
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Micha l Matuszak
Faculty of Mathematics and Computer Science

Nicolaus Copernicus University

Bayesian Networks in Adaptation and

Optimization of Behavioral Patterns

PhD dissertation

Supervisor
dr hab. Jacek Miȩkisz

Institute of Applied Mathematics and Mechanics
University of Warsaw

December 2012

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation
myself and all the contents of the dissertation have been obtained by legal means.

December 4, 2012 .
date Micha l Matuszak

Supervisor’s declaration:
the dissertation is ready to be reviewed

December 4, 2012 .
date dr hab. Jacek Miȩkisz

Dedicated to the memory of

Prof. Tomasz Schreiber

Tomasz Schreiber (1975 – 2010) inspired my leap into the field of informatics and
his constant enthusiasm and encouragement kept me going. He was a rising star
of Polish mathematics. During my two and a half years of working with him,
Professor Schreiber was always positive and optimistic about mathematics and
life in general. I feel truly lucky to have had the opportunity to know Professor
Schreiber and to work with him. I am very grateful for his concern and support.
I could always count on his help and advice. He died on the first of December,
2010. I will always remember him smiling.

Abstract

In this thesis, we present several new methods and algorithmic results
related to probabilistic graphical models. In the first part, we present
a short introduction to graphical models in the context of the thesis
results. Our results are summarized and possible further research are
pointed out in the last chapter. Finally, we include published papers.

One of the most important result was developed for the strategy op-
timization in Bayesian influence diagrams. It is a well–known NP–
complete problem. The proposed stochastic algorithm generates opti-
mal decision strategies by an iterative self–annealing reinforced search
procedure, gradually acquiring new information while driven by infor-
mation already acquired. At the basis of the method lies the Chen–
style stochastic optimization which was originally proposed for travel-
ling salesman problems (TSP). The algorithm, after a substantial exten-
sion, is applied to the NP–hard problem of learning Bayesian network
structure. Another application of the algorithm is in the NP–hard ram-
ified optimal transport problem.

In Gaussian–network set up, we develop an algorithm for determining
optimal transition paths between given configurations of systems con-
sisting of many objects. The method is applied to a system controlling
the motion and redeployment between unit’s formations and to a real-
istic transformation between two sequences of character animations in
a virtual environment.

Using the framework of polygonal Markov fields, we introduce an im-
age segmentation algorithm. Our algorithm is based on the Markovian
optimization dynamics combining the simulated annealing ideas with
those of the Chen–style stochastic optimization – in which successive
segmentation updates are carried out simultaneously with the adaptive
optimization of the local activity functions.

Keywords: Bayesian Networks, Influence Diagrams, Polygonal Markov
Fields, Gaussian Networks, Chen Adaptive Optimisation, Optimal De-
cision Strategies, Transition Path, Structure Learning, Optimal Trans-
port Path, Image Segmentation.

ACM Computing Classification: I.2.6, I.4.6, G.3.

Streszczenie

W pracy przedstawiamy nowe metody dla probabilistycznych modeli
graficznych. Pierwsza czȩść pracy zawiera krótkie wprowadzenie do
modeli graficznych w kontekście osia̧gniȩtych wyników. W ostatnim
rozdziale zawarlísmy krótkie podsumowanie wraz z opisem dalszych
kierunków badań. Nieod la̧cznym elementem rozprawy sa̧ za la̧czone
publikacje.

Jednym z kluczowych wyników zawartych w niniejszej rozprawie jest al-
gorytm optymalizacji strategii decyzyjnych w bayesowskich diagramach
wp lywów. Jest to problem NP–zupe lny. Zaproponowany stochasty-
czny algorytm generuje optymalne strategie decyzyjne wykorzystuja̧c
metodȩ przeszukiwania wzmocniona̧ iteracyjnym samo-wyżarzaniem,
która stopniowo pozyskuje nowe informacje. U podstaw stworzonego
algorytmu leży zaproponowana przez Chena metoda stochastycznej op-
tymalizacji dla problemu komiwojażera (TSP). Rozszerzona wersja al-
gorytmu zosta la z powodzeniem zastosowana do NP–trudnego problemu
uczenia struktury sieci bayesowskiej, jak i do problemu ramifikacji trans-
portu na p laszczyźnie, który jest również NP–trudny.

Wykorzystuja̧c sieci gaussowskie stworzylísmy algorytm wyznaczaja̧cy
optymalne warunkowe trajektorie przej́scia pomiȩdzy zadanymi konfig-
uracjami dla systemów wieloobiektowych. Opracowana metoda zosta la
wykorzystana do kontroli ruchu oraz przegrupowania formacji jednos-
tek na p laszczyźnie. Kolejnym zastosowaniem opracowanego algorytmu
jest symulacja realistycznych przej́sć pomiȩdzy animacjami postaci w
wirtualnym środowisku.

W środowisku wieloka̧tnych pól Markowa zaproponowalismy nowy algo-
rytm segmentacji, który wykorzystuje optymalizacjȩ dynamiki marko-
wowskiej lacza̧c ideȩ samowyżarzania ze stochastyczna̧ optymalizacja̧
Chenowska̧, w której nastȩpuja̧ce po sobie aktualizacje segmentacji
sa̧ przeprowadzane równocześnie z adaptacyjna̧ optymalizacja̧ lokalnej
funkcji aktywności.

S lowa kluczowe: sieci bayesowskie, diagramy wp lywów, wieloka̧tne
pola Markowa, sieci gaussowskie, adaptacyjna optymalizacja Chena,
optymalne strategie decyzyjne, ścieżki przej́scia, uczenie struktury, op-
tymalne ścieżki transportowe, segmentacja obrazów.

Klasyfikacja tematyczna ACM: I.2.6, I.4.6, G.3.

Acknowledgements

I want to thank my supervisor, dr hab. Jacek Miȩkisz, for his encouragement
and support without which this thesis would not be possible. I appreciate his
patience and support for some challenging tasks.

I would also thank my first supervisor, dr hab. Tomasz Schreiber (1975 –
2010), for the unparalleled support. He encouraged me to study Probabilistic
Graphical Models and provided many valuable ideas.

I would like to thank my family for their love and support during all these
years it took me to complete this thesis. I would also like to thank my friends
who have helped make my graduate years so enjoyable.

I acknowledge, with gratitude, the generous financial support which helped me
to write this thesis. First, I would like to thank the National PhD Programme
in Mathematical Sciences (Środowiskowe Studia Doktorancki z Nauk Matematy-
cznych) organized by leading Polish universities. The programme is supported
by the European Social Fund as a part of the Sub–measure 4.1.1.

I appreciate the financial support from the National Science Centre (NCN)
grant PRELUDIUM 2011/01/N/ST6/00573 (2011 – 2014) that funded parts of
the research presented as well as the future one. This work was also partially sup-
ported by the Ministry of Science and Higher Education grant 3852/B/H03/2008/
34 N N201 385234 (2008 – 2010).

I would like to acknowledge the support from the Nicolaus Copernicus Univer-
sity grant 1086–M (2012) and the grant 187–M (2012). I gratefully acknowledge
the access to the PL–Grid and PLGrid Plus Project that is co–funded by the
European Regional Development Fund as a part of the Innovative Economy pro-
gram. Last, but no least, I acknowledge the support from the European Social
Fund, Government of Poland and Kuyavian-Pomeranian Voivodeship as a part of
Integrated Operational Program for Regional Development, Sub–measure 8.2.2
(Step in the future program, edition: 2009, 2010 and 2011).

Contents

Abstract v

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 2

2 Preliminaries 5
2.1 Chen’s Algorithm . 5
2.2 Graphical Models . 7
2.3 Bayesian Networks . 8

2.3.1 Introduction . 8
2.3.2 D–separation . 10
2.3.3 Essential graph . 13
2.3.4 Inference . 14
2.3.5 Learning . 16

2.4 Influence Diagrams . 21
2.5 Gaussian Bayesian Networks . 23
2.6 Polygonal Markov Fields . 25

3 Short description of the results 29
3.1 Future Work . 31

Bibliography 33

Appendix

A Graph Theory 41

xi

Papers included in the PhD thesis 43

Paper A Matuszak, M., Schreiber, T. A new stochastic algorithm
for strategy optimisation in Bayesian influence diagrams, Proceed-
ings of the 10th International Conference on Artificial Intelligence
and Soft Computing, Zakopane, Poland, Lecture Notes in Artificial
Intelligence 6114, pp. 574–581 (2010) 47

Paper B Matuszak, M., Miȩkisz, J., Schreiber, T. Smooth Con-
ditional Transition Paths in Dynamical Gaussian Networks, Pro-
ceedings of the 34th Annual German Conference on Artificial In-
telligence: Advances in Artificial Intelligence, Berlin, Germany,
Lecture Notes in Artificial Intelligence 7006, pp. 204–215 (2011) 57

Paper C Matuszak, M., Schreiber, T. Locally specified polygonal
Markov fields for image segmentation, Mathematical Methods for
Signal and Image Analysis and Representation, Series: Compu-
tational Imaging and Vision, Vol. 41, pp. 261–274, Florack, L.;
Duits, R.; Jongbloed, G.; Lieshout, M.-C. van; Davies, L. (Eds.),
ISBN 978-1-4471-2352-1, Springer-Verlag (2012) 71

Paper D Matuszak, M., Miȩkisz, J., Schreiber, T. Solving Ram-
ified Optimal Transport Problem in the Bayesian Influence Dia-
gram Framework, Proceedings of the 11th International Conference
on Artificial Intelligence and Soft Computing, Zakopane, Poland,
Lecture Notes in Computer Science 7268, pp. 582–590 (2012) 89

Paper E Matuszak, M., Miȩkisz, J. Stochastic Techniques in Influ-
ence Diagrams for Learning Bayesian Network Structure, Proceed-
ings of the International Conference on Artificial Neural Networks,
Lausanne, Switzerland, Part I, Lecture Notes in Computer Science
7552, pp. 33–40 (2012) 101

xii

Chapter 1

Introduction

1.1 Motivation

Many classical probabilistic systems such as the Kalman filter, the Ising model,
hidden Markov models, and mixture models can be viewed as special cases of
the probabilistic graphical model formalism. Due to this, specialized techniques
developed in one field can be transferred to other fields, improved, and therefore
used more widely.

In this dissertation, we have investigated the framework of probabilistic graph-
ical models (PGM). The prior objective was to solve the miscellaneous and in-
teresting NP–hard problems within that framework. We did not limit ourselves
to one narrow subclass of the PGM, but we have tried to investigate a broad
variety of different types of models. The second objective was to show possible
applications and a strong performance of the Chen–style stochastic optimization,
which is used in nearly all of our algorithms. All of the developed methods have
been implemented and tested in computer simulations.

Influence diagrams (ID) are a powerful tool for reasoning under uncertainty.
It is an intuitive framework in which incorporated knowledge of an expert can
be combined with a computer generated knowledge. Medical diagnosis is an
area where influence diagrams are of widespread use. They have been applied
to prenatal testing [60] or plans of radiation therapy for prostate cancer [56].
Solving ID has been found useful in Vista system at NASA Mission Control
Centre [31], Pathfinder system [82], and as an effective tool to value real options
[22]. They found also application in computer vision [7], multiagent systems, and
game theory [42]. Motivated by a wide range of possible applications, we focused
our attention on developing stochastic algorithms for solving ID. As we will later
see, solutions of the ID can be also applied to the Bayesian network structure
learning (see Sec. 2.3.5) or to an optimal transport problem [1, 88].

Solutions of the problem of determining optimal transition paths between given
configurations of systems consisting of many objects can be applied to two general

1

1. INTRODUCTION

problems: (1) controlling motion and redeployment between unit’s formations
[4, 5], (2) realistic transformation between two sequences of character animations
in a virtual environment [8, 70]. The first problem was induced by observation
of coordination in biological systems [66]. Movement in formation allows for a
more effective use of limited resources, like radars or visual perception. Fast
redeployment has a wide military application, such as reduction of the number of
casualties in a hostile fire, less vulnerable targets or evacuation from an exposed
area [85]. It can be also applied to spacecrafts in a deep space or in the Earth
orbit [71, 72]. In civil environment, it can be used to control parking systems to
smoothly relocate cars in a parking lot or in the entertainment industry in real-
time computer games. The second one (2) plays an important role in computer
graphics and allows for the production of enjoyable computer games, credible CG
movies or medical visualizations.

One of the fundamental problem in computer vision is image segmentation,
the partitioning of an image into distinct (non–overlapping) segments which are
homogeneous with respect to some characteristic [68]. For example, in an image
of a street we might like to distinguish people, cars, a road, and other objects.
Image segmentation can be applied to medical imaging [65], locating patholo-
gies [89] or to determine shapes and sizes of organs [48, 86]. Neuroscientists can
apply these techniques to check whether synapses exist at points of contacts,
which helps to determine connections between neurons [34]. Hundreds of image
segmentation algorithms have been developed, we refer the reader to [61] for a
detailed discussion on such techniques. Still there is no single method which
achieves satisfactory results for all images. We will mention only the most rel-
evant classes: the morphological watershed [6], Markov random fields [87], and
intermediate level methods which focus on the partition of the image that is the
outcome of a segmentation [25, 57, 59]. The latter will be the main competitor
of our algorithm.

1.2 Overview

Chapter 2 provides a brief introduction to the tools being used. In Section
2.1, we present the Chen’s self–annealing algorithm whose extended versions
are widely used in the dissertation. Next, some background information about:
Bayesian networks, Influence diagrams, Gaussian Bayesian networks, and Polyg-
onal Markov fields is provided. In Chapter 3, we conclude the thesis and discuss
directions of a future research.

This PhD thesis is based on five publications which are included in appendices:

� Paper A: Introduces a stochastic algorithm for solving general Bayesian
influence diagrams [53].

� Paper B: Proposes an algorithm for determining optimal transition paths

2

[51]. The successful application of the method to two problems has been
also presented.

� Paper C: Presents a new image segmentation algorithm [55] within the
framework of polygonal Markov fields.

� Paper D: Provides an extension of [53] for solving ramified optimal transport
problem [50].

� Paper E: Introduces a stochastic algorithm that translates the structure
learning problem into the strategy optimization problem [52], for which an
extension of [53] is applied.

3

1. INTRODUCTION

4

Chapter 2

Preliminaries

This chapter provides the background material about Bayesian networks (BN)
[63], Influence diagrams (ID), Gaussian networks, and finally Markov networks.
First of all, we present the Chen’s self–annealing stochastic optimization algo-
rithm, highly effective and yet not very popular in literature.

2.1 Chen’s Algorithm

The travelling salesman problem (TSP) is a classical example of an NP–hard1

optimization problem [18]. For a given set of cities and a cost function which
assigns a cost to every pair of them, the task is to find the shortest closed route
that visits each city exactly once. Due to the simplicity of the statement of the
problem, the TSP is one of the most intensively studied problems in optimization;
however, yet no effective solution for the general case has been presented.

The optimization by a simulated annealing (SA) [38] can by successfully ap-
plied to the TSP problem. The state (configuration) can by defined as a per-
mutation of cities to be visited. The optimization is based on the evolution of
the configuration, which is carried out by the Monte–Carlo simulations. In each
step, a new configuration is generated from the previous one and is accepted with
the probability depending on the difference between total route lengths and on a
parameter T (temperature). During the optimization process, the temperature
T is decreased according to an annealing schedule. The performance of the opti-
mization highly depends on the annealing schedule and the initial configuration.

Another optimization technique, which can be used for TSP problem, is the
genetic algorithm (GA) [30]. The algorithm is based on the natural process of

1 NP (non–deterministic polynomial time) is a set of decision problems where the answer yes can be given in
polynomial time by a non–deterministic Turing machine. Equivalently, it is the class of decision problems, where
we can test the correctness of a solution in a polynomial time. NP–complete means being in NP and every
other problem in NP is reducible to it in a polynomial time. NP–hard (non-deterministic polynomial-time
hard) – a problem L is NP–hard iff there is an NP–complete problem that is polynomial time Turing-reducible
to L. Note that NP–hard problems do not have to be in NP.

5

2. PRELIMINARIES

1

2
3

4
w
12
w
13
w
14

w
41
w
42
w
43

w
31
w
32
w
34

w
21
w
23
w
24

d
14

d
34

d
12

d
23

d
13

d
24

Figure 2.1: Initialization of the Chen’s algorithm.

evolution and uses a ’survival of the fittest’ technique, where the best specimens
(solutions) survive and are varied until we get a good result. This shows the
important role of keeping a large population of species in the optimization pro-
cedure. The GA algorithm has proved to be effective for a small–size TSP [75].

In [11], Chen proposed a simple stochastic optimization algorithm for the
TSP problem, which unites advantages of the simulated annealing and genetic
algorithms. In the Chen’s algorithm, the cities are treated as neurons and the
paths between them as synapses. The algorithm has been also successfully applied
to the spin glass problem [10]. Further discussion of the Chen’s algorithm can be
found in [64].

Initially, each city is assigned a table of synaptic weights for connections to all
remaining cities. We associate the synaptic weight wi,j with the path i → j that
connects city i ∈ {1, . . . ,N} with city j ∈ {1, . . . ,N}. Let us denote the distance
from city i to j as d(i, j). The initial values of weights wi,j depend on distances
d(i, j) according to the following equation:

wi,j = e
−d(i,j)/T , (2.1)

where T can be identified as the initial strength of the synapses.
These weights help to generate probabilistically new configurations. Each

time, the choice of the next city to visit is made by a sample among cities not yet
visited, with probabilities proportional to the corresponding connection weights
i.e. the probability of selecting a route to city j from city i is given by

P (i→ j) =
wi,j

∑k∈{1,...,N}∖[V ∪{i}]wi,k
, (2.2)

where V denotes a set of already visited cities. This way, all cities get visited and
eventually we get back to the starting point.

Next, the generated tour is compared with the one obtained in the previous
iteration. Let us denote the current tour as {i1, i2, . . . , iN} and the previous one

6

as {j1, j2, . . . , jN}. The total tour lengths are labelled as d and d′, respectively.
Depending on whether the new cycle is longer or shorter than the previous one, the
connection weights between neighbouring cities in both tours are correspondingly
reinforced or faded

wnewik,ik+1
= woldik,ik+1e

−(d−d′)/T , k = 1, . . . ,N (2.3)

wnewjk,jk+1
= woldjk,jk+1e

−(d′−d)/T , k = 1, . . . ,N, (2.4)

where iN+1 = i1 and similarly jN+1 = j1.
The connection weights of the cities from the intersection of the current and

previous tour do not change during the course of the current iteration, because
the weights are reinforced and faded at once. We modify only the weights of the
cities from the symmetric difference (the union without the intersection) of the
current and previous tour. Supposing, the current total tour length is smaller
than the previous one, then the weights of the cities from the current tour, not
occurring on the previous tour, are increased and the weights of the cities from
the previous tour, not occurring on the current tour, are decreased. A similar
situation takes place, if the previous total tour length is smaller than the current
one.

The learning algorithm maintains probability weights that are associated with
each city in the configuration. This allows many configurations to be kept im-
plicitly, yet learning improves over time. The algorithm stops when the weights
converge to the optimal tour under suitable reinforcement/fading protocols. It
occurs because during the learning process some weights decrease, while others
increase.

2.2 Graphical Models

Probabilistic graphical models received their name from the fact that their joint
probability distributions can be easily described in graphical terms, where the
vertices (nodes) of a graph represent variables over which a joint probability dis-
tribution is defined and the existence or absence of links represents dependence or
independence between the variables. Their important advantage is a mechanism
for describing a complex distribution in a compact way. It is possible due to the
conditional independence properties of the model which can be determined by an
inspection of the graph. The graphical structure of the model provides a simple
way to visualize the structure and can be evaluated by a human expert. Complex
computations, like inference in graphical models, can be conducted much faster
than a direct manipulation of the joint distribution [41].

Graphical models can be divided into three general classes: those based on the
Directed Acyclic Graphs (DAG), those based on undirected graphs, and mixed
ones which use both DAG and undirected graphs. We will focus our attention on

7

2. PRELIMINARIES

the first two cases; thus, we will not deal with the mixed ones. In the Figure 2.2,
a DAG (on the left) and an undirected graph (on the right) are presented.

A

B C

D E

(a)

A

B C

D E

(b)

Figure 2.2: (a) An example of a directed acyclic graph (DAG); (b) An example of an undirected
graph.

In this chapter, the notation of nodes and variables will be used interchange-
ably for models which consist of the chance variables only (like Bayesian, Gaussian
or Markov networks). In influence diagrams (ID), which are introduced in Section
2.4, it is convenient to distinguish between variables and nodes because a node
does not need to possess a variable. For example, decision and utility nodes in
ID do not represent variables (see Section 2.4).

In Sections 2.3, 2.4, 2.5, probabilistic graphical models built on DAG are
described. Finally, Section 2.6 describes models on undirected graphs.

2.3 Bayesian Networks

2.3.1 Introduction

Bayesian networks (BN), also known as belief networks, were introduced by Pearl
[62] as probabilistic graphical models to represent an uncertain knowledge and
to make decisions on its basis. BN provide a systematic way to represent (condi-
tional) dependence relationships among random variables. They can be defined
by an expert, encoded graphically, reasoned about, and can be used to our com-
putational advantage. BN provide an effective representation and computation
of the joint probability distribution over a set of random variables.

Definition 2.3.1 (Bayesian network structure) A Bayesian network struc-
ture is a directed acyclic graph (DAG) G = (V,E) whose nodes are associated with
random variables i.e. for each node v ∈ V , a random variable Xv is linked which
can take values from a given set of attributes Av, and a set of edges E describes

8

being
 late

traffic
jam

traffic weather

getting
 out

Figure 2.3: Example of a Bayesian network.

a direct causal relationship between the vertices. Let X =⊗v∈V Av, then x ∈ X is
the configuration x = (xv)v∈V , xv ∈ Av.

Definition 2.3.2 (Bayesian network) A Bayesian network is a pair B =
(G, P), where G is a Bayesian network structure and P is a distribution over
vectors from X which may be factorized as follows:

P (X = x) = P (X1 = x1, . . . ,Xn = xn) =
n

∏
i=1

P (Xi = xi ∣Xpa(i) = xpa(i)), (2.5)

with each node v ∈ V, a conditional probability table (CPT) describing the proba-
bility distribution of a given node is associated, which depends on the configuration
of its parents. The probability distribution of nodes which do not have parents are
defined a priori.

(a)

being late
traffic jam getting out no little seriously

no early 85% 10% 5%
no late 15% 25% 60%
yes early 30% 40% 30%
yes late 8% 15% 77%

(b)

weather
sunny rainy snowy

- 70% 20% 10%

Table 2.1: Part of the Conditional Probability Tables (CPT) (a) for node being late with 3
possible states: ’no’, ’little’, and ’seriously’. (b) For node weather the CPT represents a priori
knowledge.

In the Figure 2.3, a simple example of a Bayesian network is shown. The
utility node being late describes if (and if ’yes’, then how much) we are late.

9

2. PRELIMINARIES

As we can see from Table 2.1, the probability of being late increases if traffic
jam occurs and is smaller if we get out earlier. The probability of getting out
early is the highest when the weather is sunny, is smaller during rain (we need
to take more clothes like a coat and an umbrella) and is the smallest during
snow. Probability distribution for node weather is given a priori. Node traffic
is described by a binary variable which can take values ’high’ or ’low’. Rainy
weather will increase the probability of higher traffic and snow can decrease the
traffic intensity. Bad weather conditions have a negative impact on the traffic
flow and can cause traffic jams. No connection between node traffic and node
getting late indicates no direct dependence between them.

Overall, the probability space, corresponding to this five variables, has 3× 2×
2 × 2 × 3 = 72 possible values. This parametrization requires 71 non–redundant
parameters (the last parameter can be easily determined, because all values of
the distributions sum to 1). Using the definition of a Bayesian network, the
probability distribution factorizes in the following form:

P (being late, getting out, traffic jam, traffic, weather)

=P (being late ∣ traffic jam, getting out)

P (getting out ∣ weather)

P (traffic jam ∣ traffic, weather)

P (traffic ∣ weather)

P (weather)

To encode a priori node weather we need 2 parameters. For node being late 8
parameters is required and finally, we need 8 + 4 + 3 + 6 + 2 = 23 non–redundant
parameters as opposed to 71 in the original joint distribution.

