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Computational methods for large-scale data in medical diagnostics
Abstract

This thesis covers a topic of fast and reliable processing of the high-throughput biomedical

data, that is currently needed in genetics and proteomics. We therefore concentrate on these

two rapidly developing research areas in life sciences.

First, we perform a systematic analyses of human reference genome build in the context

of its potential local instability caused by recurrent genomic rearrangements, e.g. deletions,

duplications, and inversions. Our approach enables also to analyze large and unique clinical

database.

Secondly, we present various analyses of mass spectrometry data. In particular, we pro-

pose isotopic distribution at many levels of accuracy; more precisely we consider aggregated

and ne isotopic structures. We also show some case application studies involving high-

throughput processing, potentially applicable in proteomics and lipidomics.

Ofnote, this thesis is also an exempli cationof interdisciplinary approach for basic science,

where a deeper and complex understanding of both biomedical and computational aspects

can be mutually bene cial.

Keywords: computational methods, bioinformatics, mass spectrometry, recurrent genomic

rearrangements

ACMClassi cation: J.3
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Metody obliczeniowe dla wielkoskalowych danych w diagnostyce medycznej
Streszczenie

Niniejsza rozprawa opisuje efektywne metody przetwarzania wielkoskalowych danych w

biologii molekularnej, co jest szczególnie istotne w genetyce i proteomice. Właśnie te dwie

dynamicznie rozwijające się gałęzie nauk o życiu stanowią obszar naszych zainteresowań.

Na początku przeprowadzamy systematyczną analizę referencyjnego genomu człowieka.

Naszebadaniadotyczą jegopotencjalnej lokalnej niestabilności spowodowanej przeznawraca-

jące rearanżacje, takie jak delecje, duplikacje oraz inwersje. Przedstawione podejście pozwala

również, w przypadku delecji i duplikacji, przeanalizować dużą i unikalną bazę danych przy-

padków klinicznych.

W drugiej części rozprawy prezentujemymodele wykorzystywane w analizie danych spek-

trometrycznych. Wszczególności zajmujemy sięwpływemwariantów izotopowychnawyniki

uzyskiwane w eksperymentach. Nasze badania prowadzimy wykorzystując różne stopnie

dokładności przy reprezentowaniu rozkładów izotopowych – podejście zagregowane oraz

dokładne. Ponadto przedstawiamy przykłady analizy wieloskalowych danych w proteomice.

Pragniemy podkreślić, że niniejsza rozprawa prezentuje interdyscyplinarne podejście do

badań podstawowych. Ponadto, nasze badania są przykładem kompleksowego wykorzysta-

nia w nauce o życiu metod obliczeniowych popartych teorią nauk matematycznych.

S lowakluczowe: metodyobliczeniowe, bioinformatyka, spektrometriamas, nawracające rear-

anżacje genomowe

Klasy kacja tematyczna ACM: J.3
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Science can purify religion from error and superstition;
religion can purify science from idolatry and false abso-
lut . Each can draw the other into a wider world, a world
in which both can flourish.

Saint John Paul II
(Letter to the Rev. George V. Coyne, S.J., Director of the Vatican Observatory, 1 June 1988)

1
Introduction

The bottleneck of the large-scale data processing has made bioinformatic analyses a crucial
component in the life sciences work ows. The two large elds in biomedical studies, whose
rapid development in the recent years has depended on computational methods, are genetics
and proteomics. They both are strictly connected to each other, e.g. structural organization
of the genome a fects the variety of proteins in the organism; on the other hand, proteins are
the crucial functional molecules that participate in the process of extracting the information
encoded in the genome. In this thesis, we present selected bioinformatic methods used and
discuss their application in basic research as well as in clinical diagnostics.

1.1 M

H

Awide rangeof thehumanorganism functions are encoded in adeoxyribonucleic acid (DNA).
The structure of this molecule was discovered in 1953 byWatson and Crick, who once stated:
”It has not escaped our notice that the speci c pairing that we have postulated immediately
suggests a possible copying mechanism for the genetic material” (Watson and Crick, 1953).

TheDNAdouble helix is composed of two strands of nucleotides oriented in opposite di-
rections. Eachnucleotide is built of a sugar-phosphate backbone andoneof four nucleobases:
adenine (A), guanine (G), thymine (T), or cytosine (C); A and G are classi ed as purines and
T and C as pyrimidines. Two DNA strands are connected by hydrogen bonds, two between
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A and T and three between C and G. The nucleobases in the DNA strand are connected by
the bonds between the third and f h carbon of the sugarmolecules. Thus, eachDNA strand
has two ends termed 5’ and 3’. The complementary nucleobase is referred to as base pair (bp)
and is considered as a standard unit of DNA length.

Human DNA is compacted as chromatin and divided into 23 pairs of chromosomes1: 22
autosomes (numbered from 1 to 22), and one pair of sex chromosomes (X and Y).Males have
one chromosome X and one chromosome Y and females have two chromosomes X. A com-
plete set of chromosomes in a somatic cell is referred to as a karyotype. Human genome is
diploid, i.e. all autosomes have the homologous copies; each chromosome in a pair is inher-
ited from one parent in the process of meiosis. During fertilization, male and female gametes
fuse, forming a single cell zygote that further divides in a process of mitoses, replicating the
initial double helix DNA.

Each metaphase chromosome in human has been represented as an X-shaped structure,
with two short p arms and two long q arms that are connected by a centromere2. The re-
gions near ends of chromosomes are called telomeres composed of thousands of repeated
TTAGGG sequences and stabilized by an enzyme, telomerase. This simple classi cation has
been further subdivided based on G-banding chromosome staining, a technique, in which
separate regions of chromosomes dyed by Giemsa stain show di ferent banding pattern visi-
ble in a light microscope. These bands have been classi ed in a standard cytogenetic nomen-
clature, e.g. 1q21.1 designates chromosome 1, arm q, region 2, band 1, and sub-band 1. Relative
location on a chromosome arm is referred to as proximal or distal when closer to or farther
away from a centromere, respectively. A basic functional unit of DNA sequence is a gene.
In humans, genes consist of exons (protein-coding intervals) and introns, which are removed
in a process of splicing3. In addition, genes are usually accompanied by regulatory sequences
such as promoters and/or enhancers.

Humans share the vast majority of nucleotides on the analogous (allelic) chromosomal
loci, and determination of these base pair sequences was a primary goal of the international
scienti c research endeavor called Human Genome Project (HGP) initiated in 1990. HGP
announced almost complete humanDNA reference sequence (IHGSC, 2004) as hg17/NCBI
Human Build 35 (May 2004). This genome assembly has been continually updated to the
current version hg38/NCBI Human Build 38 (December 2013) by the Genome Reference
Consortium(GRC). It shouldbenoted that there are regions in thehuman reference genome,
for which the exact nucleotide sequence is still not well determined. These sequences are

1In addition to this linear nuclear genome, humans have a circular-shaped mitochondrial DNA, however,
we do not consider the mitochondrial genome here.

2For simplicity we use this nomenclature for chromosome coordinates regardless the phases of chromosome
life cycle.

3We do not consider here genes that do not code proteins.
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described as gaps mostly located in the telomeric and centromeric regions.
Each human individual DNA sequence is de ned as a genotype. The di ferences between

genotypes are caused, among others, by gene variants (alleles). Among many other factors,
such as environmental interactions or post-translational modi cations, these variants can
contribute to the observable traits, i.e. a phenotype. Phenotypic trait expressed by these
genes can be inherited as either autosomal recessive (AR; manifested when two alleles associ-
ated with this trait are mutated) or autosomal dominant (AD; onemutated allele is su cient
to manifest the phenotype).

In males, chromosome X is inherited from the mother and Y from the father. For the vast
majority of X-linked or Y-linked genes, males have only one copy; disruption of the genes on
chromosome X in males usually has phenotypic consequences as, opposed to disruption of
genes on autosomes. X-linked genes are responsible for X-linked recessive traits when only
one allele is mutated and not manifesting in female carriers of the allele. In case of X-linked
dominant disease, both males and females with the mutated allele are a fected.

Mutations can be lethal, cause non-lethal diseases of various severity levels, ormight be not
associated with pathogenic consequences. A set of genomic nonpathogenic mutations can
be inherited as haplotypes that further segregate in a population. This variability should be
taken into accountwhen considering the human reference genomebuild as a golden standard
for an individual genotype.

M

Mutation of aDNA sequence can be caused by errors inDNA replication, recombination, or
repair. Mutations are classi edbasedon their inheritance pattern, as they canoccurde novoor
can be inherited from a parent. Moreover, we can distinguishmeioticmutations (originating
in germ cells) being present in 100 of child’s cells4, as constitutional, and mitotic somatic
mutations that are acquired and propagated only to some cells (somatic mosaicism).

A changeof a single base pair is referred to as SingleNucleotideVariants (SNV).Depending
on SNV location, SNVmay a fect the coding region by changing the encoded amino acid, e.g.
missensemutations, cause premature stop codon, e.g. nonsensemutations (nonsynonymous
mutations), or alter the codonwithout changing the transcribed products (synonymousmu-
tations, i.e. silent). Moreover, insertions or deletions of small portion of nucleotides (i.e.
indels) might also cause a shif of the transcription reading frame (frameshif mutations).

Deviations from the 46 number of chromosomes (i.e. numerical chromosomal aberra-
tions) of en result froman abnormal chromosome segregation andmanifestswithpathogenic
phenotypes. This is usually caused bynondisjunction duringmeiosis, when the chromosome
pair is not properly separated, causing an imbalanced chromosome complement (i.e. mono-

4If not altered by other mutation.
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somy or trisomy) in the daughter cells. The best known examples of numerical aberrations
are trisomy of chromosome 21 (Down syndrome), trisomy of chromosome 18 (Edwards syn-
drome), or three sex chromosomes XXY in males (Klinefelter syndrome).

In addition to single base pair changes, also structural aberrations, e.g. deletions, duplica-
tions, translocations, insertions, or inversions of the chromosomal fragments, are observed.
A portion of the abnormal number of copies of one or more DNA fragments resulting in an
imbalance of DNA is referred to as a Copy-Number Variant (CNV). CNV size can vary from
a few to thousands (i.e. kb) or millions of base pairs (i.e. Mb). The term genomic disorders
has been coined for both the rearrangements themselves as well as the resulting pathogenic
features (Lupski, 1998), caused e.g. by gene disruption or change in gene copy-number.

M

In this thesis, we focus on recurrent genomic rearrangements, i.e. rearrangements occurring
de novo in the same genomic loci in di ferent individuals. The main mechanism responsible
for recurrent rearrangements is nonallelic homologous recombination (NAHR), wherein re-
combination breakpoints are located within highly similar DNA sequences, e.g. low-copy
repeats (LCRs).

LCRs or segmental duplications (SDs) (Bailey et al., 2002) are de ned as pairs of DNA
fragments with fraction matching (homology score) over 90 and longer than 1 kb. It has
been shown (Stankiewicz andLupski, 2002) that for longLCRelementswith high homology
(originally the parameters were suggested to be 10-400 kb and 97 ), theNAHReventsmight
occur within LCRs causing inversions (for inversely oriented LCRs), deletions or reciprocal
duplications (for directly oriented LCRs)5, or reciprocal translocations.

Alternativemechanisms forCNVsorigin such asmicrohomology-mediated break-induced
replication (MMBIR) (Hastings et al., 2009) or fork stalling and template switching (FoS-
TeS) (Lee et al., 2007) have been also described. These are the two major DNA replication
error mechanisms leading to nonrecurrent genomic rearrangements, for example complex
duplication and deletion events (Lee et al., 2007).

M

A DNA sequence for a speci c region can be determined using a Sanger sequencing reac-
tion6. In this technique, the investigated DNA fragment is typically ampli ed using poly-
merase chain reaction (PCR). In a rst phase, the short but unique DNA primers anking
the analyzed fragments are designed. The chain reaction, based on thermal cycles, enables

5These rearrangements have of en pre x micro referring to their sub-microscopic size.
6Currently, next generation sequencing (NGS) is a broadly used alternative to Sanger sequencing and is also

useful for CNV detection; however, NGS technology will not be used in research covered in this thesis.
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replication of DNA material, growing exponentially with time. Then, the ampli ed DNA
fragment is analyzed in a chain-termination reaction using A, C, G, and T deoxynucleotides
and four radioactively or uorescently labeled dideoxynucleotides (substituting one of the
original nucleotides and terminating the nucleotide chain). Finally, all possible pre xes of
the analyzed DNA sequence are obtained, each terminated by a tag easy to recognize. Using
gel electrophoresis, these pre xes can be sorted according to their length to identify theDNA
sequence.

Genome analysis of CNVs longer than 5Mb can be visualized in the light microscope af er
chromosome staining, using e.g. G-banding. For smaller DNA changes, molecular biology
techniques are used, e.g. uorescent in situ hybridization (FISH). FISH is based on the con-
cept of uorescently-labeled probes binding (hybridizing) to a speci c target DNA locus that
can be analyzed in a uorescent microscope (O’Connor, 2008). FISH technique is fast and
easy for visual interpretation of single CNVs.

Microarray-based ComparativeGenomicHybridization (aCGH) is amethod allowing for
high-throughput genome-wide data processing in one experiment (Chial, 2008). Thousands
or millions of DNA fragments (e.g. oligonuceleotide probes) can now be placed on a single
glass slide (array). By analyzing control and patients DNA samples, and labeling them di fer-
ently with uorescent dyes (e.g. green for control, red for patient), it is possible to compare
intensities of the uorescent signals referring to copy-number ratios. For example, in a case of
equal copy-numbers the yellow signal is observed, whereasmore red/green signal is associated
to duplication/deletion in the patient’s genome, respectively. The aCGHmethod allows for
detection of CNVs as small as tens of kilobases.

G ( )

The (in)stability of the human genome is directly related to its structure. Both the size of
the genome (over 3 billion of base pairs) and its complexity make it unfeasible to be system-
atically analyzed without application of automated algorithms. Moreover, fast and reliable
processing of the outputs (e.g. of cytogenetic testing by chromosomal microarray analysis,
CMA) should be integratedwith phenotypic data provided by physicians and current knowl-
edge about the genotype/phenotype correlation. Finally, the wet-bench experiments serve as
an indispensable way to con rm the molecular bases of the identi ed rearrangements. In
this interdisciplinary approach, usingmultiple data resources, the crucial steps of analyses in-
volve understanding the biological background, designing the computational work ow and
discussion of the results in a medical context.
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In this study, based on the literature data, we systematically analyzed the genomic regions
of genetic diseases and syndromes associated with NAHR-mediated recurrent deletions and
reciprocal duplications. Moreover, we queried and cross-referenced large database of high-
resolution genomic analyses performed at Baylor College of Medicine on patients referred
for CMA. The applied algorithms using custom scripts allowed us to lter out CNVs that
correspond toNAHR-syndrome regions anked by directly oriented paralogous LCRs (DP-
LCRs). The causative association of the patients’ rearrangements with the known genetic
syndromes involvedmanual speci cation of the selected parameters to tackle the issue of dif-
ferent sensitivity of CMA arrays. As a result, we were able to determine the prevalence of
the known recurrent genomic disorders in the clinical CMA database. We also determined
the frequencies of the novel rearrangements. To this aim, we narrowed the study to the in
silico cases with genomic breakpoints of the investigated CNVsmapped with a su cient res-
olution. A statistic model based on a quasi-Poisson regression, suitable for count data with
missing values, has been used to report genomic features that correlate with the frequencies
of de novo recurrent rearrangements. Moreover, several architectural features of the LCR
clusters anking the interrogated regions have been investigated.

Furthermore, we constructed a new genome-wide map of the DP-LCR- anked regions in
the human genome (build hg19), i.e. the genomic regions where recurrent deletions or recip-
rocal duplications might occur via LCR-mediated NAHR. We also introduced a concept of
computationally determinedLCRcluster using ahierarchical clustering algorithm(Figure 1.1)
and investigated the multiple parameters to propose the cut-o f height of the clustering tree.
The clustering approach enabled us to systematically distinguish between overlapping and
adjacent regions, and to combine very similar regions. For example, we identi ed four novel
recurrent NAHR-mediated deletions involving chromosome 2q12.2q13, which were previ-
ously referred to as a single region. Selected breakpoints of these novel rearrangements were
sequenced using wet-bench experiments, and further clinically characterized. Using anno-
tation of gene location and the OMIM database (http://www.omim.org/), we not only
identi ed potentially disrupted genes, but also those of them that might cause known dis-
ease via NAHR, and might be useful in diagnostics.

Finally, the homology between the LCR clusters anking the newly de nedNAHR-prone
regionshasbeenvisualizedusingMiropeats program(Parsons, 1995). This informationmight
be useful for researchers to better understand the complexity of genomic regions where re-
combination hot spots occur.

6
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Figure 1.1: Schematic visualization of the concept of LCR clusters. LCR elements in which NAHR breakpoints occur

(green) are accompanied by other elements that can be grouped into LCR clusters. The hierarchical clustering algorithm

constructs a clustering tree that can be then pruned at a given height (violet dotted line). Source: Dittwald et al. (2013c)

G -

It should be noted that balanced genomic rearrangements (e.g. paricentric or paracentric
inversions) are not detectable by CMA assays. Our genome-wide computational approach
aimed to investigate human genome instability potentially caused by balanced genomic in-
versions. We identi ed a set of inversely oriented, paralogous LCRs (IP-LCRs) that can po-
tentially mediate recurrent inversions via NAHR, by integrating the latest version of human
genome build (hg19), and the criteria from the literature applied for directly oriented LCRs
that can potentiallymediate deletions and duplications. Similarly to the previous section, our
algorithms utilized e cient operations on intervals to e ciently analyze the genome. The set
of IP-LCRs allowed us to estimate the fraction of the human genomewhere inversion break-
pointsmight be located, as well as the fraction of genome potentially unstable due toNAHR
mediated by IP-LCRs.

The balanced rearrangements may disrupt the genes harboring the recombination site.
Therefore, we reported a set of genes, for which at least one inversion breakpoint is located
within such a gene, and identi ed genes that are dosage-sensitive and/or associated with dis-
eases. We also analyzed the X-linked genes, as they have relatively high likelihood of clinically
manifesting the recurrent inversions. Further, we focused on the known disease genes, i.e.
those for which NAHR-mediated inversion might cause the already known disease. We also
processed the genomic inversions from the Database of Genomic Variants (DGV) (Zhang
et al., 2006) that could be associated with NAHR and estimated the statistical signi cance of
such events.

7



Figure 1.2: The Circos plot (Krzywinski et al., 2009) that depicts the identified genes potentially disrupted byNAHR-

mediated inversions genome-widely. We highlighted the genes that are associated with diseases (violet), dosage sensi-

tive (red), and those from both previous groups (green). Figure source: Dittwald et al. (2013b)
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1.2 M

H

The Central Dogma of molecular biology describes the ow of information from genes to
proteins (Crick, 1970). First, the sequence of nucleotides is transcribed intomRNAmolecule,
which is further translated to amino acid sequence, composing a protein molecule. The
structure of proteins can be considered at di ferent levels: the primary structure describes
a sequence of amino acids, while the secondary structure covers the hydrogen-bonds-driven
substructures, e.g. α-helices or β-sheets. The tertiary and the quaternary structures refer
to three-dimensional folding and cristal forming of proteins, respectively. Tertiary structure,
also called conformation, is highly linked to the protein function. The information about the
whole set of proteins expressed in the organism (i.e. proteome) – their amounts, functions,
and interactions – is crucial for describing biological systems.

The 20 naturally occurring amino acids are built from ve chemical elements: carbon (C),
hydrogen (H), nitrogen (N), oxygen (O), and sulphur (S)7. The structure of amino acid can
be divided into: amino group8, a carboxyl group, the central carbon atom (Cα), and a side
chain. Peptide (polypeptide chain9) is a short sequence of the amino acids linked by peptide
bonds. As a product of forming single peptide bond, a water molecule (H2O) is released. A
polypeptide chain can be created e.g. as a product of enzymatic digesting of a protein. By
convention, a polypeptide chain is described from its N-terminus (the end with free−NH2

or−NH+
3 group) to its C-terminus (the end with free−COOH or−COO− group).

Chemical atoms are built of protons (positively charged), neutrons (not charged), and elec-
trons (negatively charged). Protons and neutrons, also called nucleons, form the nucleus,
where the vast majority of the atomic mass is concentrated (therefore the electron mass will
be omitted further in this thesis). Many chemical elements have isotopes10, i.e. the variants
that di fer by the amount of neutrons. Here, we will consider only stable isotopes of the ve
chemical elements building peptides, namelyC,H,N,O, and S.The lightest isotope variant is
called monoisotopic (in our case these are 12C, 1H, 14N, 16O, 32S). A mass unit commonly
used for chemical molecules is dalton (Da), de ned as 1

12
the mass of carbon 12C , and ap-

proximately equal to 1.66 × 10−27 kg. The nominal mass of the element is the mass of its
isotopic variant rounded to the integer value. The ve considered elements have two (car-

7Amino acids can also contain other elements, like phosphorus, as a result of post-translational modi ca-
tions (PTMs).

