
Warsaw University
Faculty of Mathematics, Informatics and Mechanics

Marta Jadwiga Burzańska

New Query Rewriting Methods for Structured
and Semi-Structured Databases

PhD dissertation

Supervisor
dr hab. Krzysztof Stencel

Institute of Informatics
Warsaw University

March 2011

Author's declaration:
aware of legal responsibility I hereby declare that I have written this dissertation myself
and all the contents of the dissertation have been obtained by legal means.

........................... ..
date Author's signature

Supervisor's declaration:
the dissertation is ready to be reviewed

........................... ..
date Supervisor's signature

Abstract

The following thesis presents novel optimization methods for structured and semi-structured
databases. Developed methods are based on query rewriting and focus on reduction of various
resources consumption during query execution. The first method achieves this goal by rewriting the
initial query execution plan into a new plan based on the reduce function. The second method
utilizes distributivity property of the navigation operator to reduce the sizes of created intermediate
structures. Both methods have been developed for semi-structured databases and works with non-
recursive operators. This thesis also presents two algorithms for optimization of recursive queries.
One of them was developed for SQL and focuses on optimization of recursive Common Table
Expressions by the means of predicate pushing. The other algorithm was developed to optimize the
composition of SBQL's transitive closures with aggregation.

This paper also presents the results of experimental tests performed for each of the new
methods. The results confirm the effectiveness of those methods in reducing the resource
consumption and/or increasing the speed of execution.

Keywords: query rewriting, recursive queries, structured and semi-structured query languages,
intermediate structures reduction

ACM Computing Classification System: H.2.4. (Query Processing)

Table of Contents
1 Introduction...4

1.1 Querying Object-Relational Data..6

1.2 Querying Semi-Structured Data...8

2 Stack Based Approach And The Stack Based Query Language..11

2.1 Data Models...11

2.2 ENVS...13

2.2.1 Name Binding..13

2.2.2 Nesting...14

2.3 SBQL...15

2.3.1 Query Results And Eval Function..16

2.3.2 Algebraic Operators...17

2.3.3 Non-algebraic Operators..18

2.3.4 SBQL Implementations And Language Comparison...23

2.4 PySBQL As A Testing Platform...24

2.4.1 Examples Of PySBQL Queries And Programs..26

2.4.2 PySBQL Vs Python..27

2.4.3 PySBQL Vs SBQL...28

2.4.4 Left And Right Dereference...29

2.4.5 L-values And R-values In PySBQL Language..29

3 General Strategies Of Optimization By Rewriting..31

3.1 Optimization Of Non-recursive Queries..31

3.1.1 Predicate Move-around ...32

3.1.2 View/function Inlining And Merging Nested Subqueries..33

3.1.3 Finding Independent Subqueries And Query Un-nesting..34

3.1.4 Rewriting To Other Query Languages...36

2/98

3.2 Short Cut Fusion For Functional Languages...37

3.3 Optimization Of Recursive Queries...40

3.3.1 Tail-recursion ..41

3.3.2 Magic Set Techniques..42

3.4 Open Problems...43

4 Deforestation Of Linear Queries...44

4.1 Simple SBQL Query Deforestation...44

4.1.1 Efficiency Tests..56

4.2 Distributivity Of Algebraic Functions Over The Dot Operator ..57

4.2.1 Efficiency Tests..60

4.3 Summary..61

5 Optimization Of Recursive Queries..62

5.1 Optimization Of Recursive Queries For SBQL...62

5.1.1 Efficiency Tests..65

5.2 Pushing Predicates Into Recursive SQL Common Table Expressions....................................66

5.2.1 Motivating Example...67

5.2.2 Utility Optimizations..69

5.2.3 Predicate Push Into Common Table Expressions...73

5.2.4 Measured Improvement ..79

5.2.5 Summary..87

6 Final Conclusions..88

7 Bibliography..89

3/98

1 Introduction

Query languages are a primary mechanism of communication between an application and a

database. Their construction is based on an assumption that the programmer instead of saying how

data is to be searched, should simply focus on what data is actually needed from a database.

Algorithms used during query execution are hidden from the programmer, what reduces the time

needed to write a query and allows the Database Management System (DBMS) to choose the best

algorithm depending on the data size and distribution. The burden of improving database access is

the task of the optimizer module, which selects the appropriate query execution plan.

Query optimization is therefore a very important task for a DBMS. For years it has been, and

still will be, a subject of research for many scientists. Initially, optimization was limited to

application of query transformation rules. Later the rule-based optimization became extended with

mechanisms of cost-based optimization that helps the optimizer to choose the least costly execution

plan. Nowadays there are many optimization techniques that work at the different stages of

optimization: from semantic query rewriting, execution plan transformation rules to cost-based

optimization of chosen subset of execution plans.

The following thesis presents a group of new query rewriting algorithms developed for

structured (relational and object-oriented) and semi-structured data. The main idea behind those

algorithms is to reduce the resource consumption while increasing the speed of query execution.

Two of the developed techniques concentrate around optimization of recursive queries. Such

queries inherently consume a lot of system resources during evaluation. The first technique has

been developed for SQL. It is based on the well-known method of pushing predicates, however it

has been studied for novel applications in a new context. The second method optimizes composition

of an aggregation function with the operator of the transitive closure. This algorithm is presented

using semi-structured query language SBQL as an example.

SBQL was also the basis for the two further algorithms. They deal with composition of two

functions or operators from semi-structured query languages. The first algorithm is based on

translation of initial query execution plans for language's operators into an execution plan based on

the reduce function. The idea behind this translation originated from optimization techniques used

in functional programming languages. The second algorithm concentrates on reduction of the size

of intermediate structures using distributivity property of navigation operator and aggregation.

4/98

The thesis is organized as follows. The first chapter of the following thesis browses through

the subject of querying object-relational and semi-structured data. It mentions the most popular data

models and query languages used in both cases. It also introduces the concept of recursive SQL

queries. The second chapter introduces the concepts of the Stack Based Approach (SBA) and the

Stack Based Query Language (SBQL). Those concepts may not be familiar to all of the readers of

this thesis, thus they will be discussed in detail. This chapter also introduces an experimental

implementation of SBQL based on the Python language. This platform, called the PySBQL, was

developed by the author of this thesis as a platform for research, development and testing of

optimization algorithms for SBQL.

The third chapter presents an overview of a selection of optimization techniques that are based on

query rewriting. For each of the selected techniques its general description is given and some of its

variants are presented. This chapter also presents the optimization technique developed for

functional languages – the shortcut fusion – which was the inspiration for the newly developed

optimization methods, which are the main topic of this thesis.

The fourth chapter discusses two novel techniques developed for compositions of non-recursive

operators and built-in functions of the semi-structured query language SBQL. The fifth chapter

presents new optimization techniques for recursive queries. For each of the four techniques

presented in chapters four and five, a summary of their performance tests is given.

The final chapter concludes and points the further possibilities of research on the subject of

reduction of the sizes of intermediate structures.

5/98

1.1 Querying Object-Relational Data

The most popular data model is the relational model created by E. F. Codd first published in

[Codd70]. In the 1972's paper [Codd72] Codd presented a detailed description of the model and

presented two formal models for querying data. In 1995 C. Date and H. Darwen in [Date95]

described how the relational model can be used to support object-oriented features of database

applications.

The most widely-used database query language is the well-known SQL which originated

from Codd's querying data models. This language is under constant development to match the needs

of programmers and database users. Current SQL standard includes handling of semi-structured

data through XML storage and XML-related features. Starting from the SQL:99 standard, the SQL

language has been equipped with recursive queries. This type of queries is called the Recursive

Common Table Expressions (RCTE). Nowadays there is some research on optimization of recursive

SQL queries, however this topic is still open for new methods and optimization algorithms. The

following thesis present a novel optimization technique for this type of queries, therefore they

should be presented here in more detail.

Each RCTE query starts with the WITH keyword optionally followed by the RECURSIVE

keyword and a header of the Common Table Expression. Such query may be divided into three

parts: an initial query also known as the seed query, a recursive subquery and an outer query that

consumes all the rows generated by recursive computation. The basic syntax structure of a recursive

CTE is:

WITH RECURSIVE R0 (A01 , . . . , A0n) AS

<R0's initial query UNION ALL R0's recursive query >

[, [RECURSIVE] R1 (A11 , ..., A1n) AS

<R1's initial query UNION ALL R1's recursive query >

...]

< query using Ro,R1,R2,... >,

6/98

Each < Ri definition> must consist of at least one initial SELECT query and at least one

recursive SELECT query that contains a call to Ri in its FROM clause. Both initial and recursive

subquery may be formed out of a union of more than one SELECT queries. SQL-99 standard also

allows for the use of one of the special clauses included into CTE definition after the last recursive

subquery. Those special clauses include SEARCH and CYCLE clauses. They are used to put

additional limitations on the recursive queries to prevent infinite loops. Other clauses are DEPTH

FIRST and BREADTH FIRST used to specify the search order. Example 1.1 presents a recursive

common table expression that gathers information on courses' requirements and returns a list of

courses that should be completed before attending 'Java_1' course.

Example 1.1 Query calculating required courses for 'Java_1' course.

WITH RECURSIVE RequiredCourses (BaseCourse, NeededCId) AS (

 SELECT r.CourseId, r.Requires

FROM Requirements r

 UNION ALL

 SELECT rc.BaseCourse , r.Requires

FROM Requirements r, RequiredCourses rc

WHERE rc.NeededCId = r.CourseId

AND r.Requires IS NOT NULL)

SELECT DISTINCT NeededCId FROM RequiredCourses

WHERE BaseCourse = 'Java_1';

The biggest disadvantage of this construction is the lack of efficient algorithms for cycle

detection. In some cases the recursive query using CTE may not stop because, according to the

specification, the computation stops when a fix-point is reached (no new rows are generated using

CTE's recursive subquery). A study of current implementations of recursive common table

expressions in the most popular database management systems may be found in [Przy10]

The research on optimization of SQL language has been influenced by research papers on

another language used to query relational data. This language is Datalog, which became an area of

database researchers' interest around 1977's due to the workshop on logic and databases organized

7/98

by H. Gallaire and J. Minker [Gall78]. The research on Datalog was concentrated mostly between

the mid-80’s and the mid-90’s. Many existing optimization techniques for relational databases have

been initially developed for this language. Datalog was also a platform for research on optimization

of recursive queries.

The construction and evaluation of Datalog falls outside of the scope of this thesis.

However, detailed information on the subject may be found in [Viei87, Ceri89, Abit95]. For

detailed information on Datalog¬ (Datalog with negation) and stratified Datalog semantics see

[Przy86, Apt86, Ullm88]

With the development of the object-oriented programming developers and researchers

started to look for an alternative to SQL language for a better support for complex data such as

graph data, multimedia. In the 1991 Object Data Management Group (ODMG) started working on a

new query language, called the Object Query Language (OQL). First version of ODMG standard

was created in 1993, second version in 1997. OQL was modeled after SQL [Catt96] and was

planned to become the standard for object-oriented databases. However, the ODMG project was

closed in 2001 without a completed specification. There are voices that this specification is not

implementable [Subi96].

Parallel to the research on OQL of the ODMG group, in the 1990’s Kazimierz Subieta

started working on the Stack Based Approach (SBA) and on the Stack Based Query Language

(SBQL). Both will be described in the Chapter 2 of this thesis.

1.2 Querying Semi-Structured Data

Semi-structured data models are meant to describe unstructured information, in particular

irregular data, but they might as well be used to store structured data. There are many methods of

representing semi-structured data. Their main idea is to represent data in some form of labeled,

directed graphs or a set notation of tagged label-value pairs. The term semi-structured data was

introduced by Shoens et al. in 1993 in a system called Rufus [Shoe93]. Modern semi-structured data

model usually combine the ideas of the relational model and the object data model [Catt96]. Among

the popular semi-structured models are XML and OEM (for more information on this model see

[Papa95]).

In the mid 90s, when the World Wide Web gained popularity, so did the Extensible Markup

8/98

Language (XML) [XML1.0, XML1.1]. The main focus of XML was to store documents, however

its tree model proved to be efficient for representing semi-structured data and hierarchical data. It is

also flexible enough to handle rapidly changing structures and sparse properties. Also, XML is

platform-independent and in contrast to HTML, XML separates the logical structure of a document

from its layout. This is why XML has quickly become the preferred format for representing and

exchanging data on the Web. Example 1.2 presents a small XML document.

Example 1.2. XML document containing information on an employee called John Doe

<?xml version="1.0" encoding="UTF-8" ?>

<employee>

<name>John Doe</name>

<address>

<street>

<street_num>50h</street_num>

East Road

</street>

<city>Smallville</city>

</address>

</employee>

One of the methods for processing XML documents is to use declarative transformation

languages such as XPath [XPath1, XPath2], XQuery [XQuery] and XSLT [XSLT] which are

standardized by the W3C consortium.

XML Path language (XPath) is a language based on path expressions that allows the

selection of parts of a given XML document. An XPath expressions use series of steps to navigate

through XML tree by selecting nodes that satisfy certain properties. The evaluation of an XPath

expression returns either a sequence of atomic nodes or a sequence of nodes with their subtrees.

XPath also allows some minor computations resulting in values such as strings, numbers or Boolean

9/98

values. The popularity of XPath and the fact that it is a subset of XSLT and XQuery resulted in a

number of papers devoted to improving XPath's evaluation algorithms. One of such papers [Pary09]

presents an optimization technique that works in linear time and has linear complexity in the

number of bytes of the processed XML document. In this paper Parys proposed an algorithm for

efficient retrieval of nodes satisfying a vast range of XPath queries. Other papers on similar subject

are [Gott05, Bene08, Gotz09].

Nowadays the most popular language designed for querying semi-structured data is XQuery

[XQuery]. The goal of the design was to provide the expressive power of a query language like

SQL and, in addition, to support XML-specific operations such as navigation in hierarchical data.

Most features have been influenced by the functionality of Quilt and SQL languages. Other

influences come from semi-structured languages like Lorel [Abit97] and XML-QL [XMLQL].

XQuery is a superset of XPath and as such supports richer operations like joins, projections,

aggregations, but also supports functionality of a programming language. Nowadays all the major

database vendors implement either some subset of XQuery or the full range of features. The most

popular XQuery implementations are XQRL/BEA [Flor04], Saxon [Saxon], Sedna [Fomi06],

MonetDB [Bonc06], DB2 [Ozca08], Oracle [Liu08], Zorba [Bamf09].

In the recent years the subject of processing XML and XQuery was one of the most popular

research topics. It also has influenced a lot of research papers on other languages, including SQL

and SBQL. Among the papers on XQL was a proposition of an extension to the XQuery – an

inflationary fixed point operator, which is a controlled form of recursion [Afan08, Afan09].

Example 1.3 presents a sample usage of this operator.

Example 1.3 Query that recursively computes all prerequisite courses, direct or indirect, of the

course coded with "J1", on an instance document "curriculum.xml"

with $x seeded by doc ("curriculum.xml")//course[@code="J1"]

recurse $x/id (./prerequisites/pre_code)

10/98

2 Stack Based Approach and the Stack Based Query
Language

Stack Based Approach (SBA) has been introduced by K. Subieta in [Subi94]. It is a general

approach to construction of query languages for object-oriented and semi-structured databases. The

main idea of the SBA is to construct query languages in the methodology of programming

languages. The languages should combine database support beyond simple querying (updates,

views, schema manipulation) with programming abstractions such as variables, functions or classes.

Most impedance-mismatch problems would be eliminated by this design. Such language, with

proper syntax (and syntactic sugar) could also be an efficient tool for database application

development.

In the Stack Based Approach semantics of a query is based on the mechanisms used in

programming languages – like the call stack. This approach is compatible with the naming-scoping-

binding paradigm – each name occurring in a query is bound with a proper entity according to the

scoping rules. The actual stack used by the SBA is an extension of a classical call stack. For

example it can handle various data collections appearing in structured and semi-structured

databases.

SBA relies on the three basic elements: data model, environment stack and so-called

non-algebraic operators.

2.1 Data Models

Subieta proposed a set of store models that could be used in the Object DBMS. The basic

model is called AS0. It was first defined in [Subi94] and called there the Abstract Data Model M0.

The [OMG07] renamed this model to its current name AS0 (Abstract Store Model M0).

In the AS0 data model object states are represented as triples o=<i, n, v> where i is the

object identifier, n is its name, v – its value. Each identifier i is unique. Objects are divided into

three categories; the division is based on the type of v:

• If v is an atomic value (e.g. number, string, Boolean value) then the object o is called an

11/98

atomic object.

• If v is an objects identifier i (of an object stored in database), than the object o is a pointer

object.

• If v is a set of object states than the object o is a complex object.

Objects of the same name may be of different types or may contain different amount of sub-

objects. In the model AS0 an object store is a pair (O,R) where O is a set of object states and R is a

set of the identifiers of the top-most objects (roots). Each object in the store should be reachable

from root objects by either pointers or parent-child relations.

