
University of Warsaw
Faculty of Mathematics, Informatics, and Mechanics

Michał Skrzypczak

Descriptive set theoretic methods in automata theory
PhD dissertation

Supervisors

prof. dr hab. Mikołaj Bojańczyk

Institute of Informatics
University of Warsaw

prof. dr hab. Igor Walukiewicz

LaBRI
Université Bordeaux-1

June 2014

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation myself
and all the contents of the dissertation have been obtained by legal means.

June 10, 2014 .
date Michał Skrzypczak

Supervisors’ declaration:
the dissertation is ready to be reviewed

June 10, 2014 .
date prof. dr hab. Mikołaj Bojańczyk

. .
prof. dr hab. Igor Walukiewicz

Abstract

This thesis is devoted to studying problems of automata theory from the point of view
of descriptive set theory. The analyzed structures are ω-words and infinite trees. Most
of the presented results have a form of an effective decision procedure that operates on
representations of regular languages.

A particular effort is put into providing effective characterisations of regular languages
of infinite trees that are definable in weak monadic second-order logic (wmso). Although
no such characterization is known for all regular languages of infinite trees, the thesis
provides characterisations in some special cases: for game automata, for languages of thin
trees (i.e. trees with countably many branches), and for Büchi automata. Additionally,
certain relations between wmso-definable languages and Borel sets are proved.

Another problem studied in the thesis is the alternating index problem (also called
Rabin-Mostowski index problem). Again, the problem in its full generality seems to be
out of reach of the currently known methods. However, a decision procedure for the class
of game automata is proposed in the thesis. These automata form the widest class of
automata for which the problem is currently known to be decidable.

The thesis also addresses the problem of providing an algebraic framework for regular
languages of infinite trees. For this purpose the notion of prophetic thin algebras is intro-
duced. It is proved that finite prophetic thin algebras recognize exactly the bi-unambiguous
languages — languages L such that both L and the complement Lc can be recognised by
unambiguous automata. Additionally, a new conjecture about definability of choice func-
tions is stated. It is proved that this conjecture is strongly related to the class of prophetic
thin algebras. In particular, the conjecture implies an effective characterisation of the class
of bi-unambiguous languages.

Finally, the thesis studies contemporary quantitative extensions of the class of regular
languages. First, lower bounds (that match upper bounds) on the topological complexity
of mso+u-definable languages of ω-words are given. These lower bounds can be used to
prove that mso+u logic is undecidable on infinite trees in a specific sense. Also, it is shown
that languages of ω-words recognisable by certain counter automata have the separation
property with respect to ω-regular languages. The proof relies on topological methods in
the profinite monoid.

3

Keywords: automata, infinite trees, topological methods

ACM Subject Classification: F.4.3. Formal Languages

4

Streszczenie

Poniższa rozprawa jest poświęcona badaniom problemów teorii automatów z punktu wi-
dzenia deskryptywnej teorii mnogości. Analizowane struktury to nieskończone słowa i
drzewa. Większość zaprezentowanych rezultatów ma formę algorytmu który operuje na
reprezentacjach języków regularnych.

Szczególny wysiłek jest włożony w opracowanie efektywnych charakteryzacji języków
regularnych drzew nieskończonych które są definiowalne w słabej monadycznej logice dru-
giego rzędu (wmso). Jakkolwiek nie jest znana żadna taka charakteryzacja dla ogólnych
języków regularnych, rozprawa dostarcza charakteryzacji w pewnych szczególnych przy-
padkach: dla automatów growych, dla języków drzew cienkich (posiadających tylko prze-
liczalnie wiele gałęzi) i dla automatów Büchiego. Dodatkowo, pewne związki pomiędzy
definiowalnością w wmso a zbiorami Borelowskimi są udowodnione.

Innym problemem studiowanym w ramach rozprawy jest problem indeksu alternującego
(zwany też problemem indeksu Rabina-Mostowskiego). Podobnie jak w przypadku wmso,
problem ten w pełnej ogólności wydaje się być poza zasięgiem aktualnie znanych metod. W
ramach rozprawy zaproponowana jest procedura rozstrzygająca problem indeksu dla au-
tomatów growych. Stanowią one obecnie najszerszą klasę automatów dla których problem
indeksu został rozwiązany.

Dodatkowo, rozprawa zajmuje się zagadnieniem algebraicznych metod rozpoznawania
języków regularnych drzew nieskończonych. W tym celu wprowadzone zostaje pojęcie
prophetic thin algebra. Wykazane jest, że algebry te rozpoznają dokładnie klasę języ-
ków podwójnie jednoznacznych — języków L takich, że L oraz dopełnienie Lc mogą być
rozpoznawane przez automaty jednoznaczne. Dodatkowo, nowa hipoteza dotycząca defi-
niowalności funkcji wyboru jest postawiona. Wyniki rozprawy pokazują, że owa hipoteza
jest ściśle związana z klasą prophetic thin algebras. W szczególności, hipoteza ta implikuje
istnienie efektywnej charakteryzacji klasy języków podwójnie jednoznacznych.

Wreszcie, rozprawa przedstawia badania niedawno zaproponowanych ilościowych roz-
szerzeń klasy języków regularnych. Po pierwsze udowodnione są ograniczenia dolne (od-
powiadające ograniczeniom górnym) na złożoność topologiczną języków słów nieskończo-
nych definiowalnych w mso+u. Ograniczenia te służą do wykazania, że logika mso+u
jest nierozstrzygalna na drzewie nieskończonym (przy pewnych dodatkowych założeniach
teoriomnogościowych). Dodatkowo jest wykazane, że klasy języków rozpoznawane przez
pewne automaty licznikowe mają własność separacji ze względu na języki regularne słów
nieskończonych. Dowód tego twierdzenia korzysta z metod topologicznych w monoidzie
słów proskończonych.

5

Acknowledgements

I would like to emphasise my gratitude to my supervisors, Mikołaj Bojańczyk and Igor
Walukiewicz, for the assistance without which this thesis would not be possible. Both of
them were always helpful and ready to discuss on scientific problems, share their experience,
and exchange new ideas. Additionally, I would like to thank for encouraging me to attend a
number of conferences, workshops, and scientific visits that allowed me to bind international
cooperations. Moreover, I would like to thank Henryk Michalewski for posing a number of
inquiring and inspiring questions that provided a good motivation in developing some of
the results presented in the thesis.

Many of the presented results wouldn’t be obtained by me without the support of my
family: my wife Iwonka, parents of Iwonka and of me, as well as our extended family. Their
reassurance and aid in babysitting our children allowed me to focus on scientific work. I’m
also grateful to Iwonka for her patience and dedication in all these moments when I was
abroad and she took care of home and children.

I owe my scientific background to Automata Group in Warsaw, especially to: Damian
Niwiński, Mikołaj Bojańczyk, Henryk Michalewski, and Filip Murlak. Additionally, I wish
to thank Szczepan Hummel, Tomasz Idziaszek, Denis Kuperberg, and Nathanaël Fijalkow
for the time they invested in discussions with me.

During my PhD studies I had an opportunity to take several scientific visits. First and
foremost I would like to thank my supervisor, Igor Walukiewicz, for a number of invitations
to LaBRI. Moreover, I would like to thank Jacques Duparc and Alex Rabinovich for inviting
me to work together (the results obtained during these visits are not included in the thesis).

Last but not least I would like to list my co-authors, whom I would like to thank for co-
operation: M. Bilkowski, M. Bojańczyk, U. Boker, A. Facchini, O. Finkel, T. Gogacz,
S. Hummel, T. Idziaszek, D. Kuperberg, O. Kupferman, H. Michalewski, M. Mio,
F. Murlak, D. Niwiński, A. Rabinovich, A. Radziwończyk-Syta, and S. Toruńczyk.

My work during PhD studies has been supported by National Science Centre (decision
DEC-2012/05/N/ST6/03254) and by ERC Starting Grant SOSNA.

6

Introduction

The fundamental results of Büchi [Büc62] and Rabin [Rab69] state that the monadic
second-order (mso) theory of the ω-chain (ω,≤) and of the complete binary tree(
{0, 1}∗,�,≤lex

)
is decidable. In both cases the proof relies on a class of finite automata

with expressive power equivalent to mso. Because of effective closure properties and de-
cidability of the emptiness problem, the languages of ω-words and infinite trees definable
in mso are called regular. For a broad introduction to the field of regular languages of
infinite objects see [Tho96,PP04,TL93].

Since a single ω-word or infinite tree may not have any finite representation, one has
to deal with actual infinity when studying languages of such objects. In particular, even
the set of ω-words over a two-letter alphabet has cardinality continuum. This is the
source of strong relationships between properties of regular languages of infinite objects
and descriptive set theory. These relationships have a form of synergy: descriptive set
theory motivates new problems and methods in automata theory but on the other hand,
automata theory introduces natural examples for classical topological concepts.

Recently there has been a number of papers studying these relationships. Properties of
regular languages of infinite trees have been studied in [NW03,AN07,ADMN08,Mur08],
the Borel complexity of mso-definable sets of branches of one infinite tree was estimated
in [BNR+10], finally the Borel and Wadge complexity of languages of ω-words recognised
by various models of computation was estimated in [DFR01,Fin06,CDFM09,DFR13,FS14].
It is worth mentioning that in most of the above cases it turns out that there are languages
definable in respective formalisms that are complete for the studied topological classes.
It shows that these languages are in some sense representative. Also, there are some
results studying more general set theoretic properties of definable languages. For instance,
expressibility of cardinality of sets in mso was studied in [BKR11], and measurability of
regular languages of infinite trees was settled in [GMMS14].

The results of the thesis are based on [HS12,FMS13,BIS13,BS13,Skr14,BGMS14] and
the technical report [MS14].

7

Motivations

The following list presents problems studied in the thesis. Most of them have the form of a
question about descriptive complexity — given a regular language L, is there a description
of L that is simple in a certain sense.

Definability in wmso

The first question asks how to effectively decide if a given regular language is definable in
some logic weaker than mso. There are two natural candidates for such logics: first-order
logic (fo) and weak monadic second-order logic (wmso) where the set quantification is
restricted to finite sets.

In the case of ω-words, definability in fo was solved by Thomas [Tho79] using the
methods of Schutzenberger [Sch65] and McNaughton Papert [MP71]. The definability in
wmso trivialises in this case, since every ω-regular language is wmso-definable.

The problem of definability in wmso for regular languages of infinite trees is considered
as one of the central problems in the area. Recently, there has been some slight progress
for various restricted classes of languages. However, the problem in its full generality seems
to be out of reach of the currently known methods.

The thesis presents solutions to the problem of wmso-definability for certain restricted
classes of regular languages of infinite trees: for unambiguous Büchi automata in Chap-
ter 1, for general Büchi automata in Chapter 2, for game automata in Chapter 3, and for
languages of thin trees in Chapter 4.

Index problem

Another complexity question studied in the thesis asks about the index of a given regular
language of infinite trees L: for a given pair (i, j) is there an alternating top-down parity
tree automaton that recognises L and uses only priorities among {i, i + 1, . . . , j}? It
turns out that in the case of languages of infinite trees that are bisimulation-invariant
(i.e. definable in µ-calculus, see [JW96]), the index corresponds precisely to the alternation
of fixpoints used in the definition of a language [Niw97]. Therefore, the index problem
can be seen as a variant of a quantifier alternation question: how many alternations of
quantifiers are needed to define a given language.

8

The decidability of the index problem for general languages of infinite trees is open.
As shown in [Bra98,Arn99], the index hierarchy is strict — there are regular languages of
infinite trees that cannot be recognised by any automaton of small index. As shown by
Rabin [Rab70], the index problem and definability in wmso are closely related: a regular
language of infinite trees is definable in wmso if and only if both the language and the
complement are recognisable by an alternating automaton with Büchi acceptance condition
(i.e. condition of the form “infinitely many accepting states”).

The thesis provides a solution of the index problem for the class of regular languages
of infinite trees recognisable by game automata (see Chapter 3). This is the first rea-
sonable class of languages for which the index problem is known to be decidable, that
contains languages arbitrarily high in the alternating index hierarchy. Additionally, an ef-
fective collapse of index for languages recognisable by unambiguous automata is provided
in Chapter 1: it is proved that if an automaton is unambiguous and of certain index then
the language recognised by the automaton is lower in the index hierarchy. Although the
presented collapse is small, to the author’s best knowledge this is the first result that uti-
lizes the fact that a given automaton is unambiguous to give upper bounds on the index
of the recognised language.

Bi-unambiguous languages

One of the difficulties when working with mso on infinite trees arises from the fact that
deterministic automata are too weak to recognise all regular languages. The subclass of
regular languages of infinite trees recognisable by deterministic automata seems to be much
more tractable [KSV96,NW98,NW03,NW05,Mur08]. Unambiguous automata can be seen
as a natural class of automata in-between deterministic and non-deterministic ones. A non-
deterministic automaton is unambiguous if it has at most one accepting run on every input.
As shown by Niwiński and Walukiewicz [NW96], there are regular languages of infinite trees
that are inherently ambiguous — there is no unambiguous automaton recognising them.
Very little is known about unambiguous languages, for instance it is not known how to
decide if a given regular language of infinite trees is recognisable by some unambiguous
automaton.

The thesis characterizes the class of bi-unambiguous languages (i.e. languages L such
that both L and the complement Lc are unambiguous) as those that can be recognised
by finite prophetic thin algebras. This theorem constitutes a link between the algebraic
framework for thin trees from [Idz12] and languages of general infinite trees. Also, it

9

provides an algebraic way of recognition for a non-trivial class of regular languages of
infinite trees.

The following new conjecture has arisen when studying properties of prophetic thin
algebras.

Conjecture 1. The relation ϕ′(x, Z) expressing that x ∈ Z and Z is contained in a thin
tree does not admit mso-definable uniformization of the first variable x. In other words,
there is no mso-definable choice function in the class of thin trees.

This conjecture is a strengthening of the theorem of Gurevich and Shelah [GS83] stating
that there is no mso-definable choice function on the complete binary tree. Unfortunately,
the conjecture is left open, however some equivalent statements are provided. Also, it
is shown that the conjecture implies that it is decidable if a given regular language of
infinite trees is bi-unambiguous. Additionally, the conjecture implies that bi-unambiguous
languages constitute a very reasonable class (a pseudo-variety from the algebraic point of
view).

Borel languages

The index hierarchy for automata on infinite trees turns out to be closely related to topo-
logical hierarchies from descriptive set theory (see for instance [Arn99]). These relations
motivate a number of interesting questions, one of them is the following conjecture, stated
over 20 years ago.

Conjecture 2 (Skurczyński [Sku93]). If a regular language of infinite trees is Borel then
it is wmso-definable.

The converse implication is known to be true: every wmso-definable language is Borel.
Therefore, the conjecture says in fact that a regular language of infinite trees is Borel if and
only if it is wmso-definable. It would mean that if a language is regular and topologically
simple then it is also “descriptively” simple. It can also be seen as an automata theoretic
counterpart of the relation between the lightface and boldface hierarchies, see [Mos80,
Theorem 3E.4].

The conjecture has been proved only in the special case of deterministic lan-
guages [NW03]. The thesis provides proofs of the conjecture for wider classes of languages:
recognisable by game automata in Chapter 3 and for languages of thin trees in Chapter 4.
Additionally, a potential strategy of proving the conjecture for Büchi automata is presented
in Chapter 2, unfortunately some additional pumping argument is missing in that case.

10

Topological complexity vs. decidability

In general, there is no direct relationship between decidability of a logic and topological
complexity of languages it defines. For instance, the fo theory of the structure of arithmetic
(ω,≤,+, ∗) is undecidable, while it defines only Borel languages of ω-words. On the other
hand one can construct a trivial logic that defines some particular language of very high
topological complexity. However, as observed by Shelah [She75] (see also [GS82]) in the
case of mso, the topological complexity and decidability are strongly related: the mso
theory of (R,≤) is undecidable, however, by Rabin’s theorem [Rab69], the theory becomes
decidable if we restrict the set quantification to Σ0

2-sets.
These ideas are used in Chapters 7 and 8 to study decidability of mso logic equipped

with an additional quantifier U (as introduced by Bojańczyk [Boj04] and denoted mso+u).
Chapter 7 studies topological complexity of languages of ω-words definable in mso+u. It
is shown that the topological complexity of these languages is as high as possible: examples
of languages lying arbitrarily high in the projective hierarchy are given. Already this fact
implies that there is no simple automata model capturing the expressive power of mso+u
on ω-words.

This topological observation is further developed in Chapter 8 to prove that a certain
variant of mso on the Cantor set {L, R}ω (called proj-mso) can be reduced to the mso+u
theory of the complete binary tree. As shown in [BGMS14], the proj-mso theory is not
decidable in the standard sense (see Theorem 8.1). Therefore, the presented reduction
shows that mso+u is also not decidable in this sense.

The question of decidability of mso+u on the infinite trees was posed in [Boj04]. The
above line of research proves that this question cannot be answered positively. Somehow
surprisingly, the technical hearth of the proof relies on purely topological concepts.

Separation property

The question of separation asks if it is possible to separate every pair of disjoint languages
from some class by a simple language. A classical example of such property is the following
theorem of Lusin: every pair of disjoint analytic (i.e. Σ1

1) sets can be separated by a Borel
set.

The separation property has also been studied for certain classes of regular languages,
an example is the following result of Rabin: every pair of disjoint regular languages of
infinite trees recognisable by Büchi automata can be separated by a language that is

11

wmso-definable. Recently, the separation turned out to be crucial step in providing a
significant result about the decidability of the dot-depth hierarchy, see [PZ14].

In Chapter 9 of the thesis the separation property is studied for certain quantitative
extensions of ω-regular languages, namely for ωB- and ωS-regular languages introduced
by Bojańczyk and Colcombet [BC06]. It is shown that the ωB- and ωS-regular languages
have the separation property with respect to ω-regular languages: every pair of disjoint
languages recognisable by ωB- (respectively ωS)-automata can be separated by an ω-regular
language. This result is somehow surprising as the models of ωB- and ωS-automata are
dual: a language is ωB-regular if and only if its complement is ωS-regular. Usually, exactly
one class from a pair of dual classes of sets has the separation property.

Overview of the parts

The preliminary Chapter 0 introduces basic notions and known results that will be used
later. The rest of the thesis is divided into three parts, each part has three chapters. All the
presented results study related problems of descriptive complexity. The respective parts
group results of similar type. Most of the chapters present results that are technically
independent, in particular they can be read separately. The only technical dependencies
are: Chapters 5 and 6 depend on definitions from Chapter 4; results of Chapter 8 depend
on Theorem 7 from Chapter 7.

A separate chapter (see page 239) presents conclusions of the whole thesis. In partic-
ular, some relationships and similarities between the techniques used in the chapters are
discussed.

Part I: Subclasses of regular languages

The first part of the thesis studies descriptive complexity questions for restricted classes of
regular languages of infinite trees: unambiguous automata in Chapter 1, Büchi automata
in Chapter 2, and game automata in Chapter 3. Three main theorems of these chapters
are the following.

The first theorem shows how to use the fact that a given automaton is unambiguous
to derive a collapse in parity index of the language recognised by it.

12

Theorem 1. If A is an unambiguous min-parity automaton of index (0, j) then the lan-
guage L(A) can be recognised by an alternating Comp(0, j−1)-automaton of size polynomial
in the size of A.

In particular, if A is Büchi and unambiguous then L(A) is wmso-definable.

The second theorem is based on a theory of certain ranks for Büchi automata. Using
these ranks, a characterisation of wmso-definable languages is given.

Theorem 2. It is decidable if the language of infinite trees recognised by a given non-
deterministic Büchi tree automaton is wmso-definable.

The above result was already proved by Kuperberg and Vanden Boom (see for in-
stance [CKLV13]) using the theory of cost functions. However, as discussed in Chapter 2,
the methods developed in the presented proof may be of independent interest since they
introduce conceptually new techniques based on ranks of well-founded ω-trees.

Finally, the third theorem shows that both index problems are decidable for game
automata — a class of alternating automata that extends deterministic ones by allowing
certain restricted alternation between the players. Two effective procedures that compute
the index of the language recognised by a given game automaton are proposed. Then it
is shown that the procedures are correct. For this purpose, upper and lower bounds are
given. Interestingly, in the case of the alternating index problem, the lower bounds are
based on purely topological methods (namely the topological hardness of languages Wi,j).

Theorem 3. The non-deterministic index problem is decidable for game automata (i.e. if
a game automaton is given as the input). The same holds for the alternating index problem.

Part II: Thin algebras

The second part is devoted to a study of thin algebras and thin trees, i.e. trees having
only countably many infinite branches. In Chapter 4 a characterization of languages of
thin trees that are wmso-definable among all infinite trees is given. Chapter 5 is devoted
to the recognition of languages of infinite trees by prophetic thin algebras. Finally, Chap-
ter 6 studies Conjecture 1 and related uniformization problems on thin trees. Three main
theorems of these chapters are the following.

The first theorem gives an effective characterisation of regular languages of thin trees
that are definable in wmso among all infinite trees. Additionally, it expresses an upper
bound: even if a regular language of thin trees is not wmso-definable among all infinite
trees, it is still topologically simple (i.e. it belongs to Π1

1).

13

Theorem 4. A regular language of thin trees (i.e. a regular language that contains only
thin trees) is either:

1. Π1
1-complete among all infinite trees,

2. wmso-definable among all infinite trees (and thus Borel).

Moreover, it is decidable which of the cases holds.

The second theorem provides an algebraic framework for recognition of a restricted
class of regular languages of infinite trees. The idea is to use algebras designed for thin
trees to recognise languages of arbitrary infinite trees.

Theorem 5. A language of infinite trees L is recognised by a homomorphism into a finite
prophetic thin algebra if and only if L is bi-unambiguous, i.e. both L and the complement
Lc can be recognised by unambiguous automata.

The last theorem consists of three ingredients: an equivalent formulation of Conjec-
ture 1, an example of a non-uniformizable relation on thin trees, and an essentially new
example of an ambiguous regular language of infinite trees. The non-uniformizable relation
uses a concept of skeleton — a subset of a thin tree that provides a decomposition of this
tree into separate branches.

Theorem 6. Conjecture 1 is equivalent to the fact that every finite thin algebra admits
some consistent marking on every infinite tree.

The relation ϕ(σ, t) stating that t is a thin tree and σ is a skeleton of t does not admit
any mso-definable uniformization of σ.

The language of all thin trees is ambiguous (i.e. it is not recognised by any unambiguous
automaton).

Although Conjecture 1 is not proved in this thesis, the above non-uniformizability
results are of their own interest. In particular, the example about skeletons provides a
standalone answer to Rabin’s uniformization problem (the problem was solved originally
by Gurevich and Shelah in [GS83]).

Part III: Extensions of regular languages

The last part of the thesis studies some properties of contemporary quantitative devel-
opments in automata theory. Topological complexity of mso+u-definable languages of

14

ω-words is estimated in Chapter 7. Chapter 8 studies consequences of the high topologi-
cal complexity of mso+u regarding decidability of this logic on the complete binary tree.
Finally, in Chapter 9 the separation property for ωB- and ωS-regular languages is proved.
Three main theorems of these chapters are the following.

The first expresses the topological complexity of mso+u on ω-words.

Theorem 7. There exist languages of ω-words that are definable in mso+u logic and lie
arbitrarily high in the projective hierarchy.

The second theorem uses studies a new variant of mso (called proj-mso). It is a logic
introduced in [BGMS14] where set quantifiers are restricted to projective sets of certain
level (fixed explicitly during quantification). For instance, a logic can say “there exists a
set X that belongs to Σ1

5 and . . . ”.

Theorem 8. The proj-mso theory of {L, R}≤ω with prefix � and lexicographic ≤lex orders
effectively reduces to the mso+u theory of the complete binary tree

(
{L, R}∗,�,≤lex

)
.

Decidability of proj-mso on {L, R}≤ω would imply that analytic determinacy fails.

This result was further extended in [BGMS14] using an adaptation of the technique of
Shelah [She75]. It is shown there that under a certain set theoretic assumption (namely
that v=l, i.e. we work in the Gödel’s constructible universe) the proj-mso theory of {L, R}≤ω

is undecidable. Therefore, together with the above theorem, v=l implies that the mso+u
theory of the complete binary tree is undecidable.

Finally, the ninth main theorem of the thesis studies separation property for languages of
ω-words that are recognised by counter automata introduced by Bojańczyk and Colcombet
in [BC06].

Theorem 9. If L1, L2 are disjoint languages of ω-words both recognised by ωB- (respec-
tively ωS)-automata then there exists an ω-regular language Lsep such that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

Additionally, the construction of Lsep is effective.

15

Contents

0 Basic notions 19
0.1 Structures . 20
0.2 Logic . 23
0.3 Games . 25
0.4 Automata . 27
0.5 Algebra . 31
0.6 Topology . 34
0.7 Regular languages . 40

I Subclasses of regular languages 50

1 Collapse for unambiguous automata 51
1.1 Unique runs . 53
1.2 Construction of the automaton . 55
1.3 Conclusions . 58

2 When a Büchi language is definable in wmso 60
2.1 The ordinal of a Büchi automaton . 62
2.2 Extending runs . 68
2.3 Automata for K-safe trees . 73
2.4 Boundedness game . 75
2.5 Equivalence . 80
2.6 Conclusions . 88

3 Index problems for game automata 90
3.1 Runs of game automata . 92
3.2 Non-deterministic index problem . 94
3.3 Partial objects . 96
3.4 Alternating index problem . 99

16

3.5 Conclusions . 112

II Thin algebras 113

4 When a thin language is definable in wmso 114
4.1 Basic notions . 116
4.2 Thin algebra . 124
4.3 Upper bounds . 128
4.4 Characterisation of wmso-definable languages 133
4.5 Conclusions . 144

5 Recognition by thin algebras 145
5.1 Prophetic thin algebras . 146
5.2 Bi-unambiguous languages . 149
5.3 Consequences of Conjecture 1 . 156
5.4 Decidable characterisation of the bi-unambiguous languages 157
5.5 Conclusions . 161

6 Uniformization on thin trees 163
6.1 Basic notions . 164
6.2 Transducer for a uniformized relation . 165
6.3 Choice hypothesis . 171
6.4 Negative results . 180
6.5 Conclusions . 185

III Extensions of regular languages 187

7 Descriptive complexity of mso+u 188
7.1 Basic notions . 190
7.2 Languages Hi . 193
7.3 Functions ci, di, and ri . 196
7.4 Reductions . 198
7.5 Upper bounds . 200
7.6 Conclusions . 202

17

8 Undecidability of mso+u 203
8.1 Basic notions . 205
8.2 Reduction . 207
8.3 Projective determinacy . 209
8.4 Undecidability of proj-mso on {L, R}ω . 211
8.5 Conclusions . 212

9 Separation for ωB- and ωS-regular languages 214
9.1 Basic notions . 215
9.2 Automata . 220
9.3 Separation for profinite languages . 225
9.4 Reduction . 228
9.5 Separation for ω-languages . 235
9.6 Conclusions . 237

Conclusions and bibliography 241

18

Chapter 0

Basic notions

In this chapter we introduce basic notions that are used across this thesis. Section 0.1 intro-
duces formally ω-words, infinite trees, and operations that transform them. In Section 0.2
we introduce the syntax and the semantics of logics that will be used in the rest of the
thesis. Section 0.3 contains a brief introduction of perfect information two-player games.
In Section 0.4 we define automata models that will be used later. Section 0.5 presents the
framework of recognition from the algebraic point of view. In Section 0.6 basic topological
concepts are introduced. Finally, Section 0.7 lists known properties of regular languages
of ω-words and infinite trees.

Most of the material presented in this chapter is standard. Therefore, a reader familiar
with automata theory and topology may skip most of the formal definitions. The following
sections contain some less standard concepts: ranks of well-founded ω-trees are introduced
in Section 0.6.3, the boundedness theorem is stated in Section 0.6.4, simple co-inductive
definitions are defined in Section 0.6.5, various classes of regular languages (e.g. unambi-
guous, Büchi, . . .) are defined in Section 0.7.1, and Section 0.7.4 introduces the languages
Wi,j that are complete for respective classes of the alternating index hierarchy.

The following choices are taken in the thesis:

• min-parity condition is used (i.e. a sequence of priorities (pn)n∈N is accepting if the
least priority appearing infinitely often is even), see page 26,

• the classes of the Rabin-Mostowski alternating index hierarchy are denoted using
symbols Πalt

j and Σalt
j (indices (0, j) and (1, j + 1) respectively), see page 44,

• transitions of alternating automata are defined as positive Boolean combinations of
atomic transitions (e.g. (q1, L) ∨ ((q2, R) ∧ (q3, L))), see page 27,

• the players in the games are denoted ∃ and ∀, usually ∃ takes the role of the prover
and ∀ is the refuter.

19

0.1 Structures

In this section we introduce the objects that will be studied in the thesis — mainly ω-words
and infinite trees.

We use the axiom of choice whenever needed, without explicitly noting this fact. There-
fore, the proofs of the thesis are done in Zermelo–Fraenkel set theory with the axiom of
choice (shortly zfc).

A set is countable if its cardinality is at most ℵ0. ω is the first infinite ordinal. ∅ stands
for the empty set. By N we denote the natural numbers, we use the symbols N and ω

interchangeably, depending on the context. |X| stands for the cardinality of a set X, if X
is finite then |X| ∈ N. If X and Y are two disjoint sets then we write X t Y for the union
of the two, emphasising the fact that the union is disjoint. We use the notation ∃!x ϕ to
express that there exists a unique x satisfying ϕ.

By ω1 we denote the first uncountable ordinal. An ordinal η is countable if and only if
η < ω1. An ordinal of the form η + 1 is called successor ordinal. Ordinals η > 0 that are
not successor ordinals are called limit ordinals. Sometimes we identify an ordinal with the
set of smaller ordinals, e.g. ω = {0, 1, . . .}, n = {0, 1, . . . , n− 1}, and 2 = {0, 1}.

Letter A is used to denote an alphabet — a non-empty finite set of letters a ∈ A.
Let f : X → Y be a function. By dom(f) def= X we denote the domain X of f and

by rg(f) ⊆ Y we denote the set of values of f . If X ′ ⊆ dom(f) then f�X′ stands for the
restriction of f to the set X ′ (i.e. dom(t�X′) = X ′). By f : X ⇀ Y we denote a partial
function from X to Y , i.e. a function f : dom(f)→ Y with dom(f) ⊆ X.

If a space X is known from the context and L ⊆ X then Lc stands for the complement
of L, i.e. Lc def= X \ L.

0.1.1 Finite words and ω-words

Let X be a non-empty countable set. The family of all finite words over X is denoted by
X∗. The empty word is denoted by ε. The length of a finite word u is denoted as |u|. The
set of all non-empty finite words over X is denoted X+. The successive letters of a word
u ∈ X∗ are u0, u1, . . . , u|u|−1. The n’th letter of a word u is u(n) or un. By Xn we represent
the set of words of length precisely n. Similarly, X≤n contains words of length at most n.
For an element x ∈ X,]x(u) stands for the number of occurrences of x in a finite word
u ∈ X∗.

20

An ω-word over X is a mapping α : ω → X, the set of all such ω-words is Xω. By X≤ω

we denote the set of all finite and ω-words over X.
The prefix order on X≤ω is denoted �. If X is linearly ordered then the lexicographic

order on X≤ω is denoted ≤lex. We implicitly assume that every alphabet A is linearly
ordered.

Concatenations If u is a finite word of length at least n or an ω-word, then u�n ∈ Xn

is the finite word obtained by taking the first n letters of u, i.e. u�n
def= u0u1 . . . un−1. The

concatenation of two words u, α (where u is finite and α may be infinite) is denoted by
u · α or simply uα. Similarly, if L is a language of finite or ω-words then

u · L = {u · α : α ∈ L}.

For a non-empty finite word w by w∞ we denote the ω-word w · w · · · · An ω-word of
the from u · w∞ for non-empty finite words u, w is called regular.

If α ∈ Aω, β ∈ Bω are two ω-words then α ⊗ β ∈ (A× B)ω is the ω-word obtained as
the product of two: for n ∈ ω we define (α⊗ β)(n) = (α(n), β(n)) ∈ A×B.

One of the crucial features of ω-sequences is expressed by Ramsey’s theorem — it is
possible to decompose such a sequence in a monochromatic way. This technique was used
by Büchi in his complementation lemma [Büc62]. In the following, by [N]2 we denote the
set of all unordered pairs of natural numbers.

Theorem 0.1 (Ramsey). Let C be a finite set of colours and α : [N]2 → C be a function
assigning to every pair of numbers {n,m} ∈ [N]2 a colour α({n,m}) ∈ C. Then there
exists an infinite monochromatic set: a set S ⊆ N such that

α
(
{n,m}

)
= α

(
{n′,m′}

)
for all {n,m, n′,m′} ⊂ S.

0.1.2 Infinite trees

In this thesis we are mainly interested in infinite trees: both binary and ω-branching, partial
and complete. Therefore, in this section we will introduce the following four notions (the
brackets denote optional parts of the name):

• complete ω-trees ωTrX ,

• (partial) ω-trees ωPTrX ,

21

• (complete binary) trees TrX ,

• partial (binary) trees PTrX .

ω-trees A partial ω-tree (shortly ω-tree) τ ∈ ωPTrX is a partial function τ : dom(τ)→ X

with a prefix-closed domain dom(τ) ⊆ ω∗. Elements of dom(τ) are called nodes of the ω-
tree. For a pair of ω-trees τ ∈ ωPTrX , τ ′ ∈ ωPTrX′ of the same domain dom(τ) = dom(τ ′)
let τ ⊗ τ ′ ∈ ωPTrX×X′ be given by (τ ⊗ τ ′)(u) = (τ(u), τ ′(u)); in that case we call τ ′

a labelling of τ (by X ′). A set Y ⊆ dom(τ) can treated as a labelling of τ by {0, 1},
i.e. an element of ωPTr{0,1}. If the set X = {x} is singleton then we can identify an ω-tree
τ ∈ ωPTrX with its domain τ ⊆ ω∗; in such a case we also skip the set X and write
τ ∈ ωPTr.

A node of the form (u · i) ∈ dom(τ) is called a child of u in τ . A node u ∈ dom(τ) is
a leaf of an ω-tree τ ∈ ωPTrX if it has no children in τ . A node u ∈ dom(τ) is branching
if it has at least two distinct children in τ . If u, u′ are distinct children of the same node
then they are siblings. If τ ∈ ωPTrX is an ω-tree and u /∈ dom(τ) but all the prefixes of u
are nodes of τ then we say that u is off τ . In particular, ε ∈ ω∗ is off ∅ ∈ ωPTr.

If the domain of an ω-tree τ ∈ ωPTrX is ω∗ then t is called a complete ω-tree; the set
of all such ω-trees is denoted ωTrX .

For a pair of ω-trees τ, τ ′ ∈ ωPTrX we write τ ⊆ τ ′ if dom(τ) ⊆ dom(τ ′) and for every
u ∈ dom(τ) we have τ(u) = τ ′(u).

Binary trees A particular case of an ω-tree is a binary tree. We use special symbols to
denote the alphabet of the directions in the domain of a binary tree: we write L for 0 and
R for 1. Hence, a direction is an element d ∈ {L, R}, the opposite direction is denoted d̄.

A labelled complete binary tree (shortly tree) over X is an ω-tree t ∈ ωPTrX with
dom(t) = {L, R}∗. The space of all such trees is denoted by TrX . If t ∈ ωPTrX and
dom(t) ⊆ {L, R}∗ then t is called a partial tree; the set of all partial trees over X is denoted
PTrX . Again, if X is a singleton then we skip it.

Decompositions If τ ∈ ωPTrX is an ω-tree and u ∈ ω∗ then by τ�u ∈ ωPTrX we denote
the subtree of τ rooted in u, formally:

dom
(
τ�u

) def= {w : uw ∈ dom(τ)}, τ�u(w) def= τ(uw).

22

By the definition, if u /∈ dom(τ) then τ�u = ∅. An ω-tree is regular if it has only finitely
many different subtrees.

If u ∈ dom(τ) or u is off τ then by τ [u← τ ′] we denote the ω-tree obtained by plugging
an ω-tree τ ′ ∈ ωPTrA into τ with the root of τ ′ put in u:

dom
(
τ [u← τ ′]

) def= {w ∈ dom(τ) : u 6� w} t {uw : w ∈ dom(τ ′)},

τ [u← τ ′](w) def= τ(w) for u 6� w,

τ [u← τ ′](uw) def= τ ′(w).

In particular, we have τ [u ← τ ′]�u = τ ′. Observe that if τ, τ ′ ∈ TrX are binary trees and
u ∈ {L, R}∗ then τ�u and τ [u← τ ′] are binary trees (elements of TrX).

For a ∈ A by a(tL, tR) ∈ TrA we denote the tree consisting of the root ε labelled by the
letter a and two subtrees tL, tR ∈ TrA respectively.

Branches Let τ be an ω-tree. A finite sequence u ∈ dom(τ) such that u is a leaf of τ
is called a finite branch of τ . An infinite sequence α such that for every i the prefix α�i
is a node of τ is called an (infinite) branch of τ . If τ is a tree in PTrX then the branches
of τ are over the alphabet {L, R}. Sometimes we identify a branch α with the set of nodes
{α�i}i∈N that form a path.

We now recall a simple yet powerful lemma about ω-trees.

Lemma 0.1.1 (König’s lemma). Let τ ⊆ ω∗ be an ω-tree. Assume that every node u ∈ τ
has only finitely many children in τ (i.e. τ is finitely-branching). Then τ contains an
infinite branch if and only if τ is infinite (as a set).

0.2 Logic

In this section we introduce the logics studied in the thesis. The logics are introduced in
the usual way.

The thesis is devoted mostly to Monadic Second-Order (mso) logic. This logic is an
extension of First-Order (fo) logic with monadic quantifiers ranging over subsets of the
domain. Formally, assume a structure with a domain Θ over a signature Σ. The syntax of
mso allows:

23

• the equality x = y, the predicates from Σ, and the predicate x ∈ X,

• Boolean operators ∨, ∧, ¬,

• first-order quantifiers ∃x, ∀x over elements of Θ,

• monadic second-order quantifiers ∃X , ∀X over subsets X ⊆ Θ.

wmso logic has the same syntax as mso. The difference is the semantics: the monadic
second-order quantifiers of wmso range over finite subsets of the domain. Since finiteness is
definable in mso on ω-words and infinite trees, the expressive power of wmso is contained
in the expressive power of mso. First-Order logic (fo) can be defined as a restriction of
mso by disallowing the monadic second-order quantifiers.

Relational structures Fix an alphabet A. An ω-word α ∈ Aω can be seen as a relational
structure with:

• the domain ω,

• the binary relation ≤,

• the successor function s(i) = i+ 1, and

• predicates Pa(x) for a ∈ A — Pa(x) holds for x ∈ ω if α(x) = a.

A tree t ∈ TrA can be seen as a relational structure with:

• the domain {L, R}∗,

• the binary relations � and ≤lex,

• two successor functions sL(u) = uL, sR(u) = uR, and

• predicates Pa(x) for a ∈ A — Pa(x) holds for x ∈ {L, R}∗ if t(x) = a.

Since the successor functions can be defined using the orders, sometimes we assume
that the signature contains only the orders and the predicates Pa(x).

24

Languages We write Θ |= ϕ if a sentence ϕ is satisfied by a structure Θ. For a sentence
ϕ on ω-words over an alphabet A we define

L(ϕ) def= {α ∈ A∗ : α |= ϕ} .

Similarly, if ϕ is a formula on infinite trees over an alphabet A then

L(ϕ) def= {t ∈ TrA : t |= ϕ} .

In both cases we say that L(ϕ) is the language of ϕ. A language L is mso-definable (resp.
wmso-definable, fo-definable) if there exists a sentence of mso (resp. of wmso, of fo) ϕ
such that L(ϕ) = L.

0.3 Games

One of the most important tools in studying regular languages are games of infinite dura-
tion. A generic infinite duration game is defined by a tuple G = 〈V∃, V∀, vI, E,W 〉 where:

• V∃ and V∀ are disjoint sets. We put V def= V∃ t V∀. Elements of V are called positions
of G. Elements of VP are called positions belonging to P , for a player P ∈ {∃,∀}.

• vI ∈ V is an initial position.

• E ⊆ V × V is an edge relation. We assume that for every v ∈ V the set vE def= {v′ :
(v, v′) ∈ E} is finite and non-empty.

• W ⊆ V ω is a winning condition.

Strategies For simplicity, by V ∗ · VP we denote the set of finite sequences of vertices
such that the last vertex belongs to VP for a player P ∈ {∃,∀}.

A strategy of a player P ∈ {∃,∀} is a function σ : V ∗ · VP → V such that for every
u ∈ V ∗ · VP we have (u, uσ(u)) ∈ E. An infinite sequence π ∈ V ω such that for every i
we have (π(i), π(i + 1)) ∈ E is called a play. A play π is consistent with a strategy σ if
whenever π(i) ∈ VP then π(i+1) = σ(π�i+1). A play π is winning for ∃ if π ∈ W , otherwise
π is winning for ∀. A strategy σ of a player P is winning if every play π consistent with
σ is winning for P .

25

A game is determined if one of the players has a winning strategy. In general not every
infinite duration game is determined. The following theorem shows that all topologically
simple games are determined (see Section 0.6.1 for an introduction to Borel sets).

Theorem 0.2 (Martin [Mar75]). If W is a Borel subset of V ω then the game G is deter-
mined.

0.3.1 Positional strategies

A strategy σ of a player P is positional if the value σ(uv) for u ∈ V ∗ and v ∈ VP depends
only on v. A strategy σ of a player P is finite memory if there exist:

• a finite set M called the memory structure,

• an element mI ∈M ,

• a function δ : M × V →M , such that

σ(uv) for u ∈ V ∗ and v ∈ VP depends only on v and δ(mI, uv) defined inductively:

δ(m, ε) def= m

δ(m,uv) def= δ
(
δ(m,u), v

)
.

We will be particularly interested in games that are tree-shaped — for every v ∈ V

there is at most one path from vI to v in the graph (V,E). In such a game every strategy
is positional and such a strategy can be identified with its domain dom(σ) ⊆ V — the set
of positions accessible via σ from vI.

Sometimes we will be interested in finite approximations of strategies. A finite strategy
σ for a player P in a tree-shaped game is a finite subset of the arena such that for every
v ∈ σ either no element of vE is in σ (v is a leaf of σ) or:

• if v ∈ VP then exactly one of the elements of vE is in σ,

• otherwise all the elements of vE are in σ.

0.3.2 Parity games

A min-parity game (shortly parity game) is an infinite duration game with the winning
condition W of a special form. Assume that Ω: V → {i, i + 1, . . . , j} is a function that

26

assigns to every position of a game its priority. A play π satisfies the parity condition if

lim inf
n→∞

Ω(π(n)) ≡ 0 (mod 2),

i.e. if the smallest priority that occurs infinitely often during π is even. We define the
winning condition WΩ of a parity game 〈V∃, V∀, vI, E,Ω〉 as the set of plays satisfying the
parity condition. We define the index of a game G as the pair (i, j) — the range of priorities
used in this game.

The crucial property of parity games is that they are positionally determined, as ex-
pressed by the following theorem.

Theorem 0.3 ([EJ91,Mos91, JPZ08]). If G is a parity game (not necessarily finite) then
one of the players has a positional winning strategy in G.

If G is finite then a winning strategy can be effectively constructed.

0.4 Automata

The fundamental results of Büchi and Rabin say that both satisfiability problems of mso
formulae on ω-words and infinite trees1 are decidable. In both cases the proof goes through
a construction of appropriate automata with expressive power equal to mso logic. In this
section we define various models of automata for infinite objects that will be used in this
thesis.

Alternating automata We start with a definition of the most general variant of au-
tomata, namely the alternating ones. For the sake of simplicity we focus on the min-parity
acceptance condition. We introduce the ω-word and infinite tree automata uniformly. An
alternating automaton is a tuple

〈
AA, QA, qI

A, δA,ΩA
〉
where:

• AA is an alphabet.

• QA is a finite set of states.

• qI
A ∈ QA is an initial state.

1A simple interpretation argument shows that mso is decidable also on ω-trees.

27

• δA is a transition function assigning to a pair (q, a) ∈ QA × AA the transition b =
δA(q, a) built using the following grammar

b ::= >
∣∣∣ ⊥ ∣∣∣ b ∨ b ∣∣∣ b ∧ b ∣∣∣ b0

where b0 is an atomic transition defined below.

• ΩA : QA → N is a priority function.

An atomic transition b0 of an ω-word automaton is a pair (q, 1) for q ∈ QA. An atomic
transition of a tree automaton is a pair (q, d) where q ∈ QA and d ∈ {L, R}.

If an automaton A is known from the context, we omit the superscript A.

Acceptance game Fix an alternating automaton A, a state q0 ∈ Q, and a tree t ∈ TrA.
We define the game G(A, t, q0) as follows:

• V = {L, R}∗× (Sδ ∪Q), where Sδ is the set of all subformulae of formulae in rg(δ) (all
the formulae that appear in the transitions of A);

• all the positions of the form (u, b1 ∨ b2) belong to ∃ and the remaining ones to ∀;

• vI = (ε, q0);

• E contains the following pairs (for all u ∈ {L, R}∗):

–
(
(u, b), (u, b)

)
for b ∈ {>,⊥},

–
(
(u, b), (u, bi)

)
for b = b1 ∧ b2 or b = b1 ∨ b2 and i = 1, 2,

–
(
(u, q), (u, δ(q, t(u)))

)
for q ∈ Q,

–
(
(u, b0), (ud, q)

)
for an atomic transition b0 = (q, d);

• Ω(u,>) = 0, Ω(u,⊥) = 1, Ω(u, q) = ΩA(q) for q ∈ Q, u ∈ dom(t), and for other
positions Ω is max(rg(ΩA)).

In the case of an ω-word α the game G(A, α, q0) is almost the same, the differences are:

• V = ω × (Sδ ∪Q),

• the initial position vI is (0, q0),

• for an atomic transition b0 = (q, 1) we put into E the edge
(
(i, b0), (i+ 1, q)

)
.

28

An automaton A accepts an ω-word α (resp. tree t) from q0 ∈ Q if ∃ has a winning
strategy in G(A, α, q0) (resp. G(A, t, q0)). By L(A, q0) we denote the set of structures
accepted by the automaton A from a state q0. We write L(A) for L(A, qI

A) and G(A, t)
(resp. G(A, α)) for G(A, t, qI

A) (resp. G(A, α, qI
A)) . An automaton A recognises a language

L if L(A) = L.
A state q ∈ QA is non-trivial if it recognises a non-trivial language i.e. if L(A, q) 6= ∅

and L(A, q)c 6= ∅. Without loss of generality we implicitly assume that all our alternating
automata have only non-trivial states (possibly except the initial state), as expressed by
the following fact.

Fact 0.4.1. Every alternating automaton recognising a non-trivial language can be effec-
tively transformed into an equivalent alternating automaton without trivial states.

Additionally, each transition of an alternating automaton can be simplified so that it
does contain neither > nor ⊥ under ∨ or ∧.

Proof. Let A be an alternating automaton. We just remove trivial states of A. If q is trivial
then in each transition we replace each subterm of the form (q, d) by ⊥ or > (depending
on whether L(A, q) = ∅ or L(A, q)c = ∅).

Finally, we can simplify the transition expression using the standard laws: (>∧ b) = b,
(⊥∧ b) = ⊥, (>∨ b) = >, (⊥∨ b) = b. After this step the automaton is still an alternating
automaton recognising the same language but it does not contain any trivial states. �

Deterministic and non-deterministic automata An ω-word automaton is determi-
nistic if all its transitions are ω-word deterministic, i.e. of the form (q, 1). A tree-automaton
is deterministic if all its transitions are tree deterministic, i.e. of the form (qL, L) ∧ (qR, R).
An automaton is non-deterministic if its transitions are disjunctions of deterministic tran-
sitions.

Note that if A is a non-deterministic automaton then the transition function can be
written as a relation:

• δ ⊆ Q × A × Q in the case of ω-words — an element (q, a, q′) of δ represents that
δ(q, a) = . . . ∨ (q′, 1) ∨ . . .

• δ ⊆ Q×A×Q×Q in the case of trees — an element (q, a, qL, qR) of δ represents that
δ(q, a) = . . . ∨

(
(qL, L) ∧ (qR, R)

)
∨ . . .

For simplicity, we sometimes assume that a non-deterministic automaton A has a set
of initial states IA ⊆ QA. Clearly, such an automaton can be equipped with an additional

29

initial state qI
A and the transition relation can take care of guessing from which state

q ∈ IA to start.
A run of a non-deterministic ω-word automaton over an ω-word α ∈

(
AA

)ω
is an ω-

word ρ ∈
(
QA

)ω
such that for every i ∈ ω the triple (ρ(i), α(i), ρ(i + 1)) is a transition of

A.
A run of a non-deterministic tree automaton over a tree t ∈ TrAA is a tree ρ ∈ TrQA

such that for every u ∈ {L, R}∗ the quadruple (ρ(u), t(u), ρ(uL), ρ(uR)) is a transition of A.
A non-deterministic automaton A accepts an ω-word α (resp. an infinite tree t) if there

exists a run ρ of A on α (resp. t) such that:

• ρ is parity-accepting: the sequence Ω(ρ(0)),Ω(ρ(1)), . . . satisfies the min-parity con-
dition (resp. the min-parity condition is satisfied on all infinite branches of ρ).

• The value of ρ defined as ρ(0) (resp. ρ(ε) in the case of infinite trees) equals qI
A. If

there is a set of initial states IA then the value of ρ is required to belong to IA.

A run that satisfies both the above conditions is called accepting. Clearly the above
definition is equivalent to the one given for alternating automata — a run can be seen as
a strategy of ∃ in the respective game.

A non-deterministic automaton is unambiguous if it has at most one accepting run
on every input. In particular, every deterministic automaton is unambiguous. For more
intermediate classes of automata in-between deterministic and non-deterministic ones see
e.g. [CPP07,HP06,BKKS13].

0.4.1 Parity index of an automaton

In this section we define the index of an automaton. These definitions are used in Sec-
tion 0.7.2 to introduce the Rabin-Mostowski index hierarchy.

Let A be an alternating tree automaton. Let Graph(A) be the directed edge-labelled
graph over the set of vertices QA such that there is an edge p (a,d)−−→ q whenever (q, d) occurs
in δA(p, a). Additionally, vertices of Graph(A) are labelled by values of ΩA. We write
p

u−→ q if there is a path in Graph(A) whose edge-labels yield the word u.
The (Rabin-Mostowski) index of a parity automaton A is the pair (i, j) where i is the

minimal and j is the maximal priority of the states of A. In that case A is called an (i, j)-
automaton. Since shifting all priorities by an even number does not influence the language
recognised by an automaton, we can always assume that i is either 0 or 1. An automaton
is a Büchi automaton if (i, j) = (0, 1); it is a co-Büchi automaton if (i, j) = (1, 2).

30

An alternating automaton A is a Comp(i, j)-automaton (see [AS05]) if each strongly-
connected component in Graph(A) has priorities between i and j or between i+1 and j+1.
It follows from the definition that each Comp(i, j)-automaton is an (i, j+1) automaton,
and can be transformed into an equivalent Comp(i+1, j+2)-automaton by shifting the pri-
orities. The Comp(0, 0)-automata are more widely known as weak alternating automata.

0.5 Algebra

This thesis is based mainly on automata. However, in some contexts it is convenient to
use the algebraic approach to recognition. Therefore, we introduce the basic concepts,
namely semigroups, monoids, Wilke algebras, and ω-semigroups. We assume the reader to
be familiar with basic notions of universal algebra. Also, we use multi-sorted algebras, a
thorough introduction to these algebras with respect to recognition is given in [Idz12].

This section is used only in certain chapters of the thesis (namely in Part II and
Chapter 9) and may be skipped during the first reading.

Assume that M , N are two algebraic structures with the same operations. A function
f : M → N is a homomorphism if it preserves all the operations: for every operation P of
arity n and every choice of arguments (x1, . . . , xn) ∈Mn we have

f
(
P (x1, . . . , xn)

)
= P

(
f(x1), . . . , f(xn)

)
.

0.5.1 Semigroups and monoids

A semigroup is an algebraic structure M equipped with an operation · : M2 → M that is
associative (a · (b · c) = (a · b) · c). A monoid is a semigroup with a distinguished element
1 ∈ M that satisfies 1 · a = a · 1 = a. The operation · is called product and 1 is called the
neutral element.

An element e ∈M of a semigroup is called idempotent if e ·e = e. IfM is finite then for
every element s ∈M there is a unique idempotent in the set {sn : n ∈ N}, this idempotent
is called the idempotent power of s and denoted2 s].

Observe that the set of all finite words A∗ over an alphabet A has a natural structure of
an infinite monoid with the operation of concatenation and 1 defined as the empty word.
Similarly, A+ is a semigroup.

2Often the notion sω is used, to avoid confusion with ω-words we use s].

31

If a function f : M → N between two monoids is a homomorphism of semigroups then
it is also a homomorphism between monoids (i.e. f must preserve 1).

Additional structural properties of monoids (namely Green’s relations) are introduced
in Section 6.4.1 on page 180. They are only used in one construction in Chapter 6.

0.5.2 Wilke algebras

Now we introduce Wilke algebras that form one of the equivalent formalisms for recognition
of ω-regular languages, see [Wil93] and [PP04].

A Wilke algebra is a pair (H,V) with the following operations (for h ∈ H and s, s′ ∈ V):

• s · s′ ∈ V ,

• s · h ∈ H,

• s∞ ∈ H.

such that (V, ·) is a semigroup and the following axioms are satisfied:

s · (s′ · s′′) = (s · s′) · s′′

s · (s′ · h) = (s · s′) · h

(s · s′)∞ = s · (s′ · s)∞

∀n≥1 (sn)∞ = s∞

An ω-semigroup is a Wilke algebra with an additional operation ∏ : V ω → H such that

∏
(s, s, . . .) = s∞

s ·
∏

(s0, s1, . . .) =
∏

(s, s0, s1, . . .)∏
(s0 · . . . · sk1 , sk1+1 · . . . · sk2 , . . .) =

∏
(s0, s1, s2, . . .)

For every alphabet A the pair (Aω, A+) has a natural structure of an ω-semigroup.
Additionally, (Aω, A+) is a free ω-semigroup on A, as expressed by the following fact.

Fact 0.5.1 ([PP04, Proposition 4.5]). Let A be an alphabet and (H,V) be an ω-semigroup.
For every function f : A→ V there is a unique extension f̄ : (Aω, A+)→ (H, V) of f that
is a homomorphism of ω-semigroups.

32

The following theorem shows that finite Wilke algebras can be seen as representations
of arbitrary finite ω-semigroups.

Theorem 0.4 (Wilke [PP04, Theorem 5.1]). Every Wilke algebra has a unique extension
by an operation ∏ into an ω-semigroup.

However, the following example shows that there are functions f : (Aω, A+) → (H,V)
that are homomorphisms of Wilke algebras but not homomorphisms of ω-semigroups.
Therefore, it is important in Fact 0.5.1 to require f̄ to be a homomorphism of ω-semigroups.

Example 0.5.2. Let A = {a, b}, H = {ha, hb}, and V = {sa, sb}. Let f : (Aω, A+) →
(H, V) be defined as follows:

• for u ∈ A+ let f(u) = sa if and only if u contains letter a,

• for a regular α ∈ Aω let f(α) = ha if and only if α contains infinitely many letters a,

• for a non-regular α ∈ Aω let f(α) = hb.

The function f induces uniquely a structure of Wilke algebra on (H,V) in such a way
that f becomes a homomorphism of Wilke algebras. By Theorem 0.4, the Wilke algebra
(H, V) can be uniquely extended by an operation ∏ into an ω-semigroup. However, f is
not a homomorphism of ω-semigroups, otherwise we would have

hb = f(a ba bba bbba bbbba · · ·) =
∏

(sa, sa, . . .) = f(a a a · · ·) = ha.

0.5.3 Recognition

Let f : M → N be a homomorphism between two algebraic structures (M and N may be
multi-sorted here). Let F be a subset of one of the sorts of N and L be a subset of the
respective sort of M . We say that f recognises L using F if

f−1(F) = L.

Similarly, f recognises L if it recognises L using some F contained in the respective sort
of N .

33

0.5.4 Ramsey’s theorem for semigroups

In this section we present an application of Ramsey’s theorem (see Theorem 0.1) to the
ω-word case.

Theorem 0.5. Let M be a finite semigroup and f : A∗ → M be a homomorphism. Then
for every ω-word α ∈ Aω there exists a sequence of finite words u0, u1, u2, . . . and two
elements s, e of the semigroup M such that:

(i) α = u0u1u2 . . .,

(ii) f(u0) = s,

(iii) f(un) = e for every n > 0,

(iv) s · e = s and e · e = e.

A pair (s, e) satisfying Condition (iv) above is often called a linked pair, see [PP04]. To
simplify the properties in the above theorem we introduce the following definition.

Definition 0.5.3. For a given homomorphism f : A∗ → M we say that the type (or f -
type) of a decomposition α = u0u1 . . . is t = (s, e) if (s, e) is a linked pair, f(u0) = s, and
f(un) = e for all n > 0.

Of course not every decomposition has some type. However, Theorem 0.5 implies that
for every ω-word α and homomorphism f there exists some decomposition of α of some
type t = (s, e). A priori there may be two decompositions of one ω-word of two distinct
types.

0.6 Topology

In this section we introduce topological notions that will be used later. Most of the pre-
sented definitions and facts are basic and standard. Some more involved concepts are
presented in Sections 0.6.4 and 0.6.5.

A topological space (X,U) is called Polish if it is separable (i.e. it contains a countable
dense set) and the topology U ⊆ P(X) comes from a complete metric on X. Elements
U ∈ U are called open sets, the complement of an open set is closed. If a set is both closed
and open then it is a clopen. A family B ⊆ U is called a basis of the topology if for every
x ∈ X and U ∈ U such that x ∈ U there exists B ∈ B such that x ∈ B ⊆ U . In that case

34

U coincides with the family of unions of elements of B. A space is zero-dimensional if the
family of clopen sets is a basis of the topology.

If D ⊆ X is a subset of a topological space X then by D we denote the closure of D
— the intersection of all closed subsets of X that contain D.

A subset K ⊆ X of a topological space is called compact if for every family F of open
sets such that K ⊆ ⋃F there exists a finite subfamily F ′ ⊆ F such that K ⊆ ⋃F ′.
Product spaces Let Z be a non-empty countable set. Zω with the product topology is
a zero-dimensional Polish space. The family of sets of the form u ·Zω for u ∈ Z∗ is a basis
for the topology of Zω. If Z is a singleton then Zω is also a singleton; if Z is finite then
Zω is homeomorphic (i.e. topologically isomorphic) to the Cantor set 2ω; if Z is countably
infinite then Zω is homeomorphic to the Baire space ωω.

The set (Z t {⊥})ω
∗

= ∏
u∈ω∗

(
Z t {⊥}

)
equipped with the natural product topology

is a zero-dimensional Polish space. Observe that ωPTrZ is a subset of (Z t {⊥})ω
∗
. By a

standard argument (see [Kec95, Theorem 3.8 in Chapter 3.B]) the spaces of partial ω-trees
ωPTrZ and partial binary trees PTrZ as well as their complete variants ωTrZ and TrZ are
zero-dimensional Polish spaces. The families of clopen sets of these spaces coincide with
the finite Boolean combinations of sets of the form

{τ : u ∈ dom(τ) ∧ τ(u) ∈ Z ′} for u ∈ ω∗ and Z ′ ⊆ Z.

