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Abstract

In this dissertation we take an algorithmic view on resource allocation problems in distributed systems.
We present a comprehensive perspective by studying a variety of distributed systems—from abstract models
of generic distributed systems, through more specific and detailed models, to real distributed computer
systems. These systems differ with respect to the nature of the resource allocation problems and with
respect to the methodologies required to effectively solve them.

Effective resource allocation in distributed systems is a fundamental problem. Computer systems require
good resource management mechanism to ensure expected functionality and expected quality of service. Even
in our everyday life we often participate in resource allocation mechanisms. The examples range from cutting
a cake at the birthday party to parliamentary elections and referendums (where the participating candidates
can be viewed as resources).

We start our discussion from considering a general computational model that describes the problem of
selecting a collective set of items for the shared use by a group of agents. This model is very general; it does
not specify what is an agent and what is an item, and, thus, can be applied to many different scenarios.
Indeed, we show that our model captures many real-life resource allocation problems. For instance, our
algorithms for this general model can be applied to recommendation systems, e.g., to select a collection
of movies for a plane, or to allocate students to sport classes based on their preferences. Our algorithms
are also applicable to the problem of finding a proportional representation of a society in some collective
decision-making body, i.e., to find winners in some modern parliamentary election systems. We analyze
multiple variants of our general problem of selecting a collective set of items.

Next, we move to more specific models of computer systems. In these models we introduce several new
elements such as jobs, processors, and the network. Each of these elements can be further described by a
set of parameters. For instance, jobs have their release times, resource requirements, and durations; further,
their durations might depend on the processors on which they are run; the processors might be identical or
heterogeneous. The network connections can be described, e.g., by bandwidth and communication latencies.
Consequently, in these models we focus on several variants of a more general problem. We ask how to schedule
jobs to minimize their aggregated completion time, with specific variants of this question depending on the
aggregation method and on the characteristics of the elements of the model. We establish computational
complexity of variants of this scheduling problem and, in particular, we show effective algorithms optimizing
jobs’ schedules. We also provide analysis of other properties of our algorithms, such as their fault-tolerance
and their game-theoretic stability.

In the last part of this dissertation we consider resource allocation problems in real implementations of
complex distributed systems. We consider two storage-based systems: HYDRAstor, which is a commercial,
distributed, scalable, high-performance, secondary storage system targeted for the enterprise market, and
our prototype implementation of a P2P backup system. We explain how the design of resource allocation
mechanisms for such complex systems is different from our previous approaches. In this part we present
and discuss relatively more complex resource allocation mechanisms; these mechanisms consist of multiple
elements and even of whole resource allocation subsystems. Further, they aim at achieving multiple
(sometimes contradicting) goals.

Keywords: distributed systems, multi-agent systems, algorithms, complexity, approximation, game
theory, social choice, cooperation, competition, proportional representation.

ACM clasification: CCS — Theory of computation — Design and analysis of algorithms
CCS — Computing methodologies — Artificial intelligence — Distributed artificial intelligence —
Multi-agent systems
CCS — Computer systems organization — Architectures — Distributed architectures



Streszczenie

W  ponizszej rozprawie badamy algorytmy zarzadzania zasobami w systemach rozproszonych.
Przedstawiamy kompleksowe spojrzenie na te tematyke: rozwazamy roézne systemy—od ogdlnych,
abstrakcyjnych modeli, przez bardziej konkretne, dedykowane modele, po rzeczywiste systemy rozproszone.
Rozwazane systemy réznia sie specyfika probleméw zarzadzania zasobami oraz metodologia, ktora jest dla
tych probleméw najbardziej adekwatna.

Efektywne zarzadzanie zasobami w systemach rozproszonych jest problemem o fundamentalnym
znaczeniu. Systemy komputerowe wymagaja dobrych mechanizméw zarzadzania zasobami aby zapewnic¢
odpowiednia jako$¢ ustug dla uzytkownikéw. Roéwniez w naszym codziennym zyciu czesto uczestniczymy
w mechanizmach zarzadzania zasobami. Przyklady takich mechanizméw to miedzy innymi podziat tortu
na przyjeciu urodzinowym, czy referenda, a nawet wybory parlamentarne (w tym przypadku mozemy
utozsamia¢ kandydatow startujacych w wyborach z zasobami).

W pierwszej czedci rozprawy rozwazamy ogodlny, abstrakcyjny model ktory opisuje problem wyboru
podzbioru pewnych obiektow, ktore nastepnie beda wspoltdzielone przez grupe uzytkownikéw. Ten model
jest bardzo ogélny poniewaz nie specyfikujemy kim (lub czym) dokladnie jest uzytkownik i czym dokladnie
sg owe obiekty. W rezultacie, rozwigzania oparte o ten model mozemy zaaplikowaé¢ do wielu rzeczywistych
probleméw, takich jak przydzial studentéw, w oparciu o ich preferencje, do uniwersyteckich kurséw, czy
znajdowanie wlasciwych rekomendacji. Takie rekomendacje moga dotyczy¢, na przyktad, wyboru zbioru
filméw dostepnych na pokladzie samolotu. Nasze algorytmy znajduja takze zastosowanie w znajdowaniu
proporcjonalnej reprezentacji dla grupy ludzi, czyli np. aby znalezé zwyciezcéw w niektoérych nowoczesnych
systemach wyboréw parlamentarnych. W niniejszej rozprawie analizujemy wiele specyficznych wariantow
tego ogblnego zagadnienia.

W drugiej czesci rozprawy rozwazamy bardziej specyficzne modele opisujace systemy komputerowe. W
tych modelach pojawiaja sie nowe elementy, takie jak zadania, procesory, czy sie¢ komputerowa. Kazdy z
tych elementéw moze by¢ opisany przez zbiér parametrow: zadania majg swoje czasy powstania, wymagania
zasobéw, czy czasy wykonania. Dlugos¢ trwania zadania moze ponadto zaleze¢ od rodzaju procesora
na ktérym zadanie zostato uruchomione: procesory moga by¢ identyczne lub heterogeniczne. Polaczenia
sieciowe moga by¢ opisane przez przepustowos$é lub/i latencje komunikacji. Naturalnie w tych modelach
zadajemy roéwniez bardziej specyficzne pytania. Pytamy jak uszeregowaé zadania, aby zminimalizowaé¢ ich
zagregowany czas zakonczenia. Specyficzne warianty tego pytania roznia sie w zaleznosci od metody agregacji
oraz w zaleznosci od cech charakterystycznych wybranych elementéw modelu. W rozwazanych modelach
badamy zlozono$¢ obliczeniowa réznych wariantéw problemu szeregowania, w szczegdlnosci pokazujac
efektywne algorytmy do optymalizacji uszeregowania zadan. W tej cze$ci rozprawy analizujemy rowniez
inne cechy naszych algorytmow, takie jak odpornosé na bledy czy (teorio-growa) stabilnosé.

W ostatniej czesci rozprawy rozwazamy problemy zarzadzania zasobami w rzeczywistych, ztozonych,
komputerowych systemach rozproszonych. Rozwazamy dwa rzeczywiste systemy przechowywania danych:
HYDRAstor, ktory jest komercyjnym, rozproszonym, skalowalnym systemem przechowywania danych, oraz
nasza prototypowa implemenacje systemu do tworzenia kopii zapasowych danych, opartego o architekture
P2P. Wyjasniamy czym rézni sie projektowanie mechanizméw zarzadzania zasobami dla takich systeméw od
poprzednio rozwazanych przypadkéw. W tej czesci prezentujemy relatywnie bardziej zlozone mechanizmy
zarzadzania zasobami: mechanizmy te skladaja sie z wielu elementéw, a nawet z wielu podsystemoéw
zarzadzania zasobami. Co wiecej takie podsystemy moga mie¢ czasami sprzeczne ze sobg cele.

Stowa kluczowe: systemy rozproszone, systemy wieloagentowe, algorytmy, ztozonosé, aproksymacja,
teoria gier, wybor spoteczny, kooperacja, konkurencja, proporcjonalna reprezentacja.

Klasyfikacja ACM: CCS — Teoria obliczen — Projektowanie i analiza algorytmow
CCS — Metodologie obliczeniowe — Sztuczna inteligencja — Rozproszona sztuczna inteligencja — Systemy
wieloagentowe
CCS — Zorganizowane systemy komputerowe — Architektury — Rozproszone architektury
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Chapter 1

Introduction

In this dissertation we take an algorithmic view on resource allocation problems in
distributed systems. We present a comprehensive perspective by studying a variety
of distributed systems—from abstract models of generic distributed systems, through
more specific and detailed models, to real distributed computer systems. These
systems differ with respect to the nature of the resource allocation problems and
with respect to the methodologies required to effectively solve them.

Effective resource management is a challenge of fundamental significance that we
face in our everyday life. On one hand, we all need resources. We, as human beings,
need biological resources for a healthy living; we, as the society, need natural and
economic resources for a sustainable development; we, as organizations of various
kinds, need human resources to reach our goals. On the other hand, resources are
often limited and hard to access. For instance, some are accessible only by coordinated
cooperative groups of people equipped with expensive hardware (the examples from
our everyday life include mining or obtaining semi-manufactured resources as products
of complex industrial processes). Consequently, people make continuous efforts to
acquire and to use resources effectively.

This challenge of effective resource usage and management is also extremely
pressing in the context of computer systems. Computer systems need resources to
offer expected functionality, to offer quality of service, and to serve large numbers
of users. The resources are, however, expensive. Some are accessible only to
large cooperative coalitions of smaller systems. Such unique resources include,
for example, (i) high computational power, (ii) geographically distributed servers,
and (iii) large virtual disk space. Indeed, we already witness the phenomenon of
cooperation in computer systems provoked by the desire to obtain these unique
resources. There are organizations that consolidate their supercomputers into clouds
to obtain greater computational power (e.g., PL-Grid [242], EGEE [93]|, DAS [76],
GRID5000 [40]). There are vast content delivery networks designed to efficiently
distribute web content around the world (e.g., Akamai [194,226]). Further, there
are common people joining P2P storage systems to get access to geographically



distributed disk space (e.g., Freenet [62], or previously Wuala [193]). Cooperation
is also natural in the scientific community. For example, consider PlanetLab [58]—a
system in which participating scientists from all over the world give access to their
servers to the central administration unit. After providing their servers to the system,
the scientists are allowed to run large-scale experiments using large, geographically
disperse, infrastructure. Another example is BOINC [11]—a system that lets common
people contribute the computational power of their desktop machines to research
projects from many scientific areas. BOINC is an example showing how cooperation
of common people allowed to create a distributed system with high computational
power.

Above, we argued the importance and universality of resource management
problems in general. We think, however, that effective resource management
is especially imperative in distributed systems. Indeed, distributed systems are
ubtquitous. For instance, all the examples given above concern resource management
in distributed systems. The human body is a system consisting of multiple organs, or
even billions of cells. The society is a distributed system consisting of the citizens. The
universities, or research centers, are distributed systems gathering scientists. In fact,
we often participate in resource management mechanisms in our everyday life, even
though we do not often realize we do so. The examples range from cutting a cake at a
birthday party (see [246] for a survey on the cake cutting problem), where a cake is a
resource to be shared within a system of children playing at a party, through waiting
in a queue to a post office [221], where a post office is a resource accessed by a system
of customers, to parliamentary elections and referendums, where the participating
candidates are resources to be selected for the system of citizens. Similarly, resource
management is crucial for distributed computer systems, such as computational grids,
content delivery networks, and P2P storage systems, composed of large numbers of
computational units governed by multiple (virtual) organizations.

Both in our everyday life and in computer systems, we can observe two concepts
aimed at making resource management more effective. First, there is a strong
tendency to use resources wisely, i.e., not to waste resources. Second, we observe
coordination and participation in joint efforts to acquire, maintain and use resources.
Both concepts, optimization and cooperation, may require sophisticated resource
management mechanisms.

The challenges in designing effective resource allocation mechanisms include, on
one hand, designing accurate yet simple models of appropriate business processes
and, on the other hand, designing algorithms that solve optimization tasks
regarding these models. Taking into account the fact that the participating entities
(people, organizations) may have contradicting goals, the challenge also includes
designing incentive-compatible and fair mechanisms. The stability of organizationally
distributed systems requires ensuring that each organization has an incentive to
participate in the system. In particular, we would like the profits obtained by
the system to be shared between the participating organizations in a fair and



effective manner. Any system that fails to provide fair and well-optimized resource
management will collapse either because it will not be competitive or because the
organizations will simply have no desire to join it.

Addressing the aforementioned challenges is often hard. This is confirmed
by theoretical studies that bring many evidences for the difficulty of resource
allocation problems. For example, effective resource management may require solving
computationally difficult, NP-hard, problems. This NP-hardness might seem as an
invincible barrier, especially because distributed systems require mechanisms that
scale well and that are able to handle large input data. Worse yet, NP-hardness
of various resource allocation problems is not the only obstacle. For example,
in the multi-agent systems, where the process of making decisions is distributed,
the strategic behavior of participating agents may lead to suboptimal and socially
undesired outcomes (for example, as in the prisoner’s dilemma [254|, the famous
paradox). Furthermore, stable situations in which agents have no incentive to act to
change the current state may not exist. Finally, real complex computer systems may
require whole interacting subsystems of resource management mechanisms.

In this dissertation we take up the gauntlet and argue that in practice we can often
solve resource allocation problems effectively and efficiently. On one hand, we provide
proofs of theoretical difficulty of various resource allocation problems in distributed
systems. On the other, we show effective, if not ideal, solutions that can be used in
practice. In particular, we present the following techniques:

1. We show efficient algorithms giving very good approximation guarantees for the
underlying computational problems.

2. We experimentally confirm that our algorithms very well approximate the
optimal solutions.

3. We show how to apply game-theoretic solution concepts for resource
management in various distributed systems.

4. We design new effective resource management mechanisms for some example
real-life distributed systems (these mechanism include systems’ architectures,
algorithms, and communication protocols).

We present a comprehensive, multi-perspective approach to resource allocation
problems in distributed systems. We start from an abstract high-level model
describing the problem of selecting and allocating items to agents (Part I:
Chapters 3-6). Next, we consider specific and more complex models of computer
systems and related scheduling problems (Part II: Chapters 7-9). Finally, we analyze
resource allocation problems based on real implementations in two real-life systems
(Part III: Chapters 10 and 11). We show that changing the perspective from the
general and relatively simple mathematical model to a specific and complex one



exposes different challenges and different problems. In each case, however, we show
how the resource allocation problems can be handled effectively and efficiently.

Below we give a more detailed overview of the further parts of this dissertation.
Additionally, each part of this dissertation starts with an overview shortly describing
the considered problems and summarizing our main contributions.

Part I. We start our analysis by considering a general problem of selecting a
collective set of items ranked by the agents. Let us explain this allocation problem
through an example. Consider a company that wants to provide free sport classes
to its employees. There is a set of employees (who we refer to as the agents) and
a set of sport classes (which we refer to as the items). The company, due to a
limited budget, wants to select only K classes to be run, and then wants to assign
the employees to the classes. Naturally, the company wants its employees to be as
happy as possible with the provided classes.

This example is a specific case of the general problem of selecting a collective set
of items for the agents. In Part I we explore its several variants, corresponding to
different ways of measuring the satisfaction of the agents from the items. These
variants address the following issues:

1. We address two ways in which the agents can express their preferences regarding
each single item. On one hand, they can assign numerical values measuring
their utilities from having particular items selected. For instance, an agent can
assign utility 4 to item aq, and utility 2 to item as, meaning that her level of
satisfaction, according to some metric, from a; is twice as high as from as. On
the other hand, they can express their preferences as rankings. For example,
an agent might have preference ranking a; > ag > - - - > a,,, meaning that for
him or her a; is the most attractive item, a3 is the second most attractive one,
and so on, until a,,, which is the least appealing one.

2. We address different ways to measure the satisfaction of a single agent from
groups of items. In the above example, since an agent is assigned to a single
item, it is natural to assume that her satisfaction from the group of selected
items is her satisfaction from the item to which she is assigned. We might
think of other ways of measuring the satisfaction of an agent. For instance, in
some scenarios it is reasonable to assume that the satisfaction of an agent from
the group of items is the sum of her satisfactions from the individual items
in that group. However, more complicated schemes exist too. For example,
an agent might use the top preferred item certainly, the second one probably,
the third one perhaps, etc., and thus her total satisfaction would be mostly
influenced by her satisfaction from the top preferred item, significantly by her
satisfaction from the second preferred item, slightly by her satisfaction from the
third preferred item, and so on.



3. We address different ways to aggregate the satisfaction of multiple agents. For
instance, we might want to maximize the sum of the utilities of the agents (the
utilitarian approach) or to maximize the utility of the least satisfied agent (the
egalitarian approach), or to use some yet other approach.

As we advocated before, this model captures some fundamental computational
challenges from many real-life problems. Here, we only give several examples, and
for the detailed discussion we refer the reader to Chapter 3. The algorithms for the
problem of selecting a collective set of items can be used (i) in recommendation
systems [188], (ii) for determining the proportional representation of the society in
some collective body such as a parliament [47,210], (iii) for determining the optimal
locations for certain facilities (for instance, to set the locations of the hospitals in a
city) [57,145,269], and (iv) in the group activity selection problem [75] (for instance,
to select some from the many options that the conference attendees have for a free
afternoon).

We establish the computational complexity of the considered variants of the
problem of selecting a collective set of items. We show polynomial-time, FPT, and
exponential-time approximation algorithms. For some most interesting variants
we additionally assess the quality of our algorithms through experiments, using
real data describing peoples’ preferences. We show that our algorithms, when
evaluated on these data traces, approximate the optimal solutions significantly
better than indicated by the theoretical (worst-case) guarantees. Finally, some of
the most interesting variants of the problem, we show that the algorithms preserve
their high quality of approximation even if we have incomplete agents’ preferences,
truncated to a certain number of the top positions.

Part II. In the second part of this dissertation (Chapters 7-9) we consider resource
allocation problems in several more specific models. We abandon the general
notion of an item and we introduce more specialized elements, such as machines
with their processors, jobs that we intend to run on these machines, the durations
of these jobs and the time moments they were created, the strategic interactions
between the agents, an so on. These new elements allow us to consider more
specific problems and their dedicated solutions.

In this part we focus on three example problems:

1. In Chapter 7 we study strategic interactions between teams of agents competing
for an employment in a project. This chapter is an intermediate step in our
analysis—on one hand we start from a generic model that describes general
agents competing for an employment in a project and, on the other hand, we
show that this generic model can be specialized with a particular scheduling
model describing specific agents in a specific setting. Thus, our solutions from
this chapter may be applied to various natural problems.



2.

In Chapter 8 we consider a problem of finding a fair resource allocation
mechanism in a distributed system consisting of multiple organizations sharing
their infrastructures. This chapter concerns a concrete scheduling model in
which we have a number of organizations, each owning a set of processors.
The organizations merge their infrastructure and each organization can process
its own jobs on any available processor. The jobs arrive continuously but
neither their arrival pattern nor their durations are known in advance. The
organizations want to have their jobs completed as quickly as possible, but in
some busy periods there might not be enough processors to handle all incoming
jobs immediately and some organizations must wait for free processors. We
describe an algorithm that schedules the arriving jobs on the available processors
in a way that is fair to the organizations.

. In Chapter 9 we address load balancing problems in centrally-managed,

geographically distributed systems. Similarly as in Chapter 8, we consider a
concrete model of a distributed computer system. In our model there is a
number of servers connected with a high-bandwidth network. The servers need
to process large numbers of small user requests (such as web page requests)
arriving continuously with unknown pattern. The servers can redirect requests
to be handled on other servers, but each redirection causes a certain delay. We
describe algorithms that efficiently compute which requests should be redirected
to which servers to minimize the average user waiting time.

Since our goal is to give a comprehensive view on resource allocation problems in
distributed systems, this part of the dissertation shows a diversified perspective on
several aspects of resource management.

1.

We show a diversified view on the agents behavior and interaction. Chapter 7
considers strategic agents and studies their competition. Chapter 8 examines
the problem of finding a fair schedule from a cooperative game theory
standpoint. Chapter 9 describes an organizationally centralized distributed
system owned by a single entity.

. We study different models of physical distribution of the system. Chapter 7

abstracts from the notion of a physical distribution. Chapter 8 considers
a computational grid in which the communication latencies between the
processors and the users are negligible when compared to the jobs’ processing
times. In Chapter 9 we consider a geographically distributed system in which
the communication delay of the task contributes a significant part to their total
completion time.

We use different techniques in analyzing our resource allocation mechanisms.
In Chapter 7 we analyze several solution concepts from game theory. We prove
the correctness of our algorithms by showing that the game-theoretic solutions
have, somehow, natural structure. Consequently, we show simple and intuitive



exact algorithms. In Chapter 8 we analyze the parameterized complexity and
approximability of the main discrete problem. In Chapter 9, on the other hand,
we analyze the approximability of the problem in which input data is given in
the form of continuous, fully divisible loads, and continuous functions.

Part III. In the two previous parts we studied relatively simple systems for which
we could obtain theoretical models. The solutions obtained through analysis
of these models can be, then, applied in practice. For instance, we are
currently working on implementing our fair scheduling algorithms, described in
Chapter 8, in CometCloud [65], an autonomic framework for running applications
on supercomputers and in data centers. Some systems, however, are too complex
to get an accurate mathematical model, suitable for a formal study. In this part
we describe how to design resource management mechanisms for such complex
systems.

There are many reasons for which the theoretical analysis of real-life complex
systems is particularly difficult.

1. The quality of resource management mechanisms in some complex systems is
affected by a number of factors that depend on each other, and, so, no single
problem can be isolated and studied independently. For instance, let us consider
the task of designing an effective backup system, while using only inexpensive
and unreliable computers. Since we are forced to use low-end infrastructure,
we cannot relay any important functionality of the system to a small group of
computers. Indeed, such a design would be particularly vulnerable to failures.
Consequently, we want to design a P2P system, i.e., a distributed system that
consists of a network of computers, each having the same status and role.

(a) To achieve good performance of such a system, we would aim at maximizing
the concurrency of the backup operation and, so, we would aim to store our
data on as many physical machines as possible. In our system, however,
some machines may be less reliable than others and some machines may be
often unavailable; using them as storage machines might result in serious
problems, such as data unavailability or even data loss. Thus, in such a
system, the requirements concerning reliability cannot be easily decoupled
from the performance-based goals. In general, in real-life complex systems
we often face multi-criteria optimization problems [91,95,167,309] in which
single-criteria subproblems cannot be isolated, and thus the models get
deeply complicated.

(b) The daily availability of a machine might be a factor influencing whether
such a machine can be used to store data. For instance, if a machine A is
available every day between 8am and 1pm and machine B is available only
between 2pm and 10pm, then A cannot directly send its data to B. On the
other hand, if we could provide an effective asynchronous communication
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between the machines, we might decide to use low-availability machines
for storage as well. For instance, if there exists machine C' that is usually
available between 11lam and 4pm, then A can send its data temporarily to
C during the period of common availability; next, C' can pass the data to
B as soon as B rejoins the system. Thus, the existence of a mechanism
providing asynchronous communication influences the main assumptions of
a mechanism responsible for data distribution.

2. Real-life systems are often complex and they consist of many elements. Effective
resource allocation requires managing many dependent and independent
resources, and involves many mechanisms, such as network protocols,
monitoring services, maintenance services, allocation algorithms in multiple
software components, etc. Even if these mechanisms could be treated as
black boxes and designed and studied independently from each other (which
is very often impossible), it is particularly difficult to analyze the system and
its properties as a whole.

3. Complex systems might have multiple contradicting goals. Let us, again,
consider an example of a P2P backup system. To achieve resiliency to
geographically-correlated disasters (such as earthquakes, floods, or fires) we
would like to keep data in remote locations.  This, however, stays in
contradiction with the performance-oriented goals. It is not clear how to
precisely describe, in a model, this trade-off between many contradicting goals.

In addition to the above discussion, we often are not aware which elements of the
whole system are important and need to be taken into account during the design
process. Consequently, it is not only hard to provide a suitable formal analysis of
resource management mechanisms in real-life complex systems, but also it is hard
to propose simplifications that would allow one to run simulations of some parts
of the system. We can very often use wrong assumptions and miss the important
factors that need to be taken into account, simply because we are not fully aware of
them. Thus, we argue that in some real complex systems we require a methodology
that focuses on emulation rather than on simulation or formal analysis. In such
cases we need to perform the experiments on a real system, to confirm its desired
properties.

In this part of the dissertation we address the issue of designing effective
resource management mechanisms in real-life complex systems, where the formal
methodology and simulations cannot be successfully applied.

In Chapter 10 we consider a real resource allocation problem that is taken
from HYDRAstor [89,218|, the commercial storage system developed by NEC
Corporation [219]. In this system we address the problem of distributing resources
between loads of various types, such as user reads and writes, reconstructions of
missing parity data, data defragmentation tasks, and other background activities.



Since we are given an existing commercial system, our goal is to design a mechanism
that is decoupled from the rest of the system. Thus, this mechanism cannot
interfere with other parts of the system and, in particular, cannot influence the way
in which data is distributed between physical nodes. We describe a fuzzy adaptive
control mechanism for sharing resources among various types of highly-variable
loads. This mechanism ensures proper division of the total system throughput
between different categories of the tasks and maintains high resource utilization.
Additionally, it does not influence other parts of the system.

In Chapter 11 we consider a different approach to designing resource management
mechanisms. In this approach we do not want to provide a decoupled resource
management mechanism, but instead we present a whole architecture for a
P2P backup system that allows one to implement certain resource allocation
mechanisms. For instance, this architecture supports data placement strategies
that allow one to achieve certain goals, according to a given policy. These goals
include reliability to geographically correlated disasters (placing data replicas far
away from each other), performance of read/write operations (placing replicas on
strong, non-overloaded servers), or putting small burden on the network (placing
data replicas close to each other). We also present other mechanisms supporting
effective resource management, such as mechanisms allowing for asynchronous
communication.

To sum up, in this dissertation we show a comprehensive and multi-perspective
view on resource management in distributed systems. We show how to effectively
and efficiently solve the resource allocation problems. High-level contributions of this
thesis are as follows:

1. We describe new models that capture resource allocation problems, in particular
new classes of cooperative and strategic games (Chapters 3, 7, 8, and 9).

2. We analyze computational complexity of various resource allocation problems
(Chapters 4-9).

3. We show algorithms (exact, approximate, fixed parameter tractable, heuristic,
centralized, and distributed) for some fundamental problems regarding resource
allocation in distributed systems (Chapters 4-11).

4. We show how to apply non-cooperative game-theoretic (Chapter 7) and
cooperative game-theoretic (Chapter 8) solution concepts to ensure stability
of resource allocation algorithms in some example distributed systems.

5. We show how to design resource allocation mechanisms in two real-life
distributed systems—in HYDRAstor, a high-performance secondary-storage
system aimed at the enterprise market (Chapter 10), and in our prototype
implementation of a P2P backup system (Chapter 11).
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6. We perform experimental evaluation of some of our mechanisms. We
perform simulations to show good approximation properties of our algorithms
(Chapters 5, 8, and 9), and their small convergence time (Chapter 9). We
perform experiments on real systems to show that our algorithms are stable, that
they result in high resource utilization and satisfy resource allocation objectives

(Chapters 10, and 11).

We believe that three most valuable technical results presented in this thesis are
the following.

1. In Chapter 5 we show several good approximation algorithms for winner
determination under two appealing election systems—the Monroe and
Chamberlin—Courant systems. Actually, we prove stronger results, giving
guarantees on the satisfaction of agents, independently of the preference profile
or the quality of the optimal solution. For instance, for the Polish parliamentary
elections, where the the parliament consists of 460 members and the number
of candidates is approximately equal to 6000, our algorithms guarantee that
each voter is, on average, represented by a candidate that she prefers to 99%
of the candidates (in case of Chamberlin—-Courant system) and to 96% of the
candidates (in case of Monroe system). We believe that our algorithms will,
eventually, make it possible to use the two appealing election systems in practice.

2. In Chapter 6 we describe approximation algorithms that run in FPT time for
the MAXCOVER problem. MAXCOVER is a very useful theoretic problem that
finds applications in several fundamental resource allocation problems.

3. In Chapter 8 we present how to apply game theoretic solution concept to create
a fair scheduling algorithm. Our algorithm operates without using the concept
of money, which makes it particularly practical. We show several practical
effective scheduling algorithms that give good fairness guarantees.

Our results have been published in the following conferences (6 of them are
currently under review in various journals):

1. P. Skowron, K. Rzadca and A. Datta. People are Processors: Coalitional
Auctions for Complex Projects (Extended Abstract). In Proceedings of
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2014) [282],

2. P. Skowron, P. Faliszewski and A. Slinko. Fully Proportional Representation
as Resource Allocation: Approximability Results. In Proceedings of The 2013
International Joint Conference on Artificial Intelligence (IJCAI-2013) [276],

3. P. Skowron and K. Rzadca. Non-monetary fair scheduling: a cooperative game
theory approach. In Proceedings of 25th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA-2013) |281],
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4. P. Skowron, P. Faliszewski and A. Slinko. Achieving Fully Proportional Repre-

sentation is Easy in Practice. In Proceedings of 12th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2013) [275],

P. Skowron, M. Biskup, L. Heldt and C. Dubnicki. Fuzzy adaptive control for
heterogeneous tasks in high-performance storage systems. In Proceedings of 6th
Annual International Systems and Storage Conference (SYSTOR-2013) [273],

P. Skowron and K. Rzadca. Fair Share Is Not Enough: Measuring Fairness
in Scheduling with Cooperative Game Theory.  In Proceedings of 10th
International Conference on Parallel Processing and Applied Mathematics

(PPAM-2013) [279],

P. Skowron and K. Rzadca. Network Delay-Aware Load Balancing in Selfish and
Cooperative Distributed Systems. In Proceedings of 2013 IEEE International

Symposium on Parallel € Distributed Processing, Workshops and Phd Forum
(IPDPSW-2013) (280,

P. Skowron and K. Rzadca. Exploring heterogeneity of unreliable machines for
P2P backup. In Proceedings of The 2013 International Conference on High
Performance Computing € Simulation (HPCS-2013) |278|.

The contents of Chapter 10 are patented (US Patent 2013 nr. 20130031563, and WO
Patent 2012 nr. WO/2012/029259). Yet for the sake of clarity of the presentation we
do not include these extended results in the main text. Our results have also been
presented at a number of workshops, such as:

1.

The Fourth Workshop on Cooperative Games in Multiagent Systems
(CoopMAS). Saint Paul, USA, 2013 [276,281],

Forum Informatyki Teoretycznej FIT (An informal annual meeting of Polish
researchers working on theoretical computer science) in Torun, Poland in 2013
and in Jarnottowek, Poland in 2014 [274-276],

6th Multidisciplinary Workshop on Advances in Preference Handling
(M-PREF-2012). Montpellier, France, 2012 [276],

New Challenges in Scheduling Theory Workshop (Fréjus, France, 2012 and
Aussois, France, 2014) [280,281], and

The Workshop on Economic and Computational Aspects of Game Theory and
Social Choice. Warsaw, Poland, 2014 [274,282].
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Chapter 2

Preliminaries

In this chapter we introduce our notation and recall fundamental concepts from the
cooperative and strategic game theory (Section 2.1), and from the (parameterized)
complexity theory (Section 2.2). We conclude this chapter by giving a dictionary and
a brief overview of the NP-hard problems used in our further discussions (Section 2.3).

2.1 Game Theory

Throughout this dissertation we often refer to agents. Agents are autonomous,
intelligent, rational, and goal-oriented entities, which make decisions that affect the
systems that we study. Agents can represent human beings, organizations, pieces of
software, or intelligent computer systems, depending on the setting.

Game theory is a study of decision making by agents. Games formalize strategies
the agents can choose from and the outcomes of using these strategies, i.e. the results
of the players’ chosen actions. In game theory, a solution concept is a formal rule
that describes how rational agents would behave. It allows to predict the strategies
of the agents and the results of the game.

In this section we review several solution concepts from non-cooperative and
cooperative game theory. These concepts commonly assume that the agents are
selfish and rational, i.e., that each agent aims at maximizing her own profit.
The cooperative approach differs from the non-cooperative one in the way agents
interact. In particular, the cooperative game theory considers scenarios where it
is possible and profitable for agents to cooperate and to form binding agreements.
Consequently, the solution concepts from the cooperative game theory aim at defining
the ways in which the total profit of the cooperative coalition should be distributed
among its participants to ensure fairness and stability of the formed coalition. The
non-cooperative game theory, on the other hand, studies scenarios where agents make
their decisions independently. Thus, in the non-cooperative view there is no concept
of a binding agreement, and, so, the solution concepts aim at predicting agents’
strategies (predicting how a game will be played) rather than describing conditions for
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profit distributions that guarantee stable agreements. For the more detailed discussion
on the cooperative and non-cooperative game theoretic solution concepts we refer the
reader to the book of Osborne and Rubinstein [231].

2.1.1 Non-Cooperative Game Theory

Formally, a game is defined by a set of agents, sets of their available strategies (also
referred to as their actions), and a set of their payoff functions (which will be defined
later). We usually denote the set of agents as N = [n], where for each n € N, by
[n] we mean {1,...,n}. The set of actions of agent i is denoted by S;. A strategy
profile Z is a vector of actions of all agents; i.e., ¥ = (x1,2s,...,z,), where z; € S;
for every ¢ € N. By (z},x_;) we denote the strategy profile = after replacing the
i-th agent’s strategy x; with zi. We define S as the set of all strategy profiles:
S =51 x5y x---x .8, The payoff function of agent i, f; : S — R, defines for
every strategy profile & = (x1,x9,...,x,) the payoff that agent i receives, provided
every agent j € N takes action z;; intuitively, the agents choose their strategies to
maximize their payoff.

There are many known solution concepts in the strategic game theory, some of
which we briefly describe below.

Nash Equilibrium

Perhaps the most famous solution concept in game theory is the Nash
equilibrium [217]. Intuitively, Nash Equilibrium describes a state in which no agent
can benefit from changing her strategy. In other words, in Nash Equilibrium every
agent is playing her best action, given the strategies of the others.

Definition 2.1. A strategy profile * € S is a Nash Equilibrium if no unilateral
deviation in strateqy by any single agent is profitable for that agent. That is, ™ € S
is a Nash Equilibrium if it holds that:

Vi,x; € Sit filwi, o) < filx],2%,).

Nash equilibria do not necessarily exist, and, indeed, this is the case for many
natural games [231]. On the other hand, we can consider the concept of a Nash
Equilibrium that is defined for mized strategies, where players choose a probability
distribution over their actions and are interested in maximizing their expected utility.
It is natural to ask the question about the existence of Nash Equilibrium in mixed
strategies. In 1950, Nash proved one of the most famous result in game theory, saying
that under mild assumptions about the game, Nash equilibria in mixed strategies are
guaranteed to exist [217].
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Strong Nash Equilibrium

The notion of the Nash equilibrium implicitly assumes that agents cannot (or do not
want to) communicate and, thus, that they make their decisions in isolation. In many
real-life scenarios, however, this is not the case and the agents can coordinate their
strategies. For such games, Aumann [15] proposed a refinement of the concept of a
Nash Equilibrium known as the Strong Nash Equilibrium (SNE).

In the definition below we extend the notation (z},z_;) in a natural way so that
for a given subset of agents N’ = {i;,...in} € N and a vector of their actions

rn = (2 x, ), by (xyr, z_N/) we mean the strategy profile that we obtain after

410" i‘Nl‘

replacing for each i € N’ the i-th agent’s strategy x; with 2.

Definition 2.2. A strategy profile x* € S is a Strong Nash Equilibrium (SNE) if no
unilateral deviation in strateqy by any set of agents is profitable for every deviating
agent, i.e., x* is an SNFE if:

(W = {ir, .. i} C Noaw =z}, .x;w,g) (Elz' e Nf); Filwn, a* ) < fila?).

The concept of the SNE is very restrictive and there are relatively few games for
which an SNE exists. Unfortunately, there is no result analogous to the existence of
Nash Equilibria for the case of mixed strategies. For this reason, SNE has been
criticized as being too strong. In effect, alternative, weaker, concepts, such as
coalition-proof Nash equilibrium [23| and Coalitional Farsighted (Conservative) Stable
Set [82], have been proposed. Since these two solution concepts are less common, we
recall their definitions and provide a discussion of their applications in Chapter 7,
which is the only place in this dissertation where we use them.

Pareto Efficiency

Pareto Efficiency [184], also referred to as Pareto Optimality, is another concept of
stability. It defines a state in which we cannot improve the payoff of any agent without
reducing the payoff of some other one. Thus, Pareto Efficiency also defines the concept
of global optimality: non Pareto-efficient states can undoubtedly be improved upon
with no harm to any agent.

