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Computational methods for large-scale data in medical diagnostics

Abstract

This thesis covers a topic of fast and reliable processing of the high-throughput biomedical
data, that is currently needed in genetics and proteomics. We therefore concentrate on these
two rapidly developing research areas in life sciences.

First, we perform a systematic analyses of human reference genome build in the context
of its potential local instability caused by recurrent genomic rearrangements, e.g. deletions,
duplications, and inversions. Our approach enables also to analyze large and unique clinical
database.

Secondly, we present various analyses of mass spectrometry data. In particular, we pro-
pose isotopic distribution at many levels of accuracy; more precisely we consider aggregated
and fine isotopic structures. We also show some case application studies involving high-
throughput processing, potentially applicable in proteomics and lipidomics.

Of note, this thesis is also an exemplification of interdisciplinary approach for basic science,
where a deeper and complex understanding of both biomedical and computational aspects

can be mutually beneficial.

Keywords: computational methods, bioinformatics, mass spectrometry, recurrent genomic
rearrangements

ACM Classification: J.3
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Metody obliczeniowe dla wielkoskalowych danych w diagnostyce medycznej

Streszczenie

Niniejsza rozprawa opisuje efektywne metody przetwarzania wielkoskalowych danych w
biologii molekularnej, co jest szczegdlnie istotne w genetyce i proteomice. Wtasnie te dwie
dynamicznie rozwijajace sic galezie nauk o zyciu stanowig obszar naszych zainteresowan.

Na poczatku przeprowadzamy systematyczng analiz¢ referencyjnego genomu cztowieka.
Nasze badania dotycza jego potencjalnejlokalnej niestabilnosci spowodowanej przez nawraca-
jace rearanzacje, takie jak delecje, duplikacje oraz inwersje. Przedstawione podejscie pozwala
réwniez, w przypadku delecji i duplikacji, przeanalizowa¢ duza i unikalna baze danych przy-
padkéw klinicznych.

W drugiej czesci rozprawy prezentujemy modele wykorzystywane w analizie danych spek-
trometrycznych. W szczegélnosci zajmujemy si¢ wplywem wariantéw izotopowych na wyniki
uzyskiwane w eksperymentach. Nasze badania prowadzimy wykorzystujac rézne stopnie
doktadnosci przy reprezentowaniu rozkladéw izotopowych — podejscie zagregowane oraz
doktadne. Ponadto przedstawiamy przyktady analizy wieloskalowych danych w proteomice.

Pragniemy podkresli¢, ze niniejsza rozprawa prezentuje interdyscyplinarne podejscie do
badan podstawowych. Ponadto, nasze badania sa przykladem kompleksowego wykorzysta-
nia w nauce o zyciu metod obliczeniowych popartych teorig nauk matematycznych.

Stowa kluczowe: metody obliczeniowe, bioinformatyka, spektrometria mas, nawracajace rear-
anzacje genomowe

Klasyfikacja tematyczna ACM: .3
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Science can purify religion from error and superstition;
religion can purify science from idolatry and false abso-
lutes. Each can draw the other into a wider world, a world

in which both can flourish.
Saint John Paul 1T

(Letter to the Rev. George V. Coyne, S.J., Director of the Vatican Observatory, 1 June 1988)

Introduction

The bottleneck of the large-scale data processing has made bioinformatic analyses a crucial
component in the life sciences workflows. The two large fields in biomedical studies, whose
rapid development in the recent years has depended on computational methods, are genetics
and proteomics. They both are strictly connected to each other, e.g. structural organization
of the genome affects the variety of proteins in the organism; on the other hand, proteins are
the crucial functional molecules that participate in the process of extracting the information
encoded in the genome. In this thesis, we present selected bioinformatic methods used and
discuss their application in basic research as well as in clinical diagnostics.

1. METHODS FOR GENOME STABILITY ANALYSIS

HUMAN GENOME ORGANIZATION

A wide range of the human organism functions are encoded in a deoxyribonucleicacid (DNA).
The structure of this molecule was discovered in 1953 by Watson and Crick, who once stated:
”It has not escaped our notice that the specific pairing that we have postulated immediately
suggests a possible copying mechanism for the genetic material” (Watson and Crick, 1953).
The DNA double helix is composed of two strands of nucleotides oriented in opposite di-
rections. Each nucleotide is built of a sugar-phosphate backbone and one of four nucleobases:
adenine (A), guanine (G), thymine (T), or cytosine (C); A and G are classified as purines and
T and C as pyrimidines. Two DNA strands are connected by hydrogen bonds, two between



A and T and three between C and G. The nucleobases in the DNA strand are connected by
the bonds between the third and fifth carbon of the sugar molecules. Thus, each DNA strand
has two ends termed 5" and 3’. The complementary nucleobase is referred to as base pair (bp)
and is considered as a standard unit of DNA length.

Human DNA is compacted as chromatin and divided into 23 pairs of chromosomes': 22
autosomes (numbered from 1 to 22), and one pair of sex chromosomes (X and Y). Males have
one chromosome X and one chromosome Y and females have two chromosomes X. A com-
plete set of chromosomes in a somatic cell is referred to as a karyotype. Human genome is
diploid, i.e. all autosomes have the homologous copies; each chromosome in a pair is inher-
ited from one parent in the process of meiosis. During fertilization, male and female gametes
fuse, forming a single cell zygote that further divides in a process of mitoses, replicating the
initial double helix DNA.

Each metaphase chromosome in human has been represented as an X-shaped structure,
with two short p arms and two long q arms that are connected by a centromere®. The re-
gions near ends of chromosomes are called telomeres composed of thousands of repeated
TTAGGG sequences and stabilized by an enzyme, telomerase. This simple classification has
been further subdivided based on G-banding chromosome staining, a technique, in which
separate regions of chromosomes dyed by Giemsa stain show different banding pattern visi-
ble in a light microscope. These bands have been classified in a standard cytogenetic nomen-
clature, e.g. 1q21.1 designates chromosome 1, arm g, region 2, band 1, and sub-band 1. Relative
location on a chromosome arm is referred to as proximal or distal when closer to or farther
away from a centromere, respectively. A basic functional unit of DNA sequence is a gene.
In humans, genes consist of exons (protein-coding intervals) and introns, which are removed
in a process of splicing®. In addition, genes are usually accompanied by regulatory sequences
such as promoters and/or enhancers.

Humans share the vast majority of nucleotides on the analogous (allelic) chromosomal
loci, and determination of these base pair sequences was a primary goal of the international
scientific research endeavor called Human Genome Project (HGP) initiated in 1990. HGP
announced almost complete human DNA reference sequence (IHGSC, 2004) as hgr7/NCBI
Human Build 35 (May 2004). This genome assembly has been continually updated to the
current version hg38/NCBI Human Build 38 (December 2013) by the Genome Reference
Consortium (GRC). Itshould be noted that there are regions in the human reference genome,
for which the exact nucleotide sequence is still not well determined. These sequences are

'In addition to this linear nuclear genome, humans have a circular-shaped mitochondrial DNA, however,
we do not consider the mitochondrial genome here.

*For simplicity we use this nomenclature for chromosome coordinates regardless the phases of chromosome
life cycle.

*We do not consider here genes that do not code proteins.



described as gaps mostly located in the telomeric and centromeric regions.

Each human individual DNA sequence is defined as a genotype. The differences between
genotypes are caused, among others, by gene variants (alleles). Among many other factors,
such as environmental interactions or post-translational modifications, these variants can
contribute to the observable traits, i.e. a phenotype. Phenotypic trait expressed by these
genes can be inherited as either autosomal recessive (AR; manifested when two alleles associ-
ated with this trait are mutated) or autosomal dominant (AD; one mutated allele is sufficient
to manifest the phenotype).

In males, chromosome X is inherited from the mother and Y from the father. For the vast
majority of X-linked or Y-linked genes, males have only one copy; disruption of the genes on
chromosome X in males usually has phenotypic consequences as, opposed to disruption of
genes on autosomes. X-linked genes are responsible for X-linked recessive traits when only
one allele is mutated and not manifesting in female carriers of the allele. In case of X-linked
dominant disease, both males and females with the mutated allele are affected.

Mutations can be lethal, cause non-lethal diseases of various severity levels, or might be not
associated with pathogenic consequences. A set of genomic nonpathogenic mutations can
be inherited as haplotypes that further segregate in a population. This variability should be
taken into account when considering the human reference genome build as a golden standard
for an individual genotype.

MUTATION MECHANISMS

Mutation of a DNA sequence can be caused by errors in DNA replication, recombination, or
repair. Mutations are classified based on their inheritance pattern, as they can occur de novo or
can be inherited from a parent. Moreover, we can distinguish meiotic mutations (originating
in germ cells) being present in 100% of child’s cells*, as constitutional, and mitotic somatic
mutations that are acquired and propagated only to some cells (somatic mosaicism).

A change of a single base pair is referred to as Single Nucleotide Variants (SNV). Depending
on SNV location, SNV may affect the coding region by changing the encoded amino acid, e.g.
missense mutations, cause premature stop codon, e.g. nonsense mutations (nonsynonymous
mutations), or alter the codon without changing the transcribed products (synonymous mu-
tations, i.e. silent). Moreover, insertions or deletions of small portion of nucleotides (i.e.
indels) might also cause a shift of the transcription reading frame (frameshift mutations).

Deviations from the 46 number of chromosomes (i.e. numerical chromosomal aberra-
tions) often result from an abnormal chromosome segregation and manifests with pathogenic
phenotypes. This is usually caused by nondisjunction during meiosis, when the chromosome
pair is not properly separated, causing an imbalanced chromosome complement (i.e. mono-

*If not altered by other mutation.



somy or trisomy) in the daughter cells. The best known examples of numerical aberrations
are trisomy of chromosome 21 (Down syndrome), trisomy of chromosome 18 (Edwards syn-
drome), or three sex chromosomes XXY in males (Klinefelter syndrome).

In addition to single base pair changes, also structural aberrations, e.g. deletions, duplica-
tions, translocations, insertions, or inversions of the chromosomal fragments, are observed.
A portion of the abnormal number of copies of one or more DNA fragments resulting in an
imbalance of DNA is referred to as a Copy-Number Variant (CNV). CNV size can vary from
a few to thousands (i.e. kb) or millions of base pairs (i.e. Mb). The term genomic disorders
has been coined for both the rearrangements themselves as well as the resulting pathogenic
features (Lupski, 1998), caused e.g. by gene disruption or change in gene copy-number.

MECHANISMS FOR STRUCTURAL ABERRATIONS ORIGIN

In this thesis, we focus on recurrent genomic rearrangements, i.e. rearrangements occurring
de novo in the same genomic loci in different individuals. The main mechanism responsible
for recurrent rearrangements is nonallelic homologous recombination (NAHR), wherein re-
combination breakpoints are located within highly similar DNA sequences, e.g. low-copy
repeats (LCRs).

LCRs or segmental duplications (SDs) (Bailey et al., 2002) are defined as pairs of DNA
fragments with fraction matching (homology score) over 90% and longer than 1 kb. It has
been shown (Stankiewicz and Lupski, 2002) that for long LCR elements with high homology
(originally the parameters were suggested to be 10-400 kb and 97%), the NAHR events might
occur within LCRs causing inversions (for inversely oriented LCRs), deletions or reciprocal
duplications (for directly oriented LCRs)’, or reciprocal translocations.

Alternative mechanisms for CN'Vs origin such as microhomology-mediated break-induced
replication (MMBIR) (Hastings et al., 2009) or fork stalling and template switching (FoS-
TeS) (Lee et al., 2007) have been also described. These are the two major DNA replication
error mechanisms leading to nonrecurrent genomic rearrangements, for example complex
duplication and deletion events (Lee et al., 2007).

MOLECULAR EXPERIMENTS FOR GENOME ANALYSIS

A DNA sequence for a specific region can be determined using a Sanger sequencing reac-
tion®. In this technique, the investigated DNA fragment is typically amplified using poly-
merase chain reaction (PCR). In a first phase, the short but unique DNA primers flanking
the analyzed fragments are designed. The chain reaction, based on thermal cycles, enables

SThese rearrangements have often prefix micro referring to their sub-microscopic size.
®Currently, next generation sequencing (NGS) is a broadly used alternative to Sanger sequencing and is also
useful for CNV detection; however, NGS technology will not be used in research covered in this thesis.



replication of DNA material, growing exponentially with time. Then, the amplified DNA
fragment is analyzed in a chain-termination reaction using A, C, G, and T deoxynucleotides
and four radioactively or fluorescently labeled dideoxynucleotides (substituting one of the
original nucleotides and terminating the nucleotide chain). Finally, all possible prefixes of
the analyzed DNA sequence are obtained, each terminated by a tag easy to recognize. Using
gel electrophoresis, these prefixes can be sorted according to their length to identify the DNA
sequence.

Genome analysis of CNVs longer than 5 Mb can be visualized in the light microscope after
chromosome staining, using e.g. G-banding. For smaller DNA changes, molecular biology
techniques are used, e.g. fluorescent in situ hybridization (FISH). FISH is based on the con-
cept of fluorescently-labeled probes binding (hybridizing) to a specific target DNA locus that
can be analyzed in a fluorescent microscope (O’Connor, 2008). FISH technique is fast and
easy for visual interpretation of single CNVs.

Microarray-based Comparative Genomic Hybridization (aCGH) is a method allowing for
high-throughput genome-wide data processing in one experiment (Chial, 2008). Thousands
or millions of DNA fragments (e.g. oligonuceleotide probes) can now be placed on a single
glass slide (array). By analyzing control and patients DNA samples, and labeling them differ-
ently with fluorescent dyes (e.g. green for control, red for patient), it is possible to compare
intensities of the fluorescent signals referring to copy-number ratios. For example, in a case of
equal copy-numbers the yellow signal is observed, whereas more red/green signal is associated
to duplication/deletion in the patient’s genome, respectively. The aCGH method allows for
detection of CNVs as small as tens of kilobases.

GENOME (IN)STABILITY ANALYSES

The (in)stability of the human genome is directly related to its structure. Both the size of
the genome (over 3 billion of base pairs) and its complexity make it unfeasible to be system-
atically analyzed without application of automated algorithms. Moreover, fast and reliable
processing of the outputs (e.g. of cytogenetic testing by chromosomal microarray analysis,
CMA) should be integrated with phenotypic data provided by physicians and current knowl-
edge about the genotype/phenotype correlation. Finally, the wet-bench experiments serve as
an indispensable way to confirm the molecular bases of the identified rearrangements. In
this interdisciplinary approach, using multiple data resources, the crucial steps of analyses in-
volve understanding the biological background, designing the computational workflow and
discussion of the results in a medical context.



GENOME-WIDE ANALYSES OF KNOWN AND POTENTIAL NOVEL RECURRENT DELETIONS
AND RECIPROCAL DUPLICATIONS

In this study, based on the literature data, we systematically analyzed the genomic regions
of genetic diseases and syndromes associated with NAHR-mediated recurrent deletions and
reciprocal duplications. Moreover, we queried and cross-referenced large database of high-
resolution genomic analyses performed at Baylor College of Medicine on patients referred
for CMA. The applied algorithms using custom scripts allowed us to filter out CNVs that
correspond to NAHR-syndrome regions flanked by directly oriented paralogous LCRs (DP-
LCRs). The causative association of the patients’ rearrangements with the known genetic
syndromes involved manual specification of the selected parameters to tackle the issue of dif-
ferent sensitivity of CMA arrays. As a result, we were able to determine the prevalence of
the known recurrent genomic disorders in the clinical CMA database. We also determined
the frequencies of the novel rearrangements. To this aim, we narrowed the study to the in
silico cases with genomic breakpoints of the investigated CN'Vs mapped with a sufficient res-
olution. A statistic model based on a quasi-Poisson regression, suitable for count data with
missing values, has been used to report genomic features that correlate with the frequencies
of de novo recurrent rearrangements. Moreover, several architectural features of the LCR
clusters flanking the interrogated regions have been investigated.

Furthermore, we constructed a new genome-wide map of the DP-LCR-flanked regions in
the human genome (build hgr9), i.e. the genomic regions where recurrent deletions or recip-
rocal duplications might occur via LCR-mediated NAHR. We also introduced a concept of
computationally determined LCR cluster using a hierarchical clustering algorithm (Figure 1.1)
and investigated the multiple parameters to propose the cut-oft height of the clustering tree.
The clustering approach enabled us to systematically distinguish between overlapping and
adjacent regions, and to combine very similar regions. For example, we identified four novel
recurrent NAHR-mediated deletions involving chromosome 2qr2.2qr3, which were previ-
ously referred to as a single region. Selected breakpoints of these novel rearrangements were
sequenced using wet-bench experiments, and further clinically characterized. Using anno-
tation of gene location and the OMIM database (http://www.omim.org/), we not only
identified potentially disrupted genes, but also those of them that might cause known dis-
ease via NAHR, and might be useful in diagnostics.

Finally, the homology between the LCR clusters flanking the newly defined NAHR-prone
regions has been visualized using Miropeats program (Parsons, 1995). Thisinformation might
be useful for researchers to better understand the complexity of genomic regions where re-
combination hot spots occur.


http://www.omim.org/
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Figure 1.1: Schematic visualization of the concept of LCR clusters. LCR elements in which NAHR breakpoints occur
(green) are accompanied by other elements that can be grouped into LCR clusters. The hierarchical clustering algorithm
constructs a clustering tree that can be then pruned at a given height (violet dotted line). Source: Dittwald et al. (2013c)

GENOME-WIDE ANALYSES OF POTENTIAL RECURRENT INVERSIONS

It should be noted that balanced genomic rearrangements (e.g. paricentric or paracentric
inversions) are not detectable by CMA assays. Our genome-wide computational approach
aimed to investigate human genome instability potentially caused by balanced genomic in-
versions. We identified a set of inversely oriented, paralogous LCRs (IP-LCRs) that can po-
tentially mediate recurrent inversions via NAHR, by integrating the latest version of human
genome build (hgr9), and the criteria from the literature applied for directly oriented LCRs
that can potentially mediate deletions and duplications. Similarly to the previous section, our
algorithms utilized efficient operations on intervals to efficiently analyze the genome. The set
of IP-LCRs allowed us to estimate the fraction of the human genome where inversion break-
points might be located, as well as the fraction of genome potentially unstable due to NAHR

mediated by IP-LCRs.

