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A B S T R A C T

In recent years, processing and exploration of time series has experienced a noticeable
interest. Growing volumes of data and needs of efficient processing pushed the research in
new directions, including hardware based solutions.

Graphics Processing Units (GPU) have significantly more applications than just render-
ing images. They are also used in general purpose computing to solve problems that can
benefit from massive parallel processing. There are numerous reports confirming the ef-
fectiveness of GPU in science and industrial applications. However, there are several issues
related with GPU usage as a databases coprocessor that must be considered.

First, all computations on the GPU are preceded by time consuming memory transfers.
In this thesis we present a study on lossless lightweight compression algorithms in the
context of GPU computations and time series database systems. We discuss the algorithms,
their application and implementation details on GPU. We analyse their influence on the
data processing efficiency, taking into account both the data transfer time and decompres-
sion time. Moreover, we propose a data adaptive compression planner based on those
algorithms, which uses hierarchy of multiple compression algorithms in order to further
reduce the data size.

Secondly, there are tasks that either hardly suit GPU or fit GPU only partially. This may
be related to the size or type of the task. We elaborate on heterogeneous CPU/GPU com-
putation environment and optimization method that seeks equilibrium between these two
computation platforms. This method is based on heuristic search for bi-objective optimal
execution plans. The underlying model mimics the commodity market, where devices are
producers and queries are consumers. The value of resources of computing devices is con-
trolled by supply-and-demand laws. Our model of the optimization criteria allows finding
solutions for heterogeneous query processing problems where existing methods have been
ineffective. Furthermore, it also offers lower time complexity and higher accuracy than
other methods.

The dissertation also discusses an exemplary application of time series databases: the
analysis of zebra mussel (Dreissena polymorpha) behaviour based on observations of the
change of the gap between the valves, collected as a time series. We propose a new al-
gorithm based on wavelets and kernel methods that detects relevant events in the collected
data. This algorithm allows us to extract elementary behaviour events from the observa-
tions. Moreover, we propose an efficient framework for automatic classification to separate
the control and stressful conditions. Since zebra mussels are well-known bioindicators this
is an important step towards the creation of an advanced environmental biomonitoring
system.

keywords : GPU, CUDA, time series, database, lightweight compression, multi-objective optimization,
query optimization, economic models, wavelets, data mining

acm computing classification : Computing methodologies~Graphics processors, Informa-

tion systems~Query optimization, Information systems~Data compression, Mathematics of computing~Time

series analysis
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S T R E S Z C Z E N I E

W ostatnich latach przetwarzanie i badanie szeregów czasowych zyskało spore zainte-
resowanie. Rosnące ilości danych i potrzeba ich sprawnego przetwarzania nadały nowe
kierunki prowadzonym badaniom, które uwzględniają również wykorzystanie rozwiązań
sprzętowych.

Procesory graficzne (GPU) mają znacznie więcej zastosowań niż tylko wyświetlanie ob-
razów. Coraz częściej są wykorzystywane przy rozwiązywaniu problemów obliczeniowych
ogólnego zastosowania, które mogą spożytkować możliwości przetwarzania masywnie
równoległego. Wiele źródeł potwierdza skuteczność GPU zarówno w nauce, jak i w za-
stosowaniach w przemyśle. Jest jednak kilka kwestii związanych z użyciem GPU jako ko-
procesora w bazach danych, które trzeba mieć na uwadze.

Po pierwsze, wszystkie obliczenia na GPU są poprzedzone czasochłonnym transferem
danych. W pracy zaprezentowano rezultaty badań dotyczących lekkich i bezstratnych algo-
rytmów kompresji w kontekście obliczeń GPU i systemów baz danych dla szeregów czaso-
wych. Omówione zostały algorytmy, ich zastosowanie oraz szczegóły implementacyjne na
GPU. Rozważono wpływ algorytmów na wydajność przetwarzania danych z uwzględnie-
niem czasu transferu i dekompresji danych. Ponadto, zaproponowany został adaptacyjny
planer kompresji danych, który wykorzystuje różne algorytmy lekkiej kompresji w celu
dalszego zmniejszenia rozmiaru skompresowanych danych.

Kolejnym problemem są zadania, które źle (lub tylko częściowo) wpisują się w architek-
turę GPU. Może być to związane z rozmiarem lub rodzajem zadania. W pracy zapropono-
wany został model heterogenicznych obliczeń na CPU/GPU. Przedstawiono metody opty-
malizacji, poszukujące równowagi między różnymi platformami obliczeniowymi. Opierają
się one na heurystycznym poszukiwaniu planów wykonania uwzględniających wiele ce-
lów optymalizacyjnych. Model leżący u podstaw tego podejścia naśladuje rynki towarowe,
gdzie urządzenia są traktowane jako producenci, konsumentami są natomiast plany za-
pytań. Wartość zasobów urządzeń komputerowych jest kontrolowana przez prawa popytu
i podaży. Zastosowanie różnych kryteriów optymalizacji pozwala rozwiązać problemy z za-
kresu heterogenicznego przetwarzania zapytań, dla których dotychczasowe metody były
nieskuteczne. Ponadto proponowane rozwiązania wyróżnia mniejsza złożoność czasowa
i lepsza dokładność.

W rozprawie omówiono przykładowe zastosowanie baz danych szeregów czasowych:
analizę zachowań racicznicy zmiennej (Dreissena polymorpha) opartą na obserwacji rozchy-
leń muszli zapisanej w postaci szeregów czasowych. Proponowany jest nowy algorytm
oparty na falkach i funkcjach jądrowych (ang. kernel functions), który wykrywa odpo-
wiednie zdarzenia w zebranych danych. Algorytm ten pozwala wyodrębnić zdarzenia ele-
mentarne z zapisanych obserwacji. Ponadto proponowany jest zarys systemu do automa-
tycznego oddzielenia pomiarów kontrolnych i tych dokonanych w stresujących warunkach.
Jako że małże z gatunku Dreissena polymorpha są znanymi wskaźnikami biologicznymi, jest
to istotny krok w kierunku biologicznych systemów wczesnego ostrzegania.

słowa kluczowe : GPU, CUDA, szeregi czasowe, bazy danych, lekka kompresja, wielocelowa opty-

malizacja, optymalizacja zapytań, modele ekonomiczne, falki, eksploracja danych
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I N T R O D U C T I O N

Contents
1.1 Motivation 1

1.2 Problem statement 2

1.3 Dissertation outline 3

1.1 motivation

In recent years, there has been an increased interest in processing and exploration of time
series data. There are many ongoing studies in this field of time series analysis and data
mining [24, 32, 40, 45, 58, 64, 65]. Consequently, this raises interest in specialized databases
systems for time series [21, 34, 45, 55, 58–60, 65], which could support advanced analysis
and data mining methods.

Such database systems play an important role in many industrial and scientific systems
like Supervisory Control And Data Acquisition (SCADA), servers and services monitoring,
measurements acquisition of scientific experiments or stock market data procurement [21,
46, 49, 61, 62]. These systems are expected to process and store millions of data points per
minute, 24 hours a day, seven days a week, generating terabytes of logs. Due to checking
of regression errors and early malfunction prediction, such data must be kept with proper
resolution and include all details. The number of time series generated in this way grows
very quickly and falls under the category of Big Data (i. e. problems in which the size of
data is a problem itself).

Traditional solutions such as relational databases supported with specialized tools show
their limitations when handling a large number of time series [21]. Although relational
database management systems can be adapted to store time series using base types (e. g. by
storing one row per timestamped data entry or by storing multiple values as a binary large
object), performance of such solutions is usually poor and inefficient [34, 81]. This is mostly
due to the fact that most of the storage and processing systems were not designed for
time series data. Moreover, because of limited support for time series processing, database
systems must be accompanied by external tools, like R [73], RRDtool [54], SAS [1] and
others, which further reduces the performance of the whole system. On the other hand,
these tools may be used as stand-alone systems for time series processing. Unfortunately,
usually they are optimized for medium datasets and thus are not capable of handling large
datasets.

For this reasons, extensive studies are conducted in order to find new methods and ef-
fective solutions. It is worth to mention research on: new algorithms and representation
models [22, 41, 45, 47, 65], hardware solutions [15, 36, 59, 60, 68, 78], specialized exten-
sions of relational databases [34] and processing software [75], or usage of non-relational
databases [19, 31, 37, 50, 55, 74].
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2 introduction

In this study, we investigate a mixed approach by utilizing hardware solutions (like GP-
GPU, General-Purpose computing on Graphics Processing Units) together with Central
Processing Unit (CPU) computing (heterogeneous query planner), exploring new repres-
entation methods and algorithms (lightweight compression planner and GPU query pro-
cessing) or utilizing NoSQL databases.

General-purpose computing on graphics processing units involves the use of graphics
processing units (GPU) in tasks traditionally handled by central processing units. GPUs
offer a notable processing power for tasks that can benefit from massive parallel processing.

Execution of database queries is an example of a successful application of GPGPU.
The current research focuses on using the GPU as a co-processor [15, 59, 60, 78]. GPU
as a co-processor may accelerate numerous database computations, e. g. relational query
processing, query optimization, database compression, or supporting time series data-
bases [15, 59, 60].

An application of GPU requires transferring data from the CPU memory to the graphical
device memory. This data transfer is usually time-consuming. It may diminish the gain of
the acceleration credited to GPU.

One of the possibilities, and often the only option, to optimize the mentioned data
transfer is to reduce its size by data compression. Classical compression algorithms are
computationally expensive (gain from the data transfer does not compensate the calcula-
tions [83]) and difficult to implement on the GPU [80]. Alternatives such as lightweight
compression algorithms, which are successfully used for CPU and GPU, are therefore very
attractive [3, 9, 25, 58–60, 82, 83].

However, lightweight compression does not solve all the problems. In particular, GPU is
optimized for numerical computation and thus, only selected operations will benefit from
GPU. Small datasets are another problem. For such sets, the data transfer may dominate
processing time and destroy the performance gain. Therefore, joint processing capabilities
of both CPU and GPU are worth considering. Furthermore, as it is common to have more
than one GPU in a computer, a potential use of various GPU devices should be considered.
This type of query plans is called heterogeneous.

The previous research efforts focused on the creation of query plans based on a cost
model. This approach finds plans with the best throughput. However, it does not allow
modelling all phenomena that can occur in heterogeneous systems. Performing a query
as soon as possible is not always cost efficient [27]. For this reason, we propose a query
processing model based on concepts of markets that are known to be suitable for describing
the interactions in a heterogeneous world.

1.2 problem statement

The subject of this PhD dissertation is query optimization in heterogeneous CPU/GPU
environment for time series databases. The main objectives were the following:

• to optimize data transfer and storage size, by proposing a lightweight compression
framework and a compression planner [58–60],

• to optimize query processing in heterogeneous CPU/GPU environment through de-
velopment of bi-objective optimization framework [63],

• to develop a prototype CPU/GPU query processing module [58, 59].



1.3 dissertation outline 3

In addition, possible applications of such time series databases are discussed, in particular:

• a biomonitoring system [61, 62],

• and a network monitoring system [59, 60].

1.3 dissertation outline

The dissertation consists of three introductory chapters, six publications placed in an ap-
pendix, and description of experiments also placed in an appendix.

We present the necessary preliminaries in Chapter 2. In particular, in Section 2.1, Sec-
tion 2.2 and Section 2.3, we discuss time series, time series databases, time series data min-
ing and query processing, respectively. Lightweight compression methods are discussed
in Section 2.4. A short introduction to general-purpose computing on graphics processing
units is provided in Section 2.5. In Section 2.6, general terms of economic models for re-
source management and scheduling in computational environments are presented. Final
section of this chapter, Section 2.7, introduces basic concept of multi-objective optimization.

In Chapter 3, we summarize contribution of this dissertation, that is, publications gathered
in Appendix A. Appendix B provides description of experiments conducted in this disser-
tation.
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2.1 Time series 5

2.2 Time series databases 8

2.3 Time series data mining and query processing 9

2.4 Lightweight compression 12

2.5 General-purpose computing on graphics processing units 13

2.6 Economic models for resource management and scheduling 16

2.7 Multi-objective optimization 16

2.1 time series

Measurements performed over time play an important role in many scientific fields. Data
sets collected in such a way are called time series.

Definition 1. A time series is a sequence of observations, measured at successive points
in time. We will denote a time series by V = {(t, vt) : t ∈ T }, where T is the time index
set of this series. If V is finite and has n > 1 elements, we will say that V is a time series
of length n.

There are many applications where time series data is gathered and analysed. This in-
volves a variety of data sources:

• stock price and trading volumes, foreign exchange (Forex) quotes,

• smart meters measurements (e. g. electricity meters) or industrial supervisory control
and data acquisition (SCADA) systems,

• medical records like electrocardiography (ECG) recordings,

• servers, services and network performance records,

• scientific experiments measurements (seismogram, biomonitoring).

Chart plots are the most obvious way to start time series analysis. Example of such a
plot is presented in Figure 2.1.

There is a number of characteristics which can be used to classify time series data. The
first of them is associated with the measurement time. Depending on the characteristic of
time index T , we distinguish two types of time series data: evenly and unevenly spaced.

5



6 preliminaries

Figure 2.1: Time series example – unevenly spaced measures of mussel activity from biomonitoring
system described in [61, 62].

Definition 2. An evenly spaced (unevenly spaced) time series is a time series with constant
(irregular) length of intervals between consecutive observations.

In many applications, it is safer to assume that gathered time series are unevenly spaced1,
because often large systems cannot guarantee either constant measurement period or cor-
rect measurement and data transfer.

The next characteristic is associated with the type of the measured variable. A time
series can be classified as being either a stock (level variable) or a flow (rate variable) series,
depending on the type of measurements being taken [2, 4]. This distinction turns out to
be important in some processing tasks like interpolation of missing values. A stock variable
is measured at one specific time t and represents a quantity existing at that point in time.
A flow variable measures the flow of changes in the stock, i. e. it is a derivative of a stock
variable.

Another distinction is associated with the number of observed variables, time series may
by either univariate or multivariate.

Definition 3. A time series is said to be:
• a univariate time series if it consists of single variable observations,

• a multivariate time series if observations span over multiple variables within the
same time range.

From the point of view of statistics, a time series is a realization of a discrete stochastic
process. An extensive course of statistical time series analysis may be found in [71].

Definition 4. Let T ⊂ [0,∞). A family of random variables {Xt : t ∈ T }, indexed by T ,
is called a stochastic process. If T = N, {Xt : t ∈ T } is said to be a discrete-time process,
and when T = [0,∞), it is called a continuous-time process.

1 Note that a time series with equal spacing with some missing data is naturally treated as unevenly spaced.



2.1 time series 7

Depending on the nature of stochastic process behind a time series, we may distinguish
stationary or non stationary cases.

Definition 5. A stochastic process {Xn : n > 0} is said to be stationary if the random
vectors (X0,X1, . . . ,Xk) and (Xm,Xm+1, . . . ,Xm+k) have the same joint distribution for
all m,k > 0.

Since the above definition is too strict for practical applications, it is useful to introduce
one more notion, weaker than stationarity.

Definition 6. A stochastic process Xn : n 6 0 is said to be weakly stationary if the follow-
ing holds:

• E(X2
n) 6 ∞ for all n > 0,

• EXn is the same for all n > 0,

• Cov(Xm,Xn) := E((Xm − EXm)(Xn − EXn) depends only on n−m

(E(·) stands for the expected value).

Less formally, it means that a stochastic process is stationary if there is no systematic
trend, no systematic change in variance, and if strictly periodic variations or seasonality
do not exist. Most processes in nature appear to be non-stationary [71]. However, there is
a broad field of theory that is only applicable to stationary processes.

A common approach in time series analysis is frequency domain analysis. Fourier trans-
form can be used to analyse the frequency spectrum. However, it does not provide any
information when a frequency component is present. Wavelets, are examples of Multiscale
Resolution Analysis, meaning that wavelet coefficients contains the information about the
frequency and the time domain. Wavelets may also be used in construction of signal filters.
A wavelet filter is a non-linear digital filtering technique necessary to perform a high degree
noise reduction in a signal. A broad introduction to wavelets theory may be found in [18].
See [62] in Appendix A.6 on page 81 for a short introduction to necessary concepts.

Another common tool used in time series analysis is known as kernel smoother. A kernel
smoother is a statistical technique for estimating values of a function, by using its noisy
observations. It is mostly used for smoothing the gathered observations.

In the context of databases and data mining it is convenient to define the term of a time
series subsequence [24]:

Definition 7. Given a time series V = {(ti, vti) : 1 6 i 6 n} with time index set
TV = {t1, . . . , tn}, a subsequence W of V is a time series of length m 6 n, consisting of
values corresponding to m contiguous time instants from V :

W = {(ti, vti) : k 6 i 6 k+m− 1}
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for some 1 6 k 6 n −m + 1. In particular, the time index set of W is of the form
TW = {tk, . . . , tk+m−1} ⊂ TV . We denote the set of all subsequences of length m of V
as SmV .

2.2 time series databases

A Time Series Database System (TSDS) is a database system optimized towards storing, pro-
cessing and querying of large time series collections.

Definition 8. A time series database DB is an unordered set of time series.

Usually a time series database system supports defining the structure of the data, control
of data storage, facilities supporting data load (bulk or individual). Data is then retrieved
and processed using a query engine and processing tools. Often results are presented in a
graphical form.

TSDS queries

• Find the server with highest processor load during the (last) weekend.

• Compute daily average processor temperature in the last month.

• Find companies with similar stock prices over a time interval.

• Find products with similar sell cycles (stock levels over time analysis).

• Cluster users with similar credit card utilization (expenses in time).

Example

TSDS usually stores time series data in a special format within the underlying database
storage system. There are successful examples of building a TSDS on top of existing rela-
tional [34, 69, 81] or non-relational database systems [37, 55, 74]. There exist systems with
dedicated storage infrastructure [21, 54] as well.

Furthermore, the database should be able to store additional metadata used to describe
the stored time series. For instance, in OpenTSDB it is assumed that each time series is
identified by a metric name and may be additionally marked with a set of tags describing
measurement details.

Metadata associated with time series
metric: http.hits - hits to apache
tags: host=A webserver=static

Example
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Many systems also support the process of data collecting from different sources by
providing data load facilities like distributed data collectors (often with limited data pro-
cessing capabilities), which may work directly on data sources and push data into the data
storage.

Sometimes a TSDS supports time series compaction, i. e. a process which splits a time
series into several parts, defined by packing subsequences. Often these packing subsequen-
ces are just time intervals of a specified length (e. g. 15 minutes, 1 hour, 24 hours – depend-
ing on the number of observations). Formally, disjoint time series subsequences are stored
in separate records.

2.3 time series data mining and query processing

As there is no official query and processing standard for TSDS, capabilities of existing
systems vary, depending on the implementation. However, some basic functionality for
querying and data transformations is similar among many TSDS. Usually there is support
for:

• selective query using metadata and time criteria;

• basic time series transformations like: aggregation2, downsampling3 and interpola-
tion;

• conversion between evenly and unevenly sampled time series;

• graphical presentation of the results.

The most basic form of querying time series database is done by specifying metadata
and time criteria.

Definition 9. A metadata selective query is a query which selects time series according to
the given metadata criteria. For a time series database DB and metadata criteria Cmeta,
such a query returns the following set:

{V ∈ DB : metadata of V match criteria Cmeta}.

Metadata selective query

metric: http.hits
tags: host=* webserver={static, dynamic}

Example

2 E. g. minimum, maximum, average, sum. See [55] for details.
3 Reduction of the sampling rate, see [55].
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Definition 10. A time selective query is a query which for each given time series returns
the largest possible subsequence, which matches the given time criteria. For a subset A
of a time series database DB and time criteria Ctime (i. e. some time interval), such a
query returns the following set:

{V |Ctime
: V ∈ A}, where V |Ctime

:= {(t, vt) : t ∈ TV ∩Ctime} for V = {(t, vt) : t ∈ TV }.

Those types of queries may be combined into a selective query.

Selective query

metric: http.hits
tags: host=* webserver={static, dynamic}
from: 2012-10-10 to: 2012-12-10

Example

Selected data is usually subjected to data transformations. Depending on system imple-
mentation, this may vary, but commonly interpolation, aggregation and downsampling
may be found:

• interpolation is necessary when working with unevenly spaced time series,

• aggregation results in lossy dimensionality reduction (see below),

• downsampling is used to reduce the sampling rate.

Aggregation works on equally sampled time series. For each time point aggregation
across the data values in all time series is calculated. If the aggregated time series are not
equally sampled interpolation is used.

The following definitions are commonly used in the field of time series data mining and
data bases, see, e. g. , [24].

Many time series data mining methods rely on the notion of similarity between time
series.

Definition 11. A similarity measure D is a function taking two time series V1 and V2 as
inputs. The returned value D(V1,V2) > 0 is interpreted as the distance between the
time series V1 and V2. If D additionally satisfies the symmetry condition D(V1,V2) =

D(V2,V1) and the triangle inequality D(V1,V3) 6 D(V1,V2) +D(V2,V3), it is called a
metric.

It is also convenient to define the notion of a subsequence similarity measure. It is used to
represent the distance between one time series V1 and its best matching location in another
time series V2.
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Definition 12. For time series V1,V2 with |V1| < |V2|, the subsequence similarity measure

is defined as Dseq(V1,V2) := min{D(V1,V) : V ∈ S|V1|
V2

}.

There is a whole number of works on defining similarity measures using different tech-
niques. In some applications metrics like Euclidean or Hamming distance are sufficient [24].
Typically, these are low computationally demanding methods.

In other applications more advanced methods are used. For example, dynamic time warp-
ing (DTW) is an extremely popular algorithm [39, 40, 42, 43] for measuring similarity
between two time series which may vary in time or speed. The main idea behind this al-
gorithm is to perform elastic transformation of time series in order to detect similar shapes
with different phases.

It is also worth to mention methods which rely on the computation of a feature set reflect-
ing various aspects of the series. There are known examples of using similarity measures
based on fuzzy sets [7, 33, 77] or wavelets [5, 35, 44, 66, 76]. For an extensive list of used
methods see [24].

Having defined the concept of a similarity measure, we can expand the notion of TSDS
queries.

Definition 13. Consider a time series database DB. Let Q be a query time series and D
be a similarity measure. Moreover, let K > 1 and ε > 0. Then:

• a query by content is a query which returns an ordered list {V1, . . . ,Vn} of time
series from the database DB (or from its given subset) such that D(Q,Vi) 6
D(Q,Vj) for all 1 6 i < j 6 n;

• a K-nearest neighbours query is a query which returns a set of K series from DB

which are the most similar to Q. More precisely, it returns A ⊆ DB such that
|A| = K and for all V 6∈ A, D(Q,V) > minW∈AD(Q,W);

• an ε-range query (a whole series/pattern matching query) is a query which returns the
set of all series from DB (or from its given subset) which are within distance at
most ε from Q, i. e. {V ∈ DB : Dseq(Q,V) 6 ε};

• an ε-range query (a subsequence matching query) is a query which returns all sub-
sequencesW of all series V ∈ DB such thatDseq(Q,W) 6 ε, i. e. {W ∈ ⋃m>1 S

m
V :

V ∈ DB,Dseq(Q,W) 6 ε}.

In many applications, the problem of classification of time series is considered. This
applies both to time series and their subsequences. Below we recall the basic concepts
associated with classification (see also [62] in Appendix A.6 on page 81). For an extensive
study on classification problems see [6, 23]

Classification is the problem of identifying categories to which a new observation belongs.
A training set of observations with known category membership is used for adjusting
model parameters.
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Data dimensionality reduction is an important aspect of data mining and is mainly used
to avoid the curse of dimensionality4. Feature extraction is a form of dimensionality reduc-
tion, where the input data is transformed into a reduced representation set of features.

An important aspect of classification is the validation of the results. One of the most
popular approaches is a m-fold cross-validation. It is a model validation technique where
data set is randomly divided into m disjoint equal size sets. The model is trained m times,
each time with a different set held out as training set (a subset used for adjusting the model
parameters) and complement validation set (used to estimate the generalization error). The
estimated performance is the mean of m results.

2.4 lightweight compression

Compression is a process of reducing the amount of storage needed to represent a cer-
tain set of information. Compression rate (compression ratio) is the achieved reduction in
memory usage. Compression aims to minimize the amount of data that need to be held,
handled, and/or transmitted by a computer. Most commonly a compression algorithm
identifies and eliminates statistical redundancy in processed data to increase the efficiency
of memory consumption. Other methods involve discarding certain bits of information.

