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StreszczenieNiniejsza rozprawa po±wi¦cona jest uogólnieniu klasycznej teorii kompleksów grupwprowadzonej A. Hae�iegera. Pokazujemy, »e kompleksy grup Hae�iegera s¡ szczegól-nym przypadkiem sªabych funktorów zde�niowanych przez W. Thomasona. Pozwalato zaprezentowa¢ wyniki Hae�iegera w znacznie szerszym kategoryjnym kontek±cie.Gªównym wynikiem rozprawy jest klasy�kacja epimor�zmów kompleksów grup.Jej szczególnym przypadkiem jest klasy�kacja epimor�zmów kompleksów grup z abe-lowym jadrem i epimor�zmów z lokalnie staªym j¡drem zaprezentowana przez Hae-�iegera. Dowodzimy, »e istnieje wzajemnie jednoznaczna odpowiednio±¢ pomi¦dzyklasami równowa»no±ci epimor�zmów kompleksów grup a elementami drugiej grupykohomologii pewnej maªej kategorii. Je±li kategoria ta jest zde�niowana przez pewn¡dyskretn¡ grup¦, wówczas otrzymujemy dobrze znan¡ klasy�kacj¦ rozszerze« grup.Ponadto dla ka»dego epimor�zmu kompleksów grup konstruujemy odpowiednik ka-tegoryjnego j¡dra tego epimor�zmu. Jest to kompleks grup wraz z homomor�zmemspeªniaj¡cym pewne uniwersalne wªasno±ci.W ostanim rozdziale pokazujemy, »e epimor�zm kompleksów grup indukuje epimor-�zm ich grup podstawowych. Co wi¦cej, dla ka»dego epimor�zmu kompleksów grup
G̃ −→ G konstruujemy homomor�zm kompleksów grup K −→ G̃, który jest nakryciem.Ma ono te wªasno±¢, »e ci¡g K −→ G̃ −→ G homomor�zmów kompleksów grup in-dukuje rozszerzenie grup podstawowych.

Sªowa kluczowekompleks grup, epimor�zm kompleksów grup, rozszerzenie kompleksów grup, kategoriamaªych kategorii, op-lax funktor, kohomologie maªych kategorii, grupa podstawowakompleksu grup, grupoid, nakrycie maªej kategorii, nakrycie kompleksu grup
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AbstractThe thesis is devoted to a generalization of the classical theory of complexes of groupsintroduced by A. Hae�ieger. We show that a complex of groups de�ned by Hae�iegeris a special case of an op-lax functor de�ned by R.W.Thomason. This allows us topresent Hae�ieger's results in a much more general categorical context.The main result of the thesis is the classi�cation of epimorphisms of complexes ofgroups. A special case of this is the classi�cation of epimorphisms of complexes ofgroups with abelian or locally constant kernel given by Hae�ieger. We prove that thereexists a natural bijective corrspondence between equivalence classes of epimorphismsof complexes of groups and elements of the second cohomology group of a certain smallcategory. If this category is de�ned by a discrete group, then we obtain the well knownclassi�cation of extensions of groups.In addition, for each epimorphism of complexes of groups we construct an anlogueof the categorical kernel of the given epimorphism. It is a complex of groups and ahomomorphism which satisfy a certain universal property.In the last Chapter we prove that each epimorphism of complexes of groups yieldsan epimorphism of the fundamental groups. Moreover, for a given epimorphism ofcomplexes of groups G̃ −→ G we consturct a homomorphism of complexes of groups
K −→ G which is a covering. The sequence of homomorphisms K −→ G̃ −→ G yieldsan extension of the fundamental groups.
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IntroductionWe generalize the notion of a complex of groups de�ned by A. Hae�ieger ([H1], [B-H])in the following way:De�nition Let C be a small category and let Gr denote the category of groups. Atwisted diagram of groups G : C −→ Gr is given by1. for each object c ∈ Ob C a group G(c)2. for each morphism l : c′ −→ c ∈ Mor C a homomorphism of groups G(l) : G(c′) −→ G(c)3. for two composable morphisms c′′
l′ // c′

l // c ∈ Mor C an element gl,l′ ∈ G(c),called the twisting element, such thati) Ad(gl,l′)G(ll
′) = G(l)G(l′), where Ad(gl,l′) is the conjugation by gl,l′ii) G(l)(gl′,l′′)gl,l′l′′ = gl,l′gll′,l′′ for each triple . l′′ // . l′ // . l // . ∈ Mor C ofcomposable morphisms (cocycle condition)As will turn out later, we can assume that a twisted diagram of groups satis�es thenormalizing condition, that is G(idc) = idG(c) for each c ∈ Ob C.�Sheafs� of groups A twisted diagram of groups G : C −→ Gr assings to everyobject c of an indexing category C a group G(c) and to every morphism c′ −→ c ahomomorphism G(c′) −→ G(c), however it does not have to be completely functorial- it preserves composition only up to a compatible family of inner automorphisms.A discrete group is a special case of a twisted diagram of groups, we assume that

C = ∗ is the category which consists of one object. We consider twisted diagrams ofgroups as generalizations of groups or �sheafs� of groups modelled on C. Many conceptsassociated with groups carry over to twisted diagrams of groups. A homomorphism
φ : G′ −→ G of twisted diagrams of groups over a functor F : C′ −→ C consists oflocal homomorphisms of local groups {φc′ : G′(c′) −→ G(F (c′))}c′∈Ob C′ subject to somerelations (2.1.5).Group complexes de�ned by group actions The starting point of Hae�ieger'swork was the following example. Assume that a group G acts on a simplicial complex
X̃ in such a way that the orbit space X := X̃/G has a natural simplicial structure andthe quotient map q : X̃ → X is simplicial. Simplices of X are partially ordered by(reverse) inclusion; thus they form a category C. We de�ne a weak functor from C tothe category of groups G : C → Gr by assigning to every simplex c ∈ C �rst a simplex
c̃ ∈ q−1(c) and then its stabilizer (isotropy subgroup) Gc̃. If c′ ⊂ c then we pick up anelement g ∈ G such that c̃′ is a face of the simplex gc̃. We de�ne a monomorphism
ψc′c : Gc̃ → Gc̃′ as the composition of the conjugation by Ad(g) : Gc̃ → Ggc̃ and the9



inclusion Ggc̃ ⊂ Gc̃′. Thus we obtain a �weak� functor from the category of simplices tothe category of groups and monomorphisms. Because of these choices, if we considerthe composition Gc̃ −→ Gc̃′ −→ Gc̃′′ then the monomorphism ψc′′c 6= ψc′′c′ψc′c anddi�ers from it by the conjugation with an element of the group G
c̃′′

called the twistingelement. These twisting elements satisfy the cocycle condition. Note that C is a smallcategory such that the only endomorphisms of objects are identities. Such a categoryis called a small category without loops or scwol for short.These considerations led Hae�iger in 1990 to his de�nition of complexes of groups:i.e. �weak� functors de�ned on categories related to simplicial complexes with valuesin the category of groups and monomorphisms. A complex of groups associated to anaction of a group in a way described above is called developable.Hae�iger and Thomason Much earlier in 1979 Bob Thomason considered - for ahomotopy theoretical purpose - similar ideas in a much more general categorical con-text. He considered �weak� functors F : C −→ Cat (he called them �op-lax functors�)from an arbitrary small category to the category of small categories. We note thatthe de�nition of Hae�iger is a special case of Thomason's when we assume that C hasno loops and the functor takes values in the category of groups and monomorphisms.This is because every group G can be considered as a small category BG with a singleobject and the group G as its morphisms.Twisted diagram of groups associated to an extension of groups We willpresent an example of a twisted diagram of groups on a small category associated to agroup G. Note that BG is a category with loops.Let N � G̃
η
� G be an extension of groups. Any set-theoretical cross-section of ηyields a twisted diagram of groups F : BG −→ Gr such that F(∗) = N . For detailscf. Example 2.1.10. Let EG be a category whose objects correspond to elements of Gand for each pair of objects g1, g2 there exist unique morphism g1

g−1
1 g2
−→ g2. The group

G acts on EG in the obvious way with a quotient BG. Hence the group G̃ acts on
EG via the epimorphism η, namely g̃.g = η(g̃)g. Clearly the isotropy subgroup of eachobject is isomorphic to N . It turns out that the associated twisted diagram of groups isisomorphic to F . Therefore, twisted diagram of groups F : BG −→ Gr is developable.Graphs of groups and complexes of groups The Bass-Serre theory of graphs ofgroups analyzes the algebraic structure of groups acting by automorphisms on simplicialtrees. It was formalized by J.P.Serre in [S]. The theory relates group actions on treeswith decomposing groups as iterated applications of the operations of free product withamalgamation and HNN extension, via the notion of the fundamental group of a graphof groups. To every graph of groups G, one can associate a Bass-Serre covering tree X̃,which is a tree that comes equipped with a natural group action of the fundamentalgroup. Moreover, the quotient graph of groups is isomorphic to G. The fundamentaltheorem of this theory says that if G acts on a tree X̃ and G is the associated graph ofgroups then G is isomorphic to the fundamental group of G.The theory of complexes of groups provides a higher-dimensional generalization ofBass-Serre theory. One can de�ne an analogue of the fundamental group of a graphof groups for a complex of groups. However, in order for this notion to have goodalgebraic properties (such as embeddability of the local groups in it) and in order fora good analogue of the notion of the Bass-Serre covering tree to exist in this context,10



one needs to require some sort of �non-positive curvature� condition. For details cf.Corson [C] and Stallings [St].The classifying category of a twisted diagram of groups Each twisted diagramof groups G : C −→ Gr yields a small category BG called the classifying category of G.It is a special case of the Grothendieck construction de�ned by Thomason [T]. Roughlyspeaking it is a small category �generated� by C and the local groups {G(c)}c∈ObC asautomorphisms of objects. In particular there exists a projection p : BG −→ C whichis a bijection on objects set. If G is a complex of groups, then BG is the classifyingcategory de�ned by Hae�ieger ([H1], [B-H]). If a twisted diagram of groups is a group
G then its classifying category is BG. Assume that F : BG −→ Gr is a twisteddiagram associated to an extension N � G̃

η
� G. Then the classifying category of Fis isomorphic to BG̃.Assume that a twisted diagram of groups G : C −→ Gr is a complex of groupsassociated to an action of a group G on a simply connected simplicial complex X̃.Then the geometric realization of the classifying category BG is homotopy equivalentto the Borel construction EG×GX̃ where EG is the universal covering of the Eilenberg-MacLane space BG.Fundamental group According to Hae�ieger ([H1], [B-H]) the fundamental groupof a complex of groups G : C −→ Gr is the group generated by the local groups andthe fundamental group of the small category C. The main theorem of the theory ofcomplexes of groups says that a complex of groups is developable if and only if thelocal groups inject into the fundamental group. This theorem carries over to twisteddiagrams of groups.It turns out that the fundamental group of a complex of groups G is isomorphicto the fundamental group of the classifying category of G. Hence we de�ne the fun-damental group of a twisted diagram of groups to be the fundamental group of itsclassifying category. Let F : BG −→ Gr be a twisted diagram of groups associated toan extension N � G̃

η
� G. Then the fundamental group of F is isomorphic to G̃. Incase of a diagram of groups of the form G1 ←− H −→ G2 its fundamental group isisomorphic to the push-out of the diagram, i.e. its direct limit. We prove in Theorem4.2.13 that the fundamental group of a diagram of groups F : C −→ Gr is isomorphicto its direct limit if and only if C is simply connected.Therefore the notion of the fundamental group of a twisted diagram of groupsprovides a uni�ed approach to direct limit and extension of groups.Classi�cation of epimorphisms of twisted diagrams of groups One of themain results of the thesis is the classi�cation of epimorphisms of twisted diagrams ofgroups. We say that a homomorphism ϕ : G̃ −→ G over C is an epimorphism if eachlocal homomorphism ϕc : G̃(c) −→ G(c) is surjective.We will extend the classical relation between group cohomology and extensionsof groups from single groups to twisted diagrams of groups; in particular complexesof groups introduced by Hae�iger [H1]. We begin with a description of the classicalsituation in the way suitable for generalizations. For detailed discussion cf. [B2], [R].Assume G, N are discrete groups and let φ : G −→ Out(N) := Aut(N,N)/ Inn(N)be a homomorphism. One asks whether φ comes from an extension N � G̃ � G. Itis the case if certain obstruction element o(φ) ∈ H3(G;Z(N)) vanishes, where Z(N) is11



the center of N . Then equivalence classes of extensions are in bijective correspondencewith elements of H2(G;Z(N)) or equivalently with twisted actions of G on N , wherethe twisting is de�ned by the corresponding cocycle.Let Rep denote the category whose objects are groups but morphisms are reprezen-tations i.e. MorRep(G,H) := Hom(G,H)/ Inn(H). Then any twisted diagram of groupscomposed with projection Gr −→ Rep gives a strict functor to the category Rep. Let
G : C −→ Gr be a twisted diagram of groups and F : BG −→ Rep be a functor. Thenthere exists a certain abelian module ZF : BG −→ Ab and the classi�cation theoremtakes the following form:Theorem 3.4.6 Let G : C −→ Gr be a twisted diagram of groups and let F : BG −→ Repbe a functor. If an obstruction element o(F ) ∈ H3(BG;ZF ) vanishes then there is anepimorphism G̃ −→ G such that the corresponding twisted diagram BG −→ Gr is a lift-ing of F . Moreover, set of equivalence classes of such liftings is in a natural bijectivecorrespondence with the elements of H2(BG;ZF ).Observe that if G is a group then the Theorem reduces to the classical case describedabove.Extension of twisted diagrams of groups If ϕ : G̃ −→ G is an epimorphismof twisted diagrams of groups then for each object c ∈ Ob C we obtain an extension
Nc � G̃(c) � G(c). A natural question arises; can we de�ne a �kernel� twisted diagramof groups N : C −→ Gr such that N (c) = Nc for each c ∈ Ob C? The answer turns outto be a bit complicated, in particular it may happen that N does not exist. In thiscase we obtain only a �presheaf� of groups on the small category C.Let N ′ : C′ −→ Gr be a twisted diagram of groups and let φ : N ′ −→ G̃ over
F : C′ −→ C be a homomorphism of twisted diagrams of groups. What does it meanthat the composition ϕ ◦ φ is trivial? Two interpretations are possible. We say that
ϕ ◦ φ is trivial on the local groups if for each c′ ∈ Ob C′ the local homomorphism
(ϕ ◦ φ)c′ : N (c′) −→ G(F (c′)) is trivial. We prove that an epimorphism of twisteddiagrams of groups yields an epimorphism of fundamental groups of these twisteddiagrams. This justi�es second interpretation, we say that ϕ ◦ φ is trivial on the fun-damental groups if the induced homomorphism (ϕ ◦ φ)∗ : π1(N , c′) −→ π1(G, F (c′)) istrivial.�Categorical� kernel of an epimorphism of twisted diagrams of groups Let
ϕ : G̃ −→ G be an epimorphism of twisted diagrams of groups. In order to construct the�kernel� twisted diagram we prove that there is one to one correspondece between theequivalence classes of extenstions G̃ −→ G and equivalence classes of twisted diagramsof groups on BG (Theorem 3.4.4). In particular for each epimorphism ϕ : G̃ −→ G thereexists a twisted diagram Fϕ : BG −→ Gr such that Fϕ(c) = ker

(
G̃(c) � G(c)

). More-over, there exists a homomorphism of twisted diagrams of groups ψ : Fϕ −→ G̃ suchthat the composition ϕ ◦ ψ is trivial on the local groups. It turns out that Fϕ satis�esthe following universal property; for each twisted diagram of groups F ′ : C′ −→ Gr anda homomorphism ψ′ : F ′ −→ G̃ such that ϕ ◦ ψ′ is trivial on the local groups, thereexists a unique homomorphism ψ̄′ : F ′ −→ Fϕ such that ψ ◦ ψ̄′ = ψ′.Therefore Fϕ : BG −→ Gr is an analogue of the categorical kernel of the epimor-phism ϕ : G̃ −→ G. 12



Kernel of an epimorphism of twisted diagrams of groups - second approachLet ϕ : G̃ −→ G be an epimorphism of twisted diagrams of groups. Our goal is toconstruct a twisted diagram of groups K : D −→ Gr and a homomorphism φ : K −→ G̃such that ϕ ◦ φ is trival on the local groups and on the fundamental groups.Consider the following example. Let G : C −→ Gr be a diagram of groups
1←− 1 −→ Z3 de�ned on a small category C = ∗ ←− ∗ −→ ∗. It is a graph ofgroups and its Bass-Serre covering tree is the geometric realization of a small category
D given by
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∗Clearly Z3 acts on D with a quotient C. Consider the following sequence of graphs ofgroups:
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φ // Z2 1oo // Z3

ϕ // 1 1oo // Z3
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Z2We obtain an extension of the fundamental groups
Z2 ∗ Z2 ∗ Z2 � Z2 ∗ Z3 � Z3and for each d ∈ ObD we obtain an extension of the local groups.Assume G̃,G : C −→ Gr are twisted diagrams of groups. We prove (Theorem6.3.7) that for each epimorphism ϕ : G̃ −→ G there exists a twisted diagram of groups

K : D −→ Gr and a homomorphism φ : K −→ G̃ such that ϕ ◦ φ is trivial on thelocal groups and on the fundamental groups. Moreover φ is �nal for homomorphisms
φ′ : K′ −→ G̃ satisfying these properties, i.e. for each twisted diagram of groups
K′ : D′ −→ Gr and a homomorphism φ′ : K′ −→ G̃ such that ϕ ◦ φ′ is trivial on thelocal and fundamental groups there exists a unique homomorphism φ̄′ : K′ −→ K suchthat φφ̄′ = φ′.Furthermore, the sequence of homomorphisms

K� G̃ � G13



yields an extension of the fundamental groups and for each object d ∈ ObD an exten-sion of the local groups.It turns out that the small category D, on which K is de�ned, is strictly relatedto the twisted diagram of groups G. In particular, if G is a graph of groups then thegeometric realization of D is the Bass-Serre tree of G.Structure of the thesis Chapter 1 collects some of the important notions and con-structions concerning weak functors. The main source for this chapter is Thomason'spaper [T].In Chapter 2 some of the basics of the theory of twisted diagrams of groups arepresented. Section 2.1 provides the de�nitions of twisted diagrams of groups, homo-morphism and equivalence of twisted diagrams of groups.Section 2.2. introduces the classifying category of a twisted diagram of groups.We present the properties of the classifying category which will be usefull later. Theclassifying category of a twisted diagram of groups G : C −→ Gr is the Grothendieckconstruction of the corresponding weak functor. Therefore it comes with the projection
p : BG −→ C on the small category C. Observe that for a single group G this projectionis simply BG −→ ∗. Theorem 2.2.9 says, that a small category D and a functor
p : D −→ C are associated to a twisted diagram of groups as its classifying category andthe corresponding projection, if and only if p satis�es certain properties. In particularif p is associated to a twisted diagram of groups then the preimage p−1(c) ⊂ D of eachobject c of C is isomorphic to a group. Moreover the small category D is �generated�by C and these groups.We prove in Theorem 2.2.13 that the category of twisted diagrams of groups isequivalent to the category of functors satisfying assertions of Theorem 2.2.9.Chapter 3 presents the classi�cation of epimorphisms of twisted diagrams of groups.It starts with a de�nition of the cohomology groups of a small category C with coef-�cients in an abelian module M : C −→ Ab. If F : C −→ Ab is a twisted diagramof groups with values in the category of abelian groups then we can forget about thetwisting elemetns and obtain an abelian module |F| : C −→ Ab. We prove in Section3.1 that the elements of the second cohomology group H2(C;M) are in one to onecorrespondence with equivalence classes of twisted diagrams of groups F : C −→ Absuch that |F| = M .As we have already observed, any twisted diagram of group composed with theprojection Gr −→ Rep gives a strict functor C −→ Rep. The natural question is when afunctor F : C −→ Rep lifts to a twisted diagram of groups F : C −→ Gr and how manysuch liftings exist? Section 3.2 answers this question and the answer is given in termsof cohomology of the small category C with coe�cients in a certain abelian module
ZF : C −→ Ab (3.2.4) associated to F . This abelian module generalizes the notion ofthe center of a group, in particular for each c ∈ Ob C we have ZF (c) ⊂ Z(F (c)).Theorem 3.2.5 To every functor F : C −→ Rep one assignes in a natural wayan obstruction element o(F ) ∈ H3(C;ZF ) such that o(F ) vanishes if and only if thefunctor F has a lifting to a twisted diagram of groups F : C −→ Gr. Moreover theequivalence classes of such liftings are in bijective correspondence with elements of thegroup H2(C;ZF ). 14



Section 3.3 concerns the case when C is a category de�ned by a group G. ThenTheorem 3.2.5 reduces to the classical case.The folowing theorem establishes the relation between the surjective homomor-phisms of twisted diagrams of groups and twisted diagrams of groups de�ned on theclassifying category of a twisted diagram of groups BG.Theorem 3.4.4 There is a natural bijective correspondence between equivalenceclasses of epimorphisms G̃ −→ G and equivalence classes of twisted diagrams de�nedon the category BG.Let G : C −→ Gr be a twisted diagram of groups and F : BG −→ Rep be afunctor. Does there exist an epimorphism G̃ −→ G such that the corresponding twisteddiagram BG −→ Gr is a lifting of F ? Theorem 3.4.6 is a straightforward corollary fromTheorems 3.2.5 and 3.4.4.Theorem 3.4.6 Let G : C −→ Gr be a twisted diagram of groups and let F : BG −→ Repbe a functor. If an obstruction element o(F ) ∈ H3(BG;ZF ) vanishes then there is anepimorphism G̃ −→ G such that the corresponding twisted diagram BG −→ Gr is a lift-ing of F . Moreover, set of equivalence classes of such liftings is in a natural bijectivecorrespondence with the elements of H2(BG;ZF ).Note that Theorem 3.4.6 contains as special cases theorems of Hae�iger concerningextensions of complexes of groups with abelian kernels [Thm. 5.2. H2] and withlocally constant (not necessary abelian) kernels [Thm. 6.3. H2]. The reason thatwe can provide a uni�ed approach to those result, and prove a more general theoremis that we consider twisted diagrams over arbitrary small categories, also with loops,wheras Hae�iger works with complexes de�ned on small categories without loops.Chapter 4 concerns the notion of the fundamental group of a twisted diagram ofgroups.Section 4.1 is devoted to introductory material and basic de�nitions concerningfundamental group of a small category. The fundamental group of a small category isde�ned as the fundamental group of the geometric realization of the given category. Toeach category C one can assign a certain grupoid πC called the fundamental grupoidof C. If the geometric realization of C is connected then the fundamental grupoid andthe fundamental group are equivalent small categories.We de�ne the fundamental group of a twisted diagram of groups as the fundamentalgroup of its classifying category. In Section 4.2 we prove that the fundamental groupof a twisted diagram of groups G : C −→ Gr is generated by the local groups and thefundamental group of C (Theorem 4.2.7). We also prove (Proposition 4.2.6) that thenatural projection BG −→ C yields an epimorphism of fundamental groups.Assume that a twisted diagram of groups is a functor F : C −→ Gr. Thereforethere exists its direct limit colimF . The natural question is how is colimF related tothe fundamental group of F . Theorem 4.2.13 motivated by E.D. Farjoun [Fa] provesthat the direct limit is the push-out of the following diagram
π1(C, c0)

��

// π1(F, c0)

��
1 // colimF15



In particular the direct limit of F : C −→ Gr is isomorphic to the fundamental groupof F if and only if the geometric realization of C is simply connected.Chapter 5 starts with the theory of coverings of small categories. A functor φ : C′ −→ Cis said to be a covering if its geometric realization Bφ : B C −→ B C′ is a topologicalcovering. D. Quillen in [Q] has proved that the category of topological coverings of B Cis equivalent to the category of morphism inverting functors C −→ Sets. In Theorem5.1.7 we present a similar result, namely we prove that the category of coverings of thesmall category C is equivalent to the category of functors πC −→ Sets, where πC isthe fundamental grupoid associated to C. This implies that the category of coveringsof C is equivalent to the category of topological coverings of B C.We say that G acts on a small category D without inversion if for each d ∈ ObD,
gd = d implies that g �xes each morphism l : d −→ d′ of D. If the geometric realizationof D is a Bass-Serre tree then this condition means that G does not inverse cells, hencethe terminology. The projection D −→ D/G induced by the action of G is so calledright-covering. Note that if the action of G is free then clearly it is without inversionand the geometric realization of D −→ D/G is a topological G-covering.As we have observed an action without inversion of G on D yields a (developable)twisted diagram of groups G : D/G −→ Gr. The main result of Section 5.3 says thatthere exists a functor D −→ BG and it is equivalent to a covering, i.e. there exist asmall category E and a covering E −→ BG such that the following diagram commutes

D

!!B
BB

BB
BB

B
� � ≈ // E

��
BGThe action of G on D yields a functor SD : G −→ Cat. The Grothendieck construction

BSD of this functor is equivalent to the classifying category BG. Moreover the followingdiagram commutes
D

  A
AA

AA
AA

A
� � ≈ // E

/G

��

� � ≈ // EG×D

/G
��

BG � � ≈ // BSD

��
BGSection 5.4 is devoted to generalization of the developability criterion given byBridson and Hae�ieger in [B-H]. They have proved that a complex of groups G isdevelopable if and only if there exists a group G and a homomorphism Φ : G −→ Gwhich is injective on the local groups. This theorem carries over to twisted diagramsof groups.In Chapter 6 we develope the theory of coverings of complexes of groups.We say that a homomorphism φ : G′ −→ G of twisted diagrams of groups is acovering if the associated functor Bφ : BG′ −→ Bφ is equal to the composition

BG′

Bφ ""D
DD

DD
DD

D
� � ≈ // E

��
BG16



where E −→ BG is a covering of small categories and BG′ ≈
↪→ E is an inclusion and anequivalence of small categories. For precise de�nition and examples see Section 6.1.Section 6.2 concerns a special case of a covering of twisted diagrams of groupswhich is a covering of (Hea�ieger's) complexes of groups. Each complex of groups

G : C −→ Gr is locally developable, i.e. for each c ∈ Ob C there exists a smallcategory Dc with an action of the local group G(c) such that Dc/G(c) ' C/c. Weprove an analgoue of Theorem given in [B-H]. Let φ : G′ −→ G over F : C′ −→ C bea homomorphism of complexes of groups. Theorem 6.2.9 proves that φ is a coveringif and only if it is injective on the local groups and for each c′ ∈ Ob C′ the inducedfunctor F̃c′ : D′
c′ −→ DF (c′) is an isomorphism.For each twisted diagram of groups G : C −→ Gr we de�ne the universal coveringof G. It is a covering of twisted diagrams of groups φ̂ : Ĝ −→ G, such that BĜ isequivalent to the universal covering of the small category BG. The main Theorem ofChapter 6 takes the following formTheorem 6.3.7 Let ϕ : G̃ −→ G over C be an epimorphism of twisted diagrams ofgroups. Let Ĝ : D̂ −→ Gr over p̂ : D̂ −→ C be the universal covering of G. Then thereexists a twisted diagram of groups K : BĜ −→ Gr and a homomorphism φ : K −→ G̃over F : BĜ −→ C satisfying1. ϕ ◦ φ : K −→ G is trivial on the local groups2. (ϕ ◦ φ)∗ : π1(K, d0) −→ π1(G, F (d0)) is trivial3. the homomorphism φ : K −→ G̃ is a covering and it is �nal for homomorphisms

φ′ : K′ −→ G̃ satisfying 1. and 2.It turns out that the sequence of homomorphisms
K� G̃ � Gyields an extension of the fundamental groups and for each object d ∈ ObBĜ anextension of the local groups.