Example 2.1 A simple database:

<i1, Emp,{ <i2, fname, "John">, <i3, sname, "Smith">,

 <i4, dept, i17>, <i5, salary, 2000> }>

<i6, Emp,{ <i7, fname, "Bob">, <i8, sname, "Gordon">,

 <i9, dept, i17>, <i10, salary, 2300> }>

<i11, Emp,{ <i13, sname, "Watson">, <i14, dept, i22> }>

<i17, Dept,{ <i18, name, "IT">, <i19, employee, i1>,

 <i21, employee, i2>, <i37, boss, i6> }>

<i22, Dept,{ <i31, name, "administration">,<i33, boss, i11> }>

R=[i1,i6,i11,i17,i22]

Besides AS0 model, Subieta introduced more advanced models called AS1, AS2 and AS3 that

extend AS0 with object oriented features. The simplest of them is AS1 model. It is basically the

AS0 model with support for classes and inheritance. It is obtained by adding of a set of classes'

identifiers C and two relations: CC that determines inheritance among classes, and OC that

determines the membership of objects in classes. Classes are stored as complex objects, yet their

identifiers do not belong neither to O, nor R. The CC relation cannot contain cycles, however AS1

model allows multiple inheritance. AS2 and AS3 models add features such as interfaces, roles and

encapsulation.

12/98

2.2 ENVS

The concept of the call stack (environment stack) appeared in the 1950’s when the first

compilers of the high-level languages where created. Since then it has become the basis of many

programming languages like Pascal, C, Java, Python, etc.

In programming languages the concept of environment of program execution denotes all the

run-time entities (variables, constants, objects, functions, procedures, types, classes, etc.) that are

available at the given point of the program control. The environment is a structure that changes

during the execution of a program. It consists of sub-environments that appear and disappear during

the run-time.

The call stack is a main memory structure that is assigned to a single client application

program or to a single process or thread. A section is associated with a particular procedure call or

an executed program block. When the control is shifted to a procedure call, a new section with all

entities local to this call is pushed onto the top of the stack. The section is popped from the stack

when the procedure or program block is terminated. For the procedure that is currently running all

values of parameters, local variables/objects and any other local entities are stored within the top

stack section.

In SBA the environment stack (ENVS) is an extension of the standard call stack. It has some

additional functionality that concerns name binding (which implies the search on the entire stack),

scoping rules (skipping some sections) and in rare cases inserting new sections in the middle of the

stack. ENVS consists of sections (environments). Each section contains a collection of zero or more

entities called the binders. A binder is a pair (n,x) (usually written n(x)), where n is an external

name of an entity, and x is a value of this entity. Binder's value may be an atomic value, an identifier

or even a collection of values.

The two most important operations involving ENVS are name binding and object nesting.

2.2.1 Name Binding

Binding of a name is a compiler/run-time action of acquiring a value of an entity using its

name. This task is performed using ENVS. The general method is to search for a binder with a

13/98

given name inside of the environments, starting from top of the stack and proceeding to the bottom

according to the scoping rules. The search stops when an environment containing at least one

matching binder is found. More formally the name binding is performed according to the following

steps:

• Check the top section of the stack for a binder named n;

• If the checked section contains a non-zero number of binders named n, the result of

binding is the bag of all values stored within these binders

• If the top section does not contain such binder, next section is checked.

• Such process is continued in lower and lower stack sections, until a binder named n is

found or there are no more sections left.

The above algorithm is sufficient for the AS0 model. In more complex data models visiting

particular stack sections is governed by advanced scoping rules that require omitting some sections.

2.2.2 Nesting

Nesting is an operation of creating a new section of ENVS containing binders to the interior

of an object or a procedure. In the SBA it is done with the help of the nested function. This function

takes any query result as an argument and is implicitly parameterized by an object store. For the

argument it creates a set of binders. This set should then be pushed as a section at the top of ENVS.

The function nested is exhaustively explained in [Subi04]. In general, depending on the argument,

the result of the function call nested(i) is:

• If i is an identifier of a complex object <i, n, { <i1, n1, ... >, ... , <ik, nk, ... > }>,

nested(i) = { n1(i1), n2(i2), ... , nk(ik) }.

• If i is an identifier of a pointer object <i, n, i1>, and the object store contains the object

<i1, n1, ... >, then nested(i) = { n1(i1) }.

• If i is a binder n(x) then nested(i) = { n(x) }.

• If i is a structure struct{ x1, x2, x3, ... }, then nested(i) returns the union of the results of

14/98

the nested function applied to the elements of the structure: nested(i) = nested(x1) ∪

nested(x2) ∪ nested(x3) ∪ ...

• For other arguments the result of nested is the empty set.

The function nested only returns a set of binders to be placed on the ENVS, but it does not

open a new section on the ENVS itself. It should be done by the query execution engine.

Another function connected with the object nesting – it is the pop() function. Its

functionality is similar to standard pop functions associated with stacks, however SBA's pop

function has broader functionality. For example, it performs a check for binders of temporary

objects and deletes such objects from temporary store unless they are referenced elsewhere.

Example 2.2 presents the result of nesting of an Emp object form the example 2.1

Example 2.2 Nesting of a complex Emp object.

<i6, Emp,{ <i7, fname, "Bob">, <i8, sname, "Gordon">,

 <i9, dept, i17>, <i10, salary, 2300> }>

nested(i6) = { fname(i7), sname(i8), dept(i9), salary(i10) }

2.3 SBQL

The Stack Based Query Language (SBQL) is a prototype object query language realizing the

Stack Based Approach [Subi94, Subi04]. It is the model language for all other projects influenced

by SBA. The basic idea of SBQL is to combine querying and programming capabilities in one

language that eliminates impedance mismatch. SBQL's query semantics is based upon recursive

evaluation of the syntax tree and binding of names using environment stack.

The first version of this language was implemented in the LOQIS system [Subi90a, Subi90b].

Since then SBQL has been implemented in a number of systems, including European projects like

eGov Bus or VIDE. It was also the model language for a number of research papers on design and

optimization of query languages. SBQL was also considered as a foundation for the new standard

for object-oriented query languages by the OMG group [OMG07]

15/98

SBQL has been designed so that it may work with a number of data models, but its semantics

is best explained using AS0 model. The AS0 model originally did not include types beside the

general division into atomic, pointer and complex objects. However, the works [Sten06, Lent06]

propose a semi-strong type-checking method for object query languages. Those works especially

apply to SBQL.

2.3.1 Query results and eval function

In SBA it is assumed that queries never return objects but references to objects, sometimes

within more complex structures. Objects live in the object store; no entity called an object occurs

elsewhere. Queries can also return values stored in objects and values calculated by some functions

or algorithms. Similarly to other approaches, SBA introduces structures, bags and sequences as

results of queries. In formal descriptions of the evaluation process, intermediate and final results are

stored on a special stack called the Query Result Stack (QRES). The final result placed on the

QRES has to be consumed by some agent within the application software, for example by a user

interface or by other queries. After a query evaluation is complete, the top of the QRES contains

the result of this query. In general a result of a query may only be:

• an atomic value or an identifier (reference) of an object or a stored programming entity like

function or a procedure

• a binder, in this context also called a named value

• a structure of results (struct{ x1, x2, x3,... }) (result definition is therefore recursive). The

order of elements in a structure is significant. A structure may contain values of different

types. Also, two named values with the same name are allowed. Structures having no

elements are not allowed. Structures are actually similar to tuples, known from relational

systems.

• a bag and a sequence of results are also valid results themselves.

16/98

Figure 2.1: States of the QRES during evaluation of the given arithmetic expression

Figure 2.1 present the states of the QRES during the evaluation of the query 3+7>2*4.

Results of the evaluation of numbers 3 and 7 are directly placed on the QRES. Evaluation of the +

operator consumes both values and places a new value on the QRES (literal value 10). Further

evaluation results in placement of the literal value of Truth on the top of the QRES. This value is the

result of the initial query and may be consumed for example by an outer agent.

The semantics of an SBQL query are best explained using its evaluation process. The eval

procedure described in [Subi04] operates on three structures: the object store, the ENVS stack and

the QRES stack. This procedure takes as an argument a query in a form of an Abstract Syntax Tree

(AST) and during recursive calculation generates query's final result, which then is placed at the top

of QRES. During calculation it may modify ENVS but if a query has no side-effects, the final state

of ENVS is equal to the initial state.

The eval function is compositional – the result of a query is a direct function of the results of

the immediate subqueries. The simplest types of queries are names and literals. The result of the

evaluation of a literal is a value of this literal placed in the new section on the top of the QRES. To

evaluate a name, it needs to be bound with values (according to the procedure described in the

chapter 2.2.1) and the multiset of those values should be placed in the new section on top of the

QRES.

The operators in SBQL are divided into two groups: algebraic and non-algebraic operators.

2.3.2 Algebraic Operators

Algebraic operators do not require ENVS to calculate their result out of the partial results of

17/98

subqueries. If the operator Θ is an algebraic operator, than to evaluate a query q1 Θ q2 we need

to evaluate independently both subqueries (q1 and q2) and then to process the partial results

according to the specific functionality of the Θ operator.

The algebraic operators are well known from programming languages – they include

arithmetic operators, comparison operators, aggregate functions or conditional operators.

Example 2.3. Evaluation schema for binary non-algebraic operator Θ

def eval(q):

...

case q is qleft Θ qright:

eval(qleft);

tl = QRES.pop();

eval(qright);

tr = QRES.pop()

QRES.push(applyΘ(tl,tr))

...

Example 2.3 presents a schema of evaluation for the non-algebraic operator Θ. Push and pop

functions are the standard stack operations. Function applyΘ depends on the actual operator being

executed. It represents the process of calculating the final result using intermediate results

calculated earlier. This function does not involve operations on the environment stack and does not

depend on the state of the ENVS.

2.3.3 Non-algebraic Operators

The core of SBQL are so called non-algebraic operators. They are binary operators that

modify the ENVS during evaluation. Their eval procedure is much more complex than the one for

algebraic operators. During evaluation the first step is to evaluate the left subquery. Then for each

element e from the acquired result collection perform nesting of this element and evaluation of the

18/98

right subquery. Next incorporate the acquired result into temporary result set according to the

operator's specifics. Finally remove the top environment from ENVS. When every element has been

processed push the temporary result set onto QRES.

Example 2.4. Evaluation schema for binary non-algebraic operator Φ

def eval(q):

...

case q is qleft Φ qright:

eval(qleft);

tl = QRES.top();

for each r in tl:

ENVS.push(nested(r))

eval(qright);

tr = QRES.pop()

partialresult[r]:=combineΦ(r, tr)

ENVS.pop()

QRES.pop()

QRES.push(mergeΦ(partialresult))

...

Example 2.4 presents a schema of evaluation for the non-algebraic operator Φ. Top function returns

the topmost value of the stack without removing it. Function combineΦ and mergeΦ depend on the

actual operator being executed and they do not depend on the state of the ENVS. Detailed

information on those functions in context of each of the non-algebraic functions may be found in

[Subi04].

Among the key non-algebraic operators for SBQL are the selection operator (where),

projection and navigation operator (dot), navigational join and quantifiers. Examples 2.5 and 2.6

show a sample usage of dot and where operators, while example 2.7 presents a schema of

evaluation of a query that includes the non-algebraic operator where. During this evaluation we

assume that the database has the structure from the example 2.1

19/98

Example 2.5. For each employee working in the ‘IT’ department return their personal data and

salary

(Emp where deptname=='IT').(name+' '+surname, salary)

Example 2.6. For each department return its name and the average salary paid to its employees

Dept.(name, avg(worksIn.Emp.salary))

Example 2.7 The schema of evaluation of a query based on the data from the Example 2.1

I. Query: Emp where sname == 'Smith'

AST:

Initial state of ENVS:

Initial state of QRES: empty

II. The root operator is the non-algebraic operator where thus the first step is to evaluate

the left subquery: the name Emp

ENVS QRES

III. Now, according to the evaluation schema, for each of the identifiers placed on QRES

we need to evaluate the right subquery: sname == 'Smith' , where the comparison

operator belongs to the group of the algebraic operator. First we should nest the

complex object identified by i1, and then to evaluate the name sname and the literal

'Smith'. We will do this in one step:

20/98

i
1
 i

6
 i

11

ENVS QRES

IV. To evaluate the comparison operator we pop two sections of the QRES and

according to the specification of the equality operator, we check if the atomic object

identified by i3 (<i3,sname,'Smith'>)holds the atomic value 'Smith'. We push the

result of comparison on the QRES:

ENVS QRES

V. The where operator consumes the True value from the QRES and adds the identifier

i1 to the partialResults collection. The top section of the ENVS is removed and the

next object (i6) is nested on the ENVS. The steps III and IV are repeated:

ENVS QRES partialResults

{ i1}

VI. Because this time the comparison operator returned the False value, the i6 object is

not included in the partialResults collection, although the top section of the QRES is

removed. Again the top section of the ENVS is removed and the next object (i11) is

processed according to the steps III – V. For this object the comparison operator

would evaluate into the False value, thus this object is not included in the

partialResults. The top section of ENVS is removed. Because all the identifiers from

the QRES have been processed, again the pop() function is called on the QRES

leaving it empty:

21/98

i
1
 i

6
 i

11

i
3

'Smith'

i
1
 i

6
 i

11

True

i
1
 i

6
 i

11

False

ENVS QRES partialResults

empty { i1:i1}

VII. Now we merge the partialResults according to the requirements of the where

operator. The result of this operation is then pushed on the QRES. The result of the

evaluation of the query is:

ENVS QRES

In SBQL recursive queries are available through the use of the non-algebraic operator close

by and its variants: leaves by, close unique by, leaves unique by. This operator's syntax is simple:

query1 close by query2

Both left and right query have no other restrictions to their structure besides that they should

return a bag of results of the same type. The left query is the seed query – it provides the initial bag

of elements. The right query is executed recursively in the context of each element from the

acquired result bag for each recursive step. The calculation stops when the execution of the right

query returns an empty bag. An example of a close by query is:

(Employee where name = "John Smith") close by (boss.Employee)

This query finds all employees that are John Smith's direct or indirect superiors. But

sometimes we would like to get only the leaves of a result tree – in the example above only those

employees that do not have superiors. In such cases we may use another recursive operator called

leaves by. Unfortunately both operators close by and leaves by suffer from the same disadvantage –

they may create infinite loops. In such cases other recursive operators may be applied – close

unique by and leaves unique by. Those operators are variants of the close by and leaves by operators

that remove duplicates on the fly after each closure iteration. This way they eliminate loops. The

above semantics is similar to the Delta semantics of the XQuery's seeded by operator [Afan09]

mentioned earlier.

Close by operator represents transitive closure. The SBQL language is also equipped in a

22/98

i
1

mechanism of fix-point operations that may be applied to a vast range of queries. The operator that

fulfills this mechanism is fixpoint. The general mechanics of close by and fixpoint are similar. Their

functionality is exhaustively presented in [Subi04, SBQL]. The SBQL language also provides the

mechanism of recursive views and recursive procedures. Their description may be found in [Piec06]

2.3.4 SBQL Implementations and Language Comparison

SBA (Stack Based Approach) and SBQL has been implemented in number of research and

business projects. The first business project to implement a language based on the SBA was Netul

developed in 1989 by Intra-Video. A year later an experimental project Loqis has been started

[Subi90a, Subi90b]. This project was the first to implement the language SBQL. Among other

implementations are VPOS – a query language for the XML DOM model, LoXiM and

Monad/PySBQL database systems. SBQL was also a key element of the following European

projects: ICONS (Intelligent Content Management System), VIDE and eGov Bus.

In February 2006, the OMG announced the formation of the Object Database Technology

Working Group (ODBT WG) to develop the "4th generation" standard for object databases. This

group is planned to continue (in a way) the work of ODMG. ODBT WG considered SBQL

language [OMG07] and LINQ framework as the background for this standard. The work of this

group is still in progress.

The following examples compare the syntax of SQL, OQL, XQuery and SBQL languages.

The examples assume that a database stores a simple schema containing information on students.

Each student has a name, information about the year of study he attends.

Example 2.8

Description Get full information on students

SBQL Student
OQL Student
SQL Select * from Student
XQuery doc(...)//Student

23/98

Example 2.9

Description Get the names and year numbers of all students

SBQL Student.(name, year)
OQL Select name, year from Student
SQL Select name, year from Student
XQuery for $s in doc(...)//Student

return {$s/name, $s/year}

Example 2.10

Description Get the names of all 1-st year students

SBQL (Student where year = 1).name
OQL Select name from Student where year = 1
SQL Select name from Student where year = 1
XQuery doc(...)//Student[year=1]/name

2.4 PySBQL as a Testing Platform

PySBQL language [Burz07] is an attempt to reconcile the concept of Stack Based Approach

in databases [Subi94] with construction of Python [Python] language which is a popular

programming language. Stack Based Approach in databases, as I have tried to show in previous

chapters, gives a good start for development of a computer language that, at the same time, is a

programming and an object query language. The joining of SBA with Python resulted in a language,

in which writing database applications became simple and clear.

My design of the initial syntax and semantics of PySBQL was published in [Burz07]. The

first prototype of this language was implemented in Java and worked with AS0/XML storage. The

goal of this implementation was to develop a multi-platform language free of impedance mismatch

problems. Since then this project has undergone many changes. The second prototype was intended

for distributed object database and was code-named "Monad/PySBQL". I have implemented the

latest prototype in Python language in 2009. This version will be described in the following chapter.

