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Streszczenie

Jednym z podstawowych problemoéw teorii uktadéw dynamicznych jest ba-
danie istnienia orbit okresowych. Rozprawa poswiecona jest automorfizmom
zwartych powierzchni hiperbolicznych, a wiec takich ktorych genus algebraicz-
ny jest wiekszy od 1. Uogélniajgc pytanie dotyczace istnienia orbit okresowych
rozpatrywane sa struktury osobliwe automorfizméw, rozumiane jako zbiory
tych punktéw, ktorych orbity sg krotsze od rzedu przeksztalcenia.

W pracy wprowadzono pojecie charakteru okresow dziatania grupy cyklicz-
nej Zy na zwartej powierzchni hiperbolicznej (a w przypadku powierzchni
Riemanna odpowiadajacego mu pojecia zbioru okresoéw) opisujacego struktu-
ry osobliwe automorfizmu. Znaleziono i sklasyfikowano wszystkie charaktery
okresow w zaleznosci od orientowalnosci powierzchni wyjsciowej i powierzchni
ilorazowej. Udowodniono, ze przedstawione konstrukcje powierzchni dopusz-
czajacych dziatanie Zy zadane danym charakterem okreséw prowadza do po-
wierzchni uniformizowanych przez NEC grupy, dla ktorych miara ich dziedziny
fundamentalenj jest najmniejsza. W przypadku powierzchni Riemanna uzyski-
wane powierzchnie uniformizowane sg oczywiscie przez grupy Fuchsa.

Dla konforemnych automorfizméw powierzchni Riemanna rozwazono po-
nadto nastepujace zagadnienie. Niech A bedzie zbiorem okresoéw dzialania Zy.
Kazdemu zbiorowi A mozemy przypisaé¢ g4 — najmniejszy genus powierzchni,
ktora dopuszcza dzialanie Zy zadane przez A (jest to rownowazne z przy-
pisaniem najmniejszej miary dziedziny fundamentalnej uniformizujacej grupy
Fuchsa). Dla kazdego N znaleziono taki zbior An.x, ze odpowiadajacy mu
genus g4,.. jest najwiekszy sposrod liczb g4.

W rozprawie odpowiedziano na dwa otwarte pytania dotyczace istnienia
homeomorfizmoéw skonczonego rzedu postawione w pracy J. Guaschi, J. Llibre,
Orders and periods of algebraically—finite surface maps, Houston J. Math. 23
(1997) 86-97.
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Summary

One of the fundamental problems the theory of dynamical systems deals
with is the investigation of the existence of periodic orbits. In the dissertation
there were studied the automorphisms of compact hyperbolic surfaces i.e. the
surfaces with algebraic genus greater than 1. The generalization of the question
regarding the existence of periodic orbits brings one to the investigation of
singular structures for automorphisms considered here as sets of those points
whose orbits are shorter than the order of the map.

In this thesis there was introduced a notion of character of periods of action
of a cyclic group Zy on a compact hyperbolic surface which describes singular
structures for automorphism (in case of a Riemann surface its counterpart is a
term set of periods). Based on the orientability character of an initial surface
and quotient surface there were found and classified all characters of periods. It
was proved that the constructions of surfaces on which a particular character
of periods is attained, lead to surfaces which are uniformized by NEC groups
whose fundamental region has a minimal measure. In the case of Riemann
surfaces we clearly obtain surfaces which are uniformized by Fuchsian groups.

For conformal automorphisms of Riemann surfaces, the following problem
was also considered. Let A be a set of periods of a Zy—action. For each set
A there is always a number g4 — the minimal genus of a surface on which
there exists the action of Zy given by A (which is equivalent to finding an
uniformizing Fuchsian group whose fundamental region has minimal measure).
For each N there was found a set A,,.x for which the corresponding genus g4,
is maximal among the numbers ¢ 4.

In the dissertation, the two open questions left in the paper J. Guaschi,
J. Llibre, Orders and periods of algebraicallyfinite surface maps, Houston J.
Math. 23 (1997) 86-97., were solved.
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Osobliwe struktury automorfizméw
powierzchni hiperbolicznych

Autoreferat pracy doktorskiej

Przedmiotem mojej rozprawy doktorskiej sg automorfizmy zwartych powierzchni topolo-
gicznych, ktorych genus algebraiczny jest wiekszy od 1. Powierzchnie speliajace powyzszy
warunek bedziemy nazywac¢ hiperbolicznymi. Stosowany w pracy termin powierzchnie Kle-
ina odnosi sie do powierzchni topologicznych ze struktura dianalityczna, a wiec taka ktora
w charakterze funkcji przejé¢ dopuszcza réwniez odbicia zespolone. W niniejszej rozprawie
zajmuje sie zatem badaniem struktur osobliwych dianalitycznych automorfizméw zwartych
hiperbolicznych powierzchni Kleina, rozumianych jako zbiory tych punktow, ktorych orbity
sa krotsze od rzedu przeksztatcenia. Zagadnieniem, ktoére rozpatruje jest pytanie o realizacje
zadanych struktur okresowych wyznaczanych przez dzialania cyklicznych grup automorfi-
zmoéw. Geneza moich badan jest pytanie postawione przez prof. Jaume Llibre w ponizszej
postaci:

Pytanie 1. Dla rozmaitosci zespolonej M znaleZé zbiory okreséw orbit okresowych odwzo-
rowar holomorficznych M w siebie.

Podstawowymi rozmaito$ciami zespolonymi sa powierzchnie Riemanna i to badanie wta-
snosci automorfizméw krzywych algebraicznych stanowi gtowny przedmiot obecnej pracy, w
ktorej nie rozpatruje sie rozmaitosci wymiaru (zespolonego) wiekszego od 1.

Jak sie okazuje warunek holomorficznosci w przypadku powierzchni hiperbolicznych jest
zalozeniem na tyle sztywnym, ze determinuje stopieri przeksztalcenia ograniczajac jednocze-
$nie jego (skonczony) rzad. Co wiecej w przypadku powierzchni Kleina i stabszego zalozenia
dianalitycznosci odwzorowania, otrzymuje sie analogiczny wniosek. Na mocy twierdzenia
Kerckhoffa [25] kazdy okresowy homeomorfizm zwartej hiperbolicznej powierzchni Kleina
jest topologicznie sprzezony z dianalitycznym automorfizmem powierzchni Kleina o tym sa-
mym typie topologicznym rozumianym jako sygnatura NEC grupy A uniformizujacej X (tzn.
takiej, dla ktorej X jest przestrzenia orbit H?/A). Z powyzszego zatem mozna wywnioskowac,
ze pomijajac zespolong strukture rozmaitosci nie traci sie ogélnosci w badaniu dynamicznych
wlasnodci przeksztalcen. Jednak badajac automorfizmy dianalityczne traktowane jako repre-
zentanty klas sprzezonosci topologicznej homeomorfizméw okresowych mozna wykorzystac
bardzo silne narzedzia analizy zespolonej i geometrii algebraicznej. Dzieki takiemu podejsciu
udaje sie znalez¢ odpowiedz na pytanie sformutowane przez Alseda, Llibre i Misiurewicza:



Pytanie 2 (Alseda, Llibre and Misiurewicz [1], Open Problem 3.3). Dla dowolnej powierzch-
ni zwarte] wyznaczyé zbiory okresow orbit okresowych dla homeomorfizmow skoriczonego rze-
du, redukowalnych oraz pseudo—Anosowa.

w czesci dotyczacej homeomorfizmow skoniczonego rzedu. Przypomnijmy, ze zgodnie z klasyfi-
kacja Nielsena-Thurstona [39] elementy grupy klas odwzorowan M (M) dowolnej powierzchni
M dzielimy wtasnie na wymienione w Pytaniu 2 trzy typy.

W pierwszych rozdziatlach pracy zajmujemy sie analitycznymi przeksztalceniami po-
wierzchni Riemanna. Rozwigzanie Pytania 1 dla sfery C oraz toruséow T jest znaczaco rozne
od odpowiedzi dla przypadku powierzchni o genusie wynoszacym co najmniej 2. Przypa-
dek sfery opisuje twierdzenie Bakera [4, 15], natomiast zadanie dla toruséw zespolonych jest
¢wiczeniem bazujacym na ogolnej postaci przeksztalcen holomorficznych f: T — T (patrz
[31]).

Przyczynami wspomnianych r6znic, miedzy przypadkami hiperbolicznym i niehiperbo-
licznym jest po pierwsze brak gérnego ograniczenia na stopien przeksztalcenia dla CiT. Po
drugie zas wtasnosé, ze holomorficzne odwzorowania powierzchni hiperbolicznych w siebie
sa odwracalne juz przy stabym zalozeniu, ze ich obrazy nie sa jednopunktowe. Wynika to z
przytoczonego ponizej twierdzenia Riemanna—Hurwitza:

Twierdzenie 1 (Farkas and Kra [16]). Niech f: S — S’ bedzie przeksztatceniem holomor-
ficznym zwartych powierzchni Riemanna stopnia K (przez co rozumiemy, ze zbior [~H(Q)
ma moc K dla prawie wszystkich Q € S'), ktdrego obraz jest rézny od punktu. Niech g i~y
oznaczajq odpowiednio genusy powierzchni S i S'. Wtedy mamy

9= Kl —1)+1+3 3" by(P) )
PeS

gdzie bp(P) + 1 jest indeksem rozgatezienia przeksztatcenia f w punkcie P.

Zatem holomorficzne odwzorowania t: S — S powierzchni hiperbolicznych nie maja
rozgalezien, a ich stopien jest zawsze rowny 1. Tym samym jako przeksztatcenia "na" i "1-1"
sa konforemne (przeksztalcenia odwrotne t71: S’ — S sg rowniez konforemne). Co wigcej ich
rzad jest skoniczony co wynika z rezultatu Schwarza, ktory pokazal ze grupa automorfizmow
analitycznych powierzchni hiperbolicznych jest skoriczona (patrz [16]).

Dodajmy, ze stosowany wielokrotnie w niniejszej pracy wzor (1) jest przede wszystkim
wykorzystywany w szczegdlnym przypadku nakryé rozgatezionych. Jeéli bowiem t: S — §
jest analitycznym automorfizmem powierzchni Riemanna o genusie topologicznym g > 2,
to relacja Riemanna-Hurwitza pozwala na wnioskowanie o indeksach rozgalezien nakrycia
S — S/(t). Przy oznaczeniu przez N rzedu przeksztalcenia t oraz przez m;, i = 1,....n
wspomnianych indekséw rozgalezien mamy na mocy (1):

1 I N
=Ny -1D+1+=> b(P)=NAHy-1+1+=> —(m; — 1),
g=N—1)+ +2P§;; f(P)=N(y -1+ +2;mi(m )
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co daje

T =20+ 0

Dynamika homeomorfizméw skonczonego rzedu, ktore dzialaja na powierzchniach Rie-
manna i zachowuja orientacje jest bardzo prosta, poniewaz posiadaja one jedynie skoriczenie
wiele izolowanych orbit okresowych, ktorych okresy sa dzielnikami wlasciwymi rzedu prze-
ksztalcenia. Znany powszechnie wynik mowi, ze dowolny zbior takich dzielnikéw moze by¢
zrealizowany jako zbior okresow dla pewnego ¢ ([17], patrz rowniez Stwierdzenie 2.4). Zamyka
to problem wyznaczenia zbioréw okresow przeksztatcen holomorficznych zespolonych rozma-
itosci wymiaru 1. Mozna jednak pytac o to, czy realizacja zadanego zbioru okreséw naktada
wymagania na typ topologiczny powierzchni Riemanna formutujac kolejne zagadnienie:

Pytanie 3. Dia dowolnego N oraz A — podzbioru zbioru wtasciwych dzielnikéow N, znalezé
nagmniejszy genus hiperbolicznej powierzchni Riemanna, na kiorej mozna okreslié odwzoro-
wanie konforemne rzedu N, ktdrego zbidr okreséw pokrywa sie z A.

Liczbe spetniajaca powyzszy warunek nazywamy genusem A-minimalnym i oznaczamy
ga. Powyzsze zadanie zostalo rozwigzane metodami kombinatorycznymi w oparciu o teorie
grup Fuchsa (Twierdzenie 2.8) przy wykorzystaniu wynikow prac Harvey’a [20] i Macbeath’a
[28]. Z uwagi jednak na zaleznosé¢ od rozktadu na czynniki pierwsze okresow przeksztalcenia,
nie podajemy zamknietej formuty na minimalny genus ograniczajac sie jedynie do wskazania
najlepszych oszacowan (Stwierdzenie 2.10). W rozdziale 2.2 rozwazamy natomiast problem
maksymalnego genusa, czyli znalezienia takiego podzbioru dzielnikow N, ktoérego relizacja
jako zbioru okresow automorfizmu analitycznego wymaga modelowania na powierzchni o
najwiekszym genusie sposrod liczb g4 odpowiadajacych r6znym podzbiorom zbioru dzielni-
kow wlasciwych N. Powyzsze mozemy sformalizowaé¢ w nastepujacej postaci:

Pytanie 4. Dla kazdego N znaleié taki zbior okresow Apmax, aby odpowiadajgcy mu genus
Aax—minimalny dla kazdego A podzbioru zbioru dzielnikéw wtasciwych N spetniat warunek

g-A S gAmax'

Narzedzia, ktore zostaly wykorzystane do rozwiazania Pytania 4 sg standardowymi me-
todami analizy, teorii grup i teorii mnogosci. Uzyskane wyniki wymagaly przeprowadzenia
serii elementarnych obliczen, ktorych szczegdly moglyby sie jednak okaza¢ dla Czytelnika
nuzace i jako takie zostaly w pracy pominiete. Ta cze$¢ rozprawy zostata opublikowana w
artykule [35].

W drugiej czedci pracy rozpatrujemy wersje wymienionych powyzej Pytan 11 3, uogdol-
nione dla homeomorfizméw skonczonego rzedu dziatajacych na powierzchniach Kleina. Roz-
wazamy nastepujace zagadnienie:

Pytanie 5. Dla odwzorowania skoriczonego rzedu dziatajgcego na zwartej powierzchni Kleina
znalesé zbior punktow, ktorych orbity sq krotsze od rzedu przeksztatcenia oraz wyznaczyé jego
okresy.
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Podobnie jak w przypadku homeomorfizméw dziatajacych na powierzchniach Riemanna
i zachowujacych orientacje, klasyfikacje struktur okresowych uzyskuje sie rozwazajac jedynie
podrodzine homeomorfizméw ztozona z odwzorowan dianalitycznych. Z uwagi na jakosciows,
roznice w strukturze zbioru osobliwego w poréwnaniu z poprzednim przypadkiem, jaka jest
wystepowanie sktadowych jednowymiarowych (wymiaru rzeczywistego 1) definiujemy w roz-
dziale 3 syntetyczna wielkos¢ za pomoca, ktorej opisujemy go w kolejnych czedciach pracy.
Do tego celu wykorzystujemy charakter okresow oznaczany jako &€;. Zawiera on informacje
nie tylko o dlugosciach orbit izolowanych, lecz réwniez informacje o okresach sktadnikow
brzegowych, jedno— i dwustronnych owali oraz tancuchow. Zauwazmy, ze wyodrebnienie tak
okreslonych sktadowych zbioru osobliwego nie jest nowym narzedziem, gdyz pojawito sie juz
w pracach [42]-[44] oraz w przypadku inwolucji w artykule [9]. Uogolnieniem Pytania 3 jest
nastepujace

Pytanie 6. Dla dowolnego N oraz charakteru okresow €y, znaleZé minimum miary obszaru
fundamentalnego NEC grupy A, takiej ze na powierzchni H? /A mozna okresli¢ dianalityczny
automorfizm rzedu N, ktory realizuje &y jako swdj charakter okresow.

Poniewaz tym razem nie zaktada sie, ze brzeg jest zbiorem pustym, inaczej niz w przypad-
ku powierzchni Riemanna minimalizacja obszaru fundamentalnego grupy A nie jest tozsama
z minimalizacja genusa powierzchni X. Wyniki dotyczace analizy poszczegdlnych przypad-
koéw ze wzgledu na orientowalno$¢ badanej powierzchni X, powierzchni ilorazowej X /(t) oraz
parzystos¢ N zostaly sformutowane w sze$ciu twierdzeniach: 5.5, 5.10, 5.17, 5.25, 5.36 1 5.42.
Dodajmy przy tym, ze stosujac modyfikacje metod przedstawionych w rozdziale 4 mozna
rowniez uzyska¢ formuty minimalizujace genus przy zatozeniach dotyczacych liczby sktadni-
kow brzegowych (lub odwrotnie: liczbe sktadnikow brzegowych przy zalozeniach dotyczacych
genusa). Podobne wyniki, cho¢ bez rozrézniania zbior6w osobliwych automorfizmow zostaty
uzyskane w monografii [8].

Prostota implementacji podanych w pracy procedur sprowadza je, w kazdym z rozpa-
trywanych przypadkow, do wykonania serii obliczen bazujacych na zdefiniowanych w pracy
wlasnosciach kombinatorycznych zbioréw liczb naturalnych. Zauwazmy przy tym, ze niektore
zagadnienia zwigzane dzialaniem cyklicznych grup izometrii na powierzchniach sg przedmio-
tem artykulow popularnych, czego przyktadem jest [26].

Dzieki przedstawionym tu konstrukcjom, w Przyktadach 2.11 oraz 5.29 udalo si¢ odpo-
wiedzie¢ na dwa otwarte pytania, ktore postawiono w pracy [18].

Zagadnienia zwigzane z wlasnosciami odwzorowan powierzchni sa czestym tematem dy-
sertacji doktorskich. Z niektorymi z nich mialem przyjemnosé zapoznaé sie podczas przygo-
towywania wlasnej rozprawy: [12, 13, 38| — za co serdecznie dziekuje ich Autorom.
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1.1. INTRODUCTION 7

1.1 Introduction

One of the main problems in the theory of dynamical systems is the determination of the
existence of periodic orbits and more generally, the structure of the set of periods, which is
considered here as the set of periods of periodic orbits together with its respective multipli-
cities.

In the present paper we deal with periodic orientation—preserving homeomorphisms of
closed orientable surfaces >, of genus g > 2 and in connection with the above set of periods
we define the minimum genus of a surface on which there exists a map realizing a given set
of periods. Although the behaviour of the iterations of those homeomorphisms for all initial
points is very simple: there is only a finite number of orbits of periods being proper divisors
of the order of the homeomorphism. The minimum genus problem in that setting has not
been investigated.