Compression algorithms can be distinguished by the manner in which the data is being
reconstructed and can be either lossless or lossy. Lossless compression algorithm is a data
encoding method that allows the original data to be perfectly reconstructed from the com-
pressed data. No information is lost in lossless compression. Lossy compression algorithm is
a data encoding method that compresses data by discarding (losing) some of it.

In the context of time series data, lossy compression algorithms often approximate data
using splines, piecewise linear approximation or extrema extraction [26]. By simplifying
the data representation, one can achieve good compression ratio and decompression speed.
Unfortunately, this is done at the cost of data anomalies degradation, so lossy compression
algorithms cannot be used in applications where anomalies analysis matters.

Another distinction of compression algorithms is based on the main optimization object-
ive, i. e. compression ratio or compression/decompression speed. Compression algorithms
differ in the amount of time that is required to compress and decompress data, as well
as the achieved compression rate. Some compression algorithms, like Lempel–Ziv or Bur-
rows–Wheeler transform, perform complex analysis of the data to achieve the highest pos-
sible compression rate, usually on the cost of increased run-time.

On the other side, there is a family of lightweight compression algorithms, primarily in-
tended for real-time applications, which favours compression/decompression speed over
compression ratio.

Compression has been long considered as an effective mean to reduce the data footprint
in databases, especially for column-oriented databases [3, 8, 9, 17, 20, 25, 58–60, 82, 83].
This is an effective method to improve overall query processing performance by reducing
the data transfer time. In disk-based databases, disk accesses are far slower than the de-
compression throughput on the CPU, so it pays off to reduce the data access time at the
cost of more computation on the CPU.

In particular, usage of lightweight compression algorithms has been extensively studied
in the context of databases. With these compression schemes, most queries can be evalu-

4 Miscellaneous phenomena that appear when analysing data in high-dimensional spaces that do not occur in
low-dimensional cases.
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ated after partial decompression or decompression on the fly. Additionally, in some cases
query may be processed without any decompression. Furthermore, lightweight compres-
sion can easily be vectorized which is an important advantage. Examples of lightweight
compression algorithms may be found in [60] (see Appendix A.2 on page 37).

The main drawback of many lightweight compression schemes is that they are prone to
outliers in the data frame. Outliers are observations points that are distant from the other
observations in the sample. Determining if an observation is an outlier strongly depends on
use case. For example, consider the following data frame: {1, 2, 3, 2, 2, 3, 1, 1, 64, 2, 3, 1, 1}. The
value 64 can significantly affect the resulting compression ratio for some lightweight com-
pression algorithms. A common solution is a PATCH modification of the lightweight com-
pression algorithms which stores outliers separately (see publication [60] in Appendix A.2
on page 37).

In some cases, it is worth to investigate a scenario where multiple lightweight com-
pression schemes are used together and form a compression plan (the output from one
algorithm becomes the input for the next). Cascaded lightweight compression plan is a com-
pression scheme which uses hierarchy of multiple lightweight compression algorithms in
order to further reduce the data size.

Given a number of individual compression algorithms and a data set the main aim
of a compression planner is to return a feasible and good combination of the individual
compression schemes. This approach often improves the achieved compression ratio but is
more computationally intensive. Therefore, it is crucial to maintain a good balance between
compression ratio and compression/decompression speed [25, 60].

2.5 general-purpose computing on graphics processing units

Originally GPU cards were designed for graphics rendering tasks. However, now they
have evolved into massively multi-threaded many-core general-purpose computing co-
processors. Internally, the GPU consists of many SIMD (Single Instruction, Multiple Data)
multiprocessors which share a piece of the GPU device memory. General overview of the
GPU architecture may be found in Figure 2.2.

Currently there are two competing general-purpose GPU computing languages, OpenCL
and CUDA. CUDA is a proprietary framework for NVIDIA GPUs, whereas OpenCL is
an open standard which is supported by several GPU manufacturers (including NVIDIA,
AMD and Intel). At the moment NVIDIA CUDA framework seems to be more popular and
achieves better performance than OpenCL [38]. Although, in the future this may obviously
change.

The GPU card has its own memory or a separate area in the CPU main memory. Thus, the
data has to be explicitly transferred from the CPU main memory to the GPU main memory.
Similarly, the results produced by the GPU have to be transferred back to the CPU main
memory. This data transfer often introduces significant overhead. Hence, it is necessary to
include the transfer cost in the total execution time of the operation [10–15, 58–60].

CUDA framework exposes the hierarchy of the GPU threads. The basic unit of execution
in CUDA is a thread. Each thread executes the same function code. A function code that
executes on the device is usually called a kernel. Threads are organized into blocks which
are themselves organized into a grid. Threads in the same thread block share resources on
one multiprocessor, e. g. registers and shared memory. Within a thread block, threads are
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Figure 2.2: The NVIDIA GPU architecture

grouped into warps: warps are groups of 32 threads. Warps are scheduled across multipro-
cessors. Instructions are issued per warp.

See Listing 2.5.1 for CUDA code example. In the example sum of two vectors of size N is
presented. In lines 2–7 a kernel function is defined, which will calculate the sum. Explicit
memory copy to and from device are done in lines 20–21 and 26, respectively. Kernel
execution is done in line 23, in this place also the grid and block size for kernel is defined.
Additionally, see Figure 2.3 for an general overview of interaction between host and device
as well as grid, threads and blocks organisation.

One of the major problems in the design of algorithms in SIMD architecture is the use of
conditional statements. For example in CUDA framework, a warp executes one common
instruction at a time. Threads in a warp may diverge via a data dependent conditional
branch. Then the warp serially executes each branch path taken, disabling threads that are
not on that path. Therefore, full efficiency is gained when all threads in a warp agree on
their execution path [52, 53, 67].

CUDA also exposes the memory hierarchy to developers. An overview of different
memory types available is presented in Table 2.1. As the performance of used memory
type varies considerably, e. g. the global memory is hundreds of times slower than the
shared one, proper use of memory is often a key aspect for highly efficient algorithms.

A GPU as a co-processor may accelerate numerous database tasks, e. g. query processing,
query optimization and various other tasks [14, 78]. However, it is important to emphasize
that a CPU accompanied by a GPU co-processor is a shared nothing architecture and data
transfer usually is a significant issue.
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Listing 2.5.1: Example CUDA code: sum of two vectors

1 #define N 10

2
__global__ void VectorAdd(int *a, int *b, int *c) {

3 int tid = blockIdx.x; // handle the data at this index

4

5 if (tid < N)

6 c[tid] = a[tid] + b[tid];

7 }

8

9 int main( void) {

10 int a[N], b[N], c[N];

11 int *dev_a, *dev_b, *dev_c;

12

13 // allocate the memory on the GPU

14 cudaMalloc((void **) &dev_a, N * sizeof (int));

15 cudaMalloc((void **) &dev_b, N * sizeof (int));

16 cudaMalloc((void **) &dev_c, N * sizeof (int));

17 // Here you should fill the arrays ‘a’ and ‘b’ on the CPU

18

19 // copy the arrays ‘a’ and ‘b’ to the GPU

20 cudaMemcpy(dev_a, a, N * sizeof (int), cudaMemcpyHostToDevice);

21 cudaMemcpy(dev_b, b, N * sizeof (int), cudaMemcpyHostToDevice);

22

23 VectorAdd <<<N,1>>> (dev_a, dev_b, dev_c);

24

25 // copy the array ‘c’ back from the GPU to the CPU

26 cudaMemcpy(c, dev_c, N * sizeof (int), cudaMemcpyDeviceToHost);

27

28 // Here you should cleanup the memory allocated on the GPU

29 return 0;

30 }

Another interesting aspect is a query processing model which allows the use of vari-
ous devices in processing. Contemporary computer systems often include more than one
processing device like multi-core CPUs, multiple GPUs or Field Programmable Gate Ar-
ray (FPGA) modules5. Therefore, an interesting problem arises whether these devices may
co-operate when processing a query.

Heterogeneous query processing is a query processing model which combines multiple com-
putational (CPUs and GPUs) units in a single query plan. The main problem of hetero-
geneous query processing is the construction of such a query plan that uses only com-
putational units from which query performance will benefit most and yet will minimize
used resources. Each device may have a different communication cost (e. g. PCIe — Peri-
pheral Component Interconnect Express expansion bus or shared memory) with the CPU
main memory. Furthermore, devices can often communicate directly between each other.
Therefore, it is important to take these costs into consideration. See publication [63] in
Appendix A.4, on page 55, for more details.

5 There have been recent studies on the use of FPGA in databases [51].
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Figure 2.3: CUDA kernel run workflow

2.6 economic models for resource management and scheduling

Extensive study on the subject of economic models in computing environments may be
found in [16].

Economic models are known to be suitable for describing the interactions in hetero-
geneous environments. They have already gained a considerable interest in the context
of computing in heterogeneous grid systems [16, 70], where they were used for resource
management and scheduling. This concept has also reached distribution databases systems
research, which resulted in several prototypes [16, 56, 72].

One of the most basic economic models is commodity market or supply and demand driven
pricing model (see [16] for details). Supply and demand pricing is an economic model of
price determination in a competitive market. The price for a particular good will vary
until it settles at a point where the quantity demanded by consumers equals the quantity
supplied by producers, resulting in an economic equilibrium for price and quantity.

In such a market, resource owners (processing devices) price their assets and charge their
customers (queries) for consumed resources. The prices are being changed until equilib-
rium between supply and demand is found. Typically, the value of a resource is influenced
by its strength, physical cost, service overhead, demand and preferences [16]. A consumer
may be charged for various resources like CPU cycles, memory used, the bus usage or
the network usage. Typically, a broker mediates between the resource owners and the con-
sumer. The resource owners announce their valuation and the resource quality information
(e. g. estimated time) in response to the broker’s enquiry.

2.7 multi-objective optimization

Basic concepts of multi-objective optimization are included for the sake of completeness.
An extensive survey on this subject may be found in [48]. We will be interested in the
following problem:

optimize F(x) =
(
F1(x), F2(x), . . . , Fk(x)

)
,
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Memory
type

Mode Description

Registers read/write
per-thread

fastest but has only thread scope, limited

Shared read/write
per-block

limited, fast, but subject to bank conflicts permits ex-
change of data between threads in block

Constant read/only
per-grid

this is where constants and kernel arguments are
stored, slow, but with cache

Texture read/only
per-grid

cache optimized for 2D access pattern

Global read/write
per-grid

slow, requires sequential and aligned read/writes to
be fast (coalesced read/write), depending device cap-
ability may be cached or not cached

Local read/write
per-thread

used for whatever does not fit into registers, part
of global memory, automatic coalesced reads and
writes, slow, depending device capability may be
cached or not cached

Table 2.1: Memory types in CUDA framework – from fastest to slowest

where k > 1 is the number of objective functions, x ∈ Rn is a vector of design variables, n
is the number of independent variables xi, and F(x) ∈ Rk is a vector given by the values of
objective functions Fi : Rn → R.

Typically, there is no single global solution, thus, a definition of an optimal solution set
should be established. The mainly used approach in defining optimal solution is known as
Pareto optimality.

Definition 14. A point x∗ ∈ Rn is called Pareto optimal if there does not exist another
point x ∈ Rn such that F(x) 6 F(x∗) and Fi(x) < Fi(x∗) for at least one function.

Note that, for some problems, there may be an infinite number of Pareto optimal points.
Given a set of choices and a way of valuing them, the Pareto set consists of choices that are
Pareto optimal.

In many computational problems, it is sufficient to find the most preferred Pareto op-
timal solution according to subjective preferences. Preferences are usually given by a de-
cision maker. This problem may be solved using different approaches. It is worth to men-
tion two of them, a priori methods and methods with no articulation of preferences. Ex-
amples of such methods may be found in [48]. In a priori methods the preferences are spe-
cified at the beginning by the decision maker and are used to find the best solution. In
methods with no articulation of preferences a neutral compromise solution is identified without
preference information.

A special case of multi-objective decision making is a bi-objective optimization, where op-
timal decisions need to be taken in the presence of trade-offs between two conflicting
objectives.
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The concept of multi-objective optimization has application in many engineering and
computational problems [48]. One of the them is multi-objective query plan optimiza-
tion [56, 72]. As this problem is NP-hard (reduction from knapsack problem), it is often
sufficient to propose an approximate solution [56, 72].
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Figure 3.1: Time series database system overview

In this dissertation problems related to time series databases with GPGPU support are
studied.

A typical time series database consists of three layers: a data storage, a data insertion
module and a querying engine. The architecture described below (see Figure 3.1 for over-
view) was the starting point for the rest of the research.

To achieve high performance and scalability one of the Big Table compliant NoSQL data-
bases may be utilized as a database storage. There are successful examples of using Hbase
and Cassandra in this context [19, 55].

Data collection components are responsible for collecting data from different sources
and inserting them into the database. This process must have a continuous character since
data sources are generating new values permanently. Usually this is a result of ongoing
measurements or monitoring processes (the operating system, databases and web servers

19
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or network devices: see OpenTSDB monitoring tools [55]). The system should not limit
possible data which can be stored and should store data in a lossless form. In real life
application it is safer to assume that all processed time series are unevenly spaced. Time
series are stored as pairs of a timestamp and a numerical value (ti, vi). Each time series
should be explicitly identified by metadata.

We assume that distributed data collectors (possibly many instances, which may work
directly on data sources) will push the data directly into data storage. To ensure optimal
data storage a TS manager should be used to compact and compresses data. Furthermore,
we assume that time series are divided into disjoint subsequences and stored in separate
records.

Users may execute queries using any instance of Query planner which creates a hetero-
geneous query plan. The created query plan may utilize heterogeneous query processor
GPUs and/or CPUs. The query planner should be aware of the load of subsequent units in
the environment. The generated query plan should also take into account many factors: the
CPU and GPU speed, the available memory, the bandwidth of memory access, the size of
data, the compression ratio and the network connection speed. Due to all these factors not
all requests may accelerate through processing on a GPU. The queries should be executed
on the GPU only when the amount of time related to the use of the GPU is amortized by
faster data processing [13].

As processing queries in a client-server architecture can bring tangible benefits [28], it is
worth to consider a query planner capable of using the client computing resources.

3.2 lightweight compression framework for cpu/gpu

The results of studies on the use of lightweight compression in GPGPU computing are
described in publications [58–60], which can be found in Appendix A.1 on page 27, Ap-
pendix A.3 on page 47 and Appendix A.2 on page 37, respectively.

The usage of lightweight compression methods in database systems may greatly improve
their performance [82, 83]. Time series database systems are no except and lightweight
compression methods may greatly boost performance of such systems. This is because
they have serious impact on the size and the performance of the underlying time series
database storage. Lightweight compression algorithms are designed in such a way that the
decompression throughput is higher than the disk data throughput. The increase in the
performance of a database system is associated with the increase of the data throughput.

Moreover, lightweight compression methods may improve the performance of GPGPU
computing in database applications [25, 58–60]. That is mainly due to the reduced data
transfer overhead from the storage to RAM and from RAM to the global device’s memory
space. Furthermore, in some applications it is possible to decompress the data on the fly
(only for computation time). Thus, it is possible to reduce the overall memory access time
on the GPU device. This approach may be also used in more general data intensive GPGPU
computations.

Lightweight compression algorithms are mainly designed to improve the data transfer
throughput and not the compressed data size. Therefore, it is worth to consider a cascaded
lightweight compression planner which uses multiple lightweight compression algorithms
in order to improve the compression ratio [25, 60]. As cascaded compression plans are
more demanding computationally and may reduce the data decompression throughput, it
is crucial to find a balance between the compression ratio and the decompression overhead.
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Obviously, different time series will have different characteristics. Moreover, different
subsequences of the same time series may have diverse characteristic. Therefore, the com-
pression planner should be able to apply different compression plans for different time
series subsequences [60].

In conclusion, in [60] we have significantly improved results presented by Fang et. al.
in [25] by:

• introducing three patched lightweight compression algorithms to the GPU platform,

• enhancing some of earlier algorithms implementations from [25] (i. e. allowing any
encoding bit lengths from interval (2, 3, . . . , 32) as opposed to results from [25], where
only bit lengths of multiples of a byte were considered).

Furthermore, we have presented a concept of a dynamical lightweight compression planner
for time series data [58] which utilizes time series characteristics. Afterwards, we have
shown that lightweight compression may drastically improve the use of GPGPU to date
intensive applications and, in particular, in time series processing [58–60]. Finally, we have
shown that in some applications it is possible to improve the overall memory access time
on a GPU device by using decompression on the fly.

3.3 time series queries processing for cpu/gpu

We consider time series query processing in the following publications [58, 59, 61, 62]
(Appendix A.5 on page 69, Appendix A.1 on page 27, Appendix A.3 on page 47 and
Appendix A.6 on page 81, respectively).

Measuring similarity between two time series is an important subproblem of a wider
range of time series data mining problems, as almost every time series mining task re-
quires a subtle notion of similarity between series. For instance, query by content, K-nearest
neighbours query, ε-range query are known tasks in time series data mining that depend on
a similarity measure. In the paper [58] we discuss whole series matching on GPU device by
using Hamming distance as a similarity function. We have found that despite the fact that
implementation of Hamming distance function on a GPU is highly computationally effi-
cient, the data transfer from RAM to GPU is a major problem and spoils the performance
of the GPU in such applications. For this reason, it was necessary to use lightweight com-
pression methods (see Section 3.2) to eliminate the data transfer bottleneck [58]. We also
have been able to successfully experiment with other similarity measures which are known
to have efficient implementations on a GPU, in particular Euclidean distance and Dynamic
Time Warping [57, 68]. In both cases, we have been able to reduce the data transfer cost.
However, DTW calculation is so computationally intensive that the reduced data transfer
has a much smaller effect on the performance.

In [60] we discuss GPU efficient implementation of algorithms for time series prepro-
cessing and transformation algorithms based on OpenTSDB query language [55]. In the
above mentioned paper we present algorithms for downsampling, interpolation and ag-
gregation, tasks commonly used in many time series databases. As in the previous case, in
order to fully exploit the potential of the GPU computation, the data transfer issue should
be addressed. Once again the usage of light compression turns out to be an effective solu-
tion to the data transfer bottleneck.

Despite that research presented in [61, 62] focuses primarily on biomonitoring systems,
it is worth to notice that the underneath system operates on a time series database. Various
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time series data mining processing techniques are used in this system, e. g. noise reduction
using wavelet filters, pattern matching, wavelets based features extraction and classification.
Although currently our biomonitoring system is not supported on the GPU platform, there
exist efficient GPU implementations for some of the missing components. In particular,
discrete wavelet transform was presented in [79], k-NN search was discussed in [29, 30].

The results of this research will serve in the future as a starting point for development
of an advanced database system for time series with GPU support.

3.4 a bi-objective optimization framework for heterogeneous cpu/gpu

query plans

Research on heterogeneous CPU/GPU query plans optimization was presented in [63] in
Appendix A.4 on page 55.

Previous studies suggest that numerous database tasks may be accelerated by the us-
age of the GPU processing [10–15, 58–60, 78]. However, there are some issues that have
to be solved. We suggested a solution to the obligatory data transfer from a CPU to a
GPU issue by introducing lightweight compression framework in the previous section (see
Section 3.2).

Yet, this does not solve all problems. As GPU is mostly optimized for numerical computa-
tion, only selected operations will benefit from GPU. Furthermore, small data sets are also
a problem. It is often the case that the performance gain is negligible (or even negative).

Therefore, it is crucial to use joint processing capabilities of both CPU and GPU [63]. We
investigate heterogeneous CPU/GPU computation and discuss optimisation methods that
seek the balance between these two platforms. The method is based on heuristic search for
bi-objective Pareto optimal execution plans in the presence of multiple concurrent queries.
Our query planner uses one of three supported optimization types:

• time (minimize processing time),

• cost (minimize processing cost),

• bi-objective (combine time and cost objectives).

Cost objective is based on the commodity market model where devices are interpreted
as producers and queries are interpreted as consumers. The price of the resources is con-
trolled by supply-and-demand laws. The simulation experiment results are promising. We
have achieved good load balancing combined with better optimization results than in the
previous research [63]. Furthermore, our solution also offers lower time complexity and
higher accuracy than other known methods.

3.5 exemplary applications

Application of time series database in biomonitoring systems was described in two public-
ations. Paper [62] is an extended work of the research presented in [61] (see Appendix A.6
on page 81 and Appendix A.5 on page 69, respectively).

Water pollution monitoring is one of the most critical aspects of environmental and
health care. Many existing monitoring systems work only for a narrow range of substances
and do not provide continuous operation. Because of this, systems based on life organisms
(Biological Early Warning Systems) increasingly gain interest and popularity.
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Such systems use long-term observations of bioindicator activity for monitoring pur-
poses. Some species of mussels are well-known bioindicators and Dreissena polymorpha is
one of them. In these studies, we have collected observations of behaviour of Dreissena
polymorpha and analysed them in order to detect any emerging threats. As observations
of mussels behaviour are done by measuring the gap between the valves, we used a time
series database system to store, process and mine the collected data. We propose an efficient
framework for automatic classification of control and stressful conditions, distinguishing
between stressful conditions and basic behaviour patterns extraction.

To accomplish this, we use a time series database and various data mining and pro-
cessing techniques like wavelet filters, pattern matching, wavelets features extraction and
classification.

3.6 conclusion

In this dissertation, query optimization in heterogeneous CPU/GPU environment for time
series databases was discussed.

We have demonstrated that GPU used as a coprocessor in a time series database may
significantly improve query preprocessing performance [58, 60]. However, performance
boost is only possible if several issues related to GPU computing are addressed.

One of the problems is the obligatory time consuming memory transfer between CPU
and GPU which precedes most GPU computations. In this dissertation, we consider us-
age of lightweight compression methods to minimize memory transfer and, therefore, to
improve processing performance. We discuss lightweight compression algorithms, imple-
mentation details and their applications in the context of GPGPU [58–60]. We propose
new GPU implementations and extensions of some known algorithms. Furthermore, we
propose a data adaptive lightweight compression planner [60]. Resulting compression ra-
tios and decompression bandwidth of proposed solution are an attractive option for GPU
supported databases.

Another issue bound to GPU as a coprocessor in database environment is that not all
processing task actually fit GPU architecture. This may be related to tasks’ size or type. In
this dissertation, we elaborate on computation and optimisation methods in heterogeneous
CPU/GPU environments [63]. Our approach is based on an economic model which mimics
the commodity market and we use bi-objective optimization, combining economic based
cost objective with estimated execution time objective. We propose an heuristic search of
bi-objective optimal execution plans. The preliminary results are very promising and offer
good load balancing of the simulated devices combined with better optimization results
than in other approaches [63].

Finally, we discuss an example application of time series database in an biological exper-
iment. In this trial, we observe change over time of the gap between Zebra mussel valves.
Those observations are naturally in the form of time series. We propose a new algorithm
based on wavelets and kernel methods which extracts mussel behavioural events by analys-
ing resulting time series [61, 62]. Automatic extraction of behaviour events greatly improves
research on Zebra mussels behaviour. Moreover, we extend applications of this algorithm
by proposing an efficient framework for automatic classification of mussel behaviour de-
pending on surrounding environment state [62]. This is an important step towards the
creation of an advanced environmental biomonitoring system based on above-mentioned
mussel species.
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3.7 future work

In the future, we plan to further expand the methods presented in this dissertation.
In the context of time series databases we plan to extend query processing methods on

GPU to support advanced time series querying and data mining tasks. We also plan to
adapt the proposed methods to support monitoring in SCADA systems.

Moreover, we plan an extensive study on lightweight compression algorithms applica-
tions in general context. In particular, we are interested in investigating usage of those
algorithms on various SIMD architectures. We will also continue research on the proposed
dynamic compression planner, in particular, we plan to add support for processing of par-
tially decompressed data and support for different data structures (graphs for example).

Furthermore, we plan an extended evaluation of the heterogeneous CPU/GPU frame-
work, along with examination of parameters’ influence on the model behaviour and assess-
ment against Hybrid Query challenges. Another interesting field is an extension of this
model beyond CPU/GPU co-processing.