0.6.1 Borel and Projective Hierarchy

Let us fix an uncountable Polish space X. The Borel hierarchy is defined inductively:

• Σ0
1(X) denotes the family of open subsets of X,

• Π0
1(X) denotes the family of closed subsets of X (the complements of open sets),

for a countable ordinal η:

• Σ0
η(X) is the family of countable unions of sets from ⋃

β<η Π0
β(X),

• Π0
η(X) is the family of countable intersections of sets from ⋃

β<η Σ0
β(X).

Note that for each η the family Σ0
η(X) consists exactly of the complements of the sets

from Π0
η(X). ∆0

η(X) is defined as the intersection Σ0
η(X)∩Π0

η(X). Similarly, BC(Σ0
η)(X)

is the family of finite Boolean combinations of sets from Σ0
η(X). The families constitute

35

a hierarchy — each family is included in all the families with greater subindex (see Fig-
ure 0.6.1). An important fact about the hierarchy is that all the inclusions presented in
Figure 0.6.1 are strict.

Σ0
1

BC(Σ0
1)

Π0
1

Σ0
2

BC(Σ0
2)

Π0
2

∆0
2 ∆0

3 · · ·

Figure 0.6.1: The Borel hierarchy.

The family of Borel sets, defined as

B(X) =
⋃
η<ω1

Σ0
η(X)

is the least family closed under countable Boolean operations that contains all open sets.
Proofs and details about the Borel hierarchy can be found e.g. in [Sri98, Chapter 3.6].

Projective hierarchy The class of Borel sets is not closed under projection. Each set
that is a projection of a Borel set is called analytic, the family of analytic sets is denoted
by Σ1

1(X). Formally:

Σ1
1(X) def=

{
P ⊆ X : ∃B∈B(X×ωω) P = π1(B)

}
,

where π1 is the projection on the first coordinate. The superscript 1 means that the class is
a part of the projective hierarchy. The rest of the projective hierarchy is defined as follows
(see Figure 0.6.2):

Π1
i (X) consists of the complements of the sets from Σ1

i (X),

Σ1
i+1(X) consists of the projections of the sets from Π1

i (X),

i.e. Σ1
i+1(X) def=

{
π1(B) : B ∈ Π1

i (X × ωω)
}
,

∆1
i (X) is the intersection of Σ1

i and Π1
i .

The sets from the family Π1
1(X) are called co-analytic. An important result in the

theory, the theorem of Souslin (see e.g. [Kec95, Chapter 14.C]), states that if a set is analytic

36

B = ∆1
1

Σ1
1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

∆1
2 ∆1

3 · · ·

Figure 0.6.2: The projective hierarchy.

and co-analytic then it is in fact Borel. The Borel hierarchy together with the projective
hierarchy constitute the so-called boldface hierarchy, see the diagram on Figure 0.6.3.

Σ0
1

Π0
1

Σ0
2

Π0
2

Σ0
3

Π0
3

· · ·
Σ0
ω

Π0
ω

Σ0
ω+1

Π0
ω+1

· · ·
Σ0

2ω

Π0
2ω

· · ·
Σ1

1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

· · ·

Figure 0.6.3: The boldface hierarchy.

If the space is clear from the context we will omit it and write B, Σ0
η, Π0

η Σ1
i , Π1

i , etc.

0.6.2 Topological complexity

For the needs of this thesis, a topological complexity class C is any of the classes of the
boldface hierarchy, see Figures 0.6.1 and 0.6.2.

Analogously to the complexity theory, we have the notions of reductions and complete-
ness. Let X, Y be two topological spaces and let K ⊆ X and L ⊆ Y . We say that a
continuous mapping f : X → Y is a reduction of K to L if K=f−1(L). The fact that K
can be continuously reduced to L is denoted by K ≤W L. On Borel sets, the pre-order
≤W induces the so-called Wadge hierarchy (see [Wad83]) which greatly refines the Borel
hierarchy and has the familiar ladder shape with pairs of mutually dual classes alternating
with single self-dual classes.

It is a simple property of continuous mappings that if L belongs to a topological com-
plexity class C then so does K for every K ≤W L. A language L is called C-hard if every
set K ∈ C can be reduced to L. We say that L is C-complete if additionally L ∈ C (i.e. L
is the ≤W-greatest element of C).

The following fact presents a standard way of using the above notions.

Fact 0.6.1. If C (D are two (non-equal) topological complexity classes and L is D-hard
then L /∈ C.

37

Proof. Assume to the contrary that L ∈ C. Take any language K ∈ D \ C. Since L is D-
hard, we can write K = f−1(L) for some continuous mapping f . By the above observation,
it implies that K ∈ C, which gives a contradiction. �

0.6.3 Ranks

Ranks form a powerful tool in analysis of descriptive properties of sets. In this section
we introduce the most classical of the ranks — the rank on well-founded trees. For an
introduction to the theory of ranks see [Kec95, Chapter 2.E].

An ω-tree τ ∈ ωPTr is well-founded if it doesn’t have an infinite branch. Otherwise τ is
ill-founded. The set of all well-founded ω-trees is denoted WF ⊆ ωPTr. The complement
of WF is denoted IF.

It is possible to assign to each well-founded ω-tree τ ∈ WF its rank — a measure of
complexity of τ . If τ = ∅ then rank(τ) = 0. Assume otherwise and let (τi)i∈ω be the
sequence of subtrees of τ under the root: τi = τ�(i) (if i /∈ dom(τ) then τ�(i) = ∅). Put

rank(τ) = sup
i∈ω

(
1 + rank(τi)

)
.

Since the domain of τ is countable, rank(τ) is an ordinal number smaller than ω1. By
the definition, the rank is monotone: for u 6= ε we have rank(τ) > rank(τ�u). Sometimes
we call rank(τ�u) the rank of u (in τ).

Fact 0.6.2. If rank(τ) is a limit ordinal then the root ε is infinitely-branching in τ : for
infinitely many i ∈ ω we have i ∈ dom(τ).

Fact 0.6.3. For every well-founded ω-tree τ and η ≤ rank(τ) there exists a node u ∈
dom(τ) such that rank(τ�u) = η.

Proof. For η = rank(τ) we can take u = ε. For η < rank(τ) we proceed by induction on
rank(τ). �

0.6.4 The boundedness theorem

In this section we present the most fundamental result relating descriptive properties of a
set and ranks — the boundedness theorem. First we recall that the ill-founded ω-trees is
one of the crucial examples of a non-Borel set.

38

Theorem 0.6 ([Kec95, Theorem 27.1]). The set IF of ill-founded ω-trees is Σ1
1-complete.

Dually, the set WF of well-founded ω-trees is Π1
1-complete.

The following theorem expresses the correspondence between the ranks of well-founded
ω-trees and the topological complexity of sets.

Theorem 0.7 (The boundedness theorem (see [Kec95, Theorem 35.23])). If X ⊆ ωPTr is
an analytic set and X ⊆WF then there exists η < ω1 such that

∀τ∈X rank(τ) ≤ η.

On the other hand, for every η < ω1 the set

{τ ∈ ωPTr : rank(τ) ≤ η} is Borel.

Sketch of the proof. The second part of the statement can be proved by induction on η (it
also follows from more general considerations of ranked sets).

Let us sketch a proof of the first part. First assume the contrary. The heart of the
proof is to show that the following relation is analytic:

RE
def=
{

(τ, τ ′) : τ ′ is ill-founded or both are well-founded and rank(τ) ≤ rank(τ ′)
}
.

Then WF has the following analytic definition

WF =
{
τ : ∃τ ′∈X (τ, τ ′) ∈ RE

}
,

what contradicts the fact that WF is co-analytic complete. �

A technique motivated by this proof is used in Section 4.3 (see page 128) to prove upper
bounds on topological complexity of regular languages of thin trees.

0.6.5 Co-inductive definitions

In some cases it is convenient to define a function using a co-inductive definition. In this
section we formalise this notion for functions of the type TrA → TrB. The crucial property
is that every function defined in such a way is continuous. Whenever such a co-inductive
definition is used, an explicit reference to this section is given. Therefore, one can skip this
section when reading the thesis for the first time.

39

We state the properties of a co-inductive definition for binary trees for the sake of
simplicity. The same construction works for ω-trees as well as partial trees. Although it is
possible to formalize this notion in an abstract way using the language of category theory,
we focus only on these concrete applications of co-induction.

Proposition 0.6.4. Let A, B be two alphabets. Assume that for every a ∈ A we have a
triple (t(a), u(a), w(a)), where t(a) ∈ TrB is a tree and u(a), w(a) are two nodes of t(a) that are
incomparable with respect to the prefix order � (in particular none of them is ε).

There exists a unique function f : TrA → TrB such that for every t ∈ TrA such that
t = a(tL, tR) we have:

f(t) = t(a)
[
u(a) ← f(tL), w(a) ← f(tR)

]
. (0.6.1)

Moreover, the function f is continuous.

Proof. We will show how to uniquely define f(t)(u) for a node u ∈ {L, R}∗ using Con-
dition 0.6.1. It will imply that the function f(t) is defined uniquely. Additionally, since
f(t)(u) will depend only on a finite part of t, it will imply that the function f is continuous.

We proceed by induction on the length of u (for all trees t ∈ TrA at once). Assume
that for all u′ ≺ u and all t ∈ TrA the value f(t)(u′) is already uniquely defined (and
depends only on a finite part of t). Assume that t = a(tL, tR) for a letter a ∈ A and two
trees tL, tR ∈ TrA.

If u(a) � u (the case w(a) � u is entirely dual) then let u = u(a) · z for z ∈ {L, R}∗.
Therefore, Condition (0.6.1) implies that f(t)(u) = f(tL)(z). Since z is shorter than u so
this value is uniquely determined.

Now assume contrary, that u does not contain u(a) nor w(a) as a prefix. In that case
Condition (0.6.1) implies that f(t)(u) = t(a)(u) and again this value is uniquely determined
and depends only on the letter t(ε) = a. �

0.7 Regular languages

In this section we collect standard properties of regular languages. Assuming some basic
knowledge in automata theory the section can be skipped during the first reading. The
presented facts are explicitly referenced whenever used. For a broad introduction to regular
languages see [Tho96].

40

The following results summarize equivalent ways of defining various classes of regular
languages.

Regular languages We start with a theorem about regular languages of finite words.

Theorem 0.8 (Trakhtenbrot [Tra62], Rabin Scott [RS59], cf. e.g. [PP04]). The following
conditions are effectively equivalent for a language L ⊆ A∗ of finite words:

• L is definable in mso,

• L is definable in wmso,

• L is recognised by a deterministic finite automaton3,

• L is recognised by an alternating finite automaton,

• L is recognised by a homomorphism f : A∗ →M into a finite monoid M .

A language satisfying the above conditions is called a regular language.

ω-regular languages Now we give a characterization of regular languages of ω-words.

Theorem 0.9 (Büchi [Büc62], McNoughton [McN66], Mostowski [Mos84], Emmerson
Jutla [EJ91], Wilke [Wil93]). The following conditions are effectively equivalent for a lan-
guage L ⊆ Aω of ω-words:

• L is definable in mso,

• L is definable in wmso,

• L is recognised by a deterministic parity ω-word automaton,

• L is recognised by an alternating parity ω-word automaton,

• L is recognised by a homomorphism f : (Aω, A+)→ (H, V) into a finite ω-semigroup
(H, V).

A language satisfying the above conditions is called an ω-regular language.
As a consequence one obtains the decidability result of Büchi.

Theorem 0.10 (Büchi [Büc62]). The mso theory of the ω-chain (ω,≤) is decidable. If an
ω-regular language is non-empty then it contains a regular ω-word.

3Automata for finite words are not used in this thesis, therefore we skip a formal definition of them.

41

Regular tree languages The following theorem characterizes regular languages of infi-
nite trees.

Theorem 0.11 (Rabin [Rab69], Muller Schupp [MS95]). The following conditions are
effectively equivalent for a language L ⊆ TrA of infinite trees:

• L is definable in mso,

• L is recognised by a non-deterministic parity tree automaton,

• L is recognised by an alternating parity tree automaton.

A language satisfying the above conditions is called a regular tree language (we avoid
ambiguity here because regular languages of finite trees do not appear in this thesis).

As a consequence one obtains the celebrated result of Rabin.

Theorem 0.12 (Rabin [Rab69]). The mso theory of the complete binary tree is decidable.
If a regular tree language is non-empty then it contains a regular tree.

wmso-definable languages The following theorem is a characterization of the wmso-
definable languages of infinite trees. The characterization is not effective in the sense
that given any representation of a language L it is not known how to check whether L is
wmso-definable.

Theorem 0.13 (Rabin [Rab70], also Kupferman Vardi [KV99]). The following conditions
are effectively equivalent for a language L ⊆ TrA of infinite trees:

• L is definable in wmso,

• L is recognised by a Comp(0, 0)-alternating tree automaton,

• both L and the complement Lc are recognised by alternating Büchi tree automata.

Büchi languages The following theorem states the de-alternation result for Büchi au-
tomata. It also proves that Büchi automata correspond to the existential fragment of mso
with respect to wmso.

Theorem 0.14 (Muller Schupp [MS95]). The following conditions are effectively equivalent
for a language L ⊆ TrA of infinite trees:

• L is recognised by a non-deterministic Büchi tree automaton,

42

• L is recognised by an alternating Büchi tree automaton,

• L is definable by a sentence of the form

∃X1 . . . ∃Xn ϕ(X1, . . . , Xn)

where ϕ is a formula of wmso.

Deterministic languages An easy construction of an appropriate automaton proves
the following fact.

Fact 0.7.1. If A is a deterministic tree automaton then L(A) can be recognised by an
alternating (1, 2)-automaton.

Games with ω-regular winning conditions The following theorem expresses an im-
portant feature of games with ω-regular winning conditions.

Theorem 0.15 (Büchi Landweber [BL69], Gurevich Harrington [GH82], Emmerson
Jutla [EJ91], Mostowski [Mos91]). For a finite game G if the winning condition W ⊆ V ω

is ω-regular (over the alphabet V) then one of the players has a finite memory winning
strategy in G. Such a winning strategy can be effectively constructed.

0.7.1 Classes of regular tree languages

Now we define classes of regular tree languages that correspond to certain classes automata.
A language L is:

• deterministic if L is recognised by a deterministic parity tree automaton,

• unambiguous if L is recognised by an unambiguous parity tree automaton,

• bi-unambiguous if both L and the complement Lc are unambiguous,

• Büchi if L is recognised by an alternating4 Büchi tree automaton,

• co-Büchi if L is recognised by an alternating co-Büchi tree automaton.

An easy pumping argument shows that non-deterministic co-Büchi tree automata have
very limited expressive power (e.g. they are weaker than alternating co-Büchi automata).

4Theorem 0.14 implies that equivalently one can take non-deterministic automata here.

43

0.7.2 Index hierarchies

Now we introduce the classes of languages recognisable by automata of certain indices. We
start with the alternating index hierarchy. For i < j ∈ N, let5

• RMalt(i, j) be the class of regular tree languages recognised by alternating (i, j)-
automata,

• Πalt
j

def= RMalt(0, j) (for j = 1 these are Büchi languages),

• Σalt
j

def= RMalt(1, j + 1) (for j = 1 these are co-Büchi languages),

• ∆alt
j

def= Πalt
j ∩Σalt

j ,

• Comp(Πalt
j) be the class of regular tree languages recognised by Comp(0, j)-

automata.

The above classes are naturally ordered by inclusion, as depicted on Figure 0.7.1.

Comp(Πalt
0)

Πalt
1

Comp(Πalt
1)

Σalt
1

Πalt
2

Comp(Πalt
2)

Σalt
2

∆alt
1 ∆alt

2 ∆alt
3 · · ·=

Figure 0.7.1: The alternating index hierarchy.

Similarly, one can consider non-deterministic automata instead of alternating ones,
i.e. define RMnon−det(i, j) as the class of languages recognised by non-deterministic (i, j)-
automata. The classes RMnon−det(i, j) form the non-deterministic index hierarchy. The
shape of the hierarchy is the same as of the alternating one, except the classes Comp(Πalt

j)
that are not defined in the non-deterministic case.

The expressive power of alternating and non-deterministic tree automata is the same
(see Theorem 0.11), therefore both hierarchies contain the same languages. However,
particular levels of these hierarchies differ (see [NW05]). As shown in [Niw86, Bra98,

5The following assignment of symbols Σ and Π follows the definitions in [AS05,AMN12], however the
indices j are shifted by one (also, we use the min-parity condition here). The assignment of the symbols
is opposite to the one from [FMS13].

44

Arn99,AS05], both hierarchies are strict, in particular, in the alternating case we have

Comp(Πalt
j) (∆alt

j+1 for j > 0. (0.7.1)

A natural question is to compute exact position of a given language in these hierarchies.
It is formalised as the following computational problem.

Problem 0.7.2 (Alternating (resp. non-deterministic) index problem).

• Input An alternating tree automaton A.

• Output The minimal class of the alternating (non-deterministic) index hierarchy
that contains L(A).

Both problems were solved for deterministic automata [NW05,NW03], see Section 0.7.6.
They are both open for general automata. Colcombet and Löding [CL08] have proposed a
reduction of the non-deterministic index problem to a boundedness problem for a specific
class of tree automata with counters. However, the latter problem is not known to be
decidable. The known decidability results regarding these hierarchies are subsumed by the
results of [FMS13,CKLV13].

0.7.3 Topological complexity of regular languages

The following results summarize topological complexity of regular languages definable in
various ways. In each statement, the given upper bound is optimal from the point of view
of the boldface hierarchy. Since there are only countably many regular languages, they
cannot fulfil any class of the boldface hierarchy except ∆0

0.

Theorem 0.16 (See [TL93]).

• ω-regular languages are in BC(Σ0
2),

• wmso-definable languages of infinite trees lie on the finite levels of the Borel hierar-
chy,

• Büchi-recognisable languages of infinite trees are in Σ1
1,

• languages of infinite trees recognisable by deterministic parity automata are in Π1
1,

• regular languages of infinite trees are in ∆1
2.

45

In this thesis the question of descriptive complexity of a language L is used in the
meaning “is there some simple description of L”, for instance:

• is L definable in some weak logic (mainly wmso logic),

• what is the minimal topological complexity class that contains L?

It should not be confused with the descriptive complexity in the meaning of [Imm99].

0.7.4 The languages Wi,j

The languages Wi,j (see [Arn99,AN07]) proved to be convenient tools for studying topo-
logical complexity of regular tree languages. As expressed by Theorem 0.17, the language
Wi,j is complete for the class of languages recognisable by alternating (i, j)-automata.

Definition 0.7.3. For i < j consider the following alphabet

Ai,j = {∃,∀} × {i, i+ 1, . . . , j}.

With each t ∈ TrAi,j
we associate a parity game Gt where

• V = dom(t),

• E =
{

(u, ud) : u ∈ dom(t), d ∈ {L, R}
}
,

• vI = ε,

• if t(u) = (P, n) ∈ Ai,j then Ω(u) = n and u ∈ VP .

Let Wi,j be the set of all trees over Ai,j such that ∃ has a winning strategy in Gt.

Theorem 0.17 (Arnold [Arn99]). The language Wi,j can be recognised by a non-
deterministic (i, j)-automaton (in particular Wi,j ∈ RMnon−det(i, j) ⊆ RMalt(i, j)).

For every alternating (i, j)-automaton A there is a canonical continuous function re-
ducing L(A) to Wi,j (i.e. L(A) ≤W Wi,j).

The languages Wi,j and the dual Wi+1,j+1 are incomparable with respect to ≤W

(i.e. Wi,j 6≤W Wi+1,j+1).
Additionally, W0,1 is Σ1

1-complete and W1,2 is Π1
1-complete.

The following corollary gives an easy way of proving that a particular language does
not belong to a given class of the alternating index hierarchy.

46

Corollary 0.7.4. If Wi,j ≤W L then L /∈ RMalt(i + 1, j + 1) i.e. L cannot be recognised
by an alternating (i+ 1, j + 1)-automaton.

In some circumstances one needs to adjust the languages Wi,j to current needs. In
particular, it is sometimes convenient to add to the alphabet Ai,j two additional letters
>, ⊥ that correspond to an instant win in the game Gt. It is expressed by the following
remark.

Remark 0.7.5. All the conditions from Theorem 0.17 are valid for the modification of
the languages Wi,j by extending the alphabet Ai,j with two additional letters >, ⊥ of the
following semantics: a play π that reaches > (resp. ⊥) for the first time in Gt is winning
for ∃ (resp. ∀) no matter what the priorities occur before and after that.

0.7.5 Separation property

The notion of separation is an important concept in descriptive set theory and automata
theory.

Definition 0.7.6. A class of languages C has the separation property with respect to a
class D, if the following condition holds:

For every pair of disjoint languages L1, L2 from C there exists a language
Lsep ∈ D such that6

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

In that case we say that Lsep separates L1 and L2. If not stated otherwise, the class D
is taken as C ∩ Cc — the class of languages L such that both L and Lc belong to C.

Usually, one class from a pair of dual classes C, Cc has the separation property and the
other one does not. Below we recall some known separation-type theorems.

Separation in topology The first one is a simple observation about Borel sets.

Theorem 0.18 ([Kec95, Theorem 22.16]). Let η < ω1. Every two disjoint Π0
η languages

can be separated by a language that belongs to Π0
η ∩Σ0

η. On the other hand, there exists a
pair of disjoint languages in Σ0

η that cannot be separated as above.

The following theorem is an important extension to the projective hierarchy.
6Recall that Xc denotes the complement of a set X.

47

Theorem 0.19 (Lusin (cf. [Kec95, Theorem 14.7, Exercise 28.2])). If L1, L2 ∈ Σ1
1(X) are

two disjoint analytic subsets of a Polish space X then there exists a Borel set separating
them. There exists a pair of disjoint co-analytic (i.e. Π1

1) sets that cannot be separated by
any Borel set.

An important consequence of the above separation result is the following theorem.

Theorem 0.20 (Lusin Souslin [Kec95, Theorem 15.1]). Assume that f : X → Y is a
continuous function between two Polish spaces and A ⊆ X is Borel. If f�A is injective then
f(A) is Borel.

Separation in automata theory The following results can be seen as an automata
theoretic counterpart of Theorem 0.19.

Theorem 0.21 (Rabin [Rab70]). If L1, L2 are two disjoint Büchi languages of infinite
trees then there exists a wmso-definable (i.e. Comp(Πalt

0)) language that separates them.

This result was extended to higher levels of the non-deterministic index hierarchy, as
expressed by the following theorem.

Theorem 0.22 (Arnold Santocanale [AS05]). Every pair of disjoint languages from
RMnon−det(0, j) (i.e. languages recognised by non-deterministic min-parity tree automata
of index (0, j)) can be separated by a language from Comp(Πalt

j−1).
Moreover, the construction of an automaton for the separating language is polynomial

in the sizes of the given automata from RMnon−det(0, j).

The following theorem gives negative answers about separability of regular tree lan-
guages.

Theorem 0.23 (Hummel Michalewski Niwiński [HMN09], Michalewski Niwiński [MN12],
Arnold Michalewski Niwiński [AMN12]). There exists a pair of disjoint regular tree lan-
guages recognised by (1, 2)-parity alternating tree automata (i.e. Σalt

1 languages) that cannot
be separated by any Borel set. In particular, these languages cannot be separated by any
wmso-definable language.

For every j ≥ 1 there exists a pair of disjoint regular tree languages from Σalt
j that

cannot be separated by any ∆alt
j language.

48

0.7.6 Deterministic languages

As mentioned earlier, many problems simplify when we restrict to languages recognisable
by deterministic automata. Here we collect the decidability results for these languages.

Theorem 0.24 (Niwiński Walukiewicz [NW98]). The non-deterministic index problem is
decidable for deterministic languages.

The following theorem is often referred to as a gap property for deterministic languages.

Theorem 0.25 (Niwiński Walukiewicz [NW03]). It is decidable if a given regular tree
language is deterministic. A deterministic tree language is either:

• wmso-definable and in Π0
3,

• not wmso-definable and Π1
1-complete.

Moreover, the dichotomy is effective. In particular, a deterministic tree language is either
in Comp(Πalt

0) or in Σalt
1 \Comp(Πalt

0) and it is decidable which of the cases holds.

Finally, the following result of Murlak gives the ultimate solution to topological ques-
tions about deterministic languages by providing an effective procedure that computes the
level in Wadge hierarchy7 that a given deterministic language occupies.

Theorem 0.26 (Murlak [Mur08]). The Wadge hierarchy is decidable for deterministic tree
languages.

7This hierarchy is not studied in this thesis, it can be seen as a refinement of Borel hierarchy. In the case
of Theorem 0.26, Wadge hierarchy can be seen as the quotient of the class of deterministic tree languages
by the order ≤W from Section 0.6.2.

49

Part I

Subclasses of regular languages

50

Chapter 1

Collapse for unambiguous automata

A natural class in-between deterministic and non-deterministic automata is the class of
unambiguous ones — an automaton is unambiguous if it has at most one accepting run
on every tree. It seems that an unambiguous automaton represents the structure of the
recognised language in a more rigid way than a general non-deterministic automaton.
However, as shown in [NW96], there are ambiguous regular tree languages — languages
that are not recognised by any unambiguous automaton.

In contrast to general regular tree languages, most of the problems are solved in the case
of deterministic automata: it is decidable whether a given language is recognisable by a
deterministic automaton [NW05], the non-deterministic index problem is decidable [NW03,
NW98], as well as the Wadge hierarchy [Mur08].

In comparison, the class of unambiguous tree languages (recognisable by unambiguous
automata) is still a terra incognita. Not only it is unknown how to verify whether a given
regular tree language is unambiguous, but also there are no non-trivial upper bounds on
the descriptive complexity of unambiguous languages in comparison to all regular tree
languages. In particular, it is open whether all unambiguous languages can be recognised
by alternating parity automata of a bounded parity index.

There are only two estimations on descriptive complexity of unambiguous languages
known. First, a recent result in [Hum12] shows that unambiguous languages are topologi-
cally harder than deterministic ones. Second, in [FS09] the authors observe, by a standard
descriptive set theoretic argument, that the language recognised by an unambiguous Büchi
automaton must be Borel. In this chapter we extend the latter result by showing the
following theorem.

Theorem 1. If A is an unambiguous min-parity automaton of index (0, j) then the lan-
guage L(A) can be recognised by an alternating Comp(0, j−1)-automaton of size polynomial
in the size of A.

In particular, if A is Büchi and unambiguous then L(A) is wmso-definable.

51

This theorem extends the mentioned result from [FS09] in two directions. First, it shows
that every unambiguous Büchi automaton recognises a language that is wmso-definable.
It is known that every regular tree language definable in wmso is Borel but the converse
is open (see Conjecture 2 on page 10). Second, the theorem presented here gives a collapse
also for higher priorities.

To the author’s best knowledge this is the first result where it is shown how to use
the fact that a given automaton is unambiguous to derive upper bounds on the parity
index of the recognised language. Therefore, this result should be treated as a first step
towards descriptive complexity bounds for unambiguous languages, and generally a better
understanding of them.

One should note that in the above theorem the unambiguous-and-Büchi assumptions are
put on one automaton. It is still possible for a regular tree language to be both: recognised
by an unambiguous automaton and by some (other) Büchi automaton. An example of such
a language is the H-language proposed in [Hum12]: “exists a branch containing only a’s
and turning infinitely many times right”. To the author’s best knowledge, no non-trivial
upper bound is known when the conditions of unambiguity and certain index are put on
the language.

The construction presented here can be seen as an automata theoretic adaptation of
the proof of the theorem of Lusin and Souslin [Kec95, Theorem 15.1] (see Theorem 0.20 on
page 48) stating that if f : X → Y is injective and continuous then the image f(X) is Borel
in Y . The proof presented in [Kec95] is based on the Lusin Separation Theorem [Kec95,
Theorem 14.7]. Here one can use Rabin’s separation result (Theorem 0.21 on page 48) for
j = 1 and the separation of Arnold and Santocanale (Theorem 0.22 on page 48) for j > 1.
The idea to use the separation result of Arnold and Santocanale for the case of j > 1 was
suggested by Henryk Michalewski.

The proof goes as follows. We first observe that if an automaton is unambiguous then
the transitions of the automaton have to correspond, is some sense, to disjoint languages.
By applying the separation result of Arnold and Santocanale (see Theorem 0.22 on page 48),
these disjoint languages can be separated by Comp(Πalt

j−1)-languages. This leads to a
construction of a unique run ρt of a given automaton on a given tree t (Lemma 1.1.2 in
Section 1.1).

Then, in Section 1.2, we conclude the proof of Theorem 1 by providing an effective
construction of a Comp(0, j−1)-automaton recognising L(A). This automaton combines

52

the Comp(0, j−1)-automata for transition languages with an additional game played on
the run ρt.

1.1 Unique runs

In this section we prove Lemma 1.1.2 showing how to define, for a given tree t, a unique
run ρt of a given unambiguous automaton A of index (0, j). The crucial property of this
construction is that the constrains on ρt are Comp(Πalt

j); additionally, ρt is accepting if
and only if t belongs to the language L(A).

Let us fix an unambiguous automaton A of index (0, j). Let Q be the set of states of A
and A be its working alphabet. We will say that a transition δ = (q, a, qL, qR) of A starts
from (q, a).

A pair (q, a) ∈ Q × A is productive if it appears in some accepting run: there exists a
tree t ∈ TrA and an accepting run ρ of A on t such that for some vertex u we have ρ(u) = q

and t(u) = a. This definition combines two requirements: that there exists an accepting
run that leads to the state q and that some tree can be accepted starting from (q, a). Note
that if (q, a) is productive then there exists at least one transition starting from (q, a).

For every transition δ = (q, a, qL, qR) of A we define Lδ as the language of trees such
that there exists a run ρ of A on t that is parity-accepting and uses δ in the root of t:

ρ(ε) = q, t(ε) = a, ρ(L) = qL, and ρ(R) = qR.

The following lemma is a simple consequence of unambiguity of the given automaton.

Lemma 1.1.1. If (q, a) is productive and δ1 6= δ2 are two transitions starting from (q, a)
then the languages Lδ1, Lδ2 are disjoint.

Proof. Assume contrary that there exists a tree r ∈ Lδ1 ∩ Lδ2 with two respective parity-
accepting runs ρ1, ρ2. Since (q, a) is productive so there exists a tree t and an accepting run
ρ on t such that ρ(u) = q and t(u) = a for some vertex u. Consider the tree t′ = t[u← r]
— the tree obtained from t by substituting r as the subtree under u. Since ρ(u) = q and
both ρ1, ρ2 start from (q, a), we can construct two accepting runs ρ[u← ρ1] and ρ[u← ρ2]
on t′. Since these runs differ on the transition used in u, we obtain a contradiction to the
fact that A is unambiguous. �

53

Let (q, a) be a productive pair and {δ1, δ2, . . . , δn} be the set of transitions of A start-
ing from (q, a). In that case the languages Lδk

for k = 1, 2, . . . , n are pairwise dis-
joint. Theorem 0.22 from page 48 implies that for every pair of transitions δi 6= δj

there is an Comp(Πalt
j−1)-language that separates Lδi

from Lδj
. Since Comp(Πalt

j−1)-
languages are closed under Boolean combinations, we can find Comp(0, j−1)-automata
Cδk

for k = 1, 2, . . . , n such that:

• for k = 1, 2, . . . , n we have Lδk
⊆ L(Cδk

),

• for k 6= k′ the languages L(Cδk
), L(Cδk′

) are disjoint,

• the union ⋃k=1,2,...,n L(Cδk
) equals TrA.

These automata will be crucial ingredients of the construction.
The following lemma formalizes the notion of the unique runs.

Lemma 1.1.2. Let t ∈ TrA be a tree. There exists a unique maximal partial run ρt of A
on t, i.e. a partial function ρt : {L, R}∗ ⇀ QA such that:

• ρt(ε) = qI
A,

• if u ∈ dom(ρt) and (ρt(u), t(u)) is productive then also uL, uR ∈ dom(ρt) and

t�u ∈ L(Cδ) with δ =
(
ρt(u), t(u), ρt(uL), ρt(uR)

)
. (1.1.1)

• t ∈ L(A) if and only if ρ is total and accepting.

Proof. The construction is inductive. We start by putting ρt(ε) = qI
A. Assume that the

value of ρt is defined in a vertex u ∈ {L, R}∗. Let a = t(u) and q = ρ(u). If (q, a) is
unproductive we leave the values of ρ on the subtree under u undefined. In that case we
call u a leaf of ρt. Otherwise, the space TrA is split into disjoint sets L(Cδ) ranging over
transitions δ starting from (q, a). Therefore, there exists exactly one transition δ ∈ ∆
starting from (q, a) such that t�u ∈ L(Cδ). Let δ = (q, a, qL, qR) and ρ(ud) = qd for d = L, R.

Clearly, the above construction gives a unique maximal partial run ρ satisfying the first
two bullets of the statement. If ρt is accepting then it is a witness that t ∈ L(A). Let ρ
be an accepting run of A on t. We inductively prove that ρ = ρt. Take a node u of t and
define q = ρ(u), a = t(u), qL = ρt(uL), and qR = ρt(uR). Observe that ρ is a witness that
(q, a) is productive and for δ = (q, a, qL, qR) we have

t ∈ Lδ ⊆ L(Cδ).

54

Therefore, ρt(uL) = ρ(uL) and ρt(uR) = ρ(uR). �

1.2 Construction of the automaton

Now we construct an alternating Comp(0, j−1)-automaton R recognising L(A). It will
consist of two sub-automata running in parallel:

1. In the first sub-automaton the role of ∃ will be to propose a run ρ on a given tree
t. She will be forced to propose precisely the run ρt from Lemma 1.1.2 — at any
moment ∀ can challenge the currently proposed transition and check whether (1.1.1)
in Lemma 1.1.2 is satisfied. Such a challenge will be realised by moving to the initial
state of the appropriate automaton Cδ.

2. In the second sub-automaton the role of ∀ will be to prove that the run ρt is not
accepting. That is, he will find a leaf in ρt or an infinite branch of ρt that does not
satisfy the parity condition. Since he knows the run ρt in advance, we can ask him
to declare in advance what will be the odd priority n that is the lim inf of priorities
of ρt on the selected branch.

The automatonR consists of an initial component C described below and of the disjoint
union of the automata Cδk

. States in the initial component C are of the form (q, n) where
q is a state of A and n is either ⊥ or an odd number between 0 and j. The state q denotes
the current state of the run that is being constructed by ∃ in the first sub-automaton. The
value n (if 6= ⊥) denotes the odd priority declared by ∀ in the second sub-automaton.

The initial state of R is (qI
A,⊥) ∈ C. The transitions of R inside C are built by the

following rules. Assume that the label of the current vertex is a and the current state is
(q, n):

Step I if the pair (q, a) is not productive, ∃ looses,

Step II if n 6= ⊥ and ΩA(q) < n then ∀ looses,

Step III ∃ declares a transition δ = (q, a, qL, qR) of A that starts from (q, a),

Step IV ∀ decides to challenge this transition or to accept it,

Step V if ∀ challenges the transition, R makes an ε-transition to the initial state of Cδ (n
does not play any role in that case),

55

Step VI otherwise, if n = ⊥ then ∀ declares a new value n′: some odd number between 0 and
j, or still ⊥ (if n 6= ⊥ then we put n′ = n),

Step VII finally, ∀ selects a direction d ∈ {L, R} and the automaton R makes a d-transition to
the state (qd, n′).

Note that for each tree t, each play in the game G(R, t) starts in C and either stays in
it forever or leaves to some Cδ and stays there forever. Note also that C consists of two
parts: CI with n = ⊥ and CF where n 6= ⊥. Let the priorities of all the states of the form
(q,⊥) equal 2. Consider a state (q, n) with n 6= ⊥. If ΩA(q) = n then such a state has
priority 1, otherwise (i.e. if ΩA(q) > n) the priority of (q, n) is 2.

We first argue that if j > 1 then the automaton R is a Comp(0, j−1)-automaton.
Note that the graph of R consists of the following strongly-connected components: the
components of CI , CF , and the components of Cδ for δ ∈ ∆. Recall that all the automata
Cδ are by the construction Comp(0, j−1). By the definition, CI and CF are Comp(0, 1)-
automata so the whole automaton R is also Comp(0, j − 1).

Consider j = 1 (the Büchi case). Observe that the only possible odd value n between
0 and j is n = 1. It means that if ∀ declares a value n 6= ⊥ then always Ω(q) ≤ n,
therefore there are no states in CF of priority 2. It implies that both CI and CF are
Comp(0, 0)-automata and R is a Comp(0, 0)-automaton.

Observe that the size of the automaton R is polynomial in the size of A. The re-
sults of the following two sections imply that L(R) = L(A), thus completing the proof of
Theorem 1.

1.2.1 Soundness

Lemma 1.2.1. If t ∈ L(A) then t ∈ L(R).

Proof. Fix the accepting run ρt of A on t given by Lemma 1.1.2. Consider the following
strategy σ∃ for ∃ in C: always declare δ consistent with ρt. Extend it to the winning
strategies in Cδ whenever they exist. That is, if the current vertex is u and the state of
R is of the form (q, n) ∈ C then declare δ = (ρ(u), t(u), ρ(uL), ρ(uR)). Whenever the game
moves from the component C into one of the automata Cδ in a vertex u, fix some winning
strategy in G(Cδ, t�u) (if exists) and play according to this strategy; if there is no such
strategy, play using any strategy.

56

Take a play consistent with σ∃ in G(R, t). First note that ∃ does not loose in Step I
since all the pairs (q, a) appearing during the play are productive — the run ρt is a witness.
There are the following cases:

• ∀ looses in a finite time in Step II.

• ∀ stays forever in CI never changing the value of n and looses by the parity criterion.

• In some vertex u of the tree ∀ challenges the transition δ given by ∃ and the game
proceeds to Cδ. In that case t�u ∈ Lδ by the definition of Lδ (the run ρt�u is a witness)
and therefore t�u ∈ L(Cδ). So ∃ has a winning strategy in G(Cδ, t�u) and she wins the
rest of the game.

• ∀ declares a value n 6= ⊥ at some point and then accepts all successive transitions
of ∃. In that case the game follows an infinite branch α of t. Since ρt is accepting
so we know that k def= lim infi→∞ΩA(ρt(α�i)) is even. If k < n then ∀ looses at some
point in Step II. Otherwise k > n and from some point on all the states of R visited
during the game have priority 2, thus ∀ looses by the parity criterion in CF .

�

1.2.2 Completeness

Lemma 1.2.2. If t /∈ L(A) then t /∈ L(R).

Proof. We assume that t /∈ L(A) and give a winning strategy for ∀ in the game G(R, t).
Let us fix the run ρt given by Lemma 1.1.2.

Note that either ρt is a partial run: there is a vertex u such that ρt(u) = q and (q, t(u))
is unproductive, or ρt is a total run. Since t /∈ L(A) so ρt cannot be a total accepting run.
Let α be a finite or infinite branch: either α ∈ {L, R}∗ and α is a leaf of ρt or α is an infinite
branch such that k def= lim infi→∞ΩA(ρt(α�i)) is odd. If α is finite let us put any odd value
between 0 and j as k.

Consider the following strategy for ∀:

• ∀ keeps n = ⊥ until there are no more states of priority greater than k along α in
ρt. Then he declares n′ = k.

• ∀ accepts a transition δ given by ∃ in a vertex u if and only if it is consistent with ρt
in u (i.e. if δ = (ρt(u), t(u), ρt(uL), ρt(uR))).

57

• ∀ always follows α: in vertex u ∈ {L, R}∗ he chooses the direction d in such a way
that ud � α.

As before, we extend this strategy to strategies on Cδ whenever they exist: if the game
moves from the component C into one of the automata Cδ in a vertex u then ∀ uses some
winning strategy in the game G(Cδ, t�u) (if it exists); if there is no such strategy, ∀ plays
using any strategy.

Consider any play π consistent with σ∀. Note that if α is a finite word and the play
π reaches the vertex α in a state (q, n) in C then q = ρt(α) and ∀ wins in Step I as
(ρt(α), t(α)) is not productive. Similarly, by the definition of the strategy σ∀, ∀ never
looses in Step II — if he declared n 6= ⊥ then the play will never reach a state of priority
smaller than n.

Let us consider the remaining cases. First assume that at some vertex u player ∀
challenged a transition δ declared by ∃. It means that there is another transition δ′ 6= δ

consistent with ρt in u. By the definition of ρt we know that t�u ∈ Lδ′ in particular
t�u ∈ L(Cδ′). Since the languages Cδ′ , Cδ are disjoint, t�u /∈ Cδ and ∀ has a winning strategy
in G(Cδ, t�u) and wins in that case.

Consider the remaining case: ∀ accepted all the transitions declared by ∃ and the play
is infinite. Then, for every i ∈ N the game reached the vertex α�i in a state (q, n) satisfying
q = ρt(α�i). In that case there is some vertex u along α where ∀ declared n = k. Therefore,
infinitely many times ΩA(q) = n in π so ∀ wins that play by the parity criterion. �

This concludes the proof of Theorem 1.

1.3 Conclusions

The results presented in this chapter provide a way of using the fact that a given automa-
ton A is unambiguous to prove some upper bounds on the index of the language L(A).
Therefore, they can be seen as an attempt to solve the following open problem.

Open problem 1.3.1. Does there exist a number n such that every unambiguous tree
language belongs to Πalt

n ?

As proved in [BIS13], every regular language of thin trees can be recognised by a non-
deterministic automaton of index (1, 3). The results of Chapter 5 suggest that there is a
strong relationship between bi-unambiguous languages and languages of thin trees (namely

58

that every bi-unambiguous language can be recognised by a homomorphism into a finite
prophetic thin algebra). These observations suggest the following conjecture that would
give a partial solution to the above question in the case of bi-unambiguous languages.

Conjecture 3. If both L and the complement Lc are recognisable by unambiguous automata
(i.e. L is bi-unambiguous) then L ∈∆alt

2 .

The best known lower bounds are given by Hummel in [Hum12] where examples of
bi-unambiguous languages in Comp(Πalt

1) \
(
Πalt

1 ∪Σalt
1

)
are provided.

This chapter is based on the technical report [MS14].

59

Chapter 2

When a Büchi language is definable in
wmso

A natural subclass of regular tree languages are those that can be defined in weak monadic
second-order logic (wmso). As shown by Rabin (see Theorem 0.13 on page 42), a language
L is wmso-definable if and only if both L and the complement can be recognised by non-
deterministic (equivalently alternating, see Theorem 0.14 on page 42) Büchi automata.
Therefore, the following decision problem can be seen as a special case of the index problems
from Section 0.7.2 (see Problem 0.7.2 on page 45).

Problem 2.0.2 (Definability in wmso).

• Input An alternating tree automaton A.

• Output Is L(A) definable in wmso.

The decidability of this decision problem in full generality is open. Therefore, it is
natural to ask for solutions for restricted classes of input languages. In this chapter we study
the problem when the input automaton is a non-deterministic (equivalently alternating)
Büchi automaton.

The main theorem of this section states that this restricted problem is decidable.

Theorem 2. It is decidable if the language of infinite trees recognised by a given non-
deterministic Büchi tree automaton is wmso-definable.

This decidability result was already proved in [CKLV13]. It is shown there that the
reduction from [CL08] applied to Büchi automata produces instances of a domination
problem for which an effective procedure is known [Van11,KV11]. The whole structure of
the proof is rather involved and makes extensive use of the theory of regular cost functions
on ω-words [Col13].

60

The approach presented in this chapter is different. We start by introducing a rank
that measures complexity of trees with respect to a given Büchi automaton B. This leads
to the definition of an ordinal η(B) ≤ ω1. It turns out that this ordinal is strongly related
to the descriptive complexity of the language L(B). In particular, we prove the following
two properties of η(B):

• η(B) < ω1 if and only if L(B) is Borel (see Proposition 2.1.7),

• η(B) < ω2 if and only if L(B) is wmso-definable (see Proposition 2.1.8)

To prove the latter property, we introduce a finitary version of η(B) represented by lan-
guages of K-reach and K-safe trees.

The obtained properties of the rank η(B) seem promising, in particular, Conjecture 2
on page 10 (every Borel regular tree language is wmso-definable) would be proved for
Büchi automata if one managed to prove the following claim.

Conjecture 4. If B is a non-deterministic Büchi tree automaton then

η(B) ≥ ω2 =⇒ η(B) = ω1.

Unfortunately, the author is unable to prove the above statement. It can be seen as a
distant analogue of the study of closure ordinals from [Cza10,AL13].

Theorem 2 is proved as a consequence of properties of η(B) — it is enough to prove
that the condition η(B) < ω2 is decidable. For this purpose, a variant of domination games
from [Col13] is introduced. Although the motivations come from [Col13], the presented
construction is standalone and does not refer to any results about cost functions.

The organisation of the chapter reflects the two parts of the proof. The first part of
the proof, which studies properties of η(B), is spread across Sections 2.1, 2.2, and 2.3.
In Section 2.1 the ordinal η(B) is defined and its basic properties are stated. Section 2.2
introduces notions ofK-reach andK-safe trees that are designed as finitary approximations
of η(B). Section 2.3 introduces Comp(0, 0)-automata that recognise languages of K-reach
and K-safe trees. These automata show that if η(B) < ω2 then L(B) is wmso-definable.

The second part of the proof, i.e. the effective procedure itself is presented in Sections 2.4
and 2.5. Section 2.4 introduces a game G designed to verify if η(B) < ω2. The game G has
finite arena and the winning condition of G is ω-regular, therefore it is decidable who wins
G. Section 2.5 shows that ∃ has a winning strategy in G if and only if η(B) < ω2, what
finishes the proof of Theorem 2.

Finally, Section 2.6 concludes the results of this chapter.

61

2.1 The ordinal of a Büchi automaton

Let L be a regular tree language recognised by a non-deterministic Büchi tree automaton
B. Our aim is to define a particular continuous reduction T of Lc = TrA \ L to the well-
founded trees WF. Intuitively, T(t) will reflect to what extent it is possible to construct
runs of B on t that contain many accepting states. Formally, T(t) will consist of truncated
runs defined in the following subsection. The reduction T will allow us to bind with a tree
t ∈ Lc an ordinal rank

(
T(t)

)
measuring the complexity of t. Then, we will define an ordinal

η(B) (the ordinal of B) as the supremum of rank
(
T(t)

)
over trees t ∈ Lc.

For the rest of this chapter let us fix a non-deterministic Büchi tree automaton B
recognising L. Let us assume that Q is the set of states of B and A is its working alphabet.
Let F def= {q ∈ Q : ΩB(q) = 0}. A sequence of states of Q is parity-accepting if it
contains infinitely many states in F . For the purpose of this chapter we call the states in
F accepting.

2.1.1 Truncated runs

We start with technical definitions of approximations of accepting runs of a Büchi automa-
ton.

For d ≥ 0 a truncated run (shortly a t-run) of depth d from q ∈ QB is a function
γ : {L, R}≤d → Q that looks like a prefix of a run of B:

• γ(ε) = q,

• for every u ∈ {L, R}<d there exists a transition of B of the form

δ =
(
γ(u), a, γ(uL), γ(uR)

)
, for some a ∈ A. (2.1.1)

If the state q is not mentioned explicitly, we assume that q = qAI . For a tree t ∈ TrA we
say that a t-run γ fits to t if the letters in (2.1.1) agree with t (i.e. we can take a transition
δ in (2.1.1) such that t(u) = a).

Let γ be a t-run of depth d and d0 < d1 ≤ d. We say that γ is accepting between d0

and d1 if for every w ∈ {L, R}d1 there exists u � w such that

|u| > d0 and γ(u) ∈ F .

62

d0

d1

Figure 2.1.1: An illustration of a t-run that is accepting between d0 and d1: the boldfaced
dots mark accepting states that appear on every path between d0 and d1.

It means that every path visits an accepting state at a depth between d0 and d1, see
Figure 2.1.1. The same definition applies when γ is a total run.

The following fact is a standard application of König’s lemma.

Fact 2.1.1. If ρ is an accepting run of a Büchi automaton then for every d0 ≥ 0 there
exists d1 > d0 such that ρ is accepting between d0 and d1.

A pair N =
(
~d, γ

)
is a sliced truncated run (or shortly an st-run) from q ∈ QB if:

• ~d = (d0, . . . , dk) with k ≥ 0,

• 0 = d0 < d1 < . . . < dk,

• γ is a truncated run of depth d from q with dk−1 ≤ d ≤ dk (if k = 0 then we use
d−1 = 0),

• for every i = 1, 2, . . . , k−1 the truncated run γ is accepting between di−1 and di.

As before, by default we take q = qBI . An st-run N =
(
~d, γ

)
fits to t if γ fits to t. The

depth of an st-run
(
~d, γ

)
is the depth of γ. An st-run N =

(
(d0, . . . , dk), γ

)
is completed if

the depth of γ is dk.
Let N =

(
~d, γ

)
, N ′ =

(
~d′, γ′

)
be two st-runs. Assume that the depths of γ, γ′ are d, d′

respectively. We will define when N ′ extends N (denoted N → N ′), there are two cases:

63

• If N is not completed then we must have γ′ ⊃ γ, ~d′ = ~d, and d′ = d+ 1.

• If N is completed then we must have γ′ = γ and ~d′ = ~d · dk+1 for some dk+1 > dk.

Informally, a non-completed st-run can be extended by adding one additional layer to
the t-run γ without exceeding the last depth dk. A completed st-run can be extended by
not modifying the t-run γ but declaring a new depth dk+1 (in that case the new st-run is
not completed).

Fact 2.1.2. Let N0 =
(
(d0, d1, . . . , dk), γ

)
be an st-run. Let d be the depth of γ. Then

there is no sequence of non-completed st-runs N0 → N1 → . . .→ Nn with n > dk − d.

2.1.2 The reduction

Now we proceed with a definition of a function, mapping trees t ∈ TrA to ω-trees T(t) ∈
ωPTr. For the sake of inductive arguments we define one function Tq for each state q ∈ QB.

Observe that the set X of all st-runs is countable. Therefore, we can assume that
there is a bijection between ω and st-runs: ω 3 n↔ N (n) ∈ X. Assume additionally that
N (0)
q = ((0), γ) with γ being the unique t-run of depth 0 from q. Modulo the above bijection,

a sequence of st-runs (N1, N2, . . . , Nn) can be seen as an element of ω∗. Therefore, we define
Tq(t) ⊆ ω∗ as a set of sequences of st-runs. For a tree t ∈ TrA let (N1, N2, . . . , Nn) ∈ Tq(t)
if:

N (0)
q → N1 → N2 → . . .→ Nn, (2.1.2)

for i = 1, . . . , n the st-run Ni fits to t. (2.1.3)

We define T as TqBI .

Remark 2.1.3. Assume that N is an st-run from q. Observe that by the definition of →,
there is a unique sequence of st-runs (N1, N2, . . . , Nn) satisfying (2.1.2) with Nn = N .

This sequence satisfies (2.1.3) if and only if N fits to t.

In particular, we can identify elements of Tq(t) with st-runs from q fitting to t. The
root of Tq(t) corresponds to the st-run N (0)

q .

Fact 2.1.4. The function Tq : TrA → ωPTr is continuous.

64

Proof. It is enough to observe that for each ~N = (N1, . . . , Nn) the set
{
t ∈ TrA : ~N ∈ Tq(t)

}

is clopen — it depends on the given tree up to the depth of the t-run of Nn. �

Fact 2.1.5. Assume that the vertex of Tq(t) corresponding to an st-run N (formally to a
sequence (N1, . . . , Nn = N)) is infinitely-branching in Tq(t). Then N is completed.

Proof. A non-completed st-run has only finitely many extensions. �

The following lemma shows that TqBI is a continuous reduction of Lc to WF.

Lemma 2.1.6. For a tree t ∈ TrA we have

t ∈ L(B) ⇐⇒ the ω-tree TqBI (t) is ill-founded (i.e. contains an infinite branch).

Proof. First assume that t ∈ L(B). Let ρ be an accepting run of B on t. Fact 2.1.1 shows
that there is a sequence 0 = d0 < d1 < d2 < . . . such that for every i > 0 the pair

Ni =
(

(d0, . . . , di), ρ�{L,R}≤di

)

is a completed st-run that fits to t. The st-runs Ni lay on an infinite branch of TqBI (t).
Now let N0 → N1 → . . . be an infinite branch of TqBI (t). Let ρ be the run obtained as

the union of the t-runs of these st-runs. By Fact 2.1.2, this sequence must contain infinitely
many completed st-runs. Therefore, ρ is an accepting run of B on t. �

2.1.3 Ranks

Now we can define η(B) — the ordinal number of main interest in this chapter. Recall
that T(t) stands for TqBI (t). By Lemma 2.1.6, for every tree t /∈ L(B) the ω-tree T(t) is
well-founded. Let

η(B) def= sup
t/∈L(B)

rank
(
T(t)

)
. (2.1.4)

The relation between the complexity of L(B) and η(B) is expressed by Proposition 2.1.7
and Proposition 2.1.8.

Proposition 2.1.7. The language L(B) is Borel if and only if η(B) < ω1.

65

Proof. If L(B) is Borel then {
T(t) : t /∈ L(B)

}
⊆WF (2.1.5)

is a continuous image of a Borel set, thus an analytic (Σ1
1) set. Therefore, by the bound-

edness theorem (see Section 0.6.4 and Theorem 0.7 on page 39) we have η(B) < ω1.
Now assume that η(B) < ω1. Theorem 0.7 implies that the set

TB
def= {τ ∈ ωTr : rank(τ) ≤ η(B)}

is Borel. But TrA \ L(B) is the preimage of TB under the continuous function T, therefore
also Borel. �

The following proposition constitutes the crucial idea behind the effective characteri-
sation from Theorem 2.

Proposition 2.1.8. The language L(B) is wmso-definable if and only if η(B) < ω2 (i.e. if
there exists K ∈ ω such that η(B) < K · ω).

The proof of this proposition consists of two lemmas: Lemma 2.1.9 proved here and
Lemma 2.3.1 from Section 2.3.

Lemma 2.1.9. If L(B) is wmso-definable then η(B) < ω2.

The rest of this section is devoted to proving this lemma. Apart from some technicali-
ties, the reasoning is based on Rabin’s pumping lemma from [Rab70].

Assume that L(B) is wmso-definable and letA be a non-deterministic Büchi automaton
recognising the complement of L(B). Let K = |QA| · |QB| · |A| + 2. To arrive to a
contradiction assume that η(B) ≥ ω2 and let t /∈ L(B) be a tree such that

rank
(
T(t)

)
≥ K · ω.

Since t /∈ L(B) so there exists an accepting run ρA of A on t. Our aim is to construct
a t-run γ of B on t and a sequence of numbers 0 = d0 < d1 < . . . < dK−1 such that:

For every i < K − 1 both γ and ρA are accepting between di and di+1. (2.1.6)

This will enable us to construct a regular tree t′ with accepting runs of both automata A
and B (see [Rab70]) leading to a contradiction.

66

Recall that by Remark 2.1.3 we identify elements (nodes) of T(t) with st-runs from qI
B

fitting to t. The construction is inductive for i = 1, . . . , K−1. The invariant is that Ni is
a completed st-run of depth di and

rank
(
T(t)�Ni

)
= (K − i) · ω.

Observe that Fact 0.6.2 from page 38 implies that if rank
(
T(t)�N

)
is a limit ordinal

then N is infinitely branching in T(t) . Therefore by Fact 2.1.5, N is a completed st-run.
We start by fixing N1 as any node of T(t) of rank (K − 1) ·ω (it exists by Fact 0.6.3 on

page 38) and let d1 be the depth of N1.
Assume that a completed st-run Ni−1 =

(
~d, γ

)
of depth di−1 is defined. Let d′ be the

depth given by Fact 2.1.1 such that ρA is accepting between di−1 and d′.
Observe that all the st-runs N ′ in T(t) such that Ni−1 → N ′ are of the form

(
~d·d′′, γ

)
for

some d′′. In particular, only finitely many of them satisfy d′′ < d′. Since rank
(
T(t)�Ni−1

)
=

(K − i+ 1) · ω is a limit ordinal, we can find an st-run N ′ in T(t) such that:

• Ni−1 → N ′,

• N ′ =
(
~d · di, γ′

)
for di ≥ d′, and

• rank
(
T(t)�N ′

)
≥ (K − i) · ω.

Now, we use again Fact 0.6.3 from page 38 to find Ni in T(t) below N ′ and satisfying

rank
(
T(t)�Ni

)
= (K − i) · ω.

Now let γ be the t-run of NK−1. Condition 2.1.6 is clearly satisfied by the construction.
Now it remains to prove the following fact.

Fact 2.1.10. There exists a tree t′ ∈ L(A) ∩ L(B).

Proof. We only sketch a proof of this fact, a complete construction is given in [Rab70]. See
also [KV99, Theorem 1] for a definition of a trap — the sequence d0 < d1 < . . . < dK−1

constructed above is a trap for the runs γ and ρA.
The tree t′ (together with the runs of A and B) is obtained as an unravelling of a finite

graph constructed using t. Consider i ∈ {1, . . . , K−1} and a node w ∈ {L, R}di . If there
exists i′ such that 0 < i′ < i and for u def= w�di′

we have

(
t(u), γ(u), ρA(u)

)
=
(
t(w), γ(w), ρA(w)

)
67

then (for the minimal such i′) we remove the edge from the parent of w to w and instead
we add an edge from the parent of w to u (preserving the direction d ∈ {L, R}). In that
case we say that w has been rewired to u.

Since K is big enough, for every w ∈ {L, R}dK−1 at least one of the prefixes of w has
been rewired. Therefore, none of such vertices w is accessible from ε via the edge relation.
Let t′ be the unravelling of the constructed graph. Clearly, γ and ρA are runs of B and A
on t′. Since both runs are accepting between di and di+1 for every i, so the respective runs
on t′ are accepting. �

This concludes the proof of Lemma 2.1.9 finishing the “only if” implication in Propo-
sition 2.1.8. The “if” implication will be proved in Lemma 2.3.1 in Section 2.3.

2.2 Extending runs

We now give a more explicit definition expressing the fact that η(B) ≥ ω2. It will serve
as an intermediate object in a proof of Lemma 2.3.1. For K ∈ ω we will define notions of
K-safe and K-reach trees.

The definitions are designed in such a way to correspond precisely to languages recog-
nised by the alternating automata defined in Section 2.3. Because of that, we cannot
require here to have exact truncated runs as in Section 2.1.1. Therefore, we use a notion
of a partial run defined as a non-empty finite partial tree ρ̄ ∈ PTrQ such that every node
u ∈ dom(ρ̄) is either a leaf of ρ̄ or uL, uR ∈ dom(ρ̄) and for some a ∈ A

(
ρ̄(u), a, ρ̄(uL), ρ̄(uR)

)
is a transition of B.

We additionally require that ε is not a leaf of ρ̄.
A partial run ρ̄ is accepting if for every leaf u ∈ dom(ρ̄) of ρ̄ we have ρ̄(u) ∈ F — all

the states in the leaves of ρ̄ are accepting. A partial run ρ̄ is minimal accepting if it is
accepting and minimal (w.r.t. ⊆) partial tree satisfying the above conditions — ρ̄ has a
leaf in the first accepting state seen along every branch. This technical assumption will
allow us to easily prove Proposition 2.3.3.