2.3.2 D–separation

The d–separation connectivity criterion [63], the ”d” denoting ”directional–dependent”,
identifies conditional interdependencies in Bayesian networks. The criterion per-
mits us to determine relationship among three variables (or three sets of variables)
denoted as XA,XB, and XC i.e. which variable (set of variables) is independent
of the other one given a third one; for example XA�XC ∣XB.

Definition 2.3.3 (Instantiation) A variable Xv, v ∈ V , is instantiated if the
state of Xv is known i.e. Xv = xv. Notation of instantiation is presented in Fig.
2.4.

In a Bayesian network, there are three possible ways of connection in which
two variables are connected by a third one and no direct connection between them
occurs. We named them a chain (also known as a causal/evidential trail or

10

Xv

Figure 2.4: Node instantiation.

serial connection), a common cause (fork or diverging), and a common
effect (collider) connection. The common effect connection is also called a v–
structure. Now we will discuss them briefly.

Let us consider a DAG with three variables (sets of variables) named XA, XB,
and XC . The chain connection is presented in Fig. 2.5. This connection describes
a situation where the variables XA and XC are not directly connected, but they
form a trail with the node XB between them. Node XB is named a chain node.

B CA

(a)

B CA

(b)

Figure 2.5: Causal chain connection.

The probability distribution over (XA,XB,XC) that factorizes along the graph
in Fig. 2.5 may be written as:

P (XA,XB,XC) = P (XA)P (XB ∣XA)P (XC ∣XB) (2.6)

Clearly, XC Ù XA in general and if an evidence in the middle variable XB = b is
presented, XB is instantiated, then XC�XA ∣XB.

The common cause connection is presented in Fig. 2.6. Node XB is called a
common cause node.

B

CA

(a)

B

CA

(b)

Figure 2.6: Common cause connection.

The probability distribution over (XA,XB,XC) that factorizes along the graph
in Fig. 2.6 may be expressed as:

P (XA,XB,XC) = P (XB)P (XA ∣XB)P (XC ∣XB) (2.7)

In general XA Ù XC , but if the middle variable XB = b is instantiated, then
XA�XC ∣XB.

The common effect connection is presented in Fig. 2.7. Nodes XA and XC

have a common child and are not directly connected. Node XB is called a common
effect node.

11

2. PRELIMINARIES

B

CA

(a)

B

CA

(b)

Figure 2.7: Common effect connection.

The probability distribution over (XA,XB,XC) that factorizes along the graph
in Fig. 2.7 may be expressed as:

P (XA,XB,XC) = P (XA)P (XC)P (XB ∣XA,XC) (2.8)

In general, we have XA ÙXC ∣XB, also XA and XC are unrelated: XA�XC .

Definition 2.3.4 (Active trail) For a DAG G = (V,E), let S be a subset of V
and A,B ∈ V ∖ S, suppose that nodes in S are instantiated. A trail (see Def.
A.0.4) between A and B, given S, is active if

� Every node with two incoming arcs (v–structure) on the trail is in S or has
descendants in S.

� Every other node along the trail is not in S.

We can distinguish a special case, that is, an active trail can be a single node.

Definition 2.3.5 (Blocked trail) A trail between A and B, given S is said to
be blocked, if it is not active given S.

Definition 2.3.6 (d-separation) For a DAG G = (V,E), suppose S be a subset
of V and that only nodes in S are instantiated. Let A,B ∈ V ∖ S, if all trails
between A and B are blocked by S then we can say that A and B are d–separated
by S. We denote this as

A�B ∥G S

Suppose that C and D are subsets of V ∖ S. If all trails from any variable in C
to any variable in D is blocked by S, then the sets C and D are d–separated by
S.

The d–separation property between given nodes could be easily determined with
the Bayes–ball algorithm [78].

Definition 2.3.7 (d-connection) If two variables are not d–separated, then they
are d–connected.

12

C

A

S0

S1

X3

X1

X0

X2

X4

X5

Figure 2.8: Example of a BN. Nodes S0 and S1 are instantiated.

Let us consider the BN in Fig. 2.8 with the instantiated nodes S0 and S1.
The trail X2 ← X0 ← A is active because no node along the trail is instantiated.
The trail X2 ← S1 ← A is blocked because node S1 is instantiated. Nodes A and
X2 are d–connected because there exist active trail X2 ←X0 ← A between them.
The trail A → X0 → X2 → S0 ← X1 ← C is active because no node along the
trail is instantiated; except S0 which is a common effect node of the v–structure
X2 → S0 ← X1. The trail X3 ← S0 → X4 → X5 is blocked because node S0

(common cause node) is instantiated. No other trail between X3 and X5 exists,
thus X3 and X5 are d–separated, given S0.

Theorem 2.3.8 Let G = (V,E), A,B and S be disjoint subsets of V , then a d–
separation of A and B by S implies conditional independence between A and B
given S:

A�B ∥G S ⇒ A�B ∣ S (2.9)

Proof can by found in [44] (Section 2.8) or [41] (Section 4.5.1).

Definition 2.3.9 (Faithful graph) DAG G = (V,E) is faithful to probability
distribution P (see Def. 2.3.2), if whenever A�B ∣ S implies A�B ∥G S.

Thus, for a faithful DAG G, the conditional independence and d–separation are
equivalent. Many structure learning algorithms assume that there exists a faithful
graph for a given data.

2.3.3 Essential graph

The following definition of the Markov equivalence class will simplify finding
graph structures. Instead of searching the space of all available DAG’s, we will
only examine different equivalence classes [44].

13

2. PRELIMINARIES

Definition 2.3.10 (immorality) For a graph G, an immorality is a v–structure
i.e. it is a triple (X,Y,Z) with the following connection X → Y ← Z, where edges
X → Z, Z →X and X −Z are forbidden.

Definition 2.3.11 (skeleton) The skeleton of a DAG G is a graph obtained
by making every edge undirected.

Definition 2.3.12 (Markov equivalence) Two DAG G1 and G2 over the same
variables are Markov equivalent if and only if any pair of variables d–separated
by a set in G1 is also d–separated by the same set in G2

A

BX

(a)

B

XA

(b)

X

BA

(c)

Y

BA

X

(d)

Figure 2.9: Possible compelled edges [44]. Compelled edges are marked with blue.

Definition 2.3.13 (Essential graph, compelled edge) For a DAG G, an es-
sential graph G∗ (it may contain either directed or undirected edges) is defined
as a graph, build on the same skeleton as G, where an undirected edge is replaced
with a directed one if and only if the direct edge occurs in every graph that is a
Markov equivalent to G. That edge is named compelled edge in G∗.

2.3.4 Inference

The most common action in a Bayesian network is to compute beliefs of alterna-
tive hypotheses in the context of presented knowledge. That operation is called a
probabilistic inference or a belief updating. Considering the Bayesian net-
work presented in Fig. 2.3, an example of a probabilistic inference could be to

14

compute the probability that being late = ’no’, given the knowledge that weather
= ’snowy’ or the probability distribution in node traffic jam, given that weather
= ’sunny’ and being late = ’seriously’. In general, probabilistic inference on a
BN is the process of computing P (XY ∣ XS = xS), where nodes in a set Y are
called query nodes and nodes in a set S are observed (instantiated) nodes.

Definition 2.3.14 (conditional probability query) For BN B = (G, P), where
G is a DAG G = (V,E), let Y and S be subsets of V , suppose that nodes in S
are instantiated (XS = xS). The conditional probability query is in the following
form:

P (XY ∣XS = xS). (2.10)

There exist two major classes of inference algorithms – exact and approximate
ones. The exact inference (answering probabilistic queries) in an arbitrary BN has
been shown to be NP–hard, by reducing 3SAT problem2 to exact inference [16],
i.e. an exponential relationship between computation complexity and the number
of variables (network complexity) is often presented. Thus this limits the number
of networks where exact inference methods are computationally feasible. In [19],
there has been shown that even an approximate inference in BN is NP–hard. Only
in restricted classes of networks, the probabilistic inference can be polynomial or
even linear. The linear complexity [63] is available in tree structured networks
(every node, excluding the root, has exactly one incoming edge).

However, tree structured networks cover only a small part of interesting real–
world problems. Some other have been successfully applied to handling general
networks. First, the problem has been solved, with a polynomial complexity
[63, 36], when the Bayesian network structure is represented by a polytree – a
node may have multiple parents, but the network is single connected, i.e. no more
than one path exists between any two nodes. That algorithm, called the mes-
sage passing algorithm, is the basis for the most popular exact BN inference
algorithms in general BN – the clique-tree propagation algorithm (also known
as the junction tree algorithm) [49]. First, the algorithm moralizes (see Def.
A.0.11) the graph, then the underlying undirected graph is triangulated (check
Def. A.0.12). Now, from disjoint cliques, a clique tree (junction tree) can be
formed, and the message passing algorithm can be applied. The efficiency of the
algorithm depends on the density of the network (the complexity is exponential
in the size of the largest clique).

For most of small enough networks (up 40 nodes [43]), the exact algorithms
work good enough. For densely connected and bigger networks, the junction tree
algorithm requires very large tables for the cliques in the triangulated graph.
Sizes of cliques may exceed the available hardware limitations. In such a case,

2For the formula with Boolean variables which is expressed as an AND of ORs (conjunctive normal form),
where each clause has at most 3 variables in it, the 3–Satisfiability (3SAT) problem involves determining whether
there is an assignment to the variables that satisfies the formula if one exist. It is the first example of a NP–
complete problem [15] and it can be used for proving that other problems are NP–hard.

15

2. PRELIMINARIES

the recursive conditioning can be applied, which reduces the required storage,
but greatly increases the computational time [35]. If computation is not feasible
by exact algorithms, then the approximate ones should be applied.

The simplest approximate algorithm is the logic sampling (LS) [28]. The
algorithm starts at leafs, follows the influence arrows (hence also the name for-
ward sampling) and generates cases by randomly selecting a value at each node,
weighted by the probability of that value occurring. Instances of the network
that are inconsistent with the evidence XS = xS are discarded. The probability of
a query is estimated by dividing the number of cases, where both the query and
the evidence are meet, the number of cases where the evidence is meet. The al-
gorithm works very well when no evidence is provided and all network instances
are proceeded. When several evidence nodes are introduced, then most of the
instances are discarded and the algorithm works poorly.

The main drawback of the logic sampling algorithm can be easily fixed. The
resulted algorithm, named the likelihood weighting (LW) [23, 77], does not
discard inconsistent instances, but instead, when an evidence node is proceed,
weights the sample by the probability of the evidence given parents. The algo-
rithm converges faster than the logic sampling, but both perform better when
the evidence is located near root nodes rather than leafs [43]. In [20], a modified
version of LWS is presented. The bounded–variance algorithm achieves faster
convergence by reducing the variance of sample estimates. In addition, a stopping
rule is added; thus, the number of samples can be estimated to achieve a desired
accuracy.

The Gibbs sampling algorithm, differs from the previous ones because it
does not generate a new instance of the network from a scratch. Instead, it
generates a sample by making a random change in a previous instance. It works
by sampling a value of a non–evidence node conditioned on its Markov blanket
[35, 44]. Instances are constantly consistent with the knowledge. The algorithm
is easy in implementation, but it is difficult to say when it converges; furthermore,
it experiences a slow performance for bigger Markov blankets [35].

2.3.5 Learning

Bayesian networks can be constructed by a human expert or by an automatic
learning method. There are many algorithms producing graphical models from a
given data. They are useful because automatically produced models show usually
better performance than those hand constructed. There are two basic learning
problems in Bayesian networks: learning the structure of a graph and learning
the conditional probability potentials.

16

Parameter estimation

The task of parameter estimation in a Bayesian network with a given DAG is
widely described in [35, 44, 58]. In this problem, we assume that network structure
G = (V,E), where V = {X1,X2, . . . ,Xn} and a data set M = {M1,M2, . . . ,Mm}
of m i.i.d. examples are given. Each element Mi from the data set contains

observations of all variables in V , i.e. Mi = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n)T is a vector of

instances of variables X1,X2, . . . ,Xn.
The objective is to estimate an unknown vector of parameters θ, which defines

the set of parameters for all variables, i.e. for a given node Xi, let ki be a
number of possible states of Xi, xi,k be a kth possible state of Xi and qi,l be an lth

configuration of parents of the node Xi, parameter θ is defined as θXi=xi,k ∣qi,l,M,G =
P (Xi = xi,k ∣ qi,l).

The likelihood function, for a given network structure G and parameters θ, is
defined as:

L(θ ∣M,G) =
m

∏
i=1

P (Mi ∣ θ,G) (2.11)

Definition 2.3.15 The Maximum Likelihood Estimate is defined as a value
of θ̂ that maximizes the likelihood function L(θ ∣M,G).

It has been shown in [41] that the likelihood can be decomposed (parameters
independence) into independent terms and each term can be maximized locally.

L(θ ∣M,G) =
n

∏
i=1

Li(θXi∣pa(Xi) ∣M,G), (2.12)

where local likelihood is defined as:

Li(θXi∣pa(Xi) ∣M,G) =
m

∏
j=1

P (x
(j)
i ∣ pa(x

(j)
i), θ,G), (2.13)

where x
(j)
i is a jth instance of Xi in data set M and pa(x

(j)
i) is a jth instance of

node’sXi parents. Then the maximum likelihood estimate of parameter θXi=xi,k ∣qi,l
is:

θ̂Xi=xi,k ∣qi,l =
nM(Xi = xi,k ∣ qi,l)

∑
ki
j=1 nM(Xi = xi,j ∣ qi,l)

, (2.14)

where function nM(X = x) counts number of entries in M that have X = x.
Estimating parameters from a data in the MLE approach shows a weak perfor-

mance when learning large, dense networks. The problem occurs because when
the number of node’s parents grows, then the number of parameter assignments
grows exponentially. The data have to be partitioned into small subsets (data
fragmentation) and we have a small number of data to estimate a parameter;
thus, the estimate can be noisy or even we can end up with a large number of
zeros. For such situations, the Bayesian approach with the mean posterior
estimate (MPE) [27, 41, 44] is a better choice.

17

2. PRELIMINARIES

Learning Bayesian network structure

Now we will focus our attention on learning the structure of a Bayesian network
from a given, fully–observed dataset. The task has been proven to be an NP–hard
problem, even for networks with two parents [13]. Some special structures, like
trees, can be learned in a polynomial time with a popular Chow–Liu algorithm
[14], but it has been proven in [21] that even learning 2–polytrees is an NP–hard
problem.

In recent years, many learning algorithms (see [35, 41, 44, 58]) for building a
structure of Bayesian networks have been developed. Generally, they can be di-
vided into three main groups: constraint based algorithms, search and score
techniques, and hybrid methods that combine the two previous ones.

The problem of learning a Bayesian network structure is given as follows: for
a set of random variables C = {X1, . . . ,Xn} and a database of m cases M =
{M1, . . . ,Mm}, where each case contains complete observations of all variables in
C, i.e. Mi = (x1, . . . , xn)T is a vector of instances of variables X1, . . . ,Xn, find a
DAG (that is a set of directed edges) which best matches M .

The structure of a Bayesian network encodes dependencies of the model,
whereas the constraint based algorithms perform a study of the dependence
and independence relationships among variables of the Bayesian network and try
to use them to infer the graph structure. The relationship between nodes can be
determined by conditional independence tests. For datasets large enough, χ2 or
G2 tests can be performed and for the smaller ones exact tests could be done as
well.

The G2-test is currently recommended by many researchers over the χ2. Values
of the G2 statistics are equivalent to the mutual information up to a constant
[47]. To test whether X ⊥ Y ∣ Z, the G2 statistics should be computed, which is
defined as follows:

G2(X,Y,Z) = 2∑
x
∑
y
∑
z

Nxyzlog
NxyzNz

NxzNyz

, (2.15)

where Nxyz denote the number of times (X,Y,Z) = (x, y, z) appears in the data.
Similarly, Nxz and Nyz are defined. The degree of freedom, denoted by k, is given
by

k = (∥X∥ − 1)(∥Y ∥ − 1)∥Z∥, (2.16)

where ∥X∥ is the number of values that variable X can take. The distribution of
G2 is asymptotically a χ2 one on k degrees of freedom.

Constrained based algorithms assume that there exists a DAG that is faithful
to the probability distribution (each conditional independence is represented by
a d–separation statement). A detailed discussion of the algorithms can be found
in [12, 45]. We will discuss briefly only the classical ones. Most of the algorithms,
instead of learning a full DAG, return an essential graph (see Def. 2.3.13). The

18

SGS algorithm (named after the authors: Spirtes, Glymour, and Scheines) [81]
starts with a skeleton identification stage:

1. Start with a fully connected, undirected graph G = (V,U).

2. Arcs removal – for each pair of vertices A and B, if there exists a set that
d–separates them, then the edge A −B is removed.

That is followed by an orientation stage:

1. v–structures identification – for each triple of vertices connected through a
middle one, i.e. A − B − C and A /− C if and only if there is no subset of
{B}∪V ∖{A,C} d–separates A and C, then orient A−B−C as A→ B ← C.

2. Add compelled edges using rules from Def. 2.3.13.

The SGS algorithm is very computationally inefficient because a number of condi-
tional tests during skeleton–identification stage grows exponentially in a number
of graph vertices. Also, testing the higher order conditional independence rela-
tions is less reliable than the lower order relations and requires more data to be
proceeded.

The PC algorithm [80, 81] (PC is an acronym of the first letters of the
first names of the scientists that proposed the algorithm: Peter Spirtes & Clark
Glymour [79]) is very similar to SGS algorithms, but enhances the arcs removal
step:

� First, edges with the zero order conditional independence (conditioned on
the empty set) are removed, then the first order conditional independence
(conditioned on single variable) is checked, etc.

� The set of conditioned variables is a subset of a set of variables adjacent to
conditioned vertices.

For the PC algorithm, the number of independence tests grows exponentially with
the maximum degree of any vertex in G [81].

The main drawbacks of the algorithms mentioned above are: the computa-
tional complexity of the independence tests, requirements for large data sets, un-
reliable results of the independence tests, and also the fact that the most widely
used algorithms require an existence of a faithful graph [44].

The search and score techniques attempt to find a graph structure that
maximizes the value of a given scoring function.

The Chow–Liu algorithm [14] tries to find the best fitting tree. The distance
is measured by the Kullback–Leibler divergence and the objective is to minimize
that measure.

19

2. PRELIMINARIES

Definition 2.3.16 (Kullback–Leibler divergence) For two probability distri-
butions P and Q over the same finite state space, the Kullback–Leibler diver-
gence is defined as

DKL(P ∥ Q) =∑
x

P (x)log
P (x)

Q(x)
. (2.17)

Definition 2.3.17 (Mutual information) For two discrete random variables
Xi and Xj, the mutual information can be defined as

I(Xi,Xj) =∑
xi

∑
xj

P (xi, xj)log
P (xi, xj)

P (xi)P (xj)
. (2.18)

The mutual information can be seen as a Kullback–Leibler divergence between
P (Xi,Xj) and P (Xi)P (Xj):

I(Xi,Xj) =DKL(P (Xi,Xj) ∥ P (Xi)P (Xj)) (2.19)

First, the algorithm computes the mutual information between any two
variables and associates these values with weights on the corresponding edges.
Then, in order to minimize the KL divergence, we construct a tree that maximizes
total weights, i.e. a tree with a maximal value of the sum of weights on tree’s
edges. Such problem is well known as a Maximum Spanning Tree problem and
can be solved in quadratic time [46].

Different scoring functions have been proposed to evaluate a graph structure
[9, 45]. They can be divided into two main classes:

� Bayesian scoring functions:

– K2,

– Bayesian Dirichlet test and its variants (BD, BDe, BDeu).

� Information-theoretic scoring functions:

– Log Likelihood (LL),

– Bayesian Information Criterion (BIC),

– Akaike Information Criterion (AIC).

One of the most popular scoring function is a modification of the Cooper–Herskovits
likelihood (belonging to the Bayesian scoring class) [17], for a DAG G and a
dataset M with P (G) as a prior probability of G. It has the following form:

P (G,M) = P (G) ×
n

∏
k=1

∣φk ∣

∏
j=1

(sk − 1)!

(skj + sk − 1)!

sk

∏
l=1

αkjl! (2.20)

where sk is a number of states of the variable Xk, φk is a variable describing joint
configurations of variables in pa(Xk), ∣φk∣ is a number of states of φk and αkjl is

20

a number of cases in M in which Xk is at the lth state and φk is at the jth state.
Also skj = ∑

sk
l=1αkjl. A broad spectrum of scoring functions has been evaluated

in [9] with the conclusion that there are only small differences between various
scoring functions and all of them behave in a similar way (only the BIC score was
clearly the worst).

A search space of possible DAG’s grows super–exponentially [67], so testing all
possible DAG patterns is computationally unfeasible. There have been developed
many algorithms for searching the graph space (see [9, 45]). A classical algorithm
of a greedy search has been proposed in [17], called the K2 algorithm. It
requires that a node ordering is given and the graph has no edges. The algorithm
proceeds from the root node (nodes are ordered) and adds incrementally parents
that increases mostly a value of a scoring function (K2). If adding an additional
parent does not increase the scoring function, then we stop adding parents to that
node and proceed with the next one. The algorithm stops when no additional
parents can be added to the last vertex.

2.4 Influence Diagrams

Influence diagrams (ID) [32, 63] are widely acknowledged as compact representa-
tions of decision problems. They can be viewed as a decision tool extending the
capabilities of Bayesian networks. The ID can be considered as generalizations
of (symmetric) decision trees, see [35].

An influence diagram is built on a directed acyclic graph (DAG) G = (V,E)
whose nodes and edges admit standard interpretations and extend those used for
Bayesian networks. Three principal types of nodes in V = C∪D∪U are considered
(see Fig. 2.10):

� C – chance nodes representing random variables (represented by ovals, see
Fig. 2.10(a))

� D – decision nodes corresponding to available decisions (represented by
rectangles, see Fig. 2.10(b)),

� U – utility nodes specifying the utilities to be maximized by suitable
choices of decision policies (represented by rhombuses, see Fig. 2.10(c)).

Ci

(a) chance node

Di

(b) decision node

Ui

(c) utility node

Figure 2.10: Types of nodes in an influence diagram.

21

2. PRELIMINARIES

creative
accounting

income

economic
 situation

revenue taxes

productivity

sleep

mood

Figure 2.11: Illustration of a simple influence diagram.

The chance nodes C inherit their own properties from chance nodes in BNs,
i.e. the nodes are associated with random variables. The utility nodes U =
{U1, U2, . . . , Uk} have no children and they do not have states. With each utility
node Ui a real–valued function is associated. The decision nodesD = {D1,D2, . . . ,Dm}
have finite sets of states, i.e. each decision node Di ∈ D can take values from a
given (finite) set of states ADi

. We also suppose that there exists a directed path
over V that contains all decision nodes D. This assumption justifies that there
exists a sequence of decisions.

The edges in E can indicate two types of influences:

� conditioning influence – represented by arrows leading to chance nodes
indicating a direct causal relationship,

� informational influence – represented by arrows leading to decision nodes
and specifying the information available at the moment of decision making.

An example of an influence diagram can be seen in Fig. 2.11. The network
consists of five chance nodes, two decision nodes, and one utility node. A chance
node income represents a probabilistic distribution of our profits that are di-
rectly affected by nodes revenue and taxes. The level of taxation depends on the
productivity. Productivity also has a direct impact on the revenue that is addi-
tionally influenced by the current economic situation. The decision node creative
accounting represents the choice whether or not to misrepresent our true income.
A creative accounting does decrease the taxes, yet it also causes negative effects,
such as the fear of being caught. Finally, more sleep decreases the chance of a
higher productivity but it also positively affects our mood. All these effects are
jointly taken into account in the utility node mood.

Definition 2.4.1 (outcome) Let G = (V,E) be an ID. An outcome is an in-
stantiation of all variables in V . We denote this as Ψ.

Then, the P (Ψ) denotes the probability of a fully–observed network and Ui(Ψ)
denotes the value of utility function in node Ui. We should emphasize that the
value of an utility function in node Ui depends only on the parents of Ui.

