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Modelling networks of biochemical reactions
Abstract

The process in which a mathematical model of a molecular biologi-
cal system is formulated and refined helps to articulate hypotheses and
thereby supports the design of experiments to validate these hypotheses
and the model itself. Once the model is validated it is used to speculate
about mechanisms underlying a cell function of interest. In this disser-
tation we describe and apply methods valid in a general framework of
spatially homogeneous models of biochemical reactions networks. How-
ever, our focus is set specifically on practical applications to models of
intracellular signalling pathways.

We start with selecting the most plausible variant of a JAK-STAT path-
way activation mechanism. Solution of this model selection task is based
solely on a deterministic mathematical framework, represented by the
ordinary differential equations. Moreover, here we exert a concept of ro-
bustness based on the sensitivity analysis. Next, we extend the range of
mathematical models of biochemical reactions network to a spatially ho-
mogeneous stochastic variant, represented by the continuous-time Markov
process. To that end, we apply the probabilistic model checking technique
to a simple enzymatic reaction model, exploring an idea of a property-
specific sensitivity analysis. On this occasion, we have developed a sup-
porting open source software named Tav4SB, used for scientific cloud
computing. Finally, we exploit both deterministic and stochastic methods
in a case study based on the heat-shock response model. We investigate
the thermotolerance phenomenon and the effect of a combined hyperther-
mia and a drug therapy of cancer.

In principle, our results demonstrate feasibility and practical poten-
tial of techniques such as the sensitivity analysis and probabilistic model
checking, as well as potential of a standardised, easily-accessible software,
in the context of analysis of kinetic models of biological systems.

Keywords: signalling pathway, model selection, sensitivity analysis, model
checking, cloud computing
ACM Classification: J.3, C.2.4
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Modelowanie układów reakcji biochemicznych
Streszczenie

Proces tworzenia i udoskonalania modelu pomaga formułować hipotezy
i tym samym sugeruje projekt eksperymentu, który sprawdzi zarówno te
hipotezy jak i sam model. Potwierdzony eksperymentalnie model jest
wykorzystywany do wnioskowania na temat mechanizmów leżących u pod-
staw badanej funkcji komórki. W tej rozprawie opisujemy i stosujemy
metody poprawne dla jednorodnych w przestrzeni modeli układów reakcji
biochemicznych. Jednak skupimy się przede wszystkim na praktycznych
zastosowaniach dla modeli wewnątrzkomórkowych szlaków sygnałowych.

Zaczynamy wybierając najbardziej wiarygodny wariant aktywacji szlaku
sygnałowego JAK-STAT. Rozwiązanie tego zadania selekcji modelu jest
oparte wyłącznie na deterministycznym opisie, reprezentowanym przez
równania różniczkowe zwyczajne. Co więcej, wykorzystujemy tu kon-
cepcję krzepkości opartą na analizie wrażliwości. Następnie poszerza-
my zakres matematycznych modeli układów reakcji biochemicznych do
jednorodnego w przestrzeni wariantu stochastycznego, reprezentowane-
go przez proces Markowa z czasem ciągłym. W tym celu wykorzystu-
jemy technikę probabilistycznej weryfikacji modelowej do analizy prostego
modelu reakcji enzymatycznej, obrazując ideę analizy wrażliwości specy-
ficznej dla badanej własności. Przy tej okazji zbudowaliśmy wspierające,
otwarte narzędzia programistyczne zwane Tav4SB, służące do naukowych
obliczeń “w chmurze”. W końcu, wykorzystujemy zarówno deterministy-
czne jak i stochastyczne metody w studium przypadku modelu odpowiedzi
na szok termiczny. Badamy zjawisko termotolerancji i efekt łączonej te-
rapii hipertermią oraz lekami przeciwnowotworowymi.

Nasze wyniki przedstawiają możliwości praktycznego zastosowania oraz
potencjał technik takich jak analiza wrażliwości czy weryfikacja mode-
lowa, jak również zestandaryzowanego, łatwo-dostępnego oprogramowa-
nia, w kontekście analizy kinetycznych modeli systemów biologicznych.

Słowa kluczowe: szlak sygnałowy, selekcja modelu, analiza wrażliwości,
weryfikacja modelowa, chmura obliczeniowa
Klasyfikacja tematyczna ACM: J.3, C.2.4
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1
Introduction

Mathematical modelling of dynamic behaviour of molecular
biological systems complements experimental technologies,
which are used to identify and comprehend a role of system
components. The process in which a model is formulated and refined
helps to articulate hypotheses and thereby supports the design of experi-
ments to validate these hypotheses and the model itself. Once the model
is validated it is used to speculate about mechanisms underlying, e.g.,
a cell function of interest.

The construction and analysis of mechanistic models of molecular bi-
ological systems is a part of recently established, highly interdisciplinary
fields of systems and computational biology. Modelling encompasses gene
regulatory networks (Alon, 2007), signal transduction and metabolic path-
ways (Wolkenhauer et al., 2008; Klipp et al., 2009). In this dissertation
we describe and apply methods valid in a general framework of spatially
homogeneous models of biochemical reactions networks. However, our fo-
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cus is set specifically on practical applications to models of intracellular
signalling pathways.

Our contribution regards multiple aspects of analysis of biochemical
reactions networks. Summary of the relevant subjects and their relations,
as presented in this work, is depicted in Figure 1.

Figure 1: Dissertation mind map presenting biological systems and methods
under consideration. For a context an unexploited concept of spatial models (i.e.
models accounting explicitly for a spatial heterogeneity) is also presented. Arrows
represent relations between different concepts as presented in this work. Arrow
labels and directions depict a character of a relation. For instance, in this work,
the JAK-STAT signalling pathway has only a deterministic version of a model,
or the Tav4SB project provides the multi-parameter sensitivity analysis method.
All unlabelled arrows from a biological systems to numerical or analysis methods
denote which of these methods are used in a case study relevant to the indicated
biological system. Similarly, all unlabelled arrows from analysis methods indicate
a relation of being based on, or, in case of dashed arrows, of a possibility of being
based on. For example, model selection may be based on numerical optimisation.
Indeed, if goodness of fit criterion is considered as a selection method then
it uses numerical optimisation method, but, for instance, the Bayesian model
selection method doesn’t require numerical optimisation. Note that all analy-
sis in this work is based on numerical simulations suitable to a mathematical model.

Figure on the next page.
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1.1 Principles of intracellular signalling

Fundamental cell processes (growth, division, motility etc.) are driven
by intracellular and intercellular communication (Alberts et al., 2002).
The latter is performed via direct contact between cells or soluble fac-
tors like hormones or cytokines. Environmental signals are received by
on–membrane parts of receptors, which induce cascade of biochemical re-
actions in cell’s cytoplasm and nucleus. In effect, one or more target pro-
teins influence behaviour of the cell, usually by altering the expression level
of target genes (change via gene regulatory proteins). Signal transduction
can also affect cell shape or movement (change via cytoskeletal proteins) or
metabolism (change via metabolic enzymes). Figure 1.1.1 depicts a simple
scheme of how signal it transduced in the cell. Such signalling pathways,
responsible for processing specific signals, are a part of a whole intracel-
lular reactions network. In most cases activity of a signalling pathway
is self–regulated by it’s components, allowing cell to control transient re-
sponse to external stimuli (e.g. internal signal is attenuated after it has
been successfully processed as a change of target genes expression profile).

Most of reactions responsible for transducing a signal inside the cell are
catalysed by enzymes which activate or deactivate subsequent proteins on
the pathway. For instance, activation or deactivation can be executed by
addition or removal of the phosphate groups, which are provided by donors
such as ATP. Phosphate modification of a protein causes conformational
changes in its structure and a change in it’s free energy. These processes
are called, respectively, phosphorylation and dephosphorylation (enzymes
which catalyse these reactions are called kinases and phosphatases). In
principle, enzymatic reactions are basic building blocks for complicated
networks of intracellular signalling.

Activity of pathway components is a biological concept and should be
identified with an efficiency of technological process that generates specific
number of molecules. Therefore, it is correct to define activity in terms
of an amount of a species. Nota bene, a number of one protein type
molecules inside the cell usually ranges around 102–103.
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Figure 1.1.1: Generic scheme of processing of an intracellular signal. In a process
of passing an extracellular signal (e.g. in form of a small environmental factors) re-
ceptors and cytoplasmic signalling proteins undergo state changes, form complexes
or induce activity of subsequent proteins. Eventually, some form of the signalling
proteins is imported to the nucleus where, directly or indirectly, it alters the genes
expression profile. In effect, translated product proteins enter the intracellular en-
vironment to enable cell’s actual response.

1.2 Modelling

Biochemical reactions take place in water, a physiological environment
of the cell. For simplicity, we assume spatial homogeneity, i.e. that
biomolecules are well-stirred, and diffusion effects are not taken into ac-
count. Moreover, we assume that a set of channels through which the
reactions are occurring is fixed. This set of reaction channels together

5



with a set of species reacting in them is what we call a biochemical reac-
tions network.

Time-dependent state of such a biochemical kinetic system can be de-
scribed in terms of a state space of a number of molecules #S⃗ of a vector
of species S⃗. Unit of a quantitative description of molecules is mole, which
approximately contains NA ≈ 6.022 ·1023 mol−1 number of molecules (NA

is called the Avogadro constant). Molar concentration is defined as a
number of moles of solute per solution V volume, i.e.

[S] =
#S

NA · |V |
M, (1.1)

where |·| is a volume in litres and M, equal to mol ·dm−3, denotes a molar
concentration unit.

Mathematical modelling of complex biological systems can be carried
out in a deterministic, a stochastic or a hybrid manner. First of which uses
the classical differential equations theory and the second one is based on
the stochastic processes or the theory of the stochastic differential equa-
tions. As mentioned before, both types of models are usually based on
some simplifying assumptions. In particular, we assume that the diffu-
sion process occurs immediately, which ensures an even distribution of
a substance over a limited volume (well-stirred). Also, we assume that
the parameters of a biochemical environment, such as the temperature,
are roughly constant, which allows to consider the set of reactions and,
more importantly, their kinetic parameters as fixed throughout the time
evolution of the system.

Description of kinetics in most models results from the classical chemical
law of mass action (see, e.g., Lund, 1965). Deterministic models describe
changes in concentrations of reagents over time, and they do not include
the effect of the fluctuations (which do occur in reality). It means that for
given initial conditions, a deterministic model will always give the same
results. This is an initial value problem for the first-order differential equa-
tions, which are a mathematical formulation of the deterministic model.
Variables represent reacting species and the non-differentiable terms of
the equations represent rates of reactions, usually yielding a set of highly
non-linear equations. In the most common continuous-time, spatially ho-
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mogeneous setting, without any delays incorporated, the deterministic
biochemical model is represented by the reaction rate equations (RRE).

Stochastic models describe the state of the system at a given time point
by a number of particles of each species. These models are most often
expressed in form of the chemical master equation (CME), which is an
alternative form of the Chapman-Kolmogorov equation. CME describes
evolution of a distribution of a continuous-time Markov process (CTMC)
over a set of all possible discrete states (Kampen, 2007).

1.3 Numerical methods

Both RRE and CME are first-order ordinary differential equations (ODE)
and both RRE and, especially CME are analytically intractable in almost
every but the simplest cases (cf. Laurenzi, 2000; Jahnke and Huisinga,
2007). It is due to a high non-linearity and a large number of variables
and reactions’ components or, respectively, due to a size of a state space
which covers all possible arrangements of molecules in the system, reach-
able through a given set of reactions channels. The simplest way to address
this analytic infirmity is to employ numerical methods.

Many numerical methods of both high and low precision are available for
both the deterministic and the stochastic mathematical framework. The
most fundamental type of methods are numerical simulations, either of the
differential equations (see, e.g., Butcher, 2008) or the Markov process (the
so called stochastic simulations; see, e.g., Gillespie, 2007; Pahle, 2009).
These allow to simulate the evolution in time of reacting species, thus,
constituting a numerical basis for further analysis of the model.

Simulated trajectories of the model, after transformation to what can
be in fact observed in the data, are used to estimate parameters of the
model. A common error function for the fitting to data task is the sum
of squared errors (SSE), which yields the non-linear least squares opti-
misation problem (NLS). This well-known task can be solved by many
deterministic, numerical algorithms (see, e.g., Nocedal and Wright, 1999),
but their main pitfall are local minima, which in case of moderate-sized
and larger models of signalling pathways are common (Moles et al., 2003;
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Rodriguez-Fernandez et al., 2006). To address this issue it is recommended
to use global Monte Carlo optimisation methods such as the simulated
annealing (SA; Kirkpatrick et al., 1983; Černý, 1985). Main drawback of
these type of algorithms is their running time.

1.4 Analysis

The mathematical framework determines a structure of a kinetic for-
mulation for a given biochemical network model of a biological system.
As already mentioned, the standard representations are RRE for the de-
terministic framework and CME or CTMC for the stochastic framework
(Wolkenhauer et al., 2004; Aldridge et al., 2006; Goutsias, 2007). How-
ever, some of commonly used analysis methods are in principle model-
independent. These include, for instance, some of sensitivity analysis or
model selection methods.

A straightforward technique of a model comparison is a goodness of fit
(GOF) criterion measure such as SSE, which results in the chi-squared
test (χ2). Arguably, GOF criterion is not good for assessing biological
models due to theirs inherent uncertainty and, more importantly, due to
the noisy data (Myung and Pitt, 2004). A good fit can be achieved by
fitting to the noise instead of the regularity of the underlying phenomenon
(the problem of overfitting). For that reason, model selection methods
implement the Occam’s Razor principle by including terms that penalise
model complexity, thus, favouring the generalizability.

A well founded, methods implementing the generalizability principle are
the Akaike information criterion (AIC; Akaike, 1974) and the Bayesian
information criterion (BIC; Schwarz, 1978), as well as the state of the art
Bayesian model selection (BMS) method and directly related Bayes factor
(BF) — a gold standard of model comparison in Bayesian statistics (Kass
and Raftery, 1995; Myung et al., 2009). The downside of BF, contrary to
AIC and BIC, is the computational complexity. A more general limitation
of the aforementioned measures of generalizability, is that they summarise
relationship between model and data into a single number (Myung et al.,
2009), which makes a nonsubstantial result of the models comparison
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practically useless. We address this deficiency with an application of the
sensitivity analysis in the model selection problem.

Sensitivity analysis investigates the relation between uncertain param-
eters of the model and a property of an observable output. Biochemi-
cal reaction networks yield models of a nonlinear nature for which global
sensitivity analysis methods (GSA) are the most suitable (Saltelli et al.,
2005). GSA examines range of input parameters values simultaneously as
opposed to one-factor-at-a-time methods like derivatives of output with
respect to parameters. An exemplary GSA method implementation is the
multi-parameter sensitivity analysis (MPSA; Young et al., 1978; Horn-
berger and Spear, 1981). This is a Monte Carlo filtering method which
maps parameters space into behavioural and non-behavioural output re-
gions.

We use the sensitivity analysis-based concept of robustness of biologi-
cal systems. Low sensitivities may indicate robustness, but also, in a too
complex model, non-identifiability of parameters. To that end, we comple-
ment our analysis with the profile likelihood-based identifiability analysis
(Raue et al., 2009). The identifiability analysis (IA) of parameters allows
to account for a feasibility of experimental measurements which, in turn,
may precisely identify a correct reaction network structure.

We exploit MPSA further by combining it with the probabilistic model
checking (PMC; Rutten et al., 2004; Kwiatkowska et al., 2007). PMC is
a technique of a formal verification of systems that exhibit a stochastic
behaviour. For biological applications, CTMC is chosen as an underlying
model (see, e.g., Heath et al., 2008; Kwiatkowska et al., 2008), and the
examined properties are specified in the continuous stochastic logic (CSL;
Aziz et al., 1996). We also employ PMC as a stand-alone method of
analysis of models of biochemical reactions.

Finally, on a more technical note of analysis, we engage in the idea
of “Science as a Service” (SaaS; Foster, 2005, 2011). It’s an idea where
any researcher can comfortably carry out complex analysis which may rely
on large data sets or heavy computations. By comfortably we mean that
the analysis can be done on a moderate personal computer, at a preferred
location, without putting a significant technical effort in it. More impor-
tantly, availability of scientific services allows a much broader community
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to participate in the research process, which conforms to the concept of
open science. From a technical point of view SaaS fits into the concept of
cloud computing.

More specific concepts behind SaaS include: workflow management sys-
tems, such as the Taverna Workbench (Hull et al., 2006), which allow
for repeatable in silico experiments; publicly available Web services (WS;
The World Wide Web Consortium, 2002), which provide required func-
tionality; and computational grid environments, which enable a usage of
a specialised, physically scattered hardware.

1.5 Results

We start with selecting the most plausible variant of a JAK-STAT path-
way activation mechanism. Solution of this model selection task is based
solely on a deterministic mathematical framework (ODE). Moreover, here
we exert a concept of robustness based on sensitivity analysis. Next, we
extend the range of mathematical models of biochemical reactions network
to a spatially homogeneous, stochastic variant. To that end, we apply the
PMC technique to a simple enzymatic reaction model, exploring an idea
of a property-specific sensitivity analysis. On this occasion, we have devel-
oped a supporting state of the art software tools, under the name of the
Tav4SB project. Finally, we exploit both deterministic and stochastic
methods in a case study based on the heat-shock response model. In this
case study we investigate the thermotolerance phenomenon and the effect
of a combined hyperthermia and a drug therapy of cancer. A conceptual
links between models related to and methods used within undertaken case
studies is depicted in Figure 1.

In principle, our results demonstrate feasibility and practical poten-
tial of techniques such as the sensitivity analysis and probabilistic model
checking, as well as of a standardised, easily-accessible software, in the
context of analysis of kinetic models of molecular biological systems.
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1.5.1 JAK-STAT pathway model selection

The Janus Kinase and Signal Transducer and Activator of Transcrip-
tion pathway family (JAK-STAT) is a principal signalling mechanism in
eukaryotic cells (Aaronson and Horvath, 2002). Evolutionary conserved
roles of this mechanism include control over fundamental processes such
as cell growth or apoptosis. Deregulation of the JAK-STAT signalling is
frequently associated with cancerogenesis. JAK-STAT pathways become
hyper-activated in many human tumours (Yu and Jove, 2004). Therefore,
components of these pathways are an attractive target for drugs, which
design requires as adequate models as possible. Although, in principle,
JAK-STAT signalling is relatively simple, the ambiguities in a receptor
activation prevent a clear explanation of the underlying molecular mech-
anism.

We compare four variants of a computational model of the
JAK1/2-STAT1 signalling pathway. These variants capture known, basic
discrepancies in the mechanism of activation of a cytokine receptor, in
the context of all key components of the pathway. We carry out a com-
parative analysis using mass action kinetics. The investigated differences
are so marginal that all models satisfy a GOF criterion to the extent that
the state of the art BMS method also fails to significantly promote one
model. Therefore, we comparatively investigate changes in a robustness of
the JAK1/2-STAT1 pathway variants using GSA, complemented with IA.
Both BMS and GSA are used to analyse the models for the varying pa-
rameter values. We found out that, both BMS and GSA, narrowed down
to the receptor activation component, slightly promote the least complex
model. Further, insightful, comprehensive GSA, motivated by the con-
cept of robustness, allowed us to show that the precise order of reactions
of a ligand binding and a receptor dimerization is not as important as the
on-membrane pre-assembly of the dimers in absence of ligand.

Main results of the JAK-STAT pathway case study are:

• proposing rigorous models for different variants of activation mech-
anism of the JAK1/2-STAT1 pathway,
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• evaluating model selection methods in a case study of de novo anal-
ysis of a large-scale pathway model,

• identifying the most robust design of the JAK1/2-STAT1 pathway
receptor activation mechanism.

1.5.2 Property-specific sensitivity analysis

Consider the simple, enzymatic reaction model of three reactions:

R1 : E + S
k1−−−→ ES,

R2 : ES
k2−→ E + S,

R3 : ES
k3−−−→ P + E,

where species names S, E, ES and P stand for substrate, enzyme, enzyme-
substrate complex and product, respectively. The task is to asses which of
the two forward reactions: the complex formation reaction R1 or the sub-
strate conversion reaction R3, is more influential in terms of the system’s
behaviour? We want to show that the answer to this question, in some
extent, depends on the property which describes the system’s behaviour.

MPSA has been applied to deterministic models of signalling pathways
with an error function based on the RRE variables trajectories. In our
task, a straightforward approach is to asses importance of parameters
of the above-mentioned reactions using SSE of the RRE trajectory of
the product P , for currently examined parameters values, with respect to
the reference values. In such MPSA setting, the k3 parameter significantly
dominates the k1 parameter. It is an expected outcome.

Now, consider the following question: how many times, on average, the
enzyme-substrate complex association reaction R1 has to occur before the
amount of product P reaches 50% of its limit? This can be expressed as
a reward-based CSL formula:

R{#R1=?}

(
♢
(
P > 0.5 · lim

t→∞
P (t)

))
.

With system’s behaviour defined by such property of interest, focused on
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efficiency of enzymes, we use the PMC for the MPSA error calculation
with respect to the stochastic variant of the reference model. In this
setting, one observes that k1 parameter is more influential than the k3
parameter, although, the domination is not as definite as in the previous
setting.

