
Marek Sokołowski

Efficient Data Structures
And Graph Width Parameters

Doctoral dissertation

Supervisor:
dr hab. Michał Pilipczuk

Institute of Informatics
University of Warsaw

May 2024

iii

Supervisor’s statement

Hereby I confirm that the presented thesis was prepared under my supervision and that it fulfils the
requirements for the degree of Doctor in the field of Natural Sciences in the discipline of Computer and
Information Sciences.

Date Signature

Author’s statement

Hereby I declare that the presented thesis was prepared by me and none of its contents was obtained by
means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic degree.

Moreover, I declare that the present version of the thesis is identical to the attached electronic version.

Date Signature

v

Oświadczenie kierującego pracą

Oświadczam, że niniejsza praca została przygotowana pod moim kierunkiem i stwierdzam, że spełnia ona
warunki do przedstawienia jej w postępowaniu o nadanie stopnia doktora w dziedzinie nauk ścisłych i
przyrodniczych w dyscyplinie informatyka.

Data Podpis

Oświadczenie autora pracy

Oświadczam, że niniejsza rozprawa doktorska została napisana przeze mnie samodzielnie i nie zawiera
treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z
uzyskaniem stopnia doktora w innej jednostce.

Niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data Podpis

Abstract

This dissertation presents several contributions in structural graph theory: the study of combinatorial
properties of various classes of graphs and algorithmic applications of these properties. We focus on families
of graphs characterized by graph width parameters: integer values measuring how efficiently a graph can
be decomposed into simpler pieces following a set of prescribed rules. We present research related to three
such width parameters – treewidth, rankwidth, and twin-width. We show evidence that it is possible to
construct efficient data structures for classes of graphs with bounded values of these parameters, enabling
us to answer a variety of queries about the input graphs, as well as apply certain types of updates to the
graphs.

In Chapter 3 we show the results of the article “Dynamic treewidth” [KMN+23]. We prove that
given a dynamic n-vertex graph of small treewidth k undergoing edge insertions and removals in the
fully dynamic model, we can maintain a tree decomposition of the graph witnessing at each point of
time that the graph has treewidth at most 6k + 5. A single update is processed by our data structure in
subpolynomial amortized time Ok(2

√
logn log logn); here, the Ok(·) notation hides factors depending only

on k. Next, we show that most dynamic programming schemes applicable to tree decompositions in the
usual static setting can also be maintained dynamically within the same time bounds. As an application,
we show a dynamic variant of the classic Courcelle’s theorem [Cou90]: The satisfaction of a fixed property
of graphs expressible in the monadic second-order logic with edge subset quantification (CMSO2) can be
tracked in dynamic graphs of treewidth at most k, also within the same time complexity bounds.

Then in Chapter 4, based on the work “Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth” [KS24], we generalize the dynamic treewidth data structure to a much more general
graph parameter, rankwidth. For a dynamic n-vertex graph updated by edge deletions and additions
whose rankwidth is at most k at all times, we maintain a rank decomposition of the graph of width at
most 4k, again in amortized time Ok(2

√
logn log logn). Since rankwidth generalizes the notion of treewidth

to the setting of dense graphs, we also introduce a framework of dense updates to the graph, allowing
us to redefine the adjacencies using a formula of monadic second-order logic within any chosen t-vertex
subgraph of the maintained graph in time almost linear in t rather than t2.

As a consequence, we give an algorithm that for an n-vertex, m-edge graph and an integer k, in time
Ok(n1+o(1)) +O(m) either produces a rank decomposition of the graph of width at most k, or correctly
determines that the rankwidth of the graph exceeds k. In the positive case, our algorithm can also return
a graph expression witnessing that the cliquewidth of the graph is at most 2k+1 − 1. This improves
upon a previous result of Fomin and Korhonen, who achieved Ok(n2) time algorithm for the problem.
Moreover, given a fixed property of graphs encoded in the monadic second-order logic without edge subset
quantification (CMSO1), we can verify whether the property holds in a graph of rankwidth at most k
within the same time bounds.

Chapter 5 is based on the results from the work “Fully dynamic approximation schemes on planar
and apex-minor-free graphs” [KNPS24] and presents dynamic counterparts of the classic approximation
schemes for Maximum Weighted Independent Set and Minimum Weighted Dominating Set
in planar graphs, described in the static setting by Baker [Bak94]. For a fully dynamic vertex-weighted
planar graph G, updated by edge insertions and removals, as well as weight modifications, and a fixed
real value ε > 0, we maintain the following summaries of the graph:

• a (1− ε)-approximation of the maximum weight of an independent set in time Oε(no(1)), and
• a (1 + ε)-approximation of the minimum weight of a dominating set in time Oε,∆(no(1)) under the

additional assumption that at all times, all vertices of the graph have degrees bounded by ∆.
The techniques heavily rely on the structural properties of graphs of bounded treewidth. The same
techniques are also applicable to arbitrary classes of graphs excluding a fixed apex graph as a minor – such
as the class of toroidal graphs or any class of graphs embeddable in a fixed surface – so the algorithmic
results above lift also to these classes.

Next, Chapter 6 displays the findings from our work “Compact representation for matrices of bounded
twin-width” [PSZ22]. Namely, we propose a data structure that stores a static binary d-twin-ordered
n× n matrix and can be queried for its entries. The data structure requires Od(n) bits of space – which
is asymptotically optimal due to a result of Bonnet et al. [BGdM+21] – and can answer every query in
worst-case O(log log n) time.

Finally, in Chapter 7 we present our work “Graphs of bounded twin-width are quasi-polynomially
χ-bounded”, where we prove that, for every integer d, there exists a quasi-polynomial function fd(ω) ∈
2O(log4d+3 ω) such that every graph of twin-width at most d and maximum clique size ω can be properly
colored using at most fd(ω) colors. This comes close to a positive resolution of a conjecture of Bonnet et
al. [BGK+21b], claiming that graphs of bounded twin-width are polynomially χ-bounded.

Streszczenie

W niniejszej rozprawie prezentujemy wyniki badań nad strukturalną teorią grafów: dziedziną nauki
analizującą właściwości różnych klas grafów oraz algorytmiczne zastosowania tych własności. Skupiamy
się na klasach grafów, które scharakteryzowane są parametrami szerokości grafów : całkowitoliczbowymi
wartościami mierzącymi, jak efektywnie dany graf można rozłożyć na prostsze części zgodnie z zadanym
zbiorem reguł. Prezentujemy wyniki badań dotyczących trzech parametrów tego typu: szerokości drzewiastej
(treewidth), szerokości rzędowej (rankwidth) oraz szerokości bliźniaczej (twin-width). Pokazujemy, że
jesteśmy w stanie tworzyć wydajne struktury danych dla klas grafów o ograniczonych wartościach tych
parametrów. Takie struktury danych pozwalają na efektywne odpowiadanie na zapytania dotyczące
zróżnicowanych własności grafów wejściowych, jak również na aplikowanie różnych typów przekształceń
tych grafów.

W Rozdziale 3 prezentujemy wyniki pochodzące z artykułu „Dynamic treewidth” [KMN+23]. Wykazu-
jemy, że dla dowolnego n-wierzchołkowego grafu o małej szerokości drzewiastej k, aktualizowanego w pełni
dynamicznie poprzez dodawanie i usuwanie krawędzi, możemy utrzymywać dekompozycję drzewiastą
grafu świadczącą o tym, że szerokość drzewiasta grafu nie przekracza 6k + 5. Pojedyncza aktualizacja
grafu jest przetwarzana przez naszą strukturę danych w podwielomianowym czasie zamortyzowanym
Ok(2

√
logn log logn); notacja Ok(·) ukrywa czynniki zależne jedynie od k. Pokazujemy również, że więk-

szość schematów programowania dynamicznego na dekompozycjach drzewiastych, zaprojektowanych dla
statycznych grafów, można utrzymywać również w dynamicznych grafach – w tej samej, podwielomianowej
złożoności czasowej. Zastosowaniem tego wyniku jest dynamiczna wersja klasycznego twierdzenia Cour-
celle’a [Cou90]: w tej samej złożoności czasowej, nasza struktura danych może utrzymywać w dynamicznym
grafie o szerokości drzewiastej nieprzekraczającej k informację o tym, czy graf spełnia dowolną ustaloną
własność grafów wyrażoną w języku monadycznej logiki drugiego rzędu z kwantyfikacją po podzbiorach
wierzchołków (CMSO2).

Następnie, w Rozdziale 4, bazującym na pracy „Almost-linear time parameterized algorithm for
rankwidth via dynamic rankwidth” [KS24], opisujemy podobną strukturę danych dla znacznie ogól-
niejszego parametru grafowego – szerokości rzędowej. Dla dynamicznego n-wierzchołkowego grafu o
szerokości rzędowej co najwyżej k, aktualizowanego poprzez usuwanie i dodawanie krawędzi, utrzymujemy
dekompozycję rzędową o szerokości co najwyżej 4k, ponownie w zamortyzowanym czasie Ok(2

√
logn log logn).

Ponieważ szerokość rzędowa jest uogólnieniem szerokości drzewiastej do grafów gęstych, wprowadzamy
model gęstych aktualizacji grafu, pozwalający na przedefiniowanie sąsiedztw w dowolnym wybranym
t-wierzchołkowym podgrafie utrzymywanego grafu za pomocą formuł monadycznej logiki drugiego rzędu
w czasie zależnym prawie liniowo od t zamiast t2.

Wykorzystując powyższe wyniki, prezentujemy algorytm, który wczytuje graf mający n wierzchołków
i m krawędzi oraz liczbę naturalną k i który w złożoności czasowej Ok(n1+o(1)) + O(m) konstruuje
dekompozycję rzędową grafu o szerokości co najwyżej k lub poprawnie stwierdza, że szerokość rzędowa
grafu jest ściśle większa niż k. W pozytywnym przypadku nasz algorytm zwraca również wyrażenie
grafowe poświadczające, że szerokość klikowa grafu jest ograniczona z góry przez 2k+1 − 1. Algorytm ten
poprawia poprzedni wynik Fomina oraz Korhonena, którzy zaprojektowali dla tego samego problemu
algorytm w złożoności Ok(n2). Ponadto, w tej samej złożoności czasowej możemy sprawdzić, czy graf
spełnia ustaloną własność grafów zapisaną w monadycznej logice drugiego rzędu bez kwantyfikacji po
podzbiorach krawędzi (CMSO1).

Rozdział 5 bazuje na pracy „Fully dynamic approximation schemes on planar and apex-minor-
free graphs” [KNPS24]. W tym rozdziale pokazujemy dynamiczne warianty klasycznych schematów
aproksymacyjnych dla problemów maksymalnego ważonego zbioru niezależnego oraz minimalnego ważonego
zbioru dominującego w grafach planarnych, rozważanych w modelu statycznych grafów przez Baker [Bak94].
Dokładniej, dla dowolnej ustalonej rzeczywistej wartości ε > 0, tworzymy strukturę danych utrzymującą
następujące zbiorcze informacje na temat dynamicznego grafu planarnego G z rzeczywistymi wagami
wierzchołków:

• (1− ε)-aproksymację maksymalnej wagi zbioru niezależnego w G w złożoności czasowej Oε(no(1));
oraz

• (1 + ε)-aproksymację minimalnej wagi zbioru dominującego w G w złożoności czasowej Oε,∆(no(1))
przy dodatkowym założeniu, że stopnie wszystkich wierzchołków grafu G są w każdym momencie
ograniczone przez ∆.

Metody używane przez nas w projektowaniu tej struktury danych wykorzystują wielorakie własności grafów
o ograniczonej szerokości drzewiastej. Te same metody działają nie tylko dla klasy grafów planarnych,

lecz również dla dowolnych klas grafów niezawierających ustalonego grafu szczytowego (apex graph) jako
minora – na przykład dla klasy grafów toroidalnych czy dla dowolnej klasy grafów zanurzalnych w ustalonej
powierzchni. Tak więc wymienione wyżej wyniki działają również dla tych klas grafów.

Dalej, w Rozdziale 6 pokazujemy wyniki pochodzące z pracy „Compact representation for matrices
of bounded twin-width” [PSZ22]. Dokładniej, pokazujemy zwięzłą strukturę danych, która utrzymuje
statyczną zero-jedynkową macierz n× n, która jest d-uporządkowana bliźniaczo (d-twin-ordered) i którą
można odpytywać o poszczególne elementy macierzy. Struktura danych zajmuje Od(n) bitów pamięci –
asymptotycznie optymalną liczbę bitów zgodnie z wynikiem Bonneta i in. [BGdM+21] – i zwraca odpowiedź
na dowolne zapytanie w czasie O(log log n).

Wreszcie, w Rozdziale 7 prezentujemy pracę „Graphs of bounded twin-width are quasi-polynomially
χ-bounded”, gdzie pokazujemy, że dla każdej liczby naturalnej d istnieje quasi-wielomianowa funkcja
fd(ω) ∈ 2O(log4d+3 ω) o następującej własności: każdy graf o szerokości bliźniaczej nieprzekraczającej d
i rozmiarze maksymalnej kliki równej ω ma liczbę chromatyczną ograniczoną z góry poprzez fd(ω). Wynik
ten jest bliski pozytywnemu rozstrzygnięciu hipotezy Bonneta i in. [BGK+21b] twierdzącej, że grafy o
ograniczonej szerokości bliźniaczej są wielomianowo χ-ograniczone – to znaczy, funkcja fd(ω) w opisie
powyżej jest wielomianowa względem ω.

xi

Acknowledgements

First and foremost, I would like to sincerely thank my supervisor Michał Pilipczuk for becoming my
mentor for the last four years: showing me how to do my best in research; sharing with me his vast
knowledge about graph theory, parameterized algorithms, and logic; infecting me and everyone around with
enthusiasm about our research; and being an endless source of open problems to tackle. This dissertation
would have never become a real thing without you. Too bad this thesis does not include any proofs
involving your favorite combinatorial trick1 – the factorization forest theorem of Simon. . . I hope you can
live with this.

Next, I am grateful to my fellow current and past PhD students working with algorithms and graph
theory in Warsaw – Łukasz Bożyk, Konrad Majewski, Jana Masař́ıková, Karolina Okrasa, Wojtek Nadara,
Wojtek Przybyszewski and Marcin Smulewicz. You all made my doctoral studies here in Warsaw joyful
and satisfying, and without you, my first steps in academia would be much more stressful and daunting.

I would then like to acknowledge all my collaborators in past and present projects. Thank you for
showing me how diverse our area of research is, and thank you for demonstrating that inspiration for
research can come from the most unexpected places.

I would have probably never become a researcher if not for sports programming – a type of mind sport
where competitors attempt to solve algorithmic and coding puzzles as quickly as possible. Firstly, I would
like to thank the high school activity club in Białystok for introducing me to this kind of contests. Then
I extend my thanks to all my teammates in team programming competitions in Warsaw – in particular
Wojtek Nadara and Marcin Smulewicz, with whom I developed my algorithmic skills the most. I believe
that every single tough graph problem and every single difficult data structure problem we solved at
a team contest brought me one step closer to completing this dissertation.

Last but not least, I would like to say a huge thank you to my family, who supported me emotionally
throughout my entire doctoral studies. Even though you may still not fully grasp what “bounded treewidth”
or “quasi-polynomially χ-bounded” means, you have somehow always managed to understand what I was
struggling with and continued to give me moral support. Thank you again for this.

Attribution of support. The results presented in this dissertation were part of projects that have
received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme, grant agreement No. 948057 (BOBR).

Attribution of graphics. Most of the figures present in this work are sourced from the original
publications [KMN+23,KS24,PSZ22,PS23]. Figures 3.1 and 3.2 have been created by Tuukka Korhonen.
The remaining figures have been prepared by the author of the dissertation.

1Citation needed.

Contents

1 Introduction 1
1.1 An introduction to graph width parameters . 2
1.2 Research objectives . 7
1.3 Our results . 9
1.4 Organization of the thesis . 16

2 Preliminaries 17
2.1 Notation . 17
2.2 Parameterized and dynamic problems . 20
2.3 Treewidth . 22
2.4 Rankwidth and cliquewidth . 23
2.5 Twin-width . 24
2.6 Logic . 28

I Treewidth and rankwidth 31

3 Dynamic treewidth 33
3.1 Overview . 34
3.2 Dynamic tree decompositions . 40
3.3 Closures . 43
3.4 Refinement data structure . 52
3.5 Height improvement . 68
3.6 Proof of Lemma 3.2.5 . 73
3.7 Dynamic automata . 75
3.8 Proof of Theorems 1.3.1 and 1.3.3 . 85
3.9 Conclusions . 87

4 Dynamic rankwidth 89
4.1 Overview . 90
4.2 Preliminary results for rank decompositions . 101
4.3 Annotated rank decompositions and prefix rebuilding . 103
4.4 Refinement . 112
4.5 Automata . 120
4.6 Dynamic rankwidth . 125
4.7 Almost-linear time algorithm for rankwidth . 127
4.8 Dealternation Lemma . 134
4.9 Using rank decomposition automata to compute closures 153
4.10 Cliquewidth . 172
4.11 Conclusions . 177

5 Dynamic Baker’s technique 179
5.1 Overview . 180
5.2 Additional preliminaries . 181
5.3 Maximum Weight Independent Set . 184
5.4 Minimum Weight Dominating Set . 194
5.5 Conclusions . 205

II Twin-width 207

6 Compact oracle for d-twin-ordered matrices 209
6.1 Structural properties of divisions . 210
6.2 Data structure . 212
6.3 Construction algorithm . 214
6.4 Representation with bitsize O(n1+ε) and query time O(1/ε) 222
6.5 Conclusions . 223

7 Twin-width and χ-boundedness 225
7.1 Almost mixed minors . 225
7.2 Obtaining the recurrence . 226
7.3 Solving the recurrence . 235
7.4 Wrapping up the proof . 237
7.5 Conclusions . 237

Chapter 1

Introduction

It has been long known that some computational problems are harder than others. Some, such as the
halting problem, are simply undecidable – there is provably no foolproof method that can tell apart
terminating and nonterminating computer programs. However, even when we restrict our attention to
solvable problems, we find problems of wildly varying complexity. For some – such asMaximum Matching
– we can design algorithms correctly resolving any possible instance efficiently – that is, in time polynomial
in the size of the input [Edm65]. On the other hand, the time hierarchy theorem [HS65] asserts that
some decidable problems do not admit such algorithms. In fact, we can explicitly name computational
problems for which this is the case, such as the evaluation of positions in generalized variants of chess and
Go [FL81,Rob83] or testing reachability in Vector Addition Systems [CO21].

For many decades, computer scientists have focused their attention on the complexity a particular
kind of solvable problems: the yes/no decision problems whose solutions are efficiently verifiable. So for
instance, in the Satisfiability problem, we are given a Boolean formula ϕ with variables x1, . . . , xn,
and we are to decide whether some assignment of true/false values to the variables makes ϕ true; or
in Vertex Cover, we are given a graph and an integer k ∈ N, and we have to decide whether the
graph contains a vertex cover of size at most k: the set of at most k vertices incident to every edge of
the graph. In both cases, the solution (the assignment of Boolean values to the variables or the set of
at most k vertices of the graph) has size polynomial in the size of the input and its correctness can be
readily verified. In a breakthrough series of works by Cook, Levin, and Karp [Coo71,Lev73,Kar72], some
problems – including Satisfiability and Vertex Cover – have been found to be the most difficult
efficiently verifiable decision problems in the following sense: A correct efficient algorithm for just one
of these difficult problems can be adapted to efficiently solve all efficiently verifiable problems. Such
problems have since been named NP-complete. After half of a century of sustained efforts, it is still not
clear whether NP-complete problems can be solved efficiently; however, the majority of the community
believes that these problems do not admit efficient algorithms [Gas19].

When faced with a task of designing an algorithm – not necessarily foolproof or running in polynomial
time – for an NP-complete problem, there are several approaches an algorithm designer can take. Apart
from a plethora of heuristic techniques, a popular route is to design approximation algorithms that do
not solve the task at hand exactly, but rather efficiently compute a solution that is provably close to the
optimum [Joh74,WS11]. Another avenue is to restrict the space of possible inputs to the problem. For
instance, in directed graphs, the problem of existence of an even-length simple path – without repeating
vertices or arcs – connecting a pair of prescribed vertices is known to be NP-complete [LP84]. On the
other hand, the very same problem restricted to the class of planar directed graphs is polynomial-time
solvable [Ned99].

Yet another direction is to introduce a “difficulty parameter” to the problem at hand, hoping to
find an algorithm that works efficiently for instances with the small values of the parameter. This is
precisely the case for Vertex Cover: Given an arbitrary n-vertex graph G and a parameter k ∈ N, we
can determine if G contains a vertex cover of size k in time 2O(k) · O(n) [BG91, CKX10]. The idea of
two-dimensionality of time complexity of algorithms – with polynomial dependency on the size of the
instance at the cost of possibly superpolynomial dependency on the parameter – is foundational for the
field of parameterized complexity, first formalized by Downey and Fellows [DF99]. Following the modern
treatment of parameterized complexity [FG06,DF13,CFK+15], we say that a problem is fixed-parameter
tractable (fpt) if we can solve every instance of size n with parameter k in time f(k) · nc for some constant

1

2 CHAPTER 1. INTRODUCTION

c > 0 and some computable function f . We also conveniently use the shorthand notation Ok(nc) for this
time complexity.

Over the decades, it has been understood that various algorithm design techniques listed above can
be combined so as to produce efficient algorithms for some difficult computational problems in varied
settings. A particularly fitting example of this phenomenon is the technique of shifting introduced by
Baker [Bak94], who showed that, given a vertex-weighted n-vertex planar graph G and an accuracy
parameter ε > 0, we can produce a (1 − ε)-approximation of the maximum weight of an independent
set in G in time 2O(1/ε) · n. To this end, we efficiently cover G with k := O(1/ε) subgraphs G1, . . . , Gk,
so that some (1 − ε)-approximate maximum weighted independent set in G is precisely the maximum
weighted independent set in some Gi. Then we argue that each subgraph Gi possesses a strong structural
property of k-outerplanarity, allowing us to find the sought independent set in each Gi in time 2O(k) · n.
In the end, the (1− ε)-approximate independent set is output in time Oε(n).

The technique of Baker shows the viability of the following metaapproach: Many difficult graph
computational problems can be solved efficiently – that is, in time Ok(nc) for some c > 0 – when
given an n-vertex graph with the bounded value k of some graph parameter. This approach has been
applied to numerous important graph parameters: treewidth [Arn85,AP89,ALS91], rankwidth [CMR00,
BTV10,GH10,Lam20], treedepth [FY17,PW18,NPSW23], Hadwiger number [Gro03,LPPS22], vertex
cover number [FLM+08, KT16, FLMT18] and twin-width [BKTW20, BGK+21b], to name a few. In
this dissertation, we will consider various parameterized problems related to three of these parameters:
treewidth, rankwidth, and twin-width; we will overview them in a moment, in Section 1.1.

Recently, a new trend appeared in the field of parameterized complexity: the design of parameterized
data structures [AMV20]. Our goal is to construct a data structure that maintains a dynamically changing
graph and can be queried for the satisfaction of some property of a dynamic graph. The objective of such
a data structure is to answer such queries more efficiently than by simply restarting the computation
from scratch each time. So for instance, the existence of a path of length k in a static n-vertex, m-edge
graph can be tested in time Ok(n+m) [AYZ95]; but then, if an n-vertex graph is updated dynamically by
edge insertions and removals, the existence of such a path can be maintained by a suitable data structure
in time Ok(1) per update [DKT14, CCD+21]. The main focus of this thesis is to combine this trend
with the notion of graph parameters above: We present efficient data structures that can be queried for
various properties of graphs of bounded treewidth, rankwidth, and twin-width; and that can solve various
computational problems for fully dynamic graphs of this kind. We also show some new combinatorial
results related to these classes that either have already been employed in the design of our efficient data
structures, or that we hope to apply in the setting of such data structures in the future.

1.1 An introduction to graph width parameters

We will now take some time to introduce the graph width parameters examined in this thesis: treewidth,
rankwidth, and twin-width. This section should be taken as a high-level overview of these parameters. The
formal treatment of these parameters, as well as the preliminary observations and proofs regarding graphs
of bounded tree-, rank-, and twin-width, can be found in Sections 2.3 to 2.5.

1.1.1 Treewidth

If any structural graph parameter deserves recognition for its importance in the research on structural
graph theory, it is definitely treewidth: a measure that assigns to each graph an integer representing,
very informally, how similar the graph is to a tree. More formally, given a nonempty graph G, we
define the treewidth of G as the minimum integer k > 0 for which there exists a tree T and a function
bag : V (T)→ 2V (G) such that:

• each vertex of G belongs to some bag: for all v ∈ V (G), there is x ∈ V (T) with v ∈ bag(x);
• each edge of G belongs to some bag: for all uv ∈ E(G), there is x ∈ V (T) with {u, v} ⊆ bag(x);
• each vertex of G belongs to the bags forming a connected subtree of T : for every v ∈ V (G), the set

of nodes bag−1(v) of T is connected;
• all bags are small, i.e., |bag(x)| 6 k + 1 for each x ∈ V (T).

A pair (T, bag) with the properties as above is called a tree decomposition of G (of width at most k).
The notion of treewidth and the notions equivalent to treewidth were discovered independently under

various names, for example by Bertelè and Brioschi [BB73], Halin [Hal76], and Parsons [Par78]. However,
the modern treatment of treewidth should arguably be attributed to Robertson and Seymour [RS84], who
rediscovered treewidth again and recognized it as a cornerstone of their Graph Minors project.

1.1. AN INTRODUCTION TO GRAPH WIDTH PARAMETERS 3

Over the years, treewidth has found a multitude of algorithmic applications:

• Various graph problems that are NP-complete in the general setting (e.g., Hamiltonian Cycle,
Independent Set, Feedback Vertex Set etc.) become tractable when restricted to graphs of
bounded treewidth [Arn85,AP89,ALS91,MT92,Bod93b,TP93]. Usually, these problems are solved
by means of bottom-up dynamic programming on a tree decomposition of the graph: Root the
decomposition T of G at an arbitrary vertex and devise a dynamic programming scheme, where the
state of the dynamic programming at a node x corresponds to partial solutions for the subgraph of
G whose tree decomposition is the subtree of T rooted at x. Moreover, the dynamic programming
state at x can be efficiently determined given the contents of bag(x) and the states computed for
the children of x.

This framework yields algorithms that process n-vertex graphs of treewidth k in time f(k) · O(n).
In many cases, the function f is singly exponential in k – usually of the form 2O(k) or kO(k) – and
considerable effort has been made to optimize the dependency of k in the time complexity of these
algorithms [ABF+02,vRBR09,BBL13,FLPS16,FLPS17,FLP+18,CNP+22].

• More generally, Courcelle [Cou90] showed that as long as a graph property can be encoded by
a sentence ϕ expressed in the monadic second-order logic with quantification over edge subsets
(CMSO2)2, the property can be tested in graphs of treewidth at most k in time f(k, ϕ) · O(n) for
some (nonelementary) computable function f : This follows from an observation that the validation of
the property encoded by ϕ can be efficiently performed using the dynamic programming framework
on tree decompositions described above. This result was later generalized to optimization and
counting problems [ALS91]. Under reasonable assumptions, such algorithms cannot exist for general
graphs of large treewidth [Kre12]; so in a sense, treewidth is the complexity-theoretic boundary of
effective testing of graph properties expressible in CMSO2.

• Shifting is an algorithm design technique that is a blueprint of various fixed-parameter tractable
algorithms and efficient approximation schemes in planar graphs (and more generally, classes of
graphs excluding a fixed graph as a minor). The method essentially provides an efficient reduction
in which a computational problem can be solved for a planar graph G by selecting a number of
subgraphs of G of small treewidth, solving the problem for these subgraphs using standard dynamic
programming techniques, and combining the results to produce an optimum or almost-optimum
solution to the problem on the original graph G. A precursor of this technique is the aforementioned
work of Baker [Bak94]. The approach was later generalized to arbitrary minor-free classes of graphs
and beyond [Gro03,Dvo18].

• Another approach to the design of efficient fixed-parameter tractable algorithms in structurally-
restricted classes of graphs, such as planar graphs, is bidimensionality. Here, the algorithm implements
the following win/win approach: The input graph either has small treewidth – in which case the
problem at hand can be solved efficiently, once again using dynamic programming – or it exhibits
a complicated structure (usually of the form of a grid minor) – in which case the answer to the
problem is trivally positive or trivially negative. This method allows us to construct fixed-parameter
tractable algorithms for problems like determining the existence of vertex cover of size at most k in
a planar graph of size n in 2O(

√
k) · n time [ABF+02,DFHT05], even though for general graphs, the

solution to this problem in time 2o(k) · nO(1) is unlikely [CJ03]. More remarkably, a dominating set
of size at most k in a planar graph can be found in time 2O(

√
k) ·n [ABF+02], even though the under

reasonable complexity assumptions, there is no such algorithm for general graphs with running time
Ok(nO(1)) [DF95].

• The method above can be refined, producing a framework called the irrelevant vertex technique. In this
case, in graphs of large treewidth, one can find an obstruction for treewidth (usually of the form of grid
minors, clique minors, or flat walls), which is subsequently used to choose a vertex that can be safely
removed from the graph without changing the answer to the problem at hand. These vertex removals
are performed until treewidth drops below some prescribed threshold dependent on the parameters of

2The CMSO2 logic for graphs permits logic formulas involving variables representing vertices, edges, sets of vertices,
and sets of edges, together with symbols ¬, ∨, ∧, ∈, ∀, ∃, true, false with their usual semantics. Formulas can also use the
predicate E(x, y) testing whether vertices x and y are connected by an edge, the predicate inc(x, z) testing whether vertex x
is incident to an edge z, and predicates of the form moda,m(X) checking whether the set X of vertices or edges has size k
(mod m). Quantification can be performed over the vertices, edges, sets of vertices, and sets of edges of the graph. A formal
definition of the logic formalisms appearing in this thesis is given in Section 2.6.

4 CHAPTER 1. INTRODUCTION

the instance, at which point the remaining part of the instance can be resolved by the usual dynamic
programming scheme. This technique has been successfully applied in the past to show efficient
parameterized algorithms for problems such as Vertex Disjoint Paths [RS95,KKR12,KPS24],
Planar Vertex Deletion [MS12] and Minor Testing [RS95,KKR12,KPS24].

Computing tree decompositions. A vast majority of the results above crucially relies on our ability
to efficiently compute tree decompositions of graphs of optimum or near-optimum width. Computing
treewidth exactly is known to be NP-hard [ACP87], and the Small Set Expansion Conjecture precludes
the existence of constant-factor approximation algorithms for treewidth in polynomial time [WAPL14].
However, there exists a host of efficient parameterized algorithms that, given a graph G and integer k, in
time Ok(nO(1)) either output a tree decomposition of G of width k or close to k, or correctly determine
that the treewidth of G exceeds k. The following list presents a subjective selection of the most noteworthy
algorithms of this kind. Henceforth, we let n denote the number of vertices of the input graph G.

• As part of their Graph Minors project, Robertson and Seymour [RS86a] devised a 2O(k) · n2 time
method of computing a 4-approximation of treewidth, which given a graph of treewidth at most w,
outputs a tree decomposition of width at most 4w+3. Due to its simplicity, the algorithm is featured
in books on parameterized algorithms [FG06, CFK+15] and taught in courses on parameterized
algorithms.

• The first linear-time algorithm for treewidth was given by Bodlaender [Bod96]: In time 2O(k3) · n, it
outputs a tree decomposition of optimum width of a graph of treewidth k. In this work, an earlier
result of Bodlaender and Kloks [BK96] is invoked: Given a tree decomposition (T, bag) of width ` of
a graph G and an integer k 6 `, we can determine if treewidth of G is at most k in time 2O(k`2) · n
using dynamic programming on (T, bag); in the positive case, the decomposition of G of width k
can be recovered within the same time bounds.

• The work of Bodlaender, Drange, Dregi, Fomin, Lokshtanov, and Pilipczuk [BDD+16] is the first
algorithm to produce a 5-approximation of treewidth in time 2O(k) · n. In order to appreciate
the strength of the result, consider any linear-time algorithm parameterized by treewidth that
accepts a graph together with its width-k tree decomposition and solves some parameterized
problem in time 2O(k) · n; this includes dynamic programming algorithms for problems such as
Maximum Independent Set, Minimum Dominating Set, or Hamiltonian Cycle. Chaining
such an algorithm with the result of Bodlaender et al., we find that the algorithm can run in time
2O(k) · n on any n-vertex graph of treewidth k even if its tree decomposition is not present on input.

• Recently, Korhonen [Kor21] introduced a technique that enabled him to devise a 2-approximation
algorithm of treewidth, also in time 2O(k) · n. This framework has since been enhanced by Korhonen
and Lokshtanov [KL23] to determine tree decompositions of optimum width in time 2O(k2) · n4,
improving upon the dependency on k from the work of Bodlaender.

Note that it remains an open question whether there exist algorithms producing optimum-width tree
decompositions in 2O(k) · nO(1) time [DF99]. The author of the thesis is not aware of any lower bounds
against parameterized exact algorithms or parameterized constant-factor approximations for treewidth
in time 2o(k) · nO(1), however the existence of such an approximation algorithm should be considered
massively surprising. More information on algorithms computing tree decompositions can be found in the
work of Korhonen and Lokshtanov [KL23] and in a survey article by Pilipczuk [Pil20].

1.1.2 Rankwidth

The concept of treewidth is inherently unable to analyze dense graphs. For instance, an n-vertex graph of
treewidth k has at most O(kn) edges, and whenever a graph contains a clique Kt as a minor, its treewidth
is necessarily at least t− 1. Of course, as mentioned before, the toolchain of treewidth is useful also in
the analysis of some classes of graphs of unbounded treewidth – such as the class of planar graphs or
various classes of graphs excluding a fixed graph as a minor – but these graphs are still intrinsically
sparse. However, there are many well-structured classes of dense graphs. Take for example cographs
([Sei74,Jun78]) or distance-hereditary graphs ([How77]) for which various algorithmic problems can be
solved more efficiently than in the general setting [CLB81,DM88,MN93,HHHK02].

1.1. AN INTRODUCTION TO GRAPH WIDTH PARAMETERS 5

For these reasons, the definition of treewidth has been adapted to the dense setting, producing graph
parameters such as cliquewidth (defined by Courcelle, Engelfriet, and Rozenberg [CER93]) and rankwidth
(defined by Oum and Seymour [OS06]), the latter of which we formalize below.

Let G be an undirected graph. A rank decomposition of G is a pair T = (T, λ), where T is a cubic
tree (where all nonleaf vertices have degree exactly 3) with at least two leaves, and λ : V (G)→ L(T) is
a bijection between the set of vertices of G and the set of leaves of T . For every edge xy ∈ E(T), let Mxy

be the binary matrix formed by recording the adjacencies between the vertices of G mapped to leaves of
T closer to x than y and the vertices mapped to the leaves of T closer to y than x. The width of a rank
decomposition of G is the maximum rank of any matrix Mxy, where the ranks are determined in the
binary field GF(2). Finally, the rankwidth of G is the minimum possible width of a rank decomposition
of G.

We delay the formal definition of cliquewidth to Section 2.4. For the purposes of this introduction, it
is enough to know that the cliquewidth of a graph is the minimum integer k for which the graph can be
represented as a k-expression, and that rankwidth and cliquewidth are functionally related – if a graph
has cliquewidth at most k, then its rankwidth is also at most k; and conversely, if a graph has rankwidth
at most k, then its cliquewidth is at most 2k+1 − 1.

Rankwidth is a stronger graph parameter than treewidth: Whenever a graph has treewidth at most k,
it also has rankwidth at most k + 1 [Oum08b]. On the other hand, there exist classes of graphs of
bounded rankwidth and unbounded treewidth, such as cliques and cographs (rankwidth at most 1) and
distance-hereditary graphs (which are exactly the graphs of rankwidth at most 1 [Oum05]). Crucially,
a case could be made that rankwidth is precisely a “dense” variant of treewidth: The Courcelle’s theorem
for treewidth naturally lifts to the setting of graphs of bounded cliquewidth [CMR00]. More precisely,
whenever a graph property can be encoded by a formula ϕ expressible in the monadic second-order
logic (CMSO1) without quantification over edge subsets, then the property can be tested in graphs of
cliquewidth at most k in time Ok,ϕ(n). As in the case of treewidth, this result has also been extended to
optimization [CMR00] and counting and enumeration problems [CMR01]. So problems like Maximum
Independent Set, Minimum Dominating Set, Feedback Vertex Number, c-Coloring for fixed
c ∈ N can be solved in linear time for graphs of bounded rankwidth or cliquewidth, assuming access to
a suitable decomposition of the graph.

Computing rankwidth. The first algorithm to approximate rankwidth was given by Oum and Sey-
mour [OS06], who provided a 3-approximation algorithm for rankwidth in time 2O(k)n9 log n. Notably,
their work actually introduces rankwidth in order to approximate cliquewidth – so, in fact, the main result
of their work is an fpt factor-2O(k) approximation of cliquewidth. However, their result generalizes to the
computation of branchwidth of submodular symmetric functions, so it can be used to approximate, for
example, the branchwidth of graphs or matroids.

After the introduction of rankwidth by Oum and Seymour, a program to optimize the approximation
factor and the running time of their algorithm has commenced. We refer to Table 1.1 for the overview
of the algorithms for computing rankwidth; here, we only mention the most important results from the
point of view of the thesis. The first cubic-time 3-approximation algorithm for rankwidth was devised
by Oum [Oum08a]. This was generalized by Jeong, Kim, and Oum [JKO21], who exactly computed the
branchwidth of the so-called subspace arrangements over finite fields – the notion subsuming rankwidth
of graphs. However, the cubic barrier has not been overcome for a long time, even though this goal was
explicitly posed by Oum [Oum17]. A breakthrough result of Fomin and Korhonen resulted in an Ok(n2)
time algorithm computing rankwidth of graphs exactly [FK22], which is asymptotically optimal for dense
graphs. The current state-of-the-art result determines rank decompositions of optimum width in time
Ok(n1+o(1)) +O(m) ([KS24], also Chapter 4 of this thesis).

On the negative side, the NP-completeness of cliquewidth was shown by Fellows, Rosamond, Rotics,
and Szeider [FRRS09], and the NP-completeness of rankwidth was proved by Oum [Oum08a].

1.1.3 Twin-width

The notion of twin-width has a fairly curious origin, stemming from the Permutation Pattern problem:
Given a permutation σ (a pattern) of {1, . . . , k} and a permutation π of {1, . . . , n}, determine whether
σ is a subpattern of π.3 The existence of a tractable parameterized algorithm for this problem was
confirmed by Guillemot and Marx [GM14], who presented an 2O(k2 log k) · n-time algorithm implementing

3We say that σ is a subpattern of π if there exists a strictly increasing function f : {1, . . . , k} → {1, . . . , n} such that, for
every i, j ∈ {1, . . . , k}, σ(i) < σ(j) implies π(f(i)) < π(f(j)).

