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Chapter 1

Introduction

In this thesis, we present an algorithm that, given an XPath node selecting query ϕ and an XML
document t, returns the set of nodes in t that satisfy ϕ. XPath evaluation algorithms that are built
into browsers are very inefficient, and may have running times that are exponential in the size of
the query and high-degree polynomial in the size of the queried XML document [GKP05]. The
existing papers devoted to improving XPath evaluation can be grouped into two main approaches,
as is explained next (see e.g. [BK09] for a survey).

One idea, as used in e.g. [GKP02] and improved in [GKP03], is to use dynamic programming;
see also [GKP05]. This gives evaluation algorithms that are polynomial (but not linear) in both
the node test (we use this term for node selecting queries, although the terms predicate or filter
are sometimes used in the literature) ϕ and the size of the document t. The best known algorithms
for full XPath 1.0 [GKP03] have running time O(|ϕ|2|t|4).

Another idea is to compile queries into finite-state tree automata, see [Nev02] for a survey.
This approach works if the node test does not refer to attribute or text values (a fragment called
CoreXPath), and therefore an XML document can be identified with a finitely labeled tree (the
label of a node is its tag name). In this setting, an XPath node test can be compiled into a finite-
state automaton; and this automaton can be evaluated on the tree in linear time. In general, the
automaton may be exponential in the size of the query. (It is worth noting that using dynamic
programming, one can evaluate CoreXPath node tests in time linear in both query and document,
see [GKP05].)

This thesis, together with the conference papers on which it is based, [BP08], [Par09], [BP10],
and [BP] can be seen as a generalization of the automata-theoretic framework to node tests that
use attribute and text values. In the terminology of [BK09], we study a fragment of XPath called
FOXPath (however without node identifiers). The first algorithm with linear time data complexity
for this fragment was given in [BP08]. The constant in the linear time of this algorithm was
exponential in the query size. However, the algorithm could handle an extension of XPath in
which arbitrary regular expressions may appear as path expressions. We use the name Regular
XPath for this extension of XPath, as opposed to FOXPath, which stands for XPath where path
expressions are not allowed to use the Kleene star, as in the XPath specification [CD99]. The
algorithm in [BP08] uses algebraic methods like finite monoids and Simon decompositions. We
present here a different algorithm with the same complexity, which uses deterministic automata
instead of monoids.

Then in [Par09], an algorithm with linear time data complexity and polynomial time combined
complexity was given. This algorithm used the special form of path expressions in FOXPath,
which in fact are less expressive than regular expressions. Hence the algorithm does not work for
Regular XPath, only for FOXPath.

There is also a third, unpublished algorithm, which is a simpler version of these in [BP08]
and [Par09]. It has O(|t| log |t|) time complexity in the document size |t|, polynomial combined
complexity, and works for the whole Regular XPath as well. Probably among the three algorithms
this one may be most useful in the practice. It is easier to understand and implement, which
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probably compensates for the additional log |t| factor.
Finally, we have an algorithm presented in [BP10], which works for Regular XPath in time

linear in the document size, and polynomial in the query size and the document height. Notice
that a typical XML document (even very big) has a very small height.

The four algorithms described above are the content of this thesis. They are presented in the
following theorem.

Theorem 1.1
Let t be an XML document and ϕ a node test of Regular XPath (as defined in Section 1.2.2). The
set of nodes of t that satisfy ϕ can be computed in time

• O(|ϕ|3|t| log |t|), or

• O(2O(|ϕ|)|t|), or

• linear in |t|, polynomial in |ϕ| and the height of t, or

• when ϕ is from FOXPath—in time O(|ϕ|3|t|).

The theorem above talks about evaluating node tests. What about path expressions? In
principle, path expressions can not be evaluated in time linear in the tree size, as sometimes
quadratically many pairs satisfy a path expression. However it is possible to do the evaluation in
time linear in the number of selected pairs or in the tree size, whatever is bigger. Even more, we
give a constant delay algorithm: it finds some first pair satisfying α in time linear in the document,
and each next pair in constant time. Hence, when someone wants to find just one pair, or just a
linear number of pairs in the size of the document, this can be done in linear time.

Theorem 1.2
Let t be an XML document and α a path expression of Regular XPath. All pairs of nodes of t
satisfying α can be computed one after another in time

• first pair: O(|α|3|t| log |t|), each next pair: O(|α|3 log |t|), or

• first pair: O(2O(|α|)|t|), each next pair: O(2O(|α|)), or

• first pair: linear in |t|, polynomial in |α| and the height of t, each next pair: polynomial in
|α| and the height of t, or

• when α is from FOXPath—first pair: O(|α|3|t|), each next pair: O(|α|3).

The thesis is structured as follows. In the remaining part of Chapter 1, we present preliminary
definitions, the data model, and we define the fragment of XPath considered in this thesis. We also
present results of some experiments. In Chapters 3 and 4 we present solutions to two problems,
which are parts of the XPath evaluation algorithm, but can be also seen separately. Then, in
Chapter 5, we present an algorithm answering to Regular XPath node tests, i.e. we prove the
first three variants of Theorem 1.1. Chapter 6 is devoted to the fourth variant of the theorem:
we consider there node tests of FOXPath. In Chapter 7 we consider an extension of Regular
XPath, which contains aggregation. Finally, in Chapter 8 we give an algorithm evaluating path
expressions, i.e. we present a proof of Theorem 1.2.

1.1 Basic definitions and used facts

1.1.1 Trees

A binary tree is a tree in which every node has zero, one, or two children. We distinguish between
left and right child, in particular if a node has one child, it is either left child or right child. Trees
will be denoted by letters t, s. Nodes will be denoted by x, y, z. We write x ≤ y to denote that x
is an ancestor of y. Whenever we use words descendant or ancestor, they need not to be proper.
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We say that a tree forms a word if every its node has at most one child.
Let x and y be two nodes in a binary tree t. The closest common ancestor (CCA) of x and y

is the (unique) node z that is an ancestor of both x and y, and has a minimal possible distance
from x and y (equivalently, maximal level).

Throughout the thesis we use the following fact.

Fact 1.3
For a tree t, after preprocessing in time O(|t|), we can answer, in time O(1), queries of the form:
given two nodes x and y,

1. where is the closest common ancestor of x and y?

2. is x an ancestor of y?

Harel and Tarjan [HT84] show an algorithm for queries of type 1 (a simpler algorithm doing the
same was given later by Bender and Farach-Colton [BFC00]). Queries of type 2 follow immediately
from queries of type 1: it is enough to check if the CCA of x and y is equal to x.

Notice that the fact becomes significantly simpler, if we ask for O(|t| log |t|) preprocessing time
and O(log |t|) query time. We just keep from each node a pointer to the node 2k edges above it,
for each k. Then the closest common ancestor can be found in time O(log |t|) using some kind of
the binary search algorithm.

Unranked trees

We rarely use also unranked trees. This are trees in which every node is allowed to have arbitrary
number of children; the children are ordered. We have the following fact.

Fact 1.4
For an unranked tree t, after preprocessing in time O(|t|), we can answer, in time O(1), queries
of the form: for two nodes x < y, which child of x is an ancestor of y?

Proof
This is a consequence of Fact 1.3. We unravel t into a binary tree s using the first child / next
sibling encoding: the leftmost child of a node becomes its left child, while its next sibling becomes
its right child. We perform the preprocessing of Fact 1.3 for s. Additionally we remember the
rightmost child of each node. In the query step we have to find in s the closest common ancestor
of y and the rightmost child of x, which is done by one query to Fact 1.3. �

1.1.2 Binary relations

The set of binary relations over a set Q is denoted RQ. This set forms a monoid, where the monoid
operation is relation composition. For two relations r, s ∈ RQ, their composition is denoted by
r ◦ s, or simply rs. Moreover, for P ⊆ Q, we also use the notation

P ◦ r = {q : ∃p ∈ P, (p, q) ∈ R}, and
r ◦ P = {p : ∃q ∈ P, (p, q) ∈ R}.

We have the following trivial fact about complexities of these operations.

Fact 1.5
Given r, s ∈ RQ and P ⊆ Q, we can calculate

• the composition r ◦ s in time1 O(|Q|3),

• the sets P ◦ r and r ◦ P in time O(|Q||P |), which is O(|Q|2) in general, and O(|Q|) when
|P | = 1,

• the transitive closure of the relation r in time O(|Q|3).
1It can be done even in a better complexity, namely O(|Q|2.38), by a more sophisticated algorithm, see [CW87].
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1.1.3 Edge labelled trees

Throughout the next two chapters we consider binary trees with labels on edges. The set of such
trees labeled by elements of a set A is denoted etrees(A).

Assume we have a tree t ∈ etrees(RQ), for some set Q. Then for any its node x and its
descendant y of such a tree t we define valt(x, y) as the composition of relations written on the
simple path from x to y. When t is clear from the context, we simply write val(x, y).

1.2 XML documents and XPath

1.2.1 Data model

In this section we define the data model. We represent an XML document as a binary tree, called
a data tree. The tree is binary, i.e. a node may have two children: left and right, one child: left or
right, or no children. Although an XML document is typically seen as an unranked tree, it can be
also interpreted as a binary tree, using the first child / next sibling encoding: the leftmost child
of a node becomes its left child, while its next sibling becomes its right child.

There are two reasons why we use binary trees. One reason is to simplify the complexity
analysis: for many operations it is obvious that processing two children takes constant time, but it
is less obvious that for many children it takes time proportional to their number. A second reason
is more important: the horizontal axes of XPath do not correspond to any edge of an unranked
tree; however each axis can be simulated by a combination of axes going along edges of a binary
tree.

In a data tree there are three types of nodes: element nodes, attribute nodes and text nodes.
Attribute and text nodes always have no left child (i.e. they are leaves in the unranked tree).
Every element and attribute node is assigned a label which is a tag name or an attribute name,
respectively, and which is taken from a finite alphabet. Text nodes do not have names, we assume
that their label is text. We call the whole alphabet A—every node has a label from the set A.
Moreover every node has a string value. A string value of an attribute node is the value of the
corresponding attribute, which is a string. A string value of a text node is just a text. But,
what causes some difficulties, to get the string value of an element node one has to concatenate
the string values of all text node descendants of the left child of the element node,2 in document
order. The total length of all string values may be quadratic in the input size. So, the string
values of element nodes are not remembered explicitly. Since in chapters about XPath most of the
time we will be dealing with data trees, we will sometimes write tree instead of data tree. String
values will be denoted by d.

Consider for instance the following XML document:

〈a〉
〈b〉abc〈/b〉xyz
〈b at1 = ”01” at2 = ”0101”〉〈/b〉

〈/a〉

The data tree representing this document uses labels A = {a, b, at1, at2, text}. The first two are
tag names, the next two attribute names and the last one is the special label for text nodes. The
data tree is presented in Figure 1.2.1.

The size of a data tree is the number of nodes plus the sum of lengths of string values of its
attribute and text nodes. This size measure is linear in the size of the text file representation,
since the only difference is in the special characters like 〈 or ”.

2This stands for all text node descendants of the element node, when the document is interpreted as an unranked
tree.
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Figure 1.1: Example data tree (string values in italic are not remembered)

1.2.2 Regular XPath

In the thesis we mainly consider two fragments of XPath, called here FOXPath and Regular
XPath (additionally in Chapter 7 we consider one more fragment, which allows counting). The
FOXPath fragment is almost the fragment called FOXPath in [BK09]. Basically, it contains queries
that may navigate in a tree and compare string values. The specification [CD99] of XPath 1.0
contains a lot of constructs, which can be easily added (like type conversions, etc.), but we omit
them from this thesis to avoid going into technicalities. The constructs of full XPath 1.0 which
are important for evaluation complexity, and which are not contained in Regular XPath, are:
aggregates, manipulating integers and position arithmetic. The first two of them are addressed in
Chapter 7.

The only difference between FOXPath and Regular XPath is that the second allows Kleene
star. Regular XPath is not in the XPath specification, but it is an often considered extension. In
this section we define these two fragments of XPath.

In XPath, the primitives employed for navigation along the tree structure are called axes.
We consider the following one-step axes: to−left, to−right and their inverses from−left,
from−right. They correspond to going to and from the left and the right child. We also have
the transitive-reflexive closures of the one-step axes, called multistep axes: to−left∗, to−right∗,
from−left∗, from−right∗, (to−left+to−right)∗, (from−left+from−right)∗. We comment
on the relation to XPath with the original set of axes below.

There are two types of expressions: path expressions and node tests. We may look at them
as on functions, for every node returning respectively: node sets and booleans. Another way for
looking at a path expression is that it is a binary query. In each tree, a path expression will select
a set of pairs (x, y) of nodes. Intuitively a path expression will describe the path from x to y,
although the path might not be the shortest one. A typical path expression is to−left∗, it selects
a pair (x, y) if y can be reached from x by going several times to the left child, possibly x = y. A
node test is a unary query: it selects a set of nodes. A typical node test is a, it selects nodes that
have label a. In general in XPath, the two types of expression are mutually recursive, as defined
below:

• Every label a ∈ A is a node test, which selects nodes with a label a.

• Node tests admit negation, conjunction and disjunction.

• If α, β are path expressions, c is a string constant, and RelOp ∈ {=,≤, <, >,≥, 6=}, then

α RelOp β and α RelOp c

are node tests. The first of them selects a node x if there exist nodes y, z such that (x, y)
is selected by α and (x, z) is selected by β and that the string values of y and z satisfy the
relation RelOp. The second of them selects a node x if there exists a node y such that (x, y)
is selected by α and the string value of y and the constant c satisfy the relation RelOp. The
inequalities ≤, <,>,≥ correspond to the lexicographic order of strings.
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• There are two types of atomic path expressions. Every axis, including the multistep axes,
is an atomic path expression. Furthermore, a node test ϕ may be interpreted as an atomic
path expression [ϕ], which holds in pairs (x, x) such that ϕ holds in x.

• In general, a path expression is a concatenation (composition) or union of simpler path
expressions. In particular an empty concatenation is allowed, denoted ε. Moreover in Regular
XPath (but not in FOXPath) a path expression may be a Kleene star of a simpler path
expression.

Note that the operators = and 6= in node tests α RelOp β and α RelOp c are not mutually
exclusive. A node may satisfy none or one or both of α = β and α 6= β (similarly for <,≥, etc.).
Note also that in Regular XPath the multistep axes are not necessary, as they can be expressed
using a star and the one-step axes; this is not the case for FOXPath, since Kleene star is not
available.

For a node test ϕ or a path expression α, by |ϕ| and |α| we denote their size, understood as
the length of their text representations.

Relation to XPath with the original set of axes

All standard axes, navigating in the unranked tree of a document, can be expressed by a combi-
nation of our axes. For example, the child axis is to−left · to−right∗; the ancestor axis is
(from−left + from−right)∗ · from−left, and the self axis is ε (the empty path expression).
Moreover, if the original expression does not use Kleene star, then our new expression does not as
well (although of course it uses multistep axes).

1.3 Real world XPath systems

It was already shown in [GKP02, GKP05] that the working time of real-world XPath engines may
be very bad, namely O(|t||ϕ|), where |t| is the document size and |ϕ| is the query size. As the
experiments from these papers are already quite old, we repeat a part of them on the newest
versions of XPath engines. In general, the results of our experiments show that nothing has
changed.

We evaluate three XPath engines, namely Xalan, version 2.7.1, Saxon, version 9.3.0.4 (HE),
and libxml2, version 2.6.31. These are some of the most popular freely available XPath engines.
The first two of them are written in Java, and the last one is a C++ library. We have performed
our experiments on a computer with 2.4 GHz Intel Core 2 processor and 4 GB RAM memory,
running Linux.

For our experiments we generated simple, flat XML documents. Each document was of the
form

〈a〉 〈b/〉 . . . 〈b/〉︸ ︷︷ ︸
i times

〈/a〉.

For Saxon and Xalan we construct queries using the following simple pattern. The first query was
‘//a/b’ (using the original XPath syntax). The i+1-th query was obtained by taking the i-th query
and appending ‘/parent::a/b’. For instance, the third query was ‘//a/b/parent::a/b/parent::a/b’.
For libxml2 we have used another queries. The first three were
//*[parent::a/child::*]
//*[parent::a/child::*[parent::a/child::*]]
//*[parent::a/child::*[parent::a/child::*[parent::a/child::*]]]
and then the sequence continues in the same way.

The results of the experiments are presented on Figures 1.2-1.4. They show that in all three
cases the running time is indeed O(|t||ϕ|). Additionally, while running larger queries in Saxon, an
,,out of memory” error was occuring.
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Figure 1.2. Running times of Xalan (in seconds), depending on query size (X axis) and document
size (each line represents different document size)
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Figure 1.3. Running times of Saxon (in seconds), depending on query size (X axis) and document
size (each line represents different document size)
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Figure 1.4. Running times of libxml2 (in seconds), depending on query size (X axis) and document
size (each line represents different document size)
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Chapter 2

Factorization forests

This chapter can be seen independently from the rest of the thesis. We present here the notion of
factorization forests and we show a new algorithm calculating them (faster than previously known
algorithm). This algorithm is then used in the next chapter (Section 3.3) to evaluate infix values
for words (i.e. to prove the third variant of Theorem 3.1).

The basic object in this chapter are words, not trees.
Instead of specifying an infix by its first x and last position y, we use the set of all of its

positions F = {x, x + 1, . . . , y}. This way we can use set operations on infixes. If F is a set of
positions in a word w, we write w[F ] for the subsequence of w consisting of positions from F ,
e.g. a1a2a3[{1, 2}] = a1a2. We use the name factor of w for a connected set of positions (all our
sets of positions are connected), and the name infix for the word w[F ] when F is a factor. (Of
course, the algorithms represent factors by just keeping the first and last position). We write
x, y, z for positions, and F,G,H for factors.

In this chapter as an alphabet we use a finite monoid1. An evaluation of a word w ∈ M∗ is
the element of M we get as the multiplication of all letters of w. For a factor F , the evaluation of
w[F ] is denoted valw(F ).

Factorization forests

A factorization forest for a word w is a family of factors that contains {x} for every position x
in w, and where every two factors are either disjoint, or one is contained in the other. There is
a natural forest structure on the factors, so we can talk about descendants, parents, children and
siblings, etc. The level of a factor is the number of its ancestors (including itself).

Suppose that F1, . . . , Fn are consecutive factors of a word w ∈ M∗ (i.e. the first position of
Fi+1 is the next position after the last position of Fi). A collation of these factors is any union
of these factors that is also a factor, i.e. any Fi ∪ · · · ∪ Fj for i ≤ j. We say that F1, . . . , Fn
are homogeneous if all of their collations have the same value under valw. A factorization forest
is called homogeneous if any choice of at least three consecutive siblings is homogeneous. (It is
important that we do not require this for only two consecutive siblings—otherwise for most words
any factorization forest would not exist). In other words, in a homogeneous factorization forest
we have two kinds of non-leaf factors: factors which have two children, and factors which have
arbitrarily many homogeneous children.

First observe that it is very easy to get a factorization forest of logarithmic height: we split
the whole word into two factors (of approximately the same length), then each of them into two
smaller factors, and so on. As every factor has only two children, such forest is automatically
homogeneous.

1Alternatively, we can use words over arbitrary alphabet A, and a morphism α : A∗ →M .
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Fact 2.1
For any word w ∈ M we can find, in time O(|w|), a homogeneous factorization forest for w of
height at most log |w|.

However the height may be constant in the word length. This is a beautiful result of Imre
Simon, called the Factorization Forest Theorem [Sim90]. It says that, for each word over a monoid
M , a homogeneous factorization forest of height O(|M |) exists. From the proof, it is not difficult
to see that the forest can be constructed in time linear in the word length and polynomial in the
monoid size.

In this thesis, we study homogeneous factorization forests for words over RQ, i.e. when M is
the monoid of binary relations over a set Q. The size of the monoid RQ is exponential in the
size of Q. The main result is that we can build a factorization forest without worrying about this
exponential blowup.

Theorem 2.2
For any word w ∈ R∗Q we can find, in time O(|Q|3|w|), a homogeneous factorization forest for w
of height at most polynomial2 in |RQ|.

It is important, that the complexity in |Q| is polynomial, not exponential. We describe the
proof of this theorem in the next subsections.

2.0.1 Monoid of binary relations

For the rest of this section, we fix the monoid RQ. We write r, s, t for the binary relations which
are elements of RQ.

Green’s relations

Let r, s, t, t1, t2 below be elements of RQ.

• r is called a prefix of s, written r ≥R s, if there is some t with r ◦ t = s.

• r is called a suffix of s, written r ≥L s, if there is some t with t ◦ r = s.

• r is called an infix of s, written as r ≥J s, if there are t1, t2 with t1 ◦ r ◦ t2 = s.

• If r is both a prefix and a suffix of s, we write r ≥H s.

