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Streszczenie

Niniejsza rozprawa poswiecona jest uogolnieniu klasycznej teorii kompleksow grup
wprowadzonej A. Haefliegera. Pokazujemy, ze kompleksy grup Haefliegera sg szczegol-
nym przypadkiem stabych funktoréw zdefiniowanych przez W. Thomasona. Pozwala
to zaprezentowa¢ wyniki Haefliegera w znacznie szerszym kategoryjnym kontekscie.

Glownym wynikiem rozprawy jest klasyfikacja epimorfizméw kompleksow grup.
Jej szczegolnym przypadkiem jest klasyfikacja epimorfizmow kompleksow grup z abe-
lowym jadrem i epimorfizmoéw z lokalnie stalym jadrem zaprezentowana przez Hae-
fliegera. Dowodzimy, ze istnieje wzajemnie jednoznaczna odpowiednio$¢ pomiedzy
klasami réwnowaznosci epimorfizméw komplekséw grup a elementami drugiej grupy
kohomologii pewnej malej kategorii. Jesli kategoria ta jest zdefiniowana przez pewna
dyskretna grupe, wowczas otrzymujemy dobrze znana klasyfikacje rozszerzen grup.

Ponadto dla kazdego epimorfizmu kompleksow grup konstruujemy odpowiednik ka-
tegoryjnego jadra tego epimorfizmu. Jest to kompleks grup wraz z homomorfizmem
spetniajacym pewne uniwersalne wtasnosci.

W ostanim rozdziale pokazujemy, ze epimorfizm kompleksow grup indukuje epimor-
fizm ich grup podstawowych. Co wigcej, dla kazdego epimorfizmu kompleksow grup
G — G konstruujemy homomorfizm kompleksow grup K — G, ktory jest nakryciem.
Ma ono te wlasnos¢, ze ciag K — G — G homomorfizméw kompleksow grup in-
dukuje rozszerzenie grup podstawowych.

Slowa kluczowe

kompleks grup, epimorfizm kompleksow grup, rozszerzenie komplekséw grup, kategoria
malych kategorii, op-lax funktor, kohomologie maltych kategorii, grupa podstawowa
kompleksu grup, grupoid, nakrycie matej kategorii, nakrycie kompleksu grup
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Abstract

The thesis is devoted to a generalization of the classical theory of complexes of groups
introduced by A. Haeflieger. We show that a complex of groups defined by Haeflieger
is a special case of an op-lax functor defined by R.W.Thomason. This allows us to
present Haeflieger’s results in a much more general categorical context.

The main result of the thesis is the classification of epimorphisms of complexes of
groups. A special case of this is the classification of epimorphisms of complexes of
groups with abelian or locally constant kernel given by Haeflieger. We prove that there
exists a natural bijective corrspondence between equivalence classes of epimorphisms
of complexes of groups and elements of the second cohomology group of a certain small
category. If this category is defined by a discrete group, then we obtain the well known
classification of extensions of groups.

In addition, for each epimorphism of complexes of groups we construct an anlogue
of the categorical kernel of the given epimorphism. It is a complex of groups and a
homomorphism which satisfy a certain universal property.

In the last Chapter we prove that each epimorphism of complexes of groups yields
an epimorphism of the fundamental groups. Moreover, for a given epimorphism of
complexes of groups G — G we consturct a homomorphism of complexes of groups
K — G which is a covering. The sequence of homomorphisms X — G — G yields
an extension of the fundamental groups.

Keywords and phrases

complex of groups, epimorphism of complexes of groups, extension of complexes of
groups, category of small categories, op-lax functor, cohomology of small categories,
fundamental group of a complex of groups, grupoid, covering of a small category,
covering of a complex of groups
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Introduction

We generalize the notion of a complex of groups defined by A. Haeflieger ([H1|, [B-H])
in the following way:

Definition Let C be a small category and let Gr denote the category of groups. A
twisted diagram of groups G : C — Gr is given by

1. for each object ¢ € ObC a group G(c)

2. for each morphism 1 : ¢ — ¢ € MorC a homomorphism of groups G(1) : G(¢') — G(c)

3. for two composable morphisms ¢’ L ¢ —L=¢ € MorC an element ar € G(e),
called the twisting element, such that
i) Ad(g1)G(U") = G(G(I"), where Ad(gir) is the conjugation by gy

" 4 l

ZZ) g(l)(glw,)gl’l/l// = grrauw fOT' each trzple : € MorC Of

composable morphisms (cocycle condition)

As will turn out later, we can assume that a twisted diagram of groups satisfies the
normalizing condition, that is G(id.) = idg() for each ¢ € ObC.

”Sheafs” of groups A twisted diagram of groups G : C — Gr assings to every
object ¢ of an indexing category C a group G(c) and to every morphism ¢ — ¢ a
homomorphism G(¢’) — G(c), however it does not have to be completely functorial
- it preserves composition only up to a compatible family of inner automorphisms.
A discrete group is a special case of a twisted diagram of groups, we assume that
C = x is the category which consists of one object. We consider twisted diagrams of
groups as generalizations of groups or "sheafs” of groups modelled on C. Many concepts
associated with groups carry over to twisted diagrams of groups. A homomorphism
¢ G — G of twisted diagrams of groups over a functor F' : " — C consists of
local homomorphisms of local groups {¢. : G'(¢') — G(F () }eecober subject to some
relations (2.1.5).

Group complexes defined by group actions The starting point of Haeflieger’s
work was the following example. Assume that a group G acts on a simplicial complex
X in such a way that the orbit space X := X /G has a natural simplicial structure and
the quotient map ¢ : X — X is simplicial. Simplices of X are partially ordered by
(reverse) inclusion; thus they form a category C. We define a weak functor from C to
the category of groups G : C — Gr by assigning to every simplex ¢ € C first a simplex
¢ € ¢ '(c) and then its stabilizer (isotropy subgroup) Gz If ¢ C ¢ then we pick up an
element ¢ € G such that ¢ is a face of the simplex gé. We define a monomorphism
Yee : Gz — G as the composition of the conjugation by Ad(g) : Gz — Gz and the



inclusion Gyz C Gz. Thus we obtain a "weak” functor from the category of simplices to
the category of groups and monomorphisms. Because of these choices, if we consider
the composition Gz — G5 — G then the monomorphism e # Yere)e. and
differs from it by the conjugation with an element of the group G; called the twisting
element. These twisting elements satisfy the cocycle condition. Note that C is a small
category such that the only endomorphisms of objects are identities. Such a category
is called a small category without loops or scwol for short.

These considerations led Haefliger in 1990 to his definition of complexes of groups:
i.e. "weak” functors defined on categories related to simplicial complexes with values
in the category of groups and monomorphisms. A complex of groups associated to an
action of a group in a way described above is called developable.

Haefliger and Thomason Much earlier in 1979 Bob Thomason considered - for a
homotopy theoretical purpose - similar ideas in a much more general categorical con-
text. He considered "weak” functors F : C — Cat (he called them “op-lax functors”)
from an arbitrary small category to the category of small categories. We note that
the definition of Haefliger is a special case of Thomason’s when we assume that C has
no loops and the functor takes values in the category of groups and monomorphisms.
This is because every group G can be considered as a small category BG with a single
object and the group G as its morphisms.

Twisted diagram of groups associated to an extension of groups We will
present an example of a twisted diagram of groups on a small category associated to a
group G. Note that BG is a category with loops.

Let N = G — G be an extension of groups. Any set-theoretical cross-section of 7
yields a twisted diagram of groups F : BG — Gr such that F(x) = N. For details
cf. Example 2.1.10. Let £G be a category whose objects correspond to elements of G

1
and for each pair of objects g1, go there exist unique morphism ¢, % g2. The group
G acts on £G in the obvious way with a quotient BG. Hence the group G acts on
EG via the epimorphism 7, namely g.g = n(g)g. Clearly the isotropy subgroup of each
object is isomorphic to N. It turns out that the associated twisted diagram of groups is
isomorphic to F. Therefore, twisted diagram of groups F : BG — Gr is developable.

Graphs of groups and complexes of groups The Bass-Serre theory of graphs of
groups analyzes the algebraic structure of groups acting by automorphisms on simplicial
trees. It was formalized by J.P.Serre in [S]. The theory relates group actions on trees
with decomposing groups as iterated applications of the operations of free product with
amalgamation and HNN extension, via the notion of the fundamental group of a graph
of groups. To every graph of groups G, one can associate a Bass-Serre covering tree X,
which is a tree that comes equipped with a natural group action of the fundamental
group. Moreover, the quotient graph of groups is isomorphic to G. The fundamental
theorem of this theory says that if G' acts on a tree X and G is the associated graph of
groups then G is isomorphic to the fundamental group of G.

The theory of complexes of groups provides a higher-dimensional generalization of
Bass-Serre theory. One can define an analogue of the fundamental group of a graph
of groups for a complex of groups. However, in order for this notion to have good
algebraic properties (such as embeddability of the local groups in it) and in order for
a good analogue of the notion of the Bass-Serre covering tree to exist in this context,
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one needs to require some sort of "non-positive curvature” condition. For details cf.
Corson [C| and Stallings [St].

The classifying category of a twisted diagram of groups FEach twisted diagram
of groups G : C — Gr yields a small category BG called the classifying category of G.
It is a special case of the Grothendieck construction defined by Thomason [T]. Roughly
speaking it is a small category "generated” by C and the local groups {G(¢)}.conc as
automorphisms of objects. In particular there exists a projection p : BG — C which
is a bijection on objects set. If G is a complex of groups, then BG is the classifying
category defined by Haeflieger ([H1|, [B-H|). If a twisted diagram of groups is a group
G then its classifying category is BG. Assume that F : BG — Gr is a twisted

diagram associated to an extension N »— G 2 G. Then the classifying category of F
is isomorphic to BG.

Assume that a twisted diagram of groups G : C — Gr is a complex of groups
associated to an action of a group G on a simply connected simplicial complex X.
Then the geometric realization of the classifying category BG is homotopy equivalent
to the Borel construction E G XX where E G is the universal covering of the Eilenberg-
MacLane space BG.

Fundamental group According to Haeflieger ([H1|, [B-H|) the fundamental group
of a complex of groups G : C — Gr is the group generated by the local groups and
the fundamental group of the small category C. The main theorem of the theory of
complexes of groups says that a complex of groups is developable if and only if the
local groups inject into the fundamental group. This theorem carries over to twisted
diagrams of groups.

It turns out that the fundamental group of a complex of groups G is isomorphic
to the fundamental group of the classifying category of G. Hence we define the fun-
damental group of a twisted diagram of groups to be the fundamental group of its
classifying category. Let F : BG — Gr be a twisted diagram of groups associated to

an extension N~ G —» G. Then the fundamental group of F is isomorphic to G. In
case of a diagram of groups of the form G; «—— H — (G, its fundamental group is
isomorphic to the push-out of the diagram, i.e. its direct limit. We prove in Theorem
4.2.13 that the fundamental group of a diagram of groups F' : C — Gr is isomorphic
to its direct limit if and only if C is simply connected.

Therefore the notion of the fundamental group of a twisted diagram of groups
provides a unified approach to direct limit and extension of groups.

Classification of epimorphisms of twisted diagrams of groups One of the
main results of the thesis is the classification of epimorphisms of twisted diagrams of
groups. We say that a homomorphism ¢ : G — G over C is an epimorphism if each
local homomorphism ¢, : G(¢) — G(c) is surjective.

We will extend the classical relation between group cohomology and extensions
of groups from single groups to twisted diagrams of groups; in particular complexes
of groups introduced by Haefliger [H1]. We begin with a description of the classical
situation in the way suitable for generalizations. For detailed discussion cf. [B2|, |R].

Assume G, N are discrete groups and let ¢ : G — Out(N) := Aut(N, N)/Inn(N)
be a homomorphism. One asks whether ¢ comes from an extension N — GG It
is the case if certain obstruction element o(¢) € H*(G; Z(N)) vanishes, where Z(N) is
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the center of N. Then equivalence classes of extensions are in bijective correspondence
with elements of H*(G; Z(N)) or equivalently with twisted actions of G on N, where
the twisting is defined by the corresponding cocycle.

Let Rep denote the category whose objects are groups but morphisms are reprezen-
tations i.e. Morge,(G, H) := Hom(G, H)/Inn(H ). Then any twisted diagram of groups
composed with projection Gr — Rep gives a strict functor to the category Rep. Let
G : C — Gr be a twisted diagram of groups and F' : BG — Rep be a functor. Then
there exists a certain abelian module Zr : BG — Ab and the classification theorem
takes the following form:

Theorem 3.4.6 Let G : C — Gr be a twisted diagram of groups and let F' : BG — Rep
be a functor. If an obstruction element o(F) € H*(BG; Zr) vanishes then there is an
epimorphism 5 — G such that the corresponding twisted diagram BG — Gr is a lift-
ing of F'. Moreover, set of equivalence classes of such liftings is in a natural bijective
correspondence with the elements of H*(BG; Zr).

Observe that if G is a group then the Theorem reduces to the classical case described
above.

Extension of twisted diagrams of groups If ¢ : G — G is an epimorphism
of twisted diagrams of groups then for each object ¢ € ObC we obtain an extension
N. — G(c) - G(c). A natural question arises; can we define a "kernel” twisted diagram
of groups N : C — Gr such that N'(¢) = N, for each ¢ € ObC? The answer turns out
to be a bit complicated, in particular it may happen that A does not exist. In this
case we obtain only a "presheaf” of groups on the small category C. B

Let N/ : ' — Gr be a twisted diagram of groups and let ¢ : N/ — G over
F :C" — C be a homomorphism of twisted diagrams of groups. What does it mean
that the composition ¢ o ¢ is trivial? Two interpretations are possible. We say that
@ o ¢ is trivial on the local groups if for each ¢ € Ob(C’ the local homomorphism
(pod)e : N() — G(F()) is trivial. We prove that an epimorphism of twisted
diagrams of groups yields an epimorphism of fundamental groups of these twisted
diagrams. This justifies second interpretation, we say that ¢ o ¢ is trivial on the fun-
damental groups if the induced homomorphism (¢ o ¢), : m (N, ) — m (G, F(c)) is
trivial.

”Categorical” kernel of an epimorphism of twisted diagrams of groups Let
¢ : G — G be an epimorphism of twisted diagrams of groups. In order to construct the
"kernel” twisted diagram we prove that there is one to one correspondece between the
equivalence classes of extenstions G — G and equivalence classes of twisted diagrams
of groups on BG (Theorem 3.4.4). In particular for each epimorphism ¢ : G — G there

exists a twisted diagram F, : BG — Gr such that F,(c) = ker (g(c) — Q(c)). More-
over, there exists a homomorphism of twisted diagrams of groups ¢ : F, — G such
that the composition ¢ o4 is trivial on the local groups. It turns out that F, satisfies
the following universal property; for each twisted diagram of groups 7' : C" — Gr and
a homomorphism v’ : 7/ — G such that ¢ o %’ is trivial on the local groups, there
exists a unique homomorphism ¢’ : 7' — F,, such that 1 o ¢ = '

Therefore F, : BG — Gr is an analogue of the categorical kernel of the epimor-
phism ¢ : 5 — G.

12



Kernel of an epimorphism of twisted diagrams of groups - second approach
Let ¢ : G — G be an epimorphism of twisted diagrams of groups. Our goal is to
construct a twisted diagram of groups K : D — Gr and a homomorphism ¢ : K — G
such that ¢ o ¢ is trival on the local groups and on the fundamental groups.

Consider the following example. Let G : C — Gr be a diagram of groups
1 +—1— Z3 defined on a small category C = * «— % — *. It is a graph of
groups and its Bass-Serre covering tree is the geometric realization of a small category
D given by

*

Clearly Z3 acts on D with a quotient C. Consider the following sequence of graphs of
groups:

Ly
AN
1
Loy~——1—>1 2, Ly~—1—> 174 ¢, l~—1—>7,4
/
1
/
Ly

We obtain an extension of the fundamental groups
ZQ*ZQ*ZQ HZQ*Z?) —>->Z3

and for each d € ObD we obtain an extension of the local groups.

Assume G,G : C — Gr are twisted diagrams of groups. We prove (Theorem
6.3.7) that for each epimorphism ¢ : G — G there exists a twisted diagram of groups
K : D — Gr and a homomorphism ¢ : K — G such that p o ¢ is trivial on the
local groups and on the fundamental groups. Moreover ¢ is final for homomorphisms
¢ K' — @G satisfying these properties, i.e. for each twisted diagram of groups
K' : D' — Gr and a homomorphism ¢’ : K' — G such that ¢ o ¢ is trivial on the
local and fundamental groups there exists a unique homomorphism ¢ : ' — K such
that ¢¢' = ¢'.

Furthermore, the sequence of homomorphisms

K—G—G
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yields an extension of the fundamental groups and for each object d € ObD an exten-
sion of the local groups.

It turns out that the small category D, on which I is defined, is strictly related
to the twisted diagram of groups G. In particular, if G is a graph of groups then the
geometric realization of D is the Bass-Serre tree of G.

Structure of the thesis Chapter 1 collects some of the important notions and con-
structions concerning weak functors. The main source for this chapter is Thomason’s
paper |T].

In Chapter 2 some of the basics of the theory of twisted diagrams of groups are
presented. Section 2.1 provides the definitions of twisted diagrams of groups, homo-
morphism and equivalence of twisted diagrams of groups.

Section 2.2. introduces the classifying category of a twisted diagram of groups.
We present the properties of the classifying category which will be usefull later. The
classifying category of a twisted diagram of groups G : C — Gr is the Grothendieck
construction of the corresponding weak functor. Therefore it comes with the projection
p : BG — C on the small category C. Observe that for a single group G this projection
is simply BG — *. Theorem 2.2.9 says, that a small category D and a functor
p: D — C are associated to a twisted diagram of groups as its classifying category and
the corresponding projection, if and only if p satisfies certain properties. In particular
if p is associated to a twisted diagram of groups then the preimage p~'(c) C D of each
object c of C is isomorphic to a group. Moreover the small category D is "generated”
by C and these groups.

We prove in Theorem 2.2.13 that the category of twisted diagrams of groups is
equivalent to the category of functors satisfying assertions of Theorem 2.2.9.

Chapter 3 presents the classification of epimorphisms of twisted diagrams of groups.
It starts with a definition of the cohomology groups of a small category C with coef-
ficients in an abelian module M : C — Ab. If F : C — Ab is a twisted diagram
of groups with values in the category of abelian groups then we can forget about the
twisting elemetns and obtain an abelian module |F|: C — Ab. We prove in Section
3.1 that the elements of the second cohomology group H?(C; M) are in one to one
correspondence with equivalence classes of twisted diagrams of groups F : C — Ab
such that |F| = M.

As we have already observed, any twisted diagram of group composed with the
projection Gr — Rep gives a strict functor C — Rep. The natural question is when a
functor F': C — Rep lifts to a twisted diagram of groups F : C — Gr and how many
such liftings exist? Section 3.2 answers this question and the answer is given in terms
of cohomology of the small category C with coefficients in a certain abelian module
Zp : C — Ab (3.2.4) associated to F'. This abelian module generalizes the notion of
the center of a group, in particular for each ¢ € ObC we have Zp(c) C Z(F(c)).

Theorem 3.2.5 To every functor ' : C — Rep one assignes in a natural way
an obstruction element o(F) € H3(C; Zr) such that o(F) vanishes if and only if the
functor F' has a lifting to a twisted diagram of groups F : C — Gr. Moreover the

equivalence classes of such liftings are in bijective correspondence with elements of the
group H*(C; Zp).

14



Section 3.3 concerns the case when C is a category defined by a group G. Then
Theorem 3.2.5 reduces to the classical case.

The folowing theorem establishes the relation between the surjective homomor-
phisms of twisted diagrams of groups and twisted diagrams of groups defined on the
classifying category of a twisted diagram of groups BG.

Theorem 3.4.4 There is a natural bijective correspondence between equivalence
classes of epimorphisms G — G and equivalence classes of twisted diagrams defined
on the category BG.

Let G : C — Gr be a twisted diagram of groups and F' : BG — Rep be a
functor. Does there exist an epimorphism G — G such that the corresponding twisted
diagram BG — Gr is a lifting of F'? Theorem 3.4.6 is a straightforward corollary from
Theorems 3.2.5 and 3.4.4.

Theorem 3.4.6 Let G : C — Gr be a twisted diagram of groups and let F' : BG — Rep
be a functor. If an obstruction element o(F) € H*(BG; Zr) vanishes then there is an
epimorphism G — G such that the corresponding twisted diagram BG — Gr is a lift-
ing of F'. Moreover, set of equivalence classes of such liftings is in a natural bijective
correspondence with the elements of H*(BG; Zr).

Note that Theorem 3.4.6 contains as special cases theorems of Haefliger concerning
extensions of complexes of groups with abelian kernels [Thm. 5.2. H2| and with
locally constant (not necessary abelian) kernels [Thm. 6.3. H2|. The reason that
we can provide a unified approach to those result, and prove a more general theorem
is that we consider twisted diagrams over arbitrary small categories, also with loops,
wheras Haefliger works with complexes defined on small categories without loops.

Chapter 4 concerns the notion of the fundamental group of a twisted diagram of
groups.

Section 4.1 is devoted to introductory material and basic definitions concerning
fundamental group of a small category. The fundamental group of a small category is
defined as the fundamental group of the geometric realization of the given category. To
each category C one can assign a certain grupoid 7C called the fundamental grupoid
of C. If the geometric realization of C is connected then the fundamental grupoid and
the fundamental group are equivalent small categories.

We define the fundamental group of a twisted diagram of groups as the fundamental
group of its classifying category. In Section 4.2 we prove that the fundamental group
of a twisted diagram of groups G : C — Gr is generated by the local groups and the
fundamental group of C (Theorem 4.2.7). We also prove (Proposition 4.2.6) that the
natural projection BG — C yields an epimorphism of fundamental groups.

