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Abstract

The aim of this thesis is to investigate certain properties of two constructions of
algebraic varieties based on a finite group action.
In the first part we investigate Cox rings of minimal resolutions of (complex) surface
quotient singularities C2/G, where G is a finite (small) subgroup of GL(2,C). As a
result we provide two descriptions of these rings. The first one is the single relation
between its generators or, in other words, an equation for the spectrum of the Cox
ring presented as a hypersurface in an affine space. In addition, we obtain an ex-
plicit description of the minimal resolution of C2/G as a divisor in a toric variety.
The second way of describing the Cox ring of the minimal resolution of C2/G ring
relies on viewing it as a subring of the coordinate ring of a product of a torus and
another surface quotient singularity, C2/[G,G]. We give a method of finding a set of
generators of such an embedding of the Cox ring, which uses only the information
on the intersection numbers of components of the exceptional fibre of the considered
resolution and on invariants of the induced action of [G,G] on C2. We expect that
this idea can be generalized to selected classes of resolutions of quotient singularities
in higher dimensions.
The second part of the thesis concerns geometric models of Markov processes on
phylogenetic trees. We concentrate on the case of phylogenetic trees with symme-
tries, understood as invariance with respect to a transitive action of a finite group.
First we investigate the setting with added assumption of the isotropy of the model.
The main result of this part concerns models with groups of symmetries containing
large abelian subgroups. We prove that in this case the assumption of isotropy is
unnecessary and we use these results to show that hyperbinary models are the only
isotropic models with abelian group of symmetries.
Then we change the setting: we give up the assumption of isotropy and consider
geometric properties of general group-based models and G-models. We give the first
examples of non-normal models in these classes and compute Hilbert-Ehrhart poly-
nomials to investigate the deformation equivalence of models for trees with the same
number of leaves. Moreover, we propose a (conjectural) method of generating phylo-
genetic invariants of group-based models and prove that for the 3-Kimura model it
is equivalent to an important conjecture of Sturmfels and Sullivant concerning the
degree of generation of phylogenetic invariants.

Keywords: group action, invariant, symmetry, Cox ring, quotient singularity, res-
olution of singularities, toric variety, Markov process on a tree, phylogenetic tree,
geometric model, model of evolution, general group-based model, phylogenetic in-
variant

AMS MSC 2010 classification: 14L30, 14E15, 14M25, 52B20, 13P25
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Streszczenie

W niniejszej pracy doktorskiej badamy własności dwóch konstrukcji rozmaitości
algebraicznych opartych na działaniu skończonej grupy.
Pierwsza część pracy dotyczy pierścieni Coxa minimalnych rozwiązań dwuwymi-
arowych osobliwości ilorazowych C2/G, gdzie G oznacza skończoną (małą) podgrupę
GL(2,C). Wynikiem są dwie metody opisu tych pierścieni. Pierwsza z nich to podanie
(jedynej) relacji pomiędzy generatorami pierścienia Coxa lub, inaczej, równania
opisującego zanurzenie spektrum tego pierścienia na hiperpowierzchnię w przestrzeni
afinicznej. Dodatkowo otrzymujemy konstrukcję zanurzenia minimalnego rozwiąza-
nia C2/G w trójwymiarową rozmaitość toryczną. Druga metoda badania struktury
pierścieni Coxa minimalnego rozwiązania C2/G opiera się na analizie włożenia tego
pierścienia w pierścień współrzędnych produktu torusa i innej dwuwymiarowej os-
obliwości ilorazowej, C2/[G,G]. Podajemy metodę wyznaczania zbioru generatorów
takiego zanurzenia pierścienia Coxa, która wymaga wyłącznie znajomości indeksów
przecięć składowych dywizora wyjątkowego rozpatrywanego rozwiązania i struktury
pierścienia niezmienników indukowanego działania [G,G] na C2. Oczekujemy, że ten
wynik uogólnia się na pewne klasy rozwiązań osobliwości ilorazowych w wyższych
wymiarach.
W drugiej części pracy badamy modele geometryczne procesówMarkowa na drzewach
filogenetycznych. Zajmujemy się klasą drzew filogenetycznych z symetriami, rozu-
mianymi jako niezmienniczość względem pewnego tranzytywnego działania skońc-
zonej grupy. Najpierw rozważamy przypadek z dodanym założeniem izotropowości
modelu. Główny rezultat dotyczy klasy modeli z grupą symetrii zawierającą dużą
podgrupę abelową. Dowodzimy, że w tym przypadku założenie izotropowości można
pominąć, a ponadto wykorzystujemy otrzymane wyniki do wykazania, że modele
hiperbinarne to jedyne izotropowe modele z abelową grupą symetrii.
Dalej rozpatrujemy inny przypadek: odrzucamy założenie izotropowości i badamy
geometryczne własności drzew filogenetycznych z abelową grupą symetrii oraz z
grupą symetrii zawierającą dużą normalną podgrupę abelową. Podajemy pierwsze
przykłady takich drzew, których modele geometryczne nie są normalne. Obliczamy
wielomiany Hilberta-Ehrharta pewnych modeli w celu badania ich deformacyjnej
równoważności. Ponadto, podajemy (jako hipotezę) metodę znajdowania niezmien-
ników filogenetycznych modeli z abelową grupą symetrii i dowodzimy, że dla modelu
3-Kimury jest ona równoważna znanej hipotezie Sturmfelsa i Sullivanta dotyczącej
stopnia generatorów ideału niezmienników filogenetycznych.

Słowa kluczowe: działanie grupy, niezmiennik, symetria, pierścień Coxa, osobli-
wość ilorazowa, rozwiązanie osobliwości, rozmaitość toryczna, proces Markowa na
drzewie, drzewo filogenetyczne, model geometryczny, model ewolucji, model z abe-
lową grupą symetrii, niezmiennik filogenetyczny
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Chapter 1

Introduction

Group actions lead to many constructions of algebraic varieties. Symmetries com-
ing from a group action appearing in such a construction are a powerful tool for
understanding the structure of geometric objects. Therefore, whenever a group ac-
tion is involved in a definition of a class of varieties, one may hope that it will be
an interesting topic of studies. In particular, investigating objects endowed with a
group action often lead to finding new examples of classes defined by some specific
properties. Also, the presence of symmetries usually reduces complexity of consid-
ered objects. From numerous possibilities of realizing these ideas let us mention here
only these which have a direct impact on the content of the present thesis.
A natural problem is to consider quotients of varieties by group actions (although
defining the quotient by a group action in algebraic geometry is in general a nontriv-
ial problem). The simplest examples are quotients of affine spaces by finite group
actions. Properties of such quotients in dimension two, i.e. surface quotient singu-
larities, are investigated in the first part of the thesis. More precisely, the objects
we study are the Cox rings of minimal resolutions of these singularities. A very im-
portant observation is that considered resolutions can be constructed as quotients
of affine varieties corresponding to their Cox rings by a torus action.
This topic should be viewed in the context of the Kummer construction of a K3
surface, see [Kum75], and its generalizations, useful for instance to construct Calabi-
Yau varieties important from the point of view of the string theory. From such a
generalization of the Kummer construction, introduced in [AW10] and investigated
also in [Don11], originated the first part of this work.
In the second part of the thesis we consider geometric models of Markov processes on
phylogenetic trees, that is algebraic varieties associated with certain combinatorial
structures containing the data of an evolution process. From the general class of
such structures we chose these which are endowed with a finite group action of
a certain type and attempt to understand algebraic and geometric properties of
corresponding varieties. Results of the research in this area (see e.g. [SS05, DK09,
Mic11a]), including our results presented in chapters 7 and 8, show clearly that quite
often it is possible to obtain some information on models with a group action, while
very little can be said on the phylogenetic models in their full generality.
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Another class of varieties constructed using a group action, non-finite this time, are
toric varieties. The torus action with an open orbit allows to give a useful com-
binatorial description of such varieties. Moreover, any normal toric variety can be
constructed as a quotient of an open subset of an affine space by a torus action (as
described in section 2.2), which is an important point in the first part of the thesis.
Although toric varieties are not constructed via a finite group action, we mention
them here, since they make a very significant tool in both parts of our work. Their
properties used throughout the thesis are collected in chapter 2.
It may seem that the two topics considered in the thesis, the Cox rings of minimal
resolutions of surface quotient singularities and geometric models of phylogenetic
trees with symmetries, have little in common apart from using the group action
in definitions of investigated objects. However, it turned out that they both can be
approached using methods of toric geometry, which has made it much easier to work
on these problems concurrently. Moreover, in fact a direct link between these two
topics exists: as explained in [SX10], binary (i.e. with an action of Z2) phylogenetic
models are connected to degenerations of the spectra of Cox rings on blow-ups of
projective spaces.
Next two sections are separate introductions to both parts of the thesis and in
section 1.3 we collect basic definitions concerning group actions.

Throughout the thesis we work over the field of complex numbers C, that is we
consider only complex algebraic varieties.

1.1 Cox rings of minimal resolutions of surface quo-
tient singularities

The Cox ring (or the total coordinate ring) of a normal algebraic variety can be
defined as the Cl(X)-graded module

Cox(X) =
⊕

[D]∈Cl(X)

Γ(X,OX(D)),

with multiplication as in the ring of rational functions on X; for the details of the
definition see section 3.5. One can look at Cox(X) from a geometric point of view if
only it is finitely generated. Assume Pic(X) is torsion-free and consider the action
of the Picard torus of X

T = Hom(Pic(X),C∗)

on Spec(Cox(X)). Then X can be obtained as a geometric quotient of an open
subset of Spec(Cox(X)) by T . Thus the Cox ring contains a lot of information on
the geometry of X – the variety is determined by Cox(X) and some combinatorial
data in its grading group (see e.g. [LV09]).
In chapters 3-5 we study minimal resolutions of complex surface quotient singular-
ities: X denotes the minimal resolution of the quotient C2/G for a finite (small)
subgroup G ⊂ GL(2,C). The aim of our work is to understand Cox rings of these
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resolutions: to show that they are finitely generated and to describe them in terms of
generators and relations. Note that in our case the Picard torus action can be consid-
ered because for the minimal resolution X of C2/G the class group Cl(X) = Pic(X)
is torsion-free by Proposition 3.4.9.

Motivation, state of the art

This work can be thought of as a first step towards understanding the total coor-
dinate rings of resolutions of quotient singularities also in higher dimensions. An
important motivation for this problem is the possibility of presenting X as a ge-
ometric quotient of an open set of Spec(Cox(X)) in case where Cox(X) is finitely
generated. Roughly speaking, if one finds a way to understand the Cox ring of a (hy-
pothetical) resolution X of a (quotient) singularity, based only on some restricted
knowledge of the geometry of X, one may be able to construct some new resolutions
as geometric quotients of open sets of Spec(Cox(X)). Recall that in higher dimen-
sions the notion of the minimal resolution of the singularity, although it may be
defined in the context of the minimal model theory (so that the canonical divisor is
relatively nef), it does not yield a unique resolution. In fact, there may be a number
of resolutions, or partial resolutions, which are isomorphic in codimension 1 and
are related by so-called flops, see e.g. [Rei92]. Nevertheless, such resolutions should
share the same Cox ring, which makes studying this object even more sensible. An
especially interesting case is the one of 4-dimensional symplectic quotient singulari-
ties and their symplectic resolutions. The continuation of the project started in this
thesis is a joint work in progress with J. Wiśniewski, [DBW13].
Another motivation for investigating Cox rings of resolutions of quotient singularities
comes from more complex quotient constructions of algebraic varieties, in particular
a generalization of the Kummer construction proposed in [AW10]. The initial idea
of extending the results of [Don11] by finding the Cox rings of Kummer 3-folds
(constructed by resolving singularities of certain quotients of an abelian variety
by finite group actions) evolved to the question about the local situation, which
turned out to be at least as interesting as the original one. Therefore in this thesis
we consider only affine quotients by a group action, but applying these results to
finding Cox rings of generalized Kummer varieties seems an interesting problem for
the future work.
At the moment not much is known about Cox rings of resolutions of quotient singu-
larities. The first attempt to study these objects is a recent paper [FGAL11], where
the authors find the single relation of Cox(X) where X is the minimal resolution of
a Du Val singularity (i.e. G ⊂ SL(2,C)). However, their methods rely heavily on the
equations of an embedding of the singularity in an affine space, and consequently
their work seems to be very hard to generalize. Cox rings of minimal resolutions of
all surface quotient singularities can also be described using the theory of varieties
endowed with a (diagonal) torus action such that its biggest orbits are of codimen-
sion one, see [HS10]. However, these results also do not apply to singularities in
higher dimensions, hence they are not really useful for us, since our primary goal is
to develop a method which will work also in a more general setting.
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Results and organization of work

In chapter 3 we present the details of our setting. We recall the classification of
surface quotient singularities and describe their minimal resolutions (after [Bri68]).
Then basic information on the Cox rings (after [ADHL10]), which will be used in
the following chapters, is collected in section 3.5.
In chapter 4 we prove the first of the main results of this part, Theorem 4.3.3.
This requires a lot of preparatory work. In section 4.1 we define an action of the
Picard torus T of the minimal resolution X on an affine space which then becomes
the ambient space for Spec(Cox(X)). We analyze properties of this action in the
toric setting and describe the quotient as a toric variety. Then a candidate S for
Spec(Cox(X)) is proposed; it is defined as a T -invariant hypersurface in an affine
space.
Section 4.2 is devoted to describing a geometric quotient of an open subset of S
by the action of T as a divisor in a toric variety. We prove that it is the minimal
resolution of C2/G, which is the main step in the proof of Theorem 4.3.3. This may
seem to be a roundabout way of reproving the results of [Bri68]. However, this point
of view on the problem is justified, since we are planning to use the ideas developed
in this work in cases of higher dimensional quotient singularities, where resolutions
do not have such a detailed description, and try to reverse the process: construct
resolutions of quotient singularities from their Cox rings.
The main result of chapter 4, Theorem 4.3.3, states that S is the spectrum of the Cox
ring of X. Hence Spec(Cox(X)) is a hypersurface in an affine space, given by a single
equation which can be easily written down using the description of the exceptional
divisor of the minimal resolution of C2/G (for the details see Construction 4.1.22).
The proof is based on [ADHL10, Thm. 6.4.3], the GIT characterization of the Cox
ring.
Chapter 5 discusses an even more important result, Theorem 5.2.9. It is a description
of Cox(X) in terms of its generators, as a subring of C[x, y][G,G] ⊗ C[t±1

0 , . . . , t±1
n−1],

where [G,G] denotes the commutator subgroup of G. After presenting the proof, in
section 5.3, we give a few examples of sets of generators of the Cox rings in some
specific cases.
While Theorem 4.3.3 is related to the results of [HS10] and can be proven using the
ideas similar to the ones presented there, Theorem 5.2.9 introduces a new method
of describing the Cox ring, designed to work also in the case of quotient singularities
in higher dimensions. The ideas described in chapter 5 are generalized and applied
to higher-dimensional singularities in [DBW13]. As in the present thesis we develop
methods which should work also in a more general situation, we do everything step
by step, performing quite a lot of computations, checking details and providing
examples.
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1.2 Models of evolution with symmetries
In chapters 6-8 we consider a few problems inspired by questions from algebraic
statistics. The objects we investigate are geometric models of Markov processes
on phylogenetic trees. The nature of such a structure depends on three elements.
Firstly, we fix a finite set A. Its elements, called letters, correspond to features
whose evolution we are modeling. For example, they can be the four letters A, C,
T , G, which usually stand for the nucleotides in the DNA. The second element is
a tree (i.e. an acyclic graph) T . To its vertices we assign random variables, which
take values in A, describing the states of the process. Finally, we choose a model
of evolution (usually written in the form of a space of matrices), which defines the
rules of possible modification of random variables assigned to the vertices while
passing from one vertex to another along an edge of T . In other words, the model
of evolution can be understood as a space parameterizing possible values of the
conditional probability relating variables associated with ends of an edge of T .
With such a process one can associate a geometric model – an algebraic variety which
contains information about a possible distribution of the letters over the leaves of
the tree T . The details of this construction are given in section 6.2. In the thesis we
concentrate on investigating phylogenetic trees from the point of view of algebraic
geometry, i.e. we try to understand properties of their geometric models. While the
biological and statistical connotations have significant influence on the definition of
the structure we consider, they are not necessary for describing the mathematical
results. Hence we give only a few words of explanation of the context in section 6.3,
and for a more comprehensive discussion we advise the reader to look into one of
the standard references in the field, for example [SS03] or [PS05, Part I].
In natural sciences symmetries are often used to reduce complexity of a problem. It
turns out that it works very well in the case of phylogenetic trees – restricting to the
class of models of evolution with symmetries (given by a finite group action), or to
its subclasses, lead to a lot of interesting results, which do not apply to more general
trees. Moreover, there are models, closely related to biological origins of this field,
which have symmetries implied in a natural way by biochemical constraints. There-
fore we concentrate on investigating properties of geometric models of phylogenetic
trees with symmetries.

Symmetric models: state of the art

The class of models of evolution with symmetries which appears most frequently in
the literature is the class of general group-based models. The group of symmetries,
which acts transitively and effectively on the set A of letters, is there assumed to be
an abelian group. It was introduced in [ES93] and [SSE93], and investigated later
by other authors. For instance, in [SS05] algebraic and geometric properties of these
models are considered. In particular, it was observed that algebraic varieties associ-
ated with general group-based models are toric varieties, which opens a possibility
of applying methods of toric geometry to phylogenetic trees.
In chapter 8 we concentrate mainly on general group-based models. However, some
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of the results presented there concerns a bigger class of so-called G-models. These
are models which, apart from a transitive and effective action of an abelian group on
A, have some additional symmetries consistent with the abelian group action; for the
precise definition see section 6.4. They were introduced by M. Michałek, the coauthor
of the results of chapter 8, in his doctoral thesis [Mic12b] and the paper [Mic11a].
However, his definition is based on the ideas presented in chapter 7 on this thesis,
coming from a joint work with W. Buczyńska and J. Wiśniewski, [BDW09].
The work presented in chapter 7 uses more general assumptions on the group of
symmetries of a model (we require only the transitiveness and effectiveness of the
action on A), but we add an assumption of the isotropy of a model. By this we
mean that the edges of the tree T are not directed (hence T can be unrooted)
and the matrices describing conditional probability are symmetric. This assumption
corresponds to the time-reversibility of the Markov process. The aim of this work
was to develop a good setting, and to find a sensible class of models, for further
investigation by means of algebraic geometry (and, in fact, it gave the first idea for
distinguishing the class of G-models). Hence the character of the results described
in chapter 7 is more algebraic and combinatorial.
In section 6.4.2 we briefly describe other classes of symmetric models of evolutions
which can be found in the literature, but only these mentioned above are investigated
in this thesis.

Results and organization of work

Chapter 6 is the introduction to the second part of the thesis. We describe there the
details of the construction of phylogenetic trees and of their geometric models. Then
we add a few words on the biological motivation for considering these structures and
finish with discussing phylogenetic trees with symmetries.
At the beginning of chapter 7, devoted to investigating isotropic models of evolution,
we collect basic observations which follow from the construction of such models and
will be referred to. In section 7.2 we consider hyperbinary models of evolution,
which have the group of symmetries equal to Zs2 and generalize the binary model
investigated in [BW07]. This section ends with Theorem 7.2.10, which explains the
importance of hyperbinary models – the result is that these are the only isotropic
models with abelian groups of symmetries. The proof of this theorem is based on
observations made in section 7.3, where we investigate isotropic models of evolution
whose group of symmetries G has an abelian subgroup H acting transitively and
effectively on the set A of letters. Proposition 7.3.6, which states that for this kind of
models the assumption of isotropy is unnecessary, gave the idea for investigating the
class of G-models. The last section of this chapter contains a large set of examples
of isotropic models with symmetries, prepared in the form of classification of such
models for the set A small enough.
Chapter 8 concerns mainly geometric properties of varieties associated with general
group-based models and G-models. To be able to predict some results or to con-
struct counterexamples we made computational experiments. Our software, based
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on the algorithm proposed in [Mic11a], which produces a toric description of a geo-
metric model of a phylogenetic tree with symmetries (i.e. the corresponding lattice
polytope) is described in section 8.1. In the next two sections we discuss some ap-
plications of computational tools to the questions about normality and deformation
equivalence of general group-based models and selected G-models. Our results are
summarized in Proposition 8.2.2 and Proposition 8.3.3. The topic of section 8.4 is
one of the most important questions in this area: determining generators of the ideal
of phylogenetic invariants of a model (i.e. the ideal of polynomials vanishing on the
geometric model). Inspired by conjectures stated in an influential paper [SS05], we
propose a (conjectural) method of obtaining phylogenetic invariants of claw trees
(trees with only one inner vertex), which is the only missing step in understanding
phylogenetic invariants of any tree, see Conjecture 8.4.9. What is important, this
method is not purely algebraic, but involves looking at the geometry of considered
varieties. In Proposition 8.4.17 we prove that Conjecture 8.4.9 holds in the simplest
case – for the binary model. Moreover, in Propositions 8.4.13 and 8.4.19 we relate
this conjecture to the ones of [SS05].

1.3 Group actions: notation and basic facts
The following notation will be used throughout the thesis.

• The unit of a group is most often denoted by 1 when we use the multiplicative
notation and by 0 when the notation is additive. Sometimes, when we think
of a matrix group or a transformation group, we denote it by id.

• By writing H ⊂ G or H ⊆ G, where G is a group, we mean a group inclusion,
that is H is a subgroup of G (unless explicitly stated otherwise – in section 7.3
we consider two groups, one embedded in the other just as sets, not by a group
homomorphism).

• Let G act on a set X; the action on x ∈ X is denoted by g(x) or g · x. The
orbit of x, denoted by G · x, is the set {g(x) : g ∈ G}subsetX. The isotropy
group of x, denoted by Gx, is the subgroup {g ∈ G : g(x) = x} ⊂ G.

• We say that g ∈ G fixes x ∈ X if g(x) = x. Then x is a fixed point of the
action of G if all g ∈ G fix x.

• The action of G on X is called transitive if it has exactly one orbit.

• The action of G on X is called effective if the only g ∈ G which fixes all
x ∈ X is g = 1.

• The action of G on X is called free if the only g ∈ G which fixes some x ∈ X
is g = 1.

• A linear representation of G is a vector space V with a homomorphism
ρ : G→ GL(V ) defining the linear action of G on V .
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In what follows we will refer to the statements given below.

Lemma 1.3.1. Let G be an abelian group which acts effectively and transitively
on a finite set X. Then this action is equivalent to the action of G on itself. More
precisely, choosing an element in X and identifying it with the unit of G gives a
bijection G −→ X such that the action G×X −→ X is identified with multiplication
G×G −→ G.

Proof. Since G is abelian, it acts on the set of fixed points of any g ∈ G, hence by
the transitivity of the action this set is either empty or X.

Definition 1.3.2. The regular representation of G is constructed as follows: the
space V is spanned by a set {eg : g ∈ G} and the action of G on V is given by

h(
∑
g∈G

cgeg) =
∑
g∈G

cgehg.

Lemma 1.3.3. The regular representation ρG : G −→ GL(V ) can be diagonalized
in terms of characters of G. That is, ρG is equivalent to ρχG : G −→ GL(V ) such
that for every g ∈ G it holds ρχG(g) = diag(χi(g)), where diag stands for a diagonal
matrix and χi runs over all different characters in the dual group G∨ = Hom(G,C∗).

For the proof see e.g. [FH91, Cor. 2.18].
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Chapter 2

Toric varieties

Toric geometry is one of the most important tools in both parts of this thesis. The
aim of this chapter is to recall briefly its language and present a few necessary defi-
nitions and theorems on toric varieties, based on [CLS11] and [Ful93]. First, for the
convenience of the reader, we collect most frequently used definitions and notation
in one place. After an introductory section we describe the quotient construction
of a toric variety (see eg. [CLS11, Sect. 5.1]) and its corollaries. These results will
be used mainly in Chapter 4 to construct certain embeddings of resolutions of quo-
tient singularities in toric varieties, associated with the structure of their Cox rings.
Then, in Section 2.3, we collect definitions and facts concerning toric varieties asso-
ciated with lattice polytopes and normality of toric varieties, which will be used in
chapter 8.

2.1 Basic facts
Throughout the thesis by a variety we understand a separated algebraic variety. We
will consider only varieties over C.
Definition 2.1.1. [CLS11, Def. 3.1.1] A toric variety is an irreducible variety X
containing a torus TN ' (C∗)n as a Zariski open subset such that the action of TN
on itself extends to an algebraic action of TN on X, i.e. the action TN × TN → TN
extends to a morphism TN ×X → X.

In the first part of the thesis (chapters 3-5) all considered toric varieties will be
normal. Such varieties can be can be described combinatorially by giving a fan of
convex polyhedral cones (see e.g. [CLS11, Cor. 3.1.8]). Hence the notation for this
construction, given below, will be used much more frequently than the definition
above.
Notation 2.1.2. We use the following notation for toric varieties:

• By N we denote the lattice of one-parameter subgroups of an algebraic
torus, and by M the dual lattice Hom(N,Z), i.e. the monomial lattice of
the torus. The torus associated with these lattices can be written as

TN = N ⊗Z C∗ = HomZ(M,C∗).
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• By a cone we mean a strongly convex rational polyhedral cone in a vec-
tor space NR = N ⊗ R, i.e. a subset σ ∈ NR such that there are vectors
v1, . . . , vn ∈ N such that any point x ∈ σ can be presented as x =

∑
aivi

for some a1, . . . , an ∈ R≥0. A cone spanned by vectors v1, . . . , vn is denoted by
σ(v1, . . . , vn) or Cone(v1, . . . , vn).

• We say that a cone σ has dimension n if its points span an n-dimensional
vector space. Hence σ is of maximal dimension if it spans NR.

• A ray is a one-dimensional cone, most often denoted by ρ. A ray generator
uρ is the generator of the semigroup ρ ∩N .

• A dual cone to σ ⊂ NR is σ∨ = {m ∈MR : 〈m,u〉 ≥ 0 ∀u ∈ σ}.

• A cone τ is a face of σ (denoted τ 4 σ) if it can be presented as σ∩Hm, where
Hm is a hyperplane in NR orthogonal to some m ∈ σ∨. If σ is n-dimensional,
then its facets are faces of dimension n− 1.

• Take a cone σ ⊂ NR; an affine toric variety Uσ is an affine variety whose
coordinate ring is a subring of the coordinate ring of the torus generated by
monomials corresponding to the points of σ∨ ∩M . If τ is a face of σ is a face
then there is a natural embedding Uτ ⊂ Uσ to an open subset. In particular,
TN ⊂ Uσ since it corresponds to the zero cone. By construction of Uσ the
action of TN on itself extends uniquely to the action on Uσ, compatible with
the embeddings Uτ ⊂ Uσ corresponding to faces of σ.

• A fan Σ in NR is a finite collection of cones such that for any σ ∈ Σ all its
faces are also in Σ and the intersection σ ∩ τ of any two σ, τ ∈ Σ is a face of
each. By Σ(n) we denote the set of n-dimensional faces of Σ.

• A toric variety of a fan Σ ⊂ NR, denoted XΣ, is constructed by gluing all
Uσ for σ ∈ Σ along open subsets corresponding to common faces. Since the
gluing is compatible with the TN -action, XΣ is also endowed with the action
of TN . By [CLS11, Thm. 3.1.5] through this construction we obtain separated
normal varieties. Any separated normal toric variety can be obtained this way.

• We say that XΣ has no torus factors if NR is spanned by the sets of ray
generators of Σ.

A morphism of toric varieties φ : XΣ1 → XΣ2 , where Σi is a fan in (Ni)R, is toric
(i.e. is a morphism in the category of toric varieties) if it maps TN1 to TN2 and
φ|TN1

: TN1 → TN2 is a group homomorphism. In case of normal toric varieties this
condition translates to the combinatorial language as follows.

Theorem 2.1.3. [CLS11, Thm. 3.3.4] Using the notation above, φ is a toric mor-
phism if and only if the induced Z-linear map

φ : N1 → N2
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is compatible with the fans Σ1, Σ2, i.e. for every cone σ1 ∈ Σ1 there exists a cone
σ2 ∈ Σ2 such that φR(σ1) ⊆ σ2.

We will use a few another observations connecting the geometry of a toric variety
to the combinatorics of its fan.

Definition 2.1.4. A cone is smooth (or regular) if its ray generators form a part
of a Z-basis of N . It is simplicial, if its ray generators are linearly independent over
R.
We say that a fan Σ is smooth (simplicial) if every cone of Σ is smooth (simplicial).
And we say that Σ is complete if its cones sum up set-theoretically to the whole NR.

Theorem 2.1.5. [CLS11, Thm 3.1.19] Let Σ be a fan in NR and XΣ the corre-
sponding toric variety. Then

1. XΣ is smooth if and only if Σ is smooth,

2. XΣ has only finite quotient singularities if and only if Σ is simplicial,

3. XΣ is compact in the classical topology if and only if Σ is complete.

Example 2.1.6. [CLS11, Ex. 3.1.16] As an example we describe Hirzebruch surface
Fr using the toric language. By {e1, e2} we denote the standard basis of N ' Z2.
Let Σr ⊂ R2 be the fan consisting of Cone(e1, e2), Cone(e1,−e2), Cone(re2− e1, e2),
Cone(re2 − e1,−e2) and all their faces, as in Fig. 2.1.

Figure 2.1: The fan of a Hirzebruch surface F4

It is a smooth complete toric surface. The projection of N along e2 onto span(e1)
gives a morphism of Σr onto the fan of P1 (consisting of Cone(e1), Cone(−e1) and
the zero cone in Z). This is a P1-bundle and the orbits in X(Σr) corresponding rays
ρ(e1) and ρ(re2 − e1) are its torus invariant fibers.

Finally, we recall the description of Weil divisors, the class group and Cartier divisors
of a toric variety XΣ. It will be important later that the class group of a toric variety
is generated by classes of TN -invariant Weyl divisors.

Definition 2.1.7. The class group Cl(X) of a normal algebraic variety X is the
quotient Div(X)/Div0(X) of the group of all Weil divisors on X by the principal
divisors subgroup.
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Let Dρ be the torus invariant prime divisor coming from the ray ρ ∈ Σ(1) by
the orbit-cone correspondence (see eg. [CLS11, Thm. 3.2.6]). Then the subgroup of
Div(XΣ) of all torus invariant divisors is

DivTN (XΣ) =
⊕
ρ∈Σ(1)

ZDρ.

Theorem 2.1.8. [CLS11, Thm 4.1.3] If XΣ is a toric variety without torus factors.
Then there is a short exact sequence

0 −→M −→ DivTN (XΣ) −→ Cl(XΣ) −→ 0.

(If XΣ has torus factors, it is not exact on the left.)

Proposition 2.1.9. [CLS11, Thm 4.2.8] Let D =
∑

ρ∈Σ(1) aρDρ be a torus invariant
Weil divisor. Then it is Cartier if and only if it can be there is a set of characters
{mσ : σ ∈ Σmax} ⊂M such that

〈mσ, uρ〉 = −aρ

for all ρ ∈ σ(1), where uρ is the primitive generator of the ray ρ.

Proposition 2.1.10. [CLS11, Prop. 4.2.7] The fan Σ is simplicial if and only if
XΣ is Q-factorial, i.e. every Weil divisor on XΣ has a positive integer multiple that
is Cartier.

Remark 2.1.11. If XΣ is Q-factorial then every Weil divisor has a description as in
Proposition 2.1.9, butmσ have rational coefficients, that is {mσ : σ ∈ Σmax} ⊂ Q·M .

2.2 The quotient construction
There is a canonical way of presenting a toric variety as a quotient of an open
subset of an affine space. We use it to construct an ambient space for a quotient
of the spectrum of a Cox ring in Chapter4. The result is recalled below and all the
details can be found in [CLS11, Sect. 5.1].
Before returning to the toric setting we explain what kind of quotients are considered.

Definition 2.2.1. Let G be a group acting on an algebraic variety X. Then a
morphisms π : X → Y is a good categorical quotient, if

1. it is constant on orbits of G,

2. if U ⊆ Y is open, then the natural map OY (U) −→ OX(π−1(U)) induces an
isomorphism OY (U) ' OX(π−1(U))G,

3. for each W ⊆ X closed and G-invariant π(W ) ⊆ Y is closed,

4. ifW1 andW2 are closed, disjoint and G-invariant in X, then π(W1) and π(W2)
are disjoint in Y .
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In this situation we denote the quotient space Y by X//G.

Definition 2.2.2. Let π : X → X//G be a good categorical quotient. It is called
a geometric quotient, denoted by X/G, if fibers of π are single G-orbits (or,
equivalently, if all G-orbits in X are closed).
We say that π is an almost geometric quotient if X//G has a Zariski dense open
subset U such that π|π−1(U) : π−1(U)→ U is a geometric quotient.

Let XΣ be the toric variety of a fan Σ in NR. We assume that XΣ has no torus
factors, which is sufficient for our applications. However, in [CLS11, Sect. 5.1] the
case of varieties with torus factors is also discussed.
The group whose quotient we consider in the construction is

G = HomZ(Cl(XΣ),C∗).

It appears naturally in the exact sequence constructed by applying HomZ(−,C∗) to
the exact sequence in Theorem 2.1.8

1 −→ G −→ (C∗)|Σ(1)| −→ TN −→ 1.

Take the polynomial ring
S = C[xρ : ρ ∈ Σ(1)].

For each σ ∈ Σ we define the monomial

xσ̂ =
∏
ρ/∈σ

xρ ∈ S.

Definition 2.2.3. The ideal B(Σ) = 〈xσ̂ : σ ∈ Σ〉 ⊆ S is called the irrelevant
ideal. Its zero set in Spec(S) = C|Σ(1)| is denoted by Z(Σ).

Let eρ : ρ ∈ Σ(1) be the standard basis of the lattice Z|Σ(1)|. We start from defining
a toric morphism

π : C|Σ(1)| \ Z(Σ)→ XΣ.

We lift every σ ∈ Σ to R|Σ(1)| taking σ̃ = Cone({eρ : ρ ∈ σ(1)}). All such liftings form
a fan Σ̃ in R|Σ(1)| which, by [CLS11, Prop. 5.1.9], gives the toric variety C|Σ(1)|\Z(Σ).
Moreover, the fan homomorphism from Σ̃ to Σ sending eρ ∈ Z|Σ(1)| to uρ ∈ N induces
the desired toric morphism π.

Theorem 2.2.4. [CLS11, Thm. 5.1.11] Let XΣ be a toric variety without torus
factors. Consider the toric morphism π : C|Σ(1)| \ Z(Σ)→ XΣ defined above. Then

1. π is an almost geometric quotient for the action of G on C|Σ(1)| \ Z(Σ). Thus

XΣ ' (C|Σ(1)| \ Z(Σ))//G.

2. π is a geometric quotient if and only if Σ is simplicial.
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Remark 2.2.5. The ring S = C[xρ : ρ ∈ Σ(1)] is the total coordinate ring for XΣ,
as it will be defined in section 3.5. The quotient construction presented above is the
simplest case of a general idea of presenting a variety as a quotient of the spectrum
of its Cox ring by torus action. More details on such a quotient presentation are
provided in Section 3.5. In section 3.3, where we briefly discuss the case of cyclic
quotient singularities, we return to the total coordinate ring of a toric variety.

The quotient construction has a nice consequence, which simplifies working in local
coordinates on a toric variety. As before, let XΣ be a toric variety without torus
factors. For a cone σ ∈ Σ consider a map φσ : C|σ(1)| → C|Σ(1)|, which takes a point
(aρ)ρ∈σ(1) to (bρ)ρ∈Σ(1) such that

bρ =

{
aρ ρ ∈ σ(1);
1 otherwise.