22

Definition 2.4.2 (policy) A policy δDi
for a decision node Di ∈D is an action

for each possible configuration of Di parents. It is a mapping

δDi
∶ ⊗
Z∈pa(Di)

AZ → ADi
. (2.21)

The adopted definition of the policy, given in [35], considers it as a determinis-
tic action. A different approach is presented in [41], where policies are represented
by probability distributions.

Definition 2.4.3 (strategy) A set of policies, one policy for each decision node
Di ∈D, is called a strategy.

For a fixed strategy ∆ = (δ1, δ2, . . . , δm), a decision node Di ∈ D is equivalent
to a chance node and it has the following conditional probability distribution:

P (Di = d ∣ pa(Di)) = {
1 if δi(pa(Di)) = d,
0 otherwise.

(2.22)

Definition 2.4.4 (expected utility) For an influence diagram build on a DAG
G = (C ∪D ∪ U,E) and a fixed strategy ∆, the expected utility of an influence
diagram is defined as a sum over all possible outcomes Ψ:

EU(∆) =∑
Ψ

P (Ψ)U(Ψ), (2.23)

where value of the utility U is the sum of individual nodes in U :

U(Ψ) = ∑
i∶Ui∈U

Ui(Ψ). (2.24)

Definition 2.4.5 (optimal strategy, maximum expected utility) If a strat-
egy ∆ maximizes the expected utility function, then the resulting strategy is called
optimal strategy, the value of the function EU(∆) is named maximum ex-
pected utility and policy δ ∈ ∆ is called an optimal policy.

In general, finding an optimal decision strategy for an influence diagram is an
NP–hard problem. One can show this easily by reducing the travelling salesman
problem (that is NP–complete) to our task [35].

There has been proposed a number of algorithms for solving (finding an opti-
mal decision strategy) an influence diagram. A detailed discussion can be found in
the following positions: Chapter 10 in [35], Subsection 5.2.2 in [58], and Chapter
23 in [41].

2.5 Gaussian Bayesian Networks

Gaussian Bayesian networks have been introduced in [76] and describe an exten-
sion of Bayesian networks to variables that are continuous. They are a popular

23

2. PRELIMINARIES

 net
income

tax gross
income

+1.0-1.0

Figure 2.12: Example of a simple Gaussian Bayesian network.

tool for decision making and inference. For example, in molecular biology they
are used to describe protein dynamics [26]. Gaussian networks offer polynomial
time of manipulation and their local nature of computation can be helpful in
parallel applications [76].

Definition 2.5.1 (linear Gaussian model) Let Y be a continuous random vari-
able associated with a given node with only continuous parents pa(Y) = {X1, . . . ,Xk}.
Y is a linear Gaussian model if it can be described using parameters β0, . . . , βk
and σ2 such that the probability density of the random variable Y is given by:

P (Y ∣ x1, . . . , xk) = N (β0 + β1x1 + . . . + βkxk, σ
2) (2.25)

or using a vector notation we can simply write:

P (Y ∣ x) = N (β0 + β
Tx, σ2) (2.26)

We should notice that in a linear Gaussian model, the variance does not depend
on parents values.

In Fig. 2.12, an example of a Gaussian Bayesian network is presented. The
variable net income depends on variables tax and gross income with parameters
β equal to −1 and +1 respectively.

Definition 2.5.2 (linear Gaussian Bayesian network) A linear Gaussian
Bayesian network G = (V,E) is a Bayesian network, where all variables are
continuous and all conditional probability distributions are linear Gaussian ones.

That is, the continuous variable Y is normally distributed around a mean that
depends linearly only on the values of its parents. The model captures many
interesting dependencies. Next advantage of that model is its simple representa-
tion. The drawback of Gaussian networks is that their representation is limited
to modelling linear dependencies between variables and fixed variance (it does
not depend on parents values).

The Linear Gaussian Bayesian network defines a multivariate Gaussian distri-
bution N (µ,Σ) [41, 69].

24

Let us investigate the connection between the graph G and the parameters of
the normal distribution. Similarly, we will be interested in the dependence prop-
erties. The mean parameter µ does not have any influence on the dependencies
and all the information is stored in the covariance matrix Σ. The covariance
matrix encodes the marginal independencies i.e.:

Σij = 0⇔Xi ⊥Xj (2.27)

The result is not very useful, because the knowledge of conditional dependencies
is preferred. Thus, it is better to consider the inverse covariance matrix, the pre-
cision matrix Q = Σ−1. The precision matrix Q directly encodes the conditional
independences:

Qij = 0⇔Xi ⊥Xj ∣X−ij, (2.28)

where i ≠ j and X−a denotes a set of all variables except for Xa. The nonzero
values in Q determine connections in G, so it is possible to determine whether Xi

and Xj are conditionally independent.
The canonical representation is defined with canonical parameters b =

Qµ and Q is denoted as NC(b,Q). The relation to the normal distribution is as
follows: NC(Qµ,Q) = N(µ,Q−1)

Sampling from canonical representation is similar to sampling from a multi-
variate normal distribution. The algorithm for sampling from NC(b,Q) works in
the following manner [69]:

1. Compute Cholesky factorization, Q = LLT

2. Compute µ by solving Lw = b and then LTµ = w

3. Sample z from N(0, I)

4. Compute and return x = µ + v, where v is a solution of LTv = z

Learning

To characterize graph G, we can provide the mean µ and precision matrix Q. The
mean vector µ̂ can be simply estimated using means. The Q̂ could by estimated
by first computing the Σ̂ (using for example maximum likelihood estimator) and
then inverting the matrix. It is a highly unstable and not feasible approach. The
simple and effective method for estimating Q̂ is the use of regression methods.

2.6 Polygonal Markov Fields

In this chapter we will focus on another important class of probabilistic graphical
models, build on the basis of undirected graphs, called Markov Network (also
known as Markov Random Field (MRF)). This model has received a great deal

25

2. PRELIMINARIES

of attention, due to its wide applications to computer vision [41], such as: edge
detection, image restoration, stereovision, image classification, and image seg-
mentation. This type of modelling in vision was introduced in [24]. In most of
that vision algorithms use a subclass of MRF structured in the form of a grid,
where variables correspond to pixels of the image and the edges correspond to
interactions between adjacent pixels. For some tasks, like image segmentation,
it is more natural to process regions of pixels with edges that define interactions
between adjacent regions. That concept was introduced in Polygonal Markov
fields (PMF), originally constructed by Arak, Clifford [2, 3], and Surgailis [83].
PMF are random ensembles of non–intersecting contours in the plane, arising
in a Gibbsian set-up and sharing a number of important features with the two-
dimensional Ising model. Due to their purely continuum nature, polygonal fields
admit natural applications for instance in a digital image processing and segmen-
tation, where they can be used for the majority of tasks traditionally reserved
for lattice–based Markov fields, while being completely free of directional lattice
artefacts [39, 40].

Now we will recall the formal construction of the consistent multicoloured
polygonal Markov fields [2], adapted from [40] to better fit our needs.

(a) (b)

Figure 2.13: Realization of a polygonal Markov field: (a) with two (k = 2) available colours; (b)
with four (k = 4) available colours.

Let D ⊆ R2 be a convex bounded domain and µ(dl) be a finite and non–atomic
measure on set LD of all lines l in R2 which intersect D, and let J = {1, . . . , k}
be a set of available colours, k ≥ 2. For any collection (l)n = (l1. . . . , ln) of lines,
where li ∈ LD, the set ΓD(l)n consists of all functions ω ∶D → J such that

1. ∂ω ⊂ ⋃∞
n=0 li ∩D, where ∂ω is the set of discontinuity points od ω.

2. For any i = 1, . . . , n, the intersection li ∩∂ω consists of a single segment with
a positive length and possibly some isolated points.

26

Define the set of all realizations on D by

ΓD =
∞
⋃
n=0

⋃
(ln)

ΓD(l)n. (2.29)

Γ̂D is the set of all planar graphs γ in D ∪ ∂D with faces coloured by labels in
J such that the following conditions are satisfied

� all edges of γ lie on the lines of LD,

� all vertices of γ ∈D are of degree 2, 3, or 4,

� all vertices of γ on ∂D, are of degree 1,

� no adjacent regions share the same colour.

In other words, γ consists of a finite number of disjoint polygons, possibly nested
and chopped off by the boundary – see Fig. 2.13 for a typical realization of that
process.

The polygonal Markov field AD on D with the Hamiltonian given by total
edge length is described as

P (AD ∈ G) =
E∑γ∈ΓD(ΛD)∩G exp(−2length(γ))

E∑γ∈ΓD(ΛD) exp(−2length(γ))
, (2.30)

for all G ⊆ ΓD Borel measurable and ΛD is the restriction of the homogeneous
Poisson line process Λ to D.

An efficient simulation technique for polygonal Markov fields has been pre-
sented in [73].

27

2. PRELIMINARIES

28

Chapter 3

Short description of the results

In this dissertation, we have studied problems related to probabilistic graphical
models. Hereby, the Chen–style stochastic optimization has been extensively
used. In the framework of graphical models, we have developed several new
algorithms and methods that are used in various fields. All the results have been
confirmed by computer simulations.

The new stochastic algorithm for solving influence diagrams has been pre-
sented in Paper A. The proposed algorithm generates optimal decision strate-
gies, by attaching randomized policies to each decision node. These randomized
policies evolve in the course of the optimization process and eventually become
(sub)optimal deterministic policies collectively determining the utility maximiz-
ing strategy for the influence diagram being considered. At the basis of the
evolution of policies lies the Chen–style stochastic optimization. The algorithm
generates optimal decision policies for a given influence diagram. Its capabilities
have been tested not only in ID but also in real problems in Paper D and E. The
idea of the algorithm was introduced by T. Schreiber and was further investigated
in cooperation with M. Matuszak. M.M. implemented the algorithm and wrote
the paper jointly with T.S.

An algorithm for solving the ramified optimal transport problem has been de-
veloped in Paper D. The objective of the ramified optimal transport is to find an
optimal path from possible multiple sources to destination locations. First, we
present a transformation of the optimal transport problem into an influence dia-
gram framework. Resulting ID could consist of hundreds of decision nodes and is
a good opportunity to show a significant performance of our stochastic algorithm
in solving influence diagrams. Finally, we translate the optimized decision policy
into an optimal transport path. The algorithm introduces an innovative applica-
tion of Bayesian influence diagrams. The concept of using the ID in the ramified
optimal transport problem was introduced by T.S. The research was conducted
and the algorithm was implemented by M.M. The paper was written by M.M.
with the help of J. Miȩkisz.

29

3. SHORT DESCRIPTION OF THE RESULTS

The extended version of the algorithm from Paper A has been applied to
learning the Bayesian network structure. The proposed method (see Paper E for
more details) translates, within the framework of influence diagrams, structure
learning task into the strategy optimization problem, which can be solved with
a significantly extended version of our stochastic algorithm for solving influence
diagrams. Experimental evaluations prove the competitiveness of our method for
some classes of graphs. The idea of the research was introduced by M.M. and
was investigated by M.M. and J.M. The algorithm was implemented by M.M.,
and the paper was written by M.M..

In Paper B, we present an algorithm for determining optimal transition paths
between given configurations of systems consisting of many objects. We propose
a Lagrange function for our system and then minimize the action functional on
a given time interval. We apply that algorithm to:

� Controlling motion and redeployment between unit’s formations. The re-
sulting group dynamics is highly complex and a great care must be taken
when such an environment is simulated.

� Transformation between two sequences of character animations in a virtual
environment. The character’s motion has been encoded in terms of Gaussian
networks. The resulting animations were satisfying for the viewer.

Most of the time, consuming simulations have been performed on a graphic card
(GPU). The concept of the research was introduced by T.S. However, the research
itself was carried out by J.M., T.S., and M.M. The algorithm was implemented
by M.M. The paper was written by M.M.

For a class of polygonal Markov fields with local activity functions, we have
developed an optimization dynamics for the image segmentation, under which
the polygonal configuration evolves according to a simulated annealing scheme
and the local activity function, initially chosen to reflect the image gradient in-
formation, evolves according to the Chen algorithm. Such mechanism has been
applied to the image segmentation [Paper C]. The algorithm works on the intu-
itive level, i.e., the real world is not a collection of pixels, and as a consequence,
if we do not know what is in the image, we cannot model the objects. We should
also emphasize that our implementation is fast and easy. The idea of the re-
search was introduced by T.S., who had various significant results in the field of
stochastic geometry. It was the first joint work of M.M and T.S. M.M proposed
improvements to the algorithm and performed the implementation. The theo-
retical part of the paper was written by T.S.; whereas the results and discussion
were described by M.M.

30

3.1 Future Work

The results of this dissertation point to several interesting directions for future
work.

First of all, in the influence diagrams framework, we are going to develop an
agent capable to perform like a human player in computer strategic games. Agent
should be able to adapt to changes of opponent’s tactics or skills and utilizes only
information available to the human player (which might be incomplete).

The solution for the smooth conditional transition paths problem opens the
door to a wide range of possible enhancements. Currently, the transition time
has to be given before the algorithm starts. We are going to optimize not only
the trajectories, but also the transition time. In complex situations with many
constraints, where the solutions cannot be obtained analytically, the geometric
minimum action method [29] will be applied. The optimal transition paths can
be also applied in computer graphics. We are going to encode the vertices of a
2D or 3D model and thanks to the presented method, a smooth Mesh Morphing
will be achieved.

The described image segmentation algorithm [55] is a great starting point
for further developments, like a multi–coloured image segmentation with multi–
coloured polygonal Markov fields [40]. Moreover, feasible measures for an image
segmentation quality, like Rand error [84] or warping error [33] instead of pixel
error, should be implemented. Very interesting results could be also achieved
when we combine the presented algorithm with [40, 74].

Finally, we are going to develop a concurrent structure learning algorithm
of Bayesian networks with the use of the capabilities of modern graphic cards
[37, 54].

31

3. SHORT DESCRIPTION OF THE RESULTS

32

Bibliography

[1] Ambrosio, A. Optimal transport maps in Monge–Kantorovich problem,
Proceedings of the ICM, Beijing 3: 131–140 (2002). 1

[2] Arak, T., Surgailis, D. Markov Fields with Polygonal Realizations,
Probab. Th. Rel. Fields 80, 543-579 (1989). 26

[3] Arak, T., Surgailis, D. Consistent polygonal fields, Probab. Th. Rel.
Fields 89, 319-346 (1991). 26

[4] Balch, T., Arkin, R.C. Behavior–based formation control for multirobot
teams, IEEE Transactions on Robotics and Automation, 14(6), pp. 926–939
(1998). 2

[5] Balch, T., Hybinette, M. Behavior–Based Coordination of Large-Scale
Robot Formations, Multi-Agent Systems, International Conference on Mul-
tiagent Systems – ICMAS, pp. 363–364, (2000). 2

[6] Beucher, S., Lantujoul, C. Use of watersheds in contour detection,
In International workshop on image processing, real–time edge and motion
detection (1979). 2

[7] Binford, T. O., Levitt, T. S. Evidential Reasoning for Object Recog-
nition, IEEE Trans. Pattern Anal. Mach. Intell. 25(7). pp. 837–851 (2003).
1

[8] Burtnyk, N. and Wein, M. Interactive skeleton techniques for enhanc-
ing motion dynamics in key frame animation, Commun. ACM 19, pp. 564–
569 (Oct. 1976). 2

[9] de Campos, L. M. A scoring function for learning Bayesian networks
based on mutual information and conditional independence tests, Journal
of Machine Learning Research 7, pp. 2149–2187 (2006). 20, 21

[10] Chen, K. A general learning algorithm for solving optimization problems
and its application to the spin glass problem, Europhys. Lett. 43 6, 635–640
(1998). 6

33

BIBLIOGRAPHY

[11] Chen, K. Simple learning algorithm for the traveling salesman problem,
Phys. Rev. E 55, 7809–7812 (1997). 6

[12] Cheng, J., Bell, D., Liu, W. Learning Bayesian Networks from Data:
An Efficient Approach Based on Information Theory, Technical report, Uni-
versity of Alberta, Canada (1998) 18

[13] Chickering, D. M. Learning Bayesian networks is NP–complete, Learn-
ing from Data: Artificial Intelligence and Statistics V, pp. 121–130.
Springer–Verlag (1996). 18

[14] Chow, C. K., Liu, C. N. Approximating discrete probability distribu-
tions with dependence trees. IEEE Trans. Info. Theory, 14(3), pp. 462–467,
(1968). 18, 19

[15] Cook, S The complexity of theorem proving procedures, Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151–158
(1971). 15

[16] Cooper, G.F. The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Network, Artificial Intelligence, 42: 393–347 (1990).
15

[17] Cooper, G.F., Herskovits, E. A Bayesian method for the induction of
probabilistic networks, Data Machine Learning vol. 9, pp. 309 – 347 (1992).
20, 21

[18] Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein, C. Introduc-
tion to Algorithms (2nd ed.), MIT Press and McGraw-Hill (2001). 5

[19] Dagum, P., Luby, M. Approximating probabilistic inference in Bayesian
belief networks is NP–hard, Artificial Intelligence, 60(1):141–153 (1993). 15

[20] Dagum, P., Luby, M. An optimal approximation algorithm for bayesian
inference, Artificial Intelligence, 93(1–2):1–27 (1997). 16

[21] Dasgupta, S. Learning polytrees, Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, Stockholm, Sweden, pages 131–141,
Morgan Kaufmann (1999). 18

[22] Demirer, R., Charnes, J. M., Kellogg, D. Influence Diagrams for
Real Options Valuation, Journal of Finance Case Research 9, No. 1, pp.
43–70 (2007). 1

[23] Fung, R., and Chang, K.-C. Weighting and integrating evidence for
stochastic simulation in Bayesian networks, Uncertainty in Artificial Intel-
ligence 5, pp. 209–219 (1990). 16

34

BIBLIOGRAPHY

[24] Geman, S., Geman, D. Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine
Intelligence 6; pp. 721–741 (1984). 26

[25] Green, P. J. Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination, Biometrika 82, 711–732 (1995). 2

[26] Haliloglu, T., Bahar, I., Erman, B. Gaussian dynamics of folded
proteins, Physical Review Letters 79, pp. 3090–3093, (1997). 24

[27] Heckerman, D. A Tutorial on Learning with Bayesian Networks, In
Learning in Graphical Models, (1999). 17

[28] Henrion, M. Propagating uncertainty in Bayesian networks by probabilis-
tic logic sampling, In Uncertainty in Artificial Intelligence 2, pp. 149–163
(1988). 16

[29] Heymann, M., Vanden-Eijnden, E. The Geometric Minimum Action
Method: A Least Action Principle on the Space of Curves, Comm. Pure
Appl. Math.61.8, 1052–1117 (2008). 31

[30] Holland, J.H. Adaptation in Natural and Artificial Systems, University
of Michigan Press (1975). 5

[31] Horvitz, E., Barry, M. Display of Information for Time-Critical Deci-
sion Making, Proceedings of Eleventh Conference on Uncertainty in Artifi-
cial Intelligence, Montreal, pp. 296–305 (1995). 1

[32] Howard, R.A., Matheson, J.E. Influence diagrams, Readings on the
Principles and Applications of Decision Analysis II, pp. 719–762; Reprinted:
Decision Anal. 2(3), pp. 127–143 (1981(1984)/2005). 21

[33] Jain, V., Bollmann, B., Richardson, M., Berger, D., et al.
Boundary learning by optimization with topological constraints In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (2010). 31

[34] Jain, V., Seung, H.S., Turaga, S.C. Machines that learn to segment
images: a crucial technology for connectomics, Current Opinion in Neuro-
biology, Vol. 20, Issue 5, pp. 653666 (2010). 2

[35] Jensen, F.V., Nielsen, T.D. Bayesian Networks and Decision Graphs,
2nd Ed., Springer (2007). 16, 17, 18, 21, 23

[36] Kim, J. H., Pearl, J. A computational model for causal and diagnostic
reasoning in inference systems, In Proceedings of the IJCAI-83, 1983. 15

[37] Kirk, D.B., Hwu, W.-M.W. Programming Massively Parallel Proces-
sors: A Hands–on Approach, Morgan Kaufmann, 1 edition (2010). 31

35

BIBLIOGRAPHY

[38] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. Optimization by
Simulated Annealing, Science 220, pp. 671-680 (1983). 5

[39] Kluszczyński, R., Lieshout, M.N.M. van, Schreiber, T. An algo-
rithm for binary image segmentation using polygonal Markov fields. In: F.
Roli and S. Vitulano (Eds.), Image Analysis and Processing, Proceedings
of the 13th International Conference on Image Analysis and Processing.
Lecture Notes in Comput. Sci. 3615, 383-390 (2005). 26

[40] Kluszczyński, R., Lieshout, M.N.M. van, Schreiber, T. Image
segmentation by polygonal Markov fields. Ann. Inst. Statist. Math., 59,
465-486 (2007). 26, 31

[41] Koller, D., Friedman, N. Probabilistic Graphical Models: Principles
and Techniques The MIT Press; 1 edition (2009). 7, 13, 17, 18, 23, 24, 26

[42] Koller, D., Milch, B. Multi–Agent Influence Diagrams for Representing
and Solving Games, Games and Economic Behavior, 45(1), pp. 181–221
(2003). 1

[43] Korb, K. B., Nicholson, A. E. Bayesian Artificial Intelligence, Com-
puter Science and Data Analysis, Chapmanand Hall/CRC (2004). 15, 16

[44] Koski, T., Noble, J. Bayesian Networks: An Introduction, John Wiley
& Sons, Ltd (2009). 13, 14, 16, 17, 18, 19

[45] Koski, T.J.T., Noble, J.M. A Review of Bayesian Networks and Struc-
ture Learning, Mathematica Applicanda, Vol. 40(1) pp. 53–103 (2012). 18,
20, 21

[46] Kruskal, J. B. On the shortest spanning subtree of a graph and the
Traveling Salesman Problem, Proceedings of the American Mathematical
Society, 7, pp. 48–50 (1956). 20

[47] Kullback, S. Information Theory and Statistics, John Wiley & Sons
(1959). 18

[48] Larie, S.M., Abukmeil, S.S. Brain abnormality in schizophrenia: a sys-
tematic and quantitative review of volumetric magnetic resonance imaging
studies, J. Psych., 172:110–120 (1998). 2

[49] Lauritzen, S. L., Spiegelhalter, D. J. Local computations with prob-
abilities on graphical structures and their application to expert systems,
Journal of the Royal Statistical Society, Series B, 50(2):157–224 1988. 15

[50] Matuszak, M., Miȩkisz, J., Schreiber, T. Solving Ramified Optimal
Transport Problem in the Bayesian Influence Diagram Framework, ICAISC
2012, Part II, LNCS 7268, pp. 582–590 (2012). 3

36

BIBLIOGRAPHY

[51] Matuszak, M., Miȩkisz, J., Schreiber, T. Smooth Conditional Tran-
sition Paths in Dynamical Gaussian Networks, KI 2011: Advances in Arti-
ficial Intelligence, LNAI 7006, pp. 204–215 (2011). 3

[52] Matuszak, M., Miȩkisz, J. Stochastic Techniques in Influence Diagrams
for Learning Bayesian Network Structure, ICANN 2012, Part I, LNCS 7552,
pp. 33–40 (2012). 3

[53] Matuszak, M., Schreiber, T. A new stochastic algorithm for strat-
egy optimisation in Bayesian influence diagrams, LNAI 6114, pp. 574–581
(2010). 2, 3

[54] Matuszak, M., Schreiber, T. GPU Accelerated Smooth Formation Re-
deployment in Multiagent Environment, Mathematical Methods in Mod-
elling and Analysis of Concurrent Systems, (2011). 31

[55] Matuszak, M., Schreiber, T. Locally specified polygonal Markov fields
for image segmentation, Mathematical Methods for Signal and Image Anal-
ysis and Representation, Series: Computational Imaging and Vision, Vol.
41 (2012). 3, 31

[56] Meyer, J., Phillips, M. H., Cho, P. S , Kalet, I., Doctor, J. N.
Application of influence diagrams to prostate intensity-modulated radiation
therapy plan selection, Phys Med Biol 49: 9., pp. 1637–1653 (2004). 1