Assume that a twisted diagram of groups is a functor F' : C — Gr. Therefore
there exists its direct limit colim /. The natural question is how is colim F' related to
the fundamental group of F. Theorem 4.2.13 motivated by E.D. Farjoun [Fa| proves
that the direct limit is the push-out of the following diagram

7r1(6700) —>7Tl(F, Co)

| |

1————colim F

15



In particular the direct limit of F' : C — Gr is isomorphic to the fundamental group
of F'if and only if the geometric realization of C is simply connected.

Chapter 5 starts with the theory of coverings of small categories. A functor ¢ : C' — C
is said to be a covering if its geometric realization B¢ : BC — B(’ is a topological
covering. D. Quillen in |Q] has proved that the category of topological coverings of B C
is equivalent to the category of morphism inverting functors C — Sets. In Theorem
5.1.7 we present a similar result, namely we prove that the category of coverings of the
small category C is equivalent to the category of functors 7C — Sets, where 7C is
the fundamental grupoid associated to C. This implies that the category of coverings
of C is equivalent to the category of topological coverings of BC.

We say that G acts on a small category D without inversion if for each d € ObD,
gd = d implies that ¢ fixes each morphism [ : d — d’ of D. If the geometric realization
of D is a Bass-Serre tree then this condition means that G does not inverse cells, hence
the terminology. The projection D — D/G induced by the action of G is so called
right-covering. Note that if the action of GG is free then clearly it is without inversion
and the geometric realization of D — D/ is a topological G-covering.

As we have observed an action without inversion of G' on D yields a (developable)
twisted diagram of groups G : D/G — Gr. The main result of Section 5.3 says that
there exists a functor D — BG and it is equivalent to a covering, i.e. there exist a
small category £ and a covering &€ — BG such that the following diagram commutes

D¢>5

N\

Bg

The action of G on D yields a functor Sp : G — Cat. The Grothendieck construction
BSp of this functor is equivalent to the classifying category BG. Moreover the following
diagram commutes

D" E—SEG x D

NG

BG—=—~BSp

|

BG

Section 5.4 is devoted to generalization of the developability criterion given by
Bridson and Haeflieger in [B-H|. They have proved that a complex of groups G is
developable if and only if there exists a group G and a homomorphism ¢ : G — G
which is injective on the local groups. This theorem carries over to twisted diagrams
of groups.

In Chapter 6 we develope the theory of coverings of complexes of groups.
We say that a homomorphism ¢ : G — G of twisted diagrams of groups is a
covering if the associated functor B¢ : BG' — B¢ is equal to the composition

BG = —~¢

PN

BG
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where £ — BG is a covering of small categories and BG’ &, £ is an inclusion and an
equivalence of small categories. For precise definition and examples see Section 6.1.

Section 6.2 concerns a special case of a covering of twisted diagrams of groups
which is a covering of (Heaflieger’s) complexes of groups. Each complex of groups
G : C — Gr is locally developable, i.e. for each ¢ € ObC there exists a small
category D, with an action of the local group G(c) such that D./G(c) ~ C/c.
prove an analgoue of Theorem given in [B-H|. Let ¢ : G’ — G over F': ' — C be
a homomorphism of complexes of groups. Theorem 6.2.9 proves that ¢ is a covering
if and only if it is injective on the local groups and for each ¢ € ObC’ the induced
functor F : D, — Dp(ey is an isomorphism.

For each tW1sted diagram of groups G : C — Gr we define the universal covering
of G. It is a covering of twisted diagrams of groups qb g — @, such that Bg is
equivalent to the universal covering of the small category BG. The main Theorem of
Chapter 6 takes the following form

Theorem 6.3.7 Let ¢ : G — G over C be an epimorphism of twisted diagrams of
groups. Let G:D — Gr over D D — C be the universal covering of G. Then there
exists a twisted diagram of groups IC : BG — Gr and a homomorphism ¢ : K — G
over F': BG — C satisfying

1. pogp: K — G is trivial on the local groups
2. (po@).:m(K,dy) — (G, F(dy)) is trivial
3. the homomorphism ¢ : K — G isa covering and it is final for homomorphisms

¢ K — G satisfying 1. and 2.

It turns out that the sequence of homomorphisms
K—G—g

yields an extension of the fundamental groups and for each object d € ObBG an
extension of the local groups.
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Chapter 1

Weak functors a la Thomason

This chapter is devoted to introductory material, basic definitions and some standard
results.

Small categories — Let us recall that a small category C is a category whose
morphisms form a set; if ¢ and ¢’ are objects of C and if [ is a morphisms of ¢ in ¢,
namely belongs to More(c, '), then ¢ is denoted by i({) and ¢’ by #(I). Two morphisms
[ and {" are composable iff t(I") = i(l). We shall often identify an object ¢ of C with the
identity morphism id. of this object.

The idea of weak functors was firstly introduced by R.W.Thomason |T]|. He consid-
ered "weak” functors F : C — Cat (he called them "op-lax functors”) from an arbitrary
small category to the category of small categories. Roughly speaking a weak functor
or op-lax functor is something less then a functor. It has many properties similar to
the properties of functors like for example the notion of a weak natural transformation
or the Grothendieck construction.

1.1 The geometric realization of a small category

To every small category one assignes in a natural way a certain topological space.
This space is called the geometric realization of this category and one constructs it by
assigning a certain simplicial space. For a defintion of a smiplicial space cf. [D].

Definition 1.1.1. Suppose that C is a small category. Consider the poset n as a
category with one morphism i — j is © < j, and no other morphisms. The singular
complez or nerve NC of C is the simplicial space given by

(NC),, = Homgy(n,C)
More explicitely, an n-simplex o of NC s just a composable sequence of n morphisms
in C
0(0) — o(l) — ... — a(n)

Definition 1.1.2. The geometric realization BC of a small category C is the geometric
realization (3.15 [D]) of the simplicial space NC.

Remark 1.1.3. The topological space BC is a CW complex whose p-cells are in one
to one correspondence with the p-simplices of the nerve which are nondegenrate, i.e.
such that none of the arrows is an identity map.
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1.2 Weak functors

Definition 1.2.1. An op-lax functor or a weak functor F : C — Cat consists of
functions assigning:

1. to each object ¢ of C, a category F(c)
2. to each morphism l: ¢ — c¢o, a functor F(1) : F(c1) — F(cz)

. . 1 ! .
3. to each composable pair of morphisms co —— ¢1 — ¢y in C, a natural transfor-

mation fi, 1, : F(lile) = F(l1)F(l2)
4. to each object ¢ of C a natural transformation f(c) : F(id,) = idg(

These must satisfy the conditions that for

I3 lo I
C3 —> C —> C1 — (o

the following diagram is commutative

Jiq gl

f‘(lllglg) :>F(l1)F(lgl3)
fiylo g F(l1) fig,ig

fiq,15F 13)

and that for ly : ¢, — c¢g the following diagram is commutative

fideg,1q .
f‘(ll) > f(lch)f(ll)
KA
fiq jide, & f(co)
f(ll)f(idcl) ﬁ f(ll)

Remark 1.2.2. Note that a functor F': C — Cat is a weak functor with f;, ;, = id,
f(e) =1id.

Definition 1.2.3. For F : C — Cat a weak functor. The Grothendieck construction
BF of F is a small category with objects the pairs (c,x) with ¢ an object of C and x an
object of F(c), and with morphisms (L, ) : (c1,21) — (co, o) given by a morphism
l:ci —coinC and f: F(l)(x1) — xo in F(co). Composition is defined by

(ls f1)(las f2) = (Lilz, 1F (L) (f2) frrn)
Remark 1.2.4. There is an obvious projection at the first coordinate functor = : BF — C.

Definition 1.2.5. Given F,G, weak functors C — Cat, a weak natural transforma-
tionn: F = G consist of functions assigning
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1. to each object ¢ in C, a functor n(c): F(c) — G(c)

2. to each c; 5 ¢y inC, a natural transformation n(ly) : G(li)n(er) = nlco)F(lh)

(
such that for cy b, 1 LN co we have n(co)(fi,.1,)n(Lile) = n(11)G (1) (n(l2)) 91y 1,
i.e. the following diagram commutes

n(l1l2) U(CO)fll,lg

G(lLilz)n(ca) = n(co)F (ll2) == 1(co) F (1) F (I2)

gll,lQﬂ ﬂn(h)

G(1)G(l2)n(c2) TV G(l)n(er)F(l2)
and for ¢ € ObC we have n(c) f(c)n(id.) = g(c)n(c) i.e. the following diagram
commutes
G(id.J(e) 2 () F (id,)
SO ﬂU(C)f(C)
n(c)

Remark 1.2.6. Note that a natural transformation n : 7/ — G of functors is a weak
natural transformation with n(l) = id. Given weak natural transformations ¥ = G,
G = 'H there is an obvious composite weak natural transformation ¥ — H.
Thus for a fixed C we have a category of weak functors C — Cat and weak natural
transformations between such, Op-lax(C, Cat).

Definition 1.2.7. Assume F,G : C — Cat are op-lax functors and n : F — G
is a weak natural transformation. We define a functor Bn : BF — BG on objects by
Bn(c,z) = (¢,n(c)(x)). For a morphism in BF, (I, f) : (c1,x1) — (co, o), we have a
morphism in G(cp),

G(Omen) (1) "2 (o) F (1) (1) " p(eo) ()

We set Bn(l, f) = (I, n(co)(f)n(l)(x1)).

Remark 1.2.8. One notes that 1.2.3 and 1.2.7 determine a functor
B : Op-lax(C, Cat) — Cat.

The following proposition will be useful later. It says that the local equivalence of
functors yields an eqivalence of the Grothendieck constructions.

Proposition 1.2.9. Assume F,G : C — Cat are functors andn : FF — G is a
natural transformation such that for each object ¢ € ObC the corresponding functor
n(c) : F(c) — G(c) is an equivalence of categories. Then Bn : BF — BG is an
equivalence of categories.

Proof. Let (c,y) € ObBG where ¢ € ObC and y € ObG(c). There exists an ob-
ject y' € ObG(c) such that ¢y = n(c)(z) and y' is isomorphic to y in G(c¢). Then
Bn(c,x) = (¢,y’) is isomorphic to (¢, y) in BG.

For a morphism in BEF, (I, f) : (c1,21) — (¢, o), we have a morphism in G(c),

G(Dn(er)(w1) = nco) () () " n(co) (o)

We have Bn(l, f) = (I,m(co)(f)), hence Bn yields an isomorphism
Morgp ((cl, x1), (co,xo)) ~ Morpg (Bn(cl,xl), Bn(co,xo)). Therefore Bn : BF — BG
is an equivalence of categories. O
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Definition 1.2.10. Assume F' : C — C' is a functor, and F : C' — Cat a weak func-
tor. The pull-back weak functor F*F :C — Cat is a composition F o F': C — Cat.

Definition 1.2.11. Assume F : C — C' is a functor. A homomorphism ® : F — G
(over F') of weak functors F : C — Cat, G : C' — Cat is a weak natural transformation
n:F = F*G.

Proposition 1.2.12. Let & : F — G (over F': C — (') be a homomorphism of weak
functors. Then ® yields a commutative diagram of functors

C—F ¢

Proof. The homomorphism ® : F — G (over F) of weak functors F : C — Cat,
G : ' — Cat is a weak natural transformation n : 7 =— F*G. This natural
transformation yields a functor Bn : BF — BF*G and a commutative diagram

BF*G
There exists a diagram
BF*G -~ BG

ﬂl lﬁ,

C————=C

F
given by (I, f) — (F (1), f). Therefore we obtain

BF -2~ Bg

ﬁl l”'

C—~C

O

Proposition 1.2.13. Consider functors F : C — C' and ¢' : D' — C' of small
categories. There exists a category D and a commutative diagram



there exists exactly one functor pp : € — D such that the following diagram commutes

h F

DLl

N

C—F>C/

We say that D is the pull-back category of the given diagram.

Proof. We define objects of D to be the set of pairs (¢, d’) where c € ObC and d' € Ob D’
such that F'(c) = ¢'(d’) and morphisms to be the set
{(1,K') 1 €MorC, ¥ € MorD',F(l) = ¢/'(k')}. The functors ' : D — D'and ¢ : D — C
are given by the natural projections.

Assume that we have

For each le Mor & we define pp : € — D to be ep(l) = (¢1(1), Fi(1)). Then oD = ¢1
and Fop = F). If there exists a functor ¢ : £ — D such that ¢ = ¢; and Fop = F}

then ¢ = ¢p on the set of morphisms thus ¢ = ¢p.
O

Proposition 1.2.14. The category BF*G is the pull-back category of the diagram

BF*G £~ BG

ﬂl l”'

C—% ¢
Proof. The set of morphisms of the category BF*G consists of pairs ([, f) where
[ € MorC and f € MorG(t(l')) such that F'(I) = I'. Let D be the pull-back of the
latter diagram. The isomorphism BF*G — D is given by (I, f) — (I, (F(I), f)). O

1.3 Homotopy colimit and the functor associated to
a weak functor

The construction of the homotopy colimit is motivated by the fact that ordinary col-
imits are not well-behaved with respect to weak equivalences. For instance, consider
the following commutative diagram of topological spaces (wher D" is the n-disk and
S"~1 its boundary sphere).

Dn Snfl Dn

Sn—l
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All three vertical arrows are weak equivalences (even homotopy equivalences) but the

colimit of the top row is homeomorphic to S™, the colimit of the bottom row is a one-

point space *, and the map S™ — * induced by the diagram is not a weak equivalence.
Homotopy colimits on the other hand have a strong invariance property.

Definition 1.3.1. For a (weak) functor F : C — Cat let NF denote the nerve of a
Grothendieck construction BF and B F its geometric realization.

Assume that we have functors F,F’ : C — Cat and a natural transformation
n: F = F’ such that it induces a homotopy equivalence Bn(c) : B F(¢) — B F'(c)
for each object ¢ of C, then the geometric realization of the simplicial map
hocolim N7 : hocolim N F' — hocolim N F” is a homotopy equivalence.

The homotopy colimit construction is functorial, in the sense that a natural trans-
formation n: I = F” of functors C — Cat induces a map

hocolim N 7 : hocolim N ' — hocolim N F’

The homotopy colimit construction is also functorial in C, in the sense that if j : D — C
is a functor and j*F' denotes the composite F'j, then there is a natural map
hocolim N(j*F) — hocolim N F.

The following theorems were proved by R.W. Thomason in |T].

Theorem 1.3.2. (Homotopy colimit theorem). Let F': C — Cat be a functor. The
geometric realization of
¢ : hocoimN F — N F

15 a homotopy equivalence.

We do not have a hocolim N F defined for a weak functor F, so we cannot compare
it to NF. Instead, we will naturaly associate a functor 7 : C — Cat to the weak
functor F, and compare N F to N F and hocolim N F.

Definition 1.3.3. For a weak functor F : C — Cat we define a functor F : C — Cat.
For each ¢ € ObC, F(c) is a category whose objects are (I,c/,z'), | : ¢ — ¢ a mor-
phism in C and ' an object of F(c'). A morphism (Iy, fi) : (I, 2") — (I, ", 2")
is aly :  — & such that I'ly =1 and f; : F(lh)(a') — 2”. For each morphism
ly : ¢; — ¢ in C there is a natural transformation F : F(c;) — F(co) which assign
(I,d,2") — (L1, 2") and is the identity on morphisms.

For a weak natural transformation n : F = G, 7 : F — G is the natural
transformation of functors induced by Bn : BF — BG.

Definition 1.3.4. Let C be a small category. For any object c € C one defines the left
fibre category over ¢, denoted by C/c, whose objects are pairs (i(l), (1) LN c). A mor-
phism (i(ly),1(l1) LN c) — (i(l2),i(ls) L, c) in C/c is a morphism k : t(ly) — t(l2)
for which the corresponding triangle over ¢ commutes.

For each ¢ € ObC there ezists a natural projection l. : C/c — C.

For (c LN ) € MorC there is a natural functor C/k : C/c — C/c" given by
(C”,C” L C) _ (C”,C” L C/).
Remark 1.3.5. Let C be a small category and F : C — Cat a weak functor. Let
F : C — Cat be an associated functor defined in 1.3.3.

Let [7F : C/c — Cat be a weak functor induced by [. : C/c — C. Then the value
of a functor F(c) is isomorphic to a small category BI}F.
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Definition 1.3.6. A weak natural transformation j : F — F is determined by the
formula

je) s Fle) — Fe)

and is the functor sending x to (id.,c,z) and f, : x — 2’ to (id., f(c)(2)F(id.)(f1))-
Forl:c, — co, j(1) : F()j(er) = j(co)F(l) is the natural transformation with
components given at x by (1,id) : (I, ¢1,z) — (id, o, F(I)(x)).

These j : F — F are such that for any weak natural transformation n: F — G
the diagram

commutes.

Lemma 1.3.7. For each ¢ € ObC, the functor j(c) : F(c) — F(c) has a left adjoint
i(c) : F(e) — F(c) sending (I,c,2") to F()(2') and (Iy, f) : (I,c,2") — (', ", 2")
to

FO) (') = FUL) @) 25 7oy Fm) ) ™Y 7))

Theorem 1.3.8. For a weak functor F : C — Cat, we have a diagram

Nej

NF - NF — hocolim N F
Its geometric realization is a diagram of natural homotopy equivalnces.

Corollary 1.3.9. Assume F,G : C — Cat are weak functors andn:F — G is a
weak natural transformation. If for each ¢ € ObC, the geometric realization of n(c) is
a homotopy equivalence, then Bn : BF — B G is a homotopy equivalence.
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Chapter 2

Twisted diagrams of groups

Section 2.1 of this chapter describes weak functors which take values in the category of
groups. We will call them twisted diagrams of groups, because of the twisting elements
which corresponds to the natural transformations associated to the given weak functor.
We will also explain when a given twisted diagram of groups determines a complex of
groups defined by Bridson and Haeflieger in |B-H|(Proposition 2.1.4).

The Grothendieck category of a twisted diagram of groups is a generalization of the
classifying category of a complex of groups defined in |B-H|. Some important properties
of this category will be described in Section 2.2. We will prove that for a given small
category C, the category of twisted diagrams of groups defined on C is equivalent to
the category of functors p : D — C satisfying certain properties (Theorems 2.2.9 and
2.2.13).

2.1 Twisted diagrams of groups

For a given subcategory of the category of small categories Cat, like for example groups,
grupoids or El-categories, we can consider weak functors which take values in this
subcategory.

Every group G can be considered as a small category BG with a single object and
morphisms corresponding to G.

From now on, a weak functor F : C — Gr is a weak functor such that for each
object ¢ of C

Fle)=BG = *_)oec

is a category defined by a group.

Definition 2.1.1. A weak functor F : C — Gr to the category of groups will be called
a twisted diagram of groups.

Proposition 2.1.2. Assume &,V : G — H are homomorphisms of groups. We can
consider these homomorphisms as functors BY : BG — BH and B® : BG — BH in
the category of groups Gr C Cat. Let o : BY = B® be a natural transformation.
Then « s a conjugation by some element of the group H.
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Proof. For each element g € G there is a commutative diagram

BY(g)

This implies ¥(g) = h®(g)h~ ! and a = Ad(h™1). O
Proposition 2.1.3. A twisted diagram of groups G : C — Gr 1is given by

1. for each object ¢ € ObC a group G(c)
2. for each morphism1 : ¢ — ¢ € MorC a homomorphism of groups G(I) : G(¢) — G(¢)

3. for two composable morphisms 1,1 € MorC an element g, € G(t(l1l')) = G(¢(1)),
called the twisting element, such that

1) Ad(grr)G (') = G(HG(I')

ZZ) g(l)(glw/)gl,l/l// = Grrguw fOT' each trzple :
composable morphisms (cocycle condition)

" 4 l

€ MorC of

4. for each object c € ObC an element g(c) € G(c) such that G(id.) = Ad(g(c)) and
forleMorC, i(l) =c, t(l) =
i) 9() = gl
ii) G(1)(9(c) = gz,

Proof. Follows directly from the defintion of a weak functor and Proposition 2.1.2. [

Proposition 2.1.4. Let G : C — Gr be a twisted diagram of groups. Assume that
for each morphism | € Mor C the given homomorphism of groups is a monomorphism,
for each object ¢ € ObC an element g(c) is trivial and C is a small category without
loops, that is such a category whose endomorphisms are identities of objects. Then G
determines a complex of groups defined by Haeflieger ([H1], [B-H]).

Proof. The proof is straightforward. Let C be a small category without loops (scwol)
and {G,, ¥, g1} a complex of groups defined on it. We put G(c¢) = G., G(I) = ¢, and
the twisting elements of this twisted diagram are the twisting elements of the complex
of groups. O

We define a homomorphism of twisted diagrams of groups as a weak natural trans-
formation of the corresponding weak functors. Therefore

Proposition 2.1.5. A homomorphism ¢ : G — G’ of twisted diagrams of groups
G:C— Grand G':C" — Gr over a functor F : C — C' is given by the following
data:

1. for each ¢ € ObC a homomorphism ¢.: G(c) — G'(F(c)) called the local homo-
morphism
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2. for each | € MorC an element ¢(1) € G'(F(t(1))) such that
(1) Ad(o(1)G'(F(1)) iy = ¢uy9(1)
(i) oy (i) o(U') = S(O)G' (F (D)) Gy pry for two composable 11" € MorC
Proof. A homomorphism ¢ : G — G’ of twisted diagrams of groups G : C — Gr and

G :C — Grover I': C — (C’ considered as a weak natural transformation of weak
functors is given by:

1. for each ¢ € ObC a homomorphism ¢, : G(¢) — G'(F(c))
2. for each [ € MorC a natural transformation G'(F(1))¢;,iy = ¢yyG (1)
satisfying properties from 1.2.11. Then using 2.1.2 we obtain the latter equations. [

We say that homomorphism ¢ is simple if for each [ € MorC the element ¢(1) is
trivial.
We will often denote the homomoprhism ¢ as a pair ¢ = (¢, ¢(1)).