Proposition 2.2.6. [CLS11, Prop. 5.2.10] In the setting as above let σ ∈ Σ be a
smooth cone of maximal dimension. Then there is a commutative diagram

C|σ(1)| φσ−→ C|Σ(1)| \ Z(Σ)
↓ ↓
Uσ ↪→ XΣ

where vertical arrows are the maps from the quotient construction and, since σ is
smooth, the left one is an isomorphism.

This means that if a closed subvariety Y ⊂ XΣ is defined by an ideal I ⊆ S (i.e.
it is a quotient by G of a subvariety of Spec(S)) then its local piece Uσ ∩ Y for a
smooth cone σ is the zero set of Ĩ ⊂ C[xρ : ρ ∈ σ(1)] obtained by setting xρ = 1 for
all ρ /∈ σ(1).
However, we need to consider this situation in a more general case where σ is not
necessarily smooth, but it is simplicial. Then Uσ is a quotient of an affine space by
a finite abelian group action and we describe locally a subvariety of XΣ given by
I ⊂ S not on Uσ, but on an affine space whose quotient is Uσ. Thus we can present
Y ∩ Uσ as a quotient of an affine variety by a finite group action.

Proposition 2.2.7. In the setting as above let σ ∈ Σ be a simplicial cone of maximal
dimension. Then the diagram from Proposition 2.2.6, where vertical arrows are the
maps from the quotient construction, commutes. Moreover, the left vertical arrow
is a quotient by an action of a finite group H, which is the cokernel of the lattice
homomorphism h : Z|σ(1)| → N corresponding to this map.

Proof. The argument for the commutativity of the diagram given in the proof of
[CLS11, Prop. 5.2.10] works without changes also in this case.
The monomorphism h : Z|σ(1)| → N corresponding to the left vertical map takes an
element eρ of the standard basis of Z|σ(1)| to the ray ρ of σ. Since σ is of maximal
dimension and simplicial, the set of its rays is a basis of NR. Thus the cokernel of h
is a finite abelian group. It is isomorphic to the kernel of the dual homomorphism of
lattices, hence also, by definition, to the group G from the quotient construction.
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The statement concerning the commutativity of the diagram as above is true in
a more general setting. The left vertical map can be the morphism from quotient
construction not only for a single cone, but for a subfan of Σ satisfying certain
assumptions (see exercise 5.2.5 in [CLS11]). However, here only the version from
Proposition 2.2.7 will be used.

2.3 Toric varieties from polytopes and normality
In the second part of the thesis (chapters 6-8) we consider toric varieties which
appear as geometric models of phylogenetic trees with a finite group action. These
varieties do not have to be normal, hence they do not necessarily come from a
fan. However, the natural way of describing them is to construct a lattice polytope
directly from the structure of the phylogenetic tree (see section 8.1.1). Therefore we
recall the notation for presenting toric varieties in terms of lattice polytopes and we
state a few properties which will be used to check normality and projective normality
of such varieties.
Let P denote a lattice polytope in MR, that is a convex hull of a finite set of
lattice points S ⊆M . The set of lattice points inside P is {m1, . . . ,ms} = P ∩M .
Let dimMR = n. Then TN ' (C∗)n and its points are denoted by (t1, . . . , tn) ∈ TN .
The Laurent monomial χv(t1, . . . , tn) is the character of TN corresponding to v ∈M .

Definition 2.3.1. By a projective toric variety associated with a lattice
polytope P ⊂MR we understand the Zariski closure of the map

(t1, . . . , tn) 7→ [χm1(t1, . . . , tn) : . . . : χms(t1, . . . , tn)] ∈ Ps−1

This variety will be denoted by XP .

Note that this is slightly different from the construction in [CLS11, Ch. 2] in the
case where XP is not projectively normal. Also, we intentionally skip the relation
between toric varieties constructed from polytopes and the representation by fans
(see e.g. [CLS11, Sect. 2.3]), because it is not used explicitly throughout the text.

Definition 2.3.2. The affine cone over XP , denoted by CP , is the Zariski closure
of the map

(t1, . . . , tn, z) 7→ (χm1(t1, . . . , tn) · z, . . . , χms(t1, . . . , tn) · z) ∈ Cs,

where (t1, . . . , tn, z) ∈ (C∗)s×C. In other words, CP is the spectrum of the semigroup
generated by (P × {1}) ∩ (M × Z).

Lemma 2.3.3. [Stu96, Lem. 4.1] The toric ideal IP ⊆ C[x1, . . . , xs] associated
with P , i.e. the ideal of CP , is spanned ac a C-vector space by the set of binomials

xu1
1 · · ·xuss − x

v1
1 · · ·xvss

such that there is a relation
∑s

i=1 ui(mi×{1}) =
∑s

i=1 vi(mi×{1}) between vertices
of P × {1}.
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In chapter 8 we investigate normality of toric varieties constructed from lattice
polytopes, so we recall necessary definitions and equivalent combinatorial conditions
below.

Definition 2.3.4. An algebraic variety is normal if it can be covered by open affine
subsets which are normal, that is their coordinate rings are integrally closed in their
fields of fractions. A projective variety is projectively normal if the affine cone
over it is a normal (affine) variety.

Definition 2.3.5. [CLS11, Lem. 2.2.14, Def 2.2.17] We will say that a lattice
polytope P ⊆ MR is normal if the set (P ∩ M) × {1} generates the semigroup
Cone(P × {1}) ∩ (M × Z).
P will be called very ample if for every vertexm of P the semigroup SP,m generated
by the set P ∩M −m = {m′−m : m′ ∈ P ∩M} is saturated in M , i.e. there are no
x ∈M and k ∈ N such that nx ∈ SP,m and x /∈ SP,m.

Two useful facts in the lemma below follow directly from [CLS11, Thm 1.3.5] and
Definition 2.3.5.

Lemma 2.3.6. The projective variety XP associated with a lattice polytope P is
normal if and only if P is very ample. The affine cone CP over XP is normal, i.e.
XP is projectively normal, if and only if P is normal.

Remark 2.3.7. Lattice polytopes considered in chapter 8 appear in a natural way
lying in a hyperplane H ⊂MR given by a condition that the sum of a certain group
of coordinates is one (for the details see section 8.1.1). Then, instead of considering
such a polytope P in H and looking at the semigroup generated by lattice points
of P × {1} in H × Z we may think of the semigroup generated by lattice points of
P in M , since there is the isomorphism of lattices H × {1} → M mapping lattice
points in P ×{1} to lattice points in P . This fact will be used for checking normal-
ity and computing Hilbert-Ehrhart polynomials of certain varieties associated with
polytopes in chapter 8. Note also, that in this case the toric ideal IP is homogeneous.
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Chapter 3

Singularities, resolutions, Cox rings

In this chapter the main objects investigated in this work are described. First of
all, we give basic definitions and general results on quotient singularities and their
resolutions. In section 3.2, we present the classification of 2-dimensional quotient
singularities by saying how to construct corresponding subgroups of GL(2,C) from
basic components. We compute their commutator subgroups and abelianizations,
needed in section 4.2.6 and chapter 5. Then minimal resolutions of these singularities
are described. First the case of cyclic groups, which are toric, hence their Cox ring
is just a polynomial ring; see section 3.3. Next, the resolutions of quotients by non-
cyclic groups, which are investigated in what follows; see section 3.4. These three
sections are based on works [Bri68] and [Rie77]. Finally, in section 3.5 a very brief
introduction into the theory of Cox rings of algebraic varieties is provided.

3.1 Quotient singularities, resolutions

By a quotient singularity we understand a singular point x of a quotient X/G, where
X is a smooth algebraic variety and G is a finite group action on X by algebraic
automorphisms. They are locally analytically isomorphic to quotients of affine spaces
by linear actions.

Theorem 3.1.1 (Cartan). Any complex quotient singularity (X/G, x) is isomorphic
to (Cn/G, 0), where G ⊂ GL(n,C) is a finite subgroup.

Therefore we investigate quotients of an affine space V ' Cn by linear actions of
finite groups in the special case of n = 2. The quotient is just the spectrum of the
ring of invariants of the action,

V/G = Spec(C[V ]G).

The definition of the quotient works because of the following old result of E. Noether.

Theorem 3.1.2 (Noether). The ring of polynomial invariants of a linear action of
a finite group on an affine space is finitely generated.
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As the ring of invariants depends only on the conjugacy class of G, the quotients for
conjugate groups are isomorphic. Hence we consider only a representative for each
(interesting) conjugacy class.

Definition 3.1.3. A pseudo-reflection (or a quasi-reflection) is a linear transfor-
mation of dimension n which has 1 as an eigenvalue with multiplicity n− 1.

The Chevalley-Shephard-Todd theorem (see e.g. [Stu93, Section 2.4]) states that
the ring of invariants of a finite linear group action is a polynomial ring if and
only if the group is generated by pseudo-reflections. In other words, a finite group
G generated by pseudo-reflections is not interesting in the context of our problem,
because V/G ' V . For any finite G ⊂ GL(n,C) the subgroup R generated by
pseudo-reflections is normal, G/R does not contain pseudo-reflections and, due to
this result, V/G ' V/(G/R). Therefore, we can restrict ourselves to considering
(conjugacy classes of) small groups.

Definition 3.1.4. A subgroup of GL(n,C) is a small group if it does not contain
any pseudo-reflection.

The quotient of C2 by a finite subgroup of G ⊂ GL(2,C) either is smooth or has an
isolated singularity in 0. This is because if a non-zero point has a non-trivial isotropy
group H, then every element of H has an eigenvalue 1, so it is a pseudo-reflection.
However, it is worth noting that in higher dimensions the singular locus of a quotient
of an affine space by a finite linear group action can be much more complicated.
We sum up the discussion in the following definition.

Definition 3.1.5. We use the term (complex) surface quotient singularity for
a quotient of C2 by a linear action of a finite small group G. This variety is normal,
singular at 0 and smooth in all other points.

In section 3.2 we describe the classification of finite small subgroups of GL(2,C),
hence also the classification of surface quotient singularities up to isomorphism.
We now state the basic properties of the resolution of singularities of finite quotients
in dimension 2.

Definition 3.1.6. A smooth variety Y is a resolution of singularities of a normal
variety X if there is a proper birational morphism f : Y → X such that it restricts
to an isomorphism Y \ f−1(Sing(X))

'−→ X \ Sing(X).

Definition 3.1.7. The exceptional set of a resolution f : Y → X is f−1(Sing(X)).
In case of resolutions of surface quotient singularities C2/G it is just f−1(0) and it
has codimension one in Y , so we use the term exceptional divisor.

Definition 3.1.8. The minimal resolution of singularities of a surface X is a
resolution f : Y → X such that every other resolution f ′ : Y ′ → X factors through
ϕ : Y ′ → Y .
In case of resolutions of isolated surface singularities it is equivalent to a statement
that the exceptional divisor does not contain (−1)-curves.
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In general, the minimal resolution does not necessarily exist, but in dimension 2 it
does.
Quotient singularities are rational, see e.g. [Bri68] for the surface case and [Bur74,
Vie77] for higher dimensional cases. The exceptional divisor of a resolution of a
rational surface singularity has the following properties (see [Bri68, Lem. 1.3]):

• its irreducible components are smooth rational curves, which form a tree (i.e.
an acyclic graph),

• two different irreducible components intersect in at most one point, and if they
do, their intersection number is 1,

• no three irreducible components intersect.

We will see in section 3.4 that in case of surface quotient singularities the exceptional
fibre is a very simple tree of P1 curves. It can be either a chain or a tree consisting of
three chains joined in a central component – its dual graph is a so-called T-shaped
diagram, as in Fig. 3.2. The details, in particular the self-intersection numbers of
components, are given in section 3.4.

3.2 Finite small subgroups of GL(2,C)
This section contains the list of groups for which we consider the quotient singularity
C2/G. We also compute commutator subgroups and abelianizations of considered
groups, which will be needed in the sequel, especially in section 5.2.
The classification of (conjugacy classes of) finite small subgroups of GL(2,C) is taken
from [Bri68] and [Rie77]. Before listing the groups we introduce the notation for the
cases which are constructed via fibre product (after [Bri68]).
By µ : GL(2,C)×GL(2,C)→ GL(2,C) we denote the matrix multiplication.

Definition 3.2.1. Take H1, H2 ⊂ GL(2,C) with normal subgroups N1 and N2

respectively, such that there is an isomorphism φ : H1/N1 → H2/N2. By [hi] we
denote the class of hi ∈ Hi in Hi/Ni. We will consider the image under µ of the fibre
product of H1 and H2 over φ:

(H1, N1;H2, N2)φ = µ({(h1, h2) ∈ H1 ×H2 : [h2] = φ([h1])}).

If the choice of φ is obvious, it will be denoted by (H1, N1;H2, N2).

Throughout the text we use the usual notation εn = e2πi/n.

Proposition 3.2.2. [Bri68, Satz 2.9] The conjugacy classes of finite small subgroups
of GL(2,C) are:

1. cyclic groups Cn,q = 〈diag(εn, ε
q
n)〉, where Cn,q is conjugate to Cn,q′ if and only

if q = q′ or qq′ ≡ 1 mod n,

2. non-cyclic groups contained in SL(2,C):
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• binary dihedral groups BDn (4n elements, n ≥ 2, gives the Du Val singu-
larity Dn+2),

• binary tetrahedral group BT (24 elements, Du Val singularity E6),

• binary octahedral group BO (48 elements, Du Val singularity E7),

• binary icosahedral group BI (120 elements, Du Val singularity E8),

3. images under µ of fibre products of a group in SL(2,C) and a cyclic group
Zk = Ck,1 = diag(εk, εk) contained in the center of GL(2,C):

• BDn,m for (m,n) = 1, defined as (Z2m, Z2m;BDn, BDn) for odd m and
(Z4m, Z2m;BDn, C2n), where C2n C BDn is cyclic of order 2n, when m is
even,

• BTm defined as (Z2m, Z2m;BT,BT ) in the cases where (m, 6) = 1 and as
(Z6m, Z2m;BT,BD2) when (m, 6) = 3,

• BOm = (Z2m, Z2m;BO,BO) if (m, 6) = 1,

• BIm = (Z2m, Z2m;BI,BI) if (m, 30) = 1.

Note that for m = 1 we obtain the subgroups of SL(2,C) listed above.

In what follows, by abuse of notation, we most often identify the conjugacy classes
of subgroups of GL(2,C) and their representatives from the list in Proposition 3.2.2.
Generators of each of these groups can be found in [Rie77]. However, we intend
to avoid lengthy computations using generators, hence we do not list them here.
We need only the description of abelianizations of considered groups in terms of
generating sets, given in Corollary 3.2.5.
Quotients by cyclic groups are toric singularities. The structure of their Cox rings,
which are just polynomial rings, is well known. We provide some information on this
case in section 3.3 based on [CLS11, Chapter 5]) and in what follows we consider
only quotients by non-cyclic groups.
Generators of finite small subgroups of SL(2,C) are given e.g. in [Rei]. A simple com-
putation, performed for example in [GAP12], allows to prove the following lemma.

Lemma 3.2.3. The commutator subgroups and the abelianizations of finite small
subgroups of SL(2,C) are:

• [BDn, BDn] ' Zn, it is generated by diag(εn, ε
−1
n ), Ab(BDn) is Z2 × Z2 if n is

even and Z4 for odd n,

• [BT,BT ] = BD2, Ab(BT ) ' Z3,

• [BO,BO] = BT , Ab(BO) ' Z2,

• [BI,BI] = BI, Ab(BI) = 1.

It turns out that commutator subgroups of finite small subgroups of GL(2,C) are
the same as for SL(2,C) subgroups.
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Lemma 3.2.4. The commutator subgroup of a small subgroup G ⊂ GL(2,C) from
the list in Proposition 3.2.2 (3) is the same as the commutator subgroup of the non-
cyclic factor of the corresponding fibre product structure given in Proposition 3.2.2.

Proof. Let G = (H1, N1;H2, N2) such that H1 is in the center of GL(2,C). Take
g, g′ ∈ G and let g = h1h2, g′ = h′1h

′
2 where hi, h

′
i ∈ Hi. Then gg′g−1g′−1 =

h2h
′
2h
−1
2 h′−1

2 , so [G,G] ⊆ [H2, H2]. They are equal, since by Definition 3.2.1 for
every h2 ∈ H2 there exists some h1 ∈ H1 such that h1h2 ∈ G.

Now the abelianizations of considered groups can be computed. In fact, if we needed
only their isomorphism types, we could read them out from the last column of the
table in [Bri68, p. 348]. (This is because Ab(G) of G ⊂ GL(n,C) is isomorphic to
the class group of the quotient variety Cn/G, see Proposition 3.4.8.) However, the
proof of Proposition 4.2.10 requires knowing generators of Ab(G), hence we list them
below. They are written as matrices in GL(2,C) whose classes generate G/[G,G].
To describe generators of Ab(G) we use

B =

(
0 1
−1 0

)
and C =

1

2

(
1 + i −1 + i
1 + i 1− i

)
.

Corollary 3.2.5. Abelianizations of finite small subgroups of GL(2,C) are

• if n is even, Ab(BDn,m) ' Z2m×Z2 is generated by ε2m ·B and diag(ε2n, ε
−1
2n ),

• if n is odd, Ab(BDn,m) ' Z4m is generated by ε4m · B for m even and ε2m · B
for m odd,

• Ab(BTm) ' Z3m is generated by

? ε2m · C if (m, 6) = 1,

? ε6m · C if (m, 6) = 3,

• Ab(BOm) ' Z2m is generated by ε2m · diag(ε8, ε
−1
8 ),

• Ab(BIm) ' Zm is generated by diag(εm, εm).

Proof. Assume G = (H1, N1;H2, N2), where H1 is a cyclic group generated by
diag(ε2k, ε2k) and H2 a subgroup of SL(2,C).
We start from computing the order of Ab(G). The order of [G,G] is known by
Lemma 3.2.3, so we only have to determine the order of G. Look at the kernel of

µ : {(h1, h2) ∈ H1 ×H2 : [h2] = φ([h1])} → GL(2,C).

Take 0 < i ≤ 2k and M ∈ SL(2,C) such that εi2k ·M = 1. Then diag(ε−i2k , ε
−i
2k) is

in SL(2,C), which is possible only if i = k or i = 2k, i.e. M = diag(−1,−1) or
M = diag(ε−2k

2k , ε−2k
2k ) = 1. Since for any considered group G both these pairs of
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matrices are in the fibre product (which can be checked directly using the list in
Proposition 3.2.2), the kernel is always Z2. Thus

|Ab(G)| = |G|/|[G,G]| = |N1| · |N2| · (|H1|/|N1|)/(| kerµ| · |[G,G]|) =

= |H1| · |N2|/(2|[G,G]|).

We check case by case that the values obtained this way are compatible with the
formulation of this corollary.
Now in all cases but the first one it suffices to say that the order of the element
given in the formulation of the corollary modulo [G,G] is in fact equal to the order
of Ab(G). For example take the case of G = BDn,m for odd n. If m is even then
G = (Z4m, Z2m;BDn, C2n) and ε4m · B ∈ G. Assume (ε4m · B)a ∈ [G,G] ⊂ SL(2,C)
for some 0 < a < 4m. The determinant of this element is ε2a

4m, so a = 2m. But then
2m is a multiple of 4 and ε2m

4m · B2m = diag(−1,−1), which is not in [G,G] ' Zn,
because n is odd. Thus ε4m · B is indeed of order 4m. If m is also odd then G =
(Z2m, Z2m;BDn, BDn) and from (ε2m ·B)a ∈ [G,G] ⊂ SL(2,C) we have a = m. But
(ε2m · B)m is i · B or i · B−1, which is not diagonal, hence it is not in [G,G]. The
remaining cyclic cases can be checked in the same way.
In the case of G = BDn,m for n even the number m must be odd, so we have
G = (Z2m, Z2m;BDn, BDn). As before, ε2m · B is of order 2m, and diag(ε2n, ε

−1
2n )

has order 2 modulo [G,G]. The commutator of these elements is diag(ε−2
2n , ε

2
2n), so it

is in [G,G] ' Zn = 〈(diag(ε2n, ε
−1
2n ))2〉 and chosen elements represent commutative

classes of Ab(G). Moreover, (ε2m · B)m = −Bm and −Bm · diag(ε2n, ε
−1
2n ) /∈ [G,G],

so the element of order 2 is not in the subgroup generated by ε2m · B. Thus in fact
Ab(G) ' Z2m × Z2.

3.3 Cyclic quotient singularities: resolutions and Cox
rings

Before we consider minimal resolutions of surface quotient singularities in general, we
summarize briefly the case of quotients by abelian finite small subgroups of GL(2,C),
i.e. cyclic groups. Then the singularity and its minimal resolutions are toric. Hence
their total coordinate ring can be described without giving a more general definition
than what we have stated in 2.2.5. Moreover, this case gives an opportunity for
defining a few objects which reappear in the description of the minimal resolutions
in non-cyclic cases. The main sources for this section are [Ful93, Sect. 2.2, Sect. 2.6]
and [Rei97].
Let G = Cn,q = 〈diag(εn, ε

q
n)〉 where εn = e2πi/n and (n, q) = 1. In the notation

of [Rei97] it is 1
n
(1, q). We consider the action of G on C2 and the quotient singularity

C2/G.

Remark 3.3.1. [Ful93, Sect. 2.2] The quotient C2/G has a toric structure. Let e1, e2

be the standard basis of N ' Z2. The fan of C2/G consists of a single 2-dimensional
cone σn,q ⊂ NR ' R2 (and all its faces) spanned by ne1 − qe2 and e2.
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Its minimal resolution can also be described in the toric setting. Its fan is obtained by
dividing σn,q into subcones by some carefully chosen rays. We sketch the construction
explained in more detail in [Ful93, Sect. 2.6].

Construction 3.3.2. We construct the set of rays which divide σn,q into smooth
cones recursively.

1. The subcone of σn,q spanned by e1 and e2 is smooth, so draw the ray Cone(e1)
and then deal with the singularity of Cone(e1, ne1 − qe2).

2. Find a cone σn′,q′ such that there is a lattice automorphism of N mapping
Cone(e1, ne1− qe2) to it: take n′ = q and q′ = a′q− n for some integer a′ such
that 0 ≤ q′ < n′.

3. If q′ 6= 0, then resolve the singularity of σn′,q′ .

Since in the second step both parameters decrease, the process stops. Because it
started with n, q relatively prime, at the end we get σn′,q′ = Cone(e1, e2). By revers-
ing all the chosen automorphisms we obtain the division of σn,q.

Example 3.3.3. Consider C2/G where G = C5,2 = 〈diag(ε5, ε
2
5)〉 ' Z5. This quo-

tient corresponds to the cone σ5,2 spanned by e2 = (0, 1) and (5,−2), in the left part
of Fig. 3.1. We divide this cone with vector e1 = (1, 0) into Cone(e1, e2), which is
smooth (the light gray cone in the middle part of Fig. 3.1), and Cone(e1, (5,−2)),
which is singular (the dark gray cone). The automorphism of N ' Z2 given by(

0 −1
1 3

)
maps the latter cone to σn′,q′ = σ2,1 = Cone(e2, (2,−1)), in particular

a′ = 3.

Figure 3.1: Steps of construction of the toric resolution of C2/C2,5

When we divide σ2,1 with e1, we obtain two smooth cones, as in the right part of
Fig. 3.1. More precisely, Cone(e1, (2,−1)) can be mapped to the positive quadrant

of NR by an automorphism
(

0 −1
1 2

)
, i.e. in this step a′ = 2.

Definition 3.3.4. Let 0 < q < n be coprime integers. Then the Hirzebruch-Jung
continued fraction is an expression

n

q
= a1 −

1

a2 − 1
...− 1

am

= [a1, a2, . . . , am].
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Corollary 3.3.5. The sequence [a1, a2, . . . , am] of values of the parameter a′ obtained
while performing the algorithm for σn,q is exactly the resolution of the fraction n/q
into the Hirzebruch-Jung continued fraction.

Example 3.3.6. In the case of G = C5,2 = 〈diag(ε5, ε
2
5)〉 from Example 3.3.3 the

sequence of values taken by the parameter a′ is [3, 2], which corresponds to the
Hirzebruch-Jung continued fraction 5/2 = 3− 1/2.

Remark 3.3.7. It follows from the orbit-cone correspondence theorem (see [CLS11,
Thm. 3.2.6]) that the exceptional divisor of the minimal resolution of C2/G is the
chain of P1 curves, intersecting each other transversally, of length m. A simple com-
putation of the intersection product in the toric setting (see e.g. [CLS11, Sect. 6.3])
shows that their self-intersection numbers are −a1,−a2, . . . ,−am.

Look at a matrix A determined by the entries of Hirzebruch-Jung continued fraction
for n/q:

A =


1 −a1 1 0 0 0 0 0
0 1 −a2 1 0 0 0 0
0 0 1 −a3 1 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1 −am−1 1 0
0 0 0 0 0 1 −am 1

 .

One can obtain two vectors α = (α0, . . . , αm+1) and β = (β0, . . . , βm+1) in the kernel
of the linear map given by A by taking the first two entries to be α0 = 1, α1 = 0 and
β0 = 0, β1 = 1, and computing directly the remaining ones. By checking that the
relations between entries are exactly the same as the relations between consecutive
rays of the fan Σn,q of the resolution in Construction 3.3.5, we get the following
result.

Proposition 3.3.8. The matrix K composed of two rows α and β defines a lattice
epimorphism Z|Σn,q(1)| ' Zm+2 → N ' Z2 associated with the toric morphism

π : C|Σn,q(1)| \ Z(Σn,q)→ Uσn,q

from the quotient construction (Theorem 2.2.4). Therefore Kt and A give the linear
maps in the exact sequence of dual lattices (in some chosen coordinates)

0 −→M −K
t

−→ DivTN (XΣ)−A−→ Cl(XΣn,q) −→ 0.

Remark 3.3.9. It follows that At defines the map

HomZ(Cl(XΣn,q),C∗) −→ (C∗)|Σn,q(1)|

which is an embedding of the group from the quotient construction onto a subtorus
of the torus of CΣ(1).
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By Remark 2.2.5 the latter space is the spectrum of the total coordinate ring of
the minimal resolution XΣn,q of Uσn,q . Therefore the quotient construction is just
dividing the spectrum of the total coordinate ring of the resolution by a subtorus
of its torus, defined by a formula depending on the intersection numbers of the
components of the exceptional fibre. We will attempt to apply a similar procedure
in the cases of non-toric quotient singularities.

3.4 Resolutions for G < GL(2,C)
The aim of this section is to describe precisely the exceptional divisors of minimal
resolutions of surface quotient singularities C2/G for non-cyclic groups. In this case
irreducible components are smooth P1 curves forming a simple tree consisting of
a central components with three chains attached, as in Fig. 3.2. We present the
exceptional divisor of the resolutions by drawing their dual graphs: vertices corre-
spond to irreducible components, edges to their intersection points, numbers are
self-intersection numbers of components. At the end of the section we describe the
Picard group and the class group (of Weil divisors) of C2/G and of its minimal
resolution. The material presented here is known, see e.g. [Bri68, Rie77].

3.4.1 Exceptional divisor

For quotients by subgroups of SL(2,C) the dual graphs are just Dynkin diagrams
of the root systems Dn for n ≥ 4, E6, E7 and E8. In this case all rational curves
in the exceptional fibre have self-intersection −2. For the groups not contained in
SL(2,C) the diagrams do not have to be Dynkin diagrams any more, and also the
self-intersection numbers can be less then −2, as it is shown in Examples 3.4.3
and 3.4.4. The structure of exceptional fibres for small subgroups of GL(2,C) is
described in details for example in [Bri68] and [Rie77]. Based on these works we list
here a few properties needed in the further part of this text. We start from fixing
the notation.
Let G be a finite small subgroup G ⊂ GL(2,C). By X we denote the minimal
resolution of the quotient singularity C2/G. We describe the exceptional divisor of
the resolution morphism X → C2/G and its dual graph.

Notation 3.4.1. Let E0 be the curve corresponding to the branching point of the
diagram and Ei,j be the j-th curve in the i-th branch, counting from E0, as in
Fig. 3.2.
If we need to write components of the exceptional divisor in a sequence, we always
order them as follows:

E0;E1,1, . . . , E1,n1 ;E2,1, . . . , E2,n2 ;E3,1, . . . , E3,n3 .

The number of components of the exceptional divisor is n = n1 + n2 + n3 + 1.
We will assume that n1 ≤ n2 ≤ n3.
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E3,n3E3,n3−1E3,n3−2E3,1E0E1,1E1,n1−1E1,n1

E2,1

E2,n2−1

E2,n2

Figure 3.2: Dual graph of the exceptional divisor of the minimal resolution of C2/G

At the end of section 3.1 we remarked that Ei,j ·Ek,l = 1 (and E0 ·Ei,j = 1) if these
curves are adjacent and 0 if they are different and not adjacent. Hence we only have
to describe the self-intersection numbers Ei,j · Ei,j and E0 · E0.

Definition 3.4.2. We will denote by

〈d; p1, q1; p2, q2; p3, q3〉,

an invariant consisting of seven integers, which contains full information about the
intersection numbers of components of the exceptional divisor of the minimal res-
olution of C2/G for a non-cyclic small group G ⊂ GL(2,C). We will be using the
following information:

• d = −E0 · E0,

• the j-th entry of the expansion of pi/qi into the Hirzebruch-Jung continued
fraction is equal to −Ei,j · Ei,j (hence the length of a branch is the length of
the corresponding continued fraction),

• the exact rule how to restore these numbers from the group structure descrip-
tion can be found in [Bri68, Satz 2.11].

Broadly speaking, these numbers are connected to the fibre product description of
the group structure (see Proposition 3.2.2). This follows from the construction of
the resolution of C2/G based on the well-understood minimal resolutions for the
subgroups of SL(2,C); for the details we refer the reader to [Bri68].

Example 3.4.3 (Quotients by BD2,m). The simplest case is BD2,1 = BD2 ⊂
SL(2,C), which gives the Du Val singularityD4, whose dual graph has three branches
of length 1 (see Fig. 3.3). As (m,n) = 1, other cases are (Z2m,Z2m;BD2, BD2) where
m is odd. Using the notation of [Bri68, Satz 2.11], the minimal resolution for BD2,m

is described by the sequence 〈−m+3
2

; 2, 1; 2, 1; 2, 1〉. Thus it turns out that the dual
graphs of these resolutions are the same as for BD2, but the self-intersection number
in the branching point changes: for BD2,m it is −m+3

2
.
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-2 -2 -2

-2

-2 -2

-2

−m+3
2

BD2 BD2,m

Figure 3.3: Dual graphs of exceptional divisors of minimal resolutions of C2/BD2

and C2/BD2,m

Example 3.4.4. Starting from larger binary dihedral groups and taking the fibre
product with a suitable cyclic group one can obtain resolutions much different from
the Du Val case. For example, for BD23,39 the minimal resolution is described by
the sequence 〈d; 2, 1; 2, 1; 23, q〉, where, according to the rule in [Bri68, Satz 2.11],
39 = 23(d− 1)− q. Thus d = 3 and q = 7, the continued fraction describing the last
branch is

23

7
= 4− 1

2− 1
2− 1

3

and the dual graph (much smaller than the one for BD23) is as in Fig. 3.4.

BD23,39

-3 -4 -2 -2 -3-2

-2

Figure 3.4: Dual graph of exceptional divisors of minimal resolution of C2/BD23,39

Based on the intersection numbers of components of the exceptional divisor of the
minimal resolution we define a matrix U which will be called an extended inter-
section matrix for the singularity C2/G.
We start from the intersection matrix U0 of the components of the exceptional
divisor. The curves are ordered as stated in Notation 3.4.1, so U0

k,l is the intersection
number of the k-th and l-th curve in the sequence. We extend U0 to a matrix U
by adding three columns. One can imagine that to the ending curve of each branch
we add a leaf – a curve which intersect (transversally) the last curve in a branch,
but which is not an element of the exceptional fibre, so we do not include its self-
intersection number. Hence, for i = 1, 2, 3, just after the column corresponding to
Ei,ni , we add a column filled with 0 except of the entry corresponding to Ei,ni , where
we put 1. (In fact, adding these columns corresponds to choosing three rational
functions on C2/G, which are elements of the Cox ring of the singularity itself, and
including them in a generating set of the Cox ring of the minimal resolutions. This
attitude will be used and explained in detail in chapter 5.2.)
This construction will be used to define an action of a torus on the (candidate for
the) spectrum of the Cox ring of the minimal resolution, which will be introduced
in section 4.1.
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Notation 3.4.5. Throughout the text we think of U as if it was divided in a few
blocks:

−d 1 0 . . . 0 0 1 0 . . . 0 0 1 0 . . . 0 0
1
0
...
0

A1

0
...
0
1

0 0 0 0

1
0
...
0

0 0 A2

0
...
0
1

0 0

1
0
...
0

0 0 0 0 A3

0
...
0
1


The block denoted by Ai is the matrix of intersection numbers of components in the
i-th branch of the exceptional divisor:

Ai =


−ai,1 1 0 0 0 0

1 −ai,2 1 0 0 0
0 1 −ai,3 1 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 1 −ai,ni−1 1
0 0 0 0 1 −ai,ni


On the diagonal of Ai there is the sequence of the negatives of entries of the
Hirzebruch-Jung continued fraction associated with the i-th branch of the excep-
tional divisor.

Remark 3.4.6. By Remark 3.3.7 the entries of Ai are the intersection numbers of
the components of the exceptional divisor in the minimal resolution of the cyclic
quotient singularity C2/Cpi,qi . Hence if we construct a matrix A′i by adding columns
(1, 0, . . . , 0)t and (0, . . . , 0, 1)t at the beginning and at the end of Ai, then (A′i)

t

determines the group from the toric quotient construction of the minimal resolution
of C2/Cpi,qi , as described in Proposition 3.3.8. Cyclic quotient singularities C2/Cpi,qi
associated with C2/G will appear later in the description of toric embedding of the
minimal resolution in section 4.1.2.

In fact, results of Brieskorn give more restrictions for the description of the ex-
ceptional divisor of the minimal resolution. In particular, not all T-shaped dia-
grams can appear as dual graphs of the exceptional divisor. It turns out that one
branch always has length one and also the second one cannot be too long. Moreover,
there are restrictions for the self-intersection numbers of components (remember
that n1 ≤ n2 ≤ n3).
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Remark 3.4.7. According to [Bri68, p. 348],

• A1 = (−2), i.e. n1 = 1,

• at least one of A2, A3 is one of (−2),
(
−2 1
1 −2

)
, (−3),

• A3 can be of any size only if A1 = A2 = (−2); otherwise A3 is at most 5 × 5
matrix.

3.4.2 The Picard group, the class group

We finish with a description of the Picard group and the class group of a quotient
singularity and its minimal resolution.

Proposition 3.4.8. For the singularity C2/G we have

Pic(C2/G) = 0, Cl(C2/G) ' Ab(G).

Proof. These two properties are Theorems 3.6.1 and 3.9.2 in [Ben93].

Proposition 3.4.9. The Picard group of the minimal resolution X of C2/G is a
free abelian group generated by divisors dual to irreducible curves in the special fibre
of this resolution. That is, if n is the number of exceptional curves of the minimal
resolution, then

Pic(X) = Cl(X) ' Zn.

