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I read the news today - oh, boy
Four thousand holes in Blackburn, Lancashire
And though the holes were rather small
They had to count them all
Now they know how many holes it takes to fill the Albert Hall

A Day in the Life
The Beatles
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Abstract

This thesis presents a collection of results at the interface between probability and topological data
analysis (TDA). From a data driven perspective, we assume that samples lie on or near a submanifold
(hence, topology enters) in high-dimensional feature space and are governed by a (usually unknown)
probability distribution. The results we present illustrate different aspects of cross-fertilization between
the subjects.

First, ideas from probability can be applied to the setting of topological data analysis. Specifically,
we adapt the Prokhorov distance and related notions from optimal transport to persistence diagrams.
These persistence diagrams are successful tools in TDA to capture multi-scale geometric and topological
information of a dataset. We introduce an appropriate discrete Prokhorov distance for this setting
via what we call bottleneck profiles. They generalize the bottleneck distance and satisfy bounds with
respect to the Wasserstein distance, which both have been studied previously and applied with great
success. In addition to the theoretical inquiry, in which we establish a stability result, we also provide
algorithms and discuss numerical experiments.

Second, vice versa, ideas from topological data analysis can be used to solve statistical problems.
Consider the set-up of n points sampled i.i.d. from a probability distribution F on Rd. Classical
statistical tools are often confined (theoretically or computationally) to the case d “ 1, a problem we
address by introducing tools from TDA which are agnostic to the ambient dimension. We study the
Euler characteristic curve of the Čech complex asn Ñ 8 in the thermodynamic limit regime. It turns
out that two different probability distributions yield the same expected Euler characteristic curve in
this regime if and only if their densities admit the same excess mass transform. We propose a goodness
of fit test based on this result. Namely, given a sample from an unknown distribution, we test the
null hypothesis that its density has a specific excess mass transform. We construct a consistent test
statistic and show that the probability of type II errors vanishes exponentially as the sample size goes
to infinity. Moreover, we present vast numerical experiments showcasing the superiority (in terms of
test power) of this test over classical ones, even in low dimensions. The perhaps surprising result here
is that while the hypothesis is stated purely in probability-theoretic language, the test statistic and its
implementation are rooted in computational topology. As a case study, we apply these ideas to the
processing of signals from industrial machines. Via time-delay embeddings, we obtain a spatial point
pattern from a time series. We test the hypothesis of the signal being non-periodic, which corresponds
to the bearing in the machine from which the measurements were taken being intact. Broken bearings
cause a significant alteration of the shape of the point cloud obtained from the time-delay embedding.
By combining the novel TDA approach with classical spectral techniques, we relaibly detect the
presence of a deterministic periodic feature among signals with high levels of non-Gaussian noise and
reduce the error rate significantly.

Third, as a synthesis, we develop a way to combine metric-topological and probabilistic information.
To this end, we introduce the measure Dowker complex. This combines the classical Dowker complex
of a relation, which handles bivariate or directional data, with a second filtration parameter controlling
density. Informally, this is a simplicial complex in which vertices form a simplex only if there is sufficient
mass near them. We establish a stability theorem bounding the interleaving distance between homology
of two such complexes by the Hausdorff distance and the Prokhorov distance of the input data points.
As a consequence, we obtain a version of a law of large numbers that ascertains that the interleaving
distance between (the homology of) the complex built on samples and the one of the true underlying
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metric probability space converges to zero in probability. In this sense, the measure Dowker complex
unites topological and probabilistic information.

Keywords: Topological data analysis; persistent homology; Euler characteristic curve; Prokhorov
distance; random geometric complexes; goodness-of-fit test; time delay embedding; Dowker complex.

AMS MSC 2020 classification: 55N31; 62R40; 60B99; 55U10; 05E45; 60D05; 62H15.
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Streszczenie

Niniejsza rozprawa przedstawia zbiór wyników uzyskanych na styku prawdopodobieństwa i topolog-
icznej analizy danych (TDA). W rozważanych przez nas dziedzinach zakładamy, że próbki leżą na lub w
bezpośredniej bliskości pewnej rozmaitości zanurzonej w wielowymiarowej przestrzeni. Rozmieszcze-
nie tych punktów jest determinowane przez, zwykle nieznany, rozkład prawdopodobieństwa. Naszym
zadaniem jest ekstrakcja istotnych cech determinujących kształt danej próbki punktów. Wyniki przed-
stawione w niniejszej rozprawie ilustrują różne aspekty wzajemnego przenikania się topologii, proba-
bilistyki i analizy danych.

W pierwszej części rozprawy pokazujemy, jak pewne idee z rachunku prawdopodobieństwa znajdują
zastosowanie w topologicznej analizie danych. W szczególności adaptujemy znaną w teorii praw-
dopodobieństwa odległość Prokhorova i powiązane pojęcia z dziedziny optymalnego transportu do
diagramów persystencji. Diagramy te są skutecznym narzędziem do przechwytywania wielkoskalowych
informacji geometrycznych i topologicznych charakteryzujących dany zbiór danych. W tym rozdziale
wprowadzamy nową, dyskretną wersję odległości Prokhorova, używając jako pośrednie narzędzie tzw.
“profile przewężeń” (bottleneck profiles). Profile te uogólniają klasyczne odległości typu bottleneck i
mają dobre własności w stosunku do klasycznych metryk Wassersteina. Praca zawiera zarówno rozważa-
nia teoretyczne, w tym własność stabilności diagramów persystencji w oparciu o nową metrykę, jak i
efektywne algorytmy oraz towarzyszące im eksperymenty numeryczne.

W drugiej części rozprawy pokazujemy, jak idee topologiczne mogą być wykorzystane do rozwiązywa-
nia problemów statystycznych. Rozważamy układ n punktów próbkowanych niezależnie i identycznie
z rozkładu prawdopodobieństwa F na Rd. Klasyczne narzędzia statystyczne są często ograniczone
(teoretycznie lub obliczeniowo) do przypadku d “ 1. W rozprawie pokazujemy, jak ominąć to
ograniczenie, wprowadzając narzędzia z TDA, które są niezależne od wymiaru. Nasze rozwiązania
bazują na krzywej charakterystyki Eulera kompleksu Čech. Pokazujemy, że dwa różne rozkłady praw-
dopodobieństwa dają tę samą oczekiwaną krzywą charakterystyki Eulera wtedy i tylko wtedy, gdy ich
gęstości dopuszczają tę samą ’excess mass transform’ (wszystkie prezentowane wyniki mają charakter
asymptotyczny). Ta charakteryzacja pozwala na wyprowadzenie nowej rodziny testów zgodności
statystycznej. Mając daną próbkę z nieznanego rozkładu, testujemy hipotezę zerową stanowiącą, że
jej gęstość ma określoną “excess mass transform”. Konstruujemy topologiczną statystykę testową i
pokazujemy, że prawdopodobieństwo błędów II rodzaju zanika wykładniczo wraz z rozmiarem próbki.
Ponadto, w rozprawie przedstawiamy obszerne eksperymenty numeryczne pokazujące moc naszego
testu. W szczególności pokazujemy, że jest on skuteczniejszy od dostępnych opcji, nawet dla danych o
niskim wymiarze.

Pokazujemy również, jak przedstawiona metodologia testów statystycznych może zostać użyta do
analizy sygnałów. Używając metody włożenie z opóźnieniem czasowym, przetwarzamy dany jed-
nowymiarowy sygnał z szeregu czasowego na trajektorię w wysokowymiarowej przestrzeni. Następnie
testujemy hipotezę mówiącą, że sygnał jest nieokresowy, co odpowiada poprawnie działającej maszynie.
W tym przypadku uszkodzenia mechaniczne maszyny powodują okresową składową w rozważanym
szeregu czasowym, która może być wykryta przy pomocy prezentowanej przez nas techniki. W szczegól-
ności pokazujemy, że połączenie proponowanego przez nas podejścia bazującego na TDA z klasycznymi
technikami analizy spektralnej daje najlepsze efekty w detekcji uszkodzeń mechanicznych maszyny.

W trzeciej części rozprawy, w ramach syntezy, opracowujemy sposób łączenia informacji metryczno-
topologicznej i probabilistycznej. W tym celu wprowadzamy opartą na teorii miary wersję kompleksu

vii



Dowkera. Łączy on klasyczny kompleks Dowkera relacji z drugim parametrem filtracji kontrolującym
gęstość danych. Nieformalnie, jest to kompleks, w którym kolekcja wierzchołków tworzy sympleks wt-
edy i tylko wtedy, gdy są one blisko siebie oraz w ich pobliżu znajduje się wystarczająca masa pozostałych
punktów. Rozdział zawiera twierdzenie o stabilności proponowanej konstrukcji, ograniczające ho-
mologie tego kompleksu przez odległość Hausdorffa między punktami i odległość Prokhorova między
gęstościami. Wyprowadzamy również prawo wielkich liczb, które zapewnia, że odległość między
kompleksem zbudowanym na próbkach a kompleksem prawdziwej bazowej metrycznej przestrzeni
prawdopodobieństwa zbiega z prawdopodobieństwem do zera.

Słowa kluczowe: Topologiczna analiza danych; homologie persystentne; krzywa charakterystyki
Eulera; odległość Prokhorova; losowe kompleksy geometryczne; test zgodności statystycznej; włożenia
z opóźnieniem; kompleks Dowkera.

Klasyfikacja AMS MSC 2020: 55N31; 62R40; 60B99; 55U10; 05E45; 60D05; 62H15.
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1 Introduction

The main paradigm of topological data analysis (TDA) is that data has shape, and by understanding
this shape one can gain insights about the data. Probability enters the stage as the data samples are
governed by an (unknown) probability distribution.

An abstract version of the basic TDA pipeline is depicted in Figure 1.1. We think of the data
geometrically as a point cloud, in which each point is a sample whose coordinates are given by the
values of the features. The assignment of topological summary statistics to the data is a Lipschitz-
continous procedure – small perturbations in the data give rise to small changes in their topological
summaries. This key property is also referred to as stability. To formalize this idea, we will need
appropriate (pseudo-)metrics at each step in the pipeline. As a consequence, a probability measure
governing the data gives rise to one on the topological summary. This is the context for the present
study; a more thorough introduction to the themes will be given in Chapter 2. The rest of the
dissertation is organized into roughly three major blocks, with Chapter 3 somewhat of a prelude,
Chapters 4, 5 and 6 the centerpiece, and Chapter 7 the finale. More specifically:

• Chapter 3 takes ideas from probability theory and applies them to TDA. We adapt the Prokhorov
distance, which is a classical notion in probability and optimal transport, to the setting of TDA,
creating a new, more robust way to compare topological information.

• Chapters 4, 5 and 6 study the application of topological invariants to statistical problems. We
first investigate under what conditions a topological invariant (the Euler characteristic curve) can
(asymptotically) distinguish samples from two different distributions. This result is then used
to construct a goodness of fit test, i.e. we can assess stochastic models via topological signatures
of samples. As an application, we study point clouds which arise as state space reconstruction
from measurements of vibrations of heavy duty machines in the mining industry and detect
bearing failures.

Data Filtration Persistence Module Summary Statistics

Metric
Measure

Space

Functors from a poset to Top, Simp, kvect

Algebraic TopologySample
Chapter 7

Homology

Chapter 3

Insight: Chapters 4,5,6

Figure 1.1: A general TDA pipeline
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1 Introduction

• Chapter 7 finally provides a framework for combining statistical and topological information.
We develop a simplicial complex, the measure Dowker bifiltered complex, to model interactions
of two point clouds in a density-sensitive and robust way.

1.1 Overview

We now give a brief overview over the contents of each chapter, highlighting key results.

1.1.1 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence
Diagrams (Chapter 3)

One parameter persistence, perhaps the most well-known implementation of the TDA pipeline, takes
a (often highly complex) point cloud in Euclidean space as input and produces a point cloud in the
plane, the persistence diagram (PD), as output. Intuitively, persistence diagrams serve as a summary
of the shape of the input data. As a consequence, one can compare different shapes indirectly, by
comparing their PDs. The need for a robust and computationally efficient notion of distance for
PDs arises. Classically, one uses the Bottleneck and Wasserstein distances to this end [100]. However,
the Bottleneck distance only picks up the single biggest difference between PDs and the Wasserstein
distance is prone to noise, as it picks up every difference no matter how small.

This fact motivates our work to search for new metrics that could balance these issues. We introduce
the notion of the bottleneck profile of two PDs, which is a map r0,8rÑ NY t8u (Definition 3.2.1).
This tool summarizes metric information at varying scales and generalizes the Bottleneck distance.
Also the Wasserstein distance can be, in special cases, computed from the bottleneck profile; in general,
it can be bounded via a bottleneck profile.

The bottleneck profiles arises naturally in a discrete version of the Prokhorov distance, which is a
classical tool in probability theory. It turns out that the Bottleneck and the Prokhorov distance are just
two instances of a whole family of Prokhorov-style metrics discussed in this chapter (Definition 3.3.1).
In fact, this family is parameterised by a subclass of functions f : r0,8rÑ r0,8r. Not every func-
tion f gives in fact rise to a genuine metric; we examine the conditions on f in which cases it does
(Definition 3.3.2, such f are called admissible functions). In particular, we show:

Theorem 3.3.7. Fix an admissible function f : r0,8rÑ r0,8r. The discrete f -Prokhorov metric πf
is an extended pseudometric.

In addition to theoretical development, we discuss algorithms to compute the bottleneck profile
and various Prokhorov-type distances. In particular, a computational complexity analysis of those
algorithms is given:

Proposition 3.3.21. Let f : r0,8rÑ r0,8r be monotonically increasing. Assume that the values and
preimages of f can be computed inOp1q. Then πf pX,Y q can be computed inOpn2 logpnqq.

We provide a run-time analysis and experiments on a number of data sets. The algorithms are
provided as an open source implementation.
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1.1 Overview

1.1.2 When Do Two Distributions Yield the Same Expected Euler
Characteristic Curve in the Thermodynamic Limit? (Chapter 4)

The Čech complex CpXqr of a finite point cloud X Ă Rd has vertices X and simplices σ Ď X if
the intersection

Ş

xPσ Brpxq is non-empty. Here, r ě 0 is the filtration parameter, meaning that
CpXqr Ď CpXqs whenever r ď s. In this chapter, we are interested in the case whenX “ Xn “

tx1, . . . , xnu consists of n i.i.d. samples from some probability distribution F on Rd. As the sample
size n goes to infinity, there are three limiting regimes governing the topology of CpXnqrn , which
are distinguished by the behaviour of Λn “ nωdr

d
n. Here, ωd is the volume of a unit ball in Rd and

prnqn is a sequence of parameters of the Čech complex. In the dense regime, Λn Ñ 8, the Čech
complex is connected; if Λn grows fast enough, it recovers the topology of the support of F with high
probability. However, no other information about the distribution is kept. In the thermodynamic
regime, Λn Ñ Λ Ps0,8r, on the other hand, we cannot recover the support of F but can hope to
capture different information about the distribution. Finally, in the sparse regime, Λn Ñ 0, the Čech
complex is so disconnected that it does not retain much information.

This raises the question what properties of the distribution are in fact captured by the topology
of the Čech complex in the thermodynamic limit. To this end, Vishwanath et al. [157] have recently
introduced the concept of “F -equivalence”, which provides a sufficient condition for probability
distributions to have Čech complexes which are indistinguishable by means of topological invariants
in this asymptotic regime. Specifically, two probability density functions f, g : Rd Ñ r0,8r are
F -equivalent if they admit the same excess mass f̂ “ ĝ, where

f̂ptq :“

ż

Rd
1rt,8rpfpxqq fpxqdx. (1.1)

The main result of the present chapter is to show that this condition is indeed also necessary in
the setting of expected Euler characteristic curves. The two preceding statements can be succinctly
combined into the following theorem:

Theorem 4.0.1. Let F,G be probability distributions on Rd with densities with respect to the Lebesgue
measure f, g which are bounded. The following are equivalent:

i) The excess mass transforms agree: f̂ptq “ ĝptq for all t ą 0,

ii) in the thermodynamic limit, the expected Euler characteristic curves agree: χF pΛq “ χGpΛq for
all Λ ą 0.

The implication iq ñ iiq was established by Vishwanath et al. [157]; the subject of this chapter is
to show the perhaps surprising implication iiq ñ iq. This is Theorem 4.3.1 below.

1.1.3 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions
(Chapter 5)

Goodness-of-fit (GoF) testing is one of the standard tasks in statistics. The testing procedure can
be stated in the one-sample or two-sample setting. In case of the one-sample problem, we observe a
sample ofm independent realizations tx1, . . . , xmu of a d-dimensional random vectorX with an
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1 Introduction

unknown distribution functionG, i.e. xi „ G. The task is to test whetherG is equal to a specific
distribution F , i.e. we would like to test the following null hypothesisH0 against the alternativeH1:

H0 : G “ F vs. H1 : G ‰ F. (1.2)

In the setting of the two-sample problem we are given two independent samples consisting of m
and n (m ‰ n in general) independent realizations of d-dimensional random vectorsX and Y with
unknown distribution functions F andG, respectively. This meansX “ tx1, . . . , xmu, xi „ F
and Y “ ty1, . . . , ynu, yj „ G, while the hypothesis is the same as in (1.2).

In the light of the preceding chapter, we consider a more general notion of equivalence, replacing
the equal sign above by the relation of having the same excess mass (Equation 1.1 on the previous page;
Definition 4.1).

We are interested in the setting in which the underlying distribution is continuous. In this case,
prominent GoF tests for samples from R rely on the empirical distribution function, see [57, Chapter
4]. These include, in the one dimensional case, the Kolmogorov-Smirnov, Cramér-von-Mises and
Anderson-Darling tests. In higher dimensions, Kolmogorov-Smirnov leads to Fasano-Franceschini[73]
and Peacock[122] tests; a general case was considered by Justel [95]. A multivariate version of Cramér-
von-Mises was proposed by Chiu and Liu[48]. Since those tests are based on the empirical distribution
function, their generalization toRd ford ě 2 is conceptually and computationally difficult. Moreover,
we are not aware of an efficient implementation of a general goodness-of-fit test for high dimensional
samples.

To tackle this challenge we propose to replace the cumulative distribution function by the Euler
characteristic curve (ECC) [85, 130, 160], a tool from computational topology that provides a signature
of the considered sample. To a given sampleX , this notion associates a function χpXq : r0,8q Ñ Z,
which can serve as a stand-in for the empirical distribution function in arbitrary dimension. Subse-
quently, for one-sample tests, inspired by the Kolmogorov-Smirnov test, we define the test statistic to
be the supremum distance between the ECC of the sample and the expected ECC for the distribution.
This topologically driven testing scheme will be referred to as “TopoTests” for short.

The key characteristic of any goodness of fit test is its power, i.e. the type II error should be small,
under the requirement that the type I error is fixed at level α. We show that the proposed test satisfies
this condition and that it performs very well in practical cases.

Theorem 5.1.4. For fixed α, the probability of a type II error goes to 0 exponentially as n Ñ 8.

In particular, even restricted to one dimensional samples, its power is comparable to those of the
standard GoF tests.

1.1.4 Damage Identification in Rolling Element Bearings Using
Topological Data Analysis (Chapter 6)

In this chapter, we consider the practical example of condition monitoring of complex heavy-duty
machines in the mining industry. In the era of Industry 4.0, monitoring processes and systems becomes
the main ingredient and the necessary condition for the successful delivery of the final product. With
the unprecedented increase in measuring and storage capabilities, efficient protocols for the extraction
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of useful information and its direct application into the decision-making pipeline remain a major
challenge. Predictive maintenance is a good example of such research direction.

Consider a complex-design heavy duty machine operating under time-varying load and speed
conditions. Vibration or acoustic measurement from such a machine may be considered as a mixture
of informative signal p and non-informative signal s (later called noise). Presence of the informative
signal p is an evidence of a malfunction of the machine. The ability to detect the presence of a signal
p in high-amplitude noise s allows appropriate maintenance action to take place. The variable load
speed and the unknown, mostly non-Gaussian, distribution of s present additional challenges in
local fault detection. Although smay sometimes be modeled by Gaussian noise, there are important
cases where this assumption does not hold. In this chapter, an automatic continuous monitoring
technique that is agnostic to the type of distribution from which s is sampled is presented. As a result,
the proposed approach is resistant to the difficulties that often arise in methods based on assumptions
about the distribution of the analyzed signal.

We adapt the tools of TDA to the analysis of the signal s ` p and determine the existence of a
non-zero component p in the observed signal. A significant advantage of the proposed approach is
that knowledge about the distribution of the signal s (considered as a general disturbance signal) is not
needed. Thus, the method could be suitable for different machines and various speed/load conditions.

In this chapter, the ability of the proposed approach for local damage detection is tested first on
synthetic examples, then on rolling element bearings on a test rig (laboratory conditions), and finally
on the acutal acoustic signal from the belt conveyor system operated in the mining company. It
should be noted that, under laboratory conditions, the method was tested for different levels of speed,
simultaneously for faulty and healthy bearings. Industrial data contained several data sets for healthy
and faulty bearings with a non-Gaussian distribution of non-informative components (noise). The
efficiency of the method was also analyzed using synthetic data with Monte Carlo simulations for
a wide range of Signal-to-Noise Ratio (SNR) and level of non-Gaussianity expressed by parameter
α - a stability index in α-stable distribution. The proposed method has also been compared with
state-of-the-art methods, commonly used in bearing diagnostics, i.e., spectral kurtosis [9], conditional
variance-based (CVB) selector [88], as well as infograms [8, 89].

1.1.5 Density Sensitive Bifiltered Dowker Complexes via Total Weight
(Chapter 7)

In TDA, persistent homology of Čech or Vietoris–Rips complexes is a standard tool to extract infor-
mation about the shape of data. There are some shortcomings to this standard approach, notably its
lack of sensitivity to density and against bivariate or directional data. Addressing these issues has been a
focus of recent research. On the one hand, one can introduce a second filtration parameter to capture
information about density [27], just like the proximity parameter of Čech or Rips controls metric
information. On the other hand, Dowker complexes have received attention in applications involving
directional [50] or bivariate [166] data. In this chapter, we combine the two approaches into what we
call the measure Dowker bifiltration MD (Definition 7.1.6). We build on the total weight function of
Robinson [134], which we rephrase using counting measures and then generalise to arbitrary measures.
Roughly speaking, the idea is to construct a complex in which data points form a simplex only if there
is sufficient mass near it; the mass can be the point cloud itself, a second point cloud or some ambient
measure like Lebesgue’s. We elaborate on the relation between our construction and other density
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sensitive bifiltrations as well as Dowker duality in section 7.1: Notably, it turns out that our bifiltration
is an instance of Sheehy’s multicover bifiltration:

Theorem 7.1.4. LetR Ď X ˆ Y be a relation satisfying certain finiteness conditions. Then we have
a weak equivalence of filtrations |DpX,Y,Rq‚| » |SpDpY,X,RJqq‚|, where S is the subdivision
filtration (Definition 2.2.35). Moreover, the weak equivalence is natural with respect to filtrations of
relations.

In section 7.2, we prove a robustness theorem for the measure Dowker complex of a finite metric
space endowed with its empirical probability measure. In addition, we prove a stability theorem
ascertaining that the change in homology of the measure Dowker bifiltration is upper-bounded by
the maximum of Hausdorff distance between the data points and Prokhorov distance between the
measures:

Theorem 7.2.4. Suppose pZ, dq is a Polish space, endowed with Borel Σ-algebra BpZq. LetX1, X2 P

BpZq and let µ1, µ2 be measures on pZ,BpZqq. Then for any k P N, we have

dIpHkpMDpX1, µ1qq, HkpMDpX2, µ2qqq ď maxptdHpX1, X2q, dPrpµ1, µ2quq,

where dH is the Hausdorff distance (Definition 2.1.1) and dPr is the Prokhorov metric (Definition 2.1.6).

Moreover, we present an algorithm (Algorithm 7.1) to compute the measure Dowker bifiltered
complex. We discuss its runtime complexity and make an open source implementation available on
github1. We carry out several experiments showcasing applications to protein-ligand binding affinity
prediction, clustering and dimensionality reduction of gene expression data and random hypergraphs
of Erdös–Renyi type in section 7.3.

Relevant related work includes the study of functorial Dowker duality motivated by TDA by [37,
50, 134]. The total weight filtration of a Dowker complex was introduced by Robinson [134] and has
also been studied in [152], where it is noted that this filtration is in general different from the one of
the dual Dowker complex. Another approach to bifiltered Dowker complexes [24] was developed
in parallel to this work. Applications of Dowker complexes include protein-ligand binding affinity
prediction [113, 114], spatial patterns in the tumor microenvironment [166], music theory [79] and
time series and dynamical systems analysis [81].

For the stability and robustness of two-parameter persistence, [27] is our main reference and inspi-
ration; the work of Scoccola and Rolle [136, 142] is also of note.

1.2 Author’s Contributions

Chapter 3 is based on an article [62] with Paweł Dłotko, who supervised the work. Chapter 4 is joint
work with Tobias Fleckenstein, with equal contributions made by both authors. Chapter 5 is a slightly
revised version of a joint article [63] with Paweł Dłotko, Łukasz Stettner and Rafał Topolnicki; R.T. and
the author of this thesis are co-lead authors. Chapter 6 is coauthored with Justyna Hebda-Sobkowicz,
Agnieszka Wyłomańska, Radosław Zimroz and Paweł Dłotko; N. H. is the lead author and responsible
for the TDA results. Chapter 7 is joint work with Jan Spaliński, with N.H. being the leading author.
More detailed statements of contributions are given at the start of each chapter.

1https://github.com/nihell/pyDowker
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2 Background

What is now known as topological data analysis (TDA) emerged from parallel discoveries marked by
the seminal articles by Edelsbrunner–Letscher–Zomorodian [70], Robins [133] and Carlsson–Zomo-
rodian [168], though its roots trace back all the way to Vietoris [153]. Notably, the main motivation
for Robins [132] was in non-linear dynamical systems: Can we infer the topology of the attractor
(and thus information about the dynamics) from finite samples (e.g. obtained through numerical
simulation)? Robins also laid the groundwork for random topology [131], although topics like random
Voronoi tessellations, boolean models and their connectivity and Euler characteristic are classical in
stochastic geometry [49]. This chapter aims to give an overview of the relevant background for the
remainder of the thesis. It cannot, however, survey the compete area that is TDA today with its various
interactions. For a textbook introduction with a focus on computations, see [69]; for a comprehensive
treatment on the background concerning algebraic topology, there are many references available [34,
145].

2.1 Metric Measure Spaces

To compare two finite point clouds (or, more general subsets)A,B in some ambient metric space
pX, dq, the Hausdorff distance is a natural choice. As a prerequisite, introduce the distance to a subset
A Ď X as

dA : X Ñ r0,8r, dApxq “ inf
aPA

dpa, xq.

Definition 2.1.1. Let pX, dq be a metric space andA,B Ď X be compact subsets. The Hausdorff
distance betweenA andB is

dHpA,Bq “ sup
xPX

|dBpxq ´ dApxq|.

Definition 2.1.2. Let pX, dq a metric space,A Ď X and ε ą 0. Define the ε-thickening ofA to be

Aε “ tx P X : Da P A such that dpx, aq ď εu.

The following alternative characterization is also commonly used [121, chapter 7, § 45]:

Proposition 2.1.3. dHpA,Bq “ inftε ą 0: A Ď Bε andB Ď Aεu.

Next, we want to consider measures on metric spaces. To that end, we will impose the assumption
that whenever we deal with measures, the underlying metric space is Polish, i.e. complete and separable,
without explicitly mentioning it every time.

Recall that a Borel Σ-algebra F over a set X is a family of subsets of X satisfying the following
conditions:
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2 Background

• X P F ,

• A P F ñ XzA P F ,

• Ai P F for all i P N ñ
Ť8
i“0Ai P F .

For a metric space pX, dq, let BpXq denote its Borel Σ-algebra; this is the smallest Σ-algebra
containing all open and closed sets. Recall furthermore that a measure on a setX with Σ-algebra F is
a function with values in the extended non-negative real numbers, µ : F Ñ r0,8s, subject to the
following conditions:

• µpHq “ 0,

• for any countable family of disjoint sets tAiuiPN withAi P F for all i P N, we have

µ

˜

8
ď

i“0

Ai

¸

“

8
ÿ

i“0

µpAiq.

All measures we will consider are to be understood with respect to the Borel Σ-algebra of a metric
space. As an example, consider the Dirac measure δx of a point x P X which is given by

δx : BpXq Ñ r0,8s, δXpAq “

#

1 if x P A,

0 otherwise.

For a finite metric spaceX , we consider the counting measure µX “
ř

xPX δX and the empirical
probability measure νX “ 1{|X|

ř

xPX δX . A metric space with a Borel measure on it is known as
a metric measure space; if this measure has total mass equal 1 it is a metric probability space. Given a
continuous map φ : X Ñ Y and a measure µ onX , denote its push-forward fromX to Y by φ#µ,
it is defined by

φ#µpAq “ µpφ´1pAqq.

Definition 2.1.4. A coupling of two measures µ, η onX is a measure γ onX ˆX whose marginals
are µ and η, respectively. That is, π1#γ “ µ and π2#γ “ η where π1, π2 : X ˆX Ñ X are the two
canonical projections.

The following definition is non-standard but will be handy in Theorem 2.2.40 and Chapter 3.
Definition 2.1.5. Let µ, η be probability measures on a common metric space pX, dq. The Prokhorov
profile between µ and η is the function

Πµ,η : r0,8r Ñ r0, 1s

ε ÞÑ inf
γ
γptpx1, x2q P X ˆX : dpx1, x2q ě εuq,

where γ ranges over all couplings of µ and η.
In words, the Prokhorov profile is a function that assigns to each ε the minimal amount of mass

that needs to be transported over a distance ě ε in order to transform µ into η. We can now define
the Prokhorov metric by intersecting a Prokhorov profile with a straight line:
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2.1 Metric Measure Spaces

Definition 2.1.6. Let µ, η be probability measures on a common metric space pX, dq, let l ě 0. The
l-Prokhorov metric between µ and η is

dPrlpµ, νq ÞÑ inftε ą 0: Πµ,ηpεq ă lεu.

As pointed out in [154, chapter 27], there is a strong analogy between the Hausdorff distance in
the theory of metric spaces and the Prokhorov distance in probability. The following alternative
characterisation is often given as a definition of the Prokhorov metric, see for instance [128, (3.2.24)].
The equivalence of the two characterizations is due to Strassen’s theorem [155, Remark 1.29].

Proposition 2.1.7.

dPrlpµ, νq “ inftε ą 0: µpAq ď ηpAεq ` lε and ηpAq ď µpAεq ` lε for all closedA Ď Xu

Perhaps even more popular than Prokhorov as an optimal transport distance is the Wasserstein
metric, also known as earth mover distance. This alias is due to the informal idea that the distance is
the minimal cost of transporting one measure into another, with the cost being the product of mass
and distance.

Definition 2.1.8. Let µ, η be probability measures on a common metric space pX, dq, let p ě 1. The
p-Wasserstein metric between µ and η is

dWppµ, ηq ÞÑ inf
γ

ˆ
ż

XˆX
dpx1, x2qp dγpx1, x2q

˙1{p

,

where γ ranges over all couplings of µ and η.

For convenience, we use the shorthand notations dPr “ dPr1 and dW “ dW1 .

Example 2.1.9. Consider a normal distribution µ “ N p0.4, 0.1q and its perturbation given by a
Gaussian mixture η “ 0.8 ¨ N p0.4, 0.1q ` 0.2 ¨ N p0.9, 0.02q. We sample 10000 points from each
distribution and compute histograms on 64 equispaced bins in r0, 1s. For the 1-Wasserstein distance,
one has to roughly transport a mass of 0.2 over a distance of 0.5 (namely from 0.4 to 0.9), leading to
around 0.1 as value of the metric between the histograms. See Figure 2.1a for the optimal transport
plan, which keeps most of the mass in their bins. For Prokhorov on the other hand, let us consider
the Prokhorov profile shown in Figure 2.1b: for 0 ă ε ă 0.2, its value stays around 0.2, indicating
only a mass of 0.2 needs to be transported over a distance longer than such ε. It then decreases and
hits 0 at around ε “ 0.4, which means no mass needs to be transported over a distance greater than
0.4. The Prokhorov distance can be visually seen as the ε for which the blue graph of the Prokhorov
profile intersects the black graph of the identity ; this point is marked in red in the figure. Roughly,
only a mass of 0.2 is transported over a distance greater than 0.2, causing this to be the value of the
Prokhorov metric. See Figure 2.1c for an optimal transport plan. The band between the blue diagonal
lines shows the pairs of bins which are less than dPr apart, allowing mass to be moved between them
at no cost. As a consequence, opposed to the picture in the Wasserstein case, almost no mass is kept in
its bin. Now if one were to consider more generally η “ 0.8 ¨ N p0.4, 0.1q ` 0.2 ¨ N pm, 0.02q, for
somem P R, the preceding discussion would apply mutatis-mutandis, the Wasserstein distance can
increase beyond any limit when |m| becomes large, whereas the Prokhorov distance remains around
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Figure 2.1: An illustration of 1-Wasserstein and Prokhorov optimal transport distances using histograms as
described in Example 2.1.9. In the 1-Wasserstein transport plan (a), most mass stays in its bin. The
Prokhorov distance can be visualized via the intersection of the graphs of the Prokhorov profile and
the identity (b). An optimal transport plan for the Prokhorov distance may move mass between
nearby bins (between the blue lines) at no cost.

0.2 because only this amount of mass is moved across a large distance. This provides some intuition
that the Prokhorov distance is more robust against outliers than Wasserstein.

In the context of data, we might not always be provided with a canonical embedding into a common
ambient space; instead, we are just given an abstract finite metric space. Correspondingly, some of
the topological invariants we consider are built on the finite metric structure of the data, without
requiring any ambient space. In order to quantify the stability of these constructions, one needs to
compare such different metric (measure) spaces, as they form the input to our pipeline. The crucial
idea is to map them into a common space.

Definition 2.1.10. Let pX1, d1q , pX2, d2q be two metric spaces. Their Gromov-Hausdorff distance is

dGHppX1, d1q, pX2, d2qq “ inf
X1

φ
ÝÑZ

ψ
ÐÝX2

dHpφpX1q, ψpX2qq,

where the infimum ranges over all isometric embeddings into a common metric space pZ, dq, in which
the Hausdorff distance is evaluated.

We consider the analogous definitions for metric measure spaces:

Definition 2.1.11 ([2]). Let pX1, d1, µ1q and pX2, d2, µ2q be two metric probability spaces.

1. Their Gromov-Prokhorov distance [86] is

dGPrpµ1, µ2q “ inf
X1

φ
ÝÑZ

ψ
ÐÝX2

dPrpφ#pµ1q, ψ#pµ2qq
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(a) r “ 0 (b) r “ 1 (c) r “ 2

Figure 2.2: The offset filtration of six points in the plane at three different values of r. For r “ 0, we just have
the points themselves. As we increase r to 1, the balls are still all disjoint, at r “ 2 they have all
merged and a hole is about to be formed on the left.

2. Their Gromov-Hausdorff-Prokhorov distance [2] is

dGHPrppX1, d1, µ1q, pX2, d2, µ2qq

“ inf
X1

φ
ÝÑZ

ψ
ÐÝX2

maxtdHpφpX1q, ψpX2qq, dPrpφ#pµ1q, ψ#pµ2qqu,

where the infimum both times ranges over all isometric embeddings into a common Polish metric
space pZ, dq, in which the Hausdorff and Prokhorov distances are evaluated.

2.2 Filtered Spaces and Complexes

In the prototypical TDA setting, we consider a finite set of pointsX Ď Rd. Its topology might seem
uninteresting on its own at first as it is discrete. The key idea is to consider balls of increasing radius
around all the points and study how the topology of this nested family of spaces changes throughout.
A nested family of spaces is called a filtration, keeping track of topological features is a concept known
as persistence.

We can regard the union of balls of increasing radius as a functor from the poset r0,8r regarded
as a category with a unique morphism r Ñ s whenever r ď s to the category Top of (compactly
generated weakly Hausdorff) spaces.

Definition 2.2.1. For a subset of a metric spaceX Ď pZ, dq, the offset filtration is

OpXq : r0,8r Ñ Top

r ÞÑ
ď

xPX

Brpxq

r ď s ÞÑ
ď

xPX

Brpxq ãÑ
ď

xPX

Bspxq.

See Figure 2.2 for an illustration. The crucial observation now is that the offset filtration is described
via sublevels of the distance-to-X function,

OrpXq “ tz P Z : dXpzq ď ru.
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Now, if we are given another finite set Y Ď Rd, we obtain a commutative diagram as follows for any
δ ą dHpX,Y q by the definition of the Hausdorff distance:

OpXqr OpXqr`δ OpXqr`2δ

OpY qr OpY qr`δ OpY qr`2δ.

(2.1)

Such a diagram is called a δ-interleaving (cf. Definition 2.2.12 below). Motivated by this example, we
phrase the theory of interleavings in an abstract categorical framework in Section 2.2.1.

Before we get to that, we note the constructions presented thus far are not tractable on a computer.
As a remedy, a convenient way to encode topological information in a finite-combinatorial manner is
given by abstract simplicial complexes.

Definition 2.2.2. An abstract simplicial complex K is a collection of non-empty sets such that H ‰

σ Ď τ and τ P K ñ σ P K . Its elements are called simplices. If σ Ď τ P K , we say σ is a face of
τ and τ is a coface of σ. The dimension of a simplex σ is dimpσq “ |σ| ´ 1, where | ¨ | denotes the
cardinality. The set of d-dimensional simplices isKpdq; the 0-dimensional simplices are called vertices,
the set of vertices is denoted1 K0. Furthermore, the k-skeleton is

skkpKq “ tσ P K : dimpσq ď ku.

A simplicial map between simplicial complexes f : K Ñ K 1 is a function between the vertex sets
f : K0 Ñ K 1

0 such that for each σ P K , we have fpσq P K 1. We form the category of abstract
simplicial complexes and maps, denoted Simp, as follows:

• Its objects are abstract simplical complexes;

• its morphisms are simplicial maps,

• composition is defined via composition of maps of vertex sets.

Geometric realization is the procedure to obtain a topological space from a combinatorial abstract
simplical complex. Consider the standard geometric n-simplex

|∆n| “

#

x “ px1, . . . , xn`1qJ :
n`1
ÿ

i“1

xi “ 1 and all xi ě 0

+

Ď Rn`1.

Definition 2.2.3. LetK be an abstract simplicial complex and fix a total ordering on its vertex set. The
geometric realization ofK is the topological space given by the quotient

|K| “

˜

ž

σPK

|∆dimpσq|

¸

{„,

1note the subtlety that Kp0q
“ ttvu : v P K0u
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where the equivalence relation is generated as follows: Suppose σ “ rx0, . . . , xns is an abstract
n-dimensional simplex inK with vertices in order, i.e. x0 ă . . . ă xn. For any i P t0, . . . , nu, we
identify the copy of |∆n´1| indexed by rx0, . . . , x̂i, . . . , xns (i.e. the face of σ obtained by removing
xi) under „ with the subspace of |∆n| where xi “ 0.

Important examples of simplicial complexes arise as so-called nerves, flag complexes and Dowker
complexes:

Definition 2.2.4. Let U “ tUiuiPI be a cover of a topological spaceX . Its nerveNrvpUq is the abstract
simplicial complex which has σ “ rUi0 , . . . , Uiks as a k-simplex if and only ifUi0 X . . .XUik ‰ H.

The importance of nerves is in large part due to the following result, which has a long tradition in
topology. We are focusing on closed covers, following [14, Theorem D].

Theorem 2.2.5 (Nerve Theorem). Let A “ tAiuiPI be a closed cover of a compactly generated
Hausdorff spaceX satisfying all of the following assumptions:

i) Every finite intersection of elements of A is either empty or contractible.

ii) A is locally finite, i.e. for any point inX there is a neighborhood that only intersects finitely many
of theAi.

iii) A is locally finite-dimensional, i.e. for every i P I there exists ki P N such that whenever i P J Ď I ,
if

Ş

jPJ Aj ‰ H then |J | ď ki.

iv) If T Ď I is such thatAT :“
Ş

tPT At ‰ H, then the latching space LpT q “
Ť

TĹJĎI AJ is a
closed subspace ofAT and the pair pAT , LpT qq satisfies the homotopy extension property.

