on two different positions
among the items from the solution.) Then, we require that variables of the form xi,j,k
are consistent with those of the form xj (constraint (b)) and that exactly K items
are selected for the solution (constraint (a)).

Our final constraint, constraint (e), requires that variables xi,j,k sort the items
from the solution in the order of descending utility values (separately for each agent,
of course). We mention that constraint (e) is necessary only for the case of OWAs
α that are not-nonincreasing. For a nonincreasing α, an optimal solution for our
ILP already ensures the correct “sorting” (otherwise our goal function would not be
maximized).

4.2 (In)Approximability Results: General Utilities

and Approval Utilities

The OWA-Winner problem is particularly well-suited for applications that involve
recommendation systems (see, e.g., the work of Lu and Boutilier [188] for a
discussion of 1-best-OWA-Winner in this context and examples in Chapter 3). For
recommendation systems it often suffices to find good approximate solutions instead
of perfect, exact ones, especially if we only have estimates of agents’ utilities. It
turns out that the quality of the approximate solutions that we can produce for
OWA-Winner very strongly depends on both the properties of the particular family
of OWAs used and on the nature of agents’ utilities.

First, we show that as long as our OWA is nonincreasing, a simple greedy algorithm
achieves

(

1− 1
e

)

approximation ratio. This result follows by showing that for a
nonincreasing OWA α, the function uαut (recall Definition 3.1) is submodular and
nondecreasing, and by applying the famous result of Nemhauser et al. [220] (we recall
the definition of submodularity and the theorem of Nemhauser et al. in Section 2.2.2).

Lemma 4.10. Let I be an instance of OWA-Winner with a nonincreasing OWA
α. The function uαut is submodular and nondecreasing.

Proof. Let I be an instance of OWA-Winner with agent set N = [n], item set
A = {a1, . . . , am}, desired solution size K, and OWA α = 〈α1, . . . , αK〉. For each
agent i ∈ N and each item aj ∈ A, ui,aj is a nonnegative utility that i derives from
aj .
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1 W ← ∅ ;
2 for ℓ← 1 to K do
3 score← {} ;
4 foreach a ∈ A \W do
5 s← 0;
6 foreach i ∈ N do
7 p← ‖{w ∈W : ui,w ≤ ui,a‖+ 1 ;
8 s← s+ ui,a · αp ;

9 score[a]← s

10 W ← W ∪ {argmaxa∈A\W score[a]};

Figure 4.1: The greedy algorithm (Greedy) for finding the utilitarian set of K winners.

Since all the utilities and all the entries of the OWA vector are nonnegative, we
note that uαut is nondecreasing. To show submodularity, we decompose uαut as follows:

uαut(W ) =

K−1
∑

ℓ=1

(αℓ − αℓ+1)u
ℓ-best-OWA

ut (W ) + αKu
K-best-OWA

ut (W )

For each W ⊆ A, i ∈ N and ℓ ∈ [m], let Top(W, i, ℓ) be the set of those ℓ items
from W whose utility, from the point of view of agent i, is highest (we break ties in
an arbitrary way). Since nonnegative linear combinations of submodular functions
are submodular, it suffices to prove that for each i ∈ N and each ℓ ∈ [m], function
uℓi(W ) =

∑

w∈Top(W,i,ℓ) ui,w is submodular.
To show submodularity of uℓi , consider two sets, W and W ′, W ⊆ W ′ ⊆ A, and

some a ∈ A \W ′. We claim that:

uℓi(W ∪ {a})− u
ℓ
i(W ) ≥ uℓi(W

′ ∪ {a})− uℓi(W
′). (4.1)

Let uW and uW ′ denote the utilities that the i-th agent has for the ℓ-th best items
from W and W ′, respectively (or 0 if a given set has fewer than ℓ elements). Of
course, uW ′ ≥ uW . Let ua denote i-th agent’s utility for a. We consider two cases. If
ua ≤ uW , then both sides of (4.1) have value 0. Otherwise:

uℓi(W
′ ∪ {a})− uℓi(W

′) = max(ua − uW ′, 0)

uℓi(W ∪ {a})− u
ℓ
i(W ) = ua − uW ,

which proves (4.1) and completes the proof.

Theorem 4.11. For a nonincreasing OWA α, the algorithm Greedy from Figure 4.1
is a polynomial time (1−1/e)-approximation algorithm for the problem of finding the
utilitarian set of K winners.
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Proof. The thesis follows from the results of Nemhauser et al. [220] on approximating
nondecreasing submodular functions (The Nemhauser’s theorem is recalled as
Theorem 2.1 in Section 2.2.2).

Is a (1 − 1
e
)-approximation algorithm a good result? After all, 1 − 1

e
≈

0.63 and so the algorithm guarantees only about 63% of the maximum possible
satisfaction for the agents. Irrespective if one views it as sufficient or not, this is the
best possible approximation ratio of a polynomial-time algorithm for (unrestricted)
OWA-Winner with a nonincreasing OWA. The reason is that 1-best-OWA-Winner
with approval-based utilities is, in essence, another name for the MaxCover
problem, and if P 6= NP, then (1 − 1

e
) is the approximation upper bound for

MaxCover [98]. We omit the exact details of the connection between MaxCover
and 1-best-OWA-Winner and instead we point the readers to Chapter 6, which
discusses this issue in detail.

For OWAs that are not nonincreasing, it seems that we cannot even hope for such
a (1 − 1

e
)-approximation algorithm. Such OWAs yield utility functions that are not

necessarily submodular. For example, this is the case for 2-med OWA.

Example 4.12. Let us consider a single agent, two sets of items W = {c, d} and
W ′ = {b, c, d} (of course W ⊂ W ′), and 2-med-OWA α. The utilities of the agent
over the items a, b, c, and d are equal to 10, 9, 2, and 1, respectively. We get:

uαut(W ∪ {a})− u
α
ut(W ) = 2− 1 = 1, uαut(W

′ ∪ {a})− uαut(W
′) = 9− 2 = 7.

That is, uαut is not submodular. Indeed, this example works even for approval-based
utilities: it suffices to set the utilities for a and b to be 1, and for c and d to be 0.

It is quite plausible that there are no constant-factor approximation algorithms for
many not-nonincreasing OWAs. As an example, let us consider the case of families
of OWAs whose first entries are zero (but that, nonetheless, have a nonzero entry
at a sufficiently early position). If there were a good approximation algorithm for
winner determination under such OWAs, then there would be a good approximation
algorithm for the Densest-K-Subgraph problem, which seems unlikely (for the
definition and the discussion on the Densest-K-Subgraph problem we refer the
reader to Section 2.3).

Theorem 4.13. Fix some integer ℓ, ℓ ≥ 2. Let α be a family of OWAs such that each
OWA in the family (for at least ℓ numbers) has 0s on positions 1 through ℓ−1, and has
a nonzero value on the ℓ’th position. If there is a polynomial-time x(n)-approximation
algorithm for α-OWA-Winner then there is a polynomial-time x(n)-approximation
algorithm for the Densest-k-Subgraph problem.

We should mention that Theorem 4.13 holds for a somewhat more general class
of OWAs than stated explicitly. The proof relies on the fact that the first entry of
the OWA is zero and that after the first non-zero entry of the OWA there are still
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K−1 positions, where K is the parameter from the input of the Densest-K-Subset
instance.

Proof of Theorem 4.13. Let I be an instance of the Densest-K-Subgraph problem
with graph G = (V,E) and positive integer K. In I we ask for a subgraph with K
vertices with the maximal number of edges.

From I we construct an instance I ′ of α-OWA-Winner, where the set of agents
N is E, the set of items is A = V ∪ {d1, . . . , dℓ−2} (or V if ℓ = 2), and we seek a
winner set of size K + ℓ − 2. Agents utilities are set as follows: For each agent e
and each item dj, 1 ≤ j ≤ ℓ − 2, the utility of e for dj is 1. If e is an edge in G
that connects vertices u and v, then agent e’s utility for u and v is 1 and is 0 for the
remaining items from V .

It is easy too see that the items d1, . . . , dℓ−2 all belong to every optimal solution
for I ′. It is also easy to see that in each optimal solution the utility of each agent e
is nonzero (and exactly equal to αℓ, the ℓ-th entry of the OWA α used) if and only if
both items corresponding to the vertices connected by e are included in the solution.
Thus the total utility of every optimal solution for I ′ is equal to αℓ times the number
of edges that connect any two vertices corresponding to the items from the solution.

Let A be a polynomial-time x(n)-approximation algorithm for α-OWA-Winner.
If A, returns a solution S for I ′ with none-zero utility, then the items d1, . . . , dℓ−2 all
belong to S. Let us take the vertices corresponding to the items S \ {d1, . . . , dℓ−2}.
The number of the edges connecting these vertices is equal to the total utility of
S divided by αℓ. Thus, from x(n)-approximate solution for I ′ we can extract an
x(n)-approximate solution for I. This completes the proof.

As a further evidence that OWAs that are not-nonincreasing are particularly hard
to deal with from the point of view of approximation algorithms, we show that for an
extreme example of an OWA family, i.e., for the K-med OWAs, there is a very strong
hardness-of-approximation result.

Theorem 4.14. There exists a constant c such that there is no polynomial-time
(2c
√
lgn/n)-approximation algorithm for K-med-OWA-Winner unless for some ǫ we

have 3-SAT ∈ DTIME(2n
3/4+ǫ

).

Proof. Let us assume that there is a constant c and a polynomial-time
(2c
√
lgn/n)-approximation algorithm A for K-med-OWA-Winner. We will show

that we can use A to solve instances of MEBP-V with the same approximation ratio
(For the definition and discussion on the complexity of MEBP-V we refer the reader
to Section 2.3.). By Lemma 2.2, this will prove our theorem.

Let I be an instance of MEBP-V with bipartite graph G = (U∪V,E) and positive
integer K. In I we ask for a biclique S such that ‖S ∩ V ‖ = K and S contains as
many edges as possible.

From I we construct an instance I ′ of K-med-OWA-Winner in the following
way. We let the set of agents N be U , the set of items A be V , and we seek
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a winner set of size K. The utility of agent u from item v is equal to 1 if and
only if u and v are connected in G; otherwise it is 0. Now we note that there is a
one-to-one correspondence between the solutions for I and for I ′. Let S be a solution
for I with x edges: S ∩ V is also a solution for I ′ with the utility at least equal
to x/K. Let S be a solution for I ′ with the utility x. All the agents from U with
non-zero utilities, together with S, form a biclique with Kx edges. Thus, from the
(2c
√
lgn/n)-approximation solution for I ′ we can extract a (2c

√
lgn/n)-approximation

solution for I. This completes the proof.

As a corollary of the above proof, we also have that Hurwicz[λ]-OWA-Winner
is NP-hard (through an almost identical proof, but with a certain dummy candidate,
that gets utility 1 from everyone, added, and with the size of the winner set extended
by 1).

Corollary 4.15. Hurwicz[λ]-OWA-Winner is NP-hard

Interestingly, even though Hurwicz[λ] OWA is not nonincreasing, we do show an
approximation algorithm for it with a constant approximation ratio. This shows that,
indeed, even for not-nonincreasing OWAs, sometimes some form of approximation
result is possible (though we will comment on the value of this approximation later).

Proposition 4.16. Let A be a β-approximation algorithm for 1-best-OWA-Winner.
A is a λβ-approximation algorithm for Hurwicz[λ]-OWA-Winner.

Proof. Let us consider some instance IH of Hurwicz[λ]-OWA-Winner, where the
goal is to pick a set of K items. We construct an instance I1 that is identical to
IH , but for the 1-best-OWA, and we run algorithm A on I1. The algorithm outputs
some set W = {w1, . . . , wK} (a β-approximate solution for I1). We claim that W is
a λβ-approximate solution for IH .

Let WH = {wH1 , . . . , w
H
K} be an optimal solution for IH and let W 1 =

{w1
1, . . . , w

1
K} be an optimal solution for I1. We first note that the following holds

(recall the ~x↓ notation for sorted sequences from page 40):

u
Hurwicz[λ]
ut (WH) =

n
∑

i=1

(

λu↓
i,wH

1
+ (1− λ)u↓

i,wH
K

)

≤
n
∑

i=1

u↓
i,wH

1
≤

n
∑

i=1

u↓
i,w1

1
= u1-bestut (W 1).

In effect, we have that u1-bestut (W 1) ≥ u
Hurwicz[λ]
ut (WH). Now, it is easy to verify that

for W (or, in fact, for any set of K items) it holds that:

u
Hurwicz[λ]
ut (W ) =

n
∑

i=1

(

λu↓i,w1
+ (1− λ)u↓i,wK

)

≥ λ

n
∑

i=1

u↓i,w1
= λu1-bestut (W ).

Finally, combining these two inequalities and the fact that W is a β-approximate
solution for 1-bestOWA-Winner, we get:

u
Hurwicz[λ]
ut (W ) ≥ λu1-bestut (W ) ≥ λβu1-bestut (W 1) ≥ λβu

Hurwicz[λ]
ut (WH).

This completes the proof.
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By using the algorithm Greedy from Figure 4.1 we get the following corollary.

Corollary 4.17. There is an algorithm that for Hurwicz[λ]-OWA-Winner with no
restrictions on the utility functions achieves approximation ratio λ(1− 1

e
).

Returning to nonincreasing OWAs, we can even show an example of a PTAS for
OWA-Winner for a certain family OWAs. However, to defeat the relation to the
MaxCover problem, these OWAs need to be of a very special form: they need to
be as similar to the K-best OWA as possible.

Theorem 4.18. Consider a nonincreasing OWA α, α = 〈α1, . . . , αK〉. Let
I be an instance for α-OWA-Winner (where we seek a winner set of size
K). An optimal solution for the same instance but with K-best-OWA is a
(
∑K

i=1 αi)/(Kα1)-approximate solution for I.

Proof. Let I be an instance of α-OWA-Winner described in the statement of the
theorem, let W ∗ be one of its optimal solution, and let W be an optimal solution for
the same instance, but with α replaced with the K-best-OWA. Note that W is also
an optimal solution for the K-number constant OWA β = 〈α1, . . . , α1〉. We claim
that the following inequalities hold (uαut is defined with respect to the instance I and
uβut is defined with respect to instance I with β as the OWA):

uαut(W ) ≥

∑K
i=1 αi
Kα1

uβut(W ) ≥

∑K
i=1 αi
Kα1

uβut(W
∗) ≥

∑K
i=1 αi
Kα1

uαut(W
∗),

The second inequality holds because W is an optimal solution for I with OWA β. To
see why the first and the third inequalities hold, let us focus on some agent i. The
third inequality is simpler and so we prove it first.

Let u∗1, . . . , u
∗
k be the utilities, in the nonincreasing order, that agent i has for the

items in W ∗. Thus the utility that i gets from W ∗ under α is
∑K

i=1 αiu
∗
i . Since for

each i, 1 ≤ i ≤ K, we have αi ≤ α1, i’s utility under α is smaller or equal than i’s
utility under β,

∑K
i=1 α1u

∗
i .

We now prove the first inequality. Let u1, . . . , uK be the utilities, in the
nonincreasing order, that agent i has for the items in W . Our goal is to show that:

α1u1 + · · ·+ αKuK ≥

∑K
i=1 αi
Kα1

α1u1 + · · ·+

∑K
i=1 αi
Kα1

α1uK

=

∑K
i=1 αi
K

u1 + · · ·+

∑K
i=1 αi
K

uK .

This inequality is equivalent to

Kα1u1 + · · ·+KαKuK ≥
K
∑

i=1

αiu1 + · · ·+
K
∑

i=1

αiuK ,
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which itself is equivalent to

u1(Kα1 −
∑K

i=1 αi) + · · ·+ uK(KαK −
∑K

i=1 αi) ≥ 0.

We can rewrite the left-hand side of this inequality as:

(u1 − u2)(Kα1 −
∑K

i=1 αi) + (u2 − u3)(Kα1 +Kα2 − 2
∑K

i=1 αi) + · · ·+

+ (uK−1 − uK)(
∑K−1

j=1 Kαj − (K − 1)
∑K

i=1 αi) + uK(
∑K

j=1Kαj −K
∑K

i=1 αi).

We claim that each summand in this expression is nonnegative. Since u1, . . . , uK is a
nonincreasing sequence of nonnegative utilities, we have that for each j, 1 ≤ j ≤ K−1,
uj − uj+1 is nonnegative, and so is uK . Now fix some t, 1 ≤ t ≤ K. We have:

∑t
j=1Kαj − t

∑K
i=1 αi =

∑t
j=1(K − t)αj − t

∑K
i=t+1 αi

≥ t(K − t)αt − t
K
∑

i=t+1

αi ≥ t(K − t)αt − t(K − t)αt = 0

This completes the proof.

As a consequence of this theorem, we immediately get the following result.

Theorem 4.19. Let f : N → N be a function computable in polynomial-time with
respect to the value of its argument, such that f(K) is o(K). There is a PTAS for
(K − f(K))-best-OWA-Winner.

Proof. Let us fix some ǫ, 0 < ǫ < 1. We give a polynomial time ǫ-approximation
algorithm for (K − f(K))-best-OWA-Winner. Since f(K) is o(K), there is some
value Kǫ such that for each K ≥ Kǫ it holds that K−f(K)

K
≥ ǫ. If for our input

instance we are to find a winner set of size K, K ≥ Kǫ, then we simply run the
polynomial-time algorithm for K-best-OWA. Otherwise, we seek a winner set of size
at most Kǫ and we try all subsets of items of size K. Since, in this case, K is bounded
by a constant, our algorithm runs in polynomial time.

Both Corollary 4.17 and Theorem 4.19 have a bitter-sweet taste. In essence,
they say that instead of using a particular OWA family (either Hurwicz[λ] or (K −
f(K))-best OWA), we might as well use a different, simpler one (1-best OWA or
K-best OWA). If one wanted Hurwicz[λ] OWA or (K−f(K))-best OWA for some very
important reason, then these algorithms are insufficient (though, one could interpret
them as suggesting that such a very important reason is unlikely).1

Still, Theorem 4.19 is a very interesting result when contrasted with Theorem 4.13.
Theorem 4.19 says that there is a PTAS for α-OWA-Winner for OWA family
〈1, . . . , 1, 0〉, whereas Theorem 4.13 suggests that it is unlikely that there is a

1This comment applies to Hurwicz[λ] for large values of λ only.
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Notation:
Φ← a map defining the number of free slots per agent. Initially for each agent i we
have Φ[i] = ℓ.

1

2 x← mW
(

K
ℓ

)

ℓ
K ;

3 S ← ∅;
4 for i← 1 to K do
5 a← argmaxa∈A\S‖{j | Φ(j) > 0 ∧ posj(a) ≥ x}‖;

6 foreach j ∈ {j | Φ(j) > 0} do
7 if posj(a) ≥ x then
8 Φ[j]← Φ[j]− 1;

9 S ← S ∪ {a};

10 return S

Figure 4.2: The algorithm PosBoundAndGreedy for nonincreasing OWAs where
at most first ℓ entries are nonzero, for the case of Borda-based utilities.

constant-factor approximation algorithm for α-OWA-Winner with OWA family
〈0, 1, . . . , 1〉. Even though these two OWA families seem very similar, the fact that
one is nonincreasing and the other one is not makes a huge difference in terms of
approximability of our problem.

We note that all the results from this section apply both to the general and to the
approval based case. Indeed, in the proofs of our positive results we did not make
any assumptions regarding agents’ utilities. We also presented the proofs of hardness
in their more restricted form, i.e., for a specific case of approval utilities (less general
utilities give a more general theorem).

4.3 Polynomial Time Approximation Schemes:

Borda Utilities

We now focus on OWA-Winner with Borda-based utilities. In this case the difference
between nonincreasing OWAs and those that are not nonincreasing is much less
pronounced than in the general case (or, in the approval-based case) and very strong
approximation algorithms exist. Indeed, we show PTASes for many variants of
α-OWA-Winner with Borda-based utilities.

We start by discussing the algorithm PosBoundAndGreedy, presented in
Figure 4.2. The algorithm PosBoundAndGreedy works for nonincreasing OWAs
where only some initial ℓ positions are nonzero. By W(·) we mean Lambert’s W
function, that is, a function that for each x ∈ R+ satisfies the equation x = W(x)eW(x)

(and, thus, W(x) is O(log(x))). The idea behind the algorithm is as follows: It
proceeds in K iterations (where K is the winner-set size that we seek) and in each
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iteration it introduces one new item into the winner set. For each agent it considers
only the top x = mW

(

K
ℓ

)

ℓ
K

items with highest utilities and in a given iteration it
greedily picks an item a that maximizes the number of agents that (1) rank a among
items with highest x utilities, and (2) still have “free slots” (an agent has a free slot if
among the so-far-selected winners less than ℓ have utilities among the x highest ones
for this agent). Below we give an example of how the algorithm works.

Example 4.20. Consider the utility profile with n = 10 agents, m = 8 items
a1, a2, . . . , a8, and the utilities extracted from the following preference orders using
Borda PSF.

agent1 : a1 ≻ a2 ≻ a3 ≻ a4 ≻ a5 ≻ a6 ≻ a7 ≻ a8

agent2 : a2 ≻ a1 ≻ a4 ≻ a3 ≻ a7 ≻ a6 ≻ a5 ≻ a8

agent3 : a1 ≻ a3 ≻ a7 ≻ a4 ≻ a6 ≻ a5 ≻ a8 ≻ a2

agent4 : a2 ≻ a1 ≻ a4 ≻ a5 ≻ a3 ≻ a8 ≻ a7 ≻ a6

agent5 : a1 ≻ a6 ≻ a5 ≻ a8 ≻ a7 ≻ a4 ≻ a2 ≻ a3

agent6 : a3 ≻ a2 ≻ a1 ≻ a5 ≻ a4 ≻ a7 ≻ a8 ≻ a6

agent7 : a1 ≻ a2 ≻ a6 ≻ a4 ≻ a7 ≻ a6 ≻ a8 ≻ a3

agent8 : a1 ≻ a3 ≻ a5 ≻ a7 ≻ a8 ≻ a6 ≻ a4 ≻ a2

agent9 : a1 ≻ a4 ≻ a3 ≻ a5 ≻ a2 ≻ a6 ≻ a7 ≻ a8

agent10 : a8 ≻ a6 ≻ a3 ≻ a4 ≻ a5 ≻ a2 ≻ a1 ≻ a7

So, for example, agent1 has utility 7 for a1, utility 6 for a2, 5 for a3, and so on.
We take K = 4 and we are using the 2-best OWA, so that ℓ = 2. Consequently,
the algorithm will consider only the first x = ⌈mW

(

K
ℓ

)

ℓ
K
⌉ = 4 positions of the

agents’ rankings (W(2) ≈ 0.8562). Initially, each agent has ℓ = 2 free slots. In the
first iteration, the algorithm selects an item that is most frequent among the first 4
positions of the agents’ rankings, that is a1. Every agent except for agent10 ranks a1
among the first 4 positions, so after the first iteration every agent except for agent10
is left with one free slot; agent10 still has 2 free slots. In the second iteration, the
algorithm selects the most frequent item (excluding a1), that is either a3 or a4. Ties
are broken arbitrarily, so let us assume that it picks a3. Every agent that ranks a3
among the first 4 positions is assigned a3 and loses one free slot. Now the agents
agent4, agent5, agent7, and agent10 have one free slot left and the remaining ones
have no free slots. In the third iteration, the algorithm considers only the 4 agents
with free slots. The two most frequent items that are ranked among the first 4
positions by these 4 agents are a4 and a6; let us assume the algorithm picks a4. After
this iteration only agent5 has a free slot. Since K = 4, the algorithm is allowed to
pick one more item ranked among the first 4 positions by agent5, which is either of
a5, a6, and a8. Say, the algorithm picks a5.
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Theorem 4.21. Fix a positive integer ℓ and let α be a nonincreasing
OWA where at most first ℓ entries are nonzero. Given an instance I of
α-OWA-Winner, the algorithm PosBoundAndGreedy from Figure 4.2 computes

a
(

1− 2W(K/ℓ)
K/ℓ

)

-approximate solution for I in polynomial-time.

Proof. Consider an instance I of α-OWA-Winner, with n agents, m items, and
where we seek a winner set of size K. Let x = mW

(

K
ℓ

)

ℓ
K

. Since we use an OWA
where an agent’s total utility from a winner set W depends on this agent’s utilities
for the top ℓ items from W (from this agent’s point of view), we introduce the notion
of free slots for each agent. Initially, each agent has ℓ free slots. Whenever an agent
j has a free slot and the algorithm selects an item a such that from j’s perspective a
is among x items with highest utilities, we say that a starts occupying one free slot
of i. Consequently, after such item is selected, i has one free slot less.

Let ni denote the total number of free slots of all the agents after the i-th iteration
of the algorithm; n0 = ℓn. We will show by induction that ni ≤ ℓn

(

1− x
ℓm

)i
.

Indeed, the inequality is true for i = 0. Let us assume that it is true for some i:
ni ≤ ℓn

(

1− x
ℓm

)i
. Let Fi denote the set of agents that have free slots after iteration

i. There are at least ni

ℓ
such agents. For j ∈ Fi, let S(j) be the number of j’s top-x

items that were not included in the solution yet. If j ∈ Fi has s free slots, then
S(j) = (x − ℓ + s). Thus we have that

∑

j∈Fi
S(j) ≥ ni + (x − ℓ)ni

ℓ
= nix

ℓ
. By the

pigeonhole principle, there exists an item that is among top-x items for at least nix
ℓm

agents from Fi. Thus, after the (i+1)-th iteration of the algorithm, the total number
of free slots is at most:

ni+1 ≤ ni −
nix

ℓm
= ni

(

1−
x

ℓm

)

≤ ℓn
(

1−
x

ℓm

)(i+1)

In effect, at the end of the algorithm the total number of free slots is at most:

nK ≤ ℓn
(

1−
x

ℓm

)K

≤ ℓn
(

1−
x

ℓm

)K

= ℓn

(

1−
W
(

K
ℓ

)

K

)K

= ℓn

(

1

e

)W(K/ℓ)

=
ℓnW(K/ℓ)

K/ℓ
.

The number of occupied slots at the end of the algorithm is, thus, at least equal to
(

ℓn− ℓnW(K/ℓ)
K/ℓ

)

. Every item that occupies an agent’s slot has utility for this agent

greater or equal to
(

m− mW(K/ℓ)
K/ℓ

)

. Now, we will assess the OWA coefficients for the

utilities of the items from the solution. If for some agent i the utility of an item a
(ui,a) is taken with the coefficient αp (p > 1), then in the solution there must exist
an item a′ such that ui,a′ ≥ ui,a and such that ui,a′ is taken with coefficient αp−1.

Thus, there must exist at least 1
ℓ

(

ℓn− ℓnW(K/ℓ)
K/ℓ

)

occurrences of the items with the
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utilities greater than
(

m− mW(K/ℓ)
K/ℓ

)

and such that these utilities are taken with the

coefficient α1. By repeating the same reasoning for the remaining occurrences of the
items from the solution, we get that the total utility of the agents is lower-bounded
by:

(

ℓn−
ℓnW(K/ℓ)

K/ℓ

)(

m−
mW(K/ℓ)

K/ℓ

)

1

ℓ

ℓ
∑

i=1

αi ≥ ℓnm

(

1−
W(K/ℓ)

K/ℓ

)2
1

ℓ

ℓ
∑

i=1

αi

≥ nm

(

1−
2W(K/ℓ)

K/ℓ

) ℓ
∑

i=1

αi.

Since the total utility of all the agents can be upper-bounded by nm
∑ℓ

i=1 αi, we
get the desired approximation ratio.

Theorem 4.22. Fix a value ℓ and let α be a family of nonincreasing OWAs that have
nonzero values on top ℓ positions only. There is a PTAS for α-OWA-Winner for
the case of Borda-based utilities.

Proof. For every ǫ we show a polynomial algorithm with approximation ratio (1− ǫ).
Consider some ǫ, 0 ≤ ǫ ≤ 1. There exists a value Kǫ such that for each K > Kǫ it
holds that 2W(K/ℓ)

K/ℓ
< ǫ. For each instance I of α-OWA-Winner where we seek winner

set of size at least Kǫ, we run the algorithm PosBoundAndGreedy from Figure 4.2.
For the remaining cases, where the winner-set size is bounded by a constant, we use
a brute-force algorithm.

Using the above result, we can also obtain a PTAS for OWA-Winner for
geometric progression OWAs, for the case of Borda utilities. This is quite a useful
result since some of our scenarios from Chapter 3 yield OWAs of this form.

Corollary 4.23. Fix a value p > 1. There is a PTAS for gprog[p]-OWA-Winner
for the case of Borda-based utilities.

Proof. Our goal is to show an algorithm that for a given value ǫ, ǫ > 0, in polynomial
time outputs a (1 − ǫ)-approximate solution for gprog[p]-OWA-Winner. Let us fix
the value of such ǫ. The idea of our proof is to truncate the vector describing gprog[p]
OWA to consider only some ℓ nonzero items on the top, where ℓ depends on ǫ only,
and to run the algorithm from Theorem 4.22.

For a given number t, let St be the sum of the first t coefficients of gprog[p]. We
have: St = gprog[p]t + gprog[p]t−1 + · · ·+ gprog[p]1 = pK−t+ pK−(t−1) + · · ·+ pK−1 =

pK−t p
t−1
p−1 . We fix ℓ = ⌈logp(

2
ǫ
)⌉. Now, consider the ratio r = Sℓ/SK :

r =
Sℓ
SK

= pK−ℓ
pℓ − 1

pK − 1
> pK−ℓ

pℓ − 1

pK
= 1−

1

pℓ
≥ 1−

1

plogp(
2
ǫ
)
= 1−

ǫ

2
.
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Intuitively, the above inequality says that 1− ǫ
2

fraction of the total weight of gprog[p]
OWA is concentrated in its first ℓ coefficients.

Let gprog[p]|ℓ denote the OWA obtained from gprog[p] by replacing all coefficients
with indices greater than ℓ with 0. Let A be a (1 − ǫ

2
)-approximation algorithm

for gprog[p]|ℓ-OWA-Winner. From Theorem 4.22 we know that such an algorithm
exists. It is easy to see that A is a (1 − ǫ)-approximation algorithm for
gprog[p]-OWA-Winner. Indeed, the utility under gprog[p]|ℓ for every K-element
set W is close to the utility of W under gprog[p] (recall the ~x↓ notation from page 40
for sorted sequences; the inequality in the second line holds because for each i we
have

∑ℓ
g=1 gprog[p]gu

↓
i,wh
≤
∑ℓ

j=1 gprog[p]ju
↓
i,wj

):

u
gprog[p]
ut (W ) =

n
∑

i=1

K
∑

j=1

gprog[p]ju
↓
i,wj

≤
n
∑

i=1

(

ℓ
∑

j=1

gprog[p]ju
↓
i,wj

+
K
∑

h=ℓ+1

gprog[p]h

∑ℓ
j=1 gprog[p]ju

↓
i,wj

∑ℓ
g=1 gprog[p]g

)

=

n
∑

i=1

ℓ
∑

j=1

gprog[p]ju
↓
i,wj

(

1 +

∑K
h=ℓ+1 gprog[p]h
∑ℓ

g=1 gprog[p]g

)

≤
n
∑

i=1

ℓ
∑

j=1

gprog[p]ju
↓
i,wj

(

1 +
ǫ

2

)

=
(

1 +
ǫ

2

)

u
gprog[p]|ℓ
ut (W ).

From which we get that for every W :

u
gprog[p]|ℓ
ut (W ) ≥ (1−

ǫ

2
)u

gprog[p]
ut (W ).

This completes the proof because algorithm A returns a (1− ǫ
2
)-approximate solution

for gprog[p]|ℓ-OWA-Winner and (1− ǫ
2
)(1− ǫ

2
) ≥ 1− ǫ.

Also, by Proposition 4.16 and Theorem 4.22 we get the following result for the
Hurwicz[λ]-OWA-Winner problem.

Corollary 4.24. For each positive ǫ, there is an algorithm that for
Hurwicz[λ]-OWA-Winner for the case of Borda-based utilities achieves
approximation ration λ(1− ǫ).

Interestingly, Theorem 4.22 can be generalized to the case of arbitrary OWAs (not
necessarily nonincreasing) that have nonzero entries among the top ℓ positions only
(where ℓ is a constant.2) The idea of our algorithm is very similar to that presented
as the algorithm PosBoundAndGreedy in Figure 4.2, but this time we take more

2However, if one reads our proof carefully, it is clear that it generalizes to some values of ℓ that
depend on K, but which are sufficiently small; e.g., it works for ℓ = K

1
3 ).
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care in choosing the winning items, so that we ensure that a large collection of voters
ranks at least ℓ winners on positions with high utility values. Specifically, we use the
following lemma, which is a direct consequence of Theorem 4.21.

Lemma 4.25. Consider a set N of n agents and a set A of m items, where the agents
rank the items from the most preferred ones to the least preferred ones. Let K, ℓ, and
t be some positive integers such that K ≤ m, ℓ ≤ K, and t ≤ ℓ. Let x = mW(K/ℓ)

K/ℓ
.

There is a polynomial-time algorithm that finds a collection C of up to K/ℓ items

such that there are at least n(1 − W(K/ℓ)
K/ℓ

) agents that each rank at least one member

of C between positions (t− 1)x+ 1 and tx.

Proof. To see that this lemma holds, it suffices to analyze the proof of Theorem 4.21
for ℓ = 1 and note that the proof works equally well irrespectively of whether we
consider the positions 1 through x, or x + 1 through 2x, or any other segment of x
positions in the agents’ preference orders.

Theorem 4.26. Fix a positive integer ℓ and let α be a family of OWAs that
have nonzero entries on top ℓ positions only. There is a polynomial-time (1 −
2ℓW(K/ℓ)

K/ℓ
)-approximation algorithm for α-OWA-Winner for the case of Borda-based

utilities.

Proof. Consider an input instance I of α-OWA-Winner with the set N = [n] of
agents, with the set A ofm items, and where we seek winner set of sizeK. We consider
the agents’ utilities to be represented by preference orders over A (recall the discussion
of Borda-based utilities in Chapter 3 and the fact that we can decode these preference
orders from the Borda-based utilities of the agents). Let α = 〈α1, . . . , αℓ, 0, . . . , 0〉 be
the OWA used in this instance. We set x = mW(K/ℓ)

K/ℓ
.

Our algorithm proceeds in ℓ iterations. We set N (0) = N and n(0) = n. In the
i-th iteration, 1 ≤ i ≤ ℓ, the algorithm operates as follows: Using the algorithm from
Lemma 4.25, we find a set A(i) of up to K/ℓ items such that at least n(i−1)(1−W(K/ℓ)

K/ℓ
)

of the agents from the set N (i−1) each rank at least one of these items among positions
(i− 1)x+ 1, . . . , ix of their preference orders. We let N (i) be the set of these agents
and we set n(i) = ‖N (i)‖. Finally, we set W =

⋃ℓ
i=1A

(i) and return W as the set of
winners (it is easy to see that W contains at most K items; if K contains fewer than
K items then we supplement it with K − ‖W‖ arbitrarily chosen ones).

By the construction of our algorithm, each of the agents from the set N (ℓ) ranks
at least ℓ items from the set W on positions no worse than ℓx. Thus the total utility
that the agents from the set N derive from the solution W is at least:

n(ℓ)

(

ℓ
∑

i=1

αi

)

(m− xℓ).

This is so, because for each i, 1 ≤ i ≤ ℓ, each of the agents in the set N (ℓ) derives
utility at least αi(m− xℓ) from the agent that he ranks as i’th best among the items
from W .
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By construction of our algorithm, we have:

n(ℓ) ≥ n

(

1−
W(K/ℓ)

K/ℓ

)ℓ

≥ n

(

1−
ℓW(K/ℓ)

K/ℓ

)

.

Thus, the total utility obtained by the agents is at least:

uαut(W ) ≥ n

(

1−
ℓW(K/ℓ)

K/ℓ

)

(

ℓ
∑

i=1

αi

)

(m− xℓ)

= n

(

1−
ℓW(K/ℓ)

K/ℓ

)

(

ℓ
∑

i=1

αi

)

(

m− ℓ
mW(K/ℓ)

K/ℓ

)

= nm

(

ℓ
∑

i=1

αi

)

(

1−
ℓW(K/ℓ)

K/ℓ

)(

1−
ℓW(K/ℓ)

K/ℓ

)

≥ nm

(

ℓ
∑

i=1

αi

)

(

1−
2ℓW(K/ℓ)

K/ℓ

)

Now, since the maximum possible total utility of all the agents is upper-bounded by
nm(

∑ℓ
i=1 αi), we have that our algorithm has approximation ratio (1− 2ℓW(K/ℓ)

K/ℓ
). It

is clear that it runs in polynomial time, and so the proof is complete.

Based on Theorem 4.26, we can immediately generalize Theorem 4.22.

Theorem 4.27. Fix a value ℓ and let α be a family of OWAs that have nonzero
values on top ℓ positions only. There is a PTAS for α-OWA-Winner for the case
of Borda-based utilities.

It is interesting to compare Theorems 4.21 and 4.26. Even though the latter
one covers a larger set of cases, the algorithm it implies achieves a notably weaker
approximation ratio (even if still sufficient to obtain a PTAS). This shows that OWAs
that are not nonincreasing are harder to deal with even for Borda-based utilities (even
if the difference is much smaller than in the general case). Theorems 4.26 and 4.27 are
also quite interesting in conjunction with Theorem 4.13. In particular, they show that
it seems impossible to generalize Theorem 4.13 to the case of Borda-based utilities. It
might be surprising at first, because it was possible to generalize Theorem 4.4 to the
case of Borda utilities (as Theorem 4.5) and, indeed, the main ideas of these proofs
are similar.

It is also interesting to note that there is nothing in the proofs of Theorems 4.21
and 4.26 that would stop us from using them for the case where ℓ depends on K.
In particular, Theorem 4.21 still gives an approximation ratio higher than 1 − 1

e
of

the greedy algorithm even for K
10

-best OWA. For the case, of Theorem 4.26, it stays
useful (i.e., still yields even a PTAS) for values of ℓ in O(K0.5−ǫ), for each positive ǫ
(the same is true for Theorem 4.21 as long as ℓ(K) is such that W(K/ℓ(K))

K/ℓ(K)
goes to 0

when K goes to ∞).
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4.4 Summary

We have investigated the computational feasibility of the problem of selecting a
collective set of items, depending on the various assumptions we make about the
agents’ utilities and the choice of the OWA vector. Table 4.1 gives a summary of our
results. We note that many of these results are directly related to the OWA families
that appear in the settings from Chapter 3, that were our motivating force.

Some of our results appear negative, while some others (especially in the case
of Borda utilities) are on the positive side. However, the way the results should be
interpreted depends on the application domain.

Table 4.1: Summary of our results for the OWA families from Chapter 3. For each OWA
family we provide four entries: In the first row (for a given OWA family) we give its worst
case complexity (in the general case and in the Borda utilities case), and in the second row
we list the best known approximation result (in the general case and in the Borda utilities
case). We write K to mean the cardinality of the winner set that we seek. In the “References”
column we point to the respective result in this chapter/literature (for negative results we
indicate simplest type of utilities where it holds, for positive results the most general type
of utilities where it holds). For approximation: DkS-bounded and MEBP-bounded mean,
respectively, inapproximability results derived from the Densest-k-Subgraph problem
and from the Maximum Edge Biclique Problem

.

OWA family general utilities Borda utilities References

k-median (k fixed)
NP-hard NP-hard Prop. 4.2 (approval and Borda)

DkS-bounded PTAS Thm. 4.13 (approval) and 4.27 (Borda)

K-median
NP-hard NP-hard Thm. 4.4 (approval) and 4.5 (Borda)

MEBP-bounded ? Thm. 4.14 (approval), open (Borda)

1-best
NP-hard NP-hard literature [188,245]

(1− 1
e
)-approx. PTAS literature [188], Thm. 4.22 (Borda)

k-best (k fixed)
NP-hard NP-hard Prop. 4.2 (approval and Borda)

(1− 1
e
)-approx. PTAS Thm. 4.11 (general) and 4.22 (Borda)

(K − 1)-best
NP-hard NP-hard Thm. 4.4 (approval) and 4.5 (Borda)
PTAS PTAS Thm. 4.18 (general)

K-best P P folk result

arithm. progression
NP-hard ? Corol.4.7 (approval), open (Borda)

(1− 1
e
)-approx. (1− 1

e
)-approx. Thm. 4.11 (general)

geom. progression
NP-hard ? Corollary 4.7 (approval), open (Borda)

(1− 1
e
)-approx. PTAS Thm 4.11 (general), Corol. 4.23 (Borda)

Hurwicz[λ]
NP-hard ? Corol. 4.15 (approval)

λ(1 − 1
e
)-approx. λ(1− ǫ)-approx. Corollary 4.17 (general)

for each ǫ > 0 Corollary 4.24 (Borda)
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The application of our approximation algorithms in high-stake domains, such as
political elections is addressed in Chapter 5. In low-stake applications domains (which
can include some committee elections, and of course group recommender systems), we
are often not interested in the exact optimal solution, and usually the solutions with
sufficiently good quality are acceptable. Consequently, applying our approximation
algorithms to these settings seems perfectly reasonable.

Our research leads to many open problems. In particular, one might want
to strengthen our approximation algorithms, provide algorithms for more general
cases, provide more inapproximability results. Among these problems, a particularly
interesting one regards the approximability of OWA-Winner for the arithmetic
progression family of OWAs. For this case, our set of results is very limited.
In particular, can one provide a PTAS for arithmetic-progression OWAs under
Borda-based utilities? Can one do so for K

2
-best OWAs/K-median OWAs?
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Chapter 5

Proportional Representation as
Resource Allocation: Approximability

5.1 Introduction

In this chapter we consider the problem of selecting a collective set of items in
the disjunctive model (for the formal definition of the problem we refer the reader
to Chapter 3). This means that we consider the problem of selecting K items
and assigning each agent to exactly one of them, to maximize agents’ satisfaction.
Naturally, the satisfaction of an agent from the set of selected items is simply her
satisfaction from the item that she is assigned to. We consider the pure disjunctive
variant of the model, where the satisfaction of the agent from the set of items is
just her satisfaction from the most preferred one that is available, and a variant in
which each selected item is assigned to roughly the same number of agents (which
is a special case of the capacitated disjunctive version of the problem of selecting a
collective set of items).

Further, we consider the case where the utilities of the agents are derived from
their preference rankings by applying a positional scoring function (PSF), mainly
focusing on the Borda count PSF.

These variants of our problem were first considered by Chamberlin–Courant [47]
and Monroe [210] in the context of selecting a set of candidates in elections. When
choosing a K-member committee, the Monroe and Chamberlin–Courant rules work as
follows. We assume that m candidates participate in the election and that the society
consists of n voters, who each rank the candidates, expressing their preferences about
who they would like to see as their representative in the committee. For each voter
these election systems assign a single candidate as their representative, respecting the
following rules:

(a) altogether exactly K candidates are assigned to the voters. For the Monroe
rule, each candidate is assigned either to about n

K
voters or to none; for

the Chamberlin–Courant rule there is no such restriction and each committee
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member may be representing a different number of voters (the committee should
take this into account in its operation, e.g., by means of weighted voting).

(b) the candidates are selected and assigned to the voters optimally, maximizing
the total (societal) satisfaction.

The total satisfaction is calculated on the basis of individual satisfactions. We assume
that there is a function α : N → N such that α(i) measures how well a voter is
represented by the candidate that this voter ranks as i’th best. The function α is
the same for each voter. We can view α as a satisfaction function, and so it should
be non-increasing. For example, it is typical to use the Borda count scoring function
which is defined as αmB = m− i.

The two election systems, Chamberlin–Courant’s and Monroe’s, fit naturally into
the framework of selecting a collective set of items in the disjunctive model. We
can identify candidates with alternatives (items)1 and voters with agents. With
this correspondence, saying that a voter i is represented by a candidate a is
analogous to saying that an agent i is assigned an item a. When viewed from this
perspective, maximizing the satisfaction of the voters from their representatives in the
Chamberlin–Courant rule corresponds to maximizing the satisfaction of the agents
from the items in the disjunctive variant of the problem of selecting a collective set of
items. Similarly, the problem of selecting winners in the Monroe system can be viewed
as a special case of the disjunctive capacitated variant of the problem of selecting a
collective set of items.

Paying a tribute to the origin of the considered problems, we will refer to the
disjunctive variant of the model for selecting a collective set of items as to the
Chamberlin–Courant’s case, and to the disjunctive variant in which each selected
item must be assigned to the roughly the same number of agents, as to the Monroe’s
case.

As we mentioned in Chapter 3.3.1, the two considered problems have multiple
applications, however considering these problems in the context of elections is
particularly appealing. The Monroe and Chamberlin–Courant rules create a useful
connection between the voters and their representatives that makes it possible to
achieve both candidates’ accountability to the voters and proportional representation
of voters’ views. Among common voting rules, the Monroe and Chamberlin–Courant
rules seem to be quite unique in having both these properties.2 For example, First
Past the Post system (where the voters are partitioned into districts with a separate

1To emphasize the fact that each agent can be assigned to (and derive her utility from) a single
item only, throughout this chapter we will often refer to the items as to the alternatives. Sometimes,
to emphasize the context of elections, we will use the term ‘candidate’ instead of ‘alternative’.

2We stress, however, that we understand these properties in intuitive terms and that we are
not making any formal claims here. However, we do point the reader to the recent comparison of
multiwinner voting rules of Elkind et al. [96] for some interesting discussion of good properties of
these rules.
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single-winner Plurality election in each) can give very disproportionate results (forcing
some of the voters to be represented by candidates they dislike). On the other side
of the spectrum are the party-list systems, which achieve very good proportionality,
but in which the voters vote for the parties, based on these votes the parties receive
numbers of seats in the parliament, and then the parties distribute the seats among
their members (usually following publicly available lists of the parties’ candidates).
This makes the elected candidates feel more accountable to apparatchiks of their
parties than to the voters. Somewhere between the First Past the Post system and
the party-list systems, we have the single transferable vote rule (STV).

Since it is NP-hard to determine winners in the Monroe and Chamberlin–Courant
rules [27,188,245,283], the goal of this chapter is to provide effective approximation
algorithms for the problem of finding winners under the Monroe and
Chamberlin–Courant rules.

The use of approximation algorithms for Chamberlin–Courant’s and Monroe’s
rules in real-life applications requires some discussion. For example, their use
is naturally justified in the context of recommendation systems or other resource
allocation variants described in Chapter 3.1. Here the strive for optimality is not
crucial since a good but not optimal selection is still very useful and nobody would
object if we replaced the optimal selection with an approximate one (given that the
optimal one is hard to calculate).

On the other hand, the use of approximation algorithms in elections requires some
care. It is conceivable that the electoral commission finds an allocation of voters to
candidates with a certain value of satisfaction and one of the parties participating
in the election finds an allocation with a better one. This can lead to a political
deadlock. There are two ways of avoiding this. Firstly, an approximation algorithm
can be fixed by law. In such a case, it becomes an acting voting rule and a new way
to measure fairness in the society. Secondly, an electoral commission may calculate
the allocation, but also publish the raw data and issue a call for submissions. If,
within the period specified by law, nobody can produce a better allocation, then
the committee goes ahead and announces the result. If someone produces a better
allocation, then the electoral commission uses the latter one.

The use of approximation algorithms is even more natural in elections with partial
ballots. Indeed, even if we use an exact algorithm to calculate the winners, the results
will be approximate anyway since the voters provide us with approximations of their
real preferences rather than the exact ones.

Our Results

We consider both utilitarian and egalitarian variant of the Chamberlin–Courant and
Monroe rules. In the utilitarian variant the assignment should maximize the total
satisfaction calculated as the sum of the voters’ individual satisfactions with their
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representatives. In the egalitarian variant, the assignment should maximize the total
satisfaction calculated as the satisfaction of the worst-off voter.

We obtain the following results:

1. For the egalitarian cases, the Monroe and Chamberlin–Courant rules are hard
to approximate up to any constant factor (see Theorems 5.1 and 5.3).

2. For the utilitarian framework we show the following. For the Monroe rule
with the Borda scoring function we give a (0.715− ǫ)-approximation algorithm
(Theorem 5.8; often, the ratio is much better; see Section 5.4). In case of an
arbitrary positional scoring function we give a (1− 1

e
)-approximation algorithm

(Theorem 5.9). We recall that as the corollary of Theorem 4.22 from Chapter 4
we have a polynomial-time approximation scheme for the Chamberlin–Courant
rule with the Borda scoring function.

3. We provide empirical evaluation of our algorithms for the utilitarian framework,
both on synthetic and on real-life data. This evaluation shows that in practice
our best algorithms achieve approximation ratios at least 0.9, and even better
results are typical (see Section 5.5).

4. We show that our algorithms work very well in the setting where voters do not
necessarily rank all the candidates, but rather provide the truncated ballots
in which they rank several most preferred candidates only (usually at least
three). We provide theoretical guarantees on the performance of our algorithms
(Propositions 5.6 and 5.12) as well as empirical evaluation (see Section 5.5.4).

Our results show that, as long as one is willing to accept approximate solutions, it
is possible to use the utilitarian variants of the Monroe and Chamberlin–Courant rules
in practice. This view is justified both from the theoretical and from the empirical
point of view. Due to our negative results, we did not perform empirical evaluation
for the egalitarian variants of the rules, but we believe that this is an interesting
future research direction.

For the approximability results for winner determination under
Chamberlin–Courant’s and Monroe’s rules, but with k-approval positional scoring
function used instead of the Borda one, we refer the reader to Chapter 6.

5.2 Preliminaries

In this section we first recall the definition of the positional scoring rules. Next, we
recall the definition of the capacitated disjunctive variant of the problem of selecting
the collective set of items, which was first introduced in Chapter 3.1, and finally, we
discuss which restrictions of this problem correspond to the winner determination
problem for the Monroe and Chamberlin–Courant voting rules. For the definitions of
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the basic notions such as preference orders and positional scoring rules we refer the
reader to Chapter 3.

Positional scoring rules. A positional scoring function (PSF) is a function
αm : [m] → N. A PSF αm is a decreasing positional scoring function (DPSF) if
for each i, j ∈ [m], if i < j then αm(i) > αm(j). Intuitively, a DPSF γm measures an
agent’s satisfaction and we assume that for each DPSF γm it holds that γm(m) = 0
(an agent is completely not satisfied being assigned her least desired alternative).
Sometimes we write α instead of αm, when it cannot lead to a confusion.

We will often speak of families α of DPSFs of the form α = (αm)m∈N, where
αm is a PSF on [m], such that for a family of DPSFs it holds that αm+1(i+1) = αm(i)
for all m ∈ N and i ∈ [m]. In other words, we build our families of DPSFs by
prepending values to functions with smaller domains. To simplify notation, we will
refer to such families of DPSFs as normal DPSFs. We assume that each function αm

from a family can be computed in polynomial time with respect to m. Indeed, we are
particularly interested in the Borda family defined by αmB (i) = m− i.

Assignment functions. We recall that N denotes the set of agents (voters), and
A denotes the set of alternatives (candidates). In this chapter we will additionally
use the notion of the capacity of an alternative—for each alternative a ∈ A, its
capacity capa denotes the maximum number of agents that can be assigned to a. A
K-assignment function is any function Φ: N → A, such that |Φ(N)| ≤ K (that is, it
matches agents to at most K alternatives), and such that for every alternative a ∈ A
we have that |Φ−1(a)| ≤ capa (i.e., the number of agents assigned to a does not exceed
a’s capacity capa).

We will also consider partial assignment functions. A partial K-assignment
function is defined in the same way as a regular one, except that it may assign a null
alternative, ⊥, to some of the agents. It is convenient to think that for each agent i
we have posi(⊥) = m. (We recall that posi(a) denote the position of the alternative a
in i’s preference order.) In general, it might be the case that a partial K-assignment
function cannot be extended to a regular one. This may happen, for example, if the
partial assignment function uses K alternatives whose capacities sum to less than the
total number of voters. However, in the context of Chamberlin–Courant and Monroe
rules it is always possible to extend a partial K-assignment function to a regular one.

Given a normal DPSF α, we may consider the following two functions, each
assigning a positive integer to any assignment Φ:

ℓα1 (Φ) =
n
∑

i=1

α(posi(Φ(i))),

ℓα∞(Φ) = maxni=1α(posi(Φ(i))).

These functions are built from individual satisfaction functions, so that they can
measure the quality of the assignment for the whole society. In the utilitarian
framework the first one can be viewed as a total (societal) satisfaction function. The

79



second one can be used as a total satisfaction functions in the egalitarian framework.
We will omit the word total if no confusion may arise.

For each subset of the alternatives S ⊆ A such that |S| ≤ K, we denote as ΦSα the
partialK-assignment that assigns agents only to the alternatives from S and such that
ΦSα maximizes the utilitarian satisfaction ℓα1 (Φ

S
α). (We introduce this notation only for

the utilitarian satisfaction-based setting because it is useful to express appropriate
algorithms for this case; for other settings we have hardness results only and this
notation would not be useful.)

The Capacitated Disjunctive Selection of the Collective Set of Items. Let
us now recall the definition of the capacitated disjunctive variant of the problem of
selecting the collective set of items problem, which forms the base of our study. This
problem stipulates finding an optimal K-assignment function, where the optimality
is relative to one of the total satisfaction functions that we have just introduced. In
this problem we additionally assume that the utilities of the agents are obtained from
their rankings, by applying a positional scoring function. For the sake of the clarity
and brevity of the notation we will refer to this base problem as to the Assignment
problem.

Definition 5.1. [The Capacitated Disjunctive Selection of the Collective Set of
Items.] Let α be a normal DPSF. An instance of α-U-Assignment problem (i.e.,
of the utilitarian assignment problem) consists of a set of agents N = [n], a set of
alternatives A = {a1, . . . am}, a preference profile V of the agents, and a sequence
(capa1 , . . . , capam) of alternatives’ capacities. We ask for an assignment function Φ
such that:

1. |Φ(N)| ≤ K;

2. |Φ−1(a)| ≤ capa for all a ∈ A; and

3. ℓα1 (Φ) is maximized.

Problem α-E-Assignment (the egalitarian version of the base problem) is defined
identically except that ℓα1 is replaced with ℓα∞.

Our two problems can be viewed as generalizations of the winner determination
problem for the Monroe [210] and Chamberlin–Courant [47] multiwinner voting
systems. To model the Monroe system, it suffices to set the capacity of each
alternative to be |N |

K
(for simplicity, throughout the chapter we assume that K divides

|N |3). We will refer to thus restricted variants of our problems as the Monroe
variants. To represent the Chamberlin–Courant system, we set alternatives’ capacities
to |N |. We will refer to the so-restricted variants of our problems as CC variants.

3In general, this assumption is not as innocent as it may seem. Often dealing with cases there K
does not divide |N | requires additional insights and care. However, for our algorithms and results,
the assumption simplifies notation and does not lead to obscuring any unexpected difficulties.
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5.3 Hardness of Approximation

We now present our inapproximability results for the Monroe and
Chamberlin–Courant rules. Specifically, we show that there are no constant-factor
approximation algorithms for the egalitarian variants (However, our result for the
Monroe setting is more general than the result for the Chamberlin–Courant setting;
the latter is for the Borda DPSF only.).

Naturally, these inapproximability results carry over to more general settings. For
example, unless P = NP, there are no polynomial-time constant-factor approximation
algorithms for the general E-Assignment Problem. On the other hand, our results
do not preclude good approximation algorithms for the utilitarian case and, indeed,
in Section 5.4 we provide such algorithms.

Theorem 5.1. For each normal DPSF α (where each entry is polynomially bounded
in the number of alternatives) and each constant factor r, with 0 < r ≤ 1, there is no
r-approximation algorithm for α-E-Monroe unless P = NP.

Proof. Let us fix a DPSF α = (αm)m∈N, where each entry αm is polynomially bounded
in the number of alternatives m. For the sake of contradiction, let us assume that
for some r, 0 < r ≤ 1, there is a polynomial-time r-approximation algorithm A for
α-E-Monroe. We will show that the existence of this algorithm implies that X3C
is solvable in polynomial time.

Let I be an X3C instance with ground set U = {1, 2, . . . , n} and collection
F = {F1, . . . , Fm} of subsets of U . Each set in F has cardinality three. Further,
without loss of generality, we can assume that n is divisible by three and that each
i ∈ U appears in at most three sets from F . Given I, we form an instance IM
of α-E-Monroe as follows. Let n′ = 3 · (αm+1(1) · ⌈1−r

r
⌉ + 3). The set N of

agents is partitioned into two subsets, N1 and N2. N1 contains n agents (intuitively,
corresponding to the elements of the ground set U) and N2 contains n′ agents (used
to enforce certain properties of the solution). The set of alternatives A is partitioned
into two subsets, A1 and A2. We set A1 = {a1, . . . , am} (members of A1 correspond
to the sets in F), and we set A2 = {b1, . . . , bm′}, where m′ = n′

3
.

For each j, 1 ≤ j ≤ n, we set Mf(j) = {ai | j ∈ Fi}. For each j, 1 ≤ j ≤ n, we
set the preference order of the j’th agent in N1 to be of the form

Mf(j) ≻ A2 ≻ A1 −Mf(j).

Note that by our assumptions, |Mf (j)| ≤ 3. For each j, 1 ≤ j ≤ n′, we set the
preference order of the j’th agent in N2 to be of the form

b⌈ j3⌉
≻ A2 − {b⌈ j3⌉

} ≻ A1.

Note that each agent in N2 ranks the alternatives from A1 in positions m′+1, . . . , m′+
m. Finally, we set the number of candidates that can be selected to be K = n+n′

3
.
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Now, consider the solution Φ returned by A on IM . We will show that ℓα
m+m′

∞ (Φ) ≤
rαm+m′

(3) if and only if I is a yes-instance of X3C.
(⇐) If there exists an exact set cover of U with sets from F , then it is easy to

construct a solution for IM where the satisfaction of each agent is greater or equal
to r · αm+m′

(3). Let I ⊆ {1, . . . , m} be a set such that
⋃

i∈I Fi = U and |I| = n
3
.

We assign each agent j from N1 to the alternative ai such that (a) i ∈ I and (b)
j ∈ Fi, and we assign each agent from N2 to her most preferred alternative. Thus,
Algorithm A has to return an assignment with the minimal satisfaction greater or
equal to r · αm+m′

(3).
(⇒) For the other direction, we first show that r · αm+m′

(3) ≥ αm+m′
(m′). Since

DPSFs are strictly decreasing, it holds that:

r · αm+m′

(3) ≥ r · (αm+m′

(m′) +m′ − 3). (5.1)

Then, by the definition of DPSFs, it holds that:

αm+m′

(m′) = αm+1(1). (5.2)

Using the fact that m′ = (αm+1(1) · ⌈1−r
r
⌉ + 3) and using (5.2), we can transform

inequality (5.1) to obtain the following:

r · αm+m′

(3) ≥ r · (αm+m′

(m′) +m′ − 3)

= r ·

(

αm+m′

(m′) + (αm+1(1) ·

⌈

1− r

r

⌉

+ 3)− 3

)

≥ r · αm+m′

(m′) + (1− r) · αm+1(1)

= r · αm+m′

(m′) + (1− r) · αm+m′

(m′) = αm+m′

(m′).

This means that if the minimal satisfaction of an agent is at least r · αm+m′
(3), then

no agent was assigned to an alternative that he or she ranked beyond position m′. If
some agent j from N1 were assigned to an alternative from A2, then, by the pigeonhole
principle, some agent from N2 would be assigned to an alternative from A1. However,
each agent in N2 ranks the alternatives from A1 beyond position m′ and thus such
an assignment is impossible. In consequence, it must be that each agent in j was
assigned to an alternative that corresponds to a set Fi in F that contains j. Such an
assignment directly leads to a solution for I.

Let us now move on to the case of E-CC family of problems. Unfortunately,
in this case our inapproximability argument holds for the case of Borda DPSF only
(though we believe that it can be adapted to other DPSFs as well). Further, in the
previous theorem we have shown that existence of a constant-factor approximation
algorithm implies that NP collapses to P. In the following theorem we will show a
seemingly weaker collapse of W[2] to FPT.

To prove hardness of approximation for αB-E-CC, we first prove the following
simple lemma.
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Lemma 5.2. Let K, p, l be three positive integers and let X be a set of cardinality
lpK. There exists a family S = {S1, . . . , S(lKK )

} of pK-element subsets of X such that

for each K-element subset B of X, there is a set Si ∈ S such that B ⊆ Si.

Proof. Set X ′ = [lK] and let Y ′ be a family of all K-element subsets of X ′. Replace
each element i of X ′ with p new elements (at the same time replacing i with the same
p elements within each set in Y ′ that contains i). As a result we obtain two new
sets, X and Y , that satisfy the statement of the theorem (up to the renaming of the
elements).

Theorem 5.3. Let αmB be the Borda DPSF (αmB (i) = m − i). For each constant
factor r, 0 < r ≤ 1, there is no r-approximation algorithm for αmB -E-CC unless
FPT = W[2].

Proof. For the sake of contradiction, let us assume that there is some constant r,
0 < r ≤ 1, and a polynomial-time r-approximation algorithmA for αmB -E-CC. We will
show that the existence of this algorithm implies that Set-Cover is fixed-parameter
tractable for the parameter K (since Set-Cover is known to be W[2]-complete for
this parameter, this will imply FPT = W[2]).

Let I be an instance of Set-Cover with ground set U = [n] and family F =
{F1, F2, . . . , Fm} of subsets of U . Given I, we build an instance ICC of αmB -E-CC as
follows. The set of agents N consists of n subsets of agents, N1, . . . , Nn, where each

group Ni contains exactly n′ =
(⌈ 2r⌉K

K

)

agents. Intuitively, for each i, 1 ≤ i ≤ n,
the agents in the set Ni correspond to the element i in U . The set of alternatives
A is partitioned into two subsets, A1 and A2, such that: (1) A1 = {a1, . . . , am}
is a set of alternatives corresponding to the sets from the family F , and (2) A2,

|A2| =
⌈

2
r

⌉

⌈

m(1+r)
K

⌉

K, is a set of dummy alternatives needed for our construction.

We set m′ = |A| = m+ |A2|.
Before we describe the preference orders of the agents in N , we form a family

R = {r1, . . . , rn′} of preference orders over A2 that satisfies the following condition:
For each K-element subset B of A2, there exists rj in R such that all members of

B are ranked among the bottom
⌈

m(1+r)
K

⌉

K positions in rj. By Lemma 5.2, such a

construction is possible (it suffices to take l =
⌈

2
r

⌉

and p =
⌈

m(1+r)
K

⌉

); further, the

proof of the lemma provides an algorithmic way to construct R.
We form the preference orders of the agents as follows. For each i, 1 ≤ i ≤ n, set

Mf (i) = {at | i ∈ Ft}. For each i, 1 ≤ i ≤ n, and each j, 1 ≤ j ≤ n′, the j’th agent
from Ni has preference order of the form:

Mf (i) ≻ rj ≻ A1 −Mf (i)

(we pick any arbitrary, polynomial-time computable order of candidates within Mf (i)
and Ml(i)).
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Let Φ be an assignment computed by A on IM . We will show that ℓ
αm′

B∞ (Φ) ≥
r · (m′ −m) if and only if I is a yes-instance of Set-Cover.

(⇐) If there exists a solution for I (i.e., a cover of U with K sets from F), then
we can easily show an assignment where each agent is assigned to an alternative that
he or she ranks among the top m positions (namely, for each j, 1 ≤ j ≤ n, we
assign all the agents from the set Nj to the alternative ai ∈ A1 such that j ∈ Fi
and Fi belongs to the alleged K-element cover of U). Under this assignment, the
least satisfied agent’s satisfaction is at least m′ − m and, thus, A has to return an

assignment Φ where ℓ
αm′

B∞ (Φ) ≥ r · (m′ −m).
(⇒) Let us now consider the opposite direction. We assume that A found an

assignment Φ such that ℓ
αm
B∞ (Φ) ≥ r ·(m′−m) and we will show that I is a yes-instance

of Set-Cover. We claim that for each i, 1 ≤ i ≤ n, at least one agent j in Ni

were assigned to an alternative from A1. If all the agents in Ni were assigned to
alternatives from A2, then, by the construction of R, at least one of them would
have been assigned to an alternative that he or she ranks at a position greater than

|A2| −
⌈

m(1+r)
K

⌉

K =
⌈

2
r

⌉

⌈

m(1+r)
K

⌉

K −
⌈

m(1+r)
K

⌉

K. For x =
⌈

m(1+r)
K

⌉

K we have:

⌈

2

r

⌉

x− x ≥ m′ −m′r +mr

(we skip the straightforward calculation) and, thus, this agent would have been
assigned to an alternative that he or she ranks at a position greater thanm′−m′r+mr.
As a consequence, this agent’s satisfaction would be lower than (m′−m)r. Similarly,
no agent from Ni can be assigned to an alternative from Ml(i). Thus, for each i,
1 ≤ i ≤ n, there exists at least one agent j ∈ Ni that is assigned to an alternative
from Mf (i). In consequence, the covering subfamily of F consists simply of those sets
Fk, for which some agent is assigned to alternative ak ∈ A1.

The presented construction gives the exact algorithm for Set-Cover problem

running in time f(K)(n+m)O(1), where f(K) is polynomial in
(⌈ 2r⌉
K

)

. The existence
of such an algorithm means that Set-Cover is in FPT. On the other hand, we know
that Set-Cover is W[2]-complete, and thus if A existed then FPT = W[2] would
hold.

5.4 Algorithms for the Utilitarian Cases

We now turn to approximation algorithms for the Monroe and Chamberlin–Courant
multiwinner voting rules in the utilitarian framework. Indeed, in this case it is
possible to obtain high-quality approximation results. In particular, we show the
first nontrivial (randomized) approximation algorithm for αB-U-Monroe. We show
that for each ǫ > 0 we can provide a randomized polynomial-time algorithm that
achieves 0.715 − ǫ approximation ratio; the algorithm usually gives even better
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approximation guarantees. For the case of arbitrarily selected DPSF we show a
(1−e−1)-approximation algorithm. Finally, by applying the results from Chapter 4 to
the context of finding proportional representation, we show the first polynomial-time
approximation scheme (PTAS) for αB-U-CC. These results stand in sharp contrast
to those from the previous section, where we have shown that approximation is hard
for essentially all remaining variants of the problem.

The core difficulty in solving α-Monroe/CC-Assignment problems lays in
selecting the alternatives that should be assigned to the agents. Given a preference
profile and a set S of up to K alternatives, using a standard network-flow argument,
it is easy to find a (possibly partial) optimal assignment ΦSα of the agents to the
alternatives from S.

Proposition 5.4 (Implicit in the paper of Betzler et al. [27]). Let α be a normal
DPSF, N be a set of agents, A be a set of alternatives (together with their capacities;
perhaps represented implicitly as for the case of the Monroe and Chamberlin–Courant
rules), V be a preference profile of N over A, and S a K-element subset of A (where
K divides |N |). Then there is a polynomial-time algorithm that computes a (possibly
partial) optimal assignment ΦSα of the agents to the alternatives from S.

Note that for the case of the Chamberlin–Courant rule the algorithm from the
above proposition can be greatly simplified: To each voter we assign the candidate
that he or she ranks highest among those from S. For the case of Monroe,
unfortunately, we need the expensive network-flow-based approach. Nonetheless,
Proposition 5.4 allows us to focus on the issue of selecting the winning alternatives
and not on the issue of matching them to the agents.

Below we describe our algorithms for αB-U-Monroe and for αB-U-CC. Formally
speaking, every approximation algorithm for αB-U-Monroe also gives feasible results
for αB-U-CC. However, some of our algorithms are particularly well-suited for both
problems and some are tailored to only one of them. Thus, for each algorithm we
clearly indicate if it is meant only for the case of Monroe, only for the case of CC, or
if it naturally works for both systems.

5.4.1 Algorithm A (Monroe)

Perhaps the most natural approach to solve αB-U-Monroe is to build a solution
iteratively: In each step we pick some not-yet-assigned alternative ai (using some
criterion) and assign it to those ⌈N

K
⌉ agents that (a) are not assigned to any other

alternative yet, and (b) whose satisfaction of being matched with ai is maximal. It
turns out that this idea, implemented formally as Algorithm A (see pseudo code in
Figure 5.1), works very well in many cases. We provide a lower bound on the total
satisfaction it guarantees in the next lemma. Let us recall that Hk =

∑k
i=1

1
i

is the
k’th harmonic number and that Hk = Θ(log k).
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Notation: Φ← a map defining a partial assignment, iteratively built by the
algorithm.

Φ← ← the set of agents for which the assignment is already defined.
Φ→ ← the set of alternatives already used in the assignment.

1 if K ≤ 2 then
2 compute the optimal solution using an algorithm of Betzler et al. [27] and return.
3 Φ = {}
4 for i← 1 to K do
5 score← {}
6 bests← {}
7 foreach ai ∈ A \Φ

→ do
8 agents← sort N \Φ← so that if agent j precedes agent k then

posj(ai) ≤ posk(ai)
9 bests[ai]← chose first ⌈NK ⌉ elements from agents

10 score[ai]←
∑

j∈bests[ai](m− posj(ai))

11 abest ← argmaxa∈A\Φ→score[a]

12 foreach j ∈ bests[abest] do
13 Φ[j]← abest

Figure 5.1: The pseudocode for Algorithm A.

Lemma 5.5. Algorithm A is a polynomial-time (1 − K−1
2(m−1) −

HK

K
)-approximation

algorithm for αB-U-Monroe.

Proof. Our algorithm explicitly computes an optimal solution when K ≤ 2 so we
assume that K ≥ 3. Let us consider the situation in the algorithm after the i’th
iteration of the outer loop (we have i = 0 if no iteration has been executed yet). So
far, the algorithm has picked i alternatives and assigned them to i n

K
agents (recall

that for simplicity we assume that K divides n evenly). Hence, each agent has ⌈m−i
K−i⌉

unassigned alternatives among her i+ ⌈m−i
K−i⌉ top-ranked alternatives. By pigeonhole

principle, this means that there is an unassigned alternative aℓ who is ranked among
top i + ⌈m−i

K−i⌉ positions by at least n
K

agents. To see this, note that there are (n −

i n
K
)⌈m−i
K−i⌉ slots for unassigned alternatives among the top i + ⌈m−i

K−i⌉ positions in
the preference orders of unassigned agents, and that there are m − i unassigned
alternatives. As a result, there must be an alternative aℓ for whom the number of
agents that rank him or her among the top i+ ⌈m−i

K−i⌉ positions is at least:

1

m− i

(

(n− i
n

K
)

⌈

m− i

K − i

⌉)

≥
n

m− i

(

K − i

K

)(

m− i

K − i

)

=
n

K
.