As for t-runs, we say that a partial run ρ̄ is from the state ρ̄(ε) and it fits a tree t if the
transitions used in ρ̄ use letters of t.

Take a state q ∈ QB and a tree t ∈ TrA. We say that:

• q is always 0-reach and 0-safe in t.

68

• q is (K+1)-safe in t if there exists a total run ρ of B on t such that ρ(ε) = q and for
every u ∈ dom(t)

ρ(u) is K-reach in t�u.

• q is (K+1)-reach in t if there exists a partial run ρ̄ from q such that ρ̄ fits t, ρ̄ is
minimal accepting, and for every leaf u of ρ̄ we have

ρ̄(u) is (K+1)-safe in t�u.

In particular, q is 1-safe in t if there exists a total run ρ of B on t with ρ(ε) = q. In
general, the following fact holds.

Fact 2.2.1. Assume that q ∈ QB is (K+1)-reach in t ∈ TrA. Then, we can find a total
run ρ of B on t and a depth d such that:

• ρ(ε) = q,

• ρ is accepting between 0 and d,

• for every w ∈ {L, R}∗ of length at least d we have

ρ(w) is K-reach in t�w.

Directly from the definition, we obtain the following monotonicity property.

Fact 2.2.2. Let K ′ ≥ K ≥ 0′. If q is K ′-safe in t then q is K-safe in t. If q is K ′-reach
in t then q is K-reach in t.

Proposition 2.2.3. The following conditions are equivalent:

1. for every K there exists a tree t /∈ L(B) such that qBI is K-safe in t,

2. η(B) ≥ ω2.

The proof of this proposition is split across the following two subsections. The following
remark follows easily from the definition of K-safe, however we will not prove it directly,
instead we will use automata defined in Section 2.3. It implies, together with the above
proposition, that if η(B) < ω2 then the language L(B) is wmso-definable.

Remark 2.2.4. For every K there exists a wmso formula ϕK such that

L(ϕK) = {t : qBI is K-safe in t}.

69

2.2.1 K-safe implies big rank

In this subsection we prove one of the estimations needed for Proposition 2.2.3: if for every
K there is a tree t /∈ L(B) such that qI

B is K-safe in t then η(B) ≥ ω2. The proof goes by
induction, as expressed by the following lemma.

Lemma 2.2.5. Let N =
(
~d, γ

)
be a completed st-run of depth d from q. Assume that N

fits to a tree t ∈ TrA and for every u ∈ {L, R}d we know that γ(u) is K-reach in t�u. Then

rank
(
Tq(t)�N

)
≥ K · ω.

Observe that by putting N = N (0)
q (the unique st-run of depth 0) above, we obtain that

if q is K-reach in t then rank
(
Tq(t)

)
≥ K · ω.

Proof. The proof is inductive in K. For K = 0 the thesis holds. Assume that the thesis
holds for K ≥ 0 and every q ∈ QB, t ∈ TrA. Take an st-run N as in the statement and
assume that for every u ∈ {L, R}d we know that γ(u) is (K+1)-reach in t�u.

For every u ∈ {L, R}d we can apply Fact 2.2.1 to q = γ(u) and t = t�u obtaining a total
run ρu of B on t�u with ρu(ε) = γ(u) and a depth du. Let us put:

d′ = max
u∈{L,R}d

du, ρ = γ
[
u← ρu

]
u∈{L,R}d

.

By the construction in Fact 2.2.1 we know that:

• ρ is a total run of B on t and γ ⊆ ρ,

• ρ is accepting between d and d′,

• for every u of length at least d′ we know that ρ(u) is K-reach in t�u.

Now take any d1 > d′ and consider the st-node

N ′
def=
(
~d · d1, ρ�{L,R}≤d1

)
.

Clearly N ′ is a completed st-run of depth d1 from q that fits to t and

N →(d1−d) N ′ (i.e. N ′ can be obtained by extending N (d1−d)-times).

70

Observe that N ′ satisfies the inductive assumption for K, so

rank
(
Tq(t)�N ′

)
≥ K · ω.

By considering bigger and bigger values of d1, we can find arbitrarily long paths in
Tq(t)�N that lead to vertices of rank at least K · ω. Therefore

rank
(
Tq(t)�N

)
≥ (K + 1) · ω.

�

2.2.2 Big rank implies K-safe

Now we prove the opposite estimation from Proposition 2.2.3: if η(B) ≥ ω2 then for every
K there exists a tree t /∈ L(B) such that qI

B is K-safe in t. This statement follows from
the following lemma.

Lemma 2.2.6. Let N =
(
~d, γ

)
be a completed st-run of depth d from q. Assume addition-

ally that N fits to a tree t ∈ TrA.

1. If
rank

(
Tq(t)�N

)
≥
(
1 + 2 ·K

)
· ω

then for every u ∈ {L, R}≤d (i.e. u ∈ dom(γ)) the state γ(u) is K-reach in t�u.

2. If
rank

(
Tq(t)�N

)
≥ 2 ·K · ω

then for every u ∈ {L, R}≤d (i.e. u ∈ dom(γ)) the state γ(u) is K-safe in t�u.

As before, by putting N = N (0)
q (the unique st-run of depth 0) above, we obtain that if

rank
(
Tq(t)

)
≥ 2 ·K · ω then q is K-safe in t.

The rest of this subsection is devoted to proving this lemma. We start with the following
observation.

Fact 2.2.7. Assume that N ∈ Tq(t) is a completed st-run of depth d and rank
(
Tq(t)�N

)
≥

(K+1) · ω. Then for every d′ ≥ d there exists a completed st-run N ′ ∈ Tq(t)�N of depth at
least d′ and such that rank

(
Tq(t)�N ′

)
≥ K · ω.

71

Proof. Let τ = Tq(t)�N . Since rank(τ) ≥ (K+1) ·ω so there are arbitrarily long paths in τ
that lead to vertices of rank at least K · ω. By Fact 0.6.3 from page 38, under every such
vertex there is a vertex N ′ ∈ τ of rank exactly K · ω. Facts 0.6.2 and 2.1.5 imply that N ′

must be completed in that case. Since the path from N to N ′ is arbitrary long, so is the
depth of N ′. �

Now we can prove our lemma, the proof is inductive on K, for K = 0 both parts of
the thesis are trivial. Assume that both parts of the thesis hold for K and consider a
completed st-run N as in the statement.

Item (1) First assume that

rank
(
Tq(t)�N

)
≥
(
1 + 2 ·K

)
· ω

and take u ∈ {L, R}≤d. Our aim is to prove that the state γ(u) is K-reach in t�u.
By applying Fact 2.2.7 to N and any depth greater than d we obtain a completed run

N ′ such that N ′ ∈ Tq(t)�N and

rank
(
Tq(t)�N ′

)
≥ 2 ·K · ω.

Let γ′ be the t-run of N ′ and d′ be the depth of γ′. Since both N and N ′ are completed,
so γ′ is accepting between d and d′

Let ρ̄ be the restriction of γ′�u to its initial fragment before the first accepting state:

dom(ρ̄) def=
{
w : uw ∈ dom(γ′), γ′(uw) ∈ F , and for every w′ ≺ w we have γ′(uw) /∈ F

}
.

By the definition ρ̄ is a partial run and ρ̄ is minimal accepting. Observe that by the
inductive assumption, for every w that is a leaf of ρ̄ we know that the state ρ̄(w) is K-safe
in t�uw. Therefore, ρ̄ is a witness that γ(u) is K-reach in t�u.

Item (2) Now assume that

rank
(
Tq(t)�N

)
≥ 2 · (K + 1) · ω.

Our aim is to prove that for every u ∈ {L, R}≤d the state γ(u) is (K+1)-safe in t�u.
Let (N ′i)i∈N be a sequence of completed st-runs of unbounded depths that are given by

Fact 2.2.7. Let γ′i be the t-run of N ′i . By compactness, there exists a subsequence of (γ′i)i∈N

72

that is point-wise convergent to a total run ρ. Let us restrict the sequences (N ′i)i∈N, (γ′i)i∈N
to this convergent sub-sequence (we do not require N ′i to be convergent in any sense).
Clearly, γ ⊆ ρ and for every u ∈ {L, R}∗ there is some i such that ρ(u) = γ′i(u).

What remains to prove is that for every u ∈ {L, R}∗ the state ρ(u) is K-reach in t�u.
Take such u and consider i such that ρ(u) = γ′i(u). By the construction of N ′i we know
that

rank
(
Tq(t)�N ′i

)
≥
(
1 + 2 ·K) · ω.

Therefore, ρ(u) is K-reach in t�u because of Item (1) of our lemma.
This concludes the proof of Lemma 2.2.6 and therefore the proof of Proposition 2.2.3.

2.3 Automata for K-safe trees

In this section we define a sequence of automata (defined in a uniform way) that recognise
languages of K-safe trees, as expressed in Proposition 2.3.3 below. The primary goal of
this construction will be a proof of Lemma 2.3.1 (i.e. that if η(B) < ω2 then L(B) is wmso-
definable) which completes the proof of Proposition 2.1.8. Furthermore, in Section 2.4 we
will define a game based on the automata constructed here; the aim of this game will be
verifying if η(B) < ω2.

The automata constructed here are very similar to the counter automaton B defined
in [CKLV13, Section 4.3], however both notions were developed independently basing on
the idea of traps in [KV99].

Lemma 2.3.1. If for some K ∈ ω and every t /∈ L(B) we have rank
(
T(t)

)
< K · ω then

L(B) is wmso-definable.

We take a number K ≥ 0 and construct an automaton C[K] over the alphabet A. Let
the states of C[K] be QB × {safe, reach} × {0, 1, . . . , K}. The initial state is (qBI , safe, K).
Let the states of the form (q, safe, i) have priority 0 and the other states have priority 1.

Let us define the transitions of the automaton C[K]. All the states of the form (q, safe, 0)
and (q, reach, 0) have only trivial transition > — they accept everything. First we give a
formal definition of the form of the transitions, then we explain it informally. Assume that
the current state is of the form (q, z, i) with z ∈ {safe, reach} and i > 0; and a letter a is

73

given. The transition of C[K] consists of the following choices of the players:

∀ chooses an element z′ ∈ {z, reach} (if z = reach then ∀ has no choice here)

∃ chooses a transition δ = (q, a, qL, qR) of B

∀ chooses a direction d ∈ {L, R}

When these choices are done, the automaton C[K] moves in direction d to the successive
state defined according to the following cases:

• z′ = safe then the successive state is (qd, safe, i),

• z′ = reach and qd /∈ F then the successive state is (qd, reach, i),

• z′ = reach and qd ∈ F then the successive state is (qd, safe, i− 1).

Informally, from each state (q, safe, i) the player ∀ can request to jump to the state
(q, reach, i) without moving in the tree. Assume that he made his choice and the state
of C[K] is (q, z′, i). Now ∃ declares a transition δ and ∀ picks a direction d. If z′ = safe
then they just continue in the state (qd, safe, i). If z′ = reach then C[K] waits for an ac-
cepting state. If qd is accepting then C[K] moves to (qd, safe, i − 1), otherwise C[K] stays
in (qd, safe, i).

By the definition of the transitions of C[K] we obtain the following fact.

Fact 2.3.2. For every K ≥ 0 the automaton C[K] is Comp(0, 0).

The following proposition expresses a relation between the notions of K-safe trees and
acceptance by the automata C[K].

Proposition 2.3.3. For K ≥ 0 and a tree t ∈ TrA:

t ∈ L
(
C[K], (q, safe, i)

)
⇐⇒ q is i-safe in t,

t ∈ L
(
C[K], (q, reach, i)

)
⇐⇒ q is i-reach in t.

Proof. The proof is inductive in i. For the induction step it is enough to observe that there
is a 1−1 correspondence between winning strategies of ∃ in the component QB×{safe}×{i}
of C[K] and runs ρ witnessing the i-safety (similarly for the component QB×{reach}×{i}
and partial runs ρ̄ witnessing i-reachability). �

74

Now, all the properties of the ordinal η(B) from Section 2.1 have been proved. What
remains in the following sections is to give an effective procedure deciding if η(B) < ω2.

2.4 Boundedness game

In this section we construct a finite game G with an ω-regular winning condition that
satisfies the following proposition.

Proposition 2.4.1. The following conditions are equivalent:

1. ∃ has a winning strategy in G,

2. η(B) ≥ ω2.

Since the winner of G can be effectively computed (see Theorem 0.15 on page 43),
Theorem 2 will follow from Proposition 2.1.8. The game G is highly motivated by domi-
nation games from [Col13], however the construction presented here does not depend on
any external results about cost functions.

In this section we construct the game G, a proof of Proposition 2.4.1 is given in Sec-
tion 2.5.

Let us fix a non-deterministic tree automaton A recognising the complement of L(B)
(A can have arbitrary index). We will construct G from A and B. Intuitively, G will require
the following declarations from the players:

• ∃ will be constructing a tree t and a run ρA of A on t,

• ∀ will be selecting successive directions constructing an infinite branch α of t, aiming
to show that the run ρA proposed by ∃ is not accepting,

• at the same time both players will simulate (in the history deterministic way in the
sense of [Col13]) the game G(C[K], t) for an “unknown but big” K.

The set of positions of G is

V = P
(
QB × {safe, reach}

)
×QA × {0, 1, 2, 3}.

A position (S, p, r) ∈ V of G consists of a set S ⊆ QB × {safe, reach} of active states, a
state p ∈ QA, and a sub-round number r ∈ {0, . . . , 3}.

The initial position of G is ({(qBI , safe)}, qAI , 0).

75

The edges of G will have an additional structure (i.e. an edge will be more than just a
pair of positions (v, v′) ∈ V × V). This richer structure will be used to define the winning
condition of G that will refer to a sequence of edges. From our definition it will be easy
to see how to transform such a game into a standard two player game in the sense of
Section 0.3 (see page 25). To underline that edges have additional structure we refer to
them as multi-transitions.

A multi-transition µ from (S, p, r) ∈ V to (S ′, p′, r′) ∈ V contains:

• the pre-state (S, p, r),

• the post-state (S ′, p′, r′) with r′ = r + 1 (mod 4),

• a set e ⊆ S × S ′ of edges between the active states S and S ′,

• a set ē ⊆ e of boldfaced edges, satisfying

for every s′ ∈ S ′ exactly one edge to s′ is boldfaced (i.e. |{s : (s, s′) ∈ ē}| = 1).
(2.4.1)

Observe that by the definition, there is only finitely many multi-transitions. The exact
rules how the multi-transitions are selected by the players are given in Section 2.4.1.

An active state (q, safe) is said to be in the safe zone and an active state (q, reach) is
said to be in the reach zone. We say that a pair (s, s′) ∈ e with s = (q, z) and s′ = (q′, z′)
changes zone if z 6= z′, it changes zone from safe to reach if z = safe and z′ = reach, it
changes zone from reach to safe if z = reach and z′ = safe.

An example multi-transition is depicted on Figure 2.4.1. The convention is that all the
active states from the safe zone are drawn on the left, then all the active states from the
reach zone are drawn in the middle, and finally the state of A and the sub-round number
are drawn on the right. For the purpose of layout, we additionally draw an edge between
the states p and p′ of A (this edge does not belong to e). Boldfaced edges are boldfaced.

2.4.1 Rules of the game

In this section we describe the rules for choosing multi-transitions in G. A multi-transition
from a position (S, p, r) ∈ V will be constructed by first selecting a set of edges e ⊆
S × (QB × {safe, reach}) and p′ ∈ QA according to the rules given below; and then by
allowing ∀ to choose any multi-transition µ that respects (S, p, r), e, and p′ in the following
sense:

76

S ∩ (QB × {safe}) S ∩ (QB × {reach}) p ∈ QA r

r′S ′ ∩ (QB × {safe}) S ′ ∩ (QB × {reach}) p′ ∈ QA

Figure 2.4.1: An example of a multi-transition µ.

• the pre-state of µ is (S, p, r),

• the post-state of µ is (S ′, p′, r′) with S ′ = {s′ : (s, s′) ∈ e} and r′ = r + 1 (mod 4),

• the edges of µ are e,

• the boldfaced edges ē of µ are chosen arbitrarily by ∀ according to Condition 2.4.1.

That is, the only freedom ∀ has when selecting a multi-transition that respects (S, p, r),
e, and p′ is when choosing the boldfaced edges ē.

Assume that the current position in G is (S, p, r) and consider the following cases for
the number of sub-round r. In all the cases players construct a multi-transition µ that
leads to a post-state (S ′, p′, r′):

R0 r = 0: Deterministically, every active state (q, safe) from the safe zone is duplicated
to the reach zone: e contains all the pairs (s, s) for s ∈ S as well as all the pairs
((q, safe), (q, reach)) for (q, safe) ∈ S. The state p′ = p of A is not changed. ∀ chooses
µ that respects (S, p, r), e, and p′.

R1 r = 1: ∃ declares:

• a letter a ∈ A,

• a function assigning to every s = (q, z) ∈ S a transition δs = (q, a, qsL, qsR) of B,

• a transition (p, a, p′L, p′R) of A.

If ∃ is unable to do such a declaration, she looses.

∀ responds by selecting a direction d ∈ {L, R}. Then p′ = p′d and e contains all the
pairs of the form ((q, z), (qsd, z)) for s = (q, z) ∈ S. ∀ chooses µ that respects (S, p, r),
e, and p′.

77

R2 r = 2: Deterministically, every active state (q, reach) in the reach zone with q ∈ F is
moved to the safe zone. Formally, e contains:

• all the pairs ((q, safe), (q, safe)) for (q, safe) ∈ S,

• all the pairs ((q, reach), (q, reach)) for (q, reach) ∈ S and q /∈ F ,

• all the pairs ((q, reach), (q, safe)) for (q, reach) ∈ S and q ∈ F .

The state p′ = p of A is not changed. ∀ chooses µ that respects (S, p, r), e, and p′.

R3 r = 3: ∀ may remove some active states in S by selecting e ⊆ {(s, s) : s ∈ S}. The
state p′ = p of A is not changed. ∀ chooses µ that respects (S, p, r), e, and p′.

Figure 2.4.2 presents a round of G (i.e. four consecutive sub-rounds with r = 0, 1, 2, 3).
By the definition of the sub-rounds of the game, we obtain the following fact.

Fact 2.4.2. Let µ be a multi-transition constructed in the game G and s = (q, z) ∈ S be
an active state in the pre-state (S, p, r) of µ. Then one of the following cases holds:

• z = safe and there is precisely one q′ such that (s, (q′, safe)) ∈ e,

• z = reach and q /∈ F and there is precisely one q′ such that (s, (q′, reach)) ∈ e,

• in R2 if z = reach and q ∈ F then there is no q′ such that (s, (q′, reach)) ∈ e,

• there is no s′ such that (s, s′) ∈ e (it may happen only in R3 if ∀ removes s).

The state q′ in the first two cases above is called the µ-successor of (q, z). Similarly, for a
sequence of multi-transitions µ0, . . . , µk we have the notion of (µ0, . . . , µk)-successor. Note
that a priori the µ-successors of (q, safe) and (q, reach) may be distinct. For an element
s′ ∈ S ′, the unique s such that (s, s′) ∈ ē is called the µ-predecessor of s′.

2.4.2 Winning condition

Now we will define the winning condition for ∃ in G. Recall that it will refer to the sequence
of multi-transitions on the play.

Let π = µ0µ1 . . . be the infinite sequence of multi-transitions that were played in G. We
will refer to the pre-state of µn as (Sn, pn, rn). Analogously, we will use (S ′n, p′n, rn) for the
post-state, en for the edges, and ēn for the boldfaced edges of µn, respectively. Since π is
a play, (S ′n, p′n, r′n) = (Sn+1, pn+1, rn+1) and rn ≡ n (mod 4).

78

S — the safe zone S — the reach zone p r

0

R0

1

R1

a a a a a a a a

2

R2

3

R3

0

S ′ — the safe zone S ′ — the reach zone p′ r′

Figure 2.4.2: An example round of the game G consisting of the four sub-rounds. The
nodes in circles correspond to accepting states. At sub-round R3 ∀ decides to remove one
active state from the safe zone.

79

Observe that every s ∈ S ′n has a unique boldfaced history in π: a unique sequence
s0, s1, . . . , sn = s such that (si, si+1) ∈ ēi for i < n. A path in π is a sequence α = s0, s1, . . .

such that (si, si+1) ∈ ei of all i. A path is boldfaced if (si, si+1) ∈ ēi for all i. In particular,
every finite prefix of a boldfaced path is a boldfaced history.

Intuitively, we would like to count how many times the boldfaced history of an active
state s ∈ S ′n has changed zone from reach to safe, this number will be denoted val(s) and
will be defined formally in Equation (2.5.1). The main purpose of G is to avoid measuring
this quantity and to use an ω-regular winning condition instead.

For a play π = µ0µ1 . . . define the following properties:

W1 Some boldfaced path changes zone infinitely many times.

W2 The sequence of states p0, p1, . . . of the automaton A is parity-accepting.

W3 Some boldfaced path stays from some point on in the reach zone.

Now let a play π be winning for ∃ if π satisfies

W1 ∨ (W2 ∧ ¬W3). (2.4.2)

By the definition of the conditions W1, W2, and W3 we obtain the following fact.

Fact 2.4.3. The winning condition of G is an ω-regular property of sequences of multi-
transitions. By adding multi-transitions of G to the positions one can obtain an equivalent
game with the winning condition on sequences of positions, conforming to the definition in
Section 0.3 (see page 25).

2.5 Equivalence

In this section we prove the following proposition, expressing an equivalence between the
game G constructed in Section 2.4 and the ordinal η(B) from Section 2.1.

Proposition 2.4.1. The following conditions are equivalent:

1. ∃ has a winning strategy in G,

2. η(B) ≥ ω2.

80

2.5.1 Implication (1)⇒ (2)

In this subsection we assume that ∃ has a winning strategy σ∃ in the game G and prove
Item (2) in Proposition 2.4.1, i.e. that η(B) ≥ ω2. For this purpose we take any number
K ∈ N and we will construct a tree t /∈ L(B) such that qBI is K-safe in t. Proposition 2.2.3
will imply that η(B) ≥ ω2.

The main idea behind the game G is that although the winning condition of G is ω-
regular, the structure of G allows to keep track of real values of active states. These values
will correspond to the numbers stored in the states of C[K]. We start by formally defining
these values for a play in G.

Consider a finite or infinite play π = µ0µ1 . . . and an active state s ∈ S ′n with the
boldfaced history s0, s1, . . . , sn = s. Let

val(s, n, π) def=
∣∣∣{i : si ∈ QB × {reach} and si+1 ∈ QB × {safe}

}∣∣∣. (2.5.1)

We usually skip n and π above and write just val(s) if the current history of the play is
known from the context.

Now, given a value K we can consider genuine strategies of ∀ — strategies that keep
track of the values of active states. It will turn out that such strategies allow us to simulate
plays in C[K]. We start by formally defining these strategies.

K-genuine strategies of ∀. A strategy σ∀ of ∀ is called K-genuine if it satisfies three
conditions defined below: genuine-removal, val-monotonicity, and tie-breaking.

A strategy σ∀ satisfies genuine-removal if in the sub-round R3 it removes an active
state s ∈ S if and only if val(s) ≥ K.

A strategy σ∀ satisfies val-monotonicity if whenever ∀ defines boldfaced edges, he does
it in such a way to minimize val(s) — he puts (s, s′) into ē if s has a minimal value val(s)
among all {s : (s, s′) ∈ e}. In other words, every pair (s, s′) ∈ ē has to satisfy

∀(s0,s′)∈e val(s) ≤ val(s0). (2.5.2)

Already the two above conditions guarantee the following fact.

Fact 2.5.1. If π is an infinite play of G consistent with a K-genuine strategy of ∀ then π
does not satisfy W1 (no boldfaced path changes side infinitely many times).

81

The last condition, namely the tie-breaking, says what to do when defining ē if there
are two possible active states s with the minimal value val(s), i.e. both satisfying (2.5.2).
The only purpose of this condition is to guarantee the following fact.

Fact 2.5.2. Let π be an infinite play of G that is consistent with a K-genuine strategy of
∀. If π contains an infinite path α that from some point on stays in the reach zone then
this path is eventually boldfaced (i.e. there exists an infinite boldfaced path α′ that differs
from α on finitely many positions, so α′ satisfies W3).

To express the condition of tie-breaking let us assume that during a play the player
∀ keeps track of a linear order on the active states: along with the position (S, p, r) he
stores an order ≤ on S. This order is a simplified variant of Latest Appearance Record,
see [GH82] and [Büc83b]. When he chooses a multi-transition µ, the new order ≤′ on S ′

is defined according to the following rules:

• for an active state s′ ∈ S ′ that is in the reach zone let us define pre(s′) = {s ∈
QB × {reach} : (s, s′) ∈ e} — the set of e-predecessors of s′ that are in the reach
zone,

• for s′0, s′1 in the reach zone such that both sets pre(s′0), pre(s′1) are non-empty we put

s′0 ≤′ s′1 if sup≤ pre(s′0) ≤ sup≤ pre(s′1),

• all the active states s′ in the reach zone such that pre(s′) = ∅ are added to ≤′ below
all the existing elements (i.e. s′ <′ s′0 when pre(s′) = ∅ and pre(s′0) 6= ∅),

• all the active states in the safe zone are added below all the active states in the reach
zone (i.e. (q, safe) <′ (q′, reach)).

• when the above rules do not determine the order, some fixed order on QB is used.

Intuitively, the order ≤ measures, for a given active state s, how long history (possibly
not boldfaced) this active state has in the reach zone — the longer history, the ≤-bigger
is s.

Now, a strategy σ∀ satisfies the condition of tie-breaking if among all active states s
satisfying (2.5.2) it selects the ≤-maximal one: if (s, s′) ∈ ē then

∀(s0,s′)∈e val(s0) = val(s)⇒ s0 ≤ s.

82

Proof of Fact 2.5.2 Let π = µ0µ1 . . . and consider a path α in π as in the statement (α
stays from some point on in the reach zone). Observe that from some point on the value
val(s) for the active states on the path α must stabilize — the values of active states along
a path not changing zone can only decrease. Therefore, from some point on, the boldfaced
edges to active states on α were chosen using the condition of tie-breaking.

For the purpose of this proof, let the grade of an active state s in an order ≤ be the
number of elements greater than s in ≤— the smaller the grade is the ≤-bigger the element
is. By Fact 2.4.2 an active state s in the reach zone has at most one e-successor. Therefore,
the grades of the active states on the path α are from some point on decreasing. Let n be
the moment when both the values and the grades of the active states on α stabilize.

Consider a multi-transition µn′ in π that is later than n (i.e. n′ ≥ n). Let s, s′ be
the active states on α just before and just after µn′ . The values are already stabilized so
val(s) = val(s′). Since the grades of s and s′ are the same, s is ≤-maximal in pre(s′).
Therefore, the edge (s, s′) has to be boldfaced in µn′ . �

The following remark shows how to define a K-genuine strategy.

Remark 2.5.3. Observe that all the choices of ∀ except the directions d are uniquely
determined in a K-genuine strategy. Therefore, to define a K-genuine strategy it is enough
to say what will be the directions proposed by ∀ in R1.

From a strategy in G to a K-safe tree. Assume that ∃ has a winning strategy σ∃ in
G and K ∈ N. Our aim is to construct a tree t /∈ L(B) such that QBI is K-safe in t. The
requirement that t /∈ L(B) will be ensured by constructing an accepting run ρ of A on t.
It will finish the proof of Item 2 in Proposition 2.4.1 (i.e. that η(B) ≥ ω2).

We define a tree t and a run ρ of A on t inductively. Let us take u ∈ {L, R}∗. Consider
the play π of G resulting from ∃ playing σ∃ and ∀ playing a K-genuine strategy such that
the first |u| directions proposed by ∀ are u(0), . . . , u(|u| − 1). Let a, p be the letter and
the state of A from the sub-round R1 of the |u|’th round of π. Let us put t(u) = a and
ρ(u) = p.

Let α be any infinite branch of t. By π(K,α) we denote the play resulting from ∃ playing
σ∃ and ∀ playing the K-genuine strategy with consecutive directions α(0), α(1), . . . By
Fact 2.5.1, the play π(K,α) does not satisfy W1. Since σ∃ is winning, π(K,α) satisfies W2
and ¬W3. In particular, W2 implies that the run ρ determined by σ∃ is parity-accepting
on α. Since the choice of α is arbitrary, ρ is accepting so t /∈ L(B).

83

It remains to prove that qBI is K-safe in t. It is expressed in an inductive fashion by
the following lemma. We assume that the sequence of multi-transitions during π(K,α) is
µ0µ1 Note that the four multi-transitions played in the sub-rounds of an n’th round of
the play π(K,α) are µ4n, µ4n+1, µ4n+2, and µ4n+3.

Lemma 2.5.4. Consider the play π(K,α) for an infinite branch α. Assume that an n’th
round of this play started in the vertex u = α�n of the tree t. Take any active state
s = (q, z) ∈ S4n or S ′4n (we allow active states before and after the sub-round R0). For
every i ≤ K−val(s):

if z = reach then q is i-reach in t�u,

if z = safe then q is i-safe in t�u.

Note that the above lemma for n = 0, s = (qBI , safe), and i = K gives us that qBI is
K-safe in t.

Proof. The proof goes by induction on i. The thesis is trivial for i = 0. Assume that we
have proved the thesis for i− 1 (for all n and s). Consider a vertex u = α�n and an active
state s as in the statement.

The z = reach case. First consider the case of z = reach. We need to show that q is
i-reach in t�u.

We will construct a partial tree ρ̄ ∈ PTrQB that will be a partial run witnessing that q
is i-reach in t�u. The construction of ρ̄(w) is inductive on the length of w ∈ {L, R}∗. With
every w during the construction we bind a prefix of a play in G that is consistent with the
strategy σ∃. The invariant is that s′ = (ρ̄(w), reach) is an active state and val(s′) ≤ K − i.
We start with w = ε, the prefix µ0 . . . µ4n, and s′ = s.

Assume we reached a vertex w during the construction with the prefix of the play being
µ0 . . . µ4n−1µ

′
4nµ
′
4n+1 . . . µ

′
4n′ (here n′−n = |w|). Assume that s0 = (ρ̄(w), reach) is an active

state and val(s0) ≤ K − i. We need to show how to extend the construction to wd for
d = L, R. Consider such d and let us play the remaining three sub-rounds of the (n′)’th
round. Let ∃ play using σ∃ and let ∀ play in this round using aK-genuine strategy with the
proposed direction d, the three multi-transitions constructed are µ′4n′+1, . . . , µ

′
4n′+3. Now

let us play the first sub-round R0 of the successive round, what gives us µ′4n′+4 — it does
not influence the reach zone.

84

Let q′ = qs0
d — the state from the transition proposed by ∃ for s0. First assume that q′ /∈

F . In that case, by Fact 2.4.2, the active state (q′, reach) is the unique (µ′4n′+1, . . . , µ
′
4n′+4)-

successor of (q, reach) — since i > 0 and val(s0) ≤ K − i so ∀ does not remove the
active state (q′, reach) in µ′4n′+3. In particular, val(q′, reach) ≤ val(q, reach) ≤ K − i. We
define ρ̄(wd) = q′, and proceed with w = wd, s0 = (q′, reach), and the prefix of a play
µ0 . . . µ4n−1µ

′
4nµ
′
4n+1 . . . µ

′
4n′+4.

Now consider the case that q′ ∈ F . In that case we finish the inductive constriction by
letting w be a leaf of ρ̄. Note that in that case in the multi-transition µ′4n′+2 there is an edge
((q′, reach), (q′, safe)). Therefore, val(q′, safe) ≤ 1 + val(q′, reach) ≤ K − i. As before, ∀
does not remove (q′, safe) in µ′4n′+3. By the inductive assumption for i−1 ≤ K−val(q′, safe)
we know that q′ is (i−1)-safe in t�uw. It means that ρ̄ is a partial run witnessing that the
original state q was i-reach in t�u if and only if ρ̄ is a finite tree (does not have any infinite
branch).

It remains to prove that ρ̄ is finite. Assume contrary that there exists an infinite branch
β such that for every w ≺ β the above construction gave a state q′ /∈ F . It means that
there exists a path in the play π(K, uβ) that is from some moment on in the reach zone.
By Fact 2.5.2 it means that W3 is satisfied what contradicts the assumption that σ∃ is
winning.

The z = safe case. Assume that z = safe. We need to show that q is i-safe in t�u.
Similarly as above, we construct a total run ρ of B on t�u with ρ(ε) = q. We will argue
that for every w we know that ρ(w) is i-reach in t�uw.

The construction of ρ(w) is inductive on the length of w ∈ {L, R}∗. With every w during
the construction we bind a prefix of a play in G that is consistent with the strategy σ∃.
The invariant is that s′ = (ρ(w), safe) is an active state and val(s′) ≤ K − i. During the
step in which we define ρ(wd) we additionally argue that ρ(w) is i-reach in t�uw. We start
with w = ε, the prefix µ0 . . . µ4n−1 and s′ = s.

Assume that we reached a vertex w during the construction with the prefix of the play
being µ0 . . . µ4n−1µ

′
4nµ
′
4n+1 . . . µ

′
4n′−1 (here n′ − n = |w|). Assume that s0 = (ρ̄(w), safe) is

an active state and val(s0) ≤ K−i. We need to show how to extend the construction to wd
for d = L, R. Consider such d and let us play the four sub-rounds of the (n′)’th round. Let
∃ play using σ∃ and let ∀ play in this round using a K-genuine strategy with the proposed
direction d, the four multi-transitions constructed are µ′4n′ , . . . , µ′4n′+3.

85

Let q′ = qs0
d — the state from the transition proposed by ∃ for s0. By Fact 2.4.2, the

active state (q′, safe) is the unique (µ′4n′ , . . . , µ′4n′+3)-successor of (q, safe) — since i > 0
and val(s0) ≤ K − i, ∀ does not remove the active state (q′, safe) in µ′4n′+3. In particular,
val(q′, safe) ≤ val(q, safe) ≤ K − i. We define ρ(wd) = q′, and proceed with w = wd,
s0 = (q′, safe), and the prefix of a play µ0 . . . µ4n−1µ

′
4nµ
′
4n+1 . . . µ

′
4n′+3.

Additionally observe that there is an edge ((q, safe), (q, reach)) in the multi-transition
µ4n′ . Therefore, by the inductive invariant we know that ρ(w) is i-reach in t�uw. �

This concludes the proof of the implication (1)⇒ (2).

2.5.2 Implication (2)⇒ (1)

Now assume that ∀ has a winning strategy in G. Since the winning condition of G is
ω-regular so we can take as σ∀ a finite memory winning strategy of ∀ (see Section 0.3.1
and Theorem 0.15 on page 43). Assume that the memory structure of σ∀ is M . We will
prove that there exists a number K such that no tree t /∈ L(B) is K-reach, thus showing
the negation of Item 2 in Proposition 2.4.1 (i.e. that η(B) < ω2).

We start with the following fact exploiting the assumption that the strategy σ∀ has
finite memory. Recall that in (2.5.1) we defined the value of an active state s in a play
(denoted val(s)).

Fact 2.5.5. There exists a global bound K such that for every play consistent with σ∀ and
every active state s during the play, we have val(s) < K. The bound K can be computed
effectively basing on B.

Proof. Assume contrary and let us take a play π = µ0µ1 . . . µ4n such that for some active
state s we have val(s) ≥ |G| · |M | · |QB| ·2. A standard pumping technique (see e.g. [AS05])
shows that in that case there exists a loop µ4iµ4i+1 . . . µ4i′ in the graph G × M and an
active state s ∈ QB × {safe, reach} such that:

• s ∈ S4i,

• s ∈ S ′4i′+3,

• the boldfaced history of s in µ4iµ4i+1 . . . µ4i′ reaches s in S4i,

• the above boldfaced history contains a change of the zone reach→ safe.

86

Consider the play
π′ = µ0µ1 . . . µ4i−1

(
µ4i . . . µ4i′+3

)∞
.

This play is consistent with the strategy σ∀ and satisfies W1. Therefore, π′ is winning for
∃ what contradicts the fact that σ∀ is a winning strategy of ∀. �

Let us fix the bound K from Fact 2.5.5. Assume for the contradiction that η(B) ≥ ω2.
Proposition 2.2.3 implies that there exists a tree t /∈ L(B) such that qBI is K-safe in t. Let
σ be a winning strategy of ∃ in G(C[K], t).

We will construct a strategy σ∃ of ∃ in G that will simulate the strategy σ. Then we
will show that the play of G resulting from ∃ playing σ∃ and ∀ playing σ∀ is winning for ∃
what contradicts the assumption that σ∀ is winning.

Let ρ be an accepting run of A on t. The strategy σ∃ will simulate during a play of
G a set of plays of G(C[K], t) (by following the boldfaced edges) and play ρ as states of
A. That is, for every active state s the player ∃ will keep track of an s-play in G(C[K], t)
defined below. The invariant will be:

If s = (q, z) ∈ S at the beginning of a round in G then

the s-play in G(C[K], t) reached the state
(
q, z,K − val(s)

)
. (2.5.3)

Let us define the s-play in G(C[K], t) more formally. At the beginning of the game
G the only active state is (qBI , safe) and (qBI , safe, K) is the initial state of C[K]. We will
consider the four sub-rounds of a round in G. Whenever a new multi-transition µ is played
in G, the s′ ∈ S ′-play in G(C[K], t) is the continuation of the s-play in G(C[K], t) for s
being the µ-predecessor of s′. Now consider the successive sub-rounds:

• In the sub-round R0 it is possible that the edge (s, s′) changes the zone from safe
to reach. In that case ∃ simulates ∀ playing z′ = reach in G(C[K], t), otherwise she
simulates z′ = safe.

• The transition δs played by ∃ in G in the sub-round R1 is the transition δ from
G(C[K], t) played in the s-play in G(C[K], t). The direction d played by ∀ in G(C[K], t)
is the direction from the sub-round R1.

• In the sub-round R2 it is possible that the edge (s, s′) changes the zone from reach
to safe. In that case s = (q, reach) with q ∈ F and the play in G(C[K], t) moves to
the state (q′, safe, i− 1).

87

• If ∀ decides to remove some active states s in the sub-round R3 of G then, by the
invariant 2.5.3 and Fact 2.5.5, the simulated plays in G(C[K], t) already reached the
QB × {safe, reach} × {0} component and a transition > was taken in G(C[K], t).

Observe that after such a round the invariant (2.5.3) is satisfied.
Let π be the play resulting from ∃ playing σ∃ and ∀ playing σ∀ in G. Fact 2.5.5 implies

that π does not satisfy W1. Since the strategy σ of ∃ in G(C[K], t) is winning, so W3 is
not satisfied by π. The run ρ is accepting so π satisfies W2. Therefore, π is winning for ∃
what contradicts the assumption that σ∀ is winning.

This concludes the proof of Implication (2)⇒ (1) and the proof of Proposition 2.4.1.

2.6 Conclusions

The results presented in this chapter relate descriptive complexity of the language recog-
nised by a Büchi automaton B with the rank η(B). In particular, Conjecture 4 stated in
this chapter would imply that if a Büchi language is Borel then it is wmso-definable (i.e. a
special case of Conjecture 2 for Büchi languages). Unfortunately, Conjecture 4 remains
open as an appropriate pumping argument is missing.

The study of the ordinal η(B) is motivated by the boundedness theorem (see Theo-
rem 0.7 on page 39), saying that if an analytic (i.e. Σ1

1) set X is contained in a ranked
set (e.g. well-founded ω-trees) then there is a bound on ranks that are realised in X. This
theorem is the crucial tool for proving Proposition 2.1.7 that relates Borel languages and
the rank η(B).

Since every Büchi language is analytic, this may suggest to use the boundedness theorem
for deciding if a given language is Büchi. However, one should bear in mind the following
example. It implies that among Σ1

1-sets there are some Büchi languages and some regular
languages that are not Büchi. Therefore, topological methods are not enough to distinguish
between the two cases.

Example 2.6.1. The regular tree language L 6=1 containing these trees t ∈ Tr{a,b} that have
0 or at least 2 infinite branches labelled by infinitely many letters a is an analytic language
(i.e. Σ1

1) but it cannot be recognised by a Büchi automaton.

Sketch of the proof. The fact that L 6=1 is analytic follows from [Kec95, Exercise 33.1]. The
fact that L6=1 is not a Büchi language follows from the standard pumping argument showing
that the set of trees where every branch contains only finitely many a is not Büchi. �

88

However, there is a hope that some more involved ranks may still be useful for deciding
higher levels of the index hierarchy.

89

Chapter 3

Index problems for game automata

One of the main difficulties when working with regular languages of infinite trees is the
lack of a convenient notion of recognition. In particular, since deterministic automata are
too weak, one has to deal with an inherent non-determinism. On the other hand, many
problems simplify when we restrict to languages recognisable by deterministic automata
(called deterministic languages), see Section 0.7.6 on page 49. The crucial technique stand-
ing behind these results is the so-called pattern method — the properties of a deterministic
language are reflected by certain patterns in the graph of a deterministic automaton recog-
nising it.

The pattern method cannot be applied to non-deterministic nor alternating automata;
the reason is that both these classes are closed under union and union is not an operation
that preserves the index of languages. However, it turns out that if we avoid closure under
union, we can extend the pattern method well-beyond deterministic automata, to so-called
game automata.

In this chapter we study game automata that can be seen as a combination of determi-
nistic and co-deterministic ones. They were introduced in [DFM11] as the largest subclass
of alternating tree automata extending the deterministic ones, closed under complementa-
tion and composition, and for which the latter operation preserves natural equivalence re-
lations on recognised languages, like the topological equivalence, or having the same index.
As game automata recognise the languages Wi,j from [Arn99] (see Section 0.7.4, page 46)
the alternating index problem does not trivialise, unlike for deterministic automata.

Recall that an alternating tree automaton A is deterministic if its transitions are of
the form (qL, L) ∧ (qR, R). For such automata, all the positions in the induced game G(A, t)
on a tree t belong to the universal player ∀— his aim is to indicate a branch on which
the run is rejecting. In the case of game automata we allow dual transitions where ∃ is
in charge of selecting the direction. More formally, an alternating tree automaton A is a

90

game automaton if every transition of A is of one of the following forms:

> , ⊥ , (qd, d) , (qL, L) ∨ (qR, R) , (qL, L) ∧ (qR, R)

for d ∈ {L, R} and qL, qR ∈ QA. If A is a game automaton and t is a tree then both players
are allowed to make decisions in the game G(A, t). However, for every direction d in the
tree, there is at most one successive state that can be reached by moving in this direction.

The following theorem summarizes the results of this chapter.

Theorem 3. The non-deterministic index problem is decidable for game automata (i.e. if
a game automaton is given as the input). The same holds for the alternating index problem.

Let L be a language recognised by a game automaton. If L ∈ ∆alt
j then L ∈

Comp(Πalt
j−1). If L is Borel then L is wmso-definable.

Additionally, it is shown in [FMS13] that it is decidable if a given regular tree language
is recognisable by a game automaton. This characterisation is not presented in this thesis,
it follows similar lines as in the deterministic case [NW98]. It implies that the decidability
results from Theorem 3 hold for the class of languages recognisable by game automata:
there exists an algorithm that inputs a representation (possibly a non-game automaton)
of a regular tree language, verifies if the language can be recognised by a game automaton
and if it can then computes the index of the language.

At this point game automata form the widest class of automata for which both index
problems are known to be decidable. It seems that game automata is the frontier of the
pattern method — to move further one needs a new insight into the structure of regular
tree languages.

The symbols Πalt
j and Σalt

j are used in this thesis in the opposite meaning when com-
pared to [FMS13]. This is to keep consistency with the notions from [AS05,AMN12].

The chapter is organised as follows. In Section 3.1 we introduce and study a notion
of the run of a game automaton on a tree. In Section 3.2 we give an easy argument for
decidability of the non-deterministic index problem for game automata. Section 3.3 builds
some technical tools that will allow to give a solution for the alternating index problem for
game automata in Section 3.4. In Section 3.5 we conclude.

91

3.1 Runs of game automata

The main similarity between game automata and deterministic automata is that their
acceptance can be expressed in terms of runs, which are unique labellings of input trees.
The notion of a run of a game automaton will be used in subsequent sections of this chapter.

For a game automaton A and a state q0 ∈ QA, with each tree t ∈ TrAA one can associate
the run

ρ = ρ(A, t, q0) : dom(t)→ QA t {>,⊥, ?}

such that ρ(ε) = q0 and for all u ∈ dom(t), if ρ(u) = q, δ(q, t(u)) = bu then

• if bu is (qL, L) ∨ (qR, R) or (qL, L) ∧ (qR, R) then ρ(ud) = qd for d = L, R;

• if bu = (qd, d) for some d ∈ {L, R} then ρ(ud) = qd and ρ(ud̄) = ?;

• if bu = ⊥ then ρ(uL) = ρ(uR) = ⊥, and dually for >;

and if ρ(u) ∈ {>,⊥, ?} then ρ(uL) = ρ(uR) = ?.
The run ρ = ρ(A, t, q0) for a tree t is naturally interpreted as a game Gρ(A, t, q0) with:

• positions dom(t) \ ρ−1(?),

• where edges follow the child relation and loop on those positions u where ρ(u) ∈
{>,⊥},

• the priority of u is ΩA(ρ(u)) with Ω(⊥) = 1, Ω(>) = 0,

• the owner of u being ∃ if and only if δ(ρ(u), t(u)) = (qL, L)∨(qR, R) for some qL, qR ∈ QA.

Note that the symbol ? in ρ denotes the vertices that cannot be visited during the game
Gρ(A, t, q0).

Recall that the game G(A, t, q0) (see Section 0.4, page 27) is defined similarly to
Gρ(A, t, q0) but is more complicated: a play in G(A, t, q0) explicitly operates on tran-
sitions of A. For instance, one edge in the game Gρ(A, t, q0) may correspond to three
edges in G(A, t, q0):

• from (u, bu) to (u, bd) where bd is an atomic transition that is a sub-formula of bu,

• from (u, bd) to (ud, qd) for an atomic transition bd = (qd, d),

• from (ud, qd) to
(
ud, δ(qd, t(ud))

)
where δ(qd, t(ud)) = bud.

92

Therefore, Gρ(A, t, q0) can be seen as a projection of G(A, t, q0)), the advantage of
Gρ(A, t, q0) is that this game explicitly reflects the input tree — the set of positions of
Gρ(A, t, q0) is contained in dom(t). By the definition, t ∈ L(A, q0) if and only if ∃ has a
winning strategy in Gρ(A, t, q0).

For simplicity we write ρ(A, t) for ρ(A, t, qI
A) and Gρ(A, t) for Gρ(A, t, qI

A).
It will be important in this chapter that we assume that every state q of a game

automaton A recognises a non-trivial language, i.e. L(A, q) is neither ∅ nor TrAA . This
can be achieved for every game automaton recognising a non-trivial language by removing
trivial states and simplifying transitions, see Fact 0.4.1 on page 29 (it is easy to observe
that the proposed method produces a game automaton).

The following remark subsumes the crucial property of runs of game automata.

Remark 3.1.1. Let A be a game automaton and t ∈ TrAA be a tree. Assume that u ∈
dom(t) is a vertex such that ρ(A, t)(u) = q ∈ QA (i.e. ρ(A, t)(u) is not in {>,⊥, ?}). Let

L′ = {t′ ∈ TrAA : t[u← t′] ∈ L(A)}.

Then either:

• L′ = ∅,

• L′ = TrAA,

• L′ = L(A, q).

Additionally, since all the states of A recognise non-trivial languages, the above disjunction
is exclusive.

Proof. Consider the following cases:

• One of the players P ∈ {∃,∀} has a winning strategy σ in Gρ(A, t) (we treat σ as
a set of nodes of t) such that u /∈ σ. In that case the same strategy is a winning
strategy in Gρ(A, t[u← t′]), so L′ = ∅ or L′ = TrAA depending whether P = ∀ or ∃.

• Whenever σ is a winning strategy of a player P in t then u ∈ σ. We want to show
that L′ = L(A, q). Consider any tree t′ and assume that a player P has a winning
strategy σ in Gρ(A, t[u← t′]). By our assumption u ∈ σ — otherwise σ would be a
winning strategy of P in Gρ(A, t) that does not contain u. Note that since u ∈ σ,
σ induces a winning strategy of P in Gρ(A, t′, q). Therefore, t′ ∈ L′ if and only if
P = ∃ if and only if t′ ∈ L(A, q).

93

�

3.2 Non-deterministic index problem

In this section we prove the first part of Theorem 3: the non-deterministic index problem
is decidable for languages recognisable by game automata. It follows directly from the
decidability of the non-deterministic index problem for deterministic tree languages [NW05]
and the following proposition.

Proposition 3.2.1. For each game automaton A one can effectively construct a deter-
ministic automaton D, such that L(A) is recognised by a non-deterministic automaton of
index (i, j) if and only if so is L(D).

Proof. Essentially, D recognises the set of winning strategies for ∃ in the games induced
by the runs of A. Let W ∃

A be the set of all trees t⊗ s over the alphabet AA×{L, R, LR} such
that s encodes a winning strategy for ∃ in the game Gρ(A, t) in the following sense: if
s(u) ∈ {L, R}, ∃ should move from u to u ·s(u), and s(u) = LR means that ∃ has no choice in
u. It is easy to see that W ∃

A can be recognised by a deterministic automaton D: it inherits
the state-space, the initial state, and the priority function from A. The transitions of D
are defined as follows: for all q ∈ Q, a ∈ AA, d ∈ {L, R}, if δA(q, a) = (qL, L) ∨ (qR, R) for
some qL, qR, then

δD(q, (a, d)) = (qd, d) δD(q, (a, LR)) = ⊥

otherwise,
δD(q, (a, d)) = ⊥ δD(q, (a, LR)) = δA(q, a).

It is easy to check that L(D) = W ∃
A.

Note that
L(A) =

{
t ∈ TrAA : ∃s ∈ Tr{L,R,LR}. t⊗ s ∈ W ∃

A

}
.

Hence, if W ∃
A = L(B) for some non-deterministic automaton B of index (i, j) then L(A) =

L(B′), where B′ is the standard projection of B on the alphabet AA: for all q ∈ QA and
a ∈ AA, δB′(q, a) = δB(q, (a, L)) ∨ δB(q, (a, R)) ∨ δB(q, (a, LR)). The projection does not
influence the index.

For the other direction, the proof is based on the following observation. For t ∈ TrAA
and s ∈ Tr{L,R,LR} let force(t, s) ∈ TrAA be the tree obtained from t by the following
operation: for each u, if ρ(A, t)(u) = q, δ(q, t(u)) = (qL, L)∨(qR, R), and s(u) = L then replace

94

the subtree of t rooted in uR by some fixed regular tree in the complement of L(A, qR); dually
for s(u) = R. (Recall that A has only non-trivial states, so L(A, qR) (TrAA .) If s encodes
a strategy σs for ∃ in Gρ(A, t) then σs is winning if and only if force(t, s) ∈ L(A). Hence

t⊗ s ∈ W ∃
A ⇐⇒ s encodes a strategy for ∃ in Gρ(A, t) and force(t, s) ∈ L(A). (3.2.1)

What remains is to show that if L(A) = L(B) for some non-deterministic automaton B
of index (i, j) then we can construct a non-deterministic automaton C of index at most (i, j)
recognising W ∃

A. The automaton C simply checks for the input tree t⊗ s if the right-hand
side of (3.2.1) holds: whether s encodes a strategy for ∃ in the parity game associated with
ρ(A, t) and if force(t, s) ∈ L(B).

Now we provide a more formal description of the automaton C.
By Rabin’s theorem (see Theorem 0.12 on page 42), for each q ∈ QA there exists a

regular tree tq /∈ L(A, q). We define a sequence of regular languages and then we argue
that they can be recognised by non-deterministic automata of indices at most (i, j):

St =
{
t⊗ s : s encodes a strategy for ∃ in Gρ(A, t)

}
,

StE =
{
t⊗ s⊗ t′ : t⊗ s ∈ St ∧ force(t, s) = t′

}
,

StEW =
{
t⊗ s⊗ t′ : t⊗ s⊗ t′ ∈ StE ∧ t′ ∈ L(B) = L(A)

}
,

StW =
{
t⊗ s : t⊗ s ∈ St ∧ force(t, s) ∈ L(A)

}
.

Where:

• The language St corresponds to a safety condition of the form “in every vertex . . . ”.
This condition can be verified by a Comp(0, 0)-deterministic automaton,

• The language StE additionally enforces that the respective subtrees are equal tq where
tq are regular. It can be verified by a Comp(0, 0)-deterministic automaton,

• The language StEW can be recognised by a product of the automata recognising StE
and B — the resulting non-deterministic automaton can be constructed in such a
way that its index equals (i, j),

• StW is obtained as the projection of StEW onto the first two coordinates, as such
can also be recognised by a non-deterministic (i, j)-automaton.

95

What remains to show is the following equation

W ∃
A = StW (3.2.2)

First assume that t ⊗ s ∈ W ∃
A. In that case s encodes a winning strategy σ for ∃ in

Gρ(A, t). We treat σ as a subset of dom(t). Note that if u ∈ σ then t(u) = t′(u), so
also ρ(A, t)(u) = ρ(A, t′)(u). Therefore, the strategy σ is also winning in Gρ(A, t′). So
t′ ∈ L(A) what implies that t⊗ s⊗ t′ ∈ StEW and t⊗ s ∈ StW.

Now assume that t ⊗ s ∈ StW. Let t′ = force(t, s) and σ be the strategy for ∃ in
Gρ(A, t) encoded by s. By the definition of StEW we obtain that t′ ∈ L(A) so there exists
a winning strategy σ′ for ∃ in Gρ(A, t′).

If σ′ 6⊆ σ then there exists a minimal (w.r.t. the prefix order) vertex u ∈ σ′ \ σ.
By the definition of force(t, s) we obtain that t′�u is tq for q = ρ(A, t)(u). Therefore,
since tq /∈ L(A, q), so there is no winning strategy for ∃ in Gρ(A, tq, q) and we obtain a
contradiction. Therefore σ′ ⊆ σ and for every u ∈ σ′ we have ρ(A, t)(u) = ρ(A, t′)(u),
so σ′ is also a strategy in Gρ(A, t′). Since strategies form an anti-chain with respect to
inclusion, so σ = σ′, t′ ∈ L(A), and t⊗ s ∈ W ∃

A. �

3.3 Partial objects

In this section we build some technical tools that will be used in solving the alternating
index problem for game automata.

The proofs in the alternating case will be inductive over the structure of a given game
automaton. Therefore, we introduce here definitions that allow partial objects: partial trees
have holes, partial automata have exits (where computation stops), and partial games have
final positions (where the play stops and no player wins). The definitions become standard
when restricted to total objects.

3.3.1 Trees

It will be convenient in this chapter to work with partial trees PTrA, as defined in Sec-
tion 0.1.2 (see page 21). A partial tree that is not complete contains holes. A hole of a
partial tree t is a minimal sequence u ∈ {L, R}∗ that does not belong to dom(t) (a hole is off
t in the sense of Section 0.1). By holes(t) ⊆ {L, R}∗ we denote the set of holes of a tree t. If

96

u is a hole of a tree t ∈ PTrA and t′ ∈ PTrA we define the partial tree t[u ← t′] obtained
by putting the root of t′ into the hole u of t.

Let A be a game automaton and q0 ∈ QA. Recall the inductive definition of a run ρ
of A on a tree t (see Section 3.1). Note that the value ρ(u) is uniquely determined by
the labels of t on the path leading from the root to u (except u). Therefore, the value
ρ(A, t, q0)(u) is well-defined even for a partial tree t ∈ PTrAA and u ∈ dom(t) t holes(t).
In other words, if t ∈ PTrAA then ρ(A, t, q0) is a function of the type

dom(t) t holes(t) −→ QA.

3.3.2 Games

A partial parity game is a tuple 〈V = V∃ t V∀, vI, F, E,Ω〉 as in Section 0.3 (see page 25)
with an additional set F of final positions, F ∩ V = ∅. We assume that E ⊆ V× (V t F)
is the transition relation — there are transitions from positions in V to positions in V and
from positions in V to final positions in F .

A play in a partial parity game G may be a finite sequence π = vIv1 . . . vn of positions
with vn being a final position (i.e. vn ∈ F). In that case vn is called the final position of
π. A finite play is not winning for any of the players.

Strategies are defined in the standard way, see Section 0.3: a strategy σ is winning
if all the infinite plays consistent with σ are winning — the finite plays are irrelevant.
Theoretically, both players may have a winning strategy in a partial parity game. For a
winning strategy σ we define the guarantee of σ as the set of all final positions that can be
reached in finite plays consistent with σ.

To operate with partial trees, we extend the definition of the parity game Gt from
Section 0.7.4 (see page 46) to the case when t ∈ PTrAi,j

. Whole Definition 0.7.3 from
page 46 is unchanged, the only difference is that we additionally put F = holes(t) — each
hole of t is treated as a final position of the game Gt. As defined in Section 0.7.4, the
language Wi,j is the set of complete trees over Ai,j such that ∃ has a winning strategy in
Gt.

3.3.3 Automata

A partial alternating automaton A is defined as a tuple 〈A,Q, F, δ,Ω〉 as in Section 0.4 (see
page 27) with an additional finite set F of exits. We assume that F is disjoint from Q and

97

we allow atomic transitions of the form (f, d) for f ∈ F and d ∈ {L, R} — a transition can
lead to an exit but there are no transitions from exits, i.e. the domain of δ is Q×A. Note
that a partial automaton does not have an initial state.

An automaton A is total if F = ∅. In that case the presented definitions take the form
from Section 0.4.

For a partial alternating automaton A, a state q0 ∈ Q, and a partial tree t ∈ PTrA we
define the partial parity game G(A, t, q0) similarly as in Section 0.4:

V = dom(t)× (Sδ tQ),

F =
(
holes(t)× (Q t F)

)
t dom(t)× F,

where Sδ is the set of all sub-formulae of formulae in rg(δ); all positions of the form
(u, b1 ∨ b2) belong to ∃ and the remaining ones to ∀. The edges E follow the transition
relation.

Note that the set of final positions of G(A, t, q0) can be split into two disjoint parts:
positions in the holes of t, visited in a state or an exit of A, and positions inside t visited
in an exit f ∈ F of A.

3.3.4 Composing automata

Let A =
〈
AA, QA, FA, δA,ΩA

〉
be a partial alternating automaton and Q′ ⊆ QA be a set

of states. By A�Q′ we denote the restriction of A to Q′ obtained by replacing the set of
states by Q′, the set of exits by FA t

(
QA \Q′

)
, the priority function by ΩA�Q′ , and the

transition function by δA�Q′×AA . We say that B is a sub-automaton of A (denoted B ⊆ A)
if QB ⊆ QA and B = A�QB .

For two partial alternating automata A, B over an alphabet A with QA ∩QB = ∅, we
define the composition A · B as the automaton over A, with states Q = QA t QB, exits(
FA ∪ FB

)
\ Q, transitions δA ∪ δB, and priorities ΩA ∪ ΩB. What is very important is

that some exits of A may be states of B and vice versa.

Fact 3.3.1. If A is a partial alternating automaton and QA = Q1 t Q2 is a partition of
the states of A then A�Q1 · A�Q2 = A.

