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Abstract

The following thesis contains several results regarding communication com-
plexity of two basic distributed problems: gossiping and consensus. Gossiping
is a problem of exchanging initial knowledge between all processes. Consensus
is a problem of making a common decision by all processes.

The thesis consist of two parts. First part is devoted to the gossiping
problem, analyzed in three different fault-prone settings. For all three set-
tings, asymptotically optimal solutions are presented, together with proofs of
corresponding lower bounds. These solutions are created on the basis of one
common communication framework, introduced in the thesis.

In the second part, the same framework is further extended to create time
and message efficient fault-tolerant consensus algorithms. Two algorithms are
presented: a deterministic one and a quantum one. In both cases the bit
complexity of these algorithms beats best previously known that works in the
same time.

The studied model of distributed system is a synchronous message passing
system: a system with global clock and point-to-point communication. All
units are prone to failures, and therefore protocols can not rely on correctness
of any single unit. In some cases there is a bound on a fraction of processor
that may fail, which means that in case of more failures safety of the system
is not guaranteed. In other cases, correctness is guaranteed as long as at least
one processor works properly.

Three types of faults are analyzed: crash, omission, and Byzantine fail-
ure. Crash means that processor completely stops its activity at some point.
Omission failure means that processor fails to send or receive some messages.
Byzantine failure encompasses any malicious behavior of the processor.

The main technique used in this thesis is based on transformation of dis-
tributed communication problems to graph problems. Every algorithm is cre-
ated by definition of underlying communication patterns in a form of graphs
with specified properties. Then existence of such graphs is proven using prob-
abilistic methods.

The results are evaluated in terms of execution time, total number of mes-
sages used (message complexity) and total length of these messages (bit com-
plexity).

Keywords: gossiping, consensus, distributed algorithms, fault tolerance, adap-
tive algorithms, processor failures, quantum algorithms
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Chapter 1

Introduction

The topic of this thesis, fault tolerance of distributed algorithms, overlaps with
many fields of contemporary computer science. There are many models and
notions used to describe distributed systems, useful in different applications
(see [7],[61]). Therefore in order to avoid ambiguity, we start with devoting
some space to clarify the area that we are interested in. This is the main
purpose of this chapter.

Undoubtedly, robustness and stability are desired properties of each com-
puter system. Algorithms by themselves may be flawless, and their imple-
mentations may be well prepared for any possible input data. But real world
systems often face unpredictable changes in their environment, and sometimes
in their physical hardware. Searching for a way of dealing with these errors
leads to many interesting fields of research: channel capacity, error correction
codes, database consistency, data redundancy and more.

Distributed systems are particularly interesting from this point of view,
because there exist many fault types specific only to them. Since distributed
system consists of many independent units, it is often unrealistic to require
correct behavior of every unit. In fact, it is often expected that system should
be able to withstand failure of a substantial part of them. Such circumstances
do not need to be caused by real failures in hardware or software. For example,
if we perform massive distributed computation in the idle time of a set of PC’s
connected to the Internet, each time some PC is given any other task, it is
removed from our computation. From the point of view of our model, we have
to consider such event as a “failure” of this unit.

In many settings, the easiest and cheapest way of dealing with failures is to
add some “invulnerable” stations that will oversee the system, assigning work
to normal stations and dealing with their failures. The main disadvantage of
this solution is, however, creation of a bottleneck. Scalability of such system is
bounded by performance of these special stations. And if we start to increase
their number, we are back in the first problem, of dealing with a failure of any
one of them.
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In this thesis we will be considering only fully scalable solutions, with fully
homogeneous structure, and not relying on proper behaviour of any of its parts
— that is, where all units are treated uniformly and failure of any part does
not brake the computation.

When failure occur at some point of an execution, inevitably some infor-
mation obtained up to this point is lost. It is therefore crucial to maintain
redundancy and exchange data in some intermediate steps. If we want to
be able to withstand any failures, this task is often expensive, either in time
or in number of messages that have to be exchanged. Problems considered
in this thesis are crucial to create fast and message-efficient communication
when system is severely damaged. The intent of algorithms presented here is
to provide effective primitives that may be used as building blocks for more
complex protocols.

The structure of the thesis is the following. We start with an overview of
distributed systems, which will allow us to define precisely which model we are
interested in. Next we formalize our model, using a logical approach. After
this introduction, we move to the main results. Chapter 2 is devoted to the
gossiping problem, analyzed in several failure models. We present upper and
lover bounds for each model, obtaining a strict hierarchy of communication cost
incurred by failures of processors. In Chapter 3 we use framework introduced
in Chapter 2 to obtain two consensus algorithms: a deterministic one and a
quantum one. We end each chapter with a brief discussion of related open
problems.

All results contained in this thesis were obtained together with Darek
Kowalski during recent years. As always, it is not easy to determine the origin
of the ideas behind the solutions, and in most cases both our input was crucial
to the final success. Getting into details, I was the author of the first version
of gossip against omission failures and consensus against crash failures algo-
rithms presented here, Darek was the author of first version of gossip against
crash failures. All these algorithms were then refined by us together. As for
the lower bounds, I was the author of lower bound for gossip against omission
failures, Darek was the author of lower bounds for gossip against crashes and
Byzantine failures. Finally, the quantum consensus algorithm is mine. The
results of Section 2 were published in [55], remaining results await publication.

1.1 Overview of distributed systems

Importance of distributed systems is of constant increase in modern computer
science. Since upgrading performance of a single processor becomes more and
more expensive with each next generation, natural trend is to turn into increas-
ing the number of cooperating units. This, however, leads to many issues of
synchronization of their work, sharing the data, parallelization of algorithms,
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load balancing, dealing with changes in the system and so on. Efficient so-
lution to these problems (like Distributed Hash Tables [11, 77], Bloom filters
[16], Paxos consensus algorithms [56, 57], and many more) have stimulated a
technological shift in recent years.

One of the standing features of distributed system theory is that there
is no single canonical model of such system. In contrast to classical theory
of computation, where all computing devices are usually modeled as equiva-
lent to Turing Machine, there exist many nonequivalent models of distributed
systems. This is mainly motivated by real-world application. Commercial sys-
tems utilize radio networks, cable networks, multiprocessor systems, and each
of them in many variants. Although it is possible in some cases to simulate
one by another, usually it is too expensive. Instead, different algorithms are
designed for any of these models.

For this reason, distributed systems spawned a great number of results,
theorems and algorithmic techniques. Describing the whole landscape of them
is far beyond the scope of this thesis. Here we present only a brief overview of
models existing in literature, in order to give a reader an outlook on the place
of presented results in the whole theory.

In general, each distributed system model may be identified by fixing a set
of parameters. These parameters are:

Structure of the system:

• Homogeneous
In homogeneous system, all units are of the same type. All units are
prone to the same type of failures and usually no assumptions about
robustness of any units is made. Safety of such system is defined often
in terms of fraction of units that may fail without violating the algorithm
outcome.

• Heterogeneous
Heterogeneous systems may contain different kinds of units with various
abilities and efficiency. This is extremely useful for practical purposes if
we can introduce some “central” unit or units, assumed to be flawless.
Such technique is used, e.g., in massive Internet-based computation like
SETI@home [72]. Such systems are particulary hard to describe by a the-
oretical model, as they stand in-between distributed and classic model
of computation.

Synchronicity of the system:

• Asynchronous systems
In asynchronous system, every unit works according to its internal clock,
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which may arbitrarily differ from the clocks of other units. It is known
that some problems (eg. deterministic consensus with at least one failure
[37]) are unsolvable in this model.

• Synchronous systems
In synchronous system, we assume existence of some global clock, which
produces time reference accessible to all units. Such feature allows very
efficient communication between units, in particular deriving informa-
tion from lack of communication or from the time frame of a message.
Synchronous systems also often assume that all machines start simulta-
neously. In other models i.e. initially only one machine is working, and
other machines wake up after receiving first message.

• Partially synchronous systems
One can find many intermediate models between the two presented
above. We may assume e.g. that there is an upper bound on the time
between sending and receiving any message, but it is not known to ma-
chines (if it was, the system could be considered synchronous). In other
setting, we may assume that such bound only starts to hold in some
unknown time T [33]. Other models assume an upper bound on clocks
speed quotients, or introduce some types of synchronizers [9] or other
failure detectors [12, 26, 30, 31].

Communication structure of the system:

• Fully connected systems
In fully connected system, every unit may communicate directly with
any other.

• Network systems
In network system only some pairs of processors may communicate di-
rectly, others have to route their messages through the network. This is
modeled by defining a graph of connection between units. Existence and
efficiency of many algorithms in such system depends on the properties
of this graph - e.g. connectivity, degree, diameter and so on.

• Non-graph systems
More exotic models of radio network utilize also physical properties of
radio waves. If we take into account that a message is received when the
signal-to-noise ratio is high enough then interaction between simultane-
ous transmission becomes much more complicated, and graph model is
no longer valid.
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Initial knowledge of every unit:

• Whole system known
In such setting, every unit knows from the beginning the identity of
all units and the network structure. In particular units have unique
identifiers.

• Neighborhood known
Every unit knows only identity of its neighbors, a priori not knowing
anything about units that it can not communicate directly with. If a
system is fully connected, this setting is identical to the previous one.

• Ad-hoc setting
In ad-hoc system, no initial information about structure is given to the
units. It is a reasonable model for mobile dynamic networks, where units
may emerge and vanish from the system at any time.

System evolution in time:

• Static system
Structure of such system does not change during time that we are in-
terested in. This often greatly simplifies the analysis, and is reasonable
especially when we analyze short-time algorithms and protocols.

• Dynamical system
Dynamical systems are much more complicated to analyze, and are fur-
ther divided into many subsequent models. We may permit adding new
units and/or removing the old ones (permanently or temporarily), ap-
pearance and disappearance of communication links in various patterns
and so on.

Communication primitives:

• Message passing
Units communicate by sending messages to each other. This is the most
basic model of distributed communication. Depending on the setting, we
may assume that receiver can always identify the sender of each message,
or that sender may claim false identity.

• Shared memory
Units communicate by placing some data in a memory accessible to
every or to some set of units. This model is motivated especially by
multiprocessor integrated system. Policy of access to shared memory
further divides it into several models.
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• Radio transmission
Broadcast to all neighbors is allowed. Usually it is assumed that in any
given moment only one message may be received, and if more than one
neighbors broadcast, considered unit does not receive any message (but
sometimes it can detect a collision). Radio networks introduce several
new communication issues, but some techniques from message-passing
systems are used also in this context [22, 23, 40]. Special case of radio
networks are geographical networks, where units are positioned in some
space and links are defined by distances between them (e.g. unit disk
graph [24]).

Properties listed above are independent to a great degree, and one can
obtain many reasonable models taking different combinations. Many of such
models are not only interesting from the theoretical point of view, but have
also some practical analogs in the real world. Others may be considered as
simplified versions of more complex ones, and may be used for deeper analy-
sis of desired problems. For example, the whole Internet may be treated as
partially synchronous, heterogeneous, dynamical network where every node
knows only its neighbors and only message passing is allowed. Multiprocessor
systems may be, on the other hand, treated as a synchronous, static, fully
connected system with shared memory. Smart dust and sensor networks may
be modeled by asynchronous, dynamical ad-hoc radio networks [4].

The rest of this thesis in devoted to homogeneous, synchronous, fully
connected system with known structure and message-passing communication,
which is a canonical message passing system used in literature [7, 63]. One may
think of this system as an simplified model of peer-to-peer network, where ev-
ery unit knows all peers. Although real peer-to-peer network is usually hetero-
geneous, only partially synchronous and has some topology, many algorithms
designed for a simpler model may be relatively easily implemented on it. We
now define our model in more formal way.

1.2 Message passing systems

Message passing system consists of any number of units, that communicate
by sending point-to-point messages. Since we consider a synchronous system,
execution is performed in rounds. In a single round, every unit may perform
any finite computation, send any number of messages and receive any number
of messages. This models real world systems, in which time between sending
and receiving a message is several orders of magnitude longer than the time
required for internal processor operation. Because of that, in many cases
execution time of distributed algorithm is determined by the time spent on
waiting for messages. In this model we measure only this time, with a single
message travel time being a unit of measure. In real world systems, this time
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usually varies, therefore to obtain meaningful result we must assume some
upper bound on it. One may think of the time complexity considered here as
a communication ”depth”, rather than a number of operations to perform.

In this section we formalize this setting. Most notions and definitions are
intuitively understandable, but in order to avoid ambiguity we define them
in a formal way, using terms from computation theory. One may find more
refined formal definition of such model, called Hybrid I/O automata, in [62].

1.2.1 Units, rounds and communication

A distributed message passing system Sn is a set of n units along with a set of
communication interfaces. Each unit is a deterministic Turing Machine with
many tapes. In this thesis we call it TM, machine, unit, process or a node,
using these terms as synonyms. Each communication interface represents a
directed edge between two units. It consist of two buffers: send buffer and
receive buffer. Any pair of units (A,B) may be connected with an interface. In
such case, send buffer is a write-only unidirectional tape connected to machine
A, and receive buffer is a read-only unidirectional tape connected to machine
B.

In general, the set of communication interfaces may create any directed
graph on the set of machines. In this thesis we consider only fully connected
case, where there are n(n − 1) communication interfaces. Every machine has
n− 1 send buffers and n− 1 receive buffers.

Each machine executes its own program, which may (and usually does)
include sending and receiving messages. Each machine starts knowing number
n and its own unique identifier i ∈ {1, . . . n}, both written on its working tape.
For simplicity, we assume that the code (also called protocol or algorithm) P
is the same for all n machines. Since every machine starts with different i,
in fact behavior of machines may differ. Also, behavior of machines may be
changed by failures, occurring in the system.

We are interested only in uniform algorithms, that is, algorithms with a
single predefined code for all n. Since the set of tapes depends on n, this code
translates to different transition tables for every n.

Each machine may have some additional input written initially on its work-
ing tape. All send and receive buffers are initially empty. All machines start
simultaneously. Protocol ends when all correct machines (but not necessar-
ily the faulty ones) enter terminal state. We will formalize later when such
protocol solves a given problem. It will always depend on data stored on the
working tapes at the beginning and at the end of the computation.

To formalize the notion of a round, we introduce two synchronizing states
for each machine: StartRound and FinishRound . Each machine that enters
FinishRound state, stays idle in this state until rest of machines do the same.
This assumption makes our model synchronous. In a real system, we may

9



obtain similar result by requiring each machine to wait some predefined time
after each round, to ensure that each other machine finishes its own tasks
(unless it is faulty). There exist many more sophisticated ways to make real
system synchronous, but we shall not discuss them here, noting only that our
model does not require any unrealistic assumptions.

When all correct machines enter FinishRound state, the following happens:

• Content of every receive buffer is replaced with the content of send buffer
of the same interface. We define this operation as atomic, regardless of
the number of symbols in send buffer.

• Content of every send buffer is cleared.

• Heads on send and receive buffers are placed on the beginning.

• Every machine enters StartRound state.

This simulates sending and receiving messages in a synchronous manner.
Every nonempty content of every buffer is called a message. With this formal-
ization, sending a message to process p means simply to write its content on
a proper send buffer. Receiving a message means to copy content of receive
buffer to working tape.

We note here that this formalization differs in one detail from the automa-
ton model (as, e.g., in [61]). Namely, machine may control order of messages
sent in every round. This is especially important in case of crash failures,
which may occur during sending messages (see the next subsection). In the
automaton model it is assumed that any subset of messages may be delivered
in such case, while in our formalization only some sets may be possible, de-
pending on the protocol. It means that our model in slightly stronger, and
potentially may allow more efficient algorithms. However, it will be easy to
see that it is not the case for the problems considered here, because all of our
algorithms as well as all proofs of lower bounds work in both models.

For consistency, we assume that initial state of each machine is StartRound ,
and there is no transition leading to this state in other way than described
above. This guarantees that all correct machines will enter this state in the
same moment and the same number of times.

1.2.2 Failures

We now formalize our model of failures. This formalization is equivalent to the
classic model of processor failures, as defined in literature (see e.g., [7, 63, 70]).

We say that a machine is faulty when it executes protocol different from
the implemented one. We remind here that the code for every machine is the
same. For now, we assume that initially the set of machines is divided into
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two parts: the set of correct ones and the set of faulty ones. This division
is not known to the machines, and they may only infer failures of their peers
by analyzing messages received from them. Assumption that the set of faulty
machines is predefined is sufficient as long as we consider only deterministic
algorithms (which are the main topic of this thesis). In the last section, when
we consider quantum algorithms, we discuss extension of this model.