In consequence, the ⌈ n
K
⌉ agents assigned in the next step of the algorithm will have the

total satisfaction at least ⌈ n
K
⌉· (m− i−⌈m−i

K−i⌉). Thus, summing over the K iterations,
the total satisfaction guaranteed by the assignment Φ computed by Algorithm Ais at
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least the following value: (to derive the fifth line from the fourth one we note that
K(HK − 1)−HK ≥ 0 when K ≥ 3):

ℓαb
1 (Φ) ≥

K−1
∑

i=0

n

K
·

(

m− i− ⌈
m− i

K − i
⌉

)

≥
K−1
∑

i=0

n

K
·

(

m− i−
m− i

K − i
− 1

)

=

K
∑

i=1

n

K
·

(

m− i−
m− 1

K − i+ 1
+

i− 2

K − i+ 1

)

=
n

K

(

K(2m−K − 1)

2
− (m− 1)HK +K(HK − 1)−HK

)

≥
n

K

(

K(2m−K − 1)

2
− (m− 1)HK

)

≥ (m− 1)n

(

1−
K − 1

2(m− 1)
−
HK

K

)

If each agent were assigned to her top alternative, the total satisfaction would be
equal to (m− 1)n. Thus we get the following bound:

ℓαB
1 (Φ)

OPT
≤ 1−

K − 1

2(m− 1)
−
HK

K
.

This completes the proof.

Note that in the above proof we measure the quality of our assignment against,
a perhaps-impossible, perfect solution, where each agent is assigned to her top
alternative. This means that for relatively large m and K, and small K

m
ratio, the

algorithm can achieve a close-to-ideal solution irrespective of the voters’ preference
orders. We believe that this is an argument in favor of using Monroe’s system in
multiwinner elections. On the flip side, to obtain a better approximation ratio, we
would have to use a more involved bound on the quality of the optimal solution. To
see that this is the case, form an instance I of αB-U-Monroe with n agents and m
alternatives, where all the agents have the same preference order, and where we seek
to elect K candidates (and where K divides n). It is easy to see that each solution
that assigns the K universally top-ranked alternatives to the agents is optimal. Thus
the total satisfaction of the agents in the optimal solution is:

n

K
((m− 1) + · · ·+ (m−K)) =

n

K

(

K(2m−K − 1)

2

)

= n(m− 1)

(

1−
K − 1

2(m− 1)

)

.

By taking large enough m and K (even for a fixed value of m
K

), the fraction 1− K−1
2(m−1)

can be arbitrarily close to the approximation ratio of our algorithm (the reasoning

87



here is in the spirit of the idea of identifying maximally robust elections, as studied
by Shiryaev, Yu, and Elkind [268]).

For small values of K, it is possible that the HK

K
part of our approximation ratio

would dominate the K−1
2(m−1) part. In such cases we can use the result of Betzler et

al. [27], who showed that for each fixed constant K, αB-U-Monroe can be solved
in polynomial time. Thus, for the finite number of cases where HK

K
is too large, we

can solve the problem optimally using their algorithm. In consequence, the quality
of the solution produced by Algorithm A most strongly depends on the ratio K−1

2(m−1) .
In most cases we can expect it to be small (for example, in Polish parliamentary
elections K = 460 and m ≈ 6000; in this case the greedy algorithm’s approximation
ratio is about 0.96).

Our algorithm has one more great advantage: Since it focuses on the top parts of
voters’ preference orders, it can achieve very good results even if the voters submit
truncated ballots (that is, if they rank some of their top alternatives only). Below
we present the formal analysis of the algorithm’s approximation ratio for this case.
Unfortunately, we did not obtain a closed form formula and, instead, we present the
guaranteed approximation ratio as a sum. We also present the relation between the
fraction of the top alternatives ranked by each of the voters and the approximation
ratio for few values of m and K in Figure 5.2.

Proposition 5.6. Let P be the number of top positions in the agents’ preference
orders that are known by the algorithm. In this case Algorithm A is a polynomial-time
r-approximation algorithm for αB-U-Monroe, where:

r =

K−1
∑

i=0

1

n(m− 1)
max(r(i), 0)

and

r(i) =



























n
K
(m− i− m−i

K−i) if
(

i+ m−i
K−i
)

≤ P ,

n
K

(K−i)(m−i)
4

if
(

i+ m−i
K−i
)

> P and (2P −m) ≥ i ≥ (K − 2),

n
K

(m−P )(K−i)(P−i)
m−i otherwise.

Proof. We use the same approach as in the proof of Lemma 5.5, except that we adjust
our estimates of voters’ satisfaction. Consider a situation after some i’th iteration of
the algorithm’s outer loop (i = 0 if we are before the first iteration). If i+ m−i

K−i ≤ P ,
then we can use the same lower bound for the satisfaction of the agents assigned in
the (i+ 1)’th iteration as in the proof of Lemma 5.5. That is, the agents assigned in
the (i+ 1)’th iteration will have satisfaction at least r1(i) = n

K
· (m− i− m−i

K−i).
For the case where i + m−i

K−i > P , the bound from Lemma 5.5 does not hold, but
we can use a similar approach to find a different one. Let Px ≤ P be some positive
integer. We are interested in the number x of not-yet assigned agents who rank some
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not-yet-selected alternative among their top Px positions (after the i’th iteration).
Similarly as in the proof of Lemma 5.5, using the pigeonhole principle we note that:

x ≥
1

m− i

(

n− i
n

K

)

(Px − i) =
n

K
·
(K − i)(Px − i)

m− i
.

Thus, the satisfaction of the agents assigned in the (i+ 1)’th iteration is at least:

min
(

x,
n

K

)

(m− Px) =
n

K
· (m− Px)min

(

(K − i)(Px − i)

m− i
, 1

)

. (5.3)

The case (K−i)(Px−i)
m−i ≥ 1 (or, equivalently, i + m−i

K−i ≤ Px) implies that i + m−i
K−i ≤ P

and for this case we lower-bound agents’ satisfaction by r1(i). For the case where
(K−i)(Px−i)

m−i ≤ 1, i.e. where i+ m−i
K−i ≥ Px, equation (5.3) simplifies to:

n

K
· (m− Px) ·

(K − i)(Px − i)

m− i
. (5.4)

We use this estimate for the satisfaction of the agents assigned in the (i + 1)’th
iteration for the cases where (a) i + m−i

K−i ≥
m+i
2

and (b) m+i
2
≤ P (or, equivalently,

(2P −m) ≥ i ≥ (K − 2)). In this case we estimate (5.4) as follows:

n

K
· (m− Px) ·

(K − i)(Px − i)

m− i
≥

n

K
· (m−

m+ i

2
) ·

(K − i)(m+i
2
− i)

m− i

=
n

K
·
(K − i)(m− i)2

4(m− i)
=

n

K
·
(K − i)(m− i)

4
.

For the remaining cases, we set Px = P and (5.4) becomes:

n

K
·
(m− P )(K − i)(P − i)

m− i
.

Naturally, we replace our estimates by 0 whenever they become negative.
To complete the proof, it suffices, as in the proof of Lemma 5.5, to note that

(m− 1)n is an upper bound on the satisfaction achieved by the optimal solution.

For example, for the case of Polish parliamentary elections (K = 460 and m =
6000), to achieve 90% of voters’ optimal satisfaction, each voter would have to rank
about 8.7% of the candidates.

Our results show that for most settings there is very little reason to ask the agents
to rank all the alternatives. Using Proposition 5.6, election designers can estimate how
many alternatives the agents should rank to obtain a particular level of satisfaction.
Since computing preference orders can be expensive for the agents, this way they can
save a large amount of effort.
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Figure 5.2: The relation between the percentage of the known positions and the
approximation ratio of Algorithm A for αB-U-Monroe.

5.4.2 Algorithm B (Monroe)

There are simple ways in which we can improve the quality of the assignments
produced by Algorithm A. For example, our Algorithm B first runs Algorithm A
and then, using Proposition 5.4, optimally reassigns the alternatives to the voters.
As shown in Section 5.5, this very simple trick turns out to noticeably improve the
results of the algorithm in practice (and, of course, the theoretical approximation
guarantees of Algorithm A carry over to Algorithm B).

5.4.3 Algorithm C (Monroe, CC)

Algorithm C is a further heuristic improvement over Algorithm B. This time the idea
is that instead of keeping only one partial function Φ that is iteratively extended up
to the full assignment, we keep a list of up to d partial assignment functions, where
d is a parameter of the algorithm. At each iteration, for each assignment function
Φ among the d stored ones and for each alternative a that does not yet have agents
assigned to by this Φ, we compute an optimal extension of this Φ that assigns agents
to a. As a result we obtain possibly more than d (partial) assignment functions. For
the next iteration we keep those d of them that give highest satisfaction.

We provide pseudocode for Algorithm C in Figure 5.3. If we take d = 1, we obtain
Algorithm B. If we also disregard the last two lines prior to returning the solution,
we obtain Algorithm A.

Algorithm C can also be adapted for the Chamberlin–Courant rule. The only
difference concerns creating the assignment functions: we replace the contents of the
first foreach loop with the following code:
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Notation: We use the same notation as in Algorithm A;
Par ← a list of partial representation functions

1 Par = []
2 Par.push({})
3 for i← 1 to K do
4 newPar = []
5 for Φ ∈ Par do
6 bests← {}
7 foreach ai ∈ A \ Φ

→ do
8 agents← sort N \ Φ← (agent j precedes agent k implies that

posj(ai) ≤ posk(ai))
9 bests[ai]← chose first ⌈NK ⌉ elements of agents

10 Φ′ ← Φ
11 foreach j ∈ bests[ai] do
12 Φ′[j]← ai
13 newPar.push(Φ′)
14 sort newPar according to descending order of the total satisfaction of the

assigned agents
15 Par ← chose first d elements of newPar

16 for Φ ∈ Par do
17 Φ← compute the optimal representative function using an algorithm of Betzler

et al. [27] for the set of winners Φ→

18 return the best representative function from Par

Figure 5.3: The pseudocode for Algorithm C.

foreach ai ∈ A \ Φ
→ do

Φ′ ← Φ
foreach j ∈ N do

if agent j prefers ai to Φ′(j) then
Φ′(j)← ai

newPar.push(Φ′)

Note that for the case of the Chamberlin–Courant rule Algorithm C can also be seen
as a generalization of Algorithm GM that we will discuss later in Section 5.4.5.

5.4.4 Algorithm R (Monroe, CC)

Algorithms A, B and C achieve very high approximation ratios for the cases where K
is small relative to m. For the remaining cases, where K and m are comparable, we
can use a sampling-based randomized algorithm (denoted as Algorithm R) described
below. We focus on the case of Monroe and we will briefly mention the case of CC
at the end.
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The idea of this algorithm is to randomly pick K alternatives and match them
optimally to the agents, using Proposition 5.4. Naturally, such an algorithm might
be very unlucky and pick K alternatives that all of the agents rank low. Yet, if
K is comparable to m then it is likely that such a random sample would include a
large chunk of some optimal solution. In the lemma below, we asses the expected
satisfaction obtained with a single sampling step (relative to the satisfaction given by
the optimal solution) and the probability that a single sampling step gives satisfaction
close to the expected one. Naturally, in practice one should try several sampling steps
and pick the one with the highest satisfaction.

Lemma 5.7. A single sampling step of the randomized algorithm for αB-U-Monroe
achieves expected approximation ratio of 1

2
(1+ K

m
− K2

m2−m + K3

m3−m2 ). Let pǫ denote the
probability that the relative difference between the expected total satisfaction and the
obtained total satisfaction is higher than ǫ. Then we have pǫ ≤

1
1+ǫ

.

Proof. Let N = [n] be the set of agents, A = {a1, . . . , am} be the set of alternatives,
and V be the preference profile of the agents. Let us fix some optimal solution Φopt

and let Aopt be the set of alternatives assigned to the agents in this solution. For each
ai ∈ Aopt, we write sat(ai) to denote the total satisfaction of the agents assigned to
ai in Φopt. Naturally, we have

∑

a∈Aopt
sat(a) = OPT. In a single sampling step, we

choose uniformly at random a K-element subset B of A. Then, we form a solution
ΦB by matching the alternatives in B optimally to the agents (via Proposition 5.4).
We write Kopt to denote the random variable equal to |Aopt ∩ B|, the number of
sampled alternatives that belong to Aopt. We define pi = Pr(Kopt = i). For each j ∈
{1, . . . , K}, we write Xj to denote the random variable equal to the total satisfaction
of the agents assigned to the j’th alternative from the sample. We claim that for each
i, 0 ≤ i ≤ K, it holds that:

E

(

K
∑

j=1

Xj

∣

∣

∣

∣

∣

Kopt = i

)

≥
i

K
OPT +

m− i− 1

2
·
(

n− i
n

K

)

.

Why is this so? Given a sample B that contains i members of Aopt, our algorithm’s
solution is at least as good as a solution that matches the alternatives from B ∩Aopt

in the same way as Φopt, and the alternatives from B − Aopt in a random manner.
Since Kopt = i and each aj ∈ Aopt has equal probability of being in the sample,
it is easy to see that the expected value of

∑

aj∈B∩Aopt
sat(aj) is i

K
OPT. After we

allocate the agents from B∩Aopt, each of the remaining, unassigned agents has m− i
positions in her preference order where he ranks the agents from A− Aopt. For each
unassigned agents, the average score value associated with these positions is at least
m−i−1

2
(this is so, because in the worst case the agent could rank the alternatives from

B ∩Aopt in the top i positions). There are (n− i n
K
) such not yet assigned agents and

so the expected total satisfaction from assigning them randomly to the alternatives
is m−i−1

2
· (n− i n

K
). This proves our bound on the expected satisfaction of a solution

yielded by optimally matching a random sample of K alternatives.
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Since OPT is upper bounded by (m−1)n (consider a possibly-nonexistent solution
where every agent is assigned to his or her top preference), we get that:

E

(

K
∑

j=1

Xj |Kopt = i

)

≥
i

K
OPT +

m− i− 1

2(m− 1)
·

(

1−
i

K

)

OPT.

We can compute the unconditional expected satisfaction of ΦB as follows:

E

(

K
∑

j=1

Xj

)

=

K
∑

i=0

pi E

(

K
∑

j=1

Xj |Kopt = i

)

≥
K
∑

i=0

pi

(

i

K
OPT +

m− i− 1

2(m− 1)
·

(

1−
i

K

)

OPT

)

.

Since
∑K

i=1 pi · i is the expected number of the alternatives in Aopt, we have that
∑K

i=1 pi · i = K2

m
(one can think of summing the expected values of K indicator

random variables; one for each element of Aopt, taking the value 1 if a given
alternative is selected and taking the value 0 otherwise). Further, from the generalized

mean inequality we obtain
∑K

i=1 pi · i
2 ≥

(

K2

m

)2

. In consequence, through routine

calculation, we get that:

E

(

K
∑

j=1

Xj

)

≥

(

K

m
OPT+

m2 −K2 −m

2m(m− 1)
·

(

1−
K

m

)

OPT

)

=
OPT

2

(

1 +
K

m
−

K2

m2 −m
+

K3

m3 −m2

)

.

It remains to assess the probability that the total satisfaction obtained through
ΦB is close to its expected value. We use the following relation:

pǫ ·

(

E

(

K
∑

j=1

Xj

)

− ǫE

(

K
∑

j=1

Xj

))

+ (1− pǫ) · OPT ≥ E

(

K
∑

j=1

Xj

)

.

Since E

(

∑K
j=1Xj

)

≥ OPT
2

, we get:

pǫ ·

(

E

(

K
∑

j=1

Xj

)

− ǫE

(

K
∑

j=1

Xj

))

+ (1− pǫ) · 2E

(

K
∑

j=1

Xj

)

≥ E

(

K
∑

j=1

Xj

)

.

From which we get that pǫ ≤ 1
1+ǫ

. This completes the proof.

In the next theorem we will see that to have a high chance of obtaining a high
quality assignment, we need to repeat the sampling step many times. Thus, for
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practical purposes, by Algorithm R we mean an algorithm that repeats the sampling
process a given number of times (this parameter is given as input) and returns the
best solution found (the assignment is created using Proposition 5.4).

The threshold for K
m

, where the sampling step is (in expectation) better than
the Algorithm A is about 0.57. Thus, by combining the two algorithms, we can
guarantee an expected approximation ratio of 0.715−ǫ, for each fixed constant ǫ. The
pseudo-code of the combination of the two algorithms (Algorithm AR) is presented
in Figure 5.4.

Theorem 5.8. For each fixed ǫ, Algorithm AR provides a (0.715 − ǫ)-approximate
solution for the problem αB-U-Monroe with probability λ in time polynomial with
respect to the input instance size and − log(1− λ).

Proof. Let ǫ be a fixed constant. We are given an instance I of αB-U-Monroe. If
m ≤ 1+ 2

ǫ
, we solve I using a brute-force algorithm (note that in this case the number

of alternatives is at most a fixed constant). Similarly, if HK

K
≥ ǫ

2
then we use the exact

algorithm of Betzler et al. [27] for a fixed value of K (note that in this case K is no
greater than a certain fixed constant).

On the other hand, if neither of the above conditions hold, we try both
Algorithm A and a number of runs of the sampling-based algorithm. It is easy to
check through routine calculation that if HK

K
≤ ǫ

2
and m > 1 + 2

ǫ
then Algorithm A

achieves approximation ratio no worse than (1− K
2m
− ǫ). We run the sampling-based

algorithm − log(1 − λ)2+ǫ
ǫ

times. The probability that a single run fails to find a
solution with approximation ratio at least 1

2
(1+ K

m
− K2

m2−m + K3

m3−m2 )−
ǫ
2

is p ǫ
2
≤ 2

2+ǫ
.

Thus, the probability that at least one run will find a solution with at least this
approximation ratio is at least:

1− p
− log(1−λ) 2+ǫ

ǫ
ǫ
2

= 1−

(

2

2 + ǫ

)
2+ǫ
2
·− log(1−λ)

≥ 1− exp (log(1− λ)) = λ.

Since m ≤ 1+ 2
ǫ
, by routine calculation we see that the sampling-based algorithm with

probability λ finds a solution with approximation ratio at least 1
2
(1+ K

m
− K2

m2 +
K3

m3 )−ǫ.
By solving the equality:

1

2

(

1 +
K

m
−
K2

m2
+
K3

m3

)

= 1−
K

2m

we can find the value of K
m

for which the two algorithms give the same approximation
ratio. By substituting x = K

m
we get equality 1 + x − x2 + x3 = 2 − x. One can

calculate that this equality has a single solution within 〈0, 1〉 and that this solution is
x ≈ 0.57. For this x both algorithms guarantee approximation ratio of 0.715− ǫ. For
x < 0.57 the deterministic algorithm guarantees a better approximation ratio and for
x > 0.57, the randomized algorithm does better.
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Notation: We use the same notation as in Algorithm 5.1; W(·) denotes Lambert’s
W-Function.

Parameters: λ ← required probability of achieving the approximation ratio equal
0.715 − ǫ

1 if HK
K ≥

ǫ
2 then

2 compute the optimal solution using an algorithm of Betzler et al. [27] and return.
3 if m ≤ 1 + 2

ǫ then
4 compute the optimal solution using a simple brute force algorithm and return.
5 Φ1 ← solution returned by Algorithm A
6 Φ2 ← run the sampling-based algorithm − log(1− λ) · 2+ǫǫ times; select the

assignment of the best quality
7 return the better assignment among Φ1 and Φ2

Figure 5.4: Algorithm AR—combination of Algorithms A and R.

Let us now consider the case of CC. It is just as natural to try a sampling-based
approach for solving αB-U-CC, as we did for the Monroe variant. Indeed, as recently
(and independently) observed by Oren [229], this leads to a randomized algorithm
with expected approximation ratio of (1− 1

K+1
)(1 + 1

m
). However, since we will later

see an effective, deterministic, polynomial-time approximation scheme for αB-U-CC,
there is little reason to explore the sampling based approach.

5.4.5 Algorithm GM (Monroe, CC)

Algorithm GM (greedy marginal improvement) was introduced by Lu and Boutilier
for the case of the Chamberlin–Courant rule. Here we generalize it to apply to
Monroe’s rule as well, and we show that it is a 1 − 1

e
approximation algorithm for

α-U-Monroe. We point out that this approximation result for Monroe rule applies
to all non-decreasing PSFs α. For the Monroe rule, the algorithm can be viewed as
an extension of Algorithm B.

The algorithm proceeds as follows. We start with an empty set S. Then we execute
K iterations. In each iteration we find an alternative a that is not assigned to agents
yet, and that maximizes the value Φ

S∪{a}
α . (A certain disadvantage of this algorithm

for the case of Monroe is that it requires a large number of computations of ΦSα; since
in Monroe’s rule each alternative can be assigned to at most n

K
agents in the partial

assignment ΦSα, computation of ΦSα is a slow process based on min-cost/max-flow
algorithm.) We provide the pseudocode for Algorithm GM in Figure 5.5.

Theorem 5.9. For any non-decreasing positional scoring function α Algorithm GM
is an (1− 1

e
)-approximation algorithm for α-U-Monroe.

Proof. The proof follows by applying the powerful result of Nemhauser et al. [220],
which says that greedy algorithms achieve 1 − 1

e
approximation ratio when used
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Notation: ΦSα—the partial assignment that assigns a single alternative to at most
⌈ nK ⌉ agents, that assigns to the agents only the alternatives from S, and
that maximizes the utilitarian satisfaction ℓα1 (Φ

S
α).

1 S ← ∅
2 for i← 1 to K do

3 a← argmaxa∈A\Sℓ
α
1 (Φ

S∪{a}
α )

4 S ← S ∪ {a}

5 return ΦSα

Figure 5.5: Pseudocode for Algorithm GM.

to optimize nondecreasing submodular functions (we explain these notions formally
below). The main challenge in the proof is to define a function that, on one hand,
satisfies the conditions of Nemhauser et al.’s result, and, on the other, models solutions
for α-U-Monroe.

Let A be a set of alternatives, N = [n] be a set of agents with preferences over
A, α be an |A|-candidate DPSF, and K ≤ |A| be the number of representatives that
we want to elect. We consider function z : 2A → N defined, for each set S, S ⊆ A
and |S| ≤ K, as z(S) = ℓα1 (Φ

S
α). Clearly, z(S) is nondecreasing (that is, for each two

sets A and B, if A ⊆ B and |B| ≤ K then z(A) ≤ z(B). Since argmaxS⊂A,|S|=Kz(S)
is the set of winners under α-Monroe and since Algorithm GM builds the solution
iteratively by greedily extending initially empty set S so that each iteration increases
the value of z(S) maximally, if z were submodular then by the results of Nemhauser
et al. [220] we would get that Algorithm GM is a (1 − 1

e
)-approximation algorithm.

Thus, our goal is to show that z is submodular.

Formally, our goal is to show that for each two sets S and T , S ⊂ T , and each
alternative a /∈ T it holds that z(S ∪ {a}) − z(S) ≥ z(T ∪ {a}) − z(T ) (this is the
formal definition of submodularity). First, we introduce a notion that generalizes the
notion of a partial set of winners S. Let s : A → N denote a function that assigns
a capacity to each alternative (i.e., s gives a bound on the number of agents that a
given alternative can represent). Intuitively, each set S, S ⊆ A, corresponds to the
capacity function that assigns ⌈n

k
⌉ to each alternative a ∈ S and 0 to each a /∈ S.

Given a capacity function s, we define a partial solution Φsα to be one that maximizes
the total satisfaction of the agents and that satisfies the new capacity constraints:
∀a∈S |(Φsα)

−1(a)| ≤ s(a). To simplify notation, we write s∪{a} to denote the function
such that (s∪{a})(a) = s(a)+ 1 and ∀a′∈S\{a}(s∪{a})(a′) = s(a′). (Analogously, we
interpret s \ {a} as subtracting one from the capacity for a; provided it is nonzero.)
Also, by s ≤ t we mean that ∀a∈As(a) ≤ t(a). We extend our function z to allow
us to consider a subset of the agents only. For each subset N ′ of the agents and
each capacity function s, we define zN ′(s) to be the satisfaction of the agents in N ′

obtained under Φsα. We will now prove a stronger variant of submodularity for our
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extended z. That is, we will show that for each two capacity functions s and t it
holds that:

s ≤ t⇒ zN (s ∪ {a})− zN(s) ≥ zN (t ∪ {a})− zN (t). (5.5)

Our proof is by induction on N . Clearly, Equation (5.5) holds for N ′ = ∅. Now,
assuming that Equation (5.5) holds for every N ′ ⊂ N we will prove its correctness
for N . Let i denote an agent such that Φ

t∪{a}
α (i) = a (if there is no such agent then

clearly the equation holds). Let as = Φsα(i) and at = Φtα(i). We have:

zN (t ∪ {a})− zN (t) = α(posi(a)) + zN\{i}(t)− α(posi(at))− zN\{i}(t \ {at}).

We also have:

zN(s ∪ {a})− zN (s) ≥ α(posi(a)) + zN\{i}(s)− α(posi(as))− zN\{i}(s \ {as}).

Since Φtα describes an optimal representation function under the capacity restrictions
t, we have that:

α(posi(at)) + zN\{i}(t \ at) ≥ α(posi(as)) + zN\{i}(t \ {as}).

Finally, from the inductive hypothesis for N ′ = N \ {i} we have:

zN\{i}(s)− zN\{i}(s \ {as}) ≥ zN\{i}(t)− zN\{i}(t \ {as}).

By combining these inequalities we get:

zN (s ∪ {a})− zN(s) ≥ α(posi(a)) + zN\{i}(s)− (α(posi(as)) + zN\{i}(s \ {as}))

≥ α(posi(a))− α(posi(as)) + zN\{i}(t)− zN\{i}(t \ {as})

≥ α(posi(a)) + zN\{i}(t)− α(posi(at))− zN\{i}(t \ {at})

= zN (t ∪ {a})− zN (t).

This completes the proof.

Formally speaking, Algorithm GM is never worse than Algorithm A. For Borda
satisfaction function, it inherits the approximation guarantees from Algorithm A,
and for other cases Theorem 5.9 guarantees approximation ratio 1 − 1

e
(we do not

know of any guarantees for Algorithm A for these cases). The comparison with
Algorithms B and C is not nearly as easy. Algorithm GM is still likely better than
them for satisfaction functions significantly different from Borda’s, but for the Borda
case our experiments show that Algorithm GM is much slower than Algorithms B
and C and obtains almost the same or slightly worse results (see Section 5.5).
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Notation: We use the same notation as in Algorithm C;
num_posx(a)← |{i ∈ [n] \Φ← : posi(a) ≤ x}| (the number of not-yet
assigned agents that rank alternative a in one of their first x positions)

1 Φ = {}

2 x = ⌈mW(K)
K ⌉

3 for i← 1 to K do
4 ai ← argmaxa∈A\Φ→num_posx(a)

5 foreach j ∈ [n] \ Φ← do
6 if posj(ai) < x then
7 Φ[j]← ai
8 foreach j ∈ A \Φ← do
9 a← such server from Φ→ that ∀a′∈Φ→posj(a) ≤ posj(a

′)
10 Φ[j]← a

Figure 5.6: The algorithm for αB-U-CC (Algorithm P).

5.4.6 Algorithm P (CC)

Since winner determination in the Chamberlin and Courant’s system is a special
case of the problem of selecting a collective set of items, described in Chapter 3,
it is natural to apply some of the generic techniques from Chapter 4 to this case.
In this subsection we recall Algorithm PosBoundAndGreedy from Section 4.3
in the context of the Chamberlin and Courant’s system—we will refer to this
algorithm in this specific context as Algorithm P. The pseudo-code of Algorithm P
is given in Figure 5.6; for the pseudo-code of the generic version of this algorithm,
Algorithm PosBoundAndGreedy, we refer the reader to Figure 4.2.

We recall that the idea of Algorithm P is to compute a certain value x and to
greedily compute an assignment that (approximately) maximizes the number of agents
assigned to one of their top-x alternatives. If after this process some agent has no
alternative assigned, we assign him or her to her most preferred alternative from those
already picked. (Recall that for nonnegative real numbers, Lambert’s W-function,
W(x), is defined to be the solution of the equation x = W(x)eW(x).)

Corollary 5.10. Algorithm P is a polynomial-time (1 − 2W(K)
K

)-approximation
algorithm for αB-U-CC.

Proof. Follows directly from Theorem 4.21.

Corollary 5.11. There is a PTAS for αB-U-CC.

Proof. Follows directly from Theorem 4.22.

The idea used in Algorithm P can also be used to address a generalized E-CC
problem. We can consider the following relaxation of E-CC: Instead of requiring that
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each agent’s satisfaction is lower-bounded by some value, we ask that the satisfactions
of a significant majority of the agents are lower-bounded by a given value. More
formally, for a given constant δ, we introduce an additional quality metric:

ℓδ,αmin(Φ) = max
N ′⊆N : ||N||−||N′||

||N||
≤δmini∈N ′α(posi(Φ(i))).

For a given 0 < δ < 1, by putting x = −m ln(δ)
K

, we get (1 + ln(δ)
K

)-approximation
algorithm for the ℓδ,αmin(Φ) metric.

Finally, we show that Algorithm P performs very well even if the voters cast
truncated ballots. Proposition 5.12 gives the relation between the number of positions
used by the algorithm and the approximation ratio. In Figure 5.7 we show this relation
for some values of the parameters m and K.

Proposition 5.12. Let Q be the number of top positions in the agents’ preference
orders that are known by the algorithm (Q ≤ mW(K)

K
). Algorithm P that uses x =

Q instead of x = ⌈mW(K)
K
⌉ is a polynomial-time

(

m−Q
m−1 (1− e

−QK
m )
)

-approximation

algorithm for αB-U-CC.

Proof. Let ni denote the number of the agents not-yet-assigned until the (i + 1)-th
iteration of the algorithm. Using the same reasoning as in Theorem 4.21 we show
that ni ≤ n(1 − Q

m
)i. As before, our proof proceeds by induction on i. It is evident

that the hypothesis is correct for i = 0. Now, assuming that ni ≤ n(1− Q
m
)i, we assess

ni+1 as follows:

ni+1 ≤ ni −
niQ

m− i
≤ ni

(

1−
Q

m

)

≤ n

(

1−
Q

m

)i+1

.

This proves the hypothesis. Thus, we can bound nK :

nK ≤ n

(

1−
Q

m

)K

≤ n

(

1

e

)
QK
m

.

This means that the satisfaction of the assignment Φ returned by our algorithm is at
least:

ℓαB
1 (Φ) ≥ (n− nK)(m−Q) ≥ n(m−Q)(1− e−

QK
m ).

In effect, it holds that:

ℓαB
1 (Φ)

OPT
≥
n(m−Q)(1− e−

QK
m )

n(m− 1)
≥
m−Q

m− 1

(

1− e−
QK
m

)

.

This completes the proof.

For example, for Polish parliamentary elections (K = 460, m = 6000), it suffices
that each voter ranks only 0.5% of her top alternatives (that is, about 30 alternatives)
for the algorithm to find a solution with guaranteed satisfaction at least 90% of the
one (possibly infeasible) where every voter is assigned to her top alternative.
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Figure 5.7: The relation between the percentage of the known positions and the
approximation ratio of Algorithm P for αB-U-CC.

5.4.7 ILP Formulation (Monroe, CC)

To experimentally measure the quality of our approximation algorithms, we compare
the results against optimal solutions that we obtain using integer linear programs
(ILPs) that solve the Monroe and Chamberlin–Courant winner determination
problem. An ILP for the Monroe rule was provided by Potthoff and Brams [244], Lu
and Boutilier [188] adapted it also for the Chamberlin–Courant rule with arbitrary
PSF α. For the sake of completeness, below we recall the ILP whose optimal solutions
correspond to α-U-Monroe winner sets for the given election (we also indicate which
constraints to drop to obtain an ILP for finding α-U-CC winner sets):

1. For each i, 1 ≤ i ≤ n, and each j, 1 ≤ j ≤ m we have a 0/1 variable aij
indicating whether alternative aj represents agent i. For each j, 1 ≤ j ≤ m, we
have a 0/1 variable xj indicating whether alternative aj is included in the set
of winners.

2. Our goal is to maximize the value
∑n

i=1 α(posi(aj))aij subject to the following
constraints:

(a) For each i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ aij ≤ xj (alternative aj can
represent agent i only if aj belongs to the set of winners)

(b) For each i, 1 ≤ i ≤ n,
∑

1≤j≤m aij = 1 (every agent is represented by
exactly one alternative).

(c) For each j, 1 ≤ j ≤ m, xj⌊ nK ⌋ ≤
∑

1≤i≤n aij ≤ xj⌈
n
K
⌉ (each alternative

either does not represent anyone or represents between ⌊ n
K
⌋ and ⌈ n

K
⌉

agents; if we remove these constraints then we obtain an ILP for the
Chamberlin-Courant rule).

(d)
∑n

j=1 xj ≤ K (there are exactly K winners4).

4For the Monroe framework inequality here is equivalent to equality. We use the inequality so
that deleting constraints from item (2c) leads to an ILP for the Chamberlin-Courant rule.
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We used the GLPK 4.47 package (GNU Linear Programming Kit, version 4.47)
to solve these ILPs, whenever it was possible to do so in reasonable time.

5.5 Empirical Evaluation of the Algorithms

In this section we present the results of empirical evaluation of algorithms from
Section 5.4. In the experiments we evaluated versions of the randomized algorithms
that use exactly 100 sampling steps. In all cases but one, we have used Borda PSF
to measure voter satisfaction. In one case, with six candidates, we have used DPSF
defined through vector (3, 3, 3, 2, 1, 0) (we made this choice due to the nature of the
data set used; see discussion later).

We have conducted four sets of experiments. First, we have tested all our
algorithms on relatively small elections (up to 10 candidates, up to 100 agents). In
this case we were able to compare the solutions provided by our algorithms with the
optimal ones. (To obtain the optimal solutions, we were using the ILP formulations
and the GLPK’s ILP solver.) Thus we report the quality of our algorithms as the
average of fractions C/Copt, where C is the satisfaction obtained by a respective
algorithm and Copt is the satisfaction in the optimal solution. For each algorithm
and data set, we also report the average fraction C/Cideal, where Cideal is the
satisfaction that the voters would have obtained if each of them were matched to
her most preferred alternative. In our further experiments, where we considered
larger elections, we were not able to compute optimal solutions, but fraction C/Cideal

gives a lower bound for C/Copt. We report this value for small elections so that we
can see an example of the relation between C/Copt and C/Cideal and so that we can
compare the results for small elections with the results for the larger ones. Further,
for the case of Borda PSF the C/Cideal fraction has a very natural interpretation: If
its value for a given solution is v, then, on the average, in this solution each voter is
matched to an alternative that he or she prefers to (m− 1)v alternatives.

In our second set of experiments, we have run our algorithms on large elections
(thousands of agents, hundreds of alternatives), coming either from the NetFlix data
set (see below) or generated by us using one of our models. Here we reported the
average fraction C/Cideal only. We have analyzed the quality of the solutions as a
function of the number of agents, the number of candidates, and the relative number
of winners (fraction K/m). (This last set of results is particularly interesting because
in addition to measuring the quality of our algorithms, it allows one to asses the
size of a committee one should seek if a given average satisfaction of agents is to be
obtained).

In the third set of experiments, we have investigated the effect of submitting
truncated ballots (i.e., preference orders where only some of the top alternatives
are ranked). Specifically, we focused on the relation between the fraction of ranked
alternatives and the approximation ratio of the algorithms. We run our experiments
on relatively large instances describing agents’ preferences; thus, here as in the
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previous set of experiments, we used the NetFlix data set and the synthetic data
sets. We report the quality of the algorithms as the ratio C/Cideal.

In the fourth set of experiments we have measured running times of our algorithms
and of the ILP solver. Even though all our algorithms (except for the ILP based ones)
are polynomial-time, in practice some of them are too slow to be useful.

5.5.1 Experimental Data

For the evaluation of the algorithms we have considered both real-life
preference-aggregation data and synthetic data, generated according to a number
of election models. The experiments reported in this chapter predate the work of
Mattei and Walsh [201] on gathering a large collection of data sets with preference
data, but we mention that we have contributed several data sets to their collection.

Real-Life Data

We have used real-life data regarding people’s preference on sushi types, movies,
college courses, and competitors’ performance in figure-skating competitions. One of
the major problems regarding real-life preference data is that either people express
preferences over a very limited set of alternatives, or their preference orders are partial.
To address the latter issue, for each such data set we complemented the partial orders
to be total orders using the technique of Kamishima [154]. (The idea is to complete
each preference order based on those reported preference orders that appear to be
similar.)

Some of our data sets contain a single profile, whereas the others contain multiple
profiles. When preparing data for a given number m of candidates and a given number
n of voters from a given data set, we used the following method: We first uniformly
at random chose a profile within the data set, and then we randomly selected n voters
and m candidates. We used preference orders of these n voters restricted to these m
candidates.

Sushi Preferences. We used the set of preferences regarding sushi types collected
by Kamishima [154].5 Kamishima has collected two sets of preferences, which we call
S1 and S2. Data set S1 contains complete rankings of 10 alternatives collected from
5000 voters. S2 contains partial rankings provided by 5000 voters over a set of 100
alternatives (each vote ranks 10 alternatives). We used Kamishima [154] technique
to obtain total rankings.

Movie Preferences. Following Mattei et al. [199], we have used the NetFlix data
set6 of movie preferences (we call it Mv). NetFlix data set contains ratings collected
from about 480 thousand distinct users regarding 18 thousand movies. The users

5The sushi data set is available under the following url: http://www.kamishima.net/sushi/
6http://www.netflixprize.com/
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rated movies by giving them a score between 1 (bad) and 5 (good). The set contains
about 100 million ratings. We have generated 50 profiles using the following method:
For each profile we have randomly selected 300 movies, picked 10000 users that ranked
the highest number of the selected movies, and for each user we have extended her
ratings to a complete preference order using the method of Kamishima [154].

Course Preferences. Each year the students at the AGH University choose courses
that they would like to attend. Depending on a particular year and the students’ level
of advancement, the students are offered a number of courses of which they have to
select some that they will attend. In our case, the students were offered a choice of
six courses of which they had to choose three. Thus the students were asked to give
an unordered set of their three top-preferred courses and a ranking of the remaining
ones (in case too many students selected a course, those with the highest GPA were
enrolled and the remaining ones were moved to their less-preferred courses). In this
data set, which we call Cr, we have 120 voters (students) and 6 alternatives (courses).
However, due to the nature of the data, instead of using Borda count PSF as the
satisfaction measure, we have used the vector (3, 3, 3, 2, 1, 0). Currently this data set
is available as part of PrefLib [201].

Figure Skating. This data set, which we call Sk, contains preferences of the
judges over the performances in figure-skating competitions. The data set contains 48
profiles, each describing a single competition. Each profile contains preference orders
of 9 judges over about 20 participants. The competitions include European skating
championships, Olympic Games, World Junior, and World Championships, all from
1998.7 (Note that while in figure skating judges provide numerical scores, this data
set is preprocessed to contain preference orders.)

Synthetic Data

For our tests, we have also used profiles generated using three well-known distributions
of preference orders.

Impartial Culture. Under the impartial culture model of preferences (which we
denote IC), for a given set A of alternatives, each voter’s preference order is drawn
uniformly at random from the set of all possible total orders over A. While not very
realistic, profiles generated using impartial culture model are a standard testbed of
election-related algorithms.

Polya-Eggenberger Urn Model. Following McCabe-Dansted and Slinko [204]
and Walsh [298], we have used the Polya-Eggenberger urn model [21] (which we denote
Ur). In this model we generate votes as follows. We have a set A of m alternatives
and an urn that initially contains all m! preference orders over A. To generate a
vote, we simply randomly pick one from the urn (this is our generated vote), and

7This data set is available under the following url: http://rangevoting.org/SkateData1998.

txt.
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then—to simulate correlation between voters—we return a copies of this vote to the
urn. When generating an election with m candidates using the urn model, we have
set the parameter a so that a

m!
= 0.05 (Both McCabe-Dansted and Slinko [204] and

Walsh [298] call this parameter b; we mention that those authors use much higher
values of b but we felt that too high a value of b leads to a much too strong correlation
between votes).

Generalized Mallow’s Model. We refer to this data set as Ml. Let ≻ and ≻′ be
two preference orders over some alternative set A. Kendal-Tau distance between ≻
and ≻′, denoted dK(≻,≻

′), is defined as the number of pairs of candidates x, y ∈ A
such that either x ≻ y ∧ y ≻′ x or y ≻ x ∧ x ≻′ y.

Under Mallow’s distribution of preferences [195] we are given two parameters: A
center preference order ≻ and a number φ between 0 and 1. The model says that the
probability of generating preference order ≻′ is proportional to the value φdK(≻,≻′).
To generate preference orders following Mallow’s distribution, we use the algorithm
given by Lu and Boutilier [189].

In our experiments, we have used a mixture of Mallow’s models. Let A be a set of
alternatives and let ℓ be a positive integer. This mixture model is parameterized by
three vectors, Λ = (λ1, . . . , λℓ) (where each λi is between 0 and 1, and

∑ℓ
i=1 λ1 = 1),

Φ = (φ1, . . . , φℓ) (where each φi is a number between 0 and 1), and Π = (≻1, . . . ,≻ℓ)
(where each ≻i is a preference order over A). To generate a vote, we pick a random
integer i, 1 ≤ i ≤ ℓ (each i is chosen with probability λi), and then generate the vote
using Mallow’s model with parameters (≻i, φi).

For our experiments, we have used a = 5, and we have generated vectors Λ, Φ,
and Π uniformly at random.

5.5.2 Evaluation on Small Instances

We now present the results of our experiments on small elections. For each data set,
we generated elections with the number of agents n = 100 (n = 9 for data set Sk
because there are only 9 voters there) and with the number of alternatives m = 10
(m = 6 for data set Cr because there are only 6 alternatives there) using the method
described in Section 5.5.1 for the real-life data sets, and in the natural obvious way for
synthetic data. For each algorithm and for each data set we ran 500 experiments on
different instances forK = 3 (for the Cr data set we usedK = 2) and 500 experiments
for K = 6 (for Cr we set K = 4). For Algorithm C (both for Monroe and for CC)
we set the parameter d, describing the number of assignment functions computed in
parallel, to 15. The results (average fractions C/Copt and C/Cideal) for K = 3 are
given in Tables 5.1 and 5.3; the results for K = 6 are given in Tables 5.2 and 5.4
(they are almost identical as for K = 3). For each experiment in this section we also
computed the standard deviation; it was always on the order of 0.01. The results lead
to the following conclusions:
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Monroe CC
A B C GM R C GM P R

S1 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
S2 0.95 0.99 1.0 ≈ 1.0 0.99 1.0 ≈ 1.0 0.98 0.99
Mv 0.96 ≈ 1.0 1.0 ≈ 1.0 0.98 1.0 ≈ 1.0 0.96 ≈ 1.0
Cr 0.98 0.99 1.0 ≈ 1.0 0.99 1.0 ≈ 1.0 1.0 ≈ 1.0
Sk 0.99 ≈ 1.0 1.0 ≈ 1.0 0.94 1.0 ≈ 1.0 0.85 0.99
IC 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
Ml 0.94 0.99 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
Ur 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 0.99 0.97 0.99

Table 5.1: The average quality of the algorithms compared with the optimal solution
(C/Copt) for the small instances of data and for K = 3 (K = 2 for Cr); m = 10
(m = 6 for Cr); n = 100 (n = 9 for Sk).

Monroe CC
A B C GM R C GM P R

S1 0.95 ≈ 1.0 1.0 0.99 0.99 1.0 ≈ 1.0 0.97 0.99
S2 0.94 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.98 ≈ 1.0
Mv 0.95 0.99 1.0 ≈ 1.0 0.98 1.0 ≈ 1.0 0.97 ≈ 1.0
Cr 0.96 ≈ 1.0 1.0 ≈ 1.0 0.99 1.0 1.0 1.0 1.00
Sk 0.99 ≈ 1.0 1.0 ≈ 1.0 0.88 1.0 1.0 0.91 ≈ 1.0
IC 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.99 0.99
Ml 0.95 0.99 ≈ 1.0 0.99 0.99 1.0 ≈ 1.0 0.98 0.99
Ur 0.96 0.99 ≈ 1.0 0.99 ≈ 1.0 1.0 ≈ 1.0 0.96 0.99

Table 5.2: The average quality of the algorithms compared with the optimal solution
(C/Copt) for the small instances of data and for K = 6 (K = 4 for Cr); m = 10
(m = 6 for Cr); n = 100 (n = 9 for Sk).

1. For the case of Monroe, already Algorithm A obtains very good results, but
nonetheless Algorithms B and C improve noticeably upon Algorithm A. In
particular, Algorithm C (for d = 15) obtains the highest satisfaction on all data
sets and in almost all cases is able to find an optimal solution.

2. Both for Monroe and for CC, Algorithm R gives slightly worse solutions than
Algorithm C.

3. The results do not seem to depend on the data sets used in the experiments (the
only exception is Algorithm R for the Monroe system on data set Sk; however
Sk has only 9 voters so it can be viewed as a border case).
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Monroe CC
A B C GM R C GM P R

S1 0.85 0.89 0.9 0.89 0.89 0.92 0.89 0.91 0.92
S2 0.85 0.89 0.89 0.89 0.89 0.93 0.9 0.91 0.92
Mv 0.88 0.92 0.92 0.92 0.91 0.97 0.92 0.93 0.97
Cr 0.94 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97
Sk 0.96 0.96 0.97 0.97 0.91 1.0 0.97 0.82 0.99
IC 0.8 0.84 0.85 0.84 0.84 0.85 0.83 0.84 0.85
Ml 0.83 0.88 0.88 0.9 0.88 0.92 0.90 0.89 0.94
Ur 0.8 0.85 0.86 0.87 0.85 0.9 0.87 0.87 0.89

Table 5.3: The average quality of the algorithms compared with the simple lower
bound (C/Cideal) for the small instances of data and for K = 3 (K = 2 for Cr);
m = 10 (m = 6 for Cr); n = 100 (n = 9 for Sk).

Monroe CC
A B C GM R C GM P R

S1 0.91 0.96 0.96 0.95 0.95 0.98 0.98 0.96 0.98
S2 0.88 0.93 0.93 0.93 0.93 0.98 0.98 0.96 0.98
Mv 0.85 0.89 0.89 0.89 0.88 0.99 0.99 0.97 0.99
Cr 0.95 0.98 0.99 0.99 0.98 1.0 1.0 1.0 1.0
Sk 0.91 0.92 0.92 0.92 0.81 1.0 1.0 0.91 ≈ 1.0
IC 0.91 0.95 0.95 0.94 0.95 0.96 0.96 0.95 0.95
Ml 0.89 0.94 0.94 0.94 0.93 0.97 0.98 0.95 0.98
Ur 0.91 0.95 0.95 0.94 0.95 0.98 0.98 0.94 0.97

Table 5.4: The average quality of the algorithms compared with the simple lower
bound (C/Cideal) for the small instances of data and for K = 6 (K = 4 for Cr);
m = 10 (m = 6 for Cr); n = 100 (n = 9 for Sk).

5.5.3 Evaluation on Larger Instances

For experiments on larger instances we needed data sets with at least n = 10000
agents. Thus we used the NetFlix data set and synthetic data. (Additionally, we run
the subset of experiments (for n ≤ 5000) also for the S2 data set.) For the Monroe
rule we present results for Algorithm A, Algorithm C, and Algorithm R, and for
the Chamberlin–Courant rule we present results for Algorithm C and Algorithm R.
We limit the set of algorithms for the sake of the clarity of the presentation.
For Monroe we chose Algorithm A because it is the simplest and the fastest one,
Algorithm C because it is the best generalization of Algorithm A that we were able
to run in reasonable time, and Algorithm R to compare a randomized algorithm to
deterministic ones. For the Chamberlin–Courant rule we chose Algorithm C because
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Figure 5.8: The relation between the number of alternatives m and the quality of the
algorithms C/Cideal for the Monroe system; K/m = 0.3; n = 1000.
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Figure 5.9: The relation between the number of alternatives m and the quality of the
algorithms C/Cideal for the Chamberlin–Courant system; K/m = 0.3; n = 1000.

it is, intuitively, the best one, and we chose Algorithm R for the same reason as in
the case of Monroe.

First, for each data set and for each algorithm we fixed the value of m and K and
for each n ranging from 1000 to 10000 with the step of 1000 we run 50 experiments.
We repeated this procedure for 4 different combinations of m and K: (m = 10,
K = 3), (m = 10, K = 6), (m = 100, K = 30) and (m = 100, K = 60). We
measured the statistical correlation between the number of voters and the quality of
the algorithms C/Cideal. The ANOVA test in most cases showed that there is no such
correlation. The only exception was S2 data set, for which we obtained an almost
negligible correlation. For example, for (m = 10, K = 3) Algorithm C under data
set S2 for Monroe’s system for n = 5000 gave C/Cideal = 0.88, while for n = 100 (in
the previous section) we got C/Cideal = 0.89. Thus we conclude that in practice the
number of agents has almost no influence on the quality of the results provided by
our algorithms.

Next, we fixed the number of voters n = 1000 and the ratio K/m = 0.3, and for
each m ranging from 30 to 300 with the step of 30 (naturally, as m changed, so did
K to maintain the ratio K/m), we run 50 experiments. We repeated this procedure
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Figure 5.10: The relation between the ratio K/m and the quality of the algorithms
C/Cideal for the Monroe system; m = 100; n = 1000.
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Figure 5.11: The relation between the ratio K/m and the quality of the algorithms
C/Cideal for the Chamberlin–Courant system; m = 100; n = 1000.

for K/m = 0.6. The relation between m and C/Cideal for Mv and Ur, under both
the Monroe rule and the Chamberlin–Courant rule, is given in Figures 5.8 and 5.9
(the results for K/m = 0.6 look similar).

Finally, we fixed n = 1000 and m = 100, and for each K/m ranging from 0.1 and
0.5 with the step of 0.1 we run 50 experiments. The relation between the ratio K/m
and the quality C/Cideal is presented in Figures 5.10 and 5.11.

For the case of Chamberlin–Courant system, increasing the size of the committee
to be elected improves overall agents’ satisfaction. Indeed, since there are no
constraints on the number of agents matched to a given alternative, a larger committee
means more opportunities to satisfy the agents. For the Monroe rule, a larger
committee may lead to a lower total satisfaction. This happens if many agents like a
particular alternative a lot, but only some of them can be matched to this alternative
and others have to be matched to their less preferred ones. Nonetheless, we see that
Algorithm C achieves C/Cideal = 0.925 even for K/m = 0.5 for the NetFlix data set.

Our conclusions from these experiments are the following. For the Monroe rule,
even Algorithm A achieves very good results. However, Algorithm C consistently
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achieves better (indeed, almost perfect) ones. For the Chamberlin–Courant rule the
randomized algorithm on some datasets performs better than the deterministic ones.
However, even in such cases, the improvement over the Algorithm C is small.

5.5.4 Truncated ballots

0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm C for Mv (K=20, m=100)

Algorithm C for Mv (K=10, m=100)

Algorithm C for Mv (K=4, m=20)
0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm C for Ur (K=20, m=100)

Algorithm C for Ur (K=10, m=100)

Algorithm C for Ur (K=4, m=20)
0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm C for IC (K=20, m=100)

Algorithm C for IC (K=10, m=100)

Algorithm C for IC (K=4, m=20)

0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm A for Mv (K=20, m=100)

Algorithm A for Mv (K=10, m=100)

Algorithm A for Mv (K=4, m=20)
0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm A for Ur (K=20, m=100)

Algorithm A for Ur (K=10, m=100)

Algorithm A for Ur (K=4, m=20)
0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm A for IC (K=20, m=100)

Algorithm A for IC (K=10, m=100)

Algorithm A for IC (K=4, m=20)

0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm R for Mv (K=20, m=100)

Algorithm R for Mv (K=10, m=100)

Algorithm R for Mv (K=4, m=20)
0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm R for Ur (K=20, m=100)

Algorithm R for Ur (K=10, m=100)

Algorithm R for Ur (K=4, m=20)
0

0.2

0.4

0.6

0.8

1

q
u
al
it
y
of

th
e
al
g.

(C
/C

id
e
a
l)

0 20 40 60 80 100
% of known positions

Algorithm R for IC (K=20, m=100)

Algorithm R for IC (K=10, m=100)

Algorithm R for IC (K=4, m=20)

Figure 5.12: The relation between the percentage of known positions P/m [%] and
the quality of the algorithm C/Cideal for Algorithms C, A, and R for Monroe’s system.
Each row of the plots describes one algorithm; each column describes one data set;
n = 1000. (Results for the Mallows model are similar to those for the urn model and
are omitted for clarity.)

The purpose of our third set of experiments was to see how our algorithms behave
in practical settings with truncated ballots. We conducted this part of evaluation on
relatively large instances, including n = 1000 agents and up to m = 100 alternatives.
Thus, in this set of experiments, we used the same sets of data as in the previous
subsection: the Netflix data set and the synthetic distributions. Similarly, we
evaluated the same algorithms: Algorithm A, C, and R for the case of Monroe’s
system, and Algorithm C, and R for the case of the Chamberlin–Courant system.

For each data set and for each algorithm we run experiments for 3 independent
settings with different values of the parameters describing the elections: (1) m = 100,
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Figure 5.13: The relation between the percentage of known positions P/m [%] and the
quality of the algorithm C/Cideal for Algorithms C and R for the Chamberlin–Courant
system. Each row of the plots describes one algorithm; each column describes one
data set; n = 1000. (Results for the Mallows model are similar to those for the urn
model and are omitted for clarity.)

K = 20, (2) m = 100, K = 10, and (3) m = 20, K = 4. For each setting we run the
experiments for the values of P (the number of known positions) varying between 1
and m.

For each algorithm, data set, setting, and each value of P we run 50 independent
experiments in the following way. From a data set we sampled a sub-profile of the
appropriate size n×m. We truncated this profile to the P first positions. We run the
algorithm for the truncated profile and calculated the quality ratio C/Cideal. When
calculating C/Cideal we assumed the worst case scenario, i.e., that the satisfaction of
the agent from an alternative outside of his/her first P positions is equal to 0. In
other words, we used the positional scoring function described by the following vector:
〈m− 1, m− 2, . . . , m− P, 0, . . . 0〉. Next, we averaged the values of C/Cideal over all
50 experiments.

The relation between the percentage of the known positions in the
preference profile and the average quality of the algorithm for the Monroe and
Chamberlin–Courant systems are plotted in Figures 5.12 and 5.13, respectively. We
omit the plots for Mallow’s model, as in this case we obtained almost identical results
as for the Urn model. We have the following conclusions.

1. All the algorithms require only small number of the top positions to achieve
their best quality. Here, the deterministic algorithms are superior.

2. The small elections with synthetic distributions appear to be the worst case
scenario—in such case we require the knowledge of about 40% of the top
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positions to obtain the highest approximation ratios of the algorithms. In the
case of the NetFlix data set, even on small instances the deterministic algorithms
require only about 8% of the top positions to get their best quality (however
the quality is already high for 3-5% of the top positions). For the larger number
of the alternatives, the algorithms do not require more than 3% of the top
positions to reach their top results.

3. Algorithm C does not only give the best quality but it is also most immune
to the lack of knowledge. These results are more evident for the case of the
Monroe system.

5.5.5 Running time

In our final set of experiments, we have measured running times of our algorithms on
the data set Mv. We have used a machine with Intel Pentium Dual T2310 1.46GHz
processor and 1.5GB of RAM. In Figure 5.14 we show the running times of the GLPK
ILP solver for the Monroe and for Chamberlin–Courant rules. These running times
are already large for small instances and they are increasing exponentially with the
number of voters. For the Monroe rule, even for K = 9, m = 30, n = 100 some of
the experiments timed out after 1 hour, and for K = 9, m = 30, n = 200 none of the
experiments finished within one day. Thus we conclude that the real application of
the ILP-based algorithm is very limited.

Example running times of the other algorithms for some combinations of n, m,
and K are presented in Table 5.5. For the case of CC, essentially all the algorithms
are very fast and the quality of computed solutions is the main criterion in choosing
among them. For the case of Monroe, the situation is more complicated. While for
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Figure 5.14: The running time of the standard ILP solver for the Monroe and for
the Chamberlin–Courant systems. For Monroe’s system, for K = 9, m = 30, and for
n ≥ 200 none of the single algorithm execution finished within 1 day.
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m = 10, K = 3 m = 10, K = 6
n = 2000 6000 10000 2000 6000 10000

M
on

ro
e

A 0.01 0.03 0.05 0.01 0.04 0.07
B 0.08 0.9 2.3 0.2 1.4 3.6
C 1.1 8 22 2.1 16 37

GM 0.8 7.3 20 1.9 13 52
R 7.6 50 180 6.5 52 140

C
C

C 0.02 0.07 0.12 0.05 0.14 0.26
GM 0.003 0.009 0.015 0.003 0.01 0.018
P 0.009 0.032 0.05 0.008 0.02 0.05
R 0.014 0.04 0.065 0.02 0.06 0.11

m = 100, K = 30 m = 100, K = 60
n = 2000 6000 10000 2000 6000 10000

M
on

ro
e

A 0.5 1.6 2.8 0.9 2.8 4.9
B 0.8 4 9.5 1.7 8 18
C 38 140 299 64 221 419

GM 343 2172 5313 929 5107 13420
R 41 329 830 88 608 1661

C
C

C 4.3 11 19 7.5 19 31
GM 0.06 0.2 0.4 0.09 0.3 0.7
P 0.03 0.1 0.26 0.03 0.1 0.2
R 0.06 0.24 0.45 0.1 0.4 0.8

Table 5.5: Example running times of the algorithms [in seconds].

small elections all the algorithms are practical, for elections with thousands of voters,
using Algorithm GM becomes problematic. Indeed, even Algorithm C can be seen
as a bit too slow if one expects immediate results. On the other hand, Algorithms A
and B seem perfectly practical and, as we have seen in the previous experiments, give
high-quality results.

5.6 Related Work

A large number of papers are related to our research in terms of methodology
(the study of computational complexity and approximation algorithms for winner
determination under various NP-hard election rules), in terms of perspective
and motivation (e.g., due to the resource allocation view of Monroe and
Chamberlin–Courant rules that we take), and in terms of formal similarity (e.g.,
winner determination under the Chamberlin–Courant rule can be seen as a form of
the facility location problem). Below we review this related literature.
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NP-hardness of winner determination under the Monroe and Chamberlin–Courant
rules was shown by Procaccia et al. [245] and by Lu and Boutilier [188]. Worse yet, the
hardness holds even if various natural parameters of the election are small [27]. Rare
easy cases include those, where the committee to be elected is small, or we consider
the Chamberlin–Courant rule and the voters have single-peaked [27] or single-crossing
preferences [283].

There are several single-winner voting rules for which winner determination is
known to be NP-hard. These rules include, for example, Dodgson’s rule [18,26,134],
Young’s rule [26,259], and Kemeny’s rule [18,25,132]. For the single-transferable
vote rule (STV), the winner determination problem becomes NP-hard if we use
the parallel-universes tie-breaking [66]. Many of these hardness results hold even
in the sense of parameterized complexity theory (however, there also is a number of
fixed-parameter tractability results; see the references above for details).

These hardness results motivated the search for approximation algorithms. There
are now very good approximation algorithms for Kemeny’s rule [6,68,161] and
for Dodgson’s rule [41,42,97,138,203]. In both cases the results are, in essence,
optimal. For Kemeny’s rule there is a polynomial-time approximation scheme [161]
and for Dodgson’s rule the achieved approximation ratio is optimal under standard
complexity-theoretic assumptions [41] (unfortunately, the approximation ratio is not
constant but depends logarithmically on the number of candidates). On the other
hand, for Young’s rule it is known that no good approximation algorithms exist [41].

The work of Caragiannis et al. [42] and of Faliszewski et al. [97] on approximate
winner determination for Dodgson’s rule is particularly interesting from our
perspective. In the former, the authors advocate treating approximation algorithms
for Dodgson’s rule as voting rules in their own right and design them to have
desirable properties. In the latter, the authors show that a well-established voting rule
(Maximin rule) is a reasonable (though not optimal) approximation of Dodgson’s rule.
This perspective is important for anyone interested in using approximation algorithms
for winner determination in elections (as might be the case for our algorithms for the
Monroe and Chamberlin–Courant rules).

In this chapter we take the view that the Monroe and Chamberlin–Courant rules
are special cases of the following resource allocation problem. The alternatives are
sharable resources, each with a certain capacity defined as the maximal number of
agents that may share this resource. Each agent has preferences over the resources
and is interested in getting exactly one. The goal is to select a predetermined
number K of resources and to find an optimal allocation of these resources (see
Section 5.2 for details). This provides a unified framework for the two rules and reveals
the connection of proportional representation problem to other resource allocation
problems. In particular, it closely resembles multi-unit resource allocation with
single-unit demand [271] (see also the work of Chevaleyre et al. [54] for a survey
of the most fundamental issues in the multiagent resource allocation theory) and
resource allocation with sharable indivisible goods [7,54].
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Monroe Chamberlin-Courant General Assignment
Utilitarian case Good approximation Good approximation Open problem
Egalitarian case Inapproximability

Theorem 5.1
Inapproximability
Theorem 5.3

Inapproximability
Theorem 5.1
Theorem 5.3

Table 5.6: Summary of approximability results for the Monroe and
Chamberlin-Courant multiwinner voting systems.

We recall that other connections of the Monroe and Chamberlin–Courant rules
to several other problems, including the facility location problem, are pointed out in
Chapter 3.

5.7 Summary

In this chapter we have considered the winner determination problem under two
election rules: Chamberlin and Courant and Monroe systems. We have shown
that these two winner determination problems are special cases of the capacitated
disjunctive variant of the problem of selecting a collective set of items, introduced and
defined in Chapter 3. Since it is known that the winners for Chamberlin and Courant
and Monroe voting rules are hard to compute [27,188,245,283], we focused on finding
approximate solutions. We have shown that if we try to optimize the satisfaction
of the least satisfied agent, then our problems are hard to approximate up to any
constant factor. However, for the utilitarian case we suggest good approximation
algorithms. In particular, for the Monroe system we suggest a randomized algorithm
that for the Borda score achieves an approximation ratio arbitrarily close to 0.715
(and much better in many real-life settings), and (1− 1

e
)-approximation algorithm for

arbitrary positional scoring function. For the Chamberlin-Courant system, we have
shown a polynomial-time approximation scheme (PTAS).

In Table 5.6 we present the summary of our (in)approximability results. In
Table 5.7 we present specific results regarding our approximation algorithms for the
utilitarian framework. In particular, the table clearly shows that for the case of
Monroe, Algorithms B and C are not much slower than Algorithm A but offer a chance
of improved performance. Algorithm GM is intuitively even more appealing, but
achieves this at the cost of high time complexity. For the case of Chamberlin-Courant
rule, theoretical results suggest using Algorithm P (however, see below).

We have provided experimental evaluation of the algorithms for computing the
winner sets both for the Monroe and Chamberlin–Courant rules. While finding
solutions for these rules is computationally hard in the worst case, it turned out that
in practice we can obtain very high quality solutions using very simple algorithms.
Indeed, both for the Monroe and Chamberlin-Courant rules we recommend using
Algorithm C (or Algorithm A on very large Monroe elections). Our experimental
evaluation confirms that the algorithms work very well in case of truncated ballots.
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Algorithm Approximation Runtime Reference

M
on

ro
e

A 1− K−1
2(m−1) −

HK
K Kmn Lemma 5.5

B as in Algorithm A Kmn+O(ΦS) Lemma 5.5
C as in Algorithm A dKmn+dO(ΦS) Lemma 5.5

GM as in Alg. A for Borda
PSF; 1− 1

e for others
KmO(ΦS) Theorem 5.9

R 1
2(1 +

K
m −

K2m−K3

m3−m2 ) | log(1−λ)|
Kǫ2

O(ΦS) Lemma 5.7

AR 0.715 max(A,R) Theorem 5.8

C
C

PTAS Corollary 5.11

P 1− 2W(K)
K nmW(K) Corollary 5.10

GM 1− 1
e Kmn Lu and Boutilier [188]

C as in Algorithm GM dKm(n+log dm) Lu and Boutilier [188]

R (1− 1
K+1)(1 +

1
m ) | log(1−λ)|

ǫ2 n Oren [229]

Table 5.7: A summary of the algorithms studied in this chapter. The top of the table
regards algorithms for Monroe’s rule and the bottom for the Chamberlin–Courant
rule. In column “Approximation” we give currently known approximation ratio for
the algorithm under Borda PSF, on profiles with m candidates and where the goal is
to select a committee of size K. Here, O(ΦS) = O(n2(K + logn)) is the complexity
of finding a partial representation function with the algorithm of Betzler et al. [27].
W(·) denotes Lambert’s W-Function.

We believe that our results mean that (approximations of) the Monroe and
Chamberlin–Courant rules can be used in practice.

Our work leads to a number of further research directions. First, it would be very
interesting to find a better upper bound on the quality of solutions for the Monroe
and Chamberlin–Courant systems (with Borda PSF) than the simple n(m−1) bound
that we use (where n is the number of voters and m is the number of candidates).
We use a different approach in our randomized algorithm, but it would be much more
interesting to find a deterministic algorithm that beats the approximation ratios of
our algorithms. One of the ways of seeking such a bound would be to consider
Monroe’s rule with “exponential” Borda PSF, that is, with PSF of the form, e.g.,
(2m−1, 2m−2, . . . , 1). For such PSF our approach in the proof of Lemma 5.5 would
not give satisfactory results and so one would be forced to seek different attacks. In
a similar vein, it would be interesting to find out if there is a PTAS for Monroe’s
system.

In our work, we have focused on PSFs that are strictly decreasing. It would also
be interesting to study PSFs which decrease but not strictly, that is to allow some
equalities. We present results for t-approval PSF’s αt, which are defined as follows:
αt(i) = 1 if i ≤ t and otherwise αt(i) = 0, in Chapter 6.

On a more practical side, it would be interesting to develop our study of truncated
ballots. Our results show that we can obtain very high approximation ratios
even when voters rank only relatively few of their top candidates. For example,
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to achieve 90% approximation ratio for the utilitarian Monroe system in Polish
parliamentary election (K = 460, m = 6000), each voter should rank about 8.7%
of her most-preferred candidates. However, this is still over 500 candidates. It is
unrealistic to expect that the voters would be willing to rank this many candidates.
Thus, how should one organize Monroe-based elections in practice, to balance the
amount of effort required from the voters and the quality of the results?

Finally, going back to our general capacitated disjunctive variant of the problem
of selecting a collective set of items, we note that we do not have any positive results
for it (the negative results, of course, carry over from the more restrictive settings).
Is it possible to obtain some good approximation algorithm for the problem with no
restriction on the capacities of the alternatives (in the utilitarian setting)?
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Chapter 6

Approximating the MaxCover

Problem with Bounded Frequencies
in FPT Time

In this chapter we further study the disjunctive variant of the problem of selecting a
collective set of items. We observe that this variant with the approval utilities (the
utilities that come from the set {0, 1}) is equivalent to MaxCover, the problem
of finding a given-size family of subsets that covers as many elements from the
ground set as possible. The MaxCover problem is well-known to be NP-hard and,
under standard complexity-theoretic assumptions, the best possible polynomial-time
approximation algorithm for it has approximation ratio (1 − 1

e
). Thus, in this

chapter we study exponential-time approximation algorithms for several variants of
the MaxCover problem, with the focus on the variants of the problem in which
frequencies of the elements are bounded, and with the focus on algorithms that run
in FPT time.

6.1 Introduction

Similarly to Chapter 5, in this chapter we focus on the disjunctive variant of the
problem of selecting a collective set of items; here, however, in contrast to Chapter 5
we consider the approval utilities of the agents instead of the Borda-based ones.
We recall that in this variant of the problem we are given a set of agents, a set of
items, and the utility profile of the agents, specifying which agents approve which
items.1 Our goal is to select K items, so that to maximize the number of agents that
approve at least one of the selected items. This variant corresponds to many appealing
real-life problems such as finding winners in Chamberlin–Courant parliamentary
elections [47], finding recommendations for agents [188], selecting activities [75], or

1An agent has utility one for the approved items and utility zero for the disapproved ones.
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allocating students to university courses. For a detailed discussion on the applications
of the model we refer the reader to Chapters 3 and 5.

This variant of the problem of selecting a collective set of items is equivalent to
the MaxCover problem. We recall that in the MaxCover problem we are given a
set N of n elements, a family S = {S1, . . . , Sm} of m subsets of N , and an integer K.
The goal is to find a size-at-most-K subcollection of S that covers as many elements
from N as possible. Indeed, we can identify the agents with the elements and the
subsets with the items. Further, we can say that the subset S contains an element i if
and only if agent i approves of S. This way agent i gets utility one from the selected
set of items if and only if element i is covered by the set of subsets corresponding to
the selected items. Consequently, selecting a set of items to maximize the number
of satisfied agents (the agents that approve at least one item in the selected set) is
equivalent to selecting a set of subsets to maximize the number of covered elements.

We study approximation algorithms for (and parameterized complexity of) the
MaxCover problem. Apart from considering MaxCover in its full generality, we
also study its two specific variants. In the first variant we assume that the frequencies
of the elements are bounded, i.e., that there is some constant p such that each element
appears in at most p sets. A particularly well-known special case of MaxCover with
frequencies upper-bounded by 2 is the MaxVertexCover problem: We recall that
in the MaxVertexCover problem we are given a graph G = (V,E) and the goal
is to find K vertices that, jointly, are incident to as many edges as possible (i.e., the
edges are the elements to be covered and the vertices are the sets; clearly, each edge
“belongs to” exactly two vertices). Nonetheless, even for the frequency upper bound 2,
MaxCover is considerably more general than MaxVertexCover (e.g., the former
allows two sets to have more than one element in common, which is impossible in the
latter2). In the second variant, we assume that the frequencies of the elements are
lower-bounded by some constant p.

These variants correspond to the problem of selecting a collective set of items,
when the agents approve of at most (or at least) a certain number of items. We
believe that these requirements are rational because:

1. We do not expect people to approve of too many candidates/resources/items.
E.g., in Polish parliamentary elections we approve of three candidates.