98

3.3.5 Resolving

Let t ∈ PTrA be a partial tree and ρ = ρ(A, t, q0) be the run of a total game automaton A
on t from a state q0. We say that t resolves A from q0 ∈ Q if ρ(w) 6= ? for each hole w of
t and for every u ∈ dom(t) if t�ud is the only total tree in {t�uL, t�uR}, either ρ(ud) = ? or
ud is losing for the owner of u in Gρ(A, t, q0).

The following fact shows the crucial property of trees that resolve game automata. It
can be seen as an extension of Remark 3.1.1.

Fact 3.3.2. Assume that t resolves A from q0 and ρ = ρ(A, t, q0) assigns states to all the
holes of t. If t has a single hole u then for every s ∈ TrA we have

t[u← s] ∈ L(A, q0)⇐⇒ s ∈ L(A, ρ(u)).

If t has two holes u, u′, whose closest common ancestor w satisfies δA(ρ(w), t(w)) =
(qL, L) ∧ (qR, R) for some qL, qR then for all s, s′

t[u← s, u′ ← s′] ∈ L(A, q0) ⇐⇒
(
s ∈ L(A, ρ(u)) and s′ ∈ L(A, ρ(u′))

)
;

dually for (qL, L) ∨ (qR, R) with or on the right-hand side.

Proof. The proof of the first claim is exactly the same as in Remark 3.1.1.
For the second claim, it follows easily that in this case the trees t�uL, t�uR and the tree

obtained by putting a hole in t instead of u, resolve A from qL, qR, and q0, respectively. We
obtain the second claim by applying the first claim three times. �

3.4 Alternating index problem

In this section we prove the second part of Theorem 3: the alternating index problem is
decidable for game automata. As a consequence of our characterisation, in the case of
languages recognisable by game automata the respective classes Comp(Πalt

i) and ∆alt
i+1

coincide for all levels. All these properties are summarized by the following proposition.

Proposition 3.4.1. For each game automaton A, the language L(A) belongs to exactly
one of the classes:

Comp(Πalt
0), Πalt

i \Σalt
i , Σalt

i \Πalt
i , or Comp(Πalt

i) \
(
Πalt
i ∪Σalt

i

)
,

99

for i > 0.
Moreover, it can be effectively decided which class it is and an automaton from this

class can be constructed.
If a game language L is Borel then it belongs to Comp(Πalt

0) (i.e. L is wmso-definable).

The rest of this section is devoted to showing this result. Section 3.4.1 describes a
recursive procedure to compute the class of the given automaton A, i.e. Πalt

i , Σalt
i , or

Comp(Πalt
i), depending on which of the possibilities holds. Sections 3.4.2 and 3.4.3 show

that the procedure is correct. The estimation of Section 3.4.2 is in fact an effective con-
struction of an automaton from the respective class. The continuous reductions from
Section 3.4.3 imply that if class(A) 6= Comp(Πalt

0) then L(A) is non-Borel.

3.4.1 The algorithm

Let A be an alternating automaton of index (i, j). For n ∈ N we denote by A≥n the partial
sub-automaton obtained from A by restricting to states of priority at least n:

A≥n def= A�Q′ for Q′ =
(
ΩA
)−1(
{n, n+ 1, . . . , j}

)
.

Observe that the index of A≥n is at most (n, j). A partial sub-automaton B ⊆ A is
an n-component of A if Graph(B) is a strongly-connected component of Graph(A≥n) (in
particular B ⊆ A≥n). We say that B is non-trivial if Graph(B) contains at least one edge.
Our algorithm computes the class of each n-component B of A, based on the classes of
(n+1)-components of B and transitions between them. (We shall see that for n-components
the class does not depend on the initial state.)

We begin with a simple preprocessing. An automaton A of index (i, j) is priority-
reduced if for all n > i, each n-component of A is non-trivial and contains a state of
priority n.

Lemma 3.4.2. Each game automaton A can be effectively transformed into an equivalent
priority-reduced game automaton.

Proof. We iteratively decrease priorities in n-components of A, for n > i. As long as
there is an n-component that is not priority-reduced, pick any such n-component, if it is
trivial, set all its priorities to n − 1, if it is non-trivial but does not contain a state of
priority n, decrease all its priorities by 2 (this does not influence the recognised language).

100

After finitely many steps the automaton is priority-reduced. Note that no trivial states are
introduced and the language of the automaton is preserved. �

Therefore, we can assume that A is a priority-reduced automaton of index (i, j). The
algorithm starts from n = j and proceeds downward. Let B be an n-component. We define
class(B) by considering the following cases.

If B has only states of priority n then it is an (n, n)-automaton and we can put
class(B) = Comp(Πalt

0).
If B has no states of priority n then, since A is priority-reduced, it follows that n = i and

B coincides with a single (n+1)-component B1. In that case we put class(B) = class(B1).
Otherwise, let B1,B2, . . . ,Bk, k ≥ 1, be the (n+1)-components of B. Assume that n is

even (for odd n, the procedure is entirely dual: ∃ is replaced with ∀, (qL, L) ∨ (qR, R) with
(qL, L) ∧ (qR, R), and Πalt

m with Σalt
m).

For a class K let us define the operation K∃ by the following equation

(
Πalt
m

)∃
=
(
Σalt
m−1

)∃
=
(
Comp(Πalt

m−1)
)∃

= Πalt
m .

A component B` is ∃-branching if B contains a transition

δ(p, a) = (qL, L) ∨ (qR, R)

with
(
p, qL ∈ QB` , qR ∈ QB

)
or
(
p, qR ∈ QB` , qL ∈ QB

)
. Now, for ` = 1, 2, . . . , k let us

compute a class K` by considering the following cases:

• if B` is ∃-branching then K` = class(B`)∃,

• otherwise K` = class(B`).

We set
class(B) =

k∨
`=1

K` ,

i.e. the largest class among K1, K2, . . . , Kk if it exists, or Comp(Πalt
m) if among these

classes there are two maximal ones, Πalt
m and Σalt

m .
Let class(A) = ∨k

`=1A` where A1,A2, . . . ,Ak are the i-components of A reachable from
qI
A in Graph(A).
The following fact follows directly from the definition. It shows that to reach class(B`)

higher than Πalt
1 an ∃-branching transition has to occur.

101

Fact 3.4.3. Using the above notions, if K` ≥ Πalt
1 then B` is ∃-branching.

3.4.2 Upper bounds

In this subsection we show that L(A) can be recognised by a class(A)-automaton. The
argument will closely follow the recursive algorithm, pushing through an invariant guar-
anteeing that each n-component B of A can be replaced with an “equivalent” class(B)-
automaton. The notion of equivalence for non-total automata is formalised by simulations,
see Definition 3.4.4.

Recall from Section 3.3.3 that if t is a total tree andA is a partial alternating automaton
then the final positions of G(A, t) are of the form (u, f) where u ∈ {L, R}∗ and f is an exit
of A. Similarly, for every u ∈ {L, R}∗ and q ∈ QA there is a position of the form (u, q) in
G(A, t) (in may not be reachable from the initial position).

Definition 3.4.4. Assume that S is a partial alternating automaton and A is a partial
game automaton, both over the same alphabet A. We say that S simulates A if F S ⊆ FA

and there exists an embedding ι : QA → QS (usually QA ⊆ QS) such that for all t ∈ TrA,
q0 ∈ QA, and for each winning strategy σ for a player P ∈ {∃,∀} in G(A, t, q0) there is
a winning strategy σS for P in G(S, t, ι(q0)) such that the guarantee of σS is contained in
the guarantee of σ.

Note that if A and S are total and S simulates A then L(A) = L(S, ι(qI
A)).

The following lemma formalises the inductive invariant that we will prove.

Lemma 3.4.5. For every n-component B of a game automaton A, B can be simulated by
a class(B)-automaton.

From this lemma it follows easily that L(A) can be recognised by a class(A)-automaton:
the automaton can be obtained as a loop-less composition of the class(A`)-automata sim-
ulating the i-components A` of A reachable from qI

A. In other words, the upper bounds
computed by the algorithm in Section 3.4.1 are correct.

The rest of this section is devoted to a proof of this lemma. Assume that the index of A
is (i, j). We proceed by induction on n = j, j− 1, . . . , i. Assume that B is an n-component
of A. If all the states of B have priority n or all have priority strictly greater than n, the
claim is immediate.

Let us assume that neither is the case and let B1,B2, . . . ,Bk be the (n+1)-components
of B. By the inductive hypothesis we get a class(B`)-automaton BS` , simulating B`. We

102

shall construct a class(B)-automaton BS that simulates B by combining the automata BS` .
By symmetry it is enough to give the construction for even n. Examining the algorithm
we see that for each `, either K` = class(B`)∃ = Πalt

m`
for some m`, or K` = class(B`) ≤ Σalt

1

and B` is not ∃-branching.
First assume that class(B) > Comp(Πalt

1). In that case class(B) = ∨
`K` = Πalt

m for
some m ≥ 2, and each BS` can be assumed to be an (n, n+m)-automaton. Hence, we can
put

BS = B�Ω−1(n) · BS1 · BS2 · . . . · BSk (3.4.1)

to get an (n, n+m)-automaton. We need to show that BS simulates B. Let ι be defined
by inductive assumption on automata B` and as the identity on B�Ω−1(n). Clearly the exits
of B are contained in the exits of BS. Assume that t ∈ TrA, q0 ∈ QB, and σ is a winning
strategy of a player P ∈ {∃,∀} in G(B, t, q0). Consider a strategy σS in G(BS, t, ι(q0))
that repeats the decisions of σ in B�Ω−1(n) and uses the inductive assumption to play on
the components BS` .

Consider any finite or infinite play πS consistent with σS in G(BS, t, ι(q0)). Observe that
this play can be split into a sequence (finite or infinite) of plays πS0 · πS1 · . . . corresponding
to the elements of the product (3.4.1) — after every prefix πS0 . . . πSk an exit of the current
sub-automaton is visited and the play moves to another sub-automaton in (3.4.1). By the
inductive assumption about the containment of the guarantees we know that the same
sequence of sub-automata (using the same exits) can be visited by a play π in G(B, t, q0).
If πS is finite then π is also finite and ends in the same final position (u, f). Therefore, the
guarantee of σS is contained in the guarantee of σ. Now assume that πS is infinite. By the
definition of n-components, we know that either πS visits infinitely many times a state in
B�Ω−1(n) (in that case both πS and π are winning for ∃), or πS stays from some point on
in one of the sub-automata BS` . In that case, by the inductive assumption we know that
πS is winning for P . Therefore, σS is winning for P .

Now assume that class(B) ≤ Comp(Πalt
1). We will repeat the above construction by

taking special care to obtain a class(B)-automaton. We call a component B` problematic
if B` is not ∃-branching. For such components we replace BS` in (3.4.1) by BR` · BT` , where

• BT` is BS` with each transition leading to an exit of B` that is not an exit of B replaced
with a transition to > (losing for ∀);

103

• BR` is B` with all priorities set to n and additional ε-transitions (which can be elimi-
nated in the usual way): for each state q of BR` allow ∀ to decide to stay in q or to
move to the respective state ι(q) in BT` (such a move is treated as an exit of BR`).

As in (3.4.1), BS is the composition of B�Ω−1(n) and the appropriate automata BS` , BR` , BT` .
This composition gives a class(B)-automaton: each problematic B` was replaced with an
(n, n)-automaton BR` that is further composed with class(B`)-automata BT` in a loop-less
way.

What remains is to show that BS simulates B. Let ι be defined as before for non-
problematic components and on a problematic component B` as the identity QB` → QB

R
` .

Consider a tree t ∈ TrA, a state q0 of B, and games G(B, t, q0) and G(BS, t, ι(q0)).
Firstly assume that σ is a winning strategy of ∃ in G(B, t, q0). Since ∃ has no additional

choices in BS comparing to the above case and all the changes of priorities in BR` , BT` are
favourable to her, the previous construction gives a strategy σS that simulates σ.

Now assume that σ is a winning strategy for ∀ in G(B, t, q0). Let us define a strategy
σS for ∀ in G(BS, t, ι(q0)) as follows:

• in positions corresponding to states of priority n in B as well as in the components
BR` the strategy σS follows the decisions of σ;

• ∀ immediately moves from BR` to BT` whenever each extension of the current play,
conforming to σ, stays forever in B` or reaches an exit that is also an exit of B;

• in components BS` and BT` the strategy σS simulates σ using the inductive assumption.

As before the guarantee of σS is contained in the guarantee of σ. It remains to prove
that σS is winning for ∀. Let πS be a play consistent with σS. It is enough to exclude
the following cases (in other cases we know that πS is winning because σ was a winning
strategy):

1. πS stays from some point on in BR` (and therefore is losing for ∀ by the parity
criterion),

2. πS reaches the transition > in an automaton BT` (such transition corresponds to a
transition to an exit of B` that is not an exit of B).

Let B` be a problematic component (i.e. B` is not ∃-branching in B).
Consider the first case above. By the definition of σS it means that there is a play π

that is consistent with σ and that from some point on in B`. We can assume that π starts

104

in B` and never leaves it. By the assumption that B` is not ∃-branching in B we know
that whenever ∃ has a choice during π exactly one of the successive states is an exit of B.
Therefore, the strategy σS moves from BR` to BT` what contradicts the assumption that πS

stays forever in BR` .
Now consider the second case above: the transition > is reached in BT` . Again we can

assume that the moment when ∀ decided to move from BR` to BT` was at the initial position
of the game. By the inductive assumption about BS` it means that it is possible to visit
an exit of B` that is not an exit of B by a play consistent with σ. But this contradicts the
definition of σS — the only case when ∀ moves to BT` is when he knows that the strategy
σ will never reach any exit of B` that is not an exit of B.

This concludes the proof of Lemma 3.4.5.

3.4.3 Lower bounds

It remains to see that L(A) cannot be recognised by an alternating automaton of index
lower than class(A). For this purpose we will use the pre-order ≤W from Section 0.6.2 and
the Wi,j languages from Section 0.7.4, page 46.

By Corollary 0.7.4 from page 47, in order to show that the index bound computed by
the algorithm from Section 3.4.1 is tight, it suffices to show that if RMalt(i, j) ≤ class(A)
then Wi,j ≤W L(A). Therefore, our aim will be to construct a continuous reduction from
Wi,j to L(A).

We construct the reduction in three steps:

1. we show that if the class computed by the algorithm is at least RMalt(i, j) then
this is witnessed with a certain hard subgraph in the graph of the automaton, called
(i, j)-edelweiss;

2. we introduce intermediate languages Ŵi,j, whose internal structure corresponds pre-
cisely to (i, j)-edelweisses, and show that Ŵi,j ≤W L(A) if only A contains an (i, j)-
edelweiss reachable from qI

A;

3. we prove that Wi,j ≤W Ŵi,j.

The combinatorial core of the argument is the last step.

Definition 3.4.6. We say that in a game automaton B there is an i-loop rooted in p if
there exists a word u such that on the path p u−→ p in Graph(B) the minimal priority is i.

105

An automaton B contains an (i, j)-loop for ∃ rooted in p if there exist states q, qL, qR of
B, a letter a, and words u, uL, uR such that:

• δ(q, a) = (qL, L) ∨ (qR, R);

• p u−→ q; qL
uL−→ p; qR

uR−→ p;

• on one of the paths p u(a,L)uL−−−−−→ p, p u(a,R)uR−−−−−→ p the minimal priority is i and on the
other it is j.

For ∀ dually, with ∨ replaced with ∧.
For an even j > i, B contains an (i, j)-edelweiss rooted in p (see Figure 3.4.1) if for

some even n it contains:

• (n+k)-loops for k = i, i+ 1, . . . , j − 3,

• (n+j−2, n+j−1)-loop for ∃, if i ≤ j − 2,

• (n+j−1, n+j)-loop for ∀

all rooted in p. For an odd j swap ∀ and ∃ but keep n even.

p

q∃ q∀

q∃
L

q∃
R q∀

L

q∀
R2

3 3

4

01

p

q∀ q∃

q∀
L

q∀
R q∃

L

q∃
R3

4 4

5

12

Figure 3.4.1: (0, 4)-edelweiss and (1, 5)-edelweiss.

Lemma 3.4.7. Let A be a game automaton. If class(A) ≥ RMalt(i, j) then A contains
an (i, j)-edelweiss rooted in a state reachable from qI

A.

Proof. Let us first assume that (i, j) = (0, 1). Analysing the algorithm we see that the
only case when class(A) jumps to RMalt(0, 1) is when for some even n there is an n-
component B in A, reachable from qI

A, and containing states of priority n, such that some

106

(n+1)-component B` of B is ∃-branching in B, i.e. B contains a transition of the form

δ(p, a) = (qL, L) ∨ (qR, R)

with p, qL ∈ QB` , qR ∈ QB (or symmetrically, p, qR ∈ QB` , qL ∈ QB). Since A is priority-
reduced, p is reachable from qL within B` via a state of priority n+ 1, and from qR within
B via a state of priority n. This gives an (n, n+1)-loop for ∃ (a (0, 1)-edelweiss) rooted in
a state reachable from qI

A. The argument for (1, 2) is entirely dual.
Next, assume that (i, j) = (0, 2). It follows immediately from the algorithm that A

contains an n-component B (reachable from qI
A, containing states of priority n) such that

n is even and there exists an (n+1)-component B` such that

1. class(B`) = Σalt
1 and B` is ∃-branching in B; or

2. class(B`) = Comp(Πalt
1).

In the first case, by the claim for (1, 2), B` contains an (n′, n′+1)-loop for ∀, for some
odd n′ ≥ n. Since A is priority-reduced, for each state q in B` and each r between n and
Ω(q), there is a loop from q to q with the lowest priority r. Hence, the (n′, n′+1)-loop can
be turned into an (n+1, n+2)-loop. Thus, B` contains an (n+1, n+2)-loop for ∀, rooted
in a state p. We claim that B contains an (n, n+1)-loop for ∃, also rooted in p (giving a
(0, 2)-edelweiss rooted in p).

Indeed, since B` is ∃-branching, arguing like for (0, 1), we obtain an (n, n+1)-loop for
∃ rooted in a state p′ in B`. Since B` is an (n+1)-component, there are paths in B` from p

to p′ and back; the lowest priority on these paths is at least n+ 1. Using these paths one
easily transforms the (n, n+1)-loop rooted in p′ into an (n, n+1)-loop rooted in p.

In the second case, we also get an (n+1, n+2)-loop for ∀, rooted in a state p of B`.
Moreover, the first claim implies as well that B` contains an (n′′, n′′+1)-loop for ∃, for some
even n′′ ≥ n. Arguing like in the second case we turn the latter loop into an (n, n+1)-loop
for ∃ rooted in p.

The inductive step is easy. Suppose that 2j − i > 2. Then, for some even n there
is an (n+i)-component B (reachable from qI

A, containing states of priority n + i) in A,
which has an (n+i+1)-component B` such that class(B`) = RMalt(i+ 1, 2j) or class(B`) =
Comp

(
RMalt(i + 1, 2j)

)
. Since for each state p in B`, B contains an n-loop rooted in p,

we can conclude by the inductive hypothesis. �

107

Definition 3.4.8. For i ≤ 2k − 2 consider the alphabet

Âi,2k = {i, i+ 1, . . . , 2k − 3, e, a}.

With each t ∈ PTr
Âi,2k

we associate a partial parity game Ĝt with positions dom(t) and
final positions holes(t) such that

• if ε ∈ dom(t) then Ω(ε) = i,

• if t(u) = a then in u the player ∀ can choose to go to uL or to uR, and Ω(uL) = 2k−1,
Ω(uR) = 2k,

• if t(u) = e then in u the player ∃ can choose to go to uL or to uR, and Ω(uL) = 2k−2,
Ω(uR) = 2k − 1,

• if t(u) ∈ {i, i+ 1, . . . , 2k − 3}, the only move from u is to uL and Ω(uL) = t(u).

For i = 2k − 1, let Âi,2k = {a,>}, and let Ĝt be defined like above, except that if t(u) = >
then Ω(u) = 2k and the only move from u is back to u.

Let Ŵi,2k ⊆ Tr
Âi,2k

be the set of all total trees over Âi,2k such that ∃ has a winning
strategy in Ĝt.

The languages Ŵi,2k+1 are defined dually, with e, a and ∃,∀ swapped, and > replaced
with ⊥.

Observe that the index of the game Ĝt is (i, j) for t ∈ PTr
Âi,j

.

Lemma 3.4.9. If a total game automaton A contains an (i, j)-edelweiss rooted in a state
reachable from the initial state qI

A then Ŵi,j ≤W L(A).

Proof. We only give a proof for (i, j) = (1, 2); for other values of (i, j) the argument is
entirely analogous. By the definition, A contains an (1, 2)-loop for ∀, rooted in a state p
reachable from qI

A. Since A is a game automaton and has no trivial states, it follows that
there exist

• a partial tree tI resolving A from qI
A, with a single hole h, labelled with p in ρ(A, tI);

• a partial tree ta resolving A from p with two holes h1, h2, such that in ρ(A, ta, p)
both holes are labelled p, the lowest priority on the path from the root to hi is i,
and the closest common ancestor u′ of h1 and h2 is labelled with a state q such that
δA(q, t(u′)) = (qL, L) ∧ (qR, R) for some qL, qR; and

108

• a total tree t> ∈ L(A, p).

Let us see how to build ta. The paths p u(a,L)uL−−−−−→ p, p u(a,R)uR−−−−−→ p guaranteed by Def-
inition 3.4.6 give as a partial tree s with a single branching in some node u and two
leaves h1, h2, which we replace with holes. For ρ = ρ(A, s, p), ρ(h1) = ρ(h2) = p and
δA(ρ(u), t(u)) = (qL, L) ∧ (qR, R). At each hole of s, except h1 and h2, we substitute a total
tree such that the run on the resulting tree with two holes resolves A from p, e.g. if wL

is a hole and δ(s(w), ρ(w)) = (q′, L) ∨ (q′′, R), we substitute at wL any tree that is not in
L(A, q′), relying on the assumption that A has no trivial states.

Observe that for (i, j) = (1, 2) the alphabet Âi,j equals {a,>}. Let us define the
reduction g : Tr{a,>} → TrAA . Let t ∈ Tr{a,>}. For u ∈ dom(t), define tu co-inductively (see
Section 0.6.5, page 39) as follows: if t(u) = >, set tu = t>; if t(u) = a then tu is obtained
by plugging in the holes h1, h2 of ta the trees tuL and tuR. Let g(t) be obtained by plugging
tε in the hole of tI . It is easy to check that g continuously reduces Ŵ1,2 to L(A). �

It remains to see that Wi,j ≤W Ŵi,j. For the lowest level we give a separate proof.

Lemma 3.4.10. W0,1 ≤W Ŵ0,1 and W1,2 ≤W Ŵ1,2.

Proof. By the symmetry it is enough to prove the first claim. Let us take a tree t ∈ TrA0,1 .
By König’s lemma, the player ∃ has a winning strategy in Gt if and only if she can produce
a sequence of finite strategies σ0, σ1, σ2, . . . (viewed as subtrees of t, see Section 0.3.1 on
page 26) such that

1. σ0 consists of the root only;

2. for each n the strategy σn+1 extends σn in such a way that below each leaf of σn a
non-empty subtree is added, and all the leaves of σn+1 have priority 0.

Using this observation we can define the reduction. Let (τi)i∈N be the list of all finite
subsets of {L, R}∗. Some of these trees naturally induce a strategy for ∃ in Gt. For those we
define tτi

∈ Tr{e,⊥} co-inductively, as follows:

• tτi
(Rj) = e for all j;

• if τj induces in Gt a strategy that is a legal extension of the strategy induced by τi
in the sense of Item 2 above then the subtree of tτi

rooted at RjL is tτj
;

• otherwise, all nodes in this subtree are labelled with ⊥.

109

Let f(t) = tσ0 . By the initial observation, tσ0 ∈ Ŵ0,1 if and only if ∃ has a winning strategy
in Gt. The function f is continuous: to determine the labels in nodes Rn1 LRn2 L . . . Rnk and
Rn1 LRn2 L . . . Rnk L we only need to know the restriction of t to the union of the domains of
τn1 , τn2 , . . . , τnk

. Hence, f continuously reduces W0,1 to Ŵ0,1. �

Lemma 3.4.11. For all i and j ≥ i+ 2, Wi,j ≤W Ŵi,j.

Proof. By duality we can assume that j = 2k. For t ∈ TrAi,2k
, let us consider a game G̃t

defined as follows. The positions are pairs (u, σ), where u is a node of t, and σ is finite
strategy from u for ∀ (viewed as a subtree of t�u). Initially u = ε is the root of t and
σ = {ε}. In each round, in a position (u, σ), the players make the following moves:

• ∀ extends σ under the leaves of priority 2k − 1 to σ′ in such a way that on every
path leading from a leaf of σ to a leaf of σ′ all the nodes have priority 2k, except the
leaf of σ′, which has priority at most 2k − 1;

• ∃ has the following possibilities:

– select a leaf u′ of σ′ with priority at most 2k − 2, and let the next round start
with (u′, {u′}), or

– if σ′ has leaves of priority 2k − 1, continue with (u, σ′).

A play is won by ∃ if she selects a leaf infinitely many times and the least priority of these
leaves seen infinitely often is even, or ∀ is unable to extend σ in some round. Otherwise,
the play is won by ∀.

We claim that a player P has a winning strategy in Gt if and only if P has a winning
strategy in G̃t.

For a winning strategy σ∃ for ∃ in Gt, let σ̃∃ be the strategy in G̃t in which ∃ selects a
leaf u′ in σ′ if and only if u′ ∈ σ∃. Consider an infinite play conforming to σ̃∃. If in the
play ∃ selects a leaf infinitely many times, she implicitly defines a path in t conforming to
σ∃, and so the play must be winning for ∃. Assume that ∃ selects a leaf only finitely many
times. Then, ∀ produces an infinite sequence of finite strategies {u} = σ0 ⊂ σ1 ⊂ . . . in
Gt. Let σ∞ be the union of these strategies. Consider the play π in Gt passing through u
and conforming to σ∞ and σ∃. Observe that for each σi, the strategy σ∃ must choose some
path; hence, either ∃ selects a leaf of σi, or this path goes via a leaf of priority 2k − 1.
Thus, π is infinite and by the rules of G̃t priorities at most 2k−1 are visited infinitely often.
Since ∃ selects a leaf only finitely many times, priorities strictly smaller than 2k − 1 are

110

visited finitely many times in π. Hence, π is won by ∀, what contradicts the assumption
that σ∃ is winning for ∃.

Now, let σ∀ be a winning strategy for ∀ in Gt. Then, for each u ∈ σ∀ there exists a
finite sub-strategy σ′ of σ∀ from u such that all internal nodes of σ′ have priority 2k and
leaves have priority at most 2k − 1. This shows that for each current strategy σ ⊂ σ∀, ∀
is able to produce a legal extension σ′ such that σ ⊂ σ′ ⊂ σ∀. Let σ̃∀ be a strategy of ∀
in G̃t that extends every given σ by σ′ as above. Consider any play conforming to σ̃∀. By
the initial observation, the play is infinite, so priorities strictly smaller than 2k are visited
infinitely often. If ∃ selects a leaf only finitely many times, priorities strictly smaller then
2k− 1 occur only finitely many times and ∀ wins. If ∃ selects a leaf infinitely many times,
then the lowest priority seen infinitely often must be odd, as otherwise ∃ would show a
losing path in σ∀. Hence, ∀ wins in this case as well.

It remains to encode G̃t as a tree f(t) ∈ Tr
Âu,2k

in a continuous manner. The argument
is similar to the one in Lemma 3.4.10. Let (τn)n∈N be the list of all finite subsets of {L, R}∗.
For some pairs (u, τn), τn induces a finite strategy in Gt from the node u. For such (u, τn)
we define t∀u,τn

and t∃u,τn
co-inductively (see Section 0.6.5, page 39), as follows:

• t∀u,τn
(Rm) = a for all m;

• the subtree of t∀u,τn
rooted at RmL is t∃u,τm

if τm induces a strategy from u that is a
legal extension of τm according to the rules of G̃t, and otherwise the whole subtree is
labelled with e’s (losing choice for ∀);

• t∃u,τn
(Rm) = e for m = 0, 1, . . . , `, where u0, u1, . . . , u` are the leaves in the strategy

induced by τn from u;

• the subtree of t∃u,τn
rooted at R`+1 is t∀u,τm

if the strategy induced by τm from u has
leaves of priority 2k−1, otherwise the whole subtree is labelled with a’s (losing choice
for ∃);

• for m ≤ `, consider the following cases to define the subtree sm of t∃u,τn
rooted at RmL:

– if Ω(um) ∈ {2k − 1, 2k} then sm is labelled everywhere with a’s (losing choice
for ∃),

– if Ω(um) = 2k − 2 then sm = t∀um,{um},

– if Ω(um) = r < 2k− 2 then sm(ε) = r, the left subtree of sm is t∀um,{um}, and the
right subtree of sm is labelled with a’s (irrelevant for Gt).

111

Let f(t) be t∀ε,{ε}. Checking that f continuously reduces Wi,j to Ŵi,j does not pose any
difficulties. �

3.5 Conclusions

The results of this chapter should be treated as an intermediate step to proving decidability
of index problems for general regular tree languages. Additionally, edelweisses studied in
Section 3.4 are new hard patterns for alternating automata. The lower bounds proved in
Lemma 3.4.10 seem to be of independent interest — in some cases it is easier to construct
a reduction from the language Ŵi,j instead of Wi,j.

Interestingly, the matching upper and lower bounds in the alternating case are of very
different nature. The upper bounds are proved by providing an effective construction of
an alternating automaton of certain index, where the lower bounds are obtained using
continuous reductions. The structure of this reductions do not seem to be implementable
in any regular way (e.g. by some kind of mso interpretation).

The rigid structure of game automata should allow to give more decidability results in
future. An instance of such a result is expressed by the following conjecture.

Conjecture 5. It is decidable, given n ∈ N and a game automaton B, whether1 L(B) ∈ Σ0
n

(i.e. the level of the Borel hierarchy occupied by a game language can be decided).

This chapter is based on [FMS13].

1If L(B) /∈ Comp(Πalt
0) then for all n the answer is no.

112

Part II

Thin algebras

113

Chapter 4

When a thin language is definable in
wmso

In this chapter, we study thin trees, which generalize both finite trees and ω-words, but
which are still simpler than arbitrary infinite trees. A tree is thin if it contains only
countably many infinite branches. It turns out [BIS13] that some problems are more
tractable on thin trees than in full generality. Therefore, thin trees can be seen as an
intermediate step in understanding regular languages of general infinite trees.

The term thin trees comes from [BIS13], in [RR12] they are called scattered trees. Also,
a tree is thin if it is a tame tree in the meaning of [LS98] (the converse is not true as [LS98]
deals with trees treated as ordered structures, i.e. a tame tree may have a branch of length
ω2). A language of trees L is called regular language of thin trees if L is regular and contains
only thin trees.

The notions induced in this chapter (mainly trees over ranked alphabets and thin
algebras) are used in the following three chapters.

This chapter contains two main results, summarized by Theorem 4: the first result
gives an upper bound on the topological complexity of regular languages of thin trees
stating that they are all Π1

1 among all trees; the second result can be seen as a dichotomy:
a regular language of thin trees is either topologically hard (i.e. Π1

1-hard) or is wmso-
definable among all trees. Additionally, we prove that it is decidable which of the cases
holds. The following definition formalizes the notion of definability we use.

Definition 4.0.1. Let L be a regular language of thin trees over a ranked alphabet AR and ϕ
be a formula of wmso. We say that ϕ defines L among all trees if L = {t ∈ TrAR : t |= ϕ}.

This definition can be seen as a non-standard approach to restricting the class of all
trees to thin ones — a standard one would say that L is wmso-definable if L = {t ∈ ThAR :
t |= ϕ} for a wmso formula ϕ. The requirement in Definition 4.0.1 for a formula to be

114

satisfied only by thin trees is quite strong, in particular the class of languages definable
in wmso among all trees is not closed under complement with respect to thin trees: the
relative complement of the empty language ∅ ⊆ ThAR is ThAR which is Π1

1-complete and
thus not wmso-definable among all trees.

The problem of deciding wmso-definability among thin trees (i.e. using the standard
approach) is open: it is not known how to decide if for a given regular language of thin
trees L there exists a wmso formula ϕ such that L = {t ∈ ThAR : t |= ϕ}. Here, contrary
to Definition 4.0.1, we explicitly restrict to trees t that are thin. In particular, there are
more languages of thin trees that are wmso-definable among thin trees (i.e. in the above
standard sense) than in the sense of Definition 4.0.1.

In Proposition 4.1.4 we show that even in the sense of Definition 4.0.1 we can define lan-
guages as complicated as in the general case. The proof is based on examples from [Sku93]
— the proof there is given for general trees but the proposed languages can be seen as
regular languages of thin trees.

Now we can state the main result of this chapter as the following dichotomy simi-
lar in the spirit to the gap property proved by Niwiński and Walukiewicz [NW03] (see
Theorem 0.25 on page 49).

Theorem 4. A regular language of thin trees (i.e. a regular language that contains only
thin trees) is either:

1. Π1
1-complete among all infinite trees,

2. wmso-definable among all infinite trees (and thus Borel).

Moreover, it is decidable which of the cases holds.

One of the applications of our characterisation is the following proposition.

Proposition 4.0.2. Assume that L is a regular language of trees that is recognized by a
non-deterministic (or equivalently alternating) Büchi automaton. Assume additionally that
L contains only thin trees. Then L can be defined in wmso among all trees.

Proof. Since L is recognizable by a Büchi automaton, Theorem 0.16 on page 45 implies that
L is an analytic subset of TrAR . Therefore, L cannot be Π1

1-hard, thus L is wmso-definable
by Theorem 4. �

The proof of Theorem 4 consists of two parts: first we prove in Section 4.3 that every
regular language of thin trees is in Π1

1 among all trees (i.e. an upper bound). The best

115

upper bound for general regular tree languages in terms of the projective hierarchy is ∆1
2.

Therefore, the presented result shows that regular languages of thin trees are descriptively
simpler than general regular languages of infinite trees. The proof of Theorem 4 is con-
cluded in Section 4.4 by proving the dichotomy: a regular language of thin trees is either
wmso-definable among all trees or Π1

1-hard (as expressed by Proposition 4.4.1).
The chapter is organized as follows. In Section 4.1 we introduce basic notions, in

particular thin trees and tools allowing to inductively decompose them. In Section 4.2 we
introduce thin algebras that will be used in the successive chapters of this part. Also, these
algebras turns out to be convenient in Section 4.4. Section 4.3 we prove the upper bounds
and in Section 4.4 we prove Proposition 4.4.1. Finally, in Section 4.5 we conclude.

4.1 Basic notions

In the following three chapters we operate on binary trees over ranked alphabets. A ranked
alphabet is a pair AR = (AR2, AR0) where AR2 contains binary symbols and AR0 contains
nullary symbols (labelling leafs of a tree). We assume that both sets AR2 and AR0 are finite
and that AR2 is non-empty.

4.1.1 Thin trees

We say that t is a ranked tree over a ranked alphabet (AR2, AR0) if t is a function from
its non-empty prefix-closed domain dom(t) ⊆ {L, R}∗ into AR2 ∪ AR0 (i.e. an element of
PTrAR2∪AR0 in the meaning of Section 0.1, page 20) such that for every node u ∈ dom(t)
either:

• u is an internal node of t (i.e. uL, uR ∈ dom(t)) and t(u) ∈ AR2, or

• u is a leaf of t (i.e. uL, uR /∈ dom(t)) and t(u) ∈ AR0.

A ranked tree containing no leaf is complete. The set of all ranked trees over a ranked
alphabet AR is denoted as TrAR ; in particular if AR0 = ∅ then Tr(AR2,AR0) contains only
complete trees and coincides with TrAR2 as defined in Section 0.1.

Definition 4.1.1. A ranked tree t ∈ TrAR is thin if there are only countably many infinite
branches of t. The set of all thin trees over a ranked alphabet AR is denoted by ThAR. A
ranked tree that is not thin is thick.

116

A context over a ranked alphabet AR = (AR2, AR0) is a ranked tree p ∈ Tr(AR2,AR0t{2})

such that exactly one leaf u 6= ε of p is labelled by 2. The leaf u is called the hole of p. The
set of all contexts over a ranked alphabet AR is denoted as ConAR . The set of all contexts
over AR that are thin as trees is denoted by ThConAR .

Given a ranked tree t ∈ TrAR and u ∈ dom(t) (u 6= ε) we can construct a context
t[u ← 2] by replacing the subtree of t under u by 2: u becomes the hole of the context
t[u← 2].

Assume that p is a context over a ranked alphabet AR with the hole u. For every ranked
tree t ∈ TrAR the composition of p and t, denoted p(t) ∈ TrAR , is defined as p[u ← t] —
we put t in the place of the hole u of p. In particular, if r is a context then p(r) is a new
context. If p, r, and t are thin then also p(t) and p(r) are thin.

Let w1 ≺ w2 be two nodes of a given ranked tree t. By t�[w1,w2) we denote the ranked
context rooted in w1 with the hole in w2:

t�[w1,w2)
def= t�w1 [w2 ← 2].

Recall that a ranked tree t′ ∈ TrAR′ is a labelling of a ranked tree t ∈ TrAR if dom(t′) =
dom(t). In such a case t⊗t′ stands for the ranked tree over the product of ranked alphabets,
i.e. an element of TrAR×AR′ with AR × AR

′ =
(
AR2 × AR2

′, AR0 × AR0
′
)
.

For a pair of ranked contexts p ∈ ConAR , p′ ∈ ConAR′ with the same domain dom(p) =
dom(r) and the same hole u, by p ⊗ p′ we denote the ranked context over the product
alphabet AR × AR

′ = (AR2 × AR2
′, AR0 × AR0

′) with the hole u:

for w ∈ dom(p), w 6= u we have (p⊗ p′)(w) =
(
p(w), p′(w)

)
.

4.1.2 Automata

For the purpose of the following three chapters we introduce a notion of non-deterministic
tree automata working over a ranked alphabet. Again, these notions become standard
when we restrict to purely-binary alphabets, i.e. when AR0 = ∅.

A non-deterministic parity tree automaton over a ranked alphabet is a tuple A =〈
AR
A, QA, IA, δA,ΩA

〉
where

• AR
A = (AR2

A, AR0
A) is a ranked alphabet,

• QA is a finite set of states,

117

• IA ⊆ QA is a set of initial states,

• δA = δA2 tδA0 is a transition relation: δA2 ⊆ QA×AR2
A×QA×QA contains transitions

over internal nodes (q, a, qL, qR) and δA0 ⊆ QA × AR0
A contains transitions over leafs

(q, b),

• ΩA : QA → N is a priority function.

A run of an automaton A on a ranked tree t ∈ TrARA is a labelling ρ of t over the
ranked alphabet (QA, QA) such that for every u ∈ dom(t):

• if u is an internal node of t then
(
ρ(u), t(u), ρ(uL), ρ(uR)

)
∈ δA2 ,

• if u is a leaf of t then
(
ρ(u), t(u)

)
∈ δA0 .

A run ρ on a ranked context p is a labelling of p (treated as a tree) by states of A that
obeys the transition relation in all the nodes except the hole u of p. The value of ρ in the
hole of p is ρ(u).

Now we repeat the definitions from Section 0.4 (see page 27) in the context of ranked
trees:

• A run ρ is accepting if it is parity-accepting and ρ(ε) ∈ IA (see Section 0.4). By the
definition we verify the parity condition only on infinite branches of ρ, the finite ones
do not influence acceptance.

• A ranked tree t ∈ TrARA is accepted by A if there exists an accepting run ρ of A on t.

• The set of ranked trees accepted by A is called the language recognised by A and is
denoted by L(A).

• A language L ⊆ TrARA is regular if there exists an automaton recognising L.

By repeating the standard automata constructions over the ranked alphabet, we obtain
the following fact.

Fact 4.1.2. A language L ⊆ TrAR is regular if and only if it is mso-definable.

Definition 4.1.3. A regular language of thin trees is a regular language of ranked trees
L ⊆ TrAR such that L contains only thin trees (i.e. L ⊆ ThAR).

As we will see later (see Remark 4.1.12), equivalently one can say that a regular language
of thin trees is a language that is the intersection of a regular tree language with ThAR .

118

4.1.3 Examples of Skurczyński

In this section we adjust the examples of wmso-definable languages proposed by Skur-
czyński [Sku93] to the case of thin trees, as expressed by the following proposition. This
can be seen as an argument that there are languages of thin trees that are definable in
wmso among all trees and topologically as complex as general wmso-definable languages.

Proposition 4.1.4 (Skurczyński [Sku93]). For every n there exists a regular language of
thin trees L ⊆ ThAR that is wmso-definable among all trees and Σ0

n(TrAR)-complete.

Proof. Take n ∈ N. We will base our construction on languages of trees Wi,j (see Sec-
tion 0.7.4, page 46) — we consider trees over a ranked alphabet that encodes parity games
of index (i, j) andWi,j contains those trees where ∃ has a winning strategy. As observed in
Remark 0.7.5 on page 47, one can extend the alphabet with additional symbols > and ⊥
that finish the game indicating that one of the players (∃ or ∀ respectively) wins instantly.

Our language L will be obtained as a restriction of a variant of W0,1 to thin trees of
a particular shape. Consider a ranked alphabet AR = (AR2, AR0) with AR2 = A0,1 =
{∃,∀}×{0, 1} (see Section 0.7.4, page 46) and AR0 = {>,⊥} and let W0,1 be the set of all
trees t over AR such that ∃ has a winning strategy in Gt (see Definition 0.7.3 on page 46
and Remark 0.7.5 on page 47).

Recall that by]a(u) we denote the number of occurrences of a latter a in a finite word
u. Take any n > 0 and let Xn

[Sku93] contain all trees t ∈ TrAR such that (see Figure 4.1.1):

t(u) =

(∃, 1) if]R(u) < n and]R(u) ≡ 0 (mod 2),

(∀, 0) if]R(u) < n and]R(u) ≡ 1 (mod 2),

> or ⊥ if]R(u) = n.

Clearly, for a tree t ∈ Xn
[Sku93] we have dom(t) = {u ∈ {L, R}∗ :]R(u) ≤ n} so Xn

[Sku93] ⊆
ThAR . Also, the set Xn

[Sku93] itself is wmso-definable among all trees.
By the same argument as in [Sku93], the language L def= W0,1∩Xn

[Sku93] is wmso-definable
among all trees and Σ0

n(TrAR)-complete. �

4.1.4 Ranks

The crucial tool in our analysis of thin trees is structural induction — we inductively
decompose a given thin tree into simpler ones. A measure of complexity of thin trees is

119

(∃, 1)

(∀, 0)

(∀, 0)

(∀, 0)

(∃, 1)

(∀, 0)

(∀, 0)

(∀, 0)

(∃, 1)

(∀, 0)

(∀, 0)

(∀, 0)

(∃, 1)

(∀, 0)

(∀, 0)

(∀, 0)

>/⊥

>/⊥

>/⊥

>/⊥

>/⊥

Figure 4.1.1: An example of a tree t ∈ Xn
[Sku93].

called a rank — a function that assigns to each thin tree a countable ordinal number. The
rank of a thin tree t depends only on the domain of t. During the inductive computation
of ranks, we work with partial binary trees (i.e. elements of PTr, see Section 0.1, page 20)
that may not be ranked trees (e.g. a node may have exactly one child). For the sake of this
chapter, we call elements of PTr tree-shapes. The set of all tree-shapes that have countably
many branches is denoted PTh ⊆ PTr.

The rank we use is based on the Cantor-Bendixson derivative [Kec95, Chapter 6.C]:
we inductively remove simple parts of a given tree. Let us fix the set BCB ⊆ PTr (the
basis of the rank) containing all tree-shapes τ ∈ PTr that have only finitely many finite
and infinite branches. Equivalently, BCB contains all tree-shapes that contain only finitely
many branching nodes.

Fact 4.1.5. For every tree-shape τ ∈ PTr we have:

1. if no subtree of τ belongs to BCB then τ contains a branching node,

2. if τ belongs to BCB then all the subtrees of τ also belong to BCB.

Consider the following operation on tree-shapes called derivative: for a tree-shape τ ∈
PTr we define the tree-shape Dv(τ) ⊆ τ that contains only these nodes u ∈ dom(τ) such

120

that τ�u /∈ BCB — we remove from τ those nodes u such that the subtree of τ under u
belongs to BCB.

Now we inductively define transfinite compositions of Dv: let Dv0(τ) = τ , Dvη+1(τ) =
Dv(Dvη(τ)), and if η is a limit ordinal let

Dvη(τ) =
⋂
η′<η

Dvη′(τ).

Fact 4.1.6. Let τ ∈ PTr be a tree-shape. The sequence Dvη(t) for η < ω1 is a decreasing
sequence of tree-shapes. There exists η0 < ω1 such that

Dvη0(τ) = Dvη0+1(τ).

The following proposition shows a connection of this iterated derivative and thin trees.

Proposition 4.1.7. Let τ be a tree-shape and η be an ordinal such that Dvη(τ) = Dvη+1(τ).
The tree-shape Dvη(τ) is empty if and only if τ has only countably many branches. Other-
wise τ contains the complete binary tree as a minor1.

Proof. Assume that Dvη(τ) is empty. Observe that every application of the derivative
decreases the number of branches of τ by countably many: there are countably many
nodes u ∈ dom(τ) and the subtree under a removed node u belongs to the family BCB.
Since there are countably many applications of the derivative, the total number of removed
branches is also countable.

Assume that τ ′ = Dvη(τ) is non-empty. We show that in that case τ ′ ⊆ τ has uncount-
ably many branches. We construct a Cantor scheme that maps finite sequences w ∈ {L, R}∗

into nodes uw ∈ τ ′ in a way monotone with respect to the prefix order � and lexicographic
order ≤lex. We start with any uε ∈ τ ′. Let w ∈ {L, R}∗ be a sequence such that the node
uw ∈ τ ′ is defined. Observe that there must be a branching node u′ under uw in τ ′ (since
all the subtrees of τ ′�uw

do not belong to BCB, see Fact 4.1.5). Put uwL, uwR as the two
children of u′ (i.e. uwd = u′d for d ∈ {L, R}).

The above definition gives us the unique, infinite branch of τ ′ for every β ∈ {L, R}ω.
Therefore, τ ′ has uncountably many infinite branches and so does τ . �

Definition 4.1.8. For a thin tree t ∈ ThAR we define the rank of t (denoted rank(t)) as
the smallest ordinal η such that Dvη(dom(t)) = ∅.

1Formally, it means that there exists an injective function ι : {L, R}∗ → τ that preserves the prefix and
lexicographic orders.

121

We extend this definition to rank(u, t) (the rank of u in t) for a node u ∈ dom(t) in
such a way that rank(u, t) is the least η < ω1 such that u /∈ Dvη(dom(t)).

For an ordinal η < ω1 by Th≤ηAR
we denote the set of thin trees of rank at most η.

Fact 4.1.9. For every thin tree t ∈ ThAR and node u ∈ dom(t) we have rank(u, t) =
rank(t�u).

If t is a thin tree then rank(t) is not a limit ordinal. In particular the ordinal rank(t)−1
is defined.

If u � w are two nodes of a thin tree t then rank(u, t) ≥ rank(w, t).

The crucial way of using ranks is induction: we can decompose a given tree as its spine
and a number of trees connected to it: the spine of a thin tree t is

τ = Dvrank(t)−1(dom(t)) ∈ PTr.

Since Dv(τ) = ∅ so τ ∈ BCB — the spine has only finitely many branches. Also, if
rank(t) > 1 then the spine of t is infinite, otherwise already Dvrank(t)−1(dom(t)) would be
empty, contradicting minimality of rank(t).

Intuitively, a thin tree t has rank equal m if t contains m nested levels of infinite
branches. In comparison, the rank of well-founded ω-trees from Section 0.6.3 (see page 38)
counts each node of an ω-tree separately. In particular, a finite ω-tree may have arbitrarily
big finite rank in the meaning of Section 0.6.3 while a finite thin tree always belongs to
BCB and therefore has rank 1.

Figure 4.1.2 presents a sequence of thin trees of increasing rank. The leftmost branch
of each thin tree is its spine.

t1

rank(t1) = 1

t2

rank(t2) = 2

t3

rank(t3) = 3

. . . tω

rank(tω) = ω + 1

t1
t2

t3
t4

Figure 4.1.2: A sequence of thin trees and their spines.

122

4.1.5 Skeletons

The second tool used to analyse structural properties of thin trees are skeletons. A skeleton
can be seen as a witness that a given ranked tree is thin. Moreover, a skeleton of a thin
tree t represents a structural decomposition of t.

A subset of nodes σ ⊆ dom(t) of a given ranked tree t ∈ TrAR is a skeleton of t if:

• ε /∈ σ,

• for every internal node u of t the set σ contains exactly one of the nodes uL, uR,

• on every infinite branch α of the tree t almost all nodes u ≺ α belong to σ.

Observe that we can identify σ with its characteristic function — a labelling of nodes of
t by the ranked alphabet AR

′ = (AR2
′, AR0

′) with AR2
′ = AR0

′ = {0, 1} so that σ ∈ TrAR′ .
Assume that σ is a skeleton of a tree t. Take any node u ∈ dom(t). The branch α

passing through u that follows at every point the skeleton σ is called the main branch of
σ from u. It can be defined as the unique maximal finite or infinite branch α ∈ {L, R}≤ω

such that:
u � α ∧ ∀w�α (w � u ∨ w ∈ σ) .

Note that the main branch may be finite if it reaches a leaf of the tree. Otherwise it is
infinite. By the assumption that a skeleton contains almost all nodes on every branch, we
obtain the following fact.

Fact 4.1.10. Take a ranked tree t ∈ TrAR with a skeleton σ and an infinite branch α of t.
There exists a node u ∈ dom(t) such that α is the main branch of σ from u.

Proposition 4.1.11. A given ranked tree t ∈ TrAR has a skeleton if and only if t is thin.

Proof. If a ranked tree has a skeleton then by the above fact every infinite branch of t is
from some point on its main branch (from some node of t). So there are at most countably
many branches of t.

Now assume that t is a thin tree. We inductively on the rank η of t construct a skeleton
of t. The thesis holds for η = 0 because there is no thin tree of rank 0. Assume the thesis
for all thin trees of rank strictly smaller than η. Let t be a thin tree, rank(t) = η, and τ be
the spine of t. For every u ∈ dom(t) that is off τ (i.e. u /∈ τ but the parent of u is a node

123

of τ) we know that rank(u, t) < η. Therefore, there exists a skeleton σu of the subtree of t
under u; we assume that σu is a subset of dom(t), i.e.

σu ⊆ dom(t) ∩ u{L, R}∗.

Let σε contain all those elements u 6= ε of τ such that u does not have a sibling in τ .
Also, if both uL and uR belong to τ let σε contain uL. Finally, let σ be the union of σε and
σu for u ∈ dom(t) that are off τ . By the construction σ does not contain ε and contains
exactly one sibling from every pair of siblings in t.

What remains to show is that σ contains almost all nodes on every infinite branch of t.
Let α be an infinite branch of t. If α is not an infinite branch of τ then there exists u ≺ α

that is off τ . Since σu is a skeleton so it contains almost all nodes on α. Now assume that
α is an infinite branch of τ . Since τ ∈ BCB so it contains only finitely many finite and
infinite branches, in particular, almost all nodes u ≺ α are not branching in τ . Therefore,
σε contains almost all nodes on α. �

The skeleton σ constructed in the above construction is called the canonical skeleton
for t and is denoted by σ(t).

Remark 4.1.12. Since the conditions on a skeleton are mso-definable so the family of all
thin trees ThAR ⊆ TrAR is a regular tree language.

4.2 Thin algebra

In the following three chapters we use a variant of the thin forest algebra as introduced by
Bojańczyk and Idziaszek in [BIS13,Idz12] adapted to the case of ranked trees. It can be seen
as a natural extension of ω-semigroups and Wilke algebras [Wil93,Wil98] (see Section 0.5.2,
page 32). The use of thin algebra is this chapter could be avoided, however it seems to
be more convenient to use it (thin algebras are used in the proof of Proposition 4.4.1).
Additionally, thin algebras are crucial concepts in the following two chapters.

Let us fix a ranked alphabet AR = (AR2, AR0). A thin algebra over AR is a two-sorted
algebra (H, V) where H corresponds to types of trees and V to types of contexts. A thin
algebra is equipped with the following operations:

• s · s′ ∈ V for s, s′ ∈ V ,

• s · h ∈ H for s ∈ V, h ∈ H,

124

• s∞ ∈ H for s ∈ V ,

• ∏ : V ω → H,

• Node(a, d, h) ∈ V for a ∈ AR2, d ∈ {L, R}, and h ∈ H,

• Leaf(b) ∈ H for b ∈ AR0.

Note that the first four operations are the same as in the case of Wilke algebras and
ω-semigroups. The last two operations allow to operate on trees. For simplicity, we write
a(2, h) instead of Node(a, L, h) and a(h,2) instead of Node(a, R, h). Similarly, b() stands
for Leaf(b) and a(hL, hR) ∈ H denotes the result of a(hL,2) · hR.

The axioms of thin algebra are:

the axioms of Wilke algebra:

s · (s′ · s′′) = (s · s′) · s′′ (4.2.1)

s · (s′ · h) = (s · s′) · h (4.2.2)

(s · s′)∞ = s · (s′ · s)∞ (4.2.3)

∀n≥1 (sn)∞ = s∞ (4.2.4)

the axioms of ω-semigroups: ∏
(s, s, . . .) = s∞ (4.2.5)

s ·
∏

(s0, s1, . . .) =
∏

(s, s0, s1, . . .) (4.2.6)∏
(s0 · . . . · sk1 , sk1+1 · . . . · sk2 , . . .) =

∏
(s0, s1, s2, . . .) (4.2.7)

and one additional axiom:

a(2, hR) · hL = a(hL,2) · hR. (4.2.8)

Fact 4.2.1. If a finite structure (H, V) satisfies all the axioms of thin algebra except the
ones about infinite product: (4.2.5), (4.2.6), and (4.2.7) then (H, V) can be equipped, in a
unique way, with infinite product ∏ satisfying axioms (4.2.5), (4.2.6), and (4.2.7).

Proof. The same as in the case of Wilke algebra, see Theorem 0.4 on page 33. �

However, as shown in Example 0.5.2 on page 33, we cannot erase the infinite prod-
uct ∏ from the definition of thin algebra; this operation is important when we consider
homomorphisms between thin algebras.

125

It is easy to verify that the pair (TrAR ,ConAR) has a natural structure of a thin algebra.
In particular, the operation p 7→ p∞ constructs the ranked tree p∞ from a ranked context
p by looping the hole of p to the root of p, that is p∞ is the unique ranked tree satisfying

p
(
p∞
)

= p∞.

The subalgebra (ThAR ,ThConAR) ⊂ (TrAR ,ConAR) consisting of thin trees and thin
contexts is free in the class of thin algebras over the ranked alphabet AR, see [Idz12,
Theorem 30] (for more details see Section 5.4.1, page 158). The algebra (TrAR ,ConAR) is
not free. In Section 5.4.1 we will see how thin algebras can be used to recognise languages
of general ranked trees (not necessarily thin).

A homomorphism f : (H, V) → (H ′, V ′) between two thin algebras over the same al-
phabet AR is defined in the usual way: f should be a function mapping elements of H
into H ′ and elements of V into V ′ that preserves all the operations of thin algebra. Such
a homomorphism is surjective if f(H) = H ′ and f(V) = V ′.

Fact 4.2.2. Since every context p ∈ ThConAR can be obtained as a finite combination
of trees t ∈ TrAR using the operation Node, if f1, f2 : (TrAR ,ConAR) → (H,V) are two
homomorphisms that agree on TrAR then f1 = f2.

The operations of thin algebra (namely the infinite product ∏) imply that homomor-
phisms have to be path-wise consistent, as expressed by the following fact.

Fact 4.2.3. Let t ∈ ThAR be a thin tree, α = d0d1 . . . an infinite branch of t, and
f : (TrAR ,ConAR) → S be a homomorphism into a finite thin algebra S. Let ui =
d0d1 . . . di−1d̄i be the sequence of vertices of t that are off α and ai = t(α�i) be the i’th
letter of t along α. Then

f(t) =
∏
i∈N

Node
(
ai, di, f(t�ui

)
)
.

The following fact follows from induction over the rank of a thin tree, see [Idz12,
Lemma 34] or the proof of Lemma 6.3.3 on page 173 in Chapter 6.

Fact 4.2.4. Let (H, V) be a thin algebra over a ranked alphabet AR. Then there exists a
unique homomorphism f : (ThAR ,ThConAR)→ (H, V).

Let L ⊆ ThAR be a language of thin trees. We say that a homomorphism
f : (ThAR ,ThConAR)→ (H, V) recognises L if there is a set F ⊆ H such that L = f−1(F),

126

see Section 0.5.3, page 33. We say that (H, V) recognises L if there exists a set F as above
(Fact 4.2.4 implies that there exists a unique homomorphism f).

Similarly, f : (TrAR ,ConAR) → (H, V) recognises L ⊆ TrAR if L = f−1(F) for some
F ⊆ H.

4.2.1 The automaton algebra

Every non-deterministic tree automaton A induces a finite thin algebra SA (called the au-
tomaton algebra) and a homomorphism fA from all ranked trees to SA (called the automa-
ton morphism). The automaton algebra is an example of a finite thin algebra recognising
L(A) ⊆ TrARA .

Let A be a non-deterministic automaton over a ranked alphabet AR such that A recog-
nises L ⊆ TrAR . Assume that A has states Q and uses priorities from {0, . . . , k} for some
k. Let us define fA(t) for a tree t ∈ TrAR and fA(p) for a context p ∈ ConAR :

fA(t) =
{
q : ∃ρ ρ is a run of A on t such that: (4.2.9)

ρ is parity-accepting,

ρ(ε) = q.}
⊆ Q

fA(p) =
{

(q, i, q′) : ∃ρ ρ is a run of A on p such that: (4.2.10)

ρ is parity-accepting,

ρ(ε) = q,

ρ(u) = q′ (where u is the hole of p),

the minimal priority on the path from ε to u in ρ is i.}
⊆ Q× {0, . . . , k} ×Q

Fact 4.2.5. The function fA induces uniquely the structure of thin algebra on its image
SA

def= (HA, VA) ⊆
(
P(Q),P(Q× {0, . . . , k} ×Q)

)
in such a way that fA becomes a homo-

morphism of thin algebras.
Moreover, fA recognises L(A), since

L(A) = f−1
A

(
{h ∈ HA : h ∩ IA 6= ∅}

)
.

127

For every h ∈ HA the language Lh
def= f−1

A ({h}) ⊆ TrAR is regular.

For the sake of completeness, let us write down the operations of the automaton algebra
SA. The formulae are similar to the case of thin forest algebra, see [Idz12, Section 4.4.1].
We do not define the infinite product ∏, it can be uniquely introduced by Fact 4.2.1. We
implicitly assume that h ∈ HA, s, s′ ∈ VA, e ∈ VA is an idempotent, a ∈ AR2, b ∈ AR0, and
d ∈ {L, R}.

s · s′ = {(q,min(j, j′), q′′) : (q, j, q′) ∈ s, (q′, j′, q′′) ∈ s′}, (4.2.11a)

s · h = {q : (q, j, q′) ∈ s, q′ ∈ h}, (4.2.11b)

s∞ =
(
s]
)∞

for s] being the idempotent power of s, (4.2.11c)

e∞ = {q : (q, j, q) ∈ e, j ≡ 0 (mod 2)} for e being an idempotent, (4.2.11d)

Node(a, d, h) = {(q,min(q, qd), qd) : (q, a, qL, qR) ∈ δA2 , qd̄ ∈ h}, (4.2.11e)

Leaf(b) = {q : (q, b) ∈ δA0 }. (4.2.11f)

Observe that if L(A) ⊆ ThAR is a language of thin trees then we can restrict the
automaton morphism to ThAR . After this restriction it recognises L(A) as a language of
thin trees.