Since faulty machines may never end their computations, we say that pro-
tocol finishes when all correct machines enter terminal state. We call a pro-
tocol t-resilient, if in any setting with up to t faulty machines, and for any
possible behavior of faulty machines allowed by a given failure type, the cor-
rect machines terminate and terminal state meets requirements defined in the
problem.

We define three types of failures, and thus three corresponding resiliency
types. Let P be an initial protocol of machine M .

Crash failures We call a computation C of machine M a crash failure, if it
meets the following requirements:

• There exists a point X in computation C, up to which M executes only
transitions allowed by P (thus this is a valid computation of code P ).

• After point X, machine enters final state.

Observe that this may also be a behavior of a correct machine (when it
enters final state in a legal way). This is an important intuition for our failure
model. Faulty machines may behave correctly. The definition of t-resiliency
says only that protocol must withstand any allowed behavior of the faulty
machines.

Omission failures We call a computation C of machine M an omission
failure, if it uses only the following moves:

• transitions of M ,

• empty write move - instead of writing message to send buffer, machine
may ignore it, leaving send buffer empty,

• empty read move - instead of reading message from receive buffer, ma-
chine may ignore its content, acting like if the receive buffer would be
empty.

Such notion allows machine to ignore any data on any input tape and drop
any data intended to be written on any output tape. It is crucial that messages
in this model are not altered, only ignored.

11



Byzantine failures Byzantine failure encompasses all possible behaviors of
machine M . In particular, such machine may incorrectly read any value from
any input tape, or write any message on the output tape. Even more, behavior
of these machines need not to be predefined in a form of transition table. They
may, for example, read and write on communication tapes of each other (but
only those of the faulty ones). In short, set of faulty machines may send in
every round any combination of messages — even not a computable one. t-
Byzantine-resilient protocol must work correctly for such behavior of any set
of t machines.

It is worth mentioning an existence of a slight modification to this model,
which might be introduced to prevent faulty machines from forging messages
created by the correct ones. It is called an authenticated Byzantine model [29].
In this model, system is equipped with some public key infrastructure. Each
piece of data may be signed by its creator, so that any other machine can
verify which machine is its original source. It is assumed that such signatures
are unforgeable. Then if only signed pieces of data are accepted, no faulty
machine can claim falsely that some correct machine sent some information.
This sometimes allows us to use omission-resilient algorithms as a Byzantine-
resilient ones [29].

Note that crash failures are most benign kind of failures, while Byzantine
faults are most severe among considered ones. Indeed, a crashed processor
could be seen as one suffering an omission failure that performs empty write
on every tape starting from some given point. On the other hand, Byzantine
and authenticated Byzantine processor may simply omit some sent/received
messages, thus mimicking an omission fault.

1.2.3 Complexity measures

Execution finishes correclty, if at some point all correct machines enter termi-
nal state, and additional requirements defined by the problems are met. At
this point we may calculate a cost of this execution. We use the following costs
definitions:

Communication complexity or message complexity is a number of
messages sent during the execution. Formally, we count how many times a
nonempty content of a send buffer of some correct machine is copied to a
receive buffer of any machine. It is important that messages sent to faulty
machines are counted, but not messages sent by faulty machines.

Bit complexity is a total number of bits of the messages considered in
the previous case.

12



Time complexity is a number of times when each correct machine en-
tered StartRound state. Since all correct machines enters this state in the
same moment, this number is identical for all of them.

All costs are represented as the asymptotic functions of the number of
processors n, the resiliency threshold t (maximum number of failures that pro-
tocols handle) and the number of failures f (actual number of faulty processors
during the execution). In gossiping problem we use also additional parameter
r, being the total length of initial data of all processors. This parameter af-
fects only the total length of all messages, and it is important only in the bit
complexity.

1.3 Expanders

Our approach to construct efficient distributed algorithms is based on defini-
tion of special communication patterns, expressed in a form of graphs with
required properties.

All graphs used in this thesis belong to family of expanders [51]. Such
graphs are in general hard to construct deterministically, but usually quite
easy to obtain if edges are placed randomly. There is no single definition
of expander graph. In different contexts, several slightly different expansion
measures are used, to determine if a given graph is an expander.

Most useful property for our purposes is vertex expansion. We say that a
given undirected graph G = (V,E) has a vertex expansion α for sets of size β, if

∀S⊂V |S| < β|V | ⇒ |Γ(S)| ≥ (1 + α)|S|,
where |Γ(S)| is a set of neighbors of a set S, that is, a set of vertices with at least
one neighbor in S. For a bipartite graph often the definition is reformulated to
include only subsets of one side of the graph: we say that bipartite undirected
graph G = (A,B,E) with E ⊆ A× B has expansion rate α for sets of size β
on side A, when

∀S⊂A|S| < β|A| ⇒ |Γ(S)| ≥ (1 + α)|S|.

It means that if we take any sufficiently small set of vertices, the number
of its neighbors will be greater by some multiplicative factor. In distributed
system this may be used in an straightforward manner: if we start to distribute
some information from one node, in each step sending it to all neighbors, in
logarithmic number of steps this information will reach at least βn vertices.
If our expander is sparse (has O(n) edges), such process will require sending
only O(n) messages.

In this thesis, we modify those definitions to obtain some other expander-
like graph features. The common property of all these features is that they
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are met with high probability by random graphs. In most cases there are no
direct translation from these properties to expansion rate, but the analogy is
strong enough to consider them as a expander graphs.

Essentially, expanders provide basic communication scheme similar to span-
ning trees, which is very useful in efficient distribution of information. Unlike
the spanning trees, expander may however be very fault-resilient, preserving
their good properties even when some nodes are removed. Existence of such
graphs, and quantitative analysis of their properties is one of the main foun-
dation of results in this thesis.

1.3.1 Spectral expansion

In this thesis we also show how to construct some of graphs that we use.
Our technique is based on creating a graph with large spectral gap. If G is
a regular graph with degree d, its adjacency matrix has eigenvalues which
are real numbers λ0 ≥ λ1 ≥ . . . ≥ λk, and λ0 = d. The difference d − λ1 is
called a spectral gap, and is closely related to vertex expansion of the graph. If
we consider graphs of expansion α on sets of size n

2
then we have a dependency:

1

2
(d− λ1) ≤ α ≤

√
2d(d− λ1)

There are known efficient algorithms to construct graph with high value
d− λ1. We construct our graphs from Ramanujan graphs [60].

1.4 Related work

Message-passing was one of the first model of distributed computing, and there
is a broad literature of classical results regarding it, as well as many recent
research ([7, 18, 38, 61, 63, 66] and many more). Crash failures were also
among the first considered [7, 37, 61]. Probably the best known result about
this setting is so-called FLP theorem, stating that in fully asynchronous system
there exists no deterministic 1-crash-resilient consensus algorithm [37].

Omission model of failures was introduced by Hadzilacos in [45]. Subse-
quently it was divided into send-omission and general-omission models [67].
Neiger and Toueg showed in [63] that each crash-resilient algorithm may be
transformed into omission-resilient, but with big communication overhead
O(nt). Results in this thesis improve their results, giving simulation with
overhead O(n + tf), where f is the actual number of faults in the execution.
In both cases simulation works in constant time.

Byzantine failure model takes its name form Byzantine Generals Prob-
lem [58, 65]. In this problem, several generals from Byzantium have to decide
unanimously whether to attack enemy or to withdraw. There are some traitors
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among them, which try to create some type of diversion. This problem was
extensively studied in distributed system, as it encompass many possible in-
cursion to the real systems. It is also a foundation of consensus problem, which
is deeper analyzed in the third chapter of this thesis.

Dolev and Reischuk in [29] considered Byzantine agreement with signatures
added to the messages, and showed lower bound O(n + t2) on the number of
signatures required to solve gossip and consensus problems in this setting.

Expander techniques were previously used to create fault-tolerant commu-
nication in message-passing system [19, 28, 41, 73], networks in general (for
references see e.g., [17]) and shared memory [21].

Graphs with fault-tolerant properties were studied in the context of net-
working algorithms [73], implementing fault-tolerant data structures [8], co-
operative distributed algorithms [41] and others. t-fault-tolerant graphs were
recently re-introduced by Chlebus et al. [21] in the context of collect algo-
rithms in shared-memory distributed environments. These authors showed
how to construct such graphs for t = Ω(n) number of failures.

In all these papers graph of at least logarithmic diameter were used. We ex-
tend these ideas to graphs of constant diameter, and combine several different
expander-like properties in our protocols.
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Chapter 2

Gossiping

Gossiping problem is defined as follows: Initially each processor has unique
piece of information called a rumor. The goal is to distribute rumors in the
system, such that every processor knows all the rumors.

It was firstly introduced in early ’70 as a combinatorial problem, initially
examined without any failures [10, 48, 75]. Later it became abstraction of
a simple all-to-all message exchange, used in many distributed systems. It
represents any situation when processors need to compare gathered data, per-
formed work, information about network etc. Classical algorithms that use
this subroutine are linear problem solving and discrete Fourier transform [50].

One of the examples that use gossiping is do-all problem [42]. There is a
set of independent tasks to complete, and set of unreliable stations performing
them. By periodically exchanging information about tasks completed so far,
all stations may keep record on tasks that are still to be done. Each machine
finishes only when it knows that all task are already finished. In this case,
each rumor could be a set of tasks completed by a given processor.

Gossiping is closely related to broadcast problem, in which one processor
wants to distribute its knowledge in the whole system. Here all processors must
perform such task, and one may think of gossip as a simultaneous broadcasts
of all processors.

We start this chapter with proper formalization of the gossip problem,
together with an outline of the previous and new solutions. Then in Section
2.2 we define common framework that we use to solve this problem in all cases.
Next sections contain solutions to gossiping: Section 2.3 with crash failures,
Section 2.4 with omission failures and section 2.5 with Byzantine failures. Each
section starts with a proof of lower bound, which is followed by algorithm that
meets it. Additional remarks and special cases are discussed at the ends of
sections. Section 2.6 contains brief discussion about remaining open problems
in this area.
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2.1 Problem setting

Definition of the problem in our formalization is the following: In the initial
state, each machine Mi has some data (rumor) ri, written on its working tape.
All rumors have finite size, and total length r of the rumors is a parameter of
the problem.

The goal is to distribute these rumors in the system, such that every unit
knows all the rumors. Formally, we say that protocol P successfully solves
gossip, if for any set {r1, r2, . . . , rn} of initial rumors, in accepting state every
unit has somewhere on its working tape a sequence:

Rumors : r1#r2# . . .#rn,

and symbol Rumors : is written exactly once on this tape (to prevent
multiple guesses). In a faulty setting, a set F of faulty machines is introduced.
We say that protocol P successfully solves gossip, when every correct machine
(M ∈ A\F ) in accepting state knows rumors of all correct machines. That is,
it has on its tape a sequence:

Rumors : xM,1#xM,2# . . .#xM,n

such that for every i ∈ A\F , xM,i = ri. Again symbol Rumors : is written
exactly once. It is often useful to require that for every faulty machine, cor-
rect machines should either receive its rumor or information that it is faulty.
However, such requirement is impossible to meet for Byzantine failures - such
machine may, for example, send faulty rumor to all machines and apart from
that behave correctly. Therefore, we do not place any requirements on rumors
of faulty machines. Luckily, all protocols presented in this thesis meet this
additional requirement in case of crash and omission failures.

Observe that correct machines may know different sequences of rumors
in the accepting state, because for any faulty machine some may receive its
rumor and some don’t. If we require these sequences to be identical, we would
in fact need to solve general consensus problem: in this case, the set of known
rumors would be a piece of information that all correct processors must agree
on. Such problem is considered in Chapter 3 in a simplified form (when this
piece of information contains only one bit).

We say that gossip protocol P is t-resilient, if for every set of faulty ma-
chines F such that |F | ≤ t, P successfully solves gossip. Depending on type
of failures, we obtain definitions of t-crash-resiliency, t-omission-resiliency and
t-Byzantine-resiliency.

2.1.1 Overview of the previous results

There is a vast body of literature concerning gossiping problem. We now
present important techniques that were used to solve it in fully-connected
message passing system.
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We start by pointing out that obvious fault-tolerant solution to gossiping
problem is for every processor to send its rumor to every other processor. In
the second round, every processor copies obtained rumors to its working tape
and enters terminal state. This solution works for any number of faults, and
is time-optimal. The main disadvantage is that every processor sends n − 1
messages, which yields total message complexity Θ(n2). On the other hand,
we can easily see that bit complexity of this algorithm is optimal. In any
execution without failures, each node must receive all rumors. If total length
of rumors is r bits, lower bound on bit complexity of gossip problem is therefore
r(n − 1) bits - which is exactly bit complexity of this naive algorithm. This
solution shows that it is easy to obtain gossip algorithm optimal in terms of
time and bit complexity. The only interesting task is to obtain low message
complexity. All algorithms presented below concentrate on this.

In case when there are no failures, there exists a trivial optimal solution [48,
75]. We pick one leader, to whom all processors send their rumors. Then the
leader sends back combined rumors to all processors. This solutions requires
three rounds: in the first round messages are sent, in the second round leader
combines received rumors into a single message and sends it to every processor,
and in the third round every processor copies obtained message to its working
tape and enters terminal state. Number of messages is 2n− 2.

This solution no longer works when we introduce failures, because leader
may become faulty and do not send any message. To circumvent this prob-
lem, one may introduce many leaders. Dolev and Reischuk [29] used this idea
to create an algorithm with 2t + 1 leaders as a building blocks for Byzantine
agreement. In case of Byzantine failures, rumors may be forged by faulty lead-
ers, and processors must validate them somehow. In this algorithm, processor
that receive many versions of the same rumor, chooses the most common one.
Hence the number of leaders 2t+ 1, which guarantees that the correct rumor
occur at least t+ 1 times, which is more than any faulty rumor may occur.

Dolev and Reischuk have also shown that in case of Byzantine failures
their algorithm is optimal, because any t-Byzantine-resilient algorithm requires
Ω(nt) messages.

The same solution works also for crash and omission failures, but is far
from being the best possible. Of course in this case we need only t+ 1 leaders,
because there are no forged rumors an we need only to make sure that each ru-
mor will be retransmitted. But the number of messages might be significantly
lowered.

For crash failures, there were several papers published, that concentrated
on lowering the number of messages, at the expense of prolonging the algo-
rithm. Chlebus and Kowalski [19] developed an algorithm resilient to t < cn
crashes, for a positive constant c < 1. Their algorithm was based on expander
communication graphs and had time complexity O(log2 n) and message com-
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plexity O(n polylog n). The reason for bounding the number of failures was
to rely on the fact that constant fraction of processors is correct during the
execution.

That result was extended for any possible t < n by Georgiou et al [41]
who presented a gossip algorithm working in time O(log2 n) and with message
complexity O(n1+ε), for any constant 0 < ε < 1. Later, Chlebus and Kowal-
ski [20] developed a solution tolerating up to n − 1 crashes in time O(log3 n)
and with O(n log4 n) message complexity. Their algorithm works by iterating
a simpler algorithm, where each iteration ends correctly if only a constant
number of processors fail. Logarithmic number of such iterations is sufficient
to solve gossip for any number of failures. We use similar technique in this
thesis, extending it so that only a constant number of iterations is required.

Note that complexity of crash resilient gossip is generated mostly by the
fact that crashes occur dynamically. That is, each round new processors may
crash. In model with static crashes, when each processor is either crashed
from the beginning or correct till the end, it is possible to solve gossip in time
O(log n) and with O(n) messages. Such algorithm was developed by Diks and
Pelc [28].

Omission failure model was much less examined in this context. Neiger and
Toueg in [63] showed that each crash-resilient protocol may be transformed into
an omission-resilient, by adding a gossiping in each round of communication.
They used previously mentioned algorithm with leaders, yielding communica-
tion overhead Θ(nt) each round. Results in this thesis improves their theorem,
lowering the overhead to O(n+tf) messages for each gossiping, when f defines
the number of failures that occur during the execution.

2.1.2 Related problems

Gossiping is one of the basic building blocks of networking algorithms. It is
used to maintain routing tables in peer-to-peer networks [76], ensure proper
data replication in distributed databases [27], gathering information about
failures [68], recognition of neighborhood [49], finding nearest resource [54] and
many more problems. A reader interested in finding many more applications
may use a survey of Pelc [66]. A book [52] presents some aspects of fault-
tolerant solutions of the gossip problem in general networks.