8Imino group in case of prolyne.
9Basically, peptides are short sequence of amino acids, while polypeptide are longer, however, we will not

distinguish in this thesis between the two classes.
10We will consider only stable isotopes, and ignore the radioactive forms which spontaneously undergo the

radioactive decay.
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bons: 12C, 13C ; hydrogens: 1H, 2H ; nitrogens: 14N, 15N ), three (oxygens: 16O, 17O, 18O),
or four (sulphurs: 32S, 33S, 34S, 36S) isotopic variants. Each of these isotopes has a certain
exact mass, denoted asMC12 , . . . ,MS36 , and appears in the nature with a certain probability,
denoted asPC12 , . . . , PS36 . The averagemass of the element is a weighted sumof its isotopes.

M

According to Eidhammer et al. (2007), the main tasks for analytical methods in proteomics
are:

1. to identify the protein in the sample;

2. to characterize the various features of the protein (regardless its identi cation);

3. to quantify the amount of the protein in the sample;

4. to compare theoccurrence/abundance/modi cationsof theproteinsbetween the sam-
ples.

Mass spectrometry (MS) is one of the most popular analytical method used in proteomics
to investigate the content of the chemical mixture, which has already brought a huge insights
into the role of biological systems (Cravatt et al., 2007; Chandramouli andQian, 2009). The
instrumentation used in this method, i.e. mass spectrometer, is composed of the three main
parts:

1. the ionization source – themolecules are charged (i.e. ions are created) and brought to
a gas phase;

2. the mass analyzer – ions are separated by their mass-to-charge (m/z) ratio;

3. the detector – the spectrum of signals or peaks is produced, it assigns abundance, i.e.
number of ions, for a givenm/z.

Of note, MS was invented more than a hundred years ago by Thompson, however, its rapid
growth is dated in the last decades of the XX century, when sof ionization techniques (pro-
ducing almost no fragmentation of the analyzed molecules) was proposed by John Fenn and
colleagues. This technology was called in a vivid manner as ”Electrospray Wings for Molec-
ular Elephants” in Fenn’s Nobel Prize lecture (Fenn, 2002). In addition, before the sample
is analyzed by the mass spectrometer, it is of en fractionated in order to increase the detec-
tion rate, e.g. by gel electrophoresis of liquid chromatography (LC). It should be also noted
that in the existing instruments used in proteomics many types of the described components
occur (cf. Table 1.1) (Aebersold andMann, 2003).

10



Table 1.1: Selected types of mass spectrometry instruments used in proteomics. The comparison of theOrbitrap with

FT-ICR and TOFMS is presented in (Zubarev andMakarov, 2013).

name type description reference
matrix-assisted laser
desorption ionization
(MALDI)

ionization source the sample ismixedwith amatrix, and
further released e.g. by an ultravio-
let (UV) beam, usually an ion is singly
protonated;

(Peter-Katalinic,
2007)

electrospray (ESI) ionization source the sample is ionized within a very
thin needle using high voltage; then,
the droplets are injected into the at-
mosphere, where the solvent evap-
orates, producing the multicharged
ions of the analyzedmolecule; thisme-
thod is especially useful in proteomics
thanks to the ease of combining with
liquid based separation of sample;

(Cole, 1997; Gross
et al., 2002)

time-of- ight (TOF) mass analyzer ions are separated using the time they
reach the detector af er being acceler-
ated in the electric eld – the square of
velocity of the accelerated ion is pro-
portional to them/z ratio;

(Cotter, 1994)

ion trap mass analyzer three-dimensional (quadrupole ion
trap) or rectangular (linear ion trap)
construction produces an electric or
magnetic eld within a high vacuum
system; the eld (its frequency and
potential) is manipulated in a such
way that only the molecules with
selectedm/z ratio reach the detector;

(Brancia, 2006)

Fourier-transform ion
cyclotron resonance
mass spectrometry
(FT-ICR MS or
FTMS)

mass analyzer them/z ratio can be calculated using
the frequency of rotation of the inves-
tigated ions in the spatially uniform,
cyclic magnetic eld;

(Marshall et al., 1998)

Orbitrap mass analyzer ions are orbiting around the electrode
within the electrostatic eld, and the
frequencies of their harmonic oscilla-
tions are proportional to (m/z)−1.

(Makarov, 2000)
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The ability to discriminate between the neighboring peaks is described by the resolution
coe cientR = M

∆M
. The FullWidth at HalfMaximum (FWHM) approach de nes∆M as

the peak width at half of its height, andM is the mass at top of the peak. The resolution can
be expressed in parts-per-milion (ppm), i.e. multiplied by 106 factor.

Finally, it should be noted that two basic approaches for MS proteomics are of use. The
top-down analysis investigates the intactmolecules, while the bottom-up analysis investigates
at once the mixture of proteins digested by the proteolytic enzymes called peptidases (e.g.
trypsine) (Yates and Kelleher, 2013).

MS

We distinguish two types of noise in the mass spectra associated with its origin: chemical
(producing unexpected peaks, e.g. from contaminants) and electronic ( uctuations of the
measurements). There are many preprocessing steps that try to remove the noise, and the
standard work ow include:

1. baseline correction (removing errors with systematic dependencies);

2. smoothing (removing random uctuations);

3. peak detection/peak picking (distinguish between signals and background).

The other processing step would transformm/z ratio to mass domain. For the molecule
M with z additional protons of mass p, we can have m

z
= M+zp

z
= M

z
+ p, and there-

foreM = z(m
z
− p). The non-trivial problem is then to predict the charge value of the

molecule. In practice, quite accurate prediction can bemade using the Fourier and Patterson
transform (Senko et al., 1995b).

This thesis will not cover the algorithms for the preprocessing phase. However, the ap-
propriate methods at this step are crucial to accurately retrieve the signal measured by the
spectrometers. Some computational approaches to this problems are presented e.g. in Eid-
hammer et al. (2007) and Yang et al. (2009). It should be also noted that very of en (if not
always) the raw data returned by the instruments are already the output of the built-in algo-
rithms.

I

Letus consider themolecule11 ξ(v, w, x, y, z)of a chemical formulaCvHwNxOySz , i.e. com-
posed of v carbon, w hydrogen, x nitrogen, y oxygen, and z sulphur atoms. For simpli ca-
tion, we will further omit the parameters v, w, x, y, z, where their presence is obvious from
the context.

11Wewill not distinguish between molecules and ions.
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Analogously to the elements, we can also consider isotopic variants of the molecule. Each
isotopic variant has its exact mass and a probability, being a sumaric mass and a product of
probabilities of occurrence of its atoms, respectively.

The lightest isotopic variant (the one composed purely from the monoisotopic atoms) of
the molecule is called a monoisotopic variant. The monoisotopic variant of ξ has an exact
mass:

Mmono = vMC12 + wMH1 + xMN14 + yMO16 + zMS32 , (1.1)

which is also called a monoisotopic mass of ξ, and a probability:

Pmono = P v
C12

× Pw
H1

× P x
N14

× P y
O16

× P z
S32
. (1.2)

One can look at the molecule with a di ferent level of accuracy. In a very precise ap-
proach, we can consider isotopic ne structure of ξ, where we distinguish between any two
isotopic variants as long as they are composed of di ferent number of particular isotopes 12.
For example for ξ(1, 0, 0, 2, 0), a carbon dioxideCO2, we will consider 12 ne isotopic vari-
ants, namely 12C16O16O (monoisotopic variant), 13C16O16O, 12C16O17O, 13C16O17O,
12C16O18O, 13C16O18O, 12C17O17O, 13C17O17O, 12C17O18O, 13C17O18O, 12C18O18O,
and 13C18O18O. The approaches to the problem of e fective isotopic variants representation
involved symbolic polynomial expansion (Yamamoto andMcCloskey, 1977; Brownawell and
Fillippo, 1982), and themultinomial expansion (Yergey, 1983); see alsoValkenborg et al. (2012)
for the review of the models. However, even for a very small molecules, the number of ne
variants is quite large, and while increasing the number of atoms we can quickly fall into the
problem of huge number of con gurations that cannot be easily handled.

The simpli cation of the ne approach is to look at the aggregated isotopic variants, where
we group together variants with the same number of additional neutrons13. For example, for
ξ(1, 0, 0, 2, 0), we have only 6 aggregated variants with 0, 1, . . . , 5 additional neutrons. Of
note, the aggregated variant with 0 additional neutrons is always composed of a single ne
variant, i.e. the monoisotopic one. The center-mass of aggregated variant is the average mass
of all its ne variants.

The most coarse approach considers the average mass of the molecule ξ, namely:

M̄ = vM̄C + wM̄H + xM̄N + yM̄O + zM̄S, (1.3)

whereM̄C , M̄H , M̄N , M̄O, andM̄S are the averagemasses of the corresponding elements, e.g.
M̄C = PC12MC12 + PC13MC13 . However, this approximation looses a lot of characteristic
information for the isotopic structure of the molecule.

12We do not distinguish between isoforms, where the order of isotopes matters.
13Additional neutrons in comparison to the monoisotopic variant of considered element or molecule.
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As the isotopic variants are analyzed here in the context of mass spectra, we will also refer
to them as to peaks. However, it should be noted here that the peak, when taken from the
data or appropriately modeled, is a signal associated with the variant, not the variant itself.

1.3 R

A

Our aim in this part of the analysis is to e fectively model and process isotopic distribution
using the concept of aggregated variant. We also wanted to investigate the usefulness of this
approach to isotopic distribution for the purpose of molecule identi cation. As a result, we
presented the algorithm called BRAIN (Ba ing Recursive Algorithm for Isotopic distribu-
tioNcalculations) that is able to compute the aggregated isotopedistribution for themolecule
CvHwNxOySz . The algorithmsmakes use of two polynomial generating functions. First of
these functions,Q, is de ned as:

Q(I; v, w, x, y, z) =
(
PC12I

0 + PC13I
1
)v ×(

PH1I
0 + PH2I

1
)w ×(

PN14I
0 + PN15I

1
)x ×(

PO16I
0 + PO17I

1 + PO18I
2
)y ×(

PS32I
0 + PS33I

1 + PS34I
2 + PS36I

4
)z

,

and computes the probabilities of the variants with the same number of additional neutrons.
The second function,U , is used to calculate the corresponding center-masses, and is de ned
with the usage of the functionQ:

U(I; v, w, x, y, z) =

vQ(I; v − 1, w, x, y, z)
(
PC12MC12 + PC13MC13I

1
)

+wQ(I; v, w − 1, x, y, z)
(
PH1MH1 + PH2MH2I

1
)

+xQ(I; v, w, x− 1, y, z)
(
PN14MN14 + PN15MN15I

1
)

+yQ(I; v, w, x, y − 1, z)
(
PO16MO16 + PO17MO17I

1 + PO18MO18I
2
)

+zQ(I; v, w, x, y, z − 1) ×(
PS32MS32 + PS33MS33I

1 + PS34MS34I
2 + PS36MS36I

4
)
.

The algorithm calculate iteratively the coe cients of both generating functions using the
theory of Newton-Girard and Vìete’s formulas (Séroul, 2000; Vinberg, 2003).
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Moreover, we implemented BRAIN as a part of R Bioconductor repository together with
the stopping criteria to calculate the substantial part of the isotopic distribution, and applied
it in the case study involving batch processing of a large protein dataset extracted from the
Uniprot database. Namely, we build the linear model predicting the monoisotopic mass
based on the corresponding most abundant center-mass. This kind of approach might be
potentially useful for experimentalists, who are not able to observe monoisotopic mass for
heavy ions, but would like to use it for molecule identi cation.

Furthermore, we introduced BRAIN 2.0., involving two improvements to decrease both
time and memory complexity in obtaining the aggregated isotope distribution, and a con-
cept to represent the element isotope distribution in a more generic manner than in original
BRAIN.

Finally, we proposed an automatic procedure for discrimination between lipid and pep-
tide signals. The bunch of random forest classi ers is able to distinguish between lipids and
peptides based on the features derived from the aggregated isotopic distribution. Moreover,
we propose to extend the classi cation for discrimination between the di ferent lipid classes.

F

In the next step of the analyses we tried to characterize the ne structure of aggregated iso-
topic variants (in practice, we especially looked at the most abundant peaks). We presented
a generating function based approach to calculate the variance and the information theory
entropy of mass for the aggregated isotopic variants. Af er processing the Uniprot database,
we built the linear model for the variance of the most abundant aggregated peak based on
its center-mass . Further, we also estimated the spread of mass distribution and number of
con gurations for the aggregated variants.

O , -

Chapter 1 is an Introduction. Its rst part covers the analysis of the human genome sta-
bility. More precisely, it presents the biological background, biological and bioinformatic
methods, and subsequently summarizes the results, which are described in more details in
Chapters 2 and 3. The second part of Chapter 1 covers the analysis of proteome using mass
spectrometry. It describes the organization of the proteome in organisms, mass spectrome-
try as an analytical method for proteomics study, introduces the isotopic distribution, and
summarizes results from Chapters 4-6

Chapter 2 describes the potential human genome instability that can be caused by recur-
rent genomic inversions mediated via NAHR and its content is mostly taken from the arti-
cle (Dittwald et al., 2013c). This analysis was made by PD, partially during his visit at Baylor
College of Medicine (BCM) in Houston, and Dr. Tomasz Gambin fromWarsaw University
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of Technology. PD analyzed the frequencies of large clinical CMA database (maintained by
Medical Genetics Laboratories at Baylor College of Medicine in Houston and preprocessed
by the group of Dr. Chad A. Shaw), retrieved the cases of known deletions/duplication as-
sociated with NAHR syndromes, and prepared data used by Dr. Tomasz Gambin in quasi-
Poisson modeling. PD and Dr. Pawe l Stankiewicz identi ed four novel recurrent NAHR-
mediateddeletions involving 2q12.2q13. For further classi cation,wedesigned andperformed
wet-lab experiments to identify breakpoint hotspots (Dr. Przemys law Szafrański), and con-
tacted the referring physicians to obtain the clinical characteristics of the studied patients. We
also used the CMAdata from Signature Genomic Laboratories in Spokane, USA.Moreover,
Drs. AnnaGambin, Pawe l Stankiewicz, and PD developed the concept of LCR clusters, and
Dr. Tomasz Gambin prepared theMiropeats diagrams showing the homology of LCR clus-
ters anking NAHR-prone regions. This study was also performed in a collaboration with
Dr. James R. Lupski in the Department of Molecular and Human Genetics at BCM, who
helped to shape the nal version of the manuscript.

Chapter 3 describes the potential human genome instability that can be caused by recur-
rent inversionsmediated viaNAHRmechanism. As there are very limitednumbers of clinical
cases associated with these rearrangements, this study covers the automated processing of the
human genome database integrated with several biological annotations (genes, phenotypic
characteristics, CNVs in normal patients cohort) based on the parameters from the literature
about NAHR events responsible for deletions and reciprocal duplications. The content of
this chapter is mostly taken from the article (Dittwald et al., 2013b). The computational ana-
lyses of genome instability potentially mediated by IP-LCRs was done together by PD and
Dr. TomaszGambin and supervisedbyDrs. AnnaGambin andPawe l Stankiewicz. The clin-
ical context these results was mainly analyzed by Dr. Pawel Stankiewicz. In this article, we
also presented the complex genomic rearrangements with a duplication-inverted triplication-
duplication (DUP-TRP/INV-DUP) structures performedby the group fromBCM(compu-
tational analysis made by Dr. Claudia Gonzaga-Jauregui), not included in this thesis.

Chapter 4 presents the algorithm BRAIN (Ba ing Recursive Algorithm for Isotopic dis-
tributioN calculations) for calculating both the aggregated isotope distribution and corre-
sponding center-masses. Furthermore, BRAIN is evaluated in terms of speed and precision,
and compared with existing alternatives. This part is mostly taken from the article (Claesen
et al., 2012). The algorithm was developed by PD and Dr. Dirk Valkenborg. The evaluation
of the BRAIN (using MATLAB implementation) was performed by Dr. Jürgen Cleasen.
Finally, we present also the compiled (C++) implementation (useBRAIN), which is based
on Hu et al. (2013) – the C++ implementation called useBRAIN was written by Han Hu,
while the performance analysis was done by PD.

Chapter 5 introduces improvements in the original BRAIN. This part was mostly taken
from (Dittwald and Valkenborg, 2014), the improvements were developed by PD and Dr.

16



Dirk Valkenborg, and the tests were implemented by PD.
Chapter 6 presents several applications of the BRAIN algorithm: Bioconductor BRAIN

package togetherwithuse case of high-throughputdataprocessing (both implementedmainly
by PD; the results are taken from the BRAIN package online documentation and the article
(Dittwald et al., 2013a)), and the lipid/peptide classi er (implemented and tested by PD; real
MSdata providedbyVanderbildtUniversity andpreprocessedbyVuTrungNghia) described
in the preparedmanuscript (not yet accepted for publication). The preliminary results of this
study were also presented as a poster at ASMS conference in Vancouver in 2012.

Chapter 7 is based on results obtained mainly by PD and described in the manuscript in
preparation. The preliminary results of this study were also presented as an oral presentation
and poster at Polish Bioinformatics Society annual meeting inWroc law in 2013.

Finally, Chapter 8 contains concluding remarks and further works.
The majority of Figures and Tables in this dissertation is taken from the corresponding

manuscripts. Moreover, both supervisors helped in correcting and editing the thesis.
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2
Genome-wide analyses of recurrent

deletions and duplications

Copy-Number Variants (CNVs) involve large portion of the human genome and is re-
sponsible for various genomic disorders (Stankiewicz and Lupski, 2010; Girirajan et al., 2011).
We can distinguish recurrent CNVs that re-appear in the same genomic loci, as independent
events. This phenomenon can be explained by a speci c structure (architecture) of the par-
ticular genomic region that predisposes some loci to de novo rearrangements via Nonallelic
Homologous Recombination (NAHR). It has been shown (Stankiewicz and Lupski, 2002)
that the NAHR-mediated rearrangement breakpoints fall within the anking highly homol-
ogous pairs of LCRs. In this Chapter, we focus on recurrent deletions and reciprocal dupli-
cations. In particular, we consider large unbalanced events as they can be detected by aCGH
technology. Moreover, they are likely causing phenotypic manifestation in patients because
they usually involve larger number of genes than small CNVs. In this study we:

1. present a novel approach (based on LCR clusters) to systematically analyze the ge-
nomic regions prone to NAHR events;

2. analyze large and unique clinical CMA database and report both prevalence and de
novo frequencies of knownNAHRsyndromes aswell as the evidenceofnovel potential
syndromes;
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....

Genome architecture:

• LCR clusters identi ca-
tion

• characterization of
NAHR-prone regions

.

Chromosomal microarray
analysis (CMA) database:

• known pathogenic re-
current rearrangements

• novel 2q12.2q13 deletion

.

Statistical modeling:

• correlation between ge-
nomic features and clini-
cal data

• NAHR sites characteri-
zation

.

Region speci c
molecular analysis:

• FISH

• Long-range PCR and
DNA sequencing

.

Molecular data

.

Clinical data

Figure 2.1: A schematic workflow of the study. The violet and pink colors markmolecular and clinical data, respectively.

The arrows indicate the data transfer, which was usually done using automated or semi-automated procedures. Figure

courtesy: Dr Anna Gambin.

3. correlate de novo frequencies of di ferent syndromes with selected genomic features to
get some insights into molecular basis of the NAHRmechanism;

4. analyze statistically the genomic features related to the NAHR breakpoint regions.

Of note, these tasks are suited for intensive computational processing of large-scale data:
CMA assays and human reference genome. To give a better idea about the complexity of
this interdisciplinary study, we present schematically its work ow in Figure 2.1.

2.1 P

The analysis of directly oriented, highly homologousLCRs is a common approach to develop
genome-widemap ofNAHR-prone regions. There are twomain studies that previously gen-
erated such map, and therefore serve as a good reference point to our results:
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1. Sharp et al. (2006) analyzedolder versionofhumangenomebuild, i.e. hg16 (July 2003),
and predicted 130 intervals anked by directly oriented LCRs longer than 10 kb, with
sequence identity above 95 and separated by 0.05− 10Mb of intervening sequence;
cf. also Sharp et al. (2005).

2. Liu et al. (2012) applied the sameLCRsparameters as theprevious study, but ongenome
build hg19, and found 608 intervals that collapsed to 89 regions.

Of note, LCR identi ed in hg16 and hg19 reveal several di ferences, which resulted in some
discrepancies between the two studies. Moreover, Sharp et al. (2006) and Liu et al. (2012)
used di ferent methods to collapse the overlapping regions.

