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Abstract

In this dissertation we introduce a new notion of tractability which is called
uniform weak tractability. We give necessary and sufficient conditions on
uniform weak tractability of homogeneous linear tensor product problems
in the worst case, average case and randomized settings. We then turn to
the study of approximation problems defined over spaces of functions with
varying regularity with respect to successive variables. In the worst case
setting we study approximation problems defined over suitable Korobov and
Sobolev spaces. In the average case setting we study approximation problems
defined over the space of continuous functions C([0, 1]d) equipped with a
zero-mean Gaussian measure whose covariance operator is given by Euler or
Wiener integrated process. We establish necessary and sufficient conditions
on uniform weak tractability of those problems in terms of their regularity
parameters.

Key words : complexity, tractability, multivariate problems, linear tensor
product problems
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Chapter 1

Information-Based Complexity
and Tractability of Multivariate
Problems

1.1 Introduction

The modelling of a real world phenomena, like physical processes, behavior of
financial markets or living cells, yields computations which are used to numer-
ically find approximate solutions of continuous problems. Examples of such
problems include numerical integration of multivariate functions, problems
of function approximation or solving differential equations. Given a problem,
it is desirable to know how fast it can be solved, what is its complexity, and
what is an optimal algorithm. Since a computer is a discrete machine, it is
clear that problems of continuous mathematics cannot be exactly represented
and solved by means of a digital computer. Thus an algorithm performed
on a computer uses only partial information about a continuous problem,
and in general it can only compute its approximate solution. Information-
based complexity (IBC) is a theory that investigates the inherent difficulty of
continuous problems as measured by the minimal amount of computational
resources sufficient to solve the problem within a given accuracy ε.

Among continuous problems an important role play multivariate prob-
lems. These are problems that are defined on spaces of functions with ‘huge’
number d of variables. Such problems are often very difficult to solve com-
putationally since they suffer from the curse of dimensionality. An example
is multivariate integration where in different financial, physical or chemical

9



1.2. INFORMATION-BASED COMPLEXITY 10

applications the number of variables can be hundreds or even millions. It
turns out that multivariate integration defined over standard spaces of func-
tions suffers from the curse of dimensionality. Since multivariate problems
frequently occur in practical computations, it is important to better under-
stand their nature and to find ways to solve them in a reasonable time.
Tractability of multivariate problems is a branch of IBC that investigates the
relationship between the information complexity of a multivariate problem
and the number d of variables. In particular, it seeks ways to ‘kill’ the curse
by converting an intractable problem to a tractable problem, that can be
solved by a feasible algorithm. This is done by finding and using an addi-
tional structure of a multivariate problem or by switching to a more lenient
setting in which the error of algorithms is measured.

Despite the fact that tractability of multivariate problems is a relatively
new field, many interesting results are already available. Tractability mea-
sures the lack of an exponential behavior of the complexity. Since there are
various ways of measuring it, we have many notions of tractability including
strong polynomial, polynomial, quasi-polynomial and weak tractability. The
current state of tractability research is presented in the recent three volume
monograph [10, 11, 12].

In this thesis we further pursue research in this direction by introducing
a new notion of tractability called

uniform weak tractability.

This notion generalizes the notion of weak tractability which holds when the
complexity is not exponential in both ε−1 and d but, in particular, may be ex-
ponential in ε−1/2 or d 1/3. Uniform weak tractability holds if the complexity
is not exponential in ε−α and dβ for all positive α and β.

We present necessary and sufficient conditions on uniform weak tractabil-
ity and compare them with conditions required for different notions of tracta-
bility. This will be done for linear tensor product problems in the worst case,
average case and randomized settings in Chapter 2. Then we analyze mostly
uniform weak tractability of non-homogeneous multivariate problems in the
worst case and average case settings in Chapter 3.

1.2 Information-Based Complexity

Information-based complexity (IBC) is a branch of computational math-
ematics that deals with problems for which information is partial, noisy, and
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priced. IBC has been gradually developed over the past decades and many
important theoretical results have been obtained leading to the construction
of practical (almost) optimal algorithms for solving complicated numerical
problems, see, e.g., monographs [10, 11, 12, 17, 20].

Computational problems can be interpreted as mappings acting between
suitable spaces. Therefore, in IBC, a computational problem is represented
by a solution operator S, that is a mapping

S : F → G,

where F is a normed space with a norm ‖ · ‖F (possibly with some additional
structure, like inner product or measure) and G is a normed space with a
norm ‖·‖G. The problem is to find an approximation of S(f) for every f ∈ F .
The approximation is constructed as follows:

• first we compute information N(f) ∈ IRn about the element f ∈ F ,

• then we compute φ(N(f)) ∈ G, where φ is a mapping assigning to N(f)
an element of the space G. The element φ(N(f)) is an approximation
of S(f).

The pair (N, φ) is understood as an algorithm An(f) = φ(N(f)) giving ap-
proximation to S(f) for every f ∈ F . The information operator N : F → IRn

is built from allowed information functionals. That is, for every f ∈ F we
have

N(f) = [L1f, . . . , Lnf ]

where Lj ∈ Λ for every j = 1, . . . , n, and Λ ⊆ F ∗. The functionals Lj can be
chosen adaptively, i.e., the choice of Lj may depend on the already computed
L1(f), L2(f), . . . , Lj−1(f).

We assume that functions φ : IRn → G are in general arbitrary. They
combine the computed information to obtain an element of the space G.

To give an example, consider the problem of multivariate integration.
Then F is a normed space of d-variate Lebesgue integrable functions f :
D → IR, where D ⊂ IRd, and

S(f) =

∫
D

f(t) dt.

The information about f may consist of function evaluations, i.e.,

N(f) = [f(t1), f(t2), . . . , f(tn)]
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for some ti ∈ D, 1 ≤ i ≤ n. A typical algorithm in this case is a quadrature
that linearly combines information N(f).

There are various ways of defining an error of an algorithm An, depend-
ing on our needs and the type of additional structures of the sets F and G,
leading to different settings. The two widely studied and practically impor-
tant settings are the worst case setting and average case setting, where the
errors are defined as:

• worst case error :

ewor(An) = sup
‖f‖F≤1

‖S(f)− An(f)‖G,

• average case error :

eavg(An) =

(∫
F

‖S(f)− An(f)‖2
G µ(df)

)1/2

,

provided that F is equipped with a probabilistic measure µ. 1

The worst case and average case settings are deterministic settings, and we
only consider deterministic information and algorithms. In a nondeterminis-
tic (randomized) settings, information and algorithms are chosen randomly.
A typical example is the classical Monte Carlo for numerical integration,
where the approximation to the integral is given as the average of n function
evaluations at points chosen randomly from its domain.

Formally, in the randomized setting we have a family {(Nω, φω)}ω∈Ω, with
Nω : F → IRn and φω : IRn → G, together with a probabilistic measure ν
on Ω. Then An,ω(f) = φω(Nω(f)). Averaging over all possible outcomes of
that random procedure with respect to ω we define

• randomized error :

eran(An) = sup
‖f‖F≤1

(
Eν‖S(f)− An,ω(f)‖2

G

)1/2
.

Having the notion of an error of an algorithm An, we can now define the
information complexity n(ε, S) of a problem S as

n(ε, S) = min{n : ∃An with e(An) ≤ ε }.
1Of course, we assume that the function F → IR : f 7→ ‖S(f)−An(f)‖G is measurable.
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Hence, the information complexity is the minimal number of information
functionals needed to find an approximation with error at most ε. We stress
that the information complexity depends on the setting in which error is
defined, as well as on the class of allowed information functionals.

Remark 1.1 For the sake of simplicity we consider only information oper-
ators N of fixed cardinality, i.e., only those information operators N which
are functions N : F → IRn for some n ∈ IN. Since from the point of view
of tractability studies adaption does not help (at least for linear problems),
this restriction does not harm the generality of our investigations. For more
details on the power of adaption see, e.g., [8, 21] and [10, Chapter 4].

1.3 Tractability of Multivariate Problems

Although tractability of multivariate problems was initiated only
in 1994 in [23], there is already a reach literature on the subject.

Let S be a sequence of solution operators:

S = {Sd : Fd → Gd}d∈IN.

Usually Fd is a normed space of d-variate functions, and problems Sd are, in
some sense, related to S1 and their inherent difficulty is increasing with d.

Tractability of multivariate problems deals with the behavior of the in-
formation complexity n(ε, Sd) not only with respect to the accuracy demand
ε, but also with respect to the number of variables d. Usually n(ε, Sd) is
an increasing function of d. For many practical problems, the number d of
variables is large or even huge. In the last 20 years many such problems
appeared, for instance, in mathematical finance, with d in the hundreds or
even in the thousands. Therefore the behavior of the information complexity
n(ε, Sd) on d is crucial.

We say that a problem S is intractable, if its information complexity
n(ε, Sd) is an exponential function of ε−1 and/or d. We say that S suffers
from the curse of dimensionality if there are positive numbers C, c and ε0

such that
n(ε, Sd) ≥ C (1 + c)d for all ε ≤ ε0

for infinitely many d. The phrase curse of dimensionality was coined in 1957
by R.E. Bellman [1]. Such problems cannot be practically solved, at least for
large d.
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Tractable problems are classified according to the behavior of their in-
formation complexity. The most known notions of tractability are strong
polynomial tractability, polynomial tractability, quasi-polynomial tractabil-
ity and weak tractability. Specifically, a multivariate problem S is:

• strongly polynomially tractable iff n(ε, Sd) can be bounded by a poly-
nomial in ε−1 which does not depend on d, i.e., there are non-negative
numbers C and p such that

n(ε, Sd) ≤ Cε−p for all ε ∈ (0, 1), d ∈ IN.

• polynomially tractable iff n(ε, Sd) can be bounded by a polynomial in
ε−1 and d, i.e., there are non-negative C, p and q such that

n(ε, Sd) ≤ Cε−pd q for all ε ∈ (0, 1), d ∈ IN.

• quasi-polynomially tractable iff ln n(ε, Sd) can be bounded by a product
of 1+ln ε−1 and 1+ln d, i.e., there are non-negative C and t such that

n(ε, Sd) ≤ C exp
(
t(1+ln ε−1)(1+ln d)

)
for all ε ∈ (0, 1), d ∈ IN.

• weakly tractable iff n(ε, Sd) is not exponential in ε−1 and/or d, i.e.,

lim
ε−1+d→∞

lnn(ε, Sd)

ε−1 + d
= 0.

There is also a new notion of tractability recently introduced by the author
in [18]. Namely, we say that a problem is

• uniformly weakly tractable iff n(ε, Sd) is not exponential in any positive
power of ε−1 and/or d, i.e., iff for all α, β > 0 we have

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dβ
= 0.

There are also many other tractability notions and they can be found in
[10, 11, 12].
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1.4 Research Perspectives

A theoretical study of multivariate problems shows that many of them are in-
tractable and suffer from the curse of dimensionality. This holds especially if
multivariate problems are defined over standard classes of functions of finite
or even infinite smoothness. Such problems cannot be solved in a reasonable
time for large d. On the other hand, it was observed, see, e.g., [16], that
integrals involving hundreds of variables that occur in financial mathematics
can be successfully evaluated using (deterministic) quasi-Monte Carlo algo-
rithms. This discrepancy between the theory and practice stimulated new
research in the area. Explaining this strange phenomenon has been a major
challenge and motivation for tractability of multivariate problems studies.

During the development of this field it has became apparent that one of
the crucial factors affecting tractability of a multivariate problem is the role
of successive variables of the space. If all variables are equally important then
usually the multivariate problem is intractable and suffers from the curse of
dimensionality. If, however, the role of variables varies and is monitored
by weights then the problem’s tractability depends on the decay of these
weights and we may obtain even strong polynomial tractability if the decay
of weights is sufficiently fast. Other factors disrupting the homogeneity of
a problem also might ensure its tractability. For example, the impact of
regularity of a problem with respect to successive variables on its tractability
was studied in [6, 7, 15] and conditions on (strong) polynomial tractability,
quasi-polynomial tractability, and weak tractability were found.