6 CHAPTER 1. INTRODUCTION

Reference APX TIME Remarks
[OS06] 3k + 1 O(8kn9 log n) Works for connectivity functions
[OS07] exact O(n8k+12 log n) Works for connectivity functions

[Oum08a] 3k + 1 O(8kn4)
[Oum08a] 3k − 1 Ok(n3)

[CO07] exact Ok(n3) Does not provide a decomposition
[HO08] exact Ok(n3)
[JKO21] exact Ok(n3) Works for spaces over finite fields
[FK22] exact Ok(n2)

[KS24] exact Ok(n · 2
√

logn log logn) +O(m) Exposition in Chapter 4

Table 1.1: Overview of algorithms for computing rankwidth. Here n is the number of vertices, m is the
number of edges, and k is the rankwidth of the input graph. Unless otherwise specified, each of the
algorithms outputs in O(TIME) a decomposition of width given in the APX column. Wherever the
dependency on k in the time complexity is not stated explicitly, it is at least double-exponential in k. The
table is taken from similar tables in [FK22] and [KS24].

the following win/win strategy: Either π is “very complicated” and contains all permutations of size k as
subpatterns, or π is “simple” and admits a specific decomposition of width bounded by a function of k.
Such a decomposition can be computed efficiently given π, and then Permutation Pattern can be
solved in linear time given the decomposition of π. The authors asked whether such a decomposition can
be adapted to the graph-theoretic setting. Bonnet, Kim, Thomassé and Watrigant answered this question
positively [BKTW20], providing the following definition of twin-width of graphs.

Let G be a graph with n > 1 vertices. For two disjoint subsets P,Q ⊆ V (G) we say that the pair P,Q
is pure if either there are no edges between P and Q, or every vertex of P is connected with an edge
with every vertex of Q. Otherwise, the pair P,Q is impure. We then define a contraction sequence of
G as a sequence of partitions Pn,Pn−1, . . . ,P1 of V (G), where Pn contains all vertices of the graph as
singletons, P1 contains a single set V (G), and Pi is constructed from Pi+1 by merging two sets of Pi. The
width of a contraction sequence is the minimum integer d such that, for every partition Pi (i ∈ {1, . . . , n})
and every part P ∈ Pi, there are at most d other parts Q ∈ Pi such that the pair P,Q is impure. Then
the twin-width of G is the minimum width of any contraction sequence of G.

Twin-width vastly generalizes the notions of treewidth and rankwidth: Whenever a class of graphs has
bounded treewidth or bounded rankwidth, it also has bounded twin-width [BKTW20]. However, various
other classes of well-structured graphs have bounded twin-width, including planar graphs [JP22,HJ23] and,
more generally, classes of graphs excluding a fixed graph as a minor [BKTW20,BKW22], partially ordered
sets (posets) of bounded width [BKTW20,BH21] and k-dimensional grids for fixed k ∈ N [BKTW20].

On the other hand, twin-width is computationally robust: Assuming access to the contraction sequence
of a graph of twin-width d, we can, for instance, verify the satisfaction of any graph property expressible
as a sentence ϕ of first-order logic (FO)4 in time Od,ϕ(n) [BKTW20]; this unifies analogous results for
the special cases of minor-free classes of graphs [FG01], posets of bounded width [GHL+15] and the
aforementioned graphs of bounded rankwidth. Notably, a decomposition of a graph of twin-width d allows
us to test many such graph properties – for example, k-Independent Set, k-Clique or k-Dominating
Set – more efficiently, in time 2Od(k) · n [BGK+21b]. Twin-width has been recently used as a crucial
ingredient of fixed-parameter tractable algorithms for several seemingly unrelated problems, such as
k-Independent Set for visibility graphs of simple polygons [BCK+22] and Directed Multicut with
three terminal pairs parameterized by the size of the cutset [HJL+23].

Computing twin-width. Unfortunately, when it comes to determining or approximating twin-width
of graphs, it seems that significant progress is yet to be made. On the positive side:

• For many specific classes of well-structured graphs that have bounded twin-width (e.g., classes of
graphs of bounded treewidth or rankwidth, minor-free classes of graphs, posets of bounded width,
etc.), contraction sequences of small width can be constructed efficiently “by hand”, by exploiting
the structural properties of these classes [BKTW20].

4In the first-order logic, quantification is only allowed over the single vertices of the graph.

1.2. RESEARCH OBJECTIVES 7

• Graphs of twin-width 0 are precisely cographs [BKTW20], and graphs of twin-width 1 have a very
simple structure [BKR+21], so determining whether a graph has twin-width 0, 1, or more than 1
can be done in polynomial time.

• For graphs with feedback edge number (the minimum size of a subset of edges in a graph that hits
all the cycles in the graph) bounded by k, there exists an algorithm running in time Ok(nO(1)) that
outputs a contraction sequence of the graph of width exceeding the twin-width of the graph by at
most 1 [BGR24].

• Another positive result concerns ordered graphs [BGdM+21]. In an ordered graph, the vertices of G
are linearly ordered with a linear order <. Let us define that for two disjoint subsets P,Q ⊆ V (G)
of vertices of an ordered graph, the pair P,Q is order-pure if P,Q is pure and, additionally, all
vertices of P are before Q with respect to < or vice versa. Then the remaining part of the definition
of twin-width of ordered graphs is analogous to the unordered case; in particular, the width of
a contraction sequence of G is the minimum integer d such that, for every partition P of the
contraction sequence and every part P ∈ P, there are at most d other parts Q ∈ P such that the
pair P,Q is not order-pure.

Then for any ordered graph G and integer d ∈ N, in time Od(nO(1)) we can either compute
a contraction sequence of G of width at most 2O(d4), or correctly determine that G has twin-width
more than d.

However, Berge, Bonnet, and Déprés showed a negative result: It is NP-complete to decide whether
twin-width of a graph is at most 4 [BBD22]. So we cannot hope for an efficient algorithm computing
twin-width of a graph precisely, even in the parameterized setting. Still, this result does not preclude
the existence of twin-width approximation algorithms akin to [BGR24] or [BGdM+21]. It could also
be possible that some graph parameter functionally related to twin-width can be computed exactly by
an efficient parameterized algorithm. This would be somewhat similar to the case of cliquewidth and
rankwidth: The existence of an algorithm deciding in time Ok(nO(1)) whether a given n-vertex graph has
cliquewidth at most k is still an open problem [FRRS09], and in fact it is not even clear whether graphs
of cliquewidth at most 4 can be recognized in polynomial time. However, such algorithms already exist for
rankwidth.

1.2 Research objectives

A vast majority of the algorithms presented above exhibit a major disadvantage – they only work
efficiently in the static setting, where the algorithm is only required to process one fixed input instance
within its runtime. So a treewidth computation or approximation algorithm will input a single fixed
graph and return an (almost-)optimum width tree decomposition of the graph; and the algorithm of
Baker [Bak94] will process a single fixed vertex-weighted planar graph and approximate the maximum
weight of an independent set in the graph. However, in many real-life scenarios, we must be prepared to
handle dynamically changing inputs efficiently: An edge may be introduced to the graph or removed from
the graph at any point of time, or a weight of a vertex might change. After such an update we would wish
to update the answer to the computational problem at hand more efficiently than by recomputing the
answer from scratch.

Historically, the design of efficient graph algorithms in the dynamic setting has long been the main
focus of multiple bodies of works. Arguably, the most notorious dynamic graph problem is that of
dynamic connectivity, where one is given an undirected, initially edgeless, n-vertex graph G that is
updated by edge insertions and removals. The goal is to design a data structure that maintains G
dynamically and answers queries of the form “are two given vertices u, v in the same connected component
of G?”. The problem, together with its variants, has attracted considerable attention throughout the
history [Tar75,SE81,Fre85,EIT+92,HK99,HdLT01,KKM13,HHK+23]. Currently the most efficient solution
to the problem [HHK+23] presents a randomized data structure that handles a single edge update in
amortized time O(log n(log log n)2) and resolves any query in worst-case time O(log n/ log log log n). Here,
amortized means that a data structure guarantees that q first updates to the graph are processed in total
time O(q log n(log log n)2) – but some updates might take significantly more time than others. However,
there also exist data structures with polylogarithmic worst-case update and query times [KKM13,GKKT15].
Also, efficient data structures have been designed for the problems such as dynamic planarity [EGIS96,
HR20b,HR20a], dynamic biconnectivity [HdLT01,PSS19,HRT18,HvR23], dynamic minimum spanning

8 CHAPTER 1. INTRODUCTION

trees [Fre85,HdLT01,HRW15,Wul17,NS17,NSW17] or dynamic all-pairs shortest paths [Kin99,Tho04,
ACK17,GW20,Mao23].

A very natural research question is then whether dynamic data structures can be used for the
computation of various graph parameters:

Objective 1. Design efficient data structures that compute or approximate graph parameters in the
dynamic graph model.

Alman, Mnich, and Vassilevska Williams [AMV20] proposed a positive result for the feedback vertex
number : the minimum size of a set of vertices that hits every cycle in the graph. They showed a data
structure that is initialized with an initially edgeless n-vertex graph G and a parameter k, updates it
under edge insertions and removals in amortized time Ok(log n), and after each query it returns whether
the feedback vertex number of G is at most k. (In fact, their algorithm in the positive case also returns
the feedback vertex set – the sought set of at most k vertices of G.) This result was later accompanied by
a work of Majewski, Pilipczuk, and the author of this thesis [MPS23]: The data structure of Alman et al.
can be additionally initialized with a property of graphs encoded as a sentence ϕ in the CMSO2 logic,
and the satisfaction of ϕ in G can be tracked by the data structure in amortized time Ok,ϕ(log n) per
edge update. This data structure is then used to maintain the solution to the dynamic Cycle Packing
problem (does G contain k vertex-disjoint cycles?) in amortized Ok(log n) time per graph update.

A similar result of this kind is presented by Dvořák, Kupec, and Tůma [DKT14] and subsequently
improved by Chen et al. [CCD+21], who maintain in a dynamic graph G whether the treedepth of G is at
most k in worst-case update time 2O(k2); and in a positive case, a suitable decomposition of G of width k
(an elimination forest) is maintained. This result is then used to track the existence of a k-vertex path in
a dynamic graph G in worst-case update time 2O(k2), and the existence of a cycle of length at least k in
worst-case update time Ok(log n).

The results of [AMV20,CCD+21] above highlight an interesting phenomenon: Efficient algorithms and
data structures for graph parameters sometimes incidentally yield efficient dynamic data structures for
graph problems that appear unrelated to the basic task of maintaining graph decompositions dynamically.
So a reasonable avenue of research is to examine what other kinds of dynamic graph problems are amenable
to this strategy:

Objective 2. Determine how efficient graph decomposition algorithms may help us to design efficient
data structures for dynamic graph problems.

The reader is encouraged to check other works [CSTV93, DT13, DKT14, IO14, GMP+22, OPR+23,
MPZ24] that design parameterized data structures for various dynamic problems, not necessarily restricted
to graph inputs.

However, interesting data structure design problems do not necessitate that the considered graph should
be dynamic. In fact, a perfectly viable theme of such a design problem could be to preprocess a static
graph (or more generally, a static input instance) so that various properties of the instance could be tested
efficiently at a later point of time. In this thesis, we will specifically look into the case of compact data
structures – roughly speaking, data structures that store an input instance using an amount of memory
that is close to the information-theoretical optimum. More formally, let S(n) be the information-theoretical
minimum number of bits required to store a valid input instance (n-vertex graph selected from some
well-structured class of graphs, n × n matrix chosen from a class of matrices, etc.). We then say that
a data structure storing the instance is compact if it has asymptotically optimal bitsize, i.e., it takes
O(S(n)) bits. The challenge here is to design compact data structures that can be constructed efficiently
and that still allow querying for various properties of the instance (such as whether two vertices of the
graph are connected by an edge).

An example result of this kind is by Kamali [Kam18], who presented a compact data structure for
graphs of bounded cliquewidth. Namely, he proved that an n-vertex of cliquewidth k can be implicitly
stored in a data structure of bitsize Ok(n), implementing vertex adjacency queries in constant time and
neighbor enumeration queries in constant time per neighbor. He also showed that Ω(kn) bits are required
to store an n-vertex of cliquewidth k, thus demonstrating that his data structure is compact.

This obviously raises the question whether compact data structures could be designed for even more
general classes of graphs, such as those of bounded twin-width:

Objective 3. Design data structures for well-structured graphs (or, more generally, well-structured input
instances) with low memory requirements, so that the properties of these instances can be queried efficiently.

1.3. OUR RESULTS 9

Finally, for some very expressive graph parameters such as twin-width, the combinatorial foundations
underlying these parameters might not be strong enough yet, preventing us from designing effective
algorithms and data structures parameterized by these parameters. Therefore it makes perfect sense to
analyze and prove various strong combinatorial properties of these parameters, hoping that they will allow
us to actually design such algorithms and data structures:

Objective 4. Find and prove strong combinatorial properties of twin-width that may enable us to design
efficient parameterized data structures.

In the following section we will present results related to the research objectives listed above.

1.3 Our results

In this dissertation we give an exposition of our research on the objectives stated in Section 1.2. This
section is dedicated to an overview of the results encompassed in this thesis.

1.3.1 Dynamic treewidth and rankwidth

We present dynamic data structures that maintain tree and rank decompositions of graphs of approximately
optimum width in amortized subpolynomial time per update.

Dynamic treewidth. For treewidth, our result reads as follows:

Theorem 1.3.1 ([KMN+23]). There is a data structure that for an integer k ∈ N, fixed upon initialization,
and a dynamic graph G, updated by edge insertions and deletions, maintains a tree decomposition of G of
width at most 6k + 5 whenever G has treewidth at most k. More precisely, at every point in time the data
structure either contains a tree decomposition of G of width at most 6k + 5, or a marker “Treewidth too
large”, in which case it is guaranteed that the treewidth of G is larger than k. The data structure can be
initialized on k and an edgeless n-vertex graph G in time g(k) · n, and then every update takes amortized

time 2f(k)·
√

logn log logn, where g(k) ∈ 2k
O(1)

and f(k) ∈ kO(1) are computable functions.
Moreover, upon initialization the data structure can be also provided a CMSO2 sentence ϕ, and it

can maintain the information whether ϕ is satisfied in G whenever the marker “Treewidth too large” is
not present. In this case, the initialization time is g(k, ϕ) · n and the amortized update time is h(k, ϕ) ·
2f(k)·

√
logn log logn, where g, h, and f are computable functions.

We can apply a fairly standard trick to rewrite the time complexity bound 2f(k)·
√

logn log logn to the
form f̂(k) · 2

√
logn log logn for a computable function f̂ : If the value of the parameter k is sufficiently small

compared to the size of the graph n (say, when f(k) <
√

log log n), we simply have 2f(k)·
√

logn log logn 6

2
√

logn log logn. Otherwise, we infer that
√

log n log log n 6 2f(k)2 · f(k) and so 2f(k)·
√

logn log logn can be
bounded by some function f̂(k).

We remark that the update time of the form 2O(
√

logn log logn) is sandwiched between the polylogarith-
mic time (i.e., any time complexity of the form O(logC n) for constant C > 0) and polynomial time (i.e.,
any time complexity of the form O(nδ) for constant δ > 0). To the best of our knowledge, no nontrivial –
with update time sublinear in n – data structure for treewidth was known prior to this result. On the
other hand, there exists an Ω(log n) lower bound on the amortized time complexity of a single update:
The data structure of Theorem 1.3.1 can model the problem of dynamic connectivity in forests, which
admits an Ω(log n) amortized lower bound as proved by Pătraşcu and Demaine [PD06].

Let us review the existing results related to the dynamic maintenance of tree decompositions of graphs.5

• None of the aforementioned static algorithms for computing tree decompositions is known to be
liftable to the dynamic setting.

• There is a wide range of data structures for dynamic maintenance of forests and of various dynamic
programming procedures working on them, see e.g. [BF99,ST83,AHdLT05,Nie18]. Unfortunately,
the simple setting of dynamic forests omits the main difficulty of the dynamic treewidth problem:
the need of reconstructing the tree decomposition itself upon updates. Consequently, we do not see
how any of these approaches could be lifted to graphs of treewidth higher than 1.

5The following description is taken from [KMN+23].

10 CHAPTER 1. INTRODUCTION

• Bodlaender [Bod93a] showed that on graphs of treewidth at most 2, tree decompositions of width
at most 11 can be maintained with worst-case update time O(log n). This result also comes with
a dynamic variant of Courcelle’s Theorem: The satisfaction of any CMSO2-expressible property ϕ
on graphs of treewidth at most 2 can be maintained with worst-case update time Oϕ(log n). The
approach of Bodlaender relies on a specific structure theorem for graphs of treewidth at most 2,
which unfortunately does not carry over to larger values of the treewidth. In [Bod93a], Bodlaender
also observed that for k > 2, update time Ok(log n) can be achieved in the decremental setting,
when only edge deletions are allowed. But this again avoids the main difficulty of the problem, as in
this setting no rebuilding of the tree decomposition is necessary.

• Independently of Bodlaender, Cohen et al. [CSTV93] tackled the case k = 2 with worst-case update
time O(log2 n), and the case k = 3 in the incremental setting with worst-case update time O(log n).
Frederickson [Fre98] studied dynamic maintenance of properties of graphs of treewidth at most k,
but the updates considered by him consist of direct manipulations of tree decompositions; this again
avoids the main difficulty.

• As discussed before, analogs of Theorem 1.3.1 have already been studied for two weaker graph
parameters: treedepth and feedback vertex number. Dvořák et al. [DKT14] and Chen et al. [CCD+21]
gave a dynamic variant of Courcelle’s Theorem for treedepth: On a dynamic graph of treedepth
at most d, the satisfaction of any fixed MSO2-expressible6 property ϕ can be maintained with
worst-case update time Oϕ,d(1). In turn, a dynamic variant of Courcelle’s Theorem for feedback
vertex number was given by Majewski et al. [MPS23], who builds upon the data structure of Alman
et al. [AMV20]: They show that in a dynamic graph of feedback vertex number at most `, the
satisfaction of any fixed CMSO2-expressible property ϕ can be maintained with amortized update
time Oϕ,`(log n).

• Recently, Goranci et al. [GRST21] gave the first nontrivial result on the general dynamic treewidth
problem: Using a dynamic algorithm for expander hierarchy, they can maintain a tree decomposition
with no(1)-approximate width with amortized update time no(1), under the assumption that the
graph has bounded maximum degree. Note, however, that this result is rather unusable in the
context of (dynamic) parameterized algorithms, because dynamic programming procedures on tree
decompositions work typically in time exponential in the decomposition’s width. Consequently, the
result does not imply any dynamic variant of Courcelle’s Theorem.

Observe that the data structure of Theorem 1.3.1 is resilient to updates that increase the treewidth
of the dynamic graph G above k. In this case, the data structure exposes the marker “Treewidth too
large”, which is removed by the implementation of the data structure as soon as the treewidth of G drops
below k again. Yet the amortized update time of the data structure is still of the form 2f(k)·

√
logn log logn,

regardless of the treewidth of G at any point of time.
Theorem 1.3.1 can be immediately used to provide efficient data structures for the dynamic versions of

several parameterized problems solved by the classical bidimensionality arguments. Consider for instance
the following Planar Minor Containment problem:

Corollary 1.3.2 (Statement and proof from [KMN+23]). Let H be a fixed planar graph. There exists a
data structure that for an n-vertex graph G, updated by edge insertions and deletions, maintains whether
H is a minor of G. The initialization time on an edgeless graph is O(n), and the amortized update time

is 2O(
√

logn log logn).

Proof. Since H is planar, there exists ` ∈ N such that the `× ` grid contains H as a minor. Consequently,
by the Grid Minor Theorem [RS86b], there exists k ∈ N such that every graph of treewidth larger than k
contains H as a minor. Further, it is easy to write a CMSO2 sentence ϕH that holds in a graph G if and
only if G contains H as a minor. It now suffices to set up the data structure of Theorem 1.3.1 for the
treewidth bound k and sentence ϕH . Note there that if this data structure contains the marker “Treewidth
too large”, it is necessary the case that G contains H as a minor.

The same argument can be used to show the existence of a dynamic data structure deciding Planar
Dominating Set (given a dynamic planar graph, decide whether it contains a dominating set of cardinality

at most k) with amortized update time 2Ok(
√

logn log logn).

6MSO2 is a fragment of CMSO2 where modular counting predicates are not allowed.

1.3. OUR RESULTS 11

We finally remark that the data structure for dynamic rankwidth can be used to solve a certain class
of optimization problems expressible in the variant of monadic second-order logic called LinCMSO2. This
variant includes all optimization problems of the form “given a CMSO2 formula ϕ(X) with one vertex set
or edge set variable X, find the minimum/maximum-size vertex set A ⊆ V (G) or edge set A ⊆ E(G) for
which ϕ(A) is satisfied in G”; however, we refer to Section 2.6 for a formal introduction of LinCMSO2.

Theorem 1.3.3. The data structure of Theorem 1.3.1 can be also provided a LinCMSO2 sentence ϕ upon
initialization and can maintain the value of ϕ in G whenever the marker “Treewidth too large”is not
present. The initialization time is g(k, ϕ) · n and the amortized update time is h(k, ϕ) · 2f(k)·

√
logn log logn

for computable functions g, h, f .

Hence by Theorem 1.3.3, optimization problems expressible in LinCMSO2 – such as Longest Path,
Longest Cycle, Maximum Independent Set, Minimum Feedback Vertex Set – can be solved
in dynamic graphs of bounded treewidth efficiently: The value of the optimum solution to each of these
problems can be maintained by our data structure with subpolynomial amortized update time.

The full exposition of the proof of Theorems 1.3.1 and 1.3.3 is given in Chapter 3.

Dynamic rankwidth. We present also an analogous data structure for rank decompositions. In
the following statement, LinCMSO1 denotes an optimization variant of the CMSO1 logic analogous to
LinCMSO2; we again delay the formal introduction of this variant to Section 2.6, but for the purposes
of this introduction it is enough to know that LinCMSO1 can encode problems of the form “find the
minimum/maximum-size set A ⊆ V (G) for which a given CMSO1 formula is satisfied”.

Theorem 1.3.4 ([KS24]). There is a data structure that is initialized with an integer k and an empty
n-vertex dynamic graph G, and maintains a rank decomposition of G of width at most 4k under edge
insertions and deletions, under the promise that the rankwidth of G never exceeds k. The initialization
time is Ok(n log2 n) and the amortized update time is 2Ok(

√
logn log logn).

Further, the data structure can be initialized with a LinCMSO1 sentence ϕ and it can maintain the
value of ϕ on G. In such a case, the initialization time of the data structure is Ok,ϕ(n log2 n) and the

amortized update time is 2Ok,ϕ(
√

logn log logn).

We stress that the data structure of Theorem 1.3.4 does not inherit the resiliency of its treewidth
counterpart, so we have assume that the rankwidth of the dynamic graph is bounded from above by k
at all times. This dissonance will be further explained in the overview of the dynamic rankwidth data
structure in Section 4.1.1.

Theorem 1.3.4 immediately implies that given a graph G of rankwidth at most k with n vertices and m
edges, we can construct a rank decomposition of G of width at most 4k+4 in time (n+m)·2Ok(

√
logn log logn):

We can prove that the edges of G can be inserted to the data structure in an order such that the rankwidth
of the dynamic graph never grows above k + 1.7 So after m edge insertions, the data structure will hold
a rank decomposition of G of width at most 4(k + 1). However, both this time complexity and the width
of the resulting decomposition can be improved further, as discussed below.

In the description above, a fairly natural issue is that in order to build a decomposition of an m-edge
graph, we need to issue m edge updates to the data structure of Theorem 1.3.4. For instance, if the input
graph is a clique, we necessarily have to apply as many as Ω(n2) edge insertions. However, in this case it
seems rather wasteful to insert edges one by one; somehow, we should be able to issue updates of the
form “given a set X ⊆ V (G), insert all the edges between any pair of vertices in X” and process them in
time proportional to |X| rather than |X|2. We thus introduce a framework of performing dense updates of
the graph that can modify many edges of the graph at once. We use the following definition from [KS24]
verbatim: An edge update sentence is a tuple e = (ϕ,X,X1, . . . , Xp), where ϕ is a CMSO1 formula with
p+ 1 free set variables, and Xi ⊆ X ⊆ V (G). Such edge update sentence re-defines all adjacencies inside
the induced subgraph G[X] by setting an edge between u, v ∈ X if and only if G, together with the
interpretations of the p+ 1 free variables as ({u, v}, X1, . . . , Xp), satisfies ϕ. Then we define that |e| = |X|
and that the length of e is the length of ϕ. Given this definition, we generalize Theorem 1.3.4 as follows:

Theorem 1.3.5 ([KS24]). The data structure of Theorem 1.3.4, when furthermore initialized with a given
integer d, can also support the following operations:

7An example of such an ordering is as follows: An edge uv is added to the data structure before the edge u′v′ if and only
if the pair (max(u, v),min(u, v)) is lexicographically smaller than (max(u′, v′),min(u′, v′)) with respect to some fixed total
ordering of V (G).

12 CHAPTER 1. INTRODUCTION

• Update(e): Given an edge update sentence e of length at most d, either returns that the graph
resulting from applying e to G would have rankwidth more than k, or applies e to update G. Runs in
|e| · 2Ok,d(

√
logn log logn) amortized time.

• LinCMSO1(ϕ,X1, . . . , Xp): Given a LinCMSO1 sentence ϕ of length at most d with p free set variables
and p vertex subsets X1, . . . , Xp ⊆ V (G), returns the value of ϕ on (G,X1, . . . , Xp). Runs in time

Od(1) if X1, . . . , Xp = ∅, and in time
∑p
i=1 |Xi| · 2Ok,d(

√
logn log logn) otherwise.

The operation LinCMSO1 here is quite useful for us for a very prosaic reason: In the setting of dynamic
graphs with dense edge updates, it is nontrivial to determine whether two vertices of a graph are connected
by an edge. As one of the consequences, Theorem 1.3.5 asserts that the existence of edges between specific
pairs of vertices in the graph can be queried efficiently even if dense updates are applied to the graph.

The generalization in Theorem 1.3.5 allows us to compute rank decompositions of graphs even more
efficiently than sketched above:

Theorem 1.3.6 ([KS24]). There is an algorithm that, given an n-vertex m-edge graph G and an integer k,

in time Ok(n · 2
√

logn log logn) +O(m), either outputs a rank decomposition of G of width at most k or
determines that the rankwidth of G is larger than k. The algorithm also outputs a (2k+1 − 1)-expression
for cliquewidth of G within the same running time.

Moreover, every fixed graph problem that can be expressed in LinCMSO1 can be solved in time Ok(n ·
2
√

logn log logn) +O(m) on graphs of rankwidth k.

This result is an improvement upon the previous quadratic-time algorithm of Fomin and Korho-
nen [FK22]; and it is only a factor of no(1) away from the parameterized linear time complexity Ok(n+m).
Interestingly, using Theorem 1.3.6, we can determine if the graph has rankwidth at most k in true linear
time, independent on the parameter k, as long as the input graph is sufficiently dense (more precisely: as

long as the average degree of the graph exceeds f(k) · 2
√

logn log logn for a fixed function f).
The results related to the dynamic rankwidth data structure and its applications are proved in

Chapter 4.

1.3.2 Dynamic shifting

We then show that in some settings, the technique of Baker [Bak94] also applies in dynamic graphs. The
following results apply to the class of planar graphs, and, more generally, to any apex-minor-free class
of graphs. A class of graphs is apex-minor-free if all graphs in the class exclude as a minor a fixed apex
graph: a graph that either is planar, or that becomes planar after the removal of one vertex. So the class of
planar graphs is apex-minor-free since they exclude the clique K5 as a minor; and so is the class of toroidal
graphs, since all toroidal graphs exclude the biclique K3,7 as a minor and K2,7 is planar. (In general, every
class of graphs of genus at most g is apex-minor-free: Graphs of genus at most g are K3, 4g+3-minor-free,
which follows from [Rin65].)

We present dynamic efficient approximation schemes for arguably the most natural optimization
problems amenable to the shifting technique: Maximum-Weight Independent Set and Minimum-
Weight Dominating Set. In these problems, we associate a real weight with each vertex of the graph.
In the dynamic variant, one can add or remove edges from the graph and update the weights assigned
to the vertices of the graph. Moreover, for a fixed apex-minor-free class of graphs C, we say that a data
structure is C-restricted if it assumes that at each point of time, the maintained graph is a member of C.
Then our result reads as follows:

Theorem 1.3.7 ([KNPS24]). Let C be a fixed apex-minor-free class of graphs and let ε > 0. Then there
exists a C-restricted fully dynamic graph data structure that in addition to maintaining a graph G ∈ C,
supports the following queries:

• QueryMWIS(): Outputs a nonnegative real p satisfying (1− ε)OPTIS 6 p 6 OPTIS, where OPTIS is
the maximum weight of an independent set in G; and

• QueryMWDS(): Outputs a nonnegative real p satisfying OPTDS 6 p 6 (1 + ε)OPTDS, where OPTDS

is the minimum weight of a dominating set in G. This query is supported only under the additional
assumption that at all times, the maximum degree of G is bounded by a constant ∆.

The initialization time on a given n-vertex graph G ∈ C is f(ε) · n1+o(1), and each update takes amortized
time f(ε) · no(1), where f(ε) is doubly-exponential in O(1/ε2). Each query takes O(1) time.

1.3. OUR RESULTS 13

Unfortunately, the data structure for Minimum-Weight Dominating Set requires the additional
assumption that the maximum degree of the graph is bounded by a constant; it is not clear whether this
restriction can be somehow bypassed.

The (amortized) update time of the data structure is also superlogarithmic and subpolynomial, similarly
to the case of dynamic tree- and rankwidth data structures. However, in this case, the update time is
barely subpolynomial:

f(ε) · n
O
(
log log logn√
log logn

)
.

Curiously, the data structure of Theorem 1.3.7 is unrelated to the dynamic treewidth data structure of
Theorem 1.3.1. It would be interesting to understand whether the dynamic treewidth data structure could
be used to improve the time dependency on the size of the graph in Theorem 1.3.7.

The full exposition of this result can be found in Chapter 5.

1.3.3 Compact representation for bounded twin-width

Next, we prove that one can design compact data structures for objects of bounded twin-width. Our
particular result considers binary matrices: matrices comprised of entries 0 and 1. One of the ways the
notion of twin-width can be generalized to such matrices is through the definition of d-twin-ordered
matrices. Intuitively, for binary matrices, one can consider contraction sequences comprising successively
coarser partitions of the set of all rows and all columns of the matrix, where at each step of the contraction
process, each set in the partition is either a set of consecutive rows (a row block) or a set of consecutive
columns (a column block). Then at each step of the process, we can merge two consecutive row blocks or
two consecutive column blocks. Then the matrix is d-twin-ordered if it admits a contraction sequence
where at each step, each row (respectively, column) block “interacts nontrivially” with at most d column
(resp., row) blocks. The formal definition of d-twin-ordered matrices is delayed to Section 2.5. For now,
we encourage the reader to assume that a d-twin-ordered matrix is roughly equivalent to the adjacency
matrix of a graph of twin-width d.

Let us now consider the problem of storing a d-twin-ordered square matrix compactly so that the
entries of the matrix can be queried in an efficient manner. By the work of Bonnet et al. [BGdM+21], the
number of distinct d-twin-ordered n× n binary matrices is 2Θd(n). Hence any faithful representation of
such a matrix must necessarily have bitsize at least Ωd(n). The challenge is to construct a data structure
that stores such a matrix within precisely Od(n) bits, allowing at the same time for an efficient access to
the entries of the matrix.

Before we state our result, let us quickly present the previous knowledge on the problem. In all
the following results, we assume the Word RAM model of computation, which allows us to perform
constant-time computations (arithmetic and bitwise operations and comparisons) on integers with bitsize
O(log n). The following review of literature is borrowed verbatim from our work [PSZ22].

• Storing the matrix explicitly is a representation with bitsize O(n2) and query time O(1).

• In [BGK+21a], Bonnet et al. presented an adjacency labeling scheme for graphs of bounded twin-
width, which can be readily translated to the matrix setting. This scheme assigns to each row and each
column of the matrix a label – a bitstring of length Od(log n) – so that the entry in the intersection
of a row and a column can be uniquely decoded from the pair of their labels. In [BGK+21a] the
time complexity of this decoding is not analyzed, but a straightforward implementation runs in time
linear in the length of labels. This gives a representation with bitsize Od(n log n) and query time
Od(log n).

• It follows from the results of [BGK+21b] that if matrix M is d-twin-ordered, then the entries 1 in
M can be partitioned into ` = Od(n) rectangles, say R1, . . . , R` (see Lemma 2.5.2 for a proof). This
reduces our question to 2D orthogonal point location: designing a data structure that for a given
point in (i, j) ∈ {1, . . . , n}2, may answer whether (i, j) belongs to any of the rectangles R1, . . . , R`.
For this problem, Chan [Cha13] designed a data structure with bitsize O(n log n) and query time
O(log log n) assuming ` = O(n). So we get a representation of M with bitsize Od(n log n) and query
time Od(log log n).

• For 2D orthogonal point location one can also design a simple data structure by persistently recording
a sweep of the square {1, . . . , n}2 using a B-ary tree for B = nε, for any fixed ε > 0. This gives a
representation with bitsize Od(n1+ε) and query time O(1/ε). See Section 6.4 for details.

14 CHAPTER 1. INTRODUCTION

We present a data structure with an asymptotically optimum Od(n) bitsize and doubly-logarithmic
query time:

Theorem 1.3.8 ([PSZ22]). Let d ∈ N be a fixed constant. Then for a given binary n×n matrix M that is
d-twin-ordered one can construct a data structure that occupies Od(n) bits and can be queried for entries
of M in worst-case time O(log log n) per query. The construction time is Od(n log n log log n) in the Word
RAM model, assuming M is given by specifying ` = Od(n) rectangles R1, . . . , R` that form a partition of
symbols 1 in M .

It remains a nagging open problem whether the query time in Theorem 1.3.8 could be brought down to
a constant, perhaps depending on the parameter d, while maintaining the linear bitsize at the same time.

The full exposition of the data structure of Theorem 1.3.8 is given in Chapter 6.

1.3.4 Quasi-polynomial χ-boundedness of classes of bounded twin-width

Last but not least, we present combinatorial evidence that graphs of bounded twin-width have strong
structural properties. In this thesis, we focus on the property of χ-boundedness. We say that a class of
graphs C is χ-bounded if:

• it is hereditary (i.e., every induced subgraph of a graph in C is also a member of C), and
• there exists a function f : N → N such that the vertices of every graph G ∈ C can be properly

colored using at most f(ω(G)) colors, where ω(G) is the size of the maximum clique in G. In other
words, χ(G) 6 f(ω(G)), where χ(G) is the chromatic number of G.

The notion of χ-boundedness is a relative of perfect graphs: A graph G is perfect if for every induced
subgraph H of G (including G itself), the vertices of H can be properly colored using at most ω(H) colors.
Perfect graphs enjoy strong structural properties, allowing us to design polynomial-time algorithms for
finding the maximum clique or maximum independent set [GLS84]. Example classes of perfect graphs are
chordal graphs [Dir61] and distance-hereditary graphs [How77].

χ-boundedness is a slight weakening of the notion of perfect graphs. Many well-structured classes of
graphs are χ-bounded, for instance circle graphs with the χ-bounding function f(ω) = O(ω logω) [Dav22];
intersection graphs of axis-parallel rectangles in the Euclidean plane, also with the χ-bounding function
f(ω) = O(ω logω) [CW21]; the class of graphs excluding a t-vertex path Pt as an induced subgraph
for every fixed t ∈ N, with the χ-bounding function f(ω) = O(tω−1) [Gyá87]; and the class of graphs
of cliquewidth at most k for every fixed k ∈ N, with the χ-bounding function f(ω) = ωOk(1) [BP20].
A result that a given class of graphs is χ-bounded does not usually have any algorithmic implications
per se; however, a proof of χ-boundedness tends to involve a novel structural decomposition for a class of
graphs, which may be exploited algorithmically in subsequent works. We refer to the survey by Scott and
Seymour [SS20] for more information on the research and open problems in this area of combinatorial
graph theory.

In one of the foundational works on twin-width [BGK+21b], Bonnet, Geniet, Kim, Thomassé and
Watrigant proved that, for every fixed d ∈ N, the class of graphs of twin-width at most d is χ-bounded,
with the χ-bounding function exponential in the clique number ω:

Theorem 1.3.9 ([BGK+21b]). For every d ∈ N, every graph G of twin-width at most d and clique number
ω satisfies

χ(G) 6 (d+ 2)ω−1.

The techniques used in the proof of Theorem 1.3.9 were used in the same work to develop several
efficient algorithms for graphs of bounded twin-width: For instance, given a graph G with n vertices
together with a contraction sequence of width d, and a source s, the single-source shortest paths tree
rooted at s can be determined in time Od(n log n), even though G may have as many as Ω(n2) edges.

In [BGK+21b], the authors asked a natural question whether the dependency on ω in the χ-bounding
function in Theorem 1.3.9 could be improved to polynomial. In this thesis, we present a result that has
made huge progress towards the goal of Bonnet et al. by showing that the χ-bounding function can be
made quasi-polynomial in ω:

Theorem 1.3.10 ([PS23]). For every d ∈ N there exists a constant γd ∈ N such that for every graph G
of twin-width at most d and clique number ω, we have

χ(G) 6 2γd·log4d+3 ω.

1.3. OUR RESULTS 15

On a very high level, the idea behind the proof is as follows. By [BKTW20], matrices of small twin-width
(such as d-twin-ordered matrices introduced in the previous section) exclude a pattern called a k-mixed
minor for k = O(d): a partition of the set of rows into k row blocks and the set of columns into k column
blocks such that every submatrix formed by the intersection of any row block with any column block
is mixed. Here, a submatrix is mixed if it contains at least two distinct rows and at least two distinct
columns. In our work, we introduce and work with a slightly more relaxed variant of the pattern that
we call a k-almost mixed minor. Such obstructions are defined analogously to k-mixed minors, only that
we do not require that the submatrix at the intersection of the ith row block with the ith column block
be mixed. We then prove that the adjacency matrices of graphs of twin-width at most d also exclude
k-almost mixed minors for k = O(d).

Now an important observation is that we can measure the complexity of a graph in terms of the size
of the largest almost mixed minor in the adjacency matrix of the graph. Our contribution is the following
graph decomposition scheme: Given a graph G whose adjacency matrix excludes a k-almost mixed minors,
we can – roughly speaking and sweeping a lot of technical details under the rug – vertex-partition it into
several subgraphs G1, G2, . . . , Gp such that:

• each subgraph Gi is slightly simpler than the original graph G: Its adjacency matrix still excludes
a k-almost mixed minor, but the clique number of Gi is multiplicatively smaller than that of G; and

• the p-vertex graph H representing how the subgraphs G1, G2, . . . , Gp interact with each other is
significantly simpler than the original graph G: Its adjacency matrix now excludes a (k − 1)-almost
mixed minor.

This enables us to perform a structural induction on the size of the maximum order of an almost
mixed minor in the adjacency matrix of the graph, which eventually allows us to conclude that graphs
with clique number ω and without k-almost mixed minors in their adjacency matrix have their chromatic
number bounded by 2Ok(logk−1 n).