These relations are called Green’s relations; they come from [Gre51]. It is easy to see that each of
Green’s relations is a pre-order: it is both transitive and reflexive. The relations are not necessarily
antisymmetric and therefore it makes sense to consider their connected components. For instance,
we say that r and s are R-equivalent, written r ∼R s, if both r ≥R s and s ≥R r. An equivalence
class is called an R-class. Likewise for L, J and H.

In the algorithm, we will need to perform operations onRQ in timeO(|Q|3). One such operation
is to calculate composition r ◦ s, this is easy to do (see Fact 1.5). A problem that we will have
to work around is that we do not know how to test J -equivalence in time polynomial in |Q|.
However, we can do this in some special cases, as stated in the following lemma.

Lemma 2.3
Given r, s ∈ RQ, we can check in time O(|Q|3) if

r ◦ s ?∼J r, and if r ◦ s ?∼J s.

To see this we need two auxiliary lemmas.

2The height can be even linear in |RQ|, but it requires more care in the proof.
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Lemma 2.4
For r, s ∈ RQ the two equivalences below hold:

r ◦ s ∼J r ⇔ r ◦ s ∼R r and r ◦ s ∼J s ⇔ r ◦ s ∼L s.

Proof
This is a classic fact from the theory of Green’s relations, but we prove it here for the sake of
completeness. We only prove the part concerning R-classes, namely

r ◦ s ∼J r ⇔ r ◦ s ∼R r.

The proof for L-classes is the same. Only the implication from left to right is nontrivial. By the
assumption r ◦ s ∼J r there must be some t, u ∈M such that

r = t ◦ r ◦ s ◦ u

By substituting n times the right side instead of r, we get

r = tn ◦ r ◦ (s ◦ u)n

If we choose n so that (s · u)n is idempotent (this is always possible in a finite monoid), we get

r = tn ◦ r ◦ (s ◦ u)n = tn ◦ r ◦ (s ◦ u)n ◦ (s ◦ u)n = r ◦ (s ◦ u)n

which shows that r ◦ s is a prefix of r, and hence r ◦ s ∼R r. �

Lemma 2.5
Let r1, r2 be two elements of RQ. We define

Q1(q2) = {q1 : r1 ◦ {q1} ⊆ r2 ◦ {q2}}.

It holds r1 ≥R r2 if and only if r1 ◦ (Q1(q2)) = r2 ◦ {q2} for each q2 ∈ Q.

Proof
First assume that r1 ≥R r2, i.e. r1 ◦ r = r2 for some r ∈ RQ. Fix some element q2 ∈ Q. Of course
r1 ◦ (Q1(q2)) ⊆ r2 ◦ {q2} because q1 ∈ Q1(q2) only if r1 ◦ {q1} ⊆ r2 ◦ {q2}. Now take q ∈ r2 ◦ {q2},
which means that q ∈ r1 ◦{q1} for some q1 ∈ r◦{q2}. But then r1 ◦{q1} ⊆ r2 ◦{q2}, so q1 ∈ Q1(q2)
and q ∈ r1 ◦ (Q1(q2)).

For the other direction assume that r1 ◦ (Q1(q2)) = r2 ◦ {q2} for each q2 ∈ Q; we need to find
r ∈ RQ such that r1 ◦ r = r2. Let r contain pairs (q1, q2) such that q1 ∈ Q1(q2). Then for any
q2 ∈ Q it holds

(r1 ◦ r) ◦ {q2} = r1 ◦ r ◦ {q2} = r1 ◦ (Q1(q2)) = r2 ◦ {q2},

which shows that r1 ◦ r = r2. �

Proof (of Lemma 2.3)
Lemma 2.4 shows that all we need to do is to testR-equivalence and L-equivalence. Lemma 2.5 give
a criterion for deciding whether r1 ≥R r2, which may be checked in time O(|Q|3). L-equivalence
is done the same (symmetric) way. �

Calculating compositions and performing checks from Lemma 2.3 is our only interface to the
monoid RQ. In particular if we consider a monoid M where these operations can be performed in
time T , then our algorithm computes a factorization forest in time O(T |w|).

15



2.0.2 First step: J -homogeneous forest

Proof strategy

We present the proof strategy for Theorem 2.2.
The definition of homogeneous factors or factorization forests requires equality of some monoid

elements (values of collations of factors). By weakening this requirement we define notions of J -
homogeneity and H-homogeneity. Let F1, . . . , Fn be consecutive factors. We say the factors are
J -homogeneous if their collations have J -equivalent values under valw. Likewise we define a
J -homogeneous factorization forests, and the same for H.

Our proof strategy is to first compute a J -homogeneous factorization forest, then upgrade it
to an H-homogeneous one, and then upgrade that one to a homogeneous one. The main difficulty
is in the first step – computing a J -homogeneous forest; we do this below in Lemma 2.6. The
other steps are done using basically the same techniques as in the proof of the factorization forest
theorem from [Kuf], or the proofs of [Sim90, Col10].

Lemma 2.6
Let w ∈ R∗Q. One can compute a J -homogeneous factorization forest F in time O(|Q|3|w|). The
forest has height linear in |RQ|.

The rest of the section is devoted to proving this lemma. The algorithm processes word
positions from left to right. We begin by describing the invariant.

The invariant

After processing position x, the algorithm will have computed a factorization forest Fx for the
prefix 1, . . . , x. With each factor we remember one additional bit: if the factor is open or closed.
All open factors have to contain the last processed position x. Open factors might grow when
processing new positions. Once a factor becomes closed, it does not change. All singleton factors
are closed. Suppose F1, . . . , Fn ∈ Fx is a maximal set of siblings (written from left to right). The
invariant is that they satisfy the following property ?:

? The factors F1, . . . , Fn−1, and the factor F1 ∪ · · · ∪ Fn−1 are all J -equivalent.

Additionally, when they are children of an open factor F ∈ Fx, the following property ?? is
satisfied:

?? F and F1 are J -equivalent.

The invariant is satisfied by the initial configuration F1 = {{x}}.
Once we have processed the whole word, it is not difficult to get a J -homogeneous factorization

forest from the one produced by the algorithm. For each maximal set of siblings F1, . . . , Fn ∈ Fx,
it is enough to add a factor F1 ∪ · · · ∪ Fn−1.

Updating the forest

Suppose we have computed Fx−1, and we want to compute Fx. Consider the factors open in Fx−1:

x− 1 ∈ F1 ( F2 ( · · · ( Fn.

There are also closed factors containing x−1, at least one: {x−1}. Let C be the biggest of them.
We obtain Fx from Fx−1 as follows.

• Add {x}.

• If C and F1 are not J -equivalent, or n = 0, add open factor G0 = C ∪ {x}.

• Replace the factors Fi by Gi = Fi ∪ {x}, for i ∈ {1, . . . , n}.
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• When Gi\{x} and Gi are not J -equivalent close Gi, for every i (i.e. for i ∈ {0, . . . , n} if G0

was added, and for i ∈ {1, . . . , n} otherwise).

The test on J -equivalence in the second and the last step is done using Lemma 2.3, since we
are testing J -equivalence of a factor and its suffix or prefix. Below we argue that the invariant is
preserved. Then, we show why the algorithm runs in the required time, and why the factorization
forest has height linear in RQ.

Correctness

Extending a factor does not impact on property ?, as it does not talk about a last sibling. Property
? has to be checked only for the siblings of the newly added factor {x}. If G0 is created, {x} has
only one sibling, so ? is satisfied. Otherwise C is no longer the last sibling. This happens only
when C is J -equivalent to its parent F1. As F1 is open, it is J -equivalent to its first child (from
??), hence to all its children (from ?), which gives ? in the new forest.

Now let check the property ?? for open factors. Factor G0 stays open only when G0 and
G0\{x} = C are J -equivalent, which is exactly ??. Any other Gi stays open when it is J -
equivalent to Fi, which (from ??) is equivalent to its first child (which is also the first child of
Gi).

Running time

A potential problem is the last step. Potentially we have to do n tests for J -equivalence. However
notice that when Gi\{x} and Gi are J -equivalent for some i, then they are R-equivalent (Lemma
2.4), hence also Gj\{x} and Gj are R-equivalent (J -equivalent) for any j > i. Thus we may
stop testing greater i when we detect an equivalence. The number of tests for J -equivalence is
bounded by the number of factors becoming closed (plus one). Since the total number of factors in
a factorization forest is at most twice the length of the word, we have a limit on the total number
of operations in the last step of the algorithm.

Two implementation problems remain. First, where do we get the images of the factors
F1, . . . , Fn that are used in the tests for J -equivalence? The answer is that our algorithm main-
tains for each open factor Fi, the image of its closed part Fi − Fi−1. Second, what is the cost
of adding x to the factors Fi? The answer is that this can achieved for free, if we do not store
the ends of open factors, but we only keep in mind that they all end in the currently processed
position x.

The dependence in |Q| is O(|Q|3), as each single step is either done in constant time, when it
manipulates the forest, or in O(|Q|3), when we compose some elements of RQ or when we perform
checks from Lemma 2.3.

Height of the forest

Why is the height of the factorization forest linear in RQ? It would be useful to look at the
J -class of the first child of each non-singleton factor. The following invariant is preserved by the
algorithm: whenever a factor F in the factorization forest is the parent of a non-singleton factor
G, then the first child of F has a strictly smaller J -class than the first child of G. It guarantees
that the level of a factor is bounded by the position of its first child in the ≤J order.

Why is the invariant satisfied? First observe an auxiliary property of the forest: every closed
factor in the factorization forest (except singletons) has a different (smaller) J -class than its first
child. Indeed, when a factor Gi becomes closed, it has a different J -class than Gi\{x}, which
contains the first child of Gi.

To prove the invariant notice that during execution of the algorithm, the first child of a factor
is never modified. Hence it is enough to analyze each moment when a new pair of a parent and
its child is created. It happens only in the second step, when G0 is created (creating {x} does not
matter, as the invariant does not talk about singleton factors). First compare G0 with its only
non-singleton child C. As C is closed, from the above we know that its first child has greater
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J -class than C itself, which is the first child of G0. Now compare G0 with its parent G1. The
factor G0 is created only when C (the first child of G0) has greater J -class than F1. Because F1

is open, from ?? we get that it is J -equivalent with its first child (which is also the first child of
G1).

2.0.3 From a J -homogeneous forest to a homogeneous one

In this section we finish the proof of Theorem 2.2. Recall that thanks to Lemma 2.6, we have a
J -homogeneous factorization forest for our input word, which has height linear in |RQ|.

Our proof is in two steps. First, we upgrade the J -homogeneous factorization forest to an H-
homogeneous one. Then, we upgrade the H-homogeneous factorization forest to a homogeneous
one required by Theorem 2.2.

First we state a technical lemma, which will be used in both steps.

First-letter-homogeneous factorization forests

As a tool in the proof, we show that some other kind of factorization forests can be efficiently
computed. We say that factors F1, . . . , Fn are first-letter-homogeneous, when the first letter of
each of these factors is the same. We say that a factorization forest is first-letter-homogeneous if
any choice of at least three consecutive siblings is first-letter-homogeneous.

Lemma 2.7
Let A be a set whose elements can be represented using k bits. For each word w ∈ A∗, in time
O(k|w|) we can compute a first-letter-homogeneous factorization forest of height at most 2|A|.

Proof
For a ∈ A, consider the set Xa of positions in the word w which are labeled by a. We want to
represent each nonempty set Xa by a list. Then for each position x in the word w we can find
the next position having the same letter as x, in constant time. To find such representation it is
enough to sort all pairs (letter, position) using any order on letters. When it is the lexicographic
order on bit representations, we may use the lexicographic sorting, which works in time O(k|w|).

We construct a factorization forest F as follows. First we add to it the factor containing the
whole word. Then each newly added non-singleton factor F is split in the following way. Let a
be the first letter of w[F ], and let x1, . . . , xn be the positions in F having the same letter a (in
particular x1 is the first position of F ). As observed above, these positions can be found in time
O(n). When n > 1, for each 1 ≤ i < n we add to F the factor from xi to xi+1 − 1, and we add
the factor from xn to the end of F . When n = 1 we add to F the singleton factor containing x1,
and the factor containing all the other positions of F .

Directly from the construction we see that F is a first-letter-homogeneous factorization forest.
The processing take time linear in the size of F , hence linear in |w|. It remains to bound the height
of F . Notice that if a factor F is divided in the first way (i.e. it has n > 1), then its children are
divided in the second way: their first letter does not appear anywhere else. But when we divide
in the second way, the number of different letters appearing in the second child is strictly smaller
than the number of different letters in the parent. Thus the height is at most 2|A|. �

From a J -homogeneous forest to an H-homogeneous one

We first present an auxiliary lemma. A partial factorization forest is defined like a factorization
forest, but its leaves need not be singletons. We also require that any factor is the union of its
children, a requirement which is redundant when leaves are singletons.

Lemma 2.8
Let F1, . . . , Fk be consecutive factors that are J -homogeneous. In time O(|Q|2k), we can construct
an R-homogeneous partial factorization forest with leaves F1, . . . , Fn and height at most |RQ|.
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Proof
Let F be the union F1 ∪ · · · ∪ Fk. We will treat the factors F1, . . . , Fk as letters in a word

v = r1 · · · rk ∈ (RQ)∗,

where ri is the value of Fi. Apply Lemma 2.7 to the word v, yielding a factorization forest G′. By
expanding the i-th letter of v to the factor Fi, we can convert the factorization forest G′ into a
partial factorization forest G with leaves F1, . . . , Fk and root F .

We claim that G satisfies the statement of the lemma. Its height is at most |RQ| by Lemma 2.7,
so we only need to show that it is R-homogeneous.

Consider a set of at least three siblings G1, . . . , Gm in G. From the way G was constructed, we
know that for each i ∈ {1, . . . , n} the value of Gi is the same. Take any collation Gi ∪ · · · ∪Gj of
these factors. Note that Gi is a prefix of Gi ∪ · · · ∪Gj , and both are J -equivalent. Consequently,
by Lemma 2.4, they must be R-equivalent. It follows that the collations of G1, . . . , Gm are all
R-equivalent. �

We use the above lemma to upgrade a J -homogeneous factorization forest F to anR-homogeneous
one, call it G. We will simply add factors to F . Initially, G = F . We process each maximal set
of siblings S = {F1, . . . , Fk} from F . (In most cases, S consists of all the children of a common
parent, the exception is when S contains the roots of F .) If S has at most two factors, we do
not need to do anything. Otherwise, by assumption on J -consistency of F , we can apply the
above lemma to the factors in S, and add all factors of the resulting factorization forest GS to G.
Note that the added factors from GS are all included in

⋃
S, so G is a factorization forest. The

processing time needed to compute G is linear in the number of factors in all the sets S, which is
simply the number of factors in F . Finally, if G contains a set of at least three siblings, then these
siblings were added in some GS , and hence they all have the same R-class.

By a symmetric argument we upgrade the factorization forest G to an L-homogeneous one,
call it H. But H is also R-homogeneous, as already G was such. (If a factorization forest G
is R-homogeneous, and a factorization forest H contains more factors than G, then H is also
R-homogeneous.) Thus H is H-homogeneous.

From H-homogeneouity to homogeneouity

In this section we show how to upgrade an H-homogeneous factorization forest to an homogeneous
one. The structure of the proof is the same as in the previous case, we only need a new version of
Lemma 2.8.

Lemma 2.9
Let F1, . . . , Fk be consecutive factors that are H-homogeneous. In time O(|Q|3 ·k), we can construct
an homogeneous partial factorization forest with leaves F1, . . . , Fn and height at most |RQ|.

Proof
We use the same approach as in Lemma 2.8. Let F be F1 ∪ · · · ∪ Fk. Let r(Fi) = Fi ∪ · · · ∪ Fk.
We treat each of the factors F1, . . . , Fk as a letter in a word

v = r1 · · · rk ∈ (RQ)∗

where ri is the value of r(Fi). Apply Lemma 2.7 to the word v with M = RQ, yielding a
factorization forest G′. Replacing each letter ri by the factor Fi, we convert G′ into a partial
factorization forest G′′ with leaves F1, . . . , Fk. Then for each maximal set of siblings G1, . . . , Gm
(for m > 2) we add the factor G1 ∪ · · · ∪Gm−1, getting a partial factorization forest G.

We claim that G is homogeneous. We argue as in Lemma 2.8: consider a maximal set of at
least three siblings. The only possibility is that these are G1, . . . , Gm−1 among some maximal set
of siblings G1, . . . , Gm from G′′. From the way G′′ was constructed, we know that for each i the
value of r(Gi) is the same. Let us write g1, . . . , gm for the values of G1, . . . , Gm; these satisfy

gi ◦ r(Gi+1) = r(Gi) = r(Gi+1) for all i < m.
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The following well known lemma on Green’s relations completes the proof of Lemma 2.9, since it
shows that all the elements g1, . . . , gm−1 must be equal, as they all represent the group identity.
(In a group, if g ◦ h = h holds, then g must be the group identity.) �

Fact 2.10
Let H be a H-class in a finite monoid M . If there exist s, t ∈ H such that s · t ∈ H, then H is a
group.

Proof
Take a, b ∈ H such that a · b ∈ H and take any d ∈ H. Since b ∼R d, then a · b ∼R a · d, so even
more d ∼J a · b ∼J a · d. On the other hand a · b ∼L d (because both are in H) and d ∼L a · d
(from Lemma 2.4). Hence a · b ∼R a ·d and a · b ∼L a ·d, so a ·d ∈ H. Symmetrically we may show
that if a · d ∈ H for some a, d ∈ H, then also c · d ∈ H for any c ∈ H. This shows that c · d ∈ H
for any c, d ∈ H.

Take any a ∈ H. Since M is finite it has to be an = a2n for some positive n. It holds
an ∈ H. Denote an as 1H (for some fixed a). We have 1H · 1H = 1H . This will be the neutral
element in H. Indeed, take any b ∈ H. We may write b = m · (b · 1H) for some m ∈ M . Then
b = m · b · 1H = m · b · 1H · 1H = b · 1H . Symmetrically 1H · b = b.

To conclude that H is a group it is enough to show that each element has an inverse. Take
any a ∈ H. For some positive m it holds am = a2m. As above b · am = b for any b ∈ H. So
am = 1H · am = 1H , hence am−1 is an inverse of a. �
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Chapter 3

Fast evaluation of paths

Assume we have a binary tree t with edges labelled by binary relations over some set Q. In this
section we show that after appropriate preprocessing for such tree t we can quickly answer queries
about valt(x, y) for any node x and its descendant y (recall that valt(x, y) is the composition of
the relations written on the simple path from x to y). Here quickly means in time constant in the
size of the tree, or at most logarithmic.

Theorem 3.1
For a binary tree t ∈ etrees(RQ) we can, after preprocessing, answer queries of the form: for any
node x and its descendant y compute valt(x, y). This can be done in time

• preprocessing: O(|Q|3|t| log |t|), query: O(|Q|3 log |t|), or

• preprocessing: O(2O(|Q|)|t|), query: O(2O(|Q|)), or

• when t forms a word—preprocessing: O(|Q|5|t|), query: O(|Q|5).

This theorem will be used later for XPath evaluation. It gives also a quick method of calculating
runs of an automaton reading paths of a tree. Assume we have an automaton A with states Q
and input alphabet A. Assume that we also have a binary tree tA with edges labelled by elements
of A. Using the above theorem we can quickly answer queries of the form: for any node x and its
descendant y does A accept the word written on the path from x to y. Indeed, in the preprocessing
stage we create a tree t, which has the same nodes as tA, but on each edge, instead of a letter
a ∈ A it has the transition relation of A while reading the letter a. This is a tree with edges
labelled by elements of RQ, we make the preprocessing stage of Theorem 3.1 for it. Now observe
that valt(x, y) for any node x and its descendant y is the transition relation of the automaton
while reading the word written on the path from x to y. So during the query it is enough to
calculate valt(x, y) and check if it contains a pair with an initial state on the first coordinate and
an accepting state on the second coordinate.

In the following sections we prove the three variants of this theorem, using three different
techniques.

3.1 Logarithmic querying

In this section we show the first variant of Theorem 3.1. This is a straightforward divide and
conquer approach.

Fix a set Q and a binary tree t with edges labelled by elements of RQ. First, for each node
remember its level (distance from the root). Let K be the greatest number such that 2K is not
greater than the height of the tree t. It holds K = O(log |t|). For every node y of t and every
0 ≤ k ≤ K we remember a pointer to its ancestor x which is 2k edges above y. Together with the
pointer we remember valt(x, y). This information can be easily calculated in time O(|Q|3|t|K): to
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find a node 2k edges above from y, we twice go 2k−1 edges up using previously calculated pointers.
Also valt(x, y) is the composition of these values remembered for k − 1.

