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Abstract

The  following  thesis  presents  novel  optimization  methods  for  structured  and  semi-structured 
databases.  Developed methods are  based on query rewriting and focus  on reduction of  various 
resources consumption during query execution. The first method achieves this goal by rewriting the 
initial  query execution plan into a new plan based on the  reduce function.  The second method 
utilizes distributivity property of the navigation operator to reduce the sizes of created intermediate 
structures. Both methods have been developed for semi-structured databases and works with non-
recursive operators. This thesis also presents two algorithms for optimization of recursive queries. 
One of them was developed for SQL and focuses on optimization of recursive Common Table 
Expressions by the means of predicate pushing. The other algorithm was developed to optimize the 
composition of SBQL's transitive closures with aggregation.

This paper also presents the results of experimental tests performed for each of the new 
methods.  The  results  confirm  the  effectiveness  of  those  methods  in  reducing  the  resource 
consumption and/or increasing the speed of execution.

Keywords:   query rewriting,  recursive  queries,  structured  and semi-structured  query languages, 
intermediate structures reduction

ACM Computing Classification System: H.2.4. (Query Processing)
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1 Introduction

Query languages are a primary mechanism of communication between an application and a 

database. Their construction is based on an assumption that the programmer instead of saying how 

data  is  to  be  searched,  should simply focus  on what  data  is  actually needed from a  database. 

Algorithms used during query execution are hidden from the programmer, what reduces the time 

needed to write a query and allows the Database Management System (DBMS) to choose the best 

algorithm depending on the data size and distribution. The burden of improving database access is 

the task of the optimizer module, which selects the appropriate query execution plan.

Query optimization is therefore a very important task for a DBMS. For years it has been, and 

still  will  be,  a  subject  of  research  for  many  scientists.  Initially,  optimization  was  limited  to 

application of query transformation rules. Later the rule-based optimization became extended with 

mechanisms of cost-based optimization that helps the optimizer to choose the least costly execution 

plan.  Nowadays  there  are  many  optimization  techniques  that  work  at  the  different  stages  of 

optimization:  from semantic  query rewriting,  execution  plan  transformation  rules  to  cost-based 

optimization of chosen subset of execution plans. 

The  following thesis  presents  a  group of  new query rewriting algorithms  developed for 

structured (relational and object-oriented) and semi-structured data. The main idea behind those 

algorithms is to reduce the resource consumption while increasing the speed of query execution. 

Two  of  the  developed  techniques  concentrate  around  optimization  of  recursive  queries.  Such 

queries inherently consume a lot of system resources during evaluation. The first technique has 

been developed for SQL. It is based on the well-known method of pushing predicates, however it 

has been studied for novel applications in a new context. The second method optimizes composition 

of an aggregation function with the operator of the transitive closure. This algorithm is presented 

using semi-structured query language SBQL as an example. 

SBQL was also the basis for the two further algorithms. They deal with composition of two 

functions  or  operators  from  semi-structured  query  languages.  The  first  algorithm  is  based  on 

translation of initial query execution plans for language's operators into an execution plan based on 

the reduce function. The idea behind this translation originated from optimization techniques used 

in functional programming languages. The second algorithm concentrates on reduction of the size 

of intermediate structures using distributivity property of navigation operator and aggregation.
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The thesis is organized as follows. The first chapter of the following thesis browses through 

the subject of querying object-relational and semi-structured data. It mentions the most popular data 

models and query languages used in both cases. It also introduces the concept of recursive SQL 

queries. The second chapter introduces the concepts of the Stack Based Approach (SBA) and the 

Stack Based Query Language (SBQL). Those concepts may not be familiar to all of the readers of 

this  thesis,  thus  they will  be  discussed  in  detail.  This  chapter  also  introduces  an  experimental 

implementation of SBQL based on the Python language. This platform, called the PySBQL, was 

developed  by the  author  of  this  thesis  as  a  platform for  research,  development  and  testing  of 

optimization algorithms for SBQL.

The third chapter presents an overview of a selection of optimization techniques that are based on 

query rewriting. For each of the selected techniques its general description is given and some of its 

variants  are  presented.  This  chapter  also  presents  the  optimization  technique  developed  for 

functional languages – the shortcut fusion – which was the inspiration for the newly developed 

optimization methods, which are the main topic of this thesis. 

The fourth chapter discusses two novel techniques developed for compositions of non-recursive 

operators and built-in functions of the semi-structured query language SBQL. The fifth chapter 

presents  new  optimization  techniques  for  recursive  queries.  For  each  of  the  four  techniques 

presented in chapters four and five, a summary of their performance tests is given.

The  final  chapter  concludes  and  points  the  further  possibilities  of  research  on  the  subject  of 

reduction of the sizes of intermediate structures.
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1.1 Querying Object-Relational Data

The most popular data model is the relational model created by E. F. Codd first published in 

[Codd70].  In the 1972's paper  [Codd72] Codd presented a detailed description of the model and 

presented  two formal  models  for  querying  data.  In  1995 C.  Date  and H.  Darwen  in  [Date95] 

described how the relational model can be used to support  object-oriented features of database 

applications. 

The most widely-used database query language is the well-known SQL which  originated 

from Codd's querying data models. This language is under constant development to match the needs 

of programmers and database users. Current SQL standard includes handling of semi-structured 

data through XML storage and XML-related features. Starting from the SQL:99 standard, the SQL 

language has been equipped with recursive queries. This type of queries is called the Recursive 

Common Table Expressions (RCTE). Nowadays there is some research on optimization of recursive 

SQL queries, however this topic is still open for new methods and optimization algorithms. The 

following thesis  present  a  novel  optimization technique for  this  type of  queries,  therefore  they 

should be presented here in more detail.

Each RCTE query starts with the WITH keyword optionally followed by the RECURSIVE 

keyword and a header of the Common Table Expression. Such query may be divided into three 

parts: an initial query also known as the seed query, a recursive subquery and an outer query that 

consumes all the rows generated by recursive computation. The basic syntax structure of a recursive 

CTE is:

WITH RECURSIVE R0 (A01 , . . . , A0n ) AS 

<R0's initial query  UNION ALL  R0's recursive query >

[, [RECURSIVE] R1 (A11 , ..., A1n ) AS 

<R1's initial query  UNION ALL  R1's recursive query >  

... ]

< query using Ro,R1,R2,... >,
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Each < Ri definition> must consist of at least one initial SELECT query and at least one 

recursive SELECT query that contains a call to Ri in its FROM clause. Both initial and recursive 

subquery may be formed out of a union of more than one SELECT queries. SQL-99 standard also 

allows for the use of one of the special clauses included into CTE definition after the last recursive 

subquery.  Those  special  clauses  include  SEARCH and  CYCLE clauses.  They are  used  to  put 

additional limitations on the recursive queries to prevent infinite loops. Other clauses are DEPTH 

FIRST and BREADTH FIRST used to specify the search order. Example 1.1 presents a recursive 

common table expression that gathers information on courses' requirements and returns a list of 

courses that should be completed before attending 'Java_1' course.

Example 1.1 Query calculating required courses for 'Java_1' course.

WITH RECURSIVE RequiredCourses (BaseCourse, NeededCId) AS (

  SELECT r.CourseId, r.Requires

FROM Requirements r

  UNION ALL

  SELECT rc.BaseCourse , r.Requires

FROM Requirements r, RequiredCourses rc

WHERE  rc.NeededCId = r.CourseId  

AND  r.Requires IS NOT NULL ) 

SELECT DISTINCT NeededCId FROM RequiredCourses 

WHERE BaseCourse = 'Java_1';

The biggest disadvantage of this construction is the lack of efficient algorithms for cycle 

detection. In some cases the recursive query using CTE may not stop because, according to the 

specification, the computation stops when a fix-point is reached (no new rows are generated using 

CTE's  recursive  subquery).  A  study  of  current  implementations  of  recursive  common  table 

expressions in the most popular database management systems may be found in [Przy10]

The research on optimization of SQL language has been influenced by research papers on 

another language used to query relational data. This language is Datalog, which became an area of 

database researchers' interest around 1977's due to the workshop on logic and databases organized 
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by H. Gallaire and J. Minker [Gall78]. The research on Datalog was concentrated mostly between 

the mid-80’s and the mid-90’s. Many existing optimization techniques for relational databases have 

been initially developed for this language. Datalog was also a platform for research on optimization 

of recursive queries.

The  construction  and  evaluation  of  Datalog  falls  outside  of  the  scope  of  this  thesis. 

However,  detailed  information  on  the  subject  may  be  found  in [Viei87,  Ceri89,  Abit95].  For 

detailed  information  on  Datalog¬ (Datalog  with  negation)  and stratified  Datalog  semantics  see 

[Przy86, Apt86, Ullm88]

With  the  development  of  the  object-oriented  programming  developers  and  researchers 

started to look for an alternative to SQL language for a better support for complex data such as 

graph data, multimedia. In the 1991 Object Data Management Group (ODMG) started working on a 

new query language, called the Object Query Language (OQL). First version of ODMG standard 

was created  in  1993,  second version in  1997.  OQL was  modeled  after  SQL [Catt96]  and was 

planned to become the standard for object-oriented databases. However, the ODMG project was 

closed in 2001 without a completed specification. There are voices that this specification is not 

implementable [Subi96]. 

Parallel  to  the research on OQL of the ODMG group,  in  the 1990’s Kazimierz Subieta 

started working on the Stack Based Approach (SBA) and on the Stack Based Query Language 

(SBQL).  Both will be described in the Chapter 2 of this thesis.

1.2 Querying Semi-Structured Data

Semi-structured data models are meant to describe unstructured information, in particular 

irregular data, but they might as well be used to store structured data. There are many methods of 

representing semi-structured data. Their main idea is to represent data in some form of labeled, 

directed graphs or a set notation of tagged label-value pairs. The term semi-structured data was 

introduced by Shoens et al. in 1993 in a system called Rufus [Shoe93]. Modern semi-structured data 

model usually combine the ideas of the relational model and the object data model [Catt96]. Among 

the popular semi-structured models are XML and OEM (for more information on this model see 

[Papa95]).

In the mid 90s, when the World Wide Web gained popularity, so did the Extensible Markup 
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Language (XML) [XML1.0, XML1.1]. The main focus of XML was to store documents, however 

its tree model proved to be efficient for representing semi-structured data and hierarchical data. It is 

also flexible enough to handle rapidly changing structures and sparse properties.  Also,  XML is 

platform-independent and in contrast to HTML, XML separates the logical structure of a document 

from its layout. This is why XML has quickly become the preferred format for representing and 

exchanging data on the Web. Example 1.2 presents a small XML document. 

Example 1.2. XML document containing information on an employee called John Doe

<?xml version="1.0" encoding="UTF-8" ?>

<employee>

<img src="john_doe.jpg" alt='John Doe'/>

<name>John Doe</name>

<address>

<street>

<street_num>50h</street_num>

East Road

</street>

<city>Smallville</city>

</address>

</employee>

One of the methods for processing XML documents is to use declarative transformation 

languages  such  as  XPath  [XPath1,  XPath2],  XQuery  [XQuery]  and  XSLT [XSLT]  which  are 

standardized by the W3C consortium.

XML Path  language  (XPath)  is  a  language  based  on  path  expressions  that  allows  the 

selection of parts of a given XML document. An XPath expressions use series of steps to navigate 

through XML tree by selecting nodes that satisfy certain properties. The evaluation of an XPath 

expression returns either a sequence of atomic nodes or a sequence of nodes with their subtrees. 

XPath also allows some minor computations resulting in values such as strings, numbers or Boolean 
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values. The popularity of XPath and the fact that it is a subset of XSLT and XQuery resulted in a 

number of papers devoted to improving XPath's evaluation algorithms. One of such papers [Pary09] 

presents  an  optimization  technique  that  works  in  linear  time  and has  linear  complexity  in  the 

number of bytes of the processed XML document. In this paper Parys proposed an algorithm for 

efficient retrieval of nodes satisfying a vast range of XPath queries. Other papers on similar subject 

are [Gott05, Bene08, Gotz09].

Nowadays the most popular language designed for querying semi-structured data is XQuery 

[XQuery]. The goal of the design was to provide the expressive power of a query language like 

SQL and, in addition, to support XML-specific operations such as navigation in hierarchical data. 

Most  features  have  been  influenced  by  the  functionality  of  Quilt  and  SQL languages.  Other 

influences  come  from semi-structured  languages  like  Lorel  [Abit97]  and  XML-QL [XMLQL]. 

XQuery  is  a  superset  of  XPath  and  as  such  supports  richer  operations  like  joins,  projections, 

aggregations, but also supports functionality of a programming language. Nowadays all the major 

database vendors implement either some subset of XQuery or the full range of features. The most 

popular  XQuery  implementations  are  XQRL/BEA [Flor04],  Saxon  [Saxon],  Sedna  [Fomi06], 

MonetDB [Bonc06], DB2 [Ozca08], Oracle [Liu08], Zorba [Bamf09]. 

In the recent years the subject of processing XML and XQuery was one of the most popular 

research topics. It also has influenced a lot of research papers on other languages, including SQL 

and SBQL. Among the papers on XQL was a proposition of an extension to the XQuery – an 

inflationary  fixed  point  operator,  which  is  a  controlled  form  of  recursion  [Afan08,  Afan09]. 

Example 1.3 presents a sample usage of this operator.

Example 1.3 Query that recursively computes all prerequisite courses, direct or indirect, of the 

course coded with "J1", on an instance document "curriculum.xml"

with $x seeded by doc ("curriculum.xml")//course[@code="J1"]

recurse $x/id (./prerequisites/pre_code)
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2 Stack Based Approach and the Stack Based Query 
Language

Stack Based Approach (SBA) has been introduced by K. Subieta in [Subi94]. It is a general 

approach to construction of query languages for object-oriented and semi-structured databases. The 

main  idea  of  the  SBA is  to  construct  query  languages  in  the  methodology  of  programming 

languages.  The  languages  should  combine  database  support  beyond  simple  querying  (updates, 

views, schema manipulation) with programming abstractions such as variables, functions or classes. 

Most  impedance-mismatch  problems  would  be  eliminated  by this  design.  Such language,  with 

proper  syntax  (and  syntactic  sugar)  could  also  be  an  efficient  tool  for  database  application 

development. 

In the Stack Based Approach semantics of a query is based on the mechanisms used in 

programming languages – like the call stack. This approach is compatible with the naming-scoping-

binding paradigm – each name occurring in a query is bound with a proper entity according to the 

scoping  rules.  The actual  stack used by the  SBA is  an  extension  of  a  classical  call  stack.  For 

example  it  can  handle  various  data  collections  appearing  in  structured  and  semi-structured 

databases.

SBA relies  on  the  three  basic  elements:  data  model,  environment  stack  and  so-called 

non-algebraic operators.

2.1 Data Models

Subieta proposed a set of store models that could be used in the Object DBMS. The basic 

model is called AS0. It was first defined in [Subi94] and called there the Abstract Data Model M0. 