2.2 D P LCR (DP-LCR )

In our study, we decided to analyze the SegmentalDuplication track (Bailey et al., 2002) avail-
able viaUCSCGenomeBrowser for hg19. This track provides a set of LCRpairs, for elements
longer than 1 kb, and homologymeasure (called fractionmatching) between the correspond-
ing elements above 90%. For further analyses, we chose the following subset of the directly
oriented LCR pairs located on the same chromosome:

• elements longer than 8 kb – this parameter takes into account that elements shorter
than those considered in (Sharp et al., 2006; Liu et al., 2012) can mediate known syn-
dromes on Xp22.31 (STS syndrome (Hernandez-Martin et al., 1999)) and Xq28 (El-
Hattab et al., 2011); on the other hand, we did not want to relax the length parameter
too much, to avoid too large set of LCRs pairs;

• pairs separated by 50 kb - 10 Mb (plus length of a smaller copy) – this bounds the
length of the deletions/duplications that can be caused by the considered elements and
corresponds to the known recurrent NAHR syndromes sizes;

• excluding pairs that ank centromeres – restriction which eliminates CNVs that are
expected to be lethal;

• fraction matching > 95% – a parameter corresponding to those used in Sharp et al.
(2006) and Liu et al. (2012); this homology measure is provided by the Segmental Du-
plication UCSC track.

The above-de ned subset of LCRs will be further referred to in this Chapter as Direct Paral-
ogous LCRs (DP-LCRs). In total, we identi ed 653 DP-LCRs.
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2.3 LCR

Of note, LCRs that ank NAHR are of en accompanied by other LCR elements. There-
fore, we decided to systematically introduce a concept of LCR clusters, that can be com-
putationally identi ed and adapted to the whole-genome analysis. First, we de ned LCR
seeds as interval on chromosome composed purely of either LCR elements or Gaps (i.e. un-
sequenced regions). Then, we calculated a distance between any pair of LCR seeds (denoted
as LCRseed1 and LCRseed2) according to the following rule:

..

Pseudocode chunk 2.1

.

if (getChromosome(LCRseed1) != getChromosome(LCRseed1))
return MAXVALUE ## big constant
else{
if startRegion(LCRseed1) < startRegion(LCRseed2)
return (startRegion(LCRseed2) - endRegion(LCRseed1))
else
return (startRegion(LCRseed1) - endRegion(LCRseed2))
}

In other words, the ”quasi distance”1 for two seeds on the same chromosomes is de ned as
the distance between the closest ends of these seeds. While the seeds are located on distinct
chromosomes, they are not comparable (the constant MAXVALUE is used).

The algorithm for hierarchical clustering of the set of seeds Ω is as follows:

..

Pseudocode chunk 2.2

.

S := Omega #leaves of the tree
while (|S| > 1){ #until single cluster obtained
(a, b) := findAndRemoveTwoClosest(S, d)
c := merge(a, b)
addElement(S, c)
}
return S

Wemight represent this iterative clustering as a binary tree, where each internal node refers
tomerging its two sons into a single cluster. The edge lengths are proportional to the distance
between clusters on its adjacent nodes.

1We call it ”quasi distance” as the triangle inequality is not satis ed.
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..

Single linkage distance

.

Single linkage ”quasi distance” between two clusters A and B of elements from Ω
(A,B ⊆ Ω; dist : Ω × Ω → R≥0 is a ”quasi distance” function for each two
elements of Ω) is de ned as:

dSL(A,B) := min{dist(a, b)|a ∈ A, b ∈ B}

To obtain the clustering tree, we used the hierarchical clustering algorithm that starts from
LCR seeds (as leaves) andmerge clusters according to the single linkage distance (dSL). Clus-
ters were extracted by pruning this tree on the given threshold (schematically, this is repre-
sented in Figure 1.1). We decided to prune the clustering tree on a height corresponding to a
set of 3, 000LCR clusters. It should be emphasized, that the pruning threshold can bemodi-
ed, or the clustering treemight be even pruned on various heights for di ferent chromosome

regions.
The NAHR-prone regions are de ned as a set of genomic regions anked by LCR clus-

ters, considered as intervals Cα, Cβ , and there exist a pair of DP-LCR elements (also pro-
cessed as intervals) α, β such that α ⊆ Cα and β ⊆ Cβ . Of note, this de nition allows for
Cα = Cβ , i.e. NAHR-prone region can map within single LCR cluster containing a pair of
DP-LCR elements. We observe such situation in case of the 12q14.2 region associated with
Globozoospermia (MIM# 613958; (Elinati et al., 2012).

As a result of our analyses, we identi ed 198 NAHR-prone regions (full coordinates are
available as a Supplemental Table S1 in Dittwald et al. (2013c)): 105 anked by two distinct
LCR clusters, and 93 composed of a single LCR cluster. These regions are graphically com-
pared with previous approaches (in case of Sharp et al. (2006) we used only 92 out of 130
regions which successfully lif ed over to the hg19 coordinates) in Figure 2.2. Figure 2.3 is a
good example to appreciate that the LCR clustering approach allows for di ferent con gura-
tions between the neighboring regions. Practically, we were able to distinguish between:

• regions that overlap (e.g. ids 61 and 65);

• one region that is a subset of another without sharing common LCR cluster (e.g. ids
69 and 66);

• one region that is a subset of another with sharing common LCR cluster (ids 65 and
66);

• two adjacent region sharing a common LCR cluster (ids 61 and 66).

To date, approximately 40 distinct (i.e. non-overlapping) loci on both autosomes and chro-
mosome X associated with clinical syndromes have been classi ed (Lupski, 1998, 2009; Mef-
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ford et al., 2009; Vissers and Stankiewicz, 2012). Of note, these syndromes were associated
with 53 NAHR-prone regions identi ed by our approach. Our method allows for a bet-
ter classi cation of the selected similar regions that cause di ferent phenotypes. For exam-
ple, Thrombocytopenia-Absent Radius syndrome (TAR) region on 1q21 (Klopocki et al.,
2007;Albers et al., 2012), and the 1q21.1 deletion/duplication syndrome region (Me ford et al.,
2008; Brunetti-Pierri et al., 2008) were previously considered together, and now can be dis-
tinguished by our approach. On the other hand, we did not detect small CHRNA7 dele-
tion/duplication in 15q13.3 and 17q21.31 deletion/duplication region (Sharp et al., 2006) due
to the fact that there were identi ed for the haplotypes that di fer from the reference genome,
and several variants 15q24 deletion syndromes for which the anking LCRs reveal fraction
matching smaller than 95 .

The convincing application of our method is to use it for detection of the new potential
syndromes. Therefore, in the remaining (i.e. not associated with known syndromes) set of
NAHR-prone regions, we analyzed the clinical cases. For the 2q12.2q13 locus (considered as
a single NAHR-prone region by Liu et al. (2012)), we identi ed four adjacent and/or over-
lapping intervals, for which we found an evidence for large (between ∼0.6 and ∼1.9 Mb)
deletions (Figure 2.4). In this step, we rst queried the clinical CMA database. To identify
more cases, we also used data provided by Signature Genomics. For two regions (2q12.2q12.3
and 2q12.3q13), the NAHR events were con rmed using long range PCR experiments. More
details about the patients phenotypes (according to the reports sent by physicians) and long-
range PCR/DNA sequencing experiments can be found in the online SupplementaryMate-
rials from Dittwald et al. (2013c). The characterized region reveals high homology between
all LCR clusters, which is depicted using the Miropeats graphics (Figure 2.5).

2.4 K

In our study, we aimed to identify the known deletion/duplication syndrome regions in the
BCM CMA database of over 25, 000 patients (diagnoses for these patients are depicted in
Figure 2.6). To this aim, we manually collected the data about the LCR clusters anking the
syndromes (these data are provided as a Supplemental Table S2 in (Dittwald et al., 2013c)).
Moreover, we designed the automatic work ow to lter out the rearrangements that overlap
with the regions of interests (i.e. chromosome Y was not taken into consideration in fur-
ther analyses). In particular, we used Bioconductor IRanges library e ciently operating on
the intervals in order to detect the regions that are close to the syndromes loci. The CMA
data were rst preprocessed by the BCM bioinformatic laboratory (headed by Dr Chad A.
Shaw), and provided as a region narrowed down to minimal/maximal start and stop coor-
dinates. Then, we have assigned 2, 129 CNVs (1, 053 deletions and 1, 076 duplications) to
syndromes (we manually curated this step to get better association). This information, de-
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Figure 2.4: The 2q12.2q13 region where four potential novel rearrangements have been identified (the correspond-

ing DP-LCR are represented as arrows on the top). The red bars in themiddle indicate the events found in the clinical

databases (BCM and Signature Genomics). Red and blue thin bars at the bottom indicates available entries from the DE-

CIPHER and ISCA databases. The interesting genes harboring the regions of rearrangements (ST6GAL2, SLC5A7, EDAR,

RANBP2) are indicated by green arrows. Source: Dittwald et al. (2013c).

27



Figure 2.5: Schematic representation of the homology within the 2q12.2q13 region (same interval shown at the top

and the bottom of the figure). Visualization is made utilizing ICAass algorithm (v.2.5) and theMiropeats program

(v.2.01) (Parsons, 1995). Figure source: Dittwald et al. (2013c).
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DD/ID 26.7%

ASDs 9.3%

seizures 7.6%

dysmorphic features 6.3%

heart defects 2.9%

speech delay 2.1%
ADHD 1.9%

others 26.8%

no indication provided 16.4%

Figure 2.6: The pie chart with themain diagnoses on the patients fromBCMCMAdatabase. Abbreviations used: DD/ID

– developmental delay/intellectual disability, ASDs – autism spectrum disorders, ADHD – attention deficit hyperactivity

disorder. Data fromDittwald et al. (2013c) (initially provided by IanM. Campbell).
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picted as a histogram in Figure 2.7, describes the prevalence of the syndromes in our database
(which is not the same as prevalence in the population as our database is biased towards ab-
normal phenotypic manifestation; cf. also Figure 2.6). The tree most common recurrent
rearrangements observed wereNPHP1 duplications (233 cases), CHRNA7 duplications (175
cases), and 22q11.21 deletions (DGS/VCFS common, 166 cases). We have extracted the inheri-
tance information associated with samples (available for only∼ 25% of the analyzed CNVs),
and each rearrangement was then characterized as de novo (190 CNVs), inherited (355 CNVs),
or of unknown origin (1,584 CNVs). This informationwas obtained by additional FISH ana-
lyses in the parents (samemethodwas used to con rmCNVs in patients). Then, we restricted
our analysis to de novo vs. inherited cases in order to get more insights about the frequency
of new events in our patients’ cohort (cf. Figure 2.8). Of note, the most frequent de novo
rearrangements were deletions: 22q11.21 (DGS/VCFS common), 16p11.2 (593 kb), and 7q11.23
Williams-Beuren syndrome (WBS).

2.5 G

We analyzed the RefSeq genes extracted from the USCS Genome Browser – 2, 145 of them
overlappedwith the genomic regions ankedbyDP-LCRs. We identi ed a subset of 39 genes
reported to be dosage-sensitive, as increase or decrease of their expression may cause pheno-
typic manifestation (Huang et al., 2010). In addition, we queried OMIM database using
OMIMAPI, and found 232 genes with associated diseases (all identi ed genes are presented
as Supplementary Table S3 in Dittwald et al. (2013c)).

2.6 S -
NAHR

As we collected the information about de novo NAHR frequencies, we used these data to
link them with various genomic features that can predispose to genome instability. The pre-
vious study (Liu et al., 2012), limited to deletions in 17p11.2 region (Smith-Magenis syndrome;
SMS), suggested that there is a correlation between rearrangement frequencies and the high
percent of sequence identity between anking direct paralogous LCRs. Here, we aimed to
performmore systematic, genome-wide analyses. As our study introduces the concept of au-
tomatically derived LCR clusters, we considered separately genomic features characterizing
DP-LCR and structural features associatedwith LCR clusters. Thus, for a subset of deletions
thatwere likely tobe causedbyde novoNAHRevents associatedwith known syndromes, two
classes of NAHR hot spots were considered:

• ”active” – with identi ed de novo events;
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Figure 2.7: The prevalence (i.e. both inherited and de novo events are considered) of known syndromes associated with

NAHR-mediated deletions and duplications among patients in BCMCMAdatabase. Source: (Dittwald et al., 2013c).
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• ”inactive” – for the remaining set of regions.

A set of nonparametric Mann-Whitney-Wilcoxon tests has been made to explore the di fer-
ences in genomic features between ”active” and ”inactive” hot spots.

..

Mann-Whitney-Wilcoxon test

.

For two samplesA andB, from distributionsX and Y , respectively,Mann-Whitney-
Wilcoxon test validates if X and Y are statistically equal. More precisely, the null
hypothesisH0 says that P (X > Y ) = P (X < Y ). The test uses the statistic U that
measures the number of pairs (x, y), x ∈ X, y ∈ Y such that x ≥ y.

As a result, the statistically signi cant di ferences were noted for several genomic features,
reported in Tables 2.1-2.2 (columns 2 and 3). In particular, ”active” hot spots reveal increased
GC content and the increased density of the 13-mer motif (5’-CCNCCNTNNCCNC-3’) as-
sociated in (Myers et al., 2008)with recombination hot spots. Then, forDP-LCRs that ank
more than two recurrent NAHR events, the Spearman rank correlation has been calculated.

..

Spearman rank correlation

.

Spearman rank correlation ρ between two variablesX and Y of size n is a nonpara-
metric measure of their dependence. For ranked (in case of ties, the mean rank value
is used) values {x1, . . . , xn} and {y1, . . . , yn} obtained from original values drawn
fromX and Y , respectively, the following formula is used:

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

where x̄ states formean value of vectorx. The coe cientρhas values from the interval
[−1; 1]; for ρ = ±1 the perfect dependence is obtained, while for ρ = 0 two variables
are assumed to be independent. The approximation of p-values can be done e.g. using
the Student’s t distribution.

The strongest correlation tested to be statistically signi cant (p-value < 0.05) for DP-
LCRs features was detected for the distance between DP-LCR elements (the negative corre-
lation) and sequence identity. In addition, the homology length reveals strong correlation,
which is, however, characterized by a low statistical signi cance (p-value≈ 0.168). The more
detailed results are provided in Tables 2.1-2.2 (column 4). For the following features of DP-
LCRs and LCR clusters, the strongest correlation has been detected: maximal LCR homol-
ogy, GC content and a maximal number of the 5’-CCNCCNTNNCCNC-3’ motifs.
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The next step was to build the regression model to explain the frequency information
based on a set of genomic features. According to McEldu f et al. (2010) the proper approach
for count data analysis is a Poisson regression model.

..

Poisson regression

.

InPoisson regression, the response variableY is assumed to have Poisson distribution,
i.e.

P (Y = y) =
e−µµy

y!
,

whereµ is a parameter. The second assumption is that the logarithmof expected value
of Y (in our case E(Y ) = µ) can be modeled by a linear combination of parameters
from vectorX . Namely, forZ = log(E(Y |X)),Z = βX + β0.

The features that occurred to be statistically signi cant were presented in column 5 of Ta-
bles 2.1-2.2.

For the next analysis, we gathered the literature data about knownNAHR recombination
sites (presented as Supplementary Table S5 in (Dittwald et al., 2013c)). Finally, the closer in-
vestigation of the distribution of the 5’-CCNCCNTNNCCNC-3’ motif revealed its enrich-
ment in the distance up to 2 kb from breakpoints in contrast to other randomly selected
13-mer motifs.
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3
Genome-wide analyses of NAHR-mediated

inversions

In contrast to the several phenotypic NAHR-mediated deletions and duplications, only two
recurrent inversions have been associated with clinical syndromes:

• hemophilia A (factor VIII de ciency;MIM#306700), where over 45 cases are associ-
ated with inversion disrupting the F8 gene (Lakich et al., 1993; Naylor et al., 1992, 1993,
1995).

• mucopolysaccharidosis type II (Hunter syndrome;MIM #309900) – in this case a bal-
anced inversion harbors the IDS gene (Bondeson et al., 1995).

Onnote, both aforementioned diseases areX-linked andmap toXq28 region. The lownum-
ber of syndromes examples does not necessarily mean that NAHR-mediated inversions are
rare, and can be explained by other reasons:

1. The balanced rearrangements are much more di cult to be detected, e.g. cannot be
identi ed by aCGH assays.

2. Genes aremostly disrupted by inversion’s breakpoints, in contrast to e.g. deletions and
duplications, where the whole region between breakpoints is imbalanced. This causes
that even long rearrangement usually causes not so severe phenotypic manifestation as
in cases of deletions and duplications of the same size.
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3.1 G

The project described in this Chapter aimed to investigate the potential genome instability
caused by NAHR-mediated inversions. First, we identi ed the set of inversely oriented, par-
alogous LCRs (IP-LCRs) that are likely to mediate such events. Namely, we considered the
UCSC Genome Browser Segmental Duplications track (Bailey et al., 2002) (genome build
hg19) for the following parameters:

• minimal length of the LCR element over 1 kb (which was a limitation of the analyzed
track);

• LCR elements separated by less than 10 Mb to exclude too long rearrangements;

• fraction matching above 95% – according to the parameter used for directly oriented
LCRs (see Chapter 2).

As a result, we found 1, 337 pairs of such IP-LCRs (Figure 3.1). We also analyzed other frac-
tion matching limitations: relaxed (> 90%), and more stringent (> 97%), which revealed
2, 805 and 915 pairs of opposite orientation LCRs, respectively (the term IP-LCRs is used in
this Chapter only for dataset generated using fractionmatching> 95%). The set of IP-LCRs
harbors in total 372.6 Mb, i.e. approximately 12% of the human genome, and in particular
involves 43 of chromosome 17. This is a portion of the human genome that can be po-
tentially altered by NAHR-mediated inversions utilizing IP-LCRs. The DNA covered by
IP-LCRs elements is much shorter, i.e. 59 Mb (1.93 of the human genome, including over
11% of chromosome Y) – cf. Figure 3.2.

3.2 A D G V

As stated above, there are only two known syndromes associated with recurrent pathogenic
inversions. Therefore, we analyzed the inversion from the Database of Genomic Variants
(DGV; http://projects.tcag.ca/variation/)) – repository with data from healthy
individuals (Zhang et al., 2006). In DGV, we found 587 inversions > 10 kb. In this set we
were searching for events with two breakpoints within the corresponding IP-LCR elements.
Speci cally, wequeried for inversions characterizedby intervalsRα,Rβ and apair of IP-LCRs
elements (also treated as intervals)α, β such thatα∩Rα 6= ∅ andβ∩Rβ 6= ∅. As a result, we
identi ed 47 such inversions (Figure 3.1), and tested their statistical signi cance by applying
the following procedure.
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Figure 3.2: Portions of chromosomes covered by regions flanked by IP-LCRs (A), and IP-LCR elements themselves (B).

Source: Dittwald et al. (2013b).
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..

Pseudocode chunk 3.1

.

for inv in inversions{
l <- length(inv)
chr <- chromosomeOf(inv)
seqs <- drawRandomSequences(l, hm, chr)

##draws hm sequences with two breakpoints outside gaps
count <- 0
for seq in seqs

if (bothEndsInIPLCRs(seq))
count <- count + 1

pValue[inv] <- count/hm
}
return pValue

Namely, we estimated the probability (p-values) that the randomly generated sequence of
a given length lying on the same chromosome as investigated inversion has both breakpoints
within the corresponding IP-LCR elements. All estimated p-values are below 0.05 (each p-
value was estimated independently, no correction has been applied).

3.3 G

Here, we investigated genes where NAHR-mediated inversion breakpoints can be located.
Using RefSeq genes from the track in UCSC Genome Browser, we identi ed 942 (99 X-
linked) genes that intersect with at least one IP-LCR element; eight of themABCC6, FKBP6,
GTF2I, vNCF1, PRODH, RTN4R, STAT5A, and STAT5B are known as dosage-sensitive
genes (Huang et al., 2010). Moreover, our research provided also the detailed characteristics
of 31 genes that are known to be associatedwith diseases (cf. Table 3.1), and can serve clinicians
for the diagnostic purposes. We also investigated the phenotypes associated with the found
genes. For this purpose, we queried the Genetic Association Database (GAD) (Zhang et al.,
2010), which is ”an archive of human genetic association studies of complex diseases and dis-
orders” (according to the o cialwebpage of the projecthttp://geneticassociationdb.
nih.gov/), and identi ed various disease classes as presented in Figure 3.3 (no class is domi-
nating).
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Table 3.1: A table with 31 genes potentially disrupted by recurrent inversions, which are already known to be associated

with diseases. Source: Dittwald et al. (2013b).

