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Modelling the evolution of mobile genetic elements
Abstract

This thesis studies the long-standing question about the role of trans-
posable elements in host genomes. We put forward and study a hypothesis
that transposable elements may act as evolutionary helpers, hastening the
adaptation of the host organism to a new environment, while remaining
inactive during periods of environmental stability.

This hypothesis is analyzed by a modelling approach: we construct
and study a computational model of transposable element proliferation, in
conditions of environmental stress, then we show that environmental stress
causes a burst of transposable element activity, increasing mutability of
the organisms, and assisting adaptation.

Next, we analyze a mathematical model of transposable element prolif-
eration, deriving closed-form formulas for selection-mutation equilibrium
in organisms with certain kinds of transposable elements.

The study is augmented by empirical experiments, tying the models to
real-world phenomena: by analyzing the role of LINE elements in medi-
ating Nonallelic Homologous Recombination we prove that even inactive
transposable elements may exert a significant mutagenic effect on the
genome.

Finally, we conclude by presenting two tools for mining transposable
elements in genomic sequences which we have developed over the course
of experiments: TRANScendence, and TIRfinder.

Keywords: Transposable elements, Fisher’s geometric model, moving phe-
notypic optimum, gaussian mutations, Hidden Markov Model, mutation-
selection equilibrium
ACM Classification: J.3
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Modelowanie ewolucji ruchomych elementów genetycznych
Streszczenie

W ramach tej rozprawy zostały przeprowadzone badania nad znanym
pytaniem dotyczącym roli elementów transpozonowych w genomach orga-
nizmów. Przedkładamy tutaj, i analizujemy hipotezę mówiącą o tym, że
elementy transpozonowe mogą działać jako czynnik wspomagający ewolu-
cję organizmu gospodarza, pozwalając mu szybciej dostosować się do no-
wych warunków środowiskowych, pozostając jednocześnie nieaktywnymi
w okresach stabilności środowiska.

Hipoteza ta jest analizowana poprzez stworzenie modeli aktywności ele-
mentów transpozonowych: w ramach tej pracy zaproponowany został sto-
chastyczny, obliczeniowy model proliferacji elementów transpozonowych
w warunkach stresu środowiskowego. Następnie przy jego pomocy po-
kazane zostało, że stres środowiskowy powoduje wybuch aktywności ele-
mentów transpozonowych, zwiększając szybkość mutacji organizmów, i
wspomagając je w adaptacji.

Dodatkowo, sformułowany i przeanalizowany został matematyczny mo-
del proliferacji elementów transpozonowych, oraz wyprowadzone zostały
zamknięte formuły opisujące stan równowagi pomiędzy mutacjami i se-
lekcją w organizmach zawierających pewne typy elementów transpozono-
wych.

Badania te zostały poparte wynikami eksperymentalnymi, które wiążą
nasze modele z rzeczywistymi zjawiskami: analizujemy rolę elementów
LINE w mediowaniu nieallelicznej homologicznej rekombinacji, pokazując
że nawet nieaktywne elementy transpozonowe mogą wywierać znaczący
mutagenny wpływ na organizm gospodarza.

Wreszcie na końcu przedstawione są dwa narzędzia, służące do wy-
krywania elementów transpozonowych w zsekwencjonowanych genomach:
TRANScendence oraz TIRfinder.

Słowa kluczowe: Elementy transpozonowe, model geometryczny Fischer’a,
zmienne optimum fenotypowe, mutacje gaussowskie, Ukryty Model Markova,
równowaga między selekcją a mutacjami
Klasyfikacja tematyczna ACM: J.3
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1
Introduction

1.1 Mobile genetic elements

Mobile genetic elements (variously called: transposable elements, TEs)
are DNA sequences capable of relocating within the genome, in a process
called transposition. Since their discovery (McClintock, 1950) transpos-
able elements have been the focus of much scientific study. Their function
(or indeed, whether they have any) is still the subject of dispute, as is their
status: variously cited as junk DNA (Doolittle and Sapienza, 1980), par-
asitic DNA (Kidwell and Lisch, 2001), or as being beneficial to the host
organism (Kofler et al., 2012). The justification for these classification
varies, and it is becoming more and more evident that TEs can fulfill all
of these roles, depending on various factors, among them, conditions in
which the host organism finds itself.

This work aims to study the dynamics of interaction of TEs with the
genome, and to contribute to solving the long-standing question: what
functions TEs may have, and how do they affect the host organism?

1



1.2 Characteristics of transposable elements, clas-
sification

1.2.1 Autonomous versus nonautonomous

There are some common structural elements that most TEs possess: most
have characteristic sequences at both ends, demarcating the ends of the
TEs (be it a Terminal Inverted Repeat (TIR) or a Long Terminal Repeat).
Between those sequences, a number of Open Read Frames (ORFs) may
sometimes be found, encoding genes: this is a somewhat surprising fact,
but the proteins necessary for transposition are often encoded within the
TEs themselves. Depending on the mechanism of transposition, these may
be either be a transposase, or various integrases, reverse transcriptases
and so on. In addition to that, as some of the TEs are remnants of
viruses (particularly, retroviruses) which have lost their ability to leave
the host cell due to a mutation, some TEs still carry genes encoding
virus-associated protein.

This is the first criterion for classification of TEs: the autonomous TEs
are those that carry within themselves a full set of genes encoding all
the proteins necessary for the process of transposition, and which are
fully capable of transposing inside the genome on their own, and the
nonautonomous TEs, which do not have a full set of proteins necessary
for transposition. The nonautonomous TEs usually arise as a result of a
mutation or deletion occurring within an autonomous TE which renders
one or more of the genes non-functional (or completely absent). The
non-autonomous TEs may still proliferate, but they may only do so in the
presence of autonomous TEs which enable the production of the necessary
proteins. These proteins are in turn hijacked by the nonautonomous TEs,
and used for their own transposition, in an ironic case of parasitic DNA
(the autonomous TEs) being parasitized upon by other parasitic DNA
(the nonautonomous TEs).

1.2.2 Active versus inactive

Regarding mutations, of course it is not only the genes within the TEs
that may suffer from mutation, but the delimiters too. For example:

2



damage through single-point mutations to a TE’s TIRs may cause them
to stop being recognizable by transposase, and thus, inhibit the TE from
ever relocating. Such TEs, which have lost their ability to transpose are
variously called non-active TEs or TE relics. In fact, going strictly by
the definition from the first sentence of this work, these are not TEs at
all. However, most TEs are being detected in a bioinformatic fashion,
the similarity to the known TEs being a criterion for annotation as a
TE. It is notoriously difficult to determine whether a given sequence is in
fact capable of transposition within a live cell – as such, the capability of
relocation for most TE-like sequences in not actually known, and they are
still called TEs, a convention which we will follow here.

1.2.3 Class-I versus class-II

Finally, TEs may be divided based on the mechanism of their transposi-
tion. The class-I TEs, or retrotransposons (named as such because of their
similarity to retroviruses) proliferate using an RNA intermediate: the TE
in the DNA is transcribed onto a RNA strand (similarly to coding genes),
next, the RNA enters the cytoplasm where the necessary proteins are syn-
thesized based on the RNA template (in a process of translation) then,
the proteins perform reverse transcription of the RNA strand, synthesiz-
ing a DNA strand, which in turn, is integrated into the host cell genome
at a new position. This is known as the copy-and-paste mechanism, as the
original copy of the TE remains undisturbed, and a new copy appears at
a different site. This is similar to the lifecycle of retroviruses, except that
in case of the viruses, after the synthesis of necessary proteins, the RNA
(along with reverse transcrpitase, and integrase) is enveloped in a capsid,
and expelled from the cell. After it infects another cell the cycle resumes.
In fact, some retrotransposons are former retroviruses, which have lost the
proteins necessary for construction of the capsid, and thus, the ability to
escape the host cells and insert others, but which still proliferate inside the
cell like a retrovirus does. One example is the Human Endogenous Retro-
virus (HERV), which makes up 8% (Belshaw et al., 2004) of the human
genome. For us, the most important feature of this mode of transposition
is the fact, that with each transposition results in a new TE appearing.
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In contrast to the retrotransposons, the class-II TE, or the DNA trans-
posons, operate directly on the DNA strand. An enzyme called trans-
posase cuts the transposon out of the genome, and reinserts it into a
new locus. Then the gap resulting from cutting away the transposon is
repaired by standard cellular mechanisms involved in repairing double-
strand breaks. Sometimes the repair mechanisms recreate the transposon
at the site of excision, resulting in an increase of copy number of the
transposon, sometimes they recreate the transposon only partially (most
often recreating the ends, but skipping a large portion of the middle of
the transposon, which usually creates a nonautonomous transposon, a so-
called Miniature Inverted-repeat Transposable Element (MITE)), most
frequently they just mend the loose ends, resulting in a complete excision
of the transposon. The effect is such that class-II transposons most fre-
quently transpose in a cut-and-paste fashion, the transposition only rarely
resulting in an increase of copy number of the transposon.

1.2.4 Abundance, effects on the host genome

The transposable elements make up a significant portions of the genomes
of various organisms, being the major part of what once was known as
“junk DNA”. In humans, up to 50% of the genome is annotated as repet-
itive by RepeatMasker (Smit et al., 2004)

with families such as LINEs, SINEs, Alu, and HERVs being the most
prominent.

Transposons have mutagenic effect on the host genome: one, widely
known, is due to their ability to disrupt or misregulate genes by their
insertions. A gene into which a TE inserts almost always looses its func-
tionality. Furthermore, TEs often carry promoter sequences, which, when
inserted into the vicinity of a gene, may cause its up- or downregulation.

1.3 Motivation of this work

The main motivation for the research presented here is our observation
that TEs tend to proliferate in discrete “bursts” of activity, interspersed
with longer periods of relative stability, such behaviour for example might
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be observed in MITEs of Medicago truncatula (Grzebelus et al., 2009).
We suspected such behaviour to be tied to sudden environmental change:
the need to adapt to the new environment reduces the selective pressure
against mutability, which, in turn, selects for organisms with active TE
families. They use their TEs to adapt to the new environment, result-
ing in an activity burst. After the adaptation is complete, the selection
against mutability resumes, which, again, selects organisms which man-
age to silence their TEs, resulting in the lack of activity observed between
bursts. This has inspired this work: an in-depth study of the impact of
transposable elements on the evolution of species, and the interplay be-
tween environmental stress a given population is subjected to, and the
activity of its TEs, as well as the role of TEs in adaptation.

1.3.1 The computational model

In order to assist the preliminary study of the soundness of the idea,
we have developed a computational, stochastic model of TE prolifera-
tion. The model is based upon the standard Fisher’s Geometric Model
(FGM) (Fisher, 1930). The organisms are modelled as having a pheno-
type described as a real-valued vector. The fitness function of an organism
depends upon the distance between the organism’s phenotype π(o) and
an environment-wide optimal phenotype π̂:

F (o) = exp(−dist(πππ(o), π̂̂π̂π)2) = exp(−
n∑

i=1

(πi(o)− π̂i)
2)

The environmental change is modelled by moving the phenotypic opti-
mum.

The TEs are included in this model: each organism has a counter of
its autonomous and nonautonomous TEs. The model includes only class-I
TEs, as these are the ones more abundant in nature. The mutagenic effect
of TEs is modelled by having each transposition perturb the organism’s
phenotype (in a manner similar to random, non-TE-related mutations).
The organisms are asexual, and reproduce clonally.

The results obtained suggest that TEs may react to environmental stress
even in absence of epigenetic effects, purely through evolutionary pressure
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variously favouring organisms with high or low TE activity. The high
environmental pressure causes TEs to activate, and to assist the organisms
in adapting to the new environment. In turn, stable environment results
in TEs loosing their advantageous properties to the host organisms, and
being able to persist only in a “parasitic DNA” dynamics, within certain
parameter ranges.

1.3.2 Mathematical modelling

The stochasticity and random behaviour of the first model (in particular
its propensity for producing qualitatively different results from the same
initial conditions in subsequent runs for certain parameter ranges) have
inspired us to attempt to construct a mathematical model. After first
attempts with differential equation-based approaches, we have produced
a model based on probability theory. The model is based on a so-called
generation operator Φ – which is an operator transforming a probabil-
ity distribution P describing a population into a probability distribution
describing the population after one generation has passed Φ(P). The oper-
ator for class-I TE has so far proved mathematically intractable, however,
we have managed to formulate the operator for class-II transposons, and
found its equilibrium state, as well as proved the convergence for a large
class of populations. The model for class-II transposons is an extension of
a (simpler) mutator model (the theory of which makes up much of Chapter
3). The operator for mutator model has the following form:

Φ(P)(A) =
∫
R

∫
R ν(0, σ)(y + z) · 1A+η(y + z) dN (0, ρ)(y)dP(z)∫

R

∫
R ν(0, σ)(y + z) dN (0, ρ)(y)dP(z)

where N is the Gaussian probability distribution, and ν is a Gaussian
PDF (probability density function). We have proved that regardless of
the starting probability distribution, the distribution of the population
undergoing evolution under this operator strongly converges (in measure)
to an equilibrium distribution which is Gaussian:

lim
n→∞

Φn(P)(A) = N

η
√

4σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√
4σ2 + ρ2 − ρ)

2

 (A)
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The proof proceeds by first showing that with two applications of Φ all
initial populations are brought into a specific class of probability distri-
butions which we named CND:

CND = {P : Leb(R)→ [0, 1] | ∃σ ∈ R ∃S : Leb(R)→ [0, 1] pdfP(x) =

=

∫
R
ν(y, σ)(x)dS(y) and S has a probability density function}

Then we prove that the distribution S remains fixed by the action of Φ,
only the parameters of the Gaussian part change. We prove convergence in
variance using Banach’s contraction mapping theorem, then convergence
of mean. Finally, the limn→∞ Φn(A) is computed, and strong convergence
in measure for any initial population is proven using theorems from the
theory of Lebesgue integration.

Next, we present a model for class-II transposons as an extension of the
mutator model. Basing on the results from the mutator model we derive a
an equilibrium state, and prove weak-* convergence for populations whose
distribution has a nonnegative PDF.

1.3.3 Cell suspension culture of Medicago truncatula

These results have inspired an attempt to recreate them in a biological
setting. Our collaborators from University of Agriculture in Krakow have
started a cell suspension culture of Medicago truncatula (which is still
ongoing) with the aim of determining whether the stress associated with
the cell culture has resulted in an increase of TE numbers. The cell
culture will be harvested, the DNA extracted and sequenced using Next
Generation Sequencing (NGS) techniques. Although the experiment itself
is not a part of this thesis (both because it is still ongoing, and because
it is purely biological in nature) it is worth mentioning here because it is
inspired by the computational model presented here, and its results, in
turn, will be used to fine-tune the models.
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1.3.4 Transposon detection tools: TRANScendence
and TIRfinder

In order to assist the studies of transposable elements we have prepared
two bioinformatics tools: the TRANScendence and TIRfinder. TRAN-
Scendence is a de-novo TE mining and annotation tool, useful for initial
analyses of the TE landscape in newly sequenced genomes, and we plan
to use the tool to study the genomes after sequencing. We plan to use
TRANScendence as a standardised tool allowing us to compare the TE
landscapes of different organisms, using one standardised tool (instead of
the public databases with varied levels of curation, which might not reflect
the real differences between TE load in organisms).

The validity of this tool has been presented here on a test-case of the
reference genome of Medicago truncatula, proving the tool’s viability for
the analysis of this genome. In addition to that, it has already been used in
other scientific projects by our collaborators from University of Agriculture
in Krakow, in the discovery of a novel transposon family targeting (TA)n

microsatellites (manuscript in preparation).

We have also developed another tool for a deep analysis of TIR-carrying
class II transposons, the TIRfinder. A complementary tool to the wide-
and-shallow approach of TRANScendence, this tool will enable the in-
depth analysis of the behaviour of specific transposon families. This tool
has already been successfully used in scientific projects, like the study
of PIF/Harbinger-like elements in Medicago Grzebelus et al. (2007) or
analysis of MITE landscape also in Medicago Grzebelus et al. (2009).
Here, we present the tool along with two case studies on ATHPOGO and
PIF/HARBINGER elements in Medicago truncatula.

The results obtained from analysis of the TE activity under conditions
of environmental stress using these tools will be used to verify the as-
sumptions and calibrate the parameters of both our mathematical and
computational models, especially the future extensions of these models.
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1.3.5 A study of mutations caused by inactive LINE elements
in human genome

Another venue of study of the impact of transposable elements on the
evolution of species is our study in collaboration with Paweł Stankiewicz’s
team at Baylor College of Medicine (BCM) regarding Nonallelic Homol-
ogous Recombination (NAHR) between Long Interspersed Nuclear Ele-
ments (LINEs). LINEs are a family of TEs which are abundant in hu-
mans, and NAHR is by which they may cause Copy Number Variant
(CNV)-type mutations in the genome. So far, it has been considered that
NAHR is caused by self-similarity of the genome, however the usual ho-
mology length considered necessary for NAHR to occur was thought to be
much bigger than 10 kbp, rendering TEs unable to mediate NAHR, de-
spite them being the major source of self-similarity in the genome. Some
TE-TE NAHRs have been previously found, however these were single
cases, and considered more of a curiosity, and an exception, rather than
a common occurrence. Our studies prove that TE-TE NAHR is common
enough to be of clinical significance, and therefore, able to affect the course
of evolution. This proves that even inactive (fixed) TEs have a mutagenic
effect on the genome, something that must be considered in future mod-
elling attempts. Over the course of this research several algorithms had
to be developed, these are presented in Chapter 4.

This discovery has affected the mathematical model: it means that the
model we have derived for class-II transposons is also applicable to inactive
(senescent) families of TEs. This will also have an effect on any future
modelling attempts.

1.4 Collaboration

As mentioned previously, this project has grown out of collaboration be-
tween Anna Gambin and Dariusz Grzebelus from University of Agriculture
in Krakow (with their respective teams) studying the transposon land-
scape of Medicago truncatula, and the “bursty” behaviour of TEs which
was discovered. We have collaborated with the team from Kraków on
formulating the initial assumptions of the computational model described
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in Chapter 2. In addition to that, we have collaborated on the tools pre-
sented in Chapter 5, the team from Kraków providing the inspiration for
writing them, as well as input on needed functionality, and testing them
throughout the development process.

The modelling efforts (both Chapters 2 and 3) were also assisted by
Arnaud le Rouzic from Laboratoire Evolution, Génomes et Spéciation
(LEGS) at Centre National de la Recherche Scientifique (CNRS), Gif-sur-
Yvette, France, in particular, verification of assumptions of the model, as
well as fine-tuning the parameters, and providing interesting scenarios to
be studied.

The work presented in Chapter 4 was carried out in collaboration with
Paweł Stankiewicz’s team at Baylor College of Medicine in Houston, USA,
with them providing the clinical data, and performing all the laboratory
experiments outlined there, while we have handled the bioinformatics part.

1.5 Papers, manuscripts and software tools

The work presented in Chapter 2 has been published in Theoretical Pop-
ulation Biology, as an article entitled “Genomic parasites or symbionts?
Modeling the effects of environmental pressure on transposition activity
in asexual populations”.

Manuscript detailing the research from Chapter 3 is still in preparation.
A manuscript detailing the research from Chapter 4 has been sent to

Nucleic Acids Research (entitled: “Genome-wide analysis of LINE-LINE-
mediated nonallelic homologous recombination”) is currently being re-
viewed for publication.

The TIRfinder tool presented in Chapter 5 has been described in a pa-
per entitled “TIRfinder: A Web Tool for Mining Class II Transposons
Carrying Terminal Inverted Repeats” published in Evolutionary Bioinfor-
matics. The tool itself is available online at http://bioputer.mimuw.
edu.pl/tirfindertool/, while its source code may be downloaded from
http://sourceforge.net/projects/tirfinder/.

A paper detailing one of the use-cases of TRANScendence, a study
of (TA)n microsatellite-targeting transposon family, entitled “MuTAnT:
a family of Mutator-like transposable elements driving evolution of TA
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microsatellites in Medicago truncatula” is in preparation. A manuscript
describing the tool itself (“TRANScendence: a web tool for de-novo TE
identification”) is in preparation. The tool is publically available for use
at http://bioputer.mimuw.edu.pl/transcendence.
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2
Transposons in asexual populations –

a computational model

In this chapter of the thesis we shall present a computational model of
proliferation of TEs in a population of asexual, clonally reproducing or-
ganisms. We present here the first, preliminary work we have done to
study the response of TEs to the environmental stress – the encouraging
results which we obtained here were the motivation for much of the work
presented in subsequent chapters. We shall begin with a short introduc-
tion, presenting to the reader the state of the art in the field, then we
shall progress onto the results.

The evolution of species depends on both the strength of selection and
the species’ capacity to evolve. Small environmental changes tend to
generate moderate stress on populations, which are likely to reach the
new phenotypic optimum from standing genetic variation. On the con-
trary, large and fast shifts in the environment may generate substantial
selection pressure, endangering the survival of the species, and adapta-
tion may require the accumulation of several mutational changes (Barrett
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and Schluter, 2008; Durand et al., 2010). In any case, the ability for the
population to generate new variants through mutation remains a crucial
feature that conditions its capacity to cope with environmental challenge.
The mechanisms underlying the evolution of the capacity to evolve, or
evolvability, are still not fully understood (Hansen, 2006; Partridge and
Barton, 2000; Pigliucci, 2008). Both theory and empirical observations
suggest that, in some conditions, adaptive evolution of mutation enhancers
is realistic (Taddei et al., 1997). In this context, mobile and mutagenic
sequences such as Transposable Elements (TEs) appear as natural can-
didates for evolvability helpers (Blot, 1994; Chao et al., 1983; Schneider
and Lenski, 2004).