17
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Chapter 1Weak functors à la ThomasonThis chapter is devoted to introductory material, basic de�nitions and some standardresults.Small categories � Let us recall that a small category C is a category whosemorphisms form a set; if c and c′ are objects of C and if l is a morphisms of c in c′,namely belongs to MorC(c, c
′), then c is denoted by i(l) and c′ by t(l). Two morphisms

l and l′ are composable i� t(l′) = i(l). We shall often identify an object c of C with theidentity morphism idc of this object.The idea of weak functors was �rstly introduced by R.W.Thomason [T]. He consid-ered �weak� functors F : C −→ Cat (he called them �op-lax functors�) from an arbitrarysmall category to the category of small categories. Roughly speaking a weak functoror op-lax functor is something less then a functor. It has many properties similar tothe properties of functors like for example the notion of a weak natural transformationor the Grothendieck construction.1.1 The geometric realization of a small categoryTo every small category one assignes in a natural way a certain topological space.This space is called the geometric realization of this category and one constructs it byassigning a certain simplicial space. For a de�ntion of a smiplicial space cf. [D].De�nition 1.1.1. Suppose that C is a small category. Consider the poset n as acategory with one morphism i −→ j is i ≤ j, and no other morphisms. The singularcomplex or nerve N C of C is the simplicial space given by
(N C)n = HomCat(n, C)More explicitely, an n-simplex σ of N C is just a composable sequence of n morphismsin C

σ(0) −→ σ(1) −→ . . . −→ σ(n)De�nition 1.1.2. The geometric realization B C of a small category C is the geometricrealization (3.15 [D]) of the simplicial space N C.Remark 1.1.3. The topological space B C is a CW complex whose p-cells are in oneto one correspondence with the p-simplices of the nerve which are nondegenrate, i.e.such that none of the arrows is an identity map.19



1.2 Weak functorsDe�nition 1.2.1. An op-lax functor or a weak functor F : C −→ Cat consists offunctions assigning:1. to each object c of C, a category F(c)2. to each morphism l : c1 −→ c0, a functor F(l) : F(c1) −→ F(c2)3. to each composable pair of morphisms c2 l2−→ c1
l1−→ c0 in C, a natural transfor-mation fl1,l2 : F(l1l2) =⇒ F(l1)F(l2)4. to each object c of C a natural transformation f(c) : F(idc) =⇒ idF(c)These must satisfy the conditions that for

c3
l3−→ c2

l2−→ c1
l1−→ c0the following diagram is commutative

F(l1l2l3) =========
fl1,l2l3

⇒F(l1)F(l2l3)

F(l1l2)F(l3)

fl1l2,l3

�

wwwwwwww

=====
fl1,l2

F(l3)
⇒F(l1)F(l2)F(l3)

F(l1)fl2,l3

�

wwwwwwwwand that for l1 : c1 −→ c0 the following diagram is commutative
F(l1) =======

fidc0 ,l1

⇒F(idc0)F(l1)

F(l1)F(idc1)

fl1,idc1

�

wwwwwwww

=======
f(c1)

⇒F(l1)

f(c0)

�

wwwwwwww

===============

id
F
(l1 )

⇒Remark 1.2.2. Note that a functor F : C −→ Cat is a weak functor with fl1,l2 = id,
f(c) = id.De�nition 1.2.3. For F : C −→ Cat a weak functor. The Grothendieck construction
BF of F is a small category with objects the pairs (c, x) with c an object of C and x anobject of F(c), and with morphisms (l, f) : (c1, x1) −→ (c0, x0) given by a morphism
l : c1 −→ c0 in C and f : F(l)(x1) −→ x0 in F(c0). Composition is de�ned by

(l1, f1)(l2, f2) = (l1l2, f1F(l1)(f2)fl1,l2)Remark 1.2.4. There is an obvious projection at the �rst coordinate functor π : BF −→ C.De�nition 1.2.5. Given F ,G, weak functors C −→ Cat, a weak natural transforma-tion η : F =⇒ G consist of functions assigning20



1. to each object c in C, a functor η(c) : F(c) −→ G(c)2. to each c1 l1−→ c0 in C, a natural transformation η(l1) : G(l1)η(c1) =⇒ η(c0)F(l1)such that for c2 l2−→ c1
l1−→ c0 we have η(c0)(fl1,l2)η(l1l2) = η(l1)G(l1)(η(l2))gl1,l2i.e. the following diagram commutes

G(l1l2)η(c2)

gl1,l2

��

η(l1l2) +3 η(c0)F(l1l2)
η(c0)fl1,l2+3 η(c0)F(l1)F(l2)

G(l1)G(l2)η(c2)
G(l1)η(l2)

+3 G(l1)η(c1)F(l2)

η(l1)

KS

and for c ∈ Ob C we have η(c)f(c)η(idc) = g(c)η(c) i.e. the following diagramcommutes
G(idc)η(c)

g(c)η(c) #+OOOOOOOOOOOO

OOOOOOOOOOOO

η(idc) +3 η(c)F(idc)

η(c)f(c)
��

η(c)Remark 1.2.6. Note that a natural transformation η : F −→ G of functors is a weaknatural transformation with η(l) = id. Given weak natural transformations F =⇒ G,
G =⇒ H there is an obvious composite weak natural transformation F =⇒ H.Thus for a �xed C we have a category of weak functors C −→ Cat and weak naturaltransformations between such, Op-lax(C,Cat).De�nition 1.2.7. Assume F ,G : C −→ Cat are op-lax functors and η : F =⇒ Gis a weak natural transformation. We de�ne a functor Bη : BF −→ BG on objects by
Bη(c, x) = (c, η(c)(x)). For a morphism in BF , (l, f) : (c1, x1) −→ (c0, x0), we have amorphism in G(c0),

G(l)η(c1)(x1)
η(l)(x1)
−→ η(c0)F(l)(x1)

η(c0)(f)
−→ η(c0)(x0)We set Bη(l, f) = (l, η(c0)(f)η(l)(x1)).Remark 1.2.8. One notes that 1.2.3 and 1.2.7 determine a functor

B : Op-lax(C,Cat) −→ Cat.The following proposition will be useful later. It says that the local equivalence offunctors yields an eqivalence of the Grothendieck constructions.Proposition 1.2.9. Assume F,G : C −→ Cat are functors and η : F =⇒ G is anatural transformation such that for each object c ∈ Ob C the corresponding functor
η(c) : F (c) −→ G(c) is an equivalence of categories. Then Bη : BF −→ BG is anequivalence of categories.Proof. Let (c, y) ∈ ObBG where c ∈ Ob C and y ∈ ObG(c). There exists an ob-ject y′ ∈ ObG(c) such that y′ = η(c)(x) and y′ is isomorphic to y in G(c). Then
Bη(c, x) = (c, y′) is isomorphic to (c, y) in BG.For a morphism in BF , (l, f) : (c1, x1) −→ (c0, x0), we have a morphism in G(c0),

G(l)η(c1)(x1) = η(c0)F (l)(x1)
η(c0)(f)
−→ η(c0)(x0)We have Bη(l, f) = (l, η(c0)(f)), hence Bη yields an isomorphism

MorBF
(
(c1, x1), (c0, x0)

)
' MorBG

(
Bη(c1, x1),Bη(c0, x0)

). Therefore Bη : BF −→ BGis an equivalence of categories. 21



De�nition 1.2.10. Assume F : C −→ C′ is a functor, and F : C′ −→ Cat a weak func-tor. The pull-back weak functor F ∗F : C −→ Cat is a composition F ◦ F : C −→ Cat.De�nition 1.2.11. Assume F : C → C′ is a functor. A homomorphism Φ : F → G(over F ) of weak functors F : C → Cat, G : C′ → Cat is a weak natural transformation
η : F =⇒ F ∗G.Proposition 1.2.12. Let Φ : F → G (over F : C −→ C′) be a homomorphism of weakfunctors. Then Φ yields a commutative diagram of functors

BF

π

��

Φ // BG

π′

��
C

F
// C′Proof. The homomorphism Φ : F → G (over F ) of weak functors F : C → Cat,

G : C′ → Cat is a weak natural transformation η : F =⇒ F ∗G. This naturaltransformation yields a functor Bη : BF −→ BF ∗G and a commutative diagram
BF

  B
BB

BB
BB

B

Bη // BF ∗G

||yy
yy

yy
yy

y

CThere exists a diagram
BF ∗G

π

��

F ∗
// BG

π′

��
C

F
// C′given by (l, f) −→ (F (l), f). Therefore we obtain

BF

π

��

Φ // BG

π′

��
C

F
// C′Proposition 1.2.13. Consider functors F : C −→ C′ and φ′ : D′ −→ C′ of smallcategories. There exists a category D and a commutative diagram

D

φ

��

F̃ // D′

φ′

��
C

F
// C′such that for each commutative diagram of the form

E

φ1

��

F̃1 // D′

φ′

��
C

F
// C′22



there exists exactly one functor ϕD : E −→ D such that the following diagram commutes
E

φ1

��

F̃1

##
ϕD

��
D

φ

��

F̃ // D′

φ′

��
C

F
// C′We say that D is the pull-back category of the given diagram.Proof. We de�ne objects ofD to be the set of pairs (c, d′) where c ∈ Ob C and d′ ∈ ObD′such that F (c) = φ′(d′) and morphisms to be the set

{(l, k′) l ∈ Mor C, k′ ∈ MorD′, F (l) = φ′(k′)}. The functors F̃ : D −→ D′ and φ : D −→ Care given by the natural projections.Assume that we have
E

φ1

��

F̃1 // D′

φ′

��
C

F
// C′For each l̃ ∈ Mor E we de�ne ϕD : E −→ D to be ϕD(l̃) = (φ1(l̃), F̃1(l̃)). Then φϕD = φ1and F̃ϕD = F̃1. If there exists a functor ϕ : E −→ D such that φϕ = φ1 and F̃ϕ = F̃1then ϕ = ϕD on the set of morphisms thus ϕ = ϕD.Proposition 1.2.14. The category BF ∗G is the pull-back category of the diagram

BF ∗G

π

��

F ∗
// BG

π′

��
C

F
// C′Proof. The set of morphisms of the category BF ∗G consists of pairs (l, f) where

l ∈ Mor C and f ∈ MorG(t(l′)) such that F (l) = l′. Let D be the pull-back of thelatter diagram. The isomorphism BF ∗G −→ D is given by (l, f) −→ (l, (F (l), f)).1.3 Homotopy colimit and the functor associated toa weak functorThe construction of the homotopy colimit is motivated by the fact that ordinary col-imits are not well-behaved with respect to weak equivalences. For instance, considerthe following commutative diagram of topological spaces (wher Dn is the n-disk and
Sn−1 its boundary sphere).

Dn � Sn−1 - Dn

∗
?
� Sn−1

?

- ∗
?23



All three vertical arrows are weak equivalences (even homotopy equivalences) but thecolimit of the top row is homeomorphic to Sn, the colimit of the bottom row is a one-point space ∗, and the map Sn −→ ∗ induced by the diagram is not a weak equivalence.Homotopy colimits on the other hand have a strong invariance property.De�nition 1.3.1. For a (weak) functor F : C −→ Cat let NF denote the nerve of aGrothendieck construction BF and BF its geometric realization.Assume that we have functors F, F ′ : C −→ Cat and a natural transformation
η : F =⇒ F ′ such that it induces a homotopy equivalence B η(c) : BF (c) −→ BF ′(c)for each object c of C, then the geometric realization of the simplicial map
hocolim N η : hocolim NF −→ hocolim NF ′ is a homotopy equivalence.The homotopy colimit construction is functorial, in the sense that a natural trans-formation η : F =⇒ F ′ of functors C −→ Cat induces a map

hocolimN η : hocolim NF −→ hocolimNF ′The homotopy colimit construction is also functorial in C, in the sense that if j : D −→ Cis a functor and j∗F denotes the composite Fj, then there is a natural map
hocolim N(j∗F ) −→ hocolimNF .The following theorems were proved by R.W. Thomason in [T].Theorem 1.3.2. (Homotopy colimit theorem). Let F : C −→ Cat be a functor. Thegeometric realization of

φ : hocolim NF −→ NFis a homotopy equivalence.We do not have a hocolim NF de�ned for a weak functor F , so we cannot compareit to NF . Instead, we will naturaly associate a functor F : C −→ Cat to the weakfunctor F , and compare NF to NF and hocolim NF .De�nition 1.3.3. For a weak functor F : C −→ Cat we de�ne a functor F : C −→ Cat.For each c ∈ Ob C, F(c) is a category whose objects are (l, c′, x′), l : c′ −→ c a mor-phism in C and x′ an object of F (c′). A morphism (l1, f1) : (l, c′, x′) −→ (l′, c′′, x′′)is a l1 : c′ −→ c′′ such that l′l1 = l and f1 : F(l1)(x
′) −→ x′′. For each morphism

l1 : c1 −→ c0 in C there is a natural transformation F : F(c1) −→ F(c0) which assign
(l, c′, x′) −→ (l1l, c

′, x′) and is the identity on morphisms.For a weak natural transformation η : F =⇒ G, η : F −→ G is the naturaltransformation of functors induced by Bη : BF −→ BG.De�nition 1.3.4. Let C be a small category. For any object c ∈ C one de�nes the left�bre category over c, denoted by C/c, whose objects are pairs (i(l), i(l)
l
−→ c). A mor-phism (i(l1), i(l1)

l1−→ c) −→ (i(l2), i(l2)
l2−→ c) in C/c is a morphism k : t(l1) −→ t(l2)for which the corresponding triangle over c commutes.For each c ∈ Ob C there exists a natural projection lc : C/c −→ C.For (c

k
−→ c′) ∈ Mor C there is a natural functor C/k : C/c −→ C/c′ given by

(c′′, c′′
l
−→ c) −→ (c′′, c′′

kl
−→ c′).Remark 1.3.5. Let C be a small category and F : C −→ Cat a weak functor. Let

F : C −→ Cat be an associated functor de�ned in 1.3.3.Let l∗cF : C/c −→ Cat be a weak functor induced by lc : C/c −→ C. Then the valueof a functor F(c) is isomorphic to a small category Bl∗cF .24



De�nition 1.3.6. A weak natural transformation j : F −→ F is determined by theformula
j(c) : F(c) −→ F(c)and is the functor sending x to (idc, c, x) and f1 : x −→ x′ to (idc, f(c)(x′)F(idc)(f1)).For l : c1 −→ c0, j(l) : F(l)j(c1) =⇒ j(c0)F(l) is the natural transformation withcomponents given at x by (l, id) : (l, c1, x) −→ (id, c0,F(l)(x)).These j : F −→ F are such that for any weak natural transformation η : F −→ Gthe diagram
F =======

j
⇒F

G

η

�

wwwwwwwww

========
j
⇒ G

η

�

wwwwwwwwcommutes.Lemma 1.3.7. For each c ∈ Ob C, the functor j(c) : F(c) −→ F(c) has a left adjoint
i(c) : F(c) −→ F(c) sending (l, c′, x′) to F(l)(x′) and (l1, f) : (l, c′, x′) −→ (l′, c′′, x′′)to

F(l)(x′) = F(l′l1)(x
′)
fl′,l1−→ F(l′)F(l1)(x

′)
F(l′)(f)
−→ F(l′)(x′′)Theorem 1.3.8. For a weak functor F : C −→ Cat, we have a diagram

NF
NC j−→ NF −→ hocolim NFIts geometric realization is a diagram of natural homotopy equivalnces.Corollary 1.3.9. Assume F ,G : C −→ Cat are weak functors and η : F =⇒ G is aweak natural transformation. If for each c ∈ Ob C, the geometric realization of η(c) isa homotopy equivalence, then B η : BF −→ BG is a homotopy equivalence.

25



26



Chapter 2Twisted diagrams of groupsSection 2.1 of this chapter describes weak functors which take values in the category ofgroups. We will call them twisted diagrams of groups, because of the twisting elementswhich corresponds to the natural transformations associated to the given weak functor.We will also explain when a given twisted diagram of groups determines a complex ofgroups de�ned by Bridson and Hae�ieger in [B-H](Proposition 2.1.4).The Grothendieck category of a twisted diagram of groups is a generalization of theclassifying category of a complex of groups de�ned in [B-H]. Some important propertiesof this category will be described in Section 2.2. We will prove that for a given smallcategory C, the category of twisted diagrams of groups de�ned on C is equivalent tothe category of functors p : D −→ C satisfying certain properties (Theorems 2.2.9 and2.2.13).2.1 Twisted diagrams of groupsFor a given subcategory of the category of small categories Cat, like for example groups,grupoids or EI-categories, we can consider weak functors which take values in thissubcategory.Every group G can be considered as a small category BG with a single object andmorphisms corresponding to G.From now on, a weak functor F : C −→ Gr is a weak functor such that for eachobject c of C
F(c) = BG = ∗ g∈G

yyis a category de�ned by a group.De�nition 2.1.1. A weak functor F : C −→ Gr to the category of groups will be calleda twisted diagram of groups.Proposition 2.1.2. Assume Φ,Ψ : G → H are homomorphisms of groups. We canconsider these homomorphisms as functors BΨ : BG → BH and BΦ : BG → BH inthe category of groups Gr ⊂ Cat. Let α : BΨ =⇒ BΦ be a natural transformation.Then α is a conjugation by some element of the group H.
27



Proof. For each element g ∈ G there is a commutative diagram
∗H

BΨ(g)
- ∗H

∗H

h

?

BΦ(g)
- ∗H

h

?This implies Ψ(g) = hΦ(g)h−1 and α = Ad(h−1).Proposition 2.1.3. A twisted diagram of groups G : C −→ Gr is given by1. for each object c ∈ Ob C a group G(c)2. for each morphism l : c −→ c′ ∈ Mor C a homomorphism of groups G(l) : G(c) −→ G(c′)3. for two composable morphisms l, l′ ∈ Mor C an element gl,l′ ∈ G(t(ll′)) = G(t(l)),called the twisting element, such thati) Ad(gl,l′)G(ll′) = G(l)G(l′)ii) G(l)(gl′,l′′)gl,l′l′′ = gl,l′gll′,l′′ for each triple . l′′ // . l′ // . l // . ∈ Mor C ofcomposable morphisms (cocycle condition)4. for each object c ∈ Ob C an element g(c) ∈ G(c) such that G(idc) = Ad(g(c)) andfor l ∈ Mor C, i(l) = c, t(l) = c′i) g(c′) = g−1
idc′ ,lii) G(l)(g(c)) = g−1

l,idcProof. Follows directly from the de�ntion of a weak functor and Proposition 2.1.2.Proposition 2.1.4. Let G : C −→ Gr be a twisted diagram of groups. Assume thatfor each morphism l ∈ Mor C the given homomorphism of groups is a monomorphism,for each object c ∈ Ob C an element g(c) is trivial and C is a small category withoutloops, that is such a category whose endomorphisms are identities of objects. Then Gdetermines a complex of groups de�ned by Hae�ieger ([H1], [B-H]).Proof. The proof is straightforward. Let C be a small category without loops (scwol)and {Gσ, ψl, gl,l′} a complex of groups de�ned on it. We put G(c) = Gc, G(l) = ψl andthe twisting elements of this twisted diagram are the twisting elements of the complexof groups.We de�ne a homomorphism of twisted diagrams of groups as a weak natural trans-formation of the corresponding weak functors. ThereforeProposition 2.1.5. A homomorphism φ : G −→ G′ of twisted diagrams of groups
G : C −→ Gr and G′ : C′ −→ Gr over a functor F : C −→ C′ is given by the followingdata:1. for each c ∈ Ob C a homomorphism φc : G(c) −→ G′(F (c)) called the local homo-morphism 28



2. for each l ∈ Mor C an element φ(l) ∈ G′(F (t(l))) such that(i) Ad(φ(l))G′(F (l))φi(l) = φt(l)G(l)(ii) φt(l)(gl,l′)φ(ll′) = φ(l)G′(F (l))(φ(l′))g′F (l),F (l′) for two composable l, l′ ∈ Mor CProof. A homomorphism φ : G −→ G′ of twisted diagrams of groups G : C −→ Gr and
G′ : C′ −→ Gr over F : C −→ C′ considered as a weak natural transformation of weakfunctors is given by:1. for each c ∈ Ob C a homomorphism φc : G(c) −→ G′(F (c))2. for each l ∈ Mor C a natural transformation G′(F (l))φi(l) =⇒ φt(l)G(l)satisfying properties from 1.2.11. Then using 2.1.2 we obtain the latter equations.We say that homomorphism φ is simple if for each l ∈ Mor C the element φ(l) istrivial.We will often denote the homomoprhism φ as a pair φ = (φc, φ(l)).Remark 2.1.6. If F is an isomorphism and φc is an isomorphism for every c ∈ Ob C,then φ is called an isomorphism.De�nition 2.1.7. Assume that G : C −→ Gr and G′ : C −→ Gr are twisted diagramsof groups. We say that G and G′ are equivalent if there exists an isomorphism over theidentity of C

φ : G −→ G′Proposition 2.1.8. We say that twisted diagrams G : C −→ Gr and G′ : C −→ Grdi�er by a coboundary {gl}l∈Mor C if for each c ∈ Ob C the corresponding groups areequal
G′(c) = G(c)and for each l ∈ Mor C there exists an element gl ∈ G(t(l)) such that

G′(l) = Ad(gl) ◦ G(l)and the twisting elelements satisfy
g′l,l′ = glG(l)(gl′)gl,l′g

−1
ll′Assume that G and G′ di�er by a coboundary. Then G and G′ are equivalent.Proof. Assume that G : C −→ Gr and G′ : C −→ Gr are twisted diagrams of groupswhich di�er by a coboundary. Then for each c ∈ Ob C we have G(c) = G′(c) and for each

l ∈ Mor C there exists an element gl of the group G(t(l)) such that G′(l) = Ad(gl)◦G(l).The twisting elements satisfy g′l,l′ = glG(gl′)gl,l′g
−1
ll′ . Then we can de�ne φ : G −→ G′as follows

φc = idG(c)and
φ(l) = g−1

lAccording to 2.1.5 φ is a well de�ned isomorphism of twisted diagrams of groups, overthe identity of C. Thus G and G′ are equivalent.29



Corollary 2.1.9. Let G : C −→ Gr be a twisted diagram of groups. Then G is equivalentto a twisted diagram G′ : C −→ Gr such that for each object c ∈ C the correspondingelement g(c) ∈ G(c) is trivial.Proof. The proof is straightforward. For each c ∈ Ob C choose gidc
= g(c)−1.From now on we will assume that a given twisted diagram of groups G : C −→ Grsatis�es a normalizing condition, i.e.