The [OMG07] renamed this model to its current name AS0 (Abstract Store Model M0).

In the AS0 data model object states are represented as triples  o=<i, n, v> where  i is the 

object identifier,  n is its name,  v – its value. Each identifier  i is unique. Objects are divided into 

three categories; the division is based on the type of v:

• If  v is an atomic value (e.g. number, string, Boolean value) then the object  o is called an 
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atomic object.

• If v is an objects identifier i (of an object stored in database), than the object o is a pointer 

object.

• If v is a set of object states than the object o is a complex object.

Objects of the same name may be of different types or may contain different amount of sub-

objects. In the model AS0 an object store is a pair (O,R) where O is a set of object states and R is a 

set of the identifiers of the top-most objects (roots). Each object in the store should be reachable 

from root objects by either pointers or parent-child relations.

Example 2.1 A simple database:

<i1, Emp,{ <i2, fname, "John">, <i3, sname, "Smith">, 

 <i4, dept, i17>, <i5, salary, 2000> }> 

<i6, Emp,{ <i7, fname, "Bob">, <i8, sname, "Gordon">, 

 <i9, dept, i17>, <i10, salary, 2300> }> 

<i11, Emp,{ <i13, sname, "Watson">, <i14, dept, i22> }> 

<i17, Dept,{ <i18, name, "IT">, <i19, employee, i1>, 

 <i21, employee, i2>, <i37, boss, i6> }> 

<i22, Dept,{ <i31, name, "administration">,<i33, boss, i11> }>

R=[i1,i6,i11,i17,i22] 

Besides AS0 model, Subieta introduced more advanced models called AS1, AS2 and AS3 that 

extend AS0 with object oriented features. The simplest of them is AS1 model. It is basically the 

AS0 model with support for classes and inheritance. It is obtained by adding of a set of classes' 

identifiers  C  and  two  relations:  CC  that  determines  inheritance  among  classes,  and  OC  that 

determines the membership of objects in classes. Classes are stored as complex objects, yet their 

identifiers do not belong neither to O, nor R. The CC relation cannot contain cycles, however AS1 

model allows multiple inheritance. AS2 and AS3 models add features such as interfaces, roles and 

encapsulation.
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2.2 ENVS

The concept of the  call  stack (environment stack) appeared in the 1950’s when the first 

compilers of the high-level languages where created. Since then it has become the basis of many 

programming languages like Pascal, C, Java, Python, etc.

In programming languages the concept of environment of program execution denotes all the 

run-time entities (variables, constants, objects, functions, procedures, types, classes, etc.) that are 

available at the given point of the program control. The environment is a structure that changes 

during the execution of a program. It consists of sub-environments that appear and disappear during 

the run-time.

The call  stack is a main memory structure that is assigned to a single client application 

program or to a single process or thread. A section is associated with a particular procedure call or 

an executed program block. When the control is shifted to a procedure call, a new section with all 

entities local to this call is pushed onto the top of the stack. The section is popped from the stack 

when the procedure or program block is terminated. For the procedure that is currently running all 

values of parameters, local variables/objects and any other local entities are stored within the top 

stack section.

In SBA the environment stack (ENVS) is an extension of the standard call stack. It has some 

additional functionality that concerns name binding (which implies the search on the entire stack), 

scoping rules (skipping some sections) and in rare cases inserting new sections in the middle of the 

stack. ENVS consists of sections (environments). Each section contains a collection of zero or more 

entities called the  binders. A binder is a pair (n,x) (usually written  n(x)), where  n is an external 

name of an entity, and x is a value of this entity. Binder's value may be an atomic value, an identifier 

or even a collection of values.

The two most important operations involving ENVS are name binding and object nesting.

2.2.1 Name Binding

Binding of a name is a compiler/run-time action of acquiring a value of an entity using its 

name. This task is performed using ENVS. The general method is to search for a binder with a 
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given name inside of the environments, starting from top of the stack and proceeding to the bottom 

according to  the scoping rules.  The  search  stops  when an environment  containing  at  least  one 

matching binder is found. More formally the name binding is performed according to the following 

steps:

• Check the top section of the stack for a binder named n; 

• If the checked section contains a non-zero number of binders named  n, the result of 

binding is the bag of all values stored within these binders

• If the top section does not contain such binder, next section is checked.

• Such process is continued in lower and lower stack sections, until a binder named n is 

found or there are no more sections left.

The above algorithm is sufficient for the AS0 model. In more complex data models visiting 

particular stack sections is governed by advanced scoping rules that require omitting some sections.

2.2.2 Nesting

Nesting is an operation of creating a new section of ENVS containing binders to the interior 

of an object or a procedure. In the SBA it is done with the help of the nested function. This function 

takes any query result as an argument and is implicitly parameterized  by an object store. For the 

argument it creates a set of binders. This set should then be pushed as a section at the top of ENVS. 

The function nested is exhaustively explained in [Subi04]. In general, depending on the argument, 

the result of the function call nested(i) is:

• If  i is  an identifier  of  a  complex object  <i,  n,  {  <i1,  n1,  ...  >,  ...  ,  <ik,  nk,  ...  > }>, 

nested( i ) = { n1(i1), n2(i2), ... , nk(ik) }. 

• If i is an identifier of a pointer object <i, n, i1>, and the object store contains the object 

<i1, n1, ... >, then nested( i ) = { n1(i1) }. 

• If i is a binder n(x) then nested(i) = { n(x) }. 

• If i is a structure struct{ x1, x2, x3, ... }, then nested(i) returns the union of the results of 
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the  nested function applied to the elements of the structure:  nested(i) =  nested(x1)  ∪ 

nested(x2) ∪ nested(x3) ∪ ... 

• For other arguments the result of nested is the empty set.

The function nested only returns a set of binders to be placed on the ENVS, but it does not 

open a new section on the ENVS itself. It should be done by the query execution engine.

Another  function  connected  with  the  object  nesting  –  it  is  the  pop()  function.  Its 

functionality  is  similar  to  standard  pop  functions  associated  with  stacks,  however  SBA's  pop 

function  has  broader  functionality.  For  example,  it  performs  a  check  for  binders  of  temporary 

objects  and  deletes  such  objects  from  temporary  store  unless  they  are  referenced  elsewhere. 

Example 2.2 presents the result of nesting of an Emp object form the example 2.1

Example 2.2 Nesting of a complex Emp object.

<i6, Emp,{ <i7, fname, "Bob">, <i8, sname, "Gordon">, 

 <i9, dept, i17>, <i10, salary, 2300> }>

nested( i6 ) = { fname(i7), sname(i8), dept(i9), salary(i10) }

2.3 SBQL

The Stack Based Query Language (SBQL) is a prototype object query language realizing the 

Stack Based Approach [Subi94, Subi04]. It is the model language for all other projects influenced 

by SBA. The basic idea of SBQL is to combine querying and programming capabilities in one 

language that eliminates impedance mismatch. SBQL's query semantics is based upon recursive 

evaluation of the syntax tree and binding of names using environment stack. 

The first version of this language was implemented in the LOQIS system [Subi90a, Subi90b]. 

Since then SBQL has been implemented in a number of systems, including European projects like 

eGov Bus or VIDE. It was also the model language for a number of research papers on design and 

optimization of query languages. SBQL was also considered as a foundation for the new standard 

for object-oriented query languages by the OMG group [OMG07]
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SBQL has been designed so that it may work with a number of data models, but its semantics 

is best explained using AS0 model. The AS0 model originally did not include types beside the 

general division into atomic, pointer and complex objects. However, the works [Sten06, Lent06] 

propose a semi-strong type-checking method for object query languages. Those works especially 

apply to SBQL.

2.3.1 Query results and eval function

In SBA it is assumed that queries never return objects but references to objects, sometimes 

within more complex structures. Objects live in the object store; no entity called an object occurs 

elsewhere. Queries can also return values stored in objects and values calculated by some functions 

or algorithms. Similarly to other approaches, SBA introduces structures, bags and sequences as 

results of queries. In formal descriptions of the evaluation process, intermediate and final results are 

stored on a special stack called the Query Result Stack (QRES). The  final  result  placed  on  the 

QRES has to be consumed by some agent within the application software, for example by a user 

interface or by other queries.  After a query evaluation is complete, the top of the QRES contains 

the result of this query. In general a result of a query may only be:

• an atomic value or an identifier (reference) of an object or a stored programming entity like 

function or a procedure

• a binder, in this context also called a named value

• a  structure of results (struct{ x1, x2, x3,... }) (result definition is therefore recursive). The 

order of elements in a structure is significant. A structure may contain values of different 

types.  Also,  two  named  values  with  the  same  name  are  allowed.  Structures  having  no 

elements are not allowed. Structures are actually similar to tuples, known from relational 

systems.

• a bag and a sequence of results are also valid results themselves.
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Figure 2.1: States of the QRES during evaluation of the given arithmetic expression

Figure  2.1  present  the  states  of  the  QRES during  the  evaluation  of  the  query  3+7>2*4. 

Results of the evaluation of numbers 3 and 7 are directly placed on the QRES. Evaluation of the + 

operator consumes both values and places a new value on the QRES (literal value 10). Further 

evaluation results in placement of the literal value of Truth on the top of the QRES. This value is the 

result of the initial query and may be consumed for example by an outer agent.

The semantics of an SBQL query are best explained using its evaluation process. The  eval 

procedure described in [Subi04] operates on three structures: the object store, the ENVS stack and 

the QRES stack. This procedure takes as an argument a query in a form of an Abstract Syntax Tree 

(AST) and during recursive calculation generates query's final result, which then is placed at the top 

of QRES. During calculation it may modify ENVS but if a query has no side-effects, the final state 

of ENVS is equal to the initial state.

The eval function is compositional – the result of a query is a direct function of the results of 

the immediate subqueries. The simplest types of queries are names and literals. The result of the 

evaluation of a literal is a value of this literal placed in the new section on the top of the QRES. To 

evaluate a name, it needs to be bound with values (according to the procedure described in the 

chapter 2.2.1) and the multiset of those values should be placed in the new section on top of the 

QRES.

The operators in SBQL are divided into two groups: algebraic and non-algebraic operators.

2.3.2 Algebraic Operators

Algebraic operators do not require ENVS to calculate their result out of the partial results of 
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subqueries. If the operator Θ is an algebraic operator, than to evaluate a query q1 Θ q2 we need 

to  evaluate  independently  both  subqueries  (q1  and  q2)  and  then  to  process  the  partial  results 

according to the specific functionality of the Θ operator.

The  algebraic  operators  are  well  known  from  programming  languages  –  they  include 

arithmetic operators, comparison operators, aggregate functions or conditional operators.

 
Example 2.3. Evaluation schema for binary non-algebraic operator  Θ

def eval(q):

...

case q is qleft Θ qright:

eval(qleft);

tl = QRES.pop();

eval(qright);

tr = QRES.pop()

QRES.push( applyΘ(tl,tr) )

...

Example  2.3  presents  a  schema of  evaluation  for  the  non-algebraic  operator  Θ.  Push  and pop 

functions are the standard stack operations. Function applyΘ depends on the actual operator being 

executed.  It  represents  the  process  of  calculating  the  final  result  using  intermediate  results 

calculated earlier. This function does not involve operations on the environment stack and does not 

depend on the state of the ENVS.

2.3.3 Non-algebraic Operators

The  core  of  SBQL are  so  called  non-algebraic  operators.  They are  binary operators  that 

modify the ENVS during evaluation. Their eval procedure is much more complex than the one for 

algebraic operators. During evaluation the first step is to evaluate the left subquery. Then for each 

element e from the acquired result collection perform nesting of this element and evaluation of the 
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right  subquery.  Next  incorporate  the  acquired  result  into  temporary result  set  according  to  the 

operator's specifics. Finally remove the top environment from ENVS. When every element has been 

processed push the temporary result set onto QRES.

Example 2.4. Evaluation schema for binary non-algebraic operator  Φ

def eval(q):

...

case q is qleft Φ qright:

eval(qleft);

tl = QRES.top();

for each r in tl:

ENVS.push(nested(r))

eval(qright);

tr = QRES.pop()

partialresult[r]:=combineΦ(r, tr)

ENVS.pop()

QRES.pop()

QRES.push( mergeΦ(partialresult))

...

Example 2.4 presents a schema of evaluation for the non-algebraic operator Φ. Top function returns 

the topmost value of the stack without removing it. Function combineΦ and mergeΦ depend on the 

actual  operator  being  executed  and  they  do  not  depend  on  the  state  of  the  ENVS.  Detailed 

information on those functions in context of each of the non-algebraic functions may be found in 

[Subi04].

Among  the  key  non-algebraic  operators  for  SBQL  are  the  selection  operator  (where), 

projection and navigation operator  (dot), navigational join and quantifiers. Examples 2.5 and 2.6 

show  a  sample  usage  of  dot  and  where  operators,  while  example  2.7  presents  a  schema  of 

evaluation of a query that includes the non-algebraic operator  where. During this evaluation we 

assume that the database has the structure from the example 2.1
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Example 2.5. For each employee working in the ‘IT’ department return their  personal data and 

salary

(Emp where deptname=='IT').(name+' '+surname, salary)

Example 2.6. For each department return its name and the average salary paid to its employees

Dept.(name, avg(worksIn.Emp.salary) )

Example 2.7 The schema of evaluation of a query based on the data from the Example 2.1

I. Query: Emp where sname == 'Smith'

AST:

Initial state of ENVS:

Initial state of QRES: empty

II. The root operator is the non-algebraic operator where thus the first step is to evaluate 

the left subquery: the name Emp

ENVS QRES

III. Now, according to the evaluation schema, for each of the identifiers placed on QRES 

we need to evaluate the right subquery: sname == 'Smith'  , where the comparison 

operator belongs to  the group of the algebraic  operator.  First  we should  nest the 

complex object identified by i1, and then to evaluate the name sname and the literal 

'Smith'. We will do this in one step:
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ENVS QRES

IV. To  evaluate  the  comparison  operator  we  pop  two  sections  of  the  QRES  and 

according to the specification of the equality operator, we check if the atomic object 

identified  by i3 (<i3,sname,'Smith'>)holds  the  atomic  value  'Smith'.  We push the 

result of comparison on the QRES:

ENVS QRES

V. The where operator consumes the True value from the QRES and adds the identifier 

i1 to the partialResults collection. The top section of the ENVS is removed and the 

next object (i6) is nested on the ENVS. The steps III and IV are repeated:

ENVS QRES partialResults

{ i1}

VI. Because this time the comparison operator returned the False value, the i6 object is 

not included in the partialResults collection, although the top section of the QRES is 

removed. Again the top section of the ENVS is removed and the next object (i11) is 

processed according to the steps III – V. For this object the comparison operator 

would  evaluate  into  the  False value,  thus  this  object  is  not  included  in  the 

partialResults. The top section of ENVS is removed. Because all the identifiers from 

the QRES have been processed,  again the  pop()  function is  called on the QRES 

leaving it empty:
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ENVS QRES partialResults

empty { i1:i1}

VII. Now  we  merge  the  partialResults  according  to  the  requirements  of  the  where 

operator. The result of this operation is then pushed on the QRES. The result of the 

evaluation of the query is:

ENVS QRES 

In SBQL recursive queries are available through the use of the non-algebraic operator close 

by and its variants: leaves by, close unique by, leaves unique by. This operator's syntax is simple:

query1 close by query2

Both left and right query have no other restrictions to their structure besides that they should 

return a bag of results of the same type. The left query is the seed query – it provides the initial bag 

of  elements.  The  right  query  is  executed  recursively in  the  context  of  each  element  from the 

acquired result bag for each recursive step. The calculation stops when the execution of the right 

query returns an empty bag. An example of a close by query is:

( Employee where name = "John Smith" )  close by  ( boss.Employee )

This  query  finds  all  employees  that  are  John  Smith's  direct  or  indirect  superiors.  But 

sometimes we would like to get only the leaves of a result tree – in the example above only those 

employees that do not have superiors. In such cases we may use another recursive operator called 

leaves by. Unfortunately both operators close by and leaves by suffer from the same disadvantage – 

they  may create  infinite loops.  In such cases other  recursive operators may be applied –  close 

unique by and leaves unique by. Those operators are variants of the close by and leaves by operators 

that  remove duplicates on the fly after each closure iteration. This way they eliminate loops. The 

above semantics is similar to the Delta semantics of the XQuery's seeded by  operator [Afan09] 

mentioned earlier.