The balanced rearrangements may disrupt the genes harboring the recombination site.
Therefore, we reported a set of genes, for which at least one inversion breakpoint is located
within such a gene, and identified genes that are dosage-sensitive and/or associated with dis-
cases. We also analyzed the X-linked genes, as they have relatively high likelihood of clinically
manifesting the recurrent inversions. Further, we focused on the known disease genes, i.e.
those for which NAHR-mediated inversion might cause the already known disease. We also
processed the genomic inversions from the Database of Genomic Variants (DGV) (Zhang
etal., 2006) that could be associated with NAHR and estimated the statistical significance of
such events.
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Figure 1.2: The Circos plot (Krzywinski et al., 2009) that depicts the identified genes potentially disrupted by NAHR-
mediated inversions genome-widely. We highlighted the genes that are associated with diseases (violet), dosage sensi-
tive (red), and those from both previous groups (green). Figure source: Dittwald et al. (2013b)



1. METHODS FOR PROTEOME ANALYSIS

HUMAN PROTEOME ORGANIZATION

The Central Dogma of molecular biology describes the flow of information from genes to
proteins (Crick, 1970). First, the sequence of nucleotides is transcribed into mRNA molecule,
which is further translated to amino acid sequence, composing a protein molecule. The
structure of proteins can be considered at different levels: the primary structure describes
a sequence of amino acids, while the secondary structure covers the hydrogen-bonds-driven
substructures, e.g. a-helices or S-sheets. The tertiary and the quaternary structures refer
to three-dimensional folding and cristal forming of proteins, respectively. Tertiary structure,
also called conformation, is highly linked to the protein function. The information about the
whole set of proteins expressed in the organism (i.e. proteome) — their amounts, functions,
and interactions — is crucial for describing biological systems.

The 20 naturally occurring amino acids are built from five chemical elements: carbon (C),
hydrogen (H), nitrogen (N), oxygen (O), and sulphur (S)”. The structure of amino acid can
be divided into: amino group®, a carboxyl group, the central carbon atom (C,,), and a side
chain. Peptide (polypeptide chain?) is a short sequence of the amino acids linked by peptide
bonds. As a product of forming single peptide bond, a water molecule (H50) is released. A
polypeptide chain can be created e.g. as a product of enzymatic digesting of a protein. By
convention, a polypeptide chain is described from its N-terminus (the end with free — N Ho
or —N Hj group) to its C-terminus (the end with free —COOH or —C'OO™ group).

Chemical atoms are built of protons (positively charged), neutrons (not charged), and elec-
trons (negatively charged). Protons and neutrons, also called nucleons, form the nucleus,
where the vast majority of the atomic mass is concentrated (therefore the electron mass will
be omitted further in this thesis). Many chemical elements have isotopes™, i.e. the variants
that differ by the amount of neutrons. Here, we will consider only stable isotopes of the five
chemical elements building peptides, namely C, H,N, O, and S. Thelightestisotope variantis
called monoisotopic (in our case these are 2C, ' H, " N, 160, 325). A mass unit commonly
used for chemical molecules is dalton (Da), defined as % the mass of carbon '*C, and ap-
proximately equal to 1.66 x 107%" kg. The nominal mass of the element is the mass of its
isotopic variant rounded to the integer value. The five considered elements have two (car-

7 Amino acids can also contain other elements, like phosphorus, as a result of post-translational modifica-
tions (PTMs).
$Imino group in case of prolyne.
9Basically, peptides are short sequence of amino acids, while polypeptide are longer, however, we will not
distinguish in this thesis between the two classes.
°*We will consider only stable isotopes, and ignore the radioactive forms which spontaneously undergo the
radioactive decay.



bons: 2C', 13C}; hydrogens: ' H, % H; nitrogens: ' N, 1> N), three (oxygens: 160,170, 180),
or four (sulphurs: 325,335,345 365) isotopic variants. Each of these isotopes has a certain
exact mass, denoted as M¢,,, . . ., M,,, and appears in the nature with a certain probability,
denotedas P, . . ., Ps,,. The average mass of the element is a weighted sum of its isotopes.

MASS SPECTROMETRY AND ITS APPLICATIONS IN PROTEOMICS

According to Eidhammer et al. (2007), the main tasks for analytical methods in proteomics
are:

1. to identify the protein in the sample;
2. to characterize the various features of the protein (regardless its identification);
3. to quantify the amount of the protein in the sample;

4. tocompare the occurrence/abundance/modifications of the proteins between the sam-

ples.

Mass spectrometry (MS) is one of the most popular analytical method used in proteomics
to investigate the content of the chemical mixture, which has already brought a huge insights
into the role of biological systems (Cravatt et al., 2007; Chandramouli and Qian, 2009). The
instrumentation used in this method, i.e. mass spectrometer, is composed of the three main
parts:

1. theionization source — the molecules are charged (i.e. ions are created) and brought to

a gas phase;
2. the mass analyzer — ions are separated by their mass-to-charge (m/ 2) ratio;

3. the detector — the spectrum of signals or peaks is produced, it assigns abundance, i.e.
number of ions, for a given m/ z.

Of note, MS was invented more than a hundred years ago by Thompson, however, its rapid
growth is dated in the last decades of the XX century, when soft ionization techniques (pro-
ducing almost no fragmentation of the analyzed molecules) was proposed by John Fenn and
colleagues. This technology was called in a vivid manner as “Electrospray Wings for Molec-
ular Elephants” in Fenn’s Nobel Prize lecture (Fenn, 2002). In addition, before the sample
is analyzed by the mass spectrometer, it is often fractionated in order to increase the detec-
tion rate, e.g. by gel electrophoresis of liquid chromatography (LC). It should be also noted
that in the existing instruments used in proteomics many types of the described components
occur (cf. Table 1.1) (Aebersold and Mann, 2003).

I0



Table 1.1: Selected types of mass spectrometry instruments used in proteomics. The comparison of the Orbitrap with
FT-ICR and TOF MS is presented in (Zubarev and Makarov, 2013).

|

name

| type

‘ description

reference

matrix-assisted  laser
desorption ionization

(MALDI)

ionization source

the sample is mixed with a matrix, and
further released e.g. by an ultravio-
let (UV) beam, usually an ion is singly
protonated;

(Peter-Katalinic,
2007)

electrospray (ESI)

ionization source

the sample is ionized within a very
thin needle using high voltage; then,
the droplets are injected into the at-
mosphere, where the solvent evap-
orates, producing the multicharged
ions of the analyzed molecule; this me-
thod is especially useful in proteomics
thanks to the ease of combining with
liquid based separation of sample;

(Cole, 19975 Gross

etal., 2002)

time-of-flight (TOF)

mass analyzer

ions are separated using the time they
reach the detector after being acceler-
ated in the electric field - the square of
velocity of the accelerated ion is pro-
portional to the m/ 2 ratios

(Cotter, 1994)

ion trap

mass analyzer

three-dimensional (quadrupole ion
trap) or rectangular (linear ion trap)
construction produces an electric or
magnetic field within a high vacuum
system; the field (its frequency and
potential) is manipulated in a such
way that only the molecules with
selected m / z ratio reach the detector;

(Brancia, 2006)

Fourier-transform ion

mass analyzer

the m/ z ratio can be calculated using

(Marshall et al., 1998)

cyclotron  resonance the frequency of rotation of the inves-

mass spectrometry tigated ions in the spatially uniform,

(FT-ICR  MS or cyclic magnetic field;

FTMS)

Orbitrap mass analyzer ions are orbiting around the electrode | (Makarov, 2000)

within the electrostatic field, and the
frequencies of their harmonic oscilla-
tions are proportional to (m/z) 1.

1I




The ability to discriminate between the neighboring peaks is described by the resolution
coefficient R = <3;. The Full Width at Half Maximum (FWHM) approach defines AM as
the peak width at half of its height, and M is the mass at top of the peak. The resolution can
be expressed in parts-per-milion (ppm), i.e. multiplied by 10° factor.

Finally, it should be noted that two basic approaches for MS proteomics are of use. The
top-down analysis investigates the intact molecules, while the bottom-up analysis investigates
at once the mixture of proteins digested by the proteolytic enzymes called peptidases (e.g.
trypsine) (Yates and Kelleher, 2013).

MS DATA PREPROCESSING

We distinguish two types of noise in the mass spectra associated with its origin: chemical
(producing unexpected peaks, e.g. from contaminants) and electronic (fluctuations of the
measurements). There are many preprocessing steps that try to remove the noise, and the
standard workflow include:

1. baseline correction (removing errors with systematic dependencies);
2. smoothing (removing random fluctuations);

3. peak detection/peak picking (distinguish between signals and background).

The other processing step would transform m/ 2 ratio to mass domain For the molecule
M with z additional protons of mass p, we can have = = M+Zp = M 4 p, and there-
fore M = z( — p). The non-trivial problem is then to predict the charge value of the
molecule. In practice, quite accurate prediction can be made using the Fourier and Patterson
transform (Senko et al., 1995b).

This thesis will not cover the algorithms for the preprocessing phase. However, the ap-
propriate methods at this step are crucial to accurately retrieve the signal measured by the
spectrometers. Some computational approaches to this problems are presented e.g. in Fid-
hammer et al. (2007) and Yang et al. (2009). It should be also noted that very often (if not
always) the raw data returned by the instruments are already the output of the built-in algo-

rithms.

IsoTOPIC DISTRIBUTIONS OF THE MOLECULES

Letus consider the molecule” £ (v, w, z, y, 2) of achemical formula C, H,, N, O, S., i.e. com-
posed of v carbon, w hydrogen, x nitrogen, y oxygen, and 2z sulphur atoms. For simplifica-
tion, we will further omit the parameters v, w, x, y, z, where their presence is obvious from
the context.

"We will not distinguish between molecules and ions.
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Analogously to the elements, we can also consider isotopic variants of the molecule. Each
isotopic variant has its exact mass and a probability, being a sumaric mass and a product of
probabilities of occurrence of its atoms, respectively.

The lightest isotopic variant (the one composed purely from the monoisotopic atoms) of
the molecule is called a monoisotopic variant. The monoisotopic variant of § has an exact
mass:

Miono = VMe,, + wMpy, + My, +yMo,, + zMsg,,, (r.1)

which is also called a monoisotopic mass of £, and a probability:
Prono = Pg,, X Py, x Py, x P4 x P§,,. (1.2)

One can look at the molecule with a different level of accuracy. In a very precise ap-
proach, we can consider isotopic fine structure of §, where we distinguish between any two
isotopic variants as long as they are composed of different number of particular isotopes ™.
For example for £(1, 0, 0, 2, 0), a carbon dioxide C'Os, we will consider 12 fine isotopic vari-
ants, namely 2160160 (monoisotopic variant), BC6Q60, 2C160l70, BC16O70,
120160180, 130160180’ 120170170, 130170170, 120170180’ 130170180) 120180180)
and 3C18O®0. The approaches to the problem of effective isotopic variants representation
involved symbolic polynomial expansion (Yamamoto and McCloskey, 1977; Brownawell and
Fillippo, 1982), and the multinomial expansion (Yergey, 1983); see also Valkenborgetal. (2012)
for the review of the models. However, even for a very small molecules, the number of fine
variants is quite large, and while increasing the number of atoms we can quickly fall into the
problem of huge number of configurations that cannot be easily handled.

The simplification of the fine approach is to look at the aggregated isotopic variants, where
we group together variants with the same number of additional neutrons®. For example, for
£(1,0,0,2,0), we have only 6 aggregated variants with 0, 1, . . ., 5 additional neutrons. Of
note, the aggregated variant with 0 additional neutrons is always composed of a single fine
variant, i.e. the monoisotopic one. The center-mass of aggregated variant is the average mass
of all its fine variants.

The most coarse approach considers the average mass of the molecule £, namely:

M:UMc+wMH+ZEMN+yM0+ZMS, (13)

where M, My, M, Mo, and Mg are the average masses of the corresponding elements, e.g.
Mc = Pe,,Mc,, + PoyyMc,,. However, this approximation looses a lot of characteristic
information for the isotopic structure of the molecule.

?We do not distinguish between isoforms, where the order of isotopes matters.
B Additional neutrons in comparison to the monoisotopic variant of considered element or molecule.
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As the isotopic variants are analyzed here in the context of mass spectra, we will also refer
to them as to peaks. However, it should be noted here that the peak, when taken from the
data or appropriately modeled, is a signal associated with the variant, not the variant itself.

1.3 RESULTS FOR PROTEOME ANALYSIS

AGGREGATED ISOTOPIC VARIANTS

Our aim in this part of the analysis is to effectively model and process isotopic distribution
using the concept of aggregated variant. We also wanted to investigate the usefulness of this
approach to isotopic distribution for the purpose of molecule identification. As a result, we
presented the algorithm called BRAIN (Baffling Recursive Algorithm for Isotopic distribu-
tioN calculations) that is able to compute the aggregated isotope distribution for the molecule
Cy,H,N;O,S.. The algorithms makes use of two polynomial generating functions. First of
these functions, (), is defined as:

Q(Lv,w,x,y,z) = (P01210 + PCBII)U
(P, I° + Py, I)"

(Prny,I° + Py, 1Y)

(PoysI” + Po, I' + Po, I%)!

(Psy, I° + Psy I' + Ps, I + Ps, I*)" |

x

X X X X

and computes the probabilities of the variants with the same number of additional neutrons.
The second function, U, is used to calculate the corresponding center-masses, and is defined
with the usage of the function Q):

Ull;v,w,x,y,z) =
vQ(L;v—1,w,z,y, z) (P012M012 + PCBMCm[l)
+wQ(L;v,w — 1,2y, 2) (P, My, + Pr,Mp,I")

+zQ(L;v,w,x — 1,9y, 2) (PN14MN14 + PN15MN15II)
+yQ([;v,w,x,y — 1, 2) (130161\/[016 + Po,, Mo, I" + P018M018[2)
+2Q(L;v,w,x,y,2 — 1) X

(Psyy Ms,, + Psyy Mgy, I + Psy Mgy, I* 4+ Py Mg, I*)

The algorithm calculate iteratively the coefficients of both generating functions using the
theory of Newton-Girard and Viete’s formulas (Séroul, 2000; Vinberg, 2003).
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Moreover, we implemented BRAIN as a part of R Bioconductor repository together with
the stopping criteria to calculate the substantial part of the isotopic distribution, and applied
it in the case study involving batch processing of a large protein dataset extracted from the
Uniprot database. Namely, we build the linear model predicting the monoisotopic mass
based on the corresponding most abundant center-mass. This kind of approach might be
potentially useful for experimentalists, who are not able to observe monoisotopic mass for
heavy ions, but would like to use it for molecule identification.

Furthermore, we introduced BRAIN 2.0., involving two improvements to decrease both
time and memory complexity in obtaining the aggregated isotope distribution, and a con-
cept to represent the element isotope distribution in a more generic manner than in original
BRAIN.

Finally, we proposed an automatic procedure for discrimination between lipid and pep-
tide signals. The bunch of random forest classifiers is able to distinguish between lipids and
peptides based on the features derived from the aggregated isotopic distribution. Moreover,
we propose to extend the classification for discrimination between the different lipid classes.

FINE ISOTOPIC STRUCTURE

In the next step of the analyses we tried to characterize the fine structure of aggregated iso-
topic variants (in practice, we especially looked at the most abundant peaks). We presented
a generating function based approach to calculate the variance and the information theory
entropy of mass for the aggregated isotopic variants. After processing the Uniprot database,
we built the linear model for the variance of the most abundant aggregated peak based on
its center-mass . Further, we also estimated the spread of mass distribution and number of
configurations for the aggregated variants.

ORGANIZATION OF THE THESIS, ARTICLES AND CO-AUTHORS

Chapter 1 is an Introduction. Its first part covers the analysis of the human genome sta-
bility. More precisely, it presents the biological background, biological and bioinformatic
methods, and subsequently summarizes the results, which are described in more details in
Chapters 2 and 3. The second part of Chapter 1 covers the analysis of proteome using mass
spectrometry. It describes the organization of the proteome in organisms, mass spectrome-
try as an analytical method for proteomics study, introduces the isotopic distribution, and
summarizes results from Chapters 4-6

Chapter 2 describes the potential human genome instability that can be caused by recur-
rent genomic inversions mediated via NAHR and its content is mostly taken from the arti-
cle (Dittwald et al., 2013¢). This analysis was made by PD, partially during his visit at Baylor
College of Medicine (BCM) in Houston, and Dr. Tomasz Gambin from Warsaw University
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of Technology. PD analyzed the frequencies of large clinical CMA database (maintained by
Medical Genetics Laboratories at Baylor College of Medicine in Houston and preprocessed
by the group of Dr. Chad A. Shaw), retrieved the cases of known deletions/duplication as-
sociated with NAHR syndromes, and prepared data used by Dr. Tomasz Gambin in quasi-
Poisson modeling. PD and Dr. Pawet Stankiewicz identified four novel recurrent NAHR-
mediated deletions involving 2qr2.2qr3. For further classification, we designed and performed
wet-lab experiments to identify breakpoint hotspots (Dr. Przemystaw Szafraniski), and con-
tacted the referring physicians to obtain the clinical characteristics of the studied patients. We
also used the CMA data from Signature Genomic Laboratories in Spokane, USA. Moreover,
Drs. Anna Gambin, Pawet Stankiewicz, and PD developed the concept of LCR clusters, and
Dr. Tomasz Gambin prepared the Miropeats diagrams showing the homology of LCR clus-
ters flanking NAHR-prone regions. This study was also performed in a collaboration with
Dr. James R. Lupski in the Department of Molecular and Human Genetics at BCM, who
helped to shape the final version of the manuscript.

Chapter 3 describes the potential human genome instability that can be caused by recur-
rentinversions mediated via NAHR mechanism. As there are very limited numbers of clinical
cases associated with these rearrangements, this study covers the automated processing of the
human genome database integrated with several biological annotations (genes, phenotypic
characteristics, CN'Vs in normal patients cohort) based on the parameters from the literature
about NAHR events responsible for deletions and reciprocal duplications. The content of
this chapter is mostly taken from the article (Dittwald et al., 2013b). The computational ana-
lyses of genome instability potentially mediated by IP-LCRs was done together by PD and
Dr. Tomasz Gambin and supervised by Drs. Anna Gambin and Pawet Stankiewicz. The clin-
ical context these results was mainly analyzed by Dr. Pawel Stankiewicz. In this article, we
also presented the complex genomic rearrangements with a duplication-inverted triplication-
duplication (DUP-TRP/INV-DUP) structures performed by the group from BCM (compu-
tational analysis made by Dr. Claudia Gonzaga-Jauregui), not included in this thesis.

Chapter 4 presents the algorithm BRAIN (Baffling Recursive Algorithm for Isotopic dis-
tributioN calculations) for calculating both the aggregated isotope distribution and corre-
sponding center-masses. Furthermore, BRAIN is evaluated in terms of speed and precision,
and compared with existing alternatives. This part is mostly taken from the article (Claesen
et al., 2012). The algorithm was developed by PD and Dr. Dirk Valkenborg. The evaluation
of the BRAIN (using MATLAB implementation) was performed by Dr. Jurgen Cleasen.
Finally, we present also the compiled (C++) implementation (useBRAIN), which is based
on Hu et al. (2013) — the C++ implementation called useBRAIN was written by Han Hu,
while the performance analysis was done by PD.