Finally, we plan to expand research on methods associated with Zebra mussels behaviour
analysis with the goal to develop an advanced water biomonitoring system.
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Abstract. In many scientific and industrial applications GPGPU (General-
Purpose Computing on Graphics Processing Units) programming reported ex-
cellent speed-up when compared to traditional CPU (central processing unit)
based libraries. However, for data intensive applications this benefit may be much
smaller or may completely disappear due to time consuming memory transfers.
Up to now, gain from processing on the GPU was noticeable only for problems
where data transfer could be compensated by calculations, which usually mean
large data sets and complex computations. This paper evaluates a new method of
data decompression directly in GPU shared memory which minimizes data trans-
fers on the path from disk, through main memory, global GPU device memory,
to GPU processor. The method is successfully applied to pattern matching prob-
lems. Results of experiments show considerable speed improvement for large and
small data volumes which is a significant step forward in GPGPU computing.

Keywords: lightweight compression, data-intensive computations, GPU,
CUDA.

1 Introduction

In all branches of science and industry amount of data which needs to be processed
increase every year with enormous speed. Often this analysis involve uncomplicated
algorithms but working on large data sets which in most cases cannot be efficiently
reduced. This kind of applications are called data-intensive and are characterized by the
following properties:

1. data itself, its size, complexity or rate of acquisition is the biggest problem;
2. require fast data access and minimization of data movement;
3. expects high, preferably linear, scalability of both hardware and software platform.

One of the most typical solutions to process large volumes of data is the map-reduce
algorithm which gained huge popularity due to its simplicity, scalability and distributed
nature. It is designed to perform large scale computations which may last from seconds
to weeks or longer and involve from several to hundreds or thousands of machines
processing together peta-bytes of data.

P. Herrero et al. (Eds.): OTM 2012 Workshops, LNCS 7567, pp. 3–12, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A.1 improving efficiency of data intensive applications on gpu 27



4 P. Przymus and K. Kaczmarski

On the opposite side we can find problems which reside in a single machine but
are large enough to require high processing power to get results within milliseconds.
GPU programming offers tremendous processing power and excellent scalability with
increasing number of parallel threads but with several other limitations. One of them
is obligatory data transfer between RAM (random-access memory) and the computing
GPU processor which generates additional cost of computations when compared to a
pure CPU-based solution. This barrier can make all GPU computations unsatisfactory
especially for smaller problems.

Time series matching is a popular example of this kind of data intensive applications
in which a user may expect ultra fast results. Therefore in the rest of this work we use
this example as a proof of concept application.

1.1 Motivation

Goal of this work is to improve efficiency of data transfer between disk, through RAM,
global GPU memory and processing unit, which is often a bottleneck of many algo-
rithms and gain noticeable higher speed up of algorithms when compared to classical
CPU programming. We focus on memory bound data intensive applications since many
computation intensive applications already proved to be much faster when properly im-
plemented in parallel GPU algorithms.

Let us consider a problem of matching whole patterns in time series. As a distance
function we can use the Hamming distance. Due to the lack of complex calculations
main limitation of this problem is data transfer. To facilitate the transfer of data we can
use either hardware solutions or try to reduce the data size by compressing or eliminat-
ing data. Since the hardware is expensive and the elimination of data is not always pos-
sible, data compression is usually the only option. Classic compression algorithms are
computationally expensive (gain from the transfer data does not compensate the calcu-
lations [1]) and difficult to implement on the GPU [2]. Alternatives such as lightweight
compression algorithms which are successfully used for the CPU are therefore very
attractive.

1.2 Related Works

Lossless data compression is a common technique for reducing data transfers. In the
context of SIMD (Single Instruction Multiple Data) computations data compression
was successfully utilized by [3] in tree searching to increase efficiency of cache line
transfer between memory and processor. The authors indicate that GPU implementa-
tion of the same search algorithm is computational bound and cannot be improved by
compression. In [4] authors present interesting study of different compression tech-
niques for WWW data in order to achieve querying speed up. A general solution for
data intensive applications by cache compression is discussed in [1]. Obviously effi-
ciency may be increased only if decompression speed is higher than I/O operation. In
our case we show that decoding is really much faster and eliminates this memory bot-
tleneck. The compression schemes proposed by Zukowski et al. [1] offer good trade-off
between compression time and encoded data size and what is more important are de-
signed especially for super scalar processors which means also very good properties
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for GPU. Delbru et al. [5] develop a new Adaptive Frame of Reference compression
algorithm in order to achieve significant speed up of compression time, which in turn
allows for effective updates of data.

All these works are in fact entry points to our solution. Our contribution is that the
compression methods have been redesigned for GPU architecture and may offer ex-
cellent encoding and decoding speed for all compression ratios. Our solution may be
utilised in any data intensive algorithms involving integer or fixed-decimal number data.
We also explain how this method may be extended to other algorithms.

As the preliminary work we checked if lightweight compression algorithms can be
used for different kinds of common time series databases. We collected data from vari-
ous data sets covering: star light curve (TR1, TR2 – [6]), CFD (contract for difference)
and stock quotations for AUDJPY, EURUSD, Shenzen Development Bank respectively
(IN1, IN2, TS1 – [7,8]), radioactivity in the ground at 2 hourly intervals over one year
(TS2 – [8]) and sample ECG (electrocardiogram) data (PH1,PH2 – [9]). The data used
in this experiment is the data with fixed decimal precision that can be stored as inte-
gers, which allows to use lightweight compression. Efficiency of conventional com-
pression algorithms (gzip, bzip2 - with default settings) compared to the lightweight
compression methods (PFOR, PFOR-DIFF) is presented in figure 1. We can notice that
lightweight compression, although not achieving as high compression ratio as gzip, may
also obtain similar results, bzip2 is always much better but also significantly slower.
This is also proved by L. Wu et al. [2] who showed that conventional compression is
too slow to increase overall algorithm efficiency for GPU.

Due to its specificity, time series usually have a good compression ratio (Fig. 1). The
most important benefits of compression can be summarized as follows:

– shorter time to load data from disk
– shorter time to copy data from RAM to device
– possibility to fit larger set of data directly on the GPU (GPU DRAM is often lim-

ited)
– reduced data size in storage

Fig. 1. Achieved compression level of lightweight compression and conventional compression
methods for various datasets (higher is better). Data sets: TR1, TR2 – star light curve; IN1, IN2,
TS1 – CFD and stock quotations; TS2 – radioactivity in the ground; PH1, PH2 – ECG data.
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We conclude that lightweight compression may be used in time series data intensive
applications achieving compression ratio from 2 to 7. This initial investigation lets us to
predict that data transfer cost accompanied with decompression time may be noticeably
decreased.

1.3 Research Hypothesis and Methodology

The main research hypothesis for this project is as follows.

– Data-intensive applications may increase their efficiency by utilization of
lightweight compression methods in GPU global and shared memory.

– Cost of data decompression can be amortised by fewer global memory reads.
– Additional benefit may be obtained by proper utilisation of shared memory decom-

pression.
– Data-intensive applications may benefit from GPU computing when applied for

smaller data sets than without the method.

In order to verify the hypotheses we implement a prototype which will be used as
a proof of concept equipped with several real-time and real-data measurements per-
formed by fine grained timers and memory access analysis done by a professional pro-
filer. Checking the hypotheses will involve a few kinds of experiments including data
intensive application using:

1. GPU algorithm without decompression compared to CPU algorithm without de-
compression. This will allow to estimate possible general speed up of an algorithm
when run on a GPU and also will be a starting point for other experiments by reg-
istering time necessary to perform pure computations without any decompression
overhead.

2. GPU algorithm with decompression in global memory compared to CPU algorithm
with decompression. This will show potential speed up when data transfer is min-
imised by data compression.

3. GPU algorithms with decompression in shared memory compared to GPU with
decompression in global memory and CPU algorithm with decompression. This
will show the speed up when minimising GPU global memory reads.

As an initial set up for this research we use time series matching problems as an exem-
plar of data intensive applications. Because of efficiency requirements mentioned in the
previous section we utilise lightweight compression methods: PFOR and FOR-DIFF
algorithms.

2 Method Description

2.1 Lightweight Compression

In this section we discuss the algorithm FOR and FOR-DIFF in different variations,
as well as discuss problems and solutions when using this approach on the GPU. FOR
determines range of values for the frame, and then maps the values in this interval using
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a minimum number of bits needed to distinguish the data [10]. A common practice is
to convert the data in the frame to the interval {0, . . . ,max−min}. In this situation, we
need exactly �log2(max−min+ 1)� bits to encode each value in the frame.

The main advantage of the FOR algorithm is the fact that compression and decom-
pression are highly effective on GPU because these routines contain no branching-
conditions, which decrease parallelism of SIMD operations. Additionally functions are
loop-unrolled and use only shift and mask operations. This implies that there are dedi-
cated compression and decompression routines prepared for every bit encoding length.

The compression algorithm works as follows, for the data frame of length n loop is
performed each m values (where m is a multiple of 8) and compressed using the same
function at each iteration step. Decompression is similar to compression. We iterate
through the m-coded values, and we use a function that decodes m values.

FOR-DIFF algorithm is similar to FOR, however, stores the differences between
successive data points in frame. Compression needs to calculate the difference, then
compresses them using the FOR compression scheme. Decompression begins by de-
compressing and then reconstructs the original data from the differences. This approach
can significantly improve the compression ratio for certain types of data.

The main drawback of FOR is that it is prone to outliers in the data frame. For
example, for the frame {1,2,3,3,2,2,2,3,3,1,1,64,2,3,1,1}, if not the value 64 we
could use the �log2(3− 1+ 1)�= 2 bits to encode the frame, but due to the outlier we
have to use 6-bit encoding (�log2(64− 1+ 1)�) thus wasting 4 bits for each element.

Solution to the problem of outliers has been proposed in the work [1] in the modified
version of the algorithm, called Patched FOR or PFOR. In this version of the algo-
rithm outliers are stored as exceptions. PFOR first selects a new range mapping for the
data in order to minimise the size of compressed data frames taking into account the
space needed to store exceptions. Therefore, compressed block consists of two sections,
within the first section the compressed data are kept and in the second exceptions are
stored (encoded using 8, 16 or 32 bits). Unused slots for exceptions in the first sec-
tion are used to hold the offset of the following exception in the data in order to create
linked list, when there is no space to store the offset of the next exception, a compul-
sive exception is created [1]. For large blocks of data, the linked lists approach may fail
because the exceptions may appear sparse thus generate a large number of compulsory
exceptions. To minimise the problem of various solutions have been proposed, such as
reducing the frame size [1], or algorithms that do not generate compulsive exceptions,
such as Adaptive FOR [5] or modified version of PFOR [4]. Our publication is based on
PFOR algorithm presented in [4]. Compressed block consists of three parts: the first in
which compressed data are kept, second section where exceptions offsets are stored, and
the last section which holds remainders of exceptions. When the outlier is processed, its
position is preserved in an offset array, and the value divided into bits that are stored in
the first section and the remainder to be retained in the third. Second and third section
are then compressed using FOR(separately).

Decompression proceeds as follows: first decompresses the data section. Then de-
compresses the offset and exceptions array. Then iterates over the array offset, and
restore the value of by applying patch from exception array.
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2.2 GPU Implementation

To be able to decompress a data frame, decompression functions must be specified (for
block of values, positions and supplements). In the case of the CPU one can use function
pointers. On GPU this is dependent on the GPU computation capabilities (cc). For cc
lower than the 2.x is not possible to use function pointers, which were introduced in
version 2.x and higher. So far we used solution compatible with both architectures. In
future work a version that uses features introduced in 2.x cards may simplify the code
and make it more flexible.

Our current implementation is based on macros and requires information about the
compressed data at compile time. This is not a serious limitation in the case of data
that we analysed, as the optimum compression parameters were found to be constant
within particular sets of data. Usual practice is to determine the optimal compression
parameters based on sample data [1] and use them for the rest of the data set.

Another challenge was the issue of optimal reads of global memory during decom-
pression: first decompression threads do not form coalesced reads leading to a drop in
performance, and secondly the CUDA architecture can not cope well with the types
of readings less than 32 bits in length. Our solution involves packaging data in tex-
ture memory, which solves the first problem. The second problem is solved by casting
compressed data (char array) to array of integers. Decompression requires the reverse
conversion. Texture, however, introduces some limitations, the maximum size is 227

elements in case of one dimensional array. In future we plan to abolish the need for
packaging data in the texture by modifying the compression and decompression algo-
rithm. In this way readings of compressed data will allow for coalesced reads.

We prepared two versions of the experiments for GPU. In the first one we decom-
presses into the shared memory and in the second one into global memory. Algorithm
based on global memory, as expected, is considerably slower than the algorithm based
on shared memory (global memory is hundreds of times slower than shared), but this is
still good choice for the considered experiment. On the other hand using shared memory
is not always possible, so the algorithm based on global memory is still an alternative.

In the case of PFOR-DIFF algorithm we still need to perform reconstruction step,
which involves iterating over decompressed buffer. In our opinion the best solution for
this step, is to use properly implemented parallel prefix sum.

To decompress m (where m is a multiple of 8) values, we use m/8 threads. Each
of the threads decompresses 8 values. Assuming that we have k exceptions (where k
is a multiple of 8) we use the k/8 threads to decompress the offset and exception ar-
ray. Then we patch 8 values as indicated in offset array using exceptions. This scheme
is easily customisable when we have fewer threads. For performance reasons, we still
need an array of 24 integers (safely located within threads registers) - ensuring best per-
formance. After the decompression phase, array can be safely used for other purposes.
For the convenience we have a macro that entered at the beginning of the kernel will
prepare the appropriate code for uncompressing data, making use of decompression in
other solutions easy.

We prepared uncompressing data code for both algorithms, ie. PFOR and PFOR-
DIFF. In the experimental part we used the PFOR-DIFF algorithm as it is computation-
ally more complex.
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3 Preliminary Results

3.1 Experiment Results

Experiment Settings. In our experiment we used the following equipment: two Nvidia
cards - Tesla C2050 / C2070 with 2687 MB and GeForce 2800 GTX with 896 MB (from
CUDA Capability Major 2.0 and 1.3) - 2 x Six-Core processor AMD Opteron (tm) Pro-
cessor with 31 GB RAM, Intel (R) RAID Controller RS2BL040 set in RAID5, 4 drives
Seagate Constellation ES ST2000NM0011 2000 GB. We used the Linux operating sys-
tem kernel 2.6.38-11 with the CUDA driver version 4.0.

Based on the observations that we made when analysis of example time series, we
generated test data sets to ensure equal sizes of test data at different compression ratios.
Each data set consists of 5% of outliers (which is consistent with the analysed data).

Experiments were conducted on different sizes of data (2MB, 4MB, 10MB, 50MB,
100MB, 250MB, 500MB, 750MB, 1GB). For each size, 10 iterations were performed
and the results were averaged. In addition, to ensure the same disk read times for the
same size of data we averaged disk read times for each data size. For the experiment
with 1GB of data we present detailed results in table 1 which is visualised in figure 2.
For the remaining data sizes we present average speed up in figures 3b and 3a.

Table 1. Measured times in seconds for 1GB of data. Level – compression level of input data. IO
– time of disk IO operations. Mem – time of RAM to GPU Device data copying. Computation
– algorithm computation time including data decompression.

Method type Level IO Mem Computation Summarized
No compr. CPU 1 67.295 0.0 2.410 69.705
No compr. GPU 1 67.330 0.581 0.010 67.922
Compr. GPU shar. 2 33.448 0.286 0.085 33.821
Compr. GPU glob. 2 33.495 0.286 0.426 34.208
Compr. CPU 2 33.949 0.0 7.690 41.640
Compr. GPU shar. 4 16.778 0.104 0.083 16.966
Compr. GPU glob. 4 16.785 0.105 0.427 17.318
Compr. CPU 4 17.009 0.0 7.203 24.213
Comp. GPU shar. 6 11.192 0.095 0.082 11.369
Comp. GPU glob. 6 11.178 0.095 0.428 11.701
Comp. CPU 6 11.345 0.0 6.961 18.307

3.2 Discussion

Figure 2 presents final results of our experiments which were run on whole pattern
matching algorithm. The bars are grouped by levels of compression, from 2 to 6, plus
no compression. On the left we may compare efficiency of global and shared memory
decompression. The right side shows CPU performance.
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Fig. 2. Performance of a whole pattern matching algorithm with and without compression for
1GB of data, excluding IO times (lower is better). g – global memory decompression, s – shared
memory decompression.

CPU performance is highly influenced by data decompression time. We can see that
decompression takes from 4 to almost 6 seconds which is about 200% to 300% of the
algorithm without decompression. The only possible improvement can be then observed
on IO operations.

Thanks to ultra fast decompression GPU implementation of the algorithm performs
much better. We can observe that for compression level 2 decompression in shared
memory improved overall execution time by almost 2 times. For level 6 it is almost 3
times better. Decompression in global memory although also very fast can be slower
for lower levels.

We must point out here that architecture of GPU shared memory limits possible num-
ber of algorithms which may use shared memory decompression method. Currently,
subsequent kernel calls is the only method for global synchronisation. However, GPU
cannot store shared memory state between kernel calls. As the consequence data de-
compression and algorithm execution must be done in single kernel. We are conscious
that this may be improved by more complex kernels and data decompression strategy
which will be addressed in our future research.

Figures 3a and 3b show interesting results concerning our shared memory decom-
pression method. First we must notice that data compression alone increases appli-
cation speed by reducing necessary data transfer. Fig. 3a demonstrates that pure IO
operation speed up corresponds data compression ratio, which is an obvious result.
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(a) Speed up on IO read time (higher is bet-
ter)
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shared

shared

shared
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(b) Computations speed up when using lightweight
decompression compared to single threaded CPU
version without decompression. This includes IO.
(higher is better)

Fig. 3. Performance improvments when using lightweight compression

However, fig. 3b shows that this speed up may be significantly better if decompres-
sion is performed in shared memory. We achieved speed up improvement from 2%
with compression ratio 2 up to 10% with compression ratio 6. These results prove our
hypothesis that shared memory decompression increases efficiency of data intensive
applications.

4 Conclusions and Future Work

In this paper we presented research devoted to improvement of GPU algorithms by
utilisation of shared memory decompression. The hypothesis was evaluated and proved
in many experiments. The contribution of our work may be summarised as follows.

We developed two highly optimised GPU parallel decompression methods: one dedi-
cated for global and one for shared memory. We improved original algorithms by adding
ability to deal with time series data, include negative values and fixed point values. We
have no information about any other GPU implementations of lightweight compression
with similar abilities.
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We tested lightweight compression for time series and applied our novel methods
to data intensive pattern matching mechanism. Our evaluation proved that the method
significantly improved results when compared to other methods.

We showed that data decompression in GPU shared memory may generally improve
performance of other data intensive applications due to ultra fast parallel decompression
procedure since time saved by smaller data transfer is not wasted for decompression.

We analysed relationship between global and shared memory decompression show-
ing that although shared memory may limit number of possible applications due to lack
of global synchronisation mechanism, it significantly improves performance.

We plan to design a general purpose library which could be used in a similar way
to CUDA Thrust library. Utilisation of common iterator pattern with memory blocks
overlapping may offer interesting abilities breaking barrier of inter block threads com-
munication. Such an iterator would require to define size of a shared memory buffer
which would be common for more than one block in parallel threads execution. De-
scription of such an extended iterator pattern for overlapping shared memory will be
the next step of this research. During the preparation of this work, we managed to lo-
cate several problems of the current solution. In the future we also plan to prepare a
new version of the algorithm which will allow for better use of CUDA 2.x computa-
tion capabilities and remove the constraints which we mentioned in the implementation
description.

This work is a part of a larger project which aims to create a GPU based database for
scientific data (such as time series, array, etc.).
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Abstract. Nowadays, we can observe increasing interest in processing and
exploration of time series. Growing volumes of data and needs of efficient
processing pushed research in new directions. GPU devices combined with fast
compression and decompression algorithms open new horizons for data intensive
systems. In this paper we present improved cascaded compression mechanism for
time series databases build on Big Table–like solution. We achieved extremely
fast compression methods with good compression ratio.

Keywords: time series database, lightweight lossless compression, GPU, CUDA.

1 Introduction

Specialized time series databases play important role in industry storing monitoring
data for analytical purposes. These systems are expected to process and store millions
of data points per minute, 24 hours a day, seven days a week, generating terabytes of
logs. Due to regression errors checking and early malfunction prediction these data must
be kept with proper resolution including all details. Solutions like OpenTSDB [11],
TempoDB [3] and others deal very well with these kind of tasks. Most of them work
on a clone of Big Table approach from Google [5], a distributed hash table with mutual
ability to write and read data in the same time.

Usually systems compress data before writing to a long-term storage. It is much more
efficient to store data for some time in a memory or disk buffer and compress it before
flushing to disk. This process is known as a table row rolling. Current systems like
HBase [1], Casandra [6] and others offer compression optimization for entire column
family. This kind of general purpose compression is not optimized for particular data
being stored (i.e. various time series with different compression potential stored in one
column family).

Similar problems appear in in-memory database systems. Solutions based on GPU
processing (like ParStream [2]) tend to pack as many data into GPU devices global
memory as possible. Efficient data compression method would significantly improve
abilities of these systems. An average internet service with about 10 thousands of
simultaneously working users may generate around 80GB of logs every day. After
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compression they could fit into two Nvidia Tesla devices where average query can be
processed within seconds compared to minutes in case of standard systems.

In case of time series compression ratio could be improved by a method tuned to
types of data including its variability, span, differences, etc. However, tuning time slows
down compression and often cannot fit into time window available in real time moni-
toring systems. This paper describes a dynamic compression strategy planner for time
series databases using GPU processors with reasonable processing time and compres-
sion ratios. What is even more important, the resulting compressed data block can be
decompressed very quickly directly into the GPU memory additionally allowing for
ultra fast query processing, what we discussed in our previous publication [12].

The main contribution of this work is:

– three new implementations of patched compression algorithms on GPU
– a new dynamic compression planner for lightweight compression methods
– categorization for compression methods and reduction of configuration space for

optimal plan searching
– evaluation of the achieved results on real-life data

Section 2.1 presents a general view of the system, section 2.2 contains the main con-
tribution of our work: the dynamically optimized compression system. Experimental
runtime results are contained in section 3 while section 4 concludes.

1.1 Motivation and Related Work

Optimal data compression of time series is an interesting and widely analysed com-
putational problem. Lossless methods often use some general purpose compression al-
gorithms with several modifications according to knowledge gathered from data. On
the other hand, lossy compression approximate data using, for instance, splines, piece-
wise linear approximation or extrema extraction [9]. For industrial monitoring, lossy
compression cannot be used due to possible degradation of anomalies.

In case of lossless compression one can use common algorithms (ZIP, LZO) which
tend to consume lot of computation resources [4,15] or lightweight methods which are
faster but not so effective. Our dynamic method attempts to combine properties of both
approaches: is lossless but much faster than common algorithms, offers good compres-
sion ratios and may be computed incrementally. Also ability to decompress values di-
rectly into the processor shared memory should improve GPU memory bandwidth and
enable it to be used in many data intensive applications.

An important challenge is to improve compression factor with an acceptable process-
ing time in case of variable sampling periods. Interesting results in the filed of lossless
compression done on GPU were presented by Fang et al. [8]. Using a query planner it
was possible to achieve significant improvement in overall query processing on GPU by
reducing data transfer time from RAM to global device’s memory space. The strategy
applied in our work is based on statistics calculated from inserted data and used to find
an optimal cascaded compression plan for the selected lightweight methods.

In a time series database we often observe data grouped into portions of very differ-
ent characteristics. Optimal compression should be able to apply different compression
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plans for different time series and different time periods. Comparing to [8] and [4] we
can achieve better results by using dynamic compression planning methods with auto-
mated compression tuning upon processed time series data.

2 Dynamically Optimized Compression System

2.1 Time Series Database Architecture

General View A typical time series database consists of three layers: data insertion
module, data storage and querying engine. Our compression mechanism touches all the
layers working as a middle tier between the data storage and the rest of the system. In
this work we shall focus on data compression mechanism assuming that decompression
used by the query engine is an obvious opposite process.

2.2 Data Insertion

Data Collection. The data acquisition from ongoing measurements, industrial pro-
cesses monitoring [10], scientific experiments [13], stock quotes or any other financial
and business intelligence sources has got continuous characteristic. These discrete ob-
servations T are represented by pairs of a timestamp and a numerical value (ti,vi) with
the following assumptions: a) number of data points (timestamps and their values) in
one time series should not be limited; b) each time series should be identified by a name
which is often called a metric name; c) each time series can be additionally marked with
a set of tags describing measurement details which together with metric name uniquely
identifies time series; d) observations may not be done in constant time intervals or
some points may be missing, which is probable in case of many real life data.