Then there exist a spaceZ and natural homotopy equivalences |NrvpAq|
»

ÐÝ Z
»
ÝÑ X .

The last condition demands some elaboration. Recall the definition what it means for a pair of
spaces pX,Aq, whereA Ď X , to have the homotopy extension property (HEP): Suppose we have
H : Aˆr0, 1s Ñ Y and H̃0 : X Ñ Y , whereY is any topological space, such thatHp¨, 0q “ H̃0|A.
Then the HEP guaratees that there exists an extension H̃ : Xˆr0, 1s Ñ Y satisfying H̃|Aˆr0,1s “ H

and H̃p¨, 0q “ H̃0. In the setting ofA being a closed subspace, having the HEP is equivalent ([15, Prop.
5.13]) to pX,Aq being an NDR2-pair, which means that there exist continnuous mapsu : X Ñ r0, 1s

and h : X ˆ r0, 1s Ñ X such that:

• u´1p0q “ A,

• hp¨, 0q “ idX ,

• hpa, tq “ a for all a P A and t P r0, 1s,

• hpx, 1q P A for all x such that upxq ă 1.

Let us put this into action for the case of Euclidean balls in the offset filtration:

2the abbreviation stands for neighborhood deformation retract
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Lemma 2.2.6. LetX Ď Rd be a finite subset. For x P X , setAx “ Brpxq andAI “
Ş

xPI Ax for
I Ď X . Whenever I Ď J Ď X , we have an NDR-pair pAI , AJq.

Proof. Set u : AI Ñ r0, 1s, upxq “ mintdAI pxq, 1u. Now, finite intersections of Euclidean balls
are compact and convex, therefore each point in x P AI has a unique closest point pAJ pxq inAJ , and
pAJ is continuous. Furthermore, note that pAJ is the identity onAJ . Finally, set h : AI ˆ r0, 1s Ñ

AI , hpx, tq “ p1 ´ tq ¨ idAI `t ¨ pAJ pxq.

The naturality of homotopy equivalences is useful in TDA in the context of filtrations. This
becomes clear in the example of the offset filtration, which admits a canonical cover by the balls of
radius r around the data points: The nerve of this cover is known as the Čech complex:
Definition 2.2.7. The Čech complex CpXqr of a subsetX of a metric space pZ, dq has simplices

X Ě σ P CpXqr ô
č

xPσ

Brpxq ‰ H and |σ| ă 8.

It assembles into a filtration CpXq : r0,8rÑ Simp,
For finite subsets of Euclidean spaceX Ď Rd, the Čech filtration recovers the homotopy type of

the offset filtration by virtue of the nerve theorem (see Figure 2.3a). This is because Euclidean space
satisfies the following condition by [14, Cor. 5.16] and Lemma 2.2.6.
Definition 2.2.8 (adapted from [27, Definition 1.3]). A metric space is called good if any finite set of
closed balls satisfies the assumptions of Theorem 2.2.5.

This is not just true for any fixed r, but actually an equivalence of filtrations, which we will define
next (Definition 2.2.9). That notion will allow us to conclude that the interleaving diagram of the
offset filtration gives rise to an interleaving diagram of the simplicial homology of the associated Čech
complexes, which is what we study in Section 2.3.

2.2.1 Interlude: A Categorical Perspective on Filtrations and
Interleavings

As we have seen in the motivating example of the offset filtration and the Čech complex, the language
of functors and commutative diagrams appears quite naturally in the study of persistence. More
variants of filtrations and interleavings appear throughout this thesis (and the TDA literature in
general), therefore it is handy to set up an abstract categorical framework to handle them all. Most of
this material is adapted from [27, Section 2.5]

The offset filtration is indexed by a non-negative real parameter r, which we visually think of as the
radius of the balls centered at the data points. Categorically speaking, we regard r0,8r as a category:
its objects are the non-negative real numbers and there is a unique morphism r Ñ swhenever r ď s.
Reflexivity of the ď-relation gives rise to identity morphisms; transitivity defines composition in this
category. Note that this recipe turns any poset into a category, we have not used anything specific to
r0,8r. Later on, we will consider two-parameter filtrations, also called bifiltrations. Instead of the
poset r0,8r we will consider the cartesian product s0,8ropˆr0,8r. These, too, are interpreted as
categories arising from a poset, where the partial order is given by pm, rq ď pm1, r1q if and only if
m ě m1 and r ď r1. We will write T to denote any of the categories given by the posets r0,8r or
s0,8rop or Rop or s0,8ropˆr0,8r or Rop ˆ r0,8r.
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2.2 Filtered Spaces and Complexes

Definition 2.2.9. If C P tTop,Simpu, a (T -indexed) filtration is a functor F : T Ñ C such that
all morphisms in T get mapped to inclusions in C. We also call F : T Ñ Top a (bi)filtered space and
F : T Ñ Simp a (bi)filtered complex.

Two filtrationsF, F 1 : T Ñ Top are said to be objectwise equivalent if there is a natural transforma-
tion η : F ñ F 1 such that all components ηt : Ft

»
ÝÑ F 1

t are homotopy equivalences. Furthermore,
F, F 1 are called weakly equivalent, written F » F 1, if they are connected via a zig-zag of objectwise
equivalences. That is, there is a sequence of filtrations

F “ F 0, F 1, . . . , Fn “ F 1,

such that for each i P t1, . . . , nu there is an objectwise equivalence ηi : F i´1 ñ F i or ηi : F i ñ

F i´1.

This kind of equivalence is what the functorial nerve lemma guarantees.
When dealing with functors defined on a category given by a poset F : T Ñ C, we will write

Ft :“ F ptq and Fsďt :“ F ps ď tq, where s, t P T . An important example of filtrations is by
sublevelsets.

Definition 2.2.10. Let X be a topological space, T a partially ordered set and f : X Ñ T be any
function. The sublevel filtration is

SÓpfq : T Ñ Top, SÓpfqr “ tx P X : fpxq ď ru.

Indeed, observe that OpXq “ SÓpdXq, the offset filtration is the sublevel filtration of the distance-
to-X function.

If a function f : K Ñ T defined on a simplicial complexK is monotonic (using the face poset), it
gives rise to a sublevel filtration in the analogous way.

There is a standard way to compare two functors defined on a common poset via interleavings, as
introduced by Chazal [43], generalizing the diagram (2.1) we observed for the offset filtration.

Definition 2.2.11. Let T be any of the posets r0,8r,Rop,Rop ˆ r0,8r. A poset automorphism
α : T Ñ T is called a forward shift if t ď αptq for all t P T .

The most important example will be the δ-shift for δ ą 0, this is

rδs : r0,8rÑ r0,8r, r ÞÑ r ` δ,

rδs : Rop Ñ Rop, r ÞÑ r ´ δ,

rδs : Rop ˆ r0,8rÑ Rop ˆ r0,8r, pm, rq ÞÑ pm´ δ, r ` δq.

Note that we cannot define the δ-shift only on s0,8rop because it would be undefined for t ď δ.
Focusing on T “ r0,8r and a δ-shift α “ rδs, we write F ˝ α “ F rδs. Explicitly, we have
pF rδsqt “ Ft`δ , and the δ-shift turns into an endofunctor of the functor category Cr0,8r as

f : F Ñ G induces f rδs : F rδs Ñ Grδs via f rδst “ ft`δ.

In words, we shift the non-negative real line by δ before applying F , explaining the name. Moreover,
the maps Ftďt`δ : Ft Ñ Ft`δ “ F rδst assemble into a morphism in the functor category (i.e., a
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natural transformation) φδF : F Ñ F rδs called the canonical shift map . In the example of the offset
filtration, the canonical shift map is simply the inclusion of the balls of radius r inside the balls of
radius r ` δ.

The following abstract definition encapsulates both the one- and the two-parameter setting.
Definition 2.2.12. Let pT, T 1q be either of the following pairs of posets:

pr0,8r, r0,8rq; pRop ˆ r0,8s, s0,8ropˆr0,8rq.

Let α, β : T Ñ T be forward shifts. The pα, βq-interleaving category of T 1 is IpT 1, α, βq and has
T 1 ˆ t0, 1u as objects and morphisms pr, iq Ñ ps, jq if and only if either

• i “ j and r ď s,

• i “ 0, j “ 1 and αprq ď s,

• i “ 1, j “ 0 and βprq ď s.

Composition in IpT 1, α, βq is defined by the requirement that between any two objects, there is at
most one morphisms (i.e. the category is thin). We can include T 1 in IpT 1, α, βq in two ways, namely
Ei : T

1 Ñ T 1 ˆ tiu via the identity on T 1 for i P t0, 1u. Given tow functors F,G : T 1 Ñ C, an
pα, βq-interleaving is a functorZ : IpT 1, alpha, βq such that

F “ Z ˝ E0 andG “ Z ˝ E1.

Again restricting to the special case of δ-shifts, if F,G are prδs, rδsq-interleaved, we say they are δ
interleaved, for short. In the one-parameter setting, a δ-interleaving amounts to saying that there are
natural transformations

f : F Ñ Grδs, g : G Ñ F rδs

such that
grδs ˝ f “ φ2δ

F and f rδs ˝ g “ φ2δ
G .

Moreover, look back at Diagram 2.1, which we can now interpret as a functor from the interleaving
category Ipr0,8r, rδs, rδs. With this at hand, we can define a distance:
Definition 2.2.13. Let F,G : T Ñ C. Their interleaving distance is

dIpF,Gq “ inftδ ą 0: F,G are δ-interleavedu.

Observe that in case of f, g being mutually inverse isomorphisms, one obtains an interleaving
distance of 0. Thus, one can intuitively think of this distance as measuring how far from isomorphic
two functors are, although there is a caveat: While this construction is symmetric and satisfies the
triangle inequality (because the composition of a δ-shift with an ε-shift is a pδ ` εq-shift), there can
be non-isomorphic filtrations at interleaving distance zero. For instance, if we replacee closed by open
balls in the offset filtration, we get a different filtration which is δ-interleaved with the original one
for every δ ą 0. We saw an example of an interleaving in diagram (2.1): the union of closed r-balls
aroundX is contained in the union of closed pr ` δq-balls around Y when δ ą dHpX,Y q. As the
offset filtration is weakly equivalent to the Čech filtration, the next definition arises naturally:
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2.2 Filtered Spaces and Complexes

Definition 2.2.14 ([27, Definition 2.37]). LetF,G : Rd Ñ Top. Their homotopy interleaving distance
is

dHIpF,Gq “ inftδ ą 0: DF 1 » F, G1 » G such that F 1, G1 are δ ´ interleavedu,

where » denotes a weak equivalence of functors T Ñ Top (Definition 2.2.9).

The following kind of Lipschitz-continuity is a prototypical example of what is called a stability
result in TDA literature. We put all the effort in phrasing the preceding constructions in the language
of category theory so that the proof is now very easy.

Proposition 2.2.15. LetX be a topological space or a simplicial complex, let f, g : X Ñ T be functions
(monotonic3 ones, ifX is a simplicial complex). Then

dIpSÓpfq,SÓpgqq ď sup
xPX

}fpxq ´ gpxq}8.

Proof. By assumption, we have inclusions

SÓpfq ãÑ SÓpgqrδs, SÓpgq ãÑ SÓpfqrδs.

Indeed, if fpxq ď t then gpxq ď t ` δ in the one-parameter case and gpxq ď t ` p´δ, δqJ in
the two-parameter case (and analogously for the roles of f and g exchanged). As the interleaving
maps are inclusions, they compose to form the structural inclusions; explicitly, the following diagrams
commute:

tfpxq ď tu tgpxq ď t` δu

tfpxq ď t` 2δu

tgpxq ď tu tfpxq ď t` δu

tgpxq ď t` 2δu

,

where in the two-parameter setting, ď is understood as the product partial order and we use shorthand
notation δ :“ p´δ, δq.

This stability result of sublevel filtrations goes back to [52].

2.2.2 One-Parameter Filtrations

We are now going to give more examples of filtrations that appear later on in this thesis.
First, recall that taking the sublevel sets of a distance to a point cloud yields the offset filtration

(Definition 2.2.1), a union of balls:
OpXq “ SÓpdXq.

Hence, given two finite subsetsX,Y Ă Rd, Proposition 2.2.15 yields the inequality in the following
line,

dIpOpXq,OpY qq ď sup
zPRd

|dXpzq ´ dY pzq| “ dHpX,Y q,

3with respect to the partial orders, given by inclusion of simplices in the complex on the domain, and by the cartesian
product of the ď-orders on the codomain
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whereas the equality is the very definition of the Hausdorff distance (Definition 2.1.1). This estimate is
a rigorous way to say that small perturbations in the input point clouds only lead to small perturbations
in the offset filtration.

For computations, it is beneficial to further reduce the size of the complex. To this end, one
introduces a classical notion from computational geometry, the Voronoi tesselation.

Definition 2.2.16. Let X Ă Rd be a finite subset of Euclidean space. The Voronoi cell of a point
x P X is

VorXpxq “ ty P Rd : @x ‰ x1 P X : dpx, yq ď dpx1, yqu.

In words, the Voronoi cell of x consists of those points for which there is no other point inX that
is closer.

Definition 2.2.17. LetX Ă Rd be a finite subset of Euclidean space. The Alpha complex [68] ApXqr

ofX has simplices (we do not have to impose an additional finiteness condition asX is already finite)

X Ě σ P ApXqr ô
č

xPσ

`

Brpxq X VorXpxq
˘

‰ H;

this gives rise to a filtration ApXq : r0,8rÑ Simp.

Again, an application of the nerve theorem shows that

|ApXqr| »
ď

xPX

`

Brpxq X VorXpxq
˘

“
ď

xPX

Brpxq » |CpXqr|;

and again this is not just for fixed r but an equivalence of filtrations.
As a consequence, we obtain stability of Čech and Alpha filtrations in the homotopy interleaving

distance: IfX,Y Ă Rd are finite subsets, we have

dHIpCpXq, CpY qq ď dHpX,Y q and dHIpApXq,ApY qq ď dHpX,Y q.

A second important recipe for constructing simplicial complexes are flag complexes also known as
clique complexes.

Definition 2.2.18. LetG “ pV,Eq be a graph. Its clique complex has k-simplices equal to the k ` 1
cliques (i.e. complete subgraphs) ofG.

Definition 2.2.19. A simplicial complex is a flag complex if it is the clique complex of its 1-skeleton.

Definition 2.2.20. Let pX, dq be a metric space. Its Vietoris-Rips complex is the abstract simplicial
complex RpXqr with simplices

X Ě σ “ rx0, . . . xks P RpXqr ô dpxi, xjq ď r;

this gives rise to a functor RpXq : r0,8rÑ Simp.

IfX Ď Rd is a finite subset, one easily observes the following relation between Čech and Vietoris-
Rips complexes:

CpXqr Ď RpXq2r, V RpXqr Ď CpXqr;
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(a) Čech

VorpXq

(b) Alpha (c) Vietoris-Rips

Figure 2.3: Three different constructions of filtered simplicial complexes with a fixed sample as vertex set: Čech
and Alpha at scale r, and Vietoris-Rips at scale 2r (from left to right). Observe how Alpha and Čech
capture the topology of the union of balls, which is the offset filtration.

indeed there are even stronger, dimension-dependent, bounds known [58, Theorem 2.5]. The above
inclusions constitute the first instance (in this thesis) of an interleaving for which the shifts are not
just given by δ-shifts.

While we cannot simply appeal to the nerve theorem, Vietoris-Rips complexes still satisfy a stability
theorem:

Theorem 2.2.21 ([25, 43]). For finite metric spacesX,Y , we have

dHIpRpXq,RpY qq ď dGHpX,Y q.

Example 2.2.22. Figure 2.3 illustrates Čech and Alpha (at a common filtration value r) and Rips (at
scale 2r) complexes drawn in brown on a fixed point cloud. Observe their differences: The left triangle
is filled in the Rips complex, because it is a flag complex complex and all the sides are present. The
three sides are also present in the Alpha and Čech complexes, because the intersection of the r-balls is
non-empty and even meets the Voronoi edge. However, there is no threefold intersection among the
three balls on the left, whence that triangle is missing here. There is a filled triangle on the right in the
Rips complex. This is also filled in the Čech complex because the r balls not just intersect pairwise, but
there is actually a non-empty triple intersection. However, this triple intersection does not meet the
Voronoi diagram; neither does the intersection of the top and the bottom ball. Therefore, the Alpha
complex is a proper subcomplex of the Čech complex, missing the rightmost edge and the 2-simplex.
Note that Alpha and Čech complex are, of course, homotopy equivalent.

The third prototypical construction of simplicial complexes is due to Dowker [65].

Definition 2.2.23. Given two sets X,Y , a relation R Ď X ˆ Y is a subset of the product. The
category Rel has triples pX,Y,Rq as objects, whereR Ď X ˆ Y . Its morphisms are

f “ pfX , fY q : pX,Y,Rq Ñ pX 1, Y 1, R1q,

where fX : X Ñ X 1 and fY : Y Ñ Y 1 are maps such that px, yq P R implies pfXpxq, fY pyqq P R1.
Composition is defined component-wise.

We will usually identify a relation with its indicator matrix, which is a binary matrix with row labels
given byX and column labels Y . The entry at px, yq is 1 if px, yq P R and 0 otherwise.
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¨

˚

˚

˝

XzY α β γ δ ε

a 1 1 0 0 1
b 1 0 0 1 1
c 1 0 1 1 0
d 0 1 1 0 0

˛

‹

‹

‚

R

d

a

b

c

DpX,Y,Rq

»

ε

βγ

δ

α

DpY,X,RT q

Figure 2.4: The indicator matrix representing a binary relationR (left); its Dowker complexDpX,Y,Rq, whose
vertices are the row labels (middle); and the Dowker complex of the dual relation DpY,X,RJq,
which has the same homotopy type.

Definition 2.2.24. LetX,Y be sets andR Ď XˆY a relation. The Dowker complex of the relation is
the abstract simplicial complex DpX,Y,Rq whose simplices are the nonempty finite subsets σ Ď X
that satisfy

Dy P Y : σ ˆ tyu Ď R.

If σ ˆ tyu Ď R, we say y is a witness of (or: witnesses) σ.
Definition 2.2.25. LetR Ď X ˆ Y be a relation; we denote byRJ Ď pY,Xq its transpose, that is,

py, xq P RJ ô px, yq P R.

If f “ pfX , fY q : pX,Y,Rq Ñ pX 1, Y 1, R1q is a map, we get a transposed map

fJ “ pfY , fXq : pY,X,RJq Ñ pY 1, X 1, pR1qJq.

Taking the transpose of the indicator matrix of a relationR, we obtain the corresponding matrix
representing the transpose relation.

The following theorem is originally due to Dowker [65], who proved it only in terms of homology
equivalences; the version here pertaining to homotopy equivalences is due to Björner [23, Theorem
10.9].

Theorem 2.2.26 (Dowker duality). LetR Ď X ˆ Y be a relation and denote byRJ Ď Y ˆX its
transpose. Then we have a homotopy equivalence

|DpX,Y,Rq| » |DpY,X,RJq|.

Example 2.2.27. Consider X “ ta, b, c, du, Y “ tα, β, γ, δ, εu and R Ď X ˆ Y , which we
equivalently represent as a binary matrixR P t0, 1uXˆY as indicated in Figure 2.4, left panel. The
definition of the Dowker complex unfolds as follows: We build a simplicial complex on the vertex set
X , in which we add a simplex σ Ď X if there is a column y P Y which contains σ; for instance, we
introduce the simplex ta, b, cu as it is contained in column α. This Dowker complex DpX,Y,Rq is
shown in the middle panel of Figure 2.4. On the other hand, the Dowker complex of the transpose
relation, shown on the right in Figure 2.4, has verticesY . For instance we introduce the simplex tα, δu

because it is contained in row b; it is also in row c, but in no other row. In other words, the rows b
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2.2 Filtered Spaces and Complexes

and c are witnesses of the simplex tα, δu. Observe that DpX,Y,Rq and DpY,X,RJq are homotopy
equivalent.

Recently, motivated by persistent homology as an invariant of filtered complexes, functorial ex-
tensions of Dowker duality have been established, starting from [50], then later [156] and recently
[37].

Proposition 2.2.28 ([37, Theorem 5.2]). Dowker complexes and Dowker Duality are functorial in
the following sense: Any morphism of relations f “ pfX , fY q : pX,Y,Rq Ñ pX 1, Y 1, R1q induces
a simplicial map Dpfq : DpX,Y,Rq Ñ DpX 1, Y 1, R1q; these assemble into a functor D : Rel Ñ

Simp. In addition, one can choose homotopy equivalences

ΨR : |DpX,Y,Rq| Ñ |DpY,X,RJq|, ΨR1 : |DpX 1, Y 1, R1q| Ñ |DpY 1, X 1, pR1qJq|

such that the following diagram commutes up to homotopy:

|DpX,Y,Rq| |DpY,X,RJq|

|DpX 1, Y 1, R1q| |DpY 1, X 1, pR1qJq|

ΨR

|Dpfq| |DpfJq|

ΨR1

In particular, a filtration of relations gives rise to a filtration of Dowker complexes in a way compatible
with Dowker duality. The focus for us will be on relations that arise as sublevel sets of some function,
i.e.

Rr “ tpx, yq : Λpx, yq ď ru, where Λ: X ˆ Y Ñ r0,8r.

The most important example is X,Y being subsets of some metric space pZ, dq and Λ “ d|XˆY

being the restriction of the metric. Taking Y “ Z in this setting recovers the Čech complex ofX .

Example 2.2.29. We can view the Čech complex of some finite subsetX of an ambient metric space
pZ, dq as Dowker complex via CpXqr “ DpX,Z,Rrq. Indeed, let us check that they have the same
simplices:

σ P DpX,Z,Rrq ô Dz P Z : px, zq P Rr for all x P σ

ô Dz P Z : dpx, zq ď r for all x P σ

ô Dz P Z : z P Brpxq for all x P σ

ô
č

xPσ

Brpxq ‰ H

ô σ P CpXqr.

Inspecting Figure 2.3a, we observe that the set of witnesses of a k-simplex is the intersection of the
r-balls around the corresponding k ` 1 points. We will impose the mass of these intersections as a
second filtration parameter in chapter 7.

Similarly, for a finite metric space pX, dq, the intrinsic Čech complex is the Dowker complex
IpXqr “ DpX,X,Rrq, see for instance [36].
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A stability result for Dowker complexes is given in [45, Lemma 4.9]; it recovers Čech stability in the
previous example.

While the constructions presented thus far capture metric information, they are not robust to
outliers and insensitive with respect to density of the underlying point cloud. One way to remedy this
is the via the distance-to-measure (DTM) filtration [5].

Definition 2.2.30. LetX Ď Rd be a finite set with associated empirical measure µX ; letm Ps0, 1r a
parameter. The distance to measure µX with parameterm is the function

dµX ,m : Rd Ñ r0,8r,

dµX ,mpzq “

g

f

f

e

1

rm|X|s

ÿ

pPNNrm|X|s

C pzq

}p´ z}22,

where NNrm|X|s

X pzq denotes the rm|X|s nearest neighbors of z inX .
In words, the distance to measure is an averaged distance to the nearest data points. We use this

function to, intuitively speaking, let the balls around the data points grow faster in high density regions.
Definition 2.2.31. LetX,µX andm as before, let x P X . Consider the function

rx : r0,8rÑ r0,8r, rxptq “ t´ dµX ,mpxq,

The weighted Rips complex VpX,mqt at scale t is the clique complex of the graph GpX,mqt “

pVt, Etq, with vertices and edges given by

Vt “ tx P X : rxptq ě 0u,

Et “ ttx, yu : rxptq ` ryptq ě 2}x´ y}2u.

Again, increasing t turns the weighted Rips complexes into a filtration. Therein, a point only
appears once t surpasses the average distance of the point to its rm|X|s nearest neighbors. Outliers
and points in low density regions thus appear only later in the filtration. Note that this construction
depends on a suitable choice of the parameterm. In the spirit of persistence, the question arises what
happens if we letm increase from 0 to 1 instead of fixing it.

2.2.3 Two-Parameter Filtrations

We have seen that while the one-parameter filtrations presented here are stable in the sense that they do
not change much under small perturbations of the input data in terms of the (Gromov-)Hausdorff
distance, they have certain shortcomings: They are insensitive to the density of the data, and in
particular are not robust to the presence of outliers. Trying to account for density in one-parameter
filtrations leads to the introduction of a new parameter which controls the mass. Instead of fixing
such a parameter, we now want to study the situation in which this turned into a second filtration
parameter. See [33] for a survey of ideas in this direction; most material of this subsection is adapted
from [27] and Michael Lesnick’s lecture notes [107].

Recall the example of the offset filtration OpXq associated to a finite set of pointsX Ď Rd, which
is given by a union of r-balls centered at elements ofX (Definition 2.2.1). In high density regions,
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MpXqm,r

r “
?
2{2

m “ 1 m “ 2 m “ 3 m “ 4

Ď Ď Ď Ď

Ě Ě Ě H

r “ 1 Ě Ě Ě

Figure 2.5: The multicover filtration of a covering by closed r-balls centered a four points in the Euclidean
plane.

where many points of X are close together, we would intuitively expect a point z P OpXqr to be
covered by a lot of such balls, whereas in low density regions it would perhaps only be covered by a
single one. However, the homotopy type of OpXqr (or, equivalently, the Čech filtration CpXqr) is
insensitive to this multiplicity of coverings. In fact, ifX is not a subset, but a multiset (repeating data
points in a sample are not unheard of in practice), one would like to adapt the definition of the offset
filtration to account for this fact. This motivates the following definition:

Definition 2.2.32 ([143]). Let Z be a topological space and let U be a cover (which may contain
repeated elements), define the multicover filtration of U as

MpUq : s0,8rop Ñ Top,

MpUqm “ tz P Z : z is contained in at leastm elements of the cover Uu.

IfX is a finite subset of an ambient metric space pZ, dq, the multicover bifiltration of X is, at fixed
scale r, the multicover filtration induced by the covering given by closed r-balls:

MpXq : s0,8ropˆr0,8r Ñ Top,

MpXqm,r “ tz P Z : dpz, xq ď r for at leastm elements x P Xu.

Example 2.2.33. Consider X to be the four points tp0, 0q, p´1, 0q, p12 ,
?
3
2 q, p´1

2 ,
?
3
2 qu in the

Euclidean plane depicted in Figure 2.5 and let us look at its multicover bifiltration. In the top row, we
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2 Background

fix r “ 1 and in the bottom row, we fix r “
?
2{2. The multicover bifiltration ofX restricted to r in

the second parameter is equivalently given by the multicover filtration of the covering by closed r-balls.
At givenm it contains those points in R2 within distance r of at leastm points ofX . The leftmost
columns showsm “ 1; this restriction of the multicover bifiltration is just the offset filtration. Then
for m “ 2 in the second column, we get all the points covered by at least two r-balls. In the third
column, whenm “ 3, we obtain the threefold intersection of the balls, which consists of all points
that are within distance r of three points in X . Finally, in the rightmost column, we have m “ 4,
which is empty for r “

?
2{2 and consists of just a single point for r “ 1. Note that the data points

themselves do not belong to the multicover bifiltration for every pair of parameters.

The key idea to account for multiplicities in X is to consider the associated counting measure
µx “

ř

xPX δx. If a point x P X now repeats Mx times, we can simply look at the measure
ř

xPXMxδx. With this in mind, we recast the multicover bifiltration of a finite set of pointsX as

MpXqm,r “ tz P Z : dpz, xq ď r for at leastm elements x P Xu

“ tz P Z : |X XBrpzq| ě mu

“ tz P Z : µXpBrpzqq ě mu.

Thus, the multicover bifiltration naturally generalizes to arbitrary measures as follows:

Definition 2.2.34 ([27]). Let pZ, dq be a Polish space and µ be a Borel measure on it. The measure
bifiltration is

Bpµq : s0,8ropˆr0,8r Ñ Top,

Bpµqm,r “ tz P Z : µpBrpzqq ě mu.

In particular, this bifiltration handles points with multiplicities as described above. This general
formulation is useful to prove stability and robustness results (as we shall see later on), but not for
computations. Just like the offset filtration admits a combinatorial model in form of the Čech filtration,
the multicover filtration is weakly equivalent to the so-called subdivision Čech bifiltration [27, Theorem
3.3 (i)]. This is defined as follows:

Definition 2.2.35 ([143]). Let K be any simplicial complex and denote its barycentric subdivision
by SdpKq. A k-simplex in SdpKq is given by an ascending chain σ0 Ĺ . . . Ĺ σk (called a flag) of
simplices inK . The subdivision filtration SpKq at indexm is given by the complex whose simplices
are flags in which the minimal dimension is at leastm´ 1,

SpKq : s0,8rop Ñ Simp,

SpKqm “ tpσ0 Ĺ . . . Ĺ σkq : dimpσ0q ě m´ 1u Ď SdpKq;

where Simp is the category of abstract simplicial complexes and simplicial maps.
Let pZ, dq be a Polish space andX a finite subset. The subdivision Čech bifiltration is

SCpXq : s0,8ropˆr0,8r Ñ Simp,

SCpXqm,r “ SpCpXqrqm.
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2.2 Filtered Spaces and Complexes

LetX be a finite metric space. Its subdivision Rips bifiltration is

SRpXq : s0,8ropˆr0,8r Ñ Simp,

SRpXqm,r “ SpRpXqrqm.

The equivalence between multicover and subdivision bifiltrations for good metric spaces is estab-
lished by the following theorem, whose statement is rather technical – see [27, section 4] for a more
thorough discussion. We are going to need it in Chapter 7, hence it we state it for the sake of being
self-contained. Recall that T denotes a small category associated to a poset, as described at the start of
Section 2.2.1.

Theorem 2.2.36 (Multicover Nerve Theorem, [143], [41],[27, Theorem 4.12 and Remark 4.13]; see also
[14]). Given a filtrationF : T Ñ Top of compactly generated spaces, suppose we have a setU of functors
T Ñ Top such that

i) for every t P T , the set tUt : U P Uu is a closed cover of Ft such that every finite non-empty intersec-
tion is weakly homotopy equivalent to a point and satisfying the conditions i)-iii) of Theorem 2.2.5,

ii) for everyU P U and every s ď t P T , the mapUsďt is the restriction of Fsďt toUs.

Then we have a weak equivalence of filtrations MpUq » |SpNrvpUqq|, where

MpUq, |SpNrvpUqq| : s0,8ropˆT Ñ Top,

MpUq : pm, tq ÞÑ MptUt : U P Uuqm,

|SpNrvpUqq| : pm, tq ÞÑ |SpNrvptUt : U P Uuqqm|.

As an example, note that for a finite setX Ď Rd, the offset filtration OpXq can be taken as F in
the theorem. In this setting, the set of functors giving covers is indexed by the poset r0,8r and we
have U “ tB‚pxquxPX , where

B‚pxq : r0,8rÑ Top, r ÞÑ Brpxq.

Let us illustrate this by continuing Example 2.2.33.

Example 2.2.37. Recall the setting of Example 2.2.33, in which we described the multicover filtration
of a set of four points in the Euclidean plane. We repeat a part of that picture in the top half of
Figure 2.6. A combintorial model is given by the subdivision Čech bifiltration, which is shown in the
bottom row.

However, due to the appearance of barycentric subdivisions, these complexes are usually intractable
for use in computations. Instead, one often considers the following subcomplexes of the Rips filtration,
although there are other options like the rhomboid bifiltration [54, 71], which is equivalent to the
multicover bifiltration in Euclidean space, but computationally much less expensive.
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MpXqm,
?
2{2

SCpXqm,
?
2{2

m “ 1 m “ 2 m “ 3

Ě Ě

» » »

Ě Ě

Figure 2.6: Four pointsX in the Euclidean plane with a portion of its multicover bifiltration and the equivalent
subdivision Čech bifiltration for a fixed value of r.

Definition 2.2.38 ([109]). Let pZ, dq be a Polish space and µ be a Borel probability measure on it. The
degree Rips bifiltration is

DRpZ, µq : s0,8ropˆr0,8r Ñ Simp,

DRpZ, µqm,r “ RpBpµqm,rqr.

That is, at each stage pm, rq, we evaluate the measure bifiltration and take the resulting metric
subspace as an input for the Rips complex. The name comes from the fact that for µ “ µX “
ř

xPX δx being the counting measure of a finite metric spaceX , the set BpµXqm,r is precisely the set
of vertices in RpXqr of degree ě m´ 1.

Our next aim is to describe the stability of bifiltrations in analogy to the stability of one-parameter
filtrations. Recall that the Hausdorff distance is appropriate to measure distances between point clouds
in the one-parameter setting. In the two-parameter setting, we are going to use the Prokhorov distance
(Definition 2.1.6), which can be thought of as a density-sensitive analogue of the Hausdorff distance.
Therefore, we wish to regard the input data as a probability measure. While the measure bifiltration is
built to handle general measures, the other bifiltrations are defined more combinatorially and hence
need to be modified. To motivate this modification, recall that the measure bifiltration of a counting
measure of a finite set of pointsX in Rd is the same as its multicover bifiltration, MpXq “ BpµXq.
Recall furthermore that the empirical probability measure associated toX is obtained by normalizing
the counting measure, νX “ 1

|X|
µX . Thus, for any m ą 0 and any Borel set A Ă Rd, we have

νXpAq ě m ô µXpAq ě |X|m and thus BpνXqm,r “ MpXq|X|m,r for any r ě 0. In this vein,
we introduce normalized bifiltrations.
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2.2 Filtered Spaces and Complexes

Definition 2.2.39. For a non-empty finite metric space pX, dq, define the following normalized
bifiltrations

MnpXq : s0,8ropˆr0,8r Ñ Top,

SRnpXq : s0,8ropˆr0,8r Ñ Simp.

• The normalized multicover bifiltration is given by MnpXqm,r :“ MpXq|X|m,r,

• the normalized subdivision Rips bifiltration is given by SRnpXqm,r :“ SRpXq|X|m,r,

Analogously, for a finite simplicial complex K , its normalized subdivision filtration is given by
SnpKqm “ SpKq|K0|m.

As an example of a stability result which unites topological and probabilistic information, let
us consider the situation of the measure bifiltration (Def. 2.2.34) in detail. The result below is
a generalization of the Prokhorov stability in Theorem 1.6 of [27], which is recovered by setting
ε “ dPr. An equivalent result was known to the experts, but not published before4.

Roughly speaking, the theorem says that if we want a small deviation in distance direction, we lose
control over the deviation in measure direction (and vice versa).

Theorem 2.2.40. Let ε ą 0, let µ, η be probability measures on a common metric space pX, dq. For
any ε ą 0, consider the forward shift

αε : s0,8ropˆr0,8rÑs0,8ropˆr0,8r, pm, rq ÞÑ pm´ Πpεq, r ` εq

where Π “ Πµ,η denotes the Prokhorov profile (Definition 2.1.5). The measure bifiltrations Bpµq,Bpηq

are pαε, αεq-interleaved, i.e. for all k, r ą 0,

Bpµqm,r Ď Bpηqm´Πpεq,r`ε and Bpηqm,r Ď Bpµqm´Πpεq,r`ε

Proof. Let γ be a coupling (Definition 2.1.4) between µ and η. Let x P Bpµqm,r, then

m ď µpBrpxqq “ γpBrpxq ˆXq “ γpBrpxq ˆBr`εpxqq `γpBrpxq ˆ pXzBr`εpxqqq. (2.2)

We want to show that x P Bpηqm´Πpεq,r`ε, in other words, ηpBr`εpxqq ě m´Πpεq. First, we use
additivity of the measures to rewrite and then we use the assumption on x to estimate

ηpBr`εpxqq “ γpX ˆBr`εpxqq

“ γpBrpxq ˆBr`εpxqq ` γppXzBrpxqq ˆBr`εpxqq

p2.2q

ě m´ γpBrpxq ˆ pXzBr`εpxqqq.

It remains to observe that for x1 P Brpxq and x2 P XzBr`εpxq, their distance is lower bounded as
dpx1, x2q ą ε. Indeed, the triangle inequality implies

dpx1, x2q ě dpx, x2q ´ dpx, x1q ą r ` ε´ r “ ε.

4Michael Lesnick, personal communication
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Consequently, we can estimate

γpBrpxq ˆ pXzBr`εpxqqq ď γptpx1, x2q P X ˆX : dpx1, x2q ą εuq.

As γ was arbitrary, going to the infimum yields the desired bound

ηpBr`εpxqq ě m´ Πpεq.

A symmetric argument, interchanging the roles of µ and η, completes the proof.

Moreover, one has homotopy interleavings of filtered simplicial complexes as follows:

Theorem 2.2.41 ([27, Theorem 1.6 iii)]). LetX1, X2 be two non-empty finite metric spaces endowed
with their empirical probability measures ν1, ν2. Then5

dHIpSRnpX1q‚,2‚,SRnpX2q‚,2‚q ď dGPrpν1, ν2q.

Theorem 2.2.42 ([142, Theorem 6.5.1], [27, Theorem 1.7]). For any metric probability spaces pX1, d1, µ1q,
pX2, d2, µ2q, we have

dHIpDRpX1, d1, µ1q,DRpX2, d2, µ2qq ď dGHPrppX1, d1, µ1q, pX2, d2, µ2qq;

moreover, for any δ ą dGPrpµ1, µ2q, we have a homotopy-interleaving with respect to the forward-shift
pm, rq Ñ pm´ δ, 3r ` δq

Since the bound in Theorem 2.2.41 is with respect to Gromov-Prokhorov, we can interpret it as
ascertaining that subdivision-Rips is robust (cf. [27, Remark 2.16]). The degree-Rips bifiltration only
satisfies a weaker robustness result (with a multiplicative factor of 3). Moreover, we can interpret
the appearance of the Hausdorff distance as DR being more easily affected by metric perturbations.
This presents a trade-off between computability and robustness; in order to make progress towards
avoiding it we will propose a new bifiltration in Chapter 7.

2.3 Persistent Homology

So far, we have gathered a collection of filtered spaces and complexes, which we regard as functors
from a suitable poset T “ r0,8r or s0,8rop or s0,8ropˆr0,8r. We can compose such a functor
with (ordinary) homology, one of the classical functorial invariants of algebraic topology. To this end,
we fix a field k for the remainder of this thesis. Usually, in computations k “ Z{p, with p “ 2 the
most frequent choice. For the sake of simplicity, we will not consider homology with coefficients in
rings which are not fields in this thesis. Let us remind the reader of the classical definitions of singular
and simplicial chain complexes and their homology.

5Recall that the definitions of the Vietoris–Rips complex of [27] and ours differ by a factor of two.
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Definition 2.3.1. A chain complex C‚ “ ptCiuiPZ, Bq consists of a family of k-vector spaces tCiuiPZ
together with linear maps Bi “ Bi : Ci Ñ Ci´1, called boundary maps or differentials, such that
Bi ˝ Bi`1 “ 0. The ith homology of the chain complexC is the quotient vector space

HipCq “
kerpBiq

impBi`1q
.

A chain map f : pC, BCq Ñ pD, BDq is a sequence of linear maps

fi : Ci Ñ Di such that BDi ˝ fi “ fi´1 ˝ BCi .

This compatibility with boundary maps ensures that there is a well defined induced map in homology,

f̄i : HipCq Ñ HipDq x` impBCi`1q ÞÑ fipxq ` impBDi`1q.

It has been the successful story of algebraic topology to associate algebraic invariants to topological
spaces in a functorial way, with singular homology being a prime example.

Definition 2.3.2. Let X be a topological space. Recall that |∆d| Ă Rd`1 denotes the geometric
d-simplex. We construct the singular chain complex Csing‚ pXq via taking

Csingi pXq “ ktσ : |∆i|ÑXcontinuousu,

i.e. the free k-vector space generated by all continuous maps |∆i| Ñ X . Next, we define the boundary
maps on basis elements σ : |∆i| Ñ X by giving the values as linear combinations of basis elements
|∆i´1| Ñ X . To this end, consider the face map

F ji : |∆i´1| Ñ |∆i|,

px1, . . . , xiq
J ÞÑ px1, . . . , xj´1, 0, xj , . . . , xiq

J,

for 0 ď j ď i. Put differently, say σ has vertices rv1, . . . , vi`1s, where vj is the image of the jth stan-
dard basis vector inRi`1 under the mapσ. Thenσ˝F ji has the vertices rv1, . . . , vj´1, vj`1, . . . , vis;
that is, the jth face is given by leaving out the jth vertex. Now, the boundary map is defined via its
values on basis elements σ : |∆i| Ñ X as

B
sing
i : Csingi pXq Ñ Csingi´1 pXq,

B
sing
i pσq “

i
ÿ

j“0

p´1qjσ ˝ F ji .

