
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Pawe l Leszczyński

An update propagator for joint scalable
storage

PhD dissertation

Supervisor

dr hab. Krzysztof Stencel

Institute of Mathematics
University of Warsaw

June 2012

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this
dissertation myself and all the contents of the dissertation have been
obtained by legal means.

June 12, 2012 .
date Pawe l Leszczyński

Supervisor’s declaration:
the dissertation is ready to be reviewed

June 12, 2012 .
date dr hab. Krzysztof Stencel

1

Abstract

In recent years, the scalability of web applications has become crit-
ical. Web sites get more dynamic and customized. This increases
servers’ workload. Furthermore, the future increase of load is dif-
ficult to predict. Thus, the industry seeks for solutions that scale
well. With current technology, almost all items of system architec-
tures can be multiplied when necessary. There are, however, prob-
lems with databases in this respect. The traditional approach with a
single relational database has become insufficient. In order to achieve
scalability, architects add a number of different kinds of storage facil-
ities. This could be error prone because of inconsistencies in stored
data. In this paper, we present a novel method to assemble sys-
tems with multiple storages. We propose an algorithm for update
propagation among different storages like multi-column, key-value,
and relational databases. We also apply this algorithm for consistent
object caching, which reduces database workload and makes web ap-
plication perform significantly better. Next, we describe PropScale,
i.e. a proof-of-concept implementation of the proposed algorithm.
Using this system we have conducted experimental evaluation of our
solution. The results prove its robustness.

Key words: multi storage, scalability, key-value storage, column
family storage, scalability, data consistency, web applications

ACM Computing Classification System: H.2.4. (Distributed
databases)

Table of Contents

1 Introduction . 5
2 Motivating Example . 11
3 Alternatives . 17

3.1 Disadvantages of relational databases 17
3.2 Classification of NoSQL storages 18

4 Academic proposals . 23
5 The Update Propagator Algorithm . 29

5.1 Data architecture . 29
5.2 Dependency graph . 32
5.3 Data consistency problem – DCP 34
5.4 Underlying storages’ drivers . 35
5.5 The algorithm . 36
5.6 A Dependency Graph Example . 41
5.7 Correctness . 43
5.8 Complexity . 50

6 Consistent Caching . 53
6.1 Motivating example—a community forum application . 53
6.2 Existing caching solutions . 54
6.3 The dependency graph for consistent caching 58
6.4 Experimental results . 63
6.5 Analysis . 65

7 PropScale: an update propagator service for a joint storage 67
7.1 System architecture . 67
7.2 Synchronization and Multithreading 71

8 The benefits of applying PropScale . 73
8.1 Introduced overhead . 73
8.2 Offset between updates in storages 73
8.3 PropScale for cloud integration . 74
8.4 Custom statistics . 75

9 Conclusion . 81

5

1 Introduction

Modern web applications provide users with a significant number of
interactive and personal features. This trend is called Web 2.0 era of
web applications. It has started around 2000. Before it, websites were
used just to retrieve information. However human beings are not only
consumers. They have also a need to produce and share data. Social
network applications are a profound example. Furthermore, Web 2.0
extends to a model, in which web applications are personalized and
each user sees the content dedicated to him/her. For instance, in
e–commerce every user sees its own basket, the history of bought
products, etc. In contrast to the former model of web applications,
Web 2.0 introduces several performance issues. The size of stored
data is multiplied by the number of users. When a website grows, it
can reach several millions of users or even hundreds of millions, as
some most successful applications do. Moreover, as the interaction
level between a user and the application increases, numerous queries
to a database are to be run. This makes applications data-intensive.
This brief introduction explains that the technologies, that have been
popular years ago, do not fit into current requirements and there is
a need for a new architecture.

As the number of users grows, the database becomes a bottleneck
of the whole system. All the other components of a system scale well,
and can be easily distributed on several machines while scaling the
database component is non-trivial. Scalability plays a noteworthy
role in the web industry. At the beginning of the operation of a new
application, only a few resources are needed. However, its owner
has to be prepared for expansion. When the website suddenly gains
popularity, the system architecture needs to be ready for a workload
boost. Buying a new and better hardware does not solve the problem.
As an example, having a medium class PC, one can buy a hardware
that has twice as much computing power. However, when demanding
ten times more computing power, the single machine with a better
hardware costs much more than ten times the price of medium PC.
Such a solution is also rather short-sighted since there are no ma-
chine being one million times faster. This approach is called vertical
scaling. The opposite option is horizontal scaling where new nodes
of approximately the same power are added to a system.

6

The most common architecture of a web application consists of
application servers which receive requests from users and send re-
sponses according to the application logic and data from backend
databases. Horizontal scaling of application servers is rather sim-
ple as they do not have to share any information with each other
and a request can be operated by a single node. This can be eas-
ily done with a load balancer. However it is not so easy in case of
the database, especially in the classic ACID transactional model.
The problem of the database bottleneck is well-recognized in the in-
dustry, and many fixes have been proposed. However, the general
solution is still unknown. When the database workload increases, it
is a common practice to split the database into smaller parts, and
distribute it onto more than one server. The most frequent approach
to do so is partitioning or sharding. Partitioning corresponds to di-
viding the database schema into smaller schemata and store data on
separate nodes. The first disadvantage of this approach is the per-
formance of single queries that are run on different nodes, e.g. a join
in a relational database where joined tables are stored by different
nodes. However the main disadvantage is that, it is still not a hori-
zontal scaling as a number of logical partitions of the schema is not
flexible and rather limited.

Sharding splits tables and distributes them among servers. Shard-
ing a relational database is also a non trivial problem. The benefits
of sharding are clear when a query retrieves data from a single node.
In order to do so, one has to determine which shard contains the
requested data. Doing it on the database side adds a new bottle-
neck to the system. On the other hand, determining the shard on
the client side, requires clients to change when new nodes are added.
Sharding still does not scale well. When n shards contain too much
data or serving too much queries, adding an empty shard does not
improve the situation. When migrating data to a new shard, queries
that performed well previously may suffer a performance loss. This
can be mitigated for key-value storages by serving single values over
a simple API. However, it is a hard problem for relational databases
since they have rich query language and some queries perform badly
for most shard distribution rules.

Partitioning and sharding relational databases does not build a
scalable architecture and is rather a fix for current problems. The

7

other option is to migrate some data into scalable storages. For this
purpose one can apply a local NoSQL storage, or use PaaS plat-
forms (Platform as a Service) like Amazon S3, Amazon SimpleDB,
or others. NoSQL storages are described in the next section. This
term corresponds to a number of different non-relational databases
that have proven to perform better that a RDBMS in specific sce-
narios. However they do not perform well in the general case and
cannot be used as the single storage of the whole system. The exter-
nal platforms’ storages scale well but in most usage scenarios they
are combined with local storages that store sensitive data.

According to this, whatever the solution has been chosen, the
database is going to be split into several smaller instances running
on different storage engines and servers. This however, makes the
overall system architecture more complicated and, as a result, makes
the application harder to maintain. As a result, the whole develop-
ment process gets more expensive. Sometimes the same data is stored
in several locations, and the application’s logic needs to keep the
replicated data in the consistent state. Thus developers must take
care of all data writes and apply them carefully on several storages.
When dealing with big applications, this can lead to errors which
are hard to detect and repair. Assume an e–commerce platform with
data distributed among several storages. One storage contains in-
formation about users while the other stores info about the bought
products. The programmer A implements a module for listing users’
bought products and needs to retrieve the users’ names to display
on the list. This cannot be done in an efficient manner by means
of a single query in both storages. Thus, the programmer decides
to store redundant users’ names within the data on bought prod-
ucts. The module has been implemented and it works for several
months. Then a programmer B is asked to implement an option to
change a user’s name on the platform. However B is unaware of re-
dundancy of users’ names introduced by A, and when a user’s name
is modified consistency issues between data stores arise. As this bug
is detected, it is assigned to A since his functionality ceased to work.
A is then wondering what could have happened, since it has worked
for some time before the bug has been detected. This bug is difficult
to avoid in the future, since A could not have known about module
of B. Moreover it is hard to repair since A may have no idea about

8

changes of B. Such errors are very expensive. The research presented
in this thesis focuses on integrating multiple storages into one joint
storage while taking automatically care of data consistency issues.
We aim at eliminating abovementioned errors. The system should
handle proper data updates in different storages on its own.

Fig. 1. The update propagator architecture

In this thesis, we describe a research on novel data propagation
algorithm for joint storages that maintains replicated data in multi-
ple sources in the consistent state. When an update on one source
occurs, our system modifies data in other storages, if it is needed.
Figure 1 shows the architecture of such a system. We believe that,
the proper update propagation on underlying storages allows con-
structing a scalable joint storage while taking all advantages of the
underlying systems. The thesis makes the following contributions.

– We suggest a novel architecture for building several storage sys-
tems into a system.

– We present the update propagation algorithm for keeping data
in the consistent state.

– We prove the correctness of this algorithm.
– We describe how this algorithm can be customized and applied

for consistent caching of objects.
– We present Propscale, i.e. a system built on the top of the update

propagation algorithm, and benchmark it in real-life scenarios.

The rest of the thesis is organized as follows. Chapter 2 presents
a motivating example for the research. In Chapter 3 we describe

9

potential drawbacks of relational databases and present a brief in-
troduction to NoSQL storages and explain why they may be useful
in our construction. Chapter 4 focuses on the existing academic pro-
posals and the ongoing research. Chapter 5 describes the propagator
algorithm. It presents data model assumptions, necessary auxiliary
data structures and their role in proper update propagation. We
show how the algorithm works in sample scenarios. In this chapter
we also prove the correctness of the propagator algorithm. Chap-
ter 6 provides information how the system can be used to maintain
a consistent caching layer. Chapter 7 describes implementation de-
tails of the system, while Chapter 8 presents experimental results.
First we focus on estimating the overhead introduced by the addi-
tional update layer of our system. Then we present the performance
improvement achieved by applying our system and other benefits of
using it. Chapter 9 concludes.

11

2 Motivating Example

Let us now consider a bookstore platform that allows listing, search-
ing, and buying books. Additionally each book has a list of opinions
displayed on its info page. The database of the presented applica-
tion needs to store: book information, users’ opinions on books, and
information about sold items and users who bought them. Figure 2
depicts its data model.

Fig. 2. The simple bookstore: book information, comments, sold items and users’ data

The database schema consists of the following relations:

– book: It stores general book information like the title, the author
and the primary key. Additionally it contains the current price
and the number of items available.

– user: It stores user data like the first and the last name, the
address and the primary key.

– book sold: It associates users with books they have bought. Ex-
cept for users’ and books’ primary keys, it also contains the price
of the book used in this transaction.

– book comment: It stores comments and opinions that relate to a
specific book. Each row consists of the book’s primary key and
the comment text.

Now we describe characteristics of data accesses in the bookstore
application. According to [9], e-commerce web applications have high
browse-to-buy ratios. This means that they are read dominant. Peo-
ple browse and search for products they are interested in. They read

12

products’ reviews frequently but the frequency of buying a product
or putting a comment is much lower.

One can identify the most common queries that are performed
on the platform. Most of them can be detected before application
deployment. Users list books, view result pages and full-text search
items. When a book’s page is loaded, the system retrieves the in-
formation on this book together with the opinions. When a user
decides to buy a product, the system updates the database to adjust
the number of available items.

The bookstore platform queries a backend data store to retrieve
the number of available products. This information is shown on each
book’s site. Moreover, it is used when validating an order. It allows
checking if there are enough items in the stock. Although retrieving
the same data, these two separate actions require different consis-
tency levels. When selling a product, we have to retrieve the exact
value. Otherwise, the system may end up with selling an unavailable
product which can be a serious problem. On the other hand, dis-
playing a product page with an inaccurate number of stock items is
not crucial. Therefore, the same data in different situations require
different levels of precision.

The simple bookstore is expected to grow rapidly. Its architec-
ture has to scale well and we focus on the database layer. Then the
popular question arises: what storage would suit best our system’s
needs? In the era of NoSQL the natural answer is none. There is no
single database that will fit best into all parts of the system. Instead,
there are probably few different storages that fit best into specific
parts of a system.

The search functionality is business critical in our bookstore. In
order to achieve better performance, we can use indexing engines like
Sphinx [3] or Solr [59] (enterprise search platform based on Lucene
[37]). One of these can be used, since they outperform RDBMS in
full-text searches. The other advantage of using Solr is that it allows
a rich configuration of the ranking algorithm which results in more
accurate results.

The number of book comments in the bookstore can grow rapidly,
as it is a content generated by users. One may want to store it in
a distributed column family storage like Cassandra [46]. Product
information is accessed each time a product page is generated. This

13

requires a highly available storage with fast data access. Since a
single request gets single product data, it can be stored in key-value
storage. Its simple data structure offers best performance and highest
availability.

The component for storing financial data is surely crucial, as it
contains information on sold items and payments. In that case, it
may be a business requirement to store it in RDBMS, as it provides
different transaction levels that ensure necessary correctness.

As this analysis shows, in order to achieve better performance
of our hypothetical system, it is reasonable to build different types
of storage into it. In the rest of this thesis, we show methods how
to architect such a system and most notable, how to preserve the
required level of consistency among various storage components.

The problem of building a consistent storage on top of other
storages is hard. In our research we are going to focus on storages
used by web applications. The analysis of the bookstore has given
us some hints that may be valuable in further research. First, web
applications are read dominant. As an implication, if we construct a
system with a better read performance, it will significantly increase
the overall performance even if the writes take longer. The second
hint is that the same data is required with different consistency levels
in different scenarios. This allows replicating the same data over
databases even if a replication is asynchronous. If accurate results
are needed, the master database will be queried. The third hint is
that data access patterns are known before the system deployment.
Frequently accessed data can be put into highly available storages.

We have experimented on that. Some results for the bookstore
scenario follows. In the tests we have used MySQL, PostgreSQL, Solr
and Redis. We start from full-text searches and queries through book
data and comments. InnoDB of MySQL does not support text in-
dexes. PostgreSQL does. However the results are significantly worse
than in Solr. For the duration of one minute the test query searched
for books having comments with a given text phrase. PostgreSQL
has finished 5 requests while at the same time Solr accomplished
232 requests. Figure 3 shows the results of two further scenarios.
We tested a query that given the primary key of a book returns the
number of sold copies. We compared relational databases that run a
count selection against Redis that contained these counts in a key-

14

0 2 4 6 8 10
threads

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000
op

er
at

io
ns

Count number of sold books

PostgreSQL
MYSQL
Redis

0 10 20 30 40 50
threads

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

o
p
e
ra

ti
o
n
s

Get user data

PostgreSQL
MYSQL
Redis

Fig. 3. The graphs show the number of accomplished operations with respect to the
number of client threads. The first one concerns the query that given a book counts
the number of sold copies. The second one relates to the query that retrieves user data.
During these tests each 5ms another thread modified the queried data.

15

value storage. Obviously if common queries are known in advance,
it is worth storing their results in specific storages. However, the up-
date propagator allows automatic denormalisation and makes sure
that derived data are up to date. As the result the caching layer can
be managed by the update propagator since it assures consistency.
The first diagram of Figure 3 compares performance of a query which
returns user data: the name and address. We can see a significant
advantage of Redis.

Storing data in multiple storages with different architectures is
not a benefit of the research presented in this thesis. One can easily
implement it manually. Our goal is bigger. We want a scheme to
integrate storages into a system that itself takes care of storing data
in the consistent state. A method to build such a system is the
subject of this thesis.