Initial Buffering. Due to optimization purposes, data sent to the data storage should
be ordered and buffered into portions, minimizing necessary disk operations but also
minimizing the distributed storage nodes intercommunication. Buffering also prepares
data to be compressed and stored optimally in an archive. Simplicity of data model
imposed separated column families for compressed and raw data. Time series are sepa-
rately compacted into larger records (by a metric name and tags) containing a specified
period of time (e.g. 15 minutes, 2 hours, 24 hours – depending on the number of obser-
vations). This step directly predeceases dynamic compression which is described in the
next section.

2.3 Compression Algorithms

Patched Lightweight Compression. The main drawback of many lightweight com-
pression schemes is that they are prone to outliers in the data frame. For example,
consider following data frame {1,2,3,2,2,3,1,1,64,2,3,1,1}, one could use the 2 bits
fixed-length compression to encode the frame, but due to the outlier (value 64) we have
to use 6-bit fixed-length compression or more computationally intensive 4-bit dictio-
nary compression. Solution to the problem of outliers has been proposed in [15] as a
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modification to three lightweight compression algorithms. The main idea was to store
outliers as exceptions. Compressed block consists of two sections: the first keeps the
compressed data and the second exceptions. Unused space for exceptions in the first
section is used to hold the offset of the following exceptions in the data in order to
create linked list, when there is no space to store the offset of the next exception, a com-
pulsive exception is created [15]. For large blocks of data, the linked lists approach may
fail because the exceptions may appear sparse thus generate a large number of com-
pulsory exceptions. To minimise the problem various solutions have been proposed,
such as reducing the frame size [15] or algorithms that do not generate compulsive ex-
ceptions [7,14]. The algorithms in this paper are based largely on those described by
Yan [14]. In this version of the compression block is extended by two additional arrays
- exceptions position and values. Decompression involves extracting data using the un-
derlying decompression algorithm and then applying a patch (from exceptions values
array) in the places specified by the exceptions positions. As exceptions are separated,
data patching can be done in parallel. During compression, each thread manages two
arrays for storing exception values and positions. After compression, each thread stores
exceptions in the shared memory, similarly exceptions from shared memory are copied
to the global memory. Patched version of algorithms are only selected if compression
ratio improves. Otherwise non patched algorithms are used. Therefore complex excep-
tions treatment may be omitted speeding up the final compression.

SCALE. Converts float values to integer values by scaling. This solution can be used
in case where values are stored with given precision. For example, CPU temperature
56.99 can be written as 5699. The scaling factor is stored in compression header.

DELTA. Stores the differences between successive data points in frame while the first
value is stored in the compression header. Works well in case of sorted data, such as
measurement times. For example, let us assume that every 5 minutes the CPU temper-
ature is measured starting from 1367503614 to 1367506614 (Unix epoch timestamp
notation), then this time range may be written as {300, . . . ,300}.

(Patched) Fixed-length Minimum Bit Encoding (PFL and FL). FL and PFL com-
pression works by encoding each element in the input with the same number of bits
thus deleting leading zeros at the most significant bits in the bit representation. The
number of bits required for the encoding is stored in the compression header. The
main advantage of the FL algorithm (and its variants) is the fact that compression and
decompression are highly effective on GPU because these routines contain no
branching-conditions, which decrease parallelism of SIMD operations. For best effi-
ciency dedicated compression and decompression routines are prepared for every bit
encoding length with unrolled loops and using only shift and mask operations. Our im-
plementation does not limit minimum encoding length to size of byte (as in [8]). Instead
each thread (de)compresses block of eight values, thus allowing encoding with smaller
number of bits. For example, consider following data frame {1,2,3,2,2,3,1,2,3,1,1},
one could use the 2 bits fixed-length compression to encode the frame.

(Patched) Frame-Of-Reference (PFOR and FOR). Works similarly to FL and PFL,
except before compression it transforms each value into an offset from the reference
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value (for example smallest value) in compression block. Reference value is then stored
in compression header. In this situation, we need exactly �log2(max−min+1)� bits to
encode each value in the frame. For example, this is useful when storing measurement
times, consider time range {1367503614, . . .,1367506614}, then using FOR we only
need �log2(1367506614−1367503614+1)= 12� bits to store each value in this range
(as opposed to 31 bits without this transformation).

(Patched) Dictionary (DICT and PDICT). DICT is suitable for data that have only
a small number of distinct values. It uses a dictionary of distinct values. For compres-
sion and decompression purposes, dictionary is loaded into the shared memory. Binary
search is used during compression to lookup values, then an index of value is used to
encode. Decompression simply retrieves values at given index from dictionary. DICT
writes indexes using byte-aligned types, for better compression a combination with
other compression algorithm should be used. For example, consider data frame {0,
500, 1500, 100, 100, 1500000, 100, 15000} using DICT only 1 byte is needed to store
each value (even less if combined with other compression algorithm) in comparison to
pure FL where more than 2 bytes would have been used.

Run-Length-Encoding (RLE) and Patched Constant (PCONST). RLE encodes val-
ues with a pair: value and run length, thus using two arrays to compress data. Consider
following data frame {1,1,1,1,1,2,2,2,2,3,3,3}, then RLE would create two arrays:
values {1,2,3} and run length {5,4,3}. PCONST is a specialized version of RLE where
almost whole data frame consist of one value with some exceptions. This may be re-
constructed using: frame length, constant value and PATCH arrays. For example, let us
assume that a measurement is done every five minutes with some exceptions, then delta
is almost always constant and equals 300, any other value will be stored as exception.

2.4 Cascaded Compression Planer

Cascaded compression can significantly improve the compression ratio. However, there
are two problems arising. First, there is a risk that cost of decompression will neglect
benefits from lower transfer costs. Second problem is arising when searching for an op-
timal compression methods composition. Even relatively short plan of cascaded com-
pressions (i.e. using 6 compositions out of 10 algorithms with repetitions) may generate
a very large search space (in our example ∑6

i=1 10i = 1,111,110). Significant reductions
must be done in order to achieve fast compression and best plan fitting in a reasonable
time. We assumed that the time limit is set by corresponding CPU performance mea-
sured for one base compression step (see next section). Therefore in our method, the
whole compression process including copying data to GPU, data statistics evaluation,
optimal plan searching and final compression plan execution must be always faster than
mentioned limit.

Stage One: Static Planner – Reduction of Plans Search Space. In the first static
stage we determined acceptable transitions between compression algorithms which
were divided into three categories: initial transformation, base compression, helper
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compression. The complete compression schema is always composed of algorithms
selected from these ordered categories with the following purposes:

1. Transformation algorithms (SCALE, DELTA). All algorithms in this section are
optional but may be used together (if present must be applied in the given order).
Goal: Improve properties of data storage and prepare for better compression.

2. Base compression algorithms (PDICT, PFL, PFOR, RLE, PCONST). Only one
algorithm may be selected as the base algorithm. All algorithms in this section
use two or more arrays. Some of them, may qualify for further compression using
Helper compression algorithms.

3. Helper compression algorithms (FOR, FL, DICT). The algorithms used to com-
press selected arrays from the previous step. Each of the resulting arrays can be
compressed with only one algorithm. In order to minimize the stages of decom-
pression PATCH algorithms, which could create new arrays for compression, are
excluded. The base algorithm used may limit algorithms in this section. For exam-
ple, exceptions and values arrays in all PATCH algorithms may only be compressed
with FL.

Composition of all sensible paths between algorithms in these three categories leaves
only 32 suitable compression plans out of former one million. The longest possible
cascaded compression plan may be composed of six steps.

Stage Two: Hints System – Possibility of Manual Tuning. Another reduction of pos-
sible compression plans generated in the first stage can be done manually by a user
speeding up further plan choosing. Number and types of hints may vary in different
situations. For example, in time series systems timestamps are always sorted and if we
consider separated compression methods for timestamps and values we may find differ-
ent and better plans for them. A hint indicating sorted input may suggest using DELTA
before base algorithms. Additionally, for every metric additional features may be speci-
fied or even specific compression algorithm may be enforced. Currently supported hints
are located in Table 1.

Table 1. A sample set of hints for a time series compression planner

Hints Meaning
SCALE, (P)FL, RLE
DELTA, (P)FOR (P)DICT, PCONST

Enforces a specific compression algorithm in the plan.

SORTED Specify whether the data is sorted.
TIMESTAMP Automatically added by system to timestamps. Sets SORTED to

True and SCALE to False.
DATA Automatically added by system to time series values. If not other-

wise specified sets SORTED to False and SCALE to False.
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Stage Three: Dynamic Statistics Generator – Finding an Optimal Plan. In the last
step, a maximal compression ratio plan is selected upon dynamically computed statis-
tics. In our system they must be generated for each metric and rolled time period. Pre-
computing them and storing aside is not an optimal solution due to necessity of constant
update and allocation of additional memory. Therefore all necessary estimations are cal-
culated during this stage. Please note that if a plan contains a transformation algorithm
then it must be applied before calculating statistics because it influences data.

Estimation results heavily depend on compression algorithms parameters. In [8] the
choice of optimal parameters was straightforward, because used algorithms supported
only compression of value to byte-aligned size (which reduced number of parameters)
and did not allow exceptions in data (only one set of parameters was correct). How-
ever, in compression algorithms and compression plans which use PATCH mechanism,
optimal parameter selection is more complex. Factors such as the number of generated
exceptions and estimated exception compression size should be taken into account. For
example, following data frame {1,2,3,2,32,3,3,1,64,2,1,1} could be compressed us-
ing PFL algorithm using 2 bits, 5 bits or 6 bits fixed-length, generating two exceptions
(32, 64), one exception (64) or no exceptions. In this case, for each compression plan
(selected in previous stages) a satisfactory set of parameters should be selected in order
to correctly estimate compressed data size. This kind of computationally intensive task
is ideal for parallel processing on a GPU device.

The following algorithms are used to calculate statistics.

– Bit histogram – used in size estimation of (P)FL and (P)FOR (includes estimation
size of PATCH arrays with and without compression). Implemented with double
buffering (registers and shared memory).

– Dictionary counter – used in size estimation of (P)DICT (includes estimation size
of PATCH arrays with and without compression). As a side effect dictionary is gen-
erated for further usage if needed. Implemented with sort and reduction operations.

– Run length counter – used in RLE and PCONST. Implemented with reduction op-
eration on key-value pairs.

All the above procedures were implemented using GPU parallel primitives mostly with
CUDA Thrust library assuring the best performance. After statistics calculation step,
the data is located in a GPU device memory and can be compressed without additional
costs associated with the data transfer.

A complete plan evaluation must include base compression algorithm and dedicated
helper algorithms sets. In case of all base algorithms, except for RLE, the helper com-
pression algorithms appearing in the plan are already taken into account in the statis-
tics. RLE requires to perform compression and then calculate statistics for the helper
algorithms. For example, let us consider the following compression plan [[SCALE,
DELTA], [PFL], [FL,FL]] (notation – [transformation algorithms, base compression,
helper methods]), first we apply transformation algorithms before estimating base algo-
rithm compression size. Let us denote the data after applying the transformation algo-
rithms by (xi)i∈I . For 1 ≤ j ≤ 32 let g( j) = #{i ∈ I: j bits are sufficient to write xi}. The
size of the data after compression using remaining part of plan (i.e. [[PFL], [FL,FL]])
is then estimated by
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E := min
1≤ j≤32

(
j

∑
l=1

g(l) · len(g)+
32

∑
l= j+1

g(l)(�log2 len(g)�+ last(g)− j)

)
,

where len(g) = ∑32
l=1 g(l) and last(g) = max1≤l≤32{l:g(l) �= 0}. First sum estimates

base algorithm compression size and second estimates compression size of two excep-
tion arrays compressed using FL algorithm. If we change PFL to PFOR similar estima-
tion is made but in first step min(xi)i∈I is subtracted from all values. PDICT works on
dictionary counter array and uses it to build an optimal dictionary with exceptions (i.e.
PDICT generate three output arrays and each may be compressed using FL, optimal
dictionary with exception is such that minimizes estimated compression size after ap-
plying PDICT algorithm and using FL helper algorithm). Detailed description of other
evaluation functions is beyond the size limitation of this paper and will be published
separately.

3 Runtime Results

We compared effectiveness of dynamic compression planner and a single static plan
within the same CF (Column Family – portion of data rolled in a database) by running
the prototype system on samples from a set of network servers monitoring. The data
included memory usage, the number of exceptions reported, services occupancy time
or CPU load. Data covered a sample of 20 days of constant monitoring and contained
about 91K data points in just a few time series (available at www.mat.umk.pl/˜eror/
gid2013). It was taken as a very short and limited sample from a telecommunication
monitoring system which collects about 700.000 data points per day. Please note that in
this case quality of the sample (its origin) is more important than its length.

We used the following equipment: Nvidia® Tesla C2070 (CC 2.0) with 2687 MB; 2
x Six-Core processor AMD® Opteron™ with 31 GB RAM, Intel® RAID Controller
RS2BL040 set in RAID 5, 4 drives Seagate® Constellation ES ST2000NM0011 2000 GB,
Linux kernel 2.6.38–11 with the CUDA driver version 5.0.

3.1 Evaluation of Compression Planer

The evaluation was divided into two parts. The first measured efficiency of dynamic
planner and was intended to prove the basic contribution of this work. The second
checked efficiency of GPU based statistics evaluation when compared to CPU and prov-
ing contribution concerning time efficiency.

Figure 1 on the right shows compression ratio (original size / compressed size) us-
ing several static plans (one compression plan for the whole column family) and dy-
namic plan (dynamically chosen compression plan for different metrics, tags and time
ranges). In case of timestamps, five static plans were generated using DELTA algorithm
combined with five base compression methods (and helper compression algorithms if
suitable). Similarly, for data values five plans where selected except SCALE was used
instead of DELTA. We may observe, that for timestamp arrays, compression ratio of dy-
namic compression plan was equivalent to best static compression plan. This situation
appeared because all time series were evenly sampled in this case. Therefore one static
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Fig. 1. Efficiency of the prototype dynamic compression system working on GPU. (left)
Compression ratio for static (SP*) and dynamic (DP*) plans. I stands for index and V for values.
(right) Statistics calculation speed-up including GPU memory transfer and using sample data
with 8M values. (higher is better)

Table 2. Achieved bandwidth of pure compression methods (no IO)

Algorithm DELTA SCALE (P)DICT (P)FOR (P)FL RLE PCONST
GB/s 28.875 41.134 6.924 9.124 9.375 5.005 2.147

plan for all metrics generated the same results as dynamic plan, selected for each time
series separately. Note that in real systems, some measurements may be event-driven
and thus dynamic plan could generate better results.

For data values, dynamic compression plan almost doubles compression ratio of best
static compression plan which means that dynamic tuning was much better than selec-
tion of one static plan for the whole buffered column family. Obviously, this is heavily
data dependant, but as a general rule dynamic compression plan will never generate a
compression plan worse than the best static plan (as it always minimizes locally). Ad-
ditionally hints system may be used to enforce static compression plan for cases when
using dynamically generated compression plan does not produce satisfactory profits.

In Fig. 1 on the left GPU statistic generator is compared to similar CPU version
(implemented as a single thread). A significant speed-up of factors from 10 to 70 was
gained which guarantees no slowdown in a lightweight compression application.

4 Conclusions and Future Research

We successfully extended results from [8,12] by introducing three new implementa-
tions of patched compression algorithms on GPU (i.e. Patched DICT, Patched Const.
and Patched Fixed Length). Furthermore we presented a dynamic compression planner
adapted to time series compression in a NoSQL database. Our planner uses statistics
calculated on the fly for the best plan selection. Resulting compression ratios and algo-
rithms bandwidth combined with ultrafast decompression [8,12] on GPU are attractive
solutions for databases.
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Our future work will concentrate on query optimization in hybrid CPU/GPU envi-
ronment, query execution on partially compressed data and extending dynamic com-
pression planner by introducing additional costs factors (i.e. decompression execution
time[8] or potential of query execution on compressed data).
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Abstract. In recent years, an increased interest in processing and exploration
of time-series has been observed. Due to the growing volumes of data, extensive
studies have been conducted in order to find new and effective methods for storing
and processing data. Research has been carried out in different directions, includ-
ing hardware based solutions or NoSQL databases. We present a prototype query
engine based on GPGPU and NoSQL database plus a new model of data storage
using lightweight compression. Our solution improves the time series database
performance in all aspects and after some modifications can be also extended to
general-purpose databases in the future.

Keywords: time series database, lightweight compression, data-intensive com-
putations, GPU, CUDA.

1 Introduction

Time Series analysis plays a crucial role in many important computational applications.
Various hardware or software which must be monitored in order to ensure proper level
of service quality emit time series as self describing data. This kind of machine gen-
erated databases are often growing with square factor since they represent monitoring
relations between a distributed system’s components in ‘all-to-all’ fashion. Number of
time series generated in this way grows very quickly and falls under category of Big
Data: problems in which size of data is a problem itself. Classical statistical systems
(like R or SAS [7,2]), although capable of performing advanced analysis, are no longer
able to handle the newly appearing challenges:

– Very large volumes of data must be consumed by a database in real time. If 1000
machine reports 1000 values every 10 seconds the systems must store 8.64 · 109

data points every day. Because of continuous operation of the system there is no
possibility of batch processing.

– Resolution of data cannot be lost. Industrial systems benefit from ability to track
single events as well as global tendencies or changes. Correlations between quickly
appearing events cannot be found on general level.

– System must be able to answer any kind of queries to the database in reasonable time
even if a query involves billions of points. This tight efficiency constrain may be only
fulfilled if computation power is not bounded and scales well, possibly linearly.

� The project was funded by National Science Centre, decision DEC-2012/07/D/ST6/02483.

B. Catania et al. (eds.), New Trends in Databases and Information Systems, 53
Advances in Intelligent Systems and Computing 241,
DOI: 10.1007/978-3-319-01863-8_6, © Springer International Publishing Switzerland 2014

A.3 time series queries processing with gpu support 47



54 P. Przymus and K. Kaczmarski

– Storage may not be limited and should scale transparently. SQL databases with
centralized indexes are no longer sufficient for these requirements or cannot meet
limited budget requirements.

New systems like OpenTSDB [4] or Tempo-DB [6] try to address the above needs by
using Big Table [8] data model. They are able to import data very efficiently while dis-
tributing it in a cloud-like storage. Querying is done by retrieving fragments of data from
the distributed regions and putting them together with a map-reduce algorithm. One of
the bottlenecks for a time series database is IO bandwidth and centralized aggregation
process. Query processing for a longer period of time may need to process hundreds
millions of data points. In such cases system reaction time often becomes too long.

1.1 General-Purpose Computation on Graphics Processing Units (GPGPU)

GPU programming offers tremendous processing power and excellent scalability with
increasing number of parallel threads. However, vector-like processing in GPU has
some limitations. One of them is obligatory data transfer between RAM (random-access
memory) of the host machine and the computing GPU device, which generates addi-
tional cost when compared to a pure CPU-based solution. This barrier can make GPU-
based algorithms unsatisfactory especially for smaller problems. One of the goals of
this work is to improve efficiency of data transfer between disk, through RAM, global
GPU memory and processing unit.

One of the possibilities, and often the only option, to optimize the mentioned data
transfer is to reduce its size by compressing. Classical compression algorithms are com-
putationally expensive (gain from the transfer data does not compensate the calcula-
tions [18]) and difficult to implement on the GPU [16]. Alternatives such as lightweight
compression algorithms which are successfully used for CPU and GPU are therefore
very attractive [18,10,12].

This paper addresses optimizations in time series systems like OpenTSDB allowing
for faster query response. We present a new model of data storage using lightweight
compression and parallel query processing using GPU. The rest of the paper is orga-
nized as follows. In the rest of this section we motivate and presents some of the related
works concerning time series, big data and GPU processing. In section 2 we explain
the prototype system architecture and querying process, while in section 3 a reader may
find experimental results. Section 4 concludes.

1.2 Motivation

There are evidences of configurations pushing tens of billions data points a day into a
monitoring system (like Facebook or Twitter). In such complicated cases system often
stores very detailed measurements taken in different metrics and configurations for ex-
ample every 10 seconds and therefore must deal not only with many points in the same
time series but also with a huge number of time series as well.

What we observed in our industrial experience is that a user often performs many dif-
ferent queries working on the same time series in the fixed period of time. The reason
for this is that users want to observe the same point in time from many angles, which
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means performing different types of aggregations of different dimensions. Obviously,
this analysis strategy cannot be predicted and aggregations cannot be preprocessed.
OpenTSDB saves data points in cache in order not to repeat very expensive hbase scan
operation. However, serialized points aggregation was noticed to be slower for large
number of time series. Therefore, we propose to use GPU as an alternative query co-
processor using our novel lightweight time series compression strategy. What is more
important many users already own powerful graphical devices which may be used as
local coprocessors for data analysis. Database querying should take into account this
new possibility of supporting time consuming computations.

The main motivation of this work is to open new possibilities in time series querying
by utilization of GPU processors for ultra fast time series aggregation on both server
and client side. In this paper we also show that GPU processor may be used to perform
computations on compressed data without introducing any additional costs. This in turn
allows for application of GPU processors not only in computation-intensive problems
in which time of copying data is amortized by numerical computations but also in data-
intensive problems. This achievement opens a new filed for general database algorithms.
Our solution improves the overall time series database performance by: minimizing
communication footprint between a data storage and a query engine (by using i.a.: data
compaction and lightweight compression) and moving data decompression and time
series query processing to GPU.

1.3 Related Works

There is huge interest in efficient time series processing both in industry and science
since large (and growing fast) data sets need to be queried and stored efficiently. Open-
TSDB [4] build on top of HBase [1] and offers tremendous speed of data insertion and
scanning together with high scalability. However, its data model is limited and so far
cannot handle many important cases (like data annotations) Unde et al. [15] claim that
OpenTSDB reaches much better performance than DB2 RDBMS for time series pro-
cessing. Our experiments showed that OpenTSDB performance degrades if there are
more than just a few tags attached to single metric which means that it has to aggregate
too many time series.

Real time data analytic is offered by ParStream [5] data base system using GPU
nodes. Data is equally distributed along machines. Combination of CPU and GPU pro-
cessing together with load balancing enables to achieve almost real time processing of
terabytes of data [11]. Also Jedox [3], an OLAP database system, offers possibility of
using GPU as a coprocessor in queries. Both solutions are not strictly focused on time
series processing and therefore probably cannot offer many optimizations which could
be potentially possible. Our research is aimed at similar goals but with stress on large
number of time series.

In [17] authors present interesting study of different compression techniques for
WWW data in order to achieve querying speed-up. A general solution for data intensive
applications by cache compression is discussed in [18]. Obviously the same technique
may be used for time series and the efficiency may be increased if decompression speed
is higher than I/O operation. In this paper we also show that decoding is really much
faster and eliminates this memory bottleneck. The compression schemes proposed by
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Zukowski et al. [18] offer good trade-off between compression time and encoded data
size and what is more important are designed especially for super scalar processors
which means also very good properties for GPU.

2 System Architecture

This section presents our system architecture. A set of collectors performs some treat-
ment of source data and send it to the storage. Then data is sent to a storage which
can be easily realized by column based NoSql database systems like Hbase [1] or Cas-
sandra [9]. During the insertion process time series are compacted into larger records
(taking into account the metric name and tags) containing a specified period of time
(eg 15 minutes, 1 hour, 2 hours, 24 hours – depending on the number of observations)
which differs from OpenTSDB design. The last important part of the system is the
query engine responsible for user-database interactions. Again it must retrieve and pro-
cess data in time acceptable for a user even if queried time period is long and covers
many time series and data points. Following other solutions, as an answer to this prob-
lem we propose a analytic coprocessor but with GPU computing support. Since data
transfer time is critical for distributed systems the key improvement over any other time
series solution is decreasing size of necessary data transfer. In our solution we combine
storing data internally compressed with adapted lightweight compression and ultra fast
decompression done directly into GPUs memory. This strategy minimises not only stor-
age size but also significantly increases transfer speed and processing time. In the last
stage, utilization of GPU allows for very fast query processing.

2.1 Query Processing

The overall process of query execution is shown in Fig. 1a, while detailed query pro-
cessing steps are presented below.