Transposable elements are self-duplicating DNA sequences that are
present in virtually all living species (Biémont, 2010). Yet, understanding
their presence, distribution, copy number, insertion patterns, and their
propensity to be maintained in constant or changing environments is still
under theoretical investigation (Charlesworth et al., 1994; Le Rouzic and
Deceliere, 2005). Generally considered as genomic parasites in sexual or-
ganisms (Charlesworth and Charlesworth, 1983; Doolittle and Sapienza,
1980; Hickey, 1982; Orgel and Crick, 1980), their mobility promotes both
deleterious mutations and genetic innovation. However, the spread of
such selfish DNA requires sexual reproduction, and this mechanism can-
not explain the persistence of TEs in selfing, parthenogenetic, and clonal
organisms (Wright and Finnegan, 2001). Indeed, theoretical developments
generally predict that active deleterious TEs should either be eliminated
from asexual lineages, or drive them to extinction (Charlesworth and
Charlesworth, 1983; Wright and Schoen, 1999; Dolgin and Charlesworth,
2006; Boutin et al., 2012), which has often been supported empirically
(Zeyl et al., 1996; Arkhipova and Meselson, 2005). The presence of TE
sequences in asexuals is thus generally attributed to rare but recurrent
intra- or inter-specific horizontal transfers, compensating the extinction
of TE-carrying lineages (Moody, 1988; Basten and Moody, 1991; Bichsel
et al., 2010).

Understanding the impact of TEs on evolution and their role in the
response to environmental pressure remains particularly challenging, as
these sequences can be both beneficial and detrimental for their host (Capy
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et al., 2000). Indeed, being mutagenic by nature, they are, on average,
deleterious. Most insertions that are not neutral tend to disrupt useful
genes, and only a small fraction of TE-driven mutations has the potential
to be favored by natural selection, a process often referred to as ’molecular
domestication’ (Miller et al., 1992, 1997). TE-promoted evolutionary in-
novations include insertions, deletions, and recombinations, but may also
involve TE sequences themselves as new genes or part of chimeric tran-
scripts (Sinzelle et al., 2009). Consequently, TEs are generally considered
as major contributors to genomic plasticity (Capy, 1998).

In clonal organisms, the rare occurrence of advantageous mutations may
balance the fitness cost of carrying TEs, allowing the persistence of ac-
tive copies in genomes. Interestingly, the dynamical properties of TEs in
asexuals has led to little theoretical investigation compared to sexual pop-
ulations. The possibility that prokaryotic TEs might act as evolvability
enhancers was confirmed theoretically (Sawyer and Hartl, 1986; Martiel
and Blot, 2002), but simulations were stopped after a single adaptive walk,
leaving unexplored the dynamics of TEs once the fitness peak was reached.
In the model proposed in McFadden and Knowles (1997), they are main-
tained for a long time because TE-promoted mutations allow TE-carrying
lineages to cross adaptive valleys, and thus explore more efficiently the
adaptive landscape. Although exciting, this model strongly relies on the
hypothesis that TE-mediated mutations have significantly larger pheno-
typic effects than ’regular’ background mutations, which does not appear
to be supported empirically (Stoebel and Dorman, 2010). The idea that
TEs could be maintained on a long-term due to recurrent environmental
changes was developed more recently in Edwards and Brookfield (2003)
and McGraw and Brookfield (2006), where the authors identified the tim-
ing of environmental shifts as the major factor conditioning the survival
of TEs in clonal organisms. However, such models were explored only in
simple cases (e.g. shifts between only two environments, unconditionally
neutral insertions, no or limited evolution of TE sequences).

In particular, intra-genomic competition between TE copies may pre-
vent TE-host systems from reaching an equilibrium. It is well-known that
super-parasitic, non-autonomous elements are often successful, and can se-
riously impact the evolutionary dynamics of autonomous copies (Brook-
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field, 1996; Hartl et al., 1992; Le Rouzic and Capy, 2006). Such intra-
genomic competition between TE copies may lead to complex evolution-
ary dynamics, including TE loss or successive bursts of re-invasion, closely
matching empirical observation (Le Rouzic et al., 2007).

In this chapter, we develop a general model of TE evolution in clonal
organisms accounting for TE polymorphism (including autonomous and
non-autonomous copies). Several environmental scenarios were considered
(two being shown here), determining the size and the frequency at which
TE-related mutations can be favored by natural selection, and the long-
term dynamics of the TE-host system were explored for thousands of
generations.

2.1 Method and results

Here we present a stochastic computational model of TE proliferation that
enables exploration of the interplay between environmental changes and
TE activity. We considered populations of 10, 000 clonally propagating
individuals carrying both autonomous and non-autonomous TEs. Each
organism is defined by its phenotype together with its TE genomic content.
Simulations are initialized by introducing a single autonomous element in
every individual of a population well-adapted to the current environment
(all individuals are at the phenotypic optimum). See Figure 2.1.1 for the
general outline of the model.

2.1.1 Phenotype and natural selection

The phenotype-fitness map is adapted from Fisher’s geometric model
(Fisher, 1930; Martin and Lenormand, 2006) with a moving optimum
(Kopp and Hermisson, 2009; Orr, 2005). The phenotype of an individual
is represented as a vector of n real numbers, each coordinate representing
an independent trait involved in the adaptation of the organism to the
environment.

The carrying capacity of the environment is m, i.e. the actual number of
organisms fluctuates slightly around m. Associated with the environment
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Figure 2.1.1: General outline of the model. (A): Life cycle of the population: (1)
simulation starts with a population of 10,000 individuals; (2) both autonomous and
non-autonomous transposable elements are mobilized by the transposition machin-
ery produced by autonomous TEs; (3) each TE inserted causes a mutation of the
host phenotype; (4) non transposition-related mutations also modify the phenotype
(5) better adapted individuals (i.e. closer to the optimal phenotype) have greater
probability of survival; (6) surviving individuals reproduce to fill the environment
back to its capacity. (B): Evolution of transposable elements: an autonomous ele-
ment can duplicate during the process of transposition or become non-autonomous;
a non-autonomous element can still proliferate using the transposition machinery
produced by other, autonomous elements.
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is an ’optimal phenotype’, i.e. a combination of phenotypes for which
fitness is maximal.

Organisms whose phenotypes are close to the optimum are considered
more ’fit’ than organisms with phenotypes distant from the optimal pheno-
type. The fitness function is calculated from the standard n-dimensional
Euclidean distance between the phenotype of an individual o (denoted by
πππ(o) = [πi(o)]i=1...n) and the optimal phenotype π̂̂π̂π = [π̂i]i=1...n, as follows:

F (o) = exp(−dist(πππ(o), π̂̂π̂π)2) = exp(−
n∑

i=1

(πi(o)− π̂i)
2)

The fitness function does not depend on the TE count of an organism, and
as such, does not enforce an artificial transposition-selection equilibrium.

Environmental change is modeled by shifting the optimal phenotype.
We assume that among the n traits, n/2 have invariant optima and the
other n/2 traits change every T generations by a deterministic factor s, so
that the change is directional. The fixed traits are introduced in order to
model more realistically a natural environment (which might be changing
in some aspects, while remaining stationary in other). Additional simu-
lations (not shown) confirm that the model behaves in a similar fashion
for a wide range of ’fixed’ traits (between 0 and about 0.8n). In the sce-
nario called ’Global Warming’, the optimal phenotype changes by a small
amount (sGW = 0.0002) every generation (T = 1). In the ’Meteor Impact’
scenario, the change is larger (sMI = 0.075) and occurs every T = 500

generations.
Generations are non-overlapping. The number of offspring produced by

an organism is drawn from Poisson distribution with the mean propor-
tional to the organism’s fitness. The relative fitness is multiplied by a
scaling factor, chosen in each generation in such a way that the expected
number of offspring equals the carrying capacity of the environment.

2.1.2 Transposition

Our model considers two kinds of transposable elements: autonomous and
non-autonomous copies. Autonomous copies transpose with a constant
rate τ per copy and per generation. Non-autonomous copies, which can

18



“parasitize” the transposition enzymes produced by autonomous copies,
transpose at a rate of τ · [A] per copy and per generation, where [A], the
concentration of transposition enzymes, is proportional to the number of
autonomous copies in the cell. Therefore, non-autonomous copies cannot
transpose in absence of autonomous copies, and their transposition rate
increases with the autonomous copy number. In our stochastic simula-
tions, the actual number of transpositions for each copy was sampled in
a Poisson distribution. In addition to proliferating, autonomous TEs can
spontaneously turn into non-autonomous copies with probability ∆α, and
both autonomous and non-autonomous TEs can disappear (by deletion or
by being mutated beyond recognition) with probability ∆β.

2.1.3 Mutations

Insertion events create de novo genetic variation, which in vivo may re-
sult in a range of functional alterations, ranging from gene knockouts
to subtle regulatory shifts. In addition to transposition-related muta-
tions, transposition-unrelated mutations (e.g. nucleotide substitutions)
occur with a constant rate of ρ = 0.003. Both types of mutations have
the same effect on the phenotype, shifting a single random phenotypic
trait by a random number drawn from normal distribution, Norm(0, µ)

where µ = 0.1, the mutational standard deviation, is a parameter of our
model. Note that the phenotypic change inflicted by transposition stays
with the phenotype regardless of further fates (such as deletion) of the
TE which caused it. Mutations are not pleiotropic, i.e. they do not affect
several traits at once (in other words, the set of traits can be understood
as independent phenotypic directions). Unlike the situation in most mod-
els, a positive number being randomly drawn does not necessarily result
in a helpful mutation (just like a negative number need not result in a
detrimental mutation). The effect of a mutation depends on the relative
position of the host organism’s phenotype and the optimal phenotype:
for well-adapted organisms, most mutations are detrimental, as they push
them away from the optimum. With mutational effects being drawn from
a normal distribution, some mutations will be almost silent (those com-
ing from the surroundings peak of the bell curve), while others will have
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Parameter Symbol

GW
with-
out
non-
autoTEs
(Fig. 3B)

GW with
non-
autoTEs
(Fig. 3C)

GW
with-
out
TEs
(Fig. 3A)

MI
with-
out
TEs
(Fig. 4A)

MI
with-
out
non-
auto
TEs
(Fig. 4B)

MI
with
non-
auto
TEs
(Fig. 4C)

Dimension of phenotypic space n 10 10 10 10 10 10

Mutation stdev. µ 0.1 0.1 0.1 0.1 0.1 0.1

Non-TE-related mutation rate ρ 0.003 0.003 0.003 0.003 0.003 0.003

Niche size m 10000 10000 10000 10000 10000 10000

Autonomy loss probability ∆α 0.0 0.0003 — — 0.0 0.0003

Deletion probability ∆β 0.003 0.003 — — 0.003 0.003

Transposition rate τ 0.003 0.003 — — 0.003 0.003

Environmental change∗ — 0.0002 0.0002 0.0002 0.075 0.075 0.075

Table 2.1.1: Parameters values used in simulations presented in: Fig. 3B
(Global-warming without non-autonomous TEs), Fig. 3C (Global-warming with
non-autonomous TEs), Fig. 3A (Global warming without TEs), Fig. 4A (Meteor
impact without TEs, Fig. 4B (Meteor impact without non-autonomous TEs), and
Fig. 4C (Meteor impact with non-autonomous TEs).
∗ Measured in phenotypic units per generation for GW and phenotypic units per
impact (every 500 generations) for MI model.

noticeable impact on the phenotype, and the mutations coming from the
tails of normal distribution are likely to have an immediately lethal effect.
Table 2.1.1 presents parameter settings fixed in simulations.

2.1.4 Constant environmental pressure (’Global Warming’
(GW) scenario)

The pressure exerted on the host population by slow, gradual environmen-
tal changes was modeled by a cumulative, directed shift of the ’optimal
phenotype’ in each consecutive generation. Both transposition activity
and TE copy number increase with the intensity of environmental change
(Figure 2.1.2). If the level of environmental change is very low to nonex-
istent, TEs are only deleterious, and disappear from the population.

A transposition-selection-drift equilibrium can be frequently observed
under a moderate environmental change (Fig. 2.1.3(B)). Active trans-
position maintains a stable number of TE copies, as well as a moder-
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Figure 2.1.2: (A) Number of runs (out of 100) in which autonomous TEs are
eliminated by generation 5000 under the “Global Warming” scenario (no non-
autonomous copies). In low stress levels all TEs are lost, and the phenotypic
optimum is tracked purely through TE-unrelated mutations. With higher levels of
environmental change, TEs are maintained more often, and assist in tracking the
phenotypic optimum by providing extra mutations. (B) Distribution of the average
number of autonomous TE copies at generation 5000, from 100 simulation runs
at each change level. The TE copy number at generation 5000 increases linearly
with the rate of environmental change above the minimal threshold allowing for
TE persistence.
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ately high mutation rate (accounting for both transposition-related and
transposition-unrelated mutations). Although most mutations are dele-
terious, some are beneficial and become fixed in the host population. If
the environment is constant (not shown), transposition activity is only
deleterious, and clones carrying TE copies are lost.

When autonomous TEs can mutate into non-autonomous TEs with fre-
quency ∆α = 0.0003 per generation, after an initial stage similar to the
previous case (autonomous elements are active and stimulate the mutation
rate), non-autonomous copies amplify, and the number of autonomous
copies decreases (Fig. 2.1.3(C)). The transposition rate (and the induced
mutation rate) are maintained, since only a few autonomous copies are
enough to stimulate the transposition of many non-autonomous copies.
However, this stage is followed by the loss of all autonomous copies, which
eventually leads to the loss of transposition activity. At the end of the
simulations, all TEs disappear, and the evolvability of populations (its ca-
pacity to track environmental changes) is reduced. Fig. 2.1.3(A) presents
simulation without TEs for reference. In this case transposition-unrelated
mutations manage to track the optimal phenotype, but the average fitness
is lower, than with the presence of TEs.

2.1.5 Rapid environmental change (’Meteor Impact’ (MI) sce-
nario)

When the environmental change is large and instantaneous, populations
do not have the possibility to track the optimum. The optimum shift is
thus followed by a stage of directional selection, during which the average
fitness in the population remains below the original fitness. If the pop-
ulation is evolvable enough, it can reach the new optimum between two
“impacts”, otherwise, stages of directional selection follow each other.

Figure 2.1.4 shows a situation in which the changes are too large and
too frequent to be tracked efficiently by transposition-unrelated muta-
tions only: if there are no TEs, the population never reaches the phe-
notypic optimum (absence of individuals having the optimal fitness), see
Fig. 2.1.4(A). When autonomous TEs are present, the mutation rate in-
creases, and the population can reach the optimum. Once at the optimum,
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(A) (B)

Fitness Fitness Autonomous TE copy number

(C)

Fitness Average mutation rate

Autonomous TE copy number Non-autonomous TE copy number Average mutation rate

Figure 2.1.3: Effect of smooth environmental change (’Global Warming’ sce-
nario). (A) Reference simulation without TEs: transposition-unrelated mutations
are enough to track the optimum in the long term. The distance of the popula-
tion from the optimum is larger than with TEs (the average fitness is lower). The
color scale is proportional to the density distribution of fitnesses in the population.
(B) Non-autonomous copies disabled. TEs assist in tracking of the phenotypic
optimum. (C) Non-autonomous copies enabled.
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(A) (B)

Fitness Autonomous TE copy number Fitness

(C)

Autonomous TE copy number Non-autonomous TE copy number Fitness

Figure 2.1.4: Effect of periodic dramatic environmental shifts (’Meteor Impact’
scenario) (A) Without TEs the population diverges from the phenotypic optimum
(B) With autonomous copies the population is able to track more closely the phe-
notypic optimum (C) With both autonomous and non-autonomous copies, the
population follows the phenotypic optimum, until TEs are eliminated.

TE activity is only deleterious, and the copy number tends to drop. If
a new environmental change happens before the loss of all copies, active
TEs proliferate again, which can lead to the long-term maintenance of
active TE copies (Fig. 2.1.4(B)).

Introducing non-autonomous copies has a similar effect as in the GW
scenario. Non-autonomous mutants take over the autonomous copies, up
to the point where all active copies are eliminated. The major consequence
of the loss of transposition activity is a decrease in evolvability, leading
to a fitness drop, and the inability to cope efficiently with environmental
challenges (Fig. 2.1.4(C)).

2.1.6 General properties of the model

We tested our model using a range of parameter settings, including differ-
ent population sizes, transposition and mutation rates, etc. In addition
to the simulation engine, we have developed a GUI interface for browsing
the results accessible from http://bioputer.mimuw.edu.pl/transp.
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The model generally behaves in a stable fashion. As a rule, increase of
the environmental change level results in a raise in TE activity. TEs pro-
liferate most intensely under long-lasting directional changes. In contrast,
realistic levels of non-cumulative random environmental fluctuations did
not result in any significant TE activation: even if the level of stress
imposed by random fluctuations is close to being lethal to the host popu-
lation, the number of TEs rises, but remains an order of magnitude lower
than in the GW scenario. The figures (especially Fig. 2.1.3) show that the
main mechanism of evolution relies on selective sweeps by clones carry-
ing beneficial mutations (almost instantaneous fitness increase), followed
by stages of slow fitness decay, during which the different lineages tend
to accumulate deleterious mutations independently. This mode of evo-
lution is reminiscent of the patterns observed in “mutator” models (see
Discussion).

2.2 Discussion

2.2.1 Model

The model described in this chapter aims at understanding and predict-
ing the long-term evolution of transposable elements in asexual species
living in changing environments. Compared to the relevant literature,
this model brings several significant improvements: (i) the diversity of
TEs is represented through autonomous and non-autonomous copies, (ii)
the mutational effect of TE mobility on phenotype is modeled explic-
itly, (iii) fitness is determined according to the distance to a phenotypic
optimum, and (iv) this setting makes it possible to model complex and
various environmental change scenarios. Our modeling results indicate
that TEs can be maintained in asexuals for a wide range of scenarios in-
volving environmental change, as suggested in Edwards and Brookfield
(2003); McGraw and Brookfield (2006). However, we conclude that intra-
genomic competition tends to affect the stability of the host-TE system,
and our simulations repeatedly report the loss of the transposition activity
when non-autonomous copies are present. If confirmed, this observation
precludes the persistence of long-term TE-host symbiosis, restraining TE-
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genome cooperation to short periods.
As for any model, our framework remains a simplification of reality, and

many details were not accounted for. For instance, even asexual organ-
isms are known to share episodically DNA sequences, through e.g. bac-
terial conjugation or horizontal transfers (HT). However, a preliminary
study we have performed suggests that these do not alter significantly
the dynamics of TE families, as long as their frequency remains reason-
able when compared to mutation rates, transposition rates, and selection
coefficients, which is likely. Very high (unreasonably high) incidence of
HTs has, however, the potential to gradually shut down transposition. In
any case, sporadic horizontal transfers remain essential for TE invasion,
since they constitute the likeliest explanation for the occurrence of the
initial copy of the TE family, and for the persistence of TEs in spite of
their unstable dynamics when intra-genomic selection is introduced in the
models.

For computational reasons, population size remained limited to 10, 000

in most runs, and we could not simulate the evolution of realistic prokary-
otic populations, which size often reaches 109 or beyond. We have per-
formed one study in which we let the population size vary between 102

and 107, and found that the impact of genetic drift is small with popula-
tion sizes > 1, 000, and is not likely to alter significantly the conclusions
of this study, at least with the range of parameters considered. According
to previous studies, genetic drift in small populations tends to (i) increase
the number of copies (by limiting the efficiency of natural selection against
deleterious insertions), and (ii) increase the risk of TE loss or population
extinction (Edwards and Brookfield, 2003; Le Rouzic et al., 2007). In
contrast, in extremely large populations, TE dynamics are expected to be
smoother and more deterministic.

One of the most challenging aspect of TE modeling is the way to in-
troduce the impact of a changing environment in the model. Here, we
considered that environmental stochasticity corresponds to a change in
the fitness function: when the environment changes, the population is no
longer close to the phenotypic optimum, and thus it has to accumulate
genetic changes to improve its fitness. In this regard, our model is com-
parable to the mutator system (Giraud et al., 2001; Taddei et al., 1997).
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Mutators are clones characterized by high mutation rates, several orders of
magnitude above the base mutation rate of the species. Theoretical mod-
els suggest that a long-term coexistence of mutators and non-mutators is
possible when the environment changes regularly (Gillespie, 1981; Tanaka
et al., 2003; Travis and Travis, 2002), and their dynamical properties was
confirmed experimentally (Giraud et al., 2001). Our model thus confirms
that TEs could play the role of mutator-like factors (as observed empiri-
cally by Fehér et al. (2012)), by increasing the mutation rate in a flexible
way when the environment changes. Yet, their capacity to amplify expo-
nentially can also lead to lineage extinction (Rankin et al., 2010; Vino-
gradov, 2003), making TEs efficient, but dangerous, evolutionary helpers.

Here, we did not consider any direct effect of stress on transposable
elements or on mutation rates: in our model, the transposition rate in-
creases solely as a consequence of the accumulation of active copies. Some
empirical results suggest that TE mobility might also be directly induced
by stress (Capy et al., 2000; Grandbastien et al., 2005; Ogasawara et al.,
2009), opening the way towards models considering epigenetic regulation
of transposable elements. Therefore, it cannot be excluded that stress-
induced transposition might be adaptive if environmental change gener-
ates physiological stress (e.g. by threatening the survival of the popula-
tion). This setting could be similar to the ’SOS’ system in bacteria (Jan-
ion, 2008; Radman, 1974), involving a stress-induced epigenetic increase
in mutation rate.