Close by operator represents transitive closure. The SBQL language is also equipped in a 
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mechanism of fix-point operations that may be applied to a vast range of queries. The operator that 

fulfills this mechanism is fixpoint. The general mechanics of close by and fixpoint are similar. Their 

functionality is exhaustively presented in [Subi04, SBQL]. The SBQL language also provides the 

mechanism of recursive views and recursive procedures. Their description may be found in [Piec06]

2.3.4 SBQL Implementations and Language Comparison

SBA (Stack Based Approach) and SBQL has been implemented in number of research and 

business projects. The first business project to implement a language based on the SBA was Netul 

developed in  1989 by Intra-Video.  A year  later  an experimental  project  Loqis  has been started 

[Subi90a,  Subi90b].  This project  was the first  to implement  the language SBQL. Among other 

implementations  are  VPOS  –  a  query  language  for  the  XML  DOM  model,  LoXiM  and 

Monad/PySBQL database  systems.  SBQL was  also  a  key  element  of  the  following  European 

projects: ICONS (Intelligent Content Management System), VIDE and eGov Bus. 

In February 2006, the OMG announced the formation of the Object Database Technology 

Working Group (ODBT WG) to develop the "4th generation" standard for object databases. This 

group  is  planned  to  continue  (in  a  way)  the  work  of  ODMG.  ODBT WG  considered  SBQL 

language [OMG07] and  LINQ framework as the background for this standard. The work of this 

group is still in progress.

The following examples compare the syntax of SQL, OQL, XQuery and SBQL languages. 

The examples assume that a database stores a simple schema containing information on students. 

Each student has a name, information about the year of study he attends.

Example 2.8

Description Get full information on students

SBQL Student
OQL Student
SQL Select * from Student
XQuery doc(...)//Student
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Example 2.9

Description Get the names and year numbers of all students

SBQL Student.(name, year)
OQL Select name, year from Student
SQL Select name, year from Student
XQuery for $s in doc(...)//Student 

return {$s/name, $s/year}

Example 2.10

Description Get the names of all 1-st year students 

SBQL (Student where year = 1).name
OQL Select name from Student where year = 1
SQL Select name from Student where year = 1
XQuery doc(...)//Student[year=1]/name

2.4 PySBQL as a Testing Platform

PySBQL language [Burz07] is an attempt to reconcile the concept of Stack Based Approach 

in  databases  [Subi94]  with  construction  of  Python  [Python]  language  which  is  a  popular 

programming language. Stack Based Approach in databases, as I have tried to show in previous 

chapters, gives a good start for development of a computer language that, at the same time, is a 

programming and an object query language. The joining of SBA with Python resulted in a language, 

in which writing database applications became simple and clear.

My design of the initial syntax and semantics of PySBQL was published in [Burz07]. The 

first prototype of this language was implemented in Java and worked with AS0/XML storage. The 

goal of this implementation was to develop a multi-platform language free of impedance mismatch 

problems. Since then this project has undergone many changes. The second prototype was intended 

for distributed object database and was code-named "Monad/PySBQL". I have implemented the 

latest prototype in Python language in 2009. This version will be described in the following chapter. 

It is designed to work with AS0 and XML data models, and was a testing platform for rewriting 

algorithms, query processing on Graphical Processing Units (research in progress) and data storage 
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models (research in progress).

The grammar has been coded using PLY [PLY] library for Python. This chapter presents 

core fragments of PySBQL in a manner similar to BNF notation. In PySBQL literal values and 

variable names are defined after Python. The other grammar constructs adapted from Python are 

indent based syntax, loop statements (for, while), if-else statement, function definition's header. The 

table 2.1 presents the main grammar rules.

query ::= literal | name | (<newline>)* query (<newline>)*

blockQ ::= <newline> <indent> (query)* <dedent> Block of queries

query ::= unaryOperator query Unary algebraic operators

unaryOperator ::= + | - | ~ | not

query ::= query binaryAlgOperator query Binary algebraic operators

binaryAlgOperator ::= compOp | boolOp | arithOp | bitOp

compOp::=  == | < | <= | >= | > | is | is not | in | not in Comparison operators

boolOp::= and | or | xor Boolean operators

arithOp::= + | - | * | / | // | % | ** Arithmetic operators

btOp::= & | | | ^ | << | >> Bitwise operators

query ::= query where query | query . Query | 
query join query

query ::= query assignOp query | query <- query

assignOp ::=  <- | = | += | -= | *= | /= | //= | **= | %= | &= | 
|= | ^= | >>= | <<= 

query ::= rename query as name Name definition

query ::=  new (temporary |  local  |  permanent) name : 
("("name : query (, name : query)* ")" | literal)

Creating a new object

query ::= ref query as name Creating a local pointer object

query ::= deref query Dereference on query

query ::= query group as name Grouping and name definition

Table 2.1: Main syntax rules for PySBQL
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2.4.1 Examples of PySBQL Queries and Programs

Example 2.11 Obtain the names and birth years of chosen employees’ children. The "\" character is 

interpreted as a line break that allows for multiple line statements

(employee where job_record.job_date>‘2000-01-01’).children. \
(child_name, birth_year)

Example 2.12 Give each employee a raise by 100:

employee.salary+=100.0

Example 2.13 Rename the field town in the address objects into city

rename address.town as city

Example 2.14

Create  a  new complex  object  company containing  one  atomic  object  named  name,  one 

pointer object located_in and one complex object manager

new company : (name : ‘TransCom’, 

located_in : city where name == ‘London’,

manager : (name : ‘Alan Willson’,

phone : "644-77-99") )

Example 2.15 Two versions of program that prints on standard output the names of all employees

print employee.name

or:

for e in employee:

print e.name
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Example 2.17 For each person write  their  name and  the social  title  Mr.  or Mrs.  depending on 

person's gender

for p in person:

if p.gender == 'f':

p.name = 'Mrs. ' + p.name 

else:

p.name = 'Mr. ' + p.name 

Example 2.18 Definition and a sample usage of a simple factorial function that would be stored in a 

database as an complex object

def permanent factorial(a = 0):

i,k = 1, 1

while (i<a): 

i+=1; 

k*=i

return k

print factorial(4)

print factorial()

2.4.2 PySBQL vs Python

Just  like  most  of  the  query languages,  Python is  a  dynamic,  interpreted  and interactive 

language. Other key features that influenced the decision of developing PySBQL based on Python's 

syntax were:

• clear, readable syntax resulting in easiness in learning and using

• high level dynamic data types

• embeddable within applications as a scripting interface
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• Python is equipped with some aspects of a functional language (like lambda expressions)

• popularity – a language that would be very close to Python would be easy to master for 

Python's programmers.

• Python's standard implementation is under an open source license that makes it freely usable 

and distributable, even for commercial use. Based on the modules of Python, new modules 

for PySBQL could be developed in a short time 

• it is an interesting subject to study how far a query language based on SBA can be integrated 

within an interpreted language

Although PySBQL and Python share much of their syntax, their functionality differs. The 

basic difference between Python and PySBQL is management of persistent data, construction of a 

call stack, modified assignment statement to cope with persistence, and mostly – the evaluation 

process. 

On  the  other  hand,  the  idea  behind  PySBQL was  to  firstly  establish  a  solid  base  for  data 

management, thus the research on this language concentrated around database access optimization 

and optimization of query processing.

2.4.3 PySBQL vs SBQL

Database management  in  PySBQL was based on the research on SBQL language.  Both 

languages share the construction of non-algebraic operators, however the SBQL's prototypes have 

been greatly influenced by syntax of languages like Java and C#. Initially PySBQL project was a 

study on effects of combining an interpreted dynamic language with Stack Based Approach.

The differences between PySBQL and SBQL involve handling of data collections (sequence, 

bag and structure in SBQL, list and dictionary in PySBQL), interpretation of non-Boolean values as 

true or false when logic value is needed, handling of variables and much of additional syntax.

SBQL implements semi-strong static typing [Sten06], while PySBQL has dynamic type system with 

type checking based solely on variable values and not with variable names. This means that we may 

dynamically  assign  different  values  with  different  types  to  the  same  variable,  however  type 
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checking would return a type error when trying to subtract list-typed variable from integer-typed. 

This  is  directly connected with  the basic  approach to  variables  themselves:  contrary to  SBQL, 

variables in PySBQL are simply binders and not atomic objects. 

Some of additional differences appear evaluation process on the base implementation level, 

however since both languages are in their prototyping stages, those differences will be omitted here.

2.4.4 Left and Right Dereference

One of the differences between PySBQL and SBQL is the approach to the deref operator. 

In SBQL dereference operator is inserted automatically during the generation of a query's AST. 

However there is no clear convention of autodereference. 

One of the examples, when names are bound in different contexts depending on which type 

of value is needed is the function call  f(a=b, b=a). In this call the names a,b from the right 

sides of the assignment operators are bound according to the context of the function call, whereas 

a,b from the left sides of those operators are bound in the context of the interior of the function, 

the parameter list to be exact.

This problem and the unclear approach to dereference in the SBA became an inspiration for me to 

develop a new approach based on a classical  concept of l-value and r-value for the name of a 

variable\object. This approach is more universal – it is designed to deal with cases when in some 

context  the same name may represent  different  variables\objects  depending on whether  we ask 

about l-value or r-value. Results of this study were published in [Burz09a]

2.4.5 L-values and R-values in PySBQL Language

The new approach to variable dereference is based on two mechanisms: l-binding and r-

binding (left  and right binding) of names. Each of those mechanisms is  equipped with its  own 

environment  searching  rules.  L-binding  and  r-binding  for  algebraic  operators  and  imperative 

constructs are consistent with the convention of Python language. Only object and the non-algebraic 

operators need a detailed discussion.
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For an object its l-value means the reference to this object. Particularly if a binder built from 

name and value indicates some object, then the value of this binder is always the address of this 

object. In this sense our concept corresponds to the concept of the ENVS for SBQL language. R-

values, being the values of objects, are more distinguished.

For a pointer object its r-value is an address contained within such object. The r-value of an 

atomic object is the content of its value field. For a complex object, the r-value is a collection of 

binders to its subobjects with added binder named self, which value is a reference to this object.

Non-algebraic operators expect on their left side a collection of r-values of complex objects. 

Their further evaluation depends on whether it is evaluated with respect to l-value or r-value.

When the r-value is expected from the where operator, it returns a collection of r-values of 

the result collection. When the l-value is expected – the where operator returns proper l-values of 

the left subquery, filtered by the right subquery. The  dot operator evaluates the right subquery 

passing the information whether the l-value or r-value is needed. The evaluation takes place for 

each r-value returned by the left subquery. The collection of acquired results passed as a result of 

the dot operator's call.

Among other non-algebraic operators are quantifiers and close by operator. Both quantifiers 

require  r-values  of  their  first  subqueries,  and  then  for  each  r-value  they  evaluate  the  second 

subquery.  Existential  quantifier  returns a  positive result  if  the second query returned a positive 

result at least once. In other cases it returns a negative result. The universal quantifier returns false 

if the second query was at least once evaluated to a negative result. The close by operator evaluates 

the r-value of a first query. For each value gathered in this stage it is nested on the ENVS and the 

evaluator requests an r-value of the second query. Collection of r-values gathered this way is added 

to the partial result collection and used to repeat this evaluation step. The process is repeated until 

the second query returns an empty collection. 

Of course there are special cases for which there is an explicit need to enforce value or 

address. Here we allow for explicit usage of  ref operator for fetching reference and deref (or @) 

operator for fetching value. Their usage cannot be redundant. Usage of deref operator where a literal 

value appears will result in a Dereference Error. This operator's purpose is for example to fetch a 

value of an object pointed out by a pointer object, however it may be also used with atomic and 

complex objects
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3 General Strategies of Optimization by Rewriting

There are many methods of query optimization. Among them is query rewriting. It is usually 

one of the initial phases of query processing. This method is based on the notion of query semantic 

equivalence. Two queries are semantically equivalent if they produce the same results regardless of 

the database state. The equivalence of queries is the subject to a set of rules. The most important 

may be found in [Ullm88, Denn91]. Query rewriting comprises a number of transformations of the 

original query whose goal is to produce an equivalent query that has shorter evaluation time or 

consume less system resources. Such transformations do not depend on the physical state of the 

system. However they may require access to schema information.  The most common rewriting 

transformations are:

• subquery un-nesting and flattening

• views and functions inlining 

• early selection/projection by predicate move around

• query merging

• rewriting to other language/algebra/monoid comprehension calculus

One of the strategies of query evaluation and optimization is to parse and rewrite a query 

into a corresponding syntax tree according to the grammar rules of the given language. Such tree of 

a query maybe then used as an input of query optimization algorithms. 

The amount of available query optimization algorithms is  huge.  To describe them all  in 

detail one could write a multi-volume encyclopedia. The following chapter presents a selection of 

research on rewriting algorithms from those groups. Selected techniques have either inspired or 

closely relate to the research on the algorithms presented in the chapters 4 and 5 of this thesis.

3.1 Optimization of Non-recursive Queries

Most of the queries to modern database systems are non-recursive. Their variety results in a 

large amount of optimization methods that serve different purposes and are applicable at different 
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stages  of  query  processing.  The  following  sub-chapters  present  seven  general  methods  of 

optimization by rewriting that may be applied to non-recursive queries.

