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Streszczenie

Jednym z podstawowych problemów teorii ukªadów dynamicznych jest ba-
danie istnienia orbit okresowych. Rozprawa po±wi¦cona jest automor�zmom
zwartych powierzchni hiperbolicznych, a wi¦c takich których genus algebraicz-
ny jest wi¦kszy od 1. Uogólniaj¡c pytanie dotycz¡ce istnienia orbit okresowych
rozpatrywane s¡ struktury osobliwe automor�zmów, rozumiane jako zbiory
tych punktów, których orbity s¡ krótsze od rz¦du przeksztaªcenia.

W pracy wprowadzono poj¦cie charakteru okresów dziaªania grupy cyklicz-
nej ZN na zwartej powierzchni hiperbolicznej (a w przypadku powierzchni
Riemanna odpowiadaj¡cego mu poj¦cia zbioru okresów) opisuj¡cego struktu-
ry osobliwe automor�zmu. Znaleziono i sklasy�kowano wszystkie charaktery
okresów w zale»no±ci od orientowalno±ci powierzchni wyj±ciowej i powierzchni
ilorazowej. Udowodniono, »e przedstawione konstrukcje powierzchni dopusz-
czaj¡cych dziaªanie ZN zadane danym charakterem okresów prowadz¡ do po-
wierzchni uniformizowanych przez NEC grupy, dla których miara ich dziedziny
fundamentalenj jest najmniejsza. W przypadku powierzchni Riemanna uzyski-
wane powierzchnie uniformizowane s¡ oczywi±cie przez grupy Fuchsa.

Dla konforemnych automor�zmów powierzchni Riemanna rozwa»ono po-
nadto nast¦puj¡ce zagadnienie. Niech A b¦dzie zbiorem okresów dziaªania ZN .
Ka»demu zbiorowi A mo»emy przypisa¢ gA � najmniejszy genus powierzchni,
która dopuszcza dziaªanie ZN zadane przez A (jest to równowa»ne z przy-
pisaniem najmniejszej miary dziedziny fundamentalnej uniformizuj¡cej grupy
Fuchsa). Dla ka»dego N znaleziono taki zbiór Amax, »e odpowiadaj¡cy mu
genus gAmax jest najwi¦kszy spo±ród liczb gA.

W rozprawie odpowiedziano na dwa otwarte pytania dotycz¡ce istnienia
homeomor�zmów sko«czonego rz¦du postawione w pracy J. Guaschi, J. Llibre,
Orders and periods of algebraically��nite surface maps, Houston J. Math. 23
(1997) 86-97.
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Summary

One of the fundamental problems the theory of dynamical systems deals
with is the investigation of the existence of periodic orbits. In the dissertation
there were studied the automorphisms of compact hyperbolic surfaces i.e. the
surfaces with algebraic genus greater than 1. The generalization of the question
regarding the existence of periodic orbits brings one to the investigation of
singular structures for automorphisms considered here as sets of those points
whose orbits are shorter than the order of the map.

In this thesis there was introduced a notion of character of periods of action
of a cyclic group ZN on a compact hyperbolic surface which describes singular
structures for automorphism (in case of a Riemann surface its counterpart is a
term set of periods). Based on the orientability character of an initial surface
and quotient surface there were found and classi�ed all characters of periods. It
was proved that the constructions of surfaces on which a particular character
of periods is attained, lead to surfaces which are uniformized by NEC groups
whose fundamental region has a minimal measure. In the case of Riemann
surfaces we clearly obtain surfaces which are uniformized by Fuchsian groups.

For conformal automorphisms of Riemann surfaces, the following problem
was also considered. Let A be a set of periods of a ZN�action. For each set
A there is always a number gA � the minimal genus of a surface on which
there exists the action of ZN given by A (which is equivalent to �nding an
uniformizing Fuchsian group whose fundamental region has minimal measure).
For each N there was found a set Amax for which the corresponding genus gAmax

is maximal among the numbers gA.
In the dissertation, the two open questions left in the paper J. Guaschi,

J. Llibre, Orders and periods of algebraically��nite surface maps, Houston J.
Math. 23 (1997) 86-97., were solved.
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Autoreferat pracy doktorskiej

Przedmiotem mojej rozprawy doktorskiej s¡ automor�zmy zwartych powierzchni topolo-
gicznych, których genus algebraiczny jest wi¦kszy od 1. Powierzchnie speªniaj¡ce powy»szy
warunek b¦dzi¦my nazywa¢ hiperbolicznymi. Stosowany w pracy termin powierzchnie Kle-
ina odnosi si¦ do powierzchni topologicznych ze struktur¡ dianalityczn¡, a wi¦c tak¡ która
w charakterze funkcji przej±¢ dopuszcza równie» odbicia zespolone. W niniejszej rozprawie
zajmuj¦ si¦ zatem badaniem struktur osobliwych dianalitycznych automor�zmów zwartych
hiperbolicznych powierzchni Kleina, rozumianych jako zbiory tych punktów, których orbity
s¡ krótsze od rz¦du przeksztaªcenia. Zagadnieniem, które rozpatruj¦ jest pytanie o realizacj¦
zadanych struktur okresowych wyznaczanych przez dziaªania cyklicznych grup automor�-
zmów. Genez¡ moich bada« jest pytanie postawione przez prof. Jaume Llibre w poni»szej
postaci:

Pytanie 1. Dla rozmaito±ci zespolonej M znale¹¢ zbiory okresów orbit okresowych odwzo-
rowa« holomor�cznych M w siebie.

Podstawowymi rozmaito±ciami zespolonymi s¡ powierzchnie Riemanna i to badanie wªa-
sno±ci automor�zmów krzywych algebraicznych stanowi gªówny przedmiot obecnej pracy, w
której nie rozpatruje si¦ rozmaito±ci wymiaru (zespolonego) wi¦kszego od 1.

Jak si¦ okazuje warunek holomor�czno±ci w przypadku powierzchni hiperbolicznych jest
zaªo»eniem na tyle sztywnym, »e determinuje stopie« przeksztaªcenia ograniczaj¡c jednocze-
±nie jego (sko«czony) rz¡d. Co wi¦cej w przypadku powierzchni Kleina i sªabszego zaªo»enia
dianalityczno±ci odwzorowania, otrzymuje si¦ analogiczny wniosek. Na mocy twierdzenia
Kerckho�a [25] ka»dy okresowy homeomor�zm zwartej hiperbolicznej powierzchni Kleina
jest topologicznie sprz¦»ony z dianalitycznym automor�zmem powierzchni Kleina o tym sa-
mym typie topologicznym rozumianym jako sygnatura NEC grupy Λ uniformizuj¡cej X (tzn.
takiej, dla którejX jest przestrzeni¡ orbit H2/Λ). Z powy»szego zatem mo»na wywnioskowa¢,
»e pomijaj¡c zespolon¡ struktur¦ rozmaito±ci nie traci si¦ ogólno±ci w badaniu dynamicznych
wªa±no±ci przeksztaªce«. Jednak badaj¡c automor�zmy dianalityczne traktowane jako repre-
zentanty klas sprz¦»ono±ci topologicznej homeomor�zmów okresowych mo»na wykorzysta¢
bardzo silne narz¦dzia analizy zespolonej i geometrii algebraicznej. Dzi¦ki takiemu podej±ciu
udaje si¦ znale¹¢ odpowied¹ na pytanie sformuªowane przez Alsedà, Llibre i Misiurewicza:
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Pytanie 2 (Alsedà, Llibre and Misiurewicz [1], Open Problem 3.3). Dla dowolnej powierzch-
ni zwartej wyznaczy¢ zbiory okresów orbit okresowych dla homeomor�zmów sko«czonego rz¦-
du, redukowalnych oraz pseudo�Anosowa.

w cz¦±ci dotycz¡cej homeomor�zmów sko«czonego rz¦du. Przypomnijmy, »e zgodnie z klasy�-
kacj¡ Nielsena�Thurstona [39] elementy grupy klas odwzorowa«M(M) dowolnej powierzchni
M dzielimy wªa±nie na wymienione w Pytaniu 2 trzy typy.

W pierwszych rozdziaªach pracy zajmujemy si¦ analitycznymi przeksztaªceniami po-
wierzchni Riemanna. Rozwi¡zanie Pytania 1 dla sfery Ĉ oraz torusów T jest znacz¡co ró»ne
od odpowiedzi dla przypadku powierzchni o genusie wynosz¡cym co najmniej 2. Przypa-
dek sfery opisuje twierdzenie Bakera [4, 15], natomiast zadanie dla torusów zespolonych jest
¢wiczeniem bazuj¡cym na ogólnej postaci przeksztaªce« holomor�cznych f : T → T (patrz
[31]).

Przyczynami wspomnianych ró»nic, mi¦dzy przypadkami hiperbolicznym i niehiperbo-
licznym jest po pierwsze brak górnego ograniczenia na stopie« przeksztaªcenia dla Ĉ i T. Po
drugie za± wªasno±¢, »e holomor�czne odwzorowania powierzchni hiperbolicznych w siebie
s¡ odwracalne ju» przy sªabym zaªo»eniu, »e ich obrazy nie s¡ jednopunktowe. Wynika to z
przytoczonego poni»ej twierdzenia Riemanna�Hurwitza:

Twierdzenie 1 (Farkas and Kra [16]). Niech f : S → S ′ b¦dzie przeksztaªceniem holomor-
�cznym zwartych powierzchni Riemanna stopnia K (przez co rozumiemy, »e zbiór f−1(Q)
ma moc K dla prawie wszystkich Q ∈ S ′), którego obraz jest ró»ny od punktu. Niech g i γ
oznaczaj¡ odpowiednio genusy powierzchni S i S ′. Wtedy mamy

g = K(γ − 1) + 1 +
1

2

∑
P∈S

bf (P ), (1)

gdzie bf (P ) + 1 jest indeksem rozgaª¦zienia przeksztaªcenia f w punkcie P .

Zatem holomor�czne odwzorowania t : S → S powierzchni hiperbolicznych nie maj¡
rozgaª¦zie«, a ich stopie« jest zawsze równy 1. Tym samym jako przeksztaªcenia "na" i "1�1"
s¡ konforemne (przeksztaªcenia odwrotne t−1 : S ′ → S s¡ równie» konforemne). Co wi¦cej ich
rz¡d jest sko«czony co wynika z rezultatu Schwarza, który pokazaª »e grupa automor�zmów
analitycznych powierzchni hiperbolicznych jest sko«czona (patrz [16]).

Dodajmy, »e stosowany wielokrotnie w niniejszej pracy wzór (1) jest przede wszystkim
wykorzystywany w szczególnym przypadku nakry¢ rozgaª¦zionych. Je±li bowiem t : S → S
jest analitycznym automor�zmem powierzchni Riemanna o genusie topologicznym g ≥ 2,
to relacja Riemanna�Hurwitza pozwala na wnioskowanie o indeksach rozgaª¦zie« nakrycia
S → S/〈t〉. Przy oznaczeniu przez N rz¦du przeksztaªcenia t oraz przez mi, i = 1, . . . , n
wspomnianych indeksów rozgaª¦zie« mamy na mocy (1):

g = N(γ − 1) + 1 +
1

2

∑
P∈S

bf (P ) = N(γ − 1) + 1 +
1

2

n∑
i=1

N

mi

(mi − 1),
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co daje
2(g − 1)

N
= 2(γ − 1) +

n∑
i=1

(1− 1

mi

).

Dynamika homeomor�zmów sko«czonego rz¦du, które dziaªaj¡ na powierzchniach Rie-
manna i zachowuj¡ orientacj¦ jest bardzo prosta, poniewa» posiadaj¡ one jedynie sko«czenie
wiele izolowanych orbit okresowych, których okresy s¡ dzielnikami wªa±ciwymi rz¦du prze-
ksztaªcenia. Znany powszechnie wynik mówi, »e dowolny zbiór takich dzielników mo»e by¢
zrealizowany jako zbiór okresów dla pewnego t ([17], patrz równie» Stwierdzenie 2.4). Zamyka
to problem wyznaczenia zbiorów okresów przeksztaªce« holomor�cznych zespolonych rozma-
ito±ci wymiaru 1. Mo»na jednak pyta¢ o to, czy realizacja zadanego zbioru okresów nakªada
wymagania na typ topologiczny powierzchni Riemanna formuªuj¡c kolejne zagadnienie:

Pytanie 3. Dla dowolnego N oraz A � podzbioru zbioru wªa±ciwych dzielników N , znale¹¢
najmniejszy genus hiperbolicznej powierzchni Riemanna, na której mo»na okre±li¢ odwzoro-
wanie konforemne rz¦du N , którego zbiór okresów pokrywa si¦ z A.

Liczb¦ speªniaj¡c¡ powy»szy warunek nazywamy genusem A�minimalnym i oznaczamy
gA. Powy»sze zadanie zostaªo rozwi¡zane metodami kombinatorycznymi w oparciu o teori¦
grup Fuchsa (Twierdzenie 2.8) przy wykorzystaniu wyników prac Harvey'a [20] i Macbeath'a
[28]. Z uwagi jednak na zale»no±¢ od rozkªadu na czynniki pierwsze okresów przeksztaªcenia,
nie podajemy zamkni¦tej formuªy na minimalny genus ograniczaj¡c si¦ jedynie do wskazania
najlepszych oszacowa« (Stwierdzenie 2.10). W rozdziale 2.2 rozwa»amy natomiast problem
maksymalnego genusa, czyli znalezienia takiego podzbioru dzielników N , którego relizacja
jako zbioru okresów automor�zmu analitycznego wymaga modelowania na powierzchni o
najwi¦kszym genusie spo±ród liczb gA odpowiadaj¡cych ró»nym podzbiorom zbioru dzielni-
ków wªasciwych N . Powy»sze mo»emy sformalizowa¢ w nast¦puj¡cej postaci:

Pytanie 4. Dla ka»dego N znale¹¢ taki zbiór okresów Amax, aby odpowiadaj¡cy mu genus
Amax�minimalny dla ka»dego A podzbioru zbioru dzielników wªa±ciwych N speªniaª warunek
gA ≤ gAmax.

Narz¦dzia, które zostaªy wykorzystane do rozwi¡zania Pytania 4 s¡ standardowymi me-
todami analizy, teorii grup i teorii mnogo±ci. Uzyskane wyniki wymagaªy przeprowadzenia
serii elementarnych oblicze«, których szczegóªy mogªyby si¦ jednak okaza¢ dla Czytelnika
nu»¡ce i jako takie zostaªy w pracy pomini¦te. Ta cz¦±¢ rozprawy zostaªa opublikowana w
artykule [35].

W drugiej cz¦±ci pracy rozpatrujemy wersje wymienionych powy»ej Pyta« 1 i 3, uogól-
nione dla homeomor�zmów sko«czonego rz¦du dziaªaj¡cych na powierzchniach Kleina. Roz-
wa»amy nast¦puj¡ce zagadnienie:

Pytanie 5. Dla odwzorowania sko«czonego rz¦du dziaªaj¡cego na zwartej powierzchni Kleina
znale¹¢ zbiór punktów, których orbity s¡ krótsze od rz¦du przeksztaªcenia oraz wyznaczy¢ jego
okresy.
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Podobnie jak w przypadku homeomor�zmów dziaªaj¡cych na powierzchniach Riemanna
i zachowuj¡cych orientacj¦, klasy�kacj¦ struktur okresowych uzyskuje si¦ rozwa»aj¡c jedynie
podrodzin¦ homeomor�zmów zªo»on¡ z odwzorowa« dianalitycznych. Z uwagi na jako±ciow¡
ró»nic¦ w strukturze zbioru osobliwego w porównaniu z poprzednim przypadkiem, jak¡ jest
wyst¦powanie skªadowych jednowymiarowych (wymiaru rzeczywistego 1) de�niujemy w roz-
dziale 3 syntetyczn¡ wielko±¢ za pomoc¡, której opisujemy go w kolejnych cz¦±ciach pracy.
Do tego celu wykorzystujemy charakter okresów oznaczany jako C0. Zawiera on informacje
nie tylko o dªugo±ciach orbit izolowanych, lecz równie» informacje o okresach skªadników
brzegowych, jedno� i dwustronnych owali oraz ªa«cuchów. Zauwa»my, »e wyodr¦bnienie tak
okre±lonych skªadowych zbioru osobliwego nie jest nowym narz¦dziem, gdy» pojawiªo si¦ ju»
w pracach [42]�[44] oraz w przypadku inwolucji w artykule [9]. Uogólnieniem Pytania 3 jest
nast¦puj¡ce

Pytanie 6. Dla dowolnego N oraz charakteru okresów C0, znale¹¢ minimum miary obszaru
fundamentalnego NEC grupy Λ, takiej »e na powierzchni H2/Λ mo»na okre±li¢ dianalityczny
automor�zm rz¦du N , który realizuje C0 jako swój charakter okresów.

Poniewa» tym razem nie zakªada si¦, »e brzeg jest zbiorem pustym, inaczej ni» w przypad-
ku powierzchni Riemanna minimalizacja obszaru fundamentalnego grupy Λ nie jest to»sama
z minimalizacj¡ genusa powierzchni X. Wyniki dotycz¡ce analizy poszczególnych przypad-
ków ze wzgl¦du na orientowalno±¢ badanej powierzchni X, powierzchni ilorazowej X/〈t〉 oraz
parzysto±¢ N zostaªy sformuªowane w sze±ciu twierdzeniach: 5.5, 5.10, 5.17, 5.25, 5.36 i 5.42.
Dodajmy przy tym, »e stosuj¡c mody�kacje metod przedstawionych w rozdziale 4 mo»na
równie» uzyska¢ formuªy minimalizuj¡ce genus przy zaªo»eniach dotycz¡cych liczby skªadni-
ków brzegowych (lub odwrotnie: liczb¦ skªadników brzegowych przy zaªo»eniach dotycz¡cych
genusa). Podobne wyniki, cho¢ bez rozró»niania zbiorów osobliwych automor�zmów zostaªy
uzyskane w monogra�i [8].

Prostota implementacji podanych w pracy procedur sprowadza je, w ka»dym z rozpa-
trywanych przypadków, do wykonania serii oblicze« bazujacych na zde�niowanych w pracy
wªasno±ciach kombinatorycznych zbiorów liczb naturalnych. Zauwa»my przy tym, »e niektóre
zagadnienia zwi¡zane dziaªaniem cyklicznych grup izometrii na powierzchniach s¡ przedmio-
tem artykuªów popularnych, czego przykªadem jest [26].

Dzi¦ki przedstawionym tu konstrukcjom, w Przykªadach 2.11 oraz 5.29 udaªo si¦ odpo-
wiedzie¢ na dwa otwarte pytania, które postawiono w pracy [18].

Zagadnienia zwi¡zane z wªasno±ciami odwzorowa« powierzchni s¡ cz¦stym tematem dy-
sertacji doktorskich. Z niektórymi z nich miaªem przyjemno±¢ zapozna¢ si¦ podczas przygo-
towywania wªasnej rozprawy: [12, 13, 38] � za co serdecznie dzi¦kuj¦ ich Autorom.
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1.1 Introduction

One of the main problems in the theory of dynamical systems is the determination of the
existence of periodic orbits and more generally, the structure of the set of periods, which is
considered here as the set of periods of periodic orbits together with its respective multipli-
cities.

In the present paper we deal with periodic orientation�preserving homeomorphisms of
closed orientable surfaces Σg of genus g ≥ 2 and in connection with the above set of periods
we de�ne the minimum genus of a surface on which there exists a map realizing a given set
of periods. Although the behaviour of the iterations of those homeomorphisms for all initial
points is very simple: there is only a �nite number of orbits of periods being proper divisors
of the order of the homeomorphism. The minimum genus problem in that setting has not
been investigated.

For each �xed g, there are only �nitely many �nite groupsG that act on Σg by orientation�
preserving self�homeomorphisms of Σg. By a result of Hurwitz [21] the order of G is bounded
by 84(g−1) and in particular Wiman [41] improved on this bound for a cyclic group obtaining
2(2g+1) as the maximum possible order for a periodic homeomorphism. On the other hand,
for each G there is an in�nite sequence of values of g such that G acts on Σg. This sequence
is called genus spectrum of G (see [27],[29]).

Let G = 〈f〉 be a �nite cyclic group of order N that acts by conformal automorphisms on
a compact Riemann surface S of genus g ≥ 2. Associated to this is a set A of periods de�ned
to be the subset of proper divisors d of N such that, for some x ∈ S, x is �xed by fd but not
by any smaller power of f . For an arbitrary subset A of proper divisors of N , there is always
an associated action and, if gA denotes the minimal genus for such an action, an algorithm
is obtained here to determine gA (Theorem 2.8). It is natural to relate a structure of the set
of periods of a ZN�action to a sequence of genera g of Σg on which ZN realizes that given
structure. We thus get a partition of the genus spectrum of ZN into subsequences, which
are not necessarily disjoint, that correspond to the possible sets of periods. The smallest
member of each of the above subsequences that depend on A is just the minimal genus gA.
It is worth pointing out that the smallest element among all subsequences was obtained by
Harvey [20]. Furthermore, in section 2.2 a set Amax is determined for which gA is maximal
(Theorem 2.16).

Another classi�cation of orientation�preserving periodic maps on compact orientable sur-
faces up to topological conjugacy was obtained by Nielsen [34], Smith [37] and Yokoyama
[42]. Conjugated maps have the same structure of the set of periods but the opposite impli-
cation clearly does not hold. In [42] (Theorem 5, p.92), the number of non�conjugated maps
is given when the genus of a surface and the structure of periods are �xed.

It is well�known that anyN�periodic self�map of hyperbolic surface is an isometry respect
to some hyperbolic metric. Therefore our approach involves combinatorial techniques based
on Fuchsian groups. We use to a great extent results of Harvey [20] and Macbeath [28].
Harvey's theorem provides necessary and su�cient conditions for the abstract Fuchsian group
to be a universal covering transformation group of the cyclic group, while Macbeath gives
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a formula for the number of �xed points for each non�identity element of a cyclic group of
automorphisms of compact Riemann surface. The generalization of that formula to closed
non�orientable surfaces was obtained by Izquierdo and Singerman [22].

To �x terminology, let f : M →M be a self�map of a set M , and n be a positive integer.
Let Fix(f) be the �xed point set of f , and Pn(f) the set of periodic points with least period
n

Fix(f) := {x ∈M | x = f(x)},
Pn(f) := {x ∈M | x = fn(x) and x 6= fk(x) for any k < n}

= Fix(fn) \
⋃
k<n

Fix(fk).

Denote by Per(f) the set of positive integers corresponding to least periods of periodic
orbits, Per(f) := {n ∈ N | Pn(f) 6= ∅}.

In order to assure the existence of periodic orbits we need a certain type of growth for
the number of �xed points. Let G be a �nite non�trivial group of self�maps of a given set
M . By 〈t〉 we will denote the subgroup generated by t. Note that ordt = N implies that
any period of t divides N . Conversely suppose that d is the least period of a point x ∈ M
and there is r < d such that N = dm + r. But now x = tN(x) = tr(tdm(x)) = tr(x), that
contradicts our assumption.

The above conclusion leads us to the de�nition of the set PPer(ZN) of potential periods
of a ZN�action

PPer(ZN) = {A | A ⊆ D0(N)},

where D0(N) = {d | d < N, d | N}. We restrict our attention to the cases where M is a
hyperbolic compact Riemann surface.
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1.2 Preliminaries

Recall that the hyperbolic plane is the set H2 = {x+iy ∈ C | y > 0} with the metric induced
by

ds =

√
dx2 + dy2

y
.

For U ⊂ H2, the hyperbolic area is given by

µ(U) =

∫
U

dxdy

y2

always if this integral exists. It is well known that the set of orientation preserving isometries
of H2 is given by the projective special linear group

PSL(2,R) = {A ∈ GL(2,R) | det(A) = 1}/{±I}

= {z 7→ az + b

cz + d
| a, b, c, d ∈ R, ab− cd = 1}.

Let us observe that orientation preserving isometries are the bijective biholomorphic
maps from H2 to itself and form a group under superposition. Unless otherwise stated this
group will be denoted as Aut(H2). Throughout the �rst part of the dissertation S stands
for a compact Riemann surface and similarly to the notation above we let Aut(S) stand
for a group of bijective biholomorphic maps from S to itself. Those maps are called confor-
mal automorphisms of S. The following uniformization theorem is the starting point in a
combinatorial study of compact Riemann surfaces.

Theorem 1.1 (Farkas and Kra [16]). Every compact Riemann surface S of genus g ≥ 2 is
conformally equivalent to H2/Λ, where Λ is a freely acting discontinuous group of Aut(H2).
Furthermore, π1(S) ' Λ.

For a Riemann surface S we thus have an unrami�ed holomorphic map π : H2 → S.
Moreover the homeomorphism between the orbit space H2/Λ and S induced by the map π
gives rise to the unique complex structure on H2/Λ under which the canonical projection
H2 → H2/Λ is a holomorphic map. We then say that Λ uniformizes S. A Fuchsian group is
a discrete subgroup of the topological group PSL(2,R). If a Fuchsian group Γ has compact
orbit space it is known that it has a presentation of the form

generators: a1, b1, ..., aγ, bγ (hyperbolic)

x1, x2, ..., xn (elliptic)

relations: xm1
1 = xm2

2 = ... = xmn
n = 1, mi ≥ 2 (1.1)

x1x2...xn

γ∏
i=1

[aibi] = 1, [aibi] = a−1
i b−1

i aibi.
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The integers m1,m2, ...,mn will be called periods of the Fuchsian group Γ and γ the
orbit genus. The symbol (γ;m1,m2, ...,mn) will be called the signature of Γ. From now on
we require each Fuchsian group to be cocompact. Every Fuchsian group has an associated
fundamental region, whose hyperbolic area depends only on the signature of the group. For
a group with presentation (1.1) is given by µ(Γ) = 2π(2γ − 2 +

∑n
i=1(1 − m−1

i )). Recall
that an abstract group Γ de�ned by (1.1) can be realized as a Fuchsian group if and only if
µ(Γ) > 0. Using this formula we can give explicitly all the exceptional signatures that cannot
be attained by Fuchsian groups. These are the following:

(0;m1,m2), (0; 2, 3, 3), (0; 2, 3, 4), (0; 2, 2,m1), (0; 2, 3, 5) (1.2)

(0; 2, 3, 6), (0; 2, 2, 2, 2), (0; 2, 4, 4), (0; 3, 3, 3).

We shall use the above list in section 3 while constructing Fuchsian groups in terms of
their signatures.

It is known that if G 6 Aut(S) then orbit space S/G is also a compact Riemann surface.
We emphasize that G is not assumed to be the full group Aut(S). Furthermore the follo-
wing theorem yields information about the form of G. A Fuchsian group having no elliptic
generators will be called a surface group.

Theorem 1.2 (Harvey [20]). A �nite group G acts as a group of automorphisms of some
compact Riemann surface of genus g ≥ 2, if and only if G is isomorphic to the factor group
Γ/Λ, where Γ is a Fuchsian group with compact orbit space and Λ a Fuchsian surface group
with orbit genus g.

Applying the Riemann�Hurwitz formula to the projection S → S/G we obtain

2(g − 1)|G|−1 = 2(γ − 1) +
n∑
i=1

(
1−m−1

i

)
. (1.3)

Observe that the group Γ of automorphisms of H2 is formed by lifting all elements of G.
Moreover there is a homomorphism ψ∗ from the Fuchsian group Γ onto the group G whose
kernel is a surface group, that makes the following diagram commutative

Γ×H2 −−−→ H2

ψ∗
y π

y yπ
G× S −−−→ S

(1.4)

and ker(ψ∗) = Λ ' π1(S). We then say that the G�action on S is uniformized by natural
epimorphism ψ∗ : Γ → G. If t ∈ G then following Macbeath we call a pair (t, S) a sur-
face transformation and (G,S) a surface transformation group. The transformation group
(Γ,H2) will be called the universal covering transformation group of (G,S). A homomor-
phism ψ : Γ → G having a kernel that is a surface group is called smooth. Recall that an
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epimorphism is smooth if and only if it preserves the periods of the elliptic generators (see
[20]).

Assume now that ZN is acting on a compact Riemann surface S. We shall consider the
set of periods of ZN�actions as the set of Per(t) taken over all surfaces S and conformal
automorphisms t ∈ Aut(S) of order N , that is

Per(ZN) = {Per(t) | S − surface, t ∈ Aut(S), ordt = N}.

The de�nition above involves the sets Per(t) that clearly depends on the surface S on
which t is acting. However by a simple combinatorial argument it does not depend on the
choice of generator within the group 〈t〉. In this sense we may consider the set of periods of
a ZN�action on a particular surface S, which is stated in the following proposition. First we
need a lemma ([32], Lemma 1).

Lemma 1.3. Let f : M →M be a self map of a set M . If ordf = N and (N,m) = m′, then

Fix(fm) = Fix(fm
′
)

Proposition 1.4. Suppose that 〈f〉 is acting as a group of self�maps of a set M . Let ordf =
N and 〈f〉 ' 〈fm〉. Then, Pn(f) = Pn(f

m) for each n.

Proof. Suppose w = fm, where (N,m) = 1. Since (N, km) = (N, k) then by Lemma 1.3 we
obtain equivalence of the following sets

Fix(wk) = Fix(f (N,k)) = Fix(fk).

In consequence Pn(f) = Pn(f
m) as required.

Note that we have actually proved that it is not only immaterial which generator we
choose within the group 〈t〉 to de�ne Per(t). Moreover the same (let us say i-th) iteration
of any generator has identical �xed point set and thus also the set of periodic points of any
least period.

It is well�known that both sets PPer(ZN) and Per(ZN) are equal. However for the co-
nvenience of the reader, in the next section we give the proof based on Macbeath's result.
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1.2.1 De�nitions and Notation I

In this section we establish notation that we shall use.

(0) Let A ∈ Per(ZN). It is of interest to know the minimum genus of a surface on which
A is attained as the set of periods. Denote by gA the minimal genus for such an action
of ZN . We will call the number gA the A�minimum genus.

(1) D0(N) = {d | d < N, d | N}, D1(N) = {d | d 6= 1, d | N}.

(2) Let δx : N → N denote the Dirac delta function: δx(y) equals 1 if x = y and 0 otherwise.

Let B be a subset of divisors mi of N that all of them are greater than 1 i.e. B =
{m1, ...,mk} ⊆ D1(N). All subsequent de�nitions in this section apply to B as de�ned above.

(3) Let lcmB = lcm(m1, ...,mk).

(4) Let N = pr11 ...p
rn
n and let αpi

(N) = ri.

Observe that αpi
(lcmB) = max

j=1,...,n
αpi

(mj). De�ne also the following sets:

(5) Let Api
(B) be the set of elements in B divisible by the maximum power of the prime

factor pi i.e. Api
(B) = {m ∈ B | αpi

(m) = αpi
(lcmB)},

(6) If there is only one element in the set Api
(B) we call it an isolated element and de�ne

F (B) to be the set of all isolated elements of B: F (B) = {m ∈ B | ∃i Api
(B) = {m}}.

(7) Let C(B) be the set of elements of B which are divisible by the maximum power of 2
but are not isolated: C(B) = A2(B) \ F (B),

(8) If 2 - ]C(B), let t(B) = min{m ∈ B | m ∈ A2(B)} and de�ne

G(B) =

{
{t(B)}, if 2 - ]C(B)

∅, if 2 | ]C(B).

In this way we obtain that G(B) is either empty or a singleton.

Furthermore, we introduce two auxiliary maps ∆,∆2.

(9) Let B ⊆ D1(N) and let ∆,∆2 be given by the formulas

∆(B) =
∑
m∈B

(1−m−1) +
∑

m∈F (B)

(1−m−1) +
∑

m∈G(B)

(1−m−1),

∆2(B) = 1−NδN(lcmB) +
N

2
∆(B).

Remark 1.5. Assume that ∅ 6= B ⊆ D1(N). Then A2(B) ⊆ F (B) implies G(B) = ∅.
Remark 1.6. Observe that A ∈ Per(ZN) and B ⊆ D1(N) are sets. Thus do not contain any
repetitions.
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2.1 The Set of Periods of Cyclic Groups Actions

We recall the following theorem of Harvey, that gives necessary and su�cient conditions on
a group Γ to have a surface group Λ as a normal subgroup of �nite index, such that the
factor group Γ/Λ is cyclic.

Theorem 2.1 (Harvey [20]). Let Γ be a Fuchsian group of the form (1.1) with orbit genus
γ, and let M = lcm(m1, ...,mn). There is a smooth epimorphism ψ : Γ → ZN if and only if
the following conditions are satis�ed:

(i) lcm(m1, ...,mi, ...,mn) = M for all i, where mi denotes the omission of mi;

(ii) M divides N , and if γ = 0, then M = N ;

(iii) n 6= 1, and, if γ = 0, then n ≥ 3;

(iv) if 2|M , the number of periods of the group Γ divisible by the maximum power of 2
dividing M is even.

For the sake of completeness we recall also a theorem of Macbeath, that we shall need in
order to compute the set of periods of a ZN�action.

Theorem 2.2 (Macbeath [28]). Let (G,S) be a Riemann surface transformation group and
(Γ,H2) the universal covering group. Let x1, ..., xn be generators of the maximal �nite cyclic
subgroups of Γ of orders m1, ...,mn respectively, including exactly one for each conjugacy
class. Let ψ∗ denote the natural homomorphism of Γ on G. For t ∈ G \ {Id} let εi(t) be 1 or
0 according as t is or is not conjugate to a power of ψ∗(xi) in G. Then the number of points
of S �xed by t is given by the formula

]Fix(t) = |NG(〈t〉)|
n∑
i=1

εi(t)m
−1
i , (2.1)

where NG(〈t〉) denotes the normalizer of subgroup 〈t〉 in G.

If G is cyclic the formula (2.1) is particularly easy to handle although we �rst need a
preliminary result.

Proposition 2.3 (Harvey [20]). A homomorphism ψ∗ from a Fuchsian group Γ onto a �nite
group G is smooth if and only if it preserves the periods of Γ, i. e. for every elliptic generator
xi, of order mi, ψ

∗(xi) has order mi.

By the above we get εi(t) = 1 if and only if ordt divides mi and consequently

]Fix(t) = N
∑

mi,ordt|mi

m−1
i .

Observe that ]Fix(t) is completely determined by Γ and does not depend on the choice of
natural homomorphism. The following proposition yields information about the structure of
the set of periods.
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Proposition 2.4. Suppose that (Γ,H2), where Γ is given by (1.1), is the universal covering
transformation group of a transformation group (〈t〉, S), ordt = N . Then, if d | N ,

]Pd(t) = d ]{mi | mi = N/d}. (2.2)

Proof. The proof is by induction on the number of prime factors of d. Observe that

]Fix(td) = N
∑
k|d

]{mi | mi = ordtk}m−1
i , (2.3)

by Theorem 2.2. Suppose �rstly d to be prime. Since any period of t divides N we may
assume d | N and conclude that ]Pd(t) = N]{mi | mi = ordtd}m−1

i = d]{mi | mi = N/d}.
If now (2.2) holds for the divisors of N having no more than r prime factors counted

with multiplicities, we can easily show that it also holds for d that has r + 1 prime factors.
Indeed, since k < d, k | d, k has no more than r prime factors and we obtain

]Fix(td)− ]Pd(t) =
∑

k<d,k|d

]Pk(t) =
∑

k<d,k|d

k]{mi | mi = N/k}

=
∑

k<d,k|d

Nm−1
i ]{mi | mi = ordtk},

which together with (2.3) gives our assertion.

We are now in a position to show that PPer(ZN) = Per(ZN).

Corollary 2.5. The set of periods Per(ZN) of the cyclic group ZN is equal to the set of
potential periods PPer(ZN).

Proof. Suppose that A = {d1, ..., dk} ∈ PPer(ZN) and A 6= ∅. We shall construct a Fuchsian
group Γ with compact orbit space, such that (Γ,H2) covers the transformation group (〈t〉, S)
and Per(t) = A, where ordt = N . In order to achieve this, we de�ne

Γ = (1;N/dk, N/dk, ..., N/d1, N/d1). (2.4)

The group Γ is Fuchsian with orbit genus 1 and two elliptic generators of each period
equal to N/di. It is easy to check that the group (2.4) satis�es the conditions of Theorem
2.1. By Proposition 2.4 it follows that the transformation group (〈t〉, S) satis�es Per(t) =
{d1, ..., dk} ∈ Per(ZN) with S being a surface of genus g = Nk −

∑k
i=1 di + 1 which is a

consequence of (1.3).
The only point remaining concerns the case A = ∅. Again, by Proposition 2.4 it is clear

that Γ has to be a surface group (γ;−). Consider a smooth homomorphism of Γ onto ZN

that maps each hyperbolic generator ai, bi onto any element of order N . Note that any such
epimorphism is smooth since Γ has no elliptic elements. By the Riemann�Hurwitz formula
(1.3), we now obtain

2(g − 1)

N
= 2(γ − 1),

because the terms depending on the periods of Γ disappear. Since we are investigating only
hyperbolic surfaces (g ≥ 2) it follows that γ > 1.
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Remark 2.6. By the above we conclude that the minimum genus of a hyperbolic surface on
which ZN acts periodic points freely equals N + 1.