1 = g(c) ∈ G(c)We will end this section with an example of a twisted diagram of groups on a smallcategory BG.Example 2.1.10. Extension of groupsLetN ι
� G̃

η
� G be an extension of groups and let BG be a category de�ned by a group

G. Choose any set theoretical section s : G −→ G̃ (not necessarily a homomorphism).We de�ne a twisted diagram of groups
F : BG −→ Gras follows; Assign to the single object of the category BG a group N :
F(∗) := NTo each morphism g ∈ MorBG = G assign an automorphism of the group N given by

F(g) : N −→ N = N ' ι(N)
Ad(s(g))
−→ ι(N) ' NNote that for two elements g1, g2 ∈ G

F(g1g2) 6= F(g1)F(g2)and di�ers by the conjugation with an element s(g1)s(g2)s(g1g2)
−1 ∈ ι(N). We de�ne

ng1,g2 = ι−1
|N

(
s(g1)s(g2)s(g1g2)

−1
)
∈ Nand

n(∗) = ι−1
|N

(
s(e)−1

)
∈ Nwhere e ∈ G is the trivial element of the group G.It is straightforward to check that for g1, g2, g3 ∈ G = MorBG the correspondingtwisting elements satisfy the cocycle condition. Moreover, for any g ∈ G = MorBG wehave

n(∗) = ι−1
|N

(
s(e)−1

)
= ι−1

|N

(
s(g)s(g)−1s(e)−1

)
= n−1

id∗,gand
F(g)(n(∗)) = ι−1

|N

(
s(g)s(e)−1s(g)−1

)
= n−1

g,id∗Note that the twisting elements measure to what extend our section fails to be ahomomorphism. Moreover the twisted diagram of groups F : BG −→ Gr is equivalentto a diagram of groups if and only if the group G̃ is isomorphic to a semidirect productof the groups N and G. 30



2.2 The classifying category of a twisted diagram ofgroupsThe classifying category of a twisted diagram of groups is a generalization of the cat-egory de�ned by a group and on the other hand the classifying category of a complexof groups ([H1],[B-H]).De�nition 2.2.1. The classifying category of a twisted diagram of groups is the Grothendieckconstruction of the corresponding weak functor.Remark 2.2.2. Let C = ∗ be the category with one object and G : ∗ −→ Gr a twisteddiagram of groups. Then the classifying category BG is the classifying category of thegroup G(∗). Let IC : C −→ ∗ ∈ Gr be a diagram of groups such that IC(c) = 1. Then
BIC ' C.Remark 2.2.3. Let C be a category without loops and G : C −→ Gr a complex ofgroups. Then the Grothedieck construction BG is the classifying category of a complexof groups de�ned by in [H1] and [B-H].Example 2.2.4. Consider an extension of groups N � G̃

η
� G and the twisteddiagram of groups associated to it F : BG −→ Gr described in Example 2.1.10. Thenthe classifying category of F is isomorphic to the category de�ned by the group G̃

BF ' BG̃The isomorphism is given by (g, n) −→ ns(g). Moreover, the associated projection(1.2.4)
p : BF −→ BGequals
Bη : BG̃ −→ BGThe de�nition of a homomorphism of twisted diagrams of groups given in 2.1.5 isquite complicated. The notion of a classifying category will simplify it, namelyRemark 2.2.5. Assume that G : C −→ Gr and G′ : C′ −→ Gr are twisted diagrams ofgroups and φ = (φc, φ(l)) : G −→ G′ is a homomorphism over F : C −→ C′. Then dueto 1.2.12 we obtain a commutative diagram of functors
BG

Φ
- BG′

C

p

?
F

- C′

p′

?given by Φ(l, g) = (F (l), φt(l)(g)φ(l)).Moreover each diagram of this form de�nes a homomorphism φ : G −→ G′ of twisteddiagrams of groups given by φc = Φ|G(c) : G(c) −→ G′(F (c)). If Φ(l, 1) = (F (l), g′) thenwe de�ne φ(l) := g′.This implies 31



Corollary 2.2.6. Assume that G : C −→ Gr and G′ : C −→ Gr are two twisteddiagrams of groups. Then G and G′ are equivalent if and only if there exists a homo-morphism
φ : G −→ G′such that the associated diagram is of the form

BG
Φ //

p
  A

AA
AA

AA
A BG′

p′~~||
||

||
||

Cand Φ is an isomorphism.De�nition 2.2.7. We say that extensions N � G̃ � G and N � G̃′
� G areequivalent if the following diagram

G̃
' //

��>
>>

>>
>>

G̃′

��~~
~~

~~
~

Gcommutes.As a collorary we obtain the following:Proposition 2.2.8. Assume that F : BG −→ Gr and F ′ : BG −→ Gr are twisteddiagrams of groups associated to extensions of groups (2.1.10). Then F and F ′ areequivalent if and only if the corresponding extensions are equivalent.Proof. Let F be associated to N // // G̃ // // G
suu and F ′ to N ′ // // G̃′ // // G

s′tt . Thenthe following diagrams commute
BF

' //

""D
DD

DD
DD

DD BG̃

||zz
zz

zz
zz

BG

BF ′ ' //

""E
EE

EE
EE

EE
BG̃′

||yy
yy

yy
yy

BGTherefore, F and F ′ are equivalent if and only if the corresponding extensions areequivalent.As we have observed, the twisted diagram of groups G : C −→ Gr yields a projection
p : BG −→ C. Assume that for a small category C we are given a functor p : D −→ C.The natural question is, when the functor p is associated to a twisted diagram of groups
G : C −→ Gr? This question is answered in:Theorem 2.2.9. Let C be a small category. A category D and a functor p : D −→ Cis associated to a twisted diagram of groups as the classifying category of this twisteddiagram of groups if and only if it satis�es the following conditions:1. p : D −→ C is a bijection on object sets and p is onto2. The subcategory Gp

c := {g ∈ MorD(c, c) : p(g) = idc} of D is a group.32



3. For each l ∈ Mor C let Xl be a subset of morphisms MorD(c, c′) such that for each
x ∈ Xl p(x) = l. Then the groups Gp

c , G
p
c′ acts on this set in the natural way

XlGp

c′

))
Gp

c

uusuch that g′x = g′ ◦ x ∈ MorD(c, c′) and xg = x ◦ g ∈ MorD(c, c′). These actionssatisfy
• the action of the group Gp

c′ is transitive and free
• for each x ∈ Xl there exists a homomorphism ψpx : Gp

c −→ Gp
c′ given by

x ◦ h = ψpx(h) ◦ xProof. These properties are clearely satis�ed if D is the classifying category of a twisteddiagram of groups G : C −→ Gr and p is an associated projection BG −→ C. Converselyassume that p : D −→ C satis�es the above properites. Let s : C −→ D be any sectionof p, i.e. a map such that ps = idC (s does not have to be a functor). We will choose ssuch that for each object s(idc) = idc. Then we de�ne a twisted diagram of groups on
C as follows:1. G(c) = Gp

c for each c ∈ Ob C2. G(l) = ψps(l) for each l ∈ Mor C3. elements gl,l′ are uniquely de�ned by the equality gl,l′s(ll′) = s(l)s(l′) in DNote that G satisfy the normalizing condition g(c) = 1 for each object c ∈ C.Then D is clearly isomorphic to the classifying category BG: the isomorphismsends (l, g) to gs(l). Another choice of section would give a twisted diagram of groupsequivalent to G : C −→ Gr.Corollary 2.2.10. Let G : C −→ Gr be a twisted diagram of groups and p : BG −→ Cthe associated projection. Then p splits, i.e. there exists a functor s : C −→ BG suchthat ps = idC, if and only if G is equivalent to a diagram of groups (functor).Proof. Assume that there exists a functor s : C −→ BG. Then twisted diagram ofgroups G′ : C −→ Gr de�ned as G′(c) = Gp
c and G′(l) = ψps(l) is a diagram of groups.Thus G is equivalent to a diagram of groups.Assume that G : C −→ Gr is a functor and p : BG −→ C the associated projection.Then s : C −→ BG de�ned as s(l) = (l, 1) is a functor.The following observation will be usefull laterCorollary 2.2.11. Assume that p : D −→ C satis�es the assertions of 2.2.9 and let

p′ : D −→ E be a functor such that for each g ∈ Gp
c ⊂ AutD(c) we have p′(g) = idp′(c).Then there exists a uniqe functor p̃′ : C −→ E such that the following diagram commutes

D

p

��

p′ // E

C
p̃′

??��������33



De�nition 2.2.12. Let C be a small category. The category of twisted diagrams ofgroups on C is de�ned as a category whose objects are twisted diagrams of groups
G : C −→ Gr and morphisms are homomorphisms of twisted diagrams of groups overthe identity of the category C. We will denote it CGrC.The following theorem is a collorary from the Theorem 2.2.9 and Remark 2.2.5.Theorem 2.2.13. Let C be a small category. The category CGrC of twisted diagramsof groups on C is equivalent to the category ↓ C whose objects are functors D p

−→ Csatisfying assertions of 2.2.9 and morphisms are given by the commutative diagrams
D′

��@
@@

@@
@@

@
// D

����
��

��
��

CThis equivalence is given by the natural functor BC : CGrC −→↓ C assigning to G theprojection BG −→ C.Proof. The functor BC : CGrC −→↓ C is given by BC(G) = (BG
p
−→ C) on objects and

BC(G′ −→ G) = BG′

p′   B
BB

BB
BB

B
// BG

p
~~}}

}}
}}

}}

C

on morphisms. The functor Φ′ :↓ C −→ CGrCis given by Φ′(D
p
−→ C) = G where G : C −→ Gr is a twisted diagram of groupsconstructed in the proof of Theorem 2.2.9. The commutative diagram

D′

��@
@@

@@
@@

@
// D

����
��

��
��

Cyields a diagram
BG′

' // D′

��@
@@

@@
@@

@
// D

����
��

��
��

' // BG

Cwhich according to 2.2.5 de�nes a homomorphism of twisted diagrams of groups. Then
Φ′ ◦ BC ' idCGrC and BC ◦ Φ′ ' id↓C.The following Proposition will be very usefull in our further considerations. Itsays roughly that a composition of twisted diagrams of groups is a twisted diagram ofgroups.Proposition 2.2.14. Let r : E −→ D and p : D −→ C satisfy assertions of theTheorem 2.2.9. Then the composition p ◦ r : E −→ C satis�es 2.2.9.Proof. If r : E −→ D and p : D −→ C satisfy assertions of the Theorem 2.2.9, then1. p ◦ r : E −→ C is onto and is bijection on object sets because p and r are ontoand bijections on object sets 34



2. We will prove that Gpr
c = (pr)−1(idc) is a group and moreover there exists anextension of the form

Gr
c � Gpr

c

r
� Gp

cIf y1, y2 ∈ EndE(c) such that pr(y1) = pr(y2) = idc then pr(y1y2) = idc. Assumethat y ∈ EndE(c) such that pr(y) = idc. Then r(y) ∈ Gp
c . The functor r is ontothus there exists y′ ∈ EndE(c) such that r(y′) = (r(y))−1. Then yy′, y′y ∈ Gr

cand let yy′ := g1 and y′y := g2. Thus y ◦ (y′g−1
1 ) = idc = (g−1

2 y′) ◦ y and
(g−1

2 y′) = (g−1
2 y′) ◦ y ◦ (y′g−1

1 ) = (y′g−1
1 ). This proves (g−1

2 y′) = (y′g−1
1 ) = y−1.Thus Gpr

c is a group which projects on Gp
c and the kernel of this epimorphism is

Gr
c.3. Let l ∈ Mor C, i(l) = c, t(l) = c′ and denote Yl the subset of MorE(c, c

′) suchthat pr(y) = l for each y ∈ Yl. Then Yl =
∐

x∈Xl
Yx, where Xl ⊂ MorD(c, c′) suchthat p(x) = l for each x ∈ Xl, and Yx ⊂ MorE(c, c

′) such that r(y) = x for each
y ∈ Yx.
• Let G′ = Gpr

c′ . We will prove that G′ acts freely and transitively on Yl.Assume that g′y = y for some y ∈ Yl and g′ ∈ G′. Then there exists x ∈ Xlsuch that y ∈ Yx. Thus r(g′)x = x. This implies r(g′) = 1 and then g′ ∈ Gr
c′.Then g′ = 1.Let y1, y2 ∈ Yl. Then y1 ∈ Yx1 and y2 ∈ Yx2. We pick g ∈ Gp

c′ such that
gx1 = x2 and we pick g′ ∈ Gpr

c′ such that r(g′) = g. Then g′y1 ∈ Yx2. Thegroup Gr
c′ acts transitively on Yx2. This proves that Gpr

c′ acts transitively on
Yl.
• A homomorphism ψpry : Gpr

c −→ Gpr
c′ is induced by the following diagram

Gr
c

ψr
y

��

// // Gpr
c

ψpr
y

��

// // Gp
c

ψp

r(y)

��
Gr
c′
// // Gpr

c′
// // Gp

c′Remark 2.2.15. Let G̃ : C −→ Gr, G : C −→ Gr, F : D −→ Gr denote the twisteddiagrams of groups associated respectively to p ◦ r : E −→ C, p : D −→ C, r : E −→ D.Then we have the following diagram of homomorphisms of twisted diagrams of groups
E

r

��

= // E

pr

��

r // D

p

��
D

p // C
= // Ccorresponding to F −→ G̃ −→ G,Remark 2.2.16. Note that for each c ∈ Ob C there exists an extension

F(c) � G̃(c) � G(c)which is equal to
Gr
c � Gpr

c

r
� Gp

c35



This observation implies:Proposition 2.2.17. Let F : BG −→ Gr be a twisted diagram of groups de�nedon the classifying category of a twisted diagram of groups G : C −→ Gr. For each
c ∈ Ob C let Fc : BG(c) −→ Gr be a restriction of the weak functor F to the subcategory
BG(c) ⊂ BG. This restriction de�nes a weak functor G̃ : C −→ Gr ⊂ Cat given by

G̃(c) = BFcNote BFc is a small category associated to a group. Moreover
BG̃ ' BFProof. Let E be the classifying category of F and r : E −→ BG the associated projec-tion, let p : BG −→ C be the projection associated to G. Then G̃ : C −→ Gr is equivalentto a twisted diagram of groups associated to p ◦ r : E −→ C and Fc : BG(c) −→ Gris a twisted diagram of groups associated to the extension F(c) � G̃(c) � G(c) (theconstruction described in 2.1.10). Obviousely BG̃ ' BF = E .
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Chapter 3Cohomology of small categories andextensions of twisted diagrams ofgroupsSection 3.1 presents the de�nition and examples of cohomology of small categories.Given a twisted diagram of groups F : C −→ Ab we can forget about the twistingelements and consider it as a functor |F| : C −→ Ab. We will prove in Proposition3.1.7 that for a given functor F : C −→ Ab there is one to one correpsondence betweenthe elemetns of the group H2(C;F ) and the equivalence classes of the twisted diagramsof groups F : C −→ Ab such that |F| = F .One can generalize the above observation as follows. We de�ne a category of rep-resentations Rep to be a category whose objects are groups and
MorRep(H,G) := MorGr(H,G)/ Inn(G)For a given twisted diagram of groups F : C −→ Gr the composition with the naturalprojection Gr −→ Rep gives a diagram of representations F : C −→ Rep. Section3.2 answers the question: when does a diagram of representations lift to a twisteddiagram of groups and how many such liftings exist? An answer will be given in termsof cohomology of small categories (Theorem 3.2.5).Section 3.3 considers the case when the small category C is a category associatedto a group G. We will explain the relation between the epimorphisms of groups andthe twisted diagrams of groups de�ned on the category associated to a group.A. Hae�ieger in [H2] has classi�ed extensions of complexes of groups with abeliankernel and extensions with locally constant kernel. We will extend this classi�cation ontwisted diagrams of groups. Section 3.4 describes the relation between the surjectivehomomorphisms of twisted diagram of groups and twisted diagrams of groups de�nedon the classifying category of a certain twisted diagram of groups (Theorem 3.4.4).Then as a collorary from 3.2.5 and 3.4.4 we obtain the classi�cation Theorem (3.4.6).3.1 Cohomology of small categoriesDe�nition 3.1.1. For a small category C we denote by C-mod := Hom(C,Ab) thecategory of (covariant) functors C −→ Ab and call its elements C-modules. This agreeswith the notion of G-module which is now called BG-module. For M,M ′ ∈ C-mod we37



denote by HomC(M,M ′) the set of all morphisms M −→ M ′ in C-mod (i.e. naturaltransformations).Let Z : C −→ Ab be a constant C-module given by Z(c) = Z for each object of C andthe identity for each morphism of C. The functor limC = Hom(Z,−) : C −mod −→ Abis left exact which implies that one can de�ne the derived functors. Their value onthe C-module M will be denoted H∗(C;M) and called the n-th cohomology of C withcoe�cients in the module M .From the de�ntion of the right derived functor one has to construct an injectiveresolution I∗ of the C-moduleM . Hn(C;M) is then the n-th cohomology of the cochaincomplex Hom(Z, I∗). These cohomology groups can be computed also as the cohomol-ogy groups of the cochain complex Hom(P∗,M) where P∗ is a projective resolution ofthe C-module Z.We de�ne the chain complex functor which assigns to an object c ∈ C the chaincomplex C∗(C/c). The generator of Cn(C/c) is an n-chain of objects of C/c:
cn

ln−1

��

��=
==

==
==

==
==

==
==

==
==

cn−1

ln−2
��

&&MMMMMMMMMMMMM...
��

c l // d

c1

l0
��

88qqqqqqqqqqqqqq

c0

@@�������������������Since the arrows ci −→ c for i < n are determined by the others we may thinkof this generator as of the (n + 1)-chain [cn −→ cn−1 −→ . . . −→ c0 −→ c] end-ing in c. Thus Cn(C/c) can be thought of as the free abelian group over the setof chains [cn −→ . . . −→ c0 −→ c]. For l : c −→ d the morphism C∗(C/l) just com-poses the last morphism of the chain [cn −→ . . . −→ c0
k
−→ c] with l yielding

[cn −→ . . . −→ c0
lk
−→ d].Proposition 3.1.2. For every n ≥ 0 the functor Cn(C/−) is a projective C-module.The chain complex C∗(C/−) is a projective resolution in C-mod of the constant functor

Z.Proof. We will denote Cn(C/−) as Cn. We shall prove that for an arbitrary epimor-phism M ′ −→M of C-modules the induced homomorphism
HomC(Cn,M

′) −→ HomC(Cn,M) is also an epimorphism. For every C-module M wehave a bijection
HomC(Cn,M) '

∏

[cn−→...−→c0]

M(c0)Before we give the formula for this map we will introduce the notation (m[cn→...→c0]) forthe element of the product. Here the element m[cn→...→c0] ∈ M(c0) is the componentcorresponding to [cn −→ . . . −→ c0]. The map sends each natural transformation τto the collection (τ([cn −→ . . . −→ c0
id
−→ c0])). We will construct the inverse map in38



order to prove bijectivity. Let (m[cn→...→c0]) be an element in the right hand side group.Its inverse image is the transformation Cn(c) −→M(c) sending [cn −→ . . . −→ c0
k
−→

c] to M(k)(m[cn→...→c0]). For naturality let us consider a morphism l : c −→ d and thediagram
[cn −→ . . . −→ c0

k
−→ c] ∈ Cn(c)

��

Cn(l) // Cn(d)

��

3 [cn −→ . . . −→ c0
lk
−→ d]

M(k)(m[cn→...→c0]) ∈ M(c)
M(l) //M(d) 3M(lk)(m[cn→...→c0])It is easy to observe that these maps are inverse to each other. The cartesian productpreserves epimorphisms. As the map corresponding toHomC(Cn,M

′) −→ HomC(Cn,M)on left is just the product of epimorphisms on the right it is epi. This completes theproof of projectivity of C∗.To prove that the complex C∗(C/−) is acyclic (i.e. has zero homology) it is enoughto note that the category C/c has a �nal object (c, c
id
−→ c) thus the chain complex

C∗(C/c) is exact for every c ∈ Ob C and then C∗(C/−) is an exact sequence of C-modules.This implies the explicite computation of the cohomology groups:Corollary 3.1.3. Given a C-module M : C −→ Ab we consider the cochain complex
C∗(C;M) on C with coe�cients in M . A n-cochain f ∈ Cn(C;M) is a map associatingto a sequence cn

ln−1 // cn−1 // , . . . , // c1
l0 // c0 an element f(l0, . . . , ln−1) ∈M(c0).The coboundary δf ∈ Cn+1(C;M) is de�ned by

δf(l0, . . . ln) = M(l0)(f(l1, . . . , ln))−
n−1∑

i=0

(−1)if(l0, . . . , lili+1, . . . , ln)−(−1)nf(l0, . . . , ln−1)Then Hn(C;M) is the n-th cohomology group of this cochain complex.Remark 3.1.4. A homomorphism of C-module M in a C-module M ′ induces a homo-morphism of Hk(C;M) in Hk(C;M ′). If F : C −→ C′ is a functor, then it induces ahomomorphism F ∗ of Hk(C′;M) in Hk(C;F ∗M). Those homomorphisms are obtainedfrom the natural associated homomorphisms of the cochain complexes.Remark 3.1.5. Assume that C = BG. Then C-module M is a G-module and
Hk(C;M) = Hk(G;M(∗))Remark 3.1.6. Let M : C −→ Ab be a C-module. The �rst cohomology group

H1(C;M) is given by the set of equivalence classes {[f ] | f ∈ C1(C;M), δf = 0}. Thusfor c2 l1−→ c1
l0−→ c0 in C we have M(l0)(f(l1))− f(l0l1) + f(l0) = 0.Assume that F : C −→ Ab is a twisted diagram of groups. Then for each pairof morphisms c2 l1−→ c1

l0−→ c0 the composition F(l0)F(l1) di�ers from F(l0l1) by aconjugation with some element of the abelian group F(c0). Thus F(l0)F(l1) = F(l0l1)and F de�nes a functor F : C −→ Ab given by F (c) = F(c), F (l) = F(l). We willdenote the functor F := |F|.The following proposition gives an explicit description of the second cohomologygroup of C. 39



Proposition 3.1.7. Let F : C −→ Ab be a functor. Then the group H2(C;F ) actsfreely and transitively on the set of equivalence classes of twisted diagrams of groups
F : C −→ Ab such that |F| = F .Proof. Let g ∈ H2(C;F ) be an element of the second cohomology group of C. Thenaccording to 3.1.3 g is given as an equivalence class of cocycles

{
{f(l0, l1)}

[c2
l1→c1

l0→c0]∈Mor C
, f(l0, l1) ∈ F (c0)

}such that for c3 l2→ c2
l1→ c1

l0→ c0 these elements satisfy the (multiplicative) cocycleformula
F (l0)(f(l1, l2))f(l0, l1l2)

−1f(l0l1, l2)f(l0, l1)
−1 = 0which is the cocycle condition de�ned in 2.1.3. Two cocycles {f} and {f ′} are equivalentif there exists a cochain b ∈ C1(C;F ) such that {f ′} = {(δb)f}.Each cocycle f de�nes a twisted diagram of groups F : C −→ Ab given by

F(c) = F (c), F(l) = F (l), fl1,l2 = f(l1, l2). If [{f}] = [{f ′}] then F and F ′ di�erby a coboundary δb and then F and F ′ are equivalent.Assume that F ,F ′ : C −→ Gr are equivalent twisted diagrams of groups. Thenthere exists a homomorphism φ = (idF(c), φ(l)) : F −→ F ′ and F ,F ′ di�er by acoboundary {φ(l)}l∈MorC.Thus an action of H2(C;F ) on the set of equivalence classes of twisted diagrams ofgroups given by: [{f}][F ′] = [F ′′] such that [{f ′′}] = [{ff ′}] is well de�ned, free andtransitive.3.2 Lifting of diagrams of representations to twisteddiagrams of groupsProposition 3.2.1. Let F : C −→ Gr be a twisted diagram of groups. Then thecomposition of F with the functor P : Gr −→ Rep is a functor.Proof. Rep(G,H) = Hom(G,H)/ Inn(H), then for two composable morphisms l, l′ in
C we have PF(l)PF(l′) = PF(ll′).De�nition 3.2.2. Let F : C −→ Gr be a twisted diagram of groups and F −→ Rep anassociated functor. We will call the twisted diagram of groups F a lifting of the functor
F .