Definition 2.3. A strategy profile x* € S is Pareto-efficient if there exists no profile
x € S such that (i) every agent under x gets at least as good a payoff as under z*,
and (ii) there exists some agent that under x gets strictly better payoff than under x*.
Formally, x* is Pareto-efficient if:

Ve e S: (Ji e N: fi(z) < fi(z")) or (Vie N: fi(z) = fi(z")).

The concept of Pareto Efficiency is also popular in the context of multi-criteria
optimization [91,95,167]. If we want to optimize a function with several independent
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Figure 2.1: Graphical illustration of the Pareto optimal set in the context of bi-criteria
optimization. The Pareto optimal set consist of the elements marked with the cross.

criteria, we ideally want to find a Pareto optimal solution, i.e., a solution for which
there is no single criterion in which the optimization function can be improved
without reducing its quality according to some other criterion. The concept of Pareto
Efficiency is graphically illustrated in Figure 2.1.

2.1.2 Cooperative Game Theory

Cooperative game theory analyzes scenarios where agents work together to achieve
some goal. In the cooperative game theory we often refer to the sets of agents as the
coalitions. Formally, a cooperative game is defined by the set of agents N and the
characteristic function: v : 2% — R that describes how much payoff each coalition of
agents C C N can get. We assume that the empty coalition (empty set of agents)
cannot gain any payoff, v(()) = 0. Additionally, in the cooperative game theory the
characteristic function is often assumed to satisfy superadditivity.

Definition 2.4. A set function v : 28 — R is superadditive if it satisfies the following
condition:

for every S, T C N such that SNT = (), we have v(SUT) > v(S) + v(T).
Alternatively, it is also often assumed that the characteristic function is cohesive.

Definition 2.5. A set function v : 2% — R is cohesive if for every collection
S1, ..., Sk of patrwise disjoint subsets of N whose union is N, it holds that:

> 0(S;) < v(N).

i=1
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Intuitively, superadditivity and cohesiveness state that players can collectively achieve
a higher value than in separated coalitions. Each of these conditions is, in some
sense, a minimal natural requirement for agents to form a grand coalition, a coalition
consisting of all agents. A stronger assumption to superadditivity, is convexity.

Definition 2.6. A game is convex if v(0) = 0 and for every S,T C N, we have:
v(SUT)4+v(SNT)>v(S)+v(T).

Solution concepts in cooperative game theory define rational divisions of the total
value of the grand coalition v(N) between its members. Such divisions are often
referred to as payoff vectors. Payoff vector & is a vector of n nonnegative values
¥ = (r1,9,...,2,), where the i-th value x; denotes the payoff allocated to the i-th
agent. There are many known solution concepts in the cooperative game theory [231]
including, e.g., the stable set [212], the core [112], the kernel [77], the nucleolus [257],
and the Shapley value [265]. Below, we briefly describe those three that we use in the
further parts of this dissertation.

The Shapley Value

The Shapley value [265] is an established solution concept in the cooperative game
theory, whose goal is to define a fair division of the total value of the coalition between
its participants. The Shapley value of the player i in a coalitional game (N, v) is:

oty = > FHEZEED s 0 i) - uis),

SCN\{i}

We often refer to the value (v(SU{i}) —v(S)) as the marginal contribution of the
i-th agent to the coalition S. Thus, the Shapley value of an agent ¢ can be viewed as
a weighted marginal contribution of . This view can be formalized by the following
alternative definition of the Shapley value [231].

Let Ly denote all possible orders over the set of agents N. Each order <y can be
associated with a permutation of the set N, so |Ly| = |N|!. For each order <y € Ly
we define <n (i) = {j € N : j <y i} to be the set of all agents that precede i in the
order <y. The Shapley value can be expressed in the following form:

:Wll! S (v(=n(D)U{i}) —v(=x())- (2.1)

<NELN

¢i(v)

As we noted, this formulation has an interesting interpretation. The Shapley value,
¢;(v) is the expected marginal contribution of the agent ¢ to the grand coalition,
provided that we choose the order in which agents join uniformly at random.

The Shapley value is characterized by a number of desirable properties [129,305].
Below, we recall the first axiomatic characterization proposed by Shapley [231]: The
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Shapley value is the unique map from the set of all games to payoff vectors (naturally,
in this case (¢1(v), p2(v), ..., P, (v)) is a payoff vector) that satisfies the following four
properties:

Efficiency. The total value v(N) is distributed:
S 6i(0) = ().
i€N

Symmetry. If the agents ¢ and j have the same marginal contributions, they need
to obtain the same profits:

(Vscraes (S UL} = v(SU (7)) = 6i(v) = ().

Additivity. If we combine two games (N, v) and (N, w), into a new game (N, v+w),
defined as (v 4+ w)(S) = v(S) + w(S), then for every i € N, we have:

¢i(v +w) = ¢i(v) + di(w).

Dummy (Null player). An agent that does not increase the value of any coalition
S C N gets nothing:

(vSCN (S UL = U(S)) = ¢i(v) = 0.

The Core

The core [112] is the concept from the cooperative game theory that is very closely
related to that of Strong Nash Equilibrium from the non-cooperative game theory.
The core describes the set of payoff vectors which are stable, in the sense that no
coalition of agents can deviate so that all its members are better off.

Definition 2.7. The core of the cooperative game (N, v) is the set of all payoff vectors,
such that for each such a vector & = (x;)ien it holds that (i) the total value of the
coalition is distributed ), x; = v(N), and (i) there exists no coalition S C N, and
no payoff vector (y;)ien, such that . y; = v(N) and y; > x;, for alli e S.

Similarly to the Shapley wvalue, the core can be characterized alternatively to
Definition 2.7, by the two following axioms:

Efficiency: ), z; = v(N).
Coalitional rationality: V.S C N: > . x; > v(S).

Consequently, the core is the set of vectors satisfying a system of linear inequalities,
and, so, it is closed and convex.The core is always well-defined, but can be empty;
emptiness of the core is analogous to the cases in non-cooperative games when Nash
equilibria do not exist.
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The Stable Set

The stable set [212] (also known as the von Neumann-Morgenstern stable set) was
one of the first solution concepts proposed for the cooperative games. The stable set
describes the set of all payoff vectors that dominate the payoff vectors from outside
the set, and, at the same time, are not dominated by any other payoff vectors from
the set.

Definition 2.8. A payoff vector & = (x1,xs, ..., x,) is dominated by a payoff vector
U= (Y1,Y2,---,Yn), when y is preferred to T by all the members of some coalition C,
i.e., if there exists a coalition C # () such that:

1. For each i € C it holds that y; > x;, and

2. Ziec Yi < U(C)'

Definition 2.9. A set S of payoff vectors is called a stable set if it satisfies two
properties:

1. No payoff vector in S is dominated by another vector in S.

2. Fach payoff vector outside S is dominated by some vector from S.

The idea behind the stable set is the following. A coalition C is not satisfied with
the payoff vector when it can propose an alternative division of the total value that is
more profitable for all of its members. Such coalition may threat the stability of the
grand coalition agreement by breaking out and implementing their proposed division
without the other agents. However, coalition C will have a unilateral incentive to
break out only if the newly proposed division is stable, as otherwise other coalitions
may object to the proposal of C, and consequently, after such a sequence of objections,
some members of C may end up in a worse than initial state. If we select a payoft
vector from the stable set, then no coalition will have such unilateral incentive to
break out and implement an alternative payoff vector.

The stable set may not exist and if it exists it is usually not unique. There is an
elegant connection between the stable set and the core. First, for each cooperative
game its core is a subset of each of its stable sets (we recall that the stable set might
not be unique). Second, if the core is exactly equal to some of the games’ stable sets,
then for such game the stable set is unique, and, so, the notions of the core and of the
stable set are equivalent. Interestingly, for convex games there exists a unique stable
set that coincides with the core; also, for these games the core contains the Shapley
value.

2.2 Complexity and Algorithms

We assume familiarity with standard notions pertaining to algorithms and worst-case
complexity theory (such as definitions of the decision and optimization problems; the
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classes P and NP, many-one reductions, NP-completeness, etc.). Below we review
the most essential concepts regarding parameterized complexity and approximation
algorithms.

2.2.1 Parametrized Computational Complexity

We sometimes use results from the theory of parameterized complexity developed by
Downey and Fellows [87]. This theory allows one to single out a particular parameter
of the problem, say K, and analyze its contribution to the overall complexity of the
problem. An analogue of the class P here is the class FPT which consists of problems
that can be solved in time f(K)n®®, where n is the size of the input instance, and
f is some computable function.

For example, consider the VERTEXCOVER problem in which we are given a graph
and our goal is to find the smallest possible subset C' of vertices such that each edge of
the given graph is incident to some vertex from C'. One of the natural parameters for
VERTEXCOVER is the size of the optimal solution, K = |C|. VERTEXCOVER can be
solved by an exhaustive search in time O(2% Kn). (The key observation to obtain the
mentioned complexity is that each edge can be covered by only two vertices, and that
in the optimal solution all edges need to be covered.) This algorithm has exponential
running time, but the exponential part of its complexity depends only on the value
of the parameter K. Thus, VERTEXCOVER for the parameter K is fixed parameter
tractable (FPT).

From the point of view of parameterized complexity, FPT is seen as the class
of tractable problems. There is also a whole hierarchy of hardness classes, FPT C
W[1] € W[2] C ---W[P] C ---. The standard definitions of W[1], W[2], ... are quite
involved and so, instead of providing them here, we point the reader to appropriate
overviews [87,102,222]. However, we can also define these classes through a notion of
an appropriate reduction to their complete problems.

Definition 2.10 (Parametrized reduction [87]). Let P and P’ be two decision
problems parameterized by natural number parameters K and K', respectively. We
say that P reduces to P’ through a parameterized reduction if there exist a mapping
F: P — P (computable in FPT time with respect to parameter K) and two
computable functions, g: N — N and h : N — N, such that:

1. for each instance (I, K) € P the answer to (I, K) is “yes” if and only if the
answer to F(I) = (I', K') is “yes”,

2. K and K' are the values of the parameters KC and K" respectively,
3. |I'l < g(K)poly(|1]), and

J. K' < h(K).
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The parameterized reduction (sometimes also referred to as an FPT reduction)
simultaneously preserves the instance size (point (iii) in the above definition) and the
size of the parameter (point (iv)). The size of the instance I’ does not have to be
bounded by a polynomial of the size of I, but the exponential part of the relation
between the sizes of I and I’ must depend only on the value of the parameter.

W]1] is the class of all problems for which there is a parameterized reduction to the
CLIQUE problem (with parameter K). In the CLIQUE problem we are given a graph G
and we ask whether in G there exists a set S of K vertices such that every two vertices
from S are connected. WI[2] is the class of problems with parameterized reductions
to SETCOVER (with parameter K). In the SETCOVER problem we are given a set
of elements N and a set F of subsets of N. We ask whether there exist K subsets
from F such that each element of N belongs to at least one of these subsets. We
define and describe most relevant computational properties of the problems CLIQUE
and SETCOVER in Section 2.3.

2.2.2 Approximation

Let P be an algorithmic problem where, given some instance I, the goal is to find a
solution s that maximizes a certain function f. We call such problems maximization
problems. Given an instance I of P, we refer to the value f(s) of an optimal solution s
as OPT(I) (or, sometimes, simply as OPT if the instance I is clear from the context).

Definition 2.11 (Approximation algorithm). Let §, 0 < < 1, be some fized
constant. Let A be an algorithm, for a mazimization problem P, that given an instance

I returns a solution A(I). A is called a (-approzimation algorithm for the problem
P if for every instance I of P it holds that f(A(I)) > SOPT(I).

Analogously, we define OPT(/) and the notion of a «-approximation algorithm,
v > 1, for the case of minimization problems, where the task is to find a solution
that minimizes a given goal function g. Given an instance I of such a minimization
problem P’ a y-approximation algorithm is required to return a solution s’ such that
g(s') < AOPT(1).

We are particularly interested in settings where it is possible to obtain arbitrarily
good approximation algorithms.

Definition 2.12 (PTAS). A polynomial time approximation scheme (PTAS) for a
mazximization (minimization) problem P is an algorithm that for every e > 0 provides
a polynomial (1 — €)-approximation algorithm (a polynomial (1 + €)-approximation
algorithm) for P.

Definition 2.13 (FPTAS). A fully polynomial time approzimation scheme (FPTAS)
for a maximization (minimization) problem P is an algorithm that for every e >
0, and for every instance I of P provides an (1 — €)-approximation (an (1 +
€)-approximation) solution for I in time polynomial in the instance size |I| and the
approzimation parameter 1/e.
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In our analysis we sometimes use the powerful result of Nemhauser et al. [220],
which says that greedy algorithms achieve 1 — % approximation ratio when used
to optimize nondecreasing submodular functions. Below, we explain what are the

nondecreasing and submodular functions and recall the result of Nemhauser et al..

Definition 2.14 (Nondecreasing set function). A set function z : 2¥ — R s
nonincreaing if for every S; C Sy C N we have z(S1) < z(53).

Definition 2.15 (Submodular set function). Let z : 2V — R be a set function defined
for each set S C A. We say that z is submodular if for every Sy C Sy C N and every
x € N\ Sy we have that:

2(S1U{x}) — 2(S1) > 2(Sy U{z}) — 2(S7).

There are many other equivalent definitions of submodularity [220], but
throughout this dissertation we will only use the definition given above.

Theorem 2.1 (Approximating submodular functions [220]). Let z : 2¥ — R be a
nondecreasing submodular set function. Consider the problem P of selecting S C N
such that |S| = K and z(S) is mazimal. The greedy algorithm that starts from an
empty solution S = 0 and in each of K iterations adds to the solution the element x
that mazimizes z(S U {z}), is an (1 — 1/e)—approximation algorithm for P.

2.3 Overview of NP-hard Problems

Below we recall definitions of, and provide some background information for, some
NP-hard problems used throughout our discussions.

We start from defining the SAT and 3-SAT problems. These are perhaps
most fundamental problems known in the complexity theory. In particular, SAT
is famous as the first known example of an NP-complete problem, as proved by
Cook in 1971 [67] and, independently, by Levin in 1973 [174]. These results were a
significant breakthrough in complexity theory. Below we provide definitions of the
two problems—these definitions will be useful in our further discussions, but we will
not use them explicitly in our proofs of hardness.

Definition 2.16. In the SAT problem we are given a propositional formula, that is
built from (i) variables, (ii) operators “and” (conjunction), “or” (disjunction), and
“not” (negation), and (iii) parentheses. We ask whether there exists an assignment of
the logical values “true”, and “false” to the variables, that the given formula is true.

Definition 2.17. The 3-SAT problem is defined analogously to the SAT problem,
with the single difference, that the propositional logic formula is given in the specific
form: it is a conjunction of clauses, each clause being a disjunction of at most three
literals, where a literal is either a variable or its negation.
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2.3.1 Covering Probelms

In many of our hardness proofs we use reductions from various covering problems,
that is, different variants of the SETCOVER problem, defined below.

Definition 2.18 (SETCOVER). An instance I of SETCOVER consists of set U = [n]
(called the ground set), family F = {Fy, Fy, ..., F,,} of subsets of U, and of a positive
integer K. We ask if there exists a set I C [m] such that ||I|| < K and J,c; 5 = U.

SET-COVER remains NP-complete even if we restrict each member of U to belong
to at most two sets from F. The simple greedy algorithm that in each step selects
a set that covers the largest number of yet-uncovered elements gives approximation
guarantee O(log(n)) [60] (where n denotes the number of elements). This is the
best possible approximation ratio that a polynomial-time algorithm may achieve [98].
If the frequency of the elements, defined as the number of sets an element can
belong to, is bounded by a constant p, then an algorithm based on LP-relaxation
gives approximation guarantee equal to p [293]. SET-COVER is also hard from the
perspective of parameterized complexity. For the parameter K, denoting the number
of sets in the optimal cover, it is W[2]-complete. (Indeed, in this thesis we define
W|[2] as the class of problems that FPT-reduce to SET-COVER.)

SETCOVER has several interesting variants.

Definition 2.19 (X3C). EXACT3SETCOVER (X3C) is a variant of SET-COVER
where ||U|| is divisible by 3, each member of F has exactly three elements, and K =
1ol
3
X3C remains NP-complete even if we additionally assume three sets from F [107].
In SETCOVER we minimize the number of sets that we have to pick to cover
the whole ground set. Instead, we might want to maximize the number of ground
set elements that we can cover using some K sets from F. This is captured by the
MAXCOVER problem.

Definition 2.20 (MAXCOVER). In the MAXCOVER problem we are given a set N
of n elements, a family S = {S1,...,Sm} of m subsets of N, and an integer K. The
goal is to find a size-at-most-K subcollection of S that covers as many elements from
N as possible.

MAXCOVER is NP-hard by a simple reduction from SETCOVER. The greedy
algorithm that in each of K iterations adds to the solution a set that covers most
yet uncovered elements, achieves approximation ratio (1 — 1/e) [135] (the same
result can be also obtained by applying Theorem 2.1, and this is optimal unless
P = NP [98]|. Surprisingly (by comparison to SETCOVER), there are no known
results on approximating the MAXCOVER problem with the bounded frequencies of
the elements. From the point of view of the parameterized complexity, MAXCOVER
with no bounds on frequencies of the elements is known to be W[1]-complete [126].
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There is also an FPT algorithm for MAXCOVER, for parameter T, i.e., the number of
elements to be covered, due to Bléser [32]. Establishing the parameterized complexity
and parameterized approximability of MAXCOVER with frequencies bounded by a
constant is a problem that we study in Chapter 6.

2.3.2 Graph Problems

In some hardness proofs it is convenient to take advantage of some additional
structure, for instance to use graphs. A graph G = (V, E) consists of a set of objects
V' (referred to as vertices) where some pairs of objects are connected by edges (with £
denoting the set of all edges). In graph theory we distinguish undirected and directed
graphs. In the undirected graphs the edges are symmetric, that is if a vertex v is
connected by an edge e with a vertex w, it implies that w is also connected with v
by the same edge e. Consequently, in undirected graphs an edge can be defined as a
two-element subset of vertices. This is not the case for the directed graphs, where we
can rather think of the edges as of the ordered pairs of vertices. In this dissertation
we will mostly use undirected graphs. Further, we will always assume that there are
no loops in the considered graphs, that is, that a vertex cannot be connected with
itself by a single edge.

One of the basic notions regarding undirected graphs that we will further use
is the degree of a vertex, which is the number of edges adjacent to this vertex.
Similarly, for directed graphs one can define the in-degree and the out-degree of a
vertex, as the number of edges pointing at the vertex and pointing away from the
vertex, respectively.

We will be particularly interested in one specific class of undirected graphs—in
bipartite graphs.

Definition 2.21. An undirected graph G = (W, E) is bipartite if its set of vertices W
can be divided into two disjoined sets, U and V', such that every edge e € E connects
some vertex from U with some vertex from V (there are no edges between any two
vertices from U, and between any two vertices from V). Such bipartite graph will

hereinafter be denoted as G = (U UV, E).
Definition 2.22. A bipartite graph G = (V U U, E) is balanced if |V| = |U]|.

For more details on the graph theory we refer the reader to the book of West [302].
Some graph problems are special cases of the covering problems. For instance, the
VERTEXCOVER problem defined below is a special case of the SETCOVER problem.

Definition 2.23 (VERTEXCOVER). In the VERTEXCOVER problem we are given an
undirected graph G = (V, E), where V.= {vy,..., v} and E = {ey,...,e,}, and a
positive integer K. We ask if there is a set C' of up to K wvertices such that each edge
is incident to at least one vertex from C.
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Indeed, if we identify the edges with the elements and the vertices with the sets
(saying that a vertex “contains” its all incident edges), we see that VERTEXCOVER
is a special case of SETCOVER with the frequencies of the elements equal to two:
each edge is incident to exactly two vertices, and, so, it is contained by exactly two
sets that correspond to these vertices. However, the two problems, VERTEXCOVER
and SETCOVER with element frequencies equal to two, are not equivalent—in
VERTEXCOVER every pair of vertices is connected by at most one edge. This means
that for every pair of sets that correspond to two different vertices, these sets have at
most one common element. In the frequency-bounded variant of SETCOVER, on the
other hand, any two sets may have arbitrarily many common elements.

Analogously, the CUBICVERTEXCOVER problem, defined below, is a special case
of the X3C problem with the frequencies of the elements equal to two.

Definition 2.24 (CUBICVERTEXCOVER |[8]). The CUBICVERTEXCOVER problem
1s tdentical to the standard VERTEXCOVER problem, except that each vertex in the
imput graph has degree equal to three.

Both VERTEXCOVER and CUBICVERTEXCOVER are NP-hard [8,107].

Finally, the MAXVERTEXCOVER is the special case of the MAXCOVER with the
frequencies of the elements equal to two (though, again, we stress that MAXCOVER
with frequencies bounded by two is strictly more general than MAXVERTEXCOVER.).

Definition 2.25 (MAXVERTEXCOVER |[8|). In the MAXVERTEXCOVER problem we
are given an undirected graph G = (V| E), and two positive integers—K and T. We
ask if there is a set C' of up to K wvertices such that there exists at least T edges, each
incident to at least one vertex from C.

To the best of our knowledge, the best polynomial-time approximation algorithm
for MAXVERTEXCOVER is due to Ageev and Sviridenko [5], and achieves
approximation ratio of %. However, in various settings, it is possible to achieve better
results; we mention the papers of Han et al. [128] and of Galluccio and Nobili [106]
as examples.

From the point of view of parameterized complexity, MAXVERTEXCOVER was
first considered by Guo et al. [126], who have shown that it is W[1]-complete. The
problem was also studied by Cai [39] who gave the currently best exact algorithm for
it, and by Marx, who gave an FPT approximation scheme® [196].

In our reductions we sometimes also use some other graph problems, which do not
have such a clear relation to the covering problems.

!The definition of an FPT approximation scheme is similar to the definition of a polynomial time
approximation, with the difference that instead of requiring a polynomial time complexity of the
algorithms we require them to run in FPT time. Thus, in case of a maximization problem P, an FPT
approximation scheme provides for every € > 0 a (1 — ¢)-approximation algorithm for P, running in
FPT time. FPT approximation schemes for minimization problems are defined analogously.
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Definition 2.26 (CLIQUE). In the CLIQUE problem we are given an undirected graph
G = (V, E) and we ask whether there ezists a subset S CV of K wvertices, such that
all the vertices from S are connected in G.

Definition 2.27 (DENSEST-K-SUBGRAPH). In a DENSEST-K-SUBGRAPH problem
we are giwen an undirected graph G = (V| E) and a positive integer K. We ask for a
subgraph S with K vertices with the mazimal number of edges.

DENSEST-K-SUBGRAPH is a generalization of the CLIQUE problem, from which
it follows that it is NP-hard. Furthermore, it seems that DENSEST-K-SUBGRAPH
is quite hard to approximate. Khot [164]| ruled out the existence of a PTAS for
the problem under standard complexity-theoretic assumptions, Bhaskara et al. [30]
showed the polynomial integrality gap, Raghavendra and Steurer [249] and
Alon et al. [9] proved that there is no polynomial-time approximation algorithm
with a constant approximation ratio, but under somewhat non-standard assumptions.
Finally, the best approximation algorithm for the problem that we know of, due to
Bhaskara et al. [29], has approximation ratio O(n'/**€), where n is the number of
vertices in the input graph.

Another variant of the CLIQUE problem is the MAXIMUM EDGE BICLIQUE
PrROBLEM (MEBP) problem defined below. Here, however, the connection to the
CLIQUE problem is a bit less explicit and for the appropriate reduction we refer the
reader to the paper of Petters [239).

Definition 2.28 (MEBP). In the MAXIMUM EDGE BICLIQUE PROBLEM (MEBP)
we are given a balanced bipartite graph (U UV, E) where U UV is the set of vertices
(Ul = IV||) and E is the set of edges (there are edges only between the vertices from
U and V). We ask for a biclique (i.e., a subgraph S, such that every vertex from
U NS is connected with every vertex from V N S) with as many edges as possible.

According to Feige and Kogan [99], there exists a constant ¢ such that there is
no polynomial (20\/1‘5_” /n)-approximation algorithm for MEBP unless for some € we
have 3-SAT € DTIME(2"3/4+€). Currently it seems unlikely that such an algorithm
for 3-SAT exists. For some of our arguments it will be more convenient to define and
use the following variant of MEBP.

Definition 2.29 (MEBP-V). In MEBP-V we are given the same input as in MEBP
and a positive integer K. We ask for a biclique S such that |SNV| = K and S
contains as many edges as possible.

Lemma 2.2. There exists a constant ¢ such that there is no polynomial-time
(2°Ve™ /n)-approzimation algorithm for MEBP-V unless for some ¢ we have

3-SAT e DTIME(2""*).

Proof. For the sake of contradiction, let us assume that there exists a constant
¢ and a polynomial-time (2°V!8"/n)-approximation algorithm A for MEBP-V. By
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running A for every value of K ranging from 1 to ||V||, we obtain a polynomial-time
(2¢VTe™ /n)-approximation algorithm for MEBP. This stays in contradiction with the
result of Feige and Kogan [99]. O

2.3.3 Partition and Packing Problems

In a few cases, for the sake of convenience, we also use reductions from some other
problems.

Definition 2.30 (SUBSETSUM). In the SUBSETSUM problem we are given a set
S = Az, x9,...,2,} of n integers and a value x, and we ask whether there exists a
subset S" C S such that ), o v = .

The SUBSETSUM problem is NP-hard, but it is often considered as one of the
easiest NP-hard problems. If the values of the elements in the set S are bounded by
a constant C', a simple dynamic program solves the problem in time O(nC'). Further,
SUBSETSUM admits a simple FPTAS [216].

Definition 2.31 (BINPACKING). In the BINPACKING problem we are given a set
T ={ty,ta,...,t,} of q items and their sizes (the size of item t; is denoted s;), and a
set N of n bins, each having capacity d. We ask whether it is possible to pack all the
items into the bins.

Definition 2.32 (UNARYBINPACKING). This problem is identical to BINPACKING
except for the fact that all input parameters are encoded in unary.

UNARYBINPACKING is W([1]-hard [147] when parameterized by n, the number of
bins. We use this result to show parameterized hardness of some problems for small
values of the numeric parameters. W[l]-hardness of UNARYBINPACKING is slightly
alleviated by the result of Jansen et al. [147|, who showed an additive 1-approximation
algorithm running in FPT time even for BINPACKING (thus, to pack the items this
algorithm uses at most one more bin than the optimal algorithm). Interestingly,
in terms of multiplicative approximation there is no PTAS for the problem under
standard complexity assumptions.
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Chapter 3

The Model and Its Applications

3.1 Overview

In this part of the dissertation we analyze the problem of selecting a “good” set of items
that can be collectively used by a group of agents. We analyze the computational
complexity of the problem, and we show effective algorithms for its different variants.
Throughout this part we use the term “item” in its most general meaning, so that items
may be movies, goods, candidates in political elections, etc. Under this interpretation,
“selecting a set of items” may correspond to many real-life scenarios, ranging from
selecting a set of movies for an airplane, through deciding which journals a university
library should subscribe, to selecting a group of people (e.g., a parliament) to represent
a society. The agents have their preferences over the items and, intuitively, the set of
items is considered “good” if it results in a high satisfaction of the agents. We explore
several natural ways of measuring the quality of a set of items and several natural
ways in which the items can be shared among the agents. We will briefly describe
our approaches in the further part of this overview.

A number of real-world problems consist of selecting a set of items for a group of
agents to jointly use. Among many natural problems that our approach addresses,
we can find the following ones.

1. Selecting a set of activities. Consider a conference where the organizers want
to set up a number of activities for the participants, for a free afternoon. The
organizers face the problem of selecting a set of good items: here the agents are
the conference participants and the items correspond to the activities that the
organizers consider for selection. Consequently, by saying that an agent ¢ uses an
item a we mean that 7 attends the activity a. Clearly, the conference participants
can have diversified preferences and satisfying them all might not be possible.
If the conference organizers decide to select a single activity, it is likely that
many participants will be unhappy and will choose to stay in their hotel rooms.
To avoid such a situation, the organizers may select more, say, K > 2 activities
and allow the participants to choose the preferred one. This way it is likely
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that the number of unhappy participants will decrease. However, for obvious
reasons (e.g., the cost or logistical inconvenience), the organizers cannot decide
to select too many activities; after the careful consideration they might decide
on some particular value of K, the number of selected activities. Nevertheless,
some choices of K activities are better than the others. The organizers would
look for the best choice that would satisfy the participants most.

. Selecting a set of (sport/language) classes for students. This example is similar
in nature to the previous one. Here, the agents are the students and the items
correspond to the (sport/language) classes. We say that a student i uses an
item a if she is assigned to the class a. The university wants to select the set
of K sport (or language) classes for the students. The selected classes are,
then, available for the students’ registration. However, in comparison with the
previous example, this one exposes an additional issue. Here it is natural to
assume that the classes have strict capacity restrictions: each item (each class)
can fit only up to some maximum number of students (agents). Consequently,
it may happen that some students will not be able to register for their most
preferred classes. Thus, in addition to selecting a good set of classes (the classes
most liked by the students), the university would look for a good assignment of
the students to the selected classes.

. Selecting a set of movies for a plane. In this example an airline wants to
select a set of movies to provide for the passengers on the plane’s entertainment
system. Naturally, the airline would select such movies that would satisfy the
passengers most. Thus, in this case, the agents are the plane passengers and the
items correspond to the movies considered for selection. Consequently, using an
item a corresponds to watching a movie a. Since every passenger is allowed to
watch any available movie, in this example, in contrast to the previous one, the
items have no capacities. This example is, however, different from the first one
too: It is unnatural to assume that each passenger would see a single movie only
(would use a single item). It is more likely that the passengers would derive
their satisfaction based on various subsets of available movies.

. Finding a proportional representation for a group of people. Let us consider
elections in which we want to select a set of representatives (e.g., a parliament,
or some other collective body) for a given society. At first sight, this example
might look totally different from the previous ones. However, after a careful
consideration we will see that selecting a good parliament is nothing different
from selecting a good set of items. The agents are the voters and the
items correspond to the candidates participating in the election. In this
example, however, it is less clear how the preferences of the voters over the
sets of candidates (i.e., over the possible parliaments) can look like. For
instance, even though the voters can have their precise preferences over single
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candidates, it is unclear how they can be extended to the preferences over
the committees (parliaments). Two fully proportional representation systems,
the Chamberlin-Courant system [47] and the Monroe system [210], address
this issue and present the following appealing interpretation. If we want a
parliament to proportionally represent the society, then for each voter there
should be a member of the parliament that represents this voter well. When
viewed from this perspective, we can say that an agent ¢ (a voter i) uses an
item a if she is represented in the collective body by a. This idea was first
highlighted by Chamberlin and Courant [47] who proposed a mnovel election
system in which the satisfaction of the voter is defined as the satisfaction from
her best representative in the parliament. In this election system we pick a set
of candidates that satisfies the voters most. Monroe suggested a similar idea,
but in addition he required that each member of parliament represents roughly
the same number of voters [210]. Here, we just accent the intuition behind the
idea of viewing the elections systems as resource allocation and we present a
more detailed discussion in Chapter 5.

These, of course, are just several characteristic examples, and our model, formally
defined in the next section, captures fundamental computational challenges from
many other real-life problems. The above examples are all similar in nature, but
there are some substantial differences in ways in which items are shared between
agents. We can distinguish the two following basic approaches:

The disjunctive approach. In this approach every agent is allowed to use only
a single item from the selected set. This approach is natural, e.g., in the
activity selection problem, where the activities take place at the same time.
Consequently, each agent needs to choose which activity from the selected ones
he or she wants to attend. If there are no further restrictions, then, naturally,
every agent chooses her most preferred item. A special case of the disjunctive
approach, the capacitated disjunctive approach, additionally assumes that every
item has its capacity, i.e., the maximum number of agents that can comfortably
use this item. This approach is natural, e.g., in the problem of selecting a set
of (sport/language) classes, which usually have strict capacity restrictions.

The conjunctive approach. This approach is on the other extreme of the
spectrum of possibilities. Here we assume that each agent uses all the selected
items and that he derives equal parts of satisfactions from using each one
of them. Thus, e.g., if the airline wants to select K = 7 movies, then in
the conjunctive approach every agent would be interested in having all seven
selected movies compatible with her preferences. For example, the agent’s
satisfaction from the set of items could be the sum of this agent’s satisfactions
from all the selected individual items. This approach is usually adequate if
the number of selected items (e.g., the number of movies to be selected for the
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plane) is very small. Indeed, in the movie selection example it is hard to expect
the passengers to get satisfaction from all the movies if there is, say, K = 100
of them available. They would not even have the possibility to see all of them
during one flight. On the other hand, the conjunctive approach is natural if the
selected items are in some way independent and do not exclude each other. For
instance, if we select the set of K activities for a class of students, each taking
place in a different month, then each student will be able to participate (and
derive her utility) from all the selected activities.

The two basic approaches described above are on the extreme ends of a spectrum
of possibilities. In many real-life examples one should expect much more complicated
schemes in which the agents use (and get their satisfaction from) subsets of the
selected items. For instance, in the movie selection example, a passenger watches
her top preferred movie certainly, the second one probably, the third one perhaps,
etc. Thus, we should expect that the total satisfaction of such a passenger would be
mostly influenced by her satisfaction from the top preferred movie, less influenced by
her satisfaction from the second preferred movie, even less by the third one, and so
on. Similarly, if we consider the problem of selecting K journals for the university’s
library, then a reader will typically not be interested in having only a single favorite
journal, nor in having all journals compatible with her preferences, but rather she
will be most interested in having access to some 7" interesting journals. Even in the
parliament, the voters might want to be represented by some top 7" members of the
parliament rather than by a single person.

The above observation motivates us to propose a new approach. In this new
approach the impact of each selected item on the satisfaction of an agent may depend
on the rank of this item (from the agent’s point of view) among the selected ones.
Thus, in the movie selection example, the impact of the top preferred movie on
the satisfaction of a passenger is greater than that of the second preferred movie,
and so on. If we decided to remove the passenger’s top preferred movie from the
plane’s entertainment system, then the impact of the second movie would increase
(the passenger is more likely to watch the second movie, now that her favorite one
is not available). Formally, this new approach is defined by a vector of weights, and
thus we call it a weighted approach. The first weight quantifies the impact of the top
preferred item from the selected ones on the agent’s total satisfaction. The second
weight quantifies the impact of the second preferred item, and so on. We give the
precise formal definition of the weighted approach in the following section.

In addition to considering different ways in which the items can be used by the
agents (the disjunctive, conjunctive, and the weighted approach), we also explore
several ways of measuring the satisfaction of the agents from the selected items. There
are two main ways in which the agents can express their preferences regarding the
items (their satisfactions regarding the items): either the agents can express numerical
utility values for the items, or they can rank the items from the most desirable one
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to the least desirable one. Intuitively, the numerical utility values quantify the levels
of satisfaction of the agents from using particular items.

The preference rankings (also called the preference orders) carry less information
than the numerical utilities. However, in many contexts we can only hope for the
rankings, e.g., because it is too difficult for the agents to derive their exact numerical
values for the utilities. In cases where we have only agents’ preference rankings, but
we need explicit numerical values that quantify their satisfactions from the items,
we can use a positional scoring function, a function that for a given preference order
allows one to derive numerical utilities.

Intuitively, a positional scoring function (a PSF) assigns a certain value of utility
to an item ranked at a certain position. That is, the utility of an item depends solely
on its position in the agent’s preference order. There are several particularly popular
positional scoring rules. For instance, the Borda count is a PSF which assumes that
the utility associated with an item depends linearly on the position of that item in
the ranking (with the least preferred item assigned the utility equal to 0): If there
are m items in total, then the item ranked as i-th best has utility equal to (m — 7).
Another example of a popular positional scoring function is k-approval, in which the
first k£ items in the preference order get utility equal to 1, and all the remaining ones
get the utility equal to 0. We note that the Borda count PSF and the k-approval
PSF can be seen as two extremes. In the case of k-approval, the agents only have
extreme views regarding the items (they like them or not). In contrast, in the case of
the Borda count, they have a full linear spectrum of appreciation of the items.

Further, it is reasonable to assume that the formula for computing the satisfaction
of a single agent from the group of items depends on the way in which the items are
used by the agents. For instance, in the uncapacitated disjunctive approach, we
naturally assume that the utility of an agent from the selected set of items is just her
utility from the most preferred item in the selected set. In the capacitated disjunctive
approach this should be the utility of the item that the agent is assigned to, and in
the conjunctive approach, the sum of the agent’s utilities over all the selected items.