The proof of Theorem 1.3.10 is presented in Chapter 7.

Follow-up work. After the publication of [PS23], Bourneuf and Thomassé refined our decomposition
scheme, thus creating an object called the delayed decomposition of a graph [BT23]. Briefly, having
obtained a vertex-partition of G into subgraphs G1, G2, . . . , Gp similar to the description above, they
further decompose each subgraph Gi recursively until one-vertex subgraphs of G are produced. This way,
they create a rooted tree T with the leaves of T identified with the vertices of G. Define for every node
x ∈ V (T) the subgraph Gx of G induced by the set of vertices of G identified with the leaves of T that are
descendants of x. Then, for every nonleaf node x ∈ V (T) with p children x1, . . . , xp, (the adjacency matrix
of) the p-vertex graph representing the interactions between the subgraphs Gx1 , . . . , Gxp has a strictly
smaller almost mixed minor than the maximum almost mixed minor of (the adjacency matrix of) G. This
strategy eventually allows them to derive a polynomial bound on the χ-bounding function for bounded
twin-width:

Theorem 1.3.11 ([BT23]). For every d ∈ N there exists a constant αd ∈ N such that for every graph G
of twin-widh at most d and clique number ω, we have

χ(G) 6 ωαd .

Note that the degree of the polynomial must necessarily depend on the twin-width of the graph.
This phenomenon appears already in the more restricted case of bounded cliquewidth: Bonamy and
Pilipczuk [BP20] observed that the construction of Chudnovsky, Penev, Scott, and Trotignon [CPST13]
produces for every k ∈ N a class of graphs of cliquewidth at most k for which any χ-bounding polynomial has
degree at least Ω(log k). A very similar construction has been independently proposed by Nešetřil, Ossona
de Mendez, Rabinovich, and Siebertz [NdMRS21]. Since every class of graphs of bounded cliquewidth has
bounded twin-width, this lower bound transfers to the setting of graphs of bounded twin-width.

As an ending remark, we mention that the delayed decomposition of Bourneuf and Thomassé inspired
by our work has already found an algorithmic application: Pattern-free permutations can be effectively
represented as a composition of separable permutations – permutations excluding two permutations
(2, 4, 1, 3) and (3, 1, 4, 2) as subpatterns (or equivalently, permutations that can be created from the
one-element permutation by performing direct sums and skew sums).

Theorem 1.3.12 ([BBGT24]). Let σ be a fixed pattern that is a permutation of {1, . . . , k}. Then there
exists an integer ck ∈ N such that every permutation π of {1, . . . , n} that excludes σ as a subpattern is
a product of at most ck separable permutations. Moreover, this product can be found in time Ok(n).

16 CHAPTER 1. INTRODUCTION

We believe that the result of Theorem 1.3.12 could enable us to improve the query time of the compact
data structure of Theorem 1.3.8 from O(log log n) to Od(1), while maintaining the asymptotically optimal
bitsize Od(n). This is subject of a work in progress.

1.4 Organization of the thesis

The content of this thesis is composed of the following publications:

• Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, Marek Sokołowski,
Dynamic Treewidth (Chapter 3, [KMN+23]). Paper presented at the 64th IEEE Symposium on
Foundations of Computer Science (FOCS 2023).

• Tuukka Korhonen, Marek Sokołowski, Almost-Linear Time Parameterized Algorithm For Rankwidth
Via Dynamic Rankwidth (Chapter 4, [KS24]). Paper accepted for presentation at the 56th Annual
ACM Symposium on Theory of Computing (STOC 2024).

• Tuukka Korhonen, Wojciech Nadara, Michał Pilipczuk, Marek Sokołowski, Fully Dynamic Approxi-
mation Schemes on Planar and Apex-Minor-Free Graphs (Chapter 5, [KNPS24]). Paper presented
at the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024).

• Michał Pilipczuk, Marek Sokołowski, Anna Zych-Pawlewicz, Compact Representation For Matrices
of Bounded Twin-Width (Chapter 6, [PSZ22]). Paper presented at the 39th International Symposium
on Theoretical Aspects of Comuter Science (STACS 2022).

• Michał Pilipczuk, Marek Sokołowski, Graphs of Bounded Twin-Width Are Quasi-Polynomially
χ-Bounded (Chapter 7, [PS23]). Paper published in the Journal of Combinatorial Theory, Series B.

The publications above are imported mostly verbatim into this thesis, with minimal changes so as to
preserve the consistency of the notation. Moreover, both this Introduction and Preliminaries (Chapter 2)
include some passages taken from these works.

The presentation of the results is split into two parts. In Part I, we give an exposition of the results of
the three first papers, related to the parameters treewidth and rankwidth. The part is opened by a full
presentation of the data structure for treewidth (Chapter 3), followed by its rankwidth analog (Chapter 4).
Afterwards, we present the dynamic shifting data structure for dynamic variants of Maximum Weighted
Independent Set and Minimum Weighted Dominating Set (Chapter 5).

Then in Part II, we show the remaining two results on graphs and matrices of bounded twin-width.
We begin with the compact data structure for d-twin-ordered matrices (Chapter 6) and conclude with the
proof of quasi-polynomial χ-boundedness of graphs of bounded twin-width (Chapter 7).

Chapter 2

Preliminaries

2.1 Notation

2.1.1 Integers, sets and functions

The set N of natural numbers is comprised of all nonnegative integers, including 0. Whenever we write [n]
for n ∈ Z, we mean the set {1, . . . , n} (which is empty for n 6 0); and whenever we write [`, r] for `, r ∈ Z,
we mean the set {`, `+ 1, . . . , r} (which is empty for ` > r). All logarithms in this thesis are base-2.

For a set X and a natural number k ∈ N, we define
(
X
k

)
as the family of all subsets of X of size k.

Also, for a set X and a family of sets {Ax | x ∈ X}, we define
∏
x∈X Ax as the Cartesian product of all

the sets Ax. Formally, f ∈
∏
x∈X is a function mapping each x ∈ X to an element f(x) ∈ Ax. A partition

of a set X is a collection of nonempty pairwise disjoint subsets of X whose union is X. For a partition C
of X, we use notation

⋃
C = X. If X,Y are two sets, then X4Y = (X ∪ Y) \ (X ∩ Y) is the symmetric

difference of X and Y .
Suppose f : X → Y is a function and X ′ ⊆ X. The restriction of f to X ′ is the function f |X′ : X ′ → Y

such that f |X′(x) = f(x) for each x ∈ X ′.

2.1.2 Graphs

Basic notation. We use standard graph terminology. A graph G contains a set of vertices V (G) and
a set of edges E(G). In this thesis, unless specified otherwise, all graphs are finite, undirected and simple.
In particular, all graphs exclude self-loops and multiple edges between the same pair of vertices. Hence
E(G) can be considered to be a subset of

(
V (G)

2

)
. However, sometimes it will be more convenient to treat

each edge uv of G as two ordered edges ~uv and ~vu. For this reason we define the set of oriented edges of
G as ~E(G) :=

⋃
uv∈E(G){ ~uv, ~vu}. In many algorithmic applications we shall assume the set V (G) to be

totally ordered; one can essentially assume that V (G) is a finite subset of N. Two vertices u, v ∈ V (G) are
adjacent if uv ∈ E(G). A vertex u ∈ V (G) is incident to an edge e ∈ E(G) if u is one of the endpoints of
e. For X ⊆ V (G), we write X to mean V (G) \X.

A path of length ` > 1 is an ordered sequence v1v2 . . . v`−1v` of ` distinct vertices so that any two
consecutive vertices are adjacent. We denote by P`(G) the set of paths of length ` in G.

Neighborhoods. When u is a vertex of G, we denote the open neighborhood of u by NG(u) := {v ∈
V (G) | uv ∈ E(G)} and its closed neighborhood by NG[u] := NG(u) ∪ {u}. If X ⊆ V (G), we define the
closed and open neighborhoods of X as, respectively, NG[X] :=

⋃
u∈X NG[u] and NG(X) := NG[X]\X. In

all the notation, we may drop G from the subscript if the graph is known from the context. Two vertices
u, v are twins with respect to a set X ⊆ V (G) if N(u) ∩X = N(v) ∩X. We will simply say that u, v are
twins if u, v are twins with respect to V (G) \ {u, v}.

For two disjoint nonempty sets of vertices X,Y ⊆ V (G), we say that the pair X,Y is complete if every
vertex of X is adjacent to every vertex of Y , and anti-complete if no edge connects a vertex of X with
a vertex of Y . (Note that these notions ignore the existence of edges between the pairs of vertices in X
and between the pairs of vertices in Y .) Then a pair X,Y is pure if it is either complete or anti-complete.
Otherwise, a pair X,Y is impure. We also say that X is semi-pure towards Y if every vertex of X is either
complete or anti-complete towards Y . (If X ∪ Y = V (G), this is equivalent to saying that Y is a module
in G.)

17

18 CHAPTER 2. PRELIMINARIES

Subgraphs and minors. We use the following notation for denoting induced subgraphs of G: When
X ⊆ V (G), we write G[X] to mean the subgraph of G with V (G[X]) = X and E(G[X]) = E(G) ∩

(
X
2

)
.

Sometimes it will be more convenient to write G−X to mean G[X]. We generalize the notation to bi-
and multipartite induced subgraphs: If X,Y ⊆ V (G) are disjoint, we define G[X,Y] to be the subgraph
of G with V (G[X,Y]) = X ∪ Y , where E(G[X,Y]) contains exactly the edges of G with one endpoint in
X and the other in Y . Similarly, if C is a collection of nonempty pairwise disjoint subsets of V (G), then
G[C] is a subgraph of G with V (G[C]) =

⋃
C and with uv ∈ E(G[C]) if and only if uv ∈ E(G) and u, v

belong to different parts of C.
For a graph G, to contract an edge uv ∈ E(G) is to replace the vertices u, v in G with a new vertex w

such that N(w) = N(u)∪N(v) \ {u, v}. Then a graph H is a minor of G if H can be constructed from G
through a sequence of vertex or edge removals and edge contractions.

Connectivity, distances, and separations. Next, cc(G) denotes the partition of V (G) into the set
of connected components of G. Also, for u, v ∈ V (G), we denote by distG(u, v) the distance between u
and v in G, i.e., the minimum number of edges on a simple path between u and v. If u and v are in
separate connected components of G, we put distG(u, v) = +∞. The maximum distance between any pair
of vertices of G is called the diameter of G, and the value minu∈V (G) maxv∈V (G) distG(u, v) is called the
radius of G.

For a set A ⊆ V (G), we define the torso of A in G, denoted torsoG(A), as the graph H on the vertex
set A in which uv ∈ E(H) if and only if u, v ∈ A and there exists a path connecting u and v that is
internally disjoint with A. Equivalently, u, v ∈ A and we have that uv ∈ E(G) or there exists a connected
component C ∈ cc(G−A) for which {u, v} ⊆ NG(C).

Given two sets A,B ⊆ V (G), we say that a set S ⊆ V (G) is an (A,B)-separator if every path
connecting a vertex of A and a vertex of B intersects S. If sets A, S, B form a partition of V (G), then
(A,S,B) is a separation of G. The order of this separation is |S|. Next, if every (A,B)-separator S has
size at least |A|, then we say that A is linked into B. Equivalently (by Menger’s theorem), there exist |A|
vertex-disjoint paths connecting A and B. Note that if B ⊆ B′ and A is linked into B, then A is also
linked into B′.

Graph parameters. We say that a graph parameter is a function mapping a graph to a natural number
with the property that any pair of isomorphic graphs are mapped to the same number. Some examples of
graph parameters are treewidth, rankwidth and twin-width, already mentioned in the Introduction and
formally defined in Sections 2.3 to 2.5. We additionally define the following graph parameters: ω(G) is the
clique number of G (i.e., the size of the maximum clique in G) and χ(G) is the chromatic number of G
(i.e., the minimum number of colors required in a proper coloring of G, that is, in a coloring of vertices of
G in which no two vertices connected by an edge receive the same color).

Classes of graphs. A class of graphs is any family of graphs. We say that a class C of graphs is
monotone if for every graph G ∈ C, all subgraphs of G also belong to C. Similarly, we say that C is
hereditary if for every G ∈ C, all induced subgraphs of G also are elements of C; and minor-closed if for
every G ∈ C, all minors of G are in C. Next, for a graph H, the class C is H-minor-free if no graphs in C
contain H as a minor. More generally, let P be a property of graphs; we then say that the class C has
property P or is P if all graphs in C satisfy P.

Let p be a graph parameter. Then a class C of graphs has bounded p if there exists an integer B ∈ N
such that p(G) 6 B for all G ∈ C. (So we will sometimes say that a class of graphs has bounded treewidth,
rankwidth, cliquewidth, twin-width etc.) However, we will say that C is χ-bounded if there exists a function
f : N → N such that χ(G) 6 f(ω(G)) for each G ∈ C. The function f in this definition is called the
χ-bounding function.8

2.1.3 Trees and forests

Basic definitions. A forest is an acyclic undirected graph. If a forest is additionally connected, then
the graph is actually a tree. We reserve the name nodes for the vertices of the tree.

In many cases trees and forests will be rooted. In case of trees, this means that exactly one node is
designated as the root of the tree, and all the remaining vertices have exactly one parent – the unique
neighbor that is closer to the root of the tree. Then the rooted forests are simply collections of rooted

8It appears that many researchers prefer to use the name χ-binding function for the function f . The author of this thesis
is prepared to fight fiercely over this terminology.

2.1. NOTATION 19

trees. Whenever a node p is a parent of a node x (which we denote p = parent(x)), we say that x is a child
of p. Two distinct nodes x, y are siblings if they have the same parent or they are both roots of trees in
a rooted forest. A rooted tree (forest) is binary if every node has at most two children. We do not order
the children of a node, so in particular we do not distinguish the “left” or the “right” child of a node in
a binary tree. An unrooted tree is subcubic if every node is of degree at most 3, and cubic if all nodes are
of degree 1 or 3. To contract a degree-2 node in a tree is to contract any edge incident to it. Unrooted
cubic trees and rooted binary trees correspond to each other: A cubic tree can be created from a binary
tree by contracting its root, and a binary tree is constructed from a cubic tree by subdividing an edge of
the cubic tree and designating the newly created vertex as the root of the tree.

Leaves and prefixes. A node is a leaf of a rooted tree (forest) if it has no children; and in case of
unrooted trees (forests), a leaf is a vertex of degree 1. For a tree (forest) T , define L(T) as the set of leaves
of T ; and define ~L(T) as the set of leaf edges of T , i.e., the oriented edges pointing away from the leaves
of T . There exists a natural bijection between L(T) and ~L(T).

For an oriented edge ~xy ∈ ~E(T), we denote by L(T)[~xy] ⊆ L(T) the subset of the leaves of T that
are closer to x than y. The set ~L(T)[~xy] ⊆ ~L(T) is defined analogously, i.e., ~L(T)[~xy] = {~lp ∈ ~E(T) | l ∈
L(T)[~xy]}. When T is rooted and t ∈ V (T), we use L(T)[t] to denote the set of leaves that are descendants
of t. The set ~L(T)[t] is defined analogously.

For a rooted tree T , we declare that a nonempty set A ⊆ V (T) is a prefix of T if A is empty or T [A] is
a connected subgraph of T containing the root of T . Then in a rooted forest F , we say that A ⊆ V (F) is
a prefix of F if A ∩ T is a prefix of T for every connected component T of F . If A is disjoint from the set
of leaves of T , we additionally say that A is leafless. If a node x does not belong to A, but its parent does,
we say that x is an appendix of A. Equivalently, AppT (A) := NT (A) is the set of appendices of Tconn. For
convenience, define also ~AppT (A) := { ~xy ∈ ~E(T) | x /∈ A, y ∈ A} ⊆ ~E(T) as the set of appendix edges of
A. Observe that if a tree T is binary, then |AppT (A)| 6 |A|+ 1 holds for every prefix A of T . All these
definitions lift naturally to the setting where T is an unrooted tree and A induces a connected subtree
of T . Also, these definitions can be generalized to handle appendices of prefixes of rooted forests.

Ancestors and descendants. In a rooted forest F , we say that a node x is an ancestor of y if x lies
on the unique simple path between y and the root of the tree containing y. Equivalently we will say that
y is a descendant of x or write x 4F y. Note that every node is an ancestor and a descendant of itself. Let
parentT (u) denote the parent of x in T (or ⊥ if x is a root in T), and we denote the ancestors and the
descendants of x as ancF [x] := {y | y 4F x} and descF [x] := {y | x 4F y}, respectively. We can generalize
ancF [x] to ancF [A] for A ⊆ V (F) by defining ancF [A] =

⋃
x∈A ancF [x]; this set will be called the ancestor

closure of A in F . It follows that a set A ⊆ V (F) is a prefix of F if and only if ancF [A] = A.
For x, y ∈ V (T) in a rooted tree T we define the lowest common ancestor of x and y in T , denoted

lca(x, y), as the deepest node z of T that is an ancestor of both x and y in T . A set S ⊆ V (T) is lca-closed
if lca(x, y) ∈ S whenever x, y ∈ S. For a set S ⊆ V (T) we define the lca-closure of S as the (unique)
inclusion-wise minimal lca-closed set containing S in its entirety. It is a well-known fact that if X is the
lca-closure of a nonempty set S, then |X| 6 2|S| − 1.

We define the depth depthF (x) of a node x in a rooted forest F is the distance between x and the root
of the tree containing x, and its height heightF (x) as the maximum number of nodes on a path from x to
a descendant of x. This implies that the depth of a root of a tree is 0, while the height of a leaf is 1. The
height of a tree is the height of its root, and the height of a forest is the maximum height of a tree in the
forest.

We can also define an ancestor-descendant relationship for the oriented edges of a rooted tree (forest)
as follows. An oriented edge ~xy of a rooted tree T is directed towards the root if y is the parent of x,
and away from the root otherwise. We say that an oriented edge ~xy of a (rooted or unrooted) tree T is a
predecessor of an oriented edge ~zw if either ~xy = ~zw or there is a path in T between y and z that avoids
x and w. The set of predecessors of ~zw is denoted by predT (~zw). If ~xy is a predecessor of ~zw then we say
~zw is a successor of ~xy. If ~xy, ~yz ∈ ~E(T) with x 6= z, then ~xy is called a child of ~yz.

2.1.4 Matrices

Unless explicitly stated otherwise, we will work with matrices with entries 0 and 1; we shall call such
matrices binary. The rank of a binary matrix is defined in a standard way over the binary field GF(2).
A submatrix of a matrix is created by restricting the set of rows and columns of a matrix arbitrarily.

20 CHAPTER 2. PRELIMINARIES

In particular, if R is a subset of the set of rows of a matrix M and C is the subset of the set of columns
of M , we say that M [R,C] is the submatrix of M at the intersection of R and C. A subset of rows or
columns of a matrix is convex if it is contiguous in the order of rows (columns) in the matrix. We also say
that a row block is a nonempty convex set of rows and a column block is an analogous set of columns.
A submatrix of a matrix created by restricting it to a row block and a column block is called a zone of
a matrix. Then a division of matrix M is a pair D = (R, C), where R is a partition of rows into row blocks
and C is a partition of columns into column blocks. Note that such a division partitions M into |R| · |C|
zones, each induced by a pair of blocks (R,C) ∈ R× C. A t-division is a division where |R| = |C| = t. By
D[i, j] we mean the zone of M at the intersection of the ith row block of R and the jth column block
of C. Similarly, by D[[i1, i2], [j1, j2]] we mean the zone of M comprised of the union of zones D[i, j] for
i ∈ [i1, i2], j ∈ [j1, j2]. If M is a symmetric matrix, we say that D is symmetric if R = C.

If G is a graph with vertices ordered according to a total order <, then the adjacency matrix of G is
a binary matrix M with rows and columns both labeled V (G) and both ordered according to <, where
M [u, v] = 1 if and only if uv ∈ E(G). For X ⊆ V (G), we define the adjacency matrix M of the bipartite
induced subgraph G[X,X] by indexing the rows of M by X and the columns of M by X.

2.2 Parameterized and dynamic problems

In this section we give formal definitions of parameterized problems for dynamically changing inputs. Then
we introduce a framework for describing the robustness and efficiency of the solutions to these problems.
The formal treatment of the notion of parameterized complexity is standard (see e.g. [DF13,CFK+15]),
while the description of dynamic parameterized problems and algorithms is inspired by the work of Alman,
Mnich, and Vassilevska Williams [AMV20].

Model of computation. Across the entire thesis, unless specified otherwise, we will assume the
Word RAM model of computation [FW90]. In the Word RAM model, we consider a machine whose
working memory is an array A of w-bit machine words. The index at which any given machine word is
stored is called an address. Basic manipulation of machine words can be performed in constant time;
this includes arithmetic operations (such as addition, subtraction, multiplication and division), bitwise
operations (such as bitwise or, and, xor, not, and bit shifts) and comparisons. Moreover, the model permits
random accesses – instructions of the form A[A[i]]← A[j] or A[i]← A[A[j]] that perform loads or stores
at the memory addresses prescribed by another machine word. Assuming that an algorithm in the Word
RAM model can access the machine words at indexes from 0 to s− 1, inclusive, we define that the space
of this algorithm is s machine words or sw bits. Note that the existence of random accesses requires that
s 6 2w so as to ensure that all machine words can be accessed.

Choosing n to be the size of input data to an algorithm in the Word RAM model, we require that
w = Ω(log n) so that the entire input can be read using random accesses. Throughout this thesis, we will
actually make a traditional assumption that w = Θ(log n).

In practice, we will not be particularly concerned about the precise definition of the model, and instead
we will assume that we can perform arbitrary arithmetic and bitwise operations, comparisons and indirect
accesses in constant time. It can be verified that all described algorithms indeed adhere to the formal
definition of the model described above, however it is customary to omit this verification for the sake of
brevity and clarity.

Classical and parameterized complexity. Fix a finite alphabet Σ; by convention, we usually assume
Σ = {0, 1}. A word x ∈ Σ? is a finite sequence of characters of Σ. A language over Σ is an arbitrary set
L ⊆ Σ? of words over Σ. A problem Π is called a decision problem if it is described by a language LΠ over
Σ. Then a solution to the problem Π is any algorithm that, given an input word x ∈ Σ?, decides whether
x ∈ LΠ. Next, a problem Π is a function problem when it is defined by a function fΠ : Σ? → Σ?. In this
setting, a solution to Π is any algorithm that, given an input word x ∈ Σ?, outputs fΠ(x). An algorithm
solving a problem (be it a decision or a function problem) is polynomial-time if it terminates in time
O(|x|c) for all possible inputs x for some c > 0.

In turn, the framework of parameterized complexity crucially relies on, in a sense, “two-dimensionality”
of inputs. Formally, a problem Π shall be called a parameterized decision problem if it is described by a set
LΠ ⊆ Σ? × Σ?. Then a parameterized algorithm solves Π when, given as input a pair (x, k) ∈ Σ? × Σ?,
correctly decides whether (x, k) ∈ LΠ. Here, the value k is called the parameter of the input. Usually, the
parameter will be a nonnegative integer encoded in unary, an encoding of a logic sentence or formula,

2.2. PARAMETERIZED AND DYNAMIC PROBLEMS 21

an encoding of a graph, or any tuple of these objects. In many cases, we will assume that k is a nonnegative
integer encoded in unary, so we will conveniently assume LΠ to be a subset of Σ? × N, and then the size
of the input (x, k) will be |x|+ k. Similarly, a parameterized function problem is prescribed by a function
fΠ : Σ? × Σ? → Σ?, and a parameterized algorithm solves Π when, given as input a pair (x, k) ∈ Σ? × Σ?,
correctly computes fΠ(x, k).

An algorithm is fixed-parameter tractable (fpt) if it terminates in time f(k) · |x|c for some constant c > 0
and some computable function f . Usually we will write Ok(|x|c) as a shorthand for f(k) · |x|c for some
computable f . Whenever k represents a tuple (k1, . . . , kt) of parameters, we will also write Ok1,...,kt(|x|c).

Dynamic parameterized problems. We now introduce a formalism for problems where we have to
maintain the satisfaction of properties of dynamically changing inputs and respond to various queries
about the current input. We define this formalism in a larger generality than [AMV20] in order to allow
nonlocal updates to the input instance that potentially modify a significant part of the instance.

Fix a set LΠ ⊆ Σ? × Σ? of admissible inputs (x, k) ∈ LΠ. (For example, LΠ may encode a set of pairs
(G, k), where G is a graph of treewidth k; or a set of pairs (G,H), where G is an H-minor-free graph.)
A dynamic parameterized problem Π contains a set LΠ, zero or more update schemes (updatei, L

update
i),

where updatei : Σ? × Σ? → Σ? and Lupdate
i ⊆ Σ? × Σ?, and one or more query schemes (queryi, L

query
i),

where queryi : Σ? × Σ? → Σ? and Lquery
i ⊆ Σ? × Σ?. A dynamic parameterized data structure maintains

a pair (x, k) ∈ Σ? × Σ? under the following types of operations:

• Initialize(x, k): Initializes the data structure with an admissible input (x, k) ∈ LΠ;

• Updatei(y): Given an update description y ∈ Σ? such that (y, k) ∈ Lupdate
i , replaces x with x′ :=

updatei(x, y);

• Queryi(y): Given a query description y ∈ Σ? such that (y, k) ∈ Lquery
i , returns queryi(x, y).

One should assume that updates are usually of the form “add or remove a given edge uv from the
graph” or “replace the weight of a vertex v with c”; however, we may permit more complex types updates,
such as “given a set X of vertices of a dynamic graph G, replace the set of edges of G with E(G)4

(
X
2

)
”

or “given X ⊆ V (G) and a binary logic formula ϕ(x, y), add edge uv to G if and only if u, v ∈ X, u 6= v
and ϕ(u, v)”. Note that updates cannot alter the value of the parameter k. However, updates and queries
may be constrained by the parameter k through the sets Lupdate

i , Lquery
i , so for example the length of the

formula ϕ above could be upper-bounded by k.
Whenever a dynamic parameterized problem defines some updates, we should define whether updates

may cause the input to become inadmissible (so for instance, if LΠ denotes graphs of treewidth at most
k, we should define if updates can cause the treewidth of the dynamic graph to increase above k). We
introduce three models of resiliency against such updates:

• In case a data structure is LΠ-restricted, we place an additional requirement that after each update,
the current input is admissible.

• This requirement is not imposed if the data structure weakly supports LΠ membership. However, in this
case, given an operation Updatei(y), the data structure must recognize that (updatei(x, y), k) /∈ LΠ

and reject this update. Rejected updates are not applied to the input.

• On the other hand, if the data structure strongly supports LΠ membership, all updates are applied to
the input, regardless of whether the resulting input is admissible or not. However, whenever a query
is made about an inadmissible input, the data structure is allowed to return Input inadmissible in
lieu of the actual answer to the query.

We then define amortized and worst-case update and query time bounds. Let T init : N× Σ? → N and
T update
i , T query

i : N× N× Σ? → N be some functions. Suppose the data structure is initialized with input
(x, k) and let n be the size of the initial input. We will say that the initialization of the data structure
takes time T init(n, k), the ith update Updatei(y) takes amortized time T update

i (n, |y|, k), and the ith query
Queryi(y) takes amortized time T query

i (n, |y|, k) whenever the total time spent by the data structure to
initialize itself with an input (x, k) and process any sequence of operations is bounded from above by the
sum of:

• T init(n, k),

22 CHAPTER 2. PRELIMINARIES

• T update
i (n, |y|, k) for every processed update of the form Updatei(y), and

• T query
i (n, |y|, k) for every processed query of the form Queryi(y).

We may additionally designate some of the operation time bounds as worst-case. If we say that Updatei(y)
takes worst-case time T update

i (n, |y|, k), we further require that the data structure processes each update
Updatei(y) in time at most T update

i (n, |y|, k). We analogously define worst-case query time bounds. Whenever
we do not specify whether a given operation time bound is amortized or worst-case, we implicitly assume
the time bound is worst-case.

We will then say that the data structure is almost linear fixed-parameter tractable if the initial-
ization time bound is almost linear in the input size, i.e., T init(n, k) 6 f(k) · n1+o(1) for some com-
putable function f , and all operation time bounds are subpolynomial in n and almost linear in |y|, i.e.,
T update
i (n, |y|, k), T query

i (n, |y|, k) 6 f(k) · no(1) · |y|1+o(1).

2.3 Treewidth

Let G be an undirected graph. A tree decomposition of G is a pair T = (T, bag), where T is an arbitrary
tree and bag is a function bag : V (T)→ 2V (G) with the following properties:

•
⋃
x∈V (T) bag(x) = V (G), i.e., every vertex of G belongs to some bag(x);

• edge condition: for every uv ∈ E(G), there exists x ∈ V (T) such that {u, v} ⊆ bag(x);

• vertex condition: for every v ∈ E(G), the set {x ∈ V (T) | v ∈ bag(x)} is a connected subtree of T .

We will usually picture tree decompositions as trees, where within each node x of the tree we inscribe
a “bag”, that is, the set bag(x).

The width of a tree decomposition (T, bag) is the maximum size of any bag in the decomposition,
minus 1. Then the treewidth of a graph is the minimum possible width of any tree decomposition of the
graph.

For an edge xy ∈ E(T), we define the adhesion of xy as adh(xy) := bag(x)∩bag(y). If the decomposition
is rooted (i.e., the tree T is rooted), then the adhesion of x, denoted adh(x), is the adhesion of the edge
connecting x with the parent of x in T . The adhesion of the root of T is empty. We then also define the
component of x as follows:

cmp(x) :=
(⋃
{bag(y) | y is a descendant of x in T}

)
\ adh(x).

We note that (cmp(t), adh(t), V (G) \ (cmp(t) ∪ adh(t))) is a separation of G.
We now list standard observations regarding tree decompositions and treewidth. The proofs of these

observations are standard.

Observation 2.3.1 ([Die12]). If C ⊆ V (G) is a clique in G and (T, bag) is a tree decomposition of G,
then there exists a node x ∈ V (T) such that C ⊆ bag(x).

Observation 2.3.2 ([CFK+15]). If G is a graph of treewidth at most k, then |E(G)| 6 k · |V (G)|.

A classic result of Bodlaender and Hagerup implies that any tree decomposition of width k can be
turned into a tree decomposition of the same graph of width at most 3k + 2 and height logarithmic in the
number of vertices of the graph.

Theorem 2.3.3 ([BH98, Lemma 2.2]). Given a graph G and its tree decomposition (T, bag) of width k,
one can compute in time O(k · |V (T)|) a binary tree decomposition (T ′, bag′) of G of height O(log |V (T)|),
width at most 3k + 2, and with |V (T ′)| = O(|V (T)|).

Alternative definition through elimination forests. We say that an elimination forest of a graph
G is a rooted forest F with V (F) = V (G) such that for every edge uv of G, we have u 4F v or v 4F u.
Note that elimination forests underlie the notion of treedepth of a graph G, defined as the minimum height
of an elimination forest of G; however, since the properties of treedepth are not examined in this thesis,
we choose not to explore any further introductory results on treedepth here.

If F is an elimination forest of G, then with every vertex u we can associate its reachability set defined
as ReachF (u) := N(descF [u]). Note that as F is an elimination forest, ReachF (u) consists of strict ancestors

2.4. RANKWIDTH AND CLIQUEWIDTH 23

of u, that is, ReachF (u) ⊆ ancF [u] \ {u}. So in other words, ReachF (u) comprises all strict ancestors of u
that have a neighbor among the descendants of u. It can be easily seen that if F is an elimination forest
of G, then endowing F with a bag function u 7→ {u} ∪ ReachF (u) yields a tree decomposition of G. As
proved in [BP22], for every graph G there is an elimination forest F of G such that the tree decomposition
obtained from F in this way has optimum width, that is, width equal to the treewidth of G.

We then state and prove a variant of the Bodlaender–Hagerup lemma for elimination forests. The
definition and the proof is sourced from [KNPS24], though the techniques used in the proof should be
considered standard.

Lemma 2.3.4 ([KNPS24]). Let G be a graph on n vertices given together with a tree decomposition of
width w with O(n) nodes. Then, in time O(wn log n), one can compute an elimination forest F of G with
the following properties:

1. F has height O(w · log n);
2. for each u ∈ V (F), we have |ReachF (u)| = O(w);
3. for each u ∈ V (F), the graph G[descF [u]] is connected.

Proof. Recall we are given a tree decomposition, say (T0, bag0), of G, of width w and with O(n) nodes.
Using Theorem 2.3.3, we turn it into a tree decomposition (T, bag) of G of width at most 3w + 2 and
height O(log n), and root it at an arbitrary node r. Now, let us turn this tree decomposition into an
elimination forest by “straightening” each bag. Let µ : V (T)→ 2V (G) be the function that given a node t
of T , returns the margin of t: the subset of vertices v ∈ bag(t) such that v 6∈ bag(t′) for any strict ancestor
t′ of t. In other words, v ∈ µ(t) if and only if t is the shallowest node whose bag contains v.

Now, let us define an elimination forest F of G by defining the parent relation. Let us order the vertices
of each µ(t) arbitrarily; say that µ(t) is ordered vt1, v

t
2, . . . , v

t
|µ(t)|. For 2 6 i 6 |µ(t)| we let vti−1 be the

parent of vti in F . If t is the root of T , then we let vt1 to be the root of F . Otherwise, we set the parent of
vt1 to vt

′

|µ(t′)|, where t′ is the closest ancestor of t such that µ(t′) is nonempty. One can readily check that
this in fact yields a valid elimination forest of height no larger than O(w · log n).

As for the property that |ReachF (u)| = O(w), observe that if u ∈ µ(t) for some t ∈ V (T) (as noted
before, t is determined uniquely), then descF [u] ⊆ µ(descT [t]), i.e., for every v ∈ descF [u], t is an ancestor
of all nodes whose bags contain v. Therefore, NG[descF [u]] ⊆ bag(descT [t]). By the construction of F
we have that bag(descT [t])− bag(t) ⊆ descF [u], which implies ReachF (u) = NG(descF [u]) ⊆ bag(t). We
conclude that |ReachF (u)| 6 3w + 3, as required.

However, such F does not have to necessarily fulfill the third condition. Fortunately, the problem is
easy to fix in a standard way while maintaining the satisfaction of properties 1 and 2. We create a forest F ′

on vertex set V (G), where parentF ′(u) is defined as the deepest vertex of ReachF (u) in F . Note that
ReachF (u) ⊆ ancF [u] and ancF (u) forms a path in F , so such vertex is well defined; as a special case, if
ReachF (u) is empty, then we let u be a root of F . One can readily check that F ′ defined in this way is
a valid elimination forest of G, still satisfies properties 1 and 2, and additionally satisfies that for each
u ∈ V (F ′) we have that G[descF ′ [u]] is connected.

The proof above is algorithmic: The decomposition (T, bag) can be computed in time O(w · n).
Afterwards, the margins µ(t) for t ∈ V (T) can be found in total time O(w · n) by determining, for each
v ∈ V (G), the shallowest node t ∈ V (T) whose bag contains v. The rest of the construction of F ′ is trivial
to implement in time O(n log n · w).

2.4 Rankwidth and cliquewidth

Rankwidth. We now introduce rankwidth formally. Let G be an undirected graph. A rank decomposition
of G is a pair T = (T, λ), where T is a cubic tree (where all nonleaf vertices have degree exactly 3) with
at least two leaves, and λ : V (G)→ ~L(T) is a bijection between the set of vertices of G and the set of leaf
edges of T .9 We may equivalently consider T to be a rooted binary tree by subdividing an arbitrary edge
of T and rooting the tree at a newly created vertex.

For an oriented edge ~xy ∈ ~E(T), define L(T)[~xy] ⊆ V (G) as the set of vertices assigned to the leaf
edges of T that are closer to x than y: L(T)[~xy] := {v ∈ V (G) | λ(v) is a predecessor of ~xy}. Then, for
an edge xy ∈ E(T), we define the width of xy in T as the GF(2)-rank of the adjacency matrix of the
bipartite induced subgraph

G[L(T)[~xy], L(T)[~yx]].

9Note that this definition precludes the existence of rank decompositions of graphs containing at most one vertex; in this
thesis, we will not be concerned about extending the definition to such graphs.

24 CHAPTER 2. PRELIMINARIES

Now, the width of a rank decomposition of G is the maximum width of any edge of the decomposition,
and then the rankwidth of G is the minimum possible width of a rank decomposition of G.

The following lemma is an analog of the Bodlaender–Hagerup lemma for rankwidth; that is, we prove
that each rank decomposition can be made into a logarithmic-depth rank decomposition of the same
graph without worsening the width of the decomposition too much.

Lemma 2.4.1 ([CK07]). Let (T, λ) be a rank decomposition of a graph G of width k. Then there exists
a rooted rank decomposition of G of height O(log |V (T)|) and width at most 2k.

We prove a slightly stronger result in Section 4.2: First, we restate Lemma 2.4.1 in terms of rank
decompositions of partitioned graphs, which we also define in Section 4.2. Next, for our applications
we require the proof to be efficient – in fact, we construct the logarithmic-depth decomposition in
O(|V (T)| log |V (T)|) time.

Cliquewidth. We move to cliquewidth – a graph parameter functionally equivalent to rankwidth. As
mentioned before, the notion of cliquewidth actually predates rankwidth – it was introduced by Courcelle,
Engelfriet, and Rozenberg [CER93] and defined in its modern form by Courcelle in [Cou95]. In the
description below, we follow the treatment of cliquewidth in [KS24], which defines cliquewidth similarly
to [CMR00].

Let k ∈ N. A tuple G = (G,V1, . . . , Vk) is a k-graph if G is a graph and V1, . . . , Vk are disjoint subsets
of V (G) whose union equals V (G) (they are not a partition because they are indexed by [k] and allowed to
be empty). We define three types of operations for constructing k-graphs. First, the disjoint union of two
k-graphs G1 = (G1, V 1

1 , . . . , V
1
k) and G2 = (G2, V 2

1 , . . . , V
2
k) where G1 and G2 are disjoint is defined as

G1 ⊕ G2 = (G1 ∪G2, V 1
1 ∪ V 2

1 , . . . , V
1
k ∪ V 2

k), where G1 ∪G2 is the union of G1 and G2.

Then, η(i, j)(G) for i, j ∈ [k] with i 6= j denotes the k-graph obtained from G = (G,V1, . . . , Vk) by adding
all possible edges between Vi and Vj , i.e.,

η(i, j)(G) = (G′, V1, . . . , Vk), where V (G′) = V (G) and E(G′) = E(G) ∪ {uv | u ∈ Vi ∧ v ∈ Vj}.

Then, π(i, j)(G) for i, j ∈ [k] with i 6= j denotes the k-graph obtained from G by renaming i into j, i.e.,

π(i, j)(G) = (G,V ′1 , . . . , V
′
k), where V ′i = ∅, V ′j = Vi ∪ Vj , and V ′l = Vl for l ∈ [k] \ {i, j}.

A graph has cliquewidth at most k if it can be constructed from single-vertex k-graphs by using those
operations.

It was observed by Oum and Seymour that cliquewidth and rankwidth are functionally tied to each
other, so every class of graphs of bounded cliquewidth has bounded rankwidth and vice versa:

Theorem 2.4.2 ([OS06]). If a graph has rankwidth k, then its cliquewidth is at least k and at most
2k+1 − 1.