A crucial feature of this construction is its functoriality, a continuous map f : X Ñ X 1 induces a
chain map

Csingi pfq : Csingi pXq Ñ Csingi pX 1q, σ ÞÑ f ˝ σ.
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It is straight-forward to check that this assignment commutes with the differentials. The homology
of this chain complexCsing‚ is known as the singular homology ofX with coefficients in k. We thus
obtain a family of functors

Hsing
i p¨, kq : Top Ñ kVect.

Intuitively, non-trivial ith homology of X means, that there is a way to map the boundary of an
pi ` 1q-simplex into X in such a way that it cannot be filled in. In this sense, the dimension of
Hsing
i pX, kq, called the ith Betti number, counts how many i-dimensional “holes” there are inX .

In the context of computations, one is faced with the problem that the singular chain complex is
verly large. Similar in spirit to how we introduced combinatorial models like the Čech complex to
encode the topology of an equivalent, but uncountable, topological space, one considers a simpler
construction of homology for simplicial complexes.

Definition 2.3.3. LetK be a simplicial complex and fix a total order on its vertices. We construct the
associated simplicial chain complexC∆

‚ pKq by takingC∆
i pKq “ kK

piq , i.e. the vector space generated
by all i-simplices inK . Note that ifK is finite, this chain complex consists of finite-dimensional vector
spaces and thus the boundary maps can be viewed as matrices. Explicitly, the boundary maps are given
on basis elements as follows:

B∆
i : C∆

i pKq Ñ C∆
i´1pKq

B∆
i prv0, . . . , visq “

i
ÿ

j“0

p´1qjrv0, . . . , vj´1, vj`1, . . . , vis;

where we assume that the order of vertices respects the total order we fixed, v0 ă . . . ă vi. Note the
similarity to singular homology, we again take an alternating sum over the the faces leaving out one
vertex. Thinking in terms of matrices, B∆

1 is the incidence matrix of the 1-skeleton ofK as a directed
graph with edges oriented according to the total order on the vertices. In addition, this construction
enjoys functoriality as well; if f : K Ñ K 1 is a simplicial map, we define

C∆
i pKq Ñ C∆

i pK 1q, σ ÞÑ fpσq,

which commutes with differentials, as is easy to check. Thus, we get a family of functors

H∆
i p¨, kq : Simp Ñ kVect,

called the simplicial homology ofK with coefficients in k.

In the light of geometric realization (Definition 2.2.3), one might wonder about the relation between
Hsing
i p|K|, kq andH∆

i pK, kq. It famously turns out that they agree; therefore, we shall leave out the
superscript from the notation. In addition, we will usually also drop the field of coefficients since it is
fixed. By functoriality of homology, we obtain the following diagram:

T Ñ C
H˚
ÝÝÑ kvectfd,
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where T is again one of the posets r0,8r or s0,8rop or s0,8ropˆr0,8r, the category C is either
Top or Simp, k is our chosen field and kvectfd denotes the finite-dimensional vector spaces. Note
that having finite dimensional homology is a requirement on the functor T Ñ C, which will always
be satisfied in practice as we deal with finite data. To simplify notation, we will suppress the field and
only write H˚ for homology. The goal of this section is to describe the algebraic structure of such
functors.

2.3.1 Persistence Modules

Definition 2.3.4. Fix a field k. A persistence module (PM) M is a functor from a poset T to finite
dimensional k vector spaces6,

M : T Ñ kvectfd.

Here, kvectTfd denotes the functor category.

While it is easy to state this definition in the full generality of an arbitrary poset, we will only ever
use r0,8r or s0,8rop or s0,8ropˆr0,8r. More explicitly, a PMM consists of a finite dimensional
vector spaceMt for every t P T and maps

Msďt : Ms Ñ Mt for s ď t.

These transition maps respect composition in the following way:

Mrďt “ Msďt ˝Mrďs for r ď s ď t.

Maps of PMs are natural transformations. That means a map f : M Ñ N consists of components
ft : Mt Ñ Nt, which satisfy

ft ˝Msďt “ Nsďt ˝ fs for s ď t.

As a functor category whose codomain is abelian, kvectTfd itself is also abelian. Thus, we can talk
about (co)kernels, direct sums and so on. The notion of interleavings also makes sense for persistence
modules, hence we already know how to compare them. Functorialty of homology immediately turns
an interleaving of spaces or simplicial complexes into an interleaving of persistence modules. This
entails the following result:

Proposition 2.3.5. LetX,Y be two filtered spaces or simplical complexes. Then

dIpH˚pXq, H˚pY qq ď dIpX,Y q.

2.3.2 One-Parameter Modules

Let us turn to some concrete examples in the case of T “ r0,8r. A particularly simple and important
kind of persistence module can be defined as follows:

6Sometimes, this is called a pointwise finite dimensional persistence module, and one defines persistence modules without
the finite-dimensionality condition. However, we shall not need infinite-dimensional persistence modules in this thesis.
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Example 2.3.6. For an interval I Ď r0,8r consider the module kI built as follows:

pkIqt “

#

k if t P I,

0 otherwise,

pkIqsďt “

#

idk if s, t P I,

0 otherwise.
.

Here, k is again the fixed chosen field.
Definition 2.3.7. Modules of the shape of Example 2.3.6 are called interval modules.

Of course, persistence modules can be more complicated. However, interval modules form the
“building blocks” of persistence modules in the following precise sense:

Theorem 2.3.8 ([55]). LetM be a persistence module. Then there is a unique multiset of intervals IM
such that

M –
à

IPIM
kI.

In the context of persistent homology, we think of an interval as a topological feature that is present
in the filtration for some time.
Definition 2.3.9. The multiset of intervals IM in the decomposition in Theorem 2.3.8 is called the
barcode of the persistence moduleM . For an interval I P IM , we say bpIq :“ infpIq is its birth time
and dpIq :“ suppIq is its death time.

Such a barcode can be visualized via a persistence diagram.
Definition 2.3.10. A persistence diagram (PD) is multiset of points in pR Y t8uq2, consisting of

• points above the diagonal pb, dq, b ă d, each with finite multiplicity and

• each point on the diagonal ∆ “ tps, sq P R2u with countable multiplicity.

The convention to include diagonal points with infinite multiplicity will be useful for the construc-
tion of distances between persistence diagrams.

To obtain a PD from the above interval decomposition, collect the birth and death times of the
intervals

DgmpMq “ tpbpIq, dpIqq P pR Y t8uq2 : I P IMu;

add all the points on the diagonal with countable multiplicities. Off-diagonal points have finite
multiplicities since the persistence module is pointwise finite dimensional. We will freely identify
off-diagonal points in the diagram with the corresponding interval. Points close to the diagonal have a
short lifetime and are often regarded as noise.
Example 2.3.11. Consider the Vietoris-Rips complex of the point cloud tp0, 0q,p0, 4q,p1, 5q,p3, 4q,
p5, 2q,p3,´1qu shown in Figure 2.7. We work with pr0,8r,ďq as the underlying poset, but changes
in homology in dimensions 0 and 1 only happen at r P t0,

?
2,

?
5, 3,

?
10,

?
13, 4, 5u. For negative

filtration values, the simplical complex is empty. At filtration index r “ 0, the six points appear, giving
rise to intervals starting at 0 in the barcode and points with horizontal coordinate equal 0 in the PD
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Rips Filtration

r “ 0 r “
?
2 r “

?
5 r “ 3

r “
?
10 r “

?
13 r “ 4 r “ 5

Barcode Persistence Diagram

0
0

1

1

2

2

3

3

4

4

5

5

8

H0

H1

Figure 2.7: The Rips complex of a small point cloud and its persistent homology, which is represented by the
barcode or, equivalently, by the persistence diagram.

ofH0. The closest distance between two points is r “
?
2, at this point in the filtration p0, 4q and

p1, 5q become connected. As a consequence, we get an interval r0,
?
2r in the barcode (we exclude the

right endpoint because at r “
?
2 the component has already merged) and a point p0,

?
2q in the PD

ofH0. Similarly, merges happen at r P t
?
5, 3,

?
10,

?
13u, causing bars to end at these coordinates.

Then at r “ 4, a cycle is created. Thus, a new interval appears in the barcode. This cycle gets filled by
triangles at r “ 5, setting the right endpoint of the interval and giving rise to the point p4, 5q in the
persistence diagram. One connected component never vanishes and continues to exist forever, i.e. it
corresponds to an interval r0,8r. In the persistence diagram, we draw points with vertical coordinate
8 at the very top.

Distances and Stability

To compare persistence diagrams, we consider one-to-one correspondences between them. To take
care of different cardinalities of off-diagonal points and to get rid of noisy, short-lifetime points, we
allow them to be mapped to the diagonal. This explains the inclusion of the diagonal with infinite
multiplicity in the above definition.

Definition 2.3.12. A matching η between persistence diagrams X and Y is a bijection which fixes
all but finitely many diagonal points. The cardinality or size of a matching η, denoted by |η|, is the
number of points which are not fixed.

Definition 2.3.13. The bottleneck distance between two persistence diagramsX,Y is

W8pX,Y q “ inf
η : XÑY

suptdpx, ηpXqq : x P Xu,

where η ranges over all matchings.

33



2 Background

Bottleneck matching Wasserstein matching

0 01 12 23 34 45 5
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

Figure 2.8: Two different matchings realizingW8pX,Y q andW1pX,Y q, respectively.

Definition 2.3.14. Let 1 ď p ă 8. The p-Wasserstein distance between two persistence diagrams
X,Y is

WppX,Y q “ inf
η : XÑY

˜

ÿ

xPX

dpx, ηpxqqp

¸
1
p

,

where η ranges over all matchings.

The notation of Definition 2.3.14 has the advantage of being compact, but note that the summation
index ranges over an uncountable set. Although usually, only finitely many, namely |η| for the optimal
matching η, will be non-zero. Similarly, also only finitely many elements of the uncountable set of
which we take the supremum in Definition 2.3.13 are non-zero. If there are points in the persistence
diagram with non-finite death coordinates, they are treated according to the formula

dppb1,8q, pb2,8qq :“ |b1 ´ b2|.

In particular, Wasserstein and Bottleneck distance are infinite if the number of infinite bars in the
barcodesX andY disagrees. For the metricd onR2, one usually chooses one induced by a q-norm}¨}q ,
common choices include q “ 1, 2,8 and in particular q “ p in the context ofWp.

Example 2.3.15. Consider the two persistence diagramsX “ tp1, 16q, p4, 14qu andY “ tp3, 11q, p4, 14qu.
In Figure 2.8, we showX with blue symbols, and Y with red s. Using } ¨ }8 on the plane R2,
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2.3 Persistent Homology

let us work out the matchings realising Bottleneck and 1-Wasserstein distances. In the left panel, we
indicate the optimal bottleneck matching η8 : X Ñ Y ,

η8 : p1, 16q ÞÑ p4, 14q; p4, 14q ÞÑ p3, 11q.

The bottleneck distance is thus computed as

W8pX,Y q “ suptmaxt3, 2u,maxt1, 3uu “ 3.

However, this matching has 1-Wasserstein cost 3`3 “ 6, which is suboptimal. Indeed, the Wasserstein
distanceW1pX,Y q “ 5 is realized by the matching η1 : X Ñ Y , which is shown in the right panel
and maps

η1 : p1, 16q ÞÑ p3, 11q; p4, 14q ÞÑ p4, 14q.

Definition 2.3.16. Letp ě 1. We say a persistence diagramX has finite pth moment, if thep-Wasserstein
distance to the empty diagram is finite: WppX,Hq ă 8.

Except from section 3.3.2, the persistence diagrams in this thesis are assumed to have finitely many
off-diagonal points. Therefore, the infima in definitions 2.3.13 and 2.3.14 are actually minima.

Notice the analogy between Definitions 2.1.8 and 2.3.14. We replace probability measures by
counting measures and hence turn the integral into a sum. The infimum is taken over all matchings
instead of all couplings. This observation will serve as a blueprint for the construction of the discrete
Prokhorov metric for persistence diagrams in Section 3.3.

It turns out the bottleneck distance, defined in computational-geometric terms, is intimately related
to the interleaving distance. This was established by [16], whose exposition we follow here.

Definition 2.3.17. Let δ ą 0. Recall the notion of the δ-shift endofunctor ´rδs : kvect
r0,8r

fd Ñ

kvect
r0,8r

fd on an objectM to be the PM with

M rδst “ Mt`δ, M rδssďt “ Ms`δďt`δ,

and on morphisms f : M Ñ N to be

f rδs : M rδs Ñ N rδs, f rδst “ ft`δ.

One readily checks that identity and composition are respected.

Definition 2.3.18. Let δ ą 0. A PMM is called δ-trivial if the canonical shift mapφδM : M Ñ M rδs

is the zero map.

The insight of Bauer and Lesnick [16] is the following equivalent characterisation of the interleaving
distance.

Theorem 2.3.19. LetM,N PMs, let δ ą 0. The modulesM,N are δ-interleaved if and only if there
is a map f : M Ñ N rδs such that kerpfq and coker f are 2δ-trivial.

As a consequence, they were able to re-prove the following isometry theorem, which states that the
bottleneck distance of the diagrams agrees with the interleaving distance of the modules:
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2 Background

Theorem 2.3.20. W8pDgmpMq,DgmpNqq “ dIpM,Nq.

Versions of this theorem were already known previously [43]. While the interleaving distance is
NP-hard to compute in general [22], the bottleneck distance can be efficiently calculated by combining
a binary search with a maximum cardinality unweighted bipartite matching algorithm [72, 100].
Hence, bottleneck distances are an efficient way to compare one-parameter persistence modules. The
important consequence of Theorem 2.3.20 is stability of persistent homology when endowed with
the bottleneck distance:

Corollary 2.3.21. LetX,Y be finite subsets of some metric space pZ, dq. Then

W8pDgmpH˚pCpXqqq,DgmpH˚pCpY qqqq ď dHpX,Y q.

For Rips complexes, one also obtains a stability theorem in terms of Bottleneck distance as a
consequence of Theorems 2.2.21 and 2.3.20, which reads as follows:

Theorem 2.3.22 ([44, Theorem 3.1]). LetX,Y be finite metric spaces. Then

W8pDgmpH˚pRpXqqq,DgmpH˚pRpY qqqq ď 2dGHpX,Y q.

The stability theory of p-Wasserstein distances for p ‰ 8 has been established much more recently
and is comparatively more intricate [144].

Remark 2.3.23. The algebraic theory of two-parameter modules is intrinsically much more compli-
cated than the one-parameter case [33]. We shall not need it in this thesis.

2.3.3 Invariants and Vectorizations

Definition 2.3.24. LetM P kvectTfd be a persistence module. Its Hilbert function is

hfM : T Ñ N, t ÞÑ dimpMtq.

In the case of T “ r0,8r, the Hilbert function is also referred to as Betti curve. This last name
is motivated by the case of persistence modules arising as homology of filtered spaces or complexes:
The function hfM assigns to a filtration parameter the Betti number (of a certain dimension) of the
filtered space or complex at this filtration index. We write

βipKq :“ hfHipKq : R Ñ N, t ÞÑ dimpHipKtqq,

where K is some filtered complex or space. Recall that aggregating the Betti numbers via an alternating
sum yields the Euler characteristic.
Definition 2.3.25. Let K be a filtered space or complex over the poset T . Its Euler characteristic profile
(ECP) [61] is the function

χpKq : T Ñ Z, t ÞÑ χpKtq “
ÿ

iě0

p´1qi dimpHipKtqq;

in the case of T “ r0,8r this is also called the Euler characteristic curve (ECC).
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Figure 2.9: Given a point cloud, we show its offset filtration in the top panel, the corresponding Čech complex
in the middle panel and the Betti and Euler characteristic curves in the bottom panel. (Note that β0
is drawn thicker only to ease visualisation, for it would otherwise be covered most of the time by
one of the other curves.) The dashed lines in the bottom panel indicate the filtration values which
the top two panels are depicting.

For simplicial complexes, we get a persistent version of a classical result that is sometimes referred to
as Euler-Poincaré formula:

Proposition 2.3.26. Let K P SimpT . Its ECP satisfies

χpKqptq “
ÿ

σPKt
p´1qdimpσq.

Example 2.3.27. Consider the point cloud drawn in Figure 2.9 with balls of increasing radius. Initially,
there are nine disconnected balls, yielding β1 “ 0 and β0 “ χ “ 9. At r “ 0.4, only the closest two
points have overlapping balls, introducing an edge in the Čech complex and decreasing β0 and χ by
1. Between r “ 0.5 and r “ 0.6, the topology changes more interestingly: As the three rightmost
points form a triangle, β1 becomes 1, causing χ “ β0 ´ 1. Then at r “ 0.6, the triangle is filled in
as the three r-balls admit a non-empty threefold intersection. Subsequently, at r “ 0.7, a big cycle
has formed, which persists for a long time. This is reflected by a wide range of radii for which β1
takes value 1. Finally, all the balls will admit a common intersection, in which case the Čech complex
becomes the full simplex on 9 vertices. Consequently, χ “ β0 “ 1 and β1 “ 0 from that point on.

2.4 Random Complexes and their Topology

As many phenomena in the real world are random in their nature, the question arises how the intro-
duced topological invariants behave in a stochastic context. It turns out, however, persistent homology
is a complicated setting for statistics; for example, there are no unique means [149]. Instead, the focus
for us is on Euler characteristic curves.
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Figure 2.10: Each panel shows 40 points in the unit square sampled from a i.i.d. uniform distribution. In
the supercritical case, the everything gets connected (left); in the subcritical regime, everything is
disconnected (middle). In the critical regime, points are only connected locally (right), as we keep
the area, which is covered by the balls, at a fixed level as n Ñ 8.

While the Euler characteristic was studied as an intrinsic volume in stochastic geometry [49], our
perspective is slightly different. Namely, the starting point for our discussion is the theory of random
geometric graphs [124], which naturally generalizes to simplicial complexes [96]. In the considered
setting, the vertex set from which we build simplicial complexes is sampled from some unknown
distribution F on Rd, which admits a density f . The literature distinguishes two approaches, Poisson
and Bernoulli sampling; see [30] for a survey. The results of Chapter 4 are valid in both of them; we
will focus on the Bernoulli sampling scheme in Chapter 5. In the Poisson setting on the one hand, the
samples are assumed to be generated by a spatial Poisson process with intensity nf . In the Bernoulli
setting on the other hand, we consider samples of n points sampled i.i.d. from some d-dimensional
distribution. Furthermore, there are three regimes to be considered when the sample size goes to
infinity [124, Section 1.4], see Figure 2.10. We consider the geometric complex at scale rn for a sequence
rn Ñ 0 whose topology is determined by the behaviour whether

n ¨ rn
d Ñ

$

’

&

’

%

8,

λ Ps0,8r,

0.

Note that n ¨ rn
d is proportional to the total volume of the union of balls of radius rn centered

at the n sample points. In the dense or supercritical regime (Figure 2.10a), n ¨ rn
d Ñ 8, so that

the domain gets covered by the union of rn-balls and the geometric complex is highly connected.
Intuitively, this regime maintains only global topological information and forgets about local density.
In the sparse or subcritical regime (Figure 2.10b), n ¨ rn

d Ñ 0, so that the union of balls covers a
vanishing subset and the geometric complex is, informally speaking, disconnected (consult [30] for
details). In Chapters 4 and 5, we focus on the thermodynamic or critical regime (Figure 2.10c), i.e.
we let the quantity n ¨ rn

dÑ λ Ps0,8r approach a finite, non-zero limit. In other words, we keep
the measure of the union of rn-balls at a controlled level. This will be the perspective in Chapter 4.
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2.4 Random Complexes and their Topology

Specifically, let ωd denote the volume of the unit ball in Rd, so that ωdrdn is the volume of a ball of
radius rn and nωdrdn is the total volume of n such balls. We will state the results in Chapter 4 in terms
of Λ “ limnÑ8 nωdr

d
n, which turns out to simplify notation.

In Chapter 5, we will take on a slightly different perspective: Up to a constant factor, the quantity
n ¨ rdn is the average number of points in a ball of radius rn [30, Section 1]. Now it is straightforward to
observe that a subset of our sample σ Ď X forms a simplex in the Čech complex at scale rn iff

č

xPσ

Brnpxq ‰ H ô
č

xPn1{dσ

Bλpxq ‰ H.

This is because for any x P X,x1 P Rd, we have

}x1 ´ x} ď rn ô n1{d}x1 ´ x} ď n1{drn

ô }n1{dx1 ´ n1{dx} ď λ1{d

This observation motivates us to scale a sample of size n by n1{d. In fact, this setup aligns with the
approach of [104], which is the key result for the construction of our test statistic in Chapter 5, whence
we decide to adopt this convention of theirs.

Due to this scaling, the average number of points in a ball of radius r“ λ1{d stays the same as we
increase n Ñ 8. Therefore, it makes sense to compare ECCs at fixed radius r“ λ1{d for samples of
different sizes. Visually speaking, we can compare (expected) ECCs from samples of different sizes
in a common coordinate system using the r-axis scaled in this way. In particular, one can study the
point-wise limit of the expected ECC; that is, when the sample size approaches infinity for a fixed
r. Moreover, this rescaling allows us to conduct two sample tests with samples of different sizes, cf.
Section 5.1.2.

For a survey on the topology of random geometric complexes see [30]. A text book for the case of
one-dimensional complexes, i.e. graphs, is [124]. The Euler characteristic of random Čech complexes
has been studied in [29, 31]. Notably, in [31], the limiting expected ECC in the thermodynamic regime
is described for a bounded density f on a compact closed Riemannian manifold M.

Definition 2.4.1. Let χF : r0,8rÑ R be the function

χF pΛq “

#

1 if Λ “ 0,

lim
nÑ8

n´1ErχpCpXnqrnqs otherwise,

whereXn consists of n points sampled i.i.d. from F and nωdrn Ñ Λ Ps0,8r as n Ñ 8. We call
the function χF the expected Euler characteristic curve, or EECC for short.

Theorem 2.4.2 ([31, Cor. 4.5]). We haveχF pΛq “ 1`
d
ř

i“1
γfi pΛq . Here, Λ “ limnÑ8 nωdr

d
n and

γfi pΛq “
Λi

ωidpi` 1q!

ż

M

ż

pRdqi
pfpxqqi`1hc1p0, yqe´ΛpRp0,yqqdfpxq dy dx, (2.3)
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2 Background

where hc1 andR are functions of the minimal enclosing sphere of their arguments, cf. [31, equations
(2.5) and (2.8)].

More recently, [148] provided a functional central limit theorem for ECCs, which was subsequently
generalized by [104].

Theorem 2.4.3 ([148] and [104, Theorem 3.4]). We have convergence of the centered, standardized
ECC in distribution in the Skorokhod J1-topology on r0, T s, for any T Ps0,8r, to a centered Gaussian
process fr ,

n´1{2pχpCpXqrq ´ EF pχpCpXqrqqq
D

ÝÝÝÑ
nÑ8

fr. (2.4)

Recall that the Skorokhod J1-topology formalizes the intuitive idea of allowing for “small wiggles
in the time direction” as follows [21, Section 12]:

Definition 2.4.4. Let Dpr0, 1sq denote the set of cadlag functions f : r0, 1s Ñ r0, 1s, i.e. for all t0 P

r0, 1s the limit from below lim
tÕt0

fptq exists and the from above exists as well and equals lim
tŒt0

fptq “

fpt0q. The Skorokhod J1-topology is the one induced by the metric

dJ1 : Dpr0, 1sq ˆ Dpr0, 1sq Ñ r0,8r

pf, gq ÞÑ inf
λ

tmaxt}f ˝ λ´ g}8, }λ´ idr0,1s }8uu,

where λ ranges over increasing bijections r0, 1s Ñ r0, 1s.

In order to use the ECC for statistical testing in Chapter 5, one needs to understand when it is
able to distinguish different probability distributions. Very recently, Vishwanath et al. [157] provided
sufficient criteria to check the injectivity of topological summary statistics including ECCs, which we
will expand upon in Chapter 4.

Another topological invariant is given by Betti numbers (cf. Definition 2.3.24). In the setting of
random geometric complexes, they were studied initially by [96] (although implicitly already by [131]),
then limit theorems and a law of large numbers were established by [165] and later strengthened by [84].
Of course, these results imply statements about the Euler characteristic via taking the alternating sum.
However, there are more tools available for the Euler characteristic than for Betti numbers, allowing
for example more explicit expressions for the limit expectation like the one above (Theorem 2.4.2).
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3 Bottleneck Profiles and Discrete
Prokhorov Metrics for Persistence
Diagrams

Abstract. In topological data analysis (TDA), persistence diagrams have been a successful tool. To
compare them, Wasserstein and Bottleneck distances are commonly used. We address the shortcomings
of these metrics and show a way to investigate them in a systematic way by introducing bottleneck
profiles. This leads to a notion of discrete Prokhorov metrics for persistence diagrams as a generalization
of the Bottleneck distance. These metrics satisfy a stability result and can be used to bound Wasserstein
metrics both from above and from below. We provide algorithms to compute the newly introduced
quantities and end with an discussion about experiments.

Author’s contributions. This chapter contains joint work with Paweł Dłotko published as [62].The
project was conceived and carried out by the author of the thesis, under supervision of P.D..

41



3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

3.1 Introduction

Recall that the classical Wasserstein distance from probability theory (Definition 2.1.8) can be adapted
to compare persistence diagrams (Definition 2.3.14). As the Prokhorov metric (Definition 2.1.6)
is another classical optimal transport distance, it is natural to look for its adaptation to persistence
diagrams in an analogous way. This is the subject of this chapter. To this end, we first introduce
Bottleneck profiles (Definition 3.2.1) as a discrete analogue of Definition 2.1.5, from which then a
Prokhorov distance is constructed. It turns out that the Bottleneck and the Prokhorov distance are just
two instances of a whole family of Prokhorov-style metrics introduced in this chapter (Definition 3.3.1).
This family is parameterised by subclass of functions f : r0,8rÑ r0,8r. Not every function f gives
in fact rise to a genuine metric; we examine the conditions on f in which cases it does (Definition 3.3.2,
such f are called admissible). In particular, we show:

Theorem 3.3.7. Fix an admissible function f : r0,8rÑ r0,8r. The discrete f -Prokhorov metric is
an extended pseudometric.

In addition to theoretical development, we discuss algorithms to compute the bottleneck profile
and various Prokhorov-type distances. In particular, a computational complexity analysis of those
algorithms is given:

Proposition 3.3.21. Let f : r0,8rÑ r0,8r be monotonically increasing. Assume that the values and
preimages of f can be computed inOp1q. Then πf pX,Y q can be computed inOpn2 logpnqq.

We provide a run-time analysis and experiments on a number of data sets. The algorithms are
provided as an open source implementation.

3.2 Bottleneck Profiles

The bottleneck distanceW8 has a major drawback: It only captures the single most extreme difference
between two persistence diagrams. As a consequence, the same bottleneck distance can be realized
by infinitely many different pairs of persistence diagrams. For instance, looking at Figure 3.1, one
would like to say that there are four bottlenecks in the left panel and one in the right in a rigorous way.
We introduce the notion of the bottleneck profile that is capable of capturing the topic of secondary,
tertiary,... bottlenecks and their multiplicities.
Definition 3.2.1. Given two persistence diagramsX,Y , define their bottleneck profile to be

DX,Y : r0,8rÑ N Y t8u, t ÞÑ inf
η : XÑY

|tx : dpx, ηpxqq ą tu|;

where | ¨ | denotes the cardinality of the set.
Example 3.2.2. LetX “ txu andY “ tyu both consist of one point each and assume that dpx, yq ă

dpx, x1q ` dpy, y1q, where the prime denotes the projection to the diagonal. That means that x ÞÑ y
is an optimal matching. Consequently, the bottleneck profile looks as follows:

DX,Y ptq “

#

1 if 0 ď t ď dpx, yq,

0 if t ą dpx, yq.
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Figure 3.1: Four bottlenecks on the left, a single bottleneck on the right, realizing almost the same bottleneck
distance. In green, parts of the optimal matchings are indicated; the remaining orange points are
mached with the diagonal.

Example 3.2.3. If we take one of the persistence diagrams to be the empty one, there is only one choice
of matching: everything is paired with the diagonal. As a consequence,

DX,Hptq “ |tx “ px1, x2q :
x2 ´ x1

2
ą tu| “ |tx “ px1, x2q : x1 ` 2t ă x2u|.

This is also known as the stable rank function corresponding to the contour Cpa, εq “ a ` 2ε,
introduced in [42], which counts the bars ofX of length ą 2t.

For d : R2 ˆ R2 Ñ r0,8r we take a p-metric dpx, yq “ }x´ y}p, where the choice of pmight
depend on the setting. For example, when comparing with the p-Wasserstein distance, one might like
to choose this same p.

Since the infimum is taken over a subset of the natural numbers, it is actually a minimum. To
be consistent with the notation in definitions 2.3.13 and 2.3.14, we choose to adhere to the use of
infimum.

The following observation is immediate:

Lemma 3.2.4. The bottleneck profileDX,Y is monotonically non-increasing.

Proof. Let η : X Ñ Y be any matching realizingDX,Y psq for some s. Let now t ą s, then every
distance longer than t is in particular longer than s and consequently

|tx : dpx, ηpxqq ą tu| ď |tx : dpx, ηpxqq ą su| “ DX,Y psq.

Taking the infimum over all matchings decreases the left hand side and yieldsDX,Y ptq.

Knowing this, it is interesting when the bottleneck profile becomes zero.
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Lemma 3.2.5. DX,Y ptq “ 0 ô t ě W8pX,Y q.

Proof. By definition, the bottleneck distance is the smallest t ą 0 such that there is a matching
mapping all points within distance t. In formulas,

W8pX,Y q “ inftt ą 0: inf
η : XÑY

|tx : dpx, ηpxqq ą tu| “ 0u

“ inftt ą 0: DX,Y ptq “ 0u.

Thus, we recover the bottleneck distance from the bottleneck profile. The bottleneck cost of a
matching is the longest distance over which two points are matched. Minimizing the bottleneck cost
over all matchings yields the bottleneck distance, which we can think of as the primary bottleneck.
Similarly, the secondary bottleneck cost of a matching is the second longest distance over which
two points are matched. Taking the minimum over all matchings here gives a notion of a secondary
bottleneck, which equals inftt ą 0: DX,Y ptq ď 1u by an argument analogous to the previous proof.
This motivates the name bottleneck profile.

Figure 3.2: The PDX has bottleneck distance 3 to each of the PDs Y,Z,W (first three images). However, it is
attained with different multiplicities, which one can read off from the bottleneck profile (right-most
image)

Example 3.2.6. Consider some particular simple persistence diagrams. The first three parts of Fig-
ure 3.2 each show a base diagram (“DiagramX”, in blue) with four points and perturbations of it:
The orange diagram (“Diagram Y ”) in the first image is obtained by shifting the blue one by three.
The green diagram (“DiagramZ”) shifts the top point ofX by three, the next point by two, the third
by one and leaves the lowest point unchanged.For the yellow diagram (“DiagramW ”) in the third
image, we only shift two points from X by three and leave the other two untouched. Clearly, the
bottleneck distance between the base diagram and each of the shifted versions is three. But the amount
of shifted points is reflected in the bottleneck profile: WhileDX,Y ptq is four, DX,Zptq is two (i. e.
the multiplicity of the bottleneck) for 0 ă t ă 3. AndDX,W displays more steps, reflecting the fact
that there are secondary and tertiary bottlenecks.
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ηX,Y pxq ηpxq “ ηY,ZpηX,Y pxqq

x

Figure 3.3: The situation in the proof of Lemma 3.2.7

Note that the functionD enjoys some properties reminiscent of a metric (hence the notationD):
It is obviously symmetric. The triangle inequality does not hold pointwise but in a scaled version, that
is:

Lemma 3.2.7. For all persistence diagramsX,Y, Z and all real numbers s, t ě 0,DX,Zps` tq ď

DX,Y psq `DY,Zptq.

Proof. This follows from the triangle inequality on R2. Fix s, t ě 0, let ηX,Y : X Ñ Y and
ηY,Z : Y Ñ Z denote optimal matchings realizing DX,Y psq and DY,Zptq, respectively. Let η “

ηY,Z ˝ ηX,Y : X Ñ Z be the matching obtained by composition. It suffices to show that

|tx : dpx, ηpxqq ą s` tu| ď |tx : dpx, ηX,Y pxqq ą su| ` |ty : dpy, ηY,Zpyqq ą tu|,

because the left hand side only decreases if we take the infimum over all matchings. Hence we have to
investigate what happens when a point x is matched to ηpxq which is farther apart than s` t. Note
that ηpxq “ ηY,ZpηX,Y pxqq, so we compare the distances of the matched points using the triangle
inequality,

s` t ă dpx, ηpxqq ď dpx, ηX,Y pxqq ` dpηX,Y pxq, ηpxqq.

Therefore, it cannot be that both dpx, ηX,Y pxqq ď s and dpηX,Y pxq, ηpxqq ď t (compare Fig-
ure 3.3). That means, we have dpx, ηX,Y pxqq ą s or dpηX,Y pxq, ηpxqq ą t or both. Using the
principle of inclusion-exclusion, conclude

|tx : dpx, ηpxqq ą s` tu| “ |tx : dpx, ηX,Y pxqq ą su| ` |ty : dpy, ηY,Zpyqq ą tu|
´ |tx P : dpx, ηX,Y pxqq ą s and dpηX,Y pxq, ηY,ZpηX,Y pxqqq ą tu|

ď |tx : dpx, ηX,Y pxqq ą su| ` |ty : dpy, ηY,Zpyqq ą tu|.

Note that DX,Y ptq “ 0 for all t ą 0 implies X “ Y only under some finiteness assumptions.
For example, consider a converging sequence panqnPN Ă R2 above the diagonal with limit a R panq,
which is also above the diagonal. SetX to consist of all elements of the sequence tan : n P Nu. Set Y
to beX Y tau. Then for all ε ą 0 there exists η : X Ñ Y such that dpx, ηpxqq ă ε for all x P X .
Therefore,DX,Y ptq “ 0 for every t ą 0, butX ‰ Y .

Following [26], we denote by B̄ the set of persistence diagrams such that for each ε ą 0 there are
finitely many points of persistence ą ε. The next lemma is an immediate consequence of [26, Lemma
3.4].
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Figure 3.4: An example for the relation betweenDX,Y and the Wasserstein distance for the persistence diagrams
X,Y shown on the left in Figure 3.1. Recall our intuitive statement that there were four bottlenecks
in that picture – this is now evidenced by the bottleneck profile taking value 4 for a lang range of
t-values.

Lemma 3.2.8. The bottleneck profile satisfiesDX,Xptq “ 0 for all Persistence diagramsX and t ą 0.
Moreover,DX,Y ptq “ 0 for all t ą 0 impliesX “ Y forX,Y P B̄.

Proof. If DX,Y ptq “ 0 for all t ą 0, then W8pX,Y q “ 0 by Lemma 3.2.5. Now for X,Y P B̄,
this only happens ifX “ Y by [26, Lemma 3.4].

3.2.1 Relation to Wasserstein distances

We have already seen how the bottleneck profile is related to the bottleneck distance. This is actually
part of a more general result comparing it to p-Wasserstein metrics.

Lemma 3.2.9. LetX,Y be two persistence diagrams, and let p ą 0. Then

DX,Y ptq ď
1

tp
WppX,Y qp.
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3.2 Bottleneck Profiles

i

i ´ 1 |tx : dpx, ηpxqq ą tu|

inftt ą 0: |tx : dpx, ηpxqq ą tu| ă iu

Figure 3.5: Illustrating the proof of Lemma 3.2.10: Decomposing the area under the graph into rectangles.

Proof. This follows from the Chebychev inequality for counting measures. To spell out the details,
estimate that for every bijection η

|tx : dpx, ηpxqq ą tu| “
ÿ

tx : dpx,ηpxqqątu

1

ď
ÿ

tx : dpx,ηpxqqątu

dpx, ηpxqqp

tp

ď
ÿ

xPX

dpx, ηpxqqp

tp

“
1

tp

ÿ

xPX

dpx, ηpxqqp.

Now choosing η to minimize the right hand side, we have by definition of the Wasserstein distance an
estimate forDX,Y :

DX,Y ptq ď |tx : dpx, ηpxqq ą tu| ď
1

tp
WppX,Y qp.

This is illustrated by Figure 3.4. Note that we recover Lemma 3.2.5 in the limit for p Ñ 8:

ˆ

Wp

t

˙p

ÝÑ

$

’

&

’

%

8 if t ă W8

1 if t “ W8

0 if t ą W8.

For 1-Wasserstein, we have a further estimate:

Lemma 3.2.10.
ş8

0 DX,Y ptqdt ď W1pX,Y q.

Proof. Let η : X Ñ Y be the matching realizingW1pX,Y q. We compute the area under the graph
of the function t ÞÑ |tx : dpx, ηpxqq ą tu|, which is piece-wise constant. Decomposing it into
rectangles of height one yields a width of inftt ą 0: |tx : dpx, ηpxqq ą tu| ă iu for i ě 1, cf.
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3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

Figure 3.5. The width of the ith rectangle is the length of the ith longest edge in the matching.
Summing over all i is therefore the same as summing the distances over which points are matched. In
formulas:

W1pX,Y q “
ÿ

xPX

dpx, ηpxqq

“
ÿ

iě1

inftt ą 0: |tx : dpx, ηpxqq ą tu| ă iu

“

ż 8

0
|tx : dpx, ηpxqq ą tu|dt

ě

ż 8

0
DX,Y ptqdt.

Proposition 3.2.11. If the bottleneck profileDX,Y ptq can be realized by the same matching η for all
t ą 0, then η realizesW1pX,Y q.

Proof. If η realizes DX,Y ptq for all t ą 0, then the inequality in the proof of the previous lemma
becomes an equality

ż 8

0
DX,Y ptqdt “

ż 8

0
|tx : dpx, ηpxqq ą tu|dt “

ÿ

xPX

dpx, ηpxqq
p˚q

ě W1pX,Y q.

Combining this with Lemma 3.2.10, we obtain
ż 8

0
DX,Y ptqdt “ W1pX,Y q.

Consequently, the inequality p˚q is actually an equality, which is what we wanted to prove.

3.2.2 Algorithms

Recall the definition

DX,Y ptq “ inf
η
|tx : dpx, ηpxqq ą tu|,

and let η be the matching realizing the infimum. Then η also realizes the following supremum:

sup
η
|tx : dpx, ηpxqq ď tu|,

and consequently
DX,Y ptq “ |η| ´ sup

η
|tx : dpx, ηpxqq ď tu|.
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3.2 Bottleneck Profiles

Here, |η| denotes the number of matched pairs which involve at least one off-diagonal point. The
computation of sup

η
|tx : dpx, ηpxqq ď tu| is a version of the unweighted maximum cardinality

bipartite matching problem. First, set up the following notation (following [69, chapter VIII.4]). Denote
byX0 the off-diagonal points ofX and byX 1

0 their projections to the diagonal (and analogously for
Y ). SetU “ X0 Y Y 1

0 and V “ Y0 YX 1
0 and consider the bipartite graphG “ pU Y V,Eq with

e “ tu, vu P E if either of the following holds:

• u P X0, v P Y0 and dpu, vq ď t,

• u P X0, v P X 1
0 is its projection to the diagonal and dpu, vq ď t,

• v P Y0, u P Y 1
0 is its projection to the diagonal and dpu, vq ď t,

• u P Y 1
0 and v P X 1

0.

LetM Ă E be a matching of maximal cardinality. Observe that such a matching corresponds to a
bijection η : X Ñ Y maximizing |tx : dpx, ηpxqq ď tu|.

To estimate the run-time of this algorithm, let n “ |X| ` |Y |. We solve the unweighted maximum
cardinality bipartite matching problem using the Hopcroft-Karp algorithm [92]. Let us briefly recall
this classical algorithm. The algorithm extends a partial matchingM until it reaches a maximum one.
It achieves this by augmenting paths: A path p that starts at an unmatched vertex in U and ending
at an unmatched vertex in V such that edges from U to V are not in M but edges from V to U
are. Removing edges from pXM from the matching and instead inserting edges from pX pEzMq

increases the size ofM by one. The Hopcroft-Karp algorithm finds vertex-disjoint augmenting paths
inOpn2q via the so-called layer subgraph, which is constructed via a depth-first search inOpn2q. After
extending the matching using all these augmenting paths, the algorithm starts over. The algorithm
terminates afterOp

?
nq of these iterations.