Gene Gene description Location Intersection
with LCR Size
(Size of entire
LCR) kb

LCR identity
%

Disease Inheritance OMIM

ABCC6 ATP-binding cassette, sub-family C
(CFTR/MRP), member 6

16p13.11 25 (128) 99.36 Pseudoxanthoma elasticum AR 264800

AKR1C2 Aldo-keto reductase family 1, mem-
ber C2

10p15.1 28 (47.5) 95.15 46,XY sex reversal 8 AR 614279

BCR Breakpoint cluster region 22q11.23 7(10.5), 4(7) 95.98; 96.17 Chronic myeloid leukemia (CML) - 608232
CFC1 Cripto, FRL-1, cryptic family 1 2q21.1 7 (227); 7 (229) 99.27; 99.27 Visceral heterotaxy-2 (HTX2); (a con-

genital heart disease; identi ed in pa-
tients with transposition of the great ar-
teries and double-outlet right ventricle)

AD 605376

CHRNA7 Cholinergic receptor, nicotinic, al-
pha 7 (neuronal)

15q13.3 17 (307) 99.62 Chromosome 15q13.3 deletion syndrome AD 612001

CNTNAP3 Contactin associated protein-like 3 9p13.1 5(208); 55(115);
130(155); 64(64);
22(49)

99.29; 98.72;
98.49; 98.3;
98.2

Candidate gene for bipolar disorder and
bladder exstrophy

? N/A

DPP6 Dipeptidyl-peptidase 6 7q36.2 105(105); 110(110) 98.4; 98.42 Paroxysmal familial ventricular brilla-
tion 2 (VF2)

AD 612956

DUOX2 Dual oxidase 2 15q21.1 1 (1) 97.46 Congenital hypothyroidism, Thyroid
Dyshormonogenesis 6 (TDH6)

AR 607200

FANCC Fanconi anemia, complementation
group C

9q22.32 3(3) 95.98 Fanconi anemia, complementation
group C

AR 227645

FLNC Filamin C 7q32.1 3(3) 96.4 Myo brillar myopathy, Distal myopa-
thy 4

AD 609524;
614065

GTF2I General transcription factor IIi 7q11.23 33 (144) 99.67 Williams-Beuren syndrome critical re-
gion, responsible for autism spectrum
disorders

AD 194050

HERC2 HECT and RLD domain containing
E3 ubiquitin protein ligase 2

15q13.1 4(4); 47(47);
1(1); 34(34);
6(103)

95.04; 97.31;
96.12; 97.07;
99.61

Juvenile development and fertility 2
(jdf2), skin/hair/eye pigmentation

AD? 227220

KRT81 and
KRT86

Keratin 81 and keratin 86 12q13.13 4(4) 97.72 Monilethrix AD 158000

NCF1 Neutrophil cytosolic factor 1 7q11.23 15.3(144) 99.67 Chronic granulomatous disease AR 233700
NQO2 NRH:quinone oxidoreductase-2 6p25.2 2(2) 96.95 Breast cancer - 114480
OCLN Occludin 5q13.2 24(79) 99.67 Band-like calci cation with sim-

pli ed gyration and polymicrogyria
(BLCPMG)

AR 251290

PLEKHM1 Pleckstrin homology domain-
containing protein, family M,
member 1

17q21.31 3(3) 95.79 Osteopetrosis, autosomal recessive 6 AR 611497

PRODH Proline dehydrogenase 22q11.21 12(23); 2(2) 95.83; 96.37 Hyperprolinemia type 1; Schizophrenia AD 239500;
600850

RANBP2 RAN binding protein 2 2q12.3 52(52); 52(52);
52(52)

97.59; 97.62;
97.67

Acute necrotizing encephalopathy
(ANE1)

AD 608033

RHCE and
RHD

Rh blood group, CcEe antigens 1p36.11 58(63) and 57(61) 98.07 RH-null disease AD 268150

RTN4R Reticulon 4 receptor 22q11.21 6(28) 95.84 Susceptibility to schizophrenia AD 181500
SBDS Shwachman-Bodian-Diamond

syndrome
7q11.21 8(46) 96.77 Shwachman-Bodian-Diamond syn-

drome; Paragangliomas 5
AR 260400

SDHA Succinate dehydrogenase, 5p15.33 0.5(5); 21(24) 96.18; 95.65 Leigh syndrome AR 256000
SORD Sorbitol dehydrogenase 15q21.1 4(4); 18(18);

17(25)
95.07; 97.31;
97.86

De ciency in a family with congenital
cataracts

N/A N/A

SPECC1L Sperm antigen with calponin homol-
ogy and coiled-coil domains 1-like

22q11.23 5(5); 5(5) 97.06; 96.91 Oblique facial clefting-1 (OBLFC1) AD 600251

SPTLC1 Serine palmitoyltransferase, long-
chain base unit 1

9q22.31 11(11) 96.68 Neuropathy, hereditary sensory and au-
tonomic, type 1, severe

AD 162400

STAT5B Signal transducer and activator of
transcription 5B

17q21.2 4(4) 97.4 Growth hormone insensitivity with im-
munode ciency

AR 245590

TAF1 TAF1 RNA polymerase II, TATA box
binding protein (TBP)-associated fac-
tor, 250kDa)

Xq13.1 3(3) 99.84 Dystonia 3, Torsion, X-linked (DYT3) X-linked 314250

TMLHE Trimethyllysine hydroxylase, epsilon Xq28 16(51); 1(1) 99.92; 96.06 New error of carnitine metabolism X-linked N/A
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cardiovascular 20

developmental 2
hematogical 6immune 9

infection 8

metabolic 14

neurological 11

other/unknown 17

pharmacogenomic 7

psychiatric 14

reproduction 6

chemical dependency 4

Figure 3.3: Disease classes among the genes intersecting with the IP-LCRs found in Genetic Association Database

among entries associated with the genes (field Association(Y/N) equal to ’Y’), and harboured by potential NAHR-

mediated inversions. Source: Dittwald et al. (2013b).
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4
BRAIN – an algorithm for e fective
calculation of aggregated isotopic

distribution

4.1 O BRAIN

In Chapter 1, we already introduced several representations of the molecular isotopic distri-
butions, as well as the corresponding notation. Recall, that by ξ(v, w, x, y, z), we would
represent the molecule of a chemical formula CvHwNxOySz , i.e. composed of v carbon, w
hydrogen, x nitrogen, y oxygen, and z sulphur atoms. The number of stable isotopes for
these ve atoms equals two (C, H, N), three (O), or four (S). The elemental distribution in
normal terrestial matter according to the IUPAC 1997 standard (Rosman and Taylor, 1997)
is shown in Table 4.11. Moreover, to calculate the mass (Mmono) and probability (Pmono) for
monoisotopic variant of ξ, one can use Equation (1.1) and Equation (1.2), respectively. The
average mass of ξ (M̄ ) can be calculated by the closed formula from Equation (1.3).

The aggregated isotopic distribution merges variants with the same number of neutrons.
The aggregated variants are indexed from 0, and the j-th aggregated variant refers to the vari-
ant with j additional neutrons in comparison to monoisotopic variant.

1In this thesis the calculations are performed for the elemental distribution that are equal or similar to the
values from the Table 4.1.
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Table 4.1: List of the stable isotopes for carbon, hydrogen, nitrogen, oxygen, and sulphur based on IUPAC 1997 stan-

dard (Rosman and Taylor, 1997). Source: (Claesen et al., 2012).

Isotope Mass (ma/u) Abundance ( ) Isotope Mass (ma/u) Abundance ( )
12C 12.0000000000 98.93 16O 15.9949146 99.757
13C 13.0033548378 1.07 17O 16.9991312 0.038
1H 1.0078250321 99.9885 18O 17.9991603 0.205
2H 2.0141017780 0.0115 32S 31.97207070 94.93
14N 14.0030740052 99.632 33S 32.97145843 0.76
15N 15.0001088984 0.368 34S 33.96786665 4.29

36S 35.96708062 0.02

By qj we will denote a probability of j-th aggregated isotopic variant of the molecule ξ,
which can be calculated as:

qj =
∑
k

pjk (4.1)

and the center-mass (i.e. expected value) for j-th isotopic variant is de ned as:

E(mj) = m̄j =

∑
kmjkpjk∑

k pjk
. (4.2)

Themjk and pjk are, respectively, masses and probabilities of the ne variants (indexed by
k) with j additional neutrons on comparison to the monoisotopic variant. Of note, the de-
nominator – from Equation (4.1) – is equal to qj .

In case of carbon dioxide, (CO2; ξ(1, 0, 2, 0, 0)), we consider six aggregated variants with
0 − 5 additional neutrons. These are (we distinguish between any two isotopic ne vari-
ants as long as they are composed of di ferent number of particular isotopes, i.e. we do not
di ferentiate between isoforms):

• monoisotopic variant composed of 12C16O16O;

• variant with 1 additional neutron composed of 13C16O16O, and 12C16O17O;

• variant with 2 additional neutrons composed of 13C16O17O, 12C16O18O,
and 12C17O17O;

• variant with 3 additional neutrons composed of 13C16O18O, 13C17O17O,
and 12C17O18O;

• variant with 4 additional neutrons composed of 13C17O18O, and 12C18O18O;

• variant with 5 additional neutrons composed of 13C18O18O.
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Recall, in Chapter 1 we introduced the notation for isotopic masses (MC12 , . . . , MS36),
and corresponding probabilities, denoted as PC12 , . . . , PS36 . Using these elemental isotopic
distributions for the monoisotopic variant, we have that q0 = p01 = PC12P

2
O16

. For q1, we
should consider the sumaric probabilities of two ne peaks, 13C16O16O, and 12C16O17O.
For the rst of them (k = 1) 13C16O16O, p11 = PC12P

2
O16

. For the second ne peak (k =
2) 12C16O17O, p12 = 2PC12PO16PO17 . As we ignore the atoms order, this ne variant is
equivalent to 12C17O16O, and that is whymultiplication factor 2 is included in the formula.
Finally, for all aggregated variants we obtain the following equations:

q0 = PC12P
2
O16
, (4.3)

q1 = PC12P
2
O16

+ 2PC12PO16PO17 ,

q2 = PC12P
2
O17

+ 2PC12PO16PO18 + 2PC13PO16PO17 ,

q3 = PC13P
2
O17

+ 2PC13PO16PO18 + 2PC12PO17PO18 ,

q4 = PC12P
2
O18

+ 2PC13PO17PO18 ,

q5 = PC13P
2
O18

In case of the center-masses, wehavem01 = MC12+2MO16 for amonoisotopic peak. For one
additional neutronm11 = MO17 +2MO16 , andm12 = MC12 +MO16 +MO17 . Thus, m̄1 =
p11m11+p12m12

p11+p12
. This example can be continued further for the higher neutron numbers.

Our aim is to e fectively calculate both qj and m̄j . Here, weused the polynomial expansion
method from (Rockwood, 1995). Let us rst consider the following generating function:

Q(I; v, w, x, y, z) =
(
PC12I

0 + PC13I
1
)v ×(

PH1I
0 + PH2I

1
)w ×(

PN14I
0 + PN15I

1
)x ×(

PO16I
0 + PO17I

1 + PO18I
2
)y ×(

PS32I
0 + PS33I

1 + PS34I
2 + PS36I

4
)z

= {QC(I)}v × {QH(I)}w × {QN(I)}x × {QO(I)}y × {QS(I)}z (4.4)

Furthermore, we will use also the shorter form of the previous equation:

(4.5)
Q(I; v, w, x, y, z) = {QC(I)}v × {QH(I)}w × {QN(I)}x × {QO(I)}y × {QS(I)}z,

withQC(I) = (PC12I
0 + PC13I

1)being an elemental polynomial for carbon, andQH(I), . . . ,
QS(I) de ned analogously for other elements. The polynomial Q(I; v, w, x, y, z) can be
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also written in its standard form:

Q(I; v, w, x, y, z) ≡
n∑

j=0

qjI
j , (4.6)

where n = v + w + x + 2y + 4z is a maximal number of additional neutrons. The coe -
cients q0, q1, q2, . . . in Equation (4.6) correspond to the probabilities of aggregated isotopic
variants, denoted by the same symbols in Equation (4.1). Indeed, in case of carbon dioxide,
we obtain:

(4.7)
Q(I; 1, 0, 0, 2, 0) =

(
PC12I

0 + PC13I
1
)1 ×

(
PO16I

0 + PO17I
1 + PO18I

2
)2

= (PC12P
2
O16

)I0 +
(
PC12P

2
O16

+ 2PC12PO16PO17

)
I1 +(

PC12P
2
O17

+ 2PC12PO16PO18 + 2PC13PO16PO17

)
I2 +(

PC13P
2
O17

+ 2PC13PO16PO18 + 2PC12PO17PO18

)
I3 +(

PC12P
2
O18

+ 2PC13PO17PO18

)
I4 +

(
PC13P

2
O18

)
I5

=
5∑

j=0

qjI
j ,

which is consistent with Equation (4.3). Therefore, to obtain qj , it is su cient to e fectively
calculate coe cient near Ij in the polynomialQ(I; v, w, x, y, z).

As already mentioned, this polynomial expansion method was applied by Alan L. Rock-
wood (Rockwood, 1995). His approach to evaluation of this function involved Fast Fourier
Transform (Rockwood, 1995; Rockwood et al., 1995, 1996; Rockwood and Van Orden, 1996)
(see also (Valkenborg et al., 2012)). The main advantage of this method is that af er FFT,
the convolution of the two vectors (which is conventionally done to perform polynomials
multiplication) is replaced by multiplication of the coordinates. Finally, the inverse FFT is
calculated and normalized. Here, we will show the alternative, algebraic approach to calcu-
late the coe cients in Q(I; v, w, x, y, z), that is easy to be implemented. In addition, in
Chapter 5, we would also present some additional improvements that pro t from its iterative
nature.

A

Let us denote a multiset of roots of polynomial P by roots(P ). From Vìete’s formulas, we
know the relationship between the coe cients of polynomial P (x) =

∑n
j=0 qjx

j and the
symmetric polynomials over roots(P ) = {x1, . . . , xn} ⊆ Z.
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..

Symmetric polynomials

.

An j-th symmetric polynomial over the set of variables x1, . . . , xn, denoted as
ej(x1, . . . , xn), or ej , when the variables x1, . . . , xn are known from the context, is
de ned as a sum of all products of length j of the subsets of x1, . . . , xn. Namely,

e0 = e0(x1, . . . , xn) = 1

e1 = e1(x1, . . . , xn) =
n∑

k=1

xk

. . .

en = en(x1, . . . , xn) =
n∏

k=1

xk

..

Vìete’s formulas

.

The Vìete’s formulas for polynomial P (that result from its product form P (x) =
qn(x− x1) . . . (x− xn)) are then as follows:

q0 = (−1)nqnen (4.8)
. . .

qk = (−1)n−kqnen−k

. . .

qn−1 = −qne1.

Unfortunately, it is not trivial to calculate the symmetric polynomials. However, there
exist also another set of symmetric polynomials – denoted asφj(x1, . . . , xn), orφj when the
variables are known from the context – where j-th polynomial is de ned as a sum of j-th
powers of x1, . . . , xn, i.e.:

φj = φj(x1, . . . , xn) =
n∑

k=1

xjk.

If we know x1, . . . , xn, it is then very easy to quickly calculate φj for any j. The Newton-
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Girard identities (Séroul, 2000) provide the transformation from e1, . . . , en to φ1, . . . , φn:

e1 = φ1 (4.9)

e2 =
1

2
(e1φ1 − φ2)

e3 =
1

3
(e2φ1 − e1φ2 + φ3)

. . .

Alternatively, from Equation (4.8) we have:

en = (−1)n
q0

qn
(4.10)

. . .

en−k = (−1)n−k qk
qn

. . .

e1 = −qn−1

qn
.

By combining Equation (4.9) and Equation (4.10), we obtain:

qn−1

qn
= −φ1 (4.11)

qn−2

qn
= −1

2
(
qn−1

qn
φ1 + φ2)

qn−3

qn
= −1

3
(
qn−2

qn
φ1 +

qn−1

qn
φ2 + φ3)

. . .

and multiplying all above equations by qn gives us:

qn−1 = −qnφ1 (4.12)

qn−2 = −1

2
(qn−1φ1 + qnφ2)

qn−3 = −1

3
(qn−2φ1 + qn−1φ2 + qnφ3)

. . .

Of note, Equation (4.12) enables the iterative calculation of the coe cients qj starting from
the heaviest isotopic aggregated variants, while for a practical application it is much more
useful to start from the lightest ones.
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Let us now replace polynomial P by the mirror polynomial P̄ =
∑n

j=0 qn−jx
j , and use

the simple algebraic fact that roots(P̄ ) = {x−1
1 , . . . , x−1

n } (where x1, . . . , xn are roots of
P ). First, we notice that

φj(x
−1
1 , . . . , x−1

n ) = φ−j(x1, . . . , xn) = φ−j. (4.13)

For simpli cation of notation, we introduce ψl = φ−j . Then, by applying Equation (4.12)
for polynomial P̄ , we obtain:

q1 = −q0ψ1 (4.14)

q2 = −1

2
(q1ψ1 + q0ψ2)

q3 = −1

3
(q2ψ1 + q1ψ2 + q0ψ3)

. . .

or, in a more compact form:

qj = −1

j

j∑
l=1

qj−lψl. (4.15)

Recall, that ψl is a sum of (−l)-powers of elements of roots(Q(I; v, w, x, y, z)).

C ψj

We observe that Equation (4.15) uses the coe cientsψl for j = 0, 1, 2, . . . . We will show on
below that ψj can be easily calculated for any j. First, notice that for any b ∈ R, the value
b−j can be calculated by two simple ways:

a) from the closed formula b−j = exp(log(b−j)) = exp(−j × log(b)),

b) iteratively, using previously calculated value b−(j−1), namely b−j = b−1b−(j−1).
The method from a) allows to calculate b−j in a constant time, while the method from b)
allows to calculate b−j in a linear time Θ(j). However, when all coe cients from the range
b, b2, . . . , bj have to be calculated anyway, the linear time cannot be beaten. From Equa-
tion (4.5) we see that the multiset roots(Q(I; v, w, x, y, z)) is equal to the sum of multisets
roots({QC(I)}v), roots({QH(I)}w), roots({QN(I)}x), roots({QO(I)}y), and
roots({QS(I)}z). Ofnote, the polynomialsQC(I),QH(I), andQN(I) are linear, and their
roots (denoted by rC , rH , and rN , respectively) can be obtained from the equations:

rC = −PC12

PC13

, rH = −PH1

PH2

, and rN = −PN14

PN15

.
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The polynomial QO(I) is quadratic, and its two complex conjugates roots rO, r̄O can be
obtained as:

rO, r̄O =
−PO17 ±

√
P 2
O17

− 4PO16PO18

2PO18

.

Finally, the roots ofQS(I) can be calculated either by closed quartic formulas for the roots
of fourth order polynomial ((Shmakov, 2011)) or by numerical approximations. We would
obtain two pairs of complex conjugates: (rS,1, r̄S,1) and (rS,2, r̄S,2). Let us de ne rO,all,j =
(rO)−j + (r̄O)−j and rS,all,j = (rS,1)−j + (r̄S,1)−j + (rS,2)−j + (r̄S,2)−j . It should be
noted that

roots({QC(I)}v) = {
v︷ ︸︸ ︷

rC , . . . , rC}.

In general, raising the polynomialP to the power j causes that in roots({P}j) each element
of roots(P ) is repeated j times. Finally, from de nition of ψl we obtain:

ψl = v(rC)−l + w(rH)−l + x(rN)−l + y(rO,all,l) + z(rS,all,l),

which gives us the formula forψj using only the roots of elemental polynomialsQC(I), . . . ,
QS(I). Let us consider complex conjugates z = a + ib = |z|(cosϕ(z) + i sinϕ(z))
and z̄ = a − ib = |z|(cosϕ(z) − i sinϕ(z)), where |z| and ϕ(z) are the modulus and
argument of z, respectively. For n ∈ Z, we can apply deMoivre’s formula zj = (a+ ib)n =
|z|n(cosnϕ(z) + i sinnϕ(z)). As a result we obtain:

zn + z̄n = 2|z|n cosnϕ(z). (4.16)

Therefore, for oxygen and sulphur we do not have to raise complex numbers to the power to
obtain the values of rO,all,l and rS,all,l.

For the chemical elements with corresponding elemental polynomial has an order higher
than four there areno closed formsolutions for roots (Abel-Ru ni theorem(Jacobson, 2007)).
However, the roots can be approximated numerically (e.g. by the Newton-Raphson me-
thod (Press et al., 2007)). Moreover, as wewill show inChapter 5, there is no need to calculate
the roots explicitly to obtain the values of ψj .

C qj

Using Equation (4.15), we can calculate coe cients q0, q1, . . . iteratively for each molecule
ξ with a chemical formula CvHwNxOySz . Namely, we start from q0 that is equal to the
probability of the monoisotopic variant of ξ, for which we already shown the closed form
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solution, cf. Equation (1.2). Thenweobtain fromEquation (4.15) formulas for for q1, q2, . . . ,
namely:

q1 = −q0 × ψ1

q2 = −1

2
(q0 × ψ2 + q1 × ψ1)

q3 = −1

3
(q0 × ψ3 + q1 × ψ2 + q2 × ψ3)

. . . (4.17)

Therefore, to calculate qj , we need to know the values of q0, . . . , qj−1 andψ1, . . . , ψj (which
needs the memory of size Θ(j)), and perform Θ(k) summations and multiplications for
k = 0, . . . , j. Therefore, if we know ψkk=1,...,j , then the computational time to obtain qj is
Θ(j2). As all the coe cientsψkk=1,...,j can be calculated in linear time (see the previous sub-
section), the total computation time to obtain qj is Θ(j2). The Equation (4.15) is based on
algebraic identities, therefore the results are exact if the polynomial roots are known. How-
ever, the obtained results might involve numerical errors, e.g. if aggregated probabilities are
very small. Anyway, we will show later that for many practical applications, the algorithm
reveal convincing accuracy.