Decompression: OpenTSDB uses HBase support for lightweight compression al-
gorithms such as Snappy or LZO. However, our observations suggest that the use of
specialized lightweight compression algorithms like PFOR and PFOR-DIFF can signif-
icantly raise performance. Moreover, lazy decompression can be considered as a one of
the stages of query processing, which minimizes the cost of memory transfers. Results
are further improved by ultra fast decompression done by GPU processor. Obviously,
better compression coefficients can be obtained due to the well-known characterization
of the stored data. In this work we use modified PFOR and PFOR-DIFF from our earlier
work [12].

Quantization: An important aspect is the analysis of the data at different levels of
detail. This means that we have the opportunity to analyse the long-term general aspects
as well as short-term detailed ones. Moreover, it allows us to limit the number of details
in data, and thus reduce the initial size of it prior to processing. This important part of
query processing may be efficiently performed on GPU: each thread examines j data
elements (Fig. 1b). In a loop, it makes the quantization of the time series. Quantization
is carried out using threads buffers to reduce the number of atomic operations needed
for global memory. In the end, the partial results are stored in memory using global
atomic operations.
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Fig. 1. Query operations (where Tn1 ,Tn2 , . . . ,Tnk−1 Tnk are threads)

Union: In order to calculate aggregation for non evenly sampled time series, we
need to transform them into evenly sampled ones (through interpolation). The first step
is to determine a set union of timestamp indices for all time series. Again this stage
can be efficiently implemented using Thrust GPU library offering basic operations for
vectors (the interface is similar to the Standard Template Library vector for C++). In the
first step, we build the vector of time series. Then the timestamps are sorted using sort
method – which performs highly optimized Radix Sort. Subsequently unique operation
is performed which removes duplicate items. See outline in Fig. 1c.

Interpolation: In the previous step we calculated the union of timestamp indices
(ti). Here, we need to interpolate values for selected timestamps in every time series.
Finally, we obtain an evenly sampled time series. To improve efficiency of this part
we used textures with CUDA hardware support for linear interpolation. There are also
efficient implementations of other types of interpolation [14]. The procedure consists
of two parts (see Fig. 1d). First we calculate linear interpolation coefficients, i.e. for
each t in the union, we search for ti < t < ti+1 and calculate ti+1 − t0. Since the time
series are non-uniformly sampled this operation uses vectorized search (upper bound
from Thrust). The second step uses a linear interpolation GPU hardware support and
uses previously computed factors.
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Aggregation: Aggregation works on equally sampled time series. For each time
point we calculate aggregation across data values in all time series. Each thread in a
loop analyses the values of all time series for a single point in time. Then it writes
aggregated value to global memory. See Fig. 1e for overview.

3 Prototype Query processing

Query Processing: The experiments were carried out using a common query for mon-
itoring systems: Calculate an aggregation of all the time series for a given metric for
a specified period of time. It is a general task which is a starting point for many other
analytical methods like finding extreme values, pattern matching or other data mining
algorithms. It covers all important aspects of query processing: data retrieval, combina-
tion of many time series, missing data and data aggregation.

Data Settings: A synthetic set of time series for a single metric with different tags
was prepared. It may be treated as one parameter measurement on a set of distributed
sensors. The simulated measurements correspond to 600 time series with measurement
every 300 seconds with random 10% of elements missing in each time series, which
gives approximately 600× 16.1K ≈ 9.6M data points. Additionally, the synthetic data
has been prepared to obtain different compression ratios seen in real applications [13].

Environment Settings: Experiments were carried out on one instance of HBase,
query processing was conducted on the database server. Hardware configuration: Two
six core processors Intel® Xeon® E5649 2.53GHz, 8GB RAM and Nvidia® Tesla M2070
card. Tests were carried out using 600 time-series containing from 2.0K to 16.1K of ob-
servations, average processing time for 25 launches was taken. Because processed data
in most cases fit in the HBase cache, configuration with LZO (Lempel-Ziv-Oberhumer)
compression achieves only slightly better results than with no compression. In indus-
trial applications, queries are less likely to hit the cache and the acceleration of LZO
compression is higher.

OpenTSDB: A modified version of a console client (modified to log query execution
time after doing a warm-up phase of Java virtual machine) and Hbase configured with
LZO compression were used in experiments.

Prototype: Developed using C++ and CUDA C++ and Thrift protocol. HBase was
configured without compression, instead highly tuned lightweight (de)compression al-
gorithms for time series where used.

3.1 Results and Discussion

The comparison of OpenTSDB and our prototype performance is eligible due to similar
architecture of both solutions and identical query processing work-flow. All differences
are discussed bellow. The following factors were considered: the data transfer time
(the time between sending a query to HBase and receiving the results) as well as the
time needed to process the data (including data decompression), the time required to
exchange data with the GPU (if used) and the processing time.

A detailed timeline for query execution with fixed data size (600 time series ×16.1K
observations) is provided in Figure 2a. We can observe that processing in OpenTSDB
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(a) Execution time 600 time-series, 16.1K observation each (lower is better)

(b) Prototype speedup compared to OpenTSDB (higher is better)

Fig. 2. Measured results

takes only 25% of query time and despite being 2.8 times slower than CPU prototype,
it is not the main bottleneck. Better performance is not just a matter of changing Java
to C++. It is data compaction to reduce processed data size and number of fetched
rows and columns and increase efficiency of data transfer. Using data compaction, data
transfer performance significantly increases (5.7 times faster) for both prototypes (CPU
an GPU). But still most of the time is spent on communication with the database. What
is more GPU is 21x faster than CPU when comparing data processing speed. Thus
calculations are limited by the data transfer. It is therefore necessary to improve data
transfer in order to achieve better results. This is done by using efficient lightweight
compression implementation [12]. Lightweight compression introduces only a slight
improvement in CPU prototype. This is because of the relatively long time needed for
the data processing (almost 1/4 of total time – see CPU in Fig. 2a). This is because the
lightweight compression significantly reduces data transfer time, but it also increases
the data processing time (see CPU comp. in Fig. 2a). Computation and communication
with the GPU is only a small fraction of the entire query and decompression adds only
a small overhead to the query (see GPU and GPU comp. in Fig. 2a).

Figure 2b presents the resulting acceleration obtained on CPU and GPU prototype
(in comparison to OpenTSDB query) on different data sizes. Both figures include CPU
and GPU prototypes with and without lightweight compression. Due to the page limit
only results for one compression ratio (4) are presented. Notice that the size of the data
is important and better results can be obtained on larger data sets. It is also worth of
noting that the data transfer is often a bottleneck in many GPGPU applications. This
was also the case, however, through the use of a lightweight compression, data transfer
is highly improved, thereby significantly speeding up the execution of the query.
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4 Conclusions and Future Work

Time series databases play a crucial role in many branches of industry. Machine gener-
ated measurements require fast, real-time insertion and almost real-time querying. We
showed that in case of computations dedicated to time series the existing solutions may
be improved by utilization of GPU processors. So far data intensive application had to
overcome the problem of additional CPU to GPU data transfer cost. Only algorithms of
more than linear computation time complexity could benefit from parallel GPU process-
ing. In this paper we showed that by introduction of fine tuned compression methods we
can improve these results. Especially time series processing may speed-up significantly
when compared to industrial solutions or experimental CPU prototypes.

Our future work will concentrate on query optimization in hybrid CPU/GPU en-
vironment, query execution on partially compressed data and on developing dynamic
compression planer.
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13. Przymus, P., Rykaczewski, K., Wiśniewski, R.: Application of wavelets and kernel methods
to detection and extraction of behaviours of freshwater mussels. In: Kim, T.-h., Adeli, H.,
Slezak, D., Sandnes, F.E., Song, X., Chung, K.-i., Arnett, K.P. (eds.) FGIT 2011. LNCS,
vol. 7105, pp. 43–54. Springer, Heidelberg (2011)

14. Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: Efficient gpu-based texture interpolation
using uniform b-splines. Journal of Graphics, GPU, and Game Tools 13(4), 61–69 (2008)

15. Unde, P., et al.: Architecting the database access for a it infrastructure and data center moni-
toring tool. In: ICDE Workshops, pp. 351–354. IEEE Computer Society (2012)

16. Wu, L., Storus, M., Cross, D.: Cs315a: Final project cuda wuda shuda: Cuda compression
project. Technical report, Stanford University (March 2009)

17. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized
document ordering. In: Proc. of the 18th Intern. Conf. on World Wide Web, pp. 401–410.
ACM (2009)

18. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compression. In:
ICDE 2006, Proc. of the 22nd intern. conf. on Data Engineering, pp. 59–59. IEEE (2006)

54 appendix : contribution publications



A Bi-objective Optimization Framework for
Query Plans

Piotr Przymus1, Krzysztof Kaczmarski2, and Krzysztof Stencel3

1 Nicolaus Copernicus University, Poland, eror@mat.umk.pl
2 Warsaw University of Technology, Poland, k.kaczmarski@mini.pw.edu.pl

3 The University of Warsaw, Poland, stencel@mimuw.edu.pl

Abstract. Graphics Processing Units (GPU) have significantly more
applications than just rendering images. They are also used in general-
purpose computing to solve problems that can benefit from massive par-
allel processing. However, there are tasks that either hardly suit GPU
or fit GPU only partially. The latter class is the focus of this paper.
We elaborate on hybrid CPU/GPU computation and build optimisation
methods that seek the equilibrium between these two computation plat-
forms. The method is based on heuristic search for bi-objective Pareto
optimal execution plans in presence of multiple concurrent queries. The
underlying model mimics the commodity market where devices are pro-
ducers and queries are consumers. The value of resources of computing
devices is controlled by supply-and-demand laws. Our model of the opti-
mization criteria allows finding solutions of problems not yet addressed
in heterogeneous query processing. Furthermore, it also offers lower time
complexity and higher accuracy than other methods.

1 Introduction

General-Purpose computing on Graphics Processing Units (GPGPU) involves
utilization of graphics processing units (GPU) in tasks traditionally handled
by central processing units (CPU). GPUs offer a notable processing power for
streams.

Execution of database queries is an example of a successful application of
GPGPU. The current research focuses on using the GPU as a co-processor [5].
GPU as co-processor may accelerate numerous database computations, e.g. rela-
tional query processing, query optimization, database compression or supporting
time series databases [5,13,14].

An application of GPU requires transferring data from the CPU memory
to the graphical device memory. The data transfer is usually time-consuming. It
may diminish the gain of the acceleration credited to GPU. This situation can be
improved by using lightweight compression methods that can significantly reduce
the costs associated with communication [13,14]. However, this does not solve all
the problems. In particular, GPU is optimized for numerical computation. Thus,
only selected operations will benefit from GPU. Small data sets are another
problem. For such sets the data transfer may dominate processing time and
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destroy the performance gain. Therefore, joint processing capabilities of both
CPU and GPU are worth considering. Furthermore, as it is common to have
more than one GPU in a computer, a potential use of various GPU devices
should be considered. This type of query plans is called heterogeneous.

The previous research efforts focused on the creation of query plans based
on a cost model. This approach finds plans with the best throughput. However,
it does not allow modelling all phenomena that can occur in heterogeneous sys-
tems. Performing a query as soon as possible is not always cost effective [8]. For
this reason, we propose a query processing model based on concepts of markets
that are known to be suitable for describing the interactions in a heterogeneous
world. They have already gained a considerable interest in the context of task
processing in heterogeneous systems [6]. In market models, manufacturers (pro-
cessing devices) compete with each other for customers (query plans). Similar
competition occurs among customers.

In this paper, we propose a query optimization model based on the commod-
ity market. A query plan is bi-objectively optimized to minimize: the processing
time and the value of consumed resources. For the user, a small difference in
execution time can be negligible. Thus, it is worth optimizing a query, so that
the execution time satisfies the user while other costs are minimized. In this case,
the cost may be, e.g. the responsiveness of the system, power consumption, heat
production, etc. One can also consider expressing the cost in financial terms.

2 Preliminaries

2.1 GPU and Heterogeneous query processing

From the parallel processing’s point of view, CPU accompanied by a GPU co-
processor is a shared nothing architecture. A GPU card has its own memory or
a separate area in the CPU main memory. Thus, the data has to be explicitly
transferred from the CPU main memory to the GPU main memory. Similarly,
the results produced by GPU have to be transferred back to the CPU main
memory. This data transfer often introduces significant overhead. Thus, it is im-
portant to include the transfer cost in the total execution time of an operation.
This cost is also a component of the execution time prediction.

Contemporary computer systems often include more than one GPU. Then,
it is possible to combine multiple computational units in a single query plan.
Such plans are called heterogeneous query processing. Each device may have
a different communication cost (e.g. PCIe or shared memory) with the CPU
main memory. Furthermore, devices can often communicate directly between
each other. Therefore, the main problem of heterogeneous query processing is
the construction of such a query plan that uses only computational units from
which query performance will benefit most and yet will minimize used resources.

Bress et. al. [5] identified problems of hybrid (CPU/GPU) query processing
which are also true in heterogeneous query processing:
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Problem 1 Execution Time Prediction - as multiple database operations may
be executed concurrently it is hard to predict influence of concurrent tasks
on execution times.

Problem 2 Critical Query - since the GPU memory, the concurrent GPU ker-
nels execution and the PCIe bus bandwidth are all limited, only the critical
queries should be selected to use GPU (i.e., queries that benefit from GPU
usage and are important from global perspective).

Problem 3 Optimization Impact - as concurrent heterogeneous queries will in-
fluence each other, it is important to consider this aspect in the planning
process.

2.2 Commodity market approach in query processing context

In this paper we address these problems by showing that they may be solved by
applying a supply-and-demand pricing model taken from a commodity market.
In such a market resource owners (processing devices) price their assets and
charge their customers (queries) for consumed resources. Other pricing models
may also be used [6].

In the supply-and-demand model when supply (available resources) or de-
mand (needed resources) changes, the prices will be changed until an equilibrium
between supply and demand is found. Typically the value of a resource is influ-
enced by: its strength, physical cost, service overhead, demand and preferences
[6]. A consumer may be charged for various resources like CPU cycles, memory
used, the bus usage or the network usage. Typically, a broker mediates between
the resource owners and the consumer. The resource owners announce their val-
uation and the resource quality information (e.g. estimated time) in response
to the broker’s enquiry. Then, the broker selects resources that meet the con-
sumer utility function and objectives, like cost and estimated time constraints
or minimization of one of the objectives.

2.3 Bi-objective optimization

Bi-objective optimization is a problem where optimal decisions need to be taken
in the presence of trade-offs between two conflicting objectives. It is a special
case of multiple criteria decision making. Typically there are no solutions that
meets all objectives. Thus, a definition of an optimum solution set should be
established. In this paper we use the predominant Pareto optimality [11]. Given
a set of choices and a way of valuing them, the Pareto set consists of choices that
are Pareto efficient. A set of choices is said to be Pareto efficient if we cannot find
a reallocation of those choices such that the value of a single choice is improved
without worsening values of others choices. As bi-objective query optimization
is NP-hard, we need an approximate solution [12].

3 Heterogeneous Query Planer

The main aim of the new query planner is to propose a solution to the prob-
lems listed in Section 2.1, i.e., Execution Time Prediction, Critical Query and
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Optimization Impact. Furthermore, this planner also addresses heterogeneous
GPU cards and distributed processing. In this paper we propose a method to
build heterogeneous query plans based on the economics of commodity markets.
It is characterized by the fact that the resource producers determine the cost
of their resources and resource consumers jostle for resources. Furthermore, the
resources owners provide information on the quality of their resources, i.e., the
estimated processing time.

3.1 Notation

Table 1 contains a summary of the notation used in this paper. Assume a set of
units U , a logical query sequence QSlog and a dataset D. The goal is to build a
heterogeneous query sequence. Let QShet be a heterogeneous query sequence de-
fined in Equation (1). Let Dk+1 be the data returned by an operation Aokuik

(Dk).
The first row of QShet is created by replacing each operation oi ∈ QSlog with
an algorithm Aoiuj

∈ APoi . The second row is created by inserting an operation
Muk,uk′ (D) that copies the output of an algorithm on the unit u to the input of
the current algorithm on the unit u′.

Symbol Description
U = {u1, u2, . . . un} set of computational units available to process data
D dataset
Muk,uk′ (D) if uk 6= uk′ move D from uk to uk′ else pass
oi ∈ O database operation oi from set of operations O
Aoiuk

algorithm that computes the operation oi on uk
APoi = {Aoiu1

, Aoiu2
, . . . , Aoiun

} algorithm pool for the operation oi
trun(A

oi
uj
, D) estimated run time of the algorithm Aoiuj

on the data D
tcopy(Mui,uj , D)) estimated copy time of the data D from ui to uj
crun(A

oi
uj
, D) estimated run cost of the algorithm Aoiuj

on the data D
ccopy(Mui,uj , D) estimated copy cost of the data D from ui to uj
QSlog = o1o2 . . . on logical query sequence
QShet heterogeneous query sequence see Eq. 1
ft, gt estimated algorithm run time and copy time see Sec. 3.2
fc, gc estimated algorithm run cost and copy cost see Sec. 3.3
fb, gb estimated algorithm run and copy bi-objective scalar-

ization see Sec. 3.4
Fx(QShet) sum of fx and gx over columns of QShet where x ∈

{t, c, b} see Eq. 2
Table 1: Symbols used in the definition of our optimisation model

QShet =

(
Ao1ui1

(D1), Ao2ui2
(D2), Ao3ui3

(D3), . . . , Aonuin
(Dn)

Mu∗,ui1
(D1), Mui1

,ui2
(D2), Mui2

,ui3
(D3), . . . , Muin ,u

∗(Dn)

)
(1)
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Fx(QShet) =
∑

Ao
u(D)

fx(A
o
u, D) +

∑

Mu′,u′′ (D)

gx(Mu′,u′′ , D) (2)

3.2 Single Objective Heterogeneous Query Planer

Procedure OptimalSeq(QSlog, u∗, x)
Input: QSlog = o1o2o3 . . . on - logical query sequence, u∗ - base unit, x ∈ { t -

time, c - cost, b - bioptimization } - optimization type
Result: QShybrid

1 seq_list = [];
2 for u in U do
3 Qu = Su(QSlog, u

∗);
4 QFu = Fx(Qu) ; /* e.g. Ft(Qu) */
5 append (u,Qu, QFu) to Seq_list;
6 end
7 QShybrid = pop minimum Qu (by QFu) sequence from Seq_list;

8 for (u, Qu, QFu) in Seq_list do
9 A, B, C = DiffSeq (QShybrid, Qu, u, x);

10 val, start, end = MaxSubseq(A,B,C);
11 if val > 0 then
12 Qhybrid(start : end) = Qu(start : end) ; /* subarray subsitution */
13 end
14 end
15 return Qbase

In this section, we introduce the algorithm that searches for a heterogeneous
query plan, i.e., a plan that operates on more than two devices.

For simplicity let us assume that x = t, ft(Aou, Di) = trun(A
o
u, Di) and

gt(Mu,u′ , D) = tcopy(Mu,u′ , D). Later in this article we will define functions
fc, gc and fb, gb to fit the model of the commodity market and the bi-objective
optimization. Let Su(QSlog, u∗) return such QShet that each operation oi ∈
QSlog is replaced with an algorithm from unit u algorithm pool, i.e., Aoiu ∈
APoi and the base device is set to u∗. Note that there is a specially designated
computing unit u∗ from which the processing starts. It also collects the data in
the end of processing, since the GPU computing is controlled by a CPU side
program.

The algorithm OptimalSeq starts by creating a query sequence for each com-
puting unit and estimating the processing cost for each item of this sequences
(lines 2-6). Next, one sequence (which minimizes Fx(Qu)) is selected as the base
sequence. It will be improved in later steps (line 7). Then, the algorithm iterates
over remaining query sequences in QShybrid in order to find such segments in
the remaining query sequences which improve original sequence (by replacing
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Procedure DiffSeq(seqbase, sequ, u, x)
Input: seqbase - base sequence, sequ - unit query sequence, u - sequ unit, x ∈ {

t - time, c - cost, b - bioptimization } - optimization type
Result: A - operations improvement array; B, C - copy to/from unit arrays

1 A, B, C = [], [], [];
2 for i in enumerate columns seqbase do
3 Aoub

(Di),Muf ,ut(Di) = seqbase[i];
4 Aou(Di),Mu,u(Di) = sequ[i];
5 append fx(Aoub

, Di)− fx(Aou, Di) to A ; /* e.g. ft(A
o
u, D) */

6 append gx(Muf ,u, Di) to B ; /* e.g. gt(Mu,u′ , D) */
7 append gx(Mu,ut , Di) to C;
8 end
9 return A,B,C

corresponding segment of the original sequence). This is done by calculating
the improvement and copy cost arrays in DiffSeq and finding maximal sequence
segment in MaxSubseq. A following variant of the proposed algorithm should
also be considered. Suppose that only one query sequence segment may be in-
serted (i.e., choose one sequence segment from remaining k − 1 sequences with
the biggest), this minimizes number of involved computational units and reduces
overall communication costs.

The procedure DiffSeq simply calculates element wise difference between two
query sequences fx(Aoub

, Di)−fx(Aou, Di) and copy costs from/to unit. The pro-
cedure MaxSubseq is based on Kadane’s algorithm for maximum subarray prob-
lem [1]. It scans through the improvement array, computing at each position the
maximum subsequence ending at this position. This subsequence is either empty
or consists of one more element than the maximum subsequence ending at the
previous position. Additionally, the copy to and copy from costs are included in
the calculation of the maximum subsequence (B and C arrays). The algorithm
returns the maximum improvement for a subsequence (which may be zero if the
subsequence does not improve the original query), the start and end items of
subsequence.

The complexity of OptimalSeq is O(k ∗ n) where k is the number of devices
(usually small) and n is the number of operations of the sequence. Su,Fx, DiffSeq
and MaxSubseq have the complexity O(n).

3.3 Economics in Heterogeneous Environment

To cope with the problems mentioned in Section 2.1, additional criteria are
necessary – in this work an approach based on a simple economic model is
proposed. Each consumer (client) has a query budget that can be used to pay
for the resources used to process queries. Each computational unit is a service
provider (producer) of services available in units algorithm pool APui

. Each
service provider establishes its own pricing for execution of any service from
APui . Pricing of the service depends on:
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Procedure MaxSubseq(A, B, C)
Input: A - operations improvement array; B, C - copy to/from unit arrays
Result: maximum_improvment, start, end

1 max_ending_here = max_so_far = 0 ;
2 begin = tbegin = end = 0 ;
3 for i, x in enumerate(A) do
4 max_ending_here = max(0, max_ending_here + x) ;
5 if max_ending_here = 0 then
6 tbegin = i ;
7 max_ending_here -= B[i];
8 end
9 if max_ending_here - C[i] >= max_so_far then

10 begin = tbegin ;
11 end = i ;
12 max_so_far = max_ending_here ;
13 end
14 end
15 return max_so_far - C[end], begin, end

– the estimation of needed resources (the size of the data D, the performance
of the task Aoiui

),
– pricing of needed resources (the load of device ui – the greater the load on

the device, the higher cost of using the device),
– the preference of the device (e.g. device may prefer larger jobs and/or tasks

that give a greater acceleration on the GPU).

First, pricing for using the resources of computational unit is established. This
depends on the previous load of the device: the higher demand for computational
unit, the higher price for using it. This is a periodic process which calculates
prices every ∆tup seconds by calculating computational unit price Pu. Let 0 <
Lcurr < 1, 0 < Lprev < 1 be current and previous computational unit load
factors. Additionally, let Lth be a threshold below which prices should decrease,
and Pmin be the minimal price. Then the price is calculated using the following
formula4:

Pu :=

{
max(Pmin, Pu · (1 + ∆Pu

(1−∆U)
) if (∆P > 0 ∧∆U > 0) ∨ (∆P < 0),

Pu otherwise,
(3)

where ∆Pu = Lcurrent − Lthreshold and ∆Uu = Lcurrent − LPrevious. This is
similar to the dynamic pricing model proposed in [16] with exception to the
pricing formula i.e., we usemax(Pmin, Pu ·(1+ ∆Pu

(1−∆U) ) instead ofmax(Pmin, Pu ·
(1 +∆Pu)), this modification reduces the excessive growth of prices.