1.5.3 Efficacy of hyperthermia treatment

Multimodal oncological strategies which combine chemotherapy or ra-
diotherapy with hyperthermia (i.e. raising the temperature of a region of
the body affected by cancer) have a potential of improving the efficacy of
the non-surgical methods of cancer treatment (Hildebrandt et al., 2002;
Neznanov et al., 2011; Wust et al., 2002). Hyperthermia engages the heat-
shock response mechanism (HSR), which main component (the heat-shock
proteins; HSP) is known to directly prevent the intended apoptosis of can-
cer cells. Moreover, cancer cells can have an already partially activated
HSR, thereby hyperthermia may be more toxic to them relative to normal
cells (Neznanov et al., 2011). However, HSR triggers thermotolerance, i.e.
the hyperthermia treated cells show an impairment in their susceptibility
to a subsequent heat-induced stress (Wust et al., 2002). For that reason,
the application of the combined hyperthermia therapy should be carefully
examined.

We adapt the Szymańska and Żylicz (2009) model and propose its
stochastic extension, which we then analyse using the approximate prob-
abilistic model checking techniques (APMC; Nimal, 2010). We estimate
a global function of a level of protein denaturation and derive a correct
protein denaturation rate. Next, we formalise the notion of the ther-
motolerance and compute the size and the duration of the HSR-induced
thermotolerance. Finally, we quantify the effect of a combined therapy
of hyperthermia and a cytotoxic inhibition of denatured proteins refold-
ing. By mechanistic modelling of HSR we are able to support the com-
mon belief that the combination of different non-surgical cancer treatment
strategies increases therapy efficacy.
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1.5.4 Tav4SB project

Progress in the modelling of biological systems strongly relies on the
availability of specialised computer-aided tools. To that end, the Tav-
erna Workbench eases integration of software tools for life science
research and provides a common workflow-based framework for computa-
tional experiments in Biology.

The open source Taverna services for Systems Biology (Tav4SB) project
provides a set of new Web service operations, which extend the func-
tionality of the Taverna Workbench in a domain of systems biology.
Tav4SB operations allow you to perform numerical simulations or model
checking of, respectively, deterministic or stochastic semantics of biolog-
ical models. On top of this functionality, Tav4SB enables the construc-
tion of high-level experiments. As an illustration of possibilities offered
by our project we apply MPSA. To visualise the results of model analysis
a flexible plotting operation is provided as well.

Tav4SB operations are executed in a simple grid environment, integrat-
ing heterogeneous software such as Mathematica (Wolfram Research,
Inc., 2008), PRISM (Hinton et al., 2006) and SBML ODE Solver
(Machné et al., 2006). The source code, user guide, contact information,
full documentation of available Web service operations, workflows and
other additional resources can be found at the Tav4SB project’s Web
page: http://bioputer.mimuw.edu.pl/tav4sb/.

1.6 Organisation of dissertation

This dissertation is organised into four chapters, first of which is cur-
rently ready introduction, and last of which are overall and case study-
specific conclusions.

In between, in Chapter 2 we review both state of the art and our origi-
nal methods that we have applied in our research (cf. Figure 1). Namely,
we introduce deterministic and stochastic mathematical models of bio-
chemical reactions network and briefly review basic, appropriate methods
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of numerical simulation and optimisation. Afterwards, we describe meth-
ods of analysis suited to our research problems. These include overview
of model selection and sensitivity analysis methods, with an emphasis on
global methods in the latter case. We also give a brief overview of profile
likelihood-based identifiability analysis and probabilistic model checking
techniques. Finally, we describe context, features and technical aspects
of the Tav4SB original project.

Chapter 3 contains three sections with description and results of anal-
ysis of three biochemical reactions networks: JAK-STAT pathway (Sec-
tion 3.1), enzymatic reaction (Section 3.2) and heat-shock response path-
way (Section 3.3). Each section contains a statement of the investigated
problem, a model description, presentation of results and a discussion, fol-
lowed by a brief summary of applied software tools and setting for meth-
ods. In the case studies containing models of signalling pathways, we also
provide biological background and related modelling research overview.

1.7 Articles and co-authors

Most of the results presented in this dissertation comes from peer re-
viewed articles. Descriptions of mathematical modelling frameworks and
sensitivity analysis can be found in Charzyńska et al. (2012, cf. Sec-
tions 2.1 and 2.3.2). The JAK-STAT pathway case study (Section 3.1)
is extensively described in Rybiński and Gambin (2012) article, where
from majority of the text on that subject is taken (see also Rybiński and
Gambin, 2007, 2009). Description of the Tav4SB project (Section 2.4.2)
was first published by Rybiński et al. (2011). An extended version, with
the property specific sensitivity analysis case study (Section 3.2), was
published in Rybiński et al. (2012) article, co-written with Sławomir La-
sota and Anna Gambin. Software was a joint work of Mikołaj Rybiński,
Paweł Banasik (Banasik, 2008) and Michał Lula (Lula, 2009). The un-
published results are based on the drafts of two publications, co-created
by Mikołaj Rybiński, Zuzanna Szymańska, Sławomir Lasota and Anna
Gambin. These results regard the heat shock response mechanism and its
connotations with hyperthermia and thermotolerance (Section 3.3).
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I have come to believe that one’s knowledge of any
dynamical system is deficient unless one knows a
valid way to numerically simulate that system on
a computer.

Daniel T. Gillespie

2
Methods

Here we review methods that we have applied in our re-
search. First, we introduce deterministic and stochastic mathematical
models of biochemical reactions network and briefly review basic, appro-
priate methods of numerical simulation and optimisation. Next, we de-
scribe methods of analysis suited to our research problems. These include
overview of model selection and sensitivity analysis methods, with an
emphasis on global methods in the latter case. Both of these methods
are extensively used in the JAK-STAT model selection case study (Sec-
tion 3.1). Also both of these methods are selectively used in, respectively,
efficacy of the hyperthermia treatment (Section 3.3) and property-specific
sensitivity analysis (Section 3.2) case studies.

We also give a brief overview of profile likelihood-based identifiability
analysis, used for the analysis of the JAK-STAT pathway model, and prob-
abilistic model checking techniques, used in property-specific sensitivity
analysis and in investigation of the hyperthermia treatment efficacy.
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Finally, we describe context, features and technical aspects of the orig-
inal Tav4SB project, which constitutes a software base for our property-
specific sensitivity analysis.

2.1 Mathematical models

The biochemical reactions network consists of M reaction channels
{R1 . . . RM} occurring between N species {S1 . . . SN}. Each reaction
channel (in short, reaction) is usually, uniquely presented as:

Rm : ν1mS1 + · · ·+ νNmSN −→ ν1mS1 + · · ·+ νNmSN

where νnm and νnm denote amounts of molecules of n-th substance that
are, respectively, consumed and produced in m-th reaction. We assume
that all reaction channels are non-degenerate, i.e. that for each Rm there
exists n such that νnm ̸= νnm. We say that Sn is reaction Rm: substrate
iff νnm > 0; product iff νnm > 0; reactant iff Sn is either substrate or
product of reaction Rm; catalyst iff Sn is a reactant of reaction Rm and
νnm = νnm. The total net effect of production of a species Sn in reaction
Rm, i.e. νnm : = νnm − νnm, is called a stoichiometric coefficient. The
matrix of stoichiometric coefficients

C : = (νnm) n = 1, . . . , N
m = 1, . . . ,M

is called a stoichiometric matrix.
Equivalently, biochemical reactions network can be graphically repre-

sented by a directed bipartite graph known as the Petri net (w/o imposed
semantics; see, e.g., Petri and Reisig, 2008); places correspond to species
and transitions correspond to reaction channels.

The rank of reaction Rm is a sum of consumed species molecules, i.e.:

rank (Rm) : =
N∑

n=1

νnm.

We say that Rm is: elementary iff rank (Rm) ≤ 2; monomolecular iff
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rank (Rm) = 1; bimolecular iff rank (Rm) = 2. Moreover, if Rm is bi-
molecular then we say it is: a symmetric collision if for some m we have
νnm = 2; an asymmetric collision otherwise. The zero-ranked reactions
represent creation of new molecules from components which are not ex-
plicit present in the model. Because it is very unlikely for three or more
biomolecules to collide at the same time with appropriate energy and ori-
entation for reaction to occur, it is a common belief that all biochemical
reactions networks essentially consist of only elementary reactions, i.e.
reactions of rank 3 or higher are hypothetically composed of some set of
elementary reactions.

In the following Sections we will briefly present underlying mathe-
matical models for so called well-stirred models, both deterministic and
stochastic. Both types of these models, essentially as a biochemical re-
actions network, can be represented in the Systems Biology Markup Lan-
guage (SBML; Hucka et al., 2003) — a data format, based on the Exten-
sible Markup Language (XML; The World Wide Web Consortium, 2008).

2.1.1 Deterministic, well-stirred

In a context of the well-stirred deterministic modelling framework, the
state of biochemical reactions network is represented by the time-dependent,
non-negative, real-valued state vector of concentrations of reacting species
⃗[S] (t) ∈ RN

≥0. The dynamics of the system is governed by the reaction
rate equations (RRE) —a set of first-order ODE:

d ⃗[S] (t)

d t
= f⃗( ⃗[S] (t)) = C · v⃗( ⃗[S] (t)), (2.1)

where v⃗( ⃗[S] (t)) ∈ RM
≥0 is a vector of reaction rates at a time point t.

ODE, together with the initial state ⃗[S] (0), are known as the initial value
problem.
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The most basic form of reaction rates comes from the law of mass action
(see, e.g., Lund, 1965):

vm (s⃗) = km

N∏
n=1

(sn)
νnm , (2.2)

where s⃗ = ⃗[S] (t) and km denotes the m-th reaction rate constant.

2.1.2 Stochastic, well-stirred

In the well-stirred stochastic framework the state of biochemical reac-
tions network is represented by the time-dependent probabilistic distribu-
tion over a non-negative, discrete state space of molecules of all reacting
species #⃗S (t) ∈ NN . One way to describe the time evolution of such
distribution is to provide a set of linear, autonomous ODE, one for each
possible state of the system. Such set of equations is called the chemical
master equation (CME). The solution of the k-th equation at a time point
t corresponds to the probability of the system being in that particular
state at that time.

Occurrence of reaction Rm at a time t changes the molecule numbers
#⃗S (t) = s⃗ by ν⃗m, i.e. s⃗ 7→ s⃗ + ν⃗m, where ν⃗m is the m-th column of the
stoichiometric matrix C. For each reaction Rm there exists a propensity
function am (s⃗) of a single occurrence of Rm in a time period ∆t small
enough that the probability of multiple occurrences of Rm is of the order
o (∆t) (Gillespie, 1977). In other words, a probability of occurrence of
at most one Rm in the infinitesimally small time interval [t, t+∆t) is
accurately approximated by am (s⃗) ·∆t+ o (∆t).

The CME describing the time-dependent distribution over states s⃗,
given an initial distribution s⃗0,

P (t; s⃗, s⃗0) = P
(
#⃗S (t) = s⃗

∣∣∣ #⃗S (0) = s⃗0

)
(2.3)
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is then given by a set of first-order ODE:

dP (t; s⃗, s⃗0)

d t
=

M∑
m=1

(
am (s⃗− ν⃗m)P (t; s⃗− ν⃗m, s⃗0)− am (s⃗)P (t; s⃗, s⃗0)

)
,

(2.4)

one for each reachable state s⃗. Because the propensity functions am are
time-independent, the CME represents a continuous-time Markov process
(CTMC). More precisely, a CME solution gives the transient probabilities
for all states of CTMC.

Analogously to the mass action kinetics, propensity am is practically al-
ways expressed as a combinatorial number of possible collisions of molecules,
according to Rm consumption stoichiometry (Gillespie, 1977), i.e., assum-
ing that

(
n
k

)
= 0 for n < k,

am (s⃗) = κm

N∏
n=1

(
sn
νnm

)
, (2.5)

where, κm denotes the m-th reaction propensity constant.

2.1.3 Link between well-stirred models

Conceptually, deterministic concentrations represent the mean number
of molecules of the stochastic process (cf. Eq. (1.1)), i.e.

[Sn] (t) =
E (#Sn (t))

NA · |V |
M (2.6)

where M denotes a molar concentration unit.
Moreover, under a simplifying assumptions of no observable fluctua-

tions of numbers of molecules of species and of no correlations between
them, there is a direct correspondence between reaction rate and propen-
sity constants of the mass action kinetics (Eq. (2.2)) and the collision
kinetics (Eq. (2.5)), respectively. Namely, we can transform Eq. (2.4)
by multiplication and sum over all possible states s⃗ and compare it to
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Eq. (2.1) to obtain the following equality

km

(NA · |V |)rank(Rm)−1

N∏
n=1

([Sn] (t))
νnm = κm E

(
N∏

n=1

(
#Sn (t)

νnm

))

For a sake of simplicity, from now on we consider biochemical reactions
network of only elementary reactions. Assuming that at any time point
variances and covariances of number of molecules of all species are equal
to zero, i.e.

E
(
(#Sn (t))

2
)
= (E (#Sn (t)))

2 and
E (#Sm (t) ·#Sn (t)) = E (#Sm (t)) · E (#Sn (t)) ,

and approximating
(
n
k

)
≈ nk

/
k! , which is valid for n≫ 0, we get:

κm ≈
km

(NA · |V |)rank(Rm)−1

N∏
n=1

νnm! (2.7)

For details of the thermodynamical limit and its assumptions, which
underlie the link between CME and RRE see works of Gillespie (1977,
2009).

2.2 Numerical methods

In principle, one’s knowledge of a dynamical system becomes more com-
plete with a possibility of being able to represent it and simulate on a com-
puter. To that end, because both RRE and, especially CME are analyt-
ically intractable in almost every but the simplest cases (cf. Laurenzi,
2000; Jahnke and Huisinga, 2007), it is a necessity to employ numerical
methods.

2.2.1 Simulations

Many numerical simulation methods of both high and low precision
are available for both the deterministic and the stochastic mathematical
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framework for biochemical reactions networks. These methods allow to
obtain sample trajectories of reacting species, thus, constituting a numer-
ical basis for further analysis of a model.

Numerical integration of differential equations

As a basis for analysis of biochemical reactions networks expressed in the
form of ODE we use numerical integration. Among many well-established
methods for this task, the most popular are families of the predictor-
corrector methods (e.g. Runge-Kutta) or the linear multistep methods
(e.g. Adams-Moulton for non-stiff or backward differentiation formula for
stiff systems; Butcher, 2008).

Stochastic simulations

Because of the analytical intractability of the CME, analysis of the un-
derlying CTMC is usually based on randomly generated trajectories. The
most basic method is an direct stochastic simulation algorithm (SSA;
Gillespie, 1977), which generates each step of CTMC. More precisely, if
#⃗S (t) = s⃗, then next step is randomly generated based on a M -point
distribution of choice of the next step, with P (Rk will occur next) =

ak (s⃗)
/∑M

m=1 am (s⃗) , and an exponential distribution of a time of a single

step Exp
(∑M

m=1 am (s⃗)
)

. The most noticeable improvements of SSA are:
the exact, faster, heap-based next reaction algorithm (Gibson and Bruck,
2000) and the recently developed partial-propensity direct methods (Ra-
maswamy et al., 2009; Ramaswamy and Sbalzarini, 2010), as well as the
approximate τ -leaping methods (Gillespie, 2001), based on an assumption
that all am (s⃗) · τ are approximately constant for some τ ;

For a record, a different approach, based on a stronger version of the
τ -leaping method assumption, is an approximation of CME, known as the
chemical Langevin equations (Gillespie, 2000). These equations, in prin-
ciple, is RRE with addition of an temporally uncorrelated Gaussian white
noise process (Brownian motion increments; for methods of numerical so-
lutions of stochastic differential equations see, e.g., Kloeden and Platen,
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1992). Finally, the Langevin equation can be transformed to a single par-
tial differential equation (for which a separate, rapidly developing branch
of numerical analysis applies), known as the Fokker-Planck equation (cf.
Sjöberg et al., 2009). It describes the temporal evolution of the probability
distribution P (s⃗, t) (cf. Eq. (2.3)). For a review of stochastic simulation
methods for biochemical reactions networks see, e.g., Gillespie (2007) and
Pahle (2009).

2.2.2 Optimisation

Optimisation methods in mathematical modelling of biological systems
is used to find values of model parameters so that the modelled observable
variables Yi fit to data D. Values of observable variables are usually ob-
tained by numerical simulations of the model M, for a given parameters
vector p⃗ = (p1 . . . pI). We will denote observable variables by YM

i (p⃗)

and corresponding data samples by Y D
i , where i = 1, . . . , N represents

different observable combinations of species amounts as well as different
time points at which these amounts are observed. The most popular error
function F for this task is the sum of squared errors (SSE):

F (p⃗) : =
N∑
i=1

(fi (p⃗))
2 , (2.8)

where the residue is:

fi (p⃗) : =
YM
i (p⃗)− Y D

i

σi
. (2.9)

The optimisation (minimisation) task boils down to finding a set of pa-
rameters p⃗∗, such that

p⃗∗ = argminp⃗∈P {F (p⃗)} .

In case of SSE fit error function (Equation (2.8)) minimisation task is
known as the non-linear least squares problem (NLS). There are many
deterministic, numerical algorithms to solve this problem at the basis of
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which are the gradient descent and the Newton’s methods. The most
common algorithm are the Levenberg-Marquardt algorithm, combining
both earlier-mentioned methods, and, for an even more improved rate of
convergence, the family of trust region algorithms. For a comprehensive
description of these methods see, e.g., Nocedal and Wright (1999).

Main pitfall of the deterministic methods of solving NLS is finding a lo-
cal minima of error function. In case of moderate-sized and larger models
of signalling pathways the error surface has usually a very complicated
structure with multiple minima (Moles et al., 2003; Rodriguez-Fernandez
et al., 2006). To address the issue of local minima it is recommended to use
Monte Carlo global optimisation methods such as the simulated anneal-
ing (SA; Kirkpatrick et al., 1983; Černý, 1985). SA is a Markov chain
Monte Carlo (MCMC) optimisation method, based on the Metropolis
et al. (1953) algorithm which samples from the Boltzmann/Gibbs dis-
tribution with a density function:

g (p⃗) =
e−βF (p⃗)

Zβ

,

where β > 0 is a temperature inverse parameter, Zβ is a normalising
constant, i.e.:

Zβ =

∫
RI

e−βF (p⃗) d p⃗ <∞,

and the energy function F (p⃗) must be such that Zβ is well-defined. The SA
algorithm is globally correct — it converges to the global minimum Fmin

when the temperature decreases, i.e. in the β → ∞ limit (if minimum
exists, Markov chain distribution converges to a distribution centred on
the ϵ neighbourhood of that minimum). However, number of iterations
required for the convergence is in practice very high meaning that, in
principle, the SA is computationally expensive (the rate of convergence
depends on the energy function, but also on the choice of the cooling
schedule, i.e. β →∞ convergence).
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2.3 Analysis methods

Here we overview model selection (Section 2.3.1) and sensitivity anal-
ysis (Section 2.3.2) methods, both of which are extensively used in the
JAK-STAT model selection case study (Section 3.1). Also both of these
methods are selectively used in, respectively, efficacy of the hyperther-
mia treatment (Section 3.3) and property-specific sensitivity analysis (Sec-
tion 3.2) case studies. We also give a brief overview of profile likelihood-
based identifiability analysis (Section 2.3.3), used for the analysis of the
JAK-STAT pathway model, and probabilistic model checking techniques
(Section 2.3.4), used in property-specific sensitivity analysis and in in-
vestigation of the hyperthermia treatment efficacy. Finally, we present
the original Tav4SB project (Section 2.4.2), which constitutes a software
base for our property-specific sensitivity analysis case study.

Model selection methods find how well a model describes the data
by scanning the space of the model parameters values. For instance,
in Bayesian model selection the fit is calculated on average according
to given prior distributions of parameters values. Sensitivity analysis is
a different approach to assessing the influence of parameters. It investi-
gates, and assign values to the relations between uncertain parameters of
a model, and a property of the observable output (Saltelli et al., 2008).
In particular, this output property may simply be the fit error function.
Low sensitivities of model parameters may indicate robust design, but
also a non-identifiable parameters if the model is too complex. To that
end, we complement our approach with identifiability analysis, specifi-
cally, with the semi-automated SSE profile likelihood-based identifiability
analysis (Raue et al., 2009).

Sensitivity analysis methods such as the multi-parameter sensitivity
analysis leave room for specification of the property of an observable out-
put of the model, and are independent of assumptions about the model
character (e.g. linear or deterministic). These methodological features al-
low to explore models by means such as temporal logics and model check-
ing. The former allows to formally express time-based properties and the
latter allows to verify such properties automatically. We are particularly
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interested in PMC techniques as a rigorous means of analysis of systems
that exhibit a stochastic behaviour.

2.3.1 Model selection

The common, straightforward technique of model comparison is a good-
ness of fit (GOF) criterion measure such as χ2 — the maximum likeli-
hood interpretation of SSE (Eq. (2.8)). Namely, if SSE residues for N
data samples Y D

i (see Eq. (2.9)) are assumed to be independent, standard
normal variables, or, in other words, YM

i ∼ N
(
Y D
i , σ

2
i

)
independently to

each other, then, up to a linear scaling, SSE is a maximum log-likelihood
estimator of model M parameters p⃗, given data D, i.e.