Now consider a query step: consider any node x and its descendant y. Consider the nodes
y = x0 > x1 > · · · > xn = x, where xi+1 is 2k edges above xi for the greatest number k such that
xi+1 ≥ x. In other words we go from y to x using our pointers: we always use a pointer to the
highest ancestor which is still a descendant of x. Recall that with each node we also remember
its level in the tree, so finding this sequence of nodes is easy. At each step we use smaller k, so it
holds n ≤ K+ 1. For each i we have valt(xi+1, xi) written in our data structure. To get valt(x, y)
it is enough to compose them all; this takes time O(|Q|3 log |t|).

3.2 Tape construction

In this section we solve the same problem as in the previous section, but in better complexity
in the tree size: we eliminate the log |t| factor. Unfortunately, the complexity in |Q| becomes
exponential.

In Subsection 3.2.1, we describe the main idea, which we call the tape construction. An
immediate application of the construction is a fast string-matching algorithm, as described below.
Fix a regular word language L ⊆ A∗, recognized by a deterministic automaton D. For any word
a1 · · · an ∈ A∗ one can do a preprocessing stage in time O(|D|n) (linear in the word length), such
that later on, any query ai · · · aj ∈ L? can be answered in time O(|D|) (not depending on n or
j − i). Then, in Subsection 3.2.2 we show how the results can be applied in a tree and we prove
the second variant of Theorem 3.1. The tape construction is used also in Section 4.2, where we
prove another theorem.

3.2.1 Tape construction for words

We use deterministic automata. Such an automaton is denoted by letter D, its set of states by
letter D and its particular states by letter d (we use a non-standard notation to distinguish them
from states q of a nondeterministic automaton A). The input alphabet of such an automaton is
denoted by A.

Consider a word w = a1 · · · an ∈ A∗. A node in w is any number i = 0, . . . , n, which is identified
with the space between position i and i+1. So we think about a word in a way that the letters are
written on the edges of a path connecting n + 1 nodes. (This definition is meant to be extended
to trees with letters on edges.)

Given nodes x ≤ y in such a word, the word from x to y in w consists of the letters ax+1 · · · ay.
In other words, these are the letters that are on the path between x and y. In particular, the
word from x to x is the empty word. By runw(x, d, y) we denote the state of the automaton D
after reading the word from x to y, assuming that it begins in state d in node x (note that there
is exactly one such state runw(x, d, y), as D is deterministic).

Let K = |D|. For an input word, we will create K tapes, numbered from 1 to K, on which we
will be writing runs of the automaton. More precisely, we create a two-dimensional array, indexed
by a tape number (rows) and by a node number (columns). In each cell of this array we remember
two pieces of information. First, each cell stores a state of D. In each node, every tape stores a
different state, so every state appears in some tape. Second, the cell stores the number j of some
tape, possibly j is undefined. If at node x on the i-th tape a number j is written, we say that the
i-th tape joins the j-th tape at that node and that the i-th tape is reset. If there is no number, we
say that this tape is not reset at that node. We define the contents of the tapes by an algorithm,
which for each node, from the first to the last, does the following, see Figure 3.1 for an illustration.

1. If we are at the first node we write the states on the tapes arbitrarily (but preserving the
rule that on each tape there is a different state).

2. Otherwise, let d1, . . . , dK be the states written on tapes 1, . . . ,K at the previous node (they
are already calculated). Let a be the letter written on the edge between the previous and
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the current node.

3. To each of these states we apply the transition function of the automaton, using input letter
a. We get some states d′1, . . . , d

′
K (i.e. for each i the automaton goes from di to d′i when

reading a). Some of these states might become equal.

4. When some state d′i is not equal to any of the earlier states d′1, . . . , d
′
i−1, we write it on its

tape and we remember that this tape is not reset.

5. For each other i, we take the smallest j < i such that d′i = d′j (in other words: j such that
d′i is already written on the j-th tape). We remember that the i-th tape joins the j-th tape
at that node.

6. All the other states, which are not listed in d′1, . . . , d
′
K , are written on the reset tapes (in an

arbitrary order).

The contents of the tapes can be calculated in one left-to-right pass through the word; when it
is done carefully, it takes time O(|D||w|). Additionally at each node we remember a pointer to
the closest node to the right where this tape is reset (or that there is no such node). This can be
calculated in one right-to-left pass.

Figure 3.1: The tape construction. In this example, the automaton D has input alphabet {a, b}
and its state d ∈ {0, 1, 2} holds the number of a’s since the last b, modulo 3. The arrows show
which tape joins which tape. Note how in node 4 (also in node 7), both tapes 2 and 3 join tape 1.

Consider a run of D starting in a state d at some node x, and ending in some position y > x.
We find the tape i1 on which this state is written. Then the run is written on that tape until the
tape joins another tape i2. It is important that i2 < i1, as a tape may only join an earlier tape.
Then the run is written on i2, until it joins tape i3 < i2 and so on. When position y is reached,
the run is on some tape ik, with k < K. The tape number ik can be determined by following, k
times, the pointers to the resets, which are stored in the data structure. (Each time we follow such
a pointer, we test if the reset is still before y.) To find the state reached at node y, it is enough to
read the state on tape ik. Summing up, we can determine the state in y in time O(K) = O(|D|).

3.2.2 Tapes in a tree

Fix a deterministic automaton D, an alphabet A and a binary tree t with a label from A on every
edge. In this section we use the tape construction to find the value of runs of the automaton on
downward paths in t.

We extend the mapping runw to trees in the following way. For two nodes x ≤ y in the tree
t, the word from x to y is obtained by reading the labels on the (shortest) path from x to y. The
mapping runt is defined analogously to the word case.

We do the tape construction on each path from the root to some node. The contents of the
tapes (and places where a tape joins some other tape) depend only on a prefix of a word. So the
tapes can be calculated by doing a single top-down pass through the tree, we will be using this
heavily later on.
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We have to modify slightly which pointers are remembered, as keeping pointers to the next
place where the tape is reset may be too costly. Instead we keep the following information for
each 1 ≤ k ≤ K:

A. A tree sk consisting of nodes x at which the k-th tape is reset (a node is a child in sk of
another node if it is its proper descendant in t and at no node between them the k-th tape
is reset). The tree sk is not necessarily binary.

B. For each node x a pointer to the nearest ancestor y at which the k-th tape is reset.

We say that all tapes are also reset in the root of the whole tree t. All this information can be
easily completed during a top-down pass, in time O(|D||t|). We also perform the preprocessing
step of Fact 1.4 on the trees sk; it allows us to find in constant time a child of a node which is an
ancestor of another node.

The key property of the information above is that it allows to compute runt in constant time.
Assume we have two nodes x ≤ y and a state d ∈ D and we want to calculate runt(x, d, y). We
find which tape in node x contains state d. As in the word case (Section 3.2.1), it is enough to find
the nearest descendant of x on the path to y in which the tape joins some other tape; we move in
that way until we reach y. As before there are at most K changes of the current tape. Although
now we do not have a direct pointer to such descendants, they still can be computed in constant
time: we move to the nearest ancestor in which the current tape is reset and then to its child in
an appropriate tree sk. We have to choose the child, which is an ancestor of y, this can be done
in constant time using Fact 1.4 (as y may be not a node of sk, we first need to move to its nearest
ancestor which is in sk, using the pointer from point B). This proves the following lemma.

Lemma 3.2
For any two nodes x ≤ y and a state d ∈ D the state runt(x, d, y) can be found in time O(|D|).

Now see how the second variant of Theorem 3.1 follows from this lemma. Assume we have a
binary tree t labelled by binary relations over a set Q. We take D = P(Q), and an automaton D,
which from a state d ⊆ Q after reading a letter r ∈ RQ goes to the state d ◦ r. Then we construct
the tapes data structure for t and D. Observe that runt(x, d, y) = d ◦ valt(x, y). In the query
step to find valt(x, y) it is enough to find runt(x, {q}, y) for each q ∈ Q. So we simply make |Q|
queries to Lemma 3.2, each in time O(|D|) = O(2|Q|).

3.3 Polynomial combined complexity for words

In this section we prove Theorem 3.1 in the case when the tree t forms a word. Recall that a tree
forms a word when each node has only one child.

Fix a binary tree t ∈ etrees(RQ) which forms a word. A corresponding word w over alphabet
RQ can be constructed: the word can be read along the only path in the tree. Nodes of the
tree correspond to places between letters of the word. For any two nodes x < y, we have a
corresponding factor F consisting of letters between x and y. Observe that valt(x, y) = valw(F ).

Suppose that w is a word with a homogeneous factorization forest F . Colcombet observed
in [Col07] that the value of any infix w[F ] of w, not necessarily from F , can be calculated in time
linear in the height of F . Our work builds on this observation. We show that the time can be
even logarithmic in the height of F .

3.3.1 Accelerating pointers

For the algorithms, we represent a factorization forest F as follows. Each factor is represented by
a record with its first and last position, and its value. Each position x contains a pointer to the
record of the factor {x}.

Each factor record stores a pointer to its parent factor record, but also to some other ancestors,
as described below. Let n be a number from 0 to the logarithm of the height of the factorization
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forest. Consider a factor F ∈ F . We create a pointer from the record of F to the record of the
2n-parent of F , call it G. (The 2n-parent is the ancestor 2n levels above.) This pointer is called
the accelerating pointer of length 2n. It is decorated by two elements of RQ, which are the values
of the two factors below.

• left(F,G): positions from G that are strictly before all positions from F .

• right(F,G): positions from G that are strictly after all positions from F .

When we say that a factor F is decomposed into some factors, we mean that the factors are
disjoint and their union is F . By P(F) we denote the family of all factors from F and the factors
left(F,G) and right(F,G) for each accelerating pointer from F to G. Note that this family satisfies
the following property ]: for each factor X in P(F),

• X = {x} for some position x, or

• X is decomposed into two factors X1, X2 ∈ P(F). Moreover, P(F) is organized so that X1

and X2 can be found in constant time.

Indeed, a non-singleton factor F ∈ F can be decomposed into its first child F1 and the factor
right(F1, F ) (we have an accelerating pointer of length 1 from F1 to F ). A factor left(F,G) for
an accelerating pointer of length 2k > 1 from F to G can be decomposed into left(F, F ′) and
left(F ′, G), where from F to F ′ and from F ′ to G we have pointers of length 2k−1. When the
length is 1, we decompose left(F,G) into the previous sibling F ′ of F and left(F ′, G). Similarly
for right(F,G).

The number of accelerating pointers, and the time required to compute them, is O(|F| · log h),
where h is the height of F . From the property ] we immediately get that also the values remem-
bered with each accelerating pointer can be computed in that time. From now on, we assume in
our algorithms that factorization forests are equipped with accelerating pointers.

The benefit of accelerating pointers is that one can go from a factor to any of its ancestors
by following a number of accelerating pointers that is logarithmic in the height of the forest.
Moreover, the following lemma holds.

Lemma 3.3
Any factor X can be decomposed into several factors X1, . . . , Xm from P(F) and at most one
factor X ′ being a collation F1 ∪ · · · ∪ Fn, where F1, . . . , Fn are homogeneous siblings in F . Both
the number of factors and the time to compute it are logarithmic in the height of the forest.

Notice however that the number n of factors F1, . . . , Fn can be arbitrarily big; we do not find
these factors, only their collation X ′.
Proof
Let F be the smallest factor in F that contains X, and let F0, . . . , Fn+1 (n ≥ 0) be the children
of F that intersect X, written from left to right. The records of F, F0 and Fn+1 can be found by
following the pointers in the forest, starting with the leftmost and rightmost positions in X. If we
use the accelerating pointers, we only need time logarithmic in the height of the forest.

The factor X is decomposed as

X = left(F1, X) ∪ (F1 ∪ · · · ∪ Fn) ∪ right(Fn, X).

Whenever n ≥ 1, the siblings F0, . . . , Fn+1 are homogeneous, so F1 ∪ · · · ∪ Fn can be taken as
X ′. Moreover, left(F1, X) can be decomposed into several factors of the form right(F,G) with an
accelerating pointer from F to G. Namely, we take such factor for each accelerating pointer used
to find F0. Their number is logarithmic in the height of F . Similarly for right(Fn, X). �
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3.3.2 Logarithmic querying

Lemma 3.3, together with the original idea of using homogeneous factorization forests to calculate
values of infixes, gives the following result.

Lemma 3.4
Let F be a homogeneous factorization forest for a word w ∈ R∗Q′ . Using the accelerating pointers,
the value of any factor can be calculated in time cubic in |Q| and logarithmic in the height of F .

Proof
Let X be a factor whose value we want to calculate. We decompose X using Lemma 3.3 into
factors from P(F) and a collation. It is enough to find the value for each of them, and then
compose. For the factors from P(F) the value is remembered in the data structure. It remains to
find the value of the factor X ′ = F1 ∪ · · · ∪Fn. Because F1, . . . , Fn are homogeneous, the value of
the collation F1 ∪ · · · ∪ Fn is the same as the value of, say F1, which is stored in its record. �

Combining the above lemma with a divide and conquer approach from Fact 2.1 (which gives us
a factorization forest of height O(log |w|)), we get an easy solution for the infix evaluation problem
in the word case1 that has preprocessing time O(|Q|3|w|) and query time O(|Q|3 log(log |w|)). How-
ever using Theorem 2.2 to construct a factorization forest, we get preprocessing time O(|Q|3|w|)
and query time O(|Q|5). This shows the third variant of Theorem 3.1. The complexity in |Q| is
|Q|5, because log(RQ) = |Q|2.

1We don’t know if this method can be generalized to the tree case.
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Chapter 4

A problem of simplifying snippets

In this chapter we solve another problem, which we call a problem of simplifying snippets. This
problem appears naturally, when one wants to calculate an XPath node test of the form α = β.
As it will become clear in the next chapter, solving this problem is the main difficulty of Theorem
1.1.

Like previously, we have a binary tree t with edges labelled by binary relations over a set Q. A
snippet is a tuple (x, y,Qx, Qy), where x is an ancestor of y in the tree t, and Qx and Qy are any
subsets of Q. The nodes x and y are called the high node and the low node of a snippet. When
each of the sets Qx and Qy contains just one element qx and qy, we write the snippet in the form
(x, y, qx, qy); such snippets are called single-state snippets. A snippet is called trivial when it is
a single-state snippet in which the high node is equal to the low node. The basic notion is the
equivalence of two sets of snippets.

Definition 4.1 We say that a snippet (x, y,Qx, Qy) selects a pair (p, q) ⊆ Q × Q in a node z if
x ≤ z ≤ y, and p ∈ Qx ◦ valt(x, z), and q ∈ valt(z, y) ◦Qy. We say that a set of snippets selects a
pair (p, q) ⊆ Q2 in a node z if at least one of snippets in the set selects it.

Definition 4.2 We say that two sets of snippets are equivalent if they select the same pairs in
the same nodes.

The main result of this chapter is the following theorem. It is used in the next chapter regarding
XPath evaluation.

Theorem 4.3
Let t ∈ etrees(RQ), and let S be a set of snippets in t. We can calculate an equivalent set S′ of
trivial snippets in time

• O(|Q|3(|t|+ |S|) log |t|), or

• O(2O(|Q|)(|t|+ |S|)), or

• when t forms a word—O(|Q|5(|t|+ |S|)).

We prove the individual variants of the theorem in the next sections. Before that, we give a
few ways how the snippets can be split, following directly from the definitions.

Proposition 4.4
Let x ≤ z ≤ y. Then a snippet (x, y,Qx, Qy) is equivalent to the set of two snippets

(x, z,Qx, val(z, y) ◦Qy) and (z, y,Qx ◦ val(x, z), Qy).
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To see that this is true, consider any node z′, and two elements p, q ∈ Q. Assume first that
x ≤ z′ ≤ z. Then p ∈ Qx ◦ valt(x, z′) and q ∈ valt(z′, y) ◦Qy if and only if p ∈ Qx ◦ valt(x, z′) and
q ∈ valt(z′, z) ◦ valt(z, y) ◦Qy, because valt(z′, z) ◦ valt(z, y) = valt(z′, y). It means that (p, q) at
z′ is selected by (x, y,Qx, Qy) if and only if it is selected by (x, z,Qx, val(z, y)◦Qy) (moreover it is
never selected by (z, y,Qx ◦ val(x, z), Qy)). Similarly when z ≤ z′ ≤ y. When neither x ≤ z′ ≤ z
nor z ≤ z′ ≤ y, no pair can be selected by any of these snippets at z′.

We can also do the split in another, slightly stronger way.

Proposition 4.5
Let x ≤ z1 ≤ z2 ≤ y be such that z1 is the parent z2. Then a snippet (x, y,Qx, Qy) is equivalent
to the set of two snippets

(x, z1, Qx, val(z1, y) ◦Qy) and (z2, y,Qx ◦ val(x, z2), Qy).

This is true for the same reasons; notice that for any z′ between x and y we either have
x ≤ z′ ≤ z1 or z2 ≤ z′ ≤ y.

The next proposition allows us to remove redundant snippets.

Proposition 4.6
Let x1 ≤ x2 ≤ y and let Q2 ⊆ Q1 ◦ val(x1, x2). Then the set of two snippets (x1, y,Q1, Qy) and
(x2, y,Q2, Qy) is equivalent to the first of these snippets.

It follows from Proposition 4.4: The snippet (x1, y,Q1, Qy) is equivalent to (x1, x2, Q1, val(x2, y)◦
Qy) and (x2, y,Q1 ◦ val(x1, x2), Qy). But because Q2 ⊆ Q1 ◦ val(x1, x2), all pairs selected by the
snippet (x2, y,Q2, Qy) are also selected by the snippet (x2, y,Q1 ◦ val(x1, x2), Qy).

Finally, we have yet another easy property, saying that each snippet can be replaced by single-
state snippets.

Proposition 4.7
Any snippet (x, y,Qx, Qy) is equivalent to the set of snippets (x, y, qx, qy) for all qx ∈ Qx, qy ∈ Qy.

4.1 Linear-logarithmic algorithm

In this section we prove the first variant of Theorem 4.3. Fix a tree t and a set of snippets S.
During the processing, every snippet is remembered in its low node. We create the structure of
pointers as in Section 3.1. Then we process the snippets in two steps.

Step 1

After this step we want to have single-state snippets in which the distance between the low and
high node is 2k for some k (i.e. there is a pointer between them in our data structure).

Consider any snippet (x, y,Qx, Qy). Like in Section 3.1, we find the nodes y = x0 > x1 > · · · >
xn = x where xi+1 is 2k edges above xi for the greatest number k such that xi+1 ≥ x. It holds
n = O(log |t|). We consecutively calculate the sets Qi↓ = val(xi, y) ◦Qy and Q↑i = Qx ◦ val(x, xi)
observing that

Qi↓ = val(xi, xi−1) ◦Qi−1
↓ for 0 < i ≤ n, Q0

↓ = Qy, and

Q↑i = Q↑i+1 ◦ val(xi+1, xi) for 0 ≤ i < n, Q↑n = Qx.

For each i it is done in timeO(|Q|2). Then we replace the original snippet by snippets (xi+1, xi, q
↑
i+1, q

i
↓)

for all q↑i+1 ∈ Q
↑
i+1, qi↓ ∈ Qi↓, 0 ≤ i < n. It easily follows from Propositions 4.4 and 4.7 that the

new set of snippets is equivalent to the original snippet. This step is done in time O(|Q|2|t| log |t|).
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Step 2

After this final step we should have only trivial snippets.
We want to consequently replace big snippets by smaller snippets. We start from the biggest.

Take any snippet (x, y, qx, qy) where the distance between x and y is 2k for some k > 0. Let z be
the node exactly in the middle between them (2k−1 edges above y). We replace our snippet by
snippets (x, z, qx, q) for all q ∈ val(z, y)◦{qy} and by snippets (z, y, q, qy) for all q ∈ {qx}◦val(x, z);
we see from Propositions 4.4 and 4.7 that it gives an equivalent set. These snippets are processed
again later, when all snippets of size 2k are already removed.

Finally we get only snippets for k = 0, i.e. snippets (x, y, qx, qy) in which x is the parent of
y. We replace such snippet by snippets (x, x, qx, q) for all q ∈ val(x, y) ◦ {qy} and by snippets
(y, y, q, qy) for all q ∈ {qx} ◦ val(x, y); we get a set of trivial snippets; it is equivalent due to
Propositions 4.5 and 4.7.

It is important that we remember each snippet only once (we remove identical snippets).
Thanks to that for each 2k we have at most O(|Q|2|t|) snippets; the procedure works in time
O(|Q|) for each snippet, so the whole step takes time O(|Q|3|t| log |t|).

4.2 Tape construction

In this section we use the tape construction to convert a set of arbitrary snippets into an equivalent
set of trivial snippets, in time linear in |t|, i.e. to prove the second part of Theorem 4.3. First,
we construct the same additional data structure as in the preprocessing stage of the algorithm
described in Section 3.2.2. Recall that in each node we have K = 2|Q| tapes, each of them contains
different subset of Q. Moreover, we distinguish places in which tapes are reset and places in which
tapes are not reset. If a tape containing Qx at node x is not reset until y ≥ x, then at y this tape
contains Qx ◦ val(x, y). We use the following two steps to simplify the input set of snippets.