17

3 Alternatives

3.1 Disadvantages of relational databases

In this section we describe drawbacks of existing relational databases
management systems (RDBMS). Our motivation is based on [61,
62, 60]. Popular RDBMS reproduce the construction of System R
from the 1970s. At that time hardware was completely different than
today. At the end of 1970s a large machine had around a megabyte
of main memory. Currently CPU’s are thousands of times faster and
memories are thousands of times larger. However bandwidth between
disk and memory did not increase at the comparable pace. This
have changed the overall system architecture. Although the hardware
characteristics changed dramatically, RDBMS did not [61].

Michael Stonebraker predicted in those papers the end of ”One
size fits all” as a commercial relational DBMS paradigm. According
to him, the last few decades of commercial DBMS can be summed up
with this phrase. It is true that the same products were used in com-
pletely different environments with different characteristics of data
accesses. In our research we restrict to web applications and we focus
on such access patterns. As a web application has to react within mil-
liseconds, its database schema has to be optimized for short response
time. Web applications are read-dominant. Overwhelming majority
of operations are read accesses. Additionally write operations are
rather simple, as each user buys a limited number of products at
once, writes a single post, etc. Most RDBMS vendors deliver a sys-
tem with rich SQL syntax that allows abundance of features that are
not used in the context of web applications. There is nothing wrong
about not exploiting all possible features of a product. However it is
reasonable to investigate if the unnecessary functionality lowers the
overall performance.

In RDBMS data and indices are stored on disks. Generally there
is nothing wrong about that, except for the case where it may be
useful to put a whole storage into RAM for faster accesses and occa-
sionally snapshot it to a disk. Of course, in this scenario, we can lose
data when a machine crashes with unsaved writes stored in RAM.
However, some scenarios accept this risk in order to perform signif-
icantly better. Traditional RDBMS cannot do that as they were in-
vented at the time RAM was small and expensive. This has changed

18

rapidly and now most server machines operate on dozens gigabytes
of memory.

Multithreading is a great power of RDBMS. It allows to fully
utilize CPU and disk resources. These features are implemented in
every part of RDBMS including resource governor, concurrent B-
trees, etc. The problem is that they cannot be switched off when
unnecessary. Assume an application that accesses a database in the
single threaded execution mode. All the concurrency features are
irrelevant and slow the system down. The other thing, related to
multithreading and concurrency control, is the duration of transac-
tions. Some mechanisms have been designed to protect transactions
that take up to several minutes. However they may not be necessary
in case of OLTP systems, where a transaction takes less than one
millisecond on a low-end machine.

One of the greatest real life concerns with RDBMS is data repli-
cation. High availability requires distributing data and transactions
over several nodes. A proper replication level is required for a sys-
tem to work normally when one of its parts crashes. This requires
replicated data writes, that are registered to multiple nodes. This
is not true for RDBMS. Replication is assured with logs that are
sent with some delay. When an instance crashes one cannot switch
to another without an access to latest logs. This may be crucial in
case of hardware/network errors when the logs are not reachable.

3.2 Classification of NoSQL storages

The term NoSQL corresponds to databases that do not fit to the tra-
ditional RDBMS model. However it has no formal definition. Surely,
the term represents a new movement in IT society. Some believe, this
term means NO SQL and encourages avoiding relational databases
at all. Other believe it means Not only SQL and they figure out spe-
cific scenarios where traditional relational database do not perform
well. In some cases NoSQL storages outperform RDBMS by an or-
der of magnitude. In this section, we describe the classification of
NoSQL storages and applications they are suited for.

As mentioned before, NoSQL is not a single product or even a
single technology. According to [63], the term represents the class of
products and the collection of diverse concepts about data storage

19

and manipulation. The concept is not new, since the first storages for
computing machines have also been non relational. The new thing
is the reincarnation of the concept. There exists a strong need for
solutions other than RDBMS to create scalable web applications.

The scalability problems has been first encountered by Google
and several solutions have been applied. Google created a set of
mechanisms to create an architecture which scales at every element
of the system. This resulted in several publications. In order to create
a fully scalable infrastructure Google has created a distributed file
system [32], a column oriented family store [17], a MapReduce-based
parallel algorithm execution environment [24] and a distributed co-
ordination system Chubby [11]. In 2007 another great contributor
to NoSQL, Amazon, presented ideas of its system Dynamo [25]. Dy-
namo is a distributed, highly available and eventually consistent data
store.

As a web industry has been growing rapidly, several companies
required fully scalable and highly available infrastructures. In turn,
these required new methods to process large-scale data on a cluster
of nodes. Here the MapReduce model has helped. It is a framework
for processing distributive problems across huge data sets using a
cluster of nodes. It consists of two steps: ”Map” and ”Reduce”. Dur-
ing the ”Map” step, the master node takes the input, partitions it
up into smaller sub-problems, and distributes them to worker nodes.
A worker node may do this again in turn, leading to a multi-level
tree structure. The worker node processes the smaller problem, and
passes the answer back to its master node. During the ”Reduce”
steps results are collected. The master node collects then the an-
swers to the sub-problems and combines them to form the output
- the answer to the problem it was originally trying to solve. As
previously better performance can be achieved when reducing with
several nodes with multiple reducers’ levels. For instance having the
sub-problems computed on 1000 nodes, we can use 100 nodes to re-
duce results from ten nodes each, then 10 nodes to reduce results of
100 nodes, and a single node which reduces results from 10 nodes
at the end. The idea of MapReduce framework is to build a sys-
tem that takes automatically care of data distribution across nodes,
detecting absent nodes and other architectural issues. Within such

20

a system, writing a MapReduce program requires only to map the
current problem into Map and Reduce functions.

These have been a great catalyst to the open source community.
It created independent implementations of the concepts published by
Google. One of the greatest contributor is the Hadoop project, which
created a framework for building distributed applications on top of
it. Several open source databases make use of them, for example Hive
and H-Base data stores.

Column-Oriented Stores Data in RDBMS are stored with the
row-oriented format. Each table is stored on a disk as a sequence of
rows. All row data are located in the neighbourhood. The problems
with this concept arise as we have a table with several columns whose
value are mostly empty. If a database engine stores empty fields, then
a lot of storage is wasted. If the value is marked to be empty then
rows have different sizes and iterating over table rows gets slower.

In the column oriented model, a single row and its data can be
thought as a set of key/value pairs. Each value is identified with
the help of the primary identifier, often referred to as the primary
key. Most column-oriented stores tend to call this primary key the
row-key. Then the units of data are sorted and ordered on the basis
of the row-key. Data is stored in a contiguous sequenced manner. As
it grows and fills up one node, it is split into multiple nodes. It is
sorted and ordered on each node, and also all nodes. This provides
a large continuously sequenced set and makes read access by row-
key very efficient, as the row-key is used to determine a node that
contains data. When an update occurs, it is inserted at the end
of the list. The model has been presented with publishing Google’s
BigTable concepts. An Apache open-source project HBase developed
a database that makes use of the concept.

Key–Value storages Most key–value stores are based on a simple
associative array structure. This simple data structure, when limited
to accessing a single element of an array by its key, is very efficient.
Single data access costs O(1) running time. The key in an associative
array is a unique identifier and it can be easily looked up to gain
access to data.

21

The Oracle‘s Berkeley DB is considered to be a direct ances-
tor of most open source implementations as it has existed since the
mid-1990s. There is a number of different key–value storage architec-
ture scenarios. The greatest performance boost occurs when data is
stored in memory and no disk operations are required to accomplish
a request.

The frequent scenario to use key–value stores is a fast caching
system that stores all data in memory. An example of such storages
is Memcached [19], written by Brad Fitzpatrick for LiveJournal in
2003. It is an open-source, high-performance object caching system.
The scenario is called as a cache aside pattern. It is an application’s
logic that writes data to a cache and invalidates it when necessary.
Each time, data is needed, an application checks if it is present in
a cache. If not, it queries it from other data sources and loads to a
cache. When the cache fills up, some data is removed, e.g. using LRU
(least recently used). This scenario has previously been a subject of
our research and we elaborate on it in a chapter 6.2.

Several key–value storages implement persistency and store data
on a disk. Redis [47] is a good example. The power of key–value
storages is in keeping data in memory and avoiding slow disk ac-
cesses. In order to do so, Redis writes directly only to memory. Then
the batch operation snapshots all data from memory to a disk. Of
course, this makes possible losing data when server crashes without
writing new data to the disk. However this is acceptable in some sce-
narios, where the stored data is not critical, e.g. the number of users
who bought an item on an e–commerce platform. When such data
is lost it can be simply recomputed. The other example is gathering
statistics from user clicks on a page. If data are lost, we simply lose
couple of seconds of user clicking stats. This can be sacrificed for
performance. The configuration of Redis allows to set the frequency
of snapshots to optimize a performance and minimize the possible
data losses. The configuration allows setting the maximal number of
seconds between snapshots or the number of writes needed to acti-
vate a batch script. This allows a conscious decision on how much
data can be sacrificed.

Document storages In the context of NoSQL storages, the word
document has nothing to do with business documents and document

22

management systems that everyone has on its own PC. According
to [63], the term corresponds to loosely structured sets of key/value
pairs in documents, which are typically JSON (JavaScript Object
Notation). It has nothing in common with documents or spread-
sheets. Although they, when properly structured, could be also put
into such a storage.

The concept of document database relies on treating documents
as a whole. This avoids configuring and defining their structure
within a database, and can be done within an application logic.
Moreover, the structure can change frequently which can be a serious
problem for RDBMS. Schema changes on RDBMS may be painful.
Document stores allow putting a diverse set of documents into a sin-
gle collection. In addition to key–value stores, document databases
index documents on its primary identifiers. They also allow defining
indices on specified objects’ properties. The most popular examples
of such databases are MongoDB [18] and CouchDB [6].

Graph storages In the terms of Domain Driven Design, the pre-
vious three NoSQL groups are called Aggregate-Oriented databases.
According to the definition from [26]: an aggregate is a cluster of
associated objects that are treated as a unit for the purpose of data
changes. The most illustrative example are document oriented stor-
ages. They store a whole document as a unit. It is different than most
RDBMS where each column of a tuple can be retrieved or updated
separately. With Aggregate–Oriented databases one can retrieve or
update only a whole document. The great advantage of aggregates
is that they create natural units for distribution strategies. On the
other hand, Martin Fowler in [28] reveals some drawbacks of this
approach. Although it gives a convenient data access when working
with the aggregates, it can make serious issues when trying to look
on the same data from different perspectives. For example, order
entries in an e–commerce platform can be stored naturally as aggre-
gates. However, it is not the best data structure for business analysis
of product sales, etc. The interesting quotation of Martin Fowler fits
here well: The advantage of not using an aggregate structure in the
database is that it allows you to slice and dice your data different
ways for different audiences.

23

Graph databases give a possibility to efficiently store and access
data entities that are related. We describe an idea based on Neo4J
[41], one of the most popular open source graph data stores. Data
consists of nodes that can store properties and named relationships
between them.

The interesting example is a database consisting of 1000 persons
with each person having 50 friends on average. This is a simple graph.
Assume a query that given two persons A and B, examines if there
exists a path of length less than 4 between them. In the example, a
query execution process can start with A. Then it simply traverses
the graph until it reaches B or exceeds the limit of 4. The query
execution becomes far more efficient than in RDBMS. Instead of the
indices defined in RDBMS, the graph becomes an index on its own
and allows fast data access. Such data structure facilitate queries
that examine possible paths from a given node. In such cases, no
matter how big the graph is, the problem becomes local and its
performance depends on the number of edges per node instead of
the total size of the graph as it would be in RDBMS.

4 Academic proposals

Several publications address scalability and consistency issues. The
paper [1] describes design choices and principles for a scalable stor-
age. According to the authors, main benefits of the cloud computing
are elasticity, pay-as-you-go model of payment and the ability to
run large scale environments on commodity hardware. It also re-
veals some potential drawbacks. The spectrum of data management
systems has scalable key-value storages on one end, and transac-
tional non-scalable relational databases on the other end. Providing
efficient data management to the wide variety of applications in the
cloud requires bridging this gap with systems that can provide var-
ious degrees of consistency and scalability. The authors address the
problem of filling the gap between key-value and relational storage,
which is investigated in our research. Authors of [65] present their
predictions about the future of multidatabase systems (MDBMS).
According to them, further development and research will focus on
strong heterogeneity and autonomy of data sources. On one hand,
heterogeneity and autonomy introduce the consistency problem. On

24

the other hand they are critical for web data integration. The authors
claim that some restrictions of functionality, like simplified queries,
will be needed to solve the problem. This also happens in our re-
search, as we precisely define assumptions and restrictions to the
data model. This allows constructing scalable joint storages.

The trade-off between consistency and scalability is well known
in the literature. It has been introduced for web services by Eric
Brewer at PODC 2000 [10]. According to his CAP theorem, it is im-
possible for a web service to provide the following three guarantees:
the consistency (C), the availability (A) and the partition-tolerance
(P). Availability and partition-tolerance are the parameters which
affect the system’s scalability. On the other hand, consistency de-
termines the expected behaviour of requests that modify data. The
traditional approach is to expect a web service to behave in a trans-
actional manner. A commit and an abort are atomic operations.
Committed data are visible to all future transactions while uncom-
mitted data are isolated from each other. These natural properties
describe the expected behaviour of a web service. As proven in [33],
these properties have to be relaxed in order to improve scalability.
According to the authors of this paper, most real-world systems are
forced to guarantee the proper behaviour ”most of the data, most of
the time”. This gives a possibility of unwanted application behaviour.
Our construction gives the possibility to choose the best data store
for different data in a system. This allows achieving transactional
behaviour in components that require it (e.g. financial), while allow-
ing other data to be kept in storages that relax the consistency for
the high availability. We believe that a system operating on a joint
storage is a better CAP trade-off.

The fundamental definitions of data consistency and dependency
have been presented in [58]. Authors distinguish three data repli-
cation types: derived data, primary/secondary copies and interde-
pendent databases. In the third case databases are peers that store
interdependent data and this category is not examined in our re-
search. Our system deals with two other categories and it is capa-
ble of proper data consistency maintenance in that cases. The paper
also describes consistency models including eventual consistency and
lagging consistency. However there is no single definition of eventual
consistency in the community. The authors of that paper claim the

25

eventual consistency requires redundant copies to become consistent
at certain time although it allows inconsistencies meanwhile. Lag-
ging consistency assumes that one copy is up to date while updates
to other copies may be delayed. According to [58], this is a degener-
ate case of eventual consistency as it does not imply that redundant
copies are consistent at some point in time. On the other hand Vogels
[66] defines the eventual consistency in a different way. According to
him, it guarantees that if there are no new updates made to the ob-
ject, eventually all copies will store the consistent value of the last
update. In our research we construct a system that matches Vogels
definition of eventual consistency. When an update occurs, our sys-
tem applies changes on primary storages and returns a response to
the client. Then the secondary storages are modified. This allows a
short time interval of inconsistency of data sources. However after
that, if no new update to the same values is issued, each copy will
store the same value.

The article [45] categorizes consistency levels into: serializable,
session consistency, adaptive, and mixed. Serializable corresponds to
the full transactional model while session consistency only assures
to read own writes. In the adaptive level the system adjusts consis-
tency to the current situation. This is done by comparing the cost
per transaction. Such system is hosted on the Amazon platform.
It is aware of the total hosting cost and the cost of a single failed
transaction. When workload changes, the system modifies the con-
sistency level to serve data at the lowest possible cost. This research
addresses the same problem as ours, however, the cost comparison
methodology restricts mainly to PaaS.