[57] Moller, J., Skare, O. Bayesian image analysis with coloured Voronoi
tessellations and a view to applications in reservoir modelling, Stat. Mod-
elling 1, 213–232, (2001). 2

[58] Neapolitan, R. E. Learning Bayesian Networks, Prentice Hall Series in
Artificial Intelligence, Pearson Prentice Hall (2004). 17, 18, 23

[59] Nicholls, G.K. Bayesian image analysis with Markov chain Monte Carlo
and coloured continuum triangulation models. J. Roy. Statist. Soc. Ser. B
Statist. Methodol. 60, 643–659, (1998). 2

[60] Norman, J., Shahar, Y., Gold B. Decision-theoretic analysis of prena-
tal testing strategies, Technical Report SMI-98-0711, Stanford University,
Section on Medical Informatics (1998). 1

[61] Pal, N.R., Pal, S.K. A review on image segmentation techniques, Pattern
Recognition, Vol. 26, Issue 9, pp. 1277–1294 (1993). 2

[62] Pearl, J. Fusion, propagation, and structuring in belief networks, Artifi-
cial Intelligence, Vol. 29, Issue 3, pp. 241–288, (1986). 8

[63] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann Publishers Inc. (1988). 5, 10, 15, 21

37

BIBLIOGRAPHY

[64] Peretto, P. An Introduction to the Modeling of Neural Networks, Col-
lection Aléa-Saclay, Cambridge University Press (1992). 6

[65] Pham, D.L., Xu, C., Prince, J.L. A Survey of Current Methods in
Medical Image Segmentation, Annual Review of Biomedical Engineering,
Volume 2, pp.315–337 (2000). 2

[66] Reynolds, C. W. Flocks, Herds, and Schools: A Distributed Behavioral
Model, Computer Graphics, 21(4) (SIGGRAPH ’87), pp. 25–34 (1987). 2

[67] Robinson, R.W. Counting Unlabelled Acyclic Digraphs, Springer Lecture
Notes in Mathematics, Combinatorial Mathematics V, pp. 28 – 43 (1977).
21

[68] Rosenfeld, A., Kak, A. C. Digital picture processing, 2nd edn, Vol. 2.
Orlando: Academic Press (1982). 2

[69] Rue, H., Held, L. Gaussian Markov Random Fields: Theory and Ap-
plications, Monographs on Statistics & Applied Probability 104, (2005). 24,
25

[70] Safonova, A., Hodgins, J.K. Analyzing the physical correctness of
interpolated human motion, ACM Siggraph/Eurographics Symposium on
Computer Animation (SCA ’05), 171–180 (2005). 2

[71] Scharf, D.P., Hadaegh, F.Y. and Ploen, S.R. A Survey of Space-
craft Formation Flying Guidance and Control (Part I): Guidance, American
Control Conference, Vol. 2, pp. 1733 – 1739, (June 2003). 2

[72] Scharf, D.P., Hadaegh, F.Y. and Ploen, S.R. A Survey of Space-
craft Formation Flying Guidance and Control (Part II): Control, American
Control Conference, Vol. 4, pp. 2976–2985, (30 June – 2 July 2004). 2

[73] Schreiber, T. Random dynamics and thermodynamic limits for polygonal
Markov fields in the plane, Advances in Applied Probability 37, 884-907
(2005). 27

[74] Schreiber, T., Lieshout, M.N.M. van Disagreement loop and path
creation/annihilation algorithms for binary planar Markov fields with ap-
plications to image segmentation, Scand. J. Stat., Vol. 37 no. 2, 264-285
(2010). 31

[75] Sengoku, H., Yoshihara I. A fast TSP solver using GA on JAVA, AROB
III 98 Japan, pp. 283-288 (1998). 6

[76] Shachter, R.D., Kenley, C.R. Gaussian influence diagrams Manage-
ment Science, 35(5), pp. 527–550, (1989). 23, 24

38

BIBLIOGRAPHY

[77] Shachter, R. D., and Peot, M. A. Simulation approaches to general
probabilistic inference on belief networks, Uncertainty in Artificial Intelli-
gence 5, pp. 221–231 (1990). 16

[78] Shachter, R.D. Bayes Ball: The Rational Pastime (for Determining Ir-
relevance and Requisite Information in Belief Networks and Influence Di-
agrams), Proceedings of the 14th Annual Conference on Uncertainty in
Artificial Intelligence, pp. 480–487 (1998). 12

[79] Shalizi, C.R. Advanced Data Analysis from an Elementary Point of View,
Carnegie Mellon (2012). 19

[80] Spirtes, P., Glymour, C., and Scheines, R. An algorithm for fast
recovery of sparse causal graphs, Social Science Computer Review, vol. 9,
pp. 62–72, (1991). 19

[81] Spirtes, P., Glymour, C., Scheines, R. Causation, Prediction, and
Search, 1st edn., Berlin: Springer-Verlag (1993). 19

[82] Suermondt, H., Cooper, G., Heckerman, D. A combination of cut-
set conditioning with clique-tree propagation in the Pathfinder system, Pro-
ceedings of the Sixth Conference on Uncertainty in Artificial Intelligence,
Boston, pp. 273–279 (1990). 1

[83] Surgailis, D. Thermodynamic limit of polygonal models, Acta applican-
dae mathematicae, 22, 77-102 (1991). 26

[84] Unnikrishnan, R., Pantofaru, C., Hebert, M. Toward objective
evaluation of image segmentation algorithms, IEEE Trans Pattern Anal
Mach Intell, Vol. 29, pp. 929–944 (2007). 31

[85] U.S. Marine Corps Marine Rifle Squad, Marine Corps Warfighting Pub-
lication (MCWP) 3–11.2, (1997). 2

[86] Worth, A.J., Makris, N., Caviness, V.S., Kennedy, D.N. Neu-
roanatomical segmentation in MRI: technological objectives, Int. J. Patt.
Rec. Art. Intel., 11:1161–1187 (1997). 2

[87] Yang, F., Jiang, T. Pixon-Based Image Segmentation With Markov Ran-
dom Fields, IEEE Transactions on Image Processing, Vol. 12, No. 12 (2003).
2

[88] Xia, Q. Ramified optimal transportation in geodesic metric spaces, Adv.
Calc. Var. Volume 4, Issue 3, pp. 277–307 (2011). 1

[89] Zijdenbos, A.P., Dawant, B.M. Brain segmentation and white matter
lesion detection in MR images, Critical Reviews in Biomedical Engineering,
22:401–465 (1994). 2

39

BIBLIOGRAPHY

40

Appendix A

Graph Theory

This section provides a short review of basic definitions in the theory of graphs.

Definition A.0.1 (Graph) A graph is an ordered pair G = (V,E), where V is
a finite set of distinct vertices and E is a set of edges i.e. E ⊆ V × V .

For distinct nodes u, v ∈ V , an ordered pair (u, v) ∈ E defines a direct edge from
node u to node v. We denote this as u→ v. If (u, v) ∈ E and (v, u) ∈ E, therefore,
the edge between node u and v is undirected and we denote it as ⟨u, v⟩ ∈ E or
u − v.

In this text, we will consider only simple graphs, i.e. graphs in which each edge
is a distinct pair of vertices (loops are forbidden) and there is at most one edge
between any two vertices. We will count an undirected edge as a single edge.

Definition A.0.2 (Directed (Undirected) Graph) Graph G = (V,E) is a
directed (undirected) graph if E does not contain undirected (directed) edges.

Definition A.0.3 (Parent, Children, Neighbour) For a directed graph G =
(V,E) and v ∈ V we define the following functions:

� a set of parents as

pa(v) = {w ∈ V ∶ w → v}, (A.1)

� a set of children as

ch(v) = {w ∈ V ∶ v → w}, (A.2)

� a set of neighbours as

ng(v) = pa(v) ∪ ch(v). (A.3)

For undirected graph G = (V,E) and v ∈ V we can define a set of neighbours as

ng(v) = {w ∈ V ∶ v −w}. (A.4)

41

Definition A.0.4 (Trail) A trail between nodes u, v ∈ V is a sequence of dis-
tinct nodes (v1, . . . , vn), where vi ∈ V for i = 1, . . . , n, v1 = u, vn = v and
(vk, vk+1) ∈ E or (vk+1, vk) ∈ E for k = 1, . . . , n − 1.

Definition A.0.5 (Connected Graph) Graph G = (V,E) is connected if for
every u, v ∈ V there is a trail between u and v.

Definition A.0.6 (Path) A path between nodes u, v ∈ V is a sequence of dis-
tinct nodes (v1, . . . , vn), where vi ∈ V for i = 1, . . . , n, v1 = u, vn = v and
(vk, vk+1) ∈ E or ⟨vk, vk+1⟩ ∈ E for k = 1, . . . , n − 1.

Definition A.0.7 (Directed Path) A directed path between nodes u, v ∈ V
is a path that consists only of directed edges.

Definition A.0.8 (Cycle) A cycle in G = (V,E) is a directed path (v1, . . . , vn),
where vi ∈ V for i = 1, . . . , n and v1 = vn.

Definition A.0.9 (Acyclic Graph) Graph G = (V,E) is acyclic if it contains
no cycles.

Definition A.0.10 (Directed Acyclic Graph (DAG)) If graph G = (V,E)
is a directed graph and if G satisfy acyclic property, then G is called Directed
Acyclic Graph or just DAG.

Definition A.0.11 (Moral graph) Let G = (V,E) be a DAG. The moral graph
GM = (V,U) is an undirected graph with the same set of vertices as G and with
a set of undirected edges U that contains edges X − Y , for X,Y ∈ V , if either
X → Y , Y →X in G or if X and Y are parents of the same node.

Definition A.0.12 (Triangulated graph, chord) An undirected graph G = (V,U)
is triangulated if for every cycle of a length greater than 3 exist an edge (called
a chord) between two non–consecutive vertices from the cycle.

Papers included in the PhD thesis

Paper A

Matuszak, M., Schreiber, T.
A new stochastic algorithm for strategy

optimisation in Bayesian influence diagrams

A New Stochastic Algorithm for Strategy
Optimisation in Bayesian Influence Diagrams

Michal Matuszak & Tomasz Schreiber

Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University,

Toruń, Poland
{gruby, tomeks}@mat.umk.pl

Abstract. The problem of solving general Bayesian influence diagrams
is well known to be NP-complete, whence looking for efficient approxi-
mate stochastic techniques yielding suboptimal solutions in reasonable
time is well justified. The purpose of this paper is to propose a new
stochastic algorithm for strategy optimisation in Bayesian influence di-
agrams. The underlying idea is an extension of that presented in [2] by
Chen who developed a self-annealing algorithm for optimal tour gener-
ation in traveling salesman problems (TSP). Our algorithm generates
optimal decision strategies by iterative self-annealing reinforced search
procedure, gradually acquiring new information while driven by informa-
tion already acquired. The effectiveness of our method has been tested
on computer-generated examples.

1 Introduction

Influence diagrams[4–6] are widely acknowledged as an important probabilisti-
cally oriented graphical representation paradigm for decision problems. An in-
fluence diagram is built on a directed acyclic graph (DAG) whose nodes and
arcs admit standard interpretations steming from and extending those used for
Bayesian (belief) networks. Three principal types of nodes are considered: chance
nodes standing for random variables (represented as ovals in our figures below),
decision nodes corresponding to available decisions (rectangles in our figures)
and utility nodes (rhombi) specifying the utilities to be maximized by suitable
choices of decision policies. The arcs leading to chance nodes indicate direct
causal relationships (at least if the network is well designed) not necessarily cor-
responding to any temporal ordering. On the other hand, the arcs leading to
decision nodes specify the information available at the moment of decision mak-
ing, thus feeding input to decision policies. Some arcs between decision nodes
may also be of informative nature as determining the order of decision making.
The influence diagrams can be considered as a generalization of (symmetric)
decision trees, see [4].

In Fig. 1, generated by Hugin Lite package [3], a simple example of an in-
fluence diagram is shown. The decision node treatment represents the choice
whether or not to visit a doctor. A visit to a doctor does increase the chance of

no cough, yet it also causes negative effects, such as the need to pay the fee for
visit. Further, wearing a scarf decreases the chance of getting sore throat but
also negatively affects our appearence. All these effects are jointly taken into
account in the utility node happiness.

A number of algorithms for solving influence diagrams have been developed,
falling beyond the scope of the present article. We refer the reader to Chapter
10 in [4] for a detailed discussion, see also the references in Subsection 5.2.2 of
[5].

In general, finding an optimal decision strategy for an influence diagram is
an NP-hard task. This is easily shown by reducing an NP-complete problem to
the considered task. A natural choice is the traveling salesman problem (TSP)
known as a classical NP-complete task. To each city a decision node is ascribed
with the remaining cities as admissible states. The decision taken coincides with
the next city to visit. Further, a utility node is created with incoming arcs from
all decision nodes. The utility function is defined by summing up the negative
distances between cities and their successors in case the decision sequence yields
a valid Hamilton tour, and is set to −∞ otherwise. Clearly, solving the TSP
problem is, in this set-up, equivalent to finding the optimal decision strategy for
the so-constructed influence diagram.

In his work [2] (see also the discussion in [7]) Chen proposed an appealing
and simple stochastic optimisation algorithm for the TSP problem, quite original
in its design, highly effective and yet apparently somewhat underestimated in
the literature. In the course of an iterative procedure subsequent TSP tours are
randomly generated: each city is assigned a table of weights for connections to
all remaining cities and each time the choice of the next city to visit is made
by random among cities not yet visited, with probabilities proportional to the
corresponding connection weights. This way all cities get visited and eventually
we get back to the starting point. Next, the so generated tour is compared
with the one obtained in the previous iteration. Depending on whether the new
cycle is longer or shorter than the previous one, the connection weights between
cities neighbouring in both tours are correspondingly reinforced or faded. The
algorithm stops when the re-normalised weights are close enough to zeros and
ones, which corresponds to a deterministic tour choice, converging to the optimal
one under suitable reinforcement/fading protocols.

With the TSP problem regarded as a particular case of decision strategy
optimisation, the purpose of the present paper is to is to extend Chen’s ap-
proach to general influence diagrams. As we will see, this can be done neatly
and effectively, although not without substantial extensions of Chen’s idea.

2 The algorithm

To give a formal description of the proposed decision strategy optimisation al-
gorithm, assume an influence diagram (S, P, U) is given, built on a connected
DAG S, with CPTs P and utility functions U . The set of nodes in S splits into
chance nodes CS , decision nodes DS and utility nodes US . All these objects are

Fig. 1. Sample influence diagram.

assumed fixed in the course of strategy optimisation. In addition, for optmisa-
tion purposes we attach to each decision node D ∈ DS the randomised policy
δD which assigns to each configuration w̄ of pa(D) a probability distribution on
possible decisions to be taken, that is to say δD(d|w̄) stands for the probability of
choosing decision d given that pa(D) = w̄. These randomised policies will evolve
in the course of the optimisation process, eventually to become (sub)optimal de-
terministic policies collectively determining the utility maximizing strategy for
the influence diagram considered. The initial choice of δD, D ∈ DC can be either
uniform, with all decisions equiprobable, or heuristic provided some additional
knowledge is available on our system allowing us to make a good first guess
about the optimal strategy.

Our algorithm relies on an iterative procedure carried out in epochs of fixed
length N. At the beginning of each epoch t, t = 1, 2, . . . we divide the collection
DC of decision nodes into the set of trainable decision nodes TDt

C whose ran-
domised decision policies are to undergo updates, and frozen decision nodes FDt

C
whose status is to remain unaltered throughout the epoch. Roughly speaking,
the purpose of this splitting is to ensure that only a modest fraction of system
parameters are updated at a time, which is indispensible for the stability of al-
gorithm, see below for a more detailed discussion. In addition, we impose the
following requirement, whose relevance is discussed in the sequel.

[Forbidden path condition] No two trainable nodes are connected by a
directed path in S.

With D ⊆ DS write A[D] for the ancestry of D in S that is to say A[D] is
the collection of nodes in S from which a decision node from D can be reached
along a directed path in S. Clearly, the forbidden path condition is equivalent
to requiring that A[TDt

S] ∩ TDt
S = ∅ during tth epoch. Moreover, since the

utility nodes have no progeny, we readily conclude that A[TDt
S] ⊆ CS ∪ FDt

S .

A standard way of selecting the trainable collection, as implemented in our
software, goes as follows.

– Whenever passing to a new epoch, do sequentially for all decision nodes
D ∈ DC

• If D is a trainable node then freeze it with some probability pF ,

• If D is a frozen node, make it trainable with some probability pT < pF

unless doing so violates the forbidden path condition and unless the frac-
tion of time during which D was trainable exceeds maximal admissible
value (specified as algorithm parameter).

Note that the quota imposed on the fraction of time a given node is trainable is
aimed at preventing the situation where a decision node with numerous progeny
in DC receives only a very poor training time fraction as predominantly blocked
by its progeny.

The following iterative procedure, repeated a fixed number N of times during
each optimisation epoch, say tth epoch, and directly motivated by the ideas
developed in [2], lies at the very heart of our algorithm.

1. Set the iteration counter i := 0.

2. Generate an instance w̄
(i)
A of the ancestral variable configuration for A[TDt

S] ⊆
CS ∪FDt

S according to the CPTs of chance nodes and using the randomised
decision policies of frozen decision nodes in FDt

S ∩A[TDt
S] as CPTs. This is

carried out in the standard way with nodes handled recursively proceeding
from causes to effects in the policy subnetwork A[TDt

S]. This is where the
forbidden path condition is of use as ensuring that no trainable node falls
into A[TDt

S].

3. Repeat a fixed number M of times

(a) Sample the decisions taken, d1, . . . , dk, independently for all trainable
decision nodes D1, . . . , Dk ∈ TDt

S according to their respective current

randomised policies δDj
, j = 1, . . . , k given w̄

(i)
A . Note that

⋃k
j=1 pa(Dj) ⊆

A[TDt
S] and thus the knowledge of w̄

(i)
A is sufficient for this sampling.

(b) Evaluate the expected total utility

u(i) := E[Utotal|w̄(i)
A ; d1, . . . , dk]

given w̄
(i)
A and d1, . . . , dk, under the randomised policies of frozen nodes

used as respective CPTs. This is easily done by standard Monte-Carlo
network instance generating scheme, recursively proceeding from causes
to effects. This is possible because the non-instantiated part of the net-
work S \ [A[TDt

S] ∪ TDt
S] contains no trainable decision nodes and it

has the upward cone property – whenever it contains a node X it also
contains all its children and, inductively, its whole progeny.

(c) If i ≥ 1, set

∆ := u(i) − u(i−1)

and update the policies δDj
, j = 1, . . . , k for trainable nodes by putting

δDj
(dj |w̄(i)

A ∩ pa(Dj)) := exp(β∆)δDj
(dj |w̄(i)

A ∩ pa(Dj))

and, thereupon, re-normalising δDj
(·|w̄(i)

A ∩ pa(Dj)) so that it remain a
probability distribution. The positive constant β here is a parameter of
the algorithm, the larger it is the faster the system learns but the less
stable the optimisation is.

4. Set i := i + 1 and, if i < N, return to 1. Otherwise terminate the current
epoch.

The intuitive meaning of the above procedure is that the network is presented
with a configuration sampled according to the CPTs and current randomised
policies of the frozen nodes, whereupon the randomised policies of the trainable
nodes are used for decision sampling, with succesful choices (positive ∆) leading
to reinforcement of the corresponding probability entries and, on the other hand,
with choices deteriorating the performance resulting in fading of the correspond-
ing probability entries (negative ∆). The reinforcement/fading strength depends
on the value of the utility gain/loss compared to the previous run. In analogy
to Chen’s work [2], also here after a large enough number of epochs we even-
tually end up with the situation where all randomised policies become nearly
deterministic in that, for each D ∈ DC and parent configuration w̄ for pa(D)
the value of δD(d|w̄) is close to one for a unique d and close to zero otherwise.
This determinism can be easily quantified by looking at the maximal value of
min(δD(d|w̄), 1− δD(d|w̄)) and declaring a policy nearly deterministic when this
falls below, say, 0.01. To sum up, our algorithm carries out subsequent optimi-
sation epochs until all policies become nearly deterministic. Note in this context
that is is crucial to ensure that each node is trainable during a sufficiently large
fraction of time, for otherwise it might long remain untrained slowing down the
entire process. As already mentioned, this is handled by our training selection
scheme discussed above.

3 Implementation and examples

The programme has been implemented in language D [8], currently gaining pop-
ularity as a natural successor to C++, and uses the Tango library [1]. The im-
plementation, aimed so far mainly at algorithm evaluation purposes, can be
described as careful but not fully performance-optimised, with the total utility
evaluation under frozen decision nodes in 3.(b) performed using the standard
Monte-Carlo rather than a more refined and effective scheme. The graph of the
diagram was represented using neighbourhood lists. The utility functions were
always fit to [0, 1]. All test runs were executed on a machine with Intel Core 2
Q9300 2.50 GHz CPU and 2GB RAM.

A sequential version of our algorithm run for a randomly generated influence
diagram with 10 chance nodes, 10 decision nodes, 10 utility nodes and 40 arcs,
see Fig. 3 generated from Hugin Lite [3], required 1.1ms time per epoch. The

algorithm parameters were set as follows: pT = 0.01, pF = 0.04 and β = 0.01.
After 10000 epochs (11 seconds) the strategy output by our algorithm achieved
utility only 4% inferior to the optimal one (as determined using the Hugin pack-
age). For a different randomly generated network (doubled number of nodes)
execution time per one epoch was 1.8ms, with 10000 epochs. Again, the utility
of the output strategy was only 4% inferior to the optimal one.

Getting back to the network depicted in Fig. 1, we performed 10000 itera-
tions of our algorithm, with parameters pT = 0.01, pF = 0.04 and β = 0.03. The
convergence of decision policies for node treatment in the course of our algorithm
is shown in Fig. 3. The table 3 represents the policy obtained upon convergence
of the algorithm. It can be concluded that the sore throat is of crucial impor-
tance for our decision whether or not to visit a doctor. On the other hand, the
bronchitis appears to be ignored. This does coincide with the optimal strategy
as determined by the Hugin Lite package.

Table 1. Decision policy for node treatment.

Y N

1.00 0.00 sore throat = Y, bronchitis = Y

0.99 0.01 sore throat = Y, bronchitis = N

0.03 0.97 sore throat = N, bronchitis = Y

0.01 0.99 sore throat = N, bronchitis = N

For the diagram given in Fig. 3 (12 chance nodes, 6 decision nodes, one
utility node and 42 arcs) the mean execution time per epoch was 0.8ms. The
decision strategy after 10000 iterations with parameters pT = 0.01, pF = 0.04
and β = 0.01 was inferior by 5 % to the optimal strategy.

References

1. Bell, K., Igesund, L.I., Kelly, S., Parker, M. Learn to Tango with D, Apress,
2008.

2. Chen, K. Simple learning algorithm for the traveling salesman problem, Phys.
Rev. E 55, 7809-7812 (1997).

3. http://www.hugin.com

4. Jensen, F.V., Nielsen, T.D. Bayesian Networks and Decision Graphs, 2nd Ed.,
Springer, 2007.

5. Neapolitan, R. E. Learning Bayesian Networks, Prentice Hall Series in Artifi-
cial Intelligence, Pearson Prentice Hall, 2004.

6. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann Publishers Inc., 1988.

7. Peretto, P. An Introduction to the Modeling of Neural Networks, Collection
Aléa-Saclay, Cambridge University Press, 1992.

8. http://www.digitalmars.com/d/

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration

pr
ob

ab
ili

ty

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration

pr
ob

ab
ili

ty

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration

pr
ob

ab
ili

ty

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iteration

pr
ob

ab
ili

ty sore throat=Y, bronchitis=Y
sore throat=Y, bronchitis=N
sore throat=N, bronchitis=Y
sore throat=N, bronchitis=N

Fig. 2. Convergence of decision policies.

Fig. 3. Randomly generated influence diagram.

Fig. 4. Race results.