Step 1

After this step in the set there will be only trivial snippets and snippets (x, y,Qx, Qy) for which
the tape containing Qx at x is not reset between x and y.

Take any snippet (x, y,Qx, Qy) from the input set. If x = y, we replace this snippet by an
equivalent set of trivial snippets, like in Proposition 4.7. Otherwise x is a proper ancestor of y.
We find a tape containing Qx at x. As in Section 3.2.2, using the additional information we can
find a sequence of nodes

x = x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn = y, n ≤ K,

such that the tape containing Qx ◦ val(x, xi) at xi is not reset until yi, and that xi+1 is a child of
yi.

We replace the snippet (x, y,Qx, Qy) by the set of snippets (xi, yi, Qx◦val(x, xi), val(yi, y)◦Qy)
for all 1 ≤ i ≤ n; we get an equivalent set due to Proposition 4.5. In the snippets of the first kind,
by definition the tape containing Qx ◦ val(x, xi) at xi is not reset until yi, so the snippets are of
the proper form. We calculate the sets val(yi, y) ◦Qy using the second variant of Theorem 3.1, it
takes time O(2O(|Q|)K) = O(2O(|Q|)). The sets Qx ◦val(x, xi) can be simply read from the current
tape at xi (but of course they also could be calculated using Theorem 3.1).

Step 2

After this final step we should have only trivial snippets. We have to deal with snippets (x, y,Qx, Qy)
in which the tape containing Qx at x is not reset between x and y.

The key property is that when we have two snippets (x1, y,Q1, Qy) and (x2, y,Q2, Qy) where
Q1 at x1 and Q2 at x2 ≥ x1 are on the same tape, then the second snippet can be removed and
we get an equivalent set (assuming that this tape is not reset between x1 and x2, which is true for
all the snippets we have now). This follows from Proposition 4.6, because Q1 ◦ val(x1, x2) = Q2
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(as Q1 at x1 and Q2 at x2 are on the same tape). Thus for each y we always keep only at most
K2|Q| = O(4|Q|) snippets, at most one for every pair of a state set and a tape number, and we
immediately remove the redundant ones.

We consider every y starting from the lowest nodes and ending in the root. Let z be the parent
of y. We replace any snippet (x, y,Qx, Qy) by equivalent set of two snippets (Proposition 4.5)

(x, z,Qx, val(z, y) ◦Qy) and (y, y,Qx ◦ val(x, y), Qy).

The second one has the high node equal to the low node, but the state sets are not singletons; it
can be replaced by an equivalent set of trivial snippets (Proposition 4.7). The first one is processed
again, when we are in the node z. Note that it still satisfies the property that the tape containing
Qx at x is not reset until z. The value Qx ◦ val(x, y) is written at y on the tape containing Qx at
x, so it can be found in time O(|Q|). The other value, val(z, y) ◦Qy, is computed by hand in time
O(|Q|2), as z is the parent of y. This gives the total complexity O(4|Q||Q|2|t|) = O(2O(|Q|)|t|).

4.3 Polynomial combined complexity for words

In this section we prove the last variant Theorem 4.3. As the input we have a tree t which forms
a word, as well as a set of snippets. We want to output an equivalent set of trivial snippets.

Let w be the word written on the edges of t. Let F be the homogeneous factorization forest
for w, of height polynomial in |RQ|, created by Theorem 2.2. We also use the data structure from
Section 3.3.1, in particular P(F). Recall that the number of factors in F is O(|t|) and the number
of factors in P(F) is O(|Q|2|t|).

In this section we use slightly different notation for snippets: instead of writing (x, y,Qx, Qy)
we write (F,Qx, Qy), where F is the factor consisting of the letters written on the edges between
nodes x and y. The snippets (F,Qx, Qy) in which F ∈ P(F) (where P(F) is the structure defined
in Section 3.3.1) will be called structural snippets and the snippets in which F = F1 ∪ · · · ∪Fk for
homogeneous siblings from F will be called neighbor snippets.

Before we come to the algorithm, we make an observation; it allows us to reduce the number
of neighbor snippets.

Lemma 4.8
Let F1, . . . , Fn be consecutive homogeneous siblings in F and S a set of neighbor snippets σ =
(Fσ, Qσx , Q

σ
y ) for which Fσ = Fi(σ) ∪ · · · ∪Fk, i.e. they all end at the end of the same Fk, but may

begin at the beginning of different Fi(σ). Then there exists a set S′ of neighbor snippets ending
at the end of Fk and a set S′′ of structural snippets, such that S is equivalent to S′ ∪ S′′, and
|S′| ≤ |Q|2, and |S′′| ≤ |S|. Moreover, the sets can be calculated in time O(|Q|2|S|).

Proof
First we split each snippet σ into two snippets, as described by Proposition 4.4:

(Fi(σ), Q
σ
x , val(Fi(σ)+1 ∪ · · · ∪ Fk) ◦Qσy ) and (Fi(σ)+1 ∪ · · · ∪ Fk, Qσx ◦ val(Fi(σ)), Qσy ).

Snippets of the first kind are taken to S′′; these are structural snippets. Snippets of the second
kind are taken to S̃′; these are neighbor snippets, which end at the end of Fk. The problem is
that S̃′ is too big. In a second step, for each pair of states (p, q) we take to S′ the longest snippet
(Fi(σ)+1 ∪ · · · ∪ Fk, Qσx ◦ val(Fi(σ)), Qσy ) from S̃′ (i.e. this with i(σ) as small as possible) among
those having p ∈ Qσx ◦ val(Fi(σ)), q ∈ Qσy . If there is no such snippet, we do not take any; if there
are many, we take any of them.

Recall that the values val(Fi(σ)+1∪· · ·∪Fk) and val(Fi(σ)) are remembered in our data structure
(in particular they are equal, because F1, . . . , Fn are consecutive homogeneous siblings). Thus the
natural implementation gives the O(|Q|2|S|) complexity.

We have to prove that S′ ∪ S′′ is equivalent to S̃′ ∪ S′′ (which is equivalent to S). The only
nontrivial direction is to prove that any node selected by S̃′ is also selected by S′∪S′′. So take any
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pair (p′, q′) selected at some node z by some snippet (Fi(σ)+1 ∪ · · · ∪Fk, Qσx ◦ val(Fi(σ)), Qσy ) ∈ S̃′.
This pair is selected by a snippet (Fi(σ)+1 ∪ · · · ∪ Fk, p, q) for some p ∈ Qσx ◦ val(Fi(σ)) and
q ∈ Qσy (it follows from Proposition 4.7). For the pair (p, q) some snippet (Fi(τ)+1 ∪ · · · ∪ Fk, Qτx ◦
val(Fi(τ)), Qτy) ∈ S̃′ was taken to S′, which was created as a part of a snippet τ ∈ S. It holds
i(τ) ≤ i(σ), as well as p ∈ Qτx ◦ val(Fi(τ)) and q ∈ Qτy . From homogeneouity, val(Fi(τ)) =
val(Fi(τ) ∪ · · · ∪ Fi(σ)), so p ∈ Qτx ◦ val(Fi(τ) ∪ · · · ∪ Fi(σ)). Using Proposition 4.6 we get that
the set of two snippets (Fi(τ) ∪ · · · ∪ Fk, Qτx, q) and (Fi(σ)+1 ∪ · · · ∪ Fk, p, q) is equivalent to only
the first of them. It means that our pair (p′, q′) is selected at z by (Fi(τ) ∪ · · · ∪ Fk, Qτx, q); hence
also by (Fi(τ) ∪ · · · ∪ Fk, Qτx, Qτy). But this snippet is equivalent to a set consisting of the snippet
(Fi(τ), Qτx, val(Fi(τ)+1∪· · ·∪Fk)◦Qτy) from S′′ and the snippet (Fi(τ)+1∪· · ·∪Fk, Qτx◦val(Fi(τ)), Qτy),
which is in S′; thus our pair is selected also by S′ ∪ S′′. �

Like in the previous sections, we simplify the snippets in several steps: this time we have three
steps.

Step 1

After this step there will be only structural and neighbor snippets.
Consider a snippet (F,Qx, Qy) from the input set. We decompose F according to Lemma

3.3 into X1, . . . , Xn, X
′. This gives an equivalent set of structural and neighbor snippets: for

each i, we take the snippet (Xi, Qx ◦ val(left(Xi, F )), val(right(Xi, F )) ◦ Qy); similarly for X ′.
Hence we may replace the original snippet by the new ones; we do this for each of the snippets.
We need to calculate the sets Qx ◦ val(left(Xi, F )) and val(right(Xi, F )) ◦ Qy. Notice that,
for each i, val(Xi) is known (stored in the data structure), and val(X ′) can be calculated using
Lemma 3.4 in time O(|Q|5). The sets Qx ◦ val(left(Xi, F )) can be calculated from left to right
(and val(right(Xi, F )) ◦Qy from right to left), by decomposing left(Xi, F ) into the last factor Y
among X1, . . . , Xn, X

′ contained in left(Xi, F ), and to left(Y, F ), for which the value is already
calculated.

The running time is O(|Q|5|S|). The number of snippets increases by logarithm of the height
of F , which is O(|Q|2). Namely, after this step we have O(|S|) neighbor snippets and O(|Q|2|S|)
structural snippets.

Step 2

After this step there will be only structural snippets.
We process the neighbor snippets in a right-to-left pass through each sequence of siblings in F .

When we are in a factor Fk, we eliminate neighbor snippets ending at the end of Fk (and starting
at the beginning of some sibling of Fk). First we reduce their number using Lemma 4.8, so that
only |Q|2 are left (this generates also some structural snippets). Then, using Proposition 4.4, we
split each of them into Fk and the rest, which results in a structural snippet and a neighbor snippet
ending at the end of Fk−1. The snippets of the second kind are processed again later, when we
are in Fk−1. Lemma 4.8 ensures that the number of snippets is always small: for each factor Fk
we have to process the original neighbor snippets from Step 1 which end at the end of Fk, and
at most |Q|2 new neighbor snippets. As the number of factors in F is O(|t|), the running time is
O(|Q|4(|t|+ |S|)). The number of newly created structural snippets is at most twice the number
of processed neighbor snippets, hence at the end we have O(|Q|2(|t|+ |S|)) structural snippets.

Step 3

The only thing left is to simplify the structural snippets. We first replace each structural snippet
by single-state structural snippets, using Proposition 4.7. Then we start from the longest snippets
and we move towards shorter. For each X in P(F), we have at most |Q|2 snippets (X, p, q) (at
most one for each p and q). Thanks to the property ], given in Section 3.3.1, if the factor X
contains at least two positions, it can be divided into factors X1 and X2 from P(F). We replace
the snippet (X, p, q) by snippets (X1, p, q

′) for all q′ ∈ val(X2) ◦ {q} and snippets (X2, p
′, q) for all
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p′ ∈ {p} ◦ val(X1) (equivalent due to Propositions 4.4 and 4.7). For each snippet (X, p, q) it takes
time O(|Q|), we have O(|Q|2) snippets for each X, and we have O(|Q|2|t|) factors X in P(F), so
the running time of this procedure is O(|Q|5|t|). Finally, we have only snippets (X, p, q) in which
X contains one position, i.e. in which the high node is the parent of the low node. They can be
replaced by trivial snippets, as described by Propositions 4.5 and 4.7.
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Chapter 5

Evaluating Regular XPath node
tests

The goal of this chapter is to present an algorithm evaluating Regular XPath queries (node tests) in
an XML document, i.e. to prove Theorem 1.1. Recall that the theorem says about four algorithms,
having four different complexities. In this chapter we concentrate on the first three of them. In
fact, almost the only difference between the algorithms is which subroutine from the previous two
chapters is used; this chapter describes the common part of these algorithms. The fourth variant
of the theorem, concerning FOXPath queries, is addressed in Chapter 6.

5.1 Proof strategy

In this section we describe the high-level structure of our linear time algorithms.
To allow storage of intermediate results, we slightly extend the definition of node labels. Now

a data tree t comes with some constant k and in every node of t there is an array of k labels from
A. A node test that checks for a label is now of the form label[i] = a where 1 ≤ i ≤ k is an integer
constant and a ∈ A; it holds in nodes whose i-th label is a. We do not change the definition of
the data tree size—the size of t is the number of nodes plus the sum of lengths of string values of
its attribute and text nodes. In particular the size does not depend on k (and also the complexity
of all the algorithms does not depend on k).

Consider a node test ϕ defined in Regular XPath. We will present an algorithm that selects
the nodes of a data tree t satisfying ϕ. The algorithm is defined by induction on the structure of
the query (which means that it is recursive and takes a subquery as a parameter).

There are a few easy cases: when ϕ just tests a label or when it is a negation, conjunction or
disjunction of smaller node tests. For example to evaluate a node test ϕ ∨ ϕ′, first we evaluate
both ϕ and ϕ′ from the induction assumption, which gives in every node of t two boolean values,
and then in every node we check whether any of them is true.

Consider now the first nontrivial induction step: a node test α RelOp β. Let ϕ1, . . . , ϕn be the
node tests that appear in the path expressions α and β. Using the induction assumption, we run
a linear time algorithm for each of these node tests, and label each node in the data tree with the
set of node tests from ϕ1, . . . , ϕn that it satisfies. Formally we enrich the alphabet A by constants
true and false and we construct a new data tree t′. It is almost the data tree t, only the labels
will be changed. In each node instead of one label we will have a label array consisting of n + 1
elements. The first element of the array contains the original label of this node from the data tree
t. The i + 1-th element is true if the node satisfies ϕi and false otherwise. Due to our specific
definition of size, the number of labels does not count to the size, so both data trees have the same
size. Then we create new path expressions α′ and β′ by replacing every ϕi in α or β by a label
test checking if the i + 1-th element of the label array is equal to true and we run the modified
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node test α′ RelOp β′ on the data tree t′—it will be true in exactly the same nodes as the original
node test. Path expressions like α′ and β′ will be called unnested.

Definition 5.1 A path expression γ is unnested, when the only node tests appearing in atomic
path expressions in γ are label tests.

The above discussion shows that, when the subqueries ϕ1, . . . , ϕn are already evaluated, it is
enough to give an algorithm for a node test where α′ and β are unnested. Moreover note that
|α′ RelOp β′| = O(|α RelOp β| − |ϕ1| − . . . − |ϕn|). The remaining sections of the article are
devoted to evaluating node tests of the form α′ RelOp β′ where the path expressions α′ and β′ are
unnested.

The same approach succeeds with node tests α RelOp c: it is enough to evaluate all node tests
which appear in α and then α′ RelOp c for some unnested α′ on an appropriate data tree t′. We
can even go further: the node test α′ RelOp c can be easily simulated by one of the other kind
α′′ RelOp β, where α′′ and β are also unnested. We construct a data tree t′′, which is a modified
version of t′: we add a new root above the current root of t′; it contains the constant c in a
string value. The label array would be extended with an additional field, which is true in the new
root and false in the nodes from t′. The node test α′′ RelOp β in t′′ should return the same as
α′ RelOp c in t: β just goes to the root, while α′′ does the same as α′ omitting the new root. To
get such α′′ after every axis in α′ we add a label test checking that we are not in the new root.
Note that under the natural assumption1 |t| ≥ |c|, we have |t′′| ≤ |t| · 2 = O(|t|). We also have
|α′′ RelOp β| = O(|α RelOp c| − |ϕ1| − . . .− |ϕn|).

Concluding, only the construction α RelOp β, for various values of RelOp, is left for the next
sections, and only in the case when α and β are unnested. Moreover the complexity of the whole
algorithm is the same as a complexity of an algorithm for this case.

Corollary 5.2
Assume we have an algorithm which, for unnested α and β, evaluates the node test α RelOp β in
a data tree t in time T (|α RelOp β|, |t|). Then there is an algorithm evaluating any Regular XPath
node test ϕ in a data tree t in time O(T (O(|ϕ|), O(|t|))).

5.2 Preparing the tree

Before we come to solving node tests α RelOp β for unnested α and β, we describe data structures
used to represent a data tree. The operations described in this section can be done without
knowing the query; they prepare a tree to answer to any query. In particular we show in this
section how one can quickly compare data in the nodes of a tree. We also define skeletons and we
show how to construct them.

First, we say how a data tree is stored in memory by the algorithm. An initial situation is that
we have a record for each node, called the node record. This record contains the array of node
labels, the string value (in text and attribute nodes), as well as pointers to the node records of the
left child, the right child, and the parent. Some of these may be empty, if the appropriate nodes
do not exist. Moreover we remember the level of each node (i.e. the distance from the root).

Let the class of d be the set of all closest common ancestors of any two nodes x and y having
string value d. In particular every node with a string value d is in the class of d (since a node x is
the closest common ancestor of x, x). In the evaluation algorithm, it will be convenient to reason
about classes. Therefore, for each string value, we keep a copy of the tree where only nodes from
the class are kept, as described below.

Let t be a data tree and let d be a string value. The d-skeleton of t, is a binary tree obtained
by only keeping the nodes of t from the class of d. The tree structure in the d-skeleton is inherited
from t. In particular, x is a child of y in the d-skeleton if in the tree t, x is a descendant of y, and
no node between x and y belongs to the class of d.

1A more careful analysis shows that Theorem 1.1 stays true even without this assumption.
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For instance, consider the following document, where the picture shows the nodes and their
string values.

ab

ba

bb

bb

bb

ba

ba
bb

ab

ab

There are three string values ab, ba and bb. Below we show the d-skeleton for each of these classes.
Note how these skeletons share nodes, e.g. all of them contain the root of the document.

ba

ba

ba

bb

bb

bb

bb

ab

ab

ab

The skeleton representation of a data tree t consists of the record representation of t and all
of its d-skeletons. Furthermore, for each d-skeleton, each node record contains a pointer to the
corresponding node in t and each node record in t contains a list of corresponding nodes in all
d-skeletons to which it belongs.

Note that the sum of sizes of all skeletons in t is linear in |t|, since each node may be a leaf only
in one skeleton. Moreover, the skeleton representation can also be calculated in linear time. The
crucial operations are comparing the string values and finding the CCA of any two given nodes.

First, we discuss how string values of nodes can be quickly compared. If the sum of their
lengths is bounded by the size of the document, we could simply sort them lexicographically.
However the situation is complicated by the fact that the string values overlap: a string value
in an element node is a concatenation of all text node descendants of its left child (see Section
1.2.1). Operations on string values needed by the algorithm are described in the following two
propositions. The first one is used for calculating d-skeletons. The second one is useful during
evaluation of node tests α RelOp β, where RelOp is one of the inequalities.

Proposition 5.3
For a data tree t we can group all its nodes into sets of nodes with the same string value, in time
O(|t|).

Proposition 5.4
For a data tree t, after preprocessing in time O(|t|), we can answer, in time O(1), queries of the
form: for given two nodes x, y, is the string value in x lexicographically smaller than the string
value in y?

Proof (of Propositions 5.3 and 5.4)
A suffix array is the lexicographically sorted array of the suffixes of a word (of course in this array
we do not remember the whole suffixes, only their numbers). Kärkkäinen and Sanders [KS03]
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show how to construct the suffix array in linear time. Moreover they show that some additional
data can be calculated such that in constant time we can find a longest common prefix of any two
suffixes.2

We use the algorithm in the following way: We concatenate the string values of all text nodes
in the document order and after them the string values of all attribute nodes; we get some word
w. Note that w contains the string values of all element nodes as infixes, however they overlap.
For every node we calculate which infix it is (the start position and the length). This can be done
during one traversal through the tree. Now we run the suffix array algorithm on the word w. We
also calculate the so-called reversed suffix array: for each suffix we remember its position in the
suffix array.

To get Proposition 5.3 we sort all nodes by the length of their string values—we can do this
in linear time using counting sort (or bucket sort), because these lengths are bounded by the
document size. Now we process every length of string values separately (only string values having
the same length may be equal). For every string value we consider a suffix of w starting at the
position where this string value starts. We process string values of a given length in the (already
calculated) lexicographical order of these suffixes. We know (in constant time, from the Kärkkäinen
and Sanders algorithm) what is the length of the common fragment of a suffix and the next suffix
corresponding to a string value of the same length. If it is equal or longer than the length of the
string values, then these string values are equal. If not, they are not equal and moreover the first
one can not be equal to any further string value, due to the lexicographic ordering in the suffix
array.

Now see that Proposition 5.4 is also true. Assume one comes with two nodes x and y. Their
string values are prefixes of some suffixes of w. From the second part of the Kärkkäinen and
Sanders algorithm we know the first position on which the two suffixes differ. When they differ
further than the length of the shorter of our string values, then the shorter string value is a prefix
of the longer one, so it is also lexicographically smaller. Otherwise the order of the string values
is the same as the order of the suffixes, which we know from the reversed suffix array. �

Next, we show how to calculate d-skeletons.