Several publications address the problem of transaction process-
ing in a distributed database. The article [54] presents an interesting
motivating example. Suppose two users from Germany and US on
a social web application. Additionally assume their personal data is
stored in different data centres: Europe and America. They meet in
the real world and decide to add each other as a friend on the web-
site. When such an update occurs, friends’ list of both users in both
data centres need to be updated. Many interesting questions arise
here: what if one data centre is unavailable? Should the transaction
revert or should it use a retry queue in such cases. These are not just
technical issues as they affect not only the performance but also the

26

end user experience. Is it better for a user to get an error information
or allow some inconsistencies: A sees B as a friend, while B does not?
The problem is valid for all possible storage types and there is no
general solution. Authors of [38, 2] claim that transactions that run
across arbitrary data of a system are inefficient and suggest some
restrictions. This can be e.g. schema sharding and a limitation to
allow transactions to run on a single shard. In [23] authors present
the system G-STORE, which allows multi–key transactions on key-
value stores. Authors of [49] present Deuteronomy. This system is
divided into two parts: the data component (DC) and the transac-
tional component (TC) that manages transactions including concur-
rency control and undo/redo recovery. TC does not know anything
about the location of physical data and operates on an abstraction
layer. This is similar to our approach: we do have backend storages
which are managed by an external update propagator. The update
propagator is unaware of storage types and their data architectures
as it operates only on simple drivers implemented for each storage.

The research [34] focuses on the problem of how to assess ”good
enough” for the consistency in cloud databases. Authors present an
interesting idea of extending SQL queries in order to allow speci-
fying the maximal accepted delay boundaries. Although we doubt,
SQL is a proper query language for a distributed environment, the
clear definitions of data inaccuracy may fit well into the industry
needs. Authors of [21] build a system on top of multiple RDBMS
nodes and provide automatic partitioning. However, we are aware of
possible drawbacks of the automatic partitioning in case of RDBMS.
First, it is not clear for a developer, how physical data are stored.
This can lead to performance issues. RDBMS provide a rich query
language and some queries can get extremely slow when running in
the distributed environment. Moreover, with automatic partitioning
there may be queries performing well on a centralized storage, and
significantly slowing down for partitioned storage.

An interesting ongoing research is the modular cloud storage sys-
tem called Cloudy [44]. It is built on top of different storage engines
similarly to our system. Cloudy provides interfaces for read and write
operations. This makes underlying storages invisible for an applica-
tion server and is a clear design pattern. However, this concept tends
to be complicated and hard to maintain. Updates are mainly sim-

27

ple, and most modify a single record, while reads are more complex.
Additionally, there are many NoSQL storages that often offer new
versions. This makes storage internals difficult to maintain up to
date. Furthermore, NoSQL storages provide plenty of API clients
like JSON, XML, THRIFT [55] etc. Thus rewriting all of them is
almost impossible. This issue is not present in the architecture on
Figure 1 since we only care about proper update propagation.

The general problem can be described as keeping data consistent
in different storages. This can be similar to maintaining materialized
views [8], especially views updated incrementally [35, 36]. Incremen-
tal maintenance is important in our case as there is no master copy
of data, and storages need to be updated once a write request oc-
curs in a system. Additionally our views have to be self updatable.
When an update to a database occurs, views can be updated prop-
erly based on their current state and update values, without the need
to query the source database. Most algorithms for view maintenance
have been designed for OLAP database and provide some modifi-
cation of summary delta method rather than for real time OLTP
processing. However, these are SQL procedures that rewrite updates
issued to a system based on a materialized view definition. They
provide a framework for deriving incremental view maintenance ex-
pressions which is not the solution to our problem. Although we
create an abstract database schema, the backend storages are not
required to provide SQL and most does not. In following chapters
we define requirements for a storage driver to fit our construction.
The requirements are much simpler than SQL. The simplicity al-
lows constructing a single system based on storages with different
architectures and data access methods

We examined FlexViews [27] that implement materialized views
within MySQL database based on the results described in [53, 57].
The application of materialized views is limited in our context as
they can be maintained only within a single database. The most
important difference between solutions based on materialized views
and our proposal is that in our system there is no master copy of
data. FlexViews rely on applying changes that have been written to
the change log. RDBMS change log is a single point of failure that
is not acceptable in scalable solutions.

28

Another category of problems, that are similar, but not exactly
the same, is consistent caching, i.e. the evaluation of invalidation
clues of the cached data when an update on a data source occurs.
Authors of [31, 30, 52] present a model that detects inconsistency
based on statements’ templates. However, their approach cannot
handle join of attribute families or aggregation operators that are
very common in web applications. Our approach is based on a graph
with edges that determine the impact of the update operations on
the cached data.

The idea of the graph representation has been presented in [40,
16, 15]. The vertices of the graph represent instances of update state-
ments and cached data objects. However, nowadays most web pages
are personalized, and the number of data objects has increased and
multiplied by the number of application users. According to these
observations, the graph size can grow rapidly and the method be-
comes impractical. The graph size cannot depend on the size of data.
In our approach the dependency graph has vertices that represent
data modifications and read operations. We present the dependency
graph algorithm whose efficiency depends only on the number of
columns.

Authors of [12] present a system that integrates real-time trans-
actions (OLTP) and analytical operations (OLAP) within a single
storage. Our system allows integrating OLAP and OLTP storages
where each write is synchronously applied in OLTP. Asynchronous
writes to OLAP storage assure the system does not slow down while
keeping analytical data storages up to date.

The focus on the related work strongly motivates our research.
Several publications state the gap between transactional relational
database and scalable non-relational storages, as the important re-
search problem. They also claim some restrictions to query languages
is needed, when compared to SQL, to achieve the scalability. This
will be presented in following chapters. We compared our research
problem to maintaining materialized views and consistent caching,
arguing why the problem requires a different approach. We have also
described some other joint storages and compared it to our idea.

29

5 The Update Propagator Algorithm

5.1 Data architecture

Data model Suppose our data consists of k relations: R1, R2, . . . ,
Rk. We assume that each relation has exactly one primary key ele-
ment and we denote it as id. This means that for each relation

Ri(id, ri,1, ri,2, ri,3, . . . , ri,ni), (1)

the functional dependency

id→ ri,1, ri,2, ri,3, . . . , ri,ni (2)

is satisfied. One-to-many associations between relations R and S are
denoted byR ≺ri S. This means that ri is a foreign key in S, and each
tuple in S has a value of ri equal to the primary key of some tuple
in R. We also assume our schema to be 3NF. Additionally for any
two relations R and S, we say that R is associated with S, denoted
by R C S, if there exist relations S1, S2, . . . , Si and attributes r1, r2,
. . . , ri+1 such that:

R ≺r1 S1 ≺r2 S2 . . . Si−1 ≺ri Si ≺ri+1
S. (3)

One-to-many associations between attributes of the same relation,
R ≺r R, are useful to represent e.g. hierarchical data.

Write operations We put some restrictions on updates and re-
trievals. We assume that each update modifies a single tuple speci-
fied by id parameter. We distinguish three types of write operations:
adding a new tuple, editing a tuple attributes’ except for id and
deleting it. In general case, an update can be represented as

(RU , type, valueid, {(ri, valueri), . . . , (rj, valuerj)}). (4)

Changes are applied to relation RU . When adding a new tuple, we
fill it with attributes’ values from the fourth parameter. As a result
of an operation in underlying storages, we retrieve valueid that is
the primary key of a new tuple. In case of updating an existing
row, valueid determines the tuple, and the last element contains the
attributes to be changed and their new values. The list of attributes
and values remains empty for deletions. The tuple is determined by
valueid as for updates.

30

Underlying storages Next we are going to define data stored in
underlying storages. Suppose R is a relation and S = (S1, S2, . . . , Si)
is a sequence of relations associated with R, i.e.

R C S1 ∧R C S2 ∧ · · · ∧R C Si. (5)

For each Sj ∈ S we take relations Sj,1, Sj,2, . . .Sj,k and attributes
rj1 , rj2 , . . . , rjk such that

R ≺rj1 Sj,1 ≺rj2 Sj,2 ≺rj3 · · · ≺rjk Sj. (6)

Then we define

RSj = Sj,1 onSj,1.id=rj2
Sj,2 on . . . Sjk onSj,k.id=rk Sj. (7)

Suppose r1, r2, . . . , ri are attributes of R,RS1 , RS2 , . . . , RSi . We allow
projections of the form

πR.id,r1,r2,...(R onR.id=r11
RS1 onR.id=r21

RS2 · · · onR.id=ri1
RSi). (8)

In other words we allow joins between R and arbitrary number of
relations associated with R. We require that the primary key of R is
projected and allow arbitrary attributes from R,RS1 , . . . , RSi to be
projected. We call such projection a safe projection and R is denoted
the primary relation of the projection.

Since we allow R C S and S C R, it is possible that a safe
projection outputs the same attribute of a relation several times.
As an example, suppose an employee relation with the manager col-
umn which is a self join. When projecting an employee’s name and
employee’s manager name, we project the same attribute twice. Ac-
cording to this, more than one projected attribute may correspond
to the same relation attribute. We call them projection attributes in
contrast to relation attributes. If a projection attribute rp projects a
relation attribute r, then we say rp is a projection attribute of r and
we denote it as κ(rp) = r.

Given a safe projection Π and a projected attribute rp, we in-
troduce the trace of rp in Π which determines how rp is projected.
Suppose a projection attribute rp is projected from a join:

Rt1 onRt1 .id=t2
Rt2 · · · onRtm−1 .id=tm

Rtm (9)

31

where t1, t2, . . . , tm are attributes of relations Rt1 , Rt2 , . . . , Rtm

respectively. Additionally R = Rt1 is the primary relation of Π, and
κ(rp) equals tm. Then tr(Π, rp) is defined as:

tr(Π, rp) = (Rt1 .id, Rt1 .t1, Rt1 .id, Rt1 .t2, . . . , Rtm .tm) (10)

Since we allow a single relation attribute to be projected several
times, we need to take care of how it is projected. The function tr
allows recovering the chain of joins that has been applied to project
an attribute. For each projection Π, the function Trace returns the
set of all pairs composed of a relation attribute and its traces:

Trace(Π) = {(rp, s) : tr(Π, rp) = s} (11)

The underlying storages can also contain processed results of safe
projections. This can be a simple operation like count or sum. For
this purpose we define two types of selections: safely updatable and
incrementally updatable. Let apply(U, k) denote the operation of ap-
plying changes specified in U into a tuple k in a safe projection.
When U adds a new tuple to a projection, k is an empty set.

Definition 1 (Safely updatable selection). Function f is safely
updatable iff. for each update U , f(apply(U, k)) can be computed from
f(k) and U .

An example of such operation is count. If we know the counter of
a one to many relation, we can recompute it after data changes. If a
row is added or deleted, we respectively increment or decrement it.
Modifying other attributes does not change the counter. A sum is
not such a selection, since given the sum and an update of one row,
we cannot recompute it. We need to know the former value of an
element to compute the difference between former and current state.
There are not many safely updateable selections. Thus we introduce
incrementally updatable selections:

Definition 2 (Incrementally updatable selection). Function f
is incrementally updatable iff. for each update U , which adds a new
tuple, f(apply(U, k)) can be computed from f(k) and U .

Let us now reinvestigate the case of sum operation. As stated be-
fore, it is not safely updatable however it is incrementally updatable.

32

As long as we only add new elements, a modification of the sum is
the simple addition of the value stored in a new element. Another
example, which is mentioned later, is incremental concatenation of
strings. In our model we allow safely updatable and incrementally
updatable selections when selected data is added in an incremental
manner without any modifications nor removals. We have imple-
mented count, sum and incremental concatenation operators. We
also allow a simple selection of attributes which selects attributes’
values from associated relations.

When allowing different selection types, we have to ensure that
at least one underlying storage contains original values of each at-
tribute. For that purpose we denote idf as the identity function on
attributes’ values. Obviously, idf is safely updatable. Let Attr(Π) de-
note the set of projected attributes of a projection Π and let Sel(Π)
denote the set of pairs of the form {(r1, f1), (r2, f2), . . . } where the
first element of each pair is an attribute and the second is a safely up-
datable or incrementally updatable function. Based on the presented
notation we introduce complete projections’ sets. We require pro-
jections in underlying storages to constitute a complete projections’
set:

Definition 3 (Projections’ set completeness). A set of projec-
tions P is complete iff. for each relation R in a schema and for each
projection attribute rp it holds that

∃Π∈P (rp ∈ Attr(Π) ∧ (rp, idf) ∈ Sel(Π)). (12)

5.2 Dependency graph

A dependency graph G is a triple (V,Estrong, Eweak) where V is the
set of vertices, and Estrong, Eweak are sets of directed edges, which
are called strong and weak edges respectively. Two vertices cannot
be connected with both a strong and a weak edge at the same time.
Let

A = Attr(R1) ∪ Attr(Ri) ∪ · · · ∪ Attr(Rk) (13)

be the set of all attributes of all schema relations. Attr(R) is the set
of attributes in relation R. We distinguish attributes from different

33

relations with the same name and consider them as separate elements
of A. Let:

P = {P1, P2, P3, . . . } (14)

be the set of all safe projections stored in the underlying storages.
For data modifications, as defined in Chapter 5.1, we introduce

the function Map(U):

Map(U) = (RU , type, {ri, . . . , rj}) (15)

It maps a write operation so that two updates, that perform the same
operation on the same attributes, are treated as the same entity. Next
we define

M = {Map(U1),Map(U2),Map(U3), . . . } (16)

as the set of values of Map for all data modifications. Then the set
of vertices V of the dependency graph is the union A ∪ P ∪M .

Next we define the edges of G. For each R ≺r S, the foreign key
S.r is connected by a strong edge with the primary key of its relation
S.id, and with the primary key of the foreign relation R.id. Thus,

{(S.id, S.r), (S.r, R.id)} ∈ Estrong. (17)

Each projection vertex Π is connected by a strong edge with the
primary key of its primary relation. The edge goes from the primary
key to the projection vertex, i.e. (R.id,Π) ∈ Estrong. Each projected
attribute r is connected by weak edges with Π: (r,Π) ∈ Eweak.

Next we define edges connecting update vertices. Given a vertex
Map(U), it is connected by a strong edge with R.id, i.e.

(Map(U), RU .id) ∈ Estrong (18)

and by weak edges with all modified attributes:

∀i=1,...,j(Map(U), RU .ri) ∈ Eweak. (19)

This ends the definition of the dependency graphs. An example G is
shown in Figure 4.

34

id rir1 id rjr1 id rkr1

R1 R2 R3

P1 P4P3P2

U1 U4U3U2 U5

...

Fig. 4. The figure shows an example of the dependency graph. U1, . . . , U5 denote up-
date vertices, R1, . . . , R3 denote schema relations and P1, . . . , P4 projections stored in
underlying systems. We assume R2 ≺R3.r1 R3.

5.3 Data consistency problem – DCP

In this section we define the problem in a formal way. Suppose a data
model as defined in chapter 5.1, where data is stored in different data
storages. When an update request occurs, the system needs to apply
it to the underlying storages. The problem may be understood as
finding a function that applies data changes of a given update to
the underlying storages. This can lead to several problems. First,
updating storages has to be an atomic operation and cannot partially
modify storages leaving some data unchanged. Second, an updating
function needs to handle associations between relations, e.g. adding
a new tuple into a storage may cause invalidation of tuples in other
storages. This intuitive description of the problem leads us to the
following formal definition.

Definition 4 (Data Consistency Problem–DCP). Suppose a
system with projections P1, P2, . . . , Pj containing data in the states
T1, T2, . . . , Tj. An update U changes a tuple in some relation and
modifies the states of projections into T ′1, T

′
2, . . . , T ′j, where Ti =

T ′i if Pi has not been changed. A consistent data propagator is a
computable function F , such that

F (U, T1, . . . , Tj) = (T ′1, . . . , T
′
j). (20)

35

Suppose n is a total number of tuples stored underlying storages,

n = |P1|+ |P2|+ · · ·+ |Pj|, (21)

and l is a total number of all traces’ lengths of all projected at-
tributes. Formally, we can define that as:

l =
∑

π∈{P1,P2,...,Pj}

∑
(rp,s)∈Trace(π)

|s| (22)

Let m be
m = |V |+ |Eweak|+ |Estrong|+ l, (23)

Thus m corresponds to the size of the dependency graph and the
structure of projections: number of projected attributes and chain
of joins used to project them. In general, it represents the complexity
of the data schema. The complexity of algorithms realizing DCP is
a function of n and m. In this thesis we present an algorithm whose
complexity is independent on n. This assures the scalability since
the complexity of the propagator does not depend on the data size.