In the literature, problems similar to gossiping are considered also in other
settings [40, 53]. In shared memory model of computation, problem called col-
lect, was introduced by Saks et al. [69]. Gathering and spreading information
is studied also from slightly different perspective [1, 3, 6, 21].

20



2.1.3 New results

In this chapter we present asymptotically optimal solution to gossip prob-
lem for crash, omission, authenticated Byzantine, and Byzantine failures. We
define a common framework to create protocols, based on special classes of
graphs. In each case we accompany algorithm with corresponding lower bound
to show its optimality. In this section we shortly overview these results, giving
a reader intuition about how costly the gossip problem really is.

A straightforward lower bound for the message complexity is Ω(n), since
each processor must send its rumor at least once. As we have seen, in the
model without failures, this lower bound is matched by the algorithm with
one leader.

In this chapter we prove the following results: If we consider only constant-
time algorithms (that is, working in the same number of rounds for any n and
t) then the situation is as follows.

Optimal t-crash-resilient algorithm for gossiping uses Θ(n+fnε) messages.
Here ε > 0 is an arbitrary preselected constant. It means that, for any ε, there
exists a constant-time algorithm with communication complexity O(n+ fnε),
and for any constant k, there exists ε such that any algorithm solving gossiping
it time k has asymptotic complexity Ω(n+ fnε).

Optimal t-omission-resilient algorithm uses Θ(n+ tf) messages.
Optimal t-Byzantine resilient algorithm uses Θ(nt) messages (this is result

by Dolev and Reischuk [29]).
The costs for authenticated Byzantine failures are the same as for omissions

failures.
In terms of cost incurred by each faulty processor we may rewrite it in the

following way: every crash failure costs additional Θ(nε) messages, every omis-
sion/authenticated Byzantine failure cost additional Θ(t) messages, and every
(even potential) Byzantine failure costs Θ(n) messages. Table 2.1 summarizes
the results.

Failure type Message complexity Cost per failure

crash Θ(n+ fnε) Θ(nε)
omission Θ(n+ tf) Θ(t)

authenticated Byzantine Θ(n+ tf) Θ(t)
Byzantine Θ(nt) [29] Θ(n)

Table 2.1: Message complexity incurred by different kinds of failures in
constant-time gossip. n - number of processors, t - maximal tolerated number
of failures, f - actual number of failures.

There are several immediate consequences of these results. First, it is easy
to see that it is possible to create protocol that solves gossip in a constant time
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for any n using O(n) messages, if the number of crashes is bounded by n1−ε,
for some ε > 0 (execution time will depend on this ε). In case of omission
and authenticated Byzantine failures the same is possible only for number of
failures bounded by

√
n. For Byzantine failures is is possible only for constant

number of failures.
Second, only for crash failures it is possible to choose a cost of the execution

arbitrarily close to O(n), by changing value ε. In all remaining cases, minimal
cost is predetermined. For example, in often considered case t = n− 1, lower
bound in omission case is Ω(n(f + 1)), and in Byzantine case is Ω(n2), while
in crash case is only O(n1+ε). It means that only in case of crash failures there
may be non-constant trade-off between time and message complexity.

Third consequence is that only in Byzantine case there are no adaptive
algorithms. Adaptive algorithm is an algorithm whose cost depends on the
actual number of failures that happened during the execution. It is crucial for
real systems, where failures happen rarely, and it is desired to have resilient
solution which is cheap in most cases.

These results complete analysis for constant time gossip. In this thesis we
also consider gossip algorithms working in non-constant time. As we shall see
in the proofs of lower bounds, such algorithms are no better in case of omission
and Byzantine failures. In both cases lower bounds on message complexity
are the same as in constant time, and message optimal solutions are possible
in constant time. This is not the case for crash failures, where there is a
tradeoff between time and message complexity. We present a parameterized
algorithm that shows this trade-off. For any preselected s, it solves gossip in
time O(log3

s n) and using O(ns2 log2
s n) messages. On the lower bound size,

we present a proof that any protocol working in time c must use at least
Ω(n+ fn1/c) messages.

2.2 Framework

We start by defining a common framework for our algorithms. It includes a
specification of local memory, types of messages, update procedures, commu-
nication patterns and subroutines.

The most complex parts of this framework are communication patterns,
which are defined as graphs with expander-like properties. We use classical
probabilistic methods to prove their existence. We do not present an efficient
deterministic construction of all of these graphs, nor efficient deterministic
verification. We use their existence to prove existence of our deterministic
protocols. Also, we define required properties of these graphs is a form that
allows deterministic verification in an exponential time. It means that as long
as the number of computational steps is unimportant, every processor may
obtain all required graphs in the first round, simply enumerating all graphs
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of size n and taking the first one with the required properties for each class.
This substantiates uniformity of presented algorithms. In a real system, we
expect that those graphs would be precomputed and given to processors as an
input (in fact, it is enough for each processor to know only its neighbors in
these graphs). Probabilistic proofs of the existence of these graphs show also
that one can easily transform these protocols into efficient probabilistic Monte
Carlo algorithms with arbitrarily high probability of success.

2.2.1 Local memory, messages and updates

Local memory Each processor p stores the following structures:

• Rumorsp[1 . . . n] : array of rumors known to processor p. Each field
Rumorsp[q] contains rumor of processor q or one of the special values:
faulty or unknown. Initially Rumorsp[p] = rumorp, and remaining fields
contain values unknown.

• Activep[1 . . . n] : array of activities of processors. Each field Activep[q]
contains value unknown (initial) or active (meaning of this value is de-
scribed in algorithms).

• Informedp[1 . . . n] : array of statuses of processors in the gossip. Each
field Informedp[q] contains value unknown (initial) or informed (which
means that processor q has collected all required rumors)

• BrokenLinksp : list of known pairs of processors that failed to communi-
cate. This list is used only in the gossip against omission failures. Each
entry informs that at least one processor from this pair is faulty.

All above arrays and lists are gradually filled during the execution. In
particular, array Rumorsp is filled with rumors of correct processors and values
faulty for faulty processors. We say that a processor p is informed if it has no
fields unknown in array Rumorsp. If all non-faulty processors are informed,
gossip is solved.

Additionally, all processors know the same family of predefined graphs,
specified in the algorithm.

Messages and memory updates For simplicity, all messages used in our
algorithms have the same format. Every message contains three of four local
memory structures described above: Rumorsp, Informedp and BrokenLinksp.
We emphasize here that whenever algorithm requires sending any message,
either this is a request, reply or some other message, it always has this content.
Type of every message is determined by round number, since in every round
messages of only one type will be sent.
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It is clear that every message in algorithm against crash or byzantine failure
have size Θ(n), and in algorithm against omission failures may have size Θ(n+
tf) (because tf is upper bound on the size of BrokenLinksp list). Since in the
ideal case all these structures should be filled with the same data, all processors
will be updating their local knowledge with all data obtained in messages. The
procedure is as follows. At the beginning of every round, every processor reads
received messages and overwrites all its local values unknown whenever there is
known corresponding value in any of these messages. Additionally, processor
update list BrokenLinks , creating a list that contains all pairs known so far,
together with all pairs received in messages.

If there are more than one possible update (which may happen e.g. when
one message contains rumor of some processor, while other contain information
that it is faulty), we only assume that some of them is made (in this particular
case, probably more reasonable would be to chose actual rumor, but this does
not influence correctness of the algorithm).

2.2.2 Communication graphs

Before describing the main subroutines of the algorithms, we need to define
three classes of graphs: distributors, communicators and adaptive communica-
tors. These graphs will be used as parameters in communication subroutines,
out of which we build our protocols. Roughly speaking, in a subroutine we
identify processors with nodes of used graph, and processors send messages
only to their neighbors in these graphs. Therefore graph properties correspond
to message complexity and other characteristics of a subroutine.

The motivation for introducing new graph structures is to apply them in
gossip algorithm in the following way: communicators provide good connec-
tivity in a given set, assuring that after removing some part of it, there is
still a large subgraph with small diameter. Distributors provide failure-proof
connection between two sets, allowing the smaller set to gather from the larger
set or distribute data in the larger set.

Distributors are graphs which are similar to loss-less unbalanced expanders,
while communicators are related to constant-diameter concentrators [17]. How-
ever both relations are not strict and there are some differences between the
corresponding structures which cause that the graphs used in this paper can
not be directly replaced by others in our fault-tolerant applications.

All graphs presented below are undirected, and nodes/processors usually
communicate both ways along the adjacent edges (unless stated otherwise).
For a graph G = (V,E) and a subset of nodes B ⊆ V , we denote by NG(B) a
set of all neighbors of B in graph G (this definition also includes those nodes
in set B that have a neighbor in B).

24



Distributors Distributor is a bipartite unbalanced expander graph. Let
G = (W,L,E) be a bipartite graph with W and L being disjoint sets of nodes,
and E ⊆ W ×L being a set of edges. We say that G is an (n, x,∆)-distributor
iff it satisfies three following properties:

(a) |W | = n, |L| = 2n
x

;
(b) maximum degree of node in set W is at most ∆;
(c) for every f < 2n

x2 , every set Y ⊆ W of size 4f
∆

has more than f neighbors.
Set W is called a set of workers and set L is called a set of leaders.

Figure 2.1: Distributor: Each sufficiently big set of workers (grey) has big set
of neighboring leaders (black) (only some edges presented)

Theorem 2.1 There exists an (n, x,∆)-distributor, for any n, ∆ ≥ 4 and
x ≥ 8.

Proof: We proceed with probabilistic method. We create a random graph
and show that it has all required properties with nonzero probability.

Consider a bipartite random graph G = (W,L,E), where |W | = n, |L| =
2n
x

, and set of edges E is defined as follows: for every node v ∈ W , we select
a set of ∆ neighbors from set L uniformly and independently from the other
nodes in W . Since graph G has properties (a) and (b) by construction, it
remains to show that the probability that graph G satisfies condition (c) is
positive.
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Fix f < 2n
x2 , set X ⊆ L of size f and set Y ⊆ W of size 4f

∆
. We compute

the probability that N(Y ) ⊆ X. This probability is equal to the product, over
all nodes v ∈ Y , of the probabilities that N(v) ⊆ X.

Pr (N(Y ) ⊆ X) =
( f

|L|

)∆|Y |
=
(fx

2n

)4f

.

We now compute the probability that for a given f , there exists in graph
G subsets X ⊆ L of size f and Y ⊆ W of size 4f

d
, such that N(Y ) ⊆ X. To

simplify the computation we observe that 4f
∆
≤ f < n

2
, so

(
n

4f/∆

)
≤
(
n
f

)
.(

|L|
|X|

)(
|W |
|Y |

)
Pr (N(Y ) ⊆ X) ≤

(
2n/x

f

)(
n

f

)(fx
2n

)4f

≤
(2ne

fx

)f(ne
f

)f(fx
2n

)4f

≤
(e2f 2x3

8n2

)f
≤
( e2

2x

)f
≤ 2−f

The probability that G does not satisfy condition (c) is no greater than prob-
ability that there exists f such that we can find appropriate sets X and Y .∑

1≤f≤ 2n
x2

2−f < 1 .

The probabilistic argument completes the proof of the existence of the required
distributor.

�

Communicators Communicator is a graph in which every large subset of
nodes contains a large subgraph with small diameter. Graph G = (L,E) with
n nodes and degree ∆ is an (n, x,∆)-communicator, iff

For each B ⊆ L of size m ≥ 6nx
∆

there exists C ⊆ B of size more
than m

2
, such that the subgraph of G induced by set C has diameter

at most 2 logx n.

Theorem 2.2 There exists an (n, x,∆)-communicator for any n, ∆ and x ≥
2 log n.

Proof: Let us define a random graph G = (V,E) of n vertices and set of
edges E chosen as follows: for every node v ∈ V , we choose ∆ times a random
neighbor, uniformly selecting from the set of all nodes, and connect it to v by
an edge. In this process some edges may be created twice, but for simplicity
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Figure 2.2: Communicator: After removing any set of nodes (black), there
remains a big set with small diameter (grey) (edges not displayed)

we just accept this. We will be referring to v-chosen edge as the edge that
was obtained by selection for node v (thus, some edges may be chosen for two
nodes).

We shall prove that this graph has the required property with positive
probability.

Fix a and a set B ⊆ V of b = 6nx
∆

nodes. Let Y ⊆ B be any set of a
nodes. There were a∆ random selections of neighbors of nodes in this set. We
consider them as a a∆ ordered random trials, introducing any order on them.
We say that the trial is successful if a node from B is selected for the first time
in considered trials, or the set of already selected neighbors in B has size more
than b

2
. Every trial is therefore successful with probability at least b

2n
≥ 3x

∆
.

Expected number of successes is at least a∆ · 3x
∆

= 3ax. From the Chernoff
bound, we get that the probability that there are less than ax successes is at
most

Pr (S < ax) = Pr

(
S < (1− 2

3
)3ax

)
<
( e− 2

3

(1
3
)

1
3

)3ax

= zax

Where z =
(
e−

2
3

( 1
3

)
1
3

)3

< 1
5

From now on we consider only the graph induced in G by vertices in B.
Using the fact above, for every v ∈ B we may prove the following facts about
its neighborhood in this graph:

(1) The probability that there are at least x nodes in his 1-st neighborhood
is at least 1− zx.
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(2) The probability that there are at least x(x + 1) nodes of distance at
most 2 from node v is at least (1− zx)(1− zx2

).

. . .

(logx n) The probability that there are more than b
2

nodes of distance at

most logx n from node v is at least (1 − zx)(1 − zx
2
) . . . (1 − zx

logx n) ≥ 1 −∑logx n
i=1 zx

i ≥ 1− 2zx.

Let us say that a node v is B-expanding, if v has more than b
2

nodes of
distance at most logx n.

It follows that a node v is not B-expanding with probability at most 2zx.
Note that set of B-expanding nodes has diameter at most 2 logx b. Indeed,
each of them has more than b

2
nodes in distance logx n, so each pair has at

least one common node in this distance.

To determine a probability that G is not a communicator, it is sufficient to
count the probability that there exists a set B of size b ≥ 6nx

∆
such that in the

graph induced by B we can find at least b
2

not B-expanding nodes. Recalling
that x ≥ 2 log n, this probability is bounded by:

∑
6nx
∆
≤b≤n

(
n

b

)(
b
b
2

)
(2zx)b/2 ≤

∑
6nx
∆
≤b≤n

(ne
b

)b
· 2b · n−b

≤
∑

6nx
∆
≤b≤n

(2e/b)b

≤
∑

6nx
∆
≤b≤n

2−b < 1

The probabilistic argument completes the proof of existence of the required
communicator.

�

Communicators posses one additional property that we need in our analy-
sis:

Theorem 2.3 In (n, x,∆)-communicator, each two distinct sets of at least
3nx
∆

nodes are connected with an edge.

Proof: Let A and B be two disjoint sets of size at least 3nx
∆

nodes each. If
we take a set C ⊆ A ∪ B, with equal number k ≥ 3nx

∆
nodes from both sets,

it will have a subset of diameter at most 2 logx n and more than k nodes, thus
containing nodes from both sets.

�
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Adaptive communicators Adaptive communicator is a graph in which
removal of a small set of nodes never detaches a bigger set from the main
connected part. Formally, a graph G = (L,E) of n nodes and degree d is an
(n, s, d)-adaptive-communicator, iff:

For each f ≤ n
s

and B ⊆ L of size n − f there exists C ⊆ B of
size at least n− 2f , such that the subgraph of G induced by C has
diameter at most 2 logd n.

Theorem 2.4 There exists an (n, x,∆)-adaptive-communicator for any n,
x ≥ 6 and ∆ ≥ 36.

Proof: We prove this by showing that Ramanujan graphs [60] of sufficiently
large degree are adaptive communicators.

It is known that every graph G = (V,E) of n nodes and spectral expansion
h = λ1

λ0
has for every α < 1 node expansion 1

(1−α)h2+α
on sets of size αn: that

is, for every S ⊂ V of size αn, |N(S)| ≥ |S|
(1−α)h2+α

.

Particularly, Ramanujan graphs of degree c have spectral expansion h ≤ 2
√
c−1
c

.
Simplifying this to h2 ≤ 4

c
, we can rewrite it as two properties:

1. ∀|S|≤ 8n
c
|N(S)| ≥ |S|

4
c
+ 8
c

≥ c|S|
12

.