It is designed to work with AS0 and XML data models, and was a testing platform for rewriting

algorithms, query processing on Graphical Processing Units (research in progress) and data storage

24/98

models (research in progress).

The grammar has been coded using PLY [PLY] library for Python. This chapter presents

core fragments of PySBQL in a manner similar to BNF notation. In PySBQL literal values and

variable names are defined after Python. The other grammar constructs adapted from Python are

indent based syntax, loop statements (for, while), if-else statement, function definition's header. The

table 2.1 presents the main grammar rules.

query ::= literal | name | (<newline>)* query (<newline>)*

blockQ ::= <newline> <indent> (query)* <dedent> Block of queries

query ::= unaryOperator query Unary algebraic operators

unaryOperator ::= + | - | ~ | not

query ::= query binaryAlgOperator query Binary algebraic operators

binaryAlgOperator ::= compOp | boolOp | arithOp | bitOp

compOp::= == | < | <= | >= | > | is | is not | in | not in Comparison operators

boolOp::= and | or | xor Boolean operators

arithOp::= + | - | * | / | // | % | ** Arithmetic operators

btOp::= & | | | ^ | << | >> Bitwise operators

query ::= query where query | query . Query |
query join query

query ::= query assignOp query | query <- query

assignOp ::= <- | = | += | -= | *= | /= | //= | **= | %= | &= |
|= | ^= | >>= | <<=

query ::= rename query as name Name definition

query ::= new (temporary | local | permanent) name :
("("name : query (, name : query)* ")" | literal)

Creating a new object

query ::= ref query as name Creating a local pointer object

query ::= deref query Dereference on query

query ::= query group as name Grouping and name definition

Table 2.1: Main syntax rules for PySBQL

25/98

2.4.1 Examples of PySBQL Queries and Programs

Example 2.11 Obtain the names and birth years of chosen employees’ children. The "\" character is

interpreted as a line break that allows for multiple line statements

(employee where job_record.job_date>‘2000-01-01’).children. \
(child_name, birth_year)

Example 2.12 Give each employee a raise by 100:

employee.salary+=100.0

Example 2.13 Rename the field town in the address objects into city

rename address.town as city

Example 2.14

Create a new complex object company containing one atomic object named name, one

pointer object located_in and one complex object manager

new company : (name : ‘TransCom’,

located_in : city where name == ‘London’,

manager : (name : ‘Alan Willson’,

phone : "644-77-99"))

Example 2.15 Two versions of program that prints on standard output the names of all employees

print employee.name

or:

for e in employee:

print e.name

26/98

Example 2.17 For each person write their name and the social title Mr. or Mrs. depending on

person's gender

for p in person:

if p.gender == 'f':

p.name = 'Mrs. ' + p.name

else:

p.name = 'Mr. ' + p.name

Example 2.18 Definition and a sample usage of a simple factorial function that would be stored in a

database as an complex object

def permanent factorial(a = 0):

i,k = 1, 1

while (i<a):

i+=1;

k*=i

return k

print factorial(4)

print factorial()

2.4.2 PySBQL vs Python

Just like most of the query languages, Python is a dynamic, interpreted and interactive

language. Other key features that influenced the decision of developing PySBQL based on Python's

syntax were:

• clear, readable syntax resulting in easiness in learning and using

• high level dynamic data types

• embeddable within applications as a scripting interface

27/98

• Python is equipped with some aspects of a functional language (like lambda expressions)

• popularity – a language that would be very close to Python would be easy to master for

Python's programmers.

• Python's standard implementation is under an open source license that makes it freely usable

and distributable, even for commercial use. Based on the modules of Python, new modules

for PySBQL could be developed in a short time

• it is an interesting subject to study how far a query language based on SBA can be integrated

within an interpreted language

Although PySBQL and Python share much of their syntax, their functionality differs. The

basic difference between Python and PySBQL is management of persistent data, construction of a

call stack, modified assignment statement to cope with persistence, and mostly – the evaluation

process.

On the other hand, the idea behind PySBQL was to firstly establish a solid base for data

management, thus the research on this language concentrated around database access optimization

and optimization of query processing.

2.4.3 PySBQL vs SBQL

Database management in PySBQL was based on the research on SBQL language. Both

languages share the construction of non-algebraic operators, however the SBQL's prototypes have

been greatly influenced by syntax of languages like Java and C#. Initially PySBQL project was a

study on effects of combining an interpreted dynamic language with Stack Based Approach.

The differences between PySBQL and SBQL involve handling of data collections (sequence,

bag and structure in SBQL, list and dictionary in PySBQL), interpretation of non-Boolean values as

true or false when logic value is needed, handling of variables and much of additional syntax.

SBQL implements semi-strong static typing [Sten06], while PySBQL has dynamic type system with

type checking based solely on variable values and not with variable names. This means that we may

dynamically assign different values with different types to the same variable, however type

28/98

checking would return a type error when trying to subtract list-typed variable from integer-typed.

This is directly connected with the basic approach to variables themselves: contrary to SBQL,

variables in PySBQL are simply binders and not atomic objects.

Some of additional differences appear evaluation process on the base implementation level,

however since both languages are in their prototyping stages, those differences will be omitted here.

2.4.4 Left and Right Dereference

One of the differences between PySBQL and SBQL is the approach to the deref operator.

In SBQL dereference operator is inserted automatically during the generation of a query's AST.

However there is no clear convention of autodereference.

One of the examples, when names are bound in different contexts depending on which type

of value is needed is the function call f(a=b, b=a). In this call the names a,b from the right

sides of the assignment operators are bound according to the context of the function call, whereas

a,b from the left sides of those operators are bound in the context of the interior of the function,

the parameter list to be exact.

This problem and the unclear approach to dereference in the SBA became an inspiration for me to

develop a new approach based on a classical concept of l-value and r-value for the name of a

variable\object. This approach is more universal – it is designed to deal with cases when in some

context the same name may represent different variables\objects depending on whether we ask

about l-value or r-value. Results of this study were published in [Burz09a]

2.4.5 L-values and R-values in PySBQL Language

The new approach to variable dereference is based on two mechanisms: l-binding and r-

binding (left and right binding) of names. Each of those mechanisms is equipped with its own

environment searching rules. L-binding and r-binding for algebraic operators and imperative

constructs are consistent with the convention of Python language. Only object and the non-algebraic

operators need a detailed discussion.

29/98

For an object its l-value means the reference to this object. Particularly if a binder built from

name and value indicates some object, then the value of this binder is always the address of this

object. In this sense our concept corresponds to the concept of the ENVS for SBQL language. R-

values, being the values of objects, are more distinguished.

For a pointer object its r-value is an address contained within such object. The r-value of an

atomic object is the content of its value field. For a complex object, the r-value is a collection of

binders to its subobjects with added binder named self, which value is a reference to this object.

Non-algebraic operators expect on their left side a collection of r-values of complex objects.

Their further evaluation depends on whether it is evaluated with respect to l-value or r-value.

When the r-value is expected from the where operator, it returns a collection of r-values of

the result collection. When the l-value is expected – the where operator returns proper l-values of

the left subquery, filtered by the right subquery. The dot operator evaluates the right subquery

passing the information whether the l-value or r-value is needed. The evaluation takes place for

each r-value returned by the left subquery. The collection of acquired results passed as a result of

the dot operator's call.

Among other non-algebraic operators are quantifiers and close by operator. Both quantifiers

require r-values of their first subqueries, and then for each r-value they evaluate the second

subquery. Existential quantifier returns a positive result if the second query returned a positive

result at least once. In other cases it returns a negative result. The universal quantifier returns false

if the second query was at least once evaluated to a negative result. The close by operator evaluates

the r-value of a first query. For each value gathered in this stage it is nested on the ENVS and the

evaluator requests an r-value of the second query. Collection of r-values gathered this way is added

to the partial result collection and used to repeat this evaluation step. The process is repeated until

the second query returns an empty collection.

Of course there are special cases for which there is an explicit need to enforce value or

address. Here we allow for explicit usage of ref operator for fetching reference and deref (or @)

operator for fetching value. Their usage cannot be redundant. Usage of deref operator where a literal

value appears will result in a Dereference Error. This operator's purpose is for example to fetch a

value of an object pointed out by a pointer object, however it may be also used with atomic and

complex objects

30/98

3 General Strategies of Optimization by Rewriting

There are many methods of query optimization. Among them is query rewriting. It is usually

one of the initial phases of query processing. This method is based on the notion of query semantic

equivalence. Two queries are semantically equivalent if they produce the same results regardless of

the database state. The equivalence of queries is the subject to a set of rules. The most important

may be found in [Ullm88, Denn91]. Query rewriting comprises a number of transformations of the

original query whose goal is to produce an equivalent query that has shorter evaluation time or

consume less system resources. Such transformations do not depend on the physical state of the

system. However they may require access to schema information. The most common rewriting

transformations are:

• subquery un-nesting and flattening

• views and functions inlining

• early selection/projection by predicate move around

• query merging

• rewriting to other language/algebra/monoid comprehension calculus

One of the strategies of query evaluation and optimization is to parse and rewrite a query

into a corresponding syntax tree according to the grammar rules of the given language. Such tree of

a query maybe then used as an input of query optimization algorithms.

The amount of available query optimization algorithms is huge. To describe them all in

detail one could write a multi-volume encyclopedia. The following chapter presents a selection of

research on rewriting algorithms from those groups. Selected techniques have either inspired or

closely relate to the research on the algorithms presented in the chapters 4 and 5 of this thesis.

3.1 Optimization of Non-recursive Queries

Most of the queries to modern database systems are non-recursive. Their variety results in a

large amount of optimization methods that serve different purposes and are applicable at different

31/98

stages of query processing. The following sub-chapters present seven general methods of

optimization by rewriting that may be applied to non-recursive queries.

3.1.1 Predicate Move-around

Predicate move-around is a commonly used optimization technique. It has been described by

Levy et al. in [Levy94]. This technique is a generalization of a similar, well-known technique –

predicate push-down [Ullm88]. Predicate push-down allows for early selection by pushing selection

predicates down the tree of a query. Predicate move-around optimizes queries by firstly moving

predicates up the query tree before pushing them down into the subqueries or views they refer. This

way predicates pulled up from one query block can be pushed down into another block. The

original paper, influenced by previous research on moving predicates, discusses situations where

rewriting two query blocks into one ([Hell92]) is either impossible or complicated, yet predicates

can be moved. Those situations include aggregate views/subqueries. Other advantage of predicate

move-around is that it may be applied to a variety of predicates including string comparisons and

existence predicates.

Another similar algorithm is described in [Yan94]. It is based on performing the group-by operation

before joins in order to reduce the size of data processed during joining operation.

An adaptation of predicate pushing methodology for SBQL queries has been described in

[Plod00]. It is based on distributivity property of non-algebraic operators such as selection,

navigation or join operators. Pushing selection for SBQL may also be viewed as a simplified

version of factoring out independent subqueries.

For XPath/XQuery a number of optimization techniques based on predicate move-around

have been developed. The paper [Grin05] by Grinev and Pleshachkov describes a technique called

predicate push down XML element constructors. Its basic idea is to change the order of operations

to apply predicates before XML element constructors. A set of rewriting techniques for XQuery

based on predicate move-around has been discussed in [Ozca08]. They are called XPath pushdown,

local predicate pushdown and join pull up. All those techniques work with so called local predicates

– predicates and simple XPath navigation queries that access only one document. XPath pushdown

considers navigational steps as existential predicates. It involves rules to push down XPath through

operations such as selection, set union and XML element construction. Pushing down conditional

selection predicate into an XPath expression is the main aspect of the local predicate pushdown

32/98

technique. Application of this technique is presented by the Example 3.1. The next technique – join

pull up, also called simple decorrelation, works with join predicates embedded in XPath expressions

and pulls them into the where clause.

Example 3.1

Original program:

for $c in db2−fn:xmlcolumn("sample.doc")/c, $a in $c/a

where $c/d = 5

return $c

Transformed program where predicate $c/d = 5 was push down:

for $c in db2−fn:xmlcolumn("sample.doc")/c[d = 5], $a in $c/a

return $c

3.1.2 View/function Inlining and Merging Nested Subqueries

Presence of user-defined functions or view calls in a query may cause the optimizer to work

less efficiently. This problem may be at least partly solved using function inlining. It is a common

optimization technique used for example in programming languages' compilers. The basic work on

view inlining is [Ston75]. When dealing with non-recursive views or functions this technique is

simple. However, when dealing with recursive user-defined functions there exists a possibility of

generating an infinite loop. This problem in context of XQuery language has been addressed by

Grinev and Lizorkin in [Grin04]

View/function definition expansion and inlining may be a first step of merging nested subqueries.

There is a lot of research on un-nesting of correlated nested SQL queries and merging them into a

single query. Among the most important are [Kim82, Daya87, Gans87, Mura92]. The work

[Chau98] presents a very good overview on the subject. The following example of subquery

merging technique comes from this paper.

33/98

Example 3.2

In the following queries EmpNo and DeptNo columns are the primary keys of tables Emp

and Dept respectively

Original query:

SELECT Emp.Name FROM Emp

 WHERE Emp.DeptNo IN (SELECT Dept.DeptNo FROM Dept

 WHERE Dept.Loc=‘Denver’ AND Emp.EmpNo = Dept.Mgr)

Transformed "flattened" query

SELECT E.Name FROM Emp E, Dept D

 WHERE E.DeptNo = D.DeptNo

 AND D.Loc = ‘Denver’ AND E.EmpNo = D.Mgr

This paper discuses more complicated cases of nested subqueries including occurrences of

aggregates, quantifiers. The research on merging of XQuery queries has been greatly influenced by

the research on merging of SQL queries. The work [Ozca08] discusses two techniques of merging

XPath expressions.

3.1.3 Finding Independent Subqueries and Query Un-nesting

Nested subqueries may significantly reduce evaluation efficiency since they usually involve

nested-loop evaluation. When a subquery occurs in a main query more than once, it might be

profitable to calculate such expression in advance. Also when a subquery placed within a loop does

not depend on the controlling variables, it would be preferable to evaluate this subquery only once

(for example on the first entry into the loop). Such approach is called query un-nesting or subquery

decorrelation [Gans87]. Query un-nesting itself may not result in performance improvement

[Fega98]. Instead it allows for further optimization. In literature there are a number of papers on

query un-nesting. The paper [Sesh96] explains the problems of decorrelation and surveys previous

papers on the subject. The authors of this paper also propose a technique for decorrelation of SQL

34/98

queries by extracting distinct outer references and materializing all the possible values of the

subqueries. Such approach, being an extension of the magic-sets technique, is known as the "magic

decorrelation rewrite".

The problem of un-nesting SQL queries in presence of disjunction is discussed in [Bran07].

The authors of this paper propose an optimization technique based on the bypass operator first

introduced in [Kemp94]. This technique's advantages and disadvantages are also addressed by the

authors of [Elhe07].

For SBQL queries the problem of finding independent queries and query un-nesting is one

of the basic tasks for optimizers. It has been discussed in a number of papers including [Piec10,

Subi04, Plod00]. It is based on checking in which section binding of a given name is performed. If

all of the names of some subquery are bound in other sections than the one opened by the root

operator of this subquery, then this subquery could be unnested. Thus the analysis of the section

numbering is the base operation for this type of optimization. For more detailed information on how

this is performed, please refer to [Subi04].

Example 3.3 presents a result of applying basic version of an algorithm for factoring-out an

independent subquery. In the original query from this example the subquery calculating Smith's

salary would be executed as many times as there are Employee objects. In the optimized query it is

executed only once. The presented AST of the original query has been labeled according to the

following rule: the non-algebraic operators are labeled with the number of a section they would

open, while names are labeled with a pair of numbers: the Environment Stack size, and the number

of a section that holds a binder for a given name

Example 3.3

Original query:

Employee where Salary =

((Employee where Surname="Smith").Salary)

35/98

We observe on the above figure that none of the nodes besides the node labeled salary will

be bound in the second section. Note that the name Emp in the inner selection (dot) clause is

bound in the section 1 while the outer where operator opens the section 2. Thus the inner

selection clause is independent of the outer where and can be factored out.

Modified query:

(((Employee where Surname="Smith").Salary) group as S).

(Employee where Salary = S)

With the rise of interest in XQuery and semi-structured languages, the issue of query

decorrelation has once again attracted attention since correlated queries are common in this

language. Most research on un-nesting XQuery expressions is based on algebraic rewriting

[May06], however the algebras used for un-nesting usually do not retain the order of nodes. The

work [Fega00] by Fegaras and Maier presents an alternative approach that uses monoid

comprehension calculus. A selection of un-nesting techniques designed for XQuery can be found in

[Norm03]

3.1.4 Rewriting to Other Query Languages

Algorithms that translate queries from one language to another form the widest group among

the rewriting algorithms. Their variety is huge and covers many target languages and aspects. In the

36/98

Fig. 3.1: AST of the original query

labeled with section numbering

past the mostly discussed such translation was from Datalog to SQL [Jeze88, Koym90, Godf94,

Deck02]. With the progress of database technology the interest in this transformation significantly

dropped, however there is still research being done in this area [Haji05]. This is mostly because of

the increased interest in deductive databases designed for storing and analyzing ontologies. Reverse

transformations – from SQL to Datalog – have also been interesting for researchers, although not to

the same extent. The most detailed paper on this subject is [Bres00]. Datalog has been also a target

language for rewriting of XQuery [Alme06, Bene08].

