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Abstract

Many real-life problems have very natural graph-theoretic models. One of
such problems is the frequency assignment problem. It asks for an assignment
of channels of frequency to transmitters in a broadcast network, so that no
pair of transmitters interfere with each other. Depending on a way how
we de�ne the interference, this leads to many well-studied graph theoretic
problems.

For example, an L(2, 1)-labeling of a graphG is a mapping from the vertex
set of G to the set of non-negative integers, such that the labels assigned to
adjacent vertices di�er by at least 2 and labels assigned to vertices with a
common neighbor are di�erent. The span of such a labeling is the maximum
label used and the L(2, 1)-labeling problem asks for the minimum span of an
L(2, 1)-labeling of G.

Other models considered in this context are the graph coloring problem,
the channel assignment problem, the T -coloring problem etc.

Since all the problems mentioned above are NP-hard, there is little hope
to solve them exactly in a polynomial time. Thus in this dissertation we
are mostly interested in designing exact algorithms, whose complexities are
bounded by exponential functions of the size of the input.

We describe and analyze a general framework, which can be used to solve
some type of graph labeling problems. More precisely, we design an algo-
rithm, which solves the so-called generalized list T -coloring problem, which
is a common generalization of all the problems mentioned above. We also
show how to improve the complexity analysis if the input graph has some
speci�c structure.

Then we show how a re�ned version of this general algorithm works for
the L(2, 1)-labeling problem. The time and space complexity of our re�ned
algorithm is O(2.6488n).

We also present how to adapt the general algorithm to obtain algorithms
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determining the existence of a homomorphism and a locally injective homo-
morphism from a graph G to a graph H, both working in time and space
O∗((b+ 2)n), where b is the bandwidth of the complement of H.

Using a di�erent approach, we construct an exact exponential algorithm
for the L(2, 1)-labeling problem, working in time O(7.4920n) and using only
polynomial space. We also modify this algorithm to determine if the input
graph has an L(2, 1)-labeling with the span at most k (for a constant k). This
approach proves signi�cantly better than the basic algorithm for k ≤ 31.

Estimating time complexities of exact exponential algorithms often re-
quires solving some problems from extremal graph theory. In our case, we
give some upper and lower bounds for the maximum number of 2-packings
in a graph (i.e. independent sets in a square of the graph) and some related
graph-theoretic objects.

Keywords: exact algorithm, graph labeling, frequency assignment problem,
L(2, 1)-labeling

ACM Subject Classification: F.2.2, G.2.1, G.2.2
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Streszczenie

Wiele problemów napotykanych w przemy±le czy biznesie daje si¦ w natu-
ralny sposób modelowa¢ za pomoc¡ grafów. Jednym z takich problemów jest
problem przydziaªu cz¦stotliwo±ci. Polega on na takim przypisaniu kanaªów
cz¦stotliwo±ci nadajnikom sieci radiowej, aby unikn¡¢ zakªóce« w nadawa-
niu sygnaªu. W zale»no±ci od tego, jak zde�niujemy zakªócenia (i, co za
tym idzie, kon�ikty mi¦dzy nadajnikami), mo»emy otrzyma¢ wiele znanych
problemów grafowych.

Na przykªad etykietowanie L(2, 1) grafu G to przypisanie wierzchoªkom G
nieujemnych liczb caªkowitych w taki sposób, »e etykiety s¡siaduj¡cych wierz-
choªków ró»ni¡ si¦ o co najmniej 2, za± etykiety wierzchoªków o wspólnym
s¡siedzie s¡ ró»ne. Rozpi¦to±ci¡ takiego etykietowania jest number najwi¦k-
szej u»ytej etykiety. Problem etykietowania L(2, 1) polega na znalezieniu
najmniejszej mo»liwej rozpi¦to±ci etykietowania L(2, 1) grafu.

Inne problemy rozwa»ane w tym kontek±cie to: kolorowanie grafów, prob-
lem przydziaªu kanaªów cz¦stotliwo±ci (ang. channel assignment problem),
problem T -kolorowania itp.

Poniewa» wszystkie wspomniane problemy s¡ NP-trudne, szanse na znalezie-
nie ich dokªadnych rozwi¡za« w czasie wielomianowym s¡ niewielkie. Dlatego
w niniejszej pracy zajmujemy si¦ projektowaniem algorytmów dokªadnych o
zªo»ono±ciach ograniczonych pewn¡ wykªadnicz¡ funkcj¡ rozmiaru zadania.

Opisujemy ogóln¡ metod¦, która mo»e zosta¢ zastosowana do rozwi¡zania
pewnego typu problemów etykietowania grafów. Dokªadniej, prezentujemy
algorytm rozwi¡zuj¡cy problem tzw. uogólnionego listowego T -kolorowania
(ang. generalized list T -coloring problem), b¦d¡cy wspólnym uogólnieniem
wszystkich problemów wymienionych powy»ej. Pokazujemy równie», jak
zmienia si¦ zªo»ono±¢ algorytmu dla grafów o pewnej okre±lonej strukturze.

Nast¦pnie pokazujemy ulepszon¡ wersj¦ tego algorytmu dziaªaj¡c¡ dla
problemu L(2, 1)-etykietowania grafów. Zªo»ono±¢ obliczeniowa i pami¦ciowa
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naszego algorytmu wynosi O(2.6488n).
Ponadto, pokazujemy jak zmody�kowa¢ ogólny algorytm, by otrzyma¢

algorytmy wery�kuj¡ce istnieje homomor�zmu i lokalnie ró»nowarto±ciowego
homomor�zmu (ang. locally injective homomorphism) grafu G w graf H.
Zªo»ono±¢ obliczeniowa i pami¦ciowa obu tych algorytmów wynosi O∗((b +
2)n), gdzie b oznacza bandwidth dopeªnienia grafu H.

U»ywaj¡c innej metody, konstruujemy algorytm dokªadny dla problemu
etykietowania L(2, 1), dziaªaj¡cy w czasie O(7.4920n) i pami¦ci wielomi-
anowej. Nast¦pnie pokazujemy pewn¡ mody�kacj¦ tej metody pozwalaj¡c¡
odpowiedzie¢ na pytanie, czy dany graf ma etykietowanie L(2, 1) o rozpi¦-
to±ci co najwy»ej k (gdzie k jest staª¡). To podej±cie jest bardziej efektywne
ni» ogólny algorytm dla k ≤ 31.

Szacowanie zªo»ono±ci dokªadnych algorytmów wykªadniczych cz¦sto wymaga
rozwi¡zania pewnych problemów teorii grafów ekstremalnych. W naszym
przypadku, pokazujemy górne i dolne ograniczenia na maksymaln¡ liczb¦
zbiorów 2-niezale»nych w gra�e (czyli zbiorów niezale»nych w kwadracie
grafu) oraz innych, powi¡zanych, obiektów kombinatorycznych.

Sªowa kluczowe: algorytm dokªadny, etykietowanie grafów, problem przy-
dziaªu cz¦stotliwo±ci, etykietowanie L(2, 1)

Klasyfikacja Tematyczna ACM: F.2.2, G.2.1, G.2.2
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Chapter 1

Introduction

Among graph-theoretic problems, a considerable attention from the discrete
mathematics and theoretical computer science community has been received
by various graph labeling models. They are extensively studied both for
their practical motivations, and for their interesting theoretical and structural
properties.

One of the typical applications of graph labeling models is the frequency
assignment problem. It is the problem of assigning channels (usually repre-
sented by non-negative integers) to each radio transmitter in a network so
that no pair of transmitters interfere with each other. Hale [42] �rst formu-
lated this problem in terms of so-called T -coloring of graphs. Since then,
many other, related models have also arisen.

1.1 Graph labeling problems

In this section we present some of the the problems we are going to investigate
in this dissertation. The descriptions of problems in this section are some-
what informal. The formal de�nitions will be provided later on, in Section
4.1.

Graph coloring. Although the graph coloring problem dates back to the
19th century, it still receives considerable attention of many researchers. We
refer the reader to the book by Jensen and Toft [52] to get some informa-
tion about the history and many still open problems in graph coloring. In
the classical graph coloring problem, we want to assign colors (usually repre-
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sented by natural numbers) to the vertices of the graph in such a way, that
no two adjacent vertices receive the same color. The minimum number of
colors needed to color a graph G in this way is called the chromatic number
of G and denoted by χ(G).

The list version of this problem has been introduced independently by
Vizing [85] and by Erd®s, Rubin and Taylor [25]. Here each vertex has a list
of colors and its color has to be chosen from this list (a non-list coloring can
be seen as a special case of the list coloring with all lists equal).

L(p, q)-labeling. The notion of L(p, q)-labeling (for integers p ≥ q ≥ 1) is
inspired by the frequency assignment problem in telecommunications. We
look for such a labeling of the vertices G with integers, in which the labels
of adjacent vertices di�er by at least p and the labels of the vertices with
a common neighbor di�er by at least q. The most widely studied case is
the L(2, 1)-labeling, which was introduced by Roberts (according to [41]). In
this model the vertices of the input graph correspond to transmitters of the
network and the edges indicate which pairs of transmitters are too close to
each other so that interference could occur even if the broadcasting channels
were just one apart. The second condition follows from the requirement that
no transmitter should have two or more close neighbors transmitting on the
same frequency.

The span of an L(2, 1)-labeling is the di�erence between the largest and
smallest labels used. By λ(G) we denote the L(2, 1)-span of a graph G, which
is the smallest span over all L(2, 1)-labelings of G. A considerable attention
has been given to bounding the value of λ(G) by some function of G.

Griggs and Yeh [41] proved that λ(G) ≤ ∆2 + 2∆ (where ∆ denotes
the largest vertex degree in G) and conjectured that λ(G) ≤ ∆2 for every
graph G. There are several results supporting this conjecture, for example
Gonçalves [40] proved that λ(G) ≤ ∆2 + ∆ − 2 for graphs with ∆ ≥ 3.
Lu [70] showed that the conjecture is satis�ed for graphs with at most
(b∆/2c + 1)(∆2 − ∆ + 1) − 1 vertices. Havet et al. [46] settled the con-
jecture in a�rmative for graphs with ∆ ≥ 1069. For graphs with smaller ∆,
the conjecture still remains open.

Yet it is interesting to note that the Petersen and Ho�mann-Singleton
graphs are the only two known graphs that satisfy equality in this bound
(for maximum degree greater than 2). Recently Lu [70] presented an in�nite
family of graphs with span ∆2 − ∆ + 1, which is the largest value for any
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known in�nite family.
We refer the reader to surveys on the L(p, q)-labeling problem by Yeh [88]

and Calamoneri [14]. The list version of this problem has been studied for
example by Fiala and �krekovski [35].

It is worth mentioning that the case of the L(0, 1)-labeling has also re-
ceived some attention (see or example Fiala, Golovach and Kratochvíl [26]).
We may de�ne the L(0, 1)-labeling of G as the coloring of G2−G (for a graph
G = (V,E), by G2 we mean the graph, whose vertex set is V and its edge
set is E ∪ {uv : u and v have a common neighbor in G}).

Channel assignment. The channel assignment problem is a generaliza-
tion of L(p, q)-labeling. Here every edge uv has a weight ω(uv) and we require
that the di�erence of labels given to vertices u and v is at least ω(uv). We
refer the reader to the survey by Král' [64] for more information about this
problem.

T -coloring. In this problem we have a set T of forbidden di�erences and
we ask for such a labeling of vertices of a graph, that the di�erence of la-
bels given to the endvertices of any edge is not in T . Unlike the channel
assignment problem, T -coloring allows the case when forbidden di�erences
do not form a set of consecutive integers. It is interesting to mention that
for T = {0, 7, 14, 15} we obtain the model for interferences for the UHF
transmitters (see McDiarmid [72]). The list version of this problem has been
studied for example by Alon and Zaks [5].

Generalized (list) T -coloring. In the multitude of various labeling prob-
lems, a natural tendency is to look for the similarities between di�erent
models and try to unify and generalize them. In this spirit, Fiala, Král' and
�krekovski [28] de�ned and studied the so-called generalized list T -coloring
problem, which uni�es the channel assignment problem and the T -coloring
problem. Here each edge has its own set of forbidden di�erences (which does
not have to be an interval).

Graph homomorphism (or H-coloring). Graph homomorphism prob-
lem (or H-coloring, as it is sometimes called) is a natural generalization of
a well-known graph coloring problem. For graphs G and H we say that
ϕ : V (G) → V (H) is a homomorphism from G to H if ϕ(v)ϕ(u) ∈ E(H)
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for any uv ∈ V (G). In other words, a homomorphism is an edge-preserving
mapping from V (G) to V (H). Thus the problem of coloring a graph with k
colors is equivalent to the problem of �nding a homomorphism to the com-
plete graph Kk. We refer the reader to the monography by Hell and Ne²et°il
[49] for more information about graph homomorphisms.

Locally injective graph homomorphism. Some special cases of graph
homomorphisms, namely locally constrained graph homomorphisms, have
also received a considerable attention (see the survey by Fiala and Kratochvíl
[32] for more information about the topic). We say that the homomorphism
ϕ from G to H is locally injective (locally surjective; locally bijective) if the
neighborhood of v ∈ V (G) is mapped injectively (resp.: surjectively; bijec-
tively) to the neighborhood of ϕ(v). We will be mostly interested in locally
injective homomorphisms. They can be seen as homomorphisms from G to
H, in which no two vertices from G with a common neighbor are mapped to
the same vertex of H.

1.2 Complexity results

In this section we list some results concerning the computational complexity
of the mentioned problems. We are mostly interested in NP-hard cases.

Graph coloring. The problem of deciding 3-colorability of an input graph
is one of Karp's 21 NP-complete problems listed in [61]. The problem remains
NP-complete even if the input graph is planar and has maximum degree at
most 4 (see Garey, Johnson and Stockmeyer [38]).

L(2, 1)-labeling. Griggs and Yeh [41] proved that computing λ(G) is an
NP-hard problem. Fiala et al. [27] later proved that the k-L(2, 1)-labeling
problem (i.e. deciding if λ(G) ≤ k) remains NP-complete for every �xed
k ≥ 4 (for k ≤ 3 the problem is polynomial). NP-completeness for planar
inputs was proved by Bodlaender et al. [10] for k = 8, by Janczewski et
al. [51] for k = 4 and �nally by Eggeman et al. [23] for all k ≥ 4.

The problem is also NP-hard for regular graphs (see Fiala, Kratochvíl
[30]). The fact that distance constrained labeling is a more di�cult task
than ordinary coloring is probably most strikingly documented by the NP-
completeness of deciding if λ(G) ≤ k for series-parallel graphs (see Fiala et
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al. [36]) � here of course k is part of the input. On the other hand, the
chromatic number of a series-parallel graph can be easily decided in linear
time (see for example Seymour [80]).

Griggs and Yeh [41] raised the question of computational complexity of
determining λ(G) for trees. It was answered by Chang and Kuo [15] by
constructing a polynomial time algorithm. Their result was later improved
to a linear time algorithm by Hasunuma et al. [43].

Graph homomorphism and locally constrained graph homomor-
phism. Graph homomorphisms are also interesting from the computational
point of view. In their celebrated theorem, Hell and Ne²et°il [48] showed that
determining if G has a homomorphism to H is polynomial if H is bipartite
and NP-complete otherwise. For a locally surjective homomorphism Fiala
and Paulusma [34] showed that determining the existence of a locally sur-
jective homomorphism from G to a connected graph H is polynomial if H
has at most 2 vertices and NP-complete otherwise. They also showed a full
dichotomy for the case when H is disconnected, but the description of poly-
nomial cases is more complicated. There is no similar characterization for
the case of locally injective homomorphisms and locally bijective homomor-
phisms, but still we can �nd some partial results (see for example [29, 31, 33]
for some results on locally injective homomorphisms and [1, 67] for locally
bijective homomorphisms).

1.3 Exact exponential algorithms

When dealing with an NP-hard problem, there is little hope to design an
exact algorithm, running in polynomial time. Therefore a recent trend in
algorithmic research is designing exact exponential time algorithms for NP-
hard problems, while trying to minimize the constant which is the base of
the exponential running time function.

Graph coloring. Many such algorithms have been presented for the most
widely studied of the mentioned problems, i.e. the graph coloring (see for
example Lawler [68], Eppstein [24], Byskov [13]). The currently best exact
algorithm for graph coloring was presented by Björklund et al. [9] and runs in
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time O∗(2n)†, using exponential space. If only polynomial space is available,
one can use the same framework with Wahlström's [86] algorithm for counting
independent sets as a subroutine. Then the time complexity is O(2.2377n).

It is worth mentioning that algorithms for graph coloring work also for
the L(1, 1)-labeling and the L(0, 1)-labeling problem for a graph G, since
they are equivalent to coloring G2 and G2 −G, respectively.

Channel assignment. The best algorithm for the general case of the chan-
nel assignment problem, was proposed by McDiarmid [73] and runs in time
O∗(n!). Much attention has been given to the so-called `-bounded instances
of the problem (for an integer `). We say that an instance of the channel as-
signment problem is `-bounded if the maximum weight of an edge is at most
`. The �rst non-trivial exact algorithm for the `-bounded channel assign-
ment problem with time complexity O∗((2`+ 1)n) was given by McDiarmid
[73]. Then Král' [63] presented an algorithm running in time O∗((` + 2)n).
This bound was beaten by Cygan and Kowalik [21], who showed an algo-
rithm with time complexity O∗((`+ 1)n). Their approach uses a well-known
inclusion-exclusion principle and fast zeta transform.

Very recently, Kowalik and Socaªa [62] published an algorithm for the
`-bounded channel assignment problem working in time O(2n(`+ 2)n/2 · n2),
using the so-called meet-in-the-middle approach. It still remains a great chal-
lenge to design an exact algorithm for the channel assignment problem with
time complexity bounded by O∗(cn) for c being a constant (or to prove that
there is no such algorithm, under some standard complexity assumptions).

Another interesting branch of research is to prove the hardness of prob-
lems under some reasonable complexity assumptions. The assumption usu-
ally used in such results is the Exponential Time Hypothesis (ETH), intro-
duced by Impagliazzo and Paturi [50]. It says that there is no algorithm for
the 3-Sat problem working in time 2o(n), where n is the number of variables
in the input formula. Very recently Socaªa [81] proved that, assuming the
ETH, the channel assignment problem cannot be solved in time 2o(n logn).
Note that McDiarmid's algorithm works in time O∗(n!) = 2O(n logn), so this
bound is asymptotically tight.

L(2, 1)-labeling. The �rst exact exponential algorithm dedicated for the
L(2, 1)-labeling problem, whose complexity does not depend on the number

†In the O∗ notation we suppress polynomially bounded terms.
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of labels, was presented by Havet et al. [45] and works in time O(3.8739n).
This algorithm has been modi�ed and re�ned by Junosza-Szaniawski and

Rz¡»ewski [56, 57], obtaining time complexity O(3.2361n). A lower-bound of
Ω(3.0731n) for the worst-case running-time of this algorithm has also been
provided.

Breaking the barrier of O∗(3n) still seemed hardly attainable. The break-
through came with the publication of the O(2.6488n) algorithm by Junosza-
Szaniawski et al. [53]. The algorithm uses the framework �rst invented by
Rossmanith [77]. Moreover, the analysis of this algorithm required de�ning
and solving some additional extremal combinatorial problems. The details
of the algorithm are described in Section 4.3 of this thesis.

All the algorithms mentioned above use exponential amount of memory.
Havet et al. [45] presented a branching algorithm which determines if λ(G) ≤
k in time O∗((k − 2.5)n) and polynomial space. This bound was improved
for small k. Havet et al. [45] designed an algorithm for the 4-L(2, 1)-labeling
problem with complexity O(1.3006n) and Couturier et al. [20] showed that
5-L(2, 1)-labeling problem can be solved in time O(1.7990n), when the input
graphs is cubic.

Havet et al. [44] and independently Junosza-Szaniawski and Rz¡»ewski
[55] applied the well-known divide and conquer paradigm to construct a
polynomial-space exact algorithm for the L(2, 1)-labeling problem, whose
complexity does not depend on the number of labels used. Both groups
obtained (but did not publish) the same algorithm with time complexity
O((9 + ε)n) for arbitrarily small positive constant ε. Finally, the re�ned
algorithm with time complexity of O(7.4920n) was published by Junosza-
Szaniawski et al. [54]. The authors also adapted their method to obtain a
signi�cantly better time complexity if the number k of available labels is a
small �xed integer. This approach outperforms the general O(7.4920n) al-
gorithm for k ≤ 31. To obtain such complexity bounds, it was necessary to
consider some extremal combinatorial problems. The details are described
in Chapter 5.

Generalized list T -coloring. Although the algorithm by Cygan and Kowa-
lik [21] is designed for the channel assignment problem, it can be be adapted
to solve the generalized T -coloring problem. Its time complexity is then
O∗((τ+2)n), where τ is the maximum forbidden di�erence. Junosza-Szaniawski
and Rz¡»ewski [59] obtained the same time complexity, by adapting the al-
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gorithm for the L(2, 1)-labeling problem [53]. They were also able to improve
the time complexity of the algorithm for graphs having some special struc-
ture. The graphs considered were: bounded degree graphs, K1,d-free graphs
(for integer d) and graphs having a clique factor, i.e. a spanning subgraph
whose every connected component is a clique with at least 2 vertices. The
results are described in Section 4.2.

Assuming the ETH, Kowalik and Socaªa [62] proved that the non-list
version of the generalized T -coloring problem for a graph with n vertices
cannot be solved in time 22o(

√
n) · rO(1) (where r is the size of the instance in

bits). This implies that there is no algorithm with complexity O∗(cn) for any
constant c or even with complexity O(n!).

Graph homomorphism and locally constrained graph homomor-
phism. When designing exact exponential algorithms to determine the ex-
istence of a homomorphism fromG toH, we usually try to express the basis of
the exponential factor in a complexity bound as a function of some invariant
of H. Fomin et al. [37] presented an algorithm for determining the existence
of a homomorphism from G to H, working in time O∗((2 tw(H)+1)n), where
tw(H) denotes a treewidth of the graph H (see Diestel's book [22] for some
information about the treewidth of graphs) and n is the number of vertices
of G. For a locally injective homomorphisms, Havet et al. [45] presented an
algorithm working in time O∗((∆(H) − 1)n). To the best of our knowledge
there are no similar results for the locally surjective and the locally bijective
graph homomorphism problems.