Example 2.7. The following example gives surface homeomorphisms of order N ≥ 2 that
acts on Riemann surfaces without periodic points. In order to construct the required maps
we consider the closed surface of genus N + 1 embedded in R3, modelled as a sum of a torus
symmetric with respect to the z�axis with N holes centered in points laying on the external
equator corresponding to the multiplicities of the angle 2π/N and N tori attached to it (see
Figure 2.1 below, for N = 3). Then the rotation t by 2π/N about the z�axis is a conformal
automorphism of order N satisfying Per(t) = ∅. The quotient surface is a 2�torus.

The next theorem shows how to �nd the signature of a covering group Γ, such that the
genus of the underlying surface S is minimal among all surfaces on which ZN attains A as
the set of periods.

Theorem 2.8. Let N = pr11 p
r2
2 ...p

rn
n , N 6= 2, 3, 4, 6. Suppose that A = {d1, d2, ..., dk} ∈

PPer(ZN), k ≥ 2. Let B = {N/d1, N/d2, ..., N/dk}. Then (Γ,H2), where

Γ = (1− δN(lcmB);B, F (B), G(B)) (2.5)

is a universal covering transformation group of (〈t〉, S), such that ordt = N . Furthermore
Per(t) = A, and genus of S equals gA.

Proof. As we are interested in those Fuchsian groups Γ such that there exists a smooth
homomorphisms of Γ onto ZN , we again apply Harvey's theorem. The repeated periods by
means of the set of isolated periods F (B) and the set G(B) correspond to conditions (i) and
(iv) of that theorem. Recall also that due to point (ii), γ = 0 implies lcmB = N . Note that
genus of the group given by (2.5) equals 0 if and only if lcmB = N . On the other hand if
lcmB 6= N then its genus is equal to 1.

We show �rstly that Fuchsian group given by (2.5) satis�es Harvey's conditions. Obvio-
usly ]Api

(B)+]Api
(F (B)) ≥ 2 for every prime factor of lcmB. Hence condition (i) of Theorem

2.1 is satis�ed. Observe that in case k = 2 and lcm(N/d1, N/d2) = N we get that d1 and d2 are
coprime, hence ]B+]F (B) ≥ 4 and condition (iii) follows. The set A2(B) splits naturally into
two subsets, namely A2(B)∩F (B) and A2(B) \F (B). Since A2(A2(B)∩F (B)) = A2(F (B))
we obtain that ]A2(B) + ]A2(F (B)) is even if and only if ](A2(B) \ F (B)) is even. Thus in
case 2 - ](A2(B)\F (B)) we change the parity of ]A2(B)+ ]A2(F (B)), by adding the element
minA2(B). Thus point (iv) of Theorem 2.1 follows. Moreover Per(t) = {d1, d2, ..., dk} = A
by Proposition 2.4.

We now proceed to the proof of minimality of genus of the surface S. Suppose that there is
a universal covering transformation group (Γ1,H2) and its underlying surface transformation
group (〈t1〉, S1) such that ordt1 = N , Per(t1) = A and genus of surface S1 equals g1. Assume
Γ1 = (γ1;m

′
1,m

′
2, ...,m

′
n1

). It follows that all the periods of Γ1 are contained in B, i.e.
m′
i ∈ B. Otherwise Per(t1) 6= A, by Proposition 2.4. De�ne mΓ(N/di) and mΓ1(N/di) to

be multiplicities of N/di appearing as periods of the groups Γ and Γ1 respectively. Observe
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Figure 2.1: Automorphism of order 3 acting freely on the surface of genus 4.
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that if N/dj ∈ F (B), then there is 1 ≤ i ≤ n such that Api
(B) = {N/dj}. Thus in order

to satisfy condition (i) of Theorem 2.1 we necessarily must have mΓ1(N/dj) ≥ 2. If N/dj 6=
minA2(B) or G(B) = ∅, then mΓ(N/dj) = ]Api

(B) + ]Api
(F (B)) = 2. Hence mΓ1(N/dj) ≥

mΓ(N/dj). In case minA2(B) ∈ F (B) and G(B) = {minA2(B)} we obtain mΓ(minA2(B)) =
3. Obviously ifmΓ1(minA2(B)) ≥ 3 we certainly havemΓ1(N/dj) ≥ mΓ(N/dj) for all 1 ≤ j ≤
k. Otherwise mΓ1(minA2(B)) = 2 implies that there is N/dj ∈ A2(B), N/dj > minA2(B)
satisfying mΓ1(N/dj) > mΓ(N/dj). Furthermore, observe that

1− (N/dj)
−1 > 1− (minA2(B))−1. (2.6)

Note that in both cases we have n1 ≥ ]B+]F (B)+]G(B). Moreover γ1 = 0 implies lcmB = N
that �nally gives γ = 0. Since γ ≤ 1 the above and (2.6) show that g ≤ g1 and this is precisely
the assertion of the theorem.

We have just skipped in the last theorem the case k = 1. We complete the study by the
following remark.

Remark 2.9. If k = 1 and the remaining assumptions of Theorem 2.8 hold then the universal
covering group satisfying conditions required there equals

Γ =


(0;N,N,N), if A = {1}, 2 - N
(0;N,N,N,N), if A = {1}, 2 | N,
(1;N/di, N/di), if A = {di}, di 6= 1.

It is worth noting that applying directly the remark above and Theorem 2.8 for N =
2, 3, 4, 6 we may obtain exceptional signatures from the list (1.2). As an example take N = 6
and A = {1, 2, 3} that would led us to the Euclidean group (0; 2, 3, 6). Analogously for N = 2
and A = {1} we would obtain by Remark 2.9 the group (0; 2, 2, 2, 2). In Table 2.1 we consider
the excluded cases.

Although in general an exact formula for the A�minimum genus gA seems to be compli-
cated, in the next proposition we provide its upper and lower bounds. Note that Harvey in
fact found the smallest A�minimum genus.

Proposition 2.10. Under the assumptions of Theorem 2.8, we have

1

2

(
N(k − 2)−

k∑
i=1

di + 2

)
≤ gA ≤ Nk −

k∑
i=1

di + 1. (2.7)

Proof. By Theorem 2.8 we have gA = ∆2(B). Clearly 1−N +N/2
∑

m∈B(1−m−1) ≤ ∆2(B).
To show also the upper bound, observe that ]F (B) + ]G(B) ≤ ]B by Remark 1.5 and in the
case where this inequality is sharp our assertion follows. Furthermore, if there is equality
and G(B) 6= ∅ then B \ F (B) ⊆ A2(B). Hence

∆(B) ≤
∑
m∈B

(1−m−1) +
∑

m∈F (B)

(1−m−1) +
∑

m∈B\F (B)

(1−m−1),
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since G(B) = {minA2(B)}. Finally, F (B) = B yields the right�hand bound, which completes
the proof.

In general, for k ≥ 3, the bounds at (2.7) cannot be sharpened. That is to say, for each
N there exists a set of periods A such that gA equals the left�hand or the right�term term
of inequality (2.7).

As a �nal remark in this section we give an example of application of the combinatorial
argument used in Theorem 2.8.

Example 2.11. Let Σg be a hyperbolic surface of genus g and suppose f to be a �nite
order orientation�preserving self�homeomorphisms of order N of Σg. It was left as an open
question in [[18], p.478] as to whether there was a ZN�action on a surface of genus 3 so that
4 ∈ Per(f) but 1, 2 6∈ Per(f). By (1.4) we are looking for a smooth epimorphism ψ∗ : Γ → ZN .
By Proposition 2.4, we must have N/mi > 2 for all i and at least one N/mj = 4 unless N = 4
in which case the action must be �xed point free. This latter case cannot arise for g = 3 by
Remark 2.6. By Theorem 6 of [20] N = 4k > 4 implies g ≥ max{2, k}. Thus N = 8 or
N = 12. For N = 8, we have A = {4} and for N = 12, A = {4}, {3, 4}, {4, 6}, {3, 4, 6}.
By Theorem 2.8, the corresponding universal covering groups for the minimal genus gA are,
respectively, (1; 2, 2) for N = 8, (1; 3, 3), (0; 3, 3, 4, 4), (1; 2, 2, 3, 3), (0; 2, 3, 3, 4, 4) for N =
12. But the minimum genera are then 5, 9, 6, 15, 9 respectively so that there is no action of
the required type on a surface of genus 3.
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2.2 The Maximum Genus Problem

Abstract of the section

Since the content of the actual section comprises mostly some de-

licate and detailed applications of standard methods based on Ha-

rvey's and Macbeath's results we give here a short abstract anti-

cipating the forthcoming investigations. First, recall where we are.

Let G = 〈f〉 be a �nite cyclic group of order N that acts by con-

formal automorphisms on a compact Riemann surface S of genus

g ≥ 2. Associated to this is a set A of periods de�ned to be the sub-

set of proper divisors d of N such that, for some x ∈ S, x is �xed

by fd but not by any smaller power of f . For an arbitrary subset A
of proper divisors of N , there is always an associated action and,

if gA denotes the minimal genus for such an action. In the actual

section we focus on a set Amax of proper divisors of N for which gA
is maximal. Furthermore in the general case we observe that Amax

corresponds to the full set D1(N) or D1(N)\{c1}, where the terms

D1(N) and c1 were introduced in Subsection 1.2.1. Thus roughly

speaking the more periods we require to appear while ZN acts on

a hyperbolic Riemann surface the higher value of its genus shall

be expected. However the above general concept does not cover all

the cases forcing us to �nd all exceptions.

We already know that any set A of proper divisors of N can be realized as the set
of periods of some ZN�action on a compact Riemann surface. Associating to each of the
sets A the A�minimum genus gA we may introduce the following relation: A1 precedes A2

(A1 ≤ZN
A2) if gA1 ≤ gA2 . This relation is re�exive and transitive, thus the set Per(ZN)

with this relation is a quasi�ordered set. Fix N . We then may ask for the maximal value of
gA = gA(N) and a corresponding maximal element of (Per(ZN),≤ZN

). A set for which gA is
maximal will be denoted byAmax. Obviously there may exist more than one maximal element.
Nevertheless, since we are interested in maximum value of gA it is not our purpose to study
all maximal elements in (Per(ZN),≤ZN

). Therefore just the determination of any of them
will be regarded as a satisfactory result. We continue to use notation and symbols introduced
previously in Subsection 1.2.1. Let N = pr11 ...p

rn
n and B ⊆ D1(N). Unless otherwise stated

we assume that B 6= ∅, {N}. We de�ne

D∗(N) =

{
D1(N) \ {c1}, if G(D1(N)) = ∅, 2 | N, N 6= 2r

D1(N), otherwise,

where c1 = minA2(D1(N)). Note that if N = 2rM for M odd, then c1 = 2r. Recall that by
Theorem 2.8 ∆2(B) equals gA, where B = {N/d | d ∈ A}. During the following calculations
we will see that in a "general" case we have

∆2(B′) ≤ ∆2(D∗(N/pi)) ≤ ∆2(D∗(N)), (2.8)
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where B′ ⊆ D1(N/pi) and nearly all exceptional cases given at the end of this section arise
when one of the inequalities above does not hold. Observe that the both maps ∆ = ∆(B, N)
and ∆2 = ∆2(B, N) in fact depend on two arguments: B ⊆ D1(N) a set of divisors of N
being the order of a cyclic group and the number N itself. As we �x N , for convenience in
notation we ignore the dependence of ∆ and ∆2 on N . Therefore although B′ ⊆ D1(N/pi)
we regard B′ as a set of divisors of N .

Observe also that

∆2(B′)−∆2(D∗(N/pi)) = 2−1N(∆(B′)−∆(D∗(N/pi))). (2.9)

We thus begin with a study of the left�hand inequality by considering the map ∆.

Lemma 2.12. Let N = pr11 p
r2
2 ...p

rn
n , where n 6= 2 or n = 2 and min{r1, r2}

≥ 3. Then
max

B⊆D1(N)
∆(B) = ∆(D∗(N)).

Proof. We have divided the proof into four parts depending on the cardinality of the set of
isolated elements F (B) = {m1,m2, ...,ms}. The main idea of the proof is to investigate the
number of elements of D1(N) that do not belong to B when s varies. It is obvious that for
any m ∈ D1(N) we have 1/2 ≤ (1−m−1) < 1. Note that if we consider a sum of elements of
the form (1−m−1), then by removing 2k and adding k summands its value always decreases.
We use the above remark in cases s = 0, 1, 2 although case s ≥ 3 di�ers from this line of
argument, which will be explained after the remaining results have been obtained.

Observe �rstly that if G(D1(N)) = ∅ but 2 | N , N 6= 2r we have

∆(D1(N) \ {c1}) > ∆(D1(N)).

We prove the lemma for s = 0. De�ne c2 = minA2(D1(N) \ {c1}). If ](D1(N) \ B) ≥ 2,
then since

∑
m∈D1(N)\B(1 − m−1) ≥ 1 , we have ∆(D1(N)) ≥ ∆(B). We thus may assume

](D1(N) \ B) = 1. We need only consider the cases where G(B) 6= ∅, since otherwise we
clearly have ∑

m∈B

(1−m−1) = ∆(B) ≤ ∆(D1(N)).

By means of the de�nition in Subsection 1.2.1 it gives G(B) = {t(B)}. If G(D1(N)) 6= ∅ then
∆(D1(N))−∆(B) = 1−m−1 ≥ 2−1. Otherwise, since t(B) ≤ c2, then G(D1(N)) = ∅ implies
∆(D1(N) \ {c1})−∆(B) = 1/t(B)− c−1

2 + c−1
1 −m−1 ≥ 0.

We now turn to the case F (B) 6= ∅, that is s 6= 0 Suppose s = 1. Moreover assume that
n > 1 and Apj

(B) = {m1}. Observe that

](D1(N) \ B) ≥
∏
i6=j

(αpi
(N) + 1)− 1 ≥ 3. (2.10)

Hence G(B) = ∅ gives ∆(D1(N)) > ∆(B). Suppose then 2 | N . If now G(D1(N)) = ∅ and
G(B) 6= ∅, then A2(B) 6= {m1}, by Remark 1.5. Since t(B) > c1 gives ](D1 \ B) ≥ 4 we thus
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get ∆(D1(N)) −∆(B) > 0. Hence we may assume G(B) = {c1}. Observe also that there is
m∗ ∈ D1(N) \ B, such that m∗ > c1. It follows that ∆(D1(N)) − ∆(B) =

∑
m∈D1(N)\B(1 −

m−1)−F (B)−G(B) ≥ c−1
1 −m−1

∗ > 0. Finally, if G(D1) 6= ∅ then clearly ∆(D1(N)) > ∆(B).
In case n = 1 we get G(B) = ∅, hence B 6= D1(N) implies ∆(D1(N)) > ∆(B).

Suppose that s = 2. We certainly have n > 1. Furthermore, assume n > 3 or n = 3 and
max{r1, r2, r3} > 1. We thus obtain

](D1(N) \ B) ≥ (2.11)∏
i6=j

(αpi
(N) + 1) +

∏
i6=k

(αpi
(N) + 1)−

∏
i6=j,k

(αpi
(N) + 1)− 2

= (1 + αpj
(N) + αpk

(N))
∏
i6=j,k

(αpi
(N) + 1)− 2 ≥ 8− 2 = 6,

and since ]F (B)+ ]G(B) ≤ 3 we are done. If n = 3 and r1 = r2 = r3 = 1 we conclude that in
the case G(B) 6= ∅ we have N = 2p1p2. Suppose p1 < p2. We then obtain ∆(D1(N) \ {2})−
∆(B) ≥ (p2− 1)/2p2 > 0. If now G(B) = ∅, then by (2.11) we get ](D1(N) \ B) ≥ 4 and our
assertion again follows. For n = 2 we have G(B) = ∅ and since (2.11) gives ](D1(N) \B) ≥ 5
we again get the result.

Assume that s ≥ 3. The proof consists now in the construction of a set B′ such that
∆(D1(N)) ≥ ∆(B′) ≥ ∆(B). We achieve this by enlarging the set of periods of the universal
covering group Γ. It results in substitution in the sum that de�nes the map ∆ of all the
isolated elements of B by greater ones. It clearly gives rise to bigger summands of the referred
sum. We begin by identifying the structure of the set F (B) that is extremely important for
our construction. Recall that according to the de�nition mi ∈ F (B) if and only if there is j
such that Apj

(B) = {mi}. Without loss of generality we may assume that

Apj
(B) = {m1} if k0 = 1 ≤ j < k1,

Apj
(B) = {m2} if k1 ≤ j < k2,

...

Apj
(B) = {ms} if ks−1 ≤ j < ks ≤ n+ 1.

Furthermore, assume that

mi = p
aki−1

ki−1
p
aki−1+1

ki−1+1 ...p
aki−1

ki−1 Qi,

where pj - Qi for ki−1 ≤ j < ki. Consider the following terms

m′
j = mjp

akj
−αpkj

(Qj)

kj
if 1 ≤ j < s, m′

s = msp
a1−αp1 (Qs)
1 .

Note that m′
j 6∈ B and m′

j 6= m′
i for j 6= i. Set B′ = B ∪ {m′

1,m
′
2, ...,m

′
s}. Since for every

prime factor of lcmB there are at least two elements in B′ divisible by its maximum power
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it follows that F (B′) = ∅. Observe that m′
j > mj and lcmB > minA2(B). We conclude that

lcmB = lcmB′ > m′
j yields lcmB′ 6∈ B′. Therefore we get

∆(D1(N)) ≥
∑

m∈D1(N)\{lcmB′}

(1−m−1) + 1− (lcmB′)−1

≥
∑
m∈B

(1−m−1) +
∑

m∈B′\B

(1−m−1) + 1− 1/t(B) ≥ ∆(B),

which completes the proof.

Our next goal is to investigate in detail the cases that have been omitted in Lemma 2.12.
The following proposition provides information about all exceptions of the �rst inequality of
(2.8).

Proposition 2.13. Let N = pr11 ...p
rn
n . Then

max
B⊆D1(N)

∆(B) = ∆(D∗(N))

except the following cases when maxB⊆D1(N) ∆(B) = ∆(B̃)

(i) N = pr11 p2, B̃ = D1(N) \ {pr11 }, 2 - N , r1 > 2

(ii) N = p2
1p2, B̃ = D1(N) \ {p2

1}, 2 - N , 2p2 ≥ p2
1 − p1 + 2

(iii) N = p2
1p2, B̃ = D1(N) \ {p2, p

2
1p2}, 2 - N , 2p2 ≤ p2

1 − p1 + 2

(iv) N = p1p2, B̃ = {p1, p2}, 2 - N

(v) N = 2pr11 , B̃ = D1(N) \ {pr11 }, 2 - r1.

Proof. We may assume n = 2 and min{r1, r2} ≤ 2. Let F (B) = {m1, ...,ms}. It is worth
noting that the proof of cases s = 0 and s = 3 of the preceding lemma follows independently
on the prime factorization of N . Therefore ∆(B) > ∆(D∗(N)) implies 1 ≤ s ≤ 2. De�ne

H(N,B) = ∆(D∗(N))−∆(B).

We will investigate the reductions of the set D1(N) that may cause that the value of the map
∆ increases. In fact we are looking for those sets B such that H(N,B) < 0. We will denote
the considered cases by a�b, which will mean that ](D1(N) \B) = b and ]F (B)+ ]G(B) = a.
Thus in order to augment the value of ∆ we shall have b < 2a. Since n = 2 we also have
a ≤ 3. Moreover if a were equal to 3 there would be s = 2. But Remark 1.5 yields ]G(B) = 0,
which is a contradiction. Observe also that the case 2-3 is empty. Assume �rstly N = 2r2pr11 .
We may dismiss quickly the case N = 2p1 since ]D1(2p1) = 3. Furthermore a = 2 implies
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Ap1(B) ∩ F (B) 6= ∅. Note that if m ∈ F (B) ∪ G(B), then (1 −m−1) ≤ (1 − N−1). Observe
also that r1 ≥ 2 clearly gives ]Ap1(D1(N) \ B) ≥ 2 and thus we obtain

H(N,B) ≥ (1− 2−1) +
∑

m∈Ap1 (D1(N)\B)

(1−m−1)− 2(1−N−1)

≥ 2−1 − 3(2p1)
−1 + 2N−1 > 0.

Otherwise, if r1 = 2, then 2, p1 and 2p1 are the three smallest elements of D1(N) and by the
above we again get H(N,B) > 0. If now 2 - N , then H(N,B) = ∆(D1(N))−∆(B) and the
three smallest elements of D1(N) are not smaller than 3, 5 and 9 respectively. Thus

H(N,B) ≥ (1− 3−1) + (1− 5−1) + (1− 9−1)− 2(1−N−1) > 2N−1 > 0.

It follows that we need only consider three cases: 1-1, 2-1 and 2-2.
Case 1-1 Since s = 1 we have G(B) = ∅. By (2.10) we get N = pr11 p2 and B1 =

D1(N) \ {pr11 } or B2 = D1(N) \ {pr11 p2}. Observe that ∆(B1) > ∆(B2). If 2 - N then
H(pr11 p2,B1) = (1− p2)/p

r1
1 p2 < 0. Furthermore H(2r1p2,B1) = 0 and �nally N = 2pr11 , 2 | r1

gives H(2pr11 ,B1) = (pr11 − 1)/2pr11 > 0.
Case 2-1 Assume �rstly s = ]G(B) = 1. Analogously to the previous case we get

N = pr11 p2, but now p1 6= 2. Therefore N = 2pr11 . Observe that in case 2 - r1 we obtain
H(2pr11 ,B1) = −(1 + pr1−1

1 )/2pr11 < 0. If now s = 2 and G(B) = ∅, then by (2.11) we have
N = p1p2. If 2 - N and B3 = {p1, p2} we get H(p1p2,B3) = −1 + (p1 + p2 − 1)/p1p2 < 0.
Otherwise, for N = 2p1 we get H(2p1,B3) = 0.

Case 2-2 Analogously to case 2-1 we shall consider two subcases ]G(B) = 1 and ]G(B) =
0. Suppose ]G(B) = 1. By (2.10) it follows that N = pr11 p

r2
2 and F (B) = {pr11 pk2}, 0 ≤ k ≤ r2.

We thus again get p2 = 2. Assume N = 2pr11 . In order to maximize value of the map ∆ we
shall have F (B) = {2pr11 }. But b = 2 now yields ]C(B) = r1 − 1, 2 | r1 or ]C(B) = r1, 2 - r1.
But the latter case was considered in point 2-1. It is easy to check that the already mentioned
set B1 gives bigger value of ∆. Hence we shall consider only B4 = D1(2p

r1
1 ) \ {2, pr11 }, which

leads us to H(2pr11 ,B4) = (pr1−1
1 − 1)/2pr11 > 0. Thus B4 it is not an exceptional set. Assume

now N = 4pr11 . We shall have F (B5) = {4pr11 } and consequently ]C(B5) = r1, 2 - r1. Then let
B5 = D1(4p

r1
1 ) \ {pr11 , 2pr11 }. But we again get H(4pr11 ,B5) = (pr1−1

1 (2p1 − 1) − 5)/4pr1 ≥ 0.
We can now proceed to the case ]G(B) = 0. By (2.11) we have r1 + r2 ≤ 3. Observe that
N 6= p1p2 because in that case b = 2 implies s = 1. Thus N = p2

1p2. Since s = b = 2 we
have p2

1p2 6∈ B. In order to maximize the value of the map ∆ we put B6 = {p1, p1p2, p
2
1}.

If 2 - N we have H(p2
1p2,B6) = (−p2

1 + p1 − 1 + p2)/p
2
1p2. Furthermore, if p2 = 2 then

H(2p2
1,B6) = (p1 + 1)/2p2

1 > 0. The same conclusion can be drawn for p1 = 2, namely
H(4p2,B6) = (p2 − 2)/2p2 > 0.

We are now in a position to enumerate the exceptional sets B that satisfy ∆(B) >
∆(D∗(N)). Firstly, we observe that B1, B3 and B6 are the only sets on the candidate list. If
N = pr11 p2, r1 > 2, 2 - N , then point (i) follows from case 1-1. Similarly, if N = 2pr11 , 2 - r1
then by case 2-1 the map ∆ attains its maximum value also in B1 which is stated in point (v).
WhenN = p1p2, 2 - N we shall compare the values of ∆ for B1 = {p2, p1p2} and B3 = {p1, p2}.
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But ∆(B1)−∆(B3) = (2p2 + p1 − p1p2 − 2)/p1p2 < 0, which is point (iv). If now N = p2
1p2,

2 - N we compare ∆(B1) and ∆(B6). Observe that ∆(B1)−∆(B6) = (2p2− p2
1 + p1− 2)/p2

1p2

which falls into cases (ii) and (iii). Thus the proposition follows.

Having disposed of the preliminary results on the �rst inequality of (2.8) we proceed
to investigate the second one, namely ∆2(D∗(N/pi)) ≤ ∆2(D∗(N)). In order to get this
inequality we need slightly stronger assumptions on the prime factorization of N , than we
used in Lemma 2.12. The point of the following corollary is that it allows one to compare
values of the map ∆2 despite of the negative term that appears for D∗(N).

Lemma 2.14. Let N = pr11 p
r2
2 ...p

rn
n . Suppose that n > 2 or n = 2, min{r1, r2} ≥ 2. Then we

have ∆2(D∗(N/pi)) ≤ ∆2(D∗(N)) for any i ∈ {1, 2, ..., n}.

Proof. Let c = maxi=1,...,n αpi
(N). Since construction of D∗(N/pi) consists in substituting if

necessary the element c1 = minA2(D1(N/pi)) by the one equal to minA2(D1(N/pi) \ {c1}),
then it follows that

∆2(D∗(N/pi)) ≤
N

2

∑
m∈D1(N/pi)

(1−m−1) +
N

2
(1− 2−c+1) + 1. (2.12)

Denote R = D1(N) \ D1(N/pi). We have

∆2(D∗(N)) ≥ −N + 1 + (2.13)
N

2

∑
m∈R

(1−m−1) +
N

2

∑
m∈D1(N/pi)

(1−m−1) ≥

∆2(D∗(N/pi)) +
N

2

(∑
m∈R

(1−m−1)− 3

)
.

Since ]R =
∏

pj 6=pi
(αpj

(N)+1), thus in caseN = pr11 ...p
rn
n , n ≥ 4 we obtain

∑
m∈R(1−m−1) ≥

8 · 2−1 = 4 which establishes the inequality. If n = 3 then consider

Lj,k(rj, rk) =

rj∑
t=0

rk∑
s=0

p−tj p
−s
k ≤ pj

pj − 1

pk
pk − 1

.

Since the function x 7→ x(x − 1)−1 de�ned on (1,∞) is decreasing we conclude that for
N = prii p

rj
j p

rk
k and pi = 2 we obtain∑

m∈R

(1−m−1) = ]R− 2−riLj,k(rj, rk) ≥ 4− 1/2 · 3/2 · 5/4 > 3.

Analogously, pi ≥ 3 yields
∑

m∈R(1 − m−1) ≥ 4 − 5/6 > 3. Finally, we consider the case
n = 2, i.e. N = prii p

rj
j . Observe that due to our assumptions we have

−2 +
∑
m∈R

(1−m−1)− (1− 2−c+1) ≥ −2 + rj − 2p−rii + 2−c+1.
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Furthermore in both cases rj > ri and rj ≤ ri it holds (−2 + rj) + (2−c+1 − 2p−rii ) ≥ 0.
Therefore we obtain

∆2(D∗(N)) ≥ N

2
(−2 +

∑
m∈R

(1−m−1) − (1− 2−c+1))

+
N

2

∑
m∈D1(N/pi)

(1−m−1) +
N

2
(1− 2−c+1) + 1 ≥ ∆2(D∗(N/pi)).

and by (2.12) the proof is complete.

We continue in this fashion to obtain the exceptions of the second inequality of (2.8) by
considering the cases that have been omitted in the last lemma.

Proposition 2.15. Let N = pr11 ...p
rn
n , N not prime. Then ∆2(D∗(N/pi)) > ∆2(D∗(N)) if

and only if at least one of the following statements holds

(i) N = pr11 , pi = p1

(ii) N = p2
1p2, pi = p2, 2 - N , p2 < p2

1 + p1 + 1

(iii) N = 2p2
1, pi = 2

(iv) N = 12, pi = 3

(v) N = pr11 p2, pi = p1, p2 6= 2

(vi) N = 2pr11 , pi = p1, 2 - r1.

Proof. (⇐) The proof follows from straightforward calculations.
(⇒) By Lemma 2.14 we only consider the cases n = 1 or n = 2, min{r1, r2} = 1. Denote

H(N, pi) = 2N−1(∆2(D∗(N))−∆2(D∗(N/pi))).

We are thus looking for N and pi such that H(N, pi) < 0. Suppose �rstly n = 2, i.e. N =
pr11 p2. If 2 - N then H(pr11 p2, p1) = −(p2 + 1)/pr11 p2 < 0. But since H(2r1p2, 2) = −2r1−1 < 0
the assertion follows also for p1 = 2, which is stated in point (v). If p2 = 2 then we shall
consider two subcases. Note that 2 | r1 gives now H(2pr11 , p1) = (pr1−1

1 − 3)/2pr11 ≥ 0 and
2 - r1 leads us to H(2pr11 , p1) = −(pr11 + 3)/2pr11 < 0, which is (vi).

We can now proceed analogously to consider the terms of the form H(pr11 p2,
p2). If 2 - N , then

H(pr11 p2, p2) = −2 + r1 −
1

p2

pr1+1
1 − 1

pr11 (p1 − 1)
+

1

pr11
.

Since r1 − 3 < H(pr11 p2, p2) < r1 − 1 it remains only to check directly the case r1 = 2. But
H(p2

1p2, p2) = (p2 − 1− p1 − p2
1)/p

2
1p2 and we obtain (ii). If p1 = 2 then we again get

r1 − 3 < H(2r1p2, p2) = −2 + r1 + 2−r1+1 − 2p−1
2 < r1 − 1.
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Observe that case r1 = 1 has been already covered by (vi). Furthermore r1 = 2 yields
H(4p2, p2) = (p2− 4)/2p2 which is lower than 0 if and only if p2 = 3 that gives (iv). Let now
p2 = 2 and 2 | r1. We have

H(2pr11 , 2) = −3

2
+ r1 −

1

2

pr1+1
1 − 1

(p1 − 1)pr11
+

1

pr11
> −5

2
+ r1

and H(2p2
1, 2) = (1− p1)/2p

2
1 < 0, which shows (iii). Similarly, taking 2 - r1 we obtain

H(2pr11 , 2) = −2 + r1 −
1

2p1

pr11 − 1

pr1−1
1 (p1 − 1)

− pr1−1
1 − 2

2pr11
> −5

2
+ r1

and case r1 = 1 has been already covered by (v).
Finally, if N = pr11 , r1 ≥ 2 then we have H(pr11 , p1) = (−pr11 + p1 − 2)/pr11 < 0, that is

stated in point (i) and the proof is complete.

We can now formulate the main result of this section. Recall that for each N we are
looking for a set B that satis�es

max
B′⊆D1(N)

∆2(B′) = ∆2(B). (2.14)

Theorem 2.16. Let N = pr11 ...p
rn
n . The maximal set of periods Amax in (Per(ZN),

≤ZN
) equals D0(N), except the following cases

(i) If N = pr11 , r1 ≤ 2, then Amax = ∅

(ii) If N = pr11 , r1 > 2, then Amax = D0(N) \ {1}

(iii) If N = p1p2, then A = ∅

(iv) If N = p2
1p2, 2 - N , then Amax = {p1p2, p

2
1}

(v) If N = 2pr11 , 2 | r1 then Amax = D0(N) \ {1, 2, 2p1}

(vi) If N = 4p1, then Amax = {2, 2p1}

(vii) If N = p3
1p2, 2 - N and 2p2 ≥ p2

1 − p1 + 2 then Amax = {p1, p
2
1, p

3
1, p

2
1p2}

(viii) If N = p3
1p2, 2 - N and 2p1 ≤ p2

1 − p1 + 2 then Amax = {p2
1, p1p2, p

2
1p2}

(ix) If N = pr11 p2, r1 > 3, 2 - N then Amax = D0(N) \ {1, p2, p1p2}

(x) If N = 2pr11 , r1 ≥ 3, 2 - r1 then Amax = D0(N) \ {1, 2}

(xi) If N = 2r1p2, r1 > 2, then Amax = D0(N) \ {1, p2, 2p2}
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Proof. Since the proof involves many simple calculations we give only its main ideas. It
consists in the construction of a candidate list of exceptional pairs (N ,B) that satisfy

∆2(B) > ∆2(D∗(N)). (2.15)

Moreover this list will contain all pairs that also satisfy (2.14). The redundant elements will
be removed by comparing values of the map ∆2 for all pairs that share the same N . We still
assume B 6= ∅, {N}.

Suppose �rstly that (2.15) holds and lcmB = N . Since

∆2(B)−∆2(D∗(N)) = 2−1N(∆(B)−∆(D∗(N))),

Proposition 2.13 enumerates all pairs falling into this category.
On the other hand if lcmB ≤ N/pi then (2.15) implies

∆2(B) > ∆2(D∗(N/pi)) or ∆2(D∗(N/pi)) > ∆2(D∗(N)).

Since ∆(B) = ∆2(B) for lcmB < N , it follows that the last two propositions provide ne-
cessary conditions on N and B to satisfy (2.15). Indeed, Proposition 2.15 gives all cases
∆2(D∗(N/pi)) > ∆2(D∗(N)). These then can also be directly attached to the candidate list.
By Proposition 2.13 we obtain the pairs (N, B̃), such that maxB⊆D1(N) ∆(B) = ∆(B̃). Hence
for each pair (N, B̃) we can construct 3 numbers of the form Npj, where j = 1, 2, 3. We then
clearly put on the candidate list only those pairs that obey (2.15).

As a �nal step we choose from the list only those elements (N,B) that correspond to
the maximum value of the map ∆2. Observe that we always have g∅ > g{1}, where g∅ and
g{1} are given by Remark 2.6 and 2.9 respectively. It follows that if N does not appear on
the candidate list and ∆2(D∗(N)) ≥ g∅, then clearly maxB⊆D1(N) ∆2(B) = ∆2(D∗(N)). We
present the results in terms of maximal set of periods of a ZN�action on a compact Riemann
surface.

In order to show how the above algorithm works we give explicitly all pairs from the
candidate list of the form (2pr11 ,B), where 2 | r1. Suppose that (2.15) holds. By Proposition
2.13 there is no pair, such that lcmB = 2pr11 . By Proposition 2.15 the only pair satisfying
∆2(D∗(2p

r1
1 /pi) > ∆2(D∗(2p

r1
1 )) is (2p2

1,D∗(p
2
1)) and we may put it on the candidate list.

Finally, assuming that ∆2(B) > ∆2(D∗(2p
r1
1 /pi)) holds, by Proposition 2.13 we again obtain

B = D1(2p
r1−1
1 ) \ {pr1−1

1 }. Since

∆2(D∗(2p
r1
1 ))−∆2(D1(2p

r1−1
1 ) \ {pr1−1

1 }) = −4−1Np−r11 (p1 + 3) < 0,

(2pr11 ,D1(2p
r1−1
1 ) \ {pr1−1

1 }) is also on the candidate list. We are thus reduced to compare
the obtained results with g∅. Note that for r1 = 2 we have g∅ < ∆2(D∗(p

2
1)) < ∆2({2, 2p1}),

while in case r1 ≥ 4 we obtain g∅ < ∆2(D1(2p
r1−1
1 )\{pr1−1

1 }). Thus an equivalent formulation
of the above is: if N = 2pr11 2 | r1, then the maximal set of periods Amax is equal to
D0(N)\{1, 2, 2p1}, which is point (v) of the theorem. The rest of the proof runs as before.

In order to complete our investigation we give in Table 2.2 the formulas for the signatures
of Fuchsian groups that cover cyclic groups in the cases listed in preceding theorem.
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N A Γ gA

2
∅
{1}

(2;−)
(0; 2, 2, 2, 2, 2, 2)

3

2

3
∅
{1}

(2;−)
(0; 3, 3, 3, 3)

4

2

4

∅
{1}
{2}
{1, 2}

(2;−)
(0; 4, 4, 4, 4)

(1; 2, 2)
(0; 2, 2, 4, 4)

5

3

3

2

6

∅
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}

(2;−)
(0; 6, 6, 6, 6)

(1; 3, 3)
(1; 2, 2)

(0; 3, 6, 6)
(0; 2, 2, 6, 6)
(0; 2, 2, 3, 3)

(0; 2; 2, 2, 3, 6)

7

5

5

4

2

3

2

4

Table 2.1: Information on the A�minimum genus of the ZN�actions for N = 2, 3, 4, 6.

case Γmax

(i) (2;−)

(ii) (1;D∗(pr1−1
1 ), pr1−1

1 )

(iii) (2;−)

(iv) (1; p1, p1, p2, p2)

(v) (1;D1(2pr1−1
1 ) \ {pr1−1

1 }, 2pr1−1
1 , 2)

(vi) (1; 2, 2, p1, p1)

(vii) (1; p1, p2, p1p2, p
2
1p2, p

2
1p2)

(viii) (1; p1, p
2
1, p

2
1, p1p2, p1p2)

(ix) (1;D∗(pr1−1
1 p2) \ {pr11 }, p

r1−1
1 p2)

(x) (1;D∗(2pr1−1
1 ), 2)

(xi) (1;D∗(2r1−1p2), 2r1−1p2)

Table 2.2: Information on the signature of the universal covering group Γmax corresponding
to the maximum value of the A�minimum genus of the cyclic group action.
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3.1 Introduction

In this chapter, we extend our study to embrace also the actions of the automorphisms of
surfaces that are not Riemann surfaces. By this we mean that they are non�orientable, have a
non�empty boundary, or both. These are Klein surfaces, introduced by Alling and Greenleaf
[3], following up ideas by Klein. In order to investigate the dynamics of self�homeomorphisms
of such surfaces, we consider counterparts of results from the �rst part of the thesis, where
NEC groups play the role of Fuchsian groups. However, the actual general setting requires a
more sophisticated treatment, involving a variety of terms and auxiliary results. Since non�
orientable surfaces do not admit any analytic structure, we need �rst a more general notion
of automorphism than we have applied for Riemann surfaces. The de�nition we use is based
on the term dianalyticity which in turn involves both: analyticity and antianalyticity. Below
we recall the required de�nitions that can be found in [3] and [8].