The current popularity of XQuery and established background for SQL databases has lead to

a number of research papers on rewriting XPath\XQuery to SQL [Care00, Mano01, Fern02, Deut03,

Grus04, Kris04].

The newest trend in research on such rewriting of query languages is based on translating

SQL queries to XPath\XQuery programs [Halv04, Jigy06, Vidh10]. While the focus of the paper by

Halverson et al. is mainly on querying natively stored XML-data, the paper by Jigyasu et al.

describes in detail the actual process of translation.

The mentioned translations gained the most interest among the database researchers,

however the variety of such translations is vast. An interesting work by Grust and Sholl [Grus98]

describes translation of OQL language to a functional notation resembling Haskell language. The

main goal of this translation is to reduce intermediate structures due to application of program

fusion algorithm described in the following chapter. For SBQL, the only work on rewriting this

language to another one is [Wisl07], which describes the construction of an SBQL-to-SQL mapper.

3.2 Short Cut Fusion for Functional Languages

Intermediate structures are common side effect of the evaluation of programming and query

languages. They may have both positive and negative effects on the cost of evaluation. On one hand

they may be used to speed up the evaluation, on the other – they may result in unnecessary system

resource consumption and indirectly and result in reduced evaluation performance.

In 1990 Philip Wadler [Wadl90] presented an algorithm of elimination of such structures in

functional languages which he called the deforestation algorithm. This method became also known

as "program fusion" because the basic idea behind it is to "fuse" together two functions of which

one consumes an intermediate structure generated by the other. Yet, despite great potential, the

37/98

original deforestation algorithm was too complicated and was too restrictive on the input data. This

is why many papers on deforestation’s enhancements have been prepared. Because of the

similarities between functional and query languages, there has been research on adaptation of

deforestation algorithms to object query languages [Grus98]. One of the enhancements developed

for functional languages is called the short cut fusion [Gill93, Joha01] or cheap deforestation. It has

gained much attention [Jone01, Voig08] mostly due to its effectiveness and simplicity.

Although the original cheap deforestation was developed for functional language called

Haskell, this chapter presents the functionality of the short cut fusion technique using the Python

language notation. This can be done because Python is equipped with necessary functionality such

as reduce and lambda functions. Python language has been chosen not only because it is a base

language for PySBQL, but mostly because its popularity and clarity of notation.

Short cut fusion technique is based on a usage of a collection generating function (build)

and a rule known as "reduce/build rule". This technique is based on a folding operation

implemented in Python as the built-in reduce function, which could be defined as follows:

def reduce(fCall, Tlist, init=None):

if not Tlist: return z

if init==None and len(Tlist)==1: return Tlist[0]

return fCall(reduce(fCall,Tlist[0:-1],init), Tlist[-1])

Another function needed for short cut fusion is the build function which is defined as follows:

build = lambda BinF: BinF(lambda x,y: x+y,None)

The build function takes as an argument a binary function and applies to it a concatenation

function and a special None object. The functionality of the reduce function is presented by

examples 3.4 and 3.5

Example 3.4. Example of usage of the reduce function

reduce(operator.truediv,[18,2,0.5,5],180)

results in: ((((180 / 18) / 2) / 0.5) / 5) which calculates into 2.0

38/98

Example 3.5.Example of usage of the reduce function

reduce(operator.truediv,[18,2,0.5,5])

results in: (((18 / 2) / 0.5) / 5) which calculates into 3.6

Now we may proceed with defining the reduce/build rule

Definition 3.1. The reduce/build rule

reduce(f, build(g), n) == g(f,n)

In most of the functional languages the majority of operators and functions can be rewritten

into their equivalent compositions of reduce and build functions. The short cut fusion is

applicable to the composition of two functions that could be rewritten into this equivalent. The short

cut fusion algorithm firstly performs this rewriting. Having such definitions it applies

interchangeably the reduce/build rewriting rule and the β-reduction – a standard transformation of

the lambda-calculus which may be understood as application of arguments. When none of those

transformations can be applied the outer build function should be rewritten using its definition.

As a result we acquire a function which instead of applying subsequent operations to collections of

intermediate data, performs all operations sequentially on individual elements of the initial

collection. Example 3.6 presents result of application of short cut fusion.

Example 3.6

Original function definition (concatenates a list of strings into a single string using single

space as a separator)

merge_lst = lambda ls:concat(map(lambda l:l+' ', ls))

Where the concat and map functions are defined using reduce/build composition as:

concat = lambda xs:build(lambda c,n:

reduce(lambda x,y:reduce(c,x,y), xs, n))

map = lambda f,ys:build(lambda c,n:

reduce(lambda a,b: c(f(a),b), ys, n))

39/98

Resulting function definition:

merge_lst = lambda ls:reduce(lambda a,b:(a+' ')+b, ls, None)

Many papers dealing with various languages and problems have shown that the usage of the

cheap deforestation has a positive effect on the speed of program processing and the reduction of

system resources consumption. Some languages have different functions for left and right folding,

however the work [Gill96] proves that the short cut fusion does not depend on the choice of folding

type for the reduce function.

3.3 Optimization of Recursive Queries

Research on recursive queries have been a part of studies on the data querying since the 80s.

Recursive queries help to solve problems such as bill-of-material, queries involving corporate

hierarchy, finding routes between cities. Naïve evaluation of recursive queries usually is inefficient

and consumes too many resources. Most optimization techniques for recursive queries involve

modified execution plans, enhanced data retrieval or dynamic procedures [Nejd87]. However, there

is a group of rewriting algorithms that optimize the initial execution plans.

The research on SQL's recursive queries have been greatly influenced by Datalog's recursive

queries (see [Schn08] for more information). There are a lot of research papers discussing recursion

in deductive databases. Significantly less work has been focused on relational recursive queries and

there has been very little work in the recent years in this field of studies. However, nowadays the

problem of recursion becomes once again popular with database vendors and researchers. The

research on optimization of recursive queries may be classified as one of the following trends:

− rewriting represented by the magic-sets technique [Ullm86, Mumi94, Ordo05]

− memoing [Diet87] and storage problems [Ordo10]

− cost models and modified execution plans [Ghaz06]

A comprehensive study on optimization of SQL recursive queries may be found in [Ordo10].

40/98

Some of the optimization algorithms for SBQL's close by operator may be found in

[Subi94]. However, the most comprehensive study on optimization of recursive SBQL queries is

[Piec10] which present many interesting techniques such as rewriting by pushing out selection,

factoring out independent queries, detection of non-recursive equations and stratification.

3.3.1 Tail-recursion

Tail recursion (known also as tail-end recursion) is a well-know optimization technique for

evaluation of recursive functions [Maie88, Rubi10]. It is widely used in functional programming

languages, which often use recursion for computation. It is applicable to cases of recursive

functions in which the last operation before returning a result is to perform recursion. Such

operation is often called a tail call. A special case of tail recursion involves situation where the

result of the recursive call is not used. The key idea behind this technique is to replace recursion

with iteration to decrease the amount of memory (stack space) used and increase efficiency. In most

cases when tail calls occur, there is no need to return the result to the intermediate function call –

the newly generated result may be returned directly to the initial function's caller. There are a lot of

algorithms that are used to rewrite a recursive function's definition, so that it could benefit from tail

recursion optimization.

For query languages, tail recursion has been broadly discussed in the context of optimizing

Datalog programs. The papers [Ross91, Ross96] by Ross present special cases of magic templates

(see chapter 2.2.2) technique enhanced with tail recursion, while the papers [Rama91, Ullm95]

describe more generally the application of tail recursion to Datalog programs.

Another query language that benefits from tail recursion techniques is XQuery [Kay06].

However, because of the availability of FLWOR construction equipped with loops, queries that

meet the conditions for tail recursion are rarely used. At the same time, the availability of loop

construction allows for application of rewriting techniques that result in tail calls. Such techniques

are usually adapted forms of rewriting techniques for programming languages Example 3.7 presents

application of rewriting technique used in Saxon XQuery processor. The output is a function that

can be optimized using tail recursion.

41/98

Example 3.7

Original program:

declare function local:before_sum($start as xs:integer) as
xs:integer

{ if ($start eq 0) then 0

 else $start + local:before_sum($start – 1) };

Modified program:

declare function local:tailcall_sum(

$start as xs:integer, $acc as xs:integer) as xs:integer

{

 if ($start eq 0) then $acc

 else local:tailcall_sum($start - 1, $start + $acc)

};

3.3.2 Magic Set Techniques

The magic set rewriting technique has been introduced by Ullman in [Ullm86]. The version

presented in that paper is the most widely known "magic set" variant. This variant transformed

recursive Datalog programs to gain more efficient evaluation. The common result of magic set

transformations is a newly generated program or query that contains additional predicates. Such

output queries usually have more keywords and clauses compared to the original query, but their

evaluation time is shorter [Ullm89].

Since the original paper by Ullman, many extensions and modifications of the basic

algorithm has been proposed. The paper [Beer87] by Beeri and others introduces a technique called

"Supplementary Magic Sets". It eliminates some of the repeated computation appearing during

query evaluation. Other improvements of the original technique are so-called "Magic templates"

and “Alexander templates” [Rama88, Seki89].

The research on optimization of recursive SQL queries has been greatly influenced by magic

42/98

set techniques developed for Datalog. Among the first papers that showed application of magic sets

to SQL language were [Gupt92, Mumi94]. Those papers actually applied magic sets to non-

recursive queries compliant with SQL-92 standard. However, recursive SQL queries are easily

represented as Datalog programs, thus magic sets have been naturally adapted to SQL. One of the

papers dealing with optimization of recursive SQL queries based on optimization techniques for

Datalog is [Bris06].

Magic sets have also found applications for XQuery and XPath queries. Two of the papers

on the subject are [Alme06, Ozca08]. The first of those papers also discusses effect of proper

indexing on programs transformed with magic set technique. The basic idea of this paper is to

translate XPath expressions and source data into Datalog programs.

3.4 Open Problems

A lot of work for syntactical rewriting has already been done. However, there are still open

problems that can be addressed, mostly in the field of semi-structured query languages. The SQL

language has been available on the database market for a long time, and there has been a lot of

research conducted on most of its aspects. Yet, there are still open rewriting problems related to this

language. An interesting research topic is rewriting a query to benefit from materialized views

either for security purposes or to reduce the query execution time.

The research proposals common for all query languages deal with optimization of user-defined

functions. This especially applies to the recursive XQuery and SBQL functions. The solutions could

be based on function inlining but would require gathering specific schema information. It could also

be worth checking if such functions could be optimized at algebra level.

43/98

4 Deforestation of Linear Queries

During the execution of the SBQL queries a lot of intermediate structures are being created

which may have a negative impact on the execution time. This was the reason behind construction

of a new algorithm reducing the size of intermediate structures that works on the level of execution

plans. This chapter presents an extended version of the initial version of the algorithm presented in

[Burz10].

4.1 Simple SBQL Query Deforestation

The main idea behind this algorithm is inspired by a similar work for OQL [Grus98] and the

shortcut fusion algorithm described in the chapter 3.1.5. The execution plans in the following

sections are written using lambda expressions from Python language and are represented using

Abstract Syntax Trees (AST). The reduce/build rule of the shortcut fusion algorithm was also the

base rule for the algorithm described in this chapter. Let us remind it.

Rule 4.1. Basic reduce/build rule:

For all two-argument functions f and g every occurrence of the function call:

reduce(f,(build(g)), n)

may be replaced with g(f, n)

Application of shortcut fusion to SBQL requires three steps. The first is to create a proper

definition of the build function without violation of the main concept. The second is to create

execution plan in the reduce/build notation for each operator. While doing it we must include the

operations on the Environment Stack. The last step takes place during the creation of an execution

plan for a composite query. It consists of interchangeable application of reduce/build rule with

λ-calculus conversions until no more transformation can be used.

44/98

Let us start by defining a proper build function and preparing a new set of execution plans:

Definition 4.2. The build function

def build(f):

return f(struct.__add__, struct())

The following table presents execution plans for five main SBQL operators:

where = lambda q1,q2:build(lambda c,n:reduce((lambda ys,y:\

 (nested(y), (q2 and c(ys,y) or ys), pop())[1]),q1,n))
dot = lambda q1,q2:build(lambda c,n:reduce((lambda ys,y: \

(nested(y), reduce(c,q2,ys), pop())[1]), q1,n))
join = lambda q1,q2:build(lambda c,n:reduce((lambda ys,y: \

(nested(y), reduce(lambda e es: \

 c(es,struct(y,e)),q2, ys), pop())[1]), q1,n))
all = lambda q1,q2:build(lambda c,n:reduce((lambda ys,y:\

 y and (nested(y), q2, pop())[1]) , q1,True))
sum = lambda q1: reduce((lambda ys,y:__add__(ys,y)),q1,0)

Table 4.1: Execution plans' definitions

The all operator can be used for expressing functions like forall, exists. Also, the sum

function may be used as a prototype for functions like count, min, etc. Having the above

definitions we also need rules for rewriting the Abstract Syntax Trees (AST) of execution plans for

the input queries.

The definition 4.2 was the basis for the creation of the following rule of AST transformation:

45/98

Rule 4.2 Build function expanding

Let T be an AST with a root node R labeled "build". Let R have a single child that

is a subtree S. The tree T may be rewritten into an equivalent AST in which:

• the root node, labeled "function_call", has two child nodes;

• the first child of the root node is the subtree S

• the second child node is labeled "parameters" and has two child nodes: the first

labeled "struct.__add__" and the second - "struct()"

The next rule is an adaptation of the basic reduce/build rule (4.1) to the AST of a query execution

plan.

Rule 4.3 Reduce/build rule for execution plan's AST.

Let Q be an AST representing an execution plan and S be a subtree such that:

• its root node R is labeled "reduce"

• the second child node N of the root node is labeled "build"

• tree T1 is the first child of R and tree T3 is the third child of R

Let T2 be a subtree of N. The S subtree may be rewritten into an equivalent AST subtree in

which:

• the root node is labeled "function_call"

• the first child of the root node is the T2 subtree

• the second child node is labeled "parameters" and has two children: the first is the

subtree T1 and the second is T3

The above rule may be written in short as:

reduce(T1, build(T2), T3) => function_call(T2, parameters(T1, T3))

46/98

The next rule represents application of the lambda-function node to the arguments in an execution

plan's AST. It represents the β-reduction – a basic operation of the lambda calculus.

Rule 4.4 β-reduction for AST.

Let Q be an AST representing an execution plan and S be a subtree such that its root node

R is labeled "function_call" having two child nodes: N1 labeled "lambda" and N2 labeled

"parameters". Let the node L1 and subtree L2 be the left and the right child of the N1 node;

subtrees T1, …, Tn be children of the N2 node and p1, …, pm be the labels of the child

nodes of L1. Depending on the numbers n and m the following cases may occur:

• if m<n the syntax error should be thrown

• if m=n the tree S may be rewritten into an equivalent tree constructed out of L2 tree

in which every node labeled pi has been replaced with a copy of a tree Ti, i=1...n

• if m>n the tree S may be rewritten into an equivalent tree by replacing every node

labeled pi within the L2 subtree with a tree Ti, removal of all children of the N2

node and removal of N1's child nodes labeled pi, i=1...n,

The above rule and Rule 4.5 are the two main AST simplification rules. The rule 3.5 addresses the

problem of the Environment Stack, crucial element of the Stack Based Approach. This rule takes its

name from two fundamental operations on the ENVS.

Rule 4.5. Nested/pop elimination

Let Q be an AST representing an execution plan and T be a node labeled "tuple" having

three child subtrees: T1, T2 and T3, where T1's root node is labeled "nested" and T3 is a

node labeled "pop". Let x be a label of T1's leaf node. If the following conditions are met:

• the T2 subtree contains a node W labeled "nested" that has a child node labeled x

• all other nodes labeled "nested" of the T2 have bigger depth than W

• the parent node R of the W node is labeled "tuple"

• the parent of the R node is a root node for a subtree S

then the subtree S may be replaced by the R node's second child subtree.

47/98

Before we proceed with the optimization according to the described rules, we need to first

check, if a query is susceptible to deforestation. To achieve this goal the optimizer should use the

method of labeling the basic AST of a query with stack size and section numbers. This is exactly the

same method that is used to search and factor out independent subqueries for SBQL queries. The

proper algorithm was described in chapter 3.1.3 of this thesis, and its detailed description may be

found in [Plod00, Subi04]. In general, when each name in a query is bound at the top most section

of the ENVS, then such query does not contain independent subqueries. However, in such case the

optimizer should check if this query contains a composition of at least two functions that have

build/reduce definitions. If so, then the deforestation algorithm may be applied.

To start optimizing a query it needs to be rewritten into its execution plan using proper

definitions presented in Table 4.1. Then an abstract syntax tree (AST) should be generated out of

this plan. Next the execution plan tree should be analyzed for possible application of the

reduce/build rule. This process should be performed according to Rule 4.3. Next the AST should be

simplified using Rules 4.4 and 4.5. Each of those three rules should be applied as many times as

possible. When none of them can be applied to the transformed execution plan tree the Rule 4.2

should be applied followed by applications of Rule 4.4 and, if possible, Rule 4.5. If no further

transformation is possible, the algorithm stops its operation.