For each fixed g, there are only finitely many finite groups G that act on X, by orientation—
preserving self-homeomorphisms of X,. By a result of Hurwitz |21] the order of G is bounded
by 84(¢g—1) and in particular Wiman [41] improved on this bound for a cyclic group obtaining
2(2g+ 1) as the maximum possible order for a periodic homeomorphism. On the other hand,
for each G there is an infinite sequence of values of g such that G acts on >J,. This sequence
is called genus spectrum of G (see [27],[29)]).

Let G = (f) be a finite cyclic group of order N that acts by conformal automorphisms on
a compact Riemann surface S of genus g > 2. Associated to this is a set A of periods defined
to be the subset of proper divisors d of N such that, for some z € S, x is fixed by f? but not
by any smaller power of f. For an arbitrary subset A of proper divisors of N, there is always
an associated action and, if g4 denotes the minimal genus for such an action, an algorithm
is obtained here to determine g4 (Theorem 2.8). It is natural to relate a structure of the set
of periods of a Zy—action to a sequence of genera g of X, on which Zy realizes that given
structure. We thus get a partition of the genus spectrum of Zy into subsequences, which
are not necessarily disjoint, that correspond to the possible sets of periods. The smallest
member of each of the above subsequences that depend on A is just the minimal genus g 4.
It is worth pointing out that the smallest element among all subsequences was obtained by
Harvey [20]. Furthermore, in section 2.2 a set Ay is determined for which g4 is maximal
(Theorem 2.16).

Another classification of orientation—preserving periodic maps on compact orientable sur-
faces up to topological conjugacy was obtained by Nielsen [34], Smith [37] and Yokoyama
[42]. Conjugated maps have the same structure of the set of periods but the opposite impli-
cation clearly does not hold. In [42] (Theorem 5, p.92), the number of non—conjugated maps
is given when the genus of a surface and the structure of periods are fixed.

It is well-known that any N—periodic self-map of hyperbolic surface is an isometry respect
to some hyperbolic metric. Therefore our approach involves combinatorial techniques based
on Fuchsian groups. We use to a great extent results of Harvey [20] and Macbeath [28].
Harvey’s theorem provides necessary and sufficient conditions for the abstract Fuchsian group
to be a universal covering transformation group of the cyclic group, while Macbeath gives
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a formula for the number of fixed points for each non-identity element of a cyclic group of
automorphisms of compact Riemann surface. The generalization of that formula to closed
non—orientable surfaces was obtained by Izquierdo and Singerman [22].

To fix terminology, let f : M — M be a self-map of a set M, and n be a positive integer.
Let Fix(f) be the fixed point set of f, and P,(f) the set of periodic points with least period
n

Fix(f) = {zeM|z=f(x)},
P.(f) == {reM|x=f"(x)and z # f¥(x) for any k < n}
= Fix(f")\ Ule(fk

Denote by Per(f) the set of positive integers corresponding to least periods of periodic
orbits, Per(f) :={n € N| P,(f) # 0}.

In order to assure the existence of periodic orbits we need a certain type of growth for
the number of fixed points. Let G be a finite non-trivial group of self-maps of a given set
M. By (t) we will denote the subgroup generated by ¢. Note that ordt = N implies that
any period of ¢ divides N. Conversely suppose that d is the least period of a point x € M
and there is r < d such that N = dm + r. But now z = t"(x) = t"(t%"(z)) = t"(x), that
contradicts our assumption.

The above conclusion leads us to the definition of the set PPer(Zy) of potential periods

of a Zy—action
PPer(Zy) = {A| A C Dy(N)},

where Do(N) = {d | d < N,d | N}. We restrict our attention to the cases where M is a
hyperbolic compact Riemann surface.
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1.2 Preliminaries

Recall that the hyperbolic plane is the set H? = {z+iy € C | y > 0} with the metric induced

by
J v dx? + dy?
§ ="
Y
For U C H?, the hyperbolic area is given by

M@:Lm?

Y

always if this integral exists. It is well known that the set of orientation preserving isometries
of H? is given by the projective special linear group

PSL(2,R) = {A € GL(2,R) | det(A) =1}/{£I}
B az+b
= e cz+d

| a,b,c,d € R ab— cd = 1}.

Let us observe that orientation preserving isometries are the bijective biholomorphic
maps from H? to itself and form a group under superposition. Unless otherwise stated this
group will be denoted as Aut(H?). Throughout the first part of the dissertation S stands
for a compact Riemann surface and similarly to the notation above we let Aut(S) stand
for a group of bijective biholomorphic maps from S to itself. Those maps are called confor-
mal automorphisms of S. The following uniformization theorem is the starting point in a
combinatorial study of compact Riemann surfaces.

Theorem 1.1 (Farkas and Kra [16]). Every compact Riemann surface S of genus g > 2 is
conformally equivalent to H? /A, where A is a freely acting discontinuous group of Aut(H?).
Furthermore, m(S) ~ A.

For a Riemann surface S we thus have an unramified holomorphic map 7: H? — S.
Moreover the homeomorphism between the orbit space H?/A and S induced by the map =
gives rise to the unique complex structure on H?/A under which the canonical projection
H? — H?/A is a holomorphic map. We then say that A uniformizes S. A Fuchsian group is
a discrete subgroup of the topological group PSL(2,R). If a Fuchsian group I' has compact
orbit space it is known that it has a presentation of the form

generators:  as, by, ..., Gy, by (hyperbolic)
X1, T2, ..., T (elliptic)
relations: " =ay? =...=al" =1, m; >2 (1.1)
Y

T1T92...Tp H[azbz] = 1, [(llbl] = a;lbjlaibi.

i=1
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The integers my, mo,...,m, will be called periods of the Fuchsian group I' and v the
orbit genus. The symbol (v;my, ma,...,m,) will be called the signature of T'. From now on
we require each Fuchsian group to be cocompact. Every Fuchsian group has an associated
fundamental region, whose hyperbolic area depends only on the signature of the group. For
a group with presentation (1.1) is given by u(T) = 27(2y — 2+ > (1 — m;")). Recall
that an abstract group I' defined by (1.1) can be realized as a Fuchsian group if and only if
w(I) > 0. Using this formula we can give explicitly all the exceptional signatures that cannot
be attained by Fuchsian groups. These are the following:

(0;mq,m2), (0;2,3,3),(0;2,3,4), (0;2,2,m4), (0; 2,3, 5) (1.2)
(0;2,3,6),(0;2,2,2,2),(0;2,4,4),(0; 3,3,3).

We shall use the above list in section 3 while constructing Fuchsian groups in terms of
their signatures.

It is known that if G < Aut(S) then orbit space S/G is also a compact Riemann surface.
We emphasize that G is not assumed to be the full group Aut(S). Furthermore the follo-
wing theorem yields information about the form of G. A Fuchsian group having no elliptic
generators will be called a surface group.

Theorem 1.2 (Harvey [20]). A finite group G acts as a group of automorphisms of some
compact Riemann surface of genus g > 2, if and only if G is isomorphic to the factor group
['/A, where I is a Fuchsian group with compact orbit space and A a Fuchsian surface group
with orbit genus g.

Applying the Riemann—Hurwitz formula to the projection S — S/G we obtain
29 -DIGI " =20y =)+ (1—m"). (1.3)
i=1

Observe that the group I' of automorphisms of H? is formed by lifting all elements of G.
Moreover there is a homomorphism ¥* from the Fuchsian group I' onto the group G whose
kernel is a surface group, that makes the following diagram commutative

[ xH? —— H?

AL s

GxS —— S

and ker(¢*) = A ~ m(S). We then say that the G-action on S is uniformized by natural
epimorphism ¢*: I' — G. If ¢ € G then following Macbeath we call a pair (¢,5) a sur-
face transformation and (G, S) a surface transformation group. The transformation group
(T, H?) will be called the universal covering transformation group of (G,S). A homomor-
phism ¢ : I' — G having a kernel that is a surface group is called smooth. Recall that an
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epimorphism is smooth if and only if it preserves the periods of the elliptic generators (see
[20]).

Assume now that Zy is acting on a compact Riemann surface S. We shall consider the
set of periods of Zy—actions as the set of Per(¢) taken over all surfaces S and conformal
automorphisms t € Aut(S) of order N, that is

Per(Zy) = {Per(t) | S — surface, t € Aut(S5), ordt = N}.

The definition above involves the sets Per(t) that clearly depends on the surface S on
which ¢ is acting. However by a simple combinatorial argument it does not depend on the
choice of generator within the group (¢). In this sense we may consider the set of periods of
a Zn—action on a particular surface S, which is stated in the following proposition. First we
need a lemma ([32], Lemma 1).

Lemma 1.3. Let f : M — M be a self map of a set M. If ordf = N and (N,m) = m/, then
Fix(f™) = Fix(f™)

Proposition 1.4. Suppose that (f) is acting as a group of self-maps of a set M. Let ordf =
N and (f) ~ (f™). Then, P,(f) = P.(f™) for each n.

Proof. Suppose w = f™, where (N, m) = 1. Since (N, km) = (N, k) then by Lemma 1.3 we
obtain equivalence of the following sets

Fix(w®) = Fix(f™") = Fix(f*).
In consequence P,(f) = P,(f™) as required. O

Note that we have actually proved that it is not only immaterial which generator we
choose within the group (t) to define Per(t). Moreover the same (let us say i-th) iteration
of any generator has identical fixed point set and thus also the set of periodic points of any
least period.

It is well-known that both sets PPer(Zy) and Per(Zy) are equal. However for the co-
nvenience of the reader, in the next section we give the proof based on Macheath’s result.
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1.2.1 Definitions and Notation 1

In this section we establish notation that we shall use.

(0) Let A € Per(Zy). It is of interest to know the minimum genus of a surface on which
A is attained as the set of periods. Denote by g4 the minimal genus for such an action
of Zn. We will call the number g4 the A-minimum genus.

(1) Do(N) = {d | d < N,d| N}, Dy(N) = {d | d #1,d | N},
(2) Let 6,: N — N denote the Dirac delta function: d,(y) equals 1 if x = y and 0 otherwise.

Let B be a subset of divisors m; of N that all of them are greater than 1 ie. B =
{mq,...,my} € D;(N). All subsequent definitions in this section apply to B as defined above.

(3) Let lemB = lem(my, ..., my).

(4) Let N = pi*...pj» and let o, (N) = 7.

,,,,,

(5) Let A, (B) be the set of elements in B divisible by the maximum power of the prime
factor p; i.e. A, (B) ={m € B | a,,(m) = o, (lemB)},

(6) If there is only one element in the set A, (B) we call it an isolated element and define
F(B) to be the set of all isolated elements of B: F'(B) = {m € B | 3i A,,(B) = {m}}.

(7) Let C(B) be the set of elements of B which are divisible by the maximum power of 2
but are not isolated: C(B) = Ay(B) \ F(B),

(8) If 24 4C(B), let t(B) = min{m € B | m € Ay(B)} and define
o - [ B it21:CE)
0, if 2 | 4C(B).
In this way we obtain that G(B) is either empty or a singleton.

Furthermore, we introduce two auxiliary maps A, As.
(9) Let B C Dy(N) and let A, Ay be given by the formulas
AB) = Y (1=m™+ Y (1-mH+ > (1-m),

meB meF(B) meG(B)

Ay(B) = 1— Noy(lemB) + gA(B).

Remark 1.5. Assume that ) # B C D1(N). Then Ay(B) C F(B) implies G(B) = 0.

Remark 1.6. Observe that A € Per(Zy) and B C Dy(N) are sets. Thus do not contain any
repetitions.
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2.1 The Set of Periods of Cyclic Groups Actions

We recall the following theorem of Harvey, that gives necessary and sufficient conditions on
a group [' to have a surface group A as a normal subgroup of finite index, such that the
factor group I'/A is cyclic.

Theorem 2.1 (Harvey [20]). Let I' be a Fuchsian group of the form (1.1) with orbit genus
v, and let M = lem(my,...,my). There is a smooth epimorphism ¢ : I' — Zy if and only if
the following conditions are satisfied:

(i) lem(my, ..., My, ...,my) = M for all i, where T; denotes the omission of m;;
(11) M divides N, and if v =0, then M = N;
(1ii)) n # 1, and, if v =0, then n > 3;
(iv) if 2|M, the number of periods of the group I' divisible by the mazimum power of 2
dividing M is even.

For the sake of completeness we recall also a theorem of Macbeath, that we shall need in
order to compute the set of periods of a Zy—action.

Theorem 2.2 (Macbeath |28]). Let (G,S) be a Riemann surface transformation group and
(T, H?) the universal covering group. Let 1, ..., T, be generalors of the mazimal finite cyclic
subgroups of I' of orders myq,...,m, respectively, including exactly one for each conjugacy
class. Let * denote the natural homomorphism of T' on G. Fort € G\ {Id} let €(t) be 1 or
0 according as t is or is not conjugate to a power of ¥*(x;) in G. Then the number of points
of S fized by t is given by the formula

#Fix(t) = |[Na((t |Zq myt, (2.1)

where Ng((t)) denotes the normalizer of subgroup (t) in G.

If G is cyclic the formula (2.1) is particularly easy to handle although we first need a
preliminary result.

Proposition 2.3 (Harvey [20]). A homomorphism * from a Fuchsian group I' onto a finite
group G is smooth if and only if it preserves the periods of I', i. e. for every elliptic generator
x;, of order m;, ¥*(x;) has order m;.

By the above we get ¢;(t) = 1 if and only if ord¢ divides m; and consequently
tFix(t) = N Z m;
m;,ordt|m;

Observe that #Fix(t) is completely determined by I' and does not depend on the choice of
natural homomorphism. The following proposition yields information about the structure of
the set of periods.
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Proposition 2.4. Suppose that (I',;H?), where T is given by (1.1), is the universal covering
transformation group of a transformation group ((t),S), ordt = N. Then, if d | N,

{1P,(t) = d 4{m; | m; = N/d}. (2.2)
Proof. The proof is by induction on the number of prime factors of d. Observe that
#Fix(t?) = NZ #{m; | m; = ordt"}m;*, (2.3)
k|d

by Theorem 2.2. Suppose firstly d to be prime. Since any period of ¢ divides N we may
assume d | N and conclude that §P;(t) = N#{m; | m; = ordt®}m;* = di{m; | m; = N/d}.

If now (2.2) holds for the divisors of N having no more than r prime factors counted
with multiplicities, we can easily show that it also holds for d that has r» 4+ 1 prime factors.
Indeed, since k < d, k | d, k has no more than r prime factors and we obtain

Fix(th) —Py(t) = Y #P(t)= Y ki{m; | m; = N/k}

k<d,k|d k<d,k|d
= Z Nm;'#{m; | m; = ordt*},
k<d.k|d
which together with (2.3) gives our assertion. O

We are now in a position to show that PPer(Zy) = Per(Zy).

Corollary 2.5. The set of periods Per(Zy) of the cyclic group Zy is equal to the set of
potential periods PPer(Zy).

Proof. Suppose that A = {dy, ...,dy} € PPer(Zy) and A # (. We shall construct a Fuchsian
group I' with compact orbit space, such that (T, H?) covers the transformation group ((¢),5)
and Per(t) = A, where ordt = N. In order to achieve this, we define

[ = (1;N/dy, N/dy, ..., N/dy, N/dy). (2.4)

The group I' is Fuchsian with orbit genus 1 and two elliptic generators of each period
equal to N/d;. It is easy to check that the group (2.4) satisfies the conditions of Theorem
2.1. By Proposition 2.4 it follows that the transformation group ((t),S) satisfies Per(t) =
{dy,...,dy} € Per(Zy) with S being a surface of genus g = Nk — >.F d; + 1 which is a
consequence of (1.3).

The only point remaining concerns the case A = (). Again, by Proposition 2.4 it is clear
that I' has to be a surface group (7; —). Consider a smooth homomorphism of I" onto Zy
that maps each hyperbolic generator a;, b; onto any element of order N. Note that any such
epimorphism is smooth since I' has no elliptic elements. By the Riemann-Hurwitz formula
(1.3), we now obtain

—2(9]\; Do),

because the terms depending on the periods of I' disappear. Since we are investigating only
hyperbolic surfaces (g > 2) it follows that v > 1. n
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Remark 2.6. By the above we conclude that the minimum genus of a hyperbolic surface on
which Zy acts periodic points freely equals N + 1.

Example 2.7. The following example gives surface homeomorphisms of order N > 2 that
acts on Riemann surfaces without periodic points. In order to construct the required maps
we consider the closed surface of genus N + 1 embedded in R3, modelled as a sum of a torus
symmetric with respect to the z—axis with N holes centered in points laying on the external
equator corresponding to the multiplicities of the angle 2w /N and N tori attached to it (see
Figure 2.1 below, for N = 3). Then the rotation t by 2w /N about the z—axis is a conformal
automorphism of order N satisfying Per(t) = 0. The quotient surface is a 2-torus.

The next theorem shows how to find the signature of a covering group I', such that the
genus of the underlying surface S is minimal among all surfaces on which Zy attains A as
the set of periods.

Theorem 2.8. Let N = pi'pi2..pi», N # 2,3,4,6. Suppose that A = {di,ds,...,dy} €
PPer(Zy), k > 2. Let B = {N/dy,N/ds, ..., N/dy}. Then (T',H?), where

[ = (1 - dx(lemB); B, F(B), G(B)) (2.5)

is a universal covering transformation group of ((t),S), such that ordt = N. Furthermore
Per(t) = A, and genus of S equals g.4.

Proof. As we are interested in those Fuchsian groups I' such that there exists a smooth
homomorphisms of I' onto Zy, we again apply Harvey’s theorem. The repeated periods by
means of the set of isolated periods F'(B) and the set G(B) correspond to conditions (%) and
(iv) of that theorem. Recall also that due to point (%), v = 0 implies lemB = N. Note that
genus of the group given by (2.5) equals 0 if and only if lemB = N. On the other hand if
lemB # N then its genus is equal to 1.