(1) A surface is a Hausdor�, connected, topological space S together with a family Σ =
{(Ui, φi) | i ∈ I} such that {Ui | i ∈ I} is an open covering of S and each map φi : Ui →
Ai is a homeomorphism onto an open subset Ai of C or C+ = {z ∈ C | Imz ≥ 0}. The
family Σ is said to be a topological atlas on S. The boundary of S is the set

∂S = {x ∈ S | ∃i ∈ I, x ∈ Ui, φi(x) ∈ R and φi(Ui) ⊆ C+}.

Each (Ui, φi) is said to be a chart. The transition functions of Σ are the homeomorphi-
sms

φi,j = φiφ
−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj).

(2) Let A be a non�empty open subset of C and f : C → C a map. The map f is analytic
on A (resp. antianalytic on A) if ∂f

∂z
= 0 (resp. ∂f

∂z
= 0). The map f is said to be

dianalytic on A if its restriction to every connected component of A is either analytic
or antianalytic. We also need an extension of the notion of dianalyticity to functions
having as a domain an open subset of C+.

(3) Let A be a non�empty open set in C+ and f : A → C+ a map. This map f is said to
be analytic (resp. antianalytic) on A if it extends to an analytic (resp. antianalytic)
function on some neighbourhood of A in C into C. If f is analytic or antianalytic on
each component of A, then we say that it is dianalytic on A.

(4) Let S be a surface with atlas Σ. We say that Σ is a dianalytic atlas (resp. analytic
atlas) on S if all of its transition functions are dianalytic (resp. analytic). Each pair
(Ui, φi) is called a chart of Σ. Clearly, if Σ is analytic, then it is also dianalytic.

(5) Let ΣU = {(Ui, φi) | i ∈ I} and ΣV = {(Vj, ϕj) | j ∈ J} be dianalytic atlases on S. We
say that ΣU and ΣV are dianalytically equivalent if ΣU ∪ΣV is a dianalytic atlas on S.
An equivalence class S of dianalytic atlases on S will be called a dianalytic structure
on S.
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On account of the above we introduce the category of Klein surfaces:

(6) The surface S equipped with the dianalytic structure induced by a dianalytic atlas Σ is
said to be a Klein surface. A morphism between Klein surfaces S and S ′ is a continuous
map f : S → S ′, such that

(i) f(∂S) ⊆ ∂S ′

(ii) Given P ∈ S, there exist charts (U, φ) and (V, ϕ) at P and f(P ) respectively, and
an analytic function F : φ(U) → C such that the following diagram

U
f−−−−−−−−−−−−−→ V

φ

y yψ
φ(U)

F−−−→ C Ψ−−−→ C+

commutes. Here Ψ: C → C+ is the folding map de�ned by the formula

x+ iy 7−→ x+ i|y| x, y ∈ R.

Furthermore, the chart (V, ϕ) must be positive which means that ϕ(V ) ⊂ C+.

Now we are ready to de�ne an extended notion of the automorphisms of Klein surfaces.
It di�ers from the corresponding concept for Riemann surfaces principally in that it lets S
"fold" along the boundary components of the quotient surface.

(7) An automorphism of a Klein surface S is an isomorphism t : S → S in the category of
Klein surfaces.

In order to avoid any ambiguities and separate the actual case from the study of Riemann
surfaces, we will denote a Klein surface by the letter X. We denote the full group of auto-
morphisms of X under the composition of maps by Aut(X). Furthermore if X is orientable
we shall denote by Aut+(X) the subgroup of orientation preserving elements in Aut(X). We
also write Aut−(X) for the set of the orientation reversing elements in Aut(X). As before,
we focus on cyclic subgroups of the group Aut(X).

The initial idea of this work was to classify all subsets of points on a compact Klein
surface whose periodic behaviour under an action of a cyclic group of order N di�ers from
the behaviour of a typical point whose orbit has length N , and to relate their appearance
to the topological type of the surface. To be more precise even at this very early stage in
the chapter, we give here an initial de�nition of the singular set (for complete de�nition and
conventions see Section 3.3). If t : X → X is an automorphism of order N of a compact
surface X, then we introduce S(t) � the singular set of t as a union of the subset of points of
X which are �xed by td for at least one d < N . By de�nition the boundary components of X
belong to S(t). By this meaning the points of the singular set are somehow strange, since we
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may easily distinguish them observing how the iterations of the automorphism t transform
the surface under study. Associated to this is a collection of divisors of N that we call here
a character of periods. For an arbitrary character of periods constrained by the respective
conditions according to the orientability character of the surface and its quotient, there is
an associated ZN�action. On the other hand assuming certain ZN�action, the orientability
character of the surface X and the quotient surface X/ZN we obtain an e�ective algorithm
to compute the minimal area of a NEC group Λ verifying X ' H2/Λ.

The study of the actions of cyclic groups on compact topological surfaces has previously
been carried out by several authors. In order to position the actual work in this long�
established area, we make below some remarks that refer to articles that deal with similar
subjects, emphasizing brie�y some di�erences in the respective approaches.

The singular set in the sense of our de�nition has been investigated already by Bujalance
et al. in [9] in the case of involutions. It is worth noting that the material of Subsection 3.3
is merely an extension of de�nitions and propositions of the �rst three sections of the above
paper to automorphisms of an order greater than 2. The analysis of the singular set has
been also provided by Yokoyama in [42]�[44], although NEC groups have not been exploited
there.

The relations between periods of isolated periodic orbits, boundary components and the
properties of self�homeomorphisms of surfaces in terms of NEC groups and their homomor-
phisms have been deeply investigated by Bujalance et al. in [8]. Nevertheless, that study did
not include all types of periodic structures that become apparent using the de�nition of the
singular set we have given above.

An already mentioned very technical paper [44] of Yokoyama deals with the complete
classi�cation of periodic maps on compact surfaces, up to topological conjugacy. It was
preceded by two papers [42] and [43] in which only the orbits of isolated points and boundary
components had been considered. Yokoyama's classi�cation is much more precise than ours
because of the fact that all conjugated maps share the same character of periods. Indeed, the
singular sets of conjugated maps comprise not only the same types of periodic structures,
but also the cardinalities of their respective types are equal. Nevertheless, no algorithm to
determine the minimal genus of a surface on which there exist given periodic structures is
outside the scope of the above papers.

Finally, in two articles [10] and [11] the authors give an algorithm to �nd all genera of
surfaces on which there is a ZN�action prescribed in terms of so called topological data, which
includes also the information on the orientability character of the surface and its quotient.
However, analogously to [8], no attention is paid to periodic structures other than isolated
periodic orbits and boundaries.

Summing up the granularity of the classi�cation of ZN�actions on compact surfaces we
obtain here is �nner then the one of [8], [10] and [11]. On the other hand, the complete
classi�cation of periodic homeomorphisms of compact surfaces (including orientable and
non�orientable cases) up to topological conjugacy was obtained only by Yokoyama, although
partial results were also obtained by [14], [34] and [37].
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From the perspective of dynamical systems, there is also a variety of papers that deal
with the properties of periodic self�homeomorphisms of compact surfaces. The main tool
based on the combinatorial approach saturated by the theory of NEC groups used there is
the Riemann�Hurwitz formula. A non�complete list of such articles must certainly include
the following positions: [1],[17],[18],[24],[40].

We restrict our attention only to Klein surfaces resulting as quotients of the upper half�
plane by surface NEC groups. Although we describe some de�nitions and results from the
general theory of NEC groups, the paper is not intended to be a review of the �eld. The most
comprehensive reference is [8]. Our choice is motivated by a result, being a counterpart of the
uniformization theorem for compact Riemann surfaces stating that each compact, orientable
surface without boundary of genus bigger or equal to 2 is conformally equivalent to H2/Λ,
where Λ is a surface Fuchsian group (see Theorem 1.1).



36 CHAPTER 3. GEOMETRY AND DYNAMICS ON THE HYPERBOLIC PLANE

3.2 Preliminaries

Not surprisingly the upper�half plane H2 is an example of Klein surface. We begin by recalling
that its group of automorphisms Aut(H2) can be represented as

PGL(2,R) = {A ∈ GL(2,R) | det(A) = ±1}

= {z 7→ Ψ(
az + b

cz + d
) | Ψ − is the folding map, a, b, c, d ∈ R, ab− cd = ±1}.

Observe that in the context of dianalytic structure the notation Aut(H2) di�ers from the one
used in the �rst part of the dissertation. Using the actual notation the group of orientation�
preserving isometries considered before shall be denoted as Aut+(H2). We will also write
Aut±(H2) for Aut(H2).

Let Γ be a discrete subgroup of Aut±(H2). We say that Γ is a non�euclidean crystallo-
graphic group (shortly NEC group) if the orbit space H2/Γ is compact. Likewise in case of
Fuchsian groups, the algebraic structure of a NEC group Γ is determined by its signature,
which is the symbol of the form

σ = (γ;±; [m1, . . . ,mn];C1, . . . , Ck) (3.1)

The numbers mi ≥ 2 are called the proper periods, Ci = (ni,1, . . . , ni,si
) are si�uples called

period cycles, the numbers ni,j ≥ 2 are the link periods and γ ≥ 0 is said to be the orbit genus
of Γ. If the sign of signature (3.1) equals "+" we say that it is orientable and non�orientable
otherwise. We denote the sign of signature of a group Γ by the symbol sign(Γ).

Below we give a presentation of a group Γ with signature (3.1) in canonical generators

generators :

x1, . . . , xn (elliptic)

e1, . . . , ek (hyperbolic or in some cases elliptic)

ci,j, . . . , ci,si
, 0 ≤ j ≤ si (re�ections)

a1, b1, . . . , aγ, bγ, if signΓ = ” + ” (hyperbolic)

g1, . . . , gγ, if signΓ = ”− ” (hyperbolic)

relations: xm1
1 = . . . = xmn

n = 1

c2i,j = (ci,j−1ci,j)
ni,j = ci,0e

−1
i ci,si

ei = 1, 0 ≤ i ≤ k, 0 ≤ j ≤ si
n∏
i=1

xi

k∏
i=1

ei

γ∏
i=1

[aibi] = 1, if signΓ = ” + ” (3.2)

n∏
i=1

xi

k∏
i=1

ei

γ∏
i=1

g2
i = 1, if signΓ = ”− ” (3.3)
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Note that the presence of proper periods, period cycles or even link periods in the signature
(3.1) is not mandatory. Based on this remark we may distinguish some special types of
signatures. For instance the signatures of the form

σ′ = (γ;±; [ ]; {( )k}) (3.4)

play a very important role Those groups possess only empty period cycles (there are nor
proper periods, nor link periods) and the unique relations involving re�ections are the follo-
wing

c2i,0 = 1 and eici,0 = ci,0ei.

If a NEC group has a signature (3.4) it is called surface NEC group. Note also that any Fuch-
sian group can be regarded as a NEC group of signature (γ; +; [m1, . . . ,mn]; { }). Likewise
a Fuchsian surface group is an surface NEC group with signature (γ; +; [ ], { }).

The area of σ is de�ned to be

µ(σ) = 2π(αγ + k − 2 +
n∑
i=1

(1−m−1
i ) + 2−1

k∑
i=1

si∑
j=1

(1− n−1
i,j )), (3.5)

where α = 2 if sign(σ) = ” + ” and α = 1 otherwise. Associated to Γ there is FΓ ∈ H2, a
fundamental region of Γ and we de�ne area of Γ to be hyperbolic measure of FΓ. We write
µ(Γ) = µ(FΓ). Recall that µ(Γ) does not depend on the choice of a fundamental region FΓ.
Moreover we have µ(Γ) = µ(σ) (see for instance [8], Theorem 0.2.8). Finally we recall that
an abstract signature σ is the signature of some NEC group if and only if µ(σ) > 0 and
α+γ ≥ 2. Since we will not use in any essential way the equivalence classes of isomorphisms
from a NEC group Γ with an abstract signature (3.1) to PGL(2,R) we do not distinguish
between NEC groups and their signatures. This handy convention will be freely used until
further notice and we adopt the notation

Γ = (γ;±; [m1, . . . ,mn];C1, . . . , Ck)

instead of (3.1).
Before we formulate the uniformization theorem for compact Klein surfaces we need two

notions: of complex double and of algebraic genus of a Klein surface.

(1) Assume X is not a Riemann surface. By the complex double of a Klein surface X we
mean the triple (XC ,F , τ), where XC is a Riemann surface admitting an antianalytic
involution τ and morphism F : XC → X which veri�es Fτ = F .

(2) Assume X is not a Riemann surface. Let X possess k(X) boundary components and
topological genus equal to g(X). The topological genus g(XC) of XC is called the
algebraic genus of X and we denote it by p(X). If X is a Riemann surface then we
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de�ne p(X) = g(X). By the formula involving Euler characteristic, the number of
boundary components and the topological genus of an orientable surface we have

p(X) = g(XC) =

{
2g(X) + k(X)− 1, if X is orientable and ∂X 6= ∅
g(X) + k(X)− 1, if X is non− orientable.

(3.6)

Regarding the above de�nition of the complex double of a Klein surface X we shall
observe that (XC ,F , τ) is unique and X ' XC/〈τ〉. See [3] for more details.

Theorem 3.1 (Bujalance et al. [8], Theorem 1.2.3). Let X be a compact Klein surface with
algebraic genus p ≥ 2. Then there exists a surface NEC group Λ such that X and H2/Λ are
isomorphic as Klein surfaces. Moreover if π : H2 → H2/Λ is the canonical projection, then
Λ = {f ∈ Aut(H2) | πf = π}.

If Γ′ is a subgroup of �nite index in a NEC group Γ, then it is a NEC group itself (see
[8], Proposition 2.1.1) and we have the Riemann�Hurwitz formula

[Γ : Γ′] =
µ(Γ′)

µ(Γ)
.

Let t be a generator of a �nite cyclic group of order N which acts by automorphisms on
a Klein surface X then t lifts to a dianalytic transformation t̃ of H2 such that t̃ normalizes
Λ i.e. t̃Λ(t̃)−1 = Λ. Obviously t̃N ∈ Λ. Thus NEC group Γ = 〈t̃,Λ〉 contains Λ as a normal
subgroup with index N . By Theorems 2.4.2 and 2.4.4 of [8] group Γ has a signature of the
form

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}) (3.7)

for some non�negative integers γ and λ. Moreover the following relations must also be sa-
tis�ed: µ1, . . . , µp are even and mi ≥ 2 for i = 1, . . . , n. Here we use an abbreviate notation
standing for

( )λ = ( ) . . . ( )︸ ︷︷ ︸
λ

(2µi) = (2 . . . 2)︸ ︷︷ ︸
µi

that is: λ empty period cycles and non�empty period cycle with µi link periods equal to 2.
The following theorem is counterpart of Theorem 1.2 in case we consider Klein surfaces.

Theorem 3.2 (Bujalance et al. [8], Remark 1.3.6). A �nite group G is a group of automor-
phisms of a Klein surface X = H2/Λ of algebraic genus p ≥ 2 if and only if G is isomorphic
to the factor group Γ/Λ for some NEC group Γ containing Λ as a normal subgroup.
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If G acts by automorphisms on a Klein surface X ' H2/Λ, then Γ = NAut(H2)(Λ) = {ζ ∈
Aut(H2) | ζΛζ−1 = Λ} and there is a smooth epimorphism θ : Γ → G with kernel Λ, such
that the following diagram commutes

Γ×H2 −−−→ H2

θ

y π

y yπ
G×X −−−→ X.

(3.8)

By smooth, likewise in case of Riemann surfaces and Fuchsian groups, we will understand
that ker θ is a surface NEC group. Note that Λ is not assumed to be a non�bordered surface
group, which means that k appearing in (3.4) may be positive. Recall also that Aut(X) is
�nite when algebraic genus p(X) ≥ 2 (see [8], Corollary 1.3.5).

In case G ' ZN ' 〈t〉 we will say that epimorphism θ uniformizes or covers a ZN�action
of t on X. The transformation group (Γ,H2) is called universal covering transformation
group of (ZN , X). Since we restrict ourselves only to study the cases when the factor group
Γ/Λ is cyclic we �nish this section with an observation that concerns the rigidity of smooth
epimorphisms from NEC groups onto cyclic groups.

Proposition 3.3 (Bujalance et al. [8], Proposition 2.4.3). Let N be an even integer. Let Γ
and Λ be NEC groups and θ : Γ → ZN be a group epimorphism with ker θ = Λ. Let us suppose
that Λ is a bordered surface NEC group. Then, if (ni,1, . . . , ni,si

) is a non�empty period cycle
in the signature of Γ with associated re�ections {ci,0, . . . , ci,si

} it holds

θ(ci,0) = θ(ci,2l), θ(ci,2l−1) = θ(ci,0)t
N/2 for 1 ≤ l ≤ si/2.

Moreover we have θ(ci,0) = 1 or θ(ci,0) = tN/2.
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3.3 The Singular Set

From now on, unless otherwise stated, we assume that X is a compact Klein surface of
algebraic genus p ≥ 2. Let t : X → X be an automorphisms of order N . We introduce the
singular set of least period d

S0
d(t) = {x ∈ X | x = td(x) and x 6= tk(x) for any k < d}. (3.9)

Moreover the singular set of t, denoted by S(t), is de�ned to be the set

S(t) = ∂X ∪
⋃
d<N

S0
d(t). (3.10)

According to the above, the singular set of t is a subset of X that comprises points
belonging to the boundary of X and points with orbit whose length is strictly lower than N .
As we shall see, at the end of the section, S(t) consist of

(1) a �nite number of isolated points in intX

(2) a �nite number of disjoint simple closed curves in intX

(3) a �nite number of disjoint arcs embedded in X.

Each of the above subsets of S(t) we will call a component of S(t). Observe that applying
de�nition (3.10) to conformal automorphisms of Riemann surfaces we get isolated points as
the only components of the singular set.

Following [9] the last type of components of S(t) listed above will be called chains. A
chain of length 2r is a set C of r disjoint arcs properly embedded in X which means that the
ends of each component of C lay on the boundary of X. For each boundary component B
of ∂X, either C ∩B = ∅ or C ∩B consist of two distinct points ai, ai+1. Note that a chain of
length 2r meets the boundary of X in exactly 2r points. We distinguish two types of chains
subject to their bicollar neighbourhood. To di�erentiate them we proceed as follows: �lling
the holes ofX with discs we obtain compact surface X̂. If C intersects a boundary component
B of X we add one of the arcs of B joining ai and ai+1, thus obtaining a simple closed curve
Ĉ on X̂. Then we say that C is one�sided or two�sided if a bicollar neighbourhood of Ĉ on
X̂ is a Möbius strip or an annulus.

Simple closed curves in intX will be called ovals. Furthermore we also distinguish one�
sided and two�sided ovals based on their bicollar neighbourhood.

In Corollary 3.5 we shall observe that the 1�dimensional components of the singular set
belong either to ∂X or S0

N/2(t). Furthermore, the only mapping �xing a boundary pointwise
is the identity map. Hence in sense of de�nition (3.9) the set of possible periods of the
1�dimensional components is very limited. In order to avoid this inconvenience we will call
components of period d those 1�dimensional components of S(t) which are setwise �xed by td

and d is the lowest number with this property. In such a way we obtain boundary components
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of period d, one�sided and two�sided ovals of period d and �nally one�sided and two�sided
chains of period d. Unless otherwise stated when referring to 1�dimensional components we
use only the above setwise context of periodicity. We denote the singular set of last period
d in the setwise context by Sd(t) and de�ne it formally as follows

Sd(t) = {L ⊆ S(t) | L is a component of S(t), L = td(L) and L 6= tk(L) for all k < d}.

Obviously for isolated periodic orbits the pointwise and setwise contexts of periodicity
are identical.

In order to investigate the relation between pointwise and setwise periodicity in more
detail we use once more the term of complex double of a Klein surface X. We recall also a
result of [3] by which an automorphism of X can be lifted to an analytic automorphism of
symmetric Riemann surface XC .

Theorem 3.4 (Alling and Greenleaf [3], Theorem 1.11.1). Let (XC ,F , τ) be the complex
double of the Klein surface X. Then

Aut(X) ' (Aut+(XC))τ = {f ∈ Aut+(XC) | τfτ = f}. (3.11)

By the above theorem one may show two results formulated as Corollary 3.5 and Remark
3.6 which are interesting while considering the singular set of an automorphism of a Klein
surface.

Corollary 3.5. Let X be a compact Klein surface. Let t : X → X be an automorphism of
order N of X. Denote by L a 1�dimensional component of S0

d(t). Then L ∩ ∂X = ∅ forces
2d = N , while for L ⊆ ∂X we have d = N .

Proof. First we take the complex double of X and a point Q ∈ L. If L∩∂X = ∅, then by the
construction of the complex double there is a neighbourhood V of Q in X such that F−1(V )
has two components, say Ṽ1 and Ṽ2. Denote by Q̃1 ∈ Ṽ1 and Q̃2 ∈ Ṽ2 the two preimages of
Q laying on XC . Let T : XC → XC be a lift of td. Take P̃ ∈ F−1(L ∩ V ) ∩ Ṽ1. Note that
T (Q̃1) = Q̃1 would force

FT (P̃ ) = tdF(P̃ ) = F(P̃ ),

which is impossible since T is conformal. Hence

T (Q̃i) = Q̃j, i, j = 1, 2 i 6= j

T 2(Q̃i) = Q̃i.

Thus we must have T 2 = Id which shows that t2d = Id.
On the other hand if L ⊆ ∂X, then we also start with a point Q ∈ L although now the

�ber F−1(Q) comprises only one point. Hence we may �nd a neighbourhood V of Q on XC

such that T|L∩V = Id|L∩V . Using the same argument as before we now get T = Id which
leads us to td = Id.
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Remark 3.6. Under the assumptions of Corollary 3.5 denote by B a boundary component
intersecting a chain C. Then we have ti(B) ∩ B = ∅ for i < N/2 and tN/2(B) = B.
Furthermore tN/2 �xes exactly two points on B i.e. the intersection of B and C.

As we see by Corollary 3.5 all ovals and chains are pointwise �xed under tN/2. Hence
their periods in the setwise context must divide N/2 which follows by a simple arithmetic
argument (compare the discussion in the last but one paragraph of Section 1.1). Moreover
by means of Remark 3.6 the periodic behaviour of the boundaries intersecting chains is
special and very simple since their setwise period equals N/2. By this reason we introduce
another convention concerning the singular structures we are about to study: the boundary
components which intersect chains of t are excluded from the set SN/2(t). We will not take
into consideration the period of those boundary components, although we calculate their
number (see Remark 3.15).

By Theorem 3.4 it also follows that every group of automorphisms of a Klein surface
may be viewed as a group of orientation�preserving automorphisms of symmetric Riemann
surface. First we need a de�nition and lemma (compare with [36], Theorem 1). Let Γ be
a proper NEC group i.e. not a Fuchsian group and denote by Γ+ its canonical Fuchsian
subgroup de�ned as Γ+ = Γ ∩ Aut+(H2).

Lemma 3.7. Let G be a �nite group of automorphisms of a Klein surface X ' H2/Λ,
which is not a Riemann surface. Suppose that θ : Γ → G is a smooth epimorphism. Then
θ(Γ+) = G.

Proof. Denote Λ = ker θ. We consider two cases when the surface X is non�orientable and
orientable.

If X is non�orientable, we clearly have signΛ = ”− ”. Thus there exists

w ∈ Λ ∩ (Γ \ Γ+).

We have Γ = Γ+ ∪ Γ+w. Denote θ(Γ+) = G+. Then

G = θ(Γ) = θ(Γ+ ∪ Γ+w) = θ(Γ+) ∪ θ(Γ+)θ(w) = G+ ∪G+ = G+, (3.12)

which yields θ(Γ+) = G.
On the other hand if X is orientable, then ∂X 6= ∅, since X is not a Riemann surface.

Hence Γ takes the form

Γ = (γ;±; [m1, . . . ,mn]; {(n1,1, . . . , n1,s1), . . . , (nk,1, . . . , nk,sk
)}),

where k ≥ 1. However observe that period cycles of Γ may be empty i.e. sj = 0 for some
1 ≤ j ≤ k. By Theorems 2.3.1, 2.3.2 and 2.3.3 of [8] there exists canonical re�ection c ∈ Γ
such that c ∈ ker θ. We may write Γ = Γ+ ∪ Γ+c. Analogously to (3.12) we conclude that

G = θ(Γ) = θ(Γ+ ∪ Γ+c) = θ(Γ+) ∪ θ(Γ+)θ(c) = G+ ∪G+ = G+,

Thus θ(Γ+) = G.
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Proposition 3.8. Let the assumptions of Lemma 3.7 hold. Consider (XC ,F , τ) the complex
double of X and denote by κ : (Aut+XC)τ → AutX isomorphism given by (3.11). Then the
following diagram commutes

Γ+×H2 −−−→ H2

θ|Γ+

y πC

y yπC

G×XC −−−→ XC

κ

y F
y yF

G× X −−−→ X.

Here πC stands for canonical projection onto Riemann surface XC.

Proof. Let us denote θ+ = θ|Γ+ and Λ = ker θ. We �rst show that the upper diagram

Γ+×H2 −−−→ H2

θ+

y πC

y yπC

G×XC −−−→ XC

(3.13)

is commutative by proving that θ+ : Γ+ → G is a smooth epimorphism. Due to the preceding
lemma θ+ is certainly an epimorphism. Note that ker θ+ = Λ+. It follows by the following
two relations:

h ∈ ker θ+ / Γ+ ⇒ h ∈ Aut+(H2) ∩ ker θ ⇒ h ∈ Λ+ ⇒ ker θ+ ≤ Λ+

h′ ∈ Λ+ ⇒ θ(h′) = 1 ⇒ h′ ∈ ker θ+ ⇒ Λ+ ≤ ker θ+.

The above relations yields also Λ+ /Γ+. The smoothness of θ+ can be derived now from the
fact that Λ+ is a Fuchsian surface group. Furthermore we have Λ+ ' π1(XC).

On the other hand by Theorem 3.4 we have Ff = κ(f)F , where f ∈ G1 ≤ (Aut+(XC))τ ,
G1 ' G. It follows that

G1×XC −−−→ XC

κ

y F
y yF

G2× X −−−→ X,

(3.14)

where G ' G2 ≤ Aut(X). Consider g ∈ Γ+ and z ∈ H2. Gluing together (3.13) and (3.14)
we obtain

κ(θ+(g))FπC(z) = Fθ+(g)πC(z) = FπC(gz)

which yields the commutative diagram

Γ+×H2 −−−→ H2

κθ+

yFπC

y yFπC

G2×X −−−→ X

(3.15)

as required.
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Remark 3.9. Assume that X ' H2/Λ is Klein but not Riemann surface and G is a group
of its automorphisms. Observe that by Theorem 3.2 we have G ' Γ/Λ for Γ,Λ being proper
NEC groups. Obviously (3.15) does not yield G ' Γ+/Λ. Note that Λ contains order reversing
elements, which gives Λ 6≤ Γ+. However by (3.13) we have G ' Γ+/Λ+.

In the forthcoming Subsections 3.3.1 � 3.3.3 we describe the structure of the singular set
of an automorphism t : X → X of a Klein surface by considering properties of epimorphism
θ : Γ → ZN uniformizing the action of t. We particularly see the whole spectra of periods of
various components of the singular set.

3.3.1 Isolated Orbits

In the easiest way we obtain the number of isolated periodic orbits since their number can
be calculated using Macbeath's formula concerning automorphisms of Riemann surfaces.
Denote by Pd(t) the set of isolated periodic points of t with least period d.

Proposition 3.10. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X →
X be an automorphism of order N of X. If Γ is given by (3.7) and θ : Γ → ZN is an
epimorphism that uniformizes a ZN�action given by t, then

]Pd(t) = d ]{mi | mi = N/d},

where d | N .

Proof. Denote Λ = ker θ. Assume that map t �xes a point on X. Then we may lift t to
T ∈ Aut(H2) which has a �xed point in H2. Thus, using the notation of (3.7), T is conjugate
either to a power of canonical elliptic generator xi or to a power of the product of two
canonical re�ections whose �xed points sets i.e. a circle or a line perpendicular to R, do
intersect. It follows that these are consecutive canonical re�ections ci,j−1ci,j. Obviously it
follows that t is conjugate to a power of θ(xi) or to a power of θ(ci,j−1ci,j). Since ZN is
abelian we have ordθ(ci,j−1ci,j) = 2 and the latter case may occur only for involutions.
However we show that if we consider cyclic group actions the second scenario does not
produce an isolated �xed point on X.

Suppose t is an involution of X and T ∼ ci,j−1ci,j. Let us form a fundamental region FΓ

for Γ starting from the common vertex to the sides �xed by the re�ections ci,j−1 and ci,j.
Then, in the counter clockwise order it is labelled as follows γi,j−1∆γi,j, where

(1) ∆ represents the other sides of the perimeter of FΓ

(2) the reflections ci,j−1 and ci,j fix the sides γi,j−1 and γi,j respectively.

Let us denote the vertex which is common to the sides γi,j and γi,j−1 as Q. By Proposition
3.3 we have θ(ci,j) = tN/2θ(ci,j−1), θ(ci,j−1) ∈ {1, tN/2}. With no loss of generality we may
assume θ(ci,j−1) = tN/2. Then, fundamental region for Λ may be generated as follows

FΛ = FΓ ∪ ci,j−1FΓ.
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Observe that ci,j−1(Q) = ci,j(Q) = Q. Thus Q is a �xed point of the map ci,j−1ci,j. On the
other hand Q ∈ γi,j ∪ ci,j−1γi,j. But γi,j ∪ ci,j−1γi,j projects to a boundary component of X,
which shows that Q projects to �xed point on X which is not isolated since π(Q) 6∈ intX.

By the above isolated �xed points of t correspond only to powers of θ�images of canonical
elliptic generators of Γ which are conjugate to t. By the argument used in the proof of
Macbeath's theorem (see for instance [28]) the number of those points equals

]Fix(t) = N
∑

ordt|mi

m−1
i .

Now, as in the proof of Proposition 2.4, the numbers ]Fix(tl) for l | d, enable us to calculate
]Pd(t) which establishes the formula.

Remark 3.11. Consider G acting on a Klein surface X by dianalytic automorphisms. Sup-
pose θ : Γ → G. It is worth noting that if we consider actions of non�cyclic group G, then
there may become apparent �xed points of g ∈ G which are induced by products of two con-
secutive canonical re�ections of Γ. It happens if and only if the both consecutive re�ections
do not belong to ker θ. For more details see Theorem 2.2.4 of [8]. See also [19] for examples.

3.3.2 Boundaries and Ovals

We continue with a theorem that deals with periodic ovals of t and boundaries ofX. However,
now we restrict our attention only to the period cycles of the surface group Λ being images
of empty period cycles of Γ. The remaining boundaries of X that are induced by non�empty
period cycles of Γ are considered in the next subsection (see Theorem 3.13). Recall that we
may consider periodic ovals only if N is even.

Theorem 3.12. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X → X
be an automorphism of order N of X and θ : Γ → ZN be an epimorphism (3.8) of Γ given
by (3.7), that uniformizes a ZN�action of t. For each generator ci,0 we have θ(ci,0) = 1 or
θ(ci,0) = tN/2. Let us reorder the re�ections ci,0 in such a way they hold

θ(ci,0) = 1 for 1 ≤ i ≤ r ≤ λ and θ(ci,0) = tN/2 for r + 1 ≤ i ≤ λ.

Furthermore denote θ(ei) = tvi, i = 1, . . . , λ. Then we have

(i) if i ≤ r, then i�th empty period cycle of Γ induces on X a boundary component of period
(N, vi)

(ii) if r + 1 ≤ i and α2(vi) = α2(N), then i�th empty period cycle of Γ induces on X a
two�sided oval of period (N/2, vi)

(iii) if r + 1 ≤ i and α2(vi) < α2(N), then i�th empty period cycle of Γ induces on X an
one�sided oval of period (N/2, vi).
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Proof. Our proof has been motivated by proofs of Theorems 2.3.1 and 2.3.2 of [8] and Propo-
sition 3.2 of [9]. Observe that if we �x i, then from the classical construction of fundamental
regions for NEC groups we can �nd a fundamental region FΓ for Γ with the perimeter labelled
in the counter clockwise order as follows εiγi,0ε

′
i∆ (see for instance [8]). Here

(1) ∆ represents the other sides of the perimeter

(2) the reflection ci,0 fixes the side γi,0.

(3) for each i = 1, . . . , λ we have ei(ε
′

i) = εi.

We �rst investigate boundaries of X i.e. we restrict our attention to i ≤ r. Since Λ is a
normal subgroup of Γ with the cyclic factor ZN we have

Γ =

N/ expΛ ei⋃
j=1

expΛ ei−1⋃
k=0

Λ(βje
k
i ), (3.16)

for some β1, . . . , βN/expΛei
in Γ, where expΛ ei denotes the least positive power of ei that

belongs to Λ. A fundamental region for Λ may be obtained as follows

FΛ =

N/ expΛ ei⋃
j=1

expΛ ei−1⋃
k=0

(βje
k
i )FΓ.

It is worth noting that in order to obtain a fundamental region for Λ it su�ces to know only
that [Γ : Λ] = N . By (3.16) we have more, since we also get the cosets representatives of Γ.
By (3.16) we also have

Γ/Λ = ZN =

(ZN :〈θ(ei)〉)⋃
j=1

gjH =

N/ expΛ ei⋃
j=1

gj〈θ(ei)〉 =

N/ expΛ ei⋃
j=1

expΛ ei−1⋃
k=0

gjθ(e
k
i ).

Here gj ∈ ZN are elements satisfying θ(βj) = gj.
Having disposed of this preliminary step in which we get the structure of the factor group

ZN we proceed now to �nd for each divisor d of N the boundaries of X that belong to Sd(t)
i.e. which are setwise �xed under the action of td. By Theorem 2.3.1 and Theorem 2.3.2 of
[8] the following segment

Ci,j =

expΛ ei−1⋃
k=0

(βje
k
i )γi,0

of the perimeter of FΛ generates a hole on X. It means that after gluing the sides of the
perimeter of FΛ according to the identi�cations given by Λ the segment Ci,j will project to
a boundary component of X. It is enough to show the two facts:

(i) We must show that there is an element in Λ that pairs the edges βjε′i and βje
expΛ ei−1
i εi

belonging to FΛ (see Figure ?? which for simplicity of notation is made for βj = Id).
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Figure 3.1: A segment generating a boundary component of X, βj = Id.
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(ii) We must prove that there are no elements of Λ (other than identity) that would identify
a point P belonging to Ci,1 with another point Q on the perimeter of FΛ.

For the convenience of the reader we repeat the relevant material from the proofs of the
above theorems which helps to make our exposition as self�contained as possible.

Case (i) This point can be easily derived from the relation

βje
expΛ ei

i β−1
j (βjε

′
i) = βje

expΛ ei−1
i εi,

where βje
expΛ ei

i β−1
j ∈ Λ / Γ.

Case (ii) We will prove that there are no elements of Λ (other than identity) that would
identify a point P belonging to Ci,1 with another point Q on the perimeter of FΛ. To obtain a
contradiction suppose that there is h ∈ Λ such that h(P ) = Q. We distinguish three di�erent
scenarios with a slightly di�erent way of arguing

(ii .1 ) Q ∈ Ci,1
(ii .2 ) Q ∈ Ci,j, 2 ≤ j ≤ N/ expΛ ei

(ii .3 ) Q belongs to the other sides of the perimeter of Λ.

Suppose that P ∈ eli(γi,0) where 0 ≤ l ≤ expΛ ei − 1 .
Case (ii.1) There is 0 ≤ l1 ≤ expΛ ei − 1 such that Q ∈ el1i (γi,0). De�ne h′ ∈ Γ by the

following formula h′ = e−l1i heli and take two points

P ′ = e−li (P ) and Q′ = e−l1i (Q)

that belong to γi,0. We clearly have h′(P ′) = Q′. Since both points lay on the perimeter of
a fundamental region of Γ it must either hold P ′ = Q′ or P ′ and Q′ are common vertices
to the sides ε

′
i,γi,0 and γi,0,εi respectively. The �rst possibility leads us to el1−l(P ) = Q and

this requirement forces l1 = l. Consequently P = Q which is false. On the other hand the
second scenario would imply that ei ∈ Λ which contradicts the assumption N > 1.