Proof. Since X is smooth, Cl(X) = Pic(X). We start from showing that Pic(X)
is a lattice. First note that H1(X,OX) = H2(X,OX) = 0 because of rationality
of C2/G. Then from the exponential sequence

. . . −→ H1(X,OX) −→ H1(X,O∗(X)) −→ H2(X,Z) −→ H2(X,OX) −→ . . .

we deduce that Pic(X) ' H2(X,Z). By the universal coefficient theorem we have a
short exact sequence

0 −→ Ext(H1(X,Z),Z) −→ H2(X,Z) −→ Hom(H2(X,Z),Z) −→ 0.

Its first term is 0, because π1(X) is trivial (the quotient space C2/G is contractible
and by [Kol93, Thm. 7.8] the blow-ups do not change the fundamental group). Thus
Pic(X) ' Hom(H2(X,Z),Z), which is torsion-free.
Because X can be contracted to the exceptional divisor, which by the rationality
of C2/G is a tree of rational curves, H2(X,Z) is a lattice generated by classes of
exceptional curves. Thus Pic(X) is indeed generated by divisors dual to exceptional
curves.
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3.5 Cox rings

Until now we introduced the total coordinate ring only in case of toric varieties in
Remark 2.2.5. We also showed how to construct a toric variety as a quotient of the
spectrum of its total coordinate ring in Theorem 2.2.4 and, for quotients of C2 by a
cyclic group, in Proposition 3.3.8. Here we define the total coordinate ring in general
and provide a geometric characterization, which will be used to describe this ring
for surface quotient singularities. The content of this section is based on [ADHL10].
Let k be an algebraically closed field of characteristic 0.
As usual, a divisorial sheaf OX(D) is defined by taking for an open subset U ⊂ X

Γ(U,OX(D)) = {f ∈ k(X)∗ : (div(f) +D)|U ≥ 0} ∪ {0}

with natural restrictions.

Definition 3.5.1. Let X be a normal variety with a free finitely generated class
group. The Cox ring (or the total coordinate ring) of X is a Cl(X)-graded
module

Cox(X) =
⊕

[D]∈Cl(X)

Γ(X,OX(D)),

where sections are multiplied as rational functions on X.

More precisely, we choose compatible representatives of divisor classes, that is we
fix a subgroup K of the group of Weil divisors of X such that the canonical map
c : K → Cl(X) sending a divisor D ∈ K to its class [D] ∈ Cl(X) is an isomorphism.
Then OX(D) is in fact understood as OX(c−1([D])). However, different choices of
representatives of divisor classes give isomorphic ring structures – for the details
see [ADHL10, Sect. 4.1].

Remark 3.5.2. If X is a normal variety with a finitely generated class group which
is not free then the Cox ring of X can also be defined, see [ADHL10, Sect. 4.2].
The module structure is, as before, the sum of rings of sections of OX(D) where
D runs through a set of chosen representatives of classes of Weil divisors. However,
to define multiplication, one has to look into the group structure more carefully,
which we skip. In fact, the only case in which a non-free class group appears is the
computation of the Cox ring of a quotient singularity in section 5.1, which is not
essential for our exposition.

A few interesting properties of Cox rings can be proven directly from the definition.
For example, the following theorem assures that a Cox ring of a variety cannot be
arbitrarily bad.

Theorem 3.5.3. [ADHL10, Thm 5.1.1] Let X be a normal variety with only con-
stant invertible functions and finitely generated class group. Then its Cox ring is an
integral and normal ring.
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However, a Cox ring of a variety does not have to be finitely generated. The question
about the existence of a finite generating set of a Cox ring is very basic and one of
the most important questions in this theory. The results are interesting already in
dimension 2, see e.g. [AHL10] for the criterion in case of K3 surfaces. In the next
chapter we give an answer to this question in case of surface quotient singularities by
proving that their Cox rings are quotients of polynomial rings by principal ideals,
see Theorem 4.3.3. Moreover, in chapter 5 we provide a method of describing a
generating set of a Cox ring of a surface quotient singularity (see Theorem 5.2.9),
which is likely to generalize to higher dimensions (at least for some classes of groups),
where the construction of a resolution is often unknown and obtaining the result
similar to Theorem 4.3.3 seems difficult.
In the proof of Theorem 4.3.3 we use the geometric characterization of the Cox ring,
given below, preceded by a few definitions.

Definition 3.5.4. [ADHL10, Def. 2.1.1] A quasitorus is an affine algebraic group
H whose algebra of regular functions Γ(H,OH) is generated as a k-vector space by
the characters of H. A torus is a connected quasitorus.

The standard torus (k∗)n is a torus in the sense of the definition above. This will be
the only case considered throughout this text.

Definition 3.5.5. [ADHL10, Sect. 5.3] A variety Z with an action of a quasitorus
H is H-factorial if every H-invariant Weil divisor on Z is principal.

Definition 3.5.6. [ADHL10, Def. 6.4.1] Let an affine algebraic group G act on a
variety W . We say that this action is strongly stable if there is an open invariant
subset W ′ ⊆ W such that

1. the complement W \W ′ is of codimension at least two in W ,

2. the group G acts freely (i.e. with trivial isotropy groups) on W ′,

3. for every x ∈ W ′ the orbit G · x is closed in W .

Theorem 3.5.7. [ADHL10, Cor. 6.4.4] Let Z be a normal affine variety with an
action of a quasitorus H. Assume that

1. every invertible function on Z is constant,

2. Z is H-factorial,

3. there exists an open H-invariant subset W ⊆ Z with codimZ(Z \ W ) ≥ 2
such that the action of H on W is strongly stable and admits a good quotient
q : W → X.

Then Z is the total coordinate space of X, i.e. the spectrum of the Cox ring of X.
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This result allows us to proceed as follows: first we find a finitely generated ring R,
which is a candidate for the Cox ring of considered minimal resolution X of C2/G,
and consider its spectrum Z = Spec(R). Then we define a (quasi)torus action on Z
such that a (geometric) quotient W/H of some open subset W ⊂ Z is isomorphic
to X. After we have proved the properties of the action listed above, we know that
Z = Spec(Cox(X)), i.e. R = Cox(X).
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Chapter 4

The relation in the Cox ring

This chapter is devoted to the proof of Theorem 4.3.3 which describes the Cox ring
of the minimal resolution X of a surface quotient singularity C2/G as a quotient of a
polynomial ring by a principal ideal. The main tool is the geometric characterization
of the Cox ring, see Theorem 3.5.7.
We start from introducing a torus action on an affine space and defining an invariant
hypersurface, which is the candidate S for the spectrum of the Cox ring. Then, in
section 4.2 we deal with the most difficult part of the proof, i.e. that an open subset
of S admits a good quotient onto X. The embedding of S in an affine space, equiv-
ariant with respect to the torus action defined in section 4.1, gives us an embedding
of X in a 3-dimensional toric variety, as in e.g. [HK00, Prop. 2.11] and [ADHL10,
Sect. III.2.5]. In section 4.3 we check the remaining conditions required by Theo-
rem 3.5.7 to finish the proof that indeed S ' Spec(Cox(X)).

4.1 The Picard torus action
Let n be the number of components of the exceptional divisor of the minimal reso-
lution X of C2/G for a small subgroup G < GL(2,C).

Definition 4.1.1. The torus

T = Hom(Pic(X),C∗) = Hom(Cl(X),C∗) ' (C∗)n

will be called the Picard torus of the minimal resolution X.

We define the action of the Picard torus T on Cn+3 and investigate geometric quo-
tients of open subsets of this affine space. In section 4.1.3 we propose a candidate for
the Spec(Cox(X)), defined as a hypersurface in Cn+3, and prove that it is invariant
under the action of T in order to consider quotients of this action in section 4.2.
To define the action of T on Cn+3 we use the extended intersection matrix U ,
described in Notation 3.4.5. We fix the coordinates: let

C[y0, y1,1, . . . , y1,n1 , x1, y2,1, . . . , y2,n2 , x2, y3,1, . . . , y3,n3 , x3]

be the coordinate ring of Cn+3.
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Definition 4.1.2. Define a Picard torus action T × Cn+3 → Cn+3 by the formula

(t, x) = ((t1, . . . , tn), (y0, y1,1, . . . , y3,n3 , x3)) 7→
7→ (tu0 · y0, t

u1 · y1,1, . . . , t
un−1 · y3,n3 , t

un · x3)

where ui is the i-th column of U and tui = t
(ui)1

1 · · · t(ui)nn .
Remark 4.1.3. In other words, this is the composition of a homomorphism of tori
T → (C∗)n+3 ⊂ Cn+3 defined by U t with a natural action of (C∗)n+3 on Cn+3,
similarly as in Remark 3.3.9.
Before we move to considering certain quotients of open subsets of Cn+3 by this ac-
tion (see section 4.1.2), we need some technical results. In section 4.1.1 we determine
the kernel of the lattice map given by U , which appears later, when we use the toric
geometry setting.

4.1.1 The kernel map

We look at U as at the restriction of a map from Rn+3 to Rn (in the standard basis)
to the sublattice Zn+3 ⊂ Rn+3. By kerU we understand the sublattice of Zn+3 carried
to 0 by U . The aim of this section is to describe a convenient set of its generators.
Definition 4.1.4. Let A be a square matrix. Then A′ denotes A with a new column
(0, . . . , 0, 1)t added on the right, A′′ denotes A′ with a new column (1, 0, . . . , 0)t added
on the left:

A′ =

 A

0
...
0
1

 A′′ =


1
0
...
0

A

0
...
0
1


These operations will be applied to matrices Ai describing the branches of the ex-
ceptional divisor of X. We can think of A′′i as if we cut out from U the block Ai
with the suitable parts of the first column and the column just after Ai.
We will frequently use the following term:
Definition 4.1.5. Vector ξ = (ξ1, . . . , ξni+1) ∈ Zni+1 is orthogonal to the i-th
branch, of length ni, represented by the matrix Ai, if ξ1 = 1 and A′iξ = 0.
Lemma 4.1.6. There exists a unique vector αi orthogonal to the i-th branch of the
exceptional divisor of the minimal resolution of a surface quotient singularity. It has
integral and non-negative entries, which form an increasing sequence.
Proof. The consecutive entries of αi = (1, z1, . . . , zni) can be computed from the
form of Ai like that:

z1 = ai,1 ∈ Z,
z2 = ai,2z1 − 1 ∈ Z,
z3 = ai,3z2 − z1 ∈ Z, . . .
zk = ai,kzk−1 − zk−2 ∈ Z, . . .
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Hence by induction all entries of αi are uniquely determined and integral. Moreover,
ai,j > 1 since they are entries of a Hirzebruch-Jung continued fraction, so zk ≥
zk−1 + (zk−1 − zk−2) and again by induction the sequence (zi) is increasing and all
its elements are positive.

Notation 4.1.7. In what follows αi will always denote the unique vector orthogonal
to the i-th branch of the exceptional divisor.
Now let us construct a basis of kerU .
Notation 4.1.8. Elements of kerU will be presented as quadruples (u,w1, w2, w3)
consisting of a number u and three vectors wi of lengths ni + 1 respectively, i.e.

(u,w1, w2, w3) := (u, (w1)1, . . . , (w1)n1+1, (w2)1, . . . , (w2)n2+1, (w3)1, . . . , (w3)n3+1).

Such a partition is natural: when we multiply U by a vector of this form, the number
u is multiplied by the numbers in the column corresponding to the branching point
of the resolution diagram, and the remaining three parts correspond to the branches.
Thus obviously

v2 = (0, α1, 0,−α3) and v3 = (0, 0, α2,−α3)

are in kerU . We construct v1 such that {v1, v2, v3} is a basis of kerU .

Lemma 4.1.9. There is a unique vector v ∈ kerU of the form

(1, (0, ∗, . . . , ∗), (0, ∗, . . . , ∗), (d, ∗, . . . , ∗))

where ∗ stands for an integer and −d is the self-intersection number of the central
curve in the exceptional divisor of the minimal resolution.

Proof. First note that for any a, b ∈ Z there is a unique integral vector in the kernel
of A′′i of the form (a, b, ∗, . . . , ∗). To see this, we just determine the entries by an
inductive procedure as in the proof of Lemma 4.1.6.
Consider vectors in kernels of A′′i of two types:

βi = (1, 0, ∗, . . . , ∗) and γi = (1, d, ∗, . . . , ∗). (4.1.1.1)

In addition, again as in the proof of Lemma 4.1.6, we see that the entries of each βi
form a decreasing sequence and the entries of each γi form an increasing sequence.
By βi and γi we denote vectors constructed from βi and γi by removing the first
entry. Look at

v = (1, β1, β2, γ3),

and compute U · v. Since each βi starts from 0 and γi from d, the first entry of U · v
is 0. Following entries are the same as the entries of first A′′1 · β1, then A′′2 · β2 and
finally A′′3 · γ3, so they are also 0.
Finally, v is uniquely determined, because if we write v = (u,w1, w2, w3) then from
the form of U we see that (u, (wi)1, . . . , (wi)ni+1) must be in the kernel of A′′i , so it
is uniquely determined by u and (wi)1 for i = 1, 2, 3.
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Notation 4.1.10. Take v1 = v from the above lemma and write v1, v2, v3 in the rows
of a matrix K, divided into blocks in a similar way as U in Notation 4.1.8.

K =

 v1

v2

v3

 =

 1 0, ∗, . . . , ∗ 0, ∗, . . . , ∗ d, ∗, . . . , ∗
0 α1 0 −α3

0 0 α2 −α3

 =

 1 β1 β2 γ3

0 α1 0 −α3

0 0 α2 −α3


The choice of the matrix K defining the kernel of U is obviously non-unique; we
choose one that is convenient for further computations.

Remark 4.1.11. Notice that K indeed defines the kernel of the lattice map, not
only the map of vector spaces, i.e. v1, v2, v3 span a full sublattice of Zn+3. This
is because K has an identity matrix as a minor, since α1 and α2 start from 1 by
Lemma 4.1.6.

4.1.2 The toric structure of quotients by the action of T

We investigate geometric quotients of open subsets of Cn+3 by the action of the
Picard torus T using toric geometry as a tool. More precisely, what we do is the
reverse of the toric quotient construction (Theorem 2.2.4). Instead of expressing a
given toric variety as a quotient of an open set of an affine space, we reconstruct
this variety and the open set knowing the torus action on an affine space. Obviously,
it is not unique, hence we recover only some properties and then it turns out that
remaining parameters can be chosen arbitrarily.
We think of the Picard torus T as of a subtorus of the big torus (C∗)n+3 ⊂ Cn+3 –
the embedding is given by U t (see Remark 4.1.3; this is an embedding since columns
of U generate Zn). Look at the short exact sequence of the torus embedding

0 −→ T −→ (C∗)n+3 −→ (C∗)3 −→ 0.

Let
M ′ ' Zn+3 and M ' Z3

be the lattices of characters of the big torus (C∗)n+3 ⊂ Cn+3 (with the same fixed
coordinates) and of the quotient torus respectively. By P we denote the monomial
lattice of T , which can be identified with the Picard group of X. Then we have a
map of monomial lattices

0 −→M −→M ′−U−→ P −→ 0, (4.1.2.1)

where M can be identified with kerU ⊂ M ′ and we may assume that the map
M →M ′ is given in standard coordinates by Kt, where K is as in Notation 4.1.10.
Thus we have described the monomial latticeM of a quotient variety. To understand
more of its structure we prefer to look at the dual exact sequence

0 −→ P∨−U
t

−→ N ′−K−→ N −→ 0
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(note that it is exact on both ends, because M is a saturated sublattice of M ′, i.e.
the quotient is torsion free). We first describe the set of rays of the fan of a quotient
and then look which points have to be removed from Cn+3 to obtain a chosen variety
with good properties as a geometric quotient. (In other words, we will check which
points of Cn+3 are unstable with respect to chosen linearizations of the action.)
Notation 4.1.12. When we choose one of many possible geometric quotients of Cn+3

by T , a fan of such a quotient will be denoted by Σ. And by Σ′ we will denote the
fan of Cn+3 in N ′: the positive orthant and all its faces.
We sum up the discussion above in the following observation.

Corollary 4.1.13. Look at the third arrow in the sequence above: N ′ K−→ N . The
rays of Σ are the images of the rays of Σ′ under the map given by K, so their
coordinates are just columns of K.

Some more information on the structure of fans of quotients can be obtained based
on this observation. Let x, y, z be the coordinates in NR = N ⊗ R corresponding to
the standard basis in N .

Lemma 4.1.14. A fan Σ ⊂ NR with the set of rays as in Corollary 4.1.13 has the
following properties:

1. the rays of Σ are divided into three groups, corresponding to the branches of
the diagram, of vectors lying in three planes: y = 0, z = 0 and y = z,

2. the intersection of these planes is the line y = z = 0, represented in Σ(1) by
the central ray (1, 0, 0), the first column of K,

3. the rays in each group together with (1, 0, 0), when considered as vectors not
in NR, but in the plane containing them, form the 1-skeleton of a fan of the
minimal resolution of a cyclic quotient singularity. In particular, adjacent rays
in each group span the intersection of N with the plane containing this group.

Proof. Statements 1. and 2. follow directly from the definition of K (see Nota-
tion 4.1.10).
To prove the last one we construct matrices Ki for i = 1, 2, 3 by taking from K the
first column and the i-th of remaining blocks from division in Notation 4.1.10. Then
columns ofKi are rays of the i-th group. The isomorphism of the plane containing the
i-th group of rays with Z2 can be defined e.g. by forgetting about the last coordinate
for i = 1, 3 and forgetting about the second one for i = 2. This corresponds to
constructing matrices Ki from Ki by forgetting the last row for i = 1, 3 and the
second one for i = 2:

K1 =

(
1 β1

0 α1

)
K2 =

(
1 β2

0 α2

)
K3 =

(
1 γ3

0 −α3

)
.

By construction of αi, βi, γi rows of Ki span the lattice kernel of the map given by
A′′i . Hence, by Proposition 3.3.8, columns of Ki are rays of the fan of the minimal
resolution of the cyclic quotient singularity corresponding to Ai (i.e. to the continued
fraction with entries on the diagonal of Ai).
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Definition 4.1.15. By the outer rays of Σ we understand the set consisting of
three rays which are the last columns of K in each block consisting of more then
one rays. Sometimes we use the name inner rays for the remaining ones. The first
column (1, 0, 0) will be called the central ray.

Notation 4.1.16. In what follows we will say that a ray lies on the i-th branch if it is
a column from the i-th block of K (excluding the one consisting only of the central
ray). We assume that the central ray belongs to all three branches.

In the following lemma we describe the outer rays of Σ in terms of Hirzebruch-Jung
continued fractions assigned to branches of the resolution diagram in Definition 3.4.2.

Lemma 4.1.17. Assume that the self-intersection numbers of the components of the
i-th branch of the exceptional divisor are the negatives of the entries of a Hirzebruch-
Jung continued fraction pi/qi, and that −d is the self intersection number of the
central curve. Then the outer rays are

(dp3 − q3,−p3,−p3), (−q2, 0, p2), (−q1, p1, 0).

Proof. We have to find formulae for the last entries of vectors αi, βi, γi introduced
in the proofs of Lemmata 4.1.6 and 4.1.9.
First of all we notice that the recursive formula for the entries of αi, given in the proof
of Lemma 4.1.6, is also a formula for the numerator of the reversed continued frac-
tion. More precisely, if pi/qi = [ai,1, . . . , ai,ni ], and αi is orthogonal to the i-th branch,
then (αi)j+1 is the numerator of [ai,ni , ai,ni−1, . . . , ai,ni−j+1] for j ∈ {1, . . . , ni}. But
the reversed continued fraction to pi/qi is pi/q′i where q′i is reverse modulo p to qi
– this and other useful facts on Hirzebruch-Jung continued fractions can be found
in [CLS11, Section 10.2]. Thus (αi)ni+1 = pi.
The case of βi from formula (4.1.1.1) is very similar. If we write down an analogous
formula for its entries, we obtain that the last one is the negative of the numerator of
[ai,ni , . . . , ai,2], which is the same as the negative of the numerator of [ai,2, . . . , ai,ni ] =
ri/si. But

pi
qi

= ai,1 −
1
ri
si

,

so indeed ri = qi and βi ends with −qi.
Let α′i = (0, (αi)1, . . . , (αi)ni+1). Then γi = βi + dα′i, because each of these vectors is
uniquely determined by their first two entries (as shown in the proof of Lemma 4.1.9),
and these entries satisfy this equality. Therefore γi ends with dpi − qi.

Remark 4.1.18. Let G = BDn,m. Then using [Bri68, Satz 2.11] one can see that the
last entry of γi can be written as m+ p3, so the first outer ray is (m+ p3,−p3,−p3).

Lemma 4.1.19. The outer rays span a convex cone which contains (1, 0, 0) inside.

Proof. We show that (1, 0, 0) is a positive combination of the outer rays. We have

p3

p1

(−q1, p1, 0) +
p3

p2

(−q2, 0, p2) + (dp3− q3,−p3,−p3) = p3(d− q3

p3

− q1

p1

− q2

p2

)(1, 0, 0),
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so it suffices to prove that

d− q1

p1

− q2

p2

− q3

p3

> 0.

If d ≥ 3 this is obvious, because qi < pi. And if d = 2, this can be checked case by
case using the table in [Bri68, Satz 2.11], in which the continued fraction are assigned
to group structures. The cases where this number is smallest are the quotient by the
subgroups of SL(2,C).

Notation 4.1.20. We want to consider only fans Σ ⊂ NR with the set of rays as
described in Corollary 4.1.13 and such that the (set-theoretical) sum of all cones in
Σ (the support of Σ) is the convex cone spanned by the outer rays. Also, we consider
only simplicial fans. From now on Σ will denote a fan satisfying these conditions.
The choice of such a fan corresponds to the choice of the quotient XΣ of an open
subset of Cn+3 by T . More precisely, XΣ is a geometric quotient of Cn+3\Z(Σ) by T ,
where Z(Σ) is the zero set of the irrelevant ideal of Σ. Since only simplicial fans are
admitted, these quotients are geometric. The structure of Z(Σ) is studied in more
detail in section 4.2.1.
It turns out that some 2- and 3-dimensional cones have to belong to a fan Σ satisfying
the conditions of Notation 4.1.20, independently of the choice.

Lemma 4.1.21. Σ contains the following cones:

1. all faces spanned by two adjacent rays in one of the planes y = 0, z = 0, y = z,

2. faces σ((0, 1, 0), (0, 0, 1)), σ((0, 1, 0), (d,−1,−1)), σ((0, 0, 1), (d,−1,−1)),

3. 3-dimensional cones containing the central ray: σ((1, 0, 0, ), (0, 1, 0), (0, 0, 1)),
σ((1, 0, 0), (0, 0, 1), (d,−1,−1)), σ((1, 0, 0), (0, 1, 0), (d,−1,−1)).

Moreover, the cones containing the central ray are smooth and the divisor associated
with the central ray is a P2.

Proof. See Fig. 4.1 for a picture of a plane section of the cone spanned by the outer
rays and the cones mentioned in the lemma.
First assume that the cone spanned by two adjacent rays ρ and ρ′ from one branch
is not in Σ. Let ρ be nearer to the central ray (1, 0, 0). Then there exists a cone in
Σ spanned by ρ, ρ1, ρ2 such that each of these rays comes from a different branch –
otherwise ρ would not be in the interior of the support of Σ. But σ(ρ, ρ1, ρ2) contains
(1, 0, 0) in the interior, because (1, 0, 0) is inside the cone spanned by the outer rays
and all the rays lie on three planes intersecting in the central ray, hence we get a
contradiction.
As for the cones listed in (2) and (3), they must be in Σ, since the rays (0, 1, 0),
(0, 0, 1) and (d,−1,−1) are the only three which can span a cone with (1, 0, 0), which
lies in the interior of the cone spanned by the outer rays.
If we choose any pair of vectors from (0, 1, 0), (0, 0, 1), (d,−1,−1) and take (1, 0, 0)
as the third one, obviously we get a triple that generates the whole lattice, so the
central part of our picture consists indeed of three smooth cones.
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To describe the structure of the divisor associated with the central ray (1, 0, 0) of this
fan one has to project cones containing it to the orthogonal plane x = 0 (see [CLS11,
Proposition 3.2.7]). The result is the fan which has (1, 0), (0, 1) and (−1,−1) as rays
and contains all three possible 2-dimensional cones, hence the fan of a smooth P2.

Figure 4.1: Faces that have to be in Σ (shown in a section)

Fig. 4.1 is a schematic picture of a section of the cone spanned by the outer rays
with the sections of faces mentioned in Lemma 4.1.21 included. All considered fans
Σ correspond to triangulations of this diagram. Toric varieties obtained this way are
different geometric quotients of open subsets of Cn+3 by T . In general there is no
smooth model, for example because of the fact that the cones containing the faces
of the cone spanned by the outer rays are most often non-smooth.

4.1.3 The candidate for Spec(Cox(X))

We introduce a hypersurface S ⊂ Cn+3, which is our candidate for the spectrum of
the Cox ring of the minimal resolution of C2/G. Its equation can be determined from
the resolution diagram together with the self-intersection numbers of the components
of the special fibre. We prove that it is invariant under the Picard torus action.

Construction 4.1.22. We define a hypersurface S ⊂ Cn+3 by describing its ideal

I(S) ⊂ C[y0, y1,1, . . . , y1,n1 , x1, y2,1, . . . , y2,n2 , x2, y3,1, . . . , y3,n3 , x3],

which is generated by a single trinomial equation. Each monomial of this equation
corresponds to one branch of the resolution diagram. The variables, except y0, are
divided into three sequences

(yi,1, yi,2, . . . , yi,ni−1, yi,ni , xi)

for i = 1, 2, 3, and all variables in the i-th sequence appears only in the monomial
corresponding to the i-th branch. As the i-th vector of exponents we take the vector
αi orthogonal to the i-th branch, so the equation is∑

i=1,2,3

y
(αi)1

i,1 · · · y(αi)ni
i,ni

· x(αi)ni+1

i = 0. (4.1.3.1)
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It can be easily seen that the hypersurface defined by this equation is irreducible.

Remark 4.1.23. In Lemma 4.1.6 we proved that all entries of each αi are positive
integers and that (αi)1 = 1. Hence the equation above is indeed a polynomial and
variables y1,1, y2,1, y3,1 appear with exponent 1.

The choice of coefficients of monomials equal to 1 is arbitrary. For any other set of
coefficients we would just obtain a different embedding of Spec(Cox(X)) in Cn+3.

Example 4.1.24. In the case of Du Val singularities the equation is formed as
follows: for each variable its exponent is equal to the distance of the corresponding
vertex in the resolution diagram from the branching point (we may assume that
xi corresponds to a leaf added at the end of the i-th branch, so its distance from
the branching point is the distance of yi,ni plus 1). For example, let us look at E8

singularity C2/BI. The extended intersection matrix is

U(BI) =



−2 1 0 1 0 0 1 0 0 0 0
1 −2 1 0 0 0 0 0 0 0 0
1 0 0 −2 1 0 0 0 0 0 0
0 0 0 1 −2 1 0 0 0 0 0
1 0 0 0 0 0 −2 1 0 0 0
0 0 0 0 0 0 1 −2 1 0 0
0 0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 0 0 1 −2 1


and the kernel matrix with the rays of Σ(BI) as columns is

K(BI) =

 1 0 −1 0 −1 −2 2 3 4 5 6
0 1 2 0 0 0 −1 −2 −3 −4 −5
0 0 0 1 2 3 −1 −2 −3 −4 −5


The entries of vectors αi, which are the exponents in the equation, can be read out
from the second and third row of K(BI):

S(BI) = {y1,1x
2
1 + y2,1y

2
2,2x

3
2 + y3,1y

2
3,2y

3
3,3y

4
3,4x

5
3 = 0}

Example 4.1.25. Let us look at a group which is not in SL(2,C): take BD23,39,
which appeared already in Example 3.4.4. We have

U(BD23,39) =



−3 1 0 1 0 1 0 0 0 0
1 −2 1 0 0 0 0 0 0 0
1 0 0 −2 1 0 0 0 0 0
1 0 0 0 0 −4 1 0 0 0
0 0 0 0 0 1 −2 1 0 0
0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 0 1 −3 1


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K(BD23,39) =

 1 0 −1 0 −1 3 11 19 27 62
0 1 2 0 0 −1 −4 −7 −10 −23
0 0 0 1 2 −1 −4 −7 −10 −23


and again we read out vectors αi from K(BD23,39) obtaining

S(BD23,39) = {y1,1x
2
1 + y2,1x

2
2 + y3,1y

4
3,2y

7
3,3y

10
3,4x

23
3 = 0}.

Lemma 4.1.26. The hypersurface S is invariant under the action of the Picard
torus T from Definition 4.1.2.

Proof. We look at the action of T on each monomial in the equation of S. The weights
of this action are given by the columns of U , so to compute the weight vector of
the action on the monomial corresponding to the i-th branch one multiplies U by
(0, α1, 0, 0), (0, 0, α2, 0) and (0, 0, 0, α3) respectively. Because αi is orthogonal to the
i-th branch, the result is (1, 0, 0, . . . , 0), which means that T acts on each monomial,
and therefore on the whole equation, by multiplication by t0. Thus the set of zeroes
of this equation is invariant under the action of T .

Therefore we may consider geometric quotients of open subsets of S by T . They will
be presented as subsets in different geometric quotients of open sets in Cn+3 by T .

4.2 The resolution as a divisor in a toric variety
The aim of this section is to describe properties of certain geometric quotients of
open subsets of hypersurface S ⊂ Cn+3, introduced in Construction 4.1.22, by the
Picard torus action. Let us fix a simplicial fan Σ ⊂ R3 satisfying conditions in
Notation 4.1.20. In particular, its rays are columns of matrixK (see Notation 4.1.10).
We consider an open subset of S obtained by removing zeroes of the irrelevant ideal
(see Definition 2.2.3)

W = S \ Z(Σ) ⊂ Cn+3 \ Z(Σ)

and its quotient by the action of T .

Remark 4.2.1. As the quotient XΣ of Cn+3 \ Z(Σ) by T is geometric and W =
S \ Z(Σ) is a T -invariant closed subset of Cn+3 \ Z(Σ), the quotient of W by T is
also geometric (for example by [ADHL10, Proposition 2.3.9]).

Notation 4.2.2. We investigate the quotient Y = W/T by looking at the embeddings
which are horizontal arrows in the following diagram.

W = S \ Z(Σ)

/T

��

� � // Cn+3 \ Z(Σ)

/T

��
Y = W/T �

� // XΣ
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We use toric geometry as a tool, because the right vertical arrow is a toric map.
The first thing we prove is the smoothness of Y (see Proposition 4.2.6), which,
roughly speaking, follows from the fact that the action of T on W is free and the
smoothness of W . In section 4.2.2 we construct a birational morphism from Y to
the quotient singularity C2/G. It comes from the embedding in a toric variety. Its
existence implies that Y is a resolution of C2/G. However, at this point we do not
know if it is the minimal resolution. This is proven in section 4.2.3 by computing
intersection numbers of the irreducible components of the exceptional divisor of the
constructed morphism to C2/G.

4.2.1 Smoothness of the quotient

The aim of this section is to prove Proposition 4.2.6, which states that the quotient
Y = W/T is smooth. In order to give the proof we first need to analyze the structure
of the set Z(Σ) of zeroes of the irrelevant ideal associated with the chosen fan Σ.
Let us recall that the coordinates of Cn+3 are denoted

y0, y1,1, . . . , y1,n1 , x1, y2,1, . . . , y2,n2 , x2, y3,1, . . . , y3,n3 , x3.

We say that y0 corresponds to the central ray of Σ (i.e. is a monomial dual to the
ray in a fan Σ′ of Cn+3 which maps to the central ray in Σ), yi,j corresponds to the
j-th ray on the i-th branch and xi corresponds to the i-th outer ray.

Lemma 4.2.3. The set W = S \ Z(Σ) ⊂ Cn+3 consists of three sets of points:

1. all points in S with all coordinates nonzero,

2. all points in S with one coordinate equal to zero,

3. all points in S with two coordinates equal to zero, such that these coordinates
correspond to a pair of adjacent rays on one branch.

It follows that W is independent of the choice of Σ.

Proof. The argument is a straightforward analysis of the structure of the irrelevant
ideal B(Σ) = 〈xσ̂ : σ ∈ Σmax〉. Recall that xσ̂ is the product of variables correspond-
ing to all the rays in Σ(1) that are not in σ(1). In our case Σmax is the set of all
3-dimensional cones of Σ. Let us look at the number of coordinates equal to zero in
a point in Z(Σ).
First of all, if a point has ≥ 4 zeroes on different coordinates, or 2 or 3 zeroes on
coordinates corresponding to the rays which do not span a cone in Σ, then for any
cone σ ∈ Σmax one of these rays is not in σ, so xσ̂ evaluated at this point is 0. Hence
all such points belong to Z(Σ).
If a point p ∈ S has 3 zeroes on coordinates corresponding to the rays whose images
span a cone in Σ, then these rays lie on two different branches – i-th and j-th. But
then monomials in the equation of S (see formula 4.1.3.1) which correspond to the
i-th and j-th branch are 0 at p, so the third monomial also is 0 at p. Hence at least
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one more coordinate of p is equal to zero. Thus p ∈ Z(Σ), which implies that W
does not contain any point with ≥ 3 zeroes.
The same argument works in the case where p has 2 zeroes on the coordinates
corresponding to the rays from two different branches. Thus p with 2 zeroes can
belong to W only if these zeroes are on the coordinates corresponding to adjacent
rays from one branch.
We see that all such points p indeed belong to W : if we take σ ∈ Σmax containing
all rays corresponding to zero coordinates of p, which is possible by Lemma 4.1.21,
then xσ̂(p) 6= 0.
Therefore the only property of Σ on which W depends is the set of 2-dimensional
cones spanned by adjacent rays on one branch. But Lemma 4.1.21 assures that this
set is the same in all fans we consider, hence for any choice of Σ satisfying conditions
of Notation 4.1.20 one obtains the same W .

We need a following technical observation to prove that the action of T on W is free
in Lemma 4.2.5.

Lemma 4.2.4. Remove from the extended intersection matrix U any two columns
corresponding to a pair of adjacent vertices on one branch of the resolution diagram.
Then the remaining ones generate Zn.

Proof. Let us denote by Bi for i = 1, 2, 3 the set of columns of U corresponding to
the vertices on the i-th branch of the resolution diagram (hence the first column
does not belong to any of these sets). Thus |Bi| = ni + 1. By e0, . . . , en−1 we denote
the standard basis of Zn.
The first case is when we remove two adjacent columns from one set. Without loss of
generality we may assume that they lie in B3. We perform reductions with integral
coefficients on columns from the first set, in the same way as we computed entries of
αi in the proof of Lemma 4.1.6, but starting from the last column. This way we obtain
that vectors e0, e2, . . . , en1 are in the lattice generated by the columns of U which
were not removed. Similarly, by reducing B2 we get e0 and en1+1, . . . , en1+n2 . Then
look at the first column: it is e0 +e1 +en1+1 +en1+n2+1, so subtracting e0 +e1 +en1+1

we get also en1+n2+1. Now there are two possibilities. If we removed the last column
from B3, we perform the same reductions in B3 starting from en1+n2+1. If not, we
reduce both starting from the first column and from the last one. In both cases it is
easily seen that we obtain all the remaining vectors of the standard basis of Zn.
The second case, which is removing the first column of U and the first column in one
set (let us take B1), is even easier. As before, by linear combinations with integral
coefficients, from B2 and B3 we obtain all corresponding standard basis vectors:
en1+1, . . . , en−1, and also e0. Thus we can perform reductions on B1 starting from
the last column and finish them using e0 to obtain e1, . . . , en1 .