Recently, Rz¡»ewski [78] presented an algorithm determining the exis-
tence of a homomorphism from G to H, working in time O∗((b+ 2)n), where
b denotes the bandwidth of the complement of H and n is the number of ver-
tices of G (see for example [16, 18] for more information about bandwidth).
The algorithm uses the same framework as the algorithm for the L(2, 1)-
labeling problem by Junosza-Szaniawski et al. [53]. Moreover, it can be
adapted to solve the locally injective graph homomorphism problem within
the same time complexity bound. The details of this algorithm are presented
in Section 4.4.
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1.4 Related combinatorial problems

The complexity of exact exponential algorithms is often determined by the
number of combinatorial objects (e.g. sets, sequences, tuples of sets) that
need to be enumerated and analyzed. For example, the bounds for the maxi-
mum number of maximal independent sets (all such sets or only the ones with
given cardinality) play a crucial role in the analysis of many exact algorithms
for the graph coloring problem (see Lawler [68], Eppstein [24] or Byskov [13]).
Independent sets are important to the graph coloring, because every color
induces an independent set. In the case of the L(2, 1)-labeling (and, in gen-
eral, L(p, q)-labeling) each label induces a set containing no two vertices in
distance at most 2 from each other. Such sets are called 2-packings. We can
think of 2-packings in a graph G as of independent sets in the graph G2.

A notion of 2-packings (and more generally, k-packings, having no two
vertices at distance at most k) has been introduced by Meir and Moon [74].
Some authors refer to 2-packings as 2-independent sets (see [12]) or 2-stable
sets (see [15]).

The notion of 2-packings has been extensively studied. Meir an Moon [74]
showed that the size of the largest 2-packing in a tree equals the size of the
maximum dominating set. For general graphs, it is NP-complete to decide if
those two values are equal (see Kratochvíl [65]). Also determining the size of
the largest 2-packing is NP-hard, even for cubic graphs (see Kratochvíl [66]).

The question how large the number of 2-packings in a graph can be arises
naturally in the analysis of an exacts algorithm for the L(2, 1)-labeling prob-
lem by Havet et al. [45]. The authors showed that uk(n), being the maximum
number of k-element 2-packings over all connected graphs on n vertices does
not exceed

(
n/2
k

)
2k.

Junosza-Szaniawski and Rz¡»ewski [56] improved this result by showing
that uk ≤

(
n−k+1

k

)
. If we are interested in the number of all 2-packings

in a connected graph on n vertices (denoted by u(n)), this bound gives us
u(n) = O(1.6181n) (we add up the bounds on uk(n) over all values of k). This
was again improved by Junosza-Szaniawski and Rz¡»ewski [58], who showed
that u(n) = O(1.5400n). Both bounds, along with some other auxilary
combinatorial results are described in Chapter 3 of this dissertation.

Observe that if we drop the connectivity restriction, the question about
the maximum number of 2-packings becomes trivial � in a graph with n
vertices and no edges the number of 2-packings is equal to 2n, where n denotes
the number of vertices in this graph.
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1.5 Main results and organization of the dis-

sertation

The main results presented in this dissertation are as follows. Chapter 3 is
purely combinatorial. It presents the following main results.

• We give new upper and lower bounds for the maximum number of
k-element 2-packings in a connected graph (Section 3.1).

• We also provide new upper and lower bounds for the maximum num-
ber of all 2-packings in a connected graph (Section Section 3.2). We
also consider some special classes of graphs (regular graphs, claw-free
graphs).

Moreover, we provide some auxilary combinatorial results, which will
be useful later, in the analysis of the complexity of our algorithms.

• We give upper and lower bounds for the the maximum number of pairs
of disjoint sets, one of which is a 2-packing (we call such pairs proper)
� see Section 3.3.

• In Section 3.4 we de�ne the notion of so-called red-black graphs, which
are basically graphs with two kinds of edges � black and red. We
give upper and lower bounds for the maximum number of proper pairs
generalized to such graphs.

• We provide some bounds concerning the problem of partitioning and
covering a graph with graphs with a bounded number of vertices and
some speci�c structure (connected graphs, stars, cliques) � see Section
3.5.

In Chapter 4 we present exact exponential algorithms, using the frame-
work �rst invented by Rossmanith [77].

• We describe the framework and present an exact algorithm for the
generalized list T -coloring problem (Section 4.2.1) along with a detailed
complexity analysis (Section 4.2.2).

• We show how to adapt the algorithm to obtain a re�ned algorithm for
the L(2, 1)-labeling problem (Section 4.3).
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• We also adapt the algorithm for both the graph homomorphism prob-
lem and the locally injective graph homomorphism problem (Section
4.4).

The algorithms described in Chapter 4 require exponential memory. In
Chapter 5 we focus on algorithms using polynomial space.

• We present an exact algorithm for the L(2, 1)-labeling problem, using
polynomial memory and its detailed complexity analysis (Section 5.1).

• We adapt this method to obtain an algorithm for the k-L(2, 1)-labeling
problem, which is faster than the general algorithm for k ≤ 31 (Section
5.2).

In Chapter 6 we conclude the dissertation by pointing out some open
problems and possible directions of further research.
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Chapter 2

Preliminaries and basic de�nitions

By N we denote the set {1, 2, ..} of natural numbers. We also de�ne N0 :=
N ∪ {0}. For a set X and integer k, by

(
X
k

)
we denote the family of all

k-element subsets of X. By 2X we mean the family of all subsets of X.
A pair G = (V,E) is called a graph if V is a �nite set of vertices and

E ⊆
(
V
2

)
is the set of edges. For a graph G = (V,E) we refer to V and E

by V (G) and E(G), respectively. We consider only �nite undirected graphs
without multiple edges or loops.

The number of vertices of a graph G is called the order of G and denoted
by |G|. In most cases we shall use the letter n to denote the order of currently
considered graph. For two vertices u, v, the edge {u, v} will be denoted
shortly as uv.

By the open neighborhood of a vertex u in G we mean the set {v : uv ∈
E(G)} and denote it by NG(u). The set NG[u] = NG(u) ∪ {u} denotes the
closed neighborhood of u. The open neighborhood of a set X of vertices in G
is denoted by NG(X) =

⋃
v∈X NG(v) and its closed neighborhood is denoted

by NG[X] = NG(X)∪X. The degree degG v of the vertex v is the number of
its neighbors, i.e. |N(v)|.

A graph H is a spanning subgraph of G if V (H) = V (G) and E(H) ⊆
E(G). Let X be a subset of vertices of G = (V,E) and let E ′ be a subset of
edges. We denote the subgraph of G induced by the vertices in X by G[X],
i.e. G[X] = (X, {e ∈ E : e ⊆ X}). By G[E ′] we denote the subgraph induced
by the set of edges E ′, i.e. G[E ′] = (

⋃
e∈E′ e, E

′).
By G − X we denote the graph (V \ X, {e ∈ E : e ⊆ V \ X}). For X

being a singleton (i.e. X = {x}), we shall write G− x instead of G− {x}.
The distance distG(u, v) between two vertices u and v in a graph G is
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the length of a shortest path joining u and v. The diameter of the graph G,
denoted by diam(G), is the maximum distance between vertices in G, i.e.,
diam(G) = maxu,v∈V (G) distG(u, v).

If the graph G is clear from the context, we shall omit the subscript G
and simply write N(v), deg v, dist(u, v) etc.

For a graph G = (V,E), its square graph is the graph G2 = (V, {uv ∈(
V
2

)
: distG(u, v) ≤ 2}). In an analogous way we de�ne the k-th power of G

(for any k ≥ 1) as Gk = (V, {uv ∈
(
V
2

)
: distG(u, v) ≤ k}). By G we denote

the complement of G, i.e. the graph (V, {uv ∈
(
V
2

)
: uv /∈ E}).

The terminology and notation used in this thesis is standard for graph
theory and can be found in e.g. a comprehensive book by Diestel [22].
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Chapter 3

Combinatorial estimates

This chapter is purely graph-theoretic. We present here some upper and
lower bounds for the maximum number of certain combinatorial objects in
graphs. Some of the results in this chapter may seem arti�cial at a �rst
glance. However, they will be used in the next sections to estimate the
complexity of some algorithms.

Particular sections contain mostly joint results from the following papers:
Section 3.1: a paper co-authored with K. Junosza-Szaniawski [57],
Section 3.2: a paper co-authored with K. Junosza-Szaniawski [58],
Section 3.3: a paper co-authored with K. Junosza-Szaniawski,

J. Kratochvíl, M. Liedlo� and P. Rossmanith [53],
Section 3.4: a paper co-authored with K. Junosza-Szaniawski,

J. Kratochvíl and M. Liedlo� [54],
Section 3.5: a paper co-authored with K. Junosza-Szaniawski,

J. Kratochvíl, M. Liedlo� and P. Rossmanith [53],
and a preprint with K. Junosza-Szaniawski [59].

De�nition 3.1. A 2-packing in a graph G is a subset X of vertices, in which
no two vertices are adjacent or have a common neighbor.

Sometimes 2-packings are called 2-independent sets or 2-stable sets. We
can also see 2-packings as independent sets in the square of a graph. We
shall use the following easy observations many times.

Observation 3.2. If H is a subgraph of G and X is a 2-packing in G, then
X ∩ V (H) is a 2-packing in H.
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Observation 3.3. Let G be a graph with two vertices v1, v2 of degree 1,
having a common neighbor v3. Every 2-packing in G is also a 2-packing in
the graph H obtained from G by removing the edge v1v3 and adding the edge
v1v2 (see Figure 3.1).

v1

v2

v3

v1

v2

v3

Figure 3.1: Transformation of two leaves with a common neighbor.
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3.1 Maximum number of k-element 2-packings

Let uk(G) denote the number of k-element 2-packings in a graph G. By uk(n)
we denote the maximum number of k-element 2-packings in a connected
graph on n vertices. Havet et al. [45] showed the following upper bound
for uk(n) (in fact, they only required that the graph does not have isolated
vertices and we shall state their theorem in this form).

Theorem 3.4 (Havet et al. [45]). The maximum number of k-element 2-
packings in a graph with no isolated vertices does not exceed

(
n/2
k

)
2k.

Remark 3.5. Notice that in the theorem above we did not assume that n
is even. In fact, the actual bound should be stated as

(dn/2e
k

)
2k. However,

as we are only interested in asymptotic behavior of such bounds, we shall by
convention omit �oors and ceilings, where it does not lead to a misunder-
standing.

Observe that this bound it tight � it su�ces to consider a graph consisting
of n/2 disjoint edges. In this section we improve this bound for connected
graphs and prove the following theorem.

Theorem 3.6 ([57]). The maximum number of k-element 2-packings in a
connected graph on n vertices does not exceed

(
n−k+1

k

)
. Moreover, all such

2-packings can be enumerated in time O∗
((
n−k+1

k

))
, using polynomial space.

Proof. Fix some k and let G be a connected graph with with n ≥ 3 vertices
and exactly uk(n) 2-packings. By Observations 3.2 and 3.3, we can assume
that G is a tree (otherwise we can take a spanning tree of G) with no two
leaves having a common neighbor. Let P be a longest path in G. Let v be
an end-vertex of the path P and u be its neighbor on P . By Observation 3.3
we have that deg(u) = 2 (recall that n ≥ 3). We can partition the set of all
2-packings into two subsetes � one containing 2-packings X in which v /∈ X
and the other one in which v ∈ X. If v /∈ X, then X is a k-element 2-packing
in G − v. On the other hand, if v ∈ X, then X \ {v} is a (k − 1)-element
2-packing in G− {v, u} (note that the other neighbor of u on P also cannot
belong to X, but we do not delete it to keep our graph connected). Since the
graphs G−v and G−{v, u} are connected, we obtain the following recursion:

uk(n) ≤ uk(n− 1)︸ ︷︷ ︸
v/∈X

+uk−1(n− 2)︸ ︷︷ ︸
v∈X

for n ≥ 3 and k ≥ 1,
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with the boundary conditions:

u0(n) = 1

u1(1) = 1

u1(2) = 2

u2(2) = 0

uk(n) = 0 for k > n

It is easy to verify that this inequality implies that uk(n) ≤
(
n−k+1

k

)
.

Observe that the proof yields a simple branching algorithm for enumerat-
ing all k-element 2-packings, whose complexity is bounded by

(
n−k+1

k

)
·nO(1) =

O∗
((
n−k+1

k

))
.

Now let us provide some lower bounds for uk(n). Consider a graph Pn,
which is a path with n vertices. Notice that uk(Pn) is equal to the number
of binary sequences of length n with exactly k ones, such that there are at
least two zeros between every pair of ones. Observe that there are exactly(
n−2k+2

k

)
such sequences.

Now let n be odd and consider a graph Sn, obtained from a matching of
size n−1

2
by adding one extra vertex and joining it with exactly one vertex

from every edge of the matching (see Figure 3.2).

Figure 3.2: The graph Sn.

It is easy to see that:

uk(Sn) =

{
n for k = 1

(k + 1)
(n−1

2
k

)
for k 6= 1.

Observe that u2(Pn) > u2(Sn) (for n > 5), while un−1
2

(Sn) > un−1
2

(Pn) =

0 (for n > 7). This gives us the following theorem.
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Theorem 3.7 ([58]). The maximum number of k-element 2-packings in a

connected graph on n vertices is at least max(
(
n−2k+2

k

)
, (k + 1)

(bn−1
2
c

k

)
).

27



3.2 Maximum number of 2-packings

Let u(G) denote the number of 2-packings in a graph G. By u(n) we denote
the maximum number of 2-packings in a connected graph on n vertices.

3.2.1 General graphs

Clearly we have u(n) ≤
∑n

k=0 uk(n). When we add the bounds for uk ob-
tained in Theorem 3.6 over all possible values of k, we obtain the following
corollary.

Corollary 3.8 ([57]). The number of all 2-packings in a connected graph on

n vertices does not exceed Fibn+1 = O∗((1+
√

5
2

)n) = O(1.6181n)†.

However, we can obtain a signi�cantly better bound, using slightly more
complicated branching rules. The following theorem is the main result of
this section.

Theorem 3.9 ([58]). The maximum number of 2-packings in a connected
graph on n vertices is u(n) = O(1.5400n). Moreover, all such 2-packings can
be enumerated within this time bound, using polynomial space.

Proof. Let G be a connected graph with n ≥ 3 vertices and exactly u(n)
2-packings. By Observations 3.2 and 3.3 we can assume that G is a tree with
no two leaves having a common neighbor.

Let P be a longest path in G. Let v be an end-vertex of P , u be its
neighbor on P , and c be a neighbor of u on P other that v (the third vertex
on P ). Recall that deg(u) = 2 by Observation 3.3. Consider the following
cases.

(A) Let deg(c) ≤ 2. We can partition the set of all 2-packings into two
subsets: one containing 2-packings X in which v /∈ X and the other
one in which v ∈ X (see Figure 3.3).

If v ∈ X, then none of the vertices {u, c} belongs to X. Since the graphs
G − v and G − {v, u, c} are connected, we obtain the following recursive
inequality:

u(n) = u(G) ≤ u(G− v) + u(G− {v, u, c}) ≤ u(n− 1) + u(n− 3) (3.1)

†Fibn denotes the n-th Fibonacci number.
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v u c

Figure 3.3: The case (A) with deg(c) ≤ 2.

(B) Let deg(c) > 2. We denote by d the neighbor of c on P other than u.
Let U = NG(c) \ {d} and let W = NG(U) \ {c}. Then all vertices in
W are leaves of G (since otherwise P is not the longest path) and all
vertices in U except at most one (which may be a leaf) are of degree
2, because by Observation 3.3 there are no two leaves with a common
neighbor. Let q be the number of vertices in U , which are not leaves.
One of the following two subcases occurs:

(B0) No vertex from U is a leaf in G (see Figure 3.4(a), q ≥ 2)).

(B1) There exists a vertex x ∈ U which is a leaf in G (see Figure 3.4(b),
q ≥ 1).

w1

w2

wq

u1

u2

uq

c

(a) The case (B0) with deg(c) > 2
and no neighbor of c being a leaf.

w1

wq

x

u1

uq

c

(b) The case (B1) with deg(c) > 2
and one neighbor of c being a leaf.

Figure 3.4: Subcases (B0) and (B1).

We can partition the set of all 2-packings into two subsets: one containing
2-packings with non-empty intersection withW ∪U and the other containing
the remaining 2-packings. Let X be a 2-packing in G. If X ∩ (W ∪ U) = ∅,
then X is just a 2-packing in G − (W ∪ U). If X̂ := X ∩ (W ∪ U) 6= ∅,
then X̂ must be a 2-packing in G[W ∪ U ∪ {c}]. Notice that the number of
non-empty 2-packings X̂ in G[W ∪ U ∪ {c}], such that c /∈ X̂ is equal to:
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1. 2q − 1︸ ︷︷ ︸
X∩U=∅

+ q · 2q−1︸ ︷︷ ︸
X∩U 6=∅

= (q + 2)2q−1 − 1 for q ≥ 2 in the case (B0).

2. 2q − 1︸ ︷︷ ︸
X∩U=∅

+ 2q︸︷︷︸
x∈X

+ q · 2q−1︸ ︷︷ ︸
X∩(U\{x})6=∅

= (q+ 4)2q−1− 1 for q ≥ 1 in the case (B1).

Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected,
we obtain that u(n) = u(G) ≤ u(G − (W ∪ U)) + u(G − (W ∪ U ∪ {c})).
Depending on the case, this gives us the following recursions:

u(n) ≤u(n− 2q) +
(
(q + 2)2q−1 − 1

)
u(n− 2q − 1)

u(n) ≤u(n− 2q − 1) +
(
(q + 4)2q−1 − 1

)
u(n− 2q − 2).

We shall prove by induction on n that for n ≥ 0 the following holds:

u(n) ≤ 2 · τn, (3.2)

where τ = 1.5399.. is the positive root of the equation x7 = x+ 19.
It is easy to observe that the inequality (3.2) holds for n ≤ 2. Now assume

that the inequality holds for all values smaller than n.
Case (A): u(n) ≤ u(n− 1) + u(n− 3) ≤ 2τn−1 + 2τn−3 = 2(τ 2 + 1)τn−3 <
2 · τ 3 · τn−3 = 2 · τn

Case (B0):

u(n) ≤u(n− 2q) +
(
(q + 2)2q−1 − 1

)
u(n− 2q − 1)

≤2 · τn−2q + 2
(
(q + 2)2q−1 − 1

)
τn−2q−1

≤2 · τn
(
τ−2q + ((q + 2)2q−1 − 1) · τ−2q−1

)
=2 · τn ·

(
1

τ 2q
+

(q + 2)2q−1 − 1

τ 2q+1

)
We chose τ to be the minimum value such that

(
1
τ2q

+ (q+2)2q−1−1
τ2q+1

)
≤ 1

for every q ≥ 2. By a standard reasoning one can prove that this minimum
is achieved by the root of the equation τ 7 = τ + 19. For this value of τ
consider the function h0(q) = 1

τ2q
+ (q+2)2q−1−1

τ2q+1 . It is easy to verify that h0(q)
is decreasing for all q ≥ 3. Moreover, we have h0(2) ≈ 0.9860 < 1 and
h0(3) = 1. Hence u(n) ≤ 2 · τn

(
1
τ2q

+ (q+2)2q−1−1
τ2q+1

)
≤ 2 · τn.

The case (B0) for q = 3 determines the complexity of the whole algorithm.
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Case (B1):

u(n) ≤u(n− 2q − 1) +
(
(q + 4)2q−1 − 1

)
u(n− 2q − 2)

≤2 · τn−2q−1 + 2
(
(q + 4)2q−1 − 1

)
τn−2q−2

=2 · τn
(
τ−2q−1 + ((q + 4)2q−1 − 1) · τ−2q−2

)
=2 · τn ·

(
1

τ 2q+1
+

(q + 4)2q−1 − 1

τ 2q+2

)

Since the function h1(q) = 1
τ2q+1 + (q+4)2q−1−1

τ2q+2 is decreasing for all q ≥ 1 and

h1(1) ≈ 0.9852 < 1, we obtain: u(n) ≤ 2 · τn
(

1
τ2q+1 + (q+4)2q−1−1

τ2q+2

)
≤ 2 · τn.

We have shown that regardless of the structure of G, the function 2 · τn is
an upper bound on the number of 2-packings in G. Hence u(n) = O(τn) =
O(1.5400n). Again, our proof is constructive and can be easily transformed
into an algorithm enumerating all 2-packings.

Now we shall show a lower bound for the value of u(n). Let us consider the
graphs Ak, Bk, Ck andDk shown in Figure 3.5. Observe thatDk is isomorphic
to Ak and the reason to introduce it as a separate graph is only technical.

w

u

v

1 2 k

Ak

1 2 k

Bk

1 2 k

Ck

1 2 k

Dk

Figure 3.5: Graphs showing the lower bound on u(n).
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Let ak, bk and ck denote the number of 2-packings in the graphs Ak, Bk

and Ck, respectively. Let dk denote the number of 2-packings in the graph
Dk, which do not contain the crossed out vertex.

Consider the graph Ak and let v, u, w denote the marked vertex, its neigh-
bor and the neighbor of u (other than v), respectively (see Figure 3.5). We
can partition the set of all 2-packings in Ak into two subsets: those containing
v and the remaining ones. If a 2-packing X contains v, then it contains no
vertex from {u,w}. Moreover, X ′ := X \{v} is a 2-packing in Ak−{v, u, w},
which is isomorphic to Ak−1. Therefore X ′ can be chosen in ak−1 ways. On
the other hand, if a 2-packing X does not contain v, then it is a 2-packing in
Ak − v (which is isomorphic to Bk−1), and thus can be chosen in bk−1 ways.
So we obtain that ak = ak−1 + bk−1.

By similar analysis of the remaining three graphs, we obtain the following
system of recursions: 

ak = bk−1 + ak−1

bk = ck + dk

ck = ak + 2dk−1

dk = 2ak−1 + dk−1.