3.1.1 Predicate Move-around 

Predicate move-around is a commonly used optimization technique. It has been described by 

Levy et al. in [Levy94]. This technique is a generalization of a similar, well-known technique – 

predicate push-down [Ullm88]. Predicate push-down allows for early selection by pushing selection 

predicates down the tree of a query. Predicate move-around optimizes queries by firstly moving 

predicates up the query tree before pushing them down into the subqueries or views they refer. This 

way predicates  pulled  up  from one  query block  can  be  pushed  down into  another  block.  The 

original paper, influenced by previous research on moving predicates, discusses situations where 

rewriting two query blocks into one ([Hell92]) is either impossible or complicated, yet predicates 

can be moved. Those situations include aggregate views/subqueries. Other advantage of predicate 

move-around is that it may be applied to a variety of predicates including string comparisons and 

existence predicates.

Another similar algorithm is described in [Yan94]. It is based on performing the group-by operation 

before joins in order to reduce the size of data processed during joining operation.

An adaptation of predicate pushing methodology for SBQL queries has been described in 

[Plod00].  It  is  based  on  distributivity  property  of  non-algebraic  operators  such  as  selection, 

navigation  or  join  operators.  Pushing  selection  for  SBQL may also  be  viewed  as  a  simplified 

version of factoring out independent subqueries.

For XPath/XQuery a number of optimization techniques based on predicate move-around 

have been developed. The paper [Grin05] by Grinev and Pleshachkov describes a technique called 

predicate push down XML element constructors. Its basic idea is to change the order of operations 

to apply predicates before XML element constructors. A set of rewriting techniques for XQuery 

based on predicate move-around has been discussed in [Ozca08]. They are called XPath pushdown, 

local predicate pushdown and join pull up. All those techniques work with so called local predicates 

– predicates and simple XPath navigation queries that access only one document. XPath pushdown 

considers navigational steps as existential predicates. It involves rules to push down XPath through 

operations such as selection, set union and XML element construction. Pushing down conditional 

selection predicate into an XPath expression is the main aspect of the local predicate pushdown 
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technique. Application of this technique is presented by the Example 3.1. The next technique – join 

pull up, also called simple decorrelation, works with join predicates embedded in XPath expressions 

and pulls them into the where clause.

Example 3.1

Original program:

for $c in db2−fn:xmlcolumn("sample.doc")/c, $a in $c/a 

where $c/d = 5 

return $c

Transformed program where predicate $c/d = 5 was push down:

for $c in db2−fn:xmlcolumn("sample.doc")/c[d = 5], $a in $c/a

return $c

3.1.2 View/function Inlining and Merging Nested Subqueries

Presence of user-defined functions or view calls in a query may cause the optimizer to work 

less efficiently. This problem may be at least partly solved using function inlining. It is a common 

optimization technique used for example in programming languages' compilers. The basic work on 

view inlining is [Ston75]. When dealing with non-recursive views or functions this technique is 

simple. However, when dealing with recursive user-defined functions there exists a possibility of 

generating an infinite loop. This problem in context of XQuery language has been addressed by 

Grinev and Lizorkin in [Grin04]

View/function definition expansion and inlining may be a first step of merging nested subqueries. 

There is a lot of research on un-nesting of correlated nested SQL queries and merging them into a 

single  query.  Among  the  most  important  are  [Kim82,  Daya87,  Gans87,  Mura92].  The  work 

[Chau98]  presents  a  very  good  overview  on  the  subject.  The  following  example  of  subquery 

merging technique comes from this paper.
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Example 3.2 

In the following queries EmpNo and DeptNo columns are the primary keys of tables Emp 

and Dept respectively

Original query:

SELECT Emp.Name FROM Emp

 WHERE Emp.DeptNo IN ( SELECT Dept.DeptNo FROM Dept

 WHERE Dept.Loc=‘Denver’ AND Emp.EmpNo = Dept.Mgr )

Transformed "flattened" query

SELECT E.Name FROM Emp E, Dept D

 WHERE E.DeptNo = D.DeptNo 

 AND D.Loc = ‘Denver’ AND E.EmpNo = D.Mgr

This paper discuses more complicated cases of nested subqueries including occurrences of 

aggregates, quantifiers. The research on merging of XQuery queries has been greatly influenced by 

the research on merging of SQL queries. The work [Ozca08] discusses two techniques of merging 

XPath expressions. 

3.1.3 Finding Independent Subqueries and Query Un-nesting

Nested subqueries may significantly reduce evaluation efficiency since they usually involve 

nested-loop evaluation.  When a subquery occurs  in a  main query more than once,  it  might  be 

profitable to calculate such expression in advance. Also when a subquery placed within a loop does 

not depend on the controlling variables, it would be preferable to evaluate this subquery only once 

(for example on the first entry into the loop). Such approach is called query un-nesting or subquery 

decorrelation  [Gans87].  Query  un-nesting  itself  may  not  result  in  performance  improvement 

[Fega98]. Instead it allows for further optimization. In literature there are a number of papers on 

query un-nesting. The paper [Sesh96] explains the problems of decorrelation and surveys previous 

papers on the subject. The authors of this paper also propose a technique for decorrelation of SQL 
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queries  by extracting  distinct  outer  references  and  materializing  all  the  possible  values  of  the 

subqueries. Such approach, being an extension of the magic-sets technique, is known as the "magic 

decorrelation rewrite".

The problem of un-nesting SQL queries in presence of disjunction is discussed in [Bran07]. 

The authors of this paper propose an optimization technique based on the bypass operator first 

introduced in [Kemp94]. This technique's advantages and disadvantages are also addressed by the 

authors of [Elhe07].

For SBQL queries the problem of finding independent queries and query un-nesting is one 

of the basic tasks for optimizers. It has been discussed in a number of papers including [Piec10, 

Subi04, Plod00]. It is based on checking in which section binding of a given name is performed. If 

all of the names of some subquery are bound in other sections than the one opened by the root 

operator of this subquery, then this subquery could be unnested. Thus the analysis of the section 

numbering is the base operation for this type of optimization. For more detailed information on how 

this is performed, please refer to [Subi04]. 

Example 3.3 presents a result of applying basic version of an algorithm for factoring-out an 

independent subquery.  In the original query from this example the subquery calculating Smith's 

salary would be executed as many times as there are Employee objects. In the optimized query it is 

executed only once. The presented AST of the original query has been labeled according to the 

following rule: the non-algebraic operators are labeled with the number of a section they would 

open, while names are labeled with a pair of numbers: the Environment Stack size, and the number 

of a section that holds a binder for a given name 

Example 3.3 

Original query:

Employee where Salary = 

((Employee where Surname="Smith").Salary)
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We observe on the above figure that none of the nodes besides the node labeled salary will

be bound in the second section. Note that the name Emp in the inner selection (dot) clause is 

bound in the section 1 while the outer  where operator opens the section 2. Thus the inner

selection clause is independent of the outer where and can be factored out.

Modified query:

(((Employee where Surname="Smith").Salary) group as S).

(Employee where Salary = S)

With  the  rise  of  interest  in  XQuery  and  semi-structured  languages,  the  issue  of  query 

decorrelation  has  once  again  attracted  attention  since  correlated  queries  are  common  in  this 

language.  Most  research  on  un-nesting  XQuery  expressions  is  based  on  algebraic  rewriting 

[May06], however the algebras used for un-nesting usually do not retain the order of nodes. The 

work  [Fega00]  by  Fegaras  and  Maier  presents  an  alternative  approach  that  uses  monoid 

comprehension calculus. A selection of un-nesting techniques designed for XQuery can be found in 

[Norm03]

3.1.4 Rewriting to Other Query Languages

Algorithms that translate queries from one language to another form the widest group among 

the rewriting algorithms. Their variety is huge and covers many target languages and aspects. In the 
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past the mostly discussed such translation was from Datalog to SQL [Jeze88, Koym90, Godf94, 

Deck02]. With the progress of database technology the interest in this transformation significantly 

dropped, however there is still research being done in this area [Haji05]. This is mostly because of 

the increased interest in deductive databases designed for storing and analyzing ontologies. Reverse 

transformations – from SQL to Datalog – have also been interesting for researchers, although not to 

the same extent. The most detailed paper on this subject is [Bres00]. Datalog has been also a target 

language for rewriting of XQuery [Alme06, Bene08].

The current popularity of XQuery and established background for SQL databases has lead to 

a number of research papers on rewriting XPath\XQuery to SQL [Care00, Mano01, Fern02, Deut03, 

Grus04, Kris04]. 

The newest trend in research on such rewriting of query languages is based on translating 

SQL queries to XPath\XQuery programs [Halv04, Jigy06, Vidh10]. While the focus of the paper by 

Halverson et  al.  is  mainly on  querying  natively stored  XML-data,  the  paper  by Jigyasu  et  al. 

describes in detail the actual process of translation.

The  mentioned  translations  gained  the  most  interest  among  the  database  researchers, 

however the variety of such translations is vast. An interesting work by Grust and Sholl [Grus98] 

describes translation of OQL language to a functional notation resembling Haskell language. The 

main goal of this  translation is  to reduce intermediate structures due to application of program 

fusion algorithm described in the following chapter. For SBQL, the only work on rewriting this 

language to another one is [Wisl07], which describes the construction of an SBQL-to-SQL mapper.

3.2 Short Cut Fusion for Functional Languages

Intermediate structures are common side effect of the evaluation of programming and query 

languages. They may have both positive and negative effects on the cost of evaluation. On one hand 

they may be used to speed up the evaluation, on the other – they may result in unnecessary system 

resource consumption and indirectly and result in reduced evaluation performance.

In 1990 Philip Wadler [Wadl90] presented an algorithm of elimination of such structures in 

functional languages which he called the deforestation algorithm. This method became also known 

as "program fusion" because the basic idea behind it is to "fuse" together two functions of which 

one consumes an intermediate structure generated by the other.  Yet,  despite great potential,  the 
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original deforestation algorithm was too complicated and was too restrictive on the input data. This 

is  why  many  papers  on  deforestation’s  enhancements  have  been  prepared.  Because  of  the 

similarities  between  functional  and  query  languages,  there  has  been  research  on  adaptation  of 

deforestation algorithms to object query languages [Grus98].  One of the enhancements developed 

for functional languages is called the short cut fusion [Gill93, Joha01] or cheap deforestation. It has 

gained much attention [Jone01, Voig08] mostly due to its effectiveness and simplicity. 

Although  the  original  cheap deforestation  was  developed for  functional  language  called 

Haskell, this chapter presents the functionality of the short cut fusion technique using the Python 

language notation. This can be done because Python is equipped with necessary functionality such 

as  reduce and  lambda functions. Python language has been chosen not only because it is a base 

language for PySBQL, but mostly because its popularity and clarity of notation. 

Short cut fusion technique is based on a usage of a collection generating function (build) 

and  a  rule  known  as  "reduce/build  rule".  This  technique  is  based  on  a  folding operation 

implemented in Python as the built-in reduce function, which could be defined as follows:

def reduce(fCall, Tlist, init=None):

if not Tlist: return z

if init==None and len(Tlist)==1: return Tlist[0]

return fCall( reduce(fCall,Tlist[0:-1],init), Tlist[-1])

Another function needed for short cut fusion is the build function which is defined as follows:

build = lambda BinF: BinF(lambda x,y: x+y,None)

The  build function takes as  an argument  a  binary function and applies to  it  a  concatenation 

function and a  special  None object.  The functionality of the  reduce function is  presented by 

examples 3.4 and 3.5

Example 3.4. Example of usage of the reduce function

reduce(operator.truediv,[18,2,0.5,5],180)

results in: ((((180 / 18) / 2) / 0.5) / 5) which calculates into 2.0
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Example 3.5.Example of usage of the reduce function

reduce(operator.truediv,[18,2,0.5,5])

results in: (((18 / 2) / 0.5) / 5) which calculates into 3.6

Now we may proceed with defining the reduce/build rule

Definition 3.1. The reduce/build rule 

reduce(f, build(g), n) == g(f,n)

In most of the functional languages the majority of operators and functions can be rewritten 

into  their  equivalent  compositions  of  reduce and  build functions.  The  short  cut  fusion  is 

applicable to the composition of two functions that could be rewritten into this equivalent. The short 

cut  fusion  algorithm  firstly  performs  this  rewriting.  Having  such  definitions  it  applies 

interchangeably the reduce/build rewriting rule and the β-reduction – a standard transformation of 

the lambda-calculus which may be understood as application of arguments. When none of those 

transformations can be applied the outer  build function should be rewritten using its definition. 

As a result we acquire a function which instead of applying subsequent operations to collections of 

intermediate  data,  performs  all  operations  sequentially  on  individual  elements  of  the  initial 

collection. Example 3.6 presents result of application of short cut fusion. 

Example 3.6 

Original function definition (concatenates a list of strings into a single string using single 

space as a separator)

merge_lst = lambda ls:concat(map(lambda l:l+' ', ls))

Where the concat and map functions are defined using reduce/build composition as:

concat = lambda xs:build(lambda c,n:

reduce(lambda x,y:reduce(c,x,y), xs, n))

map = lambda f,ys:build(lambda c,n: 

reduce(lambda a,b: c(f(a),b), ys, n))
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Resulting function definition:

merge_lst = lambda ls:reduce(lambda a,b:(a+' ')+b, ls, None) 

Many papers dealing with various languages and problems have shown that the usage of the 

cheap deforestation has a positive effect on the speed of program processing and the reduction of 

system resources consumption. Some languages have different functions for left and right folding, 

however the work [Gill96] proves that the short cut fusion does not depend on the choice of folding 

type for the reduce function. 

3.3 Optimization of Recursive Queries

Research on recursive queries have been a part of studies on the data querying since the 80s. 

Recursive  queries  help  to  solve  problems  such  as  bill-of-material,  queries  involving  corporate 

hierarchy, finding routes between cities. Naïve evaluation of recursive queries usually is inefficient 

and  consumes  too  many resources.  Most  optimization  techniques  for  recursive  queries  involve 

modified execution plans, enhanced data retrieval or dynamic procedures [Nejd87]. However, there 

is a group of rewriting algorithms that optimize the initial execution plans.

The research on SQL's recursive queries have been greatly influenced by Datalog's recursive 

queries (see [Schn08] for more information). There are a lot of research papers discussing recursion 

in deductive databases. Significantly less work has been focused on relational recursive queries and 

there has been very little work in the recent years in this field of studies. However, nowadays the 

problem of  recursion  becomes once  again  popular  with  database  vendors  and researchers.  The 

research on optimization of recursive queries may be classified as one of the following trends:

− rewriting represented by the magic-sets technique [Ullm86, Mumi94, Ordo05]

− memoing [Diet87] and storage problems [Ordo10]

− cost models and modified execution plans [Ghaz06]

A comprehensive study on optimization of SQL recursive queries may be found in [Ordo10].
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Some  of  the  optimization  algorithms  for  SBQL's  close  by  operator  may  be  found  in 

[Subi94]. However, the most comprehensive study on optimization of recursive SBQL queries is 

[Piec10] which present many interesting techniques such as rewriting by pushing out selection, 

factoring out independent queries, detection of non-recursive equations and stratification.