2. Our protocols can force the agents to approve of a certain number of items.

This chapter differs from the typical approach to the design of approximation
algorithms in that we do not focus on polynomial-time algorithms, but also consider
exponential-time ones. For example, we are interested in FPT approximation
schemes, that is, in approximation algorithms that for each desired approximation

2This difference may not sound particularly significant, but due to it some algorithms for
MaxVertexCover (e.g., an FPT approximation scheme of Marx [196]) do not generalize to the
MaxCover problem.
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ratio β output a β-approximate solution in exponential time, but where the
exponential growth is only with respect to the number K of sets that we allow in the
solution (and where β is considered to be a constant when computing the running
time). In that respect, our work is very close in spirit to the recent study of Croce and
Paschos [70], who—among other results—give moderately exponential time (but not
FPT-time) approximation schemes for the MaxVertexCover problem. (However,
there is also an FPT-time approximation scheme for MaxVertexCover due to
Marx [196].) Such exponential-time approximation algorithms are desirable because
they can achieve much better approximation ratios than the polynomial-time ones,
while still being significantly faster than the currently-known exact algorithms. For
a more detailed review of related work we refer the reader to Section 2.3. Below we
briefly describe our findings and the motivation behind our research.

We obtain the following results (unless we mention otherwise, we always consider
our problems to be parameterized by K, the number of the sets allowed in the
solution). First, building on the approach of Guo et al. [126], in Section 6.3 we
show that the MaxCover problem with bounded frequencies is W[1]-complete.
On the other hand, without the frequency upper-bound assumption, MaxCover
is W[2]-hard and we show that it belongs to W[P]. We also consider several other
parameters and, in particular, we show that MaxCover is W[2]-complete for the
parameter that combines the number of sets we can use in the solution and the
number of elements that we are allowed to leave uncovered. The core of this chapter
is, however, in Section 6.4. There, we show that for each β, 0 < β < 1, there is an FPT
β-approximation algorithm for the MaxCover problem with bounded frequencies.
On the other hand, for the case where each element appears in at least p out of m sets,
we show that the standard MaxCover greedy approximation algorithm (i.e., one
that picks one-by-one those sets that include most not-yet-covered elements) achieves
approximation ratio 1 − e−

pK
m (for the general case, this algorithm’s approximation

ratio is 1 − 1
e
). Finally, we consider a variant of the MaxCover problem where

instead of maximizing the number of covered elements, we minimize the number
of those that remain uncovered. We refer to this problem as the MinNonCovered
problem. Under the assumption of upper-bounded frequencies, we show a randomized
approximation algorithm that for each given β, β > 1, and each given probability
1 − ǫ, outputs in FPT time a β-approximate solution with probability at least 1 − ǫ
(the FPT time is with respect to K, β, and ǫ). Finally, in Section 6.5 we consider
two exponential-time approximation algorithms for the unrestricted MaxCover
problem. Both of these algorithms solve a part of the problem in a greedy way
and a part using some exact algorithm, but they differ in the order in which they
apply each of these strategies. We show a smooth transition between the running
times of these algorithms and their approximation ratios.
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6.2 Definitions

We assume that the reader is familiar with standard notions regarding
(approximation) algorithms, computational complexity theory and parameterized
complexity theory. For a brief review of these concepts we refer the reader to
Chapter 2.

In this section we recall the definitions of the problems that we consider in this
chapter.

Definition 6.1. An instance I = (N,S, K) of the MaxCover problem consists
of a set N of n elements, a collection S = {S1, . . . , Sm} of m subsets of N , and
nonnegative integer K. The goal is to find a subcollection C of S of size at most K
that maximizes ‖

⋃

S∈C S‖.

Definition 6.2. The MinNonCovered problem is defined in the same way as the
MaxCover problem, except the goal is to find a subcollection C such that ‖N‖ −
‖
⋃

S∈C S‖ is minimal.

In the decision variant of MaxCover (of MinNonCovered) we are additionally
given an integer T (an integer T ′) and we ask if there is a collection of up to K sets
from S that cover at least T elements (that leave at most T ′ elements uncovered).

In terms of the optimal solutions, MaxCover and MinNonCovered are
equivalent. Nonetheless, they do differ when considered from the point of view of
approximation. For example, if there were a solution that covered all the n elements,
then a β-approximation algorithm for MaxCover, 0 < β < 1, would be free to
return a solution that covered only βn of them, but a γ-approximation algorithm for
the MinNonCovered problem, γ > 1, would have to provide an optimal solution
that covered all the elements.

Given an instance I of MaxCover (MinNonCovered), we say that an element
e has frequency t if it appears in exactly t sets. We mostly focus on the variants of
MaxCover and MinNonCovered where there is a given constant p such that each
element’s frequency is at most p. We refer to these problems as variants with bounded
frequencies.

MaxVertexCover is a variant of MaxCover with frequencies of the elements
bounded by 2, where we are given a graph G = (V,E), the edges are the elements
to be covered, and vertices define the sets that cover them (a vertex covers all
the incident edges). SetCover and VertexCover are variants of MaxCover and
MaxVertexCover, respectively, where we ask if it is possible to cover all the
elements (all the edges).

For an overview of the related literature on MaxCover and MaxVertexCover
we refer the reader to Section 2.3.
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6.3 Worst-Case Complexity Results

We start our parameterized study of the MaxCover problem by considering its
worst-case complexity. We first consider MaxCover with bounded frequencies. It
follows directly from the literature that the problem is W[1]-hard, and here we show
that it is, in fact, W[1]-complete (unless the frequency bound p is exactly 1; then it
is optimal to simply pick the sets with highest cardinalities).

One of the standard ways of showing W[1]-membership is to give a reduction
to the Short-Nondeterministic-Turing-Machine-Computation problem (shown to be
W[1]-complete for parameter k by Cesati [46]).

Definition 6.3. In the Short-Nondeterministic-Turing-Machine-Computation
problem we are given a single-tape nondeterministic Turing machine M (described
as a tuple including the input alphabet, the work alphabet, the set of states, the
transition function, the initial state and the accepting/rejecting states), a string x
over M ’s input alphabet, and an integer k. The question is whether there is an
accepting computation of M that accepts x within k steps.

Theorem 6.1. For each constant p greater than 2, the MaxCover problem with
frequencies upper-bounded by p is W[1]-complete (when parameterized by the number
of sets in the solution).

Proof. The hardness follows directly from the W[1]-hardness of
the MaxVertexCover problem [126]. We prove membership in
W[1] by reducing MaxCover with bounded frequencies to the
Short-Nondeterministic-Turing-Machine-Computation problem.

Let p be some fixed constant and let I = (N,S, K, L) be our input instance, where
N is a set of elements, S = {S1, . . . , Sm} is a family of subsets of N (each element
from N appears in at most p sets from S), and K and L are two integers. This is
the decision variant of the problem, thus we have L in the input; we ask if there is
a collection of up to K sets from S that jointly cover at least L elements. W.l.o.g.,
we assume that K ≥ m. We form single-tape nondeterministic Turing machine M to
execute the following algorithm (on empty input string); the idea of the algorithm is
to employ the standard inclusion-exclusion principle:

1. Guess the indices i1, . . . , iK of K sets from S.

2. Set T = 0.

3. For each subset A of {i1, . . . , iK} of size up to p, do the following: If ‖A‖ is odd,
add ‖

⋂

i∈A Si‖ to T , and otherwise subtract ‖
⋂

i∈A Si‖ from T .

4. If T ≥ L then we accept and otherwise we reject.
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It is easy to see that this algorithm can indeed be implemented on a single-tape
nondeterministic Turing machine with a sufficiently large (but polynomially bounded)
work alphabet and state space. The only issue that might require a comment is
the computation of ‖

⋂

i∈A Si‖. Since sets A contain at most p elements, we can
precompute these values and store them in M ’s transition function.

The correctness of the algorithm follows directly from the inclusion-exclusion
principle and the fact that each element appears in at most p sets:

‖Si1 ∪ Si2 ∪ · · · ∪ SiK‖ =
∑

ℓ∈[K]

‖Siℓ‖ −
∑

ℓ′∈[K]
ℓ′′∈[K]
ℓ′ 6=ℓ′′

‖Siℓ′ ∩ Siℓ′′‖ +
∑

ℓ′∈[K]
ℓ′′∈[K]
ℓ′′′∈[K]
ℓ′ 6=ℓ′′
ℓ′ 6=ℓ′′′
ℓ′′ 6=ℓ′′′

‖Siℓ′ ∩ Siℓ′′ ∩ Siℓ′′′‖ − · · ·

In general, the above formula should include intersections of up to K sets. However,
since in our case each element appears in at most p sets, the intersection of more than
p sets are always empty. This shows that the algorithm is correct and concludes the
proof.

For the sake of completeness, we mention that both the unrestricted variant of
the problem and the one where we put a lower bound on each element’s frequency
are W[2]-hard.

Theorem 6.2. For each constant p, p ≥ 1, MaxCover where each element belongs
to at least p sets if W[2]-hard.

Proof. To show W[2]-hardness, we give a reduction from SetCover. In the SetCover
problem we ask whether there exist K subsets that cover all the elements (we give a
reduction for the parameter K). Let I = (N,S) be an input instance of SetCover.
W.l.o.g., we can assume that each element from N belongs to at least one set in S.
We form an instance I ′ of MaxCover which is identical to I, except (a) for each
e ∈ N , we modify S to additionally include p−1 copies of set {e}, and (b) we run the
MaxCover algorithm asking whether the maximal number of the elements covered
by K subsets is at least equal to ‖N‖. Clearly, in I ′ each element belongs to at least
p sets and I ′ is a yes-instance of MaxCover if and only if I is a yes-instance of
SetCover.

So far, we were not able to show that MaxCover (even with lower-bounded
frequencies) is in W[2]. Nonetheless, it is quite easy to show that the problem belongs
to W[P].

Below we present reduction from the Bounded-Nondeterministic-Turing-Machine-Computation
problem, the problem that is defined similarly to the
Short-Nondeterministic-Turing-Machine-Computation problem, but in addition
we are also given an integer m, and we ask if machine M accepts its input within m
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steps, of which at most k are nondeterministic. Cesati has shown that this problem
is W[P]-complete [46].

Theorem 6.3. For each constant p, p ≥ 1, MaxCover where each element belongs
to at least p sets is in W[P] (when parameterized by the number of sets in the solution).

Proof. We give a reduction from MaxCover to the
Bounded-Nondeterministic-Turing-Machine-Computation problem. On input
I = (N,S, K, T ), where N , S, and K are as usual and T is the lower bound on
the number of elements that we should cover, we produce a machine that on empty
input executes the following algorithm:

1. It nondeterministically guesses up to K names of sets from S and writes these
names on the tape (each name of a set from S is a single symbol).

2. Deterministically, for each name of the set produced in the previous step, the
machine writes on the tape the names of those elements from this set that have
not been written on the tape yet.

3. The machine counts the number of names of elements written on the tape. If
there were at least T of them, it accepts. Otherwise it rejects.

It is easy to see that we can produce a description of such a machine in polynomial
time with respect to |I|. Further, it is clear that its nondeterministic running time
is bounded by some polynomial of |I| and that it makes at most k nondeterministic
steps.

It is quite interesting to also consider MaxCover with other parameters. First,
recall that for parameter T , the number of elements that we should cover, Bläser
has shown that MaxCover is in FPT [32]. What can we say about parameter
T ′ = n − T , i.e., the number of elements we can leave uncovered (this, in essence,
means considering the MinNonCovered problem, but for the worst-case setting
it is more convenient to speak of the parameter T ′)? In this case, the problem is
immediately seen to be para-NP-complete (that is, the problem is NP-complete even
for a constant value of the parameter).

Corollary 6.4. The MaxCover problem is para-NP-complete when parameterized
by the number T ′ of elements that can be left uncovered. This holds even if each
element’s frequency is upper-bounded by some constant p, p ≥ 2.

Proof. The following trivial reduction from SetCover suffices: Given an input instance
I = (N,S, K), output an instance (N,S, K, 0), i.e., an identical one, where we require
that the number of elements left uncovered is 0. Since the reduction is clearly correct
and works for the constant value of the parameter, we get pare-NP-completeness. To
obtain the result for upper-bounded frequencies, simply use VertexCover instead of
SetCover in the reduction.
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parameter worst-case complexity of MaxCover

K
W[2]-hard, in W[P]
W[1]-complete for upper-bounded frequencies

T FPT [32]
(K, T ) FPT [32]

T ′ para-NP-complete
(K, T ′) W[2]-complete

Table 6.1: Parameterized worst-case complexity results for unrestricted MaxCover
and MinNonCovered. The parameters are as follows: K is the number of sets we
can use in the solution, T is the number of elements we are required to cover, and
T ′ = n− T is the number of elements we can leave uncovered.

However, if we consider the joint parameter (K, T ′), then the MaxCover problem
becomes W[2]-complete.

Theorem 6.5. MaxCover is W[2]-complete when parameterized by both the number
K of sets that can be used in the solution and the number T ′ of elements that can be
left uncovered.

Proof. We obtain W[2]-hardness by simply observing that the reduction given
in Corollary 6.4 suffices. To prove W[2]-membership, we give a reduction from
MaxCover (with parameter (K, T ′)) to SetCover (with parameter K).

Let I = (N,S, K, T ′) be an input instance of MaxCover. We form an instance
I ′ = (N ′,S ′, K + T ′) of SetCover as follows. Let N ′ = N ∪ D′ ∪ D′′, where D′ =
{d′1, . . . , d

′
K} and D′′ = {d′′1, . . . , d

′′
T ′}. For each set S ∈ S and each d′i ∈ D

′, we set
S(d′i) = S ∪ {d′i}. We set S ′ = S ′1 ∪ S

′
2, where (a) S ′1 = {S(d

′
i) : (S ∈ S) ∧ (d

′
i ∈ D

′)},
and (b) S ′2 = {{e, d

′′
i } : e ∈ N, d

′′
i ∈ D

′′}.
It is easy to see that if I is a yes-instance of MaxCover then I ′ is a yes-instance

of SetCover: If for I it is possible to cover n − T ′ elements of N using K sets, then
for I it is possible to (a) use K sets from S ′1 to cover n − T ′ elements from N and
all the elements from D′, and (b) use T ′ sets from S ′2 to cover all the elements from
D′′ and the remaining T ′ elements from N . For the other direction, assume that I ′

is a yes-instance of SetCover. However, covering the elements from D′ requires one
to use at least K sets from S ′1 (which correspond to the sets from S) and covering
the elements in D′′ requires at least T ′ sets from S ′2. Since each set from S ′2 covers
exactly one element from N , it is easy to see that if I ′ is a yes-instance, then it must
be possible to cover at least ‖N‖ − T ′ elements from N using K sets from S.

We summarize our worst-case complexity results in Table 6.1. Not surprisingly,
using the parameter T ′ (i.e., in essence, considering the MinNonCovered problem)
leads to higher computational complexity than using parameter T (i.e., in essence,
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considering the MaxCover problem). For the parameter K, the exact complexity
of unrestricted MaxCover remains open.

6.4 Algorithms for the Case of Bounded Frequencies

In this section we present our approximation algorithms for the MaxCover
and MinNonCovered problems, for the case where we either upper-bound or
lower-bound the frequencies of the elements. We first consider the MaxCover
problem, both with upper-bounded frequencies and with lower-bounded frequencies,
and then move on to the MinNonCovered problem with upper-bounded
frequencies.

6.4.1 The MaxCover Problem with Upper Bounded

Frequencies

We will now present an FPT approximation scheme for MaxCover with
upper-bounded frequencies. While Marx [196] has already shown an FPT
approximation scheme for MaxVertexCover, his approach cannot be directly
generalized to the MaxCover problem with bounded frequencies (although there
are some similarities between the algorithms). Interestingly, our algorithm for
MaxCover, when applied to the MaxVertexCover problem, is considerably
faster than the algorithm of Marx [196]. We will give a brief comparison of the
two algorithms after presenting our approach.

Intuitively, our algorithm works in a very simple way. Given an instance
I = (N,S, K) of MaxCover (with frequencies bounded by some constant p) and
a required approximation ratio β, the algorithm simply picks some of the sets from
S with highest cardinalities (the exact number of these sets depends only on K,
p, and β), tries all K-element subcollections of sets from this group, and returns
the best one. This approach is formalized as algorithm BoundAndExplore in
Figure 6.1. The following theorem explains that indeed the algorithm achieves a
required approximation ratio.

Theorem 6.6. For each instance I = (N,S, K) of MaxCover where each element
from N appears in at most p sets in S, the algorithm BoundAndExplore from

Figure 6.1 outputs a β-approximate solution in time poly(n,m) ·
( 2pK

(1−β)
+K

K

)

.

Proof. It is immediate to establish the running time of the algorithm. We show that
its approximation ratio is, indeed, β.

Consider some input instance I. Let C be the solution returned by the algorithm
BoundAndExplore and let C∗ be some optimal solution. Let c be an arbitrary
function such that for each element e such that ∃S∈C∗ : e ∈ S, c(e) is some S ∈ C∗

such that e ∈ S. We refer to c as the coverage function. Intuitively, the coverage
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Parameters:
(N,S,K) — input MaxCover instance
p — bound on the number of sets each element can belong to
β — the required approximation ratio of the algorithm

1 A ← ⌈ 2pK
(1−β) +K⌉ sets from S with the highest cardinalities ;

2 return K-element subset of A that covers most elements ;

Figure 6.1: The algorithm BoundAndExplore for the MaxCover problem with
frequency upper bounded by p.

function assigns to each element covered under C∗ (by, possibly, many different sets)
the particular set “responsible” for covering it. We say that S covers e if and only if
c(e) = S. Let OPT denote the number of elements covered by C∗.

We will show that C covers at least βOPT elements. Naturally, the reason why
C might cover fewer elements than C∗ is that some sets from C∗ may not be present
in A, the set of the subsets considered by the algorithm. We will show an iterative
procedure that starts with C∗ and, step by step, replaces those members of C∗ that
are not present in A with the sets from A. The idea of the proof is to show that
each such replacement decreases the number of covered element by at most a small
amount.

Let ℓ = ‖C∗\A‖. Our procedure will replace the ℓ sets from C∗ that do not appear
in A with ℓ sets from A. We renumber the sets so that C∗ \ A = {S1, . . . , Sℓ}. We
will replace the sets {S1, . . . , Sℓ} with sets {S ′1, . . . , S

′
ℓ} defined through the following

algorithm. Assume that we have already computed sets S ′1, . . . , S
′
i−1 (thus for i = 1 we

have not yet computed anything). We take S ′i to be a set fromA\(C∗∪{S ′1, . . . , S
′
i−1})

such that the set (C∗\{S1, . . . , Si})∪{S
′
1, . . . , S

′
i} covers as many elements as possible.

During the i’th step of this algorithm, after we replace Si with S ′i in the set (C∗ \
{S1, . . . , Si−1}) ∪ {S ′1, . . . , S

′
i−1}, we modify the coverage function as follows:

1. for each element e such that c(e) = Si, we set c(e) to be undefined;

2. for each element e ∈ S ′i, if c(e) is undefined then we set c(e) = S ′i.

After replacing Si with S ′i, it may be the case that fewer elements are covered by
the resulting collection of sets. Let xi denote the difference between the number of
elements covered by (C∗ \ {S1, . . . , Si}) ∪ {S

′
1, . . . , S

′
i} and by (C∗ \ {S1, . . . , Si−1}) ∪

{S ′1, . . . , S
′
i−1} (or 0, if by a fortunate coincidence there are more elements covered

after replacing Si with S ′i). By the construction of the set A and the fact that
Si /∈ A, each set from A contains more elements than Si. Thus we infer that every
set from A \ (C∗ ∪ {S ′1, . . . , S

′
i−1}) must contain at least xi elements covered by (C∗ \

{S1, . . . , Si−1}) ∪ {S ′1, . . . , S
′
i−1}. Indeed, if some set S ′ ∈ A \ (C∗ ∪ {S ′1, . . . , S

′
i−1})

contained fewer than xi elements covered by (C∗ \ {S1, . . . , Si−1})∪ {S ′1, . . . , S
′
i−1}, S

′

126



would have to cover at least

‖S ′‖ − (xi − 1) ≥ ‖Si‖ − (xi − 1)

elements uncovered by (C∗ \ {S1, . . . , Si−1}) ∪ {S ′1, . . . , S
′
i−1}. But this would mean

that after replacing Si with S ′, the difference between the number of covered elements
would be at most (xi − 1).

Let C∗2 denote the set obtained after the above-described ℓ iterations. Since, for
each i, the set (C∗ \ {S1, . . . , Si−1}) ∪ {S ′1, . . . , S

′
i−1} is a subset of C∗ ∪ C∗2 , we know

that, for each i, each set from A \ (C∗ ∪ {S ′1, . . . , S
′
ℓ}) (there is ‖A‖ −K such sets)

must contain at least xi elements covered by C∗ ∪ C∗2 (there is at most 2OPT such
elements). Since each element is contained in at most p sets, we infer that for each
i, xi(‖A‖ −K) ≤ 2OPTp and, as a consequence, xi ≤

2OPTp
‖A‖−K = 2OPTp(1−β)

2pK
. Thus we

conclude that (recall that ℓ ≤ K):

ℓ
∑

i=1

xi ≤ 2OPTpK
(1− β)

2pK
= (1− β)OPT

That is, after our process of replacing the sets from C∗ that do not appear in A with
sets from A, at most (1− β)OPT elements fewer are covered. This means that there
are K sets in A that together cover at least βOPT elements. Since the algorithm tries
all size-K subsets of A, it finds a solution that covers at least βOPT elements.

Our analysis is tight up to the constant factor of 3
4
. Below we present a family

of parameters β and instances of MaxCover with upper-bounded frequencies on
which our algorithm achieves approximation ratio (3

4
+ 3

4
β)

Proposition 6.7. There is a family I of pairs (I, β) where I is an instance of
MaxCover with bounded frequencies and β is a real number, 0 < β < 1, such that for
each (I, β) ∈ I, if we use the algorithm BoundAndExplore from Figure 6.1 to find
a β-approximate solution for I, it outputs an at-most ((3

4
+ 3

4
β)OPT(I))-approximate

one.

Proof. We describe how to construct pairs (I, β) from the set I. We let p be the
bound of the frequencies of elements in I and we let K be the number of sets that
we can use in the solution. We choose p and K to be sufficiently large, and β to be
sufficiently close to 1 (the exact meaning of “sufficiently large” and “sufficiently close
to 1” will become clear at the end of the proof; elements of I differ in the particular
choices of p, K, and β). We require that 1

1−β is an integer and that p divides K.
We now proceed with the construction of instance I = (N,S, K) for our choice of

p, K, and β. We set x = 2pK
(1−β) +K; x is the number of highest-cardinality sets from S

that the algorithm BoundAndExplore will consider on instance I. By our choice
of β and K, x is an integer and is divisible by p. We form N , the set of elements
to be covered, to consist of two disjoint subsets, N1 and N2, such that ‖N1‖ =

(

x
p

)
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and ‖N2‖ =
(

x
p

)

Kp
x

. We form the family S to consist of two subfamilies, S1 and S2,
defined as follows:

1. There are x subsets in S1, S1 = {S1, . . . , Sx}. We form the sets in S1 so
that: (a) sets from S1 are subsets of N1, (b) each element from N1 belongs to
exactly p different sets from S1, and (c) no two elements from N1 belong to
the same p sets from S1. Specifically, we build sets (S1, . . . , Sm) as follows. Let
f be some one-to-one mapping between elements in N1 and p-element subsets
of [x]. For each e ∈ N1, e belongs exactly to the sets Si1 , . . . , Sip such that
f(e) = {i1, . . . , ip}. Note that each set Si ∈ S1 contains exactly

(

x−1
p−1
)

=
(

x
p

)

p
x

elements.

2. S2 contains K sets, each covering exactly
(

x
p

)

p
x

different elements from N2 (and
no other elements) so that no two sets from S2 overlap.

This completes our description of I. It is easy to see that each optimal solution for
I covers exactly K

(

x
p

)

p
x

elements; each set contains exactly
(

x
p

)

p
x

elements and, there
are K that are pairwise disjoint (for example the K sets in S2).

Nonetheless, the algorithm BoundAndExplore is free to choose any x sets from
S to include within A, the collection of sets from which it forms the solution, and, in
particular, it is free to pick the x sets from S1.3

Let us fix some arbitrary collection S ′ of K sets from S1. For each j, 0 ≤ j ≤ K,
let h(j) be the number of elements from N1 that belong to exactly j sets in S ′.
The number of elements covered by S ′ is exactly K

(

x
p

)

p
x
−
∑K

j=2(j − 1)h(j). How
to compute h(j)? Using mapping f , it suffices to count the number of p-element
subsets of [x] that contain the indices of exactly j sets from S ′. In effect, we have
h(j) =

(

K
j

)(

x−K
p−j
)

. We upper bound the number of sets covered by S ′ with:

K

(

x

p

)

p

x
− h(2) = K

(

x

p

)

p

x
−

(

K

2

)(

x−K

p− 2

)

.

Consequently, on instance I the algorithm achieves the following approximation

ratio
K(xp)

p
x
−(K2 )(

x−K
p−2 )

K(xp)
p
x

, which is equal to:

1−

(

K
2

)(

x−K
p−2
)

K
(

x
p

)

p
x

= 1−

(

K
2

)(

x−K
p

) p(p−1)
(x−K−p+2)(x−K−p+1)

K
(

x
p

)

p
x

.

Now, if x is large in comparison with p and K (which happens for sufficiently large

β), then
(x−K

p )
(xp)

≈ 1. Also, for sufficiently large x and p (and for x ≫ p,K) we have

3We could also ensure that each set in S1 contained one of x
p

additional elements, forcing the
algorithm to pick exactly the sets from S1, but that would obscure the presentation of our argument.
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p
x−K−p+2

≈ p
x

and p−1
x−K−p+1

≈ p
x
. Finally, for sufficiently large K we have

(

K
2

)

≈ K2

2
.

Thus, for large values of β, K, and p, we can approximate the above ratio with the
following expression:

1−
K2

2
· p

2

x2

K p
x

= 1−
1

2
·

Kp
2pK
(1−β) +K

≈ 1−
1

2
·
Kp
2pK
(1−β)

= 1−
1

4
· (1− β) =

3

4
+

3

4
β.

This completes our argument.

Let us now compare our algorithm to that of Marx [196] for the case of
MaxVertexCover. Briefly put, the idea behind Marx’s algorithm is as follows:
Consider vertices in the order of nonincreasing degrees. If the degree of the vertex
with the highest degree is large enough, then K vertices with the highest degrees
already cover sufficiently many edges to give a desired approximate solution. If the
highest degree is not large enough, then there is an exact, color-coding based, FPT
algorithm that solves the problem optimally. Our algorithm is similar in the sense
that we also focus on a group of sets with highest cardinalities (sets’ cardinalities in
MaxCover correspond to vertex degrees in MaxVertexCover). However, instead
of simply picking K largest ones, we make a careful decision as to which exactly to
take.4 Further, our algorithm has a better running time than that of Marx. To
achieve approximation ratio β, the algorithm presented by Marx has running time at

least Ω(( K
3

1−β )
( K3

1−β
)). For us, the exponential factor in the running time is

( 2pK
(1−β)

+K

K

)

.
On the other hand, we should point out that Marx’s algorithm’s running time stems
mostly from the exact part and the algorithm given there is interesting in its own
right.

6.4.2 The MaxCover Problem with Lower-Bounded

Frequencies

Let us now move on to the case of MaxCover with lower-bounded frequencies. It
turns out that in this case the standard greedy algorithm, given here as the algorithm
Greedy in Figure 6.2, can—for appropriate inputs—achieve a better approximation
ratio than in the unrestricted case.

Theorem 6.8. The algorithm Greedy from Figure 6.2 is a polynomial-time (1 −

e−
pK
m )-approximation algorithm for the MaxCover problem with frequency lower

bounded by p, on instances with m elements where we can pick up to K sets.

4Indeed, it is possible to build an example where picking sets with highest cardinalities would
not work. This trick works in Marx’s algorithm because he considers graphs and, thus, can bound
the negative effect of covering the same element by different sets; in the MaxCover problem this
seems difficult to do.
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Parameters:
(N,S,K) — input MaxCover instance
p — lower bound on the number of the sets each element belongs to

1 C = {};
2 for i← 1 to K do
3 Cov ← {e ∈ N : ∃S∈Ce ∈ S} ;
4 Sbest(K) ← argmaxS∈{S1,...,Sm}\C {e ∈ N \ Cov : e ∈ S}‖;

5 C ← C ∪ {Sbest(K)}

6 return C

Figure 6.2: The algorithm Greedy for the MaxCover problem with frequency lower
bounded by p.

Proof. The algorithm clearly runs in polynomial time and so we show it’s
approximation ratio. Let I = (N,S, K) be an input instance of MaxCover and
let p be an integer such that each element from N belongs to at least p sets from S.

We prove by induction that for each i, 0 ≤ i ≤ K, after the i’th iteration of
the algorithm’s main loop, the number of uncovered elements is at most n(1 − p

m
)i.

Naturally, for i = 0 the number of uncovered elements is exactly n, the total number
of elements. Suppose that the inductive assumption holds for some (i−1), 1 ≤ i < K
and let x be the number of elements still uncovered after the (i− 1)-th iteration (by
the inductive assumption, we have x ≤ n(1− p

m
)i−1). Since each element belongs to at

least p sets and neither of the sets containing the uncovered elements is yet selected,
by the pigeonhole principle there is a not-yet-selected set that contains at least ⌈x p

m
⌉

of the uncovered elements. In consequence, the number of elements still uncovered
after the i-th iteration is at most:

x− x
p

m
= x

(

1−
p

m

)

≤ n
(

1−
p

m

)i

.

Thus after K iterations the number of uncovered elements is at most:

n
(

1−
p

m

)K

= n
(

1−
p

m

)
m
p
· pK
m
≤ ne−

pK
m .

Since the number of covered elements in the optimal solution is at most n, the
algorithm’s approximation ratio is (1− e−

pK
m ).

Naturally, the standard approximation ratio of (1 − e−1) of the greedy algorithm
still applies and we get the following corollary.

Corollary 6.9. The algorithm Greedy from Figure 6.2 gives approximation

guarantee of (1− e−max(pK
m
,1)).

The analysis given in Theorem 6.8 is tight. Below we present a family of instances
on which the algorithm reaches exactly the promised approximation ratio.
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Proposition 6.10. For each α, α ≥ 1, there is an instance I(α) of MaxCover
(with m sets. element frequency lower-bounded by p, K sets to use, and pK

m
= α) such

that on input I(α), the algorithm Greedy from Figure 6.2 achieves approximation

ratio no better than (1− e−
pK
m ).

Proof. Let us fix some α, α > 1. We choose integers p, K, and m so that: (a) p = αm
K

,
(b) m≫ K (and, thus, p≫ K), and (c) p, m, and K are sufficiently large (the exact
meaning of “sufficiently large” will become clear at the end of the proof).

We form instance I(α) = (N,S, K) as follows. We let N = N1 ∪ · · · ∪ NK ,
where N1, . . . , NK are pairwise-disjoint sets, each of cardinality

(

m−K
p−1
)

(thus ‖N‖ =

K
(

m−K
p−1
)

). The family S consists of two subfamilies, S1 and S2:

1. S1 consists of m − K sets, S1, . . . , Sm−K , constructed as follows. For each i,
1 ≤ i ≤ K, let fi be some one-to-one mapping fromNi to (p−1)-element subsets
of [m−K]. For each i, 1 ≤ i ≤ K, if e ∈ Ni and fi(e) = {j1, . . . , jp−1} then we
include e in sets Sj1, Sj2, . . . , Sjp−1. Note that for each Sℓ in S2, ‖Sℓ‖ = K

(

m−K
p−2
)

;

for each i, 1 ≤ i ≤ K, Sℓ contains
(

m−K
p−2
)

elements from Ni; to see this, it suffices
to count how many (p− 1)-elements subsets of [m−K] there are that contain
j.

2. S2 = {N1, . . . , NK}.

Note that, by our construction, each element from N belongs to exactly p sets from
S (p− 1 from S1 and one from S2).

Naturally, the K disjoint sets from S2 form the optimal solution and cover all
the elements. We will now analyze the operation of the algorithm Greedy on input
I(α).

We claim that the algorithm Greedy will select sets from S1 only. We show
this by induction. Fix some ℓ, 1 ≤ ℓ ≤ K, and suppose that until the beginning
of the ℓ’th iteration the algorithm chose sets from S1 only. This means that, for
each i, 1 ≤ i ≤ K, each set Ni contains exactly

(

m−K−ℓ
p−1

)

uncovered elements. Why
is this the case? Assume that the algorithm selected sets Sj1, . . . , Sjℓ. An element
e ∈ Ni is uncovered if and only if fi(e) ∩ {j1, . . . , jℓ} = ∅;

(

m−K−ℓ
p−1

)

is the number of
(p− 1)-element subsets of [m−K] that do not contain any members of {j1, . . . , jℓ}.
So, if in the ℓ’th iteration the algorithm chooses some set from S2, it would cover these
additional

(

m−K−ℓ
p−1

)

elements. On the other hand, if it chose a set from S1, it would

additionally cover Kx elements, where x =
(

m−K−ℓ
p−1

)

−
(

m−K−ℓ−1
p−1

)

. By our choice, we

have pK > m and, thus, K > m−K
p−1 . We can now see that the following holds:

Kx = K

((

m−K − ℓ

p− 1

)

−

(

m−K − ℓ− 1

p− 1

))

= K

(

m−K − ℓ− 1

p− 2

)

=
K(p− 1)

m−K − ℓ

(

m−K − ℓ

p− 1

)

≥ K
p− 1

m−K

(

m−K − ℓ

p− 1

)

>

(

m−K − ℓ

p− 1

)

.
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That is, in the ℓ’th iteration the algorithm Greedy picks a set from S1. This proves
our claim.

Let us now assess the approximation ratio the algorithm Greedy achieves on
I(α). By the above reasoning, we know that it leaves

(

m−2K
p−1

)

uncovered elements in
each Ni, 1 ≤ i ≤ K. Thus the fraction of the uncovered elements is bounded by the
following expression (see some explanation below):

K
(

m−2K
p−1

)

K
(

m−K
p−1
) =

(m− 2K)!(m− p−K + 1)!

(m−K)!(m− p− 2K + 1)!

=
(m− p−K + 1)(m− p−K) . . . (m− p− 2K)

(m−K)(m−K − 1) . . . (m− 2K + 1)

≥

(

m− 2K − p

m− 2K + 1

)K

=

(

1−
p+ 1

m− 2K + 1

)K

≈ e−
pK
m .

The first inequality holds by iterative application of the simple observation that if
1 ≤ x ≤ y then x−1

y−1 ≤
x
y
. To obtain the final estimate, we observe that for sufficiently

large p and m (where m ≫ K), we have p+1
m−2K+1

≈ p
m

= α
K

. For sufficiently large

K, (1 − α
K
)K ≈ e−α = e−

pK
m (by the fact that p = αm

K
). Since the optimal solution

covers all the elements, we have that the algorithm Greedy on input I(α) achieves
approximation ratio no better than 1− e−

pK
m .

Theorem 6.8 has some interesting implications. Let us consider a version of the
MaxCover problem in which the ratio p

m
between the frequency lower bound p and

the number of sets m is constant. This problems arises, e.g., if we use approval-based
variant of the Chamberlin-Courant’s election system with a requirement that each
voter must approve at least some constant fraction (e.g., 10%) of the candidates.
There exists a polynomial-time approximation scheme (PTAS) for this version of the
problem.

Definition 6.4. For each α, 0 < α ≤ 1, let α-MaxCover be a variant of
MaxCover for instances that satisfy the following conditions: If p is a lower-bound
on the frequencies of the elements and there are m sets, then p

m
≥ α.

Theorem 6.11. For each α, 0 < α ≤ 1, there is a PTAS for α-MaxCover.

Proof. Fix some α, 0 < α ≤ 1. Let I = (N,S, K) be input instance of α-MaxCover
and let β be our desired approximation ratio. We let m be the number of set in S
and p be the lower bound on element frequencies. By definition, we have p

m
≥ α.

If K > −m
p
ln(1 − β) then we can run the algorithm Greedy from Figure 6.2 and,

by Theorem 6.8, we obtain approximation ratio β. Otherwise, K is bounded by
a constant and enumerating all K-element subsets of S gives a polynomial exact
algorithm for the problem.
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The exact complexity of α-MaxCover is quite interesting. Using the algorithm
Greedy, we show that it belongs to the second level of Kintala and Fisher’s
β-hierarchy of limited nondeterminism [165]. In effect, it is unlikely that the problem
is NP-complete.

Definition 6.5 (Kintala and Fisher [165]). For each positive integer k, βk is the class
of decision problems that can be solved in polynomial time, using additionally at most
O(logk n) nondeterministic bits (where n is the size of the input instance).

It is easy to see that β1 is simply the class of problems solvable in polynomial time;
we can simulate O(logn) bits of nondeterminism by trying all possible combinations.
However, class β2 appears to be greater than P but smaller than NP (of course, since
we do not know if P 6= NP, this is only a conjecture).

Theorem 6.12. For each α, 0 < α < 1, the decision variant of α-MaxCover is in
β2.

Proof. Fix some α, 0 < α < 1. We will give a β2-algorithm for α-MaxCover.
Let I = (N,S, K, T ) be an instance of α-MaxCover (recall that T is the number
of elements we are required to cover). We let p be the lower bound on elements’
frequencies in I, we let m = ‖S‖, and we let n = ‖N‖. By definition, we have p

m
≥ α.

W.l.o.g., we assume that ‖I‖ ≥ n+m.
Our algorithm works as follows. If K > 1

α
ln(n) then we run the algorithm

Greedy and output its solution. Otherwise, we guess K names of the sets from
S and check if these sets cover at least T elements. If so, we accept and otherwise we
reject on this computation path.

First, it is clear that the algorithm uses at most O(log2 |I|) nondeterministic bits.
We execute the nondeterministic part of the algorithm only if K < 1

α
ln(n) ≤ 1

α
ln |I|

and each set’s name requires at most logm ≤ log |I| bits. Altogether, we use at most
O(log2 |I|) bits of nondeterminism.

Second, we need to show the correctness of the algorithm. Clearly, if the algorithm
uses the nondeterministic part then certainly it finds an optimal solution. Consider
then that the algorithm uses the deterministic part, based on the algorithm Greedy.
In this case we know that K > 1

α
ln(n). Thus, the approximation ratio of the

algorithm Greedy is greater than: 1 − e−αK > (1 − e− lnn) = 1 − 1
n
. That is,

the algorithm returns a solution that covers more than OPT(1 − 1
n
) elements and,

since OPT ≤ n and the number of covered elements is integer, the algorithm must
find an optimal solution.

6.4.3 The MinNonCovered Problem

In this section we consider the MinNonCovered problem, that is, a version of
MaxCover where the goal is to minimize the number of elements left uncovered.
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Parameters:
(N,S,K) — input MinNonCovered instance
p — bound on the number of sets each element can belong to
β — the required approximation ratio of the algorithm
ǫ — the allowed probability of achieving worse than β approximation ratio

1 RecursiveSearch(s, partial):
2 if s = 0 then

3 return partial ;
4 else

5 e← randomly select element not-yet covered by
6 partial ;

7 best(K) ← ∅;
8 foreach S ∈ S such that e ∈ S do

9 sol ← RecursiveSearch((s− 1), partial ∪ {S});

10 if sol is better than best(K) then

11 best(K) ← sol ;

12 return best(K);

13

14 Main():

15 best(K) = ∅;

16 for i← 1 to

⌈

− ln ǫ/
(

β−1
β

)K
⌉

do

17 sol = RecursiveSearch(K, ∅);

18 if sol is better than best(K)
then

19 best(K) ← sol ;

20 return best(K);

Figure 6.3: The algorithm RandRecursiveSearch for the MinNonCovered problem
with frequency upper bounded by p.

In this case we give a randomized FPT approximation scheme (presented as the
algorithm RandRecursiveSearch in Figure 6.3).

Intuitively, the idea behind our approach is to extend a simple bounded-search-tree
algorithm for SetCover with upper-bounded frequencies to the case of MaxCover.
An FPT algorithm for SetCover with frequencies upper-bounded by some constant
p could work recursively as follows: If there still is some uncovered element e, then
nondeterministically guess one of the at-most-p sets that contain e and recursively
solve the smaller problem. The recursion tree would have at most K levels and pK

leaves. The same approach does not work directly for MaxCover because we do not
know which element e to pick (in SetCover the choice is irrelevant because we have
to cover all the elements). However, it turns out that if we choose e randomly then,
in expectation, we achieve a good result.

Theorem 6.13. The algorithm RandRecursiveSearch from Figure 6.3 outputs
a β-approximate solution for the MinNonCovered problem with probability (1− ǫ).
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The time complexity of the algorithm is

poly(n,m) ·

⌈

− ln ǫ/

(

β − 1

β

)K
⌉

· pK

.

Proof. Let I = (N,S, K) be our input instance of the MinNonCovered problem
and fix some β, β > 1, and ǫ, 0 < ǫ < 1. Each element from N appears in at most p
sets from S.

By ps we denote the probability that a single invocation of the function
RecursiveSearch (from the Main function) returns a β-approximate solution. We

will first show that ps is at least
(

β−1
β

)K

, and then we will invoke the standard

argument that if we make
⌈

− ln ǫ
ps

⌉

calls to RecursiveSearch, then taking the best

output gives a β-approximate solution with probability (1− ǫ).
Let C∗ be some optimal solution for I, letN∗ ⊆ N be the set of elements covered by

C∗, and let U∗ = N \N∗ be the set of the remaining, uncovered elements. Consider a
single call to RecursiveSearch from the “for” loop within the function Main. Let
Ev denote the event that during such a call, at the beginning of each recursive
call, at least a β−1

β
fraction of the elements not covered by the constructed solution

(i.e., the solution denoted partial in the algorithm) belongs to N∗. Note that if the
complementary event, denoted Ev , occurs, then RecursiveSearch definitely returns
a β-approximate solution. Why is this the case? Consider some tree of recursive
invocations of RecursiveSearch, and some invocation of RecursiveSearch within
this tree. Let X be the number of elements not covered by partial at the beginning of
this invocation. If at most β−1

β
X of the not-covered elements belong to N∗, then—of

course—the remaining at least 1
β
X of them belong to U∗. In other words, then we

have 1
β
X ≤ ‖U∗‖ and, equivalently, X ≤ β‖U∗‖. This means that partial already is

a β-approximate solution, and so the solution returned by the current invocation of
RecursiveSearch will be β-approximate as well. (Naturally, the same applies to the
solution returned at the root of the recursion tree.)

Now, consider the following random process P. (Intuitively, P models a particular
branch of the RecursiveSearch recursion tree.) We start from the set N ′ of all the
elements, N ′ = N , and in each of the next K steps we execute the following procedure:
We randomly select an element e from N ′ and if e belongs to N∗, we remove from
N ′ all the elements covered by the first5 set from C∗ that covers e. Let popt be the
probability that a call to RecursiveSearch (within Main) finds an optimal solution
for I, and let popt|Ev be the same probability, but under the condition that Ev takes
place. It is easy to see that popt is greater or equal than the probability that in each
step P picks an element from N∗. Let phit be the probability that in each step P

5We assume that the sets in C∗ are ordered in some arbitrary way.
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Parameters:
(N,S,K) — input MaxCover instance
X — the parameter of the algorithm
A(·) — an exact algorithm for MaxCover (returns the set of sets to be used in the

cover)
1 C = {};
2 for i← 1 to X do
3 Cov ← {e ∈ N : ∃S∈Ce ∈ S} ;
4 Sbest(K) ← argmaxS∈{S1,...,Sm}\C‖{e ∈ N \ Cov : e ∈ S}‖;

5 C ← C ∪ {Sbest(K)}

6 uCov ← N \ {e ∈ N : ∃S∈Ce ∈ S} ;
7 C ′ ← A(uCov , (K −X), S \ C) ;
8 return C ∪ C ′

Figure 6.4: An approximation algorithm GreedyAndExpo for the unrestricted
MaxCover problem.

picks an element from N∗, under the condition that at the beginning of every step
more than (β−1)

β
fraction of the elements in N ′ belong to N∗. Again, it is easy to see

that popt|Ev ≥ phit . Further, it is immediate to see that phit ≥
(

β−1
β

)K

.

Altogether, combining all the above findings, we know that the probability that
RecursiveSearch returns a β-approximate solution is at most:

ps ≥ P(Ev) + P(Ev)popt|Ev ≥ popt|Ev ≥

(

β − 1

β

)K

.

(That is, either the event Ev does not take place and RecursiveSearch definitely
returns a β-approximate solution, or Ev does occur, and then we lower-bound the
probability of finding a β-approximate solution by the probability of finding the
optimal one.)

To conclude, the probability of finding a β-approximate solution in one of the

x =

⌈

− ln ǫ/
(

β−1
β

)K
⌉

independent invocations of RecursiveSearch from Main is at

least:

1−

(

1−

(

β − 1

β

)K
)x

≥ 1− eln ǫ = 1− ǫ.

Establishing the running time of the algorithm is immediate, and so the proof is
complete.

The algorithm RandRecursiveSearch is very useful, especially in conjunction
with the algorithm BoundAndExplore. The former one has to provide a very
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good solution if it is possible to cover almost all the elements and the latter one
has to provide a very good solution if in every solution many elements must be left
uncovered.

6.5 Algorithms for the Unrestricted Variant

So far we have focused on the MaxCover problem where element frequencies were
either upper- or lower-bounded. Now we consider the completely unrestricted variant
of the problem. In this case we give exponential-time approximation schemes that,
nonetheless, are not FPT.

The main idea, which is similar to that of Cygan et. al [73] and of Croce and
Paschos [70], is to solve part of the problem using an exact algorithm and to solve
the remaining part using the greedy algorithm (i.e., the algorithm Greedy from
Figure 6.2). There are two possible ways in which this idea can be implemented:
Either we can first run the exact algorithm and then solve the remaining part of
the instance using the greedy algorithm, or the other way round. We consider both
approaches, though a variant of the “brute-force-first-then-greedy” approach appears
to be superior (at least as long as we do not have exact algorithms that are significantly
faster than a brute-force approach).

We start with the analysis of the algorithm GreedyAndExpo, which first runs
the greedy part and then completes it using an exact algorithm.

Theorem 6.14. Let A be an exact algorithm for the MaxCover problem with
time complexity f(K, n,m). For each instance I = (N,S, K) of MaxCover
and for each X, 0 ≤ X ≤ K, the algorithm GreedyAndExpo from Figure 6.4

returns a
(

1− X
K
e−

X
K

)

-approximate solution for I and runs in time f(K−X, n,m)+

poly(n,K,m)).

Proof. Establishing the running time of the algorithm is immediate and, thus, below
we focus on showing the approximation ratio.

Let I = (N,S, K) be an instance of MaxCover and let X be an integer, 1 ≤
X ≤ K. We rename the elements in S so that S = {S1, . . . , Sm} and S1, . . . SX are
the consecutive elements selected in the first, greedy, “for loop” in Figure 6.4. For
each i, 1 ≤ i ≤ m, let ci = ‖Si \ (S1 ∪ · · · ∪ Si−1)‖. Let NOPT denote the set of
elements covered by some optimal solution and set OPT = ‖NOPT‖. Let Cov i denote
the set S1 ∪ · · · ∪ Si−1. (That is, Cov i is the set of elements in the variable Cov in
the Figure 6.4 right before executing the i’th iteration of the “for loop”. Of course,
Cov1 = ∅.) Naturally, for each i, 1 ≤ i ≤ m, we have ‖Cov i‖ =

∑i−1
j=1 ci.

We claim that for each i, 1 ≤ i ≤ X, there exist (K− i) sets from S \{S1, . . . Si−1}
that cover at least K−i

K
fraction of the elements from NOPT \ Cov i−1. Why is this

the case? First, note that there are some K sets from S \ {S1, . . . Si−1} that cover
NOPT \ Cov i−1 (it suffices to take the K sets from some optimal solution, if need
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be, replace those that belong to {S1, . . . , Si−1} with some arbitrarily chosen ones
from S \ {S1, . . . , Si−1}). Let Q1, . . . , QK be these K sets. Consider some arbitrary
assignment of the elements from NOPT \ Cov i−1 to the sets Q1, . . . , QK , such that
each element is assigned to exactly one set. Further, consider an ordering of these
sets according to the increasing number of assigned elements. If the i’th set in the
ordering is assigned at most fraction 1

K
of the elements, than each of the sets preceding

the i’th one in the ordering also is assigned at most fraction 1
K

of the elements. In
consequence, the last (K − i) sets from the ordering cover at least fraction K−i

K
of

the elements. On the other hand, if the i’th set in the order is assigned more than
fraction 1

K
of the elements then the following sets also are and, once again, the last

(K − i) elements cover at least fraction K−i
K

of the elements.
In consequence, we see that for each i, 1 ≤ i ≤ X, ci ≥ 1

K
(OPT −

∑i−1
j=1 cj). The

reason is that since there are K − i sets among S \ {S1, . . . , Si−1} that cover fraction
K−i
K

of elements from NOPT\Cov i, at least one of them must cover 1
K
(OPT−‖Cov i‖).

Si is chosen as a set that covers most sets from N −Cov i. It covers ci elements from
N − Cov i, and, thus, ci ≥ 1

K
(OPT− ‖Cov i‖) =

1
K
(OPT−

∑i−1
j=1).

We can now proceed with computing the algorithm’s approximation ratio. By
the above reasoning, we observe that the solution provided by the algorithm
GreedyAndExpo covers at least c =

∑X
i=1 ci+

K−X
K

(OPT−
∑X

i=1 ci) =
X
K

∑X
i=1 ci+

K−X
K

OPT. Now, we assess the minimal value of
∑X

i=1 ci. Minimization of
∑X

i=1 ci
can be viewed as a linear programming task with the following constraints: for
each i, 1 ≤ i ≤ X, ci ≥ 1

K
(OPT −

∑i−1
j=1 cj). Since we have X variables and X

constraints, we know that the minimum is achieved when each constraint is satisfied
with equality (see, e.g., [293]). Thus a solution to our linear program consists of values
c1,min, . . . , cX,min that, for each i, 1 ≤ i ≤ X, satisfy ci,min = 1

K
(OPT −

∑i−1
j=1 cj,min).

By induction, we show that for each i, 1 ≤ i ≤ X, ci,min =
1
K

(

K−1
K

)i−1
OPT. Indeed,

the claim is true for i = 1:

c1,min =
1

K
OPT

Now, assuming that ci,min =
1
K

(

K−1
K

)i−1
OPT, we calculate c(i+1),min:

c(i+1),min =
1

K

(

OPT−
i
∑

j=1

cj,min

)

=
1

K
OPT

(

1−
1

K

i
∑

j=1

(

K − 1

K

)j−1
)

=
1

K
OPT

(

1−
1

K
·
1−

(

K−1
K

)i

1−
(

K−1
K

)

)

=
1

K
OPT

(

1−

(

1−

(

K − 1

K

)i
))
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Parameters:
(N,S,K) — input MaxCover instance
X — the parameter of the algorithm

1 C = {};
2 Cbest = {};
3 foreach (K −X)-element subset C of S do
4 for i← (K −X + 1) to K do
5 Cov ← {e ∈ N : ∃S∈Ce ∈ S} ;
6 Sbest(K) ← argmaxS∈{S1,...,Sm}\C {e ∈ N \ Cov : e ∈ S}‖;

7 C ← C ∪ {Sbest(K)}

8 Cbest ← better solution among Cbest and C;

9 return Cbest

Figure 6.5: The approximation algorithm ExpoAndGreedy for the MaxCover problem.

=
1

K
OPT

(

K − 1

K

)i

.

Thus we can lower-bound the number of elements covered by the algorithm
GreedyAndExpo as follows:

c =
X

K

X
∑

i=1

ci +
K −X

K
OPT = OPT

(

X

K2

X
∑

i=1

(

K − 1

K

)i−1
+
K −X

K

)

= OPT

(

X

K2
·
1−

(

K−1
K

)X

1−
(

K−1
K

) +
K −X

K

)

= OPT

(

X

K

(

1−

(

K − 1

K

)X
)

+
K −X

K

)

≥ OPT

(

1−
X

K
e−

X
K

)

.

This completes the proof.

The idea of the proof of Theorem 6.14 is similar to the algorithm of Cygan et. al [73]
for the problem of weighted set cover. Theorem 6.14 would give a good-quality
result provided we knew an optimal algorithm with better complexity than the
exhaustive search. Otherwise, we can obtain very good results using algorithm
ExpoAndGreedy, shown in Figure 6.5, which first runs a brute-force approach
and completes it using the greedy algorithm.

Theorem 6.15. For each instance I = (N,S, K) of MaxCover and each integer
X, 0 ≤ X ≤ K, the algorithm ExpoAndGreedy from Figure 6.5 computes an
(

1− X
K
e−1
)

-approximate solution for I in time
(

m
K−X

)

+ poly(K, n,m).

Proof. Let I = (N,S, K) be our input instance and let C∗, C∗ ⊆ S, denote some
optimal solution. Let C∗X denote a subset of (K −X)-elements from C∗ that together
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cover the greatest number of the elements. Thus the sets from C∗X cover at least
a fraction K−X

K
of all the elements covered by the optimal solution. Consider the

problem of covering the elements uncovered by C∗X with X sets from (S \ C∗X). We
know that (C∗\C∗X is an optimal solution for this problem. On the other hand, we also
know that the greedy algorithm achieves approximation ratio (1− 1

e
) for the problem.

Thus, the approximation ratio for the original problem is:
(

K −X

K
+
X

K

(

1−
1

e

))

=

(

1−
X

K
e−1
)

.

It is immediate to establish the running time of the algorithm and so the proof is
complete.

If we wish to solve MaxVertexCover rather than MaxCover, then in the
algorithm ExpoAndGreedy we should replace the greedy approximation algorithm
with that of Ageev and Sviridenko [5].

Corollary 6.16. There exists an
(

1− X
4K

)

-approximation algorithm for
MaxVertexCover problem running in time

(

m
K−X

)

+ poly(K, n,m)

It is quite evident that as long as algorithm A used within algorithm
GreedyAndExpo in Figure 6.4 is the simple brute-force algorithm that tries
all possible solutions, then algorithm ExpoAndGreedy is superior; in the same
time it achieves a better approximation ratio. It turns out that, for the case
of MaxVertexCover, the algorithm ExpoAndGreedy (in the variant from
Corollary 6.16) is also better than the algorithm of Croce and Paschos [70].6

The idea behind the algorithm of Croce and Paschos [70] for MaxVertexCover
is similar to that behind our algorithm ExpoAndGreedy. Specifically, given
two algorithms for MaxVertexCover, approximation algorithm Aa and exact
algorithm Ae, for a given value X it first uses Ae to find am optimal solution that
uses K − X vertices (out of the K vertices that we are allowed to use in the full
solution), then it removes these K −X vertices and solves the remaining part of the
problem using Ae. Assuming that βa is the approximation ratio of the algorithm Aa,

this approach results in the approximation ratio equal to
(

X
K
+ βa

(

1− X
K

)2
)

.

Below we compare the algorithm ExpoAndGreedy (version from Corollary 6.16)
with the algorithm of Croce and Paschos [70]. As the components Aa and Ae we
use, respectively, the 3

4
-approximation algorithm of Ageev and Sviridenko [5] and the

6The algorithm GreedyAndExpo cannot be directly compared to the algorithm of Croce and
Paschos [70] for the following reason. The algorithm GreedyAndExpo uses specifically a greedy
algorithm which is the best known approximation algorithm for MaxCover, but which is suboptimal
for MaxVertexCover. In contrast, the algorithm of Croce and Paschos [70] can use, e.g.,
the 3

4 -approximation algorithm of Ageev and Sviridenko [5]. One could, of course, try to use the
algorithm of Ageev and Sviridenko in the algorithm GreedyAndExpo, but our analysis does not
work for this case.

140



0

0.2

0.4

0.6

0.8

1

a
p
p
ro
x
im

a
ti
o
n
ra
ti
o

0 0.2 0.4 0.6 0.8 1
(K −X)/K

Algorithm 5
Croce and Paschos

Figure 6.6: The comparison of the approximation ratios of the algorithm
ExpoAndGreedy from Figure 6.5 and the algorithm of Croce and Paschos [70]
for MaxVertexCover.

brute-force algorithm that tries all possible solutions. The best known exact algorithm
for MaxVertexCover is due to Cai [39] and has the complexity O(m0.792K), but
this algorithm uses exponential amount of space. Since exponential space complexity
might be much less practical than exponential time complexity, we decided to use the
brute-force approach (to the best of our knowledge, there is no better exact algorithm
running in polynomial space). We present our comparison in Figure 6.6. The x-axis
represents the parameter K−X

K
, measuring the fraction of the solution obtained using

the exact algorithm (for 0 we use the approximation algorithm alone and for 1 we
use the exact algorithm alone). On the y-axis we give approximation ratio of each
algorithm. In other words, for each point on the x-axis we set the X parameters of
the algorithms to be equal, so that their running times are the same, and we compare
their approximation guarantees.

We conclude that, as long as we use the brute-force algorithm as the exact one,
the algorithm ExpoAndGreedy gives considerably better approximation guarantees
than that of Croce and Paschos. Figure 6.6 also exposes one potential weakness of the
algorithm of Croce and Paschos. Apparently, for some cases increasing the complexity
of the algorithm results in the decrease of its approximation guarantee.

It is quite interesting to understand the reasons behind the differing performance
of the algorithm ExpoAndGreedy and that of Croce and Paschos. In some sense,
the algorithms are very similar. If we use the brute-force algorithm as the exact one
in the algorithm of Croce and Paschos, then the main difference is that our algorithm
runs the approximation algorithm for each possible solution tried by the brute-force
algorithm, and Croce and Paschos’s algorithm only runs the approximation algorithm
once, for the best partial solution. In effect, our algorithm can exploit situations
where it is better when the exact algorithm does not find an optimal solution for
the subproblem, but rather leaves ground for the approximation algorithm to do
well. Naturally, such strategy is only possible if we have additional knowledge of
the structure of the exact algorithm (here, the brute-force algorithm). The result of
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Croce and Paschos pays the price for being more general and being able to use any
combination of the approximation algorithm and the exact algorithm.

6.6 Conclusions

Motivated by the study of recommendation systems, item selection mechanisms,
and winner-determination under Chamberlin–Courant’s voting rule (with approval
misrepresentation), we have considered the MaxCover problem with bounded
frequencies and its minimization variant, the MinNonCovered problem, from
the point of view of approximability by FPT algorithms. We have shown
that for upper-bounded frequencies there is an FPT approximation scheme for
MaxCover and a randomized FPT approximation scheme for MinNonCovered.
For lower-bounded frequencies we have shown that the standard greedy algorithm
for MaxCover may achieve a better approximation ratio than in the unrestricted
case. Finally, we have shown that in the unrestricted case there are good
exponential-time approximation algorithms (though, not FPT ones) that combine
exact and greedy algorithms and smoothly exchange the quality of the approximation
for the running time. Some of our results regarding MaxCover with bounded
frequencies improve previously known results for MaxVertexCover. In particular,
our Algorithm BoundAndExplore improves upon the approximation scheme given
by Marx, and our algorithm ExpoAndGreedy improves upon the result of Croce
and Paschos [70] (provided we use brute-force algorithm as the underlying exact
algorithm in the scheme proposed by Croce and Paschos; this is reasonable if we are
interested in algorithms that use only polynomial amount of space).

The results presented in this chapter complement the results from Chapter 5. Our
results, inter alia, show that it is possible to achieve a reasonably good proportional
representation even for the approval utilities of the agents. Such results are significant
because, in practice, it is much easier for an agent to point out a group of approved
alternatives instead of providing their precise ranking. On the other hand, some of
the algorithms provided in this chapter require super-polynomial running time, and
so they are much slower then those from Chapter 5 (yet, still much faster than pure
brute-force algorithms).

There are several interesting directions for future research. For example, is it
possible to obtain FPT approximation schemes for MaxCover with lower-bounded
element frequencies? Further, what is the exact complexity of MaxCover (with or
without lower-bounded frequencies)? We have quickly observed its W[2]-hardness, but
does it belong to W[2]? (It is quite easy, however, to show that it belongs to W[P].)
We are also interested in the exact complexity of MaxCover with lower-bounded
frequencies for the case where we require the ratio of frequency lower-bound and the
number of sets to be at least some given value α? We have given a PTAS for this
variant of the problem (Theorem 6.11) and have shown its membership in β2, but we
did not attempt to prove its completeness for any particular complexity class.
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Part II

Scheduling models
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In the following three chapters (Chapters 7, 8, and 9) we consider resource
allocation problems in more specific, scheduling-based models. In contrast to the
previous part, here we consider resource allocation problems in settings in which we
are able to construct more involved models including additional elements, such as
jobs, servers, the network, and the functions characterizing these elements.

In the three following chapters we consider three models describing three different
computer systems. Chapter 7 is an intermediate step in our analysis. On one hand
we start from a model describing general agents—thus, such model is also applicable
to distributed non-computer systems. On the other hand, we show that this general
model can be specialized with the precise scheduling model. Chapters 8 and 9 concern
specific scheduling models in computer systems.

The analysis of this part of the dissertation shows a diversified view on the
agents behavior and interaction. Chapter 7 considers strategic agents and studies
their competition. Chapter 8 examines the problem of finding a fair schedule from
a cooperative game theory standpoint. Chapter 9 describes an organizationally
centralized distributed system owned by a single entity.

In our models we define solution concepts describing the stability of the considered
systems, and analyze the existence of these solution concepts. We also analyze the
complexity of computing these stable states in the considered systems. Additionally,
we analyze various optimization problems and study their complexity. The high level
contribution presented in this part of the dissertation is the following: (i) We provide
a game-theoretic analysis of the stability of the three example distributed systems.
(ii) We establish the complexity of the computational problems in the considered
systems. (iii) For the computationally hard problems we present alternative solutions.
These solutions include: approximation algorithms, FPT algorithms, and heuristic
algorithms. Below we give a brief outline of this part of the dissertation.

In Chapter 7 we propose a theoretical model describing the strategic interaction
between teams of agents competing for an employment in a project. The agents are
heterogeneous and might have different skills. In the most general part of this chapter
we assume that there exists an oracle that can answer whether a given subset of agents
is capable of completing a project before the given deadline. The agents have their
requirements for minimal salaries, but they are also strategic and will always prefer
to work for a higher wage. The project issuer runs an auction to find a team that
will be awarded the project. The project issuer is strategic too—she wants to find a
team capable of completing the project at the smallest possible cost. Our problem
models various situations in which agents can form consortia to win participation
in a large project, including crowd-sourcing (e.g., amazon mechanical turk), on-line
service sites, but also public tenders for large civil engineering projects (in which
agents represent contractor companies specialized in certain branches of construction
or engineering).

We propose several solution concepts describing the winning coalitions and we
study computational complexity of finding them. We show algorithms finding
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(weakly) winning coalitions in a polynomial number of calls to the oracle. As a
consequence, we show that the complexity of finding (weakly) winning coalitions
depends solely on the complexity of an oracle. In other words, the problem is solvable
in polynomial time if and only if the oracle can check in polynomial time whether
there exists a team of agents that is able to complete the project before a deadline.

Next, we propose a specific scheduling-based model for an oracle, in which
the project consists of multiple jobs, and the individual agents have certain skills
(expressed as the speeds of completing different jobs). We show that under this
specific model the problem is NP-hard and hard to approximate, even if the values of
the various natural parameters are low. On the other hand, we show that the problem
can be solved using standard integer programming solvers.

In Chapter 8 we consider a distributed system consisting of multiple organizations
sharing their infrastructures. Each organization participating in the system
contributes to the global pool a certain number of processors. As the reward, every
organization is eligible to run its jobs on all the processors from the common pool. We
study a specific scheduling model: on-line, non-clairvoyant scheduling of sequential
jobs. The started jobs cannot be stopped, canceled, preempted, or moved to other
processors. In this model we look for scheduling algorithms that are fair for the
participating organizations.

We show how to model the fair scheduling problem as a cooperative game and
how to use the Shapley value to determine the ideal fair schedule. In contrast
to the previous works in this area, our approach does not use the concept of
money. This makes our considerations more practical, as (i) money discourages
people from cooperating [296], and (ii) in many contexts, it is not clear how to
valuate the completion of a job or the usage of a resource (especially when workload
changes dynamically). We present exact, ideally-fair scheduling algorithm. Although
algorithm has exponential running time, it is fixed parameter tractable, when
parameterized by the number of organizations. Thus, if the number of participating
organizations is relatively low, the problem of finding a ideally fair schedule is
computationally tractable. In general, we show that the problem is NP-hard and
hard to approximate. However, we show good approximation algorithms for some
restricted cases, and a heuristic algorithm that gives good results when evaluated on
real data traces.

In Chapter 9 we address resource allocation problems in the geographically
distributed systems. We consider load balancing in the systems that serve large
numbers of users from all over the world (the examples of such systems include
content delivery networks, web search systems, and P2P storage systems). In
contrast to the common approach to load balancing, in our work we assume that
the communication latencies between the servers in the system are non-negligible.
The perceived processing time of a user request is thus composed of the time needed
to route the request to the server and the true processing time. Once a request
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reaches a target server, the processing time depends on the total load of that server;
this dependency is described by a load function.

We present two algorithms for general load functions: the centralized one and the
distributed one; and one algorithm for the specific load functions describing the system
in which requests arrive in batches. We show load balancing algorithms that work
for a broad class of load functions and we analyze their complexity. The complexity
of our algorithms for general load functions depends on the number of machines, the
total load in the system, and the derivatives of the load functions. These are any-time
algorithms, i.e. we can stop them at any moment and extract a (possibly suboptimal)
solution. Our algorithms also have other interesting properties, e.g., they are robust
to failures, and the machines do not require any additional synchronization.
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Chapter 7

People are Processors: Coalitional
Auctions for Complex Projects

To successfully complete a complex project, be it a construction of an airport or of
a backbone IT system or a crowd-sourced project, agents (companies or individuals)
must form a team (a coalition) having required competences and resources. A
team can be formed either by the project issuer based on individual agents’ offers
(centralized formation) or by the agents themselves (decentralized formation) bidding
for a project as a consortium—in this case many feasible teams compete for the
employment contract. In these models, we investigate rational strategies of the agents
(what salary should they request? with whom should they team up?) under different
organizations of the market. We propose various concepts allowing to characterize the
stability of the winning teams. We show that there may be no (rigorously) strongly
winning coalition, but the weakly winning and the auction-winning coalitions are
guaranteed to exist. In a general setting, with an oracle that can point out a feasible
coalition or claim there is no such, we show how to find winning coalitions with a
polynomial number of calls to the oracle. We also determine the complexity of the
problem in a special case in which a project is a set of independent tasks. Each task
must be processed by a single agent, but processing speeds differ between agents and
tasks.

7.1 Introduction

Modern projects are getting complex: involved, intricate, and consisting of many
varied yet interrelated parts [16,304]. The successful completion of such complex
projects requires coordinated operation of a number of highly-specialized people and
companies, often organized as teams of subcontractors [12]. For instance, in the
construction industry, to build an apartment building (a rather standard endeavor),
typically, 30 to 40 individual sub-contractors are involved in 100 to 150 separate
activities [297].
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Indeed, assigning sub-tasks of a complex project to multiple subcontractors is
common [50]. According to Edwards [92], in the United Kingdom, the proportions of
construction employees employed by sub-contractors in years 1983–1998 has grown
by 20%. In the United Kingdom, between 2008 and 2011, the number of people
who work as freelancers has increased by 12% [213]; in Australia in 2012, 17.2% of
the workforce were self-employed (8.5% as independent contractors) [140]. These are
only a few examples of a growing tendency to develop various projects by employing
many specialized sub-contractors instead of a single company. We envision that
with the proliferation (and further development) of crowd-sourcing and collaboration
platforms, this tendency will further strengthen.

Nevertheless, it is not clear how to organize the market both for the issuer of
the project (in this chapter referred to as the client) and the subcontractors (in
this chapter referred to as the agents). Interaction between the agents applying
for the employment in a project and the client is described in the hiring a team
problem [14,52,53,108,142,155,286]. In the hiring a team problem, the agents have
private costs of participating in the project. The agents may have different sets of
skills, thus only certain teams are able to complete the project on time. The client
organizes an auction in which individual agents place their bids, i.e., their required
salaries. After collecting the bids, the client selects the cheapest feasible team, i.e.,
the team of agents that is able to complete the project on time, with the lowest total
bid.

We generalize the original approach from the hiring a team problem by exploring
two organizations of the market. The original approach corresponds to the centralized
setting, where the agents communicate only with the client by issuing their bids.
Our main contribution lies in considering a fully decentralized setting where the
whole teams bid for a project. To the best of our knowledge this formulation of
the problem is novel and leads to a new class of games. This formulation has a
natural real-world representation: a client does not want to coordinate a project and
to deal with individual subcontractors, but instead expects that the subcontractors
coordinate between themselves and propose a bid for completing the whole project
as a consortium. Additionally, we generalize the original approach by considering
two types of agents’ compensation. In the project salary model (corresponding to the
original approach) the agents are payed for their whole participation in the project
(irrespectively of the contributed effort). We contribute a new payment model, the
hourly salary model, in which the agents are payed for the time spent working on the
project.

Although our main contribution lies in considering the decentralized setting, we
also complement the literature on the centralized one (the hire a team problem) [14,
52,53,108,142,155,286]. To the best of our knowledge, the current literature focuses
on designing truthful mechanisms that encourage agents to ask for the salaries
corresponding to their actual costs of participation. The known truthful mechanisms,
however, result in a significant overpayment by the client [14,52,53,108,155,286]. In
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contrast, we consider a market in which the agents are payed their asking salaries
and nothing more. This mechanism, which corresponds to the first-price auctions, is
manipulable, but once the agents set their asking salaries no overpayment is required.
Since the first-price auctions are, in general, resistant to collusions [170], we believe
this auction system is relevant in our case.

Finally, in contrast to, but also complementing, the previous works, we focus on
the computational aspects of finding winning teams rather than on the designing
truthful mechanism.

Throughout this chapter we assume that we are given an oracle that, for a given
team of agents, can determine whether this team is feasible, i.e., whether it can
successfully complete the project. Further, given a budget for the project and the
costs of the agents, the oracle can find a feasible team and the cheapest feasible
team. Our approach generalizes two models known in the literature: commodity
auctions [202] and path auctions [223]. In a commodity auction, there is a set of
items I = {i1, i2, . . . , iq} and agents owning certain subsets of I. A coalition is
feasible if the agents have together all the items from I. A commodity auction can
be mapped to our problem by considering that I is a set of independent activities;
an agent owning a subset corresponds to an agent that is able to complete these
activities. In a path auction, there is a graph G with two distinguished vertices: a
source s and a target t. The agents correspond to the vertices in the graph, some
vertices are connected with the edges. The coalition is feasible if the participating
agents form a path from s to t. For the general case, we also point out that the
oracle can use algorithms for coalition formation [253] to solve the subproblem of
finding (cheapest/best) feasible coalitions. Specifically, coalition formation protocols
in the context of the complex projects (without game-theoretic consideration) were
considered by Kraus et al. [168]. We also point out that some works consider that
agents’ skills, in our case known by the oracle, are their private information, and can
be revealed only at additional cost [31].