We show firstly that Fuchsian group given by (2.5) satisfies Harvey’s conditions. Obvio-
usly 8A,, (B)+1A,, (F(B)) > 2 for every prime factor of lemB. Hence condition (i) of Theorem
2.1 is satisfied. Observe that in case k = 2 and lem(N/dy, N/dy) = N we get that d; and d, are
coprime, hence §B+4F(B) > 4 and condition (74i) follows. The set Ay(B) splits naturally into
two subsets, namely Ay (B) N F(B) and Ay(B) \ F(B). Since Ay(A2(B)NF(B)) = A (F(B))
we obtain that §.45(B) + #.Ax(F(B)) is even if and only if §(A2(B) \ F(B)) is even. Thus in
case 2 1 f(A2(B) \ F(B)) we change the parity of §.42(B) + A2 (F (B)), by adding the element
min Ay (B). Thus point (iv) of Theorem 2.1 follows. Moreover Per(t) = {dy,ds,...,dx} = A
by Proposition 2.4.

We now proceed to the proof of minimality of genus of the surface S. Suppose that there is
a universal covering transformation group (I';, H?) and its underlying surface transformation
group ((t1),S1) such that ordt; = N, Per(t;) = A and genus of surface S; equals ¢g;. Assume
[y = (y;mh,ms,...,m; ). It follows that all the periods of I'; are contained in B, i.e.
m;, € B. Otherwise Per(t;) # A, by Proposition 2.4. Define mr(N/d;) and mr,(N/d;) to
be multiplicities of N/d; appearing as periods of the groups I' and I'y respectively. Observe
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Figure 2.1: Automorphism of order 3 acting freely on the surface of genus 4.
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that if N/d; € F(B), then there is 1 < i < n such that A, (B) = {N/d;}. Thus in order
to satisfy condition (%) of Theorem 2.1 we necessarily must have mp, (N/d;) > 2. If N/d; #
min Ay (B) or G(B) = 0, then mp(N/d;) = #A,,(B) + 1A4,,(F(B)) = 2. Hence mr,(N/d;) >
mr(N/d;). In case min Ay (B) € F(B) and G(B) = {min As(B)} we obtain mp(min Ay(B)) =
3. Obviously if mr, (min A (B)) > 3 we certainly have mr, (N/d;) > mp(N/d;) forall1 < j <
k. Otherwise mr, (min.A45(B)) = 2 implies that there is N/d; € A3(B), N/d; > min Ay(B
satisfying mp, (N/d;) > mp(N/d;). Furthermore, observe that

1—(N/dj)™' > 1 — (min Ay(B)) " (2.6)

~—

Note that in both cases we have n; > tB+4F(B)+1G(B). Moreover 7; = 0 implies lemB = N
that finally gives v = 0. Since v < 1 the above and (2.6) show that g < g; and this is precisely
the assertion of the theorem. O]

We have just skipped in the last theorem the case k = 1. We complete the study by the
following remark.

Remark 2.9. If k = 1 and the remaining assumptions of Theorem 2.8 hold then the universal
covering group satisfying conditions required there equals

(0;N,N,N),  if A={1}, 2fN
I'=<{(0;N,N,N,N), if A={1}, 2| N,

It is worth noting that applying directly the remark above and Theorem 2.8 for N =
2,3,4,6 we may obtain exceptional signatures from the list (1.2). As an example take N = 6
and A = {1, 2,3} that would led us to the Euclidean group (0;2, 3,6). Analogously for N = 2
and A = {1} we would obtain by Remark 2.9 the group (0;2, 2,2, 2). In Table 2.1 we consider
the excluded cases.

Although in general an exact formula for the A-minimum genus g4 seems to be compli-
cated, in the next proposition we provide its upper and lower bounds. Note that Harvey in
fact found the smallest .4-minimum genus.

Proposition 2.10. Under the assumptions of Theorem 2.8, we have

%(N(k—z)—idiH)ggASNk—idﬁl- (2.7)

i=1 =1

Proof. By Theorem 2.8 we have g4 = Ay(B). Clearly 1 - N+ N/2%"  _o(1—m™') < Ay(B).
To show also the upper bound, observe that §/'(B) + #G(B) < 8 by Remark 1.5 and in the

case where this inequality is sharp our assertion follows. Furthermore, if there is equality
and G(B) # () then B\ F(B) C Ay(B). Hence

AB <Y (1-m™H+ > (1-mH+ > (1-m),

meB meF(B) meB\F(B)



2.1. THE SET OF PERIODS OF CYCLIC GROUPS ACTIONS 19

since G(B) = {min Ay(B)}. Finally, F'(B) = B yields the right—hand bound, which completes
the proof. O

In general, for k£ > 3, the bounds at (2.7) cannot be sharpened. That is to say, for each
N there exists a set of periods A such that g4 equals the left-hand or the right—term term
of inequality (2.7).

As a final remark in this section we give an example of application of the combinatorial
argument used in Theorem 2.8.

Example 2.11. Let ¥, be a hyperbolic surface of genus g and suppose f to be a finite
order orientation-preserving self-homeomorphisms of order N of X,. It was left as an open
question in [[18], p.478] as to whether there was a Zy—action on a surface of genus 3 so that
4 € Per(f) but 1,2 & Per(f). By (1.4) we are looking for a smooth epimorphism *: ' — Zy.
By Proposition 2.4, we must have N/m; > 2 for all i and at least one N/m; = 4 unless N = 4
in which case the action must be fized point free. This latter case cannot arise for g = 3 by
Remark 2.6. By Theorem 6 of [20] N = 4k > 4 implies g > max{2,k}. Thus N = 8 or
N = 12. For N = 8, we have A = {4} and for N = 12, A = {4},{3,4},{4,6},{3,4,6}.
By Theorem 2.8, the corresponding universal covering groups for the minimal genus g4 are,
respectively, (1;2,2) for N =8, (1;3,3), (0;3,3,4,4), (1;2,2,3,3), (0;2,3,3,4,4) for N =
12. But the minimum genera are then 5,9,6,15,9 respectively so that there is no action of
the required type on a surface of genus 3.
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2.2 The Maximum Genus Problem

Abstract of the section

Since the content of the actual section comprises mostly some de-
licate and detailed applications of standard methods based on Ha-
rvey’s and Macbeath’s results we give here a short abstract anti-
cipating the forthcoming investigations. First, recall where we are.
Let G = (f) be a finite cyclic group of order N that acts by con-
formal automorphisms on a compact Riemann surface S of genus
g > 2. Associated to this is a set A of periods defined to be the sub-
set of proper divisors d of N such that, for some z € S, x is fixed
by f% but not by any smaller power of f. For an arbitrary subset A
of proper divisors of NV, there is always an associated action and,
if g4 denotes the minimal genus for such an action. In the actual
section we focus on a set Ay ax of proper divisors of N for which g4
is maximal. Furthermore in the general case we observe that Apax
corresponds to the full set D1 (V) or D1(N)\{c1}, where the terms
D;1(N) and ¢; were introduced in Subsection 1.2.1. Thus roughly
speaking the more periods we require to appear while Zy acts on
a hyperbolic Riemann surface the higher value of its genus shall
be expected. However the above general concept does not cover all
the cases forcing us to find all exceptions.

We already know that any set A of proper divisors of N can be realized as the set
of periods of some Zy—action on a compact Riemann surface. Associating to each of the
sets A the A-minimum genus g4 we may introduce the following relation: A; precedes A,
(A <z, As) if ga, < ga,. This relation is reflexive and transitive, thus the set Per(Zy)
with this relation is a quasi-ordered set. Fix N. We then may ask for the maximal value of
ga = ga(N) and a corresponding maximal element of (Per(Zy), <z, ). A set for which g4 is
maximal will be denoted by A,.. Obviously there may exist more than one maximal element.
Nevertheless, since we are interested in maximum value of g4 it is not our purpose to study
all maximal elements in (Per(Zy), <z, ). Therefore just the determination of any of them
will be regarded as a satisfactory result. We continue to use notation and symbols introduced
previously in Subsection 1.2.1. Let N = pi'..pl» and B C D;(N). Unless otherwise stated
we assume that B # 0, {N}. We define

Di(N)\{er}, i GDUN)) =0, 2| N, N #£2'

D.(N) =
() {Dl(N ) otherwise,

where ¢; = min Ax(D1(N)). Note that if N = 2"M for M odd, then ¢; = 2". Recall that by
Theorem 2.8 Ay(B) equals g4, where B = {N/d | d € A}. During the following calculations
we will see that in a "general" case we have

As(B') < Do(Du(N/pi)) < As(Di(N)), (2.8)
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where B’ C D;(N/p;) and nearly all exceptional cases given at the end of this section arise
when one of the inequalities above does not hold. Observe that the both maps A = A(B, N)
and Ay = Ay(B, N) in fact depend on two arguments: B C D;(N) a set of divisors of N
being the order of a cyclic group and the number NV itself. As we fix N, for convenience in
notation we ignore the dependence of A and A, on N. Therefore although B' C D;(N/p;)
we regard B’ as a set of divisors of N.

Observe also that

Ay(B') = Ao(Du(N/pi)) = 27 N(A(B') = A(D.(N/p1))). (2.9)
We thus begin with a study of the left-hand inequality by considering the map A.

Lemma 2.12. Let N = p{'py?...p'", where n # 2 or n = 2 and min{ry,ro}
> 3. Then

Proof. We have divided the proof into four parts depending on the cardinality of the set of
isolated elements F(B) = {my, ma, ..., ms}. The main idea of the proof is to investigate the
number of elements of D;(NN) that do not belong to B when s varies. It is obvious that for
any m € D;(N) we have 1/2 < (1—m™!) < 1. Note that if we consider a sum of elements of
the form (1—m™'), then by removing 2k and adding k¥ summands its value always decreases.
We use the above remark in cases s = 0, 1,2 although case s > 3 differs from this line of
argument, which will be explained after the remaining results have been obtained.
Observe firstly that if G(D;(N)) =0 but 2 | N, N # 2" we have

A(Di(N)\H{er}) > A(Di(N)).

We prove the lemma for s = 0. Define ¢co = min Ay(Dy(N) \ {c1}). If 4(D1(N) \ B) > 2,
then since 3 p (vps(l — m™') > 1, we have A(D;(N)) > A(B). We thus may assume
#(D1(NV) \ B) = 1. We need only consider the cases where G(B) #

clearly have

S (1—m) = A(B) < AD (V).

meB
By means of the definition in Subsection 1.2.1 it gives G(B) = {¢(B)}. If G(D1(N)) # 0 then
A(Dy(N))—A(B) =1—m™' > 271 Otherwise, since t(B) < ¢y, then G(D;(N)) = () implies
AD(N)\ {a1}) = AB) =1/t(B) —c; 4+ c;' —m™ > 0.

We now turn to the case F(B) # (), that is s # 0 Suppose s = 1. Moreover assume that
n > 1and A, (B) = {m.}. Observe that

(D1 (N)\ B) = [ [ (e (N) +1) =1 > 3. (2.10)
i#j

Hence G(B) = () gives A(Dy(N)) > A(B). Suppose then 2 | N. If now G(D;(N)) = () and
G(B) # 0, then Ay(B) # {m1}, by Remark 1.5. Since ¢(B) > ¢; gives #(D; \ B) > 4 we thus

(), since otherwise we
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get A(Dy(N)) — A(B) > 0. Hence we may assume G(B) = {c;}. Observe also that there is
m, € Di(N) \ B, such that m, > c;. It follows that A(Di(N)) — A(B) = >_, cp, vps(l —
H—F(B)—G(B) > c;' —m;t > 0. Finally, if G(D;) # 0 then clearly A(D;(N)) > A(B).
In case n = 1 we get G(B) = 0, hence B # D;(N) implies A(Dy(N)) > A(B).
Suppose that s = 2. We certainly have n > 1. Furthermore, assume n > 3 or n = 3 and
max{ry, 79,73} > 1. We thus obtain

4(D1(N) \15’) (2.11)
[T (V) + 1) + [ J (e (N — ] (ap(N) +1) -2
i#] ik i3k
= (14 ap,(N) + g, (V) [] (0 (N) +1) —2>8-2=6,
1%,k

and since £F(B) + 4G (B) < 3 we are done. If n = 3 and r; = ro = r3 = 1 we conclude that in
the case G(B) # () we have N = 2p;py. Suppose p; < p. We then obtain A(D;(N) \ {2}) —
A(B) > (p2 — 1)/2p2 > 0. If now G(B) = 0, then by (2.11) we get §(D1(N) \ B) > 4 and our
assertion again follows. For n = 2 we have G(B) = () and since (2.11) gives #(D;(N)\B) > 5
we again get the result.

Assume that s > 3. The proof consists now in the construction of a set B’ such that
A(Dy(N)) > A(B') > A(B). We achieve this by enlarging the set of periods of the universal
covering group I'. Tt results in substitution in the sum that defines the map A of all the
isolated elements of B by greater ones. It clearly gives rise to bigger summands of the referred
sum. We begin by identifying the structure of the set F(B) that is extremely important for
our construction. Recall that according to the definition m; € F(B) if and only if there is j
such that A, (B) = {m;}. Without loss of generality we may assume that

Apj(B) = {ml} if ko=1 <7< k’l,
.Apj (B) = {mg} if £y S] < ]{32,
Ay, (B) = {ms}if ke <j<ks<n+1

Furthermore, assume that

_ ki1 _1+1 Ak, —1 )
m; = pkz L p ki 1+1 Y | Qi

where p; 1 Q; for k;_1 < j < k;. Consider the following terms

ag,—ap, (Q;)
m;:mjpk] T 1< j<s, oml=mep)T o (Qe),

Note that m) & B and m} # m; for j # i. Set B’ = B U {m), my,...,m,}. Since for every
prime factor of lemB there are at least two elements in B’ divisible by its maximum power
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it follows that F'(B') = (). Observe that m/ > m; and lemB > min Ay(B). We conclude that
lemB = lemB' > m]; yields lemB’ ¢ B'. Therefore we get

A(Dy(N)) > > (1-m™H 41— (lemB)™*
meD1(N)\{lemB’}

> Y (1-m™)+ > (1—-m")+1-1/B) > A(B),

meB meB\B
which completes the proof. O

Our next goal is to investigate in detail the cases that have been omitted in Lemma 2.12.
The following proposition provides information about all exceptions of the first inequality of
(2.8).

Proposition 2.13. Let N = pi'...p/». Then

max A(B) = A(D,(N))

BCD1(N)
except the following cases when maxpcp, vy A(B) = A(B)

(i) N =p'ps, B=Dy(N)\{pj'}, 24N, r; > 2

(ii) N = pips, B=Di(N)\{pt}, 24 N, 2p2 > p{ — p1 +2

(iii) N = pips, B =Dy(N)\ {p2, pipa}, 21 N, 2py < p? — p1 + 2
(iv) N =pips, B={p1,p2}, 24 N

(v) N =2p", B="Di(N)\ {p*}, 21 7.

Proof. We may assume n = 2 and min{ry,ry} < 2. Let F/(B) = {my,...,ms}. It is worth
noting that the proof of cases s = 0 and s = 3 of the preceding lemma follows independently
on the prime factorization of N. Therefore A(B) > A(D,(N)) implies 1 < s < 2. Define

H(N,B) = A(D,(N)) — A(B).

We will investigate the reductions of the set D;(/N) that may cause that the value of the map
A increases. In fact we are looking for those sets B such that H(N,B) < 0. We will denote
the considered cases by a-b, which will mean that £(D;(N)\ B) = b and §F(B) + {G(B) = a.
Thus in order to augment the value of A we shall have b < 2a. Since n = 2 we also have
a < 3. Moreover if a were equal to 3 there would be s = 2. But Remark 1.5 yields {G(B) = 0,
which is a contradiction. Observe also that the case 2-3 is empty. Assume firstly N = 2"p''.
We may dismiss quickly the case N = 2p; since $D;(2p;) = 3. Furthermore a = 2 implies
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A, (B) N F(B) # 0. Note that if m € F(B) UG(B), then (1 —m™') < (1 — N~'). Observe
also that r; > 2 clearly gives §.A,, (D;(N) \ B) > 2 and thus we obtain

H(N.B) > (1-27H+ )  (1-m"H)-201-N"
mEApy (D1 (N)\B)
> 271 =32p) t+ 2N > 0.

Otherwise, if 7, = 2, then 2, p; and 2p; are the three smallest elements of D;(N) and by the
above we again get H(N,B) > 0. If now 2 { N, then H(N,B) = A(Dy(N)) — A(B) and the
three smallest elements of D;(/N) are not smaller than 3, 5 and 9 respectively. Thus

HN,B)>1-3YH+(1-5H+1-9H-20-N1"H>2N"!>0.

It follows that we need only consider three cases: 1-1, 2-1 and 2-2.

Case 1-1 Since s = 1 we have G(B) = (. By (2.10) we get N = pi'ps and B; =
Di(N) \ {pi'} or By = Di(N) \ {pi'p2}. Observe that A(By) > A(By). If 2 1 N then
H(p*p2, B1) = (1 —ps)/pi'p2 < 0. Furthermore H (2" py, By) = 0 and finally N = 2pi*, 2 | ry
gives H(2p}', By) = (pi* — 1)/2p}* > 0.

Case 2-1 Assume firstly s = #G(B) = 1. Analogously to the previous case we get
N = pi'ps, but now p; # 2. Therefore N = 2p}*. Observe that in case 2 { r; we obtain
H2p', By) = —(1+pi /20" < 0. If now s = 2 and G(B) = (), then by (2.11) we have
N = pipo. If 24 N and By = {p1,p2} we get H(pip2,Bs) = —1+ (p1 +p2 — 1)/pip2 < 0.
Otherwise, for N = 2p; we get H(2p;,B3) = 0.

Case 2-2 Analogously to case 2-1 we shall consider two subcases §G(B) = 1 and §G(B) =
0. Suppose #G(B) = 1. By (2.10) it follows that N = p['p3? and F(B) = {pi'p5}, 0 < k < ry.
We thus again get p, = 2. Assume N = 2p|'. In order to maximize value of the map A we
shall have F/(B) = {2p]'}. But b = 2 now yields C(B) =1 — 1, 2 | ry or §C(B) = ry, 21 14.
But the latter case was considered in point 2-1. It is easy to check that the already mentioned
set By gives bigger value of A. Hence we shall consider only B, = D;(2p1*) \ {2, p7*}, which
leads us to H(2p}', By) = (p;*~' —1)/2p}* > 0. Thus By it is not an exceptional set. Assume
now N = 4pi'. We shall have F(B5) = {4p}'} and consequently £C(B5) = r1, 21 r1. Then let
Bs = Dy (4p7*) \ {p1", 2p7'}. But we again get H(4p}*, B5) = (p*~'(2p1 — 1) — 5)/4p™ > 0.
We can now proceed to the case §G(B) = 0. By (2.11) we have r; + ro < 3. Observe that
N # pipy because in that case b = 2 implies s = 1. Thus N = p?p,. Since s = b = 2 we
have pip, € B. In order to maximize the value of the map A we put Bs = {p1, pips, P2}
If 21 N we have H(pips,Bs) = (—pt + p1 — 1 + pa)/pips. Furthermore, if py = 2 then
H(2p? Bs) = (p1 + 1)/2p2 > 0. The same conclusion can be drawn for p; = 2, namely
H(4p2, Bﬁ) = (pg — 2)/2]?2 > 0.