In this thesis we seek necessary and sufficient conditions on uniform weak
tractability. It is done for linear tensor product problems in the worst case,
average case and randomized settings in Chapter 2, whereas the increasing
regularity of the problem with respect to successive variables is done for
the worst case and average case settings in Chapter 3. Obtaining such a
characterization leads to a better understanding of the tractability hierarchy.

Uniform weak tractability may also be studied for other multivariate prob-
lems. We believe that the next step should be the study of weighted spaces
and finding necessary and sufficient conditions on uniform weak tractability
in terms of weights. It would be of interest to compare such conditions on
weights for various notions of tractability.
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1.5 Our Results

The notion of uniform weak tractability is obviously stronger than the no-
tion of weak tractability, and weaker than the notion of quasi-polynomial
tractability. We prove that, in general, uniform weak tractability is differ-
ent than weak and quasi-polynomial tractabilities. It is done by presenting
problems which are uniformly weakly tractable but not quasi-polynomially
tractable, and problems that are weakly tractable but not uniformly weakly
tractable.

In Chapter 2, we mostly study the class Λall of all linear functionals. We
study uniform weak tractability in the worst case, average case and random-
ized settings. For the class Λall, we derive necessary and sufficient conditions
for a linear tensor product problem to be uniformly weakly tractable. For
the class Λstd of function values, we relate the uniform weak tractability of
approximation problems to already known results for weak tractability.

In Chapter 3, we study d-variate approximation problems with varying
regularity with respect to successive variables. The varying regularity is
described by a sequence of real numbers {rk}k∈IN satisfying

0 ≤ r1 ≤ r2 ≤ r3 ≤ . . . .

We mainly consider algorithms that use finitely many continuous linear func-
tionals. In the worst case setting we investigate uniform weak tractability
and quasi-polynomial tractability of approximation problems defined over
suitable Korobov and Sobolev spaces. In the average case setting we inves-
tigate uniform weak tractability of approximation problems defined over the
space of continuous functions equipped with a zero-mean Gaussian measure
whose covariance operator is given by Euler or Wiener integrated process. We
establish necessary and sufficient conditions on uniform weak tractability in
terms of regularity parameters {rk}k∈IN. We stress that these conditions are
quite different for Euler and Wiener integrated processes.



Chapter 2

Uniform Weak Tractability

2.1 Introduction

Information based complexity deals with continuous problems for which avail-
able information is partial and given by a finite number of linear functionals.
Let n(ε, d), called the information complexity, be the minimal number of
linear functionals or function values which are necessary to find the solution
of a d-variate problem to within an error threshold ε. The error and n(ε, d)
have been considered in various settings such as the worst case, average case,
and randomized settings. Tractability studies when n(ε, d) is not exponential
in ε−1 and d. Since there are various ways of measuring the lack of expo-
nential behavior, we have various notions of tractability. Examples include
weak, quasi-polynomial, polynomial, strong polynomial, restricted and un-
restricted T -tractability. The current state of tractability research can be
found in [10, 11, 12].

In this thesis we introduce a new notion of tractability which is called
uniform weak tractability. This notion is stronger than weak tractability and
weaker then quasi-polynomial tractability. More precisely, weak tractabil-
ity means that ln n(ε, d) is o(ε−1 + d), or equivalently that n(ε, d) is not
exponential in ε−1 and/or d. However, a weakly tractable problem may
have n(ε, d) which is exponential in, say, ε−1/2 and/or d1/2. Uniform weak
tractability means that n(ε, d) is not exponential in any positive power of ε−1

and/or d. Hence, a problem for which the information complexity depends
exponentially on ε−1/2 and/or d1/2 is weakly tractable but not uniformly
weakly tractable. Quasi-polynomial tractability means that ln n(ε, d) is of
order (1 + ln ε−1)(1 + ln d). Clearly, uniform weak tractability does not, in
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general, imply quasi-polynomial tractability. This proves that the notion of
uniform weak tractability does not coincide, in general, with the notions of
weak or quasi-polynomial tractability.

We give necessary and sufficient conditions on uniform weak tractability
for linear (unweighted) tensor product problems in various settings and for
the absolute and normalized error criteria. These results imply that the class
of uniformly weakly tractable problems is a proper subclass of the already
known class of weakly tractable problems and contains the class of quasi-
polynomially tractable problems as a proper subclass.

We now summarize the known and new tractability results for linear ten-
sor product problems in the worst case setting and for the class Λall of all
continuous linear functionals and for the absolute and normalized error crite-
ria. These results indicate the place of uniformly weakly tractable problems
in the tractability hierarchy of multivariate problems. They are expressed
in terms of the ordered eigenvalues λj for the univariate case of the linear
tensor product problems. To make the linear tensor product non-trivial we
assume that λ1 ≥ λ2 > 0. For the absolute error criterion we assume that
λ1 = 1 and λ2 < 1, or 1 > λ1 ≥ λ2, whereas for the normalized error criterion
we assume that λ1 > λ2. If these conditions are not satisfied then n(ε, d) is
exponential in d which is called the curse of dimensionality. Assuming for
simplicity that λ1 = 1 > λ2 > 0, we have the following conditions on various
types of tractability:

Weak Tractability ⇔ λn = o([lnn]−2),

Uniform Weak Tractability ⇔ λn = o([lnn]−p) for all p > 0,

Quasi-Polynomial Tractability ⇔ λn = o(n−p) for some p > 0,

Polynomial Tractability never,

Strong Polynomial Tractability never.

The conditions for weak tractability were obtained in [13], for quasi-polynomial
tractability in [3], and for polynomial and strong polynomial tractability in
[23]. As already mentioned much more can be found in [10, 11, 12].

It is clear that for every non-increasing sequence {λj}j∈IN of non-negative
real numbers satisfying

lim
j→∞

λj = 0 and λ1 = 1 > λ2 > 0,
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there exists a linear tensor product problem that has this sequence as a
corresponding sequence of eigenvalues. For

λj = exp(−
√

ln j)

the corresponding problem is uniformly weakly tractable, but not quasi-
polynomially tractable. On the other hand, taking

λ1 = 1, λ2 = 0.9 and λj = [ln j]−3 for j > 2

we have weakly tractable, but not uniformly weakly tractable problem. Thus
the class of uniformly weakly tractable problems is a proper subclass of the
class of weakly tractable problems and it is strictly larger than the class of
quasi-polynomially tractable problems.

2.2 Notion of Uniform Weak Tractability

We will use terminology from [10, 11, 12]. Assume we are given a sequence
of solution operators

Sd : Fd → Gd for all d ∈ IN.

Here, Fd and Gd are normed spaces.
We investigate the (information) complexity of problems Sd in three set-

tings: worst case, average case and randomized for the absolute or normalized
error criteria.

For ε ∈ (0, 1) and d ∈ IN, let

n(ε, Sd)

be the information complexity which is defined as the minimal number of per-
missible linear functionals which are necessary to obtain an ε-approximation
of Sd in the worst case, average case or randomized setting for the absolute
or normalized error criteria. Let

S = {Sd}d∈IN.

Definition 2.1 We say that a problem S is uniformly weakly tractable iff

lim
ε−1+d→∞

ln n(ε, Sd)

ε−α + dβ
= 0 for all α, β > 0.
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It may happen that n(ε, Sd) = 0. In this case, we take ln 0 = 0 by
convention.

Uniform weak tractability is a generalization of the notion of weak tractabil-
ity which is defined if we take only α = β = 1. Weak tractability of S means
that the information complexity n(ε, Sd) is not exponential in ε−1 and d.
However, it may be exponential in, say, ε−1/2 and/or d 1/3. The notion of
uniform weak tractability is stronger since we require that n(ε, Sd) is not
exponential in any power of ε−1 or d.

We now check that it is enough to take only α = β in the definition of
uniform weak tractability.

Corollary 2.1 A problem S = {Sd} is uniformly weakly tractable iff

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0 for all α > 0.

Proof: Obviously, it is enough to show that

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0 for all α > 0

implies that

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dβ
= 0 for all α, β > 0.

Note that

0 ≤ lnn(ε, Sd)

ε−α + dβ
≤ lnn(ε, Sd)

ε−min(α,β) + dmin(α,β)
.

The right-hand side goes to zero when ε−1 +d approaches infinity. Therefore
the middle term also goes to zero, as claimed. �

2.3 Linear Tensor Product Problems

We will now briefly recall the definitions of a linear tensor product problem
in various settings.
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2.3.1 Worst Case Setting

Definition 2.2 A linear tensor product problem in the worst case setting is
a problem

S = {Sd}d∈IN

for which there is a separable Hilbert space F1 and a Hilbert space G1 such
that S1 : F1 → G1 is a compact linear operator and Sd =

⊗d
j=1 S1 : Fd → Gd,

where Fd =
⊗d

j=1 F1 and Gd =
⊗d

j=1G1 for every d ∈ IN.

Note that the operator

W1 := S∗1S1 : F1 → F1

is positive semi-definite, self-adjoint and compact. By {λj}j∈IN we denote the
sequence of its non-increasing eigenvalues, and by {(λj, ηj)}j∈IN we denote
the sequence of its eigenpairs. To omit the trivial cases we assume that
dim(F1) =∞ and

λ1 ≥ λ2 > 0.

That is, for all j ≥ 3 we have λj ≥ 0, and limj λj = 0.

For d ≥ 1, let

Wd = S∗dSd : Fd → Fd.

Due to the tensor product structure of Sd and Fd, the eigenpairs of the posi-
tive semi-definite, self adjoint and compact operator Wd are {(λd,j, ηd,j)}j∈INd

with

{λd,j}j∈INd = {λj1λj2 . . . λjd}j1,j2,...,jd∈IN,

and

{ηd,j}j∈INd = {ηj1 ⊗ ηj2 ⊗ · · · ⊗ ηjd}j1,j2,...,jd∈IN.

It is well known that in the worst case setting,

n(ε, Sd) = #{j ∈ INd : λd,j > ε2 CRId},

where CRId = 1 for the absolute error criterion, and CRId = ‖Sd‖2 for the
normalized error criterion.
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2.3.2 Average Case Setting

Definition 2.3 A linear tensor product problem in the average case setting
is a problem

S = {Sd}d∈IN

for which there is a sequence {Fd}d∈IN of separable Banach spaces, a sequence
{µd}d∈IN such that µd is a zero-mean Gaussian measure on Fd for every
d ∈ IN, and a separable Hilbert space G1 such that Gd =

⊗d
j=1G1 and

Sd : Fd → Gd is a continuous linear operator for every d ∈ IN.

We also assume that the sequence of zero-mean Gaussian measures {µd}d∈IN

is compatible with the tensor product structure of the spaces {Gd}d∈IN in the
following sense. Let

{ηj}j∈IN

denote a complete orthonormal system of G1 and for d ∈ IN define

ηd,j := ηj1 ⊗ · · · ⊗ ηjd for every j = [j1, . . . , jd] ∈ INd.

Note that {ηd,j}j∈INd is a complete orthonormal system in the Hilbert space
Gd for every d ∈ IN. For d ∈ IN let

νd := µdS
−1
d .

That is, νd is a Gaussian measure induced by Sd on the Hilbert space Gd. Let
Cνd denote its covariance operator. For every d ∈ IN, let {(λd,j, ηd,j)}j∈INd

be the set of eigenpairs of the operator Cνd . Note that η1,j = ηj, and let
λj := λ1,j ≥ 0 for j ∈ IN. For Gaussian measures we have

∞∑
j=1

λj = trace(Cν1) <∞

and, without loss of generality, we order {λj}j∈IN such that

λ1 ≥ λ2 ≥ . . . ≥ 0.

In order to preserve the tensor product structure we also assume that for
d ∈ IN we have

λd,j =
d∏

k=1

λjk for all j = [j1, . . . , jd] ∈ INd.
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Observe that

trace(Cνd) =
∑
j∈INd

λd,j =

(
∞∑
j=1

λj

)d

.

Since for every d ∈ IN the set of eigenpairs {(λd,j, ηd,j)}j∈INd is countable
we now re-index it using natural numbers:

{(λd,j, ηd,j)}j∈INd = {(λd,j, ηd,j)}j∈IN

in such a way that we have

λd,1 ≥ λd,2 ≥ . . . ≥ 0.