2. ∀|S|> 8n
c
|N(S)| ≥ |S|

(1− 8
c
) 4
c
+
|S|
n

> 2n
3

.

Let G be a Ramanujan graph of n nodes and degree c = 24∆. Let f < n
6

and GB = (B,E) be a graph obtained by removing f nodes from G. We now
consider neighborhood only in this graph.

Lemma 2.5 Every set Z ⊆ B of f nodes contains a node that has more than
n
2

neighbors in distance log∆ n.

Proof: Denote the i-th neighborhood of a set X in GB by N i(X). We define
a sequence of sets Zi in a following way: Z0 = Z, and for every i, Zi+1 is the
set of nodes v ∈ Zi which (i + 1)-st neighborhood is either at least ∆ times
bigger than i-th, or has size greater than n

3∆
. That is:

Zi+1 = {v ∈ Zi : |N i+1(v)| ≥ min{∆|N i(v)|, n
3∆

+ 1}}

Now, let Di = Zi − Zi+1.
By induction, we can show that N i(Zi) has always at least f nodes:

First note that N0(Z0) = Z.
Now we prove the induction step:
(a) If |N i(Zi)| ≥ f , then from the expanding property of G (and from the

fact that we removed f nodes from G): |N i+1(Zi)| ≥ min{2
3
n, 2∆f} − f .
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(b) If |N i(Di)| > f
∆

, then from the fact that ∀v∈DiN i(v) ≤ n
3∆

, and f ≤ n
6
,

we could find D ⊆ Di such that n
3∆
≥ |N i(D)| > f

∆
. Then, |N i+1(D)| <

∆|N i(D)| < 2∆|N i(D)| − f , which contradicts the node expansion property
of G. We conclude that |N i(Di)| ≤ f

∆
, and |N i+1(Di)| ≤ ∆ · f

∆
= f .

(c) Combining this two bounds:

|N i+1(Zi+1)| ≥ |N i+1(Zi)| − |N i+1(Di)| ≥ min{2

3
n, 2∆f} − 2f ≥ f

as long as 2∆ ≥ 3.
This means that ∀iZi 6= ∅. Particulary, Zlog∆ n−1 contains only nodes with

more than n
3∆

neighbors in distance log∆ n−1. Each such node has more than
2
3
n− f ≥ n

2
neighbors in distance log∆ n. This completes the proof.

�

Since |B| = n−f , it follows from the lemma, that there exists a set C ⊆ B
of n − 2f nodes, in which every node has this property. Diameter of graph
induced by C will therefore is at most 2 log∆ n, because every two nodes will
have at least one common node in distance log∆ n. This completes the proof
of the Theorem.

�

2.2.3 Subroutines

We use the graphs defined above in two simple subroutines. Each of them
takes as one of the parameters a graph, being one of the graphs predefined in
the algorithm. All correct processors are executing these subroutines simulta-
neously, using the same graphs as a parameters. Consequently, they also end
the subroutines simultaneously.

DistributedRequest(graph, param) :
This subroutine is usually executed by leaders in some distributor graph, in
some cases it takes as a parameter communicator graph. The aim of this
subroutine is to collectively request a set of processors for response. Code for
processor p is the following:

• Round 1: Send messages to some neighbors in graph, depending on the
param:

– To all, if param = all

– To those q for whichRumorsp[q] = unknown, if param = unknown

– To those q for which Informedp[q] = unknown, if param =
uninformed
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• Round 2: Reply for every received message.

• Round 3: For each q that did not answer for a message sent in Round
1, set Rumorp[q] = faulty.

Mixing(graph, rounds) :
This subroutine takes as a parameter some communication graph. The purpose
of this subroutine is to exchange the knowledge in some set of processors.
Parameter rounds defines number r of rounds of this subroutine. Parameter
graph defines graph G that is used to communicate. In every round, every
uninformed processor that belongs to G, sends messages to all its neighbors in
G.

Note that this subroutine is in fact a small gossip. Observe that if there is
any set S of correct processors that induces in G a subgraph of diameter at
most r, all these processors exchange their initial knowledge. In our protocol
we use the fact that such set S always exists. The algorithm does not identify
this set, but its correctness is usually proven using the existence of some such
set.

Waiting When only a part of the system is performing some subroutine,
other processor will wait in their rounds. This is indicated by instruction
”wait for x rounds” in our algorithms. Because other processor may not know
if their neighbors are waiting, we need to allow them to reply for request
send to them. On the other hand, we do not want waiting processors to send
unnecessary messages. This is realized in the following way. In first round
of waiting, processor does not send any messages. In subsequent rounds, it
replies for each message it received. Our algorithms have the property that no
processor sends any message in the round just before waiting starts, therefore
two waiting processors will not be exchanging any messages.

2.3 Crash failures

We are now ready to present our first protocol, that solves gossip in a presence
of crash failures.

Crash failures are relatively easy to handle, comparing with the other
classes of faults. The reason for this is the following: whenever some pro-
cessor p expects a message from q and does not receive it, it immediately
knows that q crashed. Moreover, p may distribute this knowledge to other
processors, and other processors do not need to validate it. This allows us to
propagate the knowledge about faults together with gossip data, and efficiently
remove crashed processors from the protocol. With sufficiently fault-tolerant
communication, additional cost for each faulty processor is minimized. In
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fact, the only lower bound in this case comes from the speed of information
dissemination in the system. We start by proving this bound.

2.3.1 Lower bound

Theorem 2.6 Any crash-resilient gossip algorithm terminating in c rounds,

must use Ω(n+ fn
1
c+1 ) messages, when f failures occur.

Proof: Consider a t-crash-resilient gossip algorithm P, for some t < n. Let
ε = 1

c+1
. The lower bound Ω(n) is obvious from the fact that in the execution

without failures each processor must send and receive at least one message. We
show the lower bound Ω(fnε), by proving that for some sequence of crashes, P
sends more than fnε

2
messages. We consider only nontrivial case when nε > 2

and f ≤ n− 2.

Assume the contrary, that for each sequence of f ≤ t crashes, algorithm P
uses at most M = fnε

2
messages. We show a sequence of crashes that leads to

incorrect outcome.

The sequence starts as follows: in each round, each processor that has
received at least nε messages till this round, crashes. By assumption, the
number of such processors in the whole execution is at most M

nε
= f

2
. In the

last round some additional processors are crashed, so that the total number of
crashes is f .

Now we need to pick up these last round crashes in a way to obtain incorrect
outcome. We first show that no processor knows rumors of all other processors
by the end of round c. We observe that each non-crashed processor receives
less than nε messages. Let ki denote the size of biggest set of rumors known to
a single processor in round i. It is also the upper bound on number of rumors
sent in a single message in round i. Because in first round every processor
knows only one rumor, we have k1 = 1 and ki+1 ≤ nεki + 1. By induction,
kj ≤

∑j−1
i=0 n

iε for j ≤ c. Consequently, kc ≤
∑c−1

i=0 n
iε < n1−ε < n

2
. It means

that no processor knows more than n
2

rumors at the end of round c. Let us

take any non-crashed processor p at the end of round c. Until now at most f
2

processors were crashed. n
2

+ f
2
≤ n− 1, so there exists a processor q which is

non-crashed and its rumor is not known to p. If we crash any set of processors
that does not contain p nor q, the execution ends incorrectly. This violates
crash-resiliency of this algorithm.

�

Corollary 1 Every crash-resilient gossip algorithm terminating in constant
time, sends Ω(n+ fnε) messages, for some constant ε > 0.

32



2.3.2 Algorithm

We now show how to solve the gossip task in the presence of crash failures
in constant number of rounds and with O(n + fnε) message complexity, for
any given ε > 0. Our algorithm GosCrash consists of two parts. Part I
(see Figure 2.3) attempts to solve the gossip using a small predefined set of
leaders L, of size 2n1−ε/6. Leaders exchange knowledge among themselves
and communicate collectively with the rest of the system. Part I uses O(n)
messages, independently of the number of failures. If majority of the leaders
is correct (in particular if f < n1−ε/3), after this part the gossip is completed
and all processors know all the rumors.

Part I iterates Phases : first the gathering phases to gather the rumors in
the set L then the informing phases to spread the gathered information to
all correct processors. The processes of gathering and informing are symmet-
ric to each other, in the sense that only the direction of the flow differs. In
each Phase, leaders exchange data gathered so far, and then perform collec-
tive communicating task. In gathering phases this task is to gather rumors
unknown so far to the leaders. In informing phases this task is to send the
gathered set of rumors to processors that might not have it yet. Parameter
i of a Phase determines maximum number of leaders that may communicate
with the same processor. In each phase, the number of requests sent to every
remaining processor increases, but simultaneously, the number of remaining
processors decreases. The algorithm is designed in a way to maintain linear
number of messages in each phase.

All correct processors that are uninformed after Part I, perform Part II
(see Figure 2.4). During that part the informed processors are waiting (see
page 31). The only action that they perform is to send a reply for every
message they receive. We note here that receiving a message from an informed
processor makes the receiver informed. Unlike Part I, Part II is an adaptive
process in which the algorithm tries to gradually change the parameters in the
consecutive subroutines. Phases in Part II are similar to Phases in Part I.
The main difference is that slightly different graphs for mixing and requests
are used, to handle bigger number of crashes during the execution.

Since the number of correct processors might become small during the
execution, algorithm gradually adapts to such case by increasing the number
of messages sent in each round by every processor. This is captured by an
intermediate procedure Epoch. Each Epoch(i) is similar to Part I, but uses
more messages and successfully solves gossiping when the number of correct
processors is at least 4n

si−1 . Part II costs at most O(n1+ε/3) messages and solves
the gossip for any number of failures. Since for f < n1−ε/3 no processor sends
any message in Part II (because all are informed after Part I), the total message
complexity of this part is always O(fnε). The details follow.

For a given constant parameter 0 < ε ≤ 1, let k = d6
ε
e and s = dnε/6e. Let
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L (the set of leaders) be the set of first d2n
s
e processors, and let A denote the set

of all processors. Let GAC be a predefined (|L|, 6, s)-adaptive-communicator
on a set L. Let for any i ≤ k, GDi be a predefined (n, s, si)-distributor with
set of leaders L and set of workers A. Let for any i ≤ k, GCi be a predefined
(A, s, si)-communicator on all processors.

Note that for simplicity set of workers is a set of all processors, therefore
leaders act also as a workers, executing two programs simultaneously. Total
number of nodes of the graph is |L|+ |A| = d2n

s
e+n = Θ(n), which means that

it does not affect asymptotic costs. Also, there is only one format of message,
therefore these two programs do not collide (in each communication interface
in each round message is send or not, but there is never a need to send two
messages simultaneously). Also, sending a message to oneself each processor
may simulate without communication interface.

Each processor runs Part I of the algorithm (see Figure 2.3). If after Part
I it is not informed then it runs Part II (see Figure 2.4). Otherwise, it waits
during the period corresponding to the execution of Part II, and it only replies
for all messages received during this period.

2.3.3 Analysis

Correctness of the algorithm comes from the fact that in the first line of
Epoch(s , k − 1 ) in Part II, uninformed processors send requests to all their
unknown neighbors in (n, s, n)-communicator (which is a complete graph), and
receive answers. After running this line, all correct processors are informed.

Each Phase(i , j , param) lasts for 6k + 3 rounds, each Epoch(i) lasts for
2(k+1− i)(6k+3) rounds. Whole algorithm lasts for k(k+1)(6k+3) = O(k3)
rounds. In case when k is a constant, time complexity of the algorithm is a
constant. We now analyze the message complexity. The following lemmas
describe the progress and the message complexity of the algorithm after Part
I and Part II.

Lemma 2.7 Message complexity of Part I is O(n).

Proof: Graph GAC has d2n
s
e vertices and degree s, therefore it has O(n)

edges. Since it is used constant number of times in each Mixing, message
complexity of this subroutines is O(n). We focus on the message complexity
of DistributedRequests.

It is enough to prove that during each Phase(i) at most 8n
si

processors are
requested by leaders. Indeed, since left-degree of (n, s, si)-distributor GDi is at
most si, each processor may receive at most si requests, and the total number
of requests and answers is 8n

si
· 2si = O(n).

Now we prove the above-mentioned fact, for gathering phase. Proof for
informing phase is analogous. Let p be any leader that performs Distribute-
dRequest in Phase(i), and let Up be a set of processor whose rumor is unknown
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Phase(i, param):

1. Run Mixing(GAC , 2k).

2. If p ∈ L:

• fill array Activep with values unknown

• compute the number of unknown values in array
- Rumorsp, if param = gathering
- Informedp, if param = informing

• if this value is at most 8n
si

, set Activep[p] = active

3. Run Mixing(GAC , 2k).

4. If p ∈ L:

• if there is more than |L|
2

values active in array Activep, leave
Activep[p] = active and set the remaining fields to unknown

• else, fill the whole array Activep with values unknown

5. Run Mixing(GAC , 2k).

6. If Activep[p] = active and there are more than |L|/2 values active in
Activep, run DistributedRequest(GDi, param)
else, wait for 3 rounds.

Algorithm GosCrash, Part I:

• For i := 0 to k run Phase(i , gathering)

• For i := 0 to k run Phase(i , informing)

Figure 2.3: Algorithm GosCrash, Part I, code for processor p.

to p after the first Mixing in this phase. Since p marked itself active, |Up| ≤ 8n
si

.
We now prove that all requests in this phase are sent only to workers in Up.

Assume that some p′ performs DistributedRequest in Phase(i). For any
node x, let Ax denote a set of values active in array Activex after the third
Mixing in this phase. Both sets Ap and Ap′ are larger than |L|/2. Thus there
exists q ∈ Ap ∩Ap′ . Since before the third Mixing, q was in distance at most
2k from p, in second Mixing all rumors known to p were transmitted to q,
and in third Mixing all were transmitted to p′. It means that p′ knows all
rumors outside the Up, which completes the proof.
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Phase(i , j , param):

1. Run Mixing(GCi, 4k).

2. Analyze neighborhood:

• Fill array Activep with values unknown.

• compute the number of unknown values in array
- Rumorsp, if param = gathering
- Informedp, if param = informing

• if this value is at most 3n
sj−2 , or if i = j, set Activep[p] = active

3. Run Mixing(GCi, 2k).

4. Analyze neighborhood:

• if there is more than 3n
si−1 values active in array Activep, leave

Activep[p] = active and set the remaining fields to unknown

• else, fill the whole array Activep with values unknown

5. Run Mixing(GCi, 2k).

6. If Activep[p] = active and there are more than 3n
si−1 values active in

Activep, run DistributedRequest(GCj, param)
else, wait for 3 rounds.

Epoch(i):

• For j := i to k run Phase(i , j , gathering)

• For j := i to k run Phase(i , j , informing)

Algorithm GosCrash, Part II:

• For i := 1 to k:

– if p is informed, wait for 2(k + 1− i)(6k + 3) rounds

– else, run Epoch(i)

Figure 2.4: Algorithm GosCrash, Part II, code for processor p.

�
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Lemma 2.8 If f ≤ n1−ε/3 then after Part I all non-crashed processors are
informed.

Proof: By the properties of (|L|, 6, s)-adaptive-communicator GAC , in a set
of correct processors there exists a subset C ⊆ L of size at least |L| − 2f , that
induces a subgraph of diameter at most 2k.

This means that in each Mixing, every processors in C collects data from
the whole set C. In particular, it gathers at least |L| − 2f entries active in
array Active. We show by induction that also in each phase each processor in
C executes DistributedRequest:

In Phase(0 ) it is trivial, since 8n
s0
≥ n.

Let us consider Phase(i + 1 ) for i ≥ 0. By assumption, in previous phase
all processors in C sent messages to their neighbors in (n, s, si)-distributor
GDi. By the properties of GDi, there are at most 8f

si
≤ 8n

si+1 processors that
are not neighbors of C in this graph. This is an upper bound on the number
of rumors unknown in C at the beginning of Phase(i + 1 ). After first Mixing
in this Phase every processor in C lacks at most 8n

si+1 rumors, which completes
the induction.

In particular, in Phase(k) leaders use complete graph ((n, s, n)-distributor)
in DistributedRequest. This means that messages are sent by set C to every
processor at least once, and thus after first Mixing of the first informing phase
all processors in C are informed. Consequently, after last DistributedRequest
of the last informing phase, all correct processors are informed.

�

Lemma 2.9 If there are at least 6n
si−1 non-faulty processors at the end of

Epoch(i) of Part II then all of them are informed.