As we already noted, we very often deal with more complex schemes than the
disjunctive and the conjunctive one. For such cases we introduced the weighted
approach. On one hand, the weighted approach can be viewed as a technique to
describe how the items are used by the agents. On the other hand, it can be viewed
as a formula for computing the utility of the agents from the sets of items. From
the previous discussion we recall that the weighted approach is defined by the vector
of weights. The i-th weight quantifies the impact of the utility of the i-th most
preferred item in the set on the total utility of an agent. Thus, the utility of an
agent from the set of items is just an ordered weighted average [309] of her utilities
from the individual items in the set. Naturally, the weights used to compute the
ordered weighted average of the agent’s utilities are the same weights that we use to
describe the weighted approach. Consequently, we will refer to the vector of weights
that defines the weighted approach as the ordered weighted average vector (the OWA
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vector, sometimes also referred to as the OWA operator). We note that the weighted
approach is a generalization of both the conjunctive and the disjunctive approach.
Indeed, if the OWA vector has all weights equal, then the utility of each item has
the same impact on the agent’s total utility and such an OWA vector defines the
conjunctive approach. If the OWA has only the first weight greater than 0, then only
the most preferred item of a given agent affects her total utility. Consequently, such
an OWA vector defines the disjunctive approach.

Finally, there are various ways to aggregate the satisfaction of the whole groups of
agents, as well. For instance, we might want to maximize the sum of the utilities of
the agents (the utilitarian approach) or to maximize the utility of the least satisfied
agent (the egalitarian approach), or to use some yet other approach.

Apart from providing a formal specification of the new weighted model and
providing concrete examples and settings where particular OWA operators are
applicable, our goal in this part of the dissertation is to establish the computational
complexity of the problem of selecting an optimal set of items. In our computational
analysis we consider different ways in which an optimal set of items is defined. These
different ways correspond to:

1. Different classes of the agents’ utilities (e.g., explicitly given utility values, values
derived through positional scoring rules, with the focus on Borda count and
k-approval).

2. Different approaches to sharing the items (corresponding to different OWA
operators).

3. Two different approaches to aggregating the agents’ utilities: the egalitarian

and the utilitarian one’.

Our results show that in almost all cases (with the single natural exception
of the conjunctive utilitarian approach), the considered computational problem is
NP-hard. Nevertheless, we show many approaches that alleviate these hardness
results. In particular, we consider high-quality polynomial-time and exponential-time
approximation algorithms (for example, for some of our problems we show
polynomial-time and FPT approximation schemes). For some cases we experimentally
confirm the high quality of solutions found by our algorithms.

We believe that using approximation algorithms is justified for the considered
applications. For example, if we want to select a set of movies played at the same
time in a cinema, it is likely that an agent will enjoy watching a good movie even
though is is not her absolutely most favorite one. Consider another similar example:
Amazon.com may recommend you a book on gardening which may not be the best

!The egalitarian approach is usually much harder computationally. In Chapter 5 we show that
all the considered egalitarian versions of the disjunctive variant of the problem are inapproximable.
In further chapters we focus only on the utilitarian approach.
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book for you on this topic, but still full of useful advice. For such situations, Herbert
Simon [272] used the term ‘satisficing,” instead of optimizing, to explain the behavior
of decision makers under circumstances in which an optimal solution cannot be easily
determined. On page 129 he wrote: “Evidently, organisms adapt well enough to
satisfice; they do not, in general, ‘optimize’.” Effectively, what Simon says is that the
use of approximation algorithms fits well with the human nature.

Below, we briefly summarize the remaining content of this part of the dissertation.

In the further part of this chapter we formalize our model. We specify several
natural ways in which the items can be shared among the group of agents and several
ways to measure the satisfaction of the agents. We formalize the computational
problem of selecting a set of items. Next, we present our computational results in the
three following chapters.

In Chapter 4 we focus on the weighted conjunctive approach. We show that the
problem, and its (almost) every reasonable special case is NP-hard. In many contexts,
however, we do not require perfect optimal solutions and losing only a small fraction
of optimality is an affordable price. Motivated by this observation, we focus on the
approximation algorithms for the problem. Unfortunately, we show that our problem
in its full generality is hard to approximate. Next, we consider some more specific
classes of OWA vectors, as well as some specific types of agents’ utilities. The main
message of our computational results in this chapter is that although our problem in
general is hard, it has different approximation properties depending on the class of
OWA vectors used and the nature of agents’ utilities.

In Chapter 5, we consider the disjunctive and the capacitated disjunctive
approaches to sharing the items.? Most of our results are given for the variant in
which we get the utilities of the agents by applying the Borda count to their preference
rankings. In this approach, the problem of finding the optimal selection of the
items is both NP-hard [188,245|, and hard from the perspective of the parameterized
complexity theory [27]. These hardness results hold for every reasonable positional
scoring function, both for the utilitarian and the egalitarian variant. Similarly as in
Chapter 4, here we also study the approximability of this variant of the problem.

Apart from the several new hardness results, we find that the utilitarian version
of the problem can be approximated with very high quality. Our algorithms give even
better results when evaluated on real data describing peoples’ preferences. We show
that our algorithms preserve their high quality even if we have incomplete data in the
form of preference orders truncated to the certain number of top positions.

In Chapter 6 we further explore the utilitarian version of the problem of selecting
the set of items with the disjunctive approach to sharing the items, but for another
measure of agents’ satisfaction. Here we consider the approval utilities of the agents,
i.e., the utilities coming from the set {0,1}. One possible way to obtain these kind of
utilities is by applying the k-approval PSF to the agents’ preference rankings.

2For the capacitated disjunctive approach we analyze the specific case in which the capacities of
the items are equal.
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We observe that the disjunctive utilitarian version of the problem of selecting the
set of items with the approval utilities is equivalent to the MAXCOVER problem. In
MAXCOVER we are given a set N of elements and a set of subsets of N, with the
goal of selecting K subsets to cover as many elements from /N as possible. Indeed, we
can see the equivalence of the problems by identifying the agents with the elements,
the subsets with the items, and the relation “approves of an item” with “belongs to
a subset”. With this identification, selecting a set of items to maximize the number
of satisfied agents (the agents that approve at least one item in the selected set) is
equivalent to selecting a set of subsets to maximize the number of covered elements.

The MAXCOVER problem already received a lot of attention from the scientific
community. It is known that there exists a polynomial (1 — 1/e)-approximation
algorithm for the problem [136], and that, under standard complexity assumptions,
there exists no polynomial algorithm with the better approximation guarantees [98].
Motivated by this known bound, we ask if there exist good exponential-time
approximation algorithms. Indeed, we show that there exists a whole spectrum of the
exponential approximation algorithms, with a trade-off between the computational
complexity and the approximation ratio. These algorithms have better running time
than the exact brute-force algorithm for MAXCOVER. At the same time, they achieve
better approximation guarantees than (1 — 1/e). We also show FPT approximation
schemes for the variants of the MAXCOVER problem in which each element can belong
to at most p sets (which corresponds to the requirement that each agent approves of
at most p items). Naturally, all these results apply to the considered variant of the
problem of selecting a set of items.

3.2 The Model

In this section we formally define our model and the problem of selecting a collective
set of items. We first define basic notions such as items, utilities and preference orders.
Then, we present the item selection problem in its most general variant. Finally, we
discuss several interesting special cases of our problem.

3.2.1 Agents, Alternatives, and Utilities

We assume that there is a set N = [n]| of agents and a set A = {ay,...a,} of
alternatives (also referred to as items, or candidates).® For each agent i € N and for
each alternative a; € A, we have an intrinsic utility (satisfaction) u;,; that the agent
i derives from a;. A collection of the utility vectors of all the agents is called a wtility

profile.

3We will use the terms “alternative” and “item” interchangeably. We will more often us the
term alternative in the context of the disjunctive approach, and we will use the term item in the
general weighted approach. We will use the term “candidate” to refer to alternative in the context
of elections.
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Instead of providing numerical utilities, sometimes the agents express their
preferences as preference orders (also referred to as rankings). A preference order > is

a strict linear order over A, i.e., a linear order of the form ar) = az@) = -+ = ar@m)
for some permutation 7 of [m]. From now on, we will write >; to denote the i-th
agent’s preference order. A collection V' = (~1,...,>,) of agents’ preference orders

is called a preference profile. For an alternative a € A, by pos;(a) we mean the
position of a in the i'th agent’s preference order. For example, if a is the most
preferred alternative for ¢ then pos;(a) = 1, and if a is the least preferred one then
pos;(a) = m. Sometimes we will include subsets of the alternatives in the descriptions
of preference orders. For example, if A is the set of alternatives and B is some
nonempty strict subset of A, then by B = A — B we mean that for the preference
order > all alternatives in B are preferred to those outside of B.

Most of our techniques require the agents to provide numerical utility values. One
possible way of extracting numerical utilities from preference orders is to apply a
positional scoring function to the preference profile. A positional scoring function
(PSF) is a function o™ : [m] — N. Intuitively, a PSF assigns to an alternative ranked
in the position ¢, the utility value equal to a™(i). Thus, the utility of an agent 4
from an alternative a solely depends on the position of a in the i’s preference ranking:
e, = 07 (pos,(a)).

Since we use positional scoring rules to derive the utilities of the agents, it is
natural to consider non-increasing positional scoring functions. A PSF o™ is an
non-increasing positional scoring function if for each i, j € [m], if i < j then o™ (i) >
am(j)*

Typically, we are interested in families of non-increasing positional scoring
functions, (a™)_,, with one function for each possible number of candidates. In
particular, we will be interested in the Borda count PSF family o' (i) = m —1, and in
the k-approval PSF family a{'(i) = 1 if i < k, and o{'(i) = 0 otherwise. We assume
that our positional scoring functions are computable in polynomial time with respect
to m.

3.2.2 Item-Selection Problem

In this section we formulate the problem of selecting a collective set of items in its
most general form. In this general form we assume that the utility that each agent

4At this point we note that non-decreasing positional scoring functions have their applications as
well. Instead of measuring the satisfactions of the agents from the items, we can measure the level
of their unhappiness, their dissatisfaction. This way we can use an alternative optimization goal and
instead of trying to maximize the agents’ satisfaction, we can aim at minimizing their unhappiness.
A non-decreasing positional scoring functions can be used to extract from the agents’ preference
orders concrete numerical values quantifying their dissatisfactions with the items. However, for the
sake of consistency, we do not consider minimization of the dissatisfaction in this dissertation. For
a discussion on approximating dissatisfaction of the agents in this context we refer a reader to our
conference paper [277].
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derives from a set of K items is an ordered weighted average [309] of this agent’s
intrinsic utilities for these items.’
A weighted ordered average (OWA) over K numbers is a function defined through

a vector a) = (ay,...,ax) of K (nonnegative) numbers® as follows: Let & =
(21,...,7x) be a vector of K numbers and let #* = (21, ..., 2% be the nonincreasing
rearrangement of Z, that is, :cf = Z,(;), where o is any permutation of {1,..., K'} such

that T5(1) > To@2) = ... 2 Tok). Then we set:
K
OWAOC(K) (f) = Z Ozillfj
i=1

To make the notation lighter, we write a®)(2,,...,2x), instead of
OWAOC(K) (Il, cey :L'K)

We will provide a more detailed discussion of OWA operators useful in our context
later; for the time being let us note that they can be used, for example, to express
the arithmetic average (through the size-K vector (&, ..., -)), the maximum and
minimum operators (through vectors (1,0,...,0), and (0,...,0,1), respectively) and
the median operator (through the vector that has Os everywhere, except for the middle
position, where it has 1).

Given the above setup, we formalize our problem of computing “the most satisfying

set of K items” in the following way.

Definition 3.1. In the OWA-WINNER problem we are given a set N = [n] of
agents with utilities over m items (alternatives) from the set A = {ay,...,an}, a
positive integer K (K < m), and a K-number OWA o). The task is to compute a
subset W = {wy, ..., wg} of A such that u®" (W) = S T (Ui Uiy ) 08
maximal.”

For a family (a%))%_, of OWAs, we write a-OWA-WINNER to denote the variant
of the OWA-WINNER problem where, for a given solution size K, we use OWA of),
From now on we will not mention the size of the OWA vector explicitly and it will
always be clear from context. We implicitly assume that OWAs in our families are
polynomial-time computable.

Finally, we will often speak of variants of OWA-WINNER where agents’ utilities
are somehow restricted. In particular, by approval-based utilities we mean that each

SWe note that this general form corresponds to the weighted approach to sharing items between
agents, introduced and described in the previous section.

5The standard definition of OWAs assumes normalization, that is, Zfil «; = 1. We do not make
this assumption here for the sake of convenience; note that whether OWA vectors are normalized or
not is irrelevant to all notions and results of this work.

"Formally, what we define here should be called the UTILITARIAN OWA-WINNER problem because
we are interested in maximizing the total utility. It is also natural to consider EGALITARIAN
OWA-WINNER problem, where we maximize the utility of the worst-off agent. However, the
discussion on the egalitarian versions of our problem in this dissertation is limited to Chapter 5.
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agent’s utilities come from the set {0,1}, and by Borda-based utilities we mean
the case where for each agent ¢ the set of her utilities for all the items, that is,
{UWiays- -, Uig, } s equal to {0,...,m — 1},

Example 3.1. Let n = 6, m = 6, K = 3, A = {a1,a9,a3,a4,as5,a6}, @ = (2,1,0),
and Borda-based utilities derived from the following rankings:

3 agents: a; > ag > asz > as > ag > Qg
2 agents: ag > a; > a4 > az > as > ag

1 agent: as = a4 = ay > as > ag = a1

Let us compute the score of {ay, as, ag}. The first three agents get utility 2-5+4 = 14
each, the next two get 2-544 = 14 each and the last one gets 2-341 = 7. Therefore
the score of {ay, as, ag} is 3-14+2-1447 = 4242847 = 77. It can be checked that this
is the optimal set. (The next best ones are {ay, as,as}, {a1,as2,a5} and {aq,as, a6} ,
all with score 75.) On the other hand, the rule defined by OWA o' = (1,1, 1) would
choose {aq,as, as}, and the Chamberlin and Courant’s rule (in our terms, the rule
defined by OWA o = (1,0,0)) would choose {ay, a5, ag}.

3.2.3 Special Cases of the Problem

OWA-WINNER is a remarkably general problem and we will usually focus on some
special cases, for particular families of OWAs. For instance, for OWA (1,0, ...,0) we
obtain the disjunctive version of the problem, in which the total utility of an agent
is her utility from the most preferred selected item. This version of the problem
has particularly many applications, and—thus—is of special interest: we study this
variant in Chapters 5 and 6.

Below we give a catalog of other particularly useful OWA families (in the
description below we take K to be the dimension of the vectors to which we apply a

given OWA).

1. k-median OWA. For each k € {1,..., K}, k-med® is the OWA defined by
the vector of k — 1 zeros, followed by a single one, followed by K — k zeros. It
is easy to see that k—med(K)(xl, ..., Tg) is the k-th largest number in the set
{x1,..., 2k} and is known as the k-median of Z. In particular, 1-med"(7)
is the maximum operator, K -med *) (Z) is the minimum operator, and if K is
odd, %—med(m (Z) is the median operator.

2. k-best OWA. For cach k € {1,..., K}, k-best™ OWA is defined through the
vector of k ones followed by K — k zeros. That is, k-best'™) (%) is the sum of the
top k values in & (with appropriate scaling, this means an arithmetic average

of the top k numbers). K —bestg() is simply the sum of all the numbers in 7
(after scaling, the arithmetic average), and so it corresponds to the conjunctive
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version of the problem. Naturally, 1-best®) OWA corresponds to the disjunctive
version of the problem.

3. Arithmetic progression OWA. These OWAs are defined through vectors of
the form aprogla]™ = (a + (K — 1)b,a + (K — 2)b, ..., a), where a > 0 and
b > 0. (One can easily check that the choice of b has no impact on the outcome

of OWA-Winner; this is not the case for a, though.)

4. Geometric progression OWA. These OWAs are defined through vectors of
the form gprog[p]®) = (pX=1, p&=2 ... 1), where p > 1.

5. Hurwicz OWA. For each A, 0 < A < 1, this OWA is defined through vector
(A,0,...,0,1—\).

Naturally, all sorts of middle-ground OWAs are possible between these particular
cases, and can be tailored for specific applications. As our natural assumption is that
highly ranked items have more impact than lower-ranked objects, we often make the
assumption that OWA vectors are nonincreasing, that is, a; > ... > ax. While
most OWA operators we consider are indeed nonincreasing, this is not the case for
k-medians (except for 1-median) and Hurwicz (except for A = 1).

3.3 Applications of the Model

In this section we give several different scenarios where our model is applicable. In
contrast to the informal examples presented in the overview, here we give the examples
of concrete values of the parameters (e.g., OWA vectors) for concrete applications.

3.3.1 The Disjunctive Approach

The disjunctive variant of OWA-WINNER has notably many applications. In
particular, the disjunctive variant of the OWA-WINNER problem with the Borda
utilities corresponds to the Chamberlin-Courant’s voting rule for electing sets of
representatives [47]. For this rule, voters (agents) have Borda utilities over a
set of candidates and we wish to elect a K-member committee (for instance, a
parliament), such that each voter is represented by one member of the committee.
In other words, if we select K candidates, then a voter is “represented” by that
selected candidate that she ranks highest among the chosen ones. The idea is
that then, in the parliament, each selected candidate would have voting power
proportional to the number of voters that she represents. It is easy to see that
winner determination under Chamberlin—Courant’s voting rule corresponds exactly
to solving 1-best-OWA-WINNER for the case of Borda utilities.

The Monroe’s system [210], while not precisely a specific case of the
OWA-WINNER problem, is certainly related—it corresponds to the disjunctive
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capacitated version of the problem of selecting a collective set of items, where the
capacities of the items are roughly equal to n/K (with n denoting the number of
agents and K the size of the elected committee). Since in the Monore’s system each
committee member represents roughly the same number of voters, the committee
itself does not need to run weighted voting when making decisions. Similarly as
in the Chamberlin—Courant’s system, in the Monroe’s system we assume the Borda
utilities of the agents.

More generally, the 1-best-OWA-WINNER problem (with and without capacities)
addresses the broad and important problem of finding a proportional representation
for a group of agents.

The above connections show that, indeed, the complexity of the disjunctive variant
of the OWA-WINNER problem is interesting, can lead to progress in several other
directions, and may have impact on other applications of artificial intelligence and
computer science in general.

3.3.2 The Weighted Approach

Here we present three scenarios, with the common feature that they each focus on
some form of uncertainty about the final outcome; the impact of a selected item is
the probability that this item will be actually used by the agent.

Malfunctioning Items or Unavailable Candidates

In this model, we assume that, as in the disjunctive approach, each user only benefits
from one item, but that the items may not be working properly: if we select (off-line)
a set of items S, then (on-line) there will be a subset ST of items that can be used,
and a set S = S\ ST of objects that are ‘malfunctioning’ or are ‘unavailable’ and
cannot be used. For instance, items are radio channels that can be unreachable, or
items are candidates running in an election and these candidates may finally decide
to not take a position in the elected committee, or items are parking lots that are
to be built but that can sometimes be full (see [187| for further examples of social
choice with possibly unavailable candidates). Moreover, we have a prior probability
distribution about the (un)availability of items: as in [187], we assume that each item
is available with probability p (i.i.d.). The utility an agent gets from a set of selected
items S is the value of the best available object in S, that is, of the best object in
S*. Therefore, it is the value of the item ranked in position 4 in S if the first i — 1
items are unavailable and the ¢th item is available. The expected contribution of an
item to the utility of a user is therefore proportional to p(1 — p)*~!, which leads to
the OWA defined by a; = p(1 — p)*~!, which is a geometric progression with initial
value p and coefficient 1 — p.
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Uncertainty About the Number of Items Enjoyed by a User

We assume now that there is some uncertainty about the number of items that a user
will enjoy. A first possible reason is that users may have a limited capacity to enjoy
items. For instance, items are movies or books and each user has a time constraint
that will prevent him or her from enjoying all selected items. A second possible reason
is that users are reluctant to use items they don’t like enough: they will watch only
the films whose value reaches a given subjective threshold. We give here two possible
models for the choice of the OWA vectors:

e We first assume that the probability that a user enjoys ¢ items, for 0 <1 < K,
is uniformly distributed, that is, a user will enjoy exactly her first ¢ items in

S with probability P(i) = ﬁ Thus, she will enjoy the item ranked 7 if she

enjoys at least ¢ items, which occurs with probability K[;j:l. This leads to the

OWA vector defined by o; = K —i+ 1 (we disregard the normalizing constant),
which is an arithmetic progression.

e Second, we assume that the values given by each user to each item are
distributed uniformly, i.i.d., on [0, 1] and that each user uses only the items
that have a value at least #, where 6 is a fixed (user-independent) threshold.
Therefore, a user enjoys the item in S ranked in position i if he or she values at

K ) (1—6)i6K—i,

least 7 items at least #, which occurs with probability 25(:@ ( ;

thus leading to the following OWA vector defined by «; = ZK ( K ) (1—

J=t 1
0)'0X—*.  For instance, if K = 4 and 0 = the OWA (omitting the
denominators) is a« = (175,67,13,1); for K =

3
1
4 and 0 = 1 we get a =
(14,12,5,1); and for K =4 and 0 =

27
%, we get a = (252,243,189, 81).
Ignorance About Which Item Will Be Assigned to a User

We now assume that a matching mechanism will be used posterior to the selection
of the K items. The matching mechanism used is not specified; it may also be a
randomized mechanism.

If users have a complete ignorance about the mechanism used, then it makes sense
to use known criteria for decision under complete uncertainty (see, e.g., the book of

Luce and Raiffa [190]):

e the Wald criterion assumes that agents are extremely risk-averse, and
corresponds to a = K-med®):  we, therefore, seek to maximize

n .
Zi:l mlan' eWw ui,wj .

e the Hurwicz criterion is a linear combination between the worst and the best
outcomes, and corresponds to o = (\,0,...,0,1 — X) for some fixed A € (0, 1).
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If users still have a complete ignorance about the mechanism used except that
they know that they are guaranteed to get one of their best i items, then the Wald
and Hurwicz criteria now lead, respectively, to the OWAs a = i-med'® and a =
(A, 0,...,0,1—=X,0,...,0), with 1 — X in position i.

If users know that the mechanism used is a random mechanism with a uniform
distribution among the items ranked in positions 1 to i, then the choice of i-best
OWA makes sense. More generally, the matching mechanism may assign items to
agents with a probability that depends on the rank and that decreases when the rank
increases.

3.3.3 The Conjunctive Approach

In the conjunctive approach each agent derives an equal part of her satisfaction from
every selected item, and, thus, this variant corresponds to the K-best-OWA-WINNER
problem. The conjunctive approach also finds its application in several settings. For
instance, in the context of parliamentary elections, if the utilities of the agents are
derived by applying the Borda count PSF to the agents’ preference rankings, the
K-best-OWA-WINNER problem corresponds to winner determination in the K-Borda
rule.®

This variant is also applicable if the selected items are in some sense independent,
and thus if the fact whether an agent is going to use a selected item does not depend
on what other items have been selected (e.g., if we want to buy, for a group of agents,
the tickets for 10 movies, each played in a different month).

This conjunctive variant of the problem of selecting a collective set of items is,
however, computationally easy, and so its analysis in this dissertation is limited.

3.4 Related Work

Weighing intrinsic values by coefficients that are a function of their rank in a
list is of course not new. Ordered Weighted Average operators have been used
extensively in multicriteria decision making (MCDM), and to a lesser extent in
social choice [151]. Also, studying rank-dependent expected utility (RDEU) [248] is a
well-known research stream in decision theory, whose starting point is the construction
of models that explain Allais’ paradox: given a set of possible consequences of an
act, the contribution of a possible consequence on the agent’s RDEU is a function
of its probability and of its rank in the list of consequences ordered by decreasing
probability. While these three research streams use ranks to modify the contribution
of a criterion, an agent, or a possible consequence, in our setting they modify the

8In the K-Borda rule we select as the winners the K items (candidates) with the highest Borda
scores. The Borda score of an item (candidate) is the sum of the utilities assigned to this item by
all agents, assuming that these utilities are obtained by applying the Borda count PSF to agents’
preference rankings.
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contribution of items, our final aim being to select an optimal set of items. Since
we do not select criteria, agents or possible consequences, it is not obvious how our
results can apply to these three aforementioned research fields.

Several known settings are recovered as particular cases of our general model.
In particular, this applies to Chamberlin—Courant’s [47] and Monroe’s [210] election
systems, and to (variants of) the budgeted social choice model [188]. Computational
complexity of Chamberlin—-Courant’s and Monroe’s schemes was first studied by
Procaccia et al. [245]; the parameterized complexity of the problem was analyzed
by Betzler et al. [27]. The first approximation algorithm was proposed by
Lu and Boutilier [188]. These results on approximability were extended in this chapter
and in Chapter 5.

It is quite natural to view finding proportional representation (and thus solving
1-best-OWA-WINNER) as coalition structure generation problems in cooperative
games [251-253|. Here the agents are the players of a certain cooperative game,
and the value of each “coalition” of agents is the (dis)satisfaction they derive from
being assigned to a given item. The goal is to partition the set of the voters into K
disjoint coalitions (and assign distinct candidates to them) in a way that maximizes
the sum of coalition values (or, in the egalitarian setting, the value of the worst off
coalition). Formally, this is a very special case of coalition structure generation with
externalities. Externalities come from the fact that no two coalitions can be assigned
to the same candidate.

Group recommender systems (see, e.g., the work of O’Connor et al. [227] for
one of the first approaches, and the surveys of Jameson and Smyth [146] and of
Masthoff [198]) aim at recommending sets or sequences of items (such as a set of
television programs or a sequence of songs) to a group of users, based on preferences
of all group members. Two mainstream approaches exist (see [146]). The first one
is based on the construction of an ‘average user’ whose preferences are built by
aggregating the preferences of individuals in the group; next, the group of items
that are most preferred by this average user is recommended. The second approach
is based merging the recommendations made for individuals; in other words, the
recommendation for the set of agents is the set consisting of all recommendations
for the individuals. Unlike these, in our approach the decision of selecting items is
performed for the whole sets of items simultaneously. This makes the problem more
computationally intense, but allows to find better recommendations.

The facility location problem (FL) is closely related to 1-best-OWA-WINNER.
In FL, however, the goal is to minimize the dissatisfaction of the agents instead
of maximizing their utility (satisfaction). Although, as far as exact solutions are
concerned both formulations are equivalent, there is a significant difference in the
quality of approximation. Some works focus on general dissatisfaction functions [101],
but most of the results were established for dissatisfactions corresponding to the
distances, and thus satisfying the triangle inequality [145,269|. Also, in FL the goal is
to minimize the dissatisfaction of the worst-off agent (the egalitarian view). The
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utilitarian version of the problem is called K-MEDIAN [145]. The parameterized
complexity of the problem was analyzed by Fellows and Fernau [101]. The
approximation algorithms include [57,145,269]. Interestingly, a local-search algorithm
(which, to the best of our knowledge, is the best known approximation algorithm
for the capacitated version of FL [57]) is also a %-approximation algorithm for
maximizing nondecreasing submodular functions [220], and thus for OWA-WINNER
with non-decreasing utility functions. We conclude that it would be interesting
to compare the algorithms for FL and K-MEDIAN with different algorithms for
OWA-WINNER on real preference traces [200].
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Chapter 4

Finding a Collective Set of Items:
The Weighted Approach

In this chapter we study the problem of selecting a collective set of items, formally
defined in Chapter 3. We consider the problem both in its full generality, and for
various natural classes of the OWA vectors, and several types of agents’ utilities.

We start our analysis by discussing worst-case results in Section 4.1; then we
move on to approximability results, in Section 4.2 for the case of general utilities
(but with some focus on approval-based ones) and in Section 4.3 for the case of
Borda-based ones. We show that, in general, our problem is NP-hard, but that for the
natural class of non-increasing OWA vectors the problem can be approximated with
the ratio (1 — 1/e); for other classes of OWA vectors good approximation algorithms
are rare. Nevertheless, for the case of Borda-based utilities it is possible to obtain
polynomial-time approximation schemes (PTASes) for a relatively large, interesting
family of OWA vectors, including k-median and k-best (for a fixed value of k), and
geometric progression OWA.

4.1 Computing Exact Solutions

In general, OWA-WINNER is a rather difficult problem. However, as long as we seek
a size- K winner set where K is a fixed constant, then the problem is in P.

Proposition 4.1. For each fived constant K (the size of the winner set),
OWA-WINNER s in P.

Proof. For a profile with m items, there are only O(m®) sets of winners to try. We
try them all and pick one that yields highest utility. O

Naturally, in practice the variant of the problem with fixed K has only limited
applicability and throughout the rest of the chapter we focus on the a-OWA-WINNER
variant of the problem where K is given as part of the input and « represents a
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family of OWAs, one for each value of K. By results of Procaccia, Rosenschein and
Zohar [245] and Lu and Boutilier [188], we know that the 1-best-OWA-WINNER
problem is NP-hard both for approval and for Borda-based utilities (see also
Chapters 5 and 6 for a detailed discussion). A simple reduction shows that this
result carries over to each family of k-best OWAs and k-med OWAs, where k is a
fixed positive integer, independent of the input.

Proposition 4.2. For each  fixed k, k-best-OWA-WINNER  and
k-med-OWA-WINNER are NP-complete, even if the utility profiles are restricted to
be approval-based or Borda-based.

Proof. Let k be a fixed constant. It is easy to see that k-best-OWA-WINNER and
k-med-OWA-WINNER are both in NP. To show NP-hardness, we give reductions
from 1-best-OWA-WINNER (either with approval-based utilities or with Borda-based
utilities) to k-best-OWA-WINNER and to k-med-OWA-WINNER (with the same
types of utilities).

Let I be an instance of 1-best-OWA-WINNER with n agents, m items, and where
we seek a winner set of size K. We form an instance I’ of k-best-OWA-WINNER that
is identical to I except that: (1) We add k — 1 special items by, ..., b,_1 such that
under approval-based utilities each agent 7 has utility 1 for each item b;, 1 < 7 < k—1,
and under Borda-based utilities, for item b;, 1 < 7 < k — 1, each agent 7 has utility
m+ j — 1. (2) We set the size of the desired winner set to be K’ = K +k — 1. It is
easy to see that if there is an optimal solution W’ for I’ that achieves some utility z,
then there is a solution W” for I’ that uses all the & — 1 items by, ..., b,_; and also
achieves utility x. Further, the set W” — {by,...,bx_1} is an optimal solution for I
and, for I, has utility z — >, Zf;ll Uiy, =T — 1N Zf;ll Uy,

Analogous  argument shows that 1-best-OWA-WINNER reduces to
k-med-OWA-WINNER (also for approval-based and for Borda-based utilities). O

On the other hand, it is easy to note that for K-best OWA (that is, for the family
of constant OWAs a = (1,...,1)) the problem is easy.

Proposition 4.3. K-best-OWA-WINNER is in P.

Proof. Let I be an input instance with m items and n agents, where we seek a winner
set of size K. It suffices to compute for each item the total utility that all the agents
would derive if this item were included in the winner set and return K items for which
this value is highest. O

Indeed, if the agents’ utilities are either approval-based or Borda-based,
K-best-OWA-WINNER boils down to (polynomial-time) winner determination for
K-best approval rule and for K-Borda rule [79], respectively (see also the work of
Elkind et al. [96] for a general discussion of multiwinner rules). Given this result, it
is quite interesting that already (K — 1)-best-OWA-WINNER is NP-hard, both for
approval-based and for Borda-based utilities.

20



Theorem 4.4. (K — 1)-best-OWA-WINNER is NP-complete even for approval-based
utilities.

Proof. Membership in NP is clear. We show a reduction from the VERTEXCOVER
problem. Let I be an instance of VERTEXCOVER with graph G = (V, E), where
V =A{vi,...,vn} and E = {ey,...,e,}, and with a positive integer K (without loss
of generality, we assume that K > 3 and K < m). In I we ask if there is a set C' of
up to K vertices such that each edge is incident to at least one vertex from C.

We construct an instance I” of (K — 1)-best-OWA-WINNER in the following way.
We let the set of items be A = V and we form 2n agents, two for each edge.
Specifically, if e; is an edge connecting two vertices, call them v;; and v;, then
we introduce two agents, e} and e?, with the following utilities: e; has utility 1 for
v;1 and for v; 5, and has utility 0 for all the other items; e? has opposite utilities—it
has utility 0 for v;; and for v; 2, and has utility 1 for all the remaining ones.

Let W be some set of K items (i.e., vertices) and consider the sum of the utilities
derived by the two agents e} and e? from W under (K — 1)-best-OWA. If neither v; ;
nor v; » belong to W, then the total utility of e} and €? is equal to K — 1 (the former
agent gets utility 0 and the latter one gets K — 1). If only one of the items, i.e.,
either v;; or v; 9, belongs to W, then the total utility of e} and e? is equal to K (the
former agent gets utility 1 and the latter one still gets K — 1). Finally, if both items
v;.1, ;2 belong to W, then the total utility of e} and e? is also equal to K (the former
gets utility 2 and the latter gets utility K — 2). Thus the total utility of all agents is
equal to K -n if and only if the answer to the instance [ is “yes”. This shows that the
reduction is correct and, since the reduction is computable in polynomial time, the
proof is complete. O

A variant of this result for Borda-based utilities follows by an application of
a similar idea, but the restriction to Borda-based utilities requires a much more
technical proof.

Theorem 4.5. (K — 1)-best-OWA-WINNER is NP-hard even for Borda-based
utilities.

Proof. As before, it is clear that the problem is in NP, and we only show NP-hardness.
We give a reduction from VERTEXCOVER. Let I be an instance of the VERTEXCOVER
problem that consists of undirected graph G = (V, E), where V = {vy,...,v,,} and
E ={ey,...,e,}, and positive integer K (without loss of generality, we assume that
K >3).

From I, we construct an instance I’ of (K — 1)-best-OWA-WINNER with
Borda-based utilities as follows. We set

r=4n(m +2)(K +4)

and we let the set of items be A = V U{d,,d2} U H, where H = {hy,...,h,} and
{dy,ds} are sets of dummy items that we need to build appropriate structure of the
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utility profile. To build the set of agents N, we set
y =z +m+2)°+1)

and we set N = NgUN; U---UN,, where Np = {e],e3,...,el e} contains pairs
of agents that correspond to the edges of G, and Ny, ..., N, contain pairs of agents
needed for the construction. Specifically, every set N;; 1 < ¢ < y, consists of two
agents, f} and f2. We refer to the agents in the set Ny U---U N, as the “dummy
agents.” We describe agents’ utilities through their preference orders (their utilities
are derived using the Borda PSF).

The agents in the set Ng have the following preference orders. Let e¢; € E be an
edge of the graph that connects vertices v; ; and v; 5. Agents e} and e? have preference

orders:

e . dl - dg -V — {'Ui,la'UiQ} - H > {’l]i71,’11i72},

e : d1 b d2 — {/Ui’l’/Ui’Q} - H =V — {/Ui’l’/Ui,Q}.

!

(2

2

(2
(Recall that when we put a set of items in a preference order, this means that this set

can be replaced by these items in an arbitrary, easily computable, way.) Each agent
11 <i <y, has the same, fixed, preference order:

flody = v =g = v = dy = by = hy.
Similarly, each agent f?, 1 <1 < y, has preference order:
fi2:d2>'vm>'vm—1"'>"01 —dy > hy- > hy.

Finally, in the instance I’ we seek a set of winners of size K + 2. This means that
we use (K + 1)-best-OWA to compute the aggregated utility that an agent derives
from a set of winners.

This concludes the description of the reduction and it is clear that it is
polynomial-time computable. Before we prove that it is correct, let us make several
observations. Let W be some optimal solution for I’. We claim that W does not
contain any of the items from H. For the sake of contradiction, assume that some
h € H belongs to W. Since d; and ds are ranked ahead of h in every preference order
(and in some preference orders d; is first and d is second, so their utility cannot be
ignored by the (K + 1)-best-OWA), we infer that d; and ds must belong to W as well
(otherwise we would obtain higher utility by replacing i with one of d; and dy in W).
Let v be some item from V that does not belong to W. If we replace h with v in
W then the total utility of the dummy agents increases by at least 2y. Why is this
so? Consider some pair N;, 1 < ¢ <y of dummy agents. Item h is either the lowest
ranked member of W for both f! and f? or for neither. We consider these cases:

e h is the lowest-ranked winner for both the agents in IN;. Replacing h
with v means that either some other member A’ of H N W becomes the lowest
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ranked winner for both f! and f?, or ds becomes the lowest ranked winner for
f} and d; becomes the lowest ranked winner for f2. In either case, both f!
and f? obtain utility higher by at least one from v than from the item that
became the new lowest-ranked winner. Thus, the total utility yielded by these
two agents increases by at least two.

e h is not the lowest-ranked winner for either agent in IN;. In this case,
since both agents rank v higher than A and replacing h with v does not change
the lowest-ranked winner for either of the agents, their total utility also increases
at least by two.