A -

Let us remind that the center-mass is de ned by Equation (4.2). As already mentioned, the
denominator in this equation is simply the aggregated isotopic probability, forwhichwe have
already shown the e fective method of computation. Here, we concentrate on the task how
to calculate numerator of Equation (4.2), namely

∑
kmjkpjk for a given j ∈ N.

Let us consider a polynomial:

U(I; v, w, x, y, z) =
∑
j

(∑
k

mjkpjk

)
Ij ≡

∑
j

q?j I
j (4.18)

Obtaining
∑

kmjkpjk is then an equivalent for calculating the coe cients q?j inU(I; v, w, x, y, z).
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For the sake of clarity, we introduce the new polynomial:

Q∗(I,K; v, w, x, y, z) =(
PC12K

MC12I0 + PC13K
MC13I1

)v ×(
PH1K

MH1I0 + PH2K
MH2I1

)w ×(
PN14K

MN14I0 + PN15K
MN15I1

)x ×(
PO16K

MO16I0 + PO17K
MO17I1 + PO18K

MO18I2
)y ×(

PS32K
MS32I0 + PS33K

MS33I1 + PS34K
MS34I2 + PS36K

MS36I4
)z
, (4.19)

which can be alternatively expressed by:

Q∗(I,K; v, w, x, y, z) ≡
∑
j

(∑
k

pjkK
mjk

)
Ij (4.20)

We di ferentiateQ∗(I,K; v, w, x, y, z), using Equation (4.20), with respect toK , and then
setK = 1:

∂

∂K
Q∗(I,K; v, w, x, y, z)

∣∣∣∣
K=1

=
∑
j

(∑
k

mjkpjkK
mjk−1

)
Ij
∣∣∣∣
K=1

(4.21)

=
∑
j

(∑
k

mjkpjk

)
Ij = U(I; v, w, x, y, z)

where the last equation follows from Equation (4.19). On the other hand, wemight perform
the same sequence of operations, using initially the Equation (4.19) and applying the formula
of the di ferentiation the product – rst equation follows from Equation (4.21):

U(I; v, w, x, y, z) =
∂

∂K
Q∗(I,K; v, w, x, y, z)

∣∣∣∣
K=1

(4.22)

= vWC(I)Q(I; v − 1, w, x, y, z) + wWH(I)Q(I; v, w − 1, x, y, z)

+ xWN(I)Q(I; v, w, x− 1, y, z) + yWO(I)Q(I; v, w, x, y − 1, z)

+ zWS(I)Q(I; v, w, x, y, z − 1)

whereWC(I) = PC12MC12 + PC13MC13I
1, andWH(I),WN(I),WO(I),WS(I) are de-

ned analogously.
Thus,U(I; v, w, x, y, z) is a sumof ve polynomials, eachbeing a product of polynomials

for which the roots can be obtained, and therefore can be calculated using formula analogous
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Table 4.2: Ten biomolecules previously used in (Olson and Yergey, 2009), for which the performance of the selected

algorithms for isotope distribution calculation has been tested. Table source: Claesen et al. (2012)

No. CommonName Molecular Formula Mass (Da)
Monoisotopic Average

(1) Angiotensin II C50H71N13O12 1045.534515 1046.181107
(2) Bovine insulin C254H377N65O75S6 5729.600867 5733.510759
(3) Human insulin C520H817N139O147S8 11616.849350 11624.448751
(4) Human myoglobin C744H1224N210O222S5 16812.954775 16823.321352
(5) Human intrinsic factor C2023H3208N524O619S20 45387.007033 45415.679370
(6) Bovine serum albumin C2934H4615N781O897S39 66389.862474 66432.455561
(7) Human Na/K ATPase C5047H8014N1338O1495S48 112823.879546 112895.125932

Renal isoform, subunit
(8) Human ATP C8574H13378N2092O2392S77 186386.799265 186506.052594

binding cassette protein
(9) Human intrinsic factor C17600H26474N4752O5486S197 398470.366994 398722.972484

-hydroxocobalamin
receptor

(10) Human dynein C23832H37816N6528O7031S170 533403.475090 533735.214651
heavy chain

to Equation (4.15) (summing coe cients of polynomials can be easily done trough adding
vectors by coordinates).

Themethod introducedhere to calculate aggregated isotopic distribution is calledBRAIN.
It should be noted that although its core Equation (4.15) indeed presents the recursive rela-
tionship between coe cients, they are calculated iteratively, i.e. one af er another.

4.2 C

For the comparison, we use 10 biomolecules from Olson and Yergey (2009), that are pre-
sented in Table 4.2. Selected isotopic distribution are also plotted in Figure 4.1.

The performance was initially tested (Claesen et al., 2012) for the following algorithms:

• Emass– theprobabilities and center-mass are calculatedusing super atoms (idea similar
to exponentiation by squaring) which are systematically updated (convoluted) to ob-
tain the investigatedmolecules; somepruning canbe appliedduring this process (Rock-
wood and Haimi, 2006);

• Mercury – uses FFT approach to convolute peaks on a grid (Rockwood et al., 1995);
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(A) (B) (C)

Figure 4.1: Isotopic distribution for three biomolecules (x-axes correspond to peak index, starting frommonoiso-

topic variant, y-axes correspond to probabilities): (A) Angiotensin II (C50H71N13O12), (B) Bovine serum albumin

(C2934H4615N781O897S39), (C) Human dynein heavy chain (C23832H37816N6528O7031S170).

• NeutronCluster – uses a bunch of binomial formulas to calculate abundances, and a
concept of simpli ed averagemass of the additional neutrons toobtain center-masses (Ol-
son and Yergey, 2009);

• IsoPro – uses multinomial expansion (Yergey, 1983);

• IsoDalton – calculates isotopic ne structure using dynamic programming, the prun-
ing is reducing the list of the ne variants while the calculation is progressing (Snider,
2007);

• BRAIN (MATLAB implementation).

As the criterion to decide about the accuracy of the returned values, we used the aver-
age mass calculated by two methods and then compared. Namely, the theoretical average
mass from the closed formula presented in Equation (1.3) was compared against the weighted
mean

∑
j qjmj , which express exactly the same value (of course, when only a certain part

of the distribution is computed, this is not exactly the same, but if the distribution is su -
ciently covered, the di ference is expected to be very tiny). When

∑
j qjmj ≈ M̄ for di ferent

molecules, the distribution is claimed to be accurately calculated.
In this assessment, both BRAIN and Emass returned the very accurate values of weighted

mean, while theMercury andNeutronCluster returned greater error. IsoPro and IsoDalton,
beside low accuracy, were also very ine cient and only selectedmolecules fromTable 4.2 (i.e.
molecules 1-7, and 1-5, respectively) were tested. It should be mentioned at this point, that in
an original BRAIN article (Claesen et al., 2012) we proposed a simple heuristic for estimating
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a number of peaks su cient to cover the most informative part of the isotope distribution
with the following formula:

nstop = max(2 × dM̄ −Mmonoe, 5), (4.23)

The idea behind this equation is the assumption that the distribution has a bell-shape curve
and taking this distribution symmetrically around its expected value should capture all in-
formative peaks. The time performance – number of peaks set according to Equation (4.23)
– for BRAIN gave around 0.04 sec for molecules (1-4) up to around 0.4 sec for the heavies
molecule 10 (tests run on Intel Core 2 Duo processor with 2.26 GHz and 4 GB RAM). The
full set of results conducted by Dr. Jürgen Claesen is presented in (Claesen et al., 2012). As a
follow-up of this article, Dr. Sebastian Böcker presented an additional comparisonwith SIR-
IUS (a framework for de novo identi cation of metabolites, that employs the isotope pattern
analysis (Böcker et al., 2009)) and BRAIN R Bioconductor package (see Chapter 6), where
he pointed out that SIRIUS is as accurate as BRAIN and works even faster than BRAIN R
implementation (however, the author admitted that this was not surprising due to the fact
that SIRIUS was written in Java, i.e. a compiled language).

As correctly observed by Fernandez-de Cossio Diaz and Fernandez-de Cossio (2012), the
stopping criterion from Equation (4.23) does not work well for the small molecules (to few
peaks are computed). Therefore we suggested in Hu et al. (2013) to slightly modify this for-
mula:

nstop = max(2 × dM̄ −Mmonoe, 50). (4.24)

Simply, the only change is to increase the minimal number of computed peaks from 5 to 50.
Of course, another stopping criteria can be also applied. For example, as discussed in Claesen
et al. (2012) and Hu et al. (2013), the iterative procedure in BRAIN can be stopped when the
cumulative distribution would reach the certain threshold, e.g. 99.9 .

Of note, Equation (4.23) is simply a sum of polynomial products, so can be also calcu-
lated via FFT. Indeed, Fernandez-de Cossio Diaz and Fernandez-de Cossio (2012) provided
very e cient calculation of center-masses as a part of ISOTOPICA package implemented in
C# (referred further as FTMC), that outperformed Bioconductor BRAIN implementation.
However, as C# is an compiled language, and R is an interpreted language, we benchmarked
also a C++ implementation of BRAIN written by Han Hu, called useBRAIN (available on-
line at https://code.google.com/p/brain-isotopic-distribution/), that is also
suitable for batch processing2. In Hu et al. (2013) we made a comparison between FTMC
and useBRAIN and showed that the latter sof ware can work faster for several tests (cf. Fig-

2This implementation works for all chemical elements, as it uses e cient way to calculate power root sums
without calculating the roots explicitly. This method, called [RO] improvement, will be presented in the next
chapter as a part of BRAIN 2.0 algorithm.
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(A) (B)

Figure 4.2: Comparison between FTMC (default number of computer peaks) and C++ implementation (the latter

run for the number of peaks according to Equation (4.24) of the BRAIN for processing 10molecules from averagine

model with correspondingmassesmarked on x-axes. (A) Average (from 100 runs) time of processing a single molecule.

(B) Elapsed time (divided by 100) from the batch-processing of the file with 100 the samemolecules. In addition, we

show the BRAIN in C++ for the peaks range that starts at themonoisotopic variants and ends when the coverage ex-

ceeds 99.9% (this number is precalculated using Bioconductor BRIAN package) – this heuristic is denoted as CM99.9%.

Source: Hu et al. (2013). The comparison code is available online at http://www.mimuw.edu.pl/~pd219416/
AnChemComment/

ure4.2). It should be underlined that the algorithm performance depends also on di ferent
stop criteria, which usually result in di ferent numbers of the calculated peaks.
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5
BRAIN 2.0 – improvements to the original

BRAIN

As already mentioned above, the original BRAIN calculates iteratively the q0, q1, . . . coe -
cients. In this section, we show that for the molecules composed of ve chemical elements,
C, H, N, O and S, the improvements in calculating probabilities of the aggregated isotopic
variants, both involving speed and memory, can be applied. In addition, the extension of
these methods for the other chemical elements is also discussed. Of note, the application of
the improvements for calculating center-masses needs additional investigation.

5.1 I

R [RCL] Equation (4.15) gives a for-
mula for calculating qj , namely the probability of the j-th aggregated isotopic variant. To this
aim, we calculate the standard scalar product of vectors (q0, . . . , qj−1) and (ψj, . . . , ψ0). For
large j, we would like to choose the natural index d such that 1 ≤ d < j, and trimming the
sum in Equation (4.15) to the length d will give us the coe cient q̂j that is approximating qj
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with a small error. First, we will split Equation (4.15) into two parts:

qj = −1

j

j∑
l=1

qj−lψl = −1

j
(

d∑
l=1

qj−lψl +

j∑
l=d+1

qj−lψl) (5.1)

= −1

j

d∑
l=1

qj−lψl︸ ︷︷ ︸
q̂j

−1

j

j∑
l=d+1

qj−lψl︸ ︷︷ ︸
error

Then, we estimate |qj − q̂j|:

|qj − q̂j| = | − 1

j

j∑
l=d+1

qj−lψl| (5.2)

=
1

j
|

j∑
l=d+1

qj−lψl| ≤
1

j

j∑
l=d+1

|qj−lψl|

=
1

j

j∑
l=d+1

|qj−l||ψl|
(?)

≤ 1

j

j∑
l=d+1

|ψl|

≤ j − d− 1

j
max

l∈{d+1,...,j}
|ψl| ≤ max

l∈{d+1,...,j}
|ψl|,

where (?) results from ∀k∈{0,...,j−1}0 ≤ qk ≤ 1, as qk are probabilities.

On the other hand, from Equation (4.16) we can estimate

|ψj| = |v(rC)−j + w(rH)−j + x(rN)−j + y(rO,all,j) + z(rS,all,j)|
≤ v|(rC)−j| + w|(rH)−j| + x|(rN)−j| + y|(rO,all,j)| + z|(rS,all,j)|. (5.3)

Figure 5.1(A) shows the descending trends of |(rC)−j|, |(rH)−j|, |(rN)−j|, |(rO,all,j)|, and
|(rS,all,j)|, while we increase j. Of course, the exact value of |ψj| also depends on numbers
of particular atoms, i.e. v, w, x, y, z, therefore for a given class of molecules, additional in-
vestigation should be performed.

Here, we will concentrate on proteins, where the proportions between these numbers are
relatively constant. We will use four heaviest biomolecules from Table 4.2, i.e. molecules
with labels 7 − 10 (our improvement is aimed for the relatively big molecules, therefore for
molecules 1-6 we suggest using the original BRAIN). Figure 5.1(B) presents that indeed, also
the value of |ψl| reveals the trend decreasing to 0, therefore if d is big enough, the value of
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Figure 5.1: (A) The values of |(rC)−l|, |(rH)−l|, |(rN )−l|, |(rO,all,l)|, |(rS,all,l)| decreases monotonically while

we increase l. (B) The values of |ψl| for 4 heavy biomolecules from Table 4.2. We observe the decreasing trend. Please,

note the logarithmic scale on y-axes in both panels. Figure source: Dittwald and Valkenborg (2014).

maxl∈{d+1,...,j} |ψl|, and as a consequence the value of |qj − q̂j| should be su ciently small.
For example, for d = 10 and four analyzed biomolecules we have:

|qj − q̂j| ≤ max
l∈{d+1,...,j}

|ψl| ≤ |ψ10| ≤ 10−4.

L S P [LSP] The other characteristics of the BRAIN
algorithm is that calculations start from the monoisotopic variant, i.e. q0. However, this can
be treated as a weakness of the method, as interesting peaks (i.e. big enough) might start
much later. For example, the following method from Rockwood et al. (1995) can be applied
to narrow the range of the investigated peaks:

1. Calculate σ, i.e. the standard deviation of the mass distribution, from the closed for-
mula:

σ = σC + σH + σN + σO + σS, (5.4)

where σC = PC12M
2
C12

+ PC13M
2
C13

− (PC12MC12 + PC13MC13)
2, and σH , . . . , σS

are calculated analogously.
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2. Calculate N, i.e. number of investigated peaks, as:

N = dα
√

(1 + σ2)e, (5.5)

whereα is a constant (typicallyα = 10; in (Fernandez-de Cossio Diaz and Fernandez-
de Cossio, 2012) α = 16 is used). For simplicity, we assume furtherN is odd; in cases
whereN is even, the tiny adjustments are needed.

3. Calculate themiddle pointnmiddle of the investigated distribution to be the closest one
to the molecule average mass.

4. Calculate nstart and nstop such that nstart = nmiddle − bN
2
c and nstop = nmiddle +

bN
2
c.

An interesting observation is that if we use q0 multiplied by the constant denoted γ and
then calculate subsequent coe cients from Equation (4.15), then the subsequent coe cients
will be also multiplied by γ. However, the ratios between consecutive coe cients remain
una fected, i.e. will be equal to q1

q0
, q2
q1
, . . . . In other words, we can start our iterative formula

from any arbitrary set number (e.g. from 1), and obtain true ratios of consecutive probabil-
ities of aggregated variants. In practical applications, the peak heights (probability of aggre-
gated variant can be also referred as the peak heights) are of en normalized, e.g. by dividing
by the maximal peak height. Therefore, there is not much loss of information if we con-
sider only probabilities ratios (which we would alternatively call peak ratios) instead of the
actual probabilities. Moreover, we can approximate the values of the probabilities from the
normalized peak heights.

Thevery interestingquestion iswhether it is possible to start the iteration inEquation (4.15)
later than from the monoisotopic variant. We assume there might be some burn-in period
needed to retrieve the original values of the peaks ratios, and propose the following heuristic:

1. choose the rst (nstart) and the last index (nstop);

2. depending on nstart, choose the appropriate value of the burn-in period 1 ≥ b ≥
nstart;

3. using Equation (4.15), and setting q0, . . . , qb−1 to 0 and qb to 1, calculate coe cients
qb, . . . , qstart, . . . , qstop;

4. calculate the ratios of the consecutive coe cients qstart+1

qstart
, . . . , qstop−1

qstop
.
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R O [RO] In the original BRAIN, the sum of the roots’
powers for each elemental polynomial was calculated using the explicitly obtained (from the
closed formulae or numerically approximated) values of the roots. However, wewould show
here that using once again the Newton-Girard identities, it is possible to solve this problem
easier.

Let us consider sulphur, a relatively complicated example. Of note, Equation (4.15) can be
applied to elemental polynomialQS(I) in the following manner:

PS33 = −PS32rS,all,1 (5.6)

PS34 = −1

2
(PS33rS,all,1 + PS32rS,all,2)

0 = PS35 = −1

3
(PS34rS,all,1 + PS33rS,all,2 + PS32rS,all,3)

PS36 = −1

4
(PS34rS,all,2 + PS33rS,all,3 + PS32rS,all,4)

0 = PS37 = −1

5
(PS36rS,all,1 + PS35rS,all,2 + PS34rS,all,3

+ PS33rS,all,4 + PS32rS,all,5)
...

For coe cients near I0, . . . , I4, i.e. PS33 , . . . , PS36 , the application of Equation (4.15) is
straightforward, which allows to retrieve iteratively the values of rS,all,1, . . . , rS,all,4. The
only non-trivial step is to realize that the identities remain true for the PS37 , PS38 , . . . coe -
cients, which all are equal to 0. In general, we obtain:

0 = PS32+i
= −1

i
(PS36rS,all,(i−4) + PS34rS,all,(i−2) + PS33rS,all,(i−1) + PS32rS,all,i)

Therefore, it is also possible to iteratively calculate values of rS,all,5, rS,all,6, . . . . Finally, the
iterative equation is as follows:

rS,all,i = −(PS32)
−1(PS36rS,all,(i−4) + PS34rS,all,(i−2) + PS33rS,all,(i−1))

It should be pointed out that using the analogous argumentation, the proposed method can
be applied to any chemical element.
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5.2 P

To challenge the [RCL] and [LSP] improvements in practice (as already mentioned in the
previous Chapter, the [RO] improvement was already implemented in C++ by Han Hu
as a part of original BRAIN), we implemented them in the R programming language and
compared with the original algorithm, in which we inactivated the center-masses calcula-
tions to have computation times comparable. We performed a set of tests, for which we have
used again four heaviest biomolecules among those already used to benchmark the original
BRAIN (molecules 7-10 from Table 4.2). To check if the improvements do not seriously af-
fect the accuracy, we calculated the Pearson’s χ2 error statistic between isotopes ratios. More
precisely, this statistic is de ned as:

χ2 =

nstop∑
j=nstart

(RI
j −RII

j )2

RI
i

(5.7)

where RI
j and RII

j are the ratios between intensities of j-th and (j + 1)-th aggregated peak
obtained by original BRAIN and BRAIN 2.0 improvements being investigated, respectively.

Moreover, to set parameters d and b used in [RCL] and [LSP] improvements, we used
the following rule of thumb (that in particular is compatible with the observations while
exploring di ferent values of these parameters for the molecules 7-10, cf. Figure 5.2)

b = d = dlog10(Mmono) + 5e. (5.8)

The assessments are as follows:

1. We compared the original BRAINwith [RCL] improvement. We runboth algorithms
for the same number ofN peaks (starting from the monoisotopic variant) as returned
by heuristic from Equation (4.23). The results presented in Table 5.2 show that while
theχ2 remains very small (so both algorithms returnpretty the same vectors of isotopic
ratios), the [RCL] outperforms original BRAIN up to 2-fold speed up for the heaviest
molecule.