By transforming it, we obtain ak = 3ak−1 + 4ak−3. This equation has a
solution ak = Θ(τ k), where τ ≈ 3.3553 is the root of x3 = 3x2 + 4. Since k =
n/3, the graph Ak contains ak = Θ(τn/3) 2-packings (where τ 1/3 ≈ 1.4970).
This gives us the following theorem.

Theorem 3.10 ([58]). The maximum number of 2-packings in a connected
graph with n vertices is Ω(1.4970n).

3.2.2 Selected graph classes

In this section we turn to special classes of graphs.

Regular graphs

Let us start by mentioning an unpublished result by Alon [3].
Alon [4] and then Kahn [60] and Zhao [89] considered the problem of

bounding the maximum number of independent sets in a regular graph. After
a series of papers, the following bound has been established.
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Theorem 3.11 (Zhao [89]). The maximum number of independent sets in a
d-regular graph with n vertices is at most (2d+1 − 1)

n
2d .

To see that this bound is tight, one has to consider a graph consisting of
disjoint copies of the complete bipartite graph Kd,d.

Motivated by these results, �uczak [71] stated a problem of determining
the maximum number of 2-packings in a d-regular graph. Intuitively, the
extremal graph should consist of disjoint copies of Kd+1. The number of
2-packings in such a graph is clearly (d + 2)

n
d+1 . This intuition has been

con�rmed by Alon, using the following version of Shearer's lemma.

Lemma 3.12 (Chung et al. [17]). Let N be a �nite set and let F be a family
of its subsets. Let S = {S1, S2, . . . , Sm} be a family of subsets of N , such that
every element of N belongs to at least k members of S. For each i = 1, 2, ..,m
de�ne Fi = {F ∩ Si : F ∈ F}. Then

|F|k ≤
m∏
i=1

|Fi|.

Theorem 3.13 (Alon [3]). The maximum number of 2-packings in a d-
regular graph with n vertices is (d+ 2)

n
d+1 .

Proof. Let G = (V,E) be a d-regular graph with n vertices. By F we denote
the family of all 2-packings in G. De�ne S = {N [v] : v ∈ V }. Note that every
vertex from G belongs to exactly d+ 1 sets from S. Moreover, no 2-packing
from F contains more than one vertex from each closed neighborhood N [v]
(otherwise it would contain two vertices in distance at most 2 from each
other). Therefore |Fv| = |{F ∩N(v) : F ∈ F}| = d + 2 (each intersection is
either empty or has exactly one element). From Lemma 3.12 we have:

|F|d+1 ≤
∏
v∈V

|Fi| = (d+ 2)n

|F| ≤(d+ 2)
n
d+1 .

It is interesting to note a di�erent behavior of power bases in the bounds
for the maximum number of independent sets and the maximum number of
2-packings in a d-regular graph for large d. Namely, limd→∞

n
√

(2d+1 − 1)
n
2d

is
√

2, while limd→∞
n

√
(d+ 2)

n
d+1 is 1.
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Claw-free graphs

The complete bipartite graph K1,3 is also called a claw. A graph is called
claw-free if it contains no copy of K1,3 as an induced subgraph. Claw-free
graphs form a well-studied class of graphs. We refer the reader to the survey
by Branstädt et al. [11] for properties of this graph class, which are not listed
here.

In this section we show an asymptotically tight bound for ucf (n), being
the maximum number of 2-packings in a connected claw-free graph with n
vertices. The idea of the proof is similar to the proof of Theorem 3.9, however
it involves an additional analysis of the structure of claw-free graphs. Let us
start with the following simple observation.

Observation 3.14. If the diameter of G is at most 2, then at most one of
the vertices in V (G) can belong to a 2-packing. Hence u(G) ≤ n+ 1.

The following lemma, in which we investigate the structure of claw-free
graphs, is the key ingredient of our proof for the bound on ucf (n).

Lemma 3.15. Let G be a claw-free graph with diam(G) ≥ 3 and let T be its
spanning tree with the largest diameter. Let P be a longest path in T , v1 be
an end-vertex of P , u1 be its neighbor on P , w be the neighbor of u1 on P
other that v1 (the third vertex on P ) and x be a neighbor of w on P other
that u1 (the fourth vertex on P ). One of the following cases occurs:

Case (C1) degT u1 = 2 and degT w = 2 (see Figure 3.6).

Case (C2) degT u1 = 2 and degT w = 3. The T -neighbor y1 of w other
than u1 and x is a leaf in T . Moreover, xu1 is an edge in G (see Figure 3.7).

v1 u1 w x

Figure 3.6: Case (C1)

Proof. We shall proceed is several steps by proving a few claims.
Claim 1. For every T -neighbor u of w other than x we have degT u ≤ 2.
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v1

y1

u1

w

x

Figure 3.7: Case (C2)

Proof of Claim 1. Suppose that there exists a neighbor u of w with degT u >
2. Let v and v′ be T -neighbors of u other than w. Since P is a longest path
in T , both v and v′ are leaves in T (see Figure 3.8).

v

v′

u w

Figure 3.8: There exist u ∈ NT (w) \ {x} with deg u > 2.

Notice that since G is claw-free, there exists in G at least one of the edges
vw, v′w or vv′.

Subcase 1.1. yw ∈ E(G) for y ∈ {v, v′} (without loss of generality let
y = v).

Consider the spanning tree T ′ := (V (G), E(T ) ∪ {vw} \ {uw}) (see the
Figure 3.9). Note that the diameter of T ′ is larger than the diameter of T ,
which contradicts to the choice of T .

v

v′

u w
v

v′

u w

Figure 3.9: Subcase 1.1

Subcase 1.2 vv′ ∈ E(G).
Consider the spanning tree T ′ := (V (G), E(T ) ∪ {vv′} \ {uv′}). Again

diam(T ′) > diam(T ) and we obtain a contradiction (see Figure 3.10).
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v

v′

u w
v

v′

u w

Figure 3.10: Subcase 1.2

�

Let y1, .., yq be the T -neighbors of w other than x, which are leaves in T .
Let u1, .., up be the neighbors of w other than x, which have degree 2 in T .
Moreover, for any i ∈ {1, 2, .., p}, by vi we denote the neighbor of ui other
than w (see Figure 3.11).

v1

v2

vp

u1

u2

up

y1

y2

yq

w x

Figure 3.11: Neighborhood of w in T .

Claim 2. We have p = 1.

Proof of Claim 2. By the de�nition of u1 we have p ≥ 1. Suppose that p ≥ 2
and consider the vertices u1, u2. Since G is claw-free, at least one of the edges
u1x, u2x or u1, u2 exists in G.

Subcase 2.1. uix ∈ E(G) for some i ∈ {1, 2} (without loss of generality
let i = 1).
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Consider the spanning tree T ′ := (V (G), E(T ) ∪ {u1x} \ {xw}). Since
diam(T ′) > diam(T ), we obtain a contradiction (see Figure 3.12).

v1 u1

w x

v2 u2

v1 u1

v2 u2

w x

Figure 3.12: Subcase 2.1

Subcase 2.2. u1u2 ∈ E(G).
Consider the spanning tree T ′ := (V (G), E(T ) ∪ {u1u2} \ {u2w}). Since

diam(T ′) > diam(T ), we obtain a contradiction (see Figure 3.13).

v1 u1

w x

v2 u2

v1 u1

v2 u2

w x

Figure 3.13: Subcase 2.2

�

Claim 3. We have q ≤ 1.

Proof of Claim 3. Suppose that q ≥ 2 and consider the vertices y1, y2. Since
G is claw-free, at least one of the edges y1x, y2x or y1, y2 exists in G.

Subcase 3.1. yix ∈ E(G) for some i ∈ {1, 2}.
We proceed in a way analogous to the Subcase 2.1, obtaining a spanning

tree with the diameter larger than diam(T ) � a contradiction.

Subcase 3.2. y1y2 ∈ E(G).
Since G is claw-free, there also exists in G at least one of the edges

y1u1,y1x or u1x.
If y1u1 ∈ E(G), then consider the tree T ′ := (V (G), E(T )∪{y1y2, y1u1} \

{wu1, wy1}. If y1x ∈ E(G), then consider the tree T ′ := (V (G), E(T ) ∪
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{y1y2, y1x}\{wy1, wx}. If u1x ∈ E(G), then consider the tree T ′ := (V (G), E(T )∪
{y1y2, u1x} \ {wy1, wx} (see Figure 3.14). In all cases diam(T ′) > diam(T ),
which contradicts to the choice of T .

v1 u1

y1

y2 w x

v1 u1

y1

y2 w x

v1 u1

y1

y2 w x

v1 u1

y1

y2 w x

v1 u1

y1

y2 w x

v1 u1

y1

y2 w x

Figure 3.14: Subcase 3.2

�

Claim 4. If q = 1, then the edge xu1 exists in G.

Proof of Claim 4. Suppose the contrary, so xu1 /∈ E(G). Since G is claw-free,
at least one of the edges xy1 or y1u1 exists in G. If xy1 ∈ E(G), then we
proceed in a way analogous to the one in Subcase 2.1. In the latter case, we
proceed as in Subcase 2.2. In both cases we �nally obtain a spanning tree T ′

with diam(T ′) > diam(T ), which is a contradiction. �

This completes the proof of Lemma 3.15.

Now we are ready to present the main theorem of this section.
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Theorem 3.16. The value ucf (n) is Θ(τn), where τ ≈ 1.4656. Moreover, all
2-packings in a connected claw-free graph with n vertices can be enumerated
in time O(1.4656n), using polynomial space.

Proof. We shall prove by induction on n that for n ≥ 0 the following holds:

ucf (n) ≤ 2 · τn (3.3)

where τ = 1.4655.. is the positive root of the equation x3 = x2 + 1.
Clearly the theorem is true for all n < 3. Assume that n ≥ 3 and let

G be a connected claw-free graph on n vertices with ucf (n) 2-packings. If
diam(G) ≤ 2, then by the Observation 3.14 we have ucf (n) ≤ n+ 1 ≤ 2 · τn
for n ≥ 3. Thus we can assume that diam(G) ≥ 3. Let T be a spanning tree
of G with the largest diameter. De�ne P, v1, u1, y1, w and x as in Lemma
3.15. By Lemma 3.15 one of the cases (C1) or (C2) occurs (see Figures 3.6
and 3.7).

Case (C1). In this case we can partition the set of all 2-packings into two
disjoint subsets: one subset containing 2-packings X in which v1 /∈ X and the
other subset with 2-packings X in which v1 ∈ X. If v1 ∈ X, then none of the
vertices {u1, w} can belong to X. Since the graphs G−v1 and G−{v1, u1, w}
are connected and claw-free, we obtain the following recursion:

ucf (n) =u(G) ≤ u(G− v1) + u(G− {v1, u1, w})
≤ucf (n− 1) + ucf (n− 3).

Using induction hypothesis we obtain that:

ucf (n) ≤ ucf (n− 1) + ucf (n− 3) ≤ 2 · τn−3(τ 2 + 1) = 2 · τn.

The Case (C1) is the worst one and determines the complexity of the algo-
rithm.

Case (C2). In this case we can partition the set of all 2-packings into two
disjoint subsets: one with 2-packings containing no vertex from {v1, y1} and
the other one with the remaining 2-packings. Let X be a 2-packing in G.

If {v1, y1}∩X 6= ∅, then none of the vertices in {u1, w, x} can belong to X
(recall that xu1 ∈ E(G)). On the other hand {v1, y1}∩X can be equal to {v1}
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or {y1} or {v1, y1}. Since the graphs G − {v1, y1} and G − {v1, y1, u1, w, x}
are connected and claw-free, we obtain the following recursion:

ucf (n) =u(G) ≤ u(G− {v1, y1}) + 3u(G− {v1, y1, u1, w, x})
≤ucf (n− 2) + 3ucf (n− 5).

By the induction hypothesis we obtain that:

ucf (n) ≤ ucf (n− 2) + 3ucf (n− 5) ≤

2τn−2 + 6τn−5 ≤ 2 · τn
(

1

τ 2
+ 3

1

τ 5

)
It is easy to verify that

(
1
τ2

+ 3 1
τ5

)
< 1 and thus ucf (n) ≤ 2 · τn. Thus we

have shown that ucf (n) = O(τn).
On the other hand, a path is claw-free and there are exactly Θ(τn) 2-

packings in Pn. Again, the proof is constructive and can be easily transformed
into an algorithm for enumerating 2-packings.

Graphs with small dominating set

In this section we investigate a class of graphs with minimum dominating set
of size at most r (let us call them r-dominated). Let us start by recalling the
de�nition of a dominating set. Given a graph G = (V,E), a subset D ⊆ V
is called a dominating set if each vertex of V \D has at least one neighbor
in D. In this section, graphs do not have to be connected. Assume that D
is a dominating set in a given graph G and |D| ≤ r. Then the set of vertices
of G can be easily partitioned into r disjoint stars with centers in vertices of
D. If some vertex is dominated by more than one vertex from D, we include
it to only one, arbitrarily chosen, star. Let S(v) for v ∈ D denote the set of
vertices of a star with the center in v.

Proposition 3.17 ([53]). There are at most
(
r
k

) (
n
r

)k
2-packings of size k

in an r-dominated graph G with n vertices. Moreover, if a dominating set
of G with at most r vertices is given, then we can enumerate all k-element

2-packings in G in time O∗
((

r
k

) (
n
r

)k)
.
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Proof. Notice that at most one vertex from every star belongs to a 2-packing.
First we can choose k vertices w1, w2, .., wk from D. Then we can choose the
vertices for the 2-packing in

∏k
i=1 |S(wi)| ways. It is easy to verify that this

product is maximized if all factors are equal.
Hence the number of sets can be bounded by

∑
distinct

w1,w2,..,wk∈D

k∏
i=1

|S(wi)| ≤
(
r

k

)(n
r

)k
.

If we consider a graph consisting of r disjoint stars, each with the same
number of vertices, we notice that the bound presented above is tight.

Let us mention that, as it was shown by Fomin et al. [36], �nding a mini-
mum dominating set in a graph on n vertices can be done in time O(1.5263n)
and polynomial space. Using some additional memorization, the authors were
also able to speed the algorithm up to O(1.5137n), but the exponential space
is needed in this case.

If we add up the values of upper bounds from Proposition 3.17 over all
possible k's, we obtain the following corollary.

Corollary 3.18. There are at most
∑r

k=0

(
r
k

)
(n
r
)k = (1 + n

r
)r 2-packings in

an r-dominated graph with n vertices.

A simple calculation shows that for n
r
> 3.4657 the bound from Corollary

3.18 is better than the bound from Corollary 3.9. Observe that power base
in the bound in Corollary 3.18 converges to 1 as n

r
grows (more precisely,

limn/r→∞
n

√(
1 + n

r

)r
= 1).
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3.3 Proper pairs

A pair of disjoint subsets (X, Y ) of a vertex set of a graph G is called a proper
pair if and only if X is a 2-packing. The number of proper pairs in G will be
denoted by pp(G) and by the de�nition, we have

pp(G) =
n∑
k=0

uk(G) · 2n−k. (3.4)

Finally, we de�ne

pp(n) = max{pp(G) : G is a connected graph with n vertices}.

The value of pp(n) will be needed to estimate the complexity of an algo-
rithm for L(2, 1)-labeling of graphs, described in Section 4.3.

Clearly we can use the bound for uk(n) from Theorem 3.6, obtaining that
pp(n) ≤

∑n
k=0 uk(n) · 2n−k ≤

(
n−k+1

k

)
· 2n−k = O∗

(
(1 +

√
3)n
)

= O(2.7321n).
However, we can obtain a signi�cantly better bound by enumerating all
proper pairs similarly as we enumerated all 2-packings.

In general, when enumerating all 2-packings X in a graph G, we choose
some subset of vertices A to be included in X, and some subset of vertices B
(disjoint with A) not belonging to X. Then we proceeded recursively with
the graph G− (A∪B). Now, every vertex from B can be contained in Y or
not. Therefore, in most cases, we just include an additional multiplicative
factor of 2|B| in all recursions corresponding to the branching rules.

Since all proofs in this section are similar to the proofs of corresponding
theorems in Section 3.2, we just provide the sketches of proofs, pointing out
the di�erences.

3.3.1 General graphs

In this section we show an upper and a lower bound for pp(n).

Theorem 3.19 ([53]). The value of pp(n) is bounded above by O(2.64877n).
All proper pairs in a connected graph with n vertices can also be enumerated
within this time bound, using polynomial space.

Proof. The proof is analogical to the proof of Theorem 3.9. Again we obtain
cases (A) � see Figure 3.3, and (B) with subcases (B0) and (B1) � see Figure
3.4.
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Case (A): Here we obtain the following recursion:

pp(G) ≤ 2 pp(G− v)︸ ︷︷ ︸
v/∈X

+ 4 pp(G− {v, u, c})︸ ︷︷ ︸
v∈X

and hence
pp(n) ≤ 2 pp(n− 1) + 4 pp(n− 3). (3.5)

Case (B): In this case we obtain the following:

pp(G) ≤ 2|W∪U |pp(G− (W ∪ U))︸ ︷︷ ︸
(W∪U)∩X=∅

+α · pp(G− (W ∪ U ∪ {c}))︸ ︷︷ ︸
(W∪U)∩X 6=∅

,

where α denotes the number of proper pairs (X̂, Ŷ ) in G[W ∪U ∪ {c}], such
that X̂ 6= ∅ and c /∈ X̂. Note that each of the vertices in (W ∪ U ∪ {c}) \ X̂
can be in Ŷ or outside X̂ ∪ Ŷ . Therefore α is equal to:

1. (3q − 2q)2q+1︸ ︷︷ ︸
X̂∩U=∅

+ q · 3q−12q+1︸ ︷︷ ︸
X̂∩U 6=∅

= 3q−12q+1(3 + q) − 22q+1 for q ≥ 2 in the

case (B0).

2. (3q − 2q)2q+2︸ ︷︷ ︸
X̂∩U=∅

+ q · 3q−12q+2︸ ︷︷ ︸
X̂∩(U\{x})6=∅

+ 3q2q+1︸ ︷︷ ︸
X̂∩U={x}

= 3q−12q+1(9 + 2q) − 22q+2 for

q ≥ 1 in the case (B1).

This gives us the following recursive formulae:

pp(n) ≤ 22q
pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1) (3.6)

(for q ≥ 2) in case (B0) and

pp(n) ≤ 22q+1
pp(n−2q−1)+(3q−12q+1(9+2q)−22q+2) pp(n−2q−2) (3.7)

(for q ≥ 1) in case (B1).
Using methods similar to the ones in the proof of Theorem 3.9, we observe

that the case (B0) for q = 2 is the worst one. It is described by the recursion
pp(n) ≤ 16 pp(n − 4) + 88 pp(n − 5). Thus we obtain that the inequalities
(3.5), (3.6) and (3.7) are satis�ed by pp(n) ≤ 2 · τn, where τ = 2.64876.. is
the positive root of the equation x5 = 16x+ 88.
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For the lower bound, again consider the graphs Ak, Bk, Ck, Dk in Figure
3.5. Let a′k, b

′
k and c

′
k denote the number of proper pairs in the graphs Ak, Bk

and Ck, respectively. Let d′k denote the number of such proper pairs (X, Y )
in the graph Dk, in which the 2-packing X does not contain the crossed out
vertex.

Consider the graph Ak and let v, u, w denote the marked vertex, its neigh-
bor and the neighbor of u (other than v), respectively (again see Figure 3.5).
We can partition the set of all proper pairs in Ak into two subsets: one
containing proper pairs (X, Y ) in which v ∈ X and the other one with the
remaining proper pairs. Consider a proper pair (X, Y ). If a 2-packing X con-
tains v, then it contains no vertex from {u,w}. However, each of those ver-
tices may or may not belong to Y . Moreover, (X ′, Y ′) := (X\{v}, Y \{u,w})
is a proper pair in Ak − {v, u, w}, which is isomorphic to Ak−1. Therefore
(X ′, Y ′) can be chosen in a′k−1 ways. On the other hand, if a 2-packingX does
not contain v, then it is a 2-packing in Ak− v (which is isomorphic to Bk−1).
Also v may or may not belong to Y . So we obtain that a′k = 4a′k−1 + 2b′k−1.

By similar analysis of the remaining three graphs, we obtain the following
system of recursions: 

a′k = 2b′k−1 + 4a′k−1

b′k = 2c′k + 2d′k
c′k = 2a′k + 12d′k−1

d′k = 4d′k−1 + 12a′k−1.

Solving this system we obtain the recursive formula a′k = 16a′k−1 + 576a′k−3

and therefore a′k = Θ(τ k), where τ ≈ 17.8149 is the positive solution of the
equation x3 = 16x2+576. Since k = n/3, the graph Ak contains a′k = Θ(τn/3)
proper pairs and τ 1/3 ≈ 2.6117. Hence we obtain the following corollary.

Corollary 3.20 ([53]). The maximum number of proper pairs in a connected
graph is Ω(2.6117n).

3.3.2 Selected graph classes

Claw-free graphs

In this section we investigate the value ppcf (n), being the maximum number
of proper pairs in a claw-free graph on n vertices. Again, the idea of the
proof of the main theorem is very similar to the one of Theorem 3.16.
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Theorem 3.21 ([53]). The value of ppcf (n) is Θ(τn), where τ ≈ 2.59431.
All proper pairs in a connected claw-free graph with n vertices can also be
enumerated in time O(2.5944n), using polynomial space.

Proof. It is easy to verify that the theorem is true for all graphs with diameter
at most 2. Let G be a connected claw-free graph with n ≥ 3 vertices and
exactly ppcf (n) proper pairs and let T be its spanning tree with the largest
diameter. By Lemma 3.15 one of the cases (C1) or (C2) occurs (we de�ne
P , v1, u1, y1, w and x as in Lemma 3.15) � see Figures 3.6 and 3.7.

Case (C1). We obtain the following recursion:

ppcf (n) =pp(G) ≤ 2 pp(G− v1)︸ ︷︷ ︸
v1 /∈X

+ 4 pp(G− {v1, u1, w})︸ ︷︷ ︸
v1∈X

≤2 ppcf (n− 1) + 4 ppcf (n− 3).