While the proof of Oum and Seymour is effective, in Section 4.10 we will give an optimized counterpart
of their proof: Given a rank decomposition of a graph G of width k decorated with suitable annotations of
the edges and nodes of the decomposition, we can produce a (2k+1−1)-expression of G in time Ok(|V (G)|).

2.5 Twin-width

We begin by giving a definition of twin-width of graphs, before discussing the generalizations of twin-width
to the setting of matrices.

Let G be a graph and assume G has n > 1 vertices. A contraction sequence of G is a sequence of
partitions Pn,Pn−1, . . . ,P1 of V (G) such that:

• Pn = {{v} | v ∈ V (G)} is the finest partition of V (G) where every vertex is in a separate part;

• P1 = {V (G)} is the coarsest partition of V (G) consisting of just one set;

• for each i ∈ [p− 1], Pi is a contraction of Pi+1: that is, Pi is created from Pi+1 by merging two sets
into one.

The error value of a partition P of V (G) is the least integer d such that for every part P ∈ P, there
are at most d parts Q ∈ P other than P such that (P,Q) is not pure. Then a contraction sequence
Pn,Pn−1, . . . ,P1 is a d-sequence if all partitions in the sequence have error values at most d. Finally, the
twin-width of a graph G is the minimum value of d such that G admits a d-sequence.

2.5. TWIN-WIDTH 25

2.5.1 Twin-width of matrices

We now show a generalization of twin-width to matrices. The description below is sourced from [PSZ22]
and defines the concepts of d-twin-ordered matrices and twin-width of matrices that were first defined
in [BKTW20].

Let M be a matrix. If (R, C) is a division of M , then a contraction of (R, C) is any division (R′, C′)
obtained from (R, C) by either merging two consecutive row blocks R1, R2 ∈ R into a single row block
R1 ∪ R2, or merging two consecutive column blocks C1, C2 ∈ C into a single column block C1 ∪ C2. A
contraction sequence for M is a sequence of divisions

(Rp, Cp), (Rp−1, Cp−1), . . . , (R1, C1),

such that

• (Rp, Cp) is the finest division where every row and every column is in a separate block;

• (R1, C1) is the coarsest partition where all rows are in a single row block and all columns are in a
single column block; and

• for each i ∈ [p− 1], (Ri+1, Ci+1) is a contraction of (Ri, Ci).

Note that thus, p has to be equal to the sum of the dimension of M , minus 1. Finally, for a division (R, C)
of M , the error value of (R, C) is the least d such that in (R, C), every row block and every column block
contains at most d nonconstant zones. Then M is said to be d-twin-ordered if it admits a d-sequence,
that is, a contraction sequence where every division has error value at most d. The twin-width of a binary
matrix M is the least d such that one can permute the rows and columns of M so that the obtained
matrix is d-twin-ordered.

The twin-width of graphs and matrices are closely tied to each other:

Observation 2.5.1. The following properties hold:
• If a graph G has twin-width d, then there is a total order < of V (G) such that the adjacency matrix

of G, with rows and columns ordered according to <, is (d+ 2)-twin-ordered.
• If a graph G has a total order < such that the adjacency matrix of G, with rows and columns ordered

according to <, is t-twin-ordered, then the twin-width of G is at most max(0, 2t− 1).

Even though these relations should be considered folklore, we could not find their proofs in the
literature. Hence we give the proof below.

Proof. Let Pn,Pn−1, . . . ,P1 be a d-sequence of G. Without loss of generality assume that V (G) has a total
order < so that every part P ∈ Pi for every i ∈ [n] is an interval with respect of <. Let M be the adjacency
matrix of G, with rows and columns sorted according to <. We claim that M is (d+2)-twin-ordered. Indeed,
consider the contraction sequence (R2n−1, C2n−1), . . . , (R1, C1) of M constructed as follows: Initialize
R2n−1 = C2n−1 = V (G). Then whenever Pi is constructed from Pi+1 by merging two sets X,Y ∈ Pi+1

into X ∪ Y ∈ Pi, we define (R2i, C2i) and (R2i−1, C2i−1) from (R2i+1, C2i+1) by first contracting the row
blocks X and Y , and then contracting the column blocks X and Y , so that R2i−1 = C2i−1 = Pi for all
i ∈ [n].

Observe that a single contraction can decrease the error value of a partition by at most 1 (though it
may increase the error value unboundedly); hence it is enough to show that for each i ∈ [n], the partition
(R2i−1, C2i−1) = (Pi,Pi) of M has error value at most d+ 1. Indeed, whenever R,C ∈ Pi are so that the
zone M [R,C] is nonconstant, then either R = C, or R 6= C and the pair (R,C) is not pure in G (and for
each R, there are at most d such parts C in Pi). Hence for each R ∈ Pi, there are at most d+ 1 parts
C ∈ Pi such that M [R,C] is nonconstant. And, symmetrically, for each C ∈ Pi, there are at most d+ 1
parts R ∈ Pi with nonconstant zone M [R,C].

Conversely, assume that G has a t-twin-ordered adjacency matrix M , where the rows and columns of
M are ordered according to the total order < on V (G). Hence there exists a t-sequence (R2n−1, C2n−1),
. . . , (R1, C1) of M witnessing that M is t-twin-ordered. Note here that each set in each Ri and Ci is
an interval of V (G) with respect to <. Consider now the sequence P2n−1,P2n−2, . . . ,P1 of partitions of
V (G) defined as follows:

Pi = {R ∩ C | R ∈ Ri, C ∈ Ci, R ∩ C 6= ∅}.

It can be easily verified that each Pi is a partition of V (G). Moreover, since the sets in all partitions Ri and
Ci are intervals with respect to <, so are the sets in Pi; and for each i ∈ [2n− 2], we have that Pi = Pi+1

26 CHAPTER 2. PRELIMINARIES

or that Pi is constructed from Pi+1 by merging two sets X,Y ∈ Pi+1. Finally, P2n−1 = {{v} | v ∈ V (G)}
and P1 = {V (G)}. So a contraction sequence of G can be constructed from the sequence P2n−1, . . . ,P1

by filtering out the duplicate partitions. It remains to show that the error value of each partition Pi
is at most max(0, 2t − 1). So let R ∩ C ∈ Pi with R ∈ Ri and C ∈ Ci and suppose there are at least
u := max(1, 2t) other sets R1 ∩ C1, . . . , Ru ∩ Cu ∈ Pi (with Rj ∈ Ri and Cj ∈ Ci for j ∈ [u]) such that
(R ∩ C,Rj ∩ Cj) is not pure for all j ∈ [u]. Without loss of generality, assume that for all j ∈ [u− 1], the
set Rj ∩Cj is an interval of V (G) that is earlier in < than Rj+1 ∩Cj+1. Then either Rj 6= Rj+1 and Rj is
earlier in < than Rj+1, or Cj 6= Cj+1 and Cj is earlier in < than Cj+1. We infer that either there are at
least t+ 1 distinct sets in the family {R1, . . . , Ru}, or there are at least t+ 1 distinct sets in {C1, . . . , Cu};
without loss of generality assume the former. But then the zone M [Rj , C] is nonconstant for each j ∈ [u],
implying that the column block C ∈ Ci contains at least t+ 1 nonconstant zones in the division (Ri, Ci) –
a contradiction.

We remark here that several similar – but slightly different – generalizations of twin-width to matrices
have appeared in the literature, for instance symmetric twin-width [BKTW20] (defined so that the
twin-width of any graph is exactly equal to the symmetric twin-width of its adjacency matrix), and
twin-width of so-called ordered matrices [BGdM+21], related to the setting of ordered graphs presented in
Section 1.1.3. However, in this thesis we will not use these alternative definitions.

We give another observation about binary twin-ordered matrices: The set of entries 1 can be decomposed
into a small number of rectangles. Formally, for a binary matrix M , a rectangle decomposition of M is
a set K of pairwise disjoint rectangular submatrices (i.e., zones induced by some row block and some
column block) such that every submatrix in K is entirely filled with 1s and there is no entry 1 outside the
submatrices in K. The following lemma is stated and proved in the graph setting in [BGK+21b], and then
adapted to the matrix setting below in [PSZ22]; we adapt the proof here to the matrix setting.

Lemma 2.5.2 (Statement and proof from [PSZ22]). Let M be an n×n binary matrix that is d-twin-ordered.
Then M admits a rectangle decomposition K with |K| 6 max(1, d(2n− 2)).

Proof. Let (R0, C0), . . . , (R2n−2, C2n−2) be a contraction sequence for M with error value at most d. Let
Si be the set of zones of (Ri, Ci), and let

S =
2n−2⋃
i=0

Si.

Note that S is a laminar family, that is, every two submatrices in S are either disjoint or one is contained
in the other.

Let K be the subfamily of S consisting of those submatrices that are entirely filled with 1s, and are
inclusion-wise maximal in S subject to this property. Note that every entry 1 in M is contained in some
member of K, for the zone of (R0, C0) in which this entry is contained is a 1× 1 submatrix entirely filled
with 1s. Since S is laminar, it follows that K is a rectangle decomposition of M . So it remains to argue
that |K| 6 max(1, d(2n− 2)).

Consider any A ∈ K and let i be the largest index such that A ∈ Si. We may assume that i < 2n− 2,
for otherwise the matrix M is entirely filled with 1s and then |K| = 1. By maximality, A is contained in
a nonconstant zone B ∈ Si+1 that resulted from merging A with another adjacent zone A′ ∈ Si, which is
not entirely filled with 1s. In particular, B lies in the unique row block or column block of (Ri+1, Ci+1)
that resulted from merging two row blocks or two column blocks of (Ri, Ci). There can be at most d
nonconstant zones in this row/column block of (Ri+1, Ci+1), and B is one of them. We infer that i can be
the largest index satisfying A ∈ Si for at most d different submatrices A ∈ K. Since this applies to every
index i ∈ {0, 1, . . . , 2n− 3}, we conclude that |K| 6 d(2n− 2).

2.5.2 Mixed minors and matrix obstructions for twin-width

We now formally introduce the obstructions for bounded twin-width in the form of mixed minors. In the
following exposition, we mostly follow [PSZ22,PS23].

A matrix is constant if it contains only entries 0 or only entries 1; horizontal if all its columns equal
each other (or equivalently, each row is constant); vertical if all its rows equal each other (or equivalently,
each column is constant); and mixed if it is neither horizontal nor vertical (or equivalently, it contains at
least two different rows and at least two different columns). The following fact about mixed matrices is
standard.

2.5. TWIN-WIDTH 27

Lemma 2.5.3 ([BKTW20]). A matrix is mixed if and only if it contains a corner – a 2× 2 mixed zone –
as a submatrix.

We now introduce the following definition of grid and mixed minors in matrices – intuitively, “com-
plicated substructures” in matrices that preclude the matrix from having small twin-width. Let M be
a matrix with entries 0 and 1. Recall that a t-division of M is a partition of rows and columns of M into t
row blocks and t column blocks. A t-grid minor in M is a t-division of M where every zone contains at
least one entry 1. A t-mixed minor in M is a t-division of M where every zone is mixed. We say that M is
t-grid-free if M does not contain a t-grid minor, and t-mixed-free if M does not contain a t-mixed minor.

The following result of Marcus and Tardos asserts that if a matrix has a large density of entries 1,
then it contains a large grid minor:

Theorem 2.5.4 ([MT04]). For every t ∈ N there exists ct ∈ N such that the following holds. Suppose M
is an n×m binary matrix with at least ct ·max(n,m) entries 1. Then M has a t-grid minor.

The currently best upper bound on ct is 8
3 (t+ 1)224t, due to Cibulka and Kynčl [CK19]. We adopt the

constant ct in the notation for the remainder of this section.
Note that there exist matrices with a large density of entries 1 that exclude large mixed minors since

the constant-1 matrix is 1-mixed-free. However, in [BKTW20], Bonnet et al. used the result of Marcus
and Tardos above to show that, intuitively, large mixed minors are the canonical obstacles for having
bounded twin-width.

Theorem 2.5.5 ([BKTW20]). Let M be a binary matrix. Then the following implications hold:

• If M is d-twin-ordered, then M is (2d+ 2)-mixed-free.

• If M is t-mixed-free, then M has twin-width at most kt, where kt = 22O(t) is a constant depending
only on t.

Note that the conclusion of the second implication of Theorem 2.5.5 is only a bound on the twin-width
of a matrix since the rows and columns of the matrix might still need to be permuted to be kt-twin-ordered.
In this thesis we will only rely on the first implication of Theorem 2.5.5 – being d-twin-ordered implies
(2d+ 2)-mixed-freeness.

From the Marcus–Tardos theorem we infer that in t-mixed-free matrices, all `-divisions have only Ot(`)
mixed zones:

Lemma 2.5.6. Let M be a t-mixed free matrix, and let (R, C) be an `-division of M , for some integer `.
Then (R, C) has at most ct · ` mixed zones.

Proof. Construct an `× ` matrix A by taking the division (R, C) and substituting each mixed zone with
a single entry 1, and each nonmixed zone with a single entry 0. Observe that A may have at most ct · `
entries 1, for otherwise, by Theorem 2.5.4, A would contain a t-grid minor, which would correspond to a
t-mixed minor in M . Hence (R, C) may have at most ct · ` mixed zones.

The next lemma is essentially proven in [BKTW20] but never stated explicitly. So we include a proof
from [PSZ22] for completeness.

Lemma 2.5.7 (Implicit in [BKTW20], proof from [PSZ22]). A t-mixed-free n × n matrix contains at
most 2ct(n+ 2) corners.

Proof. Let M be a t-mixed-free n× n matrix. Consider the dn/2e-division (R, C) of M , in which every
row block consists of rows with indices 2i − 1 and 2i for some i ∈ {1, . . . , bn/2c}, possibly except the
last block that consists only of row n in case n is odd, and similarly for column blocks. By Lemma 2.5.6,
(R, C) has at most ct dn/2e 6 ct(n/2 + 1) mixed zones, which implies that M has at most ct(n/2 + 1)
corners in which the bottom-right entry is in the intersection of an even-indexed row and an even-indexed
column. Call such corners of type 00; corners of types 01, 10, and 11 are defined analogously. By suitably
modifying the pairing of rows and columns in (R, C), we can analogously prove that the number of corners
of each of the remaining three types is also bounded by ct(n/2 + 1). Hence, in total there are at most
4ct(n/2 + 1) = 2ct(n+ 2) corners in M .

For Chapter 6 (compact oracle for twin-width), we will need a variant of Lemma 2.5.6 that focuses
on mixed borders between neighboring zones. Here, two different zones in a division (R, C) are called
adjacent if they are either in the same row block and consecutive column blocks, or in the same column

28 CHAPTER 2. PRELIMINARIES

block and consecutive row blocks. A mixed cut in (R, C) is a pair of adjacent zones such that there is
a corner that crosses the boundary between them, i.e., has two entries in each of them. A split corner in
(R, C) is a corner intersecting four different zones, i.e., it has an entry in four different zones.

The proof of the following observation is again essentially present in [BKTW20].

Lemma 2.5.8 (Implicit in [BKTW20], proof from [PSZ22]). Let M be a t-mixed free matrix, and let
(R, C) be an `-division of M , for some integer `. Then (R, C) has at most ct · (`+ 2) mixed cuts and at
most 2ct · (`+ 1) split corners.

Proof. Let (R00, C00) be the division obtained from (R, C) by merging the row blocks indexed 2i− 1 and
2i into a single row block, and merging the column blocks indexed 2i − 1 and 2i into a single column
block, for each i ∈ {1, . . . , b`/2c}. Obtain divisions (R10, C10), (R01, C01), and (R11, C11) in a similar
manner, where if the first number in the superscript is 1 then we merge row blocks 2i and 2i+ 1 for each
i ∈ {1, . . . , d`/2e − 1} instead, and if the second number in the superscript is 1 then we merge column
blocks 2i and 2i+ 1 for each i ∈ {1, . . . , d`/2e − 1} instead.

Observe that for every mixed cut of (R, C), the two zones in the mixed cut end up in the same zone in
either (R00, C00) or in (R11, C11), rendering this zone mixed. However, by Lemma 2.5.6, (R00, C00) and
(R11, C11) have at most ct ·(`/2+1) mixed zones. It follows that (R, C) has at most 2ct ·(`/2+1) = ct ·(`+2)
mixed cuts. The bound on the number of split corners follows from the same argument combined with
the observation that every split corner in (R, C) is entirely contained in a single zone of exactly one of
divisions (R00, C00), (R10, C10), (R01, C01), and (R11, C11).

2.6 Logic

In this thesis we will rely on several results pertaining to the properties of formal logic systems in finite
graphs. In this section, we will formally introduce several variants of first- and second-order logic in the
setting of graphs and show how they are related to the classes of graphs of bounded tree-, rank-, and
twin-width. We begin with the most expressive of the logic formalisms used in the thesis – CMSO2.

2.6.1 CMSO2

CMSO2 is the monadic second-order logic on graphs with quantification over edge subsets and modular
counting predicates. This logic is typically associated with graphs of bounded treewidth; see [CFK+15,
Section 7.4] for an introduction suited for an algorithm designer. Formulas of CMSO2 are evaluated in
graphs and there are variables of four different sorts: for single vertices, for single edges, for vertex subsets,
and for edge subsets. The latter two sorts are called monadic. The atomic formulas of CMSO2 are of the
following forms:

• Equality: x = y, where x, y are both either single vertex/edge variables.

• Membership: x ∈ X, where x is a single vertex/edge variable and X is a monadic vertex/edge
variable.

• Incidence: inc(x, e), where x is a single vertex variable and e is a single edge variable.

• Modular counting: |X| ≡ a (mod m), where a and m are integers, m > 0.

The semantics of the above is as expected. Then CMSO2 consists of all formulas that can be obtained from
atomic formulas using the following constructs: standard boolean connectives, negation, and quantification
over all sorts of variables, both existential and universal. Thus, a formula of CMSO2 may contain variables
that are not bound by any quantifier; these are called free variables. A formula without quantifiers is
called quantifier-free, while a formula without free variables is a sentence. For a sentence ϕ and a graph
G, we write G |= ϕ to signify that ϕ is satisfied in G (read G is a model of ϕ). When ϕ(X1, . . . , Xk) is
a formula with k free variables, then we similarly write G |= ϕ(A1, . . . , Ak) or (G,A1, . . . , Ak) |= G to say
that G satisfies the formula ϕ with X1 = A1, . . . , Xk = Ak.

Then we extend CMSO2 to capture optimization problems by defining a variant of CMSO2 called
LinCMSO2; this is a straightforward adaptation of the definition of LinCMSO1 from [KS24]. A LinCMSO2

formula with p free (vertex or edge) set variables is a pair (ϕ, f), where ϕ = ϕ(X1, X2, . . . , Xp+q) is
a CMSO2 formula with p+ q free variables for q > 0, and f : Zq → Z is an affine integer function defined
by q + 1 integers c0, . . . , cq so that f(x1, . . . , xq) = c0 + c1x1 + . . .+ cqxq. The value of (ϕ, f) on a tuple
(G,A1, . . . , Ap) is the maximum possible value of f(|Ap+1|, . . . , |Ap+q|), where (G,A1, . . . , Ap+q) |= ϕ;

2.6. LOGIC 29

and, for each i ∈ [q], Ap+i ⊆ V (G) if Xp+i is a vertex set variable, or Ap+i ⊆ E(G) is Xp+i is an edge set
variable. If no such sets Ap+1, . . . , Ap+q exist, we put ⊥ as the value of (ϕ, f). We note that even though
this naturally defines only maximization problems, we can define minimization problems by using negative
coefficients. We define the length |(ϕ, f)| of (ϕ, f) to be |ϕ|+

∑p
i=0 |ci|.

In the fragment MSO2 of CMSO2, we only consider the formulas of CMSO2 without modular counting
predicates.

Recall that Courcelle’s theorem [Cou90] states that given a graph G of treewidth k and a CMSO2

formula ϕ, it can be decided whether G |= ϕ in time f(k, ϕ) · n, where n is the vertex count of G and f is
a computable function. Also, in a sense, bounded treewidth forms a “boundary of tractability” for the
logic CMSO2 [See91,KT10,Kre12].

2.6.2 CMSO1

We now turn to CMSO1 – the monadic second-order logic on graphs without quantification over edge
subsets, but including modular counting predicates. Contrary to CMSO2, the CMSO1 logic only permits
variables of two sorts: for single vertices and for vertex subsets. The atomic formulas support testing for
equality, membership, and modular counting, analogously and with the same semantics as in the definition
of CMSO2. Additionally, such formulas can verify adjacency through an atomic formula adj(x, y) for two
single-vertex variables x, y.

As before, in MSO1, we only allow formulas of CMSO1 that exclude modular counting predicates.
Next we define an optimization variant of CMSO1, which we call LinCMSO1. The following definition

follows [KS24] and is inspired by the analogous extensions by Courcelle, Makowsky and Rotics [CMR00]
and Courcelle and Engelfriet [CE12].

A LinCMSO1 formula with p free set variables is a pair (ϕ, f), where ϕ is a CMSO1 formula with p+ q
free variables for q > 0, and f : Zq → Z an affine integer function defined by q + 1 integers c0, . . . , cq so
that f(x1, . . . , xq) = c0 + c1x1 + . . . + cqxq. Then, the value of (ϕ, f) on a tuple (G,X1, . . . , Xp) is the
maximum value of f(|Xp+1|, . . . , |Xp+q|), where Xp+1, . . . , Xp+q ⊆ V (G) and (G,X1, . . . , Xp+q) |= ϕ. As
in the case of LinCMSO2, if no such sets Xp+1, . . . , Xp+q exist, then the value is ⊥. The length |(ϕ, f)| of
(ϕ, f) is |ϕ|+

∑p
i=0 |ci|.

Similarly to how CMSO2 is usually associated with treewidth, CMSO1 is deeply linked to the notion of
rankwidth (or equivalently, cliquewidth). Courcelle, Makowsky, and Rotics generalized Courcelle’s theorem
to cliquewidth by showing that, given a graph G together with its k-expression and a CMSO1 formula ϕ,
we can decide whether G |= ϕ in time Ok,ϕ(n), where again n is the number of vertices of G [CMR00].
An analogous result for the optimization variant LinCMSO1 also holds [CMR00,CMR01]: When a graph
G is supplied together with its k-expression and a LinCMSO1 formula (ϕ, f), the value of (ϕ, f) on G can
be computed in time Ok,|(ϕ,f)|(n).

2.6.3 FO

Finally, we define the first-order logic (FO) for graphs as follows. Variables of formulas of first-order logic
represent single vertices of the graphs. The atomic formulas of FO can test for equality of variables as well
as the adjacency of the vertices represented by the variables. The remainder of the definition follows their
monadic second-order counterparts.

As a side note, an ongoing project aims to complete the classification of the hereditary classes of graphs
with efficient FO model checking – i.e., those hereditary classes C for which there exists an algorithm that,
given a graph G ∈ C and an FO sentence ϕ, verifies whether G |= ϕ in time Oϕ(|G|O(1)). Currently, it is
known that such an algorithm exists for classes of graphs of bounded twin-width, as long as a contraction
sequence of bounded width of an input graph is provided [BKTW20]. Also, a recent result [DEM+23]
proves that monadically stable classes of graphs admit efficient FO model checking. Both graph class
properties are incomparable: There exist classes of graphs of bounded twin-width that are not monadically
stable, and there exist monadically stable classes of graphs that do not have bounded twin-width. It is
conjectured [BGdM+21,DMS23] that monadically dependent classes of graphs10 – a property of graphs
that generalizes both bounded twin-width and monadic stability – are precisely the classes of graphs that
admit efficient FO model checking (under standard hardness assumptions).

10Also called monadically NIP classes of graphs, where NIP stands for the non-independence property.

30 CHAPTER 2. PRELIMINARIES

2.6.4 Additional logic preliminaries

It will sometimes be convenient to replace a sequence of variables with a named tuple of vertices; for
instance, if we define that x is a tuple of variables comprising variables x1, . . . , xk, then we can say that
ϕ(x) is a formula with variables x1, . . . , xk, and ϕ(x, y) is a formula with variables x1, . . . , xk, y.

We will sometimes assume that the vertices of the graphs considered in this thesis can be assigned
colors. Formally, we can define a finite palette Γ of colors, and then each vertex of the graph can be
assigned an arbitrary subset of the colors in Γ. In this setting, the definition of formulas of the logics
defined above extends so that the formulas can additionally verify the colors of vertices. Formally, for
every color C ∈ Γ, we introduce a unary relation symbol C. Then for any graph G and vertex v ∈ V (G),
we define that C(v) is true if and only if v has color C.

Part I

Treewidth and rankwidth

31

Chapter 3

Dynamic treewidth

In this chapter we give a resolution to the dynamic treewidth problem with subpolynomial amortized time
complexity of the updates (Theorem 1.3.1). That is, we present a data structure that for a fully dynamic
graph G of treewidth k, maintains a constant-factor-approximate tree decomposition of G. The amortized
update time is subpolynomial in n for every fixed k. As a consequence, we prove the dynamic variant of
Courcelle’s Theorem for treewidth: The satisfaction of any fixed CMSO2 property ϕ can be maintained
within the same complexity bounds. We recall the statement of the theorem below for convenience.

Theorem 1.3.1 ([KMN+23]). There is a data structure that for an integer k ∈ N, fixed upon initialization,
and a dynamic graph G, updated by edge insertions and deletions, maintains a tree decomposition of G of
width at most 6k + 5 whenever G has treewidth at most k. More precisely, at every point in time the data
structure either contains a tree decomposition of G of width at most 6k + 5, or a marker “Treewidth too
large”, in which case it is guaranteed that the treewidth of G is larger than k. The data structure can be
initialized on k and an edgeless n-vertex graph G in time g(k) · n, and then every update takes amortized

time 2f(k)·
√

logn log logn, where g(k) ∈ 2k
O(1)

and f(k) ∈ kO(1) are computable functions.
Moreover, upon initialization the data structure can be also provided a CMSO2 sentence ϕ, and it

can maintain the information whether ϕ is satisfied in G whenever the marker “Treewidth too large” is
not present. In this case, the initialization time is g(k, ϕ) · n and the amortized update time is h(k, ϕ) ·
2f(k)·

√
logn log logn, where g, h, and f are computable functions.

We also restate the analog of Theorem 1.3.1 for optimization problems expressible in monadic second
order logic:

Theorem 1.3.3. The data structure of Theorem 1.3.1 can be also provided a LinCMSO2 sentence ϕ upon
initialization and can maintain the value of ϕ in G whenever the marker “Treewidth too large”is not
present. The initialization time is g(k, ϕ) · n and the amortized update time is h(k, ϕ) · 2f(k)·

√
logn log logn

for computable functions g, h, f .

As discussed in the Introduction, the data structure persists even at times when the treewidth grows
above k, instead of working under the assumption that this never happens. In fact, throughout this chapter
we work in the latter weaker setting, as it can be lifted to the stronger setting discussed in Theorem 1.3.1
in a generic way using the technique of delaying invariant-breaking updates, proposed by Eppstein et
al. [EGIS96]; see also [CCD+20, Section 11]. We discuss how this technique applies to our specific problem
in Section 3.8.

Within the data structure of Theorem 1.3.1 we modify the maintained tree decomposition T only in a
restricted fashion: through prefix-rebuilding updates. These amount to rebuilding a prefix S of T into a
new prefix S ′, and reattaching all trees of T − S to S ′ without modifying them. As a consequence, while
in Theorem 1.3.1 we only discuss maintenance of CMSO2 properties, in fact we can maintain the run of
any standard dynamic programming procedure on T . In Section 3.7 we present a general automata-based
framework for dynamic programming on tree decompositions that can be combined with our data structure.
Automata verifying CMSO2-expressible properties are just one instantiation of this framework.

We conjecture that the update time of the data structure of Theorem 1.3.1 can be improved to
polylogarithmic in n, or even close to the O(log n) bound achieved by Bodlaender for graphs of treewidth 2.

Organization of the chapter. In Section 3.1 we give an overview of our algorithm and present the key
ideas behind the result. In Section 3.2 we present our framework of “prefix-rebuilding data structures” and

33

34 CHAPTER 3. DYNAMIC TREEWIDTH

the statement of the main lemma (Lemma 3.2.5) that will imply Theorem 1.3.1. In Section 3.3 we prove
combinatorial results on objects called “closures”, which will then be leveraged in Section 3.4 to build
our main algorithmic tool called the “refinement operation”. Then, in Section 3.5 we use the refinement
operation to build a height reduction operation for dynamic tree decompositions, and in Section 3.6 we
put these results together and finish the proof of Lemma 3.2.5. We discuss conclusions and future research
directions in Section 3.9. In Section 3.7 we present our framework for dynamic maintenance of dynamic
programming on tree decompositions and in Section 3.8 we complete the proof of Theorems 1.3.1 and 1.3.3
from Lemma 3.2.5.

3.1 Overview

In this section we give an overview of our algorithm. We first give a high-level description of the whole
algorithm in Section 3.1.1, and then in Sections 3.1.2 and 3.1.3 we sketch the proofs of the most important
technical ingredients.

3.1.1 High-level description

Let n be the vertex count and k a given parameter that bounds the treewidth of the considered dynamic
graph G. Our goal is to maintain a rooted tree decomposition T of height 2Ok(

√
logn log logn) and width

at most 6k + 5, and at the same time any dynamic programming scheme, or more formally, a tree
decomposition automaton with Ok(1) evaluation time, on T . We will also require T to be binary, i.e.,
that every node has at most two children.

The goal of maintaining such a tree decomposition is reasonable because of a well-known lemma of
Bodlaender and Hagerup [BH98]: For every graph of treewidth k, there exists a binary tree decomposition
of height O(log n) and width at most 3k+ 2. Then, assuming T is a binary tree decomposition of height h
and width O(k), the operations of adding an edge or deleting an edge can be implemented in time Ok(h)
as follows. Let us assume that we store the existence of an edge uv in the highest node whose bag contains
both u and v. Now, when deleting the edge uv, it suffices to find the highest node of T whose bag contains
both u and v, update information about the existence of this edge stored in this node, and then update
dynamic programming tables of the nodes on the path from this node to the root, taking Ok(h) time. In
the edge addition operation between vertices u and v, we let Pu (resp. Pv) be the path in T from the
highest node containing u (resp. v) to the root, add u and v to all bags on Pu ∪ Pv, add the information
about the existence of the edge uv to the root node, and update dynamic programming tables on Pu ∪ Pv,
again taking in total Ok(h) time. Let us emphasize that only the highest bag containing both u and v
is “aware” of the existence of the edge uv, as opposed to the more intuitive alternative of all the bags
containing both u and v being “aware” of uv. This is crucial for the fact that the dynamic programming
tables of only O(h) nodes have to be recomputed after an edge addition/deletion.

Now, the only issue is that the edge addition operation could cause the width of T to increase to more
than 6k + 5. By maintaining Bodlaender-Kloks dynamic programming [BK96] on T , we can detect if the
treewidth of the graph actually increased to more than k and terminate the algorithm in that case.11 The
more interesting case is when the treewidth of the graph is still at most k, in which case we have to modify
T in order to make its width smaller while still maintaining small height. The main technical contribution
of our result is to show that such changes to tree decompositions can indeed be implemented efficiently.

Let us introduce some notation. We denote a rooted tree decomposition by a pair T = (T, bag), where
T is a rooted tree and bag : V (T)→ 2V (G) is a function specifying the bag bag(t) of each node t. For a
set of nodes W ⊆ V (T), we denote by bags(W) =

⋃
t∈W bag(t). A prefix of a rooted tree T is a a set of

nodes Tpref ⊆ V (T) that contains the root and induces a connected subtree, and a prefix of a rooted tree
decomposition T = (T, bag) is a prefix of T . For a rooted tree T , we denote by height(T) the maximum
number of nodes on a root-leaf path, and for a node t ∈ V (T), height(t) is the height of the subtree rooted
at t.

Recall that in the edge addition operation, we increased the sizes of bags in a subtree consisting of the
union Pu∪Pv of two paths, each between a node and the root. In particular, all of the nodes with too large
bags are contained in the prefix Pu∪Pv of size at most 2h, where h is the height of our tree decomposition.
Now, a natural idea for improving the width would be to replace the prefix Pu∪Pv by a tree decomposition
of G[bags(Pu ∪ Pv)] with height O(log n) and width 3k + 2 given by the Bodlaender-Hagerup lemma.

11By the standard technique of delaying updates we actually do not need to terminate the algorithm, but in this overview
let us assume for simplicity that we are allowed to just terminate the algorithm if the width becomes more than k.

3.1. OVERVIEW 35

While this form of the idea is too naive, we show that surprisingly, something that is similar in the spirit
can be achieved.

The main tool we develop for maintaining tree decompositions in the dynamic setting is the refinement
operation. The definition and properties of the operation are technical and will be described in Section 3.1.2,
but let us give here an informal description of what is achieved by the operation. The refinement operation
takes as an input a prefix Tpref of the tree decomposition T that we are maintaining, and informally
stated, replaces Tpref by a tree decomposition of width at most 6k + 5 and height at most O(log n). The
operation also edits other parts of T , but in a way that makes them only better in terms of sizes of bags.
In particular, if we use the refinement operation on Tpref = Pu ∪ Pv after an edge addition operation that
made the width exceed 6k + 5 in the nodes in Pu ∪ Pv, the operation brings the width of T back to at
most 6k+ 5. The amortized time complexity of the refinement operation is Ok(|Tpref |), and it can increase
the height of T by at most O(log n).

With the refinement operation, we have a tool for keeping the width of the maintained tree decomposition
T bounded by 6k + 5. However, each application of the refinement operation can increase the height of T
by log n, so we need a tool also for decreasing the height. We develop such a tool by a combination of a
carefully chosen potential function and a strategy to decrease the potential function “for free” by using
the refinement operation if the height is too large. In particular, the potential function we use is

Φ(T) =
∑

t∈V (T)

(γ · k)|bag(t)| · height(t),

where γ < 1000 is a fixed constant defined in Section 3.4.1. This function has the properties that it does
not increase too much in the edge addition operation (the increase is at most Ok(height(T)2)), it plays
well together with the details of the amortized analysis of the refinement operation (the factor (γ · k)|bag(t)|

comes from there), and because of the factor height(t), it naturally admits smaller values on trees of smaller

height. In Section 3.1.3 we outline a strategy that, provided the height of T exceeds 2Ok(
√

logn log logn),
selects a prefix Tpref so that applying the refinement operation to Tpref decreases the value of Φ(T), and
moreover the running time of the refinement operation can be bounded by this decrease. In particular,
this means that as long as the height is more than 2Ok(

√
logn log logn), we can apply such a refinement

operation “for free”, in terms of amortized running time, and moreover decrease the value of the potential.
As the potential cannot keep decreasing forever, repeated applications of such an operation eventually
lead to improving the height to at most 2Ok(

√
logn log logn).

3.1.2 The refinement operation

In this subsection we overview the refinement operation. First, let us note that our refinement operation
builds on the tree decomposition improvement operation introduced by Korhonen and Lokshtanov
for improving static fixed-parameter algorithms for treewidth [KL22], which in turn builds on the 2-
approximation algorithm for treewidth of Korhonen [Kor21] and in particular on the use of the techniques
of Thomas [Tho90] and Bellenbaum and Diestel [BD02] in computing treewidth. Our refinement operation
generalizes the improvement operation of [KL22] by allowing to refine a continuous subtree instead of
only a single bag, which is crucial for controlling the height of the tree decomposition. We also adapt the
operation from being suitable to compute treewidth exactly into a more approximative version (the 6k+ 5
width comes from the combination of this and the Bodlaender-Hagerup lemma [BH98]) in order to attain
structural properties that are needed for efficient running time. For this, the Dealternation Lemma of
Bojańczyk and Pilipczuk [BP22] is used. In the rest of this section we do not assume knowledge of these
previous results.

Recall the goal of the refinement operation: Given a prefix Tpref of the tree decomposition T = (T, bag)
that we are maintaining, we would like to, in some sense, recompute the tree decomposition on this
prefix. Observe that we cannot simply select an induced subgraph like G[bags(Tpref)] and hope to replace
Tpref by any tree decomposition of it, because the tree decomposition needs to take into account also the
connectivity provided by vertices outside of bags(Tpref). For this, the correct notion will be the torso of a
set of vertices. Recall from Preliminaries that for a graph G and a set X of vertices, the graph torsoG(X)
has the vertex set X and has an edge uv if there is a u-v-path in G whose internal vertices are outside of X.
In other words, torsoG(X) is the supergraph of G[X] obtained by making for each connected component
C of G−X the neighborhood N(C) into a clique.

We then outline the refinement operation (see Figure 3.1 for an illustration of it). Given Tpref , we find a
set of vertices X ⊇ bags(Tpref) so that torsoG(X) has treewidth at most 2k+1 (here we have 2k+1 instead

36 CHAPTER 3. DYNAMIC TREEWIDTH

T X

T C3 T C4

T C5

C1

Tpref

C2

C3 C4

C5

→

T C1

T C2

Figure 3.1: The refinement operation. The left picture illustrates the tree decomposition T , with the
prefix Tpref encircled and the vertices in X ⊇ bags(Tpref) depicted in gray. The appendices of Tpref are
circled by boldface, and the components of G−X are denoted by C1, . . . , C5. The right picture illustrates
the tree decomposition constructed from T by the refinement using X, in particular, by taking the tree
decomposition T X of torsoG(X), and gluing the tree decompositions T Ci for components Ci of G−X to
it. The subtree consisting of the three nodes above T C3 , T C4 , T C5 is constructed in order to keep the
tree binary after reattaching T C3 , T C4 , T C5 .

of k for a technical reason we will explain). Then, we compute an optimum-width tree decomposition T X
of torsoG(X) and use the Bodlaender-Hagerup lemma [BH98] to make its height O(log n), resulting in
T X having width at most 6k + 5. We root T X at an arbitrary node, and it will form a prefix of the new
refined tree decomposition. What remains, is to construct tree decompositions T C for each connected
component C of G−X and attach them into T X .

Next, for each appendix a of Tpref , denote by Ta = (Ta, baga) the restriction of T to the subtree
rooted at a. Now, note that because X ⊇ bags(Tpref), for each connected component C of G−X there
exists a unique appendix a of Tpref such that C is contained in the bags of Ta. Moreover, the restriction
(Ta, baga|N [C]) to the closed neighborhood N [C] of C is a tree decomposition of the induced subgraph
G[N [C]] minus the edges inside N(C). Then, observe that because T X is a tree decomposition of torsoG(X),
it must have a bag that contains N(C). Now, our goal is to attach (Ta, baga|N [C]) into this bag. In order
to achieve this while satisfying the connectedness condition of tree decompositions, we need to have the
set N(C) in the root of (Ta, baga|N [C]). We denote by T C = (TC , bagC) the tree decomposition obtained
from (Ta, baga|N [C]) by “forcing” N(C) to be in the bag bagC(a) of the root node a, in particular, by
inserting N(C) to bagC(a) and then fixing the connectedness condition by inserting each vertex v ∈ N(C)
to all bags on the unique path from the root to the subtree of the other bags containing v. Then, T C is a
tree decomposition of G[N [C]] whose root bag contains N(C), and therefore it can be attached to the bag
of T X that contains N(C). These attachments may make the degree of the resulting tree decomposition
higher than 2, so finally these high-degree nodes need to be expanded into binary trees. This concludes
the informal description of the refinement operation. The actual definition is a bit more involved, as it is
necessary for obtaining efficient running time to (1) treat in some cases multiple different components C
in Ta as one component, and (2) prune out some unnecessary bags of T C .