Case (ii.2) There exists 0 ≤ l1 ≤ expΛ ei − 1 satisfying Q ∈ βje
l1
i (γi,0) ⊂ Ci,j where

2 ≤ j ≤ N/ expΛ ei. We take

P ′ = e−li (P ) and Q′ = e−l1i β−1
j (Q) (3.17)

and obtain that h′(P ′) = Q′ for h′ = e−l1i β−1
j heli ∈ Γ. Note that P ′ and Q′ belong to the

same side of the perimeter of FΓ. Thus P ′ = Q′ is a �xed point of h′ or, as in Case (i.1), they
are common vertices to the sides ε

′
i,γi,0 and γi,0,εi. Since ci,0 is the only element of Γ �xing a

point on the side γi,0 not being a common vertex with ε
′
i or εi, we get in case P ′ = Q′ that

ci,0 = h′ ∈ Λ. Consequently

h′ = e−l1i β−1
j heli = (βje

l1
i )−1h(βje

l1
i )(βje

l1
i )−1eli = h′′(βje

l1
i )−1eli

with h′′ ∈ Λ. But this clearly forces the following relation on cosets Λ = Λ(βje
l1
i )−1eli which

contradicts (3.16) since we have assumed j ≥ 2.
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On the other hand if {P ′, Q′} = (ε
′
i ∪ εi) ∩ γi,0 then h′ = ei. It gives us in turn that

h = βje
1+l1−l
i ∈ Λ which also contradicts (3.16).

Case (ii.3) Under the actual assumptions we have

Q 6∈
N/ expΛ ei⋃

j=1

Ci,j. (3.18)

Suppose Q ∈ βje
l1
i (FΓ), where 1 ≤ j ≤ N/ expΛ ei. The �rst step we take in this setting is

to transfer P and Q by (3.17) to points P ′ and Q′ laying on the perimeter of FΓ. Observe
that now P ′ ∈ γi,0 but Q′ 6∈ γi,0 by (3.18). Consequently P ′ can not be paired with Q′ by
any element of Γ. Hence h′ = e−l1i β−1

j heli 6∈ Γ a contradiction.
Hence the above argument gives rise to

N

expΛ ei
= N

(N, vi)

N
= (N, vi) (3.19)

di�erent boundary components of X which means that the signature of Λ has (N, vi) empty
period cycles generated by an empty period cycle {ei, ci} of Γ. Assume now that not only i,
but also j is �xed and denote by C a hole on X on which the segment Ci,j is projected. Let
C ′ be another hole on X satisfying C ′ = π(Ci,j1), j 6= j1. By (3.8) we have

θ(βj1β
−1
j )(C) = θ(βj1β

−1
j )π(Ci,j) = π(βj1β

−1
j (Ci,j)) = π(Ci,j1) = C ′.

Thus C ′ belongs to the orbit of C under the automorphism t. Hence this orbit counts
exactly (N, vi) boundary components. It yields a period of the boundary component C and
consequently we have

(N,vi)−1⋃
i=0

ti(C) ⊆ S(N,vi)(t).

Next we proceed to the two remaining cases when i ≥ r+ 1 which means that an empty
period cycle {ei, ci,0} of Γ will contribute now to the number of ovals on X. We start with
the assumption that ei is mapped to tvi , where α2(vi) = α2(N). In such a case we have
|〈θ(ei), θ(ci,0)〉| = 2 expΛ ei and we may write

Γ =

N/(2 expΛ ei)⋃
j=1

expΛ ei−1⋃
k=0

1⋃
l=0

Λ(βjc
l
i,0e

k
i ). (3.20)

Hence we have

FΛ =

N/(2 expΛ ei)⋃
j=1

expΛ ei−1⋃
k=0

1⋃
l=0

(βjc
l
ie
k
i )FΓ,
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which �nally gives

Γ/Λ = ZN =

(ZN :〈θ(ei),θ(ci,0)〉)⋃
j=1

gj〈θ(ei), θ(ci,0)〉 =

N/(2 expΛ ei)⋃
j=1

gj〈θ(ei), θ(ci,0)〉

=

N/(2 expΛ ei)⋃
j=1

expΛ ei−1⋃
k=0

1⋃
l=0

gjθ(c
l
i)θ(e

k
i ), (3.21)

gj ∈ ZN . Denote

Ci,j =

expΛ ei−1⋃
k=0

1⋃
l=0

(βjc
l
ie
k
i )γi,0 =

expΛ ei−1⋃
k=0

(βje
k
i )γi,0.

Unlike the previous case ci now goes to the element of order 2 in ZN and for this reason it
has just been used as a representative of a non�identity coset Λγ of Γ. It allows us to observe
that in a neighbourhood of γi,0 we have the situation given on Figure 3.2 (for simplicity of
notation the drawing is made for βj = Id). The only images of sides εi and ε′i that lie on the
perimeter of FΛ are the following βj(ε′i), βjci,0(ε

′
i), βje

expΛ ei−1
i (εi) and βjci,0e

expΛ ei−1
i (εi).

We have

βje
expΛ ei

i β−1
j βjε

′
i = βje

expΛ ei

i ε′i = βje
expΛ ei−1
i εi

βje
expΛ ei

i β−1
j βjci,0ε

′
i = βje

expΛ ei

i ci,0ε
′
i = βjci,0e

expΛ ei

i ε′i = βjci,0e
expΛ ei−1
i εi.

Thus βje
expΛ ei

i β−1
j ∈ Λ is a generator pairing the edges βj(ε′i ∪ ci,0ε′i)and βj(e

expΛ ei−1
i εi ∪

ci,0e
expΛ ei−1
i εi). Hence we obtain

N

2 expΛ ei
=

(N, vi)

2
= (

N

2
, vi)

di�erent two�sided ovals in intX. In order to determine their period we follow the same
method as before, that is we show that all ovals generated by {ei, ci,0} lie in the same orbit.
In consequence their period equals (N/2, vi).

In the last step of the proof we deal with one�sided ovals. Observe that for i ≥ r+1 each
generator ei goes to tvi with α2(vi) < α2(N). Therefore we have tN/2 ∈ 〈θ(ei)〉. Furthermore
|〈θ(ei)〉| = |〈θ(ei), θ(ci,0)〉| = expΛ ei. Hence we may represent the group Γ as follows

Γ =

N/ expΛ ei⋃
j=1

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

Λ(βjc
l
i,0e

k
i ).

It gives a fundamental region for Λ

FΛ =

N/ expΛ ei⋃
j=1

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

(βjc
l
i,0e

k
i )FΓ.
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Figure 3.2: A segment generating a two�sided oval on X, βj = Id.
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Consequently

Γ/Λ = ZN =

(ZN :〈θ(ei)〉)⋃
j=1

gj〈θ(ei)〉 =

N/ expΛ ei⋃
j=1

gj〈θ(ei)〉 =

N/ expΛ ei⋃
j=1

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

gjθ(c
l
i,0)θ(e

k
i ).

Denote

Ci,j =

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

(βjc
l
i,0e

k
i )γi,0 =

(expΛ ei/2)−1⋃
k=0

(βje
k
i )γi,0.

In order to show that each Ci,j projects to an oval in intX we apply the technique which
has been used before twice. As it is seen on on Figure 3.3 (again on the drawing it is assumed
βj = Id) we may �nd an element of Λ pairing the appropriate edges of FΛ. Indeed we have

βjci,0e
expΛ ei/2
i β−1

j βjε
′
i = βjci,0e

expΛ ei/2
i ε′i = βjci,0e

(expΛ ei/2)−1
i εi

βjci,0e
expΛ ei/2
i β−1

j βjci,0ε
′
i = βjci,0e

expΛ ei/2
i ci,0ε

′
i = βje

expΛ ei/2
i c2i,0ε

′
i = βje

(expΛ ei/2)−1
i εi

where βjci,0e
expΛ ei/2
i β−1

j ∈ Λ. However it is worth pointing out that the above generator

pairing the edges βj(ε′i∪ciε′i) and βj(e
(expΛ ei/2)−1
i εi∪cie(expΛ ei/2)−1

i εi) is orientation�reversing.
The above leads us to the conclusion that the empty period cycle {ei, ci,0} of Γ induces

N

expΛ ei
= (N, vi) = (

N

2
, vi)

one�sided ovals. Their period equals (N/2, vi).

3.3.3 Chains

As it has been announced before we now proceed to discuss the third type of components of
the singular set S(t) that are called chains. Let us note that boundaries of X as well as ovals
contained in intX are always mapped under the projection X → X/〈t〉 onto boundaries of
the quotient surface X/〈t〉. However those two types of periodic structures on X are not
the only ones that "come from" the period cycles appearing in the signature of the covering
group Γ. The components of S(t) of the third type arise from non�empty period cycles of Γ.
According to (3.7) these period cycles are of the form (2µ). From the geometrical point of
view they correspond to boundaries of X/〈t〉 that contain some cone points i.e. points with
rami�cation indices equal to 2. Since the existence of chains requires N to be even, in the
following theorem we assume that order of automorphism under study is even.

Theorem 3.13. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X → X
be an automorphism of an even order N and θ : Γ → ZN be an epimorphism (3.8) of Γ given
by (3.7), that uniformizes a ZN�action of t. Assume that

θ(ei) = tvi for λ+ 1 ≤ i ≤ λ+ p

Then the following conditions hold
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Figure 3.3: A segment generating an one�sided oval on X, βj = Id.
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(i) if α2(vi) = α2(N), then i�th non�empty period cycle of Γ induces on X a two�sided chain
of period (N/2, vi)

(ii) if α2(vi) < α2(N), then i�th non�empty period cycle of Γ induces on X an one�sided
chain of period (N/2, vi)

Proof. The main idea of the proof is similar to the one of the previous theorem. It has been
motivated by proofs of Theorem 2.3.3 of [8] and Proposition 3.3 of [9]. For the convenience
of the reader we hopefully provide su�cient, but not too much details.

We begin by choosing a fundamental region FΓ for Γ whose perimeter is labelled as follows
εiγi,0...γi,µi

ε′i∆. Here

(1) ∆ represents the remaining sides of the perimeter

(2) the reflections ci,j fix the respective sides γi,j

(3) ei(ε
′

i) = εi

(4) eici,0 = ci,si
ei.

Assume that α2(vi) = α2(N). We proceed to construct a suitable fundamental region for
Λ. Without loss of generality we may assume that ci,0 6∈ Λ (see for instance Proposition 3.3).
Moreover we see at once that either ci,0ei 6∈ Λ. It follows from the fact that θ(ci,0ei) = tN/2+vi

and by the above assumption we have α2(N/2+ vi)α2(N/2) < α2(N). Analogously to (3.20)
we observe that

Γ =

N/(2 expΛ ei)⋃
j=1

expΛ ei−1⋃
k=0

1⋃
l=0

Λ(βjc
l
i,0e

k
i )

which enables us to write

FΛ =

N/(2 expΛ ei)⋃
j=1

expΛ ei−1⋃
k=0

1⋃
l=0

(βjc
l
i,0e

k
i )FΓ.

Consequently we have

Γ/Λ = ZN =

(ZN :〈θ(ei),θ(ci,0)〉)⋃
j=1

gj〈θ(ei), θ(ci,0)〉 =

N/(2 expΛ ei)⋃
j=1

gj〈θ(ei), θ(ci,0)〉

=

N/(2 expΛ ei)⋃
j=1

expΛ ei−1⋃
k=0

1⋃
l=0

gjθ(c
l
i)θ(e

k
i ),

where θ(βj) = gj. This is exactly the relation (3.21). Consider the following segment of the
perimeter of FΛ

Ci,j =

expΛ ei−1⋃
k=0

1⋃
l=0

µi⋃
m=0

(βjc
l
i,0e

k
i )γi,m.
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We show that each Ci,j projects to a union of a chain and some boundary components
of X. Contrary to both cases of ovals we must be aware that now there are segments of Ci,j
that are identi�ed by an element of Λ. Indeed we have

λβje
k
i γi,2p = βjci,0e

k
i γi,2p where λ = βjci,0ci,2p[ci,2pe

k
i ]β

−1
j (3.22)

since ci,2p(γi,2p) = γi,2p. Thus the sides βjeki γi,2p and βjci,0e
k
i γi,2p (see �ne dashed arrows on

Figure 3.4, for simplicity of notation we assume there βj = Id) are paired by λ ∈ Λ. Since
βjFΓ ∪ βjci,0FΓ ⊆ FΛ we conclude that βjγi,0 projects to an arc on X. From (3.22) it also
follows that all remaining sides βjγi,2p, p ≥ 1 project to arcs on X.

On the other hand the edges βjγi,2p+1 and βjci,0γi,2p+1 project to curves that together
form a boundary component of X. Note that the involution θ(ci,0) = tN/2 �xes pointwise all
the above arcs and interchanges the curves generated by βjγi,2p+1 with those generated by
βjci,0γi,2p+1.

In order to show that

Bi,j =

expΛ ei−1⋃
k=0

µi⋃
m=0

(βje
k
i )γi,m ⊂ Ci,j

projects to a two�sided chain on X we �rst need to prove that there exists λ ∈ Λ with

λβj(ε
′
i ∪ ci,0ε′i) = βj(e

expΛ ei−1
i εi ∪ ci,0eexpΛ ei−1

i εi).

But this is clear since

βje
expΛ ei

i β−1
j βjε

′
i = βje

expΛ ei

i ε′i = βje
expΛ ei−1
i εi

βjci,0e
expΛ ei

i ci,0β
−1
j βjci,0ε

′
i = βjci,0e

expΛ ei

i ε′i = βjci,0e
expΛ ei−1
i εi,

where both elements βje
expΛ ei

i β−1
j and βjci,0e

expΛ ei

i ci,0β
−1
j belong to Λ.

The remaining steps required to show that π(Bi,j) is a chain can be handled in much the
same way as (i.1)�(i.3) in the proof of Theorem 3.12 and as such are super�uous. Hence a
non�empty period cycle (2µi) of Γ generates

N

2 expΛ ei
=

(N, vi)

2
= (

N

2
, vi)

two�sided chains of period (N/2, vi). The length of each chain equals µi expΛ ei.
Suppose now that θ(ei) = tνi , where α2(vi) < α2(N). Since we have assumed ci,0 6∈ Λ we

may write equivalently ci,0e
expΛ ei/2
i ∈ Λ or 〈θ(ei), θ(ci,0)〉 = 〈θ(ei)〉. The actual case can also

be solved using the approach based on a choice of the suitable fundamental region for Λ.
According to our assumptions we now have

Γ =

N/ expΛ ei⋃
j=1

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

Λ(βjc
l
i,0e

k
i ),
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Figure 3.4: A segment generating a two�sided chain on X, βj = Id.
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which leads us to

FΛ =

N/ expΛ ei⋃
j=1

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

(βjc
l
i,0e

k
i )FΓ.

We continue in this fashion obtaining the representation

Γ/Λ = ZN =

(ZN :〈θ(ei)〉)⋃
j=1

gj〈θ(ei)〉 =

N/ expΛ ei⋃
j=1

gj〈θ(ei)〉 =

N/ expΛ ei⋃
j=1

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

gjθ(c
l
i,0)θ(e

k
i ).

Let us put

Ci,j =

(expΛ ei/2)−1⋃
k=0

1⋃
l=0

µi⋃
m=0

(βjc
l
i,0e

k
i )γi,m

We investigate the projection of Ci,j on X. Since (3.22) remains true the identi�cations of
segments of Ci,j discussed previously are still valid (see �ne dashed arrows on Figure 3.5, for
simplicity of notation we assume there βj = Id).

The di�erence between cases α2(νi) = α2(N) and α2(νi) < α2(N) consists in pairing the
images of sides εi and ε′i. Observe that

βjci,0e
expΛ ei/2
i β−1

j βjε
′
i = βjci,0e

expΛ ei/2
i ε′i = βjci,0e

(expΛ ei/2)−1
i εi

βje
expΛ ei/2
i ci,0β

−1
j βjci,0ε

′
i = βje

expΛ ei/2
i ε′i = βje

(expΛ ei)/2−1
i εi,

where both elements βjci,0e
expΛ ei/2
i β−1

j and βje
expΛ ei/2
i ci,0β

−1
j belong to Λ. Hence the sides

βj(ε
′
i ∪ ci,0ε′i) andβj(e

(expΛ ei/2)−1
i εi ∪ ci,0e(expΛ ei/2)−1

i εi)

are paired by the above orientation�reversing elements.
We conclude that

Bi,j =

(expΛ ei/2)−1⋃
k=0

µi⋃
m=0

(βje
k
i )γi,m ⊂ Ci,j

projects to one�sided chain on X. It also follows that a non�empty period cycle (2µi) of Γ
generates

N

expΛ ei
= (N, vi) = (

N

2
, vi)

one�sided chains of period (N/2, vi). The length of each chain equals µi expΛ ei/2.

We make a remark that goes back to work [9] and shows how the above situation reduces
in case of involution.
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Figure 3.5: A segment generating an one�sided chain on X, βj = Id.
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Remark 3.14. Under the assumptions of Theorem 3.13 with N = 2 exactly one of the
transformations ei and ci,0ei belongs to Λ. Indeed, vi = 2 yields ei ∈ Λ, hence we obtain a
two�sided chain of length µi. Conversely, if vi = 1 we have ci,0ei ∈ Λ and consequently we
get an one�sided chain of length µi expΛ ei/2 = µi. Since N/2 = 1, in both cases periods of
the above chains equal to 1.

Remark 3.15. By results of the last two subsections we may easily calculate the number of
boundary components of X in terms of the signature of group Γ and epimorphism θ : Γ → ZN .
Note that the number of boundaries of X that "come from" non�empty period cycles (2µi) of
Γ can be obtained by the formula

1

2
(period of a chain× length of a chain)

since a boundary component that intersects a chain has exactly 2 common points with it.
Hence using the notation of Theorems 3.12 and 3.13 total number of boundary components
of X being a sum of those contributed by the empty and non�empty period cycles of Γ equals

r∑
i=1

(N, vi) +
N

2

p∑
i=1

µi
2

It coincides with the assertion of Theorem 2.4.4 in [8] (see point (2) there). Recall that by the
convention we made before the boundary components intersecting chains of t do not form part
of the singular set of last period N/2 in the setwise context SN/2(t). These are the boundaries
"coming from" non�empty period cycles (2µi) of Γ.
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4.1 The Character of Periods

We devote the present section to the study of the periodic point behaviour of dianalytic
maps of Klein surfaces into itself. Let X be a Klein surface and assume that t : X → X is
an automorphism of X. As we know the singular set of such a map may contain isolated
periodic points, periodic boundary components and one�sided or two�sided periodic ovals
and chains. Recall that one�dimensional components of the singular set of least period d are
in fact �xed by td only setwise, but do not contain �xed points, except td is an involution.

The below notation applies to periods of various components of the singular set of auto-
morphisms of Klein surfaces.

(1) Let A1(t) denote the set of periods of isolated periodic points of t.

(2) Let A2(t) denote the set of periods of boundary components of X of t that do not
intersect chains.

(3) Let A3(t) denote the set of periods of two�sided ovals of t.

(4) Let A4(t) denote the set of periods of one�sided ovals of t.

(5) Let A5(t) denote the set of periods of two�sided chains of t.

(6) Let A6(t) denote the set of periods of one�sided chains of t.

The following lemma sums up the results of the last chapter stating precisely properties
of the above sets of periods. Recall that due to the notation introduced in Subsection 1.2.1
the symbols D0(N) and D(N) stand for the set of proper divisors and all divisors of N
respectively.

Lemma 4.1. Let t : X → X be an automorphism of a Klein surface X. The sets of periods
describing the action of 〈t〉 on X ful�ll the following constraints:

A1(t) ⊆ D0(N), A2(t) ⊆ D(N). (4.1)

Furthermore for even N we have

A3(t),A5(t) ⊆ 2α2(N)−1D(
N

2α2(N)
), A4(t),A6(t) ⊆ D(

N

2
) (4.2)

whereas an odd N forces

A3(t) = A4(t) = A5(t) = A6(t) = ∅. (4.3)

Proof. The inclusions (4.1) are immediate provided we remember that by our convention
all boundary components belong to the singular set of t. Thus their period may be any
number that divides N , including also the N itself. The relations for A3(t)�A6(t) follow
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from Theorems 3.12 and 3.13 and are determined by the order of the image of the respective
e�generator in ZN . Let θ : Γ → ZN be a smooth epimorphism covering the action of t on
X. In case of the two�sided structures we have θ(e) = tv with α2(v) = α2(N), where e is
the corresponding e�generator belonging to an empty period cycle in case of an oval or a
non�empty period cycle in case of a chain. Hence their periods that equal (N/2, v) hold the
relation α2((N/2, v)) = α2(N)− 1 which justi�es the inclusions for A3(t) and A5(t). On the
other hand the sets A4(t) and A6(t) corresponding to the one�sided structures comprise the
numbers of the form (N/2, v) with α2(v) < α2(N). Obviously (N/2, v) ∈ D(N/2).

If N is odd the re�ections c of Γ must be mapped to the identity element in ZN . Hence the
one�dimensional structures of the singular set in the interior of X do not become apparent
in that setting.

In order to extend the notion of set of periods that we used previously in case of auto-
morphisms of Riemann surfaces, we introduce now a term character of periods and de�ne it
to be a 6�tuple of sets of periods enumerated in points (1)�(6). We use the following notation

CPer(t) = (A1(t),A2(t),A3(t),A4(t),A5(t),A6(t)). (4.4)

We shall consider the character of periods of ZN�actions as the set of CPer(t) taken over
all Klein surfaces X and dianalytic automorphisms t ∈ AutX of order N , i.e.

CPer(ZN) = {CPer(t) | X −Klein surface, t ∈ AutX, ordt = N}.

Throughout our exposition we consider various cases that comprise a global study of the
dynamics of dianalytic maps of Klein surfaces into itself. At the �rst stage of our investigation
we will focus on the parity of N . The necessity of veri�cation whether N is odd or even,
follows from the di�erent restrictions concerning the components of the singular set. Since
the former case is not as complex as the latter one we �rst start with the case of N odd in
Section 5.1. Next in Sections 5.2 and 5.3 we will consider the case of even N . Our way of
investigating the dynamics of maps of Klein surfaces also takes into account the orientability
character of surfaces X and X/〈t〉. Let us denote by CPer+(ZN) and CPer−(ZN) the set of
characters of periods of ZN�actions on orientable and non�orientable surfaces respectively.
We then may divide those sets with respect to the orientability character of the quotient
space X/〈t〉. We use the following notation

CPer(+,+)(ZN) = {CPer(t) | X orientable, X/〈t〉 orientable}
CPer(−,+)(ZN) = {CPer(t) | X orientable, X/〈t〉 non− orientable}
CPer(+,−)(ZN) = {CPer(t) | X non− orientable, X/〈t〉 orientable}
CPer(−,−)(ZN) = {CPer(t) | X non− orientable, X/〈t〉 non− orientable}.

By theorems of [8] we show in Section 5.1 that the above list for N odd contains only
two items since under this assumption we have CPer(−,+)(ZN) = CPer(+,−)(ZN) = ∅.
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In the remainder of the thesis we assume that arbitrary sets denoted here as A1, A2, A3,
A4, A5, A6 satisfy the respective conditions (4.1)�(4.3). We write C0 for a 6�tuple formed
by such sets

C0 = (A1,A2,A3,A4,A5,A6).

In order to consider sets of periods that become apparent on various Klein surfaces we
need to separate the notions of covering NEC group and covering epimorphism in the two
contexts. First, as de�ned before, while considering a Klein surface X and an automorphism
t : X → X we say that epimorphism θ appearing in the diagram (3.8) covers (or uniformizes)
a ZN�action of t on X and Γ is a NEC group covering a ZN�action of t on X. On the other
hand when we investigate a character of periods given by a 6�tuple of sets of periods C0,
we say that smooth epimorphism θ : Γ → ZN covers a ZN�action given by C0 if there is a
Klein surface X and an automorphism t : X → X such that the diagram (3.8) commutes.
Observe that in this context we do not assume the orientability character nor of X, nor of
X/〈t〉. Using the above slightly wider approach we also say that a NEC group Γ covers a
ZN�action given by C0.

4.1.1 De�nitions and Notation II

Unfortunately we use a quite large number of symbols throughout the thesis. Below we
introduce a notation we need in the forthcoming sections. Some of the following terms were
de�ned before in Subsection 1.2.1. However, now they do appear in a much wider context.
As in the �rst part of the exposition, we will work mainly with integers and some very simple
structures de�ned on them. We use a term set of integers, assuming that it does not contain
any repetitions.

Throughout the remainder of the paper we still denote by t : X → X an automorphism
of a Klein surface X. The letter N will stand for the order of a cyclic group 〈t〉 that acts on
X. We introduce a ∗�notation in order to be able to di�erentiate periods of a ZN�action on
X from orders of elements in that group. All the subsequent constructs (numbers, elements,
sets, functions) that refer to orders of elements in ZN will be denoted using the ∗�notation.
It can also be considered as an advantage for the reader, providing a self�checking general
rule stating that

∗�symbols may be built only on ∗�symbols

On the other hand to shorten notation we shall use some not ∗�symbols built over ∗�
symbols. For example we write F (C∗) instead of (F ∗(C∗))∗. This convention will be reminded
repeatedly as the corresponding constructs come along.

We use the following de�nitions.

(0) By family of numbers we will understand a sequence of numbers although with no
importance on the order of this sequence. By this meaning {2, 2, 3, 5} is the same
family as {2, 3, 2, 5}.
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Let D be a family of divisors of N .

(1) If d is a divisor of N , then by d∗ we denote the number N/d. Likewise, if D =
{d1, . . . , dk} is a family of divisors of N , then D∗ = {N/d1, . . . , N/dk}. We also wri-
te C∗0 for a 6�tuple (A∗

1,A∗
2,A∗

3,A∗
4,A∗

5,A∗
6), where C0 = (A1,A2,A3,A4,A5,A6) is a

character of periods of some ZN�action on a Klein surface.

(2) The projection of D is the set of di�erent integers that belong to the family D. It will
be denoted by π(D).

(3) For an integer d belonging to the family of integers D we de�ne its multiplicity mD(d)
to be the number of elements of D that are equal to d.

(4) The cardinality of the family of integers D is understood in the usual set�theoretic
manner and de�ned as ]D =

∑
d∈π(D)mD(d).

(5) Let D and D′ be two families of integers. We say that D′ includes D if and only if for
every d ∈ π(D) we have mD(d) ≤ mD′(d). We will write D ⊂ D′.

4.1.2 The Induced Action

Suppose that θ : Γ → ZN is a smooth epimorphism and recall that by Theorems 2.4.2 and
2.4.4 of [8] group Γ has the representation

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}). (4.5)

Observe that in case of epimorphisms uniformizing a ZN�action on Riemann surfaces by
conformal automorphisms, the signature of Γ was a su�cient data to know the set of periods
of the underlying action. However, while considering Klein surfaces this is not the case. As
we will see in this subsection it is indispensable to know also the orders of images under θ of
all canonical generators except the hyperbolic generators corresponding to the orbit genus of
Γ. Note that by smoothness of θ the orders of images of elliptic generators of Γ can be easily
derived from the signature of Γ. Nevertheless it does not provide us with the information on
orders of θ(c) nor θ(e), for re�ections c and e�generators of Γ.

On the other hand if we know how the canonical generators of Γ are mapped by θ, then
by results of the previous chapter we may �nd all periodic structures of the singular set of
the underlying action. In the following remark we state in a precise manner a method of
calculating the character of periods of a ZN�action on a Klein surface.

Remark 4.2. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X → X be
an automorphism of order N of X and θ : Γ → ZN be an epimorphism (3.8) of Γ given by
(3.7), that uniformizes a ZN�action of t. Denote the images of elliptic generators of Γ

(i) θ(xi) = tvi for 1 ≤ i ≤ n
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Let us also reorder the re�ections ci,0 associated to empty period cycles of Γ in such a way
they hold

(ii.1) θ(ci,0) = 1 for 1 ≤ i ≤ r ≤ λ and θ(ci,0) = tN/2 for r + 1 ≤ i ≤ λ.

Furthermore we split, as follows, the e�generators associated to empty period cycles into three
groups

(ii.2)

θ(ei) = tvn+i for 1 ≤ i ≤ r ≤ λ

θ(ei) = tvn+i for r + 1 ≤ i ≤ r + v+, where α2(vn+i) = α2(N)

θ(ei) = tvn+i for r + v+ + 1 ≤ i ≤ λ, where α2(vn+i) < α2(N).

Proceeding to non�empty period cycles of Γ we split the corresponding e�generators according
to the following

(iii)

θ(ei) = tvn+i for λ+ 1 ≤ i ≤ r + u+, where α2(vn+i) = α2(N)

θ(ei) = tvn+i for λ+ u+ + 1 ≤ i ≤ λ+ p, where α2(vn+i) < α2(N).

Let us form the following families of numbers

G1(Γ, θ) = {(N, vj) | 1 ≤ j ≤ n}
G2(Γ, θ) = {(N, vn+j) | 1 ≤ j ≤ r}
G3(Γ, θ) = {(N/2, vn+j) | r + 1 ≤ j ≤ r + v+}
G4(Γ, θ) = {(N/2, vn+j) | r + v+ + 1 ≤ j ≤ λ}
G5(Γ, θ) = {(N/2, vn+j) | λ+ 1 ≤ j ≤ λ+ u+}
G6(Γ, θ) = {(N/2, vn+j) | λ+ u+ + 1 ≤ j ≤ λ+ p}. (4.6)

Then the character of periods of t equals

CPer(t) =(A1(t),A2(t),A3(t),A4(t),A5(t),A6(t))

=(π(G1(Γ, θ)), π(G2(Γ, θ)), π(G3(Γ, θ)), π(G4(Γ, θ)), π(G5(Γ, θ)), π(G6(Γ, θ))), (4.7)

where π(Gi(Γ, θ)) stands for the projection of family Gi(Γ, θ), i = 1, . . . , 6.

Remark 4.3. Under the assumptions of Remark 4.2 to obtain families (4.6) it su�ces to
know the numbers ordtvj , j = 1, . . . , 6 and the type of periodic components they correspond
to. We have

Gi(Γ, θ) = {(N, vj)} = {N/ordtvj} = {(ordtvj)∗}, i = 1, 2

Gi(Γ, θ) = {(N
2
, vj)} = {1

2
(N, vj)} = {1

2
(ordtvj)∗}, i = 3, 5

Gi(Γ, θ) = {(N
2
, vj)} = {(N, vj)} = {(ordtvj)∗}, i = 4, 6, (4.8)

where Gi(Γ, θ) are families given by (4.6).
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In order to be able to deal e�ectively with one of the main problems this thesis is aimed
to solve i.e. compute the minimal area of a NEC group uniformizing a ZN�action we also
need an opposite result to the one obtained in Remark 4.3. Namely, based on the character
of periods C0 of a ZN�action, we would like to derive the orders of the images of elliptic and
e�generators of Γ. The required result is given in the corollary below.

Corollary 4.4. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X → X
be an automorphism of order N of X ful�lling CPer(t) = C0 = (A1,A2,A3,A4,A5,A6). Let
θ′ : Γ′ → ZN be an epimorphism uniformizing a ZN�action of t. Suppose that h is an elliptic
or an e�generator corresponding to a periodic component of S(t). Then

ordθ(h) ∈



A∗
1, if h is elliptic

A∗
2, if h induces a boundary component

(2A3)
∗, if h induces a two sided oval

A∗
4, if h induces an one sided oval

(2A5)
∗, if h induces a two sided chain

A∗
6, if h induces an one sided chain.

Moreover for each of the families Gj(Γ′, θ′), j = 1, . . . , 6 we have

π(Gj(Γ′, θ′)) = Aj. (4.9)

Proof. The properties of ordθ(h) can be easily derived from (4.8). The equalities (4.9) are
forced by the assumption that θ′ uniformizes a ZN�action given by C0 and (4.7).

By the last corollary the orders of images of all generators of the covering group, except
the hyperbolic ones corresponding to the orbit genus are completely determined by the
character of periods. This is a kind of rigidity we have mentioned at the beginning of this
subsection.
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4.2 General Remarks on Epimorphism onto ZN

In this section we investigate the properties of smooth epimorphisms from NEC groups onto
the cyclic ones. We need them to construct epimorphisms uniformizing required characters
of periods. The method of proving the existence of such epimorphisms is to construct them
explicitly. Furthermore, we will show in the forthcoming sections that the measure of the re-
sulting surface NEC group is the smallest among all surfaces of a given orientability character
that admit a required ZN�action.

Note that also in [8] there were constructed some smooth epimorphisms from NEC groups
onto ZN . However, since we focus on characters of periods of ZN�actions the choice of the
right assignment is much more restricted. It is worth noting that similarly to the proof of
Harvey's theorem [20] the key concept of construction of epimorphisms θ : Γ → ZN will
consist in satisfying the long relation on images of corresponding canonical generators of Γ.

4.2.1 The Order�Preserving Element

Let (D1,D2,D3,D4,D5,D6) be a 6�tuple of families of divisors of N i.e.

(D1,D2,D3,D4,D5,D6) = ({d1,1, . . . , d1,k1}, {d2,1, . . . , d2,k2},
{d3,1, . . . , d3,k3}, {d4,1, . . . , d4,k4}, {d5,1, . . . , d5,k5}, {d6,1, . . . , d6,k6}), (4.10)

where di,j ∈ D(N) and Di admit elements with multiplicities. We introduce the notion of
order�preserving element with respect to (D1,D2,D3,D4,D5,D6).

(1) We say that an element

η = ({η1,1, . . . , η1,k1}, {η2,1, . . . , η2,k2}, {η3,1, . . . , η3,k3},
{η4,1, . . . , η4,k4}, {η5,1, . . . , η5,k5}, {η6,1, . . . , η6,k6}), (4.11)

is order�preserving with respect to {D1,D2,D3,D4,D5,D6} if (d∗i,j, ηi,j) = 1 for di,j ∈
Di. Note that in such a setting if 〈t〉 = ZN , then ordtdi,j = ordtηi,jdi,j .

(2) If C0 = (A1, . . . ,A6) is a character of periods of some ZN�action on a Klein surface,
then any set of families (4.10) satisfying π(Di) = Ai will be called a character associated
to C0.

(3) For D = (D1,D2,D3,D4,D5,D6) we call Di an i�th section of character D.

For technical purposes we need the following construct

(4) If C0 = (A1,A2,A3,A4,A5,A6) is a character of periods, then we de�ne

C = (A1,A2, 2A3,A4, 2A5,A6)

and we call it the in�ated character of periods.
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We also use a notion of character associated to in�ated character of periods de�ned
analogously to the above de�nition (2). Considering characters which may be associated
to characters of periods or in�ated characters of periods we use symbols that stress this
dependency. We write D(C0) and D(C) for character associated to character of periods and
in�ated character of periods respectively.

The reason of using the notion of in�ated character of periods is only technical and it is
motivated by the following remark.

Remark 4.5. If θ : Γ → ZN uniformizes a ZN�action given by C0, then the orders of images
of elliptic and e�generators of Γ are given by d∗, where d ∈ C.

Note that C0 does not have the above property. Indeed, we may observe it for sections
A3 and A5. If d0 ∈ A3 or A5, then e�generator corresponding to d0 veri�es θ(e) = tv, where
α2(v) = α2(N). But d0 = (N/2, v) = (N, v)/2, which gives d∗0 = 2ordθ(e). See also (4.8) and
Corollary 4.4 where those exceptional cases were mentioned for the �rst time.

Observe that C0 may be also treated as a character associated to itself, since π(C0) = C0.
Therefore, we may formally consider elements η that are order�preserving with respect to
C0. Recall, that due to the above de�nition (1) we must consider elements that are order�
preserving with respect to 6�tuples of families. The same remark clearly relates to the in�ated
character of periods C. Moreover, it is worth noting that an element η that is order�preserving
with respect to C0 is also order�preserving with respect to C. The opposite relation does not
hold.

As the illustration of the deployment of the new terminology we show in the example
below how the order�preserving element with respect to a character associated to the in�ated
character of periods is determined by an epimorphism uniformizing a ZN�action.

Example 4.6. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X → X
be an automorphism of order N of X ful�lling

CPer(t) = C0 = (A1,A2,A3,A4,A5,A6) = ({d1,j}, {d2,j}, {d3,j}, {d4,j}, {d5,j}, {d6,j}).

Suppose that θ : Γ → ZN is an epimorphism uniformizing a ZN�action of t. Let us form the
below families of numbers according to points (i)�(iii) of Remark 4.2

{vj}nj=1, {vn+j}rj=1, {vn+j}r+v
+

j=r+1, {vn+j}λj=r+v++1, {vn+j}λ+u+

j=λ+1, {vn+j}λ+p
j=λ+u++1. (4.12)

Observe that by (4.6) we de�ned (G1(Γ, θ), . . . ,G6(Γ, θ)) which is a 6�tuple of families of
divisors of N . By (4.7) it is also a character associated to C0. Using the above families (4.12)
we may get an element which is order�preserving with respect to a character associated to
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the in�ated character of periods C. Let us put

η1j =
vj

(N, vj)
for 1 ≤ j ≤ n

η2j =
vn+j

(N, vn+j)
for 1 ≤ j ≤ r

η3j =
vn+j

(N, vn+j)
=

vn+j

2(N
2
, vn+j)

for r + 1 ≤ j ≤ r + v+

η4j =
vn+j

(N, vn+j)
for r + v+ + 1 ≤ j ≤ λ

η5j =
vn+j

(N, vn+j)
=

vn+j

2(N
2
, vn+j)

for λ+ 1 ≤ j ≤ λ+ u+

η6j =
vn+j

(N, vn+j)
for λ+ u+ + 1 ≤ j ≤ λ+ p (4.13)

and de�ne

η = ({η1,j}nj=1, {η2,n+j}rj=1, {η3,n+j}r+v
+

j=r+1, {η4,n+j}λj=r+v++1, {η5,n+j}λ+t+

j=λ+1, {η6,n+j}λ+p
j=λ+t++1).