(3.8)

Case (C2). We separately consider proper pairs (X, Y ) in which X ∩
{v1, y1} = ∅ and the remaining ones. If X ∩ {v1y1} = ∅, then any vertex
from {v1, y1} may or may not be included in Y (this gives us 4 possibilities)
and we continue with the graph G− {v1, y1}. If X ∩ {v1, y1} 6= ∅, then none
of the vertices from {u1, w, x} can be in X. However, each of them can be
in Y . Moreover, every non-empty subset of {v1, y1} can be in X and any
every vertex which is not in X, may or may not be included into Y . This
gives us 23 · (32 − 22) = 40 possibilities and we can continue with the graph
G− {v1, y1, u1, w, x}.

ppcf (n) =pp(G) ≤ 4pp(G− {v1, y1}) + 40pp(G− {v1, y1, u1, w, x})
≤4ppcf (n− 2) + 40ppcf (n− 5).

(3.9)

One can verify that inequalities (3.8) and (3.9) imply that ppcf (n) ≤ 2·τn,
where τ ≈ 2.59431 is the positive root of the equation x3 = 2x2 + 4. As the
path Pn has exactly Θ(τn) proper pairs, the obtained bound is tight (up to
a polynomial factor).

Graphs with a small dominating set

Let G be an r-dominated graph with n vertices. Using the formula (3.4) and
the bound for uk(G) from Proposition 3.17, we obtain the following corollary.
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Corollary 3.22 ([53]). There are at most 2n−r
(
2 + n

r

)r
proper pairs in any

r-dominated graph on n vertices. If a dominating set of size at most r is
given, then we can enumerate them in time O∗(2n−r

(
2 + n

r

)r
), using polyno-

mial space.

A simple calculation shows that for n
r
> 3.7729 the bound from Corollary

3.22 is better than the bound from Theorem 3.19. Observe that the power
base in the bound from Corollary 3.22 converges to 2 as n

r
grows (more

formally, we have limn/r→∞
n

√
2n−r

(
2 + n

r

)r
= 2).
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3.4 Red-black graphs

In this section we consider graphs with two kinds of edges. A triple G =
(V,R,B) is called a red-black graph if V is a �nite set of vertices and R,B
are disjoint families of 2-element subsets of V ful�lling the condition: if
vw ∈ B and vu ∈ B, then uw ∈ R ∪ B for any pairwise distinct vertices
v, u, w ∈ V . For a red-black graph G = (V,R,B) we refer to V , R, B, R∪B
by V (G), R(G), B(G), E(G), respectively. We call R(G) the set of red edges
and B(G) the set of black edges, while E(G) is the set of edges.

If not stated otherwise, we de�ne all basic graph-theoretic terms, such as
connectivity, independent set, induced subgraphs etc. for a red-black graph
(V,R,B) to be equivalent to the corresponding terms for the graph (V,R∪B).

An R-closure of a graph H is a red-black graph G, such that V (G) =
V (H), B(G) = E(H) and R(G) = E(H2) \ E(H) = {uw ∈ V (H) : ∃v ∈
V (H) uv ∈ E(H) and vw ∈

(
V (H)

2

)
and uw /∈ E(H)}.

A red neighborhood (black neighborhood, respectively) of a vertex v, de-
noted by NR(v) (NB(v), respectively), is the set of vertices w such that
vw ∈ R(G) (vw ∈ B(G), respectively). The red neighborhood and the black
neighborhood of a set Y of vertices in G are denoted byNR(Y ) =

⋃
v∈Y NR(v)

and NB(Y ) =
⋃
v∈Y NB(v), respectively.

Observation 3.23. If G is the R-closure of some graph H, then independent
sets in G are exactly 2-packings in H.

Now let us extend the de�nition of proper pairs (see Section 3.3) to red-
black graphs. For a red-black graph G, a pair (X, Y ) of disjoint subsets of
V (G) is proper if X is independent.

An independent set X is R-maximal if every vertex v such that NR(v) =
N(v), is either in X or has a neighbor in X. We say that a proper pair
(X, Y ) is R-maximal if X is R-maximal.

For a red-black graph G let GB denote the red-black graph induced by
the set of vertices belonging to black edges, i.e. G[

⋃
e∈B(G) e] (note that it

may have some red edges). By GR we denote the red-black subgraph induced
by the set of vertices V (G) \ V (GB). We say that a red-black graph G is
black (red, respectively) if G = GB (G = GR, respectively).
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3.4.1 The number of R-maximal independent sets

Let rk(G) denote the maximum number of k-element R-maximal independent
sets in a red-black graph G and let rk(n) be a maximum of rk(G) over all
red-black graphs G on n vertices (note that we do not require connectivity).

We shall use the bound for the number of k-element 2-packings by Havet
et al. [45] we already mentioned in Section 3.1 in Theorem 3.4. For our
purpose it is more convenient to restate it in the language of R-closures,
according to Observation 3.23.

Corollary 3.24 (Havet et al. [45]). The maximum number u′k(n) of k-
element independent sets in a graph with no isolated vertices, which is an
R-closure of some graph, is at most

(
n/2
k

)
· 2k, where n denotes the number

of vertices in a graph.

We shall also use the following bound for the maximum number of k-
element maximal independent sets.

Theorem 3.25 (Eppstein [24]). The maximum number misk(n) of k-element
maximal independent sets in a graph on n vertices is at most 34k−n4n−3k =
(81/64)k(4/3)n.

Now we can bound the value of rk(n).

Lemma 3.26 ([54]). Let G be a red-black graph on n vertices with rk(n)
R-maximal independent sets and let n′ = |V (GB)|. Then

rk(n) ≤ (4/3)n−n
′
(

81

64

)k k∑
k′=0

(
n′/2

k′

)(
128

81

)k′
.

Moreover, all R-maximal independent sets in G can be enumerated in time

nO(1) · (4/3)n−n
′ (81

64

)k∑k
k′=0

(
n′/2
k′

) (
128
81

)k′
, using polynomial space.

Proof. We shall construct all R-maximal independent sets X in two steps:

1. From GB select an independent set XB.

2. FromGR select a maximal independent setXR such thatXR∩N(XB) =
∅.

3. Return X = XB ∪XR.
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To see that this algorithm is correct, consider sets XB and XR selected
in steps 1 and 2. Since each of the sets XB and XR is independent and
XR ∩N(XB) = ∅, we obtain that X = XB ∪XR is independent in G. Since
GB is induced by the set of black edges (and therefore has no vertices v with
N(v) = NR(v)) and XR is maximal in GR, we can observe that X is an
R-maximal independent set in G.

On the other hand consider an R-maximal independent set X and let
XB = X ∩V (GB) and XR = X ∩V (GR). Clearly each of the subsets XR and
XB is independent and there are no edges between XB and XR. Moreover,
since X is R-maximal, also XR has to be R-maximal.

Notice that the R-closure of the graph induced by the black edges of GB is
a spanning subgraph ofGB with no isolated vertices. Since every independent
set in a graph is independent in its spanning subraph, by Corollay 3.24 we
get the following bound:

rk(n) ≤
k∑

k′=0

u′k′(n
′) ·misk−k′(n− n′) ≤

k∑
k′=0

(
n′/2

k′

)
2k
′
(

81

64

)k−k′ (
4

3

)n−n′
=

=

(
4

3

)n−n′ (
81

64

)k k∑
k′=0

(
n′/2

k′

)(
128

81

)k′
.

As all the local operations are polynomial, the time complexity is determined
by the upper bound for the number of generated sets (up to a polynomial
factor).
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3.4.2 The number of R-maximal proper pairs

Let rpp(G) denote the number of R-maximal proper pairs in a red-black
graph G. By rpp(n) we denote the maximum value of rpp(G) over all con-
nected red-black graphs on n vertices.

In this subsection we prove the following Theorem.

Theorem 3.27 ([54]). The maximum number of R-maximal proper pairs in
a connected red-black graph on n vertices is Θ(

√
8
n
) = O(2.8285n). They can

be enumerated in time O∗(
√

8
n
), using polynomial space.

The proof requires a few steps. First let us prove an appropriate bound
for red graphs. Let rppR(n) denote the maximum value of rpp(G) over all red
graphs on n vertices. Note that R-maximal independent sets in a red graph
(V,R, ∅) are just maximal independent sets in (V,R). Therefore R-maximal
proper pairs in a red graph are the pairs (X, Y ) of disjoint sets, where X is a
maximal independent set. The proof of Lemma 3.28 is inspired by an elegant
proof by Wood [87].

Lemma 3.28. We have rppR(n) = O
(

5
√

80
n
)

= O(2.4023n).

Proof. We shall prove the statement by induction on the number of vertices
n. If n ≤ 2, the statement is obviously true. Assume that n ≥ 3 and the
statement is true for all red graphs with less than n vertices.

Let G be a red graph on n vertices, such that rpp(G) = rppR(n). Let
v be a vertex of G of minimum degree δ. Notice that for every R-maximal
proper pair (X, Y ), at least one of the vertices in N [v] must be in X (since
X is a maximal independent set in G). Let w ∈ N [v] ∩ X. Since the set
X is independent, none of the vertices from N(w) belongs to it. However,
each of them may or may not be in Y . Hence we obtain the following recur-
sion: rppR(n) ≤

∑
w∈N [v] 2degw

rppR(n− degw − 1). Let d be the element of
{δ, . . . , n−1} maximizing the expression 2drppR(n−d−1). Then rppR(n) ≤∑

w∈N [v] 2drppR(n−d−1) = (δ+1)2drppR(n−d−1) ≤ (d+1)2drppR(n−d−1).

Using the induction hypothesis, we get the bound (c is a constant):

rppR(n) ≤ c · (d+ 1)2d
5
√

80
n−d−1

= c · 5
√

80
n
·

(
(d+ 1) · 2d

5
√

80
d+1

)
.
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One can easily verify that the value of (d+1)·2d
5√80

d+1 does not exceed 1 (the max-

imum value is 1, achieved for d = 4). Hence rppR(n) ≤ c
(

5
√

80
n
)

=

O( 5
√

80
n
) = O(2.4023n).

The proof of the lower bound for rppR(n) is also analogical to the case
of maximal independent sets (see Miller and Muller [75] and Moon an Moser
[76]). Consider the red graph Hk consisting of k disjoint copies of the com-
plete graph K5. A direct computation shows that rpp(Hk) = Θ

(
(5 · 24)

k
)

=

Θ
(

5
√

80
n
)
, which proves that rppR(n) = Θ

(
5
√

80
n
)
.

It is interesting to mention that the same asymptotical bound applies if
we restrict ourselves to connected red graphs. Let H ′m be the graph obtained
from Hm by adding one new vertex adjacent to exactly one vertex from each
copy of K5. It is easy to check that rpp(H ′m) = Θ

(
5
√

80
n
)
.

Let us proceed to bounding the number of R-maximal proper pairs in
black graphs. First, notice that in a black graph, R-maximal proper pairs
are just proper pairs. Therefore we can use the bounds from Section 3.3. By
Theorem 3.19 we get the following.

Observation 3.29. If G is a connected black graph with n vertices, then
rpp(G) = O(2.6488n). Moreover, all R-maximal proper pairs in G can be
enumerated in time O(2.6488n), using polynomial space only.

If G is not connected, but has no isolated vertices, then we obtain the
following bound.

Lemma 3.30. The maximum number of R-maximal proper pairs in a black
graph G without isolated vertices is upper-bounded by O(

√
8
n
) = O(2.8285n).

Proof. Let us consider proper pairs (X, Y ) and let k = |X|. Since the graph
G has a spanning subgraph, which is an R-closure of some graph and has
no isolated vertices, we can use Corollary 3.24. The set X can be chosen in
at most u′k(n) ways. Notice that every vertex that is not in X may or may
not be included in Y . Finally, by Corollary 3.24, we obtain the following
formula: rpp(G) =

∑n
k=0 u

′
k(n) · 2n−k =

∑n
k=0

(
n/2
k

)
· 2k · 2n−k = O(

√
8
n
) =

O(2.8285n).

Now we are ready to bound the number of R-maximal proper pairs in all
connected red-black graphs.
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Proof of Theorem 3.27. Let G be a connected red-black graph on n vertices
with the largest number ofR-maximal proper pairs. Again, we shall construct
pairs of sets (X, Y ) in two steps:

1. From GB select an independent set XB and a set YB disjoint with XB.

2. FromGR select a maximal independent setXR such thatXR∩N(XB) =
∅, and a set YR disjoint with XR.

3. Return X = XB ∪XR and Y = YB ∪ YR.

Notice that such constructed pairs (X, Y ) are exactly R-maximal proper
pairs in G (the correctness of this procedure can be proven similarly as in
the proof of Lemma 3.26). Since the graph GB has no isolated vertices, for
|V (GB)| = n′ we obtain the following formula by Lemmas 3.28 and 3.30:

rpp(n) =rpp(G) = O(
√

8
n′

· rppR(n− n′)) =

O(
√

8
n′

· 5
√

80
n−n′

) = O(
√

8
n
) = O(2.8285n).

To show that this bound is best possible, let us consider the graph Mk

consisting of k disjoint black edges and a vertex v. We join with red edges
one of the vertices of each black edge with v (see Figure 3.15).

v

Figure 3.15: Graph M4.

A direct calculation shows that rpp(Mk) = Θ(8k) = Θ(8n/2). Thus
rpp(n) = Θ(

√
8
n
). The proof is constructive and can be easily transformed

to an algorithm enumerating all R-maximal proper pairs in a connected red-
black graph with n vertices in time O∗(

√
8
n
), using polynomial space. This

completes the proof of Theorem 3.27.
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3.5 Partitions of graphs to subgraphs of bounded

order

In this section we consider a problem closely related to the factorization of
a graph (see the book by Akiyama and Kano [2] for more details). For a
graph class Γ, a Γ-factor in a graph is its spanning subgraph, whose every
connected component belongs to Γ.

We shall be mostly interested in classes Γ in which all graphs are con-
nected and have at least ` and at most `′ vertices (for some constants
1 < ` ≤ `′). It is easy to note that not every graph G admits such a Γ-
factor (a large star is a counterexample). We deal with this problem in two
ways: by relaxing our constraints (in Section 3.5.1) or by imposing some
additional constraints on the graph G (Section 3.5.2).

3.5.1 Covering graphs with connected subgraphs

If we relax the constraints for a factorization and allow a small overlap be-
tween subgraphs, we can always �nd a covering of any graph G with con-
nected subgraphs with at least ` and at most 2` vertices each.

Theorem 3.31 ([53]). Let G be a connected graph of order n and let ` < n
be a positive integer. Then there exist connected subgraphs G1, G2, . . . , Gq of
G such that

1. every vertex of G belongs to the vertex set of at least one of them,

2. the order of each of the graphs G1, G2, . . . , Gq−1 is at least ` and at
most 2` and |V (Gq)| ≤ 2`,

3.
∑q

i=1 |Gi| ≤ n
(
1 + 1

`

)
.

Proof. Choose any vertex r ∈ V (G) and consider a DFS-tree T of G rooted in
r. For every vertex v let T (v) be the subtree of T rooted in v. If |T (r)| ≤ 2`
then addG to the set of desired subgraphs and stop. If there is a vertex v such
that ` ≤ |T (v)| ≤ 2` then add G[V (T (v))] to the set of desired subgraphs and
proceed recursively with G \ V (T (v)). Otherwise there must be a vertex v
such that |T (v)| > 2` and for its every child u, |T (u)| < `. In such a case �nd
a subset {u1, . . . , uj} of children of v such that ` ≤ |T (u1)|+ · · ·+ |T (uj)| ≤
2`−1. Add G[{v}∪V (T (u1))∪· · ·∪V (T (uj))] to the set of desired subgraphs
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and proceed with the graph G\(V (T (u1)) ∪ · · · ∪ V (T (uj))). This procedure
terminates after at most n

`
steps and in each of them we have left at most one

vertex of the identi�ed connected subgraph in the further processed graph.
Notice that from this construction it follows that for every i ∈ {1, . . . , q} the
graph G− (V (G1) ∪ V (G2) ∪ · · · ∪ V (Gq−1)) is connected.

3.5.2 Partitioning graphs to stars

Let S = {S1, S2, .., Sr} be a partition of the vertex set of G, such that for
any i = 1, 2, .., r we have |Si| ≥ 2 and G[Si] has a spanning subgraph, which
is a star (sets Si are vertex sets of connected components of a star factor of
G). Such a partition S will be called a star partition of G.

Notice that a star partition can be constructed from a spanning tree of a
connected graph. Let us consider T being a spanning tree of G. Let v and u
be, respectively, the end-vertex and its neighbor on a longest path in T . If T
is not a star, then all neighbors of u in T except exactly one are leaves in T .
We include the set Si consisting of u and all its neighbors which are leaves
in T to our partition S. Then we proceed recursively with the tree T \ Si. If
T is a star, we set Sr = V (T ) and stop.

Moreover, notice that if we construct our star partition S = {S1, S2, .., Sr}
using a spanning tree T , in the way described above, each set Si for i =
1, 2, .., r − 1 has at most ∆(T ) elements, while Sr has at most ∆(T ) + 1
elements. Since ∆(T ) ≤ ∆(G), we obtain the following lemma.

Lemma 3.32 ([59]). Every connected graph on n vertices and maximum
degree ∆ has a star partition S = {S1, S2, .., Sr} with 2 ≤ |Si| ≤ ∆ for
i = 1, 2, .., r − 1 and 2 ≤ |Sr| ≤ ∆ + 1.

Notice that if we want all sets in a star partition to be small, we should
start with a spanning tree whose maximum degree is lowest possible. How-
ever, deciding if the input graph has a spanning tree with maximum degree
at most k is NP-complete for every k ≥ 2 (see Garey and Johnson [39]).

The following theorem shows that if the minimum degree of G is big, we
may obtain a star partition consisting of smaller sets.

Theorem 3.33 (Amashi, Kano [6], Payan [2]). Let D ≥ 2 be an integer such
that ∆(G)/δ(G) ≤ D. Then G has a star partition S = {S1, S2, .., Sr} such
that 2 ≤ |Si| ≤ D + 1 for any i = 1, 2, .., r.
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We can improve those bounds for graphs with no big induced stars. The
simplest and probably best-studied class with such a property are already
mentioned claw-free graphs. Sumner [83] showed that every claw-free graph
with even number of vertices has a perfect matching. This implies the exis-
tence of a star factor with almost all sets of cardinality 2.

Corollary 3.34. Every connected claw-free graphs has a star partition S =
{S1, S2, .., Sr} in which |Si| = 2 for i = 1, 2, .., r − 1 and |Sr| ≤ 3.

A similar result can be obtained for K1,d-free graph for any d ≥ 3.

Lemma 3.35 ([59]). Every connected K1,d-free graph G has a star partition
S = {S1, S2, .., Sr} such that |Si| ≤ d−1 for any i = 1, 2, .., r−1 and |Sr| ≤ d.

Proof. It is easy to verify that the theorem is true for d = 2. Assume that
d ≥ 3. Again we shall construct S using a spanning tree. If G has at most
d vertices, we partition G into stars in any way and �nish. Otherwise, let
T be a spanning tree of G with the largest diameter and let v1, u and x be,
respectively, the �rst, the second and the third vertex of a longest path in
T . Notice that v1 is a leaf in T and every neighbor of u in T but at most
one vertex (i.e. x) is a leaf in T as well. Let {v1, v2, . . . , vk} be the set of
neighbors of u, which are leaves in T . We shall consider two cases.

Case 1. If k ≤ d − 2, then we include the set {u, v1, v2, . . . , vk} to our
partition and proceed with the graph G\{u, v1, v2, . . . , vk}. The included set
has at most d− 1 vertices.

Case 2. Suppose now that k ≥ d− 1. Observe that if k = d− 1, then x is
not a leaf, since we assumed that G has at least d+ 1 vertices. Therefore the
set {u} ∪ {x, v1, v2, . . . , vk} does not induce a star in G (as G is K1,d-free).
Thus vivj ∈ E(G) for some 1 ≤ i < j ≤ k or vix ∈ E(G) for some 1 ≤ i ≤ k.

Subcase 2.1 If vivj ∈ E(G) for some 1 ≤ i < j ≤ k (without loss
of generality let i = 1 and j = 2), consider the spanning tree tree T ′ :=
(V (G), E(T ) ∪ {v1v2} \ {uv1}) (see Figure 3.16). Its diameter is strictly
larger than the diameter of T , which contradicts with the choice of T .
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Figure 3.16: Subcase 2.1)
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Figure 3.17: Subcase 2.2

Subcase 2.2 If vix ∈ E(G) for some 1 ≤ k (without loss of generality
let i = 1), consider the tree T ′ := (V (G), E(T ) ∪ {v1x} \ {ux}) (see Figure
3.17). Again, diam(T ′) > diam(T ), which is a contradiction.

This completes the proof.
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Chapter 4

Algorithms using exponential

space

In this chapter we present exact algorithms for some graph labeling problems.
Key ingredients in our approach are algebraic manipulations loosely inspired
by the fast matrix multiplication: if we have 2k × 2k-matrices A and B, we
can divide each of them into four 2k−1 × 2k−1 block matrices. We can then
compute A · B very easily by eight matrix multiplications of 2k−1 × 2k−1-
matrices. Doing so recursively leads again to a running time of O(n3), just
as the in naive algorithm itself. It is, however, possible to improve the running
time by using only seven matrix multiplications to achieve the same result
(see the classical result of Strassen [82]). We also use one other trick: we
jump between two representations of partial labelings in the course of our
dynamic programming algorithm. The idea to use di�erent representations
of the same data in dynamic programming is not new and was used in a
similar way before (see for example van Rooij et al. [84]).

We start this chapter with de�nitions of the problem we are going to con-
sider. The remaining sections contain mostly joint results from the following
papers:

Section 4.2: a paper co-authored with K. Junosza-Szaniawski [59],
Section 4.3: a paper co-authored with K. Junosza-Szaniawski,

J. Kratochvíl, M. Liedlo� and P. Rossmanith [53],
Section 4.4: a recent paper by the author [78].
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4.1 List of problems

In this section we formally de�ne the problems we are going to discuss later.
Most of them have already been mentioned in the introduction. Observe
that some of the problems are decision problems (i.e. Yes/No questions)
and some are optimization problems or, to be more speci�c, minimization
problems (i.e. we are interested in �nding a minimum value of some param-
eter).