We are now in a position to enumerate the exceptional sets B that satisfy A(B) >
A(D,(N)). Firstly, we observe that By, Bs and Bg are the only sets on the candidate list. If
N = pi'pe, 11 > 2, 24 N, then point (i) follows from case I-1. Similarly, if N = 2p}*, 21
then by case 2-1 the map A attains its maximum value also in By which is stated in point (v).
When N = pypy, 21 N we shall compare the values of A for By = {p2, p1p2} and By = {p1, p2}.
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But A(B1) — A(Bs) = (2p2 +p1 — pip2 — 2)/pip2 < 0, which is point (iv). If now N = pip,,
21 N we compare A(By) and A(Bg). Observe that A(By) — A(Bg) = (2p2 — p2 +p1— 2)/p2p2
which falls into cases (i7) and (4i). Thus the proposition follows. O

Having disposed of the preliminary results on the first inequality of (2.8) we proceed
to investigate the second one, namely Ay(D.(N/p;)) < Ag(Di(N)). In order to get this
inequality we need slightly stronger assumptions on the prime factorization of N, than we
used in Lemma 2.12. The point of the following corollary is that it allows one to compare
values of the map A, despite of the negative term that appears for D, (N).

Lemma 2.14. Let N = pi'ps*...pin. Suppose that n > 2 orn = 2, min{ry,ro} > 2. Then we
have Ao(Dy(N/p;)) < Ag(Dy(N)) for any i € {1,2,....,n}.

Proof. Let ¢ = max;—y,_, o, (V). Since construction of D,(N/p;) consists in substituting if
necessary the element ¢; = min Ax(D1(N/p;)) by the one equal to min Ay (D1 (N/p;) \ {c1}),
then it follows that

N 1y N —ct1
Ao(Du(N/pi)) < - e Z(: | (1=m™)+ 51 -2+ 1. (2.12)
Denote R = Dy(N) \ D1(N/p;). We have
Ay(D.(N)) >-N+1+ (2.13)
N -1
=y - )+ > a-mT)>
meR meD1(N/p;)
A(D(N/p)) + > <Z(1 —m) - 3)
2 * % 9 .
meR
Since §R =[], ., (o, (N)+1), thus in case N = pi'..p;, n > d we obtain 3, . (1—m™") >

8 - 27! = 4 which establishes the inequality. If n = 3 then consider

i Tk

—t —s j Pk
]k Tj)/rk E E

t=0 s=0 1pk_1

Since the function z +— z(x — 1)~! defined on (1,00) is decreasing we conclude that for
N =p} pj 'pi* and p; = 2 we obtain

D (l=mT) =tR =27 Lu(ryr) > 4-1/2-3/2-5/4> 3.
meR

Analogously, p; > 3 vields 3, (1 = m~') > 4 —5/6 > 3. Finally, we consider the case

n=2,ie N=p p] Observe that due to our assumptions we have

24 ) (I=-m)—(1=27) > 247 —2p; " 427,
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Furthermore in both cases ; > r; and r; < r; it holds (=2 + r;) + (27¢*' — 2p,; ") > 0.
Therefore we obtain

N -1 —c+1
R2(Du(N)) 2 5 (=2 + Y. 1-mT) = (1-27)
meR
N N
T3 2 Aem ) S 2) 4 12 AD(V/p).
meD1 (N/p;)
and by (2.12) the proof is complete. O

We continue in this fashion to obtain the exceptions of the second inequality of (2.8) by
considering the cases that have been omitted in the last lemma.

Proposition 2.15. Let N = pi'..pl*, N not prime. Then Ao(D.(N/p;)) > Ao(D.(N)) if
and only if at least one of the following statements holds

(i) N=pi', pp=pi

(ii) N = pips, pi = pa2, 24 N, pa <pi +p1 +1
(iii) N = 2p?, p; =2

(iv) N =12, p; =3

(v) N =pi'p2, pi=Dp1, pa # 2

(vi) N =2pi*, pi =p1, 21 711.

Proof. (<) The proof follows from straightforward calculations.
(=) By Lemma 2.14 we only consider the cases n =1 or n = 2, min{ry, 72} = 1. Denote

H(N,p;) = 2N~ (As(Ds(N)) — Aa(Do(N/pi))).-

We are thus looking for N and p; such that H(N,p;) < 0. Suppose firstly n = 2, i.e. N =
pitpe. If 24 N then H(pi'pa,p1) = —(pa + 1)/pi'p2 < 0. But since H(2"py,2) = =271 < ()
the assertion follows also for p; = 2, which is stated in point (v). If po = 2 then we shall
consider two subcases. Note that 2 | r; gives now H(2p}',p1) = (p;* ' — 3)/2p* > 0 and
217y leads us to H(2p}', p1) = —(p7* + 3)/2p}* < 0, which is (vi).

We can now proceed analogously to consider the terms of the form H(pi*ps,
po). If 24 N, then
" B 1 pptt—1 1
HEipnp)==24m = n =y
Since r; — 3 < H(pi'p2,p2) < r1 — 1 it remains only to check directly the case r = 2. But
H(pips,ps) = (po — 1 — p1 — p?)/pips and we obtain (7). If p; = 2 then we again get

r—3<HQ2"py,p2) =2+ +27 = 2pt < — 1.
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Observe that case r; = 1 has been already covered by (vi). Furthermore r; = 2 yields
H (4pa, p2) = (p2 —4)/2pe which is lower than 0 if and only if p, = 3 that gives (iv). Let now
pe =2 and 2 | r;. We have

3 1pptt—1 1 5
H(2p}',2) = —= — st > 5
B2 = S T T T

and H(2p?,2) = (1 — p1)/2p? < 0, which shows (7). Similarly, taking 2t r; we obtain

1 pit—1 prt—2 5
H(2p7“1’2):_2_'_r1__ r—l - r > ==+
! 2py pt! l(pl —1) 2pyt 2

and case r; = 1 has been already covered by (v).
Finally, if N = p{*, r; > 2 then we have H(p{*,p1) = (=pi* + p1 — 2)/p;* < 0, that is
stated in point (i) and the proof is complete. O

We can now formulate the main result of this section. Recall that for each N we are
looking for a set B that satisfies

max  Ao(B) = As(B). (2.14)

B'CDi(N)

Theorem 2.16. Let N = pi'...pI". The mazimal set of periods Anax in (Per(Zy),
<zx) equals Do(N), except the following cases

0
(it) If N = pi', r1 > 2, then Apax = Do(N) \ {1}

(i11) If N = pipo, then A =)
(iv) If N = pips, 24 N, then Amax = {pip2,pi}
(v) If N =2p7', 2| r then Apmax = Do(N) \ {1,2,2p,}
(vi) If N = 4py, then Apax = {2,2p1}
(vii) If N = pips, 24 N and 2p; > p? — p1 + 2 then Anax = {p1, p1. p1, pip2}
(viti) If N = p3py, 24 N and 2p; < p? — p1 + 2 then Apax = {p?, p1p2, P2p2}
(iz) If N = pi'pa, r1 > 3, 24 N then Ayax = Do(N) \ {1, p2, p1p2}
(x) If N = 2p', r1 >3, 241 then Apnax = Do(N) \ {1,2}

(IZ) IfN = 2“]92, > 2, then Amax = Do(N> \ {17])272]92}
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Proof. Since the proof involves many simple calculations we give only its main ideas. It
consists in the construction of a candidate list of exceptional pairs (N,B) that satisfy

As(B) > Ag(D,(N)). (2.15)

Moreover this list will contain all pairs that also satisfy (2.14). The redundant elements will
be removed by comparing values of the map A, for all pairs that share the same N. We still
assume B # 0, {N}.

Suppose firstly that (2.15) holds and lemB = N. Since

Ay(B) — Aa(Du(N)) = 27 N(A(B) — A(D.(N))),

Proposition 2.13 enumerates all pairs falling into this category.
On the other hand if lemB < N/p; then (2.15) implies

As(B) > Ao(Du(N/pi)) or As(D(N/p;)) > As(Du(N)).

Since A(B) = Ay(B) for lemB < N, it follows that the last two propositions provide ne-
cessary conditions on N and B to satisfy (2.15). Indeed, Proposition 2.15 gives all cases
Ao(D.(N/p;)) > Aa(D.(N)). These then can also be directly attached to the candidate list.
By Proposition 2.13 we obtain the pairs (N, B), such that maxscp, vy A(B) = A(B). Hence
for each pair (I, B) we can construct 3 numbers of the form Np;, where j = 1,2, 3. We then
clearly put on the candidate list only those pairs that obey (2.15).

As a final step we choose from the list only those elements (N, B) that correspond to
the maximum value of the map A,. Observe that we always have gy > g(13, where gy and
gq1y are given by Remark 2.6 and 2.9 respectively. It follows that if N does not appear on
the candidate list and Ay(D.(N)) > gy, then clearly maxgcp, vy Aa(B) = Ag(Di(N)). We
present the results in terms of maximal set of periods of a Zy—action on a compact Riemann
surface.

In order to show how the above algorithm works we give explicitly all pairs from the
candidate list of the form (2p}', B), where 2 | r;. Suppose that (2.15) holds. By Proposition
2.13 there is no pair, such that lemB = 2p;*. By Proposition 2.15 the only pair satisfying
Ao(D. (207 /pi) > Aa(D.(2p1Y)) is (2p%, D.(p?)) and we may put it on the candidate list.
Finally, assuming that Ay(B) > Ao(D.(2p}"/pi)) holds, by Proposition 2.13 we again obtain
B =Dy(2py~") \ {p'"'}. Since

Do(D.(2p7)) — Da(Dr(2p7 )\ {p7' '} = =47 Np " (p1 +3) <0,

(207", D1 (295 1) \ {p;*'}) is also on the candidate list. We are thus reduced to compare
the obtained results with gg. Note that for r; = 2 we have gy < Ao(Dy(p?)) < A2({2,2p1}),
while in case 7, > 4 we obtain gg < Ao(D1(2p7* ")\ {p{*"'}). Thus an equivalent formulation
of the above is: if N = 2pi* 2 | ry, then the maximal set of periods Ap., is equal to
Do(N)\{1,2,2p1}, which is point (v) of the theorem. The rest of the proof runs as before. [

In order to complete our investigation we give in Table 2.2 the formulas for the signatures
of Fuchsian groups that cover cyclic groups in the cases listed in preceding theorem.
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N A r gA
9 0 (2;-) 3
m (0;2,2,2,2,2,2) | 2

3 0 (2;-) 4
1) (0;3,3,3,3) 2

0 (2;-) 5

4 {1} (0;4,4,4,4) 3
(2} (1;2,2) 3

1,2} (0;2,2,4,4) P

0 (2;—) 7

{1} (0;6,6,6,6) 5

{2} (1;3,3) )

6 {3} (1;2,2) 4
{1,2} (0;3,6,6) 2

{1,3} (0;2,2,6,6) 3

{2,3} (0;2,2,3,3) 2
{1,2,3} (0;2;2,2,3,6) 4

Table 2.1: Information on the A-minimum genus of the Zy—actions for N = 2, 3,4, 6.

case Imax

(1) (25-)

(ii) (LD, o)

(iii) (2,-)

(iv) (1;p1,p1,p2,P2)

(v) (DL (2P )\ {pi 1} 200, 2)

(vi)

(]‘7 25 Qaplvpl)

(vii) (15 p1, P2, P12, PID2, PID2)

(1}”’/1’) (1;p17p%7p%7p1p27p1p2)

(iz)

(LD (P p2) \ {1 o

P2)

(z)

(L;D.(2p7' 1), 2)

(i)

(1; D, (2717 1pg), 217 1)

29

Table 2.2: Information on the signature of the universal covering group [',.x corresponding

to the maximum value of the A-minimum genus of the cyclic group action.
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3.1 Introduction

In this chapter, we extend our study to embrace also the actions of the automorphisms of
surfaces that are not Riemann surfaces. By this we mean that they are non—orientable, have a
non—empty boundary, or both. These are Klein surfaces, introduced by Alling and Greenleaf
|3], following up ideas by Klein. In order to investigate the dynamics of self-homeomorphisms
of such surfaces, we consider counterparts of results from the first part of the thesis, where
NEC groups play the role of Fuchsian groups. However, the actual general setting requires a
more sophisticated treatment, involving a variety of terms and auxiliary results. Since non—
orientable surfaces do not admit any analytic structure, we need first a more general notion
of automorphism than we have applied for Riemann surfaces. The definition we use is based
on the term dianalyticity which in turn involves both: analyticity and antianalyticity. Below
we recall the required definitions that can be found in [3]| and [8].

(1) A surface is a Hausdorff, connected, topological space S together with a family > =
{(Ui, ¢;) | © € I} such that {U; | i € I} is an open covering of S and each map ¢;: U; —
A; is a homeomorphism onto an open subset A; of C or Ct = {z € C | Imz > 0}. The
family ¥ is said to be a topological atlas on S. The boundary of S is the set

0S={rxeS|Jiel,xelU,p(zx) €R and ¢(U;) CC"}.

Each (U;, ¢;) is said to be a chart. The transition functions of ¥ are the homeomorphi-
sms

Gij = ¢z¢j_13 ¢ (Ui N U;) — ¢:(U; N U).

(2) Let A be a non—empty open subset of C and f: C — C a map. The map f is analytic
on A (resp. antianalytic on A) if % = 0 (resp. % = 0). The map f is said to be
dianalytic on A if its restriction to every connected component of A is either analytic
or antianalytic. We also need an extension of the notion of dianalyticity to functions

having as a domain an open subset of C™.

(3) Let A be a non—empty open set in C™ and f: A — C* a map. This map f is said to
be analytic (resp. antianalytic) on A if it extends to an analytic (resp. antianalytic)
function on some neighbourhood of A in C into C. If f is analytic or antianalytic on
each component of A, then we say that it is dianalytic on A.

(4) Let S be a surface with atlas X. We say that ¥ is a dianalytic atlas (resp. analytic
atlas) on S if all of its transition functions are dianalytic (resp. analytic). Each pair
(U;, ¢;) is called a chart of X. Clearly, if 3 is analytic, then it is also dianalytic.

(5) Let Xy = {(Us,¢s) | i € I} and By = {(V},¢;) | j € J} be dianalytic atlases on S. We
say that Xy and Xy are dianalytically equivalent if >y UXy is a dianalytic atlas on S.
An equivalence class S of dianalytic atlases on S will be called a dianalytic structure

on S.
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On account of the above we introduce the category of Klein surfaces:

(6) The surface S equipped with the dianalytic structure induced by a dianalytic atlas X is
said to be a Klein surface. A morphism between Klein surfaces S and S’ is a continuous
map f: S — S, such that

(i) f(0S) Coas

(ii) Given P € S, there exist charts (U, ¢) and (V, ¢) at P and f(P) respectively, and
an analytic function F': ¢(U) — C such that the following diagram

U d 1%
| Jo
o) 5 ¢ 2L ¢t

commutes. Here ¥: C — C* is the folding map defined by the formula
T+ iy — x + i|y| x,y € R.
Furthermore, the chart (V) must be positive which means that ¢(V) C C*.

Now we are ready to define an extended notion of the automorphisms of Klein surfaces.
It differs from the corresponding concept for Riemann surfaces principally in that it lets S
"fold" along the boundary components of the quotient surface.

(7) An automorphism of a Klein surface S is an isomorphism ¢: S — S in the category of
Klein surfaces.

In order to avoid any ambiguities and separate the actual case from the study of Riemann
surfaces, we will denote a Klein surface by the letter X. We denote the full group of auto-
morphisms of X under the composition of maps by Aut(X). Furthermore if X is orientable
we shall denote by Aut™(X) the subgroup of orientation preserving elements in Aut(X). We
also write Aut™ (X) for the set of the orientation reversing elements in Aut(X). As before,
we focus on cyclic subgroups of the group Aut(X).

The initial idea of this work was to classify all subsets of points on a compact Klein
surface whose periodic behaviour under an action of a cyclic group of order N differs from
the behaviour of a typical point whose orbit has length N, and to relate their appearance
to the topological type of the surface. To be more precise even at this very early stage in
the chapter, we give here an initial definition of the singular set (for complete definition and
conventions see Section 3.3). If ¢: X — X is an automorphism of order N of a compact
surface X, then we introduce S(t) — the singular set of ¢ as a union of the subset of points of
X which are fixed by t¢ for at least one d < N. By definition the boundary components of X
belong to S(t). By this meaning the points of the singular set are somehow strange, since we
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may easily distinguish them observing how the iterations of the automorphism ¢ transform
the surface under study. Associated to this is a collection of divisors of NV that we call here
a character of periods. For an arbitrary character of periods constrained by the respective
conditions according to the orientability character of the surface and its quotient, there is
an associated Zy—action. On the other hand assuming certain Zy—action, the orientability
character of the surface X and the quotient surface X/Zy we obtain an effective algorithm
to compute the minimal area of a NEC group A verifying X ~ H?/A.

The study of the actions of cyclic groups on compact topological surfaces has previously
been carried out by several authors. In order to position the actual work in this long—
established area, we make below some remarks that refer to articles that deal with similar
subjects, emphasizing briefly some differences in the respective approaches.

The singular set in the sense of our definition has been investigated already by Bujalance
et al. in [9] in the case of involutions. It is worth noting that the material of Subsection 3.3
is merely an extension of definitions and propositions of the first three sections of the above
paper to automorphisms of an order greater than 2. The analysis of the singular set has
been also provided by Yokoyama in [42]-[44], although NEC groups have not been exploited
there.

The relations between periods of isolated periodic orbits, boundary components and the
properties of self-homeomorphisms of surfaces in terms of NEC groups and their homomor-
phisms have been deeply investigated by Bujalance et al. in [8]. Nevertheless, that study did
not include all types of periodic structures that become apparent using the definition of the
singular set we have given above.