Since we consider coalitions of agents with sufficient skills to complete the project,
our model resembles cooperative skill games [17] and coalitional resource games [306].
These games, however, consider the stability of the grand coalition and interaction
between its members. Similarly, the cooperative game theory view on coalition
formation in the context of complex projects was considered by Kraus et al. [169].
Our approach, on the other hand, is to expose the competition between multiple
teams/coalitions. Thus, we do not apply the typical cooperative game theory
concepts [231] and, instead, model the cooperation and the competition of the agents
as a non-cooperative game.

The contributions of this chapter are as follows: (i) First we identify and formalize
a new class of coalition games, which are the extensions of the games from the hiring a
team problem. In the centralized setting (Section 7.3), where the agents communicate
only with the client, (ii) we prove that a Strong Nash Equilibrium (SNE) always exists
unless there is no feasible coalition. We show how to find an SNE, and how the client
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Table 7.1: The summary of the notation used in the further part of this chapter.

Symbol Meaning

v maximal price for the project

N set of agents

φmin
i minimal salary of the i-th agent

C = 〈NC , φC , cC〉 coalition participating in the auction

NC set of agents forming the coalition C
φC function assigning salaries to the members of the coalition C
φi = φC(i) salary of the i-th agent (if the coalitions known from the

context)

φtotC (i) total amount of money agent i gets in coalition C
cC =

∑

i∈NC
φtotC (i) total cost (the bid) of the coalition C

σC schedule of the coalition C (assigning to each member of the
coalition C the amount of time this agent needs to spend on
the project)

ti time that the i-th agent spends working on the project

can select the cheapest coalition with only a polynomial number of calls to the oracle.
In the decentralized setting (Section 7.4), (iii) we propose two concepts of winning
coalitions. We prove that a strongly winning coalition may not exist, but a weakly
winning coalition is guaranteed to exist (provided there exists a feasible coalition).
We show how to find weakly/strongly winning coalitions. Still, for the decentralized
setting, (iv) we propose two mechanisms that the client can use to find the winning
coalition (Section 7.5). We introduce the concept of an auction-winning coalition and
show how to find one. By specifying an oracle, our results can be applied to two
different problems known in the literature: the commodity auctions and the path
auctions. In Section 7.6 we propose another way in which the general oracle can be
replaced with a concrete scheduling model (it is a generalization of the model from the
commodity auctions setting) and (v) determine the exact complexity of this concrete
problem.

7.2 The Auction Model for Complex Projets

In this section we introduce the notation and describe the model further used in this
chapter. The notation is also summarized in Table 7.1.

We consider a model in which a client (an issuer) submits a single complex project
to be executed. The client has a certain valuation v of the project, that is the maximal
price that she is able to pay for completing the project.
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There is a set N = {1, 2, . . . n} of n agents. For each agent i, we define φmin
i > 0

to be the agent’s minimal salary for which i is willing to work. This minimal salary
may correspond to the agent’s personal cost of participating in the project. The agent
prefers to work for φmin

i than not to work (and then to work for higher salary). The
value φmin

i is private to the agent—neither the issuer nor the other agents know φmin
i .

However, in order to analyze the behavior of the agents in our system, we assume
that agents have some beliefs about the minimal salaries of other agents.

A subset of the agents’ population N forms a coalition to be awarded the project1;
the chapter’s core contribution is on how this process should be organized.

A coalition C is a triple 〈NC, φC, cC〉 consisting of the set of participating agents
NC ⊆ N , a salary function φC : NC → N assigning salaries to member agents, and
the total cost of the coalition cC ∈ N—the total amount of money earned by the
participants of C. Salaries are discrete (not only money is discrete, but also it is
common in real-world auctions to specify a minimal difference between two successive
bids). However, to get some computational results, in some, clearly marked, places
we assume that the salaries can be rational numbers.

The same coalition may organize the work of its members on the project in
various ways. Each such a way may require different amount of effort from different
participants. To capture this property, we introduce a notion of a schedule, σC : NC →
N, that assigns to each member of a coalition the amount of time this agent needs to
spend on the project. Of course, there may exist many schedules for a single coalition.
We will expand the discussion on the notion of schedule in Section 7.6.

We consider two models of agents’ compensation. Let φtot
C (i) denote the total

amount of money agent i gets in coalition C (naturally, cC =
∑

i∈NC
φtot
C (i)). In the

project salary model φtot
C (i) is equal to the salary of the agent φC(i) (and thus does not

depend on the amount of work assigned to that agent). In the hourly salary model
φtot
C (i) is equal to the product of the salary φC(i) and the time ti that i spends on

processing her part of the project (ti is known from the schedule).
In the project salary model the agents are interested in earning as much money

as possible. The hourly salary model represents a different environment in which
agents perhaps work on many projects simultaneously; thus the agents are interested
in having maximal salary per time unit (thus, e.g., an agent prefers to work ti = 1
time unit with a salary φi = 3 to working ti = 2 time units with a salary φi = 2).

Different schedules might result in different completion times of the project. If
the schedule results in a completion time that is satisfactory for the project issuer, we
say that the schedule is feasible. Of course for some coalitions there might not exist a
feasible schedule (e.g., if the coalition members are lacking certain critical skills). We
assume that there is an oracle that can answer whether a given schedule is feasible
or not. This very general setting can be specified by providing concrete models for
the oracle. For instance, in Section 7.6 we show that by appropriately specifying the

1For the sake of the clarity of the presentation we refer to the teams of agents as to the coalitions,
even if it sometimes abuses the definition of the coalition from the cooperative game theory.
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oracle, our results can be applied to two different settings known in the literature: to
the commodity auctions setting and the path auctions setting. In Section 7.6 we also
show how to replace the general oracle with a new concrete scheduling model.

A coalition C is feasible if there exist a feasible schedule such that: (i) the project
budget is not exceeded (cC ≤ v), and (ii) the cost cC of the coalition C is consistent
with the salaries φC. Specifically, in the project salary model cC =

∑

i∈NC
φC(i). In

the hourly salary model cC =
∑

i∈NC
tiφC(i), where ti is the number of time units the

agent i needs, according to the feasible schedule, to spend working on the project.
Moreover, the asking salaries are no-lower than the minimal salaries, φC(i) ≥ φmin

i .
A coalition C is cheaper than C′ if it has a strictly lower cost cC < cC′ or if it has

the same cost, but it is preferred by a deterministic tie-breaking rule ≺, NC ≺ NC′
(for the sake of concreteness we assume that ≺ is the lexicographic order in which
a coalition is represented by a concatenation of the sorted list of the names of its
members).

Throughout this chapter we use the Find Feasible Coalition (FFC) and Find
Cheapest Feasible Coalition (FCFC) problems. We reduce other problems to
FFC and FCFC (we will also show that FCFC can be polynomially reduced to
FFC).

Problem 7.1 (FFC: Find Feasible Coalition). An instance of FFC consists of a
project (with a budget v) and the set N of the agents with (known) minimal required
salaries φmin

i . The question is to find some feasible coalition or to claim there is no
such.

Problem 7.2 (FCFC: Find Cheapest Feasible Coalition). An instance is the same
as in the FFC problem. The question is to find some cheapest feasible coalition or to
claim there is no such.

We use the general model as defined above in Sections 7.3, 7.4 and 7.5. Since
the complexity of the above problems clearly depends on the underlying model for
the oracle, we assume that our oracle can solve the FFC problem. This allows us to
study a very general setting of the problem, abstracting from concrete notions of a
schedule or of a division of labor in a coalition.

To solve FFC, the oracle must know the underlying model, in particular the
minimal salaries of agents and the maximal price of the project v; we may also assume
that the oracle is local to an agent. i.e., the oracle knows the minimal salary of this
agent and agent’s beliefs about minimal salaries of others. Then, to get the exact
computational results, we need to define in a compact form, e.g., which coalitions are
able to complete the project. In Section 7.6 we consider a specific model of FFC in
which the project is a set of independent, indivisible tasks that need to be completed
before a certain deadline and the agents have certain skills, i.e., speeds with which
they process the tasks. We also discuss other specific models for the oracle that lead
to the concrete models considered in the literature.
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We consider two models of forming coalitions. First, in Section 7.3, we consider
the centralized formation. This model is similar to the model from the hiring a team
problem [14,52,53,108,142,155,286]. Agents submit their bids i.e., (asking) salaries
φi, directly to the client (project issuer). The client chooses the members of the
coalition that is awarded the project. Naturally, the client chooses the members so
that the cheapest feasible coalition is formed. The members of the winning coalition
are paid according to their asking salaries φi. This is different from the literature on
the set system auctions that considers different payment mechanisms that ensure the
truthfulness of the agents [14,52,53,108,155,286].

Second, in Sections 7.4 and 7.5, we consider the decentralized formation of the
coalition. Agents communicate and are able to form coalitions by binding agreements.
A coalition sends a bid—the total cost cC—to the client; the bid represents the
compensation the coalition expects to get for completing the whole project. The
cheapest coalition C∗ wins the project and is paid cC∗ ; then cC∗ is allotted to the
members of the winning coalition according to the salary function φC∗ .

Our problem models various situations in which agents can form consortia to
win a large project, including: croudsourcing (e.g., amazon mechanical turk), online
service sites, but also public tenders for large civil engineering projects (in which
agents represent contractor companies specialized in a certain branch of construction
or engineering).

7.3 Centralized Formation of Coalitions

In the centralized model we assume that the agents submit their asking salaries φi
directly to the client (the issuer of the project). The client, having the asking salaries
of the agents, wants to form the cheapest feasible coalition (that is able to complete
the project before the deadline). In this section, we first show that this problem
reduces to FFC, the problem of finding a feasible coalition. Then, we analyze the
optimal bidding strategies of agents.

Proposition 7.1. The problem FCFC can be solved in time O((log v+n)ffc), where
ffc is the complexity of the problem FFC.

Proof. First, we solve FFC with binary search over v to find the lowest bid v∗ for
which there still exists a feasible coalition.

Next, we need to find the coalition bidding v∗ that is preferred by the tie-breaking
rule. We recall that C ≺ C′ if C precedes C′ in the lexicographic order. We consider
the agents in the increasing order of their names. For each agent i we decrease her
salary by 1 (φmin

i := φmin
i − 1) and solve FFC for v = v∗ − 1. If there is one, this

means that in the initial setting there exists a feasible coalition offering bid v∗ and
having agent i as a member. We store i as a member of the winning coalition. With
the modified salary of i and an updated budget of v∗ = v∗ − 1 we consider the next
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agent. Otherwise we reset the agent salary φmin
i and the budget v∗ to their previous

values and consider the next agent.

Proposition 7.2. Having the asking salaries of the agents, the problem of finding
the winning coalition can be solved in time O(fcfc), where fcfc is the complexity of the
problem FCFC.

Proof. Solving the problem requires solving FCFC with the minimal salaries of the
agents set to their asking salaries (φmin

i = φi).

The agents may behave strategically and manipulate their asking salaries to
maximize their payoffs. We model this problem as a strategic game. An action
of agent i is her asking salary φi ≥ φmin

i . The payoff of i is φi if and only if i is a
member of the cheapest feasible coalition; otherwise the payoff of i is 0.

Interestingly, in such setting, in the project salary model, there exist sets of vectors
of actions which are stable against collaborative strategies of the agents. We recall
that a vector of the agents’ actions is a Strong Nash Equilibrium (SNE, [15]) if no
subset of the agents can change its actions so that all the deviating agents obtain
strictly better payoffs.

For each subset of the agents N ′ ⊆ N , by C∗(N ′) we denote the cheapest feasible
coalition using only the agents from N ′ (the coalition C∗(N ′) does not exist if there
is no feasible coalition consisting of the agents from N ′).

Theorem 7.3. In the project salary model, if there exists a feasible coalition then
there exists a Strong Nash Equilibrium. In every SNE, the set of the agents that get
positive payoffs is the set of agents forming the cheapest feasible coalition, NC∗(N).

Proof. Let N∗ = NC∗(N) be the set of the agents participating in the cheapest feasible
coalition. We say that the action φi of the agent i is minimal if and only if φi = φmin

i .
We show how to construct the asking salaries φ∗i of the agents from N∗ that, together
with the minimal actions of the agents outside N∗, form the Strong Nash Equilibrium.
A sketch of proof is as follows. We show the set of linear inequalities for the variables
φi, i ∈ N

∗. Let us denote the maximal values of φi which satisfy the inequalities as φ∗i
(maximal in the sense that if we increase any value φ∗i , then the new values will not
satisfy all the inequalities any more). We show that the actions φ∗i of the agents from
N∗, together with the minimal actions of the agents outside of N∗, form an SNE and
that the set of the solutions φ∗i that satisfy all the inequalities is nonempty.

The first inequality states that the values φi must lead to a feasible solution:
∑

i∈N∗

φi ≤ v. (7.1)

Next, as C∗ is the cheapest feasible coalition, for each feasible coalition C′ (N∗ 6= NC′)
such that N∗ ≺ NC′ , C∗ must have (weakly) lower cost:

∑

i∈N∗\NC′

φi ≤
∑

i∈NC′\N∗

φmin
i . (7.2)
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For C′ preferred over C∗ (N∗ 6= NC′ and NC′ ≺ N∗), C∗ must have strongly lower cost:

∑

i∈N∗\NC′

φi <
∑

i∈NC′\N∗

φmin
i . (7.3)

First, if the values φ∗i satisfy the above inequalities and the agents outside of N∗

play their minimal actions, then the agents from N∗ will get positive payoffs. If they
did not get the positive payoffs, it would mean that there exists a feasible cheaper
coalition C′. However, the inequalities ensure that the agents from N∗ \ NC′ induce
the lower total cost than the total cost of the agents from NC′ \N∗; this ensures that
agents N∗ with actions φ∗i form a cheaper coalition than C′.

Next, we show that no set of agents NC′ can make a collaborative action φ after
which the payoff of all agents from NC′ will be greater than previously. For the sake
of contradiction let us assume that there exists such a set of agents NC′ and such an
action φ. First we consider the case when the payoff of some agent i /∈ N∗ would
change. This means that after φ there would be a new cheapest feasible coalition C′,
where i ∈ NC′ . However, we know that the total cost of the agents from N∗ \NC′ is
lower than the total cost of the agents from NC′ \N∗. This means that C′ cannot be
cheaper than the coalition consisting of the agents from N∗. Finally, consider the case
when only the payoffs of the agents from N∗ change (and thus NC′ ⊆ N∗). However,
if the strict subset of N∗ could form a feasible coalition, then C∗(N) would not be
the cheapest. Thus, NC′ = N∗. This means that every agent from N∗ must have
played a higher action (and others must have not changed their actions). Since φ∗i
were maximal, this means that after the action φ some inequality, for some feasible
coalition C′′, would not hold any more. Thus, we infer that C′′ is cheaper than C′.

To check that there always exists a solution, we see that the definition of N∗

ensures that the values φ∗i = φmin
i satisfy all inequalities.

Finally, by contradiction we prove the N∗ is formed by the same agents as forming
the cheapest coalition. Assume that the set of the agents that get positive payoffs
in some SNE is N ′ 6= N∗. However, if the agents from (N∗ \ N ′) play their minimal
actions, then the coalition consisting of the agents from N∗ would be cheaper than
the coalition consisting of the agents from N ′. Thus, the agents from (N∗ \ N ′) can
deviate, getting better payoffs. This completes the proof.

Interestingly, there is no analogous result for hourly salary model.

Proposition 7.4. In the hourly salary model there may not exist a Strong Nash
Equilibrium even though there exists a feasible coalition.

Proof. Let us consider the following instance. The budget is v = 49. There are 3
agents: a, b, and c; their minimal hourly salaries are φmin

a = φmin
b = φmin

c = 1. All
two-agent coalitions can complete the project: if a and b cooperate they can complete
the project spending on it ta = 10 and tb = 10 time units, respectively; if a and c
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cooperate they must spend ta = 22 and tc = 2 time units; if b and c cooperate they
must spend tb = 2 and tc = 38 time units.

For the sake of contradiction let us assume that there exists a Strong Nash
Equilibrium. First, consider the case when the agents a and b get positive payoffs in
SNE. By the budget constraint, φb ≤ 3. If φb = 3, then φa = 1. The total cost of
{a, b} is 40. However, c, by playing φc = 1 can form a cheaper coalition {a, c} with
the total cost 24. If φb ≤ 2 and φa = 1, then a has an incentive to play higher. If
φb ≤ 2 and φa ≥ 2, then b and c are better off by playing a collaborative action with
φb = 3 and φc = 1 — after such an action a coalition {b, c} is cheaper (cb,c = 44) than
{a, b} (ca,b ≥ 50) and {a, c} (ca,c ≥ 46). Thus, a and b cannot both have positive
payoffs in SNE.

Second, assume that the agents a and c get positive payoffs in SNE. The total
cost of {a, c} is 22φa + 2φc. In such case, if b plays φa then the new coalition {a, b}
with total cost 10φa + 10φa forms a new cheapest coalition.

Finally consider the case when b and c get positive payoffs in SNE. This means
that φc = 1. But a, by playing 1 can form a coalition {a, c} with the total cost 24.
This completes the proof.

Proposition 7.5. Checking whether a given vector of the asking salaries 〈φi〉, i ∈ N is
a Strong Nash Equilibrium can be solved in time O(fcfc), where fcfc is the complexity
of the problem FCFC.

Proof. First, we find a winning coalition C for 〈φi〉. According to Proposition 7.2 we
can do this by solving an instance of the FCFC problem (with ∀i : φmin

i := φi) . Next,
we solve another instance I2 of the FCFC problem with the parameters set as follows.
We set minimal salaries of the agents from NC to their asking salaries (∀i∈NC

φmin
i :=

φi). The minimal salaries of the agents outside of NC are left unmodified. If the
solution to I2 consists of the members of NC only, we claim that a vector 〈φi〉, i ∈ N
is a Strong Nash Equilibrium. Otherwise, it is not.

The proof of Theorem 7.3 is constructive, but it requires considering all feasible
coalitions and, so, leads to potentially high computational complexity. On the other
hand, if the salaries of the agents can be rational numbers, we can find the salary
function in SNE by a polynomial reduction to the FCFC problem. This result is
particularly interesting if the salaries of the agents have high granularity; rounding
such a rational solution gives an integral solution which is nearly perfect.

Proposition 7.6. In the project salary model, if the salaries of the agents are rational,
then finding a Strong Nash Equilibrium can be solved in time O(n3 log(nv)fcfc)), where
fcfc is the complexity of the problem FCFC.

Proof. First, we solve a single instance of the FCFC problem to find N∗ = NC∗(N).
Next, similarly as in the proof of Theorem 7.3, we introduce the variables φi, i ∈ N∗

and the inequalities (also the same as in the proof of Theorem 7.3). If we find the
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values φi, i ∈ N∗ satisfying all the inequalities, then the values φi, i ∈ N∗, together
with the minimal salaries of the agents outside of N∗, will form a Strong Nash
Equilibrium.

The set of inequalities given in the proof of Theorem 7.3 is a linear program; there
are, however, exponentially many constraints (a constraint for each possible coalition).
We construct a separation oracle by a polynomial reduction to the FCFC problem.
Since ellipsoid method [163] requires O(n3L) calls to the separation oracle [104] (where
L is the size of the representation of the problem; here L = O(log(nv))), this allows
us to solve the linear program in time O(n3 log(nv)fcfc).

To check whether all the inequalities are satisfied, it is sufficient to solve FCFC
with the following parameters. The minimal salaries of the agents from N∗ are set to
the values of the variables φi (∀i∈N∗φmin

i := φi). The minimal salaries of the agents
outside of N∗ are left unmodified. Let C denote the solution of such instance of the
FCFC problem. There exists a not-satisfied inequality if and only if NC 6= N∗. The
not-satisfied inequality is the inequality that corresponds to the coalition C 6= C∗.
This completes the proof.

7.4 Decentralized Formation of Coalitions

Let us assume that the agents can communicate and agree their strategies.
Consequently, they can form coalitions and bid for the project as consortiums. We
show the concept of a (rigorously) strongly winning coalition, in which no subset of
agents can successfully deviate. We show how to characterize (rigorously) strongly
winning coalitions and how to reduce the problem of finding them to the FCFC
problem. We show that the strongly winning coalitions may not exist, and so we
introduce the concept of a weakly winning coalition. We prove that a weakly winning
coalition always exists. We demonstrate how to reduce the problem of finding winning
coalitions to the FCFC problem.

We model the behavior of the agents as a strategic game. Agent i’s action is a
triple 〈NC, φC, bC〉. Intuitively, such an action means that the agent i decides to enter
the coalition C = 〈NC, φC, bC〉. The payoff of the agent is equal to φC(i) if (i) C is
feasible, (ii) each agent j ∈ NC agrees to participate in C (i.e., they all play C, and
their payoffs are consistent with the bid of the coalition bC), and (iii) there is no
feasible cheaper coalition C′ such that all the agents from NC′ agree to participate in
C′. Otherwise, the payoff of i is 0.

7.4.1 Strongly Winning Coalitions

In this game the payoffs depend on whether the others agree to cooperate, thus the
Strong Nash Equilibrium (SNE) rather than the Nash Equilibrium [217] should be
considered. In the following definition we propose an even more stable equilibrium
concept than the SNE—the Rigorously Strong Nash Equilibrium (RSNE). The RSNE
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requires that no subset of agents can deviate in a way that each agent would get a
payoff at least as good as (instead of strictly better) than prior to deviation. Our
approach is motivated by considering careful agents. In an SNE, the agents have no
incentive to deviate if they get the same payoff; however they also have no incentive
not to deviate. Yet, any deviation will result in a serious payoff loss for some agents
(changing their payoffs from a positive φ to zero). A careful agent will prefer not to
be exposed to the possibility of such loss.

Definition 7.3. The vector of actions π is a Rigorously Strong Nash Equilibrium
(RSNE) if and only if there is no subset of agents NC such that the agents from NC
can make a collaborative action C (a set of actions played by agents) after which the
payoff of each agent i from NC would be at least equal to her payoff under π and the
payoff of at least one agent i ∈ N would improve.

In the above definition the requirement that the payoff of at least one agent
i ∈ N must change after the coalition deviates ensures that we treat as equivalent the
coalitions with the same payoffs. For instance, assuming a system with three agents,
a, b and c, if the coalition {a, b} gets a positive payoff, it does not matter whether c
plays 〈{c}, v + 1〉 or 〈∅, v + 1〉: in both cases all payoffs are the same.

Below we introduce additional definitions that help to characterize the Rigorously
Strong Nash Equilibria in our games.

Definition 7.4. A feasible coalition C is explicitly endangered by a coalition C′ if (i)
C′ is feasible, (ii) NC ∩NC′ = ∅ and (iii) C′ is cheaper than C.

A feasible coalition C is implicitly endangered by a coalition C′ if (i) C′ is feasible,
(ii) NC ∩NC′ 6= ∅ and each agent from NC ∩NC′ gets in C′ at least as good a salary as
in C, and (iii) either NC 6= NC′ or φC 6= φC′.

If there are agents belonging to both coalitions (NC∩NC′ 6= ∅), we do not consider
the total cost of the alternative coalition C′, as the decision whether C′ will be formed
depends solely on the agents from NC ∩ NC′: if they decide to form C′, C will not be
formed, thus the client won’t be able to choose between C and C′.

Informally, a coalition is (rigorously) strongly winning if it constitutes a (rigorous)
Strong Nash Equilibrium, i.e., the members will not deviate to other coalitions.

Definition 7.5. A feasible coalition C is rigorously strongly winning if and only if
there is a Rigorously Strong Nash Equilibrium in which the agents from NC get positive
payoffs φC.

Definition 7.6. A feasible coalition C is strongly winning if and only if there is a
Strong Nash Equilibrium in which the agents from NC get positive payoffs φC.

The following theorem connects the intuitive notion of endangerment with the
notion of a winning coalition.
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Theorem 7.7. The coalition C is rigorously strongly winning if and only if C is not
explicitly nor implicitly endangered by any coalition.

Proof. ⇐= Assume that there exists a rigorously strongly winning coalition C; thus
there exists a Rigorously Strong Nash Equilibrium RSNE in which the agents from
NC get positive payoffs. This implies that the agents from NC agree on the action
〈NC, φC, bC〉; other agents (N \NC) have zero payoffs. For the sake of contradiction let
us assume that there exists a feasible coalition C′ such that C is explicitly or implicitly
endangered by C′.

If NC ∩NC′ is empty (C is explicitly endangered by C′), then NC′ must be cheaper.
This however contradicts the assumption that the agents from NC get positive payoffs.

Assume thus that NC ∩NC′ is non-empty (i.e., C is implicitly endangered by C′).
Consider the following collaborative action of agents (N \NC) ∪NC′ . All the agents
from NC′ make action C′. Each agent i from N \ (NC ∪NC′) makes an action 〈{}, φ∅〉,
where φ∅ is an empty function. We show that after playing this action no agent from
(N \ NC) ∪ NC′ will get lower payoff and that some agents will get a strictly better
payoff (which will contradict the assumption that RSNE is a Rigorously Strong Nash
Equilibrium). Clearly each agent from N \(NC∪NC′) does not decrease her payoff (as
previously it was equal to 0). Now, we show that the agents from NC′ will get at least
the same payoff as before. Since we know that C is implicitly endangered by C′ (and
thus the agents from NC ∩NC′ get in C′ at least as good payoff as in C) it is sufficient
to show that the agents from NC′ will get positive payoffs. Indeed, there is no feasible
coalition that includes some agents from N \ (NC ∪ NC′) (as these agents play {}).
Also, the agents from NC \ NC′ do not agree on the collaborative action (they still
play C) and thus, cannot form a feasible coalition. Thus, after such change of played
actions C′ is the only feasible coalition that the members agreed on. Finally, we can
show that at least one agent will get a strictly better payoff. Either NC = NC′ (and
since φC 6= φC′, some agent must get a different payoff) or NC 6= NC′ (and the agents
from NC′ \NC will get a positive payoff).

=⇒ Assume that C is not explicitly nor implicitly endangered by any coalition.
First, if the agents from NC make the collaborative action C, then they will all get
positive payoffs. Indeed, the agents in NC could not get positive payoffs only if there
would exist a cheaper feasible coalition C′ such that NC ∩ NC′ = ∅. This would,
however mean that C is explicitly endangered by C′. Next, we show that the state in
which the agents from NC make the collective decision C and the other agents play
arbitrary actions is RSNE. For the sake of contradiction let us assume that there
exists a subset of agents NC′ which can make a collaborative action C′ after which
the payoff of everyone from NC′ would be at least equal to her payoff in C. This
would, however mean that C is either implicitly or explicitly endangered by C′. This
completes the proof.

The result in Theorem 7.8 stated for Rigorously Strong Nash Equilibria transfers
to Strong Nash Equilibria with a slight modification of the model. It is sufficient to
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assume that the payoff of an agent playing an empty coalition receives slightly higher
payoff than by playing non-empty losing coalition. In other words, this modification
associates some small costs with the preparation of a bid by the agents. Hereinafter,
whenever we mention a strictly winning coalition we assume that the agents have
small but positive cost of preparing the offer. To state the result for Strong Nash
Equilibria we also need to use the definition of a coalition C being strictly implicitly
endangered by C′. This definition differs from being implicitly endangered only by
the fact that we do not require the agents from NC ∩ NC′ to have at least as good
payoffs, but strictly better payoffs in C′ than in C.

Theorem 7.8. If there are small but positive costs of preparing the offer by the agents
then the coalition C is strongly winning if and only if C is not explicitly nor strictly
implicitly endangered by any coalition.

Proof. The proof is analogous to the proof of Theorem 7.7.

Theorems 7.7 and 7.8 give us a better understanding of the concept of Rigorously
Strong Nash Equilibrium (and Strong Nash Equilibrium) in our model. They also
lead to a simple brute-force algorithm for checking whether the coalition can be a part
of some RSNE. Below, we provide the analysis that allows to characterize RSNEs in
the project salary model even more precisely.

Theorem 7.9. In the project salary model, the set of agents participating in a
rigorously strongly winning coalition is the same as the set of agents participating
in the cheapest feasible coalition.

Proof. Let C denote the cheapest feasible coalition. We show that for any other
coalition C′, such that NC 6= NC′ , C′ cannot be rigorously strongly winning. For
the sake of contradiction let us assume that C′ is rigorously strongly winning. Let
N∩ = NC∩NC′ . Since C is the cheapest, the sum of salaries of the agents from NC \N∩
in C is lower or equal to the sum of salaries of the agents from NC′ \N∩ in C′. Consider
a coalition C′′ consisting of the set of agents NC and the following salary function.
The salary of each agent from NC \ NC′ is the same as in C and the salary of each
agent from N∩ is the same as in C′. Since the bid cC′ of C′ was below v, the bid of C′′

is also below v. Thus, C′′ is feasible. Also, C′ is implicitly endangered by C′′, which
leads to contradiction and completes the proof.

Interestingly, there is no analogous result for the hourly salary model.

Proposition 7.10. In the hourly salary model the set of the agents participating in
a rigorously strongly winning coalition may not be the same as the set of the agents
participating in the cheapest feasible coalition.

Proof. Let us consider 3 agents a, b, and c with equal minimal salaries φmin
a = φmin

b =
φmin
c = 1. Agents a and b can complete the project spending ta = 10 and tb = 10
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time units on it. Also, the agents b and c can complete the project spending tb = 4
and tc = 20 time units on it. The maximal budget is v = 28. The cheapest coalition
is {a, b} with salaries φa = φb = 1 and bid equal to 20. However, the coalition {b, c}
with salaries φb = 2 and φc = 1 is rigorously strongly winning.

Proposition 7.11. In the project salary model the bid of a strongly winning coalition
is equal to the maximal allowed price v.

Proof. Let C be a strongly winning coalition. If bC < v we could increase the salaries
of some participating agents. The resulting coalition would implicitly endanger C.

Proposition 7.11 is a consequence of the fact that the coalition C can be endangered
by a coalition C′ having the same set of the participants but different salaries. An
alternative characterization disallows such behavior; we do not explore this path
further in this chapter.

Theorem 7.9 and Proposition 7.11 show that the problem of finding a strongly
winning coalition collapses to the problem of finding a feasible coalition. The problem,
thus, becomes an optimization problem; the strategic behavior of agents does not have
an influence on this procedure.

Proposition 7.12. Checking whether a coalition is rigorously strongly winning can
be solved in time O(n2 · fcfc), where fcfc is the complexity of the problem FCFC.

Proof. Let us assume that we want to check whether the coalition C is rigorously
strongly winning. First, we check whether we can increase the salary of any agent
so that the coalition would still be feasible. If we can, C is not rigorously strongly
winning. Otherwise, we solve FCFC for the set of agents N \ NC. If there exists
a non-empty solution C′ with the cost cC′ < cC or such that cC′ = cC and C′ ≺ C,
this means that C is explicitly endangered by C′, and thus is not rigorously strongly
winning. Otherwise, C is not explicitly endangered by any coalition.

Next, we check whether C is implicitly endangered by some coalition C′. We change
the names of the agents so that the agents from NC were the first ‖NC‖ agents in the
lexicographic order. Now, for each agent i from NC we do the following procedure.
We solve FCFC for the set of agents N \ {i}, for the minimal salaries of the agents
from NC changed to their salaries in C, and for the budget v set to cC. If there exists
a feasible C′ to FCFC such that the set NC′ overlaps with NC (overlapping can be
tested in time O(n)), then C is implicitly endangered by C′. We already know that
there is no non-overlapping coalition with the cost lower than cC. Thus, if for no
agent i from NC we find such implicitly endangering coalition, this means that there
is no feasible coalition C′ such that NC ∩ NC′ 6= ∅. Thus, in such case we conclude
that C is rigorously strongly winning.

Proposition 7.13. In the project salary model, if the salaries of the agents can be
rational numbers, finding a rigorously strongly winning coalition can be solved in time
O(n5 log(nv)fcfc), where fcfc is the complexity of the problem FCFC.
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Proof. First we solve FCFC to find the cheapest coalition C. We know that the set of
the agents participating in a rigorously strongly winning coalition is NC (Theorem 7.9)
and the total cost of such a coalition is v (Proposition 7.11). We only need to find
the salary function of such a coalition. For every agent i from NC, we introduce a
variable φC(i). We will show the linear program for the variables φC(i), to which the
solution is a rigorously strongly winning coalition. At the same time we will show
how to implement the separation oracle for the linear program.

First equality states that the salaries of the agents satisfy the feasibility constraint:
∑

i∈NC

φC(i) = v (7.4)

Next two inequalities model explicit endangerment. For each coalition C′, such that
NC ∩NC′ = ∅ and C′ ≺ C:

∑

i∈NC

φC(i) <
∑

i∈NC′

φmin
i . (7.5)

For each coalition C′, such that NC ∩NC′ = ∅ and C ≺ C′:
∑

i∈NC

φC(i) ≤
∑

i∈NC′

φmin
i . (7.6)

Note that we can check the above two inequalities by solving FCFC problem for the
set of agents N \NC . If the resulting coalition C′ is cheaper than C, this means that
the inequality constraint for C′ was violated. Otherwise, all the above inequalities are
satisfied.

Last, for each coalition C′, such that NC ∩NC′ 6= ∅ and NC 6= NC′ we introduce the
inequality modeling implicit endangerment:

∑

i∈NC\NC′

φC(i) +
∑

i∈NC′\NC

φmin
i > v. (7.7)

We can check this inequality in the same way as we checked whether the coalition
was implicitly endangered in the proof of Proposition 7.12: by swapping the names
of the agents, for each i ∈ NC solving FCFC for the set of agents N \ {i}, and
checking the overlapping of the appropriate sets. The whole procedure requires the
time O(n2 · fcfc).

As the result, we showed the reduction of the problem of finding a rigorously
strongly winning coalition to the linear program with n variables and a separation
oracle running in time O(n2 · fcfc).

It is desired to know Rigorously Strong Nash Equilibrium provided they exist.
However a RSNE (and even a Strong Nash Equilibrium) may not exist in some
instances.
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Proposition 7.14. Both in the project salary and in the hourly salary model, there
may not exist a strongly winning coalition even though there exists a feasible coalition.

Proof. Consider a project with budget v = 5; and three identical agents a, b, c with
minimal salaries φmin

i = 2 (in the hourly salary model, assume that each agent spends
exactly 1 time unit on the project); a coalition of any two agents is feasible (able to
complete the project on time and within the budget).

For the sake of contradiction assume there exists a coalition C that gets positive
payoffs. Without loss of generality we assume that NC = {a, b}. At least one of
the agents, let us say a has to get salary equal to 2. However, the agents a and c,
with the salaries equal to 3 and 2 respectively, can form a feasible coalition in which
both a and c get better payoffs (note that we use here the fact that the payoffs are
discrete).

7.4.2 Weakly Winning Coalitions

We are not fully satisfied with the example from Proposition 7.14. Indeed, the
coalition {a, c} can profit by deviating, e.g., by playing φ(a) = 2 and φ(c) = 1.
On the other hand, a should not be wiling to deviate—the reason is that {a, c} with
payoffs φ(a) = 2 and φc = 1 is not stable by its own (for instance, the coalition {b, c}
can play φ(b) = 1 and φ(c) = 2, and successfully deviate). In the above example no
coalition will be formed even though intuitively we feel that there are coalitions that
would agree to work. Thus, we propose a weaker notion of a winning coalition.

Definition 7.7. A feasible coalition C is weakly winning if it is not explicitly
endangered by any coalition and for each feasible coalition C′ such that C is implicitly
endangered by C′, there exists a feasible coalition C′′ such that C′ is explicitly or
implicitly endangered by C′′.

Proposition 7.15. There exists a weakly winning coalition if and only if there exists
a feasible coalition.

Proof. Consider a feasible coalition C that is not explicitly endangered (such a
coalition exists provided there exists a feasible coalition). Let E denote a set of
feasible coalitions implicitly endangering C. If E = ∅, C is strongly winning and,
thus also, weakly winning. If there exists C′ ∈ E such that C′ is not (implicitly or
explicitly) endangered by any feasible coalition, then C′ is strongly winning (and, thus
also, weakly winning). Otherwise, C is weakly winning.

If there is no feasible coalition then there is no weakly winning coalition.

Proposition 7.16. In the project salary model, if the salaries of the agents can be
rational numbers, the problem of finding a weakly winning coalition can be solved in
time O(n5 log(nv)fcfc), where fcfc is the complexity of the problem FCFC.
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Proof. First, we look for a rigorously strongly winning coalition. If there is one, it
is also weakly winning, and so the procedure is complete. If there is no rigorously
strongly winning coalition it is sufficient to find a coalition that is not explicitly
endangered by any other coalition. We can do this by solving a single instance of the
FCFC problem.

Proposition 7.17. In the project salary model, if the salaries of the agent can be
rational numbers, the problem of checking whether a coalition C′ is weakly winning
coalition can be solved in time O(n5 log(nv)fcfc), where fcfc is the complexity of the
problem FCFC.

Proof. We first check whether the coalition is explicitly endangered by any other
coalition. We can do this by solving a single instance of the FCFC problem for the
set of agents N \NC′ .

Next we look for a rigorously strongly winning coalition that endangers C′. We do
this in the same way as in the proof of Proposition 7.13. The only difference is that
we additionally introduce the following inequalities. We assume the same notation as
in the proof of Proposition 7.13. For each i ∈ NC ∩NC′ we require: φC(i) ≥ φC′(i).

7.4.3 Other Solution Concepts

In this section we give a brief overview of other solution concepts that can be applied
to describe winning coalitions in our games. Most of these solution concepts have
their drawbacks and they do not allow to determine winning coalitions. On the other
hand, we point out two ideas that, we believe, are interesting for further analysis. The
first idea is to apply the concept of the Coalitional Farsighted Conservative Stable
Set [82] to our setting. The second is to apply the concepts inspired by the graph
interpretations. These two solution concepts are, however, more involved, and, so, we
believe that our definition of a weakly winning coalition is the natural simplification,
and the first step to understand the complexity of the agents’ interactions.

In the following subsections we present the discussion on the application of
different solution concepts to our model.

Cooperative Game Theory Approach

It may seem that our solution concepts are closely related to solution concepts from
the cooperative game theory. For instance, the definition of Rigorously Strong Nash
Equilibrium is close in spirit to the concept of the core from the cooperative games.
However, there are some substantial differences. In cooperative game theory it is
commonly assumed that the value of a coalition depends only on the members of this
coalition. The following example shows that this is not the case in our problem.

Example 7.18. Consider 2 agents a and b with the minimal salaries φmin
a = 1 and

φmin
b = 2. The maximal budget of the issuer is v = 2. Consider two coalitions formed
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by single agents C1 = {a}, and C2 = {b}. Let us assume that C2 is feasible. The value
of C2 depends on whether the agent C1 is feasible or not.

The above example encourages one to consider our problem as a cooperative game
with externalities. However, in such games the values of the coalitions depend only on
the partition of the agents into coalitions. In our case, however, the whole coalitions
are strategic, and their values depend on the actions (the bids) of the other coalitions.
We provide a detailed discussion regarding applicability of selected concepts from
cooperative game theory in the two following subsections.

The Core

Although the notion of the core is initially known from the cooperative game theory,
there is a natural generalization to strategic games. In this generalization we say
that coalition C with payoff function φ is in the core if and only if there is no feasible
coalition C′ with payoff function φ′ such that every agent in C′ gets, according to φ′,
a better payoff than according to φ.

Although, in cooperative game theory we use a simplified model in which feasibility
means just that the total payoff of the agents does not exceed the value of the coalition
(i.e., the bid of the coalition, in our approach), we may use the more demanding notion
of feasibility from our model. As a result, a coalition C is in the core if and only if it
is not implicitly endangered by any other coalition.

Intuitively, the notion of the core in our games is missing an important element.
Indeed, a coalition C might be in the core even though some other coalition C′, disjoint
with C, can offer a better price and, consequently, win the auction and be awarded
the project.

The (Farsighted) Stability

Another notion known from the cooperative game theory that is worth considering
is the von Neumann-Morgenstern stable set. The stable set is the set of all payoff
vectors such that (i) no payoff vector in the stable set is dominated by another vector
in the set, and (ii) all payoff vectors outside the set are dominated by at least one
vector in the set.

In the light of our previous example from Proposition 7.14, it is even more
appealing to consider the farsighted von Neumann-Morgenstern stable set [61]. A
farsighted coalition is more deliberative, it considers that if it makes a deviation, the
second coalition might react as a consequence of the first coalition’s action, next the
third coalition might react, and so on without the limit. In the original formulation
the agents are considered to be optimistic—they are willing to deviate if the deviation
starts some sequence of deviations that would lead to a better outcome.

In our games the vN-M stable set, and the farsighted vN-M stable set, might be
empty.
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Example 7.19. Consider the example from Proposition 7.14. There is a project with
the budget v = 5; and three identical agents a, b, c with minimal salaries φmin

i > 2.
Every coalition formed by any two agents is feasible. For the sake of clarity of the
presentation let us assume that the payoffs of the agents can be the natural numbers
only. Let us consider the coalition C1 = {a, b} with the payoffs φa = 3, and φa = 2. If
the coalition C1 is in the stable set, then the coalition C2{b, c} with the payoffs φb = 3,
and φc = 3, which dominates C2, must not be in the stable set (otherwise it would
contradict the internal stability requirement). Since C2 does not belong to the stable
set, and it is dominated only by the coalition C3 = {a, c} with the payoffs φa = 2,
and φc = 3, we infer that C3 must belong to stable set. However, C3 is dominated by
C1, which leads to contradiction. By symmetry, we see that the stable set is empty.

The same reasoning as given in the example above applies to the farsighted vN-M
stable sets. The alternative definition in which the agents are conservative, the
Coalitional Farsighted Conservative Stable Set, was proposed by Diamantoudi and
Xue [82]. Intuitively, in this definition the agents are willing to deviate only if every
sequence starting from this deviation leads to a better outcome for them.

We believe that these two cases consider too extreme behavior of the agents.
Nevertheless, we think that considering coalitional farsighted conservative stable sets
in our game is a very appealing direction for the future work.

Coalition-Proof Nash Equilibria

Another way of weakening the notion of the (rigorously) strongly winning coalition is
to consider Coalition-Proof Nash Equilibria [23]. Intuitively, in the Coalitional-Proof
Nash Equilibrium we first assume that all players are in a common room, where they
can freely discuss their strategies. Then the agents, one by one, leave the room. Once
an agent leaves the room, she cannot change her strategy. The agents that are left in
the room are allowed to discuss and (cooperatively) change their strategies.

Unfortunately, these equilibria are not guaranteed to exist. This is what we expect
since a Coalition-Proof Nash Equilibrium must be essentially a Nash Equilibrium. For
the sake of completeness of the presentation, below we show an appropriate example
in which there is no Coalition-Proof Nash Equilibrium.

Example 7.20. Consider the example from Proposition 7.14. There is a project with
the budget v = 5; and three identical agents a, b, c with minimal salaries φmin

i > 2.
Every coalition formed by any two agents is feasible. There is no Coalition-Proof
Nash Equilibrium in this example (independently whether the salaries of the agents
are natural or rational numbers). Indeed, consider any vector of payoffs 〈φa, φb, φc〉.
If φa > 2, we infer that a forms a winning coalition with one of the agents b, or c.
Without loss of generality we assume that {a, b} is the winning team. Thus, φb < 3
and φc = 0. If we consider the subgame formed by the agents b and c, we see, however,
that their payoff vector 〈φb, φc〉 is Pareto-dominated by 〈3, 2〉. Now, let us consider
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the case when φa < 2. One of the agents b and c needs to have payoff lower than
3 (w.l.o.g let us assume that this is the agent b). But, if we consider the subgame
formed by the agents a and b, their payoff vector 〈φa, φb〉 is Pareto-dominated by
〈2, 3〉. Finally, let us assume that φa = 2. We infer that one of the agents b and c
gets zero payoff (let us assume that this is the agent b). However, the payoff vector
〈φa, φb〉 is Pareto-dominated by 〈3, 2〉.

Graph Interpretations

Let us consider a directed multi-graph in which the vertices are the strategy profiles.
Each pair of vertices can be connected with at most two edges, corresponding to
implicit and explicit endangerment. Thus, vertices v and u are connected by an edge
corresponding to the implicit endangerment if and only if v is implicitly endangered
by u. Analogously, v and u are connected by an edge corresponding to the explicit
endangerment if and only if v is explicitly endangered by u.

Clearly, in such a graph, strong Nash equilibria correspond to the sinks,
the vertices with no outgoing edges. Also, the edges corresponding to explicit
endangerment do not form cycles. Consequently, we can restrict our graphs to these
induced by the vertices that do not have outgoing edges corresponding to the explicit
endangerment. We believe that every connected component in such restricted graphs
defines an interesting set of stable solutions. We plan to analyze this idea in our
future work. For instance, thus defined set of stable solutions is always non-empty
and its elements correspond to weakly winning coalitions.

7.5 Mechanism Design

In this section we take a look at two mechanisms that a project issuer can apply to
find a winning coalition: the first one sets the job’s budget v; the second one uses a
first-price auction.

First, we show that if the client is allowed to change the value v there exists a
simple mechanism ensuring the existence of a strongly winning coalition.

Theorem 7.21. If there exists a feasible coalition, then there exists a budget v∗ for
which there exists a strongly winning coalition. The problem of finding such v∗ can be
solved in time O(log v · ffc), where ffc is the complexity of the problem FFC.

Proof. Let v∗ be the smallest value such that there exists a feasible coalition. We
show that for v∗ there exists a strongly winning coalition. Let C∗ be the most
preferred (according to the tie-breaking rule ≺) feasible coalition for v∗. For the
sake of contradiction let us assume that there exists a coalition C′ such that C∗ is
strictly implicitly or explicitly endangered by C′. Of course bC′ ≤ v∗ (otherwise C′

would not be feasible). If C∗ is explicitly endangered by C′ (NC∗ ∩NC′ = ∅), it means
C′ is cheaper than C∗; and we get a contradiction with the definition of v∗. Otherwise
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(C∗ is strictly implicitly endangered by C′), let i ∈ NC∗ ∩NC′ . Now, i must get strictly
better salary in C′ than in C∗. Thus if we change the salary of i in the coalition C′ to
φC′(i) = φC∗(i) we get a contradiction—a cheaper feasible coalition.

To find such a v∗, one has to run a binary search over v.

In the second approach we use the first-price auction in which coalitions
participate. In a standard first-price auction, an item’s price starts from some minimal
value (the least preferred outcome for the owner of the item). Bidders place bids for
the current price. The asking price is gradually increased until there are no further
bids; the last bidder wins the auction. Similarly, in our proposed auction, the auction
starts from the original budget v (the least preferred outcome for the client); the
asking price is gradually decreased. Coalitions place bids for the current asking price
(as in the standard first-price auction, multiple bids for the same asking price are not
allowed). The auction stops if there is no feasible coalition that can propose a lower
bid than the current asking price. This leads to the concept of an auction-winning
coalition.

Definition 7.8. A coalition C is auction-winning if and only if there is no feasible
coalition C′ such that bC′ < bC and for each agent i ∈ NC ∩ NC′ the agent gets better
salary in C′, φC′(i) ≥ φC(i).

Proposition 7.22. The problem of checking whether a feasible coalition C is
auction-winning can be solved in time O(ffc). The problem of finding an
auction-winning coalition can be solved in time O(v · ffc); ffc is the complexity of
the problem FFC.

Proof. To check whether a coalition C is auction-winning one has to solve the problem
of existence of the feasible coalition for the asking price: v = bC − 1 (representing
the next asking price in the first-price auction); and for each i ∈ NC set φmin

i = φC(i)
(these agents must get at least the same payoffs as in C). If no such coalition exists,
C is auction-winning.

To find an auction-winning coalition one can simply simulate the auction.

Here, once again, we saw that these problems of finding auction-winning coalitions
require solving the problem of finding a feasible coalition. We note that the procedure
of finding an auction-winning coalition from Proposition 7.22 might be exponential
with respect to the representation of v.

The summary of our results in the general model, i.e., the model where we assume
a general oracle capable of solving the FFC problem, is given in Table 7.2. We believe
that the computational results favor the concept of the auction winning coalition (or
the centralized model). First, the weakly winning coalition is guaranteed to exist.
Second, the computational power needed to find an auction winning coalition seems
much smaller in comparison with other concepts. In the centralized model, finding
the winning coalition (when we already have the asking salaries of the agents) has
also a straightforward reduction to FCFC.
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Table 7.2: The summary of the results in general model. The column “Existence”
contains the information whether a coalition/equilibrium always exists. The column
“Checking” contains the complexity of checking whether a given coalition satisfies the
definition corresponding to the row. The column “Finding” contains the complexity
of finding a coalition/equilibrium (ffc and fcfc are the complexities of the problems
FFC and FCFC, respectively). The values marked as (*) are valid only in the project
salary model. The values marked as (+) are valid only in the hourly salary model.
The values marked as (-) are valid only if the salaries of the agents can be rational
numbers.

Existence Checking Finding

D
ecen

tralized

rigorously strongly
winning coalition

Not always O(n2 · fcfc) O(n5 log(nv)fcfc) (*)(-)

strongly winning
coalition

Not always open problem

weakly winning
coalition

Always O(n5 log(nv)fcfc) (*)(-)

auction winning
coalition

Always O(ffc) O(v · ffc)

C
en

tral.

winning coalition
(having asking
salaries)

N/A O(fcfc)

Strong Nash
Equilibrium

Always (*)
Not always (+)

O(fcfc) O(n3 log(nv)fcfc)) (*)(-)

7.6 Finding Feasible Coalitions in a Scheduling

Model

In Sections 7.4 and 7.5 we show that many problems of finding the (weakly/strongly)
winning coalitions or determining whether a given coalition is (weakly/strongly)
winning require solving the subproblem of finding the feasible coalition. The general
model (Section 7.2) assumed that given a coalition there is an oracle deciding whether
there exists a feasible coalition.

By specifying an oracle, our results can be applied to two different problems known
in the literature: the commodity auctions and the path auctions.

In the commodity auctions setting, the project can be seen as a set of items
I = {i1, i2, . . . , iq} , where each agent owns a certain subset of the items. A coalition
is feasible if the agents have together all the items from I.

In the path auctions setting [223] we are given a graph G with two distinguished
vertices: a source s and a target t. The agents correspond to the vertices in the graph.
A coalition is feasible if the participating agents form a path from s to t.
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In this section we show a possible concrete instance of this model in which a project
is a set of indivisible, independent, tasks and agents are processors who process these
tasks with varying speeds.

7.6.1 The Scheduling Model

A project consists of a set T = {t1, t2, . . . , tq} of q independent tasks. The tasks
can be processed sequentially or in parallel. The tasks are indivisible: a task must
be processed on a single processor. Once started, a task cannot be interrupted. All
tasks must be completed before a given time d, the project’s deadline.

Agents correspond to processors (in this section we use terms “agent” and
“processor” interchangeably). Each agent has certain skills which are represented
as the speed of executing the tasks. Thus, for each agent i we define the skill vector
si = 〈si,1, si,2, . . . si,q〉 which has the following meaning: agent i is able to finish task tj
within si,j time units (with si,j =∞ when the agent is unable to finish the task). We
assume that si is known for each agent (it can be well approximated, e.g., from past
behavior of the agents certified by clients in form of reviews). An agent can process
only a single task at each time moment—if she wants to process more than one task,
she must execute the tasks sequentially. We assume that only a single agent can work
on a given task. This assumption is not as restrictive as it may appear; if the task
ti is large and can be processed by multiple agents in parallel, the project client will
rather replace ti by a number of smaller tasks.

For a coalition C we define ΦC : T → NC to be an assignment function (assigning
tasks to agents). The assignment function ΦC enables us to formalize the notion of
a coalition completing the project before the deadline and also the total cost of the
coalition. Specifically, a project is finished before the deadline d if and only if all the
agents finish their assigned tasks before d, ∀i ∈ NC :

∑

ℓ:Φ(tℓ)=i
si,ℓ ≤ d. In the hourly

salary model, the cost of the coalition is equal to cC =
∑

i∈NC
φC(i)

∑

ℓ:Φ(tℓ)=i
si,ℓ.

In the scheduling model we define the problem of finding a feasible coalition as
follows.

Problem 7.9 (FFCSM: Find Feasible Coalitions, Scheduling Model). Let T be the
set of q tasks and N be the set of processors (or equivalently, agents). For each task
tj ∈ T and each processor (agent) i ∈ N we define si,j as the processing time of tj
on i. Let φmin

i be the cost of renting processor i (hiring agent i). The budget of the
project is v and the deadline is d. The FFCSM problem consists of selecting a subset
of the processors N ′ ⊆ N and the assignment function Φ : T → N ′ such that the
budget is not exceeded (cN ′,Φ ≤ B) and the project’s makespan does not exceed the
deadline d.

In the hourly salary model, the problem of finding the feasible coalition reduces
to the problem of scheduling on unrelated processors with costs [270]. Specifically,
Shmoys and Tardos [270] show a 2-approximation algorithm for approximating the
makespan (the deadline d in our model).
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Problem 7.10 (FFCHS: Find Feasible Coalitions, Hourly Salary). The instances
of the problem are the same as in the FFCSM problem, except that in the FFCHS
problem we additionally specify that the cost of the coalition cN ′,Φ is defined as cC =
∑

i∈NC
φC(i)

∑

ℓ:Φ(tℓ)=i
si,ℓ.

The project salary model is a generalization of the problem of minimizing
makespan on unrelated processors [293]. To the best of our knowledge, this problem
has not been stated before; thus we formally define it below.

Problem 7.11 (FFCPS: Find Feasible Coalitions, Project Salary). The instances
of the problem are the same as in the FFCSM problem, except that in the FFCPS
problem we additionally specify that the cost of the coalition cN ′,Φ is defined as cN ′,Φ =
∑

i∈N ′ φmin
i .

An easier variant of the problem, in which the goal is to optimize the assignment
only (assuming that the processors are already selected) has a 2-approximation
algorithm [293]. However, adding the notion of the budget usually significantly
increases the complexity. We believe that the approximability of FFCPS is a very
appealing problem.

7.6.2 FFCPS: Hardness Results

First, we show the NP-hardness of FFC-Scheduling in restricted special cases.

Theorem 7.23. FFCPS and FFCHS are NP-hard even for two agents.

Proof. The proof is by reduction from the partition problem. In the partition problem,
we are given a set of integers {nj}; we ask whether there exists a partition of this set
into two subsets S1, S2, such that

∑

nj∈S1 nj =
∑

nj∈S2
nj. To construct an instance

of the feasible coalition problem, we construct a project that has a task for each
nj , an unlimited budget and a deadline d = 1/2

∑

nj . We take two agents a and b
with processing speeds sa,j = sb,j = nj and unit costs: φmin

a = φmin
b = 1. A feasible

coalition corresponds with partitioning numbers into two with equal sums.

Theorem 7.24. FFCPS is NP-hard even if the agents can be assigned no more than
3 tasks, if each agent has no more than 3 skills (for each j we have that ‖{i : si,j 6=
∞}‖ ≤ 3), if the deadline is constant, and if the minimal salaries of the agents are
equal 1.

Proof. The proof is by reduction from the exact set cover problem. In the exact
set cover problem we are given a set of elements T = {t1, t2, . . . , tq} and family
S = {S1, S2, . . . , Sn} of 3-element subsets of T . We ask whether there exist q

3
subsets

from S that cover all the elements from T . The exact set cover problem is NP-hard
even if each member of T appears in at most 3 sets from S.
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We build an instance of the feasible coalition problem in the following way. There
are q tasks and n agents; for each agent i and each task tj we have that si,j = 1 if
and only if tj ∈ Si. Otherwise, si,j =∞. The deadline d is equal to 3. The minimal
salary of each agent is 1 and the budget v to q

3
. It is easy to check that there exists

a feasible coalition if and only if there exists a cover of T with q
3

sets.

Theorem 7.25. FFCHS is NP-hard even if the agents can be assigned no more than
4 tasks, if each agent has no more than 4 skills (for each j we have that ‖{i : si,j 6=
∞}‖ ≤ 4), if the deadline is constant, and if the minimal salaries of the agents are
equal 1.

Proof. The proof is by reduction from the exact set cover problem. We are given a set
of elements T = {t1, t2, . . . , tq} and family S = {S1, S2, . . . , Sn} of 3-element subsets
of T . We assume that each member of T appears in at most 3 sets from S.

We build an instance I of the feasible coalition problem in the following way.
There are q + n tasks and 2n agents. The first q tasks t1, t2, . . . , tq correspond to the
elements in T . The next n tasks tq+1, tq+2, . . . tq+n are the dummy tasks needed by
our construction. The first n agents 1, 2, . . . , n correspond to the subsets from S and
the next n agents (n+1), (n+2), . . . , 2n are the dummy agents. The minimal salaries
of all agents are equal to 1.

For each agent i, i ≤ n and each task tj, j ≤ q, we set si,j = 2 if and only if
tj ∈ Si; otherwise si,j = ∞. Also, for each agent i, i ≤ n and each task tj , j > q
we set si,j = 5 if and only if i = j − q; otherwise si,j = ∞. For each agent i, i > n
and each task tj we set si,j = 6 if and only if i− n = j − q; otherwise si,j =∞. The
deadline d is equal to 6 and the budget v is equal to v = 7

3
q+5n. Clearly, each agent

has no more than 4 skills and so, in any feasible solution, cannot be assigned more
than 4 tasks.

We will show that the answer to the original instance of the exact set cover problem
is “yes” if and only if there exists a feasible coalition in the our constructed instance
I.
⇐= Let us assume there exists a feasible coalition C. The cost of this coalition

is at most equal to v = 7
3
q + 5n. Each non-dummy task (there are q such tasks)

takes 2 time units, and thus implies the cost equal to 2. The dummy tasks can
be assigned either to non-dummy agents (implying the cost 5) or to dummy agents
(implying the cost 6). Thus, we infer that at most q

3
dummy agents are assigned a

task (2q+ 1
3
q ·6+(n− 1

3
q) ·5 = v). As the result at least (n− q

3
) dummy tasks must be

assigned to non-dummy agents. A non-dummy agent, who is assigned a dummy task
cannot be assigned any other task (otherwise the completion time would exceed the
deadline). Thus, at most q

3
non-dummy agents can be assigned non-dummy tasks.

The non-dummy tasks can be assigned only to non-dummy agents. We see the subsets
corresponding to these non-dummy agents who are assigned non-dummy tasks form
the solution to the initial exact set cover problem.
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=⇒ Let us assume that there exists the exact set cover in the initial problem. The
agents corresponding to the subsets from the cover can be assigned tasks so that the
deadline is not exceeded and the total cost of completing these tasks is equal to 2q.
The other (n− q

3
) non-dummy agents can be assigned one dummy task each. Finally,

not-yet assigned dummy tasks can be assigned to dummy agents. The total cost of
such assignment is equal to 2q + (n− 1

3
q) · 5 + 1

3
q · 6 = v.

This completes the proof.

Unfortunately, FFCPS is not approximable for makespan, for budget, and even
for the combination of both these parameters.

Theorem 7.26. For any α, β ≥ 1 there is no polynomial α-β-approximation
algorithm for FFCPS that approximates makespan with the ratio α and budget with
the ratio β, unless P=NP. This result holds even if the costs of all processors are
equal 1.

Proof. For the sake of contradiction let us assume that there exists α-β-approximation
algorithm A. We provide a reduction showing that A can be used as β-approximation
algorithm for SetCover. This will however contradict the result of Feige [98]. Let
I be an instance of SetCover, where T = {t1, t2, . . . , tq} is the set of elements and
S = {S1, S2, . . . , Sn} is the set of the subsets of T . We ask whether there exists K
subsets from S that together cover all elements from T .

From I we construct an instance of FFCPS in the following way. There are q
tasks corresponding to q elements in I. There are n agents 1, 2, . . . , n corresponding
to the subsets in S. The duration si,j of the task ti when processed by the agent j is
defined in the following way. If ti ∈ Sj then si,j = 1. Otherwise, si,j = αq + 1. The
minimal salary of each agent is equal to 1 and the total budget is K. We show that
if there exist K subsets from S covering T then we can use A to find βK subsets
covering T .

Let C denote the covering using K subsets. If we assign each task ti to any agent j
such that Sj ∈ C and ti ∈ Sj, then the completion time of the tasks on each processor
will be at most equal to q. In such case we will use only K processors. Thus A returns
the solution with the makespan at most equal to αq using at most βK processors.
This, however, means that each task ti is assigned to such agent j that ti ∈ Sj. Thus,
the subsets corresponding to the selected processors form the solution of I. Of course,
there is at most βK such processors. This completes the proof.

Theorems 7.23, 7.24, and 7.25 show that the problems FFCPS and FFCHS
remain NP-hard even if various parameters are constant. Although Theorem 7.23
gives us NP-hardness even for 2 agents, it is somehow not satisfactory as we used the
fact that the deadline d can be very large. If the deadline is given in unary encoding,
we can solve the case for 2 agents by dynamic programming. Thus, it is interesting if
we can solve the problem efficiently for small numbers of agents, if the input is given
in unary encoding. We use parameterized complexity theory [87] to approach this
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problem. We ask if FFCPS and FFCHS have FPT algorithms for the parameter n,
the number of the agents, provided the input is given in unary encoding.

Theorem 7.27. Consider the number of agents as the parameter. FFCPS and
FFCHS are W[1]-hard, even if all the agents have minimal salaries equal to 1, and
if the size of the input is given in unary encoding.

Proof. We show the reduction from Unary Bin Packing (which is W[1]-hard [147]).
In the instance of the unary bin packing problem we are given a set T of q items
T = {t1, t2, . . . , tq} (the size of the item ti is equal to si) and a set N of n bins, each
having a capacity d. We ask whether it is possible to pack all the items to the bins.

From this instance we can construct the instance of FFCPS (or FFCHS) in the
following way. Here T will be the set of tasks, N will be the set of agents. The
minimal salaries of the agents are equal to 1; the speed of processing the task tj by
the agent i is equal to si,j = sj . In FFCPS we set the total budget v to be equal to
n. In FFCHS we set v to

∑

ti∈T si. Of course, there exists a feasible schedule if and
only if there exists a feasible bin-packing.

7.6.3 Integer Programming Formulation

In the hourly salary model, Shmoys and Tardos [270] show an integer programming
formulation. In this subsection we state the FFCPS problem as an integer
programming problem.

minimize d (7.8)

subject to
∑

i∈N
aiφ

min
i ≤ v (7.9)

xi,j ≤ ai , i ∈ N (7.10)
∑

tj∈T
xi,jsi,j ≤ d , i ∈ N ≤ d (7.11)

xi,j ∈ {0, 1} , i ∈ N ; tj ∈ T (7.12)

ai ∈ {0, 1} , i ∈ N (7.13)

In the above formulation, a binary variable ai denotes whether agent i is a part of
the solution (is assigned some tasks, Equation 7.13). A binary variable xi,j is equal
to 1 if and only if the task tj is assigned to the agent i (Equation 7.12). We minimize
the makespan d (Equation 7.8), which is the maximal completion time of the tasks
over all the agents (Inequality 7.11). We cannot exceed the budget v (Inequality 7.9),
and the tasks can be assigned only to the selected agents (Inequality 7.10).
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7.7 Conclusions

In this chapter we presented a new class of coalitional games that model cooperation
and competition for the employment in a complex project. We believe that this is an
interesting setting that relates to other natural problems, such as coalition formation,
coalitional auctions, auctions for sharable items, etc. We consider two models of
the organization of the market. First, the winning coalition is selected by the client
based on bids from individual agents; the agents are strategic about the salaries they
request. Second, the coalition formation process is decentralized—the already-formed
coalitions bid for the project, thus the agents are strategic both regarding their salaries
and regarding their cooperation partners.

We propose concepts of stability for each of our models. These concepts are
of interest both to the agents and to the client. The client gains an insight into
agents’ strategies and can thus establish a relation between the cost of organizing
the market and the cost of the winning coalition. The agents can optimize their
strategies according to their beliefs about other agents (an agent can ask, e.g., whether
she can increase her asking salary and still participate in the winning coalition). In
the centralized model we show that the Strong Nash Equilibrium always exists. In
the decentralized model an SNE may not exist, but we prove the existence of weakly
winning coalitions. We show how to reduce the problem of finding a winning coalition
to the problem of finding a feasible one. Our results are summarized in Table 7.2.
Finally, to show that the abstract model can be applied in practice, we presented a
concrete model in which the project is represented as a set of independent tasks and
the agents have certain skills (expressed as processing speeds).

There are many natural open questions. The first interesting direction is to apply
other solution concepts to the decentralized variant of our model (see Section 7.4.3):
the Coalitional Farsighted Conservative Stable Set and the concepts inspired by the
graph interpretations. Both the computational complexity and their game-theoretic
properties are open. Second, it is natural to consider other types of auctions in the
decentralized setting. In particular, it is an open question whether there exists a
truthful mechanism. This question is especially appealing in the light of the vast
literature on designing truthful mechanisms for the centralized setting. Third, it is
interesting to analyze how incomplete knowledge of the agents and the inconsistencies
of their beliefs affect the equilibria. How should an agent play when she is aware of
these inconsistencies?
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Chapter 8

Non-Monetary Fair Scheduling—A
Cooperative Game Theory Approach

We consider a multi-organizational system in which each organization contributes
processors to the global pool but also jobs to be processed on the common resources.
The fairness of the scheduling algorithm is essential for the stability and even for the
existence of such systems (as organizations may refuse to join an unfair system).

We consider on-line, non-clairvoyant scheduling of sequential jobs. The started
jobs cannot be stopped, canceled, preempted, or moved to other processors. We
consider identical processors, but most of our results can be extended to related or
unrelated processors.

We model the fair scheduling problem as a cooperative game and we use the
Shapley value to determine the ideal fair schedule. In contrast to the previous works,
we do not use money to assess the relative utilities of the jobs. Instead, to calculate the
contribution of an organization, we determine how the presence of this organization
influences the performance of other organizations. Our approach can be used with
arbitrary utility function (e.g., flow time, tardiness, resource utilization), but we
argue that the utility function should be strategy resilient. The organizations should
be discouraged from splitting, merging or delaying their jobs. We present the unique
(to within a multiplicative and additive constants) strategy resilient utility function.

We show that the problem of fair scheduling is NP-hard and hard to approximate.
However, we show that the problem parameterized with the number of organizations
is fixed parameter tractable (FPT). Also, for unit-size jobs, we present a fully
polynomial-time randomized approximation scheme (FPRAS). Although for the large
number of the organizations the problem is computationally hard, the presented
exponential algorithm can be used as a fairness benchmark.

All our algorithms are greedy, i.e., they don’t leave free processors if there are
waiting jobs. We show that any greedy algorithm results in at most 25% loss of
the resource utilization in comparison with the globally optimal algorithm. As a
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corollary we conclude that the resource underutilization, being the result of the
fairness requirement, is (tightly) upper bounded by 25%.

We propose a heuristic scheduling algorithm for the fair scheduling problem. We
experimentally evaluate the heuristic and compare its fairness to fair share, round
robin and the exact exponential algorithm. Our results show that fairness of the
heuristic algorithm is close to the optimal one. The difference between our heuristic
and the fair share algorithm is more visible on longer traces with more organizations.
These results show that assigning static target shares (as in the fair share algorithm)
is not fair in multi-organizational systems and that, instead, dynamic measures of
organizations’ contributions should be used.

8.1 Introduction

In multi-organizational systems, participating organizations give access to their local
resources; in return their loads can be processed on other resources. The examples
of such systems include PlanetLab1, grids (Grid50002, EGEE3) or organizationally
distributed storage systems [130]. There are many incentives for federating into
consortia: the possibility of decreasing the costs of management and maintenance
(one large system can be managed more efficiently than several smaller ones), but
also the willingness to utilize resources more efficiently. Peak loads can be offloaded
to remote resources. Moreover, organizations can access specialized resources or the
whole platform (which permits, for example, testing on a large scale).

In the multi-organizational and multi-user systems, fairness of the resource
allocation mechanisms is equally important as its efficiency. For example, efficiency
of BitTorrent depends on users’ collaboration, which in turn requires the available
download bandwidth to be distributed fairly [250]. Fairness has been also discussed
in storage systems [51,124,125,139,300,301,311] and computer networks [303]. In
scheduling, for instance, a significant part of the description of Maui [144], perhaps the
most common cluster scheduler, focuses on the fair-share mechanism. Nevertheless,
there is no universal agreement on the meaning of fairness; next, we review approaches
most commonly used in literature: distributive fairness and game theory.

Under distributive fairness, organizations are ensured a fraction of the resources
according to predefined (given) shares. The share of an organization may depend on
the perceived importance of the workload, payments [51,124,125,300]; or calculated
to satisfy (predefined) service level agreements [139,158,311]. The literature on
distributive fairness describes algorithms distributing resources according to the
given shares, but does not describe how the shares should be set. In scheduling,

1www.planet-lab.org/
2www.grid5000.fr
3egee-technical.web.cern.ch
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distributive fairness is implemented through fair queuing mechanisms: YFQ [35],
SFQ and FSFQ [115,150], or their modifications [51,124,125,139,300,301,311,315].

A different approach is to optimize directly the performance (the utility) of users,
rather than just the allocated resources. Kostreva et al. [167] propose an axiomatic
characterization of fairness based on multi-objective optimization; [263] applies this
concept to scheduling in a multi-organizational system. Inoie et al. [141] proposes a
similar approach for load balancing: a fair solution must be Pareto-optimal and the
revenues of the players must be proportional to the revenues in Nash equilibrium.

While distributive fairness might be justified in case of centrally-managed systems
(e.g., Amazon EC2 or a single HPC center), in our opinion it is inappropriate for
consortia (e.g., PlanetLab or non-commercial scientific systems such as Grid5000 or
EGEE) in which there is no single “owner” and the participating organizations may
take actions (e.g., reschedule jobs on their resources, add local resources, or isolate into
subsystems). In such systems, the shares of the participating organizations should
depend both on their workload and on the owned resources; intuitively an organization
that contributes many “useful” machines should be favored; similarly an organization
that has only a few jobs.

If agents may form binding agreements, cooperative game theory studies the
stability of resulting agreements (coalitions and revenues). Shapley value [265], the
established solution concept that characterizes what is a fair distribution of the total
revenue of a coalition between the participating agents, has been used in scheduling
theory. However, all the models we are aware of use the concept of money. The
works of Carroll et at. [45], Mishra et al. [209], Mashayekhy and Grosu [197] and
Moulin et al. [214] describe algorithms and the process of forming the coalitions for
scheduling. These works assume that each job has a certain monetary value for the
issuing organization and each organization has its initial monetary budget.