Graph coloring. An instance of the graph coloring problem is a graph
G = (V,E). A proper coloring of G is a mapping ϕ : V → N, such that
ϕ(u) 6= ϕ(v) for every edge uv ∈ E. In the graph coloring problem we
want to compute the chromatic number of G (denoted by χ(G)), being the
minimum possible number of colors used by a proper coloring of G. In the
decision version of this problem, called the k-coloring problem, we ask if the
chromatic number of the input graph is at most k.

The list graph coloring problem is the generalization of the graph coloring
problem. The instance of the generalized problem is a graph G and a function
Λ: V → 2N (for a vertex v ∈ V , the set Λ(v) is called the list for v). We are
interested in the existence of a proper coloring ϕ of G, in which ϕ(v) ∈ Λ(v)
for every v ∈ V . The list versions of the problems described below will be
de�ned in an analogous way.

L(p, q)-labeling. For a graph G = (V,E) and integers p ≥ q ≥ 1, an
L(p, q)-labeling is a function ϕ : V → N0, such that:

1. |ϕ(v)− ϕ(u)| ≥ p if dist(u, v) = 1,

2. |ϕ(v)− ϕ(u)| ≥ q if dist(u, v) = 2.

The span of an L(p, q)-labeling is the di�erence between the maximum and
the minimum label used. The L(p, q)-labeling problem asks to �nd the mini-
mum possible span of an L(p, q)-labeling of G. The k-L(p, q)-labeling problem
asks for existence of a k-L(p, q)-labeling of G, i.e. an L(p, q)-labeling of G
using only labels {0, 1, .., k} (note that we have k + 1 available labels).

We shall focus mostly on the case of p = 2 and q = 1. The minimum
possible span of an L(2, 1)-labeling of G is denoted by λ(G).
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Channel assignment. Let G = (V,E) be a graph and let ω : E → N be
a weight function. A channel assignment of (G,ω) is a mapping ϕ : V → N,
such that |ϕ(u) − ϕ(v)| ≥ ω(uv) for any uv ∈ E. The channel assignment
problem asks for the minimum span (i.e. the di�erence between the smallest
and the largest label used) of a channel assignment of (G,ω). We say that
the instance (G,ω) of the channel assignment problem is `-bounded for some
integer `, if ω(e) ≤ ` for every e ∈ E.

We can consider the channel assignment problem as a generalization of the
coloring and the L(p, q)-labeling problems. Indeed, the channel assignment
problem for (G,ω), where ω(e) = 1 for all e ∈ E is equivalent to the graph
coloring problem of G.

Now for a graph G = (V,E) let G′ = (V,E ′) be its square graph. De�ne
ω : E ′ → N as follows:

ω(e) =

{
p if e ∈ E
q if e ∈ E ′ \ E.

It is easy to see that the channel assignment problem for (G′, ω) is equivalent
to the L(p, q)-labeling problem for G.

T -coloring. Let G = (V,E) be a graph and let T ⊆ N0 be a set of integers.
A T -coloring of G is a mapping ϕ : V → N, such that |ϕ(u)− ϕ(v)| /∈ T for
every uv ∈ E. The T -coloring problem asks for the minimum span (i.e. the
di�erence between the smallest and the largest label used) of a T -coloring of
G. Observe that if T = {0}, then we obtain the graph coloring problem.

Generalized list T -coloring. An instance of a the generalized list T -
coloring problem is a triple (G,Λ, t), where G = (V,E) is a graph, Λ: V →
2N is a function that assigns to each vertex a set (list) of permitted labels
and t : E → 2N0 is a function that assigns to each edge a set of forbidden
di�erences over that edge. We assume that 0 ∈ t(e) for any e ∈ E. We are
interested in determining the existence of a mapping ϕ : V → N, satisfying
the following conditions:

1. ϕ(v) ∈ Λ(v) for every v ∈ V ,

2. |ϕ(v)− ϕ(w)| /∈ t(vw) for every edge vw ∈ E.
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Such a function is called a proper labeling. The generalized list T -coloring has
been introduced as a common generalization of the (list) channel assignment
and the (list) T -coloring problems (and thus also the graph coloring and the
L(p, q)-labeling problems).

For an instance (G,ω) of the list channel assignment problem with lists
Λ, we have an equivalent instance (G,Λ, t) of the generalized list T -coloring,
where Λ(v) is the list of labels available for v (or the set of all labels in a
non-list case) and t(e) = {0, 1, .., ω(e)− 1} for e ∈ E(G).

On the other hand consider a graph G and the set T ∈ N0, being an
instance of the T -coloring problem. De�ne t : E → 2N0 , such that t(e) = T
for every e ∈ E. The instance (G,Λ, t) of the generalized list T -coloring
problem is equivalent to the T -coloring problem for G with lists Λ.

(m, k)-coloring. For a graph G = (V,E) and integers m ≥ 2k, the (m, k)-
coloring of G (see Zhu [90]) is an assignment ϕ : V → {0, 1, ..,m − 1}, such
that k ≤ |ϕ(v) − ϕ(u)| ≤ m − k whenever vu ∈ E. The (m, k)-coloring
problem asks for the existence of such an assignment for G.

Graph homomorphism (or H-coloring). For graphs G and H we say
that ϕ : V (G)→ V (H) is a homomorphism from G to H if ϕ(v)ϕ(u) ∈ E(H)
for any uv ∈ V (G). The graph homomorphism problem for graphs G and H
asks if there exists a homomorphism from G to H.

The graph homomorphism problem is a natural generalization of the
graph coloring problem (in this case H is a complete graph). Also observe
that the (m, k)-coloring problem of G is equivalent to the homomorphism
problem from G to C

k−1

m , the complement of the (k − 1)'th power of the
m-cycle†.

H(2, 1)-labeling. For graphs G and H, the H(2, 1)-labeling problem asks
for the existence of the H(2, 1)-labeling of G, i.e. a mapping ϕ : V (G) →
V (H), such that:

1. distH(ψ(v), ψ(w)) ≥ 2 if distG(v, w) = 1,

2. distH(ψ(v), ψ(w)) ≥ 1 if distG(v, w) = 2.

†Here we consider C0
m to be a graph with m vertices and no edges.
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It is easy to see that the L(2, 1)-labeling of G is an H(2, 1)-labeling of G
for H being a path. Another interesting case is the Lc(2, 1)-labeling (see Liu,
Zhu [69]). It is equivalent to �nding the minimum k, for which the input
graph G has an H(2, 1)-labeling for H being a cycle with k + 1 vertices.

Locally injective graph homomorphism. We say that a homomorhism
ϕ from G to H is locally injective, if the neighborhood of v ∈ V (G) is
mapped injectively to the neighborhood of ϕ(v). Formally, for any two ver-
tices u, v ∈ V (G) with dist(u, v) ≤ 2 we have ϕ(u) 6= ϕ(v). The locally
injective homomorphism problem for graphs G and H is to determine the
existence of a locally injective homomorphism from G to H.

Fiala and Kratochvíl [29] showed a close relationship between locally in-
jective homomorphisms and H(2, 1)-labelings.

Theorem 4.1 (Fiala, Kratochvíl [29]). For graphs G and H, an H(2, 1)-
labeling of G is exactly a locally injective homomorphism from G to H.

Remark 4.2. It is clear that if we have an algorithm for the minimization
version of some problem, then we can easily solve the corresponding decision
problem as well. For example, having computed χ(G) for a graph G (and
thus solving the coloring problem), it su�ces to check if χ(G) ≤ k to solve
the k-coloring problem for G. On the other hand, if we have an algorithm
for the decision problem (e.g. the k-coloring problem) working in time F (n)
(where n is the size of the instance), then we can solve the corresponding
minimization problem by repeatedly running the algorithm for the k-coloring
problem for k = 1, 2, 3, ... and returning the smallest k for which we obtain
Yes as the answer. If the maximum value of the parameter we want to
minimize is bounded by a polynomial function of n, the time complexity of
the whole procedure is bounded by nO(1) · F (n).

4.2 Exact algorithm for the generalized list T -

coloring problem

Consider (G,Λ, t) being an instance of the generalized list T -coloring prob-
lem. We say that an instance of the generalized list T -coloring problem is
τ -bounded if the largest value in the set

⋃
e∈E t(e) does not exceed τ .
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Let [τ + 1] denote the set {0, 1, .., τ + 1} and Jτ + 1K denote the set
[τ + 1]∪ {0̄}, where 0̄ is a special symbol, whose meaning will be made clear
later. Note that |[τ + 1]| = τ + 2.

De�nition 4.3. For a vector w ∈ Σk (for some alphabet Σ) and a set of
vectors A ⊆ Σn let Aw denote the set {v ∈ Σn−k : wv ∈ A} (by wv we
denote the vector from Σn obtained from w by appending v to its end). The
vector w is also called a pre�x of the vector wv.

Moreover, we say that a′ ∈ Σk′ is a segment of a = a1a2 . . . ak ∈ Σk (for
any alphabet Σ and any k′ ≤ k) if a′ = aiai+1 . . . ai+k′−1 for some i ≤ k−k′+1.

4.2.1 The algorithm

Let (G,Λ, t) be a τ -bounded instance of the generalized list T -coloring prob-
lem. If τ = 0, then we obtain a well-studied list coloring problem, which
can be solved in time O∗(2n) by adapting the algorithm by Björklund et al.
[9]. Thus we focus on the case when τ ≥ 1. Moreover, we assume that the
graph G = (V,E) is connected � in the other case we may label each of its
connected components separately.

By a partial labeling (partial k-labeling) of G we mean a mapping ϕ : V ′ →
N (resp. ϕ : V ′ → {1, 2, .., k}), such that V ′ ⊆ V and ϕ(v) ∈ Λ(v) for every
v ∈ V ′ and |ϕ(u)− ϕ(v)| /∈ t(uv) for any uv ∈ E ∩

(
V ′

2

)
.

Let Λmax denote the maximum value in the set
⋃
v∈V Λ(v). Observe that

in any partial labeling of G, a vertex v ∈ V may have at most (2τ+1)·deg v ≤
(2τ + 1)n forbidden labels. Thus, if |Λ(v)| > (2τ + 1)n, then we may label
the graph G− v and then restore v and give it some non-forbidden label. So
we may assume that |Λ(v)| ≤ (2τ + 1)n for any vertex v and thus:

|
⋃
v∈V

Λ(v)| ≤
∑
v∈V

|Λ(v)| ≤ (2τ + 1)n2. (4.1)

Assume that there exist two labels x, y ∈
⋃
v∈V Λ(v) such that:

1. d := y − x− τ − 1 > 0,

2. there is no z ∈
⋃
v∈V Λ(v) such that x < z < y.

It is easy to verify that in this case the instance (G,Λ, t) of the generalized
list T -coloring is equivalent to the instance (G,Λ′, t), where Λ′(v) = {c ∈
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Λ(v) : c ≤ x} ∪ {c − d : c ∈ Λ(v) and c > x} for every v ∈ V . Informally
speaking, every label greater than x is just shifted down by d. Since they
are still greater than x + τ , no new con�ict between labels appears (and
clearly no con�icts disappear). We can repeat this transformation until the
di�erence of every pair of subsequent labels in

⋃
v∈V Λ(v) is at most τ + 1.

For a similar reason we may assume that 1 ∈
⋃
v∈V Λ(v), because otherwise

we can shift all the labels down (recall that 0 /∈ Λ(v) for all v). Combining
this with the formula (4.1), we may assume that:

Λmax ≤ |
⋃
v∈V

Λ(v)| · (τ + 2) ≤ (2τ + 1)(τ + 2)n2. (4.2)

For a graph G we consider some ordering v1, v2, .., vn of the vertices in V (this
ordering will be speci�ed later).

Let ϕ be a partial k-labeling of G. Consider a vertex v, which is unlabeled
with ϕ, and k + 1 ∈ Λ(v). Then we can extend ϕ by setting ϕ(v) = k + 1
if and only if there is no neighbor u of v such that ϕ(u) is de�ned and
(k + 1) − ϕ(u) ∈ t(uv). Notice that if ϕ(u) ≤ k − τ , then (k + 1) − ϕ(n) ≥
τ + 1 ≥ t(uv) + 1. So we only need to keep track of vertices labeled with
labels greater than k − τ . This is the reason why in our encoding of partial
k-labelings we do not have to distinguish vertices labeled with labels not
exceeding k − τ .

For every k ∈ {1, ..,Λmax} we introduce a set of vectors T [k] ⊆ [τ + 1]n,
de�ned as follows.

De�nition 4.4. The set T [k] consists of vectors a ∈ [τ + 1]n such that
there exists a partial labeling ϕ : V → {1, 2, .., k}, satisfying the following
condition:

ai =


0 if vi is not labeled by ϕ,
1 if ϕ(vi) ≤ k − τ ,
ϕ(vi)− k + τ + 1 if ϕ(vi) > k − τ .

Moreover, de�ne T [0] := {0n}.

Observe that if ϕ(vi) > k − τ , then ai ∈ {2, 3, .., τ + 1}. Note that
vectors with no 0's correspond to generalized list T -colorings of G. Hence,
once we have computed T [Λmax], we can easily verify if there exists a proper
labeling of the input graph. Moreover, we can do it in time linear in size of
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T [Λmax]. Formally, the instance of the generalized list T -coloring problem is
a Yes-instance if and only if T [Λmax] ∩ {1, 2, . . . , τ + 1}n 6= ∅.

To compute the sets T [k] quickly, we shall de�ne two additional oper-
ations. Let k ∈ {1, 2, ..,Λmax − 1} be �xed and assume we have already
computed the set T [k]. Consider any a ∈ T [k] (for k < Λmax) and a partial
k-labeling ϕ corresponding to a.

We will obtain a vector a ∈ Jτ + 1Kn from a, by changing some 0s to
0̄s. Let vi be a vertex, which is not labeled with ϕ (and thus ai = 0). If
the labeling ϕ cannot be extended by labeling vi with k + 1, then we set
ai = 0̄. This takes place in one of the following cases: k+ 1 /∈ Λ(vi) or vi has
a neighbor vj such that (k + 1) − ϕ(vj) = τ − aj + 2 ∈ t(vivj). Otherwise
ai remains equal to 0. Observe that we do not have to care about vertices
v for which ϕ(v) ≤ k − τ , because they do not create con�icts with vertices
labeled with k + 1. This is why we do not distinguish vertices labeled with
labels up to k − τ in our representation of partial labelings.

Formally, let a be a vector in T [k]. De�ne a vector a ∈ Jτ + 1Kn in the
following way:

ai =



0 if ai = 0 and k + 1 ∈ Λ(vi) and there is no
vj ∈ N(vi) such that τ − aj + 2 ∈ t(vivj)

0̄ if ai = 0 and one of the following cases occurs:
• k + 1 /∈ Λ(vi) or
• there exists vj ∈ N(vi) with τ − aj + 2 ∈ t(vivj)

ai if ai > 0

Let T [k] denote the set {a : a ∈ T [k]}. Note that computing T [k] from
T [k] takes time O(|T [k]| ·n2), since we just have to check if k+1 ∈ Λ(vi) and
inspect all edges vivj for all vertices vi such that ai = 0. Moreover, observe
that |T [k]| = |T [k]| for all k.

Now let us de�ne a partial function: ⊕ : Jτ + 1K× {0, 1} → [τ + 1] in the
following way:
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x⊕ y =



0 if x ∈ {0, 0̄} and y = 0

1 if x ∈ {1, 2} and y = 0

x− 1 if x ∈ {3, 4, .., τ + 1} and y = 0

τ + 1 if x = 0 and y = 1

unde�ned otherwise.

The table below shows the values of ⊕ for di�erent inputs (entry �−�
means that the value is unde�ned) .

⊕ 0 0̄ 1 2 3 4 . . . τ τ + 1
0 0 0 1 1 2 3 . . . τ − 1 τ
1 τ + 1 − − − − − . . . − −

We generalize ⊕ to vectors coordinate-wise, i.e.

x1x2..xm ⊕ y1y2..ym =


(x1 ⊕ y1)..(xm ⊕ ym) if xi ⊕ yi is de�ned for

all i ∈ {1, ..,m},
unde�ned otherwise.

For two sets of vectors A ⊆ Jτ + 1Km and B ⊆ {0, 1}m we de�ne

A⊕B = { a⊕ b : a ∈ A, b ∈ B, a⊕ b is de�ned }.

Let P ⊆ {0, 1}n be the set of the characteristic vectors of all independent
sets of G. Formally, p ∈ P if and only if there is an independent set X ⊆ V
such that for all i ∈ {1, 2, .., n} it holds pi = 1 if and only if vi ∈ X.

In the next lemma we observe that for a ∈ T [k] and p ∈ P , computing
a⊕ p corresponds to extending a partial k-labeling ϕ corresponding to a by
setting ϕ(v) = k + 1 for all v from the independent set encoded by p. This
is how we shall use T [k]⊕ P to �nd T [k + 1].

Lemma 4.5. For all k ∈ {0, ..,Λmax − 1} it holds that T [k + 1] = T [k]⊕ P .

Proof. First we shall prove that T [k+ 1] ⊆ T [k]⊕P . Let a ∈ T [k+ 1] and ϕ
be a partial (k + 1)-labeling corresponding to a. Let p be the characteristic
vector of the set X := ϕ−1(k+ 1). This set is clearly independent, so p ∈ P .
Let ϕ′ be a partial k-labeling obtained from ϕ by removing the label k + 1
(i.e. the vertices from X are not labeled by ϕ′), and let a′ be a vector in
T [k] corresponding to ϕ′. Consider a vertex vi ∈ X (so pi = 1). Since ϕ is a
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partial (k+1)-labeling, we have k+1 ∈ Λ(vi). Moreover, there is no neighbor
vj of vi, such that (k + 1) − ϕ′(vj) ∈ t(vivj). By the de�nition of T [k], it is
equivalent to saying that there is no neighbor vj of vi with τ−aj+2 ∈ t(vivj).
Therefore a′i = 0. It is not hard to verify that a = a′ ⊕ p.

Now let us prove that T [k] ⊕ P ⊆ T [k + 1]. Let a be a vector from
T [k] ⊕ P . Thus there exist a′ ∈ T [k] and p ∈ P such that a′ ⊕ p = a. Let
ϕ′ be a partial k-labeling corresponding to a′ and X be the independent set
encoded by p.

Note that since a′⊕p is de�ned, then X consists of vertices vi, which are
not labeled with ϕ′ and have ai = 0. Thus the labeling ϕ′ can be extended
by labeling every vertex from X with label k + 1, obtaining a proper partial
(k + 1)-labeling ϕ. It is not hard to verify that a is a vector from [τ + 1]n

corresponding to ϕ and thus a ∈ T [k + 1].

Now we are ready to present the algorithm.

Algorithm 1: Solve-GLTC(G,Λ, t)

1 P ← the set of characteristic vectors of independent sets of G
2 T [0]← {0n}
3 for k ← 1 to Λmax do
4 compute T [k − 1] from T [k − 1]

5 T [k]← T [k − 1]⊕ P
6 if T [Λmax] ∩ {1, 2, . . . , τ + 1}n 6= ∅ then return Yes

7 else return No

Now let us discuss how to compute the sets T [k]⊕ P e�ciently. We will
partition the vertex set v of G into subsets of a bounded size (they shall
be de�ned later). Let S = (S1, S2, .., Sr) be an ordered partition of V . Let
si := |Si| for all i ∈ {1, .., r} (we require that all si's are upper-bounded by
some constant D). Moreover, the ordering of sets in S corresponds to an
ordering of vertices of the graph (the vertices within each Si appear in any
order):

v1, v2, . . . , vs1︸ ︷︷ ︸
S1

, vs1+1, vs1+2, . . . , vs1+s2︸ ︷︷ ︸
S2

, . . . , vn−sr+1, vn−sr+2, . . . , vn︸ ︷︷ ︸
Sr

. (4.3)

For a vector a′ = a1a2 . . . an ∈ T [k], its i-th segment (for i ∈ {1, 2, .., r})
is the segment a = a1+

∑i−1
j=1 sj

. . . a∑i
j=1 sj

(so a corresponds to vertices from

66



Si). A vector a ∈ [τ ]si is an i-th segment of T [k] if it is the i-th segment of
some a′ ∈ T [k].

Moreover, we say that a vector a ∈ [τ + 1]si is k-feasible for Si, if it
encodes some proper partial labeling of G[Si] from lists Λ|Si , using only
labels {1, 2, .., k} (consult De�nition 4.4 to see how vectors encode partial
labelings). A vector in [τ + 1]si is feasible for Si if it is k-feasible for Si for
at least one k. One can observe that every i'th segment of T [k] is k-feasible
for Si.

We shall process the vertices of the whole subsets Si at once, in every
step considering the �rst set from S. After that we remove S1 from S and
reduce the index of every remaining set in S by one, so that the �rst one
is still called S1. The formula (4.4) describes a single step of this procedure
(recall De�nition 4.3).

T [k]⊕ P =
⋃

b∈Jτ+1Ks1
p∈{0,1}s1

s.t. b⊕p is de�ned

(b⊕ p)(T [k]b ⊕ Pp) (4.4)

To demonstrate the advantage of processing whole sets Si at once, con-
sider the following example. If we process each vertex separately (so S con-
sists of singletons only, si = 1 for all i = 1, 2, .., r), at each step we have
to consider τ + 2 one-term segments for b ⊕ p (0, 1, . . . , τ + 1). Suppose
now that our input graph has a perfect matching S. Then, by processing
two adjacent vertices at once, we can omit all segments of the form aa for
a ∈ {2, 3, . . . , τ + 1}, since they are not feasible for any Si. This is because
each of values in {2, 3, . . . , τ +1} describes a single label and no two adjacent
vertices can get the same label (since 0 ∈ t(e) for every edge e). Therefore
instead of considering all (τ + 2)2 two-element segments in [τ + 1] × [τ + 1]
(as we would do when processing each vertex separately), we have to deal
with (τ + 2)2 − τ two-element segments. One can observe that the choice of
the partition S is crucial for this approach. This issue will be discussed in
Section 4.2.2. From now on we will assume that each si (for i = 1, 2, .., r) is
bounded by some constant value.