Gr

P
��

C
F

//

F
==||||||||
RepAssume that we are given a functor F : C −→ Rep. Does this functor lift to anytwisted diagram of groups F : C −→ Gr? Is there any classi�cation of such liftings?We will answer both these questions in the proceding Section. In order to do this wewill de�ne a certain abelian module ZF : C −→ Ab associated to F .
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De�nition 3.2.3. Let C be a small category. For any object c ∈ C one de�nes the right�bre category under c, denoted by c\C, whose objects are pairs (t(l), c
l
−→ t(l)). A mor-phism (t(l1), c

l1−→ t(l1)) −→ (t(l2), c
l2−→ t(l2)) in c\C is a morphism k : t(l1) −→ t(l2)for which the corresponding triangle under c commutes.For (c

l′
−→ c′) ∈ Mor C there is a natural inclusion l′\C : c′\C ↪→ c\C given by

(c′′, c′
l
−→ c′′) −→ (c′′, c

ll′
−→ c′′).For a given group N , let Z(N) denote its center.De�nition 3.2.4. Let F : C −→ Rep be a functor. One can assign to this functora diagram of groups ZF : C −→ Ab, called obstruction functor de�ned as follows: foreach c ∈ Ob C

ZF (c) =
⋂

l∈c\C

F (l)−1(Z(F (t(l))))and for each (c
l′
−→ c′) ∈ Mor C

ZF (l) : ZF (c) −→ ZF (c′)is given by
⋂

l∈c\C

F (l)−1(Z(F (t(l)))) <
⋂

k∈c′\C

F (kl′)−1(Z(F (t(kl′)))) =

=
⋂

k∈c′\C

F (l′)−1F (k)−1(Z(F (t(k))))
F (l′)
−→

⋂

k∈c′\C

F (k)−1(Z(F (t(k))))An inner automorphism of a group is the identity on its center. Then
ZF : C −→ Abis a well de�ned functor. If C = ∗ then ZF (∗) = Z(F (∗)). Therefore we can roughlysay that ZF is a center of the functor F .Let F : C −→ Rep be a functor and let ZF : C −→ Ab be an obstruction functor.ThenTheorem 3.2.5. To every functor F : C −→ Rep one assignes in a natural way anobstruction element o(F ) ∈ H3(C;ZF ) such that o(F ) vanishes if and only if the functor

F has a lifting to a twisted diagram F : C −→ Gr. Moreover equivalence classes ofsuch liftings are in bijective corrspondence with elements of the group H2(C;ZF ).Proof. Given the functor F : C −→ Rep, we try to construct a �2-cocycle� {f} verifyingthe cocycle condition 2.1.3. We choose a map F̃ : C −→ Gr such that P ◦ F̃ = F anda cochain {
{f(l0, l1)}

[c2
l1→c1

l0→c0]∈Mor C
, f(l0, l1) ∈ F (c0)

} such that
Ad(f(l0, l1))F̃ (l0l1) = F̃ (l0)F̃ (l1)One can de�ne a unique 3-cochain {d

[c3
l2→c2

l1→c1
l0→c0]
}, assininig to each triple of com-posable morphisms an element of the center Z(F (c0)),

d(l0, l1, l2) ∈ Z(F (c0))41



satisfying
F̃ (l0)(f(l1, l2))f(l0, l1l2) = d(l0, l1, l2)f(l0, l1)f(l0l1, l2)We will prove that d is a 3-cocycle with coe�cients in ZF : C −→ Ab. We have

F̃ (l0)(f(l1, l2))f(l0, l1l2)f(l0l1, l2)
−1f(l0, l1)

−1 = d(l0, l1, l2)

F̃ (l0)F̃ (l1)(f(l2, l3))F̃ (l0)(f(l1, l2l3))
(
F̃ (l0)(f(l1l2, l3))

)−1(
F̃ (l0)(f(l1, l2))

)−1
= F̃ (l0)(d(l1, l2, l3))

F̃ (l0l1)(f(l2, l3))f(l0l1, l2l3)f(l0l1l2, l3)
−1f(l0l1, l2)

−1 = d(l0l1, l2, l3)

F̃ (l0)(f(l1l2, l3))f(l0, l1l2l3)f(l0l1l2, l3)
−1f(l0, l1l2)

−1 = d(l0, l1l2, l3)

F̃ (l0)(f(l1, l2l3))f(l0, l1l2l3)f(l0l1, l2l3)
−1f(l0, l1)

−1 = d(l0, l1, l2l3)We will prove that
d(l0, l1, l2)

−1d(l0, l1l2, l3)
−1d(l0l1, l2, l3)d(l0, l1, l2l3) = F̃ (l0)(d(l1, l2, l3))First note

d(l0, l1, l2)
−1d(l0l1, l2, l3) =

= f(l0l1, l2)f(l0, l1l2)
−1

(
F̃ (l0)(l1, l2)

)−1
f(l0, l1)F̃ (l0l1)(f(l2, l3))f(l0l1, l2l3)f(l0l1l2, l3)

−1f(l0l1, l2)
−1Then

d(l0, l1, l2)
−1d(l0l1, l2, l3)d(l0, l1, l2l3) =

= f(l0l1, l2l3)f(l0l1l2, l3)
−1f(l0, l1l2)

−1
(
F̃ (l0)(l1, l2)

)−1
f(l0, l1)F̃ (l0l1)(f(l2, l3))f(l0, l1)

−1

F̃ (l0)(f(l1, l2l3))f(l0, l1l2l3)f(l0l1, l2l3)
−1 =

= f(l0l1l2, l3)
−1f(l0, l1l2)

−1
(
F̃ (l0)(l1, l2)

)−1
F̃ (l0)F̃ (l1)(f(l2, l3))F̃ (l0)(f(l1, l2l3))f(l0, l1l2l3)and this implies

d(l0, l1, l2)
−1d(l0l1, l2, l3)d(l0, l1, l2l3)d(l0, l1l2, l3)

−1 = F̃ (l0)(d(l1, l2, l3)). Then {d} is a
3-cocycle with coe�cients in ZF .If {f ′} is another map satisfying Ad(f ′(l0, l1))F̃ (l0l1) = F̃ (l0)F̃ (l1), then there isunique 2-cochain {b

[c2
l1→c1

l0→c0]
} such that f ′(l0, l1) = b(l0, l1)f(l0, l1). Note b(l0, l1) ∈ Z(F (c0)).`Then the 3-cochain {d′} associated to {f ′} is the cochain {d} modi�ed by thecoboundary of the 2-cochain b, namely

d′(l0, l1, l2) = F̃ (l0)(b(l1, l2))b(l0, l1l2)b(l0l1, l2)
−1b(l0, l1)

−1d(l0, l1, l2)Note that F̃ (l0)(b(l1, l2)) ∈ Z(F (c0)). This proves that b is a 2-cochain with coe�cientsin ZF : C −→ Ab, i.e. b ∈ C2(C;ZF ). Thus {d} and {d′} give the same element
o(F ) ∈ H3(C;ZF ).Assume that F̃ ′ : C −→ Gr is another map such that P ◦ F̃ ′ = F . Then for eachmorphism of C we have F̃ ′(l) = Ad(gl)F̃ (l), where gl ∈ F (t(l)). Let
f ′(l0, l1) := gl0F̃ (l0)(gl1)f(l0, l1)g

−1
l0l1

for each pair . l1 // . l0 // . of morphisms in C.Then
Ad(f ′(l0, l1))F̃

′(l0l1) = F̃ ′(l0)F̃
′(l1)and if {d′} is the unique cochain de�ned by the equation

F̃ ′(l0)(f
′(l1, l2))f

′(l0, l1l2) = d′(l0, l1, l2)f
′(l0, l1)f

′(l0l1, l2) then {d′} = {d}.Thus the cohomology class of {d} is independent of the choice of F̃ and f .Therefore, the functor F : C −→ Rep has a lifting if and only if the element
o(F ) ∈ H3(C;ZF ) vanishes. This proves the �rst part of the Theorem.We will prove that the group H2(C;ZF ) acts freely and transitively on the set ofequivalence classes of liftings of F .Assume that F ,F ′ : C −→ Gr are liftings of F : C −→ Rep. Then for eachmorphism l ∈ Mor C there exists an element gl ∈ F (t(l)) such that F(l) = Ad(gl)◦F ′(l).42



Let F ′′ : C −→ Gr be a twisted digram of groups such that F ′ and F ′′ di�er by acoboundary {gl}l∈MorC. Thus the twisted diagram of groups F ′ : C −→ Gr is equivalentto a twisted diagram of groups F ′′ : C −→ Gr

F ′′ ≈ F ′such that for each morphism l ∈ Mor C

F ′′(l) = F(l)The twisted diagram F ′′ is a lifting of the functor F , thus for each pair of composablemorphisms of C
f ′′
l0,l1

= dl0,l1fl0,l1where dl0,l1 ∈ Z(F (t(l0l1))). The �cocycles� {f}, {f ′′} satisfy the cocycle condition,thus for . l2 // . l1 // . l0 // . of morphisms in C
1 = F ′′(l0)(f

′′
l1,l2

)f ′′
l0,l1l2

(f ′′
l0l1,l2

)−1(f ′′
l0,l1

)−1 =
= F(l0)(dl1,l2)dl0,l1l2(dl0l1,l2)

−1(dl0,l1)
−1F(l0)(fl1,l2)fl0,l1l2(fl0l1,l2)

−1(fl0,l1)
−1 =

= F(l0)(dl1,l2)dl0,l1l2(dl0l1,l2)
−1(dl0,l1)

−1This proves F(l0)(dl1,l2) ∈ Z(F (t(l0))) and then d is a cocycle
d ∈ C2(C;ZF )The map d is a 2-cocycle whose cohomology class is independent on the choice of fand f ′′. Its vanishing implies the existence of an equivalence between the F and F ′′.Conversely given a li�ting F and a 2-cocycle dl0,l1, the formula
f ′′
l0,l1 = dl0,l1fl0,l1de�nes a �cocycle� {f ′′} verifying the cocycle condition and this gives a twisted diagramof groups F ′′ : C −→ Gr. Thus it de�nes an action
[{d}][F ] = [F ′′]of the group H2(C;ZF ) on the set of equivalence classes of liftings of F . If [{d}] = 1then [F ] = [F ′′].This proves the second part of the Theorem.3.3 Epimorphisms of groupsLet G be a group and BG the small category de�ned by G. As we have observed inProposition 2.2.8 there is a bijective corrspondence between the equivalence classes ofextensions over G and equivalence classes of twisted diagrams of groups on BG.De�nition 3.3.1. Assume ϕ : G̃ � G, ϕ′ : G̃′

� G are epimorphisms of groups. Wesay that these epimorphisms are equivalent if there exists an isomorphism of groups
φ : G̃ −→ G̃′ such that the following diagram

G̃

ϕ �� ��>
>>

>>
>>

φ // G̃′

ϕ′����~~
~~

~~
~

Gcommutes. 43



Then according to 2.2.8Remark 3.3.2. The equivalence classes of epimorphisms over G are in bijective cor-respondence with equivalence classes of twisted diagrams of groups over BG.Remark 3.3.3. Let F : BG −→ Rep be a functor such that F (∗) = N . Then F is sim-ply a homomorphism of groups F : G −→ Out(N). The BG-module ZF : BG −→ Abde�ned in 3.2.4 is a homomorphism ZF : G −→ Aut(Z(N)).Then the Theorem 3.2.5 reduces to the classical case ([B2], [R]);Proposition 3.3.4. Let F : G −→ Out(N) be a homomorphism of groups. Then
F comes from an epimorphism G̃ � G if and only if a certain obstruction element
o(F ) ∈ H3(G;Z(N)) vanishes. The equivalence classes of epimorphisms are in bijectivecorrespondence with the elements of H2(G;Z(N)).Proof. Use 3.2.5 for C = BG and then 3.3.2.3.4 Epimorphisms of twisted diagrams of groupsExample 3.4.1. The epimorphism of groups

SL2Z � PSL2Zcould be describe as the homomorphism of colimit groups of diagrams of groups
(Z6 ←− Z2 −→ Z4) � (Z3 ←− 1 −→ Z2)which is an epimorphism on local groups.This example is a special case of surjective homomorphism of complexes of groups,considered by Hae�ieger [H2].De�nition 3.4.2. Assume that G : C −→ Gr and G̃ : C −→ Gr are twisted diagramsof groups de�ned on the category C. A surjective homomorphism or epimorphism oftwisted diagrams of groups ϕ : G̃ � G is a homomorphism over the identity of C suchthat all the local homomorphisms are surjective; i.e. for each c ∈ C

ϕc : G̃(c) � G(c)De�nition 3.4.3. Assume that ϕ : G̃ � G, ϕ′ : G̃′ � G are epimorphisms of twisteddiagrams of groups. We say that ϕ, ϕ′ are equivalent if there exists an isomorphism
φ : G̃ −→ G̃′ over the identity of C such that the following diagram

G̃

ϕ
��<

<<
<<

<<
<

φ // G̃′

ϕ′
����

��
��

�

Gcommutes.The following Theorem is a generalization of the Remark 3.3.244



Theorem 3.4.4. Let G : C −→ Gr be a twisted diagram of groups. There is one toone correspondence between the equivalence classes of epimorphisms
G̃ −→ Gand equivalence classes of twisted diagrams of groups de�ned on the classifying categoryof the twisted diagram of groups G;

F : BG −→ GrProof. Let ϕ : G̃ � G be a surjective homomorphism of twisted diagrams of groups.The homomorphism ϕ is given by a commutative diagram
BG̃

r //

p◦r
��@

@@
@@

@@
@

BG

p
��~~

~~
~~

~~

CWe will prove that functor r : BG̃ −→ BG satis�es assertions of the Theorem 2.2.9.First note, that p and p ◦ r satisfy these assertions. Then1. The functor r is onto because the homomorphism ϕ is locally onto. The functors
p and p ◦ r are bijections on the object sets thus r is a bijection on the objectsets.2. For each c ∈ Ob C the subcategory Gr

c = r−1(idc) is the kernel of the localepimorphism ϕc : G̃(c) −→ G(c), hence it is a group3. • Let Yx ⊂ MorBG̃(c, c′) such that r(y) = x. Let g′ ∈ Gr
c′ and assume that

gy = y. Gr
c′ ⊂ G̃(c

′) and then g′y = y implies g′ = 1. For y1, y2 ∈ Yxthere exists g̃ ∈ G̃(c′) such that g̃y1 = y2. Then r(g̃)x = x which implies
g̃ ∈ kerϕc′ = Gr

c′.
• The homomorphism ψry : Gr

c −→ Gr
c′ is induced by the following diagram

Gr
c

ψr
y

��

// // G̃(c)

ψpr
y

��

// // G(c)

ψp

r(y)

��
Gr
c′
// // G̃(c′) // // G(c′)Then according to Theorem 2.2.9, the epimorphism ϕ : G̃ −→ G yields a twisteddiagram of groups Fϕ : BG −→ Gr. Moreover Fϕ(c) = ker(G̃(c) � G(c)) for each

c ∈ ObBG = Ob C.Conversely let Fϕ : BG −→ Gr be a twisted diagram of groups de�ned on thecategory BG. Let r : BFϕ −→ BG and p : BG −→ C be the associated projections.Then, by Propsition 2.2.14, the composition functor p◦r : BFϕ −→ C de�nes a twisteddiagram of groups
BG̃

p̃
""E

EE
EE

EE
EE

' // BFϕ
r //

pr

��

BG

p
||yy

yy
yy

yy
y

C45



Thus we obtain a commutative diagram
BG̃ //

p̃ ��@
@@

@@
@@

@
BG

p
��~~

~~
~~

~~

Cwhich de�nes a surjective homomorphism of twisted diagrams of groups G̃ � G.According to Remarks 2.2.15 and 2.2.16, for each object c ∈ Ob C = ObBG thereexists an extension of groups
Fϕ(c) � G̃(c) � G(c)and the commutative diagram
BFϕ

r

��

' // BG̃

p̃

��

// BG

p

��
BG

p // C
= // Cwhich de�nes the homomorphisms

Fϕ −→ G̃ −→ GClearly the surjective homomorphisms ϕ : G̃ −→ G, ϕ′ : G̃′ −→ G are equivalent ifand only if the associated twisted diagrams of groups Fϕ : BG −→ Gr and
F ′
ϕ′ : BG −→ Gr are equivalent.The twisted diagram of groups Fϕ satis�es the following universal property:Proposition 3.4.5. Let Fϕ : BG −→ Gr be a twisted diagram of groups associated to anepimorphism ϕ : G̃ −→ G over idC and φ : Fϕ −→ G̃ over p : BG −→ C the associatedhomomorphism. Assume that φ′ : G′ −→ G̃ over s : D −→ C is a homomorphism oftwisted diagram of groups such that ϕ ◦ φ′ is trivial on the local groups. Then thereexists a unique homomorphism φ̄′ : G′ −→ Fϕ over a functor s̄ : D −→ BG such that

φ ◦ φ̄′ = φ′ and p ◦ s̄ = s.Proof. In view of 2.2.11 there exists a unique functor s̄ : D −→ BG such that thefollowing diagram commutes
BG′

��

// BG̃

��
D

""E
EE

EE
EE

EE
s̄ // BG

��
CThis diagram yields a (unique) homomorphism φ̄′ : G′ −→ Fϕ over s such that thefollowing diagram commutes
Fϕ

φ
��

G′

φ̄′
??��������

φ′
// G̃46



The following Theoerem is a corollary from 3.2.5 and 3.4.4.Theorem 3.4.6. Let G : C −→ Gr be a twisted diagram of groups and F : BG −→ Repbe any functor. Let ZF : BG −→ Ab be an obstruction functor de�ned in 3.2.4. Then1. there exists an epimorphism G̃ −→ G of twisted diagrams of groups, such that theassociated twisted diagram of groups F : BG −→ Gr is a lifting of F if and onlyif a certain element o(F ) ∈ H3(BG;ZF ) vanishes2. the set of equivalence classes of such epimorphisms is in bijection with H2(BG;ZF ).Proof. The proof follows directly from 3.4.4 and 3.2.5.Remark 3.4.7. Assume that G̃ −→ G is a surjective homomorphism of complexes ofgroups and for each object c the corresponding epimorphism of local groups has abeliankernel. Then the Theorem 3.4.6 reduces to the Hae�ieger's theorem [Thm. 5.2. H2].If G̃ −→ G is a surjective homomorphism of complexes of groups and for each object
c the corresponding epimorphism of local groups has constant (not necessary abelian)kernel, then the Theorem 3.4.6 reduces to the Hae�ieger's theorem [Thm. 6.3. H2].
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Chapter 4Fundamental groupThe fundamental group of a twisted diagram of groups is a generalization of a directlimit of a diagram of groups. Preciselly, for each twisted diagram of groups thereexists a �weak� direct limit of the corresponding weak functor. This weak direct limitof a twisted diagram of groups is de�ned as the fundamental group of its classifyingcategory.Section 4.1 is devoted to introductory material and basic de�nitions concerningfundamental group of a small category. This fundamental group is de�ned as thefundamental group of the geometric realization of the given category. We will prove thatto each category C one can assign a certain grupoid called the fundamental grupoid orthe grupoid associated to C. It is constructed by formally inverting all of the morphismsof C. If the geometric realization of C is connected then the fundamental grupoid andthe fundamental group are equivalent small categories.Section 4.2 starts with the Theorem motivated by E. D. Farjoun [Fa]. It is thereformulation of the Seifert-van Kampen theorem, concerning the fundametal group ofa union of spaces. Preciselly, we will prove that the fundamental group of a (connected)homotopy colimit is isomorphic to the fundamental group of a certain twisted diagramof groups.Each twisted diagram of groups G : C −→ Gr yields a projection p : BG −→ Cand then a homomorphism of fundamental groups p∗ : π1(G, c0) −→ π1(C, c0). We willprove that this homomorphism is onto (4.2.6). Assume that G is a diagram of groups.Then the epimorphism p∗ splits. Moreover there exist the direct limit of this diagram.The Theorem 4.2.13 establishes the relation between the fundamental group and thedirect limit of G.4.1 Fundamental groupoid and fundamental group ofa small categoryThe fundamental group of a small category C is de�ned as the fundamental group ofits geometric realization. We will prove that this group is isomorphic to the group ofautomorphisms of the grupoid associated to C, de�ned by P. Gabriel and M. Zismanin [G-Z]. A functor F : C −→ D is said make a morphism l of C invertible if F (l) isinvertible. [G-Z] associated with each category C and each subset Σ ⊂ Mor C a categoryof fractions C[Σ−1] and a functor PΣ : C −→ C[Σ−1] verifying the following conditions:
• PΣ makes the morphisms of Σ invertible49



• If a functor F : C −→ X makes the morphisms of Σ invertible, there exists uniquefunctor F̃ : C[Σ−1] −→ X such that F = F̃ ◦ PΣ.We will describe this construction for Σ = Mor C. In this case the category offraction C[Σ−1] turns out to be a grupoid. We will denote it πC and call the fundamentalgrupoid or the grupoid associated to C.
C-paths Let C be a small category. We will de�ne a combinatorial path in thecategory C. We associate two symbols l+ and l− to each morphism l ∈ Mor C. The setof symbols l+, l− with l ∈ Mor C is denoted Mor± C. Given α ∈ Mor± C, we de�ne itsinitial object i(α) and its terminal object t(α) by the formula:

i(l+) = i(l), t(l+) = t(l), i(l−) = t(l), t(l−) = i(l)For α = l+ (resp. l−), we de�ne α−1 = l− (resp. l+).A path in C joining an object c to an object d is a sequence γ = (α1, . . . , αk),where each α ∈ Mor± C, t(αi) = i(αi−1) for i = k, . . . , 2 and i(αk) = c, t(α1) = d. If
γ′ = (α′

1, . . . , α
′
k′) is a path in C joining d to e, then one can compose γ and γ′ to obtainthe path γ′γ = (α′

1, . . . , α
′
k′, α1, . . . , αk) joining c to e. The inverse of the path γ is thepath γ−1 = (α−1

k , . . . , α−1
1 ). If i(γ) = t(γ) then γ is called a loop at c.Equivalence of paths Let γ = (α1, . . . , αk) be a path in C joining c to d. Considerfollowing three operations on γ:1. Assume that for some k ≥ j > 2, we have αj = l+j and αj−1 = l+j−1 (resp. αj = l−jand αj−1 = l−j−1). Then the composition lj−1lj is de�ned (resp. ljlj−1) and weget a new path γ′ in C by replacing the subsequence (αj−1, αj) of γ by (lj−1lj)

+(resp. (ljlj−1)
−).2. Assume that for some k ≥ j > 2, we have αj−1 = α−1

j . Then we get a new path
γ′ by deleting from γ the subsequence (αj−1, αj).3. Assume that for some j, the morphism αj is associated to idc. Then we get anew path by deleting αj .If γ and γ′ are related in this way, then we say that are obtained from each other byan elementary equivalence. Two paths γ and γ′ are de�ned to be equivalent if one canpass from the �rst to the second by a sequence of elementary equivalences. The set ofequivalence classes of paths in C joinig c to d is denoted π1(C, c, d). If [γ] ∈ π1(C, c, d)and [γ′] ∈ π1(C, d, e) then [γ′][γ] = [γ′γ] ∈ π1(C, c, e) and [γ]−1 = [γ−1] ∈ π1(C, d, e).De�nition 4.1.1. Let C be a small category. The grupoid associated to C is a smallcategory πC such that the set of its objects is equal to the set of objects of C and the setof morphisms is given by

MorπC(c, d) = π1(C, c, d)Note, πC is well de�ned small category. Each morphism of πC is invertible thus
πC ∈ Grp ⊂ Cat.Proposition 4.1.2. The above construction is natural, i.e. there exists a functor
π : Cat −→ Grp such that for each small category C

π(C) = πC50



Proof. Let C be a small category and πC the associated grupoid. There exists a functor
πC : C −→ πC which is an identity on the set of objects and maps each morphism
l ∈ Mor C to the equivalence class [l+] ∈ π1(C, i(l), t(l)).Let F : C −→ D be a morphism in Cat. Then there exists an induced functor
πF : πC −→ πD of the associated grupoids given by F : Ob C −→ ObD on the setof objects and πF ([(l±1 , . . . , l

±
k )]) = [(F (l1)

±, . . . , F (lk)
±)] on morphisms. The functor

πF : MorπC −→ MorπD is well de�ned because if [(l±1 , . . . , l
±
k )] = [(f±

1 , . . . , f
±
k′ )] then

[(F (l1)
±, . . . , F (lk)

±)] = [(F (f1)
±, . . . , F (fk′)

±)]For two composable functors F and F ′ we have π(F ◦ F ′) = πF ◦ πF ′, thus themap π : Cat −→ Grp is a functor.Proposition 4.1.3. If F : C −→ D makes the morphisms of C invertible then thereexists an extension of F on πC, i.e. a functor F̃ : πC −→ D such that the followingdiagram
πC

F̃
��

C

πC
>>}}}}}}}}

F
// Dcommutes.Proof. Let F : C −→ D be a functor. Assume that for each l ∈ Mor C the image F (l)is an invertible morphism in D. We extend the functor F to a functor F̃ : πC −→ Das follows; F̃ ([l+]) = F (l) and F̃ ([l−]) = F (l)−1 and then

F̃ ([(l±1 , . . . , l
±
k )]) = F (l1)

± ◦ . . . ◦ F (lk)
±. Therefore the following diagram

πC

F̃
��

C

πC
>>}}}}}}}}

F
// Dcommutes.Remark 4.1.4. Note that the extension F̃ : πC −→ D of F is unique.Corollary 4.1.5. Let C be a small category, πC the associated grupoid and πC : C −→ πCthe natural functor. Then πC is initial for functors C −→ X of C to any groupoid X ,i.e. for each functor F : C −→ X there exists a unique functor F̃ : πC −→ X such thatthe following diagram
πC

F̃
��

C

πC
>>}}}}}}}}

F
// Xcommutes.Remark 4.1.6. If C is a grupoid then πC = C.Proof. Let γ be a path in C. All morphisms of C are invertible thus γ = l ∈ Mor C.Moreover if two paths γ and γ′ are homotopic then they are equal morphisms of C.Thus MorπC = Mor C and then πC = C. 51



Corollary 4.1.7. The functor π : Cat −→ Gr is left adjoint to the inclusion Grp ⊂
Cat.De�nition 4.1.8. The fundamental group of C is de�ned to be the fundamental groupof its geometric realization

π1(C, c) := π1(B C, c)De�nition 4.1.9. We say that a small category C is connected if the geometric real-ization of C is a connected topological space.De�nition 4.1.10. Let C be a connected small category. Consider a graph B C(1)whose set of vertices is Ob C and whose set of 1-cells is Mor C; an element l ∈ Mor Cis considered as an edge joining the vertices i(l) and t(l). Let T be any maximal treein B C(1). Let T ⊂ Mor C be the subset of morphisms of the category C associated tothe maximal tree T . We de�ne a maximal tree of the category C to be T ⊂ Mor C.Remark 4.1.11. The fundamental group of BC is isomorphic to the fundamentl groupof its 2-skeleton, namely π1(B C, c0) = π1(B C
(2), c0). Moreover there exists a homotopyequivalence B C ≈ (B C)/T , which implies π1(C, c0) ' π1(B C(2)/T, ∗).As a corollary we obtain the following presentation of the fundamental group of thegiven category CCorollary 4.1.12. The fundamental group of a connected category C is isomorphic tothe group π1(C, T ) given by the following presentation. It is generated by the set