To reflect the preference of the device in price we need to define a function re-
turning speedup factor between base device u∗ (defined in the previous section)

4Slightly abusing notation we will also denote the new price by Pu.
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and current device: speedup(Aou, Di) = trun(A
o
u∗ , Di)/trun(A

o
u, Di). Then we de-

fine a cost function as crun(Aou, Di) =
#Di

speedup(Ao
u,Di)

· Pu, where #Di

speedup(Ao
u,Di)

part combines the estimation of needed resources and the preference of the de-
vice. A computational unit with high speedup on given operation will get a
discount per data size when pricing this operation. Similarly, operations with a
lower speedup factor will be charged more per quantity. Additionally it is ob-
served [13] that often speedup depends on the size of processed data (usually
low speed-up on small datasets) so discount depends on data size.

It is also important to include cost of data transfer, let us define it as

ccopy(Mu,u′ , D) :=

{
0 if u,u’ share memory

#Di

bandwidth(#Di,u,u′)
· (Pu + Pu′)/2 otherwise

where bandwidth returns estimated bytes per second between u and u′ compu-
tational units. If direct data transfer is not available between u and u′ devices,
then transit device will be used (e.q. two GPU cards without direct memory
access will communicate using CPU RAM).

Now let fc(Aou, Di) = crun(A
o
u, Di) and gc(Mu,u′ , D) = ccopy(Mu,u′ , D). A

solution minimizing the cost may be found under the previous assumptions and
using procedure OptimalSeq.

3.4 Bi-objective Heterogeneous Query Planer

As finding Pareto optimal bi-objective query plan is NP-hard (bi-objective short-
est path problem) [12], we will use previously described OptimalSeq single ob-
jective approximation algorithm and extend it to bi-objective case.

We will use a priori articulation of preference approach which is often applied
to multi-objective optimization problems. It may be realized as the scalarization
of objectives, i.e., all objective functions are combined to form a single function.
In this work we will use weighted product method, where weights express user
preference [11]. Let us define:

fb(A
o
u, D) = crun(A

o
u, D)wc · trun(Aou, D)wt ,

gb(Mu,u′ , D) = ccopy(Mu,u′ , D)wc · tcopy(Mu,u′ , D)wt .

where wt and wc are weights which reflect how important cost and time is (the
bigger the weight the more important the feature – values of fb, gb are higher
than 1). It is worth to mention that a special case with wt = wc = 1 (i.e., without
any preferences) is equivalent to Nash arbitration method (or objective product
method) [11].

4 Preliminary Experimental Results

4.1 Simulation settings

In order to evaluate this model we prepared a proof of concept and evaluated it us-
ing custom developed simulation environment. Simulation environment was de-
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Device o1 o2 o3 o4 o5 o6
GPU1 20 11 6 0.38 14 15
GPU2 5 11 6 0.33 4.66 5
CPU2 1 1 1.09 1 1.27 1.36

(a) Average speedup of operation
oi on given device compared to
CPU1

Option CPU1 CPU2 GPU1 GPU2
Unit threshold 0.75 0.75 0.4 0.4

Unit minimal price 5 5 70 70

(b) Pricing model configuration

Table 2: Simulation environment configuration

veloped using Python and SimPy framework. All presented experiments are de-
rived from simulation. There where four devices defined in environment: CPU1,
CPU2, GPU1, GPU2. Data transfer bandwidth between CPU* ↔ GPU* was
measured on real system, bandwidth of GPU1 ↔ GPU2 was calculated using
CPU1 as transit device. Following weights in bi-objective scalarization were used
wt = wc = 1 (i.e., without any preferences setting). Other settings of the sim-
ulation environment are gathered in Tables 2b and 2a. Simulation environment
generates new query sequences, when spawn event occurs. Spawn event is gener-
ated randomly in a fixed interval and generates randomly set of query sequences
(with fixed maximum). Every query sequence consists of maximally six oper-
ations and operates on random data volume. In the simulation the processed
data size has a direct (linear) influence on processing speed. Each device has
got a limited number of resources; a database operation can be performed only
if needed resources are available. In other cases the operation is waiting. After
generating desired number of query sequences the simulation stops spawning of
new tasks and waits until all generated query sequences are processed.

4.2 Simulation Results

Figure 1a presents simulated execution time of three scheduling frameworks
processing a pool of generated sequences of queries. To each generated query
sequence an optimization criterion (time, cost or bi-optimization) was assigned
with equal probability 1/3. Optimization criteria are only used if query schedul-
ing framework supports it, otherwise default criteria is used. All scheduling
frameworks process exactly the same pool of generated query sequences.

Compared frameworks are based on OptimalSeq algorithm but use different
objective function. Time objective planner uses only ft and gt functions as opti-
mization criteria; this means that it has no idea on load of each of devices. Self
Tuning Planner is based on idea presented in Breß et. al. [3], i.e. it maintains a
list of observed execution times on data D for each algorithm Aoiuj

. Observations
are interpolated (using e.q. cubic splines) to form new estimated execution time
function. And finally Bi-objective planner is a proof of concept implementation
of the model described in this work.
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(a) Simulated efficiency of Bi-objective
Heterogeneous Query Planer, Time based
Query Planer and Self-Tuning Query Plan-
ner

(b) Efficiency of Bi-objective Heteroge-
neous Query Planer for various optimiza-
tion tasks

(c) Simulated load of devices (0 < load < 1) (d) Pricing of device

Fig. 1: Simulation results. Note that time is in simulation ticks.

As expected Time Objective Planner is the slowest one since it has no knowl-
edge on the current load of devices. A solution suggested in [3] performs better.
However, there are two problems with this approach: first it adds an additional
overhead due to the interpolation of the observed execution times [3]; Secondly
as may be observed in 1a it takes some time before it adapts to a new situa-
tion (in early stage it performs similarly to the Time Objective Planner). This
is due the fact that it does not immediately react to load change of the device.
Instead, it has to gather enough observations before adapting. The best perfor-
mance is gained when using Bi-objective planner, this is due to the three types
of optimization and the cost model which assures proper load balancing.

As our framework support different types of optimization in the Figure 1b,
we present an impact of optimization type on processing performance. As it may
be observed, time optimization is the most appropriate for query processing with
high priority or with execution time constraint (like interactive queries or ad hoc
data mining). Cost optimization is appropriate for operations with low priority
or without time constraint (like batch processing or periodic jobs). Optimization
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of both cost and time (without preferences) leads to moderate processing speed
but with better load balancing which is discussed later.

As proposed economic model is an important part of presented framework,
in Figure 1 interaction between device load 1c and established device pricing 1d
is illustrated. Notice how increased load influences unit pricing according to
the formula 3. It is worth noting that pricing model may be tuned for specific
applications (see Table 2b for this simulation settings).

4.3 Discussion

In Section 2.1 we cite three challenges of Hybrid Query Processing initially pre-
sented in Breß et.al. [3]. As our bi-objective optimization framework was designed
in order to address this challenges, an evaluation in the context of the former
mentioned problems is needed. We address Critical Query problem by allowing
different optimization targets for queries. Choosing time optimisation allows to a
priori articulate importance of a query. Also, the bi-objective optimization tends
to promote queries which may gain more on particular devices (due to the cost-
delay trade-off and the fact that the cost objective is designed to promote tasks
with greater speed-up 3.3). The problem of Execution Time Prediction is ad-
dressed indirectly with bi-objective optimisation. This is because the bi-objective
optimisation combines the cost objective function, which uses a current device
load when pricing a device, with the execution time objective. So in most cases
it is preferred to optimize both cost and time (without preferences towards any)
through time/cost trade-off. Lastly different types of optimization apply also to
Optimization Impact challenge. Choosing optimization criteria specifies a pos-
sible impact on other queries. Although, the preliminary results are promising
and seem to confirm this, an extended evaluation is needed in future.

5 Related Work

Multiobjective query optimization was considered i.a. in Stonebraker et.al. [17]
where a wide-area distributed database system (called Mariposa) was presented.
An economic auction model was used as cost model. To process a query a user
supplied a cost-delay trade-off curve. Because defining this kind of input data was
problematic Papadimitriou et.al. proposed a new approach where an algorithm
for finding ε-Pareto optimal solutions was presented. The solution was that a
user would manually choose one of presented solutions. This work differs both
in an optimisation method and an economic model involved.

In our framework a user supplies an optimization objective for a query a
priori (time, cost or bi-objective). Also as our model addresses the optimisation
of co-processing interaction a simpler commodity market model could be used
instead of a bidding model.

An extended overview on utilization of a GPU as a coprocessor in database
operations may be found in [3]. Breß et. al. [3] proposed a framework for op-
timisation of hybrid CPU/GPU query plans and present two algorithms for
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constructing hybrid query sequences. The first algorithm selected the fastest al-
gorithm for every element of a query sequence (including the cost of transfer
between devices) with complexity O(n). Unfortunately, this algorithm had two
flaws [3]: the constructed plan could generate too frequent data transfers be-
tween devices, which may significantly affect the performance of data processing
and also an optimal plan was not always generated. To overcome those prob-
lems they proposed the second algorithm. It searched for a continuous segment
of operations on GPU that could improve the base CPU sequence. In order to
find an optimal solution this algorithm generates all possible GPU sequences. Its
complexity is obviously higher: O(n2). Our work extends this approach by allow-
ing possible many various co-processing devices (Heterogeneous Query Planer in
Section 3.1). Secondly our work incorporates commodity market model as well
as bi-objective optimisation for better performance overcoming problems men-
tioned in 2.1. Additionally, the algorithm OptimalSeq presented in our work may
be used to produce a similar solution as the second algorithm by Breß et.al.[3]
but with better complexity (in case of two devices O(n)).

It is worth to mention two surveys: the first one describing economic models
in grid computing [6] and the second one describing methods for multi-objective
optimisation [11].

6 Conclusions and Future Work

In this paper, we proposed a bi-objective optimization framework for heteroge-
neous query plans. We also presented an algorithm for creating query sequences
in a heterogeneous environment with a single objective. This algorithm may be
used to construct query sequences similar to [3] but with better complexity. For
the purposes of this bi-objective optimization we designed a model including
time and cost objectives function. The cost objective function and pricing model
is build on foundations of commodity market economic model.

The preliminary experiments are very promising. We achieved good load
balancing of the simulated devices combined with better optimization results.

In future work, an extended evaluation of the presented framework is needed,
including; examination of parameters’ influence on the model behaviour, careful
assessment against Hybrid Query challenges. Another interesting field is exten-
sion of this model beyond CPU/GPU co-processing. Finally, the framework will
be evaluated in a prototype time-series database [14,13].
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Abstract. Some species of mussels are well-known bioindicators and
may be used to create a Biological Early Warning System. Such systems
use long-term observations of mussels activity for monitoring purposes.
Yet, many of these systems are based on statistical methods and do
not use all the potential that stays behind the data derived from the
observations. In the paper we propose an algorithm based on wavelets
and kernel methods to detect behaviour events in the collected data.
We present our algorithm together with a discussion on the influence
of various parameters on the received results. The study describes ob-
taining and pre-processing raw data and a feature extraction algorithm.
Other papers which applied mathematical apparatus to Biological Early
Warning Systems used much simpler methods and their effectiveness was
questionable. We verify the results using a system with prepared tags for
specified events. This leads us to a classification of these events and creat-
ing a Dreissena polymorpha behaviour dictionary and a Biological Early
Warning System. Results from preliminary experiments show, that such
a formulation of the problem, allows extracting relevant information from
a given signal and yields an effective solution of the considered problem.

Keywords: Automated biomonitoring, Biological Early Warning Sys-
tem, Wavelets, Time series, Zebra mussel (Dreissena polymorpha).

1 Introduction

Monitoring of water contamination is one of the most crucial aspects of environ-
mental and health care. Many existing monitoring systems examine water only
for a narrow range of substances and work without continuous control. For that
reason, systems based on life organisms, i.e. Biological Early Warning Systems
(BEWS), increasingly gain interest and popularity. Building BEWS is a complex
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task, which requires a choice of a relevant bioindicator for the monitored envi-
ronment, preparation of an activity measuring system, that will provide data for
further processing, developing analysis and characterisation methods.

As aquatic organisms are sensitive to the concentration changes of different
life supporting substances or the presence of xenobiotic, stressing or toxic com-
pounds in the water, they are eligible as bioindicators. Most frequently used as
sensing elements are cladocerans [1, 2], amphipods [3], bivalves [4, 5, 6], aquatic
insects (Chironomidae) larvae [7] and fish [8]. Especially mussels, like Mytilus
or Dreissena, as sessile bivalves, are very suitable for long-term, in situ water
quality monitoring.

There are several methods for measuring the response of mussels to stressing
factors. In older systems it was measured as a frequency of shell closing-opening
events, through gluing wires to both halves of the shell and connecting them
through the interface to a computer [9, 10]. The number of closed mussels in a
treated group, in comparison to control, was a measure of stress response. More
recently, a wire was replaced by a magnetic coil (or Hall sensor), on one valve, and
a magnet on the other [11]. The value of the amplified signal was proportional
to the distance (gape) between the two valves. As a response to stress of a
tested group, the average value of gape in comparison to control mussels was
measured. Both systems have limitations in informative and interpretative value
of generated data. Our observations of Dreissena polymorpha mussels behaviour
showed, that the response to stressing factor is more complex. The sequence of
elementary events, i.e. an extent of gape change value and time of the return
to the initial gape value can form specific patterns for various natural or stress
caused activity rhythms. The presence of such rhythms was confirmed in [12].

In this paper, we propose an algorithmic, fully automated analysis method
for extraction of the behaviour of the zebra mussels (Dreissena polymorpha).
Because the behaviour of the zebra mussels is recorded as long series of shell
states, logged every second, we needed an efficient analytic tools [7, 13]. For this
reason, we applied mathematical apparatus of wavelets and kernel methods.

Detection of signal changes using the methods for spectral decomposition of
time series is especially interesting. Fourier Transform (FT) technique can be
applied to analyse the frequency spectrum, but it does not provide any insight
into when a frequency component is present. In other words, we gain no infor-
mation about either the time at which peak occurs or its duration in time (i.e.
localization in time). Because of the limitations of the FT technique, we rec-
ommend using the wavelet transforms for investigating the long-term records of
sudden changes in animal behaviour. Moreover, this approach may be used to
dissecting the impact of unexpected events such as disruption in electric circuits.

The paper is organised as follows. In Section 2 we focus on obtaining and
pre-processing raw data. Section 3 is devoted to give necessary background of
wavelet theory. In Section 4 we present our behaviour extraction algorithm,
which effectiveness is evaluated in Section 5. Finally, in two last Sections 6 and 7,
we point out used programming tools and conclude discussing the results.
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2 Materials and Methods

Biological Signal. Signal is a record of activity of freshwater mussels. We
measure the changes of the distance between the valves. For a sample signal
acquired from zebra mussel see Figure 2 on page 50.

We want to extract single motions of mussels to classify them. It was proved
in [12] that there are complex rhythms in the behaviour ofDreissena polymorpha.
For example, the wanted pattern (shape of the graph of behaviour) may include
the following phases: closing, resting and opening. These stages are presented
in Figure 1 on page 46. Moreover, apart from the closing and opening phases,
a vibration may occur. These are reactions to a stress or living activities. We
search for time series fragments with following properties: at least closing and
opening phases must appear, resting phase is optional; all phases may include
perturbations. We analyse data with 16 minutes and 40 seconds (1000 seconds)
periods of activity which from now on will be called fragments.

Measuring System. In our system, there are 8 mussels, which are located in a
flow-through aquarium. They are attached to the ground, which does not affect
their behaviour because of their sedentary nature.

We measure the changes of a magnetic field of a magnet placed on one side of
the shell with a sensor placed on the other part of the shell. Data is collected every
second from the sensors and transmitted to a database. The result sets showed,
that the first prototype generates quite noisy data. Therefore, the measuring
system should be improved in the future. The main difference between the old
system and the new system will be based on used components type, their size
and other resistance to interference from environment.

Obtaining and Pre-processing Raw Data. Denoising and data preparation
steps consists of pre-processing filtering, removing white noise and averaging
phase. A particularly important class of linear time-invariant systems are fil-
ters [14]. When the term frequency selective filter is used, it means that a system
passes specific frequency components and totally rejects all others. This recom-
mendation is common in particular for frequency selective filters like low-pass,
band-pass and high-pass filters. A high-pass filter passes high frequencies well,
but reduces the frequencies lower than the cut-off frequency. The real attenua-
tion amount for each frequency differs from filter to filter. In our study, we used
wavelet filter, which is high-pass filter and will be described later.

Analysis Method. Other papers investigated frequencies of closing-opening
events [9, 10]. Previous results of observations conducted by the Laboratory of
Applied Hydrobiology at Nicolaus Copernicus University reveal that one is able
to extract motions as presented in Section 2 and, based on the activity record,
is able to successfully assign water pollution to appropriate behaviour of mus-
sel [9]. Stressful situation affects them, but it does not have to be a very violent
reaction. For example, cyanotoxins and herbicides provide a recognisable, but
not very intense, reaction. Therefore, we decided to analyse the normal activity
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(a) Pattern (b) Opening (c) Resting (d) Closing

Fig. 1. Elementary phases of Dreissena polymorpha behaviour from time series point
of view

and activity in a stressful situation to determine whether there is a difference
and how it emerges.

One approach is to use statistical deviation. As abnormal we can take some-
thing that happens infrequently [8]. Not all incidents of behaviour, that do not
conform to the norm, show an abnormality that we are looking for. We try to
identify the frame (which will be defined in Section 4) in terms of shape, but not
in terms of intensity or range of temporary phenomena.

In the future, we want to go even further and beyond the aforementioned
situations to take an analysis of the captured events.

3 An Overview of the Wavelet Theory

The fundamental theory of wavelets was put forward by Haar in 1909 and then
developed at the end of the 1960s. Now it has been extensively documented [15].
Wavelets have been very successful as an analytical tool to represent signals, in
denoising, data compression and in time-scale analysis of time series, to mention
a few of their applications. We refer inquisitive reader for more details concerning
wavelet theory to [16].

Results obtained by this method are better than these obtained by Fourier
analysis or other filter methods [15]. Because wavelet transforms can be exploited
to analyse even non-stationary signals, they have been used in many medical
applications and have been successful alternative methods to Fourier analysis.

Wavelets, in contrast to the Fourier Transform, are examples of Multiscale
Resolution Analysis, which means that wavelet coefficients contain at once in-
formation about the frequency and the time domain. Thanks to this, they are
particularly useful where the knowledge of these two characteristics of the signal
is needed at the same time [16].

ContinuousCase. Historically,wavelet analysis beginswithContinuousWavelet
Transform (CWT). It provides a time-scale representation of a continuous func-
tion where the scale plays a role analogous to the one of the frequency in the
analysis with the well-known Fourier Transform (FT). The main wavelet (the
so-called mother wavelet) is a real valued function, that satisfies the following
relations:

∫
|ψ(t)|2dt = 1 (quickly disappears),

∫
ψ(t)dt = 0 (oscillates). There

are two main operations on wavelets: shift and rescaling. By applying them to
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the mother wavelet we obtain a whole family of wavelets: for j, k ∈ Z and a
wavelet ψ, let ψj,k stands for the wavelet with scale j and displacement k, i.e.

ψj,k(t) = 2j/2ψ(2j · t+ k). (1)

Wavelet transform is a mapping which assigns to a 1-dimensional signal f(t) a
2-dimensional array cj,k in the following way

f(t) =
∑

j,k

cj,kψj,k(t). (2)

At every step of analysis, we have a convolution (which is a filter) and rescaling
(n and t become 2n and 2t, respectively).

By introducing the so-called scaling function φk (for more details see [16])
one can represent a signal as

f(t) =
∑

k

bkφk(t) +
∑

j

∑

k

dj,kψj,k(t) (3)

where dj,k = 〈g,ψj,k〉 =
∫
f(t)ψj,k(t)dt. The first sum represents the approx-

imation Aj of a signal f at the level j which is given by the scaling function.
The second sum represents the detail Dj at the level j and is given by wavelets.
The key idea of the multiresolution is a decomposition of the signal into different
scales and its reconstruction from the sum [15], e.g. D1+D2+D3+D4+D5+A5.

Discrete Wavelet Transform. Discrete Wavelet Transform (DWT) is a dis-
crete version of the CWT, analogously like Discrete Fourier Transform (DFT)
is a discrete version of the FT. In the equation (2) the DWT is given by the set
of coefficients cj,k.

The basic tool of wavelet analysis is a multiscale decomposition of the signals,
which is implemented using multi-band wavelet complementary filters (high-pass
filters and low-pass filters). Calculation procedure leading to this decomposition
is called Mallat algorithm [15]. This algorithm allows a fast wavelet decomposi-
tion and a reconstruction of a signal.

Wavelet decomposition may be seen as a continuous time wavelet decomposi-
tion sampled at different frequencies at every level of the analysis. A suitable way
to find the best level for the hierarchy, depends on the signal type. In general,
the level is selected depending on the desired low-pass cut-off frequency [7].

Analysis Using Wavelet Packet Transform: Tuning of the Various
Levels. Discrete Wavelet Transform (DWT) is a particular case of wavelet packet
analysis [16]. Moreover, implementation of wavelet packet analysis is done by di-
viding whole time-frequency into smaller pieces. The main reason for taking
wavelet packet (WP) into consideration is to be able to analyse non-stationary
signals and their behaviour.

Selection of Appropriate Wavelets for the Considered Problem. Several
different families of wavelet functions have been defined [15]. Each of them is
characterised by different properties, such as smoothness, compact support, and
so on. In our case, the selection of appropriate wavelet is done by the algorithm.
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4 Event Extraction Algorithm

Let us now present our algorithm, which captures the events. Then we justify
its correctness. Having a filtered signal we are trying to cut it into elementary
events and analyse them. The algorithm was created in a parametric form. There
are following parameters: name, level, local error frame size, box cleanup,
box threshold. Below the meaning of these parameters is discussed.

Notation. We analyse signal which is assumed to be a time series {xi =
x(ti)}i∈J ⊂ R, where T = {ti}i∈J is a discrete set of times and J ⊂ N is finite set
of indices.

Each subset F ⊂ T having the property

if ti ∈ F, tk ∈ F with i < k, then ∀i<j<k tj ∈ F (4)

is called event.
Given F = {tk}

k1

k=k0
by frame of an event we understand the set

F×
[

min
k∈{k0,...,k1}

{
x(tk)

}
, max
k∈{k0,...,k1}

{
x(tk)

}]
. (5)

Further, by behaviour extraction we understand extraction of events with the
desired properties as presented in Section 2.

Construction of the Filter. Firstly, we prepare the data: we unfold the data
and remove noise by using a wavelet filter. A wavelet filter is a non-linear digital
filtering technique, usually necessary to perform a high degree of noise reduction
in a signal, before performing higher-level processing steps. This filter turns off
a signal component at a certain level of wavelet analysis, i.e. it sets out Dn = 0
in the reconstruction step. In our case filter have two parameters: filter name

(specifies the name of used wavelet in this filter) and filter level (specifies
which component of the signal is turned off).

Local Error Estimator. In Figure 2, in addition to the high frequency com-
ponents of the signal, we show a plot of a function, which is proportional to
the absolute value of the kernel weighted average (the Nadaraya-Watson kernel
regression estimator), in a neighbourhood of each point xi. It is the convolution
of Gaussian density function η(t) = 1√

2π
e−t2 and the signal x, which in the

discrete case is given by

kx(xi0) = [η ∗ x](xi0) =
∑

i∈J

e−
(i0−i)2

σ√
2π

· xi, (6)

where σ =local error frame size, xi0 ∈ x(T) := {xi}i∈J. For more details and
other kernels see [17]. At this stage, one could also calculate a common mean,
i.e. l(xi0) = 1

|J|

∑
i∈J |xi0 − xi|. This, however, does not take into account the

local behaviour and gives, therefore, worse results.
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Main Idea behind the Algorithm. The algorithm, which will be presented
below, enables us to detect sudden jumps and sharp cusps in a time series by
using a discrete wavelet transform. The idea is simple: a sudden jump of the time
series affects the magnitudes of wavelet coefficients, so one can set a threshold
level to find the point at which the jump occurs.