χ2 (M, p⃗) ∝ ln (P (D|M, p⃗)) . (2.10)

Arguably, GOF criterion is not good for assessing biological models due
to theirs inherent uncertainty and, more importantly, due to the noisy
data (Myung and Pitt, 2004). A good fit can be achieved by fitting to
the noise instead of the regularity of the underlying phenomenon (the
problem of overfitting). For that reason, model selection methods imple-
ment the Occam’s Razor principle by including terms that penalise model
complexity, thus, favouring the generalizability.

The most common measures of generalizability of a model M which
explicitly penalise for the number of model parameters p⃗ = (p1 . . . pI) are
the Bayesian information criterion (BIC; Schwarz, 1978):

BIC (M, p⃗) = −2 ln (P (D|M, p⃗)) + I ln (N) , (2.11)

where N is a number of data points, and the Akaike information criterion
(AIC; Akaike, 1974):

AIC (M, p⃗) = −2 ln (P (D|M, p⃗)) + 2I. (2.12)

Note, that if data points fit errors (residues) are normally distributed then
both BIC and AIC are proportional to χ2 with additional, explicit penalty
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for a number of parameters (and considered data points in case of BIC).
However, more general, state of the art method implementing the gen-

eralizability principle is the Bayesian model selection (BMS) method. In
fact, under assumptions that for a large data sample size N a determi-
nant of the Fisher information matrix of the parameters distribution is
negligible with respect to the I ln (N) term in Eq. (2.11), BMS becomes
approximation of a half of the BIC index value (cf. Kass and Raftery,
1995; Myung et al., 2009, see also the following Section 2.3.1 for formal
description of BMS). Directly, BMS gives the Bayes factor (BF) — a gen-
eral gold standard of model comparison in Bayesian statistics (Kass and
Raftery, 1995; Myung et al., 2009). BMS can be used for data of all sizes
and is sensitive not only to the size complexity but also to the functional
complexity, i.e. it is sensitive to how complicated is the model output
expression when related to model parameters (for biological case-studies
see, e.g., Vyshemirsky and Girolami, 2008b; Toni and Stumpf, 2010). In
contrast to the BIC and AIC indices, which are very easy to compute,
BMS/BF approach is computationally expensive.

A worth noticing general limitation of the model selection measures of
generalizability, is that they summarise relationship between model and
data into a single number (Myung et al., 2009). This makes a nonsub-
stantial result of the models comparison practically useless. We face this
issue in the JAK-STAT model selection case study (Section 3.1).

Bayesian model selection (BMS)

The goal in BMS is to compare the likelihood (posterior probability)
P (M|D) of one model M, given data D, to the likelihood of competing
model, given the same data set. In other words, in a fully probabilistic
Bayesian approach, one compares competing hypotheses H1 and H2 rep-
resenting models M1 and M2 by calculating the ratio of their posterior
probabilities, i.e.

P (M1|D)
P (M2|D)

=
P (M1)

P (M2)
× B12,
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where

B12 =
P (D|M1)

P (D|M2)
(2.13)

is called the Bayes factor for modelsM1 andM2. The models are assumed
to be equally probable which means that the prior probabilities P (Mi)

are equal (i = 1, 2). Thus, to compare models we have to calculate only
B12 ratio (Eq. (2.13)), where

P (D|Mi) =

∫
P (D|Mi, p⃗) · P (p⃗|Mi) d p⃗. (2.14)

is the marginal likelihood of data D coming from a model Mi, and
P (p⃗|Mi) is probability density function (PDF) of a prior distribution over
the real-valued space of model parameters P .

To evaluate P (D|Mi, p⃗) PDF (Eq. (2.14)), i.e. the likelihood of re-
producing data given the particular parameters set, it is further assumed
that data D consists of independent identically distributed samples of ob-
servable variables Y D

i and that the uncertainty inherent in the observable
data is normally distributed with the standard deviation σ. In such case,
given the set of parameters p⃗, we have

P (D|M, p⃗) =
N∏
i=1

PM,p⃗
i

(
Y D
i

)
where PM,p⃗

i is PDF of a normal distribution N
(
YM
i (p⃗) , σ2

i

)
. Please note

here the Bayesian approach, in contrast to a descriptive χ2 GOF crite-
rion. Namely, mean of the assessed marginal distributions is a simulated
value, not the data sample value. Dominating cost of BF computation
is estimation of the marginal likelihood (Eq. (2.14)). There are several
approaches to obtain unbiased estimates, for instance, the importance
sampling estimators (Newton and Raftery, 1994).
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2.3.2 Sensitivity analysis

Sensitivity analysis has been used for various parametrization tasks of
models of biological systems. This includes finding essential parameters
for research prioritisation (e.g., Yue et al., 2008), identifying insignificant
parameters for model reduction (e.g., Shankaran et al., 2006) or parame-
ters clustering (e.g., Mahdavi et al., 2007).

In principle, sensitivity analysis quantifies the relation between uncer-
tain parameters p⃗ of a model, and a property of the observable out-
come ϕ (p⃗) (Saltelli et al., 2008), which represents some phenotypical fea-
tures of the modelled system. The uncertainty in parameters values is
defined by assuming their prior distribution.

Classically, sensitivity of the model is determined by the partial deriva-
tives of the outcome with respect to its parameters. Sensitivity analysis
methods based on such quantities are called local and belong to the class
of one-factor-at-a-time (OAT) methods. However, because most of the
kinetic models of biological systems are highly non-linear, the OAT meth-
ods may be misleading (Saltelli et al., 2005). One solution is to investigate
the influence of simultaneous changes in parameters values by assessing
higher order partial derivatives (see, e.g., Mahdavi et al., 2007), where
the order depends on the nonlinearity level of the model. Nevertheless,
this is still a local method, highly dependent on the nominal values of
parameters. To that end, the global sensitivity analysis (GSA) examines
a range of input parameters values, which are also varied simultaneously.
Exemplary implementations of the GSA indices are the model-free, global
sensitivity measures such as the variance decomposition (Saltelli et al.,
2008), or the parameters space mapping method of Monte Carlo filter-
ing (MCF) such as the multi-parameter sensitivity analysis (MPSA Horn-
berger and Spear, 1981). In between, there are screening techniques which
approximate the GSA indices by calculating local indices for a multiple
parameters values. These are global but OAT-type of methods.

For the record, there are sensitivity analysis methods tailored specifi-
cally to the stochastic models based on CME (see, e.g., Gunawan et al.,
2005). These methods recognise that the response is in form of the distri-
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bution rather than a single value corresponding, for instance, to the mean
value. Consequently for systems where a parameter disruption does not
significantly influence the mean but it significantly influences the distribu-
tion itself, the generic sensitivity analysis indices can incorrectly indicate
the lack of sensitivity of the model (cf. Degasperi and Gilmore, 2008).
In this work, stochastic sensitivity analysis is represented by the original
approach combining MPSA with PMC (presented in Section 3.2).

Local sensitivity indices

For a parametric model such as RRE, the most straightforward, stan-
dard implementation of the sensitivity concept are local sensitivity coef-
ficients Sϕ

i (LSC), i.e. the partial derivatives of the observable output
property of an model ϕ with respect to a single parameter pi, i.e.

Sϕ
i : =

∂ϕ(p⃗)

∂pi
, (2.15)

where pi ∈ p⃗. LSC can be log-normalised (nLSC), giving

log Sϕ
i : =

∂ log(ϕ (p⃗))

∂pi

/
∂ log(pi)

∂pi
=

pi
ϕ (p⃗)

· Sϕ
i . (2.16)

Parameters sensitivities quantified with indices based on LSC are called
local as the derivative is taken at a fixed p⃗ value in the whole space of
model parameters values P . Moreover, these methods belong to the class
of OAT methods, because the net effect of parameter pi on the output
property ϕ is calculated for fixed values of remaining parameters.

Screening methods

Screening methods of sensitivity analysis approximate the GSA indices.
Parameters values are scanned globally, but in OAT manner. The most
popular methods are the weighted average of local sensitivities (WALS;
Bentele et al., 2004) and, just to mention, the elementary effects of Mor-
ris (1991). In WALS method, the nLSC index is calculated at multiple
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random points and weighted by a probabilistic distribution function to
approximate the global sensitivity.

Variance-based global sensitivity analysis (GSA)

The first order sensitivity (FOS) index of a variance decomposition is
the normalised variance of a model output ϕ that can be attributed to
a parameter pi, i.e.

V ϕ
i =

Varpi
(
Ep⃗−i

(ϕ|pi)
)

Var (E (ϕ))
(2.17)

is the variance of the conditional expected value of ϕ, for a distribution
of p⃗ with a fixed values of the pi (denoted as p⃗−i). The total effects (TE)
index of variance decomposition, is the variance of a model output ϕ that
can be attributed to a parameter pi in all combinations of relations with
other parameters, i.e.

TEϕ
i := V ϕ

i +
∑
j

V ϕ
i,j +

∑
j,k

V ϕ
i,j,k + . . . , (2.18)

where higher order variance decomposition indices V ϕ
i,j,... are, analogously,

the normalised variances of the conditional expected value of ϕ, for a dis-
tribution of values of parameters pi, pj, ….

The V ϕ
i and TEϕ

i indices can be effectively estimated, for instance, with
the Fourier amplitude sensitivity test (FAST; see, e.g., Cukier et al., 1978;
Saltelli et al., 1999), or with the Sobol (1993, 2001) method, based on
a Monte Carlo sampling.

The total TE (TTE) index is given by

TTEϕ :=
M∑
i=1

TEϕ
i =

M∑
m=1

m ·
∑

1≤i1<...<im≤M

V ϕ
i1,...,im

, (2.19)

where the right-hand side follows from Eq. (2.18). Moreover, for indepen-
dent factors pi, from HDMR-ANOVA decomposition (Rabitz et al., 1999):
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Var (E (ϕ)) =
M∑

m=1

∑
1≤i1<...<im≤M

V ϕ
i1,...,im

,

we have the following relations between the total indices:

0 ≤ TFOSϕ ≤ 1 ≤ TTEϕ,

where total FOS is simply TFOSϕ =
∑M

m=1 V
ϕ
m.

Multi-parameter sensitivity analysis (MPSA)

Monte Carlo filtering is a GSA method, which by Monte Carlo sampling
the space of parameters values p⃗ ∈ P measures what fraction of the model
outputs falls within established bounds or regions and maps those regions
into the parameters space (Saltelli et al., 2008). Then, based on if output
falls into behavioural or non-behavioural region, samples are classified as
acceptable or unacceptable to approximate two marginal distributions of
each parameter pi. When the distributions are significantly different for
a parameter pi projection, then pi is considered as an influential factor
with respect to the investigated behaviour of the system. A known imple-
mentation of the Monte Carlo filtering concept is the MPSA method (also
known as the regionalised sensitivity analysis; Young et al., 1978; Horn-
berger and Spear, 1981). MPSA outline is presented in the Algorithm 1
pseudocode listing.

Calculation of the model output is usually a step which determines the
MPSA procedure running time; a costly model simulation is required for
generated sample. Parameters are by default sampled from a uniform
distribution over a given range, i.e. p⃗ ∼ U

(
P̃
)

, using the Latin hyper-
cube sampling (LHS; McKay et al., 1979). LHS, independently of the
sampled space dimension, gives similar accuracy with less samples than
the straightforward Monte Carlo sampling, and it generates samples with
distinct values per each coordinate. An example of a generic model output
function is SSE with respect to the output value for the reference set of
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Algorithm 1: Multi-Parameter Sensitivity Analysis
Data: // model output function

ModelOutput : P → E
// range of parameters values
P̃ ⊆ P ∈ RI

// number of samples
n

Result: parameters sensitivities with respect to ModelOutput
begin1

Pn ← GenerateSamples
(
P̃ , n

)
2

for p⃗ ∈ Pn do3

op⃗ ← ModelOutput (p⃗)4

end5

{Pk,Pl} ← ClassifySamples
(
{(p⃗, op⃗)}p⃗∈Pn

)
6

// where k + l = n and Pk ∪ Pl = Pn

for i = 1, . . . , I do7

si ← Compare
(
ecdfPk

(i) , ecdfPl
(i)

)
8

// where ecdfX is an empirical cumulative distribution
function

// function of a set X
// and, assuming distinct values per coordinate,
// Pm

(i) = {pi | p⃗ = (p1, . . . , pi, . . . , pI) ∈ Pm}
end9

return {si}10

end11
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parameters. Then, by splitting samples by the mean or median of model
outputs we can get the acceptable and unacceptable samples sets. Finally,
a default method of comparison of the resulting marginal distributions is
the two-sample Kolmogorov-Smirnov test (K-S test); Cho et al. (2003)
used the Pearson product-moment correlation coefficient (PMCC).

Robustness

The MCF method is suited to model robustness – a concept closely
related to the sensitivity. Robustness is a property of a system to main-
tain one or more of its functions under the external and the internal
perturbations (Kitano, 2007). For example, one could be interested in
the robustness to the input noise, that could be a result of the intrinsic
stochasticity of the intercellular signalling which is out of the scope of the
model (see, e.g., Shudo et al., 2007). It is desired that in case of the low
input amount of a species, the system is capable of dampening the signal,
so that an unwanted response is not induced. On the other hand, investi-
gating, for instance, RRE simulations for the set of all perturbed reaction
rate constants corresponds to the robustness of the modelled biochemical
network to the varying environmental conditions such as the volume of
solution or its temperature. For an overview of the robustness concept in
the context of modelling biological systems (and the control theory) see,
e.g., a review of Stelling et al. (2004) or an editorial of Kitano (2007).
MPSA itself was already used for the purpose of analysing the robustness
of signalling pathways models (e.g., Cho et al., 2003; Zi et al., 2005).

2.3.3 Identifiability analysis (IA)

Conceptually, identifiability analysis (IA) verifies if it is possible to infer
the true values a model parameters, given the data. In principle, like the
notions of sensitivity analysis and robustness, IA doesn’t have a unique
problem statement, thus many approaches to this concept are taken. In
context of biochemical reactions networks models these include analyti-
cal analysis of ODE for a specific model, or recently developed, general
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methods, for instance, IA based on the Fisher information matrix for
stochastic models (Komorowski et al., 2011), or many methods for de-
terministic models, in particular RRE (see, e.g., Srinath and Gunawan,
2010), or more general mathematical frameworks like ODE (see, e.g., Miao
et al., 2011) and differential algebraic equations (see, e.g., Roper et al.,
2010).

In this dissertation we only use the profile likelihood-based (PL) IA
(Raue et al., 2009) as a complementary method in the JAK-STAT model
selection case study (Section 3.1), therefore we will only give a brief
overview of PL-based IA.

Profile likelihood-based IA

IA presented by Raue et al. (2009) is based on the maximum likeli-
hood interpretation of the SSE measure of parameters L(p⃗). Recall, from
Eq. (2.10), that when data fit errors are assumed to be normally dis-
tributed, then χ2(p⃗) ∝ − log(L(p⃗)).

The PL function (see, e.g., Murphy and Vaart, 2000) of a parameter pi
is then defined as

χ2
PL(pi) = min

p⃗−i

χ2(p⃗), (2.20)

i.e. the maximum likelihood with respect to all parameters except pi.
Hence, the PL keeps the log-likelihood as small as possible alongside values
of a single parameter.

The PL-based identifiability of pi boils down to re-optimising the χ2

function for a set of pi values. This is done within a given range of param-
eter pi values and within its pointwise or simultaneous, likelihood-based
confidence interval:

{
p⃗ | χ2 (p⃗)− χ2 (p⃗min) < ∆α

}
, where p⃗min = argminp⃗

{
χ2(p⃗)

}
,

and the threshold ∆α is a α quantile of a chi-squared distribution
with 1 (pointwise) or number of parameters (simultaneous) degrees of
freedom, giving a confidence level α.
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Parameter pi is said to be: structural identifiable if a unique minimum
of likelihood χ2 (p⃗) with respect to pi exists; practically non-identifiable, if
the likelihood-based confidence interval is infinitely extended in increasing
or decreasing direction of pi values, although the likelihood has a unique
minimum (Raue et al., 2009).

2.3.4 Model checking

Model checking is a method of formal, automatic verification of a given
model property. Typically, the property contains safety requirements for
critical states of the finite-state transition system. In order to solve the
problem automatically, system properties are expressed as formulas of
some propositional logic. For the dynamic systems this is logic from a class
of temporal logics, as properties of interest are usually qualified in terms of
time. Among temporal logics, the most established are computation tree
logic (CTL), which, intuitively, quantifies over possible system paths, and
linear temporal logic (LTL), which, intuitively, quantifies over time (these
are not equivalent however both are fragments of CTL∗ logic). Both CTL
and LTL model checking has been proposed as methodologies of analy-
sis of deterministic models of biological systems (see, e.g., respectively,
Monteiro et al., 2008; Rizk et al., 2009).

In two of our case studies (Sections 3.2 and 3.3) we employ a for-
mal model checking technique called probabilistic model checking (PMC),
which is suitable for systems exhibiting stochastic behaviour, in particular
CTMC. Recent research demonstrated a considerable success in adapting
PMC to analysis of biological systems, including biochemical pathways.
Among systems analysed recently with the use of the probabilistic model
checker PRISM are: the MAPK cascade (Kwiatkowska et al., 2008), the
RKIP inhibited ERK pathway (Calder et al., 2006), the FGF pathway
(Heath et al., 2008) or the T cell signalling pathway (Owens et al., 2008);
see Calder et al. (2010) article for an overview.
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Probabilistic model checking (PMC)

PMC is an extension of model checking, a well-established formal method
successfully applied in a range of analyses of computer systems. PMC
requires two inputs: a description of the probabilistic system, usually
given in some high-level modelling language; and a specification of de-
sired properties of the system, typically in probabilistic temporal logics
such as: probabilistic computation tree logic (PCTL Hansson and Jons-
son, 1994) for probabilistic timed automata or PCTL∗ for discrete time
Markov chain and Markov decision process, both extensions of CTL∗; or
continuous stochastic logic (CSL Aziz et al., 1996), an extension of PCTL
for CTMC. Adopting a stochastic modelling paradigm allows us to take
advantage of efficient probabilistic model checker PRISM, that imple-
ments all mentioned variants of PMC. The motivation for using PMC is
the belief that when used in conjunction with other, well-established ap-
proaches, such as ODE simulations, may offer a greater insight into the
complex interactions present in biological pathways.

Models are described using the compositional PRISM language. It is
a simple, state-based language, supporting a wide range of probabilistic
models and their extensions with costs and rewards. In our experiments
we have used CTMC as our principal model. In short, to define CTMC
one defines modules with state variables and commands as follows:

ctmc

module module 1
variable 1 : [min..max] init init;
…
variable n : …

[command 1] activation guard -> rate: variables updates;
…
[command m] …

endmodule
…
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By default, same commands are synchronised among modules with a CTMC
transition rate equal to a product of rates assigned to updates. Total
rates for all commands which satisfy all activation guard conditions de-
termine exponentially distributed CTMC transition rate and are selected
randomly, proportional to the rates.

In PRISM, properties are expressed in temporal logic suitable for cho-
sen type of the probabilistic model. PRISM incorporates extensions to
these logics for quantitative specifications and rewards (see, e.g.,
Kwiatkowska et al., 2006). In our experiments we have used CSL for
CTMC model checking, which has the following grammar:

ψ : : = true | a | ψ ∧ ψ | ¬ψ | S∼p (ψ) | P∼p (ϕ)

ϕ : : = Xψ | ψUψ | ψUI ψ,

where a is an atomic proposition, ∼∈ {≤,≥} and I ⊂ R≥0 is an interval.
Interpretation of the non self explanatory operators is as follows: true
denotes truth in all states; a is a expression on state variables, which is
true in all states that satisfy this expression; S∼p (ψ) means that proba-
bility of satisfying formula ψ in steady state is ∼ p; P∼p (ϕ) means that
probability of satisfying path (temporal state) formula ϕ is ∼ p; Xψ says
that formula ψ is satisfied in the next state on the path; ψUψ says that
from some moment right hand side formula is satisfied and until then left
hand side formula is satisfied; and ψUI ψ (bounded until) is analogous,
with a constraint that moment at which right hand side formula becomes
satisfied is in I interval. Formal semantics of CSL is defined on a proba-
bility distribution over paths of CTMC, that is obtained by a construction
of the smallest σ-algebra over cylinders (sets of paths with limited times
of transitions; see, e.g., Baier et al., 2000).

In fact, in PRISM you can directly ask for probability which is esti-
mated anyway by putting =? instead of ∼ p in S and P operators. Typical
property:

P=? (ϕ) , (2.21)

asks about the probability that a path in the model state space satisfies ϕ.

39



In other words, PRISM computes the fraction of all paths over model
states that satisfy ϕ.

The PRISM rewards extension for CSL introduces reward operator
RX∼k (φ), where k expresses boundary value of rewardX (random variable
defined over model variables), and φ is a reward formula with grammar:

ψ : : = ♢ψ | C ≤ t | I = t | S .

Interpretation of these operators is: ♢ψ (finally) is an accumulated reward
until state satisfying ψ is reached or is equal to ∞ if such state is never
reached; C ≤ t (cumulatively) is an accumulated reward until time t; I = t

(instantaneously) is a reward value at a time point t; S is a steady sate
value of the reward. Analogously one can put =? instead of ∼ k to ask
for the reward value. Note that probabilistic ♢ operator can be defined
as:

P∼p (♢ϕ) : =P∼p (trueUϕ) . (2.22)

Rewards are defined in the model as:

rewards
"reward 1" counting guard: reward expression;
…

endrewards

counting guards are boolean expressions on a model variables which deter-
mine when the reward is counted (e.g. true if all the time) and reward ex-
pression is an actual definition of the random variable over CTMC states.