The following fact is a direct consequence of the existence of an automaton algebra. It
is not used in this thesis, we use only the “only if” part: if a language is regular then it is
recognised by a homomorphism into a finite thin algebra.

Fact 4.2.6. A language of thin trees L ⊆ ThAR is a regular language of thin trees if and
only if it is recognised by a homomorphism into a finite thin algebra.

Sketch of a proof. If a language is regular then we can take the automaton algebra. The
opposite direction follows from the definition of consistent markings in Section 5.1 and
Fact 6.3.3 — we can define in mso a consistent marking τ of a given thin tree and check
that τ(ε) ∈ F . �

4.3 Upper bounds

In this section we prove an upper bound on descriptive complexity of regular languages of
thin trees from Theorem 4, as expressed by the following proposition.

128

Proposition 4.3.1. Every regular language of thin trees L is co-analytic as a set of ranked
trees.

Note that despite the fact that the space of thin trees ThAR is co-analytic among all
trees, it is an uncountable set and contains arbitrarily complicated subsets.

4.3.1 Embeddings and quasi-skeletons

The definition of a skeleton σ of a tree t is a co-analytic definition — σ has to contain
almost all nodes on every branch of t. Our aim in this section is to define objects less
rigid than skeletons but definable in an analytic way. For this purpose, we introduce two
relations REmbed and RQSkel. Let us fix a ranked alphabet AR.

Proposition 4.3.2. There exists an analytic (Σ1
1) relation REmbed ⊆ TrAR × TrAR such

that for every tree t1 and every thin tree t2:

(
t1 is thin and rank(t1) ≤ rank(t2)

)
if and only if (t1, t2) ∈ REmbed.

Intuitively, the relation REmbed is defined by the expression of the form: (t1, t2) ∈
REmbed if there exists an embedding of dom(t1) to dom(t2). However, to avoid technical
difficulties, we do not introduce exact definition of an embedding. Instead, we recall some
standard methods from descriptive set theory, see [Kec95, Section 34.D], namely the Borel
derivatives. It will be shown that the derivative Dv from Section 4.1.4 is (modulo some
technical extension) a Borel derivative. We follow here the notions used in [Kec95].

Definition 4.3.3. Let X be a countable set and D = P(X). A derivative on D is a map
D : D → D such that D(A) ⊆ A and D(A) ⊆ D(B) for A ⊆ B, A,B ∈ D. For A ∈ D we
define D0(A) = A, Dη+1(A) = D

(
Dη(A)

)
and for a limit ordinal η

Dη(A) def=
⋂
η′<η

Dη′(A).

Now, let |A|D for A ∈ D be the least ordinal η such that Dη(A) = Dη+1(A). Such an
ordinal exists by monotonicity of D and since X is countable, η < ω1. We additionally put

D∞(A) def= D|A|D(A).

Now let us state [Kec95, Theorem 34.10] in the case of countable X.

129

Theorem 4.1 (Theorem 34.10 from [Kec95, Section 34.E]). Let X be a countable set and
D = P(X). Let D : D → D be a derivative that is Borel. Put

ΩD = {F ∈ D : D∞(F) = ∅}.

Then ΩD is Π1
1 and the map F 7→ |F |D is a Π1

1-rank on ΩD.

Our aim is to present Dv as a Borel derivative in such a way that ΩD = PTh and the
map F 7→ |F |D is the rank of thin trees in the sense of Section 4.1.4. The above theorem
will then imply that the rank of thin trees is a Π1

1-rank. Then, by the definition of �∗rank

(see [Kec95, Section 34.B]) we obtain that

REmbed(t, t′) def⇔ dom(t) �∗rank dom(t′)

⇔ dom(t′) /∈ PTh ∨
(
dom(t), dom(t′) ∈ PTh∧

∧ rank(dom(t)) ≤ rank(dom(t′))
)

⇔ t′ /∈ ThAR ∨ (t, t′ ∈ ThAR ∧ rank(t) ≤ rank(t′))

is a Σ1
1-relation.

Fact 4.3.4. The rank of thin tree-shapes comes from a Borel derivative, as in the assump-
tions of Theorem 4.1.

Proof. Let X = {L, R}∗ and D = P(X). Note that in this case PTr ⊆ D. Let us extend
the derivative Dv to a function D : D → D by putting D(F) = F whenever F /∈ PTr. The
function D defined this way is monotone and Borel: the set of tree-shapes is Borel in D
and the property that u ∈ Dv(τ) is a Borel property of a tree-shape τ : u ∈ τ and τ�u does
not have a finite number of branches (this property is Borel because our trees are finitely
branching). Also, D∞(F) = ∅ if and only if F ∈ PTh. By applying Theorem 34.10 we
obtain that the rank induced by D (that is the rank of thin trees) is a Π1

1-rank. �

Our second relation RQSkel is intended to witness the existence of a particular skeleton
σ̃ of a given thin tree t. The trick is that σ̃ witnesses a skeleton of t given that t is
thin. Otherwise, σ̃ does not witness anything interesting. Such a (conditional) skeleton is
denoted as a quasi-skeleton.

We will encode a subset σ̃ ⊆ dom(t) of nodes of a tree t as its characteristic function — a
tree (denoted also σ̃) over the ranked alphabet ({0, 1}, {0, 1}) such that dom(t) = dom(σ̃).

130

To simplify the notions we will say that u ∈ dom(t) belongs to σ̃ if u belongs to the set
encoded by it (i.e. if σ̃(u) = 1).

Proposition 4.3.5. There exists a Σ1
1 relation RQSkel on TrAR × Tr{0,1}2 such that:

1. for every pair (t, σ̃) ∈ RQSkel we have dom(t) = dom(σ̃), σ̃(ε) = 0, and σ̃ contains
(treated as a set of nodes of t) exactly one node from each pair of siblings in t,

2. for every thin tree t there exists a tree σ̃ such that (t, σ̃) ∈ RQSkel,

3. if t is a thin tree and (t, σ̃) ∈ RQSkel then σ̃ encodes a skeleton of t.

A tree σ̃ such that (t, σ̃) ∈ RQSkel is called a quasi-skeleton of t.

Note that RQSkel may contain some pairs (t, σ̃) with a thick tree t. In that case σ̃
encodes some set of nodes of t but not a skeleton.

We define RQSkel ⊆ TrAR × Tr{0,1}2 as the set of pairs (t, σ̃) such that:

• dom(σ̃) = dom(t),

• ε /∈ σ̃,

• for every pair of siblings in t exactly one of them is in σ̃,

• for every internal node u of t such that ud ∈ σ̃ we have

(t�ud̄, t�ud) ∈ REmbed, (4.3.1)

i.e. the subtree under the sibling of ud embeds into the subtree under ud.

Fact 4.3.6. Since REmbed is analytic and analytic sets are closed under countable inter-
sections, so the relation RQSkel is also analytic.

The following two lemmas prove Items 2 and 3 of Proposition 4.3.5.

Lemma 4.3.7. Let t be a thin tree. There exists a quasi-skeleton σ̃ for t.

Proof. Let t be a thin tree. We show that the canonical skeleton σ(t) of t defined in the
proof of Proposition 4.1.11 is a quasi-skeleton of t. Let τ be the spine of t and let uL and
uR be two siblings in t. By the inductive construction of σ(t) we can assume that at least

131

one of these siblings ud belongs to τ . If ud̄ /∈ τ then rank(ud, t) > rank(ud̄, t) so (4.3.1) is
satisfied. Now assume that both ud, ud̄ belong to τ . In that case we have

rank(ud, t) = rank(ud̄, t),

so (4.3.1) is also satisfied, no matter which of the siblings belongs to σ(t). �

Lemma 4.3.8. If t is a thin tree and σ̃ is a quasi-skeleton of t then σ̃ (treated as a set of
nodes of t) is a skeleton of t.

Proof. Take any infinite branch α of t. We need to show that almost all nodes on α belong
to σ̃. Assume contrary. Let u0 ≺ u1 ≺ . . . ≺ α be the sequence of nodes on α that do
not belong to σ̃. By the definition of σ̃ for every node ui the sibling u′i of ui satisfies
(t�ui

, t�u′i) ∈ REmbed. Since t is thin this property implies that

rank(ui, t) ≤ rank(u′i, t).

Since ordinal numbers are well-founded, we can assume without loss of generality that
all the ranks rank(ui, t) are equal some ordinal η < ω1. Since ui ≺ u′i+1 so we can also
assume that for every i we have rank(u′i) = η. Let t′ = t�u0 and let τ be the spine of t′.
Note that rank(t′) = η so by the definition τ contains all the nodes of rank η in t. In
particular τ contains all nodes ui and u′i. But this is a contradiction, since u ∈ BCB so it
cannot contain infinitely many branching nodes. �

Remark 4.3.9. Assume that t is a thin tree, σ̃ is a quasi-skeleton of t, and u ∈ dom(t) is
a node of t. The main branch of σ̃ from u can be defined in the same way as in the case of
skeletons. The only difference is that if σ̃ is not a skeleton then not every infinite branch
of t is main.

4.3.2 Proof of Proposition 4.3.1

Assume that L ⊆ ThAR is a regular language of thin trees, we want to show that L ∈
Π1

1(TrAR). Let L′ = TrAR \ L be the complement of L among all ranked trees. L′ is a
regular language of ranked trees. Let A be a non-deterministic tree automaton recognizing
L′. We will write L′ as a sum

L′ = (TrAR \ ThAR) ∪K, (4.3.2)

132

for some languageK that will be defined this way to be analytic and to satisfy the following
condition:

K ∩ ThAR = L′ ∩ ThAR .

Therefore, Equation (4.3.2) will hold and will be an analytic definition of L′.
Let K contain those trees t such that there exists a quasi-skeleton σ̃ of t and a run ρ of

the automaton A on t such that for every node u ∈ dom(t) the limes inferior of priorities
of ρ is even along the main branch of σ̃ from u. More formally:

K =
{
t ∈ TrAR : ∃σ̃,ρ (t, σ̃) ∈ RQSkel and

ρ is a run of A on t and

∀u∈dom(t). the lim inf of priorities of ρ

on the main branch of σ̃ from u is even
}
.

Observe that K is defined by existential quantification over trees σ̃ and runs ρ. The
inner properties are analytic (the later two are in fact Borel). Therefore, K is analytic.
Note that we do not express explicitly that ρ is an accepting run.

Observe that if t ∈ L′∩ThAR then t ∈ K: there is some quasi-skeleton σ̃ for t and there
is an accepting run ρ of A. Since ρ is accepting so it is accepting on all main branches of
σ̃.

What remains is to show that if t ∈ K ∩ ThAR then t ∈ L′. Take a thin tree t ∈ K.
Assume that σ̃, ρ are a quasi-skeleton and a run given by the definition of K. Since t is a
thin tree, σ̃ is actually a skeleton of t. We take any infinite branch α of t and show that ρ
is accepting along α. By Lemma 4.1.10 we know that there is a node u ∈ dom(t) such that
α is the main branch of σ̃ from u. Therefore, by the definition of K, the run ρ is accepting
on α.

This concludes the proof of Proposition 4.3.1.

4.4 Characterisation of wmso-definable languages

In this section we prove a decidable characterisation of languages of thin trees that are
wmso-definable among all trees. It will be achieved by proving that the following condi-
tions are equivalent.

133

Proposition 4.4.1. Let L ⊆ ThAR be a regular language of thin trees over a ranked
alphabet AR = (AR0, AR2) and let B be a non-deterministic automaton recognising L among
all trees. The following conditions are equivalent:

1. for M = |QB| · |AR2|+ 1 and every t ∈ L we have rank(t) ≤M ,

2. there exists M ∈ N such that every tree t ∈ L satisfies rank(t) ≤M ,

3. L is wmso-definable among all trees,

4. there exists N ∈ N such that L ∈ Σ0
N(TrAR),

5. L is not Π1
1(TrAR)-hard.

Moreover, it is decidable if these conditions hold.

The implications (1) ⇒ (2), (3) ⇒ (4), and (4) ⇒ (5) are trivial — any language
definable in wmso is on a finite level of the Borel hierarchy, thus not Π1

1-hard. The
remaining two implications are proved in the following subsections. The decidability follows
from Remark 4.4.3.

A relation between definability in wmso and boundedness of a certain rank is also
exploited in Chapter 2.

4.4.1 Implication (2)⇒ (3)

We need to prove that if for some M every tree t ∈ L satisfies rank(t) ≤ M then L is
wmso-definable among all trees. This will be achieved by an explicit construction (via
induction on M) of a wmso formula defining L among all trees.

In our constructions we use the following additional notion. Assume that t ∈ TrAR is a
tree and u � w are two nodes of t. We say that a node z is off the path from u to w if z is
not an ancestor of w (z 6� w) but there exists u′ such that u � u′ ≺ w and z is a child of
u′.

The proofs of this section go by induction on M (the bound on the ranks of thin trees).
In all of the cases the base step is trivial as there is no thin tree of rank 0.

We start with the following lemma. The constructed formula ϕm will serve as a basis
in the following constructions.

Lemma 4.4.2. For every m ∈ N there exists a wmso formula ϕm defining among all
ranked trees the language of thin trees of rank at most m (denoted Th≤mAR

, see Section 4.1.4).

134

Proof. The proof goes by induction on m. The base step is trivial.
Assume that the thesis holds for m— we have defined a formula ϕm. Consider a wmso

formula ϕm+1 that for a given ranked tree t ∈ TrAR says that:

there exists a finite tree s with dom(s) ⊆ dom(t) such that

for every internal node w of t such that w /∈ dom(s)

there exists a child wd of w such that

the subtree t�wd has rank at most m (i.e. the formula ϕm holds on t�wd).

First assume that ϕm+1 holds on a given tree t and take s as in the statement. Let
τ ⊆ dom(t) be the set of nodes u ∈ dom(t) such that rank(u, t) > m. Observe that by ϕm
if u is a branching node of τ then u ∈ dom(s). Therefore τ ∈ BCB and rank(t) ≤ m+ 1.

Now assume that rank(t) ≤ m+ 1. If rank(t) < m then ϕm is trivially satisfied by any
finite tree s. Assume that rank(t) = m + 1 and let τ = Dvm(dom(t)) be the spine of t.
Since τ ∈ BCB so τ has finitely many branching nodes. Let us take as s a finite tree with
dom(s) ⊆ dom(t) and such that s contains all the branching nodes of τ . By the definition
of τ , for every internal node w of t that is outside s, at least one of the children of w has
rank at most m. �

The above lemma implies that the set of thin trees of rank at most m ∈ N is mso-
definable. Therefore, given a regular language of thin trees it is decidable if it contains a
tree of rank greater than a given number m. This gives us the following remark.

Remark 4.4.3. Condition (1) from Proposition 4.4.4 is decidable.

The crucial inductive part of the proof of the implication (2) ⇒ (3) is expressed by
the following proposition. The rest of this section is devoted to its proof. The implication
(2) ⇒ (3) follows when we take as f the automaton homomorphism for an automaton A
recognising L and as m the bound M from Condition (2).

Proposition 4.4.4. Let (H,V) be a finite thin algebra over a ranked alphabet AR. Let
f : ThAR → (H,V) be the unique homomorphism assigning to thin trees their types. For
every type h ∈ H and number m ∈ N there exists a wmso formula ϕhm that defines those
ranked trees t ∈ TrAR such that t ∈ ThAR, rank(t) = m, and the type of t is h with respect
to f (i.e. f(t) = h).

The base step for m = 0 is trivial. Assume that the thesis of the proposition holds for
all types h and all numbers less or equal than m. We show it for m+ 1.

135

First we write a formula ψm(u,w) expressing that for a given pair of nodes u, w of a
given tree t:

u � w,

the subtrees t�u and t�w have ranks exactly m (we check it using ϕm and ¬ϕm−1), and

for every z that is off the path from u to w

the rank of t�z is at most m− 1 (i.e. ϕm−1 holds on t�z).

The following lemma expresses the crucial properties of formulae ψm(u,w).

Lemma 4.4.5. Assume that for a given ranked tree t ∈ TrAR and a node u of t there are
infinitely many nodes w such that ψm(u,w). Then rank(t�u) = m and the set of nodes of
rank equal m below u in t forms a single infinite branch α of t.

Moreover, ψm(u,w) holds for some w ∈ dom(t) if and only if u � w ≺ α.

Proof. Take a ranked tree t and a node u ∈ dom(t) as in the statement. Without loss of
generality we can assume that u = ε, because ϕm talks only about the subtree t�u. Observe
that rank(t�ε) = rank(t) = m. Let τ ⊆ dom(t) be the set of nodes w ∈ dom(t) such that
ψm(ε, w) holds. Observe that if u � w1 � w2 ∈ dom(t) and w2 ∈ τ then w1 ∈ τ . Since
there are infinitely many nodes w satisfying ψm(ε, w) so τ is infinite. Observe also that τ
does not contain any branching node. Therefore τ is a single infinite branch α. Clearly, if
w is not a prefix of α then rank(w, t) < m. �

The above lemma states that the formula ψm(u,w) enables us to fix in a wmso-definable
way a particular branch α in our tree such that almost all nodes that are off this branch
have ranks smaller than m. What remains is to compute the type of the subtree rooted in
the node u from the types of the subtrees that are off α and from α itself. The following
formula is an intermediate step in this construction.

Fact 4.4.6. For nodes u, w1, w2 and a type s ∈ V there exists a wmso formula
γsm(u,w1, w2) expressing the following facts:

• u � w1 � w2,

• ψm(u,w2) holds (it implies ψm(u,w1)),

• f(t�[w1,w2)) = s — the type of the the context rooted in w1 with the hole in w2 is s.

136

α
u z0 w1 w2 w3

s e e

e

Figure 4.4.1: An illustration of properties expressed by the formulae δhm(u).

To achieve the last item of the list, the formula computes the types of the subtrees
rooted in the nodes off the path from w1 to w2 using the inductive formulae ϕhm′ for
m′ < m and h ∈ H. Then the formula executes the multiplication in V on the finite path
from w1 to w2.

Now we show how to compute a type of a tree with a spine consisting of one infinite
branch. The formula is based on a construction from [Tho80] that enables to verify the
type of a given ω-word in fo logic using predicates of the form “the type of the infix
between the positions w1 and w2 is e”.

Definition 4.4.7. Let u be a node of a tree t and h ∈ H be a type. Let the formula δhm(u)
express the following facts:

there are infinitely many nodes w such that ψm(u,w) holds,

there exists a pair of context types s, e ∈ V such that se∞ = h,

there exists a node z0 such that γsm(u, u, z0) holds (i.e. f
(
t�[u,z0)

)
= s), and

for every node w1 such that ψm(u,w1)

there exists a pair of nodes w2, w3 such that

w1 ≺ w2 ≺ w3,

ψm(u,w3) holds (it implies ψm(u,w2)), and

the formulae γem(u, z0, w2), γem(u, z0, w3), and γem(u,w2, w3) hold

(i.e. the types of the three contexts equal e, see Figure 4.4.1).

Lemma 4.4.8. Let t be a tree and u be a node of t such that there are infinitely many
nodes w satisfying ψm(u,w). Then f(t�u) = h if and only if δhm(u) holds on t.

Proof. Again, without loss of generality u = ε. First assume that t |= δhm(ε) for some
h ∈ H. Let α be the branch defined by the predicate ψm(ε, w) as in Lemma 4.4.5.

137

z0 zi z′i zi+1 z′i+1

?

e ?

e ?

e

Figure 4.4.2: The reasoning used in the proof of Lemma 4.4.8.

We show that the formula γhm(ε) gives rise to a sequence of nodes z0 ≺ z1 ≺ z2 . . . on α
such that for some types s, e satisfying se∞ = h we have:

f
(
t�[ε,z0)

)
= s, f

(
t�[zi,zi+1)

)
= e. (4.4.1)

Having done so, we conclude that the type of t = t�ε is h.
Let us fix z0 as in the definition of δhm(ε). By the definition we know that f(t�[ε,z0)) = s.

We will set w1 to various nodes along α obtaining nodes w2, w3 such that w1 ≺ w2 ≺ w3 ≺
α.

Let us start with w1 equal z0 and consider w2, w3 given by δhm(ε). Let z1 = w2 and
z′1 = w3. Our inductive invariant is that the types of all three contexts t�[z0,zi), t�[z0,z′i)

, and
t�[zi,z′i)

equal e. For i = 1 we get it by the definition of δhm(ε). Assume that zi ≺ z′i are
defined for some i > 0. Let us take w1 = z′i and consider w2, w3 as in the definition of
δhm(ε). Let us put zi+1 = w2 and z′i+1 = w3. By the definition, the types of t�[z0,zi+1) and
t�[z0,z′i+1) are e. Consider the type of the context t�[zi,zi+1) (see Figure 4.4.2):

f
(
t�[zi,zi+1)

)
= f

(
t�[zi,z′i)

)
· f
(
t�[z′i,zi+1)

)
= e · f

(
t�[z′i,zi+1)

)
= f

(
t�[z0,z′i)

)
· f
(
t�[z′i,zi+1)

)
= f

(
t�[z0,zi+1)

)
= e.

Therefore, the constructed sequence z0 ≺ z1 ≺ z2 ≺ . . . satisfies (4.4.1).

138

For the other direction take a thin tree t and a branch α of t as in Lemma 4.4.5. Using
Ramsey’s theorem (see Theorem 0.1 on page 21) along α, with respect to the function
assigning to a pair u ≺ w ≺ α the type f(t�[u,w)) ∈ V , we find a pair of types s, e and
an infinite sequence of nodes (zi)i∈N along α satisfying (4.4.1) and such that e = e2. Since
f(t) = h, se∞ = h. Therefore, we can satisfy the formula δhm(ε) using s, e and the successive
nodes (zi)i∈N. �

We are now ready to construct the formula ϕhm from Proposition 4.4.4. It will be
obtained by rewriting the formula ϕm from Lemma 4.4.2 so that it additionally verifies the
type of the given ranked tree. In ϕhm will fix a finite tree s with some leafs u1, . . . , un of s
and a sequence of types h1, . . . , hn ∈ H. We then write s(h1, . . . , hn) for the type obtained
by the evaluation of the term represented by s on the given types in the algebra (H,V).
Take m > 0, h ∈ H and define ϕhm that says:

there exists a finite tree s with dom(s) ⊆ dom(t),

a number of leafs u1, . . . , un of s, and

a sequence of types h1, . . . , hn such that

the type of s(h1, h2, . . . , hn) is h and

for every leaf ui (i = 1, . . . , n)

δhi
m (ui) holds and

there are infinitely many nodes w such that ψm(ui, w) holds.

Lemma 4.4.9. A tree t ∈ TrAR satisfies ϕhm if and only if rank(t) = m and f(t) = h.

Proof. First assume that rank(t) = m and f(t) = h. Let τ be the spine of t and take
s as a finite tree containing all the branching nodes of τ . A leaf u of s is included in
the list u1, . . . , un if rank(u, t) = m. We take as hi the type f(t�ui

). Clearly the type of
s(h1, . . . , hn) is the type of t that is h. Also, since rank(ui, t) = m for i = 1, . . . , n so
ψm(ui, w) holds for infinitely many w. Lemma 4.4.8 says that δhi

m (ui) is satisfied.
Now assume that ϕhm is satisfied. Again, by Lemma 4.4.8 we know that for i = 1, . . . , n

f(t�ui
) = hi.

Therefore, f(t) = s(h1, . . . , hn) = h. �

This concludes the proof of Proposition 4.4.4 and of the implication (2)⇒ (3).

139

4.4.2 Implication (5)⇒ (1)

Now we want to prove that if L is not Π1
1(TrAR)-hard then every tree t ∈ L has rank at

most M = |QB| · |AR2|+ 1.
We assume contrary that there exists a thin tree t ∈ L such that rank(t) > M . Our

aim is to show that L is Π1
1(TrAR)-hard. The proof consists of two parts: first we find a

pumping scheme within the tree t and then we construct a continuous reduction f from
the set of well-founded ω-trees WF ⊆ ωPTr (see Section 0.6.3, page 38) into L ⊆ TrAR .
The idea is that for τ ∈ WF the reduction f gives a thin tree in L and if τ /∈ WF
then f(τ) /∈ ThAR , so in particular f(τ) /∈ L. Since the set of well-founded ω-trees is
Π1

1-complete (see Theorem 0.6 on page 39), it will prove that L is Π1
1-hard.

Let us take m > 0 and a ranked tree t ∈ TrAR . A pumping scheme of depth m in t (see
Figure 4.4.3) is a function P : ω≤m → dom(t) such that:

• for every u ∈ ω≤m the node P (u) is an internal node of t,

• for every u ≺ w ∈ ω≤m we have P (u) ≺ P (w),

• for every k ≤ m and u 6= w ∈ ωk we have P (u) 6� P (w) and P (w) 6� P (u),

• for every k ≤ m and u,w ∈ ωk we have t(P (u)) = t(P (w)).

Note that the last condition implies that there exists a function PS : {0, 1, . . . ,m} → AR2

assigning to a number k ≤ m the unique letter PS(k) ∈ AR2 such that if u ∈ ωk then
t(P (u)) = PS(k). This function is called the signature of P .

Lemma 4.4.10. If t is a thin tree and rank(t) > m+1 then there exists a pumping scheme
of depth m in t.

Before proving the lemma we extract an observation crucial for the inductive step.

Fact 4.4.11. Let t be a thin tree and (ui)i∈N be a sequence of nodes of t. Assume that the
nodes ui are pairwise incomparable with respect to the prefix order �. If each subtree t�ui

has a pumping scheme of depth m and of a fixed signature PS (one for all i) then t has a
pumping scheme of depth m+ 1.

Proof. We just combine the schemes for all the nodes (ui)i∈N and put P (ε) = ε. �

Proof of Lemma 4.4.10 The proof is inductive in m. For m = 0 we can take as P the
function ε 7→ ε — ε is not a leaf of t because t has rank at least 2. Assume that the thesis

140

... ...
...

m

Figure 4.4.3: An example of a pumping scheme PS of depth m = 3 in a tree t. The highest
dot is the node PS(ε). Under it we have an anti-chain of nodes PS(i) for i ∈ N. Under each
node PS(i) we again have an anti-chain of nodes PS(ij) for j ∈ N. The lowest line consists
of nodes of the form PS(ijk) for k ∈ N.

141

holds for m. Let rank(t) > m + 1 and let τ be the spine of t. Let (ui)i∈N be a sequence
of nodes of t that are off τ and have rank at least m + 1 in t. This sequence is infinite,
otherwise rank(t) ≤ m+ 1. Note that since the nodes (ui)i∈N are off τ so they are pairwise
incomparable with respect to the prefix order �.

By the inductive assumption, for every i there is a pumping scheme Pi of depth m in
t�ui

. Since there are only finitely many distinct signatures of pumping schemes of depth m
so for some infinite subsequence of (Pi)i∈N all the signatures are equal. By Fact 4.4.11 we
obtain that there exists a pumping scheme of depth m+ 1 in t. �

Now we can move to the construction of a continuous reduction f of WF ⊆ ωPTr to
L ⊆ TrAR . Recall that we have fixed a thin tree t ∈ L such that rank(t) > |QB| · |AR2|+ 1
for a non-deterministic automaton B recognising L among all trees. Let ρ ∈ Tr(QB,QB) be
an accepting run of B on t. Let t′ = t⊗ ρ be the tree over the product alphabet.

Let m = |QB| · |AR2|. Because rank(t′) = rank(t) > m + 1 so there exists a pumping
scheme P of depth m in t′. Let PS be the signature of P . By the pigeonhole principle
there are two numbers 0 ≤ k < k′ ≤ m such that PS(k) = PS(k′). Let u = P (0k) — the
image by P of the vector of k zeros and let wi = P

(
0k · i · 0k′−k−1

)
.

Fact 4.4.12. By the definition we obtain that:

• the nodes wi are pairwise incomparable w.r.t. the prefix order �,

• u ≺ wi and t′(u) = t′(wi) for every i ∈ N.

Let w′i be the word such that uw′i = wi. This sequence of nodes enables us to cut t′

into the following pieces:

• pI is the thin context obtained from t′ by putting the hole in u (i.e. pI def= t′[u← 2]),

• rM is the thin tree over the ranked alphabet (AR2×Q,AR0×Qt{2}) obtained from
t′�u by putting a leaf labelled by 2 in all the nodes w′i for i ∈ N,

• tF is the subtree t′�w0 .

Observe that the nodes of rM labelled by 2 are naturally numbered by natural numbers.
Assume that (ti)i∈N is a sequence of trees over the alphabet (AR2 × Q,AR0 × Q). Then,
rM(t0, t1, . . .) is the tree obtained by putting, for every i, the root of ti into the i’th hole
of rM (i.e. into the node w′i of rM). Using these notions we can write

t′ = pI
(
rM(tF , t′�w1 , t

′�w2 , t
′�w3 , . . .)

)
.

142

We define a function f0 : ωPTr → TrAR×(Q,Q) by co-induction (see Section 0.6.5,
page 39). Then f(τ) is defined as pI(f0(τ)). If τ is empty then let f0(τ) = tF . Oth-
erwise, assume that (τi)i∈N is the list of subtrees τ�(i). Let

f0(τ) = rM
(
f0(τ0), f0(τ0), f0(τ1), f0(τ1), . . .

)
.

Note that each subtree f0(τi) is inserted twice into rM .
Since the root of rM is its internal node, the function f0 is continuous — the more

is known about τ the bigger fragment of f0(τ) can be produced. Therefore, f is also
continuous. Observe also that for every τ the result f(τ) is a product of two trees f 1(τ)⊗
f 2(τ) with f 1(τ) over the ranked alphabet AR and f 2(τ) over (Q,Q). Because of Fact 4.4.12
the tree f 2(τ) is a run of B on f 1(τ). The value of the run f 2(τ) (i.e. f 2(τ)(ε)) is the same
as the value of ρ.

What remains is to prove the following lemma.

Lemma 4.4.13. An ω-tree τ ∈ ωPTr is well-founded (belongs to WF) if and only if
f 1(τ) ∈ L.

Proof. First assume that τ ∈ WF. In that case, every branch of f(τ) from some point
on reaches a copy of tF or stays forever in some copy of pI or rM . Thus, the run f 2(τ) is
parity-accepting on every branch of f 1(τ). So f 1(τ) ∈ L.

Now take τ /∈ WF. Assume that α ∈ ωω is an infinite branch of τ . We show how to
embed the complete binary tree {0, 1}∗ into dom(f(τ)) thus showing that it is not thin.
Since L ⊆ ThAR , f(τ) /∈ L.

We take a branch β ∈ {0, 1}ω and construct a sequence of vertices z0 ≺ z1 ≺ z2 ≺, . . .
in f(τ). First we put z0 = u (the hole of the ranked context pI). From that moment on
we will traverse infinitely many copies of rM . The invariant is that for every i

f(τ)�zi
= f0(τ�α�i).

For i = 0 the invariant is satisfied. In a step i we define as zn the vertex (hole) w′2·α(i)+β(i)

in the current copy of r, i.e.
zi+1 = zi · w′2·α(i)+β(i).

Since τ�α�i is non-empty for every i, so the invariant is satisfied. Let πβ ∈ {L, R}ω be the
branch of f(τ) defined by the sequence of vertices z0 ≺ z1 ≺ Observe that for any

143

β′ 6= β we have πβ′ 6= πβ. So indeed the tree t(τ) is not thin — it contains the complete
binary tree as a minor. �

This concludes the proof of the implication (5)⇒ (1) and Proposition 4.4.1.

4.5 Conclusions

This chapter studies descriptive complexity of regular tree languages that contain only
thin trees. First of all it is shown that each such language is Π1

1 among all trees. It is a
noticeable collapse comparing to general regular tree languages that belong to ∆1

2.
The second part of the chapter is devoted to studying when a regular language con-

taining only thin trees can be defined in wmso. It turns out that this problem relates the
following three notions:

• definability in wmso,

• topological complexity (i.e. Π1
1-complete sets),

• certain ranks of thin trees.

These links show that Conjecture 2 from page 10 is true in the case of regular languages
containing only thin trees. Additionally, a pumping argument (see Lemma 4.4.10) is pre-
sented that shows that one of the conditions equivalent to wmso-definability is decidable.

The results of this chapter do not solve the problem of definability in wmso among
thin trees. This is stated as the following conjecture.

Conjecture 6. It is decidable if a given regular language L of thin trees is wmso-definable
among thin trees, i.e. if there exists a wmso formula ϕ such that

L = {t ∈ ThAR : t |= ϕ} = L(ϕ) ∩ ThAR .

Since the language of all thin trees is wmso-definable among thin trees (by the formula
>) so the method of ranks does not seem to be useful in this case.

This chapter is based on [BIS13].

144

Chapter 5

Recognition by thin algebras

In both cases of finite words and ω-words the class of regular languages can be equivalently
defined as the class of languages recognisable by homomorphisms to appropriate finite al-
gebras (monoids and ω-semigroups respectively, see Section 0.5, page 31). This algebraic
approach to recognition turned out to be fruitful by entailing many effective characteriza-
tions [Sch65,Sim75,BW08]. However, there is no satisfactory algebraic approach to infinite
trees, nor even a canonical way to represent a given regular tree language. Proposed al-
gebras (see [BI09, Blu11]) either have no finite representation or yield no new effective
characterisations.

This chapter can be seen as an attempt to use thin algebra defined in Chapter 4 to
recognise languages of general ranked infinite trees (i.e. not necessarily thin). As observed
in Section 4.2 (see page 124), the pair (TrAR ,ConAR) of all ranked trees and all ranked con-
texts over a ranked alphabet AR has a natural structure of a thin algebra with a subalgebra
(ThAR ,ThConAR) consisting of all thin trees and all thin contexts. It can be shown [Idz12]
that (ThAR ,ThConAR) is free (formally initial) in the class of thin algebras over AR. The
problem is that the thin algebra (TrAR ,ConAR) is richer than (ThAR ,ThConAR); in par-
ticular, for some finite thin algebras S over the ranked alphabet AR there may be many
homomorphisms

f : (TrAR ,ConAR)→ S.

The notion of prophetic thin algebras, introduced in this chapter, can be seen as a natu-
ral constraint guaranteeing that there is at most one homomorphism f as above. A natural
problem arises what is the class of languages that can be recognised by homomorphisms
to finite prophetic thin algebras. Example 5.1.5 presented in this chapter shows that not
every regular tree language is recognised in this way. The following theorem constitutes a
characterisation of the languages recognisable by finite prophetic thin algebras.

145

Theorem 5. A language of infinite trees L is recognised by a homomorphism into a finite
prophetic thin algebra if and only if L is bi-unambiguous, i.e. both L and the complement
Lc can be recognised by unambiguous automata.

Blumensath in [Blu11,Blu13] undertook the task of designing an algebraic framework
for infinite trees that would allow to recognise precisely the regular tree languages. The
relations between prophetic thin algebras and the concept of path-continuity of Blumensath
are discussed in Section 5.1.

It turns out that bi-unambiguous languages and prophetic thin algebras are closely
related to Conjecture 1 from page 10 saying that there is no mso-definable choice func-
tion in the class of thin trees. These relations are studied in Chapter 6, see Theorem 6.2
on page 171). In Section 5.4 we prove that if Conjecture 1 holds then the class of bi-
unambiguous languages is decidable among all regular tree languages (see Theorem 5.2).
The consequences of Conjecture 1 regarding prophetic thin algebras are studied in Sec-
tion 5.3. For instance, Conjecture 1 implies that the class of finite prophetic thin algebras
is a pseudo-variety.

The chapter is organized as follows. In Section 5.1 we introduce prophetic thin alge-
bras. Section 5.2 is devoted to a proof of Theorem 5. In Sections 5.3 and 5.4 we study
consequences of Conjecture 1. Finally, in Section 5.5 we conclude.

5.1 Prophetic thin algebras

In this section we introduce the notion of prophetic thin algebras. The aim of this definition
is to guarantee that if S is a prophetic thin algebra over a ranked alphabet AR then there
is at most one homomorphism

f : (TrAR ,ConAR)→ S,

similarly as in Fact 0.5.1 on page 32 in the case of ω-semigroups. Example 5.1.5 below
shows that for general (non-prophetic) thin algebras there may be more than one such
homomorphism.

Let S = (H,V) be a thin algebra over a ranked alphabet AR = (AR2, AR0) and let
t ∈ TrAR be a ranked tree. Observe that every homomorphism f : (TrAR ,ConAR) → S

induces a natural labelling τf of t by elements in H:

τf (u) def= f
(
t�u
)
for u ∈ dom(t).

146

The labelling τf is called the marking induced by f on t. Intuitively, it declares in advance
the f -type of all the subtrees of t.

The axioms of thin algebra and the fact that f is a homomorphism imply that τf satisfies
many consistency constraints. The following two definitions formalise these consistency
constraints by introducing a notion of a consistent marking. The definition reflects the
axioms of thin algebra in such a way to guarantee Lemma 5.1.4.

The first definition says that a labelling τ is supposed to be consistent with respect to
the local operations of thin algebra: Node(a, d, h) and Leaf(b).

Definition 5.1.1. Let (H,V) be a thin algebra over a ranked alphabet AR and let t ∈ TrAR.
A labelling τ ∈ Tr(H,H) of t is a marking of t by types in H if:

• for every internal node u of t we have

τ(u) = t(u)
(
τ(uL), τ(uR)

)
(i.e. τ(u) = Node(t(u), R, τ(uL)) · τ(uR)),

• for every leaf u of t we have

τ(u) = t(u)
()

(i.e. τ(u) = Leaf(t(u))).

The second definition reflects the infinite product operation ∏, it can be seen as a
counterpart of Fact 4.2.3 from page 126.

Definition 5.1.2. Fix a thin algebra (H,V) over a ranked alphabet AR. Let t ∈ TrAR be a
ranked tree, τ be a marking of t by types in H, and α be an infinite branch of t. Assume
that α = d0d1 . . . and let u0 ≺ u1 ≺ . . . be the sequence of vertices of t along α. Let us put
ai = t(ui) (the i’th letter of t along α), and hi = τ(uid̄i) (the value of τ in the i’th node
that is off α).

The sequence of types of contexts Node(ai, di, hi) ∈ V for i = 0, 1, . . . is called the
decomposition of τ along α. We say that τ is consistent on α if for every i ∈ N we have

τ(ui) =
∏

j=i,i+1,...
Node(aj, dj, hj). (5.1.1)

A marking τ is consistent if it is consistent on α for every infinite branch α of t.

Remark 5.1.3. By the definition of a marking and axiom (4.2.6) of thin algebra, it is
enough to require (5.1.1) for infinitely many i ∈ N.

147

Lemma 5.1.4. The marking τf induced by a homomorphism f on a tree t is a consistent
marking.

Proof. It follows directly from the axioms of thin algebra, see also Fact 4.2.3 on page 126.
�

Intuitively, a marking is consistent if the operations of thin algebra are not enough to
prove its inconsistency.

The following example shows that some thin algebras S admit more than one homomor-
phism from (TrAR ,ConAR) into S. In particular, the analogue of Fact 0.5.1 from page 32
does not hold here.

Example 5.1.5. Fix the ranked alphabet Ab = ({n}, {b}). Let Lb ⊆ TrAb
contain exactly

these trees which have at least one leaf. The following homomorphism recognises Lb: HLb
=

{ha, hb}, VLb
= {sa, sb}, and fLb

(t) = hb (resp. fLb
(p) = sb) if and only if the tree t (resp.

the context p) contains any leaf (not counting the hole of p).
Let tn be the complete binary tree equal everywhere n. Observe that tn does not belong

to Lb and the marking τfLb
(tn) induced by fLb

on tn equals ha in every vertex. Consider
another marking τ ′ of tn that equals hb everywhere. Note that τ ′ is consistent — along every
infinite branch of t it looks like a marking induced by fLb

(on a different tree). Therefore,
t has two consistent markings.

Going further, one can construct a homomorphism f ′ : (TrAb
,ConAb

) → (HLb
, VLb

)
that assigns hb to the tree tn. Therefore, there are two distinct homomorphisms from
(TrAb

,ConAb
) to (HLb

, VLb
).

Recall that the language Lb used above is known to be ambiguous, see [NW96]. Using
the notions of Section 5.4.1, one can check that (HLb

, VLb
) is a pseudo-syntactic thin algebra

of Lb.
Now we can define prophetic thin algebras as those that admit at most one consistent

marking.

Definition 5.1.6. We say that a thin algebra (H, V) over a ranked alphabet AR is prophetic
if for every ranked tree t ∈ TrAR there exists at most one consistent marking of t by types
in H.

Blumensath [Blu11, Blu13] has proposed recently an algebraic framework for infinite
trees. His path-continuous ω-hyperclones recognise precisely the class of regular languages

148

of infinite trees. The construction has some disadvantages though. One of the disadvan-
tages of the construction is that the use of an ideal (see [Blu13, Definition 2.7]) together
with existential quantification over its elements (the supremum taken in the definition of
π(a�)) is an algebraic translation of runs of the automata. A more precise formulation of
this objection is that path-continuous ω-hyperclones are not closed under homomorphic
images.

There is some inherent difficulty when designing a way to recognise regular languages
of infinite trees. The source of the problem seems to be that there is no reasonable way
of decomposing an infinite tree in such a way that the types of the parts can be com-
puted separately. Both known solutions: non-deterministic automata of Rabin and path-
continuous ω-hyperclones of Blumensath involve an essential existential quantification that
corresponds to guessing some kind of a witness. The case of prophetic thin algebras is dif-
ferent: it is enough to verify the types path-wise (using the standard Ramsey’s theorem)
and already path-wise consistency guarantees global consistency (there is no way to cheat).
The cost one has to pay is that prophetic thin algebras do not recognise all regular tree
languages. Therefore, the results of this chapter can be seen as an indication where the
difficulty lays.

The concepts of prophetic thin algebras and path-continuous ω-hyperclones were defined
independently.

Note that if f : (TrAR ,ConAR) → S is a homomorphism and S is prophetic then, for
every ranked tree t ∈ TrAR , the only consistent marking of t is the marking τf induced by
f . In particular, we obtain the following remark.

Remark 5.1.7. If S is prophetic then there is at most one homomorphism of the form

f : (TrAR ,ConAR)→ S.

Since the property that a given finite thin algebra is prophetic can be expressed in mso
on the complete binary tree, we obtain the following fact.

Fact 5.1.8. It is decidable whether a given finite thin algebra (H, V) is prophetic.

5.2 Bi-unambiguous languages

In this section we show that the languages recognised by finite prophetic thin algebras are
precisely the bi-unambiguous languages.

149

Theorem 5. A language of infinite trees L is recognised by a homomorphism into a finite
prophetic thin algebra if and only if L is bi-unambiguous, i.e. both L and the complement
Lc can be recognised by unambiguous automata.

In this section we implicitly assume that the automata are pruned: every state q of an
automaton is productive and reachable: there exists an accepting run ρ of A on some tree t
and a node u ∈ dom(ρ) such that ρ(u) = q. Every non-deterministic automaton recognising
non-empty language can be pruned by removing some states. The result recognises the
same language and this removal does not influence unambiguity.

The proof of Theorem 5 is split into the following three subsections.

5.2.1 Prophetic thin algebras recognise only bi-unambiguous lan-
guages

The “only if” part of Theorem 5 (i.e. that every language recognised by a finite prophetic
thin algebra is bi-unambiguous) is expressed by the following lemma.

Lemma 5.2.1. Let f : (TrAR ,ConAR)→ (H, V) be a homomorphism into a finite prophetic
thin algebra (H,V) and h0 ∈ H. The language Lh0 = f−1(h0) is unambiguous.

The construction used in the following proof is motivated by algebraic automata pro-
posed by Bilkowski in [Bil11].

Proof. The desired automaton C is built as a product of two automata A and D. The
automaton D is deterministic and computes the priorities of states of C. First we describe
the automaton A. Let AR = (AR2, AR0), Q0 = H × AR0, Q2 = H × AR2 × H, and
QA = Q0 t Q2. Let us define J : Q → H as J(h, b) = h and J(hL, a, hR) = a(hL, hR). J(q)
is called the value of a state q ∈ Q. Let IA = {q ∈ QA : J(q) = h0}. Now δA0 consists of
all pairs ((h, b), b) such that b() = h and δA2 consists of all pairs ((hL, a, hR), a, qL, qR) such
that J(qL) = hL and J(qR) = hR.

Let t ∈ TrAR be any ranked tree. It is easy to verify that there is a 1-1 correspondence
between runs ρ of A on t and markings τρ by types in H. A state (hL, a, hR) in a node
u ∈ dom(t) denotes that t(u) = a and the marking τρ equals hL and hR in uL, uR respectively.
What remains is to verify that the marking τρ is consistent. Let α = d0d1 . . . be an
infinite branch of t and let q0, q1, . . . be the sequence of states of ρ on α. Since every
state qi contains types of both subtrees under α�i, basing on q0, q1, . . . we can define the
decomposition s0, s1, . . . of τρ along α (see Definition 5.1.2). Now, the condition expressed

150

by (5.1.1) is ω-regular (see Fact 4.2.1 on page 125). Therefore, there exists a deterministic
parity automaton D on ω-words that reads a sequence of directions α = (di)i∈N and states
(qi)i∈N and verifies that the marking encoded by (qi)i∈N is consistent on the branch α.

Let C guess a run of A on a given tree and then run D independently on all the branches
of t. Let the priorities of C equal the priorities of D. By the construction, every parity-
accepting run ρ of C encodes a consistent marking τρ of t. And vice versa: every consistent
marking can be encoded into a parity-accepting run.

Since the algebra (H, V) is prophetic, there is at most one accepting run of C on every
tree. Therefore, C is unambiguous. t ∈ Lh0 if and only if there exists a consistent marking
of t with the value h0, what is equivalent to the existence of an accepting run of C on t.
So L(C) = Lh0 . �

5.2.2 Markings by the automaton algebra for an unambiguous
automaton

Before proving the “if” part of Theorem 5 we first study some properties of consistent
markings by the automaton algebra SA (see Section 4.2.1, page 127) for an unambiguous
automaton A.

Just to recall results of Section 4.2.1: for every non-deterministic tree automaton A one
can effectively construct a finite thin algebra SA = (HA, VA) that recognises L(A) (by the
homomorphism fA); additionally, the elements of HA are sets of states of A, see (4.2.9),
page 127.

The aim of this section is the following proposition. Intuitively it says that a consistent
marking may cheat but only in one direction — it may underestimate the real fA-type of
a given subtree.

Proposition 5.2.2. Let t ∈ TrAR be a ranked tree and (HA, VA) be the automaton algebra
for an unambiguous automaton A. Assume that τ is a consistent marking of t by elements
of HA. Then, for every node u of the tree t we have τ(u) ⊆ fA(t�u).

We begin with an analysis of the operations of the automaton algebras, see (4.2.11) on
page 128 for an explicit definition of these operations.

Lemma 5.2.3. Let A be a non-deterministic tree automaton over a ranked alphabet AR

and t ∈ TrAR be a ranked tree. Let SA = (HA, VA) be the automaton algebra for A and
assume that τ is a consistent marking of t by types in HA. Let α = d0d1 . . . be an infinite
branch of t.

151

A state q ∈ QA belongs to τ(ε) if and only if there exists a sequence (δi)i∈N of transitions
of A with δi = (qi, ai, qiL, qiR) and q0 = q that encodes a parity-accepting run of A on α:

• the sequence of states (qi)i∈N satisfies the parity condition,

• for every i, the state qidi
equals qi+1 — the transitions agree with each other,

• for every i and d ∈ {L, R} the state qid belongs to τ(d0 · · · di−1 · d) — the states used in
the transitions belong to the respective sets τ(u) for u ≺ α as well as for u that is off
α.

Proof. First take a state q ∈ τ(ε). Let (si)i∈N be the decomposition of τ along α as in Defi-
nition 5.1.2. Since (VA, ·) is a semigroup, we can apply Ramsey’s Theorem (Theorem 0.5 on
page 34) to obtain a linked pair (s, e) ∈ V 2

A and a sequence of numbers 0 < n0 < n1 < . . .

such that

s0 · . . . · sn0 = s and for every i ≥ 0 we have sni+1 · . . . · sni+1 = e. (5.2.1)

Since q ∈ τ(ε) = s · e∞ so by (4.2.11a) and (4.2.11d) (see page 128) it is witnessed by:

• an element (q, j, q′) ∈ s,

• an element (q′, j′, q′) ∈ e with j′ even (we use the fact that e is an idempotent).

Using (4.2.11a), (4.2.11e), and (5.2.1) we find a sequence of transitions as in the state-
ment.

Now assume that there exists a sequence (δi)i∈N of transitions as in the statement, we
want to show that q ∈ τ(ε). As before, let (si)i∈N be the decomposition of τ along α. We
will construct a Ramsey decomposition of α with respect to both sequences (si)i∈N and
(δi)i∈N at the same time. For i < j let

α(i, j) =
(
si · . . . · sj−1, (qi, min

i≤k<j
ΩA(qk))

)
.

Since the set of values of α is finite1, so we can find a Ramsey decomposition with respect to
α (see Theorem 0.1 on page 21): a sequence of numbers 0 < n0 < n1 < . . . such that (5.2.1)
is satisfied and for some fixed j′ and every i ≥ 0 we have:

qni = qni+1 , min
ni≤k<ni+1

ΩA(qk) = j′. (5.2.2)

1It is possible to define a structure of semigroup on rg(α) but Theorem 0.1 works for any function α.

152

Since the run encoded by (δi)i∈N is parity-accepting so j′ is even. Therefore, by (4.2.11a)
and (5.2.1) we know that:

• (q, j, qn0) ∈ s for some j,

• (qn0 , j′, qn0) ∈ e.

It implies that q ∈ s · e∞ = τ(ε) by (4.2.11d). �

Now, we will be interested in finding runs of an automaton A on a ranked tree t that
are contained in a marking τ of t by types in HA: for every u ∈ dom(t) we require that
ρ(u) ∈ τ(u).

Lemma 5.2.4. Let A be a non-deterministic tree automaton over a ranked alphabet AR,
t ∈ TrAR be a ranked tree, and τ be a consistent marking of t by types in HA. Let q ∈ QA

be a state of A. The following conditions are equivalent:

• q ∈ τ(ε)

• There exists a run (possibly not parity-accepting) ρ of A on t with the value q, that
is contained in τ . Additionally, for every infinite branch α of t there exists a run ρα
of A on t with the value q, that is contained in τ , such that ρα satisfies the parity
condition on α.

Proof. First assume that q ∈ τ(ε). We inductively show that there exists a run of A on
t satisfying ρ(u) ∈ τ(u). Assume that t = a(tL, tR) for a pair of ranked trees tL, tR. Let
h = τ(u), hL = τ(uL), and hR = τ(uR). By (4.2.11e) and (4.2.11b) there exists a transition
(q, a, qL, qR) ∈ δA2 such that qL ∈ hL and qR ∈ hR. Therefore, we can proceed inductively
in uL and uR in states qL and qR respectively. Note that by (4.2.11f) if u is a leaf of t and
q ∈ τ(u) then (q, t(u)) ∈ δA0 , so the constructed run agrees with the transitions over leafs.

Now take an infinite branch α of t. Using the above observation, it is enough to
construct a run ρ along α that satisfies ρ(u) ∈ τ(u) for every u that is off α — it will
extend to a run on the subtree t�u. The existence of a parity-accepting run along α follows
from Lemma 5.2.3.

Now assume that the second bullet of the statement is satisfied. We want to show that
q ∈ τ(ε). If the tree t is finite then q ∈ τ(ε) by induction on the height of t. Otherwise, there
exists an infinite branch α of t and similarly as above, any run ρα that is parity-accepting
on α is a witness that q ∈ h. �

153

Before we prove Proposition 5.2.2 let us observe the following local property of unam-
biguous automata (it is slightly related to Lemma 1.1.1 on page 53).

Lemma 5.2.5. Let A be an unambiguous automaton and let fA : (TrAR ,ConAR)→ SA be
the automaton morphism for A. Let h = a(hL, hR) for a triple of types h, hL, hR ∈ HA and
a letter a ∈ AR2. Then for every q ∈ h there exists exactly one transition of the form
(q, a, qL, qR) ∈ δA2 such that qL ∈ hL and qR ∈ hR.

Proof. At least one such a transition exists by (4.2.11e) and (4.2.11b). Assume that there
are two transitions as in the statement.

Let p be a context that has an accepting run ρ with the value q in the hole — we use
the fact that the automaton A is pruned (every state appears in some accepting run). Let
tL, tR be trees of fA-types respectively hL, hR. In that case the tree p · a(tL, tR) has two
different accepting runs: both these runs equal ρ on p, then use two distinct transitions
in the hole of p, and extend to parity-accepting runs on tL, tR by the fact that hL, hR are
fA-types of tL, tR respectively (see (4.2.9) on page 127). �

Finally we can conclude with the proof of Proposition 5.2.2, saying that for an unambi-
guous automaton and a consistent marking τ of t by types in HA we have τ(u) ⊆ fA(t�u),
for every u ∈ dom(t).

Proof of Proposition 5.2.2 Without loss of generality we can assume that u = ε. Let us
take any state q ∈ τ(ε), we want to show that q ∈ fA(t). Let us take the run ρ constructed
inductively in Lemma 5.2.5 for the state q (i.e. ρ is contained in τ and ρ(ε) = q). What
remains is to show that ρ is parity-accepting.

Take any infinite branch α of t. By Lemma 5.2.4 there exists a run ρα on t that is
contained in τ and satisfies the parity condition on α. But Lemma 5.2.5 shows inductively
that for every u ≺ α we have ρ(u) = ρα(u). So, since ρα satisfies the parity condition on
α, ρ also satisfies it on α. Therefore, q ∈ fA(t). �

5.2.3 Every bi-unambiguous language is recognised by a prophe-
tic thin algebra

Now we prove the “if” part of Theorem 5: if a language L ⊆ TrAR is bi-unambiguous then
there exists a finite prophetic thin algebra S and a homomorphism f : (TrAR ,ConAR)→ S

such that f recognises L.

154

The algebra S is the product of the automaton algebras (see Section 4.2.1, page 127) for
the two unambiguous automata recognising L and the complement Lc. Proposition 5.2.2
together with a combinatorial observation in Lemma 5.2.6 will imply that S is prophetic.

Let A, B be two unambiguous automata such that L(A) = L and L(B) = TrAR \ L.
Let fA, SA and fB, SB be the respective automaton morphisms. Consider the surjec-
tive homomorphism fU : (TrAR ,ConAR) → (HU , VU) obtained as the product of the above
algebras:

• fU(t) = (fA(t), fB(t)),

• fU(p) = (fA(p), fB(p)),

• HU = fU(TrAR) ⊆ HA ×HB, and

• VU = fU(ConAR) ⊆ VA × VB.

The following lemma states that there is a trade-off between types in HA and HB.

Lemma 5.2.6. The set HU is an anti-chain with respect to the coordinate-wise inclusion
order.

Proof. Assume contrary, by the symmetry between h and h′, that:

• there are h = (hA, hB), h′ = (h′A, h′B) ∈ HU ,

• hA ⊆ h′A and hB ⊆ h′B,

• there exists a state q′ ∈ h′A but q′ /∈ hA (the symmetry is used here).

Let t, t′ be ranked trees such that fU(t) = h and fU(t′) = h′ and let p be a ranked
context with an accepting run ρ′ of A that has the value q′ in the hole of p. Note that by
the definition p · t′ ∈ L(A) — the run ρ′ can be extended to t′.

Consider two cases:

1. p · t ∈ L(A). Let ρ be the accepting run of A that witnesses that. Let q be the
value of ρ in the hole of p. Then q ∈ hA ⊆ h′A. It means that we have two distinct
accepting runs of A on p · t′: the first one equals ρ on p and then extends to t′ by the
assumption that q ∈ h′A and the second one equals ρ′ on p and then extends to t′ by
the assumption that q′ ∈ h′A. A contradiction.

155

2. p · t ∈ L(B). Let ρ be the accepting run of B that witnesses that. Let q be the value
of ρ in the hole of p. Then q ∈ hB ⊆ h′B. So we can construct an accepting run of B
on p · t′ by using ρ on p and extending it to t′. So p · t′ ∈ L(B) — a contradiction,
since we assumed that the languages L(A) and L(B) are disjoint.

�

Lemma 5.2.7. Let fU : (TrAR ,ConAR) → (HU , VU) be the homomorphism constructed
above for a pair of unambiguous automata A, B. If τ is a consistent marking of a given
ranked tree t by types in HU then it is equal to the marking τfU

induced by fU on t.

Proof. Take any vertex u ∈ dom(t). By the definition τ(u) ∈ HU . By Proposition 5.2.2
we have τ(u) ⊆ fU(t�u) = τfU

(u) coordinate-wise. Using Lemma 5.2.6 we obtain that
τ(u) = τfU

(u). �

The following fact concludes the proof of Theorem 5.

Fact 5.2.8. The homomorphism fU defined above is surjective and recognises L(A), the
algebra (HU , VU) is prophetic.

Proof. fU is surjective by the definition; it recognises L because fA recognises L;
Lemma 5.2.7 implies that (HU , VU) is prophetic. �

5.3 Consequences of Conjecture 1

In this section we study properties of the class of prophetic thin algebras under the assump-
tion of Conjecture 1 from page 10 (stating that there is no mso-definable choice function
on thin trees). It turns out that this conjecture implies that finite prophetic thin algebras
form a pseudo-variety (see [BS81] for an introduction to universal algebra and [Ban83] for
pseudo-varieties of finite algebras) and have unique homomorphisms from (TrAR ,ConAR).
Roughly speaking it means that prophetic thin algebras and bi-unambiguous languages are
as well-behaved as ω-semigroups and ω-regular languages.

To emphasise that the presented results use Conjecture 1, we explicitly put it as an
assumption in brackets. The results of this section depend highly on consequences of
Conjecture 1 proved in Chapter 6.

Proposition 5.3.1 (Conjecture 1). Let (H, V) be a finite prophetic thin algebra over a
ranked alphabet AR. There exists a unique homomorphism f : (TrAR ,ConAR)→ (H, V).

156

Proof. The existence of at most one such homomorphism was observed in Section 5.1. By
Theorem 6.2 proved in Chapter 6 (see page 171) and the fact that (H, V) is prophetic, every
tree t ∈ TrAR has exactly one consistent marking τt by types in H. Let us define f(t) =
τt(ε). The condition of consistency of a marking implies that f is a homomorphism. �

Proposition 5.3.2 (Conjecture 1). Let g : S → S ′ be a surjective homomorphism between
two finite thin algebras. If S is prophetic then S ′ is also prophetic.

Proof. First fix the homomorphism f : (TrAR ,ConAR) → S = (H,V) given by Proposi-
tion 5.3.1. Note that g ◦ f : (TrAR ,ConAR) → (H,V) is a homomorphism. Assume that
S ′ is not prophetic, so there exists a ranked tree t with two consistent markings σ, σ′ by
types of S ′. Without loss of generality we can assume that σ is the marking induced by
g ◦ f and σ′(ε) 6= σ(ε). Let τ be the marking by types in S induced by f on t. Observe
that pointwise g(τ) = σ. By Proposition 6.3.2 proved in Chapter 6 (see page 172) there
exists a consistent marking τ ′ of t such that pointwise g(τ ′) = σ′. Therefore, τ and τ ′ are
two distinct consistent markings of t by types in H — a contradiction. �

Theorem 5.1 (Conjecture 1). The class of finite prophetic thin algebras over a fixed ranked
alphabet AR is a pseudo-variety: it is closed under homomorphic images, subalgebras, and
finite direct products.