2. In the second assessment, the original BRAIN is tested against the [LSP] improve-
ment. In case of the rst algorithm, the number of the computed peaks (recall, we
start frommonoisotopic variant) was set according to Equation (4.23). For [LSP] im-
provement we used Equation (5.5) withα = 10 to specify the index of the rst (nstart)
and the last (nstop) peak used to obtain the peak ratios (additional b peaks preceding
this peak range needs to be computed according to the speci city of the [LSP] im-
provement), which indeed resulted in the better time performance (cf. Table 5.3) for
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Figure 5.2: The change ofχ2 correlation between the isotopic ratio calculated according to BRAIN and BRIAN 2.0,

when one parameter (length of recursiond and burn-in period b in panels (A) and (B), respectively) is set to 11 according

to Equation (5.8), as a function of the other parameter. We observe that for b = d = 11 the value ofχ2 is smaller than

10−12. Figure source: Dittwald and Valkenborg (2014).
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Table 5.1: The speed-up evaluation when both [RCL] and [LSP] improvements are enabled. Speed is measured in sec-

onds.

id monoMass(Da) b d χ2 speedBRAIN speedBRAIN2 improvement

7 112824 11 11 2.39e-13 0.00873 0.00473 1.85
8 186387 11 11 9.79e-14 0.0138 0.0054 2.56
9 398470 11 11 5.02e-14 0.0336 0.007 4.8
10 533403 11 11 1.87e-14 0.0493 0.00766 6.43

this method.

3. Finally, we combined [RCL] and [LSP] improvements in a single assessment. The
number of peaks calculated for original BRAIN and improved versions were com-
puted analogously to the previous point. While we do not observe serious loss of
accuracy (in terms of the Pearson’s χ2) in comparison with the original BRAIN, the
speed-up is larger than in any of the previous tests (cf. Table 5.1).

66



Ta
b
le

5
.2
:T

h
e
sp
ee
d
-u
p
ev
al
u
at
io
n
w
h
en

o
n
ly
[R
C
L]
im

p
ro
ve
m
en

t
is
en

ab
le
d
.S
p
ee
d
is
m
ea
su
re
d
in
se
co
n
d
s.

id
f
or
m
u
la

m
on
oM

a
ss
(D
a
)

d
n
s
ta

r
t

n
s
to
p

N
χ
2

sp
ee
d
B
R
A
I
N

sp
ee
d
B
R
A
I
N

2
im
p
ro
v
em

en
t

7
C

5
0
4
7
H

8
0
1
4
N

1
3
3
8
O

1
4
9
5
S
4
8

112
82
4

11
1

14
3

14
3

1.0
7e
-11

0.
00

86
3

0.
00

58
8

1.4
7

8
C

8
5
7
4
H

1
3
3
7
8
N

2
0
9
2
O

2
3
9
2
S
7
7

18
63
87

11
1

23
9

23
9

2.
45
e-
11

0.
01
37

0.
00

87
3

1.5
7

9
C

1
7
6
0
0
H

2
6
4
7
4
N

4
7
5
2
O

5
4
8
6
S
1
9
7

39
84
70

11
1

50
6

50
6

7.
65
e-
11

0.
03
36

0.
01
62

2.
07

10
C

2
3
8
3
2
H

3
7
8
1
6
N

6
5
2
8
O

7
0
3
1
S
1
7
0

53
34
03

11
1

66
4

66
4

6.
2e
-11

0.
04
84

0.
02
08

2.
33

Ta
b
le

5
.3
:T

h
e
sp
ee
d
-u
p
ev
al
u
at
io
n
w
h
en

o
n
ly
[L
SP

]i
m
p
ro
ve
m
en

t
is
en

ab
le
d
.S
p
ee
d
is
m
ea
su
re
d
in
se
co
n
d
s.

BR
A
IN

BR
A
IN

2.
0

id
m
on
oM

a
ss
(D
a
)

b
n
s
ta

r
t

n
s
to
p

N
n
s
ta

r
t

n
s
to
p

N
χ
2

sp
ee
d
B
R
A
I
N

sp
ee
d
B
R
A
I
N

2
im
p
ro
v
em

en
t

7
112
82
4

11
1

14
3

14
3

26
117

92
1.7
5e
-30

0.
00

85
9

0.
00

74
8

1.1
5

8
18
63
87

11
1

23
9

23
9

61
17
8

118
8.
63
e-
29

0.
01
36

0.
00

99
6

1.3
7

9
39
84
70

11
1

50
6

50
6

16
7

33
8

17
2

2.
08
e-
25

0.
03
36

0.
01
58

2.
13

10
53
34
03

11
1

66
4

66
4

23
5

42
9

19
5

8.
68
e-
25

0.
04
84

0.
01
88

2.
57

67



68



6
Applications of the BRAIN algorithm for

large-scale data analyses

6.1 T B BRAIN

The BRAIN package is written in the R statistical language as a part of Bioconductor repos-
itory (Gentleman et al., 2004). The package provides the user a few functions, which as an
input get the chemical formula (a list with numbers of C, H, N, O, S):

• calculateMonoisotopicMass–calculatesmonoisotopicmass of themolecule from
Equation (1.1)

• calculateAverageMass–calculates averagemass of themolecule fromEquation (1.3)

• calculateIsotopicProbabilities – computes vector (q0, . . . , qnstop−1), of the
aggregated isotopic variants probabilities;

• useBRAIN – the main functionality of the package; this computes all what the afore-
mentioned functions o fer plus a vector (m0, . . . ,mnstop−1) with center-masses of the
aggregated isotopic variants;

Recall that BRAIN computes isotopic distribution iteratively from the monoisotopic peak,
therefore functions calculateIsotopicProbabilities and useBRAIN use the nstop in-
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dex, obtained from the input parameters. This index depends on one of the following stop
criteria (represented by the values of the parameter stopOption):

1. ”nrPeaks” – number of peaks explicitly provided by the user – by default it is a simple
heuristic from Equation (4.23), computed by a function calculateNrPeaks, for the
number of peaks, where the monoisotopic peak is the rst one, that should cover the
signi cant part of the isotopic distribution;

2. ”coverage” – a fraction of coverage (value between 0 and 1) that should be covered by
a cumulative distribution function; the computations stop when the de ned value is
reached;

3. ”abundantEstim” – anumber of consecutive peaks that are not higher than the current
maximal peak; the computations stop when this criterion is satis ed.

In addition, the BRAIN o fers a function getAtomsFromSeq, which takes as input the
sequence of amino acids and returns a list with numbers of C, H, N, O, and S. This function
can be useful in preprocessing step. The documentation of the package (a Reference Man-
ual and a package vignette containing examples of usage) is available at Bioconductor online
(http://www.bioconductor.org/packages/release/bioc/html/BRAIN.html), to-
gether with a source code.

6.2 H -

As already mentioned in the Introduction, the common masses assigned for the molecules
are e.g. the monoisotopic mass and the average mass, and these values can be referred to in
the databases when identi cation is done. For the small peptides, the monoisotopic peak is
relatively high in the aggregated isotopic distribution (cf. Figure 4.1(A)). However, when the
size of molecule increases, we observe a trend, where a bell-shaped distribution moves right
(cf. Figure 4.1(B)-(C)). More precisely, the shif between the most abundant aggregated peak
and the monoisotopic peek increases as well. As a result, for the large molecules, the mo-
noisotopic peak is usually expected to be very tiny. This might cause biases in the molecule
identi cation procedure. The average mass is estimated from the observed distribution, e.g.
by a simple weightedmean calculation. The other approachmight be to estimate themonoi-
sotopicmass based on its dependence on themost abundant aggregatedmass. To this aim,we
processed the Uniprot database (Yamamoto andMcCloskey, 2012) and calculated aggregated
isotopic distributions for 52,589 cases with themonoisotopicmasses smaller than 105 Da. We
analyzed the relationship between the most abundant aggregated mass and corresponding
monoisotopic mass, which occurred to be linear (cf. Figure 6.1(A)-(B)).
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Therefore, the following linear model was constructed giving the following formula:

Mmono = 0.482 + 0.9994 ×mma, (6.1)

(mma denotes most abundant peak mass) where both coe cients are statistically signi cant
(p-values< 2×10−16). However, the residuals (for the same data as used to build themodel)
spanned a range of ±2 Da (cf. Figure 6.1(C)). This suggests that the further study needs to
be performed to improve the prediction (indeed, we are developing the hierarchical model
in order to receive smaller residuals – see also Chapter 8). On the other hand, this simple
case-study shows that the BRAINpackage is suitable for a large-scale (high-throughput) data
processing (package version 1.4.0. was used and run on PC with two Intel(R) Core(TM)2
2.40GHz CPUs; total processing of the 52,589 proteins took approximately 80 minutes).

6.3 L C

As already mentioned in Chapter 1, the mass spectrometry experiments process enormous
amount of information, which cause that the accurate data processing constitutes a bottle-
neck in various assays. Therefore, automated procedures supporting the experimental work-
ows are highly desired by the community. In this study, we will propose a classi er that

might help to distinguish lipids and peptides from a full scan mass spectra (i.e. when the full
mass information within a prede ned range is returned by an instrument).

D

To retrieve the actual chemical formulas of peptides, we have used the Human Uniprot pro-
tein database (Yamamoto and McCloskey, 2012). The proteins were then in-silico tryptically
digested (nomissed cleavages allowed). To this aimwe have used theOrgMassSpecR package
(function Digest) from the R CRAN repository (http://cran.r-project.org/web/
packages/OrgMassSpecR/index.html). The motivation for digesting was to have pep-
tides and lipids masses comparable (the intact proteins are in general much heavier). The
lipids chemical formulas were extracted from the Lipid Maps gateway database (Fahy et al.,
2009).

For the further study, we limited the data to molecules with monoisotopic masses below
2, 800 Da. This gave 263, 897 in silico tryptic digested peptides, and 6, 313 lipids. Of note,
the latter set can be further subdivided into eight lipid classes (as de ned by LipidMaps con-
sortium): fatty acyls (#913; FA), glycerolipids (#400; GL), glycerophospholipids (#1,415; GP),
sphingolipids (#1,167; SP), sterol lipids (#604; ST), prenol lipids (#442; PR), saccharolipids
(#76; SL), and polyketides (#1,296; PK); # tag indicates the number of items in each lipid class.

72

http://cran.r-project.org/web/packages/OrgMassSpecR/index.html
http://cran.r-project.org/web/packages/OrgMassSpecR/index.html


The general outline of the study is presented in Figure 6.2, and will be further explained
in the following parts of this section.

M

The basic concept we used in this study is based on thewell knownmass defect phenomenon.
More precisely, wewanted to use the tiny di ferences in fractional parts ofmasses between the
chemical elements for the classi cation purposes. Of note, the mass defect based approach
was used by (Kirchner et al., 2010) and (Bruce et al., 2006) when investigating a degree of
phosphorylation in proteins. To give an intuitive explanation of our reasoning let us consider
the molecules composed on C , H , N , O, and S, and take a look at its monoisotopic mass
fractional part, which equals:

• 0 Da for carbon (by de nition, as 1 Da = 1/12 of 12C mass);

• 0.007 Da for hydrogen;

• 0.003 Da for nitrogen;

• 0.995 Da for oxygen;

• 0.972 Da for sulphur.

In a case of proteins and peptides, the speci c structure of the molecule (chain of amino
acids) results in relatively well de ned constraints between numbers of chemical elements.
The averagine, average peptidemodel (Senko et al., 1995a) based on the Protein Identi cation
Resource database, gives the following formula to describe these proportions:

C : H : N : O : S = 4.9384 : 7.7583 : 1.3577 : 1.4773 : 0.0417. (6.2)

From the averagine model we can see that for a given monoisotopic mass we can approx-
imate the amount of each atom and, using the elemental mass defects, we can predict the
overall mass defect of the monoisotopic mass. Of course, the proportions between amounts
of atoms in realmolecules di fer from themodel. However, evenwith somemargins allowed,
we can still conclude that for a givenmonoisotopicmass of the peptide, its fractional part can
take only a certain range of values. In case of lipids, the analogous fractional parts of mono-
isotopic masses can potentially di fer – mostly because of di ferent structural characteristics
of the molecule; in addition, lipids can also contain uorine (F ), bromine (Br), phospho-
rus (P ), chlorine (Cl), sodium (Na), iodine (I), and potassium (K) atoms. We performed a
simple computational experiment, and for a monoisotopic masses between 740 and 750 Da
investigated the mass defect and placed values into appropriate bins. When the bin widths
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Figure 6.2: Schematic workflow of the lipid-vs.-peptide classifier construction, validation and application. Figure cour-
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Figure 6.3: The normalized histograms showing the proportions between lipids (blue) and in silico digested peptides (red)

for monoisotopic masses between 740 and 750Da. The bin widths in panels (A), (B), (C) correspond to 1Da, 0.1Da, and

0.01Da, respectively. (D) Themonoisotopic mass distribution for the analyzed data set.

equal 1 Da, no discrimination is observed (cf. Figure 6.3(A)). However, when we decrease
the widths to 0.1 Da (cf.Figure 6.3(B)) or even to 0.01 Da (cf. Figure 6.3(C)), the more and
more visible trend is revealed– the fractional parts of themonoisotopicmasses tend tooccupy
di ferent mass ranges.

F

The natural extending of themass defect idea is to use more information derived from aggre-
gated isotopic distributions and check its usefulness for the classi cation purposes. There-
fore, we used BRAIN to obtain the rst three aggregated peaks, i.e. their intensities (alterna-
tively called peak heights or the probabilities of the aggregated variants) and center-masses.
Then, we calculated the following values that would be further investigated as the decision-
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making features:

• mass.1: center-mass of rst isotope peak (i.e. monoisotopic mass);

• mass.2: center-mass of second isotope peak;

• mass.3: center-mass of third isotope peak;

• mass.frac.1: fractional part of center-mass of rst isotope mass;

• mass.frac.2: fractional part of center-mass of second isotope peak;

• mass.frac.3: fractional part of center-mass of third isotope peak;

• mass.diff.21: di ference between second and rst isotope center-masses;

• mass.diff.32: di ference between third and second isotope center-masses;

• iso.ratio.21: ratio of intensities of second and rst isotope peaks;

• iso.ratio.31: ratio of intensities of third and rst isotope peaks.

All but last two features depend on the center-masses. The last two features are isotopic
ratio of heights of the consecutive peaks. As already mentioned in Chapter 5, in the real data
processing the normalization procedure is commonly used. Therefore, the fact that we con-
sider the peak height ratios instead of the peak heights does not a fect the analysis strongly.
On the contrary, considering the peak height ratios eliminates from the analysis the multi-
plicative noise associated to the isotopic abundances.

C –

Our aim is to produce a classi er applicable for the experimental MS data, which takes into
account both measurement noise and resolution limits. On the other hand, BRAINmodels
the theoretical, aggregated isotopic distribution, i.e. both probabilities and center-masses are
modeled exactly in in nite resolutionmode. Of note, lipid-vs.-peptide separation is straight-
forward for two dimensional plots – cf. Figure 6.4 for the ideal (no noisemodeled) situation.

To mimic the experimental outputs, we arti cially added the noise and resolution limita-
tions to the modeled data. In case of the center-masses, the inaccuracy origins mostly from
the resolution limits, which we simulated by assuming that the mass is measured only to a
given decimal digit. More precisely, we rounded center-masses obtained from BRAIN to k-
the decimal digits (k = 1, . . . , 5) corresponding approximately to FTICR, Orbitrap, TOF,
ion trap and quadrupole instruments resolution, respectively. Of note, this simulates only
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Figure 6.4: The simple two-dimensional visualization of the analyzed datasets with lipids (blue) and in silico digested

peptides. The dimensions are (A)mass.diff.21 vs. mass.diff.32, and (B)mass.diff.21 vs. mass.frac.1

.

absolutemass errors, while forMS community the relative errors are of enmore informative.
Therefore, we approximated the resolution by ppm ranges (according to masses of consid-
ered molecules) for each rounding (see Table 6.1 header).

For intensities, we multiplied the original probabilities (i.e. before calculating the peak
ratios) by the Gaussian noise of mean 0 and standard deviation of 0.01, 0.1, 0.2, and 0.3.
Theoretically, these normal distributions can take non-positive values. However, the proba-
bility of such situation is so small (e.g. forN (0, 0.32) the probability of non-negative value
equals approximately 0.00043) that these cases were ignored in our experiments.

As a machine learning technique, operating on multidimensional data, we chose to use
random forest (RF) classi er from (Breiman, 2001).

..

Random forest (RF)

.

Random forest (RF) is a classi er based on a bunch of decision trees that are con-
structed on a randomly sampled (with replacements) training sets. For each of these
training sets, the tree is constructed, and RF makes a nal decision by aggregating the
single decision trees answers.

We run RF on each of the 30 data sets (6 levels of resolution for center-masses and 5 levels
of noise; each combination possible). As a misclassi cation rate, we used out-of-bagmeasure
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(OOB) (Narsky and Porter, 2013).

..

Out-of-bag measure (OOB)

.

Out-of-bag measure is constructed while creating a set of decision trees in RF con-
struction. The single tree is constructed based on sampling with replacements, which
gives around 1 − e−1 ≈ 2

3
of the original data as training set. The remaining data

(around 1
3
) are used as a test set to measure the misclassi cation error.

This measure is more informative when both classes are equally numerous (in other case
we can image a situation when one class constitutes 99 of the data; then the blind classi er
indicating always this class will have misclassi cation of 1 only), we sampled the subset of
6, 313 proteins (to check the stability of the classi er, we repeated this sampling procedure in
selected places, which was then mentioned explicitly). We obtained the misclassi cation of
0.15 for ideal input (no rounding/noise added) up to almost 11 for least accurate data (cf.
Table 6.1). In addition, we considered the reduced feature set, including only mass-derived
features (i.e. all features but iso.ratio.21 and iso.ratio.31). Of note, RF performs not much
worse as in case of the full feature set with higher (σ ≥ 0.1) normal noise modeled. On the
other hand, in this case we do not have to worry about modeling inaccuracy of the intensity
measurements.

Alternatively, to measure RF classi er performance we applied a 10-fold cross-validation
scheme (Table 6.2), which includes the following steps:

1. dataset divided into10 random(almost) equal parts; this is done for lipids andpeptides
sets independently;

2. repeat 10 times the following procedure (i.e. for i = 1, . . . , 10);

(a) build a classi er on test set with 9/10 of dataset excluding i-th sets of lipids and
peptides;

(b) test a classi er on 1/10 of dataset using i-th sets of lipids and peptides and return
i-th misclassi cation rate;

3. at this pointwe obtain a vector of 10misclassi cation rates – the result of 10-fold cross-
validation is the mean of this vector.

The trends are similar to observed in Table 6.1, however, the standard deviation is larger.
Of note, a RF classi er also returns the ranking of feature importance. In other words, it

provides ameasure, calledmean decrease in theGini index, indicatingwhich features revealed
to be most useful in building the classi cation trees. We used this score to get more insights
into the classi er performance, and run the following three tests.
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1. We considered a full feature set. For each of the 6 considered resolution limits on
center-masses and no noise modeled on isotopic intensities, we built a RF classi er
and measured the feature importance (cf. Figure 6.5(A)). In this case, for high resolu-
tions the most in uential weremass.diff.21 andmass.diff.32. However, when the mass
is rounded to less than 3 decimal digits, these features become completely uninforma-
tive (which is not surprising, as center-mass di ferences presented in Figure 6.4 span a
range of less than 0.01 Da), whilemass.1 andmass.2 second center-masses become the
most important features.

2. We considered a full feature set and the center-masses rounded to second decimal digit
(tomimicMALDImeasurement which will be further used as a validation for the real
MS data). We multiplied the isotopic intensities by the normal noise of mean 0 and σ
varying from 0 to 0.3. In general, the isotopic ratios and the exact center-masses were
the most informative in a decision making process. However, the importance of the
isotopic ratios decreased when the noise was higher.

3. We considered a reduced feature set (all features but iso.ratio.21 and iso.ratio.31). We
modeled various levels of resolutions andobserved similar e fects as described inpoint 1.

The next step in our in silico studies was to build a classi er aimed for distinguishing be-
tween eight lipids classes. The proof-of-concept visualization for two dimensional space (cf.
Figure 6.6) suggests at least partial usefulness of this approach. E.g. we see that polyketides
(PK) and glycolipids (GL) tend again to appear in di ferent parts of the two dimensional
plot. Of note, it is straightforward to use random forests, as they are easily applicable for
multi-classi cation tasks. The train set consisted of 6, 313 lipids considered in previous step.
The overall misclassi cation rate (OOBmeasure) of the classi er is> 30%. However, when
we analyze the confusion matrix for each of the eight classes separately (cf. Table 6.3), we ob-
serve that for the threemost numerous classes (GP, PK, SP; over 1150 entries in each of these
class; over 60% entries in total), the misclassi cation rate was smaller than 17%. Therefore,
the RF classi er can potentially bring supporting information in a decision making process.

C – MS

Finally, we run our classi er on the experimental MS data. To this aim, we utilizedMALDI-
TOF MS measurements performed on a lipid/peptides mixture. Using a reference list of a
known substances within amixture (cf. Table 6.5), we found in our data six molecules – four
peptides and two lipids (cf. Figure 6.7 andTable 6.4). Then, we used the RF classi er trained
on theoretical data, as described above. Namely, reduced feature set based onLipidMaps and
in silico digested Uniprot entries (training set consisted of 6, 313 lipids and the same num-
ber of the randomly drawn peptides) was produced and center-masses were rounded to the
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Figure 6.6: Two-dimensional plots with distribution of the analyzed data sets with eight classes of lipids, where di-

mensions aremass.1 andmass.frac.1. The two analyzedmolecules are denoted in black according to their labels from

Table 6.4.
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Table 6.3: Confusionmatrix for within-lipid classification. The numbers indicate howmany species from lipids class in

row have been assigned to the class in column; last column indicates themisclassification (OOB) error.