We then have

(d∗ij, ηij) = (
N

(N, vj′)
, ηij) = (

N

(N, vj′)
,

vj′

(N, vj′)
) = 1, i = 1, 2

((2dij)
∗, ηij) = (

N

2(N
2
, vj′)

, ηij) = (
N

(N, vj′)
,

vj′

(N, vj′)
) = 1, i = 3, 5

(d∗ij, ηij) = (
N

(N
2
, vj′)

, ηij) = (
N

(N, vj′)
,

vj′

(N, vj′)
) = 1,

where the respective ranges for j′ follow from inequalities given by (4.13).

Remark 4.7. Under the assumptions of Example 4.6

(G1(Γ, θ),G2(Γ, θ), 2G3(Γ, θ),G4(Γ, θ), 2G5(Γ, θ),G6(Γ, θ))

forms a character associated to C.

4.2.2 Conditions for Epimorphism

We now proceed to show the role that the notion of order�preserving element plays in
the construction of epimorphism from NEC groups onto ZN . Let us assume that C0 is a
character of periods describing a ZN�action on a Klein surface. Suppose also that θ : Γ → ZN

uniformizes the above ZN�action. As it was shown in Example 4.6 the elliptic generators as
well as e�generators of Γ are mapped to elements tηd, 〈t〉 = ZN , where (d∗, η) = 1 and d ∈ C.
Using this notation we may de�ne for θ : Γ → ZN a number

L(η) =
∑
i,j

ηi,jdi,j. (4.14)
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Recall that epimorphism θ : Γ → ZN must keep the "long relation", given by (3.2) and (3.3)
for Γ orientable and non�orientable respectively, on images of canonical generators of Γ.
Thus, we see that

L(η) ≡ 0 mod N if signΓ = ” + ” (4.15)

L(η) ≡ −2S mod N otherwise, (4.16)

where θ(g1 . . . gγ) = tS. Consequently, we are focused on order preserving elements η with
respect to characters associated to C ful�lling (4.15) or (4.16) in the respective cases. Note
that the number L(η) may be de�ned provided we know only how θ maps the elliptic and
e�generators.

It is worth pointing out that omitting in (4.11) and (4.14) the elements involving di,j
for i ≥ 3 i.e. excluding from the singular set the one�dimensional components other than
boundaries, we obtain a de�nition of order�preserving pair given in [8]. Using the notation
of [8] we have D1 = α, D2 = β and L(D1,D2, ∅, ∅, ∅, ∅) = S(α, β).

Below we give two arithmetic lemmas that establish basic constraints on characters as-
sociated to C which enable one to �nd a required η. We will apply the �rst result mainly
in case when a covering group is non�orientable. Roughly speaking, this lemma states that
if D(C) is a character associated to C and η is an order�preserving element with respect to
the character D(C), then the parity of L(η) does not depend on the choice of η. Thus it is
determined only by D(C).

Denote by m the order of image of an x� or e�generator in ZN and recall that we consider
ZN�action prescribed by character of periods C0. By Remark 4.5, orders m and d ∈ C are
related by m∗ = d, where d belong to the respective sections of C.

Lemma 4.8. Let N be even and let m1, . . . ,mk be positive integers. Then for each sequence
of integers (ηi)

k
i=1, satisfying ord(tηim

∗
i ) = mi we have

]{mi | α2(mi) = α2(N)} ≡
k∑
j=1

ηjm
∗
j mod 2. (4.17)

Proof. We begin by proving that ηim∗
i ≡ m∗

i mod 2. Indeed, 2 - m∗
i implies α2(mi) = α2(N).

Since (ηi,mi) = 1 we obtain 2 - ηi, hence we conclude that also 2 - ηim∗
i . Obviously 2 - ηim∗

i

clearly forces that m∗
i is odd. It follows that the number of odd summands on the right�hand

side of sum (4.17) equals the number of mi which have the property α2(mi) = α2(N).

Lemma 4.9. Let 4 | N and let m1, . . . ,mk be positive integers satisfying α2(mi) < α2(N).
Then for each sequence of integers (ηi)

k
i=1 which verify ord(tηim

∗
i ) = mi we have

k∑
j=1

ηjm
∗
j ≡ 2 · ]{mi | α2(mi) = α2(N)− 1} mod 4.

Proof. It is enough to observe that α2(mi) = α2(N)− 1 yields α2(m
∗
i ) = α2(ηim

∗
i ) = 1. The

rest of the proof is straightforward.
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Corollary 4.10. Let 4 | N and let m1, . . . ,mk be positive integers. Suppose that the set
{mi | α2(mi) = α2(N)} is non�empty and has an even cardinality. Then there exist sequences
of integers (ηi)

k
i=1 and (η′i)

k
i=1 such that

(i) ord(tηim
∗
i ) = mi and

k∑
j=1

ηjm
∗
j ≡ 0 mod 4

(ii) ord(tη
′
im

∗
i ) = mi and

k∑
j=1

η′jm
∗
j ≡ 2 mod 4.

Proof. Take η1 = . . . = ηk = 1. By Lemma 4.8 the sum
∑k

j=1m
∗
j is even. Assume that∑k

j=1m
∗
j is also divisible by 4. Denote by ml, l ≤ k an element satisfying α2(ml) = α2(N).

In order to obtain a sum that is not divisible by 4 we switch the respective factor ηl to N−1,
that is we consider η′l = N − 1 with the remaining η′j = 1, j 6= l. We then have

k∑
j=1

η′m∗
j ≡

∑
j 6=l

m∗
j + (N − 1)m∗

l ≡
k∑
j=1

m∗
j −m∗

l + (N − 1)m∗
l ≡

k∑
j=1

m∗
j + 2 mod 4.

If
∑k

j=1m
∗
j is not divisible by 4, then obviously

∑k
j=1 η

′m∗
j de�ned above is a multiple of 4.

In each of the cases we have found both sequences (ηi)
k
i=1 and (η′i)

k
i=1, as required.

The third lemma has been already cited in the �rst part of the thesis, see Theorem 2.1.
We recall it once more, just to formulate it within the actual context.

(1) We say that the set of positive integers {m1, . . . ,mk} veri�es the elimination property
if

lcm(m1, . . . ,mi, . . . ,mk) = lcm(m1, . . . ,mk)

for each i = 1, . . . , k, where mi denotes the omission of mi. We also adopt the conven-
tion lcm of the empty set is 1. Thus {m1} has the elimination property if and only if
m1 = 1.

Lemma 4.11 (Harvey [20], Theorem 4, Bujalance et al. [8], Lemma 3.1.1). Let m1, . . . ,mk be
positive integers and denote M = lcm(m1, . . . ,mk). The following statements are equivalent:

(i) for each multiple N of M , there exist η1, . . . , ηk such that

ord(tηim
∗
i ) = mi and

k∑
j=1

ηjm
∗
j ≡ 0 mod N,

where m∗
i = N/mi, i = 1, . . . , k

(ii) for each i = 1, . . . , k, lcm(m1, . . . ,mi, . . . ,mk) = M , and, if 2 | M , the number of mi

which are multiple of 2α2(M) is even.
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Below we recall a theorem which plays an important role while determining the orienta-
bility character of normal subgroups of a NEC group. First we need a few de�nitions. Let
Λ′ be a normal subgroup of a NEC group Γ.

(2) A canonical generator of Γ is proper (with respect to Λ′) if it does not belong to Λ′.

(3) The elements of Γ expressible as composition of proper generators of Γ are the words
of Γ (with respect to Λ′).

(4) A given word is orientable if it preserves the orientation of H2. Otherwise is non�
orientable.

Theorem 4.12 (Bujalance et al. [8], Theorem 2.1.3). Let Λ′ be a normal subgroup of a NEC
group Γ with an even index N .

(i) Let us suppose that Γ is orientable. Then Λ′ is orientable if and only if no non�
orientable word belongs to Λ′.

(ii) Let us suppose that Γ is non�orientable. Then Λ′ is non�orientable if and only if either
a glide re�ection of the canonical generators of Γ or a non�orientable word belongs to
Λ′.

We �nish this subsection with a simple lemma concerning a way of identifying ZN�actions
on Klein surfaces by �xing the character of periods C0. We will show series of maps that
share the same character of periods. Anyway, such a relation between maps is clearly less
restrictive than the classi�cation up to topological conjugacy since we do not even assume
that maps act on surfaces of the same topological type.

Proposition 4.13. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X →
X be an automorphism of order N of X. Suppose that (Γ,H2) is a universal covering trans-
formation group of (〈t〉, X) and θ : Γ → ZN is an epimorphism that uniformizes a ZN�action
of t. Denote by J an elliptic canonical generator, an empty period cycle or a non�empty pe-
riod cycle of Γ. Then for any of the following conditions, (i) and (ii), there is a universal
covering transformation group (Γ′,H2) of (〈t′〉, X ′) and an epimorphism θ′ : Γ′ → ZN such
that CPer(t) = CPer(t′). A NEC group Γ′ is of the form

Γ′ = (γ′;±; [m′
1, ...,m

′
n′ ]; {( )λ

′
(2µ

′
1)...(2

µ′
p′ )}),

where

(i) γ′ > γ

(ii) the number of J ′s in the signature of Γ′ is greater than the number of J ′s in the signature
of Γ.

Moreover the groups Γ and Γ′ (respectively ker θ and ker θ′) have the same orientability
character.
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Proof. Denote CPer(t) = C0. Let us show that the genus of Γ can be increased without
a�ecting the underlying ZN�action described by means of the character of periods C0. Denote

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}).

Assume �rst that the signΓ = ” + ”. In such case we de�ne Γ′ as follows

Γ′ = (γ + 1; +; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}).

We construct epimorphism θ′ : Γ′ → ZN mapping both additional hyperbolic generators aγ+1

and bγ+1 to 1. On the remaining canonical generators of Γ′ the epimorphism θ′ is equal to
θ. Observe that we have sign ker θ′ = sign ker θ since both aγ+1 and bγ+1 are orientable. As
we saw in subsection 4.1.2 character of periods of the underlying ZN action does not depend
on the images of hyperbolic generators corresponding to the orbit genus of a Klein surface.
Hence CPer(t′) = C0 as required.

On the other hand, if signΓ = ”− ”, then we construct the signature of Γ′ by repeating
twice each and every canonical generator of Γ. Thus Γ′ will posses the following generators

{x1, . . . , xn, e1, . . . , eλ+p, {g1, . . . , gγ,

x1+A, . . . , xn+A, e1+A, . . . , eλ+p+A}, g1+A, . . . , gγ+A},

where A = γ + n + λ + p. Clearly, with the generators ek+A, k = 1, . . . , λ + p we add all
associated re�ections

{c1,0, . . . , cλ,0, {cλ+l,j,

c1+A,0, . . . , cλ+A,0} cλ+l+A,j}, l = 1, . . . , p, j = 0, . . . , µl.

We de�ne θ′ by extending θ by the following assignment

θ′(xj+A) = θ(xj), j = 1, . . . , n

θ′(el+A) = θ(el), θ′(cl+A,0) = θ(cl,0), l = 1, . . . , λ

θ′(eλ+l+A) = θ(eλ+l), θ′(cλ+l+A,j) = θ(cλ+l,j), l = 1, . . . , p, j = 0, . . . , µl

θ′(gi+A) = θ(gi), i = 1, . . . , γ.

For the remaining generators h of Γ′, that belong also to Γ, we put θ′(h) = θ(h).
Let w′ be a word of Γ′ with respect to ker θ′. Note that we may �nd another word w

that is formed only by canonical generators of Γ′ with indexes lower than A and veri�es
θ′(w′) = θ′(w). We do it simply by subtracting the number A from the indexes of canonical
generators that are of the form i+A. Hence w ∈ Γ and θ′(w) = θ(w). By this argument and
Remark 4.2 we have CPer(t′) = C0. Furthermore, observe that w is a word with respect to
ker θ and it has the same orientability character as w′. Thus by point (ii) of Theorem 4.12
we eventually obtain sign ker θ′ = sign ker θ.

We now turn to show that also in case the character of periods is �xed we may still modify
a covering group so that the multiplicity of each component of the singular set increases. We
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achieve this by adding a number of copies of J , i.e. an elliptic generator or an empty, or non�
empty period cycle and mapping them on the appropriate elements of ZN . We give the proof
only for the case of J being a non�empty period cycle, i.e. J = (2µi) for a �xed i ful�lling
1 ≤ i ≤ p. The other cases may be proved in much the same way. We set signΓ′ = signΓ and
put

Γ′ = (γ;±; [m1, ...,mn]; {( )λ(2µ1) . . . (2µi,1) . . . (2µi,ordθ(ei))︸ ︷︷ ︸
ordθ(ei) times

. . . (2µp)})

i.e. we extend Γ by ordθ(ei) period cycles of the form

(2µi,k) = (2 . . . 2)︸ ︷︷ ︸
µi,k

, where µi = µi,k, k = 1, . . . , ordθ(ei).

We map the elements of the repeated period cycles (2µi,k) in the analogous way as θ does
with (2µi). We de�ne

θ′(ci,0) = θ′(ci,2) = . . . = θ′(ci,µi,k
) = tN/2,

θ′(ci,1) = . . . = θ′(ci,µi,k−1) = 1, k = 1, . . . , ordθ(ei)

Moreover, we let all other generators of Γ′ be mapped by θ′ to their respective images
under θ. Since for each word w′ of Γ′ with respect to ker θ′ we �nd a word w of Γ with respect
to ker θ of the same orientability which also veri�es θ′(w′) = θ′(w) = θ(w), then we again
obtain both equalities CPer(t′) = C0, by Remark 4.2, and sign ker θ = sign ker θ′ by Theorem
4.12.
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4.3 Prototypes of Covering Groups

Since the global study of the dynamics of dianalytic self�maps of Klein surfaces we deal with
in this thesis, involves a quite large number of subcases, in the present section we isolate
methods which will be reused many times in Chapter 5. In order to ease application of this
approach we introduce a new notation for the in�ated character of periods writing

C = (A1,A2, 2A3,A4, 2A5,A6) = (B1,B2,B3,B4,B5,B6).

All subsequent de�nitions apply to C as denoted above.

(1) Let N = pr11 . . . prnn , thus αpi
(N) = ri.

(2) Let lcmC∗ = lcm{B∗1,B∗2,B∗3,B∗4,B∗5,B∗6} = lcm
⋃6
i=1 B∗i .

(3) Let E∗pi
(C∗) be the set of elements of C∗ divisible by the maximum power of the prime

factor pi i.e. E∗pi
(C∗) = {m ∈ C∗ | αpi

(m) = αpi
(lcmC∗)}.

(4) If there is only one element in the set E∗pi
(C∗) we call it an isolated element and de�ne

F ∗(C∗) to be the set of all isolated elements of C∗ i.e. F ∗(C∗) = {m ∈ C∗ | ∃i E∗pi
(C∗) =

{m}}.

(5) Let C∗(C∗) be the set of elements of C∗ that are divisible by the maximum power of 2
but are not isolated i.e. C∗(C∗) = E∗2 (C∗) \ F ∗(C∗).

In the forthcoming sections we show how to construct signatures of NEC groups and
appropriate epimorphisms onto ZN , which cover a ZN�action described by the character of
periods C0. It is worth noting that the construction of the required NEC signatures involves
characters associated to C on which we do the ∗�operation (see also Remark 4.5). One of
the key points of our construction consists in verifying whether the restrictions imposed by
Lemmas 4.8 and 4.11 are obeyed. In order to obtain the required epimorphism we �nd an
element which is order�preserving with respect to a character associated to C. We always
start with the in�ated character of periods since, as it was observed before, C may be treated
as a character associated to C itself. If C does not give rise to the appropriate epimorphism
we extend it by repeating some of the elements of Bi, i = 1, . . . , 6. Although there are many
ways to extend the in�ated character of periods C we use only a few de�nite algorithms.

We use 4 di�erent procedures that are split into two categories. We call them O, N, N0

and N−1. We use the �rst one in case a covering NEC group is orientable and the remaining
three if a covering group is non�orientable. We postpone their exact formulation for the next
two subsections although here we give basic ideas. The main problem while modifying the
in�ated character of periods C is the choice of elements to repeat, since this choice will be
re�ected in the measure of fundamental regions of covering groups. By the Riemann-Hurwitz
formula we have µ(Λ) = Nµ(Γ), thus in order to minimize the area of surface group Λ we
consider equivalently the area of Γ. We present a series of results concerning the analysis on
how this measure varies.
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operation to be done

on the signature of Γ

section of C which the

added element belongs to

µ(Γ′)−µ(Γ)
2π

to increase γ by 1 - α1

to add an elliptic

generator of order m
B1 1− 1

m

to add an empty

period cycle
B2,B3,B4 1

to add a non�empty

period cycle (2)µ
B5,B6 1 + µ

4

to extend a non�empty period cycle

by adding µ′ − µ re�ections
- µ′−µ

4

Table 4.1: Information on the increase of measure of the NEC group Γ.

Assume that θ : Γ → ZN covers a ZN�action given by C0. By (3.5) the area of NEC group
Γ of the form (3.7) is equal to

µ(Γ) = 2π(αγ + λ+ p− 2 +
n∑
i=1

(1−m−1
i ) + 2−1

p∑
i=1

µi∑
j=1

(1− 2−1))

= 2π(αγ + λ+ p− 2 +
n∑
i=1

(1−m−1
i ) + 4−1

p∑
i=1

µi), (4.18)

where α = 2 if sign(σ) = ” + ” and α = 1 otherwise. Denote by θ′ : Γ′ → ZN another epi-
morphism covering the same ZN�action as above. Below we evaluate the di�erence between
µ(Γ′) and µ(Γ) provided we may obtain signature of Γ′ by operations on signature of Γ which
are de�ned in the �rst column of the following table.

Denote B234 = B2 ∪ B3 ∪ B4 and B56 = B5 ∪ B6. As we conclude from Table 4.1 in order
to minimize the value of µ(Γ′)− µ(Γ) we shall require that elements we repeat belong to B1

rather than to B234 or B56. Analogously, we prefer to extend Γ by adding an empty period
cycle (elements belonging to B234), than by adding a non�empty period cycle (elements
belonging to B56). However we require that our extensions will satisfy also other conditions
which follow from results of [8].

All procedures presented in this section consist in repeating some elements of C. Note that
the selection of elements to repeat is always limited to certain families of divisors of N . Below
we present which families become important while considering the respective procedures and
which elements will play special roles.

The �rst procedure O is devoted to construct a covering group assuming it is orientable.
A special element for this procedure is the one belonging to E∗2 (C∗) which corresponds to an
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operation listed in Table 4.1 related to the smallest value µ(Γ′)− µ(Γ). We denote it by

o∗(C∗) =


min(B∗1 ∩ E∗2 (C∗)) if B∗1 ∩ E∗2 (C∗) 6= ∅
min(B∗234 ∩ E∗2 (C∗)) if B∗234 ∩ E∗2 (C∗) 6= ∅ and

B∗1 ∩ E∗2 (C∗) = ∅
min E∗2 (C∗) otherwise.

(4.19)

Furthermore, on account of the above construct we de�ne

G∗(C∗) =

{
{o∗(C∗)} if 2 - ]C∗(C∗)

∅ if 2 | ]C∗(C∗).

Thus G∗(C∗) is either empty or singleton.
The remaining procedures N, N0 and N−1 take into account the case when Γ is non�

orientable. We shall need two following families derived from C

N ∗
0 (C∗) = {m ∈ C∗ | α2(m) = α2(N)}

N ∗
−1(C

∗) = {m ∈ C∗ | α2(m) = α2(N)− 1}. (4.20)

The former one, N ∗
0 (C∗), will be considered when applying procedure N0 and the latter one

in case of procedure N−1. In both cases we also de�ne special elements. Likewise for O, these
will be the ones belonging to the respective families N0, N−1 which corresponds to operations
listed in Table 4.1 related to the smallest value µ(Γ′)− µ(Γ). For i = −1 and i = 0 we put

n∗i (C
∗) =


min(B∗1 ∩N ∗

i (C∗)) if B∗1 ∩N ∗
i (C∗) 6= ∅

min(B∗234 ∩N ∗
i (C∗)) if B∗234 ∩N ∗

i (C∗) 6= ∅ and

B∗1 ∩N ∗
i (C∗) = ∅

minN ∗
i (C∗) otherwise.

(4.21)

In the next subsections 4.3.1 and 4.3.2 we deal with procedures O, N, N0 and N−1 in
much more detail.

Before we start with technical arguments based on intrinsic calculations, we make a
simple remark related to an operation listed in the last row of Table 4.1. First we need a
lemma.

Lemma 4.14. Let X be a compact Klein surface of algebraic genus p ≥ 2. Let t : X → X
be an automorphism of order N of X. Denote

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}),

and suppose that θ : Γ → ZN is an epimorphism that uniformizes a ZN�action of t on X and
CPer(t) = C0. If the following group Γ′

Γ′ = (γ;±; [m1, ...,mn]; {( )λ (22) . . . (22)︸ ︷︷ ︸
p

}), signΓ′ = signΓ (4.22)
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is a NEC group, then there is an epimorphism covering a ZN�action on a Klein surface X ′

given by C0. Furthermore both surfaces X and X ′ have the same orientability character.

Proof. Let h be a canonical generator of Γ′. Since h belongs also to Γ we may de�ne the
following assignment

θ′(h) = θ(h).

By the above we see that θ′ is smooth and θ′(Γ′) = θ(Γ) = ZN . The equality sign ker θ =
sign ker θ′ can be shown by arguments used in the proof of Proposition 4.13 while proving
an analogous relation.

Corollary 4.15. Under the assumptions of the last corollary we have µ(Γ′) ≤ µ(Γ).

What makes our study more interesting is the fact that we do solve the problem of
minimizing the area of NEC groups uniformizing a ZN�action by groups of the form (4.22).
It is worth pointing out that the length of a non�empty period cycle of a covering NEC
group results only in the length of the induced chain and not in its period.
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4.3.1 Procedure O for Orientable Covering Groups

For simplicity of notation we will write F (C∗), G(C∗), o(C∗) instead of (F ∗(C∗))∗, (G∗(C∗))∗

and (o∗(C∗))∗ respectively.
Observe that the family {C∗, F ∗(C∗), G∗(C∗)} satis�es condition (ii) of Lemma 4.11. First

of all it has the elimination property since ]E∗pi
(C∗)+ ]E∗pi

(F ∗(C∗)) ≥ 2. Furthermore we have

]E∗2 ({C∗, F ∗(C∗), G∗(C∗)}) = 2](E∗2 (C∗) ∩ F ∗(C∗)) + ]C∗(C∗) + ]G∗(C∗). (4.23)

Thus the number ]E∗2 ({C∗, F ∗(C∗), G∗(C∗)}) is always even. By Lemma 4.11 we may construct
a character associated to C and an order preserving element with respect to it. This enable
us to de�ne an epimorphism into ZN which covers a ZN�action given by C0, provided a
covering NEC group is orientable.

We shall proceed as follows. First, we extend the sets Bi, i = 1, . . . , 6 by the elements of
F (C∗). We form a 6�tuple of families

Oi = {Bi, F (C∗) ∩ Bi}, i = 1, . . . , 6. (4.24)

The second transition in the actual procedure is applied if and only if G∗(C∗) 6= ∅ and
consists in adding the element o(C∗) given by (4.19) to exactly one of the families Oi. We
choose the appropriate family Oj by the requirement that j is the lowest number satisfying
o(C∗) ∈ Bj. In this manner we extend at most one of the families Oi. For abbreviation we
do not introduce a new notation and let Oi, i = 1, . . . , 6 stand for the families obtained by
the above two�stage extension. Hence we obtain O(C) a character associated to C

O(C) = (O1,O2,O3,O4,O5,O6). (4.25)

The character O(C) yields the numbers of elliptic and e�generators of a covering NEC
group we are about to construct. These numbers equal ]O1 and

∑6
i=2 ]Oi respectively. Ob-

serve that O(C) comprises
∑6

i=1 ]Oi = ]{C∗, F ∗(C∗), G∗(C∗)} integers and by Lemma 4.11

there is a sequence (ηj)
P6

i=1 ]Oi

j=1 by which we easily obtain an element

η = ({η1, . . . , η]O1}, . . . , {ηP5
i=1 ]Oi+1, . . . , η

P6
i=1 ]Oi

})
= ({η1,1, . . . , η1,]O1}, . . . , {η6,

P5
i=1 ]Oi+1, . . . , η6,

P6
i=1 ]Oi

})

which is order�preserving with respect to O(C). It enables us to de�ne an epimorphism onto
ZN = 〈t〉 just by putting

θ(xj) = tη1,jd1,j , 1 ≤ j ≤ ]O1

θ(ej) = tηi,jdi,j , 2 ≤ i ≤ 6,
i−1∑
k=1

]Ok + 1 ≤ j ≤
i∑

k=1

]Ok. (4.26)

In order to avoid ambiguity of notation we recall once more that di,j are elements of Bi which
should not be confused with Ai � the sections of character of periods C0.
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In the actual procedure, as well as in case of the three remaining ones, we deal with
NEC groups of the form (4.22) i.e. with all link periods equal to 2. In order to �nish our
construction we need two auxiliary numbers

w1 = ]O2 + ]O3 + ]O4, w2 = ]O5 + ]O6. (4.27)

Eventually, we de�ne epimorphism on re�ections associated to e�generators as follows

θ(ci0) = 1, 1 ≤ i ≤ ]O2

θ(ci0) = tN/2, ]O2 + 1 ≤ i ≤ w1

θ(ci0) = θ(ci2) = tN/2, θ(ci1) = 1, w1 + 1 ≤ i ≤ w1 + w2. (4.28)

Summing up, we just have de�ned a group of signature

ΓO = (0; +; [O∗
1]; {( )w1(22)w2}) (4.29)

and epimorphism θ from ΓO onto a subgroup of ZN . In the next chapter we extend both
the above group ΓO and the homomorphism θ : ΓO → ZN in order to obtain a smooth
epimorphisms from a NEC group onto ZN .

The next Lemma 4.16 and Proposition 4.17 we devote to show that the above construction
of ΓO is optimal. We mean that fundamental region of any other NEC group that covers a
required ZN�action must not be smaller that fundamental region of ΓO.

Lemma 4.16. Assume that C0 = (A1,A2,A3,A4,A5,A6) is the character of periods of
a ZN�action. Let signΓ = ” + ” and θ : Γ → ZN be an epimorphism that uniformizes a
ZN�action given by C0. Recall that by (4.6) we de�ned a character

(G1(Γ, θ),G2(Γ, θ),G3(Γ, θ),G4(Γ, θ),G5(Γ, θ),G6(Γ, θ))

associated to C0. We then have

(i) For i = 1, 2, 4, 6 families of integers Gi(Γ, θ) include families {Ai, F (C∗) ∩ Ai}. On
the other hand for i = 3, 5 families of integers Gi(Γ, θ) include families of the form
{Ai,

1
2
(F (C∗) ∩ 2Ai)}.

(ii) Consider the family of integers

R = {(G1(Γ, θ))
∗, (G2(Γ, θ))

∗, (2G3(Γ, θ))
∗, (G4(Γ, θ))

∗, (2G5(Γ, θ))
∗, (G6(Γ, θ))

∗}

which comprises orders of images of all elliptic and e�generators of Γ (see Remark
4.3 and Corollary 4.4). If G∗(C∗) 6= ∅, then there are elements r ∈ R which satisfy
α2(r) = α2(C

∗), but are not contained in {C∗, F ∗(C∗)}.

Denote the above family by J , i.e.

J = {r ∈ R | α2(r) = α2(C
∗)} \ {C∗, F ∗(C∗)}. (4.30)
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(iii) Assume G∗(C∗) 6= ∅. Denote by i0 the section of the character O(C) given by (4.25)
where the element o(C∗) belongs to. By i1 let us denote a section of the character

(G1(Γ, θ),G2(Γ, θ), 2G3(Γ, θ),G4(Γ, θ), 2G5(Γ, θ),G6(Γ, θ))

which contains an element from the family J (see also Remark 4.7). Then i0 ≤ i1.

Proof. Observe that by (4.7) each Ai is contained in family Gi(Γ, θ). However we need to
show more, namely that {Ai, F (C∗)∩Ai} and {Ai,

1
2
(F (C∗)∩2Ai)} are subfamilies of Gi(Γ, θ)

in the respective cases. Take an order of an elliptic or e�generator of Γ and denote it as u∗.
Note that u∗ ∈ F ∗(C∗) yields that there is only one j satisfying u ∈ Bj. Hence u ∈ Gi(Γ, θ),
i = 1, 2, 4, 6 or u/2 ∈ Gi(Γ, θ), i = 3, 5. On the other hand by Lemma 4.11 we know that the
multiplicity of u∗ in the family R shall be at least two. Thus for i = 1, 2, 4, 6 we have

{Ai, F (C∗) ∩ Ai} ⊆ Gi(Γ, θ),

while for i = 3, 5 we obtain

{Ai,
1

2
(F (C∗) ∩ Bi)} = {Ai,

1

2
(F (C∗) ∩ 2Ai)} ⊆ Gi(Γ, θ).

The point (ii) is also a consequence of Lemma 4.11. Indeed, if G∗(C∗) 6= ∅, then the
number of elements in {C∗, F ∗(C∗)} divisible by 2α2(C∗) is odd by (4.23). Thus by Lemma
4.11 the family J must not be empty.

We now proceed to the proof of point (iii). Since J is not empty, there is an element in
J that generates a period of a ZN�action given by C0, which belongs to Gi1(Γ, θ). Denote by
ρ∗ the above element of J and observe that ρ∗ ∈ B∗i1 ∩ E

∗
2 (C∗). Recall that we have required

that o(C∗) belongs to the family Oi0 , such that i0 is the lowest i satisfying o(C∗) ∈ Bi. Since
o∗(C∗) ∈ E∗2 (C∗), then by de�nition of o∗(C∗) we get i0 ≤ i1.

Proposition 4.17. Assume that C0 is the character of periods of a ZN�action. Let signΓ =
” + ” and θ : Γ → ZN be an epimorphism that uniformizes a ZN�action given by C0. Then
µ(Γ)− µ(ΓO) ≥ 4πγ.

Proof. We will use the notation introduced in the actual subsection. Denote

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}) (4.31)

and observe that

]G1(Γ, θ) = n,

4∑
i=2

]Gi(Γ, θ) = λ,

6∑
i=5

]Gi(Γ, θ) = p. (4.32)

Note that G∗(C∗) = ∅ yields
∑6

i=1 ]Oi = ]{C∗, F ∗(C∗)}. On the other hand by point (i)
of Lemma 4.16 we have {A1, F (C∗) ∩ A1} ⊂ G1(Γ, θ) and

6∑
i=1

]Gi(Γ, θ) ≥ ]{C∗, F ∗(C∗)}.
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Thus by (4.18) we have

µ(Γ) = 2π

2γ +
6∑
i=2

]Gi(Γ, θ)− 2 +

]G1(Γ,θ)∑
i=1

(1−m−1
i ) + 4−1

]G5(Γ,θ)+]G6(Γ,θ)∑
i=1

µi


≥ 4πγ + 2π

(
6∑
i=2

]Oi − 2 +

]O1∑
i=1

(1−m−1
i ) + 2−1(]O5 + ]O6)

)
= 4πγ + µ(ΓO)

as required.
Hence we may assume G∗(C∗) 6= ∅, which by (ii) of the same lemma implies that the

family J given by (4.30) is not empty. Take ρ∗ ∈ J and the smallest i such that ρ∗ ∈ B∗i ,
say i1. Recall that by (iii) of Lemma 4.16 we have o∗(C∗) ∈ B∗i0 , where i0 ≤ i1.

If i1 = 1 we have o∗(C∗) ≤ ρ∗, which leads us to

µ(Γ)− µ(ΓO) ≥ 4πγ,

since 1− o∗(C∗)−1 ≤ 1− (ρ∗)−1. Moreover if i1 = 2, 3, 4 then

µ(Γ)− µ(ΓO) ≥ 2π(2γ + 1− (1− o∗(C∗)−1))

in case B∗1 ∩ E∗2 (C∗) 6= ∅ or µ(Γ)− µ(ΓO) ≥ 4πγ otherwise. Finally if i1 = 5, 6 we have three
possibilities according to the de�nition of o∗(C∗). Namely, if B∗1 ∩ E∗2 (C∗) 6= ∅, then

µ(Γ)− µ(ΓO) ≥ 2π(2γ + 1 + 4−1µi − (1− o∗(C∗)−1)).

In the remaining cases we obtain

µ(Γ)− µ(ΓO) ≥ 2π(2γ + 1 + 4−1µi − 1)

if B∗234 ∩ E∗2 (C∗) 6= ∅, but B∗1 ∩ E∗2 (C∗) = ∅. Otherwise we have

µ(Γ)− µ(ΓO) ≥ 2π(2γ + 1)

which completes the proof.
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4.3.2 Procedures N, N0 and N−1 for Non-orientable Covering

Groups

In this subsection we introduce de�nitions and constructs which are applicable only in case
when a covering NEC group is non�orientable. We will consider actions of cyclic groups which
are described by characters of periods C0 that belong to CPer(−,+)(ZN) ∪CPer(−,−)(ZN). In
order to de�ne adequate groups together with the respective homomorphism we use, as be-
fore, characters associated to in�ated characters of periods C. Nevertheless we complete here
nor the constructions of covering NEC groups nor the constructions of homomorphisms into
ZN . We only determine prototypes of signatures that will be extended in the forthcoming
sections to obtain signatures of NEC groups. Unlike the case of the procedure O the assign-
ments we propose below do not keep the "long relation" given by (3.3). We must postpone
the closing of the "long relation" until we know by how many glide re�ections we extend
the respective prototypes of NEC groups.2 However we de�ne and map here all canonical
generators of the candidate NEC groups which are not glide re�ections.

The �rst procedure we start with is called N. We shall need a character associated to the
in�ated character of periods C. We use D(C) de�ned as follows

D(C) = (B1,B2,B3,B4,B5,B6) = ({d1,1, . . . , d1,]B1}, . . . , {d6,1, . . . , d6,]B6}). (4.33)

Furthermore, we de�ne a signature

ΓN = (0;−; [B∗1]; {( )w1(22)w2}), (4.34)

where

w1 = ]B2 + ]B3 + ]B4, w2 = ]B5 + ]B6. (4.35)

Since we separate the analysis of covering groups into orientable and non�orientable case
we use the same letters in (4.27) and (4.35) as no confusion can arise. Finally, to obtain a
prototype of homomorphism from a group represented by ΓN to a cyclic group ZN we use
(4.14) and element ηD(C) verifying ηi,j = 1. Obviously we have (d∗i,j, ηi,j) = 1 which yields that
ηD(C) is order�preserving with respect to D(C). Hence we de�ne the following assignment

θ(xj) = td1,j , 1 ≤ j ≤ ]B1

θ(ej) = tdi,j , 2 ≤ i ≤ 6,
i−1∑
k=1

]Bk + 1 ≤ j ≤
i∑

k=1

]Bk. (4.36)

2Since we will consider non�orientable NEC groups we shall observe that the image under a group
homomorphism into ZN of the product of all canonical glide re�ections in general does not vanish. Obviously
any homomorphism from an orientable NEC group to an abelian group maps the commutator of hyperbolic
generators corresponding to the orbit genus which appear in the "long relation" (3.2) to the identity. It
enabled us to close this relation even for the prototype group (4.29).
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In order to de�ne a prototype of homomorphism θ on the remaining re�ections we put

θ(ci0) = 1, 1 ≤ i ≤ ]B2

θ(ci0) = tN/2, ]B2 + 1 ≤ i ≤ w1

θ(ci0) = θ(ci2) = tN/2, θ(ci1) = 1, w1 + 1 ≤ i ≤ w1 + w2. (4.37)

In both remaining procedures denoted as N0 and N−1 we also determine abstract signatu-
res. We de�ne the appropriate prototypes of homomorphisms into cyclic group ZN likewise.
The above signature ΓN is used as a starting point in the subsequent constructions.

In the next procedure N0 we will add to D(C) the element n0(C
∗) de�ned by (4.21). Let

j be the lowest index satisfying n0(C
∗) ∈ Bj. We form character N0(C) from D(C) by adding

the element n0(C
∗) to Bj. Then we denote

N0(C) = (N1,N2,N3,N4,N5,N6). (4.38)

It follows that Ni = Bi for each 1 ≤ i ≤ 6 except exactly one i. Hence we may de�ne a
signature

ΓN0 = (0;−; [N ∗
1 ]; {( )y1(22)y2}) (4.39)

where

y1 = ]N2 + ]N3 + ]N4, y2 = ]N5 + ]N6. (4.40)

The construction of prototype of homomorphism θ : Γ → ZN runs as before upon speci�c
modi�cations. We put

θ(xj) = td1,j , 1 ≤ j ≤ ]N1

θ(ej) = tdi,j , 2 ≤ i ≤ 6,
i−1∑
k=1

]Nk + 1 ≤ j ≤
i∑

k=1

]Nk

θ(ci0) = 1, 1 ≤ i ≤ ]N2

θ(ci0) = tN/2, ]N2 + 1 ≤ i ≤ y1

θ(ci0) = θ(ci2) = tN/2, θ(ci1) = 1, y1 + 1 ≤ i ≤ y1 + y2. (4.41)

Observe that the above prototype of homomorphism is de�ned on elliptic and e�generators
of ΓN0 by an element ηN0(C) verifying ηi,j = 1, which is order�preserving with respect to
N0(C).