Remark 2.1.6. If F'is an isomorphism and ¢. is an isomorphism for every ¢ € Ob(C,
then ¢ is called an isomorphism.

Definition 2.1.7. Assume that G : C — Gr and G' : C — Gr are twisted diagrams
of groups. We say that G and G' are equivalent if there exists an isomorphism over the
identity of C

p:G—G

Proposition 2.1.8. We say that twisted diagrams G : C — Gr and G' : C — Gr
differ by a coboundary {g;}iemorc if for each ¢ € ObC the corresponding groups are
equal

G'(c) = G(o)
and for each | € MorC there ezists an element g, € G(t(1)) such that

G'(1) = Ad(gr) o G(1)
and the twisting elelements satisfy

g = 991 () g1 g
Assume that G and G’ differ by a coboundary. Then G and G’ are equivalent.

Proof. Assume that G : C — Gr and G’ : C — Gr are twisted diagrams of groups
which differ by a coboundary. Then for each ¢ € ObC we have G(c) = G'(c) and for each
[ € MorC there exists an element g; of the group G(¢()) such that G'(I) = Ad(g;) oG (1).
The twisting elements satisfy g;, = 9G(g)g1rgy'- Then we can define ¢ : G — G’
as follows

¢c = idg(e)
and

o) =g
According to 2.1.5 ¢ is a well defined isomorphism of twisted diagrams of groups, over
the identity of C. Thus G and G’ are equivalent. O
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Corollary 2.1.9. Let G : C — Gr be a twisted diagram of groups. Then G is equivalent
to a twisted diagram G' : C — Gr such that for each object ¢ € C the corresponding
element g(c) € G(c) is trivial.

Proof. The proof is straightforward. For each ¢ € ObC choose giq, = g(c)™!. O

From now on we will assume that a given twisted diagram of groups G : C — Gr
satisfies a normalizing condition, i.e.

1=g(c) € G(c)

We will end this section with an example of a twisted diagram of groups on a small
category BG.

Example 2.1.10. Eztension of groups

Let N »= G -5 G be an extension of groups and let BG be a category defined by a group
G. Choose any set theoretical section s : G — G (not necessarily a homomorphism).
We define a twisted diagram of groups

F :BG — Gr
as follows; Assign to the single object of the category BG a group N:
F(x):=N
To each morphism g € Mor BG = G assign an automorphism of the group N given by

Ad(s(g))
) —

F(g): N— N=N ~ (N ((N)~ N

Note that for two elements g1, 90 € G

F(9192) # F(91)F (g2)

and differs by the conjugation with an element s(g;)s(g2)s(g192) "' € ¢(N). We define

Ngrgs = Uy (5(91)5(g2)s(9192)7") € N

and
n(x) = L‘;\} (ste)™) enN

where e € (G is the trivial element of the group G.

It is straightforward to check that for gy, g2, 93 € G = Mor BG the corresponding
twisting elements satisfy the cocycle condition. Moreover, for any g € G = Mor BG we
have

and
F(9)(n(x)) = uy (s(9)s(e)'s(g) ™) = ngia,
Note that the twisting elements measure to what extend our section fails to be a
homomorphism. Moreover the twisted diagram of groups F : BG — Gr is equivalent

to a diagram of groups if and only if the group G is isomorphic to a semidirect product
of the groups N and G.
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2.2 The classifying category of a twisted diagram of
groups

The classifying category of a twisted diagram of groups is a generalization of the cat-
egory defined by a group and on the other hand the classifying category of a complex
of groups ([H1|,|B-H]).

Definition 2.2.1. The classifying category of a twisted diagram of groups is the Grothendieck
construction of the corresponding weak functor.

Remark 2.2.2. Let C = * be the category with one object and G : x — Gr a twisted
diagram of groups. Then the classifying category BG is the classifying category of the
group G(x). Let Z¢z : C — % € Gr be a diagram of groups such that Zo(c) = 1. Then
BIC ~C.

Remark 2.2.3. Let C be a category without loops and G : C — Gr a complex of
groups. Then the Grothedieck construction BG is the classifying category of a complex
of groups defined by in [H1| and [B-H].

Example 2.2.4. Consider an extension of groups N — G 2 G and the twisted
diagram of groups associated to it F : BG — Gr described in Example 2.1.10. Then
the classifying category of F is isomorphic to the category defined by the group G

BF ~ BG

The isomorphism is given by (g,n) — ns(g). Moreover, the associated projection
(1.2.4)
p: BF — BG

equals B
Bn: BG — BG

The definition of a homomorphism of twisted diagrams of groups given in 2.1.5 is
quite complicated. The notion of a classifying category will simplify it, namely

Remark 2.2.5. Assume that G:C — Gr and G’ : C’ — Gr are twisted diagrams of
groups and ¢ = (¢, ¢(1)) : G — G’ is a homomorphism over F': C — C’. Then due
to 1.2.12 we obtain a commutative diagram of functors

P

Bg B’

C

given by ®(l, g) = (F'(1), dua)(9)o(1))-

Moreover each diagram of this form defines a homomorphism ¢ : G — G’ of twisted
diagrams of groups given by ¢. = ®g() : G(c) — G'(F(c)). If ®(1,1) = (F'(I),¢') then
we define ¢(1) := ¢’

C/

This implies
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Corollary 2.2.6. Assume that G : C — Gr and G’ : C — Gr are two twisted
diagrams of groups. Then G and G' are equivalent if and only if there exists a homo-
morphism

$:G— G

such that the associated diagram is of the form

P Bg,
N

BG

and ® is an isomorphism.

Definition 2.2.7. We say that extensions N — G —» Gand N — G — G are
equivalent if the following diagram

~ ~ ~

G\ /G’

G

commutes.
As a collorary we obtain the following:

Proposition 2.2.8. Assume that F : BG — Gr and F' : BG — Gr are twisted
diagrams of groups associated to extensions of groups (2.1.10). Then F and F' are
equivalent if and only if the corresponding extensions are equivalent.

’

Proof. Let F be associated to pe— o éé G and F' to No—— (v "_S\» ¢ - Then

the following diagrams commute

~

BF - BG BF' = BG'

N N

BG BG

Therefore, F and F’ are equivalent if and only if the corresponding extensions are
equivalent. O

As we have observed, the twisted diagram of groups G : C — Gr yields a projection
p: BG — C. Assume that for a small category C we are given a functor p : D — C.
The natural question is, when the functor p is associated to a twisted diagram of groups
G : C — Gr? This question is answered in:

Theorem 2.2.9. Let C be a small category. A category D and a functor p: D — C
15 associated to a twisted diagram of groups as the classifying category of this twisted
diagram of groups if and only if it satisfies the following conditions:

1. p: D — C is a bijection on object sets and p is onto

2. The subcategory G? := {g € Morp(c,c) : p(g) =id.} of D is a group.
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3. For each l € MorC let X be a subset of morphisms Morp(c, ¢') such that for each
r € X; p(x) =1. Then the groups G2, G®, acts on this set in the natural way

GZ/CXZDGT

such that ¢’z = ¢’ o x € Morp(c,d) and xg = x o g € Morp(c, ). These actions
satisfy

e the action of the group G¥, is transitive and free

e for each x € X, there exists a homomorphism Y2 : G — G¥, given by

rzoh=vyP(h)ox

Proof. These properties are clearely satisfied if D is the classifying category of a twisted
diagram of groups G : C — Gr and p is an associated projection BG — C. Conversely
assume that p : D — C satisfies the above properites. Let s : C — D be any section
of p, i.e. a map such that ps = id¢ (s does not have to be a functor). We will choose s
such that for each object s(id.) = id.. Then we define a twisted diagram of groups on
C as follows:

1. G(c) = G? for each c € ObC
2. G(I) = g, for each I € MorC

3. elements g, are uniquely defined by the equality g, s(ll") = s(1)s(I') in D

Note that G satisfy the normalizing condition g(c) =1 for each object ¢ € C.

Then D is clearly isomorphic to the classifying category BG: the isomorphism
sends (I, g) to gs(l). Another choice of section would give a twisted diagram of groups
equivalent to G : C — Gr.

0

Corollary 2.2.10. Let G : C — Gr be a twisted diagram of groups and p : BG — C
the associated projection. Then p splits, i.e. there exists a functor s : C — BG such
that ps = ide, if and only if G is equivalent to a diagram of groups (functor).

Proof. Assume that there exists a functor s : C — BG. Then twisted diagram of
groups G’ : C — Gr defined as G'(c) = G? and G'(I) = ¢, is a diagram of groups.
Thus G is equivalent to a diagram of groups.

Assume that G : C — Gr is a functor and p : BG — C the associated projection.
Then s : C — BG defined as s(I) = (I, 1) is a functor. O

The following observation will be usefull later

Corollary 2.2.11. Assume that p : D — C satisfies the assertions of 2.2.9 and let
p' D — & be a functor such that for each g € G C Autp(c) we have p'(g) = idy ().
Then there exists a unige functor p’ : C — & such that the following diagram commutes

/

p

D—=¢&

P _
/s

C



Definition 2.2.12. Let C be a small category. The category of twisted diagrams of
groups on C is defined as a category whose objects are twisted diagrams of groups
G : C — Gr and morphisms are homomorphisms of twisted diagrams of groups over
the identity of the category C. We will denote it CGre.

The following theorem is a collorary from the Theorem 2.2.9 and Remark 2.2.5.

Theorem 2.2.13. Let C be a small category. The category CGre of twisted diagrams
of groups on C is equivalent to the category | C whose objects are functors D — C
satisfying assertions of 2.2.9 and morphisms are given by the commutative diagrams

%

This equivalence is given by the natural functor Be : CGre — | C assigning to G the
projection BG — C.

D’ D

Proof. The functor Be : CGre — | C is given by B¢(G) = (BG -2 C) on objects and
Be(G — G) = BG' BG on morphisms. The functor &' :| C — CGre¢

N

is given by ®(D -5 C) = G where G : C — Gr is a twisted diagram of groups
constructed in the proof of Theorem 2.2.9. The commutative diagram

%

D/

D

yields a diagram

BG — BG

2 D—
C

which according to 2.2.5 defines a homomorphism of twisted diagrams of groups. Then

P’ o BC =~ idCGrc and BC o ~ idlC- ]

The following Proposition will be very usefull in our further considerations. It
says roughly that a composition of twisted diagrams of groups is a twisted diagram of
groups.

Proposition 2.2.14. Let r : € — D and p : D — C satisfy assertions of the
Theorem 2.2.9. Then the composition por : E — C satisfies 2.2.9.

Proof. If r : £ — D and p: D — C satisfy assertions of the Theorem 2.2.9, then

1. por: & — C is onto and is bijection on object sets because p and r are onto
and bijections on object sets
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2. We will prove that G = (pr)~'(id.) is a group and moreover there exists an
extension of the form

T
G, — GV — G?

C

If y1, yo € Ende(c) such that pr(y;) = pr(ye) = id. then pr(y,y2) = id.. Assume
that y € Endg(c) such that pr(y) = id.. Then r(y) € G?. The functor r is onto
thus there exists ¥’ € Endg(c) such that r(y') = (r(y))~*. Then yy', y'y € G,
and let yy' = g1 and y'y := go. Thus yo (y'g;') = id. = (g5'%') oy and
(9:'9) = (95 ) oy o (Wgr') = (¥'gr"). This proves (95'y) = (¥'g7") =y "
Thus G?" is a group which projects on G2 and the kernel of this epimorphism is
Gr.

3. Let | € MorC, i(l) = ¢, t(l) = ¢ and denote Y] the subset of Morg(c, ') such
that pr(y) = [ for each y € ¥;. Then V; = [[,c, Yz, where X; C Morp(c, ¢’) such
that p(z) = [ for each z € X;, and Y, C Morg(c, ') such that r(y) = = for each
yEeY,.

e Let G' = GY'. We will prove that G’ acts freely and transitively on Y.

Assume that ¢’y = y for some y € Y; and ¢’ € G'. Then there exists = € X
such that y € Y,. Thus r(¢')z = z. This implies r(¢’) = 1 and then ¢’ € G,.
Then ¢’ = 1.
Let y1, yo € Y. Then y; € Y,, and yo € Y,,. We pick g € G% such that
gx1 = x9 and we pick ¢’ € G such that r(¢') = ¢g. Then ¢'y; € Y,,. The
group G7, acts transitively on Y,,. This proves that G~ acts transitively on
Y.

e A homomorphism " : G — G% is induced by the following diagram

O

Remark 2.2.15. Let G : C — Gr, G :C — Gr, F : D — Gr denote the twisted
diagrams of groups associated respectively to por: & —C,p: D —C,r: & — D.
Then we have the following diagram of homomorphisms of twisted diagrams of groups

E—=E—"=D
r pr P
DL-Cc—>C

corresponding to F — G — G,

Remark 2.2.16. Note that for each ¢ € ObC there exists an extension
F(e) = G(c) - Glc)

which is equal to
Gr oGP L P
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This observation implies:

Proposition 2.2.17. Let F : BG — Gr be a twisted diagram of groups defined
on the classifying category of a twisted diagram of groups G : C — Gr. For each
c € ObC let F.: BG(c) — Gr be a restriction of the weak functor F to the subcategory

BG(c) C BG. This restriction defines a weak functor G : C — Gr C Cat given by

Note BF, is a small category associated to a group. Moreover
BG ~ BF

Proof. Let & be the classifying category of F and r : &€ — BG the associated projec-
tion, let p : BG — C be the projection associated to G. Then G:C— Gris equivalent
to a twisted diagram of groups associated to por : & — C and F. : BG(c) — Gr
is a twisted diagram of groups associated to the extension F(c) — G(c) — G(c) (the
construction described in 2.1.10). Obviousely BG ~ BF = €. O
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Chapter 3

Cohomology of small categories and
extensions of twisted diagrams of
groups

Section 3.1 presents the definition and examples of cohomology of small categories.
Given a twisted diagram of groups F : C — Ab we can forget about the twisting
elements and consider it as a functor |F| : C — Ab. We will prove in Proposition
3.1.7 that for a given functor F' : C — Ab there is one to one correpsondence between
the elemetns of the group H?(C; F') and the equivalence classes of the twisted diagrams
of groups F : C — Ab such that |F| = F.

One can generalize the above observation as follows. We define a category of rep-
resentations Rep to be a category whose objects are groups and

Morgep (H, G) := Morg,(H, G)/ Inn(G)

For a given twisted diagram of groups F : C — Gr the composition with the natural
projection Gr — Rep gives a diagram of representations F' : C — Rep. Section
3.2 answers the question: when does a diagram of representations lift to a twisted
diagram of groups and how many such liftings exist? An answer will be given in terms
of cohomology of small categories (Theorem 3.2.5).

Section 3.3 considers the case when the small category C is a category associated
to a group GG. We will explain the relation between the epimorphisms of groups and
the twisted diagrams of groups defined on the category associated to a group.

A. Haeflieger in [H2| has classified extensions of complexes of groups with abelian
kernel and extensions with locally constant kernel. We will extend this classification on
twisted diagrams of groups. Section 3.4 describes the relation between the surjective
homomorphisms of twisted diagram of groups and twisted diagrams of groups defined
on the classifying category of a certain twisted diagram of groups (Theorem 3.4.4).
Then as a collorary from 3.2.5 and 3.4.4 we obtain the classification Theorem (3.4.6).

3.1 Cohomology of small categories

Definition 3.1.1. For a small category C we denote by C-mod := Hom(C, .Ab) the
category of (covariant) functors C — Ab and call its elements C-modules. This agrees
with the notion of G-module which is now called BG-module. For M, M' € C-mod we
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denote by Home(M, M') the set of all morphisms M — M’ in C-mod (i.e. natural
transformations).

Let Z : C — Ab be a constant C-module given by Z(c) = Z for each object of C and
the identity for each morphism of C. The functor lim¢ = Hom(Z, —) : C — mod — Ab
is left exact which implies that one can define the derived functors. Their value on
the C-module M will be denoted H*(C; M) and called the n-th cohomology of C with
coefficients in the module M.

From the defintion of the right derived functor one has to construct an injective
resolution I* of the C-module M. H™(C; M) is then the n-th cohomology of the cochain
complex Hom(Z, I*). These cohomology groups can be computed also as the cohomol-
ogy groups of the cochain complex Hom(P,, M) where P, is a projective resolution of
the C-module Z.

We define the chain complex functor which assigns to an object ¢ € C the chain
complex C4(C/c). The generator of C,(C/c) is an n-chain of objects of C/c:

Since the arrows ¢; — ¢ for © < n are determined by the others we may think
of this generator as of the (n + 1)-chain [¢, — ¢,-1 — ... — ¢ — ¢| end-
ing in ¢. Thus C,(C/c) can be thought of as the free abelian group over the set
of chains [¢, — ... — ¢y — ¢|. For | : ¢ — d the morphism C,(C/l) just com-

poses the last morphism of the chain [¢, — ... — ¢ LI c] with [ yielding
[cn—>...—>coi>d].

Proposition 3.1.2. For every n > 0 the functor C,(C/—) is a projective C-module.
The chain complex C.(C/—) is a projective resolution in C-mod of the constant functor
Z.

Proof. We will denote C,(C/—) as C,. We shall prove that for an arbitrary epimor-
phism M’ — M of C-modules the induced homomorphism

Home(C,,, M) — Home(C,,, M) is also an epimorphism. For every C-module M we
have a bijection

Home(C,,, M) ~ H M (co)

Before we give the formula for this map we will introduce the notation (my, ... —.¢,) for
the element of the product. Here the element mj., . .., € M (cp) is the component
corresponding to [¢, — ... — ¢o]. The map sends each natural transformation 7

to the collection (7([c, — ... — ¢ 2, co])). We will construct the inverse map in
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order to prove bijectivity. Let (my., . —¢,) be an element in the right hand side group.

Its inverse image is the transformation C,(c¢) — M/(c) sending [¢, — ... — ¢ LN
c] to M(k)(myc,—..—c])- For naturality let us consider a morphism [ : ¢ — d and the
diagram

C(l)
[cn—>...—>coi>c]€ Ch(c) —= Ch(d) a[cn—>...—>coi>d]
l M(l)
M(k)(mie,—..—co)) € M(c) —= M(d) > M(lk)(mic,—..—co))

It is easy to observe that these maps are inverse to each other. The cartesian product
preserves epimorphisms. As the map corresponding to Home(C,,, M') — Hom¢(C,,, M)
on left is just the product of epimorphisms on the right it is epi. This completes the
proof of projectivity of C,.

To prove that the complex C,(C/—) is acyclic (i.e. has zero homology) it is enough
to note that the category C/c has a final object (c ¢4 ¢) thus the chain complex
Ci(C/c) is exact for every ¢ € ObC and then C,(C/—) is an exact sequence of C-
modules. O

This implies the explicite computation of the cohomology groups:

Corollary 3.1.3. Given a C-module M : C — Ab we consider the cochain complex
C*(C; M) on C with coefficients in M. A n-cochain f € C"(C; M) is a map associating

ln-1 lo
to a sequence Cp ——Cn—1 —> -1 ——=C1 —=Co an element f(lo,...,l,—1) € M(cp).

The coboundary 6 f € C" T (C; M) is defined by

H

n—

5f (o, 1n) = M(Io)(f (I - )= (=1 f (o liligrs o Ln)=(=1)" f(lo, -, L)

=0
Then H™(C; M) is the n-th cohomology group of this cochain complex.

Remark 3.1.4. A homomorphism of C-module M in a C-module M’ induces a homo-
morphism of H*(C; M) in H*(C; M"). If F : C — ('’ is a functor, then it induces a
homomorphism F* of H*(C'; M) in H*(C; F*M). Those homomorphisms are obtained
from the natural associated homomorphisms of the cochain complexes.

Remark 3.1.5. Assume that C = BG. Then C-module M is a G-module and

H*(C; M) = H*(G; M(x))
Remark 3.1.6. Let M : C — Ab be a C-module. The first cohomology group
H(C; M) is given by the set of equivalence classes {[f] | f € C*(C; M), §f = 0}. Thus
for ¢y 5 ¢, = ¢o in C we have M (lo)(f(11)) — f(lol) + f(lo) = 0.

Assume that F : C — Ab is a twisted diagram of groups. Then for each pair
of morphisms ¢s — ¢; =% ¢, the composition F(lo)F(ly) differs from F(lyly) by a
conjugation with some element of the abelian group F(cg). Thus F(lo)F(l1) = F(lol1)
and F defines a functor F' : C — Ab given by F(c) = F(c), F(I) = F(I). We will
denote the functor F' := |F].

The following proposition gives an explicit description of the second cohomology
group of C.
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Proposition 3.1.7. Let F : C — Ab be a functor. Then the group H?(C; F) acts
freely and transitively on the set of equivalence classes of twisted diagrams of groups

F :C — Ab such that |F| = F.

Proof. Let g € H*(C; F) be an element of the second cohomology group of C. Then
according to 3.1.3 g is given as an equivalence class of cocycles

{{/ o, 1)} (o, 1) € Fleo) }

[CQLIQLOCO]GMorC7
such that for cs b, Co LN 1 Lo, co these elements satisfy the (multiplicative) cocycle
formula

F(lo)(f (11, 12)) f (lo, lila) ™ f (loly, 2) f (lo, 1) = = 0

which is the cocycle condition defined in 2.1.3. Two cocycles { f} and { '} are equivalent
if there exists a cochain b € C*'(C; F') such that {f'} = {(6b)f}.

Each cocycle f defines a twisted diagram of groups F : C — Ab given by
F(c)=F(c), F(I) = F(l), fi, = f(l1,la). If {f}] = [{f'}] then F and F’ differ
by a coboundary 0b and then F and F’ are equivalent.

Assume that F, 7' : C — Gr are equivalent twisted diagrams of groups. Then
there exists a homomorphism ¢ = (idz«),¢(l)) : F — F' and F,F’ differ by a

coboundary {¢(1)}iemorc-
Thus an action of H?(C; F') on the set of equivalence classes of twisted diagrams of

groups given by: [{f}][F'] = [F"] such that [{f"}] = [{ff'}] is well defined, free and
transitive. O

3.2 Lifting of diagrams of representations to twisted
diagrams of groups

Proposition 3.2.1. Let F : C — Gr be a twisted diagram of groups. Then the
composition of F with the functor P : Gr — Rep is a functor.