2.2.2 Impact of TEs on genome evolution

Transposable elements are generally considered as universal, and they may
represent most of the genomic DNA, especially in multicellular eukaryotes:
45% in human (Lander et al., 2001), and up to 85% in maize (Schnable
et al., 2009). In other eukaryotic phyla, TEs may be less overwhelming,
as they constitute around 2% of the genome of Caenorhabditis elegans,
and 3% in the yeast Saccharomyces cerevisiae (Kidwell and Lisch, 2000).
Even prokaryotes, with their tiny optimized genomes, are not devoid of
TEs, called ’insertion sequences’ (IS) (Chandler and Mahillon, 2002).

Although population genetic models generally focus on sexual, random-
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mating species, most lineages of living organisms harbor asexual reproduc-
tion regimes, with only rare and sporadic gene transfers. Members of two
out of three kingdoms of life, Eubacteria and Archaea, reproduce clon-
ally. Eukarya are featured by a higher diversity of reproduction regimes,
including perfect asexuality, parthenogenesis, self-fertilization, and sexual
mating. Asexuality can be found in multicellular eukaryotes, including
fungi, plants, and even some animals.

Our model considers strictly asexual organisms, and could correspond
to any clonal prokaryotic or eukaryotic species. Even in asexuals, ge-
netic transfer events might occur, but theoretical models predict that
exchange rates need to be very large for the population to behave as a
sexual species in terms of TE content (Condit et al., 1988), which ex-
cludes the vast majority of asexuals. Mobile DNA content in genomes
differs greatly between asexual clades. Eubacteria are generally thought
to have a very small number of TEs, most of them being active and re-
cent (Wagner, 2006). Nevertheless, the situation is not homogeneous,
and the genome of some strains harbors up to 20% of TE-derived se-
quences (Newton and Bordenstein, 2011). Archaea do not appear as fun-
damentally different, although they might contain more copies in average,
including non-autonomous insertions (Filée et al., 2007). In contrast, the
genome of eukaryotes is much larger, and contain many more TEs. Some
asexual animals (such as bdelloid rotifers) tend to have fewer TE copies
than sexual relatives (Arkhipova and Meselson, 2000), but the pattern is
less clear for plants and fungi (Dufresne et al., 2011; Lockton and Gaut,
2010).

Even if plant, animal, and prokaryotic TEs are not exactly identical,
large differences in TE content across organisms do not necessarily re-
flect different TE properties. Indeed, ecological or environmental factors
can also interact with TE dynamics, and condition their evolution. It
is suspected that the population size could explain some of the differ-
ences in genome size and TE content: the efficiency of natural selection
at eliminating slightly deleterious insertions being higher at large popula-
tion sizes, the accumulation of TEs is much faster in low-population size
species (such as multicellular eukaryotes) than in very large population-
size prokaryotes ((Lynch, 2007; Lynch and Conery, 2003), but see (Daubin
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and Moran, 2004; Charlesworth and Barton, 2004; Whitney and Garland,
2010)). Our results suggest that TE accumulation is also more likely in
asexual populations subject to frequent environmental change than in pop-
ulations living in constant environment, with little evolutionary challenge.
This hypothesis is supported by the observation that the TE genomic con-
tent in bacteria might be influenced by environmental factors (Newton and
Bordenstein, 2011).

2.2.3 Conclusions

In this chapter, we developed a model of TE evolution in asexual or-
ganisms that’s sufficiently realistic for analysis of real-world phenomena.
This model allows the evolution of TE copies, and implements an explicit
effect of TE mobility on phenotypic traits which, in conjunction to the
environment, determines individual fitness. These simulations evidence
that, contrary to what is generally assumed, TE dynamics in asexuals
can be extremely rich and complex, featuring losses, re-invasions, bursts
of non-autonomous copies, and lineage extinctions. These results show
that environment remains a major factor conditioning the genomic con-
tent of mobile DNA, through the carrying capacity of the habitat, the
frequency at which new evolutionary challenges occur, and the size of the
corresponding evolutionary steps. The interplay between intra-genomic
competition between TE copies and natural selection at the individual
level illustrate the rich and complex coevolutionary nature of the TE-host
relationship.

Most importantly, we have confirmed the suspicion that TEs may be
stimulated by environmental stress, proving that our suspicions are sound
in principle, and laying ground for further investigations. The first direc-
tion is the extension of the model presented above, and here two directions
present themselves: spatial modelling, and addition of sexual reproduction
to the model.

The addition of spatial modelling is the most intuitive way of expanding
the model beyond well-mixed populations: an addition of a spatial plane
with close-range interactions between plants, such as resource-competition
and constrained living space. This will allow the study of the effect of
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spatial barriers on transposable elements, more detailed ways of observing
colonization of new environments (it is hypothesis ed that colonization
front-wave will be marked by an increased TE activity), and a study
of mixing between subpopulations. This work is being carried out by
Matuesz Kitlas as his Master’s Thesis, and the first results are promising.

Another direction of extension of the model is the swapping of the re-
production model from asexual to sexual. This entails the addition of
explicit modelling of (a diploid) genome, to account for effects such as
insertion site polymorphism, hetero- or homozygosity, and sexual inheri-
tance. This extension is being implemented by Krzysztof Gogolewski as a
part of his Master’s Thesis. Preliminary results suggest that, surprisingly,
even in sexual setting the TEs may act as evolutionary helpers, which runs
contrary to the consensus.

Another possible direction is substituting class-I TEs for class-II trans-
posons. However, as we have proposed and solved a mathematical model
of class-II transposons (so we have a computational model for class-I TEs
and mathematical model for class-II transposons), which will be presented
in the next chapter, it seems unlikely that this direction will be pursued
in the near future – except perhaps, as a combined model for class-I and
class-II TEs, enabling us to study if they possess different roles, and to
study their interactions.

more controllable, or at least, possible to quantify. The results are
presented in the next chapter.
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3
Mathematical modelling of

TE-carrying populations in the
presence of environmental stress

In this chapter we will present the results of mathematical modelling of
the behaviour of transposable elements, their proliferation, and interaction
with environmental stress. Mathematical models have several advantages
with respect to the computational models, first and foremost being the ca-
pability to rigorously prove or disprove a thesis, and to compute the exact
values of certain parameters and functions of population, as they evolve
with time. Keeping this in mind it is no surprise that we have attempted
to apply this approach to the modelling of activity of transposable ele-
ments. In this chapter, a full model of transposable elements shall be
presented to give the reader an idea of what is the goal. We shall derive
models for class I and class II TEs. The model for class I TEs will only
be formulated, as so far it seems to be to be mathematically intractable.
Next, a model for mutators shall be introduced, and fully analyzed. An
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equilibrium state shall be derived, convergence of arbitrary populations
to the equilibrium state shall be proven, and various parameters of the
equilibrium population shall be derived. Note that while, by volume, the
analysis of the mutator model will be the most prominent feature of this
chapter, it is only a stepping stone for a model for class II transposons
(which turns out to be a relatively small expansion of the mutator model),
for which too a solution shall be provided.

3.1 Previous work

This chapter presents work presenting analytical solutions of scenarios
within Fisher’s Geometric Model (Fisher, 1930), with moving optimum.
So far, no such solutions have been obtained (cf. Bürger (2000) p. 324).
Scenarios with moving phenotypic optimum have been studied extensively,
and there is definitely much scientific interest in them, however all the
previous works so far have been based on computer simulations which
do not provide a formula for solution (Collins et al., 2007), or sweeping
simplifying assumptions and approximations Burger and Lynch (1995);
Waxman and Peck (1999) which change the end result – or on a mixture
of both approaches Matuszewski et al. (2014). As far as we can reasonably
tell, we provide here the first analytical solution of this case which does not
use approximations, allows general (in particular: non-Gaussian) initial
populations, and is not based on numerical simulations.

3.2 Notation and basic definitions

Before we begin construction of the model, first, several notations and
definitions which we are going to use must be established.

• ν(µ, σ) is the probability density function (PDF) of a Gaussian dis-
tribution, with mean µ and standard deviation σ. It is a func-
tion: ν(µ, σ) : R → [0,+∞), evaluating it at point x is written
as: ν(µ, σ)(x). Formally:

ν(µ, σ)(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2
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• From now on, we shall be using the formalism of the Lebesgue in-
tegral, with λ denoting the standard Lebesgue measure on R, and∫
A
f(x)dµ(x) meaning the Lebesgue integral of function f , over a

measurable set A, with respect to measure µ. Leb(R) shall denote
the σ-algebra of Lebesgue-measurable subsets of R. The implicit
σ-algebra of measurable sets, unless explicitly said otherwise, will
be the Leb(R).

• In addition to that, over the course of some proofs, in several places
in this section, we shall be using the Fubini-Tonelli’s theorem (Rudin
(1987) p. 164(. As there is a slight terminological confusion with
regard to the theorem, the theorem having several, slightly differ-
ent versions (and variously being called Fubini’s theorem, Fubini-
Tonelli’s theorem, or just Tonelli’s theorem) it appears worthy to
recall the form which will be used. From now on, whenever Fubini-
Tonelli’s theorem is mentioned, it is understood to be the following
one:

Theorem (Fubini-Tonelli’s Theorem). Let (X,M, µ) and (Y,N, ν)

be two σ-finite measure spaces, and let f : X × Y → [0,+∞) be a
measurable (and nonnegative) function. Then:∫

X

(∫
Y

f(x, y)dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y)dµ(x)

)
dν(y) =

=

∫
X×Y

f(x, y)d(µ× ν)(x, y)

We are going to be using only the standard Lebesgue measure (which
is σ-finite), along with probabilistic measures (which, again, are fi-
nite, and therefore, also σ-finite). All the functions that we are going
to be using are measurable, and nonnegative – therefore, we shall
be applying the above theorem without any further verification that
its assumptions hold.

• By N (µ, σ) we shall understand the probability measure of a Gaus-
sian distribution with mean µ and standard deviation σ. That is:
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N (µ, σ) : Leb(R) → [0, 1]. For a Lebesgue-measurable subset A of
R, the formula is as follows:

N (µ, σ)(A) =

∫
A

1

σ
√
2π

e−
(x−µ)2

2σ2 dλ(x)

• πx is orthogonal projection. That is, for example, let F : R2 → R2

such that F (a, b) = (c, d).
Then, πx(F (a, b)) = c and πy(F (a, b)) = d.

• We shall make use of the fact that the product of two Gaussian
PDFs is itself proportional to a Gaussian PDF (Aldershof et al.,
1995):

ν(µ1, σ1)(x) · ν(µ2, σ2)(x) = c · ν

(
µ1 σ2

2 + µ2 σ1
2

σ2
2 + σ1

2
,

σ1σ2√
σ2
1 + σ2

2

)
(x)

(3.1)

where:

c =
2
√
π
√
σ2

2 + σ1
2 e

µ2
2−2µ1 µ2+µ1

2

2σ2
2+2σ1

2

√
2

• In addition to that, several parameters will be used in formulas,
their meaning, unless specified otherwise is the following:

– ρ is the random mutation rate, that is, the rate of background
mutations which are not associated with transposition.

– σ is the radius of selection (the lower it is, the more stringent
selection is).

– η is the speed of environmental change, per generation – the
optimal phenotype shall be moved by this amount in each gen-
eration.
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3.3 Transposition model for class I TEs

3.3.1 Introduction – general setting

In the model presented here we remain within the context of asexual, hap-
loidal, clonal organisms. The model is, again, going to be an extension of
classical Fisher’s geometric model (Fisher, 1930; Martin and Lenormand,
2006) with a moving optimum (Kopp and Hermisson, 2009; Orr, 2005) –
that is, it is assumed that every organism in the population shall carry a
so-called phenotype – a real-valued vector describing some of the properties
of the organism which are relevant to its ability to survive in the environ-
ment. In addition to that, there is the optimal phenotype – a single real-
valued vector (of the same dimension), which describes the environment.
Organisms whose phenotypes are closest to the optimal phenotype shall
thrive, while organisms whose phenotypes are distant – shall die off. In
addition to that, each organism carries some TEs – their amount is stored
in a single nonnegative integer for each organism. Here, for the sake of
simplicity we shall assume that the phenotypic space is one-dimensional,
however, the results presented easily carry over to higher dimensions as
well.

As such, each organism is completely described by two numbers: a real-
valued number, its phenotype, marking its location within the phenotypic
space, and a nonnegative integer – the number of TEs its carrying. In
this model, we only track active TEs – and we assume that sufficient
transposition machinery is always present within a given organism, so that
any TEs present may duplicate. Thus, the question of autonomous versus
non-autonomous TEs becomes meaningless, and differentiation between
them – unnecessary. Again, at least for now, we only focus on class I TEs,
the ones which proliferate using a copy-paste mechanism.

In contrast to the computational model we assume a continuous pop-
ulation – as, in mathematical settings these are easier to deal with than
the discrete populations favoured by computational models. The popula-
tion is modelled by a probability density function p : N × R → R (with∑

N
∫
R p = 1). One might immediately notice that this particular set-

ting enforces “constant” population size, without concerning us about the
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actual size of population. The PDF models only relative proportions of
organisms with different parameters within the population with respect
to each other, it does not provide actual organism counts. Because of
that it is impossible for the population to grow, shrink, or most impor-
tantly, die off. This might be seen as unrealistic, however, we do not wish
to explore the mechanics of species extinction within this work, and our
experience with the computational model shows that such effects compli-
cate the model behaviour without adding any new interesting data. And,
as mathematical tractability remains an issue which we have to face, we
decided against including such effects in our model.

3.3.2 Mathematical formulation

The evolution of the system proceeds in discrete generations, with each
new generation completely displacing the previous one. Over one gen-
eration the mutations are applied, selection (and renormalization) shifts
the proportions of organisms, and, last but not least, the optimal phe-
notype is shifted by a fixed amount, to represent environmental stress.
In mathematical terms, the consecutive generations are obtained with a
“generation operator” Φ : (N × R → R) → (N × R → R), which trans-
forms population distributed according to p into the next generation of
this population Φ(p).

Next, we shall construct the operator Φ in such a way that is reflects
the behaviour of TEs found in nature. The construction, for purposes
of facilitating understanding, shall be done in steps, with each step pro-
viding the form of Φ for a simplified scenario, with the scenarios getting
progressively more complicated, until we arrive at the final form.

Transposition

First, let us tackle the situation in which the organisms only have TEs,
and phenotype is disregarded (that is: each organism is described only by
its number of TEs, and the population is a function p : N→ R. The TEs
may proliferate and vanish as normal.

• We make the assumption that transposition and TE decay occur
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concurrently in a single generation, and do not affect each other.
Thus the probabilities of transposition and deletion are independent.

• Probability of d TE deletions occurring in an organism with m ini-
tial TEs is modelled by binomial distribution: P(#delm = d) =(
m
d

)
∆d(1 − ∆)(n−d), where ∆ is TE deletion rate. This is consis-

tent with the biological mechanism – each TE may independently
of others get excised, or mutate so much that it looses its function.

• Probability of t transpositions occurring in an organism with m

initial TEs is modelled by Poisson distribution: P(#trm = t) =
(τm)te(−τm)

t!
. This is because we assume that there is sufficient trans-

position machinery for each TE to proliferate, again, independently
from others (we do not model the effects of TEs competing for trans-
position machinery).

• Finally, the evolution operator for TE-carrying organisms has the
following form:

Φ(p)(n) =
∑
d∈N

∑
t∈N

P(#deln+d−t = d)P(#trn+d−t = t)p(n+ d− t)

Phenotypic landscape

Next, let us consider the reverse situation: we disregard TEs, and only
care about the phenotype. The organisms only mutate, with a Gaussian
mutation function. We do not model selection yet:

• We assume that mutation shifts the phenotype by a number drawn
from a normal distribution N(0, ρ), where ρ is the mutation rate.
These are the mutations which are independent of TEs.

• Disregarding the transposition, and assuming a random mutation
rate ρ gives us (where ν(0, ρ) is the PDF of N(0, ρ), star denotes
function convolution) the following:

Φ(p)(x) = (p ⋆ ν(0, ρ))(x)

37



Transposition and phenotypes combined

Combining transpositions and mutations of the phenotype (we still do
not model selection, or environmental stress yet) yields the following (we
assume that the mutation rate of an organism is the random mutation rate
plus the number of transpositions it goes through in this generation: ρ+t):

Φ(p)(n, x) =(
(
∑
d∈N

∑
t∈N

P(#deln+d−t = d)P(#trn+d−t = t)p(n+d−t,_))⋆ν(0, ρ+t)
)
(x)

Environmental stress

• We will later assume that 0 is the phenotypic optimum. Environ-
mental change may be represented by moving that optimum, how-
ever moving optimum in one direction is equivalent to moving the
whole population in the phenotypic space in the other direction
(mathematically equivalent by a simple parameter substitution),
and this is easier to do with the formulas. Therefore, a constant
environmental change with magnitude η may be modelled as fol-
lows:

Φ(p)(n, x) =(∑
d∈N

∑
t∈N

P(#deln+d−t = d)P(#trn+d−t = t)p(n+d−t,_)⋆ν(0, ρ+t)
)
(x−η)

Selection and final formalism

Last but not least, selection – we will assume that organisms are selected
according to normal distribution, centered around the optimum (zero).
The selection strength (that is, the standard deviation of this distribution)
will be σ. This is done simply by multiplying the PDF describing the
population by a Gaussian PDF centered around the phenotypic optimum.
Note that this takes us outside of the firm ground of probability theory
and into unknown: such an act has no probabilistic interpretation, and
indeed, yields a function which, in general, need not be a PDF. However,
this can be alleviated by dividing the function by a normalization factor:
this can be interpreted as selection killing off some of the organisms (as
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the integral of the function after selection, in all but the most pathologic of
cases will be less than 1), and renormalization – the remaining organisms
producing clones of themselves to refill the environmental niche. Thus, if
we let m = n + d − t the “generation operator” with selection looks as
following:

Φ(p)(n, x) =

((∑
d∈N

∑
t∈N P(#delm = d)P(#trm = t)p(m, _) ⋆ ν(0, ρ + t)

)
(x − η)

)
· ν(0, σ)∫

R×N

((∑
d∈N

∑
t∈N P(#delm = d)P(#trm = t)p(m, _) ⋆ ν(0, ρ + t)

)
(x − η)

)
· ν(0, σ)dλ(R × N)

The model, as formulated, has so far successfully resisted all attempts
at solving – that is, we cannot determine the asymptotic behaviour of
iterating this operator.
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3.4 Mutator model

Next, we shall formally introduce the so-called mutator model, which is a
simplified version of the model for class-I TEs. The model, in addition to
its own merits, will be, in next section, used to construct a mathematical
formalism for populations carrying class-II transposons.

3.4.1 Introduction

The setting remains the same, that is, clonally-reproducing organisms,
subjected to environmental stress, within Fisher’s geometric framework.
The organisms in a population possess a fixed (parametrised) mutation
rate (whether the mechanism of these mutations is related to transposons
or not is of no consequence for now, as long as the mutation rate remains
constant, and the same for each organism in the population). The goal
is to study the effects of various rates of mutation and selection of the
organisms on the ability and speed of adaptation of the whole popula-
tion to the new environment. The results will then be sued to derive a
mathematical model for class-II transposons.

3.4.2 Simplification of model for class-I TEs

Let us start with the Φ operator as defined at the end of the previous
section. If there are no TEs in the population (that is, when n = 0,
or, more precisely, p(n, x) = 0 if n > 0), then new TEs cannot appear
(as the only source of new TEs in this setting is transposition, which
requires preexisting TEs). This leaves only random mutations as the cause
of phenotypic variance, and, as such, we may eliminate the parameter
responsible for TEs altogether. In this case, the operator may be simplified
into the following form:

Φ(p)(x) =
Φ̂(p)(x)∫

R Φ̂(p)(t)dt
(3.2)

where:
Φ̂(p)(x) = (p ⋆ ν(0, ρ))(x− η) · ν(0, σ)(x)
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3.4.3 Stationary state

Description

A fixpoint of Φ is a distribution p which satisfies Φ(p) = p – that is,
a population which remains the same in consecutive generations. Note
that, although the mathematical formalism suggests a stationary popula-
tion, this is in fact far from the truth: the population is stationary with
respect to the reference point, namely the optimal phenotype – which is
constantly moving to represent environmental change. It is only due to
the parameter substitution mentioned earlier that the optimal phenotype
is, in each generation, fixed at the origin of the coordinate system, creating
illusion of stability. In fact, the fixpoint represents a population which is
moving through the phenotypic space, however it is following the optimal
phenotype with constant speed at a fixed distance, remaining stationary
with respect to it.

Solution in the class of Gaussian distributions

It can be easily verified that in the class of Gaussian functions, Φ has a
single, unique one fixpoint:

p = ν

η
√
4 σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 (3.3)

Note that, surprisingly, the phenotypic variance of the fixpoint popu-
lation does not depend on the strength of the global warming, only the
phenotypic mean does.

However, two important questions remain:

• Is this also the single, unique fixpoint in the class of other, non-
Gaussian distributed populations?

• Do (all? some?) non-fixpoint populations converge to the fixpoint
population with time?

It turns out that the answer to both of the above questions is “yes”,
and that can be derived analytically.
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3.4.4 Proof of convergence

Φ in terms of probability measures

In fact, it is possible to prove the convergence to the fixpoint for any ini-
tial population, not only Gaussian ones, even for populations where the
probability distribution describing them does not have a probability den-
sity function. Such populations are observed in nature – in fact, every
real population is described by a discrete distribution, since the number
of organisms in the population is finite. However, for most populations
a continuous distribution is a good, and frequently used, approximation.
Regardless of that, there are scenarios with populations which cannot rea-
sonably be modelled by a continuous distribution: consider, for example, a
single bacterium being dropped onto a surface, and growing into a colony.
The initial population consists of only 1 specimen, and, as such, should
be modelled by a Dirac delta – and there is no reasonable continuous
approximation of that.