5.4 Underlying storages’ drivers

First we describe the functions implemented in underlying storages’
drivers that are used by the algorithm. Given an update U and a safe
projection Π, we distinguish two functions that add a new tuple:

addPrimary(Π, {(rp1 , valuerp1), . . . , (rpi , valuerpi)}) (24)

add(Π, valueid, {(rp1 , valuerp1), . . . , (rpi , valuerpi)}) (25)

The only difference is that addPrimary returns the primary key
of the new tuple. On the other hand add inserts a tuple with a
specified primary key. The modify function updates a single tuple
in the projection Π with the primary key equal valueid with values
specified in a form of a list, containing a projection attribute and its
value:

modify(Π, valueid, {(rp1 , valuerp1), . . . , (rpi , valuerpi)}). (26)

Our algorithm uses the

retrieve(Π, rp, valueid) (27)

36

function that returns the value of a projection attribute rp from a
tuple in a projection Π with the primary key equal valueid. The last
function needed is

delete(Π, valueid). (28)

It removes the specified tuple from a projection. We assume those five
functions to be implemented in drivers of underlying storages. We
do not restrict to any database types nor vendors. We only assume
a few basic functions that need to be implemented by each storage
system.

5.5 The algorithm

Data identification function The propagator algorithm some-
times has to retrieve the value of a given relation attribute. For an
attribute r, the following set contains all projections that store values
of r:

{(Π, rp) : Π ∈ P ∧ rp ∈ Attr(Π) ∧ κ(rp) = r ∧ (rp, idf) ∈ Sel(Π)}
(29)

Sel(Π) and Attr(Π) has been defined in Chapter 5.1. We have to
nominate one of the members of (29) to be used by our algorithm
to retrieve the value of the attribute r. This choice is implemented
by a function Data(r) that returns an arbitrary element of (29). In
Chapter 5.1 we assumed that P is complete. Thus Data(r) is well
defined for each r.

The function allows identifying the storage where the given at-
tribute is contained. Given a pair (Π, rp), retrieve(Π, rp, valueid)
returns the value of attribute r in the tuple with the primary key
equal valueid.

We have already mentioned the addPrimary function. When a
new tuple is added, changes are first applied via that function on
the primary projection and we denote the projection as Prim(R).
Prim(R) can be an arbitrary element of the set:

{Π ∈ P : (R.id,Π) ∈ Estrong} (30)

Detecting modified data Let A denote the set of attributes in a
schema and P describe the set of projections. We define Proj(U) as

Proj(U) = {Π ∈ P : ∃r∈A(Map(U), r) ∈ E ∧ (r,Π) ∈ E} (31)

37

as the function that returns all projections that make use of an
attribute updated when applying changes of U . In other words, it
contains all projections that are affected by U .

Strong paths Let RU denote the relation modified by an update
U and let RΠ denote the primary relation of the projection Π. A
strong path is composed solely of strong edges. Here we describe the
function Path(U,Π, r) which given an update U , a projection Π and
a relation attribute r from RU , finds strong paths from Map(U) to
Π. The returned path is based on the trace of Π, and determines
the chain of joins used to project an attribute r.

According to the structure of the dependency graph, update and
projection vertices can only connect attribute vertices. We investi-
gate elements of Trace(Π) that has been defined in (11). Suppose a
projection attribute rp and a relation attribute r such that κ(rp) = r.
Given rp, we investigate t = tr(Π, rp) such that (rp, t) ∈ Trace(Π).
According to the definition (10), tr(Π, rp) contains a sequence of
primary and foreign key attributes, from the primary key of the pro-
jection to the attribute r:

(Rt1 .id, Rt1 .t1, Rt1 .id, Rt1 .t2, . . . , Rtm .tm) (32)

where Rt1 equals the primary relation of Π, denoted by RΠ , and Rtm

is the relation containing an attribute r. Additionally Rtm equals
RU . From the definition of the tr, we know that t1, t2, . . . , tm are the
foreign key attributes which implies:

{(Rt2 .t2, Rt1 .id), (Rt3 .t3, Rt2 .id), . . . , (Rtm .tm, Rtm−1 .id)} ⊂ Estrong
(33)

Additionally, from the construction of the graph, we know that:

{(Rt2 .id, Rt2 .t2), . . . , (Rtm .id, Rtm .tm)} ⊂ Estrong (34)

since all foreign keys are connected by a strong edge with the pri-
mary key of the same relation. Since Rt1 = RΠ and Rtm = RU , the
following statement follows:

{(Map(U), RU .id), (RΠ .id,Π)} ⊂ Estrong (35)

38

This leads to the sequence of vertices

SP (t) = (Map(U), Rtm .id, Rtm .tm, . . . , Rt1 .id,Π). (36)

which is a valid strong path between Map(U) and Π. According to
this, the Path(U,Π, r) function can be defined as:

Path(U,Π, r) = {SP (t) : ∃rp∈Attr(Π)κ(rp) = r ∧ (rp, t) ∈ Trace(Π)}
(37)

We also introduce a function A(U,Π, p), that gathers all attributes
within a projection that are updated by U such that their trace
corresponds to the strong edge path p. Assume a trace t such that
SP (t) equals p. Then A(U,Π, p) can be defined as:

{rp ∈ Attr(Π) : (Map(U), κ(rp)) ∈ E ∧ (rp, t) ∈ Trace(Π)} (38)

We introduce a function Join(p) that, given a strong edge path p, is
defined as:

Join(p) =

{
0, p has exactly 3 vertices
1, p has exactly has more than 3 vertices

(39)

This simple function is quite useful. Suppose a projection attribute
rp of Π with the strong edge path, corresponding to tr(Π, rp), equal
p. The Join(p) function determines if rp has been projected in Π
via the chain of joins or not. If the path has 3 vertices, it can only
contain: an update vertex, the primary key of the modified relation
and a projection vertex. Thus there is no one-to-many association
applied, which happens when the path has more than 3 vertices.

Tuple identification We define a function Find(U,Π) that iden-
tifies modified tuples in a projection. Let us assume

U = (S, type, valueid, V al) (40)

is an update where

V al = {(ri, valueri), . . . , (rj, valuerj)}) (41)

as previously defined. Suppose r is an attribute from {ri, . . . , rj} and
let us focus on a single element of Path(U,Π, r) from (37). Given

39

values of U , Find(U,Π) returns primary keys of modified tuples in
Π. Let AVti denote a value of an attribute ti in the modified tuple
and suppose

AVt0 = AVRU .id = valueid. (42)

Suppose ti and ti+1 are attributes of relations Rti and Rti+1
respec-

tively. Then AVti+1
is determined as follows:

AVti+1
=

{
retrieve(Data(ti+1), AVti), Rti = Rti+1

AVti , Rti 6= Rti+1

(43)

We simply iterate through the attributes of path from Path(U,Π),
and evaluate values of the joined tuple attributes until we retrieve
the attribute RΠ .id. This is possible since we iterate through strong
edges, and in case of connecting attributes, a strong edge connects
either an attribute with the primary key of the same relation or
foreign key with the primary key of the associated relation. As a
result AVRΠ .id = AVtm .

We have constructed a function, that given an element p from
Path(U,Π, r) and the primary key of the updated tuple, returns the
primary key of the modified tuple corresponding to a path of strong
edges between Map(U) and Π. We denote that function g(U, p).
When finding all modified tuples, an algorithm examines all paths
Path(U,Π, r) of all modified attributes r. As a simple remark from
the dependency graph construction, U modifies an attribute r when
(Map(U), r) ∈ E. In general Find(U,Π) returns the maximal set
that contains pairs of strong paths between update and projection
vertices, associated with the primary key of the tuple that has to be
modified:

Find(U,Π) = {(g(U, p), p) : ∃r(Map(U), r) ∈ E∧p ∈ Path(U,Π, r)}
(44)

Data modifications Assume update U = (RU , type, valueid, V al).
Then we construct a set V al(Π,U, p) as:

V al(Π,U,p) = {(ri, valueri) : ri ∈ A(U,Π, p)∧(κ(ri), valueri) ∈ V al}
(45)

40

The V al(Π,U, p) contains pairs of projection attributes and values.
Projection attributes correspond to the attributes from V al that af-
fect the projection π. The last function we present is a Mod function:

Mod(V al(Π,U, p), Π, p, valueid) (46)

which modifies data in underlying storages. The function modifies
a tuple in a projection Π with the primary key equal valueid. The
tuple is modified according to V al(Π,U, p) which consists of pairs
containing attribute and value. These pairs define attributes that
are going to be modified and values that have been given in U . The
parameter p is a strong path, which is required for proper data modi-
fication. As an example, suppose employee table with the self-join on
manager’s column and a projection which projects employee name
and the manager’s name. Suppose U modifies a manager’s name.
Then the Mod function is applied on several tuples in the projec-
tion: on the manager’s tuple and on subordinates. When applying
changes of U on a tuple, a strong path is required to modify proper
column: employee name or managers name.

We have assumed in Chapter 5.1 that each projected attribute
can store values which are processed by safely updateable or incre-
mentally updateable selections. Thus we can easily evaluate a new
value of a tuple in Π and this is done in Mod. The direct imple-
mentation depends on a selection type. As an example, in the case
of count we increment the value when U adds a tuple, decrement in
case of tuple removal or leave it unchanged if modified.

Steps of the algorithm Having all necessary functions presented
we show the whole algorithm based on the predefined functions.
Assume an update U equals (RU , type, valueid, V al). Then:

1. If U is add then:
1.1 Let Π = Prim(U).
1.2 Let p denote a strong path containing (Map(U), RU .id,Π).
1.3 Apply addPrimary(Π,V al(Π,U, p)) and append its result

to values of U as the primary key of the new tuple.
2. Let us define a set of projections T that are going to be updated.

If type of U is add, then T = Proj(U) \ Π, in other case let
T = Proj(U).

41

3. For each Π ∈ T :
3.1 For each (valueΠ.id, p) ∈ Find(U,Π):

3.1.1 Let v = V al(Π,U, p).
3.1.2 If Join(p) = 0, then apply according to the type value

add(Π, valueΠ.id, v), delete(Π, valueΠ.id) or
modify(Π, valueΠ.id, v).

3.1.3 Otherwise apply Mod(v,Π, p, valueΠ.id).

First the algorithm checks the type of the submitted update U .
If a new tuple is going to be inserted, it is first added to the pri-
mary projection of the updated relation where the new tuple gets
the primary key. In step 2 the algorithm finds all projections that
have been affected by U . When type of U is add, then the primary
projection of the modified relation is excluded since the new tuple
has already been added there in step 1. In steps 3 and 3.1, we iterate
through all modified projections and all tuples modified in each pro-
jection. Modified tuples are represented as elements of Find(U,Π)
and contain the primary key of the modified tuple and a strong edge
path corresponding to the trace of modified attributes.

Step 3.1.2 describes the simple case when the algorithm fills un-
derlying storages with modified values. This happens when Π con-
tains a subset of attributes of relation R which is modified by U . The
algorithm runs the requested operation on a tuple in underlying stor-
age. Step 3.1.3 applies data changes on tuples that via one-to-many
joins contain data that is affected by U . The changes are applied by
the Mod function.

5.6 A Dependency Graph Example

Figure 5 shows the dependency graph for the presented bookstore
example. Suppose KV:USER represents a key-value storage where
user data is stored. Then RD:SOLD and RD:BOOK vertices repre-
sent relational databases. In the first one, financial data is stored,
while the second contains some book information including number
of items in stock, which has to be modified in a transactional way.
CF:BOOK is a column-family storage containing additional book
data and CF:CAT contains category tuples. Suppose KV:COUNT
is a key value storage that contains: the number of books that have

42

idaddress name buyer book price id title nb_of_items price id parentid

ADD USER BUY A BOOK ADD A NEW BOOK

CF:BOOKKV:USER RD: SOLD RD: BOOK

namecategory

KV:COUNT

ADD A CATEGORY

KV:CAT

Fig. 5. Graph example from the bookstore application. The upper vertices represent
update operations. The middle ones correspond to relation attributes of relations: user,
sold items, book and category. The lower ones are vertices representing projections
stored in backend storages.

a category attribute equal the primary key of this category, and an
amount of books assigned to its children nodes. These are not the
counters of items in the subtree, and rather a direct number of oc-
currences of a given category attribute in book relation. We assume
each value contains the category’s primary key, the number of books
in this category and in its children nodes.

As an usage example, let us suppose, someone buys a book. At
first, a new tuple is added into RD:SOLD in a transactional man-
ner. Then the data propagator algorithm is run to update data in
other data sources. Additionally, a tuple in RD:BOOK needs to be
modified, since there exist an attribute such that an update ver-
tex connects it and it connects a RD:BOOK vertex. The algorithm
evaluates the tuple that needs to be modified: it is identified by the
primary key equal book attribute from an update. Then, it incre-
ments the number of sold books in a tuple.

The interesting example is when a new book is added, and the
category counter has to be recomputed. New tuples in RD:BOOK
and CF:BOOK are added. The KV:COUNT projection also needs
to be modified. The algorithm encounters two traces and constructs
the strong paths corresponding to them. The first one is the following
sequence of vertices:

(Map(U), book.id, book.category, category.id, π) (47)

where Map(U) represents the update vertex, that adds a new book,
and π is the KV:COUNT vertex. The second one is very similar,

43

however it goes once through the cycle between id and parent at-
tribute in a category relation:

(Map(U), book.id, book.category, category.id,

category.parent, category.id, π)
(48)

Having two paths, the algorithm travels through them and collects
the attribute values and, as a result, recovers two primary keys of the
tuples in KV:COUNT. In the first case, the primary key equals value
of a category attribute. In the latter, when reaching parent attribute
in a category relation, the algorithm queries the KV:CAT to retrieve
a parent value, which is the primary key. Having the primary keys,
the algorithm increments counters in both tuples: in the first case we
increment the number of books in the given category, while in the
latter we increment the number of books assigned to children nodes.
This can be done due to traces of projection attributes.

5.7 Correctness

In this section, we prove the correctness of the presented algorithm.
Let Π denote an arbitrary projection, and U an update that occurs.
Additionally assume T denotes the state of Π before the update, and
T ′ the state after U is performed. As previously, let F (U, T) denote
the propagator algorithm function which applies U . The purpose of
this section is to prove F (U, T) = T ′. We divide the proof into two
parts. Firstly we show that the algorithm properly detects tuples that
require modification. Secondly we elaborate on applying changes on
a single tuple.

Detecting data modification Now we focus on data modifica-
tions. We start with the following lemma:

Lemma 1. An update U modifies data in a projection Π iff. Π ∈
Proj(U)

Proof. Assume Π ∈ Proj(U). According to the definition of Proj
(31), there exists an attribute r such that (r,Π) and (Map(U), r)
are contained within E. The existence of the edge (r,Π) ∈ E implies
that Π projects the attribute r, while the edge (Map(U), r) implies

44

that U modifies a value of the attribute r, and as a conclusion U
modifies Π.