An already mentioned very technical paper [44] of Yokoyama deals with the complete
classification of periodic maps on compact surfaces, up to topological conjugacy. It was
preceded by two papers [42] and [43] in which only the orbits of isolated points and boundary
components had been considered. Yokoyama’s classification is much more precise than ours
because of the fact that all conjugated maps share the same character of periods. Indeed, the
singular sets of conjugated maps comprise not only the same types of periodic structures,
but also the cardinalities of their respective types are equal. Nevertheless, no algorithm to
determine the minimal genus of a surface on which there exist given periodic structures is
outside the scope of the above papers.

Finally, in two articles [10] and [11] the authors give an algorithm to find all genera of
surfaces on which there is a Zy—action prescribed in terms of so called topological data, which
includes also the information on the orientability character of the surface and its quotient.
However, analogously to [8], no attention is paid to periodic structures other than isolated
periodic orbits and boundaries.

Summing up the granularity of the classification of Zy—actions on compact surfaces we
obtain here is finner then the one of [8], [10] and [11]. On the other hand, the complete
classification of periodic homeomorphisms of compact surfaces (including orientable and
non—orientable cases) up to topological conjugacy was obtained only by Yokoyama, although
partial results were also obtained by [14], [34] and [37].
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From the perspective of dynamical systems, there is also a variety of papers that deal
with the properties of periodic self-homeomorphisms of compact surfaces. The main tool
based on the combinatorial approach saturated by the theory of NEC groups used there is
the Riemann—Hurwitz formula. A non—complete list of such articles must certainly include
the following positions: [1],[17],[18],[24],]40].

We restrict our attention only to Klein surfaces resulting as quotients of the upper half-
plane by surface NEC groups. Although we describe some definitions and results from the
general theory of NEC groups, the paper is not intended to be a review of the field. The most
comprehensive reference is [§8]. Our choice is motivated by a result, being a counterpart of the
uniformization theorem for compact Riemann surfaces stating that each compact, orientable
surface without boundary of genus bigger or equal to 2 is conformally equivalent to H?/A,
where A is a surface Fuchsian group (see Theorem 1.1).
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3.2 Preliminaries

Not surprisingly the upper—half plane H? is an example of Klein surface. We begin by recalling
that its group of automorphisms Aut(H?) can be represented as

PGL(2,R) = {A€ GL(2,R) | det(A) = £1}

az+b
= |\
e (cz+d

)| ¥ — is the folding map, a,b,c,d € R,ab — cd = £1}.

Observe that in the context of dianalytic structure the notation Aut(H?) differs from the one
used in the first part of the dissertation. Using the actual notation the group of orientation—
preserving isometries considered before shall be denoted as Aut™ (H?). We will also write
Aut®(H?) for Aut(H?).

Let ' be a discrete subgroup of Auti(HQ). We say that I' is a non—euclidean crystallo-
graphic group (shortly NEC group) if the orbit space H?/T is compact. Likewise in case of
Fuchsian groups, the algebraic structure of a NEC group I' is determined by its signature,
which is the symbol of the form

o= (y;E;[my,...,my;C1, ..., Ck) (3.1)

The numbers m; > 2 are called the proper periods, C; = (n;1,...,n;s) are s;~uples called
period cycles, the numbers n; ; > 2 are the link periods and v > 0 is said to be the orbit genus
of T. If the sign of signature (3.1) equals "+" we say that it is orientable and non—orientable
otherwise. We denote the sign of signature of a group I' by the symbol sign(T").

Below we give a presentation of a group I' with signature (3.1) in canonical generators

generators :
T (elliptic)
€1y .nn,Ch (hyperbolic or in some cases elliptic)
Cijy- s Cisiy 0 < J <08 (reflections)
ar,bi,...,ay,by, if signl' =" +7 (hyperbolic)
G1,- .., 9y, if signl’ = K (hyperbolic)
relations: gt =..=am =1
;= (cijorci)" =cipe; 'cigei=1, 0<i<k 0<j<s
Y

k
HwHeH =1, if sign[ =7 47 (3.2)
=1 =1 =1
[~

=1 A

i,J
n

Ed

v
e l_Igz2 =1, if signl’ = 7 (3.3)

1 =1
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Note that the presence of proper periods, period cycles or even link periods in the signature
(3.1) is not mandatory. Based on this remark we may distinguish some special types of
signatures. For instance the signatures of the form

o' = (v [ {0 (3.4)

play a very important role Those groups possess only empty period cycles (there are nor
proper periods, nor link periods) and the unique relations involving reflections are the follo-
wing

C?,o =1 and e;c; o = cipe;.

If a NEC group has a signature (3.4) it is called surface NEC group. Note also that any Fuch-
sian group can be regarded as a NEC group of signature (v;+; [my,...,my];{ }). Likewise
a Fuchsian surface group is an surface NEC group with signature (v;+;[],{ })-

The area of o is defined to be

n k S;
plo) =2m(ay+k—2+> (1—m)+27) > (1 -n;})), (3.5)
i=1 i=1 j=1
where o = 2 if sign(c) = ” +” and a = 1 otherwise. Associated to T' there is Fr € H?, a

fundamental region of I' and we define area of I' to be hyperbolic measure of . We write
w(I') = p(Fr). Recall that u(I') does not depend on the choice of a fundamental region Ff.
Moreover we have p(I") = (o) (see for instance [8], Theorem 0.2.8). Finally we recall that
an abstract signature o is the signature of some NEC group if and only if u(c) > 0 and
a+vy > 2. Since we will not use in any essential way the equivalence classes of isomorphisms
from a NEC group I' with an abstract signature (3.1) to PGL(2,R) we do not distinguish
between NEC groups and their signatures. This handy convention will be freely used until
further notice and we adopt the notation

F:(77i)[m177mn]7clvack>

instead of (3.1).
Before we formulate the uniformization theorem for compact Klein surfaces we need two
notions: of complex double and of algebraic genus of a Klein surface.

(1) Assume X is not a Riemann surface. By the complex double of a Klein surface X we
mean the triple (X¢, F, 7), where X¢ is a Riemann surface admitting an antianalytic
involution 7 and morphism F: X — X which verifies 7 = F.

(2) Assume X is not a Riemann surface. Let X possess k(X) boundary components and
topological genus equal to g(X). The topological genus g(X¢) of X¢ is called the
algebraic genus of X and we denote it by p(X). If X is a Riemann surface then we
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define p(X) = ¢g(X). By the formula involving Euler characteristic, the number of
boundary components and the topological genus of an orientable surface we have

29(X) + k(X)—1, if X is orientable and 0X # ()

3.6
g(X)+ k(X)—1, if X is non — orientable. (3.6)

p(X) =g(Xc) = {

Regarding the above definition of the complex double of a Klein surface X we shall
observe that (X, F,7) is unique and X ~ X /(7). See [3] for more details.

Theorem 3.1 (Bujalance et al. [8|, Theorem 1.2.3). Let X be a compact Klein surface with
algebraic genus p > 2. Then there exists a surface NEC group A such that X and H?/A are
isomorphic as Klein surfaces. Moreover if w: H? — H?/A is the canonical projection, then

A={feAnt(H?) | nf =7}

If T is a subgroup of finite index in a NEC group I, then it is a NEC group itself (see
|8], Proposition 2.1.1) and we have the Riemann-Hurwitz formula

e (1Y)
rr) ="

Let t be a generator of a finite cyclic group of order N which acts by automorphisms on
a Klein surface X then ¢ lifts to a dianalytic transformation ¢ of H? such that ¢ normalizes
Aie. tA(#)~! = A. Obviously N € A. Thus NEC group I' = (£, A) contains A as a normal
subgroup with index N. By Theorems 2.4.2 and 2.4.4 of [8] group T" has a signature of the
form

D= (5% [ma, e ma] {0O32M)..(2)}) (3.7)

for some non—negative integers v and \. Moreover the following relations must also be sa-
tisfied: fu1,..., pp are even and m; > 2 for ¢« = 1,...,n. Here we use an abbreviate notation
standing for

that is: A empty period cycles and non—empty period cycle with p; link periods equal to 2.
The following theorem is counterpart of Theorem 1.2 in case we consider Klein surfaces.

Theorem 3.2 (Bujalance et al. [§], Remark 1.3.6). A finite group G is a group of automor-
phisms of a Klein surface X = H?/A of algebraic genus p > 2 if and only if G is isomorphic
to the factor group I'/A\ for some NEC group I' containing A as a normal subgroup.
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If G acts by automorphisms on a Klein surface X ~ H?/A, then T' = Ny m2)(A) = {¢ €
Aut(H?) | (AC™! = A} and there is a smooth epimorphism 6: I' — G with kernel A, such
that the following diagram commutes

[ xH? —— H?

9l wl l” (3.8)

Gx X — X.

By smooth, likewise in case of Riemann surfaces and Fuchsian groups, we will understand
that ker 6 is a surface NEC group. Note that A is not assumed to be a non—bordered surface
group, which means that k appearing in (3.4) may be positive. Recall also that Aut(X) is
finite when algebraic genus p(X) > 2 (see |8], Corollary 1.3.5).

In case G ~ Zy ~ (t) we will say that epimorphism 6 uniformizes or covers a Zy—action
of t on X. The transformation group (I',H?) is called universal covering transformation
group of (Zy, X). Since we restrict ourselves only to study the cases when the factor group
['/A is cyclic we finish this section with an observation that concerns the rigidity of smooth
epimorphisms from NEC groups onto cyclic groups.

Proposition 3.3 (Bujalance et al. [§], Proposition 2.4.3). Let N be an even integer. Let T’
and A be NEC groups and 0: I' — Zy be a group epimorphism with ker @ = A. Let us suppose
that A is a bordered surface NEC group. Then, if (n;1,...,nis,) is a non—empty period cycle
in the signature of I' with associated reflections {c;p,...,cis, } it holds

Q(Cip) = 9(C@21), 9(0@2[,1) = 9(C170)tN/2 fOI" 1 S l S SZ/Q

Moreover we have 0(c;0) =1 or 0(c;o) = /2,
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3.3 The Singular Set

From now on, unless otherwise stated, we assume that X is a compact Klein surface of
algebraic genus p > 2. Let t: X — X be an automorphisms of order N. We introduce the
singular set of least period d

SYt)={r € X |z =t%z) and x # t*(z) for any k < d}. (3.9)
Moreover the singular set of t, denoted by S(t), is defined to be the set

S(t)=o0xu | J St). (3.10)

d<N

According to the above, the singular set of ¢ is a subset of X that comprises points
belonging to the boundary of X and points with orbit whose length is strictly lower than V.
As we shall see, at the end of the section, S(t) consist of

(1) a finite number of isolated points in intX
(2) a finite number of disjoint simple closed curves in intX
(3) a finite number of disjoint arcs embedded in X.

Each of the above subsets of S(t) we will call a component of S(t). Observe that applying
definition (3.10) to conformal automorphisms of Riemann surfaces we get isolated points as
the only components of the singular set.

Following [9] the last type of components of S(t) listed above will be called chains. A
chain of length 2r is a set C' of r disjoint arcs properly embedded in X which means that the
ends of each component of C' lay on the boundary of X. For each boundary component B
of 0X, either CN B = () or C'N B consist of two distinct points a;, a; 1. Note that a chain of
length 2r meets the boundary of X in exactly 2r points. We distinguish two types of chains
subject to their bicollar neighbourhood. To differentiate them we proceed as follows: filling
the holes of X with discs we obtain compact surface X.If C intersects a boundary component
B of X we add one of the arcs of B joining a; and a;,;, thus obtaining a simple closed curve
C on X. Then we say that C' is one-sided or two-sided if a bicollar neighbourhood of C' on
X is a Mobius strip or an annulus.

Simple closed curves in int X will be called owvals. Furthermore we also distinguish one—
sided and two-sided ovals based on their bicollar neighbourhood.

In Corollary 3.5 we shall observe that the 1-dimensional components of the singular set
belong either to X or SY /Q(t). Furthermore, the only mapping fixing a boundary pointwise
is the identity map. Hence in sense of definition (3.9) the set of possible periods of the
1-dimensional components is very limited. In order to avoid this inconvenience we will call
components of period d those 1-dimensional components of S(t) which are setwise fixed by ¢4
and d is the lowest number with this property. In such a way we obtain boundary components
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of period d, one—sided and two—sided ovals of period d and finally one—sided and two—sided
chains of period d. Unless otherwise stated when referring to 1-dimensional components we
use only the above setwise context of periodicity. We denote the singular set of last period
d in the setwise context by Sy(¢) and define it formally as follows

Si(t) ={L C S(t) | L is a component of S(t), L = t%(L) and L # t*(L) for all k < d}.

Obviously for isolated periodic orbits the pointwise and setwise contexts of periodicity
are identical.

In order to investigate the relation between pointwise and setwise periodicity in more
detail we use once more the term of complex double of a Klein surface X. We recall also a
result of |3] by which an automorphism of X can be lifted to an analytic automorphism of
symmetric Riemann surface Xc¢.

Theorem 3.4 (Alling and Greenleaf 3], Theorem 1.11.1). Let (X¢, F,T) be the complex
double of the Klein surface X. Then

Aut(X) = (Aut™ (X)) ={f € Aut™(X¢) | 7f7 = [} (3.11)

By the above theorem one may show two results formulated as Corollary 3.5 and Remark
3.6 which are interesting while considering the singular set of an automorphism of a Klein
surface.

Corollary 3.5. Let X be a compact Klein surface. Let t: X — X be an automorphism of
order N of X. Denote by L a 1-dimensional component of SY(t). Then L NIX = 0 forces
2d = N, while for L C 0X we have d = N.

Proof. First we take the complex double of X and a point Q € L. If LNOX = (), then by the
construction of the complex double there is a neighbourhood V of @ in X such that F~'(V)
has two components, say V; and Vy. Denote by Q; € Vi and Qy € Vs the two preimages of
Q laying on X¢. Let 7: X¢o — X be a lift of ¢4, Take P € F~ YLnVv)n Vi. Note that
T(Q1) = Q1 would force

FT(P)=t'F(P)=F(P),

which is impossible since 7 is conformal. Hence

T(Q)=Q; 1,j=12 i#]
Q) = Qs

Thus we must have 72 = Id which shows that ¢?¢ = Id.

On the other hand if L C 0X, then we also start with a point () € L although now the
fiber 7~ 1(Q) comprises only one point. Hence we may find a neighbourhood V of Q on X¢
such that 7|,y = Id|zny. Using the same argument as before we now get 7 = Id which
leads us to t% = Id. O
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Remark 3.6. Under the assumptions of Corollary 3.5 denote by B a boundary component
intersecting a chain C. Then we have t'(B) N B = 0 for i < N/2 and t"/*(B) = B.
Furthermore tN/? fizes exactly two points on B i.e. the intersection of B and C.

As we see by Corollary 3.5 all ovals and chains are pointwise fixed under tV/2. Hence
their periods in the setwise context must divide N/2 which follows by a simple arithmetic
argument (compare the discussion in the last but one paragraph of Section 1.1). Moreover
by means of Remark 3.6 the periodic behaviour of the boundaries intersecting chains is
special and very simple since their setwise period equals N/2. By this reason we introduce
another convention concerning the singular structures we are about to study: the boundary
components which intersect chains of ¢ are excluded from the set Sn/(t). We will not take
into consideration the period of those boundary components, although we calculate their
number (see Remark 3.15).

By Theorem 3.4 it also follows that every group of automorphisms of a Klein surface
may be viewed as a group of orientation—preserving automorphisms of symmetric Riemann
surface. First we need a definition and lemma (compare with [36], Theorem 1). Let I' be
a proper NEC group i.e. not a Fuchsian group and denote by I't its canonical Fuchsian
subgroup defined as I't = T' N Aut™ (H?).

Lemma 3.7. Let G be a finite group of automorphisms of a Klein surface X ~ HZ?/A,
which 1s not a Riemann surface. Suppose that 0: ' — G is a smooth epimorphism. Then

() = G.

Proof. Denote A = ker . We consider two cases when the surface X is non—orientable and
orientable.
If X is non—orientable, we clearly have signA ="’

Y

— 7. Thus there exists
weAN(T\TH).
We have I' = ' UT"w. Denote §(I'") = G*. Then
G=0)=0T"Ultw)=0(T")ud(Il")i(w)=GTUGt =GT, (3.12)

which yields (') = G.
On the other hand if X is orientable, then 90X # (), since X is not a Riemann surface.
Hence I takes the form

I'= (v [ma, o omai{(naa, o nas)s ooy (Muets ooy s ) 3,

where £ > 1. However observe that period cycles of I' may be empty i.e. s; = 0 for some
1 < j < k. By Theorems 2.3.1, 2.3.2 and 2.3.3 of [8] there exists canonical reflection ¢ € I’
such that ¢ € ker §. We may write I' = ' U T'"¢. Analogously to (3.12) we conclude that

G=0)=0T" Ul c)=00")UbT")0(c)=G"UG" =G*,
Thus 6(I'") = G. O
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Proposition 3.8. Let the assumptions of Lemma 3.7 hold. Consider (X¢, F,T) the complex
double of X and denote by k: (Aut™ X¢)™ — AutX isomorphism given by (3.11). Then the
following diagram commutes

MxH? —— H?

oo | e [

G XXC e XC
S I
Gx X — X.
Here wo stands for canonical projection onto Riemann surface Xc.
Proof. Let us denote 0 = fp+ and A = ker §. We first show that the upper diagram

MxH? —— H?

9+l WCJ lﬂc (3.13)

GXXC E— XC

is commutative by proving that 07 : ' — G is a smooth epimorphism. Due to the preceding
lemma 6% is certainly an epimorphism. Note that ker 6T = A™T. It follows by the following
two relations:

hekerdt <TT = hecAut™(H*) Nkerf = h € AT = ker" < AT
heAt=0h)=1=h ckerft = AT <kerf".
The above relations yields also AT <T'". The smoothness of " can be derived now from the
fact that A* is a Fuchsian surface group. Furthermore we have AT ~ m(X¢).