We can rewrite the formula (4.4) in the following way.

T [k]⊕ P =
⋃

a∈[τ+1]s1

p∈{0,1}s1

a


 ⋃

b∈Jτ+1Ks1
s.t. b⊕p=a

T [k]b

⊕ Pp

 (4.5)

67



The computation can be omitted whenever the vector a is not k-feasible for
S1, because then it cannot appear in T [k]⊕P = T [k+ 1] as the 1st segment.
Observe that p is uniquely determined by the choice of a: we have pi = 1
whenever ai = τ + 1 (and pi = 0 otherwise). See the pseudo-code of the
Algorithm 2 for a more formal description of just presented computation of
T [k + 1]. The input arguments are: a graph G, a partition (S1, S2, .., Sr) of
its vertex set, the previously computed set T [k] and the set P of encodings
of independent sets in G.

Algorithm 2: Compute(G, (S1, S2, .., Sr), T [k], P )

1 if r = 0 then return ∅
2 T [k + 1]← ∅
3 foreach a being (k + 1)-feasible for S1 do
4 p← the characteristic vector of the set {vi : ai = τ + 1; 1 ≤ i ≤ s1}
5 A← ∅
6 foreach b ∈ Jτ + 1Ks1 such that b⊕ p = a do
7 A← A ∪ T [k]b

8 if A 6= ∅ then
9 Q← Compute(G− S1, (S2, .., Sr), A, Pp)

10 T [k + 1]← {av : v ∈ Q}

11 return T [k + 1]

Let us estimate the computational complexity of this algorithm. Recall
that both τ and si (for all i) are constant values (while r depends on n).
Thus line 3 is executed in a constant time. The number of iterations of the
main loop in the lines 3�10 is equal to the number of vectors, which are
(k + 1)-feasible for S1.

Let fi(k,Λ) denote the number of vectors from [τ + 1]si , which are k-
feasible for Si (for i = 1, 2, .., r). It is clearly an upper bound for the number
of i-th segments in T [k]. Note that the value of fi(k,Λ) depends on G and
S, but we shall not write this to simplify the notation.

It is not hard to observe that for any choice of Λ we have fi(k,Λ) ≤
fi(k,Λ

′), where Λ′(v) = {1, 2, ..,Λmax} for every v ∈ V . Thus we de�ne:

fi := max
k≤Λmax

fi(k,Λ
′) ≤ (τ + 2)si . (4.6)

One can easily verify that |T [k]| ≤
∏r

i=1 fi for all k ≤ Λmax.
Notice that if we �x a, then pi = 1 whenever ai = τ + 1 and pi = 0
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otherwise. Since s1 is a constant, the execution time of line 4 is also constant.

In each recursive computation in our algorithm we have to prepare up to
fi pairs of sets of vectors of length n− si and compute ⊕ on these pairs. The
time needed to prepare the set A =

⋃
b∈Jτ+1Ks1
s.t. b⊕p=a

T [k]b (in lines 6�7) is at most

O(n · |T [k]|). Indeed, for each choice of b (we have a constant number of such
choices) and each b′ ∈ T [k] we have to check if b is a pre�x of b′ and (if so)
include the remaining segment of b′ into A. In an analogous way, preparing
the set Pp requires time O (n · |P |). Thus preparing the recursive calls in line
9 takes time O

(
n · (|P |+ |T [k]|)

)
. Recall that |T [k]| = |T [k]| ≤

∏r
i=1 fi.

Now we will show that |P | ≤
∏r

i=1 fi. We shall de�ne an injective function
from P into the set of proper partial labelings for the instance (G,Λ′, t), using
only label 1. For any vector p ∈ P representing an independent set X in G
we assign a partial labeling in which vertices of X receive labels 1 and the
remaining vertices are unlabeled (there are no con�icts, because they may
appear only on edges with both endvertices already labeled). Clearly this
assignment is an injection. Each labeling obtained in this way (for di�erent
sets X) has a di�erent encoding in the set T [1] (for lists Λ′). Thus the size
of P does not exceed

∏r
i=1 fi.

Finally, executing line 10 requires appending every vector v ∈ Q to a,
which can be done it time O(|Q|) = O(|T [k + 1]|).

So the time F ′(G,S) needed to compute T [k]⊕P in the way shown by the
Algorithm 2 is given by the recursive formula (4.7). Recall that in every step
we remove S1 from S and the index of every remaining set in S is reduced
by one, so that the �rst one is still called S1. Also for S = (S1, S2, . . . , Sr)
by S − S1 we denote the tuple (S2, S3, . . . , Sr).
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F ′(G,S) ≤ c1︸︷︷︸
lines 1 � 3

+f1 ·

 c2︸︷︷︸
lines 4�5, 8

+ c3 · n · |T [k]|︸ ︷︷ ︸
lines 6�7

+ c4 · n · |P |︸ ︷︷ ︸
prepare Pp

+ F ′(G− S1,S − S1)︸ ︷︷ ︸
line 9

+ c5 · |T [k + 1]|︸ ︷︷ ︸
line 10


≤c1 + f1 ·

(
c2 + c6 · n ·

r∏
i=1

fi + F ′(G− S1,S − S1)

)
=

≤c7 + c8 · n ·
r∏
i=1

fi + f1 · F ′(G− S1,S − S1)

≤c′ · n ·
r∏
i=1

fi + f1 · F ′(G− S1,S − S1)

(4.7)

for some constants ci (for i = 1, .., 8) and c′. We can verify by induction
that the above inequality implies that F ′(G,S) ≤ c′ · n2 ·

∏r
i=1 fi for large n.

Indeed, by induction hypothesis we have:

F ′(G,S) ≤c′ · n ·
r∏
i=1

fi + f1 · F ′(G− S1,S − S1)

≤c′ · n ·
r∏
i=1

fi +

(
f1 · c′ · (n− s1)2 ·

r∏
i=2

fi

)

=c′ · n2 ·
r∏
i=1

fi ·
(

1

n
+

(n− s1)2

n2

)
=c′ · n2 ·

r∏
i=1

fi ·
(

1− (2s1 − 1)n+ s2
1

n2

)
︸ ︷︷ ︸

≤1

≤ c′ · n2 ·
r∏
i=1

fi

Recall that T [k] can be obtained from T [k] in time O(|T [k]| · n2) = O(n2 ·∏r
i=1 fi). Since we need to compute sets T [k] for all k ≤ Λmax, we obtain the

70



following bound F (G,S) on the total running time of Algorithm 1 (c1, c2, .., c5

are constants).

F (G,S) ≤ c1 · n2 · |P |︸ ︷︷ ︸
line 1

+ c2︸︷︷︸
line 2

+Λmax ·

c3 · n2 ·
r∏
i=1

fi︸ ︷︷ ︸
line 4

+F ′(G,S)︸ ︷︷ ︸
line 5

+ c4 · n · |T [Λmax]|︸ ︷︷ ︸
lines 6�7

≤c1 · n2 ·
r∏
i=1

fi + c2 + Λmax ·

(
c3 · n2 ·

r∏
i=1

fi + c′ · n2 ·
r∏
i=1

fi

)
+ c4 · n ·

r∏
i=1

fi

≤c5 ·

(
Λmax · n2 ·

r∏
i=1

fi

)
.

Recall that by (4.2) we have Λmax ≤ (2τ + 1)(τ + 2)n2. Thus we obtain the
following bound (c is some constant):

F (G,S) ≤ c · n4 ·
r∏
i=1

fi. (4.8)

The space complexity of the algorithm is determined by the total size of
vectors in the sets T [k] and the set P . Each of those sets contains at most∏r

i=1 fi vectors of length n each. The number of sets T [k] is Λmax. Thus the
space complexity is bounded by c′′ · n3 ·

∏r
i=1 fi (for a constant c′′).

Remark 4.6. By some additional remembering (i.e. sets T [k] should contain
pairs consisting of a vector and a corresponding partial labeling instead of
just vectors) we can easily adapt the algorithm to �nd a proper labeling (if
there exists one). The space and computational complexity of the modi�ed
version is asymptotically the same as of the basic one, up to a polynomial
factor of n.

4.2.2 Complexity bounds

In this section we shall consider several possible partitions S of the vertex
set and use them to bound the complexity of the algorithm described in the
preceding section with functions of various invariants of G. Let us start with
the simplest case, i.e. a partition into singletons.
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Theorem 4.7 ([59]). The algorithm Solve-GLTC solves the τ -bounded gen-
eralized list T -coloring problem for a graph G with n vertices in time and
space O∗((τ + 2)n).

Proof. Let v1, v2, . . . , vn be an arbitrary ordering of vertices of G and let
Si = {vi} for i ∈ {1, .., n}. For any graph G we trivially get fi ≤ τ + 2,
as there are at most τ + 2 vectors a of length 1, which are feasible for Si
(for any i = 1, 2, .., n). Using the formula (4.8) we obtain the bound for the
complexity F (G,S) ≤ c · n4 ·

∏n
i=1(τ + 2) = c · n4 · (τ + 2)n.

Although the algorithm by Cygan and Kowalik [21] is designed for the
channel assignment problem, it can be adapted to solve the generalized T -
coloring problem within the same time bound, i.e. O∗((τ + 2)n). However,
we can improve the time complexity of our algorithm by an appropriate
construction of the partition S. Let us start with S being a star partition
(i.e. partition S = (S1, S2, .., Sr) such that for every i ∈ {1, 2, .., t} the graph
G[Si] has a spanning subgraph, which is a star, see Section 3.5.2 in Chapter
3).

Lemma 4.8 ([59]). Let G be a graph with n vertices and let S = {S1, S2, . . . , Sr}
be its a star partition such that 2 ≤ si ≤ D + 1 for some constant D and
each i ∈ 1, 2, . . . , r − 1 and sr ≤ D′ for some constant D′. The algorithm
Solve-GLTC solves the τ -bounded generalized list T -coloring problem on G
in time and space

O∗
(

(τ 2 + 3τ + 4)n/2 + (2(τ + 2)D + τ(τ + 1)D)
n

D+1

)
.

Proof. Let us consider the subgraph G[Si] for some i ∈ {1, 2, .., r}. Without
loss of generality let vj be the central vertex of a spanning star of G[Si] and
Si = {vj, .., vj+si−1}. Note that by the de�nition of T [k], for any a ∈ T [k],
if aj = h ∈ {2, .., τ + 1}, then aj′ 6= h for j′ ∈ {j + 1, .., j + si − 1}, since
h represents a single label and each label of any feasible (possibly partial)
labeling induces an independent set in G. Hence the number of vectors,
which are feasible for Si is at most

fi ≤ 2(τ + 2)si−1︸ ︷︷ ︸
aj∈{0,1}

+ τ(τ + 1)si−1︸ ︷︷ ︸
aj /∈{0,1}

.
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This inequality combined with the formula (4.8) gives us the following
bound on the complexity (c and c1 are constants):

F (G,S) ≤c · n4 ·
r∏
i=1

fi

≤c · n4 ·
r∏
i=1

(
2(τ + 2)si−1 + τ(τ + 1)si−1

)
≤c · n4 ·

r−1∏
i=1

(
2(τ + 2)si−1 + τ(τ + 1)si−1

) (
2(τ + 2)D

′−1 + τ(τ + 1)D
′−1
)

︸ ︷︷ ︸
constant

≤c1 · n4 ·
r−1∏
i=1

(
2(τ + 2)si−1 + τ(τ + 1)si−1

)
.

One can verify that the value of
∏r−1

i=1 (2(τ + 2)si−1 + τ(τ + 1)si−1) is max-
imized if all but at most one of s1, s2, . . . , sr−1 have value 2 or D+1. Consider
this case and de�ne p (q, respectively) to be the number of si's equal to 2
(D + 1, respectively). Formally, we have p := |{i ∈ {1, 2, .., r − 1} : si = 2}|
and q := |{i ∈ {1, 2, .., r − 1} : si = D + 1}|. Clearly 2p + (D + 1)q ≤ n and
thus p ≤ n−(D+1)q

2
. Thus we obtain the following inequality (c′ is a constant):

F (G,S) ≤c1 · n4

r−1∏
i=1

(
2(τ + 2)si−1 + τ(τ + 1)si−1

)
≤c′ · n4 ·

(
p∏
i=1

(2(τ + 2) + τ(τ + 1))

)(
q∏
i=1

(
2(τ + 2)D + τ(τ + 1)D

))
=c′ · n4 · (2(τ + 2) + τ(τ + 1))p

(
2(τ + 2)D + τ(τ + 1)D

)q
≤c′ · n4 · (2(τ + 2) + τ(τ + 1))

n−(D+1)q
2

(
2(τ + 2)D + τ(τ + 1)D

)q
Using standard methods one can see that depending on the values of D

and τ , the expression above is either increasing or decreasing (with respect
to q). Thus the maximum value is obtained either for q = 0 or for q = n

D+1

and we can bound F (G,S) by a sum of those two potential maximal values.

F (G,S) ≤ c′ · n4 ·
(

(τ 2 + 3τ + 4)n/2 + (2(τ + 2)D + τ(τ + 1)D)
n

(D)

)
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Here we shall use the results we proved in Section 3.5 in Chapter 3.

Corollary 4.9 (from Lemma 3.32, [59]). The algorithm Solve-GLTC solves
the τ -bounded generalized list T -coloring problem on G with maximum degree
bounded by a constant ∆ in time and space

O∗
(
(τ 2 + 3τ + 4)n/2 + (2(τ + 2)∆−1 + τ(τ + 1)∆−1)n/∆

)
.

Theorem 3.33 gives us a a signi�cantly better bound for regular graphs
(in fact in works for much wider class of graph G with ∆(G) ≤ 2δ(G)). By
some technical calculations we obtain the following bound.

Corollary 4.10 (from Theorem 3.33, [59]). The algorithm Solve-GLTC solves
the τ -bounded generalized list T -coloring problem on a regular graph with n
vertices in time and space O∗

(
(τ 2 + 3τ + 4)n/2

)
.

Now let us turn our attention to K1,d-free graphs.

Corollary 4.11 (from Lemma 3.35, [59]). The algorithm Solve-GLTC solves
the τ -bounded generalized list T -coloring problem on a K1,d-free graph with n
vertices in time and space

O∗
(
(τ 2 + 3τ + 4)n/2 + (2(τ + 2)d−2 + τ(τ + 1)d−2)n/(d−1)

)
.

When we apply this bound to claw-free graphs (i.e. K1,3-free graphs), we
obtain the following.

Corollary 4.12 ([59]). The algorithm Solve-GLTC solves the τ -bounded gen-
eralized list T -coloring problem on a claw-free graph with n vertices in time
and space O∗

(
(τ 2 + 3τ + 4)n/2

)
.

Another class of graphs we want to mention here are unit disk graphs,
i.e. intersection graphs of unit disks on a plane (see for example Clark et
al. [19] for more information). They are particularly interesting due to their
applications in modelling of ad-hoc networks. It is widely known that unit
disk graphs are K1,6-free [42]. By some technical calculations, we obtain the
following corollary.

Corollary 4.13 ([59]). The algorithm Solve-GLTC solves the τ -bounded gen-
eralized list T -coloring problem on a unit disk graph with n vertices in time
and space O∗

(
(τ 2 + 3τ + 4)n/2

)
.
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Subgraphs other than stars may also be useful in constructing the par-
tition S. Hell and Kirkpatrick [47] studied the problem of partitioning the
vertex set of a graph into cliques. Let a clique packing into a graph G be a
subgraph of G, whose every connected component is a clique with at least 2
vertices. Let ρ(G) denote the order of the largest (in terms of the number
of vertices) clique packing in G. Note that a matching is a special case of
a clique packing of G. Therefore, if m is the size of maximum matching in
G, then we have: 2m ≤ ρ(G). A spanning clique packing is called a clique
partition. Hell and Kirkpatrick [47] presented an elegant structural theorem
allowing to compute the value of ρ(G). Moreover, they described graphs G
that have a clique partition.

Theorem 4.14 ([59]). The algorithm Solve-GLTC solves the τ -bounded gen-
eralized list T -coloring problem for a graph G with n vertices in time and
space c · n4 ·

(
(τ 2 + 3τ + 4)ρ(G)/2(τ + 2)n−ρ(G)

)
, for some constant c.

Proof. Let H be the largest clique packing into G. Consider a spanning
subgraph H ′ of H in which every connected component is isomorphic to K2

orK3. One can clearly obtain such a subgraph � the vertex set of a connected
component of H with even number of vertices is partitioned into single edges
(a perfect matching), while each component with odd number of vertices is
partitioned into single edges and exactly one triangle.

Let p be the number of connected components ofH ′, which are isomorphic
to K2 and let q be the number of connected components of H ′, which are
isomorphic to K3. Clearly 2p+3q = ρ(G). Let S = {S1, .., Sr} be a partition
of V (G), such that the sets Si for i ≤ p correspond to K2-components in H ′

and the sets Si for p < i ≤ p + q correspond to K3-components of H ′. The
remaining sets Si, for i > p + q, contain the remaining vertices of G, one
vertex per set.

Let us consider the subgraph G[Si] for some i ≤ p+q. Since it is a clique,
each vertex has to be labeled with a di�erent label. Therefore in any vector
which is feasible for Si, each element from {2, .., τ + 1} may appear at most
once. Recall that for Si inducing an edge (i.e. for i ≤ p) we have at most
(τ + 2)2 − τ = τ 2 + 3τ + 4 feasible vectors.

Now let us consider vectors, which are feasible for Si, corresponding to
triangles (i.e. p < i ≤ p+ q). There are:

• 23 = 8 vectors with no element from {2, .., τ + 1},

• 3τ · 22 = 12 · τ vectors with exactly one element from {2, .., τ + 1},
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• 3τ(τ − 1) · 2 = 6 · τ(τ − 1) vectors with exactly two elements from
{2, .., τ + 1},

• τ(τ − 1)(τ − 2) vectors with exactly three elements from {2, .., τ + 1}.

For each of the remaining sets Si (containing single vertices, i.e. for i > p+q),
there are τ + 2 feasible vectors. Hence

fi ≤


τ 2 + 3τ + 4 for i ≤ p

τ 3 + 3τ 2 + 8τ + 8 for p < i ≤ p+ q

τ + 2 for i > p+ q.

Again, using formula (4.8), we obtain the following.

F (G,S) ≤c · n4 ·
r∏
i=1

fi

≤c · n4 ·
(
(τ 2 + 3τ + 4)p(τ 3 + 3τ 2 + 8τ + 8)q(τ + 2)n−ρ(G)

)
=c · n4 ·

(
(τ 2 + 3τ + 4)

ρ(G)−3q
2 (τ 3 + 3τ 2 + 8τ + 8)q(τ + 2)n−ρ(G)

)
This expression is maximized for q = 0. So �nally we obtain the bound:

F (G,S) ≤ c · n4 ·
(
(τ 2 + 3τ + 4)ρ(G)/2(τ + 2)n−ρ(G)

)
.

When we apply this bound to a graph with a clique partition (e.g. a
perfect matching), we obtain the following.

Corollary 4.15. The algorithm Solve-GLTC solves the τ -bounded general-
ized list T -coloring problem for a graph G with n vertices, which has a clique
partition, in time and space O∗

(
(τ 2 + 3τ + 4)n/2

)
.

The Table 4.1 compares the complexity bounds (more precisely, the bases
of the exponential factor) of the algorithm Solve-GLTC applied to various
graph classes for some values of τ .
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general graphs with regular graphs with a claw-free unit disk
τ graphs ∆ ≤ 3 graphs clique partition graphs graphs
1 3.0000 2.8021 2.8285
2 4.0000 3.6841 3.7417
3 5.0000 4.6105 4.6905
4 6.0000 5.5613 5.6569
5 7.0000 6.5266 6.6333

Table 4.1: Comparison of bases of the exponential factor in the complexity
bound.

4.3 Exact algorithm for the L(2, 1)-labeling prob-

lem

Recall that the L(2, 1)-labeling problem can be seen as a special case of
the 1-bounded generalized list T -coloring problem (see Section 4.1). Thus
Theorem 4.7 immediately gives us a complexity bound of O∗(3n) for the
L(2, 1)-labeling problem. However, we can improve it signi�cantly with a
better analysis of possible segments that can appear in T [k]. We shall use
previously proven results on covering a graph with connected subgraphs (see
Section 3.5.1) and the bounds for the number of proper pairs in a graph (see
Section 3.3). The following theorem is the main result of this section.

Theorem 4.16 ([53]). The L(2, 1)-labeling problem on a graph with n ver-
tices can be solved in time and space O(2.6488n).

Proof. Assume that G is a connected graph (otherwise we can label its con-
nected components separately). Let ` be a large �xed constant (we will
explain later what exactly the value of ` should be). By Theorem 3.31 there
exist connected subgraphs G1, G2, . . . , Gq of G, such that:

1. V (G) ⊆
⋃q
i=1 V (Gi),

2. ` ≤ |V (Gi)| ≤ 2` for i ∈ {1, 2, .., q − 1} and |V (Gq)| ≤ 2`,

3. n′ :=
∑q

i=1 |V (Gi)| ≤ n(1 + 1
`
).

Let Si = V (Gi) for every i ∈ {1, 2, .., q} and let S = (S1, S2, .., Sq). For
i ∈ {1, 2, .., q}, de�ne si := |Si|. Note that some vertices may appear in more

77



than one set Si, so S does not have to be a partition of V (G). We form a
sequence of vertices of G according to S, just as we did before (see (4.3)) in
Section 4.2). The length of this sequence is n′ and some vertices may appear
in it several times. However, this is not a problem for our algorithm. When
constructing partial labeling, we need to check if all values of coordinates
corresponding to the same vertex are equal. If not, the algorithm just removes
such a vector from the current set.