∐
Mor Csubjected to the relations1. (l+)−1 = l−1 and (l−1)−1 = l+2. l+l′+ = (ll′)+ for a pair (l, l′) of composable morphisms3. l = 1 ∀l ∈ TProposition 4.1.13. Let c0 be an object of the small connected category C. Thereexists an isomorphism of groups Θ : AutπC(c0) −→ π1(C, T ).Proof. Each element of the group AutπC(c0) is given by a sequence (α1, . . . , αk) ofcomposable morphisms of πC such that i(αk) = t(α1) = c0 and each morphism αiequals l+i or l−i where li ∈ Mor C. We de�ne Θ : AutπC(c0) −→ π1(C, T ) to be a mapsending

α1 ◦ . . . ◦ αk −→ α1 . . . αkFor each object c ∈ Ob πC, let γc = (α1, . . . , αk) be the unique sequence of compos-able maps in πC such that no consecutive elements are inverse to each other, t(α1) = c0,
i(αk) = c and each αi is contained in T ′ = πC(T ). Let αc denote the composition
α1 ◦ . . . ◦ αk of morphisms from γc.Then we de�ne Θ′ : π1(C, T ) −→ AutπC(c0) to be a homomorphism mapping thegenerator l+ to the morphism αt(l)l

+α−1
i(l). This homomorphism is well de�ned becausethe relations are satis�ed; in particular Θ′(l+) = 1 if l ∈ T . The group AutπC(c0) isgenerated by the elements of the form αt(l)l

+α−1
i(l) and the homomorphisms Θ and Θ′are inverse to each other. 52



De�nition 4.1.14. Let X be a topological space. The grupoid πX associated to X is asmall category whose objects are elements x ∈ X and morphisms are given by homotopyequvalence classes of paths ω ⊂ X, i.e.
MorπX(x, y) := {[ω] | i(ω) = x, t(ω) = y}Proposition 4.1.15. Let X be a connected grupoid, x ∈ ObX . The inclusion of thesmall category AutX (x) ↪→ X is an equivalence of small categories.Proof. Each object of X is isomorphic with x. Thus the inclusion AutX (x) ↪→ X is anequivalence of small categories.Remark 4.1.16. Let X be a topological space and πX the associated grupoid. Thenthe fundamental group π1(X, x) is de�ned as the group AutπX(x).Remark 4.1.17. Let C be a small category, B C its geometric realization and πC, πB Cthe associated grupoids. There exists a natural functor I : πC −→ πB C which sends anobject c to the vertex c ∈ B C. Each morphism [γ] of πC is maped to the equivalenceclass of the corrsponding edge path ω ⊂ (B C)(1) in the 1-skeleton of the geometricrealization. If [γ] = [γ′] then the corresponding paths ω and ω′ are homotopic in B C.Thus I is well de�ned functor.Proposition 4.1.18. Let C be a small category and B C its geometric realization. Thenthe natural functor I : πC −→ πB C de�ned in 4.1.17 is an inclusion and an equivalenceof categories.Proof. Let c, d ∈ Ob C. According to the cellular aproximation theorem the functor

MorπC(c, d) −→ MorπBC(c, d) induced by I is onto. Let C0 ⊂ C be a connected compo-nent of C. Then due to 4.1.13, 4.1.15 and 4.1.16 for each object c of C0 the followingdiagram
πC0

I // πB C0

AutπC0(c)
?�

≈

OO

' // AutπB C0(c)
?�

≈

OOcommutes. Therefore the functor MorπC0(c, d) −→ MorπBC0(c, d) induced by I is an in-clusion. Hence MorπC0(c, d) ' MorπBC0(c, d). The small category πB C0 is a connectedgrupoid, thus each two objects of πB C0 are isomorphic. Therefore I|C0 : πC0 −→ πB C0is an equivalence of small categories. It is inclusion because it is inclusion on the set ofobjects. This implies I : πC −→ πB C is inclusion and equivalence of categories.Proposition 4.1.19. For a given category C the fundamental groups of C and πC areisomorphic.Proof. According to 4.1.6 the small category ππC is equal to πC. Thus according to4.1.15 the fundamental groups π1(C, c) and π1(πC, c) are isomorphic.Remark 4.1.20. Let F : C −→ C′ be a functor. The restriction of the inducedfunctor πF : πC −→ πC′, πF| : AutπC(c) −→ AutπC′(F (c)) de�nes a homomorphism offundamental groups
π1F : π1(C, c) −→ π1(C

′, F (c))53



Remark 4.1.21. Let c1, c2 be objects of the category C. Let γ ∈ Mor πC be a morphismsuch that i(γ) = c1 and t(γ) = c2. Then there exists a homomorphism of fundamentalgroups φ : π1(C, c1) −→ π1(C, c2) given by φ(g) = γgγ−1 where g ∈ AutπC(c1).Theorem 4.1.22. Let F : D −→ Cat be a functor such that for each each d ∈ ObDthe corresponding category F (d) = Cd is connected. Consider a map F : D −→ Grassigning to each object d ∈ ObD �rst the base object cd ∈ Cd and then the fundamentalgroup of Cd, i.e.
F(d) = AutπCd

(cd)For each morphism l : d −→ d′ we de�ne a homomorphisms of groups F(l) : F(d) −→ F(d′)to be the composition AutπCd
(cd) −→ AutπCd′

(F (l)(cd)) −→ AutπCd′
(cd′) of homomor-phisms de�ned in 4.1.20 and 4.1.21. Then F is a twisted diagram of groups.Moreover, there exists a weak natural transformation of weak functors

η : F =⇒ πFgiven by ηd : AutCd
(cd)

≈
↪→ πCd.Proof. The homomorphism F(l) : F(d) −→ F(d′) is given by the composition

AutπCd
(cd)

πF (l)
−→ AutπCd′

(F (l)(cd))
Ad(γl)
−→ AutπCd′

(cd′)where γl ∈ Mor πCd′ such that i(γl) = F (l)(cd) and t(γl) = cd′. Let d2
l1−→ d1

l0−→ d0be morphisms of D. Then the composition F(l0)F(l1) di�ers from the homomorphism
F(l0l1) by the conjugation with an element

gl0,l1 = γl0 ◦ πF (l0)(γl1) ◦ γ
−1
l0l1
∈ AutπCd0

(cd0)These elements satisfy the cocycle condition de�ned in 2.1.3 thus F : D −→ Gr is atwisted diagram of groups. Note that di�erent choice of the objects {cd ∈ Cd}d∈ObDgives an isomorphic twisted diagram of groups and di�erent choice of the paths {γl}l∈MorDgives a twisted diagram which di�ers from F by a coboundary.The following diagram
F(d)

� _

��

F(l) // F(d′)
� _

��
πF (d)

πF (l) // πF (d′)is commutative up to a natural transformation Ad(γl). These diagrams de�ne a weaknatural transformation η : F =⇒ πF (1.2.5).4.2 Fundamental group of a twisted diagram of groupsDe�nition 4.2.1. Let G : C −→ Gr be a twisted diagram of groups and BG its clas-sifying category. We de�ne a fundamental group of a twisted diagram of groups to bethe fundamentl group of its classifying category
π1(G, c0) := π1(BG, c0)54



Fundamental group of a (connected) homotopy colimit Let F : D −→ Cat beany functor and F : D −→ Gr the twisted diagram of groups de�ned in 4.1.22. Thenatural question is how the fundamental group of this twisted diagram of groups isrelated to F . The following Theorem answers this question:Theorem 4.2.2. Let F : D −→ Cat be a functor such that each F (d) is a connectedcategory. Then the fundamental group of the Grothendieck construction BF is isomor-phic to the fundamental group of the twisted diagram of groups F : D −→ Gr de�nedin 4.1.22.Proof. According to 4.1.22 there exists a weak natural transformation η : F =⇒ πFsuch that for each object d of D, ηd is an equivalence of small categories. Then due to1.3.9
π1(BF , d0) ' π1(B(πF ), d0)The small category BF is connected (because each F (d) is connected) thus π1(BF, d0)

≈
↪→

π(BF ). The map π(BF ) −→ π(B(πF )) sending [(l, f)]+ −→ [(l, [f ]+)]+ is an isomor-phism. Therefore,
π1(| hocolimNF |, d0) ' π1(BF, d0) ' π1(BF , d0)Presentations of the fundamental group of a twisted diagram of groupsProposition 4.2.3. Let C be a small category. There exists a functor ι : C −→ Bπ1(C, c).Proof. The functor ι is given by the composition C πC−→ πC

j
−→ π1(C, c) where j is aninverse functor of the equivalence AutπC(c) ↪→ πC.We de�ne j : πC −→ AutπC(c) as follows. For each c1 ∈ ObπC = ObC we choose amorphism αc1 ∈ Mor πC such that i(α) = c and t(α) = c1. Then for each γ ∈ Mor πCwe de�ne j(γ) = α−1

t(γ)γαi(γ)Proposition 4.2.4. Let ι : BG −→ Bπ1(G, c0) be a functor de�ned in 4.2.3. Thefollowing commutative diagram
BG

ι
- Bπ1(G, c0)

C
?

- ∗
?de�nes a homomorphism in the category of twisted diagrams of groups

ιG : G −→ π1(G, c0)Remark 4.2.5. If G : C −→ Gr is a trivial diagram of groups (i.e. all of G(c) = 1),then π1(G, c0) = π1(C, c0) and ιG = ι.More generally, 55



Proposition 4.2.6. Homomorphism of G : C −→ Gr to a trivial diagram of groups
I : C −→ Gr induces a surjective homomorphism π1(G, c0) −→ π1(C, c0) which splits if
G is a diagram of groups.Proof. The homomorphism G −→ I of twisted diagrams of groups induces a projec-tion p : BG −→ C of its classifying categories. Consider a map associating to each loop
γ = (α1, . . . , αk) in BG the loop (p(α1), . . . , p(αk)) in C. This map de�nes a homomor-phism π1(G, c0) −→ π1(C, c0). According to 2.2.9 the functor p is onto and it is theidentity on the set of objects. Then each loop γ′ in C can be lifted to a loop γ in BG.If G : C −→ Gr is a diagram of groups, then according to 2.2.10, the functor p splitsthus the epimorphism π1(G, c0) −→ π1(C, c0) splits also.Theorem 4.2.7. Let T be a maximal tree in C. Then the fundamental group π1(G, c0)is isomorphic to the group π1(G, T ) which has the following presentation:The generators are all elements of G(c) for each c ∈ Ob C and all elements l ∈ Mor C.The relations are:1. the relations in the groups G(c)2. (l+)−1 = l−1 and (l−1)−1 = l+3. for l ∈ Mor C, h ∈ G(i(l)), then G(l)(h) = l+hl−14. for a pair (l, l′) of composable morphisms l+l′+ = gl,l′(ll

′)+5. l = 1 for l ∈ TProof. First note that the maximal tree in the category C yields a maximal tree in BG.Then use 2.2.9 and 4.1.12.Remark 4.2.8. There exists a functor BG −→ π1(G, T ) which sends (l, g) to gl+. Thisfunctor de�nes a homomorphism iG : G −→ π1(G, T ).Fundamental group and colimit of a diagram of groups Assume that we havea diagram of groups that is a functor F : C −→ Gr. The diagram of groups is a specialcase of a twisted diagram of groups thus we have a fundamental group of this diagram.For a given diagram of groups we have also its direct limit. The following sectionconcerns the relation between the colimit and the fundamental group of a diagram ofgroups.Remark 4.2.9. A morphism Φ = (Φc,Φ(l)) from a twisted diagram G : C −→ Grto a group G, where G is considered as a twisted diagram of groups, consists of ahomomorphism Φc : G(c) −→ G for each c ∈ Ob C and an element Φ(l) ∈ G for each
l ∈ Mor C such that1. Φt(l)G(l) = Ad(Φ(l))Φi(l)2. Φt(l)(gl,l′)Φ(ll′) = Φ(l)Φ(l′)We say that Φ is simple if G is a diagram of groups and each Φ(l) is trivial.Let T be a maximal tree of the small category C.56



Proposition 4.2.10. Let F : C −→ Gr be a diagram of groups and I : C −→ Gr atrivial diagram of groups. There exists a commutative diagram
F

φ
- I

π1(F, T )

iF

?
φ∗
- π1(C, T )

iI

?where iF , iI are de�ned as in 4.2.8. Moreover, functors Bφ and φ∗ split.Proof. Due to 2.2.10 the natural projection Bφ : BF −→ C splits and according to4.2.6 the homomorphism φ∗ splits. Therefore the following diagram
BF

��

Bφ
// C

s
ss

��
π1(F, T )

φ∗
// π1(C, T )

s̄qqcommutes. Clearly the homomorphism s̄ sends the generator l+ ∈ π1(C, T ) to thegenerator l+ ∈ π1(G, T ).Remark 4.2.11. The functor ΦF : F −→ colimF induces a commutaive diagram
BF

��

33 C
rr

��
colimC F 33 1

qqThe morphism (l, g) is mapped to BΦF (g) ∈ colimF .Proposition 4.2.12. Let π1(F, T ) be a fundamental group of a given diagram of groups
F : C −→ Gr and iF : F −→ π1(F, T ) the induced homomorphism. There exists ahomomorphism of groups ϕF : π1(F, T ) −→ colimC F such that ΦF = ϕF ◦ iF .Proof. The functor ϕF maps the generator g to BΦF (g) and the generator l+ to thetrivial element of the group colimF . Clearly ϕF is well de�ned and ΦF = ϕF ◦ iF .E.D. Farjoun has proved that the direct limit of the diagram of groups is a push-outof a certain diagram of groupoids (Corollary 5.4, [Fa]). The following Theorem wasmotivated by this observation.Theorem 4.2.13. Let F : C −→ Gr be a diagram of groups. Then the group colimFis the push-out of the following diagram

π1(C, T ) - π1(F, T )

1
?

- colimC F

ϕF

?57



Proof. Consider a commutative diagram of groups
π1(C, T ) - π1(F, T )

1
?

- G

Φ

?We will prove that there exists a unique homomorphism of groups Θ : colimC F −→ Gsuch that the following diagram commutes
π1(C, T ) //

��

π1(F, T )

ϕF

��
Φ

��5
55

55
55

55
55

55
55

55

1 //

**UUUUUUUUUUUUUUUUUUUUUUUUU colimC F

Θ
HHHH

$$H
HHH

(?)

GConsider
π1(C, T )

s̄
- π1(F, T ) �

iF
F

1
?

- G

Φ

?According ot 4.2.7 for each l ∈ Mor C the corresponding diagram
F (i(l)) - F (t(l))

π1(F, T )
?�commutes up to a conjugation with an element l+ ∈ π1(F, T ). Clearly l+ = s̄(l+),hence the composition Φ ◦ iF : F −→ G is a simple homomorphism. Then there existsa unique homomorphism

Θ : colim
C

F −→ Gsuch that the following diagram is commutative
π1(C, T )

��

// π1(F, T )

Φ

��

ϕF

&&MMMMMMMMMM
F

iFoo

ΦF{{vv
vvv

vv
vv

v

colimC F

Θ
xxpppppppppppp

1 // GTherefore diagram (?) commutes which proves the Theorem.58



Corollary 4.2.14. Let F : C −→ Gr be a diagram of groups. Then the fundamentalgroup of F is isomorphic to the colimit of this diagram if and only if the geometricrealization of the category C is simply connected.
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Chapter 5Coverings of small categories anddevelopable twisted diagrams ofgroupsThe following Chapter starts with the theory of coverings of small categories. We saythat a functor φ : C′ −→ C is a covering if its geometric realization is a topologicalcovering. A category CovC of coverings of the given category C is a category whoseobjects are coverings of C and morphisms correspond to functors F : C′1 −→ C
′
2 overthe identity of C. The geometric realization functor yields a functor CovC −→ CovB C.We will prove that this functor is an equivalence of categories.We say that a group G acts without inversion on a small category D if for each

g ∈ G and d ∈ ObD such that gd = d we have gk = k for each morphism k ∈ MorDsuch that i(k) = d. Given such an action one can de�ne a quotient category D/Gof this action and the induced projection D −→ D/G is so called right covering. Wewill prove in Section 5.2 that the action without inversion yields an action of G onthe geometric realization of D and B(D/G) = (BD)/G. Assume that G acts freelyon a small category D, clearly a free action is an action without inversion. Then thegeometric realization of D −→ D/G is a G-covering.Given an action without inversion of a group G on a small category D, one canassociate a twisted diagram of groups G : D/G −→ Gr. Let p : D −→ D/G be thenatural projection. Then for each object c ∈ ObD/G the group G(c) is isomorphicto the isotorpy subgroup of each d ∈ p−1(c) ⊂ ObD. If G acts freely on D then theisotropy subgroups are trivial, hence BG = D/G and the functor p : D −→ BG = D/Gis a G- covering. We will prove in Section 5.3 that for each twisted diagram ofgroups G : D/G −→ Gr associated to an action, there exists a functor D −→ BG over
p : D −→ D/G such that
• there exists a G-covering E −→ BG
• there exists an inclusion and an equivalence of categories D ↪→ Esuch that the following diagram commutes

D

!!B
BB

BB
BB

B
� � ≈ // E

��
BG61



The action of the group G on the small category D yields a functor SD : BG −→ Cat.Let EG be the universal covering of the small category BG. We will prove that thefollowing diagram commutes
D

  A
AA

AA
AA

A
� � ≈ // E

/G

��

� � ≈ // EG×D

/G
��

BG � � ≈ // BSD

��
BGSection 5.4 proves the developability theorems of Bridson and Hae�ieger ([H1],[B-H]). Let G : C −→ Gr be a twisted diagram of groups and G a group. Given ahomomorphism Φ : G −→ G one can associate to it a small category D(G,Φ) with anaction of the group G. Moreover a twisted diagram of groups G : C −→ Gr associatedto this action is such that the following diagram commutes

G

Φ ��>
>>

>>
>>

>

ϕ // G

Φ
��
Gwhere homomorphisms ϕ and Φ are respectively surjective and injective on the localgroups.We say that a twisted diagram of groups is developable if it is equivalent to a twisteddiagram of groups associated to an action. We will prove that it is the case when thereexists a group G and a homomorphism Φ : G −→ G which is injective on the localgroups. Moreover, if G is developable then the functor ιG : G −→ π1(G, c0) is injectiveon the local groups and there exists a functor D(G, ιG) −→ D(G,Φ). If the inducedhomomorphism Φ∗ : π1(G, c0) −→ G is surjective then this functor is a covering ofsmall categories.5.1 Coverings of small categoriesA covering of a small category is a functor whose geometric realization is a toplogicalcovering. We will prove that for a given small category C the category of coverings of

C is equivalent to the category of topological coverings of the geometric realization B Cof C.De�nition 5.1.1. Let φ : C′ −→ C be a functor from a small category C′ to a smallconnected category C. We say that a functor φ is a covering if the geometric realization
Bφ : B C′ −→ B C is a topological covering.The category of coverings of C denoted CovC is a category whose objects are cover-ings φ : C′ −→ C and morphism between two coverings φ1 : C′1 −→ C, φ2 : C′2 −→ C isa functor F : C′1 −→ C

′
2 such that φ1F = φ2.Let G be a group, we de�ne a small category EG to be a category whose objectscorresponds to elements of the group G and for each pair g1, g2 ∈ G there exists theunique morphism g1

g−1
1 g2
−→ g2. There exists an action of the group G on EG given by

g(g1

g−1
1 g2
−→ g2) = (gg1

g−1
1 g2
−→ gg2)62



Example 5.1.2. The natural action of G on a small category EG yields a functor
EG −→ BG. This functor is a covering because its geometric realization EG −→ BGis the universal covering of BG.Theorem 5.1.3. Let C be a connected category and φ : C′ −→ C a functor. Thefollowing conditions are equivalent1. φ : C′ −→ C is a covering2. For each c′ ∈ Ob C′ the induced functors φ/c′ : C′/c′ −→ C/φ(c′) and c′/φ : c′/C′ −→ φ(c′)/Care bijections on the objects sets3. Let lc : C/c −→ C and rc : c/C −→ C be the natural projections. For each

c ∈ Ob C, the following pull-back categories
l∗c (C/c)

��

// C′

φ

��

r∗c (c/C)

��

// C′

φ

��
C/c

lc // C c/C
rc // Care trivial coverings.Proof. 1. =⇒ 2.Assume φ : C′ −→ C is a functor such that Bφ is a topological covering. Then therestriction of Bφ to the 1-skeletons Bφ(1) : B C′(1) −→ B C(1) is also a covering. We willprove that for each c′ ∈ Ob C′ and for each l ∈ Mor C such that i(l) = φ(c′) (respectively

t(l) = φ(c′)) there exists unique l′ ∈ Mor C′ such that i(l′) = c′ (respectively t(l′) = c′)and φ(l′) = l.For l : φ(c′) −→ d a morphism in C its geometric realization ω = |l| is a pathin B C(1). Bφ(1) is a covering thus there exists a unique path ω′ in B C′(1) such that
i(ω′) = c′ ∈ B C′(0) and Bφ(1)(ω′) = ω. Since φ is a functor then ω′ is an edge in
B C′ corresponding to a morphism l′ ∈ Mor C′ such that i(l′) = c′ and φ(l′) = l. Thisimplies that the restriction of φ to the subset of morphisms of C′ that have c′ as itsinitial object is a bijection onto the set of morphisms of C with initial object φ(c′),hence c′/φ : c′/C′ −→ φ(c′)/C is a bijection on the objects set. Choosing l : d −→ φ(c′)we can prove the second part of the assertion.