Proof. The closure under subalgebras and finite direct products follows directly from the
definition. Proposition 5.3.2 implies that (under the assumption of Conjecture 1), a homo-
morphic image of a finite prophetic thin algebra is also prophetic. �

5.4 Decidable characterisation of the bi-unambiguous
languages

In this section we prove that, assuming Conjecture 1, the class of bi-unambiguous languages
of complete binary trees is decidable among all regular tree languages, as expressed by the
following decision problem.

Problem 5.4.1 (Characterisation of bi-unambiguous languages).

• Input A non-deterministic parity tree automaton A.

• Output “yes” if the language L(A) is bi-unambiguous.

157

The proposed effective procedure P deciding this problem always terminates and is
sound, only the completeness of the procedure depends on Conjecture 1. Additionally,
Bilkowski proved (see [BS13, Item 3 of Theorem 5] that the procedure P is complete if the
given language is deterministic.

Theorem 5.2. Assuming Conjecture 1, the decision problem if a given regular tree language
is bi-unambiguous (i.e. Problem 5.4.1) is decidable.

The proof of this theorem relies on a construction of a pseudo-syntactic thin algebra of
a given regular language of complete trees L. The construction of this algebra is effective
and Conjecture 1 implies that if there is any prophetic thin algebra recognising L then the
pseudo-syntactic one is also prophetic. Since (TrAR ,ThConAR) is not free in the class of
thin algebras over the ranked alphabet AR, some special care has to be taken when defining
the pseudo-syntactic thin algebra.

5.4.1 Pseudo-syntactic morphisms

Intuitively, the pseudo-syntactic algebra can be seen as a minimal algebra recognising
a given language. Chapter 3 of [Idz12] presents a generic way of constructing syntactic
algebras for languages. However, the constructions presented there work if a given language
is a subset of the free algebra. Example 5.1.5 implies that (TrAR ,ConAR) is not free in the
class of thin algebras. Therefore, the notion of syntactic morphism for a given language
has to be adopted to the case of non-thin trees.

We start by recalling the classical notions of free algebras and syntactic morphisms in
the setting of thin algebras. Since thin algebras already contain alphabets, we use the term
free algebra having in mind the empty set of generators (i.e. a thin algebra over a ranked
alphabet AR is free if it is initial in the category of thin algebras over AR, see the following
definition).

In this section we work with ranked alphabets, a language of complete trees L ⊆ TrA
can be seen as a language over the ranked alphabet AR = (A, ∅).

Definition 5.4.2. A thin algebra S over a ranked alphabet AR is free if for every thin
algebra S ′ over AR there exists a unique homomorphism f : S → S ′.

Let F = (HF , VF) be a free thin algebra over a ranked alphabet AR and L ⊆ HF . A
homomorphism fL : F → SL = (HL, VL) is the syntactic morphism of L if:

1. fL is surjective,

158

2. fL recognises L (i.e. L = f−1
L (X) for some X ⊆ HL),

3. for every surjective homomorphism f : F → S ′ that recognises L there exists a unique
homomorphism g : S ′ → SL such that

g ◦ f = fL.

Observe that up to an isomorphism the free thin algebra over a given ranked alphabet is
unique. The following fact summarizes the relations between thin trees and thin algebras,
see [Idz12, Lemma 22, Lemma 23, Theorem 54].

Fact 5.4.3. The thin algebra (ThAR ,ThConAR) is a free thin algebra over AR. For every
language L ⊆ ThAR there exists a syntactic morphism of L. If L is regular then the
syntactic algebra of L (denoted SL) is finite and can be effectively computed basing on any
representation of L.

Sketch of a proof. Let F = (ThAR ,ThConAR). The uniqueness of a homomorphism
f : F → S ′ can be proved by induction on the rank of a thin tree. Therefore, F is a
free thin algebra over AR.

To construct a syntactic morphism it is enough to divide the free thin algebra
(ThAR ,ThConAR) by the syntactic congruence ∼L (see [Idz12, Lemma 19]). Since there ex-
ists a finite thin algebra recognising a given regular tree language L (namely the automaton
algebra from Section 4.2.1, page 127), so SL is finite.

To effectively compute SL one can use the Moore’s algorithm, see [Idz12, Lemma 23] �

The following definition formalizes the notion of a pseudo-syntactic thin algebra. The
conditions are much weaker than in the case of syntactic algebras, however they are strong
enough to serve for the purpose of our effective characterisation.

Definition 5.4.4. Let L ⊆ TrAR be a regular tree language. We say that a finite thin
algebra SL is a pseudo-syntactic algebra of L if SL recognises L and for every finite thin
algebra S ′ recognising L there exists a subalgebra S ′′ ⊆ S ′ and a surjective homomorphism
f : S ′′ → SL.

If we required the homomorphisms under consideration to satisfy additional constraints
of compositionality, we could obtain a more rigid notion of syntactic algebra for a language
L ⊆ TrAR . However, it is not needed in this chapter, so we use the weaker (and much
simpler) notion of pseudo-syntactic algebra.

159

The aim of this section is to prove the following proposition. By taking AR0 = ∅
we reduce the statement to the case of languages of complete binary trees L ⊆ TrA for
A = AR2.

Proposition 5.4.5. For every regular tree language L ⊆ TrAR one can effectively construct
a pseudo-syntactic thin algebra of L.

Let A be a non-deterministic tree automaton recognising a regular tree language L. Let
SA = (HA, VA) be the automaton algebra and fA be the automaton morphism of A, see
Section 4.2.1, page 127. By the definition fA is surjective. Consider the ranked alphabet
AR tHA

def= (AR2, AR0 tHA). As we have already seen, SA can be seen as a thin algebra
over AR tHA.

Let F =
(
ThARtHA ,ThConARtHA

)
be the free thin algebra over AR tHA. Our aim is

to define a homomorphism
ι : F → (TrAR ,ConAR). (5.4.1)

For every type h ∈ HA let us fix a tree th ∈ TrAR such that fA(th) = h. Now let ι(t) be
the tree obtained by putting th in every leaf u ∈ dom(t) such that t(u) = h ∈ HA. ι(p)
is defined in the same way for thin contexts p. Since the substitution is done only in the
leafs, the function ι defined this way is a homomorphism2.

Now let f = fA◦ι and L′ = ι−1(L) ⊆ ThARtHA . Observe that f : F → SA is a surjective
homomorphism that recognises L′.

Since F is free, we can apply Fact 5.4.3 to the homomorphism f to effectively compute
the syntactic thin algebra SL of L′.

We will show that SL is a pseudo-syntactic algebra of L. Consider any thin algebra
S ′ that recognises L using a homomorphism f2. Let f ′ = f2 ◦ ι. Let S ′′ ⊆ S ′ be the
image of F under f ′ — S ′′ is a subalgebra of S ′. Clearly, f ′ : F → S ′′ is a surjective
homomorphism recognising L′. By the universal property of SL we know that there exists
a unique surjective homomorphism g : S ′′ → SL.

This concludes the proof of Proposition 5.4.5.

5.4.2 Decidable characterisation

Now we can prove Theorem 5.2 stating that assuming Conjecture 1 it is decidable if a
given regular tree language is bi-unambiguous. The crucial technical part of the proof is
based on Theorem 6.2 from Chapter 6 on page 171.

2We treat F as a thin algebra over AR when we say that ι is a homomorphism.

160

Consider the following decision procedure P :

1. Input a non-deterministic automaton A recognising a regular tree language L.

2. Compute a pseudo-syntactic thin algebra SL of L.

3. Answer “yes” if SL is prophetic, otherwise answer “no”.

Observe that by Proposition 5.4.5 and Fact 5.1.8 all the operations performed by P

are effective. Observe also that by Proposition 5.4.5 and Theorem 5, if the answer of P is
“yes” then L is bi-unambiguous (the algebra SL is a witness). What remains is to prove
the following lemma.

Lemma 5.4.6. Assuming Conjecture 1, if L is bi-unambiguous then every pseudo-syntactic
thin algebra of L is prophetic.

Proof. Since L is bi-unambiguous, by Theorem 5 there exists a surjective homomorphism
f : (TrAR ,ConAR) → (H,V) that recognises L and such that (H,V) is a finite prophetic
thin algebra. Since SL is a pseudo-syntactic thin algebra of L so there exists a subalgebra
(H ′, V ′) of (H,V) and a surjective homomorphism g : (H ′, V ′)→ SL. By the definition of
prophetic thin algebras we know that (H ′, V ′) is prophetic. By Proposition 5.3.2 we obtain
that SL is also prophetic. �

This concludes the proof of Proposition 5.2.

5.5 Conclusions

In this chapter we study which regular tree languages can be recognised by thin algebras.
It turns out that bi-unambiguous languages of complete binary trees and regular languages
of thin trees are strongly related. The main result of this chapter provides an algebraic
framework for the class of bi-unambiguous languages using thin algebras. As a side effect
of these considerations a new conjecture about mso-definability of choice functions was
posed (Conjecture 1).

If Conjecture 1 holds then the bi-unambiguous languages form a well-behaved class of
regular tree languages: not only it would be decidable if a given language is bi-unambiguous
but also prophetic thin algebras would provide a good algebraic framework for studying
these languages. Therefore, proving Conjecture 1 would open the following line of research:

161

• prove Conjecture 2 for bi-unambiguous languages: if L is bi-unambiguous and Borel
then L is wmso-definable,

• provide an effective (or even equational) characterisation of bi-unambiguous lan-
guages that are wmso-definable,

• provide equational characterisations of bi-unambiguous languages in certain classes
of the Borel hierarchy (similarly to the characterisation from [BP12] of regular tree
languages that belong to BC(Σ0

1)),

• study the Wadge hierarchy of bi-unambiguous languages,

• and more. . .

The idea to study relations between bi-unambiguous languages and thin trees was given
by Bilkowski [Bil11]. In particular, he posed the following conjecture. Recall that for a
pair of partial trees t, t′ by t ⊆ t′ we mean that dom(t) ⊆ dom(t′) and for every vertex
u ∈ dom(t) we have t(u) = t′(u).

Conjecture 7 (Bilkowski [Bil11]). A regular tree language L ⊆ TrA is bi-unambiguous if
and only if every tree t ∈ TrA has a “thin core”: there exists a partial tree t̄ ∈ PTrA such
that t̄ has countably many branches, t̄ ⊆ t and for every complete tree t′ ∈ TrA such that
t̄ ⊆ t′ we have

t ∈ L ⇐⇒ t′ ∈ L.

In other words, every tree has a “thin core” that guarantees whether t belongs to L or not.

This conjecture remains open, even its relations with Conjecture 1 are still unclear.
This chapter is based on [BS13].

162

Chapter 6

Uniformization on thin trees

As the axiom of choice implies, for every relation R ⊆ X×Y there exists a graph of a total
function f : πX(R)→ Y that is contained in R (such a graph is called a uniformization of
R). A natural question asks in which cases such a function f is definable. A particular
instance of this problem is, when R is an mso-definable set of pairs of trees and we ask
about mso-definable f . This question is known as Rabin’s uniformization question. The
negative answer to this question was given by Gurevich and Shelah [GS83] (see [CL07] for
a simplified proof). They proved that there is no mso formula ψ(x,X) that chooses from
every non-empty subset X of the complete binary tree a unique element x of X. This
result is known as undefinability of a choice function on the complete binary tree. On the
other hand, the formula saying that x is the ≤-minimal element of X is a choice formula on
ω-words. In [Sie75,LS98,Rab07] it is proved that any mso-definable relation on ω-words
admits an mso-definable uniformization.

In this chapter we study the following conjecture about a uniformizability on thin trees,
the statement here is a bit more formal than the one in Introduction.

Conjecture 1. There is no mso-definable choice function on thin trees — there is no
formula ψ(x,X) such that for every thin tree t and every non-empty X ⊆ dom(t), the
formula ψ(x,X) is satisfied for a unique x ∈ X.

This conjecture is a strengthening of the result by Gurevich and Shelah [GS83] as the
class of admissible sets X is smaller (they have to be contained in thin trees). Unfortu-
nately, the author was unable to prove that Conjecture 1 holds. This chapter presents a
study of Conjecture 1 and some related uniformization problems.

As observed by Niwiński and Walukiewicz [NW96] (cf. [CLNW10]), the non-existence
of an mso-definable choice function implies that the language Lb = {t ∈ Tr{a,b} :
∃u∈dom(t) t(u) = b} is ambiguous (there is no unambiguous automaton recognising Lb).
To the author’s best knowledge, all the known examples of ambiguous tree languages are

163

derived from the language Lb. Also, the choice formula and its variants remain the only
known mso-definable relations on trees that do not have any mso-definable uniformization.
In this chapter a new technique of proving non-uniformizability is introduced that allows
to prove that:

• there is no mso-definable uniformization of the relation saying that σ is a skeleton of
a tree t: there is no mso formula that defines, for every thin tree t, a unique skeleton
σ of t (we treat σ as a set of vertices of t),

• the language of all thin trees is ambiguous among all trees.

Liefsches and Shelah studied uniformization problems on trees in [LS98]. In particular,
it is proved there that on thin trees every mso-definable relation has an mso-definable uni-
formization if we allow additional monadic parameters (that are adjusted appropriately to
a given tree). The crucial difference here is that we do not allow any additional parameters.

The following theorem summarizes results of this chapter.

Theorem 6. Conjecture 1 is equivalent to the fact that every finite thin algebra admits
some consistent marking on every infinite tree.

The relation ϕ(σ, t) stating that t is a thin tree and σ is a skeleton of t does not admit
any mso-definable uniformization of σ.

The language of all thin trees is ambiguous (i.e. it is not recognised by any unambiguous
automaton).

The chapter is organised as follows. Section 6.2 presents a technical construction of a
transducer that is useful in the remaining sections. In Section 6.3 we prove some statements
that are equivalent to Conjecture 1, in particular we show that Conjecture 1 is strongly
related to prophetic thin algebras studied in Chapter 5. Then, in Section 6.4 we prove the
above non-uniformizability results. In Section 6.5 we conclude.

6.1 Basic notions

We will work with trees over ranked alphabets, as introduced in Section 4.1.1, page 116.
The main interest of this chapter will be on uniformizations, as expressed by the following
definition.

Definition 6.1.1. Let ϕ(X, ~P) be a formula of mso on trees over a ranked alphabet with
monadic variables X and ~P = P1, . . . , Pn. We say that ψ(X, ~P) is a uniformization of

164

ϕ(X, ~P) if the following conditions are satisfied for every ranked tree t, values of ~P , and
sets X1, X2 ⊆ dom(t):

(
∃X ψ(X, ~P)

)
⇐⇒

(
∃X ϕ(X, ~P)

)
ψ(X1, ~P) =⇒ ϕ(X1, ~P)(

ψ(X1, ~P) ∧ ψ(X2, ~P)
)

=⇒ X1 = X2

That is, whenever it is possible to pick some X satisfying ϕ(X, ~P) then ψ(X, ~P) chooses
exactly one such X. To simplify the notation, we always assume that the first variable of
a formula is the one that should be uniformized, we also allow ~P to be empty and some of
the variables X, ~P to be first-order variables.

The following two formulae will be of our main interest (both conditions are mso-
definable by Remark 4.1.12 from page 124):

CHOICE(x,X) def= “the given tree t is thin and x ∈ X”,

LEAF− CHOICE(x) def= “the given tree t is thin and x is a leaf of t”. (6.1.1)

By the definition, Conjecture 1 is equivalent to the fact that the formula CHOICE(x,X)
does not have mso-definable uniformization. We will see in Theorem 6.2 that it is also
equivalent to LEAF− CHOICE(x) not having such uniformization.

Recall that for two ranked alphabets AR and M , we define the product AR ×M as
(AR2 × M2, AR0 × M0). Through this chapter we will sometimes treat a language L ⊆
TrAR×M as a relation L ⊆ TrAR×TrM . We say that L is uniformized if for every tA ∈ TrAR

there is at most one tM ∈ TrM with dom(tA) = dom(tM) such that (tA, tM) (formally
tA ⊗ tM) belongs to L.

Example 6.1.2. If A is an unambiguous tree automaton over a ranked alphabet AR then
the following set of trees over the ranked alphabet AR× (QA, QA) is a uniformized relation:

{
t⊗ ρ : ρ is an accepting run of A on t

}
.

6.2 Transducer for a uniformized relation

In this section we introduce a technical construction that will be used in the subsequent
sections of this chapter.

165

Assume that we are given a regular tree language of ranked trees LM ⊆ TrAR×M that
is uniformized as a relation in TrAR × TrM . It turns out that it is possible to construct a
deterministic transducer that maps a given tree tA ∈ TrAR into the unique tree tA ⊗ tM ∈
LM . The idea is to equip the transducer with an additional knowledge about the types of the
subtrees of tA. It will be achieved by presenting a marking of t induced by a homomorphism
into a fixed thin algebra (see Section 4.2, page 124). The way this additional information
for the transducer is presented is rather arbitrary, we use here thin algebras because of the
applications to thin trees.

The crucial property is that the constructed transducer will be deterministic so it will
allow us to modify a given input tree tA into t′A and reason about the resulting tree t′M
(see Fact 6.2.1).

Let AR = (AR2, AR0) and M = (M2,M0) be a pair of ranked alphabets. A transducer
from AR to M is a deterministic device T =

〈
QT , qI

T , δT
〉
such that:

1. QT is a finite set of states,

2. qI
T ∈ QT is an initial state,

3. δT is a pair of functions δT2 , δT0 ,

4. the function δT2 of the type

δT2 : QT × (AR2 ∪ AR0)× AR2 × (AR2 ∪ AR0) → QT ×M2 ×QT

determines transitions in internal nodes,

5. δT0 : QT × AR0 →M0 determines transitions in leafs.

Note that a transition in an internal node w takes three letters as the input, it will be
the letters in: wL, w, and wR. Note also that the transducer does not have any acceptance
condition, its run on a tree is always successful.

For every tree t ∈ TrAR a transducer T defines inductively a labelling T (t) of t by
letters in M defined inductively as follows. We start in w = ε in the state qI

T . Assume
that the transducer reached a vertex w ∈ dom(t) in a state q. If w is a leaf then we put
T (t)(w) = δT0 (q, t(w)). Otherwise, let aL, a, aR be the letters of t in wL, w, wR respectively.
Then let δT2 (q, aL, a, aR) = (qL,m, qR), put T (t)(w) = m, and continue in wL, wR in the
states qL, qR respectively.

166

Fact 6.2.1. The value T (t)(w) in a vertex w ∈ dom(t) depends on the letters of t in
vertices of the form u, uL, uR for u ≺ w. That is, if t, t′ agree on all the vertices u, uL, uR

for u ≺ w then T (t)(w) = T (t′)(w).

Theorem 6.1. Let AR and M be two ranked alphabets. Assume that LM ⊆ TrAR×M is a
regular tree language, LA ⊆ TrAR is the projection of LM onto the ranked alphabet AR, and

∀tA∈LA
∃!tM∈TrM

tA ⊗ tM ∈ LM (i.e. the relation LM is uniformized).

Then, there exist:

• a homomorphism f : (TrAR ,ConAR)→ S into a finite thin algebra S (see Section 4.2),

• a deterministic finite state transducer T that reads the marking τf (tA) induced by f
on a given tree tA and outputs the labelling tM such that tA ⊗ tM ∈ LM , whenever
such tM exists:

∀tA∈LA

[
tA ⊗ T

(
tA ⊗ τf (tA)

)]
∈ LM .

Before proving the theorem, consider the following continuation of Example 6.1.2.

Example 6.2.2. Let A be an unambiguous tree automaton over a ranked alphabet AR. Let
LA = L(A) and LM contain trees t⊗ρ where ρ is an accepting run of A on t ∈ TrAR. Then,
the above theorem states that there exists a transducer that reads the marking induced by
some homomorphism f on a given tree t ∈ L(A) and produces the unique accepting run of
A on t (whenever exists).

A simple proof of Theorem 6.1 can be given using the composition method (see [She75]).
This proof was suggested by Bojańczyk as a simplification of an earlier proof given by the
author.

Since we are focused on automata, we only sketch the proof based on the composi-
tion method here and give a longer self-contained proof below. Assume that there is an
mso formula defining a language LM that has quantifier depth n. Let |M | = k and let
f : (TrAR ,ConAR) → (H,V) be a homomorphism that recognises all the (n+k+1)-types
of mso over AR. In a vertex w of a given ranked tree t the transducer T can store in
its memory the (n+m+1)-type of the currently read context t[w ← 2]. Then, given
the (n+k+1)-types of both subtrees under w, it can compute the (n+k)-type of the tree
t[w ← x] with the current vertex w denoted by an additional variable x. The (n+k)-type

167

of t[w ← x] is enough to ask about the truth value of the following formulae (for every
a ∈M2):

there exists a labelling tM ∈ LM of t[w ← x] such that tM(x) = a.

If there is any such labelling tM then the above formula is true for exactly one letter a ∈M2.
The transducer T outputs this letter in w and proceeds in wL, wR updating the type of the
context respectively.

The rest of this section is devoted to an automata-based proof of Theorem 6.1.
Let A be some non-deterministic tree automaton recognising the language LM . Note

that A itself may not be unambiguous. Consider an automaton denoted Â that is a
projection of the automaton A from the ranked alphabet AR × M to AR: the working
alphabet of Â is AR, transitions are transitions of A with the component M of each letter
removed, the rest is unchanged. Note that L(Â) = LA.

We will use the notion of ranked contexts from Section 4.1.1 (see page 116) with one
extension: we allow a context to have the hole 2 in the root. The notion of a run of an
automaton on a context is unchanged (e.g. if ρ is a run on t[ε← 2] then ρ consists of one
state).

By the definition, every transition of Â comes from a transition of A. In particular,
every run ρ of Â on a tree tA corresponds to (at least one) labelling of dom(tA) by letters
in M . Similarly, a run of Â on a context pA induces an M -labelled context pM with the
same domain and the same hole as pA. We call these labellings the M-labellings consistent
with ρ. A letter of such a labelling is called the M-letter of ρ.

For technical reasons we assume that there is some fixed linear order on the sets M2,
M0 that enables to pick minimal elements from non-empty sets of letters.

Let fÂ be the automaton morphism into the automaton algebra (HÂ, VÂ) for Â (see
Section 4.2.1, page 127). Let tA ∈ TrAR be a tree and let τ(tA) be the marking induced
by the automaton morphism fÂ on tA. We will encode τ(tA) as a tree over the ranked
alphabet G = (HA, HA).

The construction goes as follows. The input ranked alphabet is AR × G. The set of
states QT of T is P(QA). The initial state qI

T is the singleton {qAI }.
We start by stating an invariant that will be satisfied by the constructed transducer T :

if T is in a vertex w of a tree tA and it have assigned letters mu ∈ M2 to all the vertices

168

u ≺ w then the state Sw of T in w satisfies:

Sw =
{
q ∈ QA : ∃ρ ρ is an accepting run of Â on tA[w ← 2] (6.2.1)

and the M -letters of ρ in the vertices u ≺ w are mu

}
.

We will show that the invariant can be preserved. Let us fix a moment during the
computation of T : we are in a vertex w ∈ dom(tA).

If w is a leaf of tA then we use the following transition over leafs: given a state Sw and
a letter b ∈ AR0 output a minimal element m0 of the set

Pw
def= {m0 : ∃(q,(b,m0))∈δA0 } ⊆M0,

or some fixed m0 if the set is empty.
Now assume that w is an internal node of tA. Assume that we have already assigned

letters mu ∈ M2 to all the nodes u ≺ w. The marking τ(tA) gives us sets QwL, QwR ⊆ QA

in nodes wL, wR respectively (i.e. Qwd = fÂ(t�wd)). The current state of T is a set of states
Sw ⊆ Q.

Consider the following set of letters:

Pw =
{
m2 ∈M2 : ∃(q,(tA(w),m2),qL,qR)∈δA2 q ∈ Sw ∧ qL ∈ QwL ∧ qR ∈ QwR

}
⊆M2.

If Pw = ∅ then we output some fixed letter m2 ∈ M2. In that case, the state of T will
always stay ∅ and the invariant will be satisfied — there will be no accepting run of A on
the currently read context. We will show that during the run of T on any tree tA ∈ LA
the sets Pw are non-empty and have at most one element each.

If Pw 6= ∅ let T output the minimal element mw ∈ Pw and proceed in the vertices wd
for d = L, R in the state

Swd
def=
{
qd : ∃(q,(tA(w),mw),qL,qR)∈δA2 q ∈ Sw ∧ qd̄ ∈ Qwd̄

}
.

Clearly the invariant (6.2.1) is satisfied. This finishes the definition of T — the transi-
tions described above can be easily encoded in the functions δT2 , δT0 of appropriate types.

Lemma 6.2.3. During the run of T on any tree tA ∈ TrAR in every vertex w ∈ dom(t)
the set Pw contains at most one letter.

169

Proof. First assume that w is a leaf of tA. For a contradiction assume that there are two
distinct letters m0,m

′
0 ∈ Pw and let (q,m0), (q′,m′0) be the respective transitions. Using

the invariant (6.2.1) we can find two accepting runs ρ, ρ′ of A on tA[w ← 2] with values q
and q′ in the hole w respectively. Let pM , p′M be some M -labellings consistent with ρ and
ρ′. Let tM = pM(m0()) be the tree obtained by putting the single-node tree m0() into the
hole of pM (similarly t′M = p′M(m′0())). Clearly tM 6= t′M and the runs ρ, ρ′ can be extended
to accepting runs on tA ⊗ tM and tA ⊗ t′M using the above transitions. This gives us two
distinct labellings of the tree tA, both in the language LM .

Now assume that w is an internal node of tA, this case is similar to the above one but
more technical. Let tA(w) = a and assume contrary that there are two distinct letters
m2,m

′
2 ∈ Pw. Consider the respective transitions (q, (a,m2), qL, qR) and (q, (a,m′2), q′L, q′R).

Since q, q′ ∈ Sw so by (6.2.1) there are two accepting runs ρ, ρ′ of Â on tA[w ← 2] that
assign letters mu to u ≺ w and have values q, q′ respectively in the hole w. Let pM , p′M be
some M -labellings of consistent with the runs ρ, ρ′ respectively.

For d ∈ {L, R} let td, t′d ∈ TrM be trees and ρd, ρ
′
d be parity-accepting runs of A that

witness that qd, q′d ∈ Qwd, i.e. ρd is a parity-accepting run of A on tA�wd⊗ td with value qd,
similarly for t′d, ρ′d, and q′d.

Consider now two trees over the ranked alphabet AR ×M ×QA:

t =
(
tA[w ← 2]⊗ pM ⊗ ρ

)
· (a,m2, q)

(
tA�wL ⊗ tL ⊗ ρL, tA�wR ⊗ tR ⊗ ρR

)
,

t′ =
(
tA[w ← 2]⊗ p′M ⊗ ρ′

)
· (a,m′2, q′)

(
tA�wL ⊗ t′L ⊗ ρ′L, tA�wR ⊗ t′R ⊗ ρ′R

)
.

Note that:

• both t, t′ equal tA on the AR’th coordinate,

• they differ in the vertex w on the M ’th coordinate,

• the Q’th coordinate of t, t′ denotes an accepting run of A on the AR×M coordinates.

Therefore, we have a contradiction: tA has two different labellings tM , t′M such that
(tA, tM) ∈ LM and (tA, t′M) ∈ LM . �

Now take any tree tA ∈ LA and consider the result tR = T (tA ⊗ τ(tA)). Let tM be
the unique labelling of tA such that (tA, tM) ∈ LM . Let ρ be an accepting run of A on
tA ⊗ tM . We show inductively that tR = tM what finishes the proof. Let w be a node of
tA and assume that for all u ≺ w we have tR(u) = tM(u). Let (q, (a,m2), qL, qR) be the

170

transition used by ρ in w. By the definition of Pw this transition is a witness that m2 ∈ Pw.
Therefore, Pw is non-empty and tR(w) = m2 = tM(w) by Lemma 6.2.3.

This concludes the construction of the transducer and the proof of Theorem 6.1.

6.3 Choice hypothesis

In this section we study equivalent formulations of Conjecture 1, as expressed by the
following theorem. The formulations bind Conjecture 1 with consistent markings as defined
in Definition 5.1.2 on page 147 in Section 5.1. The implications of this theorem regarding
prophetic thin algebras are discussed in Section 5.3 (see page 156).

Theorem 6.2. The following conditions are equivalent:

1. There is no uniformization of CHOICE(x,X) (i.e. Conjecture 1 holds).

2. There is no uniformization of LEAF− CHOICE(x) (see (6.1.1)).

3. For every finite thin algebra (H, V) over a ranked alphabet AR = (AR2, AR0) and
every ranked tree t ∈ TrAR there exists a consistent marking of t by types in H.

4. For every finite thin algebra (H, V) over the ranked alphabet Ab = ({n}, {b}) there
exists a consistent marking of the unique complete binary tree tn ∈ TrAb

by types in
H.

The proof of the above theorem is split over the following sections. Clearly (3) im-
plies (4).

6.3.1 Equivalence (1)⇔ (2)

We start by observing that LEAF− CHOICE(x) and CHOICE(x,X) is essentially the
same uniformization problem. However, LEAF− CHOICE(x) turns out to be much easier
to work with. First observe that if ψ(x,X) is a uniformization of CHOICE(x,X) then

ψ̂(x) def= ψ
(
x, {y : y is a leaf}

)
uniformizes LEAF− CHOICE(x). What remains is to show the following lemma.

Lemma 6.3.1. If LEAF− CHOICE(x) has a uniformization then CHOICE(x,X) also
has one.

171

Proof. We show how to mso-interpret any set X contained in a thin tree as a set of leafs
of another thin tree.

Take non-empty a set X ⊆ dom(t) for a thin tree t. Without loss of generality we can
assume that X is prefix-free (i.e. there are no u,w ∈ X with u ≺ w), otherwise we can
start by restricting to ≺-minimal elements of X. Now consider the upward closure X̄ of
X defined as

X̄ = {u ∈ dom(t) : ∃w∈X u � w}.

We say that a vertex u ∈ X̄ is X-branching if uL, uR ∈ X̄. Similarly, a vertex u ∈ X̄

is a X-leaf if uL, uR /∈ X̄ (equivalently if u ∈ X). Let us consider the set Y ⊆ X̄ that
contains all the X-branching vertices of X̄ and all the X-leaf vertices of X̄. Note that
Y is mso-definable from X. Additionally, Y with the prefix and lexicographic orders
(treated as a relational structure) is isomorphic to the set of vertices of some thin tree
t′. The leafs of t′ correspond to the elements of X. Therefore, we can use an uniformiza-
tion of LEAF− CHOICE(x) to choose a unique leaf of t′ by interpreting this formula on
(Y,�,≤lex). Therefore, a uniformization of LEAF− CHOICE(x) gives a uniformization of
CHOICE(x,X). �

6.3.2 Implication (2)⇒ (3)

Now we prove that non-existence of a uniformization of LEAF− CHOICE(x) implies that
every finite thin algebra labels every ranked tree. It is achieved by proving a stronger state-
ment, namely Proposition 6.3.2. It is designed in such a way to imply other consequences
of Conjecture 1 from Section 5.1, page 146.

Proposition 6.3.2. Assume that Conjecture 1 holds and that f : (H, V) → (H ′, V ′) is a
surjective homomorphism between two finite thin algebras over a ranked alphabet AR. Let
t ∈ TrAR be a ranked tree and τ ′ be a consistent marking of t by H ′. Then there exists a
consistent marking τ of t by H such that

∀u∈dom(t) f(τ(u)) = τ ′(u). (6.3.1)

The rest of this section is devoted to a proof of this proposition. The implication
(2)⇒ (3) follows from it by taking as (H ′, V ′) the singleton thin algebra ({h0}, {v0}) and
the unique homomorphism f : (H,V) → (H ′, V ′) — then the constant marking by h0 is

172

always a consistent marking and its preimage given by Proposition 6.3.2 is a consistent
marking of a given tree, therefore (3) of Theorem 6.2 is satisfied.

We start the proof with the following lemma that can be seen as a reformulation of
Fact 4.2.4 from page 126 in the language of consistent markings.

Lemma 6.3.3. If t ∈ TrAR is a thin tree and (H, V) is a thin algebra over a ranked
alphabet AR then there exists exactly one consistent marking of t. In particular, all the
homomorphisms f : (TrAR ,ConAR)→ (H, V) must agree on thin trees.

Proof. The proof is inductive on the rank of a given thin tree t, see Section 4.1.4, page 119.
Assume that for all thin trees of rank smaller than η the thesis holds. Assume that
rank(t) = η and let τS be the spine of t (i.e. τS is the set of nodes in t of rank precisely
η). For every node u that is off τS there is a unique consistent marking of t�u by induction
hypothesis. Since τS is a thin tree of rank 1, it consists of finitely many infinite branches.
The values of the marking on these branches are uniquely determined by (5.1.1) from
page 147. Finally, the conditions of the marking determine the values of the marking in
the finitely many branching nodes of τS. �

Now we move to the proof of Proposition 6.3.2. Assume the contrary. Since all the
properties are mso-definable, by Rabin’s theorem (Theorem 0.12 on page 42) we can find
a regular ranked tree with a marking t0⊗ τ ′ ∈ TrAR×(H′,H′) such that there is no consistent
marking τ of t0 by H that satisfies (6.3.1). Let G be a finite graph such that:

• the edges of G are labelled by {L, R},

• there are functions t̂0 : G → AR2 ∪ AR0 and τ̂ ′ : G → H ′ labelling nodes of G by AR

and H ′,

• the unfolding of G from a vertex g0 ∈ G gives (via t̂0, τ̂ ′) t0 ⊗ τ ′.

We denote by û ∈ G the vertex of G that corresponds to a vertex u ∈ dom(t0). If g is a
non-leaf vertex of G and d ∈ {L, R} then by g · d we denote the unique d-successor of g.

Consider the following perfect information finite arena game G with players ∃ and ∀.
The arena of G is {

(h, g) ∈ H ×G : f(h) = τ̂ ′(g)
}
∪ {ε}.

The initial position is ε. ∃ can move from ε to one of the positions (h0, g0) ∈ G for
h0 ∈ H. After such a move, a sequence of rounds is played. Assume that an j’th round

173

starts in a position (hj, gj). If gj is a leaf of t0 then the game ends. Otherwise let a = t̂0(gj)
and:

• first ∃ gives a pair of types hj,L, hj,R ∈ H such that

a(hj,L, hj,R) = hj ∧ f(hj,L) = τ̂ ′(gj · L) ∧ f(hj,R) = τ̂ ′(gj · R),

• then ∀ picks a direction dj ∈ {L, R} and the game proceeds in the position
(hj+1, gj+1) def= (hj,d, gj · d).

If a play reaches a position (hj, gj) such that gj is a leaf of G then ∃ wins if and only
if Leaf(t̂0(gj)) = hj (i.e. hj is the type of the root-only tree labelled by t̂0(gj)). Assume
that a play π is infinite and let α be the sequence of directions d0, d1, . . . played by ∀. π
is winning for ∃ if the marking defined by the played types hj,L,hj,R along the path α they
followed in t0 is consistent (see (5.1.1), page 147); formally if for every i ∈ N we have

hi =
∏

j=i,i+1,...
Node

(
t̂0(gj), dj, hj,d̄j

)
. (6.3.2)

Fact 6.3.4. Winning strategies for ∃ in G are in 1−1 correspondence with consistent
markings τ of t0 that satisfy (6.3.1).

Proof. Every strategy induces a function τ : dom(t0)→ H and if it is winning then τ is a
consistent marking. By the definition of the arena, such a marking satisfies (6.3.1).

Similarly, every consistent marking τ as in the statement induces a strategy: first play
τ(ε), then inductively ensure that after obtaining directions u = d0, d1, . . . , dj−1 from ∀
the reached position (hj, gj) satisfies hj = τ(u). When asked for a pair of types play
(τ(uL), τ(uR)). If a leaf is reached then we know that ∃ wins because τ is a marking.
Otherwise, an infinite path is followed and since τ is consistent so (6.3.2) is satisfied. �

Note that the winning condition of G is ω-regular, so the game is determined. Since we
assumed that there is no appropriate consistent marking, ∀ has a finite-memory strategy
in G. Let us fix such a strategy σ∀ with a memory structure M .

Plan for the rest of the proof. Now, our plan is to take a thin tree t ∈ Th and
interpret it as a subset t̄ of dom(t0). Then, using Fact 6.3.3, we can compute the unique
marking τ̄ of t̄ by types in H in such a way that the image of τ̄ by f equals τ ′ pointwise.
Finally, we run the strategy σ∀ against τ̄ what results in a path α in t̄. By the definition

174

of the game G the path α has to reach a vertex corresponding to a leaf of t, otherwise the
play would be winning for ∃ what contradicts the assumption that σ∀ is winning.

Let T ⊆ dom(t0) be the set of vertices u ∈ dom(t0) such that the tree t0�u is not thin.
Clearly T is prefix-closed. By Fact 6.3.3 we know that T is non-empty — otherwise t0
would be thin and both H, H ′ would have exactly one consistent marking of t0 and (6.3.1)
would be satisfied by these markings.

Let W ⊆ T be the set of branching vertices in T . By the definition of T , for every
vertex u ∈ T there exists u′ ∈ W such that u � u′ — otherwise T �u is a single infinite
branch and therefore t0�u is thin.

Since both sets T and W are defined basing only on the subtree of t under a given
node, in fact T and W correspond to unfoldings of subsets T̂ and Ŵ of G.

Let ι : {L, R}∗ → W be the unique bijection that preserves the prefix and the lexico-
graphical order.

Let us fix some type P (h′) ∈ H for every h′ ∈ H ′ in such a way that f(P (h′)) = h′ —
it is possible by the fact that f is surjective. We can assume that the types P (h′) are fixed
in our construction since there are only finitely many h′ ∈ H ′.

Let AR tH = (AR2, AR0 tH) be the extension of the ranked alphabet by types in H.
Note that we can treat the algebra (H, V) as an algebra over the ranked alphabet AR tH
by putting Leaf(h) = h.

Now we take a thin tree t ∈ Th. We will try to choose a leaf of t in a way mso-definable
on t. The following fact expresses an important consequence of the definition of ι and the
fact that G is a finite graph.

Fact 6.3.5. The labelling tG of the given thin tree t by vertices of G such that u ∈ dom(t)
is labelled by ι̂(u) ∈ Ŵ ⊆ G is mso-definable on t.

Additionally, for every ud ∈ dom(t) the path between ι(u) and ι(ud) in t0 is of length at
most |G|. We can define in mso on t for a given node ud what is the sequence of vertices
of G on the corresponding path from ι̂(u) to ι̂(ud).

Proof. By the definition of T and W we know that for every vertex g ∈ G such that
g ∈ T̂ \ Ŵ there exists a unique finite path πg that starts in g and contains only vertices
in T̂ \ Ŵ until it reaches a vertex next(g) ∈ Ŵ . It implies that for every node z ∈ T \W
there is a unique �-minimal node next(z) such that z � next(z) ∈ W and

n̂ext(z) = next(ẑ).

175

In particular, by the definition of ι, for every u ∈ {L, R}∗ and d ∈ {L, R} we have

ι(ud) = next(ι(u) · d). (6.3.3)

Therefore, we can construct the desired labelling of t by vertices g and paths πg by
inductively following the function g 7→ next(g · d) in G. �

Let us construct a thin tree t̄ over the ranked alphabet AR t H such that dom(t̄) ⊆
dom(t0). First let

I
def= {w ∈ dom(t0) : ∃u∈dom(t) w � ι(u)}. (6.3.4)

Now, for u ∈ dom(t):

• if u � ι(u′) for some internal node u′ ∈ dom(t) then u ∈ dom(t̄) and t̄(u) = t0(u),

• if u = ι(u′) for some leaf u′ of t then u ∈ dom(t̄) and t̄(u) = P (τ ′(u)),

• if u /∈ T but the maximal prefix u′ of u that belongs to T satisfies u′ ∈ I then
u ∈ dom(t̄) and t̄(u) = t0(u),

• otherwise u /∈ dom(t̄).

Note that t̄ is thin because t is thin and all the subtrees t0�u for u /∈ T are thin.
Intuitively, dom(t̄) consists of the set I and all the thin subtrees of t0 of the form t0�u such
that the sibling of u is in I.

By Fact 6.3.3 there is a unique consistent marking τ̄ of t̄ by types in H.

Fact 6.3.6. For every u ∈ dom(t̄) we have f(τ̄(u)) = τ ′(u).

Proof. If u is a leaf of t̄ and t̄(u) ∈ H then by the definition t̄(u) = P (τ ′(u)) so

f(τ̄(u)) = f(t̄(u)) = τ ′(u).

Therefore, since t̄ is thin and f is a homomorphism, we obtain that for every u ∈ dom(t̄)
we have f(τ̄(u)) = τ ′(u). �

The following lemma shows that τ̄ can be encoded on the thin tree t.

Lemma 6.3.7. The labelling (denoted τ�W) of the nodes u of t by the types τ̄(ι(u)) ∈ H
is mso-definable on t.

176

Proof. Take any pair of nodes u, u′ in t such that u′ is a child of u. By Fact 6.3.5 we can
assume that we have an access to the vertices of G ι̂(u) and ̂ι(u′) as well as to paths π
between them in G. We will define an element su,u′ ∈ V t {1} called context type between
u and u′ representing what happens in t0 on the path from w = ι(u) to w′ = ι(u′).

Assume that w′ = wd0d1 . . . dn. Take any i ∈ {1, . . . , n} and consider the node
z = wd0 · · · di−1d̄i (i.e. a node that is off the path from wd0 to w′ in t0). Since there
are no elements of W on the path from w to w′ (except the end-points), we know that
wd0 · · · di−1 /∈ W so z /∈ T (i.e. the subtree of t0 under z is thin).

Lemma 6.3.3 implies that there is a unique consistent marking of the subtree t0�z by
types in H. As observed before, this marking must satisfy (6.3.1). The value hi of this
marking in z depends only on the subtree, so we can assume that this value is fixed together
with the finite graph G.

Now, the context type su,u′ between u and u′ is the multiplication of the types of
contexts along the path wd0, . . . , w

′:

su,u′
def=

∏
i=1,...,n

Node
(
t0(wd0 · · · di−1), di, hi

)
.

Therefore, we have shown an extension of Fact 6.3.5 stating that we have an access in
mso on t to the types of the contexts between every pair u, u′ with u′ a child of u in t.

Now we can guess a labelling of t by types in H and verify that it encodes a consistent
marking on t0 (via ι, as in the statement) by additionally multiplying all the contexts by
the context types between each parent and child (we assume that s · 1 = 1 · s = s). Since
τ̄ is unique, so the guessed labelling must equal τ�W as in the statement. �

Now we consider the sequence of directions π ∈ {L, R}≤ω played by ∀ according to σ∀

when ∃ is playing τ̄ (see Fact 6.3.4). If the play reaches a vertex u ∈ dom(t̄) such that
u = ι(u′) for a leaf u′ of t then the play stops and the sequence π is finite — ∃ is unable
to produce successive types.

Consider the following cases:

• π reached a leaf u of t0. In this case ∃ wins π since the marking τ̄ is consistent.
Contradiction to the fact that σ∀ is a winning strategy of ∀.

• π is an infinite play. In this case the marking given by ∃ is consistent along π since
it comes from a consistent marking τ̄ . So again ∃ wins the play and we have a
contradiction.

177

• π reached a vertex w ∈ dom(t0) such that w = ι(u) for a leaf u of t. In this case we
call u the selected leaf of t.

Therefore, the only possible case is that a leaf u of t was selected. What remains is to
observe the following fact.

Fact 6.3.8. The play π can be simulated in mso on t. In particular we can define in mso
on t the unique selected leaf u.

Proof. Since the strategy σ∀ as well as the arena of the game G are finite, it is enough
to show how to simulate the strategy of ∃ that corresponds to τ̄ . Therefore, ∃ should be
aware what is the currently played sequence of directions u ∈ {L, R}∗ to be able to play the
types ρ̄(uL) and ρ̄(uR) (see Fact 6.3.4). By the above case study, we know that the play
has to reach a node w ∈ dom(t0) such that w = ι(u) for a leaf u of t. In particular, the
play will always stay in the set I as defined in (6.3.4).

Observe that every element w ∈ I either belongs to W (and can be represented by
ι−1(w)) or has a unique decomposition w = udz with maximal u ∈ W . In the latter case
w ≺ next(ud) and in particular |z| < |G| (z must correspond to a prefix of the path from
w to next(w), see Fact 6.3.5). Therefore, for a given u ∈ dom(t) there is finitely many
possible w ∈ I with the decomposition as above. Additionally, Lemma 6.3.7 implies that
knowing the decomposition w = udz we can compute what are the values of τ̄ in wL and
wR. �

Using this fact we can write a formula ψ(x) that inputs a thin tree t, performs all
the above constructions on t, and checks whether x is the selected leaf of t. This for-
mula is a uniformization of LEAF− CHOICE(x); therefore, by Lemma 6.3.1 it contradicts
Conjecture 1 and finishes the proof of Proposition 6.3.2.

6.3.3 Implication (4)⇒ (2)

We need to prove that if every thin algebra over the ranked alphabet Ab = ({n}, {b}) has
a consistent marking of the complete binary tree tn ∈ TrAb

then there is no uniformization
of LEAF− CHOICE(x).

Assume for the contradiction that ψ(x) is a formula uniformizing LEAF− CHOICE(x):
for every thin tree t ∈ TrAb

there exists exactly one vertex u ∈ dom(t) such that t |= ψ(u)
and this vertex is a leaf of t. We want to show that there exists a thin algebra (H,V) such
that there is no consistent marking of the complete binary tree tn by types in H.

178

Let M = ({L, R, ?}, {b}) and let LM be the language of trees over the ranked alphabet
Ab ×M that contains a pair tA ⊗ tM if the following are satisfied:

1. tA is a thin tree,

2. all leafs of tM are labelled by b,

3. let w be the leaf of tA selected by ψ (i.e. tA |= ψ(w)),

4. tM(u) = ? for all internal nodes u ∈ dom(t) except those that u ≺ w,

5. for u ≺ w we have tM(u) = d where d ∈ {L, R} is the direction such that ud � w.

Note that LM is a regular tree language and the relation LM is uniformized:

∀tA∈ThAb
∃!tM∈TrM

tA ⊗ tM ∈ LM .

Using Theorem 6.1 there exists a transducer T that reads tA and τf (tA) for a homo-
morphism f : (TrA,ConA)→ (H,V) into a finite thin algebra (H, V) and outputs the only
labelling tM of tA such that tA ⊗ tM ∈ LM (if such a labelling exists). By the definition of
LM we have the following fact.

Fact 6.3.9. For every thin tree tA the path indicated by letters {L, R} in T (tA ⊗ τf (tA))
leads to a leaf u of tA. Moreover, tA |= ψ(u).

Let (H ′, V ′) be the subalgebra of (H, V) that is the image of (ThAb
,ThConAb

) under
f .

For the purpose of contradiction assume that τ is a consistent marking of the complete
binary tree tn by the types of H ′ — it may not be the marking of tn induced by f since
possibly H ′ (H. Let α ∈ {L, R}≤ω be the sequence of directions output by T when run on
tn ⊗ τ .

First assume that α is an infinite branch of tn. Consider a tree t′ that results in plugging
a thin tree of type τ(u) under u for every vertex u that is off α. Note that t′ is thin and
τf (t′) equals τ for every u ≺ α and for every u that is off α. Therefore, the run of T on
t′ ⊗ τf (t′) is the same as on t⊗ τ for every u ≺ α (see Fact 6.2.1). So T labels an infinite
branch of t′ by letters {L, R}, a contradiction with Fact 6.3.9.

If α is finite then the same argument holds (since tn is complete, α cannot reach a leaf
of tn) — we can change the subtrees along α and the two subtrees under αL, αR obtaining
a thin tree on which the sequence of letters {L, R} does not reach any leaf.

This concludes the proof of the last implication of Theorem 6.2.

179

6.4 Negative results

In this section we show two non-uniformizability results. Both rely on the transducers
described in Section 6.2 and a construction of a consistent marking of a thick tree presented
in Section 6.4.2. The construction is based on Green’s relations (see [Gre51]) that provide
an insight into the structure of finite semigroups.

6.4.1 Green’s relations

We start by recalling definitions and standard facts about these relations. The definitions
follow [PP04, Annex A]. Let M be a finite semigroup. Let M1 be defined as M if M is a
monoid and as M t {1} with 1 ·m = m for m ∈ M1 in the other case. Clearly M1 is a
monoid and M is a sub-semigroup of M1.

If s ∈ M then by s ·M1 we denote the set {s · m : m ∈ M1} or equivalently {s} ∪
{s · m : m ∈ M}. M1 · s is defined symmetrically and M1sM1 is obtained by taking
{m · s ·m′ : m,m′ ∈M1}.

Let s, s′ be two elements of M . We say that

s ≤R s′ if s ·M1 ⊆ s′ ·M1,

s ≤L s′ if M1 · s ⊆M1 · s′,

s ≤J s′ if M1 · s ·M1 ⊆M1 · s′ ·M1.

Let T ∈ {R,L,J }. We say that s and s′ are T -comparable if s ≤T s′ or s′ ≤T s. We say
that s and s′ are T -equivalent (denoted s ∼T s′) if s ≤T s′ and s′ ≤T s. We additionally
say that s and s′ are H-equivalent if they are R- and L-equivalent. For T ∈ {R,L,J ,H}
the equivalence classes of the T -equivalence are called T -classes of M .

The following results summarize properties of these relations that will be used here.

Theorem 6.3. Let M be a finite semigroup.

1. If s ∼H s′ then s ∼J s′.

2. For T ∈ {R,L} if s ∼J s′ and s ≤T s′ then s ∼T s′.

3. There exists a ≤J -minimal J -class of M .

4. The minimal J -class of M contains an idempotent.

180

Proposition 6.4.1 (Proposition 2.4 in Annex A of [PP04]). If an H-class G ⊆ M of a
semigroup M contains an idempotent then the product · of any two elements of G belongs
to G and (G, ·) is a group1.

Remark 6.4.2. If G is an H-class of a semigroup M that contains an idempotent e and
e′ is an idempotent in G then e = e′.

Proof. Assume that m1 is the unit of the group G and let e be an idempotent in G. Let
e−1 be the inverse of e in the group G (i.e. e · e−1 = m1). Then

m1 = e · e−1 = e · e · e−1 = e ·m1 = e.

�

6.4.2 A marking of a thick tree

As proved in Theorem 6.2, Conjecture 1 is equivalent to the fact that every finite thin
algebra has a consistent marking on every tree (see Item (3) of the theorem). Unfortunately,
the author was unable to prove this fact. On the other hand, by Lemma 6.3.3, every finite
thin algebra has a consistent marking on every thin tree. The following proposition can be
seen as an intermediate result: every finite thin algebra has a consistent marking on some
non-thin (i.e. thick) tree. The construction of this thick tree is motivated by a result of
Bojańczyk [Boj10a, Theorem 4.1] stating that, in the context of finite trees, every preclone
contains a certain “idempotent sub-preclone”.

Proposition 6.4.3. For every finite thin algebra (H, V) over a ranked alphabet AR =
(AR2, AR0) with AR0 6= ∅ there exists a thick tree t ∈ TrAR and a consistent marking τ of t
by types in H.

We assume that AR0 6= ∅ because otherwise all ranked trees over AR0 have {L, R}∗ as
the domain so TrAR contains only complete trees.

During the proof we extensively use facts about Green’s relations (see Section 6.4.1).
Note that by Axiom 4.2.1 of thin algebra (see Section 4.2, page 125), the set V with the
operation · is a semigroup.

By Fact 4.2.4 from page 126 we know that there is a unique homomorphism f from
(ThAR ,ThConAR) into (H,V). First we can assume that (H,V) contains only types that

1More formally, one can pick an element m1 of G and define an operation m 7→ m−1 on G such that
(G,m1, ·, .−1) is a group.

181

are represented as f -types of thin trees and thin contexts (we use the fact that AR0 is
non-empty and we restrict ourselves to the subalgebra generated by {b() : b ∈ AR0}).
Let e be an idempotent in the lowest J -class of V . Let G be the H-class of e (i.e. the
intersection of the L- and R-class of e). By Proposition 6.4.1 we know that G is a group
because it contains an idempotent.

It turns out that e acts as a certain attractor, as expressed by the following lemma.

Lemma 6.4.4. For every s ∈ V we have (ese)∞ = e∞.

Proof. Note that ese is R- and L-comparable with e. Since e is in the lowest J -class of
V so ese ∼J e and therefore ese is H-equivalent with e, hence ese ∈ G. Therefore, since
e is the only idempotent of G (see Remark 6.4.2) so the idempotent power of ese is e
(i.e. (ese)] = e) and we have (ese)∞ =

(
(ese)]

)∞
= e∞. �

Now we move to the construction of a thick tree t. Let p1 be a thin context of f -type
e. Let a ∈ AR2 be any letter. We define the following tree p2 over the ranked alphabet
AR t {2} (it can be seen as a context with two holes):

p2
def= p1 · a (p1 ·2, p1 ·2) .

Let uL, uR be the positions of the two holes put explicitly in the above definition. Let us
consider the tree t̄ that is obtained from p2 by putting trees p∞1 instead of uL, uR. This tree
is thin, let τ be the unique consistent marking of t̄. Note that τ(uL) = τ(uR) = e∞.

Let sL = a(2, e∞) and sR = a(e∞,2). Note that

τ(ε) = e · sL · e · e∞ = (esLe) · (esLe)∞ = (esLe)∞ = e∞.

Let tT ⊗ τT be the tree obtained from p2 ⊗
(
τ [uL ← 2, uR ← 2]

)
by looping vertices

uL, uR back to the root of p2 (see Figure 6.4.1). Since τT (uL) = τT (uR) = τT (ε) = e∞, τT is
a marking of tT . The constructed tree tT is thick but it is not complete — many subtrees
of tT are thin and contain leafs.

Consider any infinite branch α of tT . If α does not pass through infinitely many copies
of the root of p2 then α is from some point on contained in one copy of p2. In that case
α is from some point on consistent (by the consistency of τ). Consider the opposite case
and observe that

α = ud0 · ud1 · . . . ,

182

p1

a

p1

2 2

Figure 6.4.1: The looping of the two holes of p2 to obtain a thick tree. The gray subtrees are
thin. The second coordinate (i.e. τ [uL ← 2, uR ← 2]) is skipped for the sake of simplicity.

183

for a sequence of directions d0, d1, . . . It is enough to show that the value τT (ε) = e∞ is
consistent with the product ∏ of contexts along α (see Remark 5.1.3 on page 147). We
can group the decomposition of α in tT in the following way:

(esd0e) · (esd1e) · (esd2e) · . . .

Let s̄·ē∞ be a Ramsey decomposition of the above infinite product. In that case s̄ = exe

and ē = eye for some x, y ∈ V . Therefore,

s̄ · ē∞ = (exe) · (eye)∞ = (exe) · (exe)∞ = (exe)∞ = e∞.

This proves that τ is consistent and therefore the proof of Proposition 6.4.3 is finished.

6.4.3 Non-uniformizability of skeletons

We identify here a set σ ⊆ dom(t) with its characteristic function σ ∈ Tr({0,1},{0,1}). By
SKEL(σ) we denote the mso formula expressing that σ is a skeleton of a given tree t.

Theorem 6.4. There is no mso formula uniformizing SKEL(σ).

Proof. Assume contrary that ψ(σ) uniformizes SKEL(σ). Consider a transducer T that,
given a thin tree tA and the marking τf (tA) constructs the labelling tS ∈ Tr{0,1}2 that
encodes a skeleton of tA satisfying ψ(tS).

Assume that T uses a homomorphism f into a finite thin algebra (H, V) and let (H ′, V ′)
be the subalgebra that is the image of (ThAR ,ThConAR). Let t ⊗ τ be a thick tree with
a consistent marking by types in H ′ given by Proposition 6.4.3. Consider the result tS =
T (t⊗ τ). By Proposition 4.1.11 from page 123 tS does not encode a skeleton of t.

First assume that there exists an infinite branch α of t such that infinitely many vertices
u ≺ α does not belong to tS. Let t′ be the tree obtained by putting a thin tree of type
τ(w) under vertex w for every w that is off α. Note that t′ is thin. Let τ ′ be the only
consistent marking of t′. Let t′S = T (t′ ⊗ τ ′). By the definition, if u ≺ α or u is off α then
τ ′(u) = τ(u). By Fact 6.2.1 for every u ≺ α we have t′S(u) = tS(u), so t′S also does not
encode a skeleton of t′. A contradiction.

Now assume that tS does not satisfy the local constraint of skeletons in some vertices
u, u′ (i.e. u = u′ = ε ∈ tS or u, u′ are siblings and it is not true that exactly one of them
belongs to tS). The proof of this case is essentially the same — it is enough to substitute
finitely many subtrees along the paths leading to u, u′ and the subtrees under u, u′. �

184

6.4.4 Ambiguity of thin trees

Theorem 6.5. The language ThAb
⊂ TrAb

of thin trees over the ranked alphabet Ab =
({n}, {b}) is ambiguous (i.e. it is not recognised by any unambiguous automaton).

We use the ranked alphabet Ab for simplicity, the same construction works for any
ranked alphabet AR with AR0 6= ∅.

Proof. The proof follows the same lines as the proof of Theorem 6.4. We assume that A is
an unambiguous automaton recognising ThAb

. We define LM as the language of trees t⊗ρ
where t is a ranked tree and ρ is an accepting run of A on t (as in Example 6.1.2). The
relation defined by LM is uniformized so there exists a transducer T and a homomorphism
f such that given a thin tree tA and the marking τf (tA) it constructs the unique accepting
run ρ = T (t⊗ τ) of A on tA.

We consider a thick tree with a respective marking t ⊗ τ given by Proposition 6.4.3
and construct the labelling ρ = T (t ⊗ τ) of t by states QA. Since t /∈ ThAb

so ρ is not
an accepting run. The rest of the proof is the same as in Theorem 6.4: either ρ violates
local constraints or is not parity-accepting along some infinite branch of t. In both cases
we can define a thin tree t′ such that the run constructed by T on t′ ⊗ τf (t′) is also not
accepting. �

6.5 Conclusions

This chapter is devoted mainly to Conjecture 1 stating that there is no mso-definable choice
function on thin trees. These statement is somehow non-constructive: there is no mso-
formula that defines a choice function. The results of this chapter provide an equivalent
statement that has a more constructive form: in order to prove Conjecture 1 it is enough to
find, for every thin algebra S, a consistent marking of the complete binary tree by elements
of S.

Although the author was unable to find a construction of such a marking, a weaker
construction of a consistent marking of a thick tree is provided. Already this weaker
construction turns out to be enough to obtain two new non-uniformizability examples:

• an essentially new mso-definable relation that does not admit any mso-definable
uniformization,

• an essentially new example of an ambiguous language.