While this consequently takesOpn2.5q in the worst case, we perform a variant which exploits the
geometric nature of the setting, as suggested in [72]. Instead of building the layer graph explicitly,
one can use a geometric data structure that allows for querying neighbors within a given distance, as
well as removing points. Following [100], k-d trees achieve this requiringOp

?
nq for either of the two

operations. Consequently, as noted by [100] and [72], our variant of the Hopcroft-Karp algorithm
runs inOpn2q. Summarizing, we find the following:

Proposition 3.2.12. LetX,Y be finite persistence diagrams and denote n “ |X| ` |Y |. The value of
the bottleneck profile at t,DX,Y ptq, can be computed inOpn2q.

Remark 3.2.13. Using k-d trees is useful in practice, but does not yield optimal theoretical run-
times. Indeed, the more sophisticated data structure from [72], Section 5.1, can be constructed in
Opn logpnqq. The two relevant operations on it require Oplogpnqq, so that the bottleneck profile
could be evaluated inOpn1.5 logpnqq using this method.
Remark 3.2.14. Instead of using Hopcroft-Karp, one can regard the matching problem as a linear
program. For each x P X and y P Y , we have a binary variable fxy indicating whether the edge from
x to y is in the matching. The coefficients (the cost of the edge) are given by

cxy “

#

1 if dpx, yq ą t,

0 otherwise.
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3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

The objective is

minimize
ÿ

x,y

cxyfxy

subject to @x P X :
ÿ

y

fxy “ 1, @y P Y :
ÿ

x

fxy “ 1.

3.3 Discrete Prokhorov Metrics for Persistence Diagrams

A straight-forward discretization of the coupling characterization of the probabilistic Prokhorov
metric (Definition 2.1.6) gives the main notion of this section.

Definition 3.3.1. Given two persistence diagrams X,Y , consider matchings η : X Ñ Y to define
their Prokhorov distance as

πpX,Y q “ inftt ą 0: DX,Y ptq ă tu

“ inftt ą 0: inf
η : XÑY

|tx : dpx, ηpxqq ą tu| ă tu.

Informally, we look at the intersection of the bottleneck profile with the diagonal. Similarly, we
have already seen that the bottleneck distance arises as the intersection ofDX,Y with the horizontal
axis. This motivates the the question, what functions we can intersect the bottleneck profile with to
obtain a sensible notion of distance.

Definition 3.3.2. Consider a functionf : r0,8rÑ r0,8r. We sayf is superadditive if for any s, t ě 0
we have fps ` tq ě fpsq ` fptq. A superadditive function f is called admissible if lim

tŒ0
fptq “ 0.

Furthermore, the function f ” 1 is also said to be admissible.

Notice that such superadditive functions are monotonically non-decreasing. For example, any
linear function fptq “ m ¨ t with non-negative slope m ě 0 is admissible. Moreover, increasing
convex functions f with lim

tŒ0
fptq “ 0 are admissible For instance, polynomials with non-negative

coefficients and absolute term zero fulfill this criterion.

Definition 3.3.3. Given a fixed admissible function f : r0,8rÑ r0,8r, define for any two PDsX,Y
their f -Prokhorov distance to be

πf pX,Y q “ inftt ą 0: DX,Y ptq ă fptqu

“ inftt ą 0: inf
η
|tx : dpx, ηpxqq ą tu| ă fptqu.

Plugging in f “ id gives the Prokhorov distance, plugging in f ” 1 recovers the bottleneck
distance (this is why this function is admissible even though it is not superadditive).

Intuitively, for n P N, plugging in f ” n (although this is not an admissible function) gives the
nth bottleneck.

For two Prokhorov-close PDs, we require the number (=counting measure) of unmatched points
to be small. Points with small persistence get matched to the diagonal and thus do not blow up the
Prokhorov distance. Hence it is robust with respect to noise.
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Example 3.3.4. Assume f is invertible. Recall the situation of Example 3.2.2: X “ txu and Y “ tyu

both consist of one point each and we assume that dpx, yq ă dpx, x1q ` dpy, y1q, where the prime
denotes the projection to the diagonal. We saw that the bottleneck profile looks as follows:

DX,Y ptq “

#

1 if 0 ď t ď dpx, yq,

0 if t ą dpx, yq.

It follows that
πf pX,Y q “ minpf´1p1q, dpx, yqq.

Lemma 3.3.5. For f admissible,DX,Y pπf pX,Y qq ď fpπf pX,Y qq.

Proof. Note thatDX,Y is right-continuous by construction.

The triangle inequality follows from Lemma 3.2.7.

Lemma 3.3.6. Fix an admissible function f : r0,8rÑ r0,8r. For any three persistence diagrams
X,Y, Z , we have

πf pX,Zq ď πf pX,Y q ` πf pY,Zq.

Proof. We make the following estimates:

DX,Zpπf pX,Y q ` πf pY,Zqq ď DX,Y pπf pX,Y qq `DY,Zpπf pY,Zqq

ď fpπf pX,Y qq ` fpπf pY, Zqq

ď fpπf pX,Y q ` πf pY, Zqq.

Here we used Lemma 3.2.7 for the first inequality, Lemma 3.3.5 for the second and superadditivity of
f for the final one. Therefore,

inftt ą 0: DX,Zptq ă fptqu ď πf pX,Y q ` πf pY,Zq;

the left hand side is the definition of πf pX,Zq, as desired.

As the symmetry is clear, we have shown:

Theorem 3.3.7. Fix an admissible function f : r0,8rÑ r0,8r. The discrete f -Prokhorov metric is
an extended pseudometric.

Just like for the bottleneck distance, we need some finiteness property for the πf to be a genuine
metric. Let B̄ denote the persistence diagrams which for every ε ą 0 have only finitely many points of
persistence ą ε. Then Lemma 3.2.8 implies:

Lemma 3.3.8. Let f : r0,8rÑ r0,8r be admissible. ForX,Y P B̄, we have πf pX,Y q “ 0 only if
X “ Y .

Proof. If πf pX,Y q “ 0, thenDX,Y ptq ă fptq for all t ą 0. As the bottleneck profile is monoton-
ically decreasing and lim

tŒ0
fptq “ 0, this implies DX,Y ptq “ 0 for all t ą 0. By Lemma 3.2.8, this

happens only ifX “ Y .
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Our next task is to investigate how πf depends on the function f . While from a metric point of
view, we need to fix f , the context of data science suggests a different perspective: For given training
data (a fixed set of persistence diagrams) adjust f to obtain a metric that performs well on it (e.g. in a
classification problem, cf. section 3.4).

Lemma 3.3.9. Let f, g : r0,8rÑ r0,8r such that fptq ď gptq for all t ě 0. Then for any two
persistence diagramsX,Y , we have πgpX,Y q ď πf pX,Y q.

Proof. If t ą 0 satisfiesDX,Y ptq ă fptq, then alsoDX,Y ptq ă gptq. Therefore,

inftt ą 0: DX,Y ptq ă gptqu ď inftt ą 0: DX,Y ptq ă fptqu

and by definition πgpX,Y q ď πf pX,Y q.

For fixed persistence diagrams, the Prokhorov metric is continuous with respect to the functions in
supremum metric.

Proposition 3.3.10. Fix two persistence diagramsX,Y . Let f : r0,8rÑ r0,8r be admissible. Then
for all ε ą 0 there is δ ą 0 such that for each admissible g : r0,8rÑ r0,8r, we have

}f ´ g}8 ă δ ñ |πf pX,Y q ´ πgpX,Y q| ă ε.

Proof. Without loss of generality, assume that fpπf pX,Y qq ď gpπgpX,Y qq (otherwise exchange f
and g below). This implies πf pX,Y q ě πgpX,Y q by monotonicity ofDX,Y . We choose δ ă fpεq
and estimate

fpπgpX,Y q ` εq ě fpπgpX,Y qq ` fpεq by superadditivity
ą fpπgpX,Y qq ` δ by choice of δ
ą fpπgpX,Y qq ` }f ´ g}8 by choice of g
ě gpπgpX,Y qq by definition of the sup-norm
ě fpπf pX,Y qq by assumption.

By monotonicity of f we find that

πf pX,Y q ´ πgpX,Y q “ |πf pX,Y q ´ πgpX,Y q| ă ε.

From a data science perspective, the preceding Lemma allows us to tune the parameter function f
on a fixed training set of persistence diagrams.

3.3.1 Comparison with Wasserstein

Fix a persistence diagramX and consider Wasserstein metrics and Prokhorov distances to some other
diagram Y . We can perturb Y by adding more “noise”. More precisely, we add k points whose
distance to the diagonal is less than πf pX,Y q and denote this diagram by Yk. This does not affect
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the Prokhorov metric at all, while for all p P r1,8r, the value ofWppX,Ykq goes to infinity when
k does. This is what we mean when we say that the Prokhorov metric is more robust with respect
to noise compared to the Wasserstein metric. In other (more mathematical) words, the identity
map id : pDgm, πf q Ñ pDgm,Wpq, where Dgm is the set of all persistence diagrams, is nowhere
continuous for p P r1,8r1. In this section, we further explore the relation between Prokhorov and
Wasserstein distances.

Similarly to the proofs in [82] for the measure-theoretic variants, we can bound our metric in terms
of the Wasserstein distance. As we will explain, the metrics πtÞÑtq are of special interest.

Proposition 3.3.11. Let p ě 1, q ě 0, c ą 0 and fptq “ c ¨ tq . For two persistence diagramsX,Y
we have

πf pX,Y q ď WppX,Y q
p
p`q ¨ c

´1
p`q .

Proof. Recall from Lemma 3.2.9 that

DX,Y ptq “ inf
η
|tx : dpx, ηpxqq ą tu| ď

1

tp
WppX,Y qp.

We now want to find a suitable value of t such that DX,Y ptq ă c ¨ tq to infer that πf pX,Y q ď t.
Plugging in t “ WppX,Y q

p
p`q ¨ c

´1
p`q , one obtains

inf
η
|tx : dpx, ηpxqq ą WppX,Y q

p
p`q ¨ c

´1
p`q u| ď

WppX,Y qp

WppX,Y q
p2

p`q ¨ c
´p
p`q

Now if q “ 0, the right hand side simplifies to c “ fpWppX,Y q ¨ c´1{pq. If q ą 0, we compute

WppX,Y qp

WppX,Y q
p2

p`q ¨ c
´p
p`q

“ WppX,Y q
p2`pq
p`q

´
p2

p`q ¨ c
p`q´q
p`q

“ c ¨

´

WppX,Y q
p
p`q ¨ c

´1
p`q

¯q
.

Therefore,

inf
η
|tx : dpx, ηpxqq ą WppX,Y q

p
p`q ¨ c

´1
p`q u| ď c ¨

´

WppX,Y q
p
p`q ¨ c

´1
p`q

¯q

“ f
´

WppX,Y q
p
p`q ¨ c

´1
p`q

¯

and we conclude πf pX,Y q ď WppX,Y q
p
p`q ¨ c

´1
p`q as desired.

Corollary 3.3.12. Let p ě 1, q ě 0 and c ą 0. The map id : pDgm,Wpq Ñ pDgm, πc¨tqq is
continuous.

When comparing with the bottleneck distance, i.e. p “ 8 in the above setting, we can say even
more:

1To avoid such problems, one usually restricts to a subset of Dgm of diagrams with “finite pth moment” [119] when
using p-Wasserstein distances.
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Proposition 3.3.13. For all admissiblef and all persistence diagrams we haveπf pX,Y q ď W8pX,Y q.
Proof. We recall by Lemma 3.2.5,

inf
η

tx : dpx, ηpxqq ą W8pX,Y qu “ 0 ď fpW8pX,Y qq,

and therefore πf pX,Y q ď W8pX,Y q.

Specializing to c “ 1 and p P t1,8u or q P t0, 1u, we obtain:

Corollary 3.3.14. The following inequalities hold:

p

q
0 1 q

1 dB ď W1 π ď
?
W1 πtq ď W

1
1`q

1

8 dB ď dB π ď dB πtq ď dB

p dB ď Wp π ď W
p
p`1
p πtq ď W

p
p`q
p

In particular, the Bottleneck Stability Theorem 2.3.22 implies stability for the new metrics by
Proposition 3.3.13:

Theorem 3.3.15. LetX,Y be finite metric spaces, fix some admissible function f and k P N. Then we
have

πf pDgmpHkpRpXqqq,DgmpHkpRpY qqqq ď 2dGHpX,Y q,

where dGH is the Gromov-Hausdorff distance (Definition 2.1.10).
We can provide not only lower but also upper bounds for Wasserstein distances in terms of the

Prokhorov distance.

Proposition 3.3.16. WqpX,Y qq ď πtqpX,Y qqpmaxpdpx, ηpxqqqq ` |η|q, where η : X Ñ Y is
any matching realizing πtqpX,Y q.
Proof. For an arbitrary bijection η : X Ñ Y , consider any t ą 0 such that |tdpx, ηpxqq ą tu| ď tq .
We estimate:

WqpX,Y qq ď
ÿ

x

dpx, ηpxqqq

“
ÿ

dpx,ηpxqqąt

dpx, ηpxqqq `
ÿ

dpx,ηpxqqďt

dpx, ηpxqqq

ď |tdpx, ηpxqq ą tu|maxpdpx, ηpxqqqq ` tq|tdpx, ηpxqq ď tu|
“ |tdpx, ηpxqq ą tu|maxpdpx, ηpxqqqq ` tqp|η| ´ |tdpx, ηpxqq ą tu|q
“ |tdpx, ηpxqq ą tu|pmaxpdpx, ηpxqqqq ´ tqq ` tq|η|
ď tqmaxpdpx, ηpxqqqq ´ t2q ` tq|η|
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Taking the infimum over all matchings and all such twe obtain the desired inequality

WqpX,Y qq ď πtqpX,Y qqpmaxpdpx, ηpxqqqq ` |η|q.

Combining the two inequalities from Propositions 3.3.11 and 3.3.16, we obtain a comparison for
different Wasserstein metrics.

Corollary 3.3.17. WqpX,Y qq ď WppX,Y q
pq
p`q pmaxpdpx, ηpxqqqq ` |η|q.

Remark 3.3.18. Another inequality relating Wasserstein distances for different p and q originates from
the Hölder inequality, given in [11, Lemma 3.5]: For finite persistence diagramsX , Y and real numbers
1 ď q ă p ă 8, we have

WqpX,Y q ď |η|
1
q

´ 1
pWppX,Y q,

where η is the matching realizing WppX,Y q. Our inequality above yields a lower exponent for
WppX,Y q at the cost of multiplying with the largest distance in the matching. In particular, for
q “ 1, p “ 2, our formula reads

W1pX,Y q ď W2pX,Y q
2
3 pmaxpdpx, ηpxqqq ` |η|q,

with η realizing πtqpX,Y q, whereas the one of [11] reads (with η realizingW2pX,Y q)

W1pX,Y q ď W2pX,Y q|η|
1
2 .

Depending on the size of WppX,Y q relative to the size of X and Y , our inequality can provide
sharper bounds than the one of [11]. To investigate the size ofmaxpdpx, ηpxqqq remains an interesting
question for future work. One possible application of such inequalities is that they allow to infer
stability results for vectorizations with respect to Wp for p ą 1 from the stability with respect to
W1. Another use of Propositions 3.3.11 and 3.3.16 is that the bounds they provide for Wasserstein
distances are easily computed, as we will see in Section 3.3.3 below.

3.3.2 Metric and Topological Properties

Using the comparison with Wasserstein (Section 3.3.1) and the results from [119], we address questions
of convergence and separability. We run into similar issues as [38, Theorems 4.20, 4.24, 4.25] and [26,
section 3]. In this section, we explicitly allow diagrams with a countably infite number of off-diagonal
points under certain finiteness assumptions specified below.

Theorem 3.3.19. Let p ě 1. The space of persistence diagrams with finite pth moment endowed with
the c ¨ tq-Prokhorov metric is separable.

Proof. Let ε ą 0, X a persistence diagram and p ě 1. Let S be a countable dense subset for the
p-Wasserstein metric; this exists by [119, Theorem 12]. In fact they show that we can take S to be the set
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of finite diagrams whose points have rational coordinates. LetXS P S be a persistence diagram such
thatWppX,XSq ă ε

p`q
p ¨ c

1
p . Then by Proposition 3.3.11, we have

πc¨tqpX,XSq ď WppX,XSq
p
p`q ¨ c

´1
p`q ă ε

p
p`q

p`q
p ¨ c

´1
p`q ¨ c

1
p`q “ ε.

Note that the assumptions in the previous Theorem are weaker than the ones usually considered
for the bottleneck distance, compare [38, Theorem 4.18].

Recall that B̄ denotes the persistence diagrams which for all ε ą 0 have finitely many points of
persistence ą ε. The next Theorem is a consequence of [26, Theorem 3.5], which asserts that the
bottleneck distance makes B̄ into a Polish space.

Theorem 3.3.20. The space B̄ endowed with the Prokhorov metric πf is Polish for all admissible f .

Proof. Let pXnq Ă B̄ be a Cauchy sequence with respect to the Prokhorov metric πf . Let ε ą 0
such that fpεq ď 1. Then the inequality πf pXm, Xnq ă ε implies by definition of πf that

DXm,Xnpεq ă fpεq ď 1.

As the bottleneck profile takes values in the integers, we conclude thatDXm,Xnpεq “ 0 and hence,
by Lemma 3.2.5, we have ε ě W8pXm, Xnq. In particular,Xn is a Cauchy sequence with respect
to the bottleneck distance. By completeness of B̄ with the bottleneck distance, there is a limit diagram
X P B̄ to which the sequence converges. Finally by Lemma 3.3.13, convergence in bottleneck implies
convergence in Prokhorov.

Now for separability, consider a subset A Ă B̄ which is dense with respect to the bottleneck
distance. LetX P B̄ and ε ą 0. Then by assumption, there is Y P AwithW8pX,Y q ă ε. Then,
since by Proposition 3.3.13 πf pX,Y q ď W8pX,Y q, we also have πf pX,Y q ă ε. Therefore,A is
dense in B̄ with respect to πf as well.

3.3.3 Algorithms

In this section, all persistence diagrams are finite. Now we will provide an algorithm to compute
πf pX,Y q for continuous monotonically increasing functions f . In this case, there is always a single
value t0 P r0,8r such that DX,Y ptq ă fptq for t ą t0 and DX,Y ptq ą fptq for t ă t0. We can
find its location by bisection. Recall that we set n “ |X| ` |Y |.

Proposition 3.3.21. Let f : r0,8rÑ r0,8r be monotonically increasing. Assume that the values and
preimages of f can be computed inOp1q. Then πf pX,Y q can be computed inOpn2 logpnqq.

Proof. First, observe that the Prokohorv distance takes its value among the pairwise distances of points
in the persistence diagrams (if f crosses the bottleneck profile at one of its vertical gaps) or among
preimages of integers under f (if f crosses the bottleneck profiles at one of its constant pieces), in
formulas

πf pX,Y q P tdpx, yq : x P X, y P Y u Y f´1pNď|X|`|Y |q “ : T1.
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3.4 Experiments

To perform a binary search, we sort the elements in T1 as a preprocess, which has runtime complexity
Opn2 logpnqq. In each iteration of the binary search we pick the median t P Ti. Next we compute the
value of the bottleneck profileDX,Y ptq using Proposition 3.2.12, takingOpn2q. Then we compute
fptq, which by assumption takes Op1q. Now if DX,Y ptq ą fptq set Ti`1 to be the right half, if
DX,Y ptq ď fptq set Ti`1 to be the left half of Ti. Hence we obtain a runtime ofOpn2 log nq for the
binary search as well.

Algorithm 3.1: The binary search to compute πf pX,Y q

Input: Persistence diagramsX,Y ; function f
Output: πf pX,Y q

T “ tdpx, yq : x P X, y P Y u Y f´1pNď|X|`|Y |q

sort T
L “ 0;R “ lengthpT q

whileL ă R do
m “ tR`L

2 u

t “ T rms

if DX,Y ptq ą fptq then
L “ m` 1

else
R “ m

end
end
return T rLs

In particular, if one uses a more efficient geometric data structure to improve the runtime of the
matching algorithm, the sorting preprocessing dominates the runtime. Compare [72], Theorem 3.2
and the preceding discussion therein for more details and possible improvements of the runtime
complexity. Please refer to Section 3.5 for details about our implementation and its availability.

There is an easy modification to the above algorithm to approximate πf up to an additive error of
ε. Instead of performing the binary search on the indicated discrete set (which needs to be sorted or
otherwise pre-processed in a costly way, as noted), one can run it on an interval r0,M s. Here,M is
some upper bound, for example the sum of the longest lifespans of points inX and Y respectively
(which is computed inOpnq). We bisect the interval until we arrive at one of length less than 2ε. Its
midpoint is guaranteed to be less than ε away from the true value of πf pX,Y q.

3.4 Experiments

A simple application of the bottleneck profile, based on simple synthetic persistence diagrams, was
already presented in Example 3.2.6.
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3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

3.4.1 Highlighting Geometric Intuition

This experiment is a toy example, showing how the Prokhorov distance can capture our geometric
intuition more accurately than bottleneck or Wasserstein. Consider three different shapes in R2: a) a
big circle (r “ 6), b) a big (r “ 6) and a medium circle (r “ 4), c) a big (r “ 6), a medium (r “ 4)
and small circle (r “ 2). We take five samples with noise from each shape according to Table 3.1.

shape number of circles radii samples noise colour in the figures
a 1 6 120 uniform from r´0.2, 0.2s2 blue
b 2 6, 4 300 uniform from r´0.23, 0.23s2 red
c 3 6, 4, 2 120 uniform from r´0.2, 0.2s2 green

Table 3.1: The three shapes: one two and three circles.

Figure 3.6: One two and three noisy circles and their PDs for the first persistent homology.

For each point cloud we compute the first persistent homology modules of it alpha complex filtration
and represent them as PDs (see Figure 3.6). We can look at the averagedD-function for each pair of
shapes (Figure 3.7). After careful inspection of this figure and some trial and error, we come up with
the choice of fptq “ t3 ¨ 20t to separate three bottleneck profiles in a most efficient way: Between
around 0.55 and 0.65, the averaged bottleneck profiles involving shape c) with the small circle decrease,
while the one comparing a) and b) stays constant. Intersecting with a function in this interval will
provide a good choice for the Prokhorov distance: It puts the two and three circles closest to each other
and one and three circles the farthest apart. In data science tasks, we will of course need an automated
way to find a good parameter function f , we will discuss this in more detail below.

Now we want to compare the Bottleneck, Prokhorov and Wasserstein distances.
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Figure 3.7: The averaged bottleneck profile for the three circles.

Figure 3.8: MDS plots of the dataset in Section 3.4.1.

Figure 3.9: Distance matrices of the dataset in Section 3.4.1.
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3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

The bottleneck distance between shapes a) and both b) and c) is roughly the same. This distance
does not take the presence of the additional small circle in shape c). By blowing up the sample size and
the noise in shape b), the Wasserstein distance from a) and c) to it are artificially blown up (Figures 3.8
and 3.8). The Prokhorov distance is built to avoid these pitfalls and nicely captures the geometry of
the setting. The MDS plot for Prokhorov agrees with our intuition and places b) between a) and c)
(Figures 3.8).

3.4.2 Classification Experiments

We now turn to more sophisticated data sets to illustrate the usage and advantages of the Prokhorov
distance. In particular, we consider persistence diagrams that actually arise in applications of TDA.
We use the library [123] for standard machine learning algorithms (in particularK-Neighbors). For
the Bottleneck and Wasserstein metrics we use the Gudhi library [83] and [60]. To score the different
metrics, we use K-neighbors classification accuracy as well as classification accuracy based on K-
Medoids clustering with the “build” initialization [140], [141]. In the latter case, points are assigned to
the class of the medoid of their cluster. We split the data sets into training and testing with 50% of the
points each. All computations were carried out on a laptop with an Intel i5-8265U CPU with 1.60
GHz and 8 GB memory. The code to reproduce the experiments is available online2.

Parameter Tuning – Choosing f

One needs to specify an admissible function f as a parameter for the Prokhorov distance πf . The set
off all such functions is vast, therefore it is sensible to restrict to a smaller subset. In the experiments
below, we choose f from linear functions with integer slope P r10, 100s. We do this by performing a
grid search over the parameters and evaluating them by five-fold cross-validation. By selecting this
subset of parameters, we reduce the risk of overfitting and are able to run the parameter selection in
reasonable time. We leave it as a problem for further investigation to find better means to run the
parameter selection, but note that the fact that the bottleneck profile is piecewise constant obstructs
the use of gradient descent.

Prokhorov Distance for Cubical Complexes with Outlier Pixels

We generate3 100 ˆ 100 pixel greyscale images according to the following procedure, cf. Figure 3.10.
Initializing every pixel with 0, we choose n points at random, at which we add a Gaußian with σ “ 3.
We normalize the values to r0, 2s and then shift them up by 64. The goal is to distinguish images
with n “ 15 from images with n “ 20. The obstacle is that we superimpose a particular kind noise,
similar to salt-and-pepper noise. We choose k pixels randomly at which we set the value to a random
integer from r1, 128s; the eight surrounding pixels are set to zero. For each of the four combinations
n P t15, 20u and k P t3, 5u we sample 50 greyscale images. We then create a cubical complex from
each using the pixels as top-dimensional cells (lower-star filtration) and compute persistent homology
in dimensions 0 and 1. We proceed as indicated at the beginning of this section to assess the accuracy
of the different metrics. The results are summarized in Table 3.2. Both in dimmension 0 and 1, the

2https://github.com/nihell/ProkhorovExamples/blob/master/Experiments.ipynb
3Code available at https://github.com/nihell/ProkhorovExamples/blob/master/GenerateCubicalNoise.ipynb
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3.4 Experiments

Figure 3.10: The underlying Gaußians, the superimposed noise and the resulting persistence diagram

K-Neighbors classifier is inconclusive in the setting of Bottleneck and Wasserstein. With a suitable
Prokhorov metric, we are able to achieve an accuracy of more than 80%. In the K-Medoids approach,
the story is similar but less pronounced: Bottleneck and Wasserstein are inconclusive, but Prokhorov
achieves around 60% accuracy.

dim fptq Prokhorov Bottleneck 1-Wasserstein 2-Wasserstein
K neighbors training score

0
49t

0.8425 0.515 0.58 0.525
K neighbors test score 0.8575 0.485 0.535 0.4925
computation time rss 26.69 36.61 44.56 125.2

parameter tuning time rss 1059
K medoids training score

0
18t

0.5975 0.5325 0.515 0.51
K medoids test score 0.62 0.51 0.485 0.5125

computation time rss 70.14 108.6 127.6 379.4
parameter tuning time rss 1082
K neighbors training score

1
92t

0.8625 0.5025 0.545 0.4825
K neighbors test score 0.825 0.5375 0.575 0.495
computation time rss 26.57 36.68 44.43 125.9

parameter tuning time rss 1025
K medoids training score

1
16t

0.62 0.4925 0.49 0.485
K medoids test score 0.5975 0.5125 0.4975 0.515

computation time rss 77.08 113.9 132.6 401.9
parameter tuning time rss 1098

Table 3.2: Classification scores for the synthetic dataset.

3D Segmemtation

We adapt an example from [39] and [60], which is based on the dataset [46]. The task is to classify
3D-meshes based on the persistence diagrams of certain functions defined on them. The shapes are
for example airplanes, hands, chairs ... The results of classification are presented in the Tables 3.3. All
the considered metrics yield a similar accuracy. Prokhorov is the fastest, however at the cost of first
having to find the suitable parameter, which took more than ten hours in this case.
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3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

fptq Prokhorov Bottleneck 1-Wasserstein 2-Wasserstein
K neighbors training score

10t
0.9101 0.9098 0.9042 0.9059

K neighbors test score 0.9270 0.9245 0.9312 0.9298
computation time rss 795.2 1252 838.5 1740

parameter tuning time rss 40440
K medoids training score

13t
0.4792 0.4905 0.4021 0.4592

K medoids test score 0.4985 0.4891 0.4126 0.5125
computation time rss 1946 3467 2057 5009

parameter tuning time rss 41715

Table 3.3: Classification scores for the 3d segmentation dataset.

Synthetic Dataset

Finally, we consider the dataset introduced by [3, Section 6.1]. It contains six shape classes: A sphere, a
torus, clusters, clusters within clusters, a circle and the unit cube. From each class take 25 samples of
500 points. Then add two levels of Gaussian noise (η “ 0.05, 0.1) and the zeroth and first persistent
homology of the Vietoris-Rips filtration are computed. We compute the distance matrices and evaluate
them based on theK-neighbors andK-medoids classifiers. The results are displayed in Table 3.4. We
find that Prokhorov performs better Bottleneck and only slightly worse than Wasserstein. Prokhorov
takes at most similarly long as 1-Wasserstein; Bottleneck is faster and 2-Wasserstein is slower.

3.4.3 Discussion

First and foremost, we found that Prokhorov is able to produce good results in situations where the
classical tools of Bottleneck and Wasserstein fail. In particular, the Prokhorov distance is more robust
against outliers in the persistennce diagram. Moreover, it can serve as an third option if Bottleneck is
not accurate enough but Wasserstein computations are to costly. In order to explain the differences in
the computation time, we note the size of the persistence diagrams in the various settings:

By inspecting Table 3.5 wee see that the 3D segmentation dataset contains way smaller diagrams,
on which the Prokhorov metric seems to perform well, both in terms of runtime and score. On the
bigger diagrams from the synthetic dataset, the Wasserstein metrics yield the highest scores. Prokhorov
outperforms Bottleneck in the scores at the cost of higher runtimes. The difference in the computation
time is caused by the evaluation of fptq, which is the only difference between the Bottleneck and
Prokhorov implementations.

Bottleneck – and to some extent also Prokhorov – work less well on zero-dimensional PDs. There,
every class is born at time zero, hence the PD is intrinsically one-dimensional and points are matched
in linear order. The bottleneck distance is less meaningful in this setting. Moreover, the Prokhorov
(and even more the Bottleneck) distance do not take points matched over a small distance into account.
This is a consequence of being designed to be robust against noise. However, this data can actually
contain meaningful information, which is picked up by the Wasserstein distances. This is a possible
explanation for the fact that Wasserstein yields better scores in the synthetic dataset.
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dim noise fptq Prokhorov Bottleneck 1-Wasserstein 2-Wasserstein
K neighbors training score

0 0.05
42t

0.9067 0.8133 1.0 0.9867
K neighbors test score 0.84 0.7867 0.96 0.9467
computation time rss 144.2 45.39 252.8 1063

parameter tuning time rss 4218
K medoids training score

0 0.05
93t

0.8 0.68 0.9733 0.8933
K medoids test score 0.9067 0.6 0.88 0.8933

computation time rss 465.3 156.1 801.3 3207
parameter tuning time rss 4507
K neighbors training score

0 0.1
87t

0.9733 0.7867 0.9867 0.9867
K neighbors test score 1.0 0.7467 1.0 1.0
computation time rss 145.8 44.22 267.0 1081

parameter tuning time rss 4267
K medoids training score

0 0.1
95t

0.8 0.6 0.9867 0.96
K medoids test score 0.9067 0.56 0.96 0.9733

computation time rss 465.3 161.0 791.4 3195
parameter tuning time rss 4850
K neighbors training score

1 0.05
51t

0.9733 0.92 1.0 1.0
K neighbors test score 0.96 0.9333 1.0 1.0
computation time rss 24.97 22.82 23.77 118.5

parameter tuning time rss 736.2
K medoids training score

1 0.05
98t

0.8 0.7867 1.0 1.0
K medoids test score 0.8667 0.8267 1.0 1.0

computation time rss 77.63 76.08 72.20 366.7
parameter tuning time rss 779.6
K neighbors training score

1 0.1
61t

0.9333 0.92 0.92 0.9333
K neighbors test score 0.9467 0.93333 0.9867 0.9867
computation time rss 28.17 22.28 26.98 138.4

parameter tuning time rss 809.1
K medoids training score

1 0.1
50t

0.88 0.6933 0.8133 0.8133
K medoids test score 0.8133 0.7067 0.8533 0.8533

computation time rss 88.91 75.50 80.01 413.8
parameter tuning time rss 832.2

Table 3.4: Classification scores for the synthetic dataset from [3].

3D-Segmentation Synthetic data Synthetic data Synthetic data Synthetic data
H0, η “ 0.05 H0, η “ 0.1 H1, η “ 0.05 H1, η “ 0.1

Mean size 11.84 500 500 177.7 189.9

standard deviation 4.893 0 0 40.53 38.84

Table 3.5: Cardinalities of the persistence diagrams for the considered experiments.
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3 Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams

Hence, the Prokhorov metric works best on rather small diagrams and runs fastest with simple
(e. g. linear) parameter functions f . Even then, one needs to take the additional time for tuning the
parameter f into account.

3.5 Discussion and Outlook

Summarizing the results from the previous section, we find that the Prokhorov metric is well-suited for
small persistence diagrams. Large scale computations can be improved by the technique of entropic
regularization from the theory of optimal transport [105]. As the classical Prokhorov metric admits an
optimal transport characterization, our discrete variant might be tractable using similar techniques.

A major aspect of the importance of the Bottleneck distance is its algebraic formulation in terms of
interleavings. This theory generalizes to incorporate the family of Prokhorov metrics. An algebraic
formulation would also provide a perspective on generalizations to multiparameter persistence.

Our results in section 3.3.2 establish that our construction yields a Polish space. This makes it
suitable for statistical inference. In a similar vein, one can also investigate bottleneck profiles persistence
diagrams arising from random geometric complexes. What kind of limit objects appear in this context?
Can they be used to perform statistical testing?

Morally, stability theorems should involve related metrics on the input point cloud and on the
persistence diagram side. This motivates to investigate Prokhorov-type distances for point clouds in
Rn. Such distances might be useful throughout data science.

Declarations

Code Availability

We provide an implementation as a part of a custom gudhi fork at https://github.com/nihell/

persistence-prokhorov. It is a modification of the GUDHI implementation of the Bottleneck dis-
tance [83]. Let us first illustrate how to use it before we come to runtime considerations. The algorithm
is implemented in C++ and comes with Python bindings.

prokhorov_distance(diagram_1: numpy.ndarray[numpy.float64],

diagram_2: numpy.ndarray[numpy.float64],

coef: numpy.ndarray[numpy.float64]) -> float

It asks for three inputs: diagram_1, diagram_2 and coef. The two diagrams need to be presented
as 2D numpy arrays. The third parameter is a 1D numpy array representing the coefficients of a
polynomial to be used as f . Note that the zeroth entry needs to be zero in order to obtain a metric,
compare Lemma 3.3.8. However, setting the polynomial to be a constant integer one recovers the
values ofDX,Y , which is a feature. In the technical details, our approach follows [83], which follows
[100].

In addition, we also add the Prokhorov metric to [60], allowing for parallel computations of distance
matrices and integration with sklearn.
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4 When Do Two Distributions Yield the
Same Expected Euler Characteristic
Curve in the Thermodynamic Limit?

Abstract. Let F be a probability distribution on Rd which admits a bounded density. We investigate
the Euler characteristic of the Čech complex on n points sampled from F i.i.d. as n Ñ 8 in the
thermodynamic limit regime. As a main result, we identify a condition for two probability distributions
to yield the same expected Euler characteristic under this construction. Namely, this happens if and
only if their densities admit the same excess mass transform. Building on work of Bobrowski, we
establish a connection between the limiting expected Euler characteristic of any such probability
distributionF and the one of the uniform distribution on r0, 1sd through an integral transform. Our
approach relies on constructive proofs, offering explicit calculations of expected Euler characteristics in
lower dimensions as well as reconstruction of a distribution from its limiting Euler characteristic. This
research sheds light on the relationship between a probability distribution and topological properties
of the Čech complex on its samples in the thermodynamic limit.

Author’s contributions. This chapter contains joint work with Tobias Fleckenstein [77], submitted
to Advances in Applied Mathematics, for which T.F. and N.H. share co-lead authorship. T.F. suggested
that results to the extent of what became Theorems 4.2.1 and 4.3.1 should be true. N.H. proved
Theorem 4.3.1; T.F. and N.H. jointly proved Theorem 4.2.1.
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y

x

fpxq

t

f̂ptq 1

f̂ptq

f̂pyq

Figure 4.1: Illustration of a density (whose domain is the horizontal axis) and its excess mass, which is defined
on the vertical axis and takes values on the horizontal axis.

The subject of the present chapter is to show the perhaps surprising implication that the expected
Euler characteristic curve in the thermodynamic limit completely determines the excess mass. This is
Theorem 4.3.1 below. Together with recent results of Vishwanath [157], who established the opposite
implication, we conclude the following theorem:

Theorem 4.0.1. Let F,G be probability distributions on Rd with densities with respect to the Lebesgue
measure f, g which are bounded. The following are equivalent:

i) The excess mass transforms agree
ş

Rd 1rt,8rpfpxqq fpxq dx “
ş

Rd 1rt,8rpgpxqq gpxq dx for all
t ą 0,

ii) in the thermodynamic limit, the expected Euler characteristic curves agree: χF pΛq “ χGpΛq for
all Λ ą 0.

We will need this as a crucial ingredient in the next chapter, cf. Equation (5.8).

Remark 4.0.2. Note that Vishwanath et al. actually showed that admitting the same excess mass(“F -
equivalence” in their terminology) is a sufficient condition for topological summaries of a wide variety
to be indiscriminative in the thermodynamic limit, both in expectation and in distribution. Our
Theorem 4.3.1 now says that if the expected ECCs of two distributions agree, then those other
topological summaries necessarily agree as well (in the thermodynamic limit).

4.1 Background

Let F be a probability distribution on Rd which admits a density f : Rd Ñ R with respect to the
Lebesgue measure. Throughout, we assume it is bounded, i.e. }f}8 ă 8.

Definition 4.1.1. We define the excess mass transform of a probability density f : Rd Ñ r0,8r as

f̂ptq “

ż

Rd
1rt,8rpfpxqq fpxq dx. (4.1)

It is easy to see that the function 1 ´ f̂ is the distribution function of the random variable fpXq

whereX „ F . Note that our definition is slightly different from Müller & Sawitzki [120] and Polonik
[126]. See Figure 4.1 for an illustration.

We are interested in sampling more and more points fromF , recall this can be done in the Bernoulli
or in the Poisson setting. We then study the asymptotics of the expected Euler characteristic curve
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4.2 An Integral Transform Formula

χF (cf. Definition 2.4.1); more specifically, we identify the fibre of the map F ÞÑ χF . Recall (cf.

Theorem 2.4.2) thatχF “ 1`
d
ř

k“1

p´1qkγfk pΛq. Bobrowski and Mukherjee provide explicit formulas

for γk for uniform distributions in dimension up to 3. In general, the EECC of a uniform distribution
is of the form χUd “ e´ΛP pΛq, for a certain polynomial P pΛq “

řd
i“0 piΛ

i with p0 “ 1 [32,
Corollary 6.2]. For d “ 1, 2, 3, they are known explicitly (see, for instance, [131]):

χU1pΛq “ e´Λ

χU2pΛq “ e´Λp1 ´ Λq

χU3pΛq “ e´Λ

ˆ

1 ´ 3Λ `
3π2

32
Λ2

˙

.

If one replaces Euclidean by a more general p-distance, analogous results to Theorem 2.4.2 were
established in [147, Theorem 4.3.1]. Formulas of the limit expectation for the uniform distribution are
provided only for p “ 8 in terms of Touchard polynomials [147, Corollary 4.3.3].

4.2 An Integral Transform Formula

Throughout, we let F be a probability distribution on Rd which admits a density f with respect to
the Lebesgue measure. Before we state our theorem, we give some intuitive heuristic motivating it.
Consider a small volume elementA around a point x P Rd. For a sample of sufficiently large size n,
the relative amount of points falling into A is roughly volpAqfpxq. If we choose A small enough,
we can replace f by its average value on A. We expect volpAqfpxq times as many points as from a
uniform sample inA. Therefore, also the total volume of the union of balls gets scaled by fpxq. In the
thermodynamic limit, we can ignore the effects of points outsideA. Then the local contribution of
our small region to the EECC χF pΛq is consequently fpxqχUdpΛfpxqqvolpAq. LettingA become
infinitesimally small and integrating over all local contributions now recovers the EECC:

Theorem 4.2.1. Let f : Rd Ñ R be a bounded probability density. Then we have the following formula
for the expected ECC in the thermodynamic limit:

χF “

ż

Rd

fpxqχUdpΛfpxqq dx. (4.2)

In addition, we have

χF “ ´

}f}8
ż

0

f̂ 1pyqχUdpΛyq dy, (4.3)

where f̂ 1 is the derivative of the excess mass function, which can be understood in a distributional sense.
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Proof. We simply rearrange the formula 2.3 and introduce an integral over r0, 1sd of a constant
function, which is just a multiplication by one:

γfk pΛq “
Λk

ωkdpk ` 1q!