Paper B

Matuszak, M., Miȩkisz, J., Schreiber, T.
Smooth Conditional Transition Paths in

Dynamical Gaussian Networks

Smooth Conditional Transition Paths in

Dynamical Gaussian Networks

Micha Matuszak1, Jacek Miȩkisz2, and Tomasz Schreiber1,�

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87–100 Torun, Poland

{gruby,tomeks}@mat.umk.pl
2 Institute of Applied Mathematics and Mechanics, University of Warsaw,

Banacha 2, 02–097 Warsaw, Poland
miekisz@mimuw.edu.pl

Abstract. We propose an algorithm for determining optimal transition
paths between given configurations of systems consisting of many objects.
It is based on the Principle of Least Action and variational equations for
Freidlin–Wentzell action functionals in Gaussian networks set-up. We use
our method to construct a system controlling motion and redeployment
between unit’s formations. Another application of the algorithm allows a
realistic transformation between two sequences of character animations
in a virtual environment. The efficiency of the algorithm has been eval-
uated in a simple sandbox environment implemented with the use of the
NVIDIA CUDA technology.

Keywords: Formation Redeployment, Animation Blending, Transition
Path, Reconfiguration, CUDA.

1 Introduction

Simulations of moving groups of agents that preserve their motoric characteriza-
tions play an important role across a broad spectrum of applications. Observation
of biological systems initiated works on coordination among multiple agents. In
a pioneering work [15], a computer model was constructed for synchronized an-
imal motion observed for example in bird flocks or fish schools. It is important
to emphasize that motion of individual units was calculated only on the basis of
their local environment. In military applications [1], formations allow for a more
effective use of limited resources, such as sensors, by division of the environment
into portions so each formation’s member can focus attention on an assigned
segment while the rest is covered by the partners. This mechanism is used for
example by groups of fighter pilots to optimize the usage of their radars and
visual perception. Such an approach can also be applied to spacecrafts in a deep
space or in the Earth orbit, see survey papers [20,21] for a comprehensive descrip-
tion. We focus our attention on the problem of a reconfiguration of formations.

� Deceased author (1975 – 2010).

J. Bach and S. Edelkamp (Eds.): KI 2011, LNAI 7006, pp. 204–215, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Smooth Conditional Transition Paths in Dynamical Gaussian Networks 205

Our method can be used to reduce casualties from a hostile fire, to present less
vulnerable targets or to evacuate from an exposed area [22]. Other applications
involve parking systems that smoothly drive cars in and out from a parking lot.
Finally, the entertainment industry may use our algorithm in real-time computer
strategies.

The character animation is undoubtedly an element of the computer graph-
ics, which is of a great importance for enjoyable computer games, credible CG
movies or medical visualizations. One of the most popular techniques for gener-
ating realistic motion in virtual environments is a skeletal animation technique
[4]. Skeletal systems are hierarchical in nature and provide the artist with a con-
trol of the character in an efficient manner. An animator can focus his attention
on the motion of a simplified structure (the skeleton) rather than manually alter
the geometry (character’s meshes) itself. For smooth animations it is crucial to
generate smooth transitions between system’s configurations. Such transitions
can be generated by mixing existing ones. One of the available methods is an
interpolation of motion data, which has been shown to be a powerful technique
if changes between interpolated classes meet predefined/given constraints [18].
The algorithm presented below attempts to address that drawback and provides
methodology to produce optimal transition paths between arbitrary configura-
tions.

One of the approaches to describe motion of systems of interacting particles
is based on a variational principle. It is assumed in classical mechanics that the
trajectory of a system between two points in the space minimizes the action
functional. Then by a variational calculus one obtains Euler-Lagrange equations
of motion. Reformulation of such an approach to the case of the space of curves
in a set-up well suited for our needs was presented in [8].

Here we use Gaussian networks. The term Gaussian network was introduced
in [19] and describes an extension of a Bayesian network [12] to continuous vari-
ables. Gaussian networks are widely used for decision making and inference.
In molecular biology they are used to describe protein dynamics [7]. Gaus-
sian networks better characterize classes of behavior and provide better un-
derstanding than the standard representations [19]. To describe time evolution
of Gaussian networks we use stochastic diffusion processes whose behavior is
effectively characterized by the large deviation theorem due to Freidlin and
Wentzell [6]. The theory is based on the property that very unlikely events,
when they occur, do so with a high probability by following the pathway that
is the most probable. Thus the rare events become in a sense predictable. The
crucial role in the theory plays an action functional whose minimization pro-
duces an approximation of the probability of rare events and enables the com-
putation of the maximum likelihood trajectory by which such an event
occurs [8].

In Section 2, we outline the Principle of Least Action adapted to our needs and
present our algorithm to simulate smooth optimal transition paths. Applications,
implementation, and a discussion are contained in following sections.

206 M. Matuszak, J. Miȩkisz, and T. Schreiber

2 Gaussian Network

Gaussian networks [17] are systems which consist of a finite number of nodes
whose states are described by continuous variables (these might be positions of
certain objects as in our examples). A state of each node is subject to a stochastic
dynamics which can be decomposed into a deterministic drift and a stochastic
part of the diffusion type. Both the drift and the stochastic part depend on the
states of other variables (perhaps just neighboring ones in the spatial networks).
We may think about such a dynamics as a continuous limit of a collection of
random walks biased by states of other walkers.

In Fig. 1(a), a simple Gaussian network is presented. Arrows describe influence
of neighboring nodes on a stochastic dynamics of a given node. More formally,
interactions between nodes are contained in the function μ and the matrix Σ
in Eq. (1) below. In Fig.1(b) we can observe transitions between stable space
configurations of a Gaussian network.

1 2 3

4 5
(a) Gaussian Network (b) Transition

Fig. 1. (a) A schematic representation of nodes in a Gaussian network. (b) Without
noise the system would stay in a stable configuration. With noise the system may leave
the domain of attraction and can experience rare transitions between stable configura-
tions.

Let ψ(t) is the configuration of the system at time t. For a Gaussian network
with n nodes it is a column vector in Rn which evolves according to

ψ(t+ Δt) = ψ(t) + μ(ψ(t))Δt +
√
εΣΔW(t), (1)

where:

– μ is called an instantaneous drift. We will assume that μ(ψ) = Bψ, for a
given n× n matrix B.

– ΔW(t) are independent normal random variables with the zero mean and
the variance equal to Δt. and Σ is a n × n matrix which can introduce
correlations between stochastic parts of time evolution of different nodes in
Eq. (1). We can think about ΣΔW(t) as the source of a noise.

– ε is called the instantaneous variance.

In continuous time, Eq.(1) can be written as the Ito stochastic differential equa-
tion

dψ(t) = Bψ(t)dt+
√
εΣdW(t) (2)

Smooth Conditional Transition Paths in Dynamical Gaussian Networks 207

We introduce a local steering contribution ẇ as

ẇ = ψ̇− Bψ

where by a dot we denote a derivative with respect to time t.
In the discrete case, Δw =

√
εΣΔW. Hence w(t) is called the full ”error” or

the fluctuation (deviation) of our system. During the minimization process, the
value of

√
ε can be omitted (set to 1).

We propose the following Lagrange function which defines our system:

L(ψ, ψ̇) :=
1

2

(
ψ̇− Bψ

)′
A−1

(
ψ̇− Bψ

)
,

where by an apostrophe we denote a transpose of a vector or a matrix and
A := ΣΣ

′
.

The Principle of Least Action – of fundamental use for our applications –
indicates that the system moves along the path which minimizes the action
functional on the time interval [0, T]:

S(ψ) :=

∫T

0

L(ψ(t), ψ̇(t))dt (3)

Our construction is based on the Freidlin-Wentzell theorem [6] on large devi-
ations in stochastic processes which roughly states that the probability of the

trajectory ψ̄ which deviates from the optimal one is proportional to exp(−S(ψ̄)
ε

).
To minimize the action functional we use the Euler-Lagrange differential equa-

tion (for the Lagrange function of a system of interacting particles we obtain in
this way the Newton equations of motion),

δL

δψ
−
d

dt

(
δL

δψ̇

)
= 0. (4)

For a symmetric matrix B one obtains

δL

δψ
= −

(
BA−1ẇ(t)

)

d

dt

(
δL

δψ̇

)
=

(
A−1ẅ(t)

)

and hence we get

ẅ(t) = −ABA−1ẇ(t) (5)

We solve Eq. (2) as a system of linear ordinary differential equations along a
fixed stochastic trajectory and get

ψ(T) = exp(TB)ψ(0) +

[∫T

0

exp((T − s)B)ẇ(s)ds

]

208 M. Matuszak, J. Miȩkisz, and T. Schreiber

We know that ẇ(s) = exp((−ABA−1)s)ẇ(0), so

ψ(T) = exp(TB)ψ(0) +

[∫T

0

exp((T − s)B)exp(−sABA−1)ds

]
ẇ(0)

For the uncorrelated noise (Σ = 1) we can write:

ψ(T) = exp(TB)ψ(0) +

[∫T

0

exp((T − 2s)B))ds

]
ẇ(0)

= exp(TB)ψ(0) + exp(TB)

[∫T

0

exp(−2sB)ds

]
ẇ(0)

= exp(TB)ψ(0) +
1

2
exp(TB)B−1 [1− exp(−2TB)] ẇ(0)

From the above we get the initial steering configuration

ẇ(0) = 2B [1− exp(−2TB)]−1 [exp(−TB)ψ(T) −ψ(0)] (6)

The following procedure lies at the heart of the algorithm. The starting config-
uration ψ(0) and matrix B must be given.

1. Set the timer t := 0.

2. If we do not initialize the ’force’ transition to a new configuration, then

(a) Use the rules given by Eq. 1 with ε = 1 and Σ = 1

(b) Set t := t+ Δt.

3. If we initialize the ’force’ transition to a new configuration and provide ma-
trix B1, then

(a) Compute initial steering configuration for a given transition time T , given
by Eq. 6 and denote it as ẇ(t).

(b) Set local timer t1 := 0.

(c) Compute the new configuration

ψ(t+ Δt) = ψ(t) + (Bψ(t) + ẇ(t))Δt

(d) Update the local steering contribution

ẇ(t+ Δt) = ẇ(t) − (Bẇ(t))Δt

(e) Set t1 := t1 + Δt

(f) Update global timer t := t + Δt and, if t1 < T , return to 3c else set
B := B1 and terminate the transition stage.

4. Return to 2.

Smooth Conditional Transition Paths in Dynamical Gaussian Networks 209

3 Formation Redeployment

Similarly to [20] we define a formation as a set of more than one unit, whose
dynamic states are coupled through a common control law. That is, the members
of the set must

– Track a desired state relative to a non–empty subset of other members
– The tracking control law must depend at least upon the state of this subset

at the minimum.

The second point ensures that the motion of a unit is controlled not only with
use of its individual state (position, velocity, etc.), but also is affected by the
state of other units. Orbit correction algorithm of the GPS satellites only require
position and velocity of an individual satellite thus they do not satisfy the second
requirement. Several formations for a set of units are considered:

(a) square �→ circle (b) wedge �→ line

Fig. 2. Screenshots from the sample application. In (a) 225 units transit from the square
formation to the circle formation. The current position of an agent is represented by a
tank and the distance covered is denoted with a white trace. Similarly in (b) a transition
occurs from wedge to line configuration.

– line - where the units move in a row
– double line - where the units move in a two parallel rows
– square - where the units are regularly distributed inside a square
– circle - where the units move on the edge of a circle
– V - where the units move in a ”V” shape
– wedge - where the units move in a reverse ”V” shape

Fig. 3 shows a schematic description of the formations i.e. every unit is rep-
resented by a dot and is connected to its spatial neighbours by edges which
illustrate neighbour influence on the node state. The configuration is described
as a position of each unit on the plane.

More formally the formation is represented by a Gaussian network with units
as nodes and presented connections as arcs. For each pair of connected nodes x
and y a pair of vectors is given:

210 M. Matuszak, J. Miȩkisz, and T. Schreiber

(a) Line (b) Double Line (c) Square

(d) Wedge (e) V (f) Circle

Fig. 3. Relationship between nodes in defined formations. Simple formations, such
as line or double line, require only a connection between the nearest nodes. In more
complex structures we have to extend the number of arcs. In circle formation each node
is connected to the adjacent nodes and to their neighbors. Formations V and wedge
require an additional connection to the nodes on the opposite branch.

– vx→y
– vy→x = −vx→y

For movement of the group of agents let N(x) denote the number of neighbors
of node x, v the velocity of the entire formation and α ∈ [0, 1] represents the
impact of the neighbors on node position then state of x in time t+Δt is defined
as follow

ψ(x)(t+ Δt) = ψ(x)(t) (1 − αΔt) + −→v Δt+ αΔt
[

1

N(x)

∑

y∼x

(
ψ(y)(t) + −→v y→x

)]

(7)
More precisely, the matrix B can be constructed in the following way:

1. Add an artificial node e ≡ 1 to the Gaussian network.
2. Set the coefficients as follow

– Bxx = −α

– Bxy =

{ α
N(x) if y ∼ x

0 if y � x

– Bxe = v+ α
N(x)

∑
y∼x vx→y,

The construction of matrix B was a crucial point in this paragraph and allows
for straightforward use of Eq. (1) and Eq. (6) for the simulation. In Fig. 4 the
traveled paths are presented by agents during transitions between given forma-
tions. As we can see, optimal paths are not the shortest ones. It is expected
behavior because the algorithm does not minimize the length of the paths, but
rather looks for most probable ones (see Fig. 2). Using shortest paths is highly

Smooth Conditional Transition Paths in Dynamical Gaussian Networks 211

Fig. 4. On the left we see a transition of 25 units from V formation to double line. On
the right 121 tanks redeploy from circle to wedge configuration.

dissuaded from use due to observed phenomenon in military, where all move-
ments incidents during changes of formation were mainly caused by obtaining
the shortest practical route [22].

4 Transitions between Animations

The main purpose of this section is to apply the technique developed in Para-
graph 2 to solving the problem of finding optimal transition path between an-
imations. First we have to translate the motion capture date into terms of a
Gaussian network. The resulted network should reproduce smoother version of
the given motion. Coefficients of the matrix B will be learnt with the use of a
regression method. It turn out that the task is non–trivial and first we have to
define hierarchical dependencies in the motion data.

The motion capture data1 grants us with a structure of bones S and set of
motions M. S is the skeleton of an animated character that is typically defined
as a hierarchy of segments. The skeleton consists of a root segment, that is on
the top in the hierarchy and does not have any ancestors. Each other segment
poses a parent segment and may have one or more children. Segments represent
bones and include their properties such as their length, direction, degrees of
freedom, local coordinate system, etc. Character motion Mi, with respect to
the skeleton S, is defined as a doublet Mi := (Ri,Ai), where Ri is the position
of the skeleton’s root segment for each frame, Ai is a sequence of orientation
of each segment that is Ai = {ati,k; t = 0, . . . , T ; k = 0, . . . , ‖S‖} so particularly

ati,k represents an orientation of kth bone during frame t for an ith animation.
Current character configuration is defined as the orientation of each bone in the
local coordinate system. Using the technique of skeletal animation [4], we can
simulate defined motion.

Coefficients of the Gaussian network can be learnt with the use of a linear
regression method [5]. For each segment k the regression model can be described

1 The data used in this project was obtained from http://www.mocap.cs.cmu.edu.
The database was created with funding from NSF EIA-0196217.

212 M. Matuszak, J. Miȩkisz, and T. Schreiber

by the dependent vector at+1
i,k and a set of regressors {ati,1, . . . ,a

t
i,‖S‖}. Results

of that straightforward method produced very unstable animations i.e. motion
of a character becomes unreliable. Another approach of using multiple linear
regression [5] with regressors defined by hierarchical structure of the skeleton
suffered similar drawbacks. We were also unable to manually define correct rela-
tions in given skeletons. It appears that intuitive dependencies between human
bones are misleading. For example, the position of head was the best described
by configuration of: right femur, right tibia, right foot and left wrist. Resulting
motion did not reproduce correctly given motion and was highly unstable.

To find proper relations in a given motion we decided to use one of the op-
timization techniques. The number of possible DAGs (Direct Acyclic Graphs)
as a function of the number of nodes, G(n), is given by the following recursive
function [16]

G(1) = 1,G(n) =

n∑

k=1

(−1)k+1

(
n

k

)
2k(n−k)G(n− k) (8)

Let us enumerate some values of function G G(2) = 3, G(4) = 543,G(5) = 29281,
G(10) = 4.2 × 1018, G(100) = 1.1 × 101631. Testing all possible DAG pat-
terns is computationally unfeasible because the number of DAGs grows super-
exponentially [12]. In our implementation we have used simulated annealing
method [11] to search in possible DAG space. For a given skeleton S and an-
imation that consists of F frames the energy function has the following form:

E(Mi) =
1

F‖S‖

F∑

f=1

‖S‖∑

b=1

‖cfi,b − sfi,b‖2, (9)

where cfi,b is a configuration of bone b on the ith animation at frame t obtained

from motion capture data, sfi,b has similar meaning, but is computed by simu-
lation of the Gaussian network. In other words we compute mean square error
between positions of bones given by motion capture data in each frame and their
configuration computed with presented method.

In addition, we impose the following requirements:

– Coefficients in matrix B are bound by constant br.
– The mean square error computed for the entire skeleton should not exceed

some (large) constant sb.

The purpose of these conditions is to ensure the numerical stability of the algo-
rithm. During simulations, we set br = 103 and sb = 1012. The applied simulated
annealing algorithm would eventually converge to the target bones hierarchy (see
Image 5(a)).

After applying described scheme to the motion we obtain matrix B. The ani-
mation obtained from the simulation of the Gaussian network looks very similar
to the original motion. The main difference is that the new animation is more
smooth. To maintain the motion in large time horizon we add small noise to

Smooth Conditional Transition Paths in Dynamical Gaussian Networks 213

(a) bones hierarchy (b) transitions between animations

Fig. 5. Screenshots from the sandbox. In (a) we can see that orientation of the head is
best described by orientation of: right femur, right tibia, right foot and left wrist, (b)
presents transition from walking to jumping animation.

the simulation [2], without that, the motion gradually fades away (it converges
to the steady state). At any moment, the animation of a motion can be inter-
rupted and by use of the method from Par. 2, even for a nonsymmetric matrix
B, smoothly transformed to a selected frame of another motion (Fig. 5(b)).

5 Implementation

The programme has been implemented in language D [3]. Some matrix operations
incorporate LAPACK, BLAS and CUBLAS [14] subroutines. All test runs were
executed on a machine with Intel Core 2 Q9300 2.50 GHz CPU, 4GB RAM
and NVIDIA GTX 480. The application is single threaded, so it is applicable
to the core of only one processor. All computations were performed with double
precision arithmetic.

The mean square error (MSE) between the target configuration and a simu-
lated one can be controlled by adjusting the step size. For the transition time set
on 2.0 and step size on 0.002 the observed value of MSE was lower than 0.0001.

An efficient computation of a matrix exponential plays a crucial role in the
presented method. Numerous methods for computing eA were developed. The
straightforward one, which uses Euler series, is inefficient even in the scalar case.
The survey [13] presented a wide variety of methods and pointed the most pow-
erful ones. Today, due to evolution in computer hardware and highly optimized
BLAS subroutines the most cogent technique is the scaling and squaring method
combined with Padé approximants [9]. The sequential version of that algorithm
has been implemented. To parallelize the computation of the matrix exponential
we use NVIDIA CUBLAS library [10,14] and substitute serial matrix operations
with parallel ones.

In Table 1 we can see dependencies between the number of simulated objects
(tanks) and the time required for a single step and a transition. As we can see,

214 M. Matuszak, J. Miȩkisz, and T. Schreiber

Table 1. Step and transition times

quantity step (ms) CPU (ms) GPU (ms) speedup

25 0.04 1.7 40 0.07

100 0.6 24 109 0.22

169 1.6 75 193 0.38

225 3.1 172 275 0.63

400 9 680 637 1.07

625 22 2200 1470 1.50

900 49 12000 3480 3.45

1225 89 54000 6890 7.84

1600 155 253000 12400 17.57

2025 240 785000 26200 29.96

a single step can be computed very fast. The most consuming part during w0

calculation is matrix exponential. GPU accelerated version is up to 30 times
faster than the sequential one. An analysis of parallel profiler output shows that
time is mainly (up to 70%) spent on matrix multiplications (dgemm). Transfers
of the data from host to device (CPU → GPU) and vice versa take up to 30%
of the time. The rest of the time is consumed on memory allocations and other
matrix operations. We should emphasize that computations are performed for
x, y and z coordinates independently.

6 Conclusions

The algorithm for determining optimal transition paths was presented. For the
evaluation purpose two applications have been successfully implemented. The
problem of the formation redeployment was solved by our algorithm and pro-
duced enjoyable results. The resulting group dynamics is highly complex and
a great care must be taken when such an environment is simulated. The other
tested application was devoted to transitions between animations. The prob-
lem was more complicated due to the need of representing the motion in terms
of Gaussian networks. The obtained animations were satisfying for the viewer.
Simulations on the GPU were also performed and provided a significant gain
in the runtime, but only in the large enough networks. Future enhancements
may include hierarchical grouping of Gaussian nodes before transitions which
would significantly improve a computation time. Another option is to optimize
the transition time rather than to use the given one.

Acknowledgements. M. Matuszak and T. Schreiber gratefully acknowledge
the support from the Polish Ministry of Scientific Research and Higher Educa-
tion grant N N201 385234 (2008-2010). The work of M. Matuszak has also been
supported by the European Social Fund, Government of Poland and Kuyavian-
Pomeranian Voivodeship as a part of Integrated Operational Program for Re-
gional Development, Activity 8.2.2.

Smooth Conditional Transition Paths in Dynamical Gaussian Networks 215

References

1. Balch, T., Arkin, R.C.: Behavior–based formation control for multirobot teams.
IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

2. Balch, T., Hybinette, M.: Behavior–Based Coordination of Large-Scale Robot For-
mations. In: International Conference on Multiagent Systems – ICMAS, pp. 363–
364 (2000)

3. Bell, K., Igesund, L.I., Kelly, S., Parker, M.: Learn to Tango with D. Apress (2008)
4. Burtnyk, N., Wein, M.: Interactive skeleton techniques for enhancing motion dy-

namics in key frame animation. Commun. ACM 19, 564–569 (1976)
5. Draper, N.R., Smith, H.: Applied regression analysis, 3rd edn. Wiley, New York

(1998)
6. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems, 2nd

edn. Grundlehren der Mathematischen Wissenschaften, vol. 260. Springer, New
York (1998)

7. Haliloglu, T., Bahar, I., Erman, B.: Gaussian dynamics of folded proteins. Physical
Review Letters 79, 3090–3093 (1997)

8. Heymann, M., Vanden-Eijnden, E.: The Geometric Minimum Action Method: A
Least Action Principle on the Space of Curves. Comm. Pure Appl. Math. 61(8),
1052–1117 (2008)

9. Higham, N.J.: The Scaling and Squaring Method for the Matrix Exponential Re-
visited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)

10. Kirk, D.B., Hwu, W.-M.W.: Programming Massively Parallel Processors: A Hands–
on Approach, 1st edn. Morgan Kaufmann, San Francisco (2010)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220, 671–680 (1983)

12. Koski, T., Noble, J.: Bayesian Networks: An Introduction. John Wiley & Sons,
Ltd., Chichester (2009)

13. Moler, C., Van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of
a Matrix, Twenty–Five Years Later. SIAM Rev. 45(3) (2003)

14. NVIDIA CUBLAS Library, NVIDIA Corporation (2009)
15. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model.

Computer Graphics. In: SIGGRAPH 1987 vol. 21(4), pp. 25–34 (1987)
16. Robinson, R.W.: Counting Unlabelled Acyclic Digraphs. In: Combinatorial Math-

ematics V. Springer Lecture Notes in Mathematics, pp. 28–43 (1977)
17. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications.