Since there are y pairs of agents, the total utility increases by at least 2y. Since the
total utility of the agents from N is lower than 2n(x+m+2)? < 2y, we see that after
the change the total utility of all the agents increases. Thus, we get a contradiction
and we conclude that W does not contain any of the agents from H.

Next, we claim that both d; and dy belong to W. We give a detailed argument
for d; only; the case of dy is analogous. For the sake of contradiction, assume that
d; does not belong to W. Let v, be an item from W such that for each v;, j < k, v,
does not belong to W. By our assumptions, for each agent f? 1 < i <y, v is the
lowest-ranked winner from W. Thus, if we replace v, with d; in W, then the utility
of each agent f? will not change, whereas the utility of each agent f! will increase.
Further, the utility of each agent from Np will increase. Thus, by replacing v with
dy1, we can increase the total utility of the agents. We reach a contradiction and we
conclude that d; must have been a member of W. An analogous argument shows that
ds belongs to W as well.

As the result of the above reasoning, we infer that each set of winners consists
of dy, dy, and K items from V. Whenever both d; and ds are included in the set of
winners and neither item from H is, the total utility of the dummy agents is the same,
irrespective which items from V' are selected. With these observations, we now show
that the answer for the input VERTEXCOVER instance is “yes” if and only if there is
a size-(K + 2) winner set for I’ that for agents in the set N yields total utility at
least nz(K +4).

(=) Let us assume that there exists a cover C for I, that is, a set C' of K vertices
such that each edge is incident to at least one vertex from C'. We show that winner
set W = C'U{dy, ds} gives total utility of every two agents e} and e?, 1 < i < n, equal
to at least x(K + 4). Pick some arbitrary i, 1 < i < n, and let v;; and v; 5 be the
two vertices connected by edge e;. If both v;; and v; 2 belong to C, then e? obtains
utility at least  for each item in {v; 1, v; 2, d1, d2} (at least utility 4« in total). On the
other hand, e} obtains utility at least = for each item in W — {vi1,vi2}. This gives
utility at least Kx. Altogether, both agents get utility at least x(K + 4). If only one
of the items v; ; and v; 9, say v; 1, belongs to C, then e? obtains utility at least 3z (at
least x for every item from {v;,d;,ds}), and e} obtains utility at least (K + 1)z (at
least 2z from items d; and dy, and at least (K — 1)z from the K — 1 members of C'
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that e} ranks on the top positions). Again, both agents get utility at least z(K + 4).
Thus the total utility of the agents in Ng in the optimal solution must be at least
nx(K +4).

(<) Assume that IV is some optimal solution for /" and that for the agents in Np
it yields utility at least nz(K +4). By previous discussion, we know that W contains
dy, dg, and K members of V. We set C'= W \ {dy,ds}. Let us fix some arbitrary 1,
1 <4 <n. Let v;; and v; 2 be the two vertices connected by edge e;. We observe that
under W, the total utility of agents e} and e? is at most (z+m+2)(K+4)+mK. To see
this, let z be the number of items from {v;1,v; 2} that are included in C' and note that
(1) for the upper bound we can disregard the OWA that we use, (2) there are x+m+2
items and so we can upper-bound the utility derived from each item by z+m+2, (3)
altogether, the items from W are ranked on at most K + 2 — z top-(m + 2) positions
by e} (we upper-bound their total utility by (K +2—2)(x+m+2)) and at most 2+ 2
top-(m+ 2) positions by e? (we upper-bound their total utility by (2+ 2)(z +m+2)),
and (4) the items from W are ranked on at most z bottom-m positions by e} (we
upper-bound their total utility by zm) and on K — z bottom-m positions by e? (we
upper-bound their total utility by (K — z)m). When we sum up these upper bounds,
we get (x +m+2)(K +4)+ mK. However, for our argument we also need an upper
bound on the total utility of e; and e? under the assumption that neither v;; nor
v;2 belongs to C. In this case, the upper bound is (x +m + 2)(K + 3) + mK. We
obtain it in the same way as the previous bound, except that we note that due to
our (K + 1)-best-OWA, the utility derived by e} can take into account at most K + 1
agents from the top-(m + 2) positions of the preference order of e!.

Based on these upper bounds, we will now show that if the total utility derived
from W by the agents in Ng is at least na(K +4), then C' must correspond to a cover
of all the edges of G. To this end, consider a situation where there is at least one
edge e; such that neither of the vertices that it connects belongs to C'. By using our
upper bounds, in this case the total utility of the agents from Ng can be at most:

(K+3)(x+m+2)+(n—1)(K+4)(z+m+2)+nmK
=@+m+2)(K+3+(n—-1)(K+4))+nmK
=@+m+2)(n(K+4)—1)+nmK

=an(K +4)+n(m+2)(K+4) — (x +m+2) +nmK
= an(K +4) +0.25z — (v + m+ 2) + nmK

<zn(K +4)

(The last two lines follow directly from the definition of x.) So, from the assumption
that C' is not a solution for I, we obtain that the total utility of the agents in Ng
must be lower than nz(K + 4), which contradicts our assumption. Thus C' is a
correct solution for I and, so, I is a yes-instance of VERTEXCOVER. This completes
the proof. O
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Using a proof that combines the ideas of the proofs of Theorems 4.2 and 4.4, we
show that indeed OWA-WINNER is NP-hard for a large class of natural OWAs. This

time, for the sake of simplicity, we give a proof for the approval-based utilities only.

Theorem( 4).6. Fix an OWA family «, such that there exists p such that for every K
K

we have oy’ > a;ﬂ; a-OWA-WINNER is NP-hard for approval-based utilities.

Proof. We give a reduction from the CUBICVERTEXCOVER problem. Let I be an
instance of CUBICVERTEXCOVER with graph G = (V, E), where V- = {vy,...,v,,}
and E = {ey,...,e,}, and positive integer K. Each vertex in G has degree exactly
equal to three. W.l.o.g., we assume that n > 3. We ask if there is a set C' of up to K
vertices such that each edge is incident to at least one vertex from C.

We construct an instance I’ of a-OWA-WINNER. In I’ we set N = E (the agents
correspond to the edges), A =V U {by,bs,...b,—1} (there are (p — 1) dummy items;
other items correspond to the vertices), and we seek a collection of items of size
K + p— 1. Each agent ¢;, e; € E, has utility 1 exactly for all the dummy items and
for two vertices that e; connects and for each of the dummy items (for the remaining
items e; has utility 0). In effect, each agent has utility 1 for exactly p + 1 items.

We claim that I is a yes-instance of CUBICVERTEXCOVER if and only if there
exists a solution for I” with the total utility at least n ) > | a; + (3K — n)oypi1.

(=) If there is a vertex cover C' of size K for G, then by selecting the items
W = CU{b,by,...b,_1} we obtain the required utility of the agents. Indeed, for
every agent e; there are at least p items in W for which i gives value 1 (the p — 1
dummy items and at least one vertex incident to e;). These items contribute the value
nYy P, «a; to the total agents’ utility. Additionally, since every non-dummy item has
value 1 for exactly 3 agents, and since every agent has at most (p+1) items with value
1, there are exactly (3K —n) agents that have exactly (p+ 1) items in W with values
1. Thus, these (3K — n) agents (thanks these items that they rank at the (p+ 1)'th
position) additionally contribute (3K — n)a,41 to the total utility. Altogether, the
agents’ utility is n > 7 o + (3K — n)a,41, as claimed.

(<) Let us assume that there is a set of (K + p — 1) items with total utility at
least n Y " a; + (3K — n)ays1. In I’ we have (p — 1) items that have value 1 for
each of the n agents, and every other item has value 1 for exactly 3 agents. Thus the
sum of the utilities of K + p — 1 items (without applying the OWA operator yet) is
at most (p—1)n+3K = pn+ (3K —n). In effect, the total utility of the agents (now
applying the OWA operator) is nY 5, a; + (3K — n)aysq only if for each agent e;
the solution contains p items with utility 1. Since there are only p — 1 dummy items,
it means that for each agent e; there is a vertex v; in the solution such that e; is
incident to v;. That is, I is a yes-instance of CUBICVERTEXCOVER. O

The above theorem applies directly, for example, to the families of geometric
progression OWAs and arithmetic progression OWAs.
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Corollary 4.7. The problems gprog[p]|-OWA-WINNER (for each p > 1) and
aprogla]|-OWA-WINNER (for each a > 0) are NP-complete.

In fact, the following theorem (whose proof builds upon the above constructions)
shows an even stronger NP-hardness result.

Theorem 4.8. Fiz an OWA family o, such that for every K, o'%) is nonincreasing
and nonconstant; a-OWA-WINNER is NP-hard for approval-based utilities.

Proof sketch.  We give a reduction from CUBICVERTEXCOVER. Let I be an instance
of CUBICVERTEXCOVER with graph G = (V| F), where V = {vy,...,v,,} and E =
{e1,...,e,}, and with positive integer K.

Now let us consider o®%); since a(*%) is nonincreasing and nonconstant, one of

the two following conditions must hold.

1. There exists p < K such that al(fK) > al()zﬁ).
2. There exists p > K such that ozézK) > osz?, and for every p < K, we have
2K 2K
a0 _ o200

If (1) is the case then we use a reduction similar to that in the proof of Theorem 4.6.
The only difference is that apart from the set D; of (p—1) dummy items (ranked first
by all agents), we introduce the set Dy of (2K —p+1) dummy items and (2K —p+1)
sets N1, No, ..., Nag_pt1, each consisting of 2n dummy agents. The dummy items
from Dy are introduced only to fill-up the solution up to 2K members. The dummy
agents from N; have utility 1 for each of the items from D; and for the i’th item from
Dy (they have utility 0 for all the other items). This is to enforce that the items from
D, are selected in the optimal solution. The further part of the reduction is as in the
proof of Theorem 4.6.

If (2) is the case, then we use a reduction similar to that in the proof of
Theorem 4.4. We let the set of items be A = VUD;UDy, where Dy, |Dy| = p+1—K,
and Dy, |Dy| = 2K —p—1 are sets of dummy items that we need for our construction.
Similarly as in the proof of Theorem 4.4, for each edge e; € E we introduce two
agents e} and e?. Here, however, we additionally need the set F of (2n + 1) dummy
agents. Each dummy agent from F' assigns utility 1 to each dummy item from D,
and utility 0 to the remaining items—consequently, since |F| > 2n, each dummy
item from Dy must be selected to every optimal solution. Further, each non-dummy
agent assigns utility 1 to each dummy agent from D;—this way we ensure that every
item from D; must be selected to every optimal solution. Finally, the utilities of
the non-dummy agents for the non-dummy items are defined exactly as in the proof
of Theorem 4.4. This ensures that the optimal solution, apart from D; and Dy, will
contain the non-dummy items that correspond to the vertices from the optimal vertex
cover. U
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By the above discussion, we conjecture that the family of constant OWAs, that is,
the family of K-best OWAs, is the only natural family for which a-OWA-WINNER
is in P. We leave this conjecture as a natural follow-up question.

Even though almost all the practical variants of OWA-WINNER are
computationally hard, we still might be in a position where it is necessary to obtain an
exact solution for a given OWA-WINNER instance and the brute-force algorithm from
Proposition 4.1 is too slow. In such a case, it might be possible to use an integer linear
programming (ILP) formulation of the problem, given below. We believe that this
ILP formulation is interesting in its own right and, in particular, that it is interesting
future work to experimentally assess the size of instances for which it yields solutions
in reasonable amount of time.

Theorem 4.9. OWA-WINNER reduces to computing a solution for the following
integer linear program.

n m K
minimize Z Z Z QUi q; T j k
i=1 j=1 k=1
subject to:
(a) : le =K
i=1
(b):[lﬁ'i7j7k§$]’ ,Ze[nLj,k’e[K]
(c):me,k:l i€ [n];k € [K]
j=1
K
(d>:zxi,j,k:1 77;6 [n]uje [m]
k=1
(e) : Z“i,ajxi,j,k > Zui,ajxi,j7(k+1) Ji€nl ke K —1]
j=1 j=1
(f):xi,j,ke{ovl} ,ZE[TZL],]{?E[K]
(g) :x; € {0,1} ,j € [m]
Proof. Consider an input instance with n agents N = [n] and m items A =
{ai,...,an}, where we seek a winner set of size K, under OWA a = («q,...,ak).

For each i € N, a; € A, we write u;,, to denote the utility that agent  derives from
item a;.

We form an instance of ILP with the following variables: (1) For each i € N,
J € [m], and k € [K], there is an indicator variable z; ; (intuitively, we interpret
x;;k = 1 to mean that for agent ¢, item a; is the k-th most preferred one among
those selected for the solution). (2) For each j € [m], there is an indicator variable z;
(intuitively, we interpret x; = 1 to mean that a; is included in the solution). Given
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these variables (and assuming that we enforce their intuitive meaning), the goal of
our ILP is to maximize the function ), Z;”:l 22{:1 Ui, T j -

We require that our variables are indeed indicator variables and, thus, take values
from the set {0, 1} only (constraints (f) and (g)). We require that the variables of the
form w; ; are internally consistent. (constraint (c) says that each agent ranks only
one of the candidates from the solution as k-th best, constraint (d) say that there
is no agent ¢ and item a; such that 7 views a; as ranked on two different positions
among the items from the solution.) Then, we require that variables of the form z; ;
are consistent with those of the form x; (constraint (b)) and that exactly K items
are selected for the solution (constraint (a)).

Our final constraint, constraint (e), requires that variables z; ;; sort the items
from the solution in the order of descending utility values (separately for each agent,
of course). We mention that constraint (e) is necessary only for the case of OWAs
a that are not-nonincreasing. For a nonincreasing «, an optimal solution for our
ILP already ensures the correct “sorting” (otherwise our goal function would not be
maximized). O

4.2 (In)Approximability Results: General Utilities
and Approval Utilities

The OWA-WINNER problem is particularly well-suited for applications that involve
recommendation systems (see, e.g., the work of Lu and Boutilier [188] for a
discussion of 1-best-OWA-Winner in this context and examples in Chapter 3). For
recommendation systems it often suffices to find good approximate solutions instead
of perfect, exact ones, especially if we only have estimates of agents’ utilities. It
turns out that the quality of the approximate solutions that we can produce for
OWA-WINNER very strongly depends on both the properties of the particular family
of OWAs used and on the nature of agents’ utilities.

First, we show that as long as our OWA is nonincreasing, a simple greedy algorithm
achieves ( — %) approximation ratio. This result follows by showing that for a
nonincreasing OWA «, the function g, (recall Definition 3.1) is submodular and
nondecreasing, and by applying the famous result of Nemhauser et al. [220] (we recall

the definition of submodularity and the theorem of Nemhauser et al. in Section 2.2.2).

Lemma 4.10. Let I be an instance of OWA-WINNER with a nonincreasing OWA
a. The function ug, is submodular and nondecreasing.

Proof. Let I be an instance of OWA-WINNER with agent set N = [n], item set
A ={ay,...,ay}, desired solution size K, and OWA « = (ay,...,ak). For each
agent i € N and each item a; € A, u;,; is a nonnegative utility that ¢ derives from
aj.
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1 W0,

2 for /+ 1 to K do

3 score < {} ;

4 foreach a € A\ W do

5 s+ 0;

6 foreach : € N do

7 p|{weW tuy <uiql+1;
8 S S+ Ujq-Qp;

9 scorela] « s

10 W < W U {argmax,¢ 4y scorelal };

Figure 4.1: The greedy algorithm (GREEDY) for finding the utilitarian set of K winners.

Since all the utilities and all the entries of the OWA vector are nonnegative, we
note that ug, is nondecreasing. To show submodularity, we decompose uy; as follows:

u® (W) = (ae o a£+1)u£—best—OWA(W) + aKuuKt—best-OWA(W>

ut

For each W C A, ¢« € N and ¢ € [m], let Top(W,i,£) be the set of those ¢ items
from W whose utility, from the point of view of agent i, is highest (we break ties in
an arbitrary way). Since nonnegative linear combinations of submodular functions
are submodular, it suffices to prove that for each i € N and each ¢ € [m], function
ub(W) = Y weTop(Wi o) Uisw 18 submodular.

To show submodularity of u¢, consider two sets, W and W/, W C W' C A, and
some a € A\ W’. We claim that:

ui(WU{a}) — ui(W) > wi (W' U{a}) — u;(W). (4.1)

Let uy and wuyp denote the utilities that the i-th agent has for the /-th best items
from W and W', respectively (or 0 if a given set has fewer than ¢ elements). Of
course, uy > uw. Let u, denote i-th agent’s utility for a. We consider two cases. If
g < uw, then both sides of (4.1) have value 0. Otherwise:

ui(W' U {a}) — ul(W') = max(ug — ur, 0)
u (WU {a}) = ug(W) = uq — uw,
which proves (4.1) and completes the proof. O

Theorem 4.11. For a nonincreasing OWA «, the algorithm GREEDY from Figure 4.1
is a polynomial time (1 — 1/e)-approximation algorithm for the problem of finding the
utilitarian set of K winners.

29



Proof. The thesis follows from the results of Nemhauser et al. [220] on approximating
nondecreasing submodular functions (The Nemhauser’s theorem is recalled as
Theorem 2.1 in Section 2.2.2). O

Is a (1 — é)-approximation algorithm a good result? After all, 1 — % R
0.63 and so the algorithm guarantees only about 63% of the maximum possible
satisfaction for the agents. Irrespective if one views it as sufficient or not, this is the
best possible approximation ratio of a polynomial-time algorithm for (unrestricted)
OWA-WINNER with a nonincreasing OWA. The reason is that 1-best-OWA-Winner
with approval-based utilities is, in essence, another name for the MAXCOVER
problem, and if P # NP, then (1 — %) is the approximation upper bound for
MAXCOVER [98|. We omit the exact details of the connection between MAXCOVER
and 1-best-OWA-Winner and instead we point the readers to Chapter 6, which
discusses this issue in detail.

For OWAs that are not nonincreasing, it seems that we cannot even hope for such
a (1-— %)—approximation algorithm. Such OWAs yield utility functions that are not

necessarily submodular. For example, this is the case for 2-med OWA.

Example 4.12. Let us consider a single agent, two sets of items W = {¢,d} and
W' = {b,c,d} (of course W C W), and 2-med-OWA «. The utilities of the agent
over the items a, b, ¢, and d are equal to 10, 9, 2, and 1, respectively. We get:

ug (W Ufa}) —ufy(W) =2-1=1, uf(W'U{a}) —uj(W)=9-2=7.

That is, ug, is not submodular. Indeed, this example works even for approval-based
utilities: it suffices to set the utilities for a and b to be 1, and for ¢ and d to be 0.

It is quite plausible that there are no constant-factor approximation algorithms for
many not-nonincreasing OWAs. As an example, let us consider the case of families
of OWAs whose first entries are zero (but that, nonetheless, have a nonzero entry
at a sufficiently early position). If there were a good approximation algorithm for
winner determination under such OWAs, then there would be a good approximation
algorithm for the DENSEST-K-SUBGRAPH problem, which seems unlikely (for the
definition and the discussion on the DENSEST-K-SUBGRAPH problem we refer the
reader to Section 2.3).

Theorem 4.13. Fiz some integer {, { > 2. Let o be a family of OWAs such that each
OWA in the family (for at least ¢ numbers) has 0s on positions 1 through {—1, and has
a nonzero value on the {’th position. If there is a polynomial-time z(n)-approximation
algorithm for a-OWA-WINNER then there is a polynomial-time x(n)-approximation
algorithm for the DENSEST-K-SUBGRAPH problem.

We should mention that Theorem 4.13 holds for a somewhat more general class
of OWAs than stated explicitly. The proof relies on the fact that the first entry of
the OWA is zero and that after the first non-zero entry of the OWA there are still
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K —1 positions, where K is the parameter from the input of the DENSEST-K-SUBSET
instance.

Proof of Theorem 4.13. Let I be an instance of the DENSEST-K-SUBGRAPH problem
with graph G = (V, E) and positive integer K. In I we ask for a subgraph with K
vertices with the maximal number of edges.

From I we construct an instance I’ of a-OWA-WINNER, where the set of agents
N is E, the set of items is A = V U {dy,...,dy—2} (or V if £ = 2), and we seek a
winner set of size K + ¢ — 2. Agents utilities are set as follows: For each agent e
and each item d;, 1 < j < ¢ — 2, the utility of e for d; is 1. If e is an edge in G
that connects vertices u and v, then agent e’s utility for u and v is 1 and is 0 for the
remaining items from V.

It is easy too see that the items di, ..., d;_5 all belong to every optimal solution
for I’. Tt is also easy to see that in each optimal solution the utility of each agent e
is nonzero (and exactly equal to ay, the (-th entry of the OWA « used) if and only if
both items corresponding to the vertices connected by e are included in the solution.
Thus the total utility of every optimal solution for I’ is equal to «, times the number
of edges that connect any two vertices corresponding to the items from the solution.

Let A be a polynomial-time x(n)-approximation algorithm for a-OWA-WINNER.
If A, returns a solution S for I’ with none-zero utility, then the items dy, ..., d,_o all
belong to S. Let us take the vertices corresponding to the items S\ {di, ..., d—2}.
The number of the edges connecting these vertices is equal to the total utility of
S divided by «y. Thus, from z(n)-approximate solution for I’ we can extract an
x(n)-approximate solution for /. This completes the proof. O

As a further evidence that OWAs that are not-nonincreasing are particularly hard
to deal with from the point of view of approximation algorithms, we show that for an
extreme example of an OWA family, i.e., for the K-med OWAs, there is a very strong
hardness-of-approximation result.

Theorem 4.14. There exists a constant ¢ such that there is no polynomial-time
(2°V'e™ n)-approzimation algorithm for K -med-OWA-WINNER unless for some ¢ we
have 3-SAT € DTIME(2"""").

Proof. Let us assume that there is a constant ¢ and a polynomial-time
(2¢V1e™ /n)-approximation algorithm A for K-med-OWA-WINNER. We will show
that we can use A to solve instances of MEBP-V with the same approximation ratio
(For the definition and discussion on the complexity of MEBP-V we refer the reader
to Section 2.3.). By Lemma 2.2, this will prove our theorem.

Let I be an instance of MEBP-V with bipartite graph G = (UUV, E) and positive
integer K. In I we ask for a biclique S such that [|[SN V| = K and S contains as
many edges as possible.

From I we construct an instance I’ of K-med-OWA-WINNER in the following
way. We let the set of agents N be U, the set of items A be V, and we seek
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a winner set of size K. The utility of agent u from item v is equal to 1 if and
only if v and v are connected in G; otherwise it is 0. Now we note that there is a
one-to-one correspondence between the solutions for I and for I’. Let S be a solution
for I with = edges: S NV is also a solution for I’ with the utility at least equal
to x/K. Let S be a solution for I” with the utility =. All the agents from U with
non-zero utilities, together with S, form a biclique with Kz edges. Thus, from the
(2¢VTe™ /n)-approximation solution for I’ we can extract a (2°VE" /n)-approximation
solution for I. This completes the proof. O

As a corollary of the above proof, we also have that Hurwicz[A]-OWA-WINNER
is NP-hard (through an almost identical proof, but with a certain dummy candidate,
that gets utility 1 from everyone, added, and with the size of the winner set extended

by 1).
Corollary 4.15. Hurwicz|\|-OWA-WINNER is NP-hard

Interestingly, even though Hurwicz[A\] OWA is not nonincreasing, we do show an
approximation algorithm for it with a constant approximation ratio. This shows that,
indeed, even for not-nonincreasing OWAs, sometimes some form of approximation
result is possible (though we will comment on the value of this approximation later).

Proposition 4.16. Let A be a S-approximation algorithm for 1-best-OWA-WINNER.
A is a \G-approzimation algorithm for Hurwicz[A]-OWA-WINNER.

Proof. Let us consider some instance I of Hurwicz[\]-OWA-WINNER, where the
goal is to pick a set of K items. We construct an instance I' that is identical to
Il but for the 1-best-OWA, and we run algorithm A on I'. The algorithm outputs
some set W = {wy,...,wk} (a B-approximate solution for I'). We claim that W is
a \-approximate solution for /7.

Let WH = {wf ... wl} be an optimal solution for I and let W' =
{wil,...,wk} be an optimal solution for I'. We first note that the following holds
(recall the 7+ notation for sorted sequences from page 40):

uI:turWiCZ[M(WH> _ Z <)‘uile (1 . ) Z u! i < Z u! i = —ub bcst(Wl)

i=1

In effect, we have that wlPest(W1) > 2™ (7H) - Now, it is easy to verify that

ut

for W (or, in fact, for any set of K items) it holds that:

ugturwicz[)\](w) Zn: <)\uz o (1 . u; wK> > A Z u = )\ui—tbest(w).

i=1
Finally, combining these two inequalities and the fact that W is a [-approximate

solution for 1-bestOWA-WINNER, we get:
uHurwicz[A}(W) Z )\Ui}bCSt(W> Z AﬁUi;bCSt(W ) > >\B Hurw1cz (WH)

ut

This completes the proof. O
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By using the algorithm GREEDY from Figure 4.1 we get the following corollary.

Corollary 4.17. There is an algorithm that for Hurwicz|\|-OWA-WINNER with no
restrictions on the utility functions achieves approzimation ratio A(1 — 1).

Returning to nonincreasing OWAs, we can even show an example of a PTAS for
OWA-WINNER for a certain family OWAs. However, to defeat the relation to the
MAXCOVER problem, these OWAs need to be of a very special form: they need to
be as similar to the K-best OWA as possible.

Theorem 4.18. Consider a nonincreasing OWA «, a = (ayq,...,ak). Let
I be an instance for a-OWA-WINNER (where we seek a winner set of size
K). An optimal solution for the same instance but with K-best-OWA is a
(K, )/ (Kay)-approzimate solution for 1.

Proof. Let I be an instance of a-OWA-WINNER described in the statement of the
theorem, let W* be one of its optimal solution, and let W be an optimal solution for
the same instance, but with a replaced with the K-best-OWA. Note that W is also
an optimal solution for the K-number constant OWA § = (ay,...,a1). We claim
that the following inequalities hold (u$; is defined with respect to the instance I and
ugt is defined with respect to instance I with 5 as the OWA):

@ Zfil & 3 Zfil & 3 Zfil Q;
> = > = ) > 1= « *
ut(W) - KO(l uut(W> - KOKl uut(W ) - KOKl uut(W )7

u

The second inequality holds because W is an optimal solution for I with OWA (. To
see why the first and the third inequalities hold, let us focus on some agent i. The
third inequality is simpler and so we prove it first.

Let uj, ..., uj; be the utilities, in the nonincreasing order, that agent ¢ has for the
items in W*. Thus the utility that ¢ gets from W* under « is Efil a;u;. Since for
each i, 1 <1 < K, we have «a; < aq, ¢’s utility under « is smaller or equal than ¢’s
utility under 8, 25 aqul.

We now prove the first inequality. Let wq,...,ux be the utilities, in the
nonincreasing order, that agent ¢ has for the items in W. Our goal is to show that:

K K
Ei:l Qv Zi:l Q;

Uy + -+ agUg 2 T Uy e+ o
1U1 KUK = Ka, 1U1 Ka, 1UK
Zfilai E?i105i
K K "

This inequality is equivalent to

K K
Koyuy + -+ Kagug > Zaiul +---+Zaiuf<,
i=1 i=1
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which itself is equivalent to
K K
We can rewrite the left-hand side of this inequality as:

(ul — UQ)(KOél — Zfil Oéi) + (Ug — ’ng)(KOél + KOZQ — 2Z£1 Oéi) + -t
+ (o —ur) (D0 Koy — (K= 1) 305 o) +ur (U5, Kay — K302 ).

We claim that each summand in this expression is nonnegative. Since uq,...,uk is a
nonincreasing sequence of nonnegative utilities, we have that foreach 7,1 < 7 < K—1,
uj — ;41 is nonnegative, and so is ugx. Now fix some ¢, 1 <t < K. We have:

K K
23:1 Kaj—ty o = 23:1([( —ta; =ty

K
> HK —tay —t Yy a; > K —t)oy — H(K — t)oy =0

i=t+1
This completes the proof. O
As a consequence of this theorem, we immediately get the following result.

Theorem 4.19. Let f : N — N be a function computable in polynomial-time with
respect to the value of its argument, such that f(K) is o(K). There is a PTAS for
(K — f(K))-best-OWA-WINNER.

Proof. Let us fix some €, 0 < € < 1. We give a polynomial time e-approximation
algorithm for (K — f(K))-best-OWA-WINNER. Since f(K) is o(K), there is some
value K, such that for each K > K, it holds that %(K) > e. If for our input
instance we are to find a winner set of size K, K > K., then we simply run the
polynomial-time algorithm for K-best-OWA. Otherwise, we seek a winner set of size
at most K, and we try all subsets of items of size K. Since, in this case, K is bounded
by a constant, our algorithm runs in polynomial time. O

Both Corollary 4.17 and Theorem 4.19 have a bitter-sweet taste. In essence,
they say that instead of using a particular OWA family (either Hurwicz|\| or (K —
f(K))-best OWA), we might as well use a different, simpler one (1-best OWA or
K-best OWA). If one wanted Hurwicz|A] OWA or (K — f(K))-best OWA for some very
important reason, then these algorithms are insufficient (though, one could interpret
them as suggesting that such a very important reason is unlikely).!

Still, Theorem 4.19 is a very interesting result when contrasted with Theorem 4.13.
Theorem 4.19 says that there is a PTAS for a-OWA-WINNER for OWA family
(1,...,1,0), whereas Theorem 4.13 suggests that it is unlikely that there is a

!This comment applies to Hurwicz[A| for large values of A only.
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Notation:
® < a map defining the number of free slots per agent. Initially for each agent ¢ we

have ®[i] = ¢.

z < mW (%)
S <+ 0;
for i < 1 to K do
a  argmax,e\s[{j | (5) > 0 Apos;(a) > z}|;
foreach j € {j | #(j) > 0} do
if posj(a) > x then
P[] + @[j] - 1;
S« Su{a};

return S

I

A~

© ® N o otoh o w N e

[
o

Figure 4.2: The algorithm POSBOUNDANDGREEDY for nonincreasing OWAs where
at most first £ entries are nonzero, for the case of Borda-based utilities.

constant-factor approximation algorithm for a-OWA-WINNER with OWA family
(0,1,...,1). Even though these two OWA families seem very similar, the fact that
one is nonincreasing and the other one is not makes a huge difference in terms of
approximability of our problem.

We note that all the results from this section apply both to the general and to the
approval based case. Indeed, in the proofs of our positive results we did not make
any assumptions regarding agents’ utilities. We also presented the proofs of hardness
in their more restricted form, i.e., for a specific case of approval utilities (less general
utilities give a more general theorem).

4.3 Polynomial Time Approximation Schemes:
Borda Utilities

We now focus on OWA-WINNER with Borda-based utilities. In this case the difference
between nonincreasing OWAs and those that are not nonincreasing is much less
pronounced than in the general case (or, in the approval-based case) and very strong
approximation algorithms exist. Indeed, we show PTASes for many variants of
a-OWA-WINNER with Borda-based utilities.

We start by discussing the algorithm POSBOUNDANDGREEDY, presented in
Figure 4.2. The algorithm POSBOUNDANDGREEDY works for nonincreasing OWAs
where only some initial ¢ positions are nonzero. By W(:) we mean Lambert’s W
function, that is, a function that for each x € R satisfies the equation 2 = W(xz)eV(®)
(and, thus, W(x) is O(log(x))). The idea behind the algorithm is as follows: It
proceeds in K iterations (where K is the winner-set size that we seek) and in each
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iteration it introduces one new item into the winner set. For each agent it considers
only the top r = mW (%) % items with highest utilities and in a given iteration it
greedily picks an item a that maximizes the number of agents that (1) rank a among
items with highest z utilities, and (2) still have “free slots” (an agent has a free slot if
among the so-far-selected winners less than ¢ have utilities among the = highest ones
for this agent). Below we give an example of how the algorithm works.

Example 4.20. Consider the utility profile with n = 10 agents, m = 8 items

ai, as, . ..,ag, and the utilities extracted from the following preference orders using
Borda PSF.

agenti: ay > ag > ag > a4 > A5 > Qg > A7 > Ag
agenty: ag > a1 > Qg > Q3 > A7 > Qg > A5 >~ Ag
agents: ay > a3 > a7y > Q4 > Qg > Q5 > Ag > Q3
agenty: as > a1 > Q4 > Q5 > A3 > ag > A7 > Ag
agents: ay > Qg > A5 > ag > A7 > G4 > Ao > A3
agentg: ag > Qg > a1 > Q5 > Qg4 > Q7 > Ag > Ug
agent;: ay > Qg > g > Q4 > A7 > Qg > Ag > A3
agentg: ay > a3z > a5 > Q7 > aAg > Qg > Ag > Q3
agentg: ay > a4 > ag > a5 > Qg > Qg > A7 > Ag

agentip: ag > Ag > A3 > Qg > G5 > Ao > @1 > A7

So, for example, agent; has utility 7 for a;, utility 6 for as, 5 for a3, and so on.
We take K = 4 and we are using the 2-best OWA, so that ¢ = 2. Consequently,
the algorithm will consider only the first @ = [mW (£) £] = 4 positions of the
agents’ rankings (W(2) ~ 0.8562). Initially, each agent has ¢ = 2 free slots. In the
first iteration, the algorithm selects an item that is most frequent among the first 4
positions of the agents’ rankings, that is a;. Every agent except for agent,o ranks a;
among the first 4 positions, so after the first iteration every agent except for agent;,
is left with one free slot; agent,, still has 2 free slots. In the second iteration, the
algorithm selects the most frequent item (excluding a;), that is either az or a4. Ties
are broken arbitrarily, so let us assume that it picks az. Every agent that ranks ag
among the first 4 positions is assigned az and loses one free slot. Now the agents
agent,, agents, agent,, and agent,o have one free slot left and the remaining ones
have no free slots. In the third iteration, the algorithm considers only the 4 agents
with free slots. The two most frequent items that are ranked among the first 4
positions by these 4 agents are a4 and ag; let us assume the algorithm picks ay. After
this iteration only agents has a free slot. Since K = 4, the algorithm is allowed to
pick one more item ranked among the first 4 positions by agents, which is either of
as, ag, and ag. Say, the algorithm picks as.
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Theorem 4.21. Fix a positive integer ¢ and let o« be a nonincreasing
OWA where at most first ¢ entries are nonzero.  Given an instance I of
a-OWA-WINNER, the algorithm POSBOUNDANDGREEDY from Figure 4.2 computes

a (1 — 2W1gﬁ/z)>-appmzimate solution for I in polynomaial-time.
Proof. Consider an instance I of a-OWA-WINNER, with n agents, m items, and
where we seek a winner set of size K. Let © = mW (%) %. Since we use an OWA
where an agent’s total utility from a winner set W depends on this agent’s utilities
for the top ¢ items from W (from this agent’s point of view), we introduce the notion
of free slots for each agent. Initially, each agent has ¢ free slots. Whenever an agent
7 has a free slot and the algorithm selects an item a such that from j’s perspective a
is among z items with highest utilities, we say that a starts occupying one free slot
of i. Consequently, after such item is selected, ¢ has one free slot less.

Let n; denote the total number of free slots of all the agents after the i-th iteration
of the algorithm; ng = ¢n. We will show by induction that n; < /n (1 — ﬁ)l
Indeed, the inequality is true for + = 0. Let us assume that it is true for some i:
n; < In (1 — %)Z Let F; denote the set of agents that have free slots after iteration
i. There are at least % such agents. For j € Fj, let S(j) be the number of j’s top-x
items that were not included in the solution yet. If j € F; has s free slots, then
S(j) = (x — €+ s). Thus we have that } .. S(j) > n; + (z — €)% = . By the
pigeonhole principle, there exists an item that is among top-z items for at least 7

agents from F;. Thus, after the (i + 1)-th iteration of the algorithm, the total number
of free slots is at most:

- nr 1 T < (1 x  (+1)
ms <=t = (L= o) <t 170

In effect, at the end of the algorithm the total number of free slots is at most:

<y (1—i>K<e (1—i)K—f W) :
= /m = /m - K
W(K/0)
. <1) _ tnW(K /()

e K/l

The number of occupied slots at the end of the algorithm is, thus, at least equal to

<€n — %) Every item that occupies an agent’s slot has utility for this agent

greater or equal to (m — mvz{%/ Z)). Now, we will assess the OWA coefficients for the

utilities of the items from the solution. If for some agent ¢ the utility of an item a
(uiq) is taken with the coefficient «y, (p > 1), then in the solution there must exist
an item a' such that u; s > u;, and such that w;, is taken with coefficient ;.