Recall that the action of T on Cn+3 is defined by the sequence of characters

χi(t) = tui = t
(ui)0

0 · · · t(ui)n−1

n−1

for i = 0, . . . , n− 1, where ui is the i-th column of U and t = (t0, . . . , tn−1) ∈ T .
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Lemma 4.2.5. T acts freely on W .

Proof. We have to check that a point p ∈ W cannot have nontrivial isotropy group.
Assume that t = (t0, . . . , tn−1) ∈ T is such that tp = p. This means that all characters
defining the action, except these corresponding to the coordinates equal to zero in
p, give 1 evaluated at t.
Our aim is to deduce that ti = 1 for i = 0, . . . , n from the fact that χi(t) = 1 for
indices i such that the i-th coordinate of p is nonzero. In other words, we would like to
check when it is possible to obtain equalities ti = 0 by multiplying equalities tui = 1
for i corresponding to nonzero coordinates of p. These operations are equivalent to
operations on vectors of exponents in the lattice Zn. This can be reformulated as
follows: if we remove from U the columns corresponding to the zero coordinates in
p then the remaining columns span the lattice Zn. And, because p is of one of three
types listed in Lemma 4.2.3, this result follows directly from Lemma 4.2.4.

Proposition 4.2.6. The quotient Y = W/T is smooth.

Proof. We prove that W is smooth by checking that all the singular points of
S are in Z(Σ). Indeed, if the Jacobian of the equation of S is zero in a point
(y0, y1,1, . . . , x1, y2,1, . . . , x2, y3,1, . . . , x3) then for each i = 1, 2, 3 at least one of the
coordinates corresponding to a ray from the i-th branch is zero. Hence there are at
least three coordinates equal to zero and, by Lemma 4.2.3, such a point is not in W .
Since Y is a geometric quotient of a smooth variety by a free action of T , it is
also smooth. A standard reference for such a statement is Luna’s slice theorem, but
we believe that this particular case can be much simpler. By the classical result of
Sumihiro [Sum74] any point w ∈ W has a T -invariant affine neighborhood and by
applying Luna’s theorem [Lun73] to this neighborhood we know that the quotient
is smooth in the image of w.

The smoothness of W/T can also be proven using the toric setting: the embedding
ofW/T in XΣ, given by an equation in the Cox ring of XΣ, and the toric localization
(see Proposition 2.2.7). Below we sketch an alternate proof of Proposition 4.2.6 based
on this idea. This proof reveals a special feature of quasi-reflections, important for
understanding quotient singularities constructed via finite group action.

Proof. (Alternate proof of Proposition 4.2.6.) We investigate the smoothness locally,
on the pieces of an affine cover of W/T corresponding to the set of maximal cones of
Σ. Take any 3-dimensional cone σ ∈ Σ. By Lemma 4.1.21 its rays correspond to two
adjacent points on one branch of the resolution diagram and one point on another
branch. Thus, by Proposition 2.2.7, the localized equation is of the form

F (z1, z2, z3) = zm1
1 zm2

2 + zm3
3 + 1,

where z1 and z2 stand for either yi,j and yi,j+1 or yi,ni and xi, and m1,m2,m3 > 0.
The Jacobian matrix is

J(z1, z2, z3) = (m1z
m1−1
1 zm2

2 ,m2z
m1
1 zm2−1

2 ,m3z
m3−1
3 ).
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If σ is a smooth cone then obviously there are no points for which both F (z1, z2, z3)
and J(z1, z2, z3) are zero.
For the non-smooth cones the situation is a bit more complicated. Then Uσ is a
quotient of C3 by an action of a (nontrivial) finite group H. The localized equation
F (z1, z2, z3) gives a (ramified) covering Z = {F = 0} of an affine piece Z = Uσ ∩
(W/T ), i.e. Z is a quotient of Z by H. We show that this action either has no points
with nontrivial isotropy group or, if such points exists, the isotropy group acts on the
tangent space by complex reflections, which means that the quotient is nonsingular
by the Chevalley-Shephard-Todd theorem.
Applying a lattice automorphism if necessary, we may assume that two rays of σ
correspond to two consecutive points from the second branch of the diagram and
the last one to a point from the third branch:

ρ1 = (a, 0, b), ρ2 = (c, 0, d), ρ3 = (e, f, f).

The map Z3 → N given in the standard basis by

e1 7→ e1 = (a, 0, b), e2 7→ e2 = (c, 0, d), e3 7→ e3 = (e, f, f)

defines the toric morphism C3 → Uσ, a quotient by H, which is the cokernel: Z3 →
N → H → 0. It can be checked easily that H is cyclic, generated by the class of
(0, 1, 0) ∈ N .
The computations done in the case of a smooth cone show that Z is nonsingular.
Assume that there are points in Z with nontrivial isotropy group. We need to find
the weights of the action of H on the coordinates z1, z2, z3 in C3 corresponding to
ρ1, ρ2, ρ3. The class of (0, 1, 0) ∈ N generates H, so the weight of the action on zi
is (0, 1, 0) · ei∨. We have

e1
∨ = (d, c− −ed

f
,−c), e2

∨ = (−b, eb
f
− a, a), e3

∨ = (0,
1

f
, 0).

Thus a generator of H acts on z1, z2, z3 by diag(ξ−ed, ξeb, ξ), where ξ is a primitive
f -th root of unity, so if (z1, z2, z3) has a nontrivial isotropy group, then z3 = 0.
Hence a generator of the isotropy group acts by diag(1, 1, ξr) for some r ∈ Z.
At a point with a nontrivial isotropy group, hence of the form (z1, z2, 0), the tangent
space is spanned by (0, 0, 1) and some vector of the form (p, q, 0), where p, q 6=
0. Since both are the eigenvectors of the action of H and only the second one
corresponds to eigenvalue 1, the isotropy group indeed acts by complex reflections.

4.2.2 The quotient is a resolution of C2/G

An embedding of the geometric quotient Y = W/T in a toric variety XΣ (see
the diagram in Notation 4.2.2) leads to a construction of a birational morphism
Y → C2/G, shown below. We start from describing the toric morphism of ambient
spaces.
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Let ∆ ⊂ NR denote the fan consisting of a cone spanned by the outer rays of Σ and
all its faces. As before, Σ′ ⊂ N ′R is the standard fan of Cn+3. Look at the composition
π of two fan morphisms: Σ′ → Σ, given by the matrix K (as in Notation 4.1.10) and
Σ→ ∆, induced by the identity on N . This last homomorphism – forgetting about
all rays except the outer ones – is a proper birational morphism of XΣ to an affine
variety, which contracts torus invariant divisors corresponding to the omitted rays.

Lemma 4.2.7. The toric morphism Cn+3 → X∆ induced by π is a good categorical
quotient (as in Definition 2.2.1) by the Picard torus action and Cn+3//T = X∆ '
C3/Ab(G).

Proof. Recall the exact sequence of lattices 4.1.2.1 describing the Picard torus action
on Cn+3 – it is the upper horizontal exact sequence in the diagram below. The
invariant monomials of this action are lattice points in the intersection ofM with the
positive orthant inM ′. Hence, looking at dual lattices, the good categorical quotient
Cn+3/T is the affine toric variety corresponding to the image of the positive orthant
in π : N ′ → N , that is X∆ (see e.g. [CLS11, Prop. 5.0.9]). We will now prove that
X∆ is isomorphic to C3/Ab(G).
The left vertical sequence is just dividing the monomial lattice M ′ of Cn+3 by a
sublattice spanned by these basis elements which correspond to inner rays. That is,
M ′′ ' Z3 and we consider the positive octant in this lattice, which is the image of Σ′.
In the right one the quotient of Pic(X) by the subgroup of divisors contracted by the
resolution of the singularity is just Cl(C2/G), which is Ab(G) by Proposition 3.4.8.

0

��

0

��⊕
Z[Ei]

��

= //
⊕

Z[Ei]

��
0 //M

=

��

//M ′

��

U // Pic(X)

��

// 0

0 //M //M ′′

��

// // Ab(G)

��
0 0

The dotted arrow from M ′′ to Ab(G) is unique and makes the diagram commute, it
is surjective and the lower horizontal sequence is exact. Moreover, all these lattice
homomorphisms correspond to homomorphisms of considered fans. Finally, it follows
that the lower horizontal sequence gives a description of X∆ as the (toric) quotient
C3/Ab(G).

The situation described by Lemma 4.2.7 above is the right-hand side part of the
following diagram. We would like to understand its left-hand side part, or, more
precisely, prove that the image of two gray arrows, which are restrictions of respective
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morphisms from the right-hand side of the diagram, is isomorphic to the singularity
C2/G, embedded in C3/Ab(G). It follows then that the good categorical quotient
(see Definition 2.2.1) Spec(Cox(X))//T is C2/G.

W

S

C2/G

XΣ

Cn+3 \ Z(Σ)

Cn+3

X∆ ' C3/Ab(G)

Y
//T//T

/T/T

The proof presented below might seem to be just a technical argument, but in fact
it is strongly connected to investigating the relation between the Cox rings of a
resolution and of the quotient singularity, which is one of the most important ideas
of this work, developed in section 5.2.
We first consider the (good categorical) quotient C3 /Ab(G)−−−−→ X∆ and prove that the
image of S and Y (or W ) in X∆ can be described as a quotient by Ab(G) of a
hypersurface in C3, given by an equation semi-invariant with respect to the action
of Ab(G) (i.e. its eigenvector). Our argument is related to methods used in chapter 5.
Another way of proving this statement would be to analyze lifting of semi-invariants
of Ab(G) through Cn+3 //T−−→ X∆, however, it also requires some work and the result
is not immediate. The second step of our proof, contained in Lemma 4.2.9, is the
observation that the quotient of considered hypersurface in C3 by the action of
Ab(G) is indeed C2/G.

First of all, we describe the situation in the toric setting in more detail and introduce
a variety XΓ ∩S, which will be used in the further part of the argument. Since ∆ is
simplicial, X∆ is a quotient of C3 by a finite group action. Let N ′′ ' Z3 and Γ be
the fan consisting of the positive octant in N ′′ and all its faces.

N ′ K //

π

!!

N

idN
��

N ′′

η

OO

ω
// N

Σ′ K //

π

  

Σ

idN
��

Γ

η

OO

ω
// ∆

(4.2.2.1)

Then ω : N ′′ → N which sends the standard basis to the rays of ∆ is the toric
description of this quotient map. But the embedding η : N ′′ ↪→ N ′, which maps the
standard basis to the rays corresponding to variables x1, x2 and x3, commutes with
π and ω, i.e. the lower triangle in the diagram 4.2.2.1 is commutative.
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In coordinates corresponding to the standard bases η is just the embedding of C3

by x1, x2, x3 to the subspace defined by y0 = 1 and yi,j = 1 for all possible i, j.
Therefore the restriction of S to C3 ' XΓ ⊂ XΣ′ ' Cn+3 with coordinates x1, x2,
x3 is given by the equation obtained from the equation of S by leaving x1, x2, x2

without change and substituting 1 for all other variables:

xp1

1 + xp2

2 + xp3

3 = 0. (4.2.2.2)

Recall that pi is the last entry of the vector αi orthogonal to the i-th branch
(see Lemma 4.1.6), appearing also in the description of the minimal resolution by
Hirzebruch-Jung continuous fractions and in the formula for the outer rays of Σ,
see Lemma 4.1.17. (Note that this is essentially the same as in the toric localization
procedure Proposition 2.2.6, just under a bit different assumptions.)

Lemma 4.2.8. The images of XΓ ∩ S, S and W in X∆ (under morphisms corre-
sponding to ω and π respectively) are equal.

Proof. Take any point

p = (y0, y1,1, . . . , y1,n1 , x1, y2,1, . . . , y2,n2 , x2, y3,1, . . . , y3,n3 , x3) ∈ W.

First assume that y0 = 0 or some yi,j = 0. But π forgets rays of Σ′ corresponding
to these coordinates, so whole T -orbits given by these equalities are mapped to 0.
Hence also closures of these orbits are mapped to 0, and we are left with the situation
when all coordinates yi,j and y0 are nonzero. But the orbit of such a point p contains
a point of S ∩XΓ. It is sufficient to find t = (t0, . . . , tn−1) ∈ t such that tuk , where
uk is the k-th column of the extended intersection matrix U , is the inverse of the
k-th coordinate of p, excluding the coordinates corresponding to x1, x2, x3. Such a
set of equations has a solution if only the columns of the intersection matrix U0 are
linearly independent, which is true. Hence each orbit in W is mapped to a point of
the image of S ∩XΓ in X∆ and the other inclusion is obvious.

Therefore from now on we consider the image of the restriction of S to XΓ in X∆

instead of the image of W or S.

Lemma 4.2.9. The image of S ∩XΓ in X∆ is isomorphic to C2/G.

Proof. From the table in [Bri68, Satz 2.11] we can read out the parameters of the
minimal resolution of C2/G, i.e. the invariant 〈d; p1, q1; p2, q2; p3, q3〉 describing the
Hirzebruch-Jung continuous fractions associated with the resolution. Substituting
values of pi into equation (4.2.2.2) we obtain the following equations of S ∩XΓ:

BDn,m : x2
1 + x2

2 + xn3 = 0
BTm : x2

1 + x3
2 + x3

3 = 0
BOm : x2

1 + x3
2 + x4

3 = 0
BIm : x2

1 + x3
2 + x5

3 = 0
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Comparing with Lemma 3.2.4 and [Rei, Table 1] we see that for a group G the
equation above is just an equation of an embedding of the quotient singularity
C2/[G,G] in C3. (For G = BTm, i.e. [G,G] = BD2, the equation is most often given
in the form x2

1 + x3
2 + x2x

2
3 = 0, but it is the same up to a change of coordinates.)

Recall that X∆ is a quotient of C3 by an action of a finite group J = cokerω. The
image ofW inX∆ is then the quotient of S∩XΓ by J . We can write ω in the standard
basis using the matrix with the outer vectors of Σ as columns. For all considered
groups it is easy to check that J is isomorphic to the abelianization of G. One has
to use again the numbers pi, qi associated with the minimal resolution (from [Bri68,
Satz 2.11]) to write down the outer rays and describe J , and then compare with the
abelianizations of small subgroups of GL(2,C) computed in Corollary 3.2.5.
Our aim is now to prove that the the quotient (S ∩XΓ)/J is isomorphic to C2/G '
(C2/[G,G])/Ab(G). Thus we have to argue that the isomorphism between S ∩ XΓ

and C2/[G,G] is equivariant with respect to considered actions of J ' Ab(G). We
do this by comparing the actions on the coordinate rings: the action of generators
of J on the chosen coordinates of XΓ turn out to be identical to the action of
the corresponding generators of Ab(G) on the [G,G]-invariants which satisfy the
equation of S ∩XΓ.
The action of Ab(G) on the invariants of [G,G] is quite easy to describe. We sketch
the idea here and give an example of computations below. Sets of generators of
C[x, y][G,G] for small subgroups G ⊂ GL(2,C) are listed for example in [DZ93].
However, not every (minimal) generating set can be used here. We need a set of
generators which are eigenvectors of the action of Ab(G), because coordinates of XΓ

satisfy this condition. For most types of groups the invariants given in [DZ93] are
eigenvectors of Ab(G) (and, in fact, there is no other choice of minimal generating
set), only in the case of BTm, where the commutator subgroup is BD2, one has
to take suitable linear combinations of x4 + y4 and x2y2. (It is worth noting that
we speak in more detail of [G,G]-invariants which are eigenvectors of the action of
Ab(G) in section 5.2; moreover, we list them in Example 5.3.2.) Finally, we take
some representatives of the generating classes of Ab(G) and determine their action
on the chosen invariants by an explicit computation.
To describe the action of J ' Ab(G) on variables x1, x2, x3 corresponding to the
rays of Γ we take a vector of N representing a generator and evaluate it on the dual
characters to the rays of ∆, which are

u1 =
1

r
(p1p2, q1p2, q2p1),

u2 =
1

r
(p1p3, q1p3, dp1p3 − p1q3 − q1p3),

u3 =
1

r
(p2p3, dp2p3 − p2q3 − q2p3, q2p3),

where
r = dp1p2p3 − q1p2p3 − p1q2p3 − p1p2q3

is the order of J (equal to the determinant of the matrix which has the outer rays
as columns).
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In all the cases of cyclic abelianizations one can take as a generator of J one of the
standard basis vectors. In the only non-cyclic case (BDn,m for even n) the generators
can be chosen for example (0, 1, 0) and (−1, 1, 1). However, these generators do not
necessarily give the same action of Ab(G) on the chosen [G,G]-invariants, so one has
to find a suitable power of a generator to get exactly the same numbers. We have
checked that such generators can be found in all the cases. As all the computations
are very similar, we end the proof by presenting only a chosen case in detail.

Let us look at the action of G = BOm. Recall that we have to assume (m, 6) = 1.
First, the generators of the invariants of [G,G] = BT are

w1 = x5y − xy5,

w2 = x8 + 14x4y4 + y8,

w3 = x12 − 33x8y4 − 33x4y8 + y12,

which, up to some constants, satisfy the relation w4
1 + w3

2 + w2
3 = 0. As stated in

Corollary 3.2.5, Ab(G) ' Z2m is generated by g = ε2m · diag(ε8, ε
−1
8 ). The action on

the [G,G]-invariants is

g · w1 = −ε6
2m · w1 = εm+6

2m · w1,

g · w2 = ε8
2m · w2,

g · w3 = −ε12
2m · w3 = εm+12

2m · w3.

Now look at the action of J . Take v = (0, 1, 0) ∈ N . Then

u1(v) =
3

r
=

3

2m
.

The equality r = 2m can be obtained directly from the parameters of resolutions
given in [Bri68, Satz 2.11]. As m is not divisible by 3, v is of order 2m in J , so it is
a generator. The weights of its action are

2m · u1(v) = 3,

2m · u2(v) = 4,

2m · u3(v) = 12d− 3q3 − 4q2 = m+ 6.

Take v′ = (0,m+ 2, 0) ∈ N , which is also a generator of J because m is odd. Then

2m · u1(v′) = 3(m+ 2) ≡ m+ 6 mod 2m,

2m · u2(v′) = 4(m+ 2) ≡ 8 mod 2m,

2m · u3(v′) = (m+ 6)(m+ 2) = m2 + 12 + 8m ≡ m+ 12 mod 2m,

hence both considered actions are the same.

The observations made above are summarized in the following statement.
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Proposition 4.2.10. The good categorical quotient Cn+3 //T−−→ C3/Ab(G) restricts

to the good categorical quotient S
//T−−→ C2/G, which induces a birational morphism

from Y = W/T onto C2/G.

Corollary 4.2.11. The quotient Y = W/T is a resolution of the singularity C2/G.

Proof. The birational morphism from Y to C2/G constructed above is induced by
the fan morphism from Σ to the fan ∆, which consists of a cone spanned by the
outer rays of Σ and all its faces. This homomorphism is induced by the identity on
the lattice N , it is just forgetting about all the rays except the outer ones. Therefore
it gives the identity on the orbits corresponding to all the faces of the maximal cone
of ∆, i.e. on (C2/G) \ {0}.

4.2.3 Minimality

We prove that Y = W/T is in fact the minimal resolution of the considered quotient
singularity. Moreover, we explain how the class groups of Y and XΣ are related,
which will be needed in the proof of Proposition 4.3.2.
By ρi,j for i = 1, 2, 3 and 1 ≤ j ≤ ni + 1 we denote the j-th ray on the i-th branch
in the fan of Σ. The central ray is denoted ρ0.

Notation 4.2.12. Let Di,j be the torus invariant divisor in XΣ corresponding to
ρi,j and D0 corresponds to ρ0. Then C0 = Y ∩ D0 and Ci,j = Y ∩ Di,j for j ≤
ni are the exceptional curves of the map from Y to C2/G ⊂ X∆ constructed in
Proposition 4.2.10. Note that the curve Ci,ni+1 = Y ∩Di,ni+1 is not exceptional.

First we show that for any ray ρi,j one can choose a (non-unique) simplicial fan
Σ such that Di,j is isomorphic to a Hirzebruch surface (described in terms of toric
geometry in 2.1.6).

Lemma 4.2.13. Let Σ be a fan satisfying conditions in Notation 4.1.20 and such
that each of ρi,j−1, ρi,j and ρi,j+1 lies in 2-dimensional faces with the first rays on two
other branches (if j = 0 we put ρi,j−1 = ρ0), see Fig. 4.2. Then Di,j is isomorphic
to the Hirzebruch surface F(γi)j+1

, where (γi)j+1 is the (j + 1)-st entry of the vector
γi ∈ kerA′′i from formula (4.1.1.1).

Proof. Note that such a fan Σ exists for any ρi,j. Fig. 4.2 shows a section of the cone
spanned by the outer rays of Σ. The four gray cones are the cones containing ρi,j,
we will prove that their projection along ρi,j onto a plane give the fan of F(γi)j+1

.
We give the proof in the case where ρi,j is from the third branch, i.e. i = 3 and
ρ3,j = (c,−d,−d) for some c, d ∈ N. The remaining cases can be reduced to this one
by a lattice automorphism. Let ρ3,j−1 = (a,−b,−b) and ρ3,j+j = (e,−f,−f), where
a, b, e, f are positive integers. All cones of Σ containing ρ3,j are spanned by one of
these vectors and one of ρ1,1 = (0, 1, 0), ρ2,1 = (0, 0, 1).
Let η1 = ρ2,1 − ρ3,j = (−c, d, d + 1) and η2 = ρ3,j−1 − ρ3,j = (a − c, d − b, d − b).
By [CLS11, Proposition 3.2.7] it is sufficient to prove that projections along ρ3,j

onto the plane spanned by η1 and η2 of these two vectors and ζ1 = ρ1,1 − ρ3,j =
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ρi,j

Figure 4.2: Cones containing ρi,j in a fan where Di,j is a Hirzebruch surface

(−c, d + 1, d), ζ2 = ρ3,j+1 − ρ3,j = (e − c, d − f, d − f) are the rays of the fan of
F(γi)j+1

.
Recall that by Lemma 4.1.21 (3) cones σ(ρ3,j−1, ρ3,j) and σ(ρ3,j, ρ3,j) are smooth, so
we have

−ad+ bc = −1 = −cf + de.

It follows that

ζ2 + η2 = (e+ a− 2c, 2d− b− f, 2d− b− f) =
b+ f − 2d

d
(c,−d,−d),

that is ζ2 is projected to −η2. We now show that ζ1 is projected to −η1 + rη2 and
that r = (γ3)j. Because

ζ1 + η1 − rη2 = −2ρ3,j + (0, 1, 1)− r(a− c, d− b, d− b),

it is enough to find r such that (0, 1, 1)−r(a− c, d− b, d− b) = kρ3,j for some k ∈ R.
But then

−r(a− c)
c

= k =
1− r(d− b)
−d

,

hence
c = r(ad− bc) = r.

By Notation 4.1.10 the first coordinate of ρ3,j is (γ3)j+1, which finishes the proof.

Proposition 4.2.14. Y is the minimal resolution of C2/G. Moreover, Cl(Y ) is
generated by restrictions to Y of divisors in XΣ which are invariant under the action
of the big torus of this variety. The intersection numbers of these divisors and the
exceptional curves are the entries of the extended intersection matrix U .
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Proof. By Lemma 4.2.3, W and hence also Y does not depend on the choice of
Σ. Moreover, Cl(XΣ) does not depend on the choice of Σ, since all considered fans
have the same set of rays. Thus we can investigate each exceptional curve Ci,j in a
suitably chosen fan, in which Di,j is isomorphic to the Hirzebruch surface F(γi)j+1

,
as in Lemma 4.2.13.
One can compute local equation of Y on affine pieces of XΣ using the toric localiza-
tion, see Proposition 2.2.6. In local coordinates it is easy to check that Ci,j ·Ci,j+1 = 1
and C0 · Ci,1 = 1 in Y for all admissible i, j: we just obtain that they intersect
transversally in a point. We skip the details and move to computing Ci,j ·Ci,j in Y .
Look at Di,j ' F(γi)j+1

as at a P1-fibration over P1, the structure of which is deter-
mined by cones in Σ containing ρi,j. Passing to local coordinates again, we check
that Ci,j is a fibre of this fibration. However, it is not one of the fibres which are
torus invariant curves in XΣ and correspond to 2-dimensional faces joining ρi,j with
the first rays on other branches. We see in local coordinates that Y intersects Di,j

transversally in Ci,j.
Let ι and κ denote the embedding of Y andDi,j inXΣ respectively. By the projection
formula

ι∗(ι
∗OXΣ

(Di,j) · Ci,j) = OXΣ
(Di,j) · ι∗Ci,j.

Since ι∗OXΣ
(Di,j) is just Di,j∩Y = Ci,j, the left hand side is just the self-intersection

number of Ci,j in Y . And the right hand side is Di,j · Ci,j in XΣ.
Let C ′i,j be one of the fibres in Di,j ' F(γi)j+1

which is a torus invariant curve in XΣ.
Assume that it corresponds to the face σ(ρi,j, ρk,1). Then, because Ci,j and C ′i,j are
numerically equivalent in Di,j,

OXΣ
(Di,j) · ι∗Ci,j = OXΣ

(Di,j) · κ∗Ci,j = κ∗(κ
∗OXΣ

(Di,j) · Ci,j) =

= κ∗(κ
∗OXΣ

(Di,j) · C ′i,j) = OXΣ
(Di,j) · κ∗C ′i,j.

Summing up, instead of the self-intersection number of Ci,j in Y we computeDi,j ·C ′i,j
in XΣ, which can be done in the toric setting.
We use the formula for toric intersection product from [CLS11, Prop. 6.3.8]. Because
Σ is simplicial, XΣ is Q-factorial (see Proposition 2.1.10). Hence some multiple of
Di,j is Cartier. Then Di,j can be described by a set {mσ : σ ∈ Σmax}, almost as
in Proposition 2.1.9, but mσ ∈ Q ·M . Let m1 and m2 be the elements of this set
corresponding to σ(ρk,1, ρi,j−1, ρi,j) and σ(ρk,1, ρi,j, ρi,j+1) respectively. Then they
satisfy

〈m1, ρi,j〉 = 〈m2, ρi,j〉 = −1, 〈m1, ρi,j−1〉 = 〈m2, ρi,j+1〉 = 〈m1, ρk,1〉 = 〈m2, ρk,1〉 = 0.

By [CLS11, Prop. 6.3.8] we have

Di,j · C ′i,j = 〈m1 −m2, ρi,j+1〉.

We show the computations in the case where i = 3 and k = 1, other cases can be
reduced to this one by applying a lattice automorphism. For 1 ≤ p ≤ n3 + 1 we have

ρ1,1 = (0, a, 0), ρ3,p = (bp, cp, cp).
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Moreover, by part 3. of Lemma 4.1.14 adjacent rays on each branch form a basis of
the restriction of N to the subspace spanned by them, so bpcp−1 − bp−1cp = 1 (the
arrangement is such that this determinant is positive). Hence

m1 = (cj−1, 0,−bj−1), m2 = (−cj+1, 0, bj+1)

and thus

D3,j · C ′3,j = 〈m1 −m2, ρi,j+1〉 = 〈m1, ρi,j+1〉 = cj−1bj+1 − bj−1cj+1.

Since bp, cp are entries of vectors γ3 and −α3 in the kernel of A′′3 (see Lemma 4.1.9
and its proof), they satisfy recursive relations

bp+1 = −(a3,pbp + bp−1) and cp+1 = −(a3,pcp + cp−1)

with b0 = 1, b1 = d, c0 = 0, c1 = 1. Hence we check that

cj−1bj+1 − bj−1cj+1 = −cj−1(a3,jbj + bj−1) + bj−1(a3,jcj + cj−1) =

= −a3,j(cj−1bj − bj−1cj) = −a3,j,

and, summarizing,
Ci,j ·S Ci,j = D3,j ·XΣ

C ′3,j = −ai,j.

In a very similar way we compute C0 ·C0, which is equal to the intersection number
of D0 with the curve in XΣ corresponding to one of the cones σ(ρ0, ρi,1). Thus we
obtain

C0 · C0 = −d.

In order to compute the intersection number of Ci,ni+1, which is not exceptional,
with Ci,ni we consider the fan where ρi,ni and ρi,ni+1 form (smooth) cones with the
first rays on two other branches. Passing to local coordinates we get the result

Ci,n1+1 · Ci,ni = 1.

Therefore the intersection numbers of the exceptional curves C0 and Ci,j for j ≤ ni
with the divisors C0, Ci,j for j ≤ ni + 1 in Y are just the entries of the extended
intersection matrix U . In particular, Y is the minimal resolution of C2/G.
To prove that the restrictions of the torus invariant divisors in XΣ to Y generate
Cl(Y ) it suffices to show that the subgroup generated by these divisors contains
duals of the exceptional curves. Since their intersection numbers are the entries of
U , this is equivalent to the fact that the system of equations given by the rows of U
with the constant terms such that one is 1 and the remaining are 0 has an integral
solution. And such solutions can be easily constructed using the methods as in the
proof of Lemma 4.1.9.
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4.3 The spectrum of the Cox ring
The aim of this section is to finish the proof of Theorem 4.3.3, which states that
the hypersurface S ⊂ Cn+3 introduced in Construction 4.1.22 is the spectrum of the
Cox ring of the minimal resolution X of a surface quotient singularity C2/G. Our
argument is based on Theorem 3.5.7, which provides a characterization of the Cox
rings via Geometric Invariant Theory.
As before, we investigate S, its T -invariant open subset

W = S \ Z(Σ)

(independent of the choice of Σ) and the geometric quotient Y = W/T . The most
difficult part of the proof is the content of the previous section, but we still need
to check a few properties of these spaces to see whether the assumptions of Theo-
rem 3.5.7 are fulfilled. Some of them are direct consequences of the observations we
have already made, the remaining ones are proven below.
It is worth noting that the quotients considered here are a special case of a much more
general theory of good quotients of algebraic varieties by reductive group actions,
developed by Białynicki-Birula and Święcicka in a series of papers including [BBS96],
which can be useful for a possible generalization of our results.
The first property is the strong stability of the action of T on W (see Defini-
tion 3.5.6). Then, in Proposition 4.3.2, we prove the T -factoriality of S (see Def-
inition 3.5.5).

Proposition 4.3.1. The action of T on W is strongly stable.

Proof. We take W ′ := W . Then, obviously, W ′ is T -invariant and the codimension
of its complement in W is ≥ 2. Also, by Remark 4.2.1 all the orbits of T in W are
closed. Finally, in Lemma 4.2.5 it is proven that T acts freely on W , which finishes
the proof.

Proposition 4.3.2. The hypersurface S is T -factorial.

Proof. First notice that every T -invariant Weil divisor in S is a pull-back of a divisor
in Y = W/T . This is because of dimension reasons: T is an n-dimensional torus
acting freely on an (n + 2)-dimensional variety W , and S \ W is of codim ≥ 2
in S, so an invariant divisor cannot be mapped to a subset of codimension bigger
than one. Hence it is sufficient to show that the pull-backs of generators of Pic(Y )
are principal. Their equations are {yi,j = 0} or {xi = 0}, where the coordinates
on Cn+3 ⊃ S are denoted as in Construction 4.1.22. Thus the question is whether
Cartier divisors defined by these functions are not multiples of Weil divisors defined
as intersections of hyperplanes {yi,j = 0} and {xi = 0} with S. Thus we have to
check whether valuations corresponding to local rings of S are 1 on yi,j and xi.
The argument is the same for all functions xi and yi,j, so we may choose x1 and
check that it is not in the square of the maximal ideal of the localization of C[S] in
a generic point of {x1 = 0} ∩ S. As S is given by the equation∑

i=1,2,3

y
(αi)1

i,1 · · · y(αi)ni
i,ni

· x(αi)ni+1

i ,
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the ideal with respect to which we localize contains

y
(α2)1

2,1 · · · y(α2)n2
2,n2

x
(α2)n2+1

2 + y
(α3)1

3,1 · · · y(α3)n3
3,n3

x
(α3)n3+1

3 .

However, it is irreducible, so we cannot obtain from it any elements of the ideal
dividing x1, hence x1 is a generator of the maximal ideal of the localization.

We are ready to complete the proof of the main theorem of this section.

Theorem 4.3.3. Let X be the minimal resolution of a surface quotient singularity
C2/G. If S is as defined in Construction 4.1.22, then S ' Spec(Cox(X)).

Proof. S is a hypersurface in a smooth variety and its set of singular points has
codimension ≥ 2 (if its Jacobian matrix is zero in a point, then at least three coor-
dinates are zero), so it is a normal variety by the Serre’s criterion (see e.g. [Mat89,
Thm 23.8]). Moreover, every invertible function on S is constant. To see this, first
observe that the affine space V described by conditions y1,0 = y2,0 = y3,0 = 0 is
contained in S (given by equation 4.1.3.1). Since on an affine space all invertible
functions are constant, the restriction of such a function on S to V is constant, in
particular equal to the value of this function in 0. Take any point

p = (v0, u1, v1,1, . . . , v1,n1+1, u2, v2,1, . . . , v2,n2+1, u3, v3,1, . . . , v3,n3+1) ∈ S.

If we show an affine space contained is S, passing through p and intersecting V , we
obtain that a value of any invertible rational function in p is equal to its value in 0.
Remember that variables y1,1, y2,1, y3,1 appear in the equation of S with exponent 1
(see Remark 4.1.23). Thus the equations xi = ui, y0 = v0, yi,j = vi,j for all i = 1, 2, 3,
j = 0 and j > 1 together with the equation of S determine a plane in S: the equation
of S transforms to q1y1,1 + q2y2,1 + q3y3,1 = 0 for suitable q1, q2, q3 ∈ C. It passes
through p and intersects V as desired.
By Proposition 4.3.2 we know that S is T -factorial. Now W ⊂ S is an open and
T -invariant subset such that codimS(S \ W ) ≥ 2. The action of T on W admits
a good quotient, as it was observed in Remark 4.2.1. Finally, by Proposition 4.3.1
this action is strongly stable. Therefore it follows from Theorem 3.5.7 that S is the
spectrum of the Cox ring of X.

Corollary 4.3.4. The Cox ring of the minimal resolution of a surface quotient
singularity is a finitely generated C-algebra.
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Chapter 5

Generators of the Cox ring

In this chapter we focus on investigating the relation between Cox rings of the
singularity C2/G and its minimal resolution X. This leads us to a description of
generators of Cox(X) presented in a natural way as a subring of the coordinate ring
of C2/[G,G]× T (see Theorem 5.2.9).
We start from statements concerning the structure of the invariant ring C[G,G] and
the Cox ring of a quotient singularity (in arbitrary dimension). After that the main
result of this part, Theorem 5.2.9, is proven, and in section 5.3 we give a few examples
of the construction of an embedding

Cox(X) ↪→ C[a, b][G,G] ⊗ C[T ].

We expect that the ideas sketched in this chapter work in a more general setting,
and that they will form a basis for the extension of this work to higher dimen-
sional quotient singularities, at least for some specific classes of groups, in particular
4-dimensional symplectic quotient singularities. The work presented here will be
continued and developed in a forthcoming paper [DBW13].

5.1 The Cox ring of a quotient singularity
Consider a linear action of G ⊂ GL(n,C) on an affine space V ' Cn and on C[V ].
Look at the induced action of Ab(G) on the ring C[V ][G,G] of invariants of the
commutator. Note that C[V ][G,G] is a C[V ]G-module and that the character group
of G satisfies G∨ = Ab(G)∨ ' Ab(G). Moreover, by [Ben93, Thm 3.9.2] we have
Cl(V/G) ' Ab(G), see also Proposition 3.4.8. We are interested in relative invariants
of the action of G, i.e. regular or rational functions on V which are eigenvectors of G
and the action on such a function is the multiplication by values of a character µ
of G (see [Ben93, Sect. 1.1], or a more general definition in [Sta79, Sect. 1], where
µ is not required to be a linear character). In particular, we need to consider these
relative invariants which are contained in C[V ][G,G].