Again, we shall process vertices in groups corresponding to sets Si. From
the formula (4.8) we obtain that the time complexity of this procedure is
bounded by:

F (G,S) ≤ c · n4 ·
q∏
i=1

fi, (4.9)

where fi is de�ned by the formula (4.6) and c is a constant.
Moreover, observe that a single label in an (possibly partial) L(2, 1)-

labeling of G induces a 2-packing. Thus the set P will now contain char-
acteristic vectors of all 2-packings in G. Moreover, considering a vector
a ∈ {0, 1, 2}si being a k-feasible for Si, notice that the set {vj : aj = 2} is a
2-packing in Gi (since the the value 2 corresponds to a single label). The la-
bels 0 and 1 can be distributed in an arbitrary way on the remaining vertices
of Gi. Thus we obtain the following bound:

fi ≤
si∑
j=0

uj(Gi) · 2si−j (4.10)

(recall that uj(Gi) denotes the number of j-element 2-packings in Gi).
Observe that the right hand side of (4.10) is exacly the expresion (3.4),

appearing in the de�nition pp(Gi), i.e. it is the number of proper pairs in
Gi. Thus,

fi ≤
si∑
j=0

uj(Gi) · 2si−j = pp(Gi). (4.11)

Recall from Theorem 3.19 that pp(Gi) ≤ xsi for x = 2.64878, provided
that j ≤ si is large enough. Combining formulae (4.9) and (4.11), we obtain
the following complexity bound for G with n vertices:

F (G,S) ≤c · n′4 ·
q∏
i=1

fi ≤ c · n′4 ·
q∏
i=1

pp(Gi) ≤ c · n′4 ·
q∏
i=1

xsi

≤c · n′4 · xn′ = c · (n(1 + 1/`))4 ·
(
xn(1+1/`)

)
. (4.12)

78



We arrive at our main result by choosing the constant ` so big, that
x1+1/` = 2.648781+1/` ≤ 2.6488. For such ` we obtain the following bound
(for any connected graph G with n vertices):

F (G,S) ≤ c · n4 · 2.6488n.

Recall that in Section 3.3 we have found better bounds for the maximum
number of proper pairs in claw-free and r-dominated graphs. These results,
by formula (4.12), automatically allow us to solve the L(2, 1)-labeling prob-
lem faster (we proceed in a way analogous to the proof of Theorem 4.16).

Corollary 4.17 (from Theorem 3.21, [53]). The L(2, 1)-labeling problem on
a claw-free graph with n vertices can be solved in time and space O(2.5944n).

Corollary 4.18 (from Corollary 3.22, [53]). The L(2, 1)-labeling problem
on an r-dominated graph with n vertices can be solved in time and space
O∗
(
2n−r

(
2 + n

r

)r)
.

Observe that if n
r
> 3.7729, the bound from Corollary 4.18 is better than

the bound from Theorem 4.16.
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4.4 Exact algorithm for the graph homomor-

phism problem

In this section we focus on another generalization of many graph coloring
problems, i.e. the graph homomorphism problem.

If ϕ is a homomorphism from G to H, then we will write ϕ : G → H
shortly. A partial homomorphism from G to H is a homomorphism from an
induced subgraph of G to H (in other words, we allow that some vertices of
G are not mapped to any vertices of H).

The bandwidth of a graph G = (V,E), denoted by bw(G), is the minimum
of the values max{|i − j| : vivj ∈ E(G)} over all orderings (v1, v2, . . . , vn) of
V . Informally speaking, we want to place the vertices of G in integer points
of a number line in such a way, that the longest edge is as short as possible
(see for example [16, 18]).

The following theorem is the main result of this section.

Theorem 4.19 ([78]). The existence of a homomorphism from G to H can
be decided in time O∗

(
(bw(H) + 2)n

)
, where n is the number of vertices of

G and bw(H) is the bandwidth of the complement of H.

Proof. Let V (G) = {v1, v2, .., vn} and V (H) = {h1, h2, .., hm}. The ordering
of vertices in G is arbitrary. The vertices of H are arranged in the order
corresponding to the bandwidth of H, i.e. in such a way that the value
max({|i − j| : hihj /∈ E(H)} is minimum possible (by the de�nition, this
minimum value is equal to bw(H)). Let β = bw(H) + 1 and let Hk =
H[{h1, h2, . . . , hk}] for any k ∈ {1, 2, . . . ,m}.

Analogically to the algorithm for the Generalized list T -coloring, for every
k ∈ {1, ..,m} we introduce the set of vectors T [k] ⊆ [β]n. Now a ∈ T [k] if
and only if there exists a partial homomorphism ϕ : G→ Hk, such that:

ai =


0 if vi is not mapped,
1 if ϕ(vi) = h`, where 1 ≤ ` ≤ k − β + 1,

`+ β − k if ϕ(vi) = h`, where ` > k − β + 1.

Observe that if ` > k − β + 1, then ai ∈ {2, .., β}. Again, we de�ne T [0] :=
{0n}. Note that vectors a with no 0's correspond to homomorphisms G →
Hk. Therefore there exists a homomorphism G → H if and only if T [m] ∩
{1, 2, . . . , β}n 6= ∅.
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The set P still contains characteristic vectors of all independent sets in
G. One more thing we need to change is the de�nition of T [k]. Let k ∈
{1, . . . ,m− 1} be �xed and assume we have already computed the set T [k].
Let a be a vector from T [k]. Then we de�ne a ∈ JβKn as follows:

ai =



0 if ai = 0 and there is no vj ∈ NG(vi), such that
aj ≥ 2 and hk−β+aj /∈ NH(hk+1),

0̄ if ai = 0 and there exists vj ∈ NG(vi), such that
aj ≥ 2 and hk−β+aj /∈ NH(hk+1),

ai if ai ∈ {1, .., β}.

Consider a ∈ T [k] (for k ≤ m − 1) and a partial homomorphism ϕ cor-
responding to a. Notice that if vi is not mapped by ϕ, then ai is either
equal to 0 or to 0̄. We have ai = 0 if and only if ϕ can be extended by
mapping vi to hk+1. In the other case, ai is equal to 0̄. Since the vertices
of H are arranged �according to bw(H)�, all non-neighbors of hk+1 are in
{hk−bw(H)+1, hk−bw(H)+2, . . . , hk}. This is why we do not have to distinguish
the vertices mapped to h1, h2 . . . , hk−bw(H) in our representation of partial
homomorphisms.

The de�nition of ⊕ remains unchanged (with τ + 1 replaced by β). Also
the way of computing T [k] ⊕ P is the same as it was introduced in Section
4.2. For simplicity, we shall only consider a partition S of V (G) to singletons
(so si = 1 for i = 1, 2, .., n). Thus in our case, the formula (4.4) we use for
computation has the following form:

T [k]⊕ P =
⋃

b∈JβK,p∈{0,1}
s.t. b⊕p is de�ned

(b⊕ p)(T [k]b ⊕ Pp)

= 0
[
(T [k]0 ∪ T [k]0)⊕ P0

]
∪ 1
[(
T [k]1 ∪ T [k]2

)
⊕ P0

]
∪

⋃
a∈{2,..,β−1}

a
[
T [k]a+1 ⊕ P0

]
∪ β

[
T [k]0 ⊕ P1

]
.

Using this formula we see that to compute ⊕ on two sets of vectors of
length n, we have to compute ⊕ on β + 1 pairs of sets of vectors of length
n − 1. The size of P is at most 2n and the size of T [k] is at most (β + 1)n.
Note that since β = bw(H) + 1, we have β+ 1 = bw(H) + 2 ≥ 2. Recall that
computing T [k] takes time at most O(|T [k]| · n2) = O(n2 · (β + 1)n). Using
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the argumentation similar to the one we used in Section 4.2.1, one can verify
by induction that the time complexity of our algorithm is:

F (n) = O∗
(
(bw(H) + 2)n

)
.

We have mentioned in Section 4.1 that the problem of (m, k)-coloring
of a graph G is equivalent to the problem of determining an existence of a
homomorphism from G to C

k−1

m . Since the complement of C
k−1

m is Ck−1
m and

bw(Ck−1
m ) = 2(k − 1) (if v0, v1, v2, .., vm−1 is the ordering of vertices along

Cm, then the optimal arrangements is v0, v1, vm−1, v2, vm−2, ..., vdm/2e, see for
example [18]), we obtain the following.

Corollary 4.20 ([78]). The (m, k)-coloring problem on a graph G with n
vertices can be solved in time O∗ ((2k)n).

4.4.1 Exact algorithm for the locally injective graph ho-

momorphism problem

Now we shall show how to further modify the the algorithm from the preced-
ing section, to obtain an algorithm for the locally injective homomorphism
problem, working within the same time bound.

Theorem 4.21 ([78]). The existence of a locally injective homomorphism
from G to H can be decided in time O∗

(
(bw(H) + 2)n

)
, where n is the num-

ber of vertices of G and bw(H) is the bandwidth of the complement of H.

Proof. We observe that the vertices of G that can be mapped to a single
vertex of H (in a locally injective manner) must be at distance at least 3
from each other. Therefore they form a 2-packing. Since it is the only
additional requirement for locally injective homomorphisms, the only thing
that has to be changed in the algorithm from the preceding section is the
initialization of the set P . Now it has to contain characteristic vectors of all
2-packings sets.

Recall (see Theorem 4.1) that H(2, 1)-labelings are exactly locally injec-
tive homomorphisms to H. Since the complement of H is H, we obtain the
following corollary.
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Corollary 4.22 ([78]). For any graphs G and H we can solve the H(2, 1)-
labeling problem in time O∗ ((bw(H) + 2)n), where n is the number of vertices
of G.

Let us see how this bound works for the Lc(2, 1)-labeling problem (see
Section 4.1 for the de�nitions of the problems). It is equivalent to �nding
the smallest m, such that the input graph admits a Cm+1(2, 1)-labeling. We
shall check the existence of such a labeling for m = 3, .., 2n and stop when
we �nd one. Since bw(Cm) = 2, we obtain the following.

Corollary 4.23 ([78]). The Lc(2, 1)-labeling problem on a graph G with n
vertices can be solved in time O∗ (4n).

Remark 4.24. The bounds presented in this section can be slightly im-
proved, using the methods presented in Sections 4.2 and 4.3. However, it
requires many technical calculations and the improvement gets smaller as
bw(H) grows.

Let us conclude this section with some comparison of our algorithm with
the previously known algorithms for the graph homomorphism problem [37]
and the locally injective graph homomorphism problem [45]. Recall from
Section 1.3 that the complexities of algorithms described in these papers are
bounded by O∗((2 tw(H) + 1)n) and O∗((∆(H)− 1)n), respectively. Observe
that both parameters in these bounds, i.e. the treewidth and the maximum
degree, grow rapidly as the density ofH increases. Therefore ifH is extremely
dense (for example obtained from a complete graph by removing a constant
number of edges or a matching), both those algorithms may work very slowly.
But in such cases the graphH is very sparse and its bandwidth is small, so our
algorithm outperforms the algorithms described in [37] and [45] signi�cantly.
On the other hand, if H is sparse (so H is dense), bwH is large and so is
the complexity bound for our algorithm.
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Chapter 5

Algorithms using polynomial

space

In this chapter we present an exact algorithm for the L(2, 1)-labeling problem,
using only polynomial space, presented in the joint paper co-authored with
K. Junosza-Szaniawski, J. Kratochvíl and Liedlo� [54].

5.1 L(2, 1)-labeling problem

The following theorem is the main result of this section.

Theorem 5.1 ([54]). The L(2, 1)-span of a graph on n vertices can be com-
puted in time O(7.4920n) and polynomial space.

To prove this theorem, we shall consider the L(2, 1)-labeling problem
generalized to red-black graphs (see Section 3.4).

Generalized problem

For a red-black graph H we de�ne a k-L-labeling as a function ϕ : V (H)→
{1, . . . , k} (here we do not use 0 as a label for technical reasons) ful�lling the
following conditions:

1. |ϕ(v)− ϕ(w)| ≥ 1 for all v, w ∈ V (G) such that vw ∈ R(G)

2. |ϕ(v)− ϕ(w)| ≥ 2 for all v, w ∈ V (G) such that vw ∈ B(G).
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Notice that a (k + 1)-L-labeling of the R-closure of a graph G corresponds
to a k-L(2, 1)-labeling of G. More precisely, the following is true.

Remark 5.2. If ψ is a k-L(2, 1)-labeling of a graph G and H is an R-closure
of G, then a labeling ϕ de�ned by ϕ(v) = ψ(v) + 1 is a (k + 1)-L-labeling of
H and vice-versa.

For technical reasons we need to consider two more restrictions. Suppose
that the given instance is a red-black graph G and sets P,Q. A labeling
ϕ : V (G)→ {1, . . . , k} is a k-LPQ-labeling of G if it is a k-L-labeling of G, such
that Q∩ϕ−1(1) = ∅ and P ∩ϕ−1(k) = ∅. A function ϕ is an LPQ-labeling of G
if it is a k-LPQ-labeling of G for some k. Note that every LPQ-labeling of G is
in fact a LP∩V (G)

Q∩V (G)-labeling of G. However, we will not restrict the de�nition
to sets P,Q ⊆ V (G), as it makes the description of the algorithm simpler.

Let λPQ(G) denote the smallest possible k ≥ 0, for which a k-LPQ-labeling
of G exists. In particular, for a red-black graph with no vertices we have
λPQ((∅, P,Q))

def.
= 0 for any sets P,Q.

The considered generalized problem asks to compute λPQ(G). Any k-LPQ-
labeling of G with k = λPQ(G) is called optimal. We observe that even if ϕ is
an optimal LPQ-labeling ofG, then any of the sets ϕ

−1(1) and ϕ−1(λPQ(G)) may
be empty. In the extremal case, if P = Q = V (G), then ϕ−1(1) = ϕ−1(k) = ∅
for all k and feasible k-LPQ-labelings ϕ of G.

Notice that if H is an R-closure of a graph G then λ∅∅(H) = λ(G) + 1,
by Remark 5.2. In this way we shall use our algorithm to compute the
L(2, 1)-span of a given input graph.

Algorithm

Before we start, we shall need just two more de�nitions. A triple of sets
(X, Y, Z) is a balanced partition of a red-black graph G if

1. the sets X, Y, Z form a partition of V (G),

2. the set Y is independent,

3. all sets X, Y, Z are non-empty,

4. |X| ≤ |V (G)|
2

and |Z| ≤ |V (G)|
2

.
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A triple of sets (X, Y, Z) is a correct partition of G if it is a balanced partition
of G and Y is an R-maximal independent set.

Observe that there is a close relationship between correct partitions and
R-maximal proper pairs, introduced in Section 3.4. Namely, if (X, Y, Z) is a
correct partition of G, then (Y,X) is an R-maximal proper pair. Hence we
obtain the following Remark.

Remark 5.3. The number of R-maximal proper pairs in G is an upper
bound for the number of correct partitions of G.

The main idea of the algorithm is based on two key observations, de-
scribed in Lemmas 5.4 and 5.5.

Lemma 5.4. Let ϕ be a k-LPQ-labeling of G. Let h = min{j ∈ {1, . . . , k} : |
⋃j
i=1 ϕ

−1(i)| ≥
|V (G)|/2}. De�ne X :=

⋃h−1
i=1 ϕ

−1(i), Y := ϕ−1(h) and Z :=
⋃k
i=h+1 ϕ

−1(i).
One of the following cases occurs:

1. X = ∅ and |Y | ≥ |V (G)|/2,

2. Z = ∅ and |Y | ≥ |V (G)|/2,

3. the triple (X, Y, Z) is a balanced partition of G.

Proof. Suppose that neither the case 1 nor the case 2 occurs. Notice that
the sets X, Y and Z clearly form a partition of V (G) and Y is independent.
Clearly Y 6= ∅, because otherwise we would choose h− 1 instead of h. Also
by the de�nition of h, we have |X| ≤ |V (G)|/2. Since the cases 1 and 2 did
not occur, X 6= ∅ and Z 6= ∅. Moreover, the fact that |X ∪ Y | ≥ |V (G)|/2
implies that |Z| ≤ |V (G)|/2.

Let ϕ be a k-LPQ-labeling of G (for some k < LPQ(G)) and let h ∈
{2, . . . , k − 1}. We say that a k-LPQ-labeling ϕ

′ of G is an h-maximization of
ϕ if the following conditions are ful�lled:

1. the set ϕ′−1(h) is R-maximal,

2. ϕ−1(h) ⊆ ϕ′−1(h),

3. ϕ′−1(i) ⊆ ϕ−1(i) for all i ∈ {1, . . . , k} \ {h}.

Lemma 5.5. Let ϕ be a k-LPQ-labeling of G (for some k < LPQ(G)). For
every h ∈ {2, . . . , k − 1}, there exists an h-maximization of ϕ.
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Proof. If ϕ−1(h) is R-maximal, we are done. Otherwise, there exists at least
one vertex v such that:

1. ϕ(v) 6= h,

2. NR(v) = N(v),

3. ϕ(w) 6= h for all w ∈ N(v).

Note that we can change the label of v to h obtaining another k-LPQ-labeling
of G. Applying such a relabeling as many times as possible, we �nally obtain
a labeling ϕ′, which is an h-maximization of ϕ.

We observe that if a graph is disconnected, we can label each of its con-
nected components separately. Hence for all graphs G and sets P,Q we have
the following equality:

λPQ(G) = max{λPQ(C) : C is a connected component of G}. (5.1)

Therefore we may assume that the input graph G is connected.
The algorithm partitions the vertex set V (G) into all possible triples of

sets X, Y, Z, which form a correct partition of G. The graphs G[X] and G[Z]
are then labeled recursively. Note that G[X] and G[Z] may not be connected,
so we can assume the connectivity only in the �rst step. Due to restrictions
related to the sets P and Q, the cases when X = ∅ or Z = ∅ have to be
considered separately.

The labeling of the whole graph G is constructed from the labelings found
in the recursive calls. The sets of labels used on the sets X and Z are
separated from each other by the label used for the R-maximal independent
set Y . This allows to solve the subproblems for G[X] and G[Z] independently
from each other. Iterating over all such partitions of V (G), the algorithm
computes the minimum k admitting the existence of a k-LPQ-labeling of G.
By de�nition, such k is equal to λPQ(G). The pseudo-code of our procedure
is given by Algorithm 3.

Remark 5.6. Observe that the algorithm can be easily adapted to construct
an optimal labeling of G (not only to �nd λPQ(G)). Basically, after obtaining
optimal labelings of C[X] and C[Z] (recursive calls in lines 13 and 14), we
construct the optimal labeling of C by shifting the labels used on Z by kX+1.
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Algorithm 3: Find-Lambda-Poly(G,P,Q)

Input: Red-black graph G, Sets P,Q
1 if V (G) = ∅ then return 0
2 if λPQ(G) ≤ 3 then
3 return λPQ(G)

4 foreach connected component C of G do
5 k[C]←∞
6 foreach independent set Y ⊆ V (C) such that |Y | ≥ |V (C)|/2 do
7 k1 ← Find-Lambda-Poly(C − Y,NB(Y ), Q)
8 k2 ← Find-Lambda-Poly(C − Y, P,NB(Y ))
9 if Y ∩ P 6= ∅ then k1 ← k1 + 1

10 if Y ∩Q 6= ∅ then k2 ← k2 + 1
11 k[C]← min(k[C], k1 + 1, k2 + 1)

12 foreach correct partition (X, Y, Z) of C do
13 kX ← Find-Lambda-Poly(C[X], NB(Y ), Q)
14 kZ ← Find-Lambda-Poly(C[Z], P,NB(Y ))
15 k[C]← min(k[C], kX + 1 + kZ)

16 return max{k[C] : C is a connected component of G}

Lemma 5.7. For a red-black graph G = (V, ∅, ∅) and any sets P,Q, we have
that λPQ(G) ≤ 3.

Proof. The labeling ϕ : V → {1, 2, 3} such that ϕ(v) = 2 for every v ∈ V is
a 3-LPQ-labeling of G.

Lemma 5.8. For any red-black graph G and sets P,Q, the algorithm call
Find-Lambda-Poly(G,P,Q) returns λPQ(G).

Proof. The proof proceeds by the induction on |V (G)|. If V (G) = ∅, the
correct result is given in line 1 (by the de�nition of λPQ(∅, P,Q)). If λPQ(G) ≤ 3,
the result is found in line 3, so from now on we assume that λPQ(G) > 3.
Notice that if |V (G)| ≤ 1, then λPQ(G) ≤ 3 by Lemma 5.7.

Let n > 1 and assume that the statement is true for all graphs G′ and
all sets P ′, Q′, such that |V (G′)| < n. Let G be a red-black graph on n
vertices and let P,Q be sets. Let k be the value returned by the algorithm
call Find-Lambda-Poly(G,P,Q). By (5.1), to show that k = λPQ(G) it is
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enough to show that that k[C] = λPQ(C) for every connected component C
(for k[C] de�ned as in the algorithm).

Let C be a connected component of G. First we will show that k[C] ≥
λPQ(C), i.e. there exists a k[C]-LPQ-labeling of C. Assume that k[C] was set
in the line 11. Consider the independent set Y and the iteration of the loop
in lines 6�11 for which k[C] was set. Let k′1 = Find-Lambda-Poly(C −
Y,NB(Y ), Q) and k′2 = Find-Lambda-Poly(C − Y, P,NB(Y )). By the in-
duction hypothesis there exist a k′1-L

NB(Y )
Q -labeling ϕ′ of C − Y and a k′2-

LPNB(Y )-labeling ϕ
′′ of C−Y . Notice that k[C] ∈ {k′1 +1, k′1 +2, k′2 +1, k′2 +2}

and at least one of the following cases occurs.

Case 1: k[C] = k′1 + 1 and Y ∩ P = ∅.
In this case we can extend ϕ′ in the following way

ϕ(v) =

{
ϕ′(v) if v ∈ V (C) \ Y
k′1 + 1 if v ∈ Y

obtaining a k[C]-LPQ-labeling ϕ of C.

Case 2: k[C] = k′1 + 2 and Y ∩ P 6= ∅.
In this case we can extend ϕ′ in the following way

ϕ(v) =

{
ϕ′(v) if v ∈ V (C) \ Y
k′1 + 1 if v ∈ Y

obtaining a k[C]-LPQ-labeling ϕ of C (note that due to restriction on P the
label k′1 +2 is counted as used, despite the fact that no vertex has this label).