Proof: By the properties of (n, s, si)-communicator GCi, in this case there
exists a center C of more than 3n

si−1 processors and diameter at most 2k, com-
posed of processors that survive this epoch. Each processor in C gathers more
than 3n

si−1 values active at each step. We prove inductively that every processor
in C runs DistributedRequest in each phase.

By construction, this is trivial for j = i;
Now, for any j > i, the set C has at least n − 3n

sj−1 neighbors in GCj, by
expanding property (Theorem 2.3). If in Phase(i , j ) requests were sent by
whole set C then after this phase at most 3n

sj−1 rumors are not known in C. In
first Mixing of Phase(i , j + 1 ) every processor in C gathers all rumors known
in C, which proves the claim.

In gathering Phase(i , k) each processor in C sends requests to all unknown
processors - thus becoming informed. In informing Phase(i , k) each processor
in C sends message to all uninformed processors - thus completing the gossip.

�
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Lemma 2.10 Each epoch in Part II contributes O(n1+ε/3) to the message
complexity.

Proof: First we analyze Mixing subroutines. In Epoch(1 ), mixing uses com-
municator of degree s, so there are O(ns) messages sent.

Consider Epoch(i), for i > 1. It follows from Lemma 2.9 that at the
beginning of this epoch either all processors are already informed, or at most

6n
si−2 processors are non-faulty. In the first case no messages are sent. In the
second case we use communicator of degree si, so there are at most si · 6n

si−2 =
6ns2 messages sent in each round.

To count the number of requests, we first observe that in Phase(i , i) the
number of request is no greater than the number of mixing messages, since
the same communicator is used. Now consider Phase(i , j ) for j > i. We now
claim that all requests are sent to a set of at most 3n

sj−2 processors.
Let p be any processor that sends requests, and let Up be a set of processors

that were unknown to p after the first Mixing in this phase. Since p marked
itself active, |Up| ≤ 3n

sj−2 . We now prove that all requests in this phase are sent
only to processors in Up.

For any processor x, let Ax denote a set of processors with value active in
array Activex after the third Mixing in this phase. Now, assume that some p′

sends requests. By properties of communicator, both sets Ap and Ap′ contain
more than half of correct nodes. Thus there exists q ∈ Ap ∩Ap′ . Since q was
before the third Mixing in distance at most 2k from p, it received all rumors
outside Up during the second Mixing. In the third Mixing it transmitted this
rumors to p′, which proves the claim.

Combining the claim with the fact that each processor may receive at
most sj requests, we get that the total number of requests in Phase(i , j ) is

3n
sj−2 · sj = O(ns2). Since the number of phases is constant, this implies that
the total number of requests in considered Epoch(i) is also O(ns2).

The total number of answers is at most as large as the total number of
requests. The same analysis applies to informing phases, showing that the
number of messages sent in these phases is not bigger than in gathering phases.
Thus total communication complexity is O(ns2).

�

Lemma 2.11 Message complexity of Part II is O(fnε).

Proof: Note that if f ≤ n1−ε/3, all non-crashed processors are informed before
Part II by Lemma 2.8, thus no message is sent during Part II. In the remaining
case f > n1−ε/3, we combine the result obtained in Lemma 2.10 with the fact
that the number of epoches is constant. We upper-bound the total number of
messages by O(1) ·O(n1+ε/3) = O(fnε).

�
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Combining Lemmas 2.7 and 2.11 we obtain the final result.

Theorem 2.12 For any n there exists an (n− 1)-crash resilient gossip algo-
rithm working in constant time and using O(n+fnε) messages when f failures
occur.

2.3.4 Time vs. messages trade-off

Algorithm presented above works correctly for any given ε. In particular, there
is no requirement for ε to be constant. We can use for example ε = 1

logn
. In this

case, the asymptotic cost must be computed more carefully, as some constant
factors that were ignored so far, become non-constant. A more precise analysis
of above algorithm leads to the following theorem.

Theorem 2.13 For any s ≥ 2, there exists a (n − 1)-crash-resilient gossip
algorithm that works in time O(log3

s n) and uses O(ns2 log3
s n) messages.

Proof: Consider the algorithm from Figure 2.4, executed for a given parameter
s and k = dlogs ne. There are O(log3

s n) rounds of computation, and in each
round there are at most ns2 messages used, which yields the aforementioned
total complexity.

�

2.4 Omission failures

This section is devoted to gossiping with omission failures. We start by remind-
ing the reader that since omission-faulty processor may in particular omit all
messages starting from some given round, the model with omission failures is
at least as hard to handle as the one with crashes. In this section we prove that
from the point of view of communication complexity it is substantially harder.
Namely, communication complexity of any t-omission-resilient algorithm must
be Ω(n+ tf).

Observe that in case of omission failures, when some processor p expects
a message from some other processor q and does not receive it, there is more
than one possibility. Either q or p or both processors are faulty. If processor
p informs other processors that q is faulty, this may be false information, if p
is faulty itself. Note that such a misleading message is not possible in the case
of crash failures, because if p was faulty, it could not send any message. In
the case of omission failures, processor p may inform others only that q failed
to communicate with it. A correct processor may fail to communicate with up
to t processors. Only when some processor fails to communicate with at least
t+ 1 processors, we know for sure that it is faulty. We use this to prove lower
bound on message complexity of gossip.
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2.4.1 Lower bound

Theorem 2.14 Every t-omission-resilient gossip algorithm must use at least
Ω(n+ ft) messages when f ≤ t omission failures occur during the execution.

Proof: Consider a t-resilient gossip algorithm P. The lower bound Ω(n) is
obvious from the fact that in an execution without failures each processor
must send and receive at least one message.

Consider now execution with f omission failures. We show that there exist
some failure patterns that force P to send more than ft

4
messages.

The idea is as follows: We introduce some set of processors that do not
receive any message, either because they are faulty, or because senders of
these messages are faulty. We show that in order to determine if any of these
processors is correct, system must sent Ω(t) messages to every single processor
in this set. If this set is of size Θ(f), it requires Ω(ft) messages. The rest of
the proof is a formalization of this intuition.

Consider two following classes of failure patterns:
We call a failure pattern X-passive, if:

X is a set of faulty processors and in every round all processors in
X omit all received messages.

We say that a failure pattern is (A,B,q)-semi-passive, where A and B are
disjoint sets and q /∈ A ∪B, if:

A∪B is a set of faulty processors and in every round all processors
in A omit all received messages, and all processors in A ∪ B omit
all messages sent to processor q.

Claim: If algorithm P sends less than ft
2

messages during an execution with
any X-passive failure patterns with f = |X| ≤ t

2
failures then there exists

an (A,B,q)-semi-passive failure pattern with at most t failures such that the
execution of P with this failure pattern is not valid (gossiping is not solved).
Proof of Claim: Assume that there exists an X-passive failure pattern with
f = |X| ≤ t

2
, and execution E1 in which P sends less than ft

2
messages. It

means that there exists some processor q ∈ X to which there were less than
t
2

messages sent. Consider now (A,B,q)-semi-passive failure pattern, where
A = X \ {q} and the set B contains all processors not from X that sent a
message to q during execution E1. Note that |B| ≤ t

2
, by the choice of q. Let

E2 be the execution of algorithm P with the considered (A,B,q)-semi-passive
failure pattern. By induction on the number of rounds, execution E2 is well-
defined and executions E1, E2 of algorithm P are indistinguishable from the
point of view of any processor: in both executions no processor in A ∪ {q}
receives any message, while the remaining non-faulty processors receive all
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messages addressed to them. Processor q does not receive any message in
both executions although it should receive at least one in execution E2 where
it is not faulty. Hence the execution E2 is incorrect. Note that number of
faulty processors in this execution is |A∪B| ≤ |X| − 1 + t

2
< t which violates

t-omission-resiliency of the algorithm.

It follows from the Claim that in all executions against any X-passive
failure patterns (with f ≤ t

2
faulty processors), protocol P must use at least

ft
2

messages. Consequently, for f ≤ t, P must use at least ft
4

messages.

�

It is worth mentioning that unlike in crash failures, Theorem 2.14 holds for
all t-omission-resilient gossiping algorithms, not only for those terminating in
constant time.

2.4.2 Algorithm

The main idea behind the algorithm is as follows: every correct processor
may fail to communicate with up to t processors. In order to identify any
processor as a faulty one, we need only to get confirmation from at least t+ 1
processors that failed to communicate with it. We will perform this using list
BrokenLinks to store pairs of processors that failed to communicate. Initially
this list is empty. Whenever processor p sends a request to q and does not
receive reply, it adds pair (p,q) to this list. This list is send in each message.
Processor p at the beginning of each round scans received messages for new
pairs and adds them to list BrokenLinks . Then it marks Rumorp[q] = faulty
for each q that occurs in more than t pairs in BrokenLinksp.

Let L be a set of first 2n
5
6 nodes, T be a set of first min{6t+1, n} nodes, A

be the set of all nodes. Let GA be a complete graph. Let GD be a predefined
(n, n

1
6 , 8)-distributor with L being the set of leaders. Let GC0 be a predefined

(|L|, n 1
6 , n

1
6 )-adaptive-communicator on set L, and let GC1 be a predefined

(n, 6, n
1
3 )-adaptive-communicator on the set of all processors.

Pseudocode of the algorithm is presented on Figure 2.5.

2.4.3 Analysis

Lemma 2.15 Algorithm GosOmission terminates correctly in constant time
and has message complexity O(n+ ft).

Proof: Constant time complexity of algorithm GosOmission follows directly
from the pseudo-code, since each subroutine has constant number of rounds.

We prove correctness of the algorithm together with its message complexity,
because for both proofs we need to consider the same three cases. We start by
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1. Small mixing 1:

• If p ∈ L, run DistributedRequest(GD, all)
else, wait for 3 rounds.

• Run Mixing(GC0, 12).

• If p ∈ L, run DistributedRequest(GD, all)
else, wait for 3 rounds.

2. If p knows at most n− 2n
2
3 rumors, run Mixing(GC1, 6)

else, wait for 6 rounds.

3. If p ∈ T , and p knows at least n − 6t rumors, run
DistributedRequest(GA, unknown)
else, wait for 3 rounds.

4. Small mixing 2:

• If p ∈ L, run DistributedRequest(GD, all)
else, wait for 3 rounds.

• Run Mixing(GC0, 12).

• If p ∈ L, run DistributedRequest(GD, all)
else, wait for 3 rounds.

5. If p is informed, run Mixing(GC1, 6)
else, wait for 6 rounds.

6. If p is uninformed, send messages to all processors in T .

7. Wait for 2 rounds and finish.

Figure 2.5: Algorithm GosOmission, code for processor p.

reminding that messages sent as the replies do not influence the communication
complexity. It is enough to estimate the number of other messages.

Each Mixing(GC0, 12) uses O(n) messages, because graph GC0 has 2n
5
6

nodes and degree n
1
6 . Also each DistributedRequest(GD, all) uses O(n) mes-

sages, because graph GD has O(n) edges. For the remaining subroutines we
consider three cases:

Case f ≥ n
6
: Here O(n + ft) = O(n2), so bound is trivially met. Correct-

ness comes from the fact that all processors are in the set T , and therefore
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all run DistributedRequest in point 3. After receiving the replies, all become
informed.

Case tf ≥ n
4
3 : Mixing(GC1, 6) uses at most n

4
3 messages, because degree of

graph GC1 is at most n
1
3 . In this case, however, n

4
3 = O(tf), so bound is

met. Only DistributedRequest(GA, unknown) and requests in point 6 may
violate complexity bound, potentially using Ω(nt) messages. To prove that
this is not the case, observe first that in graph GC1 there exists a subset
C of n − 2f correct nodes that induces subgraph of diameter at most 6.
It means that during the first Mixing(GC1, 6), each processor in C gathers
rumors of the whole set C, thus lacks at most 2f rumors. Therefore in
DistributedRequest(GA, unknown):

• processors from T ∩ C (at most 6t+ 1) send at most 2f messages each,

• processors from T − C (at most 2f) send at most 6t messages each.

Number of messages in this line is therefore O(ft). Moreover, T ∩ C has at
least one processor, and it becomes informed after point 3.

Now, since |T ∩C| ≥ 6t+1−2f ≥ t+1, during the second Mixing(GC1, 6),
each processor in C gathers for each processor either its rumor or at least
t+ 1 confirmations of its failure. Thus every processor in C is informed after
this subroutine. It means that before point 6 at most 2f processors are not
informed. Those processors send messages to set T in point 6, and become
informed after receiving replies. Total number of messages is O(ft).

Case f ≤ n
2
3 : Here we focus on set L. Let f1 be a number of failures in

graph L. In graph GC0, there exists a set C of at least |L| − 2f1 correct nodes

that induces a subgraph of diameter at most 12. By properties of (n, n
1
6 , 8)-

distributor, this set has at least n − f1 neighbors in graph GD. At least
n− f1 − f ≤ n− 2f of them are non-faulty. Let us denote this set by X. In
each Small mixing, each two processors in X exchange their knowledge: first
sending its rumor to some processor in C then routing this rumor through the
set C in Mixing subroutine, and finally by transmitting it from some processor
in C. It means that:

• After Small mixing 1, at most 2f processors run Mixing(GC1, 6). Number

of messages used is O(n
1
3 ) · 2f = O(n).

• In DistributedRequest(GA, unknown):

– processors from T ∩X (at least 1, at most 6t+ 1) send at most 2f
messages each,

– processors from T −X (at most 2f) send at most 6t messages each.
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therefore at most O(ft) messages are used.

• After Small mixing 2, at most 2f processors are uninformed, because
each processor in X receives either a rumor or t + 1 confirmations of
faults for every processor.

• At most 2f processors run second Mixing(GC1, 6), using again O(n
1
3 ) ·

2f = O(n) messages.

• In point 6 all uninformed processor send messages to T . Since there is at
least one correct informed processor in this set, they receive replies and
become informed. There are O(ft) messages, as in the previous case.

Summarizing, the message complexity of the algorithm is O(n + ft), which
yields a contribution O(t) to the message complexity by each omission failure.

�

Therefore we proved the final result.

Theorem 2.16 For any t < n, there exists a t-omission-resilient gossip algo-
rithm working in constant time and using O(n+ tf) messages when f failures
occur.

2.4.4 Authenticated Byzantine failures

The approach presented for omission failures works efficiently for the gossip
problem in message-passing system with authenticated Byzantine failures.

The intuition behind adapting our result for omission failures to authenti-
cated Byzantine failures model is that the information is propagated correctly
in the latter model, due to the authentication property, provided it is not
omitted in transfer and the source of the rumor is not faulty This suffices for
adapting the algorithm designed against omission failures to the setting with
authenticated Byzantine failures, with the same asymptotic time and message
complexity (see [63] for detailed discussion of a simulation of omission faults
on the top of restricted Byzantine faults, including authentications).

2.5 Byzantine failures

2.5.1 Lower bound

Theorem 2.17 Every t-Byzantine-resilient gossip algorithm, where 0 < t <
n, has message complexity Ω(nt), even in the executions without failures.
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Proof: We first prove the theorem for t < n
3
− 1. Then we extend this result

for all t < n.
Assume, to the contrary, that there exists a protocol P that in any ex-

ecution without failures sends less than nt
6

messages. It means that in any
execution there is a set of more than 2n

3
processors that communicate with at

most t
2

processors each.
Let A be a set of first t + 1 processors and B be the set of remaining

processors. We now consider two initial settings: A0, in which all processors in
A have rumors equal 0, and A1, in which all processors in A have rumors equal
1. In both settings all processors in B have rumors equal 0. By our assumption,
there exists more than n

3
processors that in both settings communicates with

at most t
2

other processors. At least one of them is outside A, because t < n
3
.

Let call this processor p.
Denote by T a set of processors that p communicates with in configuration

A0 when there are no failures, and by T ′ a set of processors that p commu-
nicates with in configuration A1 when there are no failures. Now consider an
execution with initial configuration A0, when all processors in T ∪T ′ are faulty
and behave as follows:

• towards processor p - as in execution with configuration A1 and without
any failures

• towards remaining processors - as in execution with configuration A0 and
without any failures

Observe that from the point of view of processor p this execution is equiv-
alent to execution in configuration A1 without any failures, and from the point
of view of any other correct processor this execution is equivalent to execution
in configuration A0 without any failures. Consequently, processor p will end
without correct rumors of all processors in set A. Since |A| = t + 1, at least
one of these processors is correct, which violates gossip requirements. This
completes proof for t < n

3
− 1.