It is known that the algorithm

Ad,n(f) :=
n∑
j=1

〈Sdf, ηd,j〉ηd,j

is the optimal algorithm among all algorithms using n information operations
from the class Λall, and its error is

eavg(Ad,n) =

(
∞∑

j=n+1

λd,j

)1/2

,

see [20] for more details. The information complexity of the problem S =
{Sd} is for the class Λall given by

n(ε, Sd) = min

{
n :

∞∑
j=n+1

λd,j ≤ ε2CRI2
d

}
,

where CRId = 1 for the absolute error criterion, and CRId =
(∑∞

j=1 λd,j

)1/2

for the normalized error criterion.

To omit the trivial cases we assume that for all d ∈ IN we have

λd,1 ≥ λd,2 > 0.
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2.3.3 Randomized Setting

In the randomized setting we use the same definition of a linear tensor prod-
uct problem S = {Sd} as in the worst case setting. However, we now allow
randomized algorithms as defined in [10], Section 4.3.3 of Chapter 4.

For the class Λall, the information complexity nran(ε, Sd) in the random-
ized setting is closely related to the information complexity nwor(ε, Sd) since
we have

1
4
(nwor(2ε, Sd) + 1) ≤ nran(ε, Sd) ≤ nwor(ε, Sd) (2.1)

for all ε ∈ (0, 1) and d ∈ IN.

In fact, the relation (2.1) holds for all linear problems which do not have
to be tensor product. This relation easily yields that for the class Λall all
tractability results in the randomized setting are the same as in the worst
case settings. Details can be found in [10], Chapter 7.

2.4 The Class Λall

In this section, we present necessary and sufficient conditions for uniform
weak tractability of linear tensor product problems in the worst case, average
case, and randomized settings. It will be done for arbitrary spaces F1 and
operators S1 which generate linear tensor product problems. By permissible
linear functionals we mean in this section the class Λall of all continuous
linear functionals. Without loss of generality we may assume that λ2 > 0
since otherwise n(ε, Sd) ≤ 1 and the problem S = {Sd} is trivial for the class
Λall.

2.4.1 Worst Case Setting

We first consider the worst case setting for both the absolute and normalized
error criteria.

Absolute Error Criterion

We begin our study with the absolute error criterion.

It is known that the information complexity n(ε, Sd) is exponentially large
in d if λ1 > 1 or if λ1 = λ2 = 1, see [10], Theorem 5.5.
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Hence, the problem S = {Sd} might be uniformly weakly tractable only
when

λ1 = 1 > λ2 or λ2 ≤ λ1 < 1.

Before presenting the main theorem of this subsection we state two technical
lemmas. Recall that {λj}j∈IN is a non-increasing sequence of nonnegative
real numbers which are the eigenvalues of W1 = S∗1S1 such that limj λj = 0.

Lemma 2.1

lim
n→∞

λn
[lnn]−p

= 0 for all p > 0 iff lim
ε→0

ε2

[lnn(ε, S1)]−p
= 0 for all p > 0.

Proof: Suppose that limn→∞
λn

[lnn]−p
= 0 for all p > 0. From

n(ε, S1) = min{n : λn+1 ≤ ε2},

it is easy to see that

λn(ε,S1)+1 ≤ ε2 < λn(ε,S1) = o([lnn(ε, S1)]−p) as ε→ 0.

Therefore, for every p > 0, we have ε2 = o([lnn(ε, S1)]−p) as ε → 0, as
claimed.

Conversely, assume that limε→0
ε2

[lnn(ε,S1)]−p
= 0 for all p > 0. The eigenval-

ues {λj}j∈IN may have arbitrary finite multiplicities. By {βk}k∈IN we denote
the (ordered) set of values of the sequence {λj}j∈IN and by pk we denote the
multiplicity of βk for k ∈ IN. That is, we have

β1 = λ1 = · · · = λp1

β2 = λp1+1 = · · · = λp1+p2

. . .

βk = λp1+···+pk−1+1 = · · · = λp1+···+pk

. . .

For every ε ∈ (0, λ1) there is j ∈ IN such that

βj+1 ≤ ε2 < βj.

This implies that
n(ε, S1) = p1 + · · ·+ pj.
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Observe that for every ηj ∈
[
βj+1

βj
, 1
)

we have

βj+1 ≤ ηjβj < βj.

Therefore

n(
√
ηjβj, S1) = p1 + · · ·+ pj for every ηj ∈

[
βj+1

βj
, 1

)
.

For sequences {ηj}j∈IN satisfying ηj ∈ [
βj+1

βj
, 1) and ηj ≥ 1

2
for every j ∈ IN,

we have limj→∞
√
ηjβj = 0. Since ε2 = o([lnn(ε, S1)]−p then for εj =

√
ηjβj

we have
lim
j→∞

ηjβj[ln(p1 + · · ·+ pj)]
p = 0 for every p > 0.

Since
1

2
βj ≤ ηjβj ≤ βj

we also have

lim
j→∞

βj[ln(p1 + · · ·+ pj)]
p = 0 for every p > 0.

Let
nj := p1 + · · ·+ pj for j ∈ IN.

Observe that
λnj−1+1 = λp1+···+pj−1+1 = βj.

For every n ∈ IN there is j(n) ∈ IN such that

nj(n)−1 < n ≤ nj(n).

Of course, limn→∞ j(n) =∞, and for every p > 0,

λn[lnn]p ≤ λnj(n)−1+1[lnnj(n)]
p = βj(n)[ln(p1 + · · ·+ pj(n))]

p.

Since limn→∞ βj(n)[ln(p1 + · · ·+ pj(n))]
p = 0 we conclude that

lim
n→∞

λn[lnn]p = 0.

�
It is worth noting that Lemma 2.1 was used on p. 178 in [10] as an

obvious fact without providing its proof. We believe that it is not entirely
trivial and therefore its proof is presented here.



2.4. THE CLASS ΛALL 27

Lemma 2.2

lim
ε→0

ε2

[lnn(ε, S1)]−p
= 0 for all p > 0 iff lim

ε→0

lnn(ε, S1)

ε−p
= 0 for all p > 0.

Proof: Since limε→0 ε
2[lnn(ε, S1)]p = 0 for all p > 0 holds if and only if

limε→0 ε
q[lnn(ε, S1)]pq = 0 for all p, q > 0 our claim is obvious. �

We are now ready to state a theorem giving a necessary and sufficient
condition for a problem to be uniformly weakly tractable.

Theorem 2.1 Consider the linear tensor product problem S = {Sd} in the
worst case setting for the absolute error criterion and for the class Λall. As-
sume that λ1 = 1 > λ2 or 1 > λ1 ≥ λ2. Then

S is uniformly weakly tractable iff lim
n→∞

λn
[lnn]−p

= 0 for all p > 0.

Proof: Assume first that the problem S = {Sd} is uniformly weakly tractable,
that is

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0 for all α > 0.

Taking d = 1, this yields that

lim
ε−1→∞

lnn(ε, S1)

ε−α
= 0 for all α > 0.

In other words, for all α > 0 we have lnn(ε, S1) = o(ε−α) as ε → 0. Com-
bining Lemma 2.1 and Lemma 2.2 we find out that indeed for all p > 0 we
have λn = o([lnn]−p) as n→∞.

We now prove the converse implication. Let’s start by noticing that it
suffices to prove it for problems S = {Sd} for which 1 = λ1 > λ2 > 0. Indeed,
it is true since the problem with 1 = λ1 > λ2 is harder than the problem
with 1 > λ1 ≥ λ2. We will need some estimates on the value of

n(ε, Sd) = #{[j1, . . . , jd] ∈ INd : λj1 . . . λjd > ε2}.

From [13] we know that

n(ε, Sd) ≤
(

d
ad(ε)

)(
n(ε

1
2 , S1)

)ad(ε)−1

n(ε, S1)d
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where

ad(ε) = min

(
d,

⌈
2

ln ε−1

lnλ2
−1

⌉
− 1

)
.

Note that ad(ε) = Θ (min(d, ln ε−1)) where factors in the Θ-notation depend
on λ2. The logarithm of n(ε, Sd) was bounded in [13] from above:

lnn(ε, Sd) ≤ ad(ε) ln d+ ad(ε) lnn(ε
1
2 , S1) + lnn(ε, S1) + ln d.

Take an arbitrary α > 0. Let

a := lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
.

Then

a ≤ lim
ε−1+d→∞

[
ad(ε) ln d

ε−α + dα
+
ad(ε) lnn(ε

1
2 , S1)

ε−α + dα
+

lnn(ε, S1)

ε−α + dα
+

ln d

ε−α + dα

]
.

Let x = max(d, ε−1). Then xα = max(dα, ε−α) and

min(d, ln ε−1) ≤ ln ε−1 ≤ lnx.

We have

lim
ε−1+d→∞

min(d, ln ε−1) ln d

ε−α + dα
≤ lim

x→∞

(lnx)2

xα
= 0.

The combined use of Lemma 2.1 and Lemma 2.2 yields

lim
ε−1+d→∞

min(d, ln ε−1) lnn(ε
1
2 , S1)

ε−α + dα
≤ lim

ε−1+d→∞

ln ε−1 lnn(ε
1
2 , S1)

ε−α + dα

≤ lim
ε−1→∞

ln ε−1 lnn(ε
1
2 , S1)

ε−α
= lim

ε→0

ln ε−1

ε−
α
2

lim
ε→0

lnn(ε
1
2 , S1)

ε−
α
2

= 0

and

lim
ε−1+d→∞

lnn(ε, S1)

ε−α + dα
≤ lim

ε−1→∞

lnn(ε, S1)

ε−α
= lim

ε→0

lnn(ε, S1)

ε−α
= 0.

Notice that

lim
ε−1+d→∞

ln d

ε−α + dα
= 0.
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Since ad(ε) = Θ(min(d, ln ε−1)) we deduce that

lim
ε−1+d→∞

[
ad(ε) ln d

ε−α + dα
+
ad(ε) lnn(ε

1
2 , S1)

ε−α + dα
+

lnn(ε, S1)

ε−α + dα
+

ln d

ε−α + dα

]
= 0.

Hence

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0,

and therefore the problem S = {Sd} is uniformly weakly tractable. �

Normalized Error Criterion

We now turn to the normalized error criterion.
Recall that the problem S = {Sd} is intractable if the eigenvalues {λj}j∈IN

of the operator W1 = S∗1S1 are such that λ1 = λ2 > 0. Details can be found
in [10], Theorem 5.6. Again, we consider only those problems S = {Sd} for
which λ2 > 0 because otherwise the problem degenerates and can be solved
exactly with one permissible information operation.

The following theorem gives necessary and sufficient conditions for a prob-
lem to be uniformly weakly tractable.

Theorem 2.2 Consider the linear tensor product problem S = {Sd} in the
worst case setting for the normalized error criterion and for the class Λall.
Assume that λ1 > λ2 > 0. Then

S is uniformly weakly tractable iff lim
n→∞

λn
[lnn]−p

= 0 for all p > 0.

Proof: The information complexity of a problem S = {Sd} for the normalized
error criterion is

n(ε, Sd) = #{[j1, . . . , jd] ∈ INd : λj1 . . . λjd > ε2λd1}.

Define λ
′
j = λj/λ1. We can express n(ε, Sd) in terms of λ

′
j’s:

n(ε, Sd) = #{[j1, . . . , jd] ∈ INd : λ
′

j1
. . . λ

′

jd
> ε2}.

This corresponds to the absolute error criterion for the univariate eigenvalues
{λ′j}j∈IN with λ

′
1 = 1 and λ

′
2 = λ2/λ1 < 1. We now apply Theorem 2.1 which

states that uniform weak tractability holds iff

lim
n→∞

λ
′
n

[lnn]−p
= 0 for all p > 0.
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Notice that

lim
n→∞

λ
′
n

[lnn]−p
= 0 for all p > 0 iff lim

n→∞

λn
[lnn]−p

= 0 for all p > 0.

Therefore the problem S = {Sd} is uniformly weakly tractable iff

lim
n→∞

λn
[lnn]−p

= 0 for all p > 0.

�

2.4.2 Average Case Setting

Since all linear tensor product problems with λ2 > 0 are intractable in the
average case setting for the normalized error criterion, see [10] Theorem 6.6,
we deal only with the absolute error criterion in this subsection.