3.3.1 Tail-recursion 

Tail recursion (known also as tail-end recursion) is a well-know optimization technique for 

evaluation of recursive functions [Maie88, Rubi10]. It is widely used in functional programming 

languages,  which  often  use  recursion  for  computation.  It  is  applicable  to  cases  of  recursive 

functions  in  which  the  last  operation  before  returning  a  result  is  to  perform  recursion.  Such 

operation is often called a  tail call. A special case of tail recursion involves situation where the 

result of the recursive call is not used. The key idea behind this technique is to replace recursion 

with iteration to decrease the amount of memory (stack space) used and increase efficiency. In most 

cases when tail calls occur, there is no need to return the result to the intermediate function call – 

the newly generated result may be returned directly to the initial function's caller. There are a lot of 

algorithms that are used to rewrite a recursive function's definition, so that it could benefit from tail 

recursion optimization.

For query languages, tail recursion has been broadly discussed in the context of optimizing 

Datalog programs. The papers [Ross91, Ross96] by Ross present special cases of magic templates 

(see chapter  2.2.2) technique enhanced with tail  recursion,  while  the papers [Rama91, Ullm95] 

describe more generally the application of tail recursion to Datalog programs.

Another query language that benefits  from tail  recursion techniques is XQuery [Kay06]. 

However,  because of the availability of FLWOR construction equipped with loops, queries that 

meet the conditions for tail recursion are rarely used. At the same time, the availability of loop 

construction allows for application of rewriting techniques that result in tail calls. Such techniques 

are usually adapted forms of rewriting techniques for programming languages Example 3.7 presents 

application of rewriting technique used in Saxon XQuery processor. The output is a function that 

can be optimized using tail recursion.
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Example 3.7

Original program:

declare  function  local:before_sum($start  as  xs:integer)  as 
xs:integer

{ if ($start eq 0) then 0

 else $start + local:before_sum($start – 1) };

Modified program:

declare function local:tailcall_sum(

$start as xs:integer, $acc as xs:integer) as xs:integer 

{

 if ($start eq 0) then $acc

 else local:tailcall_sum($start - 1, $start + $acc)

};

3.3.2 Magic Set Techniques

The magic set rewriting technique has been introduced by Ullman in [Ullm86]. The version 

presented in that paper is the most widely known "magic set" variant. This variant transformed 

recursive Datalog programs to gain more efficient evaluation.  The common result  of  magic set 

transformations is a newly generated program or query that contains additional predicates. Such 

output queries usually have more keywords and clauses compared to the original query, but their 

evaluation time is shorter [Ullm89].

Since  the  original  paper  by  Ullman,  many  extensions  and  modifications  of  the  basic 

algorithm has been proposed. The paper [Beer87] by Beeri and others introduces a technique called 

"Supplementary Magic Sets".  It  eliminates  some of  the  repeated  computation  appearing  during 

query evaluation. Other improvements of the original technique are so-called "Magic templates" 

and “Alexander templates” [Rama88, Seki89].

The research on optimization of recursive SQL queries has been greatly influenced by magic 
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set techniques developed for Datalog. Among the first papers that showed application of magic sets 

to  SQL language  were  [Gupt92,  Mumi94].  Those  papers  actually  applied  magic  sets  to  non-

recursive  queries  compliant  with  SQL-92 standard.  However,  recursive  SQL queries  are  easily 

represented as Datalog programs, thus magic sets have been naturally adapted to SQL. One of the 

papers dealing with optimization of recursive SQL queries based on optimization techniques for 

Datalog is [Bris06].

Magic sets have also found applications for XQuery and XPath queries. Two of the papers 

on the subject  are  [Alme06,  Ozca08].  The first  of  those papers  also discusses  effect  of  proper 

indexing on programs transformed with magic set  technique.  The basic idea of this  paper is  to 

translate XPath expressions and source data into Datalog programs. 

3.4 Open Problems

A lot of work for syntactical rewriting has already been done. However, there are still open 

problems that can be addressed, mostly in the field of semi-structured query languages. The SQL 

language has been available on the database market for a long time, and there has been a lot of 

research conducted on most of its aspects. Yet, there are still open rewriting problems related to this 

language.  An interesting research topic  is  rewriting a  query to  benefit  from materialized views 

either for security purposes or to reduce the query execution time.

The research proposals  common for all  query languages deal with optimization of user-defined 

functions. This especially applies to the recursive XQuery and SBQL functions. The solutions could 

be based on function inlining but would require gathering specific schema information. It could also 

be worth checking if such functions could be optimized at algebra level.
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4 Deforestation of Linear Queries

During the execution of the SBQL queries a lot of intermediate structures are being created 

which may have a negative impact on the execution time. This was the reason behind construction 

of a new algorithm reducing the size of intermediate structures that works on the level of execution 

plans. This chapter presents an extended version of the initial version of the algorithm presented in 

[Burz10]. 

4.1 Simple SBQL Query Deforestation

The main idea behind this algorithm is inspired by a similar work for OQL [Grus98] and the 

shortcut  fusion  algorithm described  in  the  chapter  3.1.5.  The  execution  plans  in  the  following 

sections are  written using lambda expressions from Python language and are represented using 

Abstract Syntax Trees (AST). The reduce/build rule of the shortcut fusion algorithm was also the 

base rule for the algorithm described in this chapter. Let us remind it.

Rule 4.1. Basic reduce/build rule:

For all two-argument functions f and g every occurrence of the function call: 

reduce( f,( build(g) ), n) 

may be replaced with g(f, n)

Application of shortcut fusion to SBQL requires three steps.  The first is to create a proper 

definition of the build function without violation of the main concept.  The second is to create 

execution plan in the reduce/build notation for each operator.  While doing it we must include the 

operations on the Environment Stack. The last step takes place during the creation of an execution 

plan for a composite query.  It consists of interchangeable application of reduce/build rule with 

λ-calculus conversions until no more transformation can be used. 
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Let us start by defining a proper build function and preparing a new set of execution plans: 

Definition 4.2. The build function

def build( f ): 

return f(struct.__add__, struct() )

The following table presents execution plans for five main SBQL operators:

where = lambda q1,q2:build( lambda c,n:reduce((lambda ys,y:\ 

     (nested(y), (q2 and c(ys,y) or ys), pop())[1]),q1,n))
dot = lambda q1,q2:build( lambda c,n:reduce((lambda ys,y: \ 

(nested(y), reduce(c,q2,ys), pop())[1]), q1,n))
join = lambda q1,q2:build( lambda c,n:reduce((lambda ys,y: \ 

(nested(y), reduce(lambda e es: \

       c(es,struct(y,e)),q2, ys), pop())[1]), q1,n))
all = lambda q1,q2:build( lambda c,n:reduce( (lambda ys,y:\ 

       y and (nested(y), q2, pop())[1]) , q1,True))
sum = lambda q1: reduce((lambda ys,y:__add__(ys,y)),q1,0)

Table 4.1: Execution plans' definitions

The all operator can be used for expressing functions like forall, exists. Also, the sum 

function may be used as a prototype for functions like count,  min,  etc.  Having  the  above 

definitions we also need rules for rewriting the Abstract Syntax Trees (AST) of execution plans for 

the input queries.

The definition 4.2 was the basis for the creation of the following rule of AST transformation:
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Rule 4.2 Build function expanding

Let T be an AST with a root node R labeled "build". Let R have a single child that 

is a subtree S. The tree T may be rewritten into an equivalent AST in which:

• the root node, labeled "function_call", has two child nodes;

• the first child of the root node is the subtree S

• the second child node is labeled "parameters" and has two child nodes: the first  

labeled "struct.__add__" and the second - "struct()"

The next rule is an adaptation of the basic reduce/build rule (4.1) to the AST of a query execution 

plan.

Rule 4.3 Reduce/build rule for execution plan's AST.

Let Q be an AST representing an execution plan and S be a subtree such that:

• its root node R is labeled "reduce"

• the second child node N of the root node is labeled "build"

• tree T1 is the first child of R and tree T3 is the third child of R

Let T2 be a subtree of N. The S subtree may be rewritten into an equivalent AST subtree in 

which:

• the root node is labeled "function_call"

• the first child of the root node is the T2 subtree

• the second child node is labeled "parameters" and has two children: the first is the 

subtree T1 and the second is T3

The above rule may be written in short as:

reduce(T1, build(T2), T3) => function_call(T2, parameters(T1, T3))
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The next rule represents application of the lambda-function node to the arguments in an execution 

plan's AST. It represents the β-reduction – a basic operation of the lambda calculus.

Rule 4.4 β-reduction for AST.

Let Q be an AST representing an execution plan and S be a subtree such that its root node 

R is labeled "function_call" having two child nodes: N1 labeled "lambda" and N2 labeled 

"parameters". Let the node L1 and subtree L2 be the left and the right child of the N1 node; 

subtrees T1, …, Tn be children of the N2 node and p1, …, pm be the labels of the child 

nodes of L1. Depending on the numbers n and m the following cases may occur:

• if m<n the syntax error should be thrown

• if m=n the tree S may be rewritten into an equivalent tree constructed out of L2 tree 

in which every node labeled pi has been replaced with a copy of a tree Ti, i=1...n

• if m>n the tree S may be rewritten into an equivalent tree by replacing every node 

labeled pi within the L2 subtree with a tree Ti, removal of all children of the N2 

node and removal of N1's child nodes labeled pi, i=1...n, 

The above rule and Rule 4.5 are the two main AST simplification rules. The rule 3.5 addresses the 

problem of the Environment Stack, crucial element of the Stack Based Approach. This rule takes its 

name from two fundamental operations on the ENVS.

Rule 4.5. Nested/pop elimination

Let Q be an AST representing an execution plan and T be a node labeled "tuple" having 

three child subtrees: T1, T2 and T3, where T1's root node is labeled "nested" and T3 is a 

node labeled "pop". Let x be a label of T1's leaf node. If the following conditions are met:

• the T2 subtree contains a node W labeled "nested" that has a child node labeled x 

• all other nodes labeled "nested" of the T2 have bigger depth than W

• the parent node R of the W node is labeled "tuple" 

• the parent of the R node is a root node for a subtree S

then the subtree S may be replaced by the R node's second child subtree.
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Before we proceed with the optimization according to the described rules, we need to first 

check, if a query is susceptible to deforestation. To achieve this goal the optimizer should use the 

method of labeling the basic AST of a query with stack size and section numbers. This is exactly the 

same method that is used to search and factor out independent subqueries for SBQL queries. The 

proper algorithm was described in chapter 3.1.3 of this thesis, and its detailed description may be 

found in [Plod00, Subi04]. In general, when each name in a query is bound at the top most section 

of the ENVS, then such query does not contain independent subqueries. However, in such case the 

optimizer should check if this  query contains a composition of at  least  two functions that have 

build/reduce definitions. If so, then the deforestation algorithm may be applied.

To start optimizing a query it needs to be rewritten into its execution plan using proper 

definitions presented in Table 4.1. Then an abstract syntax tree (AST) should be generated out of 

this  plan.  Next  the  execution  plan  tree  should  be  analyzed  for  possible  application  of  the 

reduce/build rule. This process should be performed according to Rule 4.3. Next the AST should be 

simplified using Rules 4.4 and 4.5. Each of those three rules should be applied as many times as 

possible. When none of them can be applied to the transformed execution plan tree the Rule 4.2 

should be applied followed by applications of Rule 4.4 and, if possible, Rule 4.5. If no further 

transformation is possible, the algorithm stops its operation.

To explain how this algorithm operates let us consider an example query:

(Emp where sname = "Smith").dept (1)

Figure 4.1 presents its basic syntax tree with proper labels. The root operator is the selection (dot) 

operator. We may assume that the initial size of ENVS is 1 (regardless of the actual size). This 

assumption does not, in any way, influence the deforestation algorithm. The left child-tree of the 

root node would be evaluated using unchanged ENVS. However, to evaluate the right child node, a 

new section should be placed on the ENVS according to the evaluation rules. Thus the label 2 under 

the root node. The  dept name would be bound on the second section of the ENVS, whose size 

would be then also equal to 2. Other labels are placed in the same manner. 

Immediate  observation  after  all  the  labels  have  been  assigned  is  that  there  are  no 

independent  subqueries.  Therefore  the deforestation  algorithm may be applied.  For the sake of 

shorter and clearer notation we will write P instead of the predicate (sname = "Smith"). Evaluation 

of this predicate is irrelevant to the deforestation technique. 
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The first stage of the algorithm is translating the query (1) into the composition of the basic 

execution  plans,  transforming  this  composition  into  a  corresponding  execution  plan  tree  and 

identifying a subtree matching the requirements of the Rule 4.3. Corresponding Python language 

notation of the execution plan would be as follows:

build( lambda c,n: reduce((lambda ys,y: (nested(y), \ 
reduce(c,evaluate('dept'),ys),pop())[1]), build( \

lambda c2,n2: reduce((lambda zs,z: (nested(z), \

(evaluate(P) and c2(zs,z) or zs),pop())[1]), \ 
evaluate('Emp'),n2)),n))

The inner reduce and build functions (highlighted in bold) match the requirements for application of 

the reduce/build rule. The same execution plan in an AST form is presented by Figure 4.2
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Figure 4.1: Labeled basic AST of the query (1)



Figure 4.3 presents a new execution plan which was created by applying Rule 4.3 to the above tree. 

Additional marking has been placed to indicate where the rule 4.4 can be applied.
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Figure 4.2: Basic execution plan tree for the query (1). The place for 

application of Rule 4.3 has been marked.



Figure 4.4 presents the third step of an algorithm – the AST tree acquired from second step with 

marked places for repeated application of Rule 4.4
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Figure 4.3: Second step of optimization algorithm for query (1)



The next two steps involve once again applying Rule 4.4 and checking for application of 

Rule 4.5 – the nested/pop elimination. The nodes on an AST tree subjectable to this rule have been 

marked on a Figure 4.6
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Figure 4.4: Third step of optimization algorithm for query (1)



The AST tree from Figure 4.6 corresponds to the following Python/PySBQL code:

build( lambda c,n:reduce((lambda zs,z: (nested(z), \ 
(evaluate(P) and (nested(z),reduce(c,evaluate('dept'), \ 

zs),pop())[1] or zs ,pop())[1]), \ 
evaluate('Emp'),n))

After application of the nested/pop elimination rule we acquire the following code corresponding to 

the tree from Figure 4.7:

build( lambda c,n:reduce((lambda zs,z: (nested(z), \ 
(evaluate(P) and reduce(c,evaluate('dept'),zs) \

or zs ,pop())[1]), evaluate('Emp'),n))
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Figure 4.5: Fourth step marked for Rule 3.4
Figure 4.6: Fifth step marked for the 

nested/pop elimination rule



Because we cannot apply neither reduce/build transformation, nested/pop elimination nor

β-reduction we now have to apply the definition of the build function according to the Rule 4.2. As 

a result we acquire a tree (Figure 4.8) that can be subjected to Rule 4.4
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Figure 4.7: Sixth step marked for Rule 3.2

Figure 4.8: Final step of the optimization algorithm



The result of the algorithm is presented by the Figure 4.9 and the source code below:

reduce((lambda zs,z: (nested(z), (evaluate(P) and  \

reduce(struct.__add__,evaluate('dept'),zs) or zs , \

pop())[1]), evaluate('Emp'), struct())) \

During the evaluation of the not-optimized input plan one intermediate list would be created 

- a list of employees fulfilling the predicate P. In the deforested version this intermediate structure is 

not being created.  The output plan has the following meaning:  during its execution for each 

employee check if the surname condition is met,  and if so,  add their department reference to the 

result collection.  Each employee is considered only once,  what reduces resources consumption. 