To explain how this algorithm operates let us consider an example query:

(Emp where sname = "Smith").dept (1)

Figure 4.1 presents its basic syntax tree with proper labels. The root operator is the selection (dot)

operator. We may assume that the initial size of ENVS is 1 (regardless of the actual size). This

assumption does not, in any way, influence the deforestation algorithm. The left child-tree of the

root node would be evaluated using unchanged ENVS. However, to evaluate the right child node, a

new section should be placed on the ENVS according to the evaluation rules. Thus the label 2 under

the root node. The dept name would be bound on the second section of the ENVS, whose size

would be then also equal to 2. Other labels are placed in the same manner.

Immediate observation after all the labels have been assigned is that there are no

independent subqueries. Therefore the deforestation algorithm may be applied. For the sake of

shorter and clearer notation we will write P instead of the predicate (sname = "Smith"). Evaluation

of this predicate is irrelevant to the deforestation technique.

48/98

The first stage of the algorithm is translating the query (1) into the composition of the basic

execution plans, transforming this composition into a corresponding execution plan tree and

identifying a subtree matching the requirements of the Rule 4.3. Corresponding Python language

notation of the execution plan would be as follows:

build(lambda c,n: reduce((lambda ys,y: (nested(y), \
reduce(c,evaluate('dept'),ys),pop())[1]), build(\

lambda c2,n2: reduce((lambda zs,z: (nested(z), \

(evaluate(P) and c2(zs,z) or zs),pop())[1]), \
evaluate('Emp'),n2)),n))

The inner reduce and build functions (highlighted in bold) match the requirements for application of

the reduce/build rule. The same execution plan in an AST form is presented by Figure 4.2

49/98

Figure 4.1: Labeled basic AST of the query (1)

Figure 4.3 presents a new execution plan which was created by applying Rule 4.3 to the above tree.

Additional marking has been placed to indicate where the rule 4.4 can be applied.

50/98

Figure 4.2: Basic execution plan tree for the query (1). The place for

application of Rule 4.3 has been marked.

Figure 4.4 presents the third step of an algorithm – the AST tree acquired from second step with

marked places for repeated application of Rule 4.4

51/98

Figure 4.3: Second step of optimization algorithm for query (1)

The next two steps involve once again applying Rule 4.4 and checking for application of

Rule 4.5 – the nested/pop elimination. The nodes on an AST tree subjectable to this rule have been

marked on a Figure 4.6

52/98

Figure 4.4: Third step of optimization algorithm for query (1)

The AST tree from Figure 4.6 corresponds to the following Python/PySBQL code:

build(lambda c,n:reduce((lambda zs,z: (nested(z), \
(evaluate(P) and (nested(z),reduce(c,evaluate('dept'), \

zs),pop())[1] or zs ,pop())[1]), \
evaluate('Emp'),n))

After application of the nested/pop elimination rule we acquire the following code corresponding to

the tree from Figure 4.7:

build(lambda c,n:reduce((lambda zs,z: (nested(z), \
(evaluate(P) and reduce(c,evaluate('dept'),zs) \

or zs ,pop())[1]), evaluate('Emp'),n))

53/98

Figure 4.5: Fourth step marked for Rule 3.4
Figure 4.6: Fifth step marked for the

nested/pop elimination rule

Because we cannot apply neither reduce/build transformation, nested/pop elimination nor

β-reduction we now have to apply the definition of the build function according to the Rule 4.2. As

a result we acquire a tree (Figure 4.8) that can be subjected to Rule 4.4

54/98

Figure 4.7: Sixth step marked for Rule 3.2

Figure 4.8: Final step of the optimization algorithm

The result of the algorithm is presented by the Figure 4.9 and the source code below:

reduce((lambda zs,z: (nested(z), (evaluate(P) and \

reduce(struct.__add__,evaluate('dept'),zs) or zs , \

pop())[1]), evaluate('Emp'), struct())) \

During the evaluation of the not-optimized input plan one intermediate list would be created

- a list of employees fulfilling the predicate P. In the deforested version this intermediate structure is

not being created. The output plan has the following meaning: during its execution for each

employee check if the surname condition is met, and if so, add their department reference to the

result collection. Each employee is considered only once, what reduces resources consumption.

Another benefit of this method is that the evaluation of the output program is at least as fast as

evaluation of the input program in the worst case scenario, and in a better one - can speed up the

process. Additionally, after a new plan for a specific composition of two operators has been

generated it can be stored for future usage.

55/98

Figure 4.9: The output evaluation plan tree

4.1.1 Efficiency Tests

The efficiency tests of the presented deforestation algorithm have been performed on

PySBQL platform with XML storage. There were three data sets describing employees hierarchy:

comprising 103, 104 and 105 employees. The tests have been performed on two machines:

− machine A with Intel core 2 duo T6400 processor, 4GB RAM memory and Windows 7

− machine B with 936X4 Athlon processor (4 cores) and 8GB RAM memory with

Windows 2008 Server

The efficiency tests have been performed on the following queries:

(Q1) (Emp where (sname=='River' and fname=='Judy')).

worksIn.address

(Q2) sum((Emp where (sname=='Smith' and fname=='Jane')).

mgr.worksIn.employs)

On each data set and each machine the above queries gave similar results. For the set of

1000 records the original and modified queries achieved basically the same performance statistics.

The average memory consumption during queries execution was 150kB. The results were returned

instantly. Tables 4.1 and 4.2 present efficiency tests for queries Q1 and Q2 respectively. Columns

"Memory" present amount of RAM memory consumption used during query evaluation, while

"Time" shows how much time was needed for the query to return its result.

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original

query

Machine A
150kB

<1ms
1.5 MB

6s
5.7 MB

27s

Machine B <1ms 1ms 2ms

Optimized

query

Machine A
150kB

<1ms
0.8 MB

5s
4.6 MB

24s

Machine B <1ms <1ms 1ms

Table 4.1: Results of efficiency tests for deforestation algorithm (query Q1)

56/98

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original

query

Machine A
150kB

<1ms
1.6 MB

6s
6.4 MB

32.2s

Machine B <1ms 1ms 5ms

Optimized

query

Machine A
150kB

<1ms
1 MB

5s
5.3 MB

29.6s

Machine B <1ms <1ms 3ms

Table 4.2: Results of efficiency tests for deforestation algorithm (query Q2)

The memory consumption for both machines was almost the same; the differences were only

visible in execution time. This optimization technique has shown little time improvement (by

approximately 10%) and a considerable memory consumption reduction (by approximately 25%).

Another conclusion coming from performed tests was that it might be profitable to implement a

more efficient reduce operator that would work specifically with semi-structured data.

An additional benefit of including this method in the optimizer is that in most of the cases

when deforestation cannot be applied, the optimizer can use the method of factoring out

independent subqueries.

4.2 Distributivity of Algebraic Functions Over the Dot Operator

Chapter 4.1 discussed the algorithm for reduction of sizes of the intermediate structures for

SBQL language. That algorithm worked on a level of execution plans based on lambda expressions.

It assumed that every operator has such execution plan. For some SBQL implementations this

assumption may be too troublesome and restricting. This may especially concern distributed object

databases which have special execution plans that include parallel computation. This chapter

presents another rewriting algorithm for reduction of sizes of the intermediate structures. The basic

assumption idea of this algorithm is to rewrite an SBQL query to another SBQL query.

Let us consider a simple query:

57/98

sum(Dept.employs.Emp.salary) (3)

This query calculates the sum of salaries of all employees assuming that they are grouped by

their departments. Using two techniques previously described this query may be folded into a

simple function that traverses the tree of employment and adds up every encountered salary. It

would require a single aggregate object. But what if we would like to make the process parallel? Or

what if the database scheme is distributed and the data is fragmented? Deforestation will reduce the

total amount of data transferred, but at the same time it may generate much traffic with requests

addressed to distributed servers. Benefiting from the unique property of SBQL dot operator we have

developed a new technique of deforestation by distributivity of linear algebraic functions over the

dot operator. Our algorithm takes as an input a simple algebraic function like sum, min, max that has

a dot expression as an argument. On output it generates a query in which after each occurrence of

the navigation operator the initial function is inserted. Let us consider once again the (3) query.

After modifying it with our algorithm it takes the form:

sum(Dept.sum(employs.sum(Emp.sum(salary)))) (4)

Now let us assume that in our hypothetical company we have 100 departments, each one

employing at least 1000 employees. Without any optimization we have to store more than 100 000

salary objects in an intermediate structure. Also, most of those objects might require transfer

through the network. But if we distribute the sum function, then we reduce the size of the biggest

intermediate structure about 100 times. Additional profit of this method is that most of the

distributed database servers may perform partial evaluation of this query, what would significantly

decrease the transfer over network because instead of sending 100 salary objects only one number

would be sent to the main server. On a distributed system where each department with its

employees is stored on a different computer, the distribution of a sum function would have the

biggest impact on the efficiency of the query execution.

The functions that can be distributed over the dot operator include sum, min, max. The

count function might seem troublesome for the use of this technique. But when we translate

count(query) into its equivalent sum(query.1) it becomes apparent that the count function may also

be distributed. An example of optimization process for count function is presented below:

count((Dept where name == "IT").employs.Emp) ≡

sum((Dept where name == "IT").sum(employs.sum(Emp.1)))

Another operator that is often used in database queries is avg (arithmetic average)

operator. This operator, like count, cannot be distributed over the dot operator in its basic form. But

58/98

it can be translated into a composition of a few functions (we skip here the question of

implementation of execution plans):

avg_p(x) = (sum(x), count(x))

avg_p_sum(plist) = (sum(first(plist)),
sum(second(plist)))

avg_div(x,y) = if y!=0: x/y else: 0

The avg_p function simultaneously increases the aggregate and the count variable. The avg_p_sum

function takes a list of pairs of numbers, and returns a pair of numbers that represent the sum of

respectively the first and the second elements of pairs. This function is susceptible to distributivity

over the dot operator. Having those three functions we now can present a new definition of the avg

function:

avg(x) = avg_div(avg_p_sum(avg_p(x)))

On flat collections this transformation creates intermediate structures and it slows down the

evaluation. But it is meant to deal with complex path (dot) queries, and for them it has the

advantage of reducing the intermediate structures and increasing the speed of evaluation. Let us

consider the query:

avg((Emp where position == "Manager").subordinate.Emp.salary)

Let us assume that each of the managers has 1000 subordinates, and there are 100

managers. An intermediate structure of 100 000 database objects would be created in order to

calculate the result. Now let us consider the alternative definition already in a distributed form:

avg_div(avg_p_sum((Emp where position == "Manager").

 avg_p_sum(subordinate.avg_p_sum(Emp.avg_p(salary))))) (5)

During the evaluation of this query the outermost avg_p_sum reads from the database

those employees that match the filtering condition. For each one of them it evaluates the inner

avg_p_sum that would bind the name subordinate within the context of a current employee, and so

on. This way the biggest intermediate structure will consist of 100 pair of numbers, which is a

considerable storage saving.

59/98

4.2.1 Efficiency Tests

The testing platform was exactly the same as in the chapter 4.1.1. There were two machines – with

Windows and Linux operating systems equipped with PySBQL working with an XML storage.

Also, all of the data sets were the same as previously. The efficiency tests have been performed on

the following queries:

(Q3) count(Emp.worksIn.address.('Works in ' + city))

(Q4) sum((Emp where (sname=='Smith' and fname=='Jane')).

mgr.worksIn.employs)

As in the test case from the chapter 4.1.1, on each of the data sets and each machine the

above queries gave similar results. Tables 4.3 and 4.4 present efficiency tests for queries Q3 and Q4

respectively. Columns "Memory" present amount of RAM memory consumption used during query

evaluation, while "Time" shows how much time was needed for the query to return its result.

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original
query

Machine A
0.1 MB

1ms
1.4 MB

5s
6.1 MB

30s

Machine B 0ms 2ms 4ms

Optimized
query

Machine A
17 kB

1ms
320 kB

1s
2.5 MB

12s

Machine B 0ms 1ms 3ms

Table 4.3: Results of efficiency tests for query Q3

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original
query

Machine A
160 kB

2ms
1.6 MB

6s
6.4 MB

32.2s

Machine B 0ms 1ms 5ms

Optimized
query

Machine A
57 kB

1ms
0.5 MB

1.4s
2.8 MB

15.6s

Machine B 0ms 1ms 3ms

Table 4.4: Results of efficiency tests for query Q4

60/98

The execution times for optimized queries for the bigger tests sets show improvement of

execution speed by approximately 50% for machine A and 10% for machine B. This is related to the

use of memory caching on a hard drive. However, the main goal was to reduce the memory

consumption. Tests have shown that for each query and each data set, the memory consumption for

the optimized query was approximately 30% of the consumption for the original query.

4.3 Summary

This chapter has presented novel applications of the deforestation – an optimization

technique for functional languages intended to reduce the size of intermediate structures. We have

analyzed two propositions of optimization algorithms for the SBQL language. The first algorithm

worked with execution plans written using Python language notation. Further research on this topic

should involve generating similar algorithms for other semi-structured query languages like

XQuery. The second optimization algorithm discussed in this chapter exploits functionality of

SBQL's dot operator. Deforestation technique that optimizes execution plans is a stronger method

than the distributivity over the dot operator, and when used together, distributivity will be

overwritten. But it is not predetermined which method is better. Depending on the context and the

cost model one may be preferable or more efficient than the other.

61/98

5 Optimization of Recursive Queries

In this chapter we focus on optimization of recursive queries in SQL and SBQL. Both

presented techniques are based on the idea of reduction of intermediate structures. The first

technique was developed for the SBQL's close by operator. The second algorithm was designed for

SQL's recursive common table expressions, however it may also be used to optimize queries which

involve recursive views.

5.1 Optimization of Recursive Queries for SBQL

The chapter 4 described two propositions of optimization techniques for SBQL queries.

Those techniques are based on the shortcut fusion technique described in the chapter 3.2.

Although shortcut deforestation for SBQL queries is very efficient in eliminating

intermediate structures, it has a big drawback — it does not optimize recursive calls. The close by

operator representing transitive closure of the dot operator cannot be translated into reduce/build

notation, thus it falls outside of the cheap deforestation technique. The need for optimization of

recursive SBQL queries resulted in the research and development of a new algorithm that was based

on rewriting of execution plans. Preliminary results of this research have been published in

[Burz10]. The algorithm introduced in that paper is used to eliminate intermediate structures that

are generated during evaluation of a composition of a close by operator and an aggregate function.

The construction of this algorithm has been inspired by lightweight fusion technique for functional

languages described in [Ohor07].

Before describing the above mentioned algorithm we first need to introduce an execution

plan for the close by operator written using Python language notation.

Definition 5.1.

The execution plan for the close by operator is represented with the following recursive

function definition and call:

def closeby (dotFunction, queryRes):

if isEmpty(queryRes): return bag()

else:

 return bag.__add__(queryRes,

closeby (dotFunction, dotFunction(queryRes))

closeby(makeDotF(leftQuery),eval(rightQuery))

Where dotFunction represents the execution of the left query in context of the result

bag of the right query.

Our algorithm is composed out of three steps:

Method 5.1

Let Q be a close by query and A be an aggregate function that takes Q as an argument. In

order to eliminate intermediate structures created by Q the following steps should be undertaken:

− inline the A function's call into both return clauses of the close by's execution plan

function

− simplify all calculation that can be computed without searching through the database

section by performing built-in operations such as adding numbers or processing strings

− generate a new execution plan function representing the composition of the analyzed

operators and replace the A(Q) call with this execution plan.

The above rule utilizes only elementary operations used also during normal evaluation

process. What is important in this rule is the order of the steps necessary and the simplification

stage.

The newly generated execution plan function may be stored for the commonly used

compositions. Let us analyze this algorithm on a composition of a count function with close by

operator. A sample definition of the count function is presented below:

63/98

Definition 5.2. Definition of the count function

def count(list_arg):

if isEmpty(list_arg): return 0

else:

len = 0

for i in list_arg:

len+=1

 return len

According to the Rule 5.1 we firstly inline the count function into the definition of the close by's

execution plan function:

if isEmpty(queryRes): return count(bag())

else:

 return count(bag.__add__(queryRes,

closeby (dotFunction, dotFunction(queryRes)))

Now we simplify the calculation acquiring:

if isEmpty(queryRes): return 0

else:

 return count(queryRes) +

count(closeby (dotFunction, dotFunction(queryRes)))

The last step is to generate a new execution plan function and use it in place of count(query1

closeby query2) call:

def count_closeby (dotFunction, queryRes):

if isEmpty(queryRes): return 0

else:

64/98

 return count(queryRes) +

count_closeby (dotFunction, dotFunction(queryRes))

count_closeby(makeDotF(leftQuery),eval(rightQuery))

This new function will calculate the same result as the initial query, but it does not use an

intermediate structure containing all of the database elements that are retrieved during the

evaluation. Instead it counts those elements at each iteration of the recursion. For multilevel

hierarchy it significantly reduces the size of intermediate structures, because the maximum size of

such structure is equal to the sum of objects acquired in a given iteration. This technique can be

efficiently combined with reduce/build rules described in the chapter 4.