ż

Rd

ż

pRdqk
fk`1pxqhc1p0, yqe´ΛRdp0,yqfpxq dy dx

“

ż

Rd

Λk

ωkdpk ` 1q!
pfpxqqk`1

ż

pRdqk
hc1p0, yqe´ΛRdp0,yqfpxq dy dx

“

ż

Rd
fpxq

pΛfpxqqk

ωkdpk ` 1q!

ż

pRdqk
hc1p0, yqe´pΛfpxqqRdp0,yq dy dx

“

ż

Rd
fpxq

pΛfpxqqk

ωkdpk ` 1q!

ż

r0,1sd

ż

pRdqk
hc1p0, yqe´pΛfpxqqRdp0,yq dy dz dx

“

ż

Rd
fpxqγU

d

k pΛfpxqq dx.

The first formula of the theorem then follows by taking an alternating sum as in Theorem 2.4.2.
The second formula follows from the first via the integration by parts. Namely, we have

ż

Rd
fpxqχUdpΛfpxqq dx “

ż

Rd
fpxqχUdpΛfpxqq dx´ χUdp0q ` 1

“ 1 `

ż

Rd
fpxqrχUdpΛyqs

y“fpxq

y“0 dx

“ 1 `

ż

Rd
fpxq

ż fpxq

0
Λχ1

UdpΛyq dy dx

“ 1 `

ż }f}8

0

ż

Rd
fpxq1fpxqěyΛχ

1
UdpΛyq dx dy

“ 1 `

ż }f}8

0
Λχ1

UdpΛyqf̂pyq dy

“ 1 `

”

f̂pyqχUdpΛyq

ıy“}f}8

y“0
´

ż }f}8

0
f̂ 1pyqχUdpΛyq dy.

Now, we use f̂p}f}8q “ 0 and f̂p0qχUdp0q “ 1 ¨ 1 “ 1 to complete the proof.

Remark 4.2.2. This result can be thought of as a law or large numbers similar to the statement about
Betti numbers in [84, Theorem 1.1].

Remark 4.2.3. If we replace Euclidean balls by more general ones with respect to some p-distance,
Thomas’s thesis [147, Theorem 4.3.1] provides an analogous result to Theorem 2.4.2, but with an
infinite series χptq “

ř8
k“0p´1qkψkptq, where t in the setting of that work relates to ours via

Λ “ ωdt
d. Now from parts (i) and (ii) Lemma 4.2.1 of [147], one can infer that

ř8
k“0 ψkptq ď

expppctqd ¨ ωd}f}8q ă 8. Thus, one can apply Fubini’s theorem to obtain Theorem 4.2.1 in this
more general setting as well.
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4.3 Uniqueness of Excess Mass

Example 4.2.4. As a sanity check, we evaluate the integral transform formula for F “ Ud. Then,
f̂pyq “ 1r0,1spyq and thus f̂ 1pyq “ δpy ´ 1q. Consequently, our formula reads as

χUdpΛq “

ż 1

0
δpy ´ 1qχUdpΛyq dy “ χUdpΛq,

which is of course tautological.
Expressing the EECC of an arbitrary density as an integral transform of the EECC of a uniform

density has important implications for computations and theory. First, let us state an estimate which
is a stability theorem similar to [104, Theorem 3.1] .

Corollary 4.2.5. Let F,G be probability distributions on Rd admitting densities f and g, respectively.
Then we have }χF ´ χG}8 ď }f̂ 1 ´ ĝ1}1.

Proof. We use that |χUdpΛyq| ď 1 and estimate }χF ´ χG}8 as
›

›

›

›

›

›

8
ż

0

pĝ1pyq ´ f̂ 1pyqqχUdpΛyq dy

›

›

›

›

›

›

8

ď sup
Λ

8
ż

0

|ĝ1pyq´f̂ 1pyq| |χUdpΛyq| dy ď

8
ż

0

|ĝ1pyq´f̂ 1pyq| dy.

As a second consequence, we can find formulas for the EECC of probability densities which were
previously intractable.
Example 4.2.6. Consider the standard normal distribution in two dimensions N 2 with density
fpx1, x2q “ 1

2π exp
´

´
x21`x22

2

¯

. Due to the rotational symmetry of f , an easy application of polar

coordinates shows that its excess mass is given by f̂pyq : r0, 1
2π s Ñ R, y ÞÑ 1 ´ 2πy with derivative

f̂ 1pyq “ ´2π. Plugging this into our formula yields

χN 2pΛq “ ´

1
2π
ż

0

´2π χU2pΛyq dy “

1
2π
ż

0

2π expp´Λyqp1 ´ Λyq dy “ exp

ˆ

´
Λ

2π

˙

.

See Table 4.1 for more results and Figure 4.2 for corresponding plots; we omit the tedious, but
straight forward calculus arguments deriving them. Observe that the EECC of a two-dimensional
standard normal distribution coincides with that of a one-dimensional uniform distribution on
r0, 1{2πs. However, the excess masses are different. If we fix the dimension d this cannot happen, as
we shall see next.

4.3 Uniqueness of Excess Mass

In this section we establish a third consequence of Theorem 4.2.1, namely that the dependence on
the excess mass is injective. This is to say, for fixed amient dimension d, the excess mass is uniquely
determined by the expected ECC in the thermodynamic limit. In fact, we can use Theorem 4.2.1 to
show:
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f χF pΛq

e´x 1 ´ e´Λ

Λ

1
?
2π

expp´x2
{2q

1?
2π

ż

0

2 expp´Λyq
a

´ logp2πy2q
dy

1

2π
exp

ˆ

´
x2
1 ` x2

2

2

˙

exp

ˆ

´
Λ

2π

˙

1

2π

ˆ

1 `
x2
1 ` x2

1

n

˙´
n`2
2

´

ˆ

2π

Λ

˙ n
n`2 n

n ` 2

ˆ

γ

ˆ

1 `
n

n ` 2
,
Λ

2π

˙

´ γ

ˆ

n

n ` 2
,
Λ

2π

˙˙

1

4π
exp

ˆ

´
px2

1 ` x2
2 ` x2

3q
3{2

3

˙

e´Λ{p4πq
p´3Λ2π ´ 24Λp´16 ` π2

q ` 32p´1 ` eΛ{p4πq
qπp´32 ` 3π2

qq

128Λ

Table 4.1: Probability densities and their expected ECCs. Here, γpa, xq “
şx

0
ta´1e´t dt is the lower in-

complete gamma function. For plots, see Figure 4.2. For the one-dimensional standard normal
distribution, there is no solution in terms of elementary functions.
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Figure 4.2: Expected ECCs in the thermodynamic limit of two-dimensional normal and t-Student distributions
of various degrees of freedom. For the formulas, see Table 4.1.
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4.3 Uniqueness of Excess Mass

Theorem 4.3.1. LetF,G be probability distributions on Rd which admit densities f, g : Rd Ñ R that
are bounded. Suppose χF pΛq “ χGpΛq for all Λ ě 0 and is d times differentiable in 0. Then f̂ “ ĝ.

Our strategy is to rewrite equation 4.3 as an ODE which both Laplace transforms L
!

f̂ 1
)

and

Ltĝ1u solve. Indeed, as χUd “ e´ΛP pΛq for a certain polynomial P pΛq “
řd
i“0 piΛ

i, formula 4.3
can be rewritten as

´χF pΛq “

d
ÿ

i“0

piΛ
iL

!

f̂ 1pyqyi
)

pΛq

“

d
ÿ

i“0

p´1qipiΛ
i d

i

dΛi
L

!

f̂ 1
)

pΛq,

using properties of the Laplace transform; see [17, chapter 7] for a textbook introduction. Then, we
will infer that f̂ “ ĝ from the uniqueness of the solution. In order to carry this idea out, we now
derive initial values which only depend on χF “ χG and the ambient dimension.

Lemma 4.3.2.
dk

dΛk
L

!

f̂ 1pyq

)

p0q “ p´1qk´1 χ
pkq

F p0q

k
ř

i“0

`

k
i

˘

p´1qiP pk´iqp0q

(4.4)

Proof. First, we note that the integrand in equation 4.3 is continuously differentiable with respect to
Λ, whence an application of differentiation under the integral sign yields

χ
pkq

F pΛq “ ´

ż

R
ykf̂ 1pyqe´Λy

k
ÿ

i“0

ˆ

k

i

˙

p´1qiP pk´iqpΛyq dy.

Here, we used the general product formula for

dk

dΛk
pP pΛyqe´Λyq “

k
ÿ

i“0

ˆ

k

i

˙

yk´iP pk´iqpΛyqp´yqir´Λy “ yke´Λy
k

ÿ

i“0

ˆ

k

i

˙

p´1qiP pk´iqpΛyq.

On the other hand, derivatives of the Laplace transform have the following form:

dk

dΛk
L

!

f̂ 1pyq

)

pΛq “ p´1qkL
!

ykf̂ 1pyq

)

pΛq “ p´1qk
ż

R
ykf̂ 1pyqe´Λy dy.

Our desired assertion now follows from plugging in Λ “ 0:

χ
pkq

F p0q “ ´

k
ÿ

i“0

ˆ

k

i

˙

p´1qiP pk´iqp0q

ż

R
ykf̂ 1pyq dy

“ p´1qk´1
k

ÿ

i“0

ˆ

k

i

˙

p´1qiP pk´iqp0q
dk

dΛk
L

!

f̂ 1pyq

)

p0q.
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Note that we can do this althoughχ is only defined for Λ ě 0 (which means that the derivative is only
right-sided) because the right-hand side of equation 4.3 is also defined for Λ ă 0 and continuously
differentiable in 0.

Remark 4.3.3. It is not hard (employing integration by parts like before) to compute the expression aris-
ing in the proof:

ş

R y
kf̂ 1pyq dy “ }f}

k`1
k`1. This can be used to derive the bounds | d

k

dΛk
L

!

f̂ 1pyq

)

pΛq| ď

}f}
k`1
k`1 and evaluate dk

dΛk
L

!

f̂ 1pyq

)

p0q “ }f}
k`1
k`1, but we shall not need this result here.

Proof of Theorem 4.3.1. Recall that the we can rewrite equation (4.3) from Theorem 4.2.1 in terms of
the Laplace transform as the following linear ODE:

´χF “

d
ÿ

i“0

p´1qipiΛ
i d

i

dΛi
L

!

f̂ 1
)

. (4.5)

Here, P pΛq “
řd
i“0 piΛ

i is the polynomial defined by χUdpΛq “ e´ΛP pΛq.
Moreover, Lemma 4.3.2 provides initial values in Equation (4.4). As d is fixed, so are the coefficients

pi and because p0 “ 1, they are not all zero. Therefore, on every compact interval, Picard-Lindelöf
guarantees that L

!

f̂ 1
)

is the unique solution.

Finally, if χF pΛq “ χGpΛq for all Λ ą 0 as in the assumption of Theorem 4.3.1, L
!

f̂ 1
)

and
Ltĝ1u both satisfy the ODE 4.5. In addition, they have the same initial values, given in Equation 4.4,
which only depend on χF pΛq “ χGpΛq and the ambient dimension. Consequently, we infer
that L

!

f̂ 1
)

“ Ltĝ1u. By injectivity of the Laplace transform, this means f̂ 1 “ ĝ1. Now, since

f̂p0q “ 1 “ ĝp0q because f and g are probability densities, we conclude that f̂ “ ĝ, as desired.

For d “ 1, 2, one can write down quite explicit solutions: In the one-dimensional case, ´χF “

L
!

f̂ 1
)

, so that f̂pyq “ 1´
şy
0 L´1tχF uptq dt. In the two-dimensional case, our differential equation

simplifies to

´χF “
d

dΛ

´

ΛL
!

f̂ 1
)

pΛq

¯

,

and therefore,

f̂ “ ´L´1

"

1

s
´

1

s2

ż s

0
χF pΛq dΛ

*

.

While one might like to use these ideas to estimate f̂ from empirical estimates of the EECC, this is
unfortunately impossible in practice. The usual Fixed Talbot algorithm [1] for numerically computing
inverse Laplace transforms is numerically quite unstable and cannot handle noisy input data one
encounters in empirical EECCs.
Remark 4.3.4. If one replaces the Euclidean metric by the supremum distance for the collection of
balls, [147, Corollary 4.3.3] presents the following expression for the EECC of the uniform distribution
[147, eqn. (4.11)]:

χUdpΛq “ ´
e´Λ{ωd

Λ{ωd
Tdp´Λ{ωdq.
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4.4 Outlook

Here, Tp is the Touchard polynomial of degree p. Now, using the variable λ “ Λ{ωd, one can argue
with the Laplace transform again to establish an analogue to Theorem 4.3.1.

4.4 Outlook

To conclude this chapter, we outline two major directions for future research.
First, having established a necessary condition for the expected ECCs to coincide raises the question

whether this condition is also necessary in order for the centered ECCs to coincide in distribution
(Vishwanath et al. [157] showed it to be sufficient). To this end, it is tempting to try a similar approach
for higher moments, starting from variance. While an analogue of Theorem 4.2.1 is readily established
using the description of limnÑ8 n´1VarpχF pΛqq of [28], the strategy to prove Theorem 4.3.1 cannot
be replicated. This is because, unfortunately, there is no analogous expression to χUd “ e´ΛP pΛq,
for a certain polynomial P pΛq “

řd
i“0 piΛ

i.
Second, it would be interesting to have a quantitative version of Theorem 4.3.1 in the following

sense: Is it possible to compute (or at least bound) the supremum distance }f̂ ´ ĝ}8 in terms of
expected ECCs? Recall that 1 ´ f̂ is the cumulative distribution function of the random variable
fpXq whereX „ F . Thus, }f̂ ´ ĝ}8 is a Kolmogorov-Smirnov test statistic for the null hypothesis
fpXq

D
“ gpY q, where X „ F , Y „ G. This could pave the way towards a distribution-free

multivariate two sample test using computational topology. Moreover, such a result would imply that
the injective continuous map f̂ 1 ÞÑ

ş8

0 f̂ 1pyqχU pΛyq dy is in addition a homeomorphism onto its
image.
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5 Topology-Driven Goodness-of-Fit
Tests in Arbitrary Dimensions

Abstract. This chapter adopts a tool from computational topology, the Euler characteristic curve
(ECC) of a sample, to perform one- and two-sample goodness of fit tests. We call our procedure
TopoTests. The presented tests work for samples of arbitrary dimension, having comparable power
to the state-of-the-art tests in the one-dimensional case. It is demonstrated that the type I error of
TopoTests can be controlled and their type II error vanishes exponentially with increasing sample size.
Extensive numerical simulations of TopoTests are conducted to demonstrate their power for samples
of various sizes.

Author’s contributions. This chapter contains joint work with Paweł Dłotko, Łukasz Stettner and
Rafał Topolnicki published as [63]; the exposition is slightly revised according to the results of Chapter
4, which were originally obtained after the results of this chapter. The project was conceived by P.D,
N.H. and R.T. and carried out by N.H. and R.T. as co-lead authors, under supervision of P.D., with
Lemma 5.1.2 contributed by Ł.S..
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5 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

In the paper corresponding to this chapter, to the best of our knowledge, we present the first
mathematically rigorous approach using Euler characteristic curves to perform general goodness-of-fit
testing. Specifically, we consider the Čech (or, equivalently, Alpha) complex of a sample, which we
scale in such a way that asymptotically, we can employ the theoretical results about the thermodynamic
regime. Our procedure is theoretically justified by Theorem 5.1.4. The concentration inequality for
Gaussian processes (Lemma 5.1.2) might be of independent interest.

Simulations conducted in Section 5.3 and 5.4 indicate that TopoTest outperforms the Kolmogo-
rov-Smirnov test we used as a baseline in arbitrary dimension both in terms of the test power but also
in terms of computational time for moderate sample sizes and dimensions, and for a wide variety of
null and alternative distributions.

The implementation of TopoTest is publicly available at https://github.com/dioscuri-tda/topotests.

5.1 Method

5.1.1 One-sample test

Consider the following setup: In ambient Euclidean space Rd, we are given a fixed null distribution F
and a sampleX following an unknown distributionG, we assume that they admit bounded densities
f and g, respectively. Then, in the light of the result of the preceding chapter, we aim to test the
following hypothesis, in which f̂ again denotes the excess mass (Definition 4.1.1):

H0 : ĝ “ f̂ vs. H1 : ĝ ‰ f̂ . (5.1)

Compare this formulation to the problem stated in (1.2). The perhaps surprising feature of our
approach is that while the hypothesis is phrased in an analytic language (equality of certain integrals),
we test it using a topological method. As the ECC of the Alpha and Čech complexes are equal, they can
be used interchangeably. We will phrase the theory in terms of Čech and algorithms and computational
results in terms of Alpha.

Remark 5.1.1. More generally, the test works for any filtered simplicial complex K built on the sample
points as vertices, for instance Vietoris-Rips, as long as its Euler characteristic curve satisfies a functional
central limit theorem analogous to Theorem 2.4.3. However, as the results from the previous chapter
only pertain to Čech complexes (or equivalent), it is unclear against which kinds of distribution a test
using χpKq would have power. To account for this, say that two probability distributions F,G are
Euler equivalent with respect to K, if

lim
nÑ8

n´1ErχpKpXnqrnqs “ lim
nÑ8

n´1ErχpKpYnqrnqs,

whereXn and Yn consist of n i.i.d. points sampled from F andG, respectively, and n ¨ rn Ñ λ P

s0,8r. The null hypothesis will then be phrased as

H0 : F,G are Euler equivalent with respect to K.

We conjecture that for a large class of simplicial constructions including Vietoris-Rips, Euler equiva-
lence is tantamount to distributions admitting the same excess mass.
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5.1 Method

We write
χpn, rq “ χpCpXqrq,

where n is the cardinality ofX . Given some distribution F on Rd against which we want to test, we
are interested in the expected ECC of the Čech complex of scale r of n i.i.d. points drawn according to
F , scaled by n1{d, denoted as EF pχpn, rqq. The TopoTest employs the supremum distance between
the ECC computed based on sample points scaled by n1{d, that is χpCpXqrq, and the expected ECC,
EF pχpn, rqq, underH0, i.e. the test statistic is

∆n :“ n´1{2 sup
rPr0,T s

|χpCpXqrq ´ EF pχpn, rqq|, (5.2)

where T P R`. (The restriction to a compact interval is needed for the functional central limit
theorem (Theorem 2.4.3).) Therefore, by using ECC as topological summary of the dataset we reduce
the initial d-dimensional problem to a one-dimensional setting. If ∆n defined in (5.2) is large enough
the null hypothesis is rejected, while for small values of∆n the test fails to reject theH0. More precisely:
given the significance level αwe consider a rejection regionRα “ rtα,8r such that

Pp∆n P Rα|H0q

“ P

˜

n´1{2 sup
rPr0,T s

|χpCpXqrq ´ EF pχpn, rqq| ą tα

ˇ

ˇ

ˇ

ˇ

ˇ

H0

¸

“ α.

(5.3)

The threshold value tα depends on the significance level α and F (and hence also on dimension d),
however the dependence on F is dropped in the notation. We prove that this test is consistent below
in Section 5.1.3.

5.1.2 Two-sample test

A test statistic based on Euler characteristic curves can also be adapted to the two-sample problem.
Given two samplesX,Y Ă Rd of possibly different sizes, following unknown distributionsX „ F

and Y „ G, we are testing the null hypothesis H0 : ĝ “ f̂ , where f, g are the densities of F,G,
respectively. The test statistic in this setting is the supremum distance between the normalized ECCs

∆pχpXq, χpY qq “ sup
rPr0,T s

ˇ

ˇ

ˇ

ˇ

1

|X|
χpCpXqrq ´

1

|Y |
χpCpY qrq

ˇ

ˇ

ˇ

ˇ

.

Moreover, recall that we rescale the samples to have a fixed average number of points in a ball of
radius r, independently of the sample size. Since the null distribution is unknown, we fall back on a
permutation test [10, Section 16.3] to compute the p-value, see Algorithm 5.2 for the details.

As for any permutation test, the procedure is computationally expensive as it requires computing
ECCs for a variety of point sets resampled from the union of the two input datasets. The application
of this approach is therefore limited to rather small sizes of input data sets. See Section 5.4 for results
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Figure 5.1: Example of the one-sample setting, testing the hypothesis that the 100 points on the left are following
a uniform distribution. The expected ECC for 100 points following a uniform distribution is shown
in black on the right, and 95% of samples from the null distribution yield an ECC falling within the
grey acceptance region. Since the empirical ECC of our sample, drawn in orange, goes outside this
region, we have evidence to reject the null hypothesis.

of a simulation study in which the performance of this approach is compared with the two-sample
Kolmogorov-Smirnov test.

5.1.3 Power of the One-Sample Test

Overview

The TopoTest relies on the Functional Central Limit Theorem of Krebs et al. [104, Theorem 3.4],
hence it works under the following, rather technical, assumption

Assumption 1. The null distribution has compact convex support inside r0, 1sd. It admits a bounded
density κ that can be uniformly approximated by blocked functions κn.

Recall from [104, equation 3.8], that the approximation by blocked functions means lim
nÑ8

}κ´ κn} “ 0,

where each κn is constant on grid elements of a partition of the unit hypercube r0, 1sd into an equidis-
tant grid ofmd subcubes. In particular, bounded measurable functions satisfy this assumption.

We will show, for a fixed significance level α, that the mean of the test statistic ∆n does not grow
with n under the null hypothesis, while it grows at least like

?
n under the alternative hypothesis.

Moreover, in both cases ∆n is concentrated around its mean allowing to control the type II error of
the TopoTests.
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5.1 Method

CaseH0 true

Under the null hypothesis f̂ “ ĝ, we have limnÑ8 EF pχpn, rqq “ limnÑ8 EGpχpn, rqq due to
[157]. Thus, by [148] and [104, Theorem 3.4]) (cf. Theorem 2.4.3), we have the following convergence
in distribution in the Skorokhod J1-topology to a centered Gaussian process fr,

n´1{2pχpCpXqrq ´ EF pχpn, rqqq
D

ÝÝÝÑ
nÑ8

fr. (5.4)

Here it is assumed that the sample is drawn from a distribution satisfying Assumption 1 and scaled
by n1{d (so that asymptotically, the distribution is governed by the thermodynamic regime; recall
the discussion in section 2.4). Note that by [157], the distribution and covariance structure of the
limiting Gaussian process only depend on the excess mass of the distribution from which the points
are sampled. Let us denote

ZT “ sup
rPr0,T s

|fr|.

In the following we will approximate the finite-sample distribution ofn´1{2pχpCpXqrq´EF pχpn, rqqq

by the limiting Gaussian process fr. Therefore, for sufficiently large nwe assume that

∆n
D
“ ZT . (5.5)

The quality of this approximation was studied numerically – please refer to Figure 5.2. Intuitively
speaking, the distribution of the tests statistic for finite samples is similar to the theoretical limit
distribution of the supremum of the Gaussian process.

ForZT we have the Borell-TIS inequality1[4, Section 2.1],

PpZT ą tq “ P

˜

sup
rPr0,T s

|fr| ą t

¸

ď exp

¨

˝´

«

t´ E

˜

sup
rPr0,T s

|fr|

¸ff2

{2σ2T

˛

‚,

(5.6)

where σ2T “ sup
rPr0,T s

Epf2r q.

1The abbreviation stands for Tsirelson, Ibragimov, and Sudakov, who discovered the inequality independently of Borell.
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Figure 5.2: Numerical inspection of the quality of finite sample approximation (5.5). The empirical distribution
ofZT converges with the increasing sample size. Even for the three-dimensional case, the distribution
obtained for n “ 100 is a reasonable approximation for large-sample empirical distribution. An
inset in each plot shows left- and right-hand side of the inequality (5.6) – this provides another
justification for approximation (5.5).

Therefore, for n large enough,

Pp∆n ą t|H0q

“ P

˜

sup
rPr0,T s

ˇ

ˇ

ˇ

ˇ

χpCpXqrq ´ EF pχpn, rqq
?
n

ˇ

ˇ

ˇ

ˇ

ą t

¸

ď exp

˜

´

«

t´ E

˜

sup
rPr0,T s

1
?
n

|χpCpXqrq

´ EF pχpn, rqq|

˙ȷ2

{2σ2T

¸

.

Plugging in (5.3) yields

α ď exp

˜

´

«

tα ´ E

˜

sup
rPr0,T s

1
?
n

|χpCpXqrq

´ EF pχpn, rqq|

˙ȷ2

{2σ2T

¸

which leads to

tα ď

b

´2σ2T lnpαq

` E

˜

sup
rPr0,T s

1
?
n

|χpCpXqrq ´ EF pχpn, rqq|

¸

,
(5.7)

i.e. tα “ Op1q.
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5.1 Method

CaseH0 false

Now let us study the asymptotic size of

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

as n Ñ 8 when Y „ G, and ĝ ‰ f̂ .
We have

E

˜

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

¸

ě sup
rPr0,T s

E|χpCpY qrq ´ EF pχpn, rqq|

ě sup
rPr0,T s

|EGpχpn, rqq ´ EF pχpn, rqq|.

Because the limiting expectations of the ECCs are different under the alternative hypothesis (this is
where we need Theorem 4.3.1 from the previous chapter), this last expression diverges. Due to [31],
Corollary 4.5,EF pχpn, rqq „ nwith constant depending on F and d. In our setting, we obtain

E

˜

sup
rPr0,T s

n´1{2|χpCpY qrq ´ EF pχpn, rqq|

¸

“ Ωp
?
nq. (5.8)

To complete the discussion, it is required to show that in the case of H0 false, one also has a
concentration around the mean, i.e. one needs to control

CF,Gptq “ P

˜

n´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

´E

˜

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

¸ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

.

(5.9)

The lemma below provides a generalization of the Borell-TIS inequality to the case of non-centred
Gaussian process.

Lemma 5.1.2. Let fr be a centred Gaussian process and gprq some deterministic function. We have

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

sup
rPr0,T s

|fr ` gprq| ´ E

˜

sup
rPr0,T s

|fr ` gprq|

¸ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

ď 2e´t2{2σ2
,

(5.10)

where σ “ suprPr0,T s

`

Erf2r s
˘1{2.
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Proof. We follow the strategy of Ledoux [106, Section 7.1]. Argument (2.35) in Ledoux [106] yields that
if γ is a standard Gaussian measure on Rn then for every 1-Lipschitz function F on Rn and t ě 0 we
have

γ

ˆ"

F ě

ż

Fdγ ` t

*˙

ď e´t2{2. (5.11)

Let r1, . . . , rn be fixed in r0, T s and consider centered Gaussian random vector pfr1 , . . . , frnq in
Rn with covariance matrix Γ “ BTB. Consequently, the law of pfr1 , . . . , frnq is the same as the law
ofBN where N “ pN1, . . . , NnqT is distributed according to the standard Gaussian measure γ on
Rn. Let F : Rn Ñ R be defined as

F pxq “ max
1ďiďn

|pBxqi ` gpriq|, x P Rn.

Although we have a different F in our setting than [106], we can still bound the Lipschitz norm of
F to be at most the operator norm ofB : pRn, } ¨ }2q Ñ pRn, } ¨ }8q. Indeed, consider any c ą 0
such that }Bx}8 ď c}x}2 for all x ‰ 0. Using the triangle inequality, we estimate that for any
x ‰ y P Rn,

|F pxq ´ F pyq| “

ˇ

ˇ

ˇ

ˇ

max
1ďiďn

|pBxqi ` gpriq|

´ max
1ďiďn

|pByqi ` gpriq|

ˇ

ˇ

ˇ

ˇ

ď max
1ďiďn

|pBxqi ` gpriq ´ pByqi ´ gpriq|

“ max
1ďiďn

|pBpx´ yqi|

ď c}x´ y}2.

Notice that fri “
řn
j“1BijNj and by independence of tNju1ďjďn we have Ef2

priq
“

řn
j“1B

2
ij .

This allows us to bound the operator norm ofB as follows:

}B}op “ max
1ďiďn

˜

n
ÿ

j“1

B2
ij

¸1{2

“ max
1ďiďn

´

Epf2priqq
¯1{2

ď sup
rPr0,T s

´

pEpf2priqq
¯1{2

“ σ.

Consequently, F {σ is 1-Lipschitz and by (5.11) we have

P
ˆ

1

σ
F pN q ´ Er

1

σ
F pN qs ě t̃

˙

ď e´t̃2{2

Letting t “ σt̃ and by symmetry argument we obtain

Pp|F pN q ´ EpF pN qq| ě tq ď 2e´t2{2σ2
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and

P
ˆˇ

ˇ

ˇ

ˇ

sup
1ďiďn

|fri ` gpriq| ´ E
ˆ

sup
1ďiďn

|fri ` gpriq|

˙ˇ

ˇ

ˇ

ˇ

ě t

˙

ď 2e´t2{2σ2
.

The right hand side does not depend on fpriq, hence lettingn Ñ 8, inequality (5.10) is obtained.

Using the Lemma 5.1.2 we obtain following theorem

Theorem 5.1.3. Concentration around the meanCF,Gptq, defined in (5.9), is exponentially bounded

CF,Gptq ď 2e´t2{2σ2
G . (5.12)

Proof. Subtracting and adding EGpχpn, rqq in (5.9) yields

CF,Gptq

“ P

˜

n´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

´ E

˜

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

¸ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

“ P

˜

n´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

sup
rPr0,T s

|χpCpY qrq ´ EGpχpn, rqq

` EGpχpn, rqq ´ EF pχpn, rqq|

´ E

˜

sup
rPr0,T s

|χpCpY qrq ´ EGpχpn, rqq

` EGpχpn, rqq ´ EF pχpn, rqq|

˙ˇ

ˇ

ˇ

ˇ

ą t

˙

“ P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

sup
rPr0,T s

|gr ` hprq|

´ E

˜

sup
rPr0,T s

|gr ` hprq|q

¸ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

,

where the notation

gr “ pχpCpY qrq ´ EGpχpn, rqqq{
?
n,

hprq “ pEGpχpn, rqq ´ EF pχpn, rqqq{
?
n
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pdf of ∆n underH1pdf of ∆n underH0

E “ Ωp
?
nqtα “ Op1q

t˚α,n

Figure 5.3: The area of shaded blue region is the probability of a type II error occuring. As n Ñ 8, it goes to
zero.

was introduced. Note that by (5.4) applied for distributionG the gr converges to a centred Gaussian
process, whereas hprq is a deterministic function. Let σ2G “ sup

rPr0,T s

Epg2r q. Therefore, the bound

(5.12) is obtained by Lemma 5.1.2 using the same assumption as in (5.5).

The rate of type I error is controlled by the significance level α. An asymptotic upper bound for
type II error is given by the following theorem.

Theorem 5.1.4. For fixed α, the probability of a type II error goes to 0 exponentially as n Ñ 8.

Proof. We will use the threshold tα defined in (5.3) and the concentration inequality of Theorem 5.1.3.
The idea is illustrated in Figure 5.3. Introduce

t˚α,n “ E

˜

sup
rPr0,T s

n´1{2|χpCpY qrq ´ EF pχpn, rqq|

¸

´ tα.
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Due to equation (5.8), the first term above is of order Ωp
?
nq while second term is of orderOp1q,

therefore t˚α,n “ Ωp
?
nq and is positive for sufficiently large n. Hence we can estimate

Pptype II errorq

ď P

˜

sup
rPr0,T s

n´1{2|χpCpY qrq ´ EF pχpn, rqq| ă tα

¸

“
1

2
P

«

n´1{2

ˇ

ˇ

ˇ

ˇ

ˇ

E

˜

sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

¸

´ sup
rPr0,T s

|χpCpY qrq ´ EF pχpn, rqq|

ˇ

ˇ

ˇ

ˇ

ˇ

ą t˚α,n

ff

ď exp

˜

´t˚α,n
2

2σ2

¸

„ e´n Ñ 0.

5.1.4 Properties of the TopoTests

TopoTests rely on the Euler characteristic curve which is computed based on the Alpha complex
of the input sample. The Alpha complex captures distance patterns between all data points in the
samples. Therefore, TopoTest is not capable to discriminate distributions that differ only by trans-
lation, reflection or rotation, or, more generally, admit the same excess mass (cf. Chapter 4). As
a consequence TopoTest, contrary to Kolmogorov-Smirnov, is not able to distinguish between e.g.

N
ˆ

p0, 0q,

„

1 0
0 1

ȷ

q

˙

andN
ˆ

pµ1, µ2q,

„

1 α
α 1

ȷ

q

˙

, α P r´1, 0qYp0, 1s as those distributions are

equivalent up to translation and rotation. As a consequence, the alternative hypotheses in Kolmogorov-
Smirnov and TopoTest are in fact slightly different: in the former we haveH1 : G ‰ F while in later
the inequality is phrased only in terms of excess mass, cf. Equation (5.1). The same discussion also
applies to the null hypothesis. Hence, such pairs of distributions were excluded from the forthcoming
numerical study.

5.1.5 Non-Compactly Supported Distributions

The results on the asymptotic convergence presented in Section 5.1.3 work for compactly supported
distributions. However, most of the distributions considered in practice, starting from normal distri-
butions, are defined on non–compact support and the presented results do not apply to them directly.
There are a number of ways we can adjust such a distribution so that the presented methodology
applies. In what follows we discuss three possible strategies, starting from the one we consider the
most practical one

1. Restricting a distribution to a compact subset;
In this case, the given distribution is restricted to a compact rectangle. In our case we choose a
symmetric rectangle r´a, asd for a being the maximal representable double precision number.
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This ensures that every sample that can be analyzed in a computer is automatically coming
from such a restricted distribution. We note that, formally, such a restricted distribution need
to be rescaled to become a probability distribution. However, in all practically relevant cases
we are aware of, such a restricted distribution will be infinitesimally close, on its domain, to
the original one, defined on an unbounded domain. Therefore, we argue that in practice, the
presented methods can be applied even to distributions with no compact support. Additionally,
the simulations performed provide strong evidence for this claim.

2. Rescaling a distribution to a compact subset;
Here a transformation, arctanpγxq : R Ñ r´π

2 ,
π
2 s is applied separately to each coordinate

to map the unbounded domain to a compact region.
We observe that for x P r´2, 2s, or for any similar interval centered around zero, arctanpxq

is close to a linear function, hence the distance between points before and after applying the
map, should be proportional to each other regardless of the points. To keep such a distortion
of distances between points before and after rescaling, the scaling parameter γ is used. For
instance, we may choose it in the way that 10 standard deviations in our data, after divided by
γ, have values in the interval r´2, 2s. For multivariate distributions the scaling can be applied
separately in each dimension. Such a rescaling does not have any major impact on the powers of
the tests as discussed in Sections 5.3 and 5.4. At the same time, it allows to map any unbounded
distribution to a compact domain. One should note, however, that a distribution with bounded
density, transformed by arctan may have, in some pathological cases, unbounded density and
thus violate Assumption 1. Hence, before using this transformation, the boundedness of the
output density needs to be verified.

3. Transforming into copula;
The marginals F1, . . . , Fd of the distribution F are continuous, hence one can apply the
probability integral transform [40] to each component of the random vectorX sampled form a
distribution F . Then the random vector

pU1, . . . , Udq “ pF1pX1q, . . . , FdpXdqq (5.13)

is supported on a unit cube r0, 1sd and has uniformly distributed marginals. The joint distri-
bution function of pU1, . . . , Udq forms a copula. Since the null distribution F is given, the
marginal distributions F1, . . . , Fd can be derived. The transformation (5.13) must be applied
to both the sample and null distribution F . Transformation (5.13) preserves the correlation
structure and transforms the initial distribution F onto a compact support fulfilling the As-
sumption 1. Although such transformation is easy to compute and quite general, simulation
studies showed that the power of resulting test is significantly reduced.

5.2 Algorithms

5.2.1 One-Sample Test

The test statistic for one-sample TopoTest, ∆ defined in (5.2), involves EF pχpn, rqq being the ECC
expected underH0. There is no compact formula that can be applied to compute EF pχpn, rqq for an
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arbitrary distribution function F in arbitrary dimension d although some some asymptotic formulas
are available in Table 4.1. However one can use the empirical approximation of EF pχpn, rqq based on
average ECC computed on a collection of randomly generated ECCs. Notice that χpApXqrq can
only take on finitely many values because the underlying sample is finite. Therefore, EF pχpn, rqq is
finite. The strong law of large numbers applies and we can approximate this expectation empirically,
i.e. let Y1, . . . YM be i.i.d. samples each consisting of n points drawn i.i.d. from F , then

pEF pχpn, rqq :“
M
ÿ

i“1

χpApYiqrq

M
a.s.

ÝÝÝÝÑ
MÑ8

EF pχpn, rqq. (5.14)

Due to the continuous mapping theorem, the above point-wise convergence result allows us to use an
empirical estimate pEF pχpn, rqq instead of EF pχpn, rqq in practice when computing the statistic ∆n

leading to statistic

p∆n :“ p∆pχpApXqq, pEF pχpn, rqqq

:“ sup
rPr0,T s

1
?
n

|χpApXqrq ´ pEF pχpn, rqq|,
(5.15)

that was actually used in simulations. It should be mentioned that the estimator pEF pχpn, rqq does
not depend on the sample being tested and by increasingM can be arbitrary close to EF pχpn, rqq.

The algorithm for computing the TopoTest for one sample can be divided into two steps. Firstly, in
the preparation step an average ECC for given null distribution F is computed. Then the critical value
of the test statistic is estimated empirically by drawing a set of random samples fromF and computing
the distance between ECCs corresponding to those samples and the average ECC computed previously.
Secondly, in the testing step, the distance of the ECC of the given sample to the averaged ECC for the
considered distribution is computed and compared to the critical values obtained in the first step. This
procedure is provided in details by Algorithm 5.1.

Remark 5.2.1. The preparation step in Algorithm 5.1 depends only on the sample size n and the null
distribution F but is independent of the actual sampleX . Hence, it needs to be performed only once
if several data samples of size n are considered.

Remark 5.2.2. The threshold value tα used in the TopoTest is obtained from a numerical Monte
Carlo simulation performed for a family of finite samples of a size n and does not explicitly employ
asymptotic bounds from Section 5.1.

Remark 5.2.3. The Monte Carlo parameters M and m should be sufficiently large to obtain an
accurate resulting test. For the distributions considered in this chapter, valuesM “ m “ 1000 were
selected.

Remark 5.2.4. The need to utilize the Monte Carlo approach to determine threshold value tα stems
from the fact that the distribution of the test statistic (5.2) depends on the distribution of F and
the size of the samples for which TopoTest was built. In general, this distribution is unknown. The
simulations showed that employing an asymptotic distribution, approximated numerically by using a
large sample size n in the preparation step, provided incorrect empirical significance levels in case of
samples much smaller than n.
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Algorithm 5.1: Algorithm for one-sample testing
Input: Point sampleX P Rd, null distribution F , significance level α,M : number of samples

draw from F to estimate average ECC,m: number of samples draw from F to
estimate the threshold value.

Output: Rejecting or failure to reject of null hypothesis, p-value
Let n “ |X|

/* "Preparation", i.e. determine the threshold tα for rejecting the null

hypothesis */

for i Ð 1, . . . ,M do
Yi Ð i.i.d. sample of n points from F
Compute the ECC χpApYiqq

end

Compute the average ECC χprq Ð 1
M

M
ř

i“1
χpApYiqrq

for i Ð 1, . . . ,m do
Y 1
i Ð i.i.d. sample of n points from F

Compute the ECC χpApY 1
i qq

Compute the deviation from average ∆i Ð sup
t

1?
n

|χpApY 1
i qrq ´ χprq|

end
Let tα P R such that #t∆i ą tαu ă αm
/* "Testing", i.e. compare the threshold value with sample distance */

Compute the ECC χpApXqq

∆pχpApXqq, χq Ð sup
r

1?
n

|χpApXqrq ´ χprq|

pv Ð 1
M#t∆i ą ∆pχpApXqq, χqu

return ∆pχpApXqq, χq ă tα, pv
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Figure 5.4: Euler characteristic curves of two samples of a size 50; X „ Up0, 1q ˆ Up0, 1q (in black) and
Y „ βp3, 3qˆβp3, 3q (in red). The green curve represents the expected ECC forUp0, 1qˆUp0, 1q.
Samples are shown in the inset.
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Figure 5.5: The situation of Example 5.2.6: Expected ECCs of distributions F andGwith n “ 50 are drawn
with logarithmic scale. The inset shows the corresponding densities f and g.