Approximate PMC (APMC)
The model analysed in our experiments is so large that standard model

checking becomes unfeasible. We have thus decided to use more efficient
techniques that trade accuracy for efficiency. PRISM includes a range of
approximate analysis techniques, based on sampling: generating a num-
ber of random paths through the model state space (model trajectories)
by stochastic simulation, and evaluating the property on each run (for
an overview see Nimal, 2010). This information is used to compute an
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approximate result. In our experiments we have used the simplest and
the most flexible CI implementation of APMC (cf. Grosu and Smolka,
2005). CI computes a confidence interval for the value of a given prop-
erty, such as the one in Eq. (2.21). CI method takes three parameters:
interval half-width w, confidence level α and the number of sampled paths
N . On the basis of evaluation of sampled paths, the method computes
an approximate value y of a formula (2.21), determining the confidence
interval (y − w, y + w). The exact (unknown) value x of formula (2.21)
falls into the confidence interval with probability 1− α.

2.4 Science as a Service

“Science as a Service” (SaaS; Foster, 2005, 2011) is an idea where any re-
searcher can comfortably carry out complex analysis which may rely on
large data sets or heavy computations. Comfortably meaning that the
analysis can be done using a moderate personal computer, at a preferred
location, without putting a significant of technical effort in it.

Such problem formulation pose an requirement of a remote, public avail-
ability of data retrieval and analysis functions, for which a single standard
are Web services (WS; The World Wide Web Consortium, 2002). The
additional building brick imposing itself are computational grid environ-
ments, which enable a usage of a specialised, physically scattered hard-
ware. The only non-standard requirement which is not compliant with
most of currently deployed scientific grids (e.g., Kitowski and Dutka, 2010;
Kitowski et al., 2011) is that they need to expose their functionality in
a public domain in a standardised manner, such as WS.

Finally, there should be some standard way of putting together the
analysis pipelines, such that they are interoperable across different client
machines. There is no distinctive way to achieve that but an idea worth
noticing, besides direct scripting in the modern WS-compliant program-
ming languages, are the workflow management systems, such as the Tav-
erna Workbench (Hull et al., 2006).

Of course, there is much more to SaaS concept. The least to mention
the support for Semantic Web services and ontologies, which facilitate
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the discovery and interoperatibility of scientific WS (Bhagat et al., 2010;
Wilkinson et al., 2008; Courtot et al., 2011, see, e.g.,). These subjects
however are essentially out of the scope of our work.

2.4.1 Workflows and the Taverna Workbench

The Taverna Workbench facilitates the design and execution of
in silico experiments. The experiments, constructed as workflows, can be
stored and executed when needed. The building blocks of a workflow are
services, also known as processors. Technically, workflow is a set of pro-
cessors, together with connections between their inputs and outputs. The
remote processors are implemented as WS operations. Scattered physi-
cally throughout computational resources of numerous scientific facilities
and combined together, the WSs operations and local, intermediate pro-
cessors enable a highly complex analysis, surpassing limits of a common
workstation.

Taverna services come from a diverse set of life science domains. In
the field of computational biology, the Taverna Workbench provides
an access to services which are mainly related to the sequence annota-
tion and analysis. Here, we present the Tav4SB project, which contains
remote processors that extend Taverna’s functionality in the domain of
systems biology, specifically, in the analysis of kinetic models of biological
systems. Our hardware base offers computational resources sufficient for
computationally demanding experiments, such as multiple invocations of
the model-checking procedure. Essentially, the Taverna Workbench
provides a convenient user interface for our WS operations. Without pro-
gramming their own WS client, users can analyse the behaviour of cellular
systems under various conditions.

2.4.2 Tav4SB project

The aim of the Tav4SB project is to support the orchestration of physi-
cally scattered tools for execution of repeatable scientific experiments. To
understand a place of Tav4SB in a plethora of similar software, con-
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sider the following, mundane technical problem. You have a set of scripts,
command line tools or any other form of legacy code, installed on one
or more computational servers, not necessarily in the same local area
network. For instance, you might have a Mathematica (Wolfram Re-
search, Inc., 2008) script which can be only executed on a server which has
Mathematica installed on it; and simultaneously you might need to use
PRISM (Kwiatkowska et al., 2011), installed on a remote server with a
large amount of required memory. You want to connect these tools in an
in silico experiment, say described by a workflow. Moreover, in case the
experiment doesn’t go as planned, you want to be able to easily modify
and re-run your workflow.

Tav4SB project is a realisation of a minimalist approach to a platform-
independent solution, based on the workflow management system and
a service-oriented architecture built around the Web service standard and
a straightforward queue of computational tasks.

Tav4SB project consists of two parts. The client part of the project
(Tav4SB client) is a library of sample workflows and helper scripts for
analysis of kinetic models of biological systems, using earlier described
features. The server part of the project (Tav4SB server) is a simple
grid environment which wraps aforementioned computational tools. Those
tools are intended to be run in a multi-threaded manner, on one or more,
possibly remote, computational servers.

As an utility for wrapping scientific software in Web services, the
Tav4SB project enters premises of projects such as Soaplab2 (Senger
et al., 2008) and Opal2 (Krishnan et al., 2009; Ren et al., 2010). The
main difference is that the support for the physical scattering of com-
putational tools is an integral part of the Tav4SB server. Moreover,
Tav4SB server easily allows for a direct connection with legacy code. If
necessary, the Java Native Interface (JNI; Oracle Corporation) can be
used to connect with the platform-specific libraries written, for instance
in C, C++, or Fortran. However, in the current state of the project, all
that comes at a cost of moderate programming skills required from a user
of the Tav4SB server, when compared to Soaplab2 and Opal2 strategy
with the custom configuration file languages. Please note however that
these languages need to be learned and they pose an easier approach for
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the user only to a limited extend. Also note that, as a minimalist solution
with the stateless Web service interface, the Tav4SB server doesn’t com-
ply with the standards of an open, stateful grid services architecture (cf.
Web Services Resource Framework; OASIS WSRF Technical Committee,
2006), which the most prominent representative is Globus Toolkit (Foster,
2006, 2011), a full-fledged grid environment.

Features

Unlike the Tav4SB project, almost all of the Web-based applications
reviewed by Lee et al. (2009) allow for the analysis of only deterministic
representations of biological systems.

Operations provided by our Web server allow for:

1. numerical simulations for the deterministic formulation of a bio-
chemical network model, using the SBML ODE Solver library
(SOSlib; Machné et al., 2006),

2. probabilistic model checking of CSL formula over a CTMC, using
PRISM,

3. visualisation of data series, such as RRE trajectories or values of
parametric CSL properties, and probabilistic distribution sampling,
using Mathematica, and

4. high-level analysis, such as MPSA of biological models, with er-
ror calculation via either numerical simulations or the probabilistic
model checking technique.

SOSlib enables numerical analysis of models encoded in SBML. The
library employs libSBML (Bornstein et al., 2008) to automatically derive
RRE, plus their Jacobian and higher derivatives, as well as the CVODES
package — the state of the art numerical integration library from SUN-
DIALS (Hindmarsh et al., 2005).

PRISM is one of the leading tools implementing probabilistic model
checking. Some recent works, see, e.g., work of Heath et al. (2008) and
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Kwiatkowska et al. (2008), demonstrate applicability of PRISM to anal-
ysis of models of biological systems. Case studies include models of cell
cycle control, fibroblast growth factor signalling, and MAPK cascade
(PRISM Web page). PRISM handles models defined in the PRISM
input language. Currently, a prototype translator from SBML is not inte-
grated into the application itself. Therefore, we also provided a separate
operation to automatically translate from SBML to the PRISM language,
using the prototype translator.

Finally, Wolfram’s Mathematica is a tool with one of the most ad-
vanced graphics engines among plotting software. Tav4SB provides
Mathematica’s two- and three-dimensional list plots together with a ver-
satile set of options for customising their display. Additionally, Tav4SB
allows to sample from the extensive collection of parametric probability
distributions available in Mathematica.

Architecture

We have chosen the popular SBML data format, to represent kinetic
models of biological systems. Due to the wide range of dedicated software
and due to the support by models repositories like BioModels (Novère
et al., 2006), SBML can be used without a detailed knowledge of the
language specification.

Figure 2.4.1 depicts the architecture of our solution. The client side in-
cludes a workstation with the Taverna Workbench installed. Besides
remote processors, the Taverna Workbench provides access to local
processors. These might be locally-installed command-line programs, in-
cluding environments for running scripts, which enable data manipulation
on the client side. Moreover, scripts written in BeanShell — an interpreter
for a simplified version of Java language, are natively supported by the
Taverna Workbench, constituting a highly portable workflow design.
Thanks to local processors, lightweight computations can be executed on
a user’s machine. This makes workflows more effective by reducing net-
work load, response time and the burden on the server side. To that
end, we used a native Java SBML library (JSBML; Dräger et al., 2011).
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Figure 2.4.1: The implementation architecture. Names of a particular software,
technology or standard are written in blue. The communication type is specified
on edges which connect components of the system. See text for details.

JSBML enables client side manipulation of the SBML models, for instance
to extract parameter names from a model and to set their values.

Client communicates with the server side via WS operations, using
Simple Object Access Protocol (SOAP; The World Wide Web Consor-
tium, 2007). These operations represent the workflow’s remote proces-
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sors. Their signatures are defined in a Web Service Definition Language
(WSDL; Christensen et al., 2001) file. We employed a “WSDL first” ap-
proach: the WSDL file was manually written (in a document/literal
style). Java Web service classes were automatically generated from the
WSDL file.

The WSDL file is hosted by the Apache Tomcat servlet container.
It acts as a proxy between the client and the computational part of the
server. A Web service operation call is translated into a Java Message
Service (JMS; Hapner et al., 2002) messages. JMS Application Program-
ming Interface (API) allows Java applications to create, send, receive, and
read messages. It is a part of the Java Platform, Enterprise Edition (JEE)
standards. In our system, JMS messages represent computational tasks,
and their results. One operation call can be translated into multiple tasks,
enabling seamless, tool-specific parallelization of a submitted job.

Computational cluster management modules are written in Java using
the Apache ActiveMQ implementation of the JMS standard. These mod-
ules are deployed as the Java Archive (JAR) files. The JMS messages are
sent over TCP/IP, which basically makes modules independent of their
physical location.

New tasks, created by the Web server module, are added to the tasks
queue. At this point tasks are assigned to any available worker of a com-
patible type. Results are collected in a temporary queue, exclusive for
a single WS operation call. Long-running tasks use an asynchronous call
registry. In such case, direct (synchronous) response to the WS operation
call is merely a message reporting the start of computations. The com-
puted results are collected in a dedicated queue and, when completed,
sent to a caller by email (using the JavaMail package).

Worker translates both a JMS task message into running computational
processes and results of these processes back into a JMS result message.
Each worker supports a specific type of computation and can communi-
cate with an actual computational tool differently. Currently we imple-
mented three types of workers: Mathematica worker which communi-
cates with Mathematica via J/Link library, PRISM and odeSolver
workers which communicate with, respectively, PRISM and SOSlib via
a command-line interpreter (shell).
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Performance

To measure the network load and the overhead of the task management
in Tav4SB server we ran a performance test. The test was set up with
the MAPK cascade case study from the PRISM Web page (PRISM Web
page) and with the asynchronous version of the PRISM WS operation.
Recall, that this version of the PRISM operation sends computation time
statistics, together with results (by email). Details of the test can be found
in Lula (2009); Rybiński et al. (2012).

# of:
machines 1 2 4 8 14
threads

1 271,25 137,84 71,22 38,06 23,85
2 149,09 71,12 38,00 21,51 14,55
4 124,53 54,37 26,06 13,68 9,75
8 70,44 37,53 23,78 17,39 16,44

Table 2.4.1: Results of the performance test of the Tav4SB server. Table cells
contain the average longest computation time in minutes, in different configurations
of a number of machines and a number of worker threads. Product of these two
quantities determines the total number of worker threads. Highlighted are the best
performances for each number of quad-core machines (columns) with respect to
a number of worker threads.

Table 2.4.1 contains the average longest computation time with varying
numbers of machines and numbers of threads for each worker on each of
the quad-core machines. In short, with a separate core for each worker and
with enough workers to cover 50 long running computations (4 threads on
14 machines) one can observe an effect of running a single time point sim-
ulation. Tav4SB server scales well in a local, homogeneous environment.
There is only a small overhead which may be attributed to the worker ini-
tialisation, the task management and the network load. In a situation of
a sufficient or almost sufficient number of workers, running more threads
than the available number of cores (8 threads on 8 or 14 machines), the
environment significantly slows down. It happens because on some of the
machines workers compete for the processor time, causing the operating
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system to frequently switch context of a current processor task. On the
other hand, in a situation of high deficiency of workers (1 or 2 machines)
it is better to have more threads than cores on each machine. This results
mainly from an overhead of the tasks queuing, initialisation of workers
the communication between grid components. To sum up, for the optimal
production deployment, one must consider the amount and the time pro-
file of tasks which are being executed with respect to the thread per core
ratio which must be adjusted accordingly; basically, high ratio for many
short tasks and inversely for long running tasks.
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Some people see things that are and ask, Why?
Some people dream of things that never were and
ask, Why not? Some people have to go to work
and don’t have time for all that.

George Carlin

3
Case Studies

Whilst theoretical analysis is indispensable for scientific
breakthroughs, many of the practical problems in computa-
tional biology are specific to the data or the model under
consideration. These problems are usually complex, often NP-hard, as,
for instance, in the bioinformatics methods of sequence analysis. Still, it is
common for a computational biologist to tackle such hard problems. Es-
pecially in the modelling domain, not necessarily a heuristic or numerical
solution itself, but the process that leads to them, may provide invalu-
able insight into the analysed biological phenomenon, and thus modify
the problem statement, as well as give possible directions for establishing
future theoretical foundations. In this fashion, we set our focus on practi-
cal applications of diverse model analysis methods to models of peculiarly
interesting intracellular signalling.
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3.1 JAK-STAT pathway model selection

In this Section we are selecting the most plausible variant of a JAK-STAT
pathway activation mechanism; this an model selection analysis that is
based solely on ODE model representation. In this case study we exert
a concept of robustness based on sensitivity analysis.

3.1.1 Background

The Janus Kinase (JAK) and Signal Transducer and Activator of Tran-
scription (STAT) pathways are a family of highly conserved intracellular
signalling pathways of eukaryotic organisms (Kisseleva et al., 2002). These
pathways have co-evolved with fundamental cellular signalling events,
such as innate and adaptive immune responses (Aaronson and Horvath,
2002), cell growth and apoptosis processes regulation (Yu and Jove, 2004)
or embryonic stem cell self-renewal control (Raz et al., 1999).

JAK-STAT pathways are relatively small. They provide a direct route
from the membrane to the nucleus via STAT family members. When
translocated, STAT dimers act as transcription factors. STATs them-
selves can be activated by JAKs — members of a family of tyrosine kinases
which bind to the cytokine receptors. The latter are stimulated by nu-
merous ligands such as various kinds of Interferon (IFN), Interleukin (IL)
or Erythropoietin (Epo). In short, there are three main stages involved in
signalling through any JAK-STAT pathway: activating the receptor, di-
rectly translocating the signal to the nucleus and expressing target genes.
Each stage takes different time to execute — it ranges from seconds up
to hours, depending on an organism and a tissue. The transduced signal
is attenuated on all levels. The key players here are the Protein Tyro-
sine Phosphatases (PTP) which dephosphorylate receptors and activated
STATs, Protein Inhibitor of Activated STAT (PIAS) which blocks STAT
dimers in the nucleus and, expressed as a negative feedback, Supressor of
Cytokine Signalling (SOCS) proteins, which block STAT docking sites on
the receptor.
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Related research

Details of a structure of a biochemical reactions network which repre-
sents a signalling pathway are investigated to understand role of its de-
sign parts. Examples include comprehension of a function of cascade lay-
ers (Huang and Ferrell, 1996) and negative feedback (Kholodenko, 2000)
in the MAPK/ERK pathway or a role of negative regulators (Yamada
et al., 2003), nuclear export (Swameye et al., 2003) and dimerization steps
(Shudo et al., 2007) in the JAK-STAT pathway.

Our subject of interest is the model of the JAK1/2-STAT1 signalling
pathway introduced by Yamada et al. (2003). The model itself is rela-
tively complex. It captures all essential elements in the JAK1/2-STAT1
signalling, with exception of the PIAS inhibition, together with many
short-lived, intermediate species. An important, practical advantage of
the Yamada et al. (2003) model is that it is curated in DOQCS (Sivaku-
maran et al., 2003) and BioModels databases (Novère et al., 2006; Li
et al., 2010). The model consists of over 30 variables representing species
and of over 60 parameters of reaction rates. Originally, it was used to
confirm importance of the pathway negative regulators, i.e. importance
of phosphatases and negative feedback created by SOCS protein. The
same model was analysed in Zi et al. (2005) and in Shudo et al. (2007),
where it was subject to purely in silico experiments.

Motivation

The most valuable insight into mechanisms of signalling pathways can
be obtained through a combination of theoretical and experimental anal-
ysis. Our work regards the JAK1/2-STAT1 pathway, which is stimulated
by the Type II IFN-γ. We start with the model which is based on the
experimental data (Yamada et al., 2003). There are noticeable differences
against the data (cf. Brysha et al., 2001; Krause et al., 2002; Schuster
et al., 2003) but the overall, qualitative behaviour of the JAK1/2-STAT1
pathway was validated.

A significant amount of new, experimental data for the JAK-STAT
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pathways is available in the recent literature. However, vast majority of
this data concerns JAK-STAT pathways activated by Epo (Bachmann
et al., 2011), IL (Mahdavi et al., 2007) or Type I IFN (Smieja et al.,
2008; Maiwald et al., 2010). Moreover, these pathways involve STATs het-
erodimerization (A+B −→ . . .) which, from the point of view of the kinetic
modelling, differs substantially from the JAK1/2-STAT1 homodimeriza-
tion process (A + A −→ . . .). See Vera et al. (2011) paper for a compre-
hensive review of data-driven approaches to the modelling of JAK-STAT
pathways).

More importantly, it seems that the receptor activation mechanism, is
not easily accessible for experimental measurements. Even if the data
is relevant to the JAK1/2-STAT1 pathway, as in the work of Rateitschak
et al. (2010), the measurements are done for the pathway keys species, such
as already activated JAKs and receptors or the STAT proteins. Therefore,
most often the activation mechanism of the JAK-STAT pathway receptor
complex is greatly simplified (cf. Swameye et al., 2003; Vera et al., 2008;
Rateitschak et al., 2010; Bachmann et al., 2011). Small but noticeable
differences as these that can be observed between the model by Yamada
et al. (2003) and its subsequent version by Shudo et al. (2007) escape
the attention. The latter version lacks a reaction of dimerization of the
receptor. This reduction is based on the assumption that the receptors
are already assembled on the membrane. This difference is what we will
focus on.

From a mathematical point of view, dimerization (symmetric collision)
is the only elementary reaction that directly yields nonlinear (quadratic)
dependency of a product change rate on its substrate. The question
is if in a model of a considerable size, like the Yamada et al. (2003)
JAK1/2-STAT1 model, the structure of a fast reacting peripheries, such
as the receptor activation mechanism, is identifiable when related to the
slowly produced output of the whole signal transducing process?
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Receptor activation mechanism

Stimulation of signalling pathways via membrane receptors often in-
volves formation of receptor dimers. Early experimental methods used to
understand the process of activation of receptors, such as the immunopre-
cipitation, did not provide clear explanation of the underlying molecular
mechanism. It was so, because such experiments are invasive — cell mem-
brane has to be broken in order to conduct measurements (Krause et al.,
2002). Classic hypothesis states that under a stimulation by ligand, such
as cytokine, a reaction of almost simultaneous binding of three molecules
occurs (Berg et al., 2006). This reaction contains a step of binding of
the ligand to the extracellular domain of the receptor, which, in turn, in-
duces a very fast creation of the dimer. This would mean that reaction
L+ 2R −⇀↽− L(R)2 decomposes to two reversible reactions: L+R −⇀↽−− LR

and LR + R ↽−−−⇀ L(R)2, where L and R represent, respectively, ligand
and receptor species. Reactions denoted by longer arrows are relatively
fast (highly probable); the reaction of dissociation of the whole assemblage
is very slow (very unlikely to happen).

In the JAK1/2-STAT1 pathway, the active cytokine receptor consists
of a IFN-γ ligand bound to a dimer of cytokine receptors, which it-
self are complexes of JAK2 and two receptor chains, each bonded by
JAK1 (Krause et al., 2006). Taking into account molecular crowding
on the membrane, it is very unlikely that such a complex biomolecule is
created in a reaction that relies only on diffusional principles of a well ran-
domised environment. Indeed, it has been verified experimentally that the
cytokine receptors assemble on the membrane before the external stimuli
is present (Krause et al., 2002, 2006; Schuster et al., 2003). These experi-
mental results were used as an argument to remove the dimerization of a
receptor from the model presented by Shudo et al. (2007).

Our contribution

We compare four variants of the Yamada et al. (2003) model. These
variants correspond to the biochemical hypothesis, and to already studied
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computational models. Specificity of the differences between model vari-
ants is the main difficulty to overcome: we compare peripheral component,
which is relatively small and fast with respect to the whole network of bio-
chemical reactions, within which the component is contained. Although
the original model, in principle, is based on the experimental data (Ya-
mada et al., 2003; Brysha et al., 2001; Krause et al., 2002; Schuster et al.,
2003), our approach is purely theoretical.