Chapter s introduces improvements in the original BRAIN. This part was mostly taken
from (Dittwald and Valkenborg, 2014), the improvements were developed by PD and Dr.
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Dirk Valkenborg, and the tests were implemented by PD.

Chapter 6 presents several applications of the BRAIN algorithm: Bioconductor BRAIN
package together with use case of high-throughput data processing (both implemented mainly
by PD; the results are taken from the BRAIN package online documentation and the article
(Dittwald et al., 20132)), and the lipid/peptide classifier (implemented and tested by PD; real
MS data provided by Vanderbildt University and preprocessed by Vu Trung Nghia) described
in the prepared manuscript (not yet accepted for publication). The preliminary results of this
study were also presented as a poster at ASMS conference in Vancouver in 2012.

Chapter 7 is based on results obtained mainly by PD and described in the manuscript in
preparation. The preliminary results of this study were also presented as an oral presentation
and poster at Polish Bioinformatics Society annual meeting in Wroctaw in 2013.

Finally, Chapter 8 contains concluding remarks and further works.

The majority of Figures and Tables in this dissertation is taken from the corresponding
manuscripts. Moreover, both supervisors helped in correcting and editing the thesis.
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Genome-wide analyses of recurrent
deletions and duplications

Copy-Number Variants (CNVs) involve large portion of the human genome and is re-
sponsible for various genomic disorders (Stankiewicz and Lupski, 2010; Girirajan et al., 2011).
We can distinguish recurrent CNVs that re-appear in the same genomic loci, as independent
events. This phenomenon can be explained by a specific structure (architecture) of the par-
ticular genomic region that predisposes some loci to de novo rearrangements via Nonallelic
Homologous Recombination (NAHR). It has been shown (Stankiewicz and Lupski, 2002)
that the NAHR-mediated rearrangement breakpoints fall within the flanking highly homol-
ogous pairs of LCRs. In this Chapter, we focus on recurrent deletions and reciprocal dupli-
cations. In particular, we consider large unbalanced events as they can be detected by aCGH
technology. Moreover, they are likely causing phenotypic manifestation in patients because
they usually involve larger number of genes than small CNVs. In this study we:

1. present a novel approach (based on LCR clusters) to systematically analyze the ge-
nomic regions prone to NAHR events;

2. analyze large and unique clinical CMA database and report both prevalence and de
novo frequencies of known NAHR syndromes as well as the evidence of novel potential
syndromes;
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Figure 2.1: A schematic workflow of the study. The violet and pink colors mark molecular and clinical data, respectively.
The arrows indicate the data transfer, which was usually done using automated or semi-automated procedures. Figure
courtesy: Dr Anna Gambin.

3. correlate de novo frequencies of different syndromes with selected genomic features to
get some insights into molecular basis of the NAHR mechanism;

4. analyze statistically the genomic features related to the NAHR breakpoint regions.

Of note, these tasks are suited for intensive computational processing of large-scale data:
CMA assays and human reference genome. To give a better idea about the complexity of
this interdisciplinary study, we present schematically its workflow in Figure 2.1.

2.1 PREVIOUS STUDIES

The analysis of directly oriented, highly homologous LCRs is a common approach to develop
genome-wide map of NAHR-prone regions. There are two main studies that previously gen-
erated such map, and therefore serve as a good reference point to our results:
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1. Sharpetal. (2006) analyzed older version of human genome build, i.e. hgi6 (July 2003),
and predicted 130 intervals flanked by directly oriented LCRs longer than 1o kb, with
sequence identity above 95% and separated by 0.05 — 10 Mb of intervening sequence;
cf. also Sharp et al. (2005).

2. Liuetal. (2012) applied the same LCRs parameters as the previous study, but on genome
build hgrg, and found 608 intervals that collapsed to 89 regions.

Of note, LCR identified in hgi6 and hgig reveal several differences, which resulted in some
discrepancies between the two studies. Moreover, Sharp et al. (2006) and Liu et al. (2012)
used different methods to collapse the overlapping regions.

2.2 DirecTt Pararocous LCRs (DP-LCRs)

In our study, we decided to analyze the Segmental Duplication track (Bailey et al., 2002) avail-
able via UCSC Genome Browser for hgrg. This track provides a set of LCR pairs, for elements
longer than 1 kb, and homology measure (called fraction matching) between the correspond-
ing elements above 90%. For further analyses, we chose the following subset of the directly
oriented LCR pairs located on the same chromosome:

e clements longer than 8 kb — this parameter takes into account that elements shorter
than those considered in (Sharp et al., 2006; Liu et al., 2012) can mediate known syn-
dromes on Xp22.31 (STS syndrome (Hernandez-Martin et al., 1999)) and Xq28 (EI-
Hattab et al., 2011); on the other hand, we did not want to relax the length parameter
too much, to avoid too large set of LCRs pairs;

e pairs separated by 50 kb - 10 Mb (plus length of a smaller copy) — this bounds the
length of the deletions/duplications that can be caused by the considered elements and
corresponds to the known recurrent NAHR syndromes sizes;

o cxcluding pairs that flank centromeres — restriction which eliminates CNVs that are
expected to be lethal;

e fraction matching > 95% - a parameter corresponding to those used in Sharp et al.
(2006) and Liu et al. (2012); this homology measure is provided by the Segmental Du-
plication UCSC track.

The above-defined subset of LCRs will be further referred to in this Chapter as Direct Paral-
ogous LCRs (DP-LCRs). In total, we identified 653 DP-LCRs.
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2.3 LCR CLUSTERS

Of note, LCRs that flank NAHR are often accompanied by other LCR elements. There-
fore, we decided to systematically introduce a concept of LCR clusters, that can be com-
putationally identified and adapted to the whole-genome analysis. First, we defined LCR
seeds as interval on chromosome composed purely of either LCR elements or Gaps (i.e. un-
sequenced regions). Then, we calculated a distance between any pair of LCR seeds (denoted
as LCRseed1 and LCRseed2) according to the following rule:

Pseudocode chunk 2.1

if (getChromosome(LCRseedl) != getChromosome(LCRseedl))
return MAXVALUE ## big constant

else{

if startRegion(LCRseedl) < startRegion(LCRseed2)

return (startRegion(LCRseed2) - endRegion(LCRseedl))
else

return (startRegion(LCRseedl) - endRegion(LCRseed2))

}

In other words, the "quasi distance™ for two seeds on the same chromosomes is defined as
the distance between the closest ends of these seeds. While the seeds are located on distinct
chromosomes, they are not comparable (the constant MAXVALUE is used).

The algorithm for hierarchical clustering of the set of seeds {2 is as follows:

Pseudocode chunk 2.2

S := Omega #leaves of the tree

while (|S]| > 1){ #until single cluster obtained
(a, b) := findAndRemoveTwoClosest(S, d)

c := merge(a, b)

addElement (S, c)

}

return S

We might represent this iterative clustering as a binary tree, where each internal node refers
to merging its two sons into a single cluster. The edge lengths are proportional to the distance
between clusters on its adjacent nodes.

"We call it "quasi distance” as the triangle inequality is not satisfied.



Single linkage distance

Single linkage “quasi distance” between two clusters A and B of elements from €2
(A, B C Qydist : Q x Q@ — Ry isa’quasi distance” function for each two
elements of €2) is defined as:

dsp (A, B) :== min{dist(a,b)|la € A,b € B}

To obtain the clustering tree, we used the hierarchical clustering algorithm that starts from
LCR seeds (as leaves) and merge clusters according to the single linkage distance (dgy,). Clus-
ters were extracted by pruning this tree on the given threshold (schematically, this is repre-
sented in Figure 1.1). We decided to prune the clustering tree on a height corresponding to a
set of 3, 000 LCR clusters. It should be emphasized, that the pruning threshold can be modi-
fied, or the clustering tree might be even pruned on various heights for different chromosome
regions.

The NAHR-prone regions are defined as a set of genomic regions flanked by LCR clus-
ters, considered as intervals C,, C's, and there exist a pair of DP-LCR elements (also pro-
cessed as intervals) v, 5 such that « C C, and § C Cjp. Of note, this definition allows for
Cq = Cp,1.e. NAHR-prone region can map within single LCR cluster containing a pair of
DP-LCR elements. We observe such situation in case of the 12qi4.2 region associated with
Globozoospermia (MIM# 613958; (Elinati et al., 2012).

As a result of our analyses, we identified 198 NAHR-prone regions (full coordinates are
available as a Supplemental Table St in Dittwald et al. (2013¢)): 105 flanked by two distinct
LCR clusters, and 93 composed of a single LCR cluster. These regions are graphically com-
pared with previous approaches (in case of Sharp et al. (2006) we used only 92 out of 130
regions which successfully lifted over to the hgrg coordinates) in Figure 2.2. Figure 2.3 is a
good example to appreciate that the LCR clustering approach allows for different configura-
tions between the neighboring regions. Practically, we were able to distinguish between:

e regions that overlap (e.g. ids 61and 65);

e one region that is a subset of another without sharing common LCR cluster (e.g. ids
69 and 66);

e one region that is a subset of another with sharing common LCR cluster (ids 65 and
66);

e two adjacent region sharing a common LCR cluster (ids 61 and 66).

To date, approximately 40 distinct (i.e. non-overlapping) loci on both autosomes and chro-
mosome X associated with clinical syndromes have been classified (Lupski, 1998, 2009; Mef-
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Figure 2.2: Ideogram for NAHR-prone regions according to Sharp et al. (2006) (yellow; only regions lifted to hg19), Liu et al. (2012) (light blue), and our method

(orange). In addition we indicated the 2q12.3q13 region with candidates for novel syndrome (red), and known pathogenic genomic disorders caused by NAHR-

mediated deletions and/or duplications (dark blue). Source: Dittwald et al. (2013c).
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ford et al., 2009; Vissers and Stankiewicz, 2012). Of note, these syndromes were associated
with 53 NAHR-prone regions identified by our approach. Our method allows for a bet-
ter classification of the selected similar regions that cause different phenotypes. For exam-
ple, Thrombocytopenia-Absent Radius syndrome (TAR) region on 1q21 (Klopocki et al.,
2007; Albers et al., 2012), and the 1q21.1 deletion/duplication syndrome region (Mefford etal.,
2008; Brunetti-Pierri et al., 2008) were previously considered together, and now can be dis-
tinguished by our approach. On the other hand, we did not detect small CHRN.A7 dele-
tion/duplication in 15q13.3 and 17q21.31 deletion/duplication region (Sharp et al., 2006) due
to the fact that there were identified for the haplotypes that differ from the reference genome,
and several variants 15q24 deletion syndromes for which the flanking LCRs reveal fraction
matching smaller than 95%.

The convincing application of our method is to use it for detection of the new potential
syndromes. Therefore, in the remaining (i.e. not associated with known syndromes) set of
NAHR-prone regions, we analyzed the clinical cases. For the 2qr2.2q13 locus (considered as
a single NAHR-prone region by Liu et al. (2012)), we identified four adjacent and/or over-
lapping intervals, for which we found an evidence for large (between ~o0.6 and ~1.9 Mb)
deletions (Figure 2.4). In this step, we first queried the clinical CMA database. To identify
more cases, we also used data provided by Signature Genomics. For two regions (2qr2.2qr2.3
and 2q12.3q13), the NAHR events were confirmed using long range PCR experiments. More
dertails about the patients phenotypes (according to the reports sent by physicians) and long-
range PCR/DNA sequencing experiments can be found in the online Supplementary Mate-
rials from Dittwald et al. (2013¢). The characterized region reveals high homology between
all LCR clusters, which is depicted using the Miropeats graphics (Figure 2.5).

2.4 KNOWN DELETION AND DUPLICATION SYNDROMES

In our study, we aimed to identify the known deletion/duplication syndrome regions in the
BCM CMA database of over 25, 000 patients (diagnoses for these patients are depicted in
Figure 2.6). To this aim, we manually collected the data about the LCR clusters flanking the
syndromes (these data are provided as a Supplemental Table Sz in (Dittwald et al., 2013¢)).
Moreover, we designed the automatic workflow to filter out the rearrangements that overlap
with the regions of interests (i.e. chromosome Y was not taken into consideration in fur-
ther analyses). In particular, we used Bioconductor IRanges library efficiently operating on
the intervals in order to detect the regions that are close to the syndromes loci. The CMA
data were first preprocessed by the BCM bioinformatic laboratory (headed by Dr Chad A.
Shaw), and provided as a region narrowed down to minimal/maximal start and stop coor-
dinates. Then, we have assigned 2, 129 CNVs (1, 053 deletions and 1, 076 duplications) to
syndromes (we manually curated this step to get better association). This information, de-
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DECIFHER: Chromosomal Imbalance and Fhenotype in Humans
—— —]
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Figure 2.4: The 2q12.2q13 region where four potential novel rearrangements have been identified (the correspond-
ing DP-LCR are represented as arrows on the top). The red bars in the middle indicate the events found in the clinical

databases (BCM and Signature Genomics). Red and blue thin bars at the bottom indicates available entries from the DE-
CIPHER and ISCA databases. The interesting genes harboring the regions of rearrangements (ST6GAL2, SLC5A7, EDAR,

RANBP2) are indicated by green arrows. Source: Dittwald et al. (2013c).
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Figure 2.5: Schematic representation of the homology within the 2q12.2q13 region (same interval shown at the top
and the bottom of the figure). Visualization is made utilizing ICAass algorithm (v.2.5) and the Miropeats program
(v.2.01) (Parsons, 1995). Figure source: Dittwald et al. (2013c).
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ASDs 9.3%

DD/ID 26.7%
seizures 7.6%

dysmorphic features 6.3%

heart defects 2.9%

speech delay 2.1%
ADHD 1.9%
no indication provided 16.4%

others 26.8%

Figure 2.6: The pie chart with the main diagnoses on the patients from BCM CMA database. Abbreviations used: DD/ID
- developmental delay/intellectual disability, ASDs - autism spectrum disorders, ADHD - attention deficit hyperactivity
disorder. Data from Dittwald et al. (2013c) (initially provided by lan M. Campbell).
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picted as a histogram in Figure 2.7, describes the prevalence of the syndromes in our database
(which is not the same as prevalence in the population as our database is biased towards ab-
normal phenotypic manifestation; cf. also Figure 2.6). The tree most common recurrent
rearrangements observed were NPHPr duplications (233 cases), CHRN.A7 duplications (175
cases), and 22qur.21 deletions (DGS/VCFS common, 166 cases). We have extracted the inheri-
tance information associated with samples (available for only ~ 25% of the analyzed CNVs),
and each rearrangement was then characterized as de novo (190 CNVs), inherited (355 CNVs),
or of unknown origin (1,584 CNVs). This information was obtained by additional FISH ana-
lyses in the parents (same method was used to confirm CNVs in patients). Then, we restricted
our analysis to de novo vs. inherited cases in order to get more insights about the frequency
of new events in our patients’ cohort (cf. Figure 2.8). Of note, the most frequent de novo
rearrangements were deletions: 22qur.21 (DGS/VCFES common), 16p11.2 (593 kb), and 7qi1.23
Williams-Beuren syndrome (WBS).

2.5 GENES THAT ARE PRONE TO CAUSE ABNORMAL PHENOTYPES WHEN DELETED OR
DUPLICATED

We analyzed the RefSeq genes extracted from the USCS Genome Browser — 2, 145 of them
overlapped with the genomic regions flanked by DP-LCRs. We identified a subset of 39 genes
reported to be dosage-sensitive, as increase or decrease of their expression may cause pheno-
typic manifestation (Huang et al., 2010). In addition, we queried OMIM database using
OMIM AP], and found 232 genes with associated diseases (all identified genes are presented
as Supplementary Table S3 in Dittwald et al. (2013¢)).

2.6 STATISTICAL MODELING INVOLVING GENOMIC FEATURES POTENTIALLY RESPON-
SIBLE FOR THE NAHR REARRANGEMENTS

As we collected the information about de novo NAHR frequencies, we used these data to
link them with various genomic features that can predispose to genome instability. The pre-
vious study (Liu etal., 2012), limited to deletions in 17p11.2 region (Smith-Magenis syndrome;
SMS), suggested that there is a correlation between rearrangement frequencies and the high
percent of sequence identity between flanking direct paralogous LCRs. Here, we aimed to
perform more systematic, genome-wide analyses. As our study introduces the concept of au-
tomatically derived LCR clusters, we considered separately genomic features characterizing
DP-LCR and structural features associated with LCR clusters. Thus, for a subset of deletions
that were likely to be caused by de novo NAHR events associated with known syndromes, two
classes of NAHR hot spots were considered:

e active” — with identified de novo events;
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The prevalence (i.e. both inherited and de novo events are considered) of known syndromes associated with

NAHR-mediated deletions and duplications among patients in BCM CMA database. Source: (Dittwald et al., 2013c).

Figure 2.7
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Xq28 deletion/duplication syndrome
Xp11.23p11.22 duplication syndrome
Xp22 deletion syndrome
22q11.2 deletion syndrome, distal/22q11.2 duplication syndrome
DiGeorge syndrome/Velocardiofacial syndrome (DGS/VCFS); common
DiGeorge syndrome/Velocardiofacial syndrome (DGS/VCFS); small; 2.1-Mb
DiGeorge syndrome/Velocardiofacial syndrome (DGS/VCFS); small; 1.4-Mb
17q23.1q23.2 deletion/duplication syndrome
17q21.31 deletion/duplication syndromes (Koolen-de Vries syndrome)
Renal cysts and diabetes syndrome (RCAD)
17q11.2 deletion syndrome, 1Mb (NF1 Type-3)
17q11.2 deletion syndrome, 1.4~ and 1.2-Mb (NF1 Type-1 and Type-2)
Smith-Magenis syndrome/Potocki-Lupski syndrome (SMS/PTLS)
Smith-Magenis syndrome/Potocki-Lupski syndrome (SMS/PTLS) larger
ch: Tooth disease, type 1A (CMT1A)
16p11.2 deletion syndrome, 593kb
16p11.2 deletion syndrome, 220kb
16p12.1 deletion syndrome, 520kb
16p12.2-p11.2 deletion syndrome, 7.1- to 8.7-Mb
16p13.11 deletion/duplication syndromes, large
16p13.11 deletion/duplication syndromes, small
15425 deletion syndrome A-D
15025 deletion syndrome C-D
15425 deletion syndrome A-C
15q24 deletion syndrome D-E
1524 deletion syndrome B-E
15q24 deletion syndrome B-D
15424 deletion syndrome A-D
15424 deletion syndrome A-C
15q13.3 deletion syndrome (CHRNA?)
15q13.3 deletion syndrome BP4 BPS
15q11q13 deletion syndrome BP3 BPS
15q11q13 deletion syndrome BP3 BP4
Prader-Will syndrome/Angelman syndrome (PWS/AS) BP2-BP3
Prader-Will syndrome/Angelman syndrome (PWS/AS) BP1-BP2
15q11.2 BP1-BP2 microdeletion
13q12.12 deletion (Spastic ataxia, Charlevoix-Saguenay type)
Globozoospermia
10q23 deletion syndrome
10q11.21q11.23 deletion/duplication
8p23.1 deletion, duplication
7q11.23 deletion syndrome, distal, 1.2-Mb
Williams-Beuren syndrome (WBS)
Sotos syndrome
Spinal Muscular Atrophy
3429 deletion/duplication syndrome
2q21.1 deletion/duplication
213 deletion/duplication
2q13 deletion (Nephronophthisis 1; NPHP1)
2q11.2 deletion/duplication
1q21.1 deletion syndrome, 1.35-MB
Thrombocytopenia-absent radius syndrome (TAR)

60 50 40 30 20 10 0
Deletions

Figure 2.8: Frequencies of de novo events for known syndromes associated with NAHR-mediated deletions and duplications among patients in BCM CMA

database. Source: (Dittwald et al., 2013c).
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e “inactive” — for the remaining set of regions.