FA GL GP PK PR SL SP ST
∑

row class.error ( )
FA 531 16 24 60 102 0 31 149 913 41.8
GL 14 255 57 6 8 1 30 29 400 36.2
GP 11 48 1178 36 24 2 47 69 1415 16.8
PK 38 1 51 1133 29 0 4 40 1296 12.6
PR 151 10 69 67 44 2 13 86 442 90
SL 0 7 3 3 1 49 12 1 76 35.5
SP 54 26 82 3 7 3 974 18 1167 16.5
ST 150 31 101 49 67 0 5 201 604 66.7∑

column 949 394 1565 1357 282 57 1116 593 6313 total class.err: 30.9

second decimal digits. The classi er was then run on the real data. It should be mentioned,
that RF provides not only a label decision (”lipid” or ”peptide”), but also a probability score
pl that the given data belong to ”lipid” class (the corresponding probability of belonging to
”peptide” class is simply de ned as pp = 1 − pl). This probability is based on the deci-
sions made by decision trees used to build RF classi er. As a result, we obtained the pl for
lipids no. 1 and 2 of 0.9874 and 0.9996, respectively. For peptides no. 3 − 6 we obtained
pp of 0.1576, 0.9738, 0.9996, 0.8476, respectively (the presented scores are averaged over 5
runs of the classi cation based on di ferent subsets of peptides used in training set; the cor-
responding standard deviation, σ, equals 0.189 for molecule 3 and σ < 0.017 for molecules
1 − 2, 4 − 6). For the majority of the molecules the classi cation is correct, however, for
peptide no. 3 the value of pp is surprisingly smaller than 0.5. To get some insights into the
origin of this problem, we visualized the data as a two-dimensional plot (Figure 6.8) for co-
ordinatesmass.1 andmass.frac.1. Indeed, even for a ideal situation (in nite resolutionmode),
themolecule no. 3 occupies a region on the border between lipids and peptides (however, the
real RF classi er of course operates on a higher dimensional space, therefore this plot does not
necessarily re ects the real causes of the weak classi er performance for molecule no. 3). In
addition, we tested within-lipid classi er (trained on reduced feature set of lipids data, where
center-masses were rounded to second decimal digits). Bothmolecules 1 and 2were correctly
classi ed as glycerophospholipids (GP) with a probability of 98% and 82.7%, respectively.
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Figure 6.7: The plots with the total rawMS data and zoom-ins to the regions occupied by six molecules foundwithin a

mixture (lipids in blue; peptides in red).
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Figure 6.8: Two-dimensional plots with distribution of the analyzed data sets with lipids (blue) and in silico digested

peptides, where dimensions aremass.1 andmass.frac.1. The six analyzedmolecules are denoted in black according to

their labels from Table 6.4.
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7
Isotopic ne structure

In Chapters 4-6, we considered the aggregated isotopic variants. However, when the mass
spectrometry resolution increases, we can distinguish several ne peaks. In fact, the experi-
mentalists spent their funds for the instruments with the high-resolution functionality, and
they donotwant to aggregate themback. However, the actual ne structure of the aggregated
peak seems to be very complicated (cf. Figure 7.1), and its huge size prevents from accurate
representation. On the other hand, it is useful to analyze not only the center-masses but also
the other parameters, such as the spread of the ne distribution for a given aggregated vari-
ant. As a consequence, additional questions might arise, e.g. what are the limitations (if they
exist) when the consecutive aggregated peaks overlap.

Let us remind that isotopic ne structure distinguishes variants with di ferent molecular
mass. In particular, we consider separately the variants composed of di ferent numbers of
each of the stable isotopes, while summaric chemical formula (CvHwNxOySz) for all these
variants remains the same. Wewould concentrate on the ne distribution for the given aggre-
gated variants. More precisely, we would consider the most abundant aggregated variants, as
those are of the most practical signi cance.

7.1 V

Wehave already shown inChapter 4 how to calculate the rstmoment (expected value) of the
ne structure for given aggregated variants, which is called center-mass. Here, using analo-
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Figure 7.1: The fine structure of themost abundant aggregated peak (its center-mass is depicted with dotted line) for

apomyoglobin, for which chemical formula isC769H1212N210O218S2. The fine structure is generated using iso-
Dalton software (Snider, 2007).
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gous reasoning, wewill introduce the generating function for the secondmoment (variance),
referring to the distribution variability from its mean. First, let us remind the basic formula
for the variance for j-th aggregated variant:

Var(mj) = E(m2
j) − E(mj)

2. (7.1)

Of note, the value of E(mj)
2 can be calculated as the square of the center-masses obtained

from the original BRAIN (cf. Equation 4.23). The remaining part can be expanded as:

E(m2
j) =

∑
km

2
jkpjk∑

k pjk
(7.2)

where the denumerator, analogously as in Equation (4.2), is simply an aggregated isotopic dis-
tribution of the j-th aggregated variant, and thus can be also provided by the original BRAIN
algorithm. The remainder is the numerator of the Equation (7.2), namely

∑
km

2
jkpjk. We

rst introduce generating function for this problem:

T (I; v, w, x, y, z) =
∑
j

∑
k

m2
jkpjkI

j =
∑
j

q⊥j I
j. (7.3)

In addition, we de ne the polynomials:

RC(I, J,K) = PC12J
MC12KC12 + PC13J

MC13KC13I, (7.4)

and
W ∗

A(I) =
∑
j

pA,jm
2
A,jI

j (7.5)

for carbon; polynomials for other elements (RH(I), . . . , RS(I),W ∗
H(I), . . . ,W ∗

S(I)) are
de ned analogously. Moreover, we would use polynomialsWC(I), . . . ,WS(I) de ned in
Equation (4.23).

Let us consider:

Q⊥(I, J,K; v, w, x, y, z) = RC(I, J,K)v ×RH(I, J,K)w ×RN(I, J,K)x ×
×RO(I, J,K)y ×RS(I, J,K)z, (7.6)

and its standard form:

Q⊥(I, J,K; v, w, x, y, z) =
∑
j

(
∑
k

pjkJ
mjkKmjk)Ij. (7.7)
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PolynomialQ⊥(I, J,K; v, w, x, y, z) can be di ferentiated over J andK , and then we can
set J = K = 1:

(7.8)
∂2

∂J∂K
Q⊥(I, J,K; v, w, x, y, z)|J=K=1 =

∑
j

(
∑
k

m2
jkpjkJ

mjk−1Kmjk−1)Ij|J=K=1

=
∑
j

(
∑
k

m2
jkpjk)Ij = T (I; v, w, x, y, z)

where the last equation follows from Equation (7.3). Alternatively, we can di ferentiate poly-
nomial Q⊥(I, J,K; v, w, x, y, z) over J andK using Equation (7.6), i.e. by applying the
formula of di ferentiation a product, then set J = K = 1, and obtaining a nal result:

T (I; v, w, x, y, z) =
∂2

∂J∂K
Q⊥(I, J,K; v, w, x, y, z)|J=K=1

= v × (v − 1) ×Q(I; v − 2, w, x, y, z) × PC(I)2 +

+ v × w ×Q(I; v − 1, w − 1, x, y, z) × PC(I) × PH(I) +

+ v × x×Q(I; v − 1, w, x− 1, y, z) × PC(I) × PN(I) +

+ v × y ×Q(I; v − 1, w, x, y − 1, z) × PC(I) × PO(I) +

+ v × y ×Q(I; v − 1, w, x, y, z − 1) × PC(I) × PS(I) +

+ v ×Q(I; v − 1, w, x, y, z) × P ∗
C(I) + ?, (7.9)

where ? replaces the summation involving 24 analogous products of polynomials.
Recall, that the variance can be obtained from Equation (7.1) by using coe cients of poly-

nomial T (I; v, w, x, y, z), center-masses and probabilities of the aggregated isotopic vari-
ants. We implemented calculation ofT (I; v, w, x, y, z)using twomethods tomultiply poly-
nomials, both available in R: Fast Fourier Transform (function fft) and a standard library
PolynomF for operations on polynomials. We decided not to use algebraic approach (i.e.
BRAIN iterative formulae), as preliminary results showed that the high complexity of Equa-
tion (7.9), i.e. a lot of summations andmultiplications, does involve numerical errors in prac-
tice. The comparison of the twomethods is depicted in Figure 7.2. In addition, we observed
that the results correspond to the values estimated by isoDalton sof ware (Snider, 2007)
(cf.Figure7.2(D)).

Furthermore, we processed the Uniprot database and built a linear model to analyze the
relationship between the center-mass of the most abundant peak (ma) and the variance of
this center-mass (the visualization suggests a linear trend between the variance and the shif
between most abundant and monoisotopic masses, cf. Figure 7.3). As a result, we obtained
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(A) (B)

(C) (D)

Figure 7.2: The variance of the fine structure of themost abundant aggregated variants for (A) Human insulin, (B)

Bovine serum albumin, (C) Renal isoform, subunit Human ATP binding cassette protein (cf. Table 4.2). In addition to

the FFT approach, we calculated the Equation 7.9 using the R library PolynomF for operations on polynomials. (D) As an-

other method of the validation, we calculated the variance of Bovine serum albumin using isoDalton using different

parameters for the number of generated peaks (note, this software generates the fine structure of the whole distribu-

tion). We observe, that if this parameter is big enough, the results returned by FFT approaches using Equation 7.9 are

consistent with those returned by isoDalton.
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Figure 7.3: The relationship between the variance of themost abundant center mass, and themass shift betweenmost

abundant andmonoisotopic peak, calculated for themolecules fromUniprot database. The linear trend can be ob-

served.

the formula
variance = 1.503 × 10−6 + 3.077 × 10−9 ×ma (7.10)

where both coe cients have p-values below 10−16.

7.2 I

The information theory entropy is a measure of the (un)certainty of the random variable of
given distribution.

..

Information theory entropy

.

Information theory entropy for a discrete random variableX with distribution func-
tion P (X) is de ned as:

H(X) = −E[log(P (X))]. (7.11)

For j-th aggregated variant the information theory entropy, denoted here asH(j), can be
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calculated as follows ( rst equation is an application of the Equation (7.11)):

H(j) = −
∑
k

pjk∑
k pjk

log(
pjk∑
k pjk

) =
−
∑

k pjk log(
pjk∑
k pjk

)∑
k pjk

=
−
∑

k pjk{log(pjk) − log(
∑

k pjk)}∑
k pjk

=
−
∑

k pjk log(pjk)∑
k pjk

+

∑
k pjk log(

∑
k pjk)∑

k pjk

=
−
∑

k pjk log(pjk)∑
k pjk

+
(
∑

k pjk) log(
∑

k pjk)∑
k pjk

=
−
∑

k pjk log(pjk)∑
k pjk

+ log(
∑
k

pjk) (7.12)

Surprisingly, the −
∑

k pjk log(pjk)∑
k pjk

can be calculated using the Equation (4.2), where mjk is
replaced with− log pjk. Moreover, log(

∑
k pjk) = log(qj), where qj is a probability of j-

th aggregated isotopic variant, so the second term in formula forH(j) can be calculated using
original BRAIN. As a result, the information theory entropy can be e fectively obtained.

7.3 O

Thenatural questionwhichwe can considerwhen analyzing the aggregated variants is a prob-
lem of overlap between the consecutive peaks. As we already noticed in the variance analysis,
this value increases for the most abundant peaks with higher molecular sizes. First, we can
apply the following theorem:

..

Chebyshev’s inequality

.

For a random variable X with E(X) = µ < ∞ and sd(X) = σ, and for any
k ∈ R>0:

Pr(|X − µ| ≥ kσ) ≤ 1

k2
. (7.13)

In particular, fork = 3 fromChebyshev’s inequality, we obtain that approximately 88.9%
of a given distribution is within±3σ margin from its ( nite) mean.
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Therefore, using model from Equation (7.10), we can check when 3σ > 0.5:

3σ > 0.5 ⇔ σ >
0.5

3

⇔ variance > (
0.5

3
)2

⇔ 1.503 × 10−6 + 3.077 · 10−9 ×ma > (
0.5

3
)2

⇔ 3.077 × 10−9 ×ma > (
0.5

3
)2 − 1.503 × 10−6 (7.14)

As a result, we obtain thatma ≈ 9 MDa, and this mass seems to be huge. However, Wang
et al. (2012) published the article with ameaningful title (”Increasing the trappingmass range
tom/z= 109 –Amajor step toward high resolutionmass analysis of intact RNA,DNA and
viruses”), being a clear signal that MS processing of mega- or even gigadalton particles is not
a purely theoretical consideration.

Another approach to the problem of overlapping aggregated variants is to investigate the
maximal/minimal mass of the ne peaks within a given variant. Taking into account the
average mass per additional neutron (cf. Table 7.1), we can see that the lightest possible ag-
gregated variant should have only 15N heavy isotopes. By analogy, the heaviest possible ag-
gregated variant should be purely composed of 2H heavy isotopes. Then, for variant with j
additional neutrons, the mass spread between these extreme masses equals:

j · (µ2H − µ15N) = j × 0.0092421 Da. (7.15)

Of note, in caseswhere there are not enoughnitrogens or hydrogenswithin amolecule, Equa-
tion (7.15) gives an upper bound for the mass spread. Using this approximation, we estimate
that the spread would reach 1 Da for j ≈ 108.

In summary, two alternative estimations for the overlap between the most abundant iso-
topic peaks when aggregated variants are considered. First, variance/standard deviation ap-
proach, uses the Chebyshev’s inequality. However, without adequate approximations of the
aggregated peak shape it is di cult to predict the most accurate value of the parameter k
used in Equation (7.13). The second approach – based on mass spread approximations – is
more conservative, as the extreme ne variants are very tiny and in practice not observable in
a spectrum.
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Table 7.1: The table with averagemass per additional neutron calculated for all heavy (i.e. not the lightest) isotopic

variants for carbon, hydrogen, oxygen and sulphur. We observe the highest value for 2H , and the smallest value for
15N .

isotope average mass per additional neutron (Da)
17C 1.003355
2H 1.006277
15N 0.9970349
17O 1.004217
18O 1.002123
33S 0.9993877
34S 0.9978980
36S 0.9987525

7.4 D

The nal stepof our the analysiswouldbe to asses the nedistributiondeviance fromnormal-
ity. Of note, the distribution is multinomial, which however, has a bell-shape for averagine
molecules. Therefore, a gaussian curve might be its good approximation. To compare these
two distributions we use the relative entropy and the cross-entropy concepts.

..

Relative entropy

.

The relative entropy (also knownasKullback–Leibler divergence orKullback–Leibler
distance) between two distributions, P andQ, is de ned as:

DKL(P‖Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i) (7.16)

..

Cross-entropy

.

For two distributions, P andQ the cross-entropy between them is de ned as:

H(P,Q) = H(P ) +DKL(P‖Q) (7.17)

Of note, for P = Q we obtainDKL(P‖Q) = 0 and H(P,Q) = H(P ). In our case, the
rst considered distribution is a ne distribution of the most abundant aggregated variants

of the nine averagin , generated according to Equation (6.2). Namely, the proportions from
Equation (6.2) were multiplied by n = 50, 250, 500, 750, 1000, 2000, 3000, 4000, 5000,
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Figure 7.4: (A) Information theory entropy and the cross-entropy between the fine structure of themost abundant

peaks of the analyzed averagines, and normal densities of mean and standard deviation as for fine structure. The bigger

themolecule, the closer two values are.(B) The corresponding relative entropies which has (not strictly) descending

trend.

and the obtained number of atoms were rounded to the integer values. This distribution
P is simulated via simple Monte-Carlo (MC) approach – we are able to estimate its mean
and variance from the simulated sample or from theoretical formulas presented already in
this Chapter. Then, we sampled from the corresponding normal distributionQ of the same
mean and variance to obtain the discretized normal distribution (we cannot compare explic-
itly discrete and continuous distributions with each other, andMC simulation obviously re-
turns discretized result). We observe empirically that as the averagine size increases, the cross-
entropyH(P,Q) resembles theH(P ) (Figure 7.4(A)),while the relative entropyDKL(P‖Q)
tends to zero (Figure 7.4(B)). This suggests that, at least for large proteins, the normal distri-
bution is a quite good approximation of the isotopic ne structure of the most abundant
aggregated variant.
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8
Further works and concluding remarks

In this dissertation, we presented a wide range of methods that can be applied in both mass
spectrometry and genetics research involving large-scale data analyses. Here, we provide some
perspectives in this eld, including our ongoing projects.

G ( ) NAHR

Our results on NAHR prevalence (Figure 2.7) can be compared to the previous study made
byCooper et al. (2011), which involved over 15, 000 childrenwith developmental delay tested
by CMA in Signature Genomics Laboratories (SGL). Of note, the sets of six most common
recurrent deletions in the two research (our and Cooper et al. (2011)) are consistent. More-
over, the investigation of de novo CNVs in 2, 312 patients with intellectual disabilities (ID)
was performed by Girirajan et al. (2012), and revealed the high frequencies of deletions in
22q11.21 and 16p11.2 autism loci, which is similar to our observations (Figure 2.8). Addition-
ally, to the results presented in Chapter 2, in our database we have found three somatic mo-
saicisms that are potentiallymediated byNAHR(as franked by direct paralogousLCRs), and
were con rmed by FISH analysis (Dittwald et al., 2013c). It should be noted, that alsomitotic
NAHR events have been suggested as a potential cancer cause-causingmechanism (Gu et al.,
2008), and therefore are an interesting topic for future research. Also, next generation se-
quencing data can be used to systematically identify and analyze recurrent rearrangements
(both meiotic and mitotic) previously missed by aCGH assays.
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Furthermore, it has been already shown that NAHR can be also caused by other homol-
ogous elements, e.g. in Shuvarikov et al. (2013) we identi ed 3q13.2-q13.31 deletions mediated
by Human Endogenous Retrovirus (HERV) elements. Moreover, we have already commu-
nicated a genome-widemapof potential genomic instability viaHERVs as a poster during the
ASHG conference - Piotr Dittwald, Ian M. Campbell et al.; Human Endogenous Retrovi-
ral Elements (HERVs)MediateMultiple Genomic Rearrangements Suggestive of Nonallelic
Homologous Recombination (NAHR), 63rd American Society ofHumanGenetics Annual
Meeting, Boston, October 2013. Moreover, my colleague from the University of Warsaw,
Micha l Startek, is workingwith BCMon similar studies involving long interspersed elements
(LINEs). Of note, the UCSC Browser recently published a new version of genome build
(hg38; December 2013), that can be considered (af er some time needed for recalculating nec-
essary data) as a new reference point for genome-wide maps for NAHR-prone regions.

MS -

First, we should underline that their utility for the practical applications should be constantly
considered. Asmentioned in the introduction, the very important step inMS data analyses is
the preprocessing step. First, it is done internally be the instruments, and unfortunately, the
regular user has only a little in uence (and in fact also a very poor knowledge) on the detailed
procedures. Therefore, our models cannot assume that they operate on completely raw data.
Secondly, we can have an in uence onto steps such as baseline correction, smoothing, and
peak picking, therefore a good understanding of the available algorithms might be useful in
the further data processing (at the level of the aggregated distribution). Also, an awareness of
limits, such as those investigated in Chapter 7, is helpful for accurate data modeling.

B

In Chapter 6, we showed themodel for predicting themonoisotopic mass from the observed
mass peaks. Although the model does not reveal a good accuracy, we already suggested it
has a potential for a more adequate performance. Indeed, the better model, called MIND,
i.e. MonoIsotopic mass liNear preDictor, was presented as a proof-of-concept in a poster at
the ASMS conference in 2013 (Piotr Dittwald, Frederik Lermyte, Frank Sobott, Anna Gam-
bin, DirkValkenborg;MIND: a sof -sensor to improvemass accuracy in high-resolution top-
down proteomics. 61st ASMS Conference on Mass Spectrometry and Allied Topics, Min-
neapolis, June 2013; DV was a poster presenter). It should be noted that this story is not yet
published as a research study and needs some further veri cation.

100



L

The proposed approach for the lipid-vs.-peptide classi cation has to be further validated for
more data samples. Moreover, developing better algorithms for retrieving the aggregated
structure from raw data les is also a challenging task. Nevertheless, the Lipid Centrifuge
work ow can potentially be an interesting alternative for the physicochemical fractionation
techniques (e.g. liquid chromatography based methods) that are commonly used in mixture
analysis, however, they introduce additional noise and variance into the measurements. Ad-
ditional application of the method is in mass spectrometry imaging, where MS experiments
are used to visualize the spatial distribution of the sample components (Stoeckli et al., 2001;
Van de Plas et al., 2007; Van de Plas, 2010).