Now suppose U modifies Π. Then U has to modify some at-
tribute r that is projected by Π. U modifies r in some tuple, then
(Map(U), r) ∈ E. Additionally, since Π projects r, (r,Π) ∈ E. As a
result Π ∈ Proj(U), which ends the proof. ut

Now we are going to prove that Find returns modified tuples
or nothing, when the given projection has not been updated. We
start with the evaluation of g(U, p). The strong path p determines
the sequence of joins used in the projection. Assume t1, t2, . . . , tm are
the foreign key attributes in p and a relation R′ is constructed as:

Rt1 onRt1 .id=t2
Rt2 · · · onRtm−1 .id=tm

Rtm (49)

where Rt1 equals RΠ , and Rtm equals RU .

Lemma 2. Let U be an update equal (RU , type, valueid, V al) and let
p denote a strong path between Map(U) and Π. Then:

g(U, p) = πRΠ .id(σRU .id=valueid(R
′)). (50)

Proof. We have defined g(U, p) as the function which traverses the
strong path p and gathers the primary keys of the traversed relations.
We start the traversal with the primary key valueid of the updated
relation. Given an attribute pi and its value AVpi , the function eval-
uates AVpi+1

. When pi and pi+1 belong to different relations:

AVpi+1
= AVpi (51)

since those vertices represent two attributes from join between the
relations. On the other hand, if pi and pi+1 belong to the same re-
lation, then pi is the primary key and the algorithm reads the value
of pi+1 from some projection. In general, in terms of relation R′,
evaluating following AVpi+1

values can be described as:

πpi+1
(σpi=AVpi (R

′)) (52)

In our data model we allow only one-to-many joins, between rela-
tions. According to this:

σpi+1=AVpi+1
(R′) ⊂ σpi=AVpi (R

′) (53)

45

This leads us to:

g(U, p) ∈ πpi+1
(σR′.tm=valueid(R

′)) (54)

The last thing, we have to proof, is that σR′.tm=valueid(R
′) selects a

single tuple from R′. R′ is constructed from relations Rt1 , Rt2 , . . . ,
Rtm such that:

Rt1 C Rt2 C Rt3 C · · · C Rtm (55)

According to this Rtm .id constitutes a valid primary key of R′, and
the examined selection returns a tuple, which is identified by the
primary key. This ends the whole proof. ut

We split the proof into two parts: first we show that each tuple
from Π, modified by U , is contained in pairs of Find(U,Π). Then,
we prove the opposite direction: each pair of Find(U,Π) contains
the primary key of some tuple in Π, that is modified by U .

Lemma 3. Suppose k is a tuple in Π with the primary key equal
valuek. If k is modified by an update U = (RU , type, valueid, V al),
then valuek is contained in some pair of Find(U,Π).

Proof. We show the construction of a strong path p such that:

(valuek, p) ∈ Find(U,Π) (56)

Suppose rp is a projection attribute, which projects an attribute r,
modified in k by U . Such a rp exists, since k is modified by U . This
also implies the existence of a sequence of foreign key attributes
t = (t1, t2, . . . , tm), such that:

R′ = Rt1 onRt1 .id=t2
Rt2 · · · onRtm−1 .id=tm

Rtm (57)

is a relation with an attribute r, while Rt1 = RΠ and Rtm = RU .
From Definition (11):

(rp, t) ∈ Trace(Π) (58)

and Definition (37) it follows that:

t ∈ Path(U,Π, r) (59)

46

Based on the definition (44) of Find, we know that there exist a
strong path p such that:

(g(U, p), p) ∈ Find(U,Π) (60)

which, according to the lemma 2, is equivalent to:

(πRt1 .id(σRtm .id=valueid(R
′)), p) ∈ Find(U,Π) (61)

Assume the value of an attribute rp from R′ is modified in k by U .
According to this:

valuek ∈ ΠRt1 .id
(σRtm .id=valueid(R

′)) (62)

From the proof of Lemma 2 we know that ΠRt1 .id
(σRtm .id=valueid(R

′))
selects just a single row from R′ and, as a result, it equals valuek.
Eventually, this implies:

(valuek, p) ∈ Find(U,Π) (63)

ut

Lemma 4. Suppose an update U= (RU , type, valueid, V al), a strong
path p and a projection Π. If (valuek, p) ∈ Find(U,Π), then a tuple
k in Π with the primary key equal valuek has been modified by U .

Proof. According to Definition (44), there exists an attribute r such
that:

(Map(U), r) ∈ E (64)

and:
p ∈ Path(U,Π, r) (65)

This ensures, from the definition (37), the existence of the projection
attribute rp such that (rp, t) is contained in Trace(Π), for some
trace t. Assume t1, t2, . . . , tm are the foreign key attributes in t. We
construct a sequence of relations Rt1 , Rt2 , . . . , Rtm such that:

R′ = Rt1 onRt1 .id=t2
Rt2 · · · onRtm−1 .id=tm

Rtm (66)

Again, Rt1 = RΠ is the primary relation of Π, and Rtm = RU is
an updated relation. Due to definition (11) of Trace, rp is a projec-
tion attribute from R′ in Π. Additionally the existence of an edge

47

(Map(U), r) implies that an attribute rp is modified in some tuple
of R′. The primary key of that tuple equals:

πRΠ .id(σRU .id=valueid(R
′)), (67)

since Rtm constitutes the primary key of R′. Based on Lemma 2,
this assures that it is equal g(U, p) and, as a consequence, it equals
valuek. This ends the proof, since rp is the attribute modified in the
tuple k by the update U . ut

Applying data changes: We prove that data modifications, ap-
plied by the algorithm, are correct. We assume that an update U
modifies a tuple k in a projection Π. We denote by T the state of
Π before the update, and by SΠ(T, U) the state of the projection
after performing U . Additionally assume FΠ is the function of U and
T , which returns the state of Π after applying U by the presented
algorithm.

Let us focus now on the V al(Π,U, p) function defined in (45).
Assume an update U that affects an attribute rp of a tuple k from a
projection Π. We start with the following lemma:

Lemma 5. Let p denote a strong path corresponding to the tr(Π, rp)
and let valueκ(rp) denote a value of U used to modify rp in k. Then:

(κ(rp), valueκ(rp)) ∈ V al⇔ (rp, valueκ(rp)) ∈ V al(Π,U, p) (68)

Proof. First, we assume (rp, valueκ(rp)) ∈ V al(Π,U, p). The leftward
implication follows from Definition (45) of V al(Π,U, p). Second, we
investigate the opposite direction. Assume then (κ(rp), valueκ(rp)) is
contained in V al. Based on (45), we need to prove that κ(rp) ∈
A(U,Π, p), which has been defined in (38). The update U contains
an attribute κ(rp) in its values, thus (Map(U), κ(rp)) ∈ E. We have
also assumed that p is a valid strong path between Map(U) and Π.
This assures that for a trace t, corresponding to p, (rp, t) ∈ Trace(Π)
which ends the proof. ut

The algorithm distinguishes two possible cases: the length of p is
3, or more. This is equivalent to Join(U,Π) equal 0 and 1 respec-
tively. We elaborate on those cases and the correctness in each of
them is proven separately.

48

Lemma 6. If Join(U,Π) equals 0, then:

FΠ(U, T) = T ′. (69)

Proof. When Join(U,Π) equals 0, then U modifies the primary re-
lation of Π. According to the type of U , the algorithm does the
following operation:

1. In case of adding a new tuple, the tuple is added to Π. A tuple k
is filled with values from V al(Π,U, p). The attributes of Π, that
are missing values in U , are filled with default values.

2. In case of deleting a tuple, k is deleted from Π.
3. In case of updating an existing tuple, values of V al(Π,U, p) over-

write some values in k.

In the first and the last case, we update a tuple with a subset of
values from U . In the second case, we simply delete the tuple. While
the second case is self-explanatory, the correctness of the other steps
relies on the lemma (5). The lemma assures that updating tuple
with values of V al(Π,U, p), which contains a subset of values from U ,
applies the changes of U to the tuple in Π. When compared to values
of U , V al(Π,U, p) maps attribute values to projection attributes and
contains a subset of values from U for attributes that are present in
Π. ut

Now we elaborate on the second case when Join(U,Π) equals 1:

Lemma 7. If Join(U,Π) equals 1, then:

FΠ(U, T) = T ′ (70)

Proof. Let RΠ be the primary relation of the projection Π and RU is
the relation modified by U . Join(U,Π) = 1 implies that RΠ 6= RU .
The update U modifies attributes that are projected in Π via some
chain of one-to-many joins. In this case a tuple in Π is always modi-
fied, even if U adds or deletes some tuple in S. The data modification
depends on the implementation of the Mod function from (46),

Mod(V al(Π,U, p), Π, p, valueid) (71)

Parameters Π and valueid identify the projection and the primary
key of the tuple that is going to be changed. The other two arguments

49

provide data for the proper modification. The sequence p determines
how the update U influences the projection Π, while U contains the
type of operation and new attributes’ values.

The projection Π can store data transformed by a safely updat-
able selection, or by a incrementally updatable selection, while the
second case only allows adding a new tuple. According to Definition
1 and Definition 2, the selection function that selects the projection
attribute rp from the relation attribute r has to fulfil the following
criteria: if an update occurs the new value of rp can be recomputed
from the former value of rp and the value of r in U . Although the
implementation of Mod method depends on the selection function,
its correctness is proven and relies on the definitions of safely updat-
able and incrementally updatable selections. ut

The correctness theorem: We have already defined and proven
all needed lemmata and we introduce the main theorem:

Theorem 1. Assume U is an update of the form

U = (RU , type, valueid, V al). (72)

For each projection Π:

FΠ(U, T) = T ′. (73)

Proof. The proof of the theorem relies on the former lemmata. Sup-
pose a projection Π. Using Lemma 1 we know that the algorithm
updates data in Π iff. Π ∈ Proj(U). According to Lemmata 3. and
4., valuek is the primary key of some tuple and valuek is contained
in a pair of Find(U,Π) iff. the tuple is modified by U . As a result,
if the algorithm evaluates Find(U,Π), then the primary keys of all
modified tuples are identified.

At this stage, we have found all tuples that need to be updated.
Each tuple is identified by the primary key, and the algorithm is
aware of the trace. The trace allows determining how the update
affects the tuples. The algorithm modifies found tuples according
to two different cases: Join(U,Π) equal 0 or 1. Lemmata 6. and 7.
prove the correctness of applied update changes in both those cases.

The algorithm starts with identifying all tuples that require in-
validation. Then the changes on tuples are applied according to the

50

selection type. We have proven the correctness of both steps, thus
proving the correctness of the whole algorithm. ut

5.8 Complexity

In this section, we consider the complexity of the algorithm. As de-
scribed in Section 5.3, the complexity of the DCP problem is a func-
tion of the schema size and the size of stored data. We prove that
the complexity of our algorithm does not depend on the size of data.
Furthermore, we show that some methods used by the algorithm can
be precomputed before the deployment.

Lemma 8. The complexity of the algorithm does not depend on the
size of stored data.

Proof. This can be proven without going into details of the methods
used in the algorithm. Each method operates on the dependency
graph and the graph’s size depends only on the schema’s complexity.
The main algorithm checks the projections modified by an update.
For each projection it iterates through the elements of Find(U, π).
Thus, it only depends on the schema’s complexity.

The key point of this lemma, is the Map(U) function defined in
(15), which maps update operations to graph vertices. This gives
us abstraction classes of each update. Two updates U1 and U2, such
thatMap(U1) equalsMap(U2), are applied the same way by the algo-
rithm. Computations of the algorithm are run on the graph structure
composed of Map(U) vertices rather than U vertices. This assures
that the algorithm depends only on the schema complexity. ut

Now we are going to assess the complexity of the algorithm as a
function of the size of the database schema. Although the size of the
schema is significantly smaller than the size of data, the number of
update vertexes in the graph can still grow exponentially. Suppose a
system with k relations and l attributes in each of them. The number
of possible update vertices equals k ·(l−1)!, since each update vertex
has to connect the primary key of the modified relation. This could
break our assumption about the simplicity of the graph. In order to
avoid such situation, when implementing the system, we can use the
following trick in the algorithm. Suppose an update U of the form:

(R, type, valueid, {(ri, valueri), . . . , (rj, valuerj)}) (74)

51

The same changes can be done by applying the sequence of single
attribute’s updates. For each modified attribute r, we create an up-
date:

(R, typer, valueid, {(r, valuer)}) (75)

We denote the new update type by typer, and it is evaluated as
follows. In case of deleting a tuple, there are no values in U , and the
sequence contains a single update which equals U . If type represents
editing operation, then typer equals type. The difference appears in
case of adding a tuple. When adding new tuple, the type of the first
update in the sequence is add, while the others simply edit the new
tuple.

Splitting each update into the sequence of single attribute’s up-
dates solves the problem of too many update vertices. At this stage,
the number of update vertices is limited by the number of relation
attributes. However, the algorithm in this form introduces a new
problem: updating each column separately will increase the overall
number of operations run on underlying storages. To avoid this, we
modify steps of the algorithm where it writes to underlying storages.
Instead of running immediately each requested update, when meth-
ods addPrimary, add, modify or delete are called, the algorithm
puts them on a stack. They are applied, when the dependency al-
gorithm gathers all write operations that need to be run. Running
together all updates on underlying storages allows grouping them,
so that an update on a single tuple in a projection is run only once.
Of course these are merely implementation details of the algorithm.
However, they influence the complexity analysis. Thus they had to
be clearly stated.

So far we know the complexity of the algorithm in terms of the
number of calls to auxiliary functions. Now we evaluate their com-
plexities. In our analysis we skip the complexity of methods which
can be precomputed at the applications deployment, as they are
called only once and do not influence the complexity of an update
request execution.

First, we show the methods that can be precomputed. We start
with Proj(U), that needs to be computed only once for each ver-
tex Map(U). Therefore, it does not affect the complexity. The same
happens with Path(U, π, r) and A(U, π, r). The evaluation of both

52

methods depends on Map(U) and when the methods are precom-
puted, they can be stored in a lookup table.

On the other hand the method Find(U, π) has to be computed
for each actual update U , since it uses the update values to retrieve
the primary key of the modified projection. Thus, it cannot be pre-
computed. The Find method traverses strong paths, from an update
vertex to π, that correspond to the traces of attrubutes in π. The
number of traces is limited by the number of projected attributes,
which is in fact limited by l from an equation (22). From equation
(23), we know that it is limited by m, as m = |V |+ |E|+ l. For each
found trace, the Find method traverses the path to identify the
primary key of a modified tuple. Since we allow self-joins, a strong
paths may contain graph cycles. According to this, we cannot limit
a path length with a number of graph vertexes. However, it is still
limited by l and m, as l is a sum of all traces’ lengths. To sum up,
Find(U, π) traverses at most m paths of a size at most m each. Thus
its complexity equals O(m2).

The main algorithm contains a loop and the Find method is
called within the loop. These are the only methods that affect the
complexity and can be estimated as O(m3). This has lead us to a
lemma.

Lemma 9. Given a dependency graph and a database schema, sup-
pose m as defined in (23). Then, the complexity of the algorithm
equals O(m3).

The complexity of the algorithm is thus limited with the size
of the data schema. The overall complexity of a system based on
our algorithm is thus hardly influenced with the complexity of the
propagator algorithm. However, the overall system performance does
depend on the time spent when applying changes in backend stor-
ages and synchronizing propagator threads. This will be examined
in details in further chapters. At this stage we have proven that the
complexity of the propagator algorithm does not depend on the size
of data. This has been our aim, as stated in Section 5.3. Moreover,
we want to build a fully scalable update layer. In this chapter, we
have proven that in theory the overhead of the propagator algorithm
is not significant.

53

6 Consistent Caching

In this chapter we describe the problem of consistent caching. It has
been the subject of our initial research. The results of this research
have been published in [48]. They have lead us to the idea of the
joint consistent storage, i.e. the main topic of this thesis. The update
propagator algorithm described in the previous chapter extends the
ideas presented here and applies well to the problem of consistent
caching presented in this chapter.