A set of nonparametric Mann-Whitney-Wilcoxon tests has been made to explore the differ-
ences in genomic features between “active” and “inactive” hot spots.

Mann-Whitney-Wilcoxon test

For two samples A and B, from distributions X and Y, respectively, Mann-Whitney-
Wilcoxon test validates if X and Y are statistically equal. More precisely, the null

hypothesis Hy says that P(X > Y) = P(X <Y'). The test uses the statistic U that
measures the number of pairs (x,y),z € X,y € Y such thatx > 3.

As a result, the statistically significant differences were noted for several genomic features,
reported in Tables 2.1-2.2 (columns 2 and 3). In particular, "active” hot spots reveal increased
GC content and the increased density of the 13-mer motif (5-CCNCCNTNNCCNC-3’) as-
sociated in (Myers et al., 2008) with recombination hot spots. Then, for DP-LCRs that flank
more than two recurrent NAHR events, the Spearman rank correlation has been calculated.

Spearman rank correlation

Spearman rank correlation p between two variables X and Y of size n is a nonpara-
metric measure of their dependence. For ranked (in case of ties, the mean rank value
is used) values {z1,...,2,} and {y1, ..., y,} obtained from original values drawn
from X and Y, respectively, the following formula is used:

@Dy —9)
Vo @ — D S (i — )P

where T states for mean value of vector . The coefficient p has values from the interval
[—1; 1]; for p = %1 the perfect dependence is obtained, while for p = 0 two variables
are assumed to be independent. The approximation of p-values can be done e.g. using
the Student’s ¢ distribution.

p

The strongest correlation tested to be statistically significant (p-value < 0.05) for DP-
LCRs features was detected for the distance between DP-LCR elements (the negative corre-
lation) and sequence identity. In addition, the homology length reveals strong correlation,
which is, however, characterized by a low statistical significance (p-value ~ 0.168). The more
detailed results are provided in Tables 2.1-2.2 (column 4). For the following features of DP-
LCRs and LCR clusters, the strongest correlation has been detected: maximal LCR homol-
ogy, GC content and a maximal number of the ’-CCNCCNTNNCCNC-3’ motifs.
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Table 2.1: Analysis of the correlation between NAHR-mediated de novo deletions and various genomic features associated with DP-LCRs. Source: Dittwald et al.

(2013c).

Feature of DP-LCRs

Length of homology of paralogous
DP-LCRs

Distance between paralogous DP-
LCRs

Length of homology divided by dis-
tance between paralogous DP-LCRs
Fraction matching (percent identity)
of paralogous DP-LCRs

Mean GC content of paralogous DP-
LCRs

Number of occurrences of the 13-mer
recombination motif in the pair of
DP-LCRs combined

Average density of the 13-mer recom-
bination motif in the pair of DP-
LCRs combined

Comparison of DP-LCRs flanking active NAHR hot spots vs. DP-LCRs flanking
inactive cold spots (P-values from Mann-Whitney-Wilcoxon test)

Feature is greater in DP-
LCRs flanking  active
NAHR hot spots, i.e., re-
gions for which we detected
at least one de novo deletion
(P=1.86 x 1071)

(P=1.18 x 1073)

(P=2.69 x 10~ 1)
(P=7.53 x 1076)

(P=7.06 x 107?)

(P=2.57 x 1076)

Feature is greater in DP-
LCRs flanking inactive
NAHR cold spots, i.e., re-
gions for which we did not
detect any de novo deletion

(P=7.64 x 1073)

Spearman rank correlation
coefficients and P-values

0.29(P=1.68 x 101)
—0.69(P=2.19 x 1074)
0.6(P=2.3 x 1073)
0.73(P=8.18 x 1075)
—0.02(P=9.05 x 10~1)

0.33(P=1.17 x 10~ 1)

0.04 (P=8.55 x 10~1)

Correlation/regression of DP-LCRs feature
and frequency of de novo deletions; DP-LCRs
flanking reliable recurrent changes, ie., ge-
nomic regions for which we detected at least
three recurrent de novo deletions, were consid-
ered

Poisson regression coefficients and P-values

43.7(P=1.08 x 1079)

29.72(P=1.51 x 1072)
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The next step was to build the regression model to explain the frequency information
based on a set of genomic features. According to McElduff et al. (2010) the proper approach
for count data analysis is a Poisson regression model.

Poisson regression

In Poisson regression, the response variable Y is assumed to have Poisson distribution,

i.e.

e_uﬂy
y!

where £ is a parameter. The second assumption is that the logarithm of expected value

of Y (in our case E(Y') = 1) can be modeled by a linear combination of parameters
from vector X. Namely, for Z = log(E(Y'|X)), Z = BX + [o.

. J

P(Y =y) =

?

The features that occurred to be statistically significant were presented in column s of Ta-
bles 2.1-2.2.

For the next analysis, we gathered the literature data about known NAHR recombination
sites (presented as Supplementary Table Ss in (Dittwald et al., 2013¢)). Finally, the closer in-
vestigation of the distribution of the ’-CCNCCNTNNCCNC-3’ motif revealed its enrich-
ment in the distance up to 2 kb from breakpoints in contrast to other randomly selected
13-mer motifs.
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Genome-wide analyses of NAHR-mediated

inversions

In contrast to the several phenotypic NAHR-mediated deletions and duplications, only two
recurrent inversions have been associated with clinical syndromes:

e hemophilia A (factor VIII deficiency; MIM #306700), where over 45% cases are associ-
ated with inversion disrupting the F8 gene (Lakich et al., 1993; Naylor et al., 1992, 1993,

1995).

e mucopolysaccharidosis type II (Hunter syndrome; MIM #309900) — in this case a bal-
anced inversion harbors the /DS gene (Bondeson et al., 1995).

On note, both aforementioned diseases are X-linked and map to Xq28 region. The low num-
ber of syndromes examples does not necessarily mean that NAHR-mediated inversions are
rare, and can be explained by other reasons:

1. The balanced rearrangements are much more difficult to be detected, e.g. cannot be
identified by aCGH assays.

2. Genes are mostly disrupted by inversion’s breakpoints, in contrast to e.g. deletionsand
duplications, where the whole region between breakpoints is imbalanced. This causes
that even long rearrangement usually causes not so severe phenotypic manifestation as
in cases of deletions and duplications of the same size.
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3.1 GENOME INSTABILITY VIA RECURRENT INVERSIONS

The project described in this Chapter aimed to investigate the potential genome instability
caused by NAHR-mediated inversions. First, we identified the set of inversely oriented, par-
alogous LCRs (IP-LCRs) that are likely to mediate such events. Namely, we considered the
UCSC Genome Browser Segmental Duplications track (Bailey et al., 2002) (genome build
hg19) for the following parameters:

e minimal length of the LCR element over 1 kb (which was a limitation of the analyzed
track);

e LCR elements separated by less than 10 Mb to exclude too long rearrangements;

e fraction matching above 95% - according to the parameter used for directly oriented
LCRs (see Chapter 2.

As a result, we found 1, 337 pairs of such IP-LCRs (Figure 3.1). We also analyzed other frac-
tion matching limitations: relaxed (> 90%), and more stringent (> 97%), which revealed
2, 805 and 915 pairs of opposite orientation LCRs, respectively (the term IP-LCRs is used in
this Chapter only for dataset generated using fraction matching > 95%). The set of IP-LCRs
harbors in total 372.6 Mb, i.e. approximately 12% of the human genome, and in particular
involves 43% of chromosome r7. This is a portion of the human genome that can be po-
tentially altered by NAHR-mediated inversions utilizing IP-LCRs. The DNA covered by
IP-LCRs elements is much shorter, i.e. 59 Mb (1.93% of the human genome, including over
11% of chromosome Y) - cf. Figure 3.2.

3.2  ANALYSIS OF THE DATABASE OF GENOMIC VARIANTS

As stated above, there are only two known syndromes associated with recurrent pathogenic
inversions. Therefore, we analyzed the inversion from the Database of Genomic Variants
(DGV; http://projects.tcag.ca/variation/)) — repository with data from healthy
individuals (Zhang et al., 2006). In DGV, we found 587 inversions > 10 kb. In this set we
were searching for events with two breakpoints within the corresponding IP-LCR elements.
Specifically, we queried for inversions characterized by intervals R, g and a pair of IP-LCRs
elements (also treated as intervals) av, 5 such thataN R, # O and BN R # 0. Asaresult, we
identified 47 such inversions (Figure 3.1), and tested their statistical significance by applying
the following procedure.
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Figure 3.2: Portions of chromosomes covered by regions flanked by IP-LCRs (A), and IP-LCR elements themselves (B).
Source: Dittwald et al. (2013b).
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Pseudocode chunk 3.1

for inv in inversions{
1 <= length(inv)
chr <- chromosomeOf (inv)
seqs <- drawRandomSequences(l, hm, chr)
##draws hm sequences with two breakpoints outside gaps
count <- 0
for seq in seqs
if (bothEndsInIPLCRs(seq))
count <- count + 1
pValue[inv] <- count/hm
}

return pValue

. J

Namely, we estimated the probability (p-values) that the randomly generated sequence of
a given length lying on the same chromosome as investigated inversion has both breakpoints
within the corresponding IP-LCR elements. All estimated p-values are below 0.05 (each p-
value was estimated independently, no correction has been applied).

3.3 GENES POTENTIALLY DISRUPTED BY RECURRENT INVERSIONS

Here, we investigated genes where NAHR-mediated inversion breakpoints can be located.
Using RefSeq genes from the track in UCSC Genome Browser, we identified 942 (99 X-
linked) genes that intersect with atleast one IP-LCR element; eight of them ABCCs, FKBPS,
GTFzI, vNCFr, PRODH, RTN4R, STAT5A, and STATsB are known as dosage-sensitive
genes (Huang et al., 2010). Moreover, our research provided also the detailed characteristics
of 31 genes that are known to be associated with diseases (cf. Table 3.1), and can serve clinicians
for the diagnostic purposes. We also investigated the phenotypes associated with the found
genes. For this purpose, we queried the Genetic Association Database (GAD) (Zhang et al.,
2010), which is "an archive of human genetic association studies of complex diseases and dis-
orders” (according to the official webpage of the projecthttp: //geneticassociationdb.
nih.gov/), and identified various disease classes as presented in Figure 3.3 (no class is domi-
nating).
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Table 3.1: A table with 31 genes potentially disrupted by recurrent inversions, which are already known to be associated
with diseases. Source: Dittwald et al. (2013b).

Gene Gene description Location Intersection LCR identity Disease Inheritance | OMIM
with LCR Size %
(Size of entire
LCR) kb
ABCC6 ATP-binding cassette, sub-family C 16p13.11 25 (128) 99.36 Pseudoxanthoma elasticum AR 264800
(CFTR/MRP), member 6
AKRIC2 Aldo-keto reductase family 1, mem- 10pIS.T 28 (47.5) 95.15 46,XY sex reversal 8 AR 614279
ber C2
BCR Breakpoint cluster region 22QI1.23 7(10.5), 4(7) 95.98; 96.17 Chronic myeloid leukemia (CML) - 608232
CFCr Cripto, FRL-1, cryptic family 1 2q2L1 7 (227); 7 (229) 99.27; 99.27 Visceral heterotaxy-2 (HTX2); (a con- AD 605376
genital heart disease; identified in pa-
tients with transposition of the great ar-
teries and double-outlet right ventricle)
CHRNA7 Cholinergic receptor, nicotinic, al- 15q13.3 17 (307) 99.62 Chromosome 15q13.3 deletion syndrome AD 612001
pha 7 (neuronal)
CNTNAP; Contactin associated protein-like 3 9p131 5(208);  ss(us); 99.29; 98.72; Candidate gene for bipolar disorder and ? N/A
130(155); 64(64); 98.49; 98.3; bladder exstrophy
22(49) 98.2
DPP6 Dipeptidyl-peptidase 6 7936.2 105(105); 110(110) 98.4;98.42 Paroxysmal familial ventricular fibrilla- AD 612956
tion 2 (VF2)
DUOX2 Dual oxidase 2 15q2L1 1(1) 97.46 Congenital hypothyroidism, Thyroid AR 607200
Dyshormonogenesis 6 (TDH6)
FANCC Fanconi anemia, complementation 9q22.32 3(3) 95.98 Fanconi anemia, complementation AR 227645
group C group C
FLNC Filamin C 7q32.1 3(3) 96.4. Myofibrillar myopathy, Distal myopa- AD 6095243
thy 4 614065
GTFzI General transcription factor ITi 7qiL.23 33 (144) 99.67 Williams-Beuren syndrome critical re- AD 194050
gion, responsible for autism spectrum
disorders
HERC:2 HECT and RLD domain containing 15QI3.1 4(a);  47(a7); 95.04; 97.31; Juvenile development and fertility 2 AD? 227220
E3 ubiquitin protein ligase 2 1(1); 34(34); 96.12; 97.07; (jdf2), skin/hair/eye pigmentation
6(103) 99.61
KRT81 and Keratin 81 and keratin 86 12q3.13 4(4) 97.72 Monilethrix AD 158000
KRT86
NCF1 Neutrophil cytosolic factor 1 7quL.23 153(144) 99.67 Chronic granulomatous disease AR 233700
NQO:2 NRH:quinone oxidoreductase-2 6p25.2 2(1.) 96.95 Breast cancer - 114480
OCLN Occludin 5q13.2 24(79) 99.67 Band-like calcification with sim- AR 251290
plified gyration and polymicrogyria
(BLCPMG)
PLEKHM1 Pleckstrin  homology ~ domain- 17q21L.31 3(3) 95.79 Osteopetrosis, autosomal recessive 6 AR 611497
containing  protein, family M,
member 1
PRODH Proline dehydrogenase 22qIL.21 12(23); 2(2) 95.83; 96.37 Hyperprolinemia type 1; Schizophrenia AD 2395005
600850
RANBPz RAN binding protein 2 2q12.3 sa(s2);  s2(s2); 97.59; 97.62; Acute  necrotizing  encephalopathy AD 608033
52(52) 97:67 (ANEx)
RHCE and Rh blood group, CcEe antigens 1p36.11 58(63) and s57(61) 98.07 RH-null disease AD 268150
RHD
RTN4R Reticulon 4 receptor 22qL.21 6(28) 95.84 Susceptibility to schizophrenia AD 181500
SBDS Shwachman-Bodian-Diamond 7qIL21 8(46) 96.77 Shwachman-Bodian-Diamond ~ syn- AR 260400
syndrome drome; Paragangliomas 5
SDHA Succinate dehydrogenase, 5p1s.33 0.5(s5); 21(24) 96.18; 95.65 Leigh syndrome AR 256000
SORD Sorbitol dehydrogenase 15q2LI 4(a); 13(18); 95.07;  97.31; Deficiency in a family with congenital N/A N/A
17(25) 97.86 cataracts
SPECCIL Sperm antigen with calponin homol- 22qI1.23 5(5); 5(5) 97.06; 96.91 Oblique facial clefting-1 (OBLFCr) AD 600251
ogy and coiled-coil domains 1-like
SPTLCr Serine palmitoyltransferase, long- 9qQ22.31 (1) 96.68 Neuropathy, hereditary sensory and au- AD 162400
chain base unit 1 tonomic, type I, severe
STATsB Signal transducer and activator of 17Q21.2 4(s) 97.4 Growth hormone insensitivity with im- AR 245590
transcription sB munodeficiency
TAF1 TAF1 RNA polymerase II, TATA box Xqu.x 3(3) 99.84 Dystonia 3, Torsion, X-linked (DYT3) X-linked 314250
binding protein (TBP)-associated fac-
tor, 2s0kDa)
TMLHE Trimethyllysine hydroxylase, epsilon Xq28 16(s1); 1(1) 99.92; 96.06 New error of carnitine metabolism X-linked N/A
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immune 9 hematogical 6
developmental 2

infection 8

cardiovascular 20

metabolic 14

chemical dependency 4

neurological 11
reproduction 6

psychiatric 14
other/unknown 17

pharmacogenomic 7

Figure 3.3: Disease classes among the genes intersecting with the IP-LCRs found in Genetic Association Database
among entries associated with the genes (field Association(Y/N) equal to'Y’), and harboured by potential NAHR-
mediated inversions. Source: Dittwald et al. (2013b).
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BRAIN - an algorithm for eftective

calculation of aggregated isotopic
distribution

4.1 ORIGINAL BRAIN ALGORITHM

In Chapter 1, we already introduced several representations of the molecular isotopic distri-
butions, as well as the corresponding notation. Recall, that by (v, w, z,y, z), we would
represent the molecule of a chemical formula C, H,, N, O, S, i.e. composed of v carbon, w
hydrogen, x nitrogen, y oxygen, and z sulphur atoms. The number of stable isotopes for
these five atoms equals two (C, H, N), three (O), or four (S). The elemental distribution in
normal terrestial matter according to the IUPAC 1997 standard (Rosman and Taylor, 1997)
is shown in Table 4.r". Moreover, to calculate the mass (M, on0) and probability (F,on,) for
monoisotopic variant of £, one can use Equation (r.1) and Equation (1.2), respectively. The
average mass of £ (M) can be calculated by the closed formula from Equation (1.3).

The aggregated isotopic distribution merges variants with the same number of neutrons.
The aggregated variants are indexed from 0, and the j-th aggregated variant refers to the vari-
ant with j additional neutrons in comparison to monoisotopic variant.

'In this thesis the calculations are performed for the elemental distribution that are equal or similar to the
values from the Table 4.1.
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Table 4.1: List of the stable isotopes for carbon, hydrogen, nitrogen, oxygen, and sulphur based on I[UPAC 1997 stan-
dard (Rosman and Taylor, 1997). Source: (Claesen et al., 2012).