Consider now any t ≥ n
3
− 1. By definition, t-Byzantine-resilient algorithm

for such t is also (n
3
− 2)-Byzantine-resilient. We have already proven that

such algorithm has message complexity Ω(n2). Therefore for each t < n bound
Ω(nt) also holds.

�

2.5.2 Algorithm and analysis

Last piece of analysis of gossip in different failure settings is to present an
algorithm that matches lower bound. This was already done by Dolev and
Reischuk in [29]. Although this algorithm is quite natural and very simple, it
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may also be viewed as one following the general framework (slightly simplified)
described in Section 2.2. Here we present it in such way.

Theorem 2.18 [29] For any t < n, there exists a constant-time t-Byzantine-
resilient gossip algorithm working in constant time and using O(nt) messages.

Proof: The algorithm distinguishes between two cases.
If 2t ≥ n then each processor broadcasts its rumor to all other processors;

message complexity in this case is O(n2) = O(nt).
If 2t < n then let T be a set of first 2t + 1 processors. In the first round

every processor sends message to all processors in T . In the second round every
processor in T receives messages, updates its local memory and sends messages
to all processors. In the third round every processor receives messages and for
every other processor q it sets the rumor of q to those which occurs in the
majority of received messages. Since f ≤ t, at least t + 1 processors in T
are correct, therefore this procedure guarantees selecting a correct rumor of q,
unless q is faulty. The message complexity in this case is O(nt).

�

2.6 Open problems

Above analysis determines the impact of faulty processors on the gossiping
problem. In the class of constant time algorithms the question is answered,
as well as for arbitrary time for omission and Byzantine faults. The only part
not proven to be optimal is crash resiliency in time longer than constant.

It is shown that for t < n1−ε, gossiping can be performed in constant
time and using O(n) messages. For bigger t, we can trade time for message
complexity. But this technique does not give linear message complexity for
any time. The problem of gossiping with O(n) messages for t = n− 1 remains
open, even if we consider exponential execution time.

Above framework is created to work in synchronous setting, but it might be
possible to extend it to work in partially synchronous setting of some kind [33],
with a little loss of efficiency. We note here that resiliency to faults in com-
pletely asynchronous distributed setting is somewhat tricky concept. In con-
sensus problem it is known that even one crash makes it unsolvable. In gossip-
ing, it is not clear even how to define the problem. When messages from one
processor travels long enough, at some point rest of the system should finish,
not knowing if that processor crashed or not.

One interesting problem which was not address in this thesis is a cost of se-
quence of gossip procedures in case of omission failures. Imagine that we need
to perform gossip many times, say n, on the same set of nodes. This is classical
case when nodes gather some data and have to exchange it periodically. In
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case of crash failures, each faulty machine will immediately be identified by its
neighbors and removed from the computation. In case of Byzantine failures,
we have seen that we need to pay additional cost each time, even when all
machines are correct. In case of omission failures the problem remains open:
although faulty machines are increasing the cost of computation only when
they are acting incorrectly, they may remain undetected. For example, when
there are two sets of t

2
machines that looses each message sent between each

other, they may add Ω(t2) to cost of each gossip, without revealing which of
these sets is faulty. Effective algorithm should therefore change the commu-
nication pattern to isolate nodes that are acting suspiciously. Observe that
simple removing of each broken link from future executions (in a sense that
machines does not try to communicate with machines that did not answer
before) is not sufficient.

Above algorithms open also a way to analyze gossip in more sophisticated
settings, i.e. in window-generated failures (when the number of failures in a
given number of round is bounded) or general network topologies.
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Chapter 3

Consensus

3.1 Introduction

Consensus is one of the fundamental problems in distributed computing. Ba-
sically, it encompasses all tasks when all units have to agree on one common
decision.

Canonical introduction of the consensus problem is a Byzantine Generals
Problem [58]. There is a story of a generals from Byzantium that besiege an
enemy city. There is a dispute if the army should attack or not. They can not
leave their cohorts, in case of retaliation attack from the city. They can only
communicate by messengers. The problem is that some of the generals are
traitors allied with the city. Their goal is to prevent the siege from success.
It can be done in two ways. First possibility is that loyal generals become
divided and some of them attack and some don’t. Second possibility is that
the army makes a decision that is against the intention of all loyal generals
(attack when no one initially votes for that or withdraw when all voted for
attack). In both cases traitors win.

It is known that if among n generals there are at least n
3

traitors, they will
always be able to trick the rest and win. If the number of traitors is smaller,
there are algorithms to ensure correct decision.

In the original definition, traitors may behave in any possible way to break
the siege. But the main problem remains nontrivial also in more restricted
setting. In particular, even when the only possible violation of protocol is the
death of general (which corresponds to crash failure in our definition), still
every deterministic solution requires at least f + 1 rounds of communication
[2]. Even though it has been extensively studied in various settings for the last
three decades, still not much is known about the communication complexity
of this problem, for example how many bits need to be sent by processors until
decisions are made.

We start this chapter with proper formalization of the consensus problem,
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together with an outline of the previous and new solutions. Then in Section
3.2 we define a concept of well connected majority, and prove the existence of
graphs that we will use in our algorithms. In Section 3.3, we present a de-
terministic algorithm and its analysis. Section 3.4 is devoted to the quantum
consensus. We start with an introduction to quantum model of computation
and formalization of quantum distributed system. Then we present an algo-
rithm and its analysis. We end this chapter with discussion of some open
problems.

3.1.1 Problem setting

In the literature, consensus is defined by three properties:
Termination: Each processor eventually chooses a decision value, unless it
crashes,
Agreement: No two processors choose different decision values,
Validity: Only a value among the initial ones may be chosen as the decision
value.

Definition of the problem in our formalization is the following: In the initial
state, each machine Mi has some initial value vi, written on its working tape.
Following the Byzantine Generals Problem, we assume that this is one bit value
(attack or withdraw). It is known that solutions for this case may be extended
to multi-value consensus with an extra logarithmic factor in communication
cost, using the tournament technique (see e.g., [43] for details).

The goal is to choose one of the initial values. Formally, we say that
protocol P successfully solves consensus, if for any sequence < v1, v2, . . . , vn >
of initial values, in accepting state there exists a v = vi for some i and all unit
have somewhere on its working tape the same sequence:

Decision = v,
and symbol Decision is written exactly once on this tape. In a faulty

setting, a set F of faulty machines is introduced. We say that protocol P
successfully solves consensus, when every correct machine (M ∈ A\F ) in ac-
cepting state has on its working tape the sequence:

Decision = v.
We say that protocol P is t-resilient, if for every set of faulty machines

F such that |F | ≤ t, P successfully solves consensus. Depending on type of
failures, we obtain definitions of t-crash-resiliency, t-omission-resiliency and
t-Byzantine-resiliency.

3.1.2 Previous and related work

The problem of consensus was introduced by Pease, Shostak and Lamport [65].
They showed [58, 65] that number t of faulty processors needs to be smaller
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than n
3

for a solution to exist, assuming synchrony and Byzantine faults.

Fisher, Lynch and Paterson [37] showed that the problem cannot be solved
deterministically in the asynchronous message-passing setting even if only one
processor may crash. On the other hand, randomized solutions exists for the
number of crashes up to n

2
(see e.g. [14]). One may find several other possible

solutions in asynchronous model in [25].

Fisher and Lynch [36] showed that a t-crash-resilient deterministic solution
to consensus requires t+ 1 rounds. The lower bound for communication com-
plexity in this model is Ω(n) [5]. For the more severe kinds of process failures,
like omissions or Byzantine, the lower bound Ω(n+ t2) on the communication
complexity was proved by Dolev and Reischuk [29]. On the other side, Garay
and Moses [39] developed an algorithm with polynomial-size messages and op-
erating in t + 1 rounds, for n > 3t processors subject to Byzantine failures
(although the obtained polynomial was large).

Dolev and Reischuk [29] studied the message complexity of consensus in
the case of Byzantine faults. They distinguished between pure Byzantine
faults and a less demanding situation when some (cryptographic) authenti-
cation mechanism is available, which makes forging of forwarded messages
impossible. They showed lower bound Ω(nt) on the number of signatures, for
any algorithm using authentication, which is also a lower bound on the total
number of messages for any protocol without authentication. They showed
that any algorithm with authentication needs to send Ω(n+ t2) messages, and
that achieving the goal with this number of messages is possible. This proves
that, in the case of malicious faults, the required number of messages has to
be quadratic in n.

Surprisingly, only a trivial linear lower bound Ω(n) [5] on the number of
messages is known for crash failures. Dwork, Halpern and Waarts [32] designed
an algorithm with O(n log n) communication bits, but their algorithm worked
in exponential time. Galil, Mayer and Yung [38] improved this solution to
O(n) communication bits, but still in the cost of exponential time. They
also developed the first time-efficient algorithm with subquadratic number of
communication bits, equal O( n2

logn
).

Randomized solutions to consensus are much more efficient that the clas-
sical ones. Bar-Joseph and Ben-Or showed that in randomized case it may
be solved in O( t√

n logn
) expected number of rounds, and this is an optimal

solution [13]. Ben-Or showed also that consensus in a quantum model can be
solved in constant number of rounds [15]. Both this solutions use all-to-all
communication in every round, therefore their message complexity is high.

Relevance of the consensus problem to fault-tolerant broadcast and other
communication problems was discussed by Hadzilacos and Toueg [47]. A re-
lated problem of almost-everywhere agreement was considered by Dwork, Pe-
leg, Pippenger and Upfal [34] and later by Upfal [73]. In this model an agree-
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ment can be reached by a fraction of processors when a smaller fraction is
crashed, even in some constant-degree underlying networks.

3.1.3 New results

We study this problem in a message-passing synchronous system with crash-
prone processors. We develop deterministic consensus that works in time O(t)
and uses onlyO(n log2 n) bits, for less than n

3
crashes. It can be contrasted with

algorithms under omission and Byzantine failures, where quadratic number
of bits is necessary. We apply this technique for sensing the size of local
neighborhood in specific graphs, to decrease communication complexity of
quantum consensus algorithm, from quadratic to O(n log3 n).

3.2 Well-connected majority

Many consensus algorithms are designed on the idea that a majority of non-
faulty processors decide, and then they spread its decision to the remaining
processors. The real challenge in this approach is how to define a majority that
has enough processors to decide. For example, if such majority is predefined
in the algorithm, sufficient number of crashes in this set may lead to failure of
the whole protocol. It might be possible to detect such event and repeat this
procedure with different set, but this leads to big communication overhead of
many repetitions.

A better result can be achieved by using special communication pattern
that only guarantees that a majority exists, not specifying it directly. In this
approach every processor must recognize whether it belongs to a decision-
making majority or not, based on its local knowledge. The previous instanti-
ations of this method [19, 20] suffered from the fact that they used gossiping
as a subroutine, which still requires a quadratic number of bits to be sent (al-
though the number of messages may be reduced to O(n polylog n), comparing
to Ω(n2) of the naive approach with pre-defined majority).

Our approach allows us to recognize whether a processor is in a compact
majority component by exchanging only polylogarithmic number of bits per
processor, on average. To achieve this, we use graphs with specific properties,
in which nodes are identified with processors, and each processor sends mes-
sages only to the neighbors in these graphs. The precise schedule of how to
use the graphs will be defined in Section 3.3, here we only define graphs and
prove their existence.

We start with some additional definitions, extending the framework from
Chapter 2. For given undirected graph G = (V,E) and set W ⊆ V , we call
the subgraph of G containing only nodes in W and all edges with both ends
in W a subgraph of G induced by set W and denote it by G|W .
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For a given subset of edges E ′ ⊆ E, let V (E ′) denote the set of nodes
incident to some edge in E ′. We call edge {v, w} internal for a given set of
nodes B ⊆ V if v, w ∈ B.

By N i
G(A) we denote the set of nodes that are of distance at most i from

some node in A in graph G. We say that a set of nodes C ⊆ V is k-dense in
graph G if each node v ∈ C has at least k neighbors in C.

Let γ be a constant to be specified later. Consider an undirected graph
G = (V,E) of n nodes, and a positive integer δ. We are interested in the
following graph properties.

δ-Dense-Compact-Subgraph (δ-DCS): For every set B ⊆ V of at least 2n
3

nodes there exists a δ-dense subset C ⊆ B of size at least n
2

and diameter
at most γ log n.

δ-Edge-Density (δ-ED): For any set A of at most n
2

nodes, the total number

of internal edges is at most 7|A|δ
4

.

Theorem 3.1 For every n, δ > 288 + 2 log n and γ > 23, there exists a graph
of n nodes, each of degree between 2δ and 4δ, satisfying properties δ-DCS and
δ-ED.

Proof: Let G = (V,E) be a random graph of n-nodes, with the probability
6δ
n

of each pair {v, w} to be in E.

Expected number of edges is
(
n
2

)
6δ
n

. By Chernoff bound, probability that
it has more than 2 ·

(
n
2

)
6δ
n

is at most 2−n. Since 2 ·
(
n
2

)
6δ
n
≥ 6δn, probability

that this graph has at most 6δn edges is at least 1−2−n. Moreover, each node
has degree at least 2δ and at most 4δ with probability at least 1− 21−δ/9, by
the similar argument. We first prove that it satisfies the following density-
kind properties with high probability, and then we argue that these properties
guarantee δ-DCS and δ-ED.

Property A. For any set A of at most n
12

nodes, the number of nodes with
more than δ neighbors in A is less than n

24
.

Property B. For any set B of at least 2n
3

nodes, the number of nodes with less
than 2δ neighbors in B is less than n

24
.

Property C (equivalent to property δ-ED). For any set A of at most n
2

nodes,

the total number of internal edges is at most 7|A|δ
4

.

Proof of Property A. Note first that it is sufficient to consider only sets A of
size exactly n

12
, since a node that has more than δ neighbors in set A has also

more than δ neighbors in any superset A′ ⊇ A of size exactly n
12

;

Let A ⊆ V be a set of n
12

nodes, and XA ⊆ V be the corresponding set
of nodes with more than δ neighbors in A. Every v has expected number
6δ · n

12
/n = δ

2
neighbors in A. The probability that v has N > δ neighbors in
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A is bounded, using Chernoff bound, by:

Pr

(
N > (1 + 1) · δ

2

)
<
( e

22

) δ
2
< 2−

δ
4 .

Thus, the probability that there exists a set A of size n
12

and the corresponding
set XA with at least n

24
nodes is at most:(

n

n/12

)(
n

n/24

)
(2−δ/4)n/24 < 2n · 2n · 2−3n = 2−n

since δ > 288.
Proof of Property B. Note first that it is sufficient to consider sets B of size
exactly 2n

3
, because each node with less than 2δ neighbors in set B has also

less than 2δ neighbors in an arbitrary subset B′ ⊆ B of size exactly 2n
3

.
Let B be a subset of 2n

3
nodes. Let X0 be the set of nodes with less than

2δ neighbors in B. Every v has expected number 6δ · 2n
3
/n = 4δ neighbors in

B. Probability that v has N < 2δ neighbors in B is bounded as follows, using
again Chernoff bounds:

Pr (N < (1− 1/2)4δ) < e−4δ/8 = e−δ/2 .

The probability that there exists a set B such that the corresponding set
X0 has n

24
elements is at most:(

n

2n/3

)(
n

n/24

)
(e−δ/2)n/24 < 2n · 2n · 2−3n = 2−n ,

since δ > 144.
Proof of Property C. The proof is similar to the one for Property A. Let
A ⊆ V be a set of a nodes, where a ≤ n

2
. We may assume a ≥ 7δ/4, since

otherwise the total number of internal edges is at most |A|2 < 7|A|δ/4 with
probability 1.