The GOF criterion measure, such as the SSE, is not good for assessing
biological models due to theirs inherent uncertainty and noisy data, which
may cause overfitting (Myung and Pitt, 2004). On the other hand, gener-
alizability favouring methods which penalise for model complexity, such
as AIC, BIC or state of the art Bayesian model selection (BMS) and the
directly related Bayes factor (BF), summarise relationship between model
and data into a single number. Thus, if results of models comparison are
nonsubstantial, as happens to be in our case study, then these results are
of little use.

To address deficiencies of BMS, we use sensitivity analysis. It investi-
gates the relation between uncertain parameters of a model, and a prop-
erty of the observable output (Saltelli et al., 2008). More specificaly, based
on the global sensitivity analysis (GSA), we use the robustness concept
to tackle our model selection case study. Low sensitivities may indicate
robustness, but also non-identifiability of reactions parameters in too com-
plex models. To that end, we complement our analysis with the profile
likelihood-based identifiability analysis (Raue et al., 2009), to penalise for
the lack of generalizability.

Our main results are:

• proposing rigorous models for different variants of activation mech-
anism of the JAK1/2-STAT1 pathway,

• evaluating model selection methods in a case study of de novo anal-
ysis of a large-scale pathway model,

• identifying the most robust design of the JAK1/2-STAT1 pathway
receptor activation mechanism.
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3.1.2 Models

Following Yamada et al. (2003) and Shudo et al. (2007), all further
analysis is based on numerical simulations of RRE (Eq. (2.1)). Here, all
rates follow the mass action kinetics (Eq. (2.2)).

We distinguish three functional modules in the JAK1/2-STAT1 path-
way models (cf. Figure 3.1.1):

• Receptor module: ligand IFN is the input of this module, the output
corresponds to the active receptor complex (IFNRJ2)

∗.

• Transcription factor module (the STAT life-cycle): the active recep-
tor complex is the input, while an active transcription factor in the
nucleus (STAT1n∗)2 is the output of this module.

• Feedback (post-translation product) module: the active transcrip-
tion factor is the input; a receptor inhibitor SOCS1 is the output.

Dynamics of modules outputs for the of Yamada et al. (2003) model are
depicted in Figures 3.1.1(b–d). The respective modules emit output signal
for ca. 25 minutes, 50 minutes and 1.5 hours, with its peak activity in
ca. 25th minute, 55th minute and 2.5 hour. We are interested in differences
in the receptor module, which is the first and the fastest to react to the
external, input signal.

For our model selection problem, we have selected four variants of the
receptor activation mechanism, depicted schematically in Figure 3.1.2:

1. original — model proposed by Yamada et al. (2003), schematically
presented in Figure 3.1.1(a). The computational model was taken
from the BioModels database.

2. no JAK — version of the original model which represents the fact
that the JAK protein is constitutively bound to the receptor.

3. IFN to dimer — the version in which signalling ligand molecule binds
directly to the already dimerized receptor. It represents hypothesis
that IFN binds only to a pre-assembled receptor dimer (cf. Krause
et al., 2002, 2006)).
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(a) Scheme of the Yamada et al. (2003) model

IFNRJ2∗

(b) Receptor module output

STAT1n∗-STAT1n∗

(c) Transcription factor module output

SOCS1

(d) Feedback module output

1Figure 3.1.1: JAK1/2-STAT1 pathway modules denoted on the scheme from
the Yamada et al. (2003) work (a) and their output species numerical simula-
tions (b–d). Numerical simulations are decorated with the signalling properties
defined by Heinrich et al. (2002), taken at the basal level π = limt→∞ [S] (t).
These properties are: the n-th signal peak activity time τn = Ln/In, where
Ln =

∫ ∆tn
tn

t · ([S] (t)− π) d t and In =
∫ ∆tn
tn

([S] (t)− π) d t; the duration
ϑ = 2

√
(Qn/In)− τ2n, where Qn =

∫ ∆tn
tn

t2 · ([S] (t)− π) d t; and the ampli-
tude αn = In/ϑn. The time period of the n-th signal, i.e. [tn,∆tn), is de-
fined as ∆t0 = 0, and for n ≥ 1, tn = min {t > ∆tn−1 | [S] (t) > π} and
∆tn = min {t > tn | [S] (t) ≤ π}. The input species IFN is constantly active,
thus, the steady state values are relatively high. The signal shifts in time and
elongates as it is propagated down the pathway. The temporal signal is completely
attenuated after its second appearance.

4. no dimerization — model structure proposed by Shudo et al. (2007),
where dimerization of receptor is omitted. It is based on the hypoth-
esis that receptor dimer are pre-assembled on the cell membrane.
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(a) Group I models, with IFN binding to a receptor monomer: the original model and
the no JAK variant.

(b) Group II models, with IFN binding to a receptor dimer:
the IFN to dimer binding case and its variant without receptor
dimerization step (the no dimerization variant).

1
Figure 3.1.2: Schemes of the variants of receptor complex formation mechanism
in the JAK-STAT signalling pathway model. Each sub-figure represents two model
variants: with or without the first reaction (highlighted).

These variants capture main and subtle differences in the mechanism
of formation of the JAK-receptor complex in a context of the whole
JAK1/2-STAT1 pathway. The original and no JAK variants are the
group I models, and the IFN to dimer and no dimerization variants are
the group II models, with IFN binding to a receptor monomer and a dimer,
respectively.

For simplicity, there is a single variable R for both receptor chains as
well as single variable JAK for both JAK1 and JAK2. Thus, JAK bind-
ing to the receptor represents a JAK1-mediated binding between the two
chains of the receptor. On the other hand, receptor-bound JAK represents
JAK2, which is responsible for the activation of the receptor and STAT1
proteins. Detailed activation of the dimerized receptor (cross-phosphory-
lation by JAK2) and detailed activation of the docked STAT1 (phospho-
rylation by JAK2) are simplified to a single reversible steps, respectively,
IFNRJ2 −⇀↽− (IFNRJ2)

∗ and (IFNRJ2)
∗ -STAT1c −⇀↽− (IFNRJ2)

∗ -STAT1c∗.
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Steps of the activation of JAK1s and JAK2s (phosphorylation), which
happen after IFN binds to the receptor, are omitted. Finally, in each
model we assume that only after the IFN-bound receptor dimer is assem-
bled, JAKs are active, i.e. the inactive receptor complex IFNRJ2 is the
first molecule on the signal downstream path where both JAK1 and JAK2
are active, and neither is active earlier.

Size of the models ranges from 34 to 30 species and from 72 to 64 re-
actions parameters. Conveniently, reactions leading to formation of the
receptor complex, and their intermediate species, form a strongly con-
nected component in a full bipartite graph of species and reactions. The
inactive receptor complex IFNRJ2 is a cut vertex in this graph, i.e. a node
which removed splits graph into two unconnected sub-graphs. The com-
ponent of formation of the receptor complex is sizing from 7 to 3 species
and from 10 to 2 reactions parameters.

The SBML files with detailed biochemical reactions network for all vari-
ants of the JAK1/2-STAT1 model, including original, with re-estimated
parameters values (explained in the following Section), can be found in
the supplementary material to Rybiński and Gambin (2012) article.

3.1.3 Results and Discussion

For the purpose of a comparative analysis we have re-estimated parame-
ters of all proposed model variants, so that they agree with the numerical
simulations of the original variant. Because models differ only in one
of two strongly connected components we took the cut vertex, i.e. the
IFNRJ2 variable, as a objective variable in a fit function — normalised
SEE. It was sufficient to obtain good fit for all variables in the shared
strongly connected component. Resulting fit is nearly perfect, meaning
that errors are practically negligible as depicted in Figure 3.1.3. This re-
sult gives reconciled variants for a further comparison. It also undermines
the significance of an error-based GOF criterion as the only criterion for
the model selection task.

Knowing that the original variant agrees, to some extent, with the
experimental data, and that we have a nearly perfect fit of numerical sim-
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Figure 3.1.3: Numerical simulation of the cut vertex of the biochemical reac-
tions network IFNRJ2 (upper plot), and of the output species of the transcription
module (STAT1n∗)2 (lower plot). The original model simulations are overlaid with
values of the SSE residues for the remaining variants of the JAK1/2-STAT1 pathway
(log10 scale on the right side). Residues values are normalised with the reference,
simulation value. Both group II variants, with the pre-assembled receptors, have
relatively high residues values in the beginning of the time course. Overall, the no
dimerization variant has the worst fit. Nevertheless, the absolute residues values
are very low throughout the whole time course. Optimisation was done for the
IFNRJ2 species variable. Low residues values for the (STAT1n∗)2 species variable
illustrate the limited propagation of the fit error, which is practically negligible in
the shared part of the biochemical model.

ulations for all of the proposed variants, we take the experimental data
out of consideration. Our further comparison is done only among mod-
els which agree on the same, original behaviour. Conceptually, we base
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the comparison on the ability of re-creating the original behaviour under
perturbations of parameters, which corresponds to inherent stochasticity
of biological systems observed at the level of biomolecules. To that end,
we employed the parameter variation-based methods such as the Bayesian
model selection (BMS) and the global sensitivity analysis (GSA). We com-
plemented the latter with the identifiability analysis (IA) to account for
feasibility of experimental measurements which may allow to precisely
identify a correct reaction network.

BMS of the receptor activation mechanism

For the BMS comparison, we used a perturbed, simulated data series D.
It consists of two, arbitrarily selected, series of 10 time points of the
transcription module output species (STAT1n∗)2 (see Figure 3.1.4). For
each of time point, we assumed a normally distributed noise with mean
equal to the simulated value of (STAT1n∗)2, and with a constant standard
deviation. This type of noise corresponds to the maximum likelihood
interpretation of the GOF criterion, with the SSE measure being a χ2

log-likelihood (see, e.g., Raue et al., 2009).
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Because of the high time requirements for computing BF, we restricted
ourselves to parameters of the receptor complex formation component.
This component contains all differences between analysed variants (cf. Fig-
ure 3.1.2).

The theoretical basis for BF, together with our experiment setting is de-
scribed in detail in Section 2.3.1. In short, we assume gamma distributed
priors for all parameters, with shape equal to 1 and scales equal to the
nominal values of parameters. Using a path sampling MCMC method we
estimated the marginal likelihood of data D, coming from a model M
(cf. Eq. (2.14) in Section 2.3.1). Values of estimates of logarithm of the
marginal likelihood are given in Table 3.1.1. In all cases estimators were
efficient as highlighted by a low standard deviation. The BMS marginal
log-likelihood is fully consistent with the common and easy to compute
measures of generalizability (see Table 3.1.1): BIC and AIC. Also note,
that for the simulated data D, the maximum likelihood interpretation of
SSE (χ2), which doesn’t account for the model complexity, comply with
the statement of the slightly worse fit of the no dimerization variant, pro-
vided that all model variants are practically indistinguishable with the
SSE GOF criterion (cf. Figure 3.1.3).

Model Generalizability GOF
Grp Name BMS BIC AIC χ2

I original 25.26 +/- 0.050 84.95 75.00 18.24
no JAK 25.77 +/- 0.019 66.95 62.97 18.213

II IFN to dimer 25.73 +/- 0.005 66.96 62.98 18.219
no dimerization 26.02 +/- 0.055 61.39 59.39 18.64

Table 3.1.1: Estimates of the BMS index (+/- standard deviation): logarithm
of the marginal likelihood of data coming from a given JAK1/2-STAT1 model
ln (P (D|M)), with unnormalised P (D|M) values. Higher value means that the
given modelM better describes data D. For comparison, other common measures
of generalizability: BIC and AIC, as well as the GOF measure: χ2 (in all cases lower
value is better). These indices are calculated for the best fit of the model parameters
to the simulated, noised data D — the same which was used in estimation of the
BMS index. The noticeably best and worst scores are highlighted.
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The logarithm of the BF values (ratio of the marginal likelihoods) are
given in Table 3.1.2. The simplest no dimerization variant is preferred over
all other variants, and all variants are preferred over the most complex
original variant. The ranking agrees with the size complexity of models
(with the no JAK variant being of the size of the IFN to dimer variant).
However, such BF values give no substantial evidence support (Kass and
Raftery, 1995; Jeffreys, 1998).

Bij (i, j = 1, . . . , 4) 1: original 2: no JAK 3: IFN to dimer
2: no JAK 0.22 — 0.02
3: IFN to dimer 0.20 — —
4: no dimerization 0.33 0.11 0.13

Table 3.1.2: Estimates of the base 10 logarithm of BF, i.e. log10 (Bij). Only
positive values are presented. The higher the value the more preferred is the model i
in a row over the model j in a column. BF values are given as a base 10 logarithm
for a direct interpretation in the log10 scale of BF evidence support. The most and
the least discriminating values are highlighted.

BMS takes directly into account the variability in data but isn’t suffi-
cient to distinguish between models in our case study. Ability of fitting to
the noisy data in the range of sampled parameters values is very similar
for all model variants (cf. Table 3.1.2). With accordance to Occam’s razor
rule of thumb, which BMS implicitly implements, the most complex in
size original variant turned out to be the least preferable and the simplest
no dimerization variant the most preferable.

GSA & IA of the receptor activation mechanism

An exemplary GSA method implementation is MPSA (see Section 2.3.2).
MPSA has been applied to models of signalling pathways (Cho et al.,
2003), including the JAK-STAT pathway (Zi et al., 2005).We applied
MPSA to the parameters of reactions of the receptor complex formation.
We used the SBML-SAT (Zi et al., 2008) implementation of MPSA. Fig-
ure 3.1.5 depicts the influence of all investigated parameters on essential
species. These species include the inactive receptor complex (IFNRJ2; cut
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vertex of the model graph), output species of pathway modules ((IFNRJ2)
∗,

(STAT1n∗)2 and SOCS1), as well as all species that were previously in-
dicated as significant (Yamada et al., 2003; Zi et al., 2005; Shudo et al.,
2007), i.e. unphosphorylated cytoplasmic and nuclear STAT (STAT1c and
STAT1n), an active cytoplasmic STAT dimer ((STAT1c∗)2), cytoplasmic,
and nuclear phosphatases (SHP2, PPX and PPN) and nuclear mRNA
(mRNAn).

Figure 3.1.5: MPSA indices values for the parameters of the receptor complex
formation component. The higher the value, represented by the colour, the more
sensitive is the parameter (column) with respect to the target species (row). In
each variant of the model, a distribution of the MPSA indices values among the
parameters is highly consistent between the essential species. The kinetic param-
eters of association and dissociation of the receptor complex, respectively, k3f and
k3b in the original and no JAK variants, and, respectively, k2f and k2b in the IFN
to dimer and no dimerization variants, are the top 2 sensitive parameters in each
combination.

The most sensitive parameters with respect to all essential species, for
all JAK-STAT model variants under investigation, are the kinetic parame-
ters of the reversible reaction connected to the cut-vertex species, i.e. the
association and dissociation reactions of the inactive receptor complex
IFNRJ2.

For comparison, besides running MPSA, we also ran the Sobol (2001)
method to estimate the well-established indices of the variance decompo-
sition (Saltelli et al., 2008) — FOS and TE (cf., respectively, Eqs (2.17)
and (2.18) in Section 2.3.2). The MPSA sensitivity, although in princi-
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ple normalised to 1, implicitly includes the noise in an investigated out-
put, whilst, the FOS and TE indices are normalised with the variance of
the output. Values of the sensitivity indices for forward and backward
reaction rates constants, with respect to the IFNRJ2, are given in Ta-
ble 3.1.3, together with the total indices, which explicitly penalise for the
size complexity. Note that, additionally, the total TE index (TTE) lin-
early weights the high-order relations between parameters (cf. Eq. (2.19)
in Section 2.3.2).

Model MPSA FOS & TE
Grp Name Fwd Bckwd Total Fwd Bckwd Total

I

0.40 0.30 0.878original 0.33 0.30 1.28 0.43 0.37 1.106
0.30 0.38 0.877no JAK 0.37 0.39 1.17 0.37 0.41 1.11

II

0.26 0.37 0.84IFN to dimer 0.46 0.51 1.49 0.39 0.39 1.102
0.46 0.48 0.94no dimerization 0.58 0.55 1.13 0.56 0.50 1.06

Table 3.1.3: Values of the total MPSA and variance decomposition sensitivities
of the receptor component, together with sensitivity indices of kinetic parame-
ters of the forward and backward reaction of formation of the inactive receptor
complex IFNRJ2. These are always the top 2 sensitive parameters. Presented pa-
rameters sensitivities were calculated with respect to the active receptor (IFNRJ2)∗.
The least and the most sensitive entries are highlighted, as well as models which
have all parameters structural identifiable (see text for details).

The no dimerization variant is the most sensitive to changes in parame-
ters of the reactions of association and dissociation of the inactive receptor
complex IFNRJ2. This is reflected in total FOS (TFOS), however, TTE
and, more noticeably, total MPSA sensitivities of a receptor formation
component for the no dimerization variant, are lower than the remain-
ing variants (Table 3.1.3). In case of the latter total sensitivity measure
the no JAK variant also performs well. In case of TFOS and TTE the
differences between variants of the JAK1/2-STAT1 model are marginal.

On the other hand, it is now apparent how unimportant are many
of 10 kinetic parameters of the biggest receptor module in the original
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model, as indicated by very low increase in TTE with respect to TFOS
(cf. Table 3.1.3) and, in general, very low sensitivity of these parameters
(see Figure 3.1.5). Indeed, this model variant contains relatively short-
lived protein complexes and fast reactions which could have been reduced
without a loss of quantitative behaviour (cf. Bachmann et al., 2011). Un-
necessary complexity of the receptor module in the original model can
be easily explained with the analysis of the profile likelihood (PL) of the
receptor module kinetic parameters.

PL-based identifiability analysis (Raue et al., 2009) is a method of anal-
ysis of the relation between parameter and the SSE (χ2) output in terms of
possibility of maintaining a low error value with respect to a systematical
change of a value of one parameter and the best fit values for remain-
ing parameters. In case of the original model almost all parameters are
structurally non-identifiable within a reasonable range of values (see Fig-
ure 3.1.6). It means that increase in a quality or a quantity of available
measurements will not allow to identify these parameters. Except for the
dimerization parameters of the IFN to dimer variant, all parameters in
the remaining model variants are structural identifiable (Section 2.3.3).
In other words, only in case of the no JAK and no dimerization variants
all kinetic parameters of the receptor module are identifiable. However,
in contrast to the no JAK variant, the no dimerization variant requires
less precise measurements to allow for identification of its parameters,
which is a modelling advantage (cf. confidence interval proximity of PL
in Figure 3.1.6).

An interpretive advantage of the Monte Carlo filtering method of GSA,
such as MPSA, is that it can be viewed as an implementation of a concept
of robustness of signalling pathways (cf. Morohashi et al., 2002; Kitano,
2007)). This is a property of a system to maintain one or more of its
functions under the external and the internal perturbations. For example,
one could be interested in the robustness to the input noise that could be
a result of the extrinsic stochasticity of the extracellular signalling which
is out of the scope of the model. In such setting, it is desired that in case of
a low concentration of a input species, the system is capable of dampening
the signal, so that an unwanted response is not induced (see, e.g., Shudo
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et al., 2007). Alternatively, investigating the simulations results of the
mathematical model for the set of perturbed reaction rate constants can
be interpreted as a robustness to the varying environmental conditions.
Ability to preserve the functionality of the system under environmental
changes may be an indicator of evolutionary preferable design (Morohashi
et al., 2002).

With that in mind, note that the total parameters sensitivity to the
integrated response of the receptor module output (IFNRJ2)

∗, is visibly
lower only in the no dimerization and no JAK variants (total MPSA
in Table 3.1.3). This may indicate that these two variants, representing
alternative IFN binding hypotheses, are more robust with respect to the
behaviour of the active receptor.

Comparative histograms of the total MPSA, TFOS and TTE indices
for all essential species are depicted in Figure 3.1.7. The assessment of
the total MPSA and TE indices for all essential species clearly promotes
the simplest no dimerization variant.

Note that, in general, the integrated response of the active receptor
(IFNRJ2)

∗ is the least sensitive to a simultaneous variations in values of
parameters, whilst, quite the opposite for the single parameter variation
(FOS index). The high robustness of the active receptor is somewhat ex-
pected due to the multiple negative regulators interacting with (IFNRJ2)

∗,
in particular, to the post-translational negative feedback loop provided by
SOCS1 (cf., e.g., Fritsche-Guenther et al., 2011).

Altogether, for now, we conclude that the no dimerization variant is
reasonable simplification of the Yamada et al. (2003) model in terms of
the identifiability and the total robustness of kinetic parameters of the re-
ceptor activation mechanism. Binding of IFN to membrane pre-assembled
dimers (the no dimerization variant) lowers robustness of the receptor ac-
tivation mechanism. It has an improved overall environmental robustness
but also, due to the simplicity, has more sensitive single elements (the
reversible reaction of IFN binding to a dimer).
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Figure 3.1.7: Histograms of total MPSA and variance decomposition indices for
all essential species. Additional annotations include top 2 and the least sensitive
species, a total sensitivity over all receptor component parameters and all essential
species, a standard deviation of the total, per species indices, and their median
(grey, dashed line).