On the other hand by Theorem 3.4 we have Ff = k(f)F, where f € G; < (Aut™(X¢))7,
G, ~ G. It follows that

G1XXC E— XC

| - |- (3.14)

Gox X —— X,
where G ~ G5 < Aut(X). Consider g € I'" and 2 € H2 Gluing together (3.13) and (3.14)
we obtain
k(07 (9) Frc(z) = FO (g9)me(2) = Fre(gz)
which yields the commutative diagram
I'txH? —— H?

mO*l}'ﬂcl J,]:WC (3.15)
Gox X — X

as required. H
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Remark 3.9. Assume that X ~ H?/A is Klein but not Riemann surface and G is a group
of its automorphisms. Observe that by Theorem 3.2 we have G ~T'/A for T, A being proper
NEC groups. Obviously (3.15) does not yield G ~ T+ /A. Note that A contains order reversing
elements, which gives A £ T, However by (3.13) we have G ~T* /AT,

In the forthcoming Subsections 3.3.1 — 3.3.3 we describe the structure of the singular set
of an automorphism ¢: X — X of a Klein surface by considering properties of epimorphism
0: ' — Zy uniformizing the action of t. We particularly see the whole spectra of periods of
various components of the singular set.

3.3.1 Isolated Orbits

In the easiest way we obtain the number of isolated periodic orbits since their number can
be calculated using Macbeath’s formula concerning automorphisms of Riemann surfaces.
Denote by Py(t) the set of isolated periodic points of ¢ with least period d.

Proposition 3.10. Let X be a compact Klein surface of algebraic genus p > 2. Let t: X —
X be an automorphism of order N of X. If T is given by (3.7) and 0: ' — Zy is an
epimorphism that uniformizes a Zy—action given by t, then

{Pa(t) = d t{m; | m; = N/d},
where d | N.

Proof. Denote A = kerf. Assume that map t fixes a point on X. Then we may lift ¢ to
7 € Aut(H?) which has a fixed point in H?. Thus, using the notation of (3.7), 7 is conjugate
either to a power of canonical elliptic generator x; or to a power of the product of two
canonical reflections whose fixed points sets i.e. a circle or a line perpendicular to R, do
intersect. It follows that these are consecutive canonical reflections ¢; j_i¢; ;. Obviously it
follows that ¢ is conjugate to a power of (z;) or to a power of (c¢;;_1¢; ;). Since Zy is
abelian we have ordf(c; ;_1c;;) = 2 and the latter case may occur only for involutions.
However we show that if we consider cyclic group actions the second scenario does not
produce an isolated fixed point on X.

Suppose t is an involution of X and 7 ~ ¢; j_1¢; ;. Let us form a fundamental region Fr
for I" starting from the common vertex to the sides fixed by the reflections ¢; ;_; and ¢; ;.
Then, in the counter clockwise order it is labelled as follows 7; j_1A; ;, where

(1) A represents the other sides of the perimeter of Fr

(2) the reflections ¢; ;_1 and ¢; ; fix the sides v; ;_; and 7, ; respectively.

Let us denote the vertex which is common to the sides «; ; and 7, ;-1 as Q). By Proposition
3.3 we have 0(c; ;) = tN%0(c;;_1), 0(cij—1) € {1,tY/?}. With no loss of generality we may
assume 0(c; ;1) = t"/2. Then, fundamental region for A may be generated as follows

FA = Fp U Ci,jleF'
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Observe that ¢; ;_1(Q) = ¢;;(Q) = Q. Thus @ is a fixed point of the map ¢; ;_i¢; ;. On the
other hand @ € v;; Uc¢;j—17:,;.- But v, ; U ¢ j_17:; projects to a boundary component of X,
which shows that @) projects to fixed point on X which is not isolated since 7(Q) & int.X.

By the above isolated fixed points of ¢ correspond only to powers of f-images of canonical
elliptic generators of I' which are conjugate to t. By the argument used in the proof of
Macbeath’s theorem (see for instance [28]) the number of those points equals

tFix(t) = N Z m; "

ordt|m;

Now, as in the proof of Proposition 2.4, the numbers #Fix(t!) for [ | d, enable us to calculate
#P4(t) which establishes the formula. O

Remark 3.11. Consider G acting on a Klein surface X by dianalytic automorphisms. Sup-
pose O: 1" — G. It is worth noting that if we consider actions of non—cyclic group G, then
there may become apparent fized points of g € G which are induced by products of two con-
secutive canonical reflections of I'. It happens if and only if the both consecutive reflections
do not belong to ker 0. For more details see Theorem 2.2.4 of [8]. See also [19] for examples.

3.3.2 Boundaries and Ovals

We continue with a theorem that deals with periodic ovals of t and boundaries of X. However,
now we restrict our attention only to the period cycles of the surface group A being images
of empty period cycles of I'. The remaining boundaries of X that are induced by non—empty
period cycles of I" are considered in the next subsection (see Theorem 3.13). Recall that we
may consider periodic ovals only if N is even.

Theorem 3.12. Let X be a compact Klein surface of algebraic genus p > 2. Lett: X — X
be an automorphism of order N of X and 0: T — Zy be an epimorphism (3.8) of T given
by (3.7), that uniformizes a Zy—-action of t. For each generator ¢;o we have 0(c;o) =1 or
0(cip) = tN2 . Let us reorder the reflections c; o in such a way they hold

O(cip) =1for 1 <i<r<X and 0(cy) = N2 for r+1<i <\
Furthermore denote 0(e;) =t%, i =1,...,\. Then we have

(i) if i <r, then i—th empty period cycle of T induces on X a boundary component of period
(N> Ui)

(i) if r +1 < i and as(v;) = aa(N), then i—th empty period cycle of I induces on X a
two—sided oval of period (N/2,v;)

(ii1) if r+ 1 < and as(v;) < az(N), then i—th empty period cycle of I induces on X an
one—sided oval of period (N/2,v;).
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Proof. Our proof has been motivated by proofs of Theorems 2.3.1 and 2.3.2 of |8] and Propo-
sition 3.2 of [9]. Observe that if we fix 7, then from the classical construction of fundamental
regions for NEC groups we can find a fundamental region Fr for I' with the perimeter labelled
in the counter clockwise order as follows £;;0¢;A (see for instance [8]). Here

(1) A represents the other sides of the perimeter
(2) the reflection ¢; ¢ fixes the side ;0.
(3) for each i = 1,..., A we have e;(¢;) = &;.
We first investigate boundaries of X i.e. we restrict our attention to ¢ < r. Since A is a

normal subgroup of I' with the cyclic factor Zy we have

N/exppe; exppei—1

I = U U A(B;eb), (3.16)

for some (3i,..., Bn/eapre; in I', where exp, e; denotes the least positive power of e; that
belongs to A. A fundamental region for A may be obtained as follows

N/expp e; exppei—1

n=U U Gon

It is worth noting that in order to obtain a fundamental region for A it suffices to know only
that [I' : A] = N. By (3.16) we have more, since we also get the cosets representatives of I
By (3.16) we also have

(Zn:(0(ei))) N/ expy e; N/expp e; exppei—1
P/ih=2Zy= |J gH= | )= {J U g0t
j=1 j=1 j=1 k=0

Here g; € Zy are elements satistying 6(5;) = g;.

Having disposed of this preliminary step in which we get the structure of the factor group
Zy we proceed now to find for each divisor d of N the boundaries of X that belong to Sy(t)
i.e. which are setwise fixed under the action of . By Theorem 2.3.1 and Theorem 2.3.2 of
|8] the following segment,

expy ei—1
Cij = U (ﬁjef)%‘,o
k=0
of the perimeter of F, generates a hole on X. It means that after gluing the sides of the
perimeter of F, according to the identifications given by A the segment C;; will project to
a boundary component of X. It is enough to show the two facts:

(i) We must show that there is an element in A that pairs the edges §;¢] and ;e “ e,
belonging to Fi (see Figure ?? which for simplicity of notation is made for 6] Id).
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Figure 3.1: A segment generating a boundary component of X, 3; = Id.
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(11) We must prove that there are no elements of A (other than identity) that would identify
a point P belonging to C;; with another point () on the perimeter of F}.

For the convenience of the reader we repeat the relevant material from the proofs of the
above theorems which helps to make our exposition as self-contained as possible.
Case (i) This point can be easily derived from the relation

o1 —1
jei By (Bier) = Biei N e,

where 3;e;2 51 € AT,

Case (ii) We will prove that there are no elements of A (other than identity) that would
identify a point P belonging to C; ; with another point () on the perimeter of F,\. To obtain a
contradiction suppose that there is h € A such that A(P) = (). We distinguish three different

scenarios with a slightly different way of arguing

(ZZ]) Q S Ci,l
(13.2) Q € C;j, 2<j < N/exp,e;
(73.3) @ belongs to the other sides of the perimeter of A.

Suppose that P € el(v;0) where 0 <1 < expye; — 1.
Case (ii.1) There is 0 < I; < exp, e; — 1 such that Q € €*(v,0). Define ' € T by the
following formula k' = e;"*hel and take two points

P =¢'(P) and Q =¢;"(Q)

that belong to 7, 9. We clearly have h/(P') = ()'. Since both points lay on the perimeter of
a fundamental region of I' it must either hold P’ = Q' or P’ and @)’ are common vertices
to the sides 8;,"}/1‘,0 and ; ,&; respectively. The first possibility leads us to e"~(P) = Q and
this requirement forces [; = [. Consequently P = () which is false. On the other hand the
second scenario would imply that e; € A which contradicts the assumption N > 1.

Case (#.2) There exists 0 < I; < exp, e; — 1 satisfying Q € el (vio) C C;; where
2 < j < N/expye;. We take

P=el(P) ad Q' =¢"5(Q) (317)

and obtain that h'(P’") = @' for b/ = e;hﬁj’lheﬁ € I'. Note that P’ and ) belong to the
same side of the perimeter of Fy. Thus P’ = @)’ is a fixed point of ' or, as in Case (i.1), they
are common vertices to the sides 5;,%,0 and 7; 0,€;. Since ¢; ¢ is the only element of I fixing a
point on the side 7; o not being a common vertex with 5; or g;, we get in case P’ = @)’ that
cio = h' € A. Consequently

W= e "B hei = (Bie!) T h(Beit ) (Bje ) el = W (Bieit) e
with 2" € A. But this clearly forces the following relation on cosets A = A(3;el') el which
contradicts (3.16) since we have assumed j > 2.
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On the other hand if {P',Q'} = (g; U&;) N0 then h' = e;. Tt gives us in turn that
h = B;e; """ € A which also contradicts (3.16).
C’ase (#.3) Under the actual assumptions we have

N/expy e;

Q¢ U Ci;. (3.18)

Suppose ) € ﬁjeil(Fp), where 1 < j < N/exp, e;. The first step we take in this setting is
to transfer P and @ by (3.17) to points P’ and @' laying on the perimeter of Fr. Observe
that now P’ € 7,0 but Q" & vio by (3.18). Consequently P’ can not be paired with Q" by
any element of I'. Hence b/ = e;llﬁj_lheﬁ ¢ I' a contradiction.

Hence the above argument gives rise to

N _ N(N7 'Ui)
expy €; N

= (N, ) (3.19)

different boundary components of X which means that the signature of A has (N, v;) empty
period cycles generated by an empty period cycle {e;, ¢;} of . Assume now that not only 4,
but also j is fixed and denote by C a hole on X on which the segment C; ; is projected. Let
C" be another hole on X satisfying C' = 7(C; ;,), 7 # j1- By (3.8) we have

0(85,8;)(C) = 085, 8; ) (Ciy) = (83,8 (Ciy)) = m(Ciy) = C".

Thus C’ belongs to the orbit of C' under the automorphism ¢. Hence this orbit counts
exactly (NN, v;) boundary components. It yields a period of the boundary component C' and
consequently we have

U t'(C) € Sawy)(t)-

Next we proceed to the two remaining cases when ¢ > r + 1 which means that an empty
period cycle {e;, ¢;o} of I' will contribute now to the number of ovals on X. We start with
the assumption that e; is mapped to t“i, where as(v;) = ao(N). In such a case we have
[(0(ei),0(cio))| = 2expy e; and we may write

N/(2expp e;) exppei—1 1

r= J U UAﬁ“Oe (3.20)

j=1 k=0 1=0

Hence we have

N/(2expy e5) expy ei—1

FA: U kLJ UJZZFF’
0 =0

j=1



50 CHAPTER 3. GEOMETRY AND DYNAMICS ON THE HYPERBOLIC PLANE

which finally gives

(Zn:{0(es),0(ci,0))) N/(2expy €;)
/A = Zy = U g;(0(en), 0(cio)) = | 9;(0(es), 0(ci))
j=1 j=1

N/(2expy ei) expp ei—

- U U Ugj (3.21)

Jj=1

gj € Zy. Denote

expp e;—1 expy e;—1
k
- U U Bide) o= |J  Bieh)vo:
k=0  1=0 k=0

Unlike the previous case ¢; now goes to the element of order 2 in Zy and for this reason it
has just been used as a representative of a non-identity coset Ay of I'. It allows us to observe
that in a neighbourhood of «; o we have the situation given on Figure 3.2 (for simplicity of
notation the drawing is made for §; = Id). The only images of sides ¢; and ¢} that lie on the

perimeter of F) are the following 3;(£}), Bicio(e)), ;€72 (¢;) and ﬂ]clgeexpA “e,).
We have
j jprezﬁ lﬁ] ) eprelg _ jeiprei—lgi
jeZ?XPA e; 6]‘ lﬁj Ci,Ogi _ jeipr €; Ci,05 ﬁj ¢ OeeXPA €/ ﬁ] Ci OeeXPA el—lgi.

Thus 3“3 € A is a generator pairing the edges 3;(g} U ¢;oc))and §;(ef™ “le U

Cioey TACT 'e;). Hence we obtain

N  (Nyvy) N
2expye; 2

different two—sided ovals in intX. In order to determine their period we follow the same
method as before, that is we show that all ovals generated by {e;,c;o} lie in the same orbit.
In consequence their period equals (N/2,v;).

In the last step of the proof we deal with one—sided ovals. Observe that for ¢ > r+1 each
generator e; goes to t¥ with as(v;) < ag(IN). Therefore we have t/2 € (f(e;)). Furthermore
1(6(e;))| = |(0(e;),0(cip))| = expy e;. Hence we may represent the group I' as follows

N/exppei (expy ei/2)—

= U U Unosdat

j=1
It gives a fundamental region for A

N/exppei (exppei/2)—1 1

B= U U UGk
k=0 1=0

j=1
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Figure 3.2: A segment generating a two-sided oval on X, g; = Id.
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Consequently
(Zn:(0(ei))) N/expy e; N/exppe; (expyei/2)-1 1
r/A=zZyv= |J glE)= |J g¢0eE)= U U Ugbooeh.
Jj=1 Jj=1 j=1 k=0 =0
Denote

(exppei/2)—1 1 (expy €i/2)—1
Cij = U U(ﬁjci,oef)%,o = U (Biei )vi0-
k=0 1=0 k=0
In order to show that each C;; projects to an oval in intX we apply the technique which
has been used before twice. As it is seen on on Figure 3.3 (again on the drawing it is assumed
B; = 1d) we may find an element of A pairing the appropriate edges of Fj. Indeed we have

expp €i/2 n—1 r_ exppei/2 1 (expyp €i/2)—1
Bjcioe; B; " Bie; = Bjcioe; &; = Bjcioe; €

ooexppei/2a-1n 1 o . exppe/2 4 o o exppei/2 2 s o (exppei/2)—1_
Bicioe; 53’ Bjciog; = Bicioe; Ci,0&; = Pj€; Cio€i = Dje; i
expy €;/2
%

where (;c; e B !¢ A. However it is worth pointing out that the above generator

expy €;/2)— (expp €:/2)—1

pairing the edges 3;(c;Uc;el) and ﬁj(eg e Ugel £;) is orientation-reversing.

The above leads us to the conclusion that the empty period cycle {e;,c;o} of I' induces
N N

= (N i) — \ 7V

one-sided ovals. Their period equals (N/2,v;).

3.3.3 Chains

As it has been announced before we now proceed to discuss the third type of components of
the singular set S(¢) that are called chains. Let us note that boundaries of X as well as ovals
contained in intX are always mapped under the projection X — X/(t) onto boundaries of
the quotient surface X/(t). However those two types of periodic structures on X are not
the only ones that "come from" the period cycles appearing in the signature of the covering
group I'. The components of S(t) of the third type arise from non—empty period cycles of T'.
According to (3.7) these period cycles are of the form (2*). From the geometrical point of
view they correspond to boundaries of X/(t) that contain some cone points i.e. points with
ramification indices equal to 2. Since the existence of chains requires N to be even, in the
following theorem we assume that order of automorphism under study is even.

Theorem 3.13. Let X be a compact Klein surface of algebraic genus p > 2. Lett: X — X
be an automorphism of an even order N and 0: T' — Zy be an epimorphism (3.8) of T’ given
by (3.7), that uniformizes a Zy—action of t. Assume that

O(e;) =t" for A+1<i<A+p
Then the following conditions hold
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Figure 3.3: A segment generating an one-sided oval on X, 3; = Id.
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(1) if ao(v;) = aa(N), then i—th non—empty period cycle of T induces on X a two-sided chain
of period (N/2,v;)

(11) if az(v;) < ao(N), then i~th non—empty period cycle of T induces on X an one-sided
chain of period (N/2,v;)

Proof. The main idea of the proof is similar to the one of the previous theorem. It has been
motivated by proofs of Theorem 2.3.3 of [8] and Proposition 3.3 of [9]. For the convenience
of the reader we hopefully provide sufficient, but not too much details.

We begin by choosing a fundamental region Fr for [I' whose perimeter is labelled as follows
€i%i0-- Vi, 5. Here

1) A represents the remaining sides of the perimeter

)
2)
)
)

the reflections ¢; ; fix the respective sides 7; ;

eile;) =

€iCi0 = Ci5,64-

(
(
(3
(4

Assume that as(v;) = az(N). We proceed to construct a suitable fundamental region for
A. Without loss of generality we may assume that ¢; o A (see for instance Proposition 3.3).
Moreover we see at once that either ¢; ge; & A. It follows from the fact that 6(c; pe;) = N/t
and by the above assumption we have as(N/2 4 v;)az(N/2) < as(N). Analogously to (3.20)

we observe that
N/(2expp e;) exppei—1 1

r= U U UnGeed
k=0 [=0

j=1
which enables us to write

N/(2expp e;) expyei—1

Fy = U kLJ Uﬁ; ¢ o)
0 1=0

J=1

Consequently we have

(Zn:(0(es),0(ci0))) N/(2expy €;)
T/A = Zy= U gie).0(co)) = | g:(0(e), 0(cio))
J=1 j=1

N/(2expp e;) expye;—1
- U ULM
j=1 k=0  1=0
where 6(5;) = g;. This is exactly the relation (3.21). Consider the following segment of the

perimeter of F)y
expp €;—

- U U UGt

k=0 =0 m=0
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We show that each Cj; projects to a union of a chain and some boundary components
of X. Contrary to both cases of ovals we must be aware that now there are segments of C; ;
that are identified by an element of A. Indeed we have

)\ﬁjﬁ?"}/i,Qp = 5]‘61'706?’}/1'7210 where A\ = ﬁjci,oci72p[ci72peﬂﬁjl (322)

since ¢;2p(Vi2p) = Vigp- Thus the sides 3efv; 0, and §;c;0el7; 2, (see fine dashed arrows on
Figure 3.4, for simplicity of notation we assume there 3; = Id) are paired by A € A. Since
BiFr U BicioFr C Fa we conclude that (7,0 projects to an arc on X. From (3.22) it also
follows that all remaining sides (3;7; 2,, p > 1 project to arcs on X.