The probability that there is an edge between any two nodes in set A
is 6δ

n
, thus the expected number of internal edges is a(a−1)

2
· 6δ
n

= 3a(a−1)δ
n

.
Consequently, the probability that the number N of internal edges is bigger
than 7aδ/4 can be bounded using Chernoff bound:

Pr

(
N > (1 + α) · 3a(a− 1)δ

n

)
<

(
eα

(1 + α)1+α

) 3a(a−1)δ
n

where α = 7n−12(a−1)
12(a−1)

.
We consider two cases:
1. For a ≤ n/6, α > 2, and therefore

Pr

(
N > (1 + α) · 3a(a− 1)δ

n

)
< e−

6n
12a
· 3a(a−1)δ

n < 2−aδ
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2. For a > n/6 and a < n/2, α > 1/6 and we use bound

Pr

(
N > (1 + α) · 3a(a− 1)δ

n

)
< e−

a2δ
2n

Probability that there exists a set A of at most n
6

nodes and more than
7|A|δ

4
internal edges is at most

n/6∑
a=7δ/4

(
n

a

)
· 2−aδ ≤

n/6∑
a=7δ/4

(ne
a

)a
· 2−aδ ≤

≤
n/6∑

a=7δ/4

2a logn · 2−aδ ≤
n/6∑

a=7δ/4

2−aδ/2 ≤ 2−7δ/4 <
1

n
,

since δ > 2 log n.
Probability that there exists a set A of size between n

6
and n

2
and more

than 7|A|δ
4

internal edges is at most

n/2∑
a=n/6

(
n

a

)
· 2−

a2δ
2n ≤ 2n · 2−2n = 2−n ,

since δ > 144.
By the probabilistic argument, there exists a graph satisfying the three

properties and such that each node has degree between 2δ and 4δ. The number
of edges in this graph is obviously smaller than 3nδ. Property C is the same as
property δ-ED. It remains to prove that this graph satisfies property δ-DCS.

Let us define, for any set of nodes X, the following operation:

F (X) = X ∪ {v | v has at least δ neighbors in X}

This operation is monotonic, and defined on a finite set, therefore it must
have a fixed point. Also, starting from any set and iterating the operation F
we will reach some fixed point in at most n steps. For any given B of size at
least 2n

3
, we define a set F ∗(B) to be a fixed point obtained by iteration of F

on B. We now prove that |F ∗(B)| < n
12

.
Let X0 = B, and Xi+1 = F (Xi) for any i. By the Property B, |X0| ≤ n

24
.

Let Xj be the first set in this sequence that has at least n
12

elements. From
monotonicity of F we know that

Xi = Xi−1 ∪ {v | v has at least δ neighbors in Xi−1}

Since both sets in the union have less than n
24

elements — the first by definition
of Xi, and the second by the Property A — we end up with a contradiction.
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Therefore, each set in this sequence has less than n
12

elements, and consequently
|F ∗(B)| < n

12
.

To prove δ-DCS, for a given set B ⊆ V of size at least 2n
3

we define
C = B \ F ∗(B). Each element in C has at least 2δ neighbors in B and at
most δ neighbors in X, therefore it has at least δ neighbors in C. Moreover,
|C| ≥ 2n

3
− n

24
> n

2
. It remains to prove that C has diameter at most 2 log n,

which is guaranteed if we show an expansion property for graph G|C : each set

A ⊆ C of size at most |C|
2
≤ n

2
has at least |A|/4 neighbors in set C \ A. It

follows from Property C. More precisely, set A has at most 7|A|δ/4 internal
edges, therefore there are at least 2|A|δ − 7|A|δ/4 = |A|δ/4 of edges between
sets A and C \ A. Since degree of each node in graph G, and thus in G|C ,
is at most 4δ, the number of nodes in C \ A connected to set A is at least
|A|δ/4

4δ
≥ |A|/16. This yields diameter at most 2 · log17/16 n ≤ 23 log n, and

concludes the proof.

�

We have proven the existence of such graphs, but in order to use them in
consensus algorithm, we need to prove their one more useful property. Let
us take any graph G = (V,E) with properties δ-DCS and δ-ED, and a node
v ∈ V . Consider any set S(v) ⊆ Nγ logn

G (v), with the property that each node
w ∈ S(v) ∩ Nγ logn−1

G (v) has at least 2δ neighbors in S(v). We call set S(v)
2δ-pseudo-dense in graph G. (Prefix “pseudo” corresponds to the fact that
there may be nodes in S(v) of distance exactly γ log n from v that have less
than 2δ neighbors in S(v).) Observe that in particular if every node has degree
at least 2δ, the set Nγ logn

G (v) is 2δ-pseudo-dense. Here we prove a lemma that
tells something about size of such sets.

Lemma 3.2 For any graph G = (V,E) of n nodes, each of degree between
2δ and 4δ, satisfying property δ-ED, and for any node v ∈ V , any 2δ-pseudo-
dense set S(v) has at least n/2 nodes.

Proof: We prove by induction on i, for 1 ≤ i ≤ γ log n, that S(v) ∩ N i
G(v)

has at least min{(17/16)i, n
2
} elements. For i = 1 it follows directly from the

fact that v ∈ S(v) has at least 2δ neighbors in set S(v)∩N1
G(v). Suppose that

the invariant |S(v) ∩ N i
G(v)| ≥ 2i holds for 1 ≤ i < γ log n, we prove it for

i+ 1. If S(v)∩N i
G(v) has size bigger than n

2
, we are done. Otherwise set A =

S(v) ∩ N i
G(v) has at most 7|A|δ/4 internal edges. Consequently, there are at

least 2|A|δ−7|A|δ/4 = |A|δ/4 edges between sets A andN i+1
G (v)\A. Since each

node in the second set has degree at most 4δ, the number of nodes inN i+1
G (v)\A

connected to set A is at least |A|δ/4
4δ
≥ |A|/16. Therefore the size of set S(v) ∩

N i+1
G (v) is at least |A| + |A|/16 ≥ |S(v) ∩ N i

G(v)| · (17/16) ≥ (17/16)i+1. We
conclude that S(v)∩Nγ logn

G (v) has at least min{(17/16)γ logn, n
2
} ≥ n

2
elements.

�
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In the algorithm we will also use a-expanding graphs, for a = n
2
, n

4
, . . . , 1.

a-expanding graph is a graph where each two subsets of size a are connected by
an edge. It can be shown that there exist a-expanding graphs with maximum
degree O(n

a
log n), although the best explicit constructions reach only degree

O(n
a

polylog n) [74]. We will also use a (n− 3t− 1, 3t + 1, d)-disperser graph
Ht, which is a simplified version of general disperser. This graphs is defined
as a bipartite graph with the first 3t + 1 processors on the right-hand side
and the remaining n − 3t − 1 on the left-hand side, such that the left degree
is d and each subset of the left-hand side of size n−3t−1

2
has more than 3t/2

neighbors on the right-hand side. There exists a (n−3t−1, 3t+1, d)-disperser
for d = O(log n), although, similarly as for expanding graphs, the best explicit
constructions guarantee only d = O( polylog n) [74].

3.3 Deterministic algorithm

In this section we present a deterministic consensus algorithm that tolerates
t < n

3
crash failures. We start with defining data structures and variables used

by the algorithm. We also describe the format of messages and the update
rules based on received messages.

3.3.1 Local memory, messages and updates

Let δ = max{288, 2 log n} + 1. Let {G0, G1, . . . , Glogn} be a family of n-node
graphs defined such that:

• G0 satisfies δ-DCS and δ-ED properties (see page 53) and each node has
degree between 2δ and 4δ.

• Gi, for 1 ≤ i ≤ log n, is a n
2i

-expanding graph of maximum degree
O( n

2i
log n).

These graphs are known to all processors, with nodes identified with the pro-
cessors.

Local memory. Processor p stores the following data:

• Value δ and all graphs G0, G1, . . . , Glogn.

• vp (Value): a candidate value, 0 or 1; initialized into initial valuep.

• dp (Decision): a variable, of value yes or no, indicating whether a deci-
sion on the candidate value vp has been already made;
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Values yes and no are encoded as a single bits 1 and 0 respectively, but for
the purpose of the presentation we will use the more informative text form
(yes and no). We say that process p is convinced in a given round if it has
dp = yes at the end of this round.

Messages and memory update. Each message sent by processor p consists
of two bits v, d, where bit v is equal to the current value of variable vp, and
bit d is equal to the current value of variable dp. The algorithm has three
phases. In each round, after receiving a set of messages, processor p performs
the following update operations:

• In Phase 1 and 2: If some message received in this round contains v = 1,
it sets vp ← 1.

• In Phase 3: If any message received in this round contains d = yes, it
sets dp ← yes and sets its value vp to the value v received together with
d = yes (we say that p adopts a decision value and becomes convinced).

3.3.2 Algorithm

We first describe and analyze our algorithm for parameters n, t satisfying con-
ditions n

12
≤ t < n

3
, later we show how to naturally extend it for any t < n

3
. We

call the algorithm Majority-Sensing Consensus Algorithm, or MSC for short,
since the main idea behind it is as follows. First, in order to reduce the num-
ber of messages, each processor communicate only with its neighbors in some
sparse graph. This graph guarantees that for every feasible execution there
is a majority of processors that are “well-connected” by links of this graph.
Second, most of processors in this majority recognize that they belong to it by
exchanging a small number of short messages (“sensing neighborhood”). Then
the majority makes a decision. Finally, remaining processors try to communi-
cate with this majority and adopt the decision. They use family of expanding
graphs, in order to make this fast and using small number of messages.

The algorithm consists of three phases.

Phase 1. Propagating values
The goal of this phase is to propagate decision values inside each connected
component of graph G0. This phase lasts 12t+23 log n rounds. Each processor
p sends a message to all its neighbors in graph G0 in the round just after setting
vp into 1. Note that a processor with initial value 1 sends it in the first round,
while a processor that ends this phase with value 0 has not sent any message
in this phase.
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Phase 2. Sensing for a compact majority
In this phase processors probe local neighborhood with a message, to determine
if they are connected to the majority set and then they make a decision. This
phase lasts 23 log n rounds. Each processor keeps sending a messages to all of
its neighbors in graph G0 until in some round it receives less than 2δ messages.
If in the last round of this phase a processor p receives at least 2δ messages,
it sets dp to yes and sends a message to all its neighbors in graph G0.

Phase 3. Calling for decision value.
The goal of this phase is for every processor to get to know the decision value.
This phase lasts 2 log n rounds. In this phase each processor that is not con-
vinced yet, sends requests to other processors to learn about a decision value.
More precisely, a processor p that has dp = no at the beginning of this phase,
sends a message to all its neighbors in graph G1 in the first round of this phase
and waits for answer. If no answer contain d = yes, it sends message to all
its neighbors in graph G2, and so on. It is continued until receiving a decision
value (that is, a message of the form (1, 1) or (0, 1)). After receiving a decision
value, it adopts it, becomes convinced and stops. Every convinced processor
replies immediately after receiving a message from a non-convinced processor
(in the same round). Every non-faulty processor p decides on its current value
vp at the end of round log n of this phase.

3.3.3 Correctness and complexity analysis

By construction, algorithm MSC satisfies termination condition. Clearly, each
processor terminates by time 12t+ 23 log n+ 23 log n+ 2 log n = O(t+ log n).

Also, every processor may change its initial value only in the update after
receiving messages, and the new value is received from some other processor.
Therefore, by the inductive argument, in each round the set of current values
v of processors is a subset of the set of all the initial values, and validity
condition is satisfied.

We now prove that all correct processors decide on the same value.

Let B be the set of non-faulty processors at the end of the execution. Note
that |B| > 2n/3. By the property of graph G0, there exists a (2δ)-dense subset
C of set B of size bigger than n

2
and diameter at most 23 log n in the subgraph

of G0 induced by C.

Each node in C becomes convinced at the end of Phase 2, by the choice
of set C. More precisely, this is because all nodes in set C keep receiving at
least 2δ messages per round during the whole Phase 2. Consider the subgraph
of G0 induced by processors that are non-faulty by the end of Phase 1. If two
processors are in the same connected component then they clearly have the
same value at the end of Phase 1, and consequently by the end of Phase 2.
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It follows from the following facts: (i) each time the value 1 is received for
the first time by a processor, it is immediately re-sent to all its neighbors
in G0, and (ii) each path consisting of different nodes has length at most
n ≤ 12t. Indeed, a path from a processor q with initial value 1 that has been
delivered to processor p can be extended to a path from q to any other node
in the connected component of p. It can be done directly by concatenating
the two sub-paths from q to p and from p to the other processor and using
common points, if any, as shortcuts to avoid repetitions of nodes. Such path
propagates value 1 and has length at most n, thus the other node in the
connected component has value 1 by the end of Phase 1 as well.

It follows that at the end of Phase 2 all convinced processors have the
same value: all within the same connected component as set C have the same
values by the previous argument, while the number of processors outside this
component is smaller than n

2
, therefore by Lemma 3.2 none of them is in a

2δ-pseudo-dense, and therefore can not become convinced in Phase 2.
It remains to prove that every non-faulty processor becomes eventually

convinced (by setting its variable d to yes). All processors in C are convinced
by the end of Phase 2. We argue that by the end of round i of Phase 3, the
number of unconvinced processors is smaller than n

2i
. The inductive proof is

straightforward: in round i+1 graphGi+1 is used by unconvinced processors for
sending requests. This graph is n

2i
-expanding graph, which means that there is

no subset of size n
2i+1 that would not be connected to the remaining processors

(convinced and non-faulty). Thus at the end of Phase 3 all processors are
convinced.

The above analysis of Phase 3 gives also the upper bound O(n log2 n) for
communication complexity. Indeed, in round i of this phase at most n

2i
pro-

cessors send O(2i log n) messages each. Recall that each message consists of
two bits, thus the number of communication bits is only twice as big as the
number of messages sent. The number of responses is trivially bounded by the
number of requests. Note that the communication incurred by Phases 1 and 2
is also O(n log2 n), since every processor in graph G0 sends O(δ) point-to-point
messages at most O(log n) times. Thus we proved:

Lemma 3.3 Algorithm MSC solves consensus in time O(t) and with commu-
nication complexity O(n log2 n), for at most t crashes, where n

12
≤ t < n

3
.

Algorithm MSC can be easily extended to efficiently tolerate any t < n
3

crashes as follows. If t < log2 n then we run a naive consensus algorithm for
the first t + 1 processors, and then each of them spreads a decision to the
remaining processors in one round. This works in time O(t) and with com-
munication complexity O(nt) = O(n log2 n). For the case log2 n ≤ t < n

12
we

proceed as follows. The first two phases are performed only by the first 3t+ 1
processors, using graph G0 designed for them (not for all processors!). Then
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we run the third phase by all non-faulty processors. This phase differs from
the restricted version only by the fact that before we use graphs G1, . . . , Glogn

for sending request messages, we use a disperser graph Ht to guarantee that
a large fraction of non-faulty processors (at least 2/3 of all non-faulty pro-
cessors) become informed, and thus the remaining sub-phase involving graphs
G1, . . . Glogn terminates successfully, as in the restricted case. Note that all
graphs Ht, G1, . . . , Glogn are designed for all processors, unlike graph G0 used
in the first two phases. The asymptotic time complexity remains unchanged,
that is O(t), while the additional communication impact of disperser H is only
O(n log n). Therefore we get the final result:

Theorem 3.4 There exists a deterministic consensus algorithm working in
time O(t) and using O(n log2 n) communication bits, for every t < n

3
.

3.4 Quantum algorithm

In this section we apply above communication scheme to the quantum model.
We present an algorithm that solves consensus in timeO(log n) usingO(n log3 n)
qubits, and is n

3
-crash-resilient.

We start with a simple formalization of the quantum model, consistent
with our previous setting. Our model is equivalent to a standard quantum
computation model, and uses notion of the Quantum Turing Machine. Again,
we do not go deep into the details of this model. Reader interested in more
broad view may found it in a book of Nielsen and Chuang [64].

3.4.1 Quantum distributed computation

To define properly model of quantum distributed computing, first we need to
formalize a notion of a Quantum Turing Machine. Intuitively, this is a Turing
Machine that may perform additional “quantum transitions”. There are two
types of them: unitary transformation and measurement.

State of the machine Since our consensus algorithm for n processors uses
space of size O(n2), we here consider only machines with tapes bounded to this
size. Therefore, for each n in fact we may consider any processor to be a finite
state machine. Let a X denote the set of all possible states of such machine.
Configuration of Quantum Turing Machine is a function Ψ : X→ C, where C
is a set of complex numbers, called amplitudes. In order to be a proper state,
this function must meet the requirement

∑
x∈X |Ψ(x)|2 = 1. If this function is

equal 1 on one argument, and 0 on all the others, we say that machine is in
classical configuration. If not, that is, this function is non-zero on more than
one argument, we say that machine is in superposition.
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We always assume that initial and final configuration of the machine is
classical.

Unitary transformation Unitary transformation is a special type of tran-
sition allowed to the Quantum Turing Machine. In a classical model, we may
present transitions of TM as a matrix with 1’s and 0’s, where each 1 denotes
allowed step and 0 denotes a non-allowed step. In a deterministic TM, there
is a single 1 in every column of this matrix. In such setting, computation is
simply a repeated application of this matrix to a vector describing state of the
machine.