From the description of the refinement operation sketched above, it should be clear that the resulting
tree decomposition is indeed a tree decomposition of G. It is also easy to see that the height of the refined
tree decomposition is at most height(T) + O(log n): This is because T X has height at most O(log n),
and each of the attached decompositions T C has height at most height(T). Recall that our goal is that
if all of the bags of width more than 6k + 5 of T are contained in Tpref , then the width of refined tree
decomposition is at most 6k + 5. The widths of the bags in T X are clearly at most 6k + 5. However,
because of the additional insertions of vertices in N(C) to bags in T C , it is not clear why those bags
would have width at most 6k + 5. In fact, we cannot guarantee this without additional properties of X we
outline next.

Let us call a set of vertices X ⊆ V (G) a k-closure of Tpref if X ⊇ bags(Tpref) and the treewidth of
torsoG(X) is at most 2k+ 1. In particular, the set X in the refinement operation is a k-closure of Tpref . We
say that a k-closure X is linked into Tpref if for each component C of G−X, the set N(C) is linked into

3.1. OVERVIEW 37

bags(Tpref) in the sense that there are no separators of size < |N(C)| separating N(C) from bags(Tpref).
The key property for controlling the width of T C is that if X is linked into Tpref , then each bag of T C has
width at most the width of the corresponding bag in T . In particular, let Ta be a subtree of T hanging on
an appendix a of Tpref , and C be a component of G−X contained in Ta. Recall that we construct the
tree decomposition T C = (TC , bagC) by taking TC = Ta, and then for each t ∈ V (TC) setting

bagC(t) = (baga(t) ∩N [C]) ∪ {v ∈ N(C) | the highest bag containing v is below t}.

Then, we can bound the size of bagC(t) as follows.

Lemma 3.1.1. If X is linked into Tpref , then |bagC(t)| 6 |baga(t)|.

Proof sketch. Let Nt = {v ∈ N(C) | the highest bag containing v is below t} and note that it suffices
to prove |Nt| 6 |baga(t) \ N [C]|. By linkedness and Menger’s theorem, there are N(C) vertex-disjoint
paths from N(C) to bags(Tpref), and because bags(Tpref) is disjoint from C, all internal vertices of these
paths are in V (G) \N [C]. Moreover, |Nt| of these paths are from Nt to bags(Tpref), and because baga(t)
separates Nt from bags(Tpref) and is disjoint from Nt, each such path contains an internal vertex in
baga(t), implying |baga(t) \N [C]| > |Nt|.

Lemma 3.1.1 shows that if Tpref contains all bags of width more than 6k+ 5 and X is linked into Tpref ,
the resulting tree decomposition will have width at most 6k + 5. We note that the existence of a k-closure
of Tpref that is linked into Tpref is nontrivial, but before going into that let us immediately generalize the
notion of linkedness in order to obtain a stronger form of Lemma 3.1.1 that will be useful for analyzing
the potential function. Recall that depth dT (v) of a vertex v ∈ V (G) in T = (T, bag) is the depth of the
highest node of T whose bag contains v (i.e., the distance from this node to root). For a set of vertices S,
we denote dT (S) =

∑
v∈S dT (v). Then, we say that a k-closure X is dT -linked into Tpref if it is linked

into Tpref , and additionally for each neighborhood N(C), there are no separators S with |S| = |N(C)|
and dT (S) < dT (N(C)) separating N(C) from bags(Tpref).

Recall our potential Φ(T) =
∑
t∈V (T)(γ · k)|bag(t)| · height(t). Using dT -linkedness we are able to prove

that the actual definition of the refinement operation satisfies the following properties.

Lemma 3.1.2 (Informal). Let X be a dT -linked k-closure of Tpref , a an appendix of Tpref , and C1, . . . , C`
the connected components of G−X that are contained in Ta. It holds that

∑`
i=1 Φ(T Ci) 6 Φ(Ta), and

moreover, the tree decompositions T Ci for all i, together with their updated dynamic programming tables,
can be constructed in time Ok(Φ(Ta)−

∑`
i=1 Φ(T Ci)).

Let us note that Lemma 3.1.2 would hold also for a potential function without the height(t) factor;
this factor is included in the potential only for the purposes of the height reduction scheme that will be
outlined in Section 3.1.3. Also, in the actual refinement operation each Ci in Lemma 3.1.2 can actually
be the union of multiple different components with the same neighborhood N(Ci), and we can actually
charge a bit extra from the potential for each of these “connected components”; this extra potential will
be used for constructing the binary trees for the high-degree attachment points.

After ignoring these numerous technical details, the main takeaway of Lemma 3.1.2 is that constructing
the decompositions T C is “free” in terms of the potential. The only place where we could use a lot of
time or increase the potential a lot is finding the set X and constructing the tree decomposition T X . For
bounding this, we give a lemma asserting that we can assume X to have size at most Ok(|Tpref |), and in
addition to have an even stronger structural property that will be useful in the height reduction scheme.
For a node a of T , denote by cmp(a) ⊆ V (G) the vertices that occur in the bags of the subtree rooted at
a, but not in bag of the parent of a. We prove the following statement using the Dealternation Lemma of
Bojańczyk and Pilipczuk [BP22]. We note that the bound 2k + 1 in the definition of k-closure comes from
this proof.

Lemma 3.1.3. Let G be a graph of treewidth at most k, and T a tree decomposition of G of width O(k).
For any prefix Tpref of T , there exists a k-closure X of Tpref so that for each appendix a of Tpref it holds
that |X ∩ cmp(a)| 6 O(k4).

In particular, as T is a binary tree, Tpref has at most |Tpref | + 1 appendices. So by Lemma 3.1.3,
Tpref admits a k-closure with at most |Tpref | · (k + 1) +O(|Tpref | · k4) = O(|Tpref | · k4) vertices. By using
such a k-closure, we can bound the size of T X by Ok(|Tpref |). As each node in T X has potential at most
Ok(height(T) + log n) in the resulting decomposition, we get that the refinement operation increases the
potential function by at most Ok(|Tpref | · (height(T) + log n)). In particular, in the refinement operation

38 CHAPTER 3. DYNAMIC TREEWIDTH

applied directly after edge insertion, we have that |Tpref | 6 2|height(T)|, so the potential function increases
by at most Ok(height(T)2) (note that height(T) > log n).

Let us now turn to two issues that we have delayed for some time: How to guarantee that the
k-closure X is dT -linked, and how to actually find such an X. Let us say that a closure is c-small if
it satisfies the condition of Lemma 3.1.3 for some specific bound c ∈ O(k4) that can be obtained from
the proof of Lemma 3.1.3. The following lemma, which is proved similarly to proofs of Korhonen and
Lokshtanov [KL22, Section 5], gives a simple condition that guarantees dT -linkedness.

Lemma 3.1.4. Let Tpref be a prefix of a tree decomposition. If X is a c-small k-closure of Tpref that
among all c-small k-closures of Tpref primarily minimizes |X|, and secondarily minimizes d(X), then X
is dT -linked into Tpref .

With Lemma 3.1.4, we can use dynamic programming for finding c-small k-closures that are dT -linked.
In particular, we adapt the dynamic programming of Bodlaender and Kloks [BK96] for computing treewidth
into computing c-small k-closures that optimize for the conditions in the lemma. This adaptation uses
quite standard techniques, but let us note that one complication is that even a small change to a tree
decomposition can change the depths of all vertices, so we cannot just store the value d(X) in the dynamic
programming tables. Instead, we have to make use of the definition of the function d and the fact that
we are primarily minimizing |X|. By maintaining these dynamic programming tables throughout the
algorithm, we get that given Tpref , we can in time Ok(|Tpref |) find an O(k4)-small k-closure X of Tpref

that is dT -linked, and also the graph torsoG(X).

3.1.3 Height reduction

In this subsection we sketch the height reduction scheme, in particular, the following lemma.

Lemma 3.1.5 (Height reduction). Let T be the tree decomposition we are maintaining. There is a

function f(n, k) ∈ 2Ok(
√

logn log logn) so that if height(T) > f(n, k), then there exists a prefix Tpref of T
so that the refinement operation on Tpref results in a tree decomposition T ′ with Φ(T ′) < Φ(T) and runs
in time Ok(Φ(T)− Φ(T ′)).

To sketch the proof of Lemma 3.1.5, let us build a certain model of accounting how the potential
changes in a refinement operation with a prefix Tpref . First, recall that Lemma 3.1.2 takes care of the
potential in the tree decompositions T C for components C of G−X, and the only place we need to worry
about increasing the potential are the nodes of T X . In the previous section we bounded this potential
increase by Ok(|Tpref | · (height(T) + log n)), where in particular the factor height(T) + log n comes from
the fact that after attaching the tree decomposition T C , the height of a node in T X could be as large as
height(T) + log n. This upper bound was sufficient for the refinement operation performed after an edge
addition, but to prove Lemma 3.1.5 we need a more fine-grained view.

Consider the following model: We start with the tree decomposition of T X of height O(log n), and attach
the tree decompositions of the components T C to it one by one. Each time we attach a tree decomposition
T C , we increase the height of at most O(log n) nodes in T X (because height(T X) 6 O(log n)), and
this height is increased by at most height(T C), which is at most height(a), where a is the appendix of
Tpref whose subtree contains C. While there can be many components C contained in Ta, observe that
Lemma 3.1.3 implies that in fact such components can have only at most kO(k) different neighborhoods
N(C), and therefore at most kO(k) different attachment points in T X . In particular, after handling
technical details about the binary trees used to flatten high-degree attachment points, we can assume
that an appendix a of Tpref is responsible for increasing the height of at most Ok(log n) nodes in T X .
Moreover, it increases the height of those nodes by at most height(a) each, so in total, it is responsible for
increasing the potential by Ok(height(a) · log n).

Denote Φ(Tpref) =
∑
t∈Tpref (γ · k)|bag(t)| · height(t), i.e., the value of the potential on the nodes in Tpref .

The above discussion, combined with Lemma 3.1.2, leads to the following lemma.

Lemma 3.1.6. Let Tpref be a prefix of a tree decomposition T , A := App(Tpref) ⊆ V (T) the appendices
of Tpref , and T ′ the tree decomposition resulting from refining T with Tpref . It holds that

Φ(T ′) 6 Φ(T)− Φ(Tpref) +Ok(|Tpref | · log n) +
∑
a∈A
Ok(height(a) · log n).

Now, in order to prove Lemma 3.1.5, it is sufficient to prove that if T has too large height, then there
exists a prefix Tpref with appendices A so that Φ(Tpref) > ck log n

(
|Tpref |+

∑
a∈A height(a)

)
, where ck is

3.1. OVERVIEW 39

Figure 3.2: Construction of Tpref in height reduction. The consecutive paths extracted by the construction
procedure are depicted in red, blue, and green. Their union constitutes Tpref . Big trees are depicted in
sea-green, shallow trees are depicted in cyan.

some large enough number depending on k. (Here, the required ck comes from the number of attachment
points and the potential function, so some ck = kO(k) is sufficient.) In our proof, the value Φ(Tpref)
in fact will be larger than ck log n

(
|Tpref |+

∑
a∈A height(a)

)
by some arbitrary constant factor, which

gives also the required property that the refinement operation on such a prefix Tpref will run in time
Ok(Φ(T)− Φ(T ′)). We will find the prefix Tpref using the following lemma:

Lemma 3.1.7. Let c > 2 and T be a binary tree with n nodes. If the height of T is at least 2Ω(
√

logn log c),
then there exists a nonempty prefix Tpref of T so that

c ·

|Tpref |+
∑

a∈App(Tpref)

heightT (a)

 6 ∑
x∈Tpref

heightT (x).

Moreover, if we can access the height of each node of T in constant time, then such Tpref can be computed
in time O(|Tpref |).

In our algorithm, it will be enough to invoke Lemma 3.1.7 with c = Θ(ck log n) with a large enough
constant hidden in the Θ notation, and then the prefix Tpref received from applying Lemma 3.1.7 will
satisfy the requirements of Lemma 3.1.5. It remains to sketch the proof of Lemma 3.1.7. The remaining
part of this section is dedicated to this sketch.

We first sketch how to select Tpref when height(T) > nε for some ε > 0 and c is small compared to n.
The natural strategy is to start by setting Tpref to be the path from the root to the deepest leaf in T .
Then we have

∑
x∈Tpref heightT (x) > n2ε/2. However, Tpref may have nε/2 appendices that each have

height nε/2, so it is possible that c ·
∑
a∈App(Tpref) > n2ε · c/4. The key observation is that in this case,

many subtrees of appendices a ∈ A must be even more unbalanced than T is, having height at least
nε/2 while containing at most 4 · n1−ε nodes (simply by a counting argument). In particular, let us say
that a subtree rooted on an appendix a is big if it contains more than 10c · n1−ε nodes, and shallow
if heightT (a) 6 nε/(10c). Now, there can be at most n/(10c · n1−ε) = nε/(10c) big subtrees, so they
contribute at most n2ε/10 to the sum

∑
a∈App(Tpref) c · heightT (a). Similarly, the shallow subtrees also

contribute at most n2ε/10 to the sum, so the sum coming from the roots of the subtrees of Tpref that are
either big or shallow (or both) is only a small fraction of

∑
x∈Tpref heightT (x).

Then, there are subtrees of appendices that are neither big or shallow; these subtrees are both small and
deep, hence they seem even more unbalanced than T . We apply the same strategy to those trees recursively.

40 CHAPTER 3. DYNAMIC TREEWIDTH

For each appendix a whose subtree is small and deep, we insert to Tpref the path Pa from a to its deepest
descendant. As the subtree is deep (of height at least nε/(10c)), we have that

∑
x∈Tpref heightT (x) increases

by
∑
x∈Pa heightT (x) = Ω(n2ε/(10c)2). Now, when analyzing the appendices of Pa, we again apply the

strategy to handle subtrees that are big or shallow by charging them from
∑
x∈Pa heightT (x), and then

handling subtrees that are both small and deep recursively. This time, the right definition of big will
be to have at least n1−2ε(10c)3 nodes, and the right definition of shallow will be to have height at most
nε/(10c)2. More generally, on the ith level of such recursion we can call a subtree big if it contains more
than n1−iε(10c)i·(i+1)/2 nodes, and shallow if its height is at most nε/(10c)i. When ε is a constant, this
recursion can continue only for a constant number of levels before no subtree can be both small and deep,
simply because it would require the subtree to have larger height than the number of nodes. Therefore, in
the end we are able to find a prefix Tpref that satisfies the requirements of Lemma 3.1.7.

It is not surprising that selecting the height limit to be nε is not optimal. In particular, the same
strategy as outlined above will work if we select the initial height to be of the form 2Ok(

√
logn log logn),

resulting in showing that we can obtain the amortized running time of 2Ok(
√

logn log logn) per query.

3.2 Dynamic tree decompositions

In this section we present a general design of a data structure that will operate on a dynamically changing
binary tree decomposition of a dynamically changing graph.

Define an annotated tree decomposition of a graph G as a triple (T, bag, edges) where:

• T and bag are defined as in the standard definition of the tree decomposition;

• edges : V (T) → 2(V (G)2) is defined as follows: For a node t ∈ V (T), edges(t) is a subset of
(bag(t)

2

)
consisting of all edges uv ∈ E(G) ∩

(bag(t)
2

)
for which t is the shallowest node containing both u and

v. Note that thus, every edge of G belongs to exactly one set edges(t).

Note that edges is uniquely determined from G and (T, bag); and conversely, G is uniquely determined from
(T, bag, edges). Given a set A ⊆ V (T), the restriction of (T, bag, edges) to A, denoted (T, bag, edges)|A, is
the tuple (T [A], bag|A, edges|A) where bag|A and edges|A are restrictions of the functions bag, edges to A,
respectively.

Next, consider an update changing an annotated binary tree decomposition (T, bag, edges) to another
annotated binary tree decomposition (T ′, bag′, edges′). This update can also change the underlying
graph G, in particular, it changes G to be the graph uniquely determined from (T ′, bag′, edges′). We
say that the update is prefix-rebuilding if (T ′, bag′, edges′) is created from (T, bag, edges) by replacing
a prefix Tpref of T with a new rooted tree T ′pref and then “reattaching” some subtrees of T rooted at the
appendices of Tpref below the nodes of T ′pref . Formally, a prefix-rebuilding update is described by a tuple
u := (Tpref , T

′
pref , T

?, bag?, edges?, π) where:

• Tpref ⊆ V (T) is a prefix of T ;

• T ′pref ⊆ V (T ′) is a prefix of T ′ satisfying

(T, bag, edges)|V (T)\Tpref = (T ′, bag′, edges′)|V (T ′)\T ′pref ;

• (T ?, bag?, edges?) = (T ′, bag′, edges′)|T ′pref ;

• π : App(Tpref) ⇀ T ′pref is the partial function that maps appendices of Tpref to nodes of T ′pref such
that for each appendix t of Tpref for which π(t) is defined, the parent of t in T ′ is π(t).

It is straightforward that (T ′, bag′, edges′) can be uniquely determined from (T, bag, edges) and the tuple u
as above. The size of u, denoted |u|, is defined as |Tpref |+ |T ′pref |. It is also straightforward that given u, a
representation of (T, bag, edges) can be turned into a representation of (T ′, bag′, edges′) in time `O(1) · |u|,
where ` is the maximum of the widths of (T, bag, edges) and (T ′, bag′, edges′).

Finally, we say that a dynamic data structure is `-prefix-rebuilding with overhead τ if it stores
an annotated binary tree decomposition (T, bag, edges) of width at most ` and supports the following
operations:

• Init(T, bag, edges): Initializes the annotated binary tree decomposition with (T, bag, edges). Runs in
worst-case time O(τ · |V (T)| · `O(1));

3.2. DYNAMIC TREE DECOMPOSITIONS 41

• Update(u): Applies a prefix-rebuilding update u to the decomposition (T, bag, edges). It can be
assumed that the resulting tree decomposition is binary and has width at most `. Runs in worst-case
time O(τ · |u| · `O(1)).

Usually, the overhead τ will correspond to the time necessary to recompute any auxiliary information
associated with each node of the decomposition undergoing the update. For example, the height of a node
s in the tree decomposition can be inferred in O(1) time from the heights of the (at most two) children
of s, so the overhead required to recompute the heights of the nodes after the update is τ = O(1) per
affected node.

Prefix-rebuilding data structures will usually implement an additional operation allowing to efficiently
query the current state of the data structure. For example, next we state a data structure that allows us
to access various auxiliary information about the tree decomposition:

Lemma 3.2.1. For every ` ∈ N, there exists an `-prefix-rebuilding data structure with overhead O(1) that
additionally implements the following operations:

• Height(s): Given a node s ∈ V (T), returns heightT (s). Runs in worst-case time O(1).

• Size(s): Given a node s ∈ V (T), returns the number of nodes in the subtree of T rooted at s. Runs
in worst-case time O(1).

• Cmpsize(s): Given a node s ∈ V (T), returns the size |cmp(s)|. Runs in worst-case time O(1).

• Top(v): Given a vertex v ∈ V (G), returns the unique highest node t of T so that v ∈ bag(t). Runs
in worst-case time O(1).

The proof of Lemma 3.2.1 uses standard arguments on dynamic programming on tree decompositions.
It will be proved in Section 3.7.

More generally, any typical dynamic programming scheme on tree decompositions can be turned into
a prefix-rebuilding data structure. Here is a statement that we present informally at the moment.

Lemma 3.2.2 (informal). Fix ` ∈ N. Assume that there exists a dynamic programming scheme operating
on binary tree decompositions of width at most `, where the state of a node t of the tree decomposition
depends only on bag(t), edges(t), and the states of the children of t in the tree; and that this state can be
computed in time τ from these information. Then, there exists an `-prefix-rebuilding data structure with
overhead τ that additionally implements the following operation:

• State(s): Given a node s ∈ V (T), returns the state of the node s. Runs in worst-case time O(1).

In Section 3.7 we formalize what we mean by a “dynamic programming scheme” on tree decompositions
through a suitable automaton model. Then Lemma 3.2.2 is formalized by a statement (Lemma 3.7.7) saying
that the run of an automaton on a tree decomposition can be maintained under prefix-rebuilding updates,
while the first three bullet points of Lemma 3.2.1 are formally proved by applying this statement to
specific (very simple) automata. In several places in the sequel, we will need to maintain more complicated
dynamic programming schemes on tree decompositions under prefix-rebuilding updates. In every case, we
state a suitable lemma about the existence of a prefix-rebuilding data structure, and this lemma is then
proved in Section 3.7 using a suitable automaton construction.

Finally, we show that the assumption that the function edges? is given in the description of a prefix-
rebuilding update can be lifted in prefix-rebuilding updates that do not change the underlying graph
G. Consider a prefix-rebuilding update that does not change the graph G, and let us say that a weak
description of the update is a tuple û := (Tpref , T

′
pref , T

?, bag?, π) that is required to satisfy the same
properties as a description of a prefix-rebuilding update except for the edges function. Because the graph G
is not changed, the new annotated binary tree decomposition (T ′, bag′, edges′) can be determined uniquely
from (T, bag, edges) and û. We again denote |û| = |Tpref |+ |T ′pref |.

We show that a weak description û of a prefix-rebuilding update can be turned into a description
u of a prefix-rebuilding update such that |u| = O(|û|) and the annotated binary tree decomposition
(T ′, bag′, edges′) resulting from applying u is the same as the one resulting from applying û. We note that
this operation can make the sets Tpref and T ′pref larger, but this is bounded by O(|û|).

Lemma 3.2.3. For every ` ∈ N, there exists an `-prefix-rebuilding data structure with overhead O(1) that
additionally implements the following operations:

42 CHAPTER 3. DYNAMIC TREEWIDTH

• Strengthen(û): Given a weak description û of a prefix-rebuilding operation, returns a description
u of a prefix-rebuilding operation such that |u| = O(û) and applying û and u result in the same
annotated tree decomposition (T ′, bag′, edges′). Runs in worst-case time |û| · `O(1).

Proof. Let û = (T̂pref , T̂ ′pref , T̂
?, b̂ag

?
, π̂) and (T ′, bag′, edges′) be the resulting annotated tree decom-

position. We observe that the topmost bag containing an edge uv ∈ E(G) can change only if both
u, v ∈ bagsT ′(T̂ ′pref). However, if u, v ∈ bagsT ′(T̂ ′pref), then because of the vertex condition of (T ′, bag′)
it must hold that u, v ∈ bagsT (T̂pref ∪ App(T̂pref)), and in particular, the vertex condition in (T, bag)
implies that uv must be stored in edges(T̂pref ∪ App(T̂pref)). Therefore, the changes to the edges func-
tion are limited to the subtree of T consisting of T̂pref ∪ App(T̂pref), and therefore for constructing
u = (Tpref , T

′
pref , T

?, bag?, edges?, π) it suffices to take Tpref = T̂pref ∪App(T̂pref) and analogously construct

T ′pref , T
?, bag?, and π from T̂ ′pref , T̂ ?, b̂ag

?
, and π̂. Then, the edges? function can be determined from

(T ?, bag?) and the edges function restricted to T̂pref ∪ App(T̂pref). The running time and the bound on |u|
follow from the fact that the tree decompositions are binary.

Now, by using the data structure from Lemma 3.2.3, we can assume when constructing prefix-rebuilding
operations that do not change G that it is sufficient to construct a weak description, but when implementing
prefix-rebuilding data structures that the update method receives a (not weak) description. In the rest
of this chapter, we assume that we are always maintaining the data structure from Lemma 3.2.3, in
particular, usually first using it to turn a weak description û into a description u, and then immediately
applying update(u) to it.

Logic. Recall that Courcelle’s theorem states that given a graph G of treewidth k and a CMSO2 formula
ϕ, it can be decided whether G |= ϕ in time f(k, ϕ) · n, where n is the vertex count of G and f is a
computable function. In the proof of Courcelle’s theorem, one typically first computes a tree decomposition
of G of width at most k, for instance using the algorithm of Bodlaender [Bod96], and then applies a
dynamic programming procedure (aka automaton) suitably constructed from ϕ to verify the satisfaction
of ϕ. We show that this dynamic programming procedure can be maintained under prefix-rebuilding
updates. More formally, in Section 3.7 we prove the following statement.

Lemma 3.2.4. Fix ` ∈ N and a CMSO2 sentence ϕ. Then there exists an `-prefix-rebuilding data structure
with overhead O`,ϕ(1) that additionally implements the following operation:

• Query(): Returns whether G |= ϕ. Runs in worst-case time O`,ϕ(1).

Dynamic tree decompositions under the promise of small treewidth. With all the definitions
in place, we can finally state the core result that will be leveraged to prove Theorem 1.3.1.

Lemma 3.2.5. There is a data structure that for an integer k ∈ N, fixed upon initialization, and a dynamic
graph G, updated by edge insertions and deletions, maintains an annotated tree decomposition (T, bag, edges)
of G of width at most 6k+ 5 using prefix-rebuilding updates under the promise that tw(G) 6 k at all times.
More precisely, at every point in time the graph is guaranteed to have treewidth at most k and the data
structure contains an annotated tree decomposition of G of width at most 6k + 5. The data structure can
be initialized on k and an edgeless n-vertex graph G in time 2O(k8) · n, and then every update:

• returns the sequence of prefix-rebuilding updates used to modify the tree decomposition; and

• takes amortized time 2O(k9+k log k·
√

logn log logn).

Note that as a direct consequence of Lemma 3.2.5, the total size of all prefix-rebuilding updates
returned by the data structure over first q edge insertions/deletions is bounded by

2O(k8) · n + 2O(k9+k log k·
√

logn log logn) · q.

Lemma 3.2.5 is proved in Section 3.6 using the results of Sections 3.3 to 3.5. We remark that the
statement of the lemma is essentially a weaker version of Theorem 1.3.1: First, we assume that no update
increasing tw(G) above k may ever arrive to the data structure; next, we do not support dynamic CMSO2

model checking. We fix these issues in Section 3.8 by means of, respectively: a straightforward application
of the technique of postponing invariant-breaking insertions of Eppstein et al. [EGIS96], and Lemma 3.2.4.

3.3. CLOSURES 43

3.3 Closures

In this section, we introduce a graph-theoretical notion of a closure, which will be used in the presentation
of our algorithm later in the chapter. For the rest of the section, fix an integer k ∈ N and let G be a graph
of treewidth at most k.

Intuitively, when one tries to maintain a tree decomposition of a graph dynamically, one inevitably
reaches a situation where some of the bags of the maintained tree decomposition are too large. Consider
the following naive approach of improving such a tree decomposition: Let W be the union of the bags that
are deemed too large. Construct a (rooted) tree decomposition TW of torsoG(W). Then, for each connected
component C ∈ cc(G−W), the set N(C) is a clique in torsoG(W); hence, the entire set N(C) resides in
a single bag tC of TW . Therefore, C can be incorporated into TW by constructing a tree decomposition
TC of G[N[C]] whose root bag contains N(C) entirely, and then attaching the root of TC to the bag
tC ∈ V (TW). It can be straightforwardly verified that this is a valid construction of a tree decomposition
of G.

However, it is not clear why this construction would improve the width of the maintained decomposition.
This owes to the fact that the treewidth of torsoG(W) might be in principle much larger than k. One
might, however, hope that the set W can be covered by an only slightly larger set X ⊇W such that the
treewidth of torsoG(X) is small. This is, indeed, the case, leading to the definition of a closure of W :

Definition 1. Let k ∈ N and G be such that tw(G) 6 k. Let also W ⊆ V (G). Then, the set X ⊆ V (G)
is called the k-closure of W in G if

X ⊇W and tw(torsoG(X)) 6 2k + 1.

Note that each set W admits a trivial closure X = V (G), as torsoG(V (G)) = G. Obviously, such
a closure might be much larger than W . Fortunately, the following lemma shows how to construct closures
of more manageable size:

Lemma 3.3.1. Let (T, bag) be a tree decomposition of G of width at most k. Let also S be an lca-closed
set of nodes of T . Then,

tw(torsoG(bags(S))) 6 2k + 1.

Proof. We construct a rooted tree U in the following way: Let V (U) = S and let t1 be a parent of t2 in U
if and only if t1 is a strict ancestor of t2 and the simple path between t1 and t2 in T does not contain any
other vertices of S. Since S is lca-closed, it can be easily verified that U is indeed a rooted tree. We also
construct a tree decomposition (U, bag′) as follows:

bag′(t) =

{
bag(t) if t is the root of U ,
bag(t) ∪ bag(parentU (t)) otherwise.

We claim that (U, bag′) is a tree decomposition of torsoG(bags(S)) of width at most 2k + 1. The vertex
condition is straightforward to verify. For the edge condition, consider an edge uv of torsoG(bags(S)). We
have that u, v ∈ bags(S) and there exists a simple path P between u and v in G that is internally disjoint
with bags(S). Pick two nodes tu, tv of S such that u ∈ bag(tu), v ∈ bag(tv). For each node t on the path
between tu and tv in U , the set bag(t) must contain either u or v; otherwise, bag(t) would be a separator
between u and v in G disjoint with {u, v}, contradicting the existence of P . Hence, one of the following
must hold:

• Both u and v belong to bag(t) for some t ∈ S. Then u, v ∈ bag′(t), so the edge condition is satisfied
for the edge uv.

• We have u ∈ bag(t1), v ∈ bag(t2) for some nodes t1, t2 ∈ S that are adjacent in U . Without loss of
generality, assume that t1 is the parent of t2. Then, since bag′(t2) = bag(t1) ∪ bag(t2), we infer that
u, v ∈ bag′(t2).

We conclude that (U, bag′) is indeed a tree decomposition of torsoG(bags(S)). Since each bag of (U, bag′)
has size at most 2k + 2, the proof is finished.

Lemma 3.3.1 already shows that each set W ⊆ V (G) admits a closure X of cardinality at most
O(k) · |W |. Indeed, consider a tree decomposition (Topt, bag) of G of minimum width. For each vertex
v ∈ W , select into S a node t ∈ V (Topt) such that v ∈ bag(t). Then, take the lca-closure of S (which
increases |S| by a factor of at most 2) and apply Lemma 3.3.1.

44 CHAPTER 3. DYNAMIC TREEWIDTH

Unfortunately, this will not be sufficient in our setting. In our algorithm, as we maintain a tree
decomposition (T, bag), the set W will be chosen as the union of bags in a prefix Tpref of T . In this
setup, another condition on the closure X ⊇W will be required: For every appendix t of Tpref , we require
that the entire component cmp(t) contains only a bounded number of vertices of X. Such closures will
be called small. The existence of such a closure will be proved as Lemma 3.3.2 (Small Closure Lemma)
in Section 3.3.1. This is followed in Section 3.3.2 by proving a structural result about small closures
(Lemma 3.3.7, Closure Linkedness Lemma). Next, in Section 3.3.3, we will define objects related to closures
that will be central to the tree decomposition improvement algorithm – blockages, explorations and
collected components – as well as prove several structural properties of these notions. Finally, Section 3.3.4
sketches how to find small closures efficiently in a dynamically changing tree decomposition.

3.3.1 Small Closure Lemma

We now formally define the notion of small closures.

Definition 2. Let (T, bag) be a tree decomposition of G and Tpref be a prefix of T . Let also c ∈ N be
an integer. Then we say that a set X ⊇ bags(Tpref) is c-small with respect to (T, bag) if for every appendix
t of Tpref , it holds that |X ∩ cmp(t)| 6 c.

With this definition in place, we are ready to state the Small Closure Lemma, asserting the existence
of c-small closures for c large enough:

Lemma 3.3.2 (Small Closure Lemma). There exists a function g(`) ∈ O(`4) such that the following
holds. Let k, ` ∈ N with k 6 ` and G be a graph with tw(G) 6 k. Let (T, bag) be a tree decomposition
of G of width at most ` and Tpref ⊆ V (T) be a prefix of T . Then there exists a g(`)-small k-closure of
bags(Tpref) with respect to (T, bag).

The proof of Lemma 3.3.2 uses the machinery of Bojańczyk and Pilipczuk [BP22] in the form of
the Dealternation Lemma: Intuitively, since T is a bounded-width decomposition of G, there exists
a well-structured tree decomposition U of G such that for each appendix t of Tpref , the component cmp(t)
can be partitioned into a bounded number of well-structured “chunks” of U . The closure X will be
constructed so that each chunk of U contains only a bounded number of vertices from X. Thus, X will
include a bounded number of vertices from each cmp(t).

We now present a formal version of the Dealternation Lemma. The description follows the exposition
in [BP22], with some details irrelevant to us omitted.

Elimination forests. The output of the Dealternation Lemma is a tree decomposition of G presented
as the so-called elimination forest :

Definition 3. An elimination forest of G is a rooted forest F on vertex set V (G) with the following
property: if uv ∈ E(G), then u and v are in the ancestor-descendant relationship in F .

The following definition shows how to turn an elimination forest of G into a tree decomposition:

Definition 4. Assume that F is an elimination forest of G (so V (F) = V (G)). A tree decomposition
induced by F is the tree decomposition (F, bag), where for each v ∈ V (G), we set bag(v) to contain v and
each ancestor of v connected by an edge of G to any descendant of v.

In the definition above, we slightly abuse the notation and allow the shape of a tree decomposition to
be a rooted forest, rather than a rooted tree; all other conditions remain the same. Note that such a forest
decomposition can be always turned into a tree decomposition of same width by selecting one root r and
making all other roots children of r.

That (F, bag) constructed as in Definition 4 is indeed a tree decomposition of G is argued in [BP22,
Section 3]. It is now natural to define the width of an elimination forest F as the width of the tree
decomposition induced by F . Clearly, each elimination forest has width lower-bounded by tw(G). On the
other hand, every graph G has an elimination forest of width exactly tw(G) [BP22, Lemma 3.6].

Factors. Intuitively, factors are well-structured “chunks” of a forest F . Formally, a factor is a subset of
V (F) that is either:

• a forest factor : a union of a nonempty set of rooted subtrees of F , whose roots are all siblings to
each other; or

3.3. CLOSURES 45

• a context factor : a nonempty set of the form Φ1 \ Φ2, where Φ1 is a rooted subtree and Φ2 ⊆ Φ1 is
a forest factor; the root of a context factor is the root of Φ1, while the roots of the tree factors in Φ2

are called the appendices.

Dealternation Lemma. We can now state the Dealternation Lemma.

Lemma 3.3.3 (Dealternation Lemma, [BP22]). There exists a function f(`) ∈ O(`3) such that the
following holds. Let (T, bag) be a tree decomposition of G of width at most `. Then there exists an elimination
forest F of G of width tw(G) such that for every node t ∈ V (T), the set cmp(t) is a disjoint union of at
most f(`) factors of F .

Proof of the Small Closure Lemma. We now show how the Dealternation Lemma implies the Small
Closure Lemma (Lemma 3.3.2).

Proof of Lemma 3.3.2. Recall that we are given: a graph G of treewidth at most k; a tree decomposition
(T, bag) of G of width at most `, where ` > k; and a prefix Tpref of T . We are supposed to find a small
k-closure X of bags(Tpref). We stress that this requires that tw(torsoG(X)) 6 2k + 1.

We begin by applying Lemma 3.3.3 to (T, bag) and getting an elimination forest F of G of width
tw(G), for which each cmp(t) for t ∈ V (T) can be decomposed into at most f(`) ∈ O(`3) factors of F .
We remark that V (F) = V (G).

As argued in the paragraph following Definition 4, there exists a tree decomposition (F, bag′) of G of
width tw(G), where bag′(v) for v ∈ V (G) is defined as the set containing v and every ancestor of v in
F incident to an edge whose other endpoint is a descendant of v. Let W := bagsT (Tpref) and W ′ be the
lca-closure of W in F . We claim that the set

X :=
⋃
v∈W ′

bag′(v)

is an ((`+ 1) · f(`))-small k-closure of W with respect to T . This will conclude the proof.

Claim 3.3.4. X is a k-closure of bagsT (Tpref).

Proof of the claim. Since bagsT (Tpref) ⊆W ′ and v ∈ bag′(v) for each v ∈W ′, we have that bagsT (Tpref) ⊆
X, as required. It remains to show that tw(torsoG(X)) 6 2k + 1. However, as W ′ is lca-closed in F ,
Lemma 3.3.1 applies to W ′ and (every component of) tree decomposition (F, bag′), finishing the proof. C

Claim 3.3.5. Let t be an appendix of Tpref and let Φ be a factor of F with Φ ⊆ cmp(t). Then

|Φ ∩X| 6 `+ 1.

Proof of the claim. Since t is an appendix of Tpref , it follows from the definition of cmp(t) that cmp(t) is
disjoint with bagsT (Tpref). Thus, Φ is also disjoint with bagsT (Tpref).

First, assume that Φ is a forest factor. Then Φ is downwards closed: if a vertex belongs to Φ, then all its
descendants also belong to Φ. Since W ′ consists of bagsT (Tpref) and a subset of ancestors of bagsT (Tpref),
it follows that Φ is disjoint with W ′. Now, for each v ∈W ′, the set bag′(v) comprises v and some ancestors
of v. So again, Φ is disjoint with each set bag′(v) for v ∈W ′ and thus disjoint with X.

Now assume that Φ is a context factor. Recall that Φ = Φ1 \ Φ2, where Φ1 is a subtree of F rooted at
some vertex r, and Φ2 ⊆ Φ1 is a forest factor. The appendices of Φ have a common parent, which we call
s. By the disjointness of bagsT (Tpref) with Φ, we see that each vertex of bagsT (Tpref) is either outside of
Φ1 or inside some subtree of Φ2.

Since W ′ is the lca-closure of bagsT (Tpref), we have that W ′ = {lca(u, v) | u, v ∈ bagsT (Tpref)}.
Consider u, v ∈ bagsT (Tpref) such that lca(u, v) ∈ Φ1. If either u or v is outside of Φ1, then lca(u, v) is also
outside of Φ1. Therefore, both u and v belong to Φ2. In this case, it can be easily seen that lca(u, v) either
belongs to Φ2 (if both u and v are from the same rooted tree of Φ2) or is equal to s (otherwise). Thus,

Φ1 ∩W ′ ⊆ Φ2 ∪ {s}.

Note that Φ2 ∪ {s} is a connected subgraph of F containing s and some rooted subtrees attached to s.
Again, for each v ∈W ′, the set bag′(v) comprises v and some ancestors of v. Hence, for v ∈W ′ \ Φ1,

the set bag′(v) is disjoint with Φ. Therefore,

Φ ∩X ⊆
⋃
{Φ ∩ bag′(v) | v ∈ Φ2 ∪ {s}}.

Now let v ∈ Φ2 ∪ {s} and x ∈ Φ ∩ bag′(v). By the definition of bag′, x is either:

46 CHAPTER 3. DYNAMIC TREEWIDTH

• equal to v. Then we have that x ∈ Φ2 ∪ {s} and x ∈ Φ, so necessarily x = s; or

• an ancestor of v that is connected by an edge to a descendant y of v. But since also x ∈ Φ, we
get that x is also an ancestor of s. Also, y is a descendant of s (as y is a descendant of v and v is
a descendant of s). We conclude that x ∈ bag′(s).