Recall that the problem S = {Sd} is intractable for the absolute er-
ror criterion if the eigenvalues of the covariance operator Cν1 are such that∑∞

j=1 λj ≥ 1, see [10], Theorem 6.6. Hence, we assume that

∞∑
j=1

λj < 1.

Before proceeding to the main theorem of this subsection we recall a lemma
from [14].

Lemma 2.3 Consider the eigenvectors of Cνd given by

ηd,j = ηj1 ⊗ · · · ⊗ ηjd

where j = [j1, j2, . . . , jd] for jk = 1, . . . ,m, and k = 1, . . . , d. The average
error of the algorithm

φd,md(f) =
m∑

j1,...,jd=1

〈Sd(f), ηd,j〉ηd,j

satisfies
[eavg(φd,md)]

2 ≤ dad−1tm

where a =
∑∞

j=1 λj and tm =
∑∞

j=m+1 λj.
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Note that if m is large enough and the algorithm φd,md gives an ε-
approximation of the problem operator Sd, then n(ε, Sd) ≤ md since φd,md
uses exactly md information operations from the class Λall.

A necessary and sufficient condition on uniform weak tractability of the
problem S = {Sd} will be expressed in terms of the properties of the sequence
tn =

∑∞
j=n+1 λj.

Theorem 2.3 Consider the linear tensor product problem S = {Sd} in the
average case setting for the absolute error criterion and for the class Λall.
Assume that

∑∞
j=1 λj < 1. Then

S is uniformly weakly tractable iff lim
n→∞

tn
[lnn]−p

= 0 for all p > 0.

Proof: Assume first that the problem S = {Sd} is uniformly weakly tractable,
that is

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0 for all α > 0.

Taking d = 1, this yields that

lim
ε−1→∞

lnn(ε, S1)

ε−α
= 0 for all α > 0.

Therefore

lim
ε−1→∞

[lnn(ε, S1)]p

ε−αp
= 0 for all α, p > 0.

Taking α = 2/p we obtain

lim
ε−1→∞

ε2

[lnn(ε, S1)]−p
= 0 for all p > 0.

We know that

ε ≥ eavg(A1,n(ε,S1)) =
√
tn(ε,S1).

So

lim
ε−1→∞

tn(ε,S1)

[lnn(ε, S1)]−p
= 0 for all p > 0.

Therefore

lim
n→∞

tn
[lnn]−p

= 0 for all p > 0.
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Conversely, assume that limn→∞
tn

[lnn]−p
= 0 for all p > 0. We will show

that the problem S = {Sd} is uniformly weakly tractable.
From Lemma 2.3 it follows that for every p > 0 the algorithm φd,md

satisfies

[eavg(φd,md)]
2 ≤ d ad−1tm = dad−1 sm(p)

[ln(m+ 2)]p
,

where
sm(p) := tm[ln(m+ 2)]p.

Note that limm→∞ sm(p) = 0 for every p > 0. Let

m(ε, Sd) := min{m ≥ 0 : d ad−1tm+1 ≤ ε2}.

Observe that we can use the dth power of m(ε, Sd) + 1 to estimate the infor-
mation complexity n(ε, Sd) from above, namely

n(ε, Sd) ≤ [m(ε, Sd) + 1]d.

As a consequence of the definition of m(ε, Sd) observe that if m(ε, Sd) > 0
then

dad−1tm(ε,Sd) > ε2.

This is equivalent to

dad−1 sm(ε,Sd)(p)

[ln(m(ε, Sd) + 2)]p
> ε2,

which yields

ln(m(ε, Sd) + 1) < [dad−1sm(ε,Sd)(p)]
1
p ε−

2
p for every p > 0.

Note that the last inequality is true also if m(ε, Sd) = 0, in that case the
left hand side of that inequality is equal to 0, and the right hand side is a
positive number since s0(p) = a[ln 2]p > 0.

Now take any α > 0. We see that

lnn(ε, Sd)

ε−α + dα
≤ d ln(m(ε, Sd) + 1)

ε−α + dα
≤
d[dad−1sm(ε,Sd)(p)]

1
p ε−

2
p

ε−α + dα

holds for every p > 0. Let p = 2/α. Using the above inequalities we conclude
that

lnn(ε, Sd)

ε−α + dα
≤ d1+α

2 (a
α
2 )d−1(sm(ε,Sd)(2/α))

α
2

ε−α

ε−α + dα
.
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We will prove that

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0 (2.2)

using a simple reductio ad absurdum argument.
Suppose that (2.2) does not hold, i.e., there are sequences {εk}k∈IN and

{dk}k∈IN satisfying
lim
k→∞

(ε−1
k + dk) =∞,

and a positive number γ such that

bk :=
lnn(εk, Sdk)

ε−αk + dαk
> γ (2.3)

for infinitely many numbers k. By passing to a subsequence if necessary, we
can assume that (2.3) holds for all k ∈ IN. Let

ck := d
1+α

2
k (a

α
2 )dk−1(sm(εk,Sdk )(2/α))

α
2

ε−αk
ε−αk + dαk

.

Observe that if limk→∞ dk =∞ then

lim
k→∞

d
1+α

2
k (a

α
2 )dk−1 = 0,

which yields limk→∞ ck = 0 and thus limk→∞ bk = 0, contradicting (2.3).
Now suppose that it is not true that limk→∞ dk = ∞, i.e., there is a

positive number M such that dk ≤ M for infinitely many numbers k. By
passing to a subsequence if necessary, we can assume that dk ≤ M for all
k ∈ IN. Then limk→∞ ε

−1
k =∞ since limk→∞(ε−1

k + dk) =∞.
If tm > 0 only for finitely many numbers m, then for every d ∈ IN the

function
(0, 1)→ {0, 1, 2, . . .} : ε 7→ n(ε, Sd)

takes only finitely many values. Hence the function

IN→ {0, 1, 2, . . .} : k 7→ n(εk, Sdk)

is bounded. Thus limk→∞ bk = 0, contradicting (2.3).
If tm > 0 for every number m, then limk→∞m(εk, Sdk) =∞ and

lim
k→∞

sm(εk,Sdk )(2/α) = 0.



2.5. THE CLASS ΛSTD 34

Hence limk→∞ ck = 0, which yields limk→∞ bk = 0, contradicting (2.3).
Therefore the assumption that (2.2) does not hold is false. Hence

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0 for every α > 0,

and thus the problem S = {Sd} is uniformly weakly tractable, as claimed. �

2.4.3 Randomized Setting

From (2.1) we easily obtain the following corollary.

Corollary 2.2 Consider the linear tensor product problem S = {Sd} for
the absolute or normalized error criterion and for the class Λall. Then S =
{Sd} is uniformly weakly tractable in the randomized setting iff S = {Sd} is
uniformly weakly tractable in the worst case setting.

2.5 The Class Λstd

For the class Λstd of function values, we restrict our attention to multivariate
approximation. This problem is defined as follows. Let Fd be a normed linear
space of d-variate functions defined (almost everywhere) on a set Dd ⊂ IRd

of positive Lebesgue measure and Gd = L2(Dd, ρd) is the space of square
integrable functions with a probability density ρd over Dd for every d ∈ IN.
We assume that Fd is continuously embedded in Gd. Then the multivariate
approximation problem APP = {APPd}d∈IN is defined by APPd : Fd → Gd,
where APPd is given as the continuous linear embedding

APPdf = f for all f ∈ Fd.

This section is based on results from [12] which relate the power of the
class Λall with the power of the class Λstd for multivariate approximation.
For our purposes, the most relevant results are for weak tractability. It
turns out that in many cases weak tractability for the class Λall implies weak
tractability for the class Λstd. Interestingly enough, the same proofs can be
also applied for uniform weak tractability since they rely on estimates of the
form

lnn(ε,APPd; Λstd) ≤ C1 lnn(ε/C2,APPd; Λall) + r(ε,APPd),



2.5. THE CLASS ΛSTD 35

where C1 > 0, C2 ≥ 1 and r(ε,APPd) is a known function. That is why we
can present relations between uniform weak tractability for the classes Λall

and Λstd with very brief proofs. This will allow us to keep this section short.

2.5.1 Randomized Setting

In the randomized setting, we additionally assume that Fd is a separable
infinite dimensional Hilbert space. The class Λall is now understood as the
class of all linear functionals, and for the class Λstd we use function values
which are well-defined only almost everywhere.

Theorem 2.4 Consider multivariate approximation in the randomized set-
ting for the normalized error criterion. Then uniform weak tractability for
the class Λall is equivalent to uniform weak tractability for the class Λstd, and
both of them are equivalent to uniform weak tractability of multivariate ap-
proximation in the worst case setting for the class Λall and for the normalized
error criterion.

Proof: This theorem corresponds to Theorem 22.5 in [12] for weak tractabil-
ity. It is enough to show that uniform weak tractability in the worst case
setting for the class Λall implies uniform weak tractability in the randomized
setting for the class Λstd, both defined for the normalized error criterion. This
implication holds since for the normalized error criterion we have

lnnran(ε,APPd; Λstd) ≤ lnnwor(ε/
√

2,APPd; Λall) + 2 ln ε−1 + ln 3,

as shown in the proof of Theorem 22.5 in [12]. �

By {λd,j}j∈IN we denote the ordered set of the eigenvalues of the operator
Wd := APP∗dAPPd : Fd → Fd.

Theorem 2.5 Consider multivariate approximation in the randomized set-
ting for the absolute error criterion. Assume that

lim
d→∞

ln max(λd,1, 1)

dα
= 0 for all α > 0.

Then uniform weak tractability for the class Λall is equivalent to uniform weak
tractability for the class Λstd, and both of them are equivalent to uniform
weak tractability of multivariate approximation in the worst case setting for
the class Λall and for the absolute error criterion.
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Proof: This theorem corresponds to Theorem 22.6 in [12] for weak tractability.
It is enough to show that uniform weak tractability for the class Λall in the
worst case setting implies uniform weak tractability for the class Λstd in
the randomized setting, both defined for the absolute error criterion. This
implication holds since for the absolute error criterion we have

lnnran(ε,APPd; Λstd) ≤ 2 lnnwor(ε/
√

2,APPd; Λall)

+ ln max(ε−4, 1) + 2 ln max(λd,1, 1) + ln 8,

as shown in the proof of Theorem 22.6 in [12]. �

Corollary 2.3 Consider multivariate approximation for unweighted linear
tensor product spaces in the randomized setting. Then for both the absolute
and normalized error criteria uniform weak tractability for the class Λall is
equivalent to uniform weak tractability for the class Λstd, and both of them
are equivalent to uniform weak tractability of multivariate approximation in
the worst case setting for the class Λall.

Proof: This corollary corresponds to Corollary 22.7 in [12] for weak tractabil-
ity. For the normalized error criterion the equivalence is a straightforward
consequence of Theorem 2.4. For the absolute error criterion the equivalence
is a consequence of Theorem 2.5. Indeed, even for the class Λall, uniform
weak tractability of a linear tensor product problem implies that λ1 ≤ 1.
But then λd,1 ≤ 1 and the assumption of Theorem 2.5 trivially holds. �

2.5.2 Average Case Setting

In the average case setting, we additionally assume that Fd is a separable
Banach space equipped with a zero-mean Gaussian measure µd. For the
class Λstd, we assume that linear functionals given by function values are
continuous on the Banach space Fd. By {λd,j}j∈IN we denote the ordered set
of eigenvalues of the covariance operator Cνd of the measure νd := µdAPP−1

d .

Theorem 2.6 Consider multivariate approximation in the average case set-
ting.

• For the normalized error criterion, uniform weak tractability for the
class Λall is equivalent to uniform weak tractability for the class Λstd.
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• For the absolute error criterion, we assume that

lim
d→∞

ln max(
∑∞

j=1 λd,j, 1)

dα
= 0 for all α > 0.

Then uniform weak tractability for the class Λall is equivalent to uniform
weak tractability for the class Λstd.