Definition 5.1.1. By C[V ]Gµ we denote the eigenspace of the action of Ab(G) on
C[V ][G,G] corresponding to a linear character µ ∈ G∨, i.e. a submodule (over C[V ]G)
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consisting of all f ∈ C[V ][G,G] such that for any g ∈ Ab(G) we have

g(f) = µ(g)f.

In general, C[V ] decomposes as a direct sum of its C[V ]G-submodules of relative
invariants (see e.g. [Sta79, Sect. 1.1]). The following lemma describes restriction of
this decomposition to C[V ][G,G]. We present the proof to get more insight into the
behavior of relative invariants.

Lemma 5.1.2. The ring of invariants C[V ][G,G] decomposes as a sum of eigenspaces
of Ab(G) associated with all characters of G

C[V ][G,G] =
⊕
µ∈G∨

C[V ]Gµ .

Each of these eigenspaces is a C[V ]G-module of rank 1, associated with a class in
Cl(V/G) ' Ab(G).

Proof. First look at the sequence of ring inclusions and the corresponding inclusions
of fields of fractions

C[V ]G ⊂ C[V ][G,G] ⊂ C[V ], C(V )G ⊂ C(V )[G,G] ⊂ C(V ).

Note that C(V )G means both the field of fractions of C[V ]G and the subfield of in-
variants of the induced action of G on C(V ). This is because if f/h is a G-invariant
fraction then we can multiply numerator and denominator by

∏
g∈G\{1} g(f) to ob-

tain an element of the field of fractions of C[V ]G (we use the assumption that G is
finite).
Consider C(V ) as a Galois extension of C(V )G with the Galois group G (see e.g.
[Ben93, Prop. 1.1.1]). Then C(V )[G,G] corresponds to a normal subgroup of G, so
C(V )G ⊂ C(V )[G,G] is also Galois with the automorphism group G/[G,G] = Ab(G).
By the normal basis theorem there exists α ∈ C(V )[G,G] such that C(V )[G,G] is
spanned over C(V )G by the orbit {g(α) : g ∈ Ab(G)}. This basis endowed with
the action of Ab(G) is isomorphic to Ab(G) acting on itself by multiplication (see
Lemma 1.3.1), which means that C(V )[G,G] is the regular representation of Ab(G).
Hence it splits into the sum of all irreducible representations of Ab(G), which are
one-dimensional since Ab(G) is abelian, and each of them appears once in the de-
composition (see Lemma 1.3.3):

C(V )[G,G] =
⊕

µ∈Ab(G)∨

C(V )Gµ .

It remains to prove that C[V ][G,G] is a direct sum of C[V ]Gµ = C(V )Gµ ∩ C[V ][G,G].
Every f ∈ C[V ][G,G] can be written (uniquely) as a sum

f =
∑

µ∈Ab(G)∨

vµ
wµ
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where vµ/wµ ∈ C(V )Gµ . We have to show that vµ/wµ ∈ C[V ][G,G]. Let Ab(G) =
{g1, . . . , gk} and denote the rows of the character table of Ab(G) by c1, . . . , ck ∈ (C∗)k
(i.e. (ci)j = µi(gj)). Let 〈ci, cj〉 =

∑
s=1,...,k (ci)s(cj)s. We use the orthogonality of

characters
〈ci, ci〉 = |G|, 〈ci, cj〉 = 0 for i 6= j.

The image of f under
∑

j=1,...,k (ci)jgj is obviously an element of C[V ][G,G]. But for
its part corresponding to the character µm we obtain∑
j=1,...,k

(ci)jgj(
vµm
wµm

) =
∑

j=1,...,k

(ci)j(cm)j
vµm
wµm

= 〈ci, cm〉
vµm
wµm

=

{
|G| vµm

wµm
for i = m,

0, for i 6= m.

Therefore ∑
j=1,...,k

(ci)jgj(f) =
∑

µ∈Ab(G)∨

∑
j=1,...,k

(ci)jgj(
vµ
wµ

) = |G| vµi
wµi

,

so vµi
wµi

is indeed a polynomial for i = 1, . . . , k.

The following proposition describes the Cox ring of a quotient singularity and ex-
plains that the embedding Cox(X) ↪→ C[a, b][G,G] ⊗ C[T ] we are about to construct
relates the Cox ring of the minimal resolution to the Cox ring of the singularity.

Proposition 5.1.3. For a complex vector space V with an action of a finite group
G ⊂ GL(V,C) we have

Cox(V/G) ' C[V ][G,G].

Note that this is the instance where the considered Cox ring is not graded by a free
group, see also Remark 3.5.2.

Proof. The statement is proved in [AG10, Thm 3.1].
We sketch another proof, based on Lemma 5.1.2. To describe the module structure
of Cox(V/G) it is sufficient to notice that rank one C[V ]G-modules C[V ]Gµ in the
decomposition of C[V ][G,G] can be identified with O(V/G)-modules of global sections
of OV/G(D) for D ∈ Cl(V/G) ' Ab(G). Since the class group of V/G is a torsion
group Ab(G) (see Proposition 3.4.8), to define the multiplication in Cox(V/G) more
work has to be done (see Remark 3.5.2 and [ADHL10, Sect. 4.2]). We skip this part
as we will not need the exact description of the multiplication.

5.2 Generators of Cox(X)

Let us fix the notation. The coordinate ring of C2 is denoted by C[a, b], and of Cn+3,
which is the ambient space for S = Spec(Cox(X)) (see Construction 4.1.22), by

A = C[y0, y1,1, . . . , y1,n1 , x1, y2,1, . . . , y2,n2 , x2, y3,1, . . . , y3,n3 , x3].

The Picard torus T ' (C∗)n of the minimal resolution X (see Definition 4.1.1)
acts on Cn+3 and on S by characters corresponding to columns of the extended
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intersection matrix U (see Notation 3.4.5), as described in Definition 4.1.2, and its
coordinate ring is

C[T ] = C[t±1
0 , . . . , t±1

n−1].

Our aim is to define a monomorphism

φ : Cox(X) ↪→ C[a, b][G,G][t±1
0 , . . . , t±1

n−1] = Cox(C2/G)⊗ C[T ]

such that composed with evaluation at t0 = . . . = tn−1 = 1 it gives the morphism

Cox(X) −→ Cox(V/G)

coming from the push-forward of divisorial sheaves. Then we view Cox(X) as the
subring φ(Cox(X)) of Cox(C2/G)⊗C[T ] and give a formula for a set of generators
of this ring. But before we show the construction, let us explain how this idea works
in the case of an abelian group G.

Example 5.2.1. If G is abelian, then we have

Cox(C2/G) = C[a, b][G,G] = C[a, b] and Spec(Cox(X)) = C|Σ(1)|,

where Σ is the fan of the minimal resolution X (see Remark 2.2.5). The coordinate
ring of Cox(X) is then C[x1, y1, . . . , yn, x2], where yi correspond to components of
the exceptional divisor. We define

φ : Cox(X) = C[x1, y1, . . . , yn, x2] −→ C[a, b][t±1
0 , . . . , t±1

n−1]

with the formula

x1 7→ at0, x2 7→ btn−1, y1 7→ χi(t0, . . . , tn−1),

where χi is the character corresponding to the i-th column of the intersection matrix
of X (see Remark 3.3.7 for the explanation, and the matrix is shown just under it).
Since the intersection matrix of X is nonsingular (the absolute value of its de-
terminant is just the numerator of the corresponding Hirzebruch-Jung continued
fraction), φ is indeed a monomorphism. Its composition with the evaluation at
t0 = . . . = tn−1 = 1 gives the toric morphism from C|Σ(1)| to C2 coming from
forgetting about rays of Σ added to the fan of C2/G in the process of resolution.

From now on we assume that G ⊂ GL(2,C) is a non-abelian small group. In the
abelian case to define φ we need, apart from the characters of T , two elements of
Cox(C2/G), which make a generating set of this ring. For non-abelian groups we
have to choose three generators with special properties. They may be thought of as
sections of sheaves corresponding to divisors of C2/G defined by the variables x1, x2,
x3, associated with the ends of branches of the resolution diagram (see Section 3.4.1).

Remark 5.2.2. For all small subgroups G ⊂ GL(2,C) there exist homogeneous
polynomials σ1(a, b), σ2(a, b), σ3(a, b) invariant under the action of [G,G] on C[a, b],
which are eigenvectors of the action of Ab(G) on C[a, b][G,G] and such that they make
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a generating set of C[a, b][G,G] as a C-algebra. In Example 5.3.2 we give a direct proof
of existence of such generating sets, i.e. we write them down.
Moreover, such generating sets are uniquely determined up to multiplying its ele-
ments by constants. The uniqueness follows by analyzing the numbers of indepen-
dent [G,G]-invariants in small gradations. If we look at Molien series (which can be
computed for example in [GAP12]), it turns out that a few nonzero gradations of
smallest degrees have rank 1 and are distributed in such a way that only one choice
of σi(a, b) is possible.
For most small subgroups of GL(2,C) the homogeneity condition of σi(a, b) is forced
by the assumption that this polynomial is an eigenvector of Ab(G). However, some-
times it is not – for example, Ab(BI) is trivial, so all invariants are the eigenvectors,
but only the choice of homogeneous ones gives a correct result.

Definition 5.2.3. By σi(a, b) ∈ C[a, b][G,G] for i = 1, 2, 3 we denote homoge-
neous polynomials satisfying conditions in Remark 5.2.2, i.e. eigenvectors of the
action of Ab(G) on C[a, b][G,G] such that the set {σ1(a, b), σ2(a, b), σ3(a, b)} generates
C[a, b][G,G] as a C-algebra.
We will assume that they are ordered such that the numbers deg(σi) · (αi)ni+1 are
equal (as usually, αi denotes the vector of exponents in the i-th monomial in the
equation of Spec(Cox(X)), see Construction 4.1.22).

In the description of φ we also use the characters of the Picard torus T , so we recall
and introduce some notation.

Notation 5.2.4. As before, χi(t0, . . . , tn−1) denotes the monomial with exponents
given by the i-th column of U , i.e. the i-th character of the Picard torus T used to
define its action on Cn+3 in Definition 4.1.2. Also, when we write χxi , χy0 or χyi,j ,
we think of the character from {χ1, . . . , χn+3} which corresponds to the respective
variable of the coordinate ring A of Cn+3 (the order of their appearance is as in the
definition of A above).

We start from defining a homomorphism

φ : A −→ Cox(C2/G)⊗ C[T ]

and then prove that it factors through Cox(X) = A/I(S), where I(S) is the ideal
of Spec(Cox(X)) in A.

Definition 5.2.5. Define φ : A −→ C[a, b][G,G][t±1
0 , . . . , t±1

n−1] as follows:

φ(xi) = σi(a, b)χxi(t0, . . . , tn−1),

φ(y0) = χy0(t0, . . . , tn−1),

φ(yi,j) = χyi,j(t0, . . . , tn−1) for i = 1, 2, 3, j = 1, . . . , ni.

Lemma 5.2.6. Using the embedding

S = Spec(Cox(X)) ⊂ Cn+3 = Spec(A)
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given by equation 4.1.3.1 generating the ideal I(S) ⊂ A, the homomorphism φ factors
through

φ : A/I(S) = Cox(X) −→ C[a, b][G,G][t±1
0 , t±1

1 , . . . , t±1
n−1].

Proof. We show that the image under φ of the equation of Spec(Cox(X)), described
in Construction 4.1.22, is zero. This equation is the sum of three monomials corre-
sponding to branches of the minimal resolution diagram. The vector of exponents of
the i-th monomial is αi, which is orthogonal to the i-th branch (see Definition 4.1.5).
This condition translates exactly to the fact that the image of the i-th monomial
under φ is t0 · σi(a, b)(αi)ni+1 . Hence it is sufficient to show that

σ1(a, b)(α1)n1+1 + σ2(a, b)(α2)n2+1 + σ3(a, b)(α3)n3+1 = 0.

From Lemma 4.1.17 we know that (αi)ni+1 = pi, i.e. the numerator of the fraction
describing the i-th branch of the resolution diagram. We compare these numbers
to the exponents in equations of Du Val singularities C2/[G,G], exactly as in the
proof of Proposition 4.2.10 – they are the same. Hence it is enough to check that
σ1(a, b), σ2(a, b), σ3(a, b) satisfy the single relation in C[a, b][G,G] (up to multiplica-
tion by some constants). This can be done in a straightforward way, since the sets
{σ1(a, b), σ2(a, b), σ3(a, b)} for all small subgroups G ⊂ GL(2,C) are listed in Exam-
ple 5.3.2.

Notation 5.2.7. We denote by

ψ : C[a, b][G,G][t±1
0 , . . . , t±1

n−1] −→ C[a, b][G,G]

the homomorphism of evaluation at t0 = . . . = tn−1 = 1, that is ψ|C[a,b][G,G] = id
and ψ(ti) = 1 for i = 0, . . . , n− 1. In a geometric picture it is just an embedding of
C2/[G,G] in C2/[G,G]× T to C2/[G,G]× {1}.
Note that the composition ψ ◦ φ is the map Cox(X) → Cox(C2/G) induced by
pushing forward of divisor classes and associated push-forward of sections of corre-
sponding sheaves.

Lemma 5.2.8. The homomorphism φ is a monomorphism.

Proof. Assume that a polynomial w ∈ A is in kerφ. Multiplying w by a suitable
v ∈ A which does not contain x3 and subtracting some multiple of the generator of
the ideal I(S) ⊂ A of S = Spec(Cox(X)), we get w′ ∈ kerφ such that its degree as
a polynomial of one variable x3 is smaller than (α3)n3+1.
Consider ψ(φ(w′)), think of it as of an expression in σ1, σ2, σ3 (see Definitions 5.2.3
and 5.2.5). It is 0, so this expression must be divisible by the single relation between
σ1, σ2, σ3. But this is impossible, because the degree of this expression as a polyno-
mial of σ3 is too small. This means that if we look at w′ as a polynomial of x3 again,
the polynomials of variables x1, x2, y0, yi,j which are its coefficients are mapped by
φ to 0.
However, σ1, σ2 and these characters χi(t0, . . . , tn−1) which do not correspond to the
variables xi are independent. To obtain the independence of this set of characters we
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use the fact that the columns of the matrix U0 of intersection numbers of components
of the exceptional fiber of X are linearly independent. Moreover, σ1 and σ2 are
independent, because the relation in C[a, b][G,G] involves σ3. Therefore all coefficients
of w′ viewed as a polynomial of x3 are just 0, so wv ∈ I(S) and finally, because I(S)
is prime and v /∈ I(S), we obtain w ∈ I(S).

As a direct result of Lemmata 5.2.6 and 5.2.8 we obtain

Theorem 5.2.9. Cox(X) ⊂ C[a, b][G,G][t±1
0 , t±1

1 , . . . , t±1
n−1] is generated by the images

of the variables under φ, as listed in Definition 5.2.5, i.e.

1. σi(a, b) · χk(i)(t0, . . . , tn−1) for i = 1, 2, 3 and

2. χ0(t0, . . . , tn−1) and χki,j(t0, . . . , tn−1) for i = 1, 2, 3, j = 1, . . . , ni.

Look at the composition

Cox(X)−φ−→ Cox(C2/G)[t±1
0 , t±1

1 , . . . , t±1
n−1]−ψ−→ Cox(C2/G),

that is the push-forward homomorphism between Cox rings. Theorem 5.2.9 men-
tions two kinds of generators of Cox(X). These from the first group are pull-backs
of generators of Cox(C2/G), which come from the eigenspaces of Ab(G)-action on
C[a, b][G,G]. In particular, they are mapped to nontrivial elements of Cox(C2/G) by
the push-forward homomorphism. Other are mapped via ψ ◦ φ to 1 ∈ Cox(C2/G),
and they depend only on the Picard torus action on Cox(X), which in fact induces φ.
We may say that generators of the first kind reflect the structure of the group G
and these of the second kind contain the information on the intersection numbers of
components in the exceptional divisor of the minimal resolution X. This idea of de-
scribing the generators of Cox(X) seems more general than just the two-dimensional
case. In fact, in [DBW13] we prove that for any (minimal) resolution X of a quotient
singularity V/G there is a monomorphism

Cox(X) ↪→ Cox(V/G)⊗ C[T ],

constructed using general ideas sketched in this chapter, and we attempt to find
generators of this embedding in chosen cases.
The following remark describes a way of thinking of the situation of Theorem 5.2.9,
which seems promising, but has not yet been studied thoroughly.

Remark 5.2.10. Define an action of Ab(G) on C[a, b][G,G][t±1
0 , t±1

1 , . . . , t±1
n−1] as fol-

lows: take g ∈ G, then

• the action of g on σi is induced from the action on C[a, b]; by definition of σi
it is multiplication by some ci ∈ C,

• the action on the variable tk(i), which is the character of T corresponding to
xi, is multiplication by 1/ci (so that φ(xi) are fixed points of this action),

71



• we require that the remaining characters of T are fixed (with this assumption
the action on the coordinates of T is uniquely determined).

Then the image of φ is just the invariant ring of this action.

We finish with a few words about the geometric meaning of these results. The dual
map to φ is just the morphism from the torus bundle to the spectrum of the Cox
ring:

φ# : C2/[G,G]× T −→ Spec(Cox(X)).

Since φ is a monomorphism, the dual φ# is a dominant map. And from Remark 5.2.10
it follows that this is the quotient by the action of Ab(G) described therein.

5.3 Examples
The examples below describe the homomorphism φ and the generators of Cox(X)
explicitly in a few interesting cases. Also, in Example 5.3.2, we list the eigenvectors
of Ab(G) which generate C[a, b][G,G] for all small groups G ⊂ GL(2,C).

Example 5.3.1 (Binary dihedral groups BD4n). We consider the case of Du Val
singularities, which was investigated in [FGAL11] but without describing generators
of the Cox ring. In this example we correct a mistake in [FGAL11, p. 9] – below we
provide a set of equations for an embedding of the du Val singularity Dn for odd n
in C6.
The commutator subgroup of BD4n is Zn = 〈diag(εn, ε

−1
n )〉. The ring of invariants

of the action of [BD4n, BD4n] on C[x, y] is generated by xy, xn and yn. However,
only the first monomial is an eigenvector of the action of Ab(BD4n) on this ring of
invariants and we have to find suitable linear combinations of the remaining two
(see Example 5.3.2). As before, the coordinates on C2× (C∗)n are (a, b, t0, . . . , tn−1).
If n is even then the generators of Cox(X) are

φ(xj) : i(an + bn)t1, (a
n − bn)t2, 2

2
nabtn−1,

φ(y0), φ(yi,j) :
t1t2t3
t20

,
t0
t21
,
t0
t22
,
t0t4
t23
,
t3t5
t24
,
t4t6
t25
, . . . ,

titi+2

t2i+1

, . . . ,
tn−3tn−1

t2n−2

,
tn−2

t2n−1

.

And if n is odd, we have

φ(xj) : (−ian + bn)t1, (a
n − ibn)t2, 2

2
nabtn−1,

φ(y0), φ(yi,j) :
t1t2t3
t20

,
t0
t21
,
t0
t22
,
t0t4
t23
,
t3t5
t24
,
t4t6
t25
, . . . ,

titi+2

t2i+1

, . . . ,
tn−3tn−1

t2n−2

,
tn−2

t2n−1

.

We can use the formula for φ (more precisely, for the associated morphism of vari-
eties) in the case of odd n to correct a false statement on page 9 of [FGAL11]. The
authors describe the quotient of Cn+3 by the Picard torus action as

V = {Z4
2 − Z5Z6 = Z1Z

2
2 − Z3Z4 = Z2

2Z4 − Z3Z6 =

= Z2
2Z3 − Z4Z5 = Z2

4 − Z1Z6 = Z2
3 − Z1Z5 = 0}
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and attempt to realize C2/BD4n as a subvariety of V . They suggest that it is iso-
morphic to

V ′ = V ∩ {Zk
1 + Z3 + Z4 = 0},

where k = (n−1)/2. However, this variety is reducible. One component (of dimension
2) is given by Z1 = Z3 = Z4 = Z4

2 − Z5Z6 = 0 and the second one, isomorphic to
C2/BD4n, is the closure of the set of points of V ′ with at least one of Z1, Z3, Z4

nonzero.
To obtain the full set of equations of the second component we first apply the
quotient morphism described in [FGAL11, Lemma 4.2] to the image of φ, i.e. we
compute monomials Z1, . . . , Z6.
The relations between these monomials for a few small values of n can be computed
for example in Singular, [DGPS12]. Thus we find two more equations, namely

Zk−1
1 Z3 + Z2

2 + Z5 = 0 and Zk−1
1 Z4 + Z2

2 + Z6 = 0.

It turns out that they are sufficient for all odd n. i.e.

V ∩ {Zk
1 + Z3 + Z4 = Zk−1

1 Z3 + Z2
2 + Z5 = Zk−1

1 Z4 + Z2
2 + Z6 = 0}

is irreducible and by a direct computation one can check that its coordinate ring is
isomorphic to the one of C2/BD4n.
This observation does not change anything in the main results of [FGAL11]. How-
ever, this is a convincing example that the ideas used there may be hard to generalize
to more complicated singularities.

Example 5.3.2. Let G be a finite nonabelian small subgroup of GL(2,C). We com-
pute the eigenvectors of the induced action of Ab(G) which generate C[x, y][G,G].
We use the list of generators of rings of [G,G]-invariants from [DZ93] and Corol-
lary 3.2.5. The data included in this example, together with the description of the
exceptional divisor of the minimal resolution of C2/G given in section 3.4, is entirely
sufficient to write down φ explicitly in all considered cases.

1. For G = BDn,m we have [G,G] ' Zn ⊂ SL(2,C). The invariants of [G,G] are
generated by

xy, xn, yn

with the relation (xy)n − xnyn = 0. Invariants that are eigenvectors of Ab(G)
are

xy, xn + yn, xn − yn

for even n and
xy, xn + iyn, xn − iyn

for odd n.

2. For G = BTm the commutator subgroup is [G,G] = BD2 and its invariants
are generated by

x2y2, x4 + y4, xy(x4 − y4)
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with the relation −4(x2y2)3 + (x2y2)(x4 + y4)2 − (xy(x4 − y4))2 = 0. The last
polynomial is an invariant of BT , hence also an invariant of Ab(BTm). The
remaining eigenvectors of Ab(G) are

x4 + y4 + 2i
√

3x2y2 and x4 + y4 − 2i
√

3x2y2.

3. For G = BOm the invariants of [G,G] = BT are generated by

A =
4
√

108xy(x4 − y4),

B = −(x8 + 14x4y4 + y8),

C = x12 − 33x8y4 − 33x4y8 + y12

with the relation A4+B3+C2 = 0. Moreover, these generators lie in eigenspaces
of Ab(G).

4. Finally, for G = BIm the invariants of [G,G] = BI are generated by

D =
5
√

1728xy(x10 + 11x5y5 − y10),

E = −(x20 + y20) + 228(x15y5 − x5y15)− 494x10y10,

F = x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20)

with the relationD5+E3+F 2 = 0. As before, these generators lie in eigenspaces
of Ab(G).

Example 5.3.3. Let us write down the generators of Cox(X) in a case of G =
BD23,39. It was already explored in Examples 3.4.4 and 4.1.25, where the dual graph
of the exceptional divisor and the extended intersection matrix are shown. As before,
choose the coordinates on C10 to be

(y0, y1,1, x1, y2,1, x2, y3,1, y3,2, y3,3, y3,4, x3).

We have [BD23,39, BD23,39] ' Z23 ⊂ SL(2,C) and n is odd, so the generators are

φ(x1) = (−ia23 + b23)t1, φ(x2) = (a23 − ib23)t2, φ(x3) = −i 23
√

4abt6,

φ(y0) = t1t2t3t
−3
0 , φ(y1,1) = t0t

−2
1 , φ(y2,1) = t0t

−2
2 ,

φ(y3,1) = t0t4t
−4
3 , φ(y3,2) = t3t5t

−2
4 , φ(y3,3) = t4t6t

−2
5 , φ(y3,4) = t5t

−3
6 .

Example 5.3.4. There is a case where the morphism of varieties φ# induced
by φ is an embedding of the trivial torus bundle over the singularity C2/BI in
Spec(Cox(X)): the Du Val singularity E8. This is because [BI,BI] ' BI, so the
abelianization is trivial. By Remark 5.2.10, the morphism

φ# : C2/[BI,BI]× (C∗)8 → Spec(Cox(X))

is then a quotient by the trivial group action, so the image is isomorphic to C2/BI×
(C∗)8 ⊂ Spec(Cox(X)).
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The last example comes from [DBW13], where we investigate the homomorphism
φ : Cox(X) ↪→ Cox(V/G)⊗C[T ] for a larger class of quotient singularities V/G and
some chosen resolutions. We just give a description of the Cox ring of the investigated
resolution, without looking into the proof of the general result. While in previous
examples we in fact compared the results of Theorems 4.3.3 and 5.2.9, in the next
one we rely only on the approach presented in this chapter, that is on Theorem 5.2.9.

Example 5.3.5. Let G ' S3 be the symmetric group acting on V ' C4 with coor-
dinates (x1, y1, x2, y2) by the direct sum of two copies of the standard representation.
Then the generators are

ε =


ε3 0 0 0
0 ε−1

3 0 0
0 0 ε3 0
0 0 0 ε−1

3

 and τ =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

where ε3 is the third root of unity. The commutator is [G,G] ' Z3 generated by ε
and the abelianization is Ab(G) ' Z2. Thus the ring of invariants C[V ][G,G] is divided
into eigenspaces of the action of Z2, where the non-trivial element is represented by τ
(see Lemma 5.1.2). We give a generating set of this ring divided accordingly.

eigenvalue generators of degree 2 generators of degree 3
1 x1y1, x2y2, x1y2 + x2y1 x3

1 + y3
1, x3

2 + y3
2, x2

1x2 + y2
1y2, x1x

2
2 + y1y

2
2

-1 x1y2 − x2y1 x3
1 − y3

1, x3
2 − y3

2, x2
1x2 − y2

1y2, x1x
2
2 − y1y

2
2

We investigate the symplectic resolution X of V/G. Then Cox(X) is a subring of
Cox(V/G)⊗ C[t±1] ' C[V ][G,G] ⊗ C[t±1] ⊂ C[x1, y1, x2, y2, t, t

−1] generated by

t−2,
x1y1, x2y2, x1y2 + x2y1, x3

1 + y3
1, x3

2 + y3
2, x2

1x2 + y2
1y2, x1x

2
2 + y1y

2
2

t(x1y2 − x2y1), t(x3
1 − y3

1), t(x3
2 − y3

2), t(x2
1x2 − y2

1y2), t(x1x
2
2 − y1y

2
2).

This description of the Cox ring leads to a construction of considered resolution X:
we take Proj Cox(X)+, where Cox(X)+ is the graded subring of Cox(X) consisting
of nonnegative pieces with t having weight 1 and all the other variables having
weight 0.
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Chapter 6

Phylogenetic trees: setup and context

In this chapter we introduce the main objects of our interest in the second part of
the thesis: combinatorial structures called phylogenetic trees and algebraic varieties
which are their geometric models. The first two sections contain basic definitions
and properties. Then we attempt to explain the motivation for investigating phylo-
genetic trees and for doing it by means of algebraic geometry. Finally, in section 6.4
we present the setting for symmetric models of evolutions, which allow to build phy-
logenetic trees with an associated finite group action. We present different variants
of this construction, which can be found in the literature, and choose the settings
which will be most interesting for us in the next two chapters.

6.1 Combinatorics of phylogenetic trees
We recall the setting which was developed in [BW07] and [BDW09].

Definition 6.1.1. A tree T is a connected acyclic graph, whose structure will be
described by giving

• a set of edges E = E(T ),

• a set of vertices V = V(T ),

• the (unordered) boundary map ∂ : E → V∧2, where V∧2 denotes the set of
unordered pairs of distinct elements in V .

We often distinguish one vertex of T and call it a root.

For an edge e ∈ E we write ∂(e) = {∂1(e), ∂2(e)}, or equivalently e = 〈∂1(e), ∂2(e)〉.
We say that v is a vertex of e, or e contains v (denoted v ∈ e), if v ∈ {∂1(e), ∂2(e)}.
Definition 6.1.2. The degree (or valency) deg(v) of a vertex v is the number of
edges which contain v.

Since T is connected, each of its vertices has positive degree, unless T is a trivial
tree consisting of a single vertex and no edges. We assume that T does not have
2-valent vertices, since they are insignificant from the point of view of the presented
theory.
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Definition 6.1.3. A vertex v is called a leaf if deg(v) = 1. Otherwise it is called
an inner vertex or an inner node.

The sets of leaves and inner nodes will be denoted L and N respectively; then
V = L ∪N .

Definition 6.1.4. An edge which contains a leaf is called a petiole; an edge which
is not a petiole is called an inner edge.

Definition 6.1.5. If the valency of each inner vertex of T is m, then T is called an
m-valent tree.

To illustrate these definitions we show four trees (or, more precisely, one specific
example and representatives of two infinite families), which play a special role in
what follows, especially in chapter 8.

Example 6.1.6. The snowflake is a 3-valent tree which has four inner vertices;
three of them have two petioles attached each and they are connected by inner edges
to the fourth one. A caterpillar is a 3-valent tree such that there are exactly two
inner nodes to which there are attached two petioles, and any other inner node has
exactly one petiole attached. An n-caterpillar is a caterpillar with n inner edges. A
claw tree (or a star) K1,n is a tree with n edges and exactly one inner node. The
claw tree with three leaves is called the tripod.

Figure 6.1: The snowflake, the 3-caterpillar, the claw tree K1,5, the tripod K1,3

We now describe the structure of a Markov process on a tree T , again after [BW07]
and [BDW09]. Let W be a (complex) vector space of dimension d, which we will call
a model space of states on the tree T .
Notation 6.1.7. We distinguish a basis of W

A = {α1, α2, . . . αd},

the elements of which will be called letters. We set α = α1 + · · ·+ αd.
Notation 6.1.8. We consider the dual space W ∗ = Hom(W,C) with a distinguished
basis {α∗1, . . . , α∗d} dual to A. The pairing of W ∗ and W will be understood as the
action of functionals on vectors, or the other way round, so that

αi(α
∗
j ) = α∗j (αi) =

{
0 for i 6= j
1 for i = j.

Alternatively, we can think of an inner product chosen on W for which αi’s make an
orthonormal basis. Then the product allows to identify W with W ∗ and αi with α∗i .
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Definition 6.1.9. A linear map σ : W → C such that σ(αi) = 1 for every i, that is
σ =

∑
α∗i , will be called the normalization.

Note that σ is equivalent to α in terms of the above inner product.

Definition 6.1.10. By a model of evolution on d letters we understand the pair
(W, Ŵ ) (or just the space Ŵ if W is fixed), where dimW = d and Ŵ is a subspace
of the tensor product W ⊗W .

We think of an element A =
∑

i,j aij(αi⊗αj) ∈ Ŵ as of a matrix A = (aij) (by abuse
we use the same letter A to denote both), where aij are obtained by evaluating A on
elements of the dual basis, that is aij = A(α∗i , α

∗
j ). Equivalently, the identification

W ' W ∗ yields W ⊗W ' W ⊗W ∗ = End(W ) and A can be interpreted as an
endomorphism of W .
In addition, we will assume that Ŵ (σ, · ) ⊂ C · α or, equivalently, that for every
matrix A =

∑
i,j aij(αi ⊗ αj) in Ŵ the sum of elements in each row (and, since

the matrix is symmetric, also in each column) is the same. This means that, up to
multiplication by a constant, elements of Ŵ are doubly stochastic matrices.
We note that in case when a model of evolution has a group of symmetries which
acts transitively on letters (see section 6.4), which is the main case we consider, this
assumption turns out to be redundant by Lemma 7.1.1.

Example 6.1.11. Let us show a few natural examples of models of evolution. Re-
member that in the matrix representation of an element of Ŵ the sum of the numbers
in each row and each column is the same. If W is of dimension 2 this is equivalent
to saying that the matrices in Ŵ are of the form[

a b
b a

]
for some a and b in C. Thus Ŵ is of dimension 2, and this is the only interesting
example for d = 2, since any proper subspace of Ŵ is of dimension ≤ 1 hence trivial
when it comes to normalizing. This model is the binary model, or the two-state
Jukes-Cantor model, also known as the Cavender-Farris-Neyman model.
In general, the (d-state) Jukes-Cantor model is defined by the condition that
matrices in Ŵ have equal entries on the diagonal and equal entries outside the
diagonal.
If d = 4, which is a case of particular interest in biology, there are a few nontrivial
choices for Ŵ . The most general case, that is the general Markov model, consists
of the space of all matrices such that the sum of the numbers in each row and each
column is the same. Two commonly used options, connected to applications of this
theory, are the Kimura models: 2-parameter and 3-parameter model (called for
short 2-Kimura and 3-Kimura models) with dim Ŵ being 3 and 4 respectively and
matrices in Ŵ of the form

a b c c
b a c c
c c a b
c c b a



a b c d
b a d c
c d a b
d c b a


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Let us explain how to combine a model of evolution (W, Ŵ ) on d letters and a tree
T to obtain a model of a Markov process on a phylogenetic tree.

Definition 6.1.12. Associate with any vertex v ∈ V(T ) a copy of W , denoted
by Wv. With any edge e ∈ E(T ) associate a copy of Ŵ , understood as the subspace
in the tensor product Ŵ e ⊂ W∂1(e) ⊗W∂2(e). To make it possible we have to choose
one of two variants of this definition:

(a) take T to be unrooted and the edges of T to be unordered, but assume that
Ŵ consists only of symmetric tensors, or

(b) take a rooted tree T and choose a direction of each edge of T .

Then elements of Ŵ e will be written as matrices (aeαi,αj) = (aei,j). A triple (T ,W, Ŵ )
constructed this way is called a model of a Markov process on a phylogenetic
tree.

Remark 6.1.13. Variant (a) of this definition will be used in chapter 7, and in chap-
ter 8 we adopt variant (b). The choice of direction of edges of T is most commonly
done by directing all edges away from the root.

Remark 6.1.14. By abuse of language, we will frequently call the triple (T ,W, Ŵ )

just a phylogenetic tree. As the whole structure (T ,W, Ŵ ), not only the shape of
the tree, is the object of our interest, this abbreviation should cause no confusion.

6.2 Geometric picture

To a phylogenetic tree (T ,W, Ŵ ) we assign an algebraic variety. In this section we
present its construction, in the same way as we did in [BDW09], and in the next
one we discuss its meaning and significance for applications.
The boundary map ∂ : E → V∧2 from Definition 6.1.1 has its incarnation on the
level of tensor products of vector spaces associated with both vertices and edges of
the tree T . We define a linear map Ψ̂W,Ŵ of tensor products

Ψ̂W,Ŵ : Ŵ E =
⊗
e∈E

Ŵ e −→ WV =
⊗
v∈V

Wv

by setting its dual as follows:

Ψ̂∗
W,Ŵ

(⊗v∈V α∗v) = ⊗e∈E (α∂1(e) ⊗ α∂2(e))
∗
|Ŵ e ,

where αv stands for an element of the chosen basis A = {α1, . . . , αd} of the spaceWv.
(Recall that, as in Definition 6.1.12, either the edges of T are directed or Ŵ consists
of symmetric tensors.) If the model of evolution is known, we will skip the subscripts
in Ψ̂W,Ŵ and write just Ψ̂.
Then we may consider the multi-linear map Ψ̃ associated with Ψ̂:

Ψ̃ :
∏
e∈E

Ŵ e −→ WV =
⊗
v∈V

Wv.
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Definition 6.2.1. The complete affine model of the phylogenetic tree (or, more
precisely, of the Markov process on the phylogenetic tree) (T ,W, Ŵ ) is the closure
of the image of Ψ̃ in

⊗
v∈VWv.