MW (K/f)

R0 ) occurrences of the items with the

Thus, there must exist at least % (ﬁn —
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mvz((ﬁ/ 9 and such that these utilities are taken with the

coefficient a;. By repeating the same reasoning for the remaining occurrences of the

items from the solution, we get that the total utility of the agents is lower-bounded
by:

- ) o 08) o - M) 5

- (1 - 2WK§(€/€ ) ZO‘Z

utilities greater than (m —

Since the total utility of all the agents can be upper-bounded by nm Zle ;, We
get the desired approximation ratio. O

Theorem 4.22. Fiz a value ¢ and let o be a family of nonincreasing OWAs that have
nonzero values on top £ positions only. There is a PTAS for a-OWA-WINNER for
the case of Borda-based utilities.

Proof. For every ¢ we show a polynomial algorithm with approximation ratio (1 — ).
Consider some ¢, 0 < ¢ < 1. There exists a value K, such that for each K > K, it
holds that 2W¥/{Z 9 < €. For each instance I of a-OWA-WINNER where we seek winner
set of size at least K, we run the algorithm POSBOUNDANDGREEDY from Figure 4.2.
For the remaining cases, where the winner-set size is bounded by a constant, we use
a brute-force algorithm. O

Using the above result, we can also obtain a PTAS for OWA-WINNER for
geometric progression OWAs, for the case of Borda utilities. This is quite a useful
result since some of our scenarios from Chapter 3 yield OWAs of this form.

Corollary 4.23. Fiz a value p > 1. There is a PTAS for gprog[p]-OWA-WINNER
for the case of Borda-based utilities.

Proof. Our goal is to show an algorithm that for a given value ¢, € > 0, in polynomial
time outputs a (1 — €)-approximate solution for gprog[p]-OWA-WINNER. Let us fix
the value of such e. The idea of our proof is to truncate the vector describing gprog|[p]
OWA to consider only some ¢ nonzero items on the top, where ¢ depends on € only,
and to run the algorithm from Theorem 4.22.

For a given number ¢, let S; be the sum of the first ¢ coefficients of gprog[p]. We
have: S; = gprog[p]; + gprog[pli—1 + - - - + gprog[ply = p* '+ pF D 44 pRTl =
pK_”%. We fix £ = [log,(2)]. Now, consider the ratio r = S;/Sk:

S, -1 -1 1 1
Y e S Y et W WU BN
Sk pK —1 pk pt plogn(2) 2




Intuitively, the above inequality says that 1 — fraction of the total weight of gprog|[p]
OWA is concentrated in its first ¢ coefficients.

Let gprog(pl;¢ denote the OWA obtained from gprog(p| by replacing all coefficients
with indices greater than ¢ with 0. Let A be a (1 — §)-approximation algorithm
for gprog[p];-OWA-WINNER. From Theorem 4.22 we know that such an algorithm
exists. It is easy to see that A is a (1 — €)-approximation algorithm for
gprog[p]-OWA-WINNER. Indeed, the utility under gprog[p], for every K-element
set W is close to the utility of W under gprog[p] (recall the #* notation from page 40
for sorted sequences; the inequahty in the second line holds because for each i we

have Z _, gprog[p|,u th < ZJ L gprog[p|;u zw])'

gprog Z Z gprog|p|u wﬂ

=1 j=1
n ¢ K Z 1
lgprog[ ]] zw
<> (Z gprog[pljuy,, + Y gprogpl J)
i=1 \j=1 h=0+1 Zg:1gpf0g[ ]g
K
41 8PrOg[p
=zzgpmg (Z )
P > _g—18prog[pl,
€ gprog[:n]u
< 1 ) (1 ) W),

From which we get that for every W:

uiltarog[P]\e(W) > (1 g)uigrog[p](w)_

This completes the proof because algorithm A returns a (1 — §)-approximate solution
for gprog[p]j;-OWA-WINNER and (1 —5)(1 —5) > 1 —e. O

Also, by Proposition 4.16 and Theorem 4.22 we get the following result for the
Hurwicz[A]-OWA-WINNER problem.

Corollary 4.24. For each positive €, there is an algorithm that for
Hurwicz[\]-OWA-WINNER for the case of Borda-based wutilities achieves
approzimation ration \(1 — €).

Interestingly, Theorem 4.22 can be generalized to the case of arbitrary OWAs (not
necessarily nonincreasing) that have nonzero entries among the top ¢ positions only
(where ¢ is a constant.?) The idea of our algorithm is very similar to that presented
as the algorithm POSBOUNDANDGREEDY in Figure 4.2, but this time we take more

2However, if one reads our proof carefully, it is clear that it generalizes to some values of £ that
depend on K, but which are sufficiently small; e.g., it works for £ = K %).
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care in choosing the winning items, so that we ensure that a large collection of voters
ranks at least ¢ winners on positions with high utility values. Specifically, we use the
following lemma, which is a direct consequence of Theorem 4.21.

Lemma 4.25. Consider a set N of n agents and a set A of m items, where the agents
rank the items from the most preferred ones to the least preferred ones. Let K, ¢, and

t be some positive integers such that K < m, { < K, andt < {. Let x = mv}/((ﬁ/z).

There is a polynomial-time algorithm that finds a collection C of up to K/l items

such that there are at least n(1 — Wg%@) agents that each rank at least one member

of C' between positions (t — 1)z + 1 and tz.

Proof. To see that this lemma holds, it suffices to analyze the proof of Theorem 4.21
for / = 1 and note that the proof works equally well irrespectively of whether we
consider the positions 1 through =, or # + 1 through 2x, or any other segment of x
positions in the agents’ preference orders. O

Theorem 4.26. Fix a positive integer ¢ and let o be a family of OWAs that
have nonzero entries on top { positions only. There is a polynomial-time (1 —
%ﬁm)—appmximation algorithm for a-OWA-WINNER for the case of Borda-based
utilities.

Proof. Consider an input instance I of a-OWA-WINNER with the set N = [n] of
agents, with the set A of m items, and where we seek winner set of size K. We consider
the agents’ utilities to be represented by preference orders over A (recall the discussion
of Borda-based utilities in Chapter 3 and the fact that we can decode these preference
orders from the Borda-based utilities of the agents). Let o = (ay,..., ., 0,...,0) be

the OWA used in this instance. We set x = mWK(Z/ 2

Our algorithm proceeds in ¢ iterations. We set N = N and n(® = n. In the
1-th iteration, 1 <1 </, the algorithm operates as follows: Using the algorithm from

Lemma 4.25, we find a set A®) of up to K /¢ items such that at least n~1 (1 — %/éz))

of the agents from the set N~ each rank at least one of these items among positions
(i — 1) + 1, ..., iz of their preference orders. We let N® be the set of these agents
and we set n(i) = ||[N@|. Finally, we set W = Ule A and return W as the set of
winners (it is easy to see that W contains at most K items; if K contains fewer than
K items then we supplement it with K — ||W|| arbitrarily chosen ones).

By the construction of our algorithm, each of the agents from the set N ranks
at least ¢ items from the set W on positions no worse than ¢z. Thus the total utility
that the agents from the set N derive from the solution W is at least:

n' <i ai) (m — z).

This is so, because for each i, 1 < i < ¢, each of the agents in the set N derives
utility at least a;(m — zf) from the agent that he ranks as i’th best among the items
from W.
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By construction of our algorithm, we have:

Thus, the total utility obtained by the agents is at least:

ul, (W) >n (1 — ewa/Z/ Y ) (Z az) — /)
0 (1- 25 () (- )

=1

- (3] (1 W0 (,
o () (- #5)

i=1
Now, since the maximum possible total utility of all the agents is upper-bounded by

nm(35_, o), we have that our algorithm has approximation ratio (1 — %ﬁ/f)) It
is clear that it runs in polynomial time, and so the proof is complete.

Based on Theorem 4.26, we can immediately generalize Theorem 4.22.

Theorem 4.27. Fiz a value { and let o be a family of OWAs that have nonzero
values on top € positions only. There is a PTAS for a-OWA-WINNER for the case
of Borda-based utilities.

It is interesting to compare Theorems 4.21 and 4.26. Even though the latter
one covers a larger set of cases, the algorithm it implies achieves a notably weaker
approximation ratio (even if still sufficient to obtain a PTAS). This shows that OWAs
that are not nonincreasing are harder to deal with even for Borda-based utilities (even
if the difference is much smaller than in the general case). Theorems 4.26 and 4.27 are
also quite interesting in conjunction with Theorem 4.13. In particular, they show that
it seems impossible to generalize Theorem 4.13 to the case of Borda-based utilities. It
might be surprising at first, because it was possible to generalize Theorem 4.4 to the
case of Borda utilities (as Theorem 4.5) and, indeed, the main ideas of these proofs
are similar.

It is also interesting to note that there is nothing in the proofs of Theorems 4.21
and 4.26 that would stop us from using them for the case where ¢ depends on K.
In particular, Theorem 4.21 still gives an approximation ratio higher than 1 — % of
the greedy algorithm even for %-best OWA. For the case, of Theorem 4.26, it stays
useful (i.e., still yields even a PTAS) for values of ¢ in O(K%*¢), for each positive €
(the same is true for Theorem 4.21 as long as £(K) is such that WE4KD o665 t0 0

K/0(K)
when K goes to co).
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4.4 Summary

We have investigated the computational feasibility of the problem of selecting a
collective set of items, depending on the various assumptions we make about the
agents’ utilities and the choice of the OWA vector. Table 4.1 gives a summary of our
results. We note that many of these results are directly related to the OWA families
that appear in the settings from Chapter 3, that were our motivating force.

Some of our results appear negative, while some others (especially in the case
of Borda utilities) are on the positive side. However, the way the results should be
interpreted depends on the application domain.

Table 4.1: Summary of our results for the OWA families from Chapter 3. For each OWA
family we provide four entries: In the first row (for a given OWA family) we give its worst
case complexity (in the general case and in the Borda utilities case), and in the second row
we list the best known approximation result (in the general case and in the Borda utilities
case). We write K to mean the cardinality of the winner set that we seek. In the “References”
column we point to the respective result in this chapter/literature (for negative results we
indicate simplest type of utilities where it holds, for positive results the most general type
of utilities where it holds). For approximation: DKS-bounded and MEBP-bounded mean,
respectively, inapproximability results derived from the DENSEST-K-SUBGRAPH problem
and from the MAXIMUM EDGE BICLIQUE PROBLEM

OWA family general utilities | Borda utilities |References
. NP-hard NP-hard Prop. 4.2 (approval and Borda)
k-median (k fixed) | gy onded PTAS Thm. 4.13 (approval) and 4.27 (Borda)
K-median NP-hard NP-hard Thm. 4.4 (approval) and 4.5 (Borda)
MEBP-bounded ? Thm. 4.14 (approval), open (Borda)
Lbest NP-hard NP-hard literature [188,245]
) (1 — 1)-approx. PTAS literature [188], Thm. 4.22 (Borda)
NP-hard NP-hard Prop. 4.2 (approval and Borda)
k-best (k fixed) (1 — 1)-approx. PTAS Thm. 4.11 (general) and 4.22 (Borda)
(K — 1)-best NP-hard NP-hard Thm. 4.4 (approval) and 4.5 (Borda)
PTAS PTAS Thm. 4.18 (general)
K-best P P folk result
. . NP-hard ? Corol.4.7 (approval), open (Borda)
arithm. progression (1 — 1)-approx. | (1 — 1)-approx. [Thm. 4.11 (general)
o eressio NP-hard ? Corollary 4.7 (approval), open (Borda)
geom. progression (1 — 1)-approx. PTAS Thm 4.11 (general), Corol. 4.23 (Borda)
NP-hard ? Corol. 4.15 (approval)
Hurwicz[A] A1 — L)-approx.|A(1 — €)-approx.|Corollary 4.17 (general)
for each € > 0 |Corollary 4.24 (Borda)
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The application of our approximation algorithms in high-stake domains, such as
political elections is addressed in Chapter 5. In low-stake applications domains (which
can include some committee elections, and of course group recommender systems), we
are often not interested in the exact optimal solution, and usually the solutions with
sufficiently good quality are acceptable. Consequently, applying our approximation
algorithms to these settings seems perfectly reasonable.

Our research leads to many open problems. In particular, one might want
to strengthen our approximation algorithms, provide algorithms for more general
cases, provide more inapproximability results. Among these problems, a particularly
interesting one regards the approximability of OWA-WINNER for the arithmetic
progression family of OWAs. For this case, our set of results is very limited.
In particular, can one provide a PTAS for arithmetic-progression OWAs under
Borda-based utilities? Can one do so for £-best OWAs/K-median OWAs?
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Chapter 5

Proportional Representation as
Resource Allocation: Approximability

5.1 Introduction

In this chapter we consider the problem of selecting a collective set of items in
the disjunctive model (for the formal definition of the problem we refer the reader
to Chapter 3). This means that we consider the problem of selecting K items
and assigning each agent to exactly one of them, to maximize agents’ satisfaction.
Naturally, the satisfaction of an agent from the set of selected items is simply her
satisfaction from the item that she is assigned to. We consider the pure disjunctive
variant of the model, where the satisfaction of the agent from the set of items is
just her satisfaction from the most preferred one that is available, and a variant in
which each selected item is assigned to roughly the same number of agents (which
is a special case of the capacitated disjunctive version of the problem of selecting a
collective set of items).

Further, we consider the case where the utilities of the agents are derived from
their preference rankings by applying a positional scoring function (PSF), mainly
focusing on the Borda count PSF.

These variants of our problem were first considered by Chamberlin—Courant [47]
and Monroe [210] in the context of selecting a set of candidates in elections. When
choosing a K-member committee, the Monroe and Chamberlin-Courant rules work as
follows. We assume that m candidates participate in the election and that the society
consists of n voters, who each rank the candidates, expressing their preferences about
who they would like to see as their representative in the committee. For each voter
these election systems assign a single candidate as their representative, respecting the
following rules:

(a) altogether exactly K candidates are assigned to the voters. For the Monroe
rule, each candidate is assigned either to about  voters or to none; for
the Chamberlin-Courant rule there is no such restriction and each committee
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member may be representing a different number of voters (the committee should
take this into account in its operation, e.g., by means of weighted voting).

(b) the candidates are selected and assigned to the voters optimally, maximizing
the total (societal) satisfaction.

The total satisfaction is calculated on the basis of individual satisfactions. We assume
that there is a function a: N — N such that «(i) measures how well a voter is
represented by the candidate that this voter ranks as ¢'th best. The function « is
the same for each voter. We can view « as a satisfaction function, and so it should
be non-increasing. For example, it is typical to use the Borda count scoring function
which is defined as aff =m — 1.

The two election systems, Chamberlin—Courant’s and Monroe’s, fit naturally into
the framework of selecting a collective set of items in the disjunctive model. We
can identify candidates with alternatives (items)! and voters with agents. With
this correspondence, saying that a voter ¢ is represented by a candidate a is
analogous to saying that an agent ¢ is assigned an item a. When viewed from this
perspective, maximizing the satisfaction of the voters from their representatives in the
Chamberlin—Courant rule corresponds to maximizing the satisfaction of the agents
from the items in the disjunctive variant of the problem of selecting a collective set of
items. Similarly, the problem of selecting winners in the Monroe system can be viewed
as a special case of the disjunctive capacitated variant of the problem of selecting a
collective set of items.

Paying a tribute to the origin of the considered problems, we will refer to the
disjunctive variant of the model for selecting a collective set of items as to the
Chamberlin—Courant’s case, and to the disjunctive variant in which each selected
item must be assigned to the roughly the same number of agents, as to the Monroe’s
case.

As we mentioned in Chapter 3.3.1, the two considered problems have multiple
applications, however considering these problems in the context of elections is
particularly appealing. The Monroe and Chamberlin—Courant rules create a useful
connection between the voters and their representatives that makes it possible to
achieve both candidates’ accountability to the voters and proportional representation
of voters’ views. Among common voting rules, the Monroe and Chamberlin-Courant
rules seem to be quite unique in having both these properties.? For example, First
Past the Post system (where the voters are partitioned into districts with a separate

!To emphasize the fact that each agent can be assigned to (and derive her utility from) a single
item only, throughout this chapter we will often refer to the items as to the alternatives. Sometimes,
to emphasize the context of elections, we will use the term ‘candidate’ instead of ‘alternative’.

2We stress, however, that we understand these properties in intuitive terms and that we are
not making any formal claims here. However, we do point the reader to the recent comparison of
multiwinner voting rules of Elkind et al. [96] for some interesting discussion of good properties of
these rules.
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single-winner Plurality election in each) can give very disproportionate results (forcing
some of the voters to be represented by candidates they dislike). On the other side
of the spectrum are the party-list systems, which achieve very good proportionality,
but in which the voters vote for the parties, based on these votes the parties receive
numbers of seats in the parliament, and then the parties distribute the seats among
their members (usually following publicly available lists of the parties’ candidates).
This makes the elected candidates feel more accountable to apparatchiks of their
parties than to the voters. Somewhere between the First Past the Post system and
the party-list systems, we have the single transferable vote rule (STV).

Since it is NP-hard to determine winners in the Monroe and Chamberlin—Courant
rules [27,188,245,283|, the goal of this chapter is to provide effective approximation
algorithms for the problem of finding winners under the Monroe and
Chamberlin—Courant rules.

The use of approximation algorithms for Chamberlin—Courant’s and Monroe’s
rules in real-life applications requires some discussion. For example, their use
is naturally justified in the context of recommendation systems or other resource
allocation variants described in Chapter 3.1. Here the strive for optimality is not
crucial since a good but not optimal selection is still very useful and nobody would
object if we replaced the optimal selection with an approximate one (given that the
optimal one is hard to calculate).

On the other hand, the use of approximation algorithms in elections requires some
care. It is conceivable that the electoral commission finds an allocation of voters to
candidates with a certain value of satisfaction and one of the parties participating
in the election finds an allocation with a better one. This can lead to a political
deadlock. There are two ways of avoiding this. Firstly, an approximation algorithm
can be fixed by law. In such a case, it becomes an acting voting rule and a new way
to measure fairness in the society. Secondly, an electoral commission may calculate
the allocation, but also publish the raw data and issue a call for submissions. If,
within the period specified by law, nobody can produce a better allocation, then
the committee goes ahead and announces the result. If someone produces a better
allocation, then the electoral commission uses the latter one.

The use of approximation algorithms is even more natural in elections with partial
ballots. Indeed, even if we use an exact algorithm to calculate the winners, the results
will be approximate anyway since the voters provide us with approximations of their
real preferences rather than the exact ones.

Our Results

We consider both utilitarian and egalitarian variant of the Chamberlin—Courant and
Monroe rules. In the utilitarian variant the assignment should maximize the total
satisfaction calculated as the sum of the voters’ individual satisfactions with their
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representatives. In the egalitarian variant, the assignment should maximize the total
satisfaction calculated as the satisfaction of the worst-off voter.
We obtain the following results:

1. For the egalitarian cases, the Monroe and Chamberlin—Courant rules are hard
to approximate up to any constant factor (see Theorems 5.1 and 5.3).

2. For the utilitarian framework we show the following. For the Monroe rule
with the Borda scoring function we give a (0.715 — €)-approximation algorithm
(Theorem 5.8; often, the ratio is much better; see Section 5.4). In case of an
arbitrary positional scoring function we give a (1 — %)—approximation algorithm
(Theorem 5.9). We recall that as the corollary of Theorem 4.22 from Chapter 4
we have a polynomial-time approximation scheme for the Chamberlin—Courant
rule with the Borda scoring function.

3. We provide empirical evaluation of our algorithms for the utilitarian framework,
both on synthetic and on real-life data. This evaluation shows that in practice
our best algorithms achieve approximation ratios at least 0.9, and even better
results are typical (see Section 5.5).

4. We show that our algorithms work very well in the setting where voters do not
necessarily rank all the candidates, but rather provide the truncated ballots
in which they rank several most preferred candidates only (usually at least
three). We provide theoretical guarantees on the performance of our algorithms
(Propositions 5.6 and 5.12) as well as empirical evaluation (see Section 5.5.4).

Our results show that, as long as one is willing to accept approximate solutions, it
is possible to use the utilitarian variants of the Monroe and Chamberlin—Courant rules
in practice. This view is justified both from the theoretical and from the empirical
point of view. Due to our negative results, we did not perform empirical evaluation
for the egalitarian variants of the rules, but we believe that this is an interesting
future research direction.

For the approximability results for winner determination under
Chamberlin—Courant’s and Monroe’s rules, but with k-approval positional scoring
function used instead of the Borda one, we refer the reader to Chapter 6.

5.2 Preliminaries

In this section we first recall the definition of the positional scoring rules. Next, we
recall the definition of the capacitated disjunctive variant of the problem of selecting
the collective set of items, which was first introduced in Chapter 3.1, and finally, we
discuss which restrictions of this problem correspond to the winner determination
problem for the Monroe and Chamberlin-Courant voting rules. For the definitions of
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the basic notions such as preference orders and positional scoring rules we refer the
reader to Chapter 3.

Positional scoring rules. A positional scoring function (PSF) is a function
a™: [m] — N. A PSF o™ is a decreasing positional scoring function (DPSF) if
for each 4,5 € [m], if i < j then o™ (i) > ™ (j). Intuitively, a DPSF 4™ measures an
agent’s satisfaction and we assume that for each DPSF ~™ it holds that v (m) = 0
(an agent is completely not satisfied being assigned her least desired alternative).
Sometimes we write « instead of o, when it cannot lead to a confusion.

We will often speak of families o of DPSFs of the form o = (a™)en, Where
a™ is a PSF on [m], such that for a family of DPSFs it holds that o™ ™! (i+1) = a™ (i)
for all m € N and ¢ € [m]. In other words, we build our families of DPSFs by
prepending values to functions with smaller domains. To simplify notation, we will
refer to such families of DPSFs as normal DPSFs. We assume that each function o™
from a family can be computed in polynomial time with respect to m. Indeed, we are
particularly interested in the Borda family defined by af(i) = m — i.

Assignment functions. We recall that N denotes the set of agents (voters), and
A denotes the set of alternatives (candidates). In this chapter we will additionally
use the notion of the capacity of an alternative—for each alternative a € A, its
capacity cap, denotes the maximum number of agents that can be assigned to a. A
K-assignment function is any function ®: N — A, such that |®(N)| < K (that is, it
matches agents to at most K alternatives), and such that for every alternative a € A
we have that |®~!(a)| < cap, (i.e., the number of agents assigned to a does not exceed
a’s capacity cap,).

We will also consider partial assignment functions. A partial K-assignment
function is defined in the same way as a regular one, except that it may assign a null
alternative, |, to some of the agents. It is convenient to think that for each agent ¢
we have pos; (L) = m. (We recall that pos;(a) denote the position of the alternative a
in i’s preference order.) In general, it might be the case that a partial K-assignment
function cannot be extended to a regular one. This may happen, for example, if the
partial assignment function uses K alternatives whose capacities sum to less than the
total number of voters. However, in the context of Chamberlin—Courant and Monroe
rules it is always possible to extend a partial K-assignment function to a regular one.

Given a normal DPSF «, we may consider the following two functions, each
assigning a positive integer to any assignment ®:

n

((2) =) a(pos;(®(0))),

£2(®) = maxa(pos;(B(0))).

These functions are built from individual satisfaction functions, so that they can
measure the quality of the assignment for the whole society. In the utilitarian
framework the first one can be viewed as a total (societal) satisfaction function. The
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second one can be used as a total satisfaction functions in the egalitarian framework.
We will omit the word total if no confusion may arise.

For each subset of the alternatives S C A such that |S| < K, we denote as ®3 the
partial K-assignment that assigns agents only to the alternatives from S and such that
@Y maximizes the utilitarian satisfaction £¢(®?). (We introduce this notation only for
the utilitarian satisfaction-based setting because it is useful to express appropriate
algorithms for this case; for other settings we have hardness results only and this
notation would not be useful.)

The Capacitated Disjunctive Selection of the Collective Set of Items. Let
us now recall the definition of the capacitated disjunctive variant of the problem of
selecting the collective set of items problem, which forms the base of our study. This
problem stipulates finding an optimal K-assignment function, where the optimality
is relative to one of the total satisfaction functions that we have just introduced. In
this problem we additionally assume that the utilities of the agents are obtained from
their rankings, by applying a positional scoring function. For the sake of the clarity
and brevity of the notation we will refer to this base problem as to the ASSIGNMENT
problem.

Definition 5.1. [The Capacitated Disjunctive Selection of the Collective Set of
Items.] Let a be a normal DPSFE. An instance of a-U-ASSIGNMENT problem (i.e.,
of the utilitarian assignment problem) consists of a set of agents N = [n|, a set of

alternatives A = {aq,...an}, a preference profile V' of the agents, and a sequence
(capg,,...,cap, ) of alternatives’ capacities. We ask for an assignment function ®
such that:

1 O(N)] < K

2. |®7Y(a)| < cap, for all a € A; and
3. L3(®) s maximized.

Problem a-E-ASSIGNMENT (the egalitarian version of the base problem) is defined
identically except that (7 is replaced with £2..

Our two problems can be viewed as generalizations of the winner determination
problem for the Monroe [210] and Chamberlin-Courant [47] multiwinner voting
systems. To model the Monroe system, it suffices to set the capacity of each
alternative to be % (for simplicity, throughout the chapter we assume that K divides
|IN|3). We will refer to thus restricted variants of our problems as the MONROE
variants. To represent the Chamberlin—-Courant system, we set alternatives’ capacities

to |N|. We will refer to the so-restricted variants of our problems as CC variants.

3In general, this assumption is not as innocent as it may seem. Often dealing with cases there K
does not divide |N| requires additional insights and care. However, for our algorithms and results,
the assumption simplifies notation and does not lead to obscuring any unexpected difficulties.

80



5.3 Hardness of Approximation

We now present our inapproximability results for the Monroe and
Chamberlin—Courant rules. Specifically, we show that there are no constant-factor
approximation algorithms for the egalitarian variants (However, our result for the
Monroe setting is more general than the result for the Chamberlin—Courant setting;
the latter is for the Borda DPSF only.).

Naturally, these inapproximability results carry over to more general settings. For
example, unless P = NP, there are no polynomial-time constant-factor approximation
algorithms for the general E-ASSIGNMENT Problem. On the other hand, our results
do not preclude good approximation algorithms for the utilitarian case and, indeed,
in Section 5.4 we provide such algorithms.

Theorem 5.1. For each normal DPSF « (where each entry is polynomially bounded
in the number of alternatives) and each constant factor r, with 0 < r < 1, there is no
r-approximation algorithm for a-E-MONROE unless P = NP.

Proof. Let us fix a DPSF a = (&™) ,nen, where each entry o™ is polynomially bounded
in the number of alternatives m. For the sake of contradiction, let us assume that
for some 7, 0 < r < 1, there is a polynomial-time r-approximation algorithm A for
a-E-MONROE. We will show that the existence of this algorithm implies that X3C
is solvable in polynomial time.

Let I be an X3C instance with ground set U = {1,2,...,n} and collection
F =A{F,...,F,} of subsets of U. Each set in F has cardinality three. Further,
without loss of generality, we can assume that n is divisible by three and that each
1 € U appears in at most three sets from F. Given I, we form an instance I,
of a-E-MONROE as follows. Let n' = 3 (a™"(1) - [2] 4 3). The set N of
agents is partitioned into two subsets, N; and No. N; contains n agents (intuitively,
corresponding to the elements of the ground set U) and N, contains n’ agents (used
to enforce certain properties of the solution). The set of alternatives A is partitioned
into two subsets, A; and A;. We set A; = {ay,...,a,} (members of A; correspond
to the sets in F), and we set Ay = {by,..., by}, where m’' = %

For each j, 1 < j <n, we set M;(j) = {a; | j € F;}. For each j, 1 < j <n, we
set the preference order of the j'th agent in N; to be of the form

My(j) = Ay = Ay — My(j).

Note that by our assumptions, |M,(j)] < 3. For each j, 1 < j < n/, we set the
preference order of the j'th agent in N, to be of the form

b[%" >A2—{b[ '|} >A1.

3
3

Note that each agent in N3 ranks the alternatives from A; in positions m'+1, ..., m'+

m. Finally, we set the number of candidates that can be selected to be K = %”,
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Now, consider the solution ® returned by .4 on Ij;. We will show that (2™ (&) <
ra™+™ (3) if and only if I is a yes-instance of X3C.

(<) If there exists an exact set cover of U with sets from F, then it is easy to
construct a solution for I, where the satisfaction of each agent is greater or equal

to r-a™™(3). Let I C {1,...,m} be a set such that |J,.; F; = U and |I| = 2.
We assign each agent j from N; to the alternative a; such that (a) i € I and (b)
J € F;, and we assign each agent from N, to her most preferred alternative. Thus,
Algorithm A has to return an assignment with the minimal satisfaction greater or
equal to r - ™™ (3).

(=) For the other direction, we first show that r - ™™ (3) > o™ (m/). Since
DPSFs are strictly decreasing, it holds that:

re o™ (3) > (@™ () +m — 3). (5.1)
Then, by the definition of DPSFs; it holds that:
™ (') = o™ (1), (5.2)

Using the fact that m’ = (o™ (1) - [==2] + 3) and using (5.2), we can transform
inequality (5.1) to obtain the following:

re o™ (3) > (™ () +m — 3)

=r. (am+m’(m’) + (™ (1) - F — ﬂ +3) — 3)

v

rea™ () + (1 —7r) - a™t(1

)
=7 o™ () + (1 —7r) - o™ (m)) = ™ (m)).

This means that if the minimal satisfaction of an agent is at least 7 - ™ (3), then
no agent was assigned to an alternative that he or she ranked beyond position m/'. If
some agent j from N; were assigned to an alternative from As, then, by the pigeonhole
principle, some agent from N, would be assigned to an alternative from A;. However,
each agent in N ranks the alternatives from A; beyond position m’ and thus such
an assignment is impossible. In consequence, it must be that each agent in j was
assigned to an alternative that corresponds to a set F; in F that contains j. Such an
assignment directly leads to a solution for [. O

Let us now move on to the case of E-CC family of problems. Unfortunately,
in this case our inapproximability argument holds for the case of Borda DPSF only
(though we believe that it can be adapted to other DPSFs as well). Further, in the
previous theorem we have shown that existence of a constant-factor approximation
algorithm implies that NP collapses to P. In the following theorem we will show a
seemingly weaker collapse of W[2] to FPT.

To prove hardness of approximation for ag-E-CC, we first prove the following
simple lemma.
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Lemma 5.2. Let K, p,l be three positive integers and let X be a set of cardinality
IpK. There exists a family S = {51, ..., S(m)} of pK -element subsets of X such that
K

for each K-element subset B of X, there is a set S; € S such that B C S;.

Proof. Set X’ = [IK] and let Y’ be a family of all K-clement subsets of X’. Replace
each element i of X’ with p new elements (at the same time replacing ¢ with the same
p elements within each set in Y’ that contains 7). As a result we obtain two new
sets, X and Y, that satisfy the statement of the theorem (up to the renaming of the
elements). O

Theorem 5.3. Let oy be the Borda DPSF (af (i) = m —1i). For each constant
factor v, 0 < r < 1, there is no r-approximation algorithm for apf-E-CC unless
FPT = W|2].

Proof. For the sake of contradiction, let us assume that there is some constant r,
0 < r <1, and a polynomial-time r-approximation algorithm A for af}-E-CC. We will
show that the existence of this algorithm implies that SET-COVER is fixed-parameter
tractable for the parameter K (since SET-COVER is known to be W|2]-complete for
this parameter, this will imply FPT = W|2]).

Let I be an instance of SET-COVER with ground set U = [n] and family F =
{F\,F5,...,F,} of subsets of U. Given I, we build an instance Io¢ of aff-E-CC as
follows. The set of agents IV consists of n subsets of agents, Ny, ..., N,, where each
group N; contains exactly n’ = ((%;K) agents. Intuitively, for each i, 1 < i < n,
the agents in the set N; correspond to the element ¢ in U. The set of alternatives
A is partitioned into two subsets, A; and A,, such that: (1) A; = {ai,...,an}

is a set of alternatives corresponding to the sets from the family F, and (2) A,

|As| = [2] {%_‘ K, is a set of dummy alternatives needed for our construction.

We set m’ = |A| = m + | As].

Before we describe the preference orders of the agents in N, we form a family
R = {ry,...,ry} of preference orders over A, that satisfies the following condition:
For each K-element subset B of Aj,, there exists 7; in R such that all members of

B are ranked among the bottom {ww K positions in r;. By Lemma 5.2, such a

construction is possible (it suffices to take | = {%W and p = {%—‘), further, the

proof of the lemma provides an algorithmic way to construct R.

We form the preference orders of the agents as follows. For each i, 1 <17 < n, set
Mg(i) = {a; | © € Fi}. For each ¢, 1 <i <mn, and each j, 1 < j <n/, the j'th agent
from NN; has preference order of the form:

Mf(l) — T — Al — Mf(l)

(we pick any arbitrary, polynomial-time computable order of candidates within M (7)
and M,(7)).
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Let ® be an assignment computed by A on I;. We will show that i (®) >
r-(m' —m) if and only if [ is a yes-instance of SET-COVER.

(<) If there exists a solution for I (i.e., a cover of U with K sets from F), then
we can easily show an assignment where each agent is assigned to an alternative that
he or she ranks among the top m positions (namely, for each 7, 1 < j < n, we
assign all the agents from the set N; to the alternative a, € A; such that j € Fj
and F; belongs to the alleged K-element cover of U). Under this assignment, the
least satisfied agent’s satisfaction is at least m’ — m and, thus, A has to return an

assignment ® where (28 (@) >r-(m' —m).

(=) Let us now consider the opposite direction. We assume that A4 found an
assignment ® such that (28 (®) > r-(m'—m) and we will show that I is a yes-instance
of SET-COVER. We claim that for each 7, 1 < i < n, at least one agent j in N;
were assigned to an alternative from A;. If all the agents in N; were assigned to
alternatives from A,, then, by the construction of R, at least one of them would
have been assigned to an alternative that he or she ranks at a position greater than

| Aa| — [@—‘ K = PW [@-‘ K — {w—‘ K. For z = [@-‘ K we have:

T

m ;o
—|lx—xz>m —m'r+mr
T

(we skip the straightforward calculation) and, thus, this agent would have been
assigned to an alternative that he or she ranks at a position greater than m’—m/r+mr.
As a consequence, this agent’s satisfaction would be lower than (m’ —m)r. Similarly,
no agent from N; can be assigned to an alternative from M, (7). Thus, for each 1,
1 < i < n, there exists at least one agent j € N; that is assigned to an alternative
from My (7). In consequence, the covering subfamily of F consists simply of those sets
F}., for which some agent is assigned to alternative a; € A;.

The presented construction gives the exact algorithm for SET-COVER problem
running in time f(K)(n 4+ m)°®, where f(K) is polynomial in ((1%{1) The existence
of such an algorithm means that SET-COVER is in FPT. On the other hand, we know
that SET-COVER is W[2]-complete, and thus if A existed then FPT = W][2] would
hold. O

5.4 Algorithms for the Utilitarian Cases

We now turn to approximation algorithms for the Monroe and Chamberlin—Courant
multiwinner voting rules in the utilitarian framework. Indeed, in this case it is
possible to obtain high-quality approximation results. In particular, we show the
first nontrivial (randomized) approximation algorithm for ag-U-MONROE. We show
that for each ¢ > 0 we can provide a randomized polynomial-time algorithm that
achieves (0.715 — e approximation ratio; the algorithm usually gives even better
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approximation guarantees. For the case of arbitrarily selected DPSF we show a
(1—e1)-approximation algorithm. Finally, by applying the results from Chapter 4 to
the context of finding proportional representation, we show the first polynomial-time
approximation scheme (PTAS) for ag-U-CC. These results stand in sharp contrast
to those from the previous section, where we have shown that approximation is hard
for essentially all remaining variants of the problem.

The core difficulty in solving a-MONROE/CC-ASSIGNMENT problems lays in
selecting the alternatives that should be assigned to the agents. Given a preference
profile and a set S of up to K alternatives, using a standard network-flow argument,
it is easy to find a (possibly partial) optimal assignment ®J of the agents to the
alternatives from S.