Now we proceed to the last procedure N−1. Instead of n∗0(C
∗) we now use the element

n∗−1(C
∗) de�ned by (4.21). Let j be the lowest index satisfying n−1(C

∗) ∈ Bj. A character
N−1(C) is formed from D(C) by adding the element n−1(C

∗) to Bj. We denote

N−1(C) = (N−1,N−2,N−3,N−4,N−5,N−6) (4.42)
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and

ΓN−1 = (0;−; [N ∗
−1]; {( )z1(22)z2}), (4.43)

where

z1 = ]N−2 + ]N−3 + ]N−4 z2 = ]N−5 + ]N−6. (4.44)

A prototype of homomorphism from ΓN−1 to a cyclic group ZN is built analogously to (4.36)�
(4.37):

θ(xj) = td1,j , 1 ≤ j ≤ ]N−1

θ(ej) = tdi,j , 2 ≤ i ≤ 6,
i−1∑
k=1

]N−k + 1 ≤ j ≤
i∑

k=1

]N−k

θ(ci0) = 1, 1 ≤ i ≤ ]N−2

θ(ci0) = tN/2, ]N−2 + 1 ≤ i ≤ z1

θ(ci0) = θ(ci2) = tN/2, θ(ci1) = 1, z1 + 1 ≤ i ≤ z1 + z2. (4.45)

The above prototype of homomorphism is de�ned on elliptic and e�generators of ΓN−1

by an element ηN−1(C) verifying ηi,j = 1, which is order�preserving with respect to N−1(C).
We sum up elementary properties of the above abstract signatures in the following remark.

Remark 4.18. Suppose that C0 ∈ CPer(−,+)(ZN) ∪ CPer(−,−)(ZN) is a character of periods
of a ZN�action by dianalytic transformations on a Klein surface. Let ΓN, ΓN0 and ΓN−1 be
signatures built on a basis of the in�ated character of periods C which are de�ned by (4.34),
(4.39) and (4.42) respectively. Furthermore assume that N(2ε+1)j\Bj 6= ∅, where ε ∈ {−1, 0}.3
Then the following statements hold

(i) If j = 1 and m ∈ N2ε+1 \ B1, then µ(ΓNε)− µ(ΓN) = 2π(1−m−1).

(ii) If j = 2, 3, 4, then µ(ΓNε)− µ(ΓN) = 2π.

(iii) If j = 5, 6, then µ(ΓNε)− µ(ΓN) = 3π.

Let C0 ∈ CPer(−,+)(ZN)∪CPer(−,−)(ZN). In the next proposition we obtain a lower bound
for the area of NEC groups covering ZN�action given by C0.

Proposition 4.19. Assume that C0 = (A1,A2,A3,A4,A5,A6) is the character of periods
of a ZN�action. Let signΓ = ” − ” and θ : Γ → ZN be an epimorphism that uniformizes a
ZN�action given by C0. Then µ(Γ)− µ(ΓN) ≥ 2πγ.

3The use of this construct was supposed to ease the notation since N(2ε+1)j = N−j for ε = −1 and
N(2ε+1)j = Nj for ε = 0.
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Proof. By (4.7) each Ai is contained in the family Gi(Γ, θ) given by (4.6). Since we may
assume that Γ is of the form (4.31), we may also use the relations (4.32). Thus we obtain

µ(Γ) = 2π

γ +
6∑
i=2

]Gi(Γ, θ)− 2 +

]G1(Γ,θ)∑
i=1

(1−m−1
i ) + 4−1

]G5(Γ,θ)+]G6(Γ,θ)∑
i=1

µi


≥ 2πγ + 2π

(
6∑
i=2

]Bi − 2 +

]B1∑
i=1

(1−m−1
i ) + 2−1(]B5 + ]B6)

)
= 2πγ + µ(ΓN).

4.3.3 Induced Cyclic Subgroups

In the last two subsections we have considered procedures that will be used in the forthcoming
paragraphs to obtain signatures of NEC groups that cover certain ZN�actions on Klein
surfaces. Associated to those procedures there are prototypes of homomorphisms to a cyclic
group ZN . Denote Γ to be one of the groups ΓO, ΓN, ΓN0 , ΓN−1 and assume that the respective
homeomorphism maps Γ onto a subgroup of ZN , say ZM . In order to determine the number
M , we present below two arithmetic remarks. Then in the corollary that follows, we show
that we may use lcmC∗0 as the order of a subgroup θ(Γ) ' ZM . Let us �rst observe that

lcmC∗ = |〈θ(x1), . . . , θ(xn), θ(e1), . . . , θ(eW )〉|, (4.46)

where W is the number of e�generators in signatures of NEC groups. It is given by (4.27),
(4.35), (4.40) and (4.44) in the respective cases.

Remark 4.20. Let C0 be the character of periods of a ZN�action on a Klein surface. Then

(i) lcmC∗0 ≥ lcmC∗

(ii) if lcmC∗0 > lcmC∗, then lcmC∗0 = 2lcmC∗

(iii) lcmC∗0 = 2lcmC∗ if and only if lcmC∗ is an odd number

Remark 4.21. Let C0 be the character of periods of a ZN�action on a Klein surface. Let Γ be
one of the groups ΓO, ΓN, ΓN0, ΓN−1. Consider the prototypes of homomorphisms θ : Γ → ZN

given by (4.26)�(4.28), (4.36)�(4.37), (4.41) and (4.45) in the respective cases. We have

|θ(Γ)| =

{
lcmC∗ if

⋃6
i=3Ai = ∅

lcm{2, lcmC∗} otherwise.

Corollary 4.22. Under the assumptions of the previous remarks we have

|θ(Γ)| = lcmC∗0.
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Proof. We follow the notation of Remarks 4.20 and 4.21. Assume �rstly that lcmC∗0 is odd.
Observe that due to (4.2) all sets A∗

i , i ≥ 3 comprise even numbers. By Remark 4.20 we
obtain lcmC∗0 = lcmC∗ = |θ(Γ)|. On the other hand for lcmC∗0 even we have

|θ(Γ)| = lcm{2, lcmC∗} = lcm{2, lcmC∗0} = lcmC∗0.

Remark 4.23. The assertions of Remark 4.21 and Corollary 4.22 are still valid if we assume
only that a NEC group Γ which covers a ZN�action given by C0 has the orbit genus equal to
0.
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5.1 Actions of Groups of Odd Order

In the present section we consider only ZN�actions on compact surfaces for N odd. We
continue using the notation established in the preceding chapter. A particular role in this
section will be played by two procedures, O and N. We will apply them together with
all accompanying symbols, formulae and related homomorphisms de�ned in subsection 4.3.
Henceforth, we assume that a ZN�action on a Klein surface X is described by a character of
periods C0 and uniformized by an epimorphism θ : Γ → ZN . The groups Γ and ker θ ' Λ are
given by (3.7) and (3.4) respectively, although under actual assumptions they take special
forms. Since N is assumed to be odd, there are no components of the singular set such as
ovals and chains. Thus we have C = C0 and

Γ = (γ;±; [m1, ...,mn]; {( )r}), Λ = (g;±; [ ]; {( )k}).

Note that we must have θ(ci,0) = 1, i = 1, . . . , r. It agrees with the notation of Theorem
3.12. We recall some results from the theory of NEC groups that we shall need.

Theorem 5.1 (Bujalance et al. [8], Theorem 2.1.2). Suppose that Γ and Λ are NEC groups.
If Λ is a normal subgroup of Γ of an odd index N , then signatures of both groups have the
same sign.

Following [8] we introduce the below de�nition of N�pair. Given a NEC group Γ we say
that (Γ,Λ) is an N�pair if there exists an epimorphism θ : Γ → ZN whose kernel is a surface
NEC group Λ.

Theorem 5.2 (Bujalance et al. [8], Theorem 3.1.2). Let us suppose that N is odd and
signΓ = ” + ”. Then (Γ,Λ) is an N�pair if and only if:

(i) for each i = 1, . . . , n, mi divides N , and signΛ = ” + ”

(ii) µ(Λ) = Nµ(Γ)

(iii) there exist positive divisors l1, . . . , lr of N such that

(iii.1) k =
∑r

i=1N/li

(iii.2) the set {m1, . . . ,mn, l1, . . . , lr} has the elimination property

(iv) if γ = 0, then N = lcm(m1, . . . ,mn, l1, . . . , lr)

Remark 5.3. The above symbols li are the orders of images of e�generators of empty period
cycles of Γ under a smooth epimorphism θ : Γ → ZN verifying ker θ = Λ.

Proposition 5.4. Suppose that N is odd. A character of periods C0 belongs to the set
CPer(+,+)(ZN) if and only if C0 = (A1,A2, ∅, ∅, ∅, ∅).
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Proof. (⇒) The result is forced by the assumption that N is odd. According to Lemma 4.1
we have A3 = A4 = A5 = A6 = ∅.

(⇐) Consider a NEC group

Γ = (2; +; [A∗
1,A∗

1]; {( )2]A2}) (5.1)

and observe that µ(Γ) > 0. Since {A∗
1,A∗

1,A∗
2,A∗

2} = {m1, . . . ,m2]A1 , l1, . . . , l2]A2} has the
elimination property, then by Lemma 4.11 there exist numbers η1, . . . , η2]A1+2]A2 such that

2]A1∑
i=1

ηim
∗
i +

2]A2∑
i=2]A1+1

ηil
∗
i ≡ 0 mod N

where (mi, ηi) = 1, i = 1, . . . , 2]A1 and (lj, ηj) = 1, j = 1, . . . , 2]A2. We de�ne the following
smooth epimorphism onto ZN = 〈t〉

θ(ai) = θ(bi) = t, i = 1, 2, θ(xi) = tηim
∗
i , i = 1, . . . , 2]A1

θ(ej) = tηj l
∗
j , θ(cj,0) = 1, j = 1, . . . , 2]A2. (5.2)

By (4.7) we have CPer(t) = (A1,A2, ∅, ∅, ∅, ∅), as required.

By the above forN odd we abbreviate (A1,A2, ∅, ∅, ∅, ∅) ∈ CPer(+,+)(ZN) to (A1,A2)
+. In

the next theorem we solve the problem of constructing a NEC group with minimal measure,
which covers a ZN�action given by C0 provided C0 ∈ CPer(+,+)(ZN).

Theorem 5.5. Let N be odd. Suppose that C0 = (A1,A2)
+, where ]A1 + ]A2 ≥ 2.

(i) If A1 = A2 = {1}, then we put

Γ = (0; +; [N,N ]; {( )})

(ii) otherwise
Γ = (1− δN(lcmC∗0); +; [O∗

1]; {( )w1}),
where O1 and w1 were de�ned in (4.24) and (4.27) respectively.

In the respective cases the above group Γ is a universal covering group of (〈t〉, X), 〈t〉 = ZN .
It satis�es CPer(t) = C0. Moreover the area µ(Λ), where X = H2/Λ, is minimal among all
orientable surfaces on which C0 is attained as the character of periods.

Proof. The proof of case (i) is straightforward and follows from direct computations. We
de�ne

θ(x1) = t, θ(x2) = tN−2, θ(e1) = t, θ(c1,0) = 1,

which yields CPer(t) = ({1}, {1})+ by (4.7). Furthermore observe that Γ1 = (0; +; [N ]; {( )})
is not a NEC group since µ(Γ1) < 0. Observe also that µ(Γ)− µ(Γ1) = 2π(1−N−1). Hence
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Γ has minimal measure among all NEC groups covering C0 = ({1}, {1})+. By Riemann�
Hurwitz formula it follows that also µ(Λ) is minimal.

Consider the case (ii). By the procedure O we obtain a group ΓO given by (4.29) together
with a homomorphism θ. Corollary 4.22 shows that ΓO is mapped onto ZM withM = lcmC∗0.
In order to construct a required epimorphism in case lcmC∗0 6= N , we must add at least one
pair of hyperbolic generators. We then map a1 and b1 to any element of order N in ZN .

In order to verify that group Γ obtained in that way is a NEC group we must check
whether µ(Γ) is positive. We consider several cases which exhaust all possibilities given by
the assumption ]A1 + ]A2 ≥ 2. In the following simple calculations we also exploit the
assumption that N is odd. Note that since we have d ≤ N/3 for d ∈ C, it follows that
1 − d/N ≥ 2/3. However ]A1 ≥ 2 implies more, namely that

∑
m∈O∗

1
(1 −m−1) > 2]O∗

1/3.
Recall that m ∈ O∗

1 are of the form N/d, d ∈ C.
Assume ]A1 + ]A2 = 2. Observe that ]A1 = 2, A2 = ∅ and A1 = ∅, ]A2 = 2 imply that

]O∗
1 ≥ 3 and w1 ≥ 3 respectively, which follows from the procedure O. In that setting at

least one of the periods is repeated. By (4.18) it yields

µ(Γ) = 2π(2(1− δN(lcmC∗0)) + w1 − 2 +
∑
m∈O∗

1

(1−m−1)) > 2π(−2 +
2

3
· 3) ≥ 0 (5.3)

for ]A1 = 2, A2 = ∅ and

µ(Γ) = 2π(2(1− δN(lcmC∗0)) + w1 − 2 +
∑
m∈O∗

1

(1−m−1)) > 2π(3− 2) > 0

in case A1 = ∅, ]A2 = 2.
Next we consider ]A1 = ]A2 = 1 and observe that now ]O∗

1 + w1 ≥ 3 unless A1 =
A2 = {d}, d 6= 1. Consequently w1 +

∑
m∈O∗

1
(1 − m−1) ≥ 7/3 > 2 which leads us to

µ(Γ) > 0. On the other hand A1 = A2 = {d} where d 6= 1, implies δN(lcmC∗0)) 6= 1. Thus
µ(Γ) ≥ 2π(1 + 2/3) > 0.

Finally we consider ]A1+]A2 > 2. With this assumption it follows w1+
∑

m∈O∗
1
(1−m−1) >

2 which immediately gives µ(Γ) > 0.
Next we claim that µ(Γ) is minimal. Let Γ be another NEC group that covers a ZN�

action prescribed by C0. Denote by γ and γ′ the genera of groups Γ and Γ′ respectively. By
Proposition 4.17 we have

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓO) + 4πγ) ≥ 4π(γ′ − γ) ≥ 0.

We see at once that group Λ is orientable, which follows from Theorem 5.1.

Since we have skipped the case ]A1 + ]A2 < 2 we complete the study by the following
remark that is a natural counterpart of Remark 2.9 from the �rst part of the thesis.
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Remark 5.6. Under the assumptions of Theorem 5.5 with ]A1 + ]A2 < 2 the universal
covering group that covers a ZN�action prescribed by C0 equals

Γ =



(2; +; [ ]; { }), if C0 = (∅, ∅)+

(0; +; [N,N,N ]; { }), if C0 = ({1}, ∅)+ and N 6= 3

(0; +; [3, 3, 3, 3]; { }), if C0 = ({1}, ∅)+ and N = 3

(1; +; [N/d,N/d]; { }), if C0 = ({d}, ∅)+ and d 6= 1

(0; +; [ ]; {( )3}), if C0 = (∅, {1})+

(1; +; [ ]; {( )2}), if C0 = (∅, {d})+ and d 6= 1

The area of the respective NEC groups is minimal among all orientable surfaces on which
the above 2�tuples of sets are attained as the characters of periods.

Our next concern is to show how to �nd the signature of a group together with a required
epimorphism onto ZN in case the underlying surfaceX is non�orientable. Before we formulate
a theorem, we need two preliminary results.

Theorem 5.7 (Bujalance et al. [8], Theorem 3.1.3). Let us suppose that N is odd and
signΓ = ”− ”. Then (Γ,Λ) is an N�pair if and only if:

(i) for each i = 1, . . . , n, mi divides N , and signΛ = ”− ”

(ii) µ(Λ) = Nµ(Γ)

(iii) there exist positive divisors l1, . . . , lr of N such that

(iii.1) k =
∑r

i=1N/li

(iv) if γ = 1, then N = lcm(m1, . . . ,mn, l1, . . . , lr)

Proposition 5.8. Suppose that N is odd. A character of periods C0 belongs to the set
CPer(−,−)(ZN) if and only if C0 = (A1,A2, ∅, ∅, ∅, ∅).

Proof. (⇒) The result is forced by the assumption that N is odd and Lemma 4.1.
(⇐) Consider a NEC group

Γ = (3;−; [A∗
1]; {( )]A2})

and observe that µ(Γ) > 0. Let A∗
1 = {m1, . . . ,m]A1} and A∗

2 = {l1, . . . , l]A2}. Denote

∆ =

]A1∑
i=1

m∗
i +

]A2∑
j=1

l∗j .
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We put

θ(g1) = t, θ(g2) = t−1, θ(xi) = tm
∗
i , i = 1, . . . , ]A1

θ(ej) = tl
∗
j , θ(cj,0) = 1, j = 1, . . . , ]A2

θ(g3) =

{
t−

∆
2 , if ∆ is even

t−
∆
2

+N
2 otherwise.

By (4.7) we have CPer(t) = (A1,A2, ∅, ∅, ∅, ∅), which �nishes the proof..

As before, for N odd, we abbreviate (A1,A2, ∅, ∅, ∅, ∅) ∈ CPer(−,−)(ZN) to (A1,A2)
−.

Now we improve on the construction of a NEC group which covers C0 ∈ CPer(−,−)(ZN) in
sense of minimizing measure of its fundamental region.

Lemma 5.9. Let N be odd and suppose that θ : Γ → ZN covers a ZN�action with the
character of periods C0 = (A1,A2)

−. Then γ = 1 implies lcmC∗0 = N .

Proof. Contrary, assume that lcmC∗0 < N . By the "long relation" we have

θ(g1)
n∏
i=1

θ(xi)
r∏
i=1

θ(ei) = 1,

which yields θ(g1) ∈ ZlcmC∗
0
. Thus we get |θ(Γ)| = lcmC∗0, which contradicts the assumption

that θ is an epimorphism.

Theorem 5.10. Let N be odd and suppose that C0 = (A1,A2)
−, where ]A1 + ]A2 ≥ 2.

Consider

Γ = (2− δN(lcmC∗0);−; [B∗1]; {( )]B2}), (5.4)

where the terms Bi were given in (4.33). The above group Γ is a universal covering group
of (〈t〉, X), 〈t〉 = ZN . It satis�es CPer(t) = C0. Moreover the area µ(Λ), where X = H2/Λ,
is minimal among all non�orientable surfaces on which C0 is attained as the character of
periods.

Proof. Throughout the proof we use the signature ΓN given by (4.34). Furthermore a part
of our proof is based on procedure N.

Assume that ]A1 + ]A2 is even. Consider the following character associated to C: D(C) =
C. We obtain that L(ηD(C)) is even, where ηD(C) stands for order�preserving element with
respect to D(C) which veri�es ηi,j = 1. Hence we may apply the procedure N and de�ne the
following assignments

θ(g1) = t−
L(ηD(C))

2 if lcmC∗0 = N

θ(g1) = t, θ(g2) = t−
L(ηD(C))

2
−1 if lcmC∗0 6= N.



94 CHAPTER 5. ZN�ACTIONS ON KLEIN SURFACES

On the other hand if η is an orientation�preserving element with respect to D(C) and
]A1 + ]A2 is odd, then L(η) is odd. Thus we are able to map the required glide re�ections
as follows

θ(g1) = t−
L(ηD(C))

2
+N

2 if lcmC∗0 = N

θ(g1) = t, θ(g2) = t−
L(ηD(C))

2
−1+N

2 if lcmC∗0 6= N.

We proceed to show that the groups de�ned above have positive measure. Since N is odd
we have

∑
m∈A∗

1
(1−m−1) ≥ 2/3. By (4.18) we have

µ(Γ) = 2π(2− δN(lcmC∗0) + ]A2 − 2 +
∑
m∈A∗

1

(1−m−1))

Furthermore by the assumption ]A1 + ]A2 ≥ 2 we obtain

]A2 +
∑
m∈A∗

1

(1−m−1) ≥ 4

3

which yields µ(Γ) > 0.
We are now in a position to show that the measure of Γ constructed above is minimal.

Assume that θ : Γ′ → ZN is another epimorphism that covers C0, where

Γ′ = (γ′;±; [m′
1, ...,m

′
n′ ]; {( )r

′})

Observe that γ′ = 1 gives by Lemma 5.9 the equality lcmC∗0 = N , which in turn yields γ = 1.
On the other hand γ′ ≥ 2 results in γ′ ≥ γ. Hence by Proposition 4.19 we have

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓN) + 2πγ) ≥ 2π(γ′ − γ) ≥ 0.

Since Theorem 5.1 yields that the group Λ is non�orientable the proof is �nished.

In order to complete the analysis of actions of cyclic groups of odd order on non�orientable
surfaces we state a remark that deals with the case ]A1 + ]A2 < 2.

Remark 5.11. Under the assumptions of Theorem 5.10 with ]A1 + ]A2 < 2 the universal
covering group that covers a ZN�action prescribed by C0 equals

Γ =



(3;−; [ ]; { }), if C0 = (∅, ∅)−

(1;−; [N,N ]; { }), if C0 = ({1}, ∅)−

(2;−; [N/d]; { }), if C0 = ({d}, ∅)− and d 6= 1

(1;−; [ ]; {( )2}), if C0 = (∅, {1})−

(2;−; [ ]; {( )}), if C0 = (∅, {d})− and d 6= 1

The area of the respective NEC groups is minimal among all non�orientable surfaces on
which the above 2�tuples of sets are attained as the characters of periods.
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We �nish this section with an easy remark being an immediate application of the above
results.

Corollary 5.12. Let N be odd. By Remark 5.6 and 5.11 we conclude that the minimum
algebraic genus of a surface without boundary on which ZN acts without �xed points equals
N + 1.

Proof. Obviously we have C0 = (∅, ∅)+ or C0 = (∅, ∅)−. First consider the case of an orientable
surface without boundary i.e. a Riemann surface. By Remark 5.6 a NEC group covering �xed
point free ZN�action with minimal measure equals Γ = (2; +; [ ]; { }). We de�ne θ : Γ → ZN

as follows

θ(ai) = θ(bi) = t, i = 1, 2

and obtain µ(ker θ) = Nµ(Γ) by Riemann�Hurwitz formula. It yields ker θ = (N+1; +; [ ]; { }).
By de�nition the algebraic genus of a Riemann surface equals its topological genus.

On the other hand if ZN acts on a non�orientable surface X, we put Γ = (3;−; [ ]; { })
according to Remark 5.11 and de�ne

θ(g1) = t, θ(g2) = t−1, θ(g3) = 1.

We now conclude that µ(ker θ) = 2πN , which gives ker θ = (N + 2;−; [ ]; { }). By (3.6) we
obtain p(X) = g(XC) = g(X)− 1 = N + 1 as required.

Observe that the above corollary may be considered as a counterpart of Remark 2.6.
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In sections 5.2 and 5.3, we proceed to study the actions of cyclic groups of even order
on compact surfaces. As before, we reduce the analysis to the study of NEC groups forming
N�pairs with prescribed characters of periods. Since the case of N even is more involved than
the analogous investigation for N odd we will now apply more procedures and prototypes
of covering NEC groups which we introduced in Subsections 4.3.1 and 4.3.2. The following
theorems of [8]: Theorem 3.1.5, Theorem 3.1.6, Theorem 3.1.8 and Theorem 3.1.9 were a
great motivation for this part of the thesis. For the sake of completeness we recall them on
the forthcoming pages. However, we will avoid references to their respective intrinsic proofs
by introducing some auxiliary results. For convenience, we separate the assumptions that
are shared by all theorems mentioned above. We name these conditions Common conditions
for N�pairs. Let us suppose that N is even and Γ is a NEC group covering a ZN�action.
Recall that it takes the form

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)}).

Let us denote a surface NEC group Λ by

Λ = (g;±; [ ]; {( )k}) (5.5)

Common conditions for N�pairs
(necessary for (Γ,Λ) to form an N�pair)

(i) for each i = 1, . . . , n we have mi | N

(ii) µ(Λ) = Nµ(Γ)

(iii) there exist 0 ≤ r ≤ λ and some positive divisors l1, . . . , lr of N such that:

(iii.1) k =
∑r

i=1N/li +N/2
∑p

i=1 µi/2

In short, we will call the above conditions the CCN conditions, and henceforth we refer
to them in this way.

5.2 Actions of Groups of Even Order on Orientable Sur-

faces

Having come up with the auxiliary results and de�nitions in Chapter 4, we are now in a
position to investigate the possible characters of periods of the actions of cyclic groups of
even order on orientable surfaces. It is worth noting that in the actual setting either two�
sided ovals or two�sided chains may become apparent. In the general case we have C 6= C0,
since we must not assume that A3 ∪ A5 6= ∅. Nevertheless, the variety of types of periodic
structures that appear on an orientable surface does not embrace either one�sided ovals or
one�sided chains. We continue using the notation introduced in the preceding sections.
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Theorem 5.13 (Bujalance et al. [8], Theorem 3.1.5). Let us suppose N is even and signΓ =
signΛ = ” + ”. Then (Γ,Λ) is an N�pair if and only if the CCN conditions are ful�lled and

(iii.2) if 4 | N , then r = λ+ p, {m1, . . . ,mn, l1, . . . , lr} has the elimination property, and for
γ = 0 we have lcm(m1, . . . ,mn, l1, . . . , lr) = N

(iii.3) if 4 - N and r = λ+ p, condition (iii.2) holds true

(iii.4) if 4 - N and r < λ + p, then each mi and li divides N/2. Moreover, if γ = 0 and
λ+ p = r + 1, then lcm(m1, . . . ,mn, l1, . . . , lr) = N/2.

We begin by looking for 6�tuples of divisors ofN which become apparent as the characters
of periods belonging to CPer(+,+)(ZN) for N even.

Lemma 5.14. Let N be even and suppose that θ : Γ → ZN covers a ZN�action with the
character of periods C0 ∈ CPer(+,+)(ZN) which veri�es A3 ∪ A5 6= ∅. Then

(i) 4 - N

(ii) A1 and A2 comprise even periods exclusively.

Proof. Consider point (i). Since θ : Γ → ZN is onto ZN , there is w ∈ Γ satisfying θ(w) = t.
Furthermore A3 ∪ A5 6= ∅ gives a re�ection c which is mapped to tN/2. Obviously we have
wN/2c ∈ ker θ. If now 4 | N , then wN/2c is non�orientable which yields sign ker θ = ”− ” by
Theorem 4.12, a contradiction.

Now we prove point (ii) also by contradiction. Take an odd d ∈ A1 ∪ A2 and let hd ∈ Γ
stand for an x� or e�generator that corresponds to period d. Note that in either case hd is an
orientable word of Γ. Denote θ(hd) = tv which must verify (N, v) = d. Thus ordθ(hd) = N/d
is an even number, which yields tN/2 ∈ 〈θ(hd)〉. Consequently there is a natural number A
satisfying tAv = tN/2. Now it is enough to observe that hAd c is a non�orientable word and
hAd c 7→ 1. As before we obtain sign ker θ = ”− ”, which �nishes the proof.

Proposition 5.15. Suppose that N is even. An element C0 belongs to the set of characters
of periods CPer(+,+)(ZN) if and only if it takes one of the following forms

(i) (A1,A2, ∅, ∅, ∅, ∅)

(ii) (A1,A2,A3, ∅,A5, ∅), where 4 - N and A1,A2 consist only of even periods.

Proof. (⇒) Assume that θ : Γ → ZN covers a ZN�action with the character of periods
prescribed by C0. Denote Λ = ker θ and let t : H2/Λ → H2/Λ be the underlying dianalytic
map. Observe that A4∪A6 = ∅ since ZN acts on an orientable surface which does not admit
one�sided components of the singular set. Furthermore if A3 ∪A5 6= ∅, then point (i) of the
last lemma yields 4 - N . Moreover by point (ii) of the same lemma we obtain A1 and A2

comprise even periods as required.
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(⇐) The proof in case (i) i.e. A3 ∪ A5 = ∅ is identical to the proof of the "if" part of
Proposition 5.4 based on a NEC group (5.1) and epimorphism given by (5.2).

If we are in case (ii), then instead of (5.1) we shall consider another NEC group

Γ = (2; +; [O∗
1]; {( )w1(22)w2}),

where w1 and w2 were de�ned by (4.27). In order to map Γ onto a cyclic group of order
N we apply the homomorphism θ de�ned in (4.26)�(4.28). Furthermore, we require that θ
maps each of the hyperbolic generators aj, bj, j = 1, 2 to an element of order N in ZN .
Let t : H2/ ker θ → H2/ ker θ be the underlying dianalytic map. By (4.7) we have CPer(t) =
(A1,A2,A3, ∅,A5, ∅). We determine the orientability character of the kernel of the above
epimorphism by observing that the only generators of Γ reversing the orientation are the
re�ections. Since A1, A2 comprise even periods and 4 - N each number belonging to A∗

1, A∗
2 is

odd. Observe that it yields that lcmC∗ is an odd number. Thus θ(w) 6= tN/2 for each orientable
word w in Γ. Hence there are not non�orientable words belonging to Λ and by Theorem 4.12
a surface NEC group ker θ is orientable. It follows that C0 ∈ CPer(+,+)(ZN).

Observe that in the proof of the "if" part of the above corollary we have not taken
advantage of Theorem 5.13. It becomes natural when we recall that in [8] the authors did
not pay attention to periodic structures other than isolated orbits and boundaries i.e. the
structures described by A1 and A2. Thus the diversity of ways of mapping the e�generators
corresponding to ovals and chains are outside of scope of Theorem 5.13. For further reference
we point the reader to the proof of Theorem 3.1.5 in [8].

We abbreviate (A1,A2, ∅, ∅, ∅, ∅), (A1,A2,A3, ∅,A5, ∅) ∈ CPer(+,+)(ZN) to (A1,A2)
(+,+)

and (A1,A2,A3,A5)
(+,+) respectively.

We will use the term lcmC∗0 to determine genera of NEC groups covering C0 which we
are about to construct. In the following remark we show why in point (iii.4) of Theorem
5.13 it is required that lcm(m1, . . . ,mn, l1, . . . , lr) = N/2 and how it relates to lcmC∗0. Recall
that if (Γ,Λ) is an N�pair, then according to the proof of Theorem 3.1.5 in [8] the symbols
li, i = 1, . . . , r are the orders of images of e�generators of empty period cycles of Γ under a
smooth epimorphism θ : Γ → ZN verifying ker θ = Λ.

Remark 5.16. Consider C0 = (A1,A2,A3,A5)
(+,+), where A3 ∪ A5 6= ∅. Let (Γ,Λ) be an

N�pair and assume that θ : Γ → ZN is a smooth epimorphism such that ker θ = Λ, which
covers a ZN�action given by C0. Observe that by the �rst part of point (iii.4) of Theorem 5.13
we have 4 - N and lcm(m1, . . . ,mn, l1, . . . , lr) = lcm(A∗

1,A∗
2) ≤ N/2. If now the underlying

dianalytic map has exactly one two�sided oval or chain i.e. λ+ p = r + 1 then by the "long
relation" of Γ we have

θ−1(er+1) =
n∏
i=1

θ(xi)
r∏
i=1

θ(ei),

which yields θ(er+1) ∈ 〈θ(x1), . . . , θ(er)〉. But 〈θ(x1), . . . , θ(er)〉 = Zlcm(A∗
1,A∗

2). Observe that
by point (ii) of Remark 4.20 the equality γ = 0 forces

N = lcmC∗0 = 2lcmC∗ = 2lcm(A∗
1,A∗

2) = 2lcm(m1, . . . ,mn, l1, . . . , lr),
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which gives lcm(m1, . . . ,mn, l1, . . . , lr) = N/2.

Now we formulate one of main results of this section concerning the construction of NEC
groups with minimal measure, provided they cover certain ZN�action on Klein surfaces.

Theorem 5.17. Let N be even. Suppose that C0 ful�ls condition (i) or (ii) of the previous
proposition and ]A1 + ]A2 + ]A3 + ]A5 ≥ 2.

(i) If A5 = ∅, then we put

Γ = (0; +; [N,N,N ]; {( )}) for C0 = ({1}, {1})(+,+)

Γ = (0; +; [2, 2, 2, 2, 2, 2]; { }) for C0 = ({1}, ∅)(+,+) and N = 2

Γ = (0; +; [2, 2, 4, 4]; { }) for C0 = ({1, 2}, ∅)(+,+) and N = 4

Γ = (0; +; [2, 2, 2, 3, 6]; { }) for C0 = ({1, 2, 3}, ∅)(+,+) and N = 6

(ii) otherwise

Γ = (1− δN(lcmC∗0); +; [O∗
1]; {( )w1(22)w2}), (5.6)

where O1 and w1, w2 were de�ned in (4.24) and (4.27) respectively.

In the respective cases the above group Γ is a universal covering group of (〈t〉, X), 〈t〉 =
ZN . It satis�es CPer(t) = C0. Moreover the area µ(Λ), where X = H2/Λ, is minimal among
all orientable surfaces on which C0 is attained as the character of periods.

Proof. The proof of case (i) runs by direct computations and therefore it will be omitted.
Consider the case (ii). By the procedure O we obtain a group ΓO given by (4.29) together

with the homomorphism θ de�ned in (4.26)�(4.28). In case lcmC∗0 6= N , we must add at least
one pair of hyperbolic generators corresponding to the topological genus of Γ. We then require
that θ maps a1 and b1 to any element of order N in ZN . Likewise in the proof of the "if"
part of Proposition 5.15 we determine the orientability character of ker θ by Theorem 4.12.
Hence we get signΛ = ” + ”.

In order to verify that group Γ obtained by the above construction is a NEC group we
must check if µ(Γ) is positive. We split the analysis of the general situation ]A1 + ]A2 +
]A3 + ]A5 ≥ 2 into a number of cases considered separately.

We �rst �nd the lower bound for µ(Γ) assuming A5 = ∅ and ]A1 + ]A2 + ]A3 > 2. Simple
computations show

µ(Γ) = 2π(2(1− δN(lcmC∗0)) + w1 + w2 − 2 +
∑
m∈O∗

1

(1−m−1) +
1

2
w2)

≥ 2π(2(1− δN(lcmC∗0)) + w1 − 2 +
∑
m∈O∗

1

(1−m−1)) > 0,
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except the cases pointed out explicitly in point (i).
Consequently, once A5 = ∅ it remains to consider only the cases ]A1 + ]A2 + ]A2 = 2.

Below we make calculations in all required cases.

(]A1, ]A2, ]A3) = (2, 0, 0) ⇒ ]O∗
1 ≥ 3 ⇒

∑
m∈O∗

1

(1−m−1) ≥ 2 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (0, 2, 0) ⇒ w1 ≥ 3 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (0, 0, 2) ⇒ w1 ≥ 3 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (1, 1, 0) and A1 6= A2 ⇒ w1 +
∑
m∈O∗

1

(1−m−1) > 2 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (1, 1, 0) and A1 = A2 = {d}, d 6= 1 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (1, 0, 1) and A1 6= A3 ⇒ w1 +
∑
m∈O∗

1

(1−m−1) > 2 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (1, 0, 1) and A1 = A3 = {d} ⇒ d 6= 1 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (0, 1, 1) and A2 6= A3 ⇒ w1 ≥ 3 ⇒ µ(Γ) > 0

(]A1, ]A2, ]A3) = (0, 1, 1) and A2 = A3 = {d} ⇒ d 6= 1 ⇒ µ(Γ) > 0 (5.7)

On the other hand A5 6= ∅ forces by point Lemma 5.14 that 4 - N and A1 comprises even
periods. Thus all mi ∈ A∗

1, i = 1, . . . , ]O1 are odd. It follows that mi ≥ 3 and
∑

m∈O∗
1
(1 −

m−1) ≥ 2]A1/3. Consequently,

µ(Γ) ≥ 2π(w1 +
3

2
w2 − 2 +

∑
m∈O∗

1

(1−m−1)) ≥ 2π(
3

2
+

2

3
) > 0.

Next we claim that µ(Γ) is minimal. Note that γ′ ≥ γ, where γ′ is genus of another
NEC group Γ′ that covers a ZN�action prescribed by C0 which follows from Remark 4.23.
By Proposition 4.17 we have

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓO) + 4πγ) ≥ 4π(γ′ − γ) ≥ 0.

Since we have dropped the case ]A1 + ]A2 + ]A3 < 2 with A5 = ∅ we complete the study
by the following remark.

Remark 5.18. If ]A1 + ]A2 + ]A3 < 2, A5 = ∅ and the remaining assumptions of Theorem
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5.17 hold then the universal covering group that covers a ZN�action prescribed by C0 equals

Γ =



(2; +; [ ]; { }), if C0 = (∅, ∅)(+,+)

(0; +; [N,N,N,N ]; { }), if C0 = ({1}, ∅)(+,+)

(1; +; [N/d,N/d]; { }), if C0 = ({d}, ∅)(+,+) and d 6= 1

(0; +; [ ]; {( )4}), if C0 = (∅, {1})(+,+)

(1; +; [ ]; {( )2}), if C0 = (∅, {d})(+,+) and d 6= 1

(0; +; [ ]; {( )4}), if C0 = (∅, ∅, {1}, ∅)(+,+)

(1; +; [ ]; {( )2}), if C0 = (∅, ∅, {d}, ∅)(+,+) and d 6= 1

The area of the respective NEC groups is minimal among all orientable surfaces on which
the above tuples of sets are attained as the characters of periods.