Comprehensive GSA of kinetic parameters

The sensitivity analysis approach is much less computationally demand-
ing as opposed to the Bayesian model selection method. We were able to
easily extend our analysis to kinetic parameters of all reactions (over 60
parameters) and pursue the concept of a robustness-based model selection
further. Nevertheless, to yield significant results, a specific GSA method
should be executed for a limited number of input factors, in the setting
this method is designed for. According to practical guidelines (Saltelli
et al., 2008), Monte Carlo filtering should take no more than ca. 20 pa-
rameters to produce reliable results. To that end, we preprocessed the set
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of kinetic parameters, by screening for the most sensitive parameters with
WALS — a local approximation of global sensitivities. By aggregating
ranks we selected the top 16 parameters common for all model variants
under consideration. These parameters are listed in Table 3.1.4, together
with the two parameters of the formation of the inactive receptor com-
plex IFNRJ2. Values of WALS indices for all parameters are depicted in
Figure 3.1.8

Parameter Reaction description Rank
Receptor module
k3f IFN-Receptor complex dimerization #10
k3b IFN-Receptor dimer dissociation #11
k4 IFN-Receptor dimer activation #2
Transcription factor module
k5f (IFNRJ2)∗-STAT1c binding #6
k6 STAT1c phosphorylation #1
k16 (STAT1c∗)2 nuclear import #16
k18f PPN binding #10
k18b PPN unbinding #17
k19 STAT1n* monomer dephosphorylation #12
k20f PPN-(STAT1n∗)2 binding #15
k20b PPN-(STAT1n∗)2 dimer unbinding #13
k21 (STAT1n∗)2 dephosphorylation #9
Feedback module
k24a Transcription #4
k24b Transcription #8
k26 SOCS1 synthesis #5
k27 mRNAc degradation #18
k28 SOCS1 degradation #14
k36f SHP2 binding #3
k36b SHP2 unbinding #7

Table 3.1.4: The top 18 parameters selected with the WALS screening procedure,
16 of which are outside of the receptor formation component (the remaining pa-
rameters of the formation of the inactive receptor complex IFNRJ2 are highlighted).
WALS procedure was executed on the original model, with the integrated response
of the three modules output species as an output properties. The rank is based on
an aggregation of three rankings.

After selection of the local approximation of the globally most sensitive
parameters, we carried out MPSA and TE-based robustness analysis in the
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same setting as for the parameters of the receptor assembly component.
We summarised similarities in sensitivities among JAK-STAT pathway

receptor activation variants with histograms and with pairwise Spearman’s
rank correlation tests (SRCC) of ranks obtained form the aforementioned
GSA indices values (see Figures 3.1.9, 3.1.10 and 3.1.11).

The summary of total MPSA indices values (cf. Figures 3.1.11), as in
the case of the receptor component, promotes the simplest variant. On
the other hand, the TTE indices values allow only to disfavour the original
variant. For further insight, we investigated the major differences in ranks
induced by the TE index values (cf. Figure 3.1.9). In comparison to the
no JAK and IFN to dimer variants, which yield almost identical results,
the no dimerization variant has a less robust negative feedback species
(mRNAn and SOCS1), but, more importantly, has more robust STAT1
forward signalling, in particular, the active, dimerized cytoplasmic STAT1
(also for the MPSA values; cf. Figure 3.1.11). The most sensitive reactions
with respect to the latter species are STAT1c phosphorylation (k6) and
(STAT1c∗)2 nuclear import (k16), which is known to be one of the most
sensitive design part of the STATs life-cycle (Swameye et al., 2003).

3.1.4 Tools and methods

For numerical integration we used the the Adams-Moulton backward
differentiation method implemented in state of the art SUNDIALS’
CVODES package. More precisely, we used CVODES through both
PottersWheel (Maiwald and Timmer, 2008) and SBML ODE Solver
Library (SOSlib; Machné et al., 2006). SOSlib automatically gener-
ates and numerically solves set of ODE for a model encoded SBML, which
are read with the libSBML library (Bornstein et al., 2008). Potter-
sWheel is a framework for a deterministic modelling of biochemical reac-
tions network implemented as a MATLAB (The MathWorks Inc., 2011)
toolbox; it also supports SBML (via SBMLToolbox; Keating et al., 2006).

For parameters re-estimation we used simulated annealing (SA) im-
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plementation from the optim package of the Statistical computing lan-
guage R (R Development Core Team, 2009).

In BMS, for all parameters pi, we assumed gamma distributed priors
Γ(1, p0i ), with shape 1 and scales equal to the nominal values of param-
eters p0i (cf. Vyshemirsky and Girolami, 2008b). In such setting, mean
and standard deviation of these priors are equal to the nominal value
of the parameters (the range [p0i /10, 10p

0
i ] of values of a parameter pi

covers over 90% of the Γ(1, p0i ) distribution). P (p⃗|M) PDF is defined
as a joint distribution of gamma priors. For estimation of the marginal
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likelihood (Eq. (2.14)) we’ve selected the path sampling MCMC method:
the Annealed Importance Sampling (AIS; Neal, 2001) as implemented in
BioBayes (Vyshemirsky and Girolami, 2008a). AIS is a high precision
method with a reasonable time efficiency, as it is not necessary for obtain-
ing useful estimate to wait until the underlying Markov chain converges
to the stationary distributions. Nevertheless, AIS execution time lim-
its practical applicability of BMS to models which contain only several
parameters.

For sensitivity analysis, we ran the MPSA, Sobol’s and WALS meth-
ods implemented in SBML-SAT (Zi et al., 2008). For MPSA we took
2000 parameters samples, drawn uniformly form the range of 1/10 of the
nominal values of the parameters up to 10 times the nominal values of the
parameters. The error function is SSE between the output property of the
model for the sampled parameter set and the reference parameter set (Zi
et al., 2008). Here, the output properties were calculated as the integrated
response for each of the essential species separately. Integrated response
is the area under the time course of selected species, approximated in 50

equally distributed time points. The parameters samples were classified as
acceptable or unacceptable by comparing with the mean error value. The
final MPSA indices were calculated as the Kolmogorov-Smirnov test value
for the empirical cumulative distribution functions of acceptable and un-
acceptable samples sets. To calculate the V ϕ

i and TEϕ
i indices we used the

Sobol’s method with 2000 samples for the receptor component parameters
and 5000 samples for the WALS top ranked parameters. In both cases,
the distribution of parameters and the output properties were the same
as in MPSA. For WALS we took 103 sample points, for which nLSCs were
weighted by the Boltzmann distribution function. As the output prop-
erty ϕ for nLSC, we took the integrated responses of the output species
of the receptor, transcription factor and feedback modules.

For IA we used the PottersWheel implementation of the PL estima-
tion. It was done for all receptor component parameters, for the data set
used in BMS (see Figure 3.1.4). We took the range of 1/10 of the nom-
inal values of the parameters up to 10 times these values, within a 95%
pointwise confidence interval. The re-optimisation steps were done using
the trust region optimisation algorithm.
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Ranks aggregation

The Spearman’s Footrule distance between two rankings σ1 and σ2 (per-
mutations of the parameters vector p⃗), is defined as

F (σ1, σ2) =
M∑
i=1

|σ1(i)− σ2(i)|,

where σj(i) is a position of the pi in the σj ranking. The optimal, aggre-
gated ranking σ∗ of a given set of input rankings σ1, . . . , σJ , minimises
the weighted F distance between all (σ∗, σj) pairs.

We aggregated ranks of values of parameters WALS for output species
of all modules ((IFNRJ2)

∗, (STAT1n∗)2, SOCS1) in the original model
(cf. Figure 3.1.8). To estimate the optimal ranking, we used the Cross-
Entropy Monte Carlo algorithm (Pihur et al., 2007) implemented in the
RangAggreg R package (Pihur et al., 2009). We used 103 ·M ·N sam-
ples, where N = 18 (size of the consensus ranking with the forward and
backward parameters of the (IFNRJ2)

∗ assembly) and M = 72 (number
of kinetic parameters in the original model).
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3.2 Property-specific sensitivity analysis

We leave for a short while the biologically overloaded signalling path-
ways for the simple model of enzymatic reaction. We do that to illustrate
an idea of a property-specific sensitivity analysis and, primarily, to present
the Tav4SB project capabilities. Here, we apply MPSA with combination
of both numerical ODE solving and the PMC technique for CTMC.

3.2.1 Model

Consider the simple, enzymatic reaction model of three reactions,

R1 : E + S
k1−−−→ ES

R2 : ES
k2−→ E + S

R3 : ES
k3−−−→ P + E

(3.1)

where species names S, E, ES and P stand for substrate, enzyme, enzyme-
substrate complex and product, respectively. Length of an arrow indicates
the order of the reaction rate, i.e. both forward reactions: the complex
formation reaction R1 and the product conversion reaction R3, are rela-
tively fast when compared to the unproductive dissociation of the enzyme-
substrate complex R2. Initial amounts of species and kinetic parameters
values, taken from (Cho et al., 2003) paper, are

S0 = 12 E0 = 10 ES0 = 0 P0 = 0,
k1 = 0.184 k2 = 0.016 k3 = 0.211.

(3.2)

Figure 3.2.1 depicts the RRE simulation workflow and a resulting plot
for all variables in the initial value problem from Eqs (3.1) and (3.2). Cor-
responding ODE (cf. Eq. (2.1)) are derived automatically from a SBML
model file, based on given rate laws of reactions. In the deterministic
model of the enzymatic reaction, rates are described by the law of mass
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action (cf. Eq. (2.2)), giving:
d[S](t)
d t

d[E](t)
d t

d[ES](t)
d t

d[P ](t)
d t

 =


−1 1 0

−1 1 1

1 −1 −1
0 0 1


k1 · [S] (t) · [E] (t)k2 [ES] (t)

k3 [ES] (t)



Numerical simulations for above ODE are calculated over a time period
of 30 seconds.

The system stabilises in approximately 25 seconds with a peak activity
at the 2-nd second. At that time point most of the enzymes are at work,
i.e. they are bound to substrates, which, in turn, are converted into the
product.

3.2.2 Results and Discussion

We run two variants of MPSA (cf. Section 2.3.2), differing in the way
in which the error is calculated. In one variant we use RRE simulations
and in the other one we exploit the PMC technique. We focus on kinetic
parameters of two forward reactions of enzymatic reaction, i.e. k1 and
k3. As an error function we take, respectively, mean SSE of an simulated
trajectory of the product P and the absolute difference of the value of the
CSL formula, in both cases between results for a parameters sample and
for the reference values of parameters (Eq. (3.2)).

The formula being checked is expressed in the reward-based CSL ex-
tension (Kwiatkowska et al., 2006) as follows:

R{#R1=?}

(
♢
(
P > 0.5 · lim

t→∞
P (t)

))
. (3.3)

Roughly speaking, formula (3.3) answers the following question: how
many times, on average, the reaction R1 of association of the enzyme-
substrate complex has to occur, before the amount of the product P

reaches 50% of its maximum? It is motivated by the half maximal ef-
fective concentration (cf. EC50 coefficient).

In turn, we obtain empirical cumulative distribution function (ECDF)
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of acceptable and unacceptable samples, for each of the selected param-
eters. ECDFs are compared using K-S test and one minus PMCC. As
a final output of the MPSA method, we get two rankings for each of the
sensitivity indices: K-S test and PMCC.

Figure 3.2.2 depicts values of the error function and ECDFs of accept-
able and unacceptable samples, for parameters k1 and k3, for both variants
of the MPSA procedure. In the variant based on RRE simulations and the
error function which measures changes in the product P trajectory, one
clearly observes that parameter k3 significantly dominates parameter k1,
as far as sensitivity of the system is concerned. This is an expected result.
Firstly, k3 is a rate parameter of a reaction which is directly responsible
for a product creation. Secondly, from the Michaelis and Menten (1913)
approximation:

d [P ] (t)

d t
≈ k3 [S] (0)

[S] (t)

[S] (t) + k2+k3
k1

, (3.4)

one can expect that, for values from Eq. (3.2), variation of parameter k3
will be more influential, with respect to the product rate, than variation
of parameter k1.

Interestingly, the results of the other variant of the MPSA procedure are
significantly different; one observes that now k1 dominates k3. This may
be ascribed to the particular choice of the formula (3.3) which calculates
the average number of occurrences of R1. Furthermore, an inspection
of values of sensitivity indices given in Figure 3.2.2 brings to light that
the domination is not as definite as in the first variant of MPSA. Re-
sults demonstrate that an application of the PMC technique may allow
for revealing more subtle dependencies in the model, depending on the
properties of interest.

MPSA combined with PMC may be applied as a pre-processing step
which finds parameters that are insignificant for an analysis oriented on
a very specific property of a model. This would provide a novel notion
of a probabilistic abstraction (cf. Laplante et al., 2007), i.e. property-
specific reduction of the probabilistic model. However, for a successful
application, the pre-processing should have low running time, compared
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KS-test 1−PMCC
k1 0.23 0.0158
k3 0.64 0.2709

KS-test 1−PMCC
k1 0.42 0.0955
k3 0.25 0.0488

1Figure 3.2.2: MPSA error surfaces, ECDFs and values of sensitivity indices for
error calculated using deterministic model with the mean SSE of product trajectories
(left column) and using stochastic model with the absolute difference of a value
of the formula (3.3) (right column). Both procedures were run for 400 samples
of parameters. Samples were generated using LHS, from a uniform distribution
over a range from 1

4× to 4× the nominal value of each of investigated parameters
(Eq. (3.2)). As a threshold for classifying samples as acceptable or unacceptable,
we took median of error values. The larger the value of a statistics which compares
ECDFs, the more significant is a parameter with respect to a property of interest.

83



to an analysis that follows. In our experiment this is not the case, as
we run the exact PMC procedure, which is essentially the same one that
would be ran during the further analysis. However, we conjecture that
for the MPSA procedure the level of accuracy offered by PRISM is much
too high. We suppose that satisfactory results may be obtained using an
approximate approach, such as Monte Carlo model-checking (Grosu and
Smolka, 2005).

3.2.3 Tools and methods

To define model we used the SBML-shorthand notation (Gillespie
et al., 2006) — a convenient, compact format with converters to (and
from) the over-verbose SBML standard. With a slight adjustment it is
easy to obtain stochastic version of the deterministic model.

Figure 3.2.3: MPSA workflow with an ODE-based error function. Pink and brown
boxes represent essential steps of the procedure. Remaining boxes represent work-
flow’s parameters and outputs.

For all computations we constructed Taverna workflows, exploiting
the Tav4SB WS operations (see Sec. 2.4.2). This includes RRE simula-
tions (see Fig. 3.2.1) MPSA workflow (depicted in Fig. 3.2.3) as well as
the error surface plotting workflow (not shown; cf. Fig. 3.2.2).
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3.3 Efficacy of hyperthermia treatment

This case study is based on the heat-shock response (HSR) model. We
exploit both deterministic and stochastic methods to investigate the ther-
motolerance phenomenon and the effect of a combined hyperthermia and
a drug therapy of cancer. In terms of methodology this is the most model-
specific case study; for instance, it contains a thorough investigation of
a protein denaturation rate. On the other hand, this specificity is balanced
by proposal of an approximate stochastic perturbation strategy generally
for CTMC models.

3.3.1 Background

heat-shock proteins (HSP) are a group of highly conserved proteins in-
volved in many physiological and pathological cellular processes. They are
so called chaperones, as which they help with folding of new and distorted
proteins into their proper shape. HSP synthesis increases under stress
conditions. Induction of HSP increases cell survival and stress-tolerance.
Elevated expression of different members of HSP family in tumour cells
has been detected in several cases. Despite its importance, little is still
known about how exactly HSP are involved in different processes related
to cancer development.

HSP are classified into families according to their molecular mass. The
family of heat shock protein 70 kDa (HSP70) is the best studied class of
HSP. In mammals, at least two isoforms exists in the cytoplasm: the con-
stitutively expressed HSP70 and the heat-shock inducible HSP70 protein
(Wegele et al., 2004; Szymańska and Żylicz, 2009). This highlights the
general principle that HSP70 plays important role under both physiolog-
ical and inducible, stress conditions. We’re interested in the latter. For
readability, from now on we will denote HSP70 simply as HSP.
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Motivation

Most of the non-surgical methods of cancer treatment (e.g. chemother-
apy and radiotherapy) are based on the principle of putting some kind of
stress on cancer cells. Unfortunately, in many cases the above methods
fail. The fact that HSP prevent apoptosis induced by different modalities
of cancer treatment explains how these proteins could limit the efficacy
of these therapies. Therefore, in order to improve the efficacy of these
treatments, recently much effort is focused on the multimodal oncological
strategies, that is combined treatment of chemotherapy and hyperthermia
(i.e. therapeutic procedure used to raise the temperature of a region of
the body affected by cancer; Wust et al., 2002), or radiotherapy and hy-
perthermia. A synergistic interaction of radiotherapy and hyperthermia
as well as some cytotoxic drugs and hyperthermia has already been con-
firmed in many experimental studies (Hildebrandt et al., 2002; Neznanov
et al., 2011). Hyperthermia engages the HSR mechanism, whose main
component are HSP, however, the precise mechanism of these interac-
tions is still unclear. Moreover, cancer cells can have an already partially
activated HSR, thereby hyperthermia may be more toxic to them relative
to normal cells (Neznanov et al., 2011).

On the other hand, after a heat shock, all cell types show an impair-
ment in their susceptivity to heat-induced cytotoxicity. This phenomenon,
known as thermotolerance, is triggered by HSR (it is at least partially
based on the induction of HSP; Hildebrandt et al., 2002). Thermotoler-
ance is, in principle, reversible and persists for usually between 24 and 48
hours (Wust et al., 2002). Due to this phenomenon the applicability of
the combined hyperthermia therapy may be, counter-intuitively, initially
limited. This poses a question about the actual efficacy and about an
optimal strategy of the hyperthermia treatment.

Related HSR models

There are basically two types of approaches to HSR modelling. They
differ in how the heat-induced protein misfolding is captured in the model.
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In one approach, the temperature is not a model variable and its in-
crease is modelled by a direct change of the system state, that is an ad-
dition of an intermediate species like reactive oxygen species (ROS; see,
e.g., Proctor and Lorimer, 2011), which causes native proteins to misfold.
Peper et al. (1998) proposed an integral model of HSP regulation, where
temperature-dependence is explicitly expressed in kinetic rate constant of
native proteins misfolding reaction; the temperature change is modelled by
a direct change of kinetic parameter of one reaction. This approach, with
the same temperature-dependence function has been followed up in some
of the recent papers which include HSR modelling (Szymańska and Żylicz,
2009; Petre et al., 2010; Mizera and Gambin, 2010). Similarly, Rieger
et al. (2005) modelled temperature perturbation by a change of kinetic
rate constants. However, in his approach misfolding is based on enzyme
kinetics approximation of Michaelis and Menten (1913, see Eq. (3.4)) with
arbitrarily selected kinetic values for four different temperatures. In fact,
Rieger et al. (2005) approach boils down to model reduction by exclud-
ing the intermediate kinase of misfolding, such as ROS. Contrary to that,
the Peper et al. (1998) approach follows purely mass action kinetics and
the misfolding rate is based on experimental data on the level of protein
denaturation for a range of 30–100◦C (Lepock et al., 1993).

As far as the stochastic HSR models are considered, the counterpart of
Petre et al. (2010) model was presented by Mizera and Gambin (2010).
The authors thoroughly validated deterministic approximation. Another
stochastic and deterministic pair of HSR models was recently presented in
Proctor and Lorimer (2011) . It is worth noting, that although this bio-
chemical model is, relatively, very complicated, its stochastic counterpart
contains a unique feature of explicit probabilistic event of the cell death,
which is not available for the deterministic version.

For our case study we have chosen the explicit temperature-dependent
denaturation rate approach, in which the Szymańska and Żylicz (2009)
model is the simplest. With many simplifications, such as direct trimerisa-
tion or no misfolding of HSR components, this model is able to capture the
overall qualitative behaviour of the HSR mechanism. None of the above-
mentioned models have been used to investigate either thermotolerance
or multimodal oncological strategies.
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Our results

The main aim of this case study is to contribute to understanding of the
involvement of the HSR mechanism in multimodal cancer therapies. We
start with adapting the deterministic RRE model proposed by Szymańska
and Żylicz (2009), which, despite of its simplicity, allows for a sound qual-
itative modelling of the HSR mechanism. We estimate a global function of
a level of protein denaturation and derive a correct protein denaturation
rate.

We also develop a stochastic extension of this model (a CTMC), which
we then analyse using the PMC techniques. To ensure the feasibility of
this approach we decided to use approximate techniques (APMC), imple-
mented recently in the PRISM tool (see, e.g., Nimal, 2010).

Next, we formalise the notion of the thermotolerance, or the memory
of the system of the previous temperature perturbation, or system desen-
sitisation with respect to the second consecutive heat shock. We compute
the size and the duration of the HSR-induced thermotolerance. Finally,
we quantify the effect of a combined therapy of hyperthermia and an ar-
tificial, cytotoxic inhibition of proteins refolding. We are able to support
the common belief that the combination of cancer treatment strategies
increases therapy efficacy.