Another benefit of this method is that the evaluation of the output program is at least as fast as 

evaluation of the input program in the worst case scenario, and in a better one - can speed up the 

process.  Additionally,  after a new plan for a specific composition of two operators has been 

generated it can be stored for future usage. 
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4.1.1 Efficiency Tests

The  efficiency  tests  of  the  presented  deforestation  algorithm  have  been  performed  on 

PySBQL platform with XML storage. There were three data sets describing employees hierarchy: 

comprising 103, 104 and 105 employees. The tests have been performed on two machines: 

− machine A with Intel core 2 duo T6400 processor, 4GB RAM memory and Windows 7

− machine  B  with  936X4  Athlon  processor  (4  cores)  and  8GB  RAM  memory  with 

Windows 2008 Server

The efficiency tests have been performed on the following queries:

(Q1) (Emp where (sname=='River' and fname=='Judy')).

worksIn.address

(Q2) sum((Emp where (sname=='Smith' and fname=='Jane')).

mgr.worksIn.employs)

On each data set and each machine the above queries gave similar results. For the set of 

1000 records the original and modified queries achieved basically the same performance statistics. 

The average memory consumption during queries execution was 150kB. The results were returned 

instantly. Tables 4.1 and 4.2 present efficiency tests for queries Q1 and Q2 respectively. Columns 

"Memory"  present  amount  of  RAM memory consumption  used  during  query evaluation,  while 

"Time" shows how much time was needed for the query to return its result. 

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original 

query

Machine A
150kB

<1ms
1.5 MB

6s
5.7 MB

27s

Machine B <1ms 1ms 2ms

Optimized 

query

Machine A
150kB

<1ms
0.8 MB

5s
4.6 MB

24s

Machine B <1ms <1ms 1ms

Table 4.1: Results of efficiency tests for deforestation algorithm (query Q1)
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Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original 

query

Machine A
150kB

<1ms
1.6 MB

6s
6.4 MB

32.2s

Machine B <1ms 1ms 5ms

Optimized 

query

Machine A
150kB

<1ms
1 MB

5s
5.3 MB

29.6s

Machine B <1ms <1ms 3ms

Table 4.2: Results of efficiency tests for deforestation algorithm (query Q2)

The memory consumption for both machines was almost the same; the differences were only 

visible  in  execution  time.  This  optimization  technique  has  shown little  time  improvement  (by 

approximately 10%) and a considerable memory consumption reduction (by approximately 25%). 

Another conclusion coming from performed tests was that it might be profitable to implement a 

more efficient reduce operator that would work specifically with semi-structured data.

An additional benefit of including this method in the optimizer is that in most of the cases 

when  deforestation  cannot  be  applied,  the  optimizer  can  use  the  method  of  factoring  out 

independent subqueries.

4.2 Distributivity of Algebraic Functions Over the Dot Operator 

Chapter 4.1 discussed the algorithm for reduction of sizes of the intermediate structures for 

SBQL language. That algorithm worked on a level of execution plans based on lambda expressions. 

It  assumed that  every operator  has  such execution plan.  For  some SBQL implementations  this 

assumption may be too troublesome and restricting. This may especially concern distributed object 

databases  which  have  special  execution  plans  that  include  parallel  computation.  This  chapter 

presents another rewriting algorithm for reduction of sizes of the intermediate structures. The basic 

assumption idea of this algorithm is to rewrite an SBQL query to another SBQL query.

Let us consider a simple query:
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sum(Dept.employs.Emp.salary) (3)

This query calculates the sum of salaries of all employees assuming that they are grouped by 

their  departments.  Using  two techniques  previously described  this  query may be  folded  into  a 

simple function that traverses the tree of employment and adds up every encountered salary.  It 

would require a single aggregate object. But what if we would like to make the process parallel? Or 

what if the database scheme is distributed and the data is fragmented? Deforestation will reduce the 

total amount of data transferred, but at the same time it may generate much traffic with requests 

addressed to distributed servers. Benefiting from the unique property of SBQL dot operator we have 

developed a new technique of deforestation by distributivity of linear algebraic functions over the 

dot operator. Our algorithm takes as an input a simple algebraic function like sum, min, max that has 

a dot expression as an argument. On output it generates a query in which after each occurrence of 

the navigation operator the initial function is inserted. Let us consider once again the (3) query. 

After modifying it with our algorithm it takes the form:

sum(Dept.sum(employs.sum(Emp.sum(salary)))) (4)

Now let us assume that in our hypothetical company we have 100 departments, each one 

employing at least 1000 employees. Without any optimization we have to store more than 100 000 

salary objects  in  an  intermediate  structure.  Also,  most  of  those  objects  might  require  transfer 

through the network. But if we distribute the sum function, then we reduce the size of the biggest 

intermediate  structure  about  100  times.  Additional  profit  of  this  method  is  that  most  of  the 

distributed database servers may perform partial evaluation of this query, what would significantly 

decrease the transfer over network because instead of sending 100 salary objects only one number 

would  be  sent  to  the  main  server.  On  a  distributed  system  where  each  department  with  its 

employees is stored on a different computer, the distribution of a sum function would have the 

biggest impact on the efficiency of the query execution.

The functions that can be distributed over the dot operator include sum,  min,  max.  The 

count function might seem troublesome for the use of this technique.  But when we translate 

count(query) into its equivalent sum(query.1) it becomes apparent that the count function may also 

be distributed. An example of optimization process for count function is presented below:

count((Dept where name == "IT").employs.Emp) ≡

sum((Dept where name == "IT").sum(employs.sum(Emp.1)))

Another operator that is often used in database queries is avg (arithmetic average) 

operator. This operator, like count, cannot be distributed over the dot operator in its basic form. But 
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it can be translated into a composition of a  few functions (we skip here the question of 

implementation of execution plans):

avg_p(x) = ( sum(x), count(x) )

avg_p_sum(plist) = ( sum(first(plist)), 
sum(second(plist)))

avg_div(x,y) = if y!=0: x/y else: 0

The avg_p function simultaneously increases the aggregate and the count variable. The avg_p_sum 

function takes a list of pairs of numbers,  and returns a pair of numbers that represent the sum of 

respectively the first and the second elements of pairs. This function is susceptible to distributivity 

over the dot operator. Having those three functions we now can present a new definition of the avg 

function: 

avg(x) = avg_div(avg_p_sum(avg_p(x)))

On  flat  collections  this  transformation  creates  intermediate  structures  and  it  slows  down  the 

evaluation.  But  it  is  meant  to  deal  with  complex  path  (dot)  queries,  and  for  them it  has  the 

advantage of reducing the intermediate structures and increasing the speed of evaluation. Let us 

consider the query: 

avg((Emp where position == "Manager").subordinate.Emp.salary)

Let  us  assume  that  each  of  the  managers  has  1000  subordinates,  and  there  are  100 

managers.  An intermediate  structure  of  100 000 database  objects  would be  created in  order  to 

calculate the result. Now let us consider the alternative definition already in a distributed form:

avg_div(avg_p_sum((Emp where position == "Manager").

 avg_p_sum(subordinate.avg_p_sum(Emp.avg_p(salary))))) (5)

During the evaluation of this query the outermost avg_p_sum reads from the database 

those employees that match the filtering condition.  For each one of them it evaluates the inner 

avg_p_sum that would bind the name subordinate within the context of a current employee, and so 

on.  This way the biggest intermediate structure will consist of 100 pair of numbers, which is a 

considerable storage saving.

59/98



4.2.1 Efficiency Tests

The testing platform was exactly the same as in the chapter 4.1.1. There were two machines – with 

Windows and Linux operating systems equipped with PySBQL working with an XML storage. 

Also, all of the data sets were the same as previously. The efficiency tests have been performed on 

the following queries:

(Q3) count(Emp.worksIn.address.('Works in ' + city))

(Q4) sum((Emp where (sname=='Smith' and fname=='Jane')).

mgr.worksIn.employs)

As in the test case from the chapter 4.1.1, on each of the data sets and each machine the 

above queries gave similar results. Tables 4.3 and 4.4 present efficiency tests for queries Q3 and Q4 

respectively. Columns "Memory" present amount of RAM memory consumption used during query 

evaluation, while "Time" shows how much time was needed for the query to return its result.

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original 
query

Machine A
0.1 MB

1ms
1.4 MB

5s
6.1 MB

30s

Machine B 0ms 2ms 4ms

Optimized 
query

Machine A
17 kB

1ms
320 kB

1s
2.5 MB

12s

Machine B 0ms 1ms 3ms

Table 4.3: Results of efficiency tests for query Q3

Test suite
103 records 104 records 105 records

Memory Time Memory Time Memory Time

Original 
query

Machine A
160 kB

2ms
1.6 MB

6s
6.4 MB

32.2s

Machine B 0ms 1ms 5ms

Optimized 
query

Machine A
57 kB

1ms
0.5 MB

1.4s
2.8 MB

15.6s

Machine B 0ms 1ms 3ms

Table 4.4: Results of efficiency tests for query Q4
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The execution times for optimized queries for the bigger tests sets show improvement of 

execution speed by approximately 50% for machine A and 10% for machine B. This is related to the 

use  of  memory caching  on  a  hard  drive.  However,  the  main  goal  was  to  reduce  the  memory 

consumption. Tests have shown that for each query and each data set, the memory consumption for 

the optimized query was approximately 30% of the consumption for the original query.

4.3 Summary

This  chapter  has  presented  novel  applications  of  the  deforestation  –  an  optimization 

technique for functional languages intended to reduce the size of intermediate structures. We have 

analyzed two propositions of optimization algorithms for the SBQL language. The first algorithm 

worked with execution plans written using Python language notation. Further research on this topic 

should  involve  generating  similar  algorithms  for  other  semi-structured  query  languages  like 

XQuery.  The  second  optimization  algorithm discussed  in  this  chapter  exploits  functionality  of 

SBQL's dot operator. Deforestation technique that optimizes execution plans is a stronger method 

than  the  distributivity  over  the  dot  operator,  and  when  used  together,  distributivity  will  be 

overwritten. But it is not predetermined which method is better. Depending on the context and the 

cost model one may be preferable or more efficient than the other. 
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5 Optimization of Recursive Queries

In  this  chapter  we focus  on optimization of  recursive  queries  in  SQL and SBQL. Both 

presented  techniques  are  based  on  the  idea  of  reduction  of  intermediate  structures.  The  first 

technique was developed for the SBQL's close by operator. The second algorithm was designed for 

SQL's recursive common table expressions, however it may also be used to optimize queries which 

involve recursive views.

5.1 Optimization of Recursive Queries for SBQL

The chapter  4  described  two propositions  of  optimization  techniques  for  SBQL queries. 

Those techniques are based on the shortcut fusion technique described in the chapter 3.2. 

Although  shortcut  deforestation  for  SBQL  queries  is  very  efficient  in  eliminating 

intermediate structures, it has a big drawback — it does not optimize recursive calls. The close by 

operator representing transitive closure of the dot operator cannot be translated into  reduce/build 

notation, thus it falls outside of the cheap deforestation technique. The need for optimization of 

recursive SBQL queries resulted in the research and development of a new algorithm that was based 

on  rewriting  of  execution  plans.  Preliminary  results  of  this  research  have  been  published  in 

[Burz10]. The algorithm introduced in that paper  is used to eliminate intermediate structures that 

are generated during evaluation of a composition of a close by operator and an aggregate function. 

The construction of this algorithm has been inspired by lightweight fusion technique for functional 

languages described in [Ohor07]. 

Before describing the above mentioned algorithm we first need to introduce an execution 

plan for the close by operator written using Python language notation.

Definition 5.1. 

The execution plan for the close by operator is represented with the following recursive 

function definition and call:



def closeby (dotFunction, queryRes):

if isEmpty(queryRes): return bag()

else: 

  return bag.__add__(queryRes, 

closeby (dotFunction, dotFunction(queryRes))

closeby(makeDotF(leftQuery),eval(rightQuery)) 

Where dotFunction represents the execution of the left query in context of the result 

bag of the right query.

Our algorithm is composed out of three steps:

Method 5.1

Let Q be a close by query and  A be an aggregate function that takes Q as an argument. In 

order to eliminate intermediate structures created by Q the following steps should be undertaken:

− inline the A function's  call  into  both  return clauses  of the  close by's  execution plan 

function

− simplify all calculation that can be computed without searching through the database 

section by performing built-in operations such as adding numbers or processing strings

− generate a new execution plan function representing the composition of the analyzed 

operators and replace the A(Q) call with this execution plan.

The  above  rule  utilizes  only  elementary  operations  used  also  during  normal  evaluation 

process. What is important in this rule is the order of the steps necessary and the simplification 

stage.

The  newly  generated  execution  plan  function  may  be  stored  for  the  commonly  used 

compositions. Let us analyze this algorithm on a composition of a  count function with  close by 

operator. A sample definition of the count function is presented below:
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Definition 5.2. Definition of the count function

def count(list_arg):

if isEmpty(list_arg): return 0

else:

len = 0

for i in list_arg:

len+=1

  return len

According to the Rule 5.1 we firstly inline the count function into the definition of the close by's 

execution plan function:

if isEmpty(queryRes): return count(bag())

else: 

  return count(bag.__add__(queryRes, 

closeby (dotFunction, dotFunction(queryRes)))

Now we simplify the calculation acquiring:

if isEmpty(queryRes): return 0

else: 

  return count(queryRes) +

count(closeby (dotFunction, dotFunction(queryRes)))

The last step is to generate a new execution plan function and use it in place of count(query1 

closeby query2) call:

def count_closeby (dotFunction, queryRes):

if isEmpty(queryRes): return 0

else: 

64/98



  return count(queryRes) +

count_closeby (dotFunction, dotFunction(queryRes))

count_closeby(makeDotF(leftQuery),eval(rightQuery)) 

This new function will calculate the same result as the initial query, but it does not use an 

intermediate  structure  containing  all  of  the  database  elements  that  are  retrieved  during  the 

evaluation.  Instead  it  counts  those  elements  at  each  iteration  of  the  recursion.  For  multilevel 

hierarchy it significantly reduces the size of intermediate structures, because the maximum size of 

such structure is equal to the sum of objects acquired in a given iteration. This technique can be 

efficiently combined with reduce/build rules described in the chapter 4.