However, it is possible to prove convergence for any distribution, be
it discrete, continuous, or even singular (or any combination thereof),
however, in order to do that, first, the operator Φ must be rephrased in
terms of probability measures.

Recall that the convolution of two probability distributions P1 and P2

defined on R (with probability density functions p1 and p2, respectively),
when expressed on their PDFs has the following form:

(p1 ⋆ p2)(x) =

∫
R
p1(t)p2(x− t)dt

while, when expressed in terms of the probability measures, becomes:

(P1 ⋆ P2)(A) =

∫
R

∫
R
1A(x+ y)dP1(x)dP2(y)

Keeping that in mind, it is simple to observe, that Φ, when expressed
in terms of probability measures, has the following form:

Φ(P)(A) =
Φ̂(P)(A)
Φ̂(P)(R)
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where:

Φ̂(P)(A) =
∫
R

∫
R
ν(0, σ)(y + z) · 1A+η(y + z) dN (0, ρ)(y)dP(z) =

=

∫
R

∫
R
ν(0, σ)(y + z) · 1A+η(y + z) · ν(0, ρ)(y) dλ(y)dP(z)

The class CN

We shall begin by defining a certain well-behaved class of probability dis-
tributions. Next, we shall prove that the image of Φ lies within the class,
thus enabling us to restrict further studies of the behaviour of Φ to within
this class.

Definition 1. Let CN = {P : Leb(R) → [0, 1] | ∃σ ∈ R ∃S : Leb(R) →
[0, 1] pdfP(x) =

∫
R ν(y, σ)(x)dS(y)} - that is, the set of all distributions

which are a compound of Gaussian distribution all with the same standard
deviation, and with mean distributed according to some distribution S.

Theorem 1. Let Φ be the operator defined in Equation 3.2. Then:

Φ(P (R)) ⊆ CN

that is, the image of the set of all probability distributions on R is in the
class CN (or: every possible starting population, after one generation of
evolution can be described by a CN -class probability distribution).

Proof. Let P : Leb(R)→ [0, 1]. For all A ∈ Leb(R) we have:

Φ̂(P)(A) =
∫
R

∫
R
ν(0, σ)(y + z) · 1A+η(y + z) · ν(0, ρ)(y) dλ(y)dP(z) =
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=

∫
R

∫
R
ν(0, σ)(y) · 1A+η(y) · ν(0, ρ)(y − z) dλ(y − z)dP(z) =

because the Lebesgue measure is translation-invariant:

=

∫
R

∫
R
ν(0, σ)(y) · 1A+η(y) · ν(0, ρ)(y − z) dλ(y)dP(z) =

using basic properties of Gaussian function:

=

∫
R

∫
R
ν(0, σ)(y) · ν(z, ρ)(y) · 1A+η(y) dλ(y)dP(z) =

using Equation (3.1):

= c ·
∫
R

∫
R
ν

(
zσ2

σ2 + ρ2
,

σρ√
σ2 + ρ2

)
(y) · 1A+η(y) dλ(y)dP(z) =

= c ·
∫
R

∫
A+η

ν

(
zσ2

σ2 + ρ2
,

σρ√
σ2 + ρ2

)
(y)dλ(y)dP(z) =

Integrating by substitution: z = zσ2

σ2+ρ2

= c · σ
2 + ρ2

σ2

∫
R

∫
A+η

ν

(
z,

σρ√
σ2 + ρ2

)
(y)dλ(y)dP(z)

Therefore,

Φ(P)(A) =
Φ̂(P)(A)
Φ̂(P)(R)

=

∫
R

∫
A+η

ν

(
z,

σρ√
σ2 + ρ2

)
(y)dλ(y)dP(z) =

=

∫
R

∫
A

ν

(
z,

σρ√
σ2 + ρ2

)
(y − η)dλ(y)dP(z)

Using Fubini’s Theorem:

=

∫
A

∫
R
ν

(
z,

σρ√
σ2 + ρ2

)
(y − η) dP(z)dλ(y)
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Therefore, the PDF of Φ(P) is:

pdfΦ(P)(x) =

∫
R
ν

(
z,

σρ√
σ2 + ρ2

)
(x− η) dP(z) =

=

∫
R
ν

(
z + η,

σρ√
σ2 + ρ2

)
(x) dP(z) =

=

∫
R
ν

(
z,

σρ√
σ2 + ρ2

)
(x) dP(z − η)

and is of proper form for Φ(P) to belong to the class CN .

The class CND

Next, we shall perform an analogous trick, constraining the space of prob-
ability distributions which we need to consider even further, by observing
that the image of the class CN under Φ is even smaller.

Definition 2. Let CND = {P : Leb(R)→ [0, 1] | ∃σ ∈ R ∃S : Leb(R)→
[0, 1] pdfP(x) =

∫
R ν(y, σ)(x)dS(y) and S has a probability density

function} – that is, the subset of CN where the distribution of mean of
the compound Gaussian distribution has a PDF. Alternatively, one can
write:
CND = {P : Leb(R) → [0, 1] | ∃σ ∈ R ∃s : R → R+,0 pdfP(x) =∫
R ν(y, σ)(x) · s(y) dλ(y)}

Theorem 2. Let Φ be the operator defined by Equation (3.2). Then:

Φ(CN ) ⊆ CND
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Proof. Let P ∈ CN . Retrace the steps of proof of Theorem 1 for P,
obtaining:

pdfΦ(P)(x) =

∫
R
ν

(
z,

σρ√
σ2 + ρ2

)
(x) dP(z − η)

By definition P has a probability distribution function, and therefore,
so has P(z − η), therefore, Φ(P) ∈ CND.

Action of Φ within CND

Let p be the PDF of a probability measure in CND. Therefore (by defi-
nition of CND) p(x) =

∫
R ν(y, ς)(x) · s(y) dy for some s.

Let us find Φ(p). Note that now that we’re within the class CND, we are
back on the firm ground of probability distributions which have a density
function, therefore we may go back to the form of Φ which operates on
PDFs.

Φ̂(p)(x) = (p⋆ν(0, ρ))(x−η)·ν(0, σ)(x) =
∫
R
p(t)·ν(0, ρ)(x−η−t)dt·ν(0, σ)(x) =

=

∫
R

∫
R
ν(y, ς)(t) · s(y) dy · ν(0, ρ)(x− η − t)dt · ν(0, σ)(x) =

=

∫
R

∫
R
ν(y, ς)(t) · s(y) · ν(0, ρ)(x− η − t) dydt · ν(0, σ)(x) =

using Fubini-Tonelli’s Theorem:

=

∫
R

∫
R
ν(y, ς)(t) · s(y) · ν(0, ρ)(x− η − t) dtdy · ν(0, σ)(x) =

=

∫
R

∫
R
ν(y, ς)(t) · ν(0, ρ)(x− η − t) dt s(y) dy · ν(0, σ)(x) =

=

∫
R

∫
R
ν(y, ς)(t) · ν(η, ρ)(x− t) dt s(y) dy · ν(0, σ)(x) =
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=

∫
R

(
ν(y, ς) ⋆ ν(η, ρ)

)
(x) · s(y) dy · ν(0, σ)(x) =

=

∫
R
ν
(
y + η,

√
ς2 + ρ2

)
(x) · s(y) dy · ν(0, σ)(x) =

=

∫
R
ν
(
y + η,

√
ς2 + ρ2

)
(x) · s(y) · ν(0, σ)(x) dy =

using Equation (3.1):

= c ·
∫
R
ν

(
(y + η)σ2

ς2 + σ2 + ρ2
,

σ
√

ς2 + ρ2√
ς2 + ρ2 + σ2

)
(x) · s(y) dy

therefore:

Φ(p)(x) =

∫
R
ν

(
(y + η)σ2

ς2 + σ2 + ρ2
,

σ
√

ς2 + ρ2√
ς2 + ρ2 + σ2

)
(x) · s(y) dy

Since Φ is seen to be only operating on the parameters of the normal dis-
tribution in the above formula (while leaving s unchanged), let us denote
by F the transformation that Φ performs on the parameters:

F (x, y) =

(
(x+ η)σ2

y2 + σ2 + ρ2
,

σ
√

y2 + ρ2√
y2 + ρ2 + σ2

)
(3.4)

Note: at this point it is possible to double-check the correctness of the
proof so far by verifying that:

F

η
√

4σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 =

=

η
√
4 σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2


It is indeed the case (calculations not shown).
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Limit of the standard deviation

At this point, we may abandon Φ altogether, for a while, and study the
much simpler object, that is the function F . Proving that iterating F

leads to convergence is much easier than proving the same fact for Φ, and
yet, it will allow us to derive the same conclusion for Φ later. We will
prove convergence separately for both coordinates of F . As the second
coordinate of F does not depend in any way on the first (while the first
one does depend on second) it will be easier to start with the second
coordinate:

Theorem 3. Recall that πy denotes the orthogonal projection onto the
second dimension. Let F be as defined in Equation (3.4). Then:

∀x, y ∈ R lim
n→∞

πy(F
n(x, y)) =

√
2ρ(
√
4σ2 + ρ2 − ρ)

2

Proof. Since πy(F ) doesn’t depend on x variable, we might as well consider
f(y) =

σ
√

y2+ρ2√
y2+ρ2+σ2

(which is equal to πy(F (x, y)) for all x).

df

dy
=

σ3y√
ρ2 + y2(ρ2 + σ2 + y2)3/2

≤ σ3y√
y2(ρ2 + σ2 + y2)3/2

=

=
σ3

(ρ2 + σ2 + y2)3/2
≤ σ3

(ρ2 + σ2)3/2

therefore f is Lipschitz with constant σ3

(ρ2+σ2)3/2
. And since ρ > 0 as it is

the standard deviation of a distribution, then:

σ3

(ρ2 + σ2)3/2
<

σ3

(σ2)3/2
= 1

therefore f is a contraction mapping (with this constant, which is strictly
less than 1). By applying Banach’s contraction mapping theorem (Smart
(1980) p. 2) we arrive at the conclusion that f has a unique fixpoint,
and that iterating f converges to it. Knowing this, all that remains is
to verify the (previously established) actual value of the fixpoint, that is
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check that:

f


√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 =

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

(trivial yet tedious calculations skipped)

Limit of the mean

Now that we have proved that the second coordinate of F converges, all
that’s left is to prove the convergence of the first coordinate.

Theorem 4. Let F be as defined in Equation 3.4. Denote: (xn, yn) =

F n(x, y). Then:

lim
n→∞

xn =
η
√

4σ2 + ρ2 − η ρ

2 ρ

Proof. Observe that xn is defined by a recurrence relation:

xn =
(xn−1 + η)σ2

y2n−1 + σ2 + ρ2

Taking that equation, and converging1 on both sides with n→∞:

lim
n→∞

xn = lim
n→∞

(xn−1 + η)σ2

y2n−1 + σ2 + ρ2

Denoting: x = limn→∞ xn = limn→∞ xn−1 and y = limn→∞ yn =

√
2ρ(
√

4σ2+ρ2−ρ)

2

we obtain:
x =

(x+ η)σ2

y2 + σ2 + ρ2

1Note: in order to do that we should first prove that the sequence actually converges.
Proof omitted, one can do that by noting that for each arbitrarily small ϵ > 0 there
exists a M such that y − ϵ ≤ yn ≤ y + ϵ for each n > M . The convergence of
sequences with yn replaced by y±ϵ is easy to prove, they are bounded and monotonous.
The original sequence lies between them, and as we converge with ϵ → 0 their limits
approach, so we may perform reasoning similar to the squeeze theorem.
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Solving this equation for x yields:

x =
ησ2

y2 + ρ2

It is easy to verify that substituting for y its value in the above yields
expression equal to the limit for xn from theorem. One way of checking
this, is for example using a Computer Algebra System, subtracting the
expressions and simplifying the result – this yields 0, proving that they are
in fact equal. This was verified using Wolfram Mathematica 7.0.1.0.

Lemmas for convergence theorems

Before we finally prove the convergence of Φn, we still need to prove two
more lemmas which we will later use to swap the order of limits and
integrals in the final proof.

Lemma 5. The class of functions: {ν
(

(x+η)σ2

y2+σ2+ρ2
,

σ
√

y2+ρ2√
y2+ρ2+σ2

)
|x ∈ R, y >

0} is uniformly bounded, and therefore, uniformly integrable with respect
to any probability measure P : Leb(R)→ [0, 1]

Proof. The PDF of a normal distribution has maximum in the mean.
Therefore, its maximum is equal to:

max
z∈R

ν

(
(x+ η)σ2

y2 + σ2 + ρ2
,

σ
√
y2 + ρ2√

y2 + ρ2 + σ2

)
(z) =

=
1

√
2π

(
σ
√

y2+ρ2√
y2+ρ2+σ2

)e
0/

(
2

(
σ
√

y2+ρ2√
y2+ρ2+σ2

)2
)
=

=

√
y2 + ρ2 + σ2

√
2πσ

√
y2 + ρ2

=
1

σ
√
2π

√
y2 + ρ2 + σ2

y2 + ρ2
=

=
1

σ
√
2π

√
1 +

σ2

y2 + ρ2
≤ 1

σ
√
2π

√
1 +

σ2

ρ2
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which is a common bound for all functions in that class.

Lemma 6. For all (x, y) ∈ R×(0,∞) the class of functions: {ν(F n(x, y))}n∈N+

is dominated by a single nonnegative function f , such that
∫
R f(z)dz <∞

The proof of this lemma is long and tedious, and does not easily reveal
the underlying idea behind it, so before we proceed with a full, formal
proof, we shall provide a sketch of proof.

The main idea behind the proof is that the set {F n(x, y)}n∈N+ forms a
convergent sequence, and therefore it is bounded. If it is bounded, then
there is a Gaussian distribution with a biggest variance (or, obviously, a
sequence of distributions converging to the largest variance, but for now,
for the purposes of this sketch, let’s disregard the case of sequences, it will
be formally handled in the proof), a distribution with smallest variance, a
distribution with largest mean and lowest mean. The idea is to construct
a dominating function f from blocks: the area between the largest and
smallest mean will be covered by a continuous function, at supremum
of all the values attained by all the PDFs in the class, while sides are
covered by an arm of Gaussian distribution, descending as slow as the
slowest function from the class, and rescaled to start at the maximum
(c.f. Fig. 3.4.1). The dominating function is obviously integrable as it is a
scaled PDF of a Gaussian distribution, with a rectangular block inserted
into the middle.

And now, the tedious formal proof:

Proof. Denote, as previously: (xn, yn) = F n(x, y). From Theorems 3 and
4 it follows that both xn and yn are convergent, and therefore, bounded.
Moreover, clearly limn→∞ yn > 0, and therefore also infn∈N+{yn} > 0

Keeping that in mind, let us calculate:
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Figure 3.4.1: Construction of the dominating function f , as in proof of Lemma 6.
The dominating function is in black, the Gaussian PDF with lowest variance is red,
the one with highest variance is orange, the one with lowest mean is blue, and the
one with highest is black; (some) other PDFs from the class have also been plotted,
in gray.
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ν(F n(x, y))(z) =
1

yn
√
2π

exp

(
−(z − xn)

2

2y2n

)
≤

≤ 1

infn∈N+{yn}
√
2π

exp

(
− (z − xn)

2

2 supn∈N+{yn}2

)
The exp(...) term is always less than or equal to 1, furthermore,
for z > supn∈N+{xn} the above expression is less than:

1

infn∈N+{yn}
√
2π

exp

(
−(z − supn∈N+{xn})2

2 supn∈N+{yn}2

)
and similarly for z < infn∈N+{xn}.

Therefore, let us define:

f(z) =


1

infn∈N+{yn}
√
2π

exp
(
− (z−infn∈N+{xn})2

2 supn∈N+{yn}2

)
for z < infn∈N+{xn}

1
infn∈N+{yn}

√
2π

for z ∈ [infn∈N+{xn}, supn∈N+{xn}]
1

infn∈N+{yn}
√
2π

exp
(
− (z−supn∈N+{xn})2

2 supn∈N+{yn}2

)
for z > supn∈N+{xn}

From the above it follows that f dominates the class of functions from
the theorem, so the only thing left to prove is that it is integrable:

∫
R
f(z) dz =

∫
(−∞,infn∈N+{xn})

1

infn∈N+{yn}
√
2π

exp

(
−(z − infn∈N+{xn})2

2 supn∈N+{yn}2

)
dz+

+

∫
[infn∈N+{xn},supn∈N+{xn}]

1

infn∈N+{yn}
√
2π

dz+

+

∫
(supn∈N+{xn},+∞)

1

infn∈N+{yn}
√
2π

exp

(
−(z − supn∈N+{xn})2

2 supn∈N+{yn}2

)
dz =

=
supn∈N+{xn} − infn∈N+{xn}

infn∈N+{yn}
√
2π

+

+2

∫
(supn∈N+{xn},+∞)

1

infn∈N+{yn}
√
2π

exp

(
−(z − supn∈N+{xn})2

2 supn∈N+{yn}2

)
dz =

=
supn∈N+{xn} − infn∈N+{xn}

infn∈N+{yn}
√
2π

+ 2
1

infn∈N+{yn}
√
2π

sup
n∈N+

{yn}
√
π/2 <∞
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Convergence of Φn

And the final theorem, establishing a unique stationary population:

Theorem 7. For all P : Leb(R)→ [0, 1] and all A ∈ Leb(R) the following
holds:

lim
n→∞

Φn(P)(A) = N

η
√

4σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√
4σ2 + ρ2 − ρ)

2

 (A)

that is, iterating Φ on any probability measure generates a sequence
strongly converging to a normal distribution with the given mean and
standard deviation.

Proof. With two applications of Φ we end up in CND class (by Theorem 1
and 2). Therefore it is enough to prove convergence for P of the following
form:

P(A) =
∫
A

∫
R
ν (F n(x, y)) (z) · s(x) dλ(x)dλ(z)

Let us start:

lim
n→∞

Φn(P)(A) = lim
n→∞

∫
A

∫
R
ν (F n(x, y)) (z) · s(x) dλ(x)dλ(z) =

Using Fubini-Tonelli’s Theorem:

= lim
n→∞

∫
R

∫
A

ν (F n(x, y)) (z) · s(x) dλ(z)dλ(x) =
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lim
n→∞

∫
R

∫
A

ν (F n(x, y)) (z) dλ(z) · s(x) dλ(x) =

lim
n→∞

∫
R

∫
A

ν (F n(x, y)) (z) dλ(z) dS(x) =

ν (F n(x, y)) (z) is a probability density function, therefore∫
A
ν (F n(x, y)) (z) dλ(z) ≤ 1, therefore the class {ν (F n(x, y)) (z)}n∈N+ is

uniformly bounded (by 1). S is a probability measure, therefore we may
use Bounded Convergence Theorem (Rudin (1976) p. 322) to obtain:

=

∫
R
lim
n→∞

∫
A

ν (F n(x, y)) (z) dλ(z) dS(x) =

by Lemma 6 we may use Dominated Convergence Theorem (Rudin (1976)
p. 321) (see proof of the lemma for dominating function):

=

∫
R

∫
A

lim
n→∞

ν (F n(x, y)) (z) dλ(z) dS(x) =

Using continuity of ν with respect to its parameters:

=

∫
R

∫
A

ν
(
lim
n→∞

F n(x, y)
)
(z) dλ(z) dS(x) =

Using Theorem 3 and 4: F n(x, y) −−−→
n→∞

(
η
√

4σ2+ρ2−η ρ

2 ρ
,

√
2ρ(
√

4σ2+ρ2−ρ)

2

)
,

therefore:

=

∫
R

∫
A

ν

η
√
4 σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 (z) dλ(z) dS(x) =

∫
A

ν

η
√
4 σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 (z) dλ(z) ·
∫
R
dS(x) =

S is a probability measure, therefore
∫
R dS(x) = 1:

=

∫
A

ν

η
√

4σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√
4σ2 + ρ2 − ρ)

2

 (z) dλ(z) =
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= N

η
√
4 σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 (A)

3.4.5 Analysis of the equilibrium state

Independence of of populational variability from the speed
of environmental change

The first, and perhaps most surprising observation is the one we have al-
ready made over the course of the proof, namely that the variance of phe-
notypes in the population is not affected by the amount of environmental
stress the population is subjected to. This fact has severe consequences
for population genetics and ecological studies – as it points to the fact
that it is not possible to estimate the environmental stress that a given
population is subjected to by measuring its phenotypic variance.