5.1.1 Efficiency Tests

Similar to the testing of algorithms from the fourth chapter, the efficiency tests of the

presented algorithm have been performed on PySBQL platform with XML storage. There were

three data sets describing employees hierarchy: comprising 103, 104 and 105 employees. The tests

have been performed on two machines:

− machine A with Intel core 2 duo T6400 processor, 4GB RAM memory and Windows 7

− machine B with 936X4 Athlon processor (4 cores) and 8GB RAM memory with

Windows 2008 Server

The efficiency tests have been performed on the following query:

sum(((Emp where (sname=='Smith' and fname=='Jane'))

close by mgr).salary)

On each data set both machines have shown similar memory consumption. The data has

been prepared so that it did not contain cycles. Table 5.1 presents efficiency tests for the above

query. Columns "Mem" present amount of RAM memory consumption used during query

evaluation, "Time A" shows how much time was needed for the query to return its result on

machine A, while "Time B" - on machine B.

65/98

Test suite
103 records 104 records 105 records

Mem Time A Time B Mem Time A Time B Mem Time A Time B

Original query 0.9 MB 1.3s 84ms 12.6 MB 16s 2.1s 47.3 MB 368s 39s

Optimized

query
0.8MB 1s 68ms 10.9 MB 14s 1.5s 38.6 MB 307s 32s

Table 5.1: Results of efficiency tests of close by operator optimization

This optimization technique achieved approximate 14% reduction of memory consumption.

The observed difference in execution speed for the biggest test suite for machine A is related to the

heavy use of memory caching on a hard drive. Tests performed using different "starting" elements

have shown similar results.

This tests show that the presented technique of query rewriting is efficient in optimizing

SBQL's recursive queries. Additional research around this type of SBQL's queries could be based

on extending this algorithm with a heavy use of the meta-data and indexing.

5.2 Pushing Predicates into Recursive SQL Common Table
Expressions

Queries based on the recursive Common Table Expressions can be found in most of the

popular Database Management Systems. Such queries are very troublesome because of their

complexity, resource consumption and possibility of existence of endless loops. It is also very

difficult to find an efficient execution plan for them. The work [Przy10] presents the results of

efficiency test for recursive queries' implementations. It shows that even for small amounts of data,

the evaluation time could be very big.

The evaluation time and huge amounts of intermediate data created during recursive query's

evaluation lead to development of an algorithm for the optimization of recursive CTEs through

rewriting – thus leaving a possibility for the usage of other optimization algorithms. This method

has been described in [Burz09]. It was inspired by the method of predicate-move-around described

66/98

in chapter 3 of this thesis. However, this method applies to non-recursive queries only. Recursive

queries are much more complex, since predicates external to them apply to the nodes obtained

during the execution. It could be useful to push such predicates into the initial step or the recursive

step. We cannot do it straightforwardly, since the predicate holding for the resulting nodes does not

have to hold for neither intermediate recursive results nor the initial recursion step. The new method

of pushing predicated into CTE is subtle enough not to change the semantics of the query.

Together with pushing predicates this method also tries to push other operators into the

recursive CTE, so that some part of computation would be performed on the fly together with the

recursive processing. This spares space needed for temporary data structures and the time needed to

store and retrieve data from them. This part of the optimization method is inspired by the

deforestation developed for functional languages.

5.2.1 Motivating Example

The best way to present the idea behind this algorithm is to show its potential applications.

Let us consider a database table Emp with four columns: eid, ename, salary and mgr. The column

eid is the primary key, while mgr is a foreign key which references eid. The column mgr stores data

on managers of individual employees. Top managers have NULL in this column. We define also a

recursive view which shows the subordinate-manager transitive relationship, i.e. it prints pairs of

eids, such that the first component of the pair is a subordinate while the second is his/her manager.

Following SQL-99 standard a query expressing this structure would have the form:

CREATE VIEW subordinates (seid, meid) AS

WITH RECURSIVE subs(seid, meid) AS

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.eid AS meid

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid)

SELECT * FROM subs;

67/98

This view can then be used to find the total salary of all subordinate employees of, say, Smith:

SELECT SUM(e2.salary)

FROM subordinates s2

JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

A naïve execution of such a query consists in materializing the whole transitive subordinate

relationship. However, we need only a small fraction of this relationship which concerns employees

named Smith and their subordinates.

In order to avoid materializing the whole view, we start from a standard technique of query

modification. We expand the view definition:

WITH RECURSIVE subs(seid, meid) AS

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.eid AS meid

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid)

SELECT SUM(e2.salary)

FROM (SELECT * FROM subs) s2

JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

The execution of this query can be significantly improved, if we somehow manage to push

the predicate e1.ename = ’Smith’ to the first part of the CTE. After this first improvement it is

possible to get rid of the join with e1 and push the join with e2 as well as the retrieval of the salary

68/98

into the CTE. After all this changes we get the following form of our query:

WITH RECURSIVE subs(seid, salary) AS

SELECT e.eid AS seid, e.salary

FROM Emp e

WHERE e.ename = ’Smith’

UNION ALL

SELECT e3.eid AS seid, e3.salary

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid);

SELECT SUM(s2.salary) FROM subs s2;

The result of the predicate push and the query fusion is satisfactory. Now we traverse only

the Smith’s hierarchy. Further optimization is not possible, by rewriting SQL query to another SQL

query (SQL:99 severely limits the form of recursive CTEs). However, we do not need to

accumulate neither eids nor salaries. We just need to have one temporary structure, i.e. a number

register to sum the salaries on the fly as we traverse the hierarchy. This is the most robust plan

(traverse the hierarchy and accumulate salaries). Such rewriting is a simple application of

deforestation and can be done by a DBMS on the level of query execution plans even if it is not

expressible in SQL:99.

5.2.2 Utility Optimizations

Let us now discuss the algorithm that would accomplish previously presented rewriting of a

recursive query. In general it may be divided into the following steps performed interchangeably:

• expanding the view definition with substitution of variable names

• elimination of vain joins

• elimination of self-joins on primary keys (primary key-to-primary key self-join elimination)

• predicate push-in

69/98

The first three steps are well known in the field of optimization by rewriting SQL queries.

They will be briefly described in this sub-chapter including the basic assumptions that should be

met for them. The last step of pushing-in predicates, being the key point of our algorithm, will be

described in detail in the sub-chapter 5.2.3

The first step of our algorithm is purely syntactic and performed only once. The algorithm

begins by expanding the recursive view's definition. The immediate step should be so called α-

conversion – basically substitution of the variable names.

Rule 5.2. Alpha-conversion for Predicate Push-In

Let Q be a recursive query using CTE and containing references to tables T1,..., Tn, where

Tk,..,Tn are tables that have not been given alias names, 1<=k<=n. In order to acquire an

equivalent query with respect to alias names the following step should be undertaken:

a. starting from table T1 up to Tk-1 the given table alias should be replaced with new,

unique alias name and corresponding column calls should be renamed

accordingly

b. tables Tk,...,Tn should be assigned new unique alias names and column calls

corresponding to those tables should be renamed to include those alias names

c. column names included in the CTE's header should be replaced with new, unique

alias names. Those alias names should be assigned to corresponding column

definitions from the inner SELECT clauses. The references to those columns

should be renamed accordingly

This Rule is used to introduce order in the alias names and definitions. This is done to avoid

potential problems in the further stages of the main algorithm.

The second technique is the elimination of vain joins. By vain join we understand a

predicate joining two tables based on primary key-foreign key dependencies where the table joined

by its primary key is not used in any other clause or predicate of the given subquery. The technique

of vain join elimination is usually applied after some other query transformation.

70/98

Rule 5.3. Removal of vain joins from the CTE and outer query

Let Q be a recursive query using CTE. Let us use the names T1,T2 for the tables with alias

names TA1, TA2 respectively. If T1's primary key is used in a joining condition with a foreign

key of table T2, but besides this joining condition it is not used in any other way. If the

foreign key column of T2 table does not contain NULL values then this joining condition and

the reference to the table T1 may be removed from the query Q without changing the result

of Q. If the foreign key column of T2 table contains nulls then the join predicate should be

replaced with the T2.foreign_key IS NOT NULL predicate and the reference to the table T1

removed from the appropriate FROM clause

The Rule 5.3 may be applied to joining condition occurring in any of the parts of the CTE, or in the

outer query that uses the CTE. The subtle issue is the NOT NULL condition for the foreign key of

the T2 table. If the foreign key column would contain null values, then the joining condition would

have the same functionality as IS NOT NULL condition. But if the schema determines the foreign

key to be NOT NULL, this condition is useless and is not added.

Another simple conversion is a self-join elimination when the join is one-to-one (primary

key to primary key).

Rule 5.4. Primary key-to-primary key self-join elimination

Let Q be a recursive query using CTE. Let T be a table referenced inside Q under two alias

names TA1 and TA2, such that the query Q contains a predicate joining TA1 with TA2 using

their primary keys. The query Q may be rewritten into equivalent query by deleting the

marked self-joining condition, deleting the reference to TA2 from the FROM clause and

replacing each remaining occurrence of alias name TA2 with TA1

This technique may be illustrated by the following example. Starting from a query:

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid AS meid, e2.salary as salary

FROM Emp e, Emp e2

WHERE e.eid = e2.eid

71/98

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid, e4.salary as salary

FROM Emp e3, subs s, Emp e4

WHERE (e3.mgr = s.seid) AND e.eid = e4.eid)

SELECT SUM(s2.salary)

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

The Emp table's instances e1 and e2 are joined using their primary keys. We mark the e2 table for

removal from the initial query using the Rule 5.4. As a result we obtain the query:

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid AS meid, e.salary as salary

FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid, e4.salary as salary

FROM Emp e3, subs s, Emp e4

WHERE (e3.mgr = s.seid)

AND e.eid = e4.eid)

SELECT SUM(s2.salary)

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

Primary key-to-primary key self-join elimination may be applied to both parts of a CTE definition

and to the main part of the query. In the mentioned example it was applied to the first part of the

CTE, but it might have been also applied to the recursive step of that query.

72/98

5.2.3 Predicate Push into Common Table Expressions

This section describes the main part of our technique, i.e. how to find predicates which can

be pushed into a CTE and how to rewrite the query to push selected predicates into CTE. In

subsequent steps we will analyze each table (represented by some alias name) joined to the result of

a CTE. Such a table may be simply used in the query surrounding the CTE or for example may

appear to be joined with CTE after expansion of the definition of a view (as in the example from

Section 5.2.1). In the following paragraphs we will call such a table as "marked for analysis".

Depending on the part of the analyzed query where the marked table's alias is called we have

three transformations:

Rule 5.5. Join predicate pushing

Let Q be a recursive query using CTE and T be a table with alias name TA such that TA is

marked for analysis and Q contains a predicate joining TA with CTE. In order to push the joining

predicate into the CTE, the following steps should be undertaken:

− copy the table T's declaration into all of the inner FROM clauses

− copy the joining condition into the WHERE clauses of the CTE translating CTE's column

call into its equivalent within the part of the CTE being processed.

The first part of the Rule 5.5 is fairly intuitive. As for the second part the action that might

be unclear is translation of the CTE’s column call used for joining into its equivalent. Let us analyze

an example of how this action might be performed.

Let us assume that CTE's column used in the joining predicate has been named cte.C1. In the

first SELECT clause of the CTE we search for an alias name definition for C1. The Rule 5.2.

(Alpha-conversion) guarantees the existence of such definition. When we find TAi.Cj AS C1 we

substitute the column name cte.C1 with TAi.Cj. We proceed analogously when copying the join

condition into the recursive part of the CTE

Rule 5.6. Selection clause extension

Let Q be a recursive query using CTE and T be a table with alias name TA such that TA is

73/98

marked for analysis. Let Q contain a predicate joining TA with CTE using table T's primary key and

the Q's outer SELECT clause contains calls to columns TA.C1,.., TA.Cn. In order to create a query

Q1 resulting in the same set of records as Q, the following steps should be undertaken:

− push-in the joining condition (using the Rule 5.5)

− copy the columns TA.C1,..., TA.Cn calls into all inner SELECT clauses, assigning those

columns' calls new alias names (NC1,..., NCn accordingly)

− expand CTE’s header using aliases NC1,..., NCn.

− in the outer SELECT clause replace the alias TA with the outer alias of the CTE.

The above rule has application to cases when a table is joined in the outer query to the CTE

and is also referenced in the outer select clause. The next rule has similar construction but is applied

to cases when the outer select query contains a table joined to the CTE and to some other table.

Rule 5.7. CTE extension

Let Q be a recursive query using CTE and T be a table with alias name TA such that TA is

marked for analysis. Let Q contain a predicate joining TA with CTE using table T's primary key and

a predicate joining TA with table R having the alias name RA, RA!=TA. Let TA.C1,..., TA.Cn,

RA.A1,...,RA.An be column calls used to join TA with RA. In order to create a query Q1 resulting in

the same set of records as Q, the following steps should be undertaken:

− push-in the predicate joining TA with CTE (using the Rule 5.5.)

− copy the column calls TA.C1,..., TA.Cn used in the predicate joining into all inner SELECT

clauses, assigning those columns' calls new unique alias names (NC1,..., NCn accordingly)

− expand CTE’s header using aliases NC1,..., NCn.

− in the outer SELECT clause replace the calls TA.C1,..., TA.Cn with cte.NC1,...,NCn

If a recursive query involving CTE matches the conditions for rules 5.5, 5.6 and 5.7 for the

same table alias marked for analysis, those rules should be performed together. The result of

applying those three rules is illustrated by the following example:

74/98

Having the query:

WITH subs(seid, meid) AS (

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid

FROM Emp e3, subs s

WHERE e3.mgr = s.seid)

SELECT e2.salary, d1.name

FROM subs s2 JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

JOIN Dept d1 ON (e2.dept = d1.did)

WHERE e1.ename = ’Smith’;

The table marked for analysis is Emp e2. This table is used in two join conditions (with the

CTE, and with the Dept table) and once in the SELECT clause, thus meeting the conditions for all

three rules. By applying the Rule 5.5 we copy the table name into both FROM clauses existing in

the CTE definition, also we copy the predicate joining e2 with the CTE and the e2's column calls

(salary and dept). While copying those calls and predicates we assign new alias names for columns

and extend the CTE's header.

Finally we apply the Rule 5.3 and remove the marked table with its references from the outer

selection query. The resulting query has the form:

WITH subs(seid, meid, dept, salary) AS (

SELECT e.eid AS seid, e.eid AS meid,

e2_1.dept AS dept, e2.salary AS salary

FROM Emp e, Emp e2

WHERE e2_1.eid = e.eid

UNION ALL

75/98

SELECT e3.eid AS seid, s.meid AS meid,

e2_2.dept AS dept, e2_2.salary AS salary

FROM Emp e3, subs s, Emp e2_2

WHERE e3.mgr = s.seid AND e2_2.eid = e3.eid)

SELECT s2.salary, d1.name

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

JOIN Dept d1 ON (s2.dept = d1.did)

WHERE e1.ename = ’Smith’;

This form may undergo further optimizations like elimination of self-join. One thing has to

be mentioned: if the marked table is not joined with CTE, is should be skipped and returned to later,

after other modifications to CTE.

The last and most important case is when a table from the outer query is referenced within a

predicate other than join. It should be marked for pushing into CTE, but before moving into CTE

we have to check if moving this predicate into CTE is possible. There are many predicates for

which pushing them into CTE would put too big restrictions on the CTE resulting in loss of data.

During the research on recursive queries we found that the predicate can be pushed into the CTE

only if we can isolate a sub-tree of the result tree that contains only the elements fulfilling the

predicate and no other node outside this sub-tree fulfills this predicate. Let us imagine a situation,

when a hierarchy tree contains some nodes matching the given predicate, but those nodes are placed

randomly along the branches. Predicate pushing could result in elimination of a branch containing a

matching node, which should be included in the result set.

The availability of predicate pushing may be only verified by checking for the existence of

the tree invariant – an attribute of a node which value is the same for all the nodes on a given

branch. So a general method for pushing a predicate into CTE is based on checking CTE for the

existence of tree invariant and if found, checking if the predicate can be attached to CTE through

this invariant. To perform this check we use induction rules.

76/98

Rule 5.8. Predicate pushing into recursive CTE

Let Q be a recursive query using CTE, SI be the SELECT subquery forming initial step of Q,

SR be the SELECT subquery forming the recursive step. In order to check for the existence of

the tree invariant the following steps should be performed:

• Create the schema of the initial tuples by analyzing the SELECT clauses from the SI

subquery or the header of the CTE

• Form a general representation of such tuples (a1, a2, … an), where n is the length of the

initial tuples

• By analyzing SR subquery (SELECT clause and join predicates) form a new tuple (b1,

b2, …, bn) out of the (a1, a2, …, an)

• For each 1<=i<=n compare ai with bi. If an equality is found mark the number i as the

index of the tree invariant. If no equality exists, the predicates cannot be pushed in

• If ai is found to be the tree invariant, and there exists a predicate that could be

attached to this column through a join condition, such predicate may be pushed into

the SI subquery.

Based on the induction rules, if a filtering condition is attached to a tree invariant, then each

tuple formed from a tuple matching this condition also satisfies it. So it is sufficient to push

the predicate only to the SI subquery by pushing in the appropriate joining condition (if

necessary) using Rule 5.5 and moving the filtering predicate from outer query into SI.