Money may have negative consequences on the stakeholders of resource-sharing
consortia. Using (or even mentioning) money discourages people from
cooperating [296]. This stays in sharp contrast with the idea behind the academic
systems—sharing the infrastructure is a step towards closer cooperation. Additionally,
we believe that using money is inconvenient in non-academic systems as well. In
many contexts, it is not clear how to valuate the completion of the job or the usage
of a resource (especially when workload changes dynamically). We think that the
accurate valuation is equally important (and perhaps equally difficult) as the initial
problem of fair scheduling. Although auctions [38] or commodity markets [160] have
been proposed to set prices, these approaches implicitly require to set the reference
value to determine profitability. Other works on monetary game-theoretical models
for scheduling include [110,111,120,123,240]; monetary approach is also used for other
resource allocation problems, e.g. network bandwidth allocation [310]. However, none
of these works describes how to valuate jobs and resources.

In a non-monetary approach proposed by Dutot el al. [90], the jobs are scheduled
to minimize the global performance metric (the makespan) with an additional
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requirement—the utility of each player cannot be worse than if the player would
act alone. Such approach ensures the stability of the system against actions of any
single user (it is not profitable for the user to leave the system and to act alone) but
not to the formation of sub-coalitions.

In the selfish job model [224], the agents are the jobs that selfishly choose
processors on which to execute. Similarly to our model, the resources are shared
and treated as common goods; however, no agent contributes resources.

An alternative to scheduling is to allow jobs to share resources concurrently.
In congestion games [56,225,258] the utility of the player using a resource R
depends on the number of the players concurrently using R; the players are acting
selfishly. Congestion games for divisible load scheduling were analyzed by Grosu and
Chronopoulos [119] (see also Chapter 9 of this dissertation).

In this chapter we propose fair scheduling algorithms for systems composed of
multiple organizations (in contrast to the case of multiple organizations using a system
owned by a single entity). We model the organizations, their machines, and their
jobs as a cooperative game. In this game we do not use the concept of money. When
measuring the contribution of organization O, we analyze how the presence of O in
the grand coalition influences the completion times of the jobs of all participating
organization. This contribution is expressed in the same units as the utility of the
organization. In the design of the fair algorithm we use the concept of Shapley
value. In contrast to simple cooperative games, in our case the value of a coalition
(the total utility of the organizations in this coalition) depends on the underlying
scheduling algorithm. This makes the problem of calculating the contributions of
the organizations more involved. First, we develop algorithms for arbitrary utilities
(e.g., resource utilization, tardiness, flow time, etc.). Next, we argue that designing
the scheduling mechanism itself is not enough; we show that the utility function
must be chosen to discourage organizations from manipulating their workloads (e.g.,
merging or splitting the jobs—similar ideas have been proposed for the money-based
models [214]). We present an exponential scheduling algorithm for the strategy
resilient utility function. We show that the fair scheduling problem is NP-hard and
difficult to approximate. For a simpler case, when all the jobs are unit-size, we present
a fully polynomial-time randomized approximation scheme (FPRAS). According to
our experiments, this algorithm is close to the optimum when used as a heuristics for
workloads with different sizes of the jobs.

Our contribution is the following:

1. We derive the definition of a fair algorithm from the cooperative game theory
axioms (Definitions 8.1 and 8.2, Algorithm 8.1, and Theorem 8.3). The
algorithm uses only the notions regarding the performance of the system (no
money-based mechanisms).
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2. We present the axioms for (Section 8.4), and the definition of, the fair utility
function (Theorem 8.4)—this function is similar to the flow-time metric but the
differences make it strategy-resilient (Proposition 8.5).

3. We show that the fair scheduling problem is NP-complete (Theorem 8.6) and
hard to approximate (Theorem 8.7). However, the problem parameterized with
the number of organizations is fixed parameter tractable (FPT).

4. We present an FPRAS for a special case with unit-size jobs (Algorithm 8.6,
Theorems 8.10 and 8.11).

5. We show the tight bounds on the resource underutilization due to the fairness
of the algorithm. Our result is even more general and applies to all greedy
algorithms (i.e., such algorithms that at every time moment in which there is a
free processor and a non-empty set of ready, but not scheduled, jobs, schedules
some job on some free processor).

6. We propose a practical heuristic that schedules jobs according to an estimated
Shapley value. The heuristic estimates the contribution of an organization by
the number of CPU-timeunits an organization contributes for computing jobs of
other organizations; the algorithm schedules the jobs to minimize the maximal
difference between the utility and the contribution over all organizations.

7. Finally, we conduct simulation experiments to verify fairness of commonly-used
scheduling algorithms (Section 8.7). The experiments show that although the
fair share algorithm is considerably better than round robin (which does not
aim to optimize fairness), our heuristic constantly outperforms fair share, being
close to the optimal algorithm and the randomized approximation algorithm.
The main conclusion from the experimental part of this chapter is that
ensuring that each party is given a fair share of resources (the distributive
fairness approach) might not be sufficient in systems with dynamic job arrival
patterns. An algorithm based on the Shapley value, that explicitly considers
the organization’s impact on other organizations’ utilities, produces more fair
schedules.

In this chapter we use very mild assumptions about the jobs. We do not require to
know their valuations, durations, or their future incoming pattern. Thus, we believe
the presented results have practical consequences for real-life job schedulers. Also,
our exponential algorithm forms a benchmark for comparing the fairness of other
polynomial-time scheduling algorithms. The experimental comparison of some real
scheduling algorithms suggests that the polynomial-time heuristic algorithms inspired
by the ones presented in this chapter often result in a better fairness than the currently
most popular fair share algorithm.
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8.2 Preliminaries

Organizations, machines, jobs. We consider a system built by a set of independent
organizations O = {O(1), O(2), . . . O(k)}. Each organization O(u) owns a computational

cluster consisting of m(u) machines (processors) denoted as M (u)
1 ,M

(u)
2 , . . .M

(u)

m(u) and

produces its jobs, denoted as J (u)
1 , J

(u)
2 , . . . . Each job J

(u)
i has release time r

(u)
i ∈ T,

where T is a discrete set of time moments. We consider an on-line problem in which
each job is unknown until its release time. We consider a non-clairvoyant model, i.e.,
the job’s processing time is unknown until the job completes (hence we do not need to
use imprecise [172] run-time estimates). For the sake of simplicity of the presentation,
we assume that machines are identical, i.e., each job J

(u)
i can be executed at any

machine and its processing always takes p(u)i time units; p(u)i is the processing time.
Most of the results, however, can be extended to the case of related machines, where
p
(u)
i is a function of the schedule—the only exception are the results in Section 8.5.1,

where we rely on the assumption that each job processed on each machine takes
exactly one time unit. The results even generalize to the case of unrelated machines,
however if we assume non-clairvoyant model with unrelated machines (i.e., we do not
know the processing times of the jobs on any machine) then we cannot optimize the
assignment of jobs to machines.

The jobs are sequential (this is a standard assumption in many scheduling models
and, particularly, in the selfish job model [224]; an alternative is to consider the
parallel jobs, which we plan to do in the future). Once a job is started, the scheduler
cannot preempt it or migrate it to another machine (this assumption is usual in HPC
scheduling because of high migration costs). Finally, we assume that the jobs of each
individual organization should be started in the order in which they are presented.
This allows organizations to have an internal prioritization of their jobs.

Cooperation, schedules. Organizations can cooperate and share their
infrastructure; in such case we say that organizations form a coalition. Formally, a
coalition C is a subset of the set of all organizations, C ⊆ O. We also consider a specific
coalition consisting of all organizations, which we call a grand coalition and denote
as Cg (formally, Cg = O, but in some contexts we use the notation Cg to emphasize
that we are referring to the set of the organizations that cooperate). The coalition
must agree on the schedule σ =

⋃

(u)

⋃

i{(J
(u)
i , s

(u)
i ,M(J

(u)
i ))} which is a set of triples;

a triple (J
(u)
i , s

(u)
i ,M(J

(u)
i )) denotes a job J (u)

i started at time moment s(u)i ≥ r
(u)
i on

machine M(J
(u)
i ). We assume that a machine executes at most one job at any time

moment. We often identify a job J
(u)
i with a pair (s

(u)
i , p

(u)
i ); and a schedule with

⋃

(u)

⋃

i{(s
(u)
i , p

(u)
i ))} (we do so for a more compact presentation of our results). Each

coalition uses all the machines of its participants and schedules consecutive tasks on
available machines. We consider only greedy schedules: at any time moment if there is
a free processor and a non-empty set of ready, but not scheduled, jobs, some job must
be assigned to the free processor. Since we do not know neither the characteristics of
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the future workload nor the duration of the started but not yet completed jobs, any
non-greedy policy would result in unnecessary delays in processing jobs. Also, such
greedy policies are used in real-world schedulers [144].

Let J denote the set of all possible sets of jobs. An online scheduling algorithm (in
short, a scheduling algorithm) A : J×T→ O is an online algorithm that continuously
builds a schedule: for a given time moment t ∈ T such that there is a free machine
in t and a set of jobs released before t but not yet scheduled: J ∈ J, A(J , t) returns
the organization the task of which should be started. The set of all possible schedules
produced by such algorithms is the set of feasible schedules and denoted by Γ. We
recall that in each feasible schedule the tasks of a single organization are started in
the FIFO order.

Objectives. We consider a utility function ψ : Γ × O × T → R that for
a given schedule σ ∈ Γ, an organization O(u), and a time moment t gives the
value corresponding to the O(u) organization’s satisfaction from a schedule σ until
time moment t. The examples of such utility functions that are common in
scheduling theory are: flow time, resource utilization, turnaround, etc. Our scheduling
algorithms will only use the notions of the utilities and do not require any external
payments.

Since a schedule σ is fully determined by a scheduling algorithm A and a coalition
of organizations C, we often identify ψ(A, C, O(u), t) with appropriate ψ(σ,O(u), t).
Also, we use a shorter notation ψ(u)(C) instead of ψ(A, C, O(u), t) whenever A and t
are known from the context. We define the characteristic function v : Γ × T → R

describing the total utility of the organizations from a schedule: v(A, C, t) =
∑

O(u)∈C ψ(A, C, O
(u), t). Analogously as above, we can use an equivalent formulation:

v(σ, t) =
∑

O(u)∈C ψ(σ,O
(u), t), also using a shorter notation v(C) whenever it is

possible. Note that the utilities of the organizations, ψ(u)(C), constitute a division of
the total value of the coalition v(C).

8.3 Fair Scheduling Based on the Shapley Value

In this section our goal is to find a scheduling algorithm A that in each time
moment t ensures a fair distribution of the value of the coalition v(C) between
the participating organizations. We will denote this desired fair division of the
value v as φ(1)(v), φ(2)(v), . . . , φ(k)(v) meaning that φ(u)(v) denotes the ideally fair
revenue (utility) obtained by organization O(u). We would like the values φ(u)(v) to
satisfy the fairness properties, first proposed by Shapley [265] (below we give intuitive
motivations; see [265] for further arguments).

1. Efficiency—the total value v(C) is distributed:
∑

O(u)∈C
φ(u)(v(C)) = v(C).

185



2. Symmetry—the organizations O(u) and O(u′) having indistinguishable
contributions obtain the same profits:
(

∀C′⊂C:O(u),O(u′) /∈C′ v(C
′ ∪ {O(u)}) = v(C′ ∪ {O(u′)})

)

⇒ φ(u)(v(C)) = φ(u′)(v(C)).

3. Additivity—for any two characteristic functions v and w and a function (v+w):
∀C′⊆C (v+w)(C′) = v(C′) + w(C′) we have that ∀C′⊆C ∀u:

φ(u)((v+w)(C)) = φ(u)(v(C)) + φ(u)(w(C)).

Consider any two independent schedules σ1 and σ2 that together form a schedule
σ3 = σ1∪σ2 (σ1 and σ2 are independent iff removing any subset of the jobs from
σ1 does not influence the completion time of any job in σ2 and vice versa). The
profit of an organization that participates only in one schedule (say σ1) must
be the same in case of σ1 and σ3 (intuitively, the jobs that do not influence
the current schedule also do not influence the current profits). The profit of
every organization that participates in both schedules should in σ3 be the sum
of the profits in σ1 and σ2. Intuitively: if the schedules are independent then
the profits are independent too.

4. Null player—an organization that does not increase the value of any coalition
C ′ ⊂ C gets nothing:

(

∀C′⊂C : v(C
′ ∪ {O(u)}) = v(C′)

)

⇒ φ(u)(v(C)) = 0.

Since the four properties are actually the axioms of the Shapley value [265], they
fully determine the single mapping between the coalition values and the profits of
organizations (known as the Shapley value). In game theory the Shapley value
is considered the classic mechanism ensuring the fair division of the revenue of
the coalition4. The Shapley value is defined and described in preliminaries of this
dissertation in Section 2.1.2. Here we only recall one of the definitions, showing an
algorithm for its computation.

Let LC denote all orderings of the organizations from coalition C. Each ordering
≺C can be associated with a permutation of the set C, thus ‖LC‖ = ‖C‖!. For the
ordering ≺C∈ LC we define ≺C (O(i)) = {O(j) ∈ C : O(j) ≺C O(i)} as the set of
all organizations from C that precede O(i) in the order ≺C. Shapley value can be
computed by the following formula [231]:

φ(u)(v(C)) =
1

‖C‖!

∑

≺C∈LC

(

v
(

≺C (O
(u)) ∪ {O(u)}

)

− v
(

≺C (O
(u)
)

)

. (8.1)

This formulation has an interesting interpretation. Consider the organizations joining
the coalition C in order ≺C . Each organization O(u), when joining, contributes to

4The Shapley value has other interesting axiomatic characterizations [305].
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the current coalition value equal to
(

v(≺C (O(u)) ∪ {O(u)})− v(≺C (O(u))
)

. Thus,
φ(u)(v(C)) is the expected contribution to the coalition C when the expectation is taken
over the order in which the organizations join C. Hereinafter we will call the value
φ(u)(v(C)) (or using a shorter notation φ(u)) as the contribution of the organization
O(u).

Let us consider a specific scheduling algorithm A, a specific time moment t, and
a specific coalition C. Ideally, the utilities of the organizations should be equal to
the reference fair values, ∀u ψ(u)(C) = φ(u)(v(C)), (meaning that the utility of the
organization is equal to its contribution), but our scheduling problem is discrete so
an algorithm guaranteeing this property may not exist. Thus, we will call “fair” an
algorithm that results in utilities close to the contributions. The following definition
of a fair algorithm is in two ways recursive. A fair algorithm for a coalition C and
time t must be also fair for all subcoalitions C′ ⊂ C and for all previous t′ < t. An
alternative to being fair for all previous t′ < t would be to ensure asymptotic fairness;
however, our formulation is more responsive and more relevant for the online case.
We want to avoid the case in which an organization is disfavored in one, possibly
long, time period and then favored in the next one.)

Definition 8.1. Set an arbitrary metric ‖ · ‖d : 2
k × 2k → R≥0; and set an arbitrary

time moment t ∈ T. A is a fair algorithm in t for coalition C in metric ‖ · ‖d if and
only if:

A ∈ argminA′∈F(<t)‖~φ(A
′, C, t)− ~ψ(v(A′, C, t)‖d

where:

1. F(< t) is a set of algorithms fair in each time moment t′ < t; F(< 0) is a set
of all greedy algorithms,

2. ~ψ(v(A′, C) is a vector of utilities 〈ψ(u)(v(A′, C))〉,

3. ~φ(A′, C) is a vector of contributions 〈φ(u)(v(A′, C))〉, where φ(u)(v(A′, C)) is
given by Equation 8.1,

4. In Equation 8.1, for any C′ ⊂ C, v(C′) denotes v(Af , C
′), where Af is any fair

algorithm for coalition C′.

Definition 8.2. A is a fair algorithm for coalition C if and only if it is fair in each
time moment t ∈ T.

Further on, we consider algorithms fair in the Manhattan metric: ‖~v1, ~v2‖M =
∑k

i=1 |v1[i] − v2[i]|. However, our analysis can be generalized to other distance
functions.

Based on Definition 8.2, we construct a reference fair algorithm for an arbitrary
utility function ψ (Algorithm Ref; the pseudo-code is presented in Figure 8.1).
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Notation:
jobs[C][O(u)] — list of waiting jobs of organization O(u).
φφφ[C][O(u)] — the contribution of O(u) in C, φ(u)(C).
ψψψ[C][O(u)] — utility of O(u) from being in C, ψ(C, O(u)).
v[C] — value of a coalition C.
σσσ[C] — schedule for a coalition C.
FreeMachine(σ, t) — returns true if and only if there is a free machine in σ in time t.

1 ReleaseJob(O(u), J):
2 for C : O(u) ∈ C do

3 jobs[C][O(u)].push(J)

4 Distance(C, O(u), t):
5 old← σ[C];

6 new← σ[C] ∪ {(jobs[C][O(u)].first, t)};

7 ∆ψ ← ψ(new,O(u), t)− ψ(old,O(u), t);

8 return

∣

∣

∣φ[C][O(u)] + ∆ψ
‖C‖ − ψ[C][O

(u)]−∆ψ
∣

∣

∣

9 +
∑

O(u′)

∣

∣

∣φ[C][O(u′)] + ∆ψ
‖C‖ − ψ[C][O

(u′)]
∣

∣

∣;

10 SelectAndSchedule(C, t):
11 u← argminO(u)(Distance(C, O(u), t)) ;
12 σ[C]← σ[C] ∪ {(jobs[C][u].first, t)};

13 ψ[C][O(u)]← ψ(σ[C], O(u), t);

14 UpdateVals(C, t):
15 foreach O(u) ∈ C do

16 ψ[C][O(u)]← ψ(σ[C], O(u), t);

17 φ[C][O(u)]← 0;

18 v[C]←
∑

O(u) ψ(σ[C], O(u), t);
19 foreach Csub: Csub ⊆ C do

20 foreach O(u) ∈ Csub do

21 φ[C][O(u)]← φ[C][O(u)]+

22 (v[Csub]− v[Csub \ {O(u)}])

23 · (‖Csub‖−1)!(‖C‖−‖Csub‖)!
‖C‖! ;

24 FairAlgorithm(C):
25 foreach time moment t do

26 foreach job J
(u)
i : r

(u)
i = t do

27 ReleaseJob(O
(u)
i , J

(u)
i );

28 for s← 1 to ‖C‖ do

29 foreach C′ ⊂ C, such that ‖C′‖ = s do

30 UpdateVals(C′, t);
31 while FreeMachine(σ[C′], t) do

32 SelectAndSchedule(C′, t);

33 v[C]←
∑

O(u) ψ(σ[C], O(u), t);

Figure 8.1: Algorithm Ref: a fair algorithm for arbitrary utility function ψ.
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Algorithm Ref keeps a schedule for every subcoalition C′ ⊂ C. For each time moment
the algorithm complements the schedule starting from the subcoalitions of the smallest
size. The values of all smaller coalitions v[Cs] are used to update the contributions of
the organizations (lines 19-23) in the procedure UpdateVals). Before scheduling any
job of each coalition C′, the contribution and the utility of each organization in C′ is
updated (procedure UpdateVals). If there is a free machine and a set of jobs waiting
for execution, the algorithm selects the job according to Definition 8.1, thus it selects
the organization that minimizes the distance of the utilities ~ψ to their ideal values
~φ (procedure SelectAndSchedule). Assuming the first job of the organization O(u)

is tentatively scheduled, procedure Distance computes a distance between the new
values of ~ψ and ~φ.

Procedure Distance works as follows. Assuming O(u) is selected, the value
∆ψ denotes the increase of the utility of O(u) due to scheduling its first waiting
job. This is also the increase of the value of the whole coalition. When procedure
Distance(C, O(u), t) is executed, the schedules (and, thus, the values) in time t for
all subcoalitions C′ ⊂ C are known. The schedule, for coalition C is known only in
time (t − 1), as we have not yet decided which job should be scheduled in time t.
Thus, scheduling the job will change the schedule (and the value) only for a coalition
C. From the definition of the Shapley value, it follows that if the value v(C) of the
coalition C increases by ∆ψ and the value of all subcoalitions remains the same, then
the contribution φ(u′) of each organization O(u′) ∈ C to C will increase by the same
value equal to ∆ψ/‖C‖. Thus, for each organization O(u′) ∈ C, the new contribution
of O(u′) is (φ[C][O(u′)] + ∆ψ

‖C‖). The new utility for each organization O(u′) ∈ C, such

that O(u′) 6= O(u) is equal to ψ[C][O(u′)]. The new utility of the organization O(u) is
equal to (ψ[C][O(u)]|+∆ψ).

Theorem 8.1. Algorithm Ref from Figure 8.1 is a fair algorithm.

Proof. Algorithm Ref is a straightforward implementation of Definition 8.2.

Proposition 8.2. In each time moment t the time complexity of Algorithm Ref from
Figure 8.1 is O(‖O‖(2‖O‖

∑

m(u) + 3‖O‖)).

Proof. Once the contribution is calculated, each coalition in t may schedule at most
∑

m(u) jobs. The time needed for selecting each such a job is proportional to
the number of the organizations. Thus, we get the ‖O‖2‖O‖

∑

m(u) part of the
complexity. For calculating the contribution of the organization O(u) to the coalition
C the algorithm considers all subsets of C—there are 2‖C‖ such subsets. Since there
are

(‖O‖
k

)

coalitions of size k, the number of the operations required for calculating
the contributions of all organizations is proportional to:

∑

(u)

‖O‖
∑

k=0

(

‖O‖

k

)

2k = ‖O‖

‖O‖
∑

k=0

(

‖O‖

k

)

1‖O‖−k2k = ‖O‖(1 + 2)‖O‖ = ‖O‖3‖O‖.
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This gives the ‖O‖3‖O‖ part of the complexity and completes the proof.

Corollary 8.3. The problem of finding fair schedule parameterized with the number
of organizations is FPT.

8.4 Strategy-Proof Utility Functions

There are many utility functions considered in scheduling, e.g., the flow time, the
turnaround time, resource utilization, makespan, tardiness. However, it is not
sufficient to design a fair algorithm for an arbitrary utility function ψ. Some functions
may create incentives for organizations to manipulate their workload: to divide the
tasks into smaller pieces, to merge, or to delay them. This is undesired as an
organization should neither profit nor suffer from the way it presents its workload. An
organization should present its jobs in the most convenient way; it should not focus
on playing against other organizations. We show that in organizationally distributed
systems, where we have to take into account such manipulations, the choice of the
utility functions is restricted.

We introduce additional notation for this section: let us fix an arbitrary
organization O(u) and let σt denote a schedule of the jobs of O(u) in time t. The
jobs Ji(si, pi) of O(u) are characterized by their start times si and processing times
pi. We are considering envy-free utility functions that for a given organization O(u)

depend only on the schedule of the jobs of O(u). This means that there is no external
economical relation between the organizations (organization Ou cares about Ov only
if the jobs of Ov influence the jobs of Ou—in contrast to looking directly at the utility
of Ov). We also assume the non-clairvoyant model—the utility in time t depends only
on the jobs, or the parts of the jobs, completed before or at t. Let us assume that
our goal is to maximize the utility function.5 We start from presenting the desired
properties of the utility function ψ (when presenting the properties we use the shorter
notation ψ(σt) for ψ(σt, t)):

1. Tasks anonymity (starting times)—improving the completion time of a single
task with a certain processing time p by one unit of time is for each task equally
profitable – for s, s′ ≤ t− 1, we require:

ψ(σt ∪ {(s, p)})− ψ(σt ∪ {(s+ 1, p)}) =

ψ(σ′t ∪ {(s
′, p)})− ψ(σ′t ∪ {(s

′ + 1, p)}) > 0.

2. Tasks anonymity (number of tasks)—in each schedule increasing the number of
completed tasks is equally profitable—for s ≤ t− 1, we require:

ψ(σt ∪ {(s, p)})− ψ(σt) = ψ(σ′t ∪ {(s, p)})− ψ(σ
′
t) > 0.

5We can easily transform the problem to the minimization form by taking the inverse of the
standard maximization utility function
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3. Strategy-resistance—no organization cannot profit from merging multiple
smaller jobs into one larger job or from dividing a larger job into smaller pieces:

ψ(σt ∪ {(s, p1)}) + ψ(σt ∪ {(s+ p1, p2)}) = ψ(σt ∪ {(s, p1 + p2)}).

In spite of dividing and merging the jobs, each organization can delay the release
time of their jobs and artificially increase the size of the jobs. Delaying the jobs
is, however, never profitable for the organization (by property 1). Also, the
strategy-resistance property discourages the organizations from increasing the
sizes of their jobs (The utility coming from processing a larger job is always
greater and, thus, the scheduling algorithm would think that the organization
gained more that it actually did.).

To within a multiplicative and additive constants, there is only one utility function
satisfying the aforementioned properties.

Theorem 8.4. Let ψ be a utility function that satisfies the 3 properties: task
anonymity (starting times), task anonymity (number of tasks), strategy-resistance.
ψ is of the following form:

ψ(σ, t) =
∑

(s,p)∈σt

min(p, t− s)(K1 −K2
s+min(s+ p− 1, t− 1)

2
) +K3,

where

1. K1 = ψ(σ ∪ {(0, 1)}, t)− ψ(σ) > 0

2. K2 = ψ(σ ∪ {(s, p)}, t)− ψ(σ ∪ {(s+ 1, p)}, t) > 0

3. K3 = ψ(∅).

Proof.

ψ(σ, t) = ψ(
⋃

(s,p)∈σ
(s, p), t) = ψ(

⋃

(s,p)∈σ
(s,min(p, t− s)), t)

(non-clairvoyance)

= ψ(
⋃

(s,p)∈σ

min(s+p−1,t−1)
⋃

i=s

(i, 1), t)

(strategy-resistance)

= ψ(
⋃

(s,p)∈σ

min(s+p−1,t−1)
⋃

i=s

(0, 1), t)−K2

∑

(s,p)∈σt

min(s+p−1,t−1)
∑

i=s

i

(starting times anonymity)
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= ψ(∅) +
∑

(s,p)∈σt

min(s+p−1,t−1)
∑

i=s

K1

(number of tasks anonymity)

−K2

∑

(s,p)∈σt

min(p, t− s)
s+min(s+ p− 1, t− 1)

2

(sum of the arithmetic progression)

= K3 +
∑

(s,p)∈σt

min(p, t− s)(K1 −K2
s+min(s+ p− 1, t− 1)

2
)

We use the constants K1, K2, K3 to simplify the form of the utility function and
ensure that the utility is always positive. With K1 = 1, K2 = t and K3 = 0, we get
the following strategy-proof utility function:

ψsp(σ, t) =
∑

(s,p)∈σ:s≤t
min(p, t− s)

(

t−
s+min(s+ p− 1, t− 1)

2

)

. (8.2)

Function ψsp can be interpreted as the task throughput. A task with processing
time pi can be identified with pi unit-sized tasks starting in consecutive time moments.
Intuitively, the function ψsp assigns to each such unit-sized task starting at time ts a
utility value equal to (t − ts); the higher the utility value, the earlier this unit-sized
task completes. The utility of the schedule is the sum of the utilities over all such
unit-sized tasks. Function ψsp is similar to the flow time except for two differences:
(i) Flow time is a minimization objective, but increasing the number of completed
jobs increases its value. E.g., scheduling no jobs results in zero (optimal) flow time,
but, of course, an empty schedule cannot be considered optimal (breaking the second
axiom); (ii) Flow time favors short tasks, which is an incentive for dividing tasks into
smaller pieces (this breaks strategy-resistance axiom). The differences between the
flow time and ψsp is also presented in the example in Figure 8.2. The similarity of
ψsp to the flow time is quantified by Proposition 8.5 below.

Proposition 8.5. Let J be a fixed set of jobs, each having the same processing time
p and each completed before time moment t. Then, maximization of the ψsp utility is
equivalent to minimization of the flow time of the jobs.

Proof. Let σ denote an arbitrary schedule of J . Since the flow time uses the release
times of the jobs, we will identify the jobs with the triples (s, p, r) where s, p and
r denote the start time, processing time and release time, respectively. Let ψft(σ)
denote the total flow time of the jobs from J in schedule σ. We have:

ψsp(σ, t) =
∑

(s,p,r)∈σ:s≤t
min(p, t− s)

(

t−
s+min(s+ p− 1, t− 1)

2

)
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J7, p7 = 3

J1p1 = 3

J2, p2 = 4

J3, p3 = 3

J4, p4 = 6

J6, p6 = 6

J5, p5 = 3

J8, p8 = 3

J9, p9 = 4

M1

M2

M3

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J
(2)
1 , p

(2)
1 = 5

Figure 8.2: Consider 9 jobs owned by O(1) and a single job owned by O(2), all scheduled
on 3 processors. We assume all jobs were released in time 0. In this example all jobs
finish before or at time t = 14. The utility ψsp of the organization O(1) in time 13
does not take into account the last uncompleted unit of the job J9, thus it is equal
to: 3 · (13 − 0+2

2
) + 4 · (13 − 0+3

2
) + · · · + 3 · (13 − 9+11

2
) + 3 · (13 − 10+12

2
) = 262.

The utility in time 14 takes into account all the parts of the jobs, thus it is equal to
3 · (14− 0+2

2
) + 4 · (14− 0+3

2
) + · · ·+ 3 · (14− 9+11

2
) + 4 · (14− 10+13

2
) = 297. The flow

time in time 14 is equal to 3 + 4 + · · · + 14 = 70. If there was no job J
(2)
1 , then J9

would be started in time 9 instead of 10 and the utility ψsp in time 14 would increase
by 4 · (10+13

2
− 9+12

2
) = 4 (the flow time would decrease by 1). If, for instance, J6 was

started one time unit later, then the utility of the schedule would decrease by 6 (the
flow time would decrease by 1), which shows that the utility takes into account the
sizes of the jobs (in contrast to the flow time). If the job J9 was not scheduled at all,
the utility ψsp would decrease by 10, which shows that the schedule with more tasks
has higher, i.e., better utility (the flow time would decrease by 14; since flow time is
a minimization metric, this breaks the second axiom regarding the tasks anonymity).

=
∑

(s,p,r)∈σ
p

(

t−
2s+ p− 1

2

)

(each job is completed before t)

=
∑

(s,p,r)∈σ
(pt +

p2 + p

2
− r)− p

∑

(s,p,r)∈σ
((p+ s)− r)

= ‖J ‖(pt+
p2 + p

2
)−

∑

(s,p,r)∈σ
(r)− pψft(σ)

Since p, ‖J ‖(pt+ p2+p
2

) and
∑

(s,p,r)∈σ r are constants we get the thesis.
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1 : SelectAndSchedule

2 u← argminO(u)(ψ[C][O(u)]− φ[C][O(u)]) ;
3 σ[C]← σ[C] ∪ {(jobs[C][u].first, t)};

4 ψ[C][O(u)]← ψ(σ[C], O(u), t);

Figure 8.3: Function SelectAndSchedule for utility function ψsp.

8.5 Fair Scheduling with Strategy-Proof Utility

For the concrete utility function ψsp, we can simplify the SelectAndSchedule function
in Algorithm Ref. The simplified version is presented in Figure 8.3.

The algorithm selects the organization O(u) that has the largest difference (φ(u)−
ψ(u)), that is, the organization that has the largest contribution in comparison to the
obtained utility. One can wonder whether we can select the organization in polynomial
time—without keeping the 2‖C‖ schedules for all subcoalitions. Unfortunately, the
problem of calculating the credits for a given organization is NP-hard.

Theorem 8.6. The problem of calculating the contribution φ(u)(C, t) for a given
organization O(u) in coalition C in time t is NP-hard.

Proof. We present the reduction of the SubsetSum problem (which is NP-hard) to
the problem of calculating the contribution for an organization. Let I be an instance
of the SubsetSum problem. In I we are given a set of k integers S = {x1, x2, . . . , xk}
and a value x. We ask whether there exists a subset of S with the sum of elements
equal to x. From I we construct an instance Icon of the problem of calculating the
contribution for a given organization. Intuitively, we construct the set of (‖S‖ + 2)
organizations: ‖S‖ of them will correspond to the appropriate elements from S.
The two dummy organizations a and b are used for our reduction. One dummy
organization a has no jobs. The second dummy organization b has a large job that
dominates the value of the whole schedule. The instance Icon is constructed in such
a way that for each coalition C such that b ∈ C and such that the elements of S
corresponding to the organizations from C sum up to the value lower than x, the
marginal contribution of a to C is L+O(L), where O(L) is small in comparison with
L. The marginal contribution of a to other coalitions is small (O(L)). Thus, from
the contribution of a, we can count the subsets of S with the sum of the elements
lower than x. By repeating this procedure for (x+ 1) we can count the subsets of S
with the sum of the elements lower than (x + 1). By comparing the two values, we
can find whether there exists the subset of S with the sum of the elements equal to
x. The precise construction is described below.

Let S<x = {S ′ ⊂ S :
∑

xi∈S′ si < x} be the set of the subsets of S, each having
the sum of the elements lower than x. Let n<x(S) =

∑

S′∈S<x
(‖S ′‖+1)!(‖S‖−‖S ′‖)!

be the number of the orderings (permutations) of the set S ∪ {a, b} that starts with
some permutation of the sum of exactly one element of S<x (which is some subset of
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S such that the sum of the elements of this subset is lower than x) and {b} followed
by the element a. In other words, if we associate the elements from S ∪ {a, b} with
the organizations and each ordering of the elements of S∪{a, b} with the order of the
organizations joining the grand coalition, then n<x(S) is the number of the orderings
corresponding to the cases when organization a joins grand coalition just after all the
organizations from S ′∪{b}, where S ′ is some element of S<x. Of course S<x ⊆ S<(x+1).
Note that there exists S ′ ⊂ S, such that

∑

xi∈S′ xi = x if and only if the set S<x is
a proper subset of S<(x+1) (i.e. S<x ⊂ S<(x+1)). Indeed, there exists S ′ such that
S ′ /∈ S<x and S ′ ∈ S<(x+1) if and only if

∑

xi∈S′ xi < x + 1 and
∑

xi∈S′ xi ≥ x from
which it follows that

∑

xi∈S′ xi = x. Also, S<x ⊂ S<(x+1) if and only if n<(x+1)(S)
is greater than n<(x)(S) (we are doing a summation of the positive values over the
larger set).

In Icon there is a set of (k + 2) machines, each owned by a different organization.
We will denote the set of first k organizations as OS, the (k+1)-th organization as a
and the (k+2)-th organization as b. Let xtot =

∑k
j=1 xj + 2. The i-th organization

from OS has 4 jobs: J (i)
1 , J

(i)
2 , J

(i)
3 and J (i)

4 , with release times r(i)1 = r
(i)
1 = 0, r(i)3 = 3

and r
(i)
4 = 4; and processing times p(i)1 = p

(i)
2 = 1, p(i)3 = 2xtot and p

(i)
4 = 2xi.

The organization a has no jobs; the organization b has two jobs J (b)
1 and J

(b)
2 , with

release times r(b)1 = 2 and r
(b)
2 = (2x + 3); and processing times p(b)1 = (2x + 2) and

p
(b)
2 = L = 4‖S‖x2tot((k + 2)!) + 1 (intuitively L is a large number).

Until time t = 2 only the organizations from OS have some (unit-size) jobs to
be executed. The organization b has no jobs till time t = 2, so it will run one
or two unit-size jobs of the other organizations, contributing to all such coalitions
that include b and some other organizations from OS. This construction allows to
enforce that in the first time moment after t = 2 when there are jobs of some of the
organizations from OS and of b available for execution, the job of b will be selected
and scheduled first.

Let us consider a contribution of a to the coalition C such that a /∈ C and b ∈ C.
There are (‖C ∩OS‖+ 2) machines in the coalition C ∪ {a}. The schedule in C ∪ {a}
after t = 2 looks in the following way (this schedule is depicted in Figure 8.4). In
time t = 2 one machine (let us denote this machine as M ′) starts the job J (b)

1 In time
t = 3 some ‖C ∩ OS‖ machines start the third jobs (the one with size 2xtot) of the
organizations from C ∩ O and one machine (denoted as M ′′) starts the fourth jobs
of the organizations from C ∩ OS; the machine M ′′ completes processing all these
jobs in time 2y + 4, where y =

∑

i:O(i)∈C∧O(i)∈OS
xi (of course 2y + 4 ≤ 2xtot). In

time (2x + 3), if y < x the machine M ′′ starts processing the large job J
(b)
2 of the

organization b; otherwise machine M ′′ in time (2x+3) still executes some job J (i)
4 (as

the jobs J (i)
4 processed on M ′′ start in even time moments). In time 2x+ 4, if y ≥ x,

the large job J (b)
2 is started by machine M ′ just after the job J (b)

1 is completed, (J (b)
1

completes in (2x+4)); here we use the fact that after t = 2, b will be prioritized over
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(1)
4 = 2x1)

J
(b)
2 (Large)

J
(ℓ)
4 (p

(ℓ)
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Figure 8.4: The schedules for the coalition C ∪ {a} for two cases:
a)
∑

i:O(i)∈C∧O(i)∈OS
xi ≤ x, b)

∑

i:O(i)∈C∧O(i)∈OS
xi > x. The two cases a) and b)

differ only in the schedules on machines M ′ and M ′′. In the case a) the large job J (b)
2

(marked as a light gray) is started one time unit earlier than in case b).

the organizations from OS . To sum up: if y < x then the large job J (b)
2 is started in

time (2x+ 3), otherwise it is started in time (2x+ 4).
If y < x then by considering only a decrease of the starting time of the largest

job, the contribution of a to the coalition C can be lower bounded by c1:

c1 = L

(

t−
(2x+ 3) + (2x+ 3 + L)

2

)

− L

(

t−
(2x+ 4) + (2x+ 4 + L))

2

)

= L,

The organization a causes also a decrease of the starting times of the small jobs (the
jobs of the organizations from OS); each job of size smaller or equal to 2xtot. The
starting time of each such small job is decreased by at most 2xtot time units. Thus,
the contribution of a in case y < x can be upper bounded by c2:

c2 ≤ L+ 4‖S‖x2tot.

If y ≥ x then a causes only a decrease of the starting times of the small jobs of
the organizations from OS, so the contribution of a to C in this case can be upper
bounded by c3:

c3 ≤ 4‖S‖x2tot.
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By similar reasoning we can see that the contribution of a to any coalition C′ such
that b /∈ C′ is also upper bounded by 4‖S‖x2tot.

The contribution of organization a, φ(a), is given by Equation 8.1, with u = a and
C = {O(1) . . . O(k+2)}. Thus:

φ(a) =
∑

C′⊆C\{a}

‖C′‖!(k + 1− ‖C′‖)!

(k + 2)!
marg_φ(C′, a),

where marg_φ(C′, a) is the contribution of a to coalition C′. All the coalitions C′

such that a /∈ C′, b ∈ C′ and
∑

i:O(i)∈C′∩OS
xi < x will contribute to φ(a) the value at

least equal to n<x(S)
(k+2)!

c1 =
n<x(S)L
2(k+2)!

(as there is exactly n<x(S) orderings corresponding

to the the case when a is joining such coalitions C′) and at most equal to n<x(S)
(k+2)!

c2 ≤
n<x(S)(L+8‖S‖x2tot)

2(k+2)!
. The other (k + 2)! − n<x(S) orderings will contribute to φ(a) the

value at most equal to ((k+2)!−n<x(S))
(k+2)!

c3 =
((k+2)!−n<x(S))(4‖S‖x2tot)

(k+2)!
. Also:

((k + 2)!− n<x(S))(4‖S‖x
2
tot)

(k + 2)!
+
n<x(S)(4‖S‖x

2
tot)

(k + 2)!
= 4‖S‖x2tot <

L

(k + 2)!
,

which means that φ(a) can be stated as φ(a) = n<x(S)L
(k+2)!

+ R, where 0 ≤ R ≤ L
(k+2)!

.

We conclude that ⌊ (k+2)!φ(a)

L
⌋ = n<x(S). We have shown that calculating the value

of φ(a) allows us to find the value n<x(S). Analogously, we can find n<(x+1)(S). By
comparing n<x(S) with n<(x+1)(S) we find the answer to the initial SubsetSum
problem, which completes the proof.

We propose the following definition of the approximation of the fair schedule
(similar definitions of the approximation ratio are used for multi-criteria optimization
problems [95]):

Definition 8.3. Let σ be a schedule and let ~ψ be a vector of the utilities of the
organizations in σ. We say that σ is an α-approximation fair schedule in time t if
and only if there exists a truly fair schedule σ∗, with the vector ~ψ∗ = 〈ψ(u),∗〉 of the
utilities of the organizations, such that:

‖~ψ − ~ψ∗‖M ≤ α‖~ψ∗‖M = α
∑

u

ψ(u),∗ = α · v(σ∗, C).

Unfortunately, the problem of finding a fair schedule is difficult to approximate.
There is no algorithm with approximation ratio better than 1/2 (see the proof below).
This means that the problem is not approximable in practice (the ratio 1/2 is too low
to be useful). Consider two schedules of jobs of m organizations on a single machine.
Each organization has one job; all the jobs are identical. In the first schedule σord
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the jobs are scheduled in order: J
(1)
1 , J

(2)
1 , . . . J

(m)
1 and in the second schedule σrev

the jobs are scheduled in exactly reverse order: J
(m)
1 , J

(m−1)
1 , . . . J

(1)
1 . The relative

distance between σord and σrev tends to 1 (with increasing m), so (1
2
)-approximation

algorithm does not allow to decide whether σord is truly better than σrev. In other
words, 1

2
-approximation algorithm cannot distinguish whether a given order of the

priorities of the organizations is more fair then the reverse order.

Theorem 8.7. For every ǫ > 0, there is no polynomial algorithm for finding a (1
2
−

ǫ)-approximate fair schedule, unless P = NP.

Proof. Intuitively, we divide time in (‖B‖2+3) independent batches. The jobs in the
last batch are significantly larger than all the previous ones. We construct the jobs in
all first (‖B‖2+2) batches so that the order of execution of the jobs in the last batch
depends on whether there exists a subset S ′ ⊂ S such that

∑

xi∈S′ xi = x. If the
subset does not exist the organizations are prioritized in some predefined order σord;
otherwise, the order is reversed σrev. The sizes of the jobs in the last batch are so
large that they dominate the values of the utilities of the organizations. The relative
distance between the utilities in σord and in σrev is (1−ǫ) so any (1

2
−ǫ)-approximation

algorithm A would allow to infer the true fair schedule for such constructed instance,
and so the answer to the initial SubsetSum problem. The precise construction is
described below.

We show that if there is an (1
2
− ǫ)-approximation algorithm A for calculating

the vector of the contributions, then we would be able to use A for solving the
SubsetSum problem (which is NP-hard). This proof is similar in a spirit to the
proof of Theorem 8.6. Let I be an instance of the SubsetSum problem, in which we
are given a set S = {x1, x2, . . . , xk} of k integers and a value x. In the SubsetSum
problem we ask for the existence of a subset S ′ ⊂ S such that

∑

xi∈S′ xi = x; we will
call the subsets S ′ ⊂ S such that

∑

xi∈S′ xi = x the x-sum subsets.
From I we construct the instance of the problem of calculating the vector of

contributions in the following way. We set O = OS ∪ {a} ∪ B to be the set of all
organizations where OS = {O1, . . . , Ok} (‖OS‖ = k) is the set of the organizations
corresponding to the appropriate elements of S and {a}∪B, where B = {B1, . . . , Bℓ}
(ℓ = ‖B‖ will be defined afterwards; intuitively ℓ ≫ k), is the set of dummy
organizations needed for our construction.

We divide the time into (‖B‖2 + 3) independent batches. The batches are
constructed in such a way that the (j + 1)-th batch starts after the time in which all
the jobs released in j-th batch are completed in every coalition (thus, the duration
of the batch can be just the maximum release time plus the sum of the processing
times of the jobs released in this batch). As the result, the contribution φ(u) of each
organization O(u) is the sum of its contributions in the all (‖B‖2+3) batches. For the
sake of the clarity of the presentation we assume that time moments in each batch
are counted from 0.
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We start from the following observation: if the sum of the processing times of the
jobs in a batch is equal to psum, then the contribution of each organization can be
upper bounded by p2sum. This observation follows from the fact that any organization,
when joining a coalition, cannot decrease the completion time of any job by more than
psum. As the total number of unit-size parts of the jobs is also psum, we infer that
the joining organization cannot increase the value of the coalition by more than p2sum.
The second observation is the following: if the joining organization causes decrease
of the completion time of the task with processing time p, then its contribution is at
least equal to p

‖O‖! (as it must decrease the start time of the job by at least one time
unit in at least one coalition).

Let xtot =
∑k

j=1 xj . In our construction we use 4 large numbers L,XL,H andXH ,
where L = (‖O‖+1+4‖B‖2x2tot)·‖O‖!; XL = (O!·L·‖O‖(‖O‖+1))2+O!4‖B‖2x2tot+1,
H = ‖B‖2(2‖O‖(1 + xtot) + 2x+XL)2 + 1 and XH is a very large number that will
be defined afterwards. Intuitively: XH ≫ H ≫ XL≫ L≫ xtot.

In the first batch only the organizations from B release their jobs. The i-th
organization from B releases 2i jobs in time 0, each of size L. This construction is
used to ensure that after the first batch the i-th organization from B has the difference
(φ(i) − ψ(i)) greater than the difference (φ(i+1) − ψ(i+1)) of the (i+ 1)-th organization
from B of at least L

‖O‖! = (‖O‖+1+4‖B‖2x2tot) and of at most p2sum = (L· ‖B‖(‖B‖+1)
2

)2 <
XL
O! − 4‖B‖2x2tot.

In the second batch, at time 0, all the organizations except for a release 2 jobs,
each of size H . This construction is used to ensure that after the second batch the
contribution (and so the the difference (φ−ψ)) of the organization a is large (at least
equal to H , as a joining any coalition causes the job of size H to be scheduled at least
one time unit earlier). Since in each of the next ‖B‖2 batches the total size of the
released jobs will be lower than (2‖O‖(1 + xtot) + 2x + XL), we know that in each
of the next ‖B‖2 batches the jobs of a will be prioritized over the jobs of the other
organizations.

Each of the next ‖B‖2 batches is one of the 2‖B‖ different types. For the
organization Bi (1 ≤ i ≤ ‖B‖) there is exactly i batches of type Bch(Bi, 2x + 1)
and (‖B‖ − i) batches of type Bch(Bi, 2x). The order of these ‖B‖2 batches can be
arbitrary.

The batches Bch(Bi, 2x) and Bch(Bi, 2x + 1) are similar. The only difference is
in the jobs of the organization a. In the batch Bch(Bi, 2x) the organization a has
two jobs J (a)

1 and J (a)
2 , with release times r(a)1 = 0 and r(a)2 = 2x and processing times

p
(a)
1 = 2x + 1 and p

(a)
2 = XL. In the batch Bch(Bi, 2x + 1) the organization a has

two jobs J (a)
1 and J

(a)
2 , with release times r(a)1 = 0 and r

(a)
2 = 2x + 1 and processing

times p(a)1 = 2x + 2 and p
(a)
2 = XL. All other organizations have the same jobs in

batches Bch(Bi, 2x) and Bch(Bi, 2x + 1). The organization Bi has no jobs and all
the other organizations from B release a single job of size (2xtot + 2) in time 0. The
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j-th organization from OS has two jobs J (j)
1 and J (j)

2 , with release times r(j)1 = 0 and
r
(j)
2 = 1 and processing times p(j)1 = 2xtot + 1 and p(j)2 = 2xj .

Finally, in the last (‖B‖2+3)-th batch only the organizations from B release their
jobs. Each such organization releases ‖O‖ jobs in time 0, each of size XH .

Now let us compare the schedules for the batches Bch(Bi, 2x) and Bch(Bi, 2x+1)
(see Figure 8.5). Let us consider a schedule for a coalition C′. Let OS,C′ = OS ∩ C′;
let BC′ = B ∩ C′ \ {Bi}. Let J1 denote the set of ‖OS,C′‖ jobs of sizes 2xtot + 1 (these
are the first jobs of the organizations from OS,C′). Let J2 denote the set of ‖OS,C′‖
jobs of sizes from S (the second jobs of the organizations from OS,C′). Let J3 denote
the ‖BC′‖ jobs of the organizations from BC′ of sizes 2xtot+2 (the single jobs of these
organizations).

If
∑

xi:Oi∈OS,C′
xi > x or

∑

xi:Oi∈OS,C′
xi < x the schedules for any C′ in batches

Bch(Bi, 2x) and Bch(Bi, 2x + 1) looks similarly. In time 0, ‖OS,C′‖ machines will
schedule the ‖OS,C′‖ jobs from J1 (let us denote these machines as M) and ‖BC′‖
machines will schedule the ‖BC′‖ jobs from J3. If Bi /∈ C

′ then the jobs from J2 will be
scheduled on the machines fromM just after the jobs from J1. If Bi ∈ C

′ and a /∈ C′,
then the coalition C′ has (‖OS,C′‖ + ‖BC′‖ + 1) machines; one machine will execute
the jobs from J2. If Bi ∈ C

′ and a ∈ C′ then the coalition C′ has (‖OS,C′‖+ ‖BC′‖+2)
machines. One machine (denoted as M ′) will execute the jobs from J2 and one other
machine (denoted as M ′′) will execute the job J

(a)
1 . Now, if

∑

xi:Oi∈OS,C′
xi < x then

J
(a)
2 will be scheduled on M ′; otherwise on M ′′ (this follows from the construction

in the second batch – we recall that the jobs of a should be prioritized). Thus, as
explained in Figure 8.5, if

∑

xi:Oi∈OS,C′
xi > x or

∑

xi:Oi∈OS,C′
xi < x the contribution

and the utility of each organization from B in two batches Bch(Bi, 2x) and Bch(Bi,
2x+ 1) differ by at most 4x2tot.

If
∑

xi:Oi∈OS,C′
xi = x, then the schedules for the cases: (i) Bi /∈ C

′ (ii) (Bi ∈ C
′

and a /∈ C′) remain the same as in case
∑

i:Oi∈OS,C′
xi 6= x. For the last case (Bi ∈ C

′

and a ∈ C′) the jobs from J1, from J2 and J
(a)
1 are scheduled in the same way as

previously. However, the job J (a)
2 will be scheduled in Bch(Bi, 2x+1) on machine M ′

(in the moment it is released) and in Bch(Bi, 2x) on machine M ′ or M ′′ (one time
unit later than it was released). As explained in Figure 8.5, if there exists an x-sum
subset S ′ ⊂ S, then the contribution of Bi in Bch(Bi, 2x + 1) will be greater by at
least of XL

O! − 4x2tot than in Bch(Bi, 2x).

As the result, if there does not exist an x-sum subset S ′ ⊂ S, then the difference
(φ(i) − ψ(i)) for the i-th organization from B will be greater than the difference
(φ(i+1) − ψ(i+1)) for the (i + 1)-th organization from B by at least (‖O‖ + 1) (from
the construction in the first batch the difference (φ(i) − ψ(i)) was greater than
(φ(i+1)−ψ(i+1)) by at least (‖O‖+1+4‖B‖2x2tot), and as explained in Figure 8.5 the
difference (φ(i+1)−ψ(i+1)−φ(i)+ψ(i)) could change by at most 4‖B‖2x2tot). Otherwise,
the difference (φ(i)−ψ(i)) for the i-th organization will be lower than for the (i+1)-th

200



||
O
S
,C

′ ||
m

ac
h

in
es

M ′

t
0 1 2x+ 1

· · ·

2

J
(1)
1 (p

(1)
1 = 2xtot + 1)

J
(2)
1 (p

(2)
1 = 2xtot + 1)

J
(ℓ)
1 (p

(ℓ)
1 = 2xtot + 1)

··
·

J
(a)
1 (p

(a)
1 = 2x+ 2)

J
(a)
1 (p

(a)
1 = 2x+ 2)

J
(1)
2 (p

(1)
2 = 2x1)

J
(1)
2 (p

(1)
2 = 2x1)

J
(a)
2 (Large)

J
(ℓ)
2 (p

(ℓ)
2 = 2xℓ)

J
(ℓ)
2 (p

(ℓ)
2 = 2xℓ)

J
(a)
2 (Large)

d
en

o
te

d
as
M

JB1
1 (pB1

1 = 2xtot + 2)

··
·

||
B
C
′ ||

m
ac

h
in

es

J
Bℓ′
1 (p

Bℓ′
1 = 2xtot + 2)

JB2
1 (pB2

1 = 2xtot + 2)

M ′′

· · ·

J
(a)
1 (p

(a)
1 = 2x+ 2)

J
(1)
2 (p

(1)
2 = 2x1) J

(a)
2 (Large)J

(ℓ)
2 (p

(ℓ)
2 = 2xℓ)

· · ·M ′

M ′′

M ′

M ′′

a.)

b.)

c.)













































































































Jobs J2

Jobs J1

Jobs J3

                                                                                                      

                                                              

                                                                          

Jobs J2

Jobs J2

Figure 8.5: The schedule for the coalition C′ such that Bi ∈ C′ and a ∈ C′ in batch Bch(Bi, 2x+1),
for 3 cases: a)

∑

xi:Oi∈OS,C′
xi > x, b)

∑

xi:Oi∈OS,C′
xi < x, c)

∑

xi:Oi∈OS,C′
xi = x. We compare

Bi’s contribution φ on this schedule to schedule Bch(Bi, 2x) (not shown; the only differences are

that p
(a)
1 = 2x + 1 and r

(a)
2 = 2x). Other organizations Bj 6= Bi have utility equal to contribution

in all cases considered here. As Bi has no jobs, it contributes only a single machine (corresponding

to M ′). Thanks to M ′, the small jobs J
(i)
2 execute at most 2xtot earlier (if there is no machine M ′,

these jobs are executed atM). The total size of these small jobs is 2xtot. Regarding small jobs, the
resulting contribution of Bi to C′ is bounded by 4x2tot.

In case a) M ′ does not decrease the start time of the large job J
(a)
2 ; the same happens in batch

Bch(Bi, 2x). In case b) M ′ speeds up J
(a)
2 by 1; the same happens in batch Bch(Bi, 2x). In case c)

M ′ also speeds up J
(a)
2 by 1; however, in batch Bch(Bi, 2x) M

′ does not decrease J
(a)
2 ’s start time

(J
(a)
2 is always started at (2x + 1)). To summarize, Bi contribution to C′ in both a) and b) differs

by at most 4x2tot between Bch(Bi, 2x) and Bch(Bi, 2x + 1). In contrast, in c) the contribution in
Bch(Bi, 2x+ 1) is greater by at least XL− 4x2tot compared to the contribution in Bch(Bi, 2x).

As a consequence, considering Bi’s contribution to all coalitions, if there exists an x-sum subset
S′ ⊂ S (case c), then the contribution of Bi in Bch(Bi, 2x+1) is by at least XL

‖O‖!−4x2tot greater than

in Bch(Bi, 2x); if there is no such an x-sum subset, then the contribution of Bi in Bch(Bi, 2x+ 1)
and in Bch(Bi, 2x) differ by no more than 4x2tot.
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organization (as there are more batches of type Bch(Bi+1, 2x+1) than of type Bch(Bi,
2x+ 1)).

Thus, if there does not exist an x-sum subset S ′ ⊂ S, then in the last batch the
jobs of B1 will be scheduled first, than the jobs of B2, and so on – let us denote such
schedule as σord. On the other hand, if there exists an x-sum subset S ′ ⊂ S, the jobs
in the last batch will be scheduled in the exactly reverse order – such schedule will
be denoted as σrev.

Now, let us assess the distance between the vector of utilities in case of two
schedules σord and σrev. Let us assume that ‖B‖ is even. Every job of the organization
Bi (1 ≤ i ≤ ‖B‖

2
) in the last batch is started XH(‖B‖ − 2i+ 1) time units earlier in

σord than in σrev. The jobs of the organization B(‖B‖+1−i) (1 ≤ i ≤ ‖B‖
2

) are scheduled
XH(‖B‖−2i+1) time units later in σord than in σrev. Since each such job consists of
XH unit-size elements, the distance between the vector of utilities for σord and σrev,
denoted as ∆ψ, can be lower bounded by:

∆ψ ≥ 2‖O‖

‖B‖/2
∑

i=1

(2i− 1)XH2 = ‖O‖‖B‖
(1 + 1 + 2‖B‖

2
− 2)

2
XH2 =

1

2
‖O‖‖B‖2XH2.

Now, we can define XH to be the total size of the all except the last batch times 4
ǫ
.

Below we show how to bound the total utility ψtot of the true fair schedule (σord or
σrev) in the time t when all the jobs are completed. Each unit size part of the job
completed in time t contributes to the utility the value 1. Each unit size part of the
job executed in time t − 1 is worth 2, and so on. Since the jobs in the last batch
are executed on ‖O‖ machines and the duration of the batch is equal to ‖B‖XH ,
the utility of the jobs from the last batch is equal to

∑‖B‖XH
i=1 i. The jobs in all

previous batches are started no earlier than in t− ‖B‖XH − ǫ
4
XH . The duration of

the all but the last batch can be upper bounded by ǫ
4
XH . There are ‖O‖ machines,

so the utility of the jobs from the all but the last batch can be upper bounded by
(‖B‖XH + ǫ

4
XH) ǫ

4
XH . Thus we get the following bound on ψtot:

ψtot < ‖O‖





‖B‖XH
∑

i=1

i+
(

‖B‖XH +
ǫ

4
XH )(

ǫ

4
XH

)





≤ ‖O‖

(

1 + ‖B‖XH

2
‖B‖XH +

ǫ

4
‖B‖XH2 +

ǫ

16

2

XH2

)

≤ ‖O‖

(

1

2
(1 + ‖B‖XH)2 +

ǫ

4
‖B‖2XH2

)

≤ ‖O‖‖B‖2XH2

(

1

2
·

(

1 + ‖B‖

‖B‖

)2

+
ǫ

4

)

.

202



We can chose the size ‖B‖ so that
(

1+‖B‖
‖B‖

)2

< 1 + ǫ
2
. As the result we have:

∆ψ/ψtot >
1

2
/
1

2

(

(

1 + ‖B‖

‖B‖

)2

+
ǫ

2

)

>
1

1 + ǫ
> 1− ǫ

Finally let us assume that there exists (1
2
− ǫ)-approximation algorithm A that

returns the schedule σ for our instance. Now, if σ is closer to σord than to σrev, we can
infer that σord is a true fair solution to our instance (and so the answer to the initial
SubsetSum question is “yes”). Otherwise, σrev is a true solution (and the answer to
the SubsetSum problem is “no”). This completes the proof.

8.5.1 Special Case: Unit-Size Jobs

In case where the jobs are unit-size, the problem has additional properties that
allow us to construct an efficient approximation algorithm (however, the worst-case
complexity of this special case is open). The results in this section do not generalize
to related or unrelated processors and apply to the setting with identical processors
only. For unit-size jobs, the value of each coalition v(C) does not depend on the
schedule:

Proposition 8.8. For any two greedy algorithms A1 and A2, for each coalition C and
each time moment t, the values of the coalitions v(A1, C, t) and v(A2, C, t) are equal,
provided all jobs are unit-size.

Proof. We prove the following stronger thesis: For every time moment t any two
greedy algorithms A1 and A2 schedule the same number of the jobs till t. We prove
this thesis by induction. The base step for t = 0 is trivial. Having the thesis proven
for (t − 1) and, thus knowing that in t in both schedules there is the same number
of the jobs waiting for execution (here we use the fact that the jobs are unit-size),
we infer that in t the two algorithms schedule the same number of the jobs. Since
the value of the coalition does not take into account the owner of the job, we get the
thesis for t. This completes the proof.

As a result, we can use a randomized approximation algorithm for the scheduling
problem restricted to unit-size jobs (Algorithm Rand from Figure 8.6). The
algorithm is inspired by the randomized approximation algorithm for computing the
Shapley value presented by Liben-Nowell et al [177]. However, in our case the game
is not supermodular (which is shown in Proposition 8.9 below), and so we have to
adapt the algorithm and, thus, we obtain different approximation bounds.

Proposition 8.9. In case of unit-size jobs, the cooperation game in which the value
of each coalition C is defined by v(C) =

∑

O(u)∈C ψ(O
(u)) is not supermodular.
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Notation:
ǫ, λ — as in Theorem 8.10

1 Prepare(C):

2 N ← ⌈‖C‖
2

ǫ2
ln
(

‖C‖
1−λ

)

⌉;

3 Γ← generate N random orderings (permutations) of the set of all organizations (with
replacement);

4 Subs← Subs′ ← ∅ ;
5 foreach ≺∈ Γ do

6 for u← 1 to ‖C‖ do

7 C′ ← {O(i) : O(i) ≺ O(u)} ;

8 Subs← Subs ∪ {C′}; Subs′ ← Subs′ ∪ {C′ ∪ {O(u)}} ;

9 ReleaseJob(O(u), J):

10 for C′ ∈ Subs ∪ Subs′ : O(u) ∈ C′ do

11 jobs[C′][O(u)].push(J)

12 SelectAndSchedule(C, t):
13 u← argminO(u)(ψ[C][O(u)]− φ[C][O(u)]) ;
14 σ[C]← σ[C] ∪ {(jobs[C][u].first, t)};

15 finPerOrg[O(u)]← finPerOrg[O(u)] + 1;

16 φ[O(u)]← φ[O(u)] + 1;

17 FairAlgorithm(C):
18 Prepare(C) ;
19 foreach time moment t do

20 foreach job J
(u)
i : r

(u)
i = t do

21 ReleaseJob(O
(u)
i , J

(u)
i );

22 foreach C′ ⊂ Subs ∪ Subs′ do

23 v[C′]← v[C′] + finPerCoal[C′] ;

24 n← min(
∑

O(u)∈C′ m(u), ‖jobs[C][O(u)]‖) ;

25 remove first n jobs from jobs[C][O(u)] ;
26 finPerCoal[C′]← finPerCoal[C′] + n ;
27 v[C′]← v[C′] + n ;

28 foreach O(u) ∈ C do

29 ψ[O(u)]← ψ[O(u)] + finPerOrg[O(u)];

30 φ[O(u)]← 0;

31 foreach C′ ∈ Subs : O(u) /∈ C′ do

32 marg_φ← v[C′ ∪ {O(u)}]− v[C′] ;

33 φ[O(u)]← φ[O(u)] + marg_φ · 1
N

;

34 while FreeMachine(σ[C], t) do

35 SelectAndSchedule(C, t);

Figure 8.6: Algorithm Rand: A fair algorithm for the specific utility function ψsp
and for unit-size jobs.
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Proof. Consider a following instance with 3 organizations: a, b and c each owning
a single machine. Organizations a and b in time t = 0 release two unit size jobs
each; the organization c has no jobs. We are considering the values of the coalitions
in time t = 2; v({a, c}) = 4 (the two jobs are scheduled in time 0), v({b, c}) = 4,
v({a, b, c}) = 7 (three jobs are scheduled in time 0 and one in time 1) and v({c}) =
0 (there is no job to be scheduled). We see that v({a, b, c}) + v({c}) < v({a, c}) +
v({b, c}), which can be written as:

v({a, c} ∪ {b, c}) + v({a, c} ∩ {b, c}) < v({a, c}) + v({b, c}).

This shows that the game is not supermodular.

In our algorithm, we keep simplified schedules for a random subset of all possible

coalitions. For each organization O(u), the set Subs[O(u)] keeps N = ‖C‖2
ǫ2

ln
(

‖C‖
1−λ

)

random coalitions not containing O(u); for each such random coalition C′ that is kept
in Subs[O(u)], Subs′[O(u)] contains the coalition C′ ∪ {O(u)}. For the coalitions kept
in Subs[O(u)], we store a simplified schedule (the schedule that is determined by
an arbitrary greedy algorithm). The simplified schedule allows us to find the value
v(C′) of the coalition C′. (Maintaining the whole schedule would require recursive
information about the schedules in the subcoalitions of C′.) As a consequence of
Proposition 8.8, we know that the value v(C′) of coalition C′ can be determined by
an arbitrary greedy algorithm.6

The third foreach loop in procedure FairAlgorithm (line 22 in Figure 8.6) updates
the values of all coalitions kept in Subs and Subs ’. From Equation 8.2, it follows
that after one time unit, if no additional job is scheduled, the value of the coalition
increases by the number of completed unit-size parts of the jobs (here, as the jobs are
unit-size, the number of the completed jobs is finPerCoal[C′]). In time moment t, all
waiting jobs (the number of such jobs is ‖jobs[C][O(u)]‖) are scheduled provided there
are enough processors (the number of the processors is

∑

O(u)∈C′ m
(u)). If n additional

jobs are scheduled in time t then the value of the coalition in time t increases by n.
In the fourth foreach loop (line 28 in Figure 8.6), once again we use the fact

that the utility of the organization after one time unit increases by the number of
finished jobs (finPerOrg[O(u)]). In the last foreach loop (line 31), the contribution of
each organization is approximated by summing the marginal contributions, marg_φ:
however, we do not sum the marginal contributions of all the coalitions but only
the marginal contributions of these coalitions that we initially randomly selected.
Theorem 8.10 below gives the bounds for the quality of approximation.

Theorem 8.10. Let ~ψ denote the vector of utilities in the schedule determined by
Algorithm Rand from Figure 8.6. If the jobs are unit-size, then A with the probability

6In this point we use the assumption about the unit size of the jobs. The algorithm cannot be
extended to the general case. In a general case, for calculating the value for each subcoalition we
would require the exact schedule which cannot be determined polynomially (Theorem 8.6).
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λ determines the ǫ-approximation schedule, i.e. gives guarantees for the bound on the
distance to the truly fair solution:

‖~ψ − ~ψ∗‖M ≤ ǫ|~ψ∗|.

Proof. Let us consider an organization O(u) participating in a coalition C and a
time moment t. Let φ(u),∗ and ψ(u),∗ denote the contribution and the utility of
the organization O(u) in a coalition C in time moment t in a truly fair schedule.
Let v∗(C) denote the value of the coalition C in a truly fair schedule. According
to notation in Figure 8.6, let φ[O(u)] and ψ[O(u)] denote the contribution and the
utility of the organization O(u) in a coalition C in time t in a schedule determined

by Algorithm Rand; Let N = ‖C‖2
ǫ2

ln
(

‖C‖
1−λ

)

. First, note that |ψ(u),∗ − ψ[O(u)]| ≤

|φ(u),∗ − φ[O(u)]|. Indeed, if the contribution of the organization O(u) increases by a
given value ∆φ then Algorithm Rand will schedule ∆φ more unit-size jobs of the
organization O(u) provided there is enough such jobs waiting for execution.

Let X denote the random variable that with the probability 1
‖C‖! returns the

marginal contribution of the organization O(u) to the coalition composed of the
organizations preceding O(u) in the random order (of course, there is ‖C‖! such random
orderings). We know that X ∈ [0, v∗(C)] and that E(X) = φ(u),∗. Algorithm Rand is
constructed in such a way that φ[O(u)] =

∑N
i=0

1
N
Xi, where Xi are independent copies

of X. Thus, E(φ[O(u)]) = φ(u),∗. From Hoeffding’s inequality we get the bound on
the probability pǫ that φ[O(u)]− φ(u),∗ > ǫ

‖C‖v
∗(C):

pǫ = P

(

N
∑

i=0

1

N
Xi − φ

(u),∗ >
ǫ

‖C‖
v∗(C)

)

< exp

(

−
ǫ2v∗(C)2N2

v∗(C)2N‖C‖2

)

= exp

(

−
ǫ2N

‖C‖2

)

=
1− λ

‖C‖
.

The probability that ~φ − ~φ∗ > ǫv∗(C) can be bounded by pǫ‖C‖ = 1 − λ. As the
result, also the probability that ~ψ − ~ψ∗ > ǫv∗(C) can be bounded by 1 − λ, which
completes the proof.

The complexity of Algorithm Rand is ‖O‖ · N = ‖O‖‖C‖
2

ǫ2
ln
(

‖C‖
1−λ

)

times the

complexity of the single-organization scheduling algorithm. As a consequence, we get
the following result.

Theorem 8.11. There exists an FPRAS for the problem of finding the fair schedule
for the case when the jobs are unit size.
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Figure 8.7: The example showing that greedy algorithms might induce suboptimal
resource utilization. In the example we have 4 jobs of the organization O(1), each of
size 3, and 2 jobs of the organization O(2), each of size 6. All the jobs are released
in time 0. Let us consider time moment T = 6. In Figure (a) the jobs of O(2) are
started first, which results in 100% resource utilization. In Figure (b) the jobs of O(1)

are started first, which in time T gives 75% of resource utilization.

8.6 Resource Utilization of Greedy Algorithms

It might appear that in order to ensure the fairness of the algorithm we might be
forced to use globally inefficient algorithms. Such algorithms might, for instance,
waste resources. We define the resource utilization as the percentage of the time in
which, on average, every processor is busy. The resource utilization is an established
metric indicating the global efficiency of resource usage. Indeed, even though we use
greedy algorithms, some of them might result in suboptimal resource utilization. This
problem is shown in Figure 8.7.

Thus, there is a natural question, which in additional to the context of fair
scheduling, is interesting on its own. How bad can we do in terms of resource
utilization when using a greedy algorithm (with any underlying scheduling policy)?
In the next theorem we show that the example from Figure 8.7 is, essentially, the
worst possible scenario.

Definition 8.4. An algorithm A is an α-competitive online algorithm for resource
utilization if and only if in each time moment T the ratio of the resource utilization
between the schedule derived by A and the schedule obtained by any other algorithm
is greater or equal to α.

Theorem 8.12. Every greedy algorithm for scheduling sequential jobs on identical
processors is a 3

4
-competitive online algorithm for resource utilization.

Proof. Let σ denote the schedule obtained by some greedy algorithm A until time T ,
and let σ∗ denote the schedule obtained by the optimal (according to the resource
utilization metric) algorithm for the same input. Now, we will divide the time axis
into blocks in the following way. The first block starts in time 0. The i-th block
(i > 1) starts in the earliest possible time moment ti such that (i) ti > ti−1 (the i-th
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m

m
′ 1

m
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Figure 8.8: Illustration of the notation used in the proof of Theorem 8.12. There are
3 time blocks in this figure: the first one lasts from t1 until t2; the second from t2 until
t3; and the third one from t3 until T . The parts of jobs that were delayed outside
their time block (in comparison with an optimal schedule) are marked in dark gray.
The remaining parts of these jobs are marked in light gray. We see that these jobs
which are delayed outside the i-th time block are started at or before t′i.

block starts after the (i− 1)-th one), and (ii) in ti there are jobs in σ running on all
the processors and in (ti−1) at least one processor in σ is idle. Let tℓ denote the start
time of the last block. By convention we take tℓ+1 = T . The blocks for the example
schedule are depicted in Figure 8.8. Furthermore, let t′i denote the earliest moment
in the i-th time block in which some processor is idle. Let hi = ti+1 − ti denote the
duration of the i-th time block. Let hi,1 = t′i − ti and let hi,2 = ti+1 − t

′
i.