After decomposing a signal by using the wavelet packet with a wavelet function
given by the parameter name, we search for interesting events. This computation
can be described as follows. We consider detail of the given signal, which will be
denoted by D, at the level which is given by the parameter level. According to
our observations, in the component D there are a lot of information about the
signal (sudden jumps, vibrations, fluctuations). Let us define x+, x− as positive
and negative part of considered component, i.e.

x+ =
{
max(v, 0) | v ∈ D

}
, x− =

{
max(−v, 0) | v ∈ D

}
. (7)

Plots of x− and x+ are shown in Figure 2 as continuous lines on the subfigures
start and end. Let us define the START and END flags:

START =
{
i ∈ J | (x−[i− 1] < kx−

(xi) � x−[i])∧ (kx−
(xi) > w)

}
,

END =
{
i ∈ J | (x+[i− 1] > kx+

(xi) � x+[i])∧ (kx−
(xi) < w)

}
,

where kx−
andkx+

(dotted curves in Figure 2on subfigures start and end) are ker-
nel weighted averages for x− and x+ respectively (see 6) andw = box threshold.

The analysed component D may have a big disruption and this may result
in frequent occurrence of events. It can be seen, that the parameter w provides
a barrier beyond which the events occurred. Moreover, it prevents too frequent
appearance of events. Here we find places where the signal is above or below the
kernel weighted average at a given point, which is defined by formula (6). These
points are suspected of being starts and ends of the frames.

Finding the best coverage by the frames using START and END flags can be
done in the following way:

S =
{
i ∈ START | ∃k∈END ¬∃j∈START k < j < i

}
,

E =
{
i ∈ END | ∃k∈START ¬∃j∈END k > j > i

}
.

The first element of START is supposed to be in the set S. Further, one can
show that the sets S and E sets contain the same number of elements. The sets S
and E are declared to be the points at which opening and closing phases occurs,
respectively.

In Figure 2, we can also see dotted vertical lines which represent points, that
were suspected to be in the classes S and E, but were omitted by this algorithm.
Analysis of Figure 2 justifies the choice of these sets. Thus, we obtain the events

[
S(i1),E(i1)

]
,
[
S(i2),E(i2)

]
, . . . ,

[
S(iq),E(iq)

]
(8)

that have to be compared (which in general vary in length). Now we have to check
if the selected events indeed generate good frames, i.e. if the height of a frame >
box cleanup × width of a frame. This algorithm is greedy. Therefore, we in-
troduce parameter box cleanup, which protects from taking into one event the
whole fragment. Figure 2, shows the detected frames (last graph in each picture).
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(a) (b)

Fig. 2. Frames extracted using our algorithm

5 Experiment Results

In this section, we will evaluate the effectiveness of the proposed algorithm,
against the real data. All data were derived from experiments, in which impact
of salt, herbicide and yeast on mussels was tested.

Data Specification. We used the data from 8 sensors with frequency of reading
being 1 second. Each sensor recorded 11245 minutes of data which consist of
reals from the interval [0, 45]. Sensor read error is assumed to be in the interval
[0, 3]. Due to technical requirements the data set was split into time windows
(fragments) of length 1000 seconds.

It is important to note that this data set is a subset from a bigger set of
experiments, i.e. besides limiting data set, we only choose time fragments where
height of the frame > sensor read error.

Thus, in what follows, it is assumed, that everything what is below sensor
read error is only a negligible perturbation. Considering this, we suggest using a
more accurate sensor system. Some early experiments with better sensors (Hall
sensors) show that our algorithm gains effectiveness.

The mussels were derived from the same colony. All biological experiments
were conducted with at least 50% of mussels in control terms. There were also
biological experiments conducted only in control conditions. Table 1 describes
data set, obtained from this experiments.

Result Evaluation. The data set was independently analysed by two re-
searchers who put markers in the areas of events described above. For comparing
similarity between researchers and the algorithm we use Tversky index defined
as follows:

S(X, Y) =

∑
i,j |Xi ∩ Yj|∑

i,j(|Xi ∩ Yj|+ α|Xi − Yj|+ β|Yi − Xj|)
,

76 appendix : contribution publications



Application of Wavelets and Kernel Methods to Detection and Extraction 51

Table 1. Sum of read time for all mussels fulfilling conditions

Stressor Herbicide Yeast Salt Control

no oxygen 0 0 0 853 min
normal 853 min. 357 min. 986 min. 8193 min.

where α+β = 1, Xi is i-th event and |Xi| is its length. This asymmetric similarity
measure, compares a variant to a prototype. We use values α = 0.75 and β = 0.25.

With an algorithm constructed in such a way, we find the optimal parameter
values using 30% of the data and event markers.

We measure similarity between markers provided by researchers and algo-
rithm results. Moreover, we consider markers, of the researches, as a prototype
and compare it using Tversky index with the algorithm results. Additionally, as
Tversky index is asymmetrical, we also considered the case when algorithm is a
prototype and researchers markers are a variant. See results in Table 2.

As a side note, it seems worth mentioning that the presented method is quite
fast. For example, the data, obtained from 7375 minutes of the observations, is
calculated in approximately 38.5 seconds (results were obtained on an Intel R©

CoreTM 2 Quad CPU Q6600 2.40GHz).

Correctness of the Results. When choosing the best wavelet, which is then
applied to the analysis of specified signal, shown in Figure 2, one should be guided
by the well-known rule (see [15]), that the wavelets of “smooth” shape (e.g.
Morlet wavelet) are characterised by better resolution in analysing signals in
terms of spectrum, i.e. they are characterised by a better localization of frequency
components on the frequency axis. Wavelets which are discontinuous or have
slopes (e.g. Haar wavelet, biorthogonal wavelet), show better localization
on the timeline. Therefore, the intuitions suggest that wavelets that are suitable
for our purposes should have sharp cusps, which will caught a sudden jump in
the signal. Indeed, at the stage of the automatic selection of the parameters, we
obtained confirmation of our predictions.

Figure 2 clearly shows the characteristic signal in different frequency ranges,
the amplitude and the location on the timeline. A notable feature is that the com-
ponents with higher frequencies are concentrated in the relatively short length
of time. The location agrees with the times of initiation or declines of movement
of the mussel. This feature, which manifested distinct “peaks” in moments, cor-
responding to a behaviour phenomena are particularly evident at different levels
of details. These facts give rise to the choice of beginnings and ends of single
events in our system and explain our algorithm.

Optimization Results. During the optimization we obtained, the following pa-
rameters: filter name = db1, filter level = aaad, name = rbior3.1, level
= ddda, local error frame size = 450, box cleanup = 0.12, box threshold

= 0.001. We see that the best results were obtained for the rbio wavelets, which
have the above-mentioned properties (see [16]).
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Table 2. Similarity between researches and algorithm clustered into cases of stressors

Experiment
Description

User User 1 User 2 Algorithm

Summary
User 1 x 0.712046377833 0.761884176385
User 2 0.808793419224 x 0.715760702623

Algorithm 0.648714212421 0.531441669327 x

Herbicide
User 1 x 0.73704199884 0.702517899468
User 2 0.807069914053 x 0.716061338472

Algorithm 0.666851522047 607025636399 x

Salt
User 1 x 0.685833427745 0.71389773682
User 2 0.763362050728 x 0.629846521212

Algorithm 0.677996432575 0.566973527048 x

Yeast
User 1 x 0.599296680011 0.647952077503
User 2 0.766786953972 x 0.785170581729

Algorithm 0.651532190762 0.623698430374 x

Control
User 1 x 0.712046377833 0.745311306628
User 2 0.808793419224 x 0.766048200154

Algorithm 0.705921742781 0.627110395079 x

Herbicide, no oxygen
User 1 x 0.73704199884 0.702517899468
User 2 0.807069914053 x 0.716061338472

Algorithm 0.666851522047 0.607025636399 x

6 Software Choices

Prototype implementation has been prepared in Python using SciPy, NumPy,
PyWavelets, MLPY, Matplotlib, flot and django. SciPy is a Python library for
mathematics, science and engineering. NumPy provides a library for convenient
and fast N-dimensional array manipulation. Additionally, we used PyWavelets,
a Discrete Wavelet Transform library to Python and MLPY – a machine learning
library based on NumPy and GNU Scientific Library. The plots were prepared us-
ing Matplotlib and flot, the management layer and the experimental platform
were prepared in django.

7 Conclusions and Future Work

Stressful situations can change the behaviour of mussels (both at the level of
fundamental changes in the behaviour — anomalies can occur — and a rhythm
disturbance of these behaviours). It can also cause an emergence of a new be-
haviour (e.g. testing the surrounding environment). The preliminary observa-
tions suggest, that there is a possibility of creating an alphabet of normal and
abnormal behaviours, which will have to be extended depending on the stressful
situations. Clustering of frames is possible and reasonable, but still some analysis
details have to be modified to guarantee good results. It may be a good starting
point for classification procedures, which will work very effectively.

78 appendix : contribution publications



Application of Wavelets and Kernel Methods to Detection and Extraction 53

Contributions of This Work

– We have developed a fast algorithm based on wavelets and kernel methods
for the extraction of behaviours which in the future are going to be classified
depending on the stressful situations.

– We have evaluated the effectiveness of the algorithm.
– We have developed a platform for an automatic behaviour detection and

extraction.

Future Work. Proper functioning of this system requires gathering large quan-
tities of mussels activities in natural conditions under high-stress factors and
stressful conditions. Our further work will concentrate on the improvement of
the clustering process, building of the alphabet and classifying the behaviours.
We plan a set of experiments in laboratory and natural environment.
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a b s t r a c t

This paper concerns the detection, feature extraction and classification of behaviours of Dreissena
polymorpha. A new algorithm based on wavelets and kernel methods that detects relevant events in the
collected data is presented. This algorithm allows us to extract elementary events from the behaviour of
a living organism. Moreover, we propose an efficient framework for automatic classification to separate
the control and stressful conditions.
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1. Introduction

One of the most important problems connected with health
and environmental protection is themonitoring ofwater pollution.
However, many existing systems do not offer continuous moni-
toring and examine only a narrow range of substances. Therefore,
systems based on living organisms (i.e. Biological Early Warning
Systems, BEWS) have become increasingly popular recently [1–3].
Building such a system is a complex task, which requires a selec-
tion of an appropriate bioindicator for themonitored environment,
preparation of a measurement system that provides data for fur-
ther processing, analysis and classification methods.

It iswell-known that aquatic organisms are sensitive to changes
in concentrations of various substances (such as xenobiotics and
other toxic compounds) in water, therefore can be successfully
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E-mail addresses: eror@mat.umk.pl, piotr.przymus@gmail.com (P. Przymus),

mozgun@mat.umk.pl (K. Rykaczewski), wisniew@biol.uni.torun.pl
(R. Wiśniewski).

used as bioindicators. Among the most frequently used are:
cladocerans [4,5], amphipods [6],mussels [7–9], the larvae of aquatic
insects (Chironomidae) [10] and fish [11]. Especially mussels, like
Mytilus or Dreissena, as sessile bivalves, are very suitable for long-
term, in situwater quality monitoring.

There are several methods for measuring the response of
mussels to stress factors. One option is to measure the frequency
of shell closing–opening states, through gluing wires to both
halves of the shell and connecting them through an interface to a
computer [12,13]. The number of closedmussels in a treated group,
in comparison to control one, is a measure of stress response.
Another option is to use a magnetic coil (or a Hall sensor) on
one valve, and a magnet on the other [14,15]. The value of the
amplified signal is proportional to the distance (gape) between
the two valves. Various factors are taken into consideration as a
response to stress of a tested group, such as the difference of the
average value of the gape in comparison to control mussels [15],
increased activity or increased time in which the shells are closed
or are open [14].

These solutions, however, neglect more complex behaviour of
mussels, such as changes in elementary movements. The sequence

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.04.015

A.6 zebra mussels’ behaviour extraction and classification 81



82 P. Przymus et al. / Future Generation Computer Systems 33 (2014) 81–89

of elementary events, i.e. the extent of gape change and the time of
the first return to the initial gape value can form specific patterns
for various natural or stress caused activity rhythms [16,17]. In
some cases, the appearance of different patterns in elementary
behaviour is the only difference compared to the control group
showing appearance of hazardous substances [18].

Therefore, a fully automated method of analysis for the
extraction of the behaviour of Dreissena polymorpha mussels is
proposed and a framework (see Fig. 1) for risk analysis and
classification of control and stress conditions based on elementary
behaviour is presented. We discuss here our extraction algorithm
based on wavelets and kernel methods. Then we show how to
build a collection of observations based on a combination of our
event extraction algorithm and the method proposed in [19] for
EEG signals as well. Moreover, an assessment of the adequacy of
the set of features used for classification is made. We carry out risk
analysis and classification experiments using different classifiers
(k-NN, SRDA, FDA) and the sets of features. Finally, we present and
discuss the results.

Based on our extraction algorithm, a set of tools for automatic
extraction and analysis of elementary events is proposed. We
investigate the usefulness of the proposed extraction method
as a tool to support laboratory work, which is an important
improvement since this work was mostly done manually before.

The paper is partly an extension of [20]. It is organised as
follows. The motivation of this work is presented in Section 2.
Section 3 presents the data collection used in this work. Section 4
presents the theory of wavelets necessary in Section 5, where
behaviour extraction algorithm is described. The evaluation of the
effectiveness of the behaviour extraction algorithm is given in
Section 6. The framework for automatic classification of control
and stress conditions is discussed in Section 7. Finally, Section 8,
summarise the results of the paper.

2. Motivation

Biomonitoring based on the behaviour of mussels, and partic-
ularly of the species Dreissena polymorpha, has been repeatedly
tested in the laboratory and in natural conditions, and its effective-
ness has been confirmed in many studies [12,14,15,13]. Many of
the biomonitoring systems use Dreissena polymorpha as a bioindi-
cator, but each of themoperates on different principles. The system
described in [12,13] monitors the activity of mussels by checking
whether they are open or closed. A measure indicating the level of
risk is the percentage of closed mussels in comparison to the per-
centage of closed mussels in the control group. In systems based
on [14,15], the distance between valves ismeasured usingHall sen-
sor and a magnet. Risk analysis is based on the following factors:
the average level of valve distance, mussels activity (number of
opening and closing events), and the average time during which
the mussels are closed/open.

However, the existing systems do not exploit the full potential
of mussels as a bioindicator. Experiments were conducted [18,17]
to show that a change in activity of mussels may be more
subtle in response to various concentrations of substances such
as cyanotoxins, herbicides, salt or LPS (Lipopolysaccharide). These
publications dealt with an analysis of the life rhythms described
in [16] and took under consideration changes that may appear in
the elementary behaviour to suggest the appearance of harmful
substances. A typical elementary event (or behaviour) consists of
the following stages: closing, opening and resting (see Fig. 2, all
these stages usually include some perturbations).

It turns out that the behaviour of the bioindicator could be
slightly changed at the level of elementary behaviours. Moreover,
it may be the only change compared to the control mussels. In
practice, this means that the elementary event is disturbed in

some of the three phases. Some examples of distorted elementary
movements are placed in Fig. 3.

Our contribution in this area is the development of feature
extraction algorithm, so that we can automatically extract
elementary events from the behaviour of the mussels as described
above. Thenwe assign to such behaviour a set of features used later
in risk analysis.

Since the behaviour of the zebra mussels is recorded as a
long series of shell states, logged at every second, we needed
efficient analytic tools such as wavelets [10,21]. Note that
Fourier Transform (FT) technique can be applied to analyse the
frequency spectrum, but it does not provide any insight into which
frequency component is present and when. Therefore, to fulfil
the requirements of our system, we applied wavelets and kernel
methods. These tools are better suited to study the long-term
records of sudden changes in the animal behaviour; they can gain
information about the time and duration of the peak in the reaction
of the living being (see Section 5.4.1).

3. Data selection

In this section we describe a set of data originating from a
biological experiment, which will be further analysed.

The data are a record of freshwater mussel activity, measured
as the distance between the two halves of the shell. Mussels are
in flow-through aquarium and are attached to its wall (due to the
stationary lifestyle, it does not significantly affect their behaviour).
A sensor measures changes in the magnetic field of the magnet
placed on the one bivalve shell. The measurements are recorded
with one second rate and are transmitted to the database. The
system monitors eight mussels at the same time and each sensor
generates a measurement from the interval [0, 45] with a possible
measurement error of ±3.

For the analysis we used the data from experiments carried out
in laboratory conditions where the effect of salt and herbicides on
the behaviour of mussel was examined. In the experiment we used
mussels from the same colony and all experimentswere conducted
with at least 50% of themussels in control conditions. In this paper,
we analyse a total of 853 min of herbicide, 986 min of salt and
2193 min of control measurements.

Due to customary maximum time response of BEWS sys-
tem [11], we analyse data set of length 1000 s (16 min and 40 s),
which from now on will be called fragments (or moving windows,
since these fragments are moving right over timewith the velocity
1 time point per 1 s). In the data preparation steps we remove the
white noise and average the signal using a high-pass filter (wavelet
filter), which passes high frequency components and completely
rejects all others.

4. An overview of the wavelet theory

In this section, we briefly present the basic theory of wavelets
and comment on their properties that are useful in the digital signal
processing.

The basic theory of wavelets was established by Haar in 1909,
and then developed in the mid 1960s (cf. [22]). Wavelets are very
successful as an analytical tool in the representation of signals,
denoising, data compression and time-scale analysis of a time
series. In many situations the results obtained by this method are
better than those obtained by a Fourier analysis or other methods
of filtration, because wavelet transform can be used to analyse
even non-stationary signals. Moreover, the coefficients in wavelet
expansion include both information about the frequency and time
of the peak (multiscale resolution analysis). This differentiates them
from the Fourier transform and makes them particularly useful
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Fig. 1. A scheme of processing steps.

(a) Sample pattern. (b) Opening phase. (c) Resting phase. (d) Closing phase.

Fig. 2. Elementary phases of Dreissena polymorpha behaviour from a time series point of view.

Fig. 3. Examples of elementary behaviour difference.

when the knowledge of these signal characteristics is needed. For
more details on wavelet theory, we refer the reader to [23].

Continuous wavelet transform (CWT), from which the discrete
version originates, provides time-scale representation of a contin-
uous function, where the scale plays a rôle analogous to that of fre-
quency in the analysis of the well-known Fourier Transform (FT).
Main wavelet (the so-calledmother wavelet) is a real-valued func-

tionwhich should quickly disappear and oscillate. Inmathematical
language it can be stated as:


R |ψ(t)|2 dt = 1,


R ψ(t) dt = 0. By

applying the scaling and the shifting to the mother wavelet we get
a whole family of wavelets: namely, for j, k ∈ Z andwaveletψ , we
can define ψj,k to be a wavelet with scale j and shift k, i.e. by the
formula ψj,k(t) := 2j/2ψ(2j

· t + k). All these shifted and scaled
functions are orthogonal to each other,


R ψj,k(t)ψj,k′(t) dt = δk,k′ ,
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where δi,j is the Kronecker delta, and, therefore, they determine an
orthonormal basis for the L2 space. Thus, each signal f ∈ L2 can be
represented in the form

f (t) =


k

bkφk(t)+


j


k

dj,kψj,k(t), (1)

for appropriately calculated coefficients bk, dj,k, where φk is the so-
called scaling function.

In the representation (1) the first sum represents the approxi-
mation Aj of the signal f at level j, while the second sum represents
the detail Dj at level j and is given by thewavelet. The key idea in the
multiresolution of the signal is to decompose it at different scales,
and reconstruct from the sum such as D1 +D2 +D3 +D4 +D5 +A5
(formore details see [22, Section 1.2]). Particularly important is the
Mallat algorithmwhich accelerates the wavelet decomposition and
reconstruction of the signal.

Discrete Wavelet Transform (DWT) is a discrete version of CWT,
just as the Discrete Fourier Transform (DFT) is a discrete version
of the FT, and is a special case of the Wavelet Packet Analysis
(WPA) (see [23]). Without going into details one can say that
WPA is implemented by dividing the time frequencies into smaller
intervals.

Several different families of wavelet functions have been
defined [22, Chapters 4, 5]. Each of them has different properties
such as smoothness and compact support. In our procedure, the
choice of the wavelet and decomposition level is performed by our
algorithm.

5. Event extraction algorithm

In this section,we present our algorithm that captures the event
and then we justify its correctness.

Having filtered the signal, the main purpose of our investi-
gation is to cut out the elementary events (of the form pre-
sented in Section 3) and analyse them. The algorithm was de-
signed in a parametric form with parameters as follows: name,
level, local_error_event_size, box_cleanup, box_
threshold. The importance and criteria of selection (see Sec-
tion 6) of these parameters are discussed in the sequel.

5.1. Notation

The signal that we analyse is a time series {xi := x(ti)}i∈J , where
T := {ti}i∈J is a discrete set of times. By a frame we mean a subset
F ⊂ T having the property that

if xi ∈ F , xk ∈ F , for i < k, then ∀i<j<k xj ∈ F . (2)

Taking into account that F = {tk}
k1
k=k0

by an event we mean a set

[min(F),max(F)] ×


min

k∈{k0,...,k1}
x(tk), max

k∈{k0,...,k1}
x(tk)


. (3)

With this notation, behaviour extraction is just drawing eventswith
the desired properties described in Section 2.

5.2. Wavelet filter

During the preparation, before the higher-level processing
steps, we perform noise reduction in the signal using the wavelet
filter, which is a nonlinear digital filtering technique. This filter
turns off the signal component at a certain level ofwavelet analysis,
i.e. it sets Dj := 0 in a certain step of the reconstruction.
We prepared the filter so that it has two basic parameters:
filter_name (specifies the name of the wavelet used in the
wavelet filter) and filter_level (determines which level of the
signal is turned off). For more details see [23].

5.3. Local error estimator

As a local threshold we take the kernel weighted average (the
Nadaraya–Watson kernel regression estimator). It is given as a
convolution with the Gaussian density function η(t) :=

1
√
2π

e−t2

and the signal x, which in the discrete case is given by the formula

kx(xi0) := [η ∗ x](xi0) = (2π)−
1
2

i∈J

e−
(i−i0)

2
σ · xi, (4)

where σ = local_error_event_size, xi0 ∈ x(T ) :=

{xi}i∈J , i0 ∈ J . At this stage we can also calculate the normal means,
i.e. lx(xi0) :=

1
|J|


i∈J |xi − xi0 |, but it does not take into account

the local behaviour and, therefore, give worse results. In Fig. 4(b),
(c), (f) and (g) the plot of kx is given by the dashed (green) line. The
reader can findmore details and other kernels in [24, Section 2.5.3].

5.4. Algorithm

The algorithm, which we will introduce below, can detect
frames in the time series having: opening, resting and closing
phases. It is based on a simple idea that a sudden jump in the time
series effects sudden change of thewavelet coefficients, and so one
can set a threshold to find the point at which the jump occurs [22,
25].We incorporated this idea and improved it: instead of a setting
threshold, we choose kernelweights.Moreover, we are not looking
for the points of a sudden jump, but frames, so in fact we propose
a method for sudden jump selection. See Listing 1 for algorithm
overview and the rest of the section for more details.

Listing 1: Algorithm overview

1 #Filter input data using Wavelet filter, see Section 5.3
2 filtered_data := WaveletFilter(data, name)
3 #Decompose filtered_data using Wavelet packet as described in

Section 4
4 Alevel,Dlevel,Dlevel−1, . . . ,D1 := WaveletPacketAnalysis

(filtered_data)
5 #Divide Dlevel into the positive and negative part, see Equation (5)

6 x+ :=


max(v, 0) | v ∈ Dlevel


,

x− :=


max(−v, 0) | v ∈ Dlevel


7 #Determine suspected points, see Equations (4), (6) and (7)

8 START :=


i ∈ J | (x−[i − 1] < kx− (xi) ≤ x−[i]) ∧ (kx− (xi) > w)


,

9 END :=


i ∈ J | (x+[i − 1] > kx+ (xi) ≥ x+[i]) ∧ (kx− (xi) < w)


10 #Select the start and the end points as described in Equations (8)

and (9)

11 S :=


i ∈ START | ∃k∈END ¬∃j∈START k < j < i


,

12 E :=


i ∈ END | ∃k∈START ¬∃j∈END k > j > i


13 #Check whether they are correct by applying inequality (11)
14 (height of the event) >

(box_cleanup × width of the event).