What is important is that the filtering predicate does not need to be an equality condition.

Let us now observe how this method is performed on an example. Let us analyze the following

query (with the join condition already pushed in):

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid AS meid, e.salary as salary

FROM Emp e, Emp e1

WHERE e1.eid = e.eid

77/98

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid,e3.salary as salary

FROM Emp e3, subs s, Emp e1

WHERE e3.mgr = s.seid AND e1.eid = s.meid)

SELECT SUM(s2.salary)

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

In the CTE definition we reference the table Emp four times and once the CTE itself. The

table Emp e1 occurs in the predicate e1.ename = ’Smith’.

By analyzing SELECT clauses of the CTE we find that the initial step generates tuples of the form:

(e, e, se)

Let us assume that tuple (a, b, c) CTE.∈ Querying the meta-data gives us the information

about the Emp table including the list of the attributes: (EID, ENAME, MGR, SALARY), their

types and the table's primary key (in this case the EID column). This means that every tuple

belonging to the relation Emp has the form:

(e, ne , me , se).

All of the tuple’s elements are functionally dependent on the first element. During the recursion step

from this tuple the following tuples are generated:

((a, b, c), (e1, fe1 , le1 , a, se1), (b, fb , lb , mb , sb))

Next by projection on the 4-th,2-nd, and 8-th element we form a tuple:

(e1, b, se1)

Comparing this tuple with the initial tuple template we see that the second parameter is a tree

invariant, so we may attach to this parameter a table with predicate limiting the size of the result

collection. Because the predicate e1.ename = ’Smith’ references a table that is joined to the second

element of the generated tuple, this predicate can be pushed into the initial step of CTE.

By applying Rule 5.3 to the outer select query, and Rule 5.4 to both inner SELECT subqueries we

acquire a query:

78/98

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid as meid, e.salary as salary

FROM Emp e

WHERE e.ename = ’Smith’

UNION ALL

SELECT e3.eid AS seid, s.meid as meid, e3.salary as salary

FROM Emp e3, subs s

WHERE e3.mgr = s.seid)

SELECT SUM(s2.salary)

FROM subs s2;

This way we have obtained a query which traverses only a fraction of the whole hierarchy. It is the

final query of our motivating example (see Section 5.2.1). The predicate e1.ename = ’Smith’ has

been successfully pushed into the CTE. The general procedure of optimizing recursive SQL query is

to firstly push in all the predicates and columns possible and then to use simplification rules

described in 5.2.2.

5.2.4 Measured Improvement

This section presents the results of tests performed on two sets of queries – the motivating example

and trains' routes. The tests have been performed on two machines:

− machine A with Intel core 2 duo T6400 processor and 4GB RAM memory and Windows

Vista OS and MS SQL Server 2008, PostgreSQL 8.4 and IBM DB2 9.7 databases

− machine B with 2500+ Athlon processor and 1GB RAM memory with Ubuntu 9.10 OS

and PostgreSQL 8.4 and IBM DB2 9.7 databases

79/98

The first test suite dealt with data is stored within a table Emp(eid, ename, mgr, salary)

containing 10 000 records. The hierarchy itself was created in such a way to eliminate cycles

(which is common in a company hierarchy). The query being tested is Query 5.1

The second suite of test includes two tables: Cities(cid, city) containing 200 distinct entries

and Trains(Tid, departure, arrival, railname, price) containing 3000 records. The basic query being

tested is Query 5.2 presented below:

80/98

WITH RECURSIVE subs(seid, meid) AS(

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid))

SELECT SUM(e2.salary)

FROM (SELECT * FROM subs) s2

JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = 'Smith';

Query 5.1: Calculates the sum of salaries of all Smith's subordinates

The parameter I was used to limit the recursion depth. It was set to a number ranging from

0 to 5 – bigger numbers resulted in memory allocation errors during execution of not optimized

queries. In addition to the basic test queries, modified starting points for both suites have been

tested. However, the general ratio of evaluation time before and after optimization was the same in

each case.

The table 5.2 presents the results of the efficiency tests performed on two schemes:

corporate hierarchy and train connections. The minus sign indicates that the DBMS returned a

memory allocation error.

81/98

WITH destinations (origin, departure, arrival, connections) AS

 (SELECT a.departure, a.departure, a.arrival, 1

 FROM trains a

 UNION ALL

 SELECT r.origin, b.departure, b.arrival, r.connections + 1

 FROM destinations r, trains b

 WHERE r.arrival = b.departure

 AND r.connections < I)

SELECT count(*)

 FROM destinations e, cities c

 WHERE e.origin = c.cid

 AND c.city = 'Warsaw';

Query 5.2: Calculates the number of possible train routes originating from Warsaw with limitation

placed on number of connections

Test suite I
Machine A (Windows) Machine B (Linux)

SQL Server PostgreSQL DB2 PostgreSQL DB2

Original

query

Subordinates - 1,47s 132ms 50,1s 235ms 79,36s

Trains

0 30 ms 4ms 6ms 15ms 5ms

1 46 ms 4ms 6ms 15ms 5ms

2 0,7 s 68ms 0,82s 186ms 1,25s

3 6,78 s 0,68s 9,53s 1,02s 14,92s

4 53s 5,04s 87,92s 11,82s 136,43s

5 348,76s - 673,15s - -

Optimized

query

Subordinates - 93ms 26ms 81ms 60ms 124ms

Trains

0 0ms 3ms 1ms 2ms 2ms

1 16ms 3ms 1ms 2ms 2ms

2 46ms 7ms 22ms 7ms 59ms

3 0,47s 76ms 0,52s 83ms 1,42s

4 5,16s 0,5s 6,95s 0,83s 20,58s

5 45,98s 4,87s 73,75s 16,94s 223,47s

Table 5.2: Results of efficiency tests

The execution times for optimized queries are approximately 10 times better when the depth

of recursion exceeds 3. For the recursion depth lower than 3 because of the time expenditure needed

to optimize the query the execution times would be similar. The execution plans (Figures from 5.1

to 5.4) of all four types of queries for IBM DB2 database provide some insight into the differences

in execution time for bigger amount of recursion steps.

82/98

Figures 5.1 and 5.2 present the execution plans for original and optimized query 5.1. The

original query was estimated to be performed within 8582.6 timeron units and needs one nested

loops join with union, two hash joins and six table scans. The creation of the temporary table has

been estimated for 8379.94 timeron units. On the other hand the query optimized using the method

described in this chapter was estimated by the DBMS to be performed in 8377.54 timeron units and

needs one nested loop join with union and four table scans. The creation of the temporary table in

this case has been estimated for 8375.41 timeron units. Those plans show that the potential benefit

of the optimization method for the query 5.1 lies within the reduction of the time needed to create

the temporary CTE and the elimination of hash joins and two costly table scans.

83/98

Figure 5.1: Execution plan for original query 5.1; generated by DB2 database

84/98

Figure 5.2: Execution plan for optimized query 5.1; generated by DB2 database

Figure 5.3: Execution plan for original query 5.2; generated by DB2 database

Now let us analyze execution plans for query 5.2 placed on figures 5.3 and 5.4. The original

query was estimated to be performed within 1320.38 timeron units with the creation of temporary

table estimated for 1297.19 timeron units. The optimized query was estimated for 1316.04 timeron

units with its temporary table estimated for 1310.84 timeron units. This query in both cases needs

one nested loops join with union, one hash join and five table scans. The benefit that comes out of

the optimization strategy in this case is that the hash join operates on a smaller amount of data.

85/98

Figure 5.4: Execution plan for optimized query 5.2; generated by DB2 database

One more aspect of optimization should be considered. The optimization strategy presented

in this chapter is similar to other, well known optimization technique called the magic sets [Ullm86,

Ullm89]. Both are rewriting algorithms attempting to reduce the size of intermediate results.

However while the magic set transformation operates only with equality and inequality

comparisons, the pushing predicates technique allows for all kinds of predicates including

inequality, greater-lesser comparisons and all other comparison operators. There are also other

differences. In magic sets filtering is performed by creating additional tables and additional joins

that keep only relevant tuples at each iteration. The pushing predicates technique on the other hand

attempts to filter out irrelevant tuples at the first step of recursion. However, both optimization

techniques may be used together.

86/98

WITH destinations (origin, departure, arrival, connections) AS

 (SELECT a.departure, a.departure, a.arrival, 1

 FROM trains a, cities c

 WHERE a.departure = c.cid

 AND c.city = 'Warsaw';

 UNION ALL

 SELECT r.origin, b.departure, b.arrival, r.connections + 1

 FROM destinations r, trains b

 WHERE r.arrival = b.departure

 AND r.connections < I)

SELECT count(*)

 FROM destinations e;

Query 5.3: Query 5.2 subjected to the pushing predicates technique

5.2.5 Summary

The methods presented in this chapter deal with recursion problems. Suggested algorithms

include reduction of intermediate structures for recursive SBQL queries and selecting the predicates

which can be pushed into the SQL's recursive CTE. The condition that needs to be satisfied in the

second case is the existence of tree invariant. The benefit of the usage of our method depends on the

selectivity of the predicates being pushed and the recursion depth. A highly selective filter condition

which may indirectly reduce the amount of recursion steps will improve the evaluation time in a

significant way. Even experiments with small tables proved the high potential of the method, since

for such small number of rows the reduction of the execution time is substantial.

The algorithm of predicate pushing for recursive SQL queries may be applied to both

recursive Common Table Expressions and during inlining of recursive view definitions. It also is

one of the key elements of optimization of object-relational mapping described in [Burz10a]

87/98

6 Final Conclusions

In this thesis we have shown four novel optimization techniques. Their main goal was to

reduce the resource consumption occurring during query execution and/or reduce the time needed to

calculate the result. All four techniques utilize query rewriting rules to achieve their goal. Using

commercial DBMS's and PySBQL experimental platform we have shown that the presented

optimization is profitable in both reduction of memory consumption and reduction of execution

time. The SBQL language has been implemented in a number of systems including few European

projects. Some systems and projects are still under development and there is a need for optimization

algorithms. Presented algorithms have been developed bearing in mind those needs and algorithms

that have already been implemented. The research on optimization of recursive SQL queries was

part of a bigger study on the subject, which included comparison and efficiency testing of various

implementations. This study revealed some of the weak points of evaluation of the recursive queries

that could be fixed with proper evaluation and optimization algorithms. The technique developed

for SQL language have shown it big potential during the experimental tests and inspired additional

research on object-relational mappings of recursive SQL queries. Development of this algorithm

together with the work on the deforestation algorithm inspired the work on other two presented

optimization methods.

An interesting line for future research may be application of deforestation algorithms

developed for stack based query languages family to the NoSQL databases equipped with

map\reduce systems and a PySBQL wrapper. It also seems promising to combine research on

deforestation and distributivity with parallelization of query evaluation. Last, but not least is

research on benefits and applications of rewriting of recursive queries to their linear equivalents.

88/98

7 Bibliography

[Abit95] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley 1995,

ISBN 0-201-53771-0

[Abit97] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. Wiener. The Lorel Query

Language for Semistructured Data. Int. J. on Digital Libraries 4(1/1), 1997, pages 68-

88.

[Afan08] L. Afanasiev, T. Grust, M. Marx, J. Rittinger and J. Teubner. An Inflationary Fixed

Point Operator in XQuery. In Proc. ICDE 2008. IEEE, 2008, pages 1504-1506

[Afan09] L. Afanasiev, T. Grust, M. Marx, J. Rittinger and J. Teubner. Recursion in XQuery: put

your distributivity safety belt on. In Proc. EDBT 2009. ACM, 2009, pages 345-356

[Alme06] J. M. Almendros-Jiménez, A. Becerra-Terón and F. J. Enciso-Baños. Magic Sets for the

XPath Language. Journal of Universal Computer Science 12(11), 2006, pages 1651—

1678

[Apt86] K. R. Apt, H. A. Blair, A. Walker. Towards a Theory of Declarative Knowledge.

Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann

1988, ISBN 0-934613-40-0, pages 89-148

[Bamf09] R. Bamford, V. R. Borkar, M. Brantner, P. M. Fischer, D. Florescu, D. A. Graf, D.

Kossmann, T. Kraska, D. Muresan, S. Nasoi and M. Zacharioudaki: XQuery Reloaded.

In Proc. VLDB 2(2), Morgan Kaufmann Publishers, 2009, pages 1342-1353

[Beer87] C. Beeri and R. Ramakrishnan. On the Power of Magic. In Proc. ACM SIGACT-

SIGMOD-SIGART PODS 1987. ACM, 1987, pages 269-284

[Bene08] M. Benedikt and C. Koch. XPath leashed. ACM Comp. Surveys, 41(1), 2008.

[Bonc06] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger and J. Teubner:

MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In Proc.

SIGMOD '06. ACM, 2006, pages 479-490.

[Bran07] M. Brantner, N. May, G. Moerkotte. Unnesting Scalar SQL Queries in the Presence of

Disjunction. In Proc. ICDE 2007, IEEE, Istanbul, 2007, pages 15-20

89/98

[Bres00] S. Bressan, C. H. Goh, N. Levina, S. E. Madnick, A. Shah and M. Siegel. Context

Knowledge Representation and Reasoning in the Context Interchange System. Appl.

Intell. (APIN) 13(2), Springer-Verlag, 2000, pages 165-180.

[Bris06] N. R. Brisaboa, A. Fariña, G. Navarro and J. R. Paramá. Chase of recursive queries. In

Proc. Ershov Memorial Conference. LNCS 4378. Springer-Verlag, Berlin, 2007, pages

112-123.

[Burz07] M. Burzańska and P. Wiśniewski. PySBQL - Python-Like Query Language Constructed

Using Stack Base Approach. Annales UMCS, Informatica, 2007, pages 143-151

[Burz09] M. Burzańska, K. Stencel and P. Wiśniewski. Pushing Predicates into Recursive SQL

Common Table Expressions. In Proc. ADBIS 2009, LNCS 5739, Springer-Verlag,

2009, pages 194-205

[Burz09a] M. Burzańska and P. Wiśniewski. L-Value and R-Value Concept - Proposition to Solve

Ref & Deref Chaos in SBQL Languages Family. Pol. J. Environ. Stud. Vol. 18 no. 3B,

2007, pages 143-151

[Burz10] M. Burzańska, K. Stencel and P. Wiśniewski. Intermediate Structure Reduction

Algorithms for Stack Based Query Languages. In Proc. ASEA'10, CCIS 1(117),

Springer-Verlag, 2010, pages 317-326

[Burz10a] M. Burzańska, K. Stencel, P. Suchomska, A. Szumowska, and P. Wiśniewski. Recursive

Queries Using Object Relational Mapping. In Proc. FGIT'10, LNCS 6485, Springer-

Verlag, 2010, pages 564-576

[Care00] M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian.

SilkRoute: A Framework for Publishing Relational Data in XML. In Proc. VLDB.

Morgan Kaufmann Publishers, 2000, pages 646–648.

[Catt96] R. G. G. Cattell. The Object Database Standard: ODMG-93 (Release 1.2). Morgan

Kaufmann Publishers, 1996

[Ceri89] S. Ceri, G. Gottlob and L. Tanca. What You Always Wanted to Know About Datalog

(And Never Dared to Ask). IEEE Trans. on Knowl. and Data Eng. 1(1), 1989, pages

146-166.

[Chau98] S. Chaudhuri. An overview of query optimization in relational systems. In Proc. PODS

'98. ACM, New York, 1998, pages 34-43.

90/98

[Codd70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun. ACM

(CACM) 13(6). ACM, 1970, pages 377-387

[Codd72] E. F. Codd. Relational Completeness of Data Base Sublanguages. Database Systems.

Prentice Hall and IBM Research Report RJ 987, San Jose, California, 1972,

[Date95] C. J. Date and H. Darwen. The third manifesto. In SIGMOD Rec. 24(1), ACM, 1995,

pages 39-49.

[Daya87] U. Dayal. Of Nests and Trees: A Unified Approach to Processing Queries That Contain

Nested Subqueries, Aggregates and Quantifiers. In Proc. of VLDB. Morgan Kaufmann

Publishers, 1987, pages 197-208

[Deck02] H. Decker. Translating advanced integrity checking technology to SQL. In Database

integrity: challenges and solutions. Idea Group Publishing, 2002, pages 203–249

[Denn91] S. van Denneheuvel, K. L. Kwast, G. R. Renardel de Lavalette, E. Spaan. Query

optimization using rewrite rules. In Proc. RTA '91. Springer-Verlag, New York, 1991,

pages 252-263.

[Deut03] A. Deutsch and V. Tannen. Reformulation of XML Queries and Constraints. In Proc.

ICDT, LNCS 2572, Springer-Verlag, 2003, pages 225–241

[Diet87] S. W. Dietrich: Extension Tables: Memo Relations in Logic Programming. In Proc. SLP

'87, IEEE Computer Society, Washington, 1987, pages 264-272

[Elhe07] M. Elhemali, C. A. Galindo-Legaria, T. Grabs and M. M. Joshi. Execution strategies for

SQL subqueries. In Proc. ACM SIGMOD '07. ACM, New York, 2007, pages 993-1004.

[Fega98] L. Fegaras. Query un-nesting in object-oriented databases. In Proc. ACM SIGMOD '98.