In both cases we have x ∈ bag′(s) and therefore

Φ ∩X ⊆ bag′(s).

As (F, bag′) is a decomposition of width tw(G) 6 k 6 `, the statement of the claim follows immediately. C

Claim 3.3.6. Let t be an appendix of Tpref . Then

|cmp(t) ∩X| 6 (`+ 1)f(`).

Proof of the claim. By the Dealternation Lemma (Lemma 3.3.3), cmp(t) can be partitioned into at most
f(`) disjoint factors of F . By Claim 3.3.5, each such factor intersects X in at most `+ 1 elements. C

The proof of the Small Closure Lemma follows immediately from Claims 3.3.4 and 3.3.6.

3.3.2 Minimum-weight closures and Closure Linkedness Lemma

Having established the existence of c-small closures for sufficiently large c, we now show a structural result
about such closures: the Closure Linkedness Lemma. Intuitively, we prove that if X ⊇ W is a c-small
closure of W optimal with respect to some measure, then each connected component C of G − X is
well-connected to W . This property can be thought of as an analog of a similar result in a work of
Korhonen and Lokshtanov [KL22, Lemma 5.1]; the difference is that we work with optimal c-small closures,
compared to just optimal closures in [KL22].

From now on, let ω : V (G) → Z be an arbitrary weight function. For any subset A ⊆ V (G), let
ω(A) :=

∑
v∈A ω(v). First, let us define a few notions involving weight functions:

Definition 5. Fix k, c ∈ N and a weight function ω : V (G)→ Z. Let G be a graph of treewidth at most
k, W ⊆ V (G), and X be a c-small k-closure of W . We say that X is ω-minimal if for every c-small
k-closure X ′ of W , one of the following conditions holds:

• |X ′| > |X|, or

• |X ′| = |X| and ω(X ′) > ω(X).

Definition 6 ([KL22]). Let G be a graph, A,B ⊆ V (G), and ω : V (G) → Z be a weight function. We
say that a set A is ω-linked into B if each (A,B)-separator S satisfies either of the following conditions:

• |S| > |A|,

• |S| = |A| and ω(S) > ω(A).

By definition, if A is ω-linked into B, then A is also linked into B.
We can now state and prove the Closure Linkedness Lemma:

Lemma 3.3.7 (Closure Linkedness Lemma). Fix k, c ∈ N and a weight function ω : V (G)→ Z. Let G
be a graph of treewidth at most k, (T, bag) be a tree decomposition of G (of any width), Tpref be a prefix of
T , and X be an ω-minimal c-small k-closure of bags(Tpref). Then for each C ∈ cc(G−X), the set N(C)
is ω-linked into bags(Tpref).

We remark that it follows from Lemma 3.3.7 and the Small Closure Lemma that if the width of the
decomposition (T, bag) is ` > k, then for some large enough constant c` ∈ O(`4) there exists a c`-small
k-closure X of bags(Tpref) such that the neighborhood of each connected component of G−X is ω-linked
into bags(Tpref). In fact, any such ω-minimal closure will have this property.

The proof of the Closure Linkedness Lemma proceeds by assuming that some set N(C) is not ω-linked
into bags(Tpref); then, a small (N(C), bags(Tpref))-separator will exist. This separator will be used to
construct a new k-closure X ′ of bags(Tpref) with smaller weight, thus contradicting the ω-minimality of
X. However, in order to prove that X ′ is a k-closure of bags(Tpref), one needs to show that torsoG(X ′)
has sufficiently small treewidth. In order to facilitate this argument, we will use a useful technical tool
from the work of Korhonen and Lokshtanov [KL22]:

3.3. CLOSURES 47

Lemma 3.3.8 (Pulling Lemma, [KL22, Lemma 4.8]). Let G be a graph, X ⊆ V (G) and (T, bag) be a tree
decomposition of torsoG(X). Let (A,S,B) be a separation of G satisfying the following: There exists a node
r ∈ V (T) such that S is linked into bag(r)∩ (S ∪B). Let also X ′ := (X ∩A)∪S. Then, there exists a tree
decomposition (T, bag′) of torsoG(X ′) of width not exceeding the width of (T, bag).

We also need a simple helper lemma:

Lemma 3.3.9. Let G be a graph, X ⊆ V (G) and C ∈ cc(G−X). Then N(C) is a clique in torsoG(X).

Proof. For every u, v ∈ N(C), there exists a path connecting u and v whose all internal vertices are
contained in C.

We are now ready to prove the Closure Linkedness Lemma.

Proof of Lemma 3.3.7. Let W := bags(Tpref). For the sake of contradiction, assume we have a component
C ∈ cc(G−X) such that its neighborhood N(C) is not ω-linked into W . By Definition 6, there exists
an (N(C),W)-separator S such that either |S| < |N(C)|, or |S| = |N(C)| and ω(S) < ω(N(C)). Without
loss of generality, assume that S is such a separator with minimum possible size. Naturally, S induces
a separation (A,S,B) such that W ⊆ A ∪ S and N(C) ⊆ S ∪B.

Now, construct a new set X ′ from X as follows:

X ′ := (X ∩A) ∪ S.

We claim that X ′ is also a c-small k-closure of W . Note that since N(C) is contained in X and disjoint
from X ∩ A, we have that X ′ ⊆ (X \ N(C)) ∪ S. Therefore, |X ′| 6 |X| − |N(C)| + |S| and ω(X ′) 6
ω(X)−ω(N(C))+ω(S). So if |S| < |N(C)|, we have |X ′| < |X|, and if |S| = |N(C)| and ω(S) < ω(N(C)),
then |X ′| 6 |X| and ω(X ′) < ω(X). So provided X ′ is indeed a c-small k-closure of W , X cannot be
ω-minimal, contradicting our assumption.

Claim 3.3.10. X ′ is a k-closure of W .

Proof of the claim. Since W is disjoint with B and X is a k-closure of W , we get that X ′ ⊇W .
Aiming to use the Pulling Lemma, we let (TX , bagX) to be a tree decomposition of torsoG(X) of width

at most 2k + 1. By Lemma 3.3.9, N(C) is a clique in torsoG(X), so there exists a node r ∈ V (TX) with
N(C) ⊆ bagX(r). It remains to verify that S is linked into bagX(r) ∩ (S ∪B).

Observe that N(C) ⊆ bagX(r) ∩ (S ∪ B). Hence, it is enough to check that S is linked into N(C).
However, if it was not the case, then there would be an (N(C), S)-separator S′ of size |S′| < |S|. But
then S′ would be also an (N(C),W)-separator of size smaller than |S|, contradicting the minimality of S.
Hence, Lemma 3.3.8 applies to the tree decomposition (TX , bagX) and the separation (A,S,B), producing
a tree decomposition of torsoG(X ′) of width not exceeding 2k + 1. C

Claim 3.3.11. X ′ is c-small.

Proof of the claim. Recall that X ⊇W , where W = bags(Tpref). Therefore, as C is a connected component
of G−X, the entire connected component C must be contained within cmp(t) for some appendix t of
Tpref . Hence, N(C) ⊆ cmp(t) ∪ adh(t). Also, adh(t) ⊆W . As (cmp(t), adh(t), V (G) \ (cmp(t) ∪ adh(t))) is
a separation of G, and S is a minimum-size (N(C),W)-separator, it follows that S ⊆ cmp(t) ∪ adh(t); in
other words, vertices outside of cmp(t) ∪ adh(t) are not useful towards the separation of N(C) from W .

Now, for an appendix t′ 6= t of Tpref , cmp(t′) is disjoint from cmp(t) ∪ adh(t): This is because cmp(t′)
is disjoint from W (containing adh(t) in its entirety) and from cmp(t) (as t, t′ do not remain in the
ancestor-descendant relationship in T). Therefore, S is disjoint with cmp(t′) and thus, by the definition
of X ′,

|X ′ ∩ cmp(t′)| = |(X ∩A) ∩ cmp(t′)| 6 |X ∩ cmp(t′)| 6 c.
Hence, the smallness condition is not violated for the appendix t′.

In order to prove that the same condition is satisfied for the appendix t, we observe that N(C)∩W ⊆ S
(as S separates N(C) from W), so also N(C)∩ adh(t) ⊆ S. Therefore, |N(C)∩ adh(t)| 6 |S ∩ adh(t)|, and
we get that

|N(C) ∩ cmp(t)| = |N(C)| − |N(C) ∩ adh(t)| > |S| − |S ∩ adh(t)| = |S ∩ cmp(t)|.

Now, as X ′ ⊆ (X \N(C)) ∪ S and N(C) ⊆ X, we infer that

|X ′ ∩ cmp(t)| 6 |X ∩ cmp(t)| − |N(C) ∩ cmp(t)|+ |S ∩ cmp(t)| 6 |X ∩ cmp(t)| 6 c. C

By Claims 3.3.10 and 3.3.11 we infer that X ′ is a c-small k-closure of W . This is a contradiction to
the ω-minimality of X.

48 CHAPTER 3. DYNAMIC TREEWIDTH

3.3.3 Closure exploration, blockages and collected components

In this section, we define several auxiliary objects that will be constructed in the tree decomposition
improvement algorithm after a suitable closure is found: explorations, blockages and collected components.
For the remainder of the section, let us fix a tree decomposition (T, bag) of G of width at most `,
a nonempty prefix Tpref of T and a ω-minimal c-small k-closure X ⊇ bags(Tpref) for some weight function
ω : N→ N.

Blockages. We start with the definition of a blockage:

Definition 7. We say that a node t ∈ V (T) \ Tpref is a blockage in T with respect to Tpref and X if one
of the following cases holds:

• bag(t) ⊆ NG[C] for some component C ∈ cc(G−X) that intersects bag(t) (component blockage);

• bag(t) ⊆ X and bag(t) is a clique in torsoG(X) (clique blockage);

and no strict ancestor of t is a blockage.

Note that a component blockage intersects with exactly one component C ∈ cc(G−X).
Since T , Tpref and X will usually be known from the context, we will usually just say that t is a blockage.

Then, we introduce the following notation: let Blockages(Tpref , X) be the set of blockages.

Properties of blockages. We now prove a few lemmas relating blockages to X.

Lemma 3.3.12. If t ∈ Blockages(Tpref , X), then for every pair of vertices u, v ∈ bag(t) there exists
a uv-path in G internally disjoint with X.

Proof. If t is a component blockage for component C ∈ cc(G − X), then the statement of the lemma
immediately follows from bag(t) ⊆ NG[C] – in fact, for all u, v ∈ bag(t), there exists a uv-path whose all
internal vertices belong to C. On the other hand, if t is a clique blockage, then the statement is equivalent
to the assertion that bag(t) is a clique in torsoG(X).

Note that it immediately follows from Lemma 3.3.12 that if t is a blockage, then bag(t) ∩X is a clique
in torsoG(X).

Lemma 3.3.13. If t ∈ Blockages(Tpref , X), then cmp(t) ∩X = ∅.

Proof. Assume otherwise. Then, we claim that the set X ′ := X \ cmp(t) is also a c-small k-closure of
bags(Tpref), contradicting the minimality of X. In fact, we will show that torsoG(X ′) is a subgraph of
torsoG(X). Towards this goal, choose vertices u, v ∈ X ′ and assume that uv ∈ E(torsoG(X ′)), i.e., there
exists a path P = v1, v2, . . . , vp from u = v1 to v = vp internally disjoint with X ′. If P is internally disjoint
with X, then also uv ∈ E(torsoG(X)), finishing the proof. In the opposite case, P must intersect X \X ′
and thus intersect cmp(t). Note that by the definition of X ′, we necessarily have u, v /∈ cmp(t). Let va, vb
(1 6 a 6 b 6 p) be the first and the last intersection of P with adh(t), respectively; such vertices exist
since (cmp(t), adh(t), (V (G) \ (cmp(t) ∪ adh(t))) is a separation of G. The subpaths v1, v2, . . . , va and
vb, vb+1, . . . , vp are disjoint with cmp(t) and thus are internally disjoint with X. Construct a new path P ′

from u to v by concatenating:

• the subpath v1, v2, . . . , va,

• a path from va to vb internally disjoint with X (its existence is asserted by Lemma 3.3.12),

• the subpath vb, vb+1, . . . , vp.

Naturally, P ′ is again internally disjoint with X ′. We claim that P ′ is internally disjoint with X, thus
witnessing that uv ∈ E(torsoG(X)). Indeed, each of the three segments of P ′ is internally disjoint with X,
so P ′ can internally intersect X only if va ∈ X (or vb ∈ X). However, in this case, we have that va ∈ X ′
(respectively, vb ∈ X ′), as va, vb /∈ cmp(t). But P ′ is internally disjoint with X ′, hence va (resp., vb) must
be the first (resp., the last) vertex of P ′ and thus not an internal vertex of P ′. Hence, P ′ is internally
disjoint with X.

We remark that if t is a clique blockage, then from Lemma 3.3.13 it follows that bag(t) = adh(t), so in
particular bag(t) ⊆ bag(parent(t)).

3.3. CLOSURES 49

Exploration and exploration graph. For a given weight function ω : V (G)→ Z, prefix Tpref of T and
a ω-minimal c-small k-closure X of bags(Tpref), we define the exploration as the prefix Exploration(Tpref , X)
of T whose set of appendices is given by Blockages(Tpref , X). A node t ∈ V (T) is deemed explored if
t ∈ Exploration(Tpref , X), otherwise it is unexplored. Then, a vertex v ∈ V (G) is explored if it belongs to
bag(t) for some explored node t, and unexplored otherwise. Observe that v ∈ V (G) is unexplored if and
only if it belongs to cmp(t) for some blockage t. In particular, by Lemma 3.3.13, every vertex of X is
explored.

Clearly, we have Tpref ⊆ Exploration(Tpref , X). Also, if T is a binary tree decomposition, then
|Blockages(Tpref , X)| 6 |Exploration(Tpref , X)|+ 1 (this follows immediately from the fact that the number
of appendices of any prefix of T exceeds the cardinality of the prefix by at most 1).

Next, we define the exploration graph H := ExplorationGraph(Tpref , X) by compressing the components
cmp(t) of blockages t to single vertices. The purpose of this definition will be to present the connected
components of G−X in a way that can be bounded by |Exploration(Tpref , X)|, even if the number of such
components can be much larger. Formally:

• V (H) comprises: explored vertices, that is, the set of vertices
⋃
t∈Exploration(Tpref ,X) bag(t); and blockage

vertices, that is, the set Blockages(Tpref , X) of nodes of T .

• The set of edges E(H) is constructed by taking the subgraph of G induced by the explored vertices
and adding edges tv for each t ∈ Blockages(Tpref , X) and v ∈ adh(t).

• The compression mapping ξ : V (G) → V (H) is an identity mapping on V (G) ∩ V (H); and for
t ∈ Blockages(Tpref , X), we set ξ−1(t) := cmp(t).

Note that Lemma 3.3.13 implies that X ⊆ V (H). Also, if T is a binary tree decomposition, then

|V (H)| 6 (`+ 1) · |Exploration(Tpref , X)|+ |Exploration(Tpref , X)|+ 1.

We also observe the following fact:

Lemma 3.3.14. If uv ∈ E(G), then ξ(u) = ξ(v) or ξ(u)ξ(v) ∈ E(H).

Proof. If both u and v are explored, then ξ(u) = u, ξ(v) = v and ξ(u)ξ(v) ∈ E(H). Otherwise, assume
without loss of generality that ξ(v) = t is a blockage vertex. Then v ∈ cmp(t), so u ∈ cmp(t) ∪ adh(t). If
u ∈ cmp(t), then ξ(u) = ξ(v) = t. Otherwise u ∈ adh(t), so u is an explored vertex. Then ξ(u) = u and
ξ(v) = t, so ξ(u)ξ(v) ∈ E(H) by the construction.

Collected components. Using the notation above, we partition V (G) \X into subsets called collected
components as follows. For each C ∈ cc(H −X), let C := ξ−1(C) (so C ⊆ V (G) \X) and if C is nonempty,
then include C in the set Coll(Tpref , X) of collected components of G. In other words, we uncompress each
connected component of H −X to form a collected component – a subset of V (G) \X. It can be easily
verified that the set Coll(Tpref , X) is, indeed, a partition of V (G) \X.

Let C ∈ Coll(Tpref , X). We say that C is:

• unblocked if ξ(C) contains at least one explored vertex of V (H); or

• blocked if ξ(C) only contains blockage vertices of V (H).

Note that if t is a clique blockage, then t is an isolated vertex of H −X; hence, the collected component
ξ−1({t}) (if it is nonempty) is necessarily a blocked component. However, the converse implication is not
true in general: It could be that a component blockage t′ satisfies adh(t′) ⊆ X, again causing t′ to be
an isolated vertex of H −X. Then, the collected component ξ−1({t′}) (if it is nonempty) will, too, be
a blocked component.

It turns out that Coll(Tpref , X) is a coarser partition of V (G) \X than cc(G−X):

Lemma 3.3.15. Each collected component C ∈ Coll(Tpref , X) is the union of a collection of connected
components of G−X.

Proof. It is enough to prove the following: If u, v ∈ V (G) \X are adjacent in G, then ξ(u) and ξ(v) belong
to the same connected component of H. But by Lemma 3.3.14, ξ(u) and ξ(v) are either equal or adjacent
in H; this proves the claim.

Next, we prove a characterization of each type of collected component.

50 CHAPTER 3. DYNAMIC TREEWIDTH

Lemma 3.3.16. If C ∈ Coll(Tpref , X) is:

• unblocked, then the set of explored vertices belonging to ξ(C) is contained in a single connected
component C ∈ cc(G−X). Moreover, C ⊆ C and N(C) = N(C);

• blocked, then ξ(C) consists of a single blockage vertex t. Moreover, N(C) ⊆ adh(t) ∩X.

Proof. We start by proving the following claim:

Claim 3.3.17. If u, v ∈ C are explored, then u and v belong to the same connected component of G−X.

Proof of the claim. Let P = w1w2 . . . wp (w1 = ξ(u), wp = ξ(v)) be a simple path from ξ(u) to ξ(v) in
H −X (such a path exists since u, v are in the same collected component). We will prove inductively that
each explored vertex of P is in the same connected component of G−X as w1. This is trivially true for
w1. For an inductive step, choose an explored vertex wi (i > 2). If wi−1 is also explored, then wi−1wi is
an edge of G−X, so wi is in the same connected component of G−X as wi−1 (and thus in the same
connected component of G−X as w1).

If wi−1 is, on the other hand, a blockage vertex (i.e., wi−1 ∈ V (T)), then note that i > 3 (since w1 is
an explored vertex). Moreover, by the definition of E(H), wi−1 is adjacent in H only to explored vertices
in adh(wi−1). Therefore, wi−2 is also an explored vertex and wi−2, wi ∈ adh(wi−1). Since wi−2, wi /∈ X, it
follows that wi−1 is a component blockage, i.e., bag(wi−1) ⊆ NG[C] for some component C ∈ cc(G−X)
intersecting bag(t). Therefore, both wi−2 and wi belong to C; and by the inductive assumption, so does
w1. C

Also, the following simple fact will be useful:

Claim 3.3.18. If D is a connected component of G −X such that D ⊆ cmp(t) for a blockage t, then
N(D) ⊆ adh(t) ∩X.

Proof of the claim. Obviously, N(D) ⊆ X. However, by Lemma 3.3.13, cmp(t) ∩ X = ∅. As N[D] ⊆
cmp(t) ∪ adh(t), it follows that N(D) ⊆ adh(t). C

Now, assume that C is unblocked. By Claim 3.3.17, the set of explored vertices belonging to ξ(C) is
contained in a single connected component C ∈ cc(G−X). From Lemma 3.3.15, we have that C ⊆ C. It
remains to show that N(C) = N(C). To this end, we will argue the following:

Claim 3.3.19. Let D ∈ cc(G−X) be a connected component with D ⊆ C. Then N(D) ⊆ N(C).

Proof of the claim. We can assume that D 6= C. Then the set ξ(D) only contains blockage vertices;
and since blockage vertices form an independent set in H, it follows from Lemma 3.3.14 that ξ(D)
comprises just one blockage vertex, say t. Hence D ⊆ cmp(t), and it also follows from Claim 3.3.18 that
N(D) ⊆ adh(t) ∩X.

Let u ∈ C be any explored vertex (so ξ(u) = u). Now, since C,D ⊆ C and ξ(D) = {t}, there must
exist a path P from t to u in H − X. Let v be the (explored) vertex immediately after t in P . By
Claim 3.3.17, v ∈ C; and v ∈ adh(t) by construction. It follows that t is a component blockage intersecting
C ∈ cc(G−X), so bag(t) ⊆ N[C]; in particular, adh(t) ∩X ⊆ N(C). C

As N(C) =
⋃
D∈cc(G−X), D⊆CN(D), we get from Claim 3.3.19 that N(C) = N(C), as required.

Finally, assume that C is blocked. Since blockage vertices of H form an independent set, it follows
from Lemma 3.3.14 that |ξ(C)| = 1. Let t be the blockage vertex that is the only element of ξ(C). Then
Claim 3.3.18 applies to every D ∈ cc(G−X) with D ⊆ C and implies that N(D) ⊆ adh(t)∩X. Therefore,
N(C) ⊆ adh(t) ∩X.

The next lemma follows easily from the previous lemma:

Lemma 3.3.20. For each C ∈ Coll(Tpref , X), the set N(C) is a clique in torsoG(X).

Proof. If C is unblocked, then N(C) = N(C) for some C ∈ cc(G−X). By Lemma 3.3.9, N(C) is a clique
in torsoG(X). On the other hand, if C is blocked, then N(C) ⊆ adh(t) ∩X for some blockage t. But it
follows immediately from the definition of a blockage that adh(t) ∩X is a clique in torsoG(X).

Finally, we define the home bag of a collected component C to be a node of T selected as follows:

3.3. CLOSURES 51

• If C is unblocked, then the home bag of C is the shallowest node t of T such that bag(t) contains
an explored vertex in C. Note that this bag is uniquely defined, as the explored vertices in C induce
a connected subgraph of G and hence their occurrences in (T, bag) induce a connected subtree of T .

• If C is blocked, then the home bag of C is the unique blockage t such that ξ(C) = {t}.

We conclude by proving some properties of the home bags of collected components.

Lemma 3.3.21. Let C ∈ Coll(Tpref , X) be unblocked and let t be the home bag of C. Then

t ∈ Exploration(Tpref , X) \ Tpref and |bag(t)| > |N(C)|.

Proof. First note that t is an explored node: Each explored vertex of C is contained in some bag
bag(u) for an explored node u, and the set of explored nodes is ancestor-closed. Also, t /∈ Tpref is
immediate: We have bags(Tpref) ⊆ X by the definition, but C is disjoint from X. We conclude that
t ∈ Exploration(Tpref , X) \ Tpref .

Next we show that |bag(t)| > |N(C)|. Recall from Lemma 3.3.16 that there is some D ∈ cc(G −X)
that contains all explored vertices of C and such that N(C) = N(D). Since t is an explored node of T ,
bag(t) \X consists only of explored vertices. Hence, t is the shallowest bag of T intersecting D. Because
G[D] is connected, all bags of T intersecting D must be in the subtree of T rooted at t. Additionally, by
the Closure Linkedness Lemma (Lemma 3.3.7), N(D) is ω-linked into bags(Tpref). As t /∈ Tpref , we find
that adh(t) is an (N(D), bags(Tpref))-separator, from which it follows that |adh(t)| > |N(D)|. However, it
cannot be that adh(t) = bag(t) since adh(t) ∩D = ∅ and bag(t) ∩D 6= ∅. Thus, adh(t) (bag(t) and so
|bag(t)| > |N(D)|.

Lemma 3.3.22. Let C ∈ Coll(Tpref , X) be blocked and let t be the home bag of C. Assume that parent(t) /∈
Tpref . Then |bag(t) ∩X| < |bag(parent(t))|.

Proof. Since C is blocked, t is a blockage. From Lemma 3.3.13 we have cmp(t) ∩X = ∅, so bag(t) ∩X =
adh(t) ∩X. But it cannot be that adh(t) ∩X = bag(parent(t)): Otherwise, as adh(t) ∩X is a clique in
torsoG(X) (Lemma 3.3.12), parent(t) would be a clique blockage and then t could not be a blockage itself.
Since adh(t) ⊆ bag(parent(t)), we conclude that |bag(t) ∩X| < |bag(parent(t))|.

3.3.4 Computing closures and auxiliary objects

We finally show that the objects defined in the previous sections can be computed efficiently in a tree
decomposition that is changing dynamically under prefix-rebuilding updates. Recall that such decomposi-
tions are modeled by the annotated tree decompositions, and data structures maintaining such dynamic
decompositions are called prefix-rebuilding data structures. In this section, we fix a specific weight function:
For an annotated tree decomposition T = (T, bag, edges) of a graph G, as the weight function we use the
depth function dT of T : the function

dT : V (G)→ Z>0

that maps each vertex v ∈ V (G) to the depth of the shallowest node t ∈ V (T) such that v ∈ bag(t).
Henceforth, whenever the tree decomposition T is known from the context, we will write d instead of dT .

We are now ready to state the promised result.

Lemma 3.3.23. For every c, `, k ∈ N with ` > k, there exists an `-prefix-rebuilding data structure with
overhead 2O((c+`)2), additionally supporting the following operation:

• Query(Tpref): Given a prefix Tpref of T , returns either No closure if there is no c-small k-closure of
bags(Tpref), or

– a dT -minimal c-small k-closure X of bags(Tpref),
– the graph torsoG(X), and
– the set Blockages(Tpref , X) ⊆ V (T).

This operation runs in worst-case time 2O(k(c+`)2) · (|Tpref |+ |Exploration(Tpref , X)|).

The proof of Lemma 3.3.23 is provided in Section 3.7.4.

52 CHAPTER 3. DYNAMIC TREEWIDTH

3.4 Refinement data structure

In this section we define a data structure, called the refinement data structure, which will be used in
Sections 3.5 and 3.6 to improve a tree decomposition of a given dynamic graph.

Let G be a graph of treewidth at most k, which is changing over time by edge insertions and deletions.
Our ultimate goal is to maintain an annotated binary tree decomposition T = (T, bag, edges) of G of
width at most 6k + 5 (we usually write T = (T, bag) when we are not using the edges function). The aim
of the refinement operation is twofold. First, it is used to improve the width of the decomposition, that is,
when given a prefix Tpref of (T, bag) that contains all the bags of size more than 6k + 6, the refinement
operation outputs a tree decomposition (T ′, bag′) of width at most 6k + 5. Second, it is called when the
tree of the decomposition becomes too unbalanced. This shall be clarified later in Section 3.5.

Before proceeding with the description of the refinement data structure, let us introduce the potential
function which plays a major role in both the analysis of the amortized complexity of the refinement and
in the height-reduction scheme of Section 3.5.

3.4.1 Potential function

Let k ∈ N be the upper bound on the treewidth of the dynamic graph, and ` = 6k+ 5, which is the desired
width of the tree decomposition we are maintaining (in particular, the actual width can be at most 6k + 6
when the refinement operation is called). For a node t of a tree decomposition T = (T, bag), we define its
potential by the formula:

Φ`,T (t) := g`(|bag(t)|) · heightT (t), (3.1)

where
g`(x) := (53(`+ 4))x for every x ∈ N.

Observe that since we maintain a decomposition of width O(k), we have

Φ`,T (t) 6 2O(k log k) · heightT (t) for every node t.

Intuitively, the term g`(|bag(t)|) in the potential function allows us to update the tree decomposition by
replacing the node t with O(`) copies of t, where each copy t′ has the same height as t but the bag of t′

is strictly smaller than that of t. Then, we can pay for such a transformation from the decrease in the
potential function. The second term heightT (t) will turn out to be essential in Section 3.5: It will allow to
argue that the potential function can be decreased significantly if the current tree decomposition is too
unbalanced.

For a subset W ⊆ V (T), we denote

Φ`,T (W) :=
∑
t∈W

Φ`,T (t),

and similarly, for the whole tree decomposition T = (T, bag), we set

Φ`(T) :=
∑

t∈V (T)

Φ`,T (t).

3.4.2 Data structure

The next lemma describes the interface of our data structure.

Lemma 3.4.1 (Refinement data structure). Fix k ∈ N and let ` = 6k + 5. There exists an (`+ 1)-prefix-
rebuilding data structure with overhead 2O(k8), that maintains a tree decomposition T = (T, bag) with
N := |V (T)| nodes, and additionally supports the following operation:

• Refine(Tpref): Given a prefix Tpref of T so that Tpref contains all nodes of T with bags of size `+ 2,
returns a description u of a prefix-rebuilding update, so that the tree decomposition T ′ obtained by
applying u has the following properties:

(WIDTH) T ′ has width at most ` and

(POT) the following inequality holds:

Φ`(T)− Φ`(T ′) >
∑

t∈Tpref

heightT (t)− 2O(k log k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN.

3.4. REFINEMENT DATA STRUCTURE 53

Moreover, it holds that

(RT1) the worst-case running time of Refine(Tpref), and therefore also |u|, is upper-bounded by

2O(k9) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN + max(Φ`(T)− Φ`(T ′), 0)

 .

In the remainder we present the data structure of Lemma 3.4.1 and prove some key properties used
later. This section ends with a proof of the correctness of the refinement operation, including the proof of
property (WIDTH). The amortized analysis of the data structure, in particular the proofs of properties
(RT1) and (POT) will follow in Section 3.4.3.

Fix positive integers k, ` such that ` = 6k + 5. Let G be a dynamic n-vertex graph of treewidth at
most k. In our data structure we store:

• a binary annotated tree decomposition T = (T, bag, edges) of G of width at most `+ 1;

• an instance Daux of a data structure from Lemma 3.2.1 for maintaining various auxiliary information
about T ; and

• an instance Dexplore of a data structure from Lemma 3.3.23 used to compute necessary objects for
the refinement operation.

Implementation of the update operations on our data structure is simple. Upon receiving a prefix-
rebuilding update u with a prefix Tpref , we recompute the decomposition (T, bag, edges) according to
u, and pass u to the inner data structures Daux and Dexplore. The initialization of the data structure is
similarly easy.

From now on, we focus on the refinement operation. Let Tpref ⊆ V (T) be the given prefix of T which
includes all bags of T of size `+ 2.

For the ease of presentation, instead of constructing a description u of a prefix-rebuilding update, we
shall show how to construct a tree decomposition (T ′, bag′) obtained from (T, bag) after applying u. The
suitable description u can be then easily extracted from (T ′, bag′) and from the objects computed along
the way, in particular, Lemma 3.2.3 will be implicitly used here.

The refinement operation proceeds in five steps.

Step 1 (Compute auxiliary objects)
Given a prefix Tpref of the decomposition T = (T, bag) we use the data structure Dexplore from Lemma 3.3.23
to compute the following objects:

• a dT -minimal c-small k-closure X of bags(Tpref), where dT is the depth function of T defined in
Section 2.3 and c ∈ O(k4) is the bound given Lemma 3.3.2,

• the graph torsoG(X), and

• the set Blockages(Tpref , X) ⊆ V (T).

Then, we immediately apply the following Lemma 3.4.2, provided below, to compute also

• the explored prefix F := Exploration(Tpref , X) and

• the exploration graph H := ExplorationGraph(Tpref , X).

Lemma 3.4.2. Let Tpref be a prefix of T and X a dT -minimal c-small k-closure of bags(Tpref). Given
Tpref , X, and Blockages(Tpref , X), the explored prefix F and the exploration graph H can be computed in
time kO(1) · |F |.

Proof. First, F can be computed in time O(|F |) by simply a depth-first search on T that stops on
blockages. Then, the vertices V (H) of the exploration graph can be computed in time kO(1) · |F | by taking
the union of bags(F) and Blockages(Tpref , X). Having access to (T, bag, edges), the induced subgraph
G[bags(F)] can be computed in time kO(1) · |F |, because all of its edges are stored in edges(F). Also, the
edges between blockage vertices and vertices in bags(F) can be directly computed from the definition.

The running time of this step is clearly dominated by the call to Dexplore, and by substituting c = O(k4)
in the bound on the running time of Query, we conclude the following.

54 CHAPTER 3. DYNAMIC TREEWIDTH

(RT2) The running time of Step 1 is 2O(k9) · |F |.

In further analysis of the refinement data structure, the following definitions will be useful.

Definition 8. For a collected component C ∈ Coll(Tpref , X), we define its interface, weight, and height,
denoted respectively by Interface(C), weight(C) and height(C), as follows.

• If C is unblocked, then set Interface(C) := N(C).

• If C is blocked, then set Interface(C) := bag(t)∩X, where t ∈ Blockages(Tpref , X) is the only element
of ξ(C) (i.e., t is the home bag of C).

In both cases, we set

weight(C) := |Interface(C)| and height(C) := height(t),

where t is the home bag of C.

Also, we introduce the notation mapping each set B ⊆ V (G) to the set of collected components with
interface B:

Interface−1(B) := {C ∈ Coll(Tpref , X) | Interface(C) = B}.
We remark that it follows from Lemma 3.3.16 that N(C) ⊆ Interface(C).

Step 2 (Build a new prefix)
At this step, we intend to construct a prefix of a new decomposition T ′ = (T ′, bag′). As it turns out,
the prefix will be a tree decomposition T X of torsoG(X) with some additional properties. The reason for
using here torsoG(X) is simple: For every connected component C of G−X, the neighborhood N(C) ⊆ X
is a clique in torsoG(X). Therefore, by Observation 2.3.1, for every tree decomposition (TX , bagX) of
torsoG(X), there is a node t ∈ TX whose bag bag(t) contains N(C). This will allow us to combine the
tree decompositions of torsoG(X) with tree decompositions of the components of G−X.

Let us give a detailed description of the constructed prefix T X . We recall the following result, due to
Bodlaender, that an optimum-width tree decomposition of a graph can be computed in parameterized
linear time:

Theorem 3.4.3 ([Bod96, Theorem 1]). Given a graph G, where k := tw(G), one can compute in time
2O(k3) · |V (G)| a tree decomposition (T, bag) of G of width k and with |V (T)| = O(|V (G)|).

We also restate the following classical result of Bodlaender and Hagerup.

Theorem 2.3.3 ([BH98, Lemma 2.2]). Given a graph G and its tree decomposition (T, bag) of width k,
one can compute in time O(k · |V (T)|) a binary tree decomposition (T ′, bag′) of G of height O(log |V (T)|),
width at most 3k + 2, and with |V (T ′)| = O(|V (T)|).

Moreover, we will use another auxiliary operation modifying a binary tree decomposition.

Lemma 3.4.4. Given a graph G and its binary tree decomposition (T, bag) of height h and width k′, one
can compute in time O(2k

′ · |V (T)|) a binary tree decomposition (T ′, bag′) of G of height O(h+ k′), width
k′, and with |V (T ′)| = O(2k

′ · |V (T)|), such that for every node t ∈ V (T) and every subset B ⊆ bag(t),
there is a leaf node tB of T ′ such that bag′(tB) = B.

Proof. Let us iterate through all the nodes t ∈ V (T). Let bag(t) = {v1, v2, . . . , vp}, where p 6 k′ + 1.
We construct a binary tree decomposition (Tt, bagt) of the induced subgraph bag(t) as follows. The root

of Tt is a new node p with bagt(p) = bag(t). The height of Tt is p. Each vertex u ∈ V (Tt) at depth i, where
i = 0, 1, . . . , p−1, has two children uyes and uno with bagt(uyes) = bagt(u) and bagt(uno) = bagt(u)\{vi+1}.
These properties define the whole decomposition (Tt, bagt). This is a valid tree decomposition of bag(t)
since whenever we exclude a vertex v from a bag of u ∈ V (Tt), then v does not appear in any of the
bags of descendants of u in Tt. Moreover, observe that for every subset B ⊆ bag(t), there is a leaf node
tB ∈ V (T) such that bagt(tB) = B.

It remains to attach such trees Tt to the original tree T – this will form the desired decomposition
(T ′, bag′), where bag′|T = bag and bag′|Tt = bagt for every t. If a vertex t has at most one child, then
we can attach Tt to T by simply making the root of Tt a child of t. If t has two children, then we can
subdivide one of its edges to its children with a vertex tcopy, where bag′(tcopy) = bag(t), and apply the
previous case to tcopy.

It is easy to see that the width of (T ′, bag′) is still k′, and the height of T ′ is at most O(h+ k′) as
every attached tree Tt has height at most k′ + 1.

3.4. REFINEMENT DATA STRUCTURE 55

We are ready to define the desired decomposition T X of torsoG(X). We perform the following operations.

1. Apply Theorem 3.4.3 to obtain a tree decomposition T Xopt of torsoG(X).

2. Use the algorithm from Theorem 2.3.3 on the decomposition T Xopt and call the resulting decomposition
T Xshallow.

3. Run the algorithm from Lemma 3.4.4 to transform the decomposition T Xshallow into the desired tree
decomposition T X = (TX , bagX).

Let us list all the properties of this step that will be required in further parts of the algorithm. The
purpose of property (P3) might be unclear at this point, but it will play an important role in the analysis
of the amortized running time.

Lemma 3.4.5. The following properties hold.

(P1) T X is a binary tree decomposition of torsoG(X) of width at most 6k + 5 and height at most
O(k + logN).

(P2) V (TX) 6 2O(k) · |Tpref |.

(P3) For every collected component C ∈ Coll(Tpref , X), there exists a leaf tC ∈ V (TX) such that bagX(tC) =
Interface(C).

(RT3) The running time of Step 2 is 2O(k3) · |Tpref |.

Proof. We prove the consecutive points of the lemma.

Claim 3.4.6. T X is a binary tree decomposition of torsoG(X) of width at most 6k + 5 and height
O(k + logN). Additionally, V (TX) 6 2O(k) · |Tpref |.

Proof of the claim. Recall that since X is a k-closure, we have tw(torsoG(X)) 6 2k + 1. Hence, we can
compute the decomposition T Xopt of width 2k + 1. Consequently, the width of the decomposition T Xshallow is
bounded by 3 · (2k+ 1) + 2 = 6k+ 5. This is also the bound on the width of T X , as applying Lemma 3.4.4
does not increase the width of a decomposition.

Next, observe that |X| 6 O(k4 · |Tpref |) because X is O(k4)-small, implying that |V (TXopt)| 6 O(k4 ·
|Tpref |). It follows that the height of T Xshallow is bounded by O(log |X|) = O(k + logN). Therefore, by
Lemma 3.4.4, the height of T X is indeed bounded by O(k + logN).

Finally, for the size of T X , we have that |V (TX)| 6 2O(k) · |V (TXshallow)| 6 2O(k) · |TXopt| 6 2O(k) ·
|bags(Tpref)|. C

Claim 3.4.7. For every collected component C ∈ Coll(Tpref , X), there is a leaf tC ∈ TX such that
bagX(tC) = Interface(C).