Proposition 5.5
The skeleton representation of a data tree t can be calculated in time O(|t|).

Proof
From Proposition 5.3 we already know leaves of all d-skeletons. We need to find other nodes in the
skeletons and connect them appropriately. An almost naive use of Fact 1.3 allows us to calculate
skeletons in linear time. We consider each skeleton separately, all leaves in the skeleton from left
to right. At every moment we already have a skeleton for some subset of leaves and all other
leaves are to the right of it. We want to add the next leaf to the skeleton. We find the closest
common ancestor z of this new leaf y and the rightmost already processed leaf x. We need to add
z in the appropriate place in the skeleton. We compare z with the nodes on the rightmost path of
the skeleton, starting from x and going up. When z is between some node and its parent in the
skeleton, we add it there, together with attached y. It is also possible that z is over the root of
the current skeleton.

Why does it work in linear time? Potentially there are many nodes on the rightmost path of
the current version of a skeleton. However always at most one of the visited nodes is an ancestor
of z. Other visited nodes, which are not ancestors of z, no longer will be on the rightmost path
after adding z, so every node may be visited only once in that role. �

2If we want to get O(|t| log |t|) complexity, instead of O(|t|), we can calculate the suffix array using a standard
and a little bit simpler O(|t| log |t|) algorithm by Karp et al. [RKR72], instead of the linear time algorithm.
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5.3 From path expressions to automata

In this section we show how automata can be used to calculate path expressions. These will be
word automata and they will be reading string descriptions of paths.

A path in a binary tree is a sequence of nodes x1, . . . , xn where each two consecutive nodes
are connected (xi is a child or parent of xi+1). A path may loop. A string description of
a path x1, . . . , xn is a word A1m1A2m2 · · ·An−1mn−1An over the alphabet ({1, . . . , k} × A) ∪
{to−left, to−right, from−left, from−right}, where k is the number of elements in the label
array of every node of t. The mi is a letter, which is the name of one of the four one-step axes
depending on the relationship between xi and xi+1 in t. So it is to−left, to−right, from−left,
or from−right when the node xi+1 is the left child of xi, the right child of xi, xi is the left
child of xi+1 or the right child of xi+1, respectively. The Ai is a word, which consists of some
pairs (j, a) such that the j-th label of xi is a. So a path has a lot of (infinitely many) different
string descriptions, depending on which pairs (j, a) are included in it, allowing for reorderings and
repetitions. In particular some words Ai may be empty.

A simple path between two nodes is the (unique) path on which no node appears more than
once. A simple string description is a (not unique) string description in which every word Ai
contains at most one letter.

We will use nondeterministic automata to read string descriptions. Let A be such an automa-
ton, with states Q. Let x, y be any two nodes in a tree t. We write transallA,t(x, y) for the set of state
pairs (p, q) such that some string description of some path from x to y can take the automaton
A from a state p to a state q. Note that three objects are quantified existentially here: the path
from x to y, the string description, and the run of the nondeterministic automaton. Similarly, we
write transA,t(x, y) for the set of state pairs (p, q) such that some simple string description of the
simple path from x to y can take the automaton A from state p to state q. When both t and A
are clear from the context, we simply write trans(x, y).

An unnested path expression can be translated into an automaton reading string descriptions
of paths, as described in the following lemma; this is the standard translation of regular expressions
into nondeterministic automata.

Lemma 5.6
Let α be an unnested path expression. There exists an automaton A reading string descriptions
such that a pair of nodes x, y of a data tree t is selected by α if and only if (qI , qF ) ∈ transallA,t(x, y)
for some initial state qI and accepting state qF . The automaton has O(|α|) states and can be
constructed in time O(|α|2).

Until now, our automata had to read string descriptions of all paths. We want to get rid of
this and concentrate only on simple string descriptions of simple paths. This is described in the
following definition.

Definition 5.7 Let t, s be two data trees with the same nodes (but with different labels) and let
α be an unnested path expression. We say that an automaton A in the tree s simulates α in the
tree t, when for any two nodes x, y of t (and simultaneously of s),

• transallA,s(x, y) = transA,s(x, y), and

• the pair x, y is selected by α in t if and only if (qI , qF ) ∈ transA,s(x, y) for some initial state
qI and accepting state qF .

The main result of this section is the following theorem, which we are proving through the rest
of the section:

Theorem 5.8
Let t be a data tree and α an unnested path expression. We can calculate, in time O(|α|3|t|), a
data tree s with the same nodes as t and an automaton A with O(|α|) states such that A in s
simulates α in t.
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To get the condition transallA,s(x, y) = transA,s(x, y), which says that we can consider only
simple paths instead of all paths, we will calculate all possible loops which the automaton may do
in the tree as described by the following lemma, proved below.

Lemma 5.9
For a nondeterministic automaton A and a tree t we can calculate, in time O(|Q|3|t|), for every
node x of t the set

loop(x) = transallA,t(x, x).

Once we have the loop sets, we can remember them in the label array of every node and modify
the automaton, in such a way that it will be reading these values instead of making loops. The
complexities in the number of states in the proofs below are O(|Q|3), which follows from Fact 1.5.
Proof (of Lemma 5.9)
This is a fairly standard construction. First, for each node x we calculate the subset down(x)
of state pairs in loop(x) that correspond to paths that only visit descendants of x. The value
of down for x depends only on the values of down in the two children of x, and the labels in x.
Assume for a moment that having this information we can calculate down(x) effectively. Then
the values down(x) can be calculated in a single bottom-up pass through the tree. Second, we
calculate for each node x the subset up(x) of loop(x) that corresponds to paths that never visit
proper descendants of x, but they may visit e.g. descendants of the sibling of x. The value of up
in x depends only on the value of up in the parent of x, the value of down in the sibling of x,
and on the labels in x. In particular, the values up(x) can be calculated in a single top-down pass
through the tree, after the values down(x) are known for all nodes x. Once we have down and
up, the function loop(x) can easily be calculated, as the transitive closure of the union of down(x)
and up(x).

The above algorithm would have the declared complexity, if we can calculate down(x) basing
on down in the two children x1, x2 of x in time O(|Q|3). In down(x) there should be pairs (p, q)
such that from p to q there is a transition reading letter (j, a) and the j-th label of x is a. There
should be also pairs corresponding to runs which read a letter to−left, then do something from
down(x1) and then read a letter from−left. Let Rc be the set of pairs (p, q) such that from p to
q there is a transition reading to−left. Similarly Rp for from−left. Then to down(x) we add
the composition Rc ◦ down(x1) ◦ Rp. Similarly for x2 and the axes to−right and from−right.
Then down(x) is the transitive closure of all these pairs, since every string description of every
path from x to x using only descendants of x can be divided into such fragments. The same way
we can calculate the values of up in the two children of x basing on up(x) and the values of down
in the children of x. �

Proof (of Theorem 5.8)
First, let A′ be the automaton constructed in Lemma 5.6 from the path expression α. Then, we
use Lemma 5.9 to calculate the values of the loop function. We remember them in the tree t,
getting a tree s: we forget about the labels from t, instead in the label array of every node x we
put elements corresponding to all pairs (qi, qj), and we write there true or false depending on
whether (qi, qj) ∈ loop(x) or not. To get the automaton A we take the set of states, the set of
initial states, and the set of accepting states from A′. We remove all transitions reading labels,
but we leave transitions reading axes. Moreover between every two states qi, qj we add a transition
which reads true in the label corresponding to (qi, qj).

Take any two states p, q and any two nodes x, y. First see that if (p, q) ∈ transallA,s(x, y) then
(p, q) ∈ transallA′,t(x, y). This is because the run reading a string description of some path in s from
x to y may use a transition from qi to qj of the new type in a node z only when (qi, qj) ∈ loop(z).
So we can replace each such transition by the loop of A′ from qi in z to qj in z and we get a run
of A′ in t. Conversely, observe that if (p, q) ∈ transallA′,t(x, y) then (p, q) ∈ transA,s(x, y). The
crucial observation is that any path from x to y has to use all the edges of the simple path. So we
split the run of A′ into fragments of two alternating types: loops staring/ending in a node of the
simple path and edges of the simple path. Then each loop can be replaced by a singe transition
of A in s of the new type; the transition is allowed in the node, because the corresponding loop
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exists. Moreover trivially transA,s(x, y) ⊆ transallA,s(x, y). Summing up, we have proved that A
in s simulates α in t. �

When the tree s is created, we calculate and remember in the node records the following
additional information: transA,s(x, x) for any node x and transA,s(x, y) for y being the parent of
x or the left or right child of x. The sets transA,s(x, x) = loop(x) are indeed already calculated
and stored, the sets transA,s(x, y) for y being a child or a parent of x are compositions of three
known sets, so they can be easily calculated.

In the next sections we will not be distinguishing between the trees t and s, because these are
just two labeling of the same tree. Whenever we talk about the path expression α, it uses the
labels defined by t, while the automaton A always uses the labels defined by s. Furthermore, we
simply write trans(x, y) for transA,s(x, y).

5.4 Inequalities

In this section we deal with node tests of the form α RelOp β where RelOp is one of the inequalities:
6=, <,>,≤,≥ and α and β are unnested. These can be solved with linear time data complexity
and polynomial time query complexity regardless of the XPath fragment.

The basic idea is as follows. If (x, y) is a node pair selected by the path expression α, a string
value d of y is called a representative for α in x. Likewise for β. For each node x of a data tree t,
we calculate the minimal and the maximal representative for α in x, or if there is no representative
at all. Likewise for β. The ,,minimal” and ,,maximal” refers to the lexicographical order of string
values. This information is sufficient to test if α RelOp β holds. For example a node x satisfies
α < β if and only if there exist some representatives for α and for β and the minimal representative
for α is less than the maximal representative for β. Similarly for the other inequalities. A node
x satisfies α 6= β if and only if there exist some representatives for α and for β, but it is not the
case that there is only one representative for α and only the same one for β.

It remains to show that the information about the representatives can be calculated efficiently.
In order to do this, we slightly generalize the problem, so that a dynamic algorithm can be applied.
Let A be an automaton with states Q. A representative for a state q ∈ Q in a node x is a string
value d of some node y with (q, qF ) ∈ trans(x, y), where qF is some accepting state.

Finding representatives (a minimal and a maximal representative) in this new sense is a gen-
eralization of the problem for path expressions, since any unnested path expression α or β can be
simulated by an automaton reading simple string descriptions of simple paths (Theorem 5.8).3

In order to find the representatives, we use the standard two-step (first a bottom-up pass, then
a top-down pass) approach. In the bottom-up pass we take into account only representatives which
are in descendants of the current node. For example, to find the minimal such representative for
a state q in a node x, we should consider: the string value of x if (q, qF ) ∈ trans(x, x) for some
accepting state qF , and the minimal such representative in the left child y of x for any state p
such that (q, p) ∈ trans(x, y), similarly for the right child. Such a step can be done even in time
O(|Q|2). It is important here that the string values can be compared in constant time due to
Proposition 5.4 (we do not remember the string value itself, just a pointer to the node from which
it comes). Similarly we do a top-down step, in which we look for the representatives in the rest
of the tree (not being descendants of the current node), so the whole processing is done in time
O(|Q|2|t|).4 It is worth noting that we get this complexity even for Regular XPath. This contrasts
with the node tests α = β, which can be evaluated faster when the path expressions are from the
FOXPath fragment rather that from the whole Regular XPath.

3Recall that this is not only a translation of a path expression into an automaton, but we also need to relabel
the tree.

4However the complexity of the whole algorithm is O(|Q|3|t|), because of the complexity of the preprocessing
step described in the previous section.
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5.5 Equality tests

In this section, we show how to calculate node tests α = β. We are going to use snippets and the
methods to simplify them, described in Chapters 4. The strategy will be as follows: First we show
how to find some set of snippets representing the solution of α = β. Then, using the previous
results, we transform it into an equivalent set of trivial snippets. Finally we show that having a
set of trivial snippets is enough to solve the node test α = β.

From Theorem 5.8 we know that α and β can be recognized by automata. By inspecting the
proof of the theorem it is easy to see that for both α and β we can use a common automaton,
denoted A, with states Q (being just the union of the automata for α and β). The set of accepting
states QF can also be common. Only the initial states are different, say QαI for α, and QβI for β.
Then a pair of nodes x, y is selected by α if and only if (qαI , qF ) ∈ trans(x, y) for some qαI ∈ QαI
and qF ∈ QF ; similarly for β. Recall that during this translation we also need to change labels in
the tree t, by adding state pairs to the labels. We use the same letter t for both the original and
the relabeled tree, hoping that it will not introduce ambiguity.

A first component of the algorithm is a quick method of calculating possible automata runs
between distinct nodes. This is described by the corollary, which follows from Theorem 3.1.

Corollary 5.10
For a data tree t and an automaton A with states Q we can, after preprocessing, answer queries
of the form: given two nodes x, y such that5 x is an ancestor or a descendant of y, and a set of
states Qy ⊆ Q compute the set

trans(x, y) ◦Qy.

This can be done in time

• preprocessing: O(|Q|3|t| log |t|), query: O(|Q|3 log |t|), or

• preprocessing: O(2O(|Q|)|t|), query: O(2O(|Q|)), or

• if t forms a word—preprocessing: O(|Q|5|t|), query: O(|Q|5).

Like previously, here we mean that there are three algorithms, one for each of the listed
complexities.
Proof
Fix a data tree t and an automaton A. We create a binary tree t′ which has the same nodes as t,
and each its edge is labelled by a binary relation over Q × {1, 2}. An edge from a node x to its
child y is labelled by

{((q, 1), (p, 1)) : (p, q) ∈ trans(y, x)} ∪ {((p, 2), (q, 2)) : (p, q) ∈ trans(x, y)}.

In other words such label is a pair ((trans(y, x))−1, trans(x, y)), appropriately encoded. Notice
that then valt′(x, y) for any node x and its proper descendant y is also equal to

{((q, 1), (p, 1)) : (p, q) ∈ trans(y, x)} ∪ {((p, 2), (q, 2)) : (p, q) ∈ trans(x, y)}.

If y is a proper descendant of x, using Theorem 3.1 we answer the query about valt′(x, y), then
basing on it we calculate trans(x, y) ◦Qy in time O(|Q|2). Similarly if y is a proper ancestor of x,
but we use the other part of valt(y, x). For x = y we should simply return trans(x, x), which is
precalculated (notice that we need this special case: valt′(x, x) is always equal to identity, so we
cannot extract trans(x, x) from it). �

Now we come to representing the solution by snippets. Recall that a snippet is a tuple
(x, y,Q′x, Q

′
y) where x is an ancestor of y in t′, and Q′x and Q′y are subsets of some set, in our case

5The assumption that x is an ancestor or a descendant of y can be easily removed, but we do not need the
stronger version of the lemma.
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it will be the set Q× {1, 2}. We only use snippets of the form (x, y,Qx × {1}, Qy × {2}) for some
Qx, Qy ⊆ Q.

A snippet (y1, y2, Q1×{1}, Q2×{2}) represents a piece of information about the output of the
query α = β. The idea is that there are nodes z1, z2 which have the same string value, and such
that for each i = 1, 2 and each state qi ∈ Qi there is a path from yi to zi that takes the automaton
from qi to an accepting state pi ∈ QF , as in the picture below (the dotted lines depict automaton
paths, the highlighted nodes carry the same string value).

y
1

z
1

z
2

y
2

Namely, we say that the snippet (y1, y2, Q1 × {1}, Q2 × {2}) represents a node x when qI1 ∈
trans(x, y1) ◦Q1 and qI2 ∈ trans(x, y2) ◦Q2 for some qI1 ∈ QαI , qI2 ∈ Q

β
I or qI1 ∈ Q

β
I , qI2 ∈ QαI . In

other words, from two initial states in x, one for α, one for β, A can reach a state from Q1 in y1
and a state from Q2 in y2, as in the picture below.

y
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We say that a set of snippets is sound when all nodes selected by these snippets are also
selected by α = β. Conversely, a set of snippets is complete when all nodes selected by α = β are
also selected by the set of snippets. Our algorithm will first create a sound and complete set of
snippets. Then it will convert the snippets into trivial snippets, ensuring that the set of snippets
is still sound and complete. Finally, after this transformation, we get only trivial snippets, from
which the set of nodes selected by α = β will be calculated.

It would be very easy to construct some sound and complete set of snippets, if the assumption
that x is an ancestor of y would not be present. We would simply take a snippet (y1, y2, QF ×
{1}, QF × {2}) for each pair y1, y2 of nodes with the same string value. It is obviously sound
and complete. The assumption that x is the ancestor of y does not complicate too much: we can
split every such snippet into two, in the closest common ancestor of y1 and y2. The more serious
problem is that such set of snippets may be too big: it may have quadratic size, for example when
every node has the same string value. Our first goal is to calculate a smaller set of snippets, as
described by the following lemma.
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Lemma 5.11
For a data tree t and a node test α = β given by an automaton A we can find some sound and
complete set of snippets in time O(|Q|3|t| + TP + |t|TQ), where TP and TQ is the preprocessing
time and the query time of an algorithm described by Corollary 5.10. Moreover, the set contains
O(|t|) snippets.

Proof
For any string value d and a node x in the class of d we define a set class(x, d) of states p such
that (p, qF ) ∈ trans(x, y) for some qF ∈ QF and for some node y with the string value d. Note
that the requirement on x is weaker than that on y: y needs to have string value d, while x only
needs to be in the class of d, so it may be a CCA of two nodes with the string value d.

We calculate all the sets class(x, d). We do the calculation separately for every d-skeleton, in
time proportional to its size. Once again we use here a bottom-up pass followed by a top-down
pass. In the bottom-up pass for every node x of a d-skeleton we calculate the part classdown(x, d)
of class(x, d) such that the node y from the definition is a descendant of x (which includes y = x).
The crucial observation is that the set classdown(x, d) depends only on these sets for its two d-
children x1, x2, and on x itself: it is a union of trans(x, xi) ◦ classdown(xi, d) for i = 1, 2 and, if
the string value of x is d, it is also a union with trans(x, x) ◦QF , where QF stands for the set of
accepting states. Thus, for one node x of a d-skeleton we need to make three queries to Corollary
5.10. In total we have O(|t|) nodes in all d-skeletons, hence we get the desired complexity.

In the top-down pass we calculate the part classup(x, d) of class(x, d) such that the node y is
not a descendant of x, this is very similar to the above. The desired set class(x, d) is the union of
classdown(x, d) and classup(x, d).

We create our set of snippets as follows. For each data value d and each y1, y2 such that y1 is
the parent of y2 in the d-skeleton we take to the set a snippet (y1, y2, class(y1, d), class(y2, d)). Ad-
ditionally, for each d and each y in the d-skeleton we take a snippet (y, y, class(y, d), class(y, d)).6

Looking at the definitions it is easy to see that these snippets are sound (we also use here
the fact that trans(x, y) = transall(x, y) for any x, y). Now see that the set is complete. Take
any node x selected by α = β. Let zα, zβ be nodes with the same string value d such that zα
(respectively, zβ) is reachable from x using α (β). Let yα be the first node in the d-skeleton on
the simple path from x to zα; similarly for β. If yα = yβ then x is selected by the snippet of the
second kind for y = yα = yβ . Otherwise yα is a parent or a child of yβ in the d-skeleton, because
we have a path from yα to yβ (through x) not going through any node from the d-skeleton. Then
x is selected by the snippet of the first kind for y1 = yα, y2 = yβ or y1 = yβ , y2 = yα. �

In the next stage, the algorithm simplifies the set of snippets, so that all snippets become
trivial; this is described by the following corollary.

Corollary 5.12
Let t be a data tree, let A be an automaton with states Q, and let S be a set of snippets of the
form (y1, y2, Q1×{1}, Q2×{2}), where y1 ≤ y2 are nodes of t, and Q1, Q2 ⊆ Q. We can calculate
a set S′ of trivial snippets, which represents the same set of nodes as S, in time

• O(|Q|3(|t|+ |S|) log |t|), or

• O(2O(|Q|)(|t|+ |S|)), or

• when t forms a word—O(|Q|5(|t|+ |S|)).

Proof
We use here the same tree t′ as in the proof of Corollary 5.10. It has the same set of nodes as
t, hence every node of t can be simultaneously understood as a node of t′. Using Theorem 4.3
for S and t′ we create an equivalent set S′ of trivial snippets. It suffices to show that the set S′

represents the same set of nodes as S.

6Equivalently, instead of the second kind of snippets, one could take a snippet (y, y,QF , QF ) for each y.
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Notice first that (Q1 ×{1}) ◦ valt′(y1, z) ⊆ Q×{1} and valt′(z, y2) ◦ (Q2 ×{2}) ⊆ Q×{2} for
any nodes y1 ≤ z ≤ y2, so snippets of the form (y1, y2, Q1×{1}, Q2×{2}) can select only pairs of
the form ((p, 1), (q, 2)). It means that the equivalent set of trivial snippets contains only snippets
of the form (z, z, (p, 1), (q, 2)) (as other trivial snippets would select other pairs).