ACM, New York, 1998, pages 49-60.

[Fega00] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus. ACM

Trans. Database Syst. 25(4). ACM, 2000, pages 457-516.

[Fern02] M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W. C. Tan. XPERANTO: A

Middleware for Publishing Object-Relational Data as XML Documents. In Proc. ACM

TODS, 27. ACM, 2002, pages 438–493

[Flor04] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. J. Carey

and A. Sundararajan. The BEA Streaming XQuery processor. VLDB Journal 13(3).

Morgan Kaufmann Publishers, 2004, pages 294–315.

91/98

[Fomi06] A. Fomichev, M. Grinev, and S. D. Kuznetsov. Sedna: A Native XML DBMS. In

SOFSEM, 2006, pages 272-281

[Gall78] H. Gallaire and J. Minker (Eds.). Logic and Data Bases, Symposium on Logic and Data

Bases, Plemum Press, New York, 1978, ISBN 0-306-40060-X

[Gans87] R. A. Ganski and H. K. T. Wong. Optimization of Nested SQL Queries Revisited. In

Proc. ACM SIGMOD. ACM, San Francisco, 1987, pages 23-33.

[Ghaz06] A. Ghazal, A. Crolotte, D. Y. Seid: Recursive SQL Query Optimization with k-Iteration

Lookahead. In Proc. DEXA 2006. LNCS 4080, Springer-Verlag, Kraków, 348-357

[Gill93] A. J. Gill, J. Launchbury and S. L. P. Jones. A short cut to deforestation. In Proc.

FPCA, 1993, pages 223–232

[Gill96] A. J. Gill. Cheap deforestation for non-strict functional languages. PhD thesis, The

University of Glasgow (1996)

[Godf94] P. Godfrey J. Minker and L. Novik. An Architecture for a Cooperative Database

System. In Proc. ADB '94, LNCS 819, Springer Verlag, Vadstena, Sweden, 1994, pages

3-24

[Gott05] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of Xpath query

evaluation and XML typing. Journal of the ACM, 52(2), 2005, pages 284–335.

[Gotz09] M. Gotz, C. Koch, and W. Martens. E cient algorithms for descendant-only treeffi

pattern queries. Information Systems, 34(7), 2009, pages 602–623, 2009.

[Grin04] M. N. Grinev, D. Lizorkin. XQuery Function Inlining for Optimizing XQuery Queries.

In Proc. ADBIS '04, 2004

[Grin05] M. N. Grinev and P. Pleshachkov. Rewriting-Based Optimization for XQuery

Transformational Queries. In Proc. IDEAS '05. IEEE Computer Society, Washington,

2005, pages 163-174.

[Grus98] T. Grust, M. H. Scholl. Query deforestation. Technical report, Database Research

Group, University of Konstanz, 1998

[Grus04] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. VLDB. Morgan

Kaufmann Publishers, 2004, pages 252–263.

[Gupt92] A. Gupta and I. S. Mumick. Magic-sets transformation in nonrecursive systems. In

Proc. PODS '92. ACM, New York, 1992, pages 354-367

92/98

[Haji05] E. Hajiyev, M. Verbaere, 0. de Moor and K. de Volder. CodeQuest: querying source

code with datalog. In Proc. OOPSLA '05. ACM, New York, 2005, pages 102-103.

[Halv04] A. Halverson, V. Josifovski, G. M. Lohman, H. Pirahesh and M. Mörschel. ROX:

Relational over XML. In Proc. VLDB. Morgan Kaufmann Publishers, Toronto, 2004,

pages 264-275

[Hell92] J. M. Hellerstein. Predicate Migration: Optimizing Queries with. Technical Report.

UMI Order Number: S2K-92-13., University of California at Berkeley, 1992

[Jeze88] K. Jezek and V. Toncar. Experimental deductive database. In Workshop on Information

Systems Modelling, 1988, pages 83-90

[Jigy06] S. Jigyasu, S. Banerjee, V. Borkar, M. Carey, K. Dixit, A. Malkani and A. Thatte. SQL

to XQuery Translation in the AquaLogic Data Services Platform. In Proc ICDE '06.

IEEE Computer Society, Washington, 2006, page 97.

[Joha01] P. Johann. Short cut fusion: Proved and improved. In LNCS 2196, Springer-Verlag,

2001, pages 47–71

[Jone01] S. P. Jones, A. Tolmach and T. Hoare. Playing by the rules: rewriting as a practical

optimisation technique in GHC. In Haskell Workshop, ACM SIGPLAN, 2001, pages

203–233

[Kemp94] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunctive

queries with expensive predicates. In Proc. ACM SIGMOD 23(2), ACM, 1994, pages

336–347.

[Kim82] W. Kim. On Optimizing an SQL-like Nested Query. ACM TODS, Vol 9 (3), 1982.

[Koym90] K. Koymen. A Datalog interface for SQL (abstract). In Proc. ACM CSC '90. ACM,

New York, 1990, page 422.

[Kris04] R. Krishnamurthy, P. Kaushik, and J. Naughton. Efficient XML-to-SQL Query

Translation: Where to Add the Intelligence? In Proc. VLDB. Morgan Kaufmann

Publishers, 2004, pages 144–155

[Levy94] A.Y. Levy, I. S. Mumick and Y. Sagiv. Query Optimization by Predicate Move-Around.

In Proc. VLDB. Morgan Kaufmann Publishers, San Francisco, 1994, pages 96-107.

[Kay06] M. Kay. Optimization in XSLT and XQuery. In Proc XML Prague, 2006

93/98

[Lent06] M. Lentner, K. Stencel and K. Subieta. Semi-strong Static Type Checking of Object-

Oriented Query Languages, In Proc. SOFSEM '06, LNCS 3831, Springer-Verlag, 2006,

pages 399 – 408

[Liu08] Z. H. Liu, A. Novoselsky, and V. Arora. Towards a Unified Declarative and Imperative

XQuery Processor. IEEE Data Engineering Bulletin, 31, 2008.

[Maie88] D. Maier and D. S. Warren. Computing with Logic: Logic Programming with Prolog.

Benjamin-Cummings, 1988.

[Mano01] I. Manolescu, D. Florescu and D. Kossmann. Answering XML Queries on

Heterogeneous Data Sources. In Proc. VLDB. Morgan Kaufmann Publishers, 2001.

[May06] N. May, S. Helmer and G. Moerkotte. Strategies for query un-nesting in XML

databases. ACM Trans. Database Syst. 31(3), 2006, pages 968-1013.

[Mumi94] I. S. Mumick and H. Pirahesh. Implementation of magic-sets in a relational database

system. In Proc. ACM SIGMOD 23(2), ACM, 1994, pages 103-114.

[Mura92] M. Muralikrishna. Improved un-nesting Algorithms for Join Aggregate SQL Queries. In

Proc. VLDB. Morgan Kaufmann Publishers, Vancouver, 1992.

[Nejd87] W. Nejdl. Recursive Strategies for Answering Recursive Queries - The RQA/FQI

Strategy. In Proc. VLDB. Morgan Kaufmann Publishers, San Francisco, 1987, pages

43-50.

[Norm03] N. May, S. Helmer and G. Moerkotte. Three Cases for Query Decorrelation in XQuery.

LNCS 2824, Springer-Verlag, 2003, pages 70-84

[Ohor07] A. Ohori and I. Sasano: Lightweight fusion by fixed point promotion. In Proc. ACM

SIGPLAN-SIGACT POPL 2007. ACM, 2007, pages 143-154

[OMG07] OMG Object Database Technology Working Group: Next-Generation Object Database

Standardization, OMG White paper, 2007. Available at
http://www.omg.org/docs/mars/07-09-13.pdf

[Ordo05] C. Ordonez. Optimizing recursive queries in SQL. In Proc. SIGMOD '05. ACM, 2005,

pages 834-839

[Ordo10] C. Ordonez. Optimization of Linear Recursive Queries in SQL. IEEE Trans. on Knowl.

and Data Eng., IEEE, 2010, pages 264-277

94/98

[Ozca08] F. Özcan, N. Seemann, and L. Wang. XQuery Rewrite Optimization in IBM DB2

pureXML. IEEE Data Engineering Bulletin, 31(4), 2008, pages 25-32

[Papa95] Y. Papakonstantinou, H. Garcia-Molina J. and Widom J. Object exchange across

heterogeneous information sources. In Proc. 11th Int. Conf. on Data Engineering, 1995,

pp. 251–260.

[Pary09] P. Parys. XPath evaluation in linear time with polynomial combined complexity. In

Proc. PODS '09. ACM, New York, 2009, pages 55-64

[Piec06] T. Pieciukiewicz, K. Stencel and K. Subieta. Object-Oriented Programming with

Recursive Queries. Databases and Applications 2006, pages 228-233

[Piec08] T. Pieciukiewicz, K. Stencel and K. Subieta. Recursive Query Processing in SBQL.

In Proc. ICOODB, 2008, pages 57-76

[Piec10] T. Pieciukiewicz. Recursive Queries in Databases. PhD thesis, Polish-Japanese Institute

of Information, Warsaw, 2010

[Plod00] J. Płodzień. Optimization Methods in Object Query Languages. PhD thesis, Institute of

Computer Science, Polish Academy of Science, Warsaw, 2000,

[PLY] PLY (Python-Lex-Yacc) library. Available at http://www.dabeaz.com/ply/

[Przy10] P. Przymus, A. Boniewicz, M. Burzanska and K. Stencel. Recursive query facilities in

relational databases: a survey. In proc. DTA/BSBT'10, CCIS 1(118), Springer-Verlag,

2010, pages 89-99

[Przy86] T. Przymusinski. On the semantics of stratified deductive databases. In Proc. Workshop

Foundations Deductive Databases Logic Programming, Washington, 1986, pages 433-

443.

[Python] Python programming language. Available at http://www.python.org/

[Rama88] R. Ramakrishnan, "Magic templates, A spellbinding approach to logic evaluation," in

Proc. Logic Programming Conf, 1988

[Rama91] R. Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In Proc.

ISLP'91, 1991, pages 321-336

[Ross91] K. A. Ross. Modular acyclicity and tail recursion in logic programs. In Proc. PODS'91,

ACM, 1991, pages 92-101

95/98

[Ross96] K. A. Ross. Tail recursion elimination in deductive databases. ACM Trans. Database

Syst. 21(2), 1996, pages 208-237.

[Rubi10] M. Rubio-Sánchez, M. Tail recursive programming by applying generalization. In Proc.

ITiCSE '10. ACM, New York, 2010, pages 98-102.

[Saxon] M. Kay. Saxon: The XSLT and XQuery processor. Available at
http://saxon.sourceforge.net/

[Schn08] L. Schneider and D. Burleson. Advanced Oracle SQL Programming: The Expert Guide

to Writing Complex Queries. Rampant TechPress, 2008.

[Seki89] H. Seki. On the power of Alexander templates. In Proc. PODS’89, 1989, pages 150–

159

[Sesh96] P. Seshadri, H. Pirahesh and T. Y. C. Leung. Complex Query Decorrelation. In Proc. of

ICDE, 1996.

[Shoe93] K. Shoens, A. Luniewski, P. Schwarz, J. Stamos and J. Thomas. The Rufus system:

Information organization for semi-structured data. In Proc. VLDB. Morgan Kaufmann

Publishers, 1993, pages 97–107.

[Sten06] K. Stencel. Półmocna kontrola typów w językach programowania baz danych. Editors

of the PJWSTK, Warsaw, 2006 (in Polish)

[Ston75] M. Stonebraker. Implementation of integrity constraints and views by query

modification. In Proc. SIGMOD '75. ACM, New York, 1975, pages 65-78.

[Subi90a] K. Subieta. LOQIS: The Object-Oriented Database Programming System. In Proc.

East/West Database Workshop 1990, Springer, Kiev, USSR, 1990, pages 403-421.

[Subi90b] K. Subieta, M. Missala, K. Anacki. The LOQIS System. Technical Report 695, Institute

of Computer Science Polish Academy of Sciences, Warsaw, Poland, 1990.

[Subi94] K. Subieta, C. Beeri, F. Matthes and J. Schmidt. A Stack-Based Approach to Query

Languages. In Proc. East/West Database Workshop, 1994, pages 159-180.

[Subi96] K. Subieta. Object-Oriented Standards: Can ODMG OQL be Extented to a

Programming Language? In Proc. CODAS, World Scientific, Japan, 1996, pages 459-

468

[Subi04] K. Subieta. Theory and Construction of Object-Oriented Query Languages. Editors of

the PJWSTK, Warsaw, 2004 (in Polish)

96/98

[SBQL] Stack Based Query Language: Recursive Operators. Available at
http://www.sbql.pl/Topics/SBQL%20Recursive.html

[Ullm86] J. D. Ullman, F. Bancilhon, D. Maier and Sagiv Y. Magic sets and other strange ways to

implement logic programs. In Proc. SIGACT-SIGMOD, ACM, 1986, pages 1–15.

[Ullm88] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.

Computer Science Press 1988, ISBN 0-7167-8158-1

[Ullm89] J. D. Ullman. 1989. Bottom-up beats top-down for datalog. In Proc. PODS '89. ACM,

New York, NY, 1989, pages140-149

[Ullm95] J. D. Ullman and R. Ramakrishnan. A survey of research in deductive database

systems. J. Logic Program. 23(2), 1995, pages 125--150.

[Vidh10] P. M. Vidhya and P. Samuel. Query translation from SQL to XPath. In Proc. NaBIC

2009, IEEE, 2010, pages 1749—1752,

[Viei87] L. Vieille. A Database-Complete Proof Procedure Based on SLD-Resolution. In Proc.

ICLP 1987, pages 74-103

[Voig08] J. Voigtländer. Semantics and Pragmatics of New Shortcut Fusion Rules. In Proc.

FLOPS 2008, LNCS 4989, Springer-Verlag, 2008, pages 163-179,

[Wadl90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theor. Comput.

Sci. 73(2), 1990, pages 231–248

[Wisl07] J. Wislicki. An object-oriented wrapper to relational databases with query optimisation.

PhD Thesis, Polish-Japanese Institute of Information, Warsaw, 2007

[XML1.0] Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation 26

November 2008. Available at http://www.w3.org/TR/xml/

[XML1.1] Extensible Markup Language (XML) 1.1 (Second Edition). W3C recommendation 16

August 2006. Available at http://www.w3.org/TR/xml11/

[XMLQL] XML-QL: A Query Language for XML. Submission to the W3C 19 August 1998

Available at http://www.w3.org/TR/NOTE-xml-ql/

[XPath1] XML path language (XPath), version 1.0. W3C recommendation 16 November 1999.

Available at http://www.w3.org/TR/xpath/

97/98

[XPath2] XML path language (XPath), version 2.0, W3C recommendation 23 January 2007.

Available at http://www.w3.org/TR/xpath20/

[XQuery] XQuery. XQuery 1.0: An XML query language. Available at

 http://www.w3.org/TR/Xquery

[XSLT] XSL Transformations (XSLT) Version 2.0. W3C Recommendation 23 January 2007.

Available at http://www.w3.org/TR/xslt20/

[Yan94] W. P. Yan and P. Larson. Performing Group-By before Join. In Proceedings of the Tenth

international Conference on Data Engineering. IEEE Computer Society, Washington,

DC, 1994, pages 89-100.

98/98

	1 Introduction
	1.1 Querying Object-Relational Data
	1.2 Querying Semi-Structured Data

	2 Stack Based Approach and the Stack Based Query Language
	2.1 Data Models
	2.2 ENVS
	2.2.1 Name Binding
	2.2.2 Nesting

	2.3 SBQL
	2.3.1 Query results and eval function
	2.3.2 Algebraic Operators
	2.3.3 Non-algebraic Operators
	2.3.4 SBQL Implementations and Language Comparison

	2.4 PySBQL as a Testing Platform
	2.4.1 Examples of PySBQL Queries and Programs
	2.4.2 PySBQL vs Python
	2.4.3 PySBQL vs SBQL
	2.4.4 Left and Right Dereference
	2.4.5 L-values and R-values in PySBQL Language

	3 General Strategies of Optimization by Rewriting
	3.1 Optimization of Non-recursive Queries
	3.1.1 Predicate Move-around
	3.1.2 View/function Inlining and Merging Nested Subqueries
	3.1.3 Finding Independent Subqueries and Query Un-nesting
	3.1.4 Rewriting to Other Query Languages

	3.2 Short Cut Fusion for Functional Languages
	3.3 Optimization of Recursive Queries
	3.3.1 Tail-recursion
	3.3.2 Magic Set Techniques

	3.4 Open Problems

	4 Deforestation of Linear Queries
	4.1 Simple SBQL Query Deforestation
	4.1.1 Efficiency Tests

	4.2 Distributivity of Algebraic Functions Over the Dot Operator
	4.2.1 Efficiency Tests

	4.3 Summary

	5 Optimization of Recursive Queries
	5.1 Optimization of Recursive Queries for SBQL
	5.1.1 Efficiency Tests

	5.2 Pushing Predicates into Recursive SQL Common Table Expressions
	5.2.1 Motivating Example
	5.2.2 Utility Optimizations
	5.2.3 Predicate Push into Common Table Expressions
	5.2.4 Measured Improvement
	5.2.5 Summary

	6 Final Conclusions
	7 Bibliography