185

To the author’s best knowledge, all the examples existing before were based on [GS83]:

• it was proved by Gurevich and Shelah [GS83] (see also [CL07]) that the relation
x ∈ X does not admit any mso-definable uniformization,

• basing on this observation, Niwiński and Walukiewicz [NW96] (cf. [CLNW10]) proved
that the language “exists a node labelled by a” is ambiguous.

It seems that proving Conjecture 1 is a hard task that requires a better understanding of
the relations between regular tree languages and conditions that can be verified pathwise.

This chapter is based on [BS13].

186

Part III

Extensions of regular languages

187

Chapter 7

Descriptive complexity of mso+u

mso logic is quite expressive, in particular it covers most of other logics used for speci-
fying properties of computer systems. However, mso is not able to express quantitative
properties of structures. A natural example of such a quantitative property is “the delays
between a request and the successive answer are uniformly bounded”. Bojańczyk in [Boj04]
introduced an additional quantifier U, called the unbounding quantifier, that allows to ex-
press such properties. A formula UX.ϕ(X) holds if ϕ(X) is satisfied for arbitrarily large
finite sets X. Formally, UX.ϕ(X) is equivalent to:

∧
n∈N
∃X. (ϕ(X) ∧ n < |X| <∞) .

The following language is an example of a language of ω-words that is definable in the
extended logic mso+u but is not ω-regular

UX. (∀x∈X. Pa(x) ∧ ∀x<y<z. (x∈X ∧ z∈X)⇔ y∈X) ,

i.e. the language of those ω-words that contain arbitrarily long blocks of consecutive letters
a.

One of the crucial open problems about the U quantifier is decidability: is the mso+u
theory of the ω-chain or the complete binary tree decidable? The decidability was proved
for various fragments of the mso+u logic [BC06,Boj11,Boj10b,BT12] but the problem for
mso+u remained open for over 10 years.

In the following two chapters we approach the problem of decidability of mso+u via
descriptive set-theoretical methods. First, in this chapter we prove the following theorem.

Theorem 7. There exists an alphabet A such that for every i > 0 there exists an mso+u
formula ϕi such that the language L(ϕi) ⊆ Aω of ω-words satisfying ϕi is Σ1

i -complete.

188

The following theorem exploits the above result to show that there is no simple au-
tomata model for mso+u on ω-words.

Theorem 7.1 (Hummel S. [HS12]). There is no model of alternating nor non-deterministic
automata on ω-words with countably many states and projective acceptance condition that
captures mso+u.

Sketch of a proof. If A is an alternating automaton with countably many states Q and
acceptance condition W ⊆ Qω then the language of A can be written as

L(A) =
{
α ∈ Aω : ∃σ∃ — a strategy of ∃ in G(A, α)

∀π — play consistent with σ∃ in G(A, α)

π satisfies the winning condition W
}
.

Therefore, if W ∈ Σ1
n for some n then the above formula implies that L(A) ∈ Σ1

n+2.
But Theorem 7 shows that for every n there are mso+u-definable languages of ω-words
that do not belong to Σ1

n+2. �

This result shows that standard technique of proving decidability of variants of mso by
translating into appropriate automata (see e.g. [BT09, Boj11]) is not enough in the case
of mso+u. Chapter 8 further builds on the topological complexity of mso+u to prove
that in a certain sense the mso+u theory of the complete binary tree is undecidable. The
decidability of mso+u on ω-words is still open.

To prove Theorem 7 we first construct an appropriate sequence of languages IFi ofmulti-
branching trees such that the language IFi is Σ1

i -hard. Then we show how to inductively
encode such multi-branching trees into ω-words. These encodings are the technical heart
of the proof — their aim is to present a given multi-branching tree in a way understandable
for an mso+u formula. Finally, we construct a sequence of mso+u formulae ϕi that, given
an encoding of a multi-branching tree t, can verify if t ∈ IFi. The formula cannot check
if a given ω-word encodes any multi-branching tree at all but this is not needed for our
needs.

The chapter is organised as follows. In Section 7.1 we introduce the concept of multi-
branching trees and languages IFi. Then, in Section 7.2 we define the alphabets of ω-words
we use and the formulae ϕi. Section 7.3 introduces inductively reductions ri that encode
multi-branching trees into ω-words. It is shown there that ri is continuous and satisfies an
additional technical property of sequentiality. In Section 7.4 we prove that the functions ri

189

reduce IFi to L(ϕi). Finally, in Section 7.5 we show upper bounds on topological complexity
of the languages L(ϕi) what concludes the proof of Theorem 7. In Section 7.6 we conclude.

7.1 Basic notions

Let us recall from Section 0.1 (see page 20) that:

• ωTrX is the family of total functions τ : ω∗ → X,

• ωPTr is the family of prefix-closed subsets of ω∗.

In this chapter we use the so-calledmulti-branching trees. Let i > 0. An (i-dimensional)
multi-branching tree is a prefix-closed subset of (ωi)∗. The set of all such trees is denoted
ωPTri. Clearly ωPTri is a Polish space and ωPTr1 = ωPTr.

Let us fix an order v of type ω on ω∗, such that ω∗ = {v0, v1, . . .}. Additionally assume
that for all n ∈ N we have |vn| ≤ n. There are infinitely many vertices of length 1 so it is
possible.

Definition 7.1.1. Consider i > 0, a multi-branching tree τ ∈ ωPTri+1, and a finite word
or ω-word α ∈ ω≤ω. We define the section τ�α ∈ ωPTri of the multi-branching tree τ as
follows

t�α =
{
u ∈ (ωi)∗ : |u| ≤ |α| ∧ (α�|u| ⊗ u) ∈ t

}
,

where
(α0, α1, α2, . . .)⊗ (u0, u1, u2, . . .) = (α0 · u0, α1 · u1, α2 · u2, . . .).

The dots in the above definition can stand for a finite or an infinite sequence.

Figure 7.1.1 presents the first two levels of a multi-branching tree t on ω2 i.e. t ∈ ωPTr2.
The children of the root are arranged into a two-dimensional grid. Given a sequence
α ∈ ω≤ω the section t�α ∈ ωPTr1 is defined as the one-dimensional multi-branching tree
obtained by selecting particular rows from the grids of children on every level. The position
of the selected row is defined by the successive values of α. For example the children of
the root in t�α come from the α0’th row of the presented grid.

Observe that if u is a finite word, t�u is a finite-depth tree — its depth is bounded by
|u|.

For an ω-tree t ∈ ωTrX and an ω-word α ∈ ωω, let

t(α) =
(
t(α�0), t(α�1), . . .

)
∈ Xω.

190

0 . . .
1 . . .

2 . . .

. . .

Figure 7.1.1: A 2-dimensional multi-branching tree.

7.1.1 Languages IFi

To prove that the languages defined in this chapter are Σ1
i -hard we will construct continuous

reductions from languages IFi ⊆ ωPTri defined below.
Let IF1 be the set of all trees t ∈ ωPTr1 that contain an infinite branch (i.e. IF1 = IF,

see Section 0.6.3, page 38).
Take i > 0. Let IFi+1 be the set of all multi-branching trees t ∈ ωPTri+1 such that

there exists an ω-word α ∈ ωω such that

t�α /∈ IFi.

Fact 7.1.2. For each i ≥ 1 the set IFi is a Σ1
i -complete subset of ωPTri.

This fact follows easily from unravelling the definition of an Σ1
i set. For the sake of

completeness we give here a formal proof of this fact.

Proof. First we prove the upper-bound. By the definition, IF1 is the set of ill-founded trees
IF that is known to be Σ1

1-complete (see Section 0.6.4, page 38).
We proceed by induction. Assume that IFi ∈ Σ1

i . Let

Pi =
{

(α, t) ∈ ωω × ωPTri+1 : t�α /∈ IFi
}
∈ Π1

i .

Note that IFi+1 is the projection of Pi, so it is in Σ1
i+1.

Let us prove that each Σ1
i set in ωω continuously reduces to IFi.

As we know (see e.g. [Kec95, Exercise 14.3]), each analytic (Σ1
1) set in a space X is

a projection of a closed set in ωω × X. Recall that, by the definition, each Σ1
i+1 set is a

191

projection of some Π1
i set. Therefore, each Σ1

i set in ωω is of the form1:

S = {x : ∃x1∈ωω ¬∃x2∈ωω ¬∃x3∈ωω . . .¬∃xi∈ωω (x1, x2, . . . , xi, x) ∈ FS} ,

for some closed set FS ∈ (ωω)i+1. The formula unravels to:

∃x1 ∀x2 ∃x3 . . . ∃xi
(x1, x2, . . . , xi, x) ∈ FS if i is odd, and to:

∃x1 ∀x2 ∃x3 . . . ∀xi
(x1, x2, . . . , xi, x) /∈ FS if i is even.

The set FS can be seen as a set in the space (ωi+1)ω, by simple transposition. This
space is obviously homeomorphic to the Baire space ωω. Each closed set in the Baire space
can be expressed as the set of branches of some ω-tree (see e.g. [Kec95, Proposition 2.4]).
So there is tS ∈ ωPTri+1 such that:

FS =
{

(x1⊗x2⊗· · ·⊗xi+1) ∈
(
ωi+1

)ω
: ∀n∈N (x1�n ⊗ x2�n ⊗ · · · ⊗ xi+1�n) ∈ tS

}
(7.1.1)

To simplify the notation, for a prefix-closed set t ⊆ X∗, by [t] ⊆ Xω we denote the set
of infinite branches of t. Using this notation, the above equation can be formulated as

FS = [tS].

We will use the multi-branching tree tS to define the needed reduction. Let f : ωω →
ωPTri be defined as follows:

f(x) =
{

(v1 ⊗ v2 ⊗ · · · ⊗ vi) ∈
(
ωi
)k

: (v1 ⊗ v2 ⊗ · · · ⊗ vi ⊗ x�k) ∈ tS, k ∈ N
}
.

To determine whether a vertex at some level k belongs to f(x) we only need to know the
first k numbers in the sequence x, so the function is continuous. To prove that this is a
reduction of S to IFi we need:

f(x) ∈ IFi ⇐⇒ x ∈ S (7.1.2)

1Formally, for i = 1 the formula takes the form S = {x : ∃x1 ∈ ωω. (x1, x) ∈ FS}.

192

Now we will take a closer look at the sets IFi. Observe that:

IFi =
{
t : ∃x1 ∀x2 ∃x3 . . . ∃xi

(x1 ⊗ x2 ⊗ · · · ⊗ xi) ∈ [t]
}

if i is odd, and:
IFi =

{
t : ∃x1 ∀x2 ∃x3 . . . ∀xi

(x1 ⊗ x2 ⊗ · · · ⊗ xi) /∈ [t]
}

if i is even.

So the quantifier structure is the same as in case of the above representation of S.
Therefore, to obtain (7.1.2), it suffices to show that for any fixed x1, x2, . . . , xi:

(x1 ⊗ x2 ⊗ · · · ⊗ xi) ∈ [f(x)] ⇐⇒ (x1, x2, . . . , xi, x) ∈ FS.

By (7.1.1) it is equivalent to:

(x1 ⊗ x2 ⊗ · · · ⊗ xi) ∈ [f(x)] ⇐⇒ (x1 ⊗ x2 ⊗ · · · ⊗ xi × x) ∈ [tS].

But the latter follows immediately from the definition of f . �

7.2 Languages Hi

In this section we inductively construct a sequence of languages (Hi)i∈N. We will later
show that for each i ∈ N the language Hi is mso+u-definable and Σ1

i -hard. Additionally,
in Section 7.5 we observe that Hi ∈ Σ1

i .
Let us fix a finite alphabet B0 =

{
a, |0, b

}
and define inductively Bi = Bi−1 t{

[i−1, |i,]i−1
}
(i.e. B0 contains 3 letters and Bi contains 3(i+1) letters).

The reductions used in the rest of the proof work on the space (B+
i)ω. Since we want to

build mso+u formulae over finite alphabets, we need use one additional encoding which
is simply a kind of concatenation. For i ≥ 0 consider ji : (B+

i)ω → Bω
i+1 defined as follows

ji(w0, w1, . . .) = [iw0]i · [iw1]i · . . .

Clearly functions ji defined above are continuous and 1− 1.
For a node u = (u1, u2, . . . , um) ∈ ω∗ of an ω-tree, we will call the word au1bau2b . . . baumb

the address of u in the ω-tree.
Let an i-block be a word of the form [iw|iw′]i where w ∈ (a∗b)∗ and w′ ∈ (Bi \ {|i})+.

We will call the word w the address of this i-block (since it will be interpreted as an address
of a node in an ω-tree) and the word w′ the body of this i-block.

We will call a set A of addresses of nodes:

193

deep if the number of letters b in elements of A is unbounded,

narrow if for any set P of some prefixes of elements of A such that the number of letters b in
elements of P is bounded, the lengths of sequences a∗ in elements of P are bounded.

Figure 7.2.1: An illustration of the narrow property — any section of finite depth contains
only finitely many prefixes of branches in A.

The following fact provides a way of using the above properties.

Fact 7.2.1. An ω-tree t ⊆ ω∗ has an infinite branch if and only if there is a narrow and
deep set A of addresses of some nodes in t.

Proof. First assume that t has an infinite branch α ∈ ωω. Take as A the set of addresses of
vertices in {α�n : n ∈ ω}. Of course such A is deep. We show that A is narrow. Consider
any set P of prefixes of addresses in A, such that the number of letters b in elements of P
is bounded by some number k ∈ ω. In that case, lengths of sequences a∗ in P are bounded
by maxn≤k αn: in each element of A the sequence a∗ before the n’th letter b has length
αn−1.

Now take a narrow and deep set A of addresses of some nodes of t. We identify elements
of A with those nodes, i.e. A ⊆ t. Consider as T the closure of A under prefixes, i.e.:

T = {u ∈ ω∗ : ∃u′∈A u � u′} .

Then T is an infinite tree, because A is deep. Additionally, at each level k ∈ ω, there
are only finitely many vertices in T ∩ ωk, by narrowness of A. So T is a finitely branching

194

ω-tree. Therefore, by König’s lemma (see Lemma 0.1.1, page 23), T contains an infinite
branch α. But T ⊆ t, so α is also an infinite branch of t. �

Now we can define the mso+u formulae defining our languages. Observe that both
properties of deepness and narrowness of a set of addresses can be expressed in mso+u. It
is because in those definitions we only use regular properties and properties like the number
of letters b is unbounded or the lengths of sequences a∗ are bounded.

It is easy to see that we can express in mso that a given ω-word α ∈ (Bi+1)ω is of the
form b0 · b1 · . . . such that each bn is an i-block. We implicitly assume that all formulae ϕi
express it.

Let ϕ0 additionally express that a given ω-word is not of the form(
[0 (a∗b)∗ |0 a]0

)ω
,

i.e. there is at least one 0-block with body different than a.
For i > 0, let ϕi express the following property:

There exists a set G containing only whole i-blocks such that:

1. the set of addresses of the i-blocks of G is deep,

2. the set of addresses of the i-blocks of G is narrow,

3. the bodies of the i-blocks of G, when concatenated, form an ω-word that
satisfies ¬ϕi−1.

Take i ≥ 0. Since L(ϕi) ⊆ Bω
i+1, we can define

Hi = j−1
i (L(ϕi)) ⊆ (B+

i)ω.

Languages Hi defined above are (up to the ji operator) mso+u definable.
We will use the following important property of the languages Hi.

Definition 7.2.2. A language L ⊆ Xω is monotone if for any α, β ∈ Xω

{αn : n ∈ N} ⊆ {βn : n ∈ N} =⇒ (α ∈ L⇒ β ∈ L) .

Note, that belonging to a monotone language depends only on the set of letters occurring
in an ω-word, namely we have the following fact.

195

Fact 7.2.3. If L ⊆ Xω is a monotone language then for any α, β ∈ Xω the following holds

{αn : n ∈ N} = {βn : n ∈ N} =⇒ (α ∈ L⇔ β ∈ L) .

Lemma 7.2.4. Languages Hi ⊆ (B+
i)ω are monotone.

Proof. For i = 0 it is obvious. For i > 0 formula ϕi expresses that there exists a set of
i-blocks such that this set satisfies some additional property. Moreover, it does not matter
in what order the i-blocks appear. �

7.3 Functions ci, di, and ri

Now we will show how to continuously reduce the languages of multi-branching trees IFi

to Hi. For technical reasons we will use the following intermediate languages.

Definition 7.3.1. For L ⊆ Xω let EPath (L) ⊆ ωTrX be a set of such labelled ω-trees t
that there exists an ω-word α ∈ ωω such that

t(α) ∈ L.

In other words EPath (L) is the set of ω-trees that contain an infinite branch such that
labels on this branch form an ω-word in L.

The languages EPath (L) were used originally by Szczepan Hummel to prove certain
lower bounds on the topological complexity of mso+u-definable languages of ω-trees.

The construction will be inductive, it will start with i = 1 and in each step the picture
looks as follows:

ωPTri ci−→ ωTrB+
i−1

di−→ (B+
i)ω

⊆ ⊆ ⊆

IFi EPath
(
Hc
i−1

)
Hi

The construction will ensure (see Section 7.4) that d−1
i (Hi) = EPath

(
Hc
i−1

)
and

c−1
i

(
EPath

(
Hc
i−1

))
= IFi. Therefore, ri defined as di ◦ ci will reduce IFi to Hi. We

will use the function ri−1 to construct a reduction ci of IFi to the language EPath
(
Hc
i−1

)
of ω-trees that have a branch labelled with an ω-word α /∈ Hi−1. Then we again encode
such labelled ω-trees in ω-words.

196

Recall our inductively defined alphabets B0 =
{
a, |0, b

}
, Bi = Bi−1 t

{
[i−1, |i,]i−1

}
.

First we define c1 : ωPTr1 → ωTrB+
0
. Take a multi-branching tree t ∈ ωPTr1 and a

vertex v = (u1, u2, . . . , um) ∈ ω∗. Put

c1(t)(v) def=

 au1bau2b . . . baumb |0 a if v ∈ t,

au1bau2b . . . baumb |0 b if v /∈ t.

That is, c1(t)(v) consists of the address of v and an additional bit indicating whether v ∈ t.
For i > 1 take a multi-branching tree t ∈ ωPTri and a vertex v ∈ ω∗. Let

ci(t)(v) =
(
ri−1(t�v)

)
|v|
∈ B+

i−1,

that is, we apply the reduction ri−1 to the section of t along v (such a section is an (i−1)-
dimensional multi-branching tree) and then we take the first |v| words from the result.

Now we define the function di. We encode a tree t ∈ ωTrB+
i−1

into a word di(t) ∈ (B+
i)ω

in the following way: let vn be the n’th vertex with respect to the order v. Let vn =
(u1, u2, . . . , um) and let w0, w1, . . . , wm ∈ B+

i−1 be the list of labels of t on the path from
the root to vn. Then

di(t)n def= au1bau2b . . . baumb |i [i−1w0]i−1 · [i−1w1]i−1 · . . . · [i−1wm]i−1 ∈ B+
i .

Intuitively di(t)n encodes the vertex vn in t. Such an encoding consists of two parts:
the part before |i is the address of vn in the multi-branching tree, while the part after |i
is intended to store labels of t on the path from the root to vn as (i−1)-blocks. The fact
that we store not only the label but also the address of the given vertex in this coding will
be crucial for the following parts of the construction.

Lemma 7.3.2. Functions ci, di defined above are continuous.

Proof. For di it holds by the definition. The continuity of ci can be proved by induction
together with the continuity of ri, since they cyclically depend on each other. The function
ri+1 is continuous as a composition of continuous functions, likewise ci at each coordinate
v is a composition of continuous operations: −�v, ri−1, −|v|. �

The following lemma states that the functions ri are in some sense sequential.

197

Lemma 7.3.3. For any i > 0 and any m ∈ N if t1, t2 ∈ ωPTri agree on all v ∈ (ωi)∗ such
that |v| ≤ m then

ri(t1)m = ri(t2)m.

Proof. Recall that ri(t) = di(ci(t)). First observe that for a given ω-tree t′ ∈ ωTrX , by the
definition of di, the value di(t′)m depends only on vm and the labels of t′ on the path from
the root to vm.

Now use an induction on i and consider the labels of ci(t1) and ci(t2) on the path from
the root to vm. For i = 1 they depend only on t1, t2 up to the depth of |vm|, and |vm| ≤ m,
thanks to our assumption about the order v.

Take i > 1 and a vertex v � vm (where � denotes the prefix order). By the definition
ci(t)(v) = ri−1(t�v)|v|. So, by the inductive assumption, this value also depends only on t
at the depth of at most |v| ≤ |vm| ≤ m. �

From the above lemma we conclude that the labels on each branch α ∈ ωω in ci(t) code
the multi-branching tree t�α. Formally:

Lemma 7.3.4. For i > 1, a given multi-branching tree t ∈ ωPTri and an infinite branch
α ∈ ωω we have:

ci(t)(α) = ri−1(t�α) ∈
(
B+
i−1

)ω
.

Proof. Take any m ∈ N and consider v = α�m ∈ ωm. By the definition

(ci(t)(α))m = ci(t)(α�m) = (ri−1(t�v))m .

Since t�v and t�α agree on all vertices up to the depth m, by Lemma 7.3.3, we have

(ri−1(t�v))m = (ri−1(t�α))m .

�

7.4 Reductions

In this section we show that ri is a reduction of IFi to Hi. We do it in two steps.

Lemma 7.4.1. For i > 0 the function di : ωTrB+
i−1
→ (B+

i)ω is a reduction of EPath
(
Hc
i−1

)
to Hi.

198

Proof. We have to prove that for any t ∈ ωTrB+
i

t ∈ EPath
(
Hc
i−1

)
⇐⇒ di(t) ∈ Hi.

First assume that t ∈ EPath
(
Hc
i−1

)
. Let α ∈ ωω be a branch such that t(α) /∈ Hi−1.

Let β = ji(di(t)) ∈ (Bi+1)ω. We show that β |= ϕi. Take as G the set containing i-
blocks corresponding to the vertices of α. Then the set of addresses of i-blocks of G is
obviously narrow and deep (one vertex at each level of the ω-tree). Additionally, the set
of (i−1)-blocks occurring in bodies of i-blocks in G is exactly the set

{[i−1 · (t(α))n ·]i−1 : n ∈ N} .

Language Hi−1 is monotone, so, by Fact 7.2.3, since t(α) /∈ Hi−1, the set G satisfies Item 3
in the definition of ϕi.

The other direction is a little more tricky. Assume that ji(di(t)) |= ϕi. Let G be as in
the definition of ϕi. Then the set of addresses of i-blocks of G is narrow and deep. Let
B ⊆ ω∗ be the set of nodes corresponding to these addresses and let T be the closure of B
under prefixes, i.e.:

T = {v ∈ ω∗ : ∃v′∈B v 4 v′} .

As in Fact 7.2.1, there exists an infinite branch α ∈ ωω of T . Observe that the set

{[i−1 · (t(α))n ·]i−1 : n ∈ N}

is contained in the set of (i−1)-blocks in bodies of i-blocks in G. Because of the mono-
tonicity of Hi−1 and Item 3 in the definition of ϕi, t(α) /∈ Hi−1. �

Lemma 7.4.2. For i > 0 the function ci is a reduction of IFi to EPath
(
Hc
i−1

)
.

Proof. Take i = 1. An ω-tree t ∈ ωPTr1 contains an infinite branch if and only if c1(t)
contains a branch labelled by words of the form (a∗b)∗|0a if and only if c1(t) ∈ EPath (Hc

0).

199

Induction step: i > 1. Take a multi-branching tree t ∈ ωPTri. The following conditions
are equivalent:

t ∈ IFi

∃α∈ωω t�α /∈ IFi−1 by the definition of IFi

∃α∈ωω ci−1(t�α) /∈ EPath
(
Hc
i−2

)
by the inductive assumption

∃α∈ωω ri−1(t�α) /∈ Hi−1 by Lemma 7.4.1
∃α∈ωω ci(t)(α) /∈ Hi−1 by Lemma 7.3.4

ci(t) ∈ EPath
(
Hc
i−1

)
by the definition of EPath (L).

�

It concludes the proof of the fact that ri reduces IFi to Hi.

7.5 Upper bounds

To complete the proof of Theorem 7 we need to show the following lemma.

Lemma 7.5.1. The languages L(ϕi) belong to Σ1
i .

The rest of this section is devoted to proving this lemma. The proof is inductive:
we assume inductively that L(ϕi−1) ∈ Π1

i and show that L(ϕi) ∈ Σ1
i , so in particular

L(ϕi) ∈ Π1
i+1.

Clearly L(ϕ0) is a Borel language, so L(ϕ0) ∈ Π1
1.

The following fact expresses that the conditions of deepness and narrowness are in fact
Borel (see [HST10, Proposition 2]).

Fact 7.5.2. The set of pairs (β,G) such that:

• β ∈ Bω
i+1 is an infinite sequence of i-blocks,

• G ⊆ ω be a set containing only whole i-blocks in β,

• the set of addresses of i-blocks in G is deep,

• the set of addresses of i-blocks in G is narrow.

is Borel.

200

Proof. All the conditions except the last one are explicitly Borel.
We say that a set P ⊆ ω is well-formed if P ⊆ G and P contains prefixes of some

i-blocks in G. If P is well-formed then by max]b(P) let us denote the maximal number
of letters b in P among all the i-blocks. By the definition, G is narrow if and only if for
every r and well-formed set P such that max]b(P) ≤ r, the lengths of sequences a∗ in P
are bounded.

Note that for each r ∈ N there is a maximal well-formed set Pr ⊆ G such that
max]b(Pr) ≤ r — we take maximal prefixes of all the i-blocks in G until the (r+1)’th
letter b in each i-block. Observe that for a given r ∈ N the set Pr depends continuously on
(β,G). Also if P ⊆ P ′ are well-formed then the lengths of sequences a∗ are bounded in P
only if they are bounded in P ′. Therefore, G is narrow if and only if

∀r∈N ∃n∈N for every sequence a∗ in Pr the length of a∗ is at most n.

This definition is clearly Borel. �

Therefore, an ω-word satisfies ϕi if there exists a set G satisfying Conditions 1 and 2 in
the definition of ϕi and such that the bodies of the i-blocks of G form an ω-word satisfying
¬ϕi−1. By the inductive assumption, all these three conditions are Σ1

i conditions, so L(ϕi)
is a projection of a Σ1

i language and it is itself Σ1
i .

7.5.1 Proof of Theorem 7

Now we can combine the previous results to prove Theorem 7.

Theorem 7. There exists an alphabet A such that for every i > 0 there exists an mso+u
formula ϕi such that the language L(ϕi) ⊆ Aω of ω-words satisfying ϕi is Σ1

i -complete.

Proof. Let A = {0, 1}. Take i ∈ N and ϕi. Functions ci, di, ji are continuous by
Lemma 7.3.2 and the definition of ji. Moreover, using the definition of Hi and Lem-
mas 7.4.2, 7.4.1 their composition reduces IFi to L(ϕi). Thanks to Fact 7.1.2, the set IFi

is Σ1
i -hard.
Lemma 7.5.1 shows that L(ϕi) belongs to Σ1

i .
By standard methods we can encode all the alphabets Bi into A using binary coding.

This additional coding does not influence the topological complexity of the languages. �

201

7.6 Conclusions

This chapter is devoted to a construction of examples of mso+u-definable languages of
ω-words that lie arbitrarily high in the projective hierarchy. Since every mso+u-definable
language of ω-words or infinite trees is somewhere in the projective hierarchy, it closes the
question about bounds on topological complexity of mso+u.

Already these examples show that there is no simple model of automata with countably
many states that would capture mso+u on ω-words. Since the argument is topological,
it covers wide range of complicated models, e.g. automata with counters, stacks, tapes,
etc. Most of the known decidability results for variants of mso involve some automata
equivalent in expressive power. This result can be seen as a witness that decidability of
mso+u on ω-words (if holds at all) requires some essentially new techniques.

As discussed in Chapter 8, the examples constructed in this chapter can be used to
prove that in some sense mso+u logic is undecidable on infinite trees.

This chapter is based on [HS12].

202

Chapter 8

Undecidability of mso+u

As explained in Chapter 7, mso+u logic is an extension of mso that allows to express
quantitative properties of structures. One of the consequences of the big expressive power
of mso+u is that many decision problems about other quantitative formalisms can be
reduced to mso+u. An example is the reduction [CL08] of the non-deterministic index
problem to a certain boundedness problem that can be further reduced to mso+u on
infinite trees. Therefore, decidability of mso+u would be a very desirable result.

In this chapter we show how topological hardness of mso+u on ω-words from Chapter 7
can be used to study decidability of mso+u on infinite trees. This methods lead to the
following theorem from [BGMS14] stating that under a certain set-theoretic assumption
the mso+u theory of the complete binary tree is undecidable. Intuitively, the assumption
that v=l states that all sets in the universe of set theory are constructible.

Theorem 8.1 (Bojańczyk Gogacz Michalewski S. [BGMS14]). Assuming v=l, it is unde-
cidable if a given sentence of mso+u is true in the complete binary tree

(
{L, R}∗,�,≤lex

)
.

The proof of this theorem is divided into two parts by introducing an intermediate
object called proj-mso — a logic evaluated on Polish spaces where every monadic quantifier
ranges over sets from an explicitly declared level of the projective hierarchy (i.e. for each
n there is a quantifier ∃X∈Σ1

n
).

The first part of the proof of Theorem 8.1 is expressed by the following theorem (it
does not rely on the v=l assumption).

Theorem 8. The proj-mso theory of {L, R}≤ω with prefix � and lexicographic ≤lex orders
effectively reduces to the mso+u theory of the complete binary tree

(
{L, R}∗,�,≤lex

)
.

Already this reduction is a strong indication that mso+u should not be decidable.
This indication is discussed in Section 8.3 of this chapter where we give an easy argument
showing that decidability of mso+u on the complete binary tree would have unexpectedly

203

strong consequences regarding set theory (namely, it would imply that analytic determinacy
does not hold).

This chapter is focused on the first part of the proof of Theorem 8.1, that is on Theo-
rem 8.

The second part of the proof of Theorem 8.1 in [BGMS14] is an adaptation of the
techniques of Shelah [She75] (see also [GS82]) who proves that the mso theory of the real
line (R,≤) is undecidable. On page 410 of the cited paper Shelah observes:

Aside from countable sets, we can use only a set constructible
from any well-ordering of the reals.

(1)

The assumption v=l used in Theorem 8.1 exploits this observation by guaranteeing
that there exists such a well-ordering that is projective. By adjusting the reasoning of
Shelah, one gets the following proposition.

Proposition 8.0.1 (Bojańczyk Gogacz Michalewski S. [BGMS14]). Assuming that v=l,
the proj-mso theory of the Cantor set ({L, R}ω,≤lex) is undecidable.

This result together with the reduction from Theorem 8 concludes the proof of Theo-
rem 8.1, see Section 8.4.1. A standalone proof of Proposition 8.0.1 is given in [BGMS14].
Since this proposition is not in the scope of this thesis, we only sketch a proof of it in
Section 8.4.

The following corollary expresses in what sense Theorem 8.1 implies undecidability of
mso+u. It uses another important feature of the v=l assumption: if zfc is consistent
(i.e. there exists a model of set theory) then there exists a model satisfying v=l.

Corollary 8.0.2. If zfc is consistent then there is no algorithm which decides the
mso+u theory of the complete binary tree

(
{L, R}∗,�,≤lex

)
and has a proof of correctness

in zfc.

Proof. [The following proof is in zfc] If zfc is consistent, then Gödel’s constructible
universe L is a model of zfc. In Gödel’s constructible universe, the assumption v=l
holds. Therefore, if zfc is consistent then by Theorem 8.1 it has a model where the
mso+u theory of {L, R}∗ is undecidable. �

The chapter is organised as follows. In Section 8.1 we introduce basic notions, in
particular proj-mso. Section 8.2 is devoted to a proof of Theorem 8. In Section 8.3 we
show that already this theorem implies that it is unlikely to prove decidability of mso+u

204

in zfc. In Section 8.4 we sketch a proof of Proposition 8.0.1 and show how to entail
Theorem 8.1. Finally, in Section 8.5 we conclude.

8.1 Basic notions

We consider the following logical structures: the complete binary tree {L, R}∗, the Cantor
set {L, R}ω, and the union of the two {L, R}≤ω. In the complete binary tree {L, R}∗, the
universe consists of finite words over {L, R}, called nodes, and there are predicates for
the prefix � and lexicographic ≤lex orders. The prefix order corresponds to the ancestor
relation. In the Cantor set {L, R}ω, the universe consists of ω-words over {L, R}, called
branches, and there is a predicate for the lexicographic order. Finally, in {L, R}≤ω, the
universe consists of both nodes and branches, and there are predicates for the prefix and
lexicographic order. In {L, R}≤ω, the prefix relation can hold between two nodes, or between
a node and a branch. The lexicographic order is a total order on both nodes and branches,
e.g. L < Lω < LR.

8.1.1 Gödel’s constructible universe

Let us give a short overview of the construction of Gödel’s constructible universe [Göd39],
following [Jec02, Chapter 13].

Assume thatM is a set and ∈ is a relation onM . We say that a set X ⊆M is definable
over M if there exists a formula ϕ(x,~a) of first-order logic in the language {∈} and a tuple
of elements ~a ∈M such that

X =
{
x ∈M : (M,∈) |= ϕ(x,~a)

}
.

Now let

L0 = ∅,

Lη+1 =
{
X ⊆ Lη : X is definable over (Lη,∈)

}
,

Lη =
⋃
η′<η

Lη′ (if η is a limit ordinal),

L =
⋃
η

Lη (where the sum ranges over all ordinals).

205

Now, let v=l be the axiom stating that: for every set X there exists an ordinal η such
that X ∈ Lη. Since the above inductive construction can be formalized in zfc, this axiom
can be formalized as a first-order sentence of set theory.

Now, Theorems 13.3, 13.16, and 13.18 in [Jec02] state that:

• L is a model of zfc,

• L satisfies the axiom v=l (it is not obvious, since the notion of definability in L may
a priori be different than in the original model).

Therefore, if zfc has any model it has a model satisfying v=l. As observed in [Jec02,
Theorem 25.26] (see also [Mos80, Section 5A]), the following implication holds.

Proposition 8.1.1. v=l implies that there exists a well-order ≤ on {L, R}ω of length ω1

such that ≤ is a ∆1
2 relation, i.e. ≤ ∈∆1

2

(
{L, R}ω × {L, R}ω

)
.

This concludes the properties of the assumption v=l that are used in Theorem 8.1.

8.1.2 Projective mso

For n ≤ ω define the syntax of mson to be the same as the syntax of mso, except that
instead of one pair of set quantifiers ∃X and ∀X, there is a pair of quantifiers ∃iX and
∀iX for every i ≤ n. To evaluate a sentence of mson on a structure, we need a sequence
{Xj}j≤i of families of sets, called the monadic domains. The semantics are then the same
as for mso, except that the quantifiers ∃j and ∀j are interpreted to range over subsets of
the universe that belong to Xj. First-order quantification is as usual, it can quantify over
arbitrary elements of the universe. We write mso

[
X1,X2, . . .

]
for the above logic with the

monadic domains being fixed to X1,X2, Standard mso for structures with a universe Ω
is the same as mso

[
P(Ω)

]
, i.e. there is one monadic domain for the powerset of the universe.

If Ω is equipped with a topology, we define proj-mso on Ω to be

mso
[
Σ1

1(Ω), Σ1
2(Ω), . . .

]
The expressive power of proj-mso is incomparable with the expressive power of mso:
although proj-mso cannot quantify over arbitrary subsets, it can express that a set is in,
say, Σ1

1.

Example 8.1.2. In the structure {L, R}≤ω, being a node is first-order definable: a node is
an element of the universe that is a proper prefix of some other element. Since there are

206

countably many nodes, every set of nodes is Borel, and therefore in Σ1
1({L, R}≤ω). Therefore,

in proj-mso on {L, R}≤ω one can quantify over arbitrary sets of nodes. It is easy to see that
a subset of {L, R}≤ω is in Σ1

n({L, R}≤ω) if and only if it is a union of a set of nodes and a
set from Σ1

n({L, R}ω).

Therefore, we obtain the following remark.

Remark 8.1.3. proj-mso on {L, R}≤ω effectively has the same expressive power as the logic

mso
[
P
(
{L, R}∗

)
, Σ1

1

(
{L, R}ω

)
, Σ1

2

(
{L, R}ω

)
, . . .

]
.

The following example presents certain properties of sets that can easily be expressed
in proj-mso.

Example 8.1.4. In proj-mso on {L, R}≤ω, one can say that a set of branches is countable.
This is by using notions of interval, closed set, and perfect. A set of branches is open
if and only if for every element, it contains some open interval around that element. A
perfect is a set of branches which is closed (i.e. its complement is open) and contains
no isolated points. The notions of open interval, closed set, and perfect are first-order
definable. By [Kec95, Theorem 29.1], a set of branches is countable if and only if it is
in Σ1

1({L, R}ω) and does not contain any perfect subset, which is a property definable in
proj-mso.

8.2 Reduction

In this section we prove the following theorem.

Theorem 8. The proj-mso theory of {L, R}≤ω with prefix � and lexicographic ≤lex orders
effectively reduces to the mso+u theory of the complete binary tree

(
{L, R}∗,�,≤lex

)
.

In Section 8.3 we observe that this reduction itself gives an evidence that mso+u
should not be decidable. The crucial ingredient of the proof of Theorem 8 is Theorem 7
(see Chapter 7, page 15) stating that it is possible to define in mso+u languages of ω-words
that are arbitrarily high in the projective hierarchy. The following lemma shows how these
languages can be used in the reduction.

Lemma 8.2.1. Suppose that L1, L2, . . . ⊆ Aω are definable in mso+u, and let

Xi
def=
{
f−1(Li) : f : {L, R}ω → Aω is a continuous function

}
. (8.2.1)

207

Then for every sentence of mso
[
P
(
{L, R}∗

)
, X1, X2, . . .

]
on {L, R}≤ω, one can compute an

equivalently satisfiable sentence of mso+u on {L, R}∗.

The proof of this lemma is based on the observation that, using quantification over sets
of nodes, one can quantify over continuous functions {L, R}ω → Aω. The construction is
similar in the spirit to the one from [Skr13] (such encodings in the case of Σ0

2- and ∆0
3-sets

date back probably to Büchi [Büc83a]).

Proof. Call a mapping f : {L, R}∗ → A t {ε} proper if on every infinite path in {L, R}∗, the
labelling f contains infinitely many letters different than ε. If f is proper then define
f̂ : {L, R}ω → Aω to be the function that maps a branch to the concatenation of the values
under f of the nodes on the branch (such concatenation erases symbols ε).

Assume that L1, L2, . . . ⊆ Aω is a sequence of mso+u-definable sets. For i > 0 and a
proper mapping f : {L, R}∗ → A t {ε} define

[f]i def=
{
α ∈ {L, R}ω : f̂(α) ∈ Li

}
,

reduces(Li) def=
{
L ⊆ {L, R}ω : L reduces continously to Li

}
(see (8.2.1)).

Proposition 2.6 in [Kec95] implies that

{
[f]i : f is proper

}
= reduces(Li). (8.2.2)

Since a mapping f : {L, R}∗ → A t {ε} can be encoded as a family of disjoint sets
{Xa ⊆ {L, R}∗}a∈A, we will use quantification over sets of nodes to simulate quantification
over continuous functions g : {L, R}ω → Aω.

The reduction in the statement of the lemma works as follows. First-order quantification
over branches is replaced by (monadic second-order) quantification over paths, i.e. subsets
of {L, R}∗ that are totally ordered and maximal for that property. For a formula ∃iX. ϕ, we
replace the quantifier by existential quantification over a family of disjoint subsets {Xa}a∈A
which encode a continuous function. In the formula ϕ, we replace a subformula x ∈ X,
where x is now encoded as a path, by a formula which says that the image of x, under
the function encoded by {Xa}a∈A, belongs to the language Li. In order to verify if a given
element belongs to the language Li definable in mso+u on ω-words, we can use a formula
of mso+u on infinite trees.

More formally, our translation inputs a formula of mso
[
reduces(L1), reduces(L2), . . .

]
and outputs a formula of mso+u on {L, R}∗. It interprets:

208

• a branch x ∈ {L, R}ω by the path Bx = {v ≺ x} ⊆ {L, R}∗,

• a set Xi ∈ reduces(Li) by a labelling f iX : {L, R}∗ → A t {ε} such that [f iX]i = Xi,

• a condition v ≺ x by v ∈ Bx,

• a condition x ∈ Xi by checking that the formula defining Li is true on the labelling f iX
on the nodes in Bx.

Equation (8.2.2) says that the quantifications over Xi ∈ reduces(Li) and over proper
labellings f iX are equivalent. �

Proof of Theorem 8 Theorem 7 from Chapter 7 shows that there is an alphabet A such that
for every i ≥ 1, there is a language Li ⊆ Aω which is definable in mso+u on ω-words and
complete for Σ1

i ({L, R}ω). Apply Lemma 8.2.1 to these languages. By their completeness,
the classes X1,X2, . . . in Lemma 8.2.1 are exactly the projective hierarchy on {L, R}ω, and
therefore Theorem 8 follows thanks to Remark 8.1.3. �

8.3 Projective determinacy

In this section we present an example of a non-trivial property that can be expressed in
proj-mso on {L, R}≤ω. It implies that any algorithm deciding mso+u on the complete
binary tree would have strong set theoretic consequences.

A Gale-Stewart game with winning condition W ⊆ {L, R}ω is the following two-player
game. For ω rounds, the players propose directions d ∈ {L, R} in an alternating fashion,
with the first player proposing a direction in even-numbered rounds, and the second player
proposing a directions in odd-numbered rounds. At the end of such a play, an infinite
sequence α = d0d1 . . . is produced, and the first player wins if this sequence belongs to W ,
otherwise the second player wins. Such a game is called determined if either the first or
the second player has a winning strategy, see [Kec95, Chapter 20] or [Jec02, Chapter 33]
for a broader reference. Martin [Mar75] proved that the games are determined if W is a
Borel set (see Theorem 0.2 on page 26).

We show that for every i > 0, the statement

“every Gale-Stewart game with a winning condition in Σ1
i is determined” (8.3.1)

can be formalised as a sentence ϕidet of proj-mso on {L, R}≤ω.

209

Assume that a formula even(u) (resp. odd(u)) expresses that a given node is at the
even (resp. odd) depth in the complete binary tree {L, R}∗. By sL(u) and sR(u) we denote
the respective successors of u in the tree, i.e. Sd(u) = ud.

First, we define that a set of nodes encodes a strategy for the first player in the Gale-
Stewart game:

SI(σ) = ε ∈ σ ∧

∀u∈σ even(u) =⇒ (sL(u) ∈ σ ⇔ sR(u) /∈ σ) ∧

∀u∈σ odd(u) =⇒ (sL(u) ∈ σ ∧ sR(u) ∈ σ).

The formula SII(σ) defining a strategy for the second player is analogous except that the
predicates even and odd are interchanged.

The following formula says that σ is a winning strategy for the first player for a winning
condition W ⊆ {L, R}ω:

winI(σ,W) = SI(σ) ∧ ∀α∈{L,R}ω (∀u≺α u ∈ σ)⇒ α ∈ W.

Similarly we define

winII(σ,W) = SII(σ) ∧ ∀α∈{L,R}ω (∀u≺α u ∈ σ)⇒ α /∈ W.

Finally, Statement (8.3.1), namely the determinacy of all the Gale-Stewart games with
winning conditions in Σ1

i is expressed by

ϕ1
det

def= ∀W∈Σ1
i
∃σ∈P({L,R}∗) winI(σ,W) ∨ winII(σ,W).

As we show below, the ability to formalise determinacy of Gale-Stewart games with
winning conditions in Σ1

1 already indicates that it is unlikely that proj-mso on {L, R}≤ω is
decidable.

Indeed, suppose that there is an algorithm P deciding the proj-mso theory of {L, R}≤ω

with a correctness proof in zfc. Note that by Theorem 8, this would be the case if there was
an algorithm deciding the mso+u theory of {L, R}∗ with a correctness proof in zfc. Run the
algorithm on ϕ1

det obtaining an answer, either “yes” or “no”. The algorithm together with
its proof of correctness and the run on ϕ1

det form a proof in zfc resolving Statement (8.3.1)

210

for i = 1. The determinacy of all Σ1
1 games cannot1 be proved in zfc, because it does not

hold if v=l, see [Jec02, Corollary 25.37 and Section 33.9], and therefore P must answer
“no” given input ϕ1

det.
This means that a proof of correctness for P would imply a zfc proof that State-

ment (8.3.1) is false for i = 1. Such a possibility is considered very unlikely by set theo-
rists, see [FFMS00] for a discussion of plausible axioms extending the standard set of zfc
axioms.

A similar example regarding the mso theory of (R,≤) and the Continuum Hypothesis
was provided in [She75].

8.4 Undecidability of proj-mso on {L, R}ω

The undecidability of mso+u (see Theorem 8.1) follows from the reduction in Theorem 8
and Proposition 8.0.1 below.

Proposition 8.0.1 (Bojańczyk Gogacz Michalewski S. [BGMS14]). Assuming that v=l,
the proj-mso theory of the Cantor set ({L, R}ω,≤lex) is undecidable.

This proposition is not in the scope of the thesis and we do not prove it here in detail.
Instead, in this section we show how this result can be obtained by adjusting the reasoning
in [She75, Theorem 7.1] by following the suggestion of Shelah, see Quotation (1) on page 204
of the thesis.

There are three adjustments needed:

1. Instead of working on the real line R we use here the Cantor set {L, R}ω.

2. We have to repeat the inductive construction of a set Q from [She75, Lemma 7.4] in
such a way to guarantee that Q is Σ1

n for some n ∈ N.

3. We have to argue that the resulting formula G(θ) is a proj-mso formula.

The second adjustment above uses the assumption that v=l to construct a projective
set Q. Having done this, it is enough to carefully read the formula G(θ) of Shelah: it
quantifies existentially over sets Q, countable sets D, arbitrary subsets of D, perfects, and
intervals. All these quantifiers are projective, see Example 8.1.4.

1Except for the case if zfc is not consistent and it is possible to prove everything in zfc.

211

8.4.1 Proof of Theorem 8.1

Now we can combine the above results to prove the undecidability result.

Theorem 8.1. Assuming v=l, it is undecidable if a given sentence of mso+u is true in
the complete binary tree

(
{L, R}∗,�,≤lex

)
.

Proof. Assume v=l. In that case the proj-mso theory of the Cantor set ({L, R}∗,≤lex) is
undecidable by Proposition 8.0.1. By Remark 8.1.3 it can be reduced to the proj-mso
theory of

(
{L, R}≤ω,�,≤lex

)
. Theorem 8 implies that the latter can be reduced to the

mso+u theory of the complete binary tree. Therefore, this theory is undecidable. �

8.5 Conclusions

This chapter presents a reduction from a logic called proj-mso to mso+u on infinite
trees. The reduction involves the topologically hard languages constructed in Chapter 7.
As shown in [BGMS14], assuming that v=l, the proj-mso theory of the Cantor set is
undecidable. Therefore, the two results together imply that (assuming v=l) mso+u logic
is undecidable on infinite trees.

As shown in the above chapter, it is possible to express in proj-mso some deep properties
of the universe of set theory. Therefore, any algorithm solving mso+u on infinite trees
would have some remarkable knowledge about this universe. As an example, it is shown
that if mso+u would be decidable on infinite trees then analytic determinacy would be
provably false (in zfc). The latter possibility is considered very not likely by set theorists.
These intuitions are expressed by the following conjecture.

Conjecture 8. It is possible to prove in zfc that the mso+u theory of the complete binary
tree is undecidable.

The undecidability result about proj-mso makes a strong link between topological com-
plexity and decidability. What is in fact proved in [BGMS14] is that under the assumption
that v=l, even a weaker variant of proj-mso where set quantifiers range over sets up to the
sixth level of the projective hierarchy (i.e. Σ1

6-sets) is undecidable. On the other hand, if we
restrict set quantifiers to Σ0

2 then the theory becomes decidable. It somehow justifies the
impression that the more complicated sets are allowed, the more undecidable the theory
is. It should be related to the following conjecture of Shelah.

212

Conjecture 9 ([She75, Conjecture 7B]). The monadic theory of (R,≤) where the set
quantifiers range over Borel sets is decidable.

As Shelah comments, the above conjecture is motivated by Borel determinacy (that
was proved by Martin [Mar75], see Theorem 0.2 on page 26). On the other hand, the
assumption that v=l implies that projective determinacy fails. Therefore, one can state
the following question.

Open problem 8.5.1. Assume that all analytic (Σ1
1) games are determined. Does it imply

that the monadic theory of (R,≤) where the set quantifiers range over Σ1
1-sets is decidable?

This chapter is based on [BGMS14].

213

Chapter 9

Separation for ωB- and ωS-regular lan-
guages

In this chapter we study the classes of ωB- and ωS-regular languages, introduced by Bo-
jańczyk and Colcombet in [BC06]. These languages of ω-words are defined as those that
can be recognised by a certain model of counter automata with asymptotic acceptance
condition. Both these classes are strictly contained in the class of mso+u-definable lan-
guages, the advantage of these classes is that they admit effective constructions. A standard
example of an ωB-regular language is the following

{an0ban1ban2b . . . : the sequence ni is bounded} ⊆ {a, b}ω.

The main technical contribution of [BC06] states that the complement of an ωB-regular
language is effectively ωS-regular and vice versa; and the emptiness problem is decidable
for both these classes. Although these languages do not form a Boolean algebra, these
properties guarantee some kind of robustness of these two classes.

In this chapter we show that both classes of ωB- and ωS-regular languages admit the
separation property with respect to ω-regular languages (see Definition 0.7.6 on page 47
in Section 0.7.5), as expressed by the following theorem.

Theorem 9. If L1, L2 are disjoint languages of ω-words both recognised by ωB- (respec-
tively ωS)-automata then there exists an ω-regular language Lsep such that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

Additionally, the construction of Lsep is effective.

214

The result is especially interesting since these are two mutually dual classes (see Theo-
rem 9.3) — usually exactly one class from a pair of dual classes has the separation property,
see Section 0.7.5, page 47.

As a consequence of the separation property we obtain the following corollary.

Corollary 9.0.2. If a given language of ω-words L and its complement Lc are both ωB-
regular (resp. ωS-regular) then L is ω-regular.

Proof. Let L be a language of ω-words such that L and Lc are both ωT-regular (for
T ∈ {B, S}). By Theorem 9 there exists an ω-regular language Lsep that separates L and
Lc. But in that case Lsep = L so L is ω-regular. �

The above corollary was independently known by some researchers in the area (with
a proof not involving separation). Nevertheless, to the best of the author’s knowledge, it
has never been published before [Skr14].

To prove Theorem 9 we reduce the separation property of ω-word languages to the case
of profinite words. For this purpose we use B- and S-automata introduced in [Col09]. As
shown in [Tor12] it is possible to define a language recognised by a B- or S-automaton as
a subset of the profinite monoid Â∗. An intermediate step in our reasoning is proving the
separation property for B- and S-regular languages of profinite words.

The chapter is organised as follows. In Section 9.1 we introduce basic notions including
the profinite monoid Â∗. Section 9.2 defines the automata models we use. In Section 9.3 we
prove separation results for languages of profinite words recognised by B- and S-automata.
Section 9.4 contains the crucial technical tool, Theorem 9.5, that enables to transfer sep-
aration results for languages of profinite words to the case of ω-words. In Section 9.5 we
use this theorem to show that ωB- and ωS-regular languages have the separation property.
Finally, Section 9.6 is devoted to conclusions.

9.1 Basic notions

We work with two models of automata (ωB and ωS) at the same time. Therefore, we
introduce a notion ωT to denote one of the models: ωB or ωS. By T we denote the
corresponding model of automata on finite words (B or S).

215

9.1.1 Monoid of runs

We define here a monoid representing possible runs of a non-deterministic automaton. It
can be seen as an algebraic formalisation of the structure used by Büchi [Büc62] in his fa-
mous complementation lemma. A general introduction to monoids is given in Section 0.5.1
(see page 31).

Let A be a non-deterministic automaton. Define Mtrans(A) as P(QA × QA). Let the
neutral element be {(q, q) : q ∈ QA} and product:

s · s′ =
{

(p, r) : ∃q∈QA (p, q) ∈ s ∧ (q, r) ∈ s′
}
.

Let fA : A∗ → Mtrans(A) map a given finite word u to the set of pairs (p, q) such that
the automaton A has a run over u starting in p and ending in q.

It is easy to check that Mtrans(A) is a finite monoid and fA is a homomorphism.

9.1.2 Profinite monoid

In this subsection we introduce the profinite monoid Â∗. A formal introduction to profinite
structures can be found in [Alm03] or [Pin09]. We refer to [Pin09]. A construction of the
profinite monoid using purely topological methods is given in [Skr11].

First we provide a construction of the profinite monoid Â∗. The idea is to enhance the
set of all finite words by some virtual elements representing sequences of finite words that
are more and more similar.

Let K0, K1, . . . be a list of all regular languages of finite words. Let X = 2ω. Each
element x ∈ X can be seen as a sequence of bits, the bit x(n) indicates whether our virtual
word belongs to the language Kn.

Define µ : A∗ → X by the following equation:

µ(u)n =

1 if u ∈ Kn,

0 if u /∈ Kn.

The function µ defined above is injective. Let Â∗ ⊆ X be the closure of µ(A∗) in X

with respect to the product topology of X. Therefore, Â∗ contains µ(A∗) and the limits of
its elements. To simplify the notion we identify u ∈ A∗ with its image µ(u) ∈ Â∗.

216

Example 9.1.1 (Proposition 2.5 in [Pin09]). Let un = an! for n ∈ N. A simple automata-
theoretic argument shows that for every regular language K, either almost all words (un)n∈N
belong to K or almost all do not belong to K. Therefore, the sequence (µ(un))n∈N is
convergent coordinate-wise in X. The limit of this sequence is an element of Â∗ \ µ (A∗).

The following fact summarises basic properties of Â∗.

Fact 9.1.2 (Proposition 2.1, Proposition 2.4, and Theorem 2.7 in [Pin09]). Â∗ is a compact
metric space. A∗ (formally µ (A∗)) is a countable dense subset of Â∗. Â∗ has a structure
of a monoid that extends the structure of A∗ and the product is continuous.

It turns out that the operation assigning to every regular language of finite words
K ⊆ A∗ its topological closure K ⊆ Â∗ has good properties (see Theorem 9.1). Therefore,
we introduce the following definition.

Definition 9.1.3. A profinite-regular language is a subset of Â∗ of the form K for some
regular language K ⊆ A∗.

Using this definition, we can denote a generic profinite-regular language as K for K
ranging over regular languages. Using the definition of µ one can show the following easy
fact.

Fact 9.1.4. A language of profinite words M ⊆ Â∗ is profinite-regular if and only if it is
of the form

M =
{
x ∈ 2ω : x ∈ Â∗ ∧ xn = 1

}
, (9.1.1)

for some n ∈ N. In that case M = Kn.

The structures of profinite-regular and regular languages are in some sense identical.
This is expressed by the following theorem.

Theorem 9.1 (Theorem 2.4 in [Pin09]). The function K 7→ K ⊆ Â∗ is an isomorphism
of the Boolean algebra of regular languages and the Boolean algebra of profinite-regular
languages. Its inverse is M 7→ µ−1(M) ⊆ A∗ (when identifying A∗ with µ(A∗) we can
write M 7→M ∩ A∗ ⊆ A∗).

By the definition of Â∗ and the fact that regular languages are closed under finite
intersection, we obtain the following important fact.

Fact 9.1.5. The family of profinite-regular languages is a basis of the topology of Â∗.

217

The topology of Â∗ is the product topology. Therefore, a sequence of finite words
U = u0, u1, . . . is convergent to u ∈ Â∗ if and only if (µ(un))n∈N ⊆ X is convergent
coordinate-wise to u. The following fact formulates this condition in a more intuitive way.

Fact 9.1.6. A sequence of finite words U = u0, u1, . . . is convergent to u ∈ Â∗ if and only
if for every profinite-regular language K either:

• u ∈ K and almost all words un belong to K,

• u /∈ K and almost all words un do not belong to K.

The topology of Â∗ is defined in such a way that it corresponds precisely to profinite-
regular languages. The following fact summarises this correspondence.

Fact 9.1.7 (Proposition 4.2 in [Pin09]). A language M ⊆ Â∗ is profinite-regular if and
only if it is a closed and open (clopen) subset of Â∗.

Proof. First assume thatM = K is a regular language of profinite words. Equation (9.1.1)
in Fact 9.1.4 defines a closed and open set.

Now assume that M is a closed and open subset of Â∗. Recall that profinite-regular
languages form a basis for the topology of Â∗ (Fact 9.1.5). Since M is open so it is a
union of base sets ⋃j∈J Kj. Since M is a closed subset of a compact space Â∗, M is
compact. Therefore, only finitely many languages among

{
Kj

}
j∈J

form a cover of M . But
a finite union of profinite-regular languages is a profinite-regular language. Therefore, M
is profinite-regular. �

9.1.3 Ramsey-type arguments

In this section we introduce an extension of Ramsey’s theorem (see Section 0.5.4, page 34)
to the case where colours come from the profinite monoid. To state it formally we use the
following definitions.

Definition 9.1.8. Assume that U = u0, u1, . . . is a sequence of finite words. We say
that W = w0, w1, . . . is a grouping of U if there exists an increasing sequence of numbers
0 = i0 < i1 < . . . such that for every n ∈ N we have

wn = uinuin+1 . . . uin+1−1.

218

Observe that ifW = w0, w1, . . . is a grouping of U = u0, u1, . . . then u0u1 · · · = w0w1 · · · .
We will use the notion of the f -type of a decomposition α = u0u1 . . . from Defini-

tion 0.5.3 on page 34. Recall also that t = (s, e) is called a linked pair if s · e = s and
e · e = e. By the definition, if t = (s, e) is an f -type of a decomposition of some ω-word
then t is a linked pair.

Note that if U is a decomposition of an ω-word α and U is of f -type t = (s, e) then
every grouping of U is also a decomposition of α of f -type t. The notion of grouping
introduces a stronger version of convergence.

Definition 9.1.9. We say that a sequence of finite words U = u0, u1, . . . is strongly con-
vergent to a profinite word u if every grouping of U is convergent to u.

The following result is an extension of Ramsey’s theorem to the case of the profinite
monoid.

Theorem 9.2 (Bojańczyk Kopczyński Toruńczyk [BKT12]). Let U = u0, u1, . . . be an
infinite sequence of finite words. There exists a grouping Z of U such that Z strongly
converges in Â∗.

For the sake of completeness we give a proof of this fact below. The theorem holds in
general, where instead of Â∗ is any compact metric monoid. Also, the notion of convergence
can be strengthened in the thesis of the theorem: all the groupings of U converge in a
uniform way. In this chapter we use only the above, simplified form.

Proof. Let K be a regular language and W = w0, w1, . . . be a sequence of finite words.
Define a function αK,W : [N]2 → {0, 1} that takes a pair of numbers i < j and returns 1
if and only if wiwi+1 . . . wj−1 belongs to K. By Theorem 0.1 from page 21, there exists a
monochromatic set S ⊆ N with colour c ∈ {0, 1} such that for every pair i < j ∈ S we
have αK,W ({i, j}) = c.