Next, we will show that any two equivalent sets S1, S2 of snippets of the form (y1, y2, Q1 ×
{1}, Q2 × {2}) represent the same set of nodes. Indeed, take any node x represented by a snippet
(y1, y2, Q1 × {1}, Q2 × {2}) ∈ S1. Consider the simple paths from x to y1 and to y2. Let z be
the last common node on these paths; we have y1 ≤ z ≤ y2. Because x is represented, we have
qI1 ∈ trans(x, y1) ◦Q1 and qI2 ∈ trans(x, y2) ◦Q2 for some initial states qI1 , qI2 , one for α, one for
β. We decompose

trans(x, y1) = trans(x, z) ◦ trans(z, y1) and trans(x, y2) = trans(x, z) ◦ trans(z, y2).

Thus there are p, q ∈ Q such that

p ∈ trans(z, y1) ◦Q1 and qI1 ∈ trans(x, z) ◦ {p}, and

q ∈ trans(z, y2) ◦Q2 and qI2 ∈ trans(x, z) ◦ {q}.

Moreover, if z = y1, we can assume that p ∈ Q1, and if z = y2, we can assume that q ∈ Q2. By
definition of labels in the tree t′, it means that

(p, 1) ∈ (Q1 × {1}) ◦ valt′(y1, z) and (q, 2) ∈ valt′(z, y2) ◦ (Q2 × {1}),

hence the pair ((p, 1), (q, 2)) is selected at node z by the snippet (y1, y2, Q1×{1}, Q2×{2}). From
equivalence, the same pair is selected by a snippet (y′1, y

′
2, Q

′
1 × {1}, Q′2 × {2}) ∈ S2, from which

we get p ∈ trans(z, y′1) ◦ Q′1 and q ∈ trans(z, y′2) ◦ Q′2. This time we do not know if z is on the
simple path from x to y′1 and to y′2, but trans(x, z) ◦ trans(z, y′1) ⊆ transall(x, y′1) = trans(x, y′1);
similarly for y′2. Thus qI1 ∈ trans(x, y′1) ◦ Q1 and qI2 ∈ trans(x, y′2) ◦ Q2, which means that x is
represented by a snippet from S2. �

Finally, when we have only trivial snippets, we have to find nodes represented by them.

Lemma 5.13
For a data tree t, an automaton A, and a set S of trivial snippets, we can calculate, in time
O(|Q|3|t|), the set of nodes represented by the snippets.

Proof
Notice first that |S| ≤ |Q|2|t|, as for each node there are at most |Q|2 snippets. For any node x we
define a set double(x) of state pairs (p1, p2) such that for some snippet (y, y, (q1, 1), (q2, 2)) from
S it holds

(p1, q1) ∈ trans(x, y) and (p2, q2) ∈ trans(x, y).

Observe that a node x is represented by some of the snippets if and only if (qαI , q
β
I ) ∈ double(x) or

(qβI , q
α
I ) ∈ double(x) for some initial states qαI ∈ QαI and qβI ∈ Q

β
I . Hence it is enough to calculate

the sets double.
Here we also do a bottom-up pass followed by a top-down pass. In the bottom-up pass we

calculate the part doubledown(x) of double(x) such that the node y from the definition is a de-
scendant of x. See how doubledown(x) depends on this value in its two children xL, xR. It should
contain (for i = L,R) all pairs (p1, p2) such that for some states (q1, q2) ∈ doubledown(xi) both
pairs (p1, q1) and (p2, q2) are in trans(x, xi). We have to be a little careful to calculate them in
time O(|Q|3): In a first step we calculate the set of state pairs (p1, q2) such that for some q1 there is
(q1, q2) ∈ doubledown(xi) and (p1, q1) ∈ trans(x, xi). In the second step we calculate the required
set. A straightforward implementation of both steps gives time O(|Q|3). To doubledown(x) we
should also add all pairs (q1, q2) for snippets (x, x, q1, q2) from S. The top-down pass is similar. �

Summing up, by composing the above lemmas, we get an algorithm evaluating Regular XPath
node tests. When we use first two variants of Corollary 5.10 and Theorem 4.3, we get first two
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variants of Theorem 1.1. If the third variant of Corollary 5.10 and Theorem 4.3 is used, we get
an algorithm which works in time O(|Q|5|t|), assuming that the tree t forms a word. In the next
section we deduce from this result the third variant of Theorem 1.1, which talks about trees of
fixed height. The fourth variant of Theorem 1.1 is shown in the next chapter.

5.6 Small height of a document

In this section we give an algorithm evaluating Regular XPath queries in an XML document,
which is linear in the document size, and polynomial in the query size and the document height,
i.e. we prove the third variant of Theorem 1.1. Notice that a typical XML document (even very
big) has a very small height. In the case when the tree forms a word, we already have an algorithm
evaluating Regular XPath node tests in time O(|ϕ|5|t|), as shown in the previous sections. Recall
that we say that a binary data tree forms a word, if each its node has only one child.

Of course in Theorem 1.1 we mean the height of the original, unranked tree. When we consider
a document already converted to a binary data tree, such height can be calculated as follows. The
original level of a node is the number of left children on each path from this node to the root, plus
one. The original height of a tree is equal to the maximum of original levels of its nodes. Then
the original height of a data tree is equal to the height of an XML document, which it represents,
seen as an unranked tree.

Assume that t is a binary data tree having original height k, representing an XML document
of height k. Such tree t over an alphabet A can be encoded, by writing the nodes in document
order and decorating them with their original levels, as a data word (data tree which forms a
word) enck(t) over alphabet A× {1, . . . , k}. This encoding can be decoded by Regular XPath in
the following sense: for each node test ϕ we can compute in time polynomial in k and |ϕ| a query
enck(ϕ) such that the set of nodes selected by ϕ in t can be recovered in linear time from the set of
nodes selected by enck(ϕ) in the data word enck(t). The idea is to replace the axes: e.g. to−right
(which goes to the next sibling in the original XML document) is replaced by a disjunction, over
all i ∈ {1, . . . , k}, of the path expression which connects a position x having original level i with
the first position y > x such that y has original level i and all positions between x and y have
original level at least i+ 1. The Kleene star is needed to talk about the positions between x and
y.
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Chapter 6

FOXPath

In this chapter we present an algorithm evaluating a node test ϕ in a document t in time O(|Q|3|t|),
assuming that ϕ is from FOXPath, i.e. we prove the fourth variant of Theorem 1.1. Recall that
FOXPath is the fragment of Regular XPath in which Kleene star is not allowed: a path expression
is a concatenation (composition) or union of simpler path expressions, but not a Kleene star of a
simpler path expression (however multistep axes can still be used). In fact the XPath specification
[CD99] does not allow Kleene star, so it is very natural to consider this restriction.

The general approach to the evaluation is the same as in Chapter 5. We can use all the results
from there, as FOXPath is a part of Regular XPath. We only need to improve the complexity,
using the fact that we have an expression from FOXPath.

6.1 Basic automata

We improve the results from Section 5.3. For path expressions from FOXPath in Section 5.3 we
get automata of a special form, described by the following definition and theorem (which is an
improved version of Theorem 5.8).

Definition 6.1 An automatonA is called basic, when its states can be numbered Q = {q1, . . . , qn}
in such way that transitions from qi to qj exist only for i ≤ j.

Theorem 6.2
Let t be a data tree and α an unnested path expression of FOXPath. We can calculate, in time
O(|t||α|3), a data tree s with the same nodes as t and a basic automaton A with O(|α|) states
such that A in s simulates α in t.

Proof
We inspect the proof of Theorem 5.8. Notice first that when α is an unnested path expression of
FOXPath, the automaton constructed in Lemma 5.6 is basic. Indeed, when translating a regular
expression into an automaton, only the Kleene star creates loops, and the Kleene star is forbidden
in FOXPath. In FOXPath we have multistep axes, however the can cause only trivial loops.

We also slightly modify the construction of automaton A inside the proof of Theorem 5.8. Now
we add to A only transitions between those states qi, qj for which i ≤ j. Thanks to this A is basic.
Because A′ is basic, only such pairs can be in the set loop. Thus the other transitions would not
be used at all; removing them does not change the behavior of the automaton. �

Notice that most of the parts of the algorithm in Chapter 5 work in time O(|Q|3|t|). Only
Corollaries 5.10 and 5.12 have to be improved. Now on input to this corollaries, instead of
arbitrary automaton, we get a basic automaton. Thus the binary tree created in the proofs of
these corollaries is of a special form.
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Definition 6.3 Let t ∈ etrees(RQ) for some set Q. We say that the labelling of t is basic if the
elements of Q can be numbered Q = {q1, . . . , qn} and there are two subsets Ql, Qr ⊆ such that
for each edge its label r satisfies

• r ⊆ {(qi, qj) : i ≤ j}, and

• r ∩ {(q, q) : q ∈ Q} = {(q, q) : q ∈ Ql} if the edge leads from a node to its left child, and

• r ∩ {(q, q) : q ∈ Q} = {(q, q) : q ∈ Qr} if the edge leads from a node to its right child.

In other words only pairs (qi, qj) with i ≤ j are allowed, and each pair (qi, qi) appears either
on every edge from a node to its left child or on none of them, and either on every edge from a
node to its right child or on none of them. Recall that in the proofs of Corollaries 5.10 and 5.12
we create a binary tree t′ which has the same nodes as the data tree t, and each its edge is labelled
by a binary relation over Q× {1, 2}. An edge from a node x to its child y is labelled by

{((q, 1), (p, 1)) : (p, q) ∈ trans(y, x)} ∪ {((p, 2), (q, 2)) : (p, q) ∈ trans(x, y)}.

It is easy to see that if the automaton is basic, the labelling of t′ is also basic. In particular, if
(q, q) ∈ trans(x, y), then there exists a transition from q to q reading an appropriate axis, so such
pair appears simultaneously on every edge in given direction (for example, if there is a transition
from q to q reading the from−left axis, the pair ((q, 1), (q, 1)) appears on every edge from a node
to its left child). Concluding, we have to prove the following two theorems.

Theorem 6.4
For a binary tree t ∈ etrees(RQ) with basic labelling we can, after preprocessing in time O(|Q|3|t|),
answer, in time O(|Q|3), queries of the form:

• for any node x, its descendant y, and a set Qy compute valt(x, y) ◦Qy, and

• for any node x, its descendant y, and a set Qx compute Qx ◦ valt(x, y).

Theorem 6.5
Let t ∈ etrees(RQ) be a tree with basic labelling, and let S be a set of snippets in t. We can
calculate, in time O(|Q|3(|t|+ |S|)), an equivalent set S′ of trivial snippets.

6.2 Precomputing automaton runs

First we show a proof of Theorem 6.4, i.e. that after appropriate preprocessing we evaluate a
value of a path in time not depending on its length, assuming that the tree has basic labelling. We
remark that it is important that in the theorem we are calculating valt(x, y)◦Qy for given Qy, and
Qx ◦ valt(x, y) for given Qx, not just valt(x, y). We suspect that our method would give O(|Q|4)
query complexity if it would be used to calculate whole valt(x, y), while for valt(x, y) ◦ Qy and
Qx ◦ valt(x, y) the query complexity is O(|Q|3). This is opposite to Chapter 3, in which valt(x, y)
was calculated.

Fix a set Q and a binary tree t ∈ etrees(RQ) with basic labeling. A first component of our
data structure is the following function. For every node y of t and every two elements p, q ∈ Q
we define firstup(p, q, y) as a pointer to the nearest ancestor x of y such that (p, q) ∈ valt(x, y).
It is possible that such an ancestor does not exist, in which case we remember an empty pointer
instead. These pointers are stored in the node y. The following lemma shows that this function
can be efficiently calculated.

Lemma 6.6
We can calculate the function firstup in time O(|Q|3|t|).
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Proof
Let x be the parent of y. Then firstup(p, q, y) is equal to y, if p = q, otherwise it is the lowest
from nodes firstup(p, q′, x) for all states q′ such that (q′, q) ∈ valt(x, y). We can calculate all the
pointers in a single top-down pass, in every node we quantify over three states p, q′, q, so it takes
time O(|Q|3|t|). �

Before we come to the proof of Theorem 6.4, we give some intuitions behind it. Observe that
every path expression selecting distant nodes has to use a multistep axis (since the Kleene star is
not allowed in path expressions), which means that the basic automaton stays in some state q using
a transition reading some axis, for example there is a transition from q to q reading from−left.
Instead of considering an arbitrary run, we want to (for a run going upwards) reach the last such
state q as quickly as possible (which is described by the firstup function), then go up staying
in this state and finally do only a few (at most |Q|) individual steps. Similarly for a run going
downwards, we want to reach first such a state as quickly as possible (in at most |Q| steps), then
we go down staying in this state as long as possible, and finally do some transitions described by
firstup. This approach succeeds completely, if from the starting node to the final node we can go
using just one axis. In general, a path alternates between from−left and from−right axes. But
again, if the number of such alternations is greater that 2|Q|, the run has to stay in some state q
for which there are transitions from q to q reading both from−left and from−right axes. Thus
we can repeat the same argument for this state.

For any two nodes x < y we say that x is a direct ancestor of y if x can be reached from y
using only one of the from−left∗ or from−right∗ axes. We say that x is the (unique) topmost
direct ancestor of y if additionally no node above x is a direct ancestor of y.

For every node y and its topmost direct ancestor x we remember in y the set valt(x, y). It is
easy to calculate these values in a top-down pass. This is done in the preprocessing phase. This
gives the following possibility in the query phase.

Proposition 6.7
When a node x is the topmost direct ancestor of a node y, we can calculate Qx ◦ valt(x, y) and
valt(x, y) ◦Qy in time O(|Q|2). When Qx (Qy) contains only one element, it can be done in time
O(|Q|).

We will now show how to calculate Qx ◦ valt(x, y) in the case when x is any direct ancestor of
y. Suppose that x can be reached from y using the from−left∗ axis (the case of the from−right∗
is completely symmetric). Consider the sequence of nodes y = x0, x1, . . . , xn = x in which xi+1

is the parent of xi We are not allowed to find all of them and for example remember them on a
list, as the complexity should be independent on n. When n ≤ |Q| we calculate Qx ◦ valt(x, y)
step by step in, observing that Qx ◦ valt(x, xi) is equal to Qx ◦ valt(x, xi+1) ◦ valt(xi+1, xi) for any
0 ≤ i < n, and that valt between a node and its parent is stored in the tree. For each i it takes
time O(|Q|2), so the whole computation takes time O(|Q|3).

Otherwise first we calculate sets Qi = Qx ◦ valt(x, xi) for n − |Q| ≤ i ≤ n in time O(|Q|3).
Recall the two sets Ql, Qr from Definition 6.3; an edge from a node to its left child has a pair
(q, q) in its label if and only if q ∈ Ql (similarly for a right child and Qr). We calculate a set
Q0: an element q ∈ Q is in Q0 if for some n − |Q| ≤ i ≤ n and for some p ∈ Qi ∩ Ql it holds1

firstup(p, q, y) ≥ xi (which means that (p, q) ∈ valt(y′, y) for some node y′ below xi); in particular
firstup(p, q, y) should be a nonempty pointer.

We will show that Q0 = Qx ◦ valt(x, y).
First observe that Q0 ⊆ Qx◦valt(x, y). Indeed, we always have (p, q) ∈ valt(firstup(p, q, y), y),

from the definition of firstup. When firstup(p, q, y) ≥ xi it also holds (p, q) ∈ valt(xi, y), because
p ∈ Ql and from firstup(p, q, y) we can reach xi using the from−left∗ axis.

To see that Qx ◦ valt(x, y) ⊆ Q0, take any q0 ∈ Q from Qx ◦ valt(x, y). This means that
(qn, q0) ∈ valt(x, y) for some qn ∈ Qx. Moreover, there are elements q1, . . . , qn−1 such that
(qi+1, qi) ∈ valt(xi+1, xi) for each 0 ≤ i < n (in general those elements can be chosen in multiple

1Here and below it is enough to compare levels of the nodes, because they are on the same path from the root.
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ways, but fix some choice). Because there are only |Q| elements and because the tree has a basic
labelling, there has to be qr = qr+1 for some n−|Q| ≤ r < n. In particular qr ∈ Ql. This sequence
of elements proves that qr ∈ Qr and firstup(qr, q0, y) ≥ xr. This means that q0 ∈ Q0.

In the general case (when x is any ancestor of y) we calculate Qx ◦ valt(x, y) in a similar way.
We define a zig-zag sequence from x to y: it is the (unique) sequence of nodes y = x0 > x1 >
· · · > xn = x such that xi+1 is a direct ancestor of xi and that n is minimal. In other words, for
any 0 ≤ i ≤ n− 2 the node xi+1 is the topmost direct ancestor of the node xi; this is not the case
for i = n − 1, as there might be more direct ancestors of xn−1 above x. Like previously, we find
only a few topmost nodes xi, now 2|Q|+ 1 of them, namely those for n− 2|Q| ≤ i ≤ n. To allow
this, during the preprocessing we should remember for every node z its bottommost descendant
reachable by the to−left∗ axis and its bottommost descendant reachable by the to−right∗ axis.
Then xi is the closest common ancestor of y and this descendant of xi+1 (hence it can be calculated
in constant time, using Fact 1.3).

For these topmost 2|Q| + 1 nodes we calculate the sets Qi = Qx ◦ valt(x, xi); first of them is
calculated from the above special case in time O(|Q|3) (as xn is just a direct ancestor of xn−1), each
next of them in time O(|Q|2) using Proposition 6.7 (as then xi+1 is the topmost direct ancestor
of xi). Then we calculate the set Q0: an element q ∈ Q is in Q0 if for some n− 2|Q| ≤ i ≤ n and
for some p ∈ Qi ∩Ql ∩Qr it holds firstup(p, q, y) ≥ xi. It holds Q0 = Qx ◦ valt(x, y) for the same
reasons as previously; the difference is that now we may go from both a left and a right child, but
we consider elements from Ql ∩Qr. Since now we take 2|Q|+ 1 nodes, for every sequence of states
there have to be three consecutive nodes xi, xi+1, xi+2 with the same state and hence this state
is in both Ql and Qr.

Although the algorithm calculating valt(x, y) ◦ Qy is not completely symmetric, it is similar.
Once again we first solve the case of direct ancestor, and then the general case. Consider the
case, when x is direct ancestor of y, say reachable by the from−left∗ axis. Take the sequence
y = x0, x1, . . . , xn = x in which xi+1 is the parent of xi. First for n−|Q| ≤ i ≤ n we calculate sets
Q̃i: element p is taken to Q̃i if p ∈ Ql and for some q ∈ Qy there is firstup(p, q, y) ≥ xi. Then
we do Qi = Q̃i ∪ (valt(xi, xi−1) ◦Qi−1) for n− |Q| < i ≤ n, starting from Qn−|Q| = Q̃n−|Q|. The
argument that Qn = valt(x, y) ◦Qy is very similar to the previous one. The general case is solved
analogously.

6.3 Simplifying the snippets

We now come to the proof of Theorem 6.5. Recall that we have to transform a set of arbitrary
snippets into an equivalent set of trivial snippets. This should be done in time O(|Q|3(|t|+ |S|)),
assuming that the tree has a basic labeling. First we give two lemmas, which are used to simplify
the snippets. The sets Ql, Qr below are the sets from Definition 6.3.

Lemma 6.8
For any snippet in which the high node is a direct ancestor of the low node we can find, in time
O(|Q|3), an equivalent set of O(|Q|3) snippets (x, y, qx, qy) in which

(a) x = y (trivial snippets), or

(b) qx ∈ Ql and x is reachable from y by the from−left∗ axis, or

(c) qx ∈ Qr and x is reachable from y by the from−right∗ axis.

Proof
Let (x, y,Qx, Qy) be the input snippet. Assume that x is reachable from y using the from−left∗
axis (the other case is symmetric). Consider the sequence y = x0, x1, . . . , xn = x where xi+1 is
the parent of xi. Let k = max(0, n − |Q|). For k ≤ i ≤ n we calculate the nodes xi and the sets
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Q↑i = Qx ◦ valt(x, xi) and Qi↓ = val(xi, y) ◦Qy, observing that

Q↑i = Q↑i+1 ◦ valt(xi+1, xi) for k ≤ i < n, Q↑n = Qx, and

Qi↓ = valt(xi, xi−1) ◦Qi−1
↓ for k < i ≤ n, Qk↓ = valt(xk, y) ◦Qy.