Isotope Mass (ma/u)  Abundance (%) Isotope  Mass(ma/u) Abundance (%)

2C 12.0000000000 98.93 60 15.9949146 99.757
BC 13.0033548378 1.07 170 16.9991312 0.038
TH 1.0078250321 99.988s B0 17.9991603 0.205§
’H 2.0141017780 0.0115 325 31.97207070 94.93
TN 14.0030740052 99.632 338 32.97145843 0.76
N 15.0001088984 0.368 g 33.96786665 4.29

368 35.96708062 0.02

By ¢; we will denote a probability of j-th aggregated isotopic variant of the molecule &,
which can be calculated as:
q; = ijk (4.1)
k

and the center-mass (i.e. expected value) for j-th isotopic variant is defined as:

B(m,) = i — 2o MakPst (42)

Zk Pjk

The mj, and pjj, are, respectively, masses and probabilities of the fine variants (indexed by
k) with j additional neutrons on comparison to the monoisotopic variant. Of note, the de-
nominator — from Equation (4.1) — is equal to g;.

In case of carbon dioxide, (COy; £(1, 0, 2, 0, 0)), we consider six aggregated variants with
0 — 5 additional neutrons. These are (we distinguish between any two isotopic fine vari-
ants as long as they are composed of different number of particular isotopes, i.e. we do not
differentiate between isoforms):

e monoisotopic variant composed of RC160160),

e variant with 1 additional neutron composed of BOO60), and 2C0Y7 O,

e variant with 2 additional neutrons composed of BOOITO, 120160180,
and 2C7OY 0,

e variant with 3 additional neutrons composed of BOOBO, BC17O70,

and 12C1"O80;
e variant with 4 additional neutrons composed of BOTOBO, and 2CO180;

e variant with 5 additional neutrons composed of *C¥O*0.
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Recall, in Chapter 1 we introduced the notation for isotopic masses (Mc,, - .., Mgyy),
and corresponding probabilities, denoted as Pr,,, . . ., Ps,,. Using these elemental isotopic

distributions for the monoisotopic variant, we have that ¢y = po1 = Pcy, P(%w. For ¢1, we

should consider the sumaric probabilities of two fine peaks, BOYO60, and PCO7O.
For the first of them (k = 1) B¥C1°0¥%0, p;; = PC12P(%16- For the second fine peak (k =
2) 2C10Y0, p1y = 2P¢,,Po,sPo,,- As we ignore the atoms order, this fine variant is
equivalent to 2170160, and that is why multiplication factor 2 is included in the formula.
Finally, for all aggregated variants we obtain the following equations:

w0 = Pon,P5,, (4.3)
¢ = Po,Ph, +2Pc,PoPo.,,
@ = Pc,P3. +2Pc,PoFPo, + 2Pc,,Po,FPo,,
g3 = Pe,P3_ +2Pc,,Po,Po,, +2Pc,,Po,, Poy,
a1 = Po,P5, + 2P0, Po,, Po,
5 = FPo P 518
In case of the center-masses, we have mg; = M¢,, +2Mp,, for amonoisotopic peak. For one

additional neutronmy; = Mo,, +2Mp,,, and my = Me,, + Mo, +Mo,,. Thus,m; =

’%. This example can be continued further for the higher neutron numbers.

Our aim is to effectively calculate both ¢; and 7. Here, we used the polynomial expansion
method from (Rockwood, 1995). Let us first consider the following generating function:

Q(l;v,w,x,y,z) = (PCHIO + Pclsll)v

(P, 1° + Py, I)"

(Prny I’ 4 Py IY)°

(Po,I° + Po,. I' + Po, I?)’

(PsyI° + Py I' + Pgy, I + P, I*)”

={Qc(D)}" x{Qu(I)}* x {Qn(1)}* x {Qo(1)}¥ x {Qs(1)}* (4.4)

Furthermore, we will use also the shorter form of the previous equation:

X
X
X
X

(4.5)

Qv w,2,y,2) = {Qc (1)}’ x {Qu (1)} x {Qn (1)} x {Qo(1)} x {Qs(1)}7,

with Qc(I) = (Poy, I° + Poy,I') being an elemental polynomial for carbon, and Q (1), . . .
(Qs(I) defined analogously for other elements. The polynomial Q(/; v, w,z,y, z) can be
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also written in its standard form:
QUiv,w,z,y,2) =Y gl (4.6)
=0

wheren = v + w + x 4 2y + 42 is a maximal number of additional neutrons. The coefhi-
cients qo, g1, G2, - - . in Equation (4.6) correspond to the probabilities of aggregated isotopic
variants, denoted by the same symbols in Equation (4.1). Indeed, in case of carbon dioxide,
we obtain:

(4.7)
Q(1;1,0,0,2,0) = (Pe,,I° + Py, 1Y) x (Po, I° 4 Poy,I' + Po, I?)?
= (Pcy, P53, )1+ (Pey, P, + 2Pcy, Poy Poy,) I' +
(Pey, P3,. + 2Pc,, Po, Poy, + 2Pc,, Po, Poy.) I” +
(Peyy P3,. + 2Pcyy Po,s Poys + 2Pcy, oy, Poy) IP +
(Pey,P5,, + 2Py, Po,, Poy) I + (P, Pa,,) IP

5
=0

which is consistent with Equation (4.3). Therefore, to obtain g;, it is sufficient to effectively
calculate coefficient near [7 in the polynomial Q(I; v, w, z, y, z).

As already mentioned, this polynomial expansion method was applied by Alan L. Rock-
wood (Rockwood, 1995). His approach to evaluation of this function involved Fast Fourier
Transform (Rockwood, 1995; Rockwood et al., 1995, 1996; Rockwood and Van Orden, 1996)
(see also (Valkenborg et al,, 2012)). The main advantage of this method is that after FFT,
the convolution of the two vectors (which is conventionally done to perform polynomials
multiplication) is replaced by multiplication of the coordinates. Finally, the inverse FFT is
calculated and normalized. Here, we will show the alternative, algebraic approach to calcu-
late the coefficients in Q(I;v, w, z,y, z), that is easy to be implemented. In addition, in
Chapter s, we would also present some additional improvements that profit from its iterative
nature.

ALGEBRAIC METHOD TO CALCULATE AGGREGATED ISOTOPIC PROBABILITIES

Let us denote a multiset of roots of polynomial P by roots(P). From Viete’s formulas, we
know the relationship between the coefficients of polynomial P(x) = Z?:o ¢;j2’ and the
symmetric polynomials over roots(P) = {1, ..., z,} C Z.

48



Symmetric polynomials

An j-th symmetric polynomial over the set of variables x1,...,z,, denoted as
e;j(z1,...,xy), or €j, when the variables 1, . . ., ,, are known from the context, is
defined as a sum of all products of length j of the subsets of x1, . . . , x,,. Namely,

eo = eg(xy,...,x,) =1

n
e = el(:cl,...,xn):Zxk
k=1

n

en = ep(x1,..., 1) :Ha:k

k=1

Viete’s formulas

The Viete’s formulas for polynomial P (that result from its product form P(z) =
qn(x — x1) ... (x — ,)) are then as follows:

@ = (=1)"gnen (4.8)
qr = (_]-)n_anen—k
dn—1 = —(gn€1.

Unfortunately, it is not trivial to calculate the symmetric polynomials. However, there
exist also another set of symmetric polynomials — denoted as ¢; (21, . . ., Z,,), or ¢; when the
variables are known from the context — where j-th polynomial is defined as a sum of j-th
powers of T1, ..., Tp, Le.:

;= dj(x1,...,x,) = in
k=1
If we know 1, . .., Ty, it is then very easy to quickly calculate ¢; for any j. The Newton-
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Girard identities (Séroul, 2000) provide the transformation from ey, ..., e, t0 @1, ..., @p:

e = ¢1 (4.9)
€r = %(elﬁbl — ¢2)
€3 = %(62% — €102 + ¢3)

Alternatively, from Equation (4.8) we have:

en = ()L (4.10)
Gn
n—k 4k
En—k — (—1) k1
" an
gn—1
ep = — .
Gn

By combining Equation (4.9) and Equation (4.10), we obtain:

gn—
- = —¢1 (4.11)
Gn
dn—2 1 dn—-1
= —=( &1+ ¢2)
In 2" qn
Gn— L, Gn- Gn—
2= (P2 + gy + ¢)
In 3" n In

and multiplying all above equations by ¢, gives us:

-1 = —qur (4.12)
1

Gn—2 = _§(Qn—1¢1 + Qn¢2)
1

Gn-3 = —5(%—2(151 + G192 + G0 ®3)

Of note, Equation (4.12) enables the iterative calculation of the coefficients g; starting from
the heaviest isotopic aggregated variants, while for a practical application it is much more
useful to start from the lightest ones.
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Let us now replace polynomial P by the mirror polynomial P = Z?:o ¢n—;r7, and use
the simple algebraic fact that roots(P) = {x',... '} (where x1, ..., , are roots of

’rrn
P). First, we notice that

¢j($1_17"'>$7:1):¢—j<$la---axn):¢—j' (4.13)

For simplification of notation, we introduce ¢, = ¢_;. Then, by applying Equation (4.12)
for polynomial P, we obtain:

@ = —q1 (4.14)
1
Q@ = —5((]1% + qot2)
1
3 = —g((_m/}l + QP2 + qois)
or, in a more compact form:
1 J
U="5 > gt (4.15)
=1

Recall, that ¢/ is a sum of (—[)-powers of elements of roots(Q(I; v, w, z,y, 2)).

CALCULATING COEFFICIENTS 1))}

We observe that Equation (4.15) uses the coefficients 1); for j = 0, 1,2, . ... We will show on
below that 1), can be easily calculated for any j. First, notice that for any b € R, the value
b7 can be calculated by two simple ways:

a) from the closed formula b7 = exp(log(b™7)) = exp(—7j x log(b)),

b) iteratively, using previously calculated value b=U~Y, namely b7 = =150 ~1).

The method from a) allows to calculate b7 in a constant time, while the method from b)
allows to calculate b7 in a linear time O(j). However, when all coefficients from the range
b,b%, ..., b have to be calculated anyway, the linear time cannot be beaten. From Equa-
tion (4.5) we see that the multiset roots(Q(I; v, w, .y, z)) is equal to the sum of multisets
roots({Qc(1)}"), roots({Qu(I)}*), roots({Qn(I)}*), roots({Qo(I)}Y), and

roots({Qs(I)}?). Of note, the polynomials Q¢(1), Qp (), and Q v (1) arelinear, and their

roots (denoted by ¢, 7, and v, respectively) can be obtained from the equations:



The polynomial Qo (1) is quadratic, and its two complex conjugates roots ro, 7o can be
obtained as:

_PO17 + \/P(%N - 4P016P018
2P0, '

ro,To =

Finally, the roots of Qs(I) can be calculated either by closed quartic formulas for the roots
of fourth order polynomial ((Shmakov, 2011)) or by numerical approximations. We would
obtain two pairs of complex conjugates: (rs 1, 7s1) and (752, Ts2). Let us define 7o q,; =
(To)_j + (fo)_j and rSallj = (7’571)_j + (fS,l)_j + (7’572)_j + (775,2)_]‘. It should be

noted that
v

roots({Qc(I)}") = {fa, -~}

In general, raising the polynomial P to the power j causes thatin roots({ P}?) each element
of roots(P) is repeated j times. Finally, from definition of ¢/; we obtain:

Y =v(re)  Fwlry) T+ 2(ry) T+ y(rown) + 2(rsan),

which gives us the formula for 1); using only the roots of elemental polynomials Q¢ (1), . . .,
Qs(I). Let us consider complex conjugates 2 = a + ib = |z|(cos¢(z) + isinp(z))
and Z = a — ib = |z|(cos ¢(z) — isin(z)), where |z| and p(z) are the modulus and
argument of z, respectively. For n € Z, we can apply de Moivre’s formula 2 = (a+1ib)" =
|z|™(cos np(z) + isinnp(z)). As a result we obtain:

2"+ 2" = 2|2|" cos np(z). (4.16)

Therefore, for oxygen and sulphur we do not have to raise complex numbers to the power to
obtain the values of 70 411, and s q11;.

For the chemical elements with corresponding elemental polynomial has an order higher
than four there are no closed form solutions for roots (Abel-Rufhini theorem (Jacobson, 2007)).
However, the roots can be approximated numerically (e.g. by the Newton-Raphson me-
thod (Press etal., 2007)). Moreover, as we will show in Chapter s, there is no need to calculate
the roots explicitly to obtain the values of 1);.

CALCULATING COEFFICIENTS q;

Using Equation (4.15), we can calculate coefficients qo, q1, . . . iteratively for each molecule
& with a chemical formula C, H,,N,O,S.. Namely, we start from gy that is equal to the
probability of the monoisotopic variant of &, for which we already shown the closed form
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solution, cf. Equation (1.2). Then we obtain from Equation (4.15) formulas forfor g1, go, . . .,
namely:

Q= —qo XU
1
@ = —5(% X 2+ q1 X 1)
1
3 = —g(% X Y3+ @1 X Y2+ go X 13)
(4.17)
Therefore, to calculate g;, we need to know the values of qo, . . ., ¢;—1 and 1, . . ., 9; (which
needs the memory of size O(j)), and perform O(k) summations and multiplications for
k=0,...,J. Therefore, if we know ¢y_; _;, then the computational time to obtain g is

©(5?%). Asall the coefficients 1)) ; can be calculated in linear time (see the previous sub-
section), the total computation time to obtain g; is ©(j?). The Equation (4.15) is based on
algebraic identities, therefore the results are exact if the polynomial roots are known. How-
ever, the obtained results might involve numerical errors, e.g. if aggregated probabilities are
very small. Anyway, we will show later that for many practical applications, the algorithm
reveal convincing accuracy.

ALGEBRAIC METHOD TO CALCULATE CENTER-MASSES

Let us remind that the center-mass is defined by Equation (4.2). As already mentioned, the
denominator in this equation is simply the aggregated isotopic probability, for which we have
already shown the effective method of computation. Here, we concentrate on the task how
to calculate numerator of Equation (4.2), namely > ©, m;pjy foragiven j € N.

Let us consider a polynomial:

k J

J

Obrtaining ) -, mx.p;x is then an equivalent for calculating the coefficients ¢ in U (15 v, w, @, y, 2).
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For the sake of clarity, we introduce the new polynomial:

Q"(I, K;v,w,x,y, 2)

(Poy, KMo I® + Po KMo )"

(P, KM [0 + Py, KM 1)

(P KN4 [0 + Py KMV T1)°

(Po, KMo 0 + Po,, KMo ' + Py, KK Mows 17)*

(Poyy KMs52 10 + Pgy KMsss [' 4 P, KMs31 [? + Pg, KMo )" (4.19)

X X X X

which can be alternatively expressed by:
Q*(‘[?K;U?w?nyWZ) EZ (ijkajk> ]j (4.2.0)
i k

We differentiate Q* (1, K; v, w, x,y, 2), using Equation (4.20), with respect to K, and then
set K = 1:

(4.21)

0
a_KQ*([7K;U7waxayaz)

K=1 ; K=1

J

= Z <ijk:pjk:> U =U(L;v,w,x,y,z2)

J k

= 2. (Z mjkpijmjk_1> r
k

where the last equation follows from Equation (4.19). On the other hand, we might perform
the same sequence of operations, using initially the Equation (4.19) and applying the formula
of the differentiation the product - first equation follows from Equation (4.21):

0
UU;U,U%I,?J,Z) = a7 *(I7K;U7w7$ayaz>
0K 1
= vWe()Q(L;v—1,w,z,y,z) + wWg(DQ(I;v,w —1,2,y, 2)
+ ZL‘WN(I)Q(I7U,UJ,IE - 1ay7z) +yWO(I)Q(I7an7x7y - 172)
+

2We(DHQ(I;v,w,z,y,z— 1)

(4.22)

where Wc(f) == P012M012 + P013M013]1, and WH<]), WN(I), WO<I), Ws(f) are de-
fined analogously.

Thus, U(1;v,w, x,y, 2) isasum of five polynomials, each being a product of polynomials
for which the roots can be obtained, and therefore can be calculated using formula analogous
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Table 4.2: Ten biomolecules previously used in (Olson and Yergey, 2009), for which the performance of the selected

algorithms for isotope distribution calculation has been tested. Table source: Claesen et al. (2012)

No. Common Name

Molecular Formula

Mass (Da)

Monoisotopic

Average

Angiotensin II
Bovine insulin
Human insulin

Human intrinsic factor
Bovine serum albumin
Human Na/K ATPase
Renal isoform, subunit
(8) Human ATP

binding cassette protein
(9) Human intrinsic factor
-hydroxocobalamin
receptor
Human dynein

)
(2)
(3)
(4) Human myoglobin
(s)
(6)
(7)

heavy chain

Cs0H71N13012
C254H377Ng507556
Cs20Hg17N139014758
Cr44H1924N210022255
C2023H3208 N5240619.520

Ca934Ha615N7810897.539
Cs047Hg014N1338014955438

Cys74H 13378 N2092 02392577

Ci7600H26474 Na75205486 5197

C23832H37816 N6528 070315170

1045.534515
5729.600867
11616.849350
16812.954775
45387.007033

66389.862474

112823.879546

186386.799265

398470.366994

533403.475090

1046.181107
5733.510759
1162.4.448751
16823.321352
45415.679370

66432.455561
112895.125932

186506.052594

398722.972484

$33735.214651

to Equation (4.15) (summing coefficients of polynomials can be easily done trough adding
vectors by coordinates).

The method introduced here to calculate aggregated isotopic distribution is called BRAIN.
It should be noted that although its core Equation (4.15) indeed presents the recursive rela-
tionship between coefhicients, they are calculated iteratively, i.e. one after another.

4.2 COMPARISON WITH OTHER PACKAGES

For the comparison, we use 10 biomolecules from Olson and Yergey (2009), that are pre-
sented in Table 4.2. Selected isotopic distribution are also plotted in Figure 4.1.

The performance was initially tested (Claesen et al., 2012) for the following algorithms:
e Emass — the probabilities and center-mass are calculated using super atoms (idea similar
to exponentiation by squaring) which are systematically updated (convoluted) to ob-

tain the investigated molecules; some pruning can be applied during this process (Rock-
wood and Haimi, 2006);

e Mercury — uses FFT approach to convolute peaks on a grid (Rockwood et al., 1995);
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Figure 4.1: Isotopic distribution for three biomolecules (x-axes correspond to peak index, starting from monoiso-
topic variant, y-axes correspond to probabilities): (A) Angiotensin Il (C59 H71 N13012), (B) Bovine serum albumin
(C2934H 4615 N781 Og97539), (C) Human dynein heavy chain (Ca3g32 H37816 Ne528 O7031.5170)-

e NeutronCluster — uses a bunch of binomial formulas to calculate abundances, and a
concept of simplified average mass of the additional neutrons to obtain center-masses (Ol
son and Yergey, 2009);

o IsoPro — uses multinomial expansion (Yergey, 1983);

o IsoDalton — calculates isotopic fine structure using dynamic programming, the prun-
ing is reducing the list of the fine variants while the calculation is progressing (Snider,
2007);

e BRAIN (MATLAB implementation).