6.1 Motivating example—a community forum application

We start with an example. Let us consider a community forum ap-
plication. Suppose we have four tables: user, forum, topic, post. The
table user contains user data. Fora are stored in the forum table.
Each forum consists of topics, which contain lists of posts. Let us
assume the database schema consists of the following tables:

user: id, nick

forum: id, name, desc

topic: id, forum_id

post: id, topic_id, title, text, user_id, created_at

When a new topic is added, its title and other data are stored
in the first post. From the database’s point of view, the website
consist of three database intensive views: listing fora, listing topics
and listing posts. Let us now focus on listing topics. Figure 6 contains
a snapshot of a real forum application. It shows which data are
needed when displaying the list of topics.

Fig. 6. The figure shows a single line from the list of visible topics. Each line contains:
a topic’s name which is the first post’s name, the owner of the topic, the date it was
created, the post count, and the information about the last post: its author and the
date it was added.

When the database schema is in 1NF, performing a query each
time the website is loaded is too expensive and harms the database.

54

Thus such an architecture is not used in practice. Instead, modern
systems modify the database schema by adding redundant data. In
particular, one can add first post id, last post id and post count fields
to the tables forum and topic and also topic count to the table forum.

Such a solution resolves the efficiency problem stated before.
However, it also introduces new difficulties. It recedes the database
schema from 1NF which is strongly desired in OLTP applications.
Consider an addition of a new post as an example. At such an event,
the post table is not the only one to be modified. In order to main-
tain the post count, we also have to update topic and forum. This
also does not solve the main problem, since the database is still the
bottleneck of the system. Adding redundant data means also adding
several logical constrains that have to be maintained and are error
prone. It would also introduce problems when trying to replicate the
whole database.

The obvious solution is to use a cache to keep all these views in
memory. However, the data are updated by the users who add posts.
Whenever this happens, many post counters have to be recomputed.
The desired property of a cache is to recalculate only those coun-
ters which have to be recomputed and possibly nothing else. In this
chapter we show a method how to reduce the invalidations as much
as it is practically possible.

6.2 Existing caching solutions

Existing caching models can be divided into caching single queries,
materialized views and tables. When caching single queries it may
be hard to discover similarities and differences between queries and
their results. Let us suppose a query and its result returned with de-
scending and ascending sorting criteria. If no paging (limit/offset) is
defined, it is still the same result but in a different order. Apparently,
it does not need to be stored twice. Caching based on hash based al-
gorithms does not work well in the presented application and applies
more to caching files than to the OLTP database schemata. The idea
of caching tables’ fragments has been first shown in [22] where the
authors propose a model with dividing tables into smaller fragments.
It can be understood as storing data sets in caches and allowing for
them to be queried [5, 4, 51]. However this does not solve the whole

55

problem, since it lacks count operations. In the forum example, and
in most Web 2.0 applications, the website contains several counters
which cannot be evaluated each time the website is loaded. Perform-
ing count operations on the cached data sets is difficult. It is hard
to detect if all data to be counted is loaded into the cache. There
is also no need to store whole data when only counters are needed.
Another parameter becomes an issue. Data can be loaded ad hoc or
loaded dynamically, each time it is needed. When all data are loaded
to the cache at once, one can easily discover which count queries can
be performed but it also means caching data that may never be
used. When an update occurs, all the cache needs to be reloaded.
This may cause severe problems because updates occur frequently in
OLTP. This also means performing updates to maintain the consis-
tency of the cached data which is never used. Invalidation can occur
each time the update occurs or in the specified time intervals. The
second case would be efficient but would also allow storing and serv-
ing data that is not up to date. Loading data statically is more like
database replication than a caching technique. An interesting recent
work on replicating data sources and reducing communication load
between backend database and cache servers has been described in
[64]. It presents an approach based on hash functions that divide
query result into data chunks to preserve the consistency. However
this also does not solve the problem of aggregation queries. Their
results are difficult to be kept consistent via hash similarity.

Described schemata show that granularity of the cached data is
strongly desired. In that case only atoms which are not up to date
would be invalidated thus improving the efficiency. However these
atoms cannot be understood as table rows, since count would be
difficult to define, and they should be more like tuples containing
data specified by the application logic. This is what many schemata
shown before cannot afford because of persistent proxy between the
application server and the database. On one hand, this feature aids
software programmers because they do not need to dig into caching
techniques. On the other hand, it is the software programmer who
has to specify what data has to be cached because it is strongly
related to the application’s specific logic.

56

Caching Objects vs. Caching queries Most of previously de-
scribed caching techniques include caching queries. This solution
needs a specification of queries that need to be cached because they
are frequently performed. If the query used for listing topics of a
community forum is taken into consideration, one can argue if it
makes sense to cache its result. On one hand, the query is performed
each time the user enters a specific forum. On the other hand one
should be aware of user conditions. If the user searches for topics
with posts containing a specific string, it may be useless to cache
them because of the low probability they will ever be reused.

Instead of caching queries, one should take into consideration
caching objects. Suppose objects of class topic and forum are created
and each of them contains the following fields:

FORUM: id, name, post_count, topic_count,

last_post_author_nick, last_post_created_at

TOPIC: id, first_post_title, first_post_created_at,

first_post_author_nick, last_post_author_nick,

last_post_created_at

Having such objects stored in a cache, the query listing topics could
look like the SQL query below:

SELECT id FROM topic WHERE forum_id = $forum_id

AND ## user condition LIMIT 20;

With the list of topics’ ids, we simply get those objects from the
cache. Each time the object does not exist in the cache it is loaded
from the database and created. This means significant reduction of
the query complexity and the performance improvement. Memcached
[19] is an example of the mechanism widely used in practice. It is a
high-performance, distributed memory object caching system and is
used by Wikipedia, Facebook and LiveJournal. In December 2008
Facebook considered itself as the largest memcached user storing
more than 28 terabytes of user data on over 800 servers [56].

From the theoretical point of view, the idea can be seen as us-
ing a dictionary for storing data objects created from the specified
queries. One can argue if storing relational data inside the dictio-
nary is sensible. Here the performance becomes an issue. Since all

57

the cached data is stored in RAM (it makes no sense to cache data
on a disk) a cache server only needs to hash the name of the object
and return data which are stored under the hashed location. The
caching mechanism is outside the database. This means a significant
performance gain due to the reduction of the database workload.

Data consistency problem The data consistency problem arises
when caching techniques are applied. It is similar to the one stated
in previous chapters: how to maintain data in caches consistent with
data from a relational database. Several improvements to the con-
sistent caching problem have been applied by the industry. Accord-
ing to [67] Wikipedia uses a global file with the description of all
classes stored in the cache 1. However this is not a general solution
to the problem but only an improvement which helps programmers
to manually make a safe guard from creating objects in an inconsis-
tent state. In our research, we propose the model of fully automatic
system which maintains the consistency of cached data.

The presented solution brings some SQL restrictions to queries
that feed caches. These restrictions are needed, since mapping the
relational data to the dictionary is performed. As we restrict to the
domain of web applications, select statements are significantly more
frequent than inserts and updates. We assume that the database
contains k relations and each of them has the primary key which
consists of a single attribute. We identify the set of select statements
S which are used for creating cached objects:

S = {S1, S2, ..., Sr} (76)

For each class of objects we can identify the subset of S used to
create its objects. The set U is the set of statements which modify
the database.

U = {U1, U2, ..., Um} (77)

Each of members of U modifies only a single row selected by a value
of the primary key. Additionally select statement can have other
conditions in the WHERE clause but they can only involve columns

1 This file is available at http://svn.wikimedia.org/viewvc/mediawiki/trunk/

phase3/docs/memcached.txt?view=markup.

58

of the parameterised table. Cached objects and queries from S and
U are parameterised by the primary key of some relation.

In some cases, it is convenient to know cached data to optimize
invalidation clues. However the model assumes data inside objects
to be persistent because sometimes, instead of caching data, devel-
opers decide to cache whole HTML fragments corresponding to the
cached objects. Other database caching systems could not allow this
because of being persistent to the application server. Once again the
persistence of caching models reveals its drawback. The presented
model can be also seen as a combination of caching static HTML
pages [42] and data from database. The similar construction of map-
ping database content to Web pages is presented in [50], but it maps
queries to URL addresses. However this approach loses efficiency in
Web 2.0 applications since the same HTML code can used on many
pages and it does not make sense to invalidate whole pages.

The aim of the following construction is to create a graph which
allows identifying objects to invalidate when an update statement
performed. The construction is similar to one presented in the pre-
vious chapter. However, there are some differences. We do not want
to use the update propagator algorithm to manage all system stor-
ages. Here, we assume there exists a backend RDBMS with a known
schema and there exists an extra layer where cached objects are
stored. Each time an update occurs, it is registered to the cache
manager. The cache manager algorithm checks if there are some
cached objects that require invalidation, and updates them if nec-
essary. We present the cache manager which assures that each time
data is changed, all the cached data remains consistent with the
primary storage.

6.3 The dependency graph for consistent caching

Query identification Let us first identify queries used by the ap-
plication when creating objects in our forum example. The list of
queries used when creating topic objects follows.

S1: SELECT * FROM topic WHERE id = $topicId;

S2_1: $max = SELECT max(p.created_at) FROM post p, topic t

WHERE t.id = p.topic_id

59

AND t.id = $topicId;

S2_2: SELECT u.nick FROM post p, user u, topic t WHERE

t.id = p.topic_id AND t.id = $topicId AND

p.user_id = u.id AND p.created_at = $max;

S3_1: $min = SELECT max(p.created_at) FROM post p, topic t

WHERE t.id = p.topic_id

AND t.id = $topicId;

S3_2: SELECT u.nick FROM post p, user u, topic t WHERE

t.id = p.topic_id AND t.id = $topicId AND

p.user_id = u.id AND p.created_at = $min;

S4: SELECT count(p.post_id) FROM post p, topic t WHERE

p.topic_id = t.id AND t.id = $topicId

The first statement gets a row from the topic table. S2 1, S2 2 and
S3 1, S3 2 are very similar and are used for getting data of the first
and the last post in the topic. Additionally S4 is performed to evalu-
ate the number of posts in a topic. In our example update statements
can also be identified. These are the five queries that manipulate
data:

U1: INSERT INTO user VALUES ...

U2: INSERT INTO forum VALUES ...

U3: INSERT INTO topic VALUES ...

U4: INSERT INTO post VALUES ...

U5: UPDATE user SET nick WHERE user_id = ...

The select statements that are not used for creating objects are
not considered. This is a big difference in contrast to the update
propagator in the previous chapter. We have presented a system that
maintains consistent data among storages. Now we assume there ex-
ist a master RDBMS, and each time an update is applied, it is reg-
istered to our system which invalidates cached data when necessary.

Construction of the graph We have already identified the queries
used in the system. The construction of the graph is similar to the
one from the previous chapter and we will not cover it in details.
Each update operation and each schema attribute constitutes a ver-
tex. Edges among vertices are added the same way as before: each
update connects by a strong edge the primary key of the modified

60

relation and by a weak edge all other modified attributes. Within
attribute vertices, the primary key of each relation connects by a
strong edge all foreign keys within the same relation. As a difference
to the previous construction, edges between attributes are added
in both directions. Each foreign key connects by a strong edge the
primary key of the foreign relation.

Queries used for object creation can be parameterized with the
primary key of some relation. We assume that each cached object
contains data of queries that are parameterized with the key of the
same relation and we call it the primary relation of an object. Ob-
jects contain data from the primary relation and attributes from
other relations that are joined via a sequence of one-to-many or
many-to-one relationships with the primary relation. This is a sig-
nificant difference with the previous graph description as we also
allow many-to-one relationships. This can be done as there exist a
master relational database. The model in previous chapters, when
dealing with one-to-many associations, could not traverse the edge
in both directions. Given a tuple of the foreign relation, based on
the foreign key, it could have reached the single tuple in the foreign
relation. However when there are many tuples associated with the
one given, it could not have fetched them, which can be easily done
in this model within SQL syntax. Each type of queries constitutes
a vertex and a strong edge connects the primary key of the primary
relation. Then, weak edges connect attributes that are projected by
a query. These may include attributes from the primary relations
and other relations that are joined in this query.

The rules already described are similar to the graph definition
from the previous chapter. There are vertices that represent cached
objects. Each cached object can be parameterized with the primary
key of its primary relation. Each class of such objects constitutes a
vertex and we connect by strong edges a cached object’s vertex with
all queries that are used to create an object.

Figure 7) displays the consistency graph created for the forum
example. We have already shown queries used for creating objects
and updating data. For the sake of clarity, we present only the topic
object.

61

Fig. 7. The dependency graph created for the topic object in the community forum
example

Invalidation clues The propagator described in the previous chap-
ter, the propagator applies all changes, when an update occurred. It
modifies at first the primary storage and then secondary storages
are modified simultaneously. In this chapter, we assume the applica-
tion modifies data in RDBMS itself. Then the update is submitted
to the cache manager, which detects objects that need invalidation
and removes them from the cache. It does not update cached data.
This is also in contrast to the algorithms considered in the previous
chapter.

The cache manager only detects changes and removes stale ob-
jects from a cache. There are several arguments to do so. It is encour-
aged by design patterns to work with key-value cache storages like
Memcached. Applications that make use of RDBMS and such caches
mostly decide on the cache-aside design pattern and lazily put data
into the cache. It is the application logic which takes care of putting
data into the cache. Each time data is needed, the application checks
if it is present in the cache. If it is, it fetches data. If it is absent, the
data is retrieved from RDBMS and loaded into the cache. This is
the fallback which assures that no matter what is stored, the proper
data is returned.

When a new update is received, the cache manager checks if
a vertex, corresponding to this update, exists. If not, it is being

62

added with all edges: a strong edge to the primary key attribute and
weak edges to all attributes of modified columns. Then the system
identifies classes of objects that may need an invalidation. It simply
checks if there exists an attribute that is modified by the update
and is projected by the query creating cached objects. If such an
attribute is found, there exist instances that need to be invalidated.
This can be also seen on the example graph from Figure 7. When
a new forum is added there is no path between U1 and the topic
vertex. The topic object does not need to be invalidated since no
attribute used to create it have been changed.

At first, the cache manager determines classes of objects which
may contain invalid objects. For each query used for creating objects
(S1, S2 1, S2 2, S3 1, S3 2, S 4) the trace of this query contains the
information on the sequence of its joins. As in the previous chapter,
these traces are used to create strong paths between update ver-
texes and query vertexes. For each strong path the cache manager
traverses it and gathers values of the traversed vertices. The previ-
ously described algorithm is run and it ends up with the primary
keys of queries used for creating objects. These are the primary keys
of cached objects that need to be invalidated. Then they are removed
from a cache.

Let us now return to our example. When a new post is added,
the cache manager goes from an id vertex of the post table to the
topic id in the tables post and topic. Using the value of the topic id,
it knows the primary key of the object to invalidate since objects and
select statements are parameterized by the same primary key. In this
case no additional queries need to be performed on the database.
However, this is not true in all cases.

Let us now suppose an editing operation of a user’s nick. Having
the id of a user, the cache manager needs to find all posts written by
the user and performs queries in the database. At this stage when
traversing a strong path, the system traverses through one-to-many,
and also many-to-one associations. This is possible, as all data is
stored in the relational database. It requires an additional query of
the form:

SELECT p.id from post p where p.user_id = $user_id$

63

In the previous chapter the algorithm could only traverse through
one-to-many associations in one way, as there were no assumptions
about databases that store it. Now, it is possible and the algorithm
gathers multiple values when traversing a path. Then it invalidates
all topics where the user has written posts. This can be seen as a
drawback but it is impossible to examine if the user’s post is the
first or the last without querying the database. One can argue if it
can be improved for min() and max() functions but it surely cannot
be done for avg() so no general solution without digging into SQL
syntax exists.