Now, take a sequence of finite words U . We will construct a sequence of words zi using
a diagonal construction. Let K0, K1, . . . be an enumeration of all regular languages and let
U0 = U . We proceed by induction for i = 0, 1, Assume that after i’th step a sequence
U i = ui0, u

i
1, . . . is defined. First define zi as ui0. Now, let S = {n0, n1, . . .} be an infinite

monochromatic set with respect to αKi,U i . Define

U i+1 =
(
uin0u

i
n0+1 . . . u

i
n1−1

)
,
(
uin1u

i
n1+1 . . . u

i
n2−1

)
,
(
uin2u

i
n2+1 . . . u

i
n3−1

)
, . . .

219

Note that U i+1 is a suffix of a grouping of U i. Since S is monochromatic and by the
definition of αK,W , we know that:
(∗) For every grouping of U i+1 either all words in the grouping belong to Ki or all of them
do not belong.

We claim that our sequence Z = z0, z1, . . . is strongly convergent. Let W be a grouping
of Z and let K = Ki be a regular language. Observe that almost all words inW (all except
first at most i words) are obtained by grouping words in U i+1. Therefore, by (∗), either
almost all words of W belong to K or almost all of them do not belong to K. Fact 9.1.6
implies that W is convergent in Â∗.

Now observe that almost all words in W belong to Ki if and only if almost all the
words in Z belong to Ki. Therefore, the limit of W does not depend on the choice of W .
It means that Z is strongly convergent in Â∗. �

9.1.4 Notation

In this chapter we deal with three types of languages: of finite words, of profinite words,
and of ω-words. To simplify reading of the chapter, we use the following conventions:

• finite and profinite words are denoted by u,w,

• sequences of finite words are denoted by U,W,Z,

• ω-words are denoted by α, β,

• regular languages of finite words are denoted by K,

• profinite-regular languages are, using Theorem 9.1, denoted by K,

• general languages of profinite words are denoted by M ,

• languages of ω-words (both ω-regular and not) are denoted by L.

9.2 Automata

In this section we provide definitions of four kinds of automata: B-, S-, ωB- and ωS-
automata. B- and S-automata read finite words while ωB- and ωS-automata read ω-words.

The ωB- and ωS-automata models were introduced in [BC06], we follow the definitions
from this work. The B- and S-automata models were defined in [Col09]. For the sake

220

of simplicity, we use only the operations {nil, inc, reset} (without the check operation).
As noted in Remark 1 in [Col09] (see also [BC06]), this restriction does not influence the
expressive power.

The four automata models we study here are part of a more general theory of regular
cost functions that is developed mainly by Colcombet [Col09, Col13]. In particular, the
theory of B- and S-automata has been extended to finite trees in [CL10].

All four automata models we deal with are built on the basis of a counter automaton.
The difference is the acceptance condition that we introduce later.

Definition 9.2.1. A counter automaton is a tuple A =
〈
AA, QA, IA,ΓA, δA

〉
, where:

• AA is an input alphabet,

• QA is a finite set of states,

• IA ⊆ QA is a set of initial states,

• ΓA is a finite set of counters,

• δA ⊆ QA × AA × {nil, inc, reset}ΓA ×QA is a transition relation.

All counters store natural numbers and cannot be read during a run. The values of the
counters are only used in an acceptance condition.

In the initial configuration all counters equal 0. A transition (p, a, o, q) ∈ δA (sometimes
denoted p a,o−→ q) means that if the automaton is in a state p and reads a letter a then it
can perform counter operations o and go to the state q. For a counter c ∈ ΓA a counter
operation o(c) can:

o(c) = nil leave the counter value unchanged,
o(c) = inc increment the counter value by one,
o(c) = reset reset the counter value to 0.

A run ρ of the automaton A over a word (finite or infinite) is a sequence of transitions as
for standard non-deterministic automata. Given a run ρ, a counter c ∈ ΓA, and a position
rc of a word where the counter c is reset, we define val(c, ρ, rc) as the value stored in the
counter c at the moment before the reset rc in ρ.

To simplify the constructions we allow ε-transitions in our automata. The only require-
ment is that there is no cycle consisting of ε-transitions only. ε-transitions can be removed

221

qIstart qM

a,nil

b,nil

b,nil
a, inc

b, reset

Figure 9.2.1: An example of an ωB-automaton AωB.

using non-determinism of an automaton and by combining a sequence of counter opera-
tions into one operation. Such a modification may change the exact values of counters,
for instance when we replace inc, reset by reset. However, the limitary properties of the
counters are preserved (the values may be disturbed only by a linear factor).

9.2.1 ωB- and ωS-automata

First we deal with automata for ω-words, following the definitions in [BC06]. An ωT-
automaton (for ωT ∈ {ωB, ωS}) is just a counter automaton. A run ρ of an ωT-automaton
over an ω-word α is accepting if it starts in an initial state in IA, every counter is reset
infinitely many times, and the following condition is satisfied:

ωB-automaton the values of all counters are bounded during the run,

ωS-automaton for every counter c the values of c during resets in ρ tend to infinity
(i.e. the limit of the values of c is ∞).

An ωT-automaton A accepts an ω-word if it has an accepting run on it. The set of all
ω-words accepted by A is denoted L(A).

Example 9.2.2. Consider the ωB-automaton AωB depicted on Figure 9.2.1. AωB guesses
(by moving to the state qM) to measure the length of some blocks of letters a. It accepts an
ω-word α if and only if it is of the form

α = an0ban1b . . . with lim inf
i→∞

ni <∞.

We can also treat AωB as an ωS-automaton. In that case it accepts an ω-word α if and
only if it is of the form

α = an0ban1b . . . with lim sup
i→∞

ni =∞.

222

It is easy to check that a non-deterministic Büchi automaton can be transformed into
an equivalent ωB- (resp. ωS)-automaton. Therefore, all ω-regular languages are both ωB-
and ωS-regular.

The following theorem summarizes properties of ωB- and ωS-regular languages.

Theorem 9.3 ([BC06, Theorem 4.1]). The complement of an ωB-regular language is
effectively ωS-regular and vice versa.

The emptiness problem is decidable for ωB- and ωS-regular languages.

9.2.2 B- and S-automata

In the finite word models the situation is a little more complicated than in the ωB- and
ωS-automata models. The automaton not only accepts or rejects a given word but also it
assigns a value to a word.

Formally, a T-automaton (for T ∈ {B, S}) is a counter automaton that is additionally
equipped with a set of final states FA ⊆ QA. An accepting run ρ of an automaton over a
finite word u is a sequence of transitions starting in some initial state in IA and ending in
some final state in FA.

The following equations define val(A, u) — the value assigned to a given finite word
by a given automaton. We use the convention that if a set of values is empty then the
minimum of this set is ∞ and the maximum is 0. The variable ρ ranges over all accepting
runs, c ranges over counters in ΓA, while rc ranges over positions where the counter c
is reset in ρ. As noted at the beginning of this section, we do not allow explicit check
operation, we only care about the values of the counters before resets.

B-automaton AB

val(AB, u) = min
ρ

val(ρ) and val(ρ) = max
c

max
rc

val(c, ρ, rc),

S-automaton AS

val(AS, u) = max
ρ

val(ρ) and val(ρ) = min
c

min
rc

val(c, ρ, rc).

The following simple observation is crucial in the subsequent definitions.

223

Lemma 9.2.3. For a given number n, a B-automaton AB, and an S-automaton AS the
following languages of finite words are regular:

L(AB ≤ n) def= {u : val(AB, u) ≤ n} ,

L(AS > n) def= {u : val(AS, u) > n} .

Proof. We can encode a bounded valuation of the counters into a state of a finite automa-
ton. �

9.2.3 Languages

The above definitions give semantics of a T-automaton in terms of a function

val(A, .) :
(
AA

)∗
→ N t {∞}.

As noted in [Tor12], it is possible to define the language recognised by such an automaton
as a subset of the profinite monoid Â∗. We successively define it for B-automata and
S-automata. In both cases the construction is justified by Lemma 9.2.3.

B case: Fix a B-automaton AB and define

L(AB) def=
⋃
n∈N

L(AB ≤ n) ⊆ Â∗. (9.2.1)

S case: Fix an S-automaton AS and define

L(AS) def=
⋂
n∈N

L(AS > n) ⊆ Â∗. (9.2.2)

Note that the sequences of languages in the above equations are monotone: increasing
in (9.2.1) and decreasing in (9.2.2).

There exists another, equivalent way of defining languages recognised by these automata
[Tor12]. One can observe that the function val(A, .) assigning to every finite word its value
has a unique continuous extension on Â∗. The languages recognised by B- and S-automata
can be defined as val(A, .)−1(N) and val(A, .)−1({∞}) respectively. In this chapter we only
refer to the definitions (9.2.1) and (9.2.2).

Example 9.2.4. Consider the S-automaton AS depicted in Figure 9.2.2. The automaton
measures the number of letters a in a given word. Then it guesses that the word is finished

224

qIstart qF

a, inc

b,nil

ε, reset

Figure 9.2.2: An example of an S-automaton AS.

and moves to the accepting state. For every finite word u the value val(AS, u) equals the
number of letters a in u.

The language L(AS) does not contain any finite word. It contains a profinite word u if
for every n the word u belongs to the profinite-regular language defined by the formula “the
word contains more than n letters a” (i.e. u ∈ L(AS > n)). In particular, the limit of the
sequence (an!)n∈N from Example 9.1.1 belongs to L(AS).

Lemma 9.2.5. Every B-regular language is an open subset of Â∗ and dually every S-regular
language is closed.

Proof. By equations (9.2.1) and (9.2.2), a B-regular language is a sum of profinite-regular
languages and an S-regular language is an intersection of profinite-regular languages. By
Fact 9.1.7, profinite-regular languages are closed and open, therefore their sum is open and
the intersection is closed. �

The converse of Lemma 9.2.5 is false as there are uncountably many open subsets of
Â∗ — there are some open subsets of Â∗ that are not B-regular.

We finish the definitions of automata models by recalling the following theorem.

Theorem 9.4 (Fact 2.6 and Corollary 3.4 in [BC06], Theorem 8 and paragraph Closure
properties in [Tor12]). Let T ∈ {B, S, ωB, ωS}. The class of T-regular languages is effec-
tively closed under union and intersection. The emptiness problem for T-regular languages
is decidable.

Therefore, it is decidable whether given two T-regular languages are disjoint.

9.3 Separation for profinite languages

In this section we show the following proposition.

225

Proposition 9.3.1. Let T ∈ {B, S}. Assume that languages of profinite words M1,M2 ⊆
Â∗ are recognised by T-automata and M1 ∩M2 = ∅. Then there exists a profinite-regular
language Ksep ⊆ Â∗ such that

M1 ⊆ Ksep and M2 ⊆ Ksep
c
.

Additionally, the language Ksep can be computed effectively basing on M1 and M2.

The proof of the proposition consists of two parts, one for each of the two cases of
T ∈ {B, S}: Lemma 9.3.2 and Proposition 9.3.4.

First we prove the case when T = S. The presented proof uses a general topological
fact: the separation property of closed (i.e. Π0

1) sets in a zero-dimensional Polish space
(see Section 0.6, page 34 for a definition of these spaces).

Lemma 9.3.2. A pair of disjoint S-regular languages of profinite words can be separated
by a profinite-regular language.

Proof. Take two S-regular languages M1,M2 ⊆ Â∗.
Observe that Â∗ is a closed subset of a zero-dimensional Polish space 2ω, therefore

Â∗ is also zero-dimensional Polish space. Therefore, the Π0
1-separation property holds for

Â∗ (see [Kec95, Theorem 22.16]). By Lemma 9.2.5 every S-regular language is Π0
1 in Â∗,

therefore M1, M2 can be separated in Â∗ by a set Msep that is closed and open in Â∗. By
Fact 9.1.7, the language Msep is profinite-regular. �

Instead of using the Π0
1-separation property, one can provide the following straight-

forward argument that uses the compactness of Â∗. We know that M1 is a closed subset
of a compact space Â∗ so M1 is compact itself. Assume that M2 is recognised by an
S-automaton AS. By (9.2.2) we obtain

M2 =
⋂
n∈N

L(AS > n) ⊆ Â∗.

For n ∈ N define Nn
def= L(AS > n)c — the complement of the profinite-regular lan-

guage L(AS > n). Clearly M1 ⊆
⋃
nNn because M1 and M2 are disjoint. Fact 9.1.7 and

Lemma 9.2.3 imply that the sets Nn are open subsets of Â∗. Therefore, the family (Nn)n∈N
is an open cover of M1. Since M1 is compact, there is n0 ∈ N such that

M1 ⊆ N0 ∪N1 ∪ . . . ∪Nn0 = Nn0 .

226

Therefore, Nn0 is a profinite-regular language that separates M1 and M2.

Remark 9.3.3. The language Nn0 can be computed effectively.

Proof. It is enough to observe that n0 can be taken as the minimal n such thatM1 does not
intersect the profinite-regular language L(AS > n). Such n exists by the above argument.

�

Now we proceed with the separation property for B-regular languages. By Lemma 9.2.5
we know that B-regular languages are open sets in Â∗. An easy exercise shows that
in general open sets do not have the separation property. Thus, to show the following
proposition we need an argument that is a bit more involved than in the case of S-regular
languages.

Proposition 9.3.4. A pair of disjoint B-regular languages of profinite words can be sepa-
rated by a profinite-regular language.

We obtain the above proposition by applying the following observation.

Lemma 9.3.5. For every B-regular language MB ⊆ Â∗ there exists a profinite-regular
language KR ⊆ Â∗ such that

MB ⊆ KR and MB ∩ A∗ = KR ∩ A∗.

Moreover, the language KR can be computed effectively.

Proof. Take a B-automaton AB recognisingMB. Define a new automaton AR by removing
from AB all the counters and all the counter operations. What remains are transitions,
initial states, and final states. Put KR = L(AR) ⊆ Â∗. Of course MB ⊆ L(AR) by the
definition of MB. Clearly L(AR)∩A∗ = L(AR) by Theorem 9.1. What remains to show is
that L(AR) ⊆MB.

Take a finite word u ∈ L(AR). Observe that AB has an accepting run on u because
u ∈ L(AR). So val(AB, u) ≤ |u| because AB cannot do more increments than the number
of positions of the word. Therefore u ∈MB. �

Proof of Proposition 9.3.4. Take two disjoint B-regular languages M1,M2 ⊆ Â∗. Define
Ksep to be the language KR from Lemma 9.3.5 for M1. Thus we know that M1 ⊆ KR. We
only need to show that M2 ∩ KR = ∅. Assume the contrary, that MI

def= M2 ∩ KR 6= ∅.
Since B-regular languages are open sets in Â∗, MI is an open set. Since A∗ is dense in Â∗

227

so MI contains a finite word u ∈ A∗. But by the definition of KR in that case u ∈M1. So
u ∈M1 ∩M2 — a contradiction to the disjointness of M1, M2. �

Remark 9.3.6. Both separation results for B- and S-regular languages are effective: there
is an algorithm that inputs two counter automata, verifies that the intersection of the
languages is empty, and outputs an automaton recognising a separating language.

Proof. By Theorem 9.4 it is decidable if two B- (resp. S)-regular languages are disjoint.
As observed in Remark 9.3.3 and Lemma 9.3.5, both constructions can be performed
effectively. �

This concludes the proof of Proposition 9.3.1 in both cases T = B and T = S.

9.4 Reduction

This section contains a proof of our crucial technical tool — Theorem 9.5. It is inspired
by the reduction theorem from [Tor12], however, the statements of these theorems are
incomparable.

Intuitively, ωB- and ωS-automata are composed of two independent parts, we can call
them the ω-regular part and the asymptotic part. The ω-regular part corresponds to
states and transitions of the automaton, while the asymptotic part represents quantitative
conditions that can be measured by counters. In this section we show how to formally
state this division. It can be seen as an extension of the technique presented in [BC06].

Recall from Section 9.1.1 (see page 216) that Mtrans(A) is the monoid of state trans-
formations of a non-deterministic automaton A. The canonical homomorphism from finite
words to Mtrans(A) is denoted fA.

Theorem 9.5. Let T ∈ {B, S}. Fix an ωT-automaton A and a linked pair t = (s, e) in
the trace monoid Mtrans(A). There exists a T-regular language of profinite words Mt ⊆ Â∗

with the following property:
If α is an ω-word and U = u0, u1, . . . is a decomposition of α of type t then the following

conditions are equivalent:

1. α ∈ L(A),

2. there exists a grouping W of U that strongly converges to a profinite word w ∈Mt,

3. there exists a grouping W of U that converges to a profinite word w ∈Mt.

228

Additionally, one can ensure that Mt ⊆ f−1
A (e). The construction of a T-automaton

recognising Mt is effective given A and t.

The rest of this section is devoted to showing the above theorem. We fix for the whole
proof an ωT-automaton A = 〈A,Q, I,Γ, δ〉 and a type t = (s, e) in Mtrans(A).

Intuitively, the requirement for a decomposition U to be of the type t corresponds to
the ω-regular part of A while the convergence of U to an element of Mt takes care of the
asymptotic part of A.

Let us put Ke = f−1
A (e) and assume that Be = 〈A,Qe, {qI,e}, δe, Fe〉 is a deterministic

finite automaton recognising the regular language Ke. We will ensure that Mt ⊆ Ke.
First we show how to construct a language Mt, later we prove its properties. The

definition of Mt depends on whether T = B or T = S. The first case is a bit simpler.
Case T = B The language Mt is obtained as the union of finitely many B-regular

languages indexed by states q ∈ Q:

Mt =
⋃
q∈Q

L(Aq),

for B-automata Aq that we describe below. Intuitively, an automaton Aq measures loops
in A starting and ending in q.

If for no q0 ∈ I we have (q0, q) ∈ s or if (q, q) /∈ e then L(Aq) = ∅. Assume otherwise.
First we give an informal definition of Aq:

• it is obtained from A by interpreting it as a finite word B-automaton,

• it has initial and final state set to q,

• it checks that all the counters are reset in a given word,

• it checks that a given word belongs to Ke,

• it resets all the counters at the end of the word.

Now we give a precise definition of Aq = 〈A,Qq, Iq,Γq, δq, Fq〉. Let:

• Qq = {?} t Q×Qe × {⊥,>}Γ,

• Iq = {(q, qI,e, (⊥,⊥, . . . ,⊥))},

• Γq = Γ,

229

• Fq = {?},

and let δq contain the following transitions:

• (p, r, b) a,o−→ (p′, r′, b′) if p a,o−→ p′ ∈ δ, r a−→ r′ ∈ δe and for every c ∈ Γ we have
b′(c) = b(c) ∨ (o(c) = reset),

• (q, r, (>,>, . . . ,>)) ε,o−→ ? for o = (reset, reset, . . . , reset) if r ∈ Fe.

The state ? is the only final state used to perform the reset at the end of a word. During
a run, the automaton Aq simulates A and Be in parallel, using Q and Qe. Additionally, a
vector in {⊥,>}Γ denotes for every counter whether it was already reset in a word or not.

Case T = S In that case the language Mt is obtained as the union of finitely many
S-regular languages indexed by pairs (q, τ) ∈ Q× {←,→}Γ:

Mt =
⋃

(q,τ)
L(Aq,τ).

Intuitively, an automaton Aq,τ recognises loops q →∗ q as before. Additionally, the vector τ
denotes whether a given counter c ∈ Γ obtains bigger values before the first reset (τ(c) =→)
or after the last reset (τ(c) =←) on a given finite word. The following definition formalises
this property. A similar technique of assigning a reset type to a finite run can be found
in [BC06].

Definition 9.4.1. Let ρ be a run of some counter automaton A over an ω-word α. Let
k ∈ N be a position in α and let c ∈ Γ be a counter of A. Let:

• VL be the number of increments of c between the last reset before k and k,

• VR be the number of increments of c between k and the first reset after k.

If there is no reset of c at some side of k then the respective value is 0. Define the end-type
of c on ρ in k (denoted as Etp(c, ρ, k)) by the following equation:

Etp(c, ρ, k) =

→ if VL < VR,

← if VL ≥ VR.

As before if for no q0 ∈ I, we have (q0, q) ∈ s or if (q, q) /∈ e then L(Aq,τ) = ∅. Assume
otherwise. We start with an informal definition of Aq,τ :

230

• it is obtained from A by interpreting it as a finite word S-automaton,

• it has initial and final state set to q,

• it checks that all the counters are reset in a given word,

• it checks that a given word belongs to Ke,

• for every counter c ∈ Γ:

– if τ(c) =← then Aq,τ skips the first reset of c and all the previous increments of
c but resets c at the end of a given word,

– if τ(c) =→ then Aq,τ acts on c exactly as A (with no additional reset at the end
of the word).

Formally, let Aq,τ = 〈A,Qq,τ , Iq,τ ,Γq,τ , δq,τ , Fq,τ 〉 such that

• Qq,τ = {?} t Q×Qe × {⊥,>}Γ,

• Iq,τ = {(q, qI,e, (⊥,⊥, . . . ,⊥))},

• Γq,τ = Γ,

• Fq,τ = {?},

and δq,τ contains the following transitions:

• (p, r, b) a,o′−→ (p′, r′, b′) if p a,o−→ p′ ∈ δ, r a−→ r′ ∈ δe, and for every c ∈ Γ we have:

– b′(c) = b(c) ∨ (o(c) = reset),

– if b(c) = ⊥ and τ(c) =← then o′(c) = nil, otherwise o′(c) = o(c),

• (q, r, (>,>, . . . ,>)) ε,o−→ ? if r ∈ Fe and for every c ∈ Γ we have o(c) = reset if
τ(c) =← and o(c) = nil otherwise.

Now we proceed with the proof that the above constructions give us the desired language
Mt. First note that in both cases the constructed automata explicitly verify that a given
word belongs to Ke. Therefore, Mt ⊆ Ke.

We start by taking an ω-word α and its decomposition U = u0, u1, . . . of the type t.

231

9.4.1 Implication (1)⇒ (2)

We need to prove that if α ∈ L(A) and u is a decomposition of α of type t then there exists
a grouping W of U that strongly converges to a profinite word w ∈Mt.

Assume that there exists an accepting run ρ of A over α. We want to construct a
grouping W = w0, w1, . . . of U such that:

S.1 for n > 0 we have wn ∈ Ke,

S.2 all counters in Γ are reset by ρ in every word wn,

S.3 the state that occurs in the run ρ at the end-points of all the words wn is some fixed
state q ∈ Q,

S.4 there exists a vector τ ∈ {←,→}Γ such that for every counter c and every position
k between successive words wn, wn+1 in α we have Etp(c, ρ, k) = τ(c),

S.5 the sequence of words W is strongly convergent to some profinite word w.

The grouping Z is obtained in steps. Observe that all the above properties are preserved
when taking a grouping of a sequence. Condition S.1 is already satisfied by the sequence
U . First, we group words of U in such a way to satisfy Condition S.2 using the fact that the
run ρ is accepting. Then we further group the sequence to satisfy Conditions S.3 and S.4
— some state and value of Etp must appear in infinitely many end-points. Finally, we
apply Theorem 9.2 to group the sequence into a strongly convergent one.

Now, it suffices to show that w ∈Mt. First, observe that ρ is a witness that there is a
path from I to q and from q to q in A.

We consider two cases:

Case T = B Since ρ is accepting, there exists a constant l such that the values of all
counters during ρ are bounded by l. We show that for every n > 0 we have wn ∈
L(Aq ≤ l). It implies that w ∈ L(Aq ≤ l) and therefore w ∈ L(Aq) ⊆Mt.

Observe that ρ induces a run ρn of Aq on wn. By Conditions S.1, S.2, and S.3 we
know that ρn is an accepting run of Aq — it starts in the only initial state and ends
in ?. Since Aq simulates all the resets of A, we know that val(ρn) ≤ l and therefore
val(Aq, wn) ≤ l.

232

Case T = S We show that for every l ∈ N the sequence W from some point on satisfies
val(Aq,τ , wn) > l

2 . It implies that for every l we have w ∈ L(Aq,τ > l) and therefore
w ∈ L(Aq,τ).

Since ρ is accepting, for every constant l, from some point on, all the counters are
reset with a value greater than l. Assume that the last reset with the value at most l
occurs before the word wN . We show that for n ≥ N we have val(Aq,τ , wn) > l

2 . Let
ρ′n be the sequence of transitions of ρ on wn. Observe that ρ′n induces a run ρn of
Aq,τ on wn. As before, ρn is accepting by Condition S.1, S.3, and S.2. Take a counter
c ∈ Γ and a reset of this counter rc in ρn. Consider the following cases, recalling
Definition 9.4.1:

• rc corresponds to the first reset of c in the run ρ′n. Since Aq,τ did not skip rc,
τ(c) =→. Therefore, c has more increments after the beginning of wn than
before it in ρ. Therefore val(c, ρn, rc) > l

2 .

• rc corresponds to a reset of c in the run ρ′n but not the first one. In that case
val(c, ρn, rc) = val(c, ρ′n, rc) > l.

• rc is the additional reset performed by Aq,τ at the end of the word wn. In that
case τ(c) =← so c has greater or equal number of increments before the end of
the word wn than after it in ρ. Therefore val(c, ρn, rc) > l

2 .

In all three cases val(c, ρn, rc) > l
2 . So we have shown that

val(Aq,τ) ≥ val(ρn) > l

2 .

This concludes the proof of the implication (1)⇒ (2).

9.4.2 Implication (2)⇒ (3)

This implication is trivial since strong convergence entails convergence.

9.4.3 Implication (3)⇒ (1)

Now we want to prove that if U is a decomposition of α of type t and there exists a grouping
W of U that converges to a profinite word w ∈Mt then α ∈ L(A).

Let W be a grouping of U such that W converges to a limit w ∈Mt.

233

We consider two cases:

Case T = B Since w ∈ Mt, there exists a state q ∈ Q such that w ∈ L(Aq). Therefore,
w ∈ L(Aq ≤ l) for some l. Since L(Aq ≤ l) is an open set and w is a limit of W ,
almost all elements of W belong to L(Aq ≤ l). Assume that for n ≥ N we have
wn ∈ L(Aq ≤ l). Let ρn be a run that witnesses this fact. By the construction of Aq,
the run ρn induces a run ρ′n of A on wn. Also, since ρn is accepting, ρ′n resets all the
counters at least once.

By the assumption about t, there exists a run ρ′0 of A on w0 that starts in some state
in I and ends in q, and a sequence of runs ρ′n on wn for 0 < n < N that lead from q

to q. Therefore, we can construct an infinite run ρ of A on α being the concatenation
of the runs ρ′n on the words wn for n ∈ N. We show that if rc is a reset of a counter
c in ρ that appears after the word wN then val(c, ρ, rc) ≤ 2 · l. Since there are only
finitely many resets of counters before the word wN , this bound suffices to show that
the run ρ is accepting.

Observe that the increments in ρ correspond to the increments in the runs ρn. Also,
ρ performs all the resets that appear in runs ρn except the resets at the end of the
words. There can be at most one such skipped reset in a row because every counter
is reset in every run ρ′n. Therefore, val(c, ρ, rc) ≤ 2 · l.

Case T = S Let q, τ be parameters such that w ∈ L(Aq,τ). Therefore, for every l ∈ N we
have w ∈ L(Aq,τ > l). As W is convergent to w and languages L(Aq,τ > l) are open,
it means that

∀l ∃N ∀n≥N val(Aq,τ , wn) > l. (9.4.1)

As above we construct a run ρ over α that first leads on w0 from some state of I to
q and later consists of a concatenation of runs over words wn. Let ρ′0 be any run of
A that leads from I to q on w0. For n > 0 we pick a run ρn in such a way that it is
accepting and1

val(ρn) = val(Aq,τ , wn).

Observe that by (9.4.1), we obtain

lim
n→∞

val(Aq,τ , wn) = lim
n→∞

val(ρn) =∞. (9.4.2)

1Since there are only finitely many runs of an automaton on a finite word, there always exists a run
realising the value val(Aq,τ , wn), no matter whether the value is finite or not.

234

For n > 0 by ρ′n be denote the run of A on wn induced by ρn. Similarly as in the
previous case, runs ρ′n for n ∈ N can be combined into a run ρ of A on α. By the
construction of Aq,τ , ρ resets every counter infinitely often.

Let rc be a position in α where a counter c ∈ Γ is reset during ρ. Assume that rc is
contained in a word wn and n > 1 — we do not care about first two words.

Consider two cases:

(τ(c) =→) In that case ρ performs the same increments and resets of c as the runs
ρn. Therefore, val(c, ρ, rc) ≥ val(ρn).

(τ(c) =←) If rc is not the first reset of c in ρ′n then the value of c before rc in ρ is
the same as in ρn. Assume that rc is the first reset of c in ρ′n. Note that ρn−1

performs an additional reset of c at the end of wn−1. This reset does not appear
in ρ so val(c, ρ, rc) ≥ val(ρn−1).

In all the cases
val(c, ρ, rc) ≥ min (val(ρn−1), val(ρn)) ,

so the values of c before successive resets tend to infinity by (9.4.2). It means that ρ
is an accepting run and α ∈ L(A).

This concludes the proof of (3)⇒ (1) and of Theorem 9.5.

9.5 Separation for ω-languages

In this section we show the main result of the chapter. The technique is to lift the separation
results for T-regular languages of profinite words into the ω-word case.

Theorem 9. If L1, L2 are disjoint languages of ω-words both recognised by ωB- (respec-
tively ωS)-automata then there exists an ω-regular language Lsep such that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

Additionally, the construction of Lsep is effective.

The rest of the section is devoted to showing this theorem.
Let i ∈ {1, 2} and M i

trans denote the monoid of transitions for an ωT-automaton Ai
recognising Li. Let fi = fAi

be the canonical homomorphisms from A∗ to M i
trans. Define

Tpi as the set of types ti = (si, ei) in the monoid of transitions M i
trans.

235

For every type ti = (si, ei) ∈ Tpi define M i
ti
⊆ Â∗ as the T-regular language of profinite

words given by Theorem 9.5 for A = Ai and t = ti. By the statement of the theorem we
know that M i

ti
⊆ f−1

i (ei).

Definition 9.5.1. For a pair of types t1 = (s1, e1) ∈ Tp1, t2 = (s2, e2) ∈ Tp2, we say
that t1, t2 are coherent if there exist finite words us, ue ∈ A∗ such that: fi(us) = si and
fi(ue) = ei for i = 1, 2.

An important application of Theorem 9.5 is the following lemma.

Lemma 9.5.2. If a pair of types t1 ∈ Tp1, t2 ∈ Tp2 is coherent then the languages M1
t1,

M2
t2 are disjoint.

Proof. Take coherent types t1 = (s1, e1) and t2 = (s2, e2).
Assume that there exists a profinite word u ∈M1

t1 ∩M
2
t2 . Since u ∈ f

−1
i (ei) for i = 1, 2,

there exists a sequence U = u1, u2, . . . of finite words converging to u such that f1(un) = e1

and f2(un) = e2 for all n > 0. Moreover, by coherency of t1, t2 there exists a finite word
u0 such that f1(u0) = e1 and f2(u0) = e2. Let α = u0u1u2 . . . We show that α ∈ L1 ∩ L2

— a contradiction.
Take i ∈ {1, 2}. Observe that α = u0u1 . . . is a decomposition of α of fi-type ti.

Additionally observe that the sequence U converges to u and u belongs to M i
ti
. So, by

Theorem 9.5 we have α ∈ Li. �

Take a pair of coherent types t1, t2. Since the languages M1
t1 , M

2
t2 are disjoint, we can

use Proposition 9.3.1 to find a separating profinite-regular language Rt1,t2 ⊆ Â∗ such that

M1
t1 ⊆ Rt1,t2 and M2

t2 ⊆ Rt1,t2
c
.

Now we can introduce the ω-regular language Lsep separating L1 and L2.

Definition 9.5.3. Consider a coherent pair of types (t1, t2). Let St1,t2 be defined as follows:
St1,t2 is the language of ω-words α such that there exists a decomposition α = u0u1 . . . of
types t1, t2 with respect to f1, f2, such that every grouping of (un)n∈N from some point on
belongs to the regular language Rt1,t2.

Note that the above definition can be expressed in mso so St1,t2 is an ω-regular language.
Let Lsep be the ω-regular language defined as

Lsep =
⋃

(t1,t2)
St1,t2 ,

236

where the sum ranges over pairs of coherent types.

Clearly Lsep is an ω-regular language. What remains is to show the following lemma.

Lemma 9.5.4. The language Lsep separates L1 and L2.

Proof. First observe that L1 ⊆ Lsep. Take α ∈ L1. We want to construct a decomposition
U = u0, u1, . . . of α such that:

• the f i-type of U is ti for i = 1, 2 and some pair of coherent types (t1, t2) in Tp1×Tp2,

• the sequence U is strongly convergent to some profinite word u ∈ Â∗.

The sequence U is obtained in steps. First we use Theorem 0.1 to find a decomposition
of α with respect to both monoids M1

trans, M2
trans at the same time. Such decomposition

satisfies the first bullet above. Then, using Theorem 9.2, we can group our sequence into
U in such a way that U is strongly convergent.

By Theorem 9.5, there exists a grouping W of U that converges to a profinite word
w ∈ M1

t1 ⊆ Rt1,t2 . But since U is strongly convergent, w = u. Therefore, by the strong
convergence of U , every grouping of U converges to u ∈ Rt1,t2 . So every grouping of α from
some point on belongs to Rt1,t2 as in the definition of Lsep. Therefore, α ∈ Lsep.

Now we show that L2 ∩ Lsep = ∅. Assume otherwise, that there exists an ω-word
α ∈ L2 ∩ Lsep. Since α ∈ Lsep, there exists a coherent pair of types (t1, t2) such that
α ∈ St1,t2 . Therefore, α can be decomposed as α = u0u1 . . . of types t1, t2 respectively. Let
U = u0, u1, . . . Because α ∈ L2 so by Theorem 9.5 there exists a grouping W of U with
a limit w ∈ M2

t2 . But by the definition of St1,t2 almost all words in W belong to Rt1,t2 so
w ∈ Rt1,t2 . Since Rt1,t2 ∩M2

t2 = ∅, we have the required contradiction. �

This concludes the proof of Theorem 9.

9.6 Conclusions

The main result of this chapter states that both ωB- and ωS-regular languages have the
separation property with respect to ω-regular languages. Therefore, it gives some under-
standing how these quantitative models extend ω-regular languages. In particular, from
the results of the chapter it follows that if a given language is both ωB- and ωS-regular
then it is ω-regular.

237

The crucial technical part of the proof is Theorem 9.4 (a variant of the reduction theorem
from [Tor12]) that enables to reduce separation of ωB- and ωS-regular languages of ω-
words to the separation of B- and S-regular languages of profinite words. The reduction
depends highly on compactness arguments and an appropriate Ramsey’s theorem. The
presented proof explicitly distinguishes between two orthogonal parts of ωB- and ωS-regular
languages: ω-regular part and asymptotic part.

After the reduction, the study of the separation property in the profinite monoid is
relatively easy. In the case of S-languages of profinite words the separation result follows
directly from general topological argument (separation property of Π0

1-sets). In the case
of B-languages a simple automata theoretic construction is given.

As proved by Bojańczyk and Colcombet [BC06], the classes of ωB- and ωS-regular
languages are dual: a language is ωB-regular if and only if its complement is ωS-regular.
A usual pattern in descriptive set theory is that from a pair of dual classes, exactly one has
the separation property and the other does not have. What is somehow surprising in the
case of ωB- and ωS-regular languages both classes have the separation property. It may
be a witness that these classes are in some sense meager — they do not contain enough
languages to reveal an inseparable pair of sets.

The area of quantitative extensions of regular languages is still developing (see
e.g. [BC06, Boj11, Col13, BT09, BT12]). A number of formalisms was proposed but it
is still not clear which of them is the most robust. The results of this chapter may help
to better understand how these formalisms are related and in what directions they extend
ω-regular languages.

This chapter is based on [Skr14].

238

Conclusions

The results of the thesis involve a number of methods of descriptive set theory. One of the
most common examples is topological hardness: sometimes it is enough to find topologically
hard language to obtain some negative results of non-definability. An instance of this
approach are Chapters 7 and 8 where negative results about decidability of mso+u are
given. First, in Chapter 7 examples of mso+u-definable languages lying arbitrarily high
in the projective hierarchy are given. In consequence there can be no simple automata
model capturing mso+u on ω-words. The topological hardness of mso+u is later used
in Chapter 8 to prove that the mso+u theory of the complete binary tree cannot be
decidable in the standard sense. Also, topological hardness is used in Chapter 3 to prove
that index bounds computed by the proposed algorithm (see Section 3.4.1, page 100) are
tight. Additionally, the dichotomy proved in Chapter 4 involves topological hardness: a
regular language of thin trees is either wmso-definable or Π1

1-hard.
Another important notion that is used in various contexts are ranks. Chapter 2 intro-

duces a new rank based on a given Büchi automaton. It is shown that this rank corresponds
in a very precise sense to the descriptive complexity of the language. The whole idea to
study such a rank is based on one of the fundamental results of descriptive set theory —
the boundedness theorem. Ranks also appear in the study of thin trees in Chapter 4: they
turn out to be the combinatorial core of the characterisation of languages that are wmso-
definable among all trees. Also in this chapter, the related construction of derivatives is
used to give tight upper bounds on the topological complexity of regular languages of thin
trees.

The study of the class of bi-unambiguous languages yielded a new conjecture of non-
uniformizability (Conjecture 1). While this notion seems to be well understood for sets
studied in descriptive set theory, there is only few results about uniformizability in the
class of mso-definable languages of infinite trees. Some new negative results of this kind
are given in Chapter 6. Also, consequences of the newly proposed conjecture regarding
the class of bi-unambiguous languages are listed in Chapter 5. Hopefully, Conjecture 1
will be proved at some point extending our understanding of ability to uniformize certain
relations in mso.

239

A distinct descriptive set theoretic notion that is used in the thesis is the separation
property. First, it is used in Chapter 1 to construct certain automata of small index. A
similar construction appears also in Chapter 5. On the other hand, Chapter 9 provides a
new separation result about certain quantitative extensions of ω-regular languages.

One of the most fundamental notions in topology is compactness. A combinatorial
counterpart of it is König’s lemma. In various cases it is possible to use a compactness
argument instead of pumping. One of the examples is the reduction from languages of
ω-words to profinite words from Chapter 9. Also, the main idea behind the languages
constructed in Chapter 7 is based on an appropriate application of König’s lemma. Con-
vergence in a compact space turns out to be useful when proving equivalence between
various measures of complexity of trees in Chapter 2.

Regardless of the fact that the involved topological methods are not effective, in most
of the cases the final statements of the presented results are very concrete: they consist
mainly of new decision procedures and computable constructions. Even the negative results
have consequences expressible in the language of theoretical computer science, for instance
Chapter 8 uses topological methods to prove non-existence of a certain algorithm.

Hopefully, the interplay between topological and automata theoretic methods presented
in the thesis will motivate some further development of such techniques.

240

Bibliography

[ADMN08] André Arnold, Jacques Duparc, Filip Murlak, and Damian Niwiński. On the
topological complexity of tree languages. In Logic and Automata, pages 9–28,
2008.

[AL13] Bahareh Afshari and Graham E. Leigh. On closure ordinals for the modal
mu-calculus. In CSL, pages 30–44, 2013.

[Alm03] Jorge Almeida. Profinite semigroups and applications. In Structural Theory of
Automata, Semigroups, and Universal Algebra, pages 7–18, 2003.

[AMN12] André Arnold, Henryk Michalewski, and Damian Niwiński. On the separation
question for tree languages. In STACS, pages 396–407, 2012.

[AN07] André Arnold and Damian Niwiński. Continuous separation of game languages.
Fundamenta Informaticae, 81(1-3):19–28, 2007.

[Arn99] André Arnold. The mu-calculus alternation-depth hierarchy is strict on binary
trees. ITA, 33(4/5):329–340, 1999.

[AS05] André Arnold and Luigi Santocanale. Ambiguous classes in µ-calculi hierar-
chies. TCS, 333(1–2):265–296, 2005.

[Ban83] Bernhard Banaschewski. The birkhoff theorem for varieties of finite algebras.
algebra universalis, 17(1):360–368, 1983.

[BC06] Mikołaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS,
pages 285–296, 2006.

[BGMS14] Mikołaj Bojańczyk, Tomasz Gogacz, Henryk Michalewski, and Michał Skrzyp-
czak. On the decidability of MSO+U on infinite trees. accepted to ICALP
2014, 2014.

[BI09] Mikołaj Bojańczyk and Tomasz Idziaszek. Algebra for infinite forests with an
application to the temporal logic EF. In CONCUR, pages 131–145, 2009.

241

[Bil11] Marcin Bilkowski. Strongly unambiguous regular languages of infinite trees.
Talk at Young Researchers Forum during MFCS 2011, 2011.

[BIS13] Mikołaj Bojańczyk, Tomasz Idziaszek, and Michał Skrzypczak. Regular lan-
guages of thin trees. In STACS 2013, volume 20 of LIPIcs, pages 562–573,
2013.

[BKKS13] Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Non-
determinism in the presence of a diverse or unknown future. In ICALP (2),
pages 89–100, 2013.

[BKR11] Vince Bárány, Łukasz Kaiser, and Alexander Rabinovich. Expressing cardi-
nality quantifiers in monadic second-order logic over chains. J. Symb. Log.,
76(2):603–619, 2011.

[BKT12] Mikołaj Bojańczyk, Eryk Kopczyński, and Szymon Toruńczyk. Ramsey’s the-
orem for colors from a metric space. Semigroup Forum, 85:182–184, 2012.

[BL69] Julius Richard Büchi and Lawrence H. Landweber. Solving sequential con-
ditions by finite-state strategies. Transactions of the American Mathematical
Society, 138:295–311, 1969.

[Blu11] Achim Blumensath. Recognisability for algebras of infinite trees. Theor. Com-
put. Sci., 412(29):3463–3486, 2011.

[Blu13] Achim Blumensath. An algebraic proof of Rabin’s tree theorem. Theor. Com-
put. Sci., 478:1–21, 2013.

[BNR+10] Mikołaj Bojańczyk, Damian Niwiński, Alexander Rabinovich, Adam Radzi-
wończyk-Syta, and Michał Skrzypczak. On the Borel complexity of MSO
definable sets of branches. Fundamenta Informaticae, 98(4):337–349, 2010.

[Boj04] Mikołaj Bojańczyk. A bounding quantifier. In CSL, pages 41–55, 2004.

[Boj10a] Mikołaj Bojańczyk. Algebra for trees. A draft version of a chapter that will
appear in the AutomathA handbook, 2010.

[Boj10b] Mikołaj Bojańczyk. Beyond ω-regular languages. In STACS, pages 11–16,
2010.

242

[Boj11] Mikołaj Bojańczyk. Weak MSO with the unbounding quantifier. Theory Com-
put. Syst., 48(3):554–576, 2011.

[BP12] Mikołaj Bojańczyk and Thomas Place. Regular languages of infinite trees that
are Boolean combinations of open sets. In ICALP, pages 104–115, 2012.

[Bra98] Julian Bradfield. Simplifying the modal mu-calculus alternation hierarchy. In
STACS, pages 39–49, 1998.

[BS81] Stanley Burris and Hanamantagouda P. Sankappanavar. A Course in Universal
Algebra. Number 78 in Graduate Texts in Mathematics. Springer-Verlag, 1981.

[BS13] Marcin Bilkowski and Michał Skrzypczak. Unambiguity and uniformization
problems on infinite trees. In Computer Science Logic 2013 (CSL 2013), vol-
ume 23 of LIPIcs, pages 81–100, 2013.

[BT09] Mikołaj Bojańczyk and Szymon Toruńczyk. Deterministic automata and ex-
tensions of weak MSO. In FSTTCS, pages 73–84, 2009.

[BT12] Mikołaj Bojańczyk and Szymon Toruńczyk. Weak MSO+U over infinite trees.
In STACS, pages 648–660, 2012.

[Büc62] Julius Richard Büchi. On a decision method in restricted second-order arith-
metic. In Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of
Science, pages 1–11, 1962.

[Büc83a] Julius Richard Büchi. State-strategies for games in fσδ
⋂
gδσ. The Journal of

Symbolic Logic, 48(4):1171–1198, 1983.

[Büc83b] Julius Richard Büchi. State-strategies for games in f g. J. Symb. Log.,
48(4):1171–1198, 1983.

[BW08] Mikołaj Bojańczyk and Igor Walukiewicz. Forest algebras. In Logic and Au-
tomata, pages 107–132, 2008.

[CDFM09] Jérémie Cabessa, Jacques Duparc, Alessandro Facchini, and Filip Murlak. The
Wadge hierarchy of max-regular languages. In FSTTCS, pages 121–132, 2009.

[CKLV13] Thomas Colcombet, Denis Kuperberg, Christof Löding, and Michael Vanden
Boom. Deciding the weak definability of büchi definable tree languages. In
CSL, pages 215–230, 2013.

243

[CL07] Arnaud Carayol and Christof Löding. MSO on the infinite binary tree: Choice
and order. In CSL, pages 161–176, 2007.

[CL08] Thomas Colcombet and Christof Löding. The non-deterministic Mostowski
hierarchy and distance-parity automata. In ICALP (2), pages 398–409, 2008.

[CL10] Thomas Colcombet and Christof Löding. Regular cost functions over finite
trees. In LICS, pages 70–79, 2010.

[CLNW10] Arnaud Carayol, Christof Löding, Damian Niwiński, and Igor Walukiewicz.
Choice functions and well-orderings over the infinite binary tree. Cent. Europ.
J. of Math., 8:662–682, 2010.

[Col09] Thomas Colcombet. The theory of stabilisation monoids and regular cost
functions. In ICALP (2), pages 139–150, 2009.

[Col13] Thomas Colcombet. Fonctions régulières de coût. Habilitation thesis, Univer-
sité Paris Diderot—Paris 7, 2013.

[CPP07] Olivier Carton, Dominique Perrin, and Jean-Éric Pin. Automata and semi-
groups recognizing infinite words. In Logic and Automata, History and Per-
spectives, pages 133–167, 2007.

[Cza10] Marek Czarnecki. Analiza formuł modalnego rachunku mu pod wzgl edem
szybkości osi agania punktów stałych. Master’s thesis, University of Warsaw,
2010.

[DFM11] Jacques Duparc, Alessandro Facchini, and Filip Murlak. Definable operations
on weakly recognizable sets of trees. In FSTTCS, pages 363–374, 2011.

[DFR01] Jacques Duparc, Olivier Finkel, and Jean-Pierre Ressayre. Computer science
and the fine structure of borel sets. Theoretical Computer Science, 257(1–
2):85–105, 2001.

[DFR13] Jacques Duparc, Olivier Finkel, and Jean-Pierre Ressayre. The wadge hierar-
chy of petri nets w-languages. In LFCS, pages 179–193, 2013.

[EJ91] Allen Emerson and Charanjit Jutla. Tree automata, mu-calculus and determi-
nacy. In FOCS’91, pages 368–377, 1991.

244

[FFMS00] Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel.
Does mathematics need new axioms? The Bulletin of Symbolic Logic, 6(4):401–
446, 2000.

[Fin06] Olivier Finkel. Borel ranks andWadge degrees of context free omega-languages.
Mathematical Structures in Computer Science, 16(5):813–840, 2006.

[FMS13] Alessandro Facchini, Filip Murlak, and Michał Skrzypczak. Rabin-mostowski
index problem: A step beyond deterministic automata. In LICS, pages 499–
508, 2013.

[FS09] Olivier Finkel and Pierre Simonnet. On recognizable tree languages beyond
the Borel hierarchy. Fundam. Inform., 95(2–3):287–303, 2009.

[FS14] Olivier Finkel and Michał Skrzypczak. On the topological complexity of w-
languages of non-deterministic petri nets. Inf. Process. Lett., 114(5):229–233,
2014.

[GH82] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC,
pages 60–65, 1982.

[GMMS14] Tomasz Gogacz, Henryk Michalewski, Matteo Mio, and Michał Skrzypczak.
Measure properties of game tree languages. accepted to MFCS 2014, 2014.

[Göd39] Kurt Gödel. Consistency-Proof for the Generalized Continuum-Hypothesis.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 25(4):220–224, 1939.

[Gre51] James Alexander Green. On the structure of semigroups. Annals of Mathe-
matics, 54(1):163–172, 1951.

[GS82] Yuri Gurevich and Saharon Shelah. Monadic theory of order and topology in
ZFC. Annals of Mathematical Logic, 23(2-–3):179–198, 1982.

[GS83] Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem. J. Symb.
Log., 48(4):1105–1119, 1983.

[HMN09] Szczepan Hummel, Henryk Michalewski, and Damian Niwiński. On the Borel
inseparability of game tree languages. In STACS, pages 565–575, 2009.

245

[HP06] Thomas A. Henzinger and Nir Piterman. Solving games without determiniza-
tion. In CSL, pages 395–410, 2006.

[HS12] Szczepan Hummel and Michał Skrzypczak. The topological complexity of
MSO+U and related automata models. Fundamenta Informaticae, 119(1):87–
111, 2012.

[HST10] Szczepan Hummel, Michał Skrzypczak, and Szymon Toruńczyk. On the topo-
logical complexity of MSO+U and related automata models. In MFCS, pages
429–440, 2010.

[Hum12] Szczepan Hummel. Unambiguous tree languages are topologically harder than
deterministic ones. In GandALF, pages 247–260, 2012.

[Idz12] Tomasz Idziaszek. Algebraic methods in the theory of infinite trees. PhD thesis,
University of Warsaw, 2012. unpublished.

[Imm99] Neil Immerman. Descriptive Complexity. Graduate texts in computer science.
Springer New York, 1999.

[Jec02] Thomas Jech. Set Theory. Springer-Verlag, 2002.

[JPZ08] Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subexpo-
nential algorithm for solving parity games. SIAM J. Comput., 38(4):1519–1532,
2008.

[JW96] David Janin and Igor Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic. In CON-
CUR, pages 263–277, 1996.

[Kec95] Alexander Kechris. Classical descriptive set theory. Springer-Verlag, New York,
1995.

[KSV96] Orna Kupferman, Shmuel Safra, and Moshe Y. Vardi. Relating word and tree
automata. In LICS, pages 322–332. IEEE Computer Society, 1996.

[KV99] Orna Kupferman and Moshe Y. Vardi. The weakness of self-complementation.
In STACS, pages 455–466, 1999.

246

[KV11] Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A
new variant of weakness. In Supratik Chakraborty and Amit Kumar, editors,
FSTTCS, volume 13 of LIPIcs, pages 66–77, 2011.

[LS98] Shmuel Lifsches and Saharon Shelah. Uniformization and skolem functions in
the class of trees. J. Symb. Log., 63(1):103–127, 1998.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371,
1975.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521–530, 1966.

[MN12] Henryk Michalewski and Damian Niwinski. On topological completeness of
regular tree languages. In Logic and Program Semantics, pages 165–179, 2012.

[Mos80] Yannis N. Moschovakis. Descriptive Set Theory. Studies in logic and fundations
of mathematics. North-Holland publishing company, 1980.

[Mos84] Andrzej W. Mostowski. Regular expressions for infinite trees and a standard
form of automata. In Symposium on Computation Theory, pages 157–168,
1984.

[Mos91] Andrzej W. Mostowski. Games with forbidden positions. Technical report,
University of Gdańsk, 1991.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T.
Press research monographs. M.I.T. Press, 1971.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs of the theorems of
Rabin, McNaughton and Safra. Theoretical Computer Science, 141(1&2):69–
107, 1995.

[MS14] Henryk Michalewski and Michał Skrzypczak. Unambiguous Büchi is weak.
arXiv 1401.4025, 2014.

[Mur08] Filip Murlak. The Wadge hierarchy of deterministic tree languages. Logical
Methods in Computer Science, 4(4), 2008.

247

[Niw86] Damian Niwiński. On fixed-point clones. In ICALP, pages 464–473, 1986.

[Niw97] Damian Niwiński. Fixed point characterization of infinite behavior of finite-
state systems. Theor. Comput. Sci., 189(1–2):1–69, 1997.

[NW96] Damian Niwiński and Igor Walukiewicz. Ambiguity problem for automata on
infinite trees. unpublished, 1996.

[NW98] Damian Niwiński and Igor Walukiewicz. Relating hierarchies of word and tree
automata. In STACS, pages 320–331, 1998.

[NW03] Damian Niwiński and Igor Walukiewicz. A gap property of deterministic tree
languages. Theor. Comput. Sci., 1(303):215–231, 2003.

[NW05] Damian Niwiński and Igor Walukiewicz. Deciding nondeterministic hierarchy
of deterministic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–
208, 2005.

[Pin09] Jean-Éric Pin. Profinite methods in automata theory. In STACS, pages 31–50,
2009.

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups,
Logic and Games. Elsevier, 2004.

[PZ14] Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier
alternation hierarchy on words. In ICALP (2), pages 342–353, 2014.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. of the American Math. Soc., 141:1–35, 1969.

[Rab70] Michael O. Rabin. Weakly definable relations and special automata. In Pro-
ceedings of the Symposium on Mathematical Logic and Foundations of Set The-
ory, pages 1–23. North-Holland, 1970.

[Rab07] Alexander Rabinovich. On decidability of monadic logic of order over the
naturals extended by monadic predicates. Information and Computation,
205(6):870–889, 2007.

[RR12] Alexander Rabinovich and Sasha Rubin. Interpretations in trees with count-
ably many branches. In LICS, pages 551–560. IEEE, 2012.

248

[RS59] Michael O. Rabin and Dana Scott. Finite automata and their decision prob-
lems. IBM Journal of Research and Development, 3(2):114–125, April 1959.

[Sch65] Marcel Paul Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.

[She75] Saharon Shelah. The monadic theory of order. The Annals of Mathematics,
102(3):379–419, 1975.

[Sie75] Dirk Siefkes. The recursive sets in certain monadic second order fragments of
arithmetic. Arch. Math. Logik, 17(1–2):71–80, 1975.

[Sim75] Imre Simon. Piecewise testable events. In Automata Theory and Formal Lan-
guages, pages 214–222, 1975.

[Skr11] Michał Skrzypczak. Equational theories of profinite structures. CoRR,
abs/1111.0476, 2011.

[Skr13] Michał Skrzypczak. Topological extension of parity automata. Inf. Comput.,
228:16–27, 2013.

[Skr14] Michał Skrzypczak. Separation property for wB- and wS-regular languages.
Logical Methods in Computer Science, 10(1), 2014.

[Sku93] Jerzy Skurczyński. The Borel hierarchy is infinite in the class of regular sets
of trees. Theoretical Computer Science, 112(2):413–418, 1993.

[Sri98] Sashi M. Srivastava. A Course on Borel Sets, volume 180 of Graduate Texts
in Mathematics. Springer-Verlag, 1998.

[Tho79] Wolfgang Thomas. Star-free regular sets of omega-sequences. Information and
Control, 42(2):148–156, 1979.

[Tho80] Wolfgang Thomas. Relationen endlicher valenz über der ordnung der natür-
lichen zahlen. Habilitationsschrift, Universitat Freiburg, apr. 1980.

[Tho96] Wolfgang Thomas. Languages, automata and logics. Technical Report
9607, Institut für Informatik und Praktische Mathematik, Christian-Albsechts-
Universität, Kiel, Germany, 1996.

249

[TL93] Wolfgang Thomas and Helmut Lescow. Logical specifications of infinite com-
putations. In REX School/Symposium, pages 583–621, 1993.

[Tor12] Szymon Toruńczyk. Languages of profinite words and the limitedness problem.
In ICALP (2), pages 377–389, 2012.

[Tra62] Boris A. Trakhtenbrot. Finite automata and the monadic predicate calculus.
Siberian Mathematical Journal, 3(1):103–131, 1962.

[Van11] Michael Vanden Boom. Weak cost monadic logic over infinite trees. In MFCS,
pages 580–591, 2011.

[Wad83] William Wadge. Reducibility and determinateness in the Baire space. PhD
thesis, University of California, Berkeley, 1983.

[Wil93] Thomas Wilke. An algebraic theory for regular languages of finite and infinite
words. Int. J. Alg. Comput., 3:447–489, 1993.

[Wil98] Thomas Wilke. Classifying discrete temporal properties. Habilitationsschrift,
Universitat Kiel, apr. 1998.

250

	Basic notions
	Structures
	Finite words and w-words
	Infinite trees

	Logic
	Games
	Positional strategies
	Parity games

	Automata
	Parity index of an automaton

	Algebra
	Semigroups and monoids
	Wilke algebras
	Recognition
	Ramsey's theorem for semigroups

	Topology
	Borel and Projective Hierarchy
	Topological complexity
	Ranks
	The boundedness theorem
	Co-inductive definitions

	Regular languages
	Classes of regular tree languages
	Index hierarchies
	Topological complexity of regular languages
	The languages Wij
	Separation property
	Deterministic languages

	I Subclasses of regular languages
	Collapse for unambiguous automata
	Unique runs
	Construction of the automaton
	Soundness
	Completeness

	Conclusions

	When a Büchi language is definable in wmso
	The ordinal of a Büchi automaton
	Truncated runs
	The reduction
	Ranks

	Extending runs
	K-safe implies big rank
	Big rank implies K-safe

	Automata for K-safe trees
	Boundedness game
	Rules of the game
	Winning condition

	Equivalence
	Implication (1)=>(2)
	Implication (2)=>(1)

	Conclusions

	Index problems for game automata
	Runs of game automata
	Non-deterministic index problem
	Partial objects
	Trees
	Games
	Automata
	Composing automata
	Resolving

	Alternating index problem
	The algorithm
	Upper bounds
	Lower bounds

	Conclusions

	II Thin algebras
	When a thin language is definable in wmso
	Basic notions
	Thin trees
	Automata
	Examples of Skurczynski
	Ranks
	Skeletons

	Thin algebra
	The automaton algebra

	Upper bounds
	Embeddings and quasi-skeletons
	Proof of Proposition 4.3.1

	Characterisation of wmso-definable languages
	Implication (2)=>(3)
	Implication (5)=>(1)

	Conclusions

	Recognition by thin algebras
	Prophetic thin algebras
	Bi-unambiguous languages
	Prophetic thin algebras recognise only bi-unambiguous languages
	Markings by the automaton algebra for an unambiguous automaton
	Every bi-unambiguous language is recognised by a prophetic thin algebra

	Consequences of Conjecture 1
	Decidable characterisation of the bi-unambiguous languages
	Pseudo-syntactic morphisms
	Decidable characterisation

	Conclusions

	Uniformization on thin trees
	Basic notions
	Transducer for a uniformized relation
	Choice hypothesis
	Equivalence (1)<=>(2)
	Implication (2)=>(3)
	Implication (4)=>(2)

	Negative results
	Green's relations
	A marking of a thick tree
	Non-uniformizability of skeletons
	Ambiguity of thin trees

	Conclusions

	III Extensions of regular languages
	Descriptive complexity of mso+u
	Basic notions
	Languages IFi

	Languages Hi
	Functions ci, di, and ri
	Reductions
	Upper bounds
	Proof of Theorem 7

	Conclusions

	Undecidability of mso+u
	Basic notions
	Gödel's constructible universe
	Projective mso

	Reduction
	Projective determinacy
	Undecidability of proj-mso on 2w
	Proof of Theorem 8.1

	Conclusions

	Separation for wB- and wS-regular languages
	Basic notions
	Monoid of runs
	Profinite monoid
	Ramsey-type arguments
	Notation

	Automata
	wB- and wS-automata
	B- and S-automata
	Languages

	Separation for profinite languages
	Reduction
	Implication (1)=>(2)
	Implication (2)=>(3)
	Implication (3)=>(1)

	Separation for w-languages
	Conclusions

	Conclusions and bibliography