Proof: This theorem corresponds to Theorem 24.6 in [12] for weak tractability.
For the normalized error criterion it is enough to show that uniform weak
tractability for the class Λall in the average case setting implies uniform weak
tractability for the class Λstd in the average case setting. This implication
holds since for the normalized error criterion we have

lnnavg(ε,APPd; Λstd) ≤ lnnavg(ε/
√

2,APPd; Λall) + 2 ln ε−1 + ln 3,

as shown in the proof of Theorem 24.6 in [12].
For the absolute error criterion (under the additional assumption) it is enough
to show that uniform weak tractability for the class Λall in the average case
setting implies uniform weak tractability for the class Λstd in the average
setting. This implication holds since for the absolute error criterion we have

lnnavg(ε,APPd; Λstd) ≤ 2 lnnavg(ε/
√

2,APPd; Λall)

+ ln max(ε−4, 1) + 2 ln max

(
∞∑
j=1

λd,j, 1

)
+ ln 8,

as shown in the proof of Theorem 24.6 in [12]. �

Corollary 2.4 Consider multivariate approximation for unweighted linear
tensor product spaces in the average case setting. Then for both the absolute
and normalized error criteria, uniform weak tractability for the class Λall is
equivalent to uniform weak tractability for the class Λstd.

Proof: This corollary corresponds to Corollary 24.7 in [12] for weak tractabil-
ity. For the normalized error criterion the equivalence is a straightforward
consequence of the first part of Theorem 2.6. For the absolute error cri-
terion the equivalence is a consequence of the second part of Theorem 2.6.
Indeed, even for the class Λall, uniform weak tractability of a linear tensor
product problem implies that

∑∞
j=1 λj ≤ 1. But then

∑∞
j=1 λd,j ≤ 1 and the

assumption of the second part of Theorem 2.6 trivially holds. �
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2.5.3 Worst Case Setting

In the worst case setting, we additionally assume that Fd is a separable
reproducing kernel Hilbert space.

It is known that if the operator Wd = APP∗dAPPd has infinite trace for
some d ∈ IN, then there is no relation between tractabilities for the classes
Λall and Λstd, see Theorem 26.1 and Corollary 26.2 in [12]. Therefore we
assume that

trace(Wd) <∞ for every d ∈ IN.

Theorem 2.7 Consider multivariate approximation in the worst case setting
for the absolute and normalized error criteria.

Assume that the trace of Wd is finite for all d ∈ IN, and

lim
d→∞

ln trace(Wd)

CRI2d

dα
= 0 for all α > 0,

where CRId = 1 for the absolute error criterion, and CRId = ‖Sd‖ for the
normalized error criterion. Then uniform weak tractabilities of APP for the
class Λall and for the class Λstd are equivalent.

Proof: This theorem corresponds to Theorem 26.11 in [12] for weak tractabil-
ity. Let us fix the error criterion. It is enough to show that uniform weak
tractability for the class Λall implies uniform weak tractability for the class
Λstd. This implication holds since we have

lnnwor(ε,APPd; Λstd) ≤ lnnwor(ε/
√

2,APPd; Λall)

+2 ln ε−1 + ln
trace(Wd)

CRI2
d

+ ln 4,

as shown in the proof of Theorem 26.11 in [12]. �



Chapter 3

Uniform Weak Tractability of
Multivariate Problems with
Increasing Smoothness

3.1 Introduction

Tractability of multivariate problems studies the intrinsic difficulty of prob-
lems defined on spaces of d-variate functions. By a problem we understand
a sequence S = {Sd}d∈IN of operators, such that for every d the operator Sd
acts on a suitable space of d-variate functions. The intrinsic difficulty of a
problem S is measured by its information complexity, n(ε, Sd), which is de-
fined as the minimal number of information operations needed to obtain an
ε-approximation of the solution of the d-th instance of the problem S. By one
information operation we mainly mean one continuous linear functional. We
also briefly mention the case when one information operation is given by one
function value. If the function n(ε, Sd) depends exponentially on ε−1 or d we
say that the problem S is intractable. The tractable problems, that is those
problems S with the information complexity n(ε, Sd) not exponential in ε−1

and/or d, are subject of further classification. Depending on the behavior of
their information complexity with respect to ε and d, problems occupy an
adequate place in the tractability hierarchy of multivariate problems. As in
[10], we say that the problem S is:

• strongly polynomially tractable (SPT) iff there are non-negative num-

39
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bers C and p such that

n(ε, Sd) ≤ C ε−p for all ε ∈ (0, 1), d ∈ IN.

The infimum of such p is called the exponent of SPT and denoted by p∗.

• polynomially tractable (PT) iff there are non-negative numbers C, p
and q such that

n(ε, Sd) ≤ C ε−p d q for all ε ∈ (0, 1), d ∈ IN.

As in [3], we say that S is

• quasi-polynomially tractable (QPT) iff there are non-negative numbers
C and t such that

n(ε, Sd) ≤ C exp
(
t (1 + ln ε−1)(1 + ln d)

)
for all ε ∈ (0, 1), d ∈ IN.

The infimum of such t is called the exponent of QPT and denoted by t∗.

As in [18], we say that S is

• uniformly weakly tractable (UWT) iff

lim
ε−1+d→∞

ln n(ε, Sd)

ε−α + dβ
= 0 for all α, β > 0.

We add in passing that it is enough to check the last condition for all
α = β > 0.

As in [10], we say that S is

• weakly tractable (WT) iff the last condition holds for α = β = 1.

Clearly,

SPT =⇒ PT =⇒ QPT =⇒ UWT =⇒ WT.

More on tractability including the motivation of tractability studies can be
found in [10, 11, 12].

Multivariate problems for which all the variables are equally important
are often intractable. In particular, many multivariate problems suffer from
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the curse of dimensionality, i.e., their information complexity is an exponen-
tial function of the number d of variables. One of the ways of vanquishing the
curse of dimensionality is the introduction of non-homogeneity to the struc-
ture of the problem. The non-homogeneity may be introduced to a problem
by means of weights associated with importance of variables and groups of
variables, or by means of varying regularity of a problem with respect to suc-
cessive variables. Those approaches have been recently subject to an intense
research.

In this thesis we further investigate the relationship between tractability
of a problem and its increasing regularity with respect to successive variables.
We study problems with unknown UWT, and sometimes with unknown QPT.
The relationship between the other notions of tractability and increasing
regularity of a problem have already been studied in [15] in the worst case
setting, and in [6, 7] in the average case setting.

We deal with the problems of approximation of functions with increasing
regularity with respect to successive variables. In the worst case setting the
problem is the approximation of functions from suitable Korobov spaces or
Sobolev spaces. In the average case setting the problem is the approximation
of continuous functions equipped with a zero-mean Gaussian measure with
covariance operator given by integrated Euler process or integrated Wiener
process. Those zero-mean Gaussian measures are concentrated on spaces
of functions with suitably increasing regularity with respect to successive
variables.

In both settings the specification of regularity properties is given by the
sequence of regularity parameters {rk}k∈IN satisfying

0 ≤ r1 ≤ r2 ≤ r3 ≤ . . . .

Our objective is the characterization of tractability properties of the approx-
imation problems in terms of the properties of the sequence of regularity
parameters.

We now summarize the known and new results concerning the relationship
between the regularity of a problem and different degrees of its tractability
for the class Λall of all continuous linear functionals.

We start with the worst case setting. We analyze the approximation
problem for the Korobov spaces and two kinds of Sobolev spaces which differ
in the choice of an inner product. We have the following conditions on various
types of tractability:
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• For the Korobov spaces:

WT ⇔ UWT ⇔ QPT ⇔ r1 > 0,

PT ⇔ SPT ⇔ lim sup
k→∞

ln k

rk
<∞.

• For the first kind of Sobolev spaces:

WT ⇔ UWT ⇔ QPT ⇔ rj = 1 for all j ∈ IN,

PT never,

SPT never.

• For the second kind of Sobolev spaces:

WT ⇔ UWT ⇔ QPT ⇔ r1 ≥ 1,

PT never,

SPT never.

The conditions for WT, PT and SPT were obtained in [15]. As we see, for
the problems studied in the worst case setting the notion of UWT is the same
as the notions of WT and QPT.

We now turn to the average case setting. We have the following conditions
on various types of tractability:

• For the Euler integrated process:

WT ⇔ lim
k→∞

rk =∞,

UWT ⇔ lim inf
k→∞

rk
ln k
≥ 1

2 ln 3
,

QPT ⇔ sup
d∈IN

∑d
k=1(1 + rk)3

−2rk

max(1, ln d)
<∞,

PT ⇔ SPT ⇔ lim inf
k→∞

rk
ln k

>
1

2 ln 3
.



3.2. WORST CASE SETTING 43

• For the Wiener integrated process:

WT ⇔ lim
k→∞

rk =∞,

UWT ⇔ lim inf
k→∞

ln rk
ln k

≥ 1

2
,

QPT ⇔ sup
d∈IN

∑d
k=1(1 + rk)

−2 max(1, ln rk)

max(1, ln d)
<∞,

PT ⇔ SPT ⇔ lim inf
k→∞

rk
ks

> 0 for some s >
1

2
.

The conditions for WT, QPT, PT and SPT were obtained in [7]. As we see,
for the problems studied in the average case setting the notion of UWT is
different from WT and QPT. For the Euler integrated process, WT requires
that limk→∞ rk =∞, whereas UWT requires more, namely that rk increases
at least as fast as (ln k)/(2 ln 3). However, UWT requires less than QPT. For
instance, for rk = (ln k)/(2 ln 3) we have UWT but not QPT. Indeed,

sup
d≥2

∑d
k=1(1 + rk)3

−2rk

ln d
= Θ

(
sup
d≥2

∑d
k=1

1
k

ln k

ln d

)
= Θ

(
sup
d≥2

ln d

)
=∞.

For the Wiener integrated process, UWT requires again more than WT , but
less than QPT. Indeed, for rk = k1/3 we have WT, but not UWT. On the
other hand, for rk = k1/2 we have UWT, but not QPT since

sup
d≥2

∑d
k=1(1 + rk)

−2 ln rk
ln d

= Θ

(
sup
d≥2

∑d
k=1

1
k

ln k

ln d

)
= Θ

(
sup
d≥2

ln d

)
=∞.

3.2 Worst Case Setting

We start this section by recalling the definition of a general, possibly non-
homogeneous, linear tensor product problem in the worst case setting. Later
we will investigate two classes of linear tensor product problems defined on
Korobov and Sobolev spaces of d-variate functions. For both classes the
non-homogeneity is introduced by varying regularity with respect to succes-
sive variables. We study the class Λall consisting of all continuous linear
functionals.
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Definition 3.1 A linear tensor product problem in the worst case setting is
a sequence of linear operators

S = {Sd}d∈IN

such that for every j ∈ IN there exists a separable Hilbert space Hj, a Hilbert
space Gj and a continuous linear operator Sj : Hj → Gj such that

Sd =
d⊗
j=1

Sj : Hd → Gd,

where Hd :=
⊗d

j=1 Hj and Gd :=
⊗d

j=1 Gj for every d ∈ IN.
If Hj = H1, Gj = G1 and Sj = S1 then the linear tensor product problem

is called homogeneous.

Without loss of generality we consider Sj such that ‖Sj‖ = 1. Then,
obviously, ‖Sd‖ = 1 for all d ∈ IN.

Let n(ε, Sd) be the information complexity of a linear tensor product
problem S = {Sd}d∈IN. This is defined as the minimal number of functionals
from Λall needed to obtain an approximation of Sd with the worst case error
at most ε ∈ (0, 1), see e.g. [10, 20].

Without loss of generality we assume that all operators Wj = S ∗
j Sj are

compact, since otherwise n(ε, Sd) =∞ for sufficiently small ε and sufficiently
large d.

It is known how n(ε, Sd) depends on the eigenvalues of compact, self-
adjoint and non-negative definite linear operator

Wd = S∗dSd : Hd → Hd.

For a linear tensor product problem the eigenvalues of Wd are given in terms
of the eigenvalues of its univariate counterparts

Wj = S ∗
j Sj : Hj →Hj for all j = 1, 2, . . . , d,

which are also self-adjoint and non-negative definite linear operators.
Namely, let {λ(j)

i }i∈IN be the ordered eigenvalues of the operator Wj,

1 = λ
(j)
1 ≥ λ

(j)
2 ≥ . . . ≥ λ

(j)
i ≥ . . . ≥ 0.
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Due to the tensor product structure of the problem S, the ordered eigenval-
ues λd,i of the operator Wd are products of the eigenvalues of the operators
W1,W2, . . . ,Wd, i.e.,

{λd,i}i∈IN =

{
d∏
j=1

λ
(j)
ij

}
[i1,i2,...,id]∈INd

.