Example 5.2.5. Consider the samplesX,Y Ď r0, 1s2 consisting of the 50 black and 50 red points as
shown in the inset in Figure 5.4. Let us look at the two samples separately, for each of them we perform
the one-sample test against the uniform distribution. We want to test, at significance level α “ 0.05,
whether they follow (up to equal excess mass) the uniform distribution. The ECC of X is shown
in black and the one of Y in red in Figure 5.4. The green curve represents the expected ECC under
the null hypothesis, estimated viaM “ 1000 Monte Carlo iterations using (5.14). We find the test
statistic (5.15) computed between the χpApXqrq and the average curve is p∆n “ 0.611. Comparing
this with the computed threshold of tα “ 1.318, we conclude that we do not have evidence to reject
the null hypothesis. The p-value is 0.916. In contrast, test statistics computed for χpApY qrq is much
larger and equals p∆n “ 2.267. Again using α “ 0.05, the test provides evidence to reject the null
hypothesis with p-value computed to be ă 0.001. And indeed, we generatedX from the bivariate
uniform distribution (i.e. null distribution) whereas Y was sampled from βp3, 3q ˆ βp3, 3q, i.e.
Cartesian product of two independent univariate βp3, 3q distributions.

Example 5.2.6. Consider the real-valued distributions F andGwith densities

fpxq “
1

4
1p0,2qpxq `

1

2
1p2,3qpxq,

gpxq “
1

4
1p0,1qpxq `

1

2
1p1,2qpxq `

1

4
1p2,3qpxq.
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Observe that for each t ą 0,

ż

fět

fpxqdx “

ż

gět

gpxqdx “

$

’

&

’

%

1 if t ď 1{4,

1{2 if 1{4 ă t ď 1{2,

0 if t ą 1{2.

(5.16)

In other words, they admit the same excess mass. Hence by Lemma 5.1 of [157], the ECCs of F andG
in the thermodynamic limit follow the same distribution. The expected ECCs for 50 samples from F
andG are shown in Figure 5.5. Note that even though we have a modest sample size, rather far away
from the asymptotic regime, the graphs are already almost identical. Therefore, F and G form an
example of distributions that are indistinguishable by TopoTest. Indeed, the power of one-sample
Kolmogorov-Smirnov test, when F is used as a null distribution and 50 elements samples are drawn
fromG, is 0.91 and only 0.05, i.e. α, for TopoTest.

5.2.2 Two-Sample Test

In Section 5.1.2 a related approach to the two-sample problem was presented. This idea is formally
provided by the Algorithm 5.2 while a particular realization is presented in the example below. Let us

Algorithm 5.2: Two-sample testing
Input: two sample pointsX “ tx1, . . . , xmu, Y “ ty1, . . . , ynu both in Rd, numberK of

Monte Carlo iterations, significance level α.
Output: Rejecting or failure to reject of null hypothesis, p-value
Compute the distanceD between normalized ECCs build on top ofX and Y

D Ð sup
r

ˇ

ˇ

ˇ

ˇ

1

m
χpApXqrq ´

1

n
χpApY qrq

ˇ

ˇ

ˇ

ˇ

Pool the data pointsZ Ð X Y Y
for p Ð 1, . . . ,K do

Z#
ppq

Ð permutepZq

SplitZppq into two samples of sizem and n
Xppq Ð tZppq,1, Zppq,2, . . . , Zppq,mu

Yppq Ð tZppq,m`1, Zppq,m`2, . . . , Zppq,m`nu

Compute the distance between ECCs build on top ofXppq and Yppq

dppq Ð supr

ˇ

ˇ

ˇ

1
mχ

´

A
`

Xppq

˘

r

¯

´ 1
nχ

´

A
`

Yppq

˘

r

¯ˇ

ˇ

ˇ

end
pv Ð 1

K#tdppq ą Du

return pv ă α, pv

begin with the situation in which the null hypothesis is not rejected.
Example 5.2.7. Consider bothX and Y sampled from Up0, 1q2 with |X| “ 30, |Y | “ 50, shown
in the inset of Figure 5.6. We compute the supremum distance between the normalized ECCs to be
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Figure 5.6: Normalized Euler Characteristic Curves of two samples of size 30 and 50 drawn from bivariate
uniform distribution, Up0, 1q ˆ Up0, 1q. Samples are shown in the inset.

D “ 0.227, as illustrated in Figure 5.6. Using K “ 1000 Monte Carlo iterations we find that a
distance between ECCs at least as extreme asD happens roughly 73% of the time. We conclude that
we do not have evidence to reject the null hypothesis at significance level α “ 0.05.

Now let us turn to an example in which the null hypothesis is rejected.

Example 5.2.8. In the Figure 5.7, we have sampledX as 30 points from the bivariate uniform distri-
bution on the unit square Up0, 1q2, whereas Y consists of 50 points sampled from βp3, 3q ˆUp0, 1q.
We compute the distance between corresponding normalized ECCs to beD “ 0.453. InK “ 1000
Monte Carlo iterations, we find that an ECC distance at least as extreme asD never happens, hence
using α “ 0.05 this establishes evidence to reject the null hypothesis.

5.3 Numerical Experiments, One-Sample Problem

In this study, Monte Carlo simulations were used to evaluate the power of TopoTests and compare
it with the power of corresponding Kolmogorov-Smirnov tests. In case of univariate distributions,
Cramér-von Mises was considered as well for completeness. To obtain more detailed insight into
performance of TopoTests, samples of various sizes ranging from n “ 30 up to n “ 1000, were
examined. In the following subsections three types of experiments are presented:

1. Fixing the null distribution to be standard normal and test samples drawn from a vast variety
of alternative distributions with different parameters; Laplace, uniform, t-distribution, as well
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Figure 5.7: Normalized Euler Characteristic Curves of two samples of size 30 and 50 drawn from different
distributions: X „ Up0, 1q ˆ Up0, 1q and Y „ βp3, 3q ˆ Up0, 1q.

as Cauchy, logistic distributions and mixture of Gaussians. This set of experiments allowed to
assess how well TopoTests performs to recognize standard normal distributions.

2. Fixing a family of distributions, and treat each of them as null distribution while all others are
considered as alternative distribution. For each such a pair of distributions, the empirical power
of the test, i.e. 1 minus probability of type II error, was computed using Monte Carlo methods.
The result was visualized in a form of heat-maps.

3. In addition, for various dimensions, a relation between power of the test and number n of data
points in the sample was examined (cf. Figure 5.13). As expected, the power of the test increases
monotonically with the sample size.

In this section both simulations satisfying Assumption 1 and those that do not satisfy it (for instance
multivariate normal) were considered. To theoretically underpin this approach, several ideas were
suggested in Section 5.1.5. In practice, the fact that the Assumption 1 was not satisfied in some cases
did not affect the test powers.

Remark 5.3.1. In this section we benchmark TopoTest by comparing its power with the power of
Kolmogorov-Smirnov test, i.e. the probability that the test correctly rejects null hypothesis when the
alternative distribution is different than null distribution. Since TopoTests is not able to distinguish
different distributions with the same excess mass, which Kolmogorov-Smirnov can distinguish, the
setting under which it operates (5.1) is different from the Kolmogorov-Smirnov setting (1.2), and
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5 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

Figure 5.8: Average power of TopoTest (left panel) and Kolmogorov-Smirnov test for selected trivariate on
compact support on r0, 1s3. Average power, at significance level α “ 0.05, is estimated based on
K “ 1000 Monte Carlo realizations for sample size n “ 100.
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hence the reported power of TopoTest might be overestimated. To mediate this effect a vast collection
of distributions was considered.

5.3.1 Compactly Supported Distributions

As a first example a collection of distributions supported on three-dimensional unit cube r0, 1s3 was
considered. The collection consisted of a number of three-fold Cartesian products of independent
beta, cosine (rescaled to fit unit interval) and uniform univarite distributions. In such setup the
Assumption 1 is fulfilled and developed theory can be applied straightforwardly. In Figure 5.8 the
power of TopoTest was compared with power of Kolmogorov-Smirnov test for a collection of trivariate
distributions on compact domain. Several sample sizes were considered but here only results obtained
for n “ 100 are reported as similar conclusions can be drawn for different values of n. The TopoTest
provided higher power for vast majority of considered pairs of null and alternative distributions
resulting in average power, at significance levelα “ 0.05, for this collection of distributions to be 0.82
for TopoTest and 0.73 for Kolmogorov-Smirnov. In fact, for collection of distributions considered in
Figure 5.8 in only one, out of 72, comparisons the power of Kolmogorov-Smirnov test was higher
than the one for TopoTest, and the difference was slim (0.07 vs. 0.08).

5.3.2 Univariate Unbounded Distributions

In this section we consider a vast collection of univariate unbounded distribution represented on a
computer (hence, restricted to a representable range of double precision numbers). The collection
include normal distributions N p0, σ2q with different values of σ, Cauchy, Laplace, Logistic distribu-
tions, Student’s t-distributions with increasing number of degrees of freedom ν as well as Gaussian
mixtures defined asGMpp, µ, σq “ pN p0, 1q ` p1 ´ pqN pµ, σq, for p P t0.1, 0.3, 0.5, 0.7, 0.9u,
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5.3 Numerical Experiments, One-Sample Problem

µ P t0, 1u and σ P t1
2 , 1, 2u. For completeness some distributions defined on compact support are

considered as well.
Table 5.1 provides the empirical power of TopoTests, assessed based onK “ 5000 Monte Carlo

simulations, in distinguishing a standard normal N p0, 1q from a number of alternative distributions
at significance level α “ 0.05.

As we can observe in Table 5.1, TopoTest outperformed the Kolmogorov-Smirnov test when
distinguishing between the standard normal distribution from the normal distribution with variance
different from 1, regardless of the sample size. The power of the TopoTest is also greater when
the alternative distribution is Student’s t-distribution: the difference compared to the Kolmogorov-
Smirnov test was particularly pronounced when the number of degrees of freedom ν was small. When
ν was 10 or more, the power of both tests is much lower, as expected, but still TopoTest outperformed
the Kolmogorov-Smirnov test. Similar conclusion can be drawn for heavier tail alternative distributions
such as Cauchy, Laplace or Logistic distribution: the empirical probability of type II error was always
lower for TopoTest than for Kolmogorov-Smirnov counterpart. On the other hand, when Gaussian
mixtures were considered, it was the Kolmogorov-Smirnov test that performs better, regardless of the
value of mixing coefficient p.

5.3.3 Two and Three Dimensional Unbounded Distributions

In Table 5.2 result for collection of bivariate distributions are shown. TheMGpaq denotes a multi-
variate normal distribution with non-diagonal covariance matrix, i.e.

MGpaq “ N

¨
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, (5.17)

where the value of the parameter a varies from 0 to 1 to reflect increasing correlation of components.
Similarly to the univariate case, TopoTests provided lower type II errors in case of alternative

distributions being products involving a Student’s t-distribution. This conclusion holds also when
one of the marginal distribution was a N p0, 1q and second being Student’s t-distribution. A similar
result is true for bivariate distributions being a Cartesian product involving Logistic or Laplace
distribution. We notice that TopoTest usually provided higher efficiency in case of Gaussian mixtures.
On the other hand, TopoTest is significantly weaker than Kolmogorov-Smirnov when considering
correlated multivariate normal distributions MG. All of these conclusions can be generalized to three
dimensional distributions as initiated by results in Table 5.3.

The last row of Tables 5.1, 5.2 and 5.3 show the average powers of TopoTest and Kolmogorov-
Smirnov test for the considered set of alternative distributions. The average power of TopoTest is
greater than that of Kolmogorov-Smirnov test for all studied sample sizes.

5.3.4 All-to-All Tests

Results presented in Tables 5.1,5.2,5.3 focused on the ability to discriminate the standard normal
distribution from a set of different distributions. However in TopoTest one can choose arbitrary
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Table 5.1: Empirical powers of the one-sample TopoTest for different alternative distributions and sample sizesn
– the null distribution was standard normalN p0, 1q. Corresponding powers of Kolmogorov-Smirnov
tests are given in parenthesis for comparison – higher result is given in bold for easier comparison.
Results for the significance level α “ 0.05. Empirical powers estimated based onK “ 5000 Monte
Carlo simulations.

Sample size n

Alternative Distribution 30 50 100 250 500
N p0, 0.50q 0.953 (0.417) 0.997 (0.820) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
N p0, 0.75q 0.278 (0.061) 0.369 (0.097) 0.705 (0.247) 0.995 (0.734) 1.000 (0.998)
N p0, 1.25q 0.222 (0.096) 0.291 (0.123) 0.477 (0.211) 0.879 (0.459) 0.998 (0.899)
N p0, 1.5q 0.519 (0.228) 0.670 (0.327) 0.956 (0.688) 1.000 (0.990) 1.000 (1.000)
Laplacep0, 1q 0.224 (0.055) 0.309 (0.058) 0.544 (0.084) 0.918 (0.145) 1.000 (0.534)
Up´

?
3,

?
3q 0.037 (0.110) 0.041 (0.141) 0.099 (0.249) 0.840 (0.558) 1.000 (0.930)

Up0, 1q 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
tp3q 0.280 (0.070) 0.400 (0.066) 0.674 (0.122) 0.966 (0.267) 1.000 (0.700)
tp5q 0.151 (0.054) 0.169 (0.054) 0.306 (0.068) 0.636 (0.080) 0.918 (0.176)
tp10q 0.084 (0.049) 0.080 (0.043) 0.111 (0.051) 0.246 (0.053) 0.346 (0.074)
tp25q 0.059 (0.052) 0.054 (0.041) 0.066 (0.060) 0.072 (0.045) 0.081 (0.053)
Cauchyp0, 1q 0.907 (0.281) 0.971 (0.456) 1.000 (0.850) 1.000 (1.000) 1.000 (1.000)
Logisticp0, 1q 0.760 (0.322) 0.903 (0.511) 0.996 (0.885) 1.000 (1.000) 1.000 (1.000)
0.9N p0, 1q + 0.1N p0, 0.5q 0.065 (0.042) 0.048 (0.038) 0.073 (0.072) 0.090 (0.059) 0.137 (0.093)
0.7N p0, 1q + 0.3N p0, 0.5q 0.124 (0.052) 0.136 (0.078) 0.248 (0.136) 0.542 (0.337) 0.816 (0.784)
0.5N p0, 1q + 0.5N p0, 0.5q 0.292 (0.088) 0.375 (0.152) 0.637 (0.404) 0.978 (0.912) 0.999 (1.000)
0.3N p0, 1q + 0.7N p0, 0.5q 0.544 (0.159) 0.746 (0.329) 0.961 (0.855) 1.000 (1.000) 1.000 (1.000)
0.1N p0, 1q + 0.9N p0, 0.5q 0.852 (0.304) 0.977 (0.672) 1.000 (0.995) 1.000 (1.000) 1.000 (1.000)
0.9N p0, 1q + 0.1N p0, 2q 0.092 (0.052) 0.077 (0.050) 0.143 (0.064) 0.229 (0.056) 0.413 (0.087)
0.7N p0, 1q + 0.3N p0, 2q 0.256 (0.085) 0.350 (0.098) 0.627 (0.140) 0.943 (0.315) 1.000 (0.778)
0.5N p0, 1q + 0.5N p0, 2q 0.514 (0.152) 0.683 (0.212) 0.952 (0.449) 1.000 (0.933) 1.000 (1.000)
0.3N p0, 1q + 0.7N p0, 2q 0.733 (0.291) 0.898 (0.450) 0.997 (0.858) 1.000 (0.999) 1.000 (1.000)
0.1N p0, 1q + 0.9N p0, 2q 0.875 (0.491) 0.968 (0.750) 1.000 (0.984) 1.000 (1.000) 1.000 (1.000)
0.9N p0, 1q + 0.1N p1, 2q 0.096 (0.068) 0.111 (0.063) 0.171 (0.092) 0.319 (0.135) 0.548 (0.280)
0.7N p0, 1q + 0.3N p1, 2q 0.318 (0.182) 0.464 (0.249) 0.747 (0.508) 0.985 (0.932) 1.000 (1.000)
0.5N p0, 1q + 0.5N p1, 2q 0.588 (0.453) 0.760 (0.665) 0.971 (0.948) 1.000 (1.000) 1.000 (1.000)
0.3N p0, 1q + 0.7N p1, 2q 0.778 (0.747) 0.927 (0.930) 0.999 (0.999) 1.000 (1.000) 1.000 (1.000)
0.1N p0, 1q + 0.9N p1, 2q 0.889 (0.921) 0.987 (0.990) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
Average Power 0.446 (0.246) 0.527 (0.338) 0.659 (0.501) 0.808 (0.643) 0.866 (0.764)
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Table 5.2: The same as Table 5.1 but for two dimensional distributions. Null distribution isN0 „ N p0, I2q,
where I2 is a 2 ˆ 2 identity matrix. Empirical powers, based on K “ 1000 Monte Carlo simu-
lations. Alternative distributions include Gaussian mixtures ofN0,N1 „ N pp1, 1q, 3I2q, N2 „

N pp0, 0q, 3I2q andN3 „ N pp´1,´1q, 3I2q.
Sample size n

Alternative Distribution 30 50 100 250 500
MGp0.05q 0.036 (0.052) 0.050 (0.050) 0.049 (0.038) 0.061 (0.070) 0.059 (0.048)
MGp0.1q 0.042 (0.044) 0.041 (0.056) 0.048 (0.042) 0.052 (0.074) 0.065 (0.096)
MGp0.2q 0.040 (0.073) 0.064 (0.114) 0.060 (0.106) 0.062 (0.170) 0.062 (0.298)
MGp0.3q 0.046 (0.072) 0.064 (0.130) 0.071 (0.134) 0.090 (0.368) 0.121 (0.702)
MGp0.5q 0.093 (0.124) 0.115 (0.258) 0.200 (0.478) 0.369 (0.952) 0.652 (1.000)
MGp0.7q 0.232 (0.229) 0.381 (0.578) 0.688 (0.902) 0.966 (1.000) 1.000 (1.000)
Up´

?
3,

?
3q ˆ Up´

?
3,

?
3q 0.044 (0.157) 0.082 (0.292) 0.487 (0.468) 1.000 (0.942) 1.000 (1.000)

Up0, 1q ˆ Up0, 1q 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
tp3q ˆ tp3q 0.399 (0.121) 0.673 (0.176) 0.956 (0.308) 1.000 (0.838) 1.000 (0.996)
tp5q ˆ tp5q 0.152 (0.073) 0.305 (0.104) 0.609 (0.124) 0.960 (0.304) 0.999 (0.660)
tp10q ˆ tp10q 0.045 (0.064) 0.094 (0.088) 0.191 (0.078) 0.470 (0.094) 0.782 (0.100)
tp25q ˆ tp25q 0.039 (0.047) 0.066 (0.068) 0.067 (0.044) 0.096 (0.052) 0.165 (0.058)
N p0, 1q ˆ tp3q 0.096 (0.064) 0.235 (0.086) 0.466 (0.102) 0.882 (0.244) 0.993 (0.422)
N p0, 1q ˆ tp5q 0.059 (0.062) 0.086 (0.068) 0.196 (0.086) 0.472 (0.122) 0.787 (0.116)
N p0, 1q ˆ tp10q 0.041 (0.043) 0.052 (0.060) 0.068 (0.060) 0.141 (0.066) 0.270 (0.072)
0.9N0 ` 0.1N1 0.051 (0.074) 0.092 (0.096) 0.184 (0.102) 0.448 (0.238) 0.701 (0.406)
0.7N0 ` 0.3N1 0.284 (0.257) 0.519 (0.452) 0.842 (0.782) 0.998 (0.996) 1.000 (1.000)
0.5N0 ` 0.5N1 0.600 (0.637) 0.908 (0.902) 0.998 (0.998) 1.000 (1.000) 1.000 (1.000)
0.3N0 ` 0.7N1 0.843 (0.917) 0.982 (0.988) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.1N0 ` 0.9N1 0.943 (0.995) 0.998 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.9N0 ` 0.1N2 0.050 (0.064) 0.064 (0.074) 0.128 (0.052) 0.281 (0.080) 0.511 (0.114)
0.7N0 ` 0.3N2 0.185 (0.110) 0.369 (0.170) 0.679 (0.236) 0.982 (0.596) 1.000 (0.900)
0.5N0 ` 0.5N2 0.487 (0.237) 0.777 (0.422) 0.982 (0.678) 1.000 (0.984) 1.000 (1.000)
0.3N0 ` 0.7N2 0.746 (0.433) 0.956 (0.702) 0.999 (0.956) 1.000 (1.000) 1.000 (1.000)
0.1N0 ` 0.9N2 0.902 (0.665) 0.996 (0.930) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.9N0 ` 0.05N1 ` 0.05N3 0.055 (0.059) 0.080 (0.078) 0.207 (0.080) 0.453 (0.128) 0.750 (0.178)
0.7N0 ` 0.15N1 ` 0.15N3 0.308 (0.137) 0.566 (0.232) 0.879 (0.384) 0.998 (0.878) 1.000 (0.996)
0.5N0 ` 0.25N1 ` 0.25N3 0.679 (0.371) 0.918 (0.634) 0.998 (0.858) 1.000 (1.000) 1.000 (1.000)
Average Power 0.303 (0.256) 0.412 (0.350) 0.538 (0.432) 0.671 (0.578) 0.747 (0.649)

97



5 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

Table 5.3: The same as Table 5.1 but for three dimensional distributions. Null distribution isN0 „ N p0, I3q,
where I3 is a 3 ˆ 3 identity matrix. Empirical powers, based onK “ 250 Monte Carlo simulations.
Alternative distributions include Gaussian mixtures ofN0, N1 „ N pp1, 1, 1q, 3I3q.

Sample size n

Alternative Distribution 30 50 100 250 500
MGp0.05q 0.052 (0.028) 0.048 (0.052) 0.064 (0.068) 0.062 (0.056) 0.056 (0.044)
MGp0.1q 0.056 (0.052) 0.062 (0.112) 0.076 (0.068) 0.038 (0.104) 0.054 (0.104)
MGp0.2q 0.084 (0.076) 0.062 (0.120) 0.086 (0.128) 0.074 (0.328) 0.084 (0.592)
MGp0.3q 0.084 (0.104) 0.080 (0.216) 0.134 (0.252) 0.168 (0.776) 0.276 (0.992)
MGp0.5q 0.204 (0.212) 0.252 (0.576) 0.524 (0.852) 0.854 (1.000) 0.994 (1.000)
Up´

?
3,

?
3q3 0.048 (0.176) 0.156 (0.408) 0.632 (0.568) 1.000 (0.968) 1.000 (1.000)

Up0, 1q3 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
tp3q3 0.624 (0.168) 0.836 (0.388) 0.998 (0.524) 1.000 (0.996) 1.000 (1.000)
tp5q3 0.268 (0.056) 0.402 (0.196) 0.806 (0.240) 0.992 (0.560) 1.000 (0.936)
tp10q3 0.048 (0.064) 0.108 (0.108) 0.266 (0.080) 0.624 (0.176) 0.906 (0.276)
Logisticp0, 1q3 0.988 (0.904) 1.000 (0.996) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
Laplacep0, 1q3 0.496 (0.116) 0.774 (0.220) 0.990 (0.332) 1.000 (0.924) 1.000 (1.000)
N0 ˆ tp5q ˆ tp5q 0.140 (0.052) 0.238 (0.128) 0.520 (0.120) 0.824 (0.224) 0.996 (0.480)
N0 ˆN0 ˆ tp5q 0.056 (0.028) 0.082 (0.076) 0.154 (0.064) 0.304 (0.080) 0.586 (0.116)
0.9N0 ` 0.1N1 0.100 (0.052) 0.110 (0.132) 0.228 (0.116) 0.502 (0.304) 0.772 (0.500)
0.5N0 ` 0.5N1 0.792 (0.748) 0.954 (0.944) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.1N0 ` 0.9N1 0.996 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
Average Power 0.355 (0.284) 0.421 (0.392) 0.558 (0.436) 0.673 (0.617) 0.748 (0.708)

continuous distributions as null and alternative. Hence below we present power matrices where all
possible pairs of null and alternative distributions formed from the previous set were considered –
results are presented in Figures 5.9,5.10,5.11. For easier evaluation of the effectiveness of the TopoTest
in comparison to Kolmogorov-Smirnov, the difference in power was shown in the figures. Hence, the
blue region corresponds to combinations of null and alternative distribution for which the TopoTest
yielded higher power while red regions reflect the combinations for which TopoTest was outperformed
by Kolmogorov-Smirnov. White color stands for combinations for which both tests performed similar.

The analysis was conducted also dimension d “ 5 as can be seen in Figure 5.12. For d ą 3 the
Kolmogorov-Smirnov test was not preformed due to too long computation time, hence results for
TopoTest are presented only as this method provided feasible computational complexity.

As can be seen the TopoTest stayed sensitive enough to differentiate between multivariate normal
distribution and Cartesian products of involving Student’s t-distribution and standard normal as
marginals, especially given that considered samples sizes are low for such high dimensional spaces.

The heatmap presented in Figure 5.10 reveals several prominent red-blocks, i.e. combinations of
null and alternative distributions for which the power of the TopoTest is significantly lower than the
power of KS test: e.g. the combination G “ pN p0, 1q ` p1 ´ pqN p0, 2q and F “ pN p0, 1q `

p1 ´ pqN pµ, 2q, µ “ 1. This observation is related to the Lemma 5.1 by Vishwanath et al. [157] (c.f.
Example 5.2.6) regarding equivalence in expected ECCs. Although the distributions F andG are not
Euler equivalent and the condition (5.16) is not met but only approximately, the expected ECCs are
quite similar for small values of µmaking them hard to distinguish by the TopoTest test statistic (5.3).
Similar situations holds for trivariate distributions as shown in Figure 5.11.
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5.3 Numerical Experiments, One-Sample Problem

Figure 5.9: Comparison of the power of TopoTest and Kolmogorov-Smirnov one-sample tests in case of univari-
ate probability distributions. In each matrix element a difference between power of TopoTest and
Kolmogorov-Smirnov test was given. The difference in power was estimated based onK “ 1000
Monte Carlo realizations. Left and right panels shows tests powers for sample sizes n “ 100 and
n “ 250, respectively. The average power (excluding diagonal elements) of TopoTest is 0.722
p0.832q and 0.634 p0.794q for Kolmogorov-Smirnov for n “ 100 (n “ 250).
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Figure 5.10: The same as Figure 5.9 but for bivariate distributions. Results based onK “ 1000 Monte Carlo
realizations. Average power is 0.642 p0.772q for TopoTest and 0.560 p0.720q for Kolmogorov-
Smirnov for n “ 100 (n “ 250).
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5 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

Figure 5.11: The same as Figure 5.9 but for three-dimensional distributions. Results based on K “ 250
Monte Carlo realizations. Average power is 0.708 p0.824q for TopoTest and 0.602 p0.763q for
Kolmogorov-Smirnov for n “ 100 (n “ 250).
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Figure 5.12: Average power of TopoTest for five dimension distributions, for sample sizesn “ 250 andn “ 500.
Results based onK “ 1000 Monte Carlo realizations.
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5.4 Numerical Experiments, Two-Sample Problem

Figure 5.13: Average power of the TopoTest (black curve) and Kolmogorov-Smirnov (red curve) as a function
of sample size n for dimensions d “ 1, 2, 3. In case of d “ 1 the average power of Cramér-von
Mises (green curve) test was shown as well. To guide an eye the data points are connect by lines.
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5.3.5 Dependence of the Test Power on Sample Size

The dependence of the power of TopoTest and Kolmogorov-Smirnov tests on the sample size n is
shown in Figure 5.13 for random samples in dimensions d “ 1, 2, 3. To compute average power, all
combinations of null and alternative distributions, as considered in Figures 5.9, 5.10 and 5.11, were
taken into account, except alternative being the same as null distribution. In all cases, the average
power increased with sample size as expected. In case of univariate distribution (leftmost panel in
Figure 5.13) the results obtained using Cramér-von Mises test were added for completeness. The overall
performance of this test is similar to Kolmogorov-Smirnov, hence detailed analysis was omitted. The
TopoTest however provides higher average power for all sample sizes regardless of the data dimension. It
should be noted that powers presented in Figure 5.13 should not be directly compared across different
dimensions as the actual value depends on the list of considered distributions which is different for
each dimension.

5.4 Numerical Experiments, Two-Sample Problem

A numerical study was conducted also for two-sample problems, in which Algorithm 5.2 was applied.
The two-sample problem was considered for completeness purpose as practical application is limited
by high computational costs, therefore results presented here are restricted to comparison of empirical
power of two-sample TopoTest and Kolmogorov-Smirnov tests in d “ 1 (cf. Table 5.4) and d “ 2
(cf. Table 5.5). Simulations showed that in both cases the TopoTest outperformed the Kolmogorov-
Smirnov test: in the vast majority of examined cases the power of the former is greater. Moreover, the
average power for TopoTest is greater than the corresponding average power of Kolmogorov-Smirnov
test for all sample sizes n.

As in the Section 5.3, the above collection of distribution is examined also in all-to-all settings. The
difference in average power between TopoTest and Kolmogorov-Smirnov tests are shown are shown
Figure 5.14.

5.5 Real Data Analysis

In this section, we show two exemplary applications of the developed method to the analysis of real
data.
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5 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

Table 5.4: Empirical powers of the two-sample TopoTest for different alternative distributions and sample sizesn
– the null distribution is standard normal N p0, 1q. Corresponding powers of Kolmogorov-Smirnov
tests are given in parenthesis for comparison – higher result is given in bold for easier comparison.
Results for the significance level α “ 0.05 Empirical powers estimated based onK “ 500 Monte
Carlo realizations.

Sample size n

Second Sample Distribution 30 50 100 250 500
N p0, 0.50q 0.694 (0.218) 0.890 (0.358) 0.996 (0.816) 1.000 (1.000) 1.000 (1.000)
N p0, 0.75q 0.202 (0.054) 0.290 (0.070) 0.462 (0.114) 0.858 (0.376) 0.938 (0.790)
N p0, 1.25q 0.188 (0.056) 0.166 (0.040) 0.300 (0.110) 0.682 (0.228) 0.822 (0.474)
N p0, 1.5q 0.366 (0.084) 0.468 (0.124) 0.792 (0.240) 0.984 (0.782) 0.984 (0.994)
Laplacep0, 1q 0.154 (0.036) 0.204 (0.046) 0.458 (0.068) 0.892 (0.076) 0.992 (0.154)
Up´

?
3,

?
3q 0.092 (0.042) 0.094 (0.054) 0.204 (0.082) 0.756 (0.274) 0.998 (0.592)

Up0, 1q 1.000 (0.970) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
tp3q 0.230 (0.024) 0.276 (0.058) 0.564 (0.046) 0.930 (0.084) 0.956 (0.220)
tp5q 0.116 (0.038) 0.124 (0.030) 0.238 (0.036) 0.568 (0.036) 0.844 (0.072)
tp10q 0.088 (0.048) 0.082 (0.030) 0.098 (0.028) 0.204 (0.062) 0.370 (0.052)
tp25q 0.102 (0.036) 0.062 (0.028) 0.064 (0.040) 0.094 (0.040) 0.110 (0.046)
Cauchyp0, 1q 0.784 (0.060) 0.894 (0.118) 0.914 (0.350) 0.906 (0.956) 0.916 (1.000)
Logisticp0, 1q 0.494 (0.096) 0.712 (0.164) 0.948 (0.392) 0.994 (0.942) 0.998 (1.000)
0.9N p0, 1q + 0.1N p0, 0.5q 0.072 (0.036) 0.092 (0.038) 0.076 (0.048) 0.104 (0.078) 0.082 (0.086)
0.7N p0, 1q + 0.3N p0, 0.5q 0.124 (0.048) 0.122 (0.068) 0.188 (0.098) 0.278 (0.206) 0.266 (0.430)
0.5N p0, 1q + 0.5N p0, 0.5q 0.190 (0.072) 0.242 (0.096) 0.456 (0.178) 0.638 (0.550) 0.610 (0.938)
0.3N p0, 1q + 0.7N p0, 0.5q 0.334 (0.088) 0.490 (0.176) 0.810 (0.380) 0.950 (0.922) 0.822 (1.000)
0.1N p0, 1q + 0.9N p0, 0.5q 0.568 (0.172) 0.782 (0.282) 0.954 (0.674) 0.992 (0.998) 0.958 (1.000)
0.9N p0, 1q + 0.1N p0, 2q 0.114 (0.040) 0.102 (0.038) 0.090 (0.048) 0.220 (0.044) 0.402 (0.076)
0.7N p0, 1q + 0.3N p0, 2q 0.184 (0.030) 0.272 (0.048) 0.424 (0.058) 0.814 (0.146) 0.980 (0.338)
0.5N p0, 1q + 0.5N p0, 2q 0.284 (0.038) 0.502 (0.084) 0.758 (0.152) 0.992 (0.476) 0.996 (0.934)
0.3N p0, 1q + 0.7N p0, 2q 0.458 (0.100) 0.722 (0.126) 0.944 (0.344) 1.000 (0.906) 1.000 (1.000)
0.1N p0, 1q + 0.9N p0, 2q 0.604 (0.118) 0.822 (0.276) 0.988 (0.630) 0.998 (1.000) 0.996 (1.000)
0.9N p0, 1q + 0.1N p1, 2q 0.086 (0.050) 0.120 (0.042) 0.128 (0.042) 0.286 (0.074) 0.548 (0.134)
0.7N p0, 1q + 0.3N p1, 2q 0.210 (0.064) 0.280 (0.108) 0.540 (0.190) 0.906 (0.630) 0.974 (0.958)
0.5N p0, 1q + 0.5N p1, 2q 0.354 (0.174) 0.552 (0.330) 0.814 (0.692) 1.000 (0.990) 0.996 (1.000)
0.3N p0, 1q + 0.7N p1, 2q 0.556 (0.380) 0.744 (0.684) 0.972 (0.952) 1.000 (1.000) 0.998 (1.000)
0.1N p0, 1q + 0.9N p1, 2q 0.688 (0.616) 0.888 (0.892) 0.990 (1.000) 0.998 (1.000) 1.000 (1.000)
Average Power 0.333 (0.135) 0.428 (0.193) 0.577 (0.315) 0.752 (0.531) 0.806 (0.653)
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5.5 Real Data Analysis

Table 5.5: The same as Table 5.4 but for d “ 2. Standard bivariate normal is used as a null distribution. The
MG distribution is defined in (5.17).

Sample size n

Second Sample Distribution 30 50 100 250 500
MGp0.05q 0.084 (0.058) 0.052 (0.066) 0.080 (0.066) 0.066 (0.058) 0.058 (0.086)
MGp0.1q 0.060 (0.072) 0.074 (0.064) 0.078 (0.066) 0.036 (0.076) 0.060 (0.092)
MGp0.2q 0.078 (0.062) 0.080 (0.074) 0.052 (0.074) 0.060 (0.124) 0.074 (0.196)
MGp0.3q 0.082 (0.062) 0.054 (0.066) 0.064 (0.114) 0.080 (0.236) 0.100 (0.472)
MGp0.5q 0.086 (0.092) 0.100 (0.136) 0.136 (0.264) 0.236 (0.666) 0.368 (0.976)
MGp0.7q 0.142 (0.132) 0.226 (0.254) 0.374 (0.582) 0.764 (0.986) 0.958 (1.000)
Up´

?
3,

?
3q ˆ Up´

?
3,

?
3q 0.096 (0.090) 0.144 (0.156) 0.346 (0.244) 0.944 (0.584) 1.000 (0.930)

Up0, 1q ˆ Up0, 1q 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
tp3q ˆ tp3q 0.328 (0.042) 0.494 (0.068) 0.792 (0.140) 0.990 (0.412) 0.980 (0.868)
tp5q ˆ tp5q 0.196 (0.050) 0.224 (0.066) 0.412 (0.086) 0.806 (0.150) 0.982 (0.298)
tp10q ˆ tp10q 0.120 (0.054) 0.110 (0.050) 0.144 (0.064) 0.274 (0.066) 0.546 (0.108)
tp25q ˆ tp25q 0.068 (0.040) 0.076 (0.054) 0.064 (0.058) 0.080 (0.078) 0.130 (0.052)
N p0, 1q ˆ tp3q 0.156 (0.052) 0.160 (0.064) 0.288 (0.076) 0.598 (0.128) 0.866 (0.190)
N p0, 1q ˆ tp5q 0.070 (0.052) 0.112 (0.064) 0.180 (0.052) 0.304 (0.056) 0.518 (0.118)
N p0, 1q ˆ tp10q 0.082 (0.034) 0.054 (0.062) 0.090 (0.054) 0.088 (0.062) 0.152 (0.086)
0.9N0 ` 0.1N1 0.098 (0.052) 0.102 (0.080) 0.136 (0.068) 0.296 (0.154) 0.454 (0.204)
0.7N0 ` 0.3N1 0.280 (0.120) 0.376 (0.178) 0.628 (0.414) 0.956 (0.900) 0.998 (0.998)
0.5N0 ` 0.5N1 0.508 (0.292) 0.694 (0.588) 0.914 (0.922) 1.000 (1.000) 1.000 (1.000)
0.3N0 ` 0.7N1 0.712 (0.636) 0.892 (0.900) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.1N0 ` 0.9N1 0.820 (0.888) 0.972 (0.996) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.9N0 ` 0.1N2 0.108 (0.058) 0.096 (0.076) 0.118 (0.064) 0.190 (0.066) 0.332 (0.086)
0.7N0 ` 0.3N2 0.224 (0.064) 0.250 (0.090) 0.496 (0.106) 0.840 (0.278) 0.994 (0.658)
0.5N0 ` 0.5N2 0.352 (0.080) 0.582 (0.140) 0.858 (0.282) 1.000 (0.806) 1.000 (0.996)
0.3N0 ` 0.7N2 0.636 (0.140) 0.810 (0.318) 0.970 (0.664) 1.000 (0.998) 1.000 (1.000)
0.1N0 ` 0.9N2 0.798 (0.246) 0.918 (0.574) 1.000 (0.914) 1.000 (1.000) 1.000 (1.000)
0.9N0 ` 0.05N1 ` 0.05N3 0.088 (0.050) 0.094 (0.076) 0.142 (0.076) 0.304 (0.102) 0.476 (0.130)
0.7N0 ` 0.15N1 ` 0.15N3 0.234 (0.084) 0.400 (0.108) 0.662 (0.188) 0.968 (0.502) 1.000 (0.904)
0.5N0 ` 0.25N1 ` 0.25N3 0.588 (0.128) 0.786 (0.242) 0.966 (0.554) 1.000 (0.990) 1.000 (1.000)
Average Power 0.289 (0.169) 0.355 (0.236) 0.464 (0.328) 0.603 (0.481) 0.680 (0.587)
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5 Topology-Driven Goodness-of-Fit Tests in Arbitrary Dimensions

Figure 5.14: Difference in average power of two-sample TopoTest and two-sample Kolmogorov-Smirnov tests
for univariate (left panel) and bivariate (right panel) distributions. In both cases sample sizes were
n “ 100 andK “ 500 Monte Carlo realizations were performed to estimate the average power.
Average power of TopoTest is 0.643 (0.537) while for Kolmogorov-Smirnov it is 0.453 (0.437) in
d “ 1 (d “ 2).
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First, we consider Fisher’s Iris data [6, 76] in the one-sample setting. This data includes three
multivariate samples corresponding to three different species of Iris, i.e. Iris setosa, Iris virginica,
and Iris versicolor. There are 50 samples from each species, containing four measurements of the
flower. We would like to determine if the distribution of each species follows a four-dimensional
normal distribution. This can be formulated as a one-sample problem, whereG is the distribution of
a sample, and F is the specified four-dimensional normal distribution. F involves an unknown mean
vector µ and unknown covariance matrix Σ. For each species, µ and Σ are estimated by sample mean
and sample covariance matrix. Our one-sample test for testing H0 : G “ F against H1 : G ‰ F
gave p-values of 0.057, 0.569 and 0.999 for Iris setosa, Iris virginica and Iris versicolor, respectively.
These p-values indicate that, at significance level 0.05,H0 should not be rejected for each of the Iris
species. However, when the same procedure is applied to the entire Iris dataset (i.e. without splitting
into species), the p-value is ă 10´4, hence the null hypothesis is to be rejected, which indicates that
multivariate normal distribution does not fit whole Iris dataset. The conclusions are consistent with
the literature [59].