Monographs on Statistics & Applied Probability 104 (2005)
18. Safonova, A., Hodgins, J.K.: Analyzing the physical correctness of interpolated

human motion. In: ACM Siggraph/Eurographics Symposium on Computer Ani-
mation (SCA 2005), pp. 171–180 (2005)

19. Shachter, R.D., Kenley, C.R.: Gaussian influence diagrams. Management Sci-
ence 35(5), 527–550 (1989)

20. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A Survey of Spacecraft Formation Flying
Guidance and Control (Part I): Guidance. In: American Control Conference, vol. 2,
pp. 1733–1739 (June 2003)

21. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A Survey of Spacecraft Formation Flying
Guidance and Control (Part II): Control. In: American Control Conference, vol. 4,
pp. 2976–2985 (June 30 - July 2, 2004)

22. U.S. Marine Corps Marine Rifle Squad. Marine Corps Warfighting Publication
(MCWP) 3–11.2 (1997)

Paper C

Matuszak, M., Schreiber, T.
Locally specified polygonal Markov fields for

image segmentation

Chapter 15
Locally Specified Polygonal Markov Fields
for Image Segmentation

Michal Matuszak and Tomasz Schreiber

Abstract We introduce a class of polygonal Markov fields driven by local activ-
ity functions. Whereas the local rather than global nature of the field specification
ensures substantial additional flexibility for statistical applications in comparison
to classical polygonal fields, we show that a number of simulation algorithms and
graphical constructions, as developed in our previous joint work with M.N.M. van
Lieshout and R. Kluszczynski, carry over to this more general framework. More-
over, we provide explicit formulae for the partition function of the model, which
directly implies the availability of closed form expressions for the corresponding
likelihood functions. Within the framework of this theory we develop an image
segmentation algorithm based on Markovian optimization dynamics combining the
simulated annealing ideas with those of Chen-style stochastic optimization, in which
successive segmentation updates are carried out simultaneously with adaptive opti-
mization of the local activity functions.

15.1 Introduction

The polygonal Markov fields, originally introduced by Arak and Surgailis [10–12]
and then studied by a number of authors [13, 319, 377–379, 395], arise as con-
tinuum ensembles of non-intersecting polygonal contours in the plane. One of the
sources of theoretical interest in these processes lies in that they share a number of
salient features with the two-dimensional Ising model, including the geometry of
phase transitions and phase separation phenomenon [319, 377, 378] as well as the
availability of explicit formulae for important numerical characteristics [11, 12, 379]
yielding in particular closed form expressions for the likelihood functions. The idea
that the polygonal Markov fields can carry out image processing tasks traditionally
reserved for lattice-indexed Markov fields (see [448] for a comprehensive survey, cf.

M. Matuszak (�) · T. Schreiber
Faculty of Mathematics & Computer Science, Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toruń, Poland
e-mail: gruby@mat.uni.torun.pl

T. Schreiber
e-mail: tomeks@mat.uni.torun.pl

L. Florack et al. (eds.), Mathematical Methods for Signal and Image Analysis
and Representation, Computational Imaging and Vision 41,
DOI 10.1007/978-1-4471-2353-8_15, © Springer-Verlag London Limited 2012

261

262 M. Matuszak and T. Schreiber

also Chap. 14 and the references therein for new developments) has emerged quite
early and originates from Clifford, Middleton and Nicholls [79] who formulated it
in a Bayesian setting. The obvious crucial advantage of polygonal fields in this con-
text is their continuum nature which makes them completely free of lattice artifacts
in image processing applications. The significant problem which slowed down the
progress of this early work was the lack of efficient samplers and simulation algo-
rithms for polygonal fields. These were introduced a decade later in a series of our
joint papers with M.N.M. van Lieshout and R. Kluszczynski [256, 257, 377, 380,
424] where a polygonal field optimization approach for image segmentation was ad-
vocated. Although these methods were quite succesful in global shape recognition,
the problem we faced in that work was related to the lack of local parametrization
tools designed to deal with intermediate scale image characteristics—even though
the applied simulated annealing algorithm would eventually converge to the target
polygonal segmentation, we were looking for a more efficient explicit mechanism
to drive the local search. Introducing such mechanisms and applying them to image
segmentation is the principal purpose of the present paper. We construct a class of
polygonal Markov fields with local activity functions (Sect. 15.2) and discuss their
properties and graphical representations (Sect. 15.3). Next, in Sects. 15.4 and 15.5
we develop a Markovian optimization dynamics for image segmentation, under
which both the polygonal configuration and the underlying local activity function
are subject to optimization—whereas the polygonal configuration evolves accord-
ing to a simulated annealing scheme in the spirit of [256, 257], the local activity
function is initially chosen to reflect the image gradient information, whereupon it
undergoes adaptive updates in the spirit of the celebrated Chen algorithm, see [73]
and 10.2.4.c. in [333], with the activity profile reinforced along polygonal paths
contributing to the improvement of the overall segmentation quality and faded along
paths which deteriorate the segmentation quality. The sample results of our software
are presented in the final Sect. 15.6.

15.2 Locally Specified Polygonal Markov Fields

Fix an open bounded convex set D in the plane R2, referred to as the field domain in
the sequel, and define the family ΓD of admissible polygonal configurations in D,
by taking all the finite planar graphs γ in D ∪ ∂D, with straight-line segments as
edges, such that

• The edges of γ do not intersect,
• All the interior vertices of γ (lying in D) are of degree 2,
• All the boundary vertices of γ (lying in ∂D) are of degree 1,
• No two edges of γ are colinear.

In other words, γ consists of a finite number of disjoint polygons, possibly nested
and chopped off by the boundary. We shall write ΓD[k] ⊂ ΓD for the set of all
admissible polygonal configurations in D with precisely k edges.

15 Locally Specified Polygonal Markov Fields for Image Segmentation 263

For a Borel subset of A ⊆ R2 by �A� we shall denote the family of all straight
lines hitting A so that in particular �R2 � stands for the collection of all straight lines
in R2. Further, we let μ be the standard isometry-invariant Haar-Lebesgue measure
on the space �R2 � of straight lines in R2. Recall that one possible construction of
μ goes by identifying a straight line l with the pair (φ,ρ) ∈ [0,π) × R, where
(ρ sin(φ), ρ cos(φ)) is the vector orthogonal to l, and joining it to the origin, and
then by endowing the parameter space [0,π)×R with the usual Lebesgue measure.
Note that the above parametrisation of �R2 � with [0,π) × R endows �R2 � with a
natural metric, topology and Borel σ -field which will be used in this paper.

On �D� ×D we consider a non-negative bounded local activity function M (· ; ·)
which will determine the local activity structure of the polygonal field. Define the
formal Hamiltonian LM : ΓD → R+ given by

LM (γ) :=
∑

e∈Edges(γ)

∫

l∈�e�
M (l; l ∩ e)μ(dl), γ ∈ ΓD. (15.1)

We note that the energy function LM should be regarded as an anisotropic environ-
ment-specific version of the length functional. Indeed, for a line l hitting a graph
edge e ∈ Edges(γ) at their intersection point x = l ∩ e, the local activity M (l; l ∩ e)

shall be interpreted as the likelihood of a new edge being created along l inter-
secting and hence fracturing at x the edge e in γ . Under this interpretation we see
that, roughly speaking, the value of

∫
l∈�e� M (l; l ∩ e)μ(dl) determines how likely

the edge e is to be fractured by another edge present in the environment. In other
words, LM (γ) determines how difficult it is to maintain the whole graph γ ∈ ΓD

without fractures in the environment whose local activity profile is characterised by
M (· ; ·)—note that due to the anisotropy of the environment there may be graphs of
a higher (lower) total edge length than γ and yet of lower (higher) energy and thus
easier (more difficult) to maintain and to keep unfractured due to the lack (presence)
of high local activity lines likely to fracture their edges. In the particular case where
M is constant, LM is readily verified to be a multiple of the usual length functional,
see e.g. p. 554 in [11].

We assume that a measurable anchor mapping A : �D� → D is given on the set
of lines crossing D, assigning to each of them its anchor point, also interpreted as
the initial point of the line. This allows us to define for each bounded linear seg-
ment/graph edge e in D its initial point ι[e] which is the point of e closest to the an-
chor A(l[e]), where l[e] is the straight line extending e. In particular, if A(l[e]) ∈ e

then ι[e] = A(l[e]), otherwise ι[e] is the endpoint of e closest to A(l[e]).
The polygonal Markov field A M

D with local activity function M in D is defined
by

P(A M
D ∈ dγ)

∝ exp(−LM (γ))
∏

e∈Edges(γ)

[M (l[e]; ι[e])μ(dl[e])], γ ∈ ΓD. (15.2)

In other words, the probability of having A M
D ∈ dγ is proportional to the Boltz-

mann factor exp(−LM (γ)) times the product of local edge activities M (l[e];

264 M. Matuszak and T. Schreiber

ι[e])μ(dl[e]), e ∈ Edges(γ). Observe that this construction should be regarded as
a specific version of the general polygonal model given by Arak and Surgailis
[11, 2.11] and an extension of the non-homogeneous polygonal fields considered
in Schreiber [379] at their consistent regime (inverse temperature parameter fixed
to 1). It should be also noted at this point that if the typical edge length for A M

D

is much smaller than the characteristic scale for oscillations of M , which is of-
ten the case in our applications below, then M (l[e]; ·) is usually approximately
constant along the corresponding edge e and the formal dependency of the factor
M (l[e]; ι[e])μ(dl[e]) on the choice of initial segment for e becomes negligible in
large systems. The finiteness of the partition function

Z M
D :=

∞∑

k=0

1

k!
∫

ΓD[k]
exp(−LM (γ))

∏

e∈Edges(γ)

[M (l[e]; ι[e])μ(dl[e])] (15.3)

is not difficult to verify, see [379], and in fact it will be explicitly calculated in the
sequel.

The so-defined locally specified polygonal fields enjoy a number of striking fea-
tures inherited from the previously developed polygonal models, see [11, 379]. One
of these is the two-dimensional germ-Markov property stating that the conditional
behaviour of the field A M

D inside a smooth closed curve θ depends on the outside
field configuration only through the trace it leaves on θ , consisting of intersection
points and the respective line directions, see [11] for details. This is where the term
polygonal Markov field comes from. Further properties of the locally defined polyg-
onal fields are going to be discussed in the next section, where their algorithmic
construction is provided.

15.3 Dynamic Representation for Locally Specified Polygonal
Fields

The present section is meant to extend the so-called generalised dynamic repre-
sentation for consistent polygonal fields as developed in Schreiber [379] to cover
the more general class of locally specified polygonal fields defined in Sect. 15.2
above. The name generalised representation comes from the fact that it generalises
the original construction of homogeneous polygonal fields introduced by Arak and
Surgailis [11]. In the sequel we will often omit the qualifier generalised for the sake
of terminological brevity. To describe the generalised representation, fix the convex
field domain D and let (Dt)t∈[0,1] be a time-indexed increasing family of compact
convex subsets of D̄, eventually covering the entire D̄ and interpreted as a growing
window gradually revealing increasing portions of the polygonal field under con-
struction in the course of the time flow. In other words, under this interpretation, the
portion of a polygonal field in a bounded open convex domain D uncovered by time
t is precisely its intersection with Dt . To put it in formal terms, consider (Dt)t∈[0,1]
satisfying

15 Locally Specified Polygonal Markov Fields for Image Segmentation 265

(D1) (Dt)t∈[0,1] is a strictly increasing family of compact convex subsets of D̄ =
D ∪ ∂D.

(D2) D0 is a single point x in D̄ = D ∪ ∂D.
(D3) D1 coincides with D̄.
(D4) Dt is continuous in the usual Hausdorff metric on compacts.

Clearly, under these conditions, for μ-almost each l ∈ �D� the intersection l ∩ Dτl

consists of precisely one point A(l), where τl = inf{t ∈ [0,1], Dt ∩ l
= ∅}. The
point A(l) is chosen to be the anchor point for l, which induces the anchor mapping
A : �D� → D as required for our construction in Sect. 15.2. Note that this choice
of the anchor mapping implies that at each point of a line l the direction away
from its anchor point A(l) coincides with the outwards direction with respect to
the growing window (Dt). Consider now the following dynamics in time t ∈ [0,1],
with all updates, given by the rules below, performed independently of each other,
see Fig. 15.1.

(GE:Initialise) Begin with empty field at the time 0.
(GE:Unfold) Between critical moments listed below, during the time interval
[t, t + dt] the unfolding field edges in Dt reaching ∂Dt extend straight to
Dt+dt \ Dt .

(GE:BoundaryHit) When a field edge hits the boundary ∂D, it stops growing in
this direction (note that μ-almost everywhere the intersection of a line with ∂D

consists of at most two points).
(GE:Collision) When two unfolding field edges intersect in Dt+dt \Dt , they are not

extended any further beyond the intersection point (stop growing in the direction
marked by the intersection point).

(GE:DirectionalUpdate) A field edge extending along l ∈ �Dt � updates its di-
rection during [t, t + dt] and starts unfolding along l′ ∈ �l[t,t+dt]�, extending
away from the anchor point A(l′), with probability M (l′; l ∩ l′)μ(dl′), where
l[t,t+dt] := l ∩ (Dt+dt \ Dt). Directional updates of this type are all performed
independently.

(GE:LineBirth) Whenever the anchor point A(l) of a line l falls into Dt+dt \ Dt ,
the line l is born at the time t at its anchor point with probability M (l;A(l))μ(dl),
whereupon it begins extending in both directions with the growth of Dt (recall that
l is μ-almost always tangential to ∂Dt here).

(GE:VertexBirth) For each intersection point of lines l1 and l2 falling into Dt+dt \
Dt , the pair of field lines l1 and l2 is born at l1 ∩ l2 with probability M (l1;
l1 ∩ l2)M (l2; l1 ∩ l2)μ(dl1)μ(dl2), whereupon both lines begin unfolding in the
directions away from their respective anchor points A(l1) and A(l2).

Observe that the evolution rule (GE:VertexBirth) means that pairs of lines are born
at birth sites distributed according to a Poisson point process in D with intensity
measure given by the intersection measure 〈〈M 〉〉 of M :

〈〈M 〉〉(A) := 1

2

∫

{(l1,l2), l1∩l2⊂A}
M (l1; l1 ∩ l2)M (l2; l1 ∩ l2)μ(dl1)μ(dl2). (15.4)

266 M. Matuszak and T. Schreiber

Fig. 15.1 Dynamic representation

Likewise, the evolution rule (GE:LineBirth) implies that individual lines are born
at their anchor points according to a Poisson point process in �D� with intensity
measure given by the anchor measure 〈M 〉 of M :

〈M 〉(B) :=
∫

{l, A(l)∈B}
M (l,A(l))μ(dl). (15.5)

The main theorem of this section is the following extension of Theorem 3 in [379].

Theorem 15.1 The random contour ensemble resulting from the above construction
(GE) coincides in law with A M

D . Moreover, we have

logZ M
D = 〈〈M 〉〉(D) + 〈M 〉(�D�). (15.6)

Proof We pick some γ ∈ ΓD and calculate the probability that the outcome of the
above dynamic construction falls into dγ . To this end, we note that:

• Each edge e ∈ Edges(γ) containing the anchor point A(l[e]) and hence resulting
from a line birth event due to the rule (GE:LineBirth), contributes to the con-
sidered probability the factor M (l[e];A(l[e]))μ(dl[e]) (line birth probability for
l[e]) times exp[− ∫

�e� M (l; l ∩ e)μ(dl)] (no directional updates along e).
• Each of the two edges e1, e2 ∈ Edges(γ) stemming from a common interior birth

vertex l[e1] ∩ l[e2] = ι[e1] = ι[e2] yields the factor M (l[ei]; ι[ei])μ(dl[ei]), i =
1,2, (coming from the vertex birth probability due to the rule (GE:VertexBirth))
times exp[− ∫

�ei � M (l; l ∩ ei)μ(dl)] (no directional updates along ei).

15 Locally Specified Polygonal Markov Fields for Image Segmentation 267

• Each of the edges e ∈ Edges(γ) arising in (GE:DirectionalUpdate) yields
the factor M (l[e]; ι[e]) (directional update probability) times exp[− ∫

�e� M (l;
l ∩ e)μ(dl)] (no directional updates along e).

• The absence of interior birth sites in D \ γ yields the factor exp[−〈〈M 〉〉(D)].
• Finally, the absence of line birth events for all lines in �D� except for the fi-

nite collection {l[e], e ∈ Edges(γ), A(l[e]) ∈ e} yields the additional factor
exp[〈−M 〉(�D�)].

Putting these observations together we conclude that the probability element of γ

resulting from the generalized construction above is

exp(−LM (γ))
∏

e∈Edges(γ)[M (l[e]; ι[e])μ(dl[e])]
exp[〈〈M 〉〉(D)] exp[〈M 〉(�D�)]

and thus, upon comparing with (15.2) and (15.3), the field obtained by this con-
struction coincides in law with A M

D as required and (15.6) follows as well. This
completes the proof of the theorem. �

15.4 Disagreement Loop Dynamics

In this section we discuss a random dynamics on the space ΓD of admissible polyg-
onal configurations which leaves the law of the field A M

D invariant and reversible.
This dynamics will be used in the sequel as a mechanism for update proposal gen-
eration in stochastic optimization schemes for image segmentation. We build upon
[377, 379] in our presentation of the dynamics based on an important concept of a
disagreement loop.

To proceed we place ourselves within the context of the dynamic representation
discussed in Sect. 15.3 above and suppose that we observe a particular realisation
γ ∈ ΓD of the polygonal field A M

D and that we modify the configuration by adding
an extra (GE:VertexBirth) vertex birth site at x0 ∈ D to the existing collection of
vertex births for γ , while keeping unchanged the remaining evolution rules (GE)
for all the edges, including the two newly added ones. Denote the resulting new
(random) polygonal configuration by γ ⊕ x0. A simple yet crucial observation is
that for x0 ∈ D the symmetric difference γ�[γ ⊕ x0] is almost surely a single loop
(a closed polygonal curve), possibly self-intersecting and possibly chopped off by
the boundary (becoming a path then). Indeed, this is seen as follows. Each point in
x ∈ D can be attributed its time coordinate which is just the time moment at which
x is first hit by ∂Dt . Then the chronologically initial point of the loop γ�[γ ⊕ x0]
is of course x0. Each of the two new polygonal curves p1,p2 initiated by edges
e1, e2 emitted from x0 unfold independently, according to (GE), each giving rise to
a disagreement path. The initial segments of such a disagreement path correspond
to the growth of the curve, say p1, before its annihilation in the first collision. If
this is a collision with the boundary, the disagreement path gets chopped off and
terminates there. If this is a collision with a segment of the original configuration γ

corresponding to a certain old polygonal curve p3 emitted from a prior vertex birth

268 M. Matuszak and T. Schreiber

site, the new curve p1 dies but the disagreement path continues along the part of
the trajectory of p3 which is contained in γ but not in γ ⊕ x0. At some further mo-
ment p3 dies itself in γ , touching the boundary or killing another polygonal curve
p4 in γ . In the second case, however, this collision only happens for γ and not for
γ ⊕ x0 so the polygonal curve p4 survives (for some time) in γ ⊕ x0 yielding a fur-
ther connected portion of the disagreement path initiated by p1, which is contained
in γ ⊕ x0 but not in γ etc. A recursive continuation of this construction shows that
the disagreement path initiated by p1 at x0 consists alternately of connected polyg-
onal sub-paths contained in [γ ⊕x0] \γ (call these creation phase sub-paths) and in
γ \ [γ ⊕ x0] (call these annihilation phase sub-paths). Note that this disagreement
path is self-avoiding and, in fact, it can be represented as the graph of some piece-
wise linear function t �→ x(t) ∈ ∂Dt . Clearly, the same applies for the disagreement
path initiated by p2 at x0. An important observation is that whenever two creation
phase or two annihilation phase sub-paths of the two disagreement paths hit each
other, both disagreement paths die at this point and the disagreement loop closes
(as opposed to intersections of segments of different phases which do not have this
effect). Obviously, if the disagreement loop does not close in the above way, it gets
eventually chopped off by the boundary. We shall write Δ⊕[x0;γ] = γ�[γ ⊕ x0]
to denote the (random) disagreement loop constructed above. A similar argument
shows that an extra (GE:LineBirth) line birth event added for l ∈ �D� at its an-
chor point A(l), while keeping the remaining evolution rules unchanged, also gives
rise to a disagreement loop Δ⊕[l;γ] which coincides with the symmetric difference
γ�[γ ⊕ l], where γ ⊕ l is the polygonal configuration resulting from γ upon adding
the line birth site at A(l).

Likewise, a disagreement loop arises if we remove one vertex birth site x0 ∈ D

from the collection of vertex birth sites of an admissible polygonal configuration
γ ∈ ΓD , while keeping the remaining evolution rules. We write γ � x0 for the
configuration obtained from γ by removing x0 from the list of vertex birth sites,
while the resulting random disagreement loop is denoted by Δ�[x0;γ] so that
Δ�[x0;γ] = γ�[γ � x0]. In full analogy, we define γ � l and Δ�[l;γ] where
l = l[e] is the field line extending an edge e ∈ Edges(γ) with A(l) ∈ e and γ � l is
the configuration obtained from γ upon killing the line l at its anchor A(l) whereas
Δ�[x0;γ] is the resulting disagreement loop. We refer the reader to Sect. 2.1
in [377] for further discussion.

With the above terminology we are in a position to describe a random dynam-
ics on the configuration space ΓD , which leaves invariant the law of the polygonal
process A M

D . Particular care is needed, however, to distinguish between the notion
of time considered in the dynamic representation of the field as well as throughout
the construction of the disagreement loops above, and the notion of time to be intro-
duced for the random dynamics on ΓD constructed below. To make this distinction
clear we shall refer to the former as to the representation time (r-time for short) and
shall reserve for it the notation t , while the latter will be called the simulation time
(s-time for short) and will be consequently denoted by s in the sequel.

Consider the following pure jump birth and death type Markovian dynamics
on ΓD , with γs = γ D

s standing for the current configuration

15 Locally Specified Polygonal Markov Fields for Image Segmentation 269

(DL:Birth) With intensity 〈〈M 〉〉(dx)ds for x ∈ D and with intensity 〈M 〉(dl)ds

for l ∈ �D� set γs+ds := γs ⊕ x and γs+ds := γs ⊕ l respectively.
(DL:Death) For each vertex birth site x in γs with intensity ds set γs+ds := γs � x.
For each line birth site A(l[e]) ∈ e, e ∈ Edges(γ) with intensity ds set γs+ds :=
γs � l[e].

If none of the above updates occurs we keep γs+ds = γs . It is convenient to perceive
the above dynamics in terms of generating random disagreement loops λ and set-
ting γs+ds := γs�λ, with the loops of the type Δ⊕[· , ·] corresponding to the rule
(DL:Birth) and Δ�[· , ·] to the rule (DL:Death).

As a direct consequence of the dynamic representation of the field A M
D as de-

veloped in Sect. 15.3, we obtain

Theorem 15.2 The distribution of the polygonal field A M
D is the unique invariant

law of the dynamics given by (DL:Birth) and (DL:Death). The resulting s-time sta-
tionary process is reversible. Moreover, for any initial distribution of γ0 the laws
of the polygonal fields γs converge in variational distance to the law of A M

D as
s → ∞.

The uniqueness and convergence statements in the above theorem require a short
justification. They both follow by the observation that, in finite volume, regardless
of the initial state, the process γs spends a non-null fraction of time in the empty
state (no polygonal contours). Indeed, this observation allows us to conclude the
required uniqueness and convergence by a standard coupling argument, e.g. along
the lines of the proof of Theorem 1.2 in [289].

15.5 Adaptive Optimization Scheme for Image Processing

To provide a formal description of our image segmentation procedure we repre-
sent the image processed by a continuously differentiable function φ : D → [−1,1]
defined on an open bounded convex image domain D. By segmentations of φ we
shall understand admissible polygonal configurations γ ∈ ΓD . Interpreting the con-
tours of γ as curves separating regions of different signs in D we associate with
γ two natural sign-functions s+

γ : D → {−1,+1} and s−
γ = −s+

γ . The quality of a

segmentation is quantified in terms of an energy function H [γ] := H [γ |φ] which
in our case is a positive linear combination of a L1-type distance (multiple of pixel
misclassification ratio), the length element and the number of edges, that is to say

H [γ] := α2 min

(∫

D

|φ(x) − s+
γ (x)|dx,

∫

D

|φ(s) − s−
γ (x)|dx

)

+ α1 length(γ) + α0 card(Edges(γ)), αi > 0, i = 0,1,2, (15.7)

although clearly many other natural options are also possible, such as Lp-type met-
rics or various weighed versions thereof. Our optimization scheme (OPT) presented
below is based on the (DL) evolution as described in Sect. 15.4 above, combined
with the following ideas.