Case 3: k[C] = k′2 + 1 and Y ∩Q = ∅.
In this case we can extend ϕ′′ in the following way

ϕ(v) =

{
1 if v ∈ Y
ϕ′′(v) + 1 if v ∈ V (C) \ Y

obtaining a k[C]-LPQ-labeling ϕ of C.
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Case 4: k[C] = k′2 + 2 and Y ∩Q 6= ∅.
In this case we can extend ϕ′′ in the following way

ϕ(v) =

{
2 if v ∈ Y
ϕ′′(v) + 2 if v ∈ V (C) \ Y

obtaining a k[C]-LPQ-labeling ϕ of C.
Now assume that that k[C] was set in line 15. Consider the correct

partition (X, Y, Z) and the iteration of the loop in lines 12�15 for which k[C]
was set. Let kX and kZ be de�ned as in lines 13 and 14 for this iteration.
Hence k[C] = kX + 1 + kZ . By the induction hypothesis there exists kX-
L
NB(Y )
Q -labeling ϕX of C[X] and kZ-LPNB(Y )-labeling ϕZ of C[Z]. We can

de�ne a k[C]-LPQ-labeling of C in the following way:

ϕ(v) =


ϕX(v) if v ∈ X,
kX + 1 if v ∈ Y,
kX + 1 + ϕZ(v) if v ∈ Z.

Notice that sets X, Y, Z are non-empty since (X, Y, Z) is a correct parti-
tion of C. Hence kX , kZ ≥ 1 and ϕ−1(1) ∩Q = ϕ−1(kX + 1 + kZ) ∩ P = ∅.

Now we will show that k[C] ≤ λPQ(C). Let ϕ be an optimal LPQ-labeling
of C. Recall that λPQ(C) > 3. One of the following cases occurs.

Case 1: |ϕ−1(1)| ≥ |V (C)|/2.
Consider the iteration of the loop in lines 6�11 for Y = ϕ−1(1). By the in-

duction hypothesis the algorithm Find-Lambda-Poly sets k2 = λPNB(Y )(C−
Y ). Notice that ϕ−1(1) ∩ Q = ∅ and λPNB(Y )(C − Y ) = λPQ(C) − 1. Hence
the condition in line 10 is not ful�lled and k2 is equal to λPQ(C)− 1. By the
condition in line 11 we have k[C] ≤ k2 + 1 = λPQ(C).

Case 2: ϕ−1(1) = ∅ and |ϕ−1(2)| ≥ |V (C)|/2.
Consider the iteration of the loop in lines 6�11 for Y = ϕ−1(2). By the in-

duction hypothesis the algorithm Find-Lambda-Poly sets k2 = λPNB(Y )(C−
Y ). Notice that ϕ−1(2) ∩ Q 6= ∅ since otherwise we could decrease the la-
bel of every vertex by one, obtaining (λPQ(C) − 1)-LPQ-labeling of C. Hence
λPNB(Y )(C − Y ) = λPQ(C) − 2 and the algorithm Find-Lambda-Poly in
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line 10 sets k2 to λPQ(C) − 2 + 1. By the condition in line 11 we have
k[C] ≤ k2 + 1 = λPQ(C)− 2 + 1 + 1 = λPQ(C).

Case 3: |ϕ−1(λPQ(C))| ≥ |V (C)|/2.
This case is analogous to the Case 1.

Case 4: ϕ−1(λPQ(C)) = ∅ and |ϕ−1(λPQ(C)− 1)| ≥ |V (C)|/2.
This case is analogous to the Case 2.
Notice that neither the case ϕ−1(1) = ϕ−1(2) = ∅ nor ϕ−1(λPQ(C)) =

ϕ−1(λPQ(C) − 1) = ∅ may occur, since the labeling ϕ is optimal. Hence the
only case remaining is:

Case 5: Both conditions:

• 0 < |ϕ−1(1)| < |V (C)|/2 or 0 < |ϕ−1(1) ∪ ϕ−1(2)| < |V (C)|/2 and

• 0 < |ϕ−1(λPQ(C))| < |V (C)|/2 or 0 < |ϕ−1(λPQ(C))∪ϕ−1(λPQ(C)−1)| <
|V (C)|/2.

are ful�lled. Notice that we can assume that the conditions above are satis�ed
for every optimal LPQ-labeling ϕ of G, since otherwise we are done by Cases
1�4.

Let h = min{j ∈ {1, . . . , λPQ(C)} : |
⋃j
i=1 ϕ

−1(i)| ≥ |V (C)|/2}. Note that
1 < h < λPQ(C), because of the conditions of the Case 5. By Lemma 5.4, the

triple (
⋃h−1
i=1 ϕ

−1(i), ϕ−1(h),
⋃λPQ(C)

i=h+1 ϕ
−1(h)) is a balanced partition of G.

Let ϕ′ be a h-maximization of ϕ (its existence is guaranteed by Lemma

5.5). Let X =
⋃h−1
i=1 ϕ

′−1(i), Y = ϕ′−1(h) and Z =
⋃λPQ(C)

i=h+1 ϕ
′−1(h). Notice

that by the de�nition of h-maximization, we have the following:

• ∅ 6= ϕ−1(h) ⊆ Y implies that Y 6= ∅,

• X ⊆
⋃h−1
i=1 ϕ

−1(i) implies that |X| ≤ |V (C)|/2,

• Z ⊆
⋃λPQ(C)

i=h+1 ϕ
−1(i) implies that |Z| ≤ |V (C)|/2.

Moreover X 6= ∅ and Z 6= ∅, because otherwise we are done by Case 2 or
Case 4 for ϕ′. Hence (X, Y, Z) is a correct partition of C and it is con-
sidered in some iteration of the loop in lines 12�15. In the iteration for
(X, Y, Z) the algorithm sets kX = λ

NB(Y )
Q (C[X]) = h − 1 in line 13 and
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kZ = λPNB(Y )(C[Z]) = λPQ(C) − h in line 14 (by the induction hypothesis).
Hence k[C] ≤ kX +1+kZ = h−1+1+λPQ(C)−h = λPQ(C), which completes
the proof.

A direct estimation of the computation complexity of our algorithm gives
a running-time O((9 + ε)n). However, by using some results from Section
3.4, we can improve this running-time upper bound, as claimed in the next
Lemma.

Lemma 5.9. The algorithm Find-Lambda-Poly computes λPQ(G) of a red-
black graph in time O((8 + ε)n) and polynomial space, where n is the number
of vertices in G and ε is an arbitrarily small positive constant.

Proof. Verifying if a given set Y is independent can be performed in poly-
nomial time. We can check if a given function ϕ : V (G) → N is an LPQ-
labeling of G in polynomial time as well. The algorithm Find-Lambda-
Poly �rst checks in constant time if V (G) = ∅. Then it exhaustively checks
if there exists a k-LPQ-labeling of G for k ∈ {1, 2, 3}. There are 3n functions
ϕ : V (G)→ {1, 2, 3}, so this step is performed in time nO(1) · 3n.

Then for every connected component C of G the algorithm checks all in-
dependent sets of size at least |V (C)|/2 (there are no more than 2n such sets)
and all correct partitions of C (by Theorem 3.27 and Remark 5.3 there are
at most

√
8
n ·nO(1) considered partitions and they can be enumerated within

this time bound, using polynomial space). For each connected component of
G, the algorithm is called recursively for at most two subgraphs of order at
most n/2 each. Hence we obtain the following inequality for the complexity:

T (n) ≤ (2n +
√

8
n
)nO(1)T (n/2) (5.2)

This recursive inequality implies T (n) = O(8nnO(1) logn) = O(8n2O(1) log2 n),
which is bounded by O((8 + ε)n), for all ε > 0. The space complexity of the
algorithm is clearly polynomial.

Proof of Theorem 5.1. Notice that if we are looking for a L(2, 1)-labeling of
G, we can assume that G is connected (otherwise we would label each of its
components separately) and the initial graph given to the algorithm is an
R-closure of G (an R-closure of a graph can be found in polynomial time).
Recall that by Observation 3.29, the number of R-maximal proper pairs in
a red-black graph on n vertices, which is an R-closure of some connected
graph, is bounded by O(2.6488n).
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Hence the complexity of the algorithm is bounded by

T ′(n) ≤ (2n + 2.6488n)nO(1)T (n/2), (5.3)

where T is given by the inequality (5.2). By (5.3) we get T ′(n) = O(7.4920n),
which completes the proof.

Remark 5.10. Notice that the algorithm Find-Lambda-Poly can be easily
generalized for the `-bounded channel assignment problem (for an integer ` ≥
2). To adapt the algorithm, we have to consider the partition of the vertex
set into ` + 1 sets X, Y1, . . . , Y`−1, Z, such that |Y | ≤ n/2, |Z| ≤ n/2 and
Y1, . . . , Y`−1 are independent. Then we run the algorithm recursively on G[X]
and G[Y ]. This algorithm has time complexity O∗((`+ 1)2n) and polynomial
space complexity. The complexity bound can be slightly improved by noticing
that each of the sets Y1, Y2, . . . , Y`−1 is independent and considering only such
partitions. However, this requires much technical e�ort and the improvement
is very little (and becomes smaller as ` grows).
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5.2 k-L(2, 1)-labeling problem with k �xed

In this section we shall adapt the algorithm Find-Lambda-Poly to solve
the k-L(2, 1)-labeling problem if k is a �xed integer. Again, we shall start
with solving k-LPQ-labeling problem for red-black graphs.

We observe that k-LPQ-labeling problem is a special case of the so-called
(d, 2)-CSP (constrained satisfaction problem). An instance of (d, 2)-CSP
consists of:

1. a set of vertices V ,

2. sets of possible labels Cv for each vertex v, such that |Cv| ≤ d,

3. a set C of constraints, each of the form {(v, cv), (w, cw)}, where v, w ∈ V
and cv ∈ Cv and cw ∈ Cw.

The problem asks if there exists a labeling ϕ of vertices, such that

1. ϕ(v) ∈ Cv for all v ∈ V ,

2. {(v, ϕ(v)), (w,ϕ(w))} /∈ C} for all v, w ∈ V .

Theorem 5.11 summarizes complexity bounds for the exact algorithms for
the (d, 2)-CSP.

Theorem 5.11 (Beigel, Eppstein [8], Angelsmark [7]). The (d, 2)-CSP prob-
lem can be solved in polynomial space and time

1. O(1.3645n) for d = 3,

2. O((0.4518 · d+ ε)n) (where ε is any positive constant) for all d ≥ 4.

Now let us explain how to encode an instance of k-LPQ-labeling problem
as an instance of (d, 2)-CSP. For each vertex we consider the following list of
possible labels:

Cv =


{2, 3, . . . , k − 1} if v ∈ P ∩Q
{2, 3, . . . , k} if v ∈ Q \ P
{1, 2, . . . , k − 1} if v ∈ P \Q
{1, 2, . . . , k} otherwise.
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The set of constraints is de�ned as follows:

C ={{(v, c), (w, c)} for vw ∈ E(G), c ∈ Cv ∩ Cw}∪
{{(v, c), (w, c+ 1)} for vw ∈ B(G), c ∈ Cv, c+ 1 ∈ Cw}∪
{{(v, c), (w, c− 1)} for vw ∈ B(G), c ∈ Cv, c− 1 ∈ Cw}.

For k ≤ 8 we shall use this approach to solve the k-LPQ-labeling problem
in the same time as in Theorem 5.11. For the larger number of labels, we
proceed in a similar way as with the algorithm Find-Lambda-Poly, but
the way of partitioning the vertex set into three subsets is slightly di�erent.
A similar reasoning as in the proof of Lemma 5.5 shows that we can assume
that the set Y labeled with the label dk/2e is R-maximal. We partition
the set of remaining vertices into two sets X and Z, to be labeled with
labels 1, 2, .., dk/2e − 1 and dk/2e + 1, .., k, respectively. The labeling of X
(Z, respectively) is an L

N(Y )
Q -labeling (LPN(Y )-labeling, respectively) of the

graph G[X] (G[Y ], respectively). Algorithm 4 shows the pseudocode of this
procedure.

Algorithm 4: Determine-Lambda(G,P,Q, k)

Input: Red-black graph G, Sets P,Q, Integer k
1 if k ≤ 8 then
2 if λPQ(G) ≤ k then return Yes

3 else return No

4 foreach R-maximal independent set Y do
5 foreach (X,Z) being a partition of V (G) \ Y ) do
6 if Determine-Lambda(G[X], N(Y ), Q, dk/2e − 1) =Yes and
7 Determine-Lambda(G[Z], P,N(Y ), k − dk/2e) =Yes then
8 return Yes

9 return No

Let T ′k(n) denote the worst-case complexity of the algorithmDetermine-
Lambda, used to solve the k-LPQ-labeling problem on a red-black graph on
n vertices. By r`(n) let us denote the time needed to enumerate all `-element
R-maximal independent sets in a red-black graph with n vertices. We obtain
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the following formula for the complexity for k > 8:

T ′k(n) ≤
n∑
`=0

r`(n)
n−∑̀
m=0

(
n− `
m

)(
T ′dk/2e−1(m) + T ′bk/2c(n− `−m)

)
. (5.4)

Lemma 5.12. Let k > 8. If T ′bk/2c(n) = O∗(αn) for some α > 11
7
, then

T ′k(n) = O∗
((

4
3
(1 + α)n

))
.

Proof. Let β := α + 1. Let G be a red-black graph with n vertices, being
the worst-case instance for the algorithm Determine-Lambda. Let n′ :=
|V (GB)|. From the formula (5.4) we obtain the following.

T ′k(n) ≤
n∑
`=0

r`(n)
n−∑̀
m=0

(
n− `
m

)(
T ′dk/2e−1(m) + T ′bk/2c(n− `−m)

)
≤2

n∑
`=0

r`(n)
n−∑̀
m=0

(
n− `
m

)
T ′bk/2c(n− `−m)

≤nO(1)

n∑
`=0

r`(n)
n−∑̀
m=0

(
n− `
m

)
αn−`−m

=nO(1)

n∑
`=0

r`(n)(1 + α)n−` = nO(1)

n∑
`=0

βn−` · r`(n)

Now we apply the bound for r`(n) from Lemma 3.26.

T ′k(n) ≤nO(1)

n∑
`=0

βn−` ·

(
nO(1) · (4/3)n−n

′
(

81

64

)`∑̀
`′=0

(
n′/2

`′

)(
128

81

)`′)

=nO(1)

(
4

3

)n−n′
βn

n∑
`=0

∑̀
`′=0

(
n′/2

`′

)
2`
′
(

81

64

)`−`′
β−`

=nO(1)

(
4

3

)n−n′
βn

n∑
`′=0

n∑
`=`′

(
n′/2

`′

)
2`
′
(

81

64

)`−`′
β−`

=nO(1)

(
4

3

)n−n′
βn

n∑
`′=0

(
n′/2

`′

)(
128

81

)`′ n∑
`=`′

(
81

64β

)`
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Since we assumed that α > 11
7
and thus β > 18

7
, the value of

(
81

64β

)`
is smaller

than 1. Hence,

T ′k(n) ≤nO(1)

(
4

3

)n−n′
βn

n∑
`′=0

(
n′/2

`′

)(
128

81

)`′
(n− `′ + 1)

(
81

64β

)`′

≤nO(1)

(
4

3

)n−n′
βn

n∑
`′=0

(
n′/2

`′

)(
2

β

)`′
= nO(1)

(
4

3

)n−n′
βn

n′/2∑
`′=0

(
n′/2

`′

)(
2

β

)`′

=nO(1)

(
4

3

)n−n′
βn
(

1 +
2

β

)n′/2
= nO(1)

(
4β

3

)n(
3

4
·

√
β + 2

β

)n′

.

Since β > 18
7
, the value of 3

4
·
√

β+2
β

is smaller than 1. Therefore we obtain
the following bound:

T ′k(n) ≤ nO(1)

(
4β

3

)n
= nO(1)

(
4(1 + α)

3

)n
.

Table 5.1 presents the bounds for T ′k(n) for some values of k. The bounds
for k ≤ 8 follow from Theorem 5.11, while the bounds for k ≥ 9 follow from
Lemma 5.12.

If we want to solve a k-L(2, 1)-labeling problem, we can again assume
that the initial graph is an R-closure of some connected graph. Therefore,
by Observation 3.23, in the �rst step we choose the set Y , which is a 2-
packing. Thus we can use the bound for the time needed to enumerate all
`-element 2-packings in a connected graph with n vertices (let us denote it
by u`(n)), which is given by Theorem 3.6. This gives us the following bound
on Tk(n), being the complexity of the modi�ed algorithm for k > 8 (recall
that in the k-L(2, 1)-labeling we start labeling with 0, so the number of labels
available is k + 1).

Tk(n) ≤
n∑
`=0

u`(n)
n−∑̀
m=0

(
n− `
m

)(
T ′dk/2e−1(m) + T ′bk/2c(n− `−m)

)
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k complexity
3 1.3645
4 1.8072
5 2.2591
6 2.7109
7 3.1627
8 3.6147
9 3.7430
10 4.3455
..
15 5.5503
16 6.1530

Table 5.1: Bases of the exponent in the bound for T ′k(n)

Let T ′bk/2c(n) = O∗(αn) for some α (see Table 5.1). From the formula
above, we obtain the following by a similar reasoning as in the proof of
Lemma 5.12.

Tk(n) ≤
n∑
`=0

u`(n)
n−∑̀
m=0

(
n− `
m

)(
T ′dk/2e−1(m) + T ′bk/2c(n− `−m)

)
≤nO(1)

n∑
`=0

u`(n)
n−∑̀
m=0

(
n− `
m

)
αm

=nO(1)

n∑
`=0

u`(n)(1 + α)n−` = nO(1)

n∑
`=0

(
n− `+ 1

`

)
(1 + α)n−`.

Now, for every �xed k we can estimate the bound for Tk(n) using the
above formula. Table 5.2 shows obtained bounds on Tk(n) for small k. Ob-
serve that for k ≤ 31 there are better than the bound for the complexity of
the algorithm Find-Lambda-Poly from Theorem 5.1.

The values in the second column of Table 5.2 are obtained by a more
careful analysis of the algorithm for the k-L(2, 1)-labeling problem by Havet
et al. [45].
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k Havet et al. [45] new bound
4 1.3006
5 2.4495
6 3.4642 3.1219
7 4.4722 3.5894
8 5.4773 3.5894
9 6.4808 4.0616
10 7.4833 4.0616
11 8.4853 4.5301

. . .
31 28.4957 7.4317
32 24.4959 8.0424

Table 5.2: Bases of the exponent in the bound for Tk(n)
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Chapter 6

Open problems

In this section we state some open problems that seem worth investigating.

6.1 Problems concerning Chapter 3

In Section 3.1 we showed an upper bound for the number uk(n) of k-element
2-packings in a connected graph. However, we �nd this bound unsatisfactory
and do not use it when estimating the number of proper pairs (in Section
3.3). Thus we state the �rst open problem.

Problem 6.1. Find an upper bound for uk(n), better than
(
n−k+1

k

)
.

By analogy to the case of independent sets, it seems natural to consider
the maximum number of maximal 2-packings in a graph G with n vertices.
Note that if G does not have to be connected, the correct bound is the same
as for maximal independent set, i.e. 3n/3 (see [75, 76, 87]). The problem gets
more interesting is we restrict ourselves to connected graphs.

Problem 6.2. What is the maximum number of maximal 2-packings in a
connected graph with n vertices?

We think this problem is interesting even for trees. It is worth mentioning
that a tight bound for the maximum number of maximal independent sets
in a tree has been showed by Sagan [79].

Problem 6.3. What is the maximum number of maximal 2-packings in a
tree with n vertices?
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6.2 Problems concerning Chapter 4

Very recently, Kowalik and Socaªa [62] published an algorithm for the `-
bounded channel assignment problem working in time O(2n(` + 2)n/2 · n2).
This is the �rst algorithm whose complexity is smaller than (c · `)n for any
constant c. However, the generalization of this result to the generalized list
T -coloring problem does not seem easy.

Problem 6.4. Design an exact exponential algorithm for the τ -bounded
generalized list T -coloring problem with complexity smaller than (c · `)n for
any constant c.

There are also many open questions concerning exact algorithms for the
(locally constrained) graph homomorphism problems. As we mentioned be-
fore, there are no non-trivial exact algorithms deciding the existence of a
locally surjective or a locally bijective graph homomorphism either.

Problem 6.5. Design a non-trivial exact exponential algorithm for the lo-
cally surjective and the locally bijective graph homomorphism problem.

Kowalik and Socaªa [62] and Socaªa [81] proved that, assuming the ETH
(the Exponential Time Hypothesis, see Section 1.3), there is no algorithm
with complexity O∗(cn) for any constant c, solving the channel assignment
problem or the non-list generalized T -coloring problem. It would be interest-
ing to show similar results for the list version of the problem and the graph
homomorphism and the locally injective graph homomorphism problem as
well.

Problem 6.6. Assuming the ETH, show that there is no exact algorithm
for the τ -bounded generalized list T -coloring with time complexity bounded
by O∗(cn) for a constant c (or design such an algorithm).

Problem 6.7. Assuming the ETH, show that there is no exact algorithm for
the (locally injective) graph homomorphism problem with time complexity
bounded by O∗(cn) for a constant c (or design such an algorithm).

6.3 Problems concerning Chapter 5

Recall that in Theorem 4.16 we have shown that the L(2, 1)-labeling problem
can be solved in time O(2.6488n) (where n is the number of vertices of the
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input graph), using exponential space. If only a polynomial space is available,
by Theorem 5.1, the problem can be solved in time O(7.4922n). The gap
between those bounds is very large. On the other hand, Björklud et al. [9]
showed that the graph coloring problem can be solved in time O∗(2n) using
an exponential space or in time O(2.2461n), using polynomial space. They
use an algorithm based on the inclusion-exclusion principle. Similar approach
has been used by Cygan and Kowalik [21] to design an exact algorithm for the
channel assignment problem. When we apply this algorithm to the case of
the L(2, 1)-labeling, we obtain the time complexity O∗(3n) and exponential
space complexity. However, we can see no easy way to adapt this algorithm
so that it uses only polynomial space.

It would be interesting to �nd an algorithm for the L(2, 1)-labeling prob-
lem, whose time complexity is not much larger than O(2.6488n), but using
only polynomial space.

Problem 6.8. Design an exact algorithm for the L(2, 1)-labeling problem
using only polynomial space and working in time O(cn) for a constant c close
to 3.
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