Proof. Rep(G, H) = Hom(G, H)/Inn(H), then for two composable morphisms [, in
C we have PF())PF(') = PF(Il'). 0

Definition 3.2.2. Let F : C — Gr be a twisted diagram of groups and F' — Rep an
associated functor. We will call the twisted diagram of groups F a lifting of the functor
F.

Gr

7l

C—F Rep
Assume that we are given a functor F' : C — Rep. Does this functor lift to any
twisted diagram of groups F : C — Gr? Is there any classification of such liftings?

We will answer both these questions in the proceding Section. In order to do this we
will define a certain abelian module Zr : C — Ab associated to F'.
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Definition 3.2.3. Let C be a small category. For any object ¢ € C one defines the right
fibre category under ¢, denoted by c\C, whose objects are pairs (t(1), c LR t(l)). A mor-
phism (t(l1), c A, t(ly)) — (t(l2),c L2, t(l2)) in c\C is a morphism k : t(l;) — t(l2)
for which the corresponding triangle under ¢ commutes.

For (¢ -, ) € MorC there is a natural inclusion I'\C : d\C — c\C given by

(C//,C/ # C//) _ (C”,C l_l/> C//).

For a given group N, let Z(N) denote its center.

Definition 3.2.4. Let F' : C — Rep be a functor. One can assign to this functor
a diagram of groups Zp : C — Ab, called obstruction functor defined as follows: for

each ¢ € ObC
Zp(c) = () F()" (Z(F (1))
lec\C

and for each (c L, ) € MorC
ZF(Z) . ZF(C) — ZF(C/)

s given by

() FOT ZERW)) < () FERO)THZEFR)) =

lec\C kecd\C

= () FW)'Fk) ™ (Z(F(tk)))) () F(k) " (Z(F(t(k))))

kec\C kecd\C

F(l")
—

An inner automorphism of a group is the identity on its center. Then
ZF C— Ab

is a well defined functor. If C = % then Zp(x) = Z(F(x)). Therefore we can roughly
say that Zr is a center of the functor F'.

Let F': C — Rep be a functor and let Zrp : C — Ab be an obstruction functor.
Then

Theorem 3.2.5. To every functor F' : C — Rep one assignes in a natural way an
obstruction element o(F') € H3(C; Zr) such that o( F') vanishes if and only if the functor
F has a lifting to a twisted diagram F : C — Gr. Moreover equivalence classes of
such liftings are in bijective corrspondence with elements of the group H?(C; Zr).

Proof. Given the functor ' : C — Rep, we try to construct a ”2-cocycle” { fj verifying
the cocycle condition 2.1.3. We choose a map F': C — Gr such that P o F' = F' and
a cochain {{f(lo,l1)}, n 1 f(lo, 1) € F(co)} such that

[ca—c1—co]EMor C !

Ad(f(lo, 1)) F(loly) = F(lo) F (1)

One can define a unique 3-cochain {d ,, ,, . .}, assininig to each triple of com-
c3—=ca—c1—co)

posable morphisms an element of the center Z(F'(co)),
d(lo, ll, lg) € Z(F(Co))
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satisfying B
F(lo)(f(l1,12)) f (Lo, lalz) = d(lo, 11, 12) f (Lo, 11) f (lola, La)

We will prove that d is a 3-cocycle with coefficients in Zp : C — Ab. We have
F(ZO)(f(lla l2))f(l07 l1l2)f(l0l17 l?)ilf(l(b ll)il - d(l07 l17 l2)

-1

F(lo) F()(f(lz, 1)) F (o) (f (1, Lola)) (F ( o) (f(h lz,lg))) (FW)(f(1,1)) ™ = Fllo)(d(l, 1, 1)
F(loh)(f (I, 13)) f (ol lals) f (lolala, 1)~ f (Lol 1) ™ = d(loly, I, 1s)
F(lo)(f(lila, 13)) f (o, Lilals) f (lolala, 13) = £ (Lo, zlz2) = d(lo, lila, I3)
F(lo)(f (11, 1ol3)) f (o Ialals) f (ol Ials) ™ f (o, 1) = d(lo, 1, Lals)

We will prove that

d(lo, Iy, 1)t d(ly, Ly, I3) " rd(loly, Lo, 13)d(lo, 1y, lols) = ﬁ(lo)(d(ll, ls,13))

First note
d(lo, Iy, o) td(loly, la, I3) = N
= f(loly,la) f(lo, l1l2)~ (F (I, 1))~ f(lo, L) E(loly) (f (L2, 15)) f (Lol Lals) f (lolila, I3) 7 f (loly, o) 7!
Then
d(lo, 11, 1o)~Yd(lply, la, 13)d(lg, 11, I2l3) = B
= [(loly, lals) f(lolla, 1)~ f(lo, Lil2) ™ HE (o) (L a)) ™ Floy L) (loh) (f (I 1)) f (o, 1)~
F(lo)(f(I1, 1203)) f(lo, lilalz) f (Lo, 1al3) ™t = N N
= f(lolila, I3) ™ f(lo, lal) (F(lo)(h, 1)) F(lo)F(L)(f(la, 13)) F(lo) (f (11, lals)) f (Lo, Lalals)
and this implies
d(lo, ll, lg)_ld(loll, lg, l3)d(l0, ll, l2l3)d(l0, lllg, l3)_1 = ﬁ(lo)(d(ll, lg, l3)) Then {d} is a
3-cocycle with coefficients in Zp. B o

If {f'} is another map satisfying Ad(f"(lo, 1)) F(lol1) = F(lp)F(l1), then there is
unique 2-cochain {b I }such that f'(lo,11) = b(lo, 1) f(lo,11). Note b(ly, ;) € Z(F(cp)).*

C2—> l
Then the 3-cochain {d/} associated to {f’} is the cochain {d} modified by the
coboundary of the 2-cochain b, namely

-1

d'(lo,lh, 1) = ﬁ(lo)(b(lb l2))b(lo, l1l2)b(lol1, 12)715(107 ll)fld(lo, l1,12)

Note that F(lo)(b(l1,15)) € Z(F(cy)). This proves that b is a 2-cochain with coefficients
in Zp : C — Ab, ie. b € C*C;Zp). Thus {d} and {d'} give the same element
O(F) € H3(C, ZF)

Assume that F' : C — Gr is another map such that P o ' = F. Then for each
morphism of C we have F'(I) = Ad(g,)F (1), where g, € F(t(l)). Let
'l ly) := lOF(lo)(gll)f(lo,ll)gloll1 for each pair ._4_ __ of morphisms in C.
Then N N N

Ad(f'(lo, 1)) ' (loly) = F'(lo) F'(I1)

and if {d'} is the unique cochain defined by the equation
F'(lo)(f'(l, 12)) f'(lo, lila) = d'(lo, 1, 12) f (Lo, 1) [ (Lol 12) then {d'} = {d}.

Thus the cohomology class of {d} is independent of the choice of F' and f.

Therefore, the functor F' : C — Rep has a lifting if and only if the element
o(F) € H3(C; Zr) vanishes. This proves the first part of the Theorem.

We will prove that the group H?(C; Zr) acts freely and transitively on the set of
equivalence classes of liftings of F'.

Assume that F,F’ : C — Gr are liftings of F' : C — Rep. Then for each
morphism [ € Mor C there exists an element g, € F'(¢(1)) such that F(I) = Ad(g;)oF'(l).
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Let F” : C — Gr be a twisted digram of groups such that 7' and F” differ by a
coboundary {g¢;}iemorc. Thus the twisted diagram of groups F' : C — Gr is equivalent
to a twisted diagram of groups F” : C — Gr

F// ~ F/
such that for each morphism [ € MorC
F'(l) =F(1)
The twisted diagram F” is a lifting of the functor F', thus for each pair of composable
morphisms of C
l/(;,ll = dl0711f107ll

where dj,;, € Z(F(t(lply))). The "cocycles” {f},{f"} satisfy the cocycle condition,
thus for . 2. _4u_ b _ of morphisms in C

L= F"(lo)(f]] 1) fie 111, ( 1/511,12)71(fz/é,11)71 =

= F (lo) (1, 12 ) o, 1,15 (it 1)~ (dig,10) ™ F (L) (fir 1) Frota (frots 1) ™ (fron) ™ =

= F (lo) (1, 12) o, 1115 (drgiy 1)~ (i)~

This proves F(lo)(di, 1,) € Z(F(t(lp))) and then d is a cocycle

de 02(6, ZF)

The map d is a 2-cocycle whose cohomology class is independent on the choice of f
and f”. Its vanishing implies the existence of an equivalence between the F and F”.
Conversely given a lifiting 7 and a 2-cocycle d;, ;,, the formula

"
flo,h - dloil flOJl

defines a "cocycle” { f'} verifying the cocycle condition and this gives a twisted diagram
of groups F” : C — Gr. Thus it defines an action

{a3IF] = (7]
of the group H?(C; Zr) on the set of equivalence classes of liftings of F. If [{d}] = 1
then [F] = [F"].
This proves the second part of the Theorem. O

3.3 Epimorphisms of groups

Let G be a group and BG the small category defined by GG. As we have observed in
Proposition 2.2.8 there is a bijective corrspondence between the equivalence classes of
extensions over G and equivalence classes of twisted diagrams of groups on BG.

Definition 3.3.1. Assume ¢ : G — G, ¢ G — G are epimorphisms of groups. We
say that these epimorphisms are equivalent if there exists an isomorphism of groups
¢ : G — G such that the following diagram

commutes.
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Then according to 2.2.8

Remark 3.3.2. The equivalence classes of epimorphisms over G are in bijective cor-
respondence with equivalence classes of twisted diagrams of groups over BG.

Remark 3.3.3. Let F': BG — Rep be a functor such that F'(x) = N. Then F' is sim-
ply a homomorphism of groups F' : G — Out(N). The BG-module Zp : BG — Ab
defined in 3.2.4 is a homomorphism Zp : G — Aut(Z(N)).

Then the Theorem 3.2.5 reduces to the classical case (|B2], [R]);

Proposition 3.3.4. Let F' : G — Out(N) be a homomorphism of groups. Then
E comes from an epimorphism G — G if and only if a certain obstruction element

o(F) € H¥(G; Z(N)) vanishes. The equivalence classes of epimorphisms are in bijective
correspondence with the elements of H*(G; Z(N)).

Proof. Use 3.2.5 for C = BG and then 3.3.2. O

3.4 Epimorphisms of twisted diagrams of groups
Example 3.4.1. The epimorphism of groups
SLyZ — PSLyZ
could be describe as the homomorphism of colimit groups of diagrams of groups
(Zg —— Ly —> Zy) — (g — 1 — 7o)
which is an epimorphism on local groups.

This example is a special case of surjective homomorphism of complexes of groups,
considered by Haeflieger [H2|.

Definition 3.4.2. Assume that G : C — Gr and § : C — Gr are twisted diagrams
of groups defined on the category C. A surjective homomorphism or epimorphism of
twisted diagrams of groups ¢ : G — G is a homomorphism over the identity of C such
that all the local homomorphisms are surjective; i.e. for each ¢ € C

¢c:G(c) = G(c)
Definition 3.4.3. Assume that ¢ : 5 —- G, ¢ : QN’ — G are epimorphisms of twisted

diagrams of groups. We say that o,¢" are equivalent if there exists an isomorphism
¢ : G — G’ over the identity of C such that the following diagram

§4¢> gl
N
g
commutes.

The following Theorem is a generalization of the Remark 3.3.2
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Theorem 3.4.4. Let G : C — Gr be a twisted diagram of groups. There is one to
one correspondence between the equivalence classes of epimorphisms

G—G
and equivalence classes of twisted diagrams of groups defined on the classifying category
of the twisted diagram of groups G;

F . BG — Gr

Proof. Let ¢ : G —»Gbea surjective homomorphism of twisted diagrams of groups.
The homomorphism ¢ is given by a commutative diagram
BG

p\ . /BQ

C

We will prove that functor r : Bg~ — Bg satisfies assertions of the Theorem 2.2.9.
First note, that p and p o r satisfy these assertions. Then

1. The functor r is onto because the homomorphism ¢ is locally onto. The functors
p and p o r are bijections on the object sets thus r is a bijection on the object
sets.

2. For each ¢ € ObC the subcategory G” = r~!(id.) is the kernel of the local
epimorphism ¢, : G(¢) — G(c), hence it is a group

3. e Let Y, C Morgg(c,c) such that 7(y) = z. Let ¢' € G, and assume that

gy = vy. G, C G() and then ¢g'y = y implies ¢ = 1. For y1, y2 € Y,
there exists g € G(¢’) such that gy; = yo. Then r(g)z = x which implies
g € ker o = G,

C/.

e The homomorphism ¢y : G — G, is induced by the following diagram

GZ>—> G(c)—=G(c)
vy W l%)

GTP—> Gv(c/) e Q(c’)

Then according to Theorem 2.2.9, the epimorphism ¢ : G — G yields a twisted
diagram of groups F, : BG — Gr. Moreover F,(c) = ker(G(c) — G(c)) for each
ce ObBG = ObC(.

Conversely let F, : BG — Gr be a twisted diagram of groups defined on the
category BG. Let r : BF, — BG and p : BG — C be the associated projections.
Then, by Propsition 2.2.14, the composition functor por : BF, — C defines a twisted

diagram of groups

BG — BF, ——BG
| A
D p
C
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Thus we obtain a commutative diagram

N

C

which defines a surjective homomorphism of twisted diagrams of groups G —G.
According to Remarks 2.2.15 and 2.2.16, for each object ¢ € ObC = Ob BG there
exists an extension of groups

BG

Fole) = G(e) —» G(c)

and the commutative diagram

BF, —— BQN—> Bg
(R
BG——~(C———=C

which defines the homomorphisms
‘7:4)0 — g — g

Clearly the surjective homomorphisms ¢ : G — g, o : G — G are equivalent if
and only if the associated twisted diagrams of groups F, : BG — Gr and
Fy» BG — Gr are equivalent.

The twisted diagram of groups F,, satisfies the following universal property:

Proposition 3.4.5. Let F, : BG — Gr be a twisted diagram of groups associated to an
epimorphism ¢ : § — G overide and ¢ : F, — § over p : BG — C the associated
homomorphism. Assume that ¢' : G' — G overs: D — Cisa homomorphism of
twisted diagram of groups such that @ o ¢' is trivial on the local groups. Then there
exists a unique homomorphism ¢' : G — F, over a functor 5§ : D — BG such that

pod =¢ andpos = s.
Proof. In view of 2.2.11 there exists a unique functor s : D — BG such that the
following diagram commutes

BG' — BG

|

D—>BG

N

C

This diagram yields a (unique) homomorphism ¢’ : G’ — F, over s such that the
following diagram commutes
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The following Theoerem is a corollary from 3.2.5 and 3.4.4.

Theorem 3.4.6. Let G : C — Gr be a twisted diagram of groups and F : BG — Rep
be any functor. Let Zp : BG — Ab be an obstruction functor defined in 3.2.4. Then

1. there exists an epimorphism G—¢ of twisted diagrams of groups, such that the
associated twisted diagram of groups F : BG — Gr is a lifting of F' if and only
if a certain element o(F) € H3(BG; Zr) vanishes

2. the set of equivalence classes of such epimorphisms is in bijection with H*(BG; Zr).
Proof. The proof follows directly from 3.4.4 and 3.2.5. U

Remark 3.4.7. Assume that G — G is a surjective homomorphism of complexes of
groups and for each object ¢ the corresponding epimorphism of local groups has abelian
kernel. Then the Theorem 3.4.6 reduces to the Haeflieger’s theorem [Thm. 5.2. H2|.
IfG — Gisa surjective homomorphism of complexes of groups and for each object
¢ the corresponding epimorphism of local groups has constant (not necessary abelian)
kernel, then the Theorem 3.4.6 reduces to the Haeflieger’s theorem |[Thm. 6.3. H2|.
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Chapter 4

Fundamental group

The fundamental group of a twisted diagram of groups is a generalization of a direct
limit of a diagram of groups. Preciselly, for each twisted diagram of groups there
exists a "weak” direct limit of the corresponding weak functor. This weak direct limit
of a twisted diagram of groups is defined as the fundamental group of its classifying
category.

Section 4.1 is devoted to introductory material and basic definitions concerning
fundamental group of a small category. This fundamental group is defined as the
fundamental group of the geometric realization of the given category. We will prove that
to each category C one can assign a certain grupoid called the fundamental grupoid or
the grupoid associated to C. It is constructed by formally inverting all of the morphisms
of C. If the geometric realization of C is connected then the fundamental grupoid and
the fundamental group are equivalent small categories.

Section 4.2 starts with the Theorem motivated by E. D. Farjoun [Fa]. It is the
reformulation of the Seifert-van Kampen theorem, concerning the fundametal group of
a union of spaces. Preciselly, we will prove that the fundamental group of a (connected)
homotopy colimit is isomorphic to the fundamental group of a certain twisted diagram
of groups.

Each twisted diagram of groups G : C — Gr yields a projection p : BG — C
and then a homomorphism of fundamental groups p, : 71 (G, co) — m1(C, co). We will
prove that this homomorphism is onto (4.2.6). Assume that G is a diagram of groups.
Then the epimorphism p, splits. Moreover there exist the direct limit of this diagram.
The Theorem 4.2.13 establishes the relation between the fundamental group and the
direct limit of G.

4.1 Fundamental groupoid and fundamental group of
a small category

The fundamental group of a small category C is defined as the fundamental group of
its geometric realization. We will prove that this group is isomorphic to the group of
automorphisms of the grupoid associated to C, defined by P. Gabriel and M. Zisman
in [G-Z]. A functor ' : C — D is said make a morphism [ of C invertible if F(l) is
invertible. |G-Z| associated with each category C and each subset ¥ C MorC a category
of fractions C[X~!] and a functor Py : C — C[X~!] verifying the following conditions:

e Py makes the morphisms of Y invertible
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e Ifafunctor F': C — X makes the morphisms of ¥ invertible, there exists unique
functor F : C[X7'] — X such that F = F o P,

We will describe this construction for ¥ = MorC. In this case the category of
fraction C[X '] turns out to be a grupoid. We will denote it 7C and call the fundamental
grupoid or the grupoid associated to C.

C-paths Let C be a small category. We will define a combinatorial path in the
category C. We associate two symbols [t and [~ to each morphism [ € MorC. The set
of symbols I*,1~ with [ € MorC is denoted Mor* C. Given a € Mor™ C, we define its
initial object i(a) and its terminal object ¢(«) by the formula:

i) = (D), () = t(0), i(I7) = (), tl") = ()

For a = I (resp. [7), we define a=! = [~ (resp. IT).

A path in C joining an object ¢ to an object d is a sequence v = (aq,...,ax),
where each o € Mor® C, t(a;) = i(a;_1) for i = k,...,2 and i(ay,) = ¢, t(ay) = d. If
v = (a),...,a})is a path in C joining d to e, then one can compose v and ' to obtain

the path vy = (af, ..., &}, a1, ..., ) joining c to e. The inverse of the path v is the
path y™1 = (a;',...,a7"). If i(y) = t(v) then 7 is called a loop at c.

Equivalence of paths Let v = (ay,...,a) be a path in C joining ¢ to d. Consider
following three operations on 7:

1. Assume that for some k > j > 2, we have a; = I and a;_y = IJ_; (resp. a; = I
and ;1 = [;_;). Then the composition [;_,l; is defined (resp. [;l; ;) and we
get a new path 4/ in C by replacing the subsequence (a;_1, ;) of v by (I;_11;)*"

(resp. (ljlj_l)i) .

2. Assume that for some k > 5 > 2, we have a;_; = a;l. Then we get a new path
7' by deleting from v the subsequence (a;_1, o).

3. Assume that for some j, the morphism «; is associated to id.. Then we get a
new path by deleting «;.

If v and +' are related in this way, then we say that are obtained from each other by
an elementary equivalence. Two paths v and +' are defined to be equivalent if one can
pass from the first to the second by a sequence of elementary equivalences. The set of
equivalence classes of paths in C joinig ¢ to d is denoted 7 (C, ¢, d). If [y] € m1(C, ¢, d)
and [y'] € m1(C,d,e) then [y][y] = [y/7] € m1(C,c,e) and [y]™t = [y} € m(C, d, e).

Definition 4.1.1. Let C be a small category. The grupoid associated to C is a small
category wC such that the set of its objects is equal to the set of objects of C and the set
of morphisms is given by

Morc(c,d) = m(C, ¢, d)

Note, 7C is well defined small category. Each morphism of #C is invertible thus
7C € Grp C Cat.

Proposition 4.1.2. The above construction is natural, i.e. there exists a functor
7w . Cat — Grp such that for each small category C

7(C) =nC
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Proof. Let C be a small category and 7C the associated grupoid. There exists a functor
me : C — wC which is an identity on the set of objects and maps each morphism
[ € MorC to the equivalence class [IT] € m1(C,i(1),t(1)).

Let ' : C — D be a morphism in Cat. Then there exists an induced functor
mF : mC — 7D of the associated grupoids given by ' : ObC — ObD on the set
of objects and 7F([(I5,...,;)]) = [(F(L)%,. .., F(l;)*)] on morphisms. The functor
7F : Mor nC — Mor 7D is well defined because if [(I{, ..., )] = [(f, ..., fo)] then
[(F()*, . Fl)®)] = [(F(f)* . F(fw) )]

For two composable functors F' and F’ we have 7(F o F') = wF o nF’, thus the
map 7 : Cat — Grp is a functor.

0

Proposition 4.1.3. If F' : C — D makes the morphisms of C invertible then there
exists an extension of F' on wC, i.e. a functor F : 1C — D such that the following
diagram
wC
V l~
F
C —D

commautes.