3.3.2 Model

In this case study we consider the dynamics of synthesis of HSP and
its interactions with key intracellular components of HSR, i.e.: HSP;
the heat-shock factor (HSF) and its trimer, which is a HSP transcrip-
tion factor; HSP substrate — mainly denatured, misfolded native pro-
teins; HSP gene — heat-shock element (HSE); and HSP mRNA. Figure
3.3.1 depicts the model scheme, Table 3.3.1 gives reaction list, whereas
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3

HSE
mRNA

1Figure 3.3.1: Scheme of the HSR model. On the left side of the scheme, the
denaturation of native proteins P and denatured proteins S (substrate) refolding
moderated by the HSP chaperones. On the right side, the adaptive HSP production
loop, stimulated by HSFs, which trimerise and initiate HSE transcription and HSP
mRNA translation (dotted arrow). As a negative feedback, HSP molecules promote
HSF trimers dissociation and inhibit single HSF molecules by direct binding. To
close the loop, inhibited HSFs are forced out of the complex with HSP by inflowing
substrate.

Table 3.3.2 gives the implied mass conservation constraints. Structural
changes with respect to the previous version of this model (i.e., model
by Szymańska and Żylicz, 2009) include explicit native protein species
(reactions (r9) and (r10)) and separate HSP mRNA degradation (reac-
tions (r11) and (r12)). The addition of native protein species variable P is
only a technical manipulation to increase model clarity; this variable can
be removed from the model on basis of Eq. (c1).

Tables 3.3.3 and 3.3.4 summarise, respectively, the variables of the
model with their initial values, as well as description and values of all
kinetic parameters. Parameters ki, and lj denote the mass action reac-
tion rates constants, respectively, for the forward and backward reactions.
Value of the reaction rate constant kT

11 depends on the given tempera-
ture T.

Resulting RRE model consists of 10 ODE. Figure 3.3.2 depicts be-
haviour of this model, which starts in the state of homeostasis (i.e. in
a steady state for T = 37◦C), in response to the T = 42◦C heat shock.
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HSP:HSF + S ↽−
l6

k6−−−⇀ HSP:S + HSF, (r1)

3 · HSF k3−→ HSF3, (r2)

HSF3 + HSE k7−⇀↽−
l7

HSE:HSF3, (r3)

HSE:HSF3
k8−→ HSE:HSF3 + mRNA, (r4)

HSP + HSF3
l3−→ HSP:HSF + 2 · HSF, (r5)

HSP + S ↽−
l1

k1−−−⇀ HSP:S, (r6)

HSP + HSF ↽−
l2

k2−−−⇀ HSP:HSF, (r7)

HSP k9−→ ∅, (r8)

HSP:S k10−−→ HSP + P, (r9)

P kT
11−−→ S, (r10)

mRNA k4−→ mRNA + HSP, (r11)

mRNA k5−→ ∅. (r12)

Table 3.3.1: The HSR biochemical reactions network. There are 16 reactions
in total, as reactions (r1)–(r12) are reversible; li (i = 1, 2, 6, 7) denotes reverse
reaction rate constant. The T superscript denotes a temperature dependence.

Ptot = P(t) + Stot(t),

where Stot(t) = S(t) + HSP:S(t), (c1)
HSFtot = HSF(t) + HSP:HSF(t) + 3 · HSF3(t)+

+ 3 · HSE:HSF3(t), (c2)
HSEtot = HSE:HSF3(t) + HSE(t). (c3)

Table 3.3.2: Mass conservation laws in the HSR biochemical reactions network.
Neither concentrations nor molecules numbers are annotated because Eqs (c1)–(c3)
hold for all t ≥ 0 in both deterministic and stochastic models.
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Description Value
HSP free HSP 0.309
HSF HSF monomers 0.151
S substrate (denatured/misfolded protein) 0.113
HSP:HSF HSP:HSF interacting complexes 2.588
HSP:S HSP:substrate complexes 1.126
HSF3 active HSF (trimer form) 0.044
HSE free HSE 0.957
HSE:HSF3 bound HSE 0.043
mRNA HSP mRNA 0.115
P native proteins (denaturation susceptible) 8.761

Table 3.3.3: Description of variables used in the HSR model, together with initial
conditions for the deterministic version. These are a steady state concentrations in
a non stressed cells (T = 37◦C; see text for detail). Values are given in arbitrary
scale molar concentration (a.s.M), as they are arbitrarily scaled with respect to each
other to match numerical simulations presented by Szymańska and Żylicz (2009).

Rate constant of… Value
k1 HSP:substrate association 0.42
l1 HSP:substrate dissociation 0.005
k2 HSP:HSF association 0.42
l2 HSP:HSF dissociation 0.005
k3 HSF trimers association (activation) 0.023
l3 HSF trimers dissociation (inactivation) 0.00575
k4 HSP translation 0.035
k5 HSP mRNA degradation 0.013
k6 HSP:HSF dissociation and HSP:substrate association 0.023
l6 HSP:substrate dissociation and HSP:HSF association 0.00036
k7 HSE:HSF3 association 0.035
l7 HSE:HSF3 dissociation 0.035
k8 HSP mRNA transcription 0.035
k9 HSP degradation 0.013
k10 misfolded protein refolding (substrate degradation) 0.014
kT
11 protein misfolding (substrate production) Eq. (3.6)

Table 3.3.4: HSR model parameters. All values, except for k5 are taken directly
from the Szymańska and Żylicz (2009) model. Note that all mass action rate
constants (i.e. ki and lj) have units min−1 (a.s.M)− rank(Rm)+1 (cf. Eq. (2.2);
concentrations are given in arbitrary scale).
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Figure 3.3.2: Numerical simulations of the HSR RRE model for a constant 42◦C
heating strategy. Simulation starts at a 37◦C steady state.The upper plot de-
picts HSP response to the temperature-stimulated inflow of denatured proteins S
(substrate). Free substrate is instantaneously bound into a HSP:S complex. In-
sufficient amount of free HSP causes its extraction from the HSP:HSF complex,
forming an initiative response of the cell. Released in exchange HSF induces adap-
tive production of HSP molecules to complement its deficiency as indicated by
accumulation of S, with peak at ca. 100 min. The excess of new HSP is used
to inhibit HSF activity. System stabilises after ca. 30 h with most of constantly
inflowing S secured in the HSP:substrate complexes.The lower plot depicts the
adaptive HSP production, stimulated by HSF. It trimerises and initiate HSE tran-
scription to mRNA, and its translation to HSP, as visible by the shifted activity of
subsequent components.
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3.3.3 Results and Discussion

We start with analysis of the rate constant of the substrate produc-
tion kT

11. To that end, we estimate a global function of a level of pro-
tein denaturation Vden(T) and we derive a correct dependence of kT

11 on
the Vden(T) (cf. reaction (r10) in Table 3.3.1). Next, we give a stochastic
extension of the model, compare it with the deterministic version, and
we propose an approximate strategy for the stochastic perturbation of
temperature. Equipped we these tools, we comparatively quantify the
thermotolerance phenomenon in both types of models. Finally, we give
a proof of concept quantification of an effect of combining hyperthermia
with cytotoxic inhibition of denatured proteins refolding.

Rate constant of the protein denaturation

The level of protein denaturation as a function of temperature of heat
shock and the localisation of denaturation within a cell have been studied
by Lepock et al. (1993). The obtained, unit less dependence on the tem-
perature, in 30–100◦C range, is well approximated by the switch-like Hill
function:

Vden(T) := 1− 1

1 +
(

T−T0

T0.5−T0

)nT , (3.5)

where T0 and T0.5 are temperatures for which Vden(T) is equal to 0 and
0.5 respectively, and nT is the steepness parameter. This is a different
function than the function originally proposed by Peper et al. (1998),
and recently reused in several works (Szymańska and Żylicz, 2009; Petre
et al., 2010; Mizera and Gambin, 2010). We have chosen this form of the
Vden(T) function over the previously proposed one because this model not
only better describes experimental data of Lepock et al. (1993) for a local
temperature range 37–45◦C, as considered by Peper et al. (1998), but it
also explains the global sigmoidal form of the level of protein denaturation
for 30–100◦C(see below for details).
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For a given T we have:

kT
11 = m11 ×

Vden(T)

1− Vden(T)
, (3.6)

where m11 ≈ k10, i.e. m11 is well approximated by k10 — the kinetic
constant of a denatured protein refolding (reaction (r9)). Again, this is
a different form of the denaturation rate QT

den(t) = kT
11 · P(t) than in

previous models. In these models kT
11 depends linearly on Vden(T), which

results in inconsistency in the physical units. We think that Eq. (3.6)
expresses a correct dependence of the misfolding rate on the denaturation
level (Eq. (3.6) is justified in details in the following paragraphs). Finally,
from Eqs (3.5) and (3.6), we get the following formula for the denaturation
rate constant:

kT
11 ≈ k10 ×

(
T− T0

T0.5 − T0

)nT

min−1. (3.7)
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Figure 3.3.3: Model selection of a level of protein denaturation. Local and global
data points were read from Lepock et al. (1993, Figure 8B and Figure 8A respec-
tively; here, black dashed lines). Visually, the locally fitted functions are indistin-
guishable, but for the global fit only the Hill function model is able to reproduce
both the sigmoidal shape and its steepness. For comparison we also present an in-
stance of the local power-exponential model used by Peper et al. (1998, a = 0.003,
b = 0.4, c = 1.4; cf. Table 3.3.5).

Peper et al. (1998) mistake was expressing kT
11 directly as Vden(T),

and eventually obtaining the time-independent rate of protein misfold-
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ing Vden(T) · P, which is incorrect (cf. Eq. (2.1)). Moreover, the power-
exponential model proposed for Vden(T) by Peper et al. (1998) does not
explain the global form of the temperature-dependent level of protein de-
naturation (cf. Figure 3.3.3). Therefore, we performed both local and
global model selection for the original Lepock et al. (1993) experimen-
tal data, comparing the aforementioned power-exponential model with
sigmoidal shaped logistic and Hill functions. Model selection results are
presented in Table 3.3.5 and depicted in Figure 3.3.5. For our HSR model
adaptation we have chosen the Hill function (Eq. (3.5)) with T0 = 30◦C,
T0.5 = 56.5◦C and nT = 5. Nota bene, the Hill is well known in pharmacol-
ogy, from the analysis of drug–response relationships (see, e.g., Goutelle
et al., 2008), as well as in mechanistic modelling of biochemical reactions
(cf., e.g., Eq. (3.4) or Huang and Ferrell, 1996).

Derivation of the protein denaturation rate constant
Consider the following, minimal model of protein misfolding with as-

sumptions that the total amount of proteins susceptible to misfolding is
constant and that only rate of misfolding depends on the temperature T :

P
aT
1−−⇀↽−−
b1

Stot. (3.8)

Here, both non-negative rate constants aT
1 and b1 have frequency units

(min−1). We consider RRE mathematical model and for sake of clarity
we omit concentration notation [·]. According to our first assumption we
have:

P (t) + Stot (t) = Ptot µM, for all t ≥ 0. (3.9)

After eliminating variable P using Eq. (3.9), the resulting ODE is:

d Stot(t)

d t
= aT

1 · (Ptot − Stot (t))− b1 · Stot (t)
µM

min
. (3.10)

By putting in Eq. (3.10) the steady state assumption d Stot/d t = 0 and
by additionally assuming that at least one of the rate constants is positive,
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Model: Vden(T)
Local: T ∈ [37, 45] Global: T ∈ [30, 100]
Parameters BIC Parameters BIC

Power-exp @ 37◦C:
a
(
1− b

/
e(T−37)

)
c(T−37)

↗ in [a (1− b) ,∞)
for T ∈ [37,∞)

a = 0.00278

b = 1 (max)
c = 1.454

-4618 n/a

Logistic:
1
/(

1+ e− (T−h)/n
)

↗ in (0, 1)
for T ∈ (−∞,∞)

h = 52.025

n = 2.486
-4290

h = 57.803

n = 5.588
-4225

Hill:
1− 1

/(
1+

(
T−d
h−d

)n)
↗ in [0, 1)

for T ∈ [d,∞)

d = 34.563

h = 60.448

n = 3.180

-5336
d = 30 (min)
h = 57.253

n = 4.914

-5665

Hill @ 30◦C (global):
as above for d = 30

h = 56.484

n = 5.042
-4935 —

Table 3.3.5: Model selection of a level of protein denaturation. The power-
exponential model is not applicable in the global case, because its values quickly
escape to the infinity with increasing temperature values. The globally well-defined
logistic function model has the worst score both globally and locally (highlighted).
Hill function is our function of choice for denaturation level of proteins. Even
the globally constrained version (with d = 30), has better score than the power-
exponential model (highlighted). However, in all cases a fit is so good, that a reduc-
tion of a number of parameters for extreme values (i.e. b = 1 in power-exponential
model and d = 30 in Hill model global fit) has a marginal influence on the BIC
score (not shown; cf. Eq. (2.11)). Local and global fit BIC scores were calculated
for 422 and 966 data points respectively.
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we get the amount of denatured proteins in a steady state ST
tot∗, i.e.:

ST
tot∗ =

aT
1

aT
1 + b1

· Ptot µM. (3.11)

On the other hand, we have a function of a fraction of denatured pro-
teins Vden(T) ∈ [0, 1], taken of all denaturation-susceptible proteins at the
steady state , i.e.:

ST
tot∗ = Vden(T) · Ptot µM. (3.12)

From both Eqs (3.11) and (3.12), it follows that, for Vden(T) ∈ [0, 1), the
temperature-dependent misfolding rate constant aT

1 in the minimal model
of protein misfolding (Eq. (3.8)), satisfies:

aT
1 =

Vden(T)

1− Vden(T)
· b1 min−1. (3.13)

For Vden(T) = 1, i.e. for ST
tot∗ = Ptot, we have b1 = 0 and a1 can have any

positive value (note that for Vden(T) = 0 the situation is inverse).
Relating above derivation to our HSR model (cf. reactions (r9) and (r10)),

we have aT
1 = kT

11. Intuitively, assuming that ST
tot∗/HSP:ST

∗ < ϵ, we can
roughly identify the refolding reaction in the minimal model with the re-
action (r9) and say that b1 ≈ k10. To formalise this intuition consider the
following, extended model of protein refolding, under the same assump-
tions as for the minimal model (see Eq. (3.8)):

P aT
1−→ S1 ↽−

bT
2

aT
2−−−⇀ S2 b1−→ P, (3.14)

The interpretation for our HSR model (see Table 3.3.1) is the following:
S1 = S, aT

1 = kT
11 (reaction (r10)), b1 = k10 (reaction (r9)), and S2 =

HSP:S, aT
2 = k6 · HSP:HSFT

∗ , bT
2 = l6 · HSFT

∗ (reaction (r1)). Note that
although we explicitly assumed that only aT

1 constant is temperature-
dependent, a correct steady-state interpretation for HSR model requires to
put temperature dependence on all reaction rate constants, which depend
on the HSR species steady state values.

With Stot = S1 + S2, and the Eq. (3.9)-based elimination, we now have
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two ODE:

d S1(t)
d t

= aT
1 · (Ptot − Stot (t))− aT

2 · S1 (t) + bT
2 · S2 (t) , (3.15)

d S1(t)
d t

= aT
2 · S1 (t)− bT · S2 (t) . (3.16)

where bT = b1 + bT
2 . Analogously to previous derivation, we consider now

a steady state, in which, from sum of Eqs (3.15) and (3.16), and directly
from Eq. (3.16) we get, respectively:

0 = aT
1 · (Ptot − Stot∗)− b1 · S2∗, (3.17)

Stot∗ =

(
1 +

bT

aT
2

)
· S2∗. (3.18)

Eliminating S2∗ from Eq. (3.17), using Eq. (3.18) and combining with
Eq. (3.12), we get:

aT
1 =

Vden(T)

1− Vden(T)
· b1
(

aT
2

bT + aT
2

)
min−1. (3.19)

In HSR model terms Eq. (3.19) is equivalent to Eq. (3.6), where

m11 = k10

(
aT
2

bT + aT
2

)
min−1.

Finally, assuming S1T
∗ /S2T

∗ < ϵ, from Eq. (3.18) we get:

1

ϵ+ 1
<

aT
2

bT + aT
2

≤ 1,

and, in fact, the multiplicative constant m11 in Eq. (3.19) approximates
k10 (from below), if, for all T , ST

∗ /HSP:ST
∗ < ϵ (cf. Eq. (3.13) and the

b1 ≈ k10 intuition which we started this derivation with). In other words,
if in any temperature in a steady state vast majority of the substrate
is bound by HSP, then m11 ≈ k10. We found this assumption valid in
our HSR model for investigated temperature range of 37–43◦C(data not
shown).
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Stochastic extension

For a stochastic model we used the scaling coefficient δ which relates
concentrations in the deterministic model to number of molecules in the
stochastic model. Value of δ corresponds to a number of molecules per
one unit of concentration, i.e. δ [S] = #S. It is equivalent to considering
approximate stochastic model of packs of NA · |V |/δ molecules as a single
molecule (cf. Eq. (1.1)). Given HeLa cell volume of circa 2500 µm3 =

2.5 · 10−18 dm3 (Milo et al., 2010), we have that for δ ≈ 1.5 · 106 the
stochastic model is accurate. We adjust reactions propensity constants
according to Eq. (2.7), where NA · |V | = δ.

We find that for δ = 100 the RRE model is in a good agreement with the
stochastic variant for both 37◦C and 42◦C. Visual comparison of ODE and
stochastic simulations is presented in Figure 3.3.4. Table 3.3.6 presents
comparison of stochastic mean value with RRE values (cf. Eq. (2.6)) for
δ = 100, 1000. Sources of stochastic model error are two-fold: the round-
ing errors due to the molecules packaging and the propensity constants
approximations, especially for the only reaction with rank (Rm) > 1, i.e.
the HSF trimerisation. Although, for δ = 1000 the relative error in steady
state is ca. 10 times lower, the stochastic simulation paths, and thus their
running time, are over 10 times longer (data not shown). We find δ = 100

to be a good compromise between accuracy and efficiency for our proof-
of-concept case study.

Mean value of amount of each species was estimated using the confi-
dence interval APMC method to verify the reward-based property:

R{#S=?} (I = burn-in time) ,

where #S reward for each species S is defined as:

rewards "#S" true : S; endrewards

We start the stochastic process with a single point distribution, according
to RRE values (cf. Figure 3.3.4), thus the burn-in time, which we assumed
1000 min for T = 37◦C and 2000 min for T = 42◦C.
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Figure 3.3.4: Comparison of the stochastic simulations with respect to ODE’
numerical solutions for the HSR model. Both homeostasis (left column) and
heat shock (right column) conditions are compared. Each plots shows 10 sam-
ple stochastic trajectories, estimated mean +/− standard deviation of a sample
of 103 stochastic simulations, and an ODE numerical solution (black). Here, we
assumed 100 molecules per unit of concentration, i.e. δ = 100.

The variance-to-mean ratio:

VMR(X) =
Var (X)

E (X)

quantifies noise of a species amount variable X = #S at a fixed time
point in the stochastic model, with respect to the Poisson birth-death
process (see, e.g., Wilkinson, 2011). The estimated steady state values of
VMR are significant for some of the crucial species, both for the state of
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Relative error +/− 95% confidence interval in %

Species Homeostasis Heat shock
δ=100 δ=1000 δ=100 δ=1000

HSP 12.5 +/− .68 1.31 +/− .19 8.4 +/− .55 0.83 +/− .16

HSF3 12.1 +/− .86 1.45 +/− .26 9.4 +/− .75 0.71 +/− .23

HSP mRNA 12.1 +/− .79 1.23 +/− .24 8.8 +/− .67 0.79 +/− .21

HSE:HSF3 11.4 +/− .87 1.37 +/− .26 8.5 +/− .74 0.86 +/− .23

HSF 6.9 +/− .72 0.88 +/− .24 5.1 +/− .68 0.76 +/− .23

substrate 2.5 +/− .69 0.34 +/− .22 2.9 +/− .44 0.33 +/− .14

HSP:HSF 1.6 +/− .06 0.21 +/− .02 1.8 +/− .09 0.21 +/− .03

HSE 0.6 +/− .04 0.06 +/− .01 0.5 +/− .05 0.05 +/− .01

HSP:substrate 0.1 +/− .17 0.04 +/− .05 0.1 +/− .05 0.01 +/− .02

Table 3.3.6: Estimates of a relative error of each species mean value with respect
to its RRE value, i.e. |E (#S)− [S]|/[S] ; values are given in percent. Relative
errors were calculated in homeostasis (T = 37◦C) and the heat shock steady state
(T = 42◦C), for two scaling coefficient δ values. Species are sorted according
to error values in homeostasis; from the least to the most consistent with the
RRE solutions. Steady state mean values were estimated using APMC with 104

independent simulation samples for each species.

VMR +/− 95% confidence interval

Species Homeostasis Heat shock
HSP 3.05 +/− 0.65 3.14 +/− 0.74

HSF 2.41 +/− 0.35 2.21 +/− 0.40

HSP mRNA 1.68 +/− 0.29 1.60 +/− 0.34

substrate 1.19 +/− 0.24 2.32 +/− 0.53

HSE:HSF3 0.81 +/− 0.12 0.85 +/− 0.14

HSP:substrate 0.78 +/− 0.55 0.57 +/− 0.77

HSF3 0.78 +/− 0.12 0.79 +/− 0.15

HSP:HSF 0.27 +/− 0.46 0.38 +/− 0.60

HSE 0.10 +/− 0.11 0.03 +/− 0.13

Table 3.3.7: Estimates of VMR for each species in homeostasis (T = 37◦C)
and the heat shock steady state (T = 42◦C). VMR estimates were calculated for
δ=100. Species are sorted according to the VMR values in homeostasis; from the
most to the least disperse. Dashed, vertical line separates the over-dispersed and
under-dispersed variables, with respect to the Poisson distribution. The dispersion
doesn’t change much with temperature, except for the substrate (highlighted).
Mean and variance values were estimated using APMC with, respectively, 104 and
5 · 104 independent simulation samples for each species.
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homeostasis and the steady state during the heat shock (see Table 3.3.7).
The steady state amount of substrate, HSP, HSF and HSP mRNA

is over-dispersed with respect to the Poisson distribution, indicating their
high stochasticity in our model. In general noise of the species amounts in-
creases for the higher temperature parameter value: mean VMR in home-
ostasis is 1.23, whilst in the 42◦C heat shock 1.32 (ca. 7.5% higher; see
Table 3.3.7). This is only due to the almost two-fold increase in the sub-
strate noise (highlighted). Note however, that although the number of
HSP:substrate complexes, similarily to substrate amount, significantly in-
creased during the heat shock steady state (cf. Figure 3.3.2), its noise has
decreased by ca. 27%.