270 M. Matuszak and T. Schreiber

• The initial local activity function encodes the gradient information for φ.
• In the course of the dynamics, the local activity function undergoes adaptive up-

dates in the spirit of the celebrated Chen algorithm, see [73] and 10.2.4.c in [333].
• The segmentation update proposals are accepted or rejected depending on the

energy changes they induce, conforming to the simulated annealing scheme, see
[1] for a general reference.

At each time moment s ≥ 0 in the course of the (OPT) dynamics the local activity
function M (· ; ·) is given by

Ms(l;x) := |e[l] × Gs(x)|, (15.8)

where e[l] is a unit vector along l and × stands for the usual vector cross product.
The vector field Gs evolves in (OPT) time together with the polygonal configuration
γs as specified below, with the initial condition

G0(x) := ∇φ(x), (15.9)

for practical reasons possibly modified by convolving φ with a small variance Gaus-
sian kernel at the pre-processing stage. When combined, the relations (15.8) and
(15.9) mean that we promote edges in directions perpendicular to local gradients
and proportionally to the gradient lengths. In precise terms, our algorithm admits
a description in terms of the following (non-homogeneous) pure-jump Markovian
dynamics (OPT) unfolding in time s ≥ 0.

(OPT:Initialise) At time 0 set the initial activity function M0(· ; ·) as specified by
(15.8) and (15.9) and generate γ0 according to A M0

D .
(OPT:Birth) For Ms given as in (15.8), with intensity 〈〈Ms〉〉(dx)ds for x ∈ D and

with intensity 〈Ms〉(dl) for l ∈ �D� do

[GenerateDisagreementLoop] Set δ := γs ⊕ x and δ := γs ⊕ l respectively, with λ

standing for the respective disagreement loop Δ⊕[x;γ] or Δ⊕[l;γ] and with λ+
and λ− denoting its respective creation and annihilation phase sub-paths. Note
that the disagreement loop is generated according to the current activity mea-
sure Ms . Let Δ := H (δ) − H (γs) be the energy difference between the current
configuration γs and its update proposal δ.

[ActivityUpdate] Put

Gs+ds(x) := Gs(x)

+ exp(−KsΔ) − 1

2πσ 2
s

∫

λ+
n[y]〈n[y],Gs(x)〉 exp

(

−dist2(x, y)

2σ 2
s

)

dy

+ exp(KsΔ) − 1

2πσ 2
s

∫

λ−
n[y]〈n[y],Gs(x)〉 exp

(

−dist2(x, y)

2σ 2
s

)

dy,

where n[y] stands for the unit normal to λ at y ∈ λ, defined almost everywhere;
whereas Ks and σs are positive deterministic parameter functions discussed in
more detail below.

15 Locally Specified Polygonal Markov Fields for Image Segmentation 271

[ConfigurationUpdate] If Δ < 0 then set γs+ds := δ. Otherwise set γs+ds := δ

with probability exp(−βsΔ) (accept update) and keep γs+ds = γs with the com-
plementary probability (reject update). The parameter function βs , referred to
as the inverse temperature according to the usual terminology, increases in time
following the cooling protocol of our simulated annealing.

(OPT:Death) With Ms as given by (15.8), for each vertex birth site x in γs with
activity ds, and for each line birth site A(l[e]) ∈ e, e ∈ Edges(γ) with intensity
ds, do

[GenerateDisagreementLoop] Set δ := γs �x and δ := γs � l[e] respectively, with
λ standing for the respective disagreement loop Δ�[x;γ] or Δ�[l[e];γ] and
with λ+ and λ− denoting its respective creation and annihilation phase sub-paths.
Note that the disagreement loop is generated according to the current activity
measure Ms . Let Δ := H (δ) − H (γs) be the energy difference between the
current configuration γs and its update proposal δ.

[ActivityUpdate] Put

Gs+ds(x) := Gs(x)

+ exp(−KsΔ) − 1

2πσ 2
s

∫

λ−
n[y]〈n[y],Gs(x)〉 exp

(

−dist2(x, y)

2σ 2
s

)

dy

+ exp(KsΔ) − 1

2πσ 2
s

∫

λ+
n[y]〈n[y],Gs(x)〉 exp

(

−dist2(x, y)

2σ 2
s

)

dy.

[ConfigurationUpdate] If Δ < 0 then set γs+ds := δ. Otherwise set γs+ds := δ

with probability exp(−βsΔ) (accept update) and keep γs+ds = γs with the com-
plementary probability (reject update).

Roughly speaking, our optimization dynamics (OPT) generates successive updates
according to the disagreement loop dynamics (DL) driven by the current local ac-
tivity function Ms , whereupon it updates the activity function in the spirit of the
Chen algorithm in [ActivityUpdate] phase, and then accepts or rejects the config-
uration update proposal for γs in [ConfigurationUpdate] conforming to the simu-
lated annealing paradigm. Note that the activity update is carried out regardless of
whether the configuration update proposal has been accepted or not. This is natural
because in the activity update step the original and new configuration are compared
for quality and then, along the disagreement segments present in the better of the two
configurations, the normal component of the local gradient field is reinforced and,
likewise, the normal component is subject to fading along the disagreement seg-
ments present in the worse configuration. The strength of this reinforcement/fading
depends exponentially on the energy difference between the original configuration
and its update, with rate controlled by time-dependent parameter Ks , which should
increase over time starting from a low level to avoid erratic reinforcements induced
by the initially chaotic nature of the early stage polygonal configurations γs . To
keep the local activity function smooth we smear the activity updates over the do-
main by convolving them with a Gaussian kernel of time-dependent standard de-
viation parameter σs , as made precise in the [ActivityUpdate] formulae above. The

272 M. Matuszak and T. Schreiber

Fig. 15.2 Segmented
handwritten A (30000
updates)

parameter σs should decrease over time to pass from global shape approximation to
fine detail tuning at the later stages of the (OPT) dynamics. The update proposals
for the polygonal configurations are accepted or rejected according to the standard
simulated annealing scheme with time-dependent inverse temperature parameter βs

which increases over time—to be precise, our software employs a linear cooling
schedule βs = βs for some constant β > 0.

15.6 Results and Discussion

In this final section we present applications of our algorithm on sample images. The
software, implemented in D programming language, is in a rather early stage of
development and will be further optimised. The segmentations shown in Figs. 15.2,
15.3 and 15.4 have been obtained after about 30000 (accepted) updates under a
linear cooling schedule, with mean execution time 0.05 sec per single update on
Intel Pentium M 2 GHz CPU and 2 GB RAM memory.

A large number of segmentation techniques are available in the literature. But,
there does not exist a general algorithm that can perform the segmentation task
for all images. Classification of image segmentation methods can be divided into
several categories. Starting with the simplest one, the thresholding method, that uses
a global property of the image, usually intensity, to classify individual pixels from
the image as object pixels, if the value of the pixels property exceeds threshold value,
or as background pixels otherwise. The main disadvantage of the method is a narrow
range of application, because it works only for a subclass of images in which objects
are distinct from background in intensity. The adjustment of the threshold parameter
is also a nontrivial task and often requires human interaction. Another well known
method is the K-means algorithm [293]. It is an unsupervised clustering algorithm
that classifies the pixels from the image into multiple classes based on their inherent

15 Locally Specified Polygonal Markov Fields for Image Segmentation 273

Fig. 15.3 Segmented
handwritten B (30000
updates)

Fig. 15.4 Segmented
gingerbread-man (30000
updates)

distance from each other. For small values of k the algorithm gives good results, but
for larger values of k, the segmentation is very coarse, many clusters appear in the
images at discrete places. Selection of parameter k is crucial in that algorithm and
inappropriate choice may yield wrong results.

One of the most popular methods in segmentation uses morphological approach:
the watershed transformation. That approach was introduced in [34] and consists of
placing a spring of water in each selected region, the water will relief from sources,
and construct barriers when water from different sources meet. The resulting bar-
riers are the segmentation of the image. The main disadvantage of the algorithm is

274 M. Matuszak and T. Schreiber

the need of human interaction to locate points where flooding should start. Another
group of algorithms: the Markov random fields (MRF)-based methods are of great
importance, for their ability to model a prior belief about the continuity of image
features such as textures, edges or region labels [457], but obtain unsatisfied results
when the prior knowledge is taken seriously.

The approach described here uses models that operate on the pixel level. Alter-
native intermediate level methods focus on the partition of the image that is the out-
come of a segmentation. Green [190] and Møller and Skare [313] propose Voronoi-
based models, and [318] suggests triangulations. One of the main advantage of our
method is a higher conceptual level than most of listed algorithms i.e. the real world
is not a collection of pixels and as we do not know what is in the image we cannot
model the objects. The algorithm achieves reasonable global behaviour. Another
benefit from our algorithm is easy and fast implementation. The drawbacks of our
method can be seen around the edges, which will require more finetuning in the
future.

Acknowledgements We gratefully acknowledge the support from the Polish Minister of Science
and Higher Education grant N N201 385234 (2008–2010).

Michal Matuszak and Tomasz Schreiber

References

 10. ARAK , T.: On Markovian random fields with finite number of values,4th USSR-Japan sym-
posium on probability theory and mathematical statistics, Abstracts of Communications,
Tbilisi (1982).

 11. ARAK , T., SURGAILIS, D.: Markov Fields with Polygonal Realizations,Probab. Th. Rel.
Fields80, 543-579 (1989).

 12. ARAK , T., SURGAILIS, D.: Consistent polygonal fields,Probab. Th. Rel. Fields89, 319-346
(1991).

 13. ARAK , T., CLIFFORD, P., SURGAILIS, D.: Point-based polygonal models for random
graphs,Adv. Appl. Probab.25, 348-372 (1993).

 34. BEUCHER, S., LANTUJOUL, C.: Use of watersheds in contour detection.In International
workshop on image processing, real-time edge and motion detection(1979).

 73. CHEN, K.: Simple learning algorithm for the traveling salesman problem,Phys. Rev. E55,
7809-7812 (1997).

 79. CLIFFORD, P.,AND M IDDLETON, R.D.: Reconstruction of polygonal images.J. Appl. Stat.
16, 409–422 (1989).

190. GREEN, P.: Reversible jump MCMC computation and Bayesian model determination.
Biometrika82(4), 711732 (1995).

256. KLUSZCZYŃSKI, R., LIESHOUT, M.N.M. VAN , SCHREIBER, T.: An algorithm for binary
image segmentation using polygonal Markov fields. In: F. Roli and S. Vitulano (Eds.), Im-
age Analysis and Processing, Proceedings of the 13th International Conference on Image
Analysis and Processing.Lecture Notes in Comput. Sci.3615, 383-390 (2005).

257. KLUSZCZYŃSKI, R., LIESHOUT, M.N.M. VAN , SCHREIBER, T.: Image segmentation by
polygonal Markov fields.Ann. Inst. Statist. Math.,59, 465-486 (2007).

289. L IGGETT, T.: Interacting particle systems. Springer-Verlag, New York (1985).
293. LLOYD , S.P.: Least square quantization in PCM.IEEE Trans. Inf. Theory, 28(2), 129137

(1982).
313. MOLLER, J., SKARE, O.: Bayesian image analysis with coloured Voronoi tesselations and

a view to applications in reservoir modelling.Stat. Model.1, 213232 (2001).
318. NICHOLLS, G.K.: Bayesian image analysis with Markov chain Monte Carlo and coloured

continuum triangulation models.J. R. Stat. Soc., Ser. B, Stat. Methodol.60, 643659 (1998).
319. NICHOLLS, G.K.: Spontaneous magnetization in the plane,Journal of Statistical Physics,

102, 1229-1251 (2001).
333. PERETTO, P.:An Introduction to the modeling of neural networks, Collection Aléa-Saclay:

Monographs and Texts in Statistical Physics 2, Cambridge University Press (1992).
377. SCHREIBER, T.: Random dynamics and thermodynamic limits for polygonal Markov fields

in the plane,Advances in Applied Probability37, 884-907 (2005).
378. SCHREIBER, T.: Dobrushin-Kotecḱy-Shlosman theorem for polygonal Markov fields in the

plane,Journal of Statistical Physics,123, 631-684 (2006).
379. SCHREIBER, T.: Non-homogeneous polygonal Markov fields in the plane: graphical rep-

resentations and geometry of higher order correlations,Journal of Statistical Physics,132,
669-705 (2008).

380. SCHREIBER, T., LIESHOUT, M.N.M. VAN : Disagreement loop and path cre-
ation/annihilation algorithms for binary planar Markov fields with applications to image seg-
mentation,submitted(2008).

395. SURGAILIS, D.: Thermodynamic limit of polygonal models,Acta applicandae mathemati-
cae,22, 77-102 (1991).

424. L IESHOUT, M.N.M. VAN , SCHREIBER, T.: Perfect simulation for length-interacting polyg-
onal Markov fields in the plane,Scand. Journal of Statistics,34, 615-625 (2007).

448. WINKLER , G.: Image analysis, random fields and Markov chain Monte Carlo methods, A
mathematical introduction,2nd ed. Applications of Mathematics, Stochastic Modelling and
Applied Probability27. Springer-Verlag, Berlin (2003).

457. YANG, F., JIANG , T.: Pixon based image segmentation withMarkov random fields.IEEE
Trans. Image Process.12(12), 15521559 (2003).

Paper D

Matuszak, M., Miȩkisz, J., Schreiber, T.
Solving Ramified Optimal Transport Problem in

the Bayesian Influence Diagram Framework

Solving Ramified Optimal Transport Problem in
the Bayesian Influence Diagram Framework

Michal Matuszak1, Jacek Miȩkisz2, and Tomasz Schreiber?1

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87–100 Torun, Poland

{gruby, tomeks}@mat.umk.pl
2 Institute of Applied Mathematics and Mechanics, University of Warsaw,

Banacha 2, 02–097 Warsaw, Poland
miekisz@mimuw.edu.pl

Abstract. The goal of the ramified optimal transport is to find an op-
timal transport path between two given probability measures. One mea-
sure can be identified with a source while the other one with a target.
The problem is well known to be NP–hard. We develop an algorithm
for solving a ramified optimal transport problem within the framework
of Bayesian networks. It is based on the decision strategy optimisation
technique that utilises self–annealing ideas of Chen–style stochastic opti-
misation. Resulting transport paths are represented in the form of tree–
shaped structures. The effectiveness of the algorithm has been tested on
computer–generated examples.

Keywords: Optimal Transport Path, Transport Network, Branching
Structure, Bayesian Influence Diagrams, Optimal Decision Strategies

1 Introduction

The transport problem was introduced by G. Monge in a very famous paper,
Mémoire sur la théorie des déblais et des remblais [10,4]. Recently this classical
problem has gained an extensive popularity [1,14]. The original problem is to
move a pile of soil from one place to another with the minimal effort. In 1942,
Kantorovich introduced his formalization of a relaxed version of the Monge’s
problem [7,2]. The task of finding optimal paths was transformed into the prob-
lem of transporting a positive measure µs onto another positive measure µd with
the same mass. The Monge–Kantorovich approach assumes that the transport
cost is proportional to the distance and the transported mass. It favours thin
routes rather than wide ones. Unfortunately it is not practical from the economic
point of view.

In most transport networks, sending each particle straight to the destination
is economically unrealistic. The preferable solution is to aggregate particles and
move them together as it happens in tree leafs or on highways. We should mention

? Deceased author (1975 – 2010).

the Steiner tree problem where one minimizes only the total length of a network
[13] and omits the cost of constructing edges. His model is not appropriate for
our purposes because it does not discriminate the cost of high or low capacity
edges; constructing a high–capacity highway is more expensive than constructing
a backroad.

The first model taking into account the cost of edges was introduced by
Gilbert and it has been extensively investigated in [14]. He showed that in ship-
ping two objects from nearby cities to the same far away city, see Fig. 1(c), it
may be more optimal to first transport them to a common location and then
transport them together to the target. In this case, a Y shaped path is preferable
to a V shaped path, see Fig. 1. In general, resulted paths form leaf–like struc-
tures. Biological leafs tend to maximize an internal efficiency by developing an
efficient transport system for water and nutrients [16]. We should note that the
presented problems are NP–hard [4,13].

µs

µd

(a)

µs

µd

(b) V shaped

Z

µs

µd

(c) Y shaped

Fig. 1. (a) Three cities, two of them at the bottom are the source and the third city
at the top is the destination for transported goods, (b) Monge–Kantorovich solution,
(c) Gilbert solution, the interior vertex z can be determined analytically [14].

An influence diagram [6,11,12] is an extension of a Bayesian network [8,6,11,12],
in which not only a probabilistic inference occurs but also decision making prob-
lems are solved. Influence diagrams are built on a directed acyclic graphs (DAGs)
whose nodes and edges have standard interpretations stemming from and extend-
ing those used for Bayesian networks.

An influence diagram, similar to a Bayesian network, can be built with the use
of chance nodes, which we represent as ovals. Also two additional types of nodes
are introduced: decision nodes corresponding to available decisions (rectangles)
and utility nodes (rhombi) specifying payoff functions (utilities) to be maximized
by suitable choices of decision policies.

If the network is well designed, then the arcs leading to chance nodes specify
direct causal relationships not necessarily corresponding to any temporal order-
ing. The arcs leading to decision nodes indicate the information available at the
moment of decision making, thus feeding input to decision policies. The influence

diagrams can be considered as generalizations of (symmetric) decision trees, see
[6].

Finding an optimal decision strategy for an influence diagram is an NP–hard
task. One can show this easily by reducing the traveling salesman problem (that
is NP–complete) to our task.

umbrellacoat

weather
forecast

weather

comfort

warmth get wet

Fig. 2. Illustration of a simple influence diagram that includes two decision nodes:
whether or not to take an umbrella and/or a coat for a journey. The decisions have an
impact on the warmth and can prevent from getting wet from the rain, but if it does
not rain, then carrying an umbrella has a negative impact on the mood.

In Fig. 2, an example of an influence diagram is shown. The decision node
umbrella represents the choice whether or not to take an umbrella. Taking an
umbrella does increase the chance of not getting wet during rain, yet it also causes
negative effects, such as the need of carrying an additional weight. Further,
wearing a coat decreases the chance of getting chilled but also negatively affects
our comfort if the outside temperature is too high. All these effects are jointly
taken into account in the utility node comfort.

There exists a number of algorithms for finding an optimal decision strategy
for an influence diagram. For a detailed discussion we refer the reader to Chapter
10 in [6] and Subsection 5.2.2 in [11]. We focus our attention on the Chen–style
[5] stochastic optimisation algorithm described in [9] which is well suited for our
task.

In Section 2, we formalize the transport problem. Then we outline the trans-
formation of the problem into influence diagrams. Results, technical details, and
a discussion are contained in following sections.

2 Optimal transport problem

In this section we recall some concepts of Xia [14,15,16] concerning optimal
transport paths between measures.

Let (X, d) be a metric space. We define an atomic measure on X as follows

a =
k∑

i=1

aiδxi
(1)

for some integer k and points xi ∈ X, ai are positive numbers and δxi
is the

Dirac mass located at the point xi. We will work with the probability measures,
i.e. we assume that

∑k
i=1 ai = 1.

Let A(X) be the space of all atomic probability measures on X. For measures
on X,

µs =
k∑

i=1

siδxi
and µd =

n∑

j=1

djδyj (2)

a transport path from µs (source) to µd (destination) is defined as a weighted
directed acyclic graph (DAG) G = (VG, EG), where VG is a set of vertices such
that {x1, x2, . . . , xk} ∪ {y1, y2, . . . , yn} ⊂ VG and EG is a set of directed edges
with a weight function

w : EG → (0,+∞). (3)

Hence VG consist of source, destination and intermediate vertices, see for example
Fig. 1(c) and Fig. 3. The value w(e) can be identified with the amount of goods
transported along the edge e.

The balance equation for every v ∈ VG

∑

e∈EG,e−=v

w(e) =
∑

e∈EG,e+=v

w(e)+

si , if v = xi for some i = 1, . . . , k
−dj , if v = yj for some j = 1, . . . , n

0 , otherwise
(4)

where e− denotes the first vertex of the edge e ∈ EG and e+ is the second vertex.
It simply means that the total mass flowing into v ∈ VG equals to the total mass
flowing out of v.

For any 0 ≤ α ≤ 1 and any transport path G, we define the path cost
function wp(G,α) as follows

wp(G,α) =
∑

e∈EG

‖e‖ ∗ [w(e)]α (5)

where ‖e‖ denotes the length of the edge e.
The ramified optimal transport problem focuses on finding a transport path

from µs to µd which minimizes wp(G,α). The minimizer is called an optimal
transport path. In other words, for a given G, and α we have to create a weight
function such that (4) is satisfied and (5) is minimized.

3 The algorithm

In this section, the formal description of our algorithm is given. First, we define
the total cost function which is minimized during the optimization phase. Then

we present the transformation of the optimal transport problem into an influence
diagram and finally we translate an optimized decision policy into an optimal
transport path.

So far we have assumed that each destination node receives a specific amount
of mass. Such a strict constraint prevents us from applying many optimization
techniques so we relax the above assumption and introduce a disagreement
cost for a DAG G,

wd(G) =
n∑

j=1

dj −

∑

e∈EG,e+=v

w(e)

2

(6)

which characterizes the difference between a shipped and expected mass.
We define the total cost function which is based on (5) and (6),

w(G,α, c1, c2) = c1wp(G,α) + c2wd(G), (7)

where c1 and c2 are weights which control the importance of the disagreement
cost and the path cost. The objective is to minimize the total cost function in
(7) which is identified with the −payoff (“minus” because it is assumed that we
maximize the payoff function) in the influence diagram.

Let us assume that an influence diagram (S,P,U) is given, which is built on
a connected DAG S, with conditional probability tables (CPTs) P and utility
functions U . The set of nodes in S splits into chance nodes CS , decision nodes DS
and utility nodes US . An influence diagram that describes an optimal transport
problem is constructed in the following way:

– CS = ∅
– DS = VG\{yj‖j = 1, . . . , n}
– US = {yj‖j = 1, . . . , n}

In addition, for each decision node D ∈ DS , a randomised policy τD is attached.
It assigns to each configuration w̄ of pa(D) (where pa(D) is a set of parents
of node D) a probability distribution on possible decisions to be taken, that is
to say τD(d|w̄) stands for the probability of choosing a decision d given that
pa(D) = w̄. These randomised policies will evolve in the course of the optimi-
sation process, eventually to become (sub)optimal deterministic policies which
collectively determine the utility maximizing strategy for the influence diagram
considered. The initial choice of τD, D ∈ DS can be either uniform, with all
routes equiprobable, or heuristic, provided some additional knowledge is avail-
able allowing us to make a good first guess about the optimal path.

The connections in S are replicated from the set of edges EG. If VG consists
only of source and destination vertices and does not have intermediate ones, then
we can add them either

– uniformly – producing a regular grid of vertices
– heuristically – an additional knowledge about preferred paths is provided
– randomly – all parts of the space are treated with equal probabilities

µs

µd

Fig. 3. Representation of an influence diagram used in the algorithm. Squares describe
intermediate vertices where junctions can occur and dots represent source and desti-
nation of the mass.

Next we have to define connections between them. To preserve an acyclic prop-
erty and equality of routes we assume that the atomic measures (the source
and the destination) can be spatially separated by a hyperplane. Edges can by
defined as follows,

1. For each decision node we define a maximal number of children kd
2. Q = {xi‖i = 1, . . . , k} and R = ∅
3. For each q ∈ Q, find kq nearest neighbours of q, set them as children of q,

and add to R.
4. If R 6= ∅ then Q = R and R = ∅ and go to 3.

For such an influence diagram it is feasible to use the stochastic optimisation
algorithm from [9]. Description of the algorithm falls beyond the scope of the
present article. Results of the algorithm will be stored in the randomised policy
τD. Using computed policies we can easily determine the optimal paths. Each
policy describes where and how we should transport the incoming mass. Starting
from roots of DAG we transport the source mass to the children according to
computed policies.