Proof. Let F': C — D be a functor. Assume that for each [ € MorC the image F(I)

is an invertible morphism in D. We extend the functor F' to a functor F': 7C — D
as follows; F([I*]) = F(I) and F([I"]) = F(I)~" and then
F((, ..., ) = F(ly)* o...0 F(l;)*. Therefore the following diagram

7C
V lN
F
C — D
commutes. ]

Remark 4.1.4. Note that the extension F : 7C — D of F is unique.

Corollary 4.1.5. Let C be a small category, wC the associated grupoid and e : C — wC
the natural functor. Then mc is initial for functors C — X of C to any groupoid X,
i.e. for each functor F: C — X there exists a unique functor F': 1C — X such that
the following diagram
wC
e ~
>

C—F> X
commutes.
Remark 4.1.6. If C is a grupoid then 7C = C.

Proof. Let v be a path in C. All morphisms of C are invertible thus v = [ € MorC.

Moreover if two paths v and 4’ are homotopic then they are equal morphisms of C.
Thus Mor 7C = Mor C and then 7C = C. O
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Corollary 4.1.7. The functor m : Cat — Gr is left adjoint to the inclusion Grp C
Cat.

Definition 4.1.8. The fundamental group of C is defined to be the fundamental group
of its geometric realization
m(C,c) :=m(BC,c)

Definition 4.1.9. We say that a small category C is connected if the geometric real-
ization of C is a connected topological space.

Definition 4.1.10. Let C be a connected small category. Consider a graph BCWY
whose set of vertices is ObC and whose set of 1-cells is Mor C; an element | € Mor C
is considered as an edge joining the vertices i(l) and t(l). Let T be any mazimal tree
in BCWW. Let T C MorC be the subset of morphisms of the category C associated to
the maximal tree T'. We define a mazimal tree of the category C to be T C MorC.

Remark 4.1.11. The fundamental group of BC is isomorphic to the fundamentl group
of its 2-skeleton, namely 7, (BC, ¢y) = m1(BC®, ¢y). Moreover there exists a homotopy
equivalence BC ~ (BC)/T, which implies 7,(C, ¢g) ~ m (BC@ /T, %).

As a corollary we obtain the following presentation of the fundamental group of the
given category C

Corollary 4.1.12. The fundamental group of a connected category C is isomorphic to
the group m (C,T) given by the following presentation. It is generated by the set

H Mor C

subjected to the relations
1. (I t=1"1and (I7YH) =1t
2. 11" = (* for a pair (I,1') of composable morphisms
3. 0l=1 vVieT

Proposition 4.1.13. Let ¢y be an object of the small connected category C. There
exists an isomorphism of groups © : Autc(co) — m(C, 7).

Proof. Each element of the group Aut,c(cy) is given by a sequence (aq,...,a) of
composable morphisms of 7C such that i(ax) = t(cy) = ¢o and each morphism «;
equals [} or I; where [; € MorC. We define © : Autqc(co) — m1(C,7) to be a map
sending

1 O...0Q —> Q1 ...Q

For each object ¢ € ObxC, let 7. = (a1, ..., ax) be the unique sequence of compos-
able maps in 7C such that no consecutive elements are inverse to each other, t(a;) = ¢,
i(a,) = ¢ and each «; is contained in 7' = 7¢(7). Let a. denote the composition
a1 0 ...0 ap of morphisms from ~,.

Then we define ©" : m(C,7) — Autyc(co) to be a homomorphism mapping the
generator [t to the morphism at(l)ﬁai_(ll). This homomorphism is well defined because
the relations are satisfied; in particular ©'(IT) = 1 if [ € 7. The group Autc(co) is
generated by the elements of the form at(l)ﬁa;(ll) and the homomorphisms © and ©’
are inverse to each other. O
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Definition 4.1.14. Let X be a topological space. The grupoid X associated to X s a
small category whose objects are elements x € X and morphisms are given by homotopy
equualence classes of paths w C X, 1i.e.

Mor,x(z,y) == {[w] | i(w) =z, t(w) =1y}

Proposition 4.1.15. Let X be a connected grupoid, x € Ob X. The inclusion of the
small category Auty(x) — X is an equivalence of small categories.

Proof. Each object of X' is isomorphic with z. Thus the inclusion Auty(z) < X is an
equivalence of small categories. O

Remark 4.1.16. Let X be a topological space and 7X the associated grupoid. Then
the fundamental group 71 (X, x) is defined as the group Aut,x(z).

Remark 4.1.17. Let C be a small category, BC its geometric realization and 7C, 7 BC
the associated grupoids. There exists a natural functor / : 7C — 7 B C which sends an
object ¢ to the vertex ¢ € BC. Each morphism [y] of 7C is maped to the equivalence
class of the corrsponding edge path w C (BC)™ in the 1-skeleton of the geometric
realization. If [y] = [y/] then the corresponding paths w and w’ are homotopic in BC.
Thus I is well defined functor.

Proposition 4.1.18. Let C be a small category and BC its geometric realization. Then
the natural functor I : 1C — wBC defined in 4.1.17 is an inclusion and an equivalence
of categories.

Proof. Let ¢,d € ObC. According to the cellular aproximation theorem the functor
Mor¢(¢,d) — Mor,gc(c, d) induced by I is onto. Let Cy C C be a connected compo-
nent of C. Then due to 4.1.13, 4.1.15 and 4.1.16 for each object ¢ of Cy the following
diagram

7TC() 7TBCO

Aute,(¢) —= Aut,pe,(c)

commutes. Therefore the functor Mor,, (¢, d) — Mor,p¢, (¢, d) induced by I is an in-
clusion. Hence Mor,¢, (¢, d) >~ Mor,g¢, (¢, d). The small category m BCy is a connected
grupoid, thus each two objects of m B Cy are isomorphic. Therefore I ¢, : 7€y — 7w By
is an equivalence of small categories. It is inclusion because it is inclusion on the set of
objects. This implies I : 71C — 7 B is inclusion and equivalence of categories. O

Proposition 4.1.19. For a given category C the fundamental groups of C and wC are
isomorphic.

Proof. According to 4.1.6 the small category n7C is equal to 7C. Thus according to
4.1.15 the fundamental groups m(C, ¢) and m;(7C, ¢) are isomorphic. O

Remark 4.1.20. Let ' : C — (' be a functor. The restriction of the induced
functor 7F : 7C — 7C’, wF) : Autyc(c) — Autre/(F(c)) defines a homomorphism of
fundamental groups

mF :m(C,c) — m (C', F(c))
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Remark 4.1.21. Let ¢, co be objects of the category C. Let v € Mor 7C be a morphism
such that i(y) = ¢; and () = co. Then there exists a homomorphism of fundamental
groups ¢ : m(C,c1) — m(C, ¢c2) given by ¢(g) = vgy~! where g € Aut,c(cy).

Theorem 4.1.22. Let F': D — Cat be a functor such that for each each d € ObD
the corresponding category F(d) = Cq is connected. Consider a map F : D — Gr
assigning to each object d € Ob D first the base object ¢y € Cq and then the fundamental
group of Cq, i.e.

F(d) = Autyc,(cq)

For each morphism 1 : d — d' we define a homomorphisms of groups F(l) : F(d) — F(d')
to be the composition Autye,(cq) — Autrc, (F(I)(ca)) — Autqc, (ca) of homomor-
phisms defined in 4.1.20 and 4.1.21. Then F is a twisted diagram of groups.

Moreover, there exists a weak natural transformation of weak functors

n:F —= wF

given by ng : Aute,(cq) & 7Cy.
Proof. The homomorphism F(I) : F(d) — F(d') is given by the composition

wF(l Ad
Aut e, (ca) =8 Autre, (F()(ca)) 22 Aty (ca)

where 7; € Mor 7Cy such that i(v;) = F(I)(cq) and t(7;) = cg. Let dy g s g,
be morphisms of D. Then the composition F(ly)F(l;) differs from the homomorphism
F(lply) by the conjugation with an element

Gio,li = Vo © 71-F(lo)(’yll) © Vl;lll = AUtWCdO (Cdo)

These elements satisfy the cocycle condition defined in 2.1.3 thus F : D — Gr is a
twisted diagram of groups. Note that different choice of the objects {cq € Cy}aconp
gives an isomorphic twisted diagram of groups and different choice of the paths {7, }ienorp
gives a twisted diagram which differs from F by a coboundary.

The following diagram

F(d) 2 F(a)

.

wF(d) wF(d)

TF(l)

is commutative up to a natural transformation Ad(~;). These diagrams define a weak
natural transformation n : F = wF (1.2.5).
O

4.2 Fundamental group of a twisted diagram of groups

Definition 4.2.1. Let G : C — Gr be a twisted diagram of groups and BG its clas-
sifying category. We define a fundamental group of a twisted diagram of groups to be
the fundamentl group of its classifying category

Wl(g, Co) = 7T1(Bg, Co)
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Fundamental group of a (connected) homotopy colimit Let F': D — Cat be
any functor and F : D — Gr the twisted diagram of groups defined in 4.1.22. The
natural question is how the fundamental group of this twisted diagram of groups is
related to F'. The following Theorem answers this question:

Theorem 4.2.2. Let F': D — Cat be a functor such that each F(d) is a connected
category. Then the fundamental group of the Grothendieck construction BF' is isomor-

phic to the fundamental group of the twisted diagram of groups F : D — Gr defined
in 4.1.22.

Proof. According to 4.1.22 there exists a weak natural transformation n: F =— 7 F
such that for each object d of D, ny is an equivalence of small categories. Then due to
1.3.9

’/Tl(Bf, do) >~ ’/Tl(B(’/TF), do)

The small category BF is connected (because each F(d) is connected) thus 7, (BF, do) <
m(BF). The map 7(BF) — n(B(wF)) sending [(, f)]" — [(, [f]")]" is an isomor-
phism. Therefore,

71 (| hocolim N F|, dy) ~ 7 (BF, dy) =~ 71 (BF, dy)

Presentations of the fundamental group of a twisted diagram of groups

Proposition 4.2.3. Let C be a small category. There exists a functor. : C — Bmy(C, c).

Proof. The functor ¢ is given by the composition ¢ —= 7C - m (C,c) where j is an
inverse functor of the equivalence Aut,c(c) < =C.

We define j : 1C — Aut,¢(c) as follows. For each ¢; € Ob7wC = ObC we choose a
morphism «., € Mor7C such that i(a) = ¢ and ¢(«) = ¢;. Then for each v € Mor 7C
we define j(y) = at’é)”yai(v) O

Proposition 4.2.4. Let « : BG — Bm(G,cy) be a functor defined in 4.2.3. The
following commutative diagram

BG — Bmi(G, o)

*

C
defines a homomorphism in the category of twisted diagrams of groups
tg:G — m(G,co)

Remark 4.2.5. If G : C — Gr is a trivial diagram of groups (i.e. all of G(c) = 1),
then 71 (G, co) = m(C, ) and tg = ¢.

More generally,
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Proposition 4.2.6. Homomorphism of G : C — Gr to a trivial diagram of groups
7 : C — Gr induces a surjective homomorphism m (G, co) — m1(C, cp) which splits if
G is a diagram of groups.

Proof. The homomorphism G — 7 of twisted diagrams of groups induces a projec-
tion p : BG — C of its classifying categories. Consider a map associating to each loop
v = (aq,...,a) in BG the loop (p(a1),...,p(ax)) in C. This map defines a homomor-
phism 71(G, cy) — m(C,cp). According to 2.2.9 the functor p is onto and it is the
identity on the set of objects. Then each loop 7’ in C can be lifted to a loop 7 in BG.

If G : C — Gr is a diagram of groups, then according to 2.2.10, the functor p splits
thus the epimorphism (G, ¢g) — m1(C, ¢p) splits also. O

Theorem 4.2.7. Let T be a mazimal tree in C. Then the fundamental group m (G, co)
is isomorphic to the group m (G, T ) which has the following presentation.:

The generators are all elements of G(c) for each ¢ € ObC and all elements ! € MorC.
The relations are:

1. the relations in the groups G(c)

2. (I t=rtand (IFH) =17

3. forl € MorC, h € G(i(1)), then G(I)(h) = IThi™*

4. for a pair (1,I') of composable morphisms 11" = g, (1')*

5. 1=1forleT

Proof. First note that the maximal tree in the category C yields a maximal tree in BG.
Then use 2.2.9 and 4.1.12. O

Remark 4.2.8. There exists a functor BG — (G, 7) which sends (I, g) to gl*. This
functor defines a homomorphism ig : G — m(G, 7).

Fundamental group and colimit of a diagram of groups Assume that we have
a diagram of groups that is a functor F' : C — Gr. The diagram of groups is a special
case of a twisted diagram of groups thus we have a fundamental group of this diagram.
For a given diagram of groups we have also its direct limit. The following section
concerns the relation between the colimit and the fundamental group of a diagram of
groups.

Remark 4.2.9. A morphism ® = (¢, ®(l)) from a twisted diagram G : C — Gr

to a group G, where G is considered as a twisted diagram of groups, consists of a
homomorphism @, : G(¢) — G for each ¢ € ObC and an element ®(I) € G for each
[ € MorC such that

L @,G(1) = Ad(®(1)) P4
2. CI)t(l)(gu/)CI)(ll’) == q)(l)q)(l/)
We say that @ is simple if G is a diagram of groups and each ®(1) is trivial.

Let 7 be a maximal tree of the small category C.
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Proposition 4.2.10. Let F' : C — Gr be a diagram of groups and I : C — Gr a
trivial diagram of groups. There exists a commutative diagram

¢

F I

m(F,T) =~ m(C.T)
where ip, i; are defined as in 4.2.8. Moreover, functors B¢ and ¢, split.

Proof. Due to 2.2.10 the natural projection B¢ : BF — C splits and according to
4.2.6 the homomorphism ¢, splits. Therefore the following diagram

BF ————=C

| ]

7T1(F7 T) T 7T1(67 T)

commutes. Clearly the homomorphism s sends the generator I € m(C,7) to the
generator [T € m(G, 7).
U

Remark 4.2.11. The functor &z : F' — colim F' induces a commutaive diagram
BFZ__ "=cC
colim¢ F'— — —>1
The morphism (I, g) is mapped to B®r(g) € colim F.

Proposition 4.2.12. Let m(F, T) be a fundamental group of a given diagram of groups
F:C— Grand ip : F — m(F,T) the induced homomorphism. There ezists a
homomorphism of groups ¢p : 7 (F,T) — colim¢ F' such that ®p = @p oip.

Proof. The functor ¢ maps the generator g to B®r(g) and the generator [ to the
trivial element of the group colim F'. Clearly ¢ is well defined and & = pp oip.
O

E.D. Farjoun has proved that the direct limit of the diagram of groups is a push-out
of a certain diagram of groupoids (Corollary 5.4, [Fa]). The following Theorem was
motivated by this observation.

Theorem 4.2.13. Let F' : C — Gr be a diagram of groups. Then the group colim F’
is the push-out of the following diagram

m(C,T) — m(F,T)

PFr

1 — colimg F
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Proof. Consider a commutative diagram of groups

7T1(C,T) — 7T1(F, T)

1 G

We will prove that there exists a unique homomorphism of groups © : colim¢ F' — G
such that the following diagram commutes

’/Tl(C,T — T F,T)

) (
AN
1 =—— colim¢ F' (*)
\
G

Counsider

m(C,T) = m(F,T) L F

1 G
According ot 4.2.7 for each [ € Mor C the corresponding diagram

Fi(l)) — F(t(1))

m (F,7T)

commutes up to a conjugation with an element [T € m(F, 7). Clearly IT = 3(I),
hence the composition ® o ip : ' — (G is a simple homomorphism. Then there exists

a unique homomorphism
O : CoymF — G

such that the following diagram is commutative

m(C, T) —=m(F,T) i
PF

F
prd
F

® colime
/

1 G
Therefore diagram (x) commutes which proves the Theorem.
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Corollary 4.2.14. Let ' : C — Gr be a diagram of groups. Then the fundamental
group of F' is isomorphic to the colimit of this diagram if and only if the geometric
realization of the category C is simply connected.
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Chapter 5

Coverings of small categories and
developable twisted diagrams of
groups

The following Chapter starts with the theory of coverings of small categories. We say
that a functor ¢ : C' — C is a covering if its geometric realization is a topological
covering. A category Cove of coverings of the given category C is a category whose
objects are coverings of C and morphisms correspond to functors F' : C; — C} over
the identity of C. The geometric realization functor yields a functor Cove — Covge.
We will prove that this functor is an equivalence of categories.

We say that a group G acts without inversion on a small category D if for each
g € G and d € ObD such that gd = d we have gk = k for each morphism k& € Mor D
such that i(k) = d. Given such an action one can define a quotient category D/G
of this action and the induced projection D — D/G is so called right covering. We
will prove in Section 5.2 that the action without inversion yields an action of G' on
the geometric realization of D and B(D/G) = (BD)/G. Assume that G acts freely
on a small category D, clearly a free action is an action without inversion. Then the
geometric realization of D — D/G is a G-covering,.

Given an action without inversion of a group GG on a small category D, one can
associate a twisted diagram of groups G : D/G — Gr. Let p : D — D/G be the
natural projection. Then for each object ¢ € ObD/G the group G(c) is isomorphic
to the isotorpy subgroup of each d € p~'(c) C ObD. If G acts freely on D then the
isotropy subgroups are trivial, hence BG = D/G and the functor p : D — BG = D/G
is a G- covering. We will prove in Section 5.3 that for each twisted diagram of
groups G : D/G — Gr associated to an action, there exists a functor D — BG over
p: D — D/G such that

e there exists a G-covering &€ — BG
e there exists an inclusion and an equivalence of categories D — &

such that the following diagram commutes

’D¢>5

N\

BG
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The action of the group G on the small category D yields a functor Sp : BG — Cat.
Let £G be the universal covering of the small category BG. We will prove that the
following diagram commutes

DEsgCE G xD

NG

BG—=—~ BSp

|

BG

Section 5.4 proves the developability theorems of Bridson and Haeflieger ([H1]|,
[B-H]). Let G : C — Gr be a twisted diagram of groups and G a group. Given a
homomorphism ® : G — G one can associate to it a small category D(G, ®) with an
action of the group G. Moreover a twisted diagram of groups G : C — Gr associated
to this action is such that the following diagram commutes

G—~G

BN

G

where homomorphisms ¢ and ® are respectively surjective and injective on the local
groups.

We say that a twisted diagram of groups is developable if it is equivalent to a twisted
diagram of groups associated to an action. We will prove that it is the case when there
exists a group G and a homomorphism ® : G — G which is injective on the local
groups. Moreover, if G is developable then the functor (g : G — 7 (G, ¢o) is injective
on the local groups and there exists a functor D(G,1g) — D(G, ®). If the induced
homomorphism ®, : m(G,co) — G is surjective then this functor is a covering of
small categories.

5.1 Coverings of small categories

A covering of a small category is a functor whose geometric realization is a toplogical
covering. We will prove that for a given small category C the category of coverings of
C is equivalent to the category of topological coverings of the geometric realization B C
of C.

Definition 5.1.1. Let ¢ : C' — C be a functor from a small category C' to a small
connected category C. We say that a functor ¢ is a covering if the geometric realization
B¢ :BC' — BC is a topological covering.

The category of coverings of C denoted Cove is a category whose objects are cover-
ings ¢ : C' — C and morphism between two coverings ¢, : C; — C, ¢ : C;; — C is
a functor F' : C; — Cy such that g1 F = ¢s.

Let G be a group, we define a small category £G to be a category whose objects
corresponds to elements of the group G and for each pair g1, g, € G there exists the

-1
unique morphism g¢; iy go. There exists an action of the group G on £G given by

—1
g, 92

gty
9(g1 == 32) = (991 > 99
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Example 5.1.2. The natural action of G on a small category £G yields a functor
G — BG. This functor is a covering because its geometric realization EG — B G
is the universal covering of B G.

Theorem 5.1.3. Let C be a connected category and ¢ : C' — C a functor. The
following conditions are equivalent

1. ¢:C" — C is a covering

2. Foreach ¢ € ObC' the induced functors ¢/ : C'/d — C/p(c") and /¢ : ' /C" — ¢()/C

are bijections on the objects sets

3. Let l. : C/c — C and r. : ¢/C — C be the natural projections. For each
c € ObC, the following pull-back categories

l(Cle) —=C' re(c/C) —=C'
e |k
Cle——C c/C———C

are trivial coverings.

Proof. 1. = 2.

Assume ¢ : C' — C is a functor such that B ¢ is a topological covering. Then the
restriction of B ¢ to the 1-skeletons B ¢ : BC'™ — BCW is also a covering. We will
prove that for each ¢ € Ob(C’ and for each | € Mor C such that i(l) = ¢(c) (respectively
t(l) = ¢()) there exists unique I’ € Mor C’ such that i(I') = ¢’ (respectively ¢(I') = ¢’)
and ¢(I') = 1.

For | : ¢(¢) — d a morphism in C its geometric realization w = |l| is a path
in BCW. B¢W is a covering thus there exists a unique path «’ in BC'™ such that
i(w) = € BC'® and BopW (W) = w. Since ¢ is a functor then w’ is an edge in
B’ corresponding to a morphism I’ € MorC’ such that i(I') = ¢ and ¢(I') = [. This
implies that the restriction of ¢ to the subset of morphisms of C’ that have ¢’ as its
initial object is a bijection onto the set of morphisms of C with initial object ¢(c),
hence /¢ : ¢/ /C' — ¢()/C is a bijection on the objects set. Choosing l : d — ¢(¢)
we can prove the second part of the assertion.

2. = 3.

First note that if ¢ : C" — C satisfies assertion 2. then for each ¢ € ObC the preimage
¢~ (c) is a subset of Ob C’. The morphisms of I (C/c) are pairs (k, ") where k € MorC/c
and I" € MorC’ such that [.(k) = ¢(I'). The morphism k is given by the diagram

c
VN
C1 —l> Co
and l.(k) =1 = ¢(I'). Assertion 2. implies that there exist the unique pair of morphisms
[1,1, and an object ¢ such that ¢(l}) = l1, ¢(l5) = Iy and ¢(¢’) = ¢ and morphisms

', 17,15 form a diagram & € MorC’/¢. This proves that I3(C/c) is isomorphic to the
disjoint union J[,c4-1(C'/c" hence its geometric realization is a trivial covering of
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B(C/c). Clearly r7(c/C) = [ cy-1( ¢'/C’ and then its geometric realization is a trivial
covering of B(c/C).