Proof of the claim. Consider a collected component C ∈ Coll(Tpref , X). First, observe that Interface(C) is
a clique in torsoG(X). Indeed, if C is unblocked, then by Lemma 3.3.20, Interface(C) = N(C) is a clique
in torsoG(X). If C is blocked, then Interface(C) = bag(t) ∩ X, where t is the home bag of C. However,
bag(t) ∩X is a clique in torsoG(X) as well, since t is a blockage.

Hence, by Observation 2.3.1, there is a node t ∈ V (TXshallow) such that Interface(C) ⊆ bagX(t). Then,
by Lemma 3.4.4, we know that there is a leaf tC ∈ V (TX) such that bagX(tC) = Interface(C). C

Claim 3.4.8. The running time of Step 2 is 2O(k3) · |Tpref |.

Proof of the claim. According to previous observations, computing T Xopt takes 2O(k3) · |X| time, and since

|X| 6 kO(1)|Tpref |, we can write this bound as 2O(k3) · |Tpref |. The running time of the other two steps
can be upper-bounded by 2O(k) · |X|, and thus the claim follows. C

The claims above verify all the required properties, so the proof is complete.

56 CHAPTER 3. DYNAMIC TREEWIDTH

Step 3 (Split the old appendices)
So far, we have constructed a tree decomposition T X of torsoG(X). Now, we are going to construct
for each collected component C ∈ Coll(Tpref , X) a tree decomposition T C that will be attached to the
decomposition T X . In particular, T C will be a tree decomposition of the graph G[C ∪ Interface(C)] whose
root bag contains Interface(C). We will first describe the construction, then prove its required properties,
and then argue that the relevant objects for constructing T C for all C ∈ Coll(Tpref , X) can be computed
in time kO(1) · |F |.

We now describe the construction of T C. Let C be a collected component, and recall the definition of
home bag from Section 3.3.3. We say that a blockage t ∈ Blockages(Tpref , X) is associated to C if either (1)
C is a blocked component whose home bag t is, or (2) C is an unblocked component such that C ∩ bag(t)
is nonempty. Note that the definitions of blockage and collected component imply that each blockage is
associated with at most one collected component.

Now, if C is a blocked component, we define T C = (TC, bagC) so that TC is a copy of the subtree of T
rooted at the home bag of C, and bagC is similarly a copy of the bag function in this subtree. If C is an
unblocked component, T C = (TC, bagC) is constructed as follows. For a blockage b ∈ Blockages(Tpref , X)
we denote by Tb the subtree of T rooted at b. We denote by AB(C) the blockages associated with C. Then,
the tree TC is defined as

TC = T [{t ∈ F | C ∩ bag(t) 6= ∅} ∪
⋃

b∈AB(C)

V (Tb)].

That is, TC is the subtree of T consisting of (1) the explored nodes whose bags contain vertices in C and
(2) the subtrees rooted at blockages that are associated with C. We remark that TC is connected by the
definition of a collected component, and also that the unique highest node in TC (in particular, the root
of TC since TC is connected) corresponds to the home bag of C.

We observe that the trees TC across all (blocked and unblocked) collected components C satisfy the
following properties:

• each node in V (T) \ F is in at most one tree TC,
• each node in F \ Tpref is in at most `+ 1 trees TC (because all nodes in F \ Tpref have bags of size

at most `+ 1), and
• no node in Tpref is in any tree TC.

In the rest of this section, for a node t ∈ V (TC), we denote by origin(t) the corresponding node in T . Note
that origin is a mapping from the union

⋃
C∈Coll(Tpref ,X) V (TC) to V (T).

The bags of T C = (TC, bagC) for unblocked components C are defined as follows. For a node t ∈ V (TC)
that has origin(t) /∈ F (i.e., origin(t) ∈ V (Tb) for some blockage b), we set bagC(t) = bag(origin(t)). In
other words, the subtrees rooted at blockages associated with C are just copied from T to T C without any
change. Then, for a node t ∈ V (TC) with origin(t) ∈ F , we define

pull(t,C) = N(C) ∩ (cmp(origin(t)) \ bag(origin(t))).

That is, pull(t,C) consists of the vertices in N(C) that occur in the bags of the subtree of (T, bag) below
origin(t) but not in bag(origin(t)). Finally, for nodes t ∈ TC with origin(t) ∈ F we define

bagC(t) = (bag(origin(t)) ∩N [C]) ∪ pull(t,C).

The purpose of having pull(t,C) in bagC(t) is to ensure that N(C) is in the root of T C: For every v ∈ N(C)
not in the root bag of T C, we add v to every bag on the path between the root and the shallowest node of
T C containing v.

This concludes the definition of T C. Next, we prove some elementary properties of this construction.

Lemma 3.4.9. Let C be a collected component.

(P4) T C is a rooted binary tree decomposition of G[C ∪ Interface(C)].

(P5) The root bag of T C contains Interface(C) as a subset.

(P6) The height of TC is at most the height of the home bag of C.

Proof. First, when C is a blocked component, let t ∈ V (T) be the home bag of C. All of the properties
hold directly by the facts that C ⊆ cmp(t), Interface(C) ⊆ bag(t), and bag(t) ⊆ C ∪ Interface(C).

Then, suppose that C is unblocked. Recall that in this case, Interface(C) = N(C). First, we have that
TC with bags restricted to C is a tree decomposition of G[C] because all occurrences of the vertices in C in

3.4. REFINEMENT DATA STRUCTURE 57

(T, bag) are in TC, and we never remove occurrences of the vertices in C when constructing the bags. By
the same argument, T C also covers all edges between C and N(C). Then, recall that by Lemma 3.3.13,
cmp(b) ∩X = ∅ for each blockage b, implying that each v ∈ N(C) must be in some bag bag(t) of a node
t ∈ V (TC) with origin(t) ∈ F . This implies that TC satisfies the vertex condition also for vertices v ∈ N(C),
even after the insertions of the sets pull(t,C). Note that these insertions ensure that N(C) = Interface(C)
is contained in the root of T C, which shows that T C with bags restricted to C ∪ Interface(C) is a tree
decomposition of G[C ∪ Interface(C)].

To show that the bags of T C do not contain vertices outside of C ∪ Interface(C), observe that by the
definition of an unblocked collected component, each blockage b associated with C satisfies bag(b) ⊆ N [C]
and cmp(b) ⊆ C. Hence, the bags below the blockages, which were copied verbatim, do not contain any
elements of V (G) \ N[C]; and the explored bags of T C have been explicitly truncated to N[C]. This
concludes the proof that T C is a tree decomposition of G[C ∪ Interface(C)]. The facts that T C is a binary
tree and that the height of TC is at most the height of the home bag of C follow directly from the
construction.

Then, we prove that T C has width at most `. Moreover, an even stronger bound on the sizes of the
bags holds, which will be crucial for bounding the potential function. This is finally a proof where we use
the assumption that X is dT -minimal.

Lemma 3.4.10. Let t ∈ V (TC).

(P7) If origin(t) is explored, then |bagC(t)| < |bag(origin(t))| and |origin−1(origin(t))| 6 `+ 1.

(P8) If origin(t) is unexplored, then |bagC(t)| = |bag(origin(t))| and |origin−1(origin(t))| = 1.

(P9) It holds that heightTC(t) 6 heightT (origin(t)).

Proof. The height property (P9) is obvious from the construction. The property (P8) for unexplored nodes
follows from the construction and the fact that each blockage is associated with at most one collected
component. The property that |origin−1(t)| 6 ` + 1 for explored nodes t ∈ F \ Tpref follows from the
fact that each bag in F \ Tpref has size at most `+ 1, and therefore can intersect at most `+ 1 different
components C.

It remains to prove that |bagC(t)| < |bag(origin(t))| when origin(t) ∈ F , for which we need to use
the dT -minimality of X. Note that since origin(t) ∈ F , we necessarily have that C is unblocked. By the
definition of bagC(t), it suffices to prove that |pull(t,C)| < |bag(origin(t)) \N [C]|.

First, consider the case when pull(t,C) = ∅, in which case we need to prove that bag(origin(t)) is
not a subset of N [C]. In this case, we observe that if bag(origin(t)) were be a subset of N [C], then by
Lemma 3.3.16, it would be a subset of N [C] for C ∈ cc(G − X), in which case it would either be a
component blockage if C intersects bag(origin(t)), or a subset of N(C) and therefore a clique blockage if
C does not intersect bag(origin(t)).

It remains to prove that if pull(t,C) is nonempty, then |pull(t,C)| < |bag(origin(t)) \ N [C]|. For this
proof, recall the definition of the function dT in Section 2.3 as the depth function of T . For the sake
of contradiction, assume that pull(t,C) is nonempty and |pull(t,C)| > |bag(origin(t)) \N [C]|. Let C be a
component of G−X such that N(C) = N(C) (its existence follows from Lemma 3.3.16). We claim that
now,

S := (N(C) \ pull(t,C)) ∪ (bag(origin(t)) \N [C])

is an (N(C), bags(Tpref))-separator that contradicts the fact that N(C) is dT -linked into bags(Tpref), which
by Lemma 3.3.7 contradicts that X is dT -minimal. First, note that because pull(t,C) ⊆ N(C), we indeed
have that |S| 6 |N(C)|. Moreover, because for each v ∈ pull(t,C) the highest bag containing v is a strict
descendant of origin(t), we have for all v ∈ pull(t,C) and u ∈ bag(origin(t)) that dT (v) > dT (u), implying
that dT (S) < dT (N(C)). It remains to prove that S indeed separates N(C) from bags(Tpref). For this,
it suffices to prove that it separates pull(t,C) from bags(Tpref), because N(C) \ S = pull(t,C). Suppose
P is a shortest path from pull(t,C) to bags(Tpref) in G − S. Because C is disjoint from bags(Tpref) and
N(C)\S = pull(t,C), we have that P intersects N [C] only on its first vertex. However, observe that because
the nodes of T whose bags contain vertices from pull(t,C) are strict descendants of origin(t), and origin(t)
is a descendant of an appendix of Tpref , it holds that bag(origin(t)) separates pull(t,C) from bags(Tpref),
and therefore P must intersect bag(origin(t)). However, as bag(origin(t)) is disjoint from pull(t,C), the
intersection of P and bag(origin(t)) must be in bag(origin(t)) \N [C], but bag(origin(t)) \N [C] ⊆ S, so no
such path P can exist, implying that S is an (N(C), bags(Tpref))-separator.

58 CHAPTER 3. DYNAMIC TREEWIDTH

As the next step, we show that constructing the decompositions T C can be done efficiently. Note that
this construction via a prefix-rebuilding update amounts to giving explicit constructions of (TC, bagC) for
the subtrees consisting of nodes in origin−1(F), and then pointers how the subtrees rooted at blockages
should be attached to such nodes. In particular, slightly abusing notation, let us denote by T C|F the
restriction of T C to nodes t with origin(t) ∈ F .

Lemma 3.4.11. There is an algorithm that given Tpref , X, F , H, and Blockages(Tpref , X), computes
a list of length |Coll(Tpref , X)| of tuples: For every collected component C ∈ Coll(Tpref , X), the list contains
a tuple consisting of Interface(C), height(TC), and in addition,

• if C is unblocked, the restriction T C|F of T C to the nodes in origin−1(F) and the mapping from
blockages associated with C to the leaves of T C|F to which they should be attached, and

• if C is blocked, a pointer to the home bag of C.

(RT4) The running time is kO(1) · |F |.

Proof. First, the blocked components C correspond to isolated blockage vertices t of H that have cmp(t) 6=
∅. Such blockage vertices can be recognized by using the Cmpsize method of Daux. We can use the
Cmpsize method of Daux to test if cmp(t) 6= ∅, and therefore recognize the blockages associated to
blocked components and output them. Their height height(TC) can be obtained from Daux, and for them
Interface(C) = bag(t) ∩X.

Then, for constructing the objects for unblocked components, we first do precomputation step that
computes for every node t ∈ F \ Tpref the set X ∩ cmp(t). These sets can be computed in total time
kO(1) · |F | in a bottom-up manner, because of the facts that (1) |X ∩ cmp(t)| 6 O(k4) by c-smallness
of X, and (2) by Lemma 3.3.13, for all t ∈ Blockages(Tpref , X), it holds that X ∩ cmp(t) = ∅. We also
precompute for every vertex v ∈ bags(F \ Tpref) a pointer to some bag in F \ Tpref that contains v.

We then iterate over the connected components C ∈ cc(H − X) of the exploration graph with
C ∩ bags(F) 6= ∅, that is, corresponding to unblocked collected components. Let us now fix a component
C ∈ cc(H −X). Note that C uniquely identifies an unblocked collected component ξ−1(C) = C and note
that NH(C) = N(C). Now, the nodes in T C|F can be identified as the set {t ∈ F | bag(t) ∩ C 6= ∅},
and they can be computed in time kO(1) · |T C|F | by using the previously computed pointers, because
they correspond to a connected subtree of T . The set N(C) can be computed in time kO(1) · |C| because
|N(C)| 6 O(k). Then, the sets pull(t,C) for all t ∈ T C|F can be computed in time kO(1) · |T C|F | by using
the precomputed sets X ∩ cmp(t) as we have pull(t,C) = N(C)∩ (X ∩ cmp(origin(t))) \ bag(origin(t)). The
sets bag(origin(t)) ∩N [C] can be trivially computed in time kO(1) · |T C|F |. Hence, all bags bagC(t) can
also be computed in time kO(1) · |T C|F |. This concludes the construction of T C|F . Then, the pointers from
the blockages associated with C to the leaves of T C|F can be computed in time kO(1) · |F |, because these
blockages are exactly C ∩ Blockages(Tpref , X), and their parents are in T C|F . The height height(TC) can
be computed in time O(|T C|F |) by using Daux for computing the heights of the blockages associated with
C and induction.

Summing up, for each collected component C we spend time kO(1) · (|C|+ |V (TC|F)|) constructing
T C|F and the pointers. The sizes of C sum up to at most |V (H)| 6 O(k · |F |), and the sizes of V (TC|F)
sum up to at most O(k · |F |), so the total running time is kO(1) · |F |.

Step 4 (Append auxiliary subtrees)
At this point, we have constructed a tree decomposition T X of torsoG(X) and tree decompositions T C of
G[C ∪ Interface(C)] for every collected component C. We know that the root of TC contains Interface(C)
(property (P5)) and that there is a leaf node tC ∈ V (TX) such that bagX(tC) = Interface(C) (property
(P3)). Hence, a natural idea is to create the final decomposition T ′ by connecting the root of each tree TC

with the corresponding vertex tC ∈ V (TX) by an edge.
Unfortunately, many collected components can have the same interface B ⊆ X, and connecting their

roots with the same vertex of TX would break the invariant that the data structure maintains a binary
tree decomposition. It is tempting to work around this problem by building a sufficiently large complete
binary tree T bin rooted at tC and containing Interface(C) in each of its bags. Then, we could append each
tree TC to a different leaf of T bin.

However, this approach fails in a subtle way: The construction of T bin increases the potential value of
the resulting tree decomposition; perhaps quite significantly if a lot of collected components share the same
interface. Hence, we must ensure that the amortized cost of the construction of T bin is upper-bounded
by the decrease in the potential value resulting from the creation of the collected components. Roughly

3.4. REFINEMENT DATA STRUCTURE 59

speaking, this can only be achieved when the sum of the heights of the vertices of T bin in the final tree
decomposition is at most proportional to the sum of heights of the trees TC. Complete binary trees
unfortunately do not always satisfy this condition.

However, we will fix this using an idea resembling Huffman codes as follows. Intuitively, the tree
T bin should be skewed so as to satisfy the following property: Given two tree decompositions TC1 , TC2 of
collected components C1 and C2 with the same interface, if TC1 has much larger height than TC2 , then
TC1 should be attached to a leaf of T bin that is closer to the root of T bin than the leaf to which TC2 is
attached. The following lemma formalizes this intuition.

Lemma 3.4.12. Let h1, . . . , hm be positive integers and let Q := h1 + . . .+hm. Then, there exists a rooted
binary tree T of height O(logQ) and leaves labeled h1, . . . , hm in some order such that

∑
v∈V (T) lheight(v) 6

26Q, where lheight is defined as follows:

lheight(v) :=

{
label(v) if v is a leaf,
1 + max{lheight(c) | c is a child of v} otherwise.

Moreover, such a tree can be computed in time O(m+ logQ).

Proof. Let C : Z>1 → Z>0 be the function given by the formula C(a) := dlog2 ae. In other words, C(a) is
the smallest nonnegative integer such that 2C(a) > a. In particular, we have 2C(a) < 2a.

Partition h1, . . . , hm into groups G0, . . . , GC(Q) as follows: We put hi into Gj if hi ∈ (Q
2j+1 ,

Q
2j]. This

is a well-defined partition as these intervals for j = 0, . . . , C(Q) are disjoint and their union covers the
interval [1, Q].

Now, for each nonempty group Gi let us create a rooted binary tree Ti as follows. Let the elements of
Gi be g1, . . . , ga. Then, let Ti be an arbitrary rooted binary tree with a leaves labeled g1, . . . , ga, where
all leaves are at distance at most C(a) from the root. As 2C(a) > a, such a tree exists. If Gi is empty, we
assume that Ti is empty as well.

As the next step create a path P = v0, . . . , vC(Q) rooted at v0. For each i = 0, . . . , C(Q), if Gi is
nonempty, assign the root of Ti as a child of vi. Remove a suffix of P that has no subtrees attached to it.
This completes the description of desired T . One can readily see that the construction can be computed
in time O(m+ logQ).

What remains is to prove the required properties of T . As each Ti has height O(logQ) and the path
P has length O(logQ), it is clear that the height of T is O(logQ) as well.

Next, we will prove a bound on the sum of lheight(v) for v in a particular Ti. Let the elements of Gi
be g1, . . . , ga ∈ (Q

2i+1 ,
Q
2i]. Let us group the vertices v ∈ V (Ti) by their distance j to the farthest leaf in

the subtree of Ti rooted at v. For j = 0, the group comprises the leaves of Ti. The leaves are labeled by
Gi, so their values of lheight do not exceed Q

2i . Next, the vertices at distance j > 1 from the farthest leaf
have the value of lheight at most Q

2i + j (which follows from the inspection of the definition of lheight) and
there are at most 2C(a)−j of them (which follows from the fact that each such vertex is at depth at most
C(a)− j in Ti). Hence, we have the bound

∑
v∈V (Ti)

lheight(v) 6
C(a)∑
j=0

2C(a)−j
(
Q

2i
+ j

)
= 2C(a)

Q

2i

C(a)∑
j=0

2−j +
C(a)∑
j=0

j · 2−j
 6

6 2C(a)

Q

2i

∞∑
j=0

2−j +
∞∑
j=0

j · 2−j
 = 2C(a)

(
2 · Q

2i
+ 2
)
.

As additionally 2C(a) · 2 6 4a and 2C(a) · 2 · Q2i 6 8a · Q
2i+1 < 8(g1 + . . .+ ga), we find that∑

v∈V (Ti)

lheight(v) 6 8(g1 + . . .+ ga) + 4a 6 12(g1 + . . .+ ga). (3.2)

Summing Eq. (3.2) over all i = 0, 1, . . . , C(Q), we get that

C(Q)∑
i=0

∑
v∈V (Ti)

lheight(v) 6 12Q.

60 CHAPTER 3. DYNAMIC TREEWIDTH

What remains is to bound the sum of lheight for vertices of P . Define

li :=
Q

2i
+ 2C(Q)− i+ 4.

We now prove that lheight(vi) 6 li by induction on i = C(Q), C(Q)− 1, . . . , 0. Each vertex vi has at most
two children:

• the root ri of Ti if Gi is nonempty: since |Gi| 6 2i+1, we get that lheight(ri) 6
Q
2i + (i+ 1) 6 li − 1;

• vi+1 if vi+1 exists: we have that lheight(vi+1) 6 li+1 6 li − 1.

Thus indeed lheight(vi) 6 li. Therefore,

∑
v∈P

lheight(v) 6
C(Q)∑
i=0

li 6
C(Q)∑
i=0

Q

2i
+ (C(Q) + 1)(2C(Q) + 4) 6 2Q+ (C(Q) + 1)(2C(Q) + 4).

Now, since C(Q) < log2Q+ 1, we find that (C(Q) + 1)(2C(Q) + 4) < (log2Q+ 2)(2 log2Q+ 6). Using
the standard tools of the real analysis, it can be shown that for all Q ∈ Z>1 we have that

(log2Q+ 2)(2 log2Q+ 6) 6 12Q.

Hence, ∑
v∈P

lheight(v) 6 14Q.

We conclude that

∑
v∈V (T)

lheight(v) =
C(Q)∑
i=0

∑
v∈V (Ti)

lheight(v) +
∑
v∈P

lheight(v) 6 12Q+ 14Q = 26Q.

Having proved Lemma 3.4.12, we can define the tree decompositions that will be attached to the
already constructed decomposition T X . Let I(Tpref , X) := {Interface(C) | C ∈ Coll(Tpref , X)} denote
the set of all interfaces of collected components. After obtaining the tuples representing the collected
components from Lemma 3.4.11, we group these tuples by their interfaces, that is, we iterate over all sets
B ∈ I(Tpref , X) and list all components C1,C2, . . . ,Cm ∈ Interface−1(B) with interface B. This can be
implemented in |Coll(Tpref , X)| · kO(1) time by standard arguments using bucket sorting.

Now, let us fix B ∈ I(Tpref , X), consider components C1,C2, . . . ,Cm ∈ Interface−1(B), and let hi =
height(TCi) + 1, for i ∈ {1, . . . ,m}. We run the algorithm from Lemma 3.4.12 for integers h1, . . . , hm to
obtain a tree TBpref with leaves labeled with integers hi. Then, our construction is to attach the trees TCi

to TBpref , for i = 1, . . . ,m, by appending the root of TCi as a child of the leaf of TBpref labeled with hi, so
that each leaf of TBpref has exactly one child. Let TB be the obtained binary tree, and observe that for
each node ti of TB that is a leaf of TBpref to which TCi was attached, heightTB (ti) = hi.

To define the tree decomposition T B = (TB , bagB) it remains to define the function bagB. We set
bagB |V (TCi) = bagCi , and bagB(t) = B for every t ∈ V (TBpref).

Now, let us analyze this procedure. First, for each appendix t of Tpref , we show that the number of all
possible interfaces of all collected components contained in cmp(t) is bounded by a number depending
only on k. Note that this bound is precisely the reason why we require the closure X to be c-small.

Lemma 3.4.13. For every appendix t ∈ App(Tpref), we have that

|{Interface(C) | C ∈ Coll(Tpref , X), C ⊆ cmp(t)}| 6 kO(k).

Proof. Let C ∈ Coll(Tpref , X) be such that C ⊆ cmp(t). Recall that Interface(C) ⊆ X, implying that
Interface(C) ⊆ X ∩ (cmp(t)∪ adh(t)). Since X is c-small, we have |X ∩ cmp(t)| 6 c ∈ O(k4). Moreover, we
have that |X ∩ adh(t)| 6 |bag(t)| 6 `+ 1. As |Interface(C)| 6 2k + 2 (Interface(C) is a clique in torsoG(X)
and tw(torsoG(X)) 6 2k + 1), there are at most

∑2k+2
i=0

(
c+`+1
i

)
= (k4)O(k) = kO(k) possible values for

Interface(C) such that C ⊆ cmp(t).

We immediately derive a bound on the number of all interfaces of all collected components in the
graph:

3.4. REFINEMENT DATA STRUCTURE 61

Corollary 3.4.14. The following inequality holds:

|I(Tpref , X)| 6 kO(k) · |Tpref |.

Proof. For each collected component C there is a unique appendix t such that C ⊆ cmp(t). Since (T, bag)
is a binary tree decomposition, we know that |App(Tpref)| 6 |Tpref | + 1. Consequently, |I(Tpref , X)| 6
kO(k) · |Tpref |, as desired.

Let us summarize the properties of the construction from this step of the refinement operation.

Lemma 3.4.15. Let B ∈ I(Tpref , X).

(P10) T B = (TB , bagB) is a binary tree decomposition of G[B ∪
⋃

C∈Interface−1(B) C] and has width at most
`.

(P11) The height of TB is at most

O(logN) + max
C∈Interface−1(B)

height(T C).

(P12) The root bag of T B contains exactly the set B.

(P13) The sum of the heights of the nodes in V (TBpref) is bounded as follows:∑
t∈V (TBpref)

heightTB (t) 6 52 ·
∑

C∈Interface−1(B)

height(TC).

Proof. First, we prove that T B is indeed a valid tree decomposition. T B is a concatenation of valid tree
decompositions T C with a prefix TBpref (which is, in fact, a valid tree decomposition of G[B]). Recall that
all collected components are vertex-disjoint. Also, the edge condition is satisfied: For an edge uv with
u, v ∈ B the edge condition is trivial, and if some endpoint of an edge uv, say v, belongs to a collected
component C, then u ∈ N[C] ⊆ C ∪ Interface(C). Since T C is a tree decomposition of G[C ∪ Interface(C)]
(property (P4)) we infer that u and v are together in some bag of T C. Hence, it remains to argue that
every vertex v ∈ B appears in a connected subset of nodes of T B . This follows immediately from the fact
that TBpref contains B in all of the bags, and for every collected component C, the root bag of T C contains
Interface(C) = B as a subset (property (P5)).

By Lemma 3.4.12, the height of TBpref is at most O(log
∑

C∈Interface−1(B)(height(TC) + 1)), which is

at most O(log(N2)) = O(logN) since height(TC) 6 N and |Interface−1(B)| 6 N . It follows from the
construction that the height of TB is at most O(logN) + maxC∈Interface−1(B) height(TC).

Since TBpref is a nonempty tree, we have that its root bag (which is the root bag of T B as well) contains
exactly the set B.

For bounding the sum of the heights of the nodes in V (TBpref), we observe that the height heightTB (ti)
of a node ti ∈ V (TBpref) that is a leaf in TBpref to which T Ci was attached is exactly height(TCi) + 1 = hi,
and therefore the heights in V (TBpref) correspond exactly to the lheight in the statement of Lemma 3.4.12.
Therefore, by Lemma 3.4.12 we get that∑

t∈V (TBpref)

heightTB (t) 6 26 ·
∑

C∈Interface−1(B)

(height(TC) + 1) 6 52 ·
∑

C∈Interface−1(B)

height(TC).

Finally, we bound the running time of this step.

Lemma 3.4.16. There is an algorithm that given the output of Lemma 3.4.11, computes the set I(Tpref , X)
and for each B ∈ I(Tpref , X) the tree TBpref and pointers from the representations of collected components C ∈
Interface−1(B) to the leaves of TBpref to which the tree decompositions T C are attached in the construction.

(RT5) The running time is |F | · kO(1) + |Tpref | · kO(k) · logN .

62 CHAPTER 3. DYNAMIC TREEWIDTH

Proof. Note that the output of Lemma 3.4.11 has size at most |F | · kO(1). We first group the interfaces
B = Interface(C) by using bucket sorting, which takes Coll(Tpref , X) · kO(1) = kO(1) · |F | time. Then, the
remaining running time is clearly dominated by the total running time of the calls to Lemma 3.4.12. A
single application of this lemma for a set B ∈ I(Tpref , X) takes time

O(|Interface−1(B)|+ logN)

as the sum of heights of all collected components can be bounded O(N2).
Hence, as the sum of |Interface−1(B)| over all B can be bounded by |F |kO(1) simply by the size of the

output of Lemma 3.4.11, and by |Tpref | · kO(k) by Corollary 3.4.14, the total running time can be bounded
by |F | · kO(1) + |Tpref | · kO(k) · logN .

Step 5 (Join the pieces of the decomposition together)
It is time to define the final decomposition T ′ = (T ′, bag′). In the previous step, we have defined, for every
B ∈ I(Tpref , X), a binary tree decomposition T B of all collected components C such that Interface(C) = B.
Moreover, the root bag of T B contains exactly the set B (property (P12)) and in the tree decomposition
T X constructed in Step 2 there exists a leaf bag tB ∈ V (TX) such that bagX(tB) = B (property (P3)).

Hence, to construct T ′ it is enough to connect via an edge, for every B ∈ I(Tpref , X), the root of TB

with the corresponding vertex tB ∈ V (TX). The function bag′ is just the union of the functions bagX and
bagB, for B ∈ I(Tpref , X). Clearly, given T X and the outputs of Lemmas 3.4.11 and 3.4.16, we can in
time |F | · 2O(k) construct a description of a prefix-rebuilding update of size bounded by |F | · 2O(k) that
turns T into T ′.

(RT6) The running time of Step 5 is |F | · 2O(k).

At this point, we should prove the correctness of the given procedure. The analysis of the amortized
running time together with the exact formula for the potential function Φ will be given in the next section.

Lemma 3.4.17. (T ′, bag′) is a valid tree decomposition of G of width at most `.

Proof. First, recall that (T ′, bag′) was obtained by gluing the tree decompositions T X and T B , for every
B ∈ I(Tpref , X). All of these decompositions are of width at most ` (properties (P1) and (P10)), and thus
(T ′, bag′) is of width at most ` as well.

It remains to prove that (T ′, bag′) is indeed a valid tree decomposition of G. According to the definition
of tree decomposition, we need to verify two facts.

Claim 3.4.18. For each vertex v ∈ V (G), the subset of nodes {t ∈ V (T ′) | v ∈ bag′(t)} induces
a nonempty connected subtree of T ′.

Proof of the claim. Consider a vertex v ∈ V (G).

• If v 6∈ X, then there is a unique collected component C such that v ∈ C. Since T C is a valid tree
decomposition of G[C∪ Interface(C)], the subset of nodes of TC containing v must induce a connected
subtree of TC. Moreover, from the construction of T ′, we conclude that v cannot appear in any bag
of T ′ outside of TC.

• Now, assume that v ∈ X. The vertex v appears in a connected subset of nodes of T X and in
connected subtrees of nodes in trees T B for each B ∈ I(Tpref , X) satisfying x ∈ B. Moreover, by
the construction of T ′, the trees TB are attached to the tree TX by connecting two bags containing
precisely the set B. Hence, v must appear in a connected subset of nodes of T ′. C

Claim 3.4.19. For each edge uv ∈ E(G), there exists a node t ∈ V (T ′) such that {u, v} ⊆ bag′(t).

Proof of the claim. Consider an edge uv ∈ E(G).

• If {u, v} ⊆ X, then uv ⊆ E(torsoG(X)), and thus there must be a bag t in the prefix TX containing
both u and v, as T X is a tree decomposition of torsoG(X) (property (P1)).

• If {u, v} ∩X = ∅, there is a unique component C ∈ Coll(Tpref , X) containing both u and v (since
uv ∈ E(G) and there are no edges between different collected components). Let B = Interface(C).
Then T contains the tree decomposition T B as a subtree. Since T B is a tree decomposition of
G[B ∪ Interface−1(B)] (property (P10)), u and v are together in some bag of T B .

3.4. REFINEMENT DATA STRUCTURE 63

• Finally, if exactly one of the vertices u and v belongs to X, say u ∈ X, then there is a unique com-
ponent C ∈ Coll(Tpref , X) containing v. Again let B = Interface(C). By the definition of an interface,
we have that u ∈ B. Again, since T B is a tree decomposition of G[B ∪ Interface−1(B)] (property
(P10)), u and v are together in some bag of T B . C

Claims 3.4.18 and 3.4.19 conclude the proof of the lemma.

3.4.3 Analysis of the amortized running time

In this section, we provide the proofs of properties (RT1) and (POT) of the defined refinement operation.
We preserve all notation from Section 3.4.2. Furthermore, denote by F̃ := F \ Tpref the set of all explored
nodes excluding the nodes of Tpref .

By summing the running times (RT2) – (RT6) of consecutive steps of the refinement operation, we
immediately obtain the following statement.

Fact 3.4.20. The worst-case time complexity of Refine(Tpref) is upper-bounded by

2O(k9)(|F |+ |Tpref | · logN) 6 2O(k9)(|F̃ |+ |Tpref | · logN).

Observe that both |Tpref | and logN are expressions we can easily control during the run of the data
structure. Unfortunately, the size |F̃ | of the explored region can be arbitrarily large; in the worst-case the
exploration F may contain all the nodes of T . Hence, to prove the desired bounds on the running time of
our algorithm, we need to bind the drop of the potential function to the size of exploration F̃ .

Before we proceed with the analysis of the amortized running time, we need to prove one more auxiliary
lemma.

Lemma 3.4.21. There exists a mapping

collmap : Coll(Tpref , X) → F̃ ∪ App(Tpref)

satisfying the following properties:

(i) for each C ∈ Coll(Tpref , X), we have that height(C) 6 heightT (collmap(C));

(ii) for each C ∈ Coll(Tpref , X), if collmap(C) /∈ App(Tpref), then weight(C) < |bag(collmap(C))|;

(iii) for each t ∈ F̃ ∪ App(Tpref), we have that |collmap−1(t)| 6 `+ 4.

Proof. We define collmap as follows. Take C ∈ Coll(Tpref , X). Let t be the home bag of C. Then:

• If C is unblocked, then set collmap(t) := t. Recall here that t is the shallowest node of T such that
bag(t) contains an explored vertex of C.

• If C is blocked, then set collmap(t) := t if t ∈ App(Tpref); otherwise set collmap(t) := parent(t). Recall
here that t is the blockage that is the only element of ξ(C).

Recall that height(C) = heightT (t) and weight(C) = |Interface(C)|.
We first prove that for each C ∈ Coll(Tpref , X) we indeed have that collmap(C) ∈ F̃ ∪ App(Tpref).

First, the case where C is unblocked is immediately resolved by Lemma 3.3.21: We always have that
collmap(C) ∈ F̃ . On the other hand, if C is blocked, then t is a blockage and not the root of T as Tpref 6= ∅.
Therefore, parent(t) exists and belongs to F . If parent(t) ∈ Tpref , then collmap(C) = t ∈ App(Tpref).
Otherwise, collmap(C) = parent(t) ∈ F̃ .

That property (i) is satisfied is immediate. Next we show property (ii). Consider C ∈ Coll(Tpref , X) with
collmap(C) /∈ App(Tpref). Again, the case of unblocked collected components is resolved by Lemma 3.3.21.
Now assume C is blocked. As collmap(C) /∈ App(Tpref), we find by examining the definition of collmap that
parent(t) /∈ Tpref and collmap(C) = parent(t). But then Lemma 3.3.22 applies, yielding that weight(C) =
|bag(t) ∩X| < |bag(parent(t))| = |bag(collmap(C))|.

It remains to argue property (iii). Consider a node t ∈ F̃ ∪ App(Tpref). Recall that since t /∈ Tpref , we
have |bag(t)| 6 `+ 1. Note that each unblocked component C is assigned by collmap to some explored node
t′ such that bag(t′) intersects C. Since collected components form a partition of V (G) \X, at most `+ 1
different collected components may intersect bag(t) and thus at most `+ 1 different unblocked collected
components may be assigned t by collmap. Next, each blocked collected component C is mapped by ξ to
a different blockage b ∈ Blockages(Tpref , X). Observe that, by the definition of collmap, C may be mapped
by collmap to t only if b is equal to either t or a child of t. Since T is binary, we conclude that collmap
may map at most three different blocked components to t.

64 CHAPTER 3. DYNAMIC TREEWIDTH

Now, we prove a slight strengthening of property (POT). Note that since ` is fixed, for the rest of the
section we omit it in the lower index of the potential function; that is, we use Φ := Φ`.

Lemma 3.4.22. The following inequality holds:

Φ(T)− Φ(T ′) > |F̃ |+
∑

t∈Tpref

heightT (t)− kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN.

Proof. Within the proof, for clarity we use ΦT (·) to denote the potential function on nodes of T computed
in T , and ΦT ′(·) to denote the potential function on nodes of T ′ computed in T ′. Also, for a subtree S of
T , denote ΦT (S) := ΦT (V (S)) =

∑
t∈V (S) ΦT (t), and similarly for ΦT ′(·).

For the tree decomposition T , we consider the partition of its nodes given by: the prefix Tpref , the set
F̃ of all explored vertices excluding Tpref , and the set of unexplored vertices. Hence, we can write Φ(T) in
the form:

Φ(T) = ΦT (Tpref) + ΦT (F̃) +
∑
t6∈F

ΦT (t).

Applying the inequality ΦT (t) > heightT (t) for every t ∈ Tpref , we get that

Φ(T) >
∑

t∈Tpref

heightT (t) + ΦT (F̃) +
∑
t6∈F

ΦT (t). (3.3)

Now, let us focus on the structure of the tree decomposition T ′. From Step 5 we know that V (T ′) is
the disjoint union of V (TX) and V (TB) for every B ∈ I(Tpref , X). Hence,

Φ(T ′) = ΦT ′(TX) +
∑

B∈I(Tpref ,X)

ΦT ′(TB).

From Step 4 , we know that every tree TB has a prefix TBpref with attached decompositions T C of
collected components in such a way that for every component C ∈ Coll(Tpref , X) there is a unique tree
TBpref to which TC is attached. Therefore,

Φ(T ′) = ΦT ′(TX) +
∑

B∈I(Tpref ,X)

ΦT ′(TBpref) +
∑

C∈Coll(Tpref ,X)

ΦT ′(TC). (3.4)

Now, we are going to bound the three terms on the right-hand side of Eq. (3.4) separately.

Claim 3.4.23. The following inequality holds:

ΦT ′(TX) 6 kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN.

Proof of the claim. For brevity, we introduce the following notation: For two nodes t, t′ ∈ V (T ′), we write
t 4 t′ if t is an ancestor of t′ in T ′.

Recall that T ′ is created by attaching the subtree TB for each B ∈ I(Tpref , X) to a different leaf tB of
TX . Therefore, for each t ∈ V (TX), we have that

heightT ′(t) 6 height(TX) + max{height(TB) | B ∈ I(Tpref , X) and t 4 tB}. (3.5)

(We assume that the maximum value of the empty set is 0.) Recall that height(TX) 6 O(logN + k)
(property (P1)) and that for each B ∈ I(Tpref , X), we have

height(TB) 6 O(logN) + max
C∈Interface−1(B)

height(TC)

(property (P11)). Now, for each B ∈ I(Tpref , X), let us fix CB to be an arbitrary collected component
C ∈ Interface−1(B) maximizing height(TC).

Plugging the inequalities above into Eq. (3.5), we get

heightT ′(t) 6 O(logN + k) + max{height(TCB) | B ∈ I(Tpref , X) and t 4 tB}.

3.4. REFINEMENT DATA STRUCTURE 65

Define a function δ : V (TX)→ N and a partial function Λ : V (TX) ⇀ Coll(Tpref , X) as follows: For
t ∈ V (TX), let Λ(t) be a collected component CB of maximum height such that t 4 tB (if any such
component exists). Following that, set δ(t) := height(Λ(t)); or set δ(t) := 0 if Λ(t) is undefined. Note that
we have that heightT ′(t) 6 O(logN + k) + δ(t); therefore,

ΦT ′(TX) =
∑

t∈V (TX)

g(|bag′(t)|) · heightT ′(t) 6
∑

t∈V (TX)

g(`+ 1) · (O(logN + k) + δ(t))

6
∑

t∈V (TX)

kO(k) · (logN + δ(t))

(?)
6 kO(k) · |Tpref | · logN + kO(k) ·

∑
t∈V (TX)

δ(t).