Proposition 5.4 (Implicit in the paper of Betzler et al. [27]). Let a be a normal
DPSF, N be a set of agents, A be a set of alternatives (together with their capacities;
perhaps represented implicitly as for the case of the Monroe and Chamberlin—Courant
rules), V' be a preference profile of N over A, and S a K-element subset of A (where
K divides |N|). Then there is a polynomial-time algorithm that computes a (possibly
partial) optimal assignment ®5 of the agents to the alternatives from S.

Note that for the case of the Chamberlin-Courant rule the algorithm from the
above proposition can be greatly simplified: To each voter we assign the candidate
that he or she ranks highest among those from S. For the case of Monroe,
unfortunately, we need the expensive network-flow-based approach. Nonetheless,
Proposition 5.4 allows us to focus on the issue of selecting the winning alternatives
and not on the issue of matching them to the agents.

Below we describe our algorithms for ag-U-MONROE and for ag-U-CC. Formally
speaking, every approximation algorithm for ag-U-MONROE also gives feasible results
for ap-U-CC. However, some of our algorithms are particularly well-suited for both
problems and some are tailored to only one of them. Thus, for each algorithm we
clearly indicate if it is meant only for the case of Monroe, only for the case of CC, or
if it naturally works for both systems.

5.4.1 Algorithm A (Monroe)

Perhaps the most natural approach to solve ap-U-MONROE is to build a solution
iteratively: In each step we pick some not-yet-assigned alternative a; (using some
criterion) and assign it to those [£] agents that (a) are not assigned to any other
alternative yet, and (b) whose satisfaction of being matched with a; is maximal. It
turns out that this idea, implemented formally as Algorithm A (see pseudo code in
Figure 5.1), works very well in many cases. We provide a lower bound on the total
satisfaction it guarantees in the next lemma. Let us recall that H) = Zle Lis the
k’th harmonic number and that Hy = ©(log k).
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Notation: ¢ < a map defining a partial assignment, iteratively built by the
algorithm.
® <« the set of agents for which the assignment is already defined.
® < the set of alternatives already used in the assignment.

1 if K <2 then

2 compute the optimal solution using an algorithm of Betzler et al. [27] and return.
3 &= {}

4 for i<+ 1to K do

5 score < {}

6 bests + {}

7 foreach a; € A\ &~ do

8 agents < sort N \ @ so that if agent j precedes agent k then

pos;(a;) < posi(a;)

9 bests|a;] < chose first [2] elements from agents
10 scorela;] Zjebem[ad (m — posj(ai))

11 pest 4= ATZMAX e 4\ o scorelal

12 foreach j € bests[apes:] do

13 D[j] < apest

Figure 5.1: The pseudocode for Algorithm A.

Lemma 5.5. Algorithm A is a polynomial-time (1 — D) %)-appmm’mation
algorithm for ag-U-MONROE.

Proof. Our algorithm explicitly computes an optimal solution when K < 2 so we
assume that K > 3. Let us consider the situation in the algorithm after the i’th
iteration of the outer loop (we have ¢ = 0 if no iteration has been executed yet). So
far, the algorithm has picked 7 alternatives and assigned them to i agents (recall

that for simplicity we assume that K divides n evenly). Hence, cach agent has [72=]

unassigned alternatives among her ¢ + (?:ﬂ top-ranked alternatives. By pigeonhole

principle, this means that there is an unassigned alternative a, who is ranked among

top i + [?:ﬂ positions by at least & agents. To see this, note that there are (n —

i) [%=] slots for unassigned alternatives among the top i + [%=] positions in

the preference orders of unassigned agents, and that there are m — i unassigned
alternatives. As a result, there must be an alternative a, for whom the number of

agents that rank him or her among the top 7 + [?:ﬂ positions is at least:

= (- [7=]) 205 () (=) - %

In consequence, the [ | agents assigned in the next step of the algorithm will have the

total satisfaction at least [#]- (m—i—[%=]). Thus, summing over the K iterations,

the total satisfaction guaranteed by the assignment ® computed by Algorithm Ais at
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least the following value: (to derive the fifth line from the fourth one we note that
K(HK—l)—HK ZOWheHKZ:)))

—n m—i
@z Y e (i =)
=0
K—1
> ﬁ.<m_z_m‘2_)
- K —1
=0
_XK:E‘ i m — 1 . 1—2
&K K—i+l K-i+1
:ﬁ<K<2m_K‘1>_(m—1>HK+K(HK—1)—HK)
K 2
n (K2m-—-K—1)
> _ _
_K< 5 (m 1)HK>
K-1 Hyg
> _ _ _
> (m 1)n<1 2 —1) K)

If each agent were assigned to her top alternative, the total satisfaction would be
equal to (m — 1)n. Thus we get the following bound:

ap _

(75 (D) <1 K—-1 Hy

OPT = 2m-1 K

This completes the proof. O

Note that in the above proof we measure the quality of our assignment against,
a perhaps-impossible, perfect solution, where each agent is assigned to her top
alternative. This means that for relatively large m and K, and small % ratio, the
algorithm can achieve a close-to-ideal solution irrespective of the voters’ preference
orders. We believe that this is an argument in favor of using Monroe’s system in
multiwinner elections. On the flip side, to obtain a better approximation ratio, we
would have to use a more involved bound on the quality of the optimal solution. To
see that this is the case, form an instance I of ag-U-MONROE with n agents and m
alternatives, where all the agents have the same preference order, and where we seek
to elect K candidates (and where K divides n). It is easy to see that each solution
that assigns the K universally top-ranked alternatives to the agents is optimal. Thus
the total satisfaction of the agents in the optimal solution is:

ﬁ((m_1)+...+(m_K)):ﬁ(K(2m_K_1)) =n(m—1) (1—2[(7_1).

K K 2 (m—1)
By taking large enough m and K (even for a fixed value of %), the fraction 1 — %

can be arbitrarily close to the approximation ratio of our algorithm (the reasoning
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here is in the spirit of the idea of identifying maximally robust elections, as studied
by Shiryaev, Yu, and Elkind [268]).

For small values of K, it is possible that the H—If part of our approximation ratio
would dominate the % part. In such cases we can use the result of Betzler et
al. [27], who showed that for each fixed constant K, ap-U-MONROE can be solved
in polynomial time. Thus, for the finite number of cases where H—Ié‘f is too large, we
can solve the problem optimally using their algorithm. In consequence, the quality
of the solution produced by Algorithm A most strongly depends on the ratio 2(];1 __11).
In most cases we can expect it to be small (for example, in Polish parliamentary
elections K = 460 and m =~ 6000; in this case the greedy algorithm’s approximation
ratio is about 0.96).

Our algorithm has one more great advantage: Since it focuses on the top parts of
voters’ preference orders, it can achieve very good results even if the voters submit
truncated ballots (that is, if they rank some of their top alternatives only). Below
we present the formal analysis of the algorithm’s approximation ratio for this case.
Unfortunately, we did not obtain a closed form formula and, instead, we present the
guaranteed approximation ratio as a sum. We also present the relation between the
fraction of the top alternatives ranked by each of the voters and the approximation

ratio for few values of m and K in Figure 5.2.

Proposition 5.6. Let P be the number of top positions in the agents’ preference
orders that are known by the algorithm. In this case Algorithm A is a polynomial-time
r-approximation algorithm for ag-U-MONROE, where:

1
r= 1) max(r(i),0)
=0
and
( n m—i . . m—i
x(m—i— =) Zf(Z+K—z)<P’

r(i) = { i) if (i +7=) > P and (2P —m) >i> (K —2),

\ = (m_P)gf__;)(P_i) otherwise.

Proof. We use the same approach as in the proof of Lemma 5.5, except that we adjust
our estimates of voters’ satisfaction. Consider a situation after some i’th iteration of

the algorithm’s outer loop (i = 0 if we are before the first iteration). If i 4+ 2= < P,

then we can use the same lower bound for the satisfaction of the agents assigned in
the (7 + 1)’th iteration as in the proof of Lemma 5.5. That is, the agents assigned in

the (i + 1)’th iteration will have satisfaction at least r1 (i) = £ - (m — i — 2=4).
For the case where i + 2_’: > P, the bound from Lemma 5.5 does not hold, but

—1

we can use a similar approach to find a different one. Let P, < P be some positive
integer. We are interested in the number x of not-yet assigned agents who rank some
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not-yet-selected alternative among their top P, positions (after the i’th iteration).
Similarly as in the proof of Lemma 5.5, using the pigeonhole principle we note that:

xr >

1( .ny&_ﬂzﬁxK—ma—g

(N —1—= -
m—1 K K m—1

Thus, the satisfaction of the agents assigned in the (i 4+ 1)’th iteration is at least:

min (:17, %) (m—P,) = % - (m — P,) min <(K — Z>(Px — i), 1) . (5.3)

m —1

The case W > 1 (or, equivalently, i ) 1 <P

and for this case we lower-bound agents’ satlsfactlon by 71(i). For the case Where
EOF=0) < 1 . where i + 2_2 > P,, equation (5.3) simplifies to:

m—1

K m—1

(5.4)

We use this estimate for the satisfaction of the agents assigned in the (i + 1)’th

iteration for the cases where (a) i + 2= > 2 and (b) * < P (or, equivalently,

(2P —m) > 1> (K —2)). In this case we estimate (5.4) as follows:

n (K—i)(P,—1i) _ n m+i. (K —i)(™*—10)
?-(m—Px)- m—i ZE (m 2 ) m—i
n (K=im=if _n (K—im=i)
K~ 4(m—1) K 1 ‘

For the remaining cases, we set P, = P and (5.4) becomes:

n(m=P)(K—i)(P—i)

K m—1

Naturally, we replace our estimates by 0 whenever they become negative.
To complete the proof, it suffices, as in the proof of Lemma 5.5, to note that
(m — 1)n is an upper bound on the satisfaction achieved by the optimal solution. O

For example, for the case of Polish parliamentary elections (K = 460 and m =
6000), to achieve 90% of voters’ optimal satisfaction, each voter would have to rank
about 8.7% of the candidates.

Our results show that for most settings there is very little reason to ask the agents
to rank all the alternatives. Using Proposition 5.6, election designers can estimate how
many alternatives the agents should rank to obtain a particular level of satisfaction.
Since computing preference orders can be expensive for the agents, this way they can
save a large amount of effort.
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Figure 5.2: The relation between the percentage of the known positions and the
approximation ratio of Algorithm A for ag-U-MONROE.

5.4.2 Algorithm B (Monroe)

There are simple ways in which we can improve the quality of the assignments
produced by Algorithm A. For example, our Algorithm B first runs Algorithm A
and then, using Proposition 5.4, optimally reassigns the alternatives to the voters.
As shown in Section 5.5, this very simple trick turns out to noticeably improve the
results of the algorithm in practice (and, of course, the theoretical approximation
guarantees of Algorithm A carry over to Algorithm B).

5.4.3 Algorithm C (Monroe, CC)

Algorithm C is a further heuristic improvement over Algorithm B. This time the idea
is that instead of keeping only one partial function ® that is iteratively extended up
to the full assignment, we keep a list of up to d partial assignment functions, where
d is a parameter of the algorithm. At each iteration, for each assignment function
® among the d stored ones and for each alternative a that does not yet have agents
assigned to by this ®, we compute an optimal extension of this ® that assigns agents
to a. As a result we obtain possibly more than d (partial) assignment functions. For
the next iteration we keep those d of them that give highest satisfaction.

We provide pseudocode for Algorithm C in Figure 5.3. If we take d = 1, we obtain
Algorithm B. If we also disregard the last two lines prior to returning the solution,
we obtain Algorithm A.

Algorithm C can also be adapted for the Chamberlin—-Courant rule. The only
difference concerns creating the assignment functions: we replace the contents of the
first foreach loop with the following code:
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2
3

@ 9 O vk~

10
11
12
13
14

15

16

17

18

Notation: We use the same notation as in Algorithm A;
Par < alist of partial representation functions
Par =]
Par.push({})
for ¢+ <+ 1 to K do
newPar = ||
for ® € Par do
bests + {}
foreach a; € A\ 7 do
agents < sort N \ @ (agent j precedes agent k implies that
posj(a;) < posk(a;))
bests|a;] < chose first [ elements of agents
' — P
foreach j € bests[a;] do
'[j] + a;
newPar.push(®’)
sort newPar according to descending order of the total satisfaction of the
assigned agents
Par < chose first d elements of newPar
for ® € Par do
® < compute the optimal representative function using an algorithm of Betzler
et al. [27] for the set of winners &
return the best representative function from Par

Note that for the case of the Chamberlin—Courant rule Algorithm C can also be seen

Figure 5.3: The pseudocode for Algorithm C.

foreach a; € A\ 7 do
o'+ P
foreach j € N do
if agent j prefers a; to ®'(j) then
‘I)/(j) — ay
newPar.push(®’)

as a generalization of Algorithm GM that we will discuss later in Section 5.4.5.

5.4.4 Algorithm R (Monroe, CC)

Algorithms A, B and C achieve very high approximation ratios for the cases where K
is small relative to m. For the remaining cases, where K and m are comparable, we
can use a sampling-based randomized algorithm (denoted as Algorithm R) described
below. We focus on the case of Monroe and we will briefly mention the case of CC

at the end.
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The idea of this algorithm is to randomly pick K alternatives and match them
optimally to the agents, using Proposition 5.4. Naturally, such an algorithm might
be very unlucky and pick K alternatives that all of the agents rank low. Yet, if
K is comparable to m then it is likely that such a random sample would include a
large chunk of some optimal solution. In the lemma below, we asses the expected
satisfaction obtained with a single sampling step (relative to the satisfaction given by
the optimal solution) and the probability that a single sampling step gives satisfaction
close to the expected one. Naturally, in practice one should try several sampling steps
and pick the one with the highest satisfaction.

Lemma 5.7. A single sampling step of the randomized algorithm for ag-U-MONROE
achieves expected approximation ratio of %(1 + % — mgfm + %;2) Let p. denote the

probability that the relative difference between the expected total satisfaction and the

obtained total satisfaction is higher than €. Then we have pe < .

Proof. Let N = [n] be the set of agents, A = {ay,...,a,} be the set of alternatives,
and V' be the preference profile of the agents. Let us fix some optimal solution @
and let A, be the set of alternatives assigned to the agents in this solution. For each
a; € Aopt, We write sat(a;) to denote the total satisfaction of the agents assigned to
a; in ®gpe. Naturally, we have )~ Ao sat(a) = OPT. In a single sampling step, we
choose uniformly at random a K-element subset B of A. Then, we form a solution
®p by matching the alternatives in B optimally to the agents (via Proposition 5.4).
We write K, to denote the random variable equal to |Ag,e N B|, the number of
sampled alternatives that belong to Ayp. We define p; = Pr(K,yp = i). For each j €
{1,..., K}, we write X to denote the random variable equal to the total satisfaction
of the agents assigned to the j’th alternative from the sample. We claim that for each
1, 0 <17 < K, it holds that:

K
E (Z X;
j=1

Why is this so? Given a sample B that contains ¢ members of Ay, our algorithm’s
solution is at least as good as a solution that matches the alternatives from B N Agp
in the same way as @, and the alternatives from B — A,y in a random manner.
Since K,y = 4 and each a; € Ag, has equal probability of being in the sample,
it is easy to see that the expected value of ZajeBonpt sat(a;) is 2OPT. After we
allocate the agents from BN Agp, each of the remaining, unassigned agents has m — i
positions in her preference order where he ranks the agents from A — A,,,. For each
unassigned agents, the average score value associated with these positions is at least
m_TH (this is so, because in the worst case the agent could rank the alternatives from
BN Agp in the top i positions). There are (n — i) such not yet assigned agents and
so the expected total satisfaction from assigning them randomly to the alternatives
is ==L . (n —iZ). This proves our bound on the expected satisfaction of a solution

2 K
yielded by optimally matching a random sample of K alternatives.

2

| o
=) 2 gorT s L (i),
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Since OPT is upper bounded by (m—1)n (consider a possibly-nonexistent solution
where every agent is assigned to his or her top preference), we get that:

K . . .
—i—1
E ( E Xj‘Kopt - Z) Z %OPT"‘ % . (1 - %) OPT
j=1

We can compute the unconditional expected satisfaction of @5 as follows:

K K K
. (sz) e (szwKopt )
j=1 =0 j=1

K ) . .

7 m—1—1 7
> | — P — .
> ZE:O p,( OPT + 20m —1) (1 )OPT)

Since Zfil pi - 1 is the expected number of the alternatives in A, we have that
Zfil pi -1 = %2 (one can think of summing the expected values of K indicator
random variables; one for each element of A, taking the value 1 if a given
alternative is selected and taking the value 0 otherwise). Further, from the generalized

2
mean inequality we obtain Zfil pi - 12 > (%2) . In consequence, through routine
calculation, we get that:

K
K m2—K?—m K
B S il s, _
E (jil X]> > <mOPT+ mlm — 1) (1 m) OPT)
B OoPT <1 K K? K? )
= S .

_'_
m  m2—m  m3—m?2

It remains to assess the probability that the total satisfaction obtained through
®p is close to its expected value. We use the following relation:

Since E (Zszl Xj> > 9L we get:

. 1 .
From which we get that p. < ;7. This completes the proof. O

In the next theorem we will see that to have a high chance of obtaining a high
quality assignment, we need to repeat the sampling step many times. Thus, for
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practical purposes, by Algorithm R we mean an algorithm that repeats the sampling
process a given number of times (this parameter is given as input) and returns the
best solution found (the assignment is created using Proposition 5.4).

The threshold for %, where the sampling step is (in expectation) better than
the Algorithm A is about 0.57. Thus, by combining the two algorithms, we can
guarantee an expected approximation ratio of 0.715 —¢, for each fixed constant e. The
pseudo-code of the combination of the two algorithms (Algorithm AR) is presented
in Figure 5.4.

Theorem 5.8. For each fized €, Algorithm AR provides a (0.715 — €)-approzimate
solution for the problem ag-U-MONROE with probability A in time polynomial with
respect to the input instance size and —log(1 — \).

Proof. Let € be a fixed constant. We are given an instance I of ag-U-MONROE. If
m < 1+ %, we solve [ using a brute-force algorithm (note that in this case the number
of alternatives is at most a fixed constant). Similarly, if H—[f > 5 then we use the exact
algorithm of Betzler et al. [27] for a fixed value of K (note that in this case K is no
greater than a certain fixed constant).

On the other hand, if neither of the above conditions hold, we try both
Algorithm A and a number of runs of the sampling-based algorithm. It is easy to
check through routine calculation that if % <gfandm>1+ % then Algorithm A
achieves approximation ratio no worse than (1 — % —¢€). We run the sampling-based
algorithm — log(1 — )\)% times. The probability that a single run fails to find a

solution with approximation ratio at least %(1 + % — mgfm + %;2) —5ispe < 2%6

Thus, the probability that at least one run will find a solution with at least this
approximation ratio is at least:

2Ee _log(1-X)
—log(1-N)2e 2 ’ B _ _
1—-p. =1 <2 n 6) >1—exp(log(l—AX)) =\

Sincem <1 —l—%, by routine calculation we see that the sampling-based algorithm with

probability A finds a solution with approximation ratio at least %(1 + KK ﬁ—j) —e.

m  m2
By solving the equality:

2

(LK KRN K
m  m?2  md 2m

we can find the value of % for which the two algorithms give the same approximation
ratio. By substituting x = % we get equality 1 + 2 — 2% + 2° = 2 — 2. One can
calculate that this equality has a single solution within (0, 1) and that this solution is
x = 0.57. For this x both algorithms guarantee approximation ratio of 0.715 —e€. For
x < 0.57 the deterministic algorithm guarantees a better approximation ratio and for

x > 0.57, the randomized algorithm does better. O
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Notation: We use the same notation as in Algorithm 5.1; W(-) denotes Lambert’s
W-Function.
Parameters: \ < required probability of achieving the approximation ratio equal
0.715 — €
if £ > £ then
compute the optimal solution using an algorithm of Betzler et al. [27] and return.
ifm<1+ % then
compute the optimal solution using a simple brute force algorithm and return.
®; < solution returned by Algorithm A
¥y <« run the sampling-based algorithm —log(1 — \) - % times; select the
assignment of the best quality
7 return the better assignment among ®; and -

S R W N =

Figure 5.4: Algorithm AR—combination of Algorithms A and R.

Let us now consider the case of CC. It is just as natural to try a sampling-based
approach for solving ag-U-CC, as we did for the Monroe variant. Indeed, as recently
(and independently) observed by Oren [229], this leads to a randomized algorithm
with expected approximation ratio of (1 — #5)(1 + ;). However, since we will later
see an effective, deterministic, polynomial-time approximation scheme for ap-U-CC,

there is little reason to explore the sampling based approach.

5.4.5 Algorithm GM (Monroe, CC)

Algorithm GM (greedy marginal improvement) was introduced by Lu and Boutilier
for the case of the Chamberlin—Courant rule. Here we generalize it to apply to
Monroe’s rule as well, and we show that it is a 1 — é approximation algorithm for
a-U-MONROE. We point out that this approximation result for Monroe rule applies
to all non-decreasing PSFs a.. For the Monroe rule, the algorithm can be viewed as
an extension of Algorithm B.

The algorithm proceeds as follows. We start with an empty set S. Then we execute
K iterations. In each iteration we find an alternative a that is not assigned to agents
yet, and that maximizes the value Pl (A certain disadvantage of this algorithm
for the case of Monroe is that it requires a large number of computations of ®%; since
in Monroe’s rule each alternative can be assigned to at most + agents in the partial
assignment ®J. computation of @ is a slow process based on min-cost/max-flow

algorithm.) We provide the pseudocode for Algorithm GM in Figure 5.5.

Theorem 5.9. For any non-decreasing positional scoring function o Algorithm GM
is an (1 — L)-approzimation algorithm for a-U-MONROE.

Proof. The proof follows by applying the powerful result of Nemhauser et al. [220],

which says that greedy algorithms achieve 1 — % approximation ratio when used
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Notation: ®5—the partial assignment that assigns a single alternative to at most
[ 7 | agents, that assigns to the agents only the alternatives from S, and
that maximizes the utilitarian satisfaction ¢§(®%).

1.5+
2 for i <1 to K do

a(goYial
3 a < argmax,e 4\ g5 (Pa )
4 S+ SuU{a}
5 return &2

Figure 5.5: Pseudocode for Algorithm GM.

to optimize nondecreasing submodular functions (we explain these notions formally
below). The main challenge in the proof is to define a function that, on one hand,
satisfies the conditions of Nemhauser et al.’s result, and, on the other, models solutions
for a-U-MONROE.

Let A be a set of alternatives, N = [n] be a set of agents with preferences over
A, a be an |A]-candidate DPSF, and K < |A| be the number of representatives that
we want to elect. We consider function z : 24 — N defined, for each set S, S C A
and |S| < K, as 2(S) = (¢(®7). Clearly, z(S) is nondecreasing (that is, for each two
sets A and B, if A C B and |B| < K then 2(A) < z(B). Since argmaxgc 4 51 2(5)
is the set of winners under a-Monroe and since Algorithm GM builds the solution
iteratively by greedily extending initially empty set S so that each iteration increases
the value of z(S) maximally, if z were submodular then by the results of Nemhauser
et al. [220] we would get that Algorithm GM is a (1 — %)—approximation algorithm.
Thus, our goal is to show that z is submodular.

Formally, our goal is to show that for each two sets S and T, S C T, and each
alternative a ¢ T it holds that z(S U {a}) — 2(S) > 2(T' U {a}) — 2(T") (this is the
formal definition of submodularity). First, we introduce a notion that generalizes the
notion of a partial set of winners S. Let s : A — N denote a function that assigns
a capacity to each alternative (i.e., s gives a bound on the number of agents that a
given alternative can represent). Intuitively, each set S, S C A, corresponds to the
capacity function that assigns [7] to each alternative a € S and 0 to each a ¢ S.
Given a capacity function s, we define a partial solution ®? to be one that maximizes
the total satisfaction of the agents and that satisfies the new capacity constraints:
Vaes|(®2) 71 (a)| < s(a). To simplify notation, we write sU{a} to denote the function
such that (sU{a})(a) = s(a) + 1 and Vyes (o} (s U{a})(a’) = s(a’). (Analogously, we
interpret s\ {a} as subtracting one from the capacity for a; provided it is nonzero.)
Also, by s < t we mean that V,ecas(a) < t(a). We extend our function z to allow
us to consider a subset of the agents only. For each subset N’ of the agents and
each capacity function s, we define zy/(s) to be the satisfaction of the agents in N’
obtained under ®°. We will now prove a stronger variant of submodularity for our
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extended z. That is, we will show that for each two capacity functions s and t it
holds that:

s <t=zy(sU{a}) — 2n(s) > an(tU {a}) — 2n(2). (5.5)

Our proof is by induction on N. Clearly, Equation (5.5) holds for N’ = (). Now,

assuming that Equation (5.5) holds for every N’ C N we will prove its correctness

for N. Let ¢ denote an agent such that @ZU{G}(i) = a (if there is no such agent then

clearly the equation holds). Let a; = ®%(i) and a; = @' (i). We have:

an(tU {a}) = 2y (1) = a(posy(a)) + zn (1) — alpos;(ar)) — 2wy (1 {a})-

We also have:

an(sU{a}) = 2n(s) 2 a(posi(a) + 2wy (s) — alpos;(as)) — 2 (5 \ {as})-

Since ®!, describes an optimal representation function under the capacity restrictions
t, we have that:

a(pos;(ar)) + zmpiy (\ ar) = a(pos;(as)) + 2y (E\ {as))-

Finally, from the inductive hypothesis for N' = N \ {i} we have:

v (s) — 2 (s \ {as}) = znyay () — 2 (0 {as}).

By combining these inequalities we get:

zv(sU{a}) — zn(s)

This completes the proof. O

Formally speaking, Algorithm GM is never worse than Algorithm A. For Borda
satisfaction function, it inherits the approximation guarantees from Algorithm A,
and for other cases Theorem 5.9 guarantees approximation ratio 1 — % (we do not
know of any guarantees for Algorithm A for these cases). The comparison with
Algorithms B and C is not nearly as easy. Algorithm GM is still likely better than
them for satisfaction functions significantly different from Borda’s, but for the Borda
case our experiments show that Algorithm GM is much slower than Algorithms B
and C and obtains almost the same or slightly worse results (see Section 5.5).
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Notation: We use the same notation as in Algorithm C;

num_ pos,(a) < [{i € [n] \ " : pos;(a) < x}| (the number of not-yet
assigned agents that rank alternative a in one of their first « positions)

1 ¢={}

2z = [PV

3 for i<+ 1to K do

4 @j ¢ argmax,e 4\ g num_pos,(a)

5 foreach j € [n] \ @ do

6 if posj(a;) < x then

7 (I)[]] — a;

8 foreach j € A\ ®“ do

9 a < such server from ® that Vyce—pos;(a) < pos;(a’)

10 D[] «+ a

Figure 5.6: The algorithm for ag-U-CC (Algorithm P).

5.4.6 Algorithm P (CC)

Since winner determination in the Chamberlin and Courant’s system is a special
case of the problem of selecting a collective set of items, described in Chapter 3,
it is natural to apply some of the generic techniques from Chapter 4 to this case.
In this subsection we recall Algorithm POSBOUNDANDGREEDY from Section 4.3
in the context of the Chamberlin and Courant’s system—we will refer to this
algorithm in this specific context as Algorithm P. The pseudo-code of Algorithm P
is given in Figure 5.6; for the pseudo-code of the generic version of this algorithm,
Algorithm POSBOUNDANDGREEDY, we refer the reader to Figure 4.2.

We recall that the idea of Algorithm P is to compute a certain value x and to
greedily compute an assignment that (approximately) maximizes the number of agents
assigned to one of their top-x alternatives. If after this process some agent has no
alternative assigned, we assign him or her to her most preferred alternative from those
already picked. (Recall that for nonnegative real numbers, Lambert’s W-function,
W(x), is defined to be the solution of the equation z = W(z)eW®).)

Corollary 5.10. Algorithm P is a polynomial-time (1 — %(K))—appmximation
algorithm for ag-U-CC.

Proof. Follows directly from Theorem 4.21. O
Corollary 5.11. There is a PTAS for ag-U-CC.

Proof. Follows directly from Theorem 4.22. O

The idea used in Algorithm P can also be used to address a generalized E-CC
problem. We can consider the following relaxation of E-CC: Instead of requiring that
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each agent’s satisfaction is lower-bounded by some value, we ask that the satisfactions
of a significant majority of the agents are lower-bounded by a given value. More
formally, for a given constant o, we introduce an additional quality metric:

loin(®) = AKX N1 N IV <gitiena(posi(2())).

—mIn(d)
K

In(4)

For a given 0 < 0 < 1, by putting =z = , we get (1 + )-approximation
algorithm for the (2% (®) metric.

Finally, we show that Algorithm P performs very well even if the voters cast
truncated ballots. Proposition 5.12 gives the relation between the number of positions
used by the algorithm and the approximation ratio. In Figure 5.7 we show this relation

for some values of the parameters m and K.

Proposition 5.12. Let () be the number of top positions in the agents’ preference

orders that are known by the algorithm (QQ < %(K)) Algorithm P that uses © =

Q instead of r = [%(K)} is a polynomial-time (72—__?(1 — e_%()> -approximation

algorithm for ag-U-CC.

Proof. Let n; denote the number of the agents not-yet-assigned until the (i + 1)-th
iteration of the algorithm. Using the same reasoning as in Theorem 4.21 we show
that n; < n(1 — %)Z As before, our proof proceeds by induction on i. It is evident

that the hypothesis is correct for i = 0. Now, assuming that n; < n(1— %)Z, we assess

n;y1 as follows:
i+1
Njp1 < Ny — le.Sni<1—Q)§n<1—Q) .

m —1 m m

This proves the hypothesis. Thus, we can bound ng:
QK

K e
nK§n<1—9) gnG) .
m e

This means that the satisfaction of the assignment ® returned by our algorithm is at
least:
[e% _ QK
(P (®) = (n —nk)(m = Q) Zn(m—Q)(L—e” m).
In effect, it holds that:
QK

ap _ T _
B0 nm Q=) =0y gy
OPT n(m —1) m—1

This completes the proof. O

For example, for Polish parliamentary elections (K = 460, m = 6000), it suffices
that each voter ranks only 0.5% of her top alternatives (that is, about 30 alternatives)
for the algorithm to find a solution with guaranteed satisfaction at least 90% of the
one (possibly infeasible) where every voter is assigned to her top alternative.
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Figure 5.7: The relation between the percentage of the known positions and the
approximation ratio of Algorithm P for ag-U-CC.

5.4.7 ILP Formulation (Monroe, CC)

To experimentally measure the quality of our approximation algorithms, we compare
the results against optimal solutions that we obtain using integer linear programs
(ILPs) that solve the Monroe and Chamberlin-Courant winner determination
problem. An ILP for the Monroe rule was provided by Potthoff and Brams [244], Lu
and Boutilier [188] adapted it also for the Chamberlin-Courant rule with arbitrary
PSF «. For the sake of completeness, below we recall the ILP whose optimal solutions
correspond to a-U-Monroe winner sets for the given election (we also indicate which
constraints to drop to obtain an ILP for finding a-U-CC winner sets):

1. For each ¢, 1 < i < n, and each j, 1 < j < m we have a 0/1 variable a;;
indicating whether alternative a; represents agent 7. For each j, 1 < j < m, we
have a 0/1 variable z; indicating whether alternative a; is included in the set
of winners.

2. Our goal is to maximize the value Y1 | a(pos;(a;))a;; subject to the following
constraints:

(a) Foreach i and j, 1 <i<n,1 <j<m,0 <a; < z; (alternative a; can
represent agent ¢ only if a; belongs to the set of winners)

(b) For each i, 1 < i < n, > ., a; = 1 (every agent is represented by
exactly one alternative).

(c) For each j, 1 < j < m, z;| %] < > i, a5 < x;[5] (each alternative
either does not represent anyone or represents between || and [Z]
agents; if we remove these constraints then we obtain an ILP for the

Chamberlin-Courant rule).

(d) >0 x; < K (there are exactly K winners?).

4For the Monroe framework inequality here is equivalent to equality. We use the inequality so
that deleting constraints from item (2c) leads to an ILP for the Chamberlin-Courant rule.
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We used the GLPK 4.47 package (GNU Linear Programming Kit, version 4.47)
to solve these ILPs, whenever it was possible to do so in reasonable time.

5.5 Empirical Evaluation of the Algorithms

In this section we present the results of empirical evaluation of algorithms from
Section 5.4. In the experiments we evaluated versions of the randomized algorithms
that use exactly 100 sampling steps. In all cases but one, we have used Borda PSF
to measure voter satisfaction. In one case, with six candidates, we have used DPSF
defined through vector (3,3,3,2,1,0) (we made this choice due to the nature of the
data set used; see discussion later).

We have conducted four sets of experiments. First, we have tested all our
algorithms on relatively small elections (up to 10 candidates, up to 100 agents). In
this case we were able to compare the solutions provided by our algorithms with the
optimal ones. (To obtain the optimal solutions, we were using the ILP formulations
and the GLPK’s ILP solver.) Thus we report the quality of our algorithms as the
average of fractions C/Cop, where C' is the satisfaction obtained by a respective
algorithm and C,p; is the satisfaction in the optimal solution. For each algorithm
and data set, we also report the average fraction C/Cigea;, Where Cligea is the
satisfaction that the voters would have obtained if each of them were matched to
her most preferred alternative. In our further experiments, where we considered
larger elections, we were not able to compute optimal solutions, but fraction C'/Cigeal
gives a lower bound for C'/C,,.. We report this value for small elections so that we
can see an example of the relation between C'/Cyp, and C/Cigear and so that we can
compare the results for small elections with the results for the larger ones. Further,
for the case of Borda PSF the C'/Cigea fraction has a very natural interpretation: If
its value for a given solution is v, then, on the average, in this solution each voter is
matched to an alternative that he or she prefers to (m — 1)v alternatives.

In our second set of experiments, we have run our algorithms on large elections
(thousands of agents, hundreds of alternatives), coming either from the NetFlix data
set (see below) or generated by us using one of our models. Here we reported the
average fraction C'/Cigeas only. We have analyzed the quality of the solutions as a
function of the number of agents, the number of candidates, and the relative number
of winners (fraction K/m). (This last set of results is particularly interesting because
in addition to measuring the quality of our algorithms, it allows one to asses the
size of a committee one should seek if a given average satisfaction of agents is to be
obtained).

In the third set of experiments, we have investigated the effect of submitting
truncated ballots (i.e., preference orders where only some of the top alternatives
are ranked). Specifically, we focused on the relation between the fraction of ranked
alternatives and the approximation ratio of the algorithms. We run our experiments
on relatively large instances describing agents’ preferences; thus, here as in the
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previous set of experiments, we used the NetFlix data set and the synthetic data
sets. We report the quality of the algorithms as the ratio C'/Cigeal-

In the fourth set of experiments we have measured running times of our algorithms
and of the ILP solver. Even though all our algorithms (except for the ILP based ones)
are polynomial-time, in practice some of them are too slow to be useful.

5.5.1 Experimental Data

For the evaluation of the algorithms we have considered both real-life
preference-aggregation data and synthetic data, generated according to a number
of election models. The experiments reported in this chapter predate the work of
Mattei and Walsh [201]| on gathering a large collection of data sets with preference
data, but we mention that we have contributed several data sets to their collection.

Real-Life Data

We have used real-life data regarding people’s preference on sushi types, movies,
college courses, and competitors’ performance in figure-skating competitions. One of
the major problems regarding real-life preference data is that either people express
preferences over a very limited set of alternatives, or their preference orders are partial.
To address the latter issue, for each such data set we complemented the partial orders
to be total orders using the technique of Kamishima [154]. (The idea is to complete
each preference order based on those reported preference orders that appear to be
similar.)

Some of our data sets contain a single profile, whereas the others contain multiple
profiles. When preparing data for a given number m of candidates and a given number
n of voters from a given data set, we used the following method: We first uniformly
at random chose a profile within the data set, and then we randomly selected n voters
and m candidates. We used preference orders of these n voters restricted to these m
candidates.

Sushi Preferences. We used the set of preferences regarding sushi types collected
by Kamishima [154].> Kamishima has collected two sets of preferences, which we call
S1 and S2. Data set S1 contains complete rankings of 10 alternatives collected from
5000 voters. S2 contains partial rankings provided by 5000 voters over a set of 100
alternatives (each vote ranks 10 alternatives). We used Kamishima [154] technique
to obtain total rankings.