In our second example, we consider a dataset introduced in [78] consisting of a collection of ge-
ographic locations of four distinct social services, i.e. doctor offices, clothing stores, schools, and
pharmacies, in the municipality of Rennes, France. It is visualized in Figure 5.15 as a map. The
two-sample TopoTest is used to detect if there are any significant differences in the distribution of
those facilities. The test was conducted for all possible pairs. The p-values for all tests involving the dis-
tribution of clothing stores were below 10´4, meaning that in the Algorithm 5.2 in all ofK “ 10000
iterations dppq ă D, which indicates that their geographic distribution is significantly different from
the distribution of doctor offices, schools, and pharmacies. Such conclusion is supported by the plots
of corresponding ECCs (c.f. Figure 5.15, right panel): The curve computed for clothing stores (blue)
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5.6 Discussion

Figure 5.15: Spatial distribution of selected social services with the municipality of Rennes, France (left panel),
corresponding Euler curves (right panel).
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is visually distinct from other curves. Contrary, no statistical differences were observed between the
distribution of pharmacies and the distribution of schools – the p-value of the TopoTest is 0.306. All
the above conclusions are in agreement with the previous findings about that dataset made using the
Fasano-Franceschi test [73, 127]. However, in addition to that, the TopoTest rejects the hypothesis
of equal geographical distributions of doctor offices vs. pharmacies and doctor offices vs. schools (in
both cases the p-value is below 10´4), while the Fasano-Franceschi does not (p-value 0.881 and 0.435,
respectively as computed using fasano.franceschini.test R package). This is an interesting observa-
tion in the context of previously discussed simulation study results, where we show that TopoTest is
more powerful than the Kolmogorov-Smirnov test (closely related to the Fasano-Franceschi test) and
hence more often correctly rejects the null hypothesis.

5.6 Discussion

Using Euler characteristic curves, we introduced a new framework for goodness-of-fit testing in
arbitrary dimensions. In addition, we provide a theoretical justification of the method. Although the
distribution of the test statistic is unknown for finite n, and contrary to the Kolmogorov-Smirnov
test, depends on F , the asymptotic distribution is given by (5.4), while theorem 5.1.4 provides an
upper bound on the type II error.

A simulation study was conducted to address the power of the TopoTest in comparison with
Kolmogorov-Smirnov test. A one- and two-sample setting was considered. In both cases, the TopoTest
in many cases yielded better performance than Kolmogorov-Smirnov. It should be however highlighted
that Kolmogorov-Smirnov test and TopoTests operate in slightly different frameworks – the former in
capable to distinguish between distributions that differ e.g. in location parameter while the TopoTests
are insensitive to the changes of the distribution that leave the excess mass invariant, including shifts,
rotations and reflections as described in Section 5.1.4.
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6 Damage Identification in Rolling
Element Bearings Using Topological
Data Analysis

Abstract. The problem of bearing damage detection is of high practical importance. Instances
characterized by non-Gaussian properties and time-varying operational conditions are of special
interest, as many classical methods fail to detect damage in those cases. This work fills the gap by
proposing a novel algorithm for detecting damages that is also successful in these challenging scenarios.
Formulating the problem in the language of signal processing, the proposed algorithm detects the
cyclic impulses p, being an evidence of fault of a machine, embedded in an unknown non-deterministic
and non-Gaussian signal of background noise s. Using topological data analysis tools, the chapter
presents a method to analyze the signal s` p and determine the existence of the component p even if
it has a small amplitude compared to s. The proposed technique is based on Takens’ reconstruction
theorem and uses persistent homology methods, which we motivate as a parameter-free generalization
of recurrence plots. Specifically, we adapt the methodology of the previous chapter to Betti curves.
This approach is agnostic to the model that generates s and p and outperforms alternative techniques.
The method was successfully tested for Monte Carlo simulations, test rig data under different speed
conditions, and industrial data with serious non-Gaussian disturbances.

Author’s contributions. This chapter contains joint work with Justyna Hebda-Sobkowicz, Agnieszka
Wyłomańska, Radosław Zimroz and Paweł Dłotko. As of the time of writing, it is being finalized for
submission to an industrial engineering journal. N.H. is the lead author, conceived and implemented
the TDA method and carried out the machine learning analysis. J.H.-S. provided the baseline results
for CVB and (geometric) infograms. A.W. provided supervision for the signal processing aspects of
the work, R.Z. provided data and engineering experience, P.D. supervised the TDA aspects of the
work. The collaboration was initiated by P.D. and A.W..
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6 Damage Identification in Rolling Element Bearings Using Topological Data Analysis

This chapter is organized as follows. In Section 6.1, the works related to local damage detection, as
well as topological data analysis are discussed. Section 6.2 presents the basic mathematical definitions
used in the chapter. Section 6.3 introduces the methodology used to test hypothesis about healthy
condition of given time series. In Section 6.4, simulation and laboratory test rig data analysis as well as
real vibration signal data examination are presented. Finally, Section 6.5 is a summary with underlined
practical information concluded from data analysis.

6.1 Related works

Vibration or acoustic damage detection is widely recognized in the literature as a powerful and popular
tool to prevent catastrophic machine failure. The classical approach is based on identifying (detecting)
certain properties of the signal of interest (SOI), typically impulsiveness or periodicity [8, 89], which are
indicators of malfunctioning machines. The SOI is often hidden in the background noise (produced
by the machine and environment) and is impossible to detect in the time domain. In the case of
stationary background noise (usually assumed to be Gaussian), the analysis of the envelope spectrum
or squared envelope spectrum (SES) of the given signal is sufficient and reveals information about
cyclic events. However, industrial data are mostly complicated in terms of the spectral structure of the
observed signal, thus various decompositions, such as EMD [111], SVD [110], STFT [116], are used
to unravel the complex mixture of the signal. One of the interesting perspectives is to decompose
the signal into the time-frequency domain for narrow-band components and use statistical analysis
to select an informative frequency band (IFB) that carries information about local faults [47, 139].
Selected IFB is used for data filtration to significantly improve SNR and enable extraction of the local
fault frequency (e.g., by SES analysis). In addition, the frequency obtained indicates the frequency of
the component of the machine which is then treated as damaged.

A popular tool for IFB indication in the bi–frequency domain is the fast kurtogram [7]. It de-
composes the signal into the frequency domain (1/3 - binary tree decomposition) for narrow band
subsignals and uses kurtosis to detect the impulsiveness of the envelope of the given subsignal. The
main limitation of the kurtogram is its sensitivity to non-Gaussian noise as a consequence of the used
kurtosis statistic. In addition, it does not consider whether the identified cyclic component is impulsive.
Many methods have been proposed to improve the kurtogram. One of the powerful examples being
the infogram [8] which uses more robust statistic (negentropy) to test the impulsiveness of the envelope
spectrum of the subsignals, and additionally to identify the existence of cyclicity in the same subsignals
at a given step of the frequency decomposition. It considers both characteristics of the local fault and
seems to be the ideal tool for damage detection. However, in the case of non-Gaussian noise, some
limitations occur as pointed out in [89]. To address them, a Geometric Normalized Infogram [89],
GNinfogram for short, was proposed. In the followingthe GNinfogram will be used for comparison
purpose.

In addition, several more robust statistics were proposed, such as the Gini index [93, 159], or the
conditional variance (CV) statistic [88]. The latter one shows superior performance for difficult
noise nature (high energy, non-cyclic impulses). Therefore, the conditional variance-based selector
(CVB-selector) was also chosen for comparison in this chapter.

Data acquisition for rotating machinery in real-world applications are exceedingly complex due
to various factors such as fluctuations in rotating speeds, loads, and environmental noise. These

108



6.1 Related works

non-stationary conditions pose a significant challenge to detect local damage, and advanced methods
are necessary [112]. Although machine learning techniques have become popular in this field [87],
they require training data. It is essential to note that there is a discrepancy between the training data
(the source domain, where the diagnostic model is learned) and the practical testing data (the target
domain, where the learned model is deployed for real-time health monitoring), which is inevitable and
can influence the results.

Despite the effectiveness of the above-mentioned techniques, they have some limitations, including
the difficulty of implementation, computing time, the existence of the appropriate amount of the
reference signals, and the ability to handle non-Gaussian noise effectively. Therefore, there is still a
need to define simple, understandable algorithms that will effectively deal with various types of signal
noise.

The new technique proposed in this chapter is based on topological data analysis (TDA), a new tool
that utilizes robust invariant of shapes of considered sets. Recently, it has gained attention in the context
of smart manufacturing and industry 4.0 – see the survey article [151] and the references therein. It has
already been applied in [125] for periodicity detection in time-series processing. However, the approach
presented therein is very sensitive to noise and fails to detect cyclicity under the amounts of noise
encountered in the considered applications. Therefore, until now, only a handful of contributions
have appeared in the literature to topological data analysis applied to condition monitoring. In
a notable series of works [101, 102, 162, 163, 164], such techniques were found to be useful in the
detection of chatter. In [137], authors use tools of time-delay embedding followed by computations of
one-dimensional persistent homology to detect the existence and potential disruption of the rotary
movement of DC motors. Doing so, the authors assume that a sufficiently high-persistence one-
dimensional generator is an indication of a healthy engine, while lack of it indicates engine malfunction.
However, sufficient details of the experiments are not provided, and hence it is unknown what severity
of the malfunction is captured by the proposed method. Another application of TDA to electric
motors was given in [158], in which Betti curves are shown to predict eccentricity fault. The time series
in their work are phase current measurements, which are not impaired by added noise. A paradigm
of time-delayed embedding followed by persistence homology computations is also applied in [98,
150] where the authors are testing the proposed methodology on a number of artificial time series as
well as time series obtained from wearable devices. The use of persistent homology with a shortest
path distance in time delay embedding was recently suggested by Fernandez et al. [74] and successfully
applied to anomaly detection of an ECG time series. In none of these works, the significance of the
findings is statistically investigated. Topological data analysis methods are not limited to time series
data, but are also applied to detect errors in additive manufacturing [18] or wafer defect patterns
in semiconductor manufacturing [103]. Moreover, the essential, as is shown in this work, effect of
the type and level of noise in the signal has not yet been adequately addressed. Therefore, no clear
demonstration of the practicality of the TDA approach in the field of mechanical damage detection
can be found in the literature.

109



6 Damage Identification in Rolling Element Bearings Using Topological Data Analysis

6.2 Preliminaries

6.2.1 Takens’ Embedding for Dynamics Reconstruction

Let us start from Takens’ embedding theorem [35]. Take a phase space manifold X and a diffeo-
morphism f : X Ñ X generating a dynamics on X . One may think of X as a space of possi-
ble states of the machine considered and f as a working condition of machines that takes it from
a state X Q xi to fpxiq “ xi`1 P X . Starting from an initial state x0 the following states
x0 “ f0px0q, x1 “ f1px0q, x2 “ f2px0q, . . . , xn “ fnpx0q describe the working condition
of the machine. Moreover, we assume that X has dimension dimpXq (box counting) (see [35]).
Informally, it means that one needs dimpXq degrees of freedom to characterize spaceX .

Takem : X Ñ R, a continuously differentiable generic measurement function of the observable
states of X . The values of m can be treated as the results of measurements using a sensor on the
machine considered (Figure 6.1a). It associates the states of the system

x0, x1, x2, . . . , xn

with the one-dimensional time series of measurements

Z “ rmpx0q,mpx1q,mpx2q, . . . ,mpxnqs.

The celebrated Takens’ Embedding Theorem [35] states that it is possible to reconstructX and f given
Z . The (state space) reconstruction Rd Ě R “ rr0, r1, . . . , rk, . . .s consists of time delay vectors in
d-dimensional space defined for a lag τ ą 0 as follows:

r1 “pmpx0q,mpxτ q,mpx2τ q, . . . ,mpxdτ qq

r2 “pmpx1q,mpxτ`1q,mpx2τ`1q, . . . ,mpxdτ qq

...
rk “pmpxkq,mpxτ`kq,mpx2τ`kq, . . . ,mpxdτ`kqq

. . .

Takens’ theorem states that if d ě 2 dimpXq ` 1, the spaceR with map f̂ : R Ñ R, f̂priq “ ri`1

is dynamically equivalent to the map f on X . Although the theorem holds for an arbitrary lag, a
proper choice of τ is important (see [97, Chapter 3]; it can be estimated using mutual information).
Typically, the dimension d of the attractor is not known but It can be estimated from data using
standard techniques [90, 99], like false nearest neighbors (FNN). A different heuristic for choosing τ
and dim was suggested by Perea and Harer [125, p. 803] in the context of periodicity scoring using
one-dimensional persistence. They recommend to select them in such a way that the product dim ¨τ
approximates the length of the period of the signal. This is practical in our setting, as we know the
potential period length from the rotational speed of the machine.
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6.2.2 From Recurrence Plots to Persistent Homology

In what follows, we will not use the information on dynamics, but will purely restrict ourselves to
analyze the shape of the reconstructions R (Figure 6.1b). We rely on the assumption that two sets
R1, R2 generated by the same dynamics f on X will have a similar shape. Given a third set R3

generated by different dynamics, we expect its shape to be different from those ofR1 andR2. It is
important to note that while the shapes ofR1 andR2 generated by the same dynamics will be similar,
it is possible that the shape ofR3 generated by different dynamics can also be similar to those ofR1

andR2. However, if the shape ofR3 is different from that ofR1 andR2, then we can safely conclude
thatR3 was generated from a different dynamics thanR1 andR2.

To make such a comparison, stable characteristics of the shape ofR are needed. A classical tool for
this task are recurrence plots, introduced in the seminal paper of Eckmann et al. [67]. They construct
anR ˆ Rmatrix with entry at pi, jq equal to 1 if ri and rj are close to each other and 0 otherwise
(Figure 6.1c). To be precise, we will consider rj to be close to ri if }ri ´ rj} ď ε for some ε ą 0.
(Note that Eckmann et al. in their original article suggest choosing εi such thatBpri, εiq contains the
ten nearest neighbors, this relation is not symmetric, and we instead take ε independently of i, j.)

A different way of visualizing the same recurrence information is via recurrence networks[64]: This
is a network which has the points ofR as nodes and a connection between ri and rj if }ri ´ rj} ď ε
(where i ‰ j). In graph-theoretic language, we say that the recurrence plot is the adjacency matrix of
the recurrence network. We will see an example in Figures 6.1b and 6.1c. Recurrence in the dynamics
gives rise to cycles in the recurrence network, which means we can detect features of the dynamics via
topological features of the recurrence network. However, three subsequent points inRmight be close
enough together that they form a cycle in the network, but we do not wish to consider this cycle as
evidence for recurrence in the dynamics; i.e. presence of a periodic feature in the signal. Moreover, the
question of how to choose the proximity parameter ε ą 0 remains. To address these two problems,
we employ Vietoris-Rips persistence: We consider the Vietoris-Rips complex as a generalization of
recurrence networks as follows: While the recurrence network is built from 0- and 1-dimensional
blocks, i.e. nodes and edges, the Vietoris-Rips complex also has 2-dimensional building blocks, namely
triangles. The small triangular cycles which we regarded as problematic in the recurrence network
perspective thus become filled in. This motivates the idea to consider only those cycles as features of
the Vietoris-Rips complex which are not filled in by triangles. In other word, we are led to consider its
one-dimensional homology.

The notion of persistence means that we consider all possible values of ε and keep track of the
topological features of the Vietoris-Rips complex as ε increases from 0 towards 8. Note that as ε
increases, edges and triangles will appear but never vanish; connected nodes stay connected.

It is the presence of 1-dimensional features in persistent homology which capture the circular shape
of the state space reconstruction we consider, and thus we would it regard it as evidence for recurrence.

Indeed, consider this construction in combination with the previous ideas of time delay em-
bedding. Figure 6.1a shows a sampled time series. It gives rise to the state space reconstruction
shown in Figure 6.1b, where we also draw connections between nearby points to form the recurrence
network at ε “ 0.5. The 1-dimensional features of the corresponding Vietoris-Rips persistence,
DgmpH1pRpRqqq, are shown in the diagram 6.1d. Points in the rectangle with lower right corner at
p0.5, 0.5q (shown in gray) represent loops which were formed earlier (i.e. ε ă 0.5) and have not yet
been filled in. These are the 1-dimensional topological features present in the Vietoris-Rips complex
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at ε “ 0.5. Recall that taking the number of features present at ε as a function of ε gives rise to
the Betti curve (Definition 2.3.24). Formulated in the broader context of the mechanical problem
under investigation, bearing faults manifest themselves in periodic features in the signal, which we
regard as recurrent feature of the dynamics. This is reflected by a circular shape of the state space
reconstruction, which in turn yields a 1-dimensional topological feature in the Vietoris-Rips complex
present (persisting) for a long range of ε-values, for which the Betti curve is therefore non-zero.

In the experiments presented in this chapter, we use a variation known as weighted Vietoris-Rips
complexes (cf. Definition 2.2.31 and [5]) designed for noisy data. (Note that taking the distance to
nearest neighbors into account bears some similarity to how Eckmann et al. suggested to choose a
radius εi around ri as the distance to the tenth-nearest neighbor [67].)

In the presented methodology section, we will operate on β1pH1pRpRqqq in order to draw con-
clusions aboutR. We restrict ourselves to 1-dimensional features of the state space because they have
already been used in the literature [125]. In addition, Betti curves are known to be robust in theL1

distance to small perturbations in the data [51, 61].

6.3 Methodology

This section presents the methodology used to test a hypothesis about time series allowing to dis-
criminate those that do not contain cyclic impulses from those that contain them. In a nutshell, the
proposed pipeline consists of three main parts:

Algorithm 6.1: Computing TDA Betti curve summary from signalZ
Function BettiCurveFromSignal(Z):

τ Ð MutualInformationDelayEstimatorpZq

d Ð FNNDimensionEstimatorpZ, τq

R Ð TimeDelayEmbeddingpZ, τ, dq

RZ Ð

!

r´meanprq

}r´meanprq}
: r P RZ

)

DTM Ð DistanceToMeasurepRZ , nneighbors=5)
βZ1 pεq Ð dimpPersistentHomologypDTM, εqq

1. Given a time seriesZ , motivated by Takens’ reconstruction theorem, we construct its time delay
embedding RZ to reconstruct the phase space of dynamical system generatingZ via a generic
observable. We employ the normalization procedure of [125], in which the one-dimensional
persistent homology of time delay embeddings was used to construct a periodicity score. One
first projects onto the hyperplane orthogonal to p1, ..., 1q and then to the unit sphere on that
subspace:

RZ “

"

r ´ meanprq

}r ´ meanprq}
: r P RZ

*

.

2. The tools of persistent homology in particular one-dimensional Betti curves, βZ1 for short, are
used to measure the shape of the normalized phase spaceRZ . Specifically, we use a distance-to-
measure Rips filtration [5] with weights equal the distance to five nearest neighbors.
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(d) Persistence diagram of the time delay embedding with
drawn-in rectangle containing cycles present at scale ε “

0.5.
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Figure 6.1: The topological data analysis signal processing pipeline. The original signal 6.1a is transformed
to a high dimensional point cloud via Takens’ embedding 6.1b. On that, a recurrence network is
built, which has adjacency matrix equal the recurrence plot 6.1c at a given radius (here 0.5). As ε
varies from 0 to 8, loops appear and subsequently get filled in with triangles, this information is
stored in the persistence diagram 6.1d. The number of features present at a given ε can be read off by
counting the points to the left and above pε, εq. In our example, these are the four points in the grey
region left and above of p0.5, 0.5q. Plotting this number as a function of the varying ε yields the
Betti curve 6.1e, which thus serves as a functional summary of the geometry and topology of the
(reconstructed) state space.
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Figure 6.2: Illustration of the proposed methodology. In order to obtain a signature of a healthy state, generated
by the fixed model s, a collection of time series tXiu

n
i“1 is sampled from s, their time delay embed-

ding and the corresponding Betti curves are computed. By averaging them the curve β̄ is obtained.
In order to have an information about the deviation from the mean of Betti curves generated by
s, another collection of time series tYiu

m
i“1 is computed along with their Betti curves. On a given

significance level c, the critical value d˚
c ofL1 distances is computed. Any time seriesZ giving rise,

via the proposed pipeline, to a Betti curve that is farther away from β̄ than d˚
c , is considered not to

be sampled from s and therefore containing some component additional to s. The same pipeline
can also be used for any vector summary of the signal in place of Betti curves.

3. For a number of time series and their Betti curve descriptors, statistical tests and standard
machine learning techniques are applied in order to discriminate different classes of time series
generated by different dynamics.

A pseudo-code of the proposed methodology can be found in Algorithm 6.1 and a visual summary in
Figure 6.2.

6.3.1 Statistical Testing

We propose a statistical hypothesis testing framework for functional/vector summaries of time series.
Such summaries include classical techniques like CVB and (geometric normalized) infograms, which
were originally introduced to identify IFB. Moreover, we analyze a summary based on topological
data analysis, namely Betti curves and compare it to the present spectral methods. Below, the set-up is
illustrated using Betti curves, the same ideas are then also applied to CVB and (geometric normalized)
infograms. Moreover, one can combine different vectorizations by simply concatenating the vectors.
Firstly, in order to test the methodology on large-scale computations, Betti curves will be incorporated
into a framework of statistical hypothesis testing as developed in [63] (which is Chapter 5 in this thesis).
While this adaption does not enjoy the theroretical guarantees of the ECC of a Čech/Alpha complex,
there are several reasons motivating this apprroach. We found the embedding dimension to be too high
to be computationally tractable using Alpha complexes or ECCs. However, the two-skeleton of the
Rips is quick to compute independently of the ambient dimension and one-dimensional persistence
has previously been used for periodicity scoring [125] and Betti curves were used for classification
[150] of time series. The null hypothesis to test is that the machine is intact/healthy, in other words,
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Figure 6.3: The expected Betti curve under the null hypothesis is shown in black. A sample Betti curve from the
null model (α-stable noise withα “ 1.9) shown in blue follows the expected curve closely. A sample
Betti curve from cyclic impulses added to the noise of the null model shown in green is significantly
different, evidenced by a largeL1 distance.

the signal only contains noise but no impulses. In this instance, we assume to be able to sample n
time series tXiu

n
i“1 from the null distribution, i.e. healthy machine. Subsequently their time delay

embeddings and 1-dimensional Betti curves βX1
1 , . . . βXn1 are computed. The averaged Betti curve

β̄1 “ 1
n

řn
j“1 β

Xj
1 is obtained as a signature of a healthy state.

In order to determine the level of variation of the signal under the null hypothesis, additionalm
time series tYiu

m
i“1 are sampled and their Betti curves βY11 , . . . βYm1 are obtained. Note thatL1 puts

the most weight of all Lp metrics in differences in the support, which are what we are particularly
interested in – cf. Figure 6.3. Subsequently their L1 distances d1, . . . , dm from β̄1 are computed,
dj “

ş8

0 |β
Yj
1 prq ´ β̄1prq|dr. Given a significance level c ą 0, a threshold value of a distance d˚

c is
chosen such that dj ą d˚

c only for c ¨m of the sample distances dj .
In the described scenario take a new time seriesZ . Our null hypothesis is thatZ is sampled from a

healthy state. In order to test the hypothesis, time delay embedding, of the same parameters, followed
by 1-dimensional Betti curve computations are performed to obtain βZ1 . If theL1 distance between
βZ1 and β̄1 is greater than d˚

c , the null hypothesis is rejected. In the other case, there is no evidence to
reject it. For an illustration of the deviation from the expected Betti curve, see Figure 6.3.

This methodology allows for large-scale Monte Carlo testing of the efficiency of the presented
procedure. The results of those tests are discussed in Section 6.4.1. Furthermore, note that no data
about malfunctioning machines was needed as input.

6.3.2 Further Analysis of Topological Signatures

While the pipeline taking at the input time series and putting out its Betti curves can be used for
large scale Monte-Carlo comparisons, it has much broader applicability. Let us consider the case of
multiple time series tX1

i u
l1
i“1, tX

2
i u
l2
i“1, . . . , tX

k
i u
lk
i“1. The Betti curves corresponding to them may

be computed, vectorized and used for classifications. This approach is illustrated in particular, in
Section 6.4.3, where both support vector classifier as well as two dimensional principal component
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Figure 6.4: Different amplitudes of a single exponential-modulated pulse.

projection of the vectorized Betti curves are used to understand different conditions of the machine.
For background on these standard machine learning techniques, we refer the reader to the textbook
[94]. We employ them for real world data, of which not enough samples are available for our hypothesis
testing approach.

6.4 Results

All the experiments were carried out on a workstation computer with an AMD Ryzen Threadripper
PRO 5955WX 16-Cores CPU and 256 GB of RAM running Ubuntu 22.04.1 LTS. The code can
be found on the author’s github. The CVB curve is usually discretized on a equi-spaced grid of
points as a vector in 257-dimensional space. For the Betti curves, we use a grid of size 257 to improve
comparability with CVB and GNinfogram. The TDA computations were carried out using the library
[117].

6.4.1 Simulated Data Analysis

The considered simulated signals are composed of two main elements:

• The s component being in this case the α-stable noise that represents the background noise
(compare top left panel of Figure 6.5). The α-stable distribution is a statistical model that can
capture non-Gaussian or impulsive behavior in data. It can be treated as the generalization of
the Gaussian distribution, as for the parameter α “ 2 (α Ps0, 2s - stability index) it reduces to
Gaussian noise, whereas for α ă 2 the non-periodic impulses appear (distribution becomes
more impulsive) which are treated here as the specific characteristic of machine work. In
particular, low values of α provides heavy-tailed distributions. In this chapter, we apply the
symmetric version of this distribution. The symmetric α – stable distributed random variable
A is defined by the characteristic function [138] of the following form:

ϕApθq “ E
´

eiAθ
¯

“

#

e´σα|θ|α , α ‰ 1,

e´σ|θ|, α “ 1,
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Figure 6.5: Illustration of the set-up of our synthetic dataset. We show signals (left row), (the first two diffusion
map components [20] of) their time delay embedding using dimension 1666, delay 3 (middle
row) coloured by time index, and the Betti curve of 1-d Rips persistent homology of a subsample
of size 128. Diffusion maps [53] are a non-linear dimensionality reduction technique which we
use purely for visualization here; our TDA algorithms operate in the high-dimensional state-space
reconstruction. The top row shows pure α-stable noise with α “ 1.95 (s in the text) – the time
delay embedding does not admit interesting topological structure and the Betti curve is very narrow.
The middle row shows cyclic impulses with amplitude 7 on their own (p in the text) – we see how
the time delay embedding follows a cyclic trajectory and the Betti curve is very wide. The bottom
row shows the setting of our interest, in which the signal is the sum of the previous two (s` p in the
text). Although the time delay embedding is rather noisy, we see a clear topological feature, namely a
cycle, which is reflected by a somewhat wider Betti curve than for the pure noise case. This leads
to a significantly increasedL1-distance compared to what would be expected under the pure noise
model, compare Figure 6.3.

where σ ą 0 is the scale parameter. The details of the α-stable distribution can be found
in [138]. The α–stable distribution model is often used to describe the statistical features of
non-Gaussian signals [80].

• The p component represents the exponential-modulated sinusoidal periodic impulses related
to a local defect (compare Figure 6.4 for different amplitudes of a single impulse and left row,
middle panel in Figure 6.5 for the periodic impulses). One can find more about the model of
the simulated signal in [161].

In this experiment we measure the test power, that is, how often a time series is classified as containing
cyclic impulses when it actually does. Hence power as close to 1 (bright color in Figure 6.6) as
possible is desirable. All time series are of length 50000. We considered α P t1.6, 1.65 . . . , 2u and
impulse amplitude P t5, 5.5, . . . , 9u (see Figure 6.4 for an illustration of some amplitude values for a
single impulse without any noise). For each α, we simulate the average curve underH0 using 1000
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samples consisting purely of α-stable noise. Then we compute the acceptance threshold using 1000
independent samples. Subsequently, for each level of impulse amplitude, we simulate 1000 time series
with this kind of signal and count how often we reject the null hypothesis. The summary of our
extensive Monte Carlo simulation study on synthetic data can be seen in Figure 6.6.

The figures present the test power in relation to the amplitude of the impulses (horizontal axis)
and the α-parameter of the ambient noise (vertical axis). The infogram-based selector [8] shows poor
performance except for the Gaussian case α “ 2. The geometric normalized infogram increases the
test power considerably. While the CVB selector has similar, only slightly better power compared to
the previous, the TDA approach yields the best results as illustrated by the big bright region in the
figure. For a specific example, consider the amplitude 7 and α “ 1.8 – CVB has a power of 0.546
whereas TDA admits 0.96, significantly better. The difference in power is shown in Figure 6.7, which
is the difference of the number for TDA minus those for CVB from Figure 6.6. Values less than zero
indicate better performence of CVB, values greater than zero show that TDA outperforms CVB. One
can observe the latter case holds for a range of parameters; in particular, for high amplitudes and low
values of α. Notably, the simulations for the TDA approach take 67 seconds, which is significantly
faster than the CVB approach, which takes 837 seconds. Infograms are the slowest to compute with
several hours.

For the following experiments we focus on CVB and TDA because they perform the best in the
simulation study.

6.4.2 Laboratory Test Rig Data Analysis

To test the presented methodology on non–synthetic data a test rig presented in Figure 6.8 has been
used to acquire experimental data in laboratory conditions. It contains an electric motor, gearbox,
couplings, and two bearings, of which one was deliberately damaged. We1 recorded a 40-second-long
vibration signal with a sampling rate of 50 kHz using an accelerometer (KISTLER Model 8702B500),
which was stacked horizontally to the shaft bearing.

Data has been acquired using two channels and four different rotating speeds for each baseline and
faulty state, totaling in 16 time series. This situation presents the challenge of data scarcity, therefore
we cannot proceed with the hypothesis testing pipeline outlined above. However, the results for the
synthetic data establish that Betti curves as a featurization/functional summary of a time series is on
the level with or even better than state of the art spectral methods. In order to gauge the significance
of the presented methodology we first split each time series into ten parts. Then we compute the
Betti curves as described in Section 6.2 as well as 6.3.2. The Figure 6.9 shows a plot of the first two
principal components of the obtained Betti curves. We observe a clear separation between healthy and
malfunctioning machines across all speeds and channels. Even the different speeds can be distinguished
with the bare eye.

Moreover, Figure 6.10 shows the L1 norms of the Betti curves showing the significance of the
observed differences. Focusing on a single channel and speed we observe that the norms of healthy
machines are consistently higher and do not overlap with those of malfunctioning machines. In
addition, we trained a linear Support Vector Machine (SVM) [56] classifier 100 times, leaving out

1collaborators JHS and RZ at the Faculty of Geoengineering, Mining and Geology; Wrocław Universisty of Science and
Technology
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Figure 6.6: Test powers when the noise is from an α-stable distribution, obtained using different descriptors:
infogram [8], geometric-normalized infogram [89], conditional variance based (CVB) [88], TDA
maximum persistence [101]; TDA Betticurves. Brighter colors and higher numbers correspond to
better performance.
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Figure 6.7: Difference of power between TDA and CVB approach: The yellow region indicates parameter
choices in which TDA significantly outperforms CVB.

Figure 6.8: Test rig used in the experiment.
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Figure 6.9: PCA of Betti curves from test rig measurements.
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Figure 6.10: Boxplots ofL1 norms of Betti curves from test rig measurements.
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6 Damage Identification in Rolling Element Bearings Using Topological Data Analysis

Figure 6.11: An idler inspection and using a smartphone for acoustic data acquisition.
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Figure 6.12: PCA of Betti curves from real-world measurements.

half of the data at random for each iteration. Testing on the previously left-out part of the data, we
consistently obtain perfect 100% separation of good and malfunctioning machines.

6.4.3 Industrial Data Analysis

To test the presented methodology on an industrial site, an acoustic signal from a bearing installed in
an idler in a belt conveyor has been recorded. Rotating components known as idlers are utilized in
belt conveyors to provide support to the moving belt, as shown in Figure 6.11. These idlers typically
comprise a shaft, two bearings, and a coating. The duration of the signal is c.a. 10 seconds with a
sampling frequency of 48 kHz. Manual analysis (signal by signal) has shown that some idlers produce
cyclic impulsive noise. Thus, by visual inspection we consider the signals as non-Gaussian distributed,
which renders damage detection challenging.

We investigate such time series with the non-Gaussian type of baseline noise. As in the previous
cases we have two channels (labelled ‘a’ and ‘b’ in the figures) and we split each time-series into ten parts
enabling some basic statistical analysis. In Figure 6.12 we show the first two principal components
of the Betti curves of the time delay embeddings. We report the best results, which were obtained
for dim “ 98, τ “ 96, which leads to τ ¨ dim being around one period (which we know from the
rotational speed of the machine); this follows the suggested parameter choice of [125]. The parameters
obtained from FNN and mutual information estimation led to slightly worse results. The data is
much more noisy than for the test rig from the laboratory, however, we still see some separation in the
PCA, although it is not visible in the boxplots of theL1 norms in Figure 6.13. As it is more sensible to
separate in the ambient space than in a projection, we trained a support vector machine classifier with
linear kernel using cross validation with a 50-50 train-test split and 100 iterations, a simple standard
machine learning tool [94, Chapter 9]. This means we perform training 100 times, leaving out half
of the data of either class at random in each iteration. Then we test the classifier each time on the
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Figure 6.13: Boxplots ofL1 norms of Betti curves from real-world measurements.

Laboratory test rig data Industrial data
Speed 10 Speed 15 Speed 20 Speed 25

CVB 100 ˘ 0 100 ˘ 0 100 ˘ 0 100 ˘ 0 88 ˘ 7
TDA 100 ˘ 0 100 ˘ 0 100 ˘ 0 100 ˘ 0 92 ˘ 6

CVB +TDA 100 ˘ 0 100 ˘ 0 100 ˘ 0 100 ˘ 0 96 ˘ 5

Table 6.1: Mean accuracy of the SVM classifier r%s and standard deviation.

other half of the data. We achieve a classification accuracy of 0.92 ˘ 0.06, an improvement over CVB
(0.88 ˘ 0.07). Hence, the topological descriptors allow to detect damage in rolling element bearings
even in challenging real-world industrial settings. We also investigated a combination of Betti curves
with CVB by simply concatenating the normalized vectors. This increased the classification accuracy
to (0.96 ˘ 0.05). For even further validation of the method, more measurements would be required.

Discussion

Our findings are summarized in Table 6.1. We note that the data from the test rig admits perfect
separation accuracy in each case. This reflects the controlled conditions under which the data was
obtained; such ideal behavior cannot be expected in an actual industrial context. Indeed, we see that
the industrial data we studied poses a bigger challenge. In the presence of a non-Gaussian type of
noise, TDA outperforms the CVB method, and combining both yields even higher scores. However,
as we show in the simulation study in section 6.4.1, we expect that these results strongly depend on
the degree of non-Gaussianity (amplitude and amount of non-cyclic impulses, not related to local
fault). Moreover, the time series we considered in sections 6.4.2 and 6.4.3 were split into pieces, which
then constitute highly dependent samples, influencing the classification problem.

6.5 Conclusions

In this chapter, we target to detect the existence of cyclic impulses p embedded in an unknown (non-
deterministic, non-Gaussian) signal s. The proposed technique is based on Takens’ reconstruction
theorem and uses methods of persistent homology to detect subtle changes in dynamics generating
the signal p` s compared to dynamics generating the signal containing only the s component.
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6 Damage Identification in Rolling Element Bearings Using Topological Data Analysis

The performance of the proposed method was tested for various scenarios showing a considerable
improvement compared to the state of the art. In particular, as observed in the simulation study, our
method excels in regimes with high amplitude of cyclic impulses embedded in very impulsive/non-
Gaussian noise. Notably, combining CVB, which is a state of the art technique using spectral methods,
with our new topological approach yields the best results. We interpret this finding as evidence that
the information gained using TDA was not detected by the spectral method.

We hope that the proposed procedure can be useful for damage detection in a wide range of
industrial scenarios as a general failure detection technique that is agnostic to many conditions under
which the considered signal was generated. We plan to apply the proposed method for other types of
noise as well as for more complicated signals (for example from planetary gearbox).

124



7 Density Sensitive Bifiltered Dowker
Complexes via Total Weight

Abstract. In this chapter, we introduce a density-sensitive bifiltration on Dowker complexes. Previ-
ously, Dowker complexes were studied to address directional or bivariate data whereas density-sensitive
bifiltrations on Čech and Vietoris–Rips complexes were suggested to make them more robust. We
combine these two lines of research, noting that the superlevels of the total weight function of a
Dowker complex can be identified as an instance of Sheehy’s multicover filtration. An application of
the multicover nerve theorem then provides a form of Dowker duality that is compatible with this
filtration. As an application, we find that the subdivision intrinsic Čech complex admits a smaller
model; we also establish its robustness by linking it to the subdivision-Rips bifiltration. Moreover,
regarding the total weight function as a counting measure, we generalize it to arbitrary measures
and prove a density-sensitive stability theorem for the case of probability measures. Additionally,
we provide an algorithm to calculate the appearances of simplices in our bifiltration and present
computational examples.

Author’s contributions. This chapter contains joint work with Jan Spaliński [91]. J.S. proposed to
study the two-parameter persistence of the multineighbor complex in a TDA context. N.H. is the
lead author, conceptualized the general theory in terms of Dowker complexes, proved the stability
results and implemented the algorithm.
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7 Density Sensitive Bifiltered Dowker Complexes via Total Weight

Figure 7.1: Repeating Figure 2.3a: From the perspective of Dowker complexes, the points in the intersections
are witnesses (compare the discussion in Example 2.2.29). In this chapter, we are going to take the
size of these intersections into account.

In this chapter, we are going to study bifiltrations of Dowker complexes (Definition 2.2.24) in
order to make them sensitive to the density of the data and robust against outliers. Recall that the
Dowker complex DpX,Y,Rq of a relationR Ď X ˆ Y between two setsX,Y has vertex setX and
H ‰ σ Ď X forms a simplex if there is some witness y P Y with σ ˆ tyu Ď R. We will refine the
condition of existence of a witness by asking for the number of witnesses to exceed a thresholdm. In
Example 2.2.29, we saw that we can view the Čech complex of someX Ď pZ, dq as Dowker complex
via

CpXqr “ DpX,Z,Rrq, Rr “ tpx, zq : dpx, zq ď ru.

Inspecting Figure 7.1, we observe that the set of witnesses of a k-simplex is the intersection of the
r-balls around the corresponding k ` 1 points. While the Čech construction only asks about the
existence of a witness, we are interested in how many there are. For a finite metric space pX, dq, the
intrinsic Čech complex is the Dowker complex IpXqr “ DpX,X,Rrq, see for instance [36, 45]. In
this case, we can simply count the size of the intersections of r-balls. More generally, we will require
a measure to capture the mass of these intersections and impose it as a second filtration parameter
in Section 7.1. Section 7.2 contains results pertaining to robustness and stability of this bifiltration.
Finally, in Section 7.3, we provide an algorithm to calculate such bifiltered complexes from data and
provide computational experiments.

As an additional prerequisite, recall the notion of contiguity of simplicial maps:

Definition 7.0.1. Let f, g : K Ñ K 1 be simplicial maps. They are contiguous if for each simplex
σ “ rv0, . . . vks P K , we have the simplex fpσq Y gpσq P K 1, i.e. a simplex formed by the vertices

tfpv0q, . . . , fpvkq, gpv0q, . . . gpvkqu.

Contiguous simplicial maps are a combinatorial model for homotopic maps in the following sense:
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7.1 The Total Weight Filtration

Lemma 7.0.2 ([145, Lemma 3.5.2 and Theorem 4.3.9]). Two contiguous simplicial maps f, g : K Ñ K 1

induce homotopic geometric realizations |f |, |g| : |K| Ñ |K 1|. Moreover, they induce chain-homotopic
chain maps f˚, g˚, and in particular the same map in homology.

Contiguity arguments were also originally used for Dowker’s duality theorem [65], as well as for the
stability result of [45] and the functorial Dowker duality of [50].