2. =⇒ 3.First note that if φ : C′ −→ C satis�es assertion 2. then for each c ∈ Ob C the preimage
φ−1(c) is a subset of Ob C′. The morphisms of l∗c (C/c) are pairs (k, l′) where k ∈ Mor C/cand l′ ∈ Mor C′ such that lc(k) = φ(l′). The morphism k is given by the diagram

c

c1
l //

l1
>>~~~~~~~~

c2

l2
``@@@@@@@@and lc(k) = l = φ(l′). Assertion 2. implies that there exist the unique pair of morphisms

l′1, l
′
2 and an object c′ such that φ(l′1) = l1, φ(l′2) = l2 and φ(c′) = c and morphisms

l′, l′1, l
′
2 form a diagram k′ ∈ Mor C′/c′. This proves that l∗c(C/c) is isomorphic to thedisjoint union ∐

c′∈φ−1(c) C
′/c′ hence its geometric realization is a trivial covering of63



B(C/c). Clearly r∗c (c/C) '∐
c′∈φ−1(c) c

′/C′ and then its geometric realization is a trivialcovering of B(c/C).
3. =⇒ 1.Let Nφ : N C′ −→ N C be a simplicial map of nerves induced by φ. A morphism

p : E −→ X of simplicial sets is said to be a covering if for each commutative diagram
∆[0]

i
��

u // E

p

��
∆[n] v // Xthere is a unique morphism s : ∆[n] −→ E satisfying p ◦ s = v, s ◦ i = u.We will prove that Nφ is a covering of simplicial sets. Let

∆[0]

i
��

u // N C′

Nφ

��
∆[n]

v // N Cbe a commutative diagram such that u(∆[0]) = c′ ∈ (N C′)(0) = Ob C′. The simplex
∆[n] ∈ N C corresponds to the lenght n sequence cn ln−1

−→ cn−1 −→ . . .
l0−→ c0 of nontriv-ial morphisms of C. Therefore, there exists 0 ≤ m ≤ n such that cm = φ(c′). Thuswe obtain sequences cn ln−1

−→ cn−1 −→ . . .
lm−→ φ(c′) and φ(c′)

lm−1
−→ cm−1 −→ . . .

l0−→ c0.These sequences yield the maps ∆[n −m] −→ N(C/φ(c′)) and ∆[m] −→ N(φ(c′)/C).The functor φ satis�es 2. which implies that there exist ∆[n − m] −→ N(C′/c′)and ∆[m] −→ N(c′/C′) which are liftings of the latter maps. These maps yield
s : ∆[n] −→ N C′ satisfying (Nφ)◦s = v, s◦i = u. The simplicial map s : ∆[n] −→ N C′satisfying the latter is unique because the liftings∆[n−m] −→ N(C′/c′) and ∆[m] −→ N(c′/C′)are unique.Thus Nφ is a covering of simplicial sets. According to Theroem 3.2. Appendix I[G-Z] the geometric realization of a covering of simplicial sets is a topological covering.Therefore Bφ : B C′ −→ B C is a topological covering.Corollary 5.1.4. Let φ : C′ −→ C be a covering of the connected category C. Let
c ∈ Ob C and c′ ∈ Ob C′ be such that φ(c′) = c. Any path in C starting at c can be lifteduniquely to a path in C′ starting at c′. Moreover, if two paths starting from c′ projectsby φ to paths which are equal as morphisms in πC, then these paths are equal in πC′.Thus φ induces an injection π1(C′, c′) into π1(C, c).Let D be a connected category and �x d ∈ ObD. Let φ1, φ2 : D −→ C′ be twofunctors such that φ ◦ φ1 = φ ◦ φ2 and φ1(d) = φ2(d). Then φ1 = φ2.Corollary 5.1.5. Let φ : C′ −→ C be a covering. Then the induced functor πφ : πC′ −→ πCis a covering and the small category C′ is the pull-back of the following diagram

C′

φ

��

// πC′

πφ

��
C // πC64



Proposition 5.1.6. Let φ : (C′, c′0) −→ (C, c0) be a covering of small categories and
λ : (D, d0) −→ (C, c0) a functor, where D is connected small category. Then a lifting
λ̃ : (D, d0) −→ (C′, c′0) of λ exists if and only if λ∗(π1(D, d0)) ⊂ φ∗(π1(C′, c′0)).Proof. If a lifting λ̃ : (D, d0) −→ (C′, c′0) of λ exists then obviousely
λ∗(π1(D, d0)) ⊂ φ∗(π1(C′, c′0)).Assume that λ∗(π1(D, d0)) ⊂ φ∗(π1(C′, c′0)). For each d ∈ ObD we de�ne λ̃(d) asfollows. Choose any path γ in D joining d0 to d, let γ̃ be the unique lifting of the path
λ(γ) such that i(γ̃) = c′0. We de�ne λ̃(d) := t(γ̃). Assume that γ′ is another pathjoining d0 to d, then the composition γ−1 ◦ γ′ is a loop at d0. Then according to theassumption, the lifting of a loop λ(γ−1 ◦γ′) is a loop (at c′0). This lifting is unique thus
t(γ̃) = t(γ̃′), and then λ̃(d) is well de�ned.Let l ∈ MorD, we de�ne λ̃(l) to be the unique morphism l′ ∈ Mor C′ such that
i(l′) = λ̃(i(l)), t(l′) = λ̃(t(l)) and φ(l′) = λ(l).The following theorem was motivated by Quillen. He has proved in Proposition 1 of[Q] that the category of covering spaces of B C is equivalent to the category of functorsfrom the grupiod πC to the category of sets.Theorem 5.1.7. The category CovC of covering categories of C is canonically equiv-alent to the category Hom(πC,Sets), where πC is the grupoid associated to the smallcategory C.Proof. Let φ : C′ −→ C be a covering of small categories. Then φ satis�es assertion 2.of 5.1.3. The associated functor is de�ned as follows. The �bre of φ over c ∈ Ob C is theset Λc = φ−1(c) ⊂ Ob C′. For l ∈ Mor C with i(l) = c, let Λl : Λi(l) −→ Λt(l) be the mapassociating to each c′ ∈ Λc the terminal object of the unique element l′ ∈ Mor C′ suchthat φ(l′) = l and i(l′) = c′. This map is a bijection because φ is a covering. Moreover,for composable morphisms l1, l2 ∈ Mor C we have Λl1Λl2 = Λl1l2 , and Λidc

= idΛc
. Inother words Λ can be considered as a functor from the category C to the categorywhose elements are bijections of sets. Therefore, according to 4.1.3 one can extend Λto a functor Λ̃ : πC −→ Sets.Note that the small category C′ is isomorphic to the Grothendieck category BΛ,the isomorphism sends a morphism l′ of C′ to a pair (l, idt(l′)) ∈ MorBΛ. Moreover,

πC′ ' BΛ̃.Let F : C′1 −→ C
′
2 over the identity of C be a morphism in CovC. Assume that

Λ1, Λ2 : C −→ Sets are functors associated to the given coverings. We will de�nea natural transformation η : Λ1 =⇒ Λ2. For each c ∈ Ob C the functor ηc is givenby φ−1
1 (c)

F
−→ φ−1

2 (c). Then for each morphism l : c −→ d the following diagramcommutes
Λ1(c)

ηc

��

Λ1(l) // Λ1(d)

ηd

��
Λ2(c)

Λ2(l) // Λ2(d)and then η : Λ1 =⇒ Λ2 is well de�ned. We can clearly extend η to a naturaltransformation η̃ : Λ̃1 =⇒ Λ̃2. Therefore, we have de�ned a functor
Φ : CovC −→ Hom(πC,Sets)65



Assume that we have a morphism-inverting functor Λ : C −→ Sets. Then thenatural projection BΛ −→ C satis�es assertion 2. from 5.1.3 thus it is a covering. Anatural transformation η : Λ1 =⇒ Λ2 gives a commutative diagram
BΛ1

!!C
CC

CC
CC

C

Bη // BΛ2

}}{{
{{

{{
{{

Cwhich is a morphism in CovC. Therefore, we have
Φ′ : Hom(πC,Sets) −→ CovCClearly ΦΦ′ = id

Hom(πC,Sets) and Φ′Φ ' idCovC
. This proves the Theorem.Remark 5.1.8. If φ : C′ −→ C is a covering and Λ : C −→ Sets the correspondingfunctor, then C′ ' BΛ.Corollary 5.1.9. Assume that D′ is the pull-back of the following diagram

D′

φ′

��

// C′

φ

��
D

F // CIf φ is a covering and Λ : C −→ Sets the associated morphism inverting functor then
φ′ is a covering such that the associated morphism inverting functor is equal to Λ ◦ F .The following Proposition is a corollary from 5.1.7.Proposition 5.1.10. The category CovC of coverings of the small connected category
C is equivalent to the category of π1(C, c0)-sets.Proof. The small category πC is equivalent to the small category Bπ1(C, c0). Then
CovC ≈ Hom(πC,Sets) ≈ Hom(Bπ1(C, c0),Sets) which proves the Theorem.Therefore we obtain a followingTheorem 5.1.11. Let C be a small connected category. The category CovC of coveringsof the small category C is equivalent to the category CovBC of topological coverings ofthe topological space B C.The next observation will be usefull later.Corollary 5.1.12. Assume C′, C are connected small categories and φ : (C′, c′0) −→
(C, c0) is a covering. Then for each c ∈ Ob C the preimage φ−1(c) is isomorphic to
π1(C, c0)/φ∗(π1(C′, c′0)).De�nition 5.1.13. We say that a covering φ̂ : Ĉ −→ C is a universal covering if foreach covering φ : C′ −→ C there exists a functor φ̂′ : Ĉ −→ C′ which is a morphism in
CovC, i.e. the following diagram commutes

Ĉ

φ̂

��

φ̂′

��>
>>

>>
>>

>

C′

φ����
��

��
�

C 66



Remark 5.1.14. Note φ̂′ : Ĉ −→ φ̂′(Ĉ) satis�es assertion 2. of 5.1.3 hence is a covering.Lemma 5.1.15. Let X be a connected grupoid. There exists a �universal� functor
Λ̂ : X −→ Gr given by x −→ AutX (x) such that for each functor Λ : X −→ Sets thereexists a natural transformation η : Λ̂ =⇒ Λ.Proof. The functor Λ̂ : X −→ Gr is given by Λ̂(x) = AutX (x) for each x ∈ ObX andfor each γ : x −→ x′ we have Λ̂(γ) : AutX (x) −→ AutX (x′) given by g −→ γgγ−1. Let
Λ : X −→ Sets be any functor. Then the natural inclusion AutX (x) ↪→ X −→ Setsde�nes an action of the group AutX (x) on a set Λ(x).Our goal is to de�ne a natural transformation η : Λ̂ =⇒ Λ. We choose x0 ∈ ObX ,clearly Λ(x0) is an AutX (x0)-set. Therefore there exsists a functor AutX (x0) −→ Λ(x0)and we de�ne ηx0 : Λ̂(x0) −→ Λ(x0) to be this functor. Note, ηx0 is onto if and onlyif Λ(x0) is a transitive AutX (x0)-set. Moreover for each g ∈ AutX (x0) the followingdiagram commutes

Λ(x0)
Λ(g) // Λ(x0)

AutX (x0)

eeKKKKKKKKKK

99ssssssssssFor each x ∈ ObX we choose a morphism γx : x0 −→ x in X . Then we de�ne
ηx : Λ̂(x) −→ Λ(x) to be AutX (x)

Λ̂(γx)−1

−→ AutX (x0)
ηx0−→ Λ(x0)

Λ(γx)
−→ Λ(x), therefore thefollowing diagram commutes

Λ(x0)
Λ(γx) // Λ(x)

AutX (x0)

ηx0

OO

Ad(γx)// AutX (x)

ηx

OO

Clearly for each γ : x −→ x′ we have Λ(γ)◦ηx = ηx′ ◦ Λ̂(γ), therefore η is a well de�nednatural transformation.Proposition 5.1.16. Let C be a small connected category, φ̂ : Ĉ −→ C a covering and
Λ̂ : πC −→ Sets the associated functor. The following conditions are equivalent1. φ̂ : Ĉ −→ C is a universal covering2. the fundamental group of the small category Ĉ is trivial3. Λ̂ : πC −→ Sets is isomorphic to the �universal� functor de�ned in 5.1.15Proof. 1. =⇒ 2. Assume that φ̂ : Ĉ −→ C is a universal covering and ˆ̂

φ :
ˆ̂
C −→ C is acovering such that ˆ̂C is connected and the fundamental group of ˆ̂C is trivial. Accordingto 5.1.6 there exists a functor F :

ˆ̂C −→ Ĉ over the identity of C. Clearly F is anisomorphism, therefore the fundamental group of Ĉ is trivial.
2. =⇒ 3. Due to 5.1.12 for each c ∈ Ob C we have Λ̂(c) ' π1(C, c0) ' AutπC(c).
3. =⇒ 1. This implication follows directly from 5.1.15 and 5.1.7.
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5.2 Action without inversion and G-coverings of smallcategoriesDe�nition 5.2.1. Let D be small category. An action without inversion of a group
G on D is an action such that, if an element of G �xes an object d ∈ ObD then itacts trivially on the small category d/D, i.e. �xes every morphism l ∈ MorD such that
i(l) = d.Remark 5.2.2. An action of G on the category D induces an action of G on itsgeometric realization BD in the obvious way. Geometrically, the above de�nitionmeans that if g �xes a vertex d, then it �xes (pointwise) the union of the simplicescorresponding to composable sequences (l1, . . . , lk) with i(lk) = d.De�nition 5.2.3. (Categorical quotient) Let D be a small category and G any groupacting on it. Then the categorical quotient of the action of G on D is p : D −→ D/Gsuch that for any small category E with the trivial action of G on it and the G-equivariantfunctor F : D −→ E , there is a G-equivariant functor F̃ : D/G −→ E such that thefollowing diagram is commutative

D
F

- E

D/G

p

?
F̃

-Proposition 5.2.4. Assume that G acts without inversion on a small category D.Then the categorical quotient is isomorphic to the �naive� quotient of D by the actionof G.Proof. Let C denote the �naive� quotient, i.e. Mor C = MorD/G. We will prove that Cis a small category. In order to do it we need to prove that for each pair of composablemorphisms l : c′ −→ c and l′ : c′′ −→ c′ in C the composition l′′ : c′′ −→ c is wellde�ned.First note that for each l̃ ∈ MorD we have an inclusion of isotropy subgroups
StabG(i(l̃)) ⊂ StabG(t(l̃))Let p : D −→ C be a �naive� projection. Assume that we have two pairs of compos-able morphisms (l̃, l̃′) and (gl̃, g′l̃′) in D such that, p(l̃) = p(gl̃) = l, p(l̃′) = p(g′l̃′) = l′,and p(l̃l̃′) = l′′. We will prove that p(gl̃g′l̃′) = l′′.We will denote l̃′′ := l̃l̃′, c̃′′ := i(l̃′) = i(l̃′′), c̃′ := t(l̃′) = i(l̃), c̃ := t(l̃) = t(l̃′′).Then g′c̃′ = t(g′l̃′) = i(gl̃) = gc̃′, which implies g−1g′ ∈ Stab(c̃′). The group G actson D without inversion, and then g−1g′ ∈ Stab(l̃), g′l̃ = gl̃.Then gl̃g′l̃′ = g′l̃g′l̃′. The action of the groupG is functorial, so g′l̃g′l̃′ = g′(l̃l̃′) = g′l̃′′.Then p(g′l̃′gl̃) = p(g′l̃′′) = l′′.Proposition 5.2.5. Assume that G acts without inversion on a small category D and

C is the quotient. Then the induced action of the group G on BD satis�es:
B C = (BD)/G68



Proof. The topological space BD is a geometric realization of a simplicial space ND.We have proved in 5.2.4 that N C(0) = (ND)(0)/G and N C(1) = (ND)(1)/G. The
n-simplex of the geometric realization of the small category corresponds to the sequenceof n composable morphisms. Thus for each n ∈ N, N C(n) = (ND)(n)/G and then
N C = (ND)/G. According to Theorem 3.1, Chapter III [G-Z] the geometric realizationfunctor commutes with direct limits, therefore B C = (BD)/G.The following example shows that if we drop the assumption of G acting withoutinversion, then the naive quotient fails to be a category.Example 5.2.6. Let D be a category given by

c0

a
  A

AA
AA

AA
A

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
c // c2

c1

b

55kkkkkkkkkkkkkkkkkk

b′

))RRRRRRRRRRRRRRRRRRR

c′0

a′
??��������

88qqqqqqqqqqqqqqqqqqqqqqqqqqqqq

c′
// c′2we denote ba′ = d and b′a = e.Assume that Z2 = 〈g〉 acts on D in the following way; gc0 = c′0, gc1 = c1, gc2 = c′2,

ga = a′, gb = b′. Thus gc = c′ and gd = e.Note, that the 'naive' quotient D//Z2 is not a category. This quotient would havethree objects [c0] = [c′0], [c1], [c2] = [c′2] and morphisms [a] = [a′], [b] = [b′], [c] = [c′]and [d] = [e]. Since ba = c, b′a′ = c′, ba′ = d, b′a = e, then [b][a] = [c] and [b][a] = [d]which is not possible, because [c] 6= [d] in D//Z2.Let D/Z2 be the categorical quotient. Let F : D −→ E be any Z2-equivariant func-tor such that Z2 acts trivialy on E . Then F (gl) = F (l) for objects and morphisms of D.Then we have F (a) = F (a′) and F (b) = F (b′) which implies F (c) = F (c′) = F (d) = F (e).Then the category D/Z2 has three objects and three morphisms [a] : [c0] −→ [c1],
[b] : [c1] −→ [c2], [c] : [c0] −→ [c2]. Note that

B(D/Z2) 6= (BD)/Z2because B(D/Z2) has one 2-simplex and (BD)/Z2 two 2-simplices.De�nition 5.2.7. We say that functor φ : D −→ C is a right covering if for eachobject d of D an induced functor d/φ : d/D −→ φ(d)/C is a bijection on objects set.Proposition 5.2.8. Assume that a group G acts without inversion on a small category
D. The natural projection p : D −→ D/G induced by the action of G is a right covering.Proof. Assume that k1, k2 are morphisms of D such that i(k1) = i(k2) = d and
p(k1) = p(k2). This implies that there exists g ∈ G such that gk1 = k2. Thus gd = dand then k1 = k2.Assume that a group G acts freely on a small category D. A free action of a group
G is a special case of the action without inversion, thus there exists a quotient of thataction D/G de�ned as in 5.2.4. According to 5.2.8 the natural projection D −→ D/Gis a right covering. Clearly it is also a left covering, therefore p : D −→ D/G is acovering. 69



De�nition 5.2.9. Let G be a group. We say that a covering of small categories
φ : D −→ C is a G-covering if and only if the group G acts freely on the small cat-egory D, the quotient D/G is isomorphic to the small category C and the followingdiagram commutes

D
φ

����
��

��
�� pr

!!D
DD

DD
DD

D

C
' // D/GProposition 5.2.10. Let G be a group. Let φ : D −→ C be a G-covering and

Λ : C −→ Sets the associated morphism inverting functor. Then for each c ∈ Ob C
Λ(c) ' G and

D ' BΛProof. Follows directly form 5.1.8.We can generalize this observation in the following way. Assume that a groupG actswithout inversion on a small category D, let p : D −→ D/G denote the natural pro-jection induced by the action of G. For each object c of D/G consider p−1(c) ⊂ ObD.This preimage is a transitive G-set. Due to 5.2.8, for each l : c −→ c′ a morphism in
D/G and d ∈ p−1(c) there exists unique morphism k : d −→ d′ such that p(k) = l.Thus each morphism l ∈ Mor C de�nes a G-equivariant morphism p−1(c) −→ p−1(c′).Therefore we obtain a functor LD : D/G −→ (G− Sets).Proposition 5.2.11. Assume that a group G acts without inversion on a small cate-gory D, let LD : D/G −→ Sets be a functor de�ned above. Then BLD ' D.Proof. A map sending a morphism k : d −→ d′ of D to a pair (p(k), idd′) ∈ MorBLDis an isomorphism.5.3 Twisted diagram of groups associated to an actionRemark 5.3.1. Assume that a group G acts without inversion on a small category
D. Let LD : D/G −→ (G − Sets) be a functor from 5.2.11. Assume c ∈ ObD/G,then G-set p−1(c) de�nes a grupoid which is isomorphic to G/ StabG(d) for each object
d ∈ p−1(c). Therefore, the functor LD induces a functor

FD : D/G −→ Grpand a natural transformation LD =⇒ FD given by p−1(c) ↪→ ObFD(c). This naturaltransformation induces the inclusion
BLD ↪→ BFDProposition 5.3.2. Assume that a group G acts without inversion on a small category

D, we consider it as a functor SD : BG −→ Cat. Let FD : D/G −→ Grp be afunctor de�ned in 5.3.1. Then the Grothendieck construction BSD is isomorphic to theGrothendieck construction BFD. 70



Proof. According to 5.2.11 the small category D is isomorphic to the Grothendieckconstruction BLD. Thus we can assume that a morphism of BSD is a pair (g, (l, idd))where g ∈ G and (l, idd) ∈ MorBLD. We de�ne a functor BSD −→ BFD to bean identity on the objets set and to be (g, (l, idd)) −→ (g−1l, (g, idd)) on the set ofmorphisms. It is clearly an isomorphism which proves the Proposition.Let EG be the universal covering of the category BG de�ned in 5.1.2.Proposition 5.3.3. Consider the direct product EG×D and an action of the group Gon it given by g(h, d) = (gh, gd). Then this action is free and the quotient is isomorphicto BSD.Proof. According to 5.2.11 the small category D is isomorphic to the Grothendieckcategory BLD. Therefore EG × D is isomrophic to the Grothendieck category BL̄D,where L̄D : D/G −→ Cat is given by L̄D(c) = EG×LD(c) for each object c ∈ ObD/G.
LD(c) is a transitive G-set, hence the action of the group G on EG×D gives an actionof G on L̄D(c). Clearly L̄D(c)/G ' FD(c). Therefore (EG×D)/G ' BFD ' BSD.According to 5.2.5 the geometric realization B((EG × D)/G) = (EG × BD)/G,henceCorollary 5.3.4. The geometric realization of a sequence of functors D ↪→ BSD −→ BGyields a topological �bration BD ↪→ EG×G BD −→ BG. Therefore, the small category
BSD is a categorical analogue of the Borel construction.Proposition 5.3.5. Assume that the group G acts without inversion on the smallcategory D, let C denote the quotient of that action, and FD : C −→ Grp be the functorconstructed in 5.3.1. Let G : C −→ Gr be a twisted diagram of groups associated to
FD : C −→ Grp ( construction described in 4.1.22). Then for each l : c −→ c′ thecorresponding homomorphism of groups G(l) : G(c) −→ G(c′) is injective. We will callthe twisted diagram of groups G a twisted diagram of groups associated to an actionof the group G on the small category D.Proof. For each object c of C the group G(c) is isomorphic to the group
AutFD(c)(d) = StabG(d) ⊂ G. Let k : d −→ d′ be a morphism of D. The group G actswithout inversion thus StabG(d) ⊂ StabG(d′). Therefore the corresponding homomor-phism is injective.Remark 5.3.6. According to 4.1.22, there exists a natural transformation G =⇒ FD.Clearly it induces an equivalence of categories BG ↪→ BFD.Corollary 5.3.7. The composition of BG ↪→ BFD with the isomorphism BFD −→ BSDgives

BG
≈
↪→ BSDRemark 5.3.8. Consider the composition BG ↪→ BSD −→ BG. This functor de�nesa homomorphism of twisted diagrams of groups

Φ : G −→ GCorollary 5.3.9. The fundamental group of the category D is isomorphic to the kernelof the homomorphism of groups Φ∗ : π1(G, c) −→ G.Remark 5.3.10. If G acts freely on the small category D then the associated twisteddiagram of groups is trivial hence BG ' C. The associated homomorphism de�ned in5.3.8 is given by Φ : IC −→ G. 71



G-covering of the classifying category BG If the group G acts freely on the smallcategory D then the natural projection p : D −→ C = D/G is a G-covering. We canconsider this projection as a homomomorphism of trivial twisted diagrams of groups
ID −→ IC over p : D −→ C. As we have observed in 5.3.10, IC : C −→ Gr is a twisteddiagram of groups associated to the free action of G on D. We will prove that for eachtwisted diagram of groups G : C −→ Gr associated to an action of G on D there exista homomorphism ID −→ G over p : D −→ C and a small category E such that theassociated functor D −→ BG is equal to

D

!!B
BB

BB
BB

B
� � ≈ // E

��
BGand E −→ BG is a G-covering.In order to prove it we need to construct a certain diagram of groups on the smallcategory D:Remark 5.3.11. Assume that the group G acts without inversion on the small cate-gory D. One can associate with this action a diagram of groups G̃D : D −→ Gr givenby

G̃D(d) = StabG(d)for each object d of D and
G̃D(k) : StabG(d) ↪→ StabG(d′)for each morphism k : d −→ d′ of D.Proposition 5.3.12. Let BG̃D be the classifying category of the diagram of groupsde�ned in 5.3.11. Then this category is isomorphic to the pull-back of the followingdiagram

D̃

��

p̃ // BG

��
D

p // CProof. Let FD : C −→ Grp be a functor de�ned in 5.3.1. Consider a functor FD ◦ p : D −→ Grp.For each object d of D the grupoid (FD ◦ p)(d) contains the set p−1(p(d)) ⊂ ObD.Clearly d ∈ p−1(p(d)).Consider the projection D̃ −→ D. According to 1.2.14 it is associated to the pull-back diagram of groups G ◦ p : D −→ Gr.The (twisted) diagrams of groups G◦p : D −→ Gr and G̃D : D −→ Gr are associatedto the functor FD ◦ p via the construction described in 4.1.22. Therefore these twisteddigarams of groups are equivalent and then there exists an isomorphism BG̃D −→ D̃over the identity of D.Corollary 5.3.13. There exists an action without inversion of the group G on BG̃Dsuch that the following diagram
BG̃D

��

/G // BG

��
D

/G // C72



commutes. This action is induced from the action of G on the pull-back D̃.Remark 5.3.14. There exists a commutative diagram
BG̃D � q

##F
FFFFFFF

D
?�

OO

� � // BSDGiven a diagram of groups one can assign to it a certain functor to the category ofsmall categories.Remark 5.3.15. Let G̃D : D −→ Gr be a diagram of groups de�ned in (5.3.11).Consider a map W : D −→ Cat given by
W (d) = EG̃D(d)for each d an object of D and W (k) : EG̃D(d) −→ EG̃D(d′) induced by G̃D(k) for each

k : d −→ d′ a morphism in D. Then W is a functor and there exists a natural transfor-mation η : W =⇒ G̃D such that for each object d the functor ηd : EG̃D(d) −→ BG̃D(d)is the universal covering of BG̃D(d).Proposition 5.3.16. Let BW be the Grothendieck construction of the functor W .There exists a free action of the group G on BW and the quotient is isomorphic to thesmall category BG.Proof. Let d be an object of D. Consider the quotient G/ StabG(d). In order tode�ne the action of G we need to choose for each StabG(d)-coset a representative in
G. Then for each element g of G there exist a representative g(d) and an element
h(g, d) ∈ StabG(d) such that g = g(d)h(g, d). If g ∈ StabG(d) then we assume that
g = h(g, d).Let (d, h), where d ∈ ObD and h ∈ StabG(d) = ObE StabG(d), be an object of
BW . We de�ne

g(d, h) = (gd, ghh(g, d)g−1)Let (k, h), where k ∈ MorD and (h1
h
−→ h1h) ∈ Mor E StabG(t(k)), be a morphism of

BW . The action of the group G is given by
g(k, h) = (gk, gh(g, i(k))−1hh(g, t(k))g−1)Note g((k1, h1)(k2, h2)
)

= g(k1, h1) ◦ g(k2, h2), which implies that the action is wellde�ned. Assume that g(d, h) = (d, h). Then g ∈ StabG(d) and h(g, d) = g. Thus
h = gh and this implies g = 1.We will prove that the quotient category (BW )/G is isomorphic to the classifyingcategory BG. First note that there exists a commutative diagram

BW

/G
��

r̃ // D

p /G
��

(BW )/G
r // D/GThe functor r is clearly onto and it is a bijection on the objects set. For each object dof D the preimage r̃−1(idd) is E StabG(d) and then73



r−1(idp(d)) ' E StabG(d)/ StabG(d) = B StabG(d). For each k : d −→ d′ a morphism in
D the preimage r̃−1(k) is isomorphic to the set of pairs (k, h) where h ∈ E StabG(d′).Thus the preimage r−1(p(k)) is isomorphic to the set of pairs (p(k), h) where h ∈ E StabG(d′).Thus (BW )/G ' BG.Theorem 5.3.17. Let ID : D −→ Gr be a trivial diagram of groups. There exists ahomomorphism φ : ID −→ G over p : D −→ C such that the corresponding homomor-phism Bφ : D −→ BG is equal to the composition

BW

/G
��

D
.
�

≈
==zzzzzzzz

Bφ
// BGProof. Let W : D −→ Cat be a functor de�ned in 5.3.15. There exists a functor