On the other hand the edges 5,7 2p+1 and 3;c;07i2p+1 Project to curves that together
form a boundary component of X. Note that the involution 6(c; o) = t"/? fixes pointwise all
the above arcs and interchanges the curves generated by (3;7; 2p+1 With those generated by
@'Ci,o%,zpﬂ-

In order to show that

expp e;—

U Uﬁ]z%mccu

projects to a two—sided chain on X we first need to prove that there exists A € A with
Aﬁj(é‘; U Ci,05;> _ ﬁj(efpr ez‘*lgi U Ci,Oefpr eiflgi).
But this is clear since

eprel eprel /_ expp e;—1
' By 'Bje; = Bie; i &i

expp €; epreZ ! eprel—l
ﬁ]Czoe 0206 5;0105 —ﬁ]Czoe ﬁ]CzU 7 €i,

where both elements F;e;™™“ 6! and §;¢; o€ eici,(]ﬁj’l belong to A.

The remaining steps required to show that m(B,; ;) is a chain can be handled in much the
same way as (i.1)—(i.3) in the proof of Theorem 3.12 and as such are superfluous. Hence a
non-empty period cycle (2#) of I' generates

N () (N

= —, )
2exp, e; 2 2
two-sided chains of period (N/2,v;). The length of each chain equals p; exp, e;.

Suppose now that 6(e;) = ", where as(v;) < ao(NV). Since we have assumed ¢; o € A we
may write equivalently ¢;oe™ /> € A or (A(e;),0(cio)) = (6(e;)). The actual case can also
be solved using the approach based on a choice of the suitable fundamental region for A.

According to our assumptions we now have

N/exppe; (expy i/2)—

r- U U UAﬁuoe

j=1 k=0
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Figure 3.4: A segment generating a two-sided chain on X, ; = Id.
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which leads us to

N/expye; (exppe;/2)—1 1

= U UG

j=1 k=0 =0

We continue in this fashion obtaining the representation

(Zn:(6(es))) N/ expy e; N/exppe; (exppei/2)—1 1
r/A=zyv= |J gEe)= |J g¢6eE)= U U Ugbdoeh.
J=1 Jj=1 j=1 k=0 1=0
Let us put
(expy €i/2)— i
- U U0 Gt
[=0m=0

We investigate the projection of C;; on X. Since (3.22) remains true the identifications of
segments of C; ; discussed previously are still valid (see fine dashed arrows on Figure 3.5, for
simplicity of notation we assume there 3; = Id).

The difference between cases as(v;) = as(N) and as(v;) < az(N) consists in pairing the
images of sides ¢; and &. Observe that

expp €i/2 n—1 expp € /2 / epre /2)—
ﬁ]cz 0€; ' ﬁ 6]' ﬁ]cz 0€; ' ﬁ]cz ‘ Ei
expy ei/2 -1 o expp €; /2 / (expy €i)/2—1
e, N 0B Bicios; = Bieg M ey = Bie; YT e,

where both elements §;¢; ge; * ei/Zﬂj’l and (,e; A ei/2c1-70ﬁ;1 belong to A. Hence the sides

B;(25 U ciger) andf3; (el /D7 e, U gy gel P /2 ey

are paired by the above orientation—reversing elements.

We conclude that
(expp €i/2)—

Bi,j = U U ﬁj %m C C,]

projects to one-sided chain on X. It also follows that a non-empty period cycle (2#¢) of I’
generates

N N
= (N, vi) = (5, v)
exp, €; 2
one—sided chains of period (N/2,v;). The length of each chain equals u; exp, e;/2. O

We make a remark that goes back to work [9] and shows how the above situation reduces
in case of involution.
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(exp,e;/2)—
i

Figure 3.5: A segment generating an one-sided chain on X, 8; = Id.
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Remark 3.14. Under the assumptions of Theorem 3.13 with N = 2 exactly one of the
transformations e; and c;pe; belongs to A. Indeed, v; = 2 yields e; € A, hence we obtain a
two-sided chain of length ;. Conversely, if v; = 1 we have c;pe; € A and consequently we
get an one—sided chain of length p;expy e;/2 = p;. Since N/2 =1, in both cases periods of
the above chains equal to 1.

Remark 3.15. By results of the last two subsections we may easily calculate the number of
boundary components of X in terms of the signature of group I' and epimorphism 0: T' — Zy.
Note that the number of boundaries of X that "come from" non-empty period cycles (2") of
I' can be obtained by the formula

1
§(period of a chain X length of a chain)

since a boundary component that intersects a chain has exactly 2 common points with it.
Hence using the notation of Theorems 3.12 and 3.13 total number of boundary components
of X being a sum of those contributed by the empty and non—empty period cycles of I' equals

T

ICIEESI
' s Us 9 4 2
i=1 =1

It coincides with the assertion of Theorem 2.4.4 in [8] (see point (2) there). Recall that by the
convention we made before the boundary components intersecting chains of t do not form part

of the singular set of last period N/2 in the setwise context Sn/2(t). These are the boundaries
"coming from" non—empty period cycles (2") of T.
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4.1 The Character of Periods

We devote the present section to the study of the periodic point behaviour of dianalytic
maps of Klein surfaces into itself. Let X be a Klein surface and assume that t: X — X is
an automorphism of X. As we know the singular set of such a map may contain isolated
periodic points, periodic boundary components and one-sided or two—sided periodic ovals
and chains. Recall that one—dimensional components of the singular set of least period d are
in fact fixed by t¢ only setwise, but do not contain fixed points, except t¢ is an involution.

The below notation applies to periods of various components of the singular set of auto-
morphisms of Klein surfaces.

(1) Let A;(t) denote the set of periods of isolated periodic points of .

(2) Let As(t) denote the set of periods of boundary components of X of ¢ that do not
intersect chains.

3) Let As3(t) denote the set of periods of two—sided ovals of .

(t)
4) Let A4(t) denote the set of periods of one-sided ovals of ¢.
5) Let As(t) denote the set of periods of two-sided chains of .
(t)

(3)
(4)
(5)
(6) Let Ag(t) denote the set of periods of one-sided chains of t.

The following lemma sums up the results of the last chapter stating precisely properties
of the above sets of periods. Recall that due to the notation introduced in Subsection 1.2.1
the symbols Dy(N) and D(N) stand for the set of proper divisors and all divisors of N
respectively.

Lemma 4.1. Let t: X — X be an automorphism of a Klein surface X. The sets of periods
describing the action of (t) on X fulfill the following constraints:

A (t) € Do(N), As(t) C D(N). (4.1)

Furthermore for even N we have

Ay(t), As(t) C 202N =1 ZQ‘ZN) LA, Ag(t) C D(%) (4.2)
whereas an odd N forces
As(t) = Aa(t) = As(t) = As(t) = 0. (4.3)

Proof. The inclusions (4.1) are immediate provided we remember that by our convention
all boundary components belong to the singular set of t. Thus their period may be any
number that divides N, including also the N itself. The relations for Ajs(t)—Ag(t) follow
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from Theorems 3.12 and 3.13 and are determined by the order of the image of the respective
e—generator in Zy. Let 6: ' — Zy be a smooth epimorphism covering the action of ¢ on
X. In case of the two-sided structures we have 0(e) = t¥ with as(v) = as(N), where e is
the corresponding e-generator belonging to an empty period cycle in case of an oval or a
non—empty period cycle in case of a chain. Hence their periods that equal (N/2,v) hold the
relation as((N/2,v)) = as(N) — 1 which justifies the inclusions for Aj3(t) and A5(t). On the
other hand the sets A4(t) and Ag(t) corresponding to the one-sided structures comprise the
numbers of the form (N/2,v) with as(v) < as(N). Obviously (N/2,v) € D(N/2).

If N is odd the reflections c of I' must be mapped to the identity element in Zy. Hence the
one—dimensional structures of the singular set in the interior of X do not become apparent
in that setting. O

In order to extend the notion of set of periods that we used previously in case of auto-
morphisms of Riemann surfaces, we introduce now a term character of periods and define it
to be a 6-tuple of sets of periods enumerated in points (1)—(6). We use the following notation

CPer(t) = (.Al (t), AQ(t), .A3 (t), .A4 (t), ./45 (t), AG (t)) (44)

We shall consider the character of periods of Zy—actions as the set of CPer(t) taken over
all Klein surfaces X and dianalytic automorphisms ¢t € AutX of order N, i.e.

CPer(Zy) = {CPer(t) | X — Klein surface, t € AutX, ordt = N}.

Throughout our exposition we consider various cases that comprise a global study of the
dynamics of dianalytic maps of Klein surfaces into itself. At the first stage of our investigation
we will focus on the parity of N. The necessity of verification whether N is odd or even,
follows from the different restrictions concerning the components of the singular set. Since
the former case is not as complex as the latter one we first start with the case of N odd in
Section 5.1. Next in Sections 5.2 and 5.3 we will consider the case of even N. Our way of
investigating the dynamics of maps of Klein surfaces also takes into account the orientability
character of surfaces X and X/(t). Let us denote by CPer*(Zy) and CPer™ (Zy) the set of
characters of periods of Zy—actions on orientable and non—orientable surfaces respectively.
We then may divide those sets with respect to the orientability character of the quotient
space X/(t). We use the following notation

CPer™)(Zy {CPer(t) | X orientable, X/(t) orientable}

(Zn) = (t)
CPer'™"(Zy) = {CPer(t) | X orientable, X/(t) non — orientable}
CPer™)(Zy) = {CPer(t) | X non — orientable, X/(t) orientable}
CPerl™7)(Zy) = {CPer(t) | X non — orientable, X/(t) non — orientable}.

By theorems of [8] we show in Section 5.1 that the above list for N odd contains only
two items since under this assumption we have CPer(™)(Zy) = CPer™)(Zy) = 0.
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In the remainder of the thesis we assume that arbitrary sets denoted here as A;, Az, As,
Ay, As, Ag satisfy the respective conditions (4.1)—(4.3). We write €, for a 6-tuple formed
by such sets

€0 - (Ala A27 A37 A4a A57 AG)

In order to consider sets of periods that become apparent on various Klein surfaces we
need to separate the notions of covering NEC group and covering epimorphism in the two
contexts. First, as defined before, while considering a Klein surface X and an automorphism
t: X — X we say that epimorphism 6 appearing in the diagram (3.8) covers (or uniformizes)
a Zy—action of t on X and I' is a NEC group covering a Zy—action of ¢ on X. On the other
hand when we investigate a character of periods given by a 6-tuple of sets of periods &,
we say that smooth epimorphism 6: I' — Zy covers a Zy—action given by €, if there is a
Klein surface X and an automorphism ¢: X — X such that the diagram (3.8) commutes.
Observe that in this context we do not assume the orientability character nor of X, nor of
X/(t). Using the above slightly wider approach we also say that a NEC group I' covers a
Zy—action given by €.

4.1.1 Definitions and Notation I1

Unfortunately we use a quite large number of symbols throughout the thesis. Below we
introduce a notation we need in the forthcoming sections. Some of the following terms were
defined before in Subsection 1.2.1. However, now they do appear in a much wider context.
As in the first part of the exposition, we will work mainly with integers and some very simple
structures defined on them. We use a term set of integers, assuming that it does not contain
any repetitions.

Throughout the remainder of the paper we still denote by ¢t: X — X an automorphism
of a Klein surface X. The letter N will stand for the order of a cyclic group (t) that acts on
X. We introduce a *notation in order to be able to differentiate periods of a Zy—action on
X from orders of elements in that group. All the subsequent constructs (numbers, elements,
sets, functions) that refer to orders of elements in Zy will be denoted using the *—notation.
It can also be considered as an advantage for the reader, providing a self-checking general
rule stating that

x—symbols may be built only on *—symbols

On the other hand to shorten notation we shall use some not s—symbols built over x—
symbols. For example we write F'(€*) instead of (F*(€*))*. This convention will be reminded
repeatedly as the corresponding constructs come along.

We use the following definitions.

(0) By family of numbers we will understand a sequence of numbers although with no
importance on the order of this sequence. By this meaning {2,2,3,5} is the same
family as {2,3,2,5}.
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Let D be a family of divisors of N.

(1) If d is a divisor of N, then by d* we denote the number N/d. Likewise, if D =
{di,...,dg} is a family of divisors of N, then D* = {N/d;,...,N/d}. We also wri-
te € for a 6-tuple (A7, A3, A5, A}, AL AL), where € = (A, Ao, Az, Ay, A5, Ag) s a
character of periods of some Zy—action on a Klein surface.

(2) The projection of D is the set of different integers that belong to the family D. Tt will
be denoted by 7(D).

(3) For an integer d belonging to the family of integers D we define its multiplicity mp(d)
to be the number of elements of D that are equal to d.

(4) The cardinality of the family of integers D is understood in the usual set—theoretic
manner and defined as §D =}, ) mp(d).

(5) Let D and D’ be two families of integers. We say that D’ includes D if and only if for
every d € (D) we have mp(d) < mp/(d). We will write D C D'.

4.1.2 The Induced Action

Suppose that 0: I' — Zy is a smooth epimorphism and recall that by Theorems 2.4.2 and
2.4.4 of [8] group I" has the representation

T = (y; % [m, ooy ma]; {ON2)..(20))). (4.5)

Observe that in case of epimorphisms uniformizing a Zy—action on Riemann surfaces by
conformal automorphisms, the signature of I' was a sufficient data to know the set of periods
of the underlying action. However, while considering Klein surfaces this is not the case. As
we will see in this subsection it is indispensable to know also the orders of images under 6§ of
all canonical generators except the hyperbolic generators corresponding to the orbit genus of
I'. Note that by smoothness of € the orders of images of elliptic generators of I' can be easily
derived from the signature of I'. Nevertheless it does not provide us with the information on
orders of 6(c) nor 6(e), for reflections ¢ and e—generators of I

On the other hand if we know how the canonical generators of I are mapped by 6, then
by results of the previous chapter we may find all periodic structures of the singular set of
the underlying action. In the following remark we state in a precise manner a method of
calculating the character of periods of a Zy—action on a Klein surface.

Remark 4.2. Let X be a compact Klein surface of algebraic genus p > 2. Lett: X — X be
an automorphism of order N of X and 0: T — Zy be an epimorphism (3.8) of T given by
(3.7), that uniformizes a Zy—-action of t. Denote the images of elliptic generators of T

(i) O(x;) =t for 1 <i<n
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Let us also reorder the reflections c;o associated to empty period cycles of I' in such a way
they hold

(ii.1) 0(cip) =1 for 1 <i<r <X and 0(cip) =tV? forr +1 <i <\

Furthermore we split, as follows, the e—generators associated to empty period cycles into three
groups

(ii.2)
Oe;) =t for 1 <i<r <A\
O(e;) ="+ for r+1<i<r+v", where az(v,y;) = as(N)
O(e;) =t for r+ovt +1<i <\, where az(v,1i) < ag(N).

Proceeding to non—empty period cycles of I' we split the corresponding e—generators according
to the following

(ii)
O(e;) = t"+ for A\+1<i<r+u*, where as(v,i) = as(N)
O(e;) =t for \+ut +1<i< A+ p, where as(v,y) < as(N).

Let us form the following families of numbers

G, 0) ={(N,vy) [1<j<n}

Go(I,0) = {(N,vn4j) [ 1 <j <7}

G3(T,0) = {(N/2,v4j) | T+ 1<j<r+ov*}

Gu(T,0) = {(N/2,vp4) | r+ 0t +1 <5 <A}

G5(I,0) = {(N/2,v545) [ A +1 <7 <A +u'}

Go(T,0) = {(N/2,04j) | A\ +u"+1<j<A+p} (4.6)

Then the character of periods of t equals
CPer(t) :(.Al(t>, .AQ (t), Ag(t), .A4(t), A5 (t), .AG (t))
=(m(G1(I',0)), 7(G2(T', 0)), w(Gs(T, 0)), m(Ga(L', 0)), m(G5 (', 0)), m(Gs(T', 0))), (4.7)
where m(G;(T',0)) stands for the projection of family G;(T',0), 1 =1,...,6.

Remark 4.3. Under the assumptions of Remark 4.2 to obtain families (4.6) it suffices to

know the numbers ordt, j = 1,...,6 and the type of periodic components they correspond
to. We have

Gi(I,0) = {(N,v))} = {N/ordt" } = {(ordt™)*}, i =1,2

Gi(T,6) = {1} = (5(N,03)} = {3 ondi™)"}, i =3,5

G.(1.0) = (o u)} = LN, )} = {(ordt™)'), i =46 (4.9
where Gi(T,0) are families given by (4.6).
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In order to be able to deal effectively with one of the main problems this thesis is aimed
to solve i.e. compute the minimal area of a NEC group uniformizing a Zy—action we also
need an opposite result to the one obtained in Remark 4.3. Namely, based on the character
of periods &, of a Zy—action, we would like to derive the orders of the images of elliptic and
e-generators of I'. The required result is given in the corollary below.

Corollary 4.4. Let X be a compact Klein surface of algebraic genus p > 2. Lett: X — X
be an automorphism of order N of X fulfilling CPer(t) = €5 = (A1, As, Az, Ay, As, Ag). Let
0" 1" — Zy be an epimorphism uniformizing a Zy—action of t. Suppose that h is an elliptic
or an e—generator corresponding to a periodic component of S(t). Then

1, if h is elliptic
5, if h induces a boundary component
ordf(h) € (2A43)*, %f h ?nduces a two siciied oval
A, if h induces an one sided oval
(2A5)*, if h induces a two sided chain
(AG, if h induces an one sided chain.