In our proof we will consider the time blocks separately and for each time block
we will prove that the total number of the unit-size parts of the jobs completed in this
block in schedules σ and σ∗ vary by no more than the factor of 3

4
. Throughout this

proof we will use the variable V that, intuitively, accumulates the number of unit-size
parts of the jobs that in σ were completed in the earlier time block than in σ∗. Let Vi
denote the value of V after we completed an analysis for the i-th block, with V0 = 0.

Let us consider the i-th time block. Let xi and x∗i denote the number of unit-size
parts of the jobs completed in the i-th time block in schedules σ and σ∗, respectively. If
xi ≥ x∗i then we increase the variable V by (xi−x

∗
i ). Otherwise, let ∆xi = x∗i−xi > 0.

We consider the two following cases:

1. If Vi−1 = 0, then we set ∆yi = ∆xi, and Vi = 0.

2. If Vi−1 > 0, then we set ∆yi = ∆xi − min(∆xi, Vi−1), and Vi = Vi−1 −
min(∆xi, Vi−1). Intuitively, this means that the unit-size parts of jobs that
were computed extra in earlier blocks and accumulated in V , pay for some
parts of the jobs that were computed in the later block.

208



Now, if ∆yi = 0 this means that from V we managed to pay for the parts that, due to
inefficiency of the algorithm A, were not computed in the i-th time block. Otherwise
(∆yi > 0), we infer that some ∆yi > 0 parts of the jobs that were released before ti+1

were delayed and in σ were not completed in the i-th time block (while they were
in σ∗). These jobs were released at or after ti. Indeed, otherwise the job would be
started at time ti − 1 or earlier (the algorithm A is greedy, and a processor is idle at
ti− 1), and so, such a job would be processed for the whole duration of the i-th time
block. Consequently, the unit-size parts of this job would not contribute to ∆yi (the
number of unit-size parts of this job completed in the i-th time block in σ would be
no greater than in σ∗).

Let us consider the jobs the parts of which contributed to ∆yi. Let m′i denote
the number of machines on which these jobs were processed (see Figure 8.8 for an
example). From the pigeonhole principle, at least one from the considered jobs, J ,
was delayed by at least ∆yi

m′
i
. Since the algorithm A is greedy, hi,1 ≥

∆yi
m′

i
(there were

at least ∆yi
m′

i
time moments in the i-th time block with no idle processors; otherwise

J would be started earlier). Also, each from the considered jobs starts in time t′i
at the latest—indeed, if it would be started later, then from the greediness of the
algorithm we would infer that the release time of such job is at least t′i + 1, and so,
such job would not be delayed in σ. Consequently, through the whole duration of the
i-th block some m′i machines are continuously occupied. Thus, the idle surface of the
processors in σ is at most equal to hi,2(m−m′i). Since, ∆yi ≤ ∆xi, and ∆xi denotes
the difference in the number of unit-size parts of the jobs computed in σ∗ and in σ,
we infer that ∆yi ≤ hi,2(m−m

′
i).

Now, let us estimate oi, the number of the occupied slots in the i-th block in
schedule σ.

oi ≥ hi,1m+ hi,2m
′
i ≥

∆yi
m′i

m+
∆yi

m−m′i
m′i ≥ ∆yi

(

m

m′i
+

m′i
m−m′i

)

≥ 3∆yi.

Thus: oi
oi+∆yi

≥ oi
oi+

1
3
oi
= 3

4
. Since our reasoning can be repeated for every time block,

we get the thesis.

This result shows that even without any information on jobs’ release dates,
durations, even with an arbitrary scheduling policy, we waste no more than 25%
of the resources. Of course, this loss of efficiency is even smaller when there are many
jobs to be computed. For instance, if at any time moment there are jobs waiting for
execution, any greedy algorithm achieves 100% resource utilization.

It is also natural to consider the loss of efficiency according to our strategy-proof
metric. We have chosen to consider resource utilization as it has more intuitive
meaning in terms of the waste of resources. We leave the problem of finding bounds
for our strategy-proof metric as a natural follow-up question.
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We note that our fair scheduling algorithm is also applicable for parallel jobs (jobs
requiring more than one processor). However, for the case of parallel jobs, the loss of
the global efficiency of an arbitrary greedy algorithm can be higher. We leave these
extensions, as well as generalization of the processor model to related and unrelated
machines, for the future work.

8.7 Experimental Evaluation of the Algorithms

In the previous section we showed that the problem of finding a fair schedule is
computationally intractable. However, the ideas used in the exponential and the
FPRAS algorithms can be used as insights for creating reasonable heuristics. In this
section we present experimental evaluation of the fairness of two simple heuristic
algorithms, and for several algorithms known in the scheduling theory.

8.7.1 Algorithms

In this section we describe the algorithms that we evaluate.

Ref. We used Algorithm Ref from Figure 8.1 (which is an exponential algorithm)
as the reference fair algorithm.

Rand. We used Algorithm Rand from Figure 8.6 as a heuristic for workloads with
jobs having different sizes. We verify two versions of the algorithm with N = 15 and
N = 75 random subcoalitions.

DirectContr (the pseudo-code of the algorithm is given in Figure 8.9). The
algorithm keeps for each organization O its utility ψsp[O] and its estimated
contribution φ[O]. The estimate of the contribution of each organization is assessed
directly (without considering any subcoalitions) by the following heuristic. On
each scheduling event t we consider the processors in a random order and assign
waiting jobs to free processors. The job that is started on processor m increases the
contribution φ̃ of the owner of m by the utility of this job.

In the pseudo code, finUt[O] denotes the number of the unit-size parts of the
jobs of organization O that are completed before tprev. From Equation 8.2, we know
that the utility in time t of the unit-size parts of the jobs of the organization O that
are completed before tprev is greater by the additive value of (t− tprev)finUt[O] than
this utility in time tprev (line 7); the utility of the unit-size parts of the job completed
between tprev and t is equal to

∑t−tprev
i=1 i = 1

2
(t−tprev)(t−tprev+1) (line 15). Similarly,

finCon[O] denotes the number of completed unit-size parts of the jobs processed on
the processors of the organization O. The algorithm updates the utilities and the
estimates of the contributions. The waiting jobs are assigned to the processors in the
order of decreasing differences (φ − ψ) of the issuing organizations (similarly as in
algorithm Ref).
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Notation:
own(M), own(J) — the organization owning the processor M , the job J
wait(O) — the set of released, but not-yet scheduled jobs of the organization O at time t

1 Initialize(C):
2 foreach O(u) ∈ C do

3 finUt[O(u)]← 0; finCon[O(u)]← 0 ;

4 φ[O(u)]← 0; ψ[O(u)]← 0 ;

5 Schedule(tprev, t): // tprev is the time of the previous event

6 foreach O(u) ∈ C do

7 φ[O(u)]← φ[O(u)] + (t− tprev)finCon[O(u)];

8 ψ[O(u)]← ψ[O(u)] + (t− tprev)finUt[O(u)];

9 γ ← generate a random permutation of the set of all processors;
10 foreach m ∈ γ do

11 if not FreeMachine(m, t) then

12 J ← RunningJob(m);
13 finUt[own(J)]← finUt[own(J)] + t− tprev ;
14 finCon[own(m)]← finCon[own(m)] + t− tprev ;

15 φ[own(J)]← φ[own(J)] + 1
2 (t− tprev)(t− tprev + 1);

16 ψ[own(m)]← ψ[own(m)] + 1
2 (t− tprev)(t− tprev + 1);

17 foreach m ∈ γ do

18 if FreeMachine(m, t) and
⋃

O(u) wait(O(u)) 6= ∅ then

19 org ← argmaxO(u):wait(O(u)) 6=∅(φ[O
(u)]− ψ[O(u)]) ;

20 J ← first waiting job of org ;
21 startJob(J , m) ;
22 finUt[org]← finUt[org] + 1 ;
23 finCon[own(m)]← finCon[own(m)] + 1 ;

Figure 8.9: Algorithm DirectContr: a heuristic algorithm for fair scheduling.

RoundRobin. The algorithm cycles through the list of organizations to determine
the job to be started.

FairShare [159]. This is perhaps the most popular scheduling algorithm that uses
the idea of distributive fairness. Each organization is given a target weight (a share).
The algorithm tries to ensure that the resources used by different organizations are
proportional to their shares. More formally, whenever there is a free processor and
some jobs waiting for execution, the algorithm sorts the organizations in the ascending
order of the following ratios: the total time of the processor already assigned for the
jobs of the organization divided by its share. A job from the organization with the
lowest ratio is started.

In all versions of fair share, in the experiments we set the target share to the
fraction of processors contributed by an organization to the global pool.

UtFairShare. This algorithm uses the same idea as FairShare. The only
difference is that UtFairShare tries to balance the utilities of the organizations
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instead of their resource allocation. Thus, in each step the job of the organization
with the smallest ratio of utility to share is selected. We used this algorithm because
it uses the allocation mechanism of FairShare, but operates on the strategy-proof
metric used by our reference exponential algorithm.

CurrFairShare. This version of the fair share algorithm does not keep any
history; it only ensures that, for each organization, the number of currently executing
jobs is proportional to its target share. We used this algorithm because it is light
and efficient. It has also an interesting property: the history does not influence the
current schedule. We were curious to check how this property influences the fairness.

8.7.2 Settings

To run simulations, we chose the following workloads from the Parallel Workload
Archive [100]: 1. LPC-EGEE7 (cleaned version), 2. PIK-IPLEX,8 3. RICC,9

4. SHARCNET-Whale.10 We selected traces that closely resemble sequential
workloads (in the selected traces most of the jobs require a single processor). We
replaced parallel jobs that required q > 1 processors with q copies of a sequential job
having the same duration.

In each workload, each job has a user identifier (in the workloads there are
respectively 56, 225, 176 and 154 distinct user identifiers). To distribute the jobs
between the organizations we uniformly distributed the user identifiers between the
organizations; each job sent by a given user was assigned to the corresponding
organization.

Because Ref is exponential, the experiments are computationally-intensive; in
most of the experiments, we simulate 5 organizations only.

The users usually send their jobs in consecutive blocks. We also considered
a scenario when the jobs are uniformly distributed between organizations
(corresponding to a case when the number of users within organizations is large, in
which case the distribution of the jobs should be close to uniform). These experiments
led to the same conclusions, so we present only the results from the case where the
user identifiers were distributed between the organizations.

For each workload, the total number of processors in the system was equal to the
number originally used in the workload (that is 70, 2560, 8192 and 3072, respectively).
The processors were assigned to organizations so that the counts follow Zipf and (in
different runs) uniform distributions.

For each algorithm, we compared the vector of the utilities (the utilities per
organization) at the end of the simulated time period (a fixed time tend), ~ψ, with
the vector of the utilities in the ideally fair schedule ~ψ∗ (computed by Ref). Let

7www.cs.huji.ac.il/labs/parallel/workload/l_lpc/index.html
8www.cs.huji.ac.il/labs/parallel/workload/l_pik_iplex/index.html
9www.cs.huji.ac.il/labs/parallel/workload/l_ricc/index.html

10www.cs.huji.ac.il/labs/parallel/workload/l_sharcnet/index.html
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Table 8.1: The average delay (or the speed up) of jobs due to the unfairness of the
algorithm ∆ψ/ptot for different algorithms and different workloads. Each row is an
average over 100 instances taken as parts of the original workload. The duration of
the experiment is 5 · 104 time units.

LPC-EGEE PIK-IPLEX SHARCNET-Whale RICC
Avg St. dev. Avg St. dev. Avg St. dev. Avg St. dev.

RoundRobin 238 353 6 33 145 38 2839 357
Rand (N = 15) 8 21 0.014 0.01 6 6 162 187
DirectContr 5 11 0.02 0.15 10 7 537 303
FairShare 16 25 0.3 1.38 13 8 626 309
UtFairShare 16 25 0.3 1.38 38 67 515 284
CurrFairShare 87 106 0.3 1.58 145 80 1231 243

ptot denote the total number of unit-size parts of the jobs completed in the fair
schedule returned by Ref, ptot =

∑

(s,p)∈σ∗:s≤tend
min(p, tend − s). We calculated the

difference ∆ψ = ‖~ψ − ~ψ∗‖ =
∑

O(u)(ψ(u) − ψ(u),∗) and compared the values ∆ψ/ptot
for different algorithms. The value ∆ψ/ptot is the measure of the fairness that has
an intuitive interpretation. Since delaying each unit-size part of a job by one time
moment decreases the utility of the job owner by one, the value ∆ψ/ptot gives the
average unjustified delay (or, unjustified speed-up) of a job due to the unfairness of
the algorithm.

8.7.3 Results

We start with experiments on short sub-traces of the original workloads. We randomly
selected the start time of the experiment tstart and set the end time to tend = tstart +
5 · 104. For each workload we run 100 experiments (on different periods of workloads
of length 5 · 104). The average values of ∆ψ/ptot, and the standard deviations are
presented in Table 8.1.

From this part of the experiments we conclude that: (i) The algorithm Rand
is the most fair algorithm regarding the fairness by the Shapley Value; but Rand
is also the second most computationally intensive algorithm (after Ref). (ii) All
the other algorithms are about equally computationally efficient. The algorithm
DirectContr is the most fair one among these other algorithms. (iii) The algorithm
FairShare, which is the algorithm mostly used in real systems, is not much worse
than DirectContr. (iv) Arbitrary scheduling algorithms like RoundRobin may
result in unfair schedules. (v) The fairness of the algorithms may depend on the
workload. In RICC the differences are much more visible than in PIK-IPLEX. Thus,
although DirectContr and FairShare are usually comparable, on some workloads
the difference is significant.

In the second series of experiments, we verified the effect of the duration of the
simulated workload on the resulting fairness measure (the ratio ∆ψ/ptot). As we
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Table 8.2: The average delay (or the speed up) of jobs due to the unfairness of the
algorithm ∆ψ/ptot for different algorithms and different workloads. Each row is an
average over 100 instances taken as parts of the original workload. The duration of
the experiment is 5 · 105.

LPC-EGEE PIK-IPLEX SHARCNET-Whale RICC
Avg St. dev. Avg St. dev. Avg St. dev. Avg St. dev.

RoundRobin 4511 6257 242 1420 404 1221 10850 13773
Rand (N = 15) 562 1670 1.3 7 26 158 771 1479
DirectContr 410 1083 0.2 1.4 60 204 1808 3397
FairShare 575 1404 2.3 12 94 307 2746 4070
UtFairShare 888 2101 1.2 5 120 344 4963 6080
CurrFairShare 1082 2091 2.2 11 180 805 5387 9083
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Figure 8.10: The effect of the number of the organizations on ratio ∆ψ/ptot.

changed the duration of the experiments from 5 · 104 to 5 · 105, we observed that the
unfairness ratio ∆ψ/ptot was increasing. The values of the ratio for tend−tstart = 5·105

are presented in Table 8.2. The relative quality of the algorithms is the same as in
the previous case. Thus, all our previous conclusions hold. However, now all the
algorithms are significantly less fair than the exact algorithm. Thus, in long-running
systems the difference between the approaches becomes more important. If there are a
few organizations, either the exact algorithm Ref or the randomized algorithm Rand
should be used. In larger systems, when the computational cost of these algorithms
is too high, DirectContr clearly outperforms FairShare.

Last, we verified the influence of the number of organizations on the ratio ∆ψ/ptot.
The results from the experiments conducted on LPC-EGEE data set are presented in
Figure 8.10. As the number of organizations increases, the unfairness ratio ∆ψ/ptot
grows and the difference between the algorithms is more significant. This confirms
our previous conclusions.
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8.8 Conclusions

In this chapter we defined the fairness of scheduling algorithms in terms of cooperative
game theory, which allows to quantify the impact of an organization on the utilities
of others. We presented a non-monetary model in which it is not required that
each organization has accurate valuations of its jobs and resources. We show that
classic utility functions may create incentives for workload manipulations. We thus
proposed a strategy resilient utility function that can be thought of as per-organization
throughput.

We analyzed the complexity of the fair scheduling problem. The general problem
is NP-hard and hard to approximate. Nevertheless, the problem parameterized with
the number of organizations is in FPT. Also, the FPT algorithm can be used as a
reference for comparing the fairness of different algorithms on small instances (dozens
of organizations). For a special case with unit-size jobs, we proposed an FPRAS. In
our experiments, we showed that the FPRAS can be used as a heuristic algorithm; we
also showed another efficient heuristic (DirectContr). The main conclusion from
the experiments is that in multi-organizational systems, the distributive fairness idea
used by the fair share algorithm does not result in truly-fair schedules; our heuristics
better approximate the Shapley-fair schedules.

We, further, showed that every greedy algorithm achieves at least 3
4
-times as

good resource utilization as the optimal algorithm. Since this result holds even if
the durations and the pattern of incoming jobs are unknown and, under arbitrary
underlying scheduling policy, the loss of resources utilization due to the fairness is
upper-bounded by 25%.

Since we do not require the valuation of the jobs and we consider an
on-line, non-clairvoyant scheduling, we believe the presented results have practical
consequences for real-life job schedulers.

There are many natural questions for the future work. Although our approach is
applicable to parallel jobs and to scheduling on related and unrelated machines, we
yet do not know the resulting loss of global efficiency. Determining these bounds is an
interesting open question. We suspect that in case of related and unrelated machines
the loss of efficiency might be significant. In such case, the next natural question is
too look for refinements of our algorithm that would allow to alleviate this problem.
Another interesting direction is to explore other game-theoretic notions of fairness.
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Chapter 9

We Are Impatient: Algorithms for
Geographically Distributed Load
Balancing with (Almost) Arbitrary
Load Functions

In geographically-distributed systems, communication latencies are non-negligible.
The perceived processing time of a request is thus composed of the time needed
to route the request to the server and the true processing time. Once a request
reaches a target server, the processing time depends on the total load of that server;
this dependency is described by a load function. We consider a broad class of load
functions; our only requirement is that they are convex and twice differentiable. In
particular, our model can be applied to heterogeneous systems in which every server
has a different load function. This approach allows us not only to generalize results
for queuing theory, but also to use empirically-derived load functions, measured in a
system under stress-testing.

Optimal assignment of requests to servers is communication-balanced, i.e., for
each pair of non perfectly-balanced servers, the reduction of processing time resulting
from moving a single request from the overloaded server to the underloaded one is
smaller than the additional communication latency.

We present two algorithms, a centralized one and a decentralized one, for optimal
load balancing. We prove bounds on the algorithms’ convergence. To the best of our
knowledge, these bounds were not known even for the special cases studied previously
in queuing theory. Both algorithms are any-time algorithms. In the decentralized
algorithm, each server balances the load with a randomly chosen peer. Such an
algorithm is very robust to failures. We prove that the decentralized algorithm
performs locally optimal steps.

Our work extends the currently known results by considering a broad class of
load functions and by establishing theoretical bounds on the algorithms’ convergence.
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These results are especially applicable for servers whose characteristics under load
cannot be described by standard mathematical models.

9.1 Introduction

We are impatient. An “immediate” reaction must take less than 100 ms [43]; a Google
user is less willing to continue searching if the result page is slowed down by just
100-400 ms [36]; a web page loading faster by just 250 ms attracts more users than
the competitor’s [185]. Few of us are thus willing to accept the 100-200ms Europe-US
round-trip time; even fewer, the 300-400ms Europe-Asia round-trip time. Internet
companies targeting global audiences must thus serve their contents locally. Google
builds data centers all over the world; a company that doesn’t have Google scale uses
a generic content delivery network (CDN) [103,233], such as Akamai [194,226,284] or
spreads its content on multiple Amazon’s Web Service regions.

A geographically-distributed system is an abstract model of world-spanning
networks. It is a network of interconnected servers processing requests. The system
considers both communication (request routing) and computation (request handling).
For example, apart from the communication latencies, a CDN handling complex
content can no longer ignore the load imposed by requests on the servers. As another
example, consider computational clouds, which are often distributed across multiple
physical locations and, thus, must consider the network latency in addition to servers’
processing times.

Normally, each server handles only the requests issued by local users. For
instance, a CDN node responds to queries incoming from the sub-network it is directly
connected to (e.g., DNS redirections in Akamai [173,194,284]). However, load varies
considerably. Typically, a service is more popular during the day than during the
night (the daily usage cycle). Load also spikes during historic events, ranging from
football finals to natural disasters. If a local server is overloaded, some requests might
be handled faster on a remote, non-overloaded, server. The users will not notice the
redirection if the remote server is “close” (the communication latency is small); but
if the remote server is on another continent, the round-trip time may dominate the
response time.

In this chapter we address the problem of balancing servers’ load taking into
account the communication latency. We model the response time of a single server by
a load function, i.e., a function that for a given load on a server (the number of requests
handled by a server) returns the average processing time of requests. In particular, we
continue the work of Liu et al. [181] and Tantawi and Towsley [287]. Liu et al. [181]
showed the convergence of the algorithms for the particular load function that
describes requests’ handling time in the queuing model [117]. Liu et al. [181]
considered only the particular load function that describes requests’ handling time
in the queuing model [117]. We use a broad class of functions that are continuous,
convex and twice-differentiable (Section 9.2.1), which allows us to model not only
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queuing theory-based systems, but also a particular application with the response
time measured empirically in a stress-test. Tantawi and Towsley [287] (who originally
proposed the model), on the other hand, showed the algorithm for the case when the
communication delay between each pair of nodes is the same.

We assume that the servers are connected by links with high bandwidth. Although
some models (e.g., routing games [225]) consider limited bandwidth, our aim is to
model servers connected by a dense network (such as the Internet), in which there are
multiple cost-comparable routing paths between the servers. The communication time
is thus dominated by the latency: a request is sent over a long distance with a finite
speed. We assume that the latencies are known, as monitoring pairwise latencies is a
well-studied problem [48,285]; if the latencies change due to, e.g., network problems,
our optimization algorithms can be run again. On each link, the latency is constant,
i.e., it does not vary with the number of sent requests. This assumption is consistent
with the previous works on geographically distributed load balancing [13,44,118,122,
181,241] and validated by our experiments in Section 9.7.1.

Individual requests are small. Rather than an hour-long batch job, a request
models, e.g., a single web page hit. Such assumption is often used [19,88,105,122,
181,241,287,294]. In particular, the continuous allocation of requests to servers in our
model is analogous to the divisible load model with constant-cost communication (a
special case of the affine cost model [19]) and multiple sources (multiple loads to be
handled, [88,294]).

The problem of load balancing in geographically distributed systems has been
already addressed, however it received limited attention. Liu et al. [181] shows
the convergence of two algorithms for a particular load function from the queuing
theory. Cardellini et al. [44] analyzes only simple redirection policies, like round
robin, or redirection to least loaded server. Colajanni et al. [64] presents experimental
evaluation of a round-robin-based algorithm for a similar problem. Minimizing the
cost of energy due to the load balancing in geographically distributed systems is a
similar problem considered in the literature [179,182,183].

Some papers analyze game-theoretic aspects of load balancing in geographically
distributed systems [2,13,118,122,241]. These works use a similar model, but focus
on capturing the economic relations between the participating entities.

The majority of the works in the literature on distributed load balancing ignore
the communication costs [55,72,81,121,127,131,153,176,178] (some literature considers
that during the communication delay the states of the servers may change, but do not
consider communication delay as a cost that user perceive [81,131]). Our distributed
algorithm is the extension of the diffusive load balancing [1,3,20]; it incorporates
communication latencies into the classical diffusive load balancing algorithms.

Additionally to the problem of effective load balancing, we can optimize the
choice of the locations for the servers [71,149,247]. The generic formulation of
the placement problem, facility location problem [57] and k-median problem [145],
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have been extensively studied in the literature (in fact, our models from Part I are
applicable for a variant of this problem as well).

The contributions of this chapter are the following.

1. We construct a centralized load-balancing algorithm that optimizes the
response time up to a given (arbitrary small) distance to the optimal solution
(Section 9.4). The algorithm has polynomial running time with respect to the
total load of the system and the upper bounds of the derivatives of the load
function.

2. We show a decentralized load-balancing algorithm (Section 9.5) in which pairs
of servers balance their loads. We prove that the algorithm is optimal (there
is no better algorithm that uses only a single pair of servers at each step). We
also bound the number of pairwise exchanges required for convergence.

3. We do not use a particular load function; instead, we only require the load
function to be continuous and twice-differentiable (Section 9.2.1). Thus we are
able to model empirical response times of a particular application on a particular
machine, but also to generalize (Section 9.2.2) Liu et al.’s [181] results on the
queuing model.

4. We describe a new class of load functions that we obtain when the jobs arrive
in batches. For this model we show that our load balancing problem is convex
and, in particular, solvable in polynomial time. This result also indicates that
the local optimization techniques can be applied to the problem.

5. We evaluate our distributed algorithm with the new proposed load function by
simulation.

The algorithms we propose for the general model are suitable for real applications.
These are any-time algorithms which means that we can stop them at any moment and
get a complete, yet suboptimal, solution. Furthermore, the distributed algorithm is
particularly suitable for distributed systems. It performs only pairwise optimizations
(only two servers need to be available to perform a single optimization phase), which
means that it is highly resilient to failures. It is also very simple and does not require
additional complex protocols.

In this chapter we present the theoretical bounds, but we believe that the
algorithms will have even better convergence in practice. Our experiments confirm
this intuition for the case of distributed algorithm used for our batch model. The
experimental evaluation for other load functions is the subject of our future work.
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9.2 Preliminaries

In this section we first describe our mathematical model, and next we argue that
our model is highly applicable. In particular, it generalizes two problems previously
considered in the literature.

9.2.1 The Model

Servers, requests, relay fractions, current loads. The system consists of a set
of m servers (processors) connected to the Internet. The i-th server has its local
(own) load of size ni consisting of small requests. The local load can be the current
number of requests, the average number of requests, or the rate of incoming requests
in the queuing model.

Each server can relay a part of its load to the other servers. We use a fractional
model in which a relay fraction ρij denotes the fraction of the i-th server’s load that
is sent (relayed) to the j-th server (∀i,j ρij ≥ 0 and ∀i

∑j=m
j=1 ρij = 1). Consequently,

ρii is the part of the i-th load that is kept on the i-th server. We consider two models.
In the single-hop model the request can be sent over the network only once. In the
multiple-hop model the requests can be routed between servers multiple times.1 Let
rij denote the size of the load that is sent from server i to server j. In the single-hop
model, the requests transferred from i to j come only from the local load of the server
i, thus:

rij = ρijni. (9.1)

In the multiple-hop model the requests come both from the local load of server i and
from the loads of other servers that relay their requests to i. Thus rij is a solution of:

rij = ρij

(

ni +
∑

k 6=i
rki

)

. (9.2)

The (current) load of the server i is the size of the load sent to i by all other servers,
including i itself: li =

∑m
j=1 rji.

Load functions. Let fi be a load function describing the average request’s
processing time on a server i as a function of i’s load li (e.g.: if there are li = 10
requests and fi(10) = 7, then on average it takes 7 time units to process each request).
We assume fi is known from a model or experimental evaluation; each server can have
a different characteristic fi (heterogeneous servers). The total processing time of the
requests on a server i is equal to hi(li) = lifi(li) (e.g., in the previous example it takes
70 time units to process all requests). In most of our results we use fi instead of hi
to be consistent with [181].

1We point the analogy between the multiple-hop model and the Markov chain with the servers
corresponding to states and relay fractions ρij corresponding to the probabilities of changing states.
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Instead of using a certain load function, we derive all our results for a broad class
of load functions (see Section 9.2.2 on how to map existing results to our model).
Let lmax ,i be the load that can be effectively handled on server i (beyond lmax ,i the
server fails due to, e.g., trashing). Let lmax = maxi lmax ,i. Let ltot =

∑

i ni be the
total load in the system. We assume that the total load can be effectively handled,
∑

i lmax ,i ≥ ltot (otherwise, the system is clearly overloaded). We assume that the
values lmax ,i are chosen so that fi(lmax ,i) are equal to each other (equal to the maximal
allowed processing time of the request).

We assume that the load function fi is bounded on the interval [0, lmax ,i]. (If
l > lmax ,i then we follow the convention that fi(l) = ∞.) We assume fi is
non-decreasing as when the load increases, requests are not processed faster. We also
assume that fi is convex and twice-differentiable on the interval [0; lmax ,i] (functions
that are not twice-differentiable can be well approximated by twice-differentiable
functions). We assume that the first derivatives f ′i of all fi are upper bounded by
U1 (U1 = maxi,l f

′
i(l)), and that the second derivatives f ′′i are upper bounded by U2

(U2 = maxi,l f
′′
i (l)). These assumptions are technical—every function that is defined

on a closed interval can be upper-bounded by a constant (however the complexity of
our algorithms depends on these constants).

Communication delays. If the request is sent over the network, the observed
handling time is increased by the communication latency on the link. We denote the
communication latency between the i-th and the j-th server as cij (with cii = 0).
We assume that the requests are small, and so the communication delay of a single
request does not depend on the amount of exchanged load (the same assumption was
made in the previous works [19,88,105,122,181,241,294] and it is confirmed by the
experiments we conducted on PlanetLab—Section 9.7.1). Thus, cij is a constant and
not a function of the network load.

We assume efficient ǫ-load processing : for sufficiently small load ǫ → 0 the
processing time is lower than the communication latency, so it is not profitable to
send the requests over the network. Thus, for any two servers i and j we have:

hi(ǫ) < ǫcij + hj(ǫ). (9.3)

We use an equivalent formulation of the above assumption (as hi(0) = hj(0) = 0):

hi(ǫ)− hi(0)

ǫ
< cij +

hj(ǫ)− hj(0)

ǫ
. (9.4)

Since the above must hold for every sufficiently small ǫ→ 0, we get:

h′i(0) < cij + h′j(0)⇔ fi(0) < cij + fj(0). (9.5)

Problem formulation: The total processing time. We consider a system
in which all requests have the same importance. Thus, the optimization goal is
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to minimize the total processing time of all requests
∑

Ci, considering both the
communication latencies and the requests’ handling times on all servers, that is:

∑

Ci =
m
∑

i=1

lifi(li) +
m
∑

i=1

m
∑

j=1

cijrij . (9.6)

We formalize our problem in the following definition:

Definition 9.1 (Load balancing). Given m servers with initial loads {ni, 0 ≤ i ≤ m},
load functions {fi} and communication delays {cij : 0 ≤ i, j ≤ m} find ρ, a vector of
fractions, that minimizes the total processing time of the requests,

∑

Ci.

We denote the optimal relay fractions by ρ∗ and the load of the server i in the
optimal solution as l∗i .

9.2.2 Motivation

Since the assumptions about the load functions are moderate, our analysis is
applicable to many systems. In order to apply our solutions one only needs to find
the load functions fi. In particular, our model generalizes the following models.

The Queuing Model

Our results generalize the results of Liu et al. [181] for the queuing model. In the
queuing model, the initial load ni corresponds to the rate of local requests at the i-th
server. Every server i has a processing rate µi. According to the queuing theory,
the dependency between load l (which is the effective rate of incoming requests) and
the service time of the requests is described by fi(l) = 1

µi−l [117]. Its derivative,
f ′i(l) = 1

(µi−l)2 is upper bounded by U1 = maxi
1

(µi−lmax ,i)2
, and its second derivative

f ′′i (l) =
2

(l−µi)3 is upper bounded by U2 = maxi
2

(lmax ,i−µi)3 .

The Batch Model

Let us consider the model in which requests arrive in batches. Thus, in a given
time moment all requests are available for execution. We consider the model in which
requests are processed in the uniformly random order. The motivation for considering
such model is the following. Since the number of requests is large, considering any
particular order on the servers would increase the computational complexity. Also,
since we are interested in the average processing time, the order of serving requests
does not affect the optimization goal. We assume that the servers are uniform; each
server i has a constant processing speed si.

In such a case, for each of the lj request that are actually processed on j-th server,
the expected processing time of each request is equal to 1/lj

∑lj
1 i/sj ≈ lj/2sj. Thus,
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in this model the function fi linearly depends on load fi(l) = l
2si

. Its derivative is
constant, and thus upper bounded by 1

2si
. The second derivative is equal to 0.

Additionally to the results for general load functions, in Section 9.6 we present a
load balancing algorithm for this specific batch model.

9.3 Characterization of the problem

In this section, we show various results that characterize the solutions in both the
single-hop and the multiple-hop models. We will use these results in performance
proofs in the next sections.

The relation between the single-hop model and the multiple-hop model is given
by the two following lemmas.

Lemma 9.1. If communication delays satisfy the triangle inequality (i.e., for every
i, j, and k we have cij < cik + ckj), then in the optimal solution there is no
server i that both sends and receives the load, i.e., there is no server i such that
∃j 6=i,k 6=i ((ρij > 0) ∧ (ρki > 0))

Proof. For the sake of contradiction let us assume that there exist servers i, j and
k, such that ρij > 0 and ρki > 0. Then, if we modify the relay fractions: ρij :=
ρij − min(ρij , ρki), ρjk := ρjk − min(ρij , ρki), and ρkj := ρkj + min(ρij , ρki), then the
loads li, lj and lk remain unchanged, but the communication delay is changed by:

min(ρij , ρki)(ckj − cki − cij),

which is, by the triangle inequality, a negative value. This completes the proof.

Proposition 9.2. If communication delays satisfy the triangle inequality then the
single-hop model and the multiple-hop model are equivalent.

Proof. From Lemma 9.1 we get that in the optimal solution if ρij > 0, then for every
k we have rki = 0. Thus, ni +

∑

k rki = ni.

We will also use the following simple observation.

Corollary 9.3. The total processing time in the multiple-hop model is not higher
than in the single-hop model.

In the next two statements we recall two results given by Liu et al. [181] (these
results were formulated for the general load functions). First, there exists an optimal
solution in which only (2m− 1) relay fractions ρij are positive. This theorem makes
our analysis more practical: the optimal load balancing can be achieved with sparse
routing tables. However, we note that most of our results are also applicable to the
case where every server is allowed to relay its requests only to a (small) subset of the
servers; in such case we need to set the communication delays between the disallowed
pairs of servers to infinity.
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Theorem 9.4 (Liu et al. [181]). In a single-hop model there exists an optimal solution
in which at most (2m− 1) relay fractions ρij have non-zero values.

Second, all optimal solutions are equivalent.

Theorem 9.5 (Liu et al. [181]). In all optimal solutions, every server i has the same
load l∗i .

Finally, in the next series of lemmas we characterize the optimal solutions by linear
equations. We will use this characterization in the analysis of the central algorithm.

Lemma 9.6. In the multiple hop model, the optimal solution 〈ρ∗ij〉 satisfies the
following constraints:

∀i l∗i ≤ lmax ,i (9.7)

∀i,j ρ∗ij ≥ 0 (9.8)

∀i

m
∑

j=1

ρ∗ij = 1. (9.9)

Proof. Inequality 9.7 ensures that the completion time of the requests is finite.
Inequalities 9.8 and 9.9 state that the values of ρ∗ij are valid relay fractions.

Lemma 9.7. In the multiple hop model, the optimal solution 〈ρ∗ij〉 satisfies the
following constraint:

∀i,j fj(l
∗
j ) + l∗jf

′
j(l
∗
j ) + cij ≥ fi(l

∗
i ) + l∗i f

′
i(l
∗
i ) (9.10)

Proof. For the sake of contradiction let us assume that fj(l∗j )+ l
∗
jf
′
j(l
∗
j )+cij < fi(l

∗
i )+

l∗i f
′
i(l
∗
i ). Since we assumed that fj(0) + cij > fi(0) (see Section 9.2.1), we infer that

l∗i > 0.
Next, we show that if fj(l∗j ) + l∗jf

′
j(l
∗
j ) + cij < fi(l

∗
i ) + l∗i f

′
i(l
∗
i ) and l∗i > 0, then

the server i can improve the total processing time of the requests
∑

Ci by relaying
some more load to the j-th server (which will lead to a contradiction). Let us
consider a function F (∆r) that quantifies i’s and j’s contribution to

∑

Ci if ∆r
requests are additionally send from i to j (and also takes into account the additional
communication latency ∆rcij):

F (∆r) = (l∗i −∆r)fi(l
∗
i −∆r) + (l∗j +∆r)fj(l

∗
j +∆r) + ∆rcij.

If F (∆r) < F (0), then transferring extra ∆r requests from i to j decreases
∑

Ci
(thus leading to a better solution). We compute the derivative of F :

F ′(∆r) = −fi(l
∗
i −∆r)− (l∗i −∆r)f ′i(l

∗
i −∆r) + fj(l

∗
j +∆r) + (l∗j +∆r)f ′j(l

∗
j +∆r) + cij .

Since we assumed that fj(l∗j ) + l∗jf
′
j(l
∗
j ) + cij < fi(l

∗
i ) + l∗i f

′
i(l
∗
i ), we get that:

F ′(0) = −fi(l
∗
i )− l

∗
i f
′
i(l
∗
i ) + fj(l

∗
j ) + l∗jf

′
j(l
∗
j ) + cij < 0.
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Since F ′ is differentiable, it is continuous; so there exists ∆r0 > 0 such that F ′ is
negative on [0;∆r0], and thus F is decreasing on [0;∆r0]. Consequently, F (∆r0) <
F (0), which contradicts the optimality of 〈ρ∗ij〉.

Lemma 9.8. In the multiple hop model, the optimal solution 〈ρ∗ij〉 satisfies the
following constraint:

∀i,j if ρ∗ij > 0 then fj(l
∗
j ) + l∗jf

′
j(l
∗
j ) + cij ≤ fi(l

∗
i ) + l∗i f

′
i(l
∗
i ) (9.11)

Proof. If ρ∗ij > 0, then in the optimal solution i sends some requests to j. There are
two possibilities. Either some of the transferred requests of i are processed on j, or j
sends all of them further to another server j2. Similarly, j2 may process some of these
requests or send them all further to j3. Let j, j2, j3, . . . , jℓ be the sequence of servers
such that every server from j, j2, j3, . . . , jℓ−1 transfers all received requests of i to the
next server in the sequence and jℓ processes some of them on its own.

First, we note that every server from j, j2, j3, . . . , jℓ−1 has non-zero load. Indeed
if this is not the case then let j0 be the last server from the sequence which has load
equal to 0. However we assumed that for sufficiently small load, it is faster to process
it locally than to send it over the network to the next server jk (fj0(ǫ) < fk(ǫ)+ cj0k).
This contradicts the optimality of the solution and shows that our observation is true.

Then, we take some requests processed on jℓ−1 and swap them with the same
number of requests owned by i, processed on jℓ. After this swap jℓ−1 processes some
requests of i; such a swap does not change

∑

Ci. Next, we repeat the same procedure
for jℓ−1 and jℓ−2; then jℓ−2 and jℓ−3; and so on. As a result, j processes some requests
of i.

The next part of the proof is similar to the proof of Lemma 9.7. Let us consider
the function G(∆r) that quantifies i’s and j’s contribution to

∑

Ci if ∆r requests are
moved back from j to i (i.e., not sent from i to j):

G(∆r) = (l∗i +∆r)fi(l
∗
i +∆r) + (l∗j −∆r)fj(l

∗
j −∆r)−∆rcij.

If G(∆r) < G(0), executing ∆r requests on i (and not on j) reduces
∑

Ci.
G(∆r) = F (−∆r) (see the proof of Lemma 9.7). Thus, G′(∆r) = −F ′(∆r), and

G′(0) = −F ′(0) = fi(l
∗
i ) + l∗i f

′
i(l
∗
i )− fj(l

∗
j )− l

∗
jf
′
j(l
∗
j )− cij . (9.12)

As l∗i is optimal, G′(0) ≥ 0, thus fi(l∗i ) + l∗i f
′
i(l
∗
i ) − fj(l

∗
j ) − l

∗
jf
′
j(l
∗
j ) − cij ≥ 0, which

proves the thesis.

Lemma 9.9. If some solution 〈ρij〉 satisfies Inequalities 9.7, 9.8, 9.9, 9.10, and 9.11
then every server i under 〈ρij〉 has the same load as in the optimal solution 〈ρ∗ij〉.

Proof. Let S+ denote the set of servers that in ρ∗ have greater or equal load than in ρ
(l∗i ≥ li). For the sake of contradiction let us assume that S+ is non-empty and that
it contains at least one server i that in ρ∗ has strictly greater load than in ρ (l∗i > li).
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Let j ∈ S+; we will show that j in ρ∗ can receive requests only from the servers
from S+. By definition of S+, l∗j ≥ lj . Consider a server i that in ρ∗ relays some of its
requests to j; we will show that l∗i ≥ li. Indeed, since ρ∗ij > 0, from Inequality 9.11
we get that:

fj(l
∗
j ) + l∗jf

′
j(l
∗
j ) + cij ≤ fi(l

∗
i ) + l∗i f

′
i(l
∗
i ). (9.13)

Since we assumed that 〈ρij〉 satisfies Inequality 9.10, we get

fj(lj) + ljf
′
j(lj) + cij ≥ fi(li) + lif

′
i(li). (9.14)

By combining these relations we get:

fi(l
∗
i ) + l∗i f

′
i(l
∗
i ) ≥ fj(l

∗
j ) + l∗jf

′
j(l
∗
j ) + cij from Eq. 9.13

≥ fj(lj) + ljf
′
j(lj) + cij as l∗j ≥ lj and fj is convex

≥ fi(li) + lif
′
i(li) from Eq. 9.14.

Since fi is convex, the function fi(l) + lf ′i(l) is non-decreasing (as the sum of two
non-decreasing functions); thus l∗i ≥ li.

Similarly, we show that any i ∈ S+ in ρ can send requests only to other S+ servers.
Consider a server j that in ρ receives requests from i.

fj(l
∗
j ) + l∗jf

′
j(l
∗
j ) ≥ fi(l

∗
i ) + l∗i f

′
i(l
∗
i )− cij Eq. 9.10

≥ fi(li) + lif
′
i(li)− cij as l∗i ≥ li and fi is convex

≥ fj(lj) + ljf
′
j(lj) as ρij > 0, from Eq. 9.11.

Thus, l∗j ≥ lj.
Let lin be the total load sent in ρ to the servers from S+ by the servers outside

of S+. Let lout be the total load sent by the servers from S+ in ρ to the servers
outside of S+. Analogously we define l∗in and l∗out for the state ρ∗. In the two previous
paragraphs we showed that l∗in = 0 and that lout = 0. However, since the total load
of the servers from S+ is in ρ∗ greater than in ρ, we get that:

l∗in − l
∗
out > lin − lout.

From which we get that: −l∗out > lin, i.e. lin+ l∗out < 0, which leads to a contradiction
as transfers lin and l∗out cannot be negative.

9.4 An Approximate Centralized Algorithm

In this section we show a centralized algorithm for the multiple-hop model. As a
consequence of Proposition 9.2, the results presented in this section also apply to the
single-hop model with the communication delays satisfying the triangle inequality.

For the further analysis we introduce the notion of optimal network flow.
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Definition 9.2 (Optimal network flow). The vector of relay fractions ρ = 〈ρij〉 has
an optimal network flow if and only if there is no ρ′ = 〈ρ′ij〉 such that every server
in ρ′ has the same load as in ρ and such that the total communication delay of the
requests

∑

i,j cijr
′
ij in ρ′ is lower than the total communication delay

∑

i,j cijrij in ρ.

The problem of finding the optimal network flow reduces to finding a minimum
cost flow in an uncapacitated network. Indeed, in the problem of finding a minimum
cost flow in an uncapacitated network we are given a graph with the cost of the arcs
and demands (supplies) of the vertices. For each vertex i, bi denotes the demand
(if positive) or supply (if negative) of i. We look for the flow that satisfies demands
and supplies and minimizes the total cost. To transform our problem of finding the
optimal network flow to the above form, it suffices to set bi = li−ni. Thus our problem
can be solved in time O(m3 logm) [230]. Other distributed algorithms include the one
of Goldberg et al. [113], and the asynchronous auction-based algorithms [24], with,
e.g., the complexity of O(m3 log(m) log(maxi,j cij)).

The following theorem estimates how far is the current solution from the optimum
based on the degree to which Inequality 9.10 is not satisfied. We use this theorem to
prove the approximation ratio of our load balancing algorithm.

Theorem 9.10. Let ρ be the vector of relay fractions satisfying
Inequalities 9.7, 9.8, 9.9 and 9.11, and having an optimal network flow. Let
∆ij quantify the extent to which Inequality 9.10 is not satisfied:

∆ij = max(0, fi(li) + lif
′
i(li)− fj(lj)− ljf

′
j(lj)− cij).

Let ∆ = maxi,j ∆ij. Let e be the absolute error—the difference between
∑

Ci for
solution ρ and for ρ∗, e =

∑

Ci(ρ) −
∑

Ci(ρ
∗). For the multiple-hop model and for

the single-hop model satisfying the triangle inequality we get the following estimation:

e ≤ ltotm∆.

Proof. Let I be the problem instance. Let Ĩ be a following instance: initial loads ni in
Ĩ are the same as in I; communication delays cij are increased by ∆ij (c̃ij := cij+∆ij).
Let ρ̃∗ be the optimal solutions for Ĩ in the multiple-hop model.

By Lemma 9.9, loads of servers in ρ are the same as in ρ̃∗, as ρ satisfies all
inequalities for Ĩ. Let c∗ and c denote the total communication delay of ρ̃∗ in Ĩ and
ρ in I, respectively. First, we show that c∗ ≥ c.

For the sake of contradiction, assume that c∗ < c. We take the solution ρ̃∗ in Ĩ
and modify Ĩ by decreasing each latency c̃ij by ∆ij . We obtain instance I. During
the process, we decreased (or did not change) communication delay over every link,
and so we decreased (or did not change) the total communication delay. Thus, in I,
ρ̃∗ has smaller communication delay than ρ. This contradicts the thesis assumption
that ρ had in I the optimal network flow.
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As Ĩ has the same initial loads and not greater communication delay,
∑

Ci(ρ, I) ≤
∑

Ci(ρ̃∗, Ĩ).

Based on Proposition 9.2, the same result holds if ρ is the solution in the single-hop
model satisfying the triangle inequality.

We use a similar analysis to bound the processing time. In the multiple-hop model,
if the network flow is optimal, then every request can be relayed at most m times.
Thus, any solution transfers at most ltotm load. Thus, by increasing latencies from
I to Ĩ we increase the total communication delay of a solution by at most ltotm∆.
Taking the optimal solution ρ∗, we get:

∑

Ci(ρ
∗, Ĩ) ≤ ltotm∆+

∑

Ci(ρ
∗, I).

As
∑

Ci(ρ̃∗, Ĩ) ≤
∑

Ci(ρ
∗, Ĩ), by combining the two inequalities we get:

∑

Ci(ρ, I) ≤
∑

Ci(ρ̃∗, Ĩ) ≤
∑

Ci(ρ
∗, Ĩ) ≤ ltotm∆+

∑

Ci(ρ
∗, I).

The above estimations allow us to construct an approximation algorithm (the
pseudo-code of the algorithm is presented in Figure 9.1). Lines 14 to 18 initialize the
variables. In line 19 we build a certain arbitrary finite solution (i.e., a solution for
which the load li on the i-th server does not exceed lmax ,i). Next, in the while loop in
line 22, we iteratively improve the solution. In each iteration we find a pair (i, j) with
the maximal value of ∆ij . Next we balance the servers i and j in line 7. Afterwards,
it might be possible that the current solution does not satisfy Inequality 9.11. In
lines 8 to 12 we fix the solution so that Inequality 9.11 holds.

The following Theorem shows that algorithm from Figure 9.1 achieves an arbitrary
small absolute error e.

Theorem 9.11. Let ed be the desired absolute error for the centralized algorithm from
Figure 9.1, and let ei be the initial error. In the multiple-hop model the algorithm

decreases the absolute error from ei to ed in time O( ltot
2m4ei(U1+lmaxU2)

e2d
).

Proof. Let li and lj be the loads of the servers i and j before the invocation of the
Adjust function in line 7 of the algorithm from Figure 9.1. Let ∆ij quantify how much
Inequality 9.10 is not satisfied, ∆ij = fi(li)+ lif

′
i(li)−fj(lj)−ljf

′
j(lj)−cij . As in proof

of Lemma 9.7, consider a function F (∆r) that quantifies i’s and j’s contribution to
∑

Ci if ∆r requests of are additionally send from i to j:

F (∆r) = (li −∆r)fi(li −∆r) + (lj +∆r)fj(lj +∆r) + ∆rcij .

As previously, the derivative of F is:

F ′(∆r) = −fi(li −∆r)− (li −∆r)f ′i(li −∆r) + fj(lj +∆r) + (lj +∆r)f ′j(lj +∆r) + cij .

229



Notation:
eee — the required absolute error of the algorithm.
cijcijcij — the communication delay between i-th and j-th server.
lll[i] — the load of the i-th server in a current solution.
rrr[i, j] — the number of requests relayed between i-th and j-th server in a current solution.
OptimizeNetworkFlow(ρ, 〈cij〉) — builds an optimal network flow using algorithm of
Orlin [230].

1 Adjust(i, j):
2 ∆r ← argmin∆r ((li −∆r)fi(li −∆r) + (lj +∆r)fj(lj +∆r) + ∆rcij);
3 l[i]← l[i]−∆r;
4 l[j]← l[j] + ∆r;
5 r[i, j]← r[i, j] + ∆r;

6 Improve(i, j):
7 Adjust (i, j);
8 servers ← sort servers topologically according to the order ≺: i ≺ j ⇐⇒ ρij > 0;
9 for ℓ in servers do

10 for k ← 1 to m do

11 if r[k, ℓ] > 0 and fℓ(l
∗
ℓ ) + l∗ℓ f

′
ℓ(l

∗
ℓ ) + ckℓ > fk(l

∗
k) + l∗kf

′
k(l

∗
k) then

12 AdjustBack (ℓ, k);

13 Main(〈cij〉, 〈ni〉, 〈si〉):
14 for i← 1 to m do

15 l[i]← ni;
16 for j ← 1 to m do

17 r[i, j]← 0;
18 r[i, i]← ni;

19 BuildAnyFiniteSolution() ;
20 OptimizeNetworkFlow(r, 〈cij〉);
21 (i, j)← argmax(i,j)∆ij ;

22 while ∆ij >
e

ltotm
do

23 (i, j)← argmax(i,j)∆ij ;

24 Improve(i, j);

25 OptimizeNetworkFlow(r, 〈cij〉);

Figure 9.1: The approximation algorithm for multiple-hop model.
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Thus, F ′(0) = −∆ij . The second derivative of F is equal to:

F ′′(∆r) = 2f ′i(li −∆r) + (li −∆r)f ′′i (li −∆r) + 2f ′j(lj +∆r) + (lj +∆r)f ′′j (lj +∆r).

The second derivative is bounded by:

|F ′′(∆r)| ≤ 4U1 + 2lmaxU2. (9.15)

For any function f with a derivative f ′ bounded on range [x0, x] by a constant f ′max,
the value f(x) is upper-bounded by:

f(x) ≤ f(x0) + (x− x0)f
′
max. (9.16)

Using this fact, we upper-bound the first derivative by:

F ′(∆r) ≤ F ′(0) + ∆r(4U1 + 2lmaxU2).

We use a particular value of the load difference ∆r0 =
∆ij

8U1+4lmaxU2
, getting that for

∆r ≤ ∆r0, we have:

F ′(∆r) ≤ F ′(0) + ∆r(4U1 + 2lmaxU2)

≤ F ′(0) + ∆r0(4U1 + 2lmaxU2)

≤ −∆ij +
∆ij

8U1 + 4lmaxU2

· (4U1 + 2lmaxU2) ≤ −
1

2
∆ij .

We can use Inequality 9.16 for a function F to lower-bound the reduction in
∑

Ci
for ∆r0 as F (0)− F (∆r0):

F (0)− F (∆r0) ≥
1

2
∆ij |r0 − 0| =

∆ij

8U1 + 4lmaxU2

·
1

2
∆ij =

∆2
ij

16U1 + 8lmaxU2

.

To conclude that Adjust function invoked in line 7 reduces the total processing

time by at least
∆2

ij

16U1+8lmaxU2
, we still need ensure that the server i has enough (at

least ∆r0 =
∆ij

8U1+4lmaxU2
) load to be transferred to j. However we recall that the value

of F ′ in ∆r0 is negative, F ′(∆r0) < −1
2
∆ij < 0. This means that after transferring

∆r0 requests, sending more requests from i to j further reduces
∑

Ci. Thus, if i’s
load would be lower than ∆r0, this would contradict the efficient ǫ-load processing
assumption.

Also, every invocation of AdjustBack decreases the total completion time
∑

Ci.
Thus, after invocation of Improve the total completion time

∑

Ci is decreased by at

least
∆2

ij

16U1+8lmaxU2
.

Each invocation of Improve preserves the following invariant: in the current
solution Inequalities 9.8, 9.9 and 9.11 are satisfied. It is easy to see that
Inequalities 9.8, 9.9 are satisfied. We will show that Inequality 9.11 holds too. Indeed,
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this is accomplished by a series of invocations of AdjustBack in line 12. Indeed, from
the proof of Lemma 9.8, after invocation of the Adjust function for the servers i and
j, these servers satisfy Inequality 9.11.

We also need to prove that the servers can be topologically sorted in line 8, that
is that there is no such sequence of servers i1, . . . , ik that rij ij+1

> 0 and riki1 > 0.
For the sake of contradiction let us assume that there exists such a sequence. Let us
consider the first invocation of Adjust in line 7 that creates such a sequence. Without
loss of generality let us assume that such Adjust was invoked for the servers ik and
i1. This means that before this invocation ∆iki1 > 0, and so fik(lik) + likf

′
ik
(lik) >

fi1(li1)+ li1f
′
i1
(li1). Since the invariant was satisfied before entering Adjust and since

rij ij+1
> 0, from Inequality 9.11 we infer that fij+1

(lij+1
) + lij+1

f ′ij+1
(lij+1

) + cij ,ij+1
≤

fij (lij)+ lijf
′
ij
(lij), and so that fij+1

(lij+1
)+ lij+1

f ′ij+1
(lij+1

) ≤ fij(lij )+ lijf
′
ij
(lij ). Thus,

we get contradiction:

fi1(li1) + li1f
′
i1
(li1) ≥ fi2(li2) + li2f

′
i2
(li2) ≥ · · · ≥ fik(lik) + likf

′
ik
(lik) ≥ fi1(li1) + li1f

′
i1
(li1).

Which proves that the invariant is true.
If the algorithm finishes, then ∆ < ed

ltotm
. After performing the last step of the

algorithm the network flow is optimized and we can use Theorem 9.10 to infer that
the error is at most ed.

We estimate the number of iterations to decrease the absolute error from ei to
ed. To this end, we estimated the decrease of the error after a single iteration of the
while loop in line 22. The algorithm continues the last loop only when ∆ ≥ ed

ltotm
.

Thus, after a single iteration of the loop the error decreases by at least
∆2

ij

16U1+8lmaxU2
≥

e2d
ltot

2m2(16U1+8lmaxU2)
. Thus, after O( ltot

2m2ei(U1+lmaxU2)
e2d

) iterations the error decreases to

0. Since every iteration of the loop has complexity O(m2), we get the thesis.

Using a bound from Theorem 9.10 corresponding to the single-hop model we get
the following analogous results.

Corollary 9.12. If the communication delays satisfy the triangle inequality then the
centralized algorithm from Figure 9.1 for the single-hop model decreases the absolute

error from ei to ed in time O( ltot
2m4ei(U1+lmaxU2)

e2d
).

For the relative (to the total load) errors ei,r =
ei
ltot

, and ed,r =
ed
ltot

, the centralized

algorithm decreases ei,r to ed,r in time O(
ltot(U1+lmaxU2)ei,r

e2d,r
m4). Thus, we get the

shortest runtime if ltot is large and ei,r is small. If the initial error ei,r is large we can
use a modified algorithm that performs OptimizeNetworkFlow in every iteration of
the last “while” loop (line 22). Using a similar analysis as before we get the following
bound.

Theorem 9.13. The modified algorithm from Figure 9.1 that performs
OptimizeNetworkFlow in every iteration of the last “while” loop (line 22) decreases the

relative error ei,r by a multiplicative constant factor in time O( ltotm
5 logm(U1+lmaxU2)

ei,r
).
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Proof. The analysis is similar as in the proof of Theorem 9.11. Here however at the
beginning of each loop the network flow is optimized. If the absolute error before the
loop is equal to e, then from Theorem 9.10 we infer that ∆ ≥ e

ltotm
. Thus, after a

single iteration of the loop the error decreases by ∆2

16U1+8lmaxU2
≥ e2

ltot
2m2(16U1+8lmaxU2)

,
and so by the factor of:

(

e−
e2

ltot
2m2(16U1 + 8lmaxU2)

)

/e =

(

1−
e

ltot
2m2(16U1 + 8lmaxU2)

)

.

Taking the relative error ei,r as e
ltot

we get that every iteration decreases the relative

error by a constant factor
(

1− ei,r
ltotm2(16U1+8lmaxU2)

)

. Thus, after O( ltotm
2(U1+lmaxU2)
ei,r

)

iterations the error decreases by a constant factor. Since the complexity of every
iteration of the loop is dominated by the algorithm optimizing the network flow
(which has complexity O(m3 logm)), we get the thesis.

Our centralized algorithm is an any-time algorithm. We can stop it at any time
and get a so-far optimized solution.

9.5 Distributed algorithm

input: (i, j) – the identifiers of the two servers
Data: ∀k rki – initialized to the number of requests owned by k and relayed to

i (∀k rkj is defined analogously)
Result: The new values of rki and rkj

1 foreach k do
2 rki ← rki + rkj; rkj ← 0;
3 li ←

∑

k rki ; lj ← 0 ;
4 servers ← sort [k] so that ckj − cki < ck′j − ck′i =⇒ k is before k′;
5 foreach k ∈ servers do
6 ∆optrikj ← argmin∆r (hi(li −∆r) + hj(lj +∆r)−∆rcki +∆rckj) ;
7 ∆rikj ← min (∆optrikj, rki) ;
8 if ∆rikj > 0 then
9 rki ← rki −∆rikj; rkj ← rkj +∆rikj ;

10 li ← li −∆rikj; lj ← lj +∆rikj ;
11 return for each k: rki and rkj

Figure 9.2: calcBestTransfer(i, j)

The centralized algorithm requires the information about the whole network. The
size of the input data is O(m2). A centralized algorithm has thus the following
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1 partner ← random(m);
2 relay (id, partner, calcBestTransfer(id, partner));

Figure 9.3: Min-Error (MinE) algorithm performed by server id.

drawbacks: (i) collecting information about the whole network is time-consuming;
moreover, loads and latencies may frequently change; (ii) the central algorithm is
more vulnerable to failures. Motivated by these limitations we introduce a distributed
algorithm for optimizing the query processing time.

Each server, i, keeps for each server, k, information about the number of requests
that were relayed to i by k. The algorithm iteratively improves the solution—the i-th
server in each step communicates with a random partner server, server j (Figure 9.3).
The pair (i, j) locally optimizes the current solution by adjusting, for each k, rki and
rkj (the pseudo-code of the algorithm is presented in Figure 9.2). In the first loop
of the algorithm from Figure 9.2, server i takes all the requests that were previously
assigned to i and to j. Next, all the servers [k] are sorted according to the ascending
order of (ckj−cki). The lower the value of (ckj−cki), the less communication delay we
need to pay for running requests of k on j rather than on i. Then, for each k, the loads
are balanced between servers i and j. Theorem 9.14 shows that this decentralized
algorithm optimally balances the loads on the servers i and j.

The idea of the algorithm is similar to the diffusive load balancing [1,3,20];
however there are substantial differences related to the fact that the machines are
geographically distributed: (i) In each step no real requests are transferred between
the servers; this process can be viewed as a simulation run to calculate the relay
fractions ρij . Once the fractions are calculated the requests are transferred and
executed at the appropriate server. (ii) Each pair (i, j) of servers exchanges not
only its own requests but the requests of all servers that relayed their requests either
to i or to j. Since different servers may have different communication delays to i and
to j, local balancing requires more care (algorithms from Figures 9.2 and 9.3).

The decentralized algorithm has the following properties: (i) The size of the input
data is O(m) for each server—communication latencies from a server to all other
servers (and not for all pairs of servers). It is easy to measure these pairwise latencies
(Section 9.1). The algorithm is also applicable to the case where we allow the server
to relay its requests only to the certain subset of servers (we set the latencies to the
servers outside of this subset to infinity). (ii) A single optimization step requires only
two servers to be available (thus, it is very robust to failures). (iii) Any algorithm
that in a single step involves only two servers cannot perform better (Theorem 9.14).
(iv) The algorithm does not require any requests to be unnecessarily delegated—once
the relay fractions are calculated the requests are sent over the network. (v) In each
step of the algorithm we are able to estimate the distance between the current solution
and the optimal one (Proposition 9.15).
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9.5.1 Optimality

The following theorem shows the optimality of the decentralized algorithm.

Theorem 9.14. After execution of balancing algorithm from Figure 9.2 for the pair
of servers i and j,

∑

Ci cannot be further improved by sending the load of any servers
between i and j (by adjusting rki and rkj for any k).

Proof. For the sake of simplicity of the presentation we prove that after performing
algorithm from Figure 9.2, for any single server k we cannot improve the processing
time

∑

Ci by moving any requests of k from i to j or from j to i. Similarly it can be
proven that we cannot improve

∑

Ci by moving the requests of any set of the servers
from i to j or from j to i.

Let us consider the total processing time function hi(l) = lfi(l). Since fi is
non-decreasing and convex, hi is convex. Indeed if l > 0, then:

h′′i (l) = (fi(l) + lf ′i(l))
′ = 2f ′i(l) + lf ′′i (l) > 0.

Now, let l be the total load on the servers i and j, l = li + lj . Let us consider the
function P (∆r) describing the contribution in

∑

Ci of servers i and j as a function
of load ∆r processed on the server j (excluding communication):

P (∆r) = (l −∆r)fi(l −∆r) + ∆rfj(∆r)

= hi(l −∆r) + hj(∆r).

The function P is convex as well. Indeed:

P ′′(∆r) = h′′i (l −∆r) + h′′j (∆r) > 0.

Now, we show that after the second loop (Figure 9.2, lines 5-10) transferring any
load from i to j, would not further decrease the total completion time

∑

Ci. For the
sake of contradiction let us assume that for some server k after the second loop some
additional requests of k should be transferred from i to j. The second loop considers
the servers in some particular order and in each iteration moves some load (possibly
of size equal to 0) from i to j. Let Ik be the iteration of the second loop in which the
algorithm considers the requests owned by k and tries to move some of them from i
to j. Let l −∆r1 and l −∆r2 be the loads on the server i immediately after Ik and
after the last iteration of the second loop, respectively. As no request is moved back
from j to i, ∆r2 ≥ ∆r1. We will use a function Pk:

Pk(∆r) = P (∆r1 +∆r)−∆rcki +∆rckj.

The function Pk(∆r) returns the total processing time of i and j assuming the
server i after iteration Ik sent additional ∆r more requests of k to j (including the
communication delay of these extra ∆r requests).
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Immediately after iteration Ik the algorithm could not improve the processing
time of the requests by moving some requests owned by k from i to j. This is the
consequence of one of two facts. Either all the requests of k are already on j, and
so there are no requests of k to be moved (but in such case we know that when the
whole loop is finished there are still no such requests, and thus we get a contradiction).
Alternatively, the function Pk is increasing for some interval [0, ǫ] (ǫ > 0). But then
we infer that the function:

Qk(∆r) = P (∆r2 +∆r)−∆rcki +∆rckj,

is also increasing on [0, ǫ]. Indeed:

Q′k(∆r) = P ′(∆r2 +∆r)− cki + ckj ≥ P ′(∆r1 +∆r)− cki + ckj = P ′k(∆r),

Since Qk is convex (because P is convex) we get that Qk is increasing not only on [0, ǫ],
but also for any positive ∆r. Thus, it is not possible to improve the total completion
time by sending the requests of k from i to j after the whole loop is finished. This
gives a contradiction.

Second, we will show that when the algorithm finishes no requests should be
transferred back from j to i either. Again, for the sake of contradiction let us assume
that for some server k after the second loop (Figure 9.2, lines 5-10) some requests of k
should be transferred back from j to i. Let Ik be the iteration of the second in which
the algorithm considers the requests owned by k. Let us take the last iteration Islast
of the second loop in which the requests of some server slast were transferred from i
to j. Let l−∆r3 be the load on i after Islast . After Islast no requests of slast should be
transferred back from j to i (argmin in line 6). Thus, for some ǫ > 0 the function Rk:

Rk(∆r) = P (∆r3 −∆r) + ∆rcslast i −∆rcslast j

is increasing on [0, ǫ]. Since the servers are ordered by decreasing latency differences
(cki− ckj) (increasing latency differences (ckj − cki)), we get cslast i− cslast j ≤ cki− ckj,
and so that the function:

Sk(∆r) = P (∆r3 −∆r) + ∆rcki −∆rckj

is also increasing on [0, ǫ]. Since Sk is convex we see that it is increasing or any
positive ∆r, and thus we get the contradiction. This completes the proof.

9.5.2 Convergence

The following analysis bounds the error of the distributed algorithm as a function
of the servers’ loads. When running the algorithm, this result can be used to assess
whether it is still profitable to continue. As the corollary of our analysis, we will show
the convergence of the distributed algorithm.

In proofs, we will use an error graph that quantifies the difference of loads between
the current and the optimal solution.

236



Definition 9.3 (Error graph). Let ρ be the snapshot (the current solution) at some
moment of execution of the distributed algorithm. Let ρ∗ be the optimal solution (if
there are multiple optimal solutions with the same

∑

Ci, ρ
∗ is the closest solution to

ρ in the Manhattan metric). (P,∆ρ) is a weighted, directed error graph with multiple
edges. The vertices in the error graph correspond to the servers; ∆ρ[i][j][k] is a weight
of the edge i → j with a label k. The weight indicates the number of requests owned
by k that should be executed on j instead of i in order to reach ρ∗ from ρ.

The error graphs are not unique. For instance, to move x requests owned by k from
i to j we can move them directly, or through some other server ℓ. In our analysis, we
will assume that the total weight of the edges in the error graph

∑

i,j,k∆ρ[i][j][k]
is minimal, that is that there is no i, j, k, and ℓ, such that ∆ρ[i][ℓ][k] > 0 and
∆ρ[ℓ][j][k] > 0.

Let succ(i) = {j : ∃k∆ρ[i][j][k] > 0} denote the set of (immediate) successors
of server i in the error graph; prec(i) = {j : ∃k∆ρ[j][i][k] > 0} denotes the set of
(immediate) predecessors of i.

We will also use a notion of a negative cycle: a sequence of servers in the error
graph that essentially redirect some of their requests to one another.

Definition 9.4 (Negative cycle). In the error graph, a negative cycle is a sequence
of servers i1, i2, . . . , in and labels k1, k2, . . . , kn such that:

1. i1 = in; (the sequence is a cycle)

2. ∀j∈{1,...n−1} ∆ρ[ij ][ij+1][kj ] > 0; (for each pair there is an edge in the error
graph)

3.
∑n−1

j=1 ckjij+1
<
∑n−1

j=1 ckjij (the transfer in the circle ij
kj
−→ ij+1 decreases

communication delay).

A current solution that results in an error graph without negative cycles has
smaller processing time: After dismantling a negative cycle, loads on servers remain
the same, but the communication time is reduced. Thus, if the current solution has
an optimal network flow, then there are no negative cycles in the error graph.

Analogously, we define positive cycles. The only difference is that instead in the
third inequality we require

∑n−1
j=1 ckj ij+1

≥
∑n−1

j=1 ckjij . Thus, when an error graph has
a positive cycle, the current solution is better than if the cycle would be dismantled.

We start by bounding the load imbalance when there are no negative cycles.

Lemma 9.15. Let impr pq be the improvement of the total processing time
∑

Ci after
balancing servers p and q by algorithm from Figure 9.2. Let li be the load of server i
in the current state; and l∗i be the optimal load. If the error graph ∆ρ has no negative
cycles, then for every positive ǫ the following estimation holds:

fi(li)− fi(l
∗
i ) ≤

6U1 + 3lmaxU2

ǫ
max
pq

imprpq +mǫ.
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Proof. First we show that there is no cycle (positive nor negative) in the error graph.
By contradiction let us assume that there is a cycle: i1, . . . , in−1, in (with i1 = in)
with labels k1, k2, . . . , kn. Because, we assumed the error graph has no negative cycle,
we have:

∑n−1
j=1 (ckjij+1

− ckjij ) ≥ 0. Now, let ∆ρmin = minj∈{1,...,n−1}(ρ[ij ][ij+1][kj ]) be
the minimal load on the cycle. If we reduce the number of requests sent on each edge
of the cycle:

∆ρ[ij ][ij+1][kj] := ∆ρ[ij ][ij+1][kj ]−∆ρmin

then the load of the servers ij , j ∈ {1, . . . , n − 1} will not change. Additionally,

the latencies decrease by ρmin

(

∑n−1
j=1 ckjij+1

− ckj ij)
)

which is at least equal to 0.

Thus, we get a new optimal solution which is closer to ρ in Manhattan metric, which
contradicts that ρ∗ is optimal.

In the remaining part of the proof, we show how to bound the difference |fi(li)−
fi(l

∗
i )|. Consider a server i for which li > l∗i , and a server j ∈ succ(i). We define as

∆rǫij the load that in the current state ρ should be transferred between i and j so
that after this transfer, moving any ∆r more load owned by any k between i to j
would be either impossible or would not improve

∑

Ci by more than ǫ∆r. Intuitively,
after moving ∆rǫij , we won’t be able to further “significantly” reduce

∑

Ci: further
reductions depend on the moved load (∆r), but the rate of the improvement is lower
than ǫ. This move resembles algorithm from Figure 9.2: i.e., algorithm from Figure 9.2
moves ∆rǫij for ǫ = 0.

Let ρ̃ denote a state obtained from ρ when i moves to j exactly ∆rǫij requests. Let
l̃i and l̃j denote the loads of the servers i and j in ρ̃, respectively. We define Hk(∆r)
as the change of

∑

Ci resulting from moving additional ∆r requests produced by k
from i to j:

Hk(∆r) = hi(l̃i −∆r) + hj(l̃j +∆r)−∆rcki +∆rckj.