λ : D −→ BW given by d −→ (d, 1). This functor is clearly inclusion and equivalenceof categories. Consider a diagram
BW

φ′ // BG

��
D

λ

OO

p // Cwhere φ′ is a G covering from 5.3.16. The diagram
D

=

��

φ′◦λ // BG

��
D // Cde�nes a homomorphism φ : ID −→ G over p.Let E denote the Grothendieck category BW . Then Theorem 5.3.17 and Proposition5.3.3 implies:Corollary 5.3.18. The following diagram commutes

D

  A
AA

AA
AA

A
� � ≈ // E

/G

��

� � ≈ // EG×D

/G
��

BG � � ≈ // BSD

��
BGThe following observations will be usefull in the next Chapter.Proposition 5.3.19. Let Bφ : D −→ BG be a functor de�ned in 5.3.17. Note for each

c ∈ Ob C
G(c) ∩ Bφ(D) = idcLet l̃ be a morphism of BG such that l̃ /∈ G(c) ⊂ MorBG for each c ∈ Ob C . Thenthere exists a morphism k ∈ D such that Bφ(k) = l̃.74



Proof. Let d be an object of D and l ∈ Mor C such that t(l) = p(d). Consider a subset
Υ of MorD such that each k ∈ Υ satis�es t(k) = d and p(k) = l. Let g ∈ StabG(d).We will prove that if k 6= k′ then gλ(k) 6= λ(k′).For each k ∈ MorD λ(k) = (k, 1) ∈ MorBW . If g ∈ StabG(d) and k ∈ Υ then
g(k, 1) = (gk, gh(g, i(k))−1) and if k 6= gk then gh(g, i(k))−1 6= 1. Therefore Bφestablishes a bijection between the set Υ and the set of morphism of BG projecting on
l. This proves the Proposition.Corollary 5.3.20. Let Bφ : D −→ BG be a functor de�ned in 5.3.17. Let l̃ ∈ MorBGbe a morphism such that l̃ /∈ G(c) ⊂ MorBG for each c ∈ Ob C . Then for each
d ∈ ObD such that p(d) = t(l̃) (p(d) = i(l̃)) there exists a unique morphism k ∈ MorDsuch that d = t(k) (d = i(k)).5.4 Developable twisted diagrams of groupsDe�nition 5.4.1. A twisted diagram of groups equivalent to a twisted diagram ofgroups associated to an action of a group (5.3.5) is called developable.Example 5.4.2. Consider a short exact sequence N � G̃

Θ
� G and the twisteddiagram of groups F : BG −→ Gr associated to it de�ned in 2.1.10. Consider anaction of a group G̃ on a small category EG given by

g̃.g = Θ(g̃)gNote that EG/G̃ = BG and the isotropy subgroup of each object of the category EG isisomorphic to the given group N . Moreover the twisted diagram of groups associatedto this action is isomorphic to F thus it is developable.Lemma 5.4.3. Let G : C −→ Gr be a twisted diagram of groups and Φ : G −→ G bea homomorphism. There exists a twisted diagram of groups G : C −→ Gr such thathomomorphism Φ is equal to the composition
G

Φ

��=
==

==
==

=

G

ϕ
@@��������
Φ // Gwhere ϕ : G −→ G is an epimorphism of twisted diagrams of groups and Φ : G −→ Gis injective on the local groupsProof. We de�ne a twisted diagram of groups as follows: G(c) = Φc(G(c)), G(l) = Ad(Φ(l))and gl1,l2 = Φt(l1)(gl1,l2). Then the homomorphism Φ = (Φc,Φl) : G −→ G is given by

Φc : G(c) ↪→ G and Φ(l) = Φ(l) is injective on the local groups. The epimorphism
ϕ : G −→ G is given by ϕc : G(c) � G(c) = im Φc.Lemma 5.4.4. Let G : C −→ Gr be a twisted diagram of groups and Φ : G −→ G anyhomomorphism. One can associate to Φ a certain functor L = L(Φ) : C −→ G− Setssatisfying

L(c) = G/Φc(G(c))for each c ∈ Ob C. 75



Proof. We de�ne a functor L : C −→ (G − Sets) as follows: let G : C −→ Gr be atwisted diagram of groups from 5.4.3. For each object c of C we put L(c) = G/G(c)and for each morphism l a G-equivariant functor is given by L(l)([g]) = [gΦ(l)−1]. For
c2

l1−→ c1
l0−→ c0 the homomorphisms G(l0l1) and G(l0)G(l1) di�er by a conjugationwith an element of the group G(c0). Therefore L(l0l1) = L(l0)L(l1).Theorem 5.4.5. Let G : C −→ Gr be a twisted diagram of groups, let G be a groupand Φ : G −→ G any homomorphism.1. Canonically associated to each morphism Φ : G −→ G there is an action of Gon a small category D = D(G,Φ) (called the development) with quotient C. Thetwisted diagram of groups associated to this action is equivalent to G : C −→ Gr.If Φ is injective on the local groups, then G is equivalent to the twisted diagramof groups associated to this action.2. If G is the twisted diagram of groups associated to an action of a group G on asmall category D and if Φ : G −→ G is the associated morphism, then there is a

G-equivariant isomorphism D(G,Φ) −→ D that projects to identity of C.Proof. 1. Let L : C −→ G − Sets be the functor de�ned in 5.4.4. We de�ne a smallcategory D(G,Φ) to be the Grothendieck construction BL. The action of the group Gon D is given by g[h] = [gh] and it is an action without inversion. Clearly, the quotient
D/G is isomorphic to C and the associated twisted diagram of groups is equivalent to
G. If Φ : G −→ G is injective on the local groups then G is equivalent to G.The proof of 2. follows directly from 5.2.11.Corollary 5.4.6. A twisted diagram of groups G : C −→ Gr is developable if and onlyif there exist a group G and a homomorphism Φ : G −→ G which is injective on thelocal groups.Remark 5.4.7. Let IC : C −→ Gr be a trivial twisted diagram of groups and
Φ : IC −→ G any homomorphism. Clearly Φ is injective on the local groups, and thenatural projection p : D(IC,Φ) −→ C is a G-covering.Assume that G : C −→ Gr is a developable twisted diagram of groups and Φ : G −→ Ga homomorphism which is injective on the local groups. Let D = D(G,Φ) be the as-sociated development, and there exists an action of the group G on D such that theassociated twisted diagram of groups is equivalent to G. According to 5.3.17, thereexists a homomorphism φ : ID −→ G and a G-covering φ′ : E −→ BG such that Bφ isequal to D ≈

↪→ E
φ′

−→ BG. Moreover, due to 5.3.16 the following diagram commutes
E

��

/G // BG

��
D

/G
// Cand the projection E −→ D is G-equivariant.The homomorphism Φ : G −→ G yields a homomorphism Φ̄ : IBG −→ G such that

BΦ = BΦ̄. ThenProposition 5.4.8. The small category E is isomorphic to the development D(IBG, Φ̄).76



Proof. According to 5.4.7 the natural projection D(IBG, Φ̄) −→ BG is a G-coveringof small categories. Due to 5.3.9 the fundamaental group of D(IBG, Φ̄) is isomorphicto the kernel of the homomorphism Φ∗ : π1(BG, c0) −→ G. The equivalence of smallcategories D ≈
↪→ E and 5.3.9 imply that the fundamental groups of D(IBG, Φ̄) and E areisomorphic. Therefore, there exists an isomorphism E '

−→ D(IBG, Φ̄) over the identityof BG.Proposition 5.4.9. Assume that G′ : C′ −→ Gr, G : C −→ Gr are developable twisteddiagrams of groups and Φ′ : G′ −→ G′, Φ : G −→ G are the homomorphisms which areinjective on the local groups. Assume that there exist a homomorphism φ : G′ −→ Gover F : C′ −→ C and a homomorphism of groups Θ : G′ −→ G such that the followingdiagram
BG′

BΦ′

��

Bφ // BG

BΦ
��

BG′ BΘ // BGcommutes up to a natural transformation η : BΦ◦Bφ =⇒ BΘ ◦BΦ′. Then there existthe Θ-eqivariant functors F̃ : D′ −→ D and B̃φ : E ′ −→ E of the developments (5.4.5)and coverings (5.4.8) associated to Φ′ and Φ such that the following diagram commutes
E

��

// D

p

��

E ′

B̃φ
<<yyyyyyyyy

��

// D′
F̃

>>}}}}}}}}

p′

��

BG // C

BG′

Bφ
<<zzzzzzzz

// C′
F

>>~~~~~~~~Proof. The natural transformation η : BΦ ◦ Bφ =⇒ BΘ ◦ BΦ′ is given by a family ofelements sc′ ∈ G indexed by c′ ∈ Ob C′ such that
Θ ◦ Φ′

c′ = Ad(sc′) ◦ Φ(F (c′)) ◦ φc′ and BΦ ◦ Bφ(l̃′) = st(l̃′)Θ(Φ′(l̃′))s−1

i(l̃′)
l̃′ ∈ MorBG′Then a map (l̃′, g′) −→ (Bφ(l̃′),Θ(g′)st(l̃′)) de�nes aΘ-equivariant functor B̃φ : E ′ −→ Eover Bφ : BG′ −→ BG.We de�ne a functor F̃ : D′ −→ D to beD′ ≈

↪→ E ′ −→ E −→ D. Clearly F̃ : D′ −→ Dis Θ-equivariant thus the following diagram
D′

/G′

��

F̃ // D

/G

��
C′

F // Ccommutes, which proves the Proposition. 77



Proposition 5.4.10. Let G : C −→ Gr be a developable twisted diagram of groups.Then the homomorphism ιG : G −→ π1(G, c0) from G to its fundamental group isinjective on the local groups.Proof. According to 5.4.6 there exists a homomorphism Φ : G −→ G which is injectiveon the local groups. The induced functor BΦ : BG −→ BG is equal to the composition
πBG

B̃Φ

""F
FFFFFFF

BG

πBG

<<xxxxxxxx
BΦ // BGIf Φ is injective on the local groups then for each c an object of C the composition

G(c) ↪→ BG −→ BG is an inclusion. This implies that G(c) −→ πBG is an inclu-sion, hence G(c) −→ πBG −→ π1(G, c0) = AutπBG(c0) is an inclusion. Therefore
ιG : G −→ π1(G, c0) is injective on the local groups.Proposition 5.4.11. Let G : C −→ Gr be a developable twisted diagram of groups and
Φ : G −→ G any homomorphism which is injective on the local groups. Let D = D(G,Φ)be a dvelopment associated to Φ and D̂ = D(G, ιG) the development associated to thehomomorphism ιG : G −→ π1(G, c0). Then there exists a functor F̂ : D̂ −→ D and
D̂ −→ F̂ (D̂) is a covering of small categories. The functor F̂ is onto if and only if
Φ∗ : π1(G, c0) −→ G is onto.Proof. The homomorphismΦ induces a homomorphism of fundamental groups Φ∗ : π1(G, c0) −→ Ggiven by a commutative diagram

πBG
B̃Φ

""E
EE

EE
EE

EE

AutπBG(c0)
+
�

i
88rrrrrrrrrr
Φ∗ // BGLet j : πBG −→ AutπBG(c0) be the inverse functor to the equivalence i. The ho-momorphism ιG is de�ned as the composition j ◦ πBG. We have B̃Φ ◦ i = Φ∗ hence

B̃Φ◦ i◦j = Φ∗ ◦j. This implies that there exists a natural isomorphism B̃Φ =⇒ Φ∗ ◦jand hence there exists a natural isomorphism α : BΦ =⇒ Φ∗ ◦ BιG . According to5.4.9 there exists a Φ∗-equivariant functor F̂ : D̂ −→ D.For each c ∈ Ob C the composition G(c) −→ π1(G, c0)
Φ∗−→ G is injective, therefore

G(c) ∩ ker Φ∗ = 1. This implies that the group ker Φ∗ acts freely on D̂. Clearly thequotient of this action is isomorphic to the small category F̂ (D̂).Remark 5.4.12. According to Theorem 5.3.17 the development D̂ is equivalent to theuniversal covering of the small category BG, therefore D̂ is simply connected.
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Chapter 6Coverings of twisted diagrams ofgroupsWe say that a twisted diagram of groups G : C −→ Gr is a generalized complex of groupsif for each morphism l ∈ Mor C the associated homomorphism of groups is injective.We will prove that a generalized complex of groups is locally developable, that is, foreach object c ∈ Ob C there exists a small category Dc (called the local development)with an action of a group G(c) such that the quotient of this action is isomorphic to thesmall category C/c. Bridson and Hae�ieger in [B-H] de�ned a covering of complexesof groups to be a homomorphism φ : G′ −→ G over a right covering F : C′ −→ C suchthat
• φ is injective on the local groups
• for each c′ ∈ Ob C′ the induced functor D′

c′ −→ DF (c′) is an isomorphism (of thelocal developments)They have proved in that φ : G′ −→ G is a covering if and only if the associated functor
Bφ is equal to the composition

BG′

Bφ ""D
DD

DD
DD

D
� � ≈ // E

��
BGwhere E −→ BG is a covering of small categories. An arbitrary twisted diagram ofgroups does not have to be locally developable, hence the de�nition of a coveringgiven in [B-H] no longer makes sense. Therefore we de�ne a homomorphism of twisteddiagrams of groups to be a covering if it satis�es the above property.Section 6.1 presents some properties and examples of coverings of twisted diagramsof groups. Note that if φ is a covering of twisted diagrams of groups then it is injectiveon the local groups.Section 6.2 is devoted to the proof of the theorem stated above, namely a homo-morphism of generalized complexes of groups is a covering if it satis�es assertions 1.and 2. presented above.We will prove in Section 6.3 that for each surjective homomorphism ϕ : G̃ −→ Gthere exists a �kernel� twisted diagram of groups. It will be a twisted diagram of groups

K : D −→ Gr and a homomorphism φ : K −→ G̃ such that the composition ϕ ◦ φ istrivial on the local groups and the induced homomorphism ϕ∗ ◦ φ∗ is trivial on thefundamental groups. Moreover φ turns out to be a covering of twisted diagrams ofgroups. 79



6.1 Coverings of twisted diagrams of groupsDe�nition 6.1.1. Let φ : G′ −→ G be a homomorphism of twisted diagrams of groups.We say that φ is a covering if and only if there exist a covering of small categories
φ′ : E −→ BG and an inclusion λ : BG′ −→ E which is an equivalence, such that
Bφ = φ′λ.Corollary 6.1.2. Let φ : G′ −→ G be a covering of twisted diagrams of groups. Theassociated homomorphism of fundamental groups is injective.Proposition 6.1.3. Assume that G′ = H and G = G are twisted diagrams of groups onthe category with one object and no morphisms and φ : H −→ G is a homomorphism.Then φ is a covering of twisted diagrams of groups if and only if φ is a monomorphismof groups.Proof. Assume that φ : H −→ G is a monomorphism. Then the correspondingfunctor Bφ is the inclusion of small categories BH −→ BG. We put E := EG/H ,then BH −→ EG/H is equivalence and inclusion of categories. The natural projection
EG/H −→ BG is a covering.Assume that φ : H −→ G is a covering of twisted diagrams of groups. Then thereexists a small category E such that BH λ

↪→ E
φ′

−→ BG The functor λ is an inclusion andan equivalence of small categories then for each e ∈ Ob E the set EndE(e) ' H . Thefunctor φ′ is a covering, thus according to 5.1.3 we have an inclusion EndE(e) −→ BG.Then φ is a monomorphism of groups.More generally:Proposition 6.1.4. Let φ : G′ −→ G be a covering of twisted diagrams of groupsover F : C′ −→ C. Then φ is a monomorphism on the local groups, namely for each
c′ ∈ Ob C′ the corresponding homomorphism of groups φc′ : G′(c′) −→ G(F (c′)) isinjective.Proof. Let E be a small category such that the composition BG′ λ

↪→ E
φ′

−→ BG equals
Bφ. Then for each c′ ∈ Ob C′ we have a commutative diagram

G′(c′)

φc′

��

� � // EndE(λ(c′))

φ′
|

��
G(F (c′)) � � // EndBG(F (c′))The restriction φ′

| of φ′ is an inclusion because φ′ is a covering. Then φc′ is injective.Note that a covering of trivial twisted diagrams of groups is not what one wouldexpect:Remark 6.1.5. Let φ : G′ −→ G be a covering over F : C′ −→ C and assume that
G : C −→ Gr and G′ : C′ −→ Gr are trivial twisted diagrams of groups, i.e. suchthat the local groups are trivial. Then the related functor Bφ : BG′ −→ BG equals
F : C′ −→ C. Note that F does not have to be a covering of small categories but thesmall category C′ is equivalent to a covering category E of C.80



Proposition 6.1.6. Let φ : G′ −→ G be a covering over F : C′ −→ C of trivial twisteddiagrams of groups. Assume that F is a right covering. Then F : C′ −→ C is a coveringof small categories.Proof. The functor F equals C′ λ
↪→ E

φ′

−→ C, where λ is an equivalence and φ′ is acovering. We will prove that λ is an isomorphism. Choose any e ∈ Ob E . Then e isisomorphic to λ(c′) for some c′ ∈ Ob C′. Let l denote the image of this isomorphismunder φ′; l : F (c′) −→ φ′(e). The functor F is the right covering thus there exists aunique morphism l′ : c′ −→ c′1 such that F (l′) = l. This implies e = λ(c′1), thus λ isonto and then it is an isomorphism of small categories. Therefore F is a covering.Example 6.1.7. Assume that a group G acts without inversion on a small category
D and G : D/G −→ Gr is an associated twisted diagram of groups. Then accordingto 5.3.17 there exists a homomorphism φ : ID −→ G over p : D −→ D/G and it is acovering of twisted diagrams of groups.6.2 Coverings of generalized complexes of groupsDe�nition 6.2.1. Let G : C −→ Gr be a twisted diagram of groups. We say that Gis a generalized complex of groups if for each l : c1 −→ c2 in Mor C the correspondinghomomorphism of groups G(l) : G(c1) −→ G(c2) is injective.Remark 6.2.2. Let G : C −→ Gr be a developable twisted diagram of groups. Then
G is a generalized complex of groups.Local developabilityProposition 6.2.3. Let C be a small category with the �nal object c and G : C −→ Gra generalized complex of groups. Then G is developable and the universal covering of
G is isomorphic to the small category D such that1. D has a �nal object2. let p : D −→ C be the natural projection, for each c′ ∈ Ob C the preimage p−1(c′)is a subset of ObD and is isomorphic to G(c)/G(c′)Proof. Since C has a �nal object c and G is a generalized complex of groups then thefundamental group of G is isomorphic to G(c). The universal covering D is the develop-ment D(G,Φ) of the natural homomorphism ιG : G −→ G(c) which is a monomorphismon the local groups. Thus the proof follows directly from 5.4.5.Corollary 6.2.4. Let G : C −→ Gr be a generalized complex of groups. For each
c ∈ Ob C let C/c be a small category �over c� and lc : C/c −→ C the natural projection.Let Gc := l∗cG be the twisted diagram of groups induced by lc. Then Gc is developableand equivalent to a diagram of subgroups of G(c).Remark 6.2.5. Let G : C −→ Cat be a functor associated to G : C −→ Gr de�ned in1.3.3. Then BGc = G(c).De�nition 6.2.6. Let G : C −→ Gr be a twisted diagram of groups and Gc the devel-opable twisted diagram of groups de�ned above. Let Dc be the development associatedto ιGc

: Gc −→ G(c). We will call it the local development of G at c.81



Proposition 6.2.7. Let G : C −→ Gr be a twisted diagram of groups associated to anaction of a group G on a small category D, let p : D −→ C be the associated projection.Then for each d ∈ ObD the local devlopment at p(d) is isomorphic to the category
D/d, namely

Dp(d) ' D/dProof. Consider the action of the subgroup StabG(d) of the group G on the smallcategory D. This action yields an action of StabG(d) on the small category D/d withquotient C/p(d). The complex of groups associated to this action is isomorphic to
Gp(d). Then according to 5.4.5 the small category D/d and the development of Gp(d) areisomorphic.Coverings of complexes of groups by [B-H]Proposition 6.2.8. Let φ : G′ −→ G be a homomorphism of generalized complexes ofgroups over F : C′ −→ C. For each c′ ∈ Ob C′ there exists a homomorphism of the localcomplexes of groups φ(c′) : G′c′ −→ GF (c′) over F/c′ : C′/c′ −→ C/F (c′). This homo-morphism yields a φc′-equivariant functor F̃c′ : D′

c′ −→ DF (c′) of local developments.Proof. Let j : G −→ G denote the natural transformation de�ned in 1.3.6. The ho-momorphism φ : G′ −→ G is given by the natural transformation η : G′ −→ F ∗G,let η : G′ =⇒ F ∗G be the natural transformation of functors G′, F ∗G : C′ −→ Catassociated to η.According to 1.3.6 we have
G′

j′

��

η +3 F ∗G

F ∗j
��

G′ η
+3 F ∗Ghence for each c′ ∈ Ob C′ the following diagram commutes

G′(c′)
� _

j′
c′

��

φc′ // G(F (c′))
� _

jF (c′)

��

G′(c′)
φc′ // G(F (c′))Note, the functor φc′ : G′(c′) −→ G(F (c′)) de�nes a homomorphism φ(c′) : G′c′ −→ GF (c′)over F/c′ : C′/c′ −→ C/F (c′).Due to 1.3.7 there exist i′ : G′(c′) −→ G′(c′) and i : G(F (c′)) −→ G(F (c′)) suchthat we have the natural transformations i′ ◦ j′ =⇒ idG′(c′), i ◦ j =⇒ idG(F (c′))and idG′(c′) =⇒ j′ ◦ i′, idG(F (c′)) =⇒ j ◦ i. Therefore there exists a natural trans-formation α : i ◦ φc′ =⇒ φc′ ◦ i′. Due to 5.4.9 the natural transformation α yields a

φc′-equivariant functor F̃c′ : D′
c′ −→ DF (c′).Assume that φ : G′ −→ G is a covering of complexes of groups. Then the De�ntion6.1.1 becomes the Proposition A.24 from Chapter III.C [B-H].Theorem 6.2.9. Let φ : G′ −→ G be a homomorphism of generalized complexes ofgroups over a functor F : C′ −→ C which is onto and is a right covering. Then φ is acovering if and only if it satis�es: 82



1. φ is a monomorphism on the local groups2. for each c′ ∈ Ob C′ the induced functor F̃c′ : D′
c′ −→ DF (c′) is an isomorphismProof. =⇒ Assume that φ is a covering. Then according to 6.1.4 φ satis�es assertion

1. We will prove that φ satis�es assertion 2.For each c′ ∈ Ob C′ let φ(c′) : G′c′ −→ GF (c′) be the induced homomorphism of thelocal twisted diagrams of groups.Lemma 6.2.10. The homomorphism φ(c′) : G′c′ −→ GF (c′) over F/c′ : C′/c′ −→ C/F (c′)is a covering of twisted diagrams.Proof. The homomorphism φ is a covering then there exists a small category E suchthat BG′ λ
↪→ E

φ′

−→ BG. We de�ne a small category Ēc′ to be the pull back category ofthe diagram
Ēc′ - BGF (c′)

E
?

- BG
?Then p̄c′ : Ēc′ −→ BGF (c′) is a covering and the unique functor λc′ : BG′c′ −→ Ēc′

BG′c′

��

φc′

%%
λc′

!!
Ēc′

��

p̄c′ // BGF (c′)

��
BG′

λ
// E

φ′
// BGis an inclusion. Let Ec′ be a connected component of Ēc′ containing λc′(BG′c′). Clearly

λc′ : BG′c′ −→ Ec′ is an equivalence (the proof is standard). Thus φ(c′) : G′c′ −→ GF (c′)is given by BG′c′ ≈
↪→ Ec′

pc′−→ BGF (c′), hence is a covering.Lemma 6.2.11. The φc′-equivariant functor F̃c′ : D′
c′ −→ DF (c′) is an inclusion andan equivalence of categories.Proof. The equivalence BG′c′ ↪→ Ec′ yields an equivalence of the universal coverings

B̂G′c′ ↪→ Êc′. The universal covering of the small category Ec′ is isomorphic to theuniversal covering of the small category BGF (c′). This gives a commutative diagram
B̂G′c′

≈
↪→ B̂GF (c′)

BG′c′
?

≈
↪→ Ec′

?83



According to 5.4.9 and 6.2.8 we have a commutative diagram
B̂G′c′

��

� � ≈ // B̂GF (c′)

��
D′
c′

F̃c′ // DF (c′)Clearly the following diagram
B̂G′c′

� � ≈ // B̂GF (c′)

D′
c′

?�

≈

OO

F̃c′ // DF (c′)

?�

≈

OO

commutes up to a natural isomorphism. Therefore the functor F̃c′ : D′
c′ −→ DF (c′) isan inclusion and equivalence of small categories.Lemma 6.2.12. The functor F̃c′ : D′

c′ −→ DF (c′) is onto.Proof. By 6.2.11 it is enough to prove that F̃c′ is onto on the objects set. Consider thecommutative diagram
D′
c′

πc′

��

F̃c′ // DF (c′)

πF (c′)

��
C′/c′

F/c′ // C/F (c′)The functors πc′ , F/c′, πF (c′) are right coverings and onto, therefore F̃c′ is a rightcovering. Choose d ∈ ObDF (c′). The functor F̃c′ is the equivalence therefore thereexists an isomorphism l : F̃c′(d
′) −→ d where d′ ∈ ObD′

c′. The functor F̃c′ is a leftcovering, hence there exists a morphism l′ : d′ −→ d′′ in MorD′
c′ such that F̃c′(l′) = l.Therefore F̃c′ is onto on the objects set, hence in view of 6.2.11 is onto.Due to 6.2.11 and 6.2.12 the functor F̃c′ : D′

c′ −→ DF (c′) is an isomorphism. Thisproves assertion 2.