5.1.1 Efficiency Tests

Similar  to  the  testing  of  algorithms  from the  fourth  chapter,  the  efficiency tests  of  the 

presented algorithm have been performed on PySBQL platform with XML storage.  There were 

three data sets describing employees hierarchy: comprising 103, 104 and 105 employees. The tests 

have been performed on two machines: 

− machine A with Intel core 2 duo T6400 processor, 4GB RAM memory and Windows 7

− machine  B  with  936X4  Athlon  processor  (4  cores)  and  8GB  RAM  memory  with 

Windows 2008 Server

The efficiency tests have been performed on the following query:

sum(((Emp where (sname=='Smith' and fname=='Jane')) 

close by mgr).salary)

On each data set both machines have shown similar memory consumption. The data has 

been prepared so that it did not contain cycles. Table 5.1 presents efficiency tests for the above 

query.  Columns  "Mem"  present  amount  of  RAM  memory  consumption  used  during  query 

evaluation,  "Time  A" shows how much  time  was  needed  for  the  query to  return  its  result  on 

machine A, while "Time B" - on machine B. 
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Test suite
103 records 104 records 105 records

Mem Time A Time B Mem Time A Time B Mem Time A Time B

Original query 0.9 MB 1.3s 84ms 12.6 MB 16s 2.1s 47.3 MB 368s 39s

Optimized 

query
0.8MB 1s 68ms 10.9 MB 14s 1.5s 38.6 MB 307s 32s

Table 5.1: Results of efficiency tests of close by operator optimization

This optimization technique achieved approximate 14% reduction of memory consumption. 

The observed difference in execution speed for the biggest test suite for machine A is related to the 

heavy use of memory caching on a hard drive. Tests performed using different "starting" elements 

have shown similar results.

This tests show that the presented technique of query rewriting is efficient in optimizing 

SBQL's recursive queries. Additional research around this type of SBQL's queries could be based 

on extending this algorithm with a heavy use of the meta-data and indexing.

5.2 Pushing Predicates into Recursive SQL Common Table 
Expressions

Queries based on the recursive Common Table Expressions can be found in most of the 

popular  Database  Management  Systems.  Such  queries  are  very  troublesome  because  of  their 

complexity,  resource  consumption  and possibility of  existence of  endless  loops.  It  is  also very 

difficult  to find an efficient execution plan for them. The work  [Przy10] presents the results of 

efficiency test for recursive queries' implementations. It shows that even for small amounts of data, 

the evaluation time could be very big.

The evaluation time and huge amounts of intermediate data created during recursive query's 

evaluation lead to development of an algorithm for the optimization of recursive CTEs through 

rewriting – thus leaving a possibility for the usage of other optimization algorithms. This method 

has been described in [Burz09]. It was inspired by the method of predicate-move-around described 
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in chapter 3 of this thesis. However, this method applies to non-recursive queries only. Recursive 

queries are much more complex,  since predicates external to them apply to the nodes obtained 

during the execution. It could be useful to push such predicates into the initial step or the recursive 

step. We cannot do it straightforwardly, since the predicate holding for the resulting nodes does not 

have to hold for neither intermediate recursive results nor the initial recursion step. The new method 

of pushing predicated into CTE is subtle enough not to change the semantics of the query.

Together with pushing predicates this  method also tries to push other operators into the 

recursive CTE, so that some part of computation would be performed on the fly together with the 

recursive processing. This spares space needed for temporary data structures and the time needed to 

store  and  retrieve  data  from  them.  This  part  of  the  optimization  method  is  inspired  by  the 

deforestation developed for functional languages.

5.2.1 Motivating Example

The best way to present the idea behind this algorithm is to show its potential applications. 

Let us consider a database table Emp with four columns: eid, ename, salary and mgr. The column 

eid is the primary key, while mgr is a foreign key which references eid. The column mgr stores data 

on managers of individual employees. Top managers have NULL in this column. We define also a 

recursive view which shows the subordinate-manager transitive relationship, i.e. it prints pairs of 

eids, such that the first component of the pair is a subordinate while the second is his/her manager. 

Following SQL-99 standard a query expressing this structure would have the form:

CREATE VIEW subordinates (seid, meid) AS

WITH RECURSIVE subs(seid, meid) AS

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.eid AS meid

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid)

SELECT * FROM subs;
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This view can then be used to find the total salary of all subordinate employees of, say, Smith:

SELECT SUM(e2.salary)

FROM subordinates s2

JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

A naïve execution of such a query consists in materializing the whole transitive subordinate 

relationship. However, we need only a small fraction of this relationship which concerns employees 

named Smith and their subordinates.

In order to avoid materializing the whole view, we start from a standard technique of query 

modification. We expand the view definition:

WITH RECURSIVE subs(seid, meid) AS

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.eid AS meid

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid)

SELECT SUM(e2.salary)

FROM (SELECT * FROM subs) s2

JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

The execution of this query can be significantly improved, if we somehow manage to push 

the predicate e1.ename = ’Smith’ to the first part of the CTE. After this first improvement it is 

possible to get rid of the join with e1 and push the join with e2 as well as the retrieval of the salary 
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into the CTE. After all this changes we get the following form of our query:

WITH RECURSIVE subs(seid, salary) AS

SELECT e.eid AS seid, e.salary

FROM Emp e

WHERE e.ename = ’Smith’

UNION ALL

SELECT e3.eid AS seid, e3.salary

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid);

SELECT SUM(s2.salary) FROM subs s2;

The result of the predicate push and the query fusion is satisfactory. Now we traverse only 

the Smith’s hierarchy. Further optimization is not possible, by rewriting SQL query to another SQL 

query  (SQL:99  severely  limits  the  form  of  recursive  CTEs).  However,  we  do  not  need  to 

accumulate neither  eids  nor salaries. We just need to have one temporary structure, i.e. a number 

register to sum the salaries on the fly as we traverse the hierarchy. This is the most robust plan 

(traverse  the  hierarchy  and  accumulate  salaries).  Such  rewriting  is  a  simple  application  of 

deforestation and can be done by a DBMS on the level of query execution plans even if it is not 

expressible in SQL:99.

5.2.2 Utility Optimizations

Let us now discuss the algorithm that would accomplish previously presented rewriting of a 

recursive query. In general it may be divided into the following steps performed interchangeably:

• expanding the view definition with substitution of variable names

• elimination of vain joins

• elimination of self-joins on primary keys (primary key-to-primary key self-join elimination)

• predicate push-in
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The first three steps are well known in the field of optimization by rewriting SQL queries. 

They will be briefly described  in this sub-chapter including the basic assumptions that should be 

met for them. The last step of pushing-in predicates, being the key point of our algorithm, will be 

described in detail in the sub-chapter 5.2.3

The first step of our algorithm is purely syntactic and performed only once. The algorithm 

begins by expanding the recursive view's definition. The immediate step should be so called α-

conversion – basically substitution of the variable names. 

Rule 5.2. Alpha-conversion for Predicate Push-In

Let Q be a recursive query using CTE and containing references to tables T1,..., Tn, where 

Tk,..,Tn are tables that have not been given alias names, 1<=k<=n.  In order to acquire an 

equivalent query with respect to alias names the following step should be undertaken:

a. starting from table T1 up to Tk-1 the given table alias should be replaced with new, 

unique  alias  name  and  corresponding  column  calls  should  be  renamed 

accordingly

b. tables  Tk,...,Tn should  be  assigned  new  unique  alias  names  and  column  calls 

corresponding to those tables should be renamed to include those alias names

c. column names included in the CTE's header should be replaced with new, unique 

alias  names.  Those  alias  names  should  be  assigned to  corresponding column 

definitions  from the  inner  SELECT clauses.  The references  to  those columns 

should be renamed accordingly

This Rule is used to introduce order in the alias names and definitions. This is done to avoid 

potential problems in the further stages of the main algorithm. 

The  second  technique  is  the  elimination  of  vain  joins.  By  vain  join  we  understand  a 

predicate joining two tables based on primary key-foreign key dependencies where the table joined 

by its primary key is not used in any other clause or predicate of the given subquery. The technique 

of vain join elimination is usually applied after some other query transformation.
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Rule 5.3. Removal of vain joins from the CTE and outer query

Let Q be a recursive query using CTE. Let us use the names T1,T2 for the tables with alias 

names TA1, TA2 respectively. If T1's primary key is used in a joining condition with a foreign 

key of table T2, but besides this joining condition it is not used in any other way. If the 

foreign key column of T2 table does not contain NULL values then this joining condition and 

the reference to the table T1 may be removed from the query Q without changing the result 

of Q. If the foreign key column of T2 table contains nulls then the join predicate should be 

replaced with the  T2.foreign_key IS NOT NULL predicate and the reference to the table T1 

removed from the appropriate FROM clause

The Rule 5.3 may be applied to joining condition occurring in any of the parts of the CTE, or in the 

outer query that uses the CTE. The subtle issue is the NOT NULL condition for the foreign key of 

the T2 table. If the foreign key column would contain null values, then the joining condition would 

have the same functionality as IS NOT NULL condition. But if the schema determines the foreign 

key to be NOT NULL, this condition is useless and is not added.

Another simple conversion is a self-join elimination when the join is one-to-one (primary 

key to primary key).

Rule 5.4. Primary key-to-primary key self-join elimination 

Let Q be a recursive query using CTE. Let T be a table referenced inside Q under two alias 

names TA1 and TA2, such that the query Q contains a predicate joining TA1 with TA2 using 

their primary keys. The query Q may be rewritten into equivalent query by deleting the 

marked self-joining condition,  deleting the reference to TA2 from the FROM clause and 

replacing each remaining occurrence of alias name TA2 with TA1 

This technique may be illustrated by the following example. Starting from a query:

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid AS meid, e2.salary as salary

FROM Emp e, Emp e2

WHERE e.eid = e2.eid
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UNION ALL

SELECT e3.eid AS seid, s.meid AS meid, e4.salary as salary

FROM Emp e3, subs s, Emp e4

WHERE (e3.mgr = s.seid) AND e.eid = e4.eid )

SELECT SUM(s2.salary)

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

The Emp table's instances e1 and e2 are joined using their primary keys. We mark the e2 table for 

removal from the initial query using the Rule 5.4. As a result we obtain the query:

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid AS meid, e.salary as salary

FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid, e4.salary as salary

FROM Emp e3, subs s, Emp e4

WHERE (e3.mgr = s.seid)

AND e.eid = e4.eid )

SELECT SUM(s2.salary)

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

Primary key-to-primary key self-join elimination may be applied to both parts of a CTE definition 

and to the main part of the query. In the mentioned example it was applied to the first part of the 

CTE, but it might have been also applied to the recursive step of that query.
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5.2.3 Predicate Push into Common Table Expressions

This section describes the main part of our technique, i.e. how to find predicates which can 

be  pushed into a  CTE and how to  rewrite  the query to  push selected  predicates  into  CTE.  In 

subsequent steps we will analyze each table (represented by some alias name) joined to the result of 

a CTE. Such a table may be simply used in the query surrounding the CTE or for example may 

appear to be joined with CTE after expansion of the definition of a view (as in the example from 

Section 5.2.1). In the following paragraphs we will call such a table as "marked for analysis". 

Depending on the part of the analyzed query where the marked table's alias is called we have 

three transformations:

Rule 5.5. Join predicate pushing

Let Q be a recursive query using CTE and T be a table with alias name TA such that TA is 

marked for analysis and Q contains a predicate joining TA with CTE. In order to push the joining 

predicate into the CTE, the following steps should be undertaken:

− copy the table T's declaration into all of the inner FROM clauses

− copy the joining condition into the WHERE clauses of the CTE translating CTE's column 

call into its equivalent within the part of the CTE being processed.

The first part of the Rule 5.5 is fairly intuitive. As for the second part the action that might 

be unclear is translation of the CTE’s column call used for joining into its equivalent. Let us analyze 

an example of how this action might be performed.

Let us assume that CTE's column used in the joining predicate has been named cte.C1. In the 

first  SELECT clause of the CTE we search for an alias name definition for  C1. The Rule 5.2. 

(Alpha-conversion) guarantees the existence of such definition. When we find TAi.Cj AS C1 we 

substitute  the column name  cte.C1 with  TAi.Cj.  We proceed analogously when copying the join 

condition into the recursive part of the CTE

Rule 5.6. Selection clause extension

Let Q be a recursive query using CTE and T be a table with alias name TA such that TA is 
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marked for analysis. Let Q contain a predicate joining TA with CTE using table T's primary key and 

the Q's outer SELECT clause contains calls to columns TA.C1,.., TA.Cn. In order to create a query 

Q1 resulting in the same set of records as Q, the following steps should be undertaken:

− push-in the joining condition (using the Rule 5.5) 

− copy the columns TA.C1,...,  TA.Cn calls  into all  inner  SELECT clauses,  assigning those 

columns' calls new alias names (NC1,..., NCn accordingly) 

− expand CTE’s header using aliases NC1,..., NCn.

− in the outer SELECT clause replace the alias TA with the outer alias of the CTE.

The above rule has application to cases when a table is joined in the outer query to the CTE 

and is also referenced in the outer select clause. The next rule has similar construction but is applied 

to cases when the outer select query contains a table joined to the CTE and to some other table.

Rule 5.7. CTE extension

Let Q be a recursive query using CTE and T be a table with alias name TA such that TA is 

marked for analysis. Let Q contain a predicate joining TA with CTE using table T's primary key and 

a  predicate joining TA with table R having the alias name RA, RA!=TA. Let  TA.C1,...,  TA.Cn, 

RA.A1,...,RA.An be column calls used to join TA with RA. In order to create a query Q1 resulting in 

the same set of records as Q, the following steps should be undertaken:

− push-in the predicate joining TA with CTE (using the Rule 5.5.)

− copy the column calls TA.C1,..., TA.Cn used in the predicate joining into all inner SELECT 

clauses, assigning those columns' calls new unique alias names (NC1,..., NCn accordingly ) 

− expand CTE’s header using aliases NC1,..., NCn.

− in the outer SELECT clause replace the calls TA.C1,..., TA.Cn with cte.NC1,...,NCn

If a recursive query involving CTE matches the conditions for rules 5.5, 5.6 and 5.7 for the 

same  table  alias  marked  for  analysis,  those  rules  should  be  performed  together.  The  result  of 

applying those three rules is illustrated by the following example: 
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Having the query:

WITH subs(seid, meid) AS (

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid

FROM Emp e3, subs s

WHERE e3.mgr = s.seid )

SELECT e2.salary, d1.name

FROM subs s2 JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

JOIN Dept d1 ON (e2.dept = d1.did)

WHERE e1.ename = ’Smith’;

The table marked for analysis is Emp e2. This table is used in two join conditions (with the 

CTE, and with the Dept table) and once in the SELECT clause, thus meeting the conditions for all 

three rules. By applying the Rule 5.5 we copy the table name into both FROM clauses existing in 

the CTE definition, also we copy the predicate joining e2 with the CTE and the e2's column calls 

(salary and dept). While copying those calls and predicates we assign new alias names for columns 

and extend the CTE's header. 