In the following example we discuss brie�y some di�erences between the above cases.

Example 5.19. Consider two epimorphism θ : Γ → ZN from the same group

Γ = (0; +; [ ]; {( )4})

corresponding to the following characters of periods (∅, {1})(+,+) and (∅, ∅, {1}, ∅)(+,+).
Let us put for C0 = (∅, {1})(+,+)

e1, e2 7→ t and e3, e4 7→ tN−1,

which gives lcmC∗ = N . Hence a subgroup of ZN generated by the images of canonical
e�generators of Γ has order N i.e. there is no need to extend Γ by additional hyperbolic
generators.

On the other hand in the latter case we must have 4 - N by Lemma 5.14. We de�ne

ei 7→ t2,

since we consider �xed two�sided ovals. Unlike the previous case we actually have lcmC∗ =
N/2 i.e. a subgroup of ZN generated by the images of canonical orientable generators of Γ
does not equal the whole ZN . However there is no need for additional hyperbolic generators
either, because tN/2 6∈ 〈t2〉 and there is a re�ection c ∈ Γ mapped to tN/2.

We now proceed to study the set of characters of periods CPer(−,+)(ZN). Observe that
under this assumption we deal only with orientation�reversing automorphisms. We start
with recalling another theorem on N�pairs from [8].

Theorem 5.20 (Bujalance et al. [8], Theorem 3.1.9). Let N be even, signΓ = ” − ” and
signΛ = ” + ”. Then (Γ,Λ) is an N�pair if and only if the CCN conditions are ful�lled and

(iii.2) M = lcm(m1, . . . ,mn, l1, . . . , lr) 6= N
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(iii.3) 2 | ]{mi, lj | α2(mi) = α2(lj) = α2(N)}

(iii.4) there exists an order�preserving pair (α, β) with respect to {N/m1, . . . , N/mn, N/l1, . . .
, N/lr} such that all αiN/mi and βjN/lj are even numbers; moreover, if r = λ+ p and
4 | N , the number S(α, β) is a multiple of 4 if and only if γ is even

(iii.5) if r < λ+ p, then the numbers mi and lj are odd, and 4 - N

(iii.6) if γ = 1 and r = λ+ p, then M = N/2.

Remark 5.21. Observe that point (iii.3) of Theorem 5.20 follows from the �rst part of
(iii.4). Indeed α2(mi) = α2(N) clearly forces that N/mi is odd. But αi is also an odd number
since (αi,mi) = 1. Since the same holds for lj the set mentioned in (iii.3) is empty. Hence
that point can be dropped. Similarly (iii.4)�(iii.6) yield (iii.2), which is also super�uous.

We give below a slightly modi�ed version of point (iii.6) of the last theorem, where the
assumption r = λ+ p is no longer required.

Lemma 5.22. Suppose that C0 ∈ CPer(−,+)(ZN). Let t : X → X be a dianalytic map and
CPer(t) = C0. If the genus of a NEC group covering a ZN�action of t equals 1, then lcmC∗ =
N/2.

Proof. Suppose that θ : Γ → ZN is a surface�kernel epimorphism that uniformizes the requ-
ired ZN action. Recall that we observed in (4.46) that

lcmC∗ = |〈θ(x1), . . . , θ(xn), θ(e1), . . . , θ(eλ+p)〉|.

By Theorem 4.12 we obtain θ(g1) 6∈ ZlcmC∗ , but θ(g2
1) ∈ ZlcmC∗ by the "long relation" in Γ.

Thus |〈θ(g1),ZlcmC∗〉| = 2lcmC∗. If there is no re�ection c ∈ Γ with θ(c) = tN/2, i.e. r = λ+p,
then 〈θ(g1),ZlcmC∗〉 = ZN and we are done. On the other hand even if there exists such a
re�ection c in Γ it must hold θ(c) ∈ 〈θ(g1),ZlcmC∗〉, since 〈tN/2〉 = Z2 ≤ Z2lcmC∗ ≤ ZN . It
again leads us to N = |θ(Γ)| = 2lcmC∗.

Proposition 5.23. An element C0 belongs to the set of characters of periods CPer(−,+)(ZN)
of ZN�actions by dianalytic transformations on orientable surfaces only if A1, A2 comprise
even periods and it is of one of the following forms

(i) (A1,A2, ∅, ∅, ∅, ∅)

(ii) (A1,A2,A3, ∅,A5, ∅), where 4 - N .

Proof. Assume that θ : Γ → ZN covers a ZN�action with the character of periods prescribed
by C0. Denote Λ = ker θ and let t : H2/Λ → H2/Λ be the underlying dianalytic map. Likewise
in Proposition 5.15 we observe that A4 ∪A6 = ∅ since ZN acts on an orientable surface and
one�sided components of the singular set do not become apparent in this setting. By Remark
5.21 we have {mi, lj | α2(mi) = α2(lj) = α2(N)} = ∅, which shows that A1 and A2 may
contain only even periods.
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It remains to show that A3 ∪ A5 6= ∅ yields 4 - N . Since θ : Γ → ZN is onto ZN , there is
w ∈ Γ satisfying θ(w) = t. Furthermore if A3∪A5 6= ∅ then there is a re�ection c ∈ Γ mapped
to tN/2. Obviously we have wN/2c ∈ Λ. If now 4 | N , then wN/2c would be a non�orientable
word belonging to Λ. By point (ii) of Theorem 4.12 we would have sign ker θ = ”− ” which
is a contradiction.

On account of the above we denote elements of CPer(−,+)(ZN) as (A1,A2)
(−,+) and

(A1,A2,A3,A5)
(−,+) instead of writing (A1,A2, ∅, ∅, ∅, ∅) and (A1,A2,A3, ∅,A5, ∅), respec-

tively.
Before we proceed to the next theorem we recall a lemma which will be helpful in deter-

mining the orientability character of resulting surface groups.

Lemma 5.24 (Bujalance et al. [8], Notations and remarks 3.1.7 (2)). Suppose that signΓ =
”− ”, r = λ+ p and θ : Γ → ZN is an epimorphism with kernel Λ. Let us write

{x1, . . . , xn, e1, . . . , er}, {g1, . . . , gγ}

for the sets of orientable (respectively glide re�ections) canonical generators of Γ. Assume
that θ(xi) = tvi and θ(ej) = tuj , i = 1, . . . , n and j = 1, . . . , r, where vi,uj are even. Then
signΛ = ” + ” if and only if each gk is mapped onto tqk with qk odd, k = 1, . . . , γ.

In the following theorem we make use for the �rst time of the procedure N0 which was
introduced in Subsection 4.3.2.

Theorem 5.25. Let N be even. Suppose that C0 ful�ls condition (i) or (ii) of the previous
corollary and ]A1 + ]A2 + ]A3 ≥ 2 or A5 6= ∅.

(i) If 4 - N , then we put

Γ = (2− δN(lcmC∗0);−; [B∗1]; {( )w1(22)w2}).

(ii) If 4 | N and N ∗
−1(C

∗) 6= ∅ we de�ne

Γ = (2− δN
2
(lcmC∗0);−; [B∗1]; {( )w1}) if 2− δN

2
(lcmC∗0) ≡ ]N ∗

−1(C
∗) mod 2

Γ = (2− δN
2
(lcmC∗0);−; [N ∗

−1]; {( )z1}) if 2− δN
2
(lcmC∗0) 6≡ ]N ∗

−1(C
∗) mod 2.

(iii) Otherwise, if 4 | N but N ∗
−1(C

∗) = ∅ we de�ne

Γ = (2;−; [B∗1]; {( )w1}).

The terms Bi were given in (4.33), N−1 in (4.42), w1 and w2 were de�ned in (4.35)
and z1 was introduced in (4.44).

In the respective cases the above group Γ is a universal covering group of (〈t〉, X), 〈t〉 =
ZN . It satis�es CPer(t) = C0. Moreover the area µ(Λ), where X = H2/Λ, is minimal among
all orientable surfaces on which C0 is attained as the character of periods.
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Proof. We have divided the proof into the sequence of steps similar to the one used in the
proof of Theorem 5.17. We start with de�nition of required epimorphisms, after that we
show that covering group Γ is in fact a NEC group which leads us also to demonstrate the
minimality of µ(Λ). Eventually, we verify that surface NEC group Λ is orientable.

Case (i). We apply here the procedure N. Recall that by ηD(C) we denoted the order�
preserving character with respect to D(C) given by (4.33), which veri�es ηi,j = 1. Observe
that L(ηD(C)) is even since all d ∈ Bi, i = 1, 2, 3, 5 are even. Note that since we have assumed
signΓ = ” − ” together with signΛ = ” + ” all glide re�ections of Γ must be mapped to
odd powers of t. Otherwise suppose that a glide re�ection g of a covering NEC group Γ is
mapped by a surface�kernel epimorphism to t2l, which in the actual setting yields θ(g) ∈ 〈t2〉.
Denote by w a word of Γ with respect to ker θ satisfying θ(w) = t−1. Hence a non�orientable
word w2g belongs to ker θ, which by point (ii) of Theorem 4.12 gives sign ker θ = ” − ”, a
contradiction.

Our proof falls into four cases according to combinations of the two conditions: lcmC∗0
equals N or not and α2(L(ηD(C))) equals 1 or not.

Suppose lcmC∗0 = N and 4 - L(ηD(C)). Let us de�ne

θ(g1) = t−
L(ηD(C))

2 .

On the other hand if 4 | L(ηD(C)) while still lcmC∗0 = N , we may take advantage of the fact
that N/2 is odd and put

θ(g1) = t−
L(ηD(C))

2
+N

2 .

Repeated the above technique for lcmC∗0 < N we assign

θ(g2) = t−
L(ηD(C))

2
−1, θ(g1) = t in case 4 | L(ηD(C))

θ(g2) = t−
L(ηD(C))

2
+N

2
−1, θ(g1) = t in case 4 - L(ηD(C)).

We proceed to check whether the measure of the groups de�ned above is positive. Due
to ]A1 + ]A2 + ]A3 ≥ 2 we have

µ(Γ) = 2π(2− δN(lcmC∗0) + w1 +
3

2
w2 − 2 +

∑
m∈A∗

1

(1− 1

m
)) ≥ −1 +

1

2
+

2

3
> 0. (5.8)

Moreover A5 6= ∅ yields µ(Γ) ≥ −1 + 3/2 > 0.
In order to prove that area of Γ is minimal let us assume that θ′ : Γ′ → ZN is another

epimorphism that covers C0. Denote by γ and γ′ the genera of groups Γ and Γ′ respectively.
Obviously γ′ ≥ 1, since signΓ′ = ”− ”. By Lemma 5.22 equality γ′ = 1 forces lcmC∗ = N/2.
But since we have assumed 4 - N the last relation gives lcmC∗0 = N , which by our construction
results in γ = 1. On the other hand we have γ ≤ 2, which leads us to γ′ ≥ γ. By Proposition
4.19 we then have

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓN) + 2πγ) ≥ 2π(γ′ − γ) ≥ 0.
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Now we are in a position to show that the resulting surface NEC group Λ is orientable.
In order to verify the orientability character of the surface group Λ we use Theorem 4.12.
Observe that the glide re�ections go only to odd powers of t, hence do not belong to ker θ.
Thus the task is now to check whether there exists a non�orientable word w in Γ, that
belongs to ker θ. Since ZN is abelian we may assume that it has the following form

w = w1

j∏
i=1

gεi
i c

ε,

where w1 ∈ 〈x1, . . . , xn, e1, . . . , eλ+p〉, ε = 0, 1 and j = 1, 2. Since w is a non�orientable word,
the term

∑j
i=1 εi + ε must be odd. Denote θ(w1) = tD and observe that tD ∈ ZlcmC∗ ≤ ZN/2.

It follows that D is even. What is left to show is that

D + bε1 +

j∑
i=2

εi + εN/2 6≡ 0 mod N,

where θ(g1) = tb, b an odd number. But this is obvious, since

j∑
i=1

εi + ε ≡ D + bε1 +

j∑
i=2

εi + εN/2 mod 2

both for j = 1 and j = 2.
Case (ii). Note �rstly that by (iii.5) of the last theorem we have now C0 = (A1,A2)

(−,+).
Moreover, all periods contained in A1 and A2 are even. Observe that L(ηD(C)) is even, which
follows from Remark 5.21 and Lemma 4.8. Since N/2 is assumed to be even, then by Lemma
5.22 and point (iii) of Remark 4.20 the equality γ = 1 yields lcmC∗0 = N/2. Before we de�ne
NEC groups Γ and epimorphisms θ : Γ → ZN in all required cases considered subsequently,
observe that under actual assumptions we get sign ker θ = ” + ” if and only if the glide
re�ections are mapped to tq with q odd.

Let us assume lcmC∗0 = N/2 and distinguish two subcases. If 4 - L(ηD(C)), then we apply
procedure N and de�ne the following assignment for the glide re�ection

θ(g1) = t−
L(ηD(C))

2 . (5.9)

On the other hand if 4 | L(ηD(C)), then by Lemma 4.8 any order�preserving element η
with respect to D(C) gives an value of L(η) that is also divisible by 4. We switch to procedure
N−1 subject to N ∗

−1(C
∗) is non�empty. If this is the case, then by means of procedure N−1 we

add to D(C) the element n∗−1(C
∗) de�ned by (4.21). We obtain a character associated to C

together with the respective order�preserving element ηN−1(C) which veri�es that L(ηN−1(C))
is even but not divisible by 4. Now we may put

θ(g1) = t−
L(ηN−1(C))

2 . (5.10)
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The analysis for lcmC∗0 < N/2 falls into two subcases. Note that now we must have γ ≥ 2.
If 4 | L(ηD(C)) we use procedure N together with the following assignment

θ(g2) = t−
L(ηD(C))

2
−1, θ(g1) = t. (5.11)

On the other hand if 4 - L(ηD(C)) then the set N ∗
−1(C

∗) is certainly non�empty. We apply
procedure N−1 and put

θ(g2) = t−
L(ηN−1(C))

2
−1, θ(g1) = t. (5.12)

Let us verify if all groups de�ned above are NEC. It su�ces to check whether their
measure is positive. By a simple calculation we obtain

µ(Γ) ≥ 2π(1 + w1 +
3

2
w2 − 2 +

∑
m∈A∗

1

(1− 1

m
)) ≥ −1 +

1

2
+

2

3
> 0. (5.13)

We proceed to show that the area of ker θ is minimal. First, we demonstrate that γ′ ≥ γ,
where γ′ is the genus of another NEC group Γ′ covering C0. Let θ′ : Γ′ → ZN be a required
smooth epimorphism. Obviously there is nothing to prove in subcases corresponding to (5.9)
and (5.10), since γ = 1. If we consider the scenario lcmC∗0 < N/2, then we certainly must
have γ′ ≥ 2. But due to our construction we have γ = 2, which gives the desired conclusion.
By Proposition 4.19 the inequality γ′ ≥ γ su�ces to prove the minimality of ker θ for all
cases where the covering epimorphism is built based on procedure N, i.e. the cases which
verify the relation1

2− δN
2
(lcmC∗0) ≡ ]N ∗

−1(C
∗) mod 2

On the other hand considering the cases that satisfy2

2− δN
2
(lcmC∗0) 6≡ ]N ∗

−1(C
∗) mod 2

one gets

µ(Γ′)− µ(Γ) = µ(Γ′)− µ(ΓN)− (µ(Γ)− µ(ΓN))

= µ(Γ′)− µ(ΓN)− (2πγ + µ(ΓN−1)− µ(ΓN))

≥ 2π(γ′ − γ)− (µ(ΓN−1)− µ(ΓN)) = 2π(γ′ − γ)− (1−m−1). (5.14)

Without loose of generality we may assume that Γ′ 6' Γ. Furthermore if γ′ > γ, then by
the above inequality we are done. However if γ′ = γ, then (5.14) is not su�cient. Recall that
by (4.7) each Ai is contained in the families Gi(Γ, θ) and Gi(Γ′, θ′) given by (4.6). Moreover
there is at least one section Ai1 of the character C0 ful�lling Ai1 ( Gi1(Γ′, θ′). Thus we get

µ(Γ′)− µ(ΓN)− 2πγ′ > 0

µ(Γ)− µ(ΓN)− 2πγ > 0.

1This relation embraces the subcases (5.9) and (5.11).
2This relation embraces the subcases (5.10) and (5.12).
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However by de�nition of the element n∗−1(C
∗) we �nally get

0 ≤ (µ(Γ′)− µ(ΓN)− 2πγ′)− (µ(Γ)− µ(ΓN)− 2πγ) = µ(Γ′)− µ(Γ)

since γ′ = γ due to the actual assumptions.
Case (iii). Let η be an element which is order�preserving with respect to D(C). If 4 | N

and N ∗
−1(C

∗) = ∅, then independently on lcmC∗0 we get by Lemma 4.8

L(η) ≡ 2 · ]N ∗
−1(C

∗) ≡ 0 mod 4.

Thus L(η) is divisible by 4 and we are limited to manipulate with the genus of the candidate
group. We set γ = 2 and use procedure N together with the assignment (5.11) on the glide
re�ections. By

µ(Γ) ≥ 2π(2 + w1 − 2 +
∑
m∈B∗

1

(1− 1

m
)) ≥ 1

2
+

2

3
> 0.

the group de�ned in this way is a NEC group and by Lemma 5.24 it covers a ZN�action on
an orientable surface.

It remains to show that the area of ker θ is minimal. By Lemma 5.22 we have γ′ ≥ 2
which gives

µ(Γ′)− µ(Γ) ≥ 2π(γ′ − 2) ≥ 0.

Since we have dropped the case ]A1 + ]A2 + ]A3 < 2, A5 = ∅ we complete the study by
the following remark.

Remark 5.26. If ]A1 + ]A2 + ]A3 < 2, A5 = ∅ and the remaining assumptions of Theorem
5.25 hold then the universal covering group that covers a ZN�action prescribed by C0 equals

Γ =



(3;−; [ ]; { }), if C0 = (∅, ∅)(−,+) and 4 - N
(4;−; [ ]; { }), if C0 = (∅, ∅)(−,+) and 4 | N
(1;−; [N/2, N/2]; { }), if C0 = ({2}, ∅)(−,+) and 4 - N
(1;−; [N/2, N/2, N/2]; { }), if C0 = ({2}, ∅)(−,+) and 4 | N
(2;−; [N/d]; { }), if C0 = ({d}, ∅)(−,+), d 6= 2 and 4 - N
(2;−; [N/d,N/d]; { }), if C0 = ({d}, ∅)(−,+), d 6= 2 and 4 | N
(1;−; [ ]; {( )2}), if C0 = (∅, {2})(−,+) and 4 - N
(1;−; [ ]; {( )3}), if C0 = (∅, {2})(−,+) and 4 | N
(2;−; [ ]; {( )}), if C0 = (∅, {d})(−,+), d 6= 2 and 4 - N
(2;−; [ ]; {( )2}), if C0 = (∅, {d})(−,+), d 6= 2 and 4 | N
(1;−; [ ]; {( )2}), if C0 = (∅, ∅, {1}, ∅)(−,+)

(2;−; [ ]; {( )}), if C0 = (∅, ∅, {d}, ∅)(−,+) and d 6= 1

The area of the respective NEC groups is minimal among all orientable surfaces on which
the above tuples of sets are attained as the characters of periods.
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Example 5.27. Consider a smooth epimorphism θ : Γ → ZN , 4 | N from Γ = (4;−; [ ]; { })
which covers C0 = (∅, ∅)(−,+). Using the notation of [8] (see also comments on page 70) we
have S(α, β) = 0. Note that since there is no ovals nor chains and γ = 4, it conforms to the
assertion of the second part of point (iii.4) of Theorem 5.20.

The case of actions of cyclic groups of an even order on orientable surfaces by homeomor-
phisms gives the opportunity to distinguish another property of such maps i.e. preserving
or reversing orientation of a manifold. If t : X → X is a map of an orientable Klein surface,
then X/〈t〉 being a non�orientable surface forces that t reverses orientation. On the other
hand either orientation�preserving or orientation�reversing homeomorphisms may lead to
orientable quotient surfaces X/〈t〉. Below we recall Corollary 3.2.2 from [8] which allows
one to determine whether an automorphism of on orientable surface preserves or reverses
orientation based on N�pair (Γ,Λ) such that Γ covers a ZN�action of t : H2/Λ → H2/Λ.

Corollary 5.28 (Bujalance et al. [8], Corollary 3.2.3). Let Λ be a surface NEC group such
that X = H2/Λ is orientable. Let t ∈ Aut(X) be an element of an even order N > 1, and
let Γ be a NEC group realizing t i.e. 〈t〉 ' Γ/Λ. As we know, for even N ,

Γ = (γ;±; [m1, ...,mn]; {( )λ(2µ1)...(2µp)})

and all µi are even. Let r be the integer for which ci,0 ∈ Λ for 1 ≤ i ≤ r and ci,0 6∈ Λ for
r + 1 ≤ i ≤ λ.

(i) if signΓ = ”− ”, then t reverses orientation

(ii) if signΓ = ” + ”, then t preserves orientation if and only if r = λ+ p

(iii) if 4 | N and signΓ = ” + ”, then t preserves orientation.

We �nish this section with the following example which may be treated as a counterpart
of a similar problem arisen for orientation�preserving homeomorphisms of �nite order which
has been already solved in Example 2.11. Unlike the previous case the answer in the actual
setting is positive.

Example 5.29. Let Σg be a hyperbolic orientable surface of genus g. It was left as an open
question in [[18], p.470] as to whether there exists on Σ4 a �nite order orientation�reversing
homeomorphism of order 6 with no points of period less than 6. We �nd answer to this
question by applying a construction based on the combinatorial approach to the theory of
NEC groups. Let Γ = (3;−; [ ]; { }) and de�ne the following epimorphism θ : Γ → Z6

θ(g1) = t θ(g2) = t−1 θ(g3) = t3 (5.15)

which covers a ZN�action of a map t. By the last corollary t is orientation�reversing. Let
ker θ ' Λ. By Remark 4.2 we have CPer(t) = (∅, ∅, ∅, ∅, ∅, ∅). Furthermore signΛ = ” + ”
by Theorem 4.12, since no glide re�ection nor a non�orientable word in Γ belongs to Λ.
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Figure 5.1: Fundamental region for a NEC group Γ = (3;−; [ ]; { }).
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Consequently, by Riemann�Hurwitz formula we must have µ(Λ) = 6µ(Γ) = 12π, which due
to the above partial information on Λ yields Λ = (4; +; [ ]; { }). Hence Λ is an orientable
surface group of genus 4.

Since θ(g1) = t we may use the below representation of FΛ

FΛ = FΓ ∪ g−1
1 FΓ ∪ g−2

1 FΓ ∪ g−3
1 FΓ ∪ g−4

1 FΓ ∪ g−5
1 FΓ.

In order to reveal a geometric interpretation of the above ZN�action let us �rst investigate
how a fundamental region FΛ is obtained from FΓ. Let the edges of FΓ be labelled as follows
δ1δ

∗
1δ2δ

∗
2δ3δ

∗
3 and use a model of FΓ given on Figure 5.1.

Thus we obtain a fundamental region FΛ represented on Figure 5.1 whose perimeter
counts 26 edges. However, observe that the sides of FΛ are paired by elements of Λ. Below
we list all pairs and for simplicity of notation we relabel the edges as ζj, j = 1, . . . , 13 (see
also �ne dashed arrows on Figure 5.2).

δ2 ∼ g−5
1 δ∗2 ∼ ζ2, g−4

1 δ2 ∼ g−3
1 δ∗2 ∼ ζ10, g−4

1 δ3 ∼ g−1
1 δ∗3 ∼ ζ12,

g−1
1 δ2 ∼ δ∗2 ∼ ζ3, g−5

1 δ2 ∼ g−4
1 δ∗2 ∼ ζ11, g−3

1 δ3 ∼ δ∗3 ∼ ζ5,

g−2
1 δ2 ∼ g−1

1 δ∗2 ∼ ζ6, δ3 ∼ g−3
1 δ∗3 ∼ ζ4, g−2

1 δ3 ∼ g−5
1 δ∗3 ∼ ζ8,

g−3
1 δ2 ∼ g−2

1 δ∗2 ∼ ζ7, g−5
1 δ3 ∼ g−2

1 δ∗3 ∼ ζ9, g−1
1 δ3 ∼ g−4

1 δ∗3 ∼ ζ13,

g−5
1 δ1 ∼ δ∗1 ∼ ζ1.

The perimeter ∆ of FΛ is labelled in the counter�clockwise order as follows (see orienta-
tions induced on perimeters of FΓ, g1FΓ,. . .,g

5
1FΓ by the respective block circular arrows on

Figure 5.2)

∆ ∼ ζ1ζ2ζ3ζ4ζ5ζ6ζ7ζ8ζ9ζ10ζ11ζ12ζ13ζ
−1
1 ζ−1

8 ζ−1
9 ζ−1

2 ζ−1
11 ζ

−1
4 ζ−1

5 ζ−1
10 ζ

−1
7 ζ−1

12 ζ
−1
13 ζ

−1
6 ζ−1

3

By elementary substitutions we reduce the symbol ∆ in a way which allows us to recognize
easily the topological type of a surface on which map t is acting. Let us precise two substitu-
tions we shall need (see for instance [[33], p.471])

(1) [y0]aa
−1[y1] ∼ [y0y1] if y0y1 comprises at least 4 sides of perimeter of a fundamental

region

(2) w0[y1]a[y2]b[y3]a
−1[y4]b

−1[y5] ∼ w0aba
−1b−1[y1y4y3y2y5],

In the below sequence of equivalences we let
(i)∼, i = 1, 2 denote the substitution which yields
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Figure 5.2: Fundamental region FΛ =
⋃5
k=0 g

−k
1 FΓ.
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the equivalence between the consecutive expressions.

∆ ∼
∼ [1]︸︷︷︸

w0

[1]︸︷︷︸
y1

ζ1 [1]︸︷︷︸
y2

ζ2 ζ3ζ4ζ5ζ6ζ7ζ8ζ9ζ10ζ11ζ12ζ13︸ ︷︷ ︸
y3

ζ−1
1 ζ−1

8 ζ−1
9︸ ︷︷ ︸

y4

ζ−1
2 ζ−1

11 ζ
−1
4 ζ−1

5 ζ−1
10 ζ

−1
7 ζ−1

12 ζ
−1
13 ζ

−1
6 ζ−1

3︸ ︷︷ ︸
y5

(2)∼ ζ1ζ2ζ
−1
1 ζ−1

2︸ ︷︷ ︸
w0

[1]︸︷︷︸
y1

ζ−1
8 [1]︸︷︷︸

y2

ζ−1
9 ζ3ζ4ζ5ζ6ζ7︸ ︷︷ ︸

y3

ζ8 [1]︸︷︷︸
y4

ζ9 ζ10ζ11ζ12ζ13ζ
−1
11 ζ

−1
4 ζ−1

5 ζ−1
10 ζ

−1
7 ζ−1

12 ζ
−1
13 ζ

−1
6 ζ−1

3︸ ︷︷ ︸
y5

(2)∼ ζ1ζ2ζ
−1
1 ζ−1

2 ζ−1
8 ζ−1

9 ζ8ζ9︸ ︷︷ ︸
w0

ζ3︸︷︷︸
y1

ζ4 [1]︸︷︷︸
y2

ζ5 ζ6ζ7ζ10ζ11ζ12ζ13ζ
−1
11︸ ︷︷ ︸

y3

ζ−1
4 [1]︸︷︷︸

y4

ζ−1
5 ζ−1

10 ζ
−1
7 ζ−1

12 ζ
−1
13 ζ

−1
6 ζ−1

3︸ ︷︷ ︸
y5

(2)∼ ζ1ζ2ζ
−1
1 ζ−1

2 ζ−1
8 ζ−1

9 ζ8ζ9ζ4ζ5ζ
−1
4 ζ−1

5︸ ︷︷ ︸
w0

ζ3ζ6ζ7ζ10ζ11︸ ︷︷ ︸
y1

ζ12 [1]︸︷︷︸
y2

ζ13 ζ
−1
11 ζ

−1
10 ζ

−1
7︸ ︷︷ ︸

y3

ζ−1
12 [1]︸︷︷︸

y4

ζ−1
13 ζ

−1
6 ζ−1

3︸ ︷︷ ︸
y5

(2)∼ ζ1ζ2ζ
−1
1 ζ−1

2 ζ−1
8 ζ−1

9 ζ8ζ9ζ4ζ5ζ
−1
4 ζ−1

5 ζ12ζ13ζ
−1
12 ζ

−1
13 ζ3ζ6ζ7ζ10ζ11ζ

−1
11 ζ

−1
10 ζ

−1
7 ζ−1

6 ζ−1
3

(1)∼ ζ1ζ2ζ
−1
1 ζ−1

2 ζ−1
8 ζ−1

9 ζ8ζ9ζ4ζ5ζ
−1
4 ζ−1

5 ζ12ζ13ζ
−1
12 ζ

−1
13 .

Now by relabelling, we obtain a surface symbol of an orientable surface of genus 4

[ζ1ζ2][ζ3ζ4][ζ5ζ6][ζ7ζ8]

as required.

Remark 5.30. The above example is also important in the context of canonical Fuchsian
subgroup. In Lemma 3.7 we considered groups of automorphisms of Klein surfaces being not
Riemann surfaces. The group Γ = (3;−; [ ]; { }) and epimorphism θ given by (5.15) show
that the assumption of not considering Riemann surfaces in Lemma 3.7 is appropriate since
here we have Γ+ = (2; +; [ ]; { }) and θ(Γ+) = Z3 < Z6 = θ(Γ).
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5.3 Actions of Groups of Even Order on

Non�Orientable Surfaces

This section is devoted to investigating the action of dianalytic homeomorphisms on non�
orientable compact surfaces. A brand new type of periodic structures which become apparent
in the actual setting embraces the one�sided structures i.e. ovals and chains whose neighbo-
urhood is a Möbius strip.

Let us start with a slightly more constrained case, when the quotient surface is orientable.
We begin in the way we did before, by recalling a theorem that speci�es the necessary and
su�cient conditions on N�pairs.

Theorem 5.31 (Bujalance et al. [8], Theorem 3.1.6). Let N be even, signΓ = ” + ” and
signΛ = ”− ”. Then (Γ,Λ) is an N�pair if and only if the CCN conditions are ful�lled and

(iii.2) r < λ+ p

(iii.3) if γ = 0 and λ+ p = r + 1, then lcm(m1, . . . ,mn, l1, . . . , lr) = N .

Corollary 5.32. An element C0 belongs to the set of characters of periods CPer(+,−)(ZN)
of ZN�actions by dianalytic transformations on non�orientable surfaces only if it is of the
form

(A1,A2,A3,A4,A5,A6),

where
⋃
i≥3Ai 6= ∅.

Proof. Assume that θ : Γ → ZN covers a ZN�action with the character of periods prescribed
by C0 and denote Λ = ker θ. Since (Γ, ker θ) is an N�pair and ker θ takes the form (5.5), then
the result is an immediate consequence of point (iii.2) of the last theorem.

We write (A1,A2,A3,A4,A5,A6)
(+,−) for (A1,A2,A3,A4,A5,A6) ∈ CPer(+,−)(ZN). Co-

rollary 5.32 gives us the information on condition which is necessary to form a character of
periods belonging to CPer(+,−)(ZN). However in Corollary 5.34 we will exclude some of the
6�tuples that do not occur as characters of periods upon the actual assumptions. First we
need a lemma.

Lemma 5.33. Let N be an even number and let θ : Γ → ZN be an epimorphism with
signΓ = ” + ” and signΛ = ” − ”. Assume that the character of periods of the underlying
ZN�action equals C0. Then 4 - N implies lcmC∗ = lcmC∗0.

Proof. By Theorem 4.12 there is a non�orientable word w that belongs to Λ. The group ZN

is abelian and we may assume that
w = w′c,

where w′ ∈ 〈x1, . . . , xn, e1, . . . , eλ+p〉 and c is a re�ection verifying θ(c) = tN/2. Since θ(w′) ∈
ZlcmC∗ we also have tN/2 ∈ ZlcmC∗ . Consequently, lcmC∗ must be even which by point (iii) of
Remark 4.20 gives lcmC∗ = lcmC∗0.
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Corollary 5.34. Let N be an even number satisfying 4 - N . Suppose that C0 ∈ CPer(+,−)(ZN).
If A4 ∪ A6 = ∅, then A1 ∪ A2 must contain an odd element.

Proof. Assume that θ : Γ → ZN covers a ZN�action given by C0. Suppose that the assertion of
the corollary is false. Then C0 = (A1,A2,A3, ∅,A5, ∅) and all subgroups generated by images
of canonical elliptic generators and e�generators corresponding to boundary components
have odd orders. Recall that also images of the remaining canonical e�generators inducing
periods in sections A3 and A5 do generate subgroups of odd orders. It follows that subgroup
generated by images of all orientable canonical generators of Γ has an odd order, equal to
lcmC∗. By Corollary 5.32 we get A3 ∪ A5 6= ∅, thus lcmC∗0 is an even number. But Lemma
5.33 shows that lcmC∗ = lcmC∗0, which is impossible.

Observe that according to Proposition 5.15 the excluded 6�tuples form characters of
periods which belong to CPer(+,+)(ZN).

Lemma 5.35 (Bujalance et al. [8], Remarks 3.1.4 (6)). Let θ : Γ → ZN be an epimorphism
with kernel Λ and the underlying ZN�action proscribed by C0. If

⋃
i≥3Ai 6= ∅ and 4 | N , then

signΛ = ”− ”.

Theorem 5.36. Let N be even and suppose that C0 ∈ CPer(+,−)(ZN) and
∑6

i=1 ]Ai ≥ 2.

(i) We de�ne

Γ = (0; +; [N,N,N ]; {( )}) if C0 = ({1}, ∅, ∅, {1}, ∅, ∅)(+,−)

Γ = (0; +; [2, 2, 2]; {(22)}) if C0 = ({1}, ∅, ∅, ∅, ∅, {1})(+,−) and N = 2

Γ = (0; +; [ ]; {( )4}) if C0 = (∅, {1}, ∅, {1}, ∅, ∅)(+,−)

(ii) Otherwise

Γ = (1− δN(lcmC∗0); +; [O∗
1]; {( )w1(22)w2}), (5.16)

where O1 and w1, w2 were de�ned in (4.24) and (4.27) respectively.

In the respective cases the above group Γ is a universal covering group of (〈t〉, X), 〈t〉 =
ZN . It satis�es CPer(t) = C0. Moreover the area µ(Λ), where X ' H2/Λ, is minimal among
all non�orientable surfaces on which C0 is attained as the character of periods.

Proof. Point (i) is proved by direct computations. As an example we demonstrate as-
signment in the �rst of the exceptional cases i.e. C0 = ({1}, ∅, ∅, {1}, ∅, ∅)(+,−). We use
Γ = (0; +; [N,N,N ]; {( )}) and put

x1, x2 7→ t−1 x3, e1 7→ t and c1,0 7→ t
N
2 .

Since θ(x
N
2
1 c1,0) = 1 and x

N
2
1 c1,0 is a non�orientable word we have signΛ = ” − ”. Observe

that procedure O would give a group ΓO = (0; +; [N ]; {( )}) which is not a NEC group since
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µ(ΓO) = −2π/N < 0. The enhancement of ΓO by adding two elliptic generators results in
the smallest increase of its measure.

We now proceed to the proof of case (ii). We �rst check the orientability character of the
quotient surface. By the procedure O we de�ne the homomorphism θ on all but hyperbolic
canonical generators corresponding to the orbit genus of the group Γ given by (5.16). If
lcmC∗0 6= N , then ΓO given by (4.29) is not mapped by smooth epimorphism θ onto the
whole ZN . We add to ΓO exactly one pair of hyperbolic generators a1, b1 and map them to
an element of order N in ZN . By Theorem 4.12 all reduces to �nd a non�orientable word
w ∈ Γ with θ(w) = 1, which su�ces to have signΛ = ”− ”. If 4 | N , then by Lemma 5.35 we
get immediately the desired conclusion. On the other hand if 4 - N , then we take advantage
that A4,A6 ⊆ D(N/2). It follows that these sets are empty or comprise odd periods. By
Corollary 5.34 there is always an odd period contained in A1 ∪A2 ∪A4 ∪A6. Let us denote
such a period by d and let hd ∈ Γ stand for an x� or e�generator that corresponds to d. By
(4.26) the element hd is mapped to tηd, where (η,N/d) = 1, i.e. η is odd. Since

⋃
i≥3Ai 6= ∅

by Corollary 5.32 there is also a re�ection c that goes to tN/2. Thus one gets

θ(h
N
2d
d c) = tηd

N
2d t

N
2 = tη

N
2 t

N
2 = tN

η+1
2 = 1,

which is the desired result.
Our next goal is to evaluate the measure of Γ. We have

µ(Γ) = 2π(2(1− δN(lcmC∗0)) + w1 + w2 − 2 +
∑
m∈O∗

1

(1−m−1) +
1

2
w2).

Recall that we have
∑6

i=3 ]Ai ≥ 1. Consequently if
∑6

i=1 ]Ai > 2 then it holds

µ(Γ) ≥ w1 + w2 − 2 +
∑
m∈O∗

1

(1−m−1) > 0.

It follows that we are reduced to consider the cases when
∑6

i=1 ]Ai = 2. Since the proof goes
here by direct computations similar to (5.7) we omit the details. However, all subcases in
which this line of arguments fails i.e. the procedure O does not lead us to a group Γ with
positive measure are considered separately in point (i) of the theorem.