Remark 6.2.2. Take any point in the parameter space(
Ae = (aeij)

)
e∈E ∈

∏
e∈E

Ŵ e

and any function assigning elements of the distinguished basis A to vertices of T

V 3 v 7→ µ(v) ∈ {1, 2, . . . d}.

By definition of Ψ̃, the respective coordinate of the image of the chosen point under
the map Ψ̃ in the tensor product

⊗
v∈VWv is to be calculated as follows:

(⊗v∈V α∗µ(v))
(

Ψ̃
(
Ae = (aeij)

)
e∈E

)
=

∏
e=〈u,v〉∈E

aeµ(u)µ(v).

Example 6.2.3. Let us compute Ψ̃ for the binary model on the tripod, the smallest
tree which has an inner vertex (see Fig. 6.1 and Example 6.1.11). Let the inner vertex
be called v0 and the leaves v1, v2 and v3. By ei we denote the edge joining v0 and vi.
We consider a basis of

⊗
v∈VWv consisting of simple tensors αv0

c0
⊗ αv1

c1
⊗ αv2

c2
⊗ αv3

c3

corresponding to different choices of one of two letters in each vertex, that is ci ∈
{1, 2}. The coefficient of a point at αv0

c0
⊗αv1

c1
⊗αv2

c2
⊗αv3

c3
will be denoted by qc0c1c2c3 .

Let w ∈
∏

e∈E Ŵ
e be a point corresponding to assigning a matrix

(
ai bi
bi ai

)
to ei.

Then Ψ̃(w) is given by

q1111 = a1a2a3, q1112 = a1a2b3, q1121 = a1b2a3, q1122 = a1b2b3,

q1211 = b1a2a3, q1212 = b1a2b3, q1221 = b1b2a3, q1222 = b1b2b3,

q2111 = b1b2b3, q2112 = b1b2a3, q2121 = b1a2b3, q2122 = b1a2a3,

q2211 = a1b2b3, q2212 = a1b2a3, q2221 = a1a2b3, q2222 = a1a2a3.

The rational map of projective varieties induced by Ψ̃ will be denoted by Ψ:

Ψ :
∏
e∈E

P(Ŵ e) − → P(WV) = P(
⊗
v∈V

Wv)

Definition 6.2.4. The closure of the image of Ψ is called the complete projective
model, or just the complete model, of (T ,W, Ŵ ).
The maps Ψ̃ and Ψ are called the parametrization of the respective model.

However, more than in the complete affine and projective models we are interested
in smaller varieties, which are built only from some part of the data contained in
(T ,W, Ŵ ). The motivation for this attitude will be discussed in section 6.3.
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Given a set of vertices of the tree we can ’hide’ them by applying the map σ =
∑

i α
∗
i

to their tensor factors. In what follows we will hide all inner nodes and project to
the tensor product of model spaces associated with leaves. That is, we consider the
map

ΠL : WV =
⊗

v∈VWv → WL =
⊗

v∈LWv

ΠL = (⊗v∈L idWv)⊗ (⊗v∈N σWv)

Definition 6.2.5. The affine model of a phylogenetic tree (or of a Markov process
on a phylogenetic tree) (T ,W, Ŵ ), denoted by X(T ,W, Ŵ ), is an affine subvariety
of WL =

⊗
v∈LWv, which is the closure of the image of the composition

Φ̃ = ΠL ◦ Ψ̃ :
∏
e∈E

Ŵ e −→ WL =
⊗
v∈L

Wv.

The projective model, denoted by XP(T ,W, Ŵ ) or just XP(T ) if W and Ŵ are
fixed, is the underlying projective variety in P(WL).
If we speak of a feature of both affine and projective models, we frequently use the
term geometric model.

Note that XP(T ) is the closure of the image of the respective rational map

Φ :
∏
e∈E

P(Ŵ e) − → P

(⊗
v∈L

Wv

)
.

It is defined by a special linear subsystem in the complete Segre linear system
|
⊗

e∈E p
∗
P(Ŵ e)

OP(Ŵ e)(1)|, where p∗
P(Ŵ e)

is the projection from the product to the re-
spective component. We will call this map a rational parametrization of the
model.

Remark 6.2.6. The coordinates of Φ̃ can be computed as follows: for any function
L 3 v 7→ µ(v) ∈ {1, 2, . . . , d}, which describes the distribution of letters on leaves
of T , the respective coordinate of the tensor product

⊗
v∈LWv is determined by the

formula

(⊗v∈L α∗µ(v))
(

Φ̃
(
Ae = (aeij)

)
e∈E

)
=
∑
µ̂

 ∏
e=〈u,v〉∈E

aeµ̂(u)µ̂(v)


where the sum is taken over all functions µ̂ : V −→ {1, 2, . . . d} which extend µ.

Example 6.2.7. Let us consider again the binary Jukes-Cantor model on the tripod
from Example 6.2.3 and describe Φ̃ in this case. We write it in the basis of WL =⊗

v∈LWv consisting of αv1
c1
⊗ αv2

c2
⊗ αv3

c3
, where v1, v2, v3 are leaves and ci ∈ {1, 2}.

The coordinate corresponding to αv1
c1
⊗ αv2

c2
⊗ αv3

c3
is denoted by qc1c2c3 . Then by
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Remark 6.2.6 we have qc1c2c3 = q1c1c2c3 +q2c1c2c3 , hence we can write these coefficients
using the ones given in Example 6.2.3:

q111 = a1a2a3 + b1b2b3, q112 = a1a2b3 + b1b2a3, q121 = a1b2a3 + b1a2b3,

q122 = a1b2b3 + b1a2a3, q211 = b1a2a3 + a1b2b3, q212 = b1a2b3 + a1b2a3,

q221 = b1b2a3 + a1a2b3, q222 = b1b2b3 + a1a2a3.

6.3 Motivation
We have introduced the combinatorics and geometry behind the construction of
phylogenetic trees. Although it is less important for what follows, it has to be said
that the setting introduced above is a case of a construction from statistics: a model
of a Markov process on a tree. Hence, before we move to defining group action on
phylogenetic trees, we explain the motivation for introducing this setting, coming
from biology and statistics, after [BDW09, Sect. 1].
Phylogenetics is a branch of science which aims at reconstructing the history of evolu-
tion. It relies heavily on methods of statistics and mathematics, including algebraic
geometry. A rough idea is to associate an algebraic variety (affine and projective
model as defined above) with a history of evolution (of the genetic code), repre-
sented by a Markov process on a tree. The vertices of the tree correspond to species
and transition matrices assigned to the edges are interpreted as probability of dif-
ferent mutations of genetic code. Leaves of the tree correspond to living species and
inner vertices to extinct ones. The general goal is to understand the (most probable)
structure of the phylogenetic tree based on the information of living species, and
special points of the variety associated to a Markov process on a tree correspond
to possible probability distributions on the DNA states of the living species. For a
detailed discussion of the biological context the reader is advised to look in [PS05],
and now let us discuss briefly the motivation from statistics, without more biological
references.
Roughly speaking, from the point of view of statistics, a Markov process on phy-
logenetic tree is a collection of random variables ξv with values in a set of letters
associated with vertices of T , together with a collection of rules for inheritance, that
is of conditional (or transition) probability, labeled by edges of T .
In the setting of Section 6.1 the space W is spanned on letters from the set A, the
model space of states for variables ξv. The statistically meaningful domain inW is the
probabilistic simplex described by the following conditions in terms of coordinates
(basis dual to A): Im(α∗i ) = 0, for all i (i.e. we consider the real part of the complex
vector space W ), and α∗i ≥ 0, for i = 1, . . . , d, and with normalization σ = 1. Given
v ∈ V , the dual basis ofWv describes probability distribution of the random variable
ξv. That is, P (ξv = αi) ∼ α∗i (wv), where wv is a vector of Wv (we can call wv the
state of T at vertex v). Here ∼ stands for proportionality and this is the form σ
which provides a somewhat more accurate definition P (ξv = αi) = α∗i (wv)/σ(wv)
which makes sense within the real non-negative orthant of W .
The model of evolution, that is the space Ŵ , is meant to provide the rules according
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to which the states are inherited along the edges of T . That is, given e ∈ E , a tensor
(or matrix) A ∈ Ŵ e has entries

aij = A(α∗i , α
∗
j ) ∼ P (ξ∂(e)1 = αi | ξ∂(e)2 = αj).

Here, again, ∼ means that the actual equality makes sense when the entries of A
are real and non-negative, and the sum of every row (and column) is 1, i.e. when A
is doubly stochastic.
In the case of a Markov process on a tree T we fix a root r ∈ V and this implies an
order < on V = L∪N : every edge e ∈ E is directed, as noted in Remark 6.1.13, which
we denote by e = 〈u < v〉. Random variables ξv determine a Markov process on T
if the value of ξv depends only on the value of ξu, where u is the node immediately
preceding v in terms of the order <.
This determines the distribution of variables ξv in terms of the initial probability
distribution at the root and the relative probability along every edge. That is, for
any function V 3 v −→ µ(v) ∈ {1, 2, . . . d}

P

(⋂
v∈V

(ξv = αµ(v))

)
= P

(
ξr = αµ(r)

)
·

 ∏
e=〈u<v〉∈E

P
(
ξv = αµ(v) | ξu = αµ(u)

) .

We note that this formula is proportional to the one describing the coordinates
of the parametrization of the complete affine model of T , with identifications de-
scribed above, provided that the initial distribution at the root is uniform, that is
P (ξr = αi) = 1/d for i = 1, . . . , d.
The definition of parametrization is an algebraicised (and, moreover, in case of Def-
inition 6.1.12 (a) also unrooted and isotropic) version of what is commonly consid-
ered in the literature, see e.g. [SS03, Sect. 8] or [PS05, Sect. 1.4.4], or [DK09]. In the
rooted version we always assume that the distribution at the root is uniform, be-
cause this simplifies the notation and leads to the results which have nicer geometric
description.

6.4 Symmetric models of evolution

In the next two chapters we consider problems connected to a special kind of models
of evolution, namely these which have symmetries, i.e. are invariant with respect to
a finite group action. Here we introduce general setting for such models, say which
cases will be interesting for us in what follows, and explain their relation to other
cases in the literature.

6.4.1 General idea

The setting for symmetric models of evolution, which we use throughout this part
of the thesis, was presented before in a joint paper [BDW09].
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Notation 6.4.1. Let G ⊆ Sd be a subgroup of group of permutations of d elements,
which we will identify with the set of letters A = {α1, α2, . . . , αd}. We will sometimes
confuse A with its set of indices {1, . . . , d} and use the notation

g(αi) = αg(i)

for g ∈ G. We say that the subgroup G ⊆ Sd is transitive if its action on A is
transitive.
We extend the action of Sd on letters to a linear action on the vector space W
spanned on A. That is, we consider the natural representation ρ : Sd −→ GL(W )
which yields a representation ρG : G −→ O(W ) ⊂ GL(W ), where O(W ) is the
group of orthogonal transformations preserving the inner product on W in which
αi’s form an orthonormal basis. If no confusion is likely, we write just g for both
g ∈ Sd as well as for the matrix ρG(g) ∈ O(W ) ⊂ GL(W ). That is, for w ∈ W , we
write ρG(g)(w) = g · w, where on the right hand side w is understood as a column
of coefficients of w in basis A.

Remark 6.4.2. Recall that the inner product on W , or the choice of the dual
basis in W ∗, allows us to identify W with W ∗. Note that, for g ∈ Sd, we have
α∗i (αg(j)) = α∗g−1(i)(αj). That is, the right action of G on W ∗, defined as

ρ∗G(g)(u) = u · g−1 = u · gt,

makes the identification W ' W ∗ G-equivariant.

It follows that the induced action of G on the product W ⊗W can be described in
terms of the adjoint action AdG of G on End(W ). That is, if an element of W ⊗W
is represented by a matrix A ∈ End(W ) = W ⊗W ∗ and g ∈ G ⊂ O(W ) then we
have

S2ρG(g)(A) = g · A · gt = g · A · g−1 = AdG(g)(A).

Observation 6.4.3. In plain words, the whole description above means that the per-
mutation g ∈ G ⊂ Sd permutes columns and rows of the matrix A as it does with
the elements of the set A. That is, if A = (aij) then g(A)’s entry in the i-th row and
j-th column is

(g(A))ij = ag−1(i),g−1(j).

Notation 6.4.4. By Fix(G) or Fix(ρG) we will denote the subspace of fixed points
of the action ρG. Similarly, by Fix(ρ∗G) or Fix(AdG) we denote the fixed point sets
of the respective representations.

Clearly, Fix(ρSd) contains α and its dual contains σ. In fact we have the following
easy observation.

Lemma 6.4.5. A subgroup G ⊂ Sd is transitive if and only if Fix(ρG) = C · α or,
equivalently, Fix(ρ∗G) = C · σ.

The following definition describes in a very general way the class of models investi-
gated in the next two chapters.
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Definition 6.4.6. A model of evolution Ŵ ⊂ W ⊗W on d letters is called sym-
metric if Ŵ = Fix(ρG ⊗ ρG) for some transitive group of symmetries G ⊆ Sd.

In view of Observation 6.4.3 the elements of Ŵ can be identified with matrices whose
entries are invariant with respect to simultaneous permutations of rows and columns
by elements of the group G.
The following general observation, which is a direct consequence of the constructions
in Definitions 6.2.1 and 6.2.5, describes the influence of the assumptions about group
action for geometric models of phylogenetic trees.

Proposition 6.4.7. Let (T ,W, Ŵ ) be a phylogenetic tree such that (W, Ŵ ) has
a group of symmetries G ⊆ Sd. Then the parametrization maps Ψ and Φ are G-
equivariant. In particular

XP(T ,W, Ŵ ) ⊂ P

(⊗
v∈L

Wv

)G
 ⊂ P

(⊗
v∈L

Wv

)
.

6.4.2 Different variants

We present special cases of Definition 6.4.6 and we state what is known about cor-
responding geometric models, especially about their toricness. The notion of models
with a group action was developed by several authors, which results in some in-
consistency in the naming of the objects under consideration. We try to keep the
original names of the classes of models if possible.
First of all, we note that in the literature the assumptions on the group action most
often are less general than we adopt here, but in [DK09] there is a very general
definition of equivariant models, where even the space Wv can change when passing
from vertex to vertex.
In chapter 7 we consider symmetric models in full generality of possible group ac-
tions, but under the assumption that the phylogenetic tree is isotropic, that is using
Definition 6.1.12 (a). In fact, the main point of our interest is the combinatorial
question about maximal groups which correspond to certain models of evolution
and about hierarchy of such models. We present there the results of [BDW09].

Definition 6.4.8. A model (W, Ŵ ) is called an isotropic model of evolution if
Ŵ is contained in the symmetric product S2(W ). If in addition it satisfies Defini-
tion 6.4.6, that is Ŵ is the space of fixed points of S2ρG for a transitive action of
G ⊆ Sd on letters, then it is called an isotropic symmetric model of evolution.
Phylogenetic trees (T ,W, Ŵ ) for such models of evolution will be called isotropic
(symmetric) phylogenetic trees.

The assumption of the isotropy of the model corresponds to the time-reversibility of
the Markov process. Such models appear in the literature, see e.g. [PS05, Ch. 17],
however, not as frequently as models without this feature.
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Remark 6.4.9. In general, geometric models of isotropic symmetric phylogenetic
trees does not have to be toric varieties – see an example in [Mic12b, Sect. 5.5]. How-
ever, our results presented in Section 7.3 together with the results of [Mic11a] allow
us to distinguish a good class of isotropic symmetric phylogenetic trees (represented
for instance by the 2-Kimura model) whose geometric models are toric.

In chapter 8 we give up the assumption of isotropy, i.e. we work with symmetric mod-
els in the setting of Definition 6.1.12 (b). An example of a class of such phylogenetic
trees with very good properties is the class of general group-based models.

Definition 6.4.10. Let W be the regular representation of a finite abelian group G
(see Definition 1.3.2). For a general group-based model we define the subspace
Ŵ to be the space End(W )G of G-invariant endomorphisms of W .

Remark 6.4.11. Because of its good geometric properties and the fact that it
contains a few models very important from the point of view of applications, this
class of models has been investigated by a lot of people, see e.g. [ES93, SSE93, PS05,
SS05]. The toricness of associated geometric models was observed e.g. in [Hen89,
SSE93, SS05].

There is also the class of group-based models, where Ŵ is constructed from the
space of fixed points of the action of ρG ⊗ ρG on W ⊗W , where W is the regular
representation of an abelian group G, by taking some hyperplane sections given by
a labeling function on G. In other words, the space of transition matrices is a special
subspace of the space of transition matrices for some general group-based model.
The details can be found e.g. in [SS05, Sect. 3], but we will not use this setting.
Instead, in chapter 8 we concentrate on other extension of the class of general group-
based models, suggested (only in the isotropic setting) in [BDW09] and further
developed in [Mic11a, Mic12b]. This is a subclass of the class of group-based models
and it contains these group-based models which are the most interesting from the
point of view of applications, but it is small enough to include only models with
good geometric properties.

Definition 6.4.12. Let G be a finite group with a normal abelian subgroup H.
Assume that G acts on the set of letters such that the restriction of this action
to H is transitive and effective (i.e. W is the regular representation of H) Take
Ŵ = Fix(ρG ⊗ ρG) ⊆ W ⊗W . Then (W, Ŵ ) is called a G-model.

In the literature one can find statements that geometric models associated to group-
based models of evolution are toric, see e.g. [SS05, Sect. 2], referring to [ES93].
However, this might be not true in such generality. In [Mic11a, Appendix] there
is an example, where the discrete Fourier transform does not produce a monomial
parametrization of the geometric model. (This method works in the case of general
group-based models, and it was suggested in the papers mentioned above to work for
all group-based models.) Roughly speaking, if one chooses a submodel of a general
group-based model by taking wrong conditions to determine Ŵ , then the discrete
Fourier transform does not behave well.
But, as it is proven in [Mic11a], the class of G-models is free from this drawback.
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Theorem 6.4.13. [Mic11a, 3.19] Let T be a trivalent tree and (W, Ŵ ) a G-model.
Then the geometric model of the phylogenetic tree (T ,W, Ŵ ) is a toric variety.

Remark 6.4.14. In the next two chapters, by abuse of language, we will frequently
use the term model both for a model of evolution (W, Ŵ ) and for a geometric model
of a phylogenetic tree (T ,W, Ŵ ), at least in cases where T does not have to be
specified.

Example 6.4.15. From the models listed in Example 6.1.11 two are general group-
based models. The 3-Kimura model corresponds to G ' Z2 × Z2. The two-state
Jukes-Cantor model comes from the action of Z2.
However, Jukes-Cantor models with d states for d > 2 are not general group-based
models any more. The space Ŵ consists of fixed points of the action of the full
symmetric group Sd. This action does not even satisfy the definition of G-models
for d > 4, since then there is no normal subgroup H ⊂ Sd with |H| = d.
Also the 2-Kimura model is not a general group-based model, but it is a G-model
for H ' Z4 CG ' D8.
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Chapter 7

Isotropic models of evolution with
symmetries

Throughout the present chapter we consider the class of isotropic symmetric models
of evolution in the sense of Definition 6.4.8: Ŵ is a subspace of the symmetric
product S2W which is the space of fixed points of S2ρG for some transitive action
of G ⊆ Sd on the set of letters.
The results presented below were established in a joint project with W. Buczyńska
and J. Wiśniewski, see [BDW09]. They concern mainly algebraic and combinatorial
properties of isotropic models. This is because the aim of that paper was to find
a sensible class of isotropic phylogenetic trees and make preparations for studying
associated geometric models later.
The chapter is organized as follows. We start from introducing a notion of saturated
groups, whose conjugacy classes are in bijection with (conjugacy classes of) isotropic
symmetric models. We note that geometric models of a tree for conjugate groups
are isomorphic. Next, in section 7.2, we examine the case when G is hyperbinary,
that is when G = Bn := Zn2 , A = Bn, so that |A| = 2n and A can be identified
with G with the regular action on itself. Then we discuss the situation when the
group of symmetries of an isotropic model contains an abelian subgroup acting
transitively on A. This is the situation when our set-up is close to that of G-models,
see Definition 6.4.12. From these results it follows that the hyperbinary model is the
only isotropic general group-based model, see Proposition 7.2.9 and Theorem 7.2.10.
Finally, in the last section we present the results of computations for low-dimensional
cases. Using [GAP12] we computed pairs (G, ŴG) of saturated groups of permuta-
tions and their symmetric models of evolution for |A| ≤ 9. This part of the chapter
should be treated as a large collection of examples. The aim of producing them
was to gain insight into rules and relations in the class of isotropic models with
symmetries. It might be advisable to have a look into this section before reading
sections 7.2 and 7.3.
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7.1 Introductory facts
We start from a few simple lemmas following directly from the definition of a sym-
metric model of evolution. The global assumption is that the considered models are
isotropic, but we note when it is not required. The next two sections are devoted to
introducing notions of a saturated permutation group and of a faithful subset of the
set of letters. We follow [BDW09, Sect. 2].

7.1.1 Some restrictions on Ŵ

First of all, note that the assumption that matrices in Ŵ are doubly stochastic, up
to a multiplicative constant, is redundant for transitive groups of symmetries.

Lemma 7.1.1. Let G ⊆ Sd be a transitive subgroup. If a matrix A ∈ S2W is fixed
by S2ρG then the sum of rows (columns) of A is constant.

Proof. Recall that α = α1 + · · · + αd, σ = α∗1 + · · · + α∗d and to show that the sum
of rows of A is constant we are to verify the condition that A evaluated on σ is a
multiplicity of α. But for every g ∈ G ⊂ O(W ) we have A = g · A · g−1 hence

g (A(σ)) = g · g−1 · A · (g(σ)) = A(σ)

where the last equality follows by Lemma 6.4.5. The sum of columns of A is constant
just because A = At.

Remark 7.1.2. Note that we may apply the proof above to the case of non-isotropic
symmetric models, but we obtain a weaker result. Only the sum of rows of A must
be constant, the sum of columns does not have to be, so A is proportional to a
stochastic matrix, which not necessarily is doubly stochastic.

The transitivity of groups G ⊆ Sd implies some bounds on the dimension of ŴG =
Fix(S2ρG). Isotropy allows to improve them in the case of odd dimension.

Lemma 7.1.3. If G ⊆ Sd is transitive then dim Ŵ ≤ d. Moreover, if d is odd then
dim Ŵ ≤ (d+ 1)/2.

Proof. Let us write a general element A ∈ ŴG as a matrix A = (aij) and note that
if an element appears in the first row then, because of transitivity, it has to appear
in every row. That is, for i = 1, . . . , d there exists gi ∈ G such that gi(1) = i and,
for such gi and any j = 1, . . . , d, it holds

a1,j = a2,g2(j) = · · · = ad,gd(j).

Therefore the number of linearly independent coefficients in A can not exceed the
length of the row, that is d. This proves the first statement of the lemma.
By the same argument all the coefficients on the diagonal of A are equal. By sym-
metry of A each coefficient outside the diagonal appears the same number of times
above the diagonal as below the diagonal. If some element appears exactly once in
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one row, it has to appear exactly once in every row. But in this situation it appears
d times in A in total, which is impossible when d is odd. Thus every element outside
the diagonal appears at least twice in every row, and at least 2d times in total, hence
the second part follows.

The above argument can be extended to the following.

Lemma 7.1.4. Suppose that G ⊆ Sd is transitive. Let G1 = Gα1 ⊂ G be the subgroup
fixing α1. Then the dimension of ŴG does not exceed the number of orbits of Gα1 in
the set A.

Proof. Let g ∈ Gα1 . Then g(αi) = αj implies a1,i = a1,j in the matrix A = (ai,j) ∈
Ŵ . Since the other rows of A are obtained by permuting the entries in the first row
we get the conclusion.

Remark 7.1.5. Lemmas 7.1.3 and 7.1.4 work for non-isotropic models with one
exception – the inequality dim Ŵ ≤ (d + 1)/2 fails when we do not assume that
A = At.

Remark 7.1.6. We state one more useful fact on dim Ŵ . Assume that the action
of G on A is effective, but not free, i.e. there is g ∈ G which fixes the i-th letter
and does not fix the j-th letter. Then dim Ŵ < d, because we have the relation
ai,j = ai,g(j) identifying two elements in a row.

The boundary cases with regard to the dimension of Ŵ are of particular interest.
We discuss the case when dim Ŵ = dimW in the subsequent section, see Proposi-
tion 7.2.9.

7.1.2 Saturated subgroups

Before we begin developing the theory, we give an example of an isotropic model of
evolution with symmetries. It shows how the assumption of isotropy works together
with the invariancy of transition matrices to determine Ŵ .

Example 7.1.7. Let h ∈ Sd be a cyclic permutation of length d, say h = (1, . . . , d),
and let H = 〈h〉 be the group generated by h. Then for A = (aij) ∈ Ŵ we have

a11 = a22 = . . . = add, aij = ai+1,j+1 = . . . = ai+d,j+d = aji = aj+1,i+1 = . . . aj+d,i+d,

where all operations on indices are performed modulo d. Thus ŴH consists of ma-
trices of the form 

a0 a1 a2 · · · a2 a1

a1 a0 a1 · · · a3 a2

a2 a1 a0 · · · a4 a3

· · · · · · · · · · · · · · ·
a2 a3 a4 · · · a0 a1

a1 a2 a3 · · · a1 a0


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where ai are arbitrary numbers. It follows that dim ŴH = (d+ 1)/2 if d is odd and
d/2 + 1 if d is even.
We note that the matrix above can be written as the following linear combination
of matrices

a0 · id+ a1 ·
(
h+ h−1

)
+ a2 ·

(
h2 + h−2

)
+ · · ·

with h presented as a permutation matrix.
Every such a matrix is symmetric with respect to its center hence, i.e. it is fixed by
an involution ν with cyclic decomposition

ν = (1, d)(2, d− 1)(3, d− 2) · · · ,

which satisfies h−1 = ν · h · ν−1. Thus ŴH is fixed not only by the cyclic group H,
but also by the dihedral group D2d = 〈h, ν〉. These observations will be generalized
in section 7.3.
The isotropic model of evolution presented above will be called the dihedral model.

We see that, unlike for instance the situation of general group-based models, the
group from which we start generating an isotropic model does not necessarily turn
out to be the biggest subgroup of Sd which fixes it. According to this observation
we introduce the following definition.

Definition 7.1.8. A subgroup G ⊆ Sd is called saturated if for any group H such
that G ⊆ H ⊆ Sd and Fix(S2ρG) = Fix(S2ρH), it follows that H = G. In other
words, G is saturated if it is the stabilizer of Fix(S2ρG).

We have yet another immediate observation and thus a subsequent definition.

Lemma 7.1.9. There is an inclusion reversing bijection between transitive saturated
subgroups of Sd and isotropic symmetric models of evolution on d letter.

Definition 7.1.10. If (W, Ŵ ) is an isotropic symmetric model of evolution on d
letters then its group of symmetries is the unique transitive saturated G ⊆ Sd
such that Fix(S2ρG) = Ŵ .

Since conjugating subgroups of Sd is just renaming its elements we can identify
models associated with conjugate subgroups.

Proposition 7.1.11. Let T be a tree and let ŴH , ŴG be two models of evolution on
d letters with groups of symmetries H and G respectively. The inclusion of groups
H ⊆ G ⊆ Sd implies an inclusion of geometric models

X(T ,W, ŴG) ⊂ X(T ,W, ŴH).

If groups G and H are conjugate in Sd then, after some linear change of coordinates
in P(WL), the models X(T ,W, ŴG) and X(T ,W, ŴH) are equal.

Thus, in what follows we will look at saturated transitive subgroups of Sd up to
conjugation (and classify them in low-dimensional cases).
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7.1.3 Minimal models of evolution

Let us consider a subset of letters B ⊂ A which spans a vector subspace WB ⊂ W .
We have a decomposition W = WB⊕W⊥

B , where W⊥
B is spanned by the complement

of B, that is A\B. We fix the projection πB : W −→ WB, the kernel of which isW⊥
B .

This projection extends to S2πB : S2W −→ S2WB. For G ⊆ Sd take GB = {g ∈ G :

g(WB) ⊂ WB}. Elements of GB define symmetries of WB with ŴB = Fix(S2ρGB).

Example 7.1.12. Let g ∈ G ⊆ Sd be an element whose decomposition into cycles
contains a cycle of length r. We may assume that the cycle concerns the first r
letters, more precisely that g = (1, . . . , r) · · · . We take B = {α1, . . . , αr}. In terms
of symmetric matrices the projection S2πB is taking the r× r upper-left corner from
the d × d matrix A ∈ S2W . In view of example 7.1.7 this implies constraints on
the coefficients of matrices in Ŵ . Namely, for A = (ai,j) ∈ Ŵ we have the following
constraints a1,2 = a1,r, a1,3 = a1,r−1, etc.

Definition 7.1.13. In the above situation we say that the subset B ⊂ A, or the
subspace WB ⊂ W , is faithful if S2π determines an isomorphism of Ŵ and ŴB. We
say that the model of evolution (W, Ŵ ) with the group of symmetries G is minimal
if A contains no proper faithful subset.

Example 7.1.14. The full symmetric group G = Sd is clearly saturated, its sym-
metric model of evolution is the d-state Jukes-Cantor model (see Example 6.1.11).
Then, for any d > 1 any subset of {α1, . . . , αd} consisting of more than one letter
yields a faithful inclusion.

7.2 Hyperbinary model of evolution
Based on [BDW09, Sect. 3] we present some results concerning a generalization of
the binary model of evolution (see [BW07]).

Construction 7.2.1. Let us consider hyperbinary groups

Bn = (Z2)n,

for which we use additive notation (so its elements are binary sequences of length n).
It is well known that any finite group whose elements (except the unit) are of order 2
is isomorphic to some Bn.
We define a representation

ρn : Bn −→ GL(C2n)

by induction with respect to n. For n = 0 we set ρ0 = 1. Suppose that ρn is defined.
Let us decompose Bn+1 = Bn⊕Z2 ·en+1 with Bn ⊂ Bn+1 consisting of these elements
whose last coordinate is 0, and en+1 = (0, . . . , 0, 1). For the subset Bn ⊂ Bn+1 we
set ρn+1

|Bn = ρn ⊕ ρn and in addition

ρn+1(en+1) =

[
0 I2n

I2n 0

]
where I denotes the identity matrix of the respective dimension.
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Before discussing the properties of the hyperbinary representation let us recall the
following general property of representations of abelian groups: if an abelian group
G acts effectively and transitively on a finite set X, then the action is equivalent to
the action of G on itself (see Lemma 1.3.1). The complex representation arising from
such an action is the regular representation of G. We get an immediate corollary.

Lemma 7.2.2. Let A be the standard basis of W n
B := C2n. Then Bn acts effectively

and transitively on A and thus the representation ρn is equivalent to the regular
representation of Bn.

We identify, via ρn|A, the group Bn with a subgroup of S2n ; that is, ρn is then just
the restriction of the natural representation of S2n . Note that all matrices in ρn(Bn)
are symmetric. This is a very special feature of Bn as it follows from the subsequent
observation.

Lemma 7.2.3. Let W be an arbitrary vector space. All matrices (except identity) in
the intersection S2(W )∩O(W ) are of order 2, hence any finite subgroup of S2(W )∩
O(W ) is hyperbinary.

Proof. A2 = A · At = A · A−1 = 1.

Now we determine the model of evolution corresponding to the hyperbinary repre-
sentation ρn. First we introduce the candidate for Ŵ in this model.

Definition 7.2.4. Let Ŵ n
B ⊂ S2(W n

B ) be the linear subspace spanned by ρn(Bn).

The following lemma will be generalized in the next section, but for the sake of
clarity we present here an explicit argument.

Lemma 7.2.5. The space Ŵ n
B is equal to Fix(Bn), it is of dimension 2n and its

intersection with GL(W n
B ) is a Cartan torus in GL(W n

B ).

Proof. The fact that the space Ŵ n
B is of dimension 2n follows from Lemma 1.3.3 and

the linear independence of characters. Here, however, we note easily by induction
on n that the matrices in ρn(Bn) are linearly independent. Indeed, since Bn+1 =
Bn+en+1 ·Bn then every linear combination of matrices in ρn+1(Bn+1) can be written
as

A =
∑
Ai∈Bn

ai

[
Ai 0
0 Ai

]
+
∑
Bi∈Bn

bi

[
0 Bi

Bi 0

]
which yields the inductive step.
Next, we note that Ŵ n

B ⊂ Fix(Bn). For this we are to check that g ·A · g−1 = A for
every g ∈ ρn(Bn) and A ∈ Ŵ n

B . But this equality is linear with respect to A, so it
is enough to check it on the basis of Ŵ n

B . There is a basis consisting of elements of
ρn(Bn), for which this is obvious.
By the same argument Ŵ n

B ∩GL(W n
B ) is commutative. Hence it is a complex torus.

Its dimension is 2n, hence it is a Cartan subgroup of GL(W n
B ).
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Finally, we prove the equality Fix(ρn(Bn)) = Ŵ n
B . One inclusion is already proved,

so suppose that A ∈ S2(W n
B ) is such that g · A · g−1 = A for every g ∈ Bn. We may

assume that A is invertible. Thus the subgroup of GL(W n
B ) generated by ρn(Bn) and

A is abelian and thus contained in a Cartan subgroup of GL(W n
B ), which must be

Ŵ n
B ∩GL(W n

B ).

Lemma 7.2.6. The group Bn ⊂ S2n is saturated.

Proof. Suppose that h ∈ S2n preserves Ŵ n
B . Then, by definition of Ŵ n

B , in particular
h · g · h−1 = g for every g ∈ Bn ⊂ S2n . Thus subgroup H generated by h and Bn is
abelian. Moreover, H acts freely on the set of letters by Remark 7.1.6. Thus we get
|H| ≤ 2n, that is H = Bn.

The following statement summarizes our results.

Proposition 7.2.7. The pair (W n
B , Ŵ

n
B ), as defined above, is a symmetric model of

evolution with group of symmetries Bn.

By Lemma 7.1.3 we get a corollary.

Corollary 7.2.8. The hyperbinary model of evolution is minimal in the sense of
Definition 7.1.13.

Phylogenetic trees with the hyperbinary model of evolution will be called just
hyperbinary phylogentic trees. In the above situation, if n = 1 then such a model is
just a binary model and if n = 2 then it is a 3-Kimura model, see Example 6.1.11.
Note also that in general hiperbinary models are general group-based models (see
Definition 6.4.10).
The hyperbinary model of evolution is the unique one which admits the biggest
possible dimension, equal to the number of letters (recall Lemma 7.1.3).

Proposition 7.2.9. Let (W, Ŵ ) be an isotropic model of evolution with group of
symmetries G such that dim Ŵ = dimW . Then, up to renumbering elements of A
(i.e. up to conjugation in the group of permutations), this model coincides with the
hyperbinary model of evolution.

Proof. The discussion in Example 7.1.12 implies that if the cyclic decomposition of
g ∈ G contains a cycle of length r, and in addition r > 2, then in each row of a
matrix in Ŵ at least two entries are equal. This means that dim Ŵ < dimW , so
in the situation described in the lemma G contains only elements of order 2. The
action of G on the set of letters is obviously effective, thus the conclusion follows by
Lemma 1.3.1.