State ρ̃ satisfies one of the following conditions for each k (consider ∆r as a small,
positive number):

1. The servers i and j are ǫ-balanced, thus moving ∆r requests from i to j would
not reduce

∑

Ci by more than ǫ∆r. In such case we can bound the derivative
of Hk:

|H ′k(0)| ≤ ǫ, (9.17)

2. Or, moving ∆r requests from i to j would decrease
∑

Ci by more than ǫ∆r,
but there are no requests of k on i:

H ′k(0) < −ǫ and r̃ki = 0, (9.18)
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3. Or, moving ∆r requests back from j to i would decrease
∑

Ci by more than
ǫ∆r, but there are no requests of k to be moved back:

H ′k(0) > ǫ and r̃kj = 0. (9.19)

In the optimal solution, for any k, no k’s requests should be moved between i and
j. We define Gk(∆r) similarly to Hk, but for the optimal loads:

Gk(∆r) = hi(l
∗
i −∆r) + hj(l

∗
j +∆r)−∆rcki +∆rckj. (9.20)

By the same reasoning, at least one of the three following inequalities holds:

G′k(0) = 0, or (9.21)

G′k(0) < 0 and r∗ki = 0, or (9.22)

G′k(0) > 0 and r∗kj = 0. (9.23)

We consider two cases on the sum of weights between i and j in the error graph.
Either (1) in the error graph, i sends to j at most ∆rǫij requests (

∑

k∆ρ[i][j][k] ≤
∆rǫij); or (2)

∑

k∆ρ[i][j][k] > ∆rǫij . We further analyze (2). Since ∆rǫij is the total
load transferred from i to j in ρ to get ρ̃, there must exist a k such that ρ[i][j][k] >
∆rǫij(k) (from i to j more k’s requests are moved in the error graph than in ρ to
get ρ̃). We show that r̃ki > 0 by contradiction. If r̃ki = 0 (in ρ̃, no k’s requests are
processed on i), then rki = ∆rǫij(k) (all k’s requests were moved to j in ρ to get ρ̃).
As ρ[i][j][k] ≤ rki (the error graph does not transfer more requests than available),
ρ[i][j][k] ≤ ∆rǫij(k), which contradicts ρ[i][j][k] > ∆rǫij(k). As r̃ki > 0, Ineq. 9.17
or 9.19 holds (Ineq. 9.18 does not hold), thus H ′k(0) ≥ −ǫ. As ρ[i][j][k] > ∆rǫij(k),
ρ[i][j][k] > 0, thus, r∗kj > 0, so Ineq. 9.21 or 9.22 holds (Ineq. 9.23 does not hold), so
G′k(0) ≤ 0.

G′k(0) ≤ 0⇔ −h′i(l
∗
i ) + h′j(l

∗
j )− cki + ckj ≤ 0

H ′k(0) ≥ −ǫ⇔ −h
′
i(l̃i) + h′j(l̃j)− cki + ckj ≥ −ǫ

Combining the above inequalities,

−h′i(l̃i) + h′j(l̃j) + ǫ ≥ −h′i(l
∗
i ) + h′j(l

∗
j )

Or equivalently:

h′i(l̃i)− h
′
i(l
∗
i ) ≤ h′j(l̃j)− h

′
j(l
∗
j ) + ǫ (9.24)

We can further expand the above inequality for j and its successors (and each
expansion is applied on state ρ), and so on towards the end of the error graph (we
proved there are no cycles), until we get that for some p and its successor q the
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condition of the case (2) does not hold, so (1) must hold (
∑

k∆ρ[p][q][k] ≤ ∆rǫpq, or
equivalently |lp − l∗p| ≤ ∆rǫpq). Analogously to ρ̃ we define ˜̃ρ as the state in which p
moves to q load ∆rǫpq. Thus, we have:

h′i(l̃i)− h
′
i(l
∗
i ) ≤ h′p(

˜̃lp)− h
′
p(l
∗
p) +mǫ (Ineq. 9.24 expanded for at most m successors)

(9.25)

|lp − l
∗
p| ≤ ∆rǫpq (condition (1)) (9.26)

From the definition of ˜̃ρ we have:

| ˜̃lp − lp| ≤ ∆rǫpq (9.27)

Combining Inequalities 9.26 and 9.27 we get:

| ˜̃lp − l
∗
p| ≤ 2∆rǫpq (9.28)

We bound the second derivative of h′′p:

h′′p(l) = (fp(l) + lf ′p(l))
′ = 2f ′p(l) + lf ′′p (l) ≤ 2U1 + lmaxU2 = U3. (9.29)

With the above observations, and using the bound from Inequality 9.16 we get:

h′i(li)− h
′
i(l
∗
i ) ≤ h′i(l̃i)− h

′
i(l
∗
i ) + U3|l̃i − li| Ineq. 9.16

≤ h′i(l̃i)− h
′
i(l
∗
i ) + U3∆r

ǫ
ij condition (1)

≤ h′p(
˜̃lp)− h

′
p(l
∗
p) + U3∆r

ǫ
ij +mǫ Ineq. 9.25

≤ U3|
˜̃lp − l

∗
p|+ U3∆r

ǫ
ij +mǫ Ineq. 9.16

≤ 2U3∆r
ǫ
pq + U3∆r

ǫ
ij +mǫ Ineq. 9.28

≤ (6U1 + 3lmaxU2)max
pq

∆rǫpq +mǫ Ineq. 9.29.

As h′i(li) = fi(li) + lif
′
i(li), from li ≥ l∗i , we get that:

fi(li)− fi(l
∗
i ) ≤ h′i(li)− h

′
i(l
∗
i )

≤ (6U1 + 3lmaxU2)max
pq

∆rǫpq +mǫ.

We can get the same results for the server i such that li ≤ l∗i , by expanding the
inequalities towards the predecessors of i.

We now relate ∆rǫpq with imprpq, the result of balancing algorithm from Figure 9.2.
The balancing algorithm stops when no further improvement is possible, thus the load
moved by the algorithm is at least ∆rǫpq for any ǫ. By definition of ∆rǫpq, moving ∆rǫpq
load improves

∑

Ci by at least ǫ∆rǫpq. Thus, impr ij ≥ ǫ∆rǫij . This completes the
proof.
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As a result, we get the following corollary.

Corollary 9.16. If the network flow in the current solution ρ is optimal, then the
absolute error e is bounded:

e ≤ ltot
6U1 + 3lmaxU2

ǫ
max
pq

imprpq +mltotǫ

Proof. The value fi(li) denotes the average processing time of a request on the i-th
server. For every server i the average processing time of every request on i in ρ is by
at most 6U1+3lmaxU2

ǫ
maxpq impr pq +mǫ greater than in ρ∗. Thus, since there are ltot

requests in total, we get the thesis.

We can use Lemma 9.15 directly to estimate the error during the optimization if
we run a distributed negative cycle removal algorithm (e.g. [24,113]). However, this
result is even more powerful when applied together with the lemmas below, as it will
allow to bound the speed of convergence of the algorithm (even without additional
protocols optimizing the network flow). Now, we show how to bound the impact of
negative cycles.

Lemma 9.17. For every ǫ > 0, removing the negative cycles improves the total
processing time

∑

Ci of the solution by at most:

ǫltot + 2m
∑

ij

impr ij +
16U1 + 8lmaxU2

ǫ
max
ij

impr ijltot .

Proof. In the analysis we will use a function Fi,j,k defined as Hk in the proof of
Lemma 9.15 (here, we will use indices i, j)

Fi,j,k(∆r) = hi(li −∆r) + hj(lj +∆r)−∆rcki +∆rckj

= (li −∆r)fi(li −∆r) + (lj +∆r)fj(lj +∆r)−∆rcki +∆rckj.

We will analyze a procedure that removes negative cycles one by one.
First, we prove that we can remove all the negative cycles by only considering the

cycles that satisfy the one-way transfers property: if in a cycle there is a transfer
i→ j, then in no cycle there is a transfer j → i. Indeed, consider the set of all cycles.
We do the following procedure:

1. If there are two negative cycles C and C̃ with a common edge (i, j), such that
in the first cycle load l is transferred from i to j and in the second load l̃ ≤ l
is transferred back from j to i then we split the first cycle C into two cycles C1

and C2 such that C1 transfers l̃ and C2 transfers l − l̃. Next, we merge C1 and
C̃ into one negative cycle that does not contain edge (i, j).

2. If a single cycle transfers load first from i to j, and then from j to i then we
break the cycle at the edge i↔ j into two cycles (without edges between i and
j).
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Let us note that each of the two above steps does not increase the total load transferred
on the cycles. For a given error graph, there are many possible ways (sets of cycles)
to express a non-optimal flow as a sum of negative cycles. We will consider a set
of cycles with the smallest total load (sum of loads transferred over all edges of all
cycles). In this set, we will remove individual cycles sequentially in an arbitrary order.

In this sequence of cycles with the smallest load, every request is transferred at
most once. Indeed, if this is not the case, a request was transferred through adjacent
edges e1 and e2. Thus, among the cycles we consider there are two negative cycles,
such that the first one contains the edge e1 = (i, j) and the second one contains
e2 = (j, ℓ). (a single request cannot be transferred i → j → ℓ in a single cycle,
because by sending i → ℓ we would get a cycle with a smaller load). Also, between
i and j and between j and ℓ requests of the same server k are transferred. Let
e3 = (ℓ, p) be the edge adjacent to e2 in the second cycle. If in the first cycle we send
requests from i to ℓ and in the second from j to p, we would obtain two cycles that
transfer an equivalent load (each server has the same requests) and have smaller total
transfer, a contradiction.

Let us consider a state ρ with a negative cycle c, that is the sequence of servers
i1, i2, . . . , in and labels k1, k2, . . . , kn. Let us assume that in a negative cycle c the
load ∆r is carried on. After removing the cycle c,

∑

Ci is improved by Ic:

0 < Ic =
∑

j

∆r
(

ckjij − ckjij+1

)

= ∆r
∑

j

(

h′ij (lij)− h
′
ij+1

(lij+1
) + ckjij − ckjij+1

)

the sequence is a cycle

= ∆r
∑

j

−F ′ij ,ij+1,kj
(0).

Let us distribute among the edges the cost of all negative cycles (the cost, i.e., the
increase in

∑

Ci resulting from the cycles). For removing a single cycle with load ∆r,

from the above inequality we assign the cost −F ′i,j,k(0)∆r to the labeled edge i
k
−→ j.

As every request is sent over a single edge at most once, the total cost assigned to

the labeled edge i
k
−→ j will be at most −F ′i,j,k(0)rki.

In the further part of the proof we will estimate −F ′i,j,k(0). First, we bound the
second derivative of F as in Eq. 9.15 in the proof of Theorem 9.11:

|F ′′i,j,k(∆r)| ≤ 4U1 + 2lmaxU2.

Next, we consider two cases: (1) F ′i,j,k(0) ≥ −ǫ, and (2) F ′i,j,k(0) < −ǫ. If (1) is the

case then the total cost associated with i
k
−→ j is at most ǫrki. We further analyze (2).

Let us take ∆r0 = min(rki,
ǫ

8U1+4lmaxU2
). From Inequality 9.16 we get that:

F ′i,j,k(∆r0) ≤ F ′i,j,k(0) + ∆r0(4U1 + 2lmaxU2)
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≤ F ′i,j,k(0) +
ǫ

8U1 + 4lmaxU2

(4U1 + 2lmaxU2)

≤ F ′i,j,k(0)−
F ′i,j,k(0)

2
≤
F ′i,j,k(0)

2
.

Thus (again from Ineq. 9.16 but applied for F ) we get that:

Fi,j,k(0)− Fi,j,k(∆r0) ≥ ∆r0
−F ′i,j,k(0)

2
.

Since ∆r0 ≤ rki (there are at least ∆r0 requests of k on i), we infer that the balancing
algorithm from Figure 9.2 would achieve improvement impr ij lower-bounded by:

impr ij ≥ Fi,j,k(0)− Fi,j,k(∆r0) ≥ −F
′
i,j,k(0)

∆r0
2

.

Further, we consider two sub-cases. If (2a) ∆r0 = rki then the total cost associated

with i
k
−→ j is at most 2impr ij. (2b) Otherwise (∆r0 = ǫ

8U1+4lmaxU2
), we have

impr ij
16U1+8lmaxU2

ǫ
≥ −F ′i,j,k(0). Since

∑

i,k rki = ltot , we get that the total cost
associated with all edges is at most:

ǫltot+ condition (1)

2m
∑

ij

impr ij+ condition (2a)

16U1 + 8lmaxU2

ǫ
max
ij

impr ijltot . condition (2b)

Thus, we get the thesis.

Finally we get the following estimation.

Theorem 9.18. Let impr ij be the improvement of the total processing time
∑

Ci after
balancing servers i and j through algorithm from Figure 9.2. Let e be the absolute
error in

∑

Ci (the difference between
∑

Ci in the current and the optimal state). For
every ǫ > 0, we have:

e ≤ 2m
∑

ij

impr ij +max
ij

impr ij
22U1 + 11lmaxU2

ǫ
ltot + (m+ 1)ltotǫ.

Proof. The error coming from the negative cycles is bounded by Lemma 9.17 by:

ǫltot + 2m
∑

ij

impr ij +
16U1 + 8lmaxU2

ǫ
max
ij

impr ijltot . (9.30)

The error coming from the processing times is, according to Lemma 9.15 bounded by:

ltot
6U1 + 3lmaxU2

ǫ
max
ij

impr ij +mltotǫ

The sum of the above errors leads to the thesis.
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Finally, we obtain the following theorem.

Theorem 9.19. Let ei and ed be the initial and the desired absolute errors. The
distributed algorithm reaches the ed in expected time complexity:

O

(

ltot
2(U1 + lmaxU2)eim

3

e2d

)

.

Proof. In the estimation from Theorem 9.18 we set ǫ = ed
2(m+1)ltot

and relax the upper
bound by replacing maxi,j impr ij with

∑

i,j impr ij :

e ≤ (2m+ 2)
∑

i,j

impr ij

(

1 +
22U1 + 11lmaxU2

ed
ltot

2

)

+
ed
2

≈ 2m
∑

i,j

impr ij
22U1 + 11lmaxU2

ed
ltot

2 +
ed
2

.

Thus, either

2m
∑

ij

impr ij
22U1 + 11lmaxU2

ed
ltot

2 ≤
ed
2

,

and the algorithm has already reached the error ed; or in every execution step we
have:

∑

i,j

impr ij ≥
e2d

4m(22U1 + 11lmaxU2)ltot
2 .

The expected improvement of the distributed algorithm during every pairwise
communication is 1

m2

∑

i,j impr ij, and thus it is lower bounded by:

e2d
4m3(22U1 + 11lmaxU2)ltot

2 .

Thus, after, in expectation, O( ltot
2(U1+lmaxU2)eim3

e2d
) steps the initial error drops to 0.

This completes the proof.

For the relative errors ei,r =
ei
ltot

and ed,r =
ed
ltot

, the complexity of the algorithm is

equal to O( ltot(U1+lmaxU2)ei,rm
3

e2d,r
).

9.6 Batch Model: Optimal Solution

In this section we consider the batch model, i.e., the case where the load functions
are linear: fi(l) = l

2si
. We assume that there is a central processing unit that has
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complete knowledge about the whole system. Given the communication latencies cij
and the servers’ initial loads ni, our goal is to find an algorithm setting relay fractions
ρij so that the total processing time of all the requests

∑

Ci is minimized. Below
we show that the problem can be stated as a quadratic programming problem with a
positive-definite matrix Q. This means that the optimization problem is convex and,
in particular, it is solvable in polynomial time. We consider this result powerful, as
it indicates that any local optimization techniques can be applied to the problem.

Theorem 9.20. The problem of minimizing
∑

Ci for the batch model can be expressed
as a quadratic programming problem:

∑

Ci = ρTQρ + bTρ, with a positive-definite
matrix Q. In particular, this means that the function we minimize is convex.

Proof. We express the total processing time
∑

Ci in a matrix form as
∑

Ci = ρTQρ+
bTρ, where:

• ρ is a vector of relay fractions with m · m elements. ρ(i,j), the element at
(i ·m+ j)-th position, denotes the fraction of local requests of i-th server that
are relayed to j-th server ρij , thus:
ρ = [ρ(1,1), ρ(1,2), . . . , ρ(1,m), ρ(2,1), . . . , ρ(m,m)]

T ;

• Q is m2-by-m2 matrix in which q(i,j),(k,l) denotes the element in (i ·m + j)-th
row and in (k ·m+ l)-th column:

q(i,j),(k,l) =











nink/sj if j = l and i < k;

nink/2sj if j = l and i = k;

0 otherwise;

(9.31)

Figure 9.4 presents the structure of matrix Q.

• b is a vector with m2 elements with bij denoting an element at (i · m + j)-th
position: b(i,j) = cijni.

The following derivation shows how the matrix Q is constructed:

ρTQρ =
∑

i,j

ρ(i,j)
∑

k≥i
q(i,j),(k,j)ρ(k,j) (9.32)

=
∑

i,j

ρ(i,j)

(

∑

k>i

ninkρ(k,j)
sj

+
n2
i ρ(i,j)
2sj

)

(9.33)

=
∑

i

∑

j

∑

k

ninkρ(i,j)ρ(k,j)
2sj

=
∑

i

∑

j

rijlj
2sj

. (9.34)

(9.32) follows from the construction of the matrix Q (only elements k ≥ i are
non-zero). (9.33) substitutes q(i,j),(k,l) with the values defined in (9.31). (9.34) uses
commutativity of multiplication and substitutes lj =

∑

k nkρ(k,j) and rij = niρ(i,j).
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Figure 9.4: Matrix Q: X denotes non-zero values

The constraints that ρij are the fractions (∀i,j ρij ≥ 0 and ∀i
∑j=m

j=1 ρij = 1) can
also be expressed in the matrix form. First, ρ ≥ 0m2 , where 0m2 is a vector of length
m2 consisting of zeros. Second, Aρ = 1m, where 1m is a vector of length m and
consisting of ones, and A is a m-by-m2 matrix defined by the following equation:

aij =

{

1 if im ≤ j < (i+ 1)m

0 otherwise.
(9.35)

Minimization of
∑

Ci(ρ) = ρTQρ+ bTρ with constraints ρ ≥ 0m2 and Aρ = 1m is
an instance of quadratic programing problem. As an upper triangular matrix, matrix
Q has m2 eigenvalues equal to the values at the diagonal: n2

i /2sj (1 ≤ i, j ≤ m). All
eigenvalues are positive so Q is positive-definite.

Corollary 9.21. The problem of minimizing
∑

Ci for the batch model is solvable in
polynomial time.

According to [137], the best running time reported for solving quadratic
programing problems with linear constraints is O(n3L) [114], where L represents the
total length of the input coefficients, and n is the number of variables (here n = m2),
so the complexity of the best solution is O(Lm6). The part of this complexity that
depends on the number of machines is higher than in case of the algorithms for
the general load functions. Here, however, the complexity does not depend on the
derivative of load functions, initial error, nor the total load in the system.

Theorem 9.20 additionally encourages one to apply local optimization techniques,
such as the distributed algorithm presented in the previous section.

9.7 Experiments

In this section we show the results from two groups of experiments. First, we ran
experiments on PlanetLab to validate the assumption that the latencies between
servers do not depend on the amount of load sent over the network. Second, for
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tb
e(·, ·, tb)
µ σ

10 KB/s 0.0 0.0
20 KB/s -0.05 0.21
50 KB/s -0.05 0.27
0.1 MB/s -0.08 0.33

tb
e(·, ·, tb)
µ σ

0.2 MB/s 0.0 0.37
0.5 MB/s 0.28 0.8
2 MB/s 0.45 1.31
5 MB/s 0.18 0.8

Table 9.1: The relative deviation of the average throughput caused by the increase of
the background load (after removal of 5% largest deviations). In the figure, µ denotes
the mean and σ denotes the standard deviation.

the batch model we investigate convergence time of the distributed algorithm, by
simulations.

9.7.1 Validation of the Constant Latency Assumption

We experimentally verified how the amount of load sent over the network influences
communication delays between the servers. We randomly selected 60 PlanetLab
servers, scattered around Europe, and simulated different intensity of the background
load in the following way. Each server chooses its 5 neighbors randomly, but in a
way that each server has exactly 5 neighbors. Then each server starts sending data
with a constant throughput to its 5 neighbors. In different experiments, we used 8
values of the throughputs: 10KB/s, 20KB/s, 50KB/s, 100KB/s, 200KB/s, 500KB/s,
1MB/s, 2MB/s. If a particular throughput was not achievable, the server was just
sending data with the maximal achievable throughput. By the nature of experiments
on PlanetLab, we were not granted a dedicated access to the machines; thus other
experiments running on the same servers added further, unknown network transfers.
Additionally, almost none of PlanetLab servers specify the bandwidth of their Internet
connection or the historical bandwidth usage. For each value of the background load,
we calculated the average round trip time (RTT) between the server and each of its
5 neighbors (we used the average from 300 RTT samples).

Let rtt(si, sj, tb) denote the average rtt between servers si and sj with the
background load generated with throughput tb. For each pair of servers si and sj
for which we measured the RTT, and for each value of the background throughput
tb, we calculated the relative deviation of the average throughput caused by the
increase of the background load compared to the minimal throughput 10KB/s:
e(si, sj, bt) =

rtt(si,sj ,tb)−rtt(si,sj ,10KB/s)
rtt(si,sj ,10KB/s)

. For each value of the background throughput,
we removed 5% of the largest deviations and then calculated the mean from deviations
e(si, sj, bt), averaged over all pairs of servers (µ). For each value of the background
throughput we additionally calculated the standard deviations (σ). These results are
presented in Table 9.1.
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From the data, we see that up to bt = 0.2MB/s, which corresponds to the case
where each server accepts 5 · 0.2 · 8 = 8Mb/s of incoming data, the average RTT was
not influenced by the background throughput. This is also confirmed by the statistical
analysis of the data run for the RTTs (instead of for deviations). For bt ≤ 0.2MB/s
the ANOVA test (which we run for the whole population—without removing 5% of
the highest RTTs) confirmed the null hypothesis (that the background throughput
does not influence the RTTs) for over 56% of the pairs of servers. For bt ≤ 0.1MB/s
(corresponding to 4Mb/s of incoming throughput) the ANOVA test confirmed null
hypothesis for over 70% of the pairs of servers and for bt ≤ 50KB/s (corresponding
to 2Mb/s of incoming throughput) for over 90% of the pairs. We consider that these
results strongly justify the assumption of a constant latency in our model.

9.7.2 Convergence of Distributed Algorithm: Simulations

Settings

We experimented on two kinds of networks: homogeneous, with equal communication
latencies (cij = 20), and heterogeneous, where latencies were based on measurements
between PlanetLab nodes2 expressed in milliseconds.3

In the initial experiments, we analyzed networks composed of 20, 30, 50, 100, 200
and 300 serves. We also performed some experiments on larger networks (500, 1000,
2000, 3000 servers). We used the batch model; the processing speeds of the servers
si were uniformly distributed on the interval 〈1, 5〉.

We conducted the experiments for exponential and uniform distribution of the
initial load over the servers. For each distribution we analyzed five cases with the
average load equal to 10, 20, 50, 200 and 1000 requests per second (assuming that
processing a single request on a single server takes 1ms). We also analyzed the case
of peak distribution—with 100.000 requests owned by a single server.

We evaluated the results based on the distance to the optimal solution,
which because of the O(m6) complexity of standard solvers (see Section 9.6) was
approximated by our distributed algorithm.

Convergence Time of the Distributed Algorithm

In the first series of experiments, we evaluated the efficiency of the distributed
algorithm measured as the number of iterations the algorithm must perform in order
to decrease the difference between the total processing times in the current and
the optimal request distributions to less than 2% of the average load. In a single
iteration of the distributed algorithm, each server executes distributed algorithm from

2http://iplane.cs.washington.edu/data/data.html
3The dataset does not contain latencies for all pairs of nodes, so we had to complement the data

by calculating minimal distances.
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Figure 9.5: The convergence of the distributed algorithm for peak distribution of
initial loads.

Figure 9.3; if there were many pairs of the servers to be optimized we run optimization
in the random order. Table 9.2 summarizes the results.

The results indicate that the number of iterations mostly depends on the size of the
network and on the distribution of the initial load. The type of the network (planet-lab
vs. homogeneous) does not influence the convergence time. Larger networks and
peak distribution result in higher convergence times. In all considered networks, the
algorithm converged in at most 8 iterations.

Next, we increased the required precision error from 2% to 0.1%, and ran the
same experiments. The results are given in Table 9.3. In this case, similarly, the
required number of iterations was the highest for peak distribution of the initial load.
In each case the algorithm converged in at most 11 iterations. Even for 300 servers
the average number of iterations is below 8. Also, the standard deviations are low,
which indicates that the algorithm is stable with respect to its fast convergence.

Finally, we analyzed the convergence of the distributed algorithm on larger
networks (Figure 9.5). The previous experiments have shown that the algorithm
convergence is the slowest for peak distribution of the initial load, therefore we
chose this case for the analysis. The experiments used heterogeneous network. The
results indicate that even for larger networks the total processing time decreases
exponentially.
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# iterations
average max st. dev.

m ≤ 50
uniform 1.65 3 0.49

exp. 2.35 3 0.47
peak 4.87 6 0.71

m = 100
uniform 2.0 2.0 0.0

exp. 2.62 3 0.48
peak 6.88 7 0.32

m = 200
uniform 2.1 3 0.33

exp. 3.1 4 0.33
peak 7.84 8 0.37

m = 300
uniform 2.0 2 0.0

exp. 3.25 4 0.43
peak 8.0 8 0.0

Table 9.2: The number of iterations of the distributed algorithm required to obtain
at most 2% relative error in the total processing time ΣCi.

# iterations
average max st. dev.

m ≤ 50
uniform 5.1 7 1.0

exp 5.5 7 0.9
peak 6.4 7 0.5

m = 100
uniform 5.8 9 1.6

exp. 6.3 9 1.5
peak 8.0 9 0.2

m = 200
uniform 6.1 9 2.2

exp. 7.1 10 2.0
peak 9.9 10 0.3

m = 300
uniform 6.2 10 2.4

exp. 7.7 11 2.0
peak 10.0 10 0.0

Table 9.3: The number of iterations of the distributed algorithm required to obtain
at most 0.1% relative error in the total processing time ΣCi.

9.8 Conclusions

In this chapter we considered the problem of balancing the load between
geographically distributed servers. In this problem the completion time of a request
is a sum of the communication latency needed to send the request to a server and
the server’s processing time. The processing time on a server is described by a load
function and depends on the total load on the server. Through the most part of this
chapter, we considered a broad class of load functions with the mild assumptions that
they are convex and twice differentiable.
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We presented two algorithms—the centralized one and the distributed one. Both
algorithms are any-time algorithms that continuously optimize the current solution.
We have shown that both algorithms converge for almost arbitrary load functions.
We also presented bounds on speed of their convergence that depend (apart from the
standard parameters) on the bounds on the first and second derivatives of the load
functions. The centralized algorithm decreases an initial relative error ei,r to a desired
value ed,r in time O( ltot(U1+lmaxU2)ei,r

e2d,r
m4). The distributed algorithm decreases ei,r to

ed,r in time O( ltot(U1+lmaxU2)ei,r
e2d,r

m3). Also, for the large values of initial error ei,r, the

centralized algorithm decreases the error by half in time O( ltot(U1+lmaxU2)
ei,r

m5 logm).
The distributed algorithm is based on the idea of gossiping. To perform a single

optimization step, the algorithm requires just two servers to be available. Thus, the
algorithm is robust to transient failures. It also does not require additional protocols.
In some sense it is also optimal: We proved that the local optimization step performed
by this algorithm cannot be improved. Finally, at any time moment, during the
execution of the distributed algorithm, we are able to assess the current error.

Experimental results show that for the batch model the distributed algorithm
quickly converges to the optimal solution.
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Part III

Resource allocation in real systems
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In the two following chapters we consider resource management mechanisms in
two real distributed systems. The approach presented in this part of the dissertation
is different from the previous ones in several aspects. First, the considered systems
are too complex to obtain an accurate mathematical model. In most cases, it is even
very hard to obtain a well-specified problem. Second, effective resource management
requires elaborate mechanisms that, apart from algorithms, consist of communication
protocols, monitoring services, or other interdependent resource management services.
Consequently, design, analysis, and evaluation of resource management mechanisms in
real complex systems requires a different methodology. Since the formal analysis of the
whole resource management mechanism is virtually impossible, our analysis mainly
focuses on extensive experimental evaluation. Additionally, for such systems we argue
that evaluation through simulation is not sufficient, the experiments involving the
whole real system are necessary.

In this dissertation we consider two perspectives coming from the analysis of
two distributed systems. First, we study the already-tuned and strictly-structured,
distributed storage system HYDRAstor [89,218], aimed at the enterprise market.
Second, we consider a prototype of a peer-to-peer (P2P) backup system that is built
as an unstructured network of low-performance workstations. On these two systems
we present two different views on resource management in real distributed systems.

In the first view we are given an existing complex system with already implemented
data management mechanisms. In such a case we require a resource allocation
mechanism that is decoupled from other parts of the system. In particular, such
a mechanism should not influence the architectural specifics of the system, such
as the way in which data is distributed between the physical nodes (as this is the
responsibility of the data management mechanisms). In this view we consider the
following resource allocation problem. In HYDRAstor there are several categories
of tasks: user tasks, i.e., data writes and reads, and a number of different types of
background tasks (maintenance tasks). The goal is to define a way in which these
different categories of tasks will be allocated common resources.

HYDRAstor is a content-addressable storage system—the location of each data
block is fully determined by the hash of its content; thus, the location of data is fully
structured. This is a very complex system developed for many years. In contrast,
in the second view we are given a system that is simpler, and in which there is
no structured overlay. Thus, in this view we can interfere with the other parts of
the system such as mechanisms of locating data. For instance, resource management
solutions may include mechanisms that optimize data distribution in order to provide,
e.g., a certain degree of resilience, little overhead for the network, or faster data access.

In other words, in the first view, our goal is to design a single subsystem that
provides proper resource distribution between existing services. In the second view,
on the other hand, we aim at providing a whole set of new services that result in a
smart allocation of resources. These two views, however, have common properties. In
both views we consider real distributed systems, which provide efficient and reliable
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storage service. In both cases we use a similar methodology of analyzing the resource
management mechanisms: (i) We provide limited formal analysis of selected parts of
the mechanisms. (ii) We provide extensive experimental evaluation of the proposed
solutions. (iii) We argue that experimental evaluation through simulations is not
enough, and so we run our experiments on real systems.

In the first view, studied in Chapter 10, our main contribution is a novel
mechanism for sharing resources among various types of highly-variable loads. The
new approach uses throughput as the tasks’ progress indicator—it controls resource
allocation to obtain certain proportions of throughputs of different categories of tasks.
For instance, in a system running out of storage space, the system administrator may
want to ensure that the proportion of the throughputs of the garbage collection tasks
and user writes is 1:1. In a typical case, she may want to use configuration in which the
background tasks proceed with, e.g., 5% the speed of the user tasks (unless there are
idle resources that could be used). Using throughput as the tasks’ progress indicator
allows to avoid assumptions about task specifics such as their resource consumption or
handling process. This makes our new technique particularly well suited for complex
systems for which defining an accurate model is difficult.

We provide and evaluate a fuzzy adaptive control by using it to allocate resources
to user load and to background tasks in HYDRAstor. We compare our mechanism
with several variants of fair queuing and we show that it is more stable in the case of
irregular workloads.

In Chapter 11 we describe an architecture of a P2P backup system that allows one
to implement different strategies of replica placement. These strategies may include:
geographical distribution of the replicas (to increase data resiliency), minimization of
the load sent over the network, or minimization of the backup/restore time. Thus,
here, the resource is the storage of heterogeneous physical machines—we want to
allocate this resource to different data replicas. Next, we propose an optimization
protocol that continuously improves replica placement according to a given strategy.
Our optimization protocol works for a general class of optimization strategies.

We experimentally evaluated our prototype implementation on 150 workstations
in our university’s computer laboratories and, separately, on 50 PlanetLab nodes.
We found out that the main factor affecting the quality of the performance-based
optimization goals is the availability of the machines. Yet, our main conclusion is
that it is possible to build an efficient resource management mechanism in a system
built from highly unavailable machines.

256



Chapter 10

Fuzzy Adaptive Control for
Heterogeneous Tasks in
High-Performance Storage Systems

Beyond handling user reads and writes, storage systems execute multiple background
tasks of various types, such as reconstruction of missing parity data and
defragmentation. The resources of the system must be divided between the user
load and the internal tasks using a specific policy.

In this chapter we describe a fuzzy adaptive control, which is a novel mechanism for
sharing resources among various types of highly-variable loads. In this new approach
we use throughput as the task progress indicator—our mechanism ensures that the
throughputs of different types of tasks are in certain proportions. As a result, we
present a general mechanism that abstracts from the details regarding the tasks in our
system (such as their resource consumption or their handling process). Consequently,
our new technique is particularly well suited to complex systems for which defining
an accurate model is difficult.

We evaluate the fuzzy adaptive control mechanism by using it to divide
resources between user load and background tasks in HYDRAstor—a commercial
high-performance distributed secondary storage system. We compare our mechanism
with some variants of fair queuing and we show that our solution is more stable in the
case of irregular workload. We experimentally prove that our approach is responsive
to changing load conditions and that it ensures high resource utilization.

10.1 Introduction

In parallel to read/write operations, storage systems often execute multiple types
of background tasks, such as reconstruction of parity data, data defragmentation,
or garbage collection [186,207,208]. The priority of tasks usually depends on the
state of the system. In a standard case, user load has the highest priority in order
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to achieve the desired quality of service. However, when a failure occurs, missing
parity data must be reconstructed with high priority (RAID rebuilding is an example
of such reconstruction) even though reconstruction tasks may decrease the speed of
processing user writes. The priority of such reconstruction may depend on the current
resiliency level. Also, in a system running out of space substantial resources must be
assigned to garbage collection. Even in a healthy system, maintenance tasks, such as
garbage collection and defragmentation, must not be starved regardless of their lower
priority.

User load and background tasks in modern storage systems are significantly
different from simple IO operations. In this chapter we consider HYDRAstor which
is a distributed storage system (see [89,218] for the detailed description of the
architecture of HYDRAstor). In HYDRAstor user writes use multiple resources
and are handled by multiple software components. This differs from the systems
based on storage arrays in which writes burden hard disks only. Indeed, writes
operations include CPU-intensive processes of ereasure-coding, duplicate elimination,
etc. Similarly, some background tasks in HYDRAstor perform heavy CPU-intensive
computations on data and meta-data.

The tasks in HYDRAstor are diversified in terms of their size. Background tasks
are long and heavy—a single task can take up to 15 seconds (which is about 10 times
longer than the duration of a user write in a fully loaded system, and about 100 times
longer than a user read), and its execution can significantly slow down other tasks
that are run in parallel. These tasks cannot be shortened easily for the following
reasons. Data in HYDRAstor is stored in the units called data containers [89]. The
size of a single data container must be large, because otherwise its size would be
dominated by the size of meta-data. Some background tasks process entire data
containers and cannot be split into smaller pieces (e.g., sorting); such tasks are in
essence large and time-consuming. Other tasks can process only some fragments of
the data containers, but splitting them, while theoretically possible, is undesired as it
would increase implementation complexity. User requests are smaller—the execution
of 2500 user writes in parallel takes about 1.5 second; and for duplicate writes and
for reads this time can be reduced even to 150 ms.

Finally, while a storage system has full control over the process of background
tasks creation, user load can be highly irregular; requests may be unavailable for a
moment and then appear in large number. In each state the system must ensure
that (i) user requests’ latency is kept below a predefined level, and (ii) many user
requests are handled concurrently. Indeed, the filesystem prefetching algorithms [292]
require bounded latency to ensure high throughput of read/write operations. On
the other hand, to ensure high throughput of the backend system, many requests
should be processed in parallel. Unfortunately, these two goals stay, somehow, in
contradiction—too high concurrency level may increase the latency of user requests
too much. Consequently, the concurrency level must be adjusted carefully in run time,
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user writes user reads background tasks
characteristic highly irregular pattern unbreakable, non-preemptive
parallelism 2500 2500 10
duration 1.5s 150ms up to 15s

size ≈ 64KB ≈ 64KB up to 100MB

Table 10.1: The characteristic of the tasks in HYDRAstor. The value in the row
“parallelism” is the number of requests that should be executed in parallel to obtain optimal
performance. The value in the row “duration” indicates the required (and optimal) latency
of the appropriate categories of tasks.

in response to changes in workloads and in external conditions. The characteristic of
the tasks in HYDRAstor is summarized in Table 10.1.

In this chapter we address the problem of scheduling heterogeneous tasks
(background tasks and user requests) in storage systems. The tasks are heterogeneous
in the following sense: (i) they use multiple different resources, (ii) they have
diversified size and (iii) their arrival patterns differ (and are highly irregular). To the
best of our knowledge, this problem has not been addressed before. Most literature
on proportional resource allocation addresses the cases when all tasks categories have
similar characteristic and when they use a single resource [51,124,125,157,158,300,
301]; we must stress that considering task heterogeneity significantly complicates the
problem and induces new challenges (c.f. Section 10.3).

The heterogeneity and variability of the loads are the main reasons why standard
queuing techniques [35,115,150] cannot be applied. In the queuing-based mechanisms
the tasks of different categories are first put into appropriate queues (thus there
are as many queues as different categories of tasks). Whenever the system is ready
to admit a task, the scheduler selects a queue from which the first waiting task
is sent to the system. The scheduler selects an appropriate queue according to a
predefined strategy. For instance, if we want to divide throughput between three
types of loads according to proportions 2:1:1, then the scheduler, in a loop, selects
two tasks of the first type, one task of the second type and one task of the third type.
Such queuing-based mechanisms are work-conserving, i.e., the system admits a task
whenever it has idle resources. These mechanisms would admit heavy background
tasks always when there are no user requests. These tasks would burden the system
significantly leaving no resources for incoming user requests. Keeping a system ready
for admitting highly volatile user load requires delaying background tasks leading to
underutilization of the system resources. However, we are willing to pay this price
to guarantee quality of service to the user. Our new mechanism, unlike fair queuing,
controls the speed of admitting various tasks and smoothly changes these speeds.
This way we avoid burdening the system with heavy background tasks whenever the
user load is temporarily unavailable.
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user load deletion maintenance
Critical reconstruction 20% 10% 70%

Critical garbage collection 30% 35% 35%
Normal reconstruction 50% 30% 20%

Garbage collection 50% 30% 20%
Regular tasks 70% 30% 0%

Table 10.2: Examples of profiles. The throughput shares depend on the state. For
example, critical garbage collection takes effect when free space in the system is low.

The fact that HYDRAstor is a distributed system additionally complicates the
problem of tasks scheduling. First, we present a mechanism for controlling local
load. Next, we show that with some constraints on the configuration parameters of
our control mechanism, the local instances of the mechanisms working independently
guarantee that the system works correctly as the whole.

In our approach, user requests and background tasks are scheduled to achieve
desired proportional division of observed throughputs (thus, we assume that we can
compute the throughput of each category of tasks—this is the amount of processed
data per second). Our motivation was that proportions of the throughputs reflect
the proportions of the observable progresses made by the loads which is of more
interest to users than low level details, such as resource consumption (cf. [238]).
Throughput-based scheduling is also preferable from the system’s point of view, as
precise resource allocation and accounting is problematic for complex systems, in
particular for distributed ones. Similar assumption was made before [125,158,191].

A throughput division policy is defined with the so-called throughput shares. These
shares determine the proportions in which the total system throughput should be
divided among existing loads. Defining the shares is easy for engineers but not for
administrators, thus our system provides a set of profiles, each of them defining
the policy for each state of the system. The profiles have intuitive names (such as
”resiliency”, ”performance”) and can be easily chosen by the administrators. The way
the shares were calculated in each profile is out of scope of this chapter, because it
strongly depends on the types of tasks and internal assumptions in HYDRAstor. The
example profiles are presented in Table 10.2.

This chapter has the following contributions: (i) We introduce a novel fuzzy
adaptive algorithm enforcing proportional division of the load throughputs while
maintaining high resource utilization. (ii) We present how the algorithm can be used
in a distributed environment. (iii) We implement the new mechanism in a commercial
high-performance distributed storage system—HYDRAstor [89,218]. The described
control mechanism has been used for several years by real-world customers. (iv)
We evaluate the new mechanism in a 60-server configuration which achieves 10GB/s
write performance and has raw capacity of 480TB (that is 10PB with 95% duplicate
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elimination ratio). This is the world’s largest configuration of this system1. This
configuration is used only for the internal evaluation, and the systems used by the
customers have significantly smaller numbers of nodes.

10.2 Related Work

The problem of scheduling tasks in storage systems is common and frequently
described. Most available literature addresses the problem of sharing resources among
tasks of the same type [124,125,157,158,300,301] or scheduling packets of a known
size [51]. This chapter addresses the issue of dividing resources among user load and
background tasks.

Scheduling methods for heterogeneous tasks are fairly more complicated, which
is, for example, pointed out by Popescu and Ghanbari [243]. Most of the approaches
to scheduling homogeneous tasks use the mechanism of queuing: YFQ [35], SFQ and
FSFQ [115,150], or their modifications [51,124,300,301,315]. Each load source puts
its tasks in a queue. The tasks are taken from the queue and sent to the system in
a way that achieves the desired division of the throughputs. The limitation of these
basic solutions is that they use a fixed level of concurrency (the scheduler ensures
that a fixed number of tasks is processed concurrently) and thus, in case of a server
performance drop or a change in a workload (e.g. heavier tasks), they are unable to
respect latency requirements.

Some solutions combine the application of the queuing theory with a feedback
loop controlling the latency [139,311]. Standard queuing is enriched with a feedback
controller that determines the number of concurrently processed tasks so that their
latency requirements are met.

The queuing approach in most regular cases was proven to give required
throughput division with almost negligible settling time. We address these solutions
(as the most important ones) in the context of HYDRAstor system. In Section 10.3
we show that solutions based on queuing do not give correct resource division in
case of systems that must accommodate strong irregularity of user requests; this fact
motivated us to introduce our new fuzzy adaptive mechanism.

New trends in the application of the control theory encourage to use model-based
solutions [83,133,162,314,315]. Feedback controllers are an established method to
control one parameter (the input signal) to obtain a certain value of the other
parameter (the output signal). Feedback controllers can be used for ensuring
proportional resource division as well. One controller may regulate the speed of work
of the load sources (input signal) in order to obtain the desired proportions of their
throughputs (output signal). Another controller may regulate the concurrency level
(the number of user tasks handled in parallel). Finding a proper model, however,
requires identifying how presence of each task influences the performance of the

1This information is from 2013.
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others. Having three kinds of user requests (writes, reads, duplicate writes2), several
maintenance tasks and a few data deletion phases3, the model would have many
dimensions. Moreover, feedback controllers using linear (or even dynamic) models
are less adequate for optimization problems, such as optimizing resource utilization.
Control theory gives us well studied methodologies for ensuring stability and the
best settling time but with the complicated architecture of our system and, in
consequence, with the difficulty of modeling it accurately, we decided to consider
different approaches to ensuring proportional resource division. However, the idea of
our solution is also based on controlling the parameters of the system that influence
the throughput of the different categories of the tasks (these parameters are called
limits), and we use standard controllers as the elements of our resource management
system.

Resource division of tasks of different nature can be also accomplished through
virtualization [152,191,232,238,308]. Each virtual machine hosts a single application
performing an appropriate class of tasks. Virtual machines allow only for accurate
division of CPU cycles among applications; our tasks, on the other hand, use multiple
resources, and, consequently, a certain proportion of the CPU cycles does not have
to induce the same proportion of the tasks throughputs. In addition, using virtual
machines results in architectural and implementational limitations (the tasks of a
particular category should be executed by a single software component since they
need to be run on a separate virtual machine).

Other existing solutions try to execute background tasks in idle periods [94,207,
208] but such methods are inadequate when servers constantly handle user requests
and when background tasks can effectively be executed in parallel to user activity.

10.3 Resource Allocation under Irregular Workload:

New Challenges

The problem of proportional throughput allocation is often addressed in the literature
[51,125,150,157,158,300]; however always in the context of the tasks with similar
characteristics. A great majority of the current approaches suggests using one of
the mechanisms based on fair queuing [51,124,125,150,157,158,301,311,315]. In the
queuing mechanism the requests of different categories are put into the appropriate
queues. In each step the scheduler selects one queue and starts processing the first
request from the selected queue. In consecutive steps the queues are selected in a
way to keep the desired throughput proportions (the specific mechanisms differ in the
policies of selecting the queue).

2HYDRAstor uses data duplicate elimination (see [33,205]); Writing duplicates may be an order
of magnitude faster than writing non-duplicates.

3Data deletion is a process of marking blocks of data for removal. In our system data deletion
can be called on demand and we treat it as a special kind of background task.
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Since the queuing mechanisms treat the underlying system as a black box it
seems natural to adopt this approach for the heterogeneous tasks. Apparently, the
heterogeneous tasks exhibit new challenges which make standard approaches behave
surprisingly wrong. In this section we present the nature of the new problems on the
example of a queuing mechanism. For our analysis we use a simplified model that
hardly captures the complexity of HYDRAstor. However, such a simplified model
precisely exposes the root of the problems of scheduling irregular tasks using fair
queuing. Although our model characteristics were influenced by the observations of
tasks in HYDRAstor, we believe that the presented problems might be relevant also
for the non-storage computer systems.

10.3.1 The Simplified Model

As we argued before, our system is too complex to obtain its accurate model. In
this section we present a very simplified, non-accurate model that hardly captures
the complexity of HYDRAstor. This model is not used to verify our solution, but
rather to expose the problems with application of the standard queuing mechanisms
to our setting. This simplified model allows one to understand the key difficulties
when dealing with the highly variable workload. In other words, proving that our
solution gives expected results in simulations based on this model is not sufficient;
on the other hand showing that queuing-based solutions do not work correctly even
for the simplified scenarios is sufficient to expect that such solutions would not work
correctly in the real complex system.

Our simplified model reflects the basic idea that the duration of a single task
mostly depends on the concurrency level (the number of tasks currently processed
by the system). This number of tasks processed at the same time moment is the
current load of the system. Figure 10.1 presents the dependency between the system
throughput and the level of concurrency (i.e., the load of the system) for user writes
in HYDRAstor. Although different categories of background tasks affect the overall
performance in a very different way, and, as indicated before, modeling the tasks’
interdependencies accurately is almost impossible, some of the tasks exhibit similar
behavior to user writes, but are heavier and longer. In our simulator we assumed
that there are user writes and background tasks of two types (type I and type II).
We took the following simplifying assumptions about the background tasks. In our
model handling a single background task of type I burdens the system in the same
way as handling 5 user writes. Also, processing a single background task of type I
takes on average 3 times longer than handling a single user write under the same load
of the system. Similarly, the load that a single background task of type II puts on
the system is, on average, 25 times larger than the load of a single user write. The
execution of a single background task of type II is, on the average, 10 times longer
than the execution of a single write in the same conditions.
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Figure 10.1: The relation between the number of requests in the system and the
system throughput used in our simulator. This is the dependency that we observed
for the user writes is HYDRAstor.

For example, handling 100 background tasks of type II puts the same load on the
system as handling 2500 user writes, or as handling 80 background tasks of type II, 50
background tasks of type I, and 250 user writes. In each of these cases the execution
of a certain task of a certain category will take the same time.

Based on these assumptions, we constructed a simple simulator that works as a
black box—it admits requests, calculates their duration, and, eventually, when the
duration elapses, marks them as completed. Each request does not carry any real
data—it is only a header indicating its size and category. A request is held in the
simulator for a time period which is sampled with the normal distribution (the time a
request is held in the system models the processing time of such request)—the mean of
this distribution depends on the load of the system, i.e., on the number and the types
of tasks that the simulator currently processes. As we can see from Figure 10.1,
increasing the concurrency level to some point increases system throughput, but
beyond this point submitting more requests does not result in further performance
improvement.

Additionally, the simulator contains three sources generating the requests. The
three load types correspond to the user writes and the two categories of background
tasks—small and large. The patterns of availability for the user requests are strongly
diversified. Thus, again for the sake of the clarity of the presentation, we turned to
a simplified model in which user requests come in regular batches, and within each
batch the release times of the requests are sampled with the Poisson distribution. In
our further presentation we will use the following notation: (x ms / y ms) means
that the writes are generated in a loop—x ms of writing and y ms of sleeping.4 The
characteristics of the tasks used in the simulator are summarized in Table 10.3.

4This scenario corresponds to copying files between two storage systems.
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writes background tasks I background tasks II
weight 1 5 25

avg. duration 1d 3d 10d
pattern batches continuous

batch pattern Poisson pattern —

Table 10.3: The characteristic of the tasks in simulator. In the table d denotes the average
duration of a single user write. Thus, d depends solely on the total weight of the tasks
currently processed by the system. This dependency is presented in Figure 10.1.

Even in such a simplified environment, the aforementioned problems become hard
to solve with the standard queuing techniques. We describe our arguments for this
hardness below.

10.3.2 Evaluation of Queuing-Based Approaches

In the simulator we implemented a queuing mechanism with controlled slots
[311]—the standard queuing mechanism is enriched with feedback controller which
regulates the number of slots (number of concurrently executed requests) in order
to keep user requests latency at the predefined level. We set this upper bound on
the latency of user writes in our simulator to 1500 milliseconds. Such latency can
be obtained for 2500 requests (e.g. 2500 user writes or 1000 user writes and 300
background tasks of the first category).

If there are no free slots then the waiting requests are not admitted to the system
and the corresponding load sources are paused. Once the slots are available the load
sources are resumed and continue producing requests with the same pattern. To
amortize the effects of irregularities in the workload, we introduced additional buffers
between load sources and the system simulator. Here, similarly, when the buffer is
full, the corresponding load source is paused. Large buffers require significant memory
consumption and, what is even more important, increase the average request’s latency
(this is often unacceptable in real systems). Therefore we tried several small sizes of
the buffer: 50, 100, 300 (a buffer of the size 1000 would increase the writes’ latency
by about 600ms which is too much). Using each of the aforementioned sizes gave
similar effect, so the results are presented only for the size 100.

If the user requests do not come in batches, but instead are produced continuously,
then the queuing mechanism is very accurate and stable. We tested two variants of
fair queuing. In the first one, every request occupies one slot, while in the second
background tasks occupy respectively 5 and 25 slots. Both variants gave similar
results so we present results from the experiments testing the second variant only.
Figure 10.2 shows the throughputs achieved by the sources for a policy that divides
the throughputs of the three load types in proportions 1:1:1.
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Figure 10.2: The throughputs of user writes and two categories of background tasks
on system simulator with queuing using controlled slots mechanism. All three load
sources are working at full speed. The fluctuations are the result of short period of
averaging.

The case of more irregular writes, which is relevant for real filesystems [116],
is more problematic. Let us consider four cases: (i) the user writes are produced
in a loop: 300ms of writing and 50ms of sleeping (300ms/50ms); (ii) in a loop
(300ms/150ms); (iii) in a loop (1s/300ms); and (iv) in a loop (500ms/500ms). As
the user is not writing continuously, the fair queuing mechanism cannot ensure that
the average throughput of user load is exactly equal to the average throughput of each
type of background tasks. To have equal proportions of the throughputs in long term
(as indicated by the throughput shares profile), we modified the queuing mechanism
to remember history, so that when user writes appear again, they are preferred till
they compensate the previous period of sleeping. Apparently, even with remembering
the history,5 the throughput of user writes may be over 4 times lower than expected,
as illustrated in Figure 10.3.

The problem illustrated in Figure 10.3, e.g. for the case (500ms/500ms), is caused
by background tasks which are carelessly let into the system. When there are no user
writes waiting in the buffer for execution, background tasks are let into the system
and spend significant amount of time there (in our case, up to 15 seconds). When user
writes are again available in the buffer, the system is still busy and is not able to admit
available user writes (within the latency restriction). Even though from now on the
mechanism with history will always prioritize user writes over the background tasks,
this is not enough to compensate the difference in the throughput. This is because,
due to the latency restrictions and limited buffers, the system can accept only limited

5The variant without remembering history gave similar results.
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Figure 10.3: The throughputs of user writes and two categories of background tasks
on system simulator with queuing using controlled slots mechanism. Four cases:
(i) 300ms of writing and 50ms of sleeping (300ms/50ms), (ii) 300ms/150ms, (iii)
1s/300ms, and (iv) 500ms/500ms, are presented sequentially on one plot. User writes
(thick solid line) are irregular. The expected throughput proportions are: 1:1:1.

number of write requests. The writes are still produced with the same pattern, so
in a short time the same situation happens again: when finished processing lots of
requests in the same time, the system takes all the writes from the buffer; now, as the
buffer is empty, the background tasks are carelessly admitted by the work conserving
scheduler. What is more, such scenario will happen independently of the predefined
throughput shares.

The only case where queuing mechanism works as desired is (i) (300ms/50ms).
This is because during the 50 milliseconds of sleeping some of write tasks are still in
the buffer. As system is not lacking user writes, the background tasks are not started
and the behavior is similar to the regular case6 (see Figure 10.2). In all other cases,
the queuing mechanism gives unsatisfactory results.

The results from the same scenarios but using our new fuzzy adaptive framework
are presented in Section 10.6.

10.4 Fuzzy Adaptive Control

The evaluation presented in the previous section shows that unless we use large
buffers, no work-conserving mechanism can ensure proper resource division in case of
volatile user workload (instead of expected 1:1:1 proportions in some cases we obtained

6Increasing the capacity of the buffer may improve accuracy of the queuing mechanism in some
of the cases but too large buffers are unacceptable.
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5:5:1). Thus, we modified the queuing mechanism by introducing the possibility of
controlling the speeds of producing/admitting tasks. Considering the aforementioned
problems we wanted the new mechanism to have the following properties:

1. Smooth adaptiveness. When in a given time moment there are no user writes,
the system does not admit background tasks eagerly (such a mechanism is no
longer work-conserving), but, instead, smoothly and slowly starts increasing the
speed of admitting background tasks.

2. High utilization. The requirement of the smooth adaptiveness may result in
underutilization of the system. We would like to reduce this effect as much as
possible, and utilize resources effectively. For instance, we would like to admit
short and light tasks more eagerly than long and heavy background tasks.

The adaptive control mechanism, however, requires introducing a new algorithm of
controlling the throughputs. In our mechanism, each load in the system is controlled
by its limit, a variable. The limit of each load is adjusted by a controller which takes
into account availability of resources and system utilization.

We cannot use a standard multiple-output controller because of many conditions
that govern its decisions. Basically, standard feedback controllers increase the limit
for the loads which are under their throughput share and decrease for the ones which
are above their share (see the work of Hellerstein et al. [133] for standard techniques of
designing feedback controllers). Such controlling algorithms would not work correctly
for the following reasons.

1. If some load does not achieve its throughput fraction, then increasing its limit
does not always make sense. Such load may be starved by other types of loads
and increasing its limit would not increase its throughput, as already there are
no free resources in the system. For instance, if we set the limit for a load to
50MB/s and the system is able to process tasks with the throughput at most
equal to 30MB/s, then increasing the limit from 50MB/s to 60MB/s will not
affect the throughput of that load. In such a case, we say that the load does
not meet its limit. In such cases we would rather want to decrease the limit for
other types of load, instead.

2. On the other hand, if some load does not achieve its throughput fraction,
decreasing the limits for other types of load is not always optimal. Naturally,
sometimes it is sufficient to increase the limit for the load that is under its
required throughput fraction.

In addition to the above arguments, designing a feedback controller to work
correctly in a distributed environment seems hard. Thus, we decided to design the
fuzzy adaptive resource allocation mechanism. This mechanism takes as an input
descriptive information about loads. For example, the loads indicate whether they
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are able to speed up when given more resources, or whether they meet their limits.
Due to this descriptive information, we are able to distinguish the situations where
some type of load is working too slowly because it is given too low a limit (in such a
case, such load would meet its limit) or because it is starved by the other loads whose
limit is set too high (i.e., if our underperforming load can speed up when given more
resources, and if, additionally, it does not meet its limit).

10.4.1 Architecture

The high-level structure of the fuzzy adaptive resource division mechanism is
presented in Figure 10.4. Every load source has its own admission control mechanism
(AC) that controls the speed of its work based on the value of an exposed limit
variable. The algorithm periodically7 collects information about the loads (in the
diagram denoted by info), and adjusts the current values of their limits (setLimit) in
order to achieve proportions of the throughputs as in the policy. The admission
control sends to the system only as many tasks as the value of its limit allows
for. The limit might denote the upper bound for the throughput (for background
tasks and for deletion tasks) or the upper bound on the slots, i.e., the number of
concurrently executed tasks (for user writes). We discuss the idea behind the choice
of the implementations of the limits in Section 10.4.2, below.

The tasks might be not sent to the system either because the value of the limit
does not allow for it, or because of some additional constraints. These constraints
are described in detail in Section 10.4.3. In the diagram we show an example of such
a constraint for user writes—the value of the slots is affected by Latency Controller,
that tries to keep requests’ latencies at the appropriate level.

The idea of the adaptive high-level controller comes from the area of fuzzy
control. In each cycle, every AC prepares info which consists of performance metrics
and descriptive information on the state of each load (the fields sent as info are
described in Section 10.4.4). The process of extracting such descriptive information
is called fuzzyfication [133]. The algorithm collects infos from all the ACs, filters the
performance metrics (e.g. , by averaging), makes decisions, and forwards them to
the proper controllers. The decision is also in a descriptive form and has one of the
following values: increase, decrease, or no-change. The controllers are responsible for
defuzzyfication; they calculate new values of the limits and pass them to the ACs.
These controllers are described in Section 10.4.7.

In every cycle, the limits are corrected to make the actual division of the
throughputs closer to the desired one (as indicated by the policy). There is a trade-off
between the speed of the convergence of the throughput division to the division from
the policy and the stability of the system.

7The interval is chosen to satisfy the constraints presented in Section 10.5 – for HYDRAstor it
is 500 ms.
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Figure 10.4: The high-level mechanism of adaptive resource management.

10.4.2 Implementation of the Limit Variables

We believe that in many systems there might be a couple of reasonable choices for
the limit variables. In HYDRAstor we introduced two different implementations. In
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the case of background tasks, the limit is the upper bound on the throughput. For
user load, the limit is the upper bound on the number of concurrently executed tasks
(slots). This is motivated by the necessity for efficient utilization of system resources.
For example, consider the case where the algorithm increases the limit for the user
load but the system has not converged to the steady state yet (or the case where there
is temporarily no background tasks). If we used the bound for the throughput, the
system would be underutilized until the algorithm increased the limit to a sufficiently
high value. In case of using the bound on the slots, even if the limit is too low
(because the algorithm has not achieved a steady state yet) the requests will have
lower latency, which results in higher throughput. This is illustrated in the example
below.

Example 10.1. Let us assume that the maximum performance of the system is
50MB/s, which is achievable with 2500 concurrently processed user writes. Further,
let us assume that the user wants to write to the system with its full speed. If we
set the bound on the throughput to 25MB/s, we will obtain exactly such throughput
(even if the system is underutilized). On the other hand, limiting the slots to 1250
would result in having the throughput equal to 25MB/s if the system is loaded or to
40MB/s if the system is underutilized. This is because in the underutilized system
the requests are processed faster.

10.4.3 Additional Constraints

Since the user requires a bounded latency, there is a separate controller which
regulates the number of slots in order to achieve the desired referral latency Lref
(cf. [51,125,156–158,191]). We recall that in HYDRAstor this referral latency Lref is
equal to 1.5s. If the user requests exceed the expected latency, the latency controller
decreases the number of slots even if the AC limit allows for a higher number.

In case of background tasks, there is an additional constraint for the number
of concurrently processed tasks. This constraint is used to eliminate thrashing and
to decrease memory consumption and is chosen in a way that does not affect the
performance.

Given aforementioned constraints we see that if the system is lacking resources,
the load source may not be able to achieve the given AC limit (we say that the AC
did not achieve its limit). Such situation may happen if the system is loaded and
the required latency enforces the number of slots which is lower than given by the
limit, or when the background tasks are not able to achieve the desired throughput.
In spite of lacking resources, a load may not achieve its limit also when it has not
enough work to do (in such a case this load simply does not need resources).

Introducing the aforementioned constraints seems justified and reasonable even as
an independent mechanism, however we would like to stress that the constraints are
also required by our algorithm in order to determine the values of the appropriate
variables (see the implementation of needsResources described in Section 10.4.5).
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1 : recountDesiredShares
2 targetShares = {};
3 spareShare = 0;
4 total = 0;
5 foreach loadInfo in infos do
6 if loadInfo.needsResources = false and

7 loadInfo.currentShare < loadInfo.policyShare then
8 targetShares[loadInfo.load ] ← loadInfo.currentShare ;
9 spareShare ← spareShare + (loadInfo.policyShare

10 - loadInfo.currentShare);
11 else
12 targetShares[loadInfo.load ] ← loadInfo.policyShare;
13 total ← total + loadInfo.policyShare;
14 while spareShare > 0 do
15 newTotal ← total;
16 foreach loadInfo in infos do
17 if loadInfo.needsResources = true or

18 targetShares[loadInfo.load] < loadInfo.currentShare then
19 newTS ← targetShares[loadInfo.load ]
20 + loadInfo.policyShare

total
spareShare;

21 if loadInfo.needsResources = false and

22 newTS ≥ loadInfo.currentShare then
23 newTS ← loadInfo.currentShare ;
24 newTotal ← newTotal - loadInfo.policyShare;
25 spareShare ← spareShare
26 - (newTS - targetShares[loadInfo.load ]);
27 targetShares[loadInfo.load ] ← newTS ;
28 total ← newTotal;
29 return targetShares

Figure 10.5: The function recountDesiredShares that is used by the fuzzy-adaptive
algorithm to adjust the policy shares of the loads.

10.4.4 Admission Control (AC) Information

The information (called info) sent from each AC to the algorithm consists of the
following values:

NeedsResources. NeedsResources indicates if the tasks can work faster given more
resources (see Section 10.4.5 below).
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Input: policyShares – map of desired shares per load type,
infos – information collected from ACs. Info is the vector of loadInfos.
LoadInfo is a structure containing fields like: throughput,
needsResources, and limitAchieved—see Section 10.4.4

Output: decisions – a map of decision per load type. Decision can be
INCREASE, DECREASE or NO_CHANGE

1 decisions← NO_CHANGE;
2 someLoadWasIncreased← false;
3 someLoadNeedsResources← false;

4 foreach loadInfo in infos do

5 currentShares[loadInfo.load]← loadInfo.throughput

totalThroughput
;

6 foreach loadInfo in infos do
7 if loadInfo.needsResources = true then
8 someLoadNeedsResources← true
9 targetShares← recountDesiredShares( policyShares, currentShares, infos);

// Try to increase limits

10 foreach loadInfo in infos do
11 if (loadInfo.needsResources = true) and (loadInfo.limitAchieved = true)

and (currentShares[loadInfo.load] ≤ targetShares[loadInfo.load]) then
12 decisions[loadInfo.load]← INCREASE;
13 someLoadWasIncreased← true

// Try to decrease limits - only if no limit was increased

14 if (not someloadWasIncreased) and someLoadNeedsResources then
15 foreach loadInfo in infos do
16 if (currentShares[loadInfo.load] ≥ targetShares[loadInfo.load]) then
17 decisions[loadInfo.load]← DECREASE;

// Pass decisions to the controllers

18 foreach load in infos do
19 controller[load].passDecision();

Figure 10.6: The fuzzy-adaptive algorithm that takes descriptive information
for each load (load infos) and for each load finds a decision, which is one of
three values: increase, decrease, or no-change. The algorithm uses the function
recountDesiredShares that is presented in Figure 10.5.

Throughput. Throughput is the average throughput generated since the previous
info was collected.

LimitAchieved. LimitAchieved indicates whether the load type has achieved its
limit since the last measurement.
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10.4.5 Resources’ needs

Defining whether or not a load can work faster given more resources depends on
the load properties. Background tasks are accumulated in a buffer and sent to the
system when the AC throughput limit allows for it, and when there are no additional
constraints for pending load (see Section 10.4.3). In such model, needsResources is
true unless the buffer is empty.

In case of user load, which can be irregular (see Section 10.3.2), the size of
a buffer fluctuates heavily, so indicating whether the source needs resources by
examining its buffer fill level is inappropriate. Therefore, for user load we chose a
different metric—needsResources tells if average user requests latency is higher than
the threshold Tnr. The threshold is set to the 70% of the referral latency Lref . Tnr is
lower than Lref to reduce the effect of latency fluctuations (also see Section 10.5.2).8

10.4.6 The Fuzzy-Adaptive Algorithm

Using the information collected from the ACs, the algorithm deducts whether the
limit for each load source should be increased, decreased, or left unchanged. Based
on this decision, the controllers calculate the new value for each limit.

The skeleton of the algorithm is presented in Figure 10.6. As input, it takes
information collected from the ACs and the policy, which gives the share for each
load.

The core algorithm from Figure 10.6 first, in lines 4–9, calculates the current and
the target shares of the loads.

Current shares. The current share of a load is the proportion of its current
throughput of the load to the total throughput of all loads.

Policy shares. The policy share of a load is a fraction of the total throughput of all
loads that, according to the profile, should be allocated to the load (we recall
that an example of a profile with policy shares is given in Table 10.2).

Target shares. The target share of a load is its recalculated policy share.
This recalculation is performed by the function recountDesiredShares from
Figure 10.5 and takes into account such aspects as the fact whether loads need
resources or whether their spare resources can be allocated to other loads. The

8As explained in Section 10.4.6, if user load has not enough work to do, the background tasks
will be let in, to utilize the resources. The limit of background tasks will be increased until user
load starts reporting needsResources as true (so, until the user load latency reaches Tnr). Because
Tnr is lower than Lref , we can underutilize the system. The dependency between throughput and
latency is not linear (see Figure 10.1)—we will lose about 15% of the system performance. This
is acceptable as handling heavy fluctuations and supporting bounds on the user load latency are
primary requirements. Also, we note that with the user load working full speed its latency is kept
at the referral level, which means the system is fully utilized.
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fuzzy adaptive algorithm effectively uses the calculated target shares and tries
to keep the throughput proportions according to these target shares.

In line 9, the algorithm distributes the shares of loads that do not need resources
among the loads that do. Loads that do not need resources are left only with the
shares they utilize (their current shares), and the remaining part of their share is
distributed among loads that need resources. The formal procedure of calculating
these target shares is given in Figure 10.5. We note that if all loads have work to do
and are waiting for resources, then the target share of each load will be equal to the
share indicated by the policy. In the further part the algorithm will make changes
to the limits to get closer to thus computed target shares. We say that a load type l
is eligible to get more resources if currentShares [l] ≤ targetShares [l]. At least one of
the load types needing resources is eligible to get more resources, which is formally
expressed by the following invariant.

Lemma 10.2. If there are load types for which needsResources = true, then at least
one of them has currentShare ≤ targetShare.

Proof. We first show that all types of load which do not need resources
(needsResources = false) have targetShare ≤ currentShare. Let us analyze the
procedure of computing target shares from Figure 10.5. In this procedure, if for
some load needsResources = false and currentShare < policyShare, we set its target
share to its current share (line 9 in Figure 10.5), and so targetShare ≤ currentShare.
If needsResources = false and currentShare ≥ policyShare, we set target share to
the policy share (line 12 in Figure 10.5), and, again, we have that targetShare ≤
currentShare. This target share can be increased, but it never exceeds the current
share (lines 22–23 in Figure 10.5).

This implicates that:
∑

loadType l:
needsResorces=false

targetShare[l] ≤
∑

loadType l:
needsResources=false

currentShare[l]

Additionally, the sum of all target shares is equal to the sum of all current shares
(which is 100%), so:

∑

loadType l:
needsResources=true

targetShare[l] ≥
∑

loadType l:
needsResources=true

currentShare[l]

Now it is clear that currentShare ≤ targetShare for at least one load type with
needsResources = true.

If the load needs resources and if its throughput is lower than the expected one,
the algorithm tries to increase the speed of this load, either by increasing the limit for
this type of load (if the load source achieves the given limit; lines 10–13 in Figure 10.6)
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or by decreasing the limit for the others (if the limit is not achieved; lines 14–17 in
Figure 10.6). In the latter case, there is no point in increasing the limit more as it
already does not affect the speed of the load. In such a case, the limit for the other
loads is decreased so that they leave some resources for the loads below their share.

If the load l has work to do and its limit allows for faster speed, but it cannot
proceed faster, it must be lacking resources. We formalize this intuition in the
definition below.

Definition 10.1. We call the state when some load l has needsResources ‘true’ and
limitAchieved ‘false’ as a system saturation.

In order to increase the speed of work of such load l, the limit for other loads
should be decreased. On the other hand, if the system is not saturated (each load
either does not need resources or achieves the given limit), the algorithm will increase
the limit for some load, which is specified by the following theorem.

The theorem below proves that our resource management mechanism makes action
that lead to high resource utilization.

Theorem 10.3. If there is work in the system (at least one load type needs resources),
then either the system is already saturated or the limit for some load type will be
increased.

Proof. Let us assume there is some work in the system and consider load types needing
resources. Either one of them has limitAchieved = false, which means the system is
already saturated, or every load has limitAchieved = true. In the second case, we can
use Lemma 10.2 and infer that there is at least one load type, l, which satisfies all of
the following:

needsResources[l] = true,

limitAchieved[l] = true, and

currentShares[l] ≤ targetShares[l],

so the limit for l will be increased by the algorithm.

Finally, the decisions of the core algorithm are passed to the appropriate
controllers (lines 18–19 in Figure 10.6).

10.4.7 Defuzzyfication of the Limit

The algorithm described in Section 10.4.6 makes, for each load, a linguistic decision:
increase/decrease/no-change. The decision is then converted to the specific value of
limit (defuzzyfication).

For each load, to find the proper value of the limit we use two independent
proportional integral controllers (PI controllers) [133]: the share-based controller Cs,
and the latency-based controller Cl. A PI controller takes an error signal and controls
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the value of the input signal to minimize the error. The share-based controller Cs
uses the difference between the current and the desired shares as control error (errs);
the latency-based controller Cl uses the difference between Tnr (the threshold for
needsResources; see Section 10.4.5) and the current latency as control error (errl).
Both controllers use the limit as the input signal. We take the maximum from
two limits returned by the two controllers. The first controller has an intuitive
interpretation—it tries to reduce the difference between the current and the desired
share. To understand the need for the second controller consider the following cases.

1. If the decision of the algorithm is “increase”, and the value returned by the
second controller is greater than the one returned by the first controller, we
infer that the user load has low latency. The limits of all the loads are increased
more aggressively in order to quickly saturate the system.

2. If the decision of the algorithm is “decrease”, we want to slow down the user
load to the speed for which it would not influence the throughput of other loads.
If the user load is processed with latency Tnr, the system is still able to admit
and process other tasks efficiently.

If there is no user load, we use the difference between the upper limit for the
pending background tasks and the number of pending tasks, errp (see Section 10.4.2)
instead of errl; errp also measures whether the system is loaded or not.