We proceed to show that µ(Λ) is minimal. Let γ′ be genus of another NEC group Γ′

which covers a ZN�action given by C0. By Remark 4.23 we must have γ′ ≥ γ. Moreover by
Remark 4.17 we have

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓO) + 4πγ) ≥ 4π(γ′ − γ) ≥ 0,

which is our claim.

Since we have dropped the case
∑6

i=1 ]Ai < 2 we complete our investigation by the
following remark.
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Remark 5.37. If
∑6

i=1 ]Ai < 2 and the remaining assumptions of Theorem 5.36 hold then

the universal covering group that covers a ZN�action prescribed by C0 ∈ CPer(+,−)(ZN) equals

Γ =


(0; +; [ ]; {( )4}), if C0 = (∅, ∅, ∅, {1}, ∅, ∅)(+,−)

(1; +; [ ]; {( )2}), if C0 = (∅, ∅, ∅, {d}, ∅, ∅)(+,−) and d 6= 1

(0; +; [ ]; {(22)2}), if C0 = (∅, ∅, ∅, ∅, ∅, {1})(+,−)

(1; +; [ ]; {(22)2}), if C0 = (∅, ∅, ∅, ∅, ∅, {d})(+,−) and d 6= 1

The area of the respective NEC groups is minimal among all non�orientable surfaces on
which the above tuples of sets are attained as the characters of periods.

Our next concern will be the analysis of the set of characters of periods in case the both
surfaces: the one on which a homeomorphism acts and the quotient one are non�orientable.

Theorem 5.38 (Bujalance et al. [8], Theorem 3.1.8). Let N be even, signΓ = ” − ” and
signΛ = ”− ”. Then (Γ,Λ) is an N�pair if and only if the CCN conditions are ful�lled and

(iii.2) if r = λ + p there exists an order�preserving pair (α, β) with respect to {N/m1,
. . . , N/mn, N/l1, . . . , N/lr} such that S(α, β) is even

(iii.3) if r = λ+ p and γ = 1, then lcm(m1, . . . ,mn, l1, . . . , lr) = N

(iii.4) assume r = λ+ p, γ = 2, 4 | N and every even S(α, β) is a multiple of 4, then N/mi

or N/lj are odd for some i or j.

Likewise in previous cases we introduce here a self�describing notation writing (A1,A2,
A3,A4,A5,A6)

(−,−) for (A1,A2,A3,A4,A5,A6) ∈ CPer(−,−)(ZN). Observe that we do not
impose any constraints other than (4.1)�(4.2) regarding 6�tuples of sets as candidates for
(A1,A2,A3,A4,A5,A6)

(−,−).
We need the below auxiliary lemma. We will call it in the proof of Theorem 5.42.

Lemma 5.39. Let N be even and suppose that θ : Γ → ZN covers a ZN�action with the
character of periods C0 ∈ CPer(−,−)(ZN) which veri�es

⋃
i≥3Ai = ∅. Then γ = 1 implies

lcmC∗ = N .

Proof. In order to obtain the assertion we use point (ii) of Theorem 4.12 which forces that
either there exists a non�orientable word w ∈ ker θ or g1 ∈ ker θ. Since ZN is abelian
we may assume that w = w1g

κ
1 for an odd κ, where w1 is an orientable word i.e. w1 ∈

〈x1, . . . , xn, e1, . . . , eλ+p〉. By the "long relation" it must hold θ(g2
1) ∈ ZlcmC∗ , which together

with the previous relations results in

1 = θ(w) = θ(w1g
κ
1 ) = θ(w1g

κ−1
1 )θ(g1).

Hence θ(g1) ∈ ZlcmC∗ and we get |θ(Γ)| = lcmC∗.
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Take C0 ∈ CPer(−,−)(ZN). In the following lemma we consider properties of lcmC∗0 under
some additional conditions involving the number N and the topological genus of a NEC
group which covers C0. The lemma will be used in the proof of Theorem 5.42.

Lemma 5.40. Let N be an even number and let θ : Γ → ZN be an epimorphism with
signΓ = signΛ = ” − ”. Assume that the character of periods of the underlying ZN�action
equals C0, where

⋃
i≥3Ai 6= ∅. Then

(i) γ = 1 and 4 - N imply lcmC∗0 = N

(ii) γ = 1 and 4 | N imply lcmC∗0 ≥ N/2.

Proof. In order to deduce (i) we recall again Theorem 4.12. There is a non�orientable word
or a glide re�ection w ∈ ker θ. We may suppose that

w = w1g
κ
1 c
ε,

where w1 ∈ 〈x1, . . . , xn, e1, . . . , eλ+p〉 and c is a re�ection with θ(c) = tN/2, ε ∈ {0, 1}. If
ε = 0, then κ is odd and we get θ(g1) ∈ ZlcmC∗ since θ(g2

1) ∈ ZlcmC∗ by the "long relation" in
Γ. Thus if lcmC∗0 < N , then θ is not onto ZN . Otherwise, in case ε = 1 we have w = w1g

κ
1 c,

for κ even. Recall our assumption
⋃
i≥3Ai 6= ∅ and observe that by Remark 4.21 it follows

that lcmC∗0 is even. Therefore if θ(g1) 6∈ ZlcmC∗
0
, then

N = |θ(Γ)| = 2lcmC∗0.

But it contradicts our assumption that 4 - N . On the other hand θ(g1) ∈ ZlcmC∗
0
yields that

θ is not onto a cyclic group of order bigger than lcmC∗0. Hence N = lcmC∗0 as required.
The point (ii) can be treated as a completion of the previous case. Indeed lcmC∗0 < N/2

would imply that θ is not onto the whole ZN , which follows from θ(g2
1) ∈ ZlcmC∗ .

In the example below we illustrate point (ii) of the above lemma. We show that for 4 | N
and lcmC∗0 = N/2 there exists a smooth epimorphism from a NEC group of genus 1 onto ZN .
Note that this situation di�ers from the case described in point (iii.3) of Theorem 5.38 since
it takes advantage of the existence of an oval or a chain being a component of the singular
set on the surface H2/Λ. It is equivalent to r > λ+ p.

Example 5.41. Consider a group Γ = (1;−; [30]; {(22)(22)}) with the following epimorphism
θ : Γ → Z60

θ(g1) = t−3 θ(x1) = t2

θ(ei) = t2 θ(ci,0) = θ(ci,2) = tN/2, θ(ci,1) = 1.

We have C0 = ({2}, ∅, ∅, ∅, ∅, {2}) and lcmC∗0 = 30. Moreover µ(Γ) = 89π/15 > 0 and
θ((x−1

1 g−1
1 )30ci,0) = 1. Since (x−1

1 g−1
1 )30 is an orientable word in Γ we get sign ker θ = ”− ”.
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Theorem 5.42. Let N be even and suppose that C0 ∈ CPer(−,−)(ZN) ful�lls
∑6

i=1 ]Ai ≥ 2.
Assume also that X is a non�orientable Klein surface. A NEC group which takes one of the
following forms

(i) Γ = (1;−; [B∗1]; {( )w1(22)w2})
(ii) Γ = (2;−; [B∗1]; {( )w1(22)w2})
(iii) Γ = (3;−; [B∗1]; {( )w1})
(iv) Γ = (1;−; [N ∗

1 ]; {( )y1(22)y2})
(v) Γ = (2;−; [N ∗

1 ]; {( )y1(22)y2})
(vi) Γ = (1;−; [N ∗

−1]; {( )w1(22)w2})
(vii) Γ = (2;−; [N ∗

−1]; {( )z1}),

covers a ZN�action on X. The above symbols were introduced in (4.33), (4.35), (4.38),
(4.40), (4.42) and (4.44). Moreover the area µ(Λ), where X = H2/Λ, is minimal among all
non�orientable surfaces on which C0 is attained as the character of periods.

Proof. Denote ZN = 〈t〉. Throughout the proof, to each of the cases under consideration,
we assign the appropriate covering NEC group listed in points (i)�(vii). We also de�ne the
required epimorphisms onto ZN and show their properties. In order to make our reasoning
more clear we distinguish three auxiliary conditions which help us to divide the proof into
cases. These conditions are the following:

(1) the �rst condition: ]N ∗
0 (C∗) is even

(2) the second condition: lcmC∗ = N

(3) the third condition: N is divisible by 4.

We will denote the considered subcases by a�b�c, where a, b, c ∈ {0, 1}. Using this notation
we determine which conditions are ful�lled by switching a, b or c to 1. Observe that our
assumption

∑6
i=1 ]Ai ≥ 2 together with the condition γ ≥ 1 gives

µ(Γ) ≥ 2π(γ +W − 2 +
∑
i∈B∗

1

(1− 1

m
)) ≥ 2π(−1 +

1

2
+

2

3
) > 0, (5.17)

where W equals w1, y1 or z1 depending on the particular NEC group listed in the assertion
of the theorem. By (5.17) all groups constructed subsequently in the proof are NEC groups.

In each of the cases we deal with C0 which obeys certain constraints. In order to ease the
way of arguing that our constructs lead to groups of minimal measure we will denote that
θ′ : Γ′ → ZN is an epimorphism from NEC group with the underlying ZN�action given by
C0. Let γ′ be the topological genus of Γ′.

We start with the cases that are explicitly restricted by Theorem 5.38 i.e. C0 = (A1,A2,
∅, ∅, ∅, ∅)(−,−).
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Cases 1�1�1 and 1�1�0 Using the notation introduced previously we begin with the
following character associated to C: D(C) = C. We need also ηD(C) � the order�preserving
element with respect to D(C) which was introduced in Subsection 4.3.2 and veri�es ηi,j = 1.
We consider both subcases 1�1�1 and 1�1�0 together since upon assumptions (1) and (2),
the divisibility of N by 4 does not change the way of arguing. Let us construct Γ based on ΓN

given in (4.34). Furthermore we build epimorphism θ : Γ → ZN on account of (4.36)�(4.37)
and the following assignment for the only glide re�ection

Γ = (1;−; [B∗1]; {( )w1}), θ(g1) = t−
L(ηD(C))

2 .

Since the second condition is satis�ed it shows that there is an orientable word w ∈ Γ, such
that θ(w) = t. By the �rst condition L(ηD(C)) is even, thus w1 = g1w

L(ηD(C))/2 is a non�
orientable word that belongs to Λ. It demonstrates that signΛ = ”− ”. It remains to prove
that µ(Γ) is minimal. Observe that γ′ ≥ 1. Thus we obtain µ(Γ′) − µ(Γ) ≥ 2π(γ′ − 1) ≥ 0
by Proposition 4.19.

The above construct corresponds to point (i) of the assertion, where due to the actual
assumptions we have w2 = 0.

Case 1�0�1 Observe that in the actual setting, Lemma 5.39 implies γ ≥ 2. However if
γ = 2 and η is an order�preserving element with respect to C which is used to construct
a required epimorphism then , as it will be demonstrated below, we shall pay attention to
the divisibility of L(η) by 4. For the convenience of the reader we illustrate on the following
diagram, the �ow of argument and subcases into which the proof of Case 1�0�1 falls.

Case 1 − 0 − 1
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N ∗
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��

N ∗
−1(C

∗) = ∅

��

N ∗
−1(C

∗) 6= ∅

��

(5.18)

(5.21) (5.20)

Figure 5.3: Subcases considered in the proof of Case 1�0�1.

We start with procedure N and an order�preserving element ηD(C). If 4 - L(ηD(C)), then
we de�ne

Γ = (2;−; [B∗1]; {( )w1}), θ(g2) = t
−L(ηD(C))+2

2 , θ(g1) = t−1. (5.18)
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We conclude that (−L(ηD(C)) + 2)/2 is even. Hence θ maps a non�orientable word

g2g
(−L(ηD(C))+2)/2

1 (5.19)

to 1, and �nally we see that Λ is non�orientable.
On the other hand if 4 | L(ηD(C)) we distinguish the casesN ∗

0 (C∗) 6= ∅ andN ∗
0 (C∗) = ∅.3 If

N ∗
0 (C∗) 6= ∅, then we again base our construction on procedure N. Moreover we de�ne γ = 2

and use the assignment (5.18) for the glide re�ections. Note that the word (5.19) is no longer
non�orientable. Let d be an odd period in Bi, i = 1, 2 which exists by N ∗

0 (C∗) 6= ∅. Denote
by hd a canonical x� or e�generator that corresponds to d. Observe that word w = gd1hd is
non�orientable and θ(w) = t−dtd = 1 due to (4.36). It gives signΛ = ”− ”.

We now turn to the caseN ∗
0 (C∗) = ∅ i.e. when all periods of isolated orbits and boundaries

are even. If, in additionN ∗
−1(C

∗) 6= ∅ then we apply the procedure N−1 and set the topological
genus to 2. Moreover, we map the glide re�ections according to

Γ = (2;−; [N ∗
−1]; {( )z1}), θ(g2) = t

−L(ηN−1(C))+2

2 , θ(g1) = t−1. (5.20)

Observe that (−L(ηN−1(C)) + 2)/2 is even, which gives that Λ is non�orientable by Lemma
5.24. Nevertheless if N ∗

−1(C
∗) = ∅, then clearly we are not able to use N−1. In this case we use

once more the procedure N and de�ne covering NEC group and the required epimorphism
by

Γ = (3;−; [B∗1]; {( )w1}), θ(g3) = t
−L(ηD(C))−2

2 , θ(g2) = t, θ(g1) = 1. (5.21)

We get signΛ = ”− ” by g1 ∈ ker θ.
We proceed to show that the above groups have minimal measure. We are reduced to

consider two constructions (5.20) and (5.21) since the minimality of measure of the respective
groups in all cases based on (5.18) follow from Proposition 4.19 and Lemma 5.39 which forces
γ′ ≥ 2.4

Consider the case 4 | L(ηD(C)) and N ∗
0 (C∗) = ∅, but N ∗

−1(C
∗) 6= ∅. Due to our assumptions

we have n−1(C
∗) ∈ B1 ∪ B2, where n−1(C

∗) was de�ned in (4.21). Thus

µ(Γ′)− µ(Γ) ≥ 2π(γ′ − 3) if γ′ ≥ 3.

On the other hand if γ′ = 2, then it must hold

2∑
i=1

]Gi(Γ′, θ′)−
2∑
i=1

]Gi(Γ, θ) ≥ 0, (5.22)

3Roughly speaking the �rst (the second) relation describes the case when not all (all) periods of C0 are
even.

4At the beginning of the proof we have denoted by γ′ the topological genus of an arbitrary NEC group
covering a ZN�action given by C0.
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where the families Gi(Γ, θ) were given by (4.6). Hence by the choice of the element n−1(C
∗)

we have
µ(Γ′)− µ(Γ) ≥ 0 if γ′ = 2.

It shows that Γ has minimal measure.
We now proceed to the case 4 | L(ηD(C)) and N ∗

0 (C∗) = N ∗
−1(C

∗) = ∅. Note that L(η)
is now divisible by 4 for every order�preserving element η. Furthermore N ∗

0 (C∗) = ∅ gives
lcmC∗0 < N . Hence if we require θ′ to be an epimorphism onto ZN it must map a glide
re�ection to tv with v odd. We show that upon these conditions we must have γ′ ≥ 3. On
the contrary suppose that γ′ = 2. Then

θ′(g1) = t−c and θ′(g2) = t−
L(η)

2
+c.

Since both numbers: c and c− L(η)/2 are odd, then by Lemma 5.24 we get signΛ = ” + ”,
a contradiction. Obviously γ′ ≥ 3 yields µ(Γ′)− µ(Γ) ≥ 0, as required.

The constructs which have been distinguished in this point correspond in order of appe-
arance to the following items of the assertion: (ii), (vii) and (iii).

Cases 0�1�1 and 0�1�0 First observe that 2 - ]N ∗
0 (C∗) yields N ∗

0 (C∗) 6= ∅. Basing on the
procedure N0 we may construct a covering NEC group together with the following assignment

Γ = (1;−; [N ∗
1 ]; {( )y1}), θ(g1) = t−

L(ηN0(C))

2 .

Since the whole ZN is generated by images of x� and e�generators there exists an orientable
word w such that θ(w) = t. Consequently a non�orientable word g1w

L(ηN0(C))/2 is mapped to
1 which shows that Λ is non�orientable.

We argue that the measure of the above constructed NEC covering group is minimal in
a standard way, i.e. by comparing µ(Γ′) with µ(Γ). First we show that a construction may
not rely on a group (1;−; [B∗1], {( )w1}). Otherwise we would have g1 7→ t−L(η)/2, where η is
an order�preserving element with respect to C. But L(η) is odd regardless of η which follows
from Lemma 4.8. Hence the above group must be enhanced to let us construct a smooth
epimorphism onto ZN . By (5.22) and the choice of n0(C

∗) de�ned in (4.21) we have

µ(Γ′)− µ(Γ) = (µ(Γ′)− 2π)− µ(ΓN0) ≥ 0.

The above construction relates to point (iv) of the assertion.
Case 1�0�0 Observe that Lemma 5.39 yields γ ≥ 2. If 4 - L(ηD(C)) then we apply the

procedure N and set γ = 2 with the assignment given by (5.18). On the other hand if
4 | L(ηD(C)) we put

Γ = (2;−; [B∗1]; {( )w1}), θ(g2) = t
−L(ηD(C))−N+2

2 , θ(g1) = t−1.

We easily check that θ(g2g
(−L(ηD(C))−N+2)/2

1 ) = 1. Furthermore since (−L(ηD(C)) −N + 2)/2
is even we conclude that Λ is non�orientable.
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The minimality of µ(Γ) in this setting is obvious, since in order to construct required
covering group and epimorphism we use character of periods equal to C. Moreover the group
Γ has the minimal possible genus which equals 2.

Both constructions relates to the same point (ii) of the assertion.
Cases 0�0�1 and 0�0�0 By 2 - ]N ∗

0 (C∗) we have N ∗
0 (C∗) 6= ∅. Let d be an odd period

contained in C. By Lemma 5.39 we have γ ≥ 2. Let us denote by hd a canonical x� or
e�generator that corresponds to d. We use the procedure N0 and de�ne

Γ = (2;−; [N ∗
1 ]; {( )y1}), θ(g2) = t

−L(ηN0(C))+2

2 , θ(g1) = t−1.

Note that a non�orientable word gd1hd is mapped to 1, proving that signΛ = ”− ”.
The minimality of µ(Γ) can be shown by Lemma 4.8, the inequality (5.22) and the choice

of element n0(C
∗). We have

µ(Γ′)− µ(Γ) = (µ(Γ′)− 4π)− µ(ΓN0) ≥ 0.

The above construct corresponds to point (v) of the assertion.
Having disposed of the previous steps we can proceed to the situation

⋃
i≥3Ai 6= ∅. As

before, based on conditions (1)�(3) we distinguish 8 subcases. In order to di�erentiate the
cases considered hereafter from the previous ones, we introduce the notation E.a�b�c, where
a, b, c ∈ {0, 1}. The meaning of each symbol is analogous to the previous de�nition a�b�c.
Recall that under the assumption

⋃
i≥3Ai 6= ∅ we now have lcmC∗0 = lcm{2, lcmC∗} by

Corollary 4.22.
Cases E.1�1�1 and E.1�1�0 Since lcmC∗ = N , there is an orientable word w that goes

to t. We use the procedure N, set γ = 1 and map g1 as follows

Γ = (1;−; [B∗1]; {( )w1(2w2)}), θ(g1) = t−
L(ηD(C))

2 .

Observe that the word g1w
L(ηD(C))

2 is non�orientable and belongs to Λ, which gives signΛ =
”− ”.

It is easily seen that µ(Γ) is minimal since

µ(Γ′)− µ(Γ) ≥ 2π(γ′ − 1) ≥ 0

by Lemma 4.19.
The above group Γ appears in point (i) of the assertion.
Case E.1�0�1 Observe that by Remark 5.35 we have signΛ = ” − ” provided θ is onto

ZN . This fact plays a key role in the actual point and for the simplicity of our reasoning we
will not recall it repeatedly once the appropriate epimorphisms are constructed. The proof
falls into two parts: lcmC∗0 < N/2 and lcmC∗0 = N/2. However it is worth noting that we
have assumed now only lcmC∗ 6= N . Let us brie�y discuss why we apply here the condition
that relates to lcmC∗0, rather then the one concerning lcmC∗. The reasons for such approach
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consists in arithmetic relations between these two notions. Observe that under the actual
assumptions we can have

neither lcmC∗0 = lcmC∗ = N, nor 2lcmC∗ = lcmC∗0 = N.

The second relation can not hold since lcmC∗0 = lcmC∗, according to Remark 4.20. It follows
that we are reduced to investigate the cases when lcmC∗0 ≤ N/2. For the convenience of the
reader we illustrate on the following diagram, the �ow of argument and subcases into which
the proof falls.

Case E .1 − 0 − 1

ttjj
jj
jj
jj
jj
jj
jj
jj

))S
SS

SS
SS

SS
SS

SS
S

lcmC∗0 <
N
2

��

lcmC∗0 = N
2

vvll
ll
ll
ll
ll
ll
l

))S
SS

SS
SS

SS
SS

SS
S

(5.23) 4 | L(ηD(C))

�� ))R
RR

RR
RR

RR
RR

RR

4 - L(ηD(C))

��

N ∗
0 (C∗) = ∅

tt ��

N ∗
0 (C∗) 6= ∅

��

(5.24)

]N ∗
−1(C

∗) = 2l > 0

��

(5.23) (5.25)

(5.26)

Figure 5.4: Subcases considered in the proof of Case E.1�0�1.

Let us start with lcmC∗0 < N/2. By point (ii) of Lemma 5.40 we must have γ ≥ 2. Note
that L(ηD(C)) is even by Lemma 4.8, thus we may use the following construction built on a
basis of the procedure N

Γ = (2;−; [B∗1]; {( )w1(22)w2}), θ(g2) = t−
L(ηD(C))−2

2 , θ(g1) = t−1. (5.23)

On the other hand if lcmC∗0 = N/2, then we have two branches of subcases depending on
the divisibility of L(ηD(C)) by 4. Let us consider situation 4 - L(ηD(C)). We use the procedure
N and put

Γ = (1;−; [B∗1]; {( )w1(22)w2}), θ(g1) = t−
L(ηD(C))

2 . (5.24)

Observe that θ(g1) 6∈ ZN/2 ' ZlcmC∗
0
since it goes to an odd power of t. Consequently, θ is

onto the whole ZN .
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Let us now turn to the branch 4 | L(ηD(C)). Here we again distinguish two scenarios:
N ∗

0 (C∗) 6= ∅ and N ∗
0 (C∗) = ∅. Suppose N ∗

0 (C∗) 6= ∅. By the initial assumption that ]N ∗
0 (C∗) is

an even number we may now apply Corollary 4.10. Hence there exists η � an order preserving
element with respect to C such that L(η)/2 is odd. We take an η which veri�es the above
property and based on the procedure N we de�ne the following assignment

Γ = (1;−; [B∗1]; {( )w1(22)w2}), θ(g1) = t−
L(η)

2 . (5.25)

Let us now proceed to the scenario N ∗
0 (C∗) = ∅. We propose to split it into two parts. The

�rst of the distinguished scenarios embraces the situation when ]N ∗
−1(C

∗) = 2l, l ∈ N \ {0}
and N ∗

−1(C
∗) ∩ B∗1 6= ∅. We shall use the procedure N−1 and set the following assignment

Γ = (1;−; [N ∗
−1]; {( )w1(22)w2}), θ(g1) = t−

L(ηN−1(C))

2 . (5.26)

Note that neither the number of empty, nor the number of non�empty period cycles has
changed compared to (5.23)�(5.25), which follows by N ∗

−1(C
∗)∩B∗1 6= ∅. Moreover by Lemma

4.9 we have L(η) = 2 · ]N ∗
−1(C

∗) for every orientation�preserving element with respect to C.
Thus L(η)/2 is even. It follows that L(ηN−1(C))/2 is odd, which eventually yields that (5.26)
de�nes an epimorphism onto ZN , as required.

The second part deals with all remaining cases. We cover them using the procedure N

enhanced according to (5.23).
The minimality of measure of NEC groups de�ned above by constructs (5.23) upon the

assumption lcmC∗0 < N/2, (5.24) and (5.25) is clear by Proposition 4.19 and point (ii) of
Lemma 5.40.

Consider the case corresponding to construct (5.26). We have

µ(Γ′)− µ(Γ) ≥ 2π(γ′ − 1 +
1

n∗−1(C
∗)

) if γ′ ≥ 2.

Furthermore if γ′ = 1, then it holds

6∑
i=1

]Gi(Γ′, θ′)−
6∑
i=1

]Gi(Γ, θ) ≥ 0. (5.27)

By the choice of element n∗−1(C
∗) we get

µ(Γ′)− µ(Γ) ≥ 2π(1− 1

n∗−1(C
∗)

)− 2π(1− 1

n∗−1(C
∗)

) = 0.

On the other hand in the situation corresponding to (5.23) upon the assumption lcmC∗0 =
N/2 one has

µ(Γ′)− µ(Γ) = (µ(Γ′)− µ(ΓN)) + (µ(ΓN)− µ(Γ)) ≥ 4π − 4π = 0.
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The groups which have been built above correspond to points enumerated in the assertion
as follows: (5.23) to point (ii), (5.24) and (5.25) to point (i) and �nally (5.26) to point (vi).

Cases E.0�1�1 and E.0�1�0 Since ]N ∗
0 (C∗) is odd, then by Lemma 4.8 the expression

L(η) takes an odd value for every η - an order�preserving element with respect to C. Hence
we must repeat an odd period of C in order to be able to de�ne a required epimorphism. We
apply the procedure N0 and use the assignment

Γ = (1;−; [N ∗
1 ]; {( )y1(22)y2}), θ(g1) = t−

L(ηN0(C))

2 ,

which by the assumption lcmC∗ = |〈θ(x1, . . . , ey1+y2)〉| = N yields an epimorphism onto ZN .
Let us focus on the orientability character of its kernel. Take an orientable word w such that
θ(w) = t. It su�ces now to observe that a non�orientable word wL(ηN0(C))/2g1 is mapped to
1. It leads us to signΛ = ”− ”.

The minimality of µ(Γ) is obvious by Lemma 4.8 and the choice of the element n∗0(C
∗).

The group that has just been constructed corresponds to point (iv) of the assertion.
Case E.1�0�0 The proof falls into two parts. We distinguish the cases lcmC∗0 = N and

lcmC∗0 < N .
Let us �rst consider the situation lcmC∗0 = N and observe that we must have lcmC∗ = N/2

due to the assumption lcmC∗ < N and Remark 4.20. We apply the procedure N and de�ne
one covering NEC group Γ with two di�erent assignments depending on the divisibility of
L(ηD(C)) by 4. We put

Γ = (1;−; [B∗1]; {( )w1(22)w2}). (5.28)

Furthermore, if 4 | L(ηD(C)) we put

θ(g1) = t−
L(ηD(C))

2 .

On the other hand if 4 - L(ηD(C)) we change the above assignment by putting

θ(g1) = t−
L(ηD(C))+N

2 .

Observe that in both cases g1 goes to tu with u even. It enables us to show that signΛ = ”−”.
Consider a word w ∈ Γ satisfying θ(w) = t, which exists since lcmC∗0 = N . It is worth noting
that the orientability character of w is not assumed here. We take w−ug1 which is non�
orientable word and belongs to ker θ.

A similar reasoning applies to the case lcmC∗0 < N . By point (i) of Lemma 5.40 we must
have γ ≥ 2. As before we also use the procedure N, but set γ = 2

Γ = (2;−; [B∗1]; {( )w1(22)w2}). (5.29)

Moreover we map θ(g1) = t−1 and

θ(g2) =

t−
L(ηD(C))−2

2 if 4 - L(ηD(C))

t−
L(ηD(C)−2−N

2 otherwise.
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By the above g2 is mapped to tu with u even. Thus gu1g2 is a non�orientable word that goes
to 1. It follows that signΛ = ”− ”.

The minimality of measure of covering NEC groups constructed above is obvious by
Proposition 4.19 and point (i) of Lemma 5.40. We have

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓN) + 2π) ≥ 2π(γ′ − 1)

in case of (5.28) and

µ(Γ′)− µ(Γ) = µ(Γ′)− (µ(ΓN) + 4π) ≥ 2π(γ′ − 2),

in case of (5.29), since there holds γ′ ≥ 2.
The groups we have de�ned in this point correspond in order of appearance to groups

labeled as (i) and (ii) in the assertion of the theorem.
Case E.0�0�1 We begin by observing that L(η) is odd for every element η which is

orientation�preserving with respect to C. Since N ∗
0 (C∗) 6= ∅ we apply the procedure N0.

Recall that by Remark 5.35 we have signΛ = ”−” provided we de�ne a smooth epimorphism
onto ZN .

Observe that upon assumptions lcmC∗ < N and 4 | N we must have lcmC∗0 ≤ N/2, which
follows by Remark 4.20.

We �rst consider the situation lcmC∗0 < N/2. By point (ii) of Lemma 5.40 we must have
γ ≥ 2. Then we built a covering group and a required epimorphism in the following way

Γ = (2;−; [N ∗
1 ]; {( )y1(22)y2}), θ(g2) = t−

L(ηN0(C))−2

2 , θ(g1) = t−1. (5.30)

On the other hand if lcmC∗0 = N/2 we distinguish the cases 4 - L(ηN0(C)) and 4 | L(ηN0(C)).
For 4 - L(ηN0(C)) we build a covering NEC group based on the procedure N0 and establish a
required epimorphism by

Γ = (1;−; [N ∗
1 ]; {( )y1(22)y2}), θ(g1) = t−

L(ηN0(C))

2 . (5.31)

Note that L(ηN0(C))/2 is an odd number which yields θ(g1) 6∈ ZN/2 ' ZlcmC∗
0
. It shows that

|θ(Γ)| = N .
Next we proceed to the case 4 | L(ηN0(C)). We shall consider the following family of

positive integers derived from character of periods N0(C)

{N ∗
1 ,N ∗

2 ,N ∗
3 ,N ∗

4 ,N ∗
5 ,N ∗

6 } (5.32)

i.e. the family of orders of images of the canonical elliptic and e�generators of a potential
covering group.5 Observe that the family (5.32) is non�empty and has an even cardinality.
Hence by Corollary 4.10 applied to (5.32) we obtain an element η which is order�preserving

5To be fully compliant to the terminology introduced in Subsection 4.2.1 we shall recall that N0(C) is
character associated to in�ated character of periods C.
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with respect to N0(C) and veri�es that L(η)/2 is odd. Using such an element we may we
de�ne a covering NEC group and the appropriate assignment as follows

Γ = (1;−; [N ∗
1 ]; {( )y1(22)y2}), θ(g1) = t−

L(η)
2 . (5.33)

We proceed to demonstrate that measure of the NEC groups constructed above is mini-
mal. In case of (5.30) we get

µ(Γ′)− µ(Γ) = (µ(Γ′)− 4π)− µ(ΓN0) ≥ 0,

by (5.27), the choice of element n0(C
∗) and point (ii) of Lemma 5.40 which forces γ′ ≥ 2.

Eventually for (5.31) and (5.33) it holds

µ(Γ′)− µ(Γ) = (µ(Γ′)− 2π)− µ(ΓN0) ≥ 0

by (5.27) and the properties of n0(C
∗).

Under the actual assumptions we have distinguished two di�erent types of groups corre-
sponding to points (v) and (iv) of the assertion.

Case E.0�0�0 Since ]N ∗
0 (C∗) is odd we enhance character of periods C by means of the

procedure N0. Although we assume lcmC∗ < N we may still have either lcmC∗0 = N or
lcmC∗0 < N .

Suppose lcmC∗0 = N which yields lcmC∗ = N/2. We de�ne the following NEC group

Γ = (1;−; [N ∗
1 ]; {( )y1(22)y2})

and map the glide re�ection depending on the divisibility of L(ηN0(C)) by 4 according to

θ(g1) =

t−
L(ηN0(C))

2 if 4 | L(ηN0(C))

t−
L(ηN0(C))−N

2 otherwise.

Note that θ is onto ZN by lcmC∗0 = N . We also observe that the only glide re�ection g1 goes
to tu, with u even. Consider a word verifying θ(w) = t. It is easily seen that a non�orientable
word wug1 belongs to Λ, which shows signΛ = ”− ”.

On the other hand lcmC∗0 < N forces by point (i) of Lemma 5.40 that γ ≥ 2. Likewise in
the above case, we de�ne an unique covering NEC group with the two di�erent assignments.
We put

Γ = (2;−; [N ∗
1 ]; {( )y1(22)y2}).

Moreover we always map g1 to t−1 whereas

θ(g2) =

{
t(−L(ηN0(C))+2)/2 if 4 - L(ηN0(C))

t(−L(ηN0(C)+2+N)/2 otherwise.

Since g2 is mapped to tu with u even, we conclude that non�orientable word gu1g2 ful�ls
θ(gu1g2) = 1.
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The minimality of measure of covering groups which have been considered above follows
in case lcmC∗0 = N by (5.27) and the choice of element n∗0(C

∗). In case lcmC∗0 < N we
additionally use point (ii) of Lemma 5.40.

The constructs correspond to items (iv) and (v) of the theorem.

Since the case
∑6

i=1 ]Ai < 2 was not considered in Theorem 5.42 we complete our inve-
stigation by the following remark.

Remark 5.43. Let N be even and suppose that C0 ∈ CPer(−,−)(ZN) ful�ls
∑6

i=1 ]Ai < 2.

Then the universal covering group that covers a ZN�action prescribed by C0 ∈ CPer(−,−)(ZN)
equals

Γ =



(3;−; [ ]; { }), if C0 = (∅, ∅, ∅, ∅, ∅, ∅)(−,−)

(1;−; [N,N ]; { }), if C0 = ({1}, ∅, ∅, ∅, ∅, ∅)(−,−) and N > 2

(1;−; [2, 2, 2, 2]; { }), if C0 = ({1}, ∅, ∅, ∅, ∅, ∅)(−,−) and N = 2

(2;−; [N/d,N/d]; { }), if C0 = ({d}, ∅, ∅, ∅, ∅, ∅)(−,−), d 6= 1 and α2(d) = 0

(2;−; [N/d,N/d]; { }), if C0 = ({d}, ∅, ∅, ∅, ∅, ∅)(−,−), α2(d) = 1

(2;−; [N/d,N/d]; { }), if C0 = ({d}, ∅, ∅, ∅, ∅, ∅)(−,−), α2(d) > 1 and α2(N) = 1

(3;−; [N/d,N/d]; { }), if C0 = ({d}, ∅, ∅, ∅, ∅, ∅)(−,−), α2(d) > 1 and α2(N) > 1

(1;−; [ ]; {( )2}), if C0 = (∅, {1}, ∅, ∅, ∅, ∅)(−,−)

(2;−; [ ]; {( )2}), if C0 = (∅, {d}, ∅, ∅, ∅, ∅)(−,−), d 6= 1 and α2(d) = 0

(2;−; [ ]; {( )}), if C0 = (∅, {d}, ∅, ∅, ∅, ∅)(−,−), α2(d) = 1

(2;−; [ ]; {( )}), if C0 = (∅, {d}, ∅, ∅, ∅, ∅)(−,−), α2(d) > 1 and α2(N) = 1

(3;−; [ ]; {( )}), if C0 = (∅, {d}, ∅, ∅, ∅, ∅)(−,−), α2(d) > 1 and α2(N) > 1

(2;−; [ ]; {( )}), if C0 = (∅, ∅, {d}, ∅, ∅, ∅)(−,−)

(1;−; [ ]; {( )2}), if C0 = (∅, ∅, ∅, {1}, ∅, ∅)(−,−)

(2;−; [ ]; {( )2}), if C0 = (∅, ∅, ∅, {d}, ∅, ∅)(−,−), d 6= 1 and α2(d) = 0

(2;−; [ ]; {( )}), if C0 = (∅, ∅, ∅, {d}, ∅, ∅)(−,−), α2(d) > 0

(1;−; [ ]; {(22)}), if C0 = (∅, ∅, ∅, ∅, {1}, ∅)(−,−), α2(N) = 1

(2;−; [ ]; {(22)}), if C0 = (∅, ∅, ∅, ∅, {d}, ∅)(−,−), d 6= 1 and α2(N) = 1

(2;−; [ ]; {(22)}), if C0 = (∅, ∅, ∅, ∅, {d}, ∅)(−,−), α2(N) > 1

(1;−; [ ]; {(22)2}), if C0 = (∅, ∅, ∅, ∅, ∅, {1})(−,−)

(2;−; [ ]; {(22)2}), if C0 = (∅, ∅, ∅, ∅, ∅, {d})(−,−), d 6= 1 and α2(d) = 0

(2;−; [ ]; {(22)}), if C0 = (∅, ∅, ∅, ∅, ∅, {d})(−,−), α2(d) > 0, α2(N) = 1

(1;−; [ ]; {(22)}), if C0 = (∅, ∅, ∅, ∅, ∅, {2})(−,−), α2(N) > 1

(2;−; [ ]; {(22)}), if C0 = (∅, ∅, ∅, ∅, ∅, {d})(−,−), d > 2, α2(d) > 0,

and α2(N) > 1



5.3. ACTIONS OF GROUPS ON NON�ORIENTABLE SURFACES 129

The area of the respective NEC groups is minimal among all non�orientable surfaces on
which the above tuples of sets are attained as the characters of periods.
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