To close this section we state the following theorem, whose proof is based on some-
what more general results, reported in section 7.3.

Theorem 7.2.10. Hyperbinary groups are the only abelian saturated groups.
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Proof. If G is an abelian saturated group then it satisfies assumptions of Proposi-
tion 7.3.2. Hence it contains an element ν of order 2 such that for every g ∈ G we
have ν · g · ν = g−1. Thus every element of G is of order 2 and G is hyperbinary.

It follows that the hyperbinary model is the only isotropic general group-based
model, in the sense of Definition 6.4.10.

7.3 Abelian groups of symmetries
The present section, describing the results of [BDW09, Sect. 5], concerns the case
when the group of symmetries of an isotropic model contains an abelian subgroup
acting transitively on the set of letters. Let us begin by recalling trivialities regarding
actions of abelian groups. The set A, as usual, consists of d letters. Let H be an
abelian group acting effectively and transitively on the setA, which yields the regular
representation of H on the vector space W spanned by A. Such a representation
ρH : H −→ GL(W ) can be diagonalized in terms of characters of H (as described in
Lemma 1.3.3).
In this situation, we identify H with a subgroup of GL(W ) and argue similarly as
in Lemma 7.2.5. Let us consider a linear span

WH =
∑
h∈H

C · h ⊂ End(W ).

Then dimWH = d (because characters are linearly independent) and H acts by
multiplications onWH as the regular representation. Let us set TH := WH ∩GL(W ).
Then TH is a connected abelian algebraic subgroup of GL(W ) of dimension d, hence
a Cartan torus in GL(W ). Thus, since H is abelian, WH is the fixed point set of the
adjoint action ofH on End(W ). By Lemma 1.3.3, the lattice of (algebraic) characters
of TH , MH = Hom(TH ,C∗), has a distinguished basis consisting of characters of H,
that is Ĥ = Hom(H,C∗).
Now we turn to the situation which is our principal interest – we will work in the
following setting.

Notation 7.3.1. Let (W, Ŵ ) be an isotropic symmetric model of evolution on the
set A of d letters with the (saturated) group of symmetries G ⊆ Sd. Throughout the
present section we assume that there exists an abelian subgroup H ⊆ G which acts
effectively and transitively on A.
The following result generalizes our observation from Example 7.1.7. We show that
if an abelian group H acts effectively and transitively on the set of letters, then one
more permutation fixing the invariants of AdH can be produced.

Proposition 7.3.2. In the situation of Notation 7.3.1 there exists an involution
ν ∈ G, ν2 = id, such that for every h ∈ H it holds ν · h · ν = h−1.

The proof of the above proposition is divided into some steps. Because of transitivity
and effectiveness, elements of H can be identified with letters, so that the action
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of H on A is equivalent to the action of H on itself. From now on we use this
identification. Also, we use additive notation for H, as for an abelian group, while
for permutations and matrices (the group G and H treated as its subgroup) the
multiplicative notation is used.
By classification of finite groups we can write H as a product of cyclic groups, that
is H = Zp1× . . .×Zpk for suitable choice of numbers pi. We have an inclusion of sets
H ⊂ Zk, coming from the natural inclusion Zpi = {0, 1, . . . , pi − 1} ⊂ Z. This leads
to a linear order on H, which is the restriction of the lexicographical order on Zk
to H. That is, hi = (i1, . . . , ik) is the i-th element of H with respect to this order, if

i = i1 · p2 · · · pk + i2 · p3 · · · pk + · · ·+ ik.

Now we can write H = {h0, . . . , hd−1}.
We use the map ν : Zk → Zk, defined by

ν((i1, . . . , ik)) = (p1 − 1− i1, . . . , pk − 1− ik).

Note that ν is an involution (ν2 = id) and it can be restricted to the subset H. The
restriction, also denoted by ν, is a permutation of elements of H (hence of A) such
that ν · h · ν = h−1 for every h ∈ H. Indeed, in terms of operations within H we
have the following identities

ν((i1, . . . , ik)) = (−i1 − 1, . . . ,−ik − 1) = −(i1, . . . , ik)− (1, . . . , 1)

(where h is treated as a permutation of H), from which we get ν · h · ν = h−1.
Similarly, we note that for every h ∈ H we have h+ ν(h) = −(1, 1, . . . , 1).
It turns out that the involution ν is compatible with the chosen order on H in the
sense of the following lemma. (However, this observation will not be used in what
follows.)

Lemma 7.3.3. The map ν satisfies ν(hi) = hd−1−i.

Proof. Let hi = (i1, . . . , ik). Then, by the definition of the chosen order on H,
i =

∑k
m=1 im · pm+1 · · · pk. Let

hj = ν(hi) = (p1 − 1− i1, . . . , pk − 1− ik),

then

j = (p1 − 1− i1) · p2 · · · pk + (p2 − 1− i2) · p3 · · · pk + . . .+ pk − 1− ik =

= d− 1−
k∑

m=1

im · pm+1 · · · pk = d− 1− i.

Now Proposition 7.3.2 follows directly from the next lemma.
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Lemma 7.3.4. Let H = {h0, . . . , hd−1} be as above, with its regular representation
(on the set A = H with the order defined above) denoted by ρH . Let A = (ai,j) be
a symmetric matrix fixed by the induced action S2ρH . Then A is also fixed by the
involution ν.

Proof. To simplify the notation we identify hi with its index i.
We need to show that for any i, j ∈ {0, . . . d − 1} we have ai,j = aν(i),ν(j). Because
A is symmetric, this is equivalent to proving aj,i = aν(i),ν(j). However, we noted that
hi + ν(hi) = hj + ν(hj) = −(1, . . . , 1) and thus we can take h ∈ H such that

h = ν(hi)− hj = ν(hj)− hi

(the ± operations are in H). This implies that h + hj = ν(hi) and h + hi = ν(hj).
Hence, in terms of the action of H on itself, h(j) = ν(i) and h(i) = ν(j). Thus,
because A is fixed by H, we get

aj,i = ah(j),h(i) = aν(i),ν(j).

The above argument can be reversed.

Lemma 7.3.5. Let H and ρH be as in Lemma 7.3.4. Suppose that a matrix A =
(ai,j) ∈ End(W ) is fixed by AdH and Ad(ν). Then A is symmetric.

Proof. If A is fixed by H then, as above, aj,i = aν(i),ν(j) and since it is fixed by ν it
follows that aν(i),ν(j) = ai,j.

As a result we get the following.

Proposition 7.3.6. Assume that (W, Ŵ ) is a symmetric model of evolution with G,
the saturated group of symmetries, satisfying conditions of Notation 7.3.1. Then any
matrix A ∈ End(W ) fixed by AdG is symmetric, i.e. Ŵ = Fix(AdG).

Proof. By Lemma 7.3.4 the involution ν is in G, hence by Lemma 7.3.5 in Fix(AdG)
there are only symmetric matrices.

Corollary 7.3.7. It follows that, in the situation of Notation 7.3.1, the space Ŵ is
the centralizer of G in End(W ) or, more precisely, the closure of the centralizer of
ρ(G) in GL(W ) ⊂ End(W ).

Corollary 7.3.8. From this result and the proof of toricness of G-models [Mic11a,
Thm 3.19] it follows immediately that geometric models associated with isotropic
symmetric models of evolution satisfying assumptions in Notation 7.3.1, where in
addition H is a normal subgroup of G, are toric varieties.
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7.4 Low dimensional models of evolution

In order to have a nontrivial set of examples we determined all transitive saturated
subgroups of Sd for d = dimW ≤ 9. The computations were done by simple functions
written in GAP (see [GAP12]), which were sufficiently effective up to d = 9. The
code of our program can be found at www.mimuw.edu.pl/∼marysia/isotrees. This
section contains a brief description of the results of the computations (after [BDW09,
Sect.4]). They were a useful source of ideas for the investigation of the case of groups
of symmetries with a transitive abelian subgroup, presented in the previous section.
Classified models are presented together with respective inclusions (or nesting of
models, or Felsenstein’s hierarchy), cf. [PS05, Sect. 4.5.1], corresponding to inclusions
of groups of symmetries up to conjugation.

7.4.1 Short description of the program

First, let us sketch the main ideas of the algorithm used to determine saturated
subgroups of Sd. There are two parts of the algorithm:

• find ŴG = Fix(S2ρG) for all G ⊂ Sd,

• for each G ⊂ Sd, decide whether it is maximal subgroup fixing ŴG.

We consider only representatives of conjugacy classes of subgroups, because models
of evolution for conjugate groups are the same up to permutation of letters (see
Lemma 7.4.1).
The second part of the algorithm is based on functions provided by GAP. The most
important one is LatticeSubgroups, which returns the lattice of subgroups of Sd,
that is the set of all subgroups and the relation of inclusion on this set (up to
conjugacy). We also use MinimalSupergroupsLattice which, given the lattice of
subgroups, calculates all minimal proper supergroups for each subgroup.
Using these functions we check whether the group G is saturated by comparing
ŴG to ŴH for all minimal proper supergroups H of G. However, the function
LatticeSubgroups is not effective enough to be used in the cases d ≥ 10. We
think that this step can be done more effectively by more subtle algorithms and
low-level programming.
We now turn to the first part of the algorithm, that is, to the question of determining
ŴG for given G ⊂ Sd. Recall that a matrix (ai,j) is a fixed point of S2ρG if and only
if for each g ∈ G we have ai,j = ag(i),g(j), so the task is to find the sets of equal
matrix entries. Obviously it suffices to consider only the equalities of entries for g
in a generating set of G. For generators we choose the result of the GAP function
SmallGeneratingSet (it returns a generating set which is not necessarily minimal,
but the function is much faster than the function which computes a minimal set
of generators). An important (but too technical to describe here) step is to find an
appropriate data structure for storing information about equal matrix entries. This
algorithm is implemented in the function ModifySymmetricMatrix in our program.
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Surely, much more effective algorithms for this problem can be found, but this idea
gives a solution which is short, easy to implement and sufficient for what we needed.

7.4.2 The results

As stated at the beginning of this section, we identify models of evolution which differ
only by a permutation of letters, i.e. models determined by conjugate subgroups
of Sd. Therefore, we can reformulate lemma 7.1.9 as follows.

Lemma 7.4.1. There is an inclusion reversing bijection between conjugacy classes
of saturated transitive subgroups of Sd and (isomorphism classes of) isotropic sym-
metric models of evolution on d letters.

Example 7.4.2. There are 3 possible forms of the model of evolution with d = 4 and
dihedral group of symmetries D8 (that is the 2-Kimura model). They are associated
with the three conjugate subgroups of S4, hence the choice of a cyclic permutation
of length 4, cf. example 7.1.7.

a b c b

b a b c

c b a b

b c b a



a c b b

c a b b

b b a c

b b c a



a b b c

b a c b

b c a b

c b b a


To present the relation between models of evolution described by Lemma 7.4.1,
i.e. inclusion of their groups of symmetries up to conjugation, we provide diagrams.
For each conjugacy class of saturated groups a generating set of a chosen repre-
sentative is given. We also find minimal models for all examples in the sense of
Definition 7.1.13.
As noted in Example 6.1.11, the only (isotropic symmetric) model of evolution for
d = dimW = 2 is the binary one (or the two-state Jukes-Cantor model). Also for
d = 3 there is no choice: the symmetric group S3 is the only saturated group and
its model is the Jukes-Cantor model (in particular dim Ŵ = 2).
The smallest nontrivial example of model hierarchy is in d = 4. We tackled this case
already in Example 6.1.11.


a b c d
b a d c
c d a b
d c b a



a b b b
b a b b
b b a b
b b b a



a b c c
b a c c
c c a b
c c b a


Figure 7.1: Hierarchy of models of evolution for d = 4

The first of the models in Fig. 7.1 is the hyperbinary model for n = 2, or 3-Kimura
model, which is minimal. The second one, 2-Kimura model, must be minimal as well,
because there are no models of evolution with d < 4 and dim Ŵ = 3. Generators
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of chosen representatives are given in the table below, where we also indicate the
isomorphism type of the group in question. The last entry in each row indicates
whether the model is minimal, and if it is not, then the name of a minimal submodel
is provided (J–C stands for the two-state Jukes-Cantor model).

group type generators model
g4_1 Z2 × Z2 (1, 3)(2, 4), (1, 4)(2, 3) B2

g4_2 D8 (3, 4), (1, 3)(2, 4) min
g4_3 S4 (1, 2, 3, 4), (1, 2) J–C

Dimensions d = 5 and d = 7 are not very interesting. In each of these cases there are
only two models of evolution, one of them being the Jukes-Cantor model associated
with the full symmetric group. The other model of evolution in each case is minimal
and it is the dihedral model described in Example 7.1.7.

a b b c d e
b a b d e c
b b a e c d
c d e a b b
d e c b a b
e c d b b a





a b b c c d
b a b c d c
b b a d c c
c c d a b b
c d c b a b
d c c b b a

 

a b b b b c
b a b b c b
b b a c b b
b b c a b b
b c b b a b
c b b b b a





a b b c c c
b a b c c c
b b a c c c
c c c a b b
c c c b a b
c c c b b a

 

a b b b b b
b a b b b b
b b a b b b
b b b a b b
b b b b a b
b b b b b a



g6 1

g6 2

g6 3g6 4
g6 5

Figure 7.2: Hierarchy of models of evolution for d = 6

Fig. 7.2 presents the case of d = 6. Only the model of g6_1 is minimal. For the
remaining models we can find faithful subspaces of dimension 2, in the case of g6_5,
or 4. The set {α2, α3, α4, α5} is faithful in cases of g6_2, g6_3 and g6_4. We give
examples of generators of saturated subgroups.
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group type generators model
g6_1 D6 (1, 3, 2)(4, 5, 6), (1, 6)(2, 4)(3, 5) min
g6_2 D12 (1, 5, 3, 6, 2, 4), (1, 2)(5, 6) g4_1

g6_3 Z2 × S4 1, 4)(3, 6), (1, 3, 6, 4), (1, 5)(2, 6)(3, 4) g4_2

g6_4 (S3 × S3) o Z2 (1, 2, 3)(5, 6), (1, 5, 3, 4)(2, 6) g4_2

g6_5 S6 (1, 2), (1, 2, 3, 4, 5, 6) J–C

In dimension d = 8 the relation between models of evolution (see Fig. 7.3) is much
more complex than in previous examples (in the subsequent table we skip the de-
scription of the isomorphism type of the group in question if it is too long). It can be
seen from the following table that only 4 of 11 models of evolution are not minimal.
Thus the situation is much different from the cases d = 6 (one minimal model) and
d = 9 (no minimal models).

group type generators model
g8_1 Z3

2 (1, 2)(3, 4)(5, 6)(7, 8),
(1, 3)(2, 4)(5, 7)(6, 8),
(1, 5)(2, 6)(3, 7)(4, 8)

B3

g8_2 D8 (1, 4)(2, 3)(5, 8)(6, 7),
(1, 7, 2, 8)(3, 6, 4, 5)

min

g8_3 Z2 ×D8 (5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8),
(1, 5)(2, 6)(3, 7)(4, 8)

min

g8_4 D16 (1, 2)(5, 7)(6, 8), (1, 8)(2, 5)(3, 7)(4, 6) min
g8_5 Z4

2 o Z2 (1, 8, 4, 5)(2, 7, 3, 6),
(1, 8, 3, 6)(2, 7, 4, 5),
(1, 8)(2, 7)(3, 6)(4, 5)

min

g8_6 Z2 × S4 (1, 3, 4, 2)(5, 7, 8, 6),
(1, 7, 2, 8)(3, 6, 4, 5)

g4_1

g8_7 — (1, 5, 2, 6)(3, 7, 4, 8),
(1, 5)(2, 6)(3, 8, 4, 7),
(1, 7)(2, 8)(3, 5, 4, 6)

min

g8_8 (D8 ×D8) o Z2 (1, 4, 2, 3)(5, 8)(6, 7),
(1, 5)(2, 6)(3, 7, 4, 8),
(1, 8, 4, 6)(2, 7, 3, 5)

min

g8_9 — (1, 2)(3, 8, 4, 7)(5, 6),
(1, 5, 8, 3)(2, 6, 7, 4)

g4_2

g8_10 (S4 × S4) o Z2 (1, 4, 3, 2)(5, 8)(6, 7),
(1, 7, 2, 5, 3, 6)(4, 8)

g4_2

g8_11 S8 (1, 2), (1, 2, 3, 4, 5, 6, 7, 8) J–C

In case of d = 9 there are 6 different models of evolution, presented in Fig. 7.4. It
turns out that there are no minimal models of evolution on 9 letters. For all models
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

a b c c d d e e
b a c c e e d d
c c a b d e d e
c c b a e d e d
d e d e a c c b
d e e d c a b c
e d d e c b a c
e d e d b c c a





a b b b b b b b
b a b b b b b b
b b a b b b b b
b b b a b b b b
b b b b a b b b
b b b b b a b b
b b b b b b a b
b b b b b b b a





a b b b c c c c
b a b b c c c c
b b a b c c c c
b b b a c c c c
c c c c a b b b
c c c c b a b b
c c c c b b a b
c c c c b b b a





a b c c d d d d
b a c c d d d d
c c a b d d d d
c c b a d d d d
d d d d a b c c
d d d d b a c c
d d d d c c a b
d d d d c c b a





a b c c c c c c
b a c c c c c c
c c a b c c c c
c c b a c c c c
c c c c a b c c
c c c c b a c c
c c c c c c a b
c c c c c c b a





a b c c d d e e
b a c c d d e e
c c a b e e d d
c c b a e e d d
d d e e a b c c
d d e e b a c c
e e d d c c a b
e e d d c c b a





a b b b c d d d
b a b b d c d d
b b a b d d c d
b b b a d d d c
c d d d a b b b
d c d d b a b b
d d c d b b a b
d d d c b b b a





a b c d e e e e
b a d c e e e e
c d a b e e e e
d c b a e e e e
e e e e a b c d
e e e e b a d c
e e e e c d a b
e e e e d c b a





a b c d e f g g
b a d c f e g g
c d a b g g e f
d c b a g g f e
e f g g a b d c
f e g g b a c d
g g e f d c a b
g g f e c d b a





a b c d e f g h
b a d c f e h g
c d a b g h e f
d c b a h g f e
e f g h a b c d
f e h g b a d c
g h e f c d a b
h g f e d c b a





a b c d e e f f
b a d c e e f f
c d a b f f e e
d c b a f f e e
e e f f a b c d
e e f f b a d c
f f e e c d a b
f f e e d c b a



g8 1

g8 2g8 3

g8 4

g8 5

g8 6

g8 7

g8 8

g8 9

g8 10

g8 11

Figure 7.3: Hierarchy of models of evolution for d = 8
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we can find faithful subspaces of dimension 6, 4 or 2. In all cases a 6-dimensional
faithful subspace is spanned by the set of the first 6 basis vectors. For g9_3, g9_4
and g9_5 there also are 4-dimensional faithful subspaces contained in the subspace
spanned by the first 6 letters. We give examples of generating sets of saturated
groups.

group type generators model
g9_1 (Z3 × Z3) o Z2 (2, 3)(4, 7)(5, 9)(6, 8),

(1, 2, 3)(4, 5, 6)(7, 8, 9),
(1, 4, 7)(2, 5, 8)(3, 6, 9)

g6_1

g9_2 D18 (1, 6)(2, 5)(3, 4)(7, 8),
(1, 7)(2, 9)(3, 8)(5, 6)

g6_1

g9_3 S3 × S3 (1, 2)(4, 5)(7, 8), (1, 2)(4, 8)(5, 7)(6, 9),
(1, 8, 3, 7, 2, 9)(4, 5, 6)

g4_1

g9_4 (S3 × S3) o Z2 (1, 5)(3, 8)(6, 7), (1, 7, 8, 2)(3, 4, 9, 5) g4_2

g9_5 — (4, 5), (1, 5, 3, 4)(2, 6)(7, 8, 9),
(1, 7, 3, 9)(2, 8)(4, 5, 6)

g4_2

g9_6 S9 (1, 2), (1, 2, 3, 4, 5, 6, 7, 8, 9) J–C

These low-dimensional examples suggest that there are more models of evolution (or
classes of saturated subgroups) in even dimensions than in odd dimensions. It is also
possible that minimal models appear more often in even dimensions, and most often
in dimensions d = 2k. Our examples also yield an observation regarding the family of
hyperbinary models: up to dimension 9 there are no other abelian saturated groups.
This computational result led us to a general statement in Theorem 7.2.10.
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

a b b b b b b b b
b a b b b b b b b
b b a b b b b b b
b b b a b b b b b
b b b b a b b b b
b b b b b a b b b
b b b b b b a b b
b b b b b b b a b
b b b b b b b b a





a b b c c c c c c
b a b c c c c c c
b b a c c c c c c
c c c a b b c c c
c c c b a b c c c
c c c b b a c c c
c c c c c c a b b
c c c c c c b a b
c c c c c c b b a





a b b b c c b c c
b a b c b c c b c
b b a c c b c c b
b c c a b b b c c
c b c b a b c b c
c c b b b a c c b
b c c b c c a b b
c b c c b c b a b
c c b c c b b b a





a b b c d d c d d
b a b d c d d c d
b b a d d c d d c
c d d a b b c d d
d c d b a b d c d
d d c b b a d d c
c d d c d d a b b
d c d d c d b a b
d d c d d c b b a





a b b c d e e d c
b a b e c d c e d
b b a d e c d c e
c e d a b b c d e
d c e b a b e c d
e d c b b a d e c
e c d c e d a b b
d e c d c e b a b
c d e e d c b b a





a b b c d e c e d
b a b e c d d c e
b b a d e c e d c
c e d a b b c d e
d c e b a b e c d
e d c b b a d e c
c d e c e d a b b
e c d d c e b a b
d e c e d c b b a



g9 1 g9 2

g9 3

g9 4 g9 5

g9 6

Figure 7.4: Hierarchy of models of evolution for d = 9
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Chapter 8

Algebraic and geometric properties
of symmetric models

The main aim of this chapter is to investigate geometric properties of symmetric
models of evolution, mostly general group-based models (see Definition 6.4.10), but
a few results concern also a more general class of G-models (see Definition 6.4.12).
We concentrate on the case of abelian group of symmetries, since the geometry
of corresponding varieties is nontrivial already in this case, and generally they are
more important from the point of view of application, however, with some interesting
exceptions, like the 2-Kimura model introduced in Example 6.1.11.
We present here the results coming from a joint work with M. Michałek, see [DBM12].
Our project had experimental character and we were looking both for proofs and for
counterexamples, so using computer programs for checking small enough cases was
an obvious choice. We implemented the algorithm proposed by Michałek in [Mic11a]
to determine a combinatorial description (i.e. in terms of toric geometry) of geomet-
ric models of chosen phylogenetic trees. In section 8.1, after presenting the set-up
for this chapter, we describe this algorithm and the class of models for which it can
be used effectively.
In section 8.2 we use our program to investigate normality of geometric models of
phylogenetic trees, and section 8.3 is devoted to the problem whether varieties cor-
responding to a fixed model of evolution, but on different trivalent trees with the
same number of leaves, are deformation equivalent. In both cases we get a negative
answer. In Proposition 8.2.2 we give examples of non-normal group-based models
and in Proposition 8.3.3 we list models for which computing Hilbert-Ehrhart polyno-
mials excluded the possibility of deformation equivalence. This means that [BW07,
Thm 3.26] is most probably a phenomenon appearing only in the case of the binary
Jukes-Cantor model (the general group-based model with the group of symmetries
G ' Z2).
Finally, in section 8.4 we tackle one of the most important problems concerning phy-
logenetic trees from the point of view of applications, which is computing phyloge-
netic invariants, i.e. polynomials defining the geometric model. We propose a method
of finding ideals of claw trees using a geometric approach, see section 8.4.2. We
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conjecture that varieties associated with large claw trees are scheme-theoretic inter-
sections of varieties associated with trees of smaller valency of vertices. This would
enable generating the ideals recursively. We prove the conjecture for the Jukes-
Cantor model in Proposition 8.4.17. An interesting fact is that we can show that
our conjecture is equivalent to the one made by Sturmfels and Sullivant for the
3-Kimura model, see Proposition 8.4.19.

8.1 Toric description of the geometric model

We consider general group-based models in the sense of Definition 6.4.10. By results
of [SS05] or [Mic11a, Thm 3.19] their geometric models are toric varieties, not neces-
sarily normal. (In fact, [Mic11a, Thm 3.19] concerns larger class of models, but this
property for general group-based model was observed earlier.) These varieties can be
described combinatorially by a lattice polytope, see section 2.3. Here we summarize
this construction after [Mic11a, Sect. 4] and [DBM12, Sect. 2], writing it finally in
a form of an algorithm. Our implementation of this algorithm is a useful tool for
computational experiments in problems related to phylogenetics, so in section 8.1.2
we briefly describe the structure and usage of the program.

8.1.1 The polytope of a model

Let (T ,W, Ŵ ) be a phylogenetic tree, as in Definition 6.1.12 (b), i.e. T is a rooted
tree, W denotes a complex vector space of dimension d and Ŵ is a subspace of
W ⊗W . We assume that (W, Ŵ ) is a general group-based model with the (abelian)
group of symmetries denoted by G. Thus d = |G| and we can identify a distinguished
basis of W with elements of G. Moreover, Ŵ is the space of matrices in W ⊗W
invariant under AdG action, so the phylogenetic tree (T ,W, Ŵ ) is determined by
the structure of T and G. We will use the additive notation for elements of G.

Notation 8.1.1. The phylogenetic tree defined by T and G as described above will be
denoted by (T , G), the corresponding projective model by XP(T , G) and the affine
model, which is the affine cone over the projective model, we denote by X(T , G).

To describe the polytope of XP(T , G) we need a definition which generalizes ideas
of networks and sockets introduced in [BW07] for the binary model.

Definition 8.1.2. A group-based flow is a function n : E → G, i.e. an assignment
of group elements to the edges of T , such that for any inner vertex v ∈ V , the edge
e0 incoming to v and outgoing edges e1, . . . , ek we have

n(e0) = n(e1) + · · ·+ n(ek).

(For the root we require that the sum of elements assigned to all outgoing edges is
zero.) A socket is an assignment s : L → G of group elements to the leaves such
that the sum

∑
v∈L s(v) is zero (the unit of the group).
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It is worth noting that the name group-based flow is fully justified. The standard
flow condition says that the amount of a fluid incoming to the junction is the equal
to the amount of outgoing fluid. Here we may imagine a fluid going through the
edges of the tree starting from the root and ending in the leaves, where capacities
of edges are the numbers assigned to them. Above we use the reformulation of this
condition in terms of the group law. Since all considered flows will be group-based,
we often call them just flows.

Example 8.1.3. Consider the group G = Z3 = {0, 1, 2} and the tree in Fig. 8.1.

e1 e2

e3
e4

e5

Figure 8.1: A rooted tree with the root marked with a square

Here e2, e3, e4 and e5 are petioles. By vi for i = 2, 3, 4, 5 we denote the leaf of ei. An
example of a socket is an association v2 → 1, v3 → 1, v4 → 2, v5→ 2.
We can produce a flow from this socket like that: with ei we associate the same
element as with its leaf vi and moreover n(e1) := 2.

Observation 8.1.4. The idea from the example can be generalized to any socket on
any tree: we build an assignment starting from petioles and on the higher edges the
value of n is uniquely determined. Since we start from a socket, the sum of capacities
of edges outgoing from the root is indeed 0.
This procedure can be reversed: by assigning to a leaf a value of a flow n on its
petiole we obtain a socket.
Now we can give the combinatorial description of the polytope ofXP(T , G). In [Mic11a,
Sect.4] an analogous result is proven for all G-models, but this more general version
requires additional notation, which will not be used in what follows, hence we re-
strict to the case of general group-based models. This theorem is based on earlier
ideas of [SS05] concerning the toricness of general group-based models.

Theorem 8.1.5 ([Mic11a]). The lattice polytope PG such that XP(T , G) is the pro-
jective toric variety XPG is determined by following conditions:

• its vertices lie in a lattice M̂ with basis indexed by pairs (e, g) where e is an
edge of a tree and g a group element,

• its vertices are in bijection with G-flows on T ,

• the vertex of PG associated with a flow n is a sum of all basis elements indexed
by such pairs (e, g) that satisfy n(e) = g.
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We consider the polytope PG in the sublattice M ⊂ M̂ spanned by vertices of PG,
i.e. M is the monomial lattice of the toric variety XPG. Then the only lattice points,
that is points of M , in PG are its vertices.

In this case we can also describe easily the affine model X(T , G), that is the affine
cone over XP(T,G). By Definition 2.3.2 and Remark 2.3.7, it is a spectrum of the
semigroup algebra with a semigroup generated by the lattice points of the polytope
PG.

Remark 8.1.6. Note that different choices of the root of the tree T give isomorphic
polytopes. The corresponding isomorphism of lattices can be written easily in the
case when the new root is adjacent to the old one (the group element assigned to
the edge joining them is changed to its negative in every flow). By such steps a root
can be moved to any position on the tree. Hence we may consider the polytope PG
(and geometric models of (T , G)) without mentioning placement of the root of T .
Obviously PG depends on the choice of the tree T , but since the choice of the tree will
always be clear, this information is not contained in the notation for the polytope.

Remark 8.1.7. A useful construction of gluing trees T1 and T2 along petioles (that
is, one petiole of T1 is identified with a petiole of T2, as in Fig. 8.2) has its counterpart
in the class of lattice polytopes. The polytope corresponding to obtained tree T and
an abelian group G is the fibre product of polytopes corresponding to (T1, G) and
(T2, G) over the set of coordinates corresponding to identified petioles. The proof can
be found in [Sul07, BW07, SS05, Mic11a] – there are different versions depending
on the class of considered models.

Figure 8.2: Two trees glued along grey petioles

We would like to be able to say something about the ideal of the projective model of a
phylogenetic tree, i.e. the ideal of phylogenetic invariants of (T , G). The observation
below follows in a standard way from the description of the polytope PG, as explained
in section 2.3.
Observation 8.1.8. The generating binomials of a toric ideal associated with a poly-
tope PG correspond to integral relations between lattice points of this polytope (see
also Lemma 2.3.3). Hence in our situation the generating set can be created from
relations between flows. Such relation can be described in the following way. We
number all edges of a tree from 1 to e = |E|. The flows are specific e-tuples of group
elements. Each relation of degree m between the flows will be encoded as a pair of
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matrices with m columns and e rows with group elements as entries. We require
that each column represents a flow. Moreover, for k = 1, . . . , e the k-th rows of the
matrices should differ by a permutation of entries.

For a general group-based model this is a purely combinatorial description of all phy-
logenetic invariants for any tree [SS05]. However, it is not a very effective description,
since generating sets obtained in this way tend to be large. This construction can
be generalized to the class of G-models, see [Mic11a].

Example 8.1.9. Consider the binary Jukes-Cantor model, that is the model corre-
sponding to the group Z2, and the tree T in Fig. 8.3.

v1 v0

Figure 8.3: A rooted tree with the root v0 and one inner vertex v1

We give an example of a relation between lattice points of PG, hence of a binomial in
the ideal of phylogenetic invariants of (T , G). In vectors containing the information
about flows the petioles adjacent to v1 is represented by first two entries. The third
entry corresponds to the inner edge and the last three entries to petioles adjacent
to the root v0. The following pair of matrices denote a relation.

A1 =


1 0
0 1
1 1
1 0
0 1
0 0

 A2 =


0 1
1 0
1 1
1 0
0 1
0 0


By definition of a flow (see Definition 8.1.2) the third row has to be both the sum of
the first two rows and of the last three rows. Each row of A1 is indeed a permutation
of the corresponding row of A2.

8.1.2 The algorithm

The first step of all our computations is passing from a phylogenetic tree (T , G)
to the lattice polytope PG associated with it. The following algorithm, cited af-
ter [Mic11a, Sect. 4], written in a form which can be quite easily translated into a
computer program, is a direct consequence of Theorem 8.1.5.

Algorithm 8.1.10. The input is the structure of T and the group law in G. The
output, that is the list of vertices of PG, is computed in the following steps.
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1. Choose a root and write all edges of T as oriented away from the root.

2. For each inner vertex choose one outgoing edge.

3. Fix a bijection b from G to the standard basis of Z|G|.

4. Consider all possible assignments of elements of G to the edges which were
not chosen in step 2. There are |G||E|−|N | such assignments.

5. From each such an assignment make a complete one: to any edge e chosen
in step 2 assign ge ∈ G to each chosen edge in such a way that the signed
sum of elements around each inner vertex gives the unit in G. The signed sum
means that we take the negatives of elements assigned to incoming edges. Such
completion of an assignment is done top-down, i.e. starting from the root.

6. Each complete assignment gives a vertex of the polytope: (b(ge))e∈E , where ge
is the element of G associated with edge e.

Our implementation of this algorithm (written in C++) can be downloaded from
www.mimuw.edu.pl/∼marysia/polytopes with an instruction and a detailed spec-
ification of the input and output data format. It can be used to compute vertices
of the polytope associated with a tree given by the user in an input file and one of
the groups (with small numbers of elements) defined in the source code. However,
extending the program such that it would work for larger class of groups is only a
slight modification of a source code.
There are two non-obvious points in the implementation. One is step 2 of the algo-
rithm: making a choice of an outgoing edge from each vertex. It is much easier to
choose incoming edge for each vertex except the root and the leaves, as this choice
is unique, so we do not need another structure to refer to. Hence what is really done
in the program is generating all sockets on T and completing them to a group flow,
as in Observation 8.1.4. Also, if the group operations are precomputed, we indeed
obtain the complexity O(|N ||G||E|−|N |) predicted in [Mic11a].
As a result we have a fast program which takes a tree in a simple text format as an
input and allows to choose one of the groups from the library. It computes the list
of vertices of a polytope associated with the input model and outputs it to a text
file. It also enables the user to work with this polytope, given as an object of an
internal class of the program, in further computations. For example, this simplified
significantly the programming necessary to perform the computations of Hilbert-
Ehrhart polynomials, described in Section 8.3.

8.2 Normality

Knowing that the projective variety XP(T , G) associated with a general group-based
model is toric, it is natural to ask whether it is normal. Most theorems in toric
geometry work under the assumption of normality. This property can be checked

110



by investigating the corresponding polytope PG, described in section 2.3. Below we
describe our results concerning this question, contained in [DBM12, Sect. 4.1].

Notation 8.2.1. By nP we denote the result of scaling n times a polytope P , called
the n-th dilation of P :

nP = {np : p ∈ P}.

We first check whether XP(T , G) is projectively normal (see Definition 2.3.4), which
corresponds to the condition that for any n ∈ N any lattice point in nPG is a sum
of n lattice points of PG.
Computations described in [Mic11a, Prop. 5.3] have shown that for trivalent trees for
the groups Z2, Z3, Z4 and Z2 × Z2 the associated varieties are projectively normal.
However, by [Mic11a, Rem. 5.4], for the 2-Kimura model the associated variety
is not projectively normal. Therefore, we wanted to check whether all models for
trivalent trees abelian, or maybe at least cyclic, groups are projectively normal.
Using our implementation of Algorithm 8.1.10 and Normaliz software (see [BIS]) we
were able to check normality for a few more models and these computations gave
counterexamples to these questions.

Proposition 8.2.2. The polytope PG associated with a phylogenetic tree (K1,3, G),
where K1,3 is the tripod and G is one of the groups Z6, Z8, Z2 × Z2 × Z2, Z4 × Z2,
is not normal. Hence geometric models XP(K1,3, G) are not projectively normal.
Moreover, if G is Z5 or Z7, then PG is normal and XP(T , G) is projectively normal,
hence also normal, for any trivalent tree T .