The other thing is the chain of joins between tables. If a found
path goes through several joins which require querying database,
the system can be inefficient. However it applies well in most cases
since in OLTP database queries shall be kept as simple as possible.
One should also resemble that even when dealing with complicated
database schemata, not all of data has to be cached and objects
should be kept as granular as possible to prevent extensive invalida-
tion.

According to us, the implementation of the invalidation algo-
rithm should strongly rely on the data model of the development
framework. Let us suppose using an object relational mapper (ORM)
based on the active record pattern. The graph can be constructed
dynamically, i.e. each time the query is performed the system checks
if it is included in the graph. If not, it is being added. The algorithm
needs only to identify the update and select statements used for cre-
ating cached objects. When using the active record pattern, update
methods are performed on a single row and are easy to discover.
On the other hand select statements are performed only via built-
in ORM’s methods. These methods can be overridden by new ones
that execute select statements for creating cached objects. When do-
ing so, we can clearly distinguish between select statements used for
creating objects and other statements.

6.4 Experimental results

The presented model has been tested on the RUBiS benchmark [13].
RUBiS is an auction site prototype modeled after www.ebay.com and
provides a web application and a client emulator. The emulator is

64

modeled according to a real life workload and redirects the client
from one webpage to another due to a predefined transition proba-
bility. In the presented benchmark we have used 100 client threads
running at the same time for 18 minutes.

Fig. 8. The comparison of different caching techniques. The numbers indicate average
count of select statements for each technique

We have tested the application in different modes: (1) without
caching, (2) with time-to-live caching, (3) with the cache manage-
ment based on the dependency graph.

The application benchmark has been run three times in each
mode. Figures 8-10 display achieved results. Our cache manager re-
duces up to 54% of performed queries. It is more efficient than tech-
niques based on time-to-live and does not store stale data. In the
experiment, no cached objects have been invalidated when unneces-
sary and there have been no queries that did not fit into to the SQL
syntax boundaries defined in the presented model.

We have also measured the number of data modifications and
the number of cache invalidations as presented in Figure 10. In
the presented benchmark 7.1% of database statements have mod-
ified data. None of them updated more than one row. This proves
that our principal assumption that we deal with the read dominant
database communication is correct. Figure 9 shows that the num-
ber of cache invalidations does not grow rapidly when compared to
database statements. The right figure shows that almost 61% cache

65

Fig. 9. Number of data modifications.

invalidations can be saved by the presented model when compared
to time-to-live techniques. This proves the significant improvement
of the presented model with respect to those techniques.

6.5 Analysis

The database bottleneck is the most serious problem in modern web
applications. The widely applied industry solution is a scalable key-
value cache. However, this causes the consistency problem between
the relational database and the cache. In this chapter we described
our solution that is based on the dependency graph to detect inval-
idations of the cached objects when updates occur. Since a general
solution to the consistency problem of relational and key-value stor-
ages is difficult and may be inefficient, we defined boundaries to the
SQL syntax used to solve the problem efficiently. We have provided
series of tests exploiting the RUBiS benchmark. From that we ob-
served that SQL boundaries are not harmful in the context of web
applications and our model assumptions prove to be correct. We
remark the significant reduction of performed database statements.
The presented approach is more efficient than time-to-live techniques
and does not allow serving data which is not up to date. When com-

66

Fig. 10. The number of cache invalidations in different models.

pared to the template approach several improvements need to be
stated. Firstly, it allows join and aggregation in select statements
which is very important since many aggregation functions are used
in the modern web applications to provide frequent counters dis-
played on websites. Secondly, template based approaches need to
know all performed statements classes in advance since the evalua-
tion of invalidation rules is time consuming. Our dependency graph
can be easily updated at any time since adding or removing vertices
does not require complex operations.

When compared to maintaining materialized views our mecha-
nism does not exploit any knowledge of cached data and its struc-
ture. As the invalidation policy does not rely on the cached data and
its structure, it allows storing semi-structured data. The future work
may involve caching whole HTML code fragments. This can be also
understood as an interesting consistency mapper between database
and websites components for storing the current HTML.

67

7 PropScale: an update propagator service for
a joint storage

In this chapter we describe PropScale, i.e. our proof-of-concept im-
plementation of the update propagator for joint scalable storage sys-
tems. We present the architecture of the propagator and design issues
that have arisen including synchronization, transactional properties
and fault tolerance.

7.1 System architecture

We have implemented PropScale in Java 6. We believe that Java suits
best our needs because of its portability. PropScale contains drivers
to backend storages. All SQL and NoSQL storages do have Java
drivers. This does not have to be true for other programming lan-
guages. However, clients connecting to the update propagator need
not to be implemented in Java.

Propscale API The communication with the propagator API is
done by Thrift. Thrift is ”a software framework for scalable cross-
language service development” [55]. It has been developed at Face-
book and became open source in April 2007. In 2008, it entered
the Apache Incubator. We have chosen Thrift since it is portable to
several languages and it allows automatic source code generation for
services. According to [55], it successfully integrates with C++, Java,
Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript,
Node.js, Smalltalk, and OCaml.

Thrift generates code in several languages while the communi-
cation is done via a binary protocol. This is a clear advantage over
SOAP (Simple Object Access Protocol) [14], which encodes messages
into XML.

The API of the update propagator consists of three methods:
insert, update and remove. We describe briefly structures that are
used when communicating with the propagator. First, we introduce
two enumerators that define types of operations on relations and
elementary data types.

68

enum UpdateType{

SET = 1,

INCR = 2,

DECR = 3,

CONCAT = 4

}

enum DataType{

INTEGER = 1,

STRING = 2,

FLOAT = 3,

DATE = 4,

BOOL = 5

}

Then we define the structure V alue which represents values of single
attributes sent in requests:

struct Value{

1: string name

2: string value

3: DataType type

4: UpdateType update

}

A request contains the name of the updated relation. It also con-
tains the list of modified values (columns). Eventually, the condition
list stores conditions selecting tuples to be updated. Currently, we
only allow updates that modify tuples identified by their primary
key. This can be extended in the future, thus conditions for updates
are stored as a list.

struct Request{

1: string table

2: list<Value> columns

3: list<Value> condition

}

Each response contains a string message. When adding a new
tuple, the created primary key is returned:

69

struct Response{

1: i16 type

2: string message

}

As stated earlier, our service consists of three methods. Each of them
takes only one argument: a structure Request.

service Propagator{

Response insert(1: Request arg)

Response update(1: Request arg)

Response remove(1: Request arg)

}

Using the abovementioned definitions of structures, the Thrift
compiler generates code of RPC clients and servers that can com-
municate across boundaries of programming languages.

Drivers Together with our implementation of the propagator we
have also developed drivers for some storages. However, it is easy
to build a new PropScale driver for a storage. As defined in Section
5.4, the algorithm uses five methods: addPrimary, add, modify,
retrieve and delete. In order to create a custom driver, one has to
implement the Java interface Storage defined as:

public interface Storage {

public int update(String proj, Column key,

List<Column> values);

public String insert(String proj,

List<Column> values,

boolean genId);

public int delete(String proj, Column key,

List<Column> columns);

public void select(String proj, Column key,

List<Column> select);

}

70

The first argument of all these methods is a string determining
which projection is to be changed. The methods: update, delete, and
select contain Column as a second parameter. This contains the
primary key of the modified tuple and allows its identification in a
backend storage. Methods, update and insert, contain the parameter
values which is a list of Column elements and contains values of
attributes. Each Column object contains an attribute of the relation
it modifies, and a new value. Additionally, in the insert method the
Boolean genId determines if the backend storage has to generate
the primary key of the new tuple. If set to true, the primary key
is generated when adding a new tuple. When it equals false, the
primary key is contained in values. Generating the primary key is
not obligatory for a driver and a storage, as long as it is not used as
the primary projection of some relation. The last argument of the
select method contains a list of attributes that are fetched from the
backend storage.

The method delete contains parameter columns, which specifies
the list of attributes that need to be cleared. This is not important
in case of relational databases, since deleting a tuple may be done
by a single delete query without any knowledge of the relation’s
attributes. However, in case of key-value storages a driver may keep
each attribute as a separate value. For instance, the name of a user
with a given user id primary key may be stored as a value of the
key user::name::user id. Then in order to remove all user data, say
name and address, a list of attributes needs to be specified and this
is contained in the last argument of the delete method.

We have implemented four drivers: PostgreSQL, MongoDB, Re-
dis and Solr. They cover completely different approaches to stor-
ing and retrieving data. However the simplicity of the operations
run on backend storages allows easily implementing their drivers for
the update propagator. This relies on our basic assumption that we
only provide a layer for write operations. Designing and implement-
ing such drivers for read operations would be extremely difficult.
It is possible to provide reasonable API for most SQL queries (e.g.
JDBC). On the other hand, MongoDB allows to send a Map/Reduce
recipe as a query and execute it on the server side. According to this,
there is no good option for providing read and write API’s at once.

71

Thus, the requirements of PropScale are fairly simplistic. Integrating
a new storage system with PropScale is therefore relatively easy.

7.2 Synchronization and Multithreading

PropScale works in a multithreaded environment. It contains threads
dedicated to retrieving a Thrift request and generating the response
to the client. Threads also run the dependency graph and the list
of tasks to be run on backend storages. Each driver has a specified
number of dedicate threads that apply changes in the given storage.
This allows storing persistent connections and limiting their number.

Additional group of threads is dedicated to logging. When a new
request arrives, all changes that are going to be applied on backend
storages are logged into a file with sent tasks. Then, after being
applied, they are also logged to the file with finished tasks. The
system allows configuring how frequently the logs are written to the
disk. This can be done at each request. In this case the disk file
always stores the current log. However, in order to reduce the time
spent on disk writes, log flushes can be aggregated into batches.
Then, the memory log is dumped to the disk at specified intervals.

Logging is applied in order to prepare the system for sudden
breakdown. In such an event, it is possible that some backend stor-
ages are updated while others are not. When the system restarts, it
compares two logs with registered tasks and tasks that have been
done, and executes tasks that have been registered but not accom-
plished. This protects PropScale against data loss in case of a sudden
breakdown.

The other possible threat to the system is implied by the dif-
ferences between backend storages. Problems arise because of their
dissimilar characteristics. Some storages allow extremely fast writes
while other may suffer from slow writes. MongoDB is an example of
a fast writer, while Solr is slow in this respect. Suppose an opera-
tion which adds a tuple into a primary projection run by MongoDB.
Then the operation also adds this tuple to Solr. The response to the
client is asynchronous and may be sent before applying changes to
Solr. As the workload increases, this can lead to a hazardous situ-
ation where the number of unfinished Solr tasks gets too high. For
a short time this can cause a delay between data modifications in

72

different storages. As a long term effect, the system may be unable
to finish all Solr tasks and ends up with inconsistent data between
storages.

In order to avoid such hazardous situation, we apply the Java
mechanism implemented by the class SynchronousQueue. This class
implements a blocking queue that blocks a thread putting an element
into the queue until there is a thread registered to pull from it. As a
result, the size of such a queue always equals zero. When created with
the special argument, an instance of the SynchronousQueue behaves
as a FIFO queue. The only difference is that it blocks threads trying
to add new elements.

In our implementation, we use SynchronousQueue to store tasks
for backend storages’ drivers. Before a response is returned to the
client, the system assures that all asynchronous tasks for backend
storages have been successfully added to a SynchronousQueue. This
assures that driver threads have fetched tasks for execution. Then a
response is returned to the client. This assures that execution of all
tasks in backend storages have been started and prevents from the
abovementioned problem. When the workload increases significantly,
the client response time may increase. As the number of threads
retrieving a client request and sending the response is limited, the
unacceptable workload results with no more connections available.
This is a clear signal for the application that something goes wrong
with the designed architecture for the given workload. This protects
consistency of data in backend storages even if the configuration of
the schema and backend storages is wrong.

73

8 The benefits of applying PropScale

In this chapter we describe sample scenarios of applying PropScale.
They are provided with experimental results that evaluate the im-
provement when compared to traditional methods. In our tests we
have not used YCSB [20]. Although it is a valid benchmark for cloud
data storages, it does not allow more complicate scenarios which have
been used for benchmarking PropScale.

In our tests we assume each storage is hosted separately on a
single Intel i5-2400 machine with 3.10GHz CPU’s and 4GB RAM.
Distinct machines of the same type have been used to generate the
workload and for PropScale web service.

8.1 Introduced overhead

Before evaluating the benefits, we check if the additional compu-
tation performed by PropScale introduces a significant overhead. In
this test, we assume there is only one relation book in the system and
the only projection is stored within a single PostgreSQL database
which contains all attributes of book. We add new tuples to the rela-
tion and test the overhead of the propagator web service layer. The
results are presented in Figure 11. The diagram presents the total
time of the client request to the propagator compared to the time of
the operation in PostgreSQL. This allows comparing the overhead
within different workloads. Figure 11 shows that the overhead intro-
duced by the propagator web service is independent of the system
workload and remains at the acceptable level.

8.2 Offset between updates in storages

In this test we evaluate the offset between actual update opera-
tions performed in the storages. When applying changes on multiple
storages PropScale updates at first the specified projection. It is
called the primary projection of the relation and is predefined in
the schema. As the storage with the primary projection is updated,
the response is returned to the client. Other storages are updated
asynchronously.

As the benchmark environment, we have chosen the bookstore
example with relations: book, user, book sold and book comment. The

74

database stores books’ data, data on customers, information on sold
items and book comments put by users. In our benchmarks, we have
assumed 1 million of books and users, 5 millions of sold items and
10 millions of comments.

In this test, we examine a scenario when the book data are dis-
tributed among different databases: PostgreSQL for storing financial
data, MongoDB as a scalable storage with book information and Re-
dis as fast storage for simple book statistics. The projection stored in
PostgreSQL has been defined as the primary projection of the rela-
tion book. Thus changes are first applied to PostgreSQL. We measure
the time until they are applied in MongoDB and Redis. Figure 12
shows the results. Again we can observe that the tested offset did
not grow when the workload increased. The relational schema in this
test is the same as in the previous one, where we have inserted all
book data into RDMBS. On the functional level this is the same. Al-
though storing the same data in different storages introduced extra
workload, the system runs more than 12000 operations per second,
i.e. more than in the first test where only PostgreSQL database was
used.

8.3 PropScale for cloud integration

Cloud databases became an interesting issue in recent years. Sev-
eral companies outsource their databases to external services like
Amazon SimpleDB. In the bookstore example, it is worth storing
book comments in a cloud. In that case, one does not have to take
much care of scalability issues and service layer agreement is clearly
defined. However, companies may be reluctant to store their finan-
cial or customer data outside of their company’s system. Thus, the
business critical data are kept in a local storage, while outsourcing
less-critical data to cloud database suppliers. The research described
in [43] compares the cost of a single request from different cloud
database providers measured under a different workload. External
cloud databases are cheaper (per request cost), when the number of
requests increases. According to this, it may be a business decision to
move frequently read data to cloud data stores while leaving the rest
in the local database. In that case the problem of integrating stor-
ages into a single system arises and Propscale solves it. It tracks the

75

0 2000 4000 6000 8000 10000 12000
operations per second

0

1000

2000

3000

4000

5000

6000

7000

m
ic

ro
se

co
n
d
s

The offset of the propagator

Request time
PostgreSQL time

Fig. 11. The results of the experiment on the overhead of the propagator. The gap
between the curves is the additional time above the PostgreSQL operation needed
when using the propagator.

data stored in different locations and makes sure that the storages
constitute a consistent database.