The set Qk↓ is calculated using Theorem 6.4 in time O(|Q|3), each other of O(|Q|) sets basing on
the previous one in time O(|Q|2). Then we add trivial snippets (xi, xi, q

↑
i , q

i
↓) for all q↑i ∈ Q↑i ,

qi↓ ∈ Qi↓, k ≤ i ≤ n. We also add snippets (xi, y, q
↑
i , qy) for all elements q↑i ∈ Q

↑
i ∩Ql and qy ∈ Qy,

where k ≤ i ≤ n. We get O(|Q|3) snippets of the allowed form.
We have to prove that the set of those snippets is equivalent to the original snippet. When

k = 0 it is clear. Note that for k > 0 the set would be equivalent (by Propositions 4.5 and 4.7), if it
would also contain snippets (xk, y, q

↑
k, qy) for all elements q↑k ∈ Q

↑
k, qy ∈ Qy (not only these where

q↑k ∈ Ql). Consider one such snippet. As q↑k ∈ Q
↑
k = Qx◦valt(x, xk), we have (qx, q

↑
k) ∈ valt(x, xk).

Moreover, we have elements q↑k+1, . . . , q
↑
n−1, q

↑
n = qx such that (q↑i+1, q

↑
i ) ∈ valt(xi+1, xi) for k ≤

i < n. Because there are only |Q| elements of Q, and the labelling is basic, there has to be
q↑r = q↑r+1 for some k ≤ r < n. See that q↑r ∈ Q↑r ∩ Ql, so there is a snippet (xr, y, q↑r , qy) in our
set, for which q↑k ∈ {q↑r} ◦ valt(xr, xk). Thus, by Proposition 4.6 the snippet (xk, y, q

↑
k, qy) is not

necessary and could be removed. �

Lemma 6.9
For any snippet we can find, in time O(|Q|3), an equivalent set of O(|Q|3) snippets (x, y, qx, qy)
in which

(a), (b), (c) like above in Lemma 6.8, or

(d) x is the topmost direct ancestor of y, or

(e) qx ∈ Ql ∩Qr.

Proof
The proof is very similar to the previous one. Now we take the zig-zag sequence between x and
y and k = max(0, n− 2|Q|). The sets Q↑i and Qi↓ are defined as previously; we calculate Qk↓, Q

n
↓ ,

Q↑n−1 using Theorem 6.4 in time O(|Q|3), each other using Proposition 6.7 in time O(|Q|2). We
add snippets (xi+1, xi, q

↑
i+1, q

i
↓) for all q↑i+1 ∈ Q

↑
i+1, qi↓ ∈ Qi↓, k ≤ i ≤ n− 2 (they are of type (d)).

For i = n − 1 we cannot do the same, as xn is not the topmost direct ancestor of xn−1; instead
we replace the snippet (xn, xn−1, Q

↑
n, Q

n−1
↓ ) by the set from the previous lemma. We also add

snippets (xi, y, q
↑
i , qy) for all states q↑i ∈ Q

↑
i ∩Ql ∩Qr and qy ∈ Qy, where k ≤ i ≤ n. The created

set is equivalent to the original snippet for the same reasons as in the previous lemma. �

Now come to the proof of Theorem 6.5. First we apply Lemma 6.9 to each snippet from S,
getting an equivalent set of O(|Q|3|S|) snippets of types (a)-(e). We want to eliminate snippets of
types (b)-(e), leaving only trivial snippets. The key observation is that for each low node we have
to remember only 3|Q|2 snippets; the other are redundant and can be removed. Indeed, in each
node there are only |Q|2 different trivial snippets; it is enough to remember each of them once.
The same is true for (d) snippets, as the topmost direct descendant for a low node is unique. When
we have two snippets (x1, y, qx, qy) and (x2, y, qx, qy) of type (b), (c), or (e), and x1 is an ancestor
of x2, then the second snippet can be removed (Proposition 4.6), because qx ∈ qx ◦ valt(x1, x2).
Hence here also for each pair of states and each low node y we need at most one snippet.

We consider every node y starting from the lowest nodes and ending in the root. Let z be the
parent of y. We replace a snippet (x, y, qx, qy) by snippets (x, z, qx, qz) for every qz ∈ valt(z, y)◦{qy}
(these snippets are processed again, when we are in the node z) and by trivial snippets (y, y, q, qy)
for every q ∈ {qx} ◦ valt(x, y); they are equivalent due to Propositions 4.5 and 4.7. Note that
{qx}◦valt(x, y) can be computed in time O(|Q|): for snippets of type (d) from Proposition 6.7; for
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snippets of types (b), (c), or (e) because q is in {qx}◦ valt(x, y) if and only if firstup(qx, q, y) ≥ x.
The other set valt(z, y) ◦ {qy} is easy as well, as z is the parent of y. Since for each y we have
O(|Q|2) snippets with low node at y, the whole processing takes time O(|Q|3|t|). The key point is
that we remove redundant snippets whenever a new snippet is created.
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Chapter 7

Regular XPath with aggregation

In this section we consider additional constructions from the XPath standard, namely aggregates.
To define them, we need a third type of expressions, beside path expressions and node tests. These
are numerical expressions. A numerical expression produces a real number for every node v. A
typical numerical expression is count(child), which for every node v calculates the number of
children of v.

We extend the definition of Regular XPath from Section 1.2.2 by the following constructions:

• If α is a path expression, ϑ, ϑ′ are numerical expressions, c is a real number, and RelOp ∈
{=,≤, <,>,≥, 6=},

α RelOp ϑ and ϑ RelOp ϑ′ and ϑ RelOp c

are node tests. The first of them selects a node u if there exists a node v such that (u, v) is
selected by α, and the string value of v represents a number, and this number and the value
of ϑ calculated in u satisfy the relation RelOp. The second of them selects a node u if the
values of ϑ and ϑ′ calculated in u satisfy the relation RelOp. The third of them selects a
node u if the value of ϑ calculated in u and the constant c satisfy the relation RelOp. The
inequalities ≤, <,>,≥ correspond to the linear order of real numbers.

• If α is a path expression,
count(α) and sum(α)

are numerical expressions. The first of them for a node u calculates the number of nodes
v such that (u, v) is selected by α. The second of them for a node u calculates the sum of
all string values (converted to numbers) of nodes v such that (u, v) is selected by α; if some
of these string values does not represent a number, a special value NaN (Not-a-Number) is
returned.

• Numerical expressions (representing numbers) may be added, multiplied, etc. (i.e. if ϑ, ϑ′

are numerical expressions, ϑ+ ϑ′, ϑ · ϑ′, etc. also are).

In our analysis we assume that all operations on numbers are performed in constant time. This
is somehow convergent with XPath specification [CD99], which says that all numbers should be
represented as a floating point real numbers of fixed precision; hence we need not to represent
very long numbers.

The main theorem of this chapter is that node tests of Regular XPath with aggregates, as well
as numerical expressions, can be evaluated in time linear-logarithmic in the document size and
exponential in the query size.

Theorem 7.1
Let t be an XML document, ϕ a node test of Regular XPath with aggregates, and ϑ a numerical
expression of Regular XPath with aggregates. The set of nodes of t that satisfy ϕ can be computed
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in time O(2O(|ϕ|)|t| + |ϕ||t| log |t|). The value of ϑ in each node of t can be computed in time
O(2O(|ϑ|)|t|+ |ϑ||t| log |t|).

7.1 Unnested aggregates

In this section we deal with numerical expressions of the form sum(α) and count(α) in which α is
unnested.

First, for each node of the input data tree t, we remember the real number represented by
the string value of that node, or that the string value does not represent any number. This can
be calculated in linear time. Indeed, for text nodes and attribute nodes this is straightforward.
However recall that the string value of an element node is a concatenation of the string values of
all text node descendants of the left child of the element node, in document order (see Section
1.2.1). The total length of all string values may be quadratic in the document size. To deal with
that we use the following observation: if for two strings u, v we know the natural numbers i, j
represented by them, and we know 10|u| and 10|v|, then we can compute in constant time the
number 10|v| · i+ j represented by the concatenation uv, as well as 10|uv| = 10|u| · 10|v|. The same
can be done for real numbers, but additionally we have to know if the string contains a minus or
a period, and on which position (precisely, we need to remember 10p if the period is on position
p in the string).

Now we will show how to evaluate the numerical expression sum(α) for unnested α. Recall that
in each node u we have to calculate the sum of numbers in every node v such that (u, v) is selected
by α. In particular these sums are commutative. As in the previous chapters we generalize the
problem to automata and we use the automaton A simulating α, which reads string descriptions
of simple paths (from Theorem 5.8). Let Q be the set of states of A.

For each node u of a binary tree t and for each set of states P ⊆ Q we define sum(u, P )
as the sum of string values in every node v such that (q, qF ) ∈ trans(u, v) for some accepting
state qF and some q ∈ P . We want to compute sum(u, P ) for each node u in the tree, and each
P ⊆ Q. As we consider each set of states, the algorithm is exponential in the size of α. In order to
compute the function sum we first do a bottom-up pass, then a top-down pass. In the bottom-up
pass we calculate the part sumdown(u, P ) of sum(u, P ) corresponding only to these nodes v, which
are descendants of u. We see that sumdown(u, P ) depends only on sumdown in its two children
u1, u2. First we calculate sets Pi = P ◦ trans(u, ui). Then sumdown(u, P ) is equal to the sum of
sumdown(ui, Pi) for i = 1, 2 plus the number in u, if some accepting state is in P . Similarly we may
do a top-down pass, calculating the part of sum(u, P ) corresponding to these nodes v, which are
not descendants of u. For both directions it is possible to process a node in time O(2|Q||Q|3), so
the total time is O(2|Q||Q|3|t|). Finally, the result of sum(α) in each node u is equal to sum(u,QI),
where QI is the set of initial states.

Exactly the same approach succeeds for count(α). Just instead of adding the number stored
in a node, we add 1.

Note that the information just for singleton sets P is highly insufficient. For example if
sumdown(u, {q1}) = sumdown(u, {q2}) = 1 we don’t know whether these sums come from the same
or different node, but it is important in the parent of u, for example if from some state q in the
parent we may reach both q1 and q2 in u.

7.2 Arbitrary node tests and numeric expressions

We now show how to evaluate arbitrary node test and numeric expression of Regular XPath
with aggregates, i.e. we prove Theorem 7.1. The general proof strategy is the same as described
in Section 5.1. We only have to deal with the new types of constructions. Simultaneously to
the algorithm evaluating node tests, we show an algorithm which for a numerical expression ϑ
calculates its value in every node of a tree t. The algorithm works by induction on the size of ϕ
or ϑ.
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As previously, there are a few easy cases. To evaluate a node test ϑ RelOp ϑ′, first we evaluate
both ϑ and ϑ′ from the induction assumption, which gives in every node of t two real numbers, and
then in every node we check, whether the two results are equal or not. Similarly for a node test
ϑ RelOp c, and for a numerical expression which is an arithmetical operation of smaller numerical
expressions.

Consider now the nontrivial induction step: a numerical expression sum(α). We proceed like
in Section 5.1 for node tests of the form α RelOp β. Let ϕ1, . . . , ϕn be the node tests that appear
in the path expression α. Using the induction assumption, we run our algorithm for each of these
node tests, and label each node in the tree with the set of node tests from ϕ1, . . . , ϕn that it
satisfies. Then we create new path expression α′ replacing every ϕi by a label test checking if ϕi
is satisfied. The numerical expression sum(α′) in the enriched tree has in each node exactly the
same value as sum(α). The gain is that α′ is unnested, so it can be solved using the algorithm
from the previous section. We have a bound for size: |sum(α′)| = O(|sum(α) − |ϕ1| − · · · − |ϕn|),
which guarantees the complexity as required. In the same way we proceed with count(α).

The only thing left is a node test of the form α RelOp ϑ. By the same argument as above we
can assume that α is unnested. We want to simulate this query by α′ RelOp β for some unnested
path expressions α′ and β. First of all, α′ should select only pairs (u, v) such that the string value
in v represents a number (as only such pairs are taken into account by α RelOp ϑ). To ensure that,
we put an additional label in each node which says whether its string value represents a number
or not. Then α′ should check that label in the final node.

Second, we calculate the value of ϑ in each node. We store the results in the tree. If the tree
would be unranked, not binary, we could add under each node a new attribute child, say at the
leftmost position, and store the result in its string value. We do the same in our binary tree t:
under each node u we create a new attribute node v as the left child of u, and we store there the
result of ϑ from u. If u already had a left child, we attach it as a right child of v. The number
of nodes in the new tree t′ is twice the number of nodes in t. Now in α′ we have to omit the
new nodes, so each axis to−left in α is replaced by to−left · to−right in α′, and each axis
from−left in α is replaced by from−right ·from−left in α′. The path expression β should just
go to the left child.

Then α′ RelOp β selects in the new tree t′ exactly the nodes coming from the original tree
t which would be selected there by α RelOp ϑ. This is true under the assumption that RelOp
refers now to the linear order of numbers represented by the string values, not to the lexicographic
order of string values. This is not a problem: instead of using Proposition 5.4, the algorithm
evaluating α′ RelOp β should just compare the real numbers represented by the string values. The
other problem is how we write the results of ϑ in the string values of the newly created attribute
nodes. We do not want to convert them to string, as these strings can be quite long. We should
just remember them as floating point real numbers, slightly modifying the definition of the data
tree, so that string value of an attribute node can be either a string or a number. After such
modification of the definition, Proposition 5.3 is no longer true. To group all nodes into sets of
nodes with the same string value, we have to sort the numbers which are in the string values; this
takes time O(|t| log |t|), not O(|t|) (this is the only place where the complexity in the document
size becomes O(|t| log |t|), everywhere else it is linear).
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Chapter 8

Evaluation of path expressions

This chapter is devoted to a proof of Theorem 1.2. Given a data tree and a Regular XPath path
expression α, we want to find all pairs of nodes satisfying α, one after another. Before we come
to that, in Section 8.1 we solve an auxiliary problem in the style of those in Chapters 3 and 4. Its
solution will be used in Section 8.2 to evaluate path expressions.

8.1 An auxiliary problem

Let t be a binary tree labelled by binary relations over some set Q. Then for any node x of t,
and two subsets P,Qx ⊆ Q we define setP (x,Qx) as the set of all descendants y of x such that
valt(x, y) ∩ (Qx × P ) 6= ∅ (the set P is going to be fixed, so it is written in the subscript of
setP ). We are going to enumerate the elements of setP (x,Qx), which is described by the following
theorem.

Theorem 8.1
Let t ∈ etrees(RQ) for some set Q, and let P ⊆ Q. After an appropriate preprocessing, we can,
given a node x of t and a set Qx ⊆ Q, compute all nodes in setP (x,Qx) one after another in time

• preprocessing: O(|Q|3|t| log |t|), each element of setP (x,Qx): O(|Q|3 log |t|), or

• preprocessing: O(2O(|Q|)|t|), each element of setP (x,Qx): O(2O(|Q|)), or

• when t forms a word—preprocessing: O(|Q|5|t|), each element of setP (x,Qx): O(|Q|5), or

• when the labelling of t is basic—preprocessing: O(|Q|3|t|), each element of setP (x,Qx):
O(|Q|3).

To be precise: we first get t and P , for which we can do the preprocessing, and then we get x
and Qx, for which we should be able to enumerate the elements of setP (x,Qx). We want to have
a constant delay algorithm; we not only want to quickly find the whole set, but we need to find
its first element as well as each next element in the declared time. The order in which the nodes
of setP (x,Qx) are output does not matter.

The rest of the section is devoted to a proof of the above theorem. Fix a set Q, a binary tree
t ∈ etrees(RQ), and a set P ⊆ Q.

Recall that we write x ≤ y to denote that x is an ancestor of y. All ancestors and descendants
need not to be proper, unless otherwise stated. We use here also the postfix order of nodes: for
each x the nodes from the left subtree of x in t are before the nodes from the right subtree of
x, and the nodes in both subtrees are before x. This order is similar to the order of the closing
tags in an XML document, but it is slightly different, since it refers to the binary tree t. It is an
important detail that a node is ordered after its proper descendants. To simplify comparing of
nodes, in each node we remember its number in the postfix order.
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Our algorithms will be returning the nodes of setP (x,Qx) in the postfix order. Hence we define
firstP (x,Qx) as the first node in the postfix order which is in setP (x,Qx). For any y ≥ x we also
define nextP (x,Qx, y) as the next node after y in the postfix order which is in setP (x,Qx). Such
a node may not exist, in which case we say that firstP or nextP returns an empty pointer. We
remark that although at the end nextP will be used only for nodes y from setP (x,Qx), however
inside the proofs it is used also for other nodes y, so it is defined for any descendant of x.

Observe two easy properties of firstP and nextP , which will be useful during the calculation
of these values.

Proposition 8.2
Let x ≤ z ≤ y be three nodes and Qx ⊆ Q. Assume we know the values of nextP (x,Qx, z) and
nextP (z,Qx ◦ valt(x, z), y). Then nextP (x,Qx, y) can be calculated in time O(1).

Proposition 8.3
Let x ≤ y be two nodes and Qx ⊆ Q. Assume we know the value of nextP (x, {qx}, y) for every
element qx ∈ Q. Then nextP (x,Qx, y) can be calculated in time O(|Q|). Similarly, assume we
know the value of firstP (x, {qx}) for every element qx ∈ Q. Then firstP (x,Qx) can be calculated
in time O(|Q|).

Indeed, in the first proposition, as all descendants of z are before z in the postfix order, if
nextP (z,Qx ◦ valt(x, z), y) is nonempty, it is the value of nextP (x,Qx, y); otherwise we should
take nextP (x,Qx, z). In the second proposition nextP (x,Qx, y) is the first among the nodes
nextP (x, {qx}, y) for all qx ∈ Qx; similarly firstP (x,Qx).

Now observe that the firstP pointers can be easily calculated.

Lemma 8.4
The pointers firstP (x, {qx}) can be calculated for each node x and each element qx ∈ Q in total
time O(|Q|2|t|).

Proof
The calculation of firstP (x, {qx}) can be easily done in a bottom-up pass, since it is firstP (x1, {qx}◦
valt(x, x1)), where x1 is the left child of x; if this pointer is empty we should take firstP (x2, {qx}◦
valt(x, x2)) for the right child x2 of x; if this pointer is also empty and qx ∈ P , we should take x;
otherwise we should return the empty pointer. �

Now see that the nextP pointers can be all calculated when y is a child of x.

Lemma 8.5
The pointers nextP (x, {qx}, y) for each pair (x, y) of a parent and its child and for each element
qx ∈ Q can be calculated in time O(|Q|2|t|).

Proof
We have two cases depending on whether y is the left or the right child of x. If it is the right child,
nextP (x, {qx}, y) is either empty or equal to x (if qx ∈ P ). Otherwise let z be the right child of
x; we have nextP (x, {qx}, y) = firstP (z, {qx} ◦ valt(x, z)) or, if this gives the empty pointer, we
should take nextP (x, {qx}, y) = x if qx ∈ P , and the empty pointer otherwise. �

Below, in the four subsections, we will show the following lemma, saying that it is possible to
quickly compute nextP for any arguments.

Lemma 8.6
For a tree t ∈ etrees(RQ) and a set P ⊆ Q we can, after an appropriate preprocessing, answer
queries of the form: for two nodes x ≤ y and a set Qx ⊆ Q compute nextP (x,Qx, y). This can be
done in time

• preprocessing: O(|Q|3|t| log |t|), query: O(|Q|3 log |t|), or

• preprocessing: O(2O(|Q|)|t|), query: O(2O(|Q|)), or
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• when t forms a word—preprocessing: O(|Q|5|t|), query: O(|Q|5), or

• when the labelling of t is basic—preprocessing: O(|Q|3|t|), query: O(|Q|3).

It is easy to see that Theorem 8.1 follows from this lemma. Indeed, assume we have a tree
t ∈ etrees(RQ) and a set P ⊆ Q. In the preprocessing step we do the preprocessing of Lemma
8.6, and we calculate firstP (x, {qx}) for each node x and each qx ∈ Q (using Lemma 8.4). In
the query step we are given some node x and set Qx. The first element of setP (x,Qx), which is
firstP (x,Qx), can be calculated from Proposition 8.3. Having an element y of setP (x,Qx), the
next element, which is nextP (x,Qx, y), can be found using Lemma 8.6.

8.1.1 Linear-logarithmic algorithm

In this subsection we prove the first version of Lemma 8.6.
We need information like in Section 3.1 but slightly enriched: For every node x of the data

tree t and every 0 ≤ k ≤ K we remember a pointer to its ancestor y which is 2k edges above x
(as previously, K is the greatest number such that 2K is not greater than the height of the data
tree t). Together with it we remember valt(x, y) as previously, but also nextP (y, {qy}, x) for each
element qy ∈ Q.

Now see how to find the pointers nextP (y, {qy}, x) in the preprocessing step. For k = 1 they
can be calculated by Lemma 8.5. Then we inductively calculate the pointers for k > 1. Let z be
the node halfway between x and y. The pointer nextP (y, {qy}, x) is easily calculated basing on
the nextP pointers for pairs (y, z) and (z, x), as described by Propositions 8.2 and 8.3.