⇐= Assume that φ : G′ −→ G is a homomorphism of generalized complexes ofgroups which satis�es 1 and 2. We will prove that it is a covering of twisted diagramsof groups. In order to do this we will �rst prove that it is a covering locally.Lemma 6.2.13. For each c′ ∈ Ob C′ the homomorphism φ(c′) : G′c′ −→ GF (c′) is acovering of (generalized) complexes of groups.Proof. Let W ′ : D′
c′ −→ Cat and W : DF (c′) −→ Cat be functors de�ned in 5.3.15.Then the φc′-equivariant functor F̃c′ induces a functor BW ′ −→ BW over F̃c′. Thehomomorphism φ is injective on the local groups, and F̃c′ is an isomorphism hence

BW ′ −→ BW is an inclusion. It is clearly an equivalence. Then the functor
B̂G′c′ ' BW

′ −→ BW ' B̂GF (c′) is an inclusion and an equivalence of categories.Let pc′ : Ec′ −→ BGF (c′) be a covering of small categories such that
(pc′)∗(π1(Ec′, ec′)) = φc′(G

′(c′)) ⊂ G(F (c′)) = π1(BGF (c′), idF (c′))84



Then according to 5.1.6 there exists a functor λc′ : BG′c′ −→ Ec′ such that φc′ = pc′λc′.Consider the following diagram̂
BG′c′

/G′(c′)

��

� � ≈ // B̂GF (c′)

/φc′ (G
′(c′))
xx

x

||xxx

/G(F (c′))

��

Ec′
pc′

##G
GG

GG
GG

GG

BG′c′

λc′

=={{{{{{{{

φc′

// BGF (c′)By assertion 1. the homomorphism of groups G′(c′) −→ φc′(G′(c′)) is an isomorphism.Moreover the functor B̂G′c′ ↪→ B̂GF (c′) is φc′-equivariant, therefore λc′ is an inclusionand an equivalence of small categories. Then φ(c′) : G′c′ −→ GF (c′) is a covering of(generalized) complexes of groups.As we have proved φ is locally a covering. We will construct a global covering. Inorder to do this we will prove thatLemma 6.2.14. There exists a functor L : C′ −→ Cat such that for each c′ ∈ Ob C′

L(c′) = Ec′ de�ned in 6.2.13. Moreover there exist the natural transformations ρ : L =⇒ F ∗G,
λ : G′ =⇒ L such that ρc′ = pc′ is a covering and λc′ = λc′ is an equivalence of smallcategories.Proof. For each c′ ∈ Ob C′ let L(c′) = Ec′ de�ned in 6.2.13. We pick a base object
ec′ of Ec′ such that λc′(idc′) = ec′ and pc′(ec′) = idF (c′), where idc′ is a base object of
G′(c′) and idF (c′) is a base object of G(F (c′)). We de�ne ρc′ = pc′ and λc′ = λc′. Let
l′ ∈ Mor C′ be any morphism l′ : c′′ −→ c′. We de�ne a functor L(l′)

Ec′′
L(l′)
99K Ec′

BGF (c′′)

pc′′

?
G(F (l′))

- BGF (c′)

pc′

?which is de�ned as a lifting of Ec′′ −→ BGF (c′′) −→ BGF (c′) such that L(l′)(ec′′) = λc′ ◦ G′(l′)(idc′′).Thus the following diagram commutes
BG′c′′

��7
77

77
77

77
77

77
77

77 λc′′

$$J
JJJJJJJJ

G′(l′) // BG′c′

��9
99

99
99

99
99

99
99

99 λc′

%%KKKKKKKKKKK

Ec′′

pc′′

��

// Ec′

pc′

��
BGF (c′′)

G(F (l′))

// BGF (c′)

85



According to 1.2.9 the natural transformation λ : G′ =⇒ L induces an equivalence(and inclusion) of small categories Bλ : BG′ −→ BL.Lemma 6.2.15. The functor p : BL −→ BG induced by the natural transformation
ρ : L =⇒ F ∗G is a covering of small categories.Proof. We will prove that p satis�es assertion 2. from 5.1.3. Let (c′, x′) ∈ ObBL and
(c, x) = p(c′, x′) ∈ ObBG. Then the set of morphisms that have (c′, x′) as its initialobject consits of pairs (l′, f ′) such that i(l′) = c′ and i(f ′) = L(l′)(x′). The set ofmorphisms of C′ with the initial object c′ is in bijection with the set of morphisms of
C with the initial object c, because F : C′ −→ C is a right covering. For each c′ thefunctor ρc′ = pc′ is a covering. Thus, according to 5.1.3, the restriction of p to the setof morphisms with the initial object (c′, x′) is a bijection onto the set of morphismswith the initial object (c, x).Let (c, x) = p(c′, x′) ∈ ObBG. Each morphism (l, f) ∈ MorBG, t(l, f) = (c, x) isequal to the composition

(c,G(l)(y))
(idc,f)

%%LLLLLLLLLL

(d, y)

(l,idG(l)(x))
99rrrrrrrrrr (l,f) // (c, x)Assume that (l′1, f

′
1), (l′1, f

′
1) ∈ MorBL such that p((l′1, f ′

1)) = p((l′2, f
′
2)) = (l, f). Then

(c′,L(l′1)(y
′
1))

(idc′ ,f
′
1)

''NNNNNNNNNNN
(c′,L(l′2)(y

′
2))

(idc′ ,f
′
2)

wwppppppppppp

(c′′1, y
′
1)

(l′1,idL(l′
1
)(y′

1
))

77ppppppppppp (l′1,f
′
1) // (c′, x′) (c′′2, y

′
2)

(l′2,idL(l′
2
)(y′

2
))

ggNNNNNNNNNNN
(l′2,f

′
2)ooproject on (l, f). Since pc′ is a covering then according to 5.1.3, f ′

1 = f ′
2. Then

L(l′1)(y
′
1) = L(l′2)(y

′
2). Consider the following diagram

BG′c′′1 � t

G′(l′1) ''NNNNNNNNNNNNN
� � ≈ // Ec′′1

L(l′1)

((PPPPPPPPPPPPPPPPP

pc′′1

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

BG′c′
� � ≈ // Ec′

pc′

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

BG′c′′2

*



G′(l′2)
77ppppppppppppp

� � ≈ // Ec′′2

L(l′2)

66nnnnnnnnnnnnnnnnn

pc′′
2 !!C

CC
CC

CC
C

BGd
� � G(l) // BGcIf l′1 6= l′2 then ObG′(l′1)(BG

′
c′′1

) ∩ ObG′(l′2)(BG
′
c′′2

) = ∅ and then one can verify that
ObL(l′1)(Ec′′1 )∩ObL(l′2)(Ec′′2 ) = ∅. Thus l′1 = l′2 and then the restriction of p to the setof morphisms with the terminal object (c′, x′) is a bijection onto the set of morphismswith the terminal object (c, x). Thus the functor p is a covering of small categories.
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Let E be the pull-back category of the diagram
E

p

��

// BL

p
��

BG � � // BGThen p : E −→ BG is a covering and E −→ BL is an inclusion of small categories. Thesmall category BG′ is the pull-back of the following diagram
BG′

��

� � // BG′

��
BG � � // BGThis implies that the unique functor λ : BG′ −→ E

BG′

��3
33

33
33

33
33

33
33

3
λ

""E
EE

EE
EE

EE
� � // BG′

��2
22

22
22

22
22

22
22
� p

≈

""D
DD

DD
DD

D

E

p

��

� � // BL

p
��

BG � � // BGis an equivalence and inclusion of small categories (the proof is standard).Thus the functor Bφ : BG′ −→ BG equals BG′ ≈
↪→ E

p
−→ BG and then φ is a coveringof twisted diagrams of groups.6.3 G-coverings and extensions of twisted diagramsof groupsDe�nition 6.3.1. We say that a covering φ : G′ −→ G over F : C′ −→ C of twisteddiagrams of groups is a G-covering if the associated covering φ′ : E −→ BG is a G-covering.Note that the covering from Example 6.1.7 is a G-covering of twisted diagrams ofgroups.Galois covering of a twisted diagram of groupsTheorem 6.3.2. Let G : C −→ Gr be a twisted diagram of groups and Φ : G −→ Ga homomorphism in the category of twisted diagrams of groups. Then there exists a

G-covering φ : G′ −→ G associated to Φ such that1. G′ is a twisted diagram of groups de�ned over the category D = D(G,Φ) (devel-opment of Φ), let p : D −→ C be the associated projection2. G′(d) = ker(Φp(d) : G(p(d)) −→ G) 87



3. π1(G′, d) = ker(π1(G, p(d)) −→ G)Proof. Let G : C −→ Gr be a developable twisted diagram of groups de�ned in 5.4.3and ϕ : G � G the associated surjective homomorphism of twisted diagrams of groups.Then according to 3.4.4 there exists a twisted diagram of groups
Fϕ : BG −→ Grsuch that Fϕ(c) = ker(ϕc : G(c) −→ G(c)) and the classifying category of Fϕ isisomorphic to the classifying category of G.Let D = D(G,Φ) be the development of Φ and φ̄ : D −→ G the associated cov-ering of twisted diagrams of groups (6.1.7). Then homomorphism φ̄ gives a functor

Bφ̄ : D −→ BG. Note that the functor p : D −→ C is the composition of Bφ̄ with thenatural projection π : BG −→ C.We de�ne a twisted diagram of groups G′ to be
G′ := (Bφ̄)∗Fϕ : D −→ Grand a homomorphism φ : G′ −→ G given by the commutative diagram

BG′
=
- B(Bφ̄)∗Fϕ - BFϕ

'
- BG

D
?

=
- D

?
Bφ̄

- BG
?

- C
?Then G′(d) = Fϕ(Bφ̄(d)) = ker(G(Bφ̄(d)) −→ G(Bφ̄(d))) = ker(Φp(d) : G(p(d)) −→ G).The twisted diagram of groups G is developable. Then the functor Bφ̄ : D −→ BGis equal to the composition

D
λ
−→ E

φ′′

−→ BGwhere λ is an inclusion and an equivalence of categories and φ′′ is a G-covering ofsmall categories. Let B̂φ̄ : BG′ −→ BFϕ be the functor from the above diagram whichprojects to Bφ̄. We will prove that B̂φ̄ is equivalent to a G-covering of small categories.Let Ê be the pull-back category of the following diagram
Ê

φ̂′′
- BFϕ

E
?

φ′′
- BG

?Then φ̂′′ : Ê −→ BFϕ is a G-covering. The action of the group G is induced fromthe action of G on E and φ̂′′ is the natural projection induced by this action, thus φ̂′′is a G-covering.
88



Due to the universal property of the pull-back there exists a unique functor λ̂ : BG′ −→ Ê ,such that the following diagram
BG′

πD

��

$$
λ̂

  
Ê

πE

��

φ̂′′ // BFϕ

��
D

λ
// E

φ′′
// BGcommutes. We will prove that λ̂ is an inclusion and an equivalence of categories.First note that Ê −→ E is a functor associated to an induced twisted diagram ofgroups (φ′′)∗Fϕ and the twisted diagram of groups G′ is induced by λ. Then πD and πEsatisfy properties from Theorem 2.2.9. This impliesMorBG′(d, d′) ' MorD(d, d′)×G′(d′).But MorD(d, d′) ' MorE(λ(d), λ(d′)) and MorE(λ(d), λ(d′))×G′(d′) ' MorÊ(λ̂(d), λ̂(d′)).Thus MorBG′(d, d′) ' MorÊ(λ̂(d), λ̂(d′)).Choose e ∈ Ob Ê = Ob E . There exists d ∈ ObD = ObBG′ such that λ(d) ' e. Thisimplies λ̂(d) ' e in the category Ê . Thus λ̂ is the the equivalence of categories.The functor λ̂ is inlusion on objects (because λ is) and equivalence, thus is inclusionof categories.Thus G′ −→ Fϕ is a G-covering of twisted diagrams which implies that φ : G′ −→ Gis a G-covering (because BFϕ ' BG). Note, Ê φ̂′′
−→ BFϕ

'
−→ BG is a G-coveringassociated to the homomorphism Φ : G −→ G. Then1. G′ is de�ned over the development of the homomorphism Φ : G −→ G2. G′(d) = Fϕ(p(d)) = ker Φp(d)3. π1(G′, d) = ker Φ∗ : π1(G, p(d)) −→ GLet G : C −→ Gr be a Hae�ieger's complex of groups and Φ : G −→ G anyhomomorphism. The Galois covering associated to Φ de�ned in 5.9 of Chapter III.C,[B-H] is equivalent to the G-covering associated to Φ de�ned in 6.3.2. Moreover theconstruction given in [B-H] carries over to the twisted diagrams of groups, namely:Proposition 6.3.3. Let Φ : G −→ G be a homomorphism and φ : G′ −→ G theassociated G-covering (6.3.2). Then G′ : D −→ Gr is equivalent to a certain twisteddiagram of groups G′′ : D(G,Φ) −→ Gr de�ned (for complexes of groups) in [B-H].Proof. We construct twisted diagram of groups G′′ : D −→ Gr and the covering

φ′ : G′′ −→ G as follows. For each d ∈ p−1(c) ⊂ ObD, the group G′′(d) is the ker-nel of Φc and φ′
d : G′′(d) −→ G(c) is the inclusion. Let k ∈ MorD. In order to de�ne

G′′(k) we need to choose for each Φc(G(c))-coset d a representative in G. We again de-note this d, thus identyfying d to the coset [d]Φc(G(c)). We also choose for each morphism
k ∈ p−1(l) ⊂ MorD an element φ′(k) ∈ G(t(l)) such that

i(k)Φ(l)−1Φt(l)(φ
′(k)−1) = t(k)89



We then de�ne G′′(k) := Ad(φ′(k)) ◦ G(l).For composable morphisms k1, k2 with l1 = p(k1), l2 = p(k2), we de�ne
g′′k1,k2 := φ′(k1)G(l1)(φ

′(k2))gl1,l2φ
′(k1k2)

−1 ∈ ker Φt(l1)The homomorphism φ′ : G′′ −→ G over p : D −→ C is given by the homomorphisms φ′
dand the elements φ′(k).According to the universal property of the pull-back there exists unique functor

BG′′ −→ BG′ and a commutative diagram
BG′′

��

((""
BG′

��

// BFϕ

��

' // BG

��
D // BG // CThis implies that there exists a morphism G′′ −→ G′ which is the isomorphism on thelocal groups. Thus G′ and G′′ are equivalent twisted diagrams.The universal property of the Galois covering Let φ : G′ −→ G over p : D −→ Cis a G-covering associated to a homomorphism Φ : G −→ G. Then the composition

Φ◦φ : G′ −→ G is trivial on the local groups and the fundamental group of the twisteddiagram of groups G′ : D −→ Gr is isomorphic to the kernel of Φ∗ : π1(G, c0) −→ G,namely φ∗(π1(G
′, d0)) = ker(π1(G, p(d0)) −→ G). We will prove that G′ is the universaltwisted diagram of groups satisfying these properties, namelyProposition 6.3.4. Assume that a homomorphism of twisted diagrams φ′ : G′′ −→ Gover p′ : D′ −→ C satis�es1. Φ ◦ φ′ : G′′ −→ G is trivial on the local groups2. (Φ ◦ φ′)∗ : π1(G′′, d′0) −→ G is trivialThen there exists a unique homomorphism φ̄′ : G′′ −→ G′ over p̄′ : D′ −→ D such that

φ′ = φ ◦ φ′ and p′ = p ◦ p′.Proof. According to 5.4.3 the homomorphism Φ : G −→ G is equal to the composition
G

ϕ
−→ G

Φ
−→ G, where ϕ is an epimorphism over the identity of C and Φ is injectiveon the local groups. Then for each d′ ∈ ObD′ the composition G′′ φ′

−→ G
ϕ
−→ G mapsa local group G′′(d′) to a trivial element of a group G(p′(d′)) ⊂ G. Then according to2.2.11 there exists a functor p̃′ : D′ −→ BG such that the following diagram commutes

BG′′

��

Bφ′ // BG

Bϕ
��

D′

p′
""E

EE
EE

EE
EE

p̃′ // BG

��
C90



Clearly this diagram de�nes a homomorphism G′′ −→ Fϕ.The latter diagram yields a commutative diagram
π1(G

′′, d′0)

��

φ′∗ // π1(G, p
′(d′0))

ϕ∗

��

Φ∗

((QQQQQQQQQQQQQQQ

π1(D′, d′0)
p̃′∗

// π1(G, p
′(d′0)) Φ∗

// GDue to 4.2.6 the vertical homomorphism are onto. Moreover, the composition Φ∗ ◦ φ′
∗is trivial, hence Φ∗ ◦ p̃′∗ is trivial. Therefore the following diagram commutes

E

��

&&NNNNNNNNNNNNN

BG′′

=={{{{{{{{

��

Bφ′ // BG

Bϕ

��

E
r

&&MMMMMMMMMMMMM

D′

>>}}}}}}}}}

p̃′
// BGwhere E −→ BG and E −→ BG are corresponding G-coverings.According to 5.3.17 there exists a functor F : D −→ BG which is equal to thecomposition D ≈

↪→ E
r
−→ BG. Due to 5.3.19 we have an inclusion p̃′(D′) ⊂ F (D).Lemma 6.3.5. There exists a functor p′ : D′ −→ D such that F ◦ p′ = p̃′.Proof. The proof follows like the proof of 5.1.6. Use 5.3.20 and the fact that

p̃′∗(π1(D
′, d′0)) ⊂ ker Φ∗ = F∗(π1(D, d0)).Therefore the following diagram commutes

BG′′

��

Bφ′ // BG

��

D′
p′ // D

F // BGUsing the universal property of the pull-back there exists a unique functorR : BG′′ −→ BG′such that the following diagram commutes
BG′′

��

R=Bφ′

""

Bφ′

%%
BG′

��

Bφ // BG

��

= // BG

��
D′

p′ // D // BG // CTherefore there exists a homomorphism φ′ : G′′ −→ G′ over p′ : D′ −→ D such that
R = Bφ′ and φ′ = φ ◦ φ′ over p′ = p ◦ p′. 91



The universal covering of a twisted diagram of groupsProposition 6.3.6. Let G : C −→ Gr be a twisted diagram of groups and ιG : G −→ π1(G, c0)the associated homomorphism. Let Ĝ : D̂ −→ Gr be the twisted diagram associated to
ιG and φ̂ : Ĝ −→ G over p̂ : D̂ −→ C the associated covering (6.3.2). Then foreach homomorphism Φ : G −→ G there exists a homomorphism φ̂′ : Ĝ −→ G′ over
p̂′ : D̂ −→ D such that φ ◦ φ̂′ = φ̂ and p ◦ p̂′ = p̂. This homomorphism is onto if andonly if Φ∗ : π1(G, c0) −→ G is onto. Moreover φ̂′ : Ĝ −→ φ̂′(Ĝ) is a covering.Proof. As we have observed in 5.4.11 the following diagram

G

ιG ##H
HHHHHHHH

Φ // G

π1(G, c0)
Φ∗

;;vvvvvvvvvcommutes up to a natural isomorphism. Therefore the composition Ĝ φ̂
−→ G

Φ
−→ G istrivial and π1(Ĝ, d0)

φ̂∗
−→ π1(G, p̂(d0))

Φ∗−→ G is trivial as well. Then according to 6.3.4there exists a homomorphism φ̂′ : Ĝ −→ G′ over p̂′ : D̂ −→ D such that the followingdiagram
Ĝ

φ̂′

��

φ̂

��>
>>

>>
>>

>

G

G′
φ

??�������commutes. The homomorphisms φ̂ and φ are coverings, hence the following diagram
BĜ

��

Bφ̂ ''PPPPPPPPPPPPPP
� � ≈ // Ê

��@
@@

@@
@@

@

BG

BG′

Bφ

66nnnnnnnnnnnnnn
� �

≈
// E

>>}}}}}}}}where Ê −→ BG is a universal covering and E −→ BG is a G-covering, commutes.Clearly there exists a functor Ê −→ E , let Ē ′ be a pull-back of the following diagram
Ē ′

��

// Ê

��
BG′ // EThen there exists a functor λ : BĜ −→ Ē ′, let E ′ be a connected component of Ē ′ such
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that λ(BĜ) ⊂ E ′.
BĜ

λ

  B
BB

BB
BB

B

��

// Ê

��

E ′

@@��������

ρ}}{{
{{

{{
{{

BG′ // EClearly λ : BĜ −→ E ′ is an inclusion and an equivalence of small categories. Moreover
ρ : E ′ −→ ρ(BG′) is a covering of small categories. Therefore φ̂′ : Ĝ −→ φ̂′(Ĝ) is acovering. The functor Bφ̂′ is onto if and only if p̂′ : D̂ −→ D is onto. According to5.4.11 this is the case when Φ∗ : π1(G, c0) −→ G is onto.Extension of twisted diagrams of groups The following Theorem is a corollaryfrom 6.3.2 and 6.3.4Theorem 6.3.7. Let ϕ : G̃ −→ G over C be an epimorphism of twisted diagrams ofgroups. Let Ĝ : D̂ −→ Gr over p̂ : D̂ −→ C be the universal covering of G. Then thereexists a twisted diagram of groups K : BĜ −→ Gr and a homomorphism φ : K −→ G̃over F : BĜ −→ C satisfying1. ϕ ◦ φ : K −→ G is trivial on the local groups2. (ϕ ◦ φ)∗ : π1(K, d0) −→ π1(G, F (d0)) is trivial3. the homomorphism φ : K −→ G̃ is a covering and it is �nal for homomorphisms

φ′ : K′ −→ G̃ satisfying 1. and 2.Proof. We de�ne a small category BK to be the pull-back of the following diagram
BK

��

// BG̃

��
BĜ // BGClearly the associated homomorphism K −→ Fϕ is a covering, hence φ : K −→ G̃ givenby

BK

��

// BG̃

��

= // BG̃

��
BĜ // BG // Cis a covering of twisted diagrams of groups. Then the composition ϕ ◦ φ satis�esassertions 1. and 2.If φ′ : K′ −→ G̃ satis�es 1. then the following diagram commutes
BK′

��

// BG̃

��
D′ // BG93



Let G : C −→ Gr be a twisted diagram of groups such that ιG : G −→ π1(G, c0) is equalto G −→ G −→ π1(G, c0) (5.4.3). If φ′ : K′ −→ G̃ satis�es 1. and 2. then as in proof of6.3.4 we obtain commutative diagram
D′

��

// BG

��

D̂ // BGThe small category BĜ is de�ned as the pull-back of the latter diagram, hence thereexists a functor D′ −→ BĜ. Using the universal property of the pull-back category BKwe obtain a commutative diagram
BK′

��

""D
DD

DD
DD

DD

((QQQQQQQQQQQQQQQQ

BK

��

// BG̃

��
D′ // BĜ // BGTherefore there exists a homomorphism φ̄′ : K′ −→ K such that φ ◦ φ̄′ = φ′ whichproves the Theorem.Example 6.3.8. Assume that ϕ : G̃ −→ G is surjective homomorphism of groups.Then the twisted diagram of groups K is a group N = ker(G̃ −→ G).Example 6.3.9. Consider an epimorphism of complexes of groups G̃ −→ G given by

(B ←− 1 −→ A) � (1←− 1 −→ A)The complex of groups G is a graph of groups thus according to the theorem of Serre [S]it is developable, let D̂ denote its Bass-Serre tree. The complex of groups K : D̂ −→ Gris de�ned as follows:
B

1

__????????

��5
55

55
55

55
5

|A|

{ ... 1

1

����
��

��
��

DD										

BThe covering φ : K −→ G̃ is given by the natural inclusions.94



We obtain an �extension� of graphs of groups
K� G̃ � Gwhich yields an exact sequence

∗|A|B � A ∗B � Aof fundamental groups.Example 6.3.10. Let G̃ −→ G be an epimorphism of complexes of groups given by
(Z6 ←− Z2 −→ Z4) � (Z3 ←− 1 −→ Z2)The complex of groups G is developable. We de�ne a complex of groups K : D̂ −→ Grto be K(d) = Z2 on objects and Z2

=
−→ Z2 on morphisms:

Z2

Z2

=
``AAAAAAAA

=

  A
AA

AA
AA

A

. . . Z2 Z2
=oo = // Z2 Z2

=oo = // Z2
. . .

Z2

=
~~}}

}}
}}

}}

=

>>}}}}}}}}

Z2The covering K −→ G̃ is given by the natural inclusions.The corresponding exact sequence of complexes of groups gives an exact sequenceof its fundamental groups of the form
Z2 � SL2 Z � PSL2 ZExample 6.3.11. Consider an epimorphism of complexes of groups ϕ : G̃ −→ G givenby

(D6 ←− Z2 −→ D4) � (Z2
=
←− Z2

=
−→ Z2)The universal covering of the complex of groups G : C −→ Gr is isomorphic to C. Thenthe complex of groups K : C −→ Gr and the covering φ : K −→ G̃ are given by

(Z3 ←− 1 −→ Z2) −→ (D6 ←− Z2 −→ D4)The exact sequence of fundamental groups equals
PSL2 Z � PGL2 Z � Z2
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