As the criterion to decide about the accuracy of the returned values, we used the aver-
age mass calculated by two methods and then compared. Namely, the theoretical average
mass from the closed formula presented in Equation (1.3) was compared against the weighted
mean Y ; 4jmy;> which express exactly the same value (of course, when only a certain part
of the distribution is computed, this is not exactly the same, but if the distribution is suffi-
ciently covered, the difference is expected to be very tiny). When )~ gjm; ~ M for different
molecules, the distribution is claimed to be accurately calculated.

In this assessment, both BRAIN and Emass returned the very accurate values of weighted
mean, while the Mercury and NeutronCluster returned greater error. IsoPro and IsoDalton,
beside low accuracy, were also very inefficient and only selected molecules from Table 4.2 (i.e.
molecules 1-7, and 1-5, respectively) were tested. It should be mentioned at this point, that in
an original BRAIN article (Claesen et al., 2012) we proposed a simple heuristic for estimating
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a number of peaks sufficient to cover the most informative part of the isotope distribution
with the following formula:

Nstop = max(2 X [M - Mmono—l 5 5)7 (4~2‘3)

The idea behind this equation is the assumption that the distribution has a bell-shape curve
and taking this distribution symmetrically around its expected value should capture all in-
formative peaks. The time performance — number of peaks set according to Equation (4.23)
— for BRAIN gave around o.04 sec for molecules (1-4) up to around 0.4 sec for the heavies
molecule 10 (tests run on Intel Core 2 Duo processor with 2.26 GHz and 4 GB RAM). The
full set of results conducted by Dr. Jirgen Claesen is presented in (Claesen et al., 2012). As a
follow-up of this article, Dr. Sebastian Bocker presented an additional comparison with SIR-
IUS (a framework for de novo identification of metabolites, that employs the isotope pattern
analysis (Bocker et al., 2009)) and BRAIN R Bioconductor package (see Chapter 6), where
he pointed out that SIRIUS is as accurate as BRAIN and works even faster than BRAIN R
implementation (however, the author admitted that this was not surprising due to the fact
that SIRIUS was written in Java, i.e. a compiled language).

As correctly observed by Fernandez-de Cossio Diaz and Fernandez-de Cossio (2012), the
stopping criterion from Equation (4.23) does not work well for the small molecules (to few
peaks are computed). Therefore we suggested in Hu et al. (2013) to slightly modify this for-
mula:

Ngop = Max(2 X [M — Myono], 50). (4.24)

Simply, the only change is to increase the minimal number of computed peaks from 5 to 50.
Of course, another stopping criteria can be also applied. For example, as discussed in Claesen
etal. (2012) and Hu et al. (2013), the iterative procedure in BRAIN can be stopped when the
cumulative distribution would reach the certain threshold, e.g. 99.9%.

Of note, Equation (4.23) is simply a sum of polynomial products, so can be also calcu-
lated via FFT. Indeed, Fernandez-de Cossio Diaz and Fernandez-de Cossio (2012) provided
very efhicient calculation of center-masses as a part of ISOTOPICA package implemented in
C# (referred further as FTMC), that outperformed Bioconductor BRAIN implementation.
However, as C# is an compiled language, and R is an interpreted language, we benchmarked
also a C++ implementation of BRAIN written by Han Hu, called useBRAIN (available on-
line at https://code.google.com/p/brain-isotopic-distribution/), thatis also
suitable for batch processing®. In Hu et al. (2013) we made a comparison between FTMC
and useBRAIN and showed that the latter software can work faster for several tests (cf. Fig-

*This implementation works for all chemical elements, as it uses efficient way to calculate power root sums
without calculating the roots explicitly. This method, called [RO] improvement, will be presented in the next
chapter as a part of BRAIN 2.0 algorithm.
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Figure 4.2: Comparison between FTMC (default number of computer peaks) and C++ implementation (the latter

run for the number of peaks according to Equation (4.24) of the BRAIN for processing 10 molecules from averagine
model with corresponding masses marked on x-axes. (A) Average (from 100 runs) time of processing a single molecule.
(B) Elapsed time (divided by 100) from the batch-processing of the file with 100 the same molecules. In addition, we
show the BRAIN in C++ for the peaks range that starts at the monoisotopic variants and ends when the coverage ex-
ceeds 99.9% (this number is precalculated using Bioconductor BRIAN package) - this heuristic is denoted as CM 99.9%.
Source: Hu et al. (2013). The comparison code is available onlineat http: //www.mimuw.edu.pl/~pd219416/

AnChemComment/

ure4.2). It should be underlined that the algorithm performance depends also on different
stop criteria, which usually result in different numbers of the calculated peaks.
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BRAIN 2.0 — improvements to the original
BRAIN

As already mentioned above, the original BRAIN calculates iteratively the qo, g1, . . . coeth-
cients. In this section, we show that for the molecules composed of five chemical elements,
C, H, N, O and S, the improvements in calculating probabilities of the aggregated isotopic
variants, both involving speed and memory, can be applied. In addition, the extension of
these methods for the other chemical elements is also discussed. Of note, the application of
the improvements for calculating center-masses needs additional investigation.

S.I IMPROVEMENTS PRESENTATION

RECURRENCE OF CONSTANT LENGTH [RCL] IMPROVEMENT  Equation (4.15) gives a for-
mula for calculating ¢;, namely the probability of the j-th aggregated isotopic variant. To this
aim, we calculate the standard scalar product of vectors (qo, . . ., ¢j—1) and (¢}, .. ., ¢p). For
large 7, we would like to choose the natural index d such that 1 < d < j, and trimming the
sum in Equation (4.15) to the length d will give us the coefficient ¢; that is approximating g;
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with a small error. First, we will split Equation (4.15) into two parts:

J
%:—%Xﬁ”w Zﬁﬂ%+§:%ﬂm (s.1)
=1

I=d+1
::——E:%z¢rﬂ'§:lbl%
N JiZan
QJ (37"‘7707'
Then, we estimate |g; — ¢;|:
g — q;] = |_ = Z qj-11] (5-2)
JZan
Z:—fz:%zMW<—§:hbﬂM
=d+1 Tz d+1
= = Z g4 < - Z |4
JZah e
j—d—1
< Y———  max < max ,
- j Ze{d+1,.“,j}|¢)l|“Ze{dﬂ,...,j}'q/}l|

-----

On the other hand, from Equation (4.16) we can estimate

| = v(re)™ +wrg)™ + z(ry) ™ + y(ro.a;) + 2(rsau;)]
< vl(re) |+ wl(ra) |+ 2|(rn) |+ yl(ro.as)| + 2(rs.aig)l- (5:3)

Figure 5.1(A) shows the descending trends of |(r¢) ™|, |(ru) ™|, [(r5) 7], |(ro.au;)|, and
|(7s,ai1,7)|> while we increase j. Of course, the exact value of |1);| also depends on numbers
of particular atoms, i.e. v, w,x,¥, 2, therefore for a given class of molecules, additional in-
vestigation should be performed.

Here, we will concentrate on proteins, where the proportions between these numbers are
relatively constant. We will use four heaviest biomolecules from Table 4.2, i.e. molecules
with labels 7 — 10 (our improvement is aimed for the relatively big molecules, therefore for
molecules 1-6 we suggest using the original BRAIN). Figure s5.1(B) presents that indeed, also
the value of |¢/| reveals the trend decreasing to 0, therefore if d is big enough, the value of
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MAaXje{d+1,..j} ||, and as a consequence the value of |¢; — ¢;| should be sufficiently small.
For example, for d = 10 and four analyzed biomolecules we have:

la; — qjl

< max
le{d+1,....5

}Wz’ < |t1o] < 107%

LATE STARTING PoINT [LSP] IMPROVEMENT The other characteristics of the BRAIN
algorithm is that calculations start from the monoisotopic variant, i.e. go. However, this can
be treated as a weakness of the method, as interesting peaks (i.e. big enough) might start
much later. For example, the following method from Rockwood et al. (1995) can be applied

to narrow the range of the investigated peaks:

1. Calculate o, i.e. the standard deviation of the mass distribution, from the closed for-

mula:

o=0c+0g+on+00o+o0g,

where oc = PCHJM%12 + PC13M(2}13 - (P012M012 + PCBMCB)z, and OH, ..

are calculated analogously.
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2. Calculate N, i.e. number of investigated peaks, as:

N = [/ (1+0%)], (5-5)

where o is a constant (typically o = 10; in (Fernandez-de Cossio Diaz and Fernandez-
de Cossio, 2012) av = 16 is used). For simplicity, we assume further N is odd; in cases
where NV is even, the tiny adjustments are needed.

3. Calculate the middle point 1,44 of the investigated distribution to be the closest one
to the molecule average mass.

N
4. Calculate ngqr and Ngop such that Ngar = Nmidare — |5 | and Ngop = Nmiddie +

13-

An interesting observation is that if we use gy multiplied by the constant denoted 7y and
then calculate subsequent coefficients from Equation (4.15), then the subsequent coefficients
will be also multiplied by . However, the ratios between consecutive coefficients remain
unaffected, i.e. will be equal to 3—;, g—f, .... In other words, we can start our iterative formula
from any arbitrary set number (e.g. from 1), and obtain true ratios of consecutive probabil-
ities of aggregated variants. In practical applications, the peak heights (probability of aggre-
gated variant can be also referred as the peak heights) are often normalized, e.g. by dividing
by the maximal peak height. Therefore, there is not much loss of information if we con-
sider only probabilities ratios (which we would alternatively call peak ratios) instead of the
actual probabilities. Moreover, we can approximate the values of the probabilities from the
normalized peak heights.

The very interesting question is whether it is possible to start the iteration in Equation (4.15)
later than from the monoisotopic variant. We assume there might be some burn-in period

needed to retrieve the original values of the peaks ratios, and propose the following heuristic:
1. choose the first (72514,+) and the last index (725¢0p);

2. depending on 74y, choose the appropriate value of the burn-in period 1 > b >

Nstarts
3. using Equation (4.15), and setting qo, . . ., gp—1 to 0 and g to 1, calculate coefficients
av, - - - s Astarty - - - 5 Astops
4. calculate the ratios of the consecutive coefficients Zterttl - dotor=1
Qstart Qstop
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Root OMITTING [RO] IMPROVEMENT In the original BRAIN, the sum of the roots’
powers for each elemental polynomial was calculated using the explicitly obtained (from the
closed formulae or numerically approximated) values of the roots. However, we would show
here that using once again the Newton-Girard identities, it is possible to solve this problem
easier.

Let us consider sulphur, a relatively complicated example. Of note, Equation (4.15) can be
applied to elemental polynomial ) 5(7) in the following manner:

Psyy = —Psyrsan (5.6)
1
Ps,, = —§(P5337’5,au,1 + Psyyrs.ai2)
1
0=PFPs,, = _g(PSMTS,all,l + Psyursanz + Psys.an3)
1
Ps,s = _Z<PSS4TS,CL”,2 + Psyy7sa11,3 + PssyTS.a1,4)
1
0=PFPs,, = —E(Ps367“s,azz,1 + Psyrsan2 + Psy,Ts a3

+ Psyrsaua + PsyyTsais)

For coefficients near I°, ..., I* ie. Ps,,,..., Ps,, the application of Equation (4.15) is
straightforward, which allows to retrieve iteratively the values of s a1, ..., 75au4. The
only non-trivial step is to realize that the identities remain true for the Ps,., Ps,, . .. coefh-
cients, which all are equal to 0. In general, we obtain:

0= Psy,,, = =~ (PsssTs,ain,(i—4) T PsgaTsait (i-2) + PsssTs.ait,i-1) + PssT's,11,1)

7
Therefore, it is also possible to iteratively calculate values of 75 411 5, 75,0116, - - - - Finally, the
iterative equation is as follows:

—1
Tsaili = —(Psya) ™ (PsysTs,atl,(i—1) T PosaTs,ai,(i—2) + P78 a1, (i-1))

It should be pointed out that using the analogous argumentation, the proposed method can
be applied to any chemical element.
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5.2 PERFORMANCE TESTS

To challenge the [RCL] and [LSP] improvements in practice (as already mentioned in the
previous Chapter, the [RO] improvement was already implemented in C++ by Han Hu
as a part of original BRAIN), we implemented them in the R programming language and
compared with the original algorithm, in which we inactivated the center-masses calcula-
tions to have computation times comparable. We performed a set of tests, for which we have
used again four heaviest biomolecules among those already used to benchmark the original
BRAIN (molecules 7-10 from Table 4.2). To check if the improvements do not seriously af-
fect the accuracy, we calculated the Pearson’s x? error statistic between isotopes ratios. More
precisely, this statistic is defined as:

Nstop (RJI o R]I-I)2

J=MNstart

(57)

where RJI. and RJU are the ratios between intensities of j-th and (j + 1)-th aggregated peak
obtained by original BRAIN and BRAIN 2.0 improvements being investigated, respectively.
Moreover, to set parameters d and b used in [RCL] and [LSP] improvements, we used
the following rule of thumb (that in particular is compatible with the observations while
exploring different values of these parameters for the molecules 7-10, cf. Figure s.2)

b=d=[log;o(Mmono) + 5] (5.8)
The assessments are as follows:

1. We compared the original BRAIN with [RCL] improvement. We run both algorithms
for the same number of N peaks (starting from the monoisotopic variant) as returned
by heuristic from Equation (4.23). The results presented in Table 5.2 show that while
the x? remains very small (so both algorithms return pretty the same vectors of isotopic
ratios), the [RCL] outperforms original BRAIN up to 2-fold speed up for the heaviest

molecule.

2. In the second assessment, the original BRAIN is tested against the [LSP] improve-
ment. In case of the first algorithm, the number of the computed peaks (recall, we
start from monoisotopic variant) was set according to Equation (4.23). For [LSP] im-
provement we used Equation (s.5) with ov = 10 to specify the index of the first (75¢4,¢)
and the last (n40p) peak used to obtain the peak ratios (additional b peaks preceding
this peak range needs to be computed according to the specificity of the [LSP] im-
provement), which indeed resulted in the better time performance (cf. Table s.3) for
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Table 5.1: The speed-up evaluation when both [RCL] and [LSP] improvements are enabled. Speed is measured in sec-

onds.
’ id H monoMass(Da) ‘ b ‘ d ‘ X2 speedBRAIN | speedBRrAIN2 | improvement
7 112824 I | 11 | 2.39€-13 0.00873 0.00473 1.85
8 186387 II | II | 9.79€-14 0.0138 0.0054 2.56
9 398470 I | | 5.02e14 0.0336 0.007 4.8
10 533403 o | | n87e14 0.0493 0.00766 6.43
this method.
3. Finally, we combined [RCL] and [LSP] improvements in a single assessment. The

number of peaks calculated for original BRAIN and improved versions were com-
puted analogously to the previous point. While we do not observe serious loss of
accuracy (in terms of the Pearson’s x?) in comparison with the original BRAIN, the
speed-up is larger than in any of the previous tests (cf. Table s.1).
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Applications of the BRAIN algorithm for

large-scale data analyses

6.1 THE BrocoNnpucTOR BRAIN PACKAGE

The BRAIN package is written in the R statistical language as a part of Bioconductor repos-
itory (Gentleman et al., 2004). The package provides the user a few functions, which as an
input get the chemical formula (a list with numbers of C, H, N, O, S):

e calculateMonoisotopicMass - calculates monoisotopic mass of the molecule from
Equation (r.1)

e calculateAverageMass — calculates average mass of the molecule from Equation (1.3)

e calculateIsotopicProbabilities — computes vector (qo, - . ., Gn,,,—1), of the
aggregated isotopic variants probabilities;

® useBRAIN — the main functionality of the package; this computes all what the afore-
mentioned functions offer plus a vector (mo, . . . , My,,,,—1) With center-masses of the
aggregated isotopic variants;

Recall that BRAIN computes isotopic distribution iteratively from the monoisotopic peak,
therefore functions calculateIsotopicProbabilities and useBRAIN use the 74y, in-
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dex, obtained from the input parameters. This index depends on one of the following stop
criteria (represented by the values of the parameter stop Option):

1. “nrPeaks” — number of peaks explicitly provided by the user — by default it is a simple
heuristic from Equation (4.23), computed by a function calculateNrPeaks, for the
number of peaks, where the monoisotopic peak is the first one, that should cover the
significant part of the isotopic distribution;

2. “toverage” — a fraction of coverage (value between 0 and 1) that should be covered by
a cumulative distribution function; the computations stop when the defined value is
reached;

3. “abundantEstim” — anumber of consecutive peaks that are not higher than the current
maximal peak; the computations stop when this criterion is satisfied.

In addition, the BRAIN offers a function getAtomsFromSeq, which takes as input the
sequence of amino acids and returns a list with numbers of C, H, N, O, and S. This function
can be useful in preprocessing step. The documentation of the package (a Reference Man-
ual and a package vignette containing examples of usage) is available at Bioconductor online
(http://www.bioconductor.org/packages/release/bioc/html/BRAIN.html), to-
gether with a source code.

6.2 HIGH-THROUGHPUT DATA PROCESSING

As already mentioned in the Introduction, the common masses assigned for the molecules
are e.g. the monoisotopic mass and the average mass, and these values can be referred to in
the databases when identification is done. For the small peptides, the monoisotopic peak is
relatively high in the aggregated isotopic distribution (cf. Figure 4.1(A)). However, when the
size of molecule increases, we observe a trend, where a bell-shaped distribution moves right
(ct. Figure 4.1(B)-(C)). More precisely, the shift between the most abundant aggregated peak
and the monoisotopic peek increases as well. As a result, for the large molecules, the mo-
noisotopic peak is usually expected to be very tiny. This might cause biases in the molecule
identification procedure. The average mass is estimated from the observed distribution, e.g.
by a simple weighted mean calculation. The other approach might be to estimate the monoi-
sotopic mass based on its dependence on the most abundant aggregated mass. To this aim, we
processed the Uniprot database (Yamamoto and McCloskey, 2012) and calculated aggregated
isotopic distributions for 52,589 cases with the monoisotopic masses smaller than 10° Da. We
analyzed the relationship between the most abundant aggregated mass and corresponding
monoisotopic mass, which occurred to be linear (cf. Figure 6.1(A)-(B)).
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Therefore, the following linear model was constructed giving the following formula:
Mono = 0.482 + 0.9994 X Mg, (6.1)

(M denotes most abundant peak mass) where both coefficients are statistically significant
(p-values < 2 x 107%). However, the residuals (for the same data as used to build the model)
spanned a range of £2 Da (cf. Figure 6.1(C)). This suggests that the further study needs to
be performed to improve the prediction (indeed, we are developing the hierarchical model
in order to receive smaller residuals — see also Chapter 8). On the other hand, this simple
case-study shows that the BRAIN package is suitable for a large-scale (high-throughput) data
processing (package version 1.4.0. was used and run on PC with two Intel(R) Core(TM)2
2.40GHz CPUs; total processing of the 52,589 proteins took approximately 8o minutes).