4 Examples

In the first example, presented in Fig. 4, we reproduced the Gilbert solution from
Fig. 1(c). The angle between merging edges was computed in [14] and is equal
to arccos(22α−1 − 1). Expected solution for α = 0.7 is 71.36 degrees and the
experimental value obtained from presented algorithm is equal to 73.5 degrees
and highly depends on the distribution of decision nodes. The second example is
presented in Fig. 5. Simulation of the influence diagram from Fig. 5 required 160

ms time per epoch of the algorithm [9]. The resulted transport path follows the
expectations and results from [16]. It favours high capacity roads over narrow
ones.

The programme has been implemented in language D [3], currently gaining
popularity as a natural successor of C++. The implementation, aimed so far
mainly at algorithm evaluation purposes, can be described as careful but not
fully performance–optimised, with the total utility evaluation performed using
the standard Monte–Carlo rather than a more refined and effective scheme. All
tests were performed on a machine with Intel Core 2 Q9300 2.50 GHz CPU and
4GB RAM.

Fig. 4. Results of the algorithm on a graph that has 2 source nodes, one destination
node and 200 randomly distributed decision nodes. Resulted transport path follows the
Gilbert solution, see Fig. 1(c). In the upper left corner the total cost is presented in
the form given by Eq. 7. Parameter α was set to 0.7, s1 = s2 = 0.5 and d1 = 1.

5 Conclusions

A new stochastic algorithm for solving transportation problem has been pre-
sented. The main advantage of the introduced method is its innovative applica-
tion of Bayesian influence diagrams. Experimental results indicated the correct-
ness of the algorithm. In the first test, the analytical result has been reproduced

(a) Just after start (b) After 2000 epochs

(c) After 5000 epochs

Fig. 5. Results of the algorithm on a graph that has 4 source nodes, one destination
node and 400 randomly distributed decision nodes. In the upper left corner the total
cost is presented in the form given by Eq. 7. Parameter α was set to 0.7, s1 = 0.2,
s2 = 0.4, s3 = 0.3, s4 = 0.1 and d1 = 1.

and in the second one our expectation for the solution has also been met. The
Chen’s style algorithm for solving Bayesian influence diagram has been shown
as a powerful tool able to find other applications in machine learning related
problems.

Acknowledgements

This research has been supported by the National Science Centre grant 2011/01/
N/ST6/00573 (2011-2014). The authors gratefully acknowledge the access to the
PL–Grid3 infrastructure that is co–funded by the European Regional Develop-
ment Fund as a part of the Innovative Economy program. The work of M. Ma-
tuszak has also been supported by the European Social Fund as a part of the
Sub–measure 4.1.1 (National PhD Programme in Mathematical Sciences).

References

1. Ambrosio, A. Lecture Notes on Optimal Transport Problems, Scuola Normale
Superiore, Pisa (2000).

2. Ambrosio, A. Optimal transport maps in Monge–Kantorovich problem, Proceed-
ings of the ICM, Beijing 3: 131–140 (2002).

3. Bell, K., Igesund, L.I., Kelly, S. Parker, M. Learn to Tango with D, Apress
(2008).

4. Bernot M., Caselles V., Morel J.-M. Optimal Transportation Networks,
Lecture Notes in Mathematics 1955 (2009).

5. Chen, K. Simple learning algorithm for the traveling salesman problem,Phys.
Rev. E 55: 7809–7812 (1997).

6. Jensen, F.V., Nielsen, T.D. Bayesian Networks and Decision Graphs, 2nd Ed.,
Springer (2007).

7. Kantorovich, L.V. On the transfer of masses, Dokl. Akad. Nauk. SSSR 37:
227–229 (1942).

8. Koski, T., Noble, J. Bayesian Networks: An Introduction, John Wiley & Sons,
Ltd (2009).

9. Matuszak, M., Schreiber, T. A new stochastic algorithm for strategy optimi-
sation in Bayesian influence diagrams, LNAI 6114: 574–581 (2010).

10. Monge, G. Mémoire sur la théorie des déblais et des remblais, Histoire de
l’Académie Royale des Sciences de Paris, 666–704 (1781).

11. Neapolitan, R. E. Learning Bayesian Networks, Prentice Hall Series in Artifi-
cial Intelligence, Pearson Prentice Hall (2004).

12. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann Publishers Inc. (1988).

13. Vazirani, V. V. Approximation Algorithms Springer–Verlag, Berlin (2001).
14. Xia, Q. Optimal paths related to transport problems, Communications in Con-

temporary Mathematics 5: 251–279 (2003).
15. Xia, Q. Ramified optimal transportation in geodesic metric spaces, Adv. Calc.

Var.4: 277–307 (2011).
16. Xia, Q. The formation of a tree leaf, ESAIM. COCV 13: 359–377 (2007).

3 http://www.plgrid.pl

Paper E

Matuszak, M., Miȩkisz, J.
Stochastic Techniques in Influence Diagrams for

Learning Bayesian Network Structure

Stochastic Techniques in Influence Diagrams

for Learning Bayesian Network Structure

Michal Matuszak1 and Jacek Miȩkisz2

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87–100 Torun, Poland

gruby@mat.umk.pl
2 Institute of Applied Mathematics and Mechanics, University of Warsaw,

Banacha 2, 02–097 Warsaw, Poland
miekisz@mimuw.edu.pl

Abstract. The problem of learning Bayesian network structure is well
known to be NP–hard. It is therefore very important to develop effi-
cient approximation techniques. We introduce an algorithm that within
the framework of influence diagrams translates the structure learning
problem into the strategy optimisation problem, for which we apply the
Chen’s self–annealing stochastic optimisation algorithm. The effective-
ness of our method has been tested on computer–generated examples.

Keywords: Bayesian Networks, Structure Learning, Chen Adaptive
Optimisation, Influence Diagrams.

1 Introduction

Bayesian networks represent probabilistic relationships among given variables.
They are built on directed acyclic graphs (DAG) in which nodes represent ran-
dom variables (ovals in our figures below) and direct edges between nodes repre-
sent the probabilistic dependencies between them. Conditional probabilities for
variables are stored in conditional probability potentials (or tables) attached to
dependent nodes.

There are two basic learning problems in Bayesian networks: learning the
structure of a graph and learning the conditional probability potentials. It is
fairly easy to learn parameters of a given DAG (see [6,8,9,12]). One approach is
to compute frequencies that are optimal with respect to the maximum likelihood
estimation (MLE). Here we focus on the task of learning the structure of a
DAG from a given dataset. It has many important applications in various fields
like classification and variable selection, and bioinformatics, where it is used for
locating gene regulatory pathways (check [9] for more applications).

Learning Bayesian network structure is NP–hard even for networks with two
parents [4]. Chow and Liu [5] showed that trees can be learned in a polynomial
time but it has been shown in [7] that even learning 2–polytrees is an NP–hard
problem. A polytree is a DAG with the property that if the directions on edges
are ignored, it results in an undirected graph with no cycles.

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 33–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 M. Matuszak and J. Miȩkisz

There are many learning algorithms (see [6,8,9,12]) for building structure of
Bayesian networks. Generally, they can be divided into three main groups: con-
straint based algorithms, search and score techniques, and hybrid

methods which combine the first two methods. The constraint based algorithms
perform a study of the dependence and independence relationships among vari-
ables of the Bayesian network. They are performed by conditional independence
tests. For large enough datasets, χ2 or G2 tests can be performed and for the
smaller ones exact tests could be done. Main problems of those algorithms are:
the time complexity of the independence tests, unreliable results of the indepen-
dence tests, and also the fact that the most widely used algorithms require an
existence of a faithful graph [9].

The search and score techniques attempt to find a graph structure that maxi-
mizes the value of a given scoring function. A brief description of these techniques
is provided in the next section.

An influence diagram is an extension of a Bayesian network. They both are
built on DAG’s and consist of chance nodes, while influence diagrams also have
decision and utility nodes. They not only provide tools for a probabilistic infer-
ence but also provide a language for sequential decision making problems, where
there is a fixed order among the decisions.

In [3], a simple stochastic optimisation algorithm for the traveling salesman
problems (TSP) has been proposed. Then in [11], Chen’s ideas have been sub-
stantially extended in order to construct an algorithm for solving general in-
fluence diagrams. It shows a strong performance in optimal transport problems
[10]. In this paper, we translate the structure learning problem into the one in-
volving influence diagrams and we show that it can be solved with an extended
version of the algorithm presented in [11].

2 Learning Bayesian Networks Structure

Formally, a Bayesian network is a pair (G, θ), where G = (C, E) is a directed
acyclic graph (DAG), C = {X1, . . . , Xn} consists of n random variables, E repre-
sents direct dependencies between variables, and θ represents a set of parameters
for each variable in C, which defines their conditional probability distributions.
Each random variable Xi has values in a finite domain Ki.

The problem of learning a Bayesian network structure is given as follows:
For a set of random variables C = {X1, . . . , Xn} and a database of m cases
M = {M1, . . . , Mm}, where each case contains observations of all variables in C,
i.e. Mi = (x1, . . . , xn)T is a vector of instances of variables X1, . . . , Xn, find a
DAG (that is a set of directed edges) which best matches M .

As stated before, we focus our attention on search and score techniques.
A search space of possible DAG’s grows super–exponentially [14], so testing all
possible DAG patterns is computationally unfeasible. Scoring functions can be
divided into two main classes: Bayesian scoring functions such as K2, the mu-
tual information test (MIT), the Bayesian Dirichlet test and its variants (BD,
BDe, BDeu), and information-theoretic scoring functions such as the log

Stochastic Techniques in Influence Diagrams 35

likelihood (LL), the Bayesian information criterion (BIC), and the Akaike infor-
mation criterion (AIC).

Here we will use a modification of the Cooper–Herskovits likelihood (belonging
to the Bayesian scoring class) [6] for a DAG G and a dataset M with P (G) as a
prior probability of G. It has the following form,

P (G, M) = P (G) ×
n∏

k=1

|φk|∏

j=1

(sk − 1)!

(skj + sk − 1)!

sk∏

l=1

αkjl! (1)

where sk is a number of states of the variable Xk, φk is a variable describing
joint configurations of variables in π(Xk) (π(Xk) denotes the set of parents of
Xk), |φk| is a number of states of φk, and αkjl is a number of cases in M in which
Xk is at the l–th state and φk is at the j–th state. Also skj =

∑sk

l=1 αkjl .
The evaluation of a broad spectrum of scoring functions can be found in [2].

It is stated there that there are only small differences between various scoring
functions and all of them behave in a similar way (only the BIC score was
clearly the worst). Thus, we use the K2 metric [6] which is a slight modification
of the Cooper–Herskovits likelihood from Eq. 1. Its objective is to find the most
probable network structure, with a given data set, which maximizes the posterior
probability distribution. It assumes a uniform prior P (G) and instead of P (G, M)
uses log(P (G, M)).

3 The Algorithm

Now we give a formal description of our algorithm. Let us assume that a set of
chance variables C = {X1, . . . , Xn} and a database of cases M = {M1, . . . , Mm}
are given. Both objects are fixed during the execution of the algorithm. In ad-
dition, to each chance variable Xi ∈ C a decision node Di is attached. Decision
nodes play crucial role in the algorithm. During the optimization procedure, they
unfold a structure, that is a set of directed edges E of the Bayesian network.
Our algorithm is based on an extension of ideas from [3,11].

If nodes ordering is not given, then each decision node Di has n states. First
n − 1 states describe available connections with chance variables C \ Xi and
the n−th state is used during the optimization process and is applied to disable
connections of further children. The proposed algorithm does not require a node
ordering, however, it may benefit from a predetermined ordering as the search
space will be reduced.

For each decision node Di, a randomised policy τi is attached. It assigns prob-

abilities to all possible decisions that may be taken, with τ
Xj

i standing for the
probability of adding a direct edge from Xi to Xj . In the course of the opti-
misation process, these randomised policies evolve and include an (sub)optimal
structure of the network. The initial choice of τi can be either uniform or heuris-
tic. In the uniform choice, all decisions are equiprobable and in the heuristic
case, some additional knowledge is provided allowing us to make a good first
guess about the optimal structure. For example if we know that an edge is more

36 M. Matuszak and J. Miȩkisz

probable than others starting from the same node, then we can increase it’s
probability and thus making the edge appear with a higher probability in the
optimization procedure. If we have a knowledge that some edges exist in the
network, then we can add them as permanent edges and they will always be
included in the network structure.

[Permanent edge condition] During the iterative procedure, the randomised
policies should converge to Dirac deltas which results in an almost determin-
istic selection of edges. It means for the node Xi ∈ C, that if

1 − τ
Xj

i < ε (2)

for some node Xj �= XNone and a small fixed ε, a direct edge Xi → Xj will
be added to E. However, if Xj = XNone, then Xi is permanently removed
from active nodes, resulting in no further addition of children. This does not
however restricts its possibility of being a child.
It is possible that two (or more) decisions are equiprobable and then τi is
almost a uniform distribution over them, while the probabilities of other
decisions are near 0. Therefore, if Eq. 2 is not satisfied after a fixed number
of steps Q, we should randomly choose a decision (that is a vertex to connect)
according to the probability distribution τi and if decision XNone is drawn,
then we deactivate Xi, and in other cases we add a direct edge Xi → Xj to
E.

Each decision node has also an active field with states {enabled, disabled} which
describe whether the node is subject to the optimization procedure. At the ini-
tialization of the algorithm, all nodes are active. When node’s optimization is
over (see permanent edge condition), then it becomes passive and it can not be
reactivated.
The algorithm works as follows.

1. Set the iteration counter j = 0.
2. Attach and initialize decision nodes as described above.
3. Generate an instance of the network:

(a) If predefined edges are given, include them in the network and follow the
actions from permanent edge condition.

(b) Select randomly (with a uniform distribution without replacement) an
active node Di.

(c) According to the distribution τi draw a new vertex Xh and if Xh �=
XNone and a direct edge from Xi to Xh preserve acyclicity of the graph,
then add that edge.

(d) Go back to Step 3b until each active node is chosen.
4. Select randomly (with a uniform distribution) an active node Di and denote

its state as h0. It is an index that can be used to select the h0–th chance
node (Xh0) or h0–th decision node (Dh0).

Stochastic Techniques in Influence Diagrams 37

(a) If h0 corresponds to an existing edge (Xi → Xh0), then remove the edge.
(b) According to the probability distribution τi draw a new vertex Xh1 and

if Xh1 �= XNone, then add a direct edge from Xi to Xh1 . In other words,
during the search space step we can add or remove an edge.

(c) Accept the modification if the following conditions are met:
– a new vertex Xh1 is different from the current vertex Xh0 .
– a graph is acyclic.
– the weakly connected property is preserved i.e. the skeleton (undi-

rected graph obtained from replacing directed edges with undirected
ones) is connected. The property can be verified with using either
depth-first or breadth-first search algorithm.

else go to Step 4.

5. Evaluate the utility function U (j) using, for example, the K2 metric.
6. Check the permanent edge condition and if Xi → Xh1 has been added to

E, remove from the support of τi the decision to link to the node Xh1 and
from the support of τhi the decision to link to the node Xi . Reinitialize the
values of τi with the uniform distribution (or apply a predefined knowledge
to the distribution). For τh1 , normalize the weights (by dividing them by
their sum) to achieve a probability distribution.

7. IF j mod B �= 0 set
Δ := U (j) − U (j−1) (3)

then update the randomised policy like in the Chen’s algorithm,

τ
Xh1

i = exp(βΔ)τ
Xh1

i , (4)

and renormalise τi so that it remains a probabilistic distribution. The im-
portant parameter of the algorithm is constant β which describes the rate of
learning (larger β speeds up learning but decreases the optimization’s sta-
bility). β represents the noise level in the algorithm, it corresponds to the
inverse of the temperature in physical systems.

8. Set j = j + 1 and if there still exists an active node then:
– if j mod B = 0 return to Step 3. For small enough β the initial order of

Di has only a small impact on the algorithm. However, in rare situations
even for small β impact of the first selection of the nodes could cause
divergence of the algorithm. To resolve that issue and to allow for larger
values of β (which speed up the optimization) we implement restarting
after fixed number of steps i.e a new order of nodes is generated after B
steps.

– else return to Step 4

In Fig. 1, we present an application of our algorithm to a network with three
chance nodes: X1, X2, and X3. After the initialization phase the decision nodes
and randomised policies have been attached. The utility node U , which com-
putes the score function, has been added and connected with chance nodes.

38 M. Matuszak and J. Miȩkisz

(a) (b) (c)

Fig. 1. An example of the algorithm executed on a network with three chance nodes

In our example, no prior knowledge is available, thus the randomised policies
are represented by uniform distributions. All nodes are active and the algorithm
can proceed. An instance of the network is generated and during the iterative
procedure the search space of possible DAG’s is explored, and randomised poli-
cies τi are modified with the use of the Chen’s formula [3]. Fig. 1(a) presents the
network state after τX3

1 converged to 1. A permanent direct edge X1 → X3 is
added, the policies (τX3

1 and τX1
3) associated with it are deleted, τ1 is initialized

with the uniform distribution and weights in τ3 are renormalized.
In Fig. 1(b), τX3

2 converges to 1. A permanent direct edge X2 → X3 is added
and the policies τX3

2 , and τX2
3 are deleted. The only available policy in τ3 is

τXNone
3 so no further children can be connected to X3 and the decision node

D3 can be deactivated (excluded from the optimisation procedure). Weights in
τ1 are initialized with the uniform distribution and we return to the iterative
procedure. Fig. 1(c) presents the network status after τXNone

2 converged to 1,
so no edge is added and D2 is deactivated. The only possible edge that still can
be added is X1 → X2, but τXNone

1 also converged to 1, and D1 is deactivated.
All decision nodes are inactive, thus the algorithm stops and returns a set of
directed edges E.

4 Numerical Examples

The programme has been implemented in the language C++, with the implemen-
tation aimed so far mainly at algorithm evaluation purposes, it can be described
as careful but not fully performance–optimised.

We have selected two networks for numerical experiments: a simple Bayesian
network with 7 nodes and 7 edges (Fig. 2(a)) and ALARM network [1] which
contains 37 nodes and 46 edges (Fig. 2(b)). Each network has been used to
generate a database, which contains 100000 instances.

For the simple Bayesian network with β = 0.001, ε = 0.01, B = 100 and the
number of iterations limited to Q = 500, a final network differs from the optimal

Stochastic Techniques in Influence Diagrams 39

(a) (b)

Fig. 2. (a) Simple Bayesian network; (b) ALARM network

0 50 100 150 200 250 300 350 400 450 500
−4.26

−4.24

−4.22

−4.2

−4.18

−4.16

−4.14

−4.12
x 10

5

iteration

K
2

(a)

0 5000 10000 15000
−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2
x 10

6

iteration

K
2

(b)

Fig. 3. Convergence of the algorithm for
(a) Simple Bayesian network and (b)
ALARM network

Simple net ALARM net

K2 0.195 99

Chow–Liu 0.1 12

Our algorithm 0.9 917

Table 1. Computational times (in seconds)

one in K2 metric by 0.11% (for the Chow–Liu tree it is 0.73%, and for classical
K2 algorithm [6] it is 1%), and for the ALARM network with β = 9 × 10−6,
ε = 0.01, B = 250 and iterations limited to Q = 15000, the difference in K2
metric is 20% (16% for the Chow–Liu tree, and for classical K2 algorithm it is
33%).

In Fig. 3, we show the convergence of our algorithm, that is the maximization
of the K2 metric. In Table 1, we compare computational times of our and other
algorithms.

5 Conclusions

A new stochastic algorithm for finding Bayesian network structure has been
presented. Our method is based on an innovative application of Bayesian influ-
ence diagrams for structure optimization. The main advantage of the introduced
method is the use of an algorithm that can determine an optimal decision strat-
egy for a different problem. Numerical results indicate the correctness of the
presented algorithm. Although computational times of our algorithm are not
optimal (see Table 1) our results are competitive as compared to classical ones.

40 M. Matuszak and J. Miȩkisz

Acknowledgements. This research has been supported by the National Sci-
ence Centre grant 2011/01/ N/ST6/00573 (2011-2014). The authors gratefully
acknowledge the access to the PL–Grid1 infrastructure, that is co–funded by
the European Regional Development Fund as a part of the Innovative Economy
program. The work of M. Matuszak has also been supported by the European
Social Fund as a part of the Sub–measure 4.1.1 (National PhD Programme in
Mathematical Sciences).

References

1. Beinlich, I., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM moni-
toring system: a case study with two probabilistic inference techniques for belief
networks. In: Proceedings of the 2nd European Conference on Artificial Intelligence
in Medicine, pp. 247–256 (1989)

2. de Campos, L.M.: A scoring function for learning Bayesian networks based on mu-
tual information and conditional independence tests. Journal of Machine Learning
Research 7, 2149–2187 (2006)

3. Chen, K.: Simple learning algorithm for the traveling salesman problem. Phys. Rev.
E 55, 7809–7812 (1997)

4. Chickering, D.M.: Learning Bayesian networks is NP–complete, Learning from
Data: Artificial Intelligence and Statistics V, pp. 121–130. Springer (1996)

5. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Trans. Info. Theory 14(3), 462–467 (1968)

6. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks. Data Machine Learning 9, 309–347 (1992)

7. Dasgupta, S.: Learning polytrees. In: Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pp. 131–141. Morgan Kaufmann, Stockholm
(1999)

8. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer (2007)

9. Koski, T., Noble, J.: Bayesian Networks: An Introduction. John Wiley & Sons,
Ltd. (2009)

10. Matuszak, M., Mi ↪ekisz, J., Schreiber, T.: Solving Ramified Optimal Transport
Problem in the Bayesian Influence Diagram Framework. In: Rutkowski, L., Ko-
rytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 582–590. Springer, Heidelberg
(2012)

11. Matuszak, M., Schreiber, T.: A New Stochastic Algorithm for Strategy Optimisa-
tion in Bayesian Influence Diagrams. In: Rutkowski, L., Scherer, R., Tadeusiewicz,
R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp.
574–581. Springer, Heidelberg (2010)

12. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall Series in Artificial
Intelligence. Pearson Prentice Hall (2004)

13. Peretto, P.: An Introduction to the Modeling of Neural Networks, Collection Aléa–
Saclay. Cambridge University Press (1992)

14. Robinson, R.W.: Counting unlabelled acyclic digraphs. In: Little, C.H.C. (ed.)
Combinatorial Mathematics V. Lecture Notes in Mathematics V, pp. 28–43.
Springer (1977)

1 http://www.plgrid.pl

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Preliminaries
	2.1 Chen's Algorithm
	2.2 Graphical Models
	2.3 Bayesian Networks
	2.3.1 Introduction
	2.3.2 D–separation
	2.3.3 Essential graph
	2.3.4 Inference
	2.3.5 Learning

	2.4 Influence Diagrams
	2.5 Gaussian Bayesian Networks
	2.6 Polygonal Markov Fields

	3 Short description of the results
	3.1 Future Work

	Bibliography
	A Graph Theory
	Papers included in the PhD thesis
	Paper A Matuszak, M., Schreiber, T. A new stochastic algorithm for strategy optimisation in Bayesian influence diagrams, Proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, Lecture Notes in Artificial Intelligence 6114, pp. 574–581 (2010)
	Paper B Matuszak, M., Miekisz, J., Schreiber, T. Smooth Conditional Transition Paths in Dynamical Gaussian Networks, Proceedings of the 34th Annual German Conference on Artificial Intelligence: Advances in Artificial Intelligence, Berlin, Germany, Lecture Notes in Artificial Intelligence 7006, pp. 204–215 (2011)
	Paper C Matuszak, M., Schreiber, T. Locally specified polygonal Markov fields for image segmentation, Mathematical Methods for Signal and Image Analysis and Representation, Series: Computational Imaging and Vision, Vol. 41, pp. 261–274, Florack, L.; Duits, R.; Jongbloed, G.; Lieshout, M.-C. van; Davies, L. (Eds.), ISBN 978-1-4471-2352-1, Springer-Verlag (2012)
	Paper D Matuszak, M., Miekisz, J., Schreiber, T. Solving Ramified Optimal Transport Problem in the Bayesian Influence Diagram Framework, Proceedings of the 11th International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, Lecture Notes in Computer Science 7268, pp. 582–590 (2012)
	Paper E Matuszak, M., Miekisz, J. Stochastic Techniques in Influence Diagrams for Learning Bayesian Network Structure, Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, Part I, Lecture Notes in Computer Science 7552, pp. 33–40 (2012)