Movie Preferences. Following Mattei et al. [199], we have used the NetFlix data
set® of movie preferences (we call it MVv). NetFlix data set contains ratings collected
from about 480 thousand distinct users regarding 18 thousand movies. The users

®The sushi data set is available under the following url: http://www.kamishima.net/sushi/
Shttp:/ /www.netflixprize.com/
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rated movies by giving them a score between 1 (bad) and 5 (good). The set contains
about 100 million ratings. We have generated 50 profiles using the following method:
For each profile we have randomly selected 300 movies, picked 10000 users that ranked
the highest number of the selected movies, and for each user we have extended her
ratings to a complete preference order using the method of Kamishima [154].

Course Preferences. FEach year the students at the AGH University choose courses
that they would like to attend. Depending on a particular year and the students’ level
of advancement, the students are offered a number of courses of which they have to
select some that they will attend. In our case, the students were offered a choice of
six courses of which they had to choose three. Thus the students were asked to give
an unordered set of their three top-preferred courses and a ranking of the remaining
ones (in case too many students selected a course, those with the highest GPA were
enrolled and the remaining ones were moved to their less-preferred courses). In this
data set, which we call CR, we have 120 voters (students) and 6 alternatives (courses).
However, due to the nature of the data, instead of using Borda count PSF as the
satisfaction measure, we have used the vector (3,3,3,2,1,0). Currently this data set
is available as part of PrefLib [201].

Figure Skating. This data set, which we call SK, contains preferences of the
judges over the performances in figure-skating competitions. The data set contains 48
profiles, each describing a single competition. Each profile contains preference orders
of 9 judges over about 20 participants. The competitions include European skating
championships, Olympic Games, World Junior, and World Championships, all from
1998.7 (Note that while in figure skating judges provide numerical scores, this data
set is preprocessed to contain preference orders.)

Synthetic Data

For our tests, we have also used profiles generated using three well-known distributions
of preference orders.

Impartial Culture. Under the impartial culture model of preferences (which we
denote 1C), for a given set A of alternatives, each voter’s preference order is drawn
uniformly at random from the set of all possible total orders over A. While not very
realistic, profiles generated using impartial culture model are a standard testbed of
election-related algorithms.

Polya-Eggenberger Urn Model. Following McCabe-Dansted and Slinko [204]
and Walsh [298], we have used the Polya-Eggenberger urn model [21] (which we denote
UR). In this model we generate votes as follows. We have a set A of m alternatives
and an urn that initially contains all m! preference orders over A. To generate a
vote, we simply randomly pick one from the urn (this is our generated vote), and

"This data set is available under the following url: http://rangevoting.org/SkateDatal998.
txt.
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then—to simulate correlation between voters—we return a copies of this vote to the
urn. When generating an election with m candidates using the urn model, we have
set the parameter a so that % = 0.05 (Both McCabe-Dansted and Slinko [204] and
Walsh [298] call this parameter b; we mention that those authors use much higher
values of b but we felt that too high a value of b leads to a much too strong correlation
between votes).

Generalized Mallow’s Model. We refer to this data set as ML. Let > and =’ be
two preference orders over some alternative set A. Kendal-Tau distance between >
and >’ denoted dg (>, "), is defined as the number of pairs of candidates =,y € A
such that either z =y Ay ="z ory =z ANz >"y.

Under Mallow’s distribution of preferences [195] we are given two parameters: A
center preference order > and a number ¢ between 0 and 1. The model says that the
probability of generating preference order =’ is proportional to the value ¢ (=",
To generate preference orders following Mallow’s distribution, we use the algorithm
given by Lu and Boutilier [189].

In our experiments, we have used a mixture of Mallow’s models. Let A be a set of
alternatives and let ¢ be a positive integer. This mixture model is parameterized by
three vectors, A = (\1,...,\¢) (where each \; is between 0 and 1, and Zle A =1),
O = (¢p1,...,¢0) (Where each ¢; is a number between 0 and 1), and IT = (>q,...,>/)
(where each »; is a preference order over A). To generate a vote, we pick a random
integer i, 1 < i < { (each 7 is chosen with probability )\;), and then generate the vote
using Mallow’s model with parameters (>;, ¢;).

For our experiments, we have used a = 5, and we have generated vectors A, ®,
and [T uniformly at random.

5.5.2 Evaluation on Small Instances

We now present the results of our experiments on small elections. For each data set,
we generated elections with the number of agents n = 100 (n = 9 for data set SK
because there are only 9 voters there) and with the number of alternatives m = 10
(m = 6 for data set CR because there are only 6 alternatives there) using the method
described in Section 5.5.1 for the real-life data sets, and in the natural obvious way for
synthetic data. For each algorithm and for each data set we ran 500 experiments on
different instances for K = 3 (for the CR data set we used K = 2) and 500 experiments
for K = 6 (for Cr we set K = 4). For Algorithm C' (both for Monroe and for CC)
we set the parameter d, describing the number of assignment functions computed in
parallel, to 15. The results (average fractions C/Cy, and C/Cigear) for K = 3 are
given in Tables 5.1 and 5.3; the results for K = 6 are given in Tables 5.2 and 5.4
(they are almost identical as for K = 3). For each experiment in this section we also
computed the standard deviation; it was always on the order of 0.01. The results lead
to the following conclusions:

104



Monroe CC

A B C GM R C | GM P R

S1 1094 099 | ~1.01] 099 {099 10| ~1.0]0.99]| 0.99
S2 10.95| 0.99 1.0 |=1.01099| 10| ~1.01]0.98]| 0.99
Mv | 096 | = 1.0 1.0 |~10]098|1.0|~1.0]0.96|~1.0
Cr | 0.98 | 0.99 1.0 |~10]099|10|~10| 1.0 | =1.0
SK | 099 | ~1.0 1.0 |~1.0/10941| 10| ~101]085| 0.99
IC 10941 099 |~1.0| 099 099 1.0|~1.0]0.99]| 0.99
ML | 0.94 | 0.99 1.0 099 1099 1.0 ~1.01]0.99| 0.99
URrR [095] 099 | ~1.0| 099 [099 || 1.0 ] 0.99 | 0.97| 0.99

Table 5.1: The average quality of the algorithms compared with the optimal solution
(C'/Cypt) for the small instances of data and for K = 3 (K =2 for CRr); m = 10
(m =6 for CR); n =100 (n =9 for SK).

Monroe CC

A B C GM R C | GM P R

S1 1095 |~1.0 1.0 0.99 099 ||1.0]~1.01097 | 0.99
S2 1094 099 | ~1.0| 0.99 099 ||1.0| ~1.0]1098 | = 1.0
Mv | 0.95| 0.99 1.0 | =10 098 ||1.0]|~1.0]097|~1.0
Cr 096 | ~1.0 1.0 | ~1.0| 099 || 1.0 1.0 1.0 1.00
SK | 099 | ~ 1.0 1.0 | ~10| 088 || 1.0 1.0 091 | = 1.0
IC 1095] 099 |~1.0]| 0.99 099 |1.0]~1.01099 | 0.99
ML | 095 0.99 | ~1.0| 0.99 099 |1.0]~1.01098 | 0.99
Ur | 096] 099 |~1.0] 099 |~1.0]1.0|~1.0]096 | 0.99

Table 5.2: The average quality of the algorithms compared with the optimal solution
(C'/Cypt) for the small instances of data and for K = 6 (K =4 for Cr); m = 10
(m =6 for CR); n =100 (n = 9 for SK).

1. For the case of Monroe, already Algorithm A obtains very good results, but
nonetheless Algorithms B and C improve noticeably upon Algorithm A. In
particular, Algorithm C (for d = 15) obtains the highest satisfaction on all data
sets and in almost all cases is able to find an optimal solution.

2. Both for Monroe and for CC, Algorithm R gives slightly worse solutions than
Algorithm C.

3. The results do not seem to depend on the data sets used in the experiments (the
only exception is Algorithm R for the Monroe system on data set SK; however
SK has only 9 voters so it can be viewed as a border case).
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Monroe CC

A B C |[GM| R C |[GM| P R

S1 10851089 09 [0.8]0.891 0.92]0.89]0.91]0.92
S2 10.85[0.89]0.89|0.89]0.89 093 0.9 |0.91|0.92
Mv |{0.881]0.92]0.92]|0.92|0.911|0.970.92]0.93 ] 0.97
CR | 0.94 1097|096 |0.96 | 0.96 || 0.97 | 0.97 | 0.97 | 0.97
SK [ 096]096]|097]097 091 1.0 [ 0.97]0.8210.99
IC | 0.8 10.84]0.85]0.84]0.84 1| 0.85|0.83]0.84] 0.85
ML | 0.83]0.88[0.88 | 0.9 |0.88 ] 0.92]0.90|0.89 | 0.94
UrR | 0.8 [ 0.85]0.86|0.87 085 | 0.9 | 0.87 | 0.87 | 0.89

Table 5.3: The average quality of the algorithms compared with the simple lower
bound (C/Cigear) for the small instances of data and for K = 3 (K =2 for CR);
m =10 (m = 6 for CR); n = 100 (n = 9 for SK).

Monroe CC

A B C |[GM| R C |[GM| P R

S1 1091]10961|0.96]0.9510.95| 0.9810.98|0.96| 0.98
S2 10.8810.93]0.93]10.93(10.93| 0.9810.98|0.96| 0.98
Mv | 0.85|0.89 | 0.89 | 0.89 | 0.88 || 0.99 | 0.99 | 0.97 | 0.99
Cr | 0950981099099 098 1.0 | 1.0 | 1.0 1.0

Sk 1091092092 |092 0811 1.0 | 1.0 | 091 |~ 1.0
IC 1 0.91]10.95]0.9510.94]0.95 1 0.96]0.96 1| 0.95| 0.95
MI [ 0.89 1094|094 |094]|093] 097|098 0.95| 0.98
Ur | 091 10.9510.95]10.941]0951 098] 0.98|0.94| 0.97

Table 5.4: The average quality of the algorithms compared with the simple lower
bound (C/Cigear) for the small instances of data and for K = 6 (K =4 for CR);
m =10 (m = 6 for CR); n = 100 (n = 9 for SK).

5.5.3 Evaluation on Larger Instances

For experiments on larger instances we needed data sets with at least n = 10000
agents. Thus we used the NetFlix data set and synthetic data. (Additionally, we run
the subset of experiments (for n < 5000) also for the S2 data set.) For the Monroe
rule we present results for Algorithm A, Algorithm C, and Algorithm R, and for
the Chamberlin—-Courant rule we present results for Algorithm C and Algorithm R.
We limit the set of algorithms for the sake of the clarity of the presentation.
For Monroe we chose Algorithm A because it is the simplest and the fastest one,
Algorithm C because it is the best generalization of Algorithm A that we were able
to run in reasonable time, and Algorithm R to compare a randomized algorithm to
deterministic ones. For the Chamberlin—Courant rule we chose Algorithm C because
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Figure 5.8: The relation between the number of alternatives m and the quality of the
algorithms C'/Cjgea for the Monroe system; K/m = 0.3; n = 1000.
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Figure 5.9: The relation between the number of alternatives m and the quality of the
algorithms C'/Cjgea for the Chamberlin—Courant system; K/m = 0.3; n = 1000.

it is, intuitively, the best one, and we chose Algorithm R for the same reason as in
the case of Monroe.

First, for each data set and for each algorithm we fixed the value of m and K and
for each n ranging from 1000 to 10000 with the step of 1000 we run 50 experiments.
We repeated this procedure for 4 different combinations of m and K: (m = 10,
K =3), (m =10, K = 6), (m = 100, K = 30) and (m = 100, K = 60). We
measured the statistical correlation between the number of voters and the quality of
the algorithms C'/Cigea. The ANOVA test in most cases showed that there is no such
correlation. The only exception was S2 data set, for which we obtained an almost
negligible correlation. For example, for (m = 10, K = 3) Algorithm C' under data
set 52 for Monroe’s system for n = 5000 gave C'/Cigea1 = 0.88, while for n = 100 (in
the previous section) we got C'/Cigear = 0.89. Thus we conclude that in practice the
number of agents has almost no influence on the quality of the results provided by
our algorithms.

Next, we fixed the number of voters n = 1000 and the ratio K/m = 0.3, and for
each m ranging from 30 to 300 with the step of 30 (naturally, as m changed, so did
K to maintain the ratio K/m), we run 50 experiments. We repeated this procedure
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Figure 5.11: The relation between the ratio K/m and the quality of the algorithms
C'/Cigeal for the Chamberlin-Courant system; m = 100; n = 1000.

for K/m = 0.6. The relation between m and C'/Cigea for MV and UR, under both
the Monroe rule and the Chamberlin—Courant rule, is given in Figures 5.8 and 5.9
(the results for K/m = 0.6 look similar).

Finally, we fixed n = 1000 and m = 100, and for each K/m ranging from 0.1 and
0.5 with the step of 0.1 we run 50 experiments. The relation between the ratio K/m
and the quality C'/Cigea is presented in Figures 5.10 and 5.11.

For the case of Chamberlin—Courant system, increasing the size of the committee
to be elected improves overall agents’ satisfaction. Indeed, since there are no
constraints on the number of agents matched to a given alternative, a larger committee
means more opportunities to satisfy the agents. For the Monroe rule, a larger
committee may lead to a lower total satisfaction. This happens if many agents like a
particular alternative a lot, but only some of them can be matched to this alternative
and others have to be matched to their less preferred ones. Nonetheless, we see that
Algorithm C achieves C'/Cigear = 0.925 even for K/m = 0.5 for the NetFlix data set.

Our conclusions from these experiments are the following. For the Monroe rule,
even Algorithm A achieves very good results. However, Algorithm C consistently
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achieves better (indeed, almost perfect) ones. For the Chamberlin-Courant rule the
randomized algorithm on some datasets performs better than the deterministic ones.
However, even in such cases, the improvement over the Algorithm C is small.

5.5.4 Truncated ballots

1

0.8

0.6

0.4

0-4 B Algorithm C for 1C (K=20, m=100)
0.2 & Algorithm C for IC (K'=10, m=100
Algorithm C for Mv (K'=4, m=20) Algorithm C for UR (K=4, m=20) Algorithm C for IC (K=4, m=20)

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% of known positions % of known positions % of known positions

"+ Algorithm C for Mv (K=20, m=100

(  Algorithm C for UrR (K=20, m=100
0.2} Algorithm C for Mv (K=10, m=100.
(

(
0.2 + Algorithm C for Ur (K=10, m=100
(

o

quality of the alg. (C/Cigeat)
quality of the alg. (C/Cigeat)
quality of the alg. (C/Cigear)

04 L Algorithm A for Ur (K=20, m=100

( 0.4
+- Algorithm A for UrR (K=10, m=100
(

/ Algorithm A for IC (K=20, m=100
0.2 1 Algorithm A for IC (K=10, m=100
(

“ 1L Algorithm A for Mv (K=20, m=100

quality of the alg. (C/Cideat)
quality of the alg. (C/Cideat)
quality of the alg. (C/Cideat)

0.2+ Algorithm A for Mv (K=10, m=100. 0.2
Algorithm A for Mv (K=4, m=20) Algorithm A for Ur (K=4, m=20) “. Algorithm A for IC (K=4, m=20)
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% of known positions % of known positions % of known positions
R B R
3 2 | 3
8] 8] 8]
§ 0.8 § 0.8 § 0.8
=0 0.6 &0 0.6 =0 0.6
204 . X 204l ) X 204l X
= + Algorithm R for Mv (K =20, m=100 = + Algorithm R for Ur (K=20, m=100 = + Algorithm R for IC (K=20, m=100
ita 0.2 Algorithm R for Mv (=10, m=100. ita 0.2 £ Algorithm R for Ur (K=10, m=100 ita 0.2 - Algorithm R for IC (K'=10, m=100
£ Algorithm R for Mv (K=4, m=20) £ Algorithm R for Ur (K=4, m=20) £ " Algorithm R for IC (K=4, m=20)
2 0 2 0 2 0
& 0 20 40 60 8 100 F 0 20 40 60 8 100 F 0 20 40 60 80 100

% of known positions % of known positions % of known positions

Figure 5.12: The relation between the percentage of known positions P/m [%] and
the quality of the algorithm C'/Cigea for Algorithms C, A, and R for Monroe’s system.
Each row of the plots describes one algorithm; each column describes one data set;
n = 1000. (Results for the Mallows model are similar to those for the urn model and
are omitted for clarity.)

The purpose of our third set of experiments was to see how our algorithms behave
in practical settings with truncated ballots. We conducted this part of evaluation on
relatively large instances, including n = 1000 agents and up to m = 100 alternatives.
Thus, in this set of experiments, we used the same sets of data as in the previous
subsection: the Netflix data set and the synthetic distributions. Similarly, we
evaluated the same algorithms: Algorithm A, C, and R for the case of Monroe’s
system, and Algorithm C, and R for the case of the Chamberlin—Courant system.

For each data set and for each algorithm we run experiments for 3 independent
settings with different values of the parameters describing the elections: (1) m = 100,
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Figure 5.13: The relation between the percentage of known positions P/m |%] and the
quality of the algorithm C'/Cigea for Algorithms C and R for the Chamberlin—Courant
system. Each row of the plots describes one algorithm; each column describes one
data set; n = 1000. (Results for the Mallows model are similar to those for the urn
model and are omitted for clarity.)

K =20, (2) m =100, K = 10, and (3) m = 20, K = 4. For each setting we run the
experiments for the values of P (the number of known positions) varying between 1
and m.

For each algorithm, data set, setting, and each value of P we run 50 independent
experiments in the following way. From a data set we sampled a sub-profile of the
appropriate size n x m. We truncated this profile to the P first positions. We run the
algorithm for the truncated profile and calculated the quality ratio C'/Cigea;. When
calculating C'/Cigear we assumed the worst case scenario, i.e., that the satisfaction of
the agent from an alternative outside of his/her first P positions is equal to 0. In
other words, we used the positional scoring function described by the following vector:
(m—1,m—=2,...,m— P,0,...0). Next, we averaged the values of C'/Cigca over all
50 experiments.

The relation between the percentage of the known positions in the
preference profile and the average quality of the algorithm for the Monroe and
Chamberlin—Courant systems are plotted in Figures 5.12 and 5.13, respectively. We
omit the plots for Mallow’s model, as in this case we obtained almost identical results
as for the Urn model. We have the following conclusions.

1. All the algorithms require only small number of the top positions to achieve
their best quality. Here, the deterministic algorithms are superior.

2. The small elections with synthetic distributions appear to be the worst case
scenario—in such case we require the knowledge of about 40% of the top
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positions to obtain the highest approximation ratios of the algorithms. In the
case of the NetFlix data set, even on small instances the deterministic algorithms
require only about 8% of the top positions to get their best quality (however
the quality is already high for 3-5% of the top positions). For the larger number
of the alternatives, the algorithms do not require more than 3% of the top
positions to reach their top results.

3. Algorithm C does not only give the best quality but it is also most immune
to the lack of knowledge. These results are more evident for the case of the
Monroe system.

5.5.5 Running time

In our final set of experiments, we have measured running times of our algorithms on
the data set Mv. We have used a machine with Intel Pentium Dual T2310 1.46GHz
processor and 1.5GB of RAM. In Figure 5.14 we show the running times of the GLPK
ILP solver for the Monroe and for Chamberlin—-Courant rules. These running times
are already large for small instances and they are increasing exponentially with the
number of voters. For the Monroe rule, even for K = 9,m = 30,n = 100 some of
the experiments timed out after 1 hour, and for K =9, m = 30,n = 200 none of the
experiments finished within one day. Thus we conclude that the real application of
the ILP-based algorithm is very limited.

Example running times of the other algorithms for some combinations of n, m,
and K are presented in Table 5.5. For the case of CC, essentially all the algorithms
are very fast and the quality of computed solutions is the main criterion in choosing
among them. For the case of Monroe, the situation is more complicated. While for

1000

\t?‘b‘

-e ILP for CC (k = 3,m = 10)
i -a- ILP for Monroe (k = 3,m = 10)
- o ILP for CC (k= 9,m = 30)
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running time of the algorithm [seconds]
Ry
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number of agents n

Figure 5.14: The running time of the standard ILP solver for the Monroe and for
the Chamberlin—Courant systems. For Monroe’s system, for K = 9, m = 30, and for
n > 200 none of the single algorithm execution finished within 1 day.
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m =10, K =3 m=10, K =6
n =] 2000 | 6000 | 10000 || 2000 | 6000 | 10000
A | 001 | 0.03 ] 0.05 || 0.0 | 0.04 | 0.07

€| B | 008 | 09 | 23 02 | 14 | 36
S C | 11 8 22 2.1 | 16 37
=|GM| 08 | 7.3 20 1.9 | 13 52
R | 76 | 50 | 180 | 65 | 52 | 140

C 1002 007 012 | 0.05 | 0.14 | 0.26

O | GM | 0.003 | 0.009 | 0.015 || 0.003 | 0.01 | 0.018
1 P 0.009]0032| 005 | 0.008|0.02| 0.05
R |0.014| 0.04 | 0.065 | 0.02 | 0.06 | 0.11

m = 100, K = 30 m = 100, K = 60
n =] 2000 | 6000 | 10000 || 2000 | 6000 | 10000
A | 05 | 1.6 | 28 09 | 28 | 49

gl B | 08 4 9.5 1.7 | 8 18
S| C | 38 | 140 | 299 64 | 221 | 419
=1 GM | 343 | 2172 | 5313 | 929 | 5107 | 13420
R | 41 | 329 | 830 88 | 608 | 1661

C | 43 | 11 19 75 | 19 31
O|GM | 006 | 02 | 04 | 009 03| 07
Ol P | 003] 01 | 026 | 003] 01| 0.2
R | 006 | 024 | 045 | 0.1 | 04 | 08

Table 5.5: Example running times of the algorithms [in seconds].

small elections all the algorithms are practical, for elections with thousands of voters,
using Algorithm GM becomes problematic. Indeed, even Algorithm C can be seen
as a bit too slow if one expects immediate results. On the other hand, Algorithms A
and B seem perfectly practical and, as we have seen in the previous experiments, give
high-quality results.

5.6 Related Work

A large number of papers are related to our research in terms of methodology
(the study of computational complexity and approximation algorithms for winner
determination under various NP-hard election rules), in terms of perspective
and motivation (e.g., due to the resource allocation view of Monroe and
Chamberlin-Courant rules that we take), and in terms of formal similarity (e.g.,
winner determination under the Chamberlin-Courant rule can be seen as a form of
the facility location problem). Below we review this related literature.
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NP-hardness of winner determination under the Monroe and Chamberlin-Courant
rules was shown by Procaccia et al. [245] and by Lu and Boutilier [188]. Worse yet, the
hardness holds even if various natural parameters of the election are small [27]|. Rare
easy cases include those, where the committee to be elected is small, or we consider
the Chamberlin—Courant rule and the voters have single-peaked [27] or single-crossing
preferences [283].

There are several single-winner voting rules for which winner determination is
known to be NP-hard. These rules include, for example, Dodgson’s rule [18,26,134],
Young’s rule [26,259], and Kemeny’s rule [18,25,132]. For the single-transferable
vote rule (STV), the winner determination problem becomes NP-hard if we use
the parallel-universes tie-breaking [66]. Many of these hardness results hold even
in the sense of parameterized complexity theory (however, there also is a number of
fixed-parameter tractability results; see the references above for details).

These hardness results motivated the search for approximation algorithms. There
are now very good approximation algorithms for Kemeny’s rule [6,68,161] and
for Dodgson’s rule [41,42,97,138,203]. In both cases the results are, in essence,
optimal. For Kemeny’s rule there is a polynomial-time approximation scheme [161]
and for Dodgson’s rule the achieved approximation ratio is optimal under standard
complexity-theoretic assumptions [41| (unfortunately, the approximation ratio is not
constant but depends logarithmically on the number of candidates). On the other
hand, for Young’s rule it is known that no good approximation algorithms exist [41].

The work of Caragiannis et al. [42] and of Faliszewski et al. [97] on approximate
winner determination for Dodgson’s rule is particularly interesting from our
perspective. In the former, the authors advocate treating approximation algorithms
for Dodgson’s rule as voting rules in their own right and design them to have
desirable properties. In the latter, the authors show that a well-established voting rule
(Maximin rule) is a reasonable (though not optimal) approximation of Dodgson’s rule.
This perspective is important for anyone interested in using approximation algorithms
for winner determination in elections (as might be the case for our algorithms for the
Monroe and Chamberlin—Courant rules).

In this chapter we take the view that the Monroe and Chamberlin—Courant rules
are special cases of the following resource allocation problem. The alternatives are
sharable resources, each with a certain capacity defined as the maximal number of
agents that may share this resource. Each agent has preferences over the resources
and is interested in getting exactly one. The goal is to select a predetermined
number K of resources and to find an optimal allocation of these resources (see
Section 5.2 for details). This provides a unified framework for the two rules and reveals
the connection of proportional representation problem to other resource allocation
problems. In particular, it closely resembles multi-unit resource allocation with
single-unit demand [271] (see also the work of Chevaleyre et al. [54] for a survey
of the most fundamental issues in the multiagent resource allocation theory) and
resource allocation with sharable indivisible goods [7,54].
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Monroe Chamberlin-Courant | General Assignment
Utilitarian case | Good approximation | Good approximation | Open problem
Egalitarian case | Inapproximability Inapproximability Inapproximability
Theorem 5.1 Theorem 5.3 Theorem 5.1
Theorem 5.3
Table 5.6: Summary of approximability results for the Monroe and

Chamberlin-Courant multiwinner voting systems.

We recall that other connections of the Monroe and Chamberlin—Courant rules
to several other problems, including the facility location problem, are pointed out in
Chapter 3.

5.7 Summary

In this chapter we have considered the winner determination problem under two
election rules: Chamberlin and Courant and Monroe systems. We have shown
that these two winner determination problems are special cases of the capacitated
disjunctive variant of the problem of selecting a collective set of items, introduced and
defined in Chapter 3. Since it is known that the winners for Chamberlin and Courant
and Monroe voting rules are hard to compute [27,188,245,283|, we focused on finding
approximate solutions. We have shown that if we try to optimize the satisfaction
of the least satisfied agent, then our problems are hard to approximate up to any
constant factor. However, for the utilitarian case we suggest good approximation
algorithms. In particular, for the Monroe system we suggest a randomized algorithm
that for the Borda score achieves an approximation ratio arbitrarily close to 0.715
(and much better in many real-life settings), and (1 — £)-approximation algorithm for
arbitrary positional scoring function. For the Chamberlin-Courant system, we have
shown a polynomial-time approximation scheme (PTAS).

In Table 5.6 we present the summary of our (in)approximability results. In
Table 5.7 we present specific results regarding our approximation algorithms for the
utilitarian framework. In particular, the table clearly shows that for the case of
Monroe, Algorithms B and C are not much slower than Algorithm A but offer a chance
of improved performance. Algorithm GM is intuitively even more appealing, but
achieves this at the cost of high time complexity. For the case of Chamberlin-Courant
rule, theoretical results suggest using Algorithm P (however, see below).

We have provided experimental evaluation of the algorithms for computing the
winner sets both for the Monroe and Chamberlin-Courant rules. While finding
solutions for these rules is computationally hard in the worst case, it turned out that
in practice we can obtain very high quality solutions using very simple algorithms.
Indeed, both for the Monroe and Chamberlin-Courant rules we recommend using
Algorithm C (or Algorithm A on very large Monroe elections). Our experimental
evaluation confirms that the algorithms work very well in case of truncated ballots.
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Algorithm | Approximation Runtime Reference
A 1— % - HTK Kmn Lemma 5.5
B as in Algorithm A Kmn+0(®%) Lemma 5.5
OZ C as in Algorithm A dKmn+dO(®%) Lemma 5.5
E GM as in Alg. A for Borda| KmO(®®) Theorem 5.9
® PSF; 1 — % for others
R T4+ £ Knj?"b_;ﬁf) %O(qﬁ) Lemma 5.7
AR 0.715 max(A,R) Theorem 5.8
PTAS Corollary 5.11
A p 1-— % nmW (K) Corollary 5.10
al GM 1-1 Kmn Lu and Boutilier [188|
C as in Algorithm GM dKm(n+logdm)|Lu and Boutilier [18§]
R |(1- 290 +d) [osC -2, Oren [229]

Table 5.7: A summary of the algorithms studied in this chapter. The top of the table
regards algorithms for Monroe’s rule and the bottom for the Chamberlin-Courant
rule. In column “Approximation” we give currently known approximation ratio for
the algorithm under Borda PSF, on profiles with m candidates and where the goal is
to select a committee of size K. Here, O(®%) = O(n*(K + logn)) is the complexity
of finding a partial representation function with the algorithm of Betzler et al. [27].
W(-) denotes Lambert’s W-Function.

We believe that our results mean that (approximations of) the Monroe and
Chamberlin—Courant rules can be used in practice.

Our work leads to a number of further research directions. First, it would be very
interesting to find a better upper bound on the quality of solutions for the Monroe
and Chamberlin-Courant systems (with Borda PSF) than the simple n(m —1) bound
that we use (where n is the number of voters and m is the number of candidates).
We use a different approach in our randomized algorithm, but it would be much more
interesting to find a deterministic algorithm that beats the approximation ratios of
our algorithms. One of the ways of seeking such a bound would be to consider
Monroe’s rule with “exponential” Borda PSF, that is, with PSF of the form, e.g.,
(2m=t 2m=2"  '1). For such PSF our approach in the proof of Lemma 5.5 would
not give satisfactory results and so one would be forced to seek different attacks. In
a similar vein, it would be interesting to find out if there is a PTAS for Monroe’s
system.

In our work, we have focused on PSFs that are strictly decreasing. It would also
be interesting to study PSFs which decrease but not strictly, that is to allow some
equalities. We present results for t-approval PSF’s «;, which are defined as follows:
ay(1) = 1if i <t and otherwise a4(i) = 0, in Chapter 6.

On a more practical side, it would be interesting to develop our study of truncated
ballots. Our results show that we can obtain very high approximation ratios
even when voters rank only relatively few of their top candidates. For example,
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to achieve 90% approximation ratio for the utilitarian Monroe system in Polish
parliamentary election (K = 460, m = 6000), each voter should rank about 8.7%
of her most-preferred candidates. However, this is still over 500 candidates. It is
unrealistic to expect that the voters would be willing to rank this many candidates.
Thus, how should one organize Monroe-based elections in practice, to balance the
amount of effort required from the voters and the quality of the results?

Finally, going back to our general capacitated disjunctive variant of the problem
of selecting a collective set of items, we note that we do not have any positive results
for it (the negative results, of course, carry over from the more restrictive settings).
Is it possible to obtain some good approximation algorithm for the problem with no
restriction on the capacities of the alternatives (in the utilitarian setting)?
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Chapter 6

Approximating the MAXCOVER

Problem with Bounded Frequencies
in FPT Time

In this chapter we further study the disjunctive variant of the problem of selecting a
collective set of items. We observe that this variant with the approval utilities (the
utilities that come from the set {0,1}) is equivalent to MAXCOVER, the problem
of finding a given-size family of subsets that covers as many elements from the
ground set as possible. The MAXCOVER problem is well-known to be NP-hard and,
under standard complexity-theoretic assumptions, the best possible polynomial-time
approximation algorithm for it has approximation ratio (1 — %) Thus, in this
chapter we study exponential-time approximation algorithms for several variants of
the MAXCOVER problem, with the focus on the variants of the problem in which
frequencies of the elements are bounded, and with the focus on algorithms that run
in FPT time.

6.1 Introduction

Similarly to Chapter 5, in this chapter we focus on the disjunctive variant of the
problem of selecting a collective set of items; here, however, in contrast to Chapter 5
we consider the approval utilities of the agents instead of the Borda-based ones.
We recall that in this variant of the problem we are given a set of agents, a set of
items, and the utility profile of the agents, specifying which agents approve which
items.! Our goal is to select K items, so that to maximize the number of agents that
approve at least one of the selected items. This variant corresponds to many appealing
real-life problems such as finding winners in Chamberlin-Courant parliamentary
elections [47], finding recommendations for agents [188], selecting activities [75], or

LAn agent has utility one for the approved items and utility zero for the disapproved ones.
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allocating students to university courses. For a detailed discussion on the applications
of the model we refer the reader to Chapters 3 and 5.

This variant of the problem of selecting a collective set of items is equivalent to
the MAXCOVER problem. We recall that in the MAXCOVER problem we are given a
set N of n elements, a family S = {5y, ..., 5,,} of m subsets of N, and an integer K.
The goal is to find a size-at-most- K subcollection of S that covers as many elements
from N as possible. Indeed, we can identify the agents with the elements and the
subsets with the items. Further, we can say that the subset S contains an element 7 if
and only if agent ¢ approves of S. This way agent ¢ gets utility one from the selected
set of items if and only if element ¢ is covered by the set of subsets corresponding to
the selected items. Consequently, selecting a set of items to maximize the number
of satisfied agents (the agents that approve at least one item in the selected set) is
equivalent to selecting a set of subsets to maximize the number of covered elements.

We study approximation algorithms for (and parameterized complexity of) the
MAXCOVER problem. Apart from considering MAXCOVER in its full generality, we
also study its two specific variants. In the first variant we assume that the frequencies
of the elements are bounded, i.e., that there is some constant p such that each element
appears in at most p sets. A particularly well-known special case of MAXCOVER with
frequencies upper-bounded by 2 is the MAXVERTEXCOVER problem: We recall that
in the MAXVERTEXCOVER problem we are given a graph G = (V, ) and the goal
is to find K vertices that, jointly, are incident to as many edges as possible (i.e., the
edges are the elements to be covered and the vertices are the sets; clearly, each edge
“belongs to” exactly two vertices). Nonetheless, even for the frequency upper bound 2,
MAXCOVER is considerably more general than MAXVERTEXCOVER (e.g., the former
allows two sets to have more than one element in common, which is impossible in the
latter?). In the second variant, we assume that the frequencies of the elements are
lower-bounded by some constant p.

These variants correspond to the problem of selecting a collective set of items,
when the agents approve of at most (or at least) a certain number of items. We
believe that these requirements are rational because:

1. We do not expect people to approve of too many candidates/resources/items.
E.g., in Polish parliamentary elections we approve of three candidates.

2. Our protocols can force the agents to approve of a certain number of items.

This chapter differs from the typical approach to the design of approximation
algorithms in that we do not focus on polynomial-time algorithms, but also consider
exponential-time ones. For example, we are interested in FPT approximation
schemes, that is, in approximation algorithms that for each desired approximation

2This difference may not sound particularly significant, but due to it some algorithms for
MAXVERTEXCOVER (e.g., an FPT approximation scheme of Marx [196]) do not generalize to the
MAaXCOVER problem.
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ratio [ output a [-approximate solution in exponential time, but where the
exponential growth is only with respect to the number K of sets that we allow in the
solution (and where [ is considered to be a constant when computing the running
time). In that respect, our work is very close in spirit to the recent study of Croce and
Paschos [70], who—among other results—give moderately exponential time (but not
FPT-time) approximation schemes for the MAXVERTEXCOVER problem. (However,
there is also an FPT-time approximation scheme for MAXVERTEXCOVER due to
Marx [196].) Such exponential-time approximation algorithms are desirable because
they can achieve much better approximation ratios than the polynomial-time ones,
while still being significantly faster than the currently-known exact algorithms. For
a more detailed review of related work we refer the reader to Section 2.3. Below we
briefly describe our findings and the motivation behind our research.

We obtain the following results (unless we mention otherwise, we always consider
our problems to be parameterized by K, the number of the sets allowed in the
solution). First, building on the approach of Guo et al. [126], in Section 6.3 we
show that the MAXCOVER problem with bounded frequencies is W[1]-complete.
On the other hand, without the frequency upper-bound assumption, MAXCOVER
is W[2]-hard and we show that it belongs to W[P]. We also consider several other
parameters and, in particular, we show that MAXCOVER is W/[2]-complete for the
parameter that combines the number of sets we can use in the solution and the
number of elements that we are allowed to leave uncovered. The core of this chapter
is, however, in Section 6.4. There, we show that for each 3,0 < § < 1, there isan FPT
[-approximation algorithm for the MAXCOVER problem with bounded frequencies.
On the other hand, for the case where each element appears in at least p out of m sets,
we show that the standard MAXCOVER greedy approximation algorithm (i.e., one
that picks one-by-one those sets that include most not-yet-covered elements) achieves

approximation ratio 1 — e B (for the general case, this algorithm’s approximation
ratio is 1 — é) Finally, we consider a variant of the MAXCOVER problem where
instead of maximizing the number of covered elements, we minimize the number
of those that remain uncovered. We refer to this problem as the MINNONCOVERED
problem. Under the assumption of upper-bounded frequencies, we show a randomized
approximation algorithm that for each given 8, § > 1, and each given probability
1 — ¢, outputs in FPT time a [-approximate solution with probability at least 1 — €
(the FPT time is with respect to K, 3, and €). Finally, in Section 6.5 we consider
two exponential-time approximation algorithms for the unrestricted MAXCOVER
problem. Both of these algorithms solve a part of the problem in a greedy way
and a part using some exact algorithm, but they differ in the order in which they
apply each of these strategies. We show a smooth transition between the running
times of these algorithms and their approximation ratios.
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6.2 Definitions

We assume that the reader is familiar with standard notions regarding
(approximation) algorithms, computational complexity theory and parameterized
complexity theory. For a brief review of these concepts we refer the reader to
Chapter 2.