6.3 Lirip CENTRIFUGE

As already mentioned in Chapter 1, the mass spectrometry experiments process enormous
amount of information, which cause that the accurate data processing constitutes a bottle-
neck in various assays. Therefore, automated procedures supporting the experimental work-
flows are highly desired by the community. In this study, we will propose a classifier that
might help to distinguish lipids and peptides from a full scan mass spectra (i.e. when the full
mass information within a predefined range is returned by an instrument).

DATABASES

To retrieve the actual chemical formulas of peptides, we have used the Human Uniprot pro-
tein database (Yamamoto and McCloskey, 2012). The proteins were then in-silico tryptically
digested (no missed cleavages allowed). To this aim we have used the OrgMassSpecR package
(function Digest) from the R CRAN repository (http://cran.r-project.org/web/
packages/OrgMassSpecR/index.html). The motivation for digesting was to have pep-
tides and lipids masses comparable (the intact proteins are in general much heavier). The
lipids chemical formulas were extracted from the Lipid Maps gateway database (Fahy et al.,
2009).

For the further study, we limited the data to molecules with monoisotopic masses below
2,800 Da. This gave 263, 897 in silico tryptic digested peptides, and 6, 313 lipids. Of note,
the latter set can be further subdivided into eight lipid classes (as defined by Lipid Maps con-
sortium): fatty acyls (#913; FA), glycerolipids (#400; GL), glycerophospholipids (#1,415; GP),
sphingolipids (#1,167; SP), sterol lipids (#604; ST), prenol lipids (#442; PR), saccharolipids
(#76; SL), and polyketides (#1,296; PK); # tag indicates the number of items in each lipid class.
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The general outline of the study is presented in Figure 6.2, and will be further explained
in the following parts of this section.

MASS DEFECT

The basic concept we used in this study is based on the well known mass defect phenomenon.
More precisely, we wanted to use the tiny differences in fractional parts of masses between the
chemical elements for the classification purposes. Of note, the mass defect based approach
was used by (Kirchner et al., 2010) and (Bruce et al., 2006) when investigating a degree of
phosphorylation in proteins. To give an intuitive explanation of our reasoning let us consider
the molecules composed on C, H, N, O, and S, and take a look at its monoisotopic mass
fractional part, which equals:

e ( Da for carbon (by definition, as 1 Da = 1/12 of '2C' mass);
e (.007 Da for hydrogen;

e (.003 Da for nitrogen;

e 0.995 Da for oxygen;

e 0.972 Da for sulphur.

In a case of proteins and peptides, the specific structure of the molecule (chain of amino
acids) results in relatively well defined constraints between numbers of chemical elements.
The averagine, average peptide model (Senko et al., 1995a) based on the Protein Identification
Resource database, gives the following formula to describe these proportions:

C:H:N:0:5=4.9384:7.7583 :1.3577 : 1.4773 : 0.0417. (6.2)

From the averagine model we can see that for a given monoisotopic mass we can approx-
imate the amount of each atom and, using the elemental mass defects, we can predict the
overall mass defect of the monoisotopic mass. Of course, the proportions between amounts
of atoms in real molecules differ from the model. However, even with some margins allowed,
we can still conclude that for a given monoisotopic mass of the peptide, its fractional part can
take only a certain range of values. In case of lipids, the analogous fractional parts of mono-
isotopic masses can potentially differ — mostly because of different structural characteristics
of the molecule; in addition, lipids can also contain fluorine (F'), bromine (B7), phospho-
rus (P), chlorine (C1), sodium (N a), iodine (I), and potassium (K) atoms. We performed a
simple computational experiment, and for a monoisotopic masses between 740 and 750 Da
investigated the mass defect and placed values into appropriate bins. When the bin widths
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Figure 6.2: Schematic workflow of the lipid-vs.-peptide classifier construction, validation and application. Figure cour-
tesy: Dr. Anna Gambin
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Figure 6.3: The normalized histograms showing the proportions between lipids (blue) and in silico digested peptides (red)
for monoisotopic masses between 740 and 750 Da. The bin widths in panels (A), (B), (C) correspond to 1 Da, 0.1 Da, and
0.01 Da, respectively. (D) The monoisotopic mass distribution for the analyzed data set.

equal 1 Da, no discrimination is observed (cf. Figure 6.3(A)). However, when we decrease
the widths to 0.1 Da (cf.Figure 6.3(B)) or even to 0.01 Da (cf. Figure 6.3(C)), the more and
more visible trend is revealed — the fractional parts of the monoisotopic masses tend to occupy
different mass ranges.

FEATURE SETS

The natural extending of the mass defect idea is to use more information derived from aggre-
gated isotopic distributions and check its usefulness for the classification purposes. There-
fore, we used BRAIN to obrtain the first three aggregated peaks, i.e. their intensities (alterna-
tively called peak heights or the probabilities of the aggregated variants) and center-masses.
Then, we calculated the following values that would be further investigated as the decision-

75

750.0



making features:

® mass.1: center-mass of first isotope peak (i.e. monoisotopic mass);

® mass.2: center-mass of second isotope peak;

® mass.3: center-mass of third isotope peak;

® mass.frac.r: fractional part of center-mass of first isotope mass;

® mass.frac.z: fractional part of center-mass of second isotope peak;

® mass.frac.3: fractional part of center-mass of third isotope peak;

o mass.diff.2r: difference between second and first isotope center-masses;
o mass.diff-32: difference between third and second isotope center-masses;
® iso.ratio.21: ratio of intensities of second and first isotope peaks;

® iso.7atio.3r: ratio of intensities of third and first isotope peaks.

All but last two features depend on the center-masses. The last two features are isotopic
ratio of heights of the consecutive peaks. As already mentioned in Chapter s, in the real data
processing the normalization procedure is commonly used. Therefore, the fact that we con-
sider the peak height ratios instead of the peak heights does not affect the analysis strongly.
On the contrary, considering the peak height ratios eliminates from the analysis the multi-
plicative noise associated to the isotopic abundances.

CLASSIFIERS — IN SILICO STUDIES

Our aim is to produce a classifier applicable for the experimental MS data, which takes into
account both measurement noise and resolution limits. On the other hand, BRAIN models
the theoretical, aggregated isotopic distribution, i.e. both probabilities and center-masses are
modeled exactly in infinite resolution mode. Of note, lipid-vs.-peptide separation is straight-
forward for two dimensional plots — cf. Figure 6.4 for the ideal (no noise modeled) situation.

To mimic the experimental outputs, we artificially added the noise and resolution limita-
tions to the modeled data. In case of the center-masses, the inaccuracy origins mostly from
the resolution limits, which we simulated by assuming that the mass is measured only to a
given decimal digit. More precisely, we rounded center-masses obtained from BRAIN to k-
the decimal digits (k = 1, ..., 5) corresponding approximately to FTICR, Orbitrap, TOF,
ion trap and quadrupole instruments resolution, respectively. Of note, this simulates only
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Figure 6.4: The simple two-dimensional visualization of the analyzed datasets with lipids (blue) and in silico digested
peptides. The dimensions are (A) mass.diff.21 vs. mass.diff.32, and (B) mass.diff.21 vs. mass.frac.1

absolute mass errors, while for MS community the relative errors are often more informative.
Therefore, we approximated the resolution by ppm ranges (according to masses of consid-
ered molecules) for each rounding (see Table 6.1 header).

For intensities, we multiplied the original probabilities (i.e. before calculating the peak
ratios) by the Gaussian noise of mean 0 and standard deviation of 0.01, 0.1, 0.2, and 0.3.
Theoretically, these normal distributions can take non-positive values. However, the proba-
bility of such situation is so small (e.g. for (0, 0.3?) the probability of non-negative value
equals approximately 0.00043) that these cases were ignored in our experiments.

As a machine learning technique, operating on multidimensional data, we chose to use
random forest (RF) classifier from (Breiman, 2001).

Random forest (RF)

Random forest (RF) is a classifier based on a bunch of decision trees that are con-
structed on a randomly sampled (with replacements) training sets. For each of these
training sets, the tree is constructed, and RF makes a final decision by aggregating the
single decision trees answers.

We run RF on each of the 30 data sets (6 levels of resolution for center-masses and s levels
of noise; each combination possible). As a misclassification rate, we used out-of-bag measure
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(OOB) (Narsky and Porter, 2013).
Out-of-bag measure (OOB)

Out-of-bag measure is constructed while creating a set of decision trees in RF con-
struction. The single tree is constructed based on sampling with replacements, which
givesaround 1 — e™! ~ % of the original data as training set. The remaining data
(around %) are used as a test set to measure the misclassification error.

This measure is more informative when both classes are equally numerous (in other case
we can image a situation when one class constitutes 99% of the data; then the blind classifier
indicating always this class will have misclassification of 1% only), we sampled the subset of
6, 313 proteins (to check the stability of the classifier, we repeated this sampling procedure in
selected places, which was then mentioned explicitly). We obtained the misclassification of
0.15% for ideal input (no rounding/noise added) up to almost 1% for least accurate data (cf.
Table 6.1). In addition, we considered the reduced feature set, including only mass-derived
features (i.e. all features but iso.7atio.21 and iso.ratio.31). Of note, RF performs not much
worse as in case of the full feature set with higher (¢ > 0.1) normal noise modeled. On the
other hand, in this case we do not have to worry about modeling inaccuracy of the intensity
measurements.

Alternatively, to measure RF classifier performance we applied a 10-fold cross-validation
scheme (Table 6.2), which includes the following steps:

1. datasetdivided into 10 random (almost) equal parts; this is done for lipids and peptides
sets independently;

2. repeat 10 times the following procedure (i.e. fori = 1,. .., 10);

(a) build a classifier on test set with 9/10 of dataset excluding i-th sets of lipids and
peptides;

(b) testaclassifier on 1/10 of dataset using i-th sets of lipids and peptides and return
1-th misclassification rate;

3. at this point we obtain a vector of 10 misclassification rates — the result of 10-fold cross-
validation is the mean of this vector.

The trends are similar to observed in Table 6.1, however, the standard deviation is larger.

Of note, a RF classifier also returns the ranking of feature importance. In other words, it
provides a measure, called mean decrease in the Gini index, indicating which features revealed
to be most useful in building the classification trees. We used this score to get more insights
into the classifier performance, and run the following three tests.
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Table 6.2: The misclassification error (in percent) for the bunch of classifiers trained and tested on data with different precision, modeled bot for center masses

(columns) and isotopic abundance (rows). The error is measured according to the 10-fold cross-validation scheme.

sd of | no  mass | mass mass mass mass round- | mass round-
intensity | rounding rounding rounding rounding ing to 2nd | ingtoistdec-
noise to sth | to 4th | to 3rd | decimal imal digit
decimal decimal decimal digit
digit digit digit
complete feature set
o 0.10 (0.10) | o.10 (0.11) o.15(0.14) | 2.78(0.28) | 4.23(0.59) 5.05 (0.67)
0.0I 0.11 (0.09) | o.10(0.11) 0.15 (0.14) 3.24 (0.54) | 5.46 (0.61) 6.10 (0.59)
0.1 0.13 (0.11) 0.17 (0.13) o.1r7 (0.15) 5.43 (0.58) 8.95(0.8s) 10.20 (0.59)
0.2 0.15(0.09) | 0.16 (0.12) 0.17(0.16) | 5.67(0.53) | 9.59(0.60) | 10.52(0.79)
0.3 0.16 (0.14) | 0.17(0.13) 0.17 (0.18) | 5.88 (0.51) 9.73(0.66) | 10.63(0.78)
reduced feature set
0.063 0.063 0.063 5.591 9.093 6.986 (1.045)
(0.082) (0.082) (0.082) (0.806) (0.920)
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1. We considered a full feature set. For each of the 6 considered resolution limits on
center-masses and no noise modeled on isotopic intensities, we built a RF classifier
and measured the feature importance (cf. Figure 6.5(A)). In this case, for high resolu-
tions the most influential were mass.diff:21 and mass.diff.32. However, when the mass
is rounded to less than 3 decimal digits, these features become completely uninforma-
tive (which is not surprising, as center-mass differences presented in Figure 6.4 span a
range of less than o.o1 Da), while mass.1 and mass.2 second center-masses become the
most important features.

2. We considered a full feature set and the center-masses rounded to second decimal digit
(to mimic MALDI measurement which will be further used as a validation for the real
MS data). We multiplied the isotopic intensities by the normal noise of mean 0 and o
varying from 0 to 0.3. In general, the isotopic ratios and the exact center-masses were
the most informative in a decision making process. However, the importance of the
isotopic ratios decreased when the noise was higher.

3. We considered a reduced feature set (all features but iso.7atio.21 and iso.ratio.31). We
modeled various levels of resolutions and observed similar effects as described in point 1.

The next step in our iz silico studies was to build a classifier aimed for distinguishing be-
tween eight lipids classes. The proof-of-concept visualization for two dimensional space (cf.
Figure 6.6) suggests at least partial usefulness of this approach. E.g. we see that polyketides
(PK) and glycolipids (GL) tend again to appear in different parts of the two dimensional
plot. Of note, it is straightforward to use random forests, as they are easily applicable for
multi-classification tasks. The train set consisted of 6, 313 lipids considered in previous step.
The overall misclassification rate (OOB measure) of the classifier is > 30%. However, when
we analyze the confusion matrix for each of the eight classes separately (cf. Table 6.3), we ob-
serve that for the three most numerous classes (GP, PK, SP; over 1150 entries in each of these
class; over 60% entries in total), the misclassification rate was smaller than 17%. Therefore,
the RF classifier can potentially bring supporting information in a decision making process.

CLASSIFIERS — TESTS ON REAL MS DATA

Finally, we run our classifier on the experimental MS data. To this aim, we utilized MALDI-
TOF MS measurements performed on a lipid/peptides mixture. Using a reference list of a
known substances within a mixture (cf. Table 6.5), we found in our data six molecules - four
peptides and two lipids (cf. Figure 6.7 and Table 6.4). Then, we used the RF classifier trained
on theoretical data, as described above. Namely, reduced feature set based on Lipid Maps and
in silico digested Uniprot entries (training set consisted of 6, 313 lipids and the same num-
ber of the randomly drawn peptides) was produced and center-masses were rounded to the
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Figure 6.5: Heatmaps depicting the importance of given feature, according the mean decrease in Gini index. Each col-
umn should be considered independently. Full feature set for different precision modeled for (A) center-masses (inten-
sities are exact) and (B) intensities (center-masses rounded to 2-nd decimal digit). (C) Reduced feature set for different
precision modeled for center-masses.
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Figure 6.6: Two-dimensional plots with distribution of the analyzed data sets with eight classes of lipids, where di-
mensions are mass.1 and mass.frac.1. The two analyzed molecules are denoted in black according to their labels from
Table 6.4.
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Table 6.3: Confusion matrix for within-lipid classification. The numbers indicate how many species from lipids class in
row have been assigned to the class in column; last column indicates the misclassification (OOB) error.

FA |GL | GP | PK |PR|[SL | SP | ST | > .. class.error (%)

FA 531 | 16 | 24 | 60 | 102 | O 31 | 149 913 41.8

GL 4 | 255 | 57 6 8 I 30 | 29 | 400 36.2

GP 4 48 |78 | 36 | 24 | 2 | 47 | 69 | 1415 16.8

PK 38 I si | 1133 | 29 | ©O 4 | 40 | 1296 12.6

PR IST | 10 | 69 | 67 | 44 | 2 B3 | 86 | 442 90

SL o | 7|3 3 I 49| 2 | 1 76 35-5

SP s4 | 26 | 82 3 7 3 | 974 | 18 67 16.5

ST 150 | 31 | 101 | 49 | 67 | © s | 201 | 6o4 66.7
Zcolumn 949 | 394 | 1565 | 1357 | 282 | §7 | m6 | 593 | 6313 | total class.err: 30.9

second decimal digits. The classifier was then run on the real data. It should be mentioned,
that RF provides not only a label decision (lipid” or ”peptide”), but also a probability score
p; that the given data belong to "lipid” class (the corresponding probability of belonging to
“peptide” class is simply defined as p, = 1 — p;). This probability is based on the deci-
sions made by decision trees used to build RF classifier. As a result, we obtained the p; for
lipids no. 1 and 2 of 0.9874 and 0.9996, respectively. For peptides no. 3 — 6 we obtained
pp 0f 0.1576,0.9738,0.9996, 0.8476, respectively (the presented scores are averaged over 5
runs of the classification based on different subsets of peptides used in training set; the cor-
responding standard deviation, o, equals 0.189 for molecule 3 and 0 < 0.017 for molecules
1 — 2,4 — 6). For the majority of the molecules the classification is correct, however, for
peptide no. 3 the value of pj, is surprisingly smaller than 0.5. To get some insights into the
origin of this problem, we visualized the data as a two-dimensional plot (Figure 6.8) for co-
ordinates mass.r and mass.frac.1. Indeed, even for a ideal situation (infinite resolution mode),
the molecule no. 3 occupies a region on the border between lipids and peptides (however, the
real RF classifier of course operates on a higher dimensional space, therefore this plot does not
necessarily reflects the real causes of the weak classifier performance for molecule no. 3). In
addition, we tested within-lipid classifier (trained on reduced feature set of lipids data, where
center-masses were rounded to second decimal digits). Both molecules 1 and 2 were correctly

classified as glycerophospholipids (GP) with a probability of 98% and 82.7%, respectively.
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their labels from Table 6.4.
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Isotopic fine structure

In Chapters 4-6, we considered the aggregated isotopic variants. However, when the mass
spectrometry resolution increases, we can distinguish several fine peaks. In fact, the experi-
mentalists spent their funds for the instruments with the high-resolution functionality, and
they do not want to aggregate them back. However, the actual fine structure of the aggregated
peak seems to be very complicated (cf. Figure 7.1), and its huge size prevents from accurate
representation. On the other hand, it is useful to analyze not only the center-masses but also
the other parameters, such as the spread of the fine distribution for a given aggregated vari-
ant. As a consequence, additional questions might arise, e.g. what are the limitations (if they
exist) when the consecutive aggregated peaks overlap.

Let us remind that isotopic fine structure distinguishes variants with different molecular
mass. In particular, we consider separately the variants composed of different numbers of
each of the stable isotopes, while summaric chemical formula (C,, H,,N,O,S.) for all these
variants remains the same. We would concentrate on the fine distribution for the given aggre-
gated variants. More precisely, we would consider the most abundant aggregated variants, as
those are of the most practical significance.