On a technical note, it is impossible to query for central moments in
PRISM in a single run. Therefore, the variance value of amount of each
species was estimated from the unbiased mean value and second moment
estimators, i.e.

V̂ar (X) = Ê (X2)− Ê (X)2.

Second moment ̂E (#S2) of species amount was estimated analogously to
the mean value, using the confidence interval APMC method (see above).
Having symmetric confidence intervals:

E (X) ∈
(
Ê (X)− a1, Ê (X) + a1

)
and

E (X) ∈
(
Ê (X2)− a2, Ê (X2) + a2

)
,

with α confidence level, the unbiased moments-based variance estimator
V̂ar (X) has an asymmetric confidence interval:

Var (X) : =
(
Ê (X2)− a2

)
−
(
Ê (X) + a1

)2
≤ V̂ar (X) ≤(
Ê (X2) + a2

)
−
(
Ê (X)− a1

)2
=:Var (X).

(3.20)

Analogously, for an unbiased VMR estimator ̂VMR(X) = V̂ar (X)
/
Ê (X) ,
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we get asymmetric confidence interval, with α confidence level, from the
following inequalities:

VMR(X) : =
Var (X)

Ê (X) + a1
≤ ̂VMR(X) ≤ Var (X)

Ê (X)− a1
=:VMR(X).

For a symmetric confidence interval with α confidence level (cf. Ta-
ble 3.3.7), we simply take:

̂VMR(X) +
− max

(
̂VMR(X)− VMR(X),VMR(X)− ̂VMR(X)

)
.

Approximate stochastic perturbation strategy
In our experiments we model scenarios of consecutive heat shocks im-

posed on the model, separated with gaps. In principle, we control time
points when the heat shocks are activated or inactivated. However, to
do that in a probabilistic model one have to either save the whole distri-
bution over a possibly infinite state space or, if analysis is based solely
on stochastic simulations, modify the simulation algorithm to test again
a current time point and queued deterministic events. Essentially, these
are solutions based on moving to a more general type of models, like the
Markov decision processes, but the price to pay would be complication
and impracticability of analysis (e.g., the APMC does not handle Markov
decision processes).

We have thus chosen to consider heat shock as an approximate random
perturbation event and, thereby to stay within the same mathematical
model and seamlessly perform stochastic simulations or model checking
of CTMC.

Our approach relies on introduction of the sequence of ni-counting Pois-
son processes (a special case of one-dimensional CTMC), independent
of other state variables. Each time i-th process reaches value ni, it is
replaced by another ni+1-counting Poisson processes with rate ni+1τi+1,
where τi+1 = 1/(ti+1 − (ti +∆ti)) is an inverse of a time gap between per-
turbations i and i+1. Because time between consecutive Poisson process
events is exponentially distributed, i.e. Tij ∼ Exp (niτi), the expected time
for an approximate perturbation event equals to the time gap between de-
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terministic perturbations time, i.e. E
(∑n

j=1 Tij

)
= 1/τi . Moreover, due

to independence of a time of occurrence of each count of the Poisson pro-
cess Tij, variance of the i-th perturbation event, calculated independently
of prior i− 1 perturbations, is Var

(∑n
j=1 Tij

)
=
∑n

j=1Var (Tij) = 1/nτ 2i .
In other words the precision of single perturbation event is linearly propor-
tional to the number of counting levels and inverse linearly proportional
to the time of its occurrence.

In PRISM modelling language we introduce two heat shock events,
i.e. four temperature parameter T perturbation events, using Poisson
processes with a common n levels for each parameter and an additional
perturbation number counter i. Using the compositional description of
variables, which represent CTMC state, and commands, which change
CTMC state, the independent perturbation events module (i.e. not syn-
chronised with any other commands) is defined as:

ctmc

// Model parameters
const double t1; // time offset for 1st heat shock
const double td1; // duration of 1st heat shock
const double t2; // time offset for second heat shock
const double td2; // duration of 2nd heat shock
const int Td; // heat shock temperature delta
const int n; // event switcher levels

module events
i : [0..4] init 0; // number of perturbation
ps: [0..1] init 0; // perturbation switcher
cnt: [1..n] init 1; // actual poisson process variable

//pre 1st heat shock
[] i = 0 & cnt < n -> n/t1: (cnt'=cnt+1);
[] i = 0 & cnt = n -> n/t1: (i'=1)&(ps'=1)&(cnt'=1);
//1st heat shock
[] i = 1 & cnt < n -> n/td1: (cnt'=cnt+1);
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[] i = 1 & cnt = n -> n/td1: (i'=2)&(ps'=0)&(cnt'=1);
//pre 2nd heat shock
[] i = 2 & cnt < n -> n/t2: (cnt'=cnt+1);
[] i = 2 & cnt = n -> n/t2: (i'=3)&(ps'=1)&(cnt'=1);
//2nd heat shock
[] i = 3 & cnt < n -> n/td2: (cnt'=cnt+1);
[] i = 3 & cnt = n -> n/td2: (i'=4)&(ps'=0)&(cnt'=1);

endmodule

formula T = (37+Td*ps); // temperature for misfolding rate

Clearly, increasing n increases the number of states of the model, and
thus makes the experiments less efficient. A suitable value of the parame-
ter n has been chosen experimentally by visual assessment of the substrate
stochastic trajectories precision, taking under consideration simulations
efficiency; see Figure 3.3.5 caption for details on choice of n in the HSR
model.

Figure 3.3.5: Comparison of simulations of approximate perturbations in the
stochastic model with respect to ODE simulations. The comparison is shown for
different levels n of the independent Poisson process, which approximates the
deterministic scheme of perturbations of the temperature (left column). Plots
show examples of 50 stochastic simulations, and mean +/− standard deviation,
estimated from 1000 samples, for the temperature perturbation scheme (left col-
umn) and the substrate amount (right column). Variance of time of a temperature
perturbation event T is a function of an perturbations time gap t and the precision
levels n, i.e. Var (T ) = t2

/
n . Therefore, the main time approximation error

for our perturbation scheme lies within an event of the second heat shock with
t = 1200 min (cf. left column). Note though, that errors for subsequent pertur-
bation times accumulate, so the biggest error can be observed for the end of the
second heat shock. Nevertheless, because start of the second heat shock creates
high amounts of molecules in the system, it is the most error influencing event with
respect to species amounts expected from the RRE numerical solutions (cf. right
column). We found that for n = 213 the approximation of mean and standard
deviation of the substrate amount in the second heat shock is in a good agree-
ment with much more precise values in the first heat shock and with RRE solutions.

Figure on the next page.
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Quantification of the thermotolerance phenomenon

Thermotolerance can be described as a desensitisation with respect to
a consecutive heat shock, compared to the response to the first heat shock.
In other words, thermotolerance represents a memory of the system about
the first two, on and off, temperature perturbations, leading to a decreased
response to the subsequent perturbation. Such system’s memory is created
by a propagating shift in species activity and the feedback loop of the HSR
network (cf. Figure 3.3.2).

Figure 3.3.6 depicts the thermotolerance phenomena in the determinis-
tic HSR model. Duration of the memory of the first temperature perturba-
tion can be tracked by the activity of the HSP, as depicted in Figure 3.3.7.
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Figure 3.3.6: Thermotolerance in the heat-shock response: the substrate activity
(solid) during the two consecutive heat shocks (dotted) of 5◦C over the homeo-
statis level of 37◦C. The strength of the intoxication by the substrate (coloured
area) depends on the time gap between heat shocks. Interestingly, activity of the
substrate in the second shock can be even higher than activity in the first shock,
as shown for the time gap of 800 min.
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perturbation can be tracked by the activity of the free HSP. Its level at the moment
when the second heat shock is induced is negatively correlated with the strength
of the second response. The second response goes from almost none (upper left),
through mediocre (upper right), and even over-dominating the first response (lower
left), to exactly the same when the memory is lost (lower right).

We define the notion of the thermotolerance during n-th heat shock
(n > 1) as the desensitisation coefficient:

Dn = 1− Rn

R1

, (3.21)

where n-th response Rn is defined as:

Rn = max
tn<t<tn+∆tn

{#S (t)−#S∗} , (3.22)

where #S∗ = Eπ (#S) is a mean value in a steady state π, [tn, tn +∆tn]

is a heat shock duration interval, and the first response, by assumption,
satisfiesR1 > 0. Such response measure represents the toxicity of the heat
shock: the higher the response the more likely the cell will die. For the
deterministic model the species amount is simply a scaled value of ODE
variable, corresponding to the stochastic mean value (cf. Eq. (2.6)).
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Figure 3.3.8: The desensitisation coefficient D2 for the substrate in the ODE
model (black line) and in the CTMC, plotted against the time gap between end
of the first heat shock and the beginning of the second heat shock. Duration of
both heat shocks ∆tn (n = 1, 2) is equal to 250 min. Memory of the first heat
shock is lost when the desensitisation coefficient value stabilises around 0, which
is approximately at 1400 min for both mathematical models. Mean (yellow line)
and standard deviation (orange line) of D2 was calculated at selected time points
(dots). Both estimators have a confidence interval with 95% confidence level. In
case of the mean value the confidence interval width is less than 5 · 10−3, whilst
for the standard deviation the confidence interval is depicted as a strip. Estimators
were calculated using APMC with 104 and 5 · 104 independent simulation samples
for the first and the second moment respectively (see text for details).

Figure 3.3.8 depicts value of the desensitisation coefficient D2 for the
substrate species, with respect to the time gap between heat shocks. After
the first heat shock, at the time gap of the approximated memory loss,
i.e. at t = t1 +∆t1 + 1400, system is very close to the homeostasis steady
state (data not shown). The slightly positive final level of D2 in the
stochastic model, as well as the overall difference with respect to the
deterministic model may be attributed to the stochastic noise (we take
maximum amount in Eq. (3.22)). Moreover, the shared initial increase of
desensitisation for a time gap under 20 min may be attributed to HSF3,
HSP mRNA and HSP peaks being under 50 min (cf. Figure 3.3.7 and
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Figure 3.3.2).
The D2 mean value for heat shocks time gap t1−(t1 +∆t1) is estimated

using the confidence interval APMC method to verify the reward-based
property:

ϕi : =R{Di
2=?} (I = 1.05 · (t2 +∆t2))

where for i = 1, 2, first and second moment D2 rewards are defined as:

rewards
"D1

2" true: (Smax
2 − S∗)/(Smax

1 − S∗);
"D2

2" true: ((Smax
2 − S∗)/(Smax

1 − S∗))2;
endrewards

Here, Smax
i is an additional stochastic model variable, which is a witness

of the maximum value of the substrate variable S, during the i-th heat
shock. Introduction of such variable in PRISM modelling language can
be done seamlessly, i.e. without affecting the behaviour of the original
CTMC. Finally, we have Ê (D2) = 1 − ϕi, as E (1−X) = 1 − E (X),
and ̂Var (D2) = ϕ2 − (ϕ1)

2, as Var (1−X) = Var (X). The unbiased
standard deviation estimator ̂SD (D2) =

√
̂Var (D2), has the following α

level confidence interval:√
Var (X) ≤ ŜD (X) ≤

√
Var (X),

provided that the variance estimator’s precision is high enough, i.e.
Var (X) > 0 (cf. Eq. (3.20)).

Hyperthermia in multimodal oncological strategies

Although hyperthermia exhibits a clear cytotoxic effect its efficacy is
not enough to replace any one of the established therapy modalities when
applied alone, but, undoubtedly, it is suitable enough to enhance the
cell-killing effect of cytotoxic drugs or radiation (“thermal chemosensiti-
sation”, “thermal radiosensitisation” Hildebrandt et al., 2002). In order
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to improve the efficacy of anti-cancer therapies, it has been recently inves-
tigated how to combine different methods of cancer treatment into more
effective multimodal oncological strategies. Particular attention has been
paid to treatments that involve hyperthermia as an adjuvant protocol
for both radio and chemotherapy. A synergistic interaction between hy-
perthermia and radiotherapy as well as various cytotoxic treatments has
already been validated in pre-clinical studies (Wust et al., 2002). Despite
clear experimental evidences the precise mechanism of these interactions
is not known.

We believe that synergistic effect of hyperthermia and other cancer
therapies is caused by the much higher accumulation of denatured pro-
teins (substrate), which are deadly for cell. To give a proof-of-concept
we investigate the temperature dependence of the heat-shock response
as well as combined temperature and protein refolding inhibition in the
deterministic HSR model.

Figure 3.3.9 depicts rate of a change of the level of heat-shock re-
sponse R1 with respect to temperature, together with corresponding sub-
strate activity. R1 is slowly reaching its limit, which is the saturation
limit of S, i.e. Ptot, minus the base, steady state value of S.

Figure 3.3.10 contains a contour plot of the heat-shock response R1 val-
ues for the combined therapy i.e. hyperthermia and potential chemother-
apy. The latter is modelled as the inhibition of protein refolding reac-
tion (r9). More precisely, inhibition is modelled as a linear scaling of the
reaction rate constant, i.e. (1 − x) · k10 for x ∈ [0, 1], where x represents
inhibition level. When no drug is administrated x = 0 whereas in case of
full inhibition x = 1.

Indeed, when both therapies are applied simultaneously, substrate accu-
mulation reaches higher level than it would be possible with application
of only one of the therapies. For example, to reach R1 level of full in-
hibition or the over 39.2◦C heating, it is enough to heat up cell to ca.
38.5◦C and combine it with inhibition of a half of the refolding rate (cf.
Figure 3.3.10).
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Figure 3.3.9: HSR with respect to temperature. The upper plot depicts RRE
trajectory of the substrate, upon 250 min heat shock for T = 37, . . . , 43◦C. The
heat-shock response maximal level R1 with respect to a broader temperature range
is depicted in the lower plot.

The rationale behind such a simplified modelling of the drug therapy
is that anti-cancer drugs such as bortezomib inhibit proteasome which
is responsible for substrate degradation (cf., e.g., Neznanov et al., 2011).
Degradation of misfolded proteins is not induced by the temperature and
requires assist of HSP (Wagner et al., 1994). Therefore, reaction (r9), in
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Figure 3.3.10: Contour plot of the heat-shock response level with respect to
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by colours from blue (the weakest) to red (the strongest), measures the toxicity of
the combined therapy.

fact, represents both the S refolding and the S degradation combined with
a production of a new protein P.

3.3.4 Tools and methods

We defined model using the SBML-shorthand notation. The RRE
model has been numerically solved using the MathSBML package (Shapiro
et al., 2004) of Mathematica software. The latter was used for creation
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of most of the plots and for collection of results. To generate the PRISM
model, we have used a prototype SBML translator which generates model
specification in the PRISM language. Some minor adjustments, such as
factorisation of parameters or accounting for mass conservation laws (c1)–
(c1), have been done manually. The approximate stochastic perturbation
strategy and has also been encoded manually in the PRISM model. All
stochastic simulations and the confidence interval-based APMC was done
using PRISM.
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Success consists of going from failure to failure
without loss of enthusiasm.

Winston Churchill

4
Conclusions

Mechanistic modelling is widely used in science and engineer-
ing. It provides a powerful intellectual framework for understanding and
validation of the modelled phenomena. Developments in modelling of
molecular biological systems are driven by the convergence of complemen-
tary approaches from many fields of science. However, bringing modelling
into the mainstream of biological research still requires the development
of modelling theoretical and practical frameworks, that encourage wet-lab
experimentation as well as scientific collaboration and communication.

Challenges posed by biological complexity are usually, at least initially,
tackled by focusing on the statistical analysis of the phenomenological
data alone. Such approach may be ascribed to a general lack of useful
relevant mechanistic models or suitable frameworks for their construction
and analysis. Moreover, as the experimental technology continues to ad-
vance the tendency to simply measure more data to solve the problem at
hand becomes more apparent. Such strategy does not enable an explana-
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tion of the underlying phenomenon of interest.
Most of the kinetic models of molecular biological systems are known

to be incomplete and even though they are accepted as such. It is because
even very simplified model will most probably have a great value in ad-
vancing towards an understanding of the phenomena that it describes. As
such, this model can provide hypothetical, explanatory solutions to the
problem under consideration.

In this dissertation we evaluated methods of analysis of spatially homo-
geneous models of biochemical reactions networks in three case studies,
related to the intracellular signalling. More specifically, in the JAK-STAT
case study we evaluated usefulness of different model selection methods
in a frequently encountered, but not much discussed case of a model of
a considerable size, which has several variants differing at peripheries. In
such situation, all considered variants can reach nearly perfect agreement
with respect to their numerical simulations results and, most often, the
sufficient experimental data to test against is not available. We argue
that in such an adverse setting, the sensitivity and identifiability analy-
ses, although not directly corresponding to the model selection problem,
can be more informative than the representative, generalizability-based
approaches to this task. An additional insight into how the responsibility
for the network dynamics spreads among model parameters, enables more
conscious, expert-mediated choice of the preferred model.

However, parameters sensitivity is strongly dependent on the property
under examination (cf. Chen et al., 2009). In the case study of a property-
specific sensitivity analysis we supported this statement with a simple ex-
ample. Moreover, we showed that the marriage of model checking and
sensitivity analysis seems promising as it often can yield a better under-
standing of the dynamics of systems to be analysed. It seems that this
approach is well suited for revealing intricate and subtle dependencies in
the model that may not be discovered using ODE numerical simulations
and error functions based on p-norms. We suppose this technique may
have interesting applications, for instance for the probabilistic abstrac-
tion, i.e. reduction of the probabilistic model which preserves properties
of interest.

We demonstrated feasibility and practical potential of the PMC tech-
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nique, more specifically its lesser known approximate variant, in a case
study of analysis of the heat-shock response mechanism. We compar-
atively studied its deterministic and stochastic variants, including the
investigation of the thermotolerance phenomenon. Moreover, by mech-
anistic modelling of HSR we were able to support the common belief that
the combined cancer treatment strategies can more effectively increase cy-
totoxicity of denatured proteins in cancer cells than unimodal strategies.

Finally, we presented implementation of the practical analysis frame-
work — the Tav4SB project. Tav4SB Web service provides a set of inte-
grated tools in the domain for which Web-based applications are still not
as widely available as for other areas of computational biology. Moreover,
we extended the dedicated hardware base for computationally expensive
task of simulating cellular models. Through this project we promote the
standardisation of models and experiments as well as accessibility and
usability of remote, scientific services, conforming to the “Science as a
Service” idea. The main benefit of the availability of the scientific ser-
vices which implement SaaS idea is that it allows a much broader com-
munity to participate in the research process. With knowledge and data
distributed widely throughout the global scientific community, and with
currently available possibilities to connect and to work together, construc-
tion of a rich and comprehensive picture of the machinery of life is more
plausible than ever.
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Abbreviations

Abbreviation Meaning

χ2 chi-squared.

a.s. arbitrary scale.
AIC Akaike information criterion.
APMC approximate probabilistic model checking.

BF Bayes factor.
BIC Bayesian information criterion.
BMS Bayesian model selection.

CME chemical master equation.
CSL continuous stochastic logic.
CTMC continuous-time Markov process.

ECDF empirical cumulative distribution function.
Epo Erythropoietin.

FOS first order sensitivity.

GOF goodness of fit.
GSA global sensitivity analysis.

HSE heat-shock element.
HSF heat-shock factor.
HSP heat-shock proteins.
HSR heat-shock response.

IA identifiability analysis.
IFN Interferon.
IL Interleukin.

JAK Janus Kinase.
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Abbreviation Meaning

K-S test Kolmogorov-Smirnov test.

LHS latin hypercube sampling.

MCF Monte Carlo filtering.
MCMC Markov chain Monte Carlo.
MPSA multi-parameter sensitivity analysis.

NLS non-linear least squares.

OAT one-factor-at-a-time.
ODE ordinary differential equations.

PCTL probabilistic computation tree logic.
PDF probability density function.
PIAS Protein Inhibitor of Activated STAT.
PL profile likelihood.
PMC probabilistic model checking.
PMCC Pearson product-moment correlation coeffi-

cient.
PTP Protein Tyrosine Phosphatases.

RRE reaction rate equations.

SA simulated annealing.
SaaS Science as a Service.
SBML Systems Biology Markup Language.
SOCS Supressor of Cytokine Signalling.
SOSlib SBML ODE Solver.
SRCC Spearman’s rank correlation test.
SSE sum of squared errors.
STAT Signal Transducer and Activator of Tran-

scription.

Tav4SB Taverna services for Systems Biology.
TE total effects.
TFOS total FOS.
TTE total TE.

VMR variance-to-mean ratio.
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Abbreviation Meaning

WALS weighted average of local sensitivities.
WS Web services.
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