3. — 1.
Let N : NC' — NC be a simplicial map of nerves induced by ¢. A morphism
p: F — X of simplicial sets is said to be a covering if for each commutative diagram

A0 —=F

I

v

Aln] — X

there is a unique morphism s : A[n] — FE satisfying pos =wv, soi = u.
We will prove that N ¢ is a covering of simplicial sets. Let

A0l —=N(’

1 Lw

Aln] —=N¢C

be a commutative diagram such that u(A[0]) = ¢ € (NC')©® = Ob(’. The simplex

In— .
A[n] € NC corresponds to the lenght n sequence ¢, ] — ... LN ¢p of nontriv-
ial morphisms of C. Therefore, there exists 0 < m < n such that ¢, = ¢(¢/). Thus

m—1

. ln—1 lm l lo

we obtain sequences ¢, — ¢,—1 — ... — ¢(c') and ¢(¢) — ¢y — ... — Co.
These sequences yield the maps A[n —m] — N(C/¢(c¢')) and Alm] — N(¢(c)/C).

The functor ¢ satisfies 2. which implies that there exist A[n — m] — N(C'/d)

and Alm] — N(/C’) which are liftings of the latter maps. These maps yield

s : A[n] — N’ satisfying (N ¢)os = v, soi = u. The simplicial map s : A[n] — N’
satisfying the latter is unique because the liftings A[n—m] — N(C’/¢’) and A[m| — N(¢'/C’)
are unique.

Thus N ¢ is a covering of simplicial sets. According to Theroem 3.2. Appendix I
|G-Z] the geometric realization of a covering of simplicial sets is a topological covering.
Therefore B¢ : BC' — BC is a topological covering.

U

Corollary 5.1.4. Let ¢ : C' — C be a covering of the connected category C. Let
¢ € ObC and d € ObC’ be such that ¢(c') = c. Any path in C starting at ¢ can be lifted
uniquely to a path in C' starting at . Moreover, if two paths starting from ¢ projects
by ¢ to paths which are equal as morphisms in wC, then these paths are equal in wC'.
Thus ¢ induces an injection w1 (C', ) into m(C,c).

Let D be a connected category and fix d € ObD. Let ¢1,¢2 : D — C' be two
functors such that ¢ o ¢p1 = ¢ o ¢g and ¢1(d) = ¢o(d). Then ¢ = ¢s.

Corollary 5.1.5. Let ¢ : C' — C be a covering. Then the induced functor ¢ : nC" — 7C
is a covering and the small category C' is the pull-back of the following diagram

C'——n(l

| e

C——nC
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Proposition 5.1.6. Let ¢ : (C',c¢y) — (C,co) be a covering of small categories and
A (D,dy) — (C,cp) a functor, where D is connected small category. Then a lifting

A (D,dy) — (C',c) of A exists if and only if \(m1(D, dy)) C ¢(m1(C', cf))-

Proof. 1f a lifting X : (D, dy) — (C', ) of A exists then obviousely
Au(m1(D, do)) C ¢u(m(C', p))- -

Assume that A\.(m1(D, dy)) C ¢.(m1(C', ¢)). For each d € ObD we define A(d) as
follows. Choose any path 7 in D joining dy to d, let 7 be the unique lifting of the path
A(7y) such that i(y) = ¢f. We define \(d) := ¢(¥). Assume that 7' is another path
joining dy to d, then the composition v~! o+ is a loop at dy. Then according to the
assumption, the lifting of a loop A(y~!0+/) is a loop (at c). This lifting is unique thus
t(3) = t(7'), and then A(d) is well defined.

Let [ € MorD, we define X(l) to be the unique morphism I’ € Mor(C’ such that
i) = Mi(D)), t(I)) = Mt(1)) and ¢(I') = A(D).

[

The following theorem was motivated by Quillen. He has proved in Proposition 1 of
|Q] that the category of covering spaces of B C is equivalent to the category of functors
from the grupiod nC to the category of sets.

Theorem 5.1.7. The category Cove of covering categories of C is canonically equiv-
alent to the category Hom(wC, Sets), where wC is the grupoid associated to the small
category C.

Proof. Let ¢ : C" — C be a covering of small categories. Then ¢ satisfies assertion 2.
of 5.1.3. The associated functor is defined as follows. The fibre of ¢ over ¢ € Ob( is the
set A. = ¢~(c) C ObC'. Forl € MorC with i(l) = ¢, let A; : Ajy) — Ayqy be the map
associating to each ¢ € A, the terminal object of the unique element I’ € MorC’ such
that ¢(I') =l and i(I") = ¢. This map is a bijection because ¢ is a covering. Moreover,
for composable morphisms /1,1, € MorC we have A, A, = Ay, and Ajq, = idy,. In
other words A can be considered as a functor from the category C to the category
whose elements are bijections of sets. Therefore, according to 4.1.3 one can extend A
to a functor A : 1C — Sets.

Note that the small category C’ is isomorphic to the Grothendieck category BA,
the isomorphism sends a morphism " of C" to a pair ([,idyyy) € Mor BA. Moreover,
7C' ~ BA.

Let F' : C; — C; over the identity of C be a morphism in Cove. Assume that
Ay, Ay : C — Sets are functors associated to the given coverings. We will define
a natural transformation  : Ay = A,. For each ¢ € Ob( the functor 7, is given

by ¢ (c) L, ¢5(c). Then for each morphism [ : ¢ — d the following diagram

commutes

A
Ai(c) Sl Ay (d)

lnc lnd
Aa(l)

As(c) —= Ay(d)

and then n : Ay == Ay is well defined. We can clearly extend n to a natural
transformation 77 : Ay = A,. Therefore, we have defined a functor

® : Cove — Hom(nC, Sets)
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Assume that we have a morphism-inverting functor A : C — Sets. Then the
natural projection BA — C satisfies assertion 2. from 5.1.3 thus it is a covering. A
natural transformation n: Ay = A, gives a commutative diagram

BA, 5

T BA,
C
which is a morphism in Cove. Therefore, we have

9" : Hom(wC, Sets) — Cove

Clearly 9’ = id and ®'® ~ idcgy,.. This proves the Theorem. O

Hom(xC,Sets)

Remark 5.1.8. If ¢ : (" — C is a covering and A : C — Sets the corresponding
functor, then C' ~ BA.

Corollary 5.1.9. Assume that D' is the pull-back of the following diagram
D —=C
oo
D——~C

If ¢ is a covering and A : C — Sets the associated morphism inverting functor then
@' is a covering such that the associated morphism inverting functor is equal to Ao F.

The following Proposition is a corollary from 5.1.7.

Proposition 5.1.10. The category Cove of coverings of the small connected category
C is equivalent to the category of w1 (C, co)-sets.

Proof. The small category nC is equivalent to the small category Bm(C,cp). Then
Cove ~ Hom(nC, Sets) ~ Hom(Bm;(C, ¢y), Sets) which proves the Theorem. O

Therefore we obtain a following

Theorem 5.1.11. Let C be a small connected category. The category Cove of coverings
of the small category C is equivalent to the category Covge of topological coverings of
the topological space BC.

The next observation will be usefull later.

Corollary 5.1.12. Assume C', C are connected small categories and ¢ : (C',cy) —
(C,co) is a covering. Then for each ¢ € ObC the preimage ¢~*(c) is isomorphic to

m1(C, o)/ P«(m1(C', cpy))-

Definition 5.1.13. We say that a covering gf; : C:_i C is a unwversal covering if for
each covering ¢ : C' — C there exists a functor ¢' : C — C' which is a morphism in
Cove, i.e. the following diagram commutes

¢
\q;;
3 c
A
C
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Remark 5.1.14. Note QAS’ ¢ — QAS’(CA) satisfies assertion 2. of 5.1.3 hence is a covering.

Lemma 5.1.15. Let X be a connected grupoid. There exists a "universal” functor
A X — Gr given by xt — AutX(A:U) such that for each functor A : X — Sets there
exists a natural transformation n: A — A.

Proof. The functor A : X — Gr is given by A(z) = Auty(z) for each z € Ob X and
for each  : @ — 2’ we have A(7) : Auty(z) — Auty(z') given by g — ygv~'. Let
A : X — Sets be any functor. Then the natural inclusion Auty(z) — X — Sets
defines an action of the group Auty(z) on a set A(z).

Our goal is to define a natural transformation  : A = A. We choose 2y € Ob X,
clearly A(zg) is an Auty(zo)-set. Therefore there exsists a functor Auty(zg) — A(xg)
and we define 7,, : A(zo) — A(x) to be this functor. Note, 1, is onto if and only
if A(zg) is a transitive Auty(zg)-set. Moreover for each g € Auty(zo) the following

diagram commutes
Alg)

Auty(xo)

For each € ObX we choose a morphism -, : xo — ¢ in X. Then we define

e : A(z) — A(z) to be Auty(z) Ape)? Auty(zo) =% A(zo) A) A(z), therefore the

following diagram commutes

A('Yz)

Azo) A(x)

Nzg T Tnz
Autr(20) 229 Auty(x)

Clearly for each 5 : 2 — 2/ we have A(y) o7, = 1, 0 A(7), therefore 7 is a well defined
natural transformation. O

Proposition 5.1.16. Let C be a small connected category, ¢2 .C—Ca covering and
A . mC — Sets the associated functor. The following conditions are equivalent

1. g?) :C — C is a universal covering
2. the fundamental group of the small category C is trivial

9. A:7wC — Sets is isomorphic to the "universal” functor defined in 5.1.15

Proof. 1. = 2. Assume that gf; . C —> C is a universal covering and gg .C—Cisa
covering such that C is connected and the fundamental group of C is trivial. According

to 5.1.6 there exists a functor F' : ¢ — C over the identity of C. Clearly F'is an
isomorphism, therefore the fundamental group of C is trivial.

2. = 3. Due to 5.1.12 for each ¢ € ObC we have A(c) ~ m(C, ¢o) ~ Aute(c).

3. = 1. This implication follows directly from 5.1.15 and 5.1.7.
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5.2 Action without inversion and G-coverings of small
categories

Definition 5.2.1. Let D be small category. An action without inversion of a group
G on D is an action such that, if an element of G fixes an object d € ObD then it
acts trivially on the small category d/D, i.e. fizes every morphism | € Mor D such that
i(l) =d.

Remark 5.2.2. An action of G on the category D induces an action of G on its
geometric realization BD in the obvious way. Geometrically, the above definition
means that if g fixes a vertex d, then it fixes (pointwise) the union of the simplices
corresponding to composable sequences (Iy, ..., 1) with i(l;) = d.

Definition 5.2.3. (Categorical quotient) Let D be a small category and G any group
acting on it. Then the categorical quotient of the action of G on D is p: D — D/G
such that for any small category & with the trivial action of G on it and the G-equivariant
functor F' : D — &, there is a G-equivariant functor F' : D/G — & such that the
following diagram is commutative

D/C

Proposition 5.2.4. Assume that G acts without inversion on a small category D.
Then the categorical quotient is isomorphic to the "naive” quotient of D by the action

of G.

Proof. Let C denote the "naive” quotient, i.e. MorC = Mor D/G. We will prove that C
is a small category. In order to do it we need to prove that for each pair of composable
morphisms [ : ¢ — cand ' : ¢ — ¢ in C the composition I” : ¢ — ¢ is well
defined. N

First note that for each [ € Mor D we have an inclusion of isotropy subgroups

Stabg (i(1)) C Stabg(¢(1))

Let p: D — C be a "naive” projection. Assume that we have two pairs of compos-
able morphisms (1,1') and (g1, ¢'l') in D such that, p(l) = p(gl) =1, p(l') = p(g'V) =1,
and p(Il') = 1". We will prove that p(glg’l’) =1".

We will denote 1" := II', ¢ == i(l') = i(I"), ¢ = t(I') = i(l), € :=t(I) = t(I").

Then ¢'d = t(g'l') = i(gl) = gc, which implies g~'¢' € Stab( /). The group G acts
on D without inversion, and then g~'¢’ € Stab(l), ¢'l = gl.

Then glg'l! = g/lNg’;. The action of the group G is functorial, so ¢'lg'l = g’(ﬁ) =gl
Then p(g'l'gl) = p(g'l") = 1"

U

Proposition 5.2.5. Assume that G acts without inversion on a small category D and
C s the quotient. Then the induced action of the group G on BD satisfies:

BC = (BD)/G
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Proof. The topological space BD is a geometric realization of a simplicial space ND.
We have proved in 5.2.4 that NC® = (ND)®/G and NCV = (ND)Y/G. The
n-simplex of the geometric realization of the small category corresponds to the sequence
of n composable morphisms. Thus for each n € N, NC™ = (ND)™ /G and then
NC = (ND)/G. According to Theorem 3.1, Chapter III |G-Z| the geometric realization
functor commutes with direct limits, therefore BC = (BD)/G. O

The following example shows that if we drop the assumption of G acting without
inversion, then the naive quotient fails to be a category.

Example 5.2.6. Let D be a category given by

we denote ba’ =d and ba=e.

Assume that Zs = (g) acts on D in the following way; gco = ¢, gc1 = ¢1, g = b,
ga=2d,gb=1"0. Thus gc = ¢ and gd = e.

Note, that the 'naive’ quotient D//Zs is not a category. This quotient would have
three objects [co] = [cgl, [e1], [co] = [¢5] and morphisms [a] = [a'], [8] =[], [¢] = [¢]
and [d] = [e]. Since ba = ¢, b'a' = ¢, ba’ =d, b'a = e, then [b][a] = [¢] and [b][a] = [d]
which is not possible, because [c| # [d] in D//Z,.

Let D/Zs be the categorical quotient. Let F': D — & be any Zs-equivariant func-
tor such that Z, acts trivialy on €. Then F(gl) = F(I) for objects and morphisms of D.
Then we have F'(a) = F(a’) and F'(b) = F(V') which implies F'(c) = F(¢') = F(d) = F(e).

Then the category D/Zs has three objects and three morphisms [a] : [¢o] — [c1],
b] : [c1] — [ea], [] : [co] — [e2]. Note that

B(D/2,) 4 (BD)/Z,
because B(D/Z,) has one 2-simplex and (BD)/Zs two 2-simplices.

Definition 5.2.7. We say that functor ¢ : D — C 1s a right covering if for each
object d of D an induced functor d/¢ : d/D — ¢(d)/C is a bijection on objects set.

Proposition 5.2.8. Assume that a group G acts without inversion on a small category
D. The natural projectionp : D — D /G induced by the action of G is a right covering.

Proof. Assume that kj, ko are morphisms of D such that i(ky) = i(ky) = d and
p(k1) = p(ke). This implies that there exists g € G such that gk = ky. Thus gd = d
and then k; = k. O

Assume that a group G acts freely on a small category D. A free action of a group
G is a special case of the action without inversion, thus there exists a quotient of that
action D/G defined as in 5.2.4. According to 5.2.8 the natural projection D — D/G
is a right covering. Clearly it is also a left covering, therefore p : D — D/G is a
covering.
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Definition 5.2.9. Let G be a group. We say that a covering of small categories
¢: D —C s a G-covering if and only if the group G acts freely on the small cat-
egory D, the quotient D/G is isomorphic to the small category C and the following

diagram commutes
D
N

C D/G

Proposition 5.2.10. Let G be a group. Let ¢ : D — C be a G-covering and
A : C — Sets the associated morphism inverting functor. Then for each ¢ € ObC
Ae) ~ G and

D ~ BA

Proof. Follows directly form 5.1.8. O

We can generalize this observation in the following way. Assume that a group G acts
without inversion on a small category D, let p : D — D/G denote the natural pro-
jection induced by the action of G. For each object ¢ of D/G consider p~'(¢) C ObD.
This preimage is a transitive G-set. Due to 5.2.8, for each [ : ¢ — ¢ a morphism in
D/G and d € p~!(c) there exists unique morphism k : d — d' such that p(k) = .
Thus each morphism [ € MorC defines a G-equivariant morphism p~!(c) — p~1(c).
Therefore we obtain a functor Lp : D/G — (G — Sets).

Proposition 5.2.11. Assume that a group G acts without inversion on a small cate-
gory D, let Lp : D/G — Sets be a functor defined above. Then BLp ~ D.

Proof. A map sending a morphism k : d — d’ of D to a pair (p(k),ids) € Mor BLp
is an isomorphism.

O

5.3 Twisted diagram of groups associated to an action

Remark 5.3.1. Assume that a group G acts without inversion on a small category
D. Let Lp : D/G — (G — Sets) be a functor from 5.2.11. Assume ¢ € ObD/G,
then G-set p~!(c) defines a grupoid which is isomorphic to G/ Stabg(d) for each object
d € p~*(c). Therefore, the functor Lp induces a functor

Fp:D/G — Grp

and a natural transformation Lp = Fp given by p~!(c) < Ob Fp(c). This natural
transformation induces the inclusion

BLD — BFD

Proposition 5.3.2. Assume that a group G acts without inversion on a small category
D, we consider it as a functor Sp : BG — Cat. Let Fp : D/G — Grp be a
functor defined in 5.3.1. Then the Grothendieck construction BSp is isomorphic to the
Grothendieck construction BFp.
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Proof. According to 5.2.11 the small category D is isomorphic to the Grothendieck
construction BLp. Thus we can assume that a morphism of BSp is a pair (g, (I,idy))
where ¢ € G and (l,idg) € MorBLp. We define a functor BSp — BFp to be
an identity on the objets set and to be (g, (l,idg)) — (¢~ '1,(g,idy)) on the set of
morphisms. It is clearly an isomorphism which proves the Proposition. U

Let £G be the universal covering of the category BG defined in 5.1.2.

Proposition 5.3.3. Consider the direct product EG X D and an action of the group G
on it given by g(h,d) = (gh, gd). Then this action is free and the quotient is isomorphic
to BSD

Proof. According to 5.2.11 the small category D is isomorphic to the Grothendieck
category BLp. Therefore £G x D is isomrophic to the Grothendieck category BLyp,
where Lp : D/G — Cat is given by Lp(c) = EG x Lp(c) for each object c € ObD/G.
Lp(c) is a transitive G-set, hence the action of the group G on £G x D gives an action
of G on Lp(c). Clearly Lp(c)/G =~ Fp(c). Therefore (EG x D)/G ~ BFp ~ BSp. 0O

According to 5.2.5 the geometric realization B((€G x D)/G) = (EG x BD)/G,
hence

Corollary 5.3.4. The geometric realization of a sequence of functors D — BSp — BG
yields a topological fibration BD — EG xg BD — B G. Therefore, the small category
BSp is a categorical analogue of the Borel construction.

Proposition 5.3.5. Assume that the group G acts without inversion on the small
category D, let C denote the quotient of that action, and Fp : C — Grp be the functor
constructed in 5.3.1. Let G : C — Gr be a twisted diagram of groups associated to
Fp : C — Grp ( construction described in 4.1.22). Then for each | : ¢ — ¢ the
corresponding homomorphism of groups G(1) : G(c) — G(¢) is injective. We will call
the twisted diagram of groups G o twisted diagram of groups associated to an action
of the group G on the small category D.

Proof. For each object ¢ of C the group G(c) is isomorphic to the group

Autp, ) (d) = Stabg(d) C G. Let k : d — d’ be a morphism of D. The group G acts
without inversion thus Stabg(d) C Stabg(d’). Therefore the corresponding homomor-
phism is injective. O

Remark 5.3.6. According to 4.1.22, there exists a natural transformation G — Fp.
Clearly it induces an equivalence of categories BG — BFp.
Corollary 5.3.7. The composition of BG — BFp with the isomorphism BFp — BSp
gives

BG — BSp
Remark 5.3.8. Consider the composition BG — BSp — BG. This functor defines
a homomorphism of twisted diagrams of groups

¢:Gg—C
Corollary 5.3.9. The fundamental group of the category D is isomorphic to the kernel
of the homomorphism of groups ®, : m(G,c) — G.

Remark 5.3.10. If G acts freely on the small category D then the associated twisted
diagram of groups is trivial hence BG ~ C. The associated homomorphism defined in
5.3.8 is given by ¢ : 7, — G.
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G-covering of the classifying category BG If the group G acts freely on the small
category D then the natural projection p : D — C = D/G is a G-covering. We can
consider this projection as a homomomorphism of trivial twisted diagrams of groups
Ip — Ic over p: D — C. As we have observed in 5.3.10, Z¢ : C — Gr is a twisted
diagram of groups associated to the free action of G on D. We will prove that for each
twisted diagram of groups G : C — Gr associated to an action of G on D there exist
a homomorphism Zp — G over p : D — C and a small category £ such that the
associated functor D — BG is equal to

'DCL>5

N\

BG

and &€ — BG is a G-covering.
In order to prove it we need to construct a certain diagram of groups on the small
category D:

Remark 5.3.11. Assume that the group G acts without inversion on the small cate-
gory D. One can associate with this action a diagram of groups Gp : D — Gr given
N Gp(d) = Stabg(d)
for each object d of D and

Gp(k) : Stabg(d) — Stabg(d)
for each morphism & : d — d’ of D.

Proposition 5.3.12. Let BGp be the classifying category of the diagram of groups
defined in 5.3.11. Then this category is isomorphic to the pull-back of the following
diagram

5"~ Bg

|,

D——C

Proof. Let Fp : C — Grp be a functor defined in 5.3.1. Consider a functor Fpop : D — Grp.
For each object d of D the grupoid (Fp o p)(d) contains the set p~*(p(d)) C ObD.
Clearly d € p~*(p(d)).