8.4 Custom statistics

The real advantage of PropScale is the ability to define frequently
accessed statistics and keep them in storages with quick data ac-
cesses like key-value databases. PropScale allows directly defining
which statistics have to be stored. To evaluate this feature we intro-
duce a benchmark built on a community forum. Suppose the system
contains three relations: forum, thread and post. In our benchmark
we assume 100 fora, 10K threads with 100 posts each, which results
in 10 million posts.

We examine the following data access patterns, which we believe
are the most frequent: (1) adding a single post, (2) showing the list
of fora, (3) retrieving the list of threads within a forum and (4)
listing posts within a thread. When retrieving the list of fora and
threads, the system needs to read the information on the last post
in a thread/forum, its author and the date when an item has been

76

0 2000 4000 6000 8000 10000 12000
operations per second

0

1000

2000

3000

4000

5000

6000

m
ic

ro
se

co
n
d
s

The offset of data updates in Redis

PSQL time
PSQL time + propagator time
PSQL time + propagator time + REDIS time

0 2000 4000 6000 8000 10000 12000
operations per second

0

1000

2000

3000

4000

5000

6000

7000

m
ic

ro
se

co
n
d
s

The offset of data updates in MongoDB

PSQL time
PSQL time + propagator time
PSQL time + propagator time + MONGO time

Fig. 12. The offset between updating data in the primary storage and in secondary
storages. The bottom curve represents time spent in the primary storage PostgreSQL.
The middle curve includes the offset introduced by the propagator. The upper curve
presents the total time till all changes appeared in secondary storage.

77

added. Moreover, when listing fora/threads, we need to retrieve the
number of contained threads/posts. In our benchmark we examine
the queries that add a single post and retrieve the first 20 posts of
a thread. These three queries are run randomly by the benchmark
with the probability of: 10% for adding posts and 45% for retrieving
posts and 45% for listing threads.

In the naive architectural choice, we store data in MySQL in
the third normal form without any redundant columns. In that case
queries that add or retrieve posts perform well, however retrieving
threads with all needed data is significantly slower than the accept-
able level. In that case the achieved throughput is 5 operations per
second when the workload is generated by a single thread. At this
workload the average time for retrieving a thread is 376 milliseconds,
while adding and retrieving posts requires 4 and 49 milliseconds re-
spectively.

The obvious countermeasure is to add redundant data to the
system. This can be done by adding extra columns to the relational
database or by storing the redundant data in other storage. We com-
pare these two options. The second one is implemented by the Prop-
Scale and the redundant data is stored in Redis. The clear advantage
of the second choice is that it scales well. The disadvantage of the
first choice is that when a new post is added, the database needs
to update the corresponding thread and the forum tuple. We know
that query caches implemented in relational databases perform well
when data are not modified. However the frequent read and write
accesses to the same tuples significantly reduce the performance of
most RDBMS. This has been confirmed in our tests. The results are
presented in Figures 13 and 14. It is even hard to present them on
a single graph. When storing data only in MySQL the request time
started to increase at the rate of 2000 ops per second and the next
test with 2400 ops per second failed. The similar test with PropScale
performed well until more than 3000 ops per second and failed on
5200.

The performance of the presented system relies on mapping dif-
ferent update operations into the same update vertex, thus we can
precompute the steps of the algorithm for each update type. This
is especially efficient for web applications, since users perform the
same actions on the site, and similar database queries are run. As

78

0 1000 2000 3000 4000 5000
operations per second

0

20000

40000

60000

80000

100000

120000

re
q
u
e
st

 t
im

e
 i
n
 m

ic
ro

se
co

n
d
s

The forum benchmark - PropScale

PropScale add post
PropScale list threads
Request list posts

Fig. 13. PropScale correspond to the forum application built on MySQL/Redis inte-
grated with PropScale respectively. The end of graph determines the maximal number
of operations per second such that, the benchmark did not fail, i.e. the expected number
of operations has finished.

79

400 600 800 1000 1200 1400 1600 1800 2000
operations per second

0

5000

10000

15000

20000

25000

30000

35000

40000

re
q
u
e
st

 t
im

e
 i
n
 m

ic
ro

se
co

n
d
s

The forum benchmark - RDBMS-R

RDBMS-R add post
RDBMS-R list threads
RDBMS-R list posts

Fig. 14. RDBMS-R correspond to the forum application built on MySQL with redun-
dant columns. The end of graph determines the maximal number of operations per
second such that, the benchmark did not fail, i.e. the expected number of operations
has finished.

80

the number of different update types can grow exponentially, with
the number of attributes, the implementation of the algorithm can
be optimized to precompute the update of each attribute separately.
The update propagation mechanism is scalable since the graph size
does not depend on the data size.

81

9 Conclusion

According to the CAP theorem [10], there exists a trade-off between
consistency and availability. Some storages like relational databases
provide ACID properties, but do not scale well. On the other hand,
possibly inconsistent NoSQL storages provide high availability of the
storage. In this thesis we have presented a solution that allows tuning
the trade-off in a better way. Using our solution one can integrate
dissimilar storage types with different data architectures: RDBMS,
key-value storages and others. Within our model, an application’s
data can be easily split into smaller chunks and each of them can be
provided with a storage solution of appropriate characteristics.

Creating a scalable database storage is a valid research problem.
We have focused on web applications which have given us additional
assumptions about the data model: (1) read and update operations
are known in advance, (2) data accesses are read dominant and (3)
numerous consistency levels are needed in different contexts. We be-
lieve that these assumptions facilitate developing a better trade-off.

We have presented the scalable joint storage system which is
based on various underlying storages. It propagates updates to keep
all data copies consistent with each other. We have shown the archi-
tecture and described a proof-of-concept implementation. The up-
date propagator algorithm has been described in details. The idea
of the joint storage based on the underlying storages allows to take
advantages of different architecture that suit best specific data.

We believe that it allows building scalable web applications at
lower cost, because it eliminates the risk of programming faults af-
fecting the data consistency that are difficult to fix and detect.

83

References

1. D. Agrawal, A. E. Abbadi, S. Antony, and S. Das. Data management challenges
in cloud computing infrastructures. In S. Kikuchi, S. Sachdeva, and S. Bhalla,
editors, DNIS, volume 5999 of Lecture Notes in Computer Science, pages 1–10.
Springer, 2010.

2. D. Agrawal, A. E. Abbadi, S. Das, and A. J. Elmore. Database scalability, elas-
ticity, and autonomy in the cloud - (extended abstract). In J. X. Yu, M.-H. Kim,
and R. Unland, editors, DASFAA (1), volume 6587 of Lecture Notes in Computer
Science, pages 2–15. Springer, 2011.

3. A. Aksyonoff. Introduction to search with Sphinx: From installation to relevance
tuning, 2011.

4. M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and B. Rein-
wald. Cache tables: Paving the way for an adaptive database cache. In VLDB,
pages 718–729, 2003.

5. K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. Dbproxy: A dynamic data
cache for web applications. In U. Dayal, K. Ramamritham, and T. M. Vijayaraman,
editors, ICDE, pages 821–831. IEEE Computer Society, 2003.

6. J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive Guide Time
to Relax. O’Reilly Media, Inc., 1st edition, 2010.

7. B. N. Bershad and J. C. Mogul, editors. 7th Symposium on Operating Systems De-
sign and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA. USENIX
Association, 2006.

8. J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently updating materialized
views. In C. Zaniolo, editor, SIGMOD Conference, pages 61–71. ACM Press, 1986.

9. C. Bornhövd, M. Altinel, S. Krishnamurthy, C. Mohan, H. Pirahesh, and B. Rein-
wald. Dbcache: Middle-tier database caching for highly scalable e-business archi-
tectures. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors, SIGMOD Conference,
page 662. ACM, 2003.

10. E. A. Brewer. Towards robust distributed systems (abstract). In G. Neiger, editor,
PODC, page 7. ACM, 2000.

11. M. Burrows. The Chubby lock service for loosely-coupled distributed systems. In
Bershad and Mogul [7], pages 335–350.

12. Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu, and

Q. Xu. ES2: A cloud data storage system for supporting both OLTP and OLAP.
In S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan, editors, ICDE, pages 291–302.
IEEE Computer Society, 2011.

13. E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of EJB
applications. In M. Ibrahim and S. Matsuoka, editors, OOPSLA, pages 246–261.
ACM, 2002.

14. E. Cerami. Web Services Essentials. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 1st edition, 2002.

15. J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consistently
caching dynamic web data. In INFOCOM, pages 294–303, 1999.

16. J. R. Challenger, P. Dantzig, A. Iyengar, M. S. Squillante, and L. Zhang. Efficiently
serving dynamic data at highly accessed web sites. IEEE/ACM Trans. Netw.,
12:233–246, April 2004.

17. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst., 26(2), 2008.

84

18. K. Chodorow and M. Dirolf. MongoDB - The Definitive Guide: Powerful and
Scalable Data Storage. O’Reilly, 2010.

19. S. Chu. MemcacheDB: A complete guide, Mar. 2008.

20. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with YCSB. In Hellerstein et al. [39], pages 143–154.

21. C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakr-
ishnan, and N. Zeldovich. Relational cloud: a database service for the cloud. In
Franklin [29], pages 235–240.

22. S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic data
caching and replacement. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and
N. L. Sarda, editors, VLDB, pages 330–341. Morgan Kaufmann, 1996.

23. S. Das, D. Agrawal, and A. E. Abbadi. G-Store: a scalable data store for transac-
tional multi key access in the cloud. In Hellerstein et al. [39], pages 163–174.

24. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-
ters. In OSDI, pages 137–150, 2004.

25. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev., 41:205–220, October 2007.

26. Domain-Driven Design Community. Aggregate, Mar. 2012.

27. Flexviews. Incrementally refreshable materialized views for MySQL, Jan. 2012.

28. M. Fowler. Aggregate oriented database, Jan. 2012.

29. M. Franklin, editor. CIDR 2011, Fifth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings.
www.cidrdb.org, 2011.

30. C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. Olston, and A. Toma-
sic. Scalable consistency management for web database caches. Technical report,
School of Computer Science, Carnegie Mellon University, 2006.

31. C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. Olston, and A. Toma-
sic. Scalable query result caching for web applications. Proc. VLDB Endow.,
1:550–561, August 2008.

32. S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In M. L. Scott
and L. L. Peterson, editors, SOSP, pages 29–43. ACM, 2003.

33. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

34. H. Guo, P.-Å. Larson, and R. Ramakrishnan. Caching with ’good enough’ currency,
consistency, and completeness. In K. Böhm, C. S. Jensen, L. M. Haas, M. L.
Kersten, P.-Å. Larson, and B. C. Ooi, editors, VLDB, pages 457–468. ACM, 2005.

35. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. In P. Buneman and S. Jajodia, editors, SIGMOD Conference, pages 157–166.
ACM Press, 1993.

36. H. Gupta and I. S. Mumick. Incremental maintenance of aggregate and outerjoin
expressions. Inf. Syst., 31(6):435–464, 2006.

37. E. Hatcher and O. Gospodnetic. Lucene in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2004.

38. P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR,
pages 132–141. www.crdrdb.org, 2007.

39. J. M. Hellerstein, S. Chaudhuri, and M. Rosenblum, editors. Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA,
June 10-11, 2010. ACM, 2010.

85

40. A. Iyengar, J. Challenger, D. M. Dias, and P. Dantzig. High-performance web site
design techniques. IEEE Internet Computing, 4(2):17–26, 2000.

41. A. V. Jonas Partner. Neo4j in Action. Manning Publications, 2012.

42. D. Katsaros and Y. Manolopoulos. Cache management for web-powered databases.
In Web-Powered Databases, pages 203–244. Idea Group Publishing, 2003.

43. D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative architectures
for transaction processing in the cloud. In A. K. Elmagarmid and D. Agrawal,
editors, SIGMOD Conference, pages 579–590. ACM, 2010.

44. D. Kossmann, T. Kraska, S. Loesing, S. Merkli, R. Mittal, and F. Pfaffhauser.
Cloudy: A modular cloud storage system. PVLDB, 3(2):1533–1536, 2010.

45. T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency rationing in
the cloud: Pay only when it matters. PVLDB, 2(1):253–264, 2009.

46. A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

47. R. M. Lerner. At the forge: Redis. Linux J., 2010(197), Sept. 2010.

48. P. Leszczynski and K. Stencel. Consistent caching of data objects in database
driven websites. In B. Catania, M. Ivanovic, and B. Thalheim, editors, ADBIS,
volume 6295 of Lecture Notes in Computer Science, pages 363–377. Springer, 2010.

49. J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao. Deuteronomy: Trans-
action support for cloud data. In Franklin [29], pages 123–133.

50. W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, D. Agrawal, Y. Akca, and
K. Taniguchi. Cacheportal ii: Acceleration of very large scale data center-hosted
database-driven web applications. In VLDB, pages 1109–1112, 2003.

51. Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and
J. F. Naughton. Middle-tier database caching for e-business. In M. J. Franklin,
B. Moon, and A. Ailamaki, editors, SIGMOD Conference, pages 600–611. ACM,
2002.

52. A. Manjhi, P. B. Gibbons, A. Ailamaki, C. Garrod, B. M. Maggs, T. C. Mowry,
C. Olston, A. Tomasic, and H. Yu. Invalidation clues for database scalability
services. In R. Chirkova, A. Dogac, M. T. Özsu, and T. K. Sellis, editors, ICDE,
pages 316–325. IEEE, 2007.

53. I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and
summary tables in a warehouse. In J. Peckham, editor, SIGMOD Conference,
pages 100–111. ACM Press, 1997.

54. D. Obasanjo. When databases lie: Consistency vs. availability in distributed sys-
tems, Oct. 2007.

55. J. R. Ronald Cohn. Apache Thrift. VSD, 1st edition, 2012.

56. P. Saab. Scaling memcached at Facebook, Dec. 2008.

57. K. Salem, K. Beyer, B. Lindsay, and R. Cochrane. How to roll a join: asynchronous
incremental view maintenance. SIGMOD Rec., 29(2):129–140, May 2000.

58. A. P. Sheth and M. Rusinkiewicz. Management of interdependent data: Specifying
dependency and consistency requirements. In Workshop on the Management of
Replicated Data, pages 133–136, 1990.

59. D. Smiley and E. Pugh. Apache Solr 3 Enterprise Search Server. Packt, 2011.

60. M. Stonebraker. SQL databases v. NoSQL databases. Commun. ACM, 53:10–11,
April 2010.

61. M. Stonebraker and U. Cetintemel. ”one size fits all”: An idea whose time has come
and gone. In Proceedings of the 21st International Conference on Data Engineering,
ICDE ’05, pages 2–11, Washington, DC, USA, 2005. IEEE Computer Society.

86

62. M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era: (it’s time for a complete rewrite). In
Proceedings of the 33rd international conference on Very large data bases, VLDB
’07, pages 1150–1160. VLDB Endowment, 2007.

63. S. Tiwari. Professional NoSQL. Wrox Programmer to Programmer. John Wiley
& Sons, 2011.

64. N. Tolia and M. Satyanarayanan. Consistency-preserving caching of dynamic
database content. In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and
P. J. Shenoy, editors, WWW, pages 311–320. ACM, 2007.

65. P. Valduriez. Principles of distributed data management in 2020? In
A. Hameurlain, S. W. Liddle, K.-D. Schewe, and X. Zhou, editors, DEXA (1),
volume 6860 of Lecture Notes in Computer Science, pages 1–11. Springer, 2011.

66. W. Vogels. Eventually consistent. Commun. ACM, 52:40–44, January 2009.
67. C. Wasik. Managing Cache Consistency to Scale Dynamic Web Systems. PhD

thesis, University of Waterloo, 2007.