E

As already mentioned in Chapter 7, the isotopic ne structure can be highly complex and
therefore practically impossible for exact modeling. Recently, we have been working on de-
veloping an e fective algorithm for simulating isotopic ne structure for given aggregated
variant. The method called McFine is based on Monte-Carlo approach, and will be com-
municated as a poster during ASMS conference in 2014 (Piotr Dittwald, Dirk Valkenborg,
Alan L. Rockwood, Anna Gambin; McFine - an algorithm to approximate the isotope ne
structure of peptides and proteins, accepted as poster for 62nd ASMS Conference on Mass
Spectrometry and Allied Topics, Baltimore, June 2014).

C

As shown in this dissertation, the interdisciplinary approach is of en inevitable in the biomed-
ical studies. However, a need for deeper understanding of the analyzed problems has been
experienced as a fascinating challenge by the author. Finally, the ethical issues that arise in the
context of the research should be wisely considered, especially when dealing with a mystery
of life.
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Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A., 2009, Sirius: decomposing iso-
tope patterns for metabolite identi cation, Bioinformatics, 25, 218–224, http://
bioinformatics.oxfordjournals.org/content/25/2/218.full.pdf+html

Bondeson, M. L., Dahl, N., Malmgren, H., Kleijer, W. J., Tonnesen, T., Carlberg, B. M.,
Pettersson, U., 1995, Inversion of the IDS gene resulting from recombination with IDS-
related sequences is a common cause of theHunter syndrome,HumanMolecular Genetics,
4, 615–621

Brancia, F. L., 2006, Recent developments in ion-trap mass spectrometry and related tech-
nologies, Expert Review of Proteomics, 3, 143–151

Breiman, L., 2001, Random forests, Machine Learning, 45, 5–32

Brownawell, M., Fillippo, J., 1982, A program for the synthesis of mass spectral isotopic
abundances, Journal of Chemical Education, 59, 663–665

103

http://bioinformatics.oxfordjournals.org/content/25/2/218.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/25/2/218.full.pdf+html


Bruce, C., Shifman, M. A., Miller, P., Gulcicek, E. E., 2006, Probabilistic enrichment of
phosphopeptides by their mass defect, Analytical Chemistry, 78, 4374–4382

Brunetti-Pierri, N., Berg, J. S., Scaglia, F., Belmont, J., Bacino, C. A., Sahoo, T., Lalani, S. R.,
Graham, B., Lee, B., Shinawi, M., Shen, J., Kang, S. H., Pursley, A., Lotze, T., Kennedy, G.,
Lansky-Shafer, S., Weaver, C., Roeder, E. R., Grebe, T. A., Arnold, G. L., Hutchison, T.,
Reimschisel, T., Amato, S., Geragthy, M. T., Innis, J. W., Obersztyn, E., Nowakowska, B.,
Rosengren, S. S., Bader, P. I., Grange, D. K., Naqvi, S., Garnica, A. D., Bernes, S.M., Fong,
C. T., Summers, A., Walters, W. D., Lupski, J. R., Stankiewicz, P., Cheung, S. W., Patel, A.,
2008, Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly
or macrocephaly and developmental and behavioral abnormalities, Nature Genetics, 40,
1466–1471

Chandramouli, K., Qian, P. Y., 2009, Proteomics: challenges, techniques and possibilities
to overcome biological sample complexity, Human Genomics and Proteomics, 2009

Chial, H., 2008, Cytogenetic methods and disease: Flow cytometry, CGH, and FISH, Na-
ture Education, 1

Claesen, J., Dittwald, P., Burzykowski, T., Valkenborg, D., 2012, An e cient method to cal-
culate the aggregated isotopic distribution and exact center-masses, Journal of theAmerican
Society for Mass Spectrometry, 23, 753–763

Cole, R., 1997, Electrospray ionizationmass spectrometry: fundamentals, instrumentation,
and applications., Wiley, New York

Cooper, G.M., Coe, B. P., Girirajan, S., Rosenfeld, J. A., Vu, T. H., Baker, C., Williams, C.,
Stalker, H., Hamid, R., Hannig, V., Abdel-Hamid, H., Bader, P., McCracken, E., Niyazov,
D., Leppig, K., Thiese, H., Hummel, M., Alexander, N., Gorski, J., Kussmann, J., Shashi,
V., Johnson, K., Rehder, C., Ballif, B. C., Sha fer, L. G., Eichler, E. E., 2011, A copy number
variation morbidity map of developmental delay, Nature Genetics, 43, 838–846

Cotter, R. J., 1994, Time-of- ight mass spectrometry., American Chemical Society, Colum-
bus, OH

Cravatt, B. F., Simon,G.M., Yates, J. R., 2007, The biological impact ofmass-spectrometry-
based proteomics, Nature, 450, 991–1000

Crick, F., 1970, Central dogma of molecular biology, Nature, 227, 561–563

104



Dittwald, P., Valkenborg, D., 2014, BRAIN 2.0: Time andMemory Complexity Improve-
ments in the Algorithm for Calculating the Isotope Distribution, Journal of the American
Society for Mass Spectrometry, 25, 588–594

Dittwald, P., Claesen, J., Burzykowski, T., Valkenborg, D., Gambin, A., 2013a, BRAIN: a
universal tool for high-throughput calculations of the isotopic distribution for mass spec-
trometry, Analytical Chemistry, 85, 1991–1994

Dittwald, P., Gambin, T., Gonzaga-Jauregui, C., Carvalho, C. M., Lupski, J. R.,
Stankiewicz, P., Gambin, A., 2013b, Inverted low-copy repeats and genome instability–a
genome-wide analysis, HumanMutation, 34, 210–220

Dittwald, P., Gambin, T., Szafranski, P., Li, J., Amato, S., Divon, M. Y., Rodriguez Rojas,
L. X., Elton, L. E., Scott, D. A., Schaaf, C. P., Torres-Martinez, W., Stevens, A. K., Rosen-
feld, J. A., Agadi, S., Francis, D., Kang, S. H., Breman, A., Lalani, S. R., Bacino, C. A., Bi,
W., Milosavljevic, A., Beaudet, A. L., Patel, A., Shaw, C. A., Lupski, J. R., Gambin, A.,
Cheung, S. W., Stankiewicz, P., 2013c, NAHR-mediated copy-number variants in a clini-
cal population: mechanistic insights into both genomic disorders and Mendelizing traits,
Genome Research, 23, 1395–1409

Eidhammer, I., Flikka, K., Martens, L., Mikalsen, S.-O., 2007, ComputationalMethods for
Mass Spectrometry Proteomics, Wiley-Interscience

El-Hattab, A. W., Fang, P., Jin, W., Hughes, J. R., Gibson, J. B., Patel, G. S., Grange,
D. K., Manwaring, L. P., Patel, A., Stankiewicz, P., Cheung, S. W., 2011, Int22h-1/int22h-2-
mediated Xq28 rearrangements: intellectual disability associated with duplications and in
utero male lethality with deletions, Journal of Medical Genetics, 48, 840–850

Elinati, E., Kuentz, P., Redin, C., Jaber, S., VandenMeerschaut, F., Makarian, J., Koscinski,
I., Nasr-Esfahani, M. H., Demirol, A., Gurgan, T., Louanjli, N., Iqbal, N., Bisharah, M.,
Pigeon, F. C., Gourabi, H., De Briel, D., Brugnon, F., Gitlin, S. A., Grillo, J. M., Ghaedi,
K., Deemeh, M. R., Tanhaei, S., Modarres, P., Heindryckx, B., Benkhalifa, M., Nikiforaki,
D., Oehninger, S. C., De Sutter, P., Muller, J., Viville, S., 2012, Globozoospermia is mainly
due to DPY19L2 deletion via non-allelic homologous recombination involving two recom-
bination hotspots, HumanMolecular Genetics, 21, 3695–3702

Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T.,
Spener, F., vanMeer, G., Wakelam,M. J. O., Dennis, E. A., 2009, Update of the lipid maps
comprehensive classi cation system for lipids., Journal of Lipid Research, 50 Suppl, S9–14

105



Fenn, J., 2002, Electrospray Wings for Molecular Elephants (Nobel Lecture),
www.nobelprize.org, Nobel Foundation

Fernandez-de Cossio Diaz, J., Fernandez-de Cossio, J., 2012, Computation of Isotopic Peak
Center-Mass Distribution by Fourier Transform, Analytical Chemistry, 84, 7052–7056

Gentleman, R. C., Carey, J. V., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney,
L., Yang, J. Y., Zhang, J., 2004, Bioconductor: open sof ware development for computa-
tional biology and bioinformatics, Genome Biology, 5(10), R80

Girirajan, S., Campbell, C. D., Eichler, E. E., 2011, Human copy number variation and com-
plex genetic disease, Annual Review of Genetics, 45, 203–226

Girirajan, S., Rosenfeld, J. A., Coe, B. P., Parikh, S., Friedman, N., Goldstein, A., Filipink,
R. A.,McConnell, J. S., Angle, B.,Meschino,W. S., Nezarati,M.M., Asamoah, A., Jackson,
K. E., Gowans, G. C.,Martin, J. A., Carmany, E. P., Stockton, D.W., Schnur, R. E., Penney,
L. S., Martin, D. M., Raskin, S., Leppig, K., Thiese, H., Smith, R., Aberg, E., Niyazov,
D. M., Escobar, L. F., El-Khechen, D., Johnson, K. D., Lebel, R. R., Sie as, K., Ball, S.,
Shur, N., McGuire, M., Brasington, C. K., Spence, J. E., Martin, L. S., Clericuzio, C., Ballif,
B. C., Sha fer, L. G., Eichler, E. E., 2012, Phenotypic heterogeneity of genomic disorders and
rare copy-number variants, The New England Journal of Medicine, 367, 1321–1331

Gross,M., Pramanik, B.N., Ganguly, A.K., 2002, Applied electrospraymass spectrometry.,
Marcel Dekker, New York

Gu, W., Zhang, F., Lupski, J. R., 2008, Mechanisms for human genomic rearrangements,
Pathogenetics, 1, 4

Hastings, P. J., Ira,G., Lupski, J.R., 2009,Amicrohomology-mediatedbreak-induced repli-
cation model for the origin of human copy number variation, PLOS Genetics, 5, e1000 327

Hernandez-Martin, A., Gonzalez-Sarmiento, R., De Unamuno, P., 1999, X-linked
ichthyosis: an update, British Journal of Dermatology, 141, 617–627

Hu, H., Dittwald, P., Zaia, J., Valkenborg, D., 2013, Comment on the computation of
isotopic peak center-mass distribution by fourier transform, Analytical Chemistry, 85,
12 189–12 192

Huang, N., Lee, I., Marcotte, E. M., Hurles, M. E., 2010, Characterising and predicting
haploinsu ciency in the human genome, PLOS Genetics, 6, e1001 154

106



IHGSC, 2004, Finishing the euchromatic sequence of the human genome, Nature, 431,
931–945

Jacobson, N., 2007, Basic algebra 1, Dover

Kirchner, M., Timm, W., Fong, P., Wangemann, P., Steen, H., 2010, Non-linear classi -
cation for on-the- y fractional mass ltering and targeted precursor fragmentation in mass
spectrometry experiments, Bioinformatics, 26, 791–797

Klopocki, E., Schulze,H., Strauss, G.,Ott, C. E.,Hall, J., Trotier, F., Fleischhauer, S., Green-
halgh, L., Newbury-Ecob, R. A., Neumann, L. M., Habenicht, R., Konig, R., Seemanova,
E., Megarbane, A., Ropers, H. H., Ullmann, R., Horn, D., Mundlos, S., 2007, Complex
inheritance pattern resembling autosomal recessive inheritance involving a microdeletion
in thrombocytopenia-absent radius syndrome, The American Journal of HumanGenetics,
80, 232–240

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J.,
Marra, M. A., 2009, Circos: an information aesthetic for comparative genomics, Genome
Research, 19, 1639–1645

Lakich, D., Kazazian,H.H., Antonarakis, S. E., Gitschier, J., 1993, Inversions disrupting the
factor VIII gene are a common cause of severe haemophilia A, Nature Genetics, 5, 236–241

Lee, J. A., Carvalho, C.M., Lupski, J. R., 2007, ADNA replicationmechanism for generat-
ing nonrecurrent rearrangements associated with genomic disorders, Cell, 131, 1235–1247

Liu, P., Carvalho, C. M., Hastings, P., Lupski, J. R., 2012, Mechanisms for recurrent and
complex human genomic rearrangements, Current Opinion in Genetics & Development,
22, 211–220

Lupski, J. R., 1998, Genomic disorders: structural features of the genome can lead to DNA
rearrangements and human disease traits, Trends in Genetics, 14, 417–422

Lupski, J. R., 2009, Genomic disorders ten years on, GenomeMedicine, 1, 42

Makarov, A., 2000, Electrostatic axially harmonic orbital trapping: a high-performance
technique of mass analysis, Analytical Chemistry, 72, 1156–1162

Marshall, A. G., Hendrickson, C. L., Jackson, G. S., 1998, Fourier transform ion cyclotron
resonance mass spectrometry: a primer, Mass Spectrometry Reviews, 17, 1–35

McEldu f, F., Cortina-Borja, M., Chan, S. K., Wade, A., 2010, When t-tests or Wilcoxon-
Mann-Whitney tests won’t do, Advances in Physiology Education, 34, 128–133

107



Me ford, H. C., Sharp, A. J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., Huang, S., Maloney,
V. K., Crolla, J. A., Baralle, D., Collins, A., Mercer, C., Norga, K., de Ravel, T., Devriendt,
K., Bongers, E. M., de Leeuw, N., Reardon, W., Gimelli, S., Bena, F., Hennekam, R. C.,
Male, A., Gaunt, L., Clayton-Smith, J., Simonic, I., Park, S. M., Mehta, S. G., Nik-Zainal,
S.,Woods, C.G., Firth,H.V., Parkin, G., Fichera,M., Reitano, S., LoGiudice,M., Li, K. E.,
Casuga, I., Broomer, A., Conrad, B., Schwerzmann, M., Raber, L., Gallati, S., Striano, P.,
Coppola, A., Tolmie, J. L., Tobias, E. S., Lilley, C., Armengol, L., Spysschaert, Y., Verloo, P.,
De Coene, A., Goossens, L., Mortier, G., Speleman, F., van Binsbergen, E., Nelen, M. R.,
Hochstenbach, R., Poot, M., Gallagher, L., Gill, M., McClellan, J., King, M. C., Regan, R.,
Skinner, C., Stevenson, R. E., Antonarakis, S. E., Chen, C., Estivill, X., Menten, B., Gimelli,
G., Gribble, S., Schwartz, S., Sutcli fe, J. S., Walsh, T., Knight, S. J., Sebat, J., Romano, C.,
Schwartz, C. E., Veltman, J. A., de Vries, B. B., Vermeesch, J. R., Barber, J. C., Willatt, L.,
Tassabehji, M., Eichler, E. E., 2008, Recurrent rearrangements of chromosome 1q21.1 and
variable pediatric phenotypes, The New England Journal of Medicine, 359, 1685–1699

Me ford, H. C., Cooper, G. M., Zerr, T., Smith, J. D., Baker, C., Shafer, N., Thorland,
E. C., Skinner, C., Schwartz, C. E., Nickerson, D. A., Eichler, E. E., 2009, A method for
rapid, targeted CNV genotyping identi es rare variants associated with neurocognitive dis-
ease, Genome Research, 19, 1579–1585

Myers, S., Freeman, C., Auton, A., Donnelly, P., McVean, G., 2008, A common sequence
motif associated with recombination hot spots and genome instability in humans, Nature
Genetics, 40, 1124–1129

Narsky, I., Porter, F. C., 2013, Statistical Analysis Techniques in Particle Physics. Fits, Den-
sity Estimation and Supervised Learning, Wiley-VCH

Naylor, J., Brinke, A., Hassock, S., Green, P. M., Giannelli, F., 1993, Characteristic mRNA
abnormality found in half the patients with severe haemophilia A is due to large DNA in-
versions, HumanMolecular Genetics, 2, 1773–1778

Naylor, J. A., Green, P. M., Rizza, C. R., Giannelli, F., 1992, Factor VIII gene explains all
cases of haemophilia A, Lancet, 340, 1066–1067

Naylor, J. A., Buck, D., Green, P., Williamson, H., Bentley, D., Giannelli, F., 1995, Inves-
tigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion
junctions, HumanMolecular Genetics, 4, 1217–1224

O’Connor, C., 2008, Fluorescence in situ hybridization (FISH), Nature Education, 1

108



Olson, M., Yergey, A., 2009, Calculation of the isotope cluster for polypeptides by proba-
bility grouping, Journal of the American Society for Mass Spectrometry, 20, 295–302

Parsons, J. D., 1995,Miropeats: graphical DNA sequence comparisons, Computer Applica-
tions in the Biosciences, 11, 615–619

Peter-Katalinic, J.; Hillenkamp, F., 2007, MALDI MS: A Practical Guide to Instrumenta-
tion, Methods and Applications., Wiley-VCH

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 2007, Numerical Recipes:
The Art of Scienti c Computing, New York: Cambridge University Press

Rockwood,A., 1995, Relationship of fourier transforms to isotopedistribution calculations,
Rapid Communications in Mass Spectrometry, 9, 103–105

Rockwood, A., Haimi, P., 2006, E cient calculation of accurate masses of isotopic peaks,
Journal of the American Society for Mass Spectrometry, 17, 415–419

Rockwood, A., Van Orden, S., 1996, Ultrahigh-speed calculation of isotope distributions,
Analytical Chemistry, 68, 2027–2030

Rockwood, A., Van Orden, S., Smith, R., 1995, Rapid calculation of isotope distributions,
Analytical Chemistry, 67, 2699–2704

Rockwood, A., Van Orden, S., Smith, R., 1996, Ultrahigh resolution isotope distribution
calculations, Rapid Communications in Mass Spectrometry, 10, 54–59, ISSN 1097-0231

Rosman, K., Taylor, P., 1997, Isotopic compositions of the elements 1997, Pure andApplied
Chemistry, 70, 217–235

Senko, M., Beu, S., McLa ferty, F., 1995a, Determination of monoisotopic masses and
ion populations for large biomolecules from resolved isotopic distributions, Journal of the
American Society for Mass Spectrometry, 6, 229 – 233

Senko, M. W., Beu, S. C., McLa ferty, F. W., 1995b, Automated assignment of charge states
from resolved isotopic peaks for multiply charged ions, Journal of the American Society for
Mass Spectrometry, 6, 52–56

Séroul, R., 2000, Programming for Mathematicians, Berlin: Springer-Verlag

Sharp, A. J., Locke, D. P., McGrath, S. D., Cheng, Z., Bailey, J. A., Vallente, R. U., Pertz,
L. M., Clark, R. A., Schwartz, S., Segraves, R., Osero f, V. V., Albertson, D. G., Pinkel,
D., Eichler, E. E., 2005, Segmental duplications and copy-number variation in the human
genome, The American Journal of Human Genetics, 77, 78–88

109



Sharp, A. J., Hansen, S., Selzer, R. R., Cheng, Z., Regan, R., Hurst, J. A., Stewart, H., Price,
S.M., Blair, E., Hennekam, R. C., Fitzpatrick, C. A., Segraves, R., Richmond, T.A., Guiver,
C., Albertson, D. G., Pinkel, D., Eis, P. S., Schwartz, S., Knight, S. J., Eichler, E. E., 2006,
Discovery of previously unidenti ed genomic disorders from the duplication architecture
of the human genome, Nature Genetics, 38, 1038–1042

Shmakov, S., 2011, A universal method of solving quartic equations, International Journal
of Pure and Applied Mathematics, pp. 251–259

Shuvarikov, A., Campbell, I. M., Dittwald, P., Neill, N. J., Bialer, M. G., Moore, C.,
Wheeler, P. G., Wallace, S. E., Hannibal, M. C., Murray, M. F., Giovanni, M. A., Terespol-
sky, D., Sodhi, S., Cassina, M., Viskochil, D., Moghaddam, B., Herman, K., Brown, C. W.,
Beck, C. R., Gambin, A., Cheung, S. W., Patel, A., Lamb, A. N., Sha fer, L. G., Ellison,
J. W., Ravnan, J. B., Stankiewicz, P., Rosenfeld, J. A., 2013, Recurrent HERV-H-mediated
3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive
delays, HumanMutation, 34, 1415–1423

Snider, R., 2007, E cient calculation of exact mass isotopic distributions, Journal of the
American Society for Mass Spectrometry, 18, 1511–1515

Stankiewicz, P., Lupski, J. R., 2002, Genome architecture, rearrangements and genomic dis-
orders, Trends in Genetics, 18, 74–82

Stankiewicz, P., Lupski, J. R., 2010, Structural variation in the human genome and its role
in disease, Annual Review of Medicine, 61, 437–455

Stoeckli, M., Chaurand, P., Hallahan, D. E., Caprioli, R.M., 2001, Imagingmass spectrom-
etry: a new technology for the analysis of protein expression in mammalian tissues, Nature
Medicine, 7, 493–496
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