The algorithm takes the time series as the input. After
decomposition of the signal usingWPA (using thewavelet given by
the parametername), we take the detailD := Dlevel of the signal at
a level which is given by the parameter level. It is known that the
component D contains plenty of information about the properties
of the signal (spikes, vibrations, fluctuations) [23]. Subsequently,
we define x+, x− as follows

x+ :=

max(v, 0) | v ∈ D


, x− :=


max(−v, 0) | v ∈ D


. (5)

These are the positive and negative parts of the time series,
respectively. Plots of x− and x+ are shown in Fig. 4(b), (c), (f) and
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Fig. 4. Events extracted using our algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(g) as continuous lines. Afterwards, we define START and END flags
in the following way:

START :=

i ∈ J | (x−[i − 1] < kx−(xi) ≤ x−[i])

∧(kx−(xi) > w)

, (6)

END :=

i ∈ J | (x+[i − 1] > kx+(xi) ≥ x+[i])

∧(kx+(xi) < w)

, (7)

where kx− and kx+ (dashed curves in Fig. 4(b), (c), (f) and (g)) are
kernelweighted averages for series x− and x+, respectively (see Eq.
(4)), andw := box_threshold.

The analysed elementD can be noisy and, for this reason, events
can occur too frequently. Therefore, we introduce the parameterw
to be a barrier, which prevents too frequent occurrence of events.
The sets defined above contain the time stamps when signals x−

and x+ are above or below the weighted average. These points are
suspected of being beginnings and endings of the required frames.

The best cover by frames START and END can be obtained as
follows:

S :=

i ∈ START | ∃k∈END¬∃j∈START k < j < i


, (8)

E :=

i ∈ END | ∃k∈START¬∃j∈END k > j > i


. (9)

The first element of the set START is assumed to be in the set S, and
so we add it before the first step. We denote it by S(i1). Then we
search among the flags and look for the next item, which belongs
to the set END. We add it to the set E and denote it by E(i1). Then
we look for the next flag, which is not in the set END, append it to
S and denote it by S(i2), etc. If the last flag taken is from the set
START , and there is nothing from END after that, then this flag is
dropped. In that case the sets S and E contain the same number
of elements. The sets S and E are regarded as points indicating
opening and closing phases, respectively.

In Fig. 4(b), (c), (f) and (g), we can see the dotted (red) vertical
lines that represent the points that are suspected to be in the
classes S and E , but were omitted by this algorithm, i.e. did not
meet the above-posed assumptions. In this way we obtain frames
S(i1), E(i1)


,

S(i2), E(i2)


, . . . ,


S(iq), E(iq)


, (10)

which, in general, vary in length. This algorithm is greedy, and so
we use the parameter box_cleanup to prevent taking the whole
fragment into one event. Now,wemust checkwhether the selected
event actually generates a good event, i.e. whether
(height of the event) > (box_cleanup

×width of the event). (11)

The output of this algorithm is a set of events-frames (10) which
meet condition (11), see Fig. 4(d) and (h) for examples.

5.4.1. Note on wavelet selection
‘‘Smooth’’wavelets (e.g.Morlet wavelet) have better localisation

properties of frequency components on the frequency axis and
wavelets that are discontinuous or have a slope (e.g. Haar
wavelet, biorthogonal wavelet) show a better localisation
on the timeline [22]. Thus, when choosing the wavelet, which will
be then used to analyse our signal (as shown in Fig. 4(a) and (e)) we
should apply a non-smooth wavelet. Using automatic parameter
selection, we have confirmed our predictions that the wavelets
which suits our purposes should have sharp bumps, which catch
a signal spike. In our optimisation process we obtained that the
best wavelet was rbior3.1 (reverse biorthogonal 3.1, for more
information see [26, Section 4.5.5]).

As higher frequency components are concentrated in a rela-
tively short period (see Fig. 4(b), (c), (f) and (g)) location of peaks
matches the response times in the behaviour of the mussel. These
facts explain our algorithm and provide the basis to select the be-
ginning and ending of individual frame in considered system.

6. Automatic extraction of elementary events

Extraction of elementary events is an important part of the
study of the reaction and behaviour of freshwater mussels. Until
now, such an analysis was performed manually [27]. With our
method it is possible to automate this type of research work which
is a significant improvement.

To study this problem we prepared a system that allows for
manual labelling of events. Labels were prepared by two re-
searchers working independently. Then, the results were com-
paredwith the labels prepared by the algorithm.With an algorithm
constructed in such a way, we find the optimal parameter values
(e.g. for threshold and decomposition level) using 30% of the data
and event markers (see [20]). For comparing the correlation be-
tween researchers and the algorithm, we use the Tversky index de-
fined as follows:

T (X, Y ) :=


i,j

|Xi ∩ Yj|
i,j
(|Xi ∩ Yj| + α|Xi \ Yj| + β|Yi \ Xj|)

, (12)

where α + β = 1 (in our case α = 0.75 and β = 0.25, which
is quite standard), X = {Xi}, Y = {Yj}, and Zk is the k-th frame in
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Fig. 5. Automatic extraction of elementary events—comparison of results.

Z = {Zk}, a number |Zk| is its length and Z is the set of frames from
a given fragment. This asymmetric similarity measure compares a
variant X to a prototype Y .

Detailed results of our comparison are shown in Fig. 5. First, we
made a test between the labels provided by two users to check
the level of compatibility that can be achieved. Since the measure
is asymmetric, their comparisons are marked as ‘‘user1/user2’’
and ‘‘user2/user1’’. Next we compared the correlation of the
results obtained by the algorithm with each user. Notice that,
the algorithm/user similarities are comparable with user/user
similarities. Therefore, our algorithm achieved the results that are
comparable to that obtained by the researchers. For this reason, the
algorithm can successfully replace themanual extraction of events.

7. Framework for automatic classification of control and stress
conditions

The second important step in our study was an attempt to
automatically classify the situations when stress influences the
life of mussels. The main difference between our system and
other solutions (see [12,14] and the references therein) is the
fact that we focus on situations that do not cause a strong stress
response of mussels, however, they can pose a real threat to the
environment. An example of such substances are herbicides, which
despite having a high concentration in water do not cause an
immediate strong reaction in mussels, but still can be dangerous
for the environment in general.

Our algorithm considers the whole spectrum of behaviours
since we classify activity of mussels during their normal life cycles.
Stress may be so weak, so that it does not result in closures, and
only a change of life cycle tells us that something has happened.
This differs from the approach described in [12,7] which examines
only rapid responses and omits the case described here.

We examined the usability of our algorithm for the classifica-
tion. We use the same data as above, i.e. (H) herbicide, (S) salt and
(C) control. We prepared three tests in which we study the effi-
ciency of the classification:

Test 1. The appearance of stressful substance. Risk analysis. We
create two groups, one consists only of (C), second which
will be denoted by (R) simulates a group of stressful
substances and consists of (H) and (S). This test checks
whether we are able to correctly identify the emergence of
a stressful substance (compare Fig. 6).

Test 2. Control versus single stressful substance. We create two
pairs: (H)/(C) and (S)/(C) and then check the efficiency of
classification. In this way, we investigate whether specific
substances actually affect the behaviour of mussels and
their appearance can be detected (see Fig. 8).

Test 3. Identification of stressful substance. We build a collection
consisting of (H) and (S) and then classify data in order to
assign them to specific groups. This allows us to analyse
the possibility of identifying a particular substance one at a
time when we know that there is one in the environment
already (see results in Fig. 7).

7.1. Features set

Each method of classification needs some features from the
sample. Note that we will examine fragments (moving windows)
since a single event can be degenerated and only a larger set
of behaviours contains adequate information. We briefly will
describe the process below.

In order to classify the events we use the following simple
statistical estimators (behaviour driven features):

Behaviour driven feat. :=


len(EF ),med


X

,max


X

,

min

X

,mean


X

, std


X

, (13)

where X = {len(E)}E∈EF and EF is a set of events (i.e. frames) from
the fragment F . However, this set of characteristics is not chosen
arbitrarily as we shall see below.

In addition, in order to represent the time frequency distribu-
tion we combined the above-mentioned vector of features (13)
with the following features (cf. [19]): maximum, minimum, mean
and standard deviation of the wavelet coefficients resulting from
DWT in each event, i.e.:

Wavelet feat.

:=


max
E∈EF

DE
i

5

i=1
,max
E∈EF

AE
5,


min
E∈EF

DE
i

5

i=1
,min
E∈EF

AE
5,

mean
E∈EF

DE
i

5

i=1
,mean

E∈EF
AE
5,


std
E∈EF

DE
i

5

i=1
, stdE∈EF A

E
5


, (14)

whereDE
i , A

E
i denotes the detail and the approximation of the event

E at the i-th level in the DWT (see Section 4). Here the level of
decomposition is set to 5. In conclusion, we define:

Combined features

:=


Behaviour driven feat., Wavelet feat.


. (15)

Preliminary data processing. To improve the effectiveness of clas-
sification algorithm, a commonly used technique is to standardise
and/or normalise observations. Standardisation brings us to a situ-
ation in which the expected value of the sample is 0 and standard
deviation equals 1, normalisation brings variables to the interval
[0, 1]. We used the following formulae

standardise

zj[i]


:=

zj[i] − mean(zj)
std(zj)

,

normalise

zj[i]


:=

zj[i] − min(zj)
max(zj)− min(zj)

,

(16)

where i is index of the vector zj, i.e. zj := (zj[i]), j is the index of the
feature (variable).

Due to the fact that a poorly chosen set of features may
reduce the efficiency of classification algorithm, we measure the
significance of the proposed features and then take the set of
features that are significant. We apply the method of Iterative
RELIEF to see which features were leading in each class. Iterative
RELIEF is an extension of RELIEF which is an online solution to a
convex optimisation problem [28].With this toolwe can iteratively
estimate the optimal feature weights, so that we do not rely on
manual searching (which can be subjective) and, therefore, provide
an optimal solution.

Initially the set of behaviour driven features was larger: it
contained few extra statistical estimators, e.g. the ‘‘peak-to-peak’’
(min-to-max, ptp) function, autocorrelation, variation, etc. But
after using IRELIEFwewere able to reduce the set of characteristics
and obtained those shown in Eq. (13). It is worth to mention that
using them we attained significantly better results than with the
original set.
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7.1.1. Classification methods and validation
We use the following classification methods:

1. k-Nearest Neighbours (k-NN) is a method in which we look
for similar objects rather than fitting a model. Methods for
predicting k-nearest neighbours are determined on the basis of
k objects from the learning sample that are closed (in the sense
of the distance) to the objects for whichwe determine the value
of the dependent variable [24, Section 2.5.4].

2. Spectral Regression Discriminant Analysis (SRDA) is a classifica-
tion method proposed recently [29]. It was developed from the
well-known Linear Discriminant Analysis (LDA) and is based on
graph analysis. In SRDA it is needed to solve a set of least square
problems (in fact, linear equations) andno eigenvectors compu-
tation is needed (as it was common in LDA), therefore, it saves
both time and memory and can be easily scaled to very large
high-dimensional data sets.

3. Fisher Discriminant Analysis (FDA) measures, in some sense,
a ratio of signal to the noise. It is sometimes confused with
LDA, but it describes a slightly different discriminant. In this
classification method high-dimensional data is projected on
the line and then classification in one-dimensional space is
performed.

Validation procedure. Standard approach to assess the predictive
performance of the classification method is training a system and
comparing it on independent data, sometimes called validation
set. For small validation sets the traditional solution is a cross-
validation [24]. After selecting the above-mentioned features we
cross-validate classifiers in the distribution of the K = 10 groups
to check if there is a possibility of classification. The average
percentage results of validation are presented below, along with
a discussion of results. All decision classes were approximately
balanced.

7.1.2. Discussion on the classification results
It should be emphasised that in our experiments we found no

abrupt reaction, however such reactions were the basis of earlier
BEWS [12,15,13]. Therefore, in some situations this type of threat
can likely be unnoticed.

In Test 1 (Fig. 6) we investigate possibility of determining the
appearance of stressful substance. The best results are obtained
using wavelet features and combination of both features, wavelets
and ours; all classifiers exceeded the 70%. Behaviour driven
features were not sufficient in this case, reaching only a little over
60%. The best classifiers here were based on the SRDA and the FDA
(both give more than 75%).

In the case where we study the control versus single stressful
substance i.e. Test 2 (Fig. 8), the best results were obtained by
the combined features: (H) scores in the range 77%–81% and (S)
obtained 86%–92%. The best classifier was again SRDA.

In Test 3 (Fig. 7) all sets of features proved to give similar results
as in the case of k-NN and SRDA. The results fluctuated around
78%–83% for SRDA and 81%–83% for k-NN.

Note that, when the observation is constructed on the basis of
all the features described in Eq. (15) we can significantly improve
the efficiency of classification compared to set of attributes based
only on a set of features presented in Eq. (13) or that proposed
in [19].

We were able to test a proposed framework on three different
aspects. The obtained results constitute a solid basis for further
research into the use of zebra mussels in BEWS-like systems. The
results also confirm the emergence of more complex reactions at a
time when there is a threat.

The best results we obtained when we used sets of wavelet
features and a combined set of features. Itmeans that a set based on
the behaviour can be a valuable addition to complex characteristics

Fig. 6. The appearance of stressful substance.

Fig. 7. Identification of stressful substance.

and improve results. Note that for the construction of a set of
attributes, using elementary events, we used only a fraction of the
features that could be used. In the futureworkwe plan to usemore
characteristics that can be drawn from elementary events.

7.1.3. Algorithm performance
Whole process is suitable for continuous monitoring in terms

of processing time. Even on low-end computer, features extraction
and classification of 16 min 40 s of observation from one
sensor (i.e. fragment) does not exceeds 1 s. For details on used
hardware and features algorithm performance see [20, Section 5].
We have used mlpy [30] as machine learning framework (see
documentation for details of implementation and performance).

8. Conclusions

Stressful situations can change the behaviour of mussels (both
at the level of fundamental changes in the life cycles and a rhythm
disturbance of these behaviours). It can also cause an emergence
of a new behaviour (i.e. testing the surrounding environment).

In this paper, we presented a fast algorithm for the extraction
of elementary events. We tested its usability in two practical
applications: as a tool for laboratory work (automation of
the extraction of elementary events can significantly accelerate
research on the behaviour and reactions of mussels in different
situations) and as a tool for creating a set of observations.
Furthermore, we have proposed framework for the classification
of control and stress conditions. By analysing our data we were
able to prepare, successfully, three tests showing the effectiveness
of the classification of control and stress conditions. Our solution
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Fig. 8. Control versus single stressful substance.

still needs further extended studies, but early results suggest
that analysing the behaviour of mussels can provide us with
more detailed information about the cause of stress and can
help detect situations that cause less rapid reactions. This is an
important observation, because so far only strong reactions have
been studied, without going into the reasons of their occurrence.

In summary, themain contributions of this work are as follows:
we have developed a fully automated method for the extraction
and analysis of the behaviour of Dreissena polymorpha; we have
evaluated usefulness of feature set used for classification; we have
proposed framework for the classification of control and stress
conditions for the purpose of the risk analysis. The results of this
work is a significant step forward to advanced BEWS, which will
indicate not only the risk but may also try to explain type of risk.

8.1. Future work

Proper functioning of our system requires gathering large
quantities of mussels activities in natural conditions under high-
stress factors and stressful conditions. Our future work will
concentrate on the improvement of the classification and feature
extraction process. We will also investigate feature selection and
reduction methods, e.g. those based on rough sets [31,32]. We
plan further work in the laboratory system, including the use of
additional stressful substances and investigation of their impact on
the behaviour of mussels. Independent research will be conducted
on a prototype system that can be put in the natural environment.
In order to reduce noise level of the obtained data, we have already
begun building a new prototype measuring device. Preliminary
results show that it generates cleaner data and, by reducing the
size of the components, it is less stressful for the mussels.

References

[1] P. Diehl, T. Gerke, A. Jeuken, J. Lowis, R. Steen, J. van Steenwijk, P. Stoks,
H.-G.Willemsen, Early warning strategies and practices along the River Rhine,
in: The Rhine, 2006, pp. 99–124.

[2] U. Irmer, Continuous Biotests for Water Monitoring of the River Rhine,
in: Summary, Recommendations, Description of Test Methods, in: Umwelt-
bundesamt Texte, vol. 58, 1994, p. 94.

[3] E.J.M. Penders, Development of aquatic biomonitoring models for surface
waters used for drinking water, Ph.D. Thesis, Wageningen University, 2011.

[4] A.J. Hendriks, M.D.A. Stouten, Monitoring the response of microcontaminants
by dynamic Daphnia magna and Leuciscus idus assays in the Rhine
delta: biological early warning as a useful supplement, Ecotoxicology and
Environmental Safety 26 (1993) 265–279.

[5] F. van Hoof, H. Sluyts, J. Paulussen, D. Berckmans, H. Bloemen, Evaluation
of a bio-monitor based on the phototactic behavior of Daphnia magna
using infrared detection and digital image processing, Water Science and
Technology 30 (1994) 79–86.

[6] A. Gerhardt, A. Carlsson, C. Resseman, K.-P. Stich, New online biomonitoring
system for Gammarus pulex (Crustacea): in situ test below a copper effluent
in south Sweden, Environmental Science and Technology 32 (1998) 150–156.

[7] J. Borcherding, B. Jantz, Valve movement response of the mussel Dreissena
polymorpha—the influence of pH and turbidity on the acute toxicity of
pentachlorophenol under laboratory and field conditions, Ecotoxicology 6 (3)
(1997) 153–165.

[8] W. Sloof, D. de Zwart, J.M. Marquenie, Detection limits of a biological
monitoring system for chemical water pollution based on mussel activity,
Bulletin of Environmental Contamination and Toxicology 30 (1983) 400–405.

[9] H. Sluyts, F. van Hoof, A. Cornet, J. Paulussen, A dynamic new alarm system
for use in biological early warning systems, Environmental Toxicology and
Chemistry 15 (1996) 1317–1323.

[10] C.-K. Kim, I.-S. Kwak, E.-Y. Cha, T.-S. Chon, Implementation of wavelets
and artificial neural networks to detection of toxic response behavior of
chironomids (Chironomidae: Diptera) forwater qualitymonitoring, Ecological
Modelling 195 (2006) 61–71.

[11] K.J.M. Kramer, J. Botterweg, Aquatic biological early warning systems: an
overview, in: D.J. Jeffrey, B. Madden (Eds.), Bioindicators and Environmental
Management, Academic Press, London, UK, 1991, pp. 95–126.

[12] J. Borcherding, Ten years of practical experience with the Dreissena-Monitor,
a biological early warning system for continuous water quality monitoring,
Hydrobiologia 556 (1) (2006) 417–426.

[13] R. Wiśniewski, New methods for recording activity pattern of bivalves: a
preliminary report on Dreissena polymorpha Pallas during ecological stress,
in: Tenth International Malacological Congress, 1991, pp. 363–365.

[14] Mosselmonitor, What you don’t look for, you won’t find! Musselmonitor—the
biological early warning system, Brochure, 2012.

[15] K.S. Pynnönen, J. Huebner, Effects of episodic low pH exposure on the valve
movements of the freshwater bivalve Anodonta cygnea, Water Research 29
(11) (1995) 2579–2582.

[16] A.V. Gudimov, Elementary behavioral acts of valve movements in mussels
(Mytilus edulis L.), Doklady Biological Sciences 391 (3) (2003) 346–348.

[17] K. Synowiecki, Filtering activity of Dreissena polymorpha mussel species
as an indicator of various stressful substances detected on the basis of
the characteristic movement rhythms of valves, Master’s Thesis, Nicolaus
Copernicus University, November 2005.

[18] H. Denis, The use of the analysis of elementary activity rhythms of Dreissena
polymorpha in the detection of the presence of LPS in water, Master’s Thesis,
Nicolaus Copernicus University, August 2007.

[19] P. Jahankhani, V. Kodogiannis, K. Revett, EEG signal classification usingwavelet
feature extraction and neural networks, in: International Symposium on
Modern Computing, 2006, JVA’06, IEEE, 2006, pp. 120–124.

[20] P. Przymus, K. Rykaczewski, R. Wiśniewski, Application of wavelets and
kernel methods to detection and extraction of behaviours of freshwater
mussels, in: T.-H. Kim, H. Adeli, D. Ślęzak, F.E. Sandnes, X. Song, K.-i. Chung,
K.P. Arnett (Eds.), Future Generation Information Technology, in: Lecture
Notes in Computer Science, vol. 7105, Springer, Berlin Heidelberg, 2011,
pp. 43–54.

[21] D.L. Rodland, B.R. Schöne, S.O. Helama, J.K. Nielsen, S.M. Baier, A clockwork
mollusc: ultradian rhythms in bivalve activity revealed bydigital photography,
Journal of Experimental Marine Biology and Ecology 334 (2006) 316–323.

[22] C.K. Chui, Wavelets: A Mathematical Tool for Signal Analysis, SIAM,
Philadelphia, 1997.

[23] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge
University Press, Cambridge, 1997.

[24] C.M. Bishop, Neural Networks for Pattern Recognition, OxfordUniversity Press,
1995.

[25] Y.Wang, Jump and sharp cusp detection bywavelets, Biometrika 82 (2) (1995)
385–397.

[26] R.X. Gao, R. Yan, Wavelets. Theory and Applications for Manufacturing,
Springer, New York, NY, 2011.

[27] J. Borcherding, J. Wolf, The influence of suspended particles on the acute
toxicity of 2-chloro-4-nitro-aniline, cadmium, and pentachlorophenol on
the valve movement response of the zebra mussel (Dreissena polymorpha),
Archives of Environmental Contamination and Toxicology 40 (4) (2001)
497–504.

[28] Y. Sun, J. Li, Iterative RELIEF for feature weighting, in: Proceedings of the 23rd
International Conference on Machine Learning, ICML’06, ACM, New York, NY,
USA, 2006, pp. 913–920.

88 appendix : contribution publications



P. Przymus et al. / Future Generation Computer Systems 33 (2014) 81–89 89

[29] D. Cai, X. He, J. Han, SRDA: an efficient algorithm for large-scale discriminant
analysis, The IEEE Transactions on Knowledge and Data Engineering 20 (1)
(2008) 1–12.

[30] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman, C. Furlanello,
mlpy: Machine Learning Python, 2012.

[31] S.Widz, D. Ślęzak, Rough set based decision support—models easy to interpret,
in: Rough Sets: Selected Methods and Applications in Management and
Engineering, 2012, pp. 95–112.

[32] A. Wieczorkowska, J. Wróblewski, P. Synak, D. Ślęzak, Application of temporal
descriptors to musical instrument sound recognition, Journal of Intelligent
Information Systems 21 (1) (2003) 71–93.

Piotr Przymus is a Ph.D. Student of Computer Science
in the Faculty of Mathematics and Computer Science
at Nicolaus Copernicus University. His main scientific
interests are: database systems, GPGPU computing and
data mining.

Krzysztof Rykaczewski is a Ph.D. Student of Mathematics
in the Faculty of Mathematics and Computer Science
at Nicolaus Copernicus University. His research interests
concern control theory and partial differential equations.

Ryszard Wiśniewski is the Head of the Laboratory of
Applied Hydrobiology at Nicolaus Copernicus University,
Torun. He has research interests in biomonitoring and
water pollution.

A.6 zebra mussels’ behaviour extraction and classification 89





B
A P P E N D I X : T H E D E S C R I P T I O N O F T H E E X P E R I M E N T S

b.1 repository of source code and datasets

The source code of programs and datasets necessary to reproduce the results presented
in this thesis can be downloaded from the Web. In order to obtain them please fill in the
form on http://phd.przymus.org and follow the instructions sent in a response email.
Alternatively, please contact me directly using this email address: eror@mat.umk.pl.

b.2 organization of the repository

The repository contains three directories:

• LightweightCompressionAndQueryProcessing — The source code for lightweight
compression methods and time series query processing methods described in [58,
59, 61, 62] (see Appendix A.5 on page 69, Appendix A.1 on page 27, Appendix A.3
on page 47 and Appendix A.6 on page 81, respectively).

• HeterogeneousQueryPlans — The source code of the bi-objective query planner and
the simulator described in [63] may be found in this directory. See Appendix A.4 on
page 55 for an overview.

• DreisennaPolymorphaMonitoring — The source code and datasets used in experi-
ments described in [61, 62]. Consult Appendix A.6 on page 81 and Appendix A.5 on
page 69 for more details.

In each directory there is a README.md file which describes in details experiments con-
tained therein, including hardware and libraries requirements, compilation process and
how to execute the experiments. Please bear in mind that results of experiments depend
on the hardware used (especially on the GPU card used).

b.3 licensing

Please consult LICENSE.txt file in each directory for licensing details for source code and
provided datasets.
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