Proof. Using our program we can obtain the set of vertices of the polytope related
to the investigated group and the tripod. Then we apply Normaliz (see [BIS]) to
compute the Hilbert basis of the cone spanned by vertices of PG. We compare it to
the set of vertices of PG: they are equal if and only if PG is normal (in the lattice
spanned by its vertices). We performed these tests for Z6, Z8, Z2 × Z2 × Z2 and
Z4 × Z2, and in all these cases the result was that the polytope is not normal.
To prove the second statement, we use the fact that the polytope associated with
a tree obtained by gluing T1 and T2 along petioles is the fibre product of polytopes
associated with two trees T1 and T2 (see Remark 8.1.7). Moreover, any trivalent
tree can be obtained by a series of such identifications, starting from the tripod
and adding another tripod to the current tree in each step. Hence, by [Mic11a,
Lem. 5.1], if XP(K1,3, G) is projectively normal then for any trivalent tree T the
variety XP(T , G) is projectively normal. Hence it is sufficient to check whether the
polytope PG associated with the tripod is normal, which we do for Z5 and Z7 with
the method described above.

In particular, the class of general group-based models contains models which are not
projectively normal. We believe that it may be difficult to characterize the class of
groups for which associated geometric models are (projectively) normal, or even to
determine an infinite class of (projectively) normal general group-based models. On
the other hand there is the following observation.

111



Lemma 8.2.3. Let T be a tree and G1 ⊂ G2 be abelian groups. If XP(T , G1) is not
projectively normal then XP(T , G2) also is not projectively normal.

Proof. Let Mi be the lattice with a basis indexed by pairs (e, g), where e ∈ E is
an edge of T and g ∈ Gi. The inclusion G1 ⊆ G2 gives us a natural monomor-
phism f : M1 →M2. Let Pi ⊂Mi be the polytope associated with the phylogenetic
tree (T , Gi). Note that vertices of P1 are mapped to vertices of P2 for G1-flows on
T are also G2-flows. Let M̃i ⊂ Mi be a sublattice spanned by vertices of Pi. Then
f(M̃1) ⊂ M̃2.
As P1 is not projectively normal in the lattice M̃1, there exists a point x ∈ nP1∩M̃1

which is not a sum of n vertices of P1. Let us consider y = f(x). We see that
y ∈ nP2 ∩ M̃2. If P2 was normal in M̃2, we would be able to write y =

∑n
i=1 qi with

qi ∈ P2.
Notice that each point in the image f(M1) has zero on each coordinate corresponding
to any (e, g) for g ∈ G2 \ G1. In particular, y has zeroes on these entries. Since all
entries of all vertices of P2 are nonnegative, this proves that all entries indexed by
(e, g) for g ∈ G2 \G1 are zero for qi. However, vertices of P2 which have all non-zero
entries on coordinates corresponding to (e, g) for g ∈ G1 are in the image of P1,
because they represent G1-flows on T . Therefore each qi = f(pi) for some pi ∈ P1.
This implies x =

∑
pi, hence a contradiction.

Corollary 8.2.4. All abelian groups G such that |G| is divisible by 6 or 8 give rise
to geometric models of phylogenetic trees which are not projectively normal.

Let P be the polytope associated with the tripod and the group Z6. We have already
seen that P is not normal, hence the associated affine variety is not normal. However,
it is also an interesting question whether the associated projective variety is normal
or, equivalently, whether the polytope P is very ample (see Definition 2.3.5; the
motivation for this question can be found e.g. in [Bru13]). By direct computation
for (any) cone associated with a vertex of the polytope P (see Lemma 2.3.6) we
obtain the following result.

Proposition 8.2.5. Polytope P associated with (K1,3,Z6) is not very ample. Hence
the associated projective toric variety is not normal.

8.3 Deformation equivalence
The question about normality of geometric models of phylogenetic trees is strongly
connected to, or even motivated by, deformation problems. It is known that the
binary Jukes-Cantor model for trivalent trees has an interesting property: an el-
ementary mutation of a tree gives a deformation of the associated varieties. This
implies that binary Jukes-Cantor models of trivalent trees with the same number
of leaves are deformation equivalent. The original geometric proof can be found
in [BW07] and a new combinatorial one in [Ilt10]. The main result of [Kub10] (ob-
tained before the work presented here was finished) shows that this is not true for

112



the 3-Kimura model. As it was not obvious what to expect for other models, we
computed Hilbert functions in a few cases, see [DBM12, Sect. 4.2]. When the geo-
metric model is projectively normal, they are equal to Hilbert-Ehrhart polynomials,
see Definition 8.3.1, which are invariants of deformation.

8.3.1 Hilbert-Ehrhart polynomials

We say that two subvarieties X1, X2 ⊂ Pm are deformation equivalent if their classes
are in the same connected component of the Hilbert scheme. In other words, by a
well-known theorem of Hartshorne, they are deformation equivalent if and only if
they have the same Hilbert polynomial (see [Har66]).

Definition 8.3.1. The Ehrhart polynomial of a lattice polytope P (in lattice M)
is the polynomial whose value for n ∈ N is the number of lattice points in nP .
The Hilbert function of the projective variety associated with a lattice polytope P
maps n ∈ N to the number of points with the last coordinate equal to n in the
semigroup generated by lattice points of P × {1} in M × Z. By Remark 2.3.7 and
Theorem 8.1.5, in our case this is the same as the number of points in the semigroup
generated inM by lattice points (i.e. vertices only) of P such that the sum of first |G|
coordinates (corresponding to one edge) is n. Such points will be called points of
degree n in the semigroup generated by P ∩M .
It is known that there exists a polynomial, called the Hilbert polynomial of the
projective variety associated with P , such that for n large enough it is equal to the
Hilbert function.

Remark 8.3.2. It follows directly from Definition 2.3.5 that the Ehrhart polynomial
is equal to the Hilbert function (and then to the Hilbert polynomial), if and only
if P is a normal polytope, that is the associated projective variety is projectively
normal. We use the term Hilbert-Ehrhart polynomial in this case.

The smallest number of leaves which admits at least two different shapes of trivalent
trees is six. We investigated geometric models corresponding to the snowflake and
to the 3-caterpillar (see Example 6.1.6) and one of a few groups G with |G| ≤ 9.
By Remark 8.3.2, in cases of normal models we may check the deformation equiv-
alence of geometric models on the snowflake and the 3-caterpillar by computing
numbers of lattice points in some multiples of the associated polytopes, called P s

G

and P c
G respectively. To be precise, the value of the Hilbert-Ehrhart polynomial of

XP(T , G) in n ∈ N is the number of lattice points in nPG. Hence, even if it is not
possible to obtain enough data to determine the whole polynomials (most often be-
cause of the memory constraints), in some cases we may decide that Hilbert-Ehrhart
polynomials of P s

G and P c
G are not equal since their values for some (small) n are

different.
The most interesting cases were these of biologically meaningful 2-Kimura and 3-
Kimura models. However, before we completed our computations, the numbers of
lattice points in 3P s

G and 3P c
G for 3-Kimura model (i.e. G ' Z2 × Z2) were given

in [Kub10]. The result implies that varieties associated with these models are not
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deformation equivalent. Our computations confirm this result and also give the fol-
lowing.

Proposition 8.3.3. Varieties associated with 2-Kimura models for the snowflake
and the 3-caterpillar trees have different Ehrhart polynomials: there are 56992 lattice
points in the second dilation of the corresponding polytope for the snowflake and
57024 for the 3-caterpillar.
The pairs of geometric models for the snowflake and the 3-caterpillar trees and G
being one of Z3, Z4, Z5, Z7 have different Hilbert-Ehrhart polynomials and therefore
are not deformation equivalent.

Proof. Methods used to obtain these results are described in the next section, and
precise results of the computations are presented in the Appendix.
For the second statement we use the fact that geometric models for trivalent trees
and groups Z3, Z4, Z5, Z7 are normal, which follows from [Mic11a, Prop. 5.3] and
from Proposition 8.2.2

Remark 8.3.4. In the cases where G is one of Z8, Z2 × Z2 × Z2, Z9, the pairs
of geometric models for the snowflake and the caterpillar have different Hilbert
functions. However, since the models for Z8 and Z2×Z2×Z2 are not normal and for
Z9 we were not able to check the normality, these results cannot be used to conclude
that there is no deformation equivalence in these cases.

8.3.2 A few technical details

Our first attempt to compute numbers of lattice points in consecutive dilations of
a polytope was the direct method: constructing the list of lattice points in nP by
adding vertices of P to lattice points in (n − 1)P and reducing repeated entries.
This algorithm is not very efficient, but, after adding a few technical upgrades to
the implementation, we were able to confirm the result of [Kub10] concerning the
3-Kimura model. However, this method does not work for non-normal polytopes.
Therefore to extend the results and to investigate 2-Kimura model another algorithm
had to be implemented.
The second idea was to compute inductively the relative Hilbert polynomials and
use the properties of toric fibre product developed in [Sul07] (and used in a slightly
different way also by [Kub10] in computations for the 3-Kimura model), described
below. This approach involves computing the number of points of degree n in the
semigroup generated by lattice points of the polytope, lying in the fibre of the
projection onto the set of coordinates (e, ·), where e is a fixed petiole and the second
parameter runs through G.
We begin with preliminary computations performed for models on the tripod. Let

P ⊂ Z3m ∼= Zm × Zm × Zm

be the polytope associated with the tripod and a chosen group G, and

pri : Z3m ∼= Zm × Zm × Zm → Zm
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for i = 1, 2, 3 be the projection onto the group of coordinates corresponding to
the petiole ei. Let fi be a function such that fi(a) for a = (a1, . . . , am) ∈ Zm is the
number of lattice points in (a1+· · ·+am)P that are projected by pi to a. One of these
functions, say f := f3, will be our base for induction. In the program we compute
f(a) for sufficiently many values of a to be able to proceed with the algorithm.

Example 8.3.5. The polytope P for the binary Jukes-Cantor model and the tripod
has the following vertices:

(0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 1, 0), (1, 0, 0, 1, 1, 0), (1, 0, 1, 0, 0, 1).

These are the only lattice points in P , hence in this case fi(1, 0) = fi(0, 1) = 2.

Next, we need to compute the number of points of degree n in the fibre of a projection
onto two distinguished petioles. Let gij be the function such that gij(a, b) for (a, b) =
(a1, . . . , am, b1, . . . , bm) ∈ Zm×Zm is the number of lattice points of degree a1 + · · ·+
am that are projected to a by pri and to b by prj. We choose g := g23 and again we
compute g(a, b) for sufficiently many pairs (a, b) to proceed with the algorithm.
Let now T be a tree and P the polytope of (T , G) with a distinguished petiole e. Let
hT be the function such that h(a) for a = (a1, . . . , am) ∈ Zm is equal to the number
of points in the fibre of the projection corresponding to e, of the set of points of
degree a1 + · · ·+am, onto a. We construct a new tree T ′ by attaching a tripod to T :
a chosen petiole of K1,3 is identified with e as in Remark 8.1.7. Then the polytope
associated with T ′ is the fibre product of polytopes associated with T and K1,3.
Thus we can calculate the function hT ′ for the T ′ with the following formula:

hT ′(a) =
∑
b

g(a, b)h(b),

where b runs through the set of all points b ∈ Zm such that g(a, b) 6= 0.
This allows us to compute inductively the relative Hilbert function, and the Hilbert
function can then be obtained by summing relative ones over all admissible values
of a. However, it is better to do the last step in a different way – we perform the
last gluing with the tripod and summing in the same time. Suppose that, as before,
we are given a tree T with a distinguished petiole e and a corresponding relative
Hilbert function hT . We compute the Hilbert function of the tree T ′, which comes
from T by gluing with the tripod along a petiole, using the formula

hT ′(n) =
∑
a

f(a)h(a),

where a = (a1, . . . , am),
∑
ai = n, and the function f is our induction base intro-

duced above.
Thus, decomposing the snowflake and the 3-caterpillar (or any other trivalent tree)
trees to a sequence of tripods glued along petioles, we can inductively compute (a
few small values of) the corresponding Hilbert functions. What is important, using
this method one can also compute Ehrhart polynomials for non-normal models,
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if only the Ehrhart polynomial for the tripod can be computed. One has only to
consider number of lattice points in nP instead of the points of degree n in the
semigroup generated by lattice points of P . In particular, for 2-Kimura model some
computations turned out to be possible, because its polytope for the tripod is quite
well understood (see [Mic11a, Rem. 5.4]) – at least well enough to list lattice points
in its second dilation. This way we obtained the results of Proposition 8.3.3.

8.4 Phylogenetic invariants
In this section we investigate the most important objects of phylogenetic algebraic
geometry – ideals of phylogenetic invariants, defined as polynomials which give zero
for any point of the geometric model of a chosen phylogenetic tree. The main problem
is to give an effective description of the whole ideal of phylogenetic invariants of a
model, for example in a form of a relatively small generating set.
We present some results concerning this problem in the case of general group-based
models. We suggest a way of obtaining all phylogenetic invariants of a general group-
based model on a claw tree. More precisely, we conjecture that our method produces
invariants which generate the whole ideal of the affine model. If this is true then,
together with the results of [SS05], it leads to an algorithm for listing all generators
of the ideal of phylogenetic invariants for any general group-based model on any
tree. The results of this section were first described in [DBM12, Sect. 3].

8.4.1 Inspirations

The main inspiration for our method are the conjectures stated by Sturmfels and Sul-
livant in [SS05], recalled below. They are still open but, as we will see in Section 8.4.3,
they are strongly connected to the ideas presented in these section. In particular,
we prove that our algorithm of obtaining phylogenetic invariants works for trees
with more than eight leaves for the 3-Kimura model if we assume that the weaker
conjecture of [SS05] holds (see Proposition 8.4.19).
By K1,n we denote the claw tree with n leaves, as in Example 6.1.11, and G is a
finite abelian group. We consider general group-based phylogenetic trees (K1,n, G).

Definition 8.4.1. By φ(G, n) = d we denote the least natural number such that the
toric ideal of X(K1,n, G) is generated in degree d. The phylogenetic complexity
of the group G is defined as

φ(G) = sup
n∈N

φ(G, n).

Based on numerical results Sturmfels and Sullivant suggested in [SS05] the following
conjecture.

Conjecture 8.4.2. [SS05, Conj. 29] For any abelian group G we have φ(G) ≤ |G|.

Because of its importance in applications, the case of the 3-Kimura model was stated
as a separate conjecture.
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Conjecture 8.4.3. [SS05, Conj. 30] For G ' Z2 × Z2 we have φ(G) ≤ 4.

Still very little is known about the function φ, apart from the case of the binary
Jukes-Cantor model (see also [CP07]):

Proposition 8.4.4. [SS05, Thm 28] In the case of the binary Jukes-Cantor model
φ(Z2) = 2.

There are also some computational results supporting these conjectures. To the table
in [SS05, Sect. 5] presenting the computations made by Sturmfels and Sullivant a
few cases can be added.

Proposition 8.4.5. We have obtained the following computational results for φ(n,G):

• φ(Z3, 6) = 3,

• φ(Z5, 4) = 4,

• φ(Z8, 3) = 8,

• φ(Z2 × Z2 × Z2, 3) = 8,

• φ(Z4 × Z2, 3) = 8.

Proof. After having obtained polytopes for listed models using our implementation
of Algorithm 8.1.10, we use 4ti2 software (see [tt]). This program allows to compute
the toric ideal for a given semigroup generators. The ideal can be given e.g. in the
form of its Markov basis, which is a generating set of a relatively small number of
element, but much easier (and quicker) to compute than, for example, the Gröbner
basis. Hence we compute Markov bases (which had hundreds of elements in the
largest considered cases) and check the degrees of its elements.

For the 3-Kimura model it is not even known whether the function φ is bounded.
This question is related to Conjecture 8.4.9 stated in the next section.

8.4.2 A method for obtaining phylogenetic invariants

We propose a method for finding generators of the ideal of phylogenetic invariants,
which is not purely algebraic, but inspired by the geometry of considered varieties.
First we introduce some notation.

Definition 8.4.6. Let Ti for i = 1, 2 be trees with sets of vertices and edges Vi
and Ei. We say that T1 is obtained by a contraction of an edge e of T2 if there is a
bijection of V1 with V ′2 equal to V2 with ∂1(e) and ∂2(e) identified, which induces a
bijection between E1 and E2\{e}. In this situation we say that T2 is a prolongation
of T1.

Example 8.4.7. A tree K1,6 with a root in its inner vertex has two different shapes
of prolongations (but if we label vertices, there are more possibilities). The one shown
in Fig. 8.4 has two petioles attached to one inner vertex and four to the second one.
The other possibility is a tree with three petioles attached to each inner vertex.
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Figure 8.4: K1,6 and one of its prolongations

Remark 8.4.8. Note that these definitions are not the same as the definitions of
flattenings introduced in [AR08] and studied in [DK09].

Fix a tree T and consider the polytope PG associated with a general group-based
model X(T , G) as in Section 8.1.1. This association is based on the fact that vertices
of PG correspond to G-valued sockets on T . On the other hand, from the toric
construction of X(T , G) we know that vertices of PG correspond to coordinates of
the ambient space of this variety.
Then, if T2 is a prolongation of T1 then the variety X(T1, G) is in a natural way a
subvariety ofX(T2, G). This is because we have a bijection of sets of leaves L1 and L2

of these trees, and the construction of the prolongation allows us to identify sockets
on T1 and T2. Hence both varieties are contained in Ps−1 where s is the number of
sockets. The natural inclusion corresponds to the projection of character lattices:
in the lattice of X(T2, G) we forget all coordinates (e, g) where e is the contracted
edge. Now the following conjecture seems natural.

Conjecture 8.4.9. The variety X(K1,n, G) is equal to the scheme-theoretic inter-
section of all the varieties X(Ti, G), where Ti are all prolongations of K1,n which
have both inner vertices of valency at least three. In other words, the sum of ideals
of X(T , G) is the ideal of X(K1,n, G).

Remark 8.4.10. Since X(K1,n, G) is a subvariety of X(Ti, G) for any prolonga-
tion Ti of K1,n, one inclusion is obvious. Note also that the condition of valency is
necessary to make the conjecture non-obvious. Otherwise one of the varieties that we
intersect would be equal to X(K1,n, G), because a contraction of a vertex of degree 2
does not change the corresponding variety.

Let us explain how one will be able to compute phylogenetic invariants of a group-
based model X(T , G) if Conjecture 8.4.9 holds. This algorithm requires using [SS05,
Thm 23] (see also [Sul07, Thm 12]). It states that the ideal of phylogenetic invariants
of a group-based model on T is generated by ideals of this model on T1 and T2 and
some (easily computed) quadratic binomials, where T1 and T2 can be glued along
petioles to give T as in Remark 8.1.7.
We first show how to compute phylogenetic invariants of X(K1,n, G). Note that all
prolongations Ti of K1,n have maximal valency of vertices strictly smaller than K1,n.
Hence the algorithm of computing phylogenetic invariants can run by induction on
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this parameter. Each prolongation Ti of K1,n can be constructed by gluing two claw
trees K1,n1 and K1,n2 such that n1, n2 < n along petioles. Thus, by [SS05, Thm 23], it
is sufficient to compute phylogenetic invariants ofX(K1,n1 , G) andX(K1,n2G). Then,
by Conjecture 8.4.9, we sum ideals of all prolongations. Working inductively, we
obtain the result that the ideal of phylogenetic invariants of X(K1,n, G) is generated
by phylogenetic invariants of X(K1,3, G) and some quadratic binomials.
Then one can compute phylogenetic invariants for any general group-based model
X(T , G) for any tree T (without 2-valent vertices). Any tree T can be presented as
a result of gluing some claw trees along petioles. Their phylogenetic invariants can
be computed as above, and by [SS05, Thm 23] they generate phylogenetic invariants
of X(T , G) together with some quadratic binomials.
In particular, if Conjecture 8.4.9 holds then the degree in which the ideals of claw
trees are generated for a fixed group G cannot grow with the number of leaves.
This means that φ(G) = φ(G, 3), which can be computed in many cases. Therefore
Conjecture 8.4.9 implies all these cases of Conjecture 8.4.2 in which we can compute
φ(G, 3), including the most interesting 3-Kimura model.

Remark 8.4.11. One may observe that for a prolongation T2 of T1 are naturally
contained in the same ambient space for any symmetric model of evolution, even if
they do not correspond to toric varieties. Thus Conjecture 8.4.9 may prove helpful
in computing phylogenetic invariants of claw trees for larger class of models than
just general group-based models.

Example 8.4.12. Let us present the method of finding phylogenetic invariants in
a simple case – we consider the binary Jukes-Cantor model on K1,4. This example is
well-known and phylogenetic invariants of X(K1,4,Z2) can be obtained with many
different methods, but we have chosen this one because the number of phylogenetic
invariants is small enough to be included in the paper.
Consider two prolongations of K4,1 in Fig. 8.5.

1

2

3

4

1

2

3

4
Figure 8.5: Prolongations of K1,4

There are 8 variables indexed by flows (or sockets) on K1,4:

q0000, q0011, q0101, q0110, q1001, q1010, q1100, q1111.

Suppose that we already know the phylogenetic invariants for these prolongations.
This particular case is very simple, but in general this is the step that follows
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from [SS05, Thm 23]. For the first prolongation the ideal is generated by two rela-
tions

q0000q1111 − q1100q0011, q1010q0101 − q1001q0110.

For the other prolongation by suitably permuting variables we get the relations

q0000q1111 − q1010q0101, q1100q0011 − q1001q0110.

These four relations (if fact one is redundant and it is enough to consider three of
them) generate the ideal of K4,1.

One may probably think that Conjecture 8.4.9 is too strong to be true. However,
we prove that it holds for the binary Jukes-Cantor model in Proposition 8.4.17. We
also explain two modifications of this conjecture to weaker ones which can still have
a lot of interesting applications.
The first states just that Conjecture 8.4.9 holds for large enough claw trees, which
turns out to be equivalent to boundedness of phylogenetic complexity.

Proposition 8.4.13. Fix an abelian group G. Conjecture 8.4.9 holds for K1,n and G
for n large enough if and only if function φ(n,G) is bounded.

Proof. One implication is very easy. Suppose that Conjecture 8.4.9 holds for n > n0.
Let m ∈ N be such that ideals of X(K1,k, G) are generated in degree m for k ≤ n0.
Note that for n > n0 the claw tree K1,n can be constructed by gluing along petioles
and contractions from a number of K1,ki for ki ≤ n0. From the method of obtaining
phylogenetic invariants described above we see that the ideal of X(K1,n, G) is also
generated in degree m, so φ(n,G) ≤ m.
For the other implication let us assume that φ(G) ≤ m. Consider a binomial B in
the ideal of X(K1,n, G), which is of degree less or equal to m. We need to prove
that B belongs to the ideal of X(T , G), where T is a prolongation T of K1,n (this is
in fact even more than the statement of Conjecture 8.4.9). Such a binomial B can
be expressed as a linear relation between (at most m) vertices of the polytope PG
associated to (K1,n, G), see Theorem 8.1.5. Each vertex corresponds to a G-flow on
K1,n. We write B as a pair of matrices A1 and A2 with elements of G as entries,
where each column contains coordinates of a vertex of PG, as in Observation 8.1.8.
These matrices have at most m columns and exactly n rows.
Consider the matrix A = A1 − A2. Let us subdivide the first column of A into sets
of at most |G| elements summing up to the unit. This is possible, because when we
look at partial sums a1, a1 + a2, a1 + a2 + a3, . . ., a1 + . . . + a|G| of a sequence of
|G| elements of G, then either one of them is 0 or a1 + . . . + aj = a1 + . . . + ak for
some j, k ≤ |G|, j < k, in which case aj+1 + . . . + ak = 0. This subdivision of the
first column determines the subdivision of the set of rows of A into sets R1, . . . , Rp.
Let us look now at the second column. In the same way we can subdivide it into
sets of at most |G|2 entries summing up to 0, and such that the entries in each set
Ri from the subdivision in the previous step are all contained in one set of the new
subdivision. Then, working inductively, we can subdivide the set of rows of A into
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sets of at most |G|m elements such that in every column all entries from a set sum
up to 0.
Hence for n > |G|m + 1 we can find a set S of rows of A such that in each column
entries of rows in S sum up to 0 (and entries of rows in the complement of S also)
and both cardinality of S and of its complement are greater than 1. This implies that
for every i = 1, . . . ,m the sums of entries lying in the i-th column and in the rows in
S are the same in A1 and A2. Therefore, when we add to both matrices an extra row
whose entry in any column is equal to the sum of entries in this column and rows
of S of A1 or A2, we obtain a representation of the binomial B on a prolongation of
K1,n – the added row corresponds to the added edge and S and its complement to
petioles adjacent to its two vertices.

Corollary 8.4.14. In particular, this result implies that if Conjecture 8.4.3 (con-
cerning the 3-Kimura model) holds then Conjecture 8.4.9 also holds for G ' Z2×Z2

for n > 257. In Section 8.4.3 we improve this estimate significantly.

Remark 8.4.15. The argument in the proof of Proposition 8.4.13 can be easily
generalized to the class of G-models.

Before we show the second weaker version of Conjecture 8.4.9, we explain another
way of intersecting models of prolongations of K1,n, coming from toric geometry.
Let T1 and T2 be two subtori of a torus T with character lattice M . Then the
character lattice Mi of Ti is isomorphic in a natural way with M/Ki, where Ki is
a torsion free lattice corresponding to characters with trivial restriction to Ti. The
ideal of Ti in C[T ] is generated by binomials corresponding to relations between such
characters. Points of T are given by semigroup homomorphismsM → C∗ and points
of Ti are these homomorphisms which map Ki to 1. Then points of the intersection
T1 ∩ T2 are these homomorphisms M → C∗ which map the lattice K1 +K2 to 1.
The intersection Y of T1 and T2, possibly reducible, is given by the ideal corre-
sponding to K1 + K2. This lattice may be non-saturated, but still Y contains a
distinguished torus T ′, which is one of its connected components, whose character
lattice is M/K ′, where K ′ is the saturation of K1 +K2. Let Xi be the toric variety
that is the closure of Ti in the ambient projective space of T , and let X ′ be the
closure of T ′. We call the toric variety X ′ the toric intersection of X1 and X2.
The following conjecture is a variant of Conjecture 8.4.9 in which we consider the
toric intersection instead of the scheme-theoretic intersection of models.

Conjecture 8.4.16. Let Ti be all prolongations of K1,n with two inner vertices of
valency at least three. Then the toric variety X(K1,n, G) is the toric intersection of
all the toric varieties X(Ti, G) for any abelian group G.

We state this conjecture, because it is much easier to check that the previous one –
one has to look only at the tori of models. However, since all biologically meaningful
points are contained in the big torus of the model (as explained in [CFS08]), such a
result would be important from the point of view of applications. Moreover, it can
be checked numerically for trees with small enough number of leaves. To explain it
properly, let us consider the following general setting.
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Assume that the tori Ti are associated with polytopes Pi and that T is just the big
torus of the projective space Ps ⊇ Ti. Let Ai be a matrix whose columns represent
vertices of the polytope Pi. Characters which are trivial on Ti, or equivalently bino-
mials in the ideal of corresponding to Ti, are represented by integer vectors in the
kernel of Ai. The characters trivial on the intersection are given by integer vectors in
kerA1 + kerA2. Note that the ideal of the toric intersection T ′ of the tori Ti ⊆ T is
generated by binomials corresponding to characters trivial on T ′, that is to elements
of the saturated lattice of kerA1 + kerA2. These binomials define a toric variety in
Ps. This variety is contained in the intersection (in fact it is a toric component) of
the toric varieties that are the closures of Ti. The equality may not hold however,
as the intersection might be reducible.
In Conjecture 8.4.16 we have to compare two tori, one contained in the other: the
big torus of X(K1,n, G) and the torus of the toric intersection of X(Ti, G). To do
this, it is sufficient to compare their dimension, that is the rank of the character
lattice. Let us note that the dimension of the intersection of two tori T1 ∩ T2 in Ps
is given by s− rank(Zs ∩ (kerA1 + kerA2)). To compute this dimension it is enough
to compute the ranks of matrices A1, A2 and B, where B is a matrix obtained by
taking all rows of A1 and A2 (that is, kerB = kerA1 ∩ kerA2). This can be done
very easily using standard functions of GAP (see [GAP12]).
We have applied this idea to check Conjecture 8.4.16 for a few trees with small
number of leaves, which will be used in the next section.

8.4.3 Binary Jukes-Cantor and 3-Kimura models

To support Conjecture 8.4.9 we prove it in the case of the binary Jukes-Cantor model.
This model is already well understood, it was investigated for example in [BW07,
CP07, SS05]. In particular, the quadratic Gröbner basis is constructed explicitly for
any tree in [CP07, Proposition 3]. Now we add the following result.

Proposition 8.4.17. Conjecture 8.4.9 holds for the binary Jukes-Cantor model.

Proof. We use the same notation as in the proof of Proposition 8.4.13, that is a bino-
mial in the ideal of X(K1,n,Z2) is represented by a pair of matrices A1 and A2, and
we look at their difference A = A1 −A2. By [SS05, Thm 28] (see Proposition 8.4.4)
we know that φ(Z2) = 2. Hence it is sufficient to consider binomials of degree 2,
i.e. A1, A2 and A have two columns, and prove that they come from prolongations
of K1,n. For every such a binomial we construct a subset S of the set of rows of A
which defines a suitable prolongation (i.e. entries in columns sum up to 0 and the
cardinality of S and its complement is greater than 1).
Swapping columns of A2 if necessary, we may assume the first row of A is (0, 0). Let
A′ be the matrix obtained by deleting the first row of A. Note that, because each
row of A2 is a permutation of the corresponding row of A1, rows of A are only (0, 0)
and (1, 1). If A′ contains a row (0, 0) then we take S consisting of this row and the
first row of A. And if there are only (1, 1) rows in A′ then we may take S consisting
of two such rows.
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Remark 8.4.18. From the proof above it follows that in fact to obtain X(K1,n,Z2)
it is enough to intersect just three models of prolongations. For example, we may
take prolongations corresponding to the subset S of the set of rows of A consisting
of either the first two rows, or the first and the third row, or the second and the
third one. If the first two options do not give a subset S satisfying the criteria, then
the second and the third row must be equal.

We also prove a conditional result for the 3-Kimura model, improving the result
noted in Corollary 8.4.14.

Proposition 8.4.19. If Conjecture 8.4.3 (i.e. [SS05, Conj. 30]) holds then Conjec-
ture 8.4.9 holds for n > 8.

Proof. We again use the matrix notation to represent binomials in the ideal of
phylogenetic invariants of X(K1,n,Z2 × Z2). Because we assume Conjecture 8.4.3,
we consider matrices A = A1 − A2 with at most 4 columns. Since A is a difference
of two matrices whose entries in each row are the same up to a permutation, all
entries in each row sum up to (0, 0) ∈ Z2×Z2. Hence the number of 1’s on the first
coordinates of entries in each rows must be even, and the same applies to the second
coordinates of entries.
Permuting the columns of A2 if necessary, we may assume that all entries in the first
row of A are (0, 0). Let A′ be the matrix obtained by deleting the first row of A. For
each subset S of the set of rows of A′ we consider the sum of rows in S, denoted by
αS. Note that each αS also has an even number of 1’s both on first coordinates and
on second coordinates of entries. There are at most 64 such vectors (less if A has
less than 4 columns).
By the pigeonhole principle, if n > 8 then we can find two subsets S1 and S2 of the
set of rows of A′ which are not complements of each other and such that αS1 = αS2 .
If we take the symmetric difference of S1 and S2, we obtain a proper nonempty set
S of rows of A′ whose entries in each column sum up to (0, 0). Finally, we add the
first row of A either to S or its complement, so that both these sets have more than
one element. Thus we obtain a subdivision of the set of rows of A which gives a
prolongation T of K1,n such that considered binomial is in the ideal of phylogenetic
invariants of (T ,Z2 × Z2).

Remark 8.4.20. For n ≤ 8 we checked that the toric intersection of the 3-Kimura
models on prolongations of K1,n is X(K1,n,Z2 × Z2). We applied the linear algebra
method described at the end of the previous section, and the computations were
done using computer programs [GJ00, tt, GS, GAP12]. These results together with
Proposition 8.4.19 prove that if Conjecture 8.4.3 holds, then also Conjecture 8.4.16
holds. Moreover, we have found it interesting that in all cases we checked it was
sufficient to consider only two prolongations of K1,n.

We end with summarizing the results on relations, in the case of the 3-Kimura model,
between the conjectures of [SS05] and these stated above.
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Corollary 8.4.21. For the 3-Kimura model Conjecture 8.4.9 implies both Con-
jectures 8.4.16 and 8.4.3 (i.e. [SS05, Conj. 30]). Moreover, Conjecture 8.4.3 im-
plies 8.4.16, and also Conjecture 8.4.9 for n > 8.

The topic of this section was further developed by Michałek in his doctoral the-
sis [Mic12b] and in [Mic11b, Mic12a]. Another recent interesting approach to bound-
ing the degree of phylogenetic invariants, in a more general setting, is presented
in [DE12].

Appendix

Here we present the precise results of our computations of Hilbert-Ehrhart polyno-
mials for a few models (on the snowflake and 3-caterpillar trees), stated in Propo-
sition 8.3.3. For |G| ≤ 7 the numbers of lattice points in dilations nP are given for
small values of n.
For Z8, Z2 × Z2 × Z2 and Z9 given numbers are values of the Hilbert function and,
since the first two of these models are not normal and for the last one we could not
check the normality, we do not know if it is equal to the Ehrhart polynomial.

Models for G = Z3

n snowflake 3-caterpillar
1 243 243
2 21627 21627
3 903187 904069
4 21451311 21496023
5 330935625 331976637
6 3647265274 3662146270
7 30770591364 30920349834
8 209116329075 210269891871
9 1189466778457 1196661601837
10 5831112858273 5868930577941
11 25205348411361 25377886917819

Models for G = Z2 × Z2 (3-Kimura)

n snowflake 3-caterpillar
1 1024 1024
2 396928 396928
3 69248000 69324800
4 5977866515 5990170739
5 291069470720 291864710144
6 8967198289920 8995715702784
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Models for G = Z4

n snowflake 3-caterpillar
1 1024 1024
2 396928 396928
3 69248000 69324800
4 6122557220 6138552524
5 310273545216 311525688320
6 10009786400352 10062179606880

Models for G = Z5

n snowflake 3-caterpillar
1 3125 3125
2 3834375 3834375
3 2229584375 2230596875
4 640338121875 642089603125

Models for G = Z7

In this case the first three dilations of polytopes corresponding to considered models
have the same number of lattice points. The numbers of lattice points in the fourth
dilations were too big to obtain precise results without a lot of changes in the
program. Hence we computed only their values modulo 64, which is sufficient to
prove that the Hilbert-Ehrhart polynomials are different.

n snowflake 3-caterpillar
1 16807 16807
2 117195211 117195211
3 423913952448 423913952448
4 ≡ 54 mod 64 ≡ 14 mod 64

Models for G = Z8

n snowflake 3-caterpillar
1 32768 32768
2 454397952 454397952
3 3375180251136 3375013036032

Models for G = Z2 × Z2 × Z2

n snowflake 3-caterpillar
1 32768 32768
2 454397952 454397952
3 3375180251136 3375013036032
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Models for G = Z9

n snowflake 3-caterpillar
1 59049 59049
2 1499667453 1499667453
3 20938605820263 20937202945056
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