Survivability

An interesting question is the estimation of survivability in the equilibrium
state, that is, the proportion of organisms which survive the selection step.
This can be performed by applying the Φ̂ operator (that is, the Φ operator
without the scaling factor) to the equilibrium population, and evaluating
its integral. Denote by µ∗ the stationary mean: µ∗ =

η
√

4σ2+ρ2−η ρ

2 ρ
, and

by σ∗ the stationary standard deviation: σ∗ =

√
2ρ(
√

4σ2+ρ2−ρ)

2
. We shall

use the PDF form: ∫
R
Φ̂ (ν (µ∗, σ∗)) (x)dλ(x) =

=

∫
R
(ν (µ∗, σ∗) ⋆ ν(0, ρ)) (x− η) · ν(0, σ)(x)dλ(x) =

=

∫
R

(
ν

(
µ∗,

√
(σ∗)2 + ρ2

))
(x− η) · ν(0, σ)(x)dλ(x) =

=

∫
R

(
ν

(
µ∗ + η,

√
(σ∗)2 + ρ2

))
(x) · ν(0, σ)(x)dλ(x) =
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At this point we may apply the formula for product of two Gaussian PDFs
(Equation (3.1). Note that only the scaling factor is important, and we
may disregard the mean and standard deviation of the resulting Gaussian
PDF. The scaling factor was computed using a Computer Algebra System
(Wolfram Mathematica 7.0.1.0):

=

∫
R

e
− η2

2ρ2

√
2
π

σ

√
ρ
(
ρ+

√
ρ2 + 4σ2

)√
ρ+
√

ρ2+4σ2

ρσ2

ν(..., ...)(x)dλ(x) =

=
e
− η2

2ρ2

√
2
π

σ

√
ρ
(
ρ+

√
ρ2 + 4σ2

)√
ρ+
√

ρ2+4σ2

ρσ2

∫
R
ν(..., ...)(x)dλ(x) =

=
e
− η2

2ρ2

√
2
π

σ

√
ρ
(
ρ+

√
ρ2 + 4σ2

)√
ρ+
√

ρ2+4σ2

ρσ2

and this is the formula for survivability at equilibrium as a function of model
parameters. Let us denote this function by surv(ρ, σ, η). Its behaviour might
be observed on Figures 3.4.2 and 3.4.3. Surprisingly, maximum survivability
does not in general occur when the mutation rate is equal to the environmental
change. Another surprising fact is that survivability increases with stringent
selection.

Optimal mutation rate

Having computed equilibrium survivability as a function of the model
parameters an important question one may ask is: what is the optimal
mutation rate for a given speed of environmental change? One would
expect that it should be equal to the speed of environmental change,
however, as we can already see from Figure 3.4.2 this is not the case. In
order to compute the optimal mutation rate for a given set of parameters
it is necessary to compute the argument of the maximum of survivability
function. In order to do that we must calculate ∂

∂ρ
surv(ρ, σ, η). The result
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Figure 3.4.2: Plots of survivability function with various parameters fixed. (A)
Survivability as a function of random mutation rate. A clear optimal random
mutation rate is seen. (B) Reducing the strength of selection (by increasing the
selection radius σ) causes a decrease in survivability, however, the optimal mutation
rate does not appreciably change (C) Increasing the speed of environmental change
reduces survivability, and increases the optimal mutation rate. (D) The effects of
both lower selection and faster environmental change (E) Survivability as a function
of environmental change. Highest survivability occurs in a stable environment. (F)
Survivability as a function of selection radius. Highest survivability occurs with
most stringent selection.
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Figure 3.4.3: Plot of survivability function with η = 1 and varying mutation rates
and selection radii.

is (computations, again, performed in Mathematica):

e
− η2

2ρ2

√
2
π

(
−ρ3 + η2

√
ρ2 + 4σ2

)
ρ3σ
√

ρ2 + 4σ2

√
ρ
(
ρ+

√
ρ2 + 4σ2

)√
ρ+
√

ρ2+4σ2

ρσ2

In order to find roots of the above expressions it is enough to solve:

−ρ3 + η2
√

ρ2 + 4σ2 = 0

The only solution in R+ turns out to be:√√√√(18η4σ2 +
√
3
√
−η8 (η4 − 108σ4)

)1/3
+ η4(

6η4σ2+

√
− η12

3
+36η8σ4

)1/3

31/3
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Average fitness

The average fitness of the equilibrium population can be calculated as
follows:

∫
R
ν

η
√
4 σ2 + ρ2 − η ρ

2 ρ
,

√
2ρ(
√

4σ2 + ρ2 − ρ)

2

 (x)ν(0, σ)(x)dλ(x) =

Now, let us use the formula for the product of two Gaussian PDFs.
Note that, like previously, the resulting Gaussian PDF integrates out to
1, and the result is just the scaling constant:

=
e

η2(ρ−
√

ρ2+4σ2)
2

4ρ2(ρ2−2σ2−ρ
√

ρ2+4σ2)

√
π
√
−ρ2 + 2σ2 + ρ

√
ρ2 + 4σ2

It is important to note that the optimal mutation rate for highest av-
erage fitness of the population differs from the optimal mutation rate for
highest survivability. It is possible to symbolically compute the optimal
mutation rate, again, by differentiating with respect to ρ and searching for
roots, however, this time, the result (obtained with a CAS) has over 100
terms and, as such, is useless in terms of understanding the behaviour of
the function, so the calculations will be skipped. Instead, it is (again) pos-
sible to visualize the behaviour of the function using plots (Figure 3.4.4
and 3.4.5). At a first glance it may come as a surprise that increasing
the strength of selection (by decreasing its radius) actually arbitrarily in-
creases the average fitness of the population,however, it is precisely this
effect that has been used in plant and animal breeding.

3.4.6 A model for class II transposons

Introduction

Having studied in depth the mutator model, it turns out that actually a
model for class II TEs is just a tiny step away. Recall that class II TEs
(or DNA transposons) relocate through the genome using a cut-and-paste
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Figure 3.4.4: Plots of average fitness function with various parameters fixed.
(A) Plot of average fitness as a function of random mutation rate. There is
an evident optimal mutation rate, however, increasing mutation rate beyond it
causes only a slight drop in average fitness. (B) Same plot, with less stringent
selection (higher selection radius σ). Decreasing the strength of selection doesn’t
appreciably relocate the optimal mutation rate, however, it makes adaptation more
difficult. (C) Increasing the speed of environment change increases the mutation
rate needed to keep up with the environment, however, the average fitness does
not significantly decrease. (D) Combined effects of high environment change and
low selection. (E) Average fitness as a function of environment change, with fixed
mutation rate: if we allow the speed of environmental change to increase without
allowing the mutation rate to increase as well, the average fitness of population
tends to zero. (F) Average fitness as a function of selection radius. With more
stringent selection we can arbitrarily increase the population’s fitness.
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Figure 3.4.5: Plot of average fitness of the population as a function of mutation
rate and selection radius, with η = 1.

mechanism. This has the following effects on the genome:

• Each transposon, by relocating, causes mutations to the genome of
the host, for example through their potential to disrupt genes. Note
that the damage is permanent: even after the transposon relocates
to a new location, the gene containing it remains damaged: the
transposon leaves behind a short Target Site Duplication (TSD) se-
quence – which remains in the gene, interrupting it, even after the
transposon is gone. The additive mutations caused by transposons
are dependant on the number of transposons in a linear fashion.
Therefore, we shall assume that each organism in the population
mutates with ρ + t rate, where ρ is, as previously, the background
mutation rate (rate of non-transposon-related mutations), while t is
the number of transposons an organism is carrying. Note that we
allow t to be in R+

0 – while transposons are discrete, their level of
activity is certainly not. Therefore, transposons of lower or higher
activity may be represented by numbers other than 1.

• The transposition does not affect the number of transposons in gen-
eral case. While it is true that in certain circumstances the re-
construction of a break in DNA structure caused by a transposon
being excised may sometimes recreate a copy of the transposon, even
though the original one has already moved into a new locus, we do
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not model this effect.

The model

Keeping this in mind, the change needed to turn a mutator model into
a model for class II transposons is apparent: we should add another di-
mension to the model, denoting the number of transposons each organism
carries. The population then, may be thought of as a sum of (a contin-
uum of) subpopulations with varying transposon numbers, with each of
the subpopulations behaving in accordance to the rules of mutator model,
with mutation rate being ρ + t instead of ρ. The organisms may not
travel between the subpopulations, however, some subpopulations may
proliferate at the expense of other, less adapted ones.

Let us denote by f : [0,+∞) → (0,+∞) the PDF of the distribution
of transposons among the population. This time, for simplicity we shall
assume that the distribution has a PDF, moreover, that the PDF is posi-
tive (that is, for every number, there is a nonzero proportion of organisms
with this many transposons) and bounded.

Each of the same-number of transposons subpopulations behaves inde-
pendently of others, in accordance to the mutator model, therefore, each
one of them will converge to the equilibrium. As such, let us study only
populations where each of the subpopulations is in its equilibrium state.

Therefore, the initial state of the population may be described by a
probability distribution P : Leb(R×[0,+∞))→ [0,+∞] with the formula:

P(A) =

=

∫
A
ν

η
√

4σ2 + (ρ+ t)2 − η (ρ+ t)

2 (ρ+ t)
,

√
2(ρ+ t)(

√
4σ2 + (ρ+ t)2 − (ρ+ t))

2

 (x)f(t)dλ(x, t)

Convergence

It is easily observed that with subsequent generations only the f(t) part
will evolve (namely, proportions of organisms with different transposon
numbers), while the Gaussian part, responsible for the mutator equilib-
rium shall remain constant. Because of that, let us drop it for now, and
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focus purely on f . Selection in this model works as follows: in each sub-
population the selection works like in the mutator model, meanwhile, the
scaling is done globally. This is equivalent to multiplying the function
f(t) by the survivability of population with mutation rate ρ + t – which
we have computed earlier, and then multiplying it by a scaling factor it
so that

∫
[0,+∞)

f(t)dλ(t) = 1. Let us denote this transformation by ϕ:

ϕ(f)(t) =
s(t)f(t)∫

[0,+∞)
s(x)f(x)dλ(x)

where s is the survivability as a function of mutation rate, the same func-
tion as mentioned in subsection 3.4.5:

s(ρ) =
e
− η2

2ρ2

√
2
π

σ

√
ρ
(
ρ+

√
ρ2 + 4σ2

)√
ρ+
√

ρ2+4σ2

ρσ2

With this, we may establish the equilibrium:

Theorem 8. For every bounded, positive PDF f : [0,+∞) → (0,+∞)

the sequence of measures µn associated with PDFs ϕn(f) converges in
weak-* fashion to the Dirac measure δ whose mass in concentrated at the
point:√√√√(18η4σ2 +

√
3
√
−η8 (η4 − 108σ4)

)1/3
+ η4(

6η4σ2+

√
− η12

3
+36η8σ4

)1/3

31/3
− ρ

if this is positive, or to δ0 otherwise.

Proof. Note that:

ϕn(f)(t) =
(s(t))nf(t)∫

[0,+∞)
(s(x))nf(x)dλ(x)

Recall that fraction part of the point of mass of δ is the unique point in
positive reals where the derivative (with respect to mutation rate) of sur-
vivability is zero, and also, the point at which the survivability function
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attains its maximum. The mutation rate is now divided between ran-
dom mutations and transposon-related mutations. If random mutations
are already larger than this value, then the survivability function attains
its maximum with 0 transposons, otherwise the reminder of the needed
mutations must be provided by transposons. Let us denote the point of
maximum (that is, the optimal number of transposons) by d. We shall
tackle the case where d > 0, the case where d = 0 is similar (and easier,
as it is only necessary to consider one side of the point d).

We shall prove weak-* convergence using the following condition:

Definition 3. Let X be a metric space with Borel (or in this case:
Lebesgue, as non-Borel null sets don’t play a role here) σ-algebra M.
A sequence of measures µn converges in a weak-* manner to a measure µ

if limn→∞ µn(A) = µ(A) for all continuity sets A of the measure µ.

Let A be any continuity set of δ. In this case this means that d /∈ ∂A.
As such, there must exist an open neighbourhood U of d, which either
lies entirely in A or is disjoint with A, and which contains an open ball
centered on d, with radius ϵ > 0.

Let Â be equal to [0,+∞) \ (d− ϵ, d+ ϵ).
Before we proceed, let us make some remarks about the function s.

Remark 1. As the derivative of the survivability function (with respect to
the mutation rate) changes sign at d and only at d (and goes from positive
to negative), it follows that either s(d − ϵ) or s(d + ϵ) is the function’s
minimum on [d− ϵ, d+ ϵ]. Without loss of generality, let us assume that
it attains minimum at d − ϵ. Let M = s(d + ϵ) (that is the value on the
end opposite of minimum). Because of the behaviour of the derivative it
is evident that M ≥ s(a) for all a ∈ Â, and ∃c1, c2 such that s([d+ϵ/2]) ≥
c1 > c2 ≥ s(Â)2. The situation is sketched on Figure 3.4.6

Case 1. U is disjoint with A.
Note that in this case A ⊆ Â, and d /∈ A, and as such, δ(A) = 0. Now,

2The inequality X > c should be interpreted that all elements of the set X are
greater than c
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Figure 3.4.6: Plot of an example survivability function with notations introduced
in Remark 1

in order to prove µn →∗ δ we need to compute:

µn(A) =

∫
A

ϕn(f)(t)dλ(t) ≤

≤
∫
Â

ϕn(f)(t)dλ(t) =

∫
Â

(s(t))nf(t)∫
[0,+∞)

(s(x))nf(x)dλ(x)
dλ(t) ≤

≤
∫
Â

cn1 · f(t)∫
[0,+∞)

(s(x))nf(x)dλ(x)
dλ(t) =

cn1
∫
Â
f(t)dλ(t)∫

[0,+∞)
(s(x))nf(x)dλ(x)

≤

since f is a PDF of a probability distribution, and as such, its integral
over any set is ≤ 1:

≤ cn1∫
[0,+∞)

(s(x))nf(x)dλ(x)
≤ cn1∫

[d,d+ϵ/2]
(s(x))nf(x)dλ(x)

≤

≤ cn1∫
[d,d+ϵ/2]

cn2f(x)dλ(x)
=

Since f is measurable and positive its integral over any nontrivial segment
is also positive. Let us denote this value as k.

=
cn1

cn2 · k
−−−→
n→∞

0

as c2 > c1. As the limit is obviously bounded by 0 also from below, then,
by squeeze theorem (Bartle and Sherbert (2011) p. 64) we arrive at the
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conclusion that limn→∞ µn(A) = 0 = δ(A).

Case 2. U ⊆ A

In this case, d ∈ A, thus δ(A) = 1, and [d− ϵ, d+ ϵ] ⊆ A.
Again, let us compute:

µn(A) ≥ µn([d− ϵ, d+ ϵ]) = µn(R+,0)− µn([0, d− ϵ) ∪ (d+ ϵ,+∞)) =

= 1−
∫
[0,d−ϵ)∪(d+ϵ,+∞)

(s(t))nf(t)∫
[0,+∞)

(s(x))nf(x)dλ(x)
dλ(t) ≥

≥ 1−

∫
[0,d−ϵ)∪(d+ϵ,+∞)

cn1f(t)dλ(t)∫
[0,+∞)

cn2f(x)dλ(x)
= 1− cn1

cn2
·

∫
[0,d−ϵ)∪(d+ϵ,+∞)

f(t)dλ(t)∫
[0,+∞)

f(x)dλ(x)
=

= 1− cn1
cn2
· k −−−→

n→∞
1

As each of µn is a probability measure, therefore µn(A) ≤ 1, so, by
squeeze theorem (Bartle and Sherbert (2011) p.64) we conclude that
limn→∞ µn(A) = 1 = δ(A).

This establishes the following equilibrium population:

P(A) =
∫
Â
ν

η
√

4σ2 + (ρ+ t)2 − η (ρ+ t)

2 (ρ+ t)
,

√
2(ρ+ t)(

√
4σ2 + (ρ+ t)2 − (ρ+ t))

2

 (x)dλx

where:

Â = {x ∈ R |

x,

√√√√(18η4σ2 +
√
3
√
−η8 (η4 − 108σ4)

)1/3
+ η4(

6η4σ2+

√
− η12

3
+36η8σ4

)1/3

31/3
− ρ

 ∈ A}

if:√√√√(18η4σ2 +
√
3
√
−η8 (η4 − 108σ4)

)1/3
+ η4(

6η4σ2+

√
− η12

3
+36η8σ4

)1/3

31/3
− ρ > 0

67



and:
Â = {x ∈ R | (x, 0) ∈ A}

otherwise.

3.4.7 Concluding remarks and interpretation

The main setting of the presented model is, as mentioned, the modelling of class-
II TEs. The speed of mutations is directly correlated to the number of class-II
TEs a given organism carries, because that is proportional to the number of
transpositions. The transpositions (in this simplified approach) operate only
in a cut-and-paste mode, and so, do not cause the number of transposons
to change. However, it is easy to notice that the model, as presented here,
actually is not limited to describing transposon-carrying populations: indeed,
it may be used to study the behaviour of any population of organisms with
variable mutation rates, even if the reason for that has nothing to do with
transposons. In such a case the transposon activity parameter is replaced with
speed of mutations of a given organism, and all the equations and the theory
carry over.

In particular, one application brings us back to class-I TEs: our work, de-
scribed in the next chapter, proves that the presence of even inactive TEs in
the genome has mutagenic effects on the host, by causing the self-similarity of
the genome, and as such, enabling the Nonallelic Homologous Recombination
events. As such, the inactive TEs (both class-I and class-II) have a fixed muta-
tional effect on the host genome, which is proportional the the square of their
content.
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4
Analysis of TEs in human genome as

contributors to genomic disease
through nonallelic homologous

recombination

The computational model of TE interaction from Chapter 1 assumed that TEs
may only cause mutations through their active transposition in the genome,
by disrupting or misregulating genes. However, recently, it has come to the
attention of biologists that this may not be the only known mechanism by
which TEs might disrupt the genome. In this chapter we will attempt to gauge
and estimate the significance of one such method, the nonallelic homologous
recombination (NAHR).

This work was done in conjunction with dr Paweł Stankiewicz’s team at
Baylor College of Medicine (Houston, USA), who suggested this direction of
research. In addition to the impact on modelling, the research we have per-
formed here has serious clinical implications, (they were the motivation of the
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BCM team), which, too, shall be presented.

4.1 Motivations and related research

Copy-number variation (CNV) contributes significantly both to human genetic
variation as well as disease (Sebat et al., 2004; Iafrate et al., 2004; Stankiewicz
and Lupski, 2010). NAHR, occurring during meiosis, is the most common
mechanism underlying the formation of recurrent CNVs in humans (Gu et al.,
2008; Chen, 2012). The product of NAHR can be deletion or reciprocal du-
plication, as well as inversions and inter- or intrachromosomal translocation
(Stankiewicz and Lupski, 2002; Dittwald et al., 2013). In the vast majority
of rearrangements characterized thus far, NAHR occurs between segments of
the human genome that are present in more than one copy known as low-copy
repeats (LCRs or segmental duplications). These LCRs are over 10 kbp in size
and share more than 97% DNA sequence identity (Ou et al., 2011; Dittwald
et al., 2013; Gu et al., 2008; Stankiewicz and Lupski, 2002). However, in ad-
dition to these classically defined LCRs, other sequences have been observed
to mediate apparent NAHR events. Specifically, rearrangements mediated by
Human Endogenous Retroviruses (HERVs), a small subfamily of long retro-
transposons comprising about 5% of the human genome (Shuvarikov et al.,
2013), suggest that the lower boundary on the length of the homologous region
which is capable of mediating NAHRs might be as low as few kbp. This means
that mobile DNA elements (McClintock, 1950) such as TEs may be potential
substrates for NAHR. If true, this would suggest that a significantly higher frac-
tion of the human genome is susceptible to NAHR mediated rearrangements,
as TEs make up as much as 44% of the reference human genome (Mills et al.,
2007).

Since their initial discovery, studies have indicated that the presence of TEs,
and particularly active TEs, has mutagenic effects on the genome of their host.
The most frequently cited effects of TEs is their capability of disrupting a gene
by their insertion and their ability to upregulate genes by inserting nearby
owing to TE-borne enhancers (Walisko et al., 2008). This mutational activity
of TEs is significant enough that it is being selected against over the course of
evolution (Petrov et al., 2011). Computational modeling approaches presented
in the second chapter of this work, as well as the mathematical model from
Chapter 3, suggest that, in certain circumstances, the activity of TEs may be
beneficial to the population by assisting the adaptation of the population to a
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new environment.
Another distinct class of the mutagenic effects of TEs, perhaps comparable

in scale to that of de novo insertions (Kidd et al., 2010) is that caused by
their high self-similarity coupled with abundance in the genome. These fea-
tures create a large number of non-allelic, homologous sites in the genome that
can mediate recombination events (Robberecht et al., 2013; Beck et al., 2011).
Cases of LINE-LINE/NAHR have been reported previously (Burwinkel and
Kilimann, 1998), and indeed some of them linked to disease (Temtamy et al.,
2008; Szafranski et al., 2013; Belancio et al., 2009; Higashimoto et al., 2013).
Moreover, previous studies of genomic architectural features that stimulate and
potentially catalyze pathogenic microdeletions and tandem duplications have
found that repetitive elements are enriched at deletion breakpoints (Vissers
et al., 2009). Interestingly, comparative analysis of human and chimpanzee
genomes (Han et al., 2008) identified (and verified by wet-lab analyses) 73 hu-
man specific LINE recombination-associated deletion (55 of them have been
classified as NAHR events).

Here, we analyzed the contribution of LINE retrotransposons to NAHR in
humans, a much more abundant family of TEs than HERVs. We also performed
a comprehensive analysis of the human genome susceptibility to LINE-mediated
NAHR deletions/duplications, inversions and translocations using the Baylor
College of Medicine clinical database of CNVs. We found that LINE-LINE-
mediated NAHR occurs more frequently than previously thought and indeed
on a genome-wide scale. We estimate that each healthy individual carries on av-
erage three different LINE-mediated NAHR CNVs. Finally, we provide several
novel bioinformatic procedures and algorithms for the study of NAHR. This
means that the effect needs to be accounted for in models – and, in particular,
that the mathematical model presented for class-II transposons may be also
used to study the inactive class-I TEs, as indicated in the concluding remarks
of the previous chapter.