Moreover for each of the families G;(I",0"), j =1,...,6 we have
R (G, 0)) = Ay (19

Proof. The properties of ordf(h) can be easily derived from (4.8). The equalities (4.9) are
forced by the assumption that ¢ uniformizes a Zy—action given by €, and (4.7). O

By the last corollary the orders of images of all generators of the covering group, except
the hyperbolic ones corresponding to the orbit genus are completely determined by the

character of periods. This is a kind of rigidity we have mentioned at the beginning of this
subsection.
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4.2 General Remarks on Epimorphism onto Zy

In this section we investigate the properties of smooth epimorphisms from NEC groups onto
the cyclic ones. We need them to construct epimorphisms uniformizing required characters
of periods. The method of proving the existence of such epimorphisms is to construct them
explicitly. Furthermore, we will show in the forthcoming sections that the measure of the re-
sulting surface NEC group is the smallest among all surfaces of a given orientability character
that admit a required Zy—action.

Note that also in [8] there were constructed some smooth epimorphisms from NEC groups
onto Zy. However, since we focus on characters of periods of Zy—actions the choice of the
right assignment is much more restricted. It is worth noting that similarly to the proof of
Harvey’s theorem [20] the key concept of construction of epimorphisms 0: I' — Zy will
consist in satisfying the long relation on images of corresponding canonical generators of T'.

4.2.1 The Order—Preserving Element
Let (D1, D, D3, Dy, D5, Dg) be a 6-tuple of families of divisors of N i.e.

(Dl, DQ, Dg, D4, D5, DG) == ({dl,h P 7d1,k1}; {d2,17 P ,dg’k2},
{d3,17 I d3,k3}7 {d4,17 cee 7d4,k4}7 {d5,1> cee 7d5,k5}7 {dﬁ,b cee adG,k6}>7 (410)

where d;; € D(N) and D; admit elements with multiplicities. We introduce the notion of
order—preserving element with respect to (Dy, Ds, D3, Dy, D5, D).

(1) We say that an element

ﬁ - ({771,17 ... 7”1,]61}7 {772,17 s 7”2,]{2}7 {773,17 s 7773,163}7
{774,1, S ,774,1<;4}, {775,1, ce ,775,k5}, {776,17 e ’n67k'6})’ (4-11)

is order—preserving with respect to {D1, Dy, D3, Dy, D5, Dg} if (df;,m:5) = 1 for d;j €
D;. Note that in such a setting if (t) = Zy, then ordt%.i = ord¢".i%.,

(2) If € = (A4, ..., Aq) is a character of periods of some Zy—action on a Klein surface,
then any set of families (4.10) satisfying 7(D;) = A; will be called a character associated
to (’:0.

(3) For ® = (D4, Dy, D3, Dy, D5, Dg) we call D; an i—th section of character D.
For technical purposes we need the following construct

(4) If € = (A, Az, Az, Ay, A5, Ag) is a character of periods, then we define
¢ = (Ah -’427 2“437 A4a 2“457 -’46)

and we call it the inflated character of periods.
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We also use a notion of character associated to inflated character of periods defined
analogously to the above definition (2). Considering characters which may be associated
to characters of periods or inflated characters of periods we use symbols that stress this
dependency. We write ©(&y) and D(€) for character associated to character of periods and
inflated character of periods respectively.

The reason of using the notion of inflated character of periods is only technical and it is
motivated by the following remark.

Remark 4.5. If 0: I" — Zy uniformizes a Zy—action given by €y, then the orders of images
of elliptic and e—generators of I' are given by d*, where d € C.

Note that €, does not have the above property. Indeed, we may observe it for sections
Az and As. If dy € A3 or As, then e—generator corresponding to dy verifies 0(e) = ¥, where
az(v) = ap(N). But dy = (N/2,v) = (N,v)/2, which gives df = 2ordf(e). See also (4.8) and
Corollary 4.4 where those exceptional cases were mentioned for the first time.

Observe that €, may be also treated as a character associated to itself, since (&) = &,.
Therefore, we may formally consider elements 77 that are order—preserving with respect to
@o. Recall, that due to the above definition (1) we must consider elements that are order—
preserving with respect to 6-tuples of families. The same remark clearly relates to the inflated
character of periods €. Moreover, it is worth noting that an element 7 that is order—preserving

with respect to € is also order—preserving with respect to €. The opposite relation does not
hold.

As the illustration of the deployment of the new terminology we show in the example
below how the order—preserving element with respect to a character associated to the inflated
character of periods is determined by an epimorphism uniformizing a Zy—action.

Example 4.6. Let X be a compact Klein surface of algebraic genus p > 2. Lett: X — X
be an automorphism of order N of X fulfilling

CPer(t) = & = (A1, Az, Az, Ay, A5, Ag) = ({du i} {dajts {ds it {dai b {ds i} {ds )

Suppose that 0: I' — Zy is an epimorphism uniformizing a Zy—action of t. Let us form the
below families of numbers according to points (i)-(iii) of Remark 4.2

+ + A
{Uj}?zla {vng };:17 {Un+j}§i:+17 {Un+j}j)'\:7"+v++17 {vnj }?i;:tlv {Un+j}j:f\)+u++1' (4.12)

Observe that by (4.6) we defined (G1(T',0),...,Gs(T,0)) which is a 6-tuple of families of
divisors of N. By (4.7) it is also a character associated to €. Using the above families (4.12)
we may get an element which is order—preserving with respect to a character associated to
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the inflated character of periods €. Let us put

My = (]\;jjv]) for 1<j<n

Noj = (NljnT:;) for 1<j<r
B W)~ W) SIS
774]':(]\/1?7172” for r+vT+1<5< A
B W) " 2wy A TISISAT

Un+j

= " for A TH1I< i<\ 4.13
M6, .0, or ANtum+1<j<A+p (4.13)

and define

_ + + A
7= {3} Amemss Yimts D3t i {ans Hmrpor 110 st 001 (6t} h e 41)-

We then have

N N Vs
(d3,mi5) = (o= M) = ( )y =1,i=1,2
J J <N7U]/) J (N,U]/) (N,U]/>
N N (VY
((2dij)" mig) = (57— mis) = ( ) =1, i=3,5
/ J 2(%7/Uj/) J (N,’Uj/) <N7 Uj/)
N N Vit
(d;kam):(—vm):( ) ! ):17
P () (N )" (N )

where the respective ranges for j' follow from inequalities given by (4.13).

Remark 4.7. Under the assumptions of Fxample /.6
(gl (F7 0), g2(ra 0)7 2gS(F7 9)7 g4(F7 0>a 2g5(Fa 9), gG(Fv 9))

forms a character associated to €.

4.2.2 Conditions for Epimorphism

We now proceed to show the role that the notion of order—preserving element plays in
the construction of epimorphism from NEC groups onto Zy. Let us assume that &, is a
character of periods describing a Zy—action on a Klein surface. Suppose also that 6: I' — Zy
uniformizes the above Zy—action. As it was shown in Example 4.6 the elliptic generators as
well as e—generators of I' are mapped to elements t7¢, (t) = Zy, where (d*,n) = 1 and d € €.
Using this notation we may define for : I' — Zy a number

L) =) niydi;. (4.14)
i
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Recall that epimorphism 6: I' — Zy must keep the "long relation", given by (3.2) and (3.3)
for I" orientable and non—orientable respectively, on images of canonical generators of T
Thus, we see that

L(7) =0 mod N if signl’ =" +7 (4.15)
L(7) = —25 mod N otherwise, (4.16)

where (g1 ...9,) = 5. Consequently, we are focused on order preserving elements 77 with
respect to characters associated to € fulfilling (4.15) or (4.16) in the respective cases. Note
that the number L(7) may be defined provided we know only how 6 maps the elliptic and
e—generators.

It is worth pointing out that omitting in (4.11) and (4.14) the elements involving d, ;
for © > 3 i.e. excluding from the singular set the one-dimensional components other than
boundaries, we obtain a definition of order—preserving pair given in [8]. Using the notation
of [8] we have Dy = o, Dy = 3 and L(Dy, Do, 0,0,0,0) = S(a, 3).

Below we give two arithmetic lemmas that establish basic constraints on characters as-
sociated to € which enable one to find a required 7. We will apply the first result mainly
in case when a covering group is non—orientable. Roughly speaking, this lemma states that
if ®(C) is a character associated to € and 7 is an order—preserving element with respect to
the character ©(C), then the parity of L(77) does not depend on the choice of 7. Thus it is
determined only by D(¢).

Denote by m the order of image of an x— or e—generator in Zy and recall that we consider
Zy—action prescribed by character of periods €y. By Remark 4.5, orders m and d € € are
related by m* = d, where d belong to the respective sections of €.

Lemma 4.8. Let N be even and let mq, ..., my be positive integers. Then for each sequence
of integers (m;)¥_,, satisfying ord(t"™) = m; we have

8{m; | ag(m;) = aa(N)} = anm;. mod 2. (4.17)

Proof. We begin by proving that n;m! = m; mod 2. Indeed, 2 1 m} implies as(m;) = az(N).
Since (1;,m;) = 1 we obtain 2t n;, hence we conclude that also 2 { n;m}. Obviously 2t n;m}
clearly forces that m; is odd. It follows that the number of odd summands on the right-hand
side of sum (4.17) equals the number of m; which have the property as(m;) = as(N). O

Lemma 4.9. Let 4 | N and let my, ..., my be positive integers satisfying as(m;) < as(N).
Then for each sequence of integers (n;)¥_, which verify ord(t"™) = m; we have

k
anm; =2-4{m; | az(m;) = aa(N) — 1} mod 4.

Proof. 1t is enough to observe that as(m;) = aa(N) — 1 yields as(m}) = as(nym;) = 1. The
rest, of the proof is straightforward. O



4.2. GENERAL REMARKS ON EPIMORPHISM ONTO Zy 71

Corollary 4.10. Let 4 | N and let mq,...,my be positive integers. Suppose that the set
{m; | aa(m;) = as(N)} is non—empty and has an even cardinality. Then there exist sequences

of integers (n;)¥_, and (n))*_, such that

k
(i) ord(t"™) = m; and me; =0 mod 4

Jj=1

k
(i) ord(t"™) = m; and Zn}m; =2 mod 4.

j=1
Proof. Take 71 = ... = m = 1. By Lemma 4.8 the sum 25:1 m} is even. Assume that

Z§:1 m} is also divisible by 4. Denote by my, [ < k an element satisfying ay(m;) = aa(N).
In order to obtain a sum that is not divisible by 4 we switch the respective factor n; to N —1,
that is we consider 7y = N — 1 with the remaining 7} = 1, j # [. We then have

k k k
Zn’m; = Zm; + (N —1)m] = Zm; —mj + (N —1)m] = Zm;‘ +2 mod 4.
J=1 J#l j=1 j=1
If Zle m7 is not divisible by 4, then obviously Zle n'm; defined above is a multiple of 4.
In each of the cases we have found both sequences (1;)%_, and (n))%_,, as required. O

The third lemma has been already cited in the first part of the thesis, see Theorem 2.1.
We recall it once more, just to formulate it within the actual context.

(1) We say that the set of positive integers {my, ..., my} verifies the elimination property
if

lem(my, ..., my,...,mg) = lem(my, ..., mg)

for each i =1, ..., k, where m; denotes the omission of m;. We also adopt the conven-
tion lem of the empty set is 1. Thus {m;} has the elimination property if and only if
mq = 1.

Lemma 4.11 (Harvey [20], Theorem 4, Bujalance et al. 8], Lemma 3.1.1). Let my,...,my be
positive integers and denote M = lem(my, ..., my). The following statements are equivalent:

(1) for each multiple N of M, there exist ny, ..., n such that

k
ord(t"™) = m; and anm; =0 mod N,

j=1
* ;
where mf = N/m;, i =1,...,k

(ii) for each i = 1,... k, lem(my,..., T, ...,my) = M, and, if 2 | M, the number of m;
which are multiple of 222 s even.
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Below we recall a theorem which plays an important role while determining the orienta-
bility character of normal subgroups of a NEC group. First we need a few definitions. Let
A’ be a normal subgroup of a NEC group TI'.

(2) A canonical generator of T' is proper (with respect to A’) if it does not belong to A’.

(3) The elements of I' expressible as composition of proper generators of I' are the words
of I' (with respect to A').

(4) A given word is orientable if it preserves the orientation of H?. Otherwise is non-
ortentable.

Theorem 4.12 (Bujalance et al. [8], Theorem 2.1.3). Let A’ be a normal subgroup of a NEC
group I with an even index N.

(i) Let us suppose that ' is orientable. Then A’ is orientable if and only if no non—
orientable word belongs to A'.

(11) Let us suppose that T' is non—orientable. Then A’ is non—orientable if and only if either
a glide reflection of the canonical generators of I' or a non—orientable word belongs to

A

We finish this subsection with a simple lemma concerning a way of identifying Zy—actions
on Klein surfaces by fixing the character of periods €. We will show series of maps that
share the same character of periods. Anyway, such a relation between maps is clearly less
restrictive than the classification up to topological conjugacy since we do not even assume
that maps act on surfaces of the same topological type.

Proposition 4.13. Let X be a compact Klein surface of algebraic genusp > 2. Let t: X —
X be an automorphism of order N of X. Suppose that (I', H?) is a universal covering trans-
formation group of ((t), X) and 0: ' — Zy is an epimorphism that uniformizes a Zy—-action
of t. Denote by J an elliptic canonical generator, an empty period cycle or a non—empty pe-
riod cycle of T'. Then for any of the following conditions, (i) and (ii), there is a universal
covering transformation group (I',H?) of ((¢'), X") and an epimorphism 0': " — Zx such
that CPer(t) = CPer(t'). A NEC group I'" is of the form

I = (7 &5 [, o mig]; {ON (29)..(25))),
where
(i) v >~

(ii) the number of J's in the signature of T is greater than the number of J's in the signature

of I'.

Moreover the groups T' and T" (respectively ker @ and ker ') have the same orientability
character.
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Proof. Denote CPer(t) = &,. Let us show that the genus of I" can be increased without
affecting the underlying Zy—action described by means of the character of periods €,. Denote

D= (£ [ma, e ma s {O2)..(27)}).
Assume first that the sign" =” + 7. In such case we define I as follows
I = (v + L [, ey ma s {(0O(29)-(29))).

We construct epimorphism ¢': I — Zy mapping both additional hyperbolic generators a1
and b,41 to 1. On the remaining canonical generators of I the epimorphism ¢’ is equal to
6. Observe that we have signker ¢’ = signker # since both a4, and b, are orientable. As
we saw in subsection 4.1.2 character of periods of the underlying Zy action does not depend
on the images of hyperbolic generators corresponding to the orbit genus of a Klein surface.
Hence CPer(t') = &, as required.

On the other hand, if sign' =” — 7, then we construct the signature of I"” by repeating
twice each and every canonical generator of I'. Thus I'” will posses the following generators

{1, @n, €1, oy Ertp,s {o1,.. ., 94,

T14+Ay- - TntA, Cl4A,-- -, e/\+p+A}7 g1+A,--- 7g’y+A}7

where A = v+ n + A + p. Clearly, with the generators exi4, k = 1,..., A + p we add all
associated reflections

{01,0, -5 CX0, {CH-l,ja

C1+A,0) - - - 70/\+A,0} C)\+Z+A,j}7 [ = 17 Ry 2 ] = 07' <y M-

We define 0" by extending 6 by the following assignment

Tiva) =0(x;), j=1,...,n

ern) = 0(e), 0 (ciyap0) = 0(cio), L=1,...,A

exti+a) = Oext), 0'(cavirag) =0(casy), I=1,...,p, 7=0,...,
giva) = 0(gi), i=1,....7.

For the remaining generators h of I, that belong also to I', we put 6'(h) = 6(h).

Let w’ be a word of IV with respect to ker§’. Note that we may find another word w
that is formed only by canonical generators of I with indexes lower than A and verifies
0'(w'") = 0'(w). We do it simply by subtracting the number A from the indexes of canonical
generators that are of the form ¢+ A. Hence w € I and ¢'(w) = 6(w). By this argument and
Remark 4.2 we have CPer(t') = €,. Furthermore, observe that w is a word with respect to
ker § and it has the same orientability character as w’. Thus by point (i) of Theorem 4.12
we eventually obtain sign ker ' = sign ker 6.

We now turn to show that also in case the character of periods is fixed we may still modify
a covering group so that the multiplicity of each component of the singular set increases. We
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achieve this by adding a number of copies of .J, i.e. an elliptic generator or an empty, or non—
empty period cycle and mapping them on the appropriate elements of Zy. We give the proof
only for the case of J being a non—empty period cycle, i.e. J = (2#¢) for a fixed ¢ fulfilling
1 <4 < p. The other cases may be proved in much the same way. We set signl” = signI" and
put

I = (y; 45 [ma, o, ma]; {(ON(20) L (20501 L (2“iv°rd9<ez‘>l. (2]

(.

~
ordf(e;) times

i.e. we extend I' by ordf(e;) period cycles of the form

(2rk) = (2...2), where p; = pig, k=1,...,0rd0(e;).
——
Hi,k

We map the elements of the repeated period cycles (2#i+) in the analogous way as 6 does
with (2#). We define

)
9/(61‘71) =...= ‘9,<Ci,m,k—1) = ]_, k= ]_, Ce ,ordQ(ei)

Moreover, we let all other generators of IV be mapped by 0" to their respective images
under 6. Since for each word w’ of IV with respect to ker 8’ we find a word w of I" with respect
to ker 6 of the same orientability which also verifies §'(w') = 0'(w) = 6(w), then we again
obtain both equalities CPer(t') = €, by Remark 4.2, and sign ker § = sign ker #’ by Theorem
4.12. O]
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4.3 Prototypes of Covering Groups

Since the global study of the dynamics of dianalytic self-maps of Klein surfaces we deal with
in this thesis, involves a quite large number of subcases, in the present section we isolate
methods which will be reused many times in Chapter 5. In order to ease application of this
approach we introduce a new notation for the inflated character of periods writing

¢ = (A, Ay, 243, Ay, 245, Ag) = (By, By, B, By, Bs, Bg).
All subsequent definitions apply to € as denoted above.
(1) Let N =pi*...pl», thus a,, (N) = ;.
(2) Let leme* = lem{B, By, BS, B, B:, Bi} = lem | J)_, B

(3) Let & (€*) be the set of elements of €* divisible by the maximum power of the prime
factor p; i.e. £ (€°) = 