7.1 The Total Weight Filtration

As we have seen above, there are in general multiple witnesses for the presence of a simplex. Let us
count them:

Definition 7.1.1. The total weight function is

t : DpX,Y,Rq Ñ N Y t8u, tpσq “ |ty P Y : σ ˆ tyu Ď Ru|.

Form P N, we set DpX,Y,Rqm “ tσ P DpX,Y,Rq : tpσq ě mu.

Observe that we recover the whole Dowker complex form “ 1, i.e. DpX,Y,Rq1 “ DpX,Y,Rq.

Lemma 7.1.2 ([134, Proposition 2]). The superlevel sets of the total weight function DpX,Y,Rqm form
a filtration by subcomplexes. That is, form ď m1, we have DpX,Y,Rqm1 Ď DpX,Y,Rqm.

Proof. First observe that if σ Ď τ , the total weight satisfies tpσq ě tpτq, because any witness of τ in
particular witnesses σ. Hence, the superlevels of t are indeed subcomplexes. Moreover, they form a
filtration because tpσq ě m1 ñ tpσq ě m asm ď m1.

By this lemma, we viewDpX,Y,Rq as a functor s0,8ropÑ Simp. A special case of this filtration
has appeared in the following context, which motivated the present study:

Example 7.1.3. LetG “ pV,Eq be a simple graph, i.e. without loops or multiple edges between the
same two vertices. The Dowker complex of the adjacency relation is the neighborhood complex of the
graph, introduced by Lovasz [115] in his proof of the Kneser conjecture. It has simplices formed by sets
of vertices which have a common neighbor inG. The subcomplex of total weight at leastm, for some
m P N, is them-(multi)neighbor complex of the graph of [12]. The case of Erdös-Renyi graphs has
been of particular interest. The adjacency relation of such a graph is given by a symmetricnˆnmatrix
with zeros on the diagonal, entries above the diagonal independently equal to 1 with probability p
and equal to 0 with probability 1 ´ p, and entries below the diagonal given by symmetry. It turns
out that as the dimension of the matrix n increases to infinity, for a large number of choices of pn
(probability) andmn (number of neighbors), the resulting Dowker complexes are Linial-Meshulam
complexes – random simplicial complexes which are d-dimensional with all faces of a lower dimension
present and the d-faces present with a fixed probability. Moreover, for each finite simplicial complex
X and eachm the there exists a threshold bmpXq such that if pn “ n´1{b, where b ą βmpXq, then
asymptotically almost surely the random Dowker complex described above will contain a copy of
X (and if b ă βmpXq it will not). The details are worked out in [12]. We will return to Dowker
complexes of random relations with numerical experiments in Example 7.3.3.
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7 Density Sensitive Bifiltered Dowker Complexes via Total Weight

Crucially, one can regard this total weigh filtration of a Dowker complex as an instance of the
multicover filtration introduced by Sheehy [143] (see also Definition 2.2.32 as well as [27, 41]), where
the cover is given by rows of the matrix that represents the relation, which we make precise below. By
the multicover nerve theorem [27, 41, 143], the multicover filtration of DpX,Y,Rq corresponds to
the subdivision filtration of DpY,X,RJq.

Theorem 7.1.4. LetR Ď X ˆ Y be a relation such that

1. for all y P Y , there are only finitely many x P X such that px, yq P R (R is column-finite),

2. for all x P X , there are only finitely many y P Y such that px, yq P R (R is row-finite).

Then we have a weak equivalence of filtrations |DpX,Y,Rq‚| » |SpDpY,X,RJqq‚|, where S is the
subdivision filtration (Definition 2.2.35). Moreover, the weak equivalence is natural in the following
sense: If X,Y are fixed and R‚ : r0,8rÑ Rel is a filtration of column- and row-finite relations
betweenX and Y , then we have a weak equivalence of the two bifiltrations

s0,8ropˆr0,8r Ñ Top,

pm, rq ÞÑ |DpX,Y,Rrqm|,

pm, rq ÞÑ |SpDpY,X,RJ
r qqm|.

Proof. Consider the simplices determined by the elements y P Y , i.e.

∆y “ tx P X : px, yq P Ru Ď DpX,Y,Rq;

they are indeed simplices because the sets are finite by the column-finiteness assumption. Then
A “ t∆yuyPY is a covering of DpX,Y,Rq by (abstract) simplices. As the intersection of simplices
is again a simplex, this gives rise to a good cover of a compactly generated space after geometric
realization. By construction, the total weight of a simplex counts how many times it is covered. In
order to invoke the multicover nerve theorem (Theorem 2.2.36,) we need to check that our cover
satisfies the conditions of Theorem 2.2.5. It is locally finite because of the row-finiteness ofR. To
show that it is locally finite-dimensional, consider any y P Y and set

ky “ |ty1 P Y : Dx P X such that both px, yq, px, y1q P Ru|.

Since y is in relation with only finitely many x, which in turn each are in relation with only finitely
many y1, we infer that ky ă 8. Then for any J Ď Y with y P J and

Ş

y1PJ ∆y1 ‰ H, we have
|J | ď ky by construction. Moreover, for any T Ď Y , the setAT “

Ş

yPT ∆y is a finite simplex if it
is non-empty. The latching set

LpT q “
ď

TĹJĎY

AJ Ď AT

is a union of simplices. Thus, after geometrically realizing, the latching space |LpT q| is a closed
subcomplex (by the closure-finite property of CW complexes) of the geometric simplex |AT | and
hence satisfies the homotopy extension property.
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Figure 7.2: Applying Theorem 7.1.4 to the the complex from Example 2.2.27. The top row is the filtration of
DpX,Y,Rq by total weight, the bottom row is Sheehy’s subdivision filtration [143] applied to the
dual Dowker complex DpY,X,RJq.

Finally, to establish the claimed naturality, we consider row- and column-finite relations Rr Ď

X ˆ Y for any r ě 0 such thatRr Ď Rs whenever r ď s. In the notation of Theorem 2.2.36, we
set F to be the functor

F : r0,8r Ñ Simp,

r ÞÑ DpX,Y,Rrq,

r ď s ÞÑ DpX,Y,Rrq ãÑ DpX,Y,Rsq.

Moreover, we let U “ tUyuyPY be the set of functors

Uy : r0,8r Ñ Simp,

r ÞÑ tx P X : px, yq P Rru

r ď s ÞÑ tx P X : px, yq P Rru ãÑ tx P X : px, yq P Rsu.

For each fixed r, the space Uyr is a simplex we called ∆y above. Therefore, they form a good cover
and satisfy the conditions of [14] after postcomposing with geometric realization. Moreover, for
r ď s, both Frďs and allUyrďs are inclusions of subcomplexes. Thus,Uyrďs is the restriction of Frďs.
Geometric realization preserves restrictions, hence Theorem 2.2.36 indeed applies to complete the
proof.

See Figure 7.2 for an illustration of the theorem. One perspective on the previous theorem is that
the subdivision filtration of a Dowker complex admits a smaller, thus computationally tractable,
equivalent. We will come back to this perspective later on, as a variation of Example 7.1.3. Let us point
out two desirable potential extensions of the above theorem, which we leave for future research:

Remark 7.1.5. First, it has been variously observed that Dowker duality is equivalent to the nerve
lemma [23, p. 1851], [50, Theorem 27]; this raises the question of what the equivalent formulation of the
multicover nerve theorem is in terms of Dowker duality. Second, Björner’s nerve lemma for covering
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7 Density Sensitive Bifiltered Dowker Complexes via Total Weight

simplical complexes [23, Theorem 10.6] does not require any finiteness conditions. One might be able
to avoid these in the multicover case as well.

This last issue is relevant because there can be uncountably many witnesses, as we saw in Exam-
ple 2.2.29 on the Čech complex. To measure their size in such a case, we need the set Y in the relation
to be endowed with a measure. If Y is finite, we can take the counting measure to recover the total
weight, as we will see in Example 7.1.9.

Definition 7.1.6. LetX be a set, pY,Σ, µq a measure space; let Λ: X ˆ Y Ñ R a function such that
for allx P X , the restricted map y ÞÑ Λpx, yq is measurable (with respect toBpRq on the codomain).
Define the measure Dowker bifiltration

MDpX, pY,Σ, µq,Λq : s0,8ropˆr0,8rÑSimp,

X Ě σ P MDpX, pY,Σ, µq,Λqm,r ô0 ă |σ| ă 8 and
µpty P Y : Λpx, yq ď 2r for all x P σuq ě m.

In the special case in whichX and Y are subsets of a common ambient metric space pZ, dq, we will
use the shorthand notation

MDpX,µ,Λq “ MDpX, pY,BpY q, µq,Λq;

if Λ “ d|XˆY , we omit it from the notation.

In words, one includes σ in MDpX,µqm,r if the intersection of the 2r-balls centered at the points
in σ has at least measuremwith respect to µ.

Example 7.1.7. Fixing r, the complexes MDpX,Zq‚,r form a filtration of the Čech complex at scale
2r. Recalling Example 2.2.29 and Figure 2.3a, the set of witnesses of a k-simplex is the intersection of
the corresponding k ` 1 balls. With the new filtration parameter, we control precisely the measure of
these intersections. Observe the relation to the measure bifiltration, in which we also include balls of
radius r if their mass exceeds a threshold; however, one does not impose further restrictions on the
mass of the intersection there.

Lemma 7.1.8. LetX be a subset of a metric measure space pZ, d, µq. If pZ 1d1q is another metric space
andφ : pZ, dq Ñ pZ 1, d1q is an isometry, then it induces an isomorphism of filtered simplicial complexes
MDpX,µq

–
ÝÑ MDpφpXq, φ#pµqq.

Proof. First fixingm, r, we want to show

rx0, . . . , xks P MDpX,µqm,r ô rφpx0q, . . . , φpxkqs P MDpφpXq, φ#pµqqm,r, i.e.
µptz P Z : dpz, xiq ď 2r for all iuq ě m ô φ#µptz1 P Z 1 : d1pz1, φpxiqq ď 2r for all iuq ě m
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To this end, we compute

φ#µptz1 P Z 1 : d1pz1, φpxiqq ď 2r for all iuq

“ µpφ´1ptz1 P Z 1 : d1pz1, φpxiqq ď 2r for all iuq

p˚q
“ µpφ´1pφptz P Z : dpz, xiq ď 2r for all iuqqq

“ µptz P Z : dpz, xiq ď 2r for all iuq.

The last equality is due to φ being bijective; the second to last equality p˚q requires some elaboration:
In fact, φ restricts to a bijection

tz P Z : dpz, xiq ď 2r for all iu Ñ tz1 P Z 1 : d1pz1, φpxiqq ď 2r for all iu

because it is an isometry. Indeed,

dpz, xiq ď 2r for all i ñ d1pφpzq, φpxiqq ď 2r for all i,
and d1pz1, φpxiqq ď 2r for all i ñ dpφ´1pz1q, xiq ď 2r for all i.

Finally, since the structure maps of the filtration are (by definition) inclusions of subcomplexes, they
commute with the simplicial map induced by φ.

Example 7.1.9. LetX,Y be subsets of a common ambient metric space pZ, dq and µ “ µY be the
counting measure ofY . ThenMDpX,µY qm,r “ DpX,Y,R2rqm, whereRr “ tpx, yq : dpx, yq ď

ru. In this way, the measure Dowker bifiltration generalises ordinary Dowker complexes endowed
with the total weight filtration.
Example 7.1.10. Consider the empirical measure µX “

ř

xPX δx of a point cloud X Ď Rd. The
measure Dowker bifiltrationMDpX,µXq, is a multineighbor complex [12] of a geometric graph with
loops. That is, given r ě 0 andm P N, consider the graphG “ pV,Eq which has V “ X and edges
tx, x1u whenever dpx, x1q ď 2r (note the relation to the 1-skeleton of the Čech complex!). Here,
we explicitly allow and even enforce the existence of a loop at each vertex. Them-neighbor complex
of this graph has σ as a simplex if its vertices havem common neighbors inG. This is equivalent to
saying µXptx1 P X : dpx, x1q ď 2r for all x P σuq ě m.

For an explicit example, considerX to be the four vertices of the unit square in R2, the slice of its
associated measure Dowker bilfiltration for r “ 0.6 is shown in Figure 7.3. Observe that non-trivial
second homology appears form “ 1, even though the point cloud is embedded in R2. In contrast,
Alpha or Čech complexes of points in the plane can have non-trivial homology only up to dimension
1.

In the setting of this example, we can apply the total weight Dowker duality (Theorem 7.1.4) to
obtain:

Corollary 7.1.11. LetX be a finite metric space. We have a weak equivalence of filtrationsMDpX,µXqm,r{2 »

SpDpX,X, td ď ruqqm.
Definition 7.1.12. The latter complex is the subdivision intrinsic Čech complex,

SIpXqm,r :“ SpDpX,X, td ď ruqqm.
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Ť

xPX B2rpxq

» C2rpXq – ∆3

m “ 1

MDpX,µXq1,r

– sk2p∆3q

m “ 2

MDpX,µXq2,r

– sk1p∆3q

m “ 3

MDpX,µXq3,r

– ˚ \ ˚ \ ˚ \ ˚

Figure 7.3: ConsiderX to be four points on the edges of a square in R2 and µ “ µX the associated counting
measure.

We say that in the setting of Corollary 7.1.11, the measure Dowker bifiltration is a model for the
subdivision intrinsic Čech bifiltration. While this complex is not easy to draw in the example from
Figure 7.3 on paper, it is an instructive exercise to imagine what it will look like.

7.2 Robustness and Stability

This section is split into two parts. First, we focus on the special case of Example 7.1.10 and use the
previous corollary to establish a robustness result. In the second part, we consider general metric
probability spaces and show a density-sensitive stability theorem (Theorem 7.2.4) which entails a kind
of law of large numbers (Theorem 7.2.9) as a corollary.

7.2.1 Counting Measure of a Finite Metric Space

In this section, we consider pX, dq to be a finite metric space and endow it with its counting mea-
sure µX . Recall the characterization of the intrinsic Čech complex as Dowker complex IpXqr “

DpX,X, td ď ruq. We obtain a result similar to [27, Theorem 1.7], but with a smaller multiplicative
factor. After employing Corollary 7.1.11, it suffices to see that the subdivision intrinsic Čech complex
approximates the subdivision Rips complex (which is robust) in the homotopy interleaving distance.
Indeed, this approximation result was obtained by Lesnick and McCabe [108], but it was not yet
published at the time when this article first appeared, which is why we include it for the sake of
completeness (without claiming originality). Our model for the subdivision intrinsic Čech complex
has the advantage of being a bifiltration, whereas the model considered in [108] is not.

Lemma 7.2.1. We have the following interleaving:

IpXqr Ď RpXq2r, RpXqr Ď IpXqr.

Proof. On the one hand, let σ “ rx0, . . . , xks P IpXqr. Then there is some x P X such that
dpx, xiq ď r for all i. Thus, by the triangle inequality, dpxi, xjq ď 2r for all i, j. Hence, σ P

RpXq2r.
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On the other hand, let σ “ rx0, . . . , xks P RpXqr. Then, by definition, dpxi, xjq ď r for all
i, j. Thus

Şk
i“0Brpxiq Ě σ, which is non-empty. (The closed balls are understood with respect to

the finite metric space.) Thus, σ P IpXqr.

For δ ą 0, consider the forward shift

αδ : r0,8ropˆr0,8r Ñ r0,8ropˆr0,8r

pm, rq Ñ pm´ δ, 2r ` δq.

Theorem 7.2.2. Consider two non-empty finite metric spaces endowed with their empirical probability
measures pX1, d1, νX1q, pX2, d2, νX2q. Then the homology of their measure Dowker complexes

H˚pMDpX1, νX1qq, H˚pMDpX2, νX2qqq

are αδ-interleaved functors for any δ ą dGPrpνX1νX2q.

Proof. First, recall from Corollary 7.1.11 that

MDpXi, νXiqm,r “ MDpXi, µXiq|Xi|m,r
Cor. 7.1.11

» SpDpXi, Xi, td ď 2ruqm|Xi| “ SnpIpXiq2rqm,

where µXi denotes the counting measure and the superscript Sn indicates the normalized subdivision
filtration as in Definition 2.2.39. Taking (normalized) subdivision filtrations in Lemma 7.2.1, we get

SnpIpXiqrqm Ď SnpRpXiq2rqm, SnpRpXiqrqm Ď SnpIpXiqrqm.

Now robustness of subdivision-Rips implies the desired result. Namely, we get the following compar-
isons of normalized bifiltrations:

MDpX1, νX1qm,r

»SnpIpX1q2rqm by Corollary 7.1.11
ĎSRnpX1qm,4r by Lemma 7.2.1

„
ÐÝÝÑ

δ
SRnpX2qm´δ,2p2r`δq by Theorem 2.2.41

ĎSnpIpX2q2p2r`δqqm´δ by Lemma 7.2.1
»MDpX2, νX2qm´δ,2r`δ by Corollary 7.1.11,

where „
ÐÝÝÑ

δ
denotes a δ-homotopy interleaving. ForX1 andX2 interchanged, we obtain the analo-

gous statement. After applying homology, these form interleaving morphisms as they are compositions
of interleaving morphisms.

For completeness, we also include the following relation with the degree Rips bifiltration:

Proposition 7.2.3. LetX be a non-empty finite metric space with associated counting measure µX We
have the following interleaving:

MDpX,µXqm,r Ď DRpX,µXqm,4r, DRpX,µXqm,r Ď MDpX,µXqm´1,r.
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7 Density Sensitive Bifiltered Dowker Complexes via Total Weight

Proof. Let σ “ rx0, . . . , xks P MDpX,µXqm,r be a k-simplex, i.e. |X X
Ş

xPσ B2rpxq| ě m. As
m “ 0 is excluded in Definition 7.1.6, this means the pairwise distances are bounded asdpxi, xjq ď 4r.
Thus in particular, every vertex has at least degreem´ 1 in sk1pRpXq4rq; consequently, σ is a clique
in there.

Vice versa, let σ “ rx0, . . . , xks P DRpX,µXqm,r be a k-simplex. That is, each xi has at least
m´ 1 other data points in an r-neighbourhood, k of which are in σ. Then by the triangle inequality,
Brpxiq Ď

Ş

xPσ B2rpxq. Therefore, all the data points within distance r of any xi lie within distance
2r of all xi. In particular, |X X

Ş

xPσ B2rpxq| ě m´ 1.

While one could also apply stability results of the degree Rips bifiltration now to obtain stability of
this measure Dowker bifiltration, we will provide stronger bounds in a more general setting in the
next section.

7.2.2 General Metric Probability Spaces

We present a stability result about the measure Dowker bifiltration, similar in spirit to the results of
[136, 142]. However, our theorem explicitly only concerns homology:

Theorem 7.2.4. Suppose pZ, dq is a Polish space, endowed with Borel Σ-algebra BpZq. LetX1, X2 P

BpZq and let µ1, µ2 be measures on pZ,BpZqq. Then for any k P N, we have

dIpHkpMDpX1, µ1qq, HkpMDpX2, µ2qqq ď maxptdHpX1, X2q, dPrpµ1, µ2quq,

where dH is the Hausdorff distance (Definition 2.1.1) and dPr is the Prokhorov metric (Definition 2.1.6).

Our strategy is to take any δ ě maxptdHpX1, X2q, dPrpµ1, µ2quq and show that the persistence
modules are δ-interleaved. For the proximity relation C “ tpx, yq : dpx, yq ď δu Ď X1 ˆ X2

consider the canonical projections X1
πX1

ÐÝÝ C
πX2
ÝÝÑ X2. As δ ě dHpX1, X2q, these projection

maps are surjective. A relation with this feature is sometimes called a correspondence, hence the
notationC here. We follow the the general line of thought of the proofs of [45], although carefully
adapted to the two-parameter setting in the following lemma.

Lemma 7.2.5. In the setting of Theorem 7.2.4, let C “ tpx, yq P X1 ˆ X2 : dpx, yq ď δu.
Denote the canonical projections as X1

πX1
ÐÝÝ C

πX2
ÝÝÑ X2. For any subset σ Ď X1, set Cpσq “

πX2pπ´1
X1

pσqq Ď X2. Then for any simplex σ P MDpX1, µ1qm,r , every finite subset of Cpσq is a
simplex in MDpX2, µ2qm´δ,r`δ .

Proof. Let τ Ď Cpσq be finite; it being a simplex in MDpX2, µ2qm´δ,r`δ amounts to

µ2

˜

č

yPτ

B2pr`δqpyq

¸

ě m´ δ.
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7.2 Robustness and Stability

This holds true by the estimate

m´ δ ď µ1

˜

č

xPσ

B2rpxq

¸

´ δ

ď µ2

¨

˝

˜

č

xPσ

B2rpxq

¸δ
˛

‚

ď µ2

˜

č

yPτ

B2pr`δqpyq

¸

.

Here, the first inequality is by definition of σ P MDpX1, µ1q; the second inequality is due to the
definition of the Prokhorov metric and because δ ě dPrpµ1, µ2q; the third inequality is because

˜

č

xPσ

B2rpxq

¸δ

Ď
č

yPτ

B2pr`δqpyq.

Indeed, take z1 P Z with dpz, z1q ă δ for some z P
Ş

xPσ
B2rpxq. Let y P τ be arbitrary and x P σ

such that px, yq P C . This exists because δ ě dHpX1, X2q and y P Cpσq. Finally, the triangle
inequality yields

dpy, z1q ď dpy, xq ` dpx, zq ` dpz, z1q ď δ ` 2r ` δ “ 2pr ` δq.

Proof of Theorem 7.2.4. Let f : X1 Ñ X2 be such that @x P X1 : px, fpxqq P C (this exists be-
cause the canonical projections are surjective). This induces a simplicial map MDpX1, µ1qm,r Ñ

MDpX2, µ2qm´δ,r`δ for allm, r. Namely, ifσ “ rx0, . . . , xks P MDpX1, µ1qm,r, then tfpx0q, . . . , fpxkqu

is a subset ofCpσq and hence forms a simplex in MDpX2, µ2qm´δ,r`δ by the preceding lemma.
These simplicial maps commute with the inclusion maps of the filtration; i.e. f induces a map of

bifiltered complexes and thus in persistent homology. Now, suppose g : X1 Ñ X2 is another map
with px, gpxqq P C for all x P X1. For any simplex σ “ rx0, . . . , xls P MDpX1, µ1qm,r the set

tfpx0q, . . . , fpxlq, gpx0q, . . . , gpxlqu

is a subset ofCpσq and thus, by Lemma 7.2.5 a simplex inMDpX2, µ2qm´δ,r`δ . That is, the induced
simplicial maps f, g are contiguous and thus induce the same map in homology (by Lemma 7.0.2).
By symmetry, we obtain the diagonal maps in the following diagram, where the horizontal maps are
induced by the filtration inclusions:

H˚pMDpX1, µ1q‚,‚q H˚pMDpX1, µ1q‚´δ,‚`δq H˚pMDpX1, µ1q‚´2δ,‚`2δq

H˚pMDpX2, µ2q‚,‚q H˚pMDpX2, µ2q‚´δ,‚`δq H˚pMDpX2, µ2q‚´2δ,‚`2δq

The commutativity is again established by a contiguity argument, following [45, Proposition 4.2]:
Indeed, let f : X1 Ñ X2 as before, and correspondingly fJ : X2 Ñ X1 such that pfJpyq, yq P C
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7 Density Sensitive Bifiltered Dowker Complexes via Total Weight

for all y P X2. That is, fJ induces the upward-right diagonal maps in the diagram. Let again
σ “ rx0, . . . , xls P MDpX1, µ1qm,r. It remains to see that the compositionH˚pfJq ˝H˚pfq and
the structure map of the filtration are contiguous, i.e. that we have a simplex

τ “ tfJpfpx0qq, . . . , fJpfpxlqq, x0, . . . , xlu P MDpX1, µ1qm´2δ,r`2δ.

Now, recall fpσq is a simplex in MDpX2, µ2qm´δ,r`δ . Thus, by applying Lemma 7.2.5 shifted by δ
and with the roles ofX1, X2 interchanged to fpσq, it suffices to see that τ is a finite subset of

CJpfpσqq “ tx P X1 : Dxi P σ such that px, fpxiqq P Cu.

But this is immediate from the constructions because for all i, we have pxi, fpxiqq P C by definition
of f and pfJpfpxiqq, fpxiqq P C by definition of fJ. Again, a symmetric argument establishes
commutativity of the other half of the diagram.

Remark 7.2.6. Note that the interleaving in homology does not arise from an interleaving of spaces
in a straight-forward way. However, if one dropped homology from the preceding disscussion, one
would get a bound for the so-called homotopy-commutative interleaving distance [25] between the
two filtrations. We conjecture that this can actually be strengthened to the homotopy interleaving
distance.

It is furthermore worth noting that the set tdpx, yq ď δu Ď X1 ˆ X2 takes on three different
roles in our discussion:

1. It is the relation defining the Dowker complex.

2. It is the correspondence inducing the interleaving maps in homology,

3. It appears in the optimal transport characterization of the Prokhorov metric: this distance is
the infimal δ such no more than δ of the mass need to be transported over a distance greater
than δ, i.e. outside of tdpx, yq ď δu (recall Definitions 2.1.5, 2.1.6).

As a direct consequence of our stability theorem, we obtain a robustness result for Dowker complexes
built on a fixed set of landmarks.

Corollary 7.2.7. Consider a fixed finite set of landmarks in some metric space,X Ď pZ, dq. Given
two point clouds Y1, Y2 Ď Z , we have

dIpH˚pMDpX, νY1qq, H˚pMDpX, νY2qqq ď dPrpνY1 , νY2q,

where νY “ 1
|Y |

ř

yPY δy is the empirical probability measure.

Another consequence is Gromov-Hausdorff-Prokhorov stability of the measure Dowker bifiltration
of metric probability spaces:

Corollary 7.2.8. For two metric probability spaces pX1,BpX1q, ν1q, pX2,BpX2q, ν2q, we have

dIpH˚pMDpX1, ν1qq, H˚pMDpX2, ν2qqq ď dGHPrppX1, ν1q, pX2, ν2qq.
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7.2 Robustness and Stability

Proof. Assume we have isometric embeddings into a common Polish spaceX1
φ
ÝÑ Z

ψ
ÐÝ X2. Then

dIpH˚pMDpX1, ν1qq, H˚pMDpX2, ν2qqq

“ dIpH˚pMDpφpX1q, φ#pν1qqq, H˚pMDpψpX2q, ψ#pν2qqqq

ď maxtdHpφpX1q, ψpX2qq, dPrpφ#ν1, ψ#ν2qu.

Here, we used Lemma 7.1.8 for the first equality and Theorem 7.2.4 for the inequality. As φ,ψ are
arbitrary, we can take the infimum over all such embeddings to get the desired assertion.

As a third consequence, we obtain a consistency result: The interlaving distance between the
homology of the measure Dowker bicomplex of a finite sample and the one of the true underlying
metric probability space converges to zero in probability as the sample size goes to infinity. This
can be thought of as a kind of ‘law of large numbers’ – the complex built on the empirical point
sample converges to the true underlying bifiltration (at least in homology). An analogous result for
degree-Rips was previously known, see in particular [136, Lemma 107], whose proof we follow closely.
Yet another result of similar type is Theorem 3.11 in [27].

Theorem 7.2.9. Let pX,µq be a metric probability space with compact support supppµq “ A.
Let pxiqiPN be an infinite sequence of i.i.d. samples from µ. Set Xn “ tx1, . . . , xnu and νXn “

n´1
řn
i“1 δxi the corresponding empirical probability measure. Then for all ε ą 0,

lim
nÑ8

PrdIpH˚pMDpXn, νXnqq, H˚pMDpA,µqq ą εs “ 0.

Proof. Let ε ą 0. From the stability theorem (Theorem 7.2.4) we have

PrdIpH˚pMDpXn, νXnqq, H˚pMDpA,µqqq ą εs ď PrmaxpdHpXn, Aq, dPrpνXn , µqq ą εs.

As n Ñ 8, the empirical measures converge almost surely [66, Theorem 11.4.1], νXn Ñ µ, and
thus, also in the Prokhorov distance. Moreover, as A is compact, there are a1, . . . , aN such that
A Ď Bε{2pa1q Y . . .YBε{2paN q. Now each of these balls has positive mass underµ, which is almost
surely approximated by the empirical measures:

νXnpBε{2paiqq
a.s.

ÝÝÝÑ
nÑ8

µpBε{2paiqq ą 0.

Therefore, there are almost surely sample points falling into those balls, which means

A Ď Bεpx1q Y . . .YBεpxnq

and consequently limnÑ8 PrdHpXn, Aq ą εs “ 0. Thus

PrmaxpdHpXn, Aq, dPrpνXn , µqq ą εs Ñ 0 as n Ñ 8,

as desired.
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7 Density Sensitive Bifiltered Dowker Complexes via Total Weight

7.3 Computational Results

For the algorithmic aspects, we focus on the discrete-combinatorial version of the measure Dowker
bifiltration, i.e. we assumeX and Y are finite and endow Y with its counting measure µY . Note that
the measure Dowker bifiltration is multi-critical, which means that a simplex need not appear at a
unique minimal bidegree in s0,8ropˆr0,8r but rather at a collection of mutually incomparable
bidegrees. In order to compute them, we make use of the following characterization:

Lemma 7.3.1. LetX,Y be finite sets, µY the counting measure of Y and Λ: X ˆ Y Ñ R a function.
The simplex σ “ rx0, . . . , xks P MDpX,µY ,Λq appears in bidegrees pm, rmpσqq where rmpσq is

themth smallest value of
"

max
i

1
2Λpxi, yq : y P Y

*

.

Proof. The simplex appears as soon as there aremwitnesses. In other words,

rmpσq “ mintr ą 0: µY pty : Λpx, yq ď 2r for all x P σuq ě mu.

Now the map r ÞÑ µpty : Λpx, yq ď r for all x P σuq is monotonically increasing and starts from 0.
Hence, it reaches the valuem after increasingm times.

Observe that the only way for a simplex to be critical, i.e. to have a single bidegree of appearance is
if y ÞÑ maxt1

2Λpx, yq : x P σu is a constant function.
We use the preceding lemma to construct a list of simplices with their appearances recursively,

adapting the classical algorithm of [167] to Algorithm 7.1. Knowing the witnesses of a simplex σ, we go
to a coface τ “ σ Y tju of codimension 1. Its witnesses are given by the intersection of the witnesses
of σ and those of tju. The bidegree of appearance is computed by sorting the first entries, up to some

specifiedmmax, of
"

max
i

1
2Λpxi, yq : y P Y

*

.

Let us briefly discuss runtime and size aspects. In the worst case there is y P Y such thatXˆtyu Ď

Rr for some r, which means that the Dowker complex will be a filtration of the complete simplex on
X , which has 2|X| simplices. Consequently, its dimmax-skeleton hasOp|X|dimmaxq simplices.. For
each simplex, we have to store up tommax bidegrees of appearance. They are computed by sorting
the firstmmax entries of an array of size |Y |, which is known as the partial sorting problem and can be
implemented via a combination of heap-select and heap-sort giving complexityOp|Y | logpmmaxqq.
This leads to a total run-time ofOp|X|dimmax ¨ |Y | ¨ logpmmaxqq for the skeleton of the bifiltered
Dowker complex. For small values of dimmax, as one needs for low-dimensional persistent homology,
we found this to be computionally tractable. The computational bottleneck in our experiments
is consistently the homology computation, although we admit that the RIVET software [146] we
employed for its ease of use is not state of the art in terms of speed, which is [15]. In the case of Euclidean
proximity as the relation, it might be interesting to speed up the construction using a geometric data
structure for storing nearest neighbors. Even more interesting would be to decrease the size of the
complex in a way similar to how Alpha complexes are much smaller but equivalent to Čech. Note
that the naive approach of just intersecting with the Alpha complex at scale 2r does indeed change the
homotopy type, as can be observed in the example of Figure 7.3: Whenm “ 1, MD has non-trivial
second homology and this stays true if we wiggle the points minimally to move into general position.
But the Alpha complex of points in R2 cannot have any second homology.
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7.3 Computational Results

Algorithm 7.1: Computing the bifiltered measure Dowker complex.
Input: A finite setX of size nwith elements labelled 0 through n´ 1, a finite set Y , a matrix

Λ P RXˆY ,mmax P N, dimmax P N.
Output: A list of simplices of DpX,Y,Λq with bidegrees of appearance.
SimplexList Ð rs /* global variable */

for k “ n´ 1 to 0 do
AppendUpperCofacesptku,Λrksqq/* Λrks denotes kth row */

return SimplexList;
Function AppendUpperCofaces(σ, WitnessValues):

sorted Ð SmallestElementspWitnessValues,mmaxq;
Appearances Ð tpsortedris{2, iq : 0 ă i ă mmax, sortedris ď rmaxu;
SimplexList Ð SimplexList Y pσ, Appearancesq;
if dimpσq ď dimmax then

for j “ maxpσq ` 1 to n´ 1 do
τ Ð σ Y tju;
CommonWitnessValues Ð pmaxtWitnessValuesris,ΛrjsrisuqiPt0,...,|Y |u;
AppendUpperCofacespτ, CommonWitnessValuesq;

Before we conclude the chapter, we present some computational results, which we hope do not just
illustrate the ideas presented in this work, but also will stimulate further applications of the measure
Dowker bifiltration.

Example 7.3.2. Inspired by the experiment of [27, Appendix A], we consider three point clouds in the
plane, illustrated in Figure 7.4a.

• X contains 100 points uniformly sampled from an annulus with inner radius 0.4 and outer
radius 0.5,

• Y contains 94 points from the same annulus, and 6 points sampled uniformly from the disk of
radius 0.4.

• Z consists of 100 points sampled uniformly from the disk of radius 0.5.

We consider the measure Dowker complex of an equispaced10ˆ10-gridSwith respect to the counting
measures from Corollary 7.2.7 (Figure 7.4b) as well them-neighbor bifiltration from example 7.1.10
(Figure 7.4c) withm up to 50. Then we compute the Hilbert function, that is the dimensions ofH1

(recall Definition 2.3.24)

hfH1pMDpX,µXqq : s0,8ropˆr0,8rÑ N; pm, rq ÞÑ dimpH1pMDpX,µXqm,r,Z{2qq.

on a 50 ˆ 50 gridG Ăs0,8ropˆr0,8r, using the RIVET software [146].
For comparison, we repeat the same computations using the degree Rips bifiltration with results

displayed in Figure 7.4d, as in the original experiments of [27] and further studied in [135].
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(a) Two noisy annuli X (left) and Y (middle) as well as a uniform sample Z (right) from a disk.
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(b) The Hilbert functions of H1pMDpS, µXqq (left), H1pMDpS, µY qq (middle), and H1pMDpS, µZqq (right) sam-
pled on a grid, where S Ď r´ 1

2
, 1
2

s
2 is an equispaced 10 ˆ 10 grid of landmarks.
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(c) The Hilbert functions of our Dowker model of subdivision intrinsic Čech, H1pMDpX,µXqq (left),
H1pMDpY, µY qq (middle), and H1pMDpZ, µZqq (right).
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(d) The Hilbert functions of the degree Rips bifiltrations, H1pDRpX,µXqq (left), H1pDRpY, µY qq (middle), and
H1pDRpZ, µZqq (right).

Figure 7.4: The results of the computations from Example 7.3.2. Each Hilbert function is evaluated on an
equispaced 50 ˆ 50 grid. Note that the color-scale is logarithmic.
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Example 7.3.3. Consider Λ to be a matrix with i.i.d. uniform entries from r0, 1s. If we fix a sublevel
set of Λ ď p as the relation, we obtain an Erdös-Renyi hypergraph in the sense of [13]. We can keep
track of the dimension of homology as p varies, cf. Figure 7.5. Studying vanishing thresholds for this
two-parameter persistent homology is an intriguing direction for future research. A first step in this
direction can be seen in [12] in the setting ofm-neighbor complexes of Erdös-Renyi graphs.

Example 7.3.4. Consider the dataset [75] of gene expressions from 20531 genes of 801 patients with five
different types of cancer. We regard this as 801 points inR20531; however, the Euclidean distance is not
very meaningful due to the curse of dimensionality [19]. Instead, we consider the k-nearest neighbor
matrix with respect to the cosine distance. Explicitly, the cosine distance between x1, x2 P Rd is

dCpx1, x2q “ 1 ´
xx1, x2y

}x1}}x2}
.

The filtration of relations

Rk “ tpx1, x2q : |tx P X : dCpx1, xq ă dCpx1, x2qu| ď ku

is then encoded by the sublevel sets of the matrix

Λij “ k ô j is the kth nearest neighbor of i.

Note that both filtration parameters are on the same scale, as opposed to degree Rips for innstance,
which is conceptually nice and might help to interpret the results. We computeH0 of the bifiltered
Dowker complex for the number of nearest neighbors k up to 64 and the total weight up to 64. In
other words, two patients end up in the same connected component, which we interpret as a cluster,
if and only if they havem common points among their respective 2k nearest neighbors. Of course,
form ą 2k, there are no points at all. We can inspect the appearance and merging of clusters using
the Hilbert function, shown in the left panel of Figure 7.6. Moreover, we can visualize the data based
on a force-directed graph layout of the 1-skeleton of the Dowker complex for a given choice of k and
m. In the right panel of Figure 7.6, this is done for k “ 30,m “ 12 at the top, which yields the true
number of clusters 5. The colors represent the true label, i.e. which type of cancer the patient has.
When we set k “ 60,m “ 20 in the bottom right panel, we only get three connected components,
yet the cluster structure remains visible. This hints at a connection between Dowker complexes and
dimensionality reduction techniques like UMAP, which builds a graph on a high dimensional point
cloud by looking at the distance to the k-nearest neighbor and embeds it using a force-directed layout
[118].

Example 7.3.5. Dowker and neighborhood complexes have previously been used with great success by
Liu et al. for predicting protein-ligand binding affinity [113, 114], a task in computer aided drug design.
We follow the setup of Liu et al. to create the complex, which is common in both referenced works, just
that we have an additional filtration parameter. Given a protein-ligand pair, build a bipartite Dowker
complex which has the ligand atoms of a fixed kind as vertices and use protein atoms of fixed type as
witnesses. We use all possible combinations of ligand atoms from tC,N,O, S, P, F,Cl, Br, Iu and
protein atoms from tC,N,O, Su. Then we proceed to compute persistent homology in dimensions 0
and 1 of each such Dowker complex, bifiltered by both distance (up to 100 ångströms) and total weight
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Figure 7.5: Hilbert functions of H0 (left) and H1 (right) for n ˆ n matrices with random uniform entries
(n “ 100 (top), n “ 200 (bottom)) for some small values ofm.
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7.3 Computational Results
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Figure 7.6: The gene expression clustering and dimensionality reduction of Example 7.3.4. We show hfM ,
whereM “ H0ppMDpX,X,Λqqq, in the left panel, and two particular choices of the 1-skeleton
of MDpX,X,Λqm,k embedded using a force-directed layout on the right panel. In the left panel,
colors correspond to the number of connected components, where cyan includes everything ě 9.
In the right panel, the colors encode the true label, i.e. the type of cancer as shown in the legend.

mmax 1 2 3 4 5 6 7 8
train R2 0.96 0.95 0.96 0.96 0.95 0.96 0.96 0.96
test R2 0.41 0.35 0.44 0.46 0.54 0.51 0.48 0.57

mmax 9 10 11 12 13 14 15 16
train R2 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
test R2 0.46 0.47 0.47 0.42 0.50 0.51 0.50 0.52

Table 7.1: PearsonR2 of the binding affinity prediction of Example 7.3.5

(up to 16). The persistence modules are then vectorized via the Hilbert functions; we concatenate all
the vectors to obtain a “topological fingerprint” of the protein-ligand pair. Note that [113, 114] use more
sophisticated vectorization methods based on persistent Laplacians. However, we are mainly interested
in the question how much additional information the introduction of the second (i.e. total weight)
filtration carries. We train a random forest regression with the “PDBbind-refined” dataset using the
library “DeepChem” accompanying the book [129]. The test data is “PDBbind-core”, for which we
report the prediction accuracy in table 7.1. Notably, we observe higher accuracy for two-parameter
than for the one-parameter setup (which corresponds to the column m=1). However, we are not able
to reproduce the even much higher scores of [113, 114], who use the persistent Laplacians and more
sophisticated vectorizations, capturing more information that just the Hilbert function.
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