10.5 Resource Allocation for Multiple Servers

In distributed systems, the tasks might be delegated to multiple servers [89,300].
We are considering a sequence of tasks where the i-th task should be executed at
the specific server si. The tasks are sent to the servers sequentially. This model
captures the characteristics of user writes in HYDRAstor. Indeed, HYDRAstor is
a content-addressable storage system—the server that handles a user write is fully
determined by the content of the written data block. Consequently, each request
needs to be sent to a certain server. In such a model, slow execution of tasks on one
node may influence their speed of execution on the other servers. Although the server
si+1 may have free resources, it may not be given task for execution because si had
not admitted the previous task yet. As the result, the speed of execution of the tasks
is bounded by the speed of their execution at the slowest server.

The fuzzy adaptive algorithm can be used in such distributed environment with a
separate instance of the control mechanism working on each server independently.
Such distributed version of our mechanism utilizes resources effectively. Let us
consider the group of servers handling a sequential stream of user writes. Let us
consider that the server A is a bottleneck. Since the stream is processed sequentially,
the speed of processing user writes from such a stream is equal to the speed of
processing tasks on A. Naturally, other, faster than A, servers might be significantly
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underutilized. In such a case, our mechanism allocates spare resources on such faster
servers to the background tasks. The algorithm can detect unused resources and
allocate them to the background tasks because infos describe only the local load. For
instance, the load coming from the stream that is processed with the speed of a slow
remote server A, reports at the faster server that needsResources is equal to false,
indicating that there is space for different loads at such faster server.

Recapturing unused resources in a distributed environment requires, however,
extra care. The background tasks should be let into the system in such a way
that they do not influence the speed of the user load. Ensuring such a guarantee
is not straightforward as overshoots and fluctuations in load characteristic are both
possible. In the following sections we present the consequences of careless recapturing
of the unused resources. Additionally, we introduce the constraints on the algorithm
wake-up time wa that guarantee that the local load, which is let in to recapture
unused resources, does not affect the performance of the user load.

10.5.1 Recapturing Unused Resources

In a distributed environment the decrease of the limit for a user load at any server,
s, makes the user load slow down at each server. After such a decrease the unused
resources may appear on some other server so. This server is not a bottleneck for
the user load so it infers that it may safely increase the limit for local background
tasks; because overshoots and fluctuations are possible, the increase of the limit for
the background tasks may make this server become a new bottleneck for a user load,
further decreasing global speed of user requests. It may happen that in consecutive
steps the servers will alternately increase the throughput of the local tasks, eventually
causing the starvation of the user load. The local tasks are not throttled because in
each time step one of the servers sees that the user load does not need local resources
(because it is not a bottleneck for a user load at the moment), causing even more
decrease of its throughput in the next step.

To prevent this problem, we introduce an additional constraint on the algorithm
wake up interval wa. Intuitively, this constraint indicates that we should run iterations
of our algorithm frequently enough to prevent system from desynchronization. With
the given constraints, after increasing the limit for background tasks, server so from
the example above will not become a bottleneck for any other load (here, for user load)
at least until the next wakeup of the algorithm. Intuitively, if such a server increases
the speed of background tasks, then we can guarantee that until the next wakeup
time this server will yet have abilities to accommodate some additional incoming
load. This is possible only because the wakeup interval is short and only because the
servers are not fully utilized. This intuition is described in the following example.

Example 10.4. Consider a server so for which the user load in time t0 reports
needsResources equal to false. Such a server in time t1 = t0 + wa will increase the
speed of the background tasks to take advantage of the spare resources. Naturally,

278



these background tasks may affect the speed of processing of the user writes. Thus,
in the worst case, since time t1 the user load might start reporting needsResources
equal to true. However, with the short value of the wakeup interval wa, we can
guarantee that this latency of the user requests will not exceed the referral latency
until t2 = t1 +wa. Consequently, the requests will not be rejected and the number of
slots will not be throttled down. Because the user load indicates it needs resources,
the limit for background tasks, which was previously increased, will be throttled down
in time t2 back to its previous value, causing no degradation of the user load speed.

10.5.2 Constraints on Wake Up Interval

Consider the implementation of needsResources that we use for user load (see
Section 10.4.5). We recall that for user load needsResources is true whenever the
requests latency is higher than Tnr (We recall that Tnr is a constant that is lower
than referral latency Lref . In our implementation Tnr = 0.7Lref .). We define the
latency of a yet unfinished task as the duration from its admission time until the
current moment. We recall that Latency Controller decreases the number of slots
(number of concurrently executed requests) only if the average latency exceeds the
refferal latency Lref . Now, assume that wa is lower than (Lref −Tnr). As we recalled,
if needsResources is false then the latency of requests is lower than Tnr. Consequently,
after wa (even if no requests are completed until this time), the latency of requests
is lower thanTnr + wa < Lref . As a result, Latency Controller does not decrease the
number of slots and no requests are rejected until that time.

In the buffer-based implementation, needsResources indicates whether there is a
request waiting in a buffer. In this case, the server is able to admit requests unless
the buffer is full. Let wa be the algorithm wake up interval, sizeb be the size of the
buffer, and Tmax be the maximum throughput of the source. Assume wa <

sizeb
Tmax

.
With such assumptions, if needsResources was false then, after wa, the buffer will not
be full, which results in no slow down in admitting the requests.

In both cases the constraints on wa force the desired property: if the tasks of a
distributed load (here, user load) do not need resources, and so the local tasks are
let in, the speed of the admission of the distributed tasks will not be affected until
the next wakeup of the algorithm. If too much background tasks were admitted, the
mechanism in the next wake-up time decreases their speed to the previous value.

With such constraints, even with no coordination between the servers the control
mechanism will enforce correct proportions of the throughputs on at least one loaded
server. If the servers are homogeneous (as in the case of HYDRAstor), the control
mechanism will enforce correct proportions of the throughputs on all servers.
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Figure 10.7: The throughputs of user writes and two categories of background tasks
on system simulator using fuzzy adaptive control mechanism. User writes (thick solid
line) are irregular (500ms/500ms).

10.6 Experimental Evaluation

In the first part of this section we present the results from the experiments using
the simulator described in Section 10.3.2. The new fuzzy adaptive algorithm was
also implemented in a commercial system, HYDRAstor, and the second part of this
section describes experiments conducted on this system.

10.6.1 Artificial Workload

Figure 10.7 presents fuzzy adaptive framework used for irregular writes with the
simulator (compare with Figure 10.3). Since the results for each of the 4 scenarios
(300ms/50ms; 300ms/150ms; 1s/300ms; 500ms/500ms) were the same, we present the
results for 500ms/500ms only. They indicate that fuzzy adaptive controller induces
smooth changes and, as a result, forces correct throughput division. After 170 seconds
(the time needed for convergence), the average throughput proportions were differing
from the expected ones by no more than 3 % (this is when throughputs are averaged
over 300s). Figure 10.7 presents the throughputs averaged over 30s, and so including
the fluctuations which are the results of (i) the fluctuations in the load pattern (ii)
the large size of the background tasks.

10.6.2 HYDRAstor

In HYDRAstor, which is a high-performance distributed storage system [89], apart
from user requests (writes, duplicate writes, and reads) there are two main classes
of background tasks: data deletion (marking blocks for removal) and maintenance
tasks (reconstructions, defragmentation, garbage collection, etc.). A single server can
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execute concurrently all three classes of tasks, which use the same resources but are
handled by different software components.

The shares for the task categories in the experiments were changing dynamically,
depending on the state of the system. For example, after failures that significantly
reduce resiliency level of some data, there was a critical reconstruction policy in effect,
which gave significant share to background tasks. Example polices as results of the
states of the system are defined in Table 10.2. The resource management algorithm
always uses the policy that corresponds to the current state.

Experimental Setup

For the experiments, we have used HYDRAstor in two configurations: (1) a 60-server
configuration and (2) a 6-server configuration. We used the two sizes of the system
to verify the influence of irregularity in the background load on the stability of the
fuzzy adaptive mechanism. The tasks in a 60-server system (especially data deletion)
are more irregular (compare Figures 10.10 and 10.11).

Each storage server had two quad-core 64-bit 3.0 GHz Intel Xeon processors,
twelve 7200 RPM Hitachi HUA72101AC3A SATA disks and 24GB of memory. Each
server held two logical storage servers, with 6 disks each (for details about HYDRAstor
architecture, see [89,218]). The servers were connected with 10Gb network.

High Resource Utilization

The first experiment shows that if writes do not consume all the resources in the
system, then maintenance tasks are let in so that all the resources are highly utilized.
It also shows that the system is kept loaded independently of which resource is a
bottleneck.

In this experiment the characteristic of writes changed three times. For the first
30 minutes, external backup application worked at full speed, generating 60 MB/s
per logical node (this is throughput after compression). Then, in the 30th minute,
the configuration was changed so that the backup application generated constant
throughput of 40 MB/s. In the 60th minute, the write speed was changed to 10 MB/s.
Finally, in the 90th minute, we set the write speed to 45 MB/s but included duplicated
data. In parallel to handling user writes, the system was doing defragmentation.

The test uses the “Regular tasks” policy from Table 10.2 and there is no data
deletion, which means the whole 100% of the throughput should be given to user
writes. Background tasks should be allowed to proceed only if there are unused
resources in the system.

The results of this experiment are presented in Figure 10.8. The plot shows
the throughput of user writes (which in the last period is divided into total write
throughput and non-duplicated data throughput) and the throughput of maintenance
tasks from one storage server. Figure 10.9 shows the utilization of the processor and
hard disks, allowing to identify the bottleneck resource in each phase of writing.
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Figure 10.8: The throughputs of maintenance tasks and user writes. Duplicates were
present only in the last phase. The experiments were run on a 6-server configuration.
In minutes 0-30 the backup application is working at full speed. In minutes 30-60 we
changed the configuration of the backup application so that it writes with the speed
40MB/s. In minutes 60-90 we configured the backup application to write with the
speed 10MB/s. In minutes 90-120 the backup application is writing with the speed
45MB/s, but writes mostly duplicated data.
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Figure 10.9: Utilization of the processor and hard disks for the experiment from
Figure 10.8.

In the first period, when the application worked at full speed the processor was a
bottleneck. Recall that user writes are not simple IO operations because HYDRAstor
uses data compression, erasure coding, and data deduplication (see Section 10.1).
Here the average latency was roughly equal Lref so the system was kept loaded; any
further increase of the speed of any load would result in violating the latency contract.
In the second period, the unused resources were allocated to maintenance tasks.
The maintenance tasks, according to our expectations, did not affect the throughput
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Figure 10.10: The throughputs of maintenance tasks, user writes, and data
deletion—6-server configuration.

of the writes. In this phase both the processors and the hard disks were highly
utilized. In the third period, when the backup application worked even more slowly,
the maintenance tasks were allowed to achieve higher throughput. In this phase
there were fewer write tasks executed concurrently so it was easier to maintain their
latency bounded. As a result, we managed to obtain almost 100% utilization of hard
disks. In the fourth period, writes, in spite of their high throughput, introduced small
burden on the system (almost all writes were duplicates), so the maintenance tasks
achieved high speed. Writing duplicates to the system does not burden hard disks
much. On the other hand, the hard disks are usually the bottleneck for background
task. Therefore the background tasks little affected duplicates latency which explains
why, here, we obtained almost 100% disks utilization.

Policy Changes

The next two experiments analyze effects of policy changes. They were run with,
respectively, 6-server and 60-server configuration. In both experiments the backup
application writing to the system was configured to work at full speed for the whole
duration of the experiment. In the first experiment, for the first 30 minutes, the
system executed defragmentation tasks so it used the “Regular tasks” policy from
Table 10.2. Next, in the 30th minute, we simulated a failure of one storage server so
the system changed the policy to “Normal reconstruction” and started reconstructing
data. After 30 minutes (60th minute), we started data deletion, which did not change
the policy, but created tasks of a new load.

Figure 10.10 presents the throughput of user writes, maintenance tasks
and data deletion on one of the storage servers. The expected throughput
proportions (writes–maintenance–deletion) should be 100%–0%–0% in minutes 0-30,
71.5%–28.5%–0% in minutes 30-60, and 50%–20%–30% after the 60th minute. The
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Figure 10.11: The throughputs of maintenance tasks, user writes, and data
deletion—60-server configuration.

obtained proportions differ from the expected by less than 2% – this error comes from
the load fluctuations.

Figure 10.11 presents the throughput achieved by user writes, maintenance tasks,
and data deletion in case of the 60-server configuration. Such system generates more
irregular data deletion load in comparison with the 6-server configuration. Here the
expected throughput shares (writes–maintenance tasks–deletion) were 30%-10%-60%.
In this experiment data deletion, which is an irregular load, is given a large
allocation of the throughput because we want to verify the system behavior in case
of irregularities in multiple workloads. The user load (at the plot is averaged) is also
highly irregular. Additionally 4 servers were killed in order to obtain the 0 resiliency
level. As we can see in Figure 10.11, the deletion tasks are highly irregular and their
throughput fluctuates heavily. Nevertheless, the average throughput of these deletion
tasks is consistent with the required throughput shares. Even if the loads fluctuate,
our mechanism is able to stably keep the correct throughput proportions.

The settling time of the mechanism is around 3-4 minutes. This is the consequence
of the duration of the longest unbreakable task, and in case of the system with shorter
tasks it can be strongly reduced. For example, in systems where the duration of
the tasks is of the order of 100ms, by executing the algorithm more frequently, and
adjusting the defuzzyfication controllers (the standard techniques of choosing the
controllers parameters are described in [133]), we could obtain the convergence time
of the order of 10-15s. There is a trade-off between the speed of convergence of
the throughput division and the system stability (see [133]); a too aggressive control
would expose the same problem that fair queuing suffers from (see Section 10.3.2).
Also, the 3-minutes settling time is not a problem for the storage systems because the
target shares change rarely (once in several hours). In comparison with the duration
of the maintenance tasks, the convergence time is negligible.
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10.7 Conclusions and Future Work

We presented a novel mechanism for dividing resources among tasks of different
load types. The new approach is based on an abstraction of the tasks and
avoids assumptions about their characteristics. Therefore, it is suitable for
distributed systems, where standard methods of defining models fail due to complex
system architecture. The mechanism was implemented in the commercial system
HYDRAstor, with the focus on achieving high performance of the controlled system.
We theoretically and experimentally proved that the throughput proportions in the
controlled system converge to the desired ones and confirmed that in a steady state the
algorithm keeps the system saturated, which means high utilization of the resources.
According to the experiments, the controlled system is stable (there are neither serious
fluctuations of throughputs nor overshoots). Also, the reaction time is suitable for
the storage systems’ workloads. The evaluation was done on a 60-server system with
the write performance of 10GB/s.

We showed how existing modifications of fair queuing can be adapted for resource
division between user load and background tasks. We compared our new fuzzy
adaptive mechanism with fair queuing algorithms. The evaluation was done on an
artificial model which was a simplification of the HYDRAstor environment. The
conclusion from the comparison was that although fair queuing mechanisms have
better reaction time to changing target shares, they may behave unstably in case of
irregular user load. Fuzzy adaptive control has, on the other hand, longer settling
time, but it is more robust to irregularities in the load pattern. In the HYDRAstor,
policies are changing quite rarely so settling time of fuzzy adaptive mechanism is
acceptable. We concluded that the fuzzy adaptive mechanism is more suitable for
our system.

Future work will concern changing the defuzzyfication controller during runtime.
It would be changed depending on the kind of background tasks, in order to reduce
the convergence time in case of shorter tasks. Our research will also focus on using
automatic mechanism for choosing throughput shares at runtime.
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Chapter 11

Optimizing Replica Placement for
P2P Backup on Heterogeneous,
Unreliable Machines

P2P architecture is a viable option for enterprise backup. In contrast to
dedicated backup servers, nowadays a standard solution, making backups directly on
organization’s workstations should be cheaper (as existing hardware is used), more
efficient (as there is no single bottleneck server), and more reliable (as the machines
could be geographically dispersed).

We present an architecture of a P2P backup system that uses pairwise replication
contracts between a data owner and a replicator. In contrast to a standard P2P
storage systems using directly a distributed hash table (DHT) [74], the contracts
allow our system to optimize replicas’ placement depending on a specific optimization
strategy, and to take advantage of the heterogeneity of the machines and the network.
Such optimization is particularly appealing in the context of backup: replicas can
be geographically dispersed, the load sent over the network can be minimized, or
the optimization goal can be set to minimize the backup/restore time. However,
managing the contracts, keeping them consistent, and adjusting them in response to
dynamically changing environment is challenging.

We built a scientific prototype and ran experiments on 150 workstations in our
university’s computer laboratories and, separately, on 50 PlanetLab nodes. We found
out that the main factor affecting the performance of the system is the availability of
the machines. Yet, our main conclusion is that it is possible to build an efficient and
reliable backup system on highly unavailable machines (our computers had just 13%
average availability).
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11.1 Introduction

Large corporations, medium and small enterprises, universities, research centers, and
common computer users are all interested in protecting their data against hardware
failures. The most common approach to protecting data is to keep the backup copies
on tape drives, specially designated storage systems, or to buy cloud storage space.
All such solutions are highly reliable, but also expensive. In 2013 the costs of renting
1TB of cloud storage per year from Amazon, Google, Rackspace, or Dropbox was
approximately $1000. Additionally, for some organizations, internal data handling
policies require that data cannot be stored externally. The price of a single backup
server with raw capacity of 14TB often exceeds $12,000. A tape-based backup
system for 14TB costs about $7,000. These figures do not include additional costs
of service, maintenance, and energy. With a large number of workstations that must
be replicated at a single server, the server may become a bottleneck and may not be
able to provide satisfactory throughput. Also, performance can be further degraded
by network congestion. More scalable solutions exist, but are even more expensive.
Yet, the market for the backup solutions is vast. DataDomain, a company providing
modern backup systems, had in 2009 over 3.000 customers and over 8.000 systems
deployed [261]. In the same year, the company was bought by EMC for $2,4 billion.

There is still a need for cheaper alternatives for enterprise backup. On one
hand, a significant research effort focuses on optimization techniques for dedicated
backup servers, such as deduplication techniques [84,206] or erasure codes [228,236].
On the other hand, a P2P architecture can be explored in the context enterprise
backup. Common PCs are cheaper than reliable servers. Also, in many cases, the
unused disk space on desktop workstations can be used without additional costs
(Adya et al. [4] discovered a tendency that the unused disk space on the desktop
workstations is growing every year; the Moore’s law for hard disks capacities, first
formulated by Kryder [299] still holds). The bandwidth of the nodes connected in a
distributed way scales much better than of a single server as the network load is more
evenly distributed causing less bottlenecks. The system can take advantage of the
geographical dispersion of the resources, thus offering better protection in case of theft
or natural disasters (e.g., fire or flood). Finally, P2P solutions have already proved to
work well in enterprise environments (GFS [109], MapReduce [78], Astrolabe [255],
DHT [74] used in HYDRAstor [89] described also in the previous chapter, etc.).

Indeed, many P2P storage systems have been already built [10,34,37,49,62,171,
193,215,264,291,312]. The deduplication techniques get adapted for P2P storage
systems [237,307]. There are new erasure codes more suitable for P2P systems [228].
Finally, there are many theoretical models for data placement optimizing data
availability [22,28,59,86,234,256,262] and backup/restore performance [235,290] in
P2P storage systems. However, real systems do not fully take advantage of the P2P
architecture. There is a gap between theoretical models and real implementations.
There are systems (e.g., OceanStore [171] and Cleversafe) that distribute data between
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geographically remote servers. These systems could be used for backup, but they both
use dedicated servers, which stays in contradiction with our primary goal of creating
a cheap backup system based on existing, unreliable machines.

There are P2P storage systems designed to work on unreliable machines; perhaps
the most known such a system is Farsite [34]—a 6-years long Microsoft’s project.
However, Farsite offers much more than a simple backup. As a complete distributed
file system, Farsite must deal with parallel accesses to data, must manage the file
system namespace and ensure that frequently accessed data is highly available. Such
requirements force additional complexity and many architectural limitations that do
not exist in case of a backup system. On the other hand, since data backup is not a
primary use-case, Farsite does not focus on implementing replica placement strategies
(e.g., geographical dispersion of replicas or ensuring that data is backed up within a
given time window, etc.). For more discussion on P2P storage systems we refer the
reader to Section 11.2.

Bridging the gap between many theoretical models [22,28,59,86,234,235,256,262,
290] and prototype implementations, we asked the following question: Is it possible to
implement various data placement strategies, focusing on the case where the machines
are unreliable? Certainly, there are more challenges than in the case of centralized or
highly-available systems. The machines’ unreliability, and perhaps low availability,
requires data locations to change dynamically. Is it difficult to continuously optimize
the data placement with such assumptions? And, finally, is it difficult to take
advantage of the machines’ and network heterogeneity?

Our main contribution is the following: (i) We present an architecture of a
prototype storage system that uses pairwise (bilateral) replication contracts for
storing data and (ii) we show that we can efficiently manage the contracts and ensure
efficient backup even under significant peers’ unavailability. Our scientific prototype
is evaluated in a real distributed environment.

We built a scientific prototype that replicates user data on different workstations
of the organization. In our prototype, the machines that enter the system besides
the standard activities also keep replicas of data of other peers. We assume that
the workstations are heterogeneous and prone to failures. In particular, (i) the
hardware might be heterogeneous and inefficient; (ii) the workstations may have
variable amount of unused disk space (the space that is available for keeping replicas);
(iii) the workstations are not always available—computers might stay powered on, or
be powered off when not used by anyone (transient failures); (iv) the machines may
experience permanent failures after which it is not possible to recover the data stored
on a machine.

In contrast to fixed data placement (storing data in a DHT [10,37,49,215,312]),
our replication is based on storage contracts between an owner of the data and its
replicators. A contract for storing a data chunk of owner i on replicator j is a promise
made by j to keep i’s data chunk for a certain amount of time. Until the contract
expires, it cannot be dropped by j (but it can be revoked by i). Since every data chunk

289



is associated with a list of storage contracts, each chunk can be placed at any location
(the location depends on the placement strategy). This contract-based architecture
can be exploited in two ways. First, the contracts form an unstructured, decentralized
architecture enables one to optimize replica placement, making the system both more
robust and able to take advantage of the network and hardware configuration. Second,
contracts also allow strategies for replica placement that are incentive-compatible,
such as mutual storage contracts [69,262]. To the best of our knowledge, all previous
literature on mutual contracts focused on theoretical analysis only. We complement
these theoretical works by presenting an architecture (and a sample implementation)
of a contract-based storage system. Yet, in this chapter, for the sake of concreteness,
we focus on optimization of replica placement for P2P backup in a single organization,
where incentives are not needed.

We have implemented a prototype. We tested our prototype on 150 computers
in students’ computer laboratories at the University of Warsaw; and on 50 machines
in PlanetLab. The lab environment might be considered as a worst-case scenario for
an enterprise network, as the computers have just 13% average availability and are
frequently rebooted. Moreover, we assumed that all the local data is modified daily.

The results of our work show that: (i) In a P2P backup system we are able to
efficiently transfer data chunks as the bandwidth of such a system scales linearly
with the number of machines. (ii) Even on machines with very low availability
we are able to efficiently optimize the placement of the replicas. We verified two
different placement strategies (where the optimization goal was either to finish the
backup of each data chunk within required backup window, or to enforce a certain
geographical dispersion of the replicas) in two different settings. This leads to our
main conclusion: (iii) It is possible to create an efficient P2P backup system and to
take advantage of the peers’ heterogeneity. (iv) Hardware unavailability significantly
degrades backup performance; because of unavailability the time needed for direct
communication of two peers can be long (in our experiments 20h, on average). We
call this effect the cost of unavailability. Our measurements confirm the simulation
results of Sharma et al. [266] and Tinedo et al. [288].

Since our results are supported not only by the simulations, but also by
measurements of an implementation on a real system, we consider them as the proof
of the concept that an efficient P2P backup systems can be created and that the
heterogeneity of the machines in such a system can be exploited.

11.2 Related Work

In this section, we review related commercial projects and scientific approaches to
data replication in distributed systems.

HYDRAstor [89] and Data Domain [313] are commercial distributed storage
systems, which use data deduplication to increase amount of the virtual disk space
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(for the analysis of resource management in HYDRAstor we refer the reader to
Chapter 10).

Many papers analyze various aspects of P2P storage by either simulation or
mathematical modeling. Usually, the analysis focuses on probabilistic analysis of
data availability in the presence of peers’ failures (see, e.g., the work of Bernard and
Le Fessant [22]). Douceur et al. [86], similarly to our system, optimize availability of a
set of files over a pool of hosts with given availability: theoretical as well as simulation
results are provided for file availability. Chun et al. [59] studied by simulation
durability and availability in a large scale storage system. Bhagwan et al. [28] and
Rodrigues and Liskov [256] show basic analytical models and simulation results for
data availability under replication and erasure coding. Toka et al. [290] find a schedule
of transfers which minimizes the restore time. They also analyze the impact of the size
of the set of replicators on restore time. Pamies-Juarez et al. [235] studied the impact
of the redundancy on the data retrieval time. This chapter complements these works
by presenting a software architecture that allows to implement placement strategies,
by considering other measures of efficiency, and by proving that various optimization
strategies can be used in an unreliable environment.

As the focus of this work is on data backup in a single organization, we do not
analyze incentives to participate in the system. However, to store the data, our system
relies on agreements (contracts) between peers. In contrast, in DHT-based storage
systems contracts are (implicitly) made between a peer and the system as a whole.
Thus, our architecture naturally supports methods of organization that emphasize
incentives for high availability, such as mutual storage contracts [69,262] (also these
using asymmetric contracts [234]). It is worth mentioning that some papers explore
the social interconnections while choosing the replica locations [291]; the tradeoffs
between the redundancy, data availability and the ability to place data on the trusted
nodes is analyzed by Sharma et al. [266] and Tinedo et al. [288]. These methods can
also be adopted for our system.

Many P2P file systems [10,37,49,215,312] use storage and routing based on a
DHT [74,260]. The address of the block, which is a hash of its content, fully determines
the locations of its replicas. Thus, such architectures are less suitable for balancing
the load on replicating workstations, or for optimizing the placement of the replicas.
While these solutions focus on consistency of the data modified by multiple users,
this chapter focuses on the issue of the best replication of the data.

To optimize the placement of replication contracts, we use a distributed
optimization protocol relying on a distributed priority queue maintained by all the
peers. An alternative is to use other load balancing or optimization techniques, such
as Messor [211], T-Man [148] or pair-wise exchanges [280].

OceanStore [171] and Cleversafe [63] offer the idea of spreading replicas into
geographically remote locations achieving the effect of deep archival storage. These
systems combine software solutions with a specially designed infrastructure that
consists of numerous, geographically-distributed, servers. The main contribution of
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these systems, from our perspective, is the resignation from a common DHT and the
introduction of a new assumption that any piece of data can be located at any server.
These systems, however, do not discuss the issue of replicating data on ordinary
workstations (which are, in contrast to servers, frequently leaving and joining the
network) and do not present any means allowing to handle such dynamism.

Wuala [193] moved one step further by proposing a distributed storage based not
only on a specially dedicated infrastructure, but also including a cloud of workstations
of users who install the Wuala application. However, since late 2011, Wuala no longer
supports P2P storage. The idea of using a hybrid architecture of central servers and
user machines, called peer-assisted backup, is also explored by Toka et al. [289]. Other
P2P backup software include Backup P2P,1 Zoogmo,2 or ColonyFs.3

FreeNet [62] is a P2P application that exposes the interface of a file system. Its
main design requirement is to ensure anonymity of both the authors and the readers.
The underlying protocol relies on proximity-based caching. When a data item is no
longer used, it can be removed from a caching location. Similarly, in Pangea [264]
a replica is created whenever and wherever data is accessed. The idea of replicating
data at locations near end users was successfully implemented by Akamai [194,226],
the world largest content delivery network. Naturally, there are other works on
proximity-based caching [143,180,192,267].

Farsite [34] was a Microsoft’s 6-years long project aimed at creating distributed
file system for sharing data between thousands of users. The retrospective view of
the project gave us the feeling of following a good direction. Authors emphasize that:
first, real scalability must face the problem of constant failures in the network; second,
in a scalable system, manual administration must not increase with the size of the
network. We followed both requirements when designing our system.

There are a few substantial differences between Farsite and our prototype
implementation. Most importantly, Farsite’s architecture does not rely on mutual
contracts.

In Farsite updates of data are committed locally and the changes are appended
to the log (similarly as in Coda [166]). The log is sent to a group of peers responsible
for managing a subset of the global namespace (called the directory group). The
group periodically broadcasts the log to all its members. As the directory group
uses a byzantine fault tolerant protocol [85], no file can be modified if one third
or more of the group is faulty. Since we consider a backup system in which data
is modified only by the owner, we are able to gain in flexibility and robustness.
In our asynchronous updates mechanism, every peer has an associated group of
peers managing its asynchronous messages—we refer to such peers as synchro-peers.
Synchro-peers are independent of replicas, which results in a desired property that

1sourceforge.net/projects/p2pbackupsmile/
2zoogmo.wordpress.com
3launchpad.net/colonyfs
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any peer can keep replicas for any chunk of data. Thus, replicas can be chosen so
that they constitute the most profitable replication group.

Farsite is a distributed file system so its complexity is higher compared to a
backup system. However, Farsite is not a backup system, so it does not support
backup-specific requirements like placing replicas in geographically distributed
locations, or the optimization of the backup/restore time.

11.3 System Architecture

Our system uses a mixed architecture that stores control information, meta-data and
data in three different ways. The control information that allows peers to locate and
to connect to each other must be located efficiently—hence we use a DHT as a storage
mechanism. In contrast, each peer is responsible for finding and managing peers who
replicate its data (its replicators). The replication contracts enable us to optimize
replica placement and thus to tune replication to a specific network configuration.
The meta-data describing replication contracts are kept by both the data owner and
the replicator. Chunks of data are kept in an unstructured overlay; concrete locations
are described by the meta-data.

11.3.1 Control Information

The basic attributes of a peer are kept in a structure called PeerDescriptor. For each
peer, its PeerDescriptor contains:

• identification information (the public key);

• information needed to connect to this peer (the current IP address and the
port of an instance of our software running on the workstation) and the user
account name in the operating system (account name is required by the current
implementation of data transmission layer—see Section 11.3.3);

• identifiers of its synchro-peers (see Section 11.3.4).

PeerDescriptors of all peers are kept in a highly replicated DHT: peer’s ID (a
hash of its public key) is hashed to its PeerDescriptor. As the size of the control
information is small, we are able to afford strong replication (compared to a generic
DHT). Thus, instead of a single peer, a number of peers is responsible for keeping
data hashed to a part of the key-space.

11.3.2 Replication Contracts

The main goal of our prototype is to support nontrivial replica placement strategies.
We need to be able to store any replica at any peer. This architecture contrasts with
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content addressable storage systems that put each chunk of data under an address
that is fully determined by the chunk’s unique identifier (e.g., by the hash of its
content). As a trade-off, for flexibility of placing replicas at any location, we need a
mechanism for locating the data.

In our system each peer keeps information about replica placement of its data
chunks in an index structure called DataCatalog. For each data chunk, the catalog
stores information about: (i) identifiers of the peers that keep replicas of the data
chunk (hereinafter chunk replicators); (ii) the size of the chunk; (iii) the version
number of the chunk.

Additionally, each peer keeps information about data chunks it replicates. As
each storage contract is kept in exactly two places (the owner and the replicator),
contracts are consistent and it is easy to retrieve metadata (i.e., the DataCatalog)
in case of a failure. Since peers are unreliable, the process of contract negotiation
can break at any point, possibly leading to two types of inconsistency: an owner o
believes j is its replicator, while j is not aware of such a contract; or a peer j believes
to be o’s replicator, while o is not aware of such a contract. Contract negotiation is
however idempotent and because the contracts are kept both by the owner and by
the replicator, such inconsistencies can be easily fixed. Each peer periodically sends
messages to its replicators with the believed contracts (and versions of data chunks,
which allows the replicators to update the chunks of data which are out of date). Each
replicator periodically sends similar information to the appropriate owners. Detected
inconsistencies can be resolved either by adopting the owner’s state; or by always
accepting a replication agreement.

The DataCatalog is stored in a file but it is not replicated between peers. In this
way we avoid the additional overhead of updating the catalog at remote locations,
when the contract for any chunk is changed. Since the machines are unreliable,
in many cases we even would not be able to update the DataCatalog at a remote
peer as the peer can simply be unavailable. On the other hand, both owners and
replicators are aware of all their storage contracts. When the local data of any
peer is lost, the peer (the owner) gossips the information about the failure. The
replicators answer to the gossip message with the information about the contracts;
the owner uses this information to rebuild the DataCatalog. Once the DataCatalog is
reconstructed, the owner locates and rebuilds all missing data. Since the DataCatalog
is persistent, its reconstruction is required only in the case of a non-transient failure;
thus the reconstruction does not cause much overhead. The standard use cases of
replicating a chunk of data and retrieving permanently lost data are depicted in
Figures 11.1 and 11.2, respectively.

Alternatively, in an enterprise environment where a (replicated) server is an
affordable option, the meta-data can be kept centrally (in primary memory for faster
access). This solution is, however, less scalable.

We designed the mechanism that is responsible for relocating or additionally
replicating data chunks that are weakly replicated according to a given abstract
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Figure 11.1: The diagram showing consecutive steps performed when replicating a
chunk of data. After asking the local replica placement mechanism for a replicator
(steps 1 and 2), three different storage mechanisms are involved: (i) the peer
descriptor is obtained from a DHT (steps 3 and 4 in the diagram), (ii) the data
chunk is stored at the replicator (step 5), and (iii) meta-data (that contain storage
contracts) is kept both by the data owner and the replicator (step 6 and 7).

metric. The specific metric used in our evaluation takes into account peers’
availability, bandwidth, and geographic distribution. It tries to keep all but one
replicas as close as possible (not to overload the network) and to keep one replica in
a remote location for additional safety (for location-dependent failures, such as fire,
flood, or theft). The metric also balances the load on the machines so that each data
chunk can be replicated within the required backup window (the time requirement
for each chunk to be backed up). The precise metric is described in Section 11.4.1.
The optimization mechanism is based on hill-climbing—in consecutive steps each peer
performs locally optimal changes of its contracts. The optimization of the location of
each single data chunk can be performed even if large fraction of peers is unavailable;
to perform a single local optimization steps we require only 3 peers to be available.
Thus the mechanism can proceed in unreliable environments, where peers are often
unavailable.

When nodes’ parameters (e.g., their availability) change, or when a large number
of nodes is added to the system, the contracts are renegotiated. If each such
change resulted in data migration, the network and the hosts could easily become
overloaded. Therefore the process of changing a contract is more elaborate. The
contracts are allowed to change frequently but such changes do not require data
migration. Such temporary contracts are periodically (e.g., daily) committed; after a
contract is committed, the data is migrated. The complete mechanism involves some
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Figure 11.2: The diagram showing consecutive steps performed when retrieving a
data after a crash failure (the worst-case failure when all the data, including the
DataCatalog, is lost). When the DataCatalog, which is kept only locally, is lost, a
message “o lost data” is gossiped (steps 1–3 in the diagram). Data replicators having
data chunks of the given data owner answer this message. The replicator X having
a chunk y answers with the message “X has chunk y” (steps 4 and 5). As a result,
DataCatalog can be rebuilt and lost data can be located (steps 6 and 7) and retrieved
(steps 8–9).

additional details as it must also take into account possible communication failures.
The optimization mechanism is described in detail in Section 11.4.2.

11.3.3 Data Transmission and Updates

Every member of the network, before placing its replicas at a remote peer, must
obtain this peer’s permission. Once the peers reach an agreement, they mutually
authorize each other using their PeerDescriptor ’s identities (the public keys stored in
the DHT).

The data is transmitted in an encrypted connection. In the current
implementation, we use standard Linux tools for data transfers. Each peer runs
an ssh daemon that acts as a server that accepts connections of data owners. When
a peer initiates a connection to transfer its data, it uses an scp as a client.
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When an owner modifies its local copy, the updated chunk must be propagated to
the network. The replicators are informed of the changed versions of the data chunks
through periodic control messages (version numbers are attached to the messages
containing contracts sent between the owner and the replicator, described in the
previous subsection). The unavailable peers are informed about the changes of data
chunks through asynchronous messages, described below. Once the replicator finds
there is a new version of a data chunk it replicates, it downloads the new version either
from the owner or from the other replicators, achieving eventual consistency [295].
Note that if data owners were responsible for uploading the new versions to the
replicators, a successful transfer would require both the owner and the replicator to
be available. In our solution, the replicator is responsible for keeping replicas up to
date so we only require that the replicator and any other replicator or the owner are
available.

Unlike common backup systems, our system stores only the last version of each
data chunk. A system storing many previous versions may be built in the same way
as version control software (e.g., svn or git) often uses standard filesystems; more
specifically, the previous versions (or the deltas) can be kept in the same data chunk;
or the deltas can be kept in separate data chunks.

11.3.4 Asynchronous/Off-Line Messaging

We assume that the workstations may be unavailable for some time just because
they are temporarily powered off. In contrast to many distributed storage systems
(e.g., GFS [109]), in such a case our system does not rebuild the missing replicas
immediately, in order not to generate unnecessarily load on other machines nor the
network. Instead, when the unavailable peer eventually returns to the network,
it efficiently updates its replicas. To inform the unavailable peers about the new
version numbers of its replicas and about the contracts, we use asynchronous
messaging. The control messages sent to the peer that is currently unavailable are
cached at, so called, synchro-peers. We use the idea of group communication for
synchronizing the messages within each (small) group of synchro-peers. As opposed
to Defrance et al. [80], who present the mechanism of caching the messages on routers,
we chose to design the concept of synchro-peers to limit the costs of additional
hardware. A synchro-peer is just an additional process running on a standard peer in
our network. The load imposed by the algorithm on the synchro-peers is low as we
keep the messages small; thus it is relatively “cheap” for a peer to act as a synchro-peer
for many nodes.

An asynchronous message from i to j is sent to the synchro-peers of j.
Synchro-peers are peers, defined for every peer j (j is called in this context a target
peer) that keep asynchronous messages for j. Synchro-peers of j include j, so every
message will be delivered to the target peer by the same means as it is delivered to the
other synchro-peers. Each synchro-peer periodically tries to send the asynchronous
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message to the synchro-peers that have not yet received the message; the IDs of
synchro-peers that have not yet received the message are attached to the message
(thus, the same message can be delivered multiple times to the same peer). These
updates achieve eventual consistency.

The consecutive messages between any two peers are versioned with sequential
numbers (logical clocks). If any synchro-peer k has not managed to send a message
m1(i → j) to all the requested synchro-peers before receiving a subsequent message
m2(i → j) with a higher version number, then the synchro-peer drops m1(i → j),
as the new message m2 contains a superset of chunks’ version numbers. Thus, the
expected number of messages that are waiting for delivery on a single synchro-peer is
bounded by |R(·)| · |S(·)|, where |R(·)| is the average number of replicators per peer
and |S(·)| is the number of synchro-peers per peer. The groups of synchro-peers are
small (5 machines in our experiments), the messages contain only the version numbers
of the data chunks (thus, the messages are small as well), and the old undelivered
messages can be safely replaced with the newer versions of the messages. As a result,
the mechanism of asynchronous messaging is cheap from the perspective of the system.

The target peer executes the commands from the messages immediately after
the first reception, but it remembers for each sender the latest version number of
the received message. This information protects against multiple execution of the
orders from a single message. Figure 11.3 shows the idea of synchro-peers delivering
asynchronous messages.

The mechanism of versioning through asynchronous messages reduces the amount
of information replicators keep regarding the structure of replication contracts. In an
alternative solution, replicators synchronize directly between each other. However,
this requires replicators to know the IDs of all the other replicators for each data
chunk they store. If this information is stored at the replicators, changes in
replication contracts require multiple updates; if it is stored as meta-data, the size of
the meta-data becomes proportional to the number of data chunks in the system.
Moreover, exchanging the messages between all replicators is highly inefficient.
With asynchronous messages, the owner keeps the information about its replication
contracts, updates are simple, and meta-data is small.

Using asynchronous messaging has two advantages. First, the asynchronous
message is delivered with high probability even when the sender is unavailable.
Second, the data may be downloaded concurrently from multiple replicators.

11.4 Replica Placement

The goal of the replica placement policy is to find and dynamically adapt the locations
of the replicas in response to changing conditions (new peers joining, permanent
failures, changing characteristics of existing replicators). Finding possible locations
for replicas is not trivial given that peers differ in availability and amounts of free
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Figure 11.3: The diagram depicting the use case of synchro-peers delivering an
asynchronous message.

disk space. Moreover, the replica placement policy should take advantage of peers’
heterogeneity in terms of availability, geographic locations, etc..

Our policy consists of two main parts. First, a utility function (in short, utility)
scores and compares replica placements. Utility is a function that for a given data
owner and a set of possible replicators returns the score proportional to expected
quality of replicating data. Second, a protocol manages replica placement in the
network in order to maximize the utility of the currently worst placement (maxmin
optimization).
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11.4.1 Utility Function

In this section we describe our example utility function that takes into account peers’
availability, bandwidth, and geographical distribution. The notation used in this and
the following section is introduced when necessary, and summarized in Table 11.1.

A user of a backup application is interested in the resiliency level of her
data (defined by the desired number of replicas Nr and their proper geographic
distribution); and the time needed to retrieve the data in case the local copy is
lost (expressed as the desired data read time Des(Tr)). Additionally, each user must
be able to backup her data (propagate the local updates to replicas) during the time
the user is online (this time is expressed as the backup window Des(Tb)).

Optimizing the backup time of the data is one of the key targets of backup systems.
If backup is slower than data modification, then, in case of a failure, the data cannot
be retrieved. A short backup window is also desired for easy system maintenance.
As a further evidence, we note that many benchmarks comparing secondary storage
systems focus on their throughputs as one of the primary metric. Similarly, many
commercial storage systems advertise themselves as high-throughput [89,313].

Every peer j dedicates bandwidth Bj to the background backup activities (Bj is
bounded by network and disk bandwidth, but can be further reduced by the user).

Utility function U : P → R is a scoring function mapping a replica placement
Pk ∈ P to its score uk = U(Pk). Hereinafter, by R(dk) we denote the set of replicators
of data chunk dk.

The utility function is a sum of utilities expressing geographic distribution Ugeo,
backup time (performance) Uperf , and the number of replicas |R(dk)| (with the latter
two treated essentially as constraints):

U(Pk) = Ugeo(Pk)− L · ||R(dk)| −Nr| −M · Uperf (Pk), (11.1)

where M and L are (large) scaling factors. L penalizes for insufficient number of
replicas. M penalizes for backups that cannot be finished within the time window.
If the backup cannot be done on time, it means that for some data we can give no
resiliency guarantees and, so, even very good geographic distribution properties are
useless.

Uperf is computed as follows. The average duration of data backup to replicator
j, E(Tb, j) is estimated by:

E(Tb, j) =

∑

k:j∈R(dk) size(dk)

pav(j)Bj

(11.2)

The backup duration is proportional to the congestion on the receiving peer
∑

k:j∈R(dk) size(dk); and inversely proportional to the bandwidth Bj that peer j
dedicates for the background backup activities. We use a simplified model that
does not explicitly consider the network congestion, but this issue is addressed in
the further part of the utility function, described in this section. Moreover, successful
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Table 11.1: The summary of the notation used in Sections 11.4.1 and 11.4.2.

Symbol Meaning

Nr desired number of replicas

Des(Tr) desired data read time

Des(Tb) backup window (desired data backup time)

Bj bandwidth that the j-th peer dedicates to backup activities

R(dk) replicators of data chunk dk
Pk replica placement of data chunk dk (replicators and data owner)

uk = U(Pk) utility of placement of replica for data chunk dk
size(dk) size of data chunk dk
Uperf part of the utility uk expressing backup time (performance)

Ugeo part of the utility uk expressing resiliency due to geographical
distribution of the replicas

L,M weights denoting the impact of ||R(dk)| − Nr| and Uperf on uk,
respectively

E(Tb, j) average backup time from the considered peer to the j-th peer

E(Tr, j) average restore time from the j-th peer to the considered peer

remotemin minimal required TTL distance between considered peer and most
distant replicator

remotemax maximal required TTL distance between considered peer and most
distant replicator

closemax maximal required TTL distance between considered peer and all but
most distant replicator

jmax replicator from R(dk) that is most distant to the considered peer

distTTL(j) TTL distance between the replicator j and considered peer

N estimated number of peers in the network

α desired number of messages that peer wants to get in a time unit
without being overloaded

write on peer j is possible only when peer j is available (hence pav(j)). Assuming that
the restoring operation has no priority over the backup, the average data restoration
time E(Tr, j) is computed in the same way.

The backup time penalty Uperf (Pk) is the sum over the utilities per replica location:

Uperf(Pk) =
∑

j∈R(dk)
Uperf(j),

where Uperf (j) penalizes for insufficient backup window on the j-th replicator:

Uperf(j) = min(Des(Tb)− E(Tb, j), 0) + min(Des(Tr)− E(Tr, j), 0)

To compute Ugeo, we approximate the geographical distribution of the data by
TTL values. Most of the replicas should be near the owner to reduce the network
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usage; closemax denotes the desired distance for the “nearby” replicas. However, to
cope with geographically correlated disasters, one replica should be far: its distance
should be between remotemin and remotemax .

The “geographic” utility Ugeo(Pk) considers both “near” and “far” replicas:

Ugeo(Pk) = min(0, distTTL(jmax )− remotemin) + min(0, remotemax − distTTL(jmax))+

+
∑

j∈Pk−{jmax}
min(0, closemax − distTTL(j)),

where jmax denotes the replicator from R(dk) that is most distant to the data owner,
and distTTL(j) denotes the TTL distance between replica j and the data owner.

In an enterprise backup system, we assume that all data chunks are equally
valuable. Thus, the utility of the whole system is the utility of the worst placement
(maxmink uk = maxmink U(Pk)).

11.4.2 Distributed Optimization Protocol

When designing our system, we have considered several approaches for maximizing
system utility maxmink uk. Perhaps the most straightforward idea is that each
peer optimizes its own utility, uk, by deciding with whom to form replication
contracts [69,262]. Game-theoretic strategies would give the system extra protection
against malicious spammers, but they have the following drawbacks: (i) every peer
has to compete with the other participants; in effect, peers with low availability
or bandwidth could never achieve satisfactory replication; (ii) even if contracts for
low-quality peers are accepted at the cost of rejecting the contracts of the high
quality peers, such frequent contracts rejections would result in protocol inefficiencies.
Considering these drawbacks, and taking into account that in a single enterprise peers
should cooperate to achieve the social optimum, we decided to turn to a cooperative
(not in the game-theoretic sense), proactive approach described below.

Every peer i with free storage space periodically chooses a data chunk dk with
low utility, and proposes a new replication agreement with the data chunk’s owner o
(peers share information on low utility data chunks in a distributed priority queue).
The owner either tentatively adds i to its replication set R(dk) (if the number of
replicas |R(dk)| is lower than the desired resiliency level Nr); or tentatively replaces
j ∈ R(dk), one of its current replicas, with i (all possible j ∈ R(dk) are tested). If the
resulting utility U(P ′k) is significantly higher than the current value U(Pk), the owner
o tries to change the contracts (see the next section). In our experiments, we require
U(P ′k) to be higher than U(Pk) by at least 10% to reduce data movements that do not
significantly improve data distribution. When the owner rejects the proposition, or
when it is unavailable, i puts o in a (temporary) taboo list in order to avoid bothering
it later with the same proposal.

As a result of continuous corrections of the replica placements, each peer can
end up having replicas of different chunks at different peers. Such a machine has
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many replicators and their monitoring becomes expensive. However, the monitored
information (the availability and the size of replicated data) are gossiped; thus the
cost of distribution of information is independent of the number of replicators. On the
other hand, storage contracts with multiple peers allow to parallelize data transfers,
and the cost of replica rebuilding is amortized.

If every peer proposed storage for the owner of the data with the lowest utility,
the owner would get overloaded with storage offers (and the remaining data chunks
would be ignored). Therefore, each peer sends a message to o with probability pp
such that pp = α

N
, where N is the estimated number of peers in the network, and α is

the desired number of messages that a peer wants to get in a time unit without being
overloaded. Given such probability, the expected value of the number of messages,
Em, the owner of data gets in a time unit is: Em = pp ·N = α.

The system keeps the data chunks with the lowest utility in a distributed priority
queue. In our prototype, we implemented the distributed priority queue by a
gossip-based protocol. Each peer keeps a fixed number of data pieces with the lowest
priorities. It updates this information with its own data pieces and distributes the
information to the randomly chosen peers.

11.4.3 Changing Replication Contracts

The contracts in our system are continuously renegotiated. To not to overloaded
the hosts nor the network, every such change should result in data migration. A
mechanism for efficient changes of the contracts are described below.

Finding the Best Replicators

Below, we describe two aspects of the protocol: revocation of inefficient contracts;
and recovery from transient failures.

When peer i offers its storage to data owner o, and when o decides that i should
replace one of its existing replicators j (as the resulting value of the utility function U
is higher), then o has to explicitly revoke the contract with j. Thus, changing location
of the data of o, from i to j, requires these three peers being on-line. The example
below illustrates why revocation of the contracts cannot be realized asynchronously.

Example 11.1. Consider peer j storing many data chunks of several owners. From
the perspective of each owner, as j is comparably overloaded, any new peer joining the
network is a better replicator than j. If the contracts could be revoked asynchronously,
all the peers would revoke the contract on j during its unavailability. Now j, having
no data, can take over all data stored at some other peer k during k’s unavailability,
by offering storage space to all the data owners replicating their data at k. Such
situation can repeat indefinitely. Each peer is not aware that j has already revoked
some of its contracts and that it is not overloaded any more.
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However, if the existing replicator j has low availability, on-line revocation of
its contract is also improbable. Thus, an owner can revoke a contract with such
a low-available replica (e.g., the first decile of the population) also through an
asynchronous message.

Additionally, since the peers are unreliable, the process of contract negotiation
can break at any point leading to inconsistency of the contracts. Two types of
inconsistency are possible: an owner o believes j is its replicator, while j is not
aware of such contract; or a peer j believes to be o’s replicator, while o thinks j
is not. The inconsistent contracts can be easily detected by periodically exchanged
messages and fixed by adopting the owner’s or the replicator’s state.

Committing Contracts and Transferring Data

In order to reduce the load on the network, replicators cannot change too often;
but to maintain high performance, replicators must eventually follow the negotiated
contracts. A non-committed contract between an owner and a replicator is negotiated,
but no data has been transferred. Contracts are committed periodically. For each
data chunk, if there is a new contract (negotiated, but not committed), the contract
is committed when the time that passed since the last committed contract for this
chunk is large enough (e.g., 24 hours). This guarantees that the data is transferred
at most once in each time period (e.g., at most once every 24 hours). However, even
when (non-committed) contracts change often, data is replicated (as the committed
contracts represent a snapshot of utility optimization).

After committing a contract, the owner sends a message to the new replicator that
requests data transfer. As soon as the new replicator downloads requested chunk, it
sends an acknowledgment to the owner. Finally, the owner notifies the old location
to remove the chunk.

11.5 Experimental Evaluation of the Prototype

11.5.1 Experimental Environment

We performed the experiments in two environments: (i) on the computers in the
student computer labs at the University of Warsaw; and (ii) on PlanetLab. The aim
of choosing these two environments was not to compare them, but rather to show
how our system uses and reacts to different degrees of heterogeneity and different
problems present in these systems (geographical decentralization in PlanetLab and
low availability in student computer labs). We run the prototype software for over 4
weeks in the labs and for 3 weeks on PlanetLab. Each computer acted as a full peer:
owned some data and acted as a replicator. The data was considered as modified
at the beginning of each day; thus each day we expected the system to perform a
complete backup. If the transfer of a particular data chunk did not succeed within
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a day, the following day we transferred a newer version of the chunk. In both test
environments we used chunks of a equal sizes (50MB).

The computers were centrally monitored; the central monitoring server
experienced several failures which slightly influenced the presented results (the real
backup times are slightly shorter than presented).

Students Computer Lab

We run our prototype software on all 150 machines of the students’ computer lab.
The availability pattern might be considered as a worst case scenario for an enterprise
setting. The lab is open each week, from Monday to Friday, between 8:30am and 8pm,
and on Saturdays between 9am and 2:30pm. The students frequently (i) switch off
or (ii) reboot machines; each day at 8pm the computers are (iii) switched off by the
administrators (the machines are not automatically powered on the next day); each
of these events was considered a transient failure.

The computers in students lab have very low average availability (the median
is equal to 13%). Figure 11.5 presents the distribution of the availabilities of the
computers in the lab. Figure 11.6 presents the distribution of the up time of the
computers and the time between their consecutive availability periods within a single
day (the nights are filtered out). Low availability coupled with long session times
constitute a worst-case scenario for a backup application: in contrast to short,
frequent sessions, here machines are rather switched on for a day, then switched
off when the lab closes, and remain off for a long time.

The amount of local data was sampled from the distribution of storage space used
by the students on their home directories. The students in our faculty are divided
into three groups and each student is assigned a quota that depends on his or her
group affiliation. The distribution of data sizes for the three groups are presented
in Figure 11.4. We took the distribution of the sizes for the group with the highest
quota and scaled this distribution so that the average value was 3GB. Thus the sizes
of local data were varying approximately between 0 and 8GB.

The local storage space depended on machines’ local hard disks; and varied
between 10GB (50% machines), 20GB (10% machines), and 40GB (40% machines).

PlanetLab

The experiments on PlanetLab were conducted using 50 machines scattered around
Europe. Each machine was provided with 10GB of storage space and had 1GB of local
data intended to be backed up. The machines were almost continuously available (the
median availability is equal to 0.91).
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11.5.2 Asynchronous Messages

In this subsection we present how the asynchronous messaging influence message
delivery time and the probability that the message is delivered. For our analyzes we
used traces of availability from the students computer lab. We varied the number
of synchro-peers per peer between 0 and 30. For each number of synchro-peers, we
generated 100,000 messages with a randomized source, destination and the sending
time. Figures 11.7 and 11.8 show the results.
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Figure 11.7 shows dependency between the number of synchro-peers and the
delivery time of the message. Because the message delivery can be accomplished
only when the receiver is active, we present delivery time measured starting from the
first online appearance of the receiver after the message was sent. Ideally, the message
should be delivered just after the receiver becomes online, resulting in a low delivery
time. Our results show that the delivery time decreases significantly when using
synchro-peers. Additionally, the standard deviation decreases even more significantly
(high standard deviations are caused by peers that have low availabilities). If the
number of synchro-peers is higher than 5, the advantage of using more of them
becomes less significant. Taking into account that the higher number of synchro-peers
results in higher number of messages required for synchronization, we decided to use
5 synchro-peers in the remaining experiments.

Figure 11.8 shows dependency between the number of synchro-peers and the
probability of a successful delivery of a message to any synchro-peer. We are interested
in calculating such probability because a message delivered to a synchro-peer is,
in fact, a replica of the original message. Thus, synchro-peers should enable
message delivery even in case of long term absence of the sender (e.g., caused by
a non-transient failure). The results show that synchro-peers significantly increase
this probability: with 5 synchro-peers the system delivers 90% of the messages, while
without synchro-peers, more than half of the messages are lost.
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Utility (weighted replicated data)
day average std dev (std dev)/average

1 34487 6086 0.18
2 60489 8141 0.13
3 69658 5496 0.08

Table 11.2: The utility, i.e. the ratio of total size of replicated data (in MB) to the
availability for the first 3 days of experiments in the lab environment.

11.5.3 Replica Placement

Students Computer Lab

The goal of the tests in the labs was to verify how the system copes with low
availability of the machines. For each machine i, we set the bandwidth Bi to the
same arbitrary value and the backup window Des(Tb) to 0. As all the machines are in
the same local network, there is no geographical distribution of the data. Thus, the
utility function (Eq. 11.1) degrades to the number of replicas and the backup duration
(Eq. 11.2). This means that the system minimizes the maximal time required for
transferring a data chunk, which means minimizing the load on the maximally loaded
machine. As a result, we expected the machines to be loaded proportionally to their
availabilities. By Eq. 11.2, the load on the machine is proportional to the size of
data it replicates; thus, for each machine the total size of replicated data should be
proportional to the machine’s availability. Additionally, storage constraints should
influence the amount of data stored.

During the first 3 days of experiments we measured the ratio of the total size
of data replicated by a peer (in MB) to the peer availability. For each day we
considered only the peers that were switched on at least once. We also restricted
the measurements only to peers with at least 9GB storage space (that could
accommodate, on the average, 3 replicas), to separate the effect of insufficient storage
space. The average values and the standard deviations of the ratios for the 3 days are
presented in Table 11.2. The standard deviation is low in comparison to the average
(the deviations are 18%, 13% and 8% of the corresponding average) which shows that
the replicas were distributed according to our expectations.

PlanetLab

The goal of the PlanetLab tests was to verify how our system handles geographic
distribution and heterogeneity of the machines. In this environment we required the
far replicas (i.e., that implementing geographical dispersion) to have TTL distance
from the owner in range 〈3, 8〉 (remotemin = 3 and remotemax = 8), and the other
replicas to be as close to the owner as possible (closemax = 0). Additionally we
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set the bandwidth Bi to 500 KB/s for half of the machines, and 1000 KB/s for the
other half. We also set the backup window Des(Tb) to 4500s. Each machine had the
same amount of local data (1GB); the disk space limit was 4GB. We expected that
the low-bandwidth machines will be less loaded than those from the high-bandwidth
group. Assuming that machines are continuously available, a low-bandwidth machine
should replicate at most 2.25GB; and a high-bandwidth machines at most 4.5GB.

We tested two parameter settings that differed by the weight assigned to
geographical distribution of replicas (see Section 11.4.1). For M = 1 (which means
increasing the backup duration of a single chunk by 1s is equally unwanted as
increasing the TTL distance of this chunk by 1), the average TTL distance between
the replica and the owner was equal to 11.6 (with standard deviation of 3.7). In
this case only two machines exceeded their backup window (by at most 108 s). For
M = 0.01 (which means increasing the backup duration of a single chunk by 100s
is as bad as increasing the TTL distance of a single chunk by 1), the replicas were
geographically closer with mean TTL 8.1 (with standard deviation of 3.8). However,
the backup duration was increased—13 machines exceeded their backup window. The
average excess of the backup window was equal to 222s (5% of the backup window)
and the maximal 415s (9% of the backup window).

11.5.4 Duration of Backup of a Data Chunk

We measured the time needed to achieve the consecutive redundancy levels (the
number of replicas) for each data chunk. The time is measured relative to the data
chunk owner online time: we multiplied the absolute time by the owner’s availability.
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We consider the relative time as a more fair measure because: (i) the transfer to at
least the first replica requires the owner to be available; (ii) data can be modified (and,
thus, the amount of data for backup grows) only when the owner is available; (iii) we
are able to directly compare results from machines having different availabilities.

The distribution of time needed to achieve the consecutive redundancy levels is
presented in Figure 11.9 (lab) and Figure 11.10 (PlanetLab).

Students’ Computer Lab

The average time of creating the first, the second and the third replica of a data chunk
are equal to, respectively, 1.1h, 2.7h and 5.5h (the average time needed to create a
single replica is equal to 3.1h). We consider these values to be satisfactory as the
average relative time for transferring a single asynchronous message holding no data
(message with 0 synchro-peers), calculated based on the availability traces, is equal
to 2.6h.

The maximal times needed to create a single replica, though, are higher: 24h,
29h and 32h. These long times of replication are almost entirely the consequence of
peers’ unavailability. The maximal time needed to deliver an asynchronous message
with 3 synchro-peers is of the same order (21.5h, measured relatively to source online
time, see Section 11.5.2). Moreover, if we measure only the nodes with more than
20% average availability, the times needed to create the replicas are equal to 1h, 1.6h
and 3h and maximal values are equal to 12h, 18h and 20h.

PlanetLab

The average times needed for creating the first, the second and the third replica are
equal to, respectively, 0.5h, 0.7h and 1.1h. The maximal values are equal to 4.0h,
4.2h, and 4.2h. These values are significantly better than in case of the students
computer lab even though the distance between the machines is much higher and
the computers in the students’ lab are connected with a fast local network. This
once again proves that the unavailability of the machines is the dominating factor
influencing the backup duration.

The average time needed for creating a replica of a data chunk is equal to 0.76h (45
minutes). Let us assume that the transfer times of chunks are similar between each
other. If the three replicas are transferred sequentially then, to achieve the average
backup time of a chunk equal to 0.76h, the transfer of all data (3GB) should take
1.52h. If the three replicas are transferred concurrently then, to achieve the average
backup time of a chunk equal to 0.76h, the transfer of all data (3GB) should take
0.76h. In both cases we can assume that 3GB of data needs at most 1.52h for transfer.
This gives an estimated throughput of 4.49Mb/s (PlanetLab uses standard Internet
connections).
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11.6 Conclusions

We present an architecture of a P2P backup system based on pair-wise replication
contracts. In contrast to storing the data in a DHT, in our approach the placement
can be optimized to a specific network topology, which allows to take into account
e.g., geographical dispersion of the nodes.

We have implemented a prototype and tested it on 150 computers in the Faculty
of Mathematics, Informatics and Mechanics of the University of Warsaw and on 50
computers in PlanetLab.

During implementation and initial tests we encountered numerous issues we did
not expect: e.g., updating data catalog remotely whenever any contract is changed
is highly inefficient; revoking the contracts cannot be done asynchronously; changing
contracts too often is inefficient; each contract must be kept by both the data owner
and the replicator and the two versions have to be kept consistent. We think that
these problems should motivate others to verify their ideas, in addition to simulations,
by constructing prototype implementations.

Our most important result is that the backup time increases significantly if
machines are weakly-available. From 0.76h for nearly-always available PlanetLab
nodes to 3.1h for our lab with just 13% average availability. This cost of unavailability
makes some environments less suitable for P2P backup. The irregular environments
negatively influence the maximal durations of data transfer. Choosing machines with
better availability strongly reduces this effect (for instance, by restricting our lab
environment to machines with more than 20% availability, the average backup time
decreases from 3.1h to 1.9h). Moreover, in enterprise environments such irregular
availabilities should not be the case. There, however, the machines may have their
specific, regular availability patterns. In such case it may be valuable to use more
sophisticated availability models.

Yet, as our main conclusion we must stress that it is possible to build an efficient
and reliable backup system, even for the environment with weakly-available machines
having irregular session times. We built a scientific prototype and we managed to
run it on 150 machines—these results are promising and might be considered as the
proof of the concept for designing the full efficient and reliable P2P backup system.
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Discussion & Conclusions

In this dissertation we presented a comprehensive and diversified view on resource
allocation problems in distributed systems. Our perspective was diversified in the
several following aspects. First, we considered systems that are distributed in a
couple of various ways. For instance, we studied physically distributed systems, in
particular the computer systems that are built from a large number of computational
units (Chapters 8–10, and Chapter 11), and the geographically distributed computer
systems (Chapters 9, and 11). We studied computer systems that serve large
numbers of users (Chapters 8, 9, and 11), in particular multi-organizational systems
(Chapter 8). We considered general multi-agent systems (Chapters 3–6, and
Chapter 7) and a specific, particularly interesting, example of the multi-agent
systems—a society participating in various kinds of referendums and elections
(Chapter 5 and 6).

Second, we presented a comprehensive comparison of the variety of distributed
systems and a number of models describing these systems. These systems and
these models differ in their scope and in their level of generality. For instance,
in the first part of this dissertation we considered a general model that describes
selecting a collective set of items. This general model has broad applications, ranging
from allocation of sharable resources, through recommendation systems, to election
systems. We described these applications in detail in Chapter 3. In the second
part we described more specific models that one needs to consider when studying
job scheduling and load balancing problems in distributed computer systems. In the
third part of this work we studied designing resource allocation mechanisms in real-life
complex distributed computer systems.

Third, we considered different types of problems in distributed systems. We
mostly focused on an algorithmic view and, in particular, we considered algorithmic
optimization problems. In general, in such problems our goal was to design algorithms
that compute efficient resource allocations. On one hand, we classified computational
complexity of a number of resource allocation problems. On the other hand, we
showed how to deal with computationally hard problems by applying parameterized
complexity theory, designing approximation algorithms, and, in case of particularly
hard problems, designing heuristic algorithms that work effectively in practice.
However, we also studied game theoretic problems, where we aimed at designing stable
and fair resource management mechanisms which guarantee that individual users have

313



incentives to operate in such managed systems. Additionally, in case of real-life
complex distributed computer systems, we showed how to design other elements
of resource allocation mechanisms, such as their architecture, their communication
protocols, their monitoring services, etc.

We believe that this multi-perspective and diversified view on resource allocation
problems is the core strength of this dissertation. In consecutive chapters we explained
the specific elements of the considered models and the key aspects that governed our
decisions regarding the formal questions we asked and the methodologies that we used
to obtain satisfactory answers. We think that by presenting diversified methodologies,
summarizing them, and by sharing our experiences, we will help other engineers
and scientists in choosing the approaches that would most suitably fit their resource
allocation problems. There is a number of take-home messages that we presented in
this dissertation and below we recall some of them. One of our main observations
was that, in many cases, the theoretically hard problems can be effectively solved
using relatively simple, yet insightful, algorithms. Somewhat surprisingly, we found
this observation true in each of the considered models and in each of the considered
systems. For example, in Part I we showed that greedy algorithms and their intuitive
enhancements can efficiently solve a theoretically hard problem of selecting a collective
set of items in many of its most interesting variants. In Part II we showed that a
natural scheduling algorithm that collects virtual money for computing someone’s
jobs and uses this money to pay for processing their own jobs is fair for the users. We
showed that gossip-based algorithms can be effectively used to balance the load even
in geographically distributed systems.

Our second interesting observation concerned methodologies used to evaluate the
quality of resource allocation mechanisms in real-life complex computer systems. Our
experiences suggest that the most insightful methodology is to run experimental
evaluation of such mechanisms in real systems. Both theoretical analysis of
such systems, and analysis through simulations often introduce simplification that
significantly affect their credibility. Yet, we admit that in many relatively simpler
contexts, specifically when some part of the system can be isolated and studied
separately from other elements, theoretical analysis and simulations provide a good
tool for evaluation, and allow one to get a deeper understanding of the nature of the
considered problems.

Last but not least, due to our multi-perspective approach, we gave an overview
of the desired properties of resource management mechanisms in several systems. In
the abstract model our main criterium was how close are the results returned by our
algorithms to the optimal solutions. Additionally, we argued that it is desirable to
look for algorithms that work well with limited information—this is because very often
finding complete information for a given model is either impossible or expensive. In
the second part, we focused on fairness and stability of the algorithms. We argued that
such criteria are important to consider in systems that gather different organizations,
or simply serve a number of different, independent users. In Chapters 9 and 11 we
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analyzed fault-tolerance of our algorithms, and in Chapter 10 we described a scenario
where it is important to ensure predictability of an algorithm and its stability when
confronted with dynamic changes in the workload.

Apart from giving a comprehensive view on resource allocation in distributed
systems, our work brings other high-level contributions. In case of multi-agent
and multi-organization systems our algorithms allow one to better organize
resource acquisition and resource management among groups of agents and
organizations. Thus, our algorithms improve certain processes involving cooperation
and communication between agents and organizations. When viewed from this
perspective, we believe that our work is a step toward promoting cooperation between
people and between organizations, and toward improving their communication.

We also believe that by linking concepts from different domains we popularize
certain classes of problems to a broader scientific community. One example of such
a link, presented in this dissertation, is that we show how to view election systems
as resource allocation, and vice-versa (giving also the relation to some fundamental
theoretical problems such as the MaxCover problem). Another example is that
we continue the trend that takes the concepts from non-cooperative and cooperative
game theory and shows how to apply them in the domain of distributed systems.

We emphasize that the results presented in this dissertation have many direct
applications. For instance, we recall that our resource management mechanism from
Chapter 10 have already been used in the production version of the commercial storage
system HYDRAstor for several years. We already work on integrating our scheduling
algorithms from Chapter 8 with CometCloud [65], a framework for running real-world
applications on supercomputers and in data-centers. Finally, we believe that our
algorithms from Chapter 5 will, eventually, make it possible to use the two appealing
election systems in practice.

The technical contributions of our work are numerous. As we already discussed,
in the third part of this work we discussed resource allocation mechanisms in real
complex distributed systems, and we shared our experiences from considering resource
allocation problems in real target environment. Further, in Chapters 3 and 7 we
introduced new mathematical models that formalize some fundamental resource
allocation problems. In the first two parts of the dissertation we established
computational complexity and proposed exact, approximation, and heuristic
algorithms that work very well in practice, for a number of variants of several
important resource allocation problems. In Chapters 5, 8, and 9 we additionally
confirmed our theoretical results by experiments. The contribution of the theoretical
part of this dissertation is not limited to analysis of the complexity and of the
approximation properties of the optimization algorithms. In Chapters 7, and 8 we
presented how game theoretic solution concepts can be applied to resource allocation
mechanism, and we showed how to design resource allocation mechanisms that
are incentive-compatible, and, in effect, stable in the context of multi-agent and
multi-organizational systems.
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Finally, for each of the considered questions, we suggested interesting future
directions of research and we shared the ideas on how to extend the presented results.

In this dissertation we also addressed a more general problem. We tried to alleviate
the negative impact of impossibility results given by the complexity theory. Even
though many interesting computational problems that we face when trying to optimize
various business processes are NP-hard, or even inapproximable, we argue that not
everything is lost. Indeed, the worst-case complexity of a problem does not preclude
that such a problem can be effectively handled in practice. The hardest instances of
many problems are often rare and, since in many business processes we just want to
be able to find sufficiently good results in sufficiently many cases, sometimes these
rare hard instances can simply be ignored. This problem has already been addressed;
for instance Leyton-Brown el al. [175] considered statistical hardness of problems. In
some way we continue this line of research and, by showing that certain problems
are, on one hand, theoretically hard, and, on the other, we can solve most real-life
instances of them effectively, we exposed the tension between different methodologies
of solving and evaluating solutions of computational problems. We believe that there
is no clear answer as to which methodology is superior. However, when addressing
the problems we should not be discouraged by the hardness results and we should
follow the curiosity that fits so well in the human nature. Taking another look at the
hard problem and finding a new approach helps understanding the true complexity
of the problem.4

4Taking this line of research we already extended some of the presented results. For instance, for
the problem of finding winners in parliamentary elections, considered in Chapter 5, we analyzed a
domain restriction describing the class of “reasonable” votes’ distributions [283]. For some of such
natural restrictions we showed that the original problem becomes solvable in polynomial time.
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