In this section we recall the definitions of the problems that we consider in this
chapter.

Definition 6.1. An instance I = (N,S,K) of the MAXCOVER problem consists
of a set N of n elements, a collection S = {Si,...,Sn} of m subsets of N, and
nonnegative integer K. The goal is to find a subcollection C of S of size at most K
that maximizes || Ugee S||-

Definition 6.2. The MINNONCOVERED problem is defined in the same way as the
MAXCOVER problem, except the goal is to find a subcollection C such that |N| —
| Ugee S| s minimal.

In the decision variant of MAXCOVER (of MINNONCOVERED) we are additionally
given an integer 7' (an integer 7") and we ask if there is a collection of up to K sets
from S that cover at least T" elements (that leave at most 7" elements uncovered).

In terms of the optimal solutions, MAXCOVER and MINNONCOVERED are
equivalent. Nonetheless, they do differ when considered from the point of view of
approximation. For example, if there were a solution that covered all the n elements,
then a [-approximation algorithm for MAXCOVER, 0 < 8 < 1, would be free to
return a solution that covered only n of them, but a y-approximation algorithm for
the MINNONCOVERED problem, v > 1, would have to provide an optimal solution
that covered all the elements.

Given an instance I of MAXCOVER (MINNONCOVERED), we say that an element
e has frequency ¢ if it appears in exactly ¢ sets. We mostly focus on the variants of
MAXCOVER and MINNONCOVERED where there is a given constant p such that each
element’s frequency is at most p. We refer to these problems as variants with bounded
frequencies.

MAXVERTEXCOVER is a variant of MAXCOVER with frequencies of the elements
bounded by 2, where we are given a graph G = (V| E), the edges are the elements
to be covered, and vertices define the sets that cover them (a vertex covers all
the incident edges). SetCover and VertexCover are variants of MAXCOVER and
MAXVERTEXCOVER, respectively, where we ask if it is possible to cover all the
elements (all the edges).

For an overview of the related literature on MAXCOVER and MAXVERTEXCOVER
we refer the reader to Section 2.3.
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6.3 Worst-Case Complexity Results

We start our parameterized study of the MAXCOVER problem by considering its
worst-case complexity. We first consider MAXCOVER with bounded frequencies. It
follows directly from the literature that the problem is W[l]-hard, and here we show
that it is, in fact, W[1]-complete (unless the frequency bound p is exactly 1; then it
is optimal to simply pick the sets with highest cardinalities).

One of the standard ways of showing W[l]-membership is to give a reduction
to the Short-Nondeterministic-Turing-Machine-Computation problem (shown to be
W][1]-complete for parameter k by Cesati [46]).

Definition 6.3. In the Short-Nondeterministic- Turing-Machine-Computation
problem we are given a single-tape nondeterministic Turing machine M (described
as a tuple including the input alphabet, the work alphabet, the set of states, the
transition function, the initial state and the accepting/rejecting states), a string x
over M’s input alphabet, and an integer k. The question is whether there is an
accepting computation of M that accepts x within k steps.

Theorem 6.1. For each constant p greater than 2, the MAXCOVER problem with
frequencies upper-bounded by p is W[1]-complete (when parameterized by the number
of sets in the solution).

Proof. The  hardness  follows  directly  from  the  W][1]-hardness  of
the MAXVERTEXCOVER problem [126]. We prove membership in
WI[1] by reducing MAXCOVER with bounded frequencies to  the
Short-Nondeterministic-Turing-Machine-Computation problem.

Let p be some fixed constant and let I = (N, S, K, L) be our input instance, where
N is a set of elements, S = {S1,...,S5,,} is a family of subsets of N (each element
from N appears in at most p sets from S), and K and L are two integers. This is
the decision variant of the problem, thus we have L in the input; we ask if there is
a collection of up to K sets from S that jointly cover at least L elements. W.l.o.g.,
we assume that K > m. We form single-tape nondeterministic Turing machine M to
execute the following algorithm (on empty input string); the idea of the algorithm is
to employ the standard inclusion-exclusion principle:

1. Guess the indices 11, ...,ix of K sets from S.
2. Set T'=0.

3. For each subset A of {i1,...,ix} of size up to p, do the following: If || A|| is odd,
add || ;e Sill to T', and otherwise subtract || (1), 4 Si|| from T'.

4. If T'> L then we accept and otherwise we reject.
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It is easy to see that this algorithm can indeed be implemented on a single-tape
nondeterministic Turing machine with a sufficiently large (but polynomially bounded)
work alphabet and state space. The only issue that might require a comment is
the computation of ||(),., Si||. Since sets A contain at most p elements, we can
precompute these values and store them in M’s transition function.

The correctness of the algorithm follows directly from the inclusion-exclusion
principle and the fact that each element appears in at most p sets:

||Sll U Si2 U---u SZKH = Z ||Sle|| _Z ||S'i(/ N Si["” + Z ||Sil/ N S'i(// N Sig///” -
] ] U'elK]

lelK VelK
" e[K] "e[K]
Z/#é" ZIIIE[K]
Zl gll
Z/;:e///
gll ;ég/ll

In general, the above formula should include intersections of up to K sets. However,
since in our case each element appears in at most p sets, the intersection of more than
p sets are always empty. This shows that the algorithm is correct and concludes the
proof. O

For the sake of completeness, we mention that both the unrestricted variant of
the problem and the one where we put a lower bound on each element’s frequency

are W|[2]-hard.

Theorem 6.2. For each constant p, p > 1, MAXCOVER where each element belongs
to at least p sets if W|[2]-hard.

Proof. To show W|2]-hardness, we give a reduction from SetCover. In the SetCover
problem we ask whether there exist K subsets that cover all the elements (we give a
reduction for the parameter K). Let I = (NN, S) be an input instance of SetCover.
W.lo.g., we can assume that each element from N belongs to at least one set in S.
We form an instance I’ of MAXCOVER which is identical to I, except (a) for each
e € N, we modify S to additionally include p—1 copies of set {e}, and (b) we run the
MAXCOVER algorithm asking whether the maximal number of the elements covered
by K subsets is at least equal to | N||. Clearly, in I” each element belongs to at least
p sets and I’ is a yes-instance of MAXCOVER if and only if I is a yes-instance of
SetCover. O

So far, we were not able to show that MAXCOVER (even with lower-bounded
frequencies) is in W[2]. Nonetheless, it is quite easy to show that the problem belongs
to WIP].

Below we present reduction from the Bounded-Nondeterministic-Turing-Machine-Computation
problem, the problem that is defined similarly to the
Short-Nondeterministic-Turing-Machine-Computation problem, but in addition
we are also given an integer m, and we ask if machine M accepts its input within m
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steps, of which at most k& are nondeterministic. Cesati has shown that this problem
is W[P]-complete [46].

Theorem 6.3. For each constant p, p > 1, MAXCOVER where each element belongs
to at least p sets is in W[P] (when parameterized by the number of sets in the solution).

Proof. We give a reduction from MAXCOVER to the
Bounded-Nondeterministic-Turing-Machine-Computation problem. On input
I = (N,S,K,T), where N, S, and K are as usual and 7T is the lower bound on
the number of elements that we should cover, we produce a machine that on empty
input executes the following algorithm:

1. Tt nondeterministically guesses up to K names of sets from S and writes these
names on the tape (each name of a set from S is a single symbol).

2. Deterministically, for each name of the set produced in the previous step, the
machine writes on the tape the names of those elements from this set that have
not been written on the tape yet.

3. The machine counts the number of names of elements written on the tape. If
there were at least T' of them, it accepts. Otherwise it rejects.

It is easy to see that we can produce a description of such a machine in polynomial
time with respect to |I|. Further, it is clear that its nondeterministic running time
is bounded by some polynomial of |I| and that it makes at most k& nondeterministic
steps. ]

It is quite interesting to also consider MAXCOVER with other parameters. First,
recall that for parameter 7T, the number of elements that we should cover, Bléaser
has shown that MAXCOVER is in FPT [32]. What can we say about parameter
T" = n—T, i.e., the number of elements we can leave uncovered (this, in essence,
means considering the MINNONCOVERED problem, but for the worst-case setting
it is more convenient to speak of the parameter 7")?7 In this case, the problem is
immediately seen to be para-NP-complete (that is, the problem is NP-complete even
for a constant value of the parameter).

Corollary 6.4. The MAXCOVER problem is para-NP-complete when parameterized
by the number T of elements that can be left uncovered. This holds even if each
element’s frequency is upper-bounded by some constant p, p > 2.

Proof. The following trivial reduction from SetCover suffices: Given an input instance
I =(N,S, K), output an instance (N, S, K, 0), i.e., an identical one, where we require
that the number of elements left uncovered is 0. Since the reduction is clearly correct
and works for the constant value of the parameter, we get pare-NP-completeness. To
obtain the result for upper-bounded frequencies, simply use VertexCover instead of
SetCover in the reduction. O
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parameter | worst-case complexity of MAXCOVER
i W[2]-hard, in W[P]
W/1]-complete for upper-bounded frequencies

T | FPT [32]
(K,T) | FPT [32]

T | para-NP-complete
(K,T") | W[2]-complete

Table 6.1: Parameterized worst-case complexity results for unrestricted MAXCOVER
and MINNONCOVERED. The parameters are as follows: K is the number of sets we
can use in the solution, 7" is the number of elements we are required to cover, and
T' = n — T is the number of elements we can leave uncovered.

However, if we consider the joint parameter (K, 7"), then the MAXCOVER problem
becomes W|2]-complete.

Theorem 6.5. MAXCOVER is W|[2]-complete when parameterized by both the number
K of sets that can be used in the solution and the number T" of elements that can be
left uncovered.

Proof. We obtain W|2|-hardness by simply observing that the reduction given
in Corollary 6.4 suffices. To prove W[2]-membership, we give a reduction from
MAXCOVER (with parameter (K,7")) to SetCover (with parameter K).

Let [ = (N,S,K,T’) be an input instance of MAXCOVER. We form an instance
I' = (N8 K + 1) of SetCover as follows. Let N' = N U D' U D", where D' =
{d},...,dy} and D" = {df,...,d},}. For each set S € S and cach d; € D', we set
S(d;) =S U{d;}. Weset 8" = 8] US),, where (a) S] ={S(d)) : (S € S)A(d; € D)},
and (b) S ={{e,d!} :e € N,d! € D"}.

It is easy to see that if [ is a yes-instance of MAXCOVER then I’ is a yes-instance
of SetCover: If for I it is possible to cover n — T" elements of N using K sets, then
for I it is possible to (a) use K sets from S| to cover n — 1" elements from N and
all the elements from D', and (b) use 7" sets from S} to cover all the elements from
D" and the remaining 7" elements from N. For the other direction, assume that I’
is a yes-instance of SetCover. However, covering the elements from D’ requires one
to use at least K sets from S] (which correspond to the sets from S) and covering
the elements in D" requires at least 7" sets from S). Since each set from S} covers
exactly one element from N, it is easy to see that if I’ is a yes-instance, then it must
be possible to cover at least ||N|| — 7" elements from N using K sets from S. O

We summarize our worst-case complexity results in Table 6.1. Not surprisingly,
using the parameter 7" (i.e., in essence, considering the MINNONCOVERED problem)
leads to higher computational complexity than using parameter T (i.e., in essence,
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considering the MAXCOVER problem). For the parameter K, the exact complexity
of unrestricted MAXCOVER remains open.

6.4 Algorithms for the Case of Bounded Frequencies

In this section we present our approximation algorithms for the MAXCOVER
and MINNONCOVERED problems, for the case where we either upper-bound or
lower-bound the frequencies of the elements. We first consider the MAXCOVER
problem, both with upper-bounded frequencies and with lower-bounded frequencies,
and then move on to the MINNONCOVERED problem with upper-bounded
frequencies.

6.4.1 The MAXCOVER Problem with Upper Bounded
Frequencies

We will now present an FPT approximation scheme for MAXCOVER with
upper-bounded frequencies. ~ While Marx [196] has already shown an FPT
approximation scheme for MAXVERTEXCOVER, his approach cannot be directly
generalized to the MAXCOVER problem with bounded frequencies (although there
are some similarities between the algorithms). Interestingly, our algorithm for
MAXCOVER, when applied to the MAXVERTEXCOVER problem, is considerably
faster than the algorithm of Marx [196]. We will give a brief comparison of the
two algorithms after presenting our approach.

Intuitively, our algorithm works in a very simple way. Given an instance
I = (N,S,K) of MAXCOVER (with frequencies bounded by some constant p) and
a required approximation ratio [, the algorithm simply picks some of the sets from
S with highest cardinalities (the exact number of these sets depends only on K,
p, and (), tries all K-element subcollections of sets from this group, and returns
the best one. This approach is formalized as algorithm BOUNDANDEXPLORE in
Figure 6.1. The following theorem explains that indeed the algorithm achieves a
required approximation ratio.

Theorem 6.6. For each instance I = (N, S, K) of MAXCOVER where each element
from N appears in at most p sets in S, the algorithm BOUNDANDEXPLORE from

. . . . . 2pK_ | g
Figure 6.1 outputs a [-approximate solution in time poly(n,m) - (<H} )

Proof. 1t is immediate to establish the running time of the algorithm. We show that
its approximation ratio is, indeed, (3.

Consider some input instance I. Let C be the solution returned by the algorithm
BOUNDANDEXPLORE and let C* be some optimal solution. Let ¢ be an arbitrary
function such that for each element e such that Jgeex : € € S, ¢(e) is some S € C*
such that e € S. We refer to ¢ as the coverage function. Intuitively, the coverage
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Parameters:
(N,S, K) — input MAXCOVER instance
p — bound on the number of sets each element can belong to
[ — the required approximation ratio of the algorithm

1 A<+ [% + K| sets from § with the highest cardinalities ;

2 return K-element subset of A that covers most elements ;

Figure 6.1: The algorithm BOUNDANDEXPLORE for the MAXCOVER problem with
frequency upper bounded by p.

function assigns to each element covered under C* (by, possibly, many different sets)
the particular set “responsible” for covering it. We say that S covers e if and only if
c(e) = S. Let OPT denote the number of elements covered by C*.

We will show that C covers at least SOPT elements. Naturally, the reason why
C might cover fewer elements than C* is that some sets from C* may not be present
in A, the set of the subsets considered by the algorithm. We will show an iterative
procedure that starts with C* and, step by step, replaces those members of C* that
are not present in A with the sets from A. The idea of the proof is to show that
each such replacement decreases the number of covered element by at most a small
amount.

Let ¢ = ||C*\ A||. Our procedure will replace the ¢ sets from C* that do not appear
in A with ¢ sets from A. We renumber the sets so that C*\ A = {S,...,S}. We
will replace the sets {Sy,...,S¢} with sets {S7,...,S;} defined through the following
algorithm. Assume that we have already computed sets S7, ..., S/_; (thus fori = 1 we
have not yet computed anything). We take S’ to be a set from A\ (C*U{S],...,S/_,})
such that the set (C*\{Sy,...,S;})U{S],..., S} covers as many elements as possible.
During the i’th step of this algorithm, after we replace S; with S/ in the set (C* \
{S1,...,Si-1}) U{S],...,S_,}, we modify the coverage function as follows:

1. for each element e such that c(e) = S;, we set ¢(e) to be undefined;
2. for each element e € S, if ¢(e) is undefined then we set ¢(e) = S..

After replacing S; with S!, it may be the case that fewer elements are covered by
the resulting collection of sets. Let x; denote the difference between the number of
elements covered by (C*\ {S1,...,5:}) U{S],..., 5!} and by (C*\ {Si,...,S-1})U
{S1,...,S_;} (or 0, if by a fortunate coincidence there are more elements covered
after replacing S; with S!). By the construction of the set A and the fact that
S; ¢ A, each set from A contains more elements than S;. Thus we infer that every
set from A\ (C*U{S],...,S/_,}) must contain at least z; elements covered by (C*\
{S1,...,Sia ) u{s),...,S_;}. Indeed, if some set S" € A\ (C*U{S],...,S_i})
contained fewer than x; elements covered by (C*\ {S1,...,5-1})U{S},..., S}, S
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would have to cover at least
1S = (2 — 1) > [|Si]] = (2 — 1)

elements uncovered by (C*\ {S1,...,5-1}) U{S],...,S/_;}. But this would mean
that after replacing S; with S, the difference between the number of covered elements
would be at most (x; — 1).

Let C; denote the set obtained after the above-described ¢ iterations. Since, for
each i, the set (C*\ {S1,...,51}) U{S],...,S/_,} is a subset of C* U C5, we know
that, for each i, each set from A\ (C* U {S],...,5;}) (there is || A]| — K such sets)
must contain at least z; elements covered by C* U Cs (there is at most 20PT such
elements). Since each element is contained in at most p sets, we infer that for each
i, z;(||A] = K) < 20PTp and, as a consequence, z; < ||22|I|>_T§ = 20Pg§[((1_6). Thus we

conclude that (recall that ¢ < K):

(1-5)
2pK

14
> a; < 20PTpK = (1-B)OPT

i=1

That is, after our process of replacing the sets from C* that do not appear in A with
sets from A, at most (1 — 3)OPT elements fewer are covered. This means that there
are K sets in A that together cover at least SOPT elements. Since the algorithm tries
all size- K subsets of A, it finds a solution that covers at least SOPT elements. [

Our analysis is tight up to the constant factor of %. Below we present a family
of parameters # and instances of MAXCOVER with upper-bounded frequencies on
which our algorithm achieves approximation ratio (2 + 23)

Proposition 6.7. There is a family T of pairs (I,[) where I is an instance of
MAXCOVER with bounded frequencies and 3 is a real number, 0 < 5 < 1, such that for
each (I,3) € Z, if we use the algorithm BOUNDANDEXPLORE from Figure 6.1 to find
a B-approzimate solution for I, it outputs an at-most ((% + %ﬁ)OPT(I))-appmximate
one.

Proof. We describe how to construct pairs (I, 3) from the set Z. We let p be the
bound of the frequencies of elements in I and we let K be the number of sets that
we can use in the solution. We choose p and K to be sufficiently large, and S to be
sufficiently close to 1 (the exact meaning of “sufficiently large” and “sufficiently close
to 1”7 will become clear at the end of the proof; elements of Z differ in the particular
choices of p, K, and /3). We require that ﬁ is an integer and that p divides K.

We now proceed with the construction of instance I = (N, S, K') for our choice of
p, K, and 8. We set z = % + K; x is the number of highest-cardinality sets from &
that the algorithm BOUNDANDEXPLORE will consider on instance I. By our choice
of f and K, x is an integer and is divisible by p. We form N, the set of elements
to be covered, to consist of two disjoint subsets, N; and N, such that ||N;] = (If)
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and || Nzl = (2)% We form the family S to consist of two subfamilies, &; and S,

defined as follows:

1. There are z subsets in &1, S = {S1,...,S5:}. We form the sets in S; so
that: (a) sets from &) are subsets of Ny, (b) each element from N; belongs to
exactly p different sets from Sj, and (c) no two elements from N; belong to
the same p sets from S;. Specifically, we build sets (51, . ..,S,,) as follows. Let
f be some one-to-one mapping between elements in N; and p-element subsets
of [x]. For each e € Ni, e belongs exactly to the sets S ,...,S;, such that
f(e) = {i1,...,ip}. Note that each set S; € S; contains exactly (Zj) = (2)5
elements.

2. S, contains K sets, each covering exactly (i)g different elements from N, (and
no other elements) so that no two sets from S, overlap.

This completes our description of I. It is easy to see that each optimal solution for
I covers exactly K (;)% elements; each set contains exactly (;)% elements and, there
are K that are pairwise disjoint (for example the K sets in Sy).

Nonetheless, the algorithm BOUNDANDEXPLORE is free to choose any x sets from
S to include within A, the collection of sets from which it forms the solution, and, in
particular, it is free to pick the x sets from S;.3

Let us fix some arbitrary collection & of K sets from S;. For each j, 0 < j < K,
let h(j) be the number of elements from N; that belong to exactly j sets in S'.
The number of elements covered by S’ is exactly K(;)g - Z;;(j — 1)h(j). How
to compute h(j)? Using mapping f, it suffices to count the number of p-element
subsets of [z] that contain the indices of exactly j sets from S&'. In effect, we have

h(j) = ([;) (2__[;) We upper bound the number of sets covered by &’ with:

K(5)2 —n2) = x (D)2 - (B (27 8).
p)x p)x 2 p—2
Consequently, on instance I the algorithm achieves the following approximation

K(3)E-(5) (%)

ratio K()z , which is equal to:
1 (IZ() (5;__[2() _1_ (12{) (x;)K) (x—K—pf-(Zp)z:clzK—p-l-l)
e AL
p/x p/x

Now, if z is large in comparison with p and K (which happens for sufficiently large

x
P

r—K
B), then ((”>) ~ 1. Also, for sufficiently large x and p (and for = > p, K') we have

3We could also ensure that each set in S; contained one of Z additional elements, forcing the
algorithm to pick exactly the sets from Sp, but that would obscure the presentation of our argument.
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P ~ P =1 P : Ky o K2
py g, fo and poy o Finally, for sufficiently large K we have (2) ~

Thus, for large values of #, K, and p, we can approximate the above ratio with the
following expression:

K2 p2
s 1 Kp 1 Kp 1 3 3
1— 2 22 1.2 1. =1-=-1-8)=-+-8.
p 2pK 2p
K~ 2 (1—B)+K 2 ) 4 4 4
This completes our argument. O

Let us now compare our algorithm to that of Marx [196] for the case of
MAXVERTEXCOVER. Briefly put, the idea behind Marx’s algorithm is as follows:
Consider vertices in the order of nonincreasing degrees. If the degree of the vertex
with the highest degree is large enough, then K vertices with the highest degrees
already cover sufficiently many edges to give a desired approximate solution. If the
highest degree is not large enough, then there is an exact, color-coding based, FPT
algorithm that solves the problem optimally. Our algorithm is similar in the sense
that we also focus on a group of sets with highest cardinalities (sets’ cardinalities in
MAXCOVER correspond to vertex degrees in MAXVERTEXCOVER). However, instead
of simply picking K largest ones, we make a careful decision as to which exactly to
take.* Further, our algorithm has a better running time than that of Marx. To
achieve approximation ratio 3, the algorithm presented by Marx has running time at

3 2pK
least Q((%)(%)) For us, the exponential factor in the running time is (<1€§>(+K).
On the other hand, we should point out that Marx’s algorithm’s running time stems

mostly from the exact part and the algorithm given there is interesting in its own
right.

6.4.2 The MAXCOVER Problem with Lower-Bounded
Frequencies

Let us now move on to the case of MAXCOVER with lower-bounded frequencies. It
turns out that in this case the standard greedy algorithm, given here as the algorithm
GREEDY in Figure 6.2, can—for appropriate inputs—achieve a better approximation
ratio than in the unrestricted case.

Theorem 6.8. The algorithm GREEDY from Figure 6.2 is a polynomial-time (1 —
pK . . . .
e~ m )-approzimation algorithm for the MAXCOVER problem with frequency lower

bounded by p, on instances with m elements where we can pick up to K sets.

4Indeed, it is possible to build an example where picking sets with highest cardinalities would
not work. This trick works in Marx’s algorithm because he considers graphs and, thus, can bound
the negative effect of covering the same element by different sets; in the MAXCOVER problem this
seems difficult to do.
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Parameters:
(N,S, K) — input MAXCOVER instance
p — lower bound on the number of the sets each element belongs to

1 C={}
2 fori+ 1 to K do

3 Cov + {e € N : dgece € S} ;

4 Sest(F) argmaxge(s, . S, }\C {ee N\ Cov:eec S}
5 C < CU{S, 4}

6 return C

Figure 6.2: The algorithm GREEDY for the MAXCOVER problem with frequency lower
bounded by p.

Proof. The algorithm clearly runs in polynomial time and so we show it’s
approximation ratio. Let I = (N,S, K) be an input instance of MAXCOVER and
let p be an integer such that each element from N belongs to at least p sets from S.

We prove by induction that for each i, 0 < ¢ < K, after the ¢’th iteration of
the algorithm’s main loop, the number of uncovered elements is at most n(1 — £)".
Naturally, for ¢ = 0 the number of uncovered elements is exactly n, the total number
of elements. Suppose that the inductive assumption holds for some (i—1), 1 <i < K
and let x be the number of elements still uncovered after the (i — 1)-th iteration (by
the inductive assumption, we have < n(1—£)""1). Since each element belongs to at
least p sets and neither of the sets containing the uncovered elements is yet selected,
by the pigeonhole principle there is a not-yet-selected set that contains at least [22]
of the uncovered elements. In consequence, the number of elements still uncovered
after the ¢-th iteration is at most:

x—x£:x<1—£>§n<1—£)l.
m m m

Thus after K iterations the number of uncovered elements is at most:

K m pK
n(l—g) :n<1—£>p " Sne_%.
m m
Since the number of covered elements in the optimal solution is at most n, the
K
algorithm’s approximation ratio is (1 — e~ "m ). O

Naturally, the standard approximation ratio of (1 — e™!) of the greedy algorithm
still applies and we get the following corollary.

Corollary 6.9. The algorithm GREEDY from Figure 6.2 gives approximation

guarantee of (1 — e~ maX(%vl)),

The analysis given in Theorem 6.8 is tight. Below we present a family of instances
on which the algorithm reaches exactly the promised approximation ratio.
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Proposition 6.10. For each o, o > 1, there is an instance I(«) of MAXCOVER
(with m sets. element frequency lower-bounded by p, K sets to use, and % = «) such
that on input I(«), the algorithm GREEDY from Figure 6.2 achieves approximation

ratio no better than (1 — e~ "m ).

Proof. Let us fix some a, a > 1. We choose integers p, K, and m so that: (a) p = G,
(b) m > K (and, thus, p > K), and (c) p, m, and K are sufficiently large (the exact
meaning of “sufficiently large” will become clear at the end of the proof).

We form instance (o) = (N,S,K) as follows. We let N = Ny U---U Nk,

where Ny, ..., Nk are pairwise-disjoint sets, each of cardinality (TZ:f ) (thus ||N]| =
K (";:{{ )) The family S consists of two subfamilies, §; and Ss:
1. & consists of m — K sets, S1,...,S5,_k, constructed as follows. For each i,

1 <i < K, let f; be some one-to-one mapping from N; to (p—1)-element subsets
of [m — K]. Foreach i, 1 <i < K, if e € N; and f;(e) = {j1,...,Jp—1} then we
include e in sets Sj,,Sj,, ..., 5;,_,. Note that for each Sy in S, [|S¢|| = K(m_K);

p—2
foreach 7,1 <i < K, S, contains (rzzf) elements from N;; to see this, it suffices
to count how many (p — 1)-elements subsets of [m — K| there are that contain
J-

2. 5&2: {Ah,...,Ah{}.

Note that, by our construction, each element from N belongs to exactly p sets from
S (p—1 from & and one from Sy).

Naturally, the K disjoint sets from Sy form the optimal solution and cover all
the elements. We will now analyze the operation of the algorithm GREEDY on input
I(a).

We claim that the algorithm GREEDY will select sets from &; only. We show
this by induction. Fix some ¢, 1 < ¢ < K, and suppose that until the beginning
of the ¢’'th iteration the algorithm chose sets from &; only. This means that, for
each 7, 1 < i < K, each set NV; contains exactly (m;ﬁ_é) uncovered elements. Why
is this the case? Assume that the algorithm selected sets S;,,...,S;,. An element
e € N; is uncovered if and only if fi(e) N {j1,..., 7.} = 0; (m;ﬁ_z) is the number of
(p — 1)-element subsets of [m — K] that do not contain any members of {ji,. .., j/}.
So, if in the £’th iteration the algorithm chooses some set from Ss, it would cover these
additional (m_K _Z) elements. On the other hand, if it chose a set from &, it would

p—1
additionally cover Kx elements, where x = (m_K —e> — (m_K ~et
p—1 p—1

have pK > m and, thus, K > ’Z;_f. We can now see that the following holds:
Kx:K(<m—K—£)_(m—K—£—1)):K<m—K—£—1)
p—1 p—1 p—2
_ Kp—-1) fm—-—K—/{ ZKp—l m—K—/( - m—K—K.
m—K —/( p—1 m— K p—1 p—1
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That is, in the ¢’th iteration the algorithm GREEDY picks a set from &;. This proves
our claim.

Let us now assess the approximation ratio the algorithm GREEDY achieves on
I(«). By the above reasoning, we know that it leaves (mp__21K) uncovered elements in
each N;, 1 < i < K. Thus the fraction of the uncovered elements is bounded by the
following expression (see some explanation below):

E("72F)  (m=2K)(m—p— K +1)!
K(Ti:f) (m—K)!/(m—p—2K +1)!
_ m—p—K+1)(m—p—K)...(m—p—2K)

(m—K)(m—-K-1)...(m—-2K +1)
m—2K —p K p+1 K _pK
> | ——— =|1l-— ~e m.
m—2K +1 m—2K +1

The first inequality holds by iterative application of the simple observation that if
1 <z <ythen % < % To obtain the final estimate, we observe that for sufficiently

large p and m (where m > K), we have m_p;;H ~ £ = % For sufficiently large
K (1-8)f~e>= e (by the fact that p = %*). Since the optimal solution
covers all the elements, we have that the algorithm GREEDY on input /(«) achieves
approximation ratio no better than 1 — el O

Theorem 6.8 has some interesting implications. Let us consider a version of the
MAXCOVER problem in which the ratio £ between the frequency lower bound p and
the number of sets m is constant. This problems arises, e.g., if we use approval-based
variant of the Chamberlin-Courant’s election system with a requirement that each
voter must approve at least some constant fraction (e.g., 10%) of the candidates.
There exists a polynomial-time approximation scheme (PTAS) for this version of the
problem.

Definition 6.4. For each o, 0 < a < 1, let a-MAXCOVER be a wvariant of
MAXCOVER for instances that satisfy the following conditions: If p is a lower-bound
on the frequencies of the elements and there are m sets, then £ > a.

Theorem 6.11. For each o, 0 < a < 1, there is a PTAS for a-MAXCOVER.

Proof. Fix some «, 0 < < 1. Let I = (N, S, K) be input instance of a-MAXCOVER
and let 8 be our desired approximation ratio. We let m be the number of set in &
and p be the lower bound on element frequencies. By definition, we have £ > a.
If K> -2 In(1 — f) then we can run the algorithm GREEDY from Figure 6.2 and,
by Theorem 6.8, we obtain approximation ratio 5. Otherwise, K is bounded by
a constant and enumerating all K-element subsets of S gives a polynomial exact

algorithm for the problem. O
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The exact complexity of a-MAXCOVER is quite interesting. Using the algorithm
GREEDY, we show that it belongs to the second level of Kintala and Fisher’s
p-hierarchy of limited nondeterminism [165]. In effect, it is unlikely that the problem
is NP-complete.

Definition 6.5 (Kintala and Fisher [165]). For each positive integer k, 8% is the class
of deciston problems that can be solved in polynomial time, using additionally at most
O(log® n) nondeterministic bits (where n is the size of the input instance).

It is easy to see that B! is simply the class of problems solvable in polynomial time;
we can simulate O(logn) bits of nondeterminism by trying all possible combinations.
However, class 3% appears to be greater than P but smaller than NP (of course, since
we do not know if P # NP, this is only a conjecture).

Theorem 6.12. For each a, 0 < a < 1, the decision variant of a-MAXCOVER is in

B2

Proof. Fix some «, 0 < a < 1. We will give a f%algorithm for a-MAXCOVER.
Let I = (N,S,K,T) be an instance of a-MAXCOVER (recall that 7" is the number
of elements we are required to cover). We let p be the lower bound on elements’
frequencies in I, we let m = ||S||, and we let n = || N||. By definition, we have 2 > a.
W.lo.g., we assume that ||| > n + m.

Our algorithm works as follows. If K > éln(n) then we run the algorithm
GREEDY and output its solution. Otherwise, we guess K names of the sets from
S and check if these sets cover at least 1" elements. If so, we accept and otherwise we
reject on this computation path.

First, it is clear that the algorithm uses at most O(log® |I|) nondeterministic bits.
We execute the nondeterministic part of the algorithm only if K < L1In(n) < XIn|/|
and each set’s name requires at most logm < log |I| bits. Altogether, we use at most
O(log? |I]) bits of nondeterminism.

Second, we need to show the correctness of the algorithm. Clearly, if the algorithm
uses the nondeterministic part then certainly it finds an optimal solution. Consider
then that the algorithm uses the deterministic part, based on the algorithm GREEDY.
In this case we know that K > éln(n). Thus, the approximation ratio of the
algorithm GREEDY is greater than: 1 —e % > (1 —e ") = 1 — L. That is,
the algorithm returns a solution that covers more than OPT(1 — %) elements and,
since OPT < n and the number of covered elements is integer, the algorithm must
find an optimal solution. O

6.4.3 The MINNONCOVERED Problem

In this section we consider the MINNONCOVERED problem, that is, a version of
MAXCOVER where the goal is to minimize the number of elements left uncovered.
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Parameters:
(N, S, K) — input MINNONCOVERED instance
p — bound on the number of sets each element can belong to
B — the required approximation ratio of the algorithm
€ — the allowed probability of achieving worse than g approximation ratio

1 RecursiveSearch(s, partial):
2 if s =0 then
3 return partial;
4 else
5 e < randomly select element not-yet covered by
6 partial;
7 best ) « 0
8 foreach S € S such that e € S do
9 sol + RecursiveSearch((s— 1), partial U {S});
10 if sol is better than best™ then
11 best ) sol,
12 return best(K);
13
14 Main():
15 best = ()

16 fori(—lto[ lne/ '8 1 —‘do

17 sol = Recur51veSearch( L0

18 if sol is better than best'™ then
19 best K) sol;

20 return best(K);

Figure 6.3: The algorithm RANDRECURSIVESEARCH for the MINNONCOVERED problem
with frequency upper bounded by p.

In this case we give a randomized FPT approximation scheme (presented as the
algorithm RANDRECURSIVESEARCH in Figure 6.3).

Intuitively, the idea behind our approach is to extend a simple bounded-search-tree
algorithm for SetCover with upper-bounded frequencies to the case of MAXCOVER.
An FPT algorithm for SetCover with frequencies upper-bounded by some constant
p could work recursively as follows: If there still is some uncovered element e, then
nondeterministically guess one of the at-most-p sets that contain e and recursively
solve the smaller problem. The recursion tree would have at most K levels and p®
leaves. The same approach does not work directly for MAXCOVER because we do not
know which element e to pick (in SetCover the choice is irrelevant because we have
to cover all the elements). However, it turns out that if we choose e randomly then,
in expectation, we achieve a good result.

Theorem 6.13. The algorithm RANDRECURSIVESEARCH from Figure 6.3 outputs
a B-approximate solution for the MINNONCOVERED problem with probability (1 —¢).
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The time complexity of the algorithm is

e o (5]

Proof. Let I = (N,S, K) be our input instance of the MINNONCOVERED problem
and fix some 3, § > 1, and ¢, 0 < € < 1. Each element from N appears in at most p
sets from S.

By ps we denote the probability that a single invocation of the function
RecursiveSearch (from the Main function) returns a [-approximate solution. We

K
will first show that p, is at least <%> , and then we will invoke the standard

argument that if we make [%-‘ calls to RecursiveSearch, then taking the best

output gives a [S-approximate solution with probability (1 — ¢).

Let C* be some optimal solution for I, let N* C N be the set of elements covered by
C*, and let U* = N\ N* be the set of the remaining, uncovered elements. Consider a
single call to RecursiveSearch from the “for” loop within the function Main. Let
FEv denote the event that during such a call, at the beginning of each recursive
call, at least a % fraction of the elements not covered by the constructed solution
(i.e., the solution denoted partial in the algorithm) belongs to N*. Note that if the
complementary event, denoted Ev, occurs, then RecursiveSearch definitely returns
a [-approximate solution. Why is this the case? Consider some tree of recursive
invocations of RecursiveSearch, and some invocation of RecursiveSearch within
this tree. Let X be the number of elements not covered by partial at the beginning of
this invocation. If at most %X of the not-covered elements belong to N*, then—of

course—the remaining at least %X o