4.2 Materials and methods

4.2.1 Identification of LINE pairs able to mediate NAHR

We downloaded the reference sequence from the hg19 assembly of the hu-
man genome along with coordinates of all LINE elements as denoted by the
UCSC RepeatMasker track (Tarailo-Graovac and Chen, 2009). Locations of cen-
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tromeres were also obtained from the Gap UCSC (International Human Genome
Sequencing Consortium, 2001; Kent et al., 2002) genome browser track. The se-
quences of 124,150 LINE elements longer than 1 kbp were extracted, along with
3 kbp flanking sequence. These sequences were then pairwise-aligned using
the BLAST algorithm (Altschul et al., 1990) with the low-complexity sequence
masking disabled. We have obtained 3,642,718,496 statistically significant High
Scoring Segment Pairs (HSPs) with the E-value computed by BLAST being less
than 10−50, these were further filtered to eliminate self-alignments. Moreover,
we removed cases in which the alignment extended outside the LINE into the
flanking regions, suggesting that the duplicated sequence may not be the result
of a LINE transposition, but rather that the LINE element was a part of a
larger LCR. We also excluded alignments shorter than 1000 bp, those with the
identity less than 92%, and pairs that would result in intrachromosomal CNVs
greater than 10 Mbp (as such CNVs are unlikely to be observed in a living
organism). Alignments were classified into types (deletion, duplication, inver-
sion, or translocation) based on whether the matching LINE pairs map to the
same chromosome, on their respective orientation, and on whether the potential
NAHR event spans a centromere. Pairs of LINEs on different chromosomes,
or on the same chromosome but on the different sides of the centromere were
marked as potential translocation substrates. The reminder (pairs mapping on
the same chromosome and on the same side of the centromere) were marked
as either deletion/duplication substrates (if directly oriented), or inversion sub-
strates (otherwise).

We subsequently intersected the directly-oriented LINE-LINE pairs with our
clinical database of CNVs. This database consists of 398,468 CNVs that were
identified in 36,285 patients undergoing oligonucleotide chromosomal microar-
ray analysis (CMA) at Medical Genetics Laboratories (MGL) at Baylor Col-
lege of Medicine (BCM) and were determined to be pathogenic or potentially
pathogenic by they clinical cytogeneticist reviewing the case. All DNA samples
were anonymised for further study, and no clinical information is unavailable.
The precise breakpoint of each CNV was unknown; we narrowed their puta-
tive locations to the regions between two adjacent oligo probes showing defini-
tive difference in log2 ratio. We refer to the intervals as uncertainty regions
(cf. Fig. 4.2.1).

The set of CNVs was then filtered to exclude the cases where the uncertain
regions at both ends of the CNV were located in or contained directly-oriented
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Figure 4.2.1: The schematic representation used to define the uncertain regions for
breakpoint analyses. The proximal NAHR breakpoint maps within the left red area,
the distal one in the right red area. A similar approach was used for duplications.

paralogous LCRs (DP-LCRs). We assumed that in those cases the NAHR might
have been mediated by these DP-LCRs, rather than LINEs specifically. After
DP-LCR filtering, 358,160 CNVs remained and were compared to the database
of possible LINE-LINE/NAHR pairs computed previously. The analysis yielded
112,520 potential CNVs. The parameters were further constrained to include
only full- and nearly full-length LINEs (longer than 4 kbp, and aligning over
more than 4 kbp of their length) with more than 96% sequence identity.

4.2.2 Clinical CMA

DNA was prepared from peripheral blood using the Puregene DNA isolation
kit (Gentra Systems, Minneapolis, MN, USA) according to the manufactur-
ers instructions. CMA was performed with gender-matched controls; labeling,
hybridization and scanning procedures as well as computational analysis have
been described previously described (Boone et al., 2013). Briefly, BCM MGL
oligonucleotide arrays contain both genome-wide backbone probe coverage and
enhanced probe resolution within the exons and introns of manually curated
known and putative disease genes.

4.2.3 Subjects

Deidentified DNA samples from 44 individuals harboring potentially LINE-
LINE/NAHR CNVs, 21 deletions and 23 duplications, from five different ge-
nomic regions (Fig. 4.2.2) were obtained from unrelated subjects identified
by CMA (CMA oligonucleotide versions V7.1, V7.2, V7.4, V7.6, V8.1, V8.3,
V9.1) (Boone et al., 2010; Wiszniewska et al., 2014). Additionally, DNA sam-
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Figure 4.2.2: Scatterplot of patients with CNVs, where a pair of matching LINEs
lies in uncertain regions for the ends of the CNV. Only cases where the alignment
between LINEs is longer than 4 bp with over 96% identity are shown. Patients
are sorted by the length of their shortest CNV; one patient may possess multiple
CNVs. Cases selected for PCR confirmation are highlighted with arrows.

ples were obtained from six healthy individuals. These samples were obtained
following informed consent (BCM IRB protocol H33409).

4.2.4 Long Range PCR and DNA sequencing

Long-range PCR (LR-PCR) primers flanking LINE elements were automat-
ically designed using custom software including code from Primer3 (http:
//primer3.sourceforge.net/) (Untergasser et al., 2012). The program au-
tomatically generates a hybrid LINE sequence (assuming that the breakpoint
maps within LINE-LINE homology region) along with unique flanking sequence
for all possible NAHR rearrangements (deletion, duplication, inversion, or translo-
cation) (Fig. 4.2.3). These hybrid sequences were then analyzed by a custom
Primer3 script to obtain LR-PCR primers.

LR-PCR amplification of 7-15 kbp fragments was performed using LA Taq
Polymerase (TaKaRa Bio USA, Madison, WI, USA) following the manufac-
turer’s protocol. Briefly, we used 25µl reaction mixtures containing 100ng

genomic DNA, 0.4mM dNTPs, 0.2µM of each primer, and 1.25U of LA Taq
polymerase mix. PCR conditions were: 94◦C for 1 minute, followed by 30 cycles
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Actual sequence in patient with deletion

Breakpoint is assumed to map in the middle of region of homologyPrimers are designed within
the masked flanking sequences
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in patient may be different 
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... ...
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Figure 4.2.3: Artificial sequences computed for primer design for detection of
chimeric LINE sequences. Shown on figure is the process for deletion, with dupli-
cations and inversions being handled in similar fashion.

at 94◦C for 30 seconds and 68◦C for 12 minutes, and 72◦C for 10 min. PCR
products were treated with ExoSAP-IT (USB, Cleveland, OH, USA) to remove
unconsumed dNTPs and inactivate primers. The treated amplicons were then
sequenced by the Sanger method (Lone Star Labs, Houston, TX, USA) using
the initial primers and primers specific for both unmasked proximal and distal
copies of the LINEs.

4.2.5 LR-PCR analysis of healthy subjects

In addition, from the set of computationally predicted LINE-LINE flanked loci,
we selected 95 directly-oriented pairs with high homology parameters for studies
of deletions, 95 for duplications, and 95 inverted pairs for study of inversions.
We have designed PCR primers as described above (one set of 95 primer pairs
for deletions, one set for duplications, and one for inversions). The LR-PCR
reaction (with the same parameters as described earlier) was ran on a mixture
of DNA (8x50mg) from 8 donors not known to suffer from genetic disease. The
existence of CNV was confirmed by visualizing a band during gel electrophore-
sis, and comparing the expected amplicon length (computed during design of
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LINE 1:               TTCTCGCTTCATTTCATTCATTTCATC-TCCATCGCTGATACCCTTACTTCCAGTTGATCGCATCGGCTCCT
LINE 2:               TTCTCGGTACATTTCATTCGTTTCATCTTCCATCGCTG-TACCCTTTCTTCCAGTTGATCGCATAGGCTCCT
Aligned read:         ----------------TTCATTTCATC-TCCATCGCTGATACCCTTGCTTCCAGTTGATCGCATCGGCTCCT
Artificial sequence: SNNNNNNNNNNNNNNNNNNNLNNNNNNNLNNNNNNNNNNRNNNNNNNNNNNNNNNNNNNNNNNNNLNNNNNNNE

cis-morphism,
sequence
from left 

LINE

cis-morphism,
sequence from 

right LINE

cis-morphism, 
read sequence
doesn't match

either of the LINEs

cis-morphism,
no read at this 

position

1 2 3 4 5 6

Figure 4.2.4: Construction of input sequence for estimation of NAHR breakpoint
location. In artificial sequence, the S and E are special markers, for beginning and
end of the sequence, L means that the observed sequence seems to come from the
left (first) LINE, R means it comes from the right (second) one, N means that the
source LINE cannot be determined from this location.

primers) to the actual length of the DNA band.

4.2.6 Array CGH analysis of healthy subjects

Genomic CNVs were analyzed using a custom-designed genome-wide LINE-
LINE-targeted CGH 4x180 K microarrays (Agilent Technologies, Santa Clara,
CA). The arrays were designed using a set of custom scripts, written in Python
programming language. All probes were selected from the database of 26
million Agilent high density oligonucleotide probes. In addition to backbone
probes used for calibration, each LINE from the set of directly oriented LINE-
LINE/NAHR pairs was flanked with five oligonucleotide probes on each side
to detect CNVs with both breakpoints mapping within LINE elements. For
each array, one healthy individual was labeled with Cy3 and different, sex-
matched healthy individual was labeled with Cy5. The labeling and hybridiza-
tion procedures were performed according to manufacturer’s protocols (Agilent
Technologies, Santa Clara, CA).

4.2.7 DNA sequence analysis

Genomic sequences defined by coordinates identified in the array CGH ex-
periments, were downloaded from the UCSC genome browser (NCBI build
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37, May 2009, http://www.genome.ucsc.edu) and assembled using the Se-
quencher v4.8 software (Gene Codes, Ann Arbor, MI, USA). Interspersed re-
peat sequences were identified using RepeatMasker UCSC track
(http://www.repeatmasker.org).

4.2.8 Preparation of sequences for analysis

For each pair of LINEs, a consensus sequence was computed (replacing mis-
matches with N), and a custom version of the Needleman-Wunsch algorithm (Needle-
man and Wunsch, 1970) modified to compute a semi-global alignment (See
Algorithm 1) was used to align the Sanger reads to the consensus. An arti-
ficial sequence containing the information about sequence cis-morphisms was
computed for each case (Fig. 4.2.4).

4.2.9 Hidden Markov model for breakpoints identification

Next, we define a Hidden Markov Model which will be used for the analysis of
the sequences.

It is possible to think of a Hidden Markov Model as if it was a Markov
chain in which the current state is not directly observable, instead the chain
emits output symbols, with different probabilities in each state, and only these
may be observed. The only way to infer the state of the Markov Chain is
by observing the emitted sequence of symbols. Formally, let S be a finite set
called the set of hidden states (we shall only deal with finite HMMs with discrete
time steps). A finite Markov Chain with discrete time is a sequence of random
variables X1, X2, ... with a so-called Markov property, that is: P(Xn+1 = x|X1 =

x1, X2 = x2, ..., Xn = xn) = P(Xn+1 = x|Xn = xn). Additionally, we can say
that a Markov chain is time-homogeneous if P(Xn+1 = x|Xn = y) = P(Xn =

x|Xn−1 = y) for all n.
A finite time-homogeneous Markov Chain with discrete time can be repre-

sented as a graph with edge weights: let T = {(s1, s2) ∈ S × S | P(Xn+1 =

s2|Xn = s1) > 0} be the set of transitions, and let t : T → (0, 1] be a probability
transition function defined as: t((s1, s2)) = P(Xn+1 = s2|Xn = s1). Note that
a sufficient condition for (S, T , t) to be a representation of a Markov Chain is:

∀s ∈ S |
∑
s′∈S

(s,s′)∈T

t(s, s′) = 1
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Algorithm 1: A modified version of Needleman-Wunsch algorithm
for semiglobal alignment of reads to the consensus LINE sequence
Data: LINE_consensus, read_sequence,
scores - a table of PHRED quality scores for read sequence
similarity_score - a scoring function based on substitution matrix
Result: An optimal semiglobal alignment of read_sequence to

LINE_consensus
gap_penalty ← −3.0;1

edge_gap_penalty ← −0.1;2

for i ∈ {0..len(LINE_consensus)} do3

T [i][0]← (i ∗ edge_gap_penalty,′ RightGap′)4

end5

for i ∈ {0..len(read_sequence)} do6

T [0][i]← (i ∗ edge_gap_penalty,′ LeftGap′)7

end8

for i ∈ {0..len(LINE_consensus)} do9

for i ∈ {0..len(read_sequence)} do10

if i = len(read_sequence) then11

LeftGapScore←12

edge_gap_penalty ∗ scores[j − 1] + T [i][j − 1][0]
else13

LeftGapScore← gap_penalty ∗ scores[j − 1] + T [i][j − 1][0]14

end15

if j = len(LINE_consensus) then16

RightGapScore←17

edge_gap_penalty ∗ scores[j − 1] + T [i− 1][j][0]
else18

RightGapScore← gap_penalty ∗ scores[j − 1] + T [i− 1][j][0]19

end20

MatchScore← similarity_score(seq1[i− 1], seq2[j − 1]) ∗21

scores[j − 1] + T [i− 1][j − 1][0] if MatchScore =
max(RightGapScore, LeftGapScore,MatchScore then

T [i][j] = (MatchScore,′ MATCH ′)22

else23

if RightGapScore =24

max(RightGapScore, LeftGapScore,MatchScore then
T [i][j] = (RightGapScore,′ RIGHT ′)25

else26

T [i][j] = (LeftGapScore,′ LEFT ′)27

end28

end29

end30

end31

Recover alignment from T as in standard Needleman-Wunsch32

algorithm;
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From now on we shall identify a Markov chain with its graph representation
(S, T , t).

Next, let Σ be a finite set called the set of emissions (also called the input
alphabet. Let E ⊆ S × Σ, and let e : E → (0, 1] be a function such that:

∀s ∈ S
∑
s′∈Σ

(s,s′)∈E

e(s, s′) = 1

Under all these assumptions, (S, T , t,Σ, E , e) is a Hidden Markov Model.
The formalism of Hidden Markov Model reflects a system with unknown

internal state in which the internal state is governed by the rules of a Markov
Chain. The system produces observable output dependent on the unknown
internal state. A commonly cited example is the unfair casino, with a game
of coin tossing. The casino has two coins, one fair and one biased in favour
of heads. The casino, from time to time (with low probability) swaps the coin
being used for the unfair one, and again from time to time (again, with low
probability) swaps it back. A customer coming to the casino does not know
which coin is currently being used by the casino, nor the points of time when
it is swapped, all he can observe is the sequence of coin toss results.

This is modelled by a Hidden Markov Model with 2 hidden states, fair and
biased coin: (S = {F,B}) and an emission set of heads and tails: Σ = {H,T}.
All transitions are possible (T = S × S), the casino keeps the coin currently
being used with probability 0.9 = t(F, F ) = t(B,B), and with probability 0.1

swaps the coin for the other: 0.1 = t(B,F ) = t(F,B).
When the fair coin is in use the probability of getting heads is equal to the

probability of getting tails: e(F,H) = e(F, T ) = 0.5, unfair coin favours heads:
e(B,H) = 0.6 and e(B, T ) = 0.4.

A nice if quite expected property of Hidden Markov Models is that for a given
sequence of observations from Σ∗ it is possible to generate a sequence of hidden
states, called a Viterbi path which maximizes the probability of generating
the observed sequence – in our example this translates to the customer of the
casino being able to deduce when are the most likely points when the coin was
swapped, just by observing the sequence of coin toss results, assuming one can
guess the bias of the unfair coin and the likelihood of coins being swapped.
This is done using the Viterbi algorithm (Viterbi, 1967).

However, there is an even nicer and very unexpected fact: given only S, T ,Σ, E
and a set of sequences of observations (or: even without T and E! - then it is
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assumed that T = S×S and E = S×Σ) it is possible to estimate the functions
e and t. The customer of the casino can even estimate the bias of the coins
being used, and the likelihood of them being swapped, just by looking at the
sequence of the result (if the sequence is long enough). This is done using the
Baum-Welch algorithm (Welch, 2003).

This is a potent tool for analysis of biological sequences: in our case the
unknown variable represented by the hidden states, which we would like to
deduce, is whether at a given point in the sequence, we are before the breakpoint
between LINEs, or after it.

In our case the HMM has 4 hidden states: S = {S0, S1, ..., S3}, the input
alphabet is Σ = {S,N,L,R,E}, and the structure of the HMM is shown on
Figure 4.2.5. The states S0 and S3 are added for technical reasons (the starting
and ending state), the state S1 represents being before the breakpoint, and S2

represents being after the breakpoint. The input sequence consists of the letters
S, N, R, L and E and is constructed as shown (see Fig. 4.2.4)

Then, the sequences were analyzed with a Hidden Markov Model (Eddy,
2004) trained using a custom version of the Baum-Welch algorithm (Welch,
2003).

The modified algorithm (Algorithm 2) differs from the standard version in
that it enforced the following constraints during training:

• P(S1 → S2) = P(S2 → S3): ensures the model does not favour place-
ment of breakpoints near the beginning or end of alignments because the
training data happens to be skewed as such

• P(S1 emits N) = P(S2 emits N), P(S1 emits L) = P(S2 emits R),
P(S1 emits R) = P(S2 emits L) : assumes that SNVs with respect to the
reference sequence, which would make the source LINE ambiguous (such
as Fig. 4.2.4, location 5), or even suggest the wrong LINE (location 6)
are equally likely to occur on either side of the breakpoint.

The model with parameters obtained from the Baum-Welch algorithm were
then used to compute the posterior probabilities of transition from the S1 state
to S2 at all locations, which correspond to the probability that the NAHR
cross-over event having occurred at each location. These were computed using
a custom version of the forward-backward algorithm (Lawrence R. Rabiner,
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Algorithm 2: A modified version of Baum-Welch algorithm with
constraints
Data: P - initial HMM parameters, as given in Table 4.2.1
Result: HMM parameters maximizing the probability of

observations while adhering to the constraints
while not converged do1

P∗ ← Single_iteration_of_Baum−Welch(P);2

P∗(S1 → S2),P∗(S2 → S3)← P∗(S1→S2)+P∗(S2→S3)
2

;3

P∗(S1 emits N),P∗(S2 emits N)← P∗(S1 emits N)+P∗(S2 emits N)
2

;4

P∗(S1 emits L),P∗(S2 emits R)← P∗(S1 emits L)+P∗(S2 emits R)
2

;5

P∗(S1 emits R),P∗(S2 emits L)← P∗(S1 emits R)+P∗(S2 emits L)
2

;6

P← P∗;7

end8

Output P;9

S0:
Initial

state

S1:
Before

breakpoint

S2:
After

breakpoint

S3:
Ending

state

1.0 ρ ρ

1 − ρ 1 − ρ

Hidden states

Emissions
1.0

1.0
α β γ γ β α

S L NN R RL E

Figure 4.2.5: Hidden Markov model used for estimation of breakpoint location.
The NAHR site maps at the point of S1 → S2 transition. The prior and posterior
values of α, β, γ, ρ can be found in Table 4.2.1.

Parameter name Prior value Posterior value
α 0.1 0.0092489671329
β 0.89 0.9899202188834
γ 0.01 0.0008308139835
ρ 0.05 0.0003545644262

Table 4.2.1: Table of HMM parameters used. Parameter names from Figure 4.2.5
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1986), in which the observation matrices corresponding to the L and R emis-
sions were replaced with an affine combination of matrices for L and R with
weights based on the PHRED quality score (Ewing et al., 1998; Ewing and
Green, 1998) of the sequence from which the L or R signals originated. The
posterior probabilities were calculated, and in most cases a single location of
the breakpoint was obtained. The computed locations were later confirmed by
visual inspection using the Sequencher software http://www.genecodes.com/.

4.2.10 Enrichment of CMA instability regions with LINEs

Statistical significance of correlation between the paired LINE insertions, and
the regions containing CNVs of CMA patients was estimated. The CMA
database of patients with CNVs identified by microarrays was filtered in or-
der to remove the duplicate entries (different patients, who had CNVs in the
same region), and cases where the uncertain region for breakpoints (on both
ends of the CNV) contained matching LCRs. For these data we computed the
expected number (ϵ = 0.0583) of CNVs that a single randomly inserting LINE
pair will match.

Then, we calculated the enrichment (E(l, id)) of instability regions in LINEs
(as a function of LINE pairs homology length l and significance id, measured
as sequence identity percent):

E(l, id) = #matched_regions(l, id)

ϵ ·#LINE_pairs(l, id)

where #matched_regions(l, id) is the number of instability regions matched by
LINE pairs with the homology length of l or more, and the sequence identity
percentage of id or more, while #LINE_pairs(l, id) is the total number of
LINE pairs with homology of l or more base pairs, and identity percentage
greater than id. The above formula is a simplified version of the actually
used algorithm, which, in addition, took into account also border effects CNVs
lying near the edges of chromosome and centromeres. The resulting plot of the
function E is shown as Figure 4.2.6. In essence, we took the known positions of
CNVs and calculated how many of them would be triggered if the LINEs (in the
number found in genome) were inserting in random locations, and compared
them to the number actually triggered by the known LINEs.
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Figure 4.2.6: A plot of observed/expected ratio of matching LINE pairs ly-
ing within CNV breakpoint regions. For each point on X and Y axes the ob-
served/expected ratio of LINE pairs with parameters equal or better is shown. It is
evident that identity percentage of 96 or better is needed to mediate NAHR, while
there is no sharp restriction on minimal length of the homology.
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4.3 Results

4.3.1 Regions potentially prone to LINE-LINE-mediated NAHR

Because of the relative abundance of TEs in the human genome compared
to LCRs, they have the potential to mediate NAHRs between a wider array
of loci, thus potentially posing a significant contribution to genetic instabil-
ity. From our bioinformatic analysis of the genome, we found 416,180 potential
deletion/duplication, 415,581 inversion, and 59,678,570 translocation sites. Fig-
ure 4.3.1 indicates the genomic regions potentially susceptible to deletions or
duplications due to LINE-LINE mediated NAHR events. Our analysis suggests
that 82.8% of the human genome is potentially susceptible to such events, with
most of the genome being overlapped by multiple combinations.