Then

n(ε, Sd) = #{i ∈ IN : λd,i > ε2}

= #

{
[i1, i2, . . . , id] ∈ INd :

d∏
j=1

λ
(j)
ij
> ε2

}
.

In the following subsections we specify the problem S = {Sd}d∈IN as
approximation of multivariate functions with non-decreasing regularity with
respect to successive variables. We find necessary and sufficient conditions
on the regularity parameters for which UWT and QPT hold. We consider
two classes of multivariate approximation problems defined over Korobov
and Sobolev spaces with different smoothness parameters for each variable.

3.2.1 Korobov Spaces

Let {rk}k∈IN be a sequence of real numbers such that

0 ≤ r1 ≤ r2 ≤ r3 ≤ . . . .

For every j ∈ IN, let
Hj = H1,rj

be a Korobov space of univariate complex valued functions f defined on [0, 1]
such that

‖f‖2
Hj,rj

= |f̂(0)|2 + (2π)2rj
∑

h∈Z,h6=0

|h|2rj |f̂(h)|2 <∞,

with Fourier coefficients

f̂(h) =

∫ 1

0

exp(−2πihx)f(x)dx for all h ∈ Z.
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The linear space H1,rj is equipped with the inner product

〈f, g〉2H1,rj
= f̂(0)ĝ(0) + (2π)2rj

∑
h∈Z,h6=0

|h|2rj f̂(h)ĝ(0) for every f, g ∈H1,rj .

The space H1,rj is a separable Hilbert space. It is known that if rj is a
positive integer then the Hilbert space H1,rj consists of 1-periodic functions f

such that f (rj−1) is absolutely continuous and f (rj) belongs to L2([0, 1]). For
rj = 0 we have H1,rj = L2([0, 1]), i.e., the standard L2 space of complex
valued functions defined on [0, 1]. More details on Korobov spaces can be
found in, e.g., [10, 15].

Let
Gj = L2([0, 1]).

Note that Hj is continuously embedded in Gj. Furthermore,

‖f‖L2 ≤ ‖f‖Hj
for all f ∈Hj and j ∈ IN.

That is why the embedding

Sj : Hj → L2([0, 1]) : f 7→ f

is well defined and is a continuous linear operator.
Let

Sd :=
d⊗
j=1

Sj : Hd → Gd,

where Hd :=
⊗d

j=1 Hj and Gd :=
⊗d

j=1 Gj for every d ∈ IN. This completes
the definition of the linear tensor product problem S which is called mul-
tivariate approximation over Korobov spaces. To stress that we deal with
multivariate approximation we use APPd and APP instead of Sd and S.

Note that if r1 = 0 then H1 = L2([0, 1]) and APP1 is the identity oper-

ator. Then λ
(1)
j = 1 for all j ∈ IN and n(ε,APP1) = ∞ for all ε ∈ (0, 1).

Hence the problem APP is intractable. It is known, see [15, Thm. 1], that
the problem APP = {APPd}d∈IN is weakly tractable iff r1 > 0. It is also
known that strong polynomial tractability of the problem APP is equivalent
to its polynomial tractability and holds iff lim supk→∞(ln k)/rk < ∞, which
obviously is equivalent to

lim inf
k→∞

rk
ln k

> 0.
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The notions of quasi-polynomial and uniform weak tractability had not yet
been introduced when [15] was written. We now find out necessary and suffi-
cient conditions on quasi-polynomial tractability and uniform weak tractabil-
ity of the problem APP.

Theorem 3.1 Consider the multivariate approximation problem APP de-
fined over Korobov spaces Hd for the class Λall. Then

QPT ⇔ UWT ⇔ WT ⇔ r1 > 0.

Furthermore, the exponent of QPT is

t∗ = r−1
1 .

Proof: Assume that APP = {APPd}d∈IN is QPT. Then APP is also WT,
so that [15, Thm. 1] implies that r1 > 0. Conversely, assume that r1 > 0.
Consider the problem APP

′
= {APP

′

d}d∈IN, where

APP
′

1 : H1,r1 → L2([0, 1]) : f 7→ f,

APP
′

d = (APP
′

1)⊗d : H ⊗d
1,r1
→ L2([0, 1]d) for d ≥ 2.

Note that APP
′
= {APP

′

d}d∈IN is a homogeneous linear tensor product prob-

lem with eigenvalues {λ′j}j∈IN of W
′
1 = APP

′

1

∗
APP

′

1 satisfying

λ
′

1 = 1, λ
′

2j = λ
′

2j+1 =
1

(2π)2r1

1

j2r1
for all j ∈ IN,

see [10, p. 184] and [15, proof of Thm. 1].
From [3, Thm. 3.3] we know that any homogeneous linear tensor product

problem with the ordered eigenvalues for the univariate case {βj} with β1 = 1
is QPT iff β2 < 1 and decayβ > 0, where

decayβ = sup{p ≥ 0 : lim
j
βj j

p = 0}.

If so then the exponent of QPT is

t∗ = max

{
2

decayβ
,

2

ln β2
−1

}
.

In our case, βj = λ
′
j, β2 = (2π)−2r1 < 1 with ln β−1

2 = 2r1 · 1.83 . . . , and
decayβ = 2r1. Therefore QPT holds and

(t′)∗ = max

{
1

r1

,
1

r1 ln 2π

}
=

1

r1

.
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Our original problem APP = {APPd}d∈IN is no harder than the problem

APP
′

= {APP
′

d}d∈IN. Indeed, for every i, j ∈ IN the eigenvalue λ
(j)
i is no

greater than λ
(1)
i = λ

′
i since

λ
(j)
1 = 1, λ

(j)
2i = λ

(j)
2i+1 =

1

(2π)2rj

1

i2rj
for all i ∈ IN,

see [10, p. 184] and [15, proof of Thm. 1]. Thus for every d ∈ IN the ordered
sequence {λd,j}j∈IN of eigenvalues of the operator Wd = APP∗dAPPd is not
greater than the ordered sequence {λ′d,j}j∈IN of eigenvalues of the operator

W
′

d = APP
′

d

∗
APP

′

d and the largest eigenvalues in both cases are 1. Hence
the problem APP is not harder than APP′ and therefore APP is also QPT
and

t∗ ≤ (t
′
)
∗

= r−1
1 .

On the other hand, APP1 = APP
′

1 and

n(ε,APP1) = n(ε,APP
′

1) = min{n : λ
′

n+1 ≤ ε2} = Θ
(
ε−1/r1

)
.

Hence t∗ ≥ r−1
1 , yielding t∗ = r−1

1 . Since WT ⇔ r1 > 0 then QPT ⇔ WT .
On the other hand the notion of UWT lies between WT and QPT and
therefore

QPT ⇔ UWT ⇔ WT ⇔ r1 > 0,

as claimed. �

Note that for the class of approximation problems APP = {APPd}d∈IN

defined over Korobov spaces the notions of quasi-polynomial tractability,
uniform weak tractability and weak tractability coincide in the worst case
setting for the class Λall.

We now briefly discuss the case of the class Λstd consisting only of func-
tion values. First of all, function values are well defined only if H1,r1 is a
reproducing kernel Hilbert space which holds iff r1 > 1/2. Assume then that
r1 > 1/2.

For rj ≡ r1 the problem APP for the class Λstd suffers from the curse
of dimensionality. The reason is that APP is no easier than the integration
problem INT = {INTd}d∈IN where

INTd : Hd → IR : f 7→
∫

[0,1]d
f(t)dt.
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It is known that INT suffers from the curse of dimensionality, see [11, Thm.
16.16], which is based on [5] and [9]. Hence the curse of dimensionality also
holds for APP and, in particular, WT does not hold.

Assume now that rj’s are not necessarily equal to r1 > 1/2. Then

trace(Wd) =
d∏
j=1

(
1 +

1

(2π)rj
ζ(2rj)

)
,

where ζ is the Riemman’s zeta function ζ(x) =
∑∞

j=1
1
jx

for x > 1. Conditions

for WT, QPT, PT and SPT of APP for the class Λstd can be found in [12,
Sect. 26.4.1].

It is known from [18, Thm. 7] that UWT of APP for the classes Λall and
Λstd are equivalent if

ln(trace(Wd)) = o(dα) for all α > 0.

It is easy to check that the last condition holds iff

lim inf
k→∞

rk
ln k
≥ 1

ln 2π
.

The question whether the last inequality is also a necessary condition for
UWT of APP for the class Λstd is open.

3.2.2 Sobolev Spaces

Let H1,0 = L2([0, 1]) be the standard L2 space of real valued functions. For
a positive integer r, let H1,r be a set of univariate functions defined on [0, 1]
such that f (r−1) is absolutely continuous and f (r) belongs to L2([0, 1]).

We will consider two kinds of Sobolev spaces for r ≥ 1. Both of them
have the same underlying set H1,r, but they are equipped with different
inner products. That is for x ∈ {1, 2}, the Sobolev space H x

r is the set H1,r

equipped with an inner product 〈·, ·〉H x
r

such that

• 〈f, g〉H 1
r

=
∫ 1

0
f(t)g(t)dt+

∫ 1

0
f (r)(t)g(r)(t)dt

• 〈f, g〉H 2
r

=
∑r

j=0

∫ 1

0
f (j)(t)g(j)(t)dt.

Both of these Sobolev spaces are separable Hilbert spaces. They are the same
for r = 1 and differ for r > 1.
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It was pointed out in [15] that although the spaces H 1
r and H 2

r are
algebraically the same, their unit balls behave differently if r > 1. The
sequence of spaces {H 2

r }r∈IN is nested and the unit ball of the space H 2
r+1

is a subset of the unit ball of the space H 2
r :

H 2
r+1 ⊂H 2

r and ‖f‖H 2
r
≤ ‖f‖H 2

r+1
for all f ∈H 2

r+1.

Note that analogous relations are not true for the previous sequence {H 1
r }r∈IN

of Sobolev spaces. Indeed, the unit balls of those spaces are expanding while
the smoothness is increasing. More details can be found in [15].

Let {rk}k∈IN be a sequence of integers such that

0 ≤ r1 ≤ r2 ≤ r3 ≤ . . . .

Let
Hj(x) := H x

rj
and Gj = L2([0, 1]).

Note that Hj(x) is continuously embedded in Gj for x ∈ {1, 2}. Furthermore,

‖f‖L2 ≤ ‖f‖Hj(x) for all f ∈Hj(x) and j ∈ IN.

That is why the embedding

S x
j : Hj(x)→ L2([0, 1]) : f 7→ f

is well defined and is a continuous linear operator for all x ∈ {1, 2} and
j ∈ IN.

For x ∈ {1, 2} let

Sxd :=
d⊗
j=1

S x
j : Hd(x)→ Gd,

where Hd(x) :=
⊗d

j=1 Hj(x) and Gd :=
⊗d

j=1 Gj for every d ∈ IN. This
completes the definition of two classes of linear tensor product problems
called multivariate approximation over Sobolev spaces. As before, we use
APPx

d and APPx instead of S x
d and S x.

We first consider x = 1. Note that for r1 = 0 we have H1(1) = L2([0, 1])
and APP1

1 is the identity operator which obviously is not compact. Hence, the
problem APP1 is intractable. From [15, Thm. 3] we know that the problem
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APP1 = {APP1
d}d∈IN suffers from the curse of dimensionality if rk ≥ 2 for

some k ∈ IN. Moreover, it is polynomially intractable for every sequence
{rk}k∈IN. It is also known that APP1 is weakly tractable iff rk = 1 for every
k ∈ IN.

Again, QPT and UWT have not been studied in [15]. The following
theorem states that for the problem APP1 the notions of QPT, UWT and
WT coincide.

Theorem 3.2 Consider the multivariate approximation problem APP1 de-
fined over Sobolev spaces Hd(1). Then

QPT ⇔ UWT ⇔ WT ⇔ rk = 1 for all k ∈ IN.

Furthermore, the exponent of QPT is

t∗1 = 1.