Finally we apply the Rule 5.3 and remove the marked table with its  references from the outer 

selection query. The resulting query has the form:

WITH subs(seid, meid, dept, salary) AS (

SELECT e.eid AS seid, e.eid AS meid,

e2_1.dept AS dept, e2.salary AS salary

FROM Emp e, Emp e2

WHERE e2_1.eid = e.eid

UNION ALL
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SELECT e3.eid AS seid, s.meid AS meid,

e2_2.dept AS dept, e2_2.salary AS salary

FROM Emp e3, subs s, Emp e2_2

WHERE e3.mgr = s.seid AND e2_2.eid = e3.eid )

SELECT s2.salary, d1.name

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

JOIN Dept d1 ON (s2.dept = d1.did)

WHERE e1.ename = ’Smith’;

This form may undergo further optimizations like elimination of self-join. One thing has to 

be mentioned: if the marked table is not joined with CTE, is should be skipped and returned to later, 

after other modifications to CTE. 

The last and most important case is when a table from the outer query is referenced within a 

predicate other than join. It should be marked for pushing into CTE, but before moving into CTE 

we have to check if moving this predicate into CTE is possible. There are many predicates for 

which pushing them into CTE would put too big restrictions on the CTE resulting in loss of data. 

During the research on recursive queries we found that the predicate can be pushed into the CTE 

only if we can isolate a sub-tree of the result tree that contains only the elements fulfilling the 

predicate and no other node outside this sub-tree fulfills this predicate. Let us imagine a situation, 

when a hierarchy tree contains some nodes matching the given predicate, but those nodes are placed 

randomly along the branches. Predicate pushing could result in elimination of a branch containing a 

matching node, which should be included in the result set.

The availability of predicate pushing may be only verified by checking for the existence of 

the tree invariant – an attribute of a node which value is the same for all the nodes on a given 

branch. So a general method for pushing a predicate into CTE is based on checking CTE for the 

existence of tree invariant and if found, checking if the predicate can be attached to CTE through 

this invariant. To perform this check we use induction rules. 
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Rule 5.8. Predicate pushing into recursive CTE

Let Q be a recursive query using CTE, SI be the SELECT subquery forming initial step of Q, 

SR be the SELECT subquery forming the recursive step. In order to check for the existence of 

the tree invariant the following steps should be performed:

• Create the schema of the initial tuples by analyzing the SELECT clauses from the SI 

subquery or the header of the CTE

• Form a general representation of such tuples (a1, a2, … an), where n is the length of the 

initial tuples

• By analyzing SR subquery (SELECT clause and join predicates) form a new tuple (b1, 

b2, …, bn) out of the (a1, a2, …, an)

• For each 1<=i<=n compare ai with bi. If an equality is found mark the number i as the 

index of the tree invariant. If no equality exists, the predicates cannot be pushed in

• If  ai is  found to  be  the  tree  invariant,  and  there  exists  a  predicate  that  could  be 

attached to this column through a join condition, such predicate may be pushed into 

the SI subquery.

Based on the induction rules, if a filtering condition is attached to a tree invariant, then each 

tuple formed from a tuple matching this condition also satisfies it. So it is sufficient to push 

the predicate only to  the SI subquery by pushing in the appropriate joining condition (if 

necessary) using Rule 5.5 and moving the filtering predicate from outer query into SI.

What is important is that the filtering predicate does not need to be an equality condition. 

Let us now observe how this method is performed on an example. Let us analyze the following 

query (with the join condition already pushed in):

WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid AS meid, e.salary as salary

FROM Emp e, Emp e1

WHERE e1.eid = e.eid
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UNION ALL

SELECT e3.eid AS seid, s.meid AS meid,e3.salary as salary

FROM Emp e3, subs s, Emp e1

WHERE e3.mgr = s.seid AND e1.eid = s.meid )

SELECT SUM(s2.salary)

FROM subs s2 JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = ’Smith’;

In the CTE definition we reference the table Emp four times and once the CTE itself. The 

table Emp e1 occurs in the predicate e1.ename = ’Smith’. 

By analyzing SELECT clauses of the CTE we find that the initial step generates tuples of the form: 

(e, e, se )

Let us assume that tuple (a, b, c)  CTE.∈  Querying the meta-data gives us the information 

about the Emp table including the list of the attributes: (EID, ENAME, MGR, SALARY), their 

types and the table's primary key (in this case the EID column). This means that every tuple 

belonging to the relation Emp has the form: 

(e, ne , me , se ). 

All of the tuple’s elements are functionally dependent on the first element. During the recursion step 

from this tuple the following tuples are generated:

((a, b, c), (e1, fe1 , le1 , a, se1 ), (b, fb , lb , mb , sb ))

Next by projection on the 4-th,2-nd, and 8-th element we form a tuple:

(e1, b, se1 )

Comparing this  tuple with the initial  tuple template we see that the second parameter is a tree 

invariant, so we may attach to this parameter a table with predicate limiting the size of the result 

collection. Because the predicate e1.ename = ’Smith’ references a table that is joined to the second 

element of the generated tuple, this predicate can be pushed into the initial step of CTE.

By applying Rule 5.3 to the outer select query, and Rule 5.4 to both inner SELECT subqueries we 

acquire a query:
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WITH subs(seid, meid, salary) AS (

SELECT e.eid AS seid, e.eid as meid, e.salary  as salary

FROM Emp e

WHERE e.ename = ’Smith’

UNION ALL

SELECT e3.eid AS seid, s.meid as meid, e3.salary as salary

FROM Emp e3, subs s

WHERE e3.mgr = s.seid )

SELECT SUM(s2.salary)

FROM subs s2;

This way we have obtained a query which traverses only a fraction of the whole hierarchy. It is the 

final query of our motivating example (see Section 5.2.1). The predicate  e1.ename = ’Smith’ has 

been successfully pushed into the CTE. The general procedure of optimizing recursive SQL query is 

to  firstly  push  in  all  the  predicates  and  columns  possible  and  then  to  use  simplification  rules 

described in 5.2.2.

5.2.4 Measured Improvement 

This section presents the results of tests performed on two sets of queries – the motivating example 

and trains' routes. The tests have been performed on two machines: 

− machine A with Intel core 2 duo T6400 processor and 4GB RAM memory and Windows 

Vista OS and MS SQL Server 2008, PostgreSQL 8.4 and IBM DB2 9.7 databases

− machine B with 2500+ Athlon processor and 1GB RAM memory with Ubuntu 9.10 OS 

and PostgreSQL 8.4 and IBM DB2 9.7 databases 
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The first test  suite dealt  with data is stored within a table  Emp(eid,  ename, mgr, salary) 

containing  10 000 records.  The hierarchy itself  was  created in  such  a  way to  eliminate  cycles 

(which is common in a company hierarchy). The query being tested is Query 5.1 

The second suite of test includes two tables: Cities(cid, city) containing 200 distinct entries 

and Trains(Tid, departure, arrival, railname, price) containing 3000 records. The basic query being 

tested is Query 5.2 presented below:
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WITH RECURSIVE subs(seid, meid) AS(

SELECT e.eid AS seid, e.eid AS meid FROM Emp e

UNION ALL

SELECT e3.eid AS seid, s.meid AS meid

FROM Emp e3 JOIN subs s ON (e3.mgr = s.seid))

SELECT SUM(e2.salary)

FROM (SELECT * FROM subs) s2

JOIN Emp e2 ON (e2.eid = s2.seid)

JOIN Emp e1 ON (e1.eid = s2.meid)

WHERE e1.ename = 'Smith';

Query 5.1: Calculates the sum of salaries of all Smith's subordinates



The parameter I was used to limit the recursion depth. It was set to a number ranging from 

0 to 5 – bigger numbers resulted in memory allocation errors during execution of not optimized 

queries. In addition to the basic test queries,  modified starting points for both suites have been 

tested. However, the general ratio of evaluation time before and after optimization was the same in 

each case.

The  table  5.2  presents  the  results  of  the  efficiency  tests  performed  on  two  schemes: 

corporate  hierarchy and train  connections.  The minus  sign indicates that  the DBMS returned a 

memory allocation error.
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WITH  destinations (origin, departure, arrival, connections) AS

   (SELECT a.departure, a.departure, a.arrival, 1

           FROM trains a

    UNION ALL

    SELECT r.origin, b.departure, b.arrival, r.connections + 1

           FROM destinations r, trains b

           WHERE r.arrival = b.departure

           AND r.connections < I )

SELECT count(*)

   FROM destinations e, cities c

           WHERE e.origin = c.cid

           AND c.city = 'Warsaw';

Query 5.2: Calculates the number of possible train routes originating from Warsaw with limitation 

placed on number of connections



Test suite I
Machine A (Windows) Machine B (Linux)

SQL Server PostgreSQL DB2 PostgreSQL DB2

Original 

query

Subordinates - 1,47s 132ms 50,1s 235ms 79,36s

Trains

0 30 ms 4ms 6ms 15ms 5ms

1 46 ms 4ms 6ms 15ms 5ms

2 0,7 s 68ms 0,82s 186ms 1,25s

3 6,78 s 0,68s 9,53s 1,02s 14,92s

4 53s 5,04s 87,92s 11,82s 136,43s

5 348,76s - 673,15s - -

Optimized 

query

Subordinates - 93ms 26ms 81ms 60ms 124ms

Trains

0 0ms 3ms 1ms 2ms 2ms

1 16ms 3ms 1ms 2ms 2ms

2 46ms 7ms 22ms 7ms 59ms

3 0,47s 76ms 0,52s 83ms 1,42s

4 5,16s 0,5s 6,95s 0,83s 20,58s

5 45,98s 4,87s 73,75s 16,94s 223,47s

Table 5.2: Results of efficiency tests

The execution times for optimized queries are approximately 10 times better when the depth 

of recursion exceeds 3. For the recursion depth lower than 3 because of the time expenditure needed 

to optimize the query the execution times would be similar. The execution plans (Figures from 5.1 

to 5.4) of all four types of queries for IBM DB2 database provide some insight into the differences 

in execution time for bigger amount of recursion steps.
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Figures 5.1 and 5.2 present the execution plans for original and optimized query 5.1. The 

original query was estimated to be performed within 8582.6 timeron units and needs one nested 

loops join with union, two hash joins and six table scans. The creation of the temporary table has 

been estimated for 8379.94 timeron units. On the other hand the query optimized using the method 

described in this chapter was estimated by the DBMS to be performed in 8377.54 timeron units and 

needs one nested loop join with union and four table scans. The creation of the temporary table in 

this case has been estimated for 8375.41 timeron units. Those plans show that the potential benefit 

of the optimization method for the query 5.1 lies within the reduction of the time needed to create 

the temporary CTE and the elimination of hash joins and two costly table scans. 
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Figure 5.1: Execution plan for original query 5.1; generated by DB2 database
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Figure 5.2: Execution plan for optimized query 5.1; generated by DB2 database

Figure 5.3: Execution plan for original query 5.2; generated by DB2 database



Now let us analyze execution plans for query 5.2 placed on figures 5.3 and 5.4. The original 

query was estimated to be performed within 1320.38 timeron units with the creation of temporary 

table estimated for 1297.19 timeron units. The optimized query was estimated for 1316.04 timeron 

units with its temporary table estimated for  1310.84 timeron units. This query in both cases needs 

one nested loops join with union, one hash join and five table scans. The benefit that comes out of 

the optimization strategy in this case is that the hash join operates on a smaller amount of data.
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Figure 5.4: Execution plan for optimized query 5.2; generated by DB2 database



One more aspect of optimization should be considered. The optimization strategy presented 

in this chapter is similar to other, well known optimization technique called the magic sets [Ullm86, 

Ullm89].  Both  are  rewriting  algorithms  attempting  to  reduce  the  size  of  intermediate  results. 

However  while  the  magic  set  transformation  operates  only  with  equality  and  inequality 

comparisons,  the  pushing  predicates  technique  allows  for  all  kinds  of  predicates  including 

inequality,  greater-lesser  comparisons  and all  other  comparison  operators.  There  are  also  other 

differences. In magic sets filtering is performed by creating additional tables and additional joins 

that keep only relevant tuples at each iteration. The pushing predicates technique on the other hand 

attempts to filter out irrelevant tuples at  the first  step of recursion. However, both optimization 

techniques may be used together. 
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WITH  destinations (origin, departure, arrival, connections) AS

   (SELECT a.departure, a.departure, a.arrival, 1

           FROM trains a, cities c

           WHERE a.departure = c.cid

           AND c.city = 'Warsaw';

    UNION ALL

    SELECT r.origin, b.departure, b.arrival, r.connections + 1

           FROM destinations r, trains b

           WHERE r.arrival = b.departure

           AND r.connections < I )

SELECT count(*)

   FROM destinations e;

Query 5.3: Query 5.2 subjected to the pushing  predicates technique



5.2.5 Summary

The methods presented in this chapter deal with recursion problems. Suggested algorithms 

include reduction of intermediate structures for recursive SBQL queries and selecting the predicates 

which can be pushed into the SQL's recursive CTE. The condition that needs to be satisfied in the 

second case is the existence of tree invariant. The benefit of the usage of our method depends on the 

selectivity of the predicates being pushed and the recursion depth. A highly selective filter condition 

which may indirectly reduce the amount of recursion steps will improve the evaluation time in a 

significant way. Even experiments with small tables proved the high potential of the method, since 

for such small number of rows the reduction of the execution time is substantial.

The algorithm of predicate  pushing for recursive SQL queries may be applied to  both 

recursive Common Table Expressions and during inlining of recursive view definitions. It also is 

one of the key elements of optimization of object-relational mapping described in [Burz10a]
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6 Final Conclusions

In this thesis we have shown four novel optimization techniques. Their main goal was to 

reduce the resource consumption occurring during query execution and/or reduce the time needed to 

calculate the result. All four techniques utilize query rewriting rules to achieve their goal. Using 

commercial  DBMS's  and  PySBQL experimental  platform  we  have  shown  that  the  presented 

optimization is profitable in both reduction of memory consumption and reduction of execution 

time. The SBQL language has been implemented in a number of systems including few European 

projects. Some systems and projects are still under development and there is a need for optimization 

algorithms. Presented algorithms have been developed bearing in mind those needs and algorithms 

that have already been implemented. The research on optimization of recursive SQL queries was 

part of a bigger study on the subject, which included comparison and efficiency testing of various 

implementations. This study revealed some of the weak points of evaluation of the recursive queries 

that could be fixed with proper evaluation and optimization algorithms. The technique developed 

for SQL language have shown it big potential during the experimental tests and inspired additional 

research on object-relational mappings of recursive SQL queries. Development of this algorithm 

together with the work on the deforestation algorithm inspired the work on other two presented 

optimization methods.

An interesting  line  for  future  research  may be  application  of  deforestation  algorithms 

developed  for  stack  based  query  languages  family  to  the  NoSQL  databases  equipped  with 

map\reduce  systems  and a  PySBQL wrapper.  It  also  seems  promising  to  combine  research  on 

deforestation  and  distributivity  with  parallelization  of  query  evaluation.  Last,  but  not  least  is 

research on benefits and applications of rewriting of recursive queries to their linear equivalents.
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