Of note, the number of different potential LINE-LINE/NAHR encompassing
a given genomic locus (and thus, the probability of its variation in copy number)
is dependent on the square of the density of homologous LINEs in its vicinity.
Therefore, stochastically occurring clusters of LINE elements greatly increase
the predicted instability of the genome in a given area.

4.3.2 Analyses of NAHR breakpoints observed in individuals

To gain further insight into LINE-LINE/NAHR, we sought to amplify and
characterize the breakpoints of LINE-LINE CNVs identified among patients
tested at our clinical laboratory. We cross-referenced our predicted LINE-
LINE/NAHR susceptibility regions with the database of CNVs (Fig. 4.2.2). We
selected CNVs where the uncertainty regions identified by the clinical aCGH
overlapped pairs of LINE elements predicted to mediate LINE-LINE/NAHR.
We focused additional attention on loci where two or more distinction patients
had CNVs at the same location. We subsequently designed primers complemen-
tary to unique genomic sequences that flanked the predicted LINE elements. In
44 cases, we successfully amplified the junction fragment of the putative LINE-
LINE/NAHR CNV. Using Sanger sequencing, the location of each NAHR site
was narrowed to a homology region between single base mismatches, one be-
longing to the proximal LINE and the other to the homologous distal LINE.
In most cases, it was possible to pinpoint a single breakpoint location for a
given patient both manually and using the probability plots obtained from the
Hidden Markov Model. The NAHR breakpoints mapped to 80± 53 base pairs
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Figure 4.3.1: Ideogram showing the susceptibility of human genome to LINE-
LINE-mediated NAHR. Each horizontal red line corresponds to one potentially
NAHR-mediating LINE pair: the LINE elements map at the ends of the line, whereas
the segment covers the potentially deleted or duplicated regions. For clarity of the
figure, inversions and translocations are not shown.
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(excluding outliers) indicative of the highly identical nature of the LINE-LINE
pairs. In 15 cases, the microhomology was much longer (2.4± 0.7kbp). In two
cases, the breakpoint could be determined to the basepair.

4.3.3 Enrichment of predicted LINE-LINE/NAHR pairs in
CNV uncertainty regions

Because we observed a number of LINE-LINE/NAHR mediated CNVs among
patients tested at the diagnostic laboratory, we hypothesized that a consider-
able fraction of all CNVs could be mediated by LINEs and that such elements
would be found within the uncertainty region of CNVs more often than ex-
pected by random chance. To test this, we computationally randomized LINE
elements throughout the genome to calculate the expected occurrence of LINE-
LINE/NAHR pairs in uncertainty regions. We did not identify a significant
enrichment of LINE/LINE pairs of a specific size (Fig. 4.2.6). Interestingly,
LINE-LINE pairs with high sequence identity occur in uncertainty regions more
often than expected, potentially indicating that sequence identity is, compara-
tively, a more important feature of NAHR promoting sequence.

4.3.4 NAHR hotspots in flanking LINE elements

In some cases, the precise NAHR cross-over site in a given LINE-LINE pair
varied between patients, e.g. in the case of duplication on chromosome 20 (see
Fig. 4.3.2), suggesting independent de novo events. In all cases, the NAHR
sites either mapped between the same two cis-morphisms or were clustered
together, typically within 500 bp of each other. This observation could suggest
that inside the LINE elements there could exist NAHR-facilitating motifs which
make some regions of the LINE more prone to recombination than others. We
performed computational analysis of potential hotspot motifs, including the
canonical motif associated with PRDM9 binding (Segurel, 2013); however, we
were unable to identify significant enrichments near the identified breakpoints.
It should, however be emphasized that such studies are very difficult if not
impossible due to the nature of LINE elements, which are all very similar to
each other, and it is impossible to distinguish motifs associated with LINEs
from motifs associated with NAHR using the data we have.
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Figure 4.3.2: Estimated NAHR breakpoint location probabilities from the Hidden
Markov Model for duplications between LINEs on chromosome 20. Three distinct
NAHR loci were identified among the tested patients.
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Figure 4.3.3: Molecular validation of predicted LINE-LINE CNVs identified among
healthy individuals by aCGH. A) Array CGH data indicates a CNV at 2q34 in subject
1 or 2. B) Schematic representation of the L1PA elements that mediate the CNV
and LR-PCR primers testing for the CNV. C) LR-PCR identifies the presence of a
deletion in subject 1. D) Array CGH data indicates a CNV at 8p23.3 in subject 1
or 2 and subject 5 or 6. E) Schematic representation of the L1PA elements that
mediate the CNVs and LR-PCR primers testing for the CNVs. F) LR-PCR identifies
the presence of homozygous duplications in subjects 1 and 5.

4.3.5 aCGH Analysis of Healthy Individuals

Given our identification of LINE-mediated CNVs among individuals tested for
suspected genetic disease, we hypothesized that LINEs may also contribute
to genome variation in the normal population. To test this, we performed
high-resolution aCGH with probes flanking the LINE elements, that we com-
putationally predicted to contribute to genome instability, on peripheral blood
DNA from six healthy individuals. We identified 13 potential CNVs mediated
by the LINE pairs predicted in our computational analysis (Table 1). The CNVs
identified in control individuals were small, each less than 25 kbp, including the
deleted or duplicated segment of LINE. At two loci, the CNVs involved intronic
sequences of RefSeq genes. Each CNV identified in the healthy subjects over-
lapped similarly sized deletions or duplications in the Database of Genomic
Variants (MacDonald et al., 2014), suggesting their widespread occurrence.

Because genomic DNA from the healthy individuals was hybridized together,
the aCGH data alone are insufficient to differentiate a deletion in one individ-
ual from a homozygous duplication in the other – the log2 ratio of either event
is ±1.0. For two loci (2q34 and 8p23.2) where the genomic architecture sur-
rounding the CNV was conducive to unique primer design and long range PCR,
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we validated the CNVs molecularly (Fig. 4.3.3). We used two pairs of primers
at each locus to test for both deletions and duplications separately. The PCR
revealed a heterozygous deletion in subject 1 at 2q24 and homozygous duplica-
tions in subjects 1 and 5 at 8p23.2. These data suggest that small LINE-LINE
mediated CNVs are present in the normal population and are common enough
to be in the homozygous state. Thus, such CNVs likely contribute to normal
genetic variation.

4.4 Discussion

Here we have performed a comprehensive, genome-wide study to determine the
extent and frequency of LINE-LINE/NAHR events and assess the impact of
such events on the genome and potential to cause genetic disease. Our re-
sults indicate that LINE-mediated NAHR does occur frequently on a genome
scale, and can be responsible for rearrangements resulting in genomic disorders.
We propose that the traditional lower bound of minimal length of homology
required for NAHR should be reevaluated. We have found NAHR events oc-
curring between elements with as little as 4 kbp of homology. Furthermore, our
statistical analysis (Fig. 4.2.6) suggests that, at least for LINE-LINE/NAHR,
high homology may be a more important property than sequence length.

The analyses of breakpoints within sequenced individuals showed slight dis-
crepancies in the breakpoint location, which points to the fact that at least
some of the CNVs arose as independent events, rather than being inherited
from a common ancestor. This points to the destabilizing influence which the
LINE elements still exert upon the human genome, and confirms NAHR as the
mechanism of this influence, rather than causing replication errors. Our data
shows that LINE elements contribute to human genetic variability by mediation
of NAHR in addition to active retrotransposition (Kidd et al., 2010; Lupski,
2010). The scale of such influence is proportionally higher than the influence of
HERV elements (Shuvarikov et al., 2013), and is significant enough that LINE
elements should be considered as one of the major genomic features responsible
for promotion of NAHR events, in addition to the ones already known (Dittwald
et al., 2013).

The clustering of NAHR breakpoints in particular hotspots within LINE ele-
ments suggests that at least some LINEs carry a recombination-promoting motif
or sequence. Our current analysis failed to identify a statistically significant en-
richment of any motifs within the LINE elements tested in this study. However,
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clustering seems to be corroborated by previous studies of NAHR (McVean,
2010). Our findings may have dramatic consequences for population genet-
ics studies concerning the role of TEs in evolution, particularly in differences
between TE behavior in sexual versus asexual species. One particularly in-
teresting possibility is that TEs could have been co-opted during evolution of
sexuality to spread recombination sites through the genome.

However, in addition to the clinical relevance summarized above, the research
presented in this chapter suggests that TE-mediated NAHR is, as suspected,
a real phenomenon, and, more importantly, it does occur frequently enough to
affect the evolution of the genome. This means that even static, inactive TEs
may exert a mutagenic pressure on the host organism, which fact is relevant
to the modelling. In particular, it confirms the ability of mathematical model
from Chapter 2 to be used for modelling of organisms carrying inactive TEs.
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5
TIRfinder and TRANScendence:

transposable element detection tools

In this chapter we shall present two computational tools for the detection of
TEs in the sequenced genomes of various organisms. The goal of these tools is to
enable the large-scale analysis of genomes in a standardised manner, so that the
transposon landscapes of different organisms may be compared, and the results
of that shall be used for further fine-tuning of the parameters of the models
presented. The first of the tools, the TIRfinder, suited for an in-depth study of
a single, already known family of class-II, TIR-carrying transposons, while the
second TRANScendence is a general, genome-wide de-novo TE detection and
annotation tool.

5.1 TIRfinder

First tool developed for the study of transposable elements, during the initial
phases of collaboration with the team at University of Agriculture in Krakow
is the TIRfinder. This tool is specifically made to facilitate the search for
class-II transposons carrying Terminal Inverted Repeats (TIRs). In addition
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to carrying TIRs, the transposons, upon their insertion, cause a Target Site
Duplication (TSD) – and both of these features are used in the recognition of
transposons.

The importance of accurate TE annotation and masking for the structural
characterization of newly sequenced genomes drives the interest in developing
new methods for TE detection and analysis (Bergman and Quesneville, 2007).
The exhaustive list of tools and resources for TE analysis compiled by Bergman
Lab (http://bergmanlab.smith.man.ac.uk/) contains about 120 items. A large
number of them are designed for particular TE families (eg, Helitrons (Du et al.,
2008) LTR retrotransposons (Ellinghaus et al., 2008)) or for analysis of partic-
ular species (like Drosophila melanogaster), several of these are for general use,
i.e., for all kinds of repeats (RepeatMasker (Tarailo-Graovac and Chen, 2009),
REPuter (Kurtz and Schleiermacher, 1999), PILER (Edgar and Myers, 2005).
RepeatScout (Price et al., 2005) RECON (Bao and Eddy, 2002)), and finally
six of them are suitable for the structural analysis of class II elements (Inverted
Repeat Finder (Warburton et al., 2004), MAK (Yang and Hall, 2003), MITE-
hunter (Han and Wessler, 2010), MUST (Chen et al., 2009), STAN (Nicolas
et al., 2005), TRANSPO (Santiago et al., 2002)),with the latter three provid-
ing a web interface.

MUST (Chen et al., 2009) allows the user to search for all Miniature Inverted-
repeat TEs (MITEs) that satisfy given criteria corresponding to minimum and
maximum length of TIR, TSD and size of MITEs (up to 1000 bp). TRANSPO (San-
tiago et al., 2002) in addition to the functionality of MUST, enables the user to
specify the sequence of TIRs and maximum number of errors allowed in TIRs.
STAN (Nicolas et al., 2005) is the most flexible tool. It finds all sequences
containing a given pattern specified in the SVG grammar. However, STAN
uses fixed (non-parametrised) definition of inverted repeats which makes it less
suitable for searching class II transposons.

All of the tools mentioned above have been developed to facilitate identifica-
tion of MITEs, i.e., elements that have TIRs but lack any coding capacity. Our
TE discovery tool, TIRfinder, (which also captures specific structural features)
offers functionality that goes beyond the proposed methods. It combines an ef-
ficient approach based on suffix trees that allows for de novo TE detection, with
the possibility of a deep analysis of a specific TE family, based on its structural
characteristics. In particular, while searching for all putative TEs, TIRfinder
allows the user to specify TIR and TSD patterns as a sequence of A, C, T, G
or symbols from extended IUPAC nomenclature (Cornish-Bowden, 1985). This
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provides the ability to define TIR/TSD patterns as consensus sequences which
combine conserved and non-conserved positions.

Recently, deep sequencing projects have increased dramatically, raising the
possibility of the repetitive DNA characterization of not completely sequenced
organisms. Notice that our approach based on a suffix tree requires a large
contiguous genomic sequence. Therefore for analysis of non-assembled raw
reads produced by next generation sequencing, recently developed tools which
utilize a clustering approach (Novak et al., 2010) should be applied.

5.1.1 Methods of TE detection and analysis

TIRfinder allows efficient searches of the DNA for structured set of motifs
that define TEs to be conducted. Then it performs a BLAST search to find
transposase or any other TE-related open reading frames (ORFs), aiming at the
detection of autonomous copies, as well as elements directly derived from them.
The method works in three stages: structural analysis, functional analysis and
MITE analysis (see Fig. 5.1.1).

In the first step, TIRfinder scans the input sequence for all putative TEs,
based on the given structural characteristic of a particular TE family, ie, pat-
terns describing TIR, TSD, the number of allowed mismatches and size limits
of desired TEs. The algorithmic details of the structural analysis are described
further in this section.

Next, all elements identified in the structural analysis stage are analyzed
to check whether they contain the ORF coding for a protein specified by the
user, most often it would be a transposase. For this purpose, they are aligned
with the protein sequence (using an appropriate version of the BLAST algo-
rithm (Altschul et al., 1990)) and elements with statistically significant simi-
larity are marked as putative autonomous. Each autonomous element is then
used to search for so called derivatives. These are non-autonomous elements
that have emerged from an autonomous elements during the course of evolu-
tion, often by internal deletions disrupting the ORFs. To classify the TE as a
derivative of a given autonomous element, we require that both pairs of sub-
terminal regions share a significant level of similarity which is defined by the
user (e.g., BLAST E-value < E-10).

Finally, the remaining set of putative TEs (ie, those not classified as au-
tonomous TEs and their derivatives) is analyzed to find short elements which
cluster together based on their sequence similarity. The level of similarity is de-
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Figure 5.1.1: The control flow through different phases of the TIRfinder TEs
detection method.
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fined by the user. Clustering is performed using BLAST-clust algorithm (Altschul
et al., 1990). The TEs assigned to clusters are labeled as MITEs.

Structural analysis

Our application follows a structure-based approach, i.e., it relies on the detec-
tion of specific models of TE architecture consisting of a pair of TIRs (inverted
repeats) that are flanked by TSDs (direct repeats).

For detecting TEs we use suffix trees which are very efficient data structures,
commonly used in computer science over last four decades. They consists of a
root, nodes and labeled edges representing one or more characters from input
sequence. All suffixes of the input sequence can be obtained by traversing the
suffix tree from the root to leaves. The core idea is that all suffixes that share
the common prefix are hanged off on the common node, which reduces the total
number of nodes and memory usage.

The algorithm implemented in TIRfinder takes as an input a DNA sequence,
a mask corresponding to combined TSD and TIR patterns, and other param-
eters (e.g., the number of mismatches), see Figure 5.1.2 for the pseudocode of
the algorithm and Figure 5.1.3 for graphical explanation of the mask notion.

First, the DNA sequence is divided into a set of smaller fragments of the
same length, corresponding to the maximal TE size. A suffix tree is built for
every two consecutive fragments, with overlaps of one fragment length (see
Fig. 5.1.2B). This is to ensure that we do not miss any match. The algorithm
for each fragment independently searches all matches for the mask. In this
step, all potential 3’-ends of a TIR should be found. Then we determine if
the complementary (5’-end) part of the repeat exists, which is the most time-
consuming part of the algorithm. In order to do this efficiently the suffix tree
is used (it is built in linear time with respect to a length of the fragment). For
each match (TIR + TSD) found in the previous step, the reverse complement
of TIR followed by TSD is searched in the suffix tree (see Fig. 5.1.2).

The principal advantage of our approach is memory efficiency: the genomic
DNA sequence is split into smaller fragments and the suffix tree data structure
needs only a linear amount of space. Thus, we do not impose any limits to the
total length of the sequence and the stand-alone version of TIRfinder can be
run even on standard PC computers.
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Data: DNA sequence G, TIR pattern, TSD pattern, max_size,
mismatch_thresholds

Result: all regions flanked by TIR’s and TSD up to a predefined
mismatch threshold

Split the sequence G into fragments gi = 1..n of size = max_size;1

MASK = TSD · TIR;2

foreach sequence gi · gi+1 do3

build the suffix tree STi;4

find all matches to MASK in gi+1, for example5

m1,m2, ...,mj, ...,mk;
foreach mj do6

find in the suffix tree STi all positions that match to7

revcomp(mj);
/* revcomp = reverse complement */
check the number of mismatches between MASK and8

revcomp(mj);
end9

end10

Figure 5.1.2: TIRfinder algorithm. The suffix trees are overlapping to ensure that
sequences on the boundaries between two suffix trees are detected correctly.
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Figure 5.1.3: TIRfinder – structural analysis. (A) Explanation of TIR and TSD
mask concept. (B) Overview of TEs detection phase
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5.1.2 Usage

The user must first select the genomic sequence to be searched for TEs. Sev-
eral plant genomes are currently available in the TIRfinder website (Arabidop-
sis thaliana, Arabidopsis lyrata, Oryza sativa japonica, Oryza sativa indica and
Medicago truncatula); other genomes can be provided upon request. Alter-
natively, the user can provide any sequence by uploading a FASTA file not
exceeding 100 MB.

Next, the user has to define several parameters such as a minimal and max-
imal distance between TIRs and patterns of inverted and direct repeats. Pat-
terns of the particular TIR or TSD can be determined by means of a finite string
composed of extended IUPAC nucleotide alphabet (Cornish-Bowden, 1985).

Note that the user has to define only one side of the repeat. The second
part will be computed as a reverse complement in the case of TIR or simply
duplicated in the case of TSD. Furthermore, there is a possibility to specify a
maximal number of mismatches between TSDs and TIRs flanking each copy
of identified TEs. TIRfinder reads a DNA sequence given in a FASTA file to
search for results and saves them in a simple text format. Then the file can be
further processed in order to obtain more detailed and accurate data.

Carefully prepared input data, such as TIR and TSD masks, are extremely
important in order to get satisfactory results. One possible way is to take
TIR sequences from individual copies of TEs representing the desired family
and their corresponding flanking TSDs, and create consensus for TSD and TIR
sequences. Afterwards, the user can set up other parameters of TIRfinder,
which allow for the control of similarity between mined elements and the mask
(MaskMismatches) or between corresponding 5’- and 3’- TIRs and TSDs of
found elements (SeqMismatches) see Figure 5.1.3A. The ability to manipulate
these parameters makes it easier to search for known, well conserved elements
as well as to mine new (sub)families of TEs de novo.

Subsequently, the user may specify parameters for the identification of TE
copies carrying ORFs, which for simplicity was dubbed functional analysis.
First, the protein sequence (in FASTA format) is provided to detect ORFs (a
significance threshold is required). Then, long non-autonomous copies – direct
derivatives are identified as elements sharing similarity of subterminal regions
(length parameter in bp and alignment significance threshold are provided by
the user) with one of the previously found autonomous TEs. If the ORF se-
quence is unknown to the user, the functional analysis step can be omitted in
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the course of analysis.
Finally, the user defines constraints for MITE analysis, ie,: minimal and

maximal length of MITEs, maximal number of MITE clusters and the level of
in-cluster similarity.

5.1.3 TIRfinder implementation

Current release of TIRfinder is an open source web application built with Java,
Perl, Apache and other tools (ie, BLAST, BLAST-clust) hosted at http://
bioputer.mimuw.edu.pl/tirfindertool/. Previous, stand-alone release of
TIRfinder, used for case studies reported in Grzebelus et al. (2007, 2009) is
available at http://sourceforge.net/projects/tirfinder/.

5.1.4 Case Studies

As an example of TIRfinder application, we searched the genome of Arabidop-
sis thaliana and Medicago truncatula for the ATHPOGON3 class II TE fam-
ily (Le et al., 2000). We fixed TIR and TSD strings as consensus subsequences
from given sequences of ATHPOGO, ATHPOGON1, ATHPOGON2 and ATH-
POGON3 from Repbase (Jurka et al., 2005). Finally, we obtained the follow-
ing parameters: TIR pattern = CAGTARAAMCTC-TATAAATTAATA, TSD
pattern = TA. We decided to set min distance = 300, max distance = 5000,
max TSD mask and TSD seq mismatches = 0, max TIR mask and TIR seq
mismatches = i ∈ (0, 1, 2, 3, 4, 5). The experiment allowed for efficient min-
ing of pogo-like transposons in A. thaliana and M. truncatula. The number of
TEs found by TIRfinder and annotated in Repbase for each chromosome of A.
thaliana is shown in the Table 5.1.1. The breakdown analysis of the found TE
sizes (shown in Fig. 5.1.4) reveals that lengths of the majority of putative TEs
correspond to the sizes of known pogo-like elements. Most of these elements
were MITEs, while in M. truncatula we found only 28 pogo-like elements and
no MITEs. It fully confirmed previous reports on these elements, reflecting
species-specific behavior of related TEs in the two species (Guermonprez et al.,
2008) and confirming TIRfinder efficiency.