Consider the projection D —D. According to 1.2.14 it is associated to the pull-
back diagram of groups Gop: D — Gr. B

The (twisted) diagrams of groups Gop : D — Gr and Gp : D — Gr are associated
to the functor F'p o p via the construction described in 4.1.22. Therefore these twisted
digarams of groups are equivalent and then there exists an isomorphism BGp — D
over the identity of D.

O

Corollary 5.3.13. There exists an action without inversion of the group G on BGop
such that the following diagram

~ G
BGp LS BG

| o |

D——C
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commutes. This action is induced from the action of G on the pull-back D.

Remark 5.3.14. There exists a commutative diagram

BGp

I\

DC—> BSD

Given a diagram of groups one can assign to it a certain functor to the category of
small categories.

Remark 5.3.15. Let Gp : D — Gr be a diagram of groups defined in (5.3.11).
Consider a map W : D — Cat given by

W(d) = EGp(d)

for each d an object of D and W (k) : EGp(d) — EGp(d') induced by Gp(k) for each
k:d — d’ a morphism in D. Then W is a functor and there exists a natural transfor-
mation n : W = Gp such that for each object d the functor 7y : SGD(d) — BGD(d)
is the universal covering of BGp/(d).

Proposition 5.3.16. Let BW be the Grothendieck construction of the functor W.
There exists a free action of the group G on BW and the quotient is isomorphic to the
small category BG.

Proof. Let d be an object of D. Consider the quotient G/ Stabg(d). In order to
define the action of G we need to choose for each Stabg(d)-coset a representative in

G. Then for each element g of G there exist a representative g(d) and an element
h(g,d) € Stabg(d) such that g = g(d)h(g,d). If g € Stabg(d) then we assume that
g =h(g,d).

Let (d,h), where d € ObD and h € Stabg(d) = Ob€& Stabg(d), be an object of
BW . We define

g(d,h) = (gd, ghh(g,d)g™")

Let (k,h), where k € Mor D and (hy LN hih) € Mor € Stabg(t(k)), be a morphism of
BW. The action of the group G is given by

g(k,h) = (gk, gh(g,i(k))""hh(g,t(k))g ")

Note g((kl,hl)(kg,hg)) = g(ky1, h1) o g(ka, he), which implies that the action is well
defined. Assume that g(d,h) = (d,h). Then g € Stabg(d) and h(g,d) = g. Thus
h = gh and this implies g = 1.

We will prove that the quotient category (BW)/G is isomorphic to the classifying
category BG. First note that there exists a commutative diagram

BW ———~1D
/Gl pl/G
(BW)/G ——D/G

The functor 7 is clearly onto and it is a bijection on the objects set. For each object d
of D the preimage 7 '(idy) is £ Stabg(d) and then
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r 1 (idy@)) = € Stabg(d)/ Stabg(d) = B Stabg(d). For each k : d — d' a morphism in
D the preimage 7 '(k) is isomorphic to the set of pairs (k,h) where h € & Stabg(d').
Thus the preimage 7~ (p(k)) is isomorphic to the set of pairs (p(k), h) where h € £ Stabg(d').
Thus (BW)/G ~ Bg. O

Theorem 5.3.17. Let Ip : D — Gr be a trivial diagram of groups. There exists a
homomorphism ¢ : Tp — G over p : D — C such that the corresponding homomor-
phism Bo : D — BG s equal to the composition

BW

e

DT¢>BQ

Proof. Let W : D — Cat be a functor defined in 5.3.15. There exists a functor
A: D — BW given by d — (d, 1). This functor is clearly inclusion and equivalence
of categories. Consider a diagram

BwW -2~ Bg

|,

p— .0

where ¢’ is a G covering from 5.3.16. The diagram

p -2 Bg

D——C
defines a homomorphism ¢ : Zp — G over p. O

Let £ denote the Grothendieck category BW. Then Theorem 5.3.17 and Proposition
5.3.3 implies:

Corollary 5.3.18. The following diagram commutes

D—EsgC ZEeGxD

NG

BG—=—~ BSp

|

BG

The following observations will be usefull in the next Chapter.

Proposition 5.3.19. Let B¢ : D — BG be a functor defined in 5.3.17. Note for each
ce ObC

G(c) N Bp(D) = id,

Let 1 be a morphism of BG such that | & G(c) C Mor BG for each ¢ € ObC . Then
there exists a morphism k € D such that Bo(k) =
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Proof. Let d be an object of D and | € MorC such that #(I) = p(d). Consider a subset
T of Mor D such that each k& € T satisfies ¢(k) = d and p(k) = [. Let g € Stabg(d).
We will prove that if k # k' then gA(k) # A(K').

For each £k € MorD A(k) = (k,1) € Mor BW. If g € Stabg(d) and k € Y then
g(k,1) = (gk,gh(g,i(k))™") and if k& # gk then gh(g,i(k))~" # 1. Therefore B¢
establishes a bijection between the set T and the set of morphism of BG projecting on
[. This proves the Proposition.

U

Corollary 5.3.20. Let By : D — BG be a functor defined in 5.3.17. Let 1 € Mor BG
be a morphism such that | ¢ G(c) C MorBG for each ¢ € ObC . Then for each

d € ObD such that p(d) = t(1) (p(d) = i(1)) there exists a unique morphism k € Mor D
such that d = t(k) (d =i(k)).

5.4 Developable twisted diagrams of groups

Definition 5.4.1. A twisted diagram of groups equivalent to a twisted diagram of
groups associated to an action of a group (5.3.5) is called developable.

~ O
Example 5.4.2. Consider a short exact sequence N — G — G and the twisted
diagram of groups F : BG — Gr associated to it defined in 2.1.10. Consider an
action of a group G on a small category £G given by

g.9=90(9)g

Note that zS'G/CNvY = BG and the isotropy subgroup of each object of the category £G is
isomorphic to the given group N. Moreover the twisted diagram of groups associated
to this action is isomorphic to F thus it is developable.

Lemma 5.4.3. Let G : C — Gr be a twisted diagram of groups and ® : G — G be
a homomorphism. There ezists a twisted diagram of groups G : C — Gr such that
homomorphism ® is equal to the composition

G
7N
G 2 G

where ¢ : G — G is an epimorphism of twisted diagrams of groups and ® : G — G
15 injective on the local groups

Proof. We define a twisted diagram of groups as follows: G(c) = ®.(G(c)), G(I) = Ad(®(1))

and Gy, ,, = Pu1,)(g1,12)- Then the homomorphism ® = (&, ;) : G — G is given by
®. : G(c) — G and o) = o) is injective on the local groups. The epimorphism
¢ :G — G is given by ¢.: G(¢) - G(¢) = im P... O

Lemma 5.4.4. Let G : C — Gr be a twisted diagram of groups and ® : G — G any
homomorphism. One can associate to ® a certain functor L = L(®) : C — G — Sets

satisfying
L(c) = G/®.(G(c))

for each c € ObC.
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Proof. We define a functor L : C — (G — Sets) as follows: let G : C — Gr be a
twisted diagram of groups from 5.4.3. For each object ¢ of C we put L(c) = G/G(c)
and for each morphism [ a G-equivariant functor is given by L(I)([g]) = [¢®(I)~']. For
¢ % ¢ % ¢ the homomorphisms G(lol1) and G(lo)G(l1) differ by a conjugation
with an element of the group G(cp). Therefore L(lply) = L(lo)L(ly). O

Theorem 5.4.5. Let G : C — Gr be a twisted diagram of groups, let G be a group
and ® : G — G any homomorphism.

1. Canonically associated to each morphism ® : G — G there is an action of G
on a small category D = D(G, P) (called the development) with quotient C. The
twisted diagram of groups associated to this action is equivalent to G : C — QGr.
If @ is injective on the local groups, then G is equivalent to the twisted diagram
of groups associated to this action.

2. If G is the twisted diagram of groups associated to an action of a group G on a
small category D and if ® : G — G is the associated morphism, then there is a
G-equivariant isomorphism D(G, ®) — D that projects to identity of C.

Proof. 1. Let L : C — G — Sets be the functor defined in 5.4.4. We define a small
category D(G, ®) to be the Grothendieck construction BL. The action of the group G
on D is given by g[h] = [gh] and it is an action without inversion. Clearly, the quotient
D/G is isomorphic to C and the associated twisted diagram of groups is equivalent to
G. If ® : G — @ is injective on the local groups then G is equivalent to G.

The proof of 2. follows directly from 5.2.11. 0

Corollary 5.4.6. A twisted diagram of groups G : C — Gr is developable if and only
if there exist a group G and a homomorphism ® : G — G which is injective on the
local groups.

Remark 5.4.7. Let Zo : C — Gr be a trivial twisted diagram of groups and
® : 7o — G any homomorphism. Clearly ® is injective on the local groups, and the
natural projection p : D(Z¢, ®) — C is a G-covering,.

Assume that G : C — Gr is a developable twisted diagram of groupsand ® : G — G
a homomorphism which is injective on the local groups. Let D = D(G, ®) be the as-
sociated development, and there exists an action of the group G on D such that the
associated twisted diagram of groups is equivalent to G. According to 5.3.17, there
exists a homomorphism ¢ : Zp — G and a G-covering ¢’ : £ — BG such that B¢ is

equal to D e 2, BG. Moreover, due to 5.3.16 the following diagram commutes
&
D

and the projection &€ — D is G-equivariant. B
The homomorphism ® : G — G yields a homomorphism ® : Zzg — G such that
B® = B®. Then

:

/G

Proposition 5.4.8. The small category £ is isomorphic to the development D(Zpg, P).
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Proof. According to 5.4.7 the natural projection D(Zpg, ®) — BG is a G-covering
of small categories. Due to 5.3.9 the fundamaental group of D(Zpg, ®) is isomorphic
to the kernel of the homomorphism ®, : 7 (BG,cg) — G. The equivalence of small
categories D < & and 5.3.9 imply that the fundamental groups of D(Ipg, P) and £ are
isomorphic. Therefore, there exists an isomorphism & — D(Zpg, @) over the identity

of BG.
O

Proposition 5.4.9. Assume that G' : C' — Gr, G : C — Gr are developable twisted
diagrams of groups and ®' : G' — G', & : G — G are the homomorphisms which are
injective on the local groups. Assume that there exist a homomorphism ¢ : G — G
over F': C' — C and a homomorphism of groups © : G' — G such that the following
diagram

s |so

BG! 22~ Ba

commutes up to a natural transformation n : B®o By = BOoBY'. Then there erist
the ©-eqivariant functors F : D' — D and Bo : &' — £ of the developments (5.4.5)
and coverings (5.4.8) associated to ®' and ® such that the following diagram commutes

5’y[ D’/; P

BG C

> A

C/

£

BG'

Proof. The natural transformation n : B® o B¢ = BO o B’ is given by a family of
elements s € G indexed by ¢ € Ob(’ such that

©o0®, = Ad(s¢) o P(p() 0 ¢ and Bdo Bo(l') = s, O(®'(I))s~L 1" € Mor BG'

t(l") i)

Then amap (I, ¢') — (Bo(l'), ©(g')s, ) defines a ©-equivariant functor Bo: & — &
over Bo : BG' — BG.

We define a functor F : D' — Dtobe D' < & —s & —> D. Clearly F : D' — D
is ©-equivariant thus the following diagram

D/LD

e

oL

commutes, which proves the Proposition.
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Proposition 5.4.10. Let G : C — Gr be a developable twisted diagram of groups.
Then the homomorphism g : G — m(G, o) from G to its fundamental group is
injective on the local groups.

Proof. According to 5.4.6 there exists a homomorphism ® : G — G which is injective
on the local groups. The induced functor B® : BG — BG is equal to the composition

TBG
e
BG cul BG

If ® is injective on the local groups then for each ¢ an object of C the composition
G(c) — BG — BG is an inclusion. This implies that G(¢) — 7BG is an inclu-
sion, hence G(¢) — 7BG — m(G, o) = Autrpg(co) is an inclusion. Therefore
tg: G — m(G, o) is injective on the local groups.

O

Proposition 5.4.11. Let G : C — Gr be a developable twisted diagram of groups and
® : G — G any homomorphism which is injective on the local groups. Let D = D(G, ®)
be a dvelopment associated to ® and D = D(G,1g) the development associated to the
homomorphzsm tg : G — m(G,cy). Then there exists a functor F:D — D and
D — F(D) s a covering of small categories. The functor F is onto if and only if
O, :m(G,co) — G is onto.

Proof. The homomorphism ® induces a homomorphism of fundamental groups ®, : 7 (G, ) — G
given by a commutative diagram

wBG

P

Aut,pg(co) 2 BG

Let j : 1BG — Aut,pg(co) be the inverse functor to the equivalence 7. The ho-
momorphism tg is defined as the composition j o mpg. We have B® o ¢ = @, hence
BCI)OZOJ = ¢, 0. This implies that there exists a natural isomorphism Bd — &, 0j
and hence there exists a natural isomorphism « : B® =— &, o Big. According to
5.4.9 there exists a ®,-equivariant functor F.:D—D.

For each ¢ € ObC the composition G(c¢) — m1(G, ¢) 2 G s injective, therefore
G(c) Nker ®, = 1. This implies that the group ker @, acts freely on D. Clearly the
quotient of this action is isomorphic to the small category F(D). O

Remark 5.4.12. According to Theorem 5.3.17 the development Dis equivalent to the
universal covering of the small category BG, therefore D is simply connected.
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Chapter 6

Coverings of twisted diagrams of
groups

We say that a twisted diagram of groups G : C — Gr is a generalized complex of groups
if for each morphism [ € MorC the associated homomorphism of groups is injective.
We will prove that a generalized complex of groups is locally developable, that is, for
each object ¢ € ObC there exists a small category D, (called the local development)
with an action of a group G(c) such that the quotient of this action is isomorphic to the
small category C/c. Bridson and Haeflieger in [B-H]| defined a covering of complexes
of groups to be a homomorphism ¢ : G’ — G over a right covering F' : C" — C such
that

e ¢ is injective on the local groups

e for each ¢ € Ob(’ the induced functor D), — Dp(y is an isomorphism (of the
local developments)

They have proved in that ¢ : G — G is a covering if and only if the associated functor
Bo is equal to the composition
Bg/% £

!

where &€ — BG is a covering of small categories. An arbitrary twisted diagram of
groups does not have to be locally developable, hence the definition of a covering
given in |[B-H| no longer makes sense. Therefore we define a homomorphism of twisted
diagrams of groups to be a covering if it satisfies the above property.

Section 6.1 presents some properties and examples of coverings of twisted diagrams
of groups. Note that if ¢ is a covering of twisted diagrams of groups then it is injective
on the local groups.

Section 6.2 is devoted to the proof of the theorem stated above, namely a homo-
morphism of generalized complexes of groups is a covering if it satisfies assertions 1.
and 2. presented above. _

We will prove in Section 6.3 that for each surjective homomorphism ¢ : G — G
there exists a "kernel” twisted diagram of groups. It will be a twisted diagram of groups
K : D — Gr and a homomorphism ¢ : K — G such that the composition ¢ o ¢ is
trivial on the local groups and the induced homomorphism ¢, o ¢, is trivial on the
fundamental groups. Moreover ¢ turns out to be a covering of twisted diagrams of
groups.
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6.1 Coverings of twisted diagrams of groups

Definition 6.1.1. Let ¢ : G — G be a homomorphism of twisted diagrams of groups.
We say that ¢ is a covering if and only if there exist a covering of small categories
¢ E — BG and an inclusion X\ : BG' — £ which is an equivalence, such that

Bo = ¢\

Corollary 6.1.2. Let ¢ : G — G be a covering of twisted diagrams of groups. The
associated homomorphism of fundamental groups is injective.

Proposition 6.1.3. Assume that G’ = H and G = G are twisted diagrams of groups on
the category with one object and no morphisms and ¢ : H — G is a homomorphism.
Then ¢ is a covering of twisted diagrams of groups if and only if ¢ s a monomorphism

of groups.

Proof. Assume that ¢ : H — G is a monomorphism. Then the corresponding
functor B¢ is the inclusion of small categories BH — BG. We put £ = EG/H,
then BH — EG/H is equivalence and inclusion of categories. The natural projection
EG/H — BG is a covering.

Assume that ¢ : H — G is a covering of twisted diagrams of groups. Then there

exists a small category £ such that BH 2 & % BG The functor A is an inclusion and
an equivalence of small categories then for each e € Ob & the set Endg(e) ~ H. The
functor ¢’ is a covering, thus according to 5.1.3 we have an inclusion Endg(e) — BG.
Then ¢ is a monomorphism of groups. U

More generally:

Proposition 6.1.4. Let ¢ : G — G be a covering of twisted diagrams of groups
over F' : C' — C. Then ¢ is a monomorphism on the local groups, namely for each
€ ObC(' the corresponding homomorphism of groups ¢o : G'(¢) — G(F(c)) is
injective.

Proof. Let £ be a small category such that the composition BG’ A e <, BG equals
B¢. Then for each ¢ € Ob(’ we have a commutative diagram

G'(¢/)——=Ends(A(¢))

o) J¥
(

G(F(¢))— Endgg(F(¢'))

The restriction ¢1 of ¢ is an inclusion because ¢’ is a covering. Then ¢ is injective.
O

Note that a covering of trivial twisted diagrams of groups is not what one would
expect:

Remark 6.1.5. Let ¢ : G’ — G be a covering over F' : (' — C and assume that
G:C — Grand G : C" — Gr are trivial twisted diagrams of groups, i.e. such
that the local groups are trivial. Then the related functor B¢ : BG' — BG equals
F : C" — C. Note that F' does not have to be a covering of small categories but the
small category C’ is equivalent to a covering category & of C.
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Proposition 6.1.6. Let ¢ : G — G be a covering over F : C' — C of trivial twisted
diagrams of groups. Assume that F is a right covering. Then F : C' — C is a covering
of small categories.

Proof. The functor F equals C’ Ao <, C, where )\ is an equivalence and ¢’ is a
covering. We will prove that A is an isomorphism. Choose any e € Ob&. Then e is
isomorphic to A(¢’) for some ¢ € ObC’. Let | denote the image of this isomorphism
under ¢'; [ : F(¢') — ¢'(e). The functor F is the right covering thus there exists a
unique morphism I’ : ¢ — ¢} such that F(I') = [. This implies e = A(¢}), thus A is
onto and then it is an isomorphism of small categories. Therefore F' is a covering. O

Example 6.1.7. Assume that a group G acts without inversion on a small category
D and G : D/G — Gr is an associated twisted diagram of groups. Then according
to 5.3.17 there exists a homomorphism ¢ : Zp — G over p : D — D/G and it is a
covering of twisted diagrams of groups.

6.2 Coverings of generalized complexes of groups

Definition 6.2.1. Let G : C — Gr be a twisted diagram of groups. We say that G
is a generalized complex of groups if for each | : ¢ — ¢o in Mor C the corresponding
homomorphism of groups G(1) : G(¢1) — G(co) is injective.

Remark 6.2.2. Let G : C — Gr be a developable twisted diagram of groups. Then
G is a generalized complex of groups.

Local developability

Proposition 6.2.3. Let C be a small category with the final object ¢ and G : C — Gr
a generalized complex of groups. Then G is developable and the universal covering of
G is isomorphic to the small category D such that

1. D has a final object

2. let p: D — C be the natural projection, for each ¢ € ObC the preimage p~*(c)
is a subset of ObD and is isomorphic to G(c)/G(c)

Proof. Since C has a final object ¢ and G is a generalized complex of groups then the
fundamental group of G is isomorphic to G(c). The universal covering D is the develop-
ment D(G, ®) of the natural homomorphism g : G — G(c¢) which is a monomorphism
on the local groups. Thus the proof follows directly from 5.4.5. U

Corollary 6.2.4. Let G : C — Gr be a generalized complex of groups. For each
c € ObC let C/c be a small category “over ¢” and l. : C/c — C the natural projection.
Let G, := I>G be the twisted diagram of groups induced by l.. Then G. is developable
and equivalent to a diagram of subgroups of G(c).

Remark 6.2.5. Let G : C — Cat be a functor associated to G : C — Gr defined in

1.3.3. Then BG. = G(c).

Definition 6.2.6. Let G : C — Gr be a twisted diagram of groups and G. the devel-
opable twisted diagram of groups defined above. Let D, be the development associated
to tg, : Go — G(c). We will call it the local development of G at c.
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Proposition 6.2.7. Let G : C — Gr be a twisted diagram of groups associated to an
action of a group G on a small category D, let p : D — C be the associated projection.
Then for each d € ObD the local devlopment at p(d) is isomorphic to the category
D/d, namely

Dp(d) ~ D/d

Proof. Consider the action of the subgroup Stabg(d) of the group G on the small
category D. This action yields an action of Stabg(d) on the small category D/d with
quotient C/p(d). The complex of groups associated to this action is isomorphic to
Gp(a)- Then according to 5.4.5 the small category D/d and the development of G, are
isomorphic. O

Coverings of complexes of groups by [B-H]

Proposition 6.2.8. Let ¢ : G' — G be a homomorphism of generalized complexes of
groups over F': C' — C. For each ¢ € Ob(’ there exists a homomorphism of the local
complezes of groups ¢(') : Gy — Gy over F/d : C'/d — C/F(c). This homo-
morphism yields a ¢.-equivariant functor ]30/ : D, — Dp(vy of local developments.

Proof. Let j : G — G denote the natural transformation defined in 1.3.6. The ho-
momorphism ¢ : G — G is given by the natural transformation n : G — F*G,
let 7: G = F*G be the natural transformation of functors G’, F*G : ¢’ — Cat
associated to 7.

According to 1.3.6 we have

§' == Fg
G
G =>FG
hence for each ¢ € Ob(’ the following diagram commutes

g'(c) == G(F (<))
Jl JF(eh

T() —G(F(¢))

<

Note, the functor ¢, : G'(¢) — G(F(c')) defines a homomorphism ¢(c) : G/, — Gp(
over F//d :C'/d — C/F(¢).