7.1 VARIANCE OF THE FINE DISTRIBUTION

We have already shown in Chapter 4 how to calculate the first moment (expected value) of the
fine structure for given aggregated variants, which is called center-mass. Here, using analo-
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Figure 7.1: The fine structure of the most abundant aggregated peak (its center-mass is depicted with dotted line) for
apomyoglobin, for which chemical formula is C'7g9 H1212N21900218S5. The fine structure is generated using iso-
Dalton software (Snider, 2007).
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gous reasoning, we will introduce the generating function for the second moment (variance),
referring to the distribution variability from its mean. First, let us remind the basic formula
for the variance for j-th aggregated variant:
_ 2 2
Var(my) = E(m?) — E(m,)?. (7

Of note, the value of F(m;)? can be calculated as the square of the center-masses obtained
from the original BRAIN (cf. Equation 4.23). The remaining part can be expanded as:

_ Dok mgz‘kpjk‘
> ok Dik

where the denumerator, analogously asin Equation (4.2), is simply an aggregated isotopic dis-
tribution of the j-th aggregated variant, and thus can be also provided by the original BRAIN
algorithm. The remainder is the numerator of the Equation (7.2), namely y, m3,pjr. We

E(m3)

J

(7.2)

first introduce generating function for this problem:
T(I;v,w,x,y,z) :szgkp]k[] :ZQJJ_IJ (73)
J k J

In addition, we define the polynomials:
Re(I,J,K) = Pg,, JMow K92 4 P JMes KOs T (7.4)
and

Wil) = paymi, T’ (7.5)
;

for carbon; polynomials for other elements (Ry (1), ..., Rs(I), W} (1), ..., W§(I)) are
defined analogously. Moreover, we would use polynomials W (1), ..., Wg(I) defined in
Equation (4.23).

Let us consider:

Q-(I,J, K;v,w,z,y,2) = Re(I,J,K)" x Ry(I,J,K)* x Ry(I,J, K)* x
XxRo(I,J,K)Y x Rg(I,J, K)?, (7.6)

and its standard form:

QNI K;v,w,,y,2) = > (> pu ") (7.7)
k

J
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Polynomial Q* (1, J, K; v, w, x,y, z) can be differentiated over J and K, and then we can
set S = K =1:

(7.8)

QNI J Kiv,w,2,y,2)| =1 = Z Zm]kpmmﬂk S Vi

= ZZkaka T(;v,w,z,y,2)

where the last equation follows from Equation (7.3). Alternatively, we can differentiate poly-
nomial Q* (1, J, K;v,w, x,y, z) over J and K using Equation (7.6), i.e. by applying the
formula of differentiation a product, then set J/ = K = 1, and obtaining a final result:
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0JOK

82

T(Lv,w,z,y,z) = aJaKQL(I,J,K;v,w,$,y,z)|J:K:1
= (U—l)XQ(IU 2,w,1,y,2) X Po(I)*+
+ vxwx QI w—1,2,y,2) X Po(I) x Py(I)+
+ vxxe(I,v—l,w,x—l,y,z)XPC(])XPN(I)—i-
+ vxyxQUv—1w,x,y—1,2) x Po(I) x Po(I) +
+ vxyxQLv—1lwx,y,z—1) x Po(l) x Ps(I) +
+ vxQ(L;v—1,w,x,y,z) x P5(I) + *, (7.9)

where x replaces the summation involving 24 analogous products of polynomials.

Recall, that the variance can be obtained from Equation (7.1) by using coefficients of poly-
nomial T'(/;v,w, z,y, z), center-masses and probabilities of the aggregated isotopic vari-
ants. Weimplemented calculation of 7'(1; v, w, x, y, ) using two methods to multiply poly-
nomials, both available in R: Fast Fourier Transform (function fft) and a standard library
PolynomF for operations on polynomials. We decided not to use algebraic approach (i.e.
BRAIN iterative formulae), as preliminary results showed that the high complexity of Equa-
tion (7.9), i.e. alot of summations and multiplications, does involve numerical errors in prac-
tice. The comparison of the two methods is depicted in Figure 7.2. In addition, we observed
that the results correspond to the values estimated by isoDalton software (Snider, 2007)
(ct.Figure7.2(D)).

Furthermore, we processed the Uniprot database and built a linear model to analyze the
relationship between the center-mass of the most abundant peak (m,) and the variance of
this center-mass (the visualization suggests a linear trend between the variance and the shift
between most abundant and monoisotopic masses, cf. Figure 7.3). As a result, we obtained

92



(A)

C520_H817_N139_0147 S8

7| @ polynomial L
®x FFT -]
o
é a L2
= a
= ®
@
%) o
&
E g .
5 @
= L=
g = "
= a8
§ 7 @
g = g
- @
S
e -]
=
a
a8
8 ]
g4s "
S T T T
10 15 20
peaknr
C8574 H13378 N2092 02392 S77
- i
f-, -1 @ polynomial @ X
© | = FFT x)r%xy
.'MXV *
%
E 3{3% 5
= L S0
3 o \U\é
x
g & W}\ 4
g 2 _{955
3y o
e 3
% é o ‘;é‘;,%
> x
g (Jsﬁ'.
§ g Gl
lg B
9o
o \c%gf
) d
=+ )243
i T T T
&0 100 120 140 160
peak nr

variance of center-mass

Empiric Center Masses Variance (isoDalton)

0.00020 0.00030 0.00040

0.00010

n.o00zz 0.00026 0.00030

0.00015

(B)

C2934_H4615_N781_0897_S39

© polynomial
* FFT 63‘6
3 50
)
o8
- e
h
s
| &‘Q“
[}
a®
1
- bﬁs
=
b
&%
] B
?ﬁ“a
=
i a"s
556@
KXo
incy
T T T T T T
20 30 40 50 60 70
peak nr
o our method @
© emipiric {isoDalton; threshald=1,000,000) =]
| @ emipiric {isoDalton; threshald=100,000) 3
=]
@
— o
8
o g
™ & o
@
g o
o
2 o
iy o
a e T
| & o°
8 @
2 ]
u e o
8 o
B o
T
3 o
a
T T T T
35 40 45 50
Peak Mr

Figure 7.2: The variance of the fine structure of the most abundant aggregated variants for (A) Human insulin, (B)

Bovine serum albumin, (C) Renal isoform, subunit Human ATP binding cassette protein (cf. Table 4.2). In addition to

the FFT approach, we calculated the Equation 7.9 using the R library PolynomF for operations on polynomials. (D) As an-
other method of the validation, we calculated the variance of Bovine serum albumin using i soDalton using different
parameters for the number of generated peaks (note, this software generates the fine structure of the whole distribu-

tion). We observe, that if this parameter is big enough, the results returned by FFT approaches using Equation 7.9 are

consistent with those returned by isoDalton.
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Figure 7.3: The relationship between the variance of the most abundant center mass, and the mass shift between most

abundant and monoisotopic peak, calculated for the molecules from Uniprot database. The linear trend can be ob-
served.

the formula
variance = 1.503 x 107° + 3.077 x 107 x m, (7.10)

where both coefhicients have p-values below 10716,

7.2 INFORMATION THEORY ENTROPY

The information theory entropy is a measure of the (un)certainty of the random variable of
given distribution.

Information theory entropy

Information theory entropy for a discrete random variable X with distribution func-
tion P(X) is defined as:

H(X) = —Elog(P(X))]. (7.1)

For j-th aggregated variant the information theory entropy, denoted here as H (), can be
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calculated as follows (first equation is an application of the Equation (7.11)):

_ Pik log( Pik ) = — 2 i Pik 10g(ZI:;jk)
A Zk: Djk Zk Pjk Zk Djk
— >k Pirtlog(pik) —log(3-, pjk)}
> i Dik

— > Pik log(pji) N >k Piklog(d o, pik)

>k Dik >k Dik
— > ik 1og(pik) N (D pix) log(D 4 pir)

kajk kajk

— 21 ik 10g(pjr) ‘ .
S o + log(; Pik) (7.12)

Surprisingly, the W can be calculated using the Equation (4.2), where m y, is
: Pj

H{(j)

replaced with — log pj;. Moreover, log(>_, pjr) = log(g;), where g; is a probability of j-
th aggregated isotopic variant, so the second term in formula for H (j) can be calculated using
original BRAIN. As a result, the information theory entropy can be effectively obtained.

73 OVERLAP BETWEEN THE CONSECUTIVE AGGREGATED VARIANTS

The natural question which we can consider when analyzing the aggregated variantsis a prob-
lem of overlap between the consecutive peaks. As we already noticed in the variance analysis,
this value increases for the most abundant peaks with higher molecular sizes. First, we can

apply the following theorem:

Chebyshev’s inequality

For a random variable X with E(X) = p < oo and sd(X) = o, and for any
k & R>0:

Pr(IX = ul 2 ko) < —. (7.3)

In particular, for & = 3 from Chebyshev’s inequality, we obtain that approximately 88.9%
of a given distribution is within +30 margin from its (finite) mean.
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Therefore, using model from Equation (7.10), we can check when 30 > 0.5:

0.5
30 >05 & o> =3
0.5
& variance > (?)2

: 0.5
& 1503 x 107° +3.077- 107" x m, > (?)2

0.5
& 3.077x 107 x my > (?)2 —1.503 x 107° (7.14)

As a result, we obtain that m, ~ 9 MDa, and this mass seems to be huge. However, Wang
etal. (2012) published the article with a meaningful title ("Increasing the trapping mass range
tom/z= 10" - A major step toward high resolution mass analysis of intact RNA, DNA and
viruses”), being a clear signal that MS processing of mega- or even gigadalton particles is not
a purely theoretical consideration.

Another approach to the problem of overlapping aggregated variants is to investigate the
maximal/minimal mass of the fine peaks within a given variant. Taking into account the
average mass per additional neutron (cf. Table 7.1), we can see that the lightest possible ag-
gregated variant should have only 5N heavy isotopes. By analogy, the heaviest possible ag-
gregated variant should be purely composed of 2 H heavy isotopes. Then, for variant with j
additional neutrons, the mass spread between these extreme masses equals:

J - (pzir — pas) = j % 0.0092421 Da. (7.15)

Of note, in cases where there are not enough nitrogens or hydrogens within a molecule, Equa-
tion (7.15) gives an upper bound for the mass spread. Using this approximation, we estimate
that the spread would reach 1 Da for j ~ 108.

In summary, two alternative estimations for the overlap between the most abundant iso-
topic peaks when aggregated variants are considered. First, variance/standard deviation ap-
proach, uses the Chebyshev’s inequality. However, without adequate approximations of the
aggregated peak shape it is difficult to predict the most accurate value of the parameter k
used in Equation (7.13). The second approach — based on mass spread approximations — is
more conservative, as the extreme fine variants are very tiny and in practice not observable in
a spectrum.
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Table 7.1: The table with average mass per additional neutron calculated for all heavy (i.e. not the lightest) isotopic
variants for carbon, hydrogen, oxygen and sulphur. We observe the highest value for 2.H, and the smallest value for

15N.

’ isotope ‘ average mass per additional neutron (Da) ‘

e 1.003355
‘H 1.006277
PN 0.9970349
70 1.004217
180 1.002123
3S 0.9993877
343 0.9978980
0S 0.9987525

7.4 DISTRIBUTION SHAPE

The final step of our the analysis would be to asses the fine distribution deviance from normal-
ity. Of note, the distribution is multinomial, which however, has a bell-shape for averagine
molecules. Therefore, a gaussian curve might be its good approximation. To compare these
two distributions we use the relative entropy and the cross-entropy concepts.

Relative entropy

The relative entropy (also known as Kullback-Leibler divergence or Kullback—Leibler
distance) between two distributions, P and @), is defined as:

Dia(PIQ) = Y n (%) P(i) (716)

Cross-entropy

For two distributions, P and () the cross-entropy between them is defined as:

H(P,Q) = H(P) + Dk.(P|Q) (7.17)

Of note, for P = () we obtain Dk, (P||Q) = 0and H(P, Q) = H(P). In our case, the
first considered distribution is a fine distribution of the most abundant aggregated variants
of the nine averagines, generated according to Equation (6.2). Namely, the proportions from
Equation (6.2) were multiplied by n = 50, 250, 500, 750, 1000, 2000, 3000, 4000, 5000,
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Figure 7.4: (A) Information theory entropy and the cross-entropy between the fine structure of the most abundant
peaks of the analyzed averagines, and normal densities of mean and standard deviation as for fine structure. The bigger
the molecule, the closer two values are.(B) The corresponding relative entropies which has (not strictly) descending
trend.

and the obtained number of atoms were rounded to the integer values. This distribution
P is simulated via simple Monte-Carlo (MC) approach — we are able to estimate its mean
and variance from the simulated sample or from theoretical formulas presented already in
this Chapter. Then, we sampled from the corresponding normal distribution () of the same
mean and variance to obtain the discretized normal distribution (we cannot compare explic-
itly discrete and continuous distributions with each other, and MC simulation obviously re-
turns discretized result). We observe empirically that as the averagine size increases, the cross-
entropy H(P, Q) resembles the H(P) (Figure 7.4(A)), while the relative entropy Dk, (P||Q)
tends to zero (Figure 7.4(B)). This suggests that, at least for large proteins, the normal distri-
bution is a quite good approximation of the isotopic fine structure of the most abundant
aggregated variant.
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Further works and concluding remarks

In this dissertation, we presented a wide range of methods that can be applied in both mass
spectrometry and genetics research involving large-scale data analyses. Here, we provide some
perspectives in this field, including our ongoing projects.

GENOME (IN)STABILITY CAUSED BY NAHR

Our results on NAHR prevalence (Figure 2.7) can be compared to the previous study made
by Cooper etal. (2011), which involved over 15, 000 children with developmental delay tested
by CMA in Signature Genomics Laboratories (SGL). Of note, the sets of six most common
recurrent deletions in the two research (our and Cooper et al. (2011)) are consistent. More-
over, the investigation of de novo CNVs in 2, 312 patients with intellectual disabilities (ID)
was performed by Girirajan et al. (2012), and revealed the high frequencies of deletions in
22qrr.21 and 16pir.2 autism loci, which is similar to our observations (Figure 2.8). Addition-
ally, to the results presented in Chapter 2, in our database we have found three somatic mo-
saicisms that are potentially mediated by NAHR (as franked by direct paralogous LCRs), and
were confirmed by FISH analysis (Dittwald et al., 2013¢). It should be noted, that also mitotic
NAHR events have been suggested as a potential cancer cause-causing mechanism (Gu etal,,
2008), and therefore are an interesting topic for future research. Also, next generation se-
quencing data can be used to systematically identify and analyze recurrent rearrangements
(both meiotic and mitotic) previously missed by aCGH assays.

99



Furthermore, it has been already shown that NAHR can be also caused by other homol-
ogous elements, e.g. in Shuvarikov et al. (2013) we identified 3q13.2-q13.31 deletions mediated
by Human Endogenous Retrovirus (HERV) elements. Moreover, we have already commu-
nicated a genome-wide map of potential genomic instability via HER Vs as a poster during the
ASHG conference - Piotr Dittwald, Ian M. Campbell ez 4L; Human Endogenous Retrovi-
ral Elements (HER Vs) Mediate Multiple Genomic Rearrangements Suggestive of Nonallelic
Homologous Recombination (NAHR), 63" American Society of Human Genetics Annual
Meeting, Boston, October 2013. Moreover, my colleague from the University of Warsaw,
Michat Startek, is working with BCM on similar studies involving long interspersed elements
(LINEs). Of note, the UCSC Browser recently published a new version of genome build
(hg38; December 2013), that can be considered (after some time needed for recalculating nec-
essary data) as a new reference point for genome-wide maps for NAHR-prone regions.

MS WORKFLOW - ITS COMPLEXITY AND LIMITATIONS

First, we should underline that their utility for the practical applications should be constantly
considered. As mentioned in the introduction, the very important step in MS data analyses is
the preprocessing step. First, it is done internally be the instruments, and unfortunately, the
regular user has only a little influence (and in fact also a very poor knowledge) on the detailed
procedures. Therefore, our models cannot assume that they operate on completely raw data.
Secondly, we can have an influence onto steps such as baseline correction, smoothing, and
peak picking, therefore a good understanding of the available algorithms might be useful in
the further data processing (at the level of the aggregated distribution). Also, an awareness of
limits, such as those investigated in Chapter 7, is helpful for accurate data modeling.

BETTER MODELS FOR MONOISOTOPIC MASS PREDICTION

In Chapter 6, we showed the model for predicting the monoisotopic mass from the observed
mass peaks. Although the model does not reveal a good accuracy, we already suggested it
has a potential for a more adequate performance. Indeed, the better model, called MIND,
i.e. Monolsotopic mass liNear preDictor, was presented as a proof-of-concept in a poster at
the ASMS conference in 2013 (Piotr Dittwald, Frederik Lermyte, Frank Sobott, Anna Gam-
bin, Dirk Valkenborg; MIND: a soft-sensor to improve mass accuracy in high-resolution top-
down proteomics. 615t ASMS Conference on Mass Spectrometry and Allied Topics, Min-
neapolis, June 2013; DV was a poster presenter). It should be noted that this story is not yet
published as a research study and needs some further verification.
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LIPID CENTRIFUGE

The proposed approach for the lipid-vs.-peptide classification has to be further validated for
more data samples. Moreover, developing better algorithms for retrieving the aggregated
structure from raw data files is also a challenging task. Nevertheless, the Lipid Centrifuge
workflow can potentially be an interesting alternative for the physicochemical fractionation
techniques (e.g. liquid chromatography based methods) that are commonly used in mixture
analysis, however, they introduce additional noise and variance into the measurements. Ad-
ditional application of the method is in mass spectrometry imaging, where MS experiments
are used to visualize the spatial distribution of the sample components (Stoeckli et al., 2001;
Van de Plas et al., 2007; Van de Plas, 2010).

EFFECTIVE MODELING ISOTOPIC FINE STRUCTURE

As already mentioned in Chapter 7, the isotopic fine structure can be highly complex and
therefore practically impossible for exact modeling. Recently, we have been working on de-
veloping an effective algorithm for simulating isotopic fine structure for given aggregated
variant. The method called McFine is based on Monte-Carlo approach, and will be com-
municated as a poster during ASMS conference in 2014 (Piotr Dittwald, Dirk Valkenborg,
Alan L. Rockwood, Anna Gambin; McFine - an algorithm to approximate the isotope fine
structure of peptides and proteins, accepted as poster for 62"% ASMS Conference on Mass
Spectrometry and Allied Topics, Baltimore, June 2014).

CONCLUDING WORDS

Asshown in this dissertation, the interdisciplinary approach is often inevitable in the biomed-
ical studies. However, a need for deeper understanding of the analyzed problems has been
experienced as a fascinating challenge by the author. Finally, the ethical issues that arise in the
context of the research should be wisely considered, especially when dealing with a mystery

of life.
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