Proof: Assume that APP1 = {APP1
d}d∈IN is QPT. Then it is also WT, so

[15, Thm. 3] implies that rk = 1 for every k ∈ IN. Conversely, assume that
rk = 1 for every k ∈ IN. Then

APP1
1 : H1(1)→ L2([0, 1]) : f 7→ f,

APP1
d = (APP1

1)⊗d : (H1(1))⊗d → L2([0, 1]d) for d ≥ 2.

Thus APP1 = {APP1
d}d∈IN is a homogeneous linear tensor product prob-

lem with the eigenvalues {λ1
j}j∈IN of the operator W 1

1 = (APP1
1)∗(APP1

1)
given by

λ1
j =

1

1 + π2(j − 1)2
for all j ≥ 1,

see [22, Lem. 4.1]. In particular, we have

λ1
1 = 1, λ1

2 =
1

1 + π2
< 1 and ln (λ1

2)−1 = 2.38 . . . .

Obviously, decayλ1 = 2. Therefore [3, Thm. 3.3] yields that APP1 is QPT
with the exponent of QPT

t∗1 = max

{
2

decayλ1
,

2

ln( (λ1
2)−1)

}
= 1.

Since QPT implies UWT and WT, the proof is complete. �
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We now turn to x = 2. Again, for r1 = 0 we have H1(2) = L2([0, 1]),
APP2

1 = idL2 is not compact, and hence the problem APP2 is intractable.
From [15, Thm. 3] we know that the problem APP2 = {APP2

d}d∈IN is weakly
tractable iff rk ≥ 1 for every k ∈ IN, and is polynomially intractable for every
sequence {rk}k∈IN.

The following theorem states that for the problem APP2 the notions of
QPT, UWT and WT coincide.

Theorem 3.3 Consider the multivariate approximation problem APP2 de-
fined over Sobolev spaces Hd(2). Then

QPT ⇔ UWT ⇔ WT ⇔ r1 ≥ 1.

Furthermore, the exponent of QPT satisfies

t∗2 ∈
[

2

ln 13
, 1

]
.

Proof: Assume that APP2 = {APP2
d}d∈IN is QPT. Then it is also WT, so

that [15, Thm. 3] implies that r1 ≥ 1. Conversely, assume that r1 ≥ 1. Define
the following homogeneous linear tensor product problem S = {Sd}d∈IN:

S1 : H 2
1 → L2([0, 1]) : f 7→ f,

Sd = S⊗d1 : (H 2
1 )⊗d → L2([0, 1]d) for d ≥ 2.

Note that

Hd(2) =
d⊗
j=1

H 2
rj
⊂ (H 2

1 )⊗d for all d ∈ IN,

and

‖f‖(H 2
1 )⊗d ≤ ‖f‖Hd(2) for all f ∈ Hd(2).

Hence the unit ball of the space Hd(2) is a subset of the unit ball of the space
(H 2

1 )⊗d. Therefore the problem APP2 is no harder than the problem S. The
eigenvalues λS = {λSj }j∈IN of the operator W S

1 = S∗1S1 are such that λS1 = 1,
λS2 = 1/(1 + π2) < 1 and λSj = Θ(j−2), see [22, Lem. 4.1]. Therefore [3,

Thm. 3.3] yields that the problem S is QPT, hence the problem APP2 is
also QPT.
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From [3, Thm. 3.3] we know that the exponent of QPT of the problem
S = {Sd}d∈IN is

t∗S = max

{
2

decayλS
,

2

ln((λS2 )
−1

)

}
= max

{
2

2
,

2

ln(1 + π2)

}
= 1,

since
decayλS = sup{p ≥ 0 : lim

j
λSj j

p = 0} = 2.

The problem APP2 is no harder than the problem S with the same norm
‖APP2

d‖ = ‖Sd‖ = 1 for all d ∈ IN. Therefore the exponent of QPT of the
problem APP2 = {APP2

d}d∈IN, i.e., t∗2, is bounded by t∗S from above:

t∗2 ≤ t∗S = 1.

We turn to a lower bound on t∗2. Let

e1(x) = 1 and e2(x) = 2

√
3

13

(
x− 1

2

)
for x ∈ [0, 1].

Consider the Hilbert space H = span(e1, e2) equipped with an inner product
given by the restriction of the inner product of the space H 2

1 to its linear
subspace span(e1, e2). Note that H is a closed linear subspace of the space
H 2

r and
〈ei, ej〉H = 〈ei, ej〉H 2

r
= δij for i, j = 1, 2

for every non-negative integer r. Define the following homogeneous linear
tensor product problem S

′
= {S ′d}d∈IN:

S
′

1 : H → L2([0, 1]) : f 7→ f,

S
′

d = (S
′

1)⊗d : H ⊗d → L2([0, 1]d) for d ≥ 2.

Note that

H ⊗d ⊂ Hd(2) =
d⊗
j=1

H 2
rj

for all d ∈ IN,

and
‖f‖Hd(2) ≤ ‖f‖H ⊗d for all f ∈H ⊗d,

so that the unit ball of the space H ⊗d is a subset of the unit ball of the
space Hd(2). Obviously ‖S ′d‖ = 1 for all d ∈ IN. Therefore the problem S

′
is
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no harder than the problem APP2. Of course S
′

is QPT since APP2 is QPT,
and its exponent of QPT, i.e., t∗

S′
, bounds t∗2 from below:

t∗
S′
≤ t∗2.

Let λS
′

= {λS
′

j }j∈IN denote the ordered eigenvalues of the operator W S
′

1 =

S
′
1

∗
S
′
1. Note that λS

′

1 = 1 is the eigenvalue associated with the eigenvector

eS
′

1 = e1 = 1, and

λS
′

2 = sup
f∈H , ‖f‖H ≤1
〈f,1〉H =0

‖f‖2
L2 .

Observe that if we set f(x) = e2(x) = 2
√

3
13

(x − 1
2
) for x ∈ [0, 1], then

f ∈H , ‖f‖H = 1 and 〈f , eS
′

1 〉H = 0, hence

λS
′

2 ≥ ‖f‖2
L2 =

1

13

and
2

ln
(

(λS
′

2 )
−1
) ≥ 2

ln 13
= 0.779 . . . .

From [3, Thm. 3.3] we conclude that the exponent of QPT of the problem
S
′
= {S ′d}d∈IN satisfies

t∗
S′

= max

{
2

decay
λS
′
,

2

ln((λS
′

2 )
−1

)

}
≥ 2

ln 13
.

Therefore

t∗2 ≥ t∗
S′
≥ 2

ln 13
,

as claimed. This completes the proof. �

The case of Λstd for APP defined over the Sobolev spaces considered in
this section has not yet been studied.

3.3 Average Case Setting

We start this section by recalling the definition of a linear problem in the
average case setting. Later we will investigate two classes of such problems.
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For both classes we study approximation of functions from the space C([0, 1]d)
of continuous functions defined on the cube [0, 1]d. For the first class the space
C([0, 1]d) is equipped with the zero-mean Gaussian measure whose covariance
operator is given by the Euler integrated process with parameters rk, while for
the second class the space C([0, 1]d) is equipped with the zero-mean Gaussian
measure whose covariance operator is given by the Wiener integrated process
with parameters rk. Those measures are concentrated on the subspaces of
C([0, 1]d) containing all functions with suitably increasing regularity with
respect to successive variables depending on the parameters rk. We consider
the normalized error criterion. It is enough to consider only the class Λall.
Indeed, the results are the same for the class Λstd. This was shown in [4, 7, 12]
for WT, PT and SPT. For UWT the proof is identical (with obvious changes)
as the proof for WT, see [12, Thm. 24.6].

Definition 3.2 A linear problem in the average case setting is a sequence of
continuous linear operators

S = {Sd}d∈IN,

such that Sd : Fd → Gd, where Fd is a separable Banach space equipped with a
zero-mean Gaussian measure µd, and Gd is a Hilbert space for every d ∈ IN.

Let n(ε, Sd) be the information complexity of a linear problem S =
{Sd}d∈IN. This is defined as the minimal (average) number of functionals
from Λall needed to obtain an approximation of Sd with average case error
at most ε ∈ (0, 1).

Let νd = µdS
−1
d be a zero-mean Gaussian measure induced on the Hilbert

space Gd by the continuous linear operator Sd : Fd → Gd and the measure
µd on Fd, and let Cνd : Gd → Gd be its covariance operator. Then Cνd is
self-adjoint, nonnegative-definite and has finite trace. Let {λd,j}j∈IN denote
its ordered sequence of eigenvalues:

λd,1 ≥ λd,2 ≥ . . . ≥ λd,j ≥ . . . ≥ 0 .

It is known how n(ε, Sd) depends on the sequence {λd,j}j∈IN. That is, for the
normalized error criterion we have

n(ε, Sd) = #

{
n ∈ IN :

∞∑
j=n+1

λd,j > ε2

∞∑
j=1

λd,j

}
.
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More details about linear problems in the average case setting can be found
in [10].

The following lemma is an analog of [6, Thm. 8] for uniform weak
tractability. It will be used to establish sufficient conditions on uniform
weak tractability of the approximation problems.

Lemma 3.1 Consider a linear problem S = {Sd}d∈IN. Assume that for every
k ∈ IN there is a sequence {λ(k, j)}j∈IN of nonnegative real numbers satisfying

λ(k, 1) ≥ λ(k, 2) ≥ . . . ≥ λ(k, j) ≥ . . . ≥ 0,

such that for every d ∈ IN we have

{λd,j}j∈IN =

{
d∏

k=1

λ(k, jk)

}
[j1,...,jd]∈INd

.

If for every sufficiently small number α > 0 there is a number τ ∈ (0, 1) such
that

lim
d→∞

1

dα

d∑
k=1

∞∑
j=2

(
λ(k, j)

λ(k, 1)

)τ
= 0

then S is UWT.

Proof: Note that

∑
j∈IN

λτd,j =
d∏

k=1

∞∑
j=1

λ(k, j)τ for all τ > 0,

this formula allows us to use all estimates of n(ε, Sd) obtained in [6] for linear
tensor product problems. Let λ̃(k, j) := λ(k, j)/λ(k, 1).

From the proof of [6, Thm. 8] we know that

n(ε, Sd) ≤

[
exp

(
d∑

k=1

∞∑
j=2

λ̃(k, j)
τ

)
ε−2

](1−τ)−1

for all τ ∈ (0, 1).

For all α > 0, the estimate above yields

lnn(ε, Sd)

ε−α + dα
≤ 1

1− τ

∑d
k=1

∑∞
j=2 λ̃(k, j)

τ

ε−α + dα
+

1

1− τ
ln ε−2

ε−α + dα
for all τ ∈ (0, 1).
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To obtain UWT it is obviously enough to consider sufficiently small α > 0.
For a given sufficiently small α > 0 we take τ ∈ (0, 1) for which

lim
d→∞

1

dα

d∑
k=1

∞∑
j=2

λ̃(k, j)
τ

= 0.

This implies

lim
ε−1+d→∞

lnn(ε, Sd)

ε−α + dα
= 0.

Hence S is UWT. �

The next lemma will be used to establish necessary conditions on uniform
weak tractability of the approximation problems.

Lemma 3.2 Consider a linear problem S = {Sd}d∈IN. Assume that for every
k ∈ IN there is a sequence {λ(k, j)}j∈IN of nonnegative real numbers satisfying

λ(k, 1) ≥ λ(k, 2) ≥ . . . ≥ λ(k, j) ≥ . . . ≥ 0,

such that for every d ∈ IN we have

{λd,j}j∈IN =

{
d∏

k=1

λ(k, jk)

}
[j1,...,jd]∈INd

.

Then the following estimate for the information complexity of the problem S
holds:

n(ε, Sd) ≥ (1− ε2)
d∏

k=1

(
1 +

λ(k, 2)

λ(k, 1)

)
.

Proof: From [6, Lem. 5] it follows that

n(ε, Sd) ≥ (1− ε2)

(
∞∑
j=1

λd,j
λd,1

)
.

Note that
∞∑
j=1

λd,j
λd,1

=
d∏

k=1

∞∑
j=1

λ(k, j)

λ(k, 1)
≥

d∏
k=1

(
1 +

λ(k, 2)

λ(k, 1)

)
.