Moreover, we performed similar search of M. truncatula genome for PIF/Harbinger
TEs family (using TIR pattern = GNNNNNGTTNNNNN and TSD pattern =
TWA). The exemplary results of this analysis, presented by TIRfinder (see
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Figure 5.1.4: Pogo-like TEs landscape detected by TIRfinder in A. thaliana.

ia chr1 chr2 chr3 chr4 chr5 Sum Positive predictive valueb

0 1 2 0 4 2 9 100
1 11 6 7 10 9 43 100
2 20 10 16 17 13 76 95
3 25 20 18 20 14 97 94
4 29 22 22 22 17 112 88
5 33 22 25 24 20 124 84
Repc 25 22 20 22 8 97

Notes:
aNumber of allowed TIR mask and TIR seq mismatches
b% of TIRfinder output masked by Repbase data
cnumbers of ATHPOGO elements (>300 bp) annotated in Repbase.

Table 5.1.1: Pogo-like TEs found by TIRfinder vs. annotated in Repbase.
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Figure 5.1.5: The example of TIRfinder outcomes: search for PIF/Harbinger TEs
family in chromosome 5 of M. truncatula genome.

Fig. 5.1.5), reveals the occurrence of all functional classes of PIF/Harbinger
TEs, i.e., putative autonomous, derivatives and MITEs.

5.2 TRANScendece

It has recently come to general attention that TEs may be a major (if not the
main) driving force behind speciation and evolution of species (Giordano et al.,
2007; Ginzburg et al., 1984) Thus understanding of TE behavior and evolution
seems crucial to deepening our knowledge on evolution of species (Kazazian,
2004; Britten, 2010). However, the lack of general, easily-usable and freely
available tools for TE detection and annotation, hinders scientific progress in
this area. This is especially apparent with the advent of next-generation se-
quencing techniques, and the resultant abundance of genomic data, most of
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which has not been scanned for transposable elements yet.
TRANScendence aims to fill that niche. In contrast with previous meth-

ods, which either require manual assistance (and thus, are unsuitable for high-
throughput analyses), or require deep programmer’s experience to set-up and
use, proposed tool is fully automatic (though it is possible to manually curate
the results if desired).

In addition to that, however, our motivation is enabling the calibration and
parameter estimation of models presented in Chapters 1 and 2 of this thesis,
as well as to gather supporting data. Our goal is to produce a reliable, high-
throughput tool for analysis of various genomes in a standardized manner. In
many organisms the available databases of TEs have varied states of complete-
ness (for example, the TE landscape of humans is much better annotated than
that of some newly-sequenced organisms, making direct comparison between
the impossible). Our goal is to ascertain whether there is correlation between
observed TE counts and the amount of environmental stress a given organism
has been subjected to over the course of its recent evolution. The creation of a
de novo TE detection tool will allow us to avoid bias associated with different
levels of annotation for different organisms, and the bias associated with the
incompleteness of any preexisting database such as that of Repbase (Kapitonov
and Jurka, 2008).

Another aspect, associated with modelling of TE evolution is the tool’s capa-
bility to defragment nested TE insertions and create a nesting graph. This will
(in future) be used to estimate the ages of various TE families, and to study
their past activity, which will enable us to see if there is any correlation be-
tween a species’ history, and the activity pattern of its TEs, as revealed by the
present TE landscape. Such correlation, if found, would be useful to strengthen
the arguments behind the TE models we have created, and to fine-tune their
parameters.

However we have decided to make the tool publicly available to other groups,
and we have included some extra functionality that might be useful to groups
with which we are not directly collaborating. In addition to tagging of TEs in
genomes, our tool is capable of performing different qualitative and quantita-
tive analyses. It classifies TEs into families, superfamilies and orders, allowing
us to estimate relative abundances of TEs in selected genomes, and to per-
form comparative genomic studies. It also performs searches for TE clusters,
i.e. regions containing high concentration of TEs nested in one another.

The main objective of the proposed solution is the support of TE evolutionary
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studies. We put special emphasis on the design of the web-interface to assure
simplicity and flexibility of data manipulation process.

The presented tool is not built from scratch, but consists of several compo-
nents, which are extended for our purposes. One of the main tool components
is REPET package (Flutre et al., 2011), which enables us to implement de-novo
TE mining and annotation pipeline. The REPET itself combines several differ-
ent programs for the clustering of interspersed repeats, like GROUPER (Ques-
neville et al., 2003), RECON (Bao and Eddy, 2002) and PILER (Edgar and My-
ers, 2005). Also the annotation phase requires the use of multiple mechanisms,
mainly based on comparisons to TE elements stored in the Repbase (Kapitonov
and Jurka, 2008).

We will present a general description of the tool, and demonstrate its capa-
bilities on an example case: the study of Medicago Truncatula genome.

The tool is freely available for use by the general public at: http://bioputer.
mimuw.edu.pl/transcendence

5.2.1 Functionality of TRANScendence

The standard use-case consists of three steps: TE detection phase, TE anno-
tation phase and TE nesting analysis, see Figure 5.2.1. The workflow of our
utility usually begins with a user uploading (through a web-based interface) a
(possibly zipped) set of FASTA files, containing the genome of organism to be
searched. The user then creates an ’experiment’ on the genome. Within the
experiment, the genome gets automatically searched for TEs with the help of
REPET pipeline (Flutre et al., 2011).

The results of the detection phase are all putative transposable elements
stored in the TE repository. Further in the annotation phase all elements
found within the experiment, are automatically annotated (against Repbase),
and are made available for the user to either view or download. Furthermore,
the TEs get clustered into families, with consensus sequences for each family
being computed, and annotated. The consensus sequences for detected TE
families may be downloaded as well. For the convenience of users the additional
output is an annotated version of the genome, in formats suitable for widely-
used genomic browsers such as GBrowse (Donlin, 2002) or Apollo (Lewis et al.,
2002).

In next step the tool analyzes the nesting structure of detected transposable
elements. A graphical visualization of TE interruptions is generated, allowing
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Figure 5.2.1: Overview of the TRANScendence tool.
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the study of genomic sites with deeply nested TEs, as well as the display of more
detailed information about such sites. In addition to that, the tool presents the
user with a graph of interruptions on TE family level, allowing for chronological
study of TE families. To ensure the high quality of data stored in the repository
the user is allowed to perform manual curation of all annotations. The useful
option available to the user is to present his own uploaded genomes as ’public’,
i.e. and viewable by other users of the system. Experiments performed by users
may be shared with their consent as well. Using this mechanism, the database
of Medicago Truncatula TEs has been made available for public viewing.

5.2.2 The TE Landscape of the Medicago truncatula

Medicago truncatula, also called barrel medic is the primary model, or reference
legume species for genomic and functional genomic research. The sequenced
part of its genome (ca. 313 Mbp) was scanned for TEs and 121 509 elements
have been found and grouped into 2456 families. Approximately 80 Mbp have
been found to be contained in a TE.

1356 families group 51740 class I TEs, while 59855 class II elements were
classified into 803 families. Among DNA TEs 4907 elements are MITEs and
the set of other TEs carrying terminal inverted repeats encompasses: 4475
Harbinger, 3181 hAT, 1015 Mariner/Tc1, 210 Enhancer/Suppressor mutator
(En/Spm )-like TEs, 22657 MuDR elements and only 3 Polinton elements.
It should be noted that in the latter case the homology to known Polintons
from Repbase is rather weak, so these should probably be considered artifacts.
Finally 2557 elements were classified as Helitrons – this is, surprisingly, much
more than in closely related species like Lotus japonicus (Holligan et al., 2006).

Detected retrotransposons were divided into most abundant Gypsy super-
family (16440 TEs), Copia (15930 TEs), 26 ERV1-type repeats, 8195 L1 ele-
ments, and 134 RTE superfamily elements.

TE detection phase is summarized with several statistics presented at Ex-
periment’s results page, see Figure 5.2.2.

In addition to the quantitative results which allow to compare genomes com-
position in various TE families, all the data stored in our database can be easily
manipulated and visualized. The example of usage may be downloading the TE
flanking sequences for designing the PCR starters. As stated above all putative
TE elements are automatically classified into orders and superfamilies. More-
over we annotate each detected TE family by aligning the family consensus
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Figure 5.2.2: All found putative TE elements are classified into classes, orders
and superfamilies.

sequence against elements stored in Repbase Update (Kapitonov and Jurka,
2008), see Figure 5.2.3.

5.2.3 TEs interruption graph

High density of TEs, especially in plant genomes, is the result of the constant
bombardment of the genome by different TEs over millions of years. The in-
sertion activity may cause the splitting of TEs already existing in the genome
into non-contiguous fragments separated by the sequence of newly inserted el-
ements. The identification of nested transposable elements is important for
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Figure 5.2.3: Each TE family is annotated by BLASTing the consensus sequence
against Repbase content.

107



evolutionary comparisons among various regions of the genome. For human
genome the chronology of TE families based on the TEs nesting was studied
in Giordano et al. (2007). For highly repetitive plants genomes the TEnest tool
have been proposed (Kronmiller and Wise, 2008) for visual representation of
TE integration history.

The latter tool focuses on LTR carrying TEs and more importantly is no
longer unavailable to use at PlantGDB site. Thus in our service we imple-
mented the nesting repeats identification scheme analogous to the approach
previously applied to human genome. All found TE nestings are displayed in
a graphical format, and may be reviewed online. In addition to that, a graph
of nesting dependencies between TE families is constructed, along with inter-
ruption matrix. These are made available for download by the user for further
analyses.

The Figure 5.2.4 represents the interruption graph of TE families. The nodes
are colored in such a way that families belonging to the same superfamily
have the same color, e.g. on this picture the MuDR superfamily is green, L1
superfamily is assigned a different shade of green, Gypsy is purple, Harbinger –
blue, and so on. Unknown (unclassified) elements are colored in orange. This
serves as a visual aid, to assist in recognizing clusters of interesting TEs from
the same superfamily.

The graph is useful for assessing relative ages of TE families – if an edge
exists from family A to family B, then it means that at least one TE from
family B has been found to be interrupting a TE from family A. This means
that the family B must have been active when at least some of the TEs from
family A have settled, and so, cannot be older than family A.

For example, from the zoomed part of the picture, we can conclude that the
family Gypsy-480-LTR-Ram9B_I_#2 is probably older than L1-1403-LINE-
SHALINE2_MT_#2. On the other hand, consider families MuDR-1264-TIR-
MuSHAN_MT, MuDR-1321-TIR-MuSHAN_MT, and MuDR-1209-TIR-
MuSHAN_MT. They are joined by a cyclic path, and therefore, probably have
been active concurrently, and as such, have similar age.

5.2.4 Automatic TE mining

The task of searching for TEs is not an easy one. It has been split into many
smaller sub-tasks, such as searching for repeat genomic sequences, annotation
of structural elements of TEs, clustering TEs into families, annotating TEs
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in genomes, de-novo searching for repeatable elements, classifying repeatable
elements, and so on.

A multitude of tools that can perform each of these steps have been written,
often with one task being covered by several tools that perform it in slightly
different way (and with slightly different results).

Therefore a need has arisen to merge the appropriate tools into one generic
pipeline, which would be capable of performing a complete, de-novo annotation
of TEs in a whole genome, from the ground up, starting only from the sequence
of an organism’s genome.

One such pipeline has been created, called REPET (Flutre et al., 2011). It
joins over ten distinct tools from the field of computational biology, in an effort
to provide a comprehensive utility for de-novo TE annotation.

However, in order to use the pipeline, each one of its components has to be
separately installed and configured. The REPET utility runs in many stages,
each one of them controlled by a command-line interface, and this makes the
tool hard to use for users without profound programming skills. Last but not
least, the REPET tool requires a complex setup of a grid environment and
database, even if it is to be run on a single computer. Therefore, the setup
process is rather difficult and time-consuming causing that the tool remains
practically unused, despite its enormous scientific potential.

Here we have decided to integrate REPET pipeline with a flexible, relational
TE repository, along with a web interface to benefit from a wide range of
efficient services, but at the same time to eliminate the inconvenience of the
lack of user-friendly interface.

For this reason the TRANScendence software is not available as a stand-alone
software package, only as a web server – our goal was simplicity and ease-of-use,
meanwhile setting up TRANScendence on any local server would require the
configuration of the many building blocks we used - MySQL database, Apache
web server, Sun Grid Engine, web2py environment, and, most importantly,
REPET along with all of its modules.

5.2.5 TE repository

TRANScendence tool stores all detected TE elements and associated informa-
tion in a relational database. The database was created using MySQL and
consists of the several tables containing the data about: (i) analyzed genomes
(BAC contigs, TE mining experiments performed, etc.), (ii) detected TEs (also
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TE fragments) and (iii) TE families (consensus sequences, alignments with
Repbase elements, etc). The simple relationships between the tables facilitate
the possible expansion of the database to other genomic features potentially
valuable in evolutionary studies (e.g. transcription factor binding sites).

5.2.6 Technologies used

The user interface of our utility has been implemented mainly in Python, within
the web2py framework, with matplotlib and graphviz being used for data vi-
sualization. The website make heavy use of SVG vector graphics, therefore a
browser supporting SVG (such as Mozilla Firefox, Google Chrome or newer
versions of Internet Explorer) is recommended for viewing it. At the core of
the application is the REPET pipeline, which is used for TE searches. REPET,
in turn is made of multiple bioinformatics tools, such RECON(Bao and Eddy,
2002), CENSOR (Kohany et al., 2006), PILER (Edgar and Myers, 2005), Re-
peatMasker (Smit et al., 2004), TRF (Benson, 1999), Mreps (Kolpakov et al.,
2003), and others. We use NCBI BLAST (Altschul et al., 1990) for homology
searches.

The service uses MySQL database as its backend, as well as the backend for
REPET. The genome files are stored in the filesystem as FASTA files. Most
of the computational load is shared between nodes with the use of Sun Grid
Engine.

5.2.7 Discussion

We would like to emphasize that, our service, however, is more than just ’online,
user-friendly REPET’. In fact we have integrated REPET with appropriately
designed TE database, which allows for storing the results of computations,
and their visualization. The utility also provides an interface that assists ex-
perts in performing a manual curation of obtained results, making it especially
useful for de-novo analysis of newly sequenced species. In such cases the Rep-
base (Kapitonov and Jurka, 2008) is usually insufficient for annotation of found
TEs in a satisfactory manner.

Predictably, the lack of easily usable TE annotation pipelines hinders the
comparative genomics of TE families. Especially the problem of establishing
chronologies of activity of various TE families on relation to one another remains
elusive. The standard approach of reconstructing the phylogenetic trees of
TEs is somewhat hindered by the junk-DNA status of TEs. Because they
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are not conserved, they are vulnerable to large-scale genomic deletions and
other rearrangements. This causes TE copies to be mangled and fragmented,
which presents a difficulty for standard phylogenetic tools, as they have mostly
been developed with (much better-conserved) genes in mind. As such, the
chronologies obtained from sequence-similarity-based tools are not fully trusted,
and could stand to be verified with other methods.

One such attempt at verification has already been performed for human
genome (Giordano et al., 2007) establishing chronology based on the insertions
of TEs within each other. The approach however, while being a significant im-
provements over the previous methods, depends on a preexisting TE database,
and employs an ad-hoc TE defragmentation method. Obviously, the state-of-
the-art utilities for de-novo TE detection and analysis could widen the scope
of application of this method, as well as produce better results.

To this end we focused our tool on obtaining interruption matrices of TEs
(that is, data representing how TEs nest in each other), and provides an option
of visualizing the interruptions graph – which constitute the useful tool for
assessing the periods of activity of TE families, as well as for their dating.
The interruption matrix may be downloaded in plain-text format for use in the
user’s own analyses, however, we are currently working on the implementation
of an automated TE dating module.

5.3 Conclusions

We have developed two tools designed for the study of TEs in the genome. In
addition to being useful to a wide audience, the tools will be used to calibrate
the parameters of the presented models of transposition. The ability to perform
comparative studies of TE landscape in a wide array of species, as well as
to reconstruct the TE activity from the interruption matrix should greatly
enhance the value of the presented models. This, in turn, will result in a
deeper understanding of the role of TEs as evolution helpers.
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6
Conclusions and further research

We have presented a body of research regarding the interdependence of evolu-
tion and TEs, particularly in conditions of environmental stress. Our research
suggests that in addition to being genomic parasites, TEs may act as evolution-
ary helpers, assisting adaptation to new environments, and enabling faster and
more efficient colonization of new environmental niches. However, the study
of the role of TEs is far from finished, and here we shall present some ongoing
and future directions of research.

6.1 Spatial extension to computational model

One of the directions for further research is a spatial extensions of the compu-
tational, and perhaps the mathematical model. Such a model will allow us to
perform an in-depth study of the dynamics of TEs in different subpopulations,
particularly competition between TEs-carrying organisms, and organisms dis-
possessed of them. One particularly interesting scenario to be studied is the
co-evolution of both TE-carrying organisms and ones without them while climb-
ing a phenotypic gradient. It is expected that the forefront of colonization will
consist of organisms with high copy numbers of transposable elements, and
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these will be followed by organisms with low copy numbers. However, the
interesting question is whether this will be the result of the TE-carrying pop-
ulation silencing and loosing their TEs after the initial colonization frontwave
passes, or whether the high-TE organisms will be just pushed out by a slower-
adapting subpopulation without TEs. Some initial work in this direction has
been performed by M. Kitlas, we are currently in the process of fine-tuning the
parameters of the model.

6.2 Model for sexually-reproducing organisms

Both the computational and mathematical models presented here assume a
population of asexual, clonally-reproducing organisms. An interesting exten-
sion of both models would be changing of the reproduction model from asex-
ual to diploid-based, sexual one. In case of the computational model this
would involve the addition of a (diploid) genetic model, as the tracking of
insertion sites for each TE becomes important, to account for effects such as
homo/heterozygosity, and sexual mode of trait inheritance. A wide consensus
seems to be that TEs may persist in sexual organisms due to their properties
as selfish, parasitic DNA (in asexuals such a mechanism is impossible). Our
preliminary results suggest that in addition to the parasitic DNA dynamics,
the mode of evolutionary helpers can also be achieved in certain conditions,
with TEs being able to proliferate as evolutionary helpers under conditions of
environmental stress, even if their basal level of transposition is insufficient for
them to persist as parasitic DNA in conditions of stable environment. The
work on this extension is being performed by K. Gogolewski, and right now
we’re fine-tuning model parameters and performing an initial exploration of
interesting scenarios.

6.3 Mathematical modelling of class-I TE and sexually-
reproducing organisms

In addition to the model already presented, we plan to continue the attempts to
derive an equilibrium state for class-I TEs. One approach we plan to use is to
discard the notion of discrete TEs (in similar fashion to the model used for class-
I TEs), and to allow TE counts to evolve following the Gaussian distribution.
This should simplify the equations while still remaining realistic enough to
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represent real-world phenomena.
In addition to that, we plan to extend the mutator model to sexual organisms.

Sexual reproduction should not drastically change the mathematical apparatus
involved in the solution, and so, should be tractable – while allowing us to study
the response of sexual versus asexual organisms to environmental change. This
might allow us to answer important questions about evolution of sexuality.

6.4 Further development of TE-detection tools

As the cell culture of Medicago truncatula experiment mentioned in Chapter 1
nears its completion, the TE detection tools will probably need to be expanded
in order to study any interesting phenomena we will uncover. While currently
it is difficult to predict the direction in which the data analysis might take us,
there is one extension we can already anticipate: it is the addition of a module
to the TRANScendence tool which will enable the study of TE nesting ma-
trix. This will enable the recovery of the chronology of activity of various TE
families, and will shed some further light on the problem of the dynamics of ac-
tivity of transposable elements, this time from an experimental viewpoint. The
challenging part is that even in its simplest form the problem is NP-complete
(easily reduces to the minimal feedback arc set problem), which precludes a
direct solution, and forces the use of a heuristic algorithm. Some initial heuris-
tic algorithm ideas have been already sketched, however very little work has
already been done in this direction yet.
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Glossary

Abbreviation Meaning

aCGH Array-comparative genomic hybridization – a
technique for detecting copy number changes in
a genome.

CMA Chromosomal microarray.
CNV Copy number variation – an alteration of DNA

structure resulting in abnormal number of
copies of a given sequence (e.g. duplication or
deletion).

DNA Deoxyribonucleic acid.
FGM Fisher’s geometric model – a type of model used

in population genetics.
HERV Human endogenous retrovirus – a family of

virus-derived class I TEs.
HT Horizontal transfer – a transfer of genetic ma-

terial between organisms outside of normal
parent-child inheritance mechanisms.

LINE Long INterspersed Element, or alternatively:
Long Interspersed Nuclear Element – a type of
class-I TEs abundant in humans.

LR-PCR Long-range PCR.
LTR Long Terminal Repeat – a sequence carried by

certain class-I transposons, demarcating their
ends.

MITE Miniature inverted-repeat transposable element
– a family of class-II transposons.

NAHR Nonallelic homologous recombination – one of
the mechanisms of mutation, resulting in ap-
pearance of CNVs.

ORF Open Read Frame – a framgnet of DNA strand
which is transcribed to RNA, often containing
a gene.

PCR Polymerase chain reaction – a reaction allowing
to check for presence, and to aplify a selected
fragment of DNA.
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Abbreviation Meaning

PDF Probability density function.
RNA Ribonucleic acid.
SINE Short INterspersed Element, or alternatively:

Short Interspersed Nuclear Element – a type
of class-I TEs nonautonomous TEs, which uses
enzymes carried by LINE TEs for transposition.

SNV Single nucleotide variant.
TE Transposable element.
TIR Terminal Inverted Repeat – a sequence car-

ried by certain class-II transposons, demarcat-
ing their ends.

TSD Target Site Duplication – a short sequence at
both ends of certain transposons, resulting from
a duplication of a short DNA fragment during
the process of their insertion.
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