Now come to the query step. We are given two nodes x ≤ y and a set of states Qx. As in the
previous subsections, we consider the nodes y = x0 > x1 > · · · > xn = x (n ≤ K + 1) where xi+1

is 2k edges above xi for the greatest number k such that xi+1 ≥ x. First for each i we calculate
the sets Qi = Qx ◦ valt(x, xi) observing that

Qi = Qi+1 ◦ valt(xi+1, xi) for 0 ≤ i < n, Qn = Qx.

As we know nextP (xi, {q}, xi+1) for each i and q, using Proposition 8.3 we calculate nextP (xi, Qi, xi+1).
Then Proposition 8.2 allows us to compose them into nextP (x,Qx, y).

8.1.2 Linear algorithm for Regular XPath

In this subsection we are going to prepare the data structure from Section 3.2.2 for queries about
nextP (x,Qx, y). Recall first the important properties of this data structure. In each node we have
K = 2|Q| tapes, each of them contains different subset of Q. Moreover, we distinguish places in
which tapes are reset and places in which tapes are not reset. If a tape containing Qx at node x
is not reset until y ≥ x, then at y this tape contains Qx ◦ val(x, y). To simplify the notation, let
Qkx be the set written on the k-th tape at node x. All what we need to know about the tapes data
structure is the following. Let x ≤ y be two nodes and Qx a subset of Q. We can find, in time
constant in |t|, a sequence of nodes

x = x1 ≤ y1 < x2 ≤ y2 < · · · < xn ≤ yn = y, n ≤ K = 2O(|Q|),

such that the tape containing Qx ◦ val(x, xi) at xi is not reset until yi, and that xi+1 is a child of
yi. The numbers of tapes used in each fragment are also known. When a tape number k is used
at node z, we know that Qkz = Qx ◦ valt(x, z).

The information collected in Section 3.2.2 will be enriched. For any node y, denote its parent
as par(y). For each node y (except the root) and for each subset Qpar(y) ⊆ Q we remember
nextP (par(y), Qpar(y), y). This is easily calculated using Lemma 8.5 and Proposition 8.3. More-
over, for each tape k and each node z we remember a pointer to its nearest ancestor y such that
nextP (par(y), Qkpar(y), y) is non-empty. This information is collected in a top-down pass for each
tape. The preprocessing takes time O(2O(|Q|)|t|).
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Consider first a query of a special kind: calculate nextP (x,Qx, y), where x ≤ y are such that
the tape containing Qx at x is not reset between x and y. Let k be the number of that tape.
Note that for any node y′ such that x ≤ y′ ≤ y we have Qky′ = Qx ◦ valt(x, y′). This means
that nextP (x,Qx, y) is equal to one of nextP (par(y′), Qkpar(y′), y

′) for x < y′ ≤ y; namely to
the first of them in the postfix order. But we know that nextP (par(y′), Qkpar(y′), y

′) is between
y′ and par(y′) in the postfix order. So we need to find the nearest ancestor y′ of y for which
nextP (par(y′), Qkpar(y′), y

′) is not empty, and it gives nextP (x,Qx, y); a pointer to such y′ is
stored at y. It is also possible that the pointer shows y′ which is already an ancestor of x; in this
case nextP (x,Qx, y) is empty.

Consider now a general query: calculate nextP (x,Qx, y), where x ≤ y are arbitrary nodes.
Using the data structure, we find the sequence x1, y1, . . . , xn, yn mentioned at the beginning of this
subsection. Let ki be the tape used between xi and yi. Then from the above special case we know
each nextP (xi, Qki

xi
, yi). We also know each nextP (yi, Qki

yi
, xi+1). Note that Qki

xi
= Qx ◦ valt(x, xi)

and Qki
yi

= Qx ◦ valt(x, yi). Thus, from Proposition 8.2 we can compose all these values into
nextP (x,Qx, y).

8.1.3 Polynomial combined complexity for words

In this subsection we will prove Lemma 8.6 in the case when t forms a word. Let w be the word
written on the edges of t. Notice that nodes closer to the root (earlier in the word) are later in
the postfix order.

We use the same data structure as in Section 3.3. Recall that we have a homogeneous factor-
ization forest F containing O(|t|) factors, as well as a structure P(F) containing O(|Q|2|t|) factors.
Additionally, for each element q ∈ Q, and each factor F ∈ P(F), starting at x and ending at y,
we remember the pointer nextP (x, {q}, y).

This information is calculated starting from the shortest factors, and going towards the longest.
When F contains just one letter (x is the parent of y), then either nextP (x, {q}, y) = x, when
q ∈ P , or nextP (x, {q}, y) is empty. Recall property ] from Section 3.3.1: every factor F ∈ P(F)
containing at least two letters can be decomposed into two shorter factors F1, F2 ∈ P(F). Let z
be the position between F1 and F2. Then we already know nextP (x, {q}, z) and nextP (z, {q}, y)
for every q ∈ Q. Recall that we also know valt(x, z) (which is remembered together with F1).
So we can calculate nextP (x, {q}, y) for every q ∈ Q (see Propositions 8.2 and 8.3). For each q
it works in time O(|Q|), we have |Q| values of q, and O(|Q|2|t|) factors, so the whole procedure
works in time O(|Q|4|t|).

Consider a maximal sequence F1, . . . , Fn of homogeneous siblings in F . Let xi−1 be the node
just before Fi, and xi the node just after Fi, for 1 ≤ i ≤ n. Observe that for given q ∈ Q
and two indexes 0 ≤ i < j ≤ n, we can find nextP (xi, {q}, xj) in time O(1). Indeed, observe
that we have stored the values nextP (xi, {q}, xi+1) and nextP (x0, {q}, xj) in the factors Fi+1 and
F1 ∪ · · · ∪Fj , which are in P(F) (in particular the second of them is either equal to F1 ∪ · · · ∪Fn,
which is in F , if j = n, or it is left(F1 ∪ · · · ∪Fn, Fj+1), which is one of the accelerating pointers).
From homogeneouity we know that valt(x0, xi+1) = valt(xi, xi+1). Thus any node z ≥ xi+1 is in
setP (x0, {q}) if and only if it is in setP (xi, {q}). So, if nextP (x0, {q}, xj) ≥ xi+1, we should take it
as nextP (xi, {q}, xj); otherwise nextP (xi, {q}, xj) is after xi+1 in the postfix order (or is empty),
so we should take nextP (xi, {q}, xi+1).

Now consider the query step: we want to quickly calculate nextP (x,Qx, y) for some x < y and
Qx ⊆ Q. The factor consisting of letters between x and y can be decomposed (Lemma 3.3) into
factors X1, . . . , Xm, X

′ such that X1, . . . , Xm ∈ P(F) and X ′ = F1∪· · ·∪Fk for some homogeneous
siblings F1, . . . , Fk from F . For each of the factors X1, . . . , Xm, X

′, and each q ∈ Q we know
nextI(x′, {q}, y′), when the factor starts at x′ and ends at y′ (for X ′ we use the observation from
the previous paragraph); moreover we can also calculate Qx ◦ valt(x, x′) (by composing the values
of the factors from left to right). This is sufficient to calculate nextP (x,Qx, y) (see Propositions
8.2 and 8.3).

57



8.1.4 Polynomial combined complexity for FOXPath

In this subsection we will prove Lemma 8.6 in the case when the labelling of t is basic. We need
to show how to quickly answer queries about nextP (x,Qx, y). As in the previous subsections,
we have to remember some of these values. We use here the notions of direct ancestor, topmost
direct ancestor, zig-zag sequence defined in Section 6.2. We also use the sets Ql, Qr ⊆ Q from the
definition of a basic labelling (Definition 6.3). Let par(x, k) be the node which is reached from x
by moving k times to the parent (a node k edges above x). Similarly, let tda(x, k) be the node
which is reached from x by moving k times to the topmost direct ancestor. We remember the
following information:

A. for each element q ∈ Q, each node x, and each 1 ≤ k ≤ 2|Q| we remember the pointers
nextP (par(x, k), {q}, x) and nextP (tda(x, k), {q}, x), if the appropriate node par(x, k) or
tda(x, k) exists;

B. for each element q ∈ Q and each node y we remember the nearest ancestor x of y such
that nextP (par(x, |Q|), {q}, x) is non-empty as well as the nearest ancestor x of y such that
nextP (tda(x, 2|Q|), {q}, x) is non-empty.

How to calculate this information? We start from the information in A for par and k = 1; it is
calculated by Lemma 8.5. Then the values for bigger k are calculated by composition of smaller val-
ues, as described by Propositions 8.2 and 8.3 (namely, to calculate nextP (par(x, k), {q}, x) we need
to know {q}◦valt(par(x, k), par(x, 1)), nextP (par(x, k), {q}, par(x, 1)) and nextP (par(x, 1), {p}, x)
for each state p). For one x, q, and k the calculation takes time O(|Q|), the total time consumed
is O(|Q|3|t|).

Now we switch to the values for tda. For k = 1 we calculate them moving top-down in the tree.
We either have tda(x, 1) = par(x, 1), or we compose already calculated values of nextP between
the topmost direct ancestor of x and the parent of x with nextP between the parent of x and x.
For k > 1 we compose the values in the same way as for par. So this part of the preprocessing is
also done in time O(|Q|3|t|).

The information in B can be collected in a top-down pass for each state.
Now we come to the query step; someone asks for nextP (x,Qx, y) for x ≤ y. Concentrate

first on queries in which x is a direct ancestor of y; assume that x is reachable from y by the
from−left∗ axis (the case of the from−right∗ axis can be done symmetrically). Consider the
sequence y = x0, x1, . . . , xn = x, where xi+1 is the parent of xi (we are not allowed to calculate
all these nodes, as there is too many of them). The algorithm works as follows. At the beginning,
we find the nodes xi and calculate the sets Qi = Qx ◦ valt(x, xi) for n − |Q| ≤ i ≤ n in time
O(|Q|3). Basing on that, we have the following property, shown already in Section 6.2: For any
state q and any xi (0 ≤ i ≤ n) we can check whether q ∈ Qx ◦ valt(x, xi) in time O(|Q|). We were
doing that in the following way: For each p ∈ Ql we look at firstup(p, q, xi), we find the smallest
n− |Q| ≤ j ≤ n such that firstup(p, q, xi) ≥ xj (in time O(1) basing on the level), and we check
whether p ∈ Qj (when it is true for any p, we have q ∈ Qx ◦ valt(x, xi)).

Next, the algorithm will consider some of the precomputed values of nextP , which are the
possible candidates for nextP (x,Qx, y), and it will choose the leftmost of all these values (the
first in the postfix order). When n ≤ |Q|, we simply consider nextP (xi, Qi, xi−1) for each 0 <
i ≤ n. Otherwise we proceed as follows. First, as a potential value of nextP (x,Qx, y), we take
nextP (xi, Qi, xi−1) for each n − |Q| < i ≤ n. Second, for every element q ∈ Q, using the
information in B we find the lowest ancestor z of y such that nextP (par(z, |Q|), {q}, z) is non-
empty. When such z is already an ancestor of x, or does not exist, we omit this part. Otherwise,
for each 0 ≤ k < |Q|, if par(z, |Q| + k) ≥ x and q ∈ Qx ◦ valt(x, par(z, |Q| + k)), we take
nextP (par(z, |Q| + k), {q}, par(z, k)). Third, for every element q ∈ Q, and every 1 ≤ k ≤ n, if
q ∈ Qx ◦ valt(x, par(y, k)), we take nextP (par(y, k), {q}, y). Finally we choose the leftmost among
all the nodes taken as the candidates. This works in time O(|Q|3), as for |Q| values of q and |Q|
values of k we perform operations in time O(|Q|) (in particular we can check in that time whether
q ∈ Qx ◦ valt(x, xi), as described in the previous paragraph).
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It is easy to see, that all among the candidates are in setP (x,Qx). We have to prove, that we
really select the leftmost of the elements of setP (x,Qx) being to the right of y. Let z′ be the value
of nextP (x,Qx, y) and let xc be the first of x1, . . . , xn which is an ancestor of z′. Then we have
a sequence of elements qc, . . . , qn ∈ Q such that qn ∈ Qx, and (qi+1, qi) ∈ valt(xi+1, xi) (for each
c ≤ i < n), and {qc}◦valt(xc, z′) ∈ P . One case is that c > n−|Q|; then z′ = nextP (xc, Qc, xc−1),
so z′ is among the elements of the first kind. Similarly, if c ≤ |Q|, then z′ is among the elements
of the third kind. Otherwise, some element in the sequence qc, . . . , qc+|Q| has to repeat. Because
the labelling is basic, the element appears twice in a row, and it belongs to Ql (i.e. qr = qr+1 ∈ Ql
for some c ≤ r < c + |Q|). Then z′ = nextP (xr, {qr}, xr−|Q|) and qr ∈ Qx ◦ valt(x, xr). But
because qr ∈ Ql (and the labelling is basic), we have qr ∈ Qx ◦ valt(x, xi) for every 0 ≤ i ≤ r.
Let z be the lowest ancestor of y such that nextP (par(z, |Q|), {qr}, z) is non-empty. If xr−|Q| ≤
par(z, |Q|) (i.e. z = xi for i ≤ r − 2|Q|), then nextP (par(z, |Q|), {qr}, z) is before (or equal to)
xr−|Q| in the postfix order, which is strictly before z′ = nextP (xr, {qr}, xr−|Q|); additionally
nextP (par(z, |Q|), {qr}, z) is in setP (x,Qx), which contradicts with the assumption that z′ is the
first element after y which is in setP (x,Qx). Thus z = xi for i > r−2|Q|, so nextP (xr, {qr}, xr−|Q|)
is among the elements taken as candidates of the second kind.

The general situation when x is an arbitrary ancestor of y is very similar. We just consider the
zig-zag sequence (as we considered in Section 6.2) instead of the sequence of parents, and we use
the information for tda instead of this for par. We have to use the above restricted case between
the last two nodes in the sequence, as x is a direct ancestor of xn−1, but not the topmost direct
ancestor.

8.2 Path expressions

In this section we prove Theorem 1.2, using the algorithms designed in the previous section. As
for node tests, we evaluate all nested node tests in α and we mark in t whether they are satisfied.
So we can assume that α is unnested. In particular, evaluating α does not depend on the data;
the problem can be stated also for trees without data. We compile α to an automaton A using
Theorem 5.8 (or Theorem 6.2 in the case of expression of FOXPath); this also changes the labels
in the data tree t. Let Q be the set of states of A.

Let x be a node and Qx a subset of Q. We define setI(x,Qx) as the set of descendants y of x
such that trans(y, x) ◦Qx contains some initial state. Similarly, we define setF (x,Qx) as the set
of descendants y of x such that Qx ◦ trans(x, y) contains some accepting state. It follows from
Theorem 8.1 that we can enumerate these sets efficiently.

Corollary 8.7
Let t be a data tree and let A be an automaton with states Q. After an appropriate preprocessing,
we can, given a node x of t and a set Qx ⊆ Q, compute all nodes in setI(x,Qx) one after another
in time

• preprocessing: O(|Q|3|t| log |t|), each element of setI(x,Qx): O(|Q|3 log |t|), or

• preprocessing: O(2O(|Q|)|t|), each element of setI(x,Qx): O(2O(|Q|)), or

• when t forms a word—preprocessing: O(|Q|5|t|), each element of setI(x,Qx): O(|Q|5), or

• when A is basic—preprocessing: O(|Q|3|t|), each element of setI(x,Qx): O(|Q|3).

The same is true of setF (x,Qx).

Proof
We use here the same binary tree t′ as in the proofs of Corollaries 5.10 and 5.12. Recall that its
labels are from the set RQ×{1,2}, and are assigned in such a way that valt′(x, y) for any node x
and its proper descendant y is also equal to

{((q, 1), (p, 1)) : (p, q) ∈ trans(y, x)} ∪ {((p, 2), (q, 2)) : (p, q) ∈ trans(x, y)}.
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This means that (for a proper descendant y of x) trans(y, x) ◦ Qx contains some initial state of
and only if valt′(x, y) ∩ ((Qx × {1})× (QI × {1})) 6= ∅, where QI is the set of initial states. Thus
setI(x,Qx) in t is almost equal to setQI×{1}(x,Qx × {1}) in t′. We say ,,almost”, because it is
possible that x is in setI(x,Qx) and not in setQI×{1}(x,Qx×{1}) (as valt(x, x) is always equal to
identity, unlike trans(x, x)). So, we can output the nodes using Theorem 8.1, possibly returning
also x if trans(x, x) ◦Qx contains some initial state. The complexity is the same as in the variant
of Theorem 8.1 which we use. Recall also from Section 6.1 that if A is basic, then the labelling
of t′ is basic. For setF (x,Qx) we can do the same, but this time we use setQF×{2}(x,Qx × {2}),
where QF is the set of accepting states. �

Now we show how to find all pairs of nodes (x, y) satisfying a path expression α. There are
several types of such pairs, depending on the relationship between x and y:

1. x = y,

2. x is a proper ancestor of y,

3. x is a proper descendant of y,

4. x is neither an ancestor nor a descendant of y and it is before y in the postfix order,

5. x is neither an ancestor nor a descendant of y and it is after y in the postfix order.

First consider the pairs of type 1. This type is easy. In the preprocessing step we can check for
each node x = y if it satisfies α or not. This is the case when some pair (qI , qF ) of an initial and
an accepting state belongs to trans(x, x), so the checking procedure is trivial (recall from Section
5.3 that for every node x the sets trans(x, x) are already calculated and stored in the tree). We
make a list of all such nodes satisfying α, and then return them one after another, reading from
the list.

Pairs of type 2 are also not too difficult. Note that a pair (x, y) satisfies α if and only if
y ∈ setF (x,QI), i.e. when from an initial state in x the automaton can reach a final state in y.
In the preprocessing step we make a list of nodes x for which setF (x,QI) is nonempty. Then we
take consecutive nodes x from the list and consecutive nodes y from setF (x,QI), using Corollary
8.7 to enumerate its elements. Symmetrically for pairs of type 3; this time we require that
x ∈ setI(y,QF ).

Now we come to the most complex type 4 (and 5). It is convenient to distinguish the part
setIleft(x,Qx) of setI(x,Qx) consisting of only these nodes, which are in the left subtree of x.
Similarly let setFright(x,Qx) contain only these nodes of setF (x,Qx), which are in the right subtree
of x. Observe that

setIleft(x,Qx) = setI(y, trans(y, x) ◦Qx), where y is the left child of x, and

setFright(x,Qx) = setF (y,Qx ◦ trans(x, y)), where y is the right child of x.

Thus we can enumerate elements of setIleft(x,Qx) and setFright(x,Qx) with the same delay between
the elements as in Corollary 8.7 (recall that trans(x, y) between a node and its child is remembered
in the tree).

For each node x we also define two sets of states: upIleft(x) and downFright(x). The first set
contains all the states q which can be reached by the automaton in x, when it starts in an initial
state somewhere in the left subtree of x. Similarly, downFright(x) contains all the states q such
that from q in x the automaton can reach an accepting state somewhere in the right subtree of x.
These sets can be easily calculated for each x in one bottom-up pass in time O(|Q|2|t|).

The following lemma follows immediately from the definitions of all our sets.

Lemma 8.8
1. Let z be any node. Then there exists some node x in the left subtree of z and some node y in

the right subtree of z such that (x, y) satisfies α if and only if upIleft(z) ∩ downFright(z) 6= ∅.
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2. Let z satisfy the above. Denote Qz = upIleft(z) ∩ downFright(z) and let y be any node in the
right subtree of z. Then there exists some node x in the left subtree of z such that (x, y)
satisfies α if and only if y ∈ setFright(z,Qz).

3. Let y and z satisfy the above and let x be any node in the left subtree of z. Then (x, y)
satisfies α if and only if y ∈ setIleft(z, trans(z, y) ◦QF ).

This lemma gives us a method of returning pairs (x, y) of type 4 satisfying α with a constant
delay. In the preprocessing step we create a list of all nodes z satisfying (1). Then we take
consecutive nodes z from the list. For each of them we take consecutive y from setFright(z, up

I
left(z)∩

downFright(z)) and for each of them we take consecutive x from setIleft(z, trans(z, y) ◦QF ). Then
between consecutive pairs we make a constant number of queries to Corollaries 8.7 and 5.10, so
the delay is small. Note that each pair (x, y) will be returned for exactly one z: for their closest
common ancestor.

To return pairs of type 5 we do the same, but we replace left with right.
This finishes the proof of the first, second, and fourth variant of Theorem 1.2. To get the third

variant of the theorem, we first encode the data tree t into a tree which forms a word, and we
appropriately change the path expression, as described in Section 5.6. Then we use the above for
a tree which forms a word.
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