Thus

n(ε, Sd) ≥ (1− ε2)
d∏

k=1

(
1 +

λ(k, 2)

λ(k, 1)

)
,

as claimed. �
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3.3.1 Euler Integrated Process

Let Fd = C([0, 1]d) be the space of continuous real-valued functions defined
on [0, 1]d. The space Fd is equipped with the norm

‖f‖Fd = sup
x∈[0,1]d

|f(x)| for all f ∈ Fd.

Additionally, we equip the space Fd with a zero-mean Gaussian measure µd.
As in [7], in this subsection we assume that the covariance operator of µd
is given by Euler integrated process with parameters rk, i.e., its covariance
kernel is given by

Kd(x, y) =
d∏

k=1

K1,rk(xk, yk) for all x, y ∈ [0, 1]d,

where for r ∈ IN

K1,r(x, y) =

∫
[0,1]r

min(x, s1) min(s1, s2) . . .min(sr, y)ds1ds2 . . . dsr

for all x, y ∈ [0, 1], and {rk}k∈IN is a sequence of nonnegative non-decreasing
integers

0 ≤ r1 ≤ r2 ≤ r3 ≤ . . . .

The measure µd is concentrated on a set of those continuous functions which
are rk times continuously differentiable with respect to the k-th variable for
k = 1, 2, . . . , d.

Let Gd = L2([0, 1]d) be the standard Hilbert space of real-valued square-
integrable functions defined on [0, 1]d.

We define multivariate approximation of Euler integrated process as a
linear problem

APP = {APPd}d∈IN,

where for every d ∈ IN

APPd : Fd → L2([0, 1]d) : f 7→ f.

The eigenvalues of the problem APP are known:

{λd,j}j∈IN = {λ(1, j1)λ(2, j2) . . . λ(d, jd)}[j1,j2,...,jd]∈INd ,
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where

λ(k, j) =

(
1

π(j − 1/2)

)2rk+2

for all j ∈ IN.

The numbers {λ(k, j)}j∈IN are the eigenvalues of the univariate case of the
problem APP with the smoothness rk.

Note that
λ(k, 2)

λ(k, 1)
=

1

32rk+2
for all k ∈ IN.

More details on the multivariate approximation of Euler integrated pro-
cess can be found in [7]. In particular, necessary and sufficient conditions for
WT, QPT, PT and SPT of multivariate approximation of Euler integrated
process can be found there.

Theorem 3.4 Consider the multivariate approximation problem APP for
the Euler integrated process. Then

UWT ⇔ lim inf
k→∞

rk
ln k
≥ 1

2 ln 3
.

Proof: Assume that APP is UWT. Lemma 3.2 and the fact that ln(1+x) ≥ 1
2
x

for x ∈ [0, 1] yield

lnn(ε,APPd) ≥ ln
d∏

k=1

(
1 +

λ(k, 2)

λ(k, 1)

)
+ ln(1− ε2)

=
d∑

k=1

ln

(
1 +

λ(k, 2)

λ(k, 1)

)
+ ln(1− ε2)

≥ 1

2

d∑
k=1

λ(k, 2)

λ(k, 1)
+ ln(1− ε2)

=
1

2

d∑
k=1

3−(2rk+2) + ln(1− ε2)

≥ 1

2
d 3−(2rd+2) + ln(1− ε2).



3.3. AVERAGE CASE SETTING 60

Hence

lim
d→∞

d 1−α 3−2rd = lim
d→∞

d 1−α− rd
ln d

2 ln 3 = 0 for all α > 0.

This implies that for all α > 0 we have

rd
ln d

2 ln 3 > 1− α

for sufficiently large d. Hence

lim inf
k→∞

rk
ln k
≥ 1

2 ln 3
,

as claimed.

Conversely, assume that lim infk→∞
rk
ln k
≥ 1

2 ln 3
. That is, for every δ > 0

there is a number Nδ ∈ IN such that for all k > Nδ we have

rk
ln k
≥ 1− δ

2 ln 3
,

i.e.,

rk ≥
ln k

2 ln 3
(1− δ).

We want to apply Lemma 3.1. For all α ∈ (0, 1) and all τ ∈ (1/2, 1) we have

1

dα

d∑
k=1

∞∑
j=2

(
λ(k, j)

λ(k, 1)

)τ
=

1

dα

d∑
k=1

∞∑
j=2

(2j − 1)−(2rk+2)τ

≤ 1

dα

d∑
k=1

(
3−(2rk+2)τ +

∞∑
j=5

j−(2rk+2)τ

)

≤ 1

dα

d∑
k=1

(
3−(2rk+2)τ +

∫ ∞
3

x−(2rk+2)τdx

)

=
1

dα

d∑
k=1

(
3−(2rk+2)τ +

31−(2rk+2)τ

(2rk + 2)τ − 1

)

≤ 1

dα

d∑
k=1

(
3−(2rk+2)τ +

31−(2rk+2)τ

(2r1 + 2)τ − 1

)

≤
(

1 +
3

(2r1 + 2)τ − 1

)
1

dα

d∑
k=1

3−2rkτ .
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Now, fix α ∈ (0, 1) and set δ := α2/2 and τ := 1 − α2/2. Obviously δ > 0
and τ ∈ (1/2, 1). Observe that for d > Nδ we have

1

dα

d∑
k=1

3−2rkτ =
1

dα

Nδ∑
k=1

3−2rkτ +
1

dα

d∑
k=Nδ+1

3−2rkτ

≤ 1

dα

Nδ∑
k=1

3−2rkτ +
1

dα

d∑
k=Nδ+1

k−(1−δ)τ

≤ 1

dα

Nδ∑
k=1

3−rkτ +
1

dα

∫ d

0

x−(1−δ)τdx

=
1

dα

Nδ∑
k=1

3−2rkτ +
dα

2−α4/4−α

α2 − α4/4
.

Hence

lim
d→∞

1

dα

d∑
k=1

3−2rkτ = 0,

and

lim
d→∞

1

dα

d∑
k=1

∞∑
j=2

(
λ(k, j)

λ(k, 1)

)τ
= 0.

Lemma 3.1 implies that APP is UWT. �

3.3.2 Wiener Integrated Process

We take the same spaces Fd and Gd as in subsection 3.1. The space Fd is now
equipped with a zero-mean Gaussian measure µd whose covariance operator
is given by Wiener integrated process with parameters rk, i.e., its covariance
kernel is given by

Kd(x, y) =
d∏

k=1

K1,rk(xk, yk) for all x, y ∈ [0, 1]d,

where for r ∈ IN

K1,r(x, y) =

∫ min(x,y)

0

(x− u)r

r!

(y − u)r

r!
du
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for all x, y ∈ [0, 1], and {rk}k∈IN is a sequence of nonnegative non-decreasing
integers

0 ≤ r1 ≤ r2 ≤ r3 ≤ . . . .

As for the Euler case, the measure µd is concentrated on a set of those con-
tinuous functions, which are rk times continuously differentiable with respect
to the k-th variable for k = 1, 2, . . . , d.

We define multivariate approximation of Wiener integrated process as a
linear problem

APP = {APPd}d∈IN,

where for every d ∈ IN

APPd : Fd → L2([0, 1]d) : f 7→ f.

The eigenvalues of the problem APP are not exactly known, however their
asymptotic behavior was established in [2]. Namely, they satisfy

{λd,j}j∈IN = {λ(1, j1)λ(2, j2) . . . λ(d, jd)}[j1,j2,...,jd]∈INd ,

where

λ(k, j) =

(
1

π(j − 1/2)

)2rk+2

+O(j−(2rk+3)) as j →∞.

The numbers {λ(k, j)}j∈IN are the eigenvalues of the univariate case of the
problem APP with the smoothness rk.

For the purpose of tractability studies the knowledge of the asymptotic
behavior of the sequence of eigenvalues is not enough since the two largest
eigenvalues play a crucial role. It was also established in [7] that

λ(k, 1) =
1

(rk!)2

(
1

(2rk + 2)(2rk + 1)
+O(r−4

k )

)
,

λ(k, 2) = Θ

(
1

(rk!)2r4
k

)
,

where the factors in the big O and Θ notations do not depend on rk.

Note that
λ(k, 2)

λ(k, 1)
= Θ(r−2

k ).
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More details on the multivariate approximation of Wiener integrated pro-
cess can be found in [7]. In particular, necessary and sufficient conditions for
WT, QPT, PT and SPT of multivariate approximation of Wiener integrated
process can be found there.

Theorem 3.5 Consider the multivariate approximation problem APP for
the Wiener integrated process. Then

UWT ⇔ lim inf
k→∞

ln rk
ln k

≥ 1

2
.

Proof: Assume that APP is UWT. As before, Lemma 3.2 yields

lnn(ε,APPd) ≥ ln
d∏

k=1

(
1 +

λ(k, 2)

λ(k, 1)

)
+ ln(1− ε2)

=
d∑

k=1

ln

(
1 +

λ(k, 2)

λ(k, 1)

)
+ ln(1− ε2)

≥ 1

2

d∑
k=1

λ(k, 2)

λ(k, 1)
+ ln(1− ε2)

= Θ

(
d∑

k=1

r−2
k

)
+ ln(1− ε2),

where the factors in the Θ notation do not depend on rk’s. Hence

lim
d→∞

1

dα

d∑
k=1

r−2
k = 0 for all α > 0.

From this, it follows that

lim
d→∞

d 1−αr−2
d = lim

d→∞
d 1−α−2

ln rd
ln d = 0 for all α > 0.

This implies that for all α > 0 we have

2
ln rd
ln d

≥ 1− α

for sufficiently large d. Hence

lim inf
k→∞

ln rk
ln k

≥ 1

2
,
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as claimed.

Conversely, assume that lim infk→∞
ln rk
ln k
≥ 1

2
. That is, for every δ > 0

there is a number Nδ ∈ IN such that for all k > Nδ we have

ln rk
ln k

≥ 1

2
− δ,

i.e.,
rk ≥ k( 1

2
−δ).

We want to apply Lemma 3.1. For all α ∈ (0, 4/5) and all τ ∈ (3/5, 1) we
have

1

dα

d∑
k=1

∞∑
j=2

(
λ(k, j)

λ(k, 1)

)τ
=

1

dα

d∑
k=1

[(
λ(k, 2)

λ(k, 1)

)τ
+

∑∞
j=3(λ(k, j))τ

(λ(k, 1))τ

]

=
1

dα

d∑
k=1

(
λ(k, 2)

λ(k, 1)

)τ [
1 +

∑∞
j=3(λ(k, j))τ

(λ(k, 2))τ

]
.

From [7, Thm. 4.1] it follows that

Mτ := sup
k∈IN

∑∞
j=3(λ(k, j))τ

(λ(k, 2))τ
<∞.

Therefore

1

dα

d∑
k=1

∞∑
j=2

(
λ(k, j)

λ(k, 1)

)τ
=

1

dα

d∑
k=1

O(r−2τ
k ) = O

(
1

dα

d∑
k=1

r−2τ
k

)
.

Now, fix α ∈ (0, 4/5) and set δ := α/4 and τ := 1 − α/2. Obviously δ > 0
and τ ∈ (3/5, 1). Observe that for d > Nδ we have

1

dα

d∑
k=1

r−2τ
k =

1

dα

Nδ∑
k=1

r−2τ
k +

1

dα

d∑
k=Nδ+1

r−2τ
k

≤ 1

dα

Nδ∑
k=1

r−2τ
k +

1

dα

d∑
k=Nδ+1

k−τ+2τδ

≤ 1

dα

Nδ∑
k=1

r−2τ
k +

1

dα

∫ d

0

x−τ+2τδdx

=
1

dα

Nδ∑
k=1

r−2τ
k +

d−α
2/4

α− α2/4
.
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Hence

lim
d→∞

1

dα

d∑
k=1

r−2τ
k = 0,

and

lim
d→∞

1

dα

d∑
k=1

∞∑
j=2

(
λ(k, j)

λ(k, 1)

)τ
= 0.

Lemma 3.1 implies that APP is UWT. �
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[10] E. Novak and H. Woźniakowski, Tractability of Multivariate Problems,
Volume I: Linear Information, European Mathematical Society, Zürich,
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