If we present probabilistic machine in such a way, instead of 1’s and 0’s we
may use other real positive numbers from the interval [0, 1]. The requirement
is that values in every column must add to 1. Quantum model further extends
this notion, allowing complex numbers instead of only real ones, and introduc-
ing two requirements. First is that ∀j

∑
i |M(i, j)|2 = 1. Second is that the

matrix itself must be unitary (M∗M = MM∗ = I).

The second requirement is not present in case of classical and probabilistic
machines, and because of it, simulation of the classical computation on quan-
tum machine is not trivial. It has been shown that it is possible. Easiest way
to show that is to create a quantum simulation of every classical transition,
storing on the tape all changes performed by the classical machine. Such op-
eration is easy to reverse, and transition of such machines may all be unitary.
This way, machine stores whole history of the simulated computation, and
space complexity of the algorithm is of the size of time complexity of classical
computation. There are some techniques that allow more efficient simulation.
In this thesis we are not concerned by constant factors in costs, therefore the
sole fact that such simulation is possible suffices.

Measurement Measurement reduces superposition to a singe classical state.
Precisely, measurements is a transition that performed in state Ψ leads to each
of the states x ∈ X with probability |Ψ(x)|2. It must always lead to some state,
and this is exactly the reason why these values must sum up to one. From
the point of view of quantum theory, this is a complete measurement, which
is a special case of more general partial measurements. The latter is more
complicated and we will not be using it in our algorithm, therefore we omit it
in this thesis.

It is worth noting, that even if in each state there is only a constant num-
ber of possible transitions, quantum machine may enter a superposition of
exponential number of states in polynomial time. However, if we only need
to compute the probability of one possible outcome with some bounded er-
ror, we may search the whole tree of states by depth first search algorithm
and compute the probabilities on each branch with some polynomial accuracy.
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This may be realized in PSPACE, which proves that quantum machines are
simulated by alternating machines. The relation between quantum and non-
deterministic machines is not determined for now.

Quantum distributed system Quantum distributed system Q is a set of
Quantum Turing Machines with quantum communication interfaces. In this
model, collective state of all machines and all tapes is described as one function
Ψ. Special synchronization states and symbols are the same as in Section
1.2, and all previous notions apply. Only instead of a classical transition,
each machine may use unitary transformations and measurements. In order
to avoid the partial measurements, we use only simultaneous measurements
of all machines. We assume that only correct machine may perform such
measurement and it replaces quantum state of the whole system with a classical
state.

It is possible to devise many nonequivalent models of quantum distributed
system. Here we use one particularly realistic, in which quantum behavior is
reserved only to memory qubits, not to behavior of the machines. It means
that the number of qubits read and written by every machine in every round,
number of rounds, destination of every message and its length - are all de-
terministic and known from the start. Only the content of the messages and
tapes might be in superposition. Every instruction leaves heads of every ma-
chine in a classical state in one place (not in superposition), and at the end of
each round every machine is in classical state FinishRound. Also, at the end
of each round, before content of send buffers is moved to receive buffers, every
receive buffer must be in a classical state (in particular, not entangled with
any data on other tapes), to prevent non-unitary transformation performed by
synchronization mechanism. This will be ensured in our algorithm.

Following the quantum mechanical Dirac notation, we shall use bracket to
denote quantum states of the memory cells:

• |x〉 is a quantum state with amplitude 1 on classical state x, and 0 on
all the others.

• α|x〉 + β|y〉 is a quantum state with amplitudes α on state x and β on
state y, and so on.

We use the same notation for unitary transformations. Some of them, as
for example quantum analogue of classical copying, will create entangled states
of memory qubits. Term entanglement is a quantum analogue of dependent
random variables in probabilistic settings. It means that state of two pieces of
the system can not be described as a combination of two independent super-
positions, but only by a singe function on all possible states of these pieces.

Quantum Turing Machine is inherently probabilistic and in some aspects
similar to probabilistic Turing Machine. There are, nevertheless, two impor-
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tant differences. First is that probabilities are real positive numbers, while
amplitudes are complex ones. In consequence, amplitudes may subtract from
each other, while probabilities only add up. Such process is called quantum
interference and may be used to perform computations not possible in proba-
bilistic model: e.g. Shor’s algorithm [71] and Grover’s algorithm [44]. Second
difference, that is more important to us, is that transformations and measure-
ments are separated in time. There is no additional “random tape” that may
be read to perform the probabilistic transitions. Instead, Quantum Machine
is literally in many states at the same time. To describe how this affects the
model, we need to discuss one more notion about probabilistic and quantum
algorithms: the adversary.

The Adversary Standard performance evaluation of an algorithm is to cre-
ate so-called worst-case scenario, that is, to analyze it with an input for which
it performs the worst. In distributed algorithms, this in particular encompasses
the worst possible sequence of failures during the execution. When we were
discussing deterministic algorithms, it was enough to propose a single such se-
quence for each of them, because the whole execution was then predetermined.
This does not apply to probabilistic and quantum algorithms. If there is more
than one possible behavior of the system, for each of them a different sequence
of failures might be the worst. There are in fact several nonequivalent ways of
defining the worst case scenario in this case. One efficient way of categorizing
them is to introduce the adversary [3].

Adversary is a “second player”, if we look at the execution as a game of
solving the given problem. First player tries to fulfill the solution requirements,
and his strategy is the algorithm itself. The adversary creates the input data
and determines sequence of failures during the computation. His goal is to
finish the execution incorrectly, and if it is impossible, to make the algorithm
to use as many resources (time, messages, etc.) as possible. In a probabilistic
model, there are three most common adversary types, defined by the amount
of knowledge available to the adversary and the set of his possible strategies.

• Oblivious adversary
Such adversary knows only the algorithm, and must prepare failure se-
quence before the execution starts.

• Adaptive online adversary
Such adversary prepares the sequence during the execution, knowing ev-
erything that has happened in the system so far and all random bits used
so far. E.g. it might crash each processor that received some number of
messages, which the oblivious adversary can not (if this number is not
predetermined).
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• Adaptive offline adversary
This adversary knows the random tapes/generators of every processor,
and may predict all random values that will be used in the computation.
In general, it looks at the probabilistic algorithm as a deterministic one.

These definitions induce three performance metrics for probabilistic algo-
rithms, because in each case adversary may be able to force algorithm to work
in different time and use different number of messages.

We may define similar classes of adversaries in a quantum model. The def-
initions of oblivious and adaptive online adversaries remains the same. Adap-
tive offline adversary is slightly different. There is no random tape known to
him, instead the quantum machine is really in superposition of many states.
Following the intuition that such adversary “knows everything”, we say that
he knows exact function Ψ at each moment of the execution. He can not,
however, know the exact outcome of the measurement, because such thing has
no meaning before the measurement is performed. In real world this would
violate the uncertainty principle.

Now, we may see why it is important that in quantum model measure-
ments are separated from the algorithm. Before the measurement is actually
performed, even the all-knowing adversary can not predict its outcome. We
may use it to strip the adversary from his ability to adapt, by postponing the
measurements until the end of the execution.

Algorithm presented below works against the strongest, adaptive offline and
all-knowing adversary, that may cause up to n

3
crashes during the execution.

Building blocks In this paragraph we present basic building blocks of quan-
tum algorithm, in order to simplify its presentation. All transitions presented
here are standard to quantum computation model or might be easily composed
of standard quantum operation. To show that all of them are unitary, it is
enough to show that all of them are involutions.

1. Hadamard gate
This unitary transformation on a single qubit is described by matrix:

H = 1√
2

[
1 1
1 −1

]
It is worth noting that this gate applied to qubit in state |0〉 creates
qubit in superposition 1√

2
(|0〉+ |1〉).

2. Superposition number
Application of Hadamard gate to every qubit in register X = |00 . . . 0〉
(of k qubits), creates superposition of all values in this register:

H⊗kX = 1
2k/2

∑x=2k−1
x=0 |x〉 This is useful in generating superpositions and

random numbers.
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3. CNOT(x,y)
CNOT (Controlled-NOT) is a basic operation on single qubits x and y,
described by matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Let x = α|0〉+ β|1〉. The transition outcome is then:
CNOT (x, |y〉) = α|0〉|y〉+ β|1〉|1 xor y〉.

4. Entangled copy(A,B)
Let A and B be quantum registers of equal size, and B be initially set
to |00 . . . 0〉. Application of CNOT pairwise to corresponding qubits of
A and B creates entangled copy of register A in place of B.
Let A =

∑
x αx|x〉. The transition outcome is then

∑
x αx|x〉|x〉.

5. Move(A,B)
Let A and B be a quantum registers of equal size, and B be initially set to
|00 . . . 0〉. Preparing an entangled copy of A on B, and then application
of CNOT pairwise to corresponding qubits of B and A leaves A in state
|00 . . . 0〉, and B storing previous state of A.

6. SWAP(A,B)
Let A and B be a quantum registers of equal size. SWAP operation
exchanges content of those two registers.

7. Conditional NOT(cond, input, output)
Let cond be any boolean function on input, and input and output be
quantum registers. It is possible to entangle output register with the
value con(input) without measuring input. Let input =

∑
x αx|x〉. The

transition outcome is then
Conditional NOT (cond, input, output) =

∑
x αx|x〉|cond(x) xor output〉.

8. Conditional SWAP(x, A, B)
Let x be one qubit register, and A and B be a quantum registers of equal
size. As in previous case, it is possible to perform SWAP (A,B) in an
entangled way with register x, without measuring it. Let x = α|0〉+β|1〉.
The transition outcome is then
Conditional SWAP (x,A,B) = α|0〉AB + β|1〉BA
If x was initially entangled with any other registers, state of registers A
and B also become entangled with them.
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3.4.2 Algorithm

The main technique used in this algorithm is sending messages in superposi-
tions. If such message is entangled with some local data of the sender, state of
the sender memory and receiver memory become entangled. In our algorithm
we use this to create completely entangled state of the whole system before
we make first measurement.

The following algorithm is a quantum version of randomized leader selec-
tion. Each processor selects a random ticket number and broadcasts it in the
system, together with its consensus value. At the end, processor with the
highest ticket number wins, and all processors adopt its consensus value. The
range of values available for ticket numbers determines the probability of a
collision. We take this range large enough to make this probability negligible.

It is easy to see, that against an oblivious adversary, that may use at
most t crash failures, such algorithm works correctly with probability at least
1− t

n
. Adversary must choose which processors crash before ticket numbers are

generated, therefore it has only t
n

chance to crash processor with the highest
number. If not crashed, this processor will correctly broadcast its consensus
value and all correct processors will adopt it.

The same is not true for adaptive adversaries. Consider the following
strategy for adaptive adversary:

Before the first message is sent, find a processor X with the highest
ticket number, and processor Y with the highest ticket number
among those with different consensus value than X. Crash all
processors with ticket numbers between X and Y before they start
sending messages and crash X in the middle of his broadcast, so
that only a fraction of processors receive its messages.

Processors that receive message from X, will adopt its value, while the rest
adopt value of Y - so the algorithm will end incorrectly. Observe that if there
are similar numbers of initial 1’s and 0’s, this strategy requires only a constant
expected number of crashes.

In a quantum model, there is a solution for this problem. Instead of choos-
ing the ticket numbers and then broadcasting them, we may broadcast a su-
perposition of all possible values, and measure it after messages are received.
Algorithm presented below does exactly this, only in a slightly more refined
way. Instead of simply broadcasting the values, we distribute them using a
communication graph defined in the previous section. In each round, each
processor receives values from its neighbors and sends the highest one to all of
them. But since we do not want to measure these values, all comparisons be-
tween them are performed in a superpositions, using unitary transformations.

The pseudo-code of the algorithm for processor p is presented on Figure 3.1.
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1. Prepare vote state on a single qubit: |Votep〉 = |vp〉

2. Take 3 log n-qubit register Ticketp and generate Superposition num-

ber on it: |Ticketp〉 = H3 logn|00 . . . 0〉 = 1
23/2 logn

∑23 logn

a=1 |a〉

3. For 23 log n rounds:

• For every neighbor q in G0: Send an Entangled copy
|Ticketp〉|Votep〉 to q

• Move every received message to fresh space in local memory. Up-
date local memory in the following way:
For each received message of the form |Ticketm〉|Votem〉, prepare
single qubit Sm = |0〉, and apply two unitary operations

– Conditional NOT(>, (Ticketm ,Ticketp), Sm)

– Conditional SWAP(Sm, (Ticketm ,Votem), (Ticketp,Votep))

4. Measure local registers. Set vp to outcome of the measurement of V otep.

5. If in each round at least δ messages was received, set d = yes.

6. Perform Phase 3 of the Majority Sensing Consensus Algorithm.

Figure 3.1: Quantum approximated consensus algorithm, pseudo-code for pro-
cessor p

3.4.3 Analysis

Lemma 3.5 If t < n
3
, quantum approximated consensus algorithm correctly

solves consensus with probability at least 1
2

Proof: Let us observe that by construction, destinations and length of all
messages sent and received during the execution is deterministic and depends
only on the sequence of failures. Only the content of these messages and local
memory of the processors are in superposition. Consider now configuration of
the whole system just after generation of the ticket numbers. This configu-
ration has n3n states with nonzero amplitude, corresponding to n3n possible
combinations of processor’s ticket numbers. We may now analyze the exe-
cution of every of those combinations until the final measurement, and sum
their impact on its result. The crucial point is that because there are no mea-
surements before the final one, the adversary does not gain any information
before this point. It means that sequence of failures must be the same for all
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combinations.
In order to spoil the outcome, the adversary must ensure that consensus

value of the processor with highest ticket number is not propagated correctly.
Consider now any execution of the protocol with at most n

3
failures. Now

we use the property of the graph G0, that with any such sequence, there is a
compact set C of at least n

2
processors. Consider now any combination of ticket

numbers in which processor with highest number belongs to set C. Each time
its ticked number is compared with another one, it wins and is propagated
further. After 23 log n rounds whole set C has its vote adopted as own. This
set makes a decision and propagates it in the last line to all processors. It
remains to compute what is the sum of modules of squares of amplitudes of
all combinations where processor with the highest ticket number belongs to
C. Every combination has the same amplitude n−3n/2, therefore this sum is
simply the ratio of |C| to number of all processors, equal at least 1

2
.

�

Fact 1 Quantum consensus algorithm works in time O(log n) and uses O(n log3 n)
qubits.

Proof: By construction, algorithm works in time O(log n). In each round
each processor sends O(log n) quantum messages, each of size O(log n) qubits,
which sums up to O(n log3 n) qubits.

�

By simple repetition of this algorithm, we can obtain consensus with ar-
bitrarily high probability. If any iteration of this algorithm ends correctly, all
further iteration starts with the same value in all processes, what guarantees
their correctness.

Corollary 2 For any positive k, there is a quantum algorithm that solves
consensus with probability 1 − 2−k in time O(k log n) and using O(kn log3 n)
qubits.

3.5 Open problems

In this chapter we have shown a new, efficient way of communicate between
processors in a distributed system, that allows them to perform consensus
using very low number of bits. The ”majority set” emerges from the system in
a completely distributed way, without any processor knowing its form. Based
solely on the properties of the underlying graph, we can however say enough
about this set to prove correctness about the algorithm. This is very promising
field of research of fully decentralized algorithms.
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The main drawback of both algorithms presented here is that they work
correctly only for a constant fraction of faulty processors. It would be inter-
esting to improve this technique, using e.g. iterations similar to those used in
gossip problem, to achieve resiliency for any number of failures.

Quantum algorithm has also the disadvantage of producing correct output
only with some probability. Even though this probability may be chosen ar-
bitrarily close to one, more desired property would be to finish always with
a correct output. There are known techniques [35] to transform such Monte
Carlo algorithm in to a Las Vegas one, such that it always ends correctly, at the
expense of changing its execution time into a random value. These techniques,
however, require communication overhead Ω(n2), and therefore usage of them
in our algorithm would undermine its efficiency. The possibility of obtain-
ing sub-quadratic communication and correctness with probability 1 remains
open.

There is also an open question of further improving the bit complexity of
consensus algorithm. So far, the only known consensus algorithms that uses
O(n) communication bits are working in exponential time. It is a challenging
problem to perform the same in polynomial time, in any model of computation:
deterministic, randomized or a quantum one.
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