Due to 1.3.7 there exist i’ : G/(¢/) — G'(¢') and i : G(F(¢)) — G(F(c)) such
that we have the natural transformations i’ o j/ = idg/(), i0j = idgw(y)
and idg.) = j' o7, idgp)) = Jjoi. Therefore there exists a natural trans-
formation a :io0 ¢, = ¢ 0. Due to 5.4.9 the natural transformation a yields a
¢o-equivariant functor ﬁc/ : D!, — Dp(). d

Assume that ¢ : G’ — G is a covering of complexes of groups. Then the Defintion
6.1.1 becomes the Proposition A.24 from Chapter III.C [B-H].

Theorem 6.2.9. Let ¢ : G — G be a homomorphism of generalized complexes of
groups over a functor F : C' — C which is onto and is a right covering. Then ¢ is a
covering if and only if it satisfies:
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1. ¢ is a monomorphism on the local groups
2. for each ¢ € Ob(C' the induced functor E. - D), — Dp(ey is an isomorphism

Proof. = Assume that ¢ is a covering. Then according to 6.1.4 ¢ satisfies assertion
1. We will prove that ¢ satisfies assertion 2.

For each ¢ € ObC' let ¢(c') : G/, — Gr(¢) be the induced homomorphism of the
local twisted diagrams of groups.

Lemma 6.2.10. The homomorphism é(c') : G
15 a covering of twisted diagrams.

!, — Gpy over F/cd . C'/d — C/F(c)

C

Proof. The homomorphism ¢ is a covering then there exists a small category £ such

that BG' Ae 2, BG. We define a small category &, to be the pull back category of
the diagram

Ev

BG (e

& BG

Then p : & — BGr(v) is a covering and the unique functor Ay : BG,, — &u

BG.,

Bd'

& BG

A ¢’

is an inclusion. Let £ be a connected component of & containing A (BG.,). Clearly
Ao 1 BG!, — & is an equivalence (the proof is standard). Thus ¢(c') : G, — Gr()
is given by BG/, i L BGp(, hence is a covering. O

Lemma 6.2.11. The ¢.-equivariant functor ﬁc/ : D), — Dp(ey 5 an inclusion and
an equivalence of categories.

Proof. The equivalence BG!, — &, yields an equivalence of the universal coverings

BG!, — &.. The universal covering of the small category & is isomorphic to the
universal covering of the small category BGp(. This gives a commutative diagram

—

gg\é/ (i BgF(c’)

B gé/ — 50’
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According to 5.4.9 and 6.2.8 we have a commutative diagram

BG, =BG

D, Dpe
Clearly the following diagram

BG, " BGr ()

D), ——— D

commutes up to a natural isomorphism. Therefore the functor ﬁc/ : D, — Dy is
an inclusion and equivalence of small categories. 0

Lemma 6.2.12. The functor E D), — Dp(ey is onto.

Proof. By 6.2.11 it is enough to prove that ]30/ is onto on the objects set. Consider the
commutative diagram

F,
Dy ——Dr)

ﬂcll lﬂ'F(C/)

c'/d e r(e)

The functors 7, F/c, mp(s) are right coverings and onto, therefore ﬁc/ is a right
covering. Choose d € ObDp(y. The functor F, is the equivalence therefore there
exists an isomorphism [ : Fl.(d') — d where d’ € Ob D.,. The functor F. is a left
covering, hence there exists a morphism I':d — d" in MorD,, such that ﬁc/(l’) =1

Therefore F,, is onto on the objects set, hence in view of 6.2.11 is onto.
O

Due to 6.2.11 and 6.2.12 the functor ﬁcf : D, — Dp(y) is an isomorphism. This
proves assertion 2.

<= Assume that ¢ : G — G is a homomorphism of generalized complexes of
groups which satisfies 1 and 2. We will prove that it is a covering of twisted diagrams
of groups. In order to do this we will first prove that it is a covering locally.

Lemma 6.2.13. For each ¢ € ObC' the homomorphism ¢(c') : G\ — Gr) is a
covering of (generalized) complexes of groups.

Proof. Let W' : D, — Cat and W : Dp(sy — Cat be functors defined in 5.3.15.

Then the ¢u-equivariant functor F induces a functor BW' — BW over ﬁc/. The
homomorphism ¢ is injective on the local groups, and F. is an isomorphism hence
BW' — BW is an inclusion. It is clearly an equivalence. Then the functor

Eg\g, ~ BW' — BW ~ BEFE) is an inclusion and an equivalence of categories.
Let po : Eo — BGp(e) be a covering of small categories such that

(pe)+ (1€ €0)) = ¢ (G'(¢)) C G(F()) = T (BYr(e), idr(e)
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Then according to 5.1.6 there exists a functor A\ : BG,, — &, such that ac, = Pt Aot
Consider the following diagram

BG, = BGr )
/¢> (Q(/))
/G’ () G(F(c)
BgF(c’

¢/

By assertion 1. the homomorphism of groups G'(¢') — ¢~(G’'(¢)) is an isomorphism.
Moreover the functor BG!, — BGp( is ¢--equivariant, therefore A\» is an inclusion
and an equivalence of small categories. Then ¢(') : G\ — Gp(e) is a covering of

C/
(generalized) complexes of groups.
U

As we have proved ¢ is locally a covering. We will construct a global covering. In
order to do this we will prove that

Lemma 6.2.14. There exists a functor L : C' — Cat such that for each ¢ € Ob(’

L(c) = E. defined in 6.2.13. Moreover there exist the natural transformationsp : L => F*G,
X: G = L such that p, = py is a covering and Ao = Ay is an equivalence of small
categories.

Proof. For each ¢ € Ob(' let L(¢/) = &, defined in 6.2.13. We pick a base object
ew of £ such that A\y(idy) = e and py(ers) = idp(), where idy is a base object of
G'() and idp( is a base object of G(F ( ")). We define p, = ps and v = Ao. Let
' € MorC’ be any morphism !’ : ¢ — ¢/. We define a functor £(1')

Ll
P )

pCII pc/

G(F(I
BGp SEO) BGr

which is defined as a lifting of £+ — BGp () — BGr () such that L(I')(ex) = Ao 0 G'(I')(id ).
Thus the following diagram commutes

5g., 2. Bg,
\ % pr

BGr(eny = Bre)
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According to 1.2.9 the natural transformation X: G = L induces an equivalence
(and inclusion) of small categories B\ : BG' — BL.

Lemma 6.2.15. The functor p : BL — BG induced by the natural transformation
p: L = F*G is a covering of small categories.

Proof. We will prove that p satisfies assertion 2. from 5.1.3. Let (¢, 2’) € Ob BL and
(c,x) = p(c,2') € ObBG. Then the set of morphisms that have (¢/,z’) as its initial
object consits of pairs (I, f') such that i(I') = ¢ and i(f') = L(I')(2’). The set of
morphisms of C’ with the initial object ¢ is in bijection with the set of morphisms of
C with the initial object ¢, because F : C' — C is a right covering. For each ¢’ the
functor p., = po is a covering. Thus, according to 5.1.3, the restriction of p to the set
of morphisms with the initial object (¢/,z’) is a bijection onto the set of morphisms
with the initial object (¢, z).

Let (c,r) = p(c,2’) € ObBG. Each morphism (I, f) € Mor BG, t(I, f) = (c, ) is
equal to the composition

lld/ &
(L)

Assume that (11, f1), (11, f) € Mor BL such that p((l5, f)) = B((ly, f2)) = (I, f). Then

(d, L
{1, 1dV

(Cl> yl

")y (¢, L(I3)(y5))

N y wxy 5)
(U5, f

5,01
kil (ch, y3)

project on (I, f). Since p. is a covering then according to 5.1.3, f{ = f5. Then
L) (yy) = L(15)(y5). Consider the following diagram

BGL¢ ~ £
L(11)
[UGY _
g'c = Eu
g'(15)
Bgég( ~ Det
G()
BG,——— BG.

If I} # I, then Ob@(l’)(lgg’//) N Ob@(l’)(lgg’//) = () and then one can verify that
Ob L(17)(Eer) NOb L(15)(Eey) = 0. Thus I} = 1 and then the restriction of P to the set
of morphisms with the terminal object (/,2’) is a bijection onto the set of morphisms

with the terminal object (¢, x). Thus the functor P is a covering of small categories.
O
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Let £ be the pull-back category of the diagram

E—BL

'

BG—— BG

Then p : £ — BG is a covering and £ — BL is an inclusion of small categories. The
small category BG’ is the pull-back of the following diagram

Blg/<—> BG'
BG—— BG

This implies that the unique functor A\ : BG' — &

BG'— BG'

IR

is an equivalence and inclusion of small categories (the proof is standard).

Thus the functor B¢ : BG' — BG equals BG’ & & 25 BG and then ¢ is a covering
of twisted diagrams of groups.
[

6.3 G-coverings and extensions of twisted diagrams
of groups
Definition 6.3.1. We say that a covering ¢ : G — G over F : C' — C of twisted

diagrams of groups is a G-covering if the associated covering ¢' : € — BG is a G-
COVETING.

Note that the covering from Example 6.1.7 is a G-covering of twisted diagrams of
groups.

Galois covering of a twisted diagram of groups

Theorem 6.3.2. Let G : C — Gr be a twisted diagram of groups and ® : G — G
a homomorphism in the category of twisted diagrams of groups. Then there exists a
G-covering ¢ : G' — G associated to ® such that

1. G is a twisted diagram of groups defined over the category D = D(G, ®) (devel-
opment of ®), let p: D — C be the associated projection

2. G'(d) = ker(®pq) : G(p(d)) — G)
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3. m(G',d) =ker(m (G, p(d)) — G)

Proof. Let ?_: C — Gr be a developable twisted diagram of groups defined in 5.4.3
and ¢ : G — G the associated surjective homomorphism of twisted diagrams of groups.
Then according to 3.4.4 there exists a twisted diagram of groups

f¢:B§—>Gr

such that F,(c) = ker(p. : G(c) — G(c)) and the classifying category of F, is
isomorphic to the classifying category of G.

Let D = D(G,®) be the development of ® and ¢ : D — G the associated cov-
ering of twisted diagrams of groups (6.1.7). Then homomorphism ¢ gives a functor
Bp : D — BG. Note that the functor p : D — C is the composition of B¢ with the
natural projection 7 : BG — C.

We define a twisted diagram of groups G’ to be

G = (Bg)*F,: D — Gr

and a homomorphism ¢ : G’ — G given by the commutative diagram

~

BG —— B(B¢)*F, BF, BG

D—— D%

- BG - C

Then §'(d) = F,,(Bo(d)) = ker(G(Bo(d)) — G(Bo(d))) = ker(Ppq) : G(p(d)) — G).
The twisted diagram of groups G is developable. Then the functor B¢ : D — BG
is equal to the composition
D2 e, BG
where A is an inclusi(}g and an equivalence of categories and ¢” is a G-covering of
small categories. Let Bo : BG' — BF, be the functor from the above diagram which

projects to B¢. We will prove that B¢ is equivalent to a G-covering of small categories.
Let & be the pull-back category of the following diagram

¢ —2 . BF,

5 @ Ba

Then ¢" : €& — BF, is a G-covering. The action of the group G is induced from
the action of G on £ and ¢” is the natural projection induced by this action, thus ¢”
is a G-covering.
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Due to the universal property of the pull-back there exists a unique functor N:BG — & ,
such that the following diagram

BG'

™ ..\\é—/;B}—Qp
ﬁgl l

commutes. We will prove that ) is an inclusion and an equivalence of categories.
First note that & — &€ is a functor associated to an induced twisted diagram of

groups (¢")*F,, and the twisted diagram of groups G’ is induced by A. Then 7p and 7¢

satisfy properties from Theorem 2.2.9. This implies Morgg/ (d, d') ~ Morp(d, d')xG'(d').

But Morp(d, d') ~ Morg(A(d), M(d")) and Morg(A(d), M(d"))xG'(d') ~ Morzs(A(d), \(d)).
Thus Morgg (d, d') ~ Morg(A(d), \(d')).

Choose ¢ € Ob& = Ob&. There exists d € ObD = Ob BG' such that A(d) ~ e. This
implies ;\(d) ~ ¢ in the category £. Thus ) is the the equivalence of categories.

The functor A is inlusion on objects (because A is) and equivalence, thus is inclusion
of categories.

Thus G" — F,, is a G-covering of twisted diagrams which implies that ¢ : ¢’ — G

is a G-covering (because BF, ~ BG). Note, & BF, — BG is a G-covering
associated to the homomorphism ® : G — G. Then

1. G’ is defined over the development of the homomorphism ® : G — G
2. G'(d) = F,(p(d)) = ker ®pa)
3. m(G',d) =ker®, : m(G,p(d) — G

O

Let G : C — Gr be a Haeflieger’'s complex of groups and ® : G — G any
homomorphism. The Galois covering associated to ® defined in 5.9 of Chapter III.C,
[B-H] is equivalent to the G-covering associated to ® defined in 6.3.2. Moreover the
construction given in [B-H| carries over to the twisted diagrams of groups, namely:

Proposition 6.3.3. Let ® : G — G be a homomorphism and ¢ : G — G the
associated G-covering (6.3.2). Then G' : D — Gr is equivalent to a certain twisted
diagram of groups G" : D(G, ®) — Gr defined (for complezxes of groups) in [B-H].

Proof. We construct twisted diagram of groups G” : D — Gr and the covering
¢ : G" — G as follows. For each d € p~'(c) € ObD, the group G”(d) is the ker-
nel of ®. and ¢/, : G"(d) — G(c) is the inclusion. Let k& € MorD. In order to define
G"(k) we need to choose for each ®.(G(c))-coset d a representative in G. We again de-
note this d, thus identyfying d to the coset [d]s.(g(c)). We also choose for each morphism
k € p~1(I) C Mor D an element ¢'(k) € G(t(1)) such that

i(R)R (1)~ Py (¢' (k) 1) = t(k)
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We then define G” (k) := Ad(¢'(k)) o G(1).
For composable morphisms ky, ky with I; = p(ky), lo = p(ks), we define

ngle = d),(kl)g(ll)(¢/(k2))gll,l2¢/(k1k2)_l € ker q)t(ll)

The homomorphism ¢' : G — G over p : D — C is given by the homomorphisms ¢/,
and the elements ¢'(k).

According to the universal property of the pull-back there exists unique functor
BG" — BG' and a commutative diagram

BG"

BG' BF, —— BG

o

D BG C

This implies that there exists a morphism G” — G’ which is the isomorphism on the

local groups. Thus G’ and G” are equivalent twisted diagrams.
[

The universal property of the Galois covering Let¢: G — Goverp: D — C
is a G-covering associated to a homomorphism ® : G — G. Then the composition
do¢: G — G is trivial on the local groups and the fundamental group of the twisted
diagram of groups G’ : D — Gr is isomorphic to the kernel of ®, : m(G,¢co) — G,
namely ¢.(m (G, dy)) = ker(m (G, p(dy)) — G). We will prove that G’ is the universal
twisted diagram of groups satisfying these properties, namely

Proposition 6.3.4. Assume that a homomorphism of twisted diagrams ¢’ : G' — G
over p' : D' — C satisfies

1. o ¢ : G" — G is trivial on the local groups
2. (Po¢).:m(G",dy) — G is trivial

Then there exists a unique homomorphism & G" — G overp : D — D such that
¢ =¢o¢ andp =poyp.

Proof. According to 5.4.3 the homomorphism ® : G — G is equal to the composition
G %G 2, G, where ¢ is an epimorphism over the identity of C and @ is injective

on the local groups. Then for each d' € ObD’ the composition G" N G -2 G maps
a local group G"(d') to a trivial element of a group G(p'(d')) C G. Then according to
2.2.11 there exists a functor p’ : D' — BG such that the following diagram commutes

Bg// B_¢>’> Bg

|, b

D,LBG

BN

C
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Clearly this diagram defines a homomorphism " — F..
The latter diagram yields a commutative diagram

(6", dy) — 2 7 (G, p/(dy)

p
l e
m(D's dy) —>m(G,p(dy)) — G

p* *

Due to 4.2.6 the vertical homomorphism are onto. Moreover, the composition ®, o ¢
is trivial, hence ®, o p/, is trivial. Therefore the following diagram commutes

BG" [ BG

where & — BG and £ — BG are corresponding G-coverings.
According to 5.3.17 there exists a functor F' : D — BG which is equal to the

composition D < € —~ BG. Due to 5.3.19 we have an inclusion p/(D') C F(D).
Lemma 6.3.5. There exists a functor p/ : D' — D such that Fop = 5/

Proof The proof follows like the proof of 5.1.6. Use 5.3.20 and the fact that
(7T1(D, d,)) C kerCID = F (7T1(D do)) O

Therefore the following diagram commutes

Bg — 2" . RBg

L,

p—Yt-p—L-p5g

Using the universal property of the pull-back there exists a unique functor R : BG” — BG’
such that the following diagram commutes

Bg//
e 57
4
B 22~ BG —=~Bg
YD BG C

Therefore there exists a homomorphism ¢ : G — G’ over p/ : D' — D such that
R=B¢ and ¢/ = ¢po ¢ over p) =poyp. O
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The universal covering of a twisted diagram of groups

Proposition 6.3.6. Let G : C — Gr be a twisted diagram of groups and vg : G — m1(G, o)
the associated homomorphism. Let G : D — Gr be the twisted diagram associated to

tg and ¢ G — G over D D — C the associated covering (63’2} Then for
each homomorphism ® : G — G there exists a homomorphism gf)/ : g — G’ over

P D — D such that ¢ o qb = d) and pop = D- This homomorphism is onto if and
only if . : m(G,co) — G is onto. Moreover G — ¢( ) is a covering.

Proof. As we have observed in 5.4.11 the following diagram
Q Co

commutes up to a natural isomorphism. Therefore the composition G 2, g 2, Gis

trivial and (G, do) LN m1(G, p(do)) 2, G is trivial as well. Then according to 6.3.4
there exists a homomorphism ¢’ : G — G over i : D — D such that the following

diagram
g
X
¢’ g
l
g/
commutes. The homomorphisms gfg and ¢ are coverings, hence the following diagram
B¢
X\\
BG

BG'—~—=¢&

where & — BG is a universaﬁl covering agd £ — BG is a G-covering, commutes.
Clearly there exists a functor £ — &, let £ be a pull-back of the following diagram

&—=¢

.

BG' —¢&

Then there exists a functor A : BG — &', let & be a connected component of £ such
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that A(BG) C &'.

™~/
e

BG'

£

&

Clearly A : BG — &' is an inclusion and an equivalence of small categories. Moreover
p: & — p(BG) is a covering of small categories. Therefore ¢' : G — ¢(G) is a
covering. The functor B¢’ is onto if and only if p : D — D is onto. According to
5.4.11 this is the case when &, : m1(G, cg) — G is onto.

0

Extension of twisted diagrams of groups The following Theorem is a corollary
from 6.3.2 and 6.3.4

Theorem 6.3.7. Let ¢ : G — G over C be an epimorphism of twisted diagrams of
groups. Let G:D — Gr over p: D — C be the universal covering of G. Then there
exists a twisted diagram of groups K : BG — Gr and a homomorphism o K—g
over F : BG — C satisfying

1. po¢p: K — G is trivial on the local groups
2. (pod).:m(K,dy) — m(G, F(do)) is trivial

3. the homomorphism ¢ : K — G isa covering and it is final for homomorphisms
¢ K' — G satisfying 1. and 2.

Proof. We define a small category B/IC to be the pull-back of the following diagram

BK —BG

]

BG — BG

Clearly the associated homomorphism K — F,, is a covering, hence ¢ : K — G given
by
BK — BG — BG

]

B¢ BG C
is a covering of twisted diagrams of groups. Then the composition ¢ o ¢ satisfies
assertions 1. and 2.
If ¢ : K' — G satisfies 1. then the following diagram commutes

BK' — BG

|

D' ——=BG
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Let G : C — Gr be a twisted diagram of groups such that g : § — (G, o) is equal
to G — G — m(G, o) (5.4.3). If ¢’ : K' — G satisfies 1. and 2. then as in proof of
6.3.4 we obtain commutative diagram

D' — BG
|l
D—=BG

The small category BG is defined as the pull-back of the latter diagram, hence there
exists a functor D' — BG. Using the universal property of the pull-back category BKC
we obtain a commutative diagram

BK\\
ch —BG
D BG BG

Therefore there exists a homomorphism ¢’ : X' — K such that ¢ o ¢ = ¢ which

proves the Theorem.
O

Example 6.3.8. Assume that ¢ : G — G is surjective homomorphism of groups.
Then the twisted diagram of groups K is a group N = ker(G — G).

Example 6.3.9. Consider an epimorphism of complexes of groups G—G given by
(Be—1—A) > (1—1—A)

The complex of groups G is a graph of groups thus according to the theorem of Serre [S]
it is developable, let D denote its Bass-Serre tree. The complex of groups K : D — Gr
B

is defined as follows:

1

1

\A|{ \
/

1

/

B
The covering ¢ : K — G is given by the natural inclusions.
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We obtain an “extension” of graphs of groups
K—G—g
which yields an exact sequence
k|4 B— Ax B —» A
of fundamental groups.
Example 6.3.10. Let G — G be an epimorphism of complexes of groups given by
(Zg «— Ly —> Zy) — (Zg — 1 — 7o)

The complex of groups G is developable. We define a complex of groups K : D — Gr
to be K(d) = Zy on objects and Zy — Zy on morphisms:
Ly

<

A

Lo
The covering L — G is given by the natural inclusions.
The corresponding exact sequence of complexes of groups gives an exact sequence
of its fundamental groups of the form

ZQ — SLQZ - PSLQZ
Example 6.3.11. Consider an epimorphism of complexes of groups ¢ : G—G given

by
(D6 — Ly — D4) - (Zz — Lo — Zz)

The universal covering of the complex of groups G : C — Gr is isomorphic to C. Then
the complex of groups K : C — Gr and the covering ¢ : K — G are given by

(Zg<—1—>Zg)—>(D6<—ZQ—>D4)
The exact sequence of fundamental groups equals

PSL2 7 — PGL2 7. —» ZQ
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