(3.6)

(In (?), we used the fact that |V (TX)| 6 2O(k) · |Tpref | by property (P2).) Thus, it remains to bound∑
t∈V (TX) δ(t).
Let B ∈ I(Tpref , X) be an interface. Since TX is a tree of height O(logN + k), there are at most

O(logN + k) ancestors of tB in TX . Hence, there are at most O(logN + k) nodes t ∈ V (TX) for which
Λ(t) = CB . Naturally, for each such t, we have δ(t) = height(TCB). As such,∑

t∈V (TX)

δ(t) 6
∑

B∈I(Tpref ,X)

O(logN + k) · height(TCB). (3.7)

For each interface B, let aB ∈ App(Tpref) be the unique appendix of Tpref for which CB ⊆ cmp(aB).
Now, by Lemma 3.4.13, for each appendix t ∈ App(Tpref), there are at most kO(k) interfaces B such
that aB = t. For each such interface B, we have that height(TCB) is at most the height of the home bag
of CB (property (P6)) in T . Since CB ⊆ cmp(t), the home bag of CB is a descendant of t. Therefore,
height(TCB) 6 heightT (t). Combined with Eq. (3.7), this gives us that∑

t∈V (TX)

δ(t) 6 O(logN + k) ·
∑

t∈App(Tpref)

kO(k) · heightT (t) 6 kO(k) ·
∑

t∈App(Tpref)

heightT (t) · logN.

Together with Eq. (3.6), this concludes the proof. C

Claim 3.4.24. The following inequality holds:

∑
B∈I(Tpref ,X)

ΦT ′(TBpref) 6 52(`+ 4) ·

∑
t∈F̃

g(|bag(t)| − 1) · heightT (t)

+
∑

t∈App(Tpref)

kO(k) · heightT (t).

Proof of the claim. Fix a set B ∈ I(Tpref , X). Recall that∑
t∈V (TBpref)

heightTB (t) 6 52 ·
∑

C∈Interface−1(B)

height(TC)

(property (P13)). Thus,

ΦT ′(TBpref) =
∑

t∈TBpref

g(|B|) · heightT ′(t) =
∑

t∈TBpref

g(|B|) · heightTB (t)

6 g(|B|) · 52 ·
∑

C∈Interface−1(B)

height(TC)

(?)
6 52 ·

∑
C∈Interface−1(B)

g(weight(C)) · height(C).

Note that (?) follows from the facts that weight(C) = |Interface(C)| = |B| for C ∈ Interface−1(B) (Defini-
tion 8); and heightT (C), or by definition the height of the home bag of C, is at least height(TC) (property
(P6)). Hence, after summing the above over all sets B ∈ I(Tpref , X), we obtain that∑

B∈I(Tpref ,X)

ΦT ′(TBpref) 6 52 ·
∑

C∈Coll(Tpref ,X)

g(weight(C)) · height(C).

66 CHAPTER 3. DYNAMIC TREEWIDTH

Now we use Lemma 3.4.21. Let collmap : Coll(Tpref , X) → F̃ ∪ App(Tpref) be the mapping from this
lemma. Let us split the sum above into two terms:∑

C∈Coll(Tpref ,X)

g(weight(C)) · height(C) 6
∑

C∈Coll(Tpref ,X)

collmap(C)∈F̃

g(weight(C)) · height(C)

+
∑

C∈Coll(Tpref ,X)
collmap(C)∈App(Tpref)

g(weight(C)) · height(C). (3.8)

(The inequality comes from the fact that it is possible that App(Tpref) ∩ F̃ 6= ∅.) To bound the first sum
on the right-hand side we use the fact that if collmap(C) ∈ F̃ , then

• weight(C) < |bag(collmap(C))|,

• height(C) 6 heightT (collmap(C)), and

• |collmap−1(t)| 6 `+ 4, for each t ∈ F̃ .

Hence, ∑
C∈Coll(Tpref ,X)

collmap(C)∈F̃

g(weight(C)) · height(C) 6
∑

C∈Coll(Tpref ,X)

collmap(C)∈F̃

g(|bag(collmap(C))| − 1) · heightT (collmap(C))

6
∑
t∈F̃

(`+ 4) · g(|bag(t)| − 1) · heightT (t). (3.9)

To bound the second sum on the right-hand side of Eq. (3.8), we use the fact that if collmap(C) ∈
App(Tpref), then

• weight(C) = |Interface(C)| 6 `+ 1 = 6k+ 6 (this follows from the fact that Interface(C) is a subset of
the home bag of Interface(C) by property (P5)),

• height(C) 6 heightT (collmap(C)), and

• |collmap−1(t)| 6 `+ 4, for each t ∈ App(Tpref).

Therefore, ∑
C∈Coll(Tpref ,X)

collmap(C)∈App(Tpref)

g(weight(C)) · height(C) 6
∑

C∈Coll(Tpref ,X)
collmap(C)∈App(Tpref)

g(6k + 6) · heightT (collmap(C))

6
∑

t∈App(Tpref)

(`+ 4) · g(6k + 6) · heightT (t)

6
∑

t∈App(Tpref)

kO(k) · heightT (t). (3.10)

By plugging Eq. (3.9) and Eq. (3.10) into the inequality Eq. (3.8), we obtain the desired bound. C

Claim 3.4.25. The following inequality holds:

∑
C∈Coll(Tpref ,X)

ΦT ′(TC) 6 (`+ 1) ·

∑
t∈F̃

g(|bag(t)| − 1) · heightT (t)

+
∑
t 6∈F

ΦT (t).

Proof of the claim. We have that∑
C∈Coll(Tpref ,X)

ΦT ′(TC) =
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

ΦT ′(t)

3.4. REFINEMENT DATA STRUCTURE 67

For each node t ∈ V (TC), consider the original copy origin(t) of the node in T . Note that origin(t) is
either an explored node and then origin(t) ∈ F̃ , or a descendant of a blockage and then origin(t) /∈ F .
Thus: ∑

C∈Coll(Tpref ,X)

ΦT ′(TC) =
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t)∈F̃

ΦT ′(t) +
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t) 6∈F

ΦT ′(t). (3.11)

Recall that for every t ∈ V (TC), if origin(t) is unexplored, then |bagC(t)| = |bag(origin(t))| and
|origin−1(origin(t))| = 1 (property (P8)), and moreover heightTC(t) 6 heightT (origin(t)) (property (P9)).
Since heightT ′(t) = heightTC(t) for every t ∈ V (TC), we get that∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t) 6∈F

ΦT ′(t) =
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t) 6∈F

g(|bagC(t)|) · heightT ′(t)

6
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t) 6∈F

g(|bag(origin(t))|) · heightT (origin(t))

6
∑
t/∈F

g(|bag(t)|) · heightT (t) =
∑
t6∈F

ΦT (t).

(3.12)

Note that above there might exist unexplored nodes t ∈ V (T) \ F for which origin−1(t) = ∅.
Now, consider the explored nodes. By the fact that for every t ∈ V (TC) with explored origin(t),

we have |bagC(t)| < |bag(origin(t))| and |origin−1(origin(t))| 6 ` + 1 (property (P7)), and moreover
heightTC(t) 6 heightT (origin(t)) (again property (P9)), we find that∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t)∈F̃

ΦT ′(t) =
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t)∈F̃

g(|bagC(t)|) · heightT ′(t)

6
∑

C∈Coll(Tpref ,X)

∑
t∈V (TC)

origin(t)∈F̃

g(|bag(origin(t))| − 1) · heightT (origin(t))

6
∑
t∈F̃

(`+ 1) · g(|bag(t)− 1|) · heightT (t).

By plugging the bound above together with Eq. (3.12) into Eq. (3.11), we obtain the desired inequality. C

We then combine the above to obtain a bound for the potential of T ′.

Claim 3.4.26. The following inequality holds:

Φ(T ′) 6 ΦT (F̃)− |F̃ |+
∑
t 6∈F

ΦT (t) + kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN

Proof of the claim. Recall that (Eq. (3.4)):

Φ(T ′) = ΦT ′(TX) +
∑

B∈I(Tpref ,X)

ΦT ′(TBpref) +
∑

C∈Coll(Tpref ,X)

ΦT ′(TC).

By applying inequalities from Claim 3.4.23, Claim 3.4.24 and Claim 3.4.25, we obtain that:

Φ(T ′) 6 kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN

+ 52(`+ 4) ·

∑
t∈F̃

g(|bag(t)| − 1) · heightT (t)

+
∑

t∈App(Tpref)

kO(k) · heightT (t)

+ (`+ 1) ·

∑
t∈F̃

g(|bag(t)| − 1) · heightT (t)

+
∑
t6∈F

ΦT (t).

68 CHAPTER 3. DYNAMIC TREEWIDTH

From the inspection of the definition of g(·) in Section 3.4.1 it follows that

g(x) > (53`+ 209) · g(x− 1) + 1 for every x ∈ Z>1.

Using that we can bound two of the terms from the inequality above:

52(`+ 4) ·

∑
t∈F̃

g(|bag(t)| − 1) · heightT (t)

+ (`+ 1) ·

∑
t∈F̃

g(|bag(t)| − 1) · heightT (t)


=

∑
t∈F̃

(53`+ 209) · g(|bag(t)| − 1) · heightT (t)

6
∑
t∈F̃

(g(|bag(t)|) · heightT (t)− 1) = ΦT (F̃)− |F̃ |.

Therefore,

Φ(T ′) 6 ΦT (F̃)− |F̃ |+
∑
t 6∈F

ΦT (t) + kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN,

as desired. C

We are ready to prove Lemma 3.4.22. Recall that from Eq. (3.3):

Φ(T) >
∑

t∈Tpref

heightT (t) + ΦT (F̃) +
∑
t6∈F

ΦT (t).

This inequality, combined with the bound from Claim 3.4.26, gives us:

Φ(T)− Φ(T ′) >
∑

t∈Tpref

heightT (t) + |F̃ | − kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN ;

this ends the proof of the lemma.

Clearly, Lemma 3.4.22 implies property (POT) of the refinement operation. Furthermore, we can
derive from it a bound on the size of F̃ :

|F̃ | 6 Φ(T)− Φ(T ′)−
∑

t∈Tpref

heightT (t) + kO(k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · logN.

Recall that, by Fact 3.4.20, the running time of the refinement call is upper-bounded by:

2O(k9)(|F̃ |+ |Tpref | · logN)

By using the obtained bound on |F̃ |, we obtain the desired bound on the running time as given by property
(RT1).

3.5 Height improvement

In this section we leverage the refinement operation defined in Section 3.4 to produce a data structure
that allows us to maintain a tree decomposition of small height. As in Section 3.4, we assume ` = 6k + 5
and take Φ := Φ` and g := g` as defined in Section 3.4.1. We prove that:

Lemma 3.5.1 (Height improvement data structure). Fix k ∈ N and let ` = 6k + 5. The (`+ 1)-prefix-
rebuilding data structure from Lemma 3.4.1 maintaining a tree decomposition T = (T, bag) can be extended
to additionally support the following operation:

3.5. HEIGHT IMPROVEMENT 69

• ImproveHeight(): Updates T through a sequence of prefix-rebuilding updates, producing a tree decom-
position T ′ = (T ′, bag′) such that

height(T ′) 6 2O(k log k
√

logn log logn) and |V (T ′)| 6 kO(k) · n3.

Also, Φ(T ′) 6 Φ(T) and if the width of T is at most `, then the width of T ′ is also at most `.

The worst-case running time of ImproveHeight is bounded by

2O(k9) · (Φ(T)− Φ(T ′)) +O(1).

Lemma 3.5.1 will be crucial in ensuring the efficiency of the data structure maintaining tree decomposi-
tions of graphs dynamically: After each update to the tree decomposition, we will call ImproveHeight so as
to ensure that the height of the decomposition stays sufficiently small. Note here that all prefix-rebuilding
updates performed by ImproveHeight in order to decrease the height of the decomposition are essentially
“free” in terms of amortized running time: The running time of the improvement is fully amortized by
the decrease in the potential value, i.e. Φ(T)− Φ(T ′). In particular, this decrease in potential is always
nonnegative.

The rest of this section is dedicated to the proof of Lemma 3.5.1.

3.5.1 Algorithm description

The centerpiece of the proof of Lemma 3.5.1 is a prefix-rebuilding data structure that, given a sufficiently
high tree T (the shape of our current tree decomposition), determines an unbalanced prefix Tpref . This
prefix will then be passed to the refinement operation from Lemma 3.4.1, aiming to improve the height of
the decomposition. The precise statement of this claim follows.

Lemma 3.5.2. Let c > 2 and T be a binary tree with at most N nodes. If the height of T is at least
2Ω(
√

logN log c), then there exists a nonempty prefix Tpref of T so that

c ·

|Tpref |+
∑

a∈App(Tpref)

heightT (a)

 6 ∑
x∈Tpref

heightT (x). (3.13)

Moreover, if we can access the height of each node of T in constant time, then such Tpref can be computed
in time O(|Tpref |).

Note that Lemma 3.5.2 immediately implies that, for every c > 2 and ` > 1, there exists an `-
prefix rebuilding data structure with overhead O(1) maintaining a tree decomposition T = (T, bag) that
additionally supports the following operation:

• GetUnbalanced(): Assuming that T has size at most N and height at least 2Ω(
√

logN log c), returns
a nonempty prefix Tpref of T satisfying Eq. (3.13). The worst-case running time is bounded by |Tpref |.

We now show how this prefix-rebuilding data structure is used in the proof of Lemma 3.5.1.

Proof of Lemma 3.5.1. We assume that the data structure has access to the refinement prefix-rebuilding
data structure from Lemma 3.4.1. Also we set B := g`(`+ 1) 6 kO(k) and initialize the prefix-rebuilding
data structure promised by Lemma 3.5.2 with N := B · n3 and c := 2O(k log k) log n. We will fix the precise
value of c later in the course of the proof. Let H = 2Θ(

√
logN log c) be the threshold on the height promised

by the statement of Lemma 3.4.1. We shall call the maintained tree decomposition T deep if its height is
at least H and shallow otherwise.

We now describe the implementation of ImproveHeight. First, we ensure that T is of reasonable size: If
|V (T)| is at least B ·n3, then we recompute the entire tree decomposition from scratch using the algorithm
from Theorem 3.4.3 on T and make it binary, while increasing its size only by a constant factor, thus getting
a new tree decomposition T ? = (T ?, bag?). We call this process shrinking. If shrinking occurs, we discard
the old refinement data structure and initialize a fresh one with T ? (note that this can be represented as
a prefix rebuilding update of size |V (T)|+ |V (T ?)|). Note that T ? is a tree decomposition of width at
most k and size at most O(n), hence Φ(T ?) = O(B · n2). Observe that since Φ(T) > B · n3 � Φ(T ?), the
decrease in the potential value will cover the computational cost incurred from the shrinking.

70 CHAPTER 3. DYNAMIC TREEWIDTH

After ensuring that T has reasonable size, we check whether T is shallow. If this is the case, we are
done. Otherwise, we extract an unbalanced prefix Tpref of T through GetUnbalanced(), call Refine(Tpref)
and apply to (T, bag) the prefix-rebuilding update it returned.

Now, after a single pass of this procedure, T might still be deep. Therefore we repeat this sequence of
operations above in a loop until the tree becomes shallow. We stress that at each iteration of the loop we
also check whether T is too big and potentially shrink it as described above.

Let us now prove that each pass of this procedure decreases Φ(T) significantly. Suppose T is our
current deep tree decomposition of size at most N , Tpref is the prefix located by GetUnbalanced, and T ′
is the tree decomposition resulting from applying Refine(Tpref) to T . The property (POT) of the tree
decomposition refinement, adjusted to our current notation, states that

Φ(T)− Φ(T ′) >
∑

t∈Tpref

heightT (t)− 2O(k log k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · log |V (T)|.

We have that |V (T)| 6 N = B ·n3, where B = kO(k), hence log |V (T)| 6 O(log n+ k log k). Therefore,
we can simplify the bound above as follows:

Φ(T)− Φ(T ′) >
∑

t∈Tpref

heightT (t)− 2O(k log k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · log n. (3.14)

Let us now expand the O(·) notation in Eq. (3.14) and fix a constant 1 < C ∈ 2O(k log k), depending
only on k, such that the 2O(k log k) term in Eq. (3.14) is upper-bounded by C. Let also c := 2C log n =
2O(k log k) log n. With that, we can rewrite the inequality again as:

Φ(T)− Φ(T ′) >
∑

t∈Tpref

heightT (t)− 1
2
c ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 . (3.15)

So by Eq. (3.13), we have

Φ(T)− Φ(T ′) > 1
2

∑
t∈Tpref

heightT (t). (3.16)

Then the running time of a single improvement pass is dominated by the call Refine(Tpref), whose time
complexity by (RT1) is bounded by

2O(k9)·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · log n+ max(Φ(T)− Φ(T ′), 0)


(3.13)
6 2O(k9) ·

 ∑
t∈Tpref

heightT (t) + max(Φ(T)− Φ(T ′), 0)


(3.16)
6 2O(k9) (Φ(T)− Φ(T ′)) .

So whenever a tree T is improved to T ′ through GetUnbalanced, this decreases the potential function
of the decomposition and the improvement takes time at most 2O(k9) (Φ(T)− Φ(T ′)). Similarly, when T
is changed to T ? through the shrinking step, this also decreases the potential function significantly and
the improvement takes time O(Φ(T)−Φ(T ?)). Hence, the decomposition T ′ formed after all improvement
and shrinking steps is determined in total time 2O(k9) (Φ(T)− Φ(T ′)) +O(1); here, we add O(1) to the
complexity to account for the fact that no improvements may be necessary for the initial decomposition.
This concludes the proof.

Hence it only remains to prove Lemma 3.5.2. We give the proof of this lemma in the following section.

3.5. HEIGHT IMPROVEMENT 71

3.5.2 Finding an unbalanced prefix

In this section we will describe how an unbalanced prefix of a deep tree T can be found efficiently; this
will constitute the proof of Lemma 3.5.2. So assume that the parameters c,N are fixed as in the statement
of the lemma, and let T be a binary tree with at most N nodes and height 2Ω(

√
logN log c). Note that we

can assume that c < 1
6N ; otherwise there is nothing to prove if the constant hidden in the Ω notation

is large enough (then 2Ω(
√

logN log c) > N and so the tree T as above cannot exist). We look for a prefix
Tpref of T satisfying Eq. (3.13).

Assume that we are given two sequences of positive integers: h1 > h2 > . . . > ha and n1 > n2 > . . . >
na, where hj 6 nj for j < a and ha > na. For a node t of T and j ∈ [a], we say that the subtree Tt of T
rooted at t is j-shallow if height(t) < hj , and j-deep otherwise. Similarly, we say that the subtree is j-big
if size(t) > nj ; and j-small otherwise (not to be confused with the notion of c-small closures). We define
a recursive function GetUnbalanced(Tt, j) that takes an integer j ∈ [a] and a subtree Tt of T rooted at
t ∈ V (T) that is both j-small and j-deep: Let P be any longest path from t to a leaf of Tt. Define

UBApp(P, j) := {t′ ∈ App(P) | Tt′ is (j + 1)-deep and (j + 1)-small}

as the set of unbalanced trees rooted at the appendices of P . On the other hand, we will say that each
tree rooted at a node of App(P) \ UBApp(P, j), i.e., each balanced tree rooted at an appendix of P , is
P -found. Then, GetUnbalanced(Tt, j) returns

P ∪
⋃

t′∈UBApp(P,j)

GetUnbalanced(Tt′ , j + 1).

Clearly, GetUnbalanced is well-defined: In each recursive call GetUnbalanced(Tt′ , j + 1) it is guaranteed
that Tt′ is both (j + 1)-deep and (j + 1)-small; and thus, since ha > na and the height of each tree
is upper-bounded by its size, GetUnbalanced(·, a) is never called. Moreover, GetUnbalanced(T, 1) returns
a prefix of T .

Before arguing why GetUnbalanced satisfies the bounds in the statement of Lemma 3.5.1 and why it
even terminates at all, we first specify the sequences (hi) and (ni). To this end, will use the following
lemma:

Lemma 3.5.3. Let N and d be real numbers with 1 < d < N . There exist sequences of real numbers
h1 > h2 > . . . > ha and n1 > n2 > . . . > na such that

• h1 6 2O(
√

logN log d) and n1 > N ,

• hi 6 ni for all 1 6 i < a,

• ha > na > 1, and

• ni = ni+1 · hi+1 > d · hi+1 = hi for all 1 6 i < a.

Proof. Let a be the smallest integer such that d
a(a+1)
2 > N . We set

hi := da+2−i and ni := d
(a−i+1)·(a−i+2)

2 .

It is easy to verify the three last required properties. Therefore, it remains to prove that h1 6 2O(
√

logN log d).
As d < N , we have that a > 2. By the definition of a, we also have d

a(a−1)
2 < N 6 d

a(a+1)
2 , which

implies that a(a−1)
2 · log d < logN 6 a(a+1)

2 · log d. As a2 > a(a+1)
2 , we also have that a2 log d > logN and

thus a >
√

logN
log d . On the other hand, as a > 2, we have a2 6 4 · a(a−1)

2 , so

a log d =
a2 log d
a

6
4a(a−1)

2 log d
a

6
4 logN
a

6
4 logN√

logN
log d

= 4
√

logN log d.

Therefore, h1 = da+1 6 d2a = 22a log d = 2O(
√

logN log d).

So let (hi), (ni) are the sequences from Lemma 3.5.3 with d = 6c. Note that 1 < d < N by the
discussion above, so the lemma can indeed be applied.

72 CHAPTER 3. DYNAMIC TREEWIDTH

It remains to show that the set Tpref := GetUnbalanced(T, 1) indeed satisfies Eq. (3.13). Let W be
the set of subtrees of T rooted at the vertices of App(Tpref). As Tpref is the disjoint union of the vertical
paths found by GetUnbalanced, each subtree in W can be assigned the unique vertical path P found by
GetUnbalanced such that the subtree is P -found.

Let us first focus on a recursive call GetUnbalanced(Tr, j), where Tr is the subtree of T rooted at r
and j ∈ [a− 1]. Let P be the longest path rooted at r found in the algorithm. Let T1, T2, . . . , Tb be the
set of P -found subtrees. As Tr is binary, we have that b 6 |P |. From the invariant of GetUnbalanced we
know that Tr is j-deep, that is |P | = height(Tr) > hj . As each P -found subtree is either (j + 1)-shallow or
(j + 1)-big, we have that

b∑
i=1

height(Ti) 6
∑

i |Ti is (j+1)-shallow

height(Ti) +
∑

i |Ti is (j+1)-big

height(Ti).

(Note that a subtree can be both (j + 1)-shallow and (j + 1)-big.) We will now bound each sum on the
right hand side separately.

First, each (j + 1)-shallow subtree has height smaller than hj+1. As there are at most b 6 |P | of them
among the P -found subtrees, we get that∑

i |Ti is (j+1)-shallow

height(Ti) 6 |P | · hj+1.

Second, P is a longest root-to-leaf path in Tr, so each T1, T2, . . . , Tb has height at most |P |. Moreover,
as Tr is j-small, we have |V (Tr)| 6 nj ; and for each (j + 1)-big tree Ti we have that |V (Ti)| > nj+1. As
T1, . . . , Tb are pairwise disjoint and are subtrees of Tr, we conclude that at most nj

nj+1
of P -found trees are

(j + 1)-big. Hence, ∑
i |Ti is (j+1)-big

height(Ti) 6 |P | ·
nj
nj+1

.

We conclude that
b∑
i=1

height(Ti) 6 |P | ·
(
hj+1 +

nj
nj+1

)
. (3.17)

Also we observe that ∑
t∈P

height(t) = 1 + 2 + · · ·+ |P | > |P |
2

2
>
|P | · hj

2
. (3.18)

We are now ready to prove the counterpart of Eq. (3.13) restricted to a single path P and the set of
P -found subtrees.

Claim 3.5.4. The following inequality holds:

c ·

(
|P |+

b∑
i=1

height(Ti)

)
· log n 6

∑
t∈P

height(t).

Proof of the claim. Let us recall that hj = d · hj+1, hj > 1, and nj
nj+1

= hj+1. Because of that, we derive
that

c ·

(
|P |+

b∑
i=1

height(Ti)

)
(3.17)
6 c

(
|P |+ |P |

(
hj+1 +

nj
nj+1

))
6 c(|P | · hj+1 + |P |(hj+1 + hj+1))

= 3c · |P | · hj+1.

On the other hand, we have that∑
t∈P

height(t)
(3.18)
>
|P | · hj

2
=
|P | · d · hj+1

2
= 3c · |P | · hj+1

and the claim follows. C

Summing the inequality from Claim 3.5.4 over all paths P corresponding to the calls of GetUnbalanced,
we immediately get Eq. (3.13), which settles the combinatorial part of the proof of Lemma 3.5.2. For
the algorithmic part, it is easy to see that GetUnbalanced(T, 1) indeed returns Tpref in time |Tpref |. Hence
Lemma 3.5.2 holds, and this implies that Lemma 3.5.1 is also true.

3.6. PROOF OF Lemma 3.2.5 73

3.6 Proof of Lemma 3.2.5

After having done all the necessary preparations, we are ready to prove Lemma 3.2.5. For convenience, we
recall its statement.

Lemma 3.2.5. There is a data structure that for an integer k ∈ N, fixed upon initialization, and a dynamic
graph G, updated by edge insertions and deletions, maintains an annotated tree decomposition (T, bag, edges)
of G of width at most 6k+ 5 using prefix-rebuilding updates under the promise that tw(G) 6 k at all times.
More precisely, at every point in time the graph is guaranteed to have treewidth at most k and the data
structure contains an annotated tree decomposition of G of width at most 6k + 5. The data structure can
be initialized on k and an edgeless n-vertex graph G in time 2O(k8) · n, and then every update:

• returns the sequence of prefix-rebuilding updates used to modify the tree decomposition; and

• takes amortized time 2O(k9+k log k·
√

logn log logn).

Again, as in Section 3.4, we fix ` = 6k + 5 and take Φ := Φ` and g := g` as defined in Section 3.4.1.
First, we are going to describe how the data structure is implemented; then, we will bound the running

time of a series of edge updates.

3.6.1 Data structure

In order to initialize a dynamically changing annotated tree decomposition T = (T, bag, edges), we
instantiate the following (6k + 6)-prefix-rebuilding data structures:

• D: the refinement data structure with overhead 2O(k8) from Lemma 3.4.1, additionally supporting
ImproveHeight (Lemma 3.5.1);

• H: the data structure with overhead O(1) from Lemma 3.2.1, allowing us to query, for each vertex
v ∈ V (G), the top bag Top(v) ∈ V (T) containing v; and for each t ∈ V (T), the height of t in V (T).

Both data structures store the same decomposition (T, bag, edges): all prefix-rebuilding updates performed
by D are forwarded to H. After the initialization and after each query, we maintain the following invariant:
(T, bag, edges) contains an annotated tree decomposition of G of width at most ` = 6k + 5, height at

most 2O(k log k
√

logn log logn) and size at most kO(k) · n3. After each query, we return the sequence of
prefix-rebuilding updates performed by D.

As for the initialization of our structure for an empty graph, we can initialize T = (T, bag, edges) with
T being a complete binary tree (of height O(log n)) with n nodes and each bag containing a different
vertex of V (G). Obviously, for each t ∈ V (T), we have edges(t) = ∅. The initialization of D and H with it
takes 2O(k8) · n time. We remark that such a decomposition T satisfies Φ(T) 6 O(kn) since the average
height of a node in T is O(1), and g(1) ∈ O(k).

First assume that we are to add an edge uv to G. Let G′ be equal to the graph G with the edge uv
added. Towards that goal, we must first ensure that the edge condition is satisfied for the new edge, i.e.,
both u and v belong to the same bag of T . Let tu = Top(u) and tv = Top(v) be the top bags of u and
v, respectively, in T . If it is the case that v ∈ bag(tu) or u ∈ bag(tv), then the edge condition is already
satisfied; however, we still need to update the function edges with the newly added edge uv. Let us recall
from the definition of edges that we should include the edge uv in exactly one set: the set edges(t) for
the topmost bag t containing both u and v. It is easy to verify that this bag is actually one of tu or tv,
whichever is at the smaller height in T . Without loss of generality, assume it is tv. We include uv in
edges(tv) by performing a simple prefix-rebuilding update on the path from the root of T to tv. The prefix
rebuilt has size at most height(T); hence, the update takes time 2O(k8) · height(T) and produces a tree
decomposition T ′ of G′. The structure of the tree decomposition remains unchanged here, so the invariant
is preserved by the update.

Let us assume now that v 6∈ bag(tu) and u 6∈ bag(tv); in this case, we must expand some bags in the
decomposition so as to satisfy the edge condition. Let Pu and Pv be the paths from the root of T to tu
and tv, respectively. Then, the update of the decomposition proceeds in two steps: First, we add v to all
the bags bag(t) for t ∈ Pu ∪Pv, and only then we add the edge uv to an appropriate set edges. The former
is done by obtaining a weak description û of a prefix-rebuilding update adding v to the required bags,
invoking ū := Strengthen(û) (Lemma 3.2.3) and then applying the resulting prefix-rebuilding operation ū.
Then, the insertion of the edge uv to the appropriate set edges(t) is conducted as in the previous case.
Note that all of the above can be performed in time 2O(k8) · height(T).

74 CHAPTER 3. DYNAMIC TREEWIDTH

Now, T ′ = (T, bag′, edges′) is a correct annotated tree decomposition of G′, but adding u to the bags in
Pu ∪Pv might have increased the width of the decomposition to `+ 1 = 6k+ 6, thus invalidating the width
invariant. In order to counteract this, we call Refine(Pu ∪ Pv). Note that Pu ∪ Pv covers all bags of size
`+ 2 = 6k + 7, so the call satisfies the precondition of Lemma 3.4.1 and the annotated tree decomposition
T ′′ of G′ produced by Refine has width at most ` (condition (WIDTH)). However, T ′′ might now have too
large height or size; we resolve this issue by invoking the height improvement (ImproveHeight), resulting

in a tree decomposition T ′′′ of G′ of width at most `, height at most 2O(k log k
√

logn log logn) and size at
most kO(k) · n3. The final tree decomposition T ′′′ satisfies all the prescribed invariants.

Deleting an edge uv from G is much simpler: We do not change the tree structure T or the contents
of the bags of the tree decomposition. However, we still need to remove uv from the appropriate set
edges(t) for t ∈ V (T) using a prefix-rebuilding update. Locating the appropriate t ∈ V (T) is done as
before: Let tu = Top(u), tv = Top(v) and uv belongs to either edges(tu) or edges(tv), depending on
whether tu or tv has smaller height. Assuming without loss of generality that uv ∈ edges(tv), we construct
a prefix-rebuilding update removing uv from edges(tv) by rebuilding the path from the root of T to tv.

3.6.2 Complexity analysis

Now, we are going to bound the amortized running time of the data structure. As already mentioned, we
start with an edgeless graph and a decomposition T = (T, bag, edges) of it with potential Φ(T) = O(kn).

We are only going to focus on the analysis of edge insertions; edge removals are more straightforward.
Computing Pu, Pv and performing the introductory prefix-rebuilding updates takes time

2O(k8) · height(T) 6 2O(k8) · 2O(k log k
√

logn log logn). (3.19)

Let G′ be the graph G with an edge uv added and T ′ = (T, bag′, edges′) be the tree decomposition of G′

after the initial prefix-rebuilding updates. (We stress that the decompositions T and T ′ have the same
shape T .) If u was not added to any bags, the potential of T ′ has not increased and the entire query took

time 2O(k log k
√

logn log logn). Assume now that u has been added to some new bags. Recall then that u was
added to at most O(height(T)) new bags, increasing the size of each of them to at most `+ 2 = 6k + 7;
the sizes of other bags remained unchanged. Therefore,

Φ(T ′)− Φ(T) 6 g(6k + 7) · O(height(T)2) 6 2O(k log k) · height(T)2

6 2O(k log k
√

logn log logn).
(3.20)

Let T ′′ be the decomposition produced by applying Refine(Tpref) on T ′ with a prefix Tpref with |Tpref | 6
O(height(T)). Recall the property (POT) bounding the potential change:

Φ(T ′)− Φ(T ′′) >
∑

t∈Tpref

heightT (t)− 2O(k log k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · log |V (T)|.

Therefore,

Φ(T ′′)− Φ(T ′) 6 −
∑

t∈Tpref

heightT (t) + 2O(k log k) ·

|Tpref |+
∑

t∈App(Tpref)

heightT (t)

 · log |V (T)|

6 2O(k log k) · |Tpref | · height(T) · log |V (T)|
6 2O(k log k) · height(T)2 · log n

6 2O(k log k
√

logn log logn).

(3.21)

Here, we used the facts that |Tpref | 6 O(height(T)), |App(Tpref)| 6 |Tpref |+ 1 and log |V (T)| 6 O(k log k+
log n) (following from the invariants and the fact that T is binary).

Finally, let T ′′′ be the final tree decomposition produced by running the height improvement operation
(ImproveHeight) on T ′′. Since ImproveHeight never increases the potential value, we have Φ(T ′′′) 6 Φ(T ′′).
We conclude that

Φ(T ′′′)− Φ(T) 6 2O(k log k) · height(T)2 · log n 6 2O(k log k
√

logn log logn).

3.7. DYNAMIC AUTOMATA 75

For the running time of the edge insertion, recall from property (RT1) that the application of the
refinement operation on T ′ takes worst-case time

2O(k9)

|Tpref |+
∑

t∈App(Tpref)

height(t) + max(Φ(T ′)− Φ(T ′′), 0)


6 2O(k9) (height(T)2 + max(Φ(T ′)− Φ(T ′′), 0)

)
(3.21)
6 2O(k9)

(
height(T)2 + (Φ(T ′)− Φ(T ′′)) + 2O(k log k) · height(T)2 · log n

)
6 2O(k9)

(
2O(k log k

√
logn log logn) + Φ(T ′)− Φ(T ′′)

)
;

(3.22)

immediately followed by the height improvement, which by Lemma 3.5.1 takes worst-case time

2O(k9) · (Φ(T ′′)− Φ(T ′′′)) +O(1). (3.23)

Thus, the total running time is bounded by the sum of Eqs. (3.19), (3.22) and (3.23):

2O(k9+k log k
√

logn log logn) + 2O(k9)(Φ(T ′)− Φ(T ′′′))
(3.20)
6 2O(k9+k log k

√
logn log logn) + 2O(k9)(Φ(T)− Φ(T ′′′)).

Since each update increases the potential value by at most 2O(k log k
√

logn log logn), it follows that the
amortized time complexity of each update is 2O(k9+k log k

√
logn log logn), as claimed.

3.7 Dynamic automata

In this section we introduce a framework for dynamic maintenance of dynamic programming tables on
tree decompositions under prefix-rebuilding updates. Concrete outcomes of this are proofs of Lemma 3.2.1,
Lemma 3.2.4, and Lemma 3.3.23, but the introduced framework is general enough to also capture
maintenance of any reasonable dynamic programming scheme.

We remark that maintenance of runs of automata on dynamic forests has already been investigated
in the literature, and even for the much more general problem of dynamic enumeration; see for instance
the works of Niewerth [Nie18] and of Amarilli et al. [ABMN19] and the bibliographic discussion within.
In particular, many (though not all) results contained in this section could be in principle derived
from [ABMN18, Lemma 7.3], but not in a black-box manner and without concrete bounds on update
time. Therefore, for the sake of completeness, in this section we provide a self-contained presentation.

3.7.1 Tree decomposition automata

Our framework is based on a notion of automata processing tree decompositions. While this notion is
tailored here to our specific purposes, the idea of processing tree decompositions using various kinds
of automata or dynamic programming procedures dates back to the work of Courcelle [Cou90] and
is a thoroughly researched topic; see appropriate chapters of textbooks [DF13, CFK+15, FG06] and
bibliographic notes within. Hence, the entirety of this section can be considered a formalization of folklore.

Throughout this section we assume that all vertices of considered graphs come from a fixed, totally
ordered, countable set of vertices Ω. Further, we assume that elements of Ω can be manipulated upon in
constant time in the RAM model. The reader may assume that Ω = N.

Boundaried graphs. We will work with graphs with specified boundaries, as formalized next.

Definition 9. A boundaried graph is an undirected graph G together with a vertex subset ∂G ⊆ V (G),
called the boundary, such that G has no edge with both endpoints in ∂G. A boundaried tree decomposition
of a boundaried graph G is a triple (T, bag, edges) that is an annotated tree decomposition of G (treated as
a normal graph) where in addition we require that ∂G is contained in the root bag.

When speaking about a boundaried tree decomposition (T, bag, edges) of a boundaried graph G, we
redefine the adhesion of the root of T to be ∂G, rather than the empty set.

76 CHAPTER 3. DYNAMIC TREEWIDTH

Suppose (T, bag, edges) is a boundaried tree decomposition of a boundaried graph G, and x is a
node of T . Then we say that x induces a boundaried graph Gx and its boundaried tree decomposition
(Tx, bagx, edgesx), defined as follows: If X is the set of descendants of x in T , then

Gx =

⋃
y∈X

bag(y),
⋃
y∈X

edges(y)

 ;

∂Gx = adh(x);

(Tx, bagx, edgesx) = (T, bag, edges)|X .

It is clear that (Tx, bagx, edgesx) defined as above is a boundaried tree decomposition of Gx. We use the
above notation only when the boundaried tree decomposition (T, bag, edges) is clear from the context.

Automata. We now introduce our automaton model.

Definition 10. A (deterministic) tree decomposition automaton of width ` consists of

• a state set Q;

• a set of accepting states F ⊆ Q;

• an initial mapping ι that maps every boundaried graph G on at most ` + 1 vertices to a state
ι(G) ∈ Q; and

• a transition mapping δ that maps every 7-tuple of form (B,X, Y, Z, J, q′, q′′), where B ⊆ Ω is a
set of size at most ` + 1, X,Y, Z ⊆ B, J ∈

(
B
2

)
\
(
X
2

)
, q′ ∈ Q, and q′′ ∈ Q ∪ {⊥} to a state

δ(B,X, Y, Z, J, q′, q′′) ∈ Q.

The run of a tree decomposition automaton A on a binary boundaried tree decomposition (T, bag, edges) of
a boundaried graph G is the unique labeling ρA : V (T)→ Q satisfying the following properties:

• For every leaf l of T , we have
ρA(l) = ι(Gl).

• For every nonleaf node x of T with one child y, we have

ρA(x) = δ(bag(x), adh(x), adh(y), ∅, edges(x), ρA(y),⊥).

• For every nonleaf node x of T with two children y and z, we have

ρA(x) = δ(bag(x), adh(x), adh(y), adh(z), edges(x), ρA(y), ρA(z)).

A tree decomposition automaton A accepts (T, bag, edges) if ρA(r) ∈ F , where r is the root of T .

Note that in the transitions described above, nodes with one child are treated by passing a “dummy
state” ⊥ /∈ Q to the transition function instead of a state. Note that this allows δ also to recognize when
there is only one child. Also, the automata model presented above could in principle distinguish the left
child y from the right child z and treat states passed from them differently. However, this will never be
the case in our applications: In all constructed automata, the transition mapping will be symmetric with
respect to swapping the role of the children y and z.

We say that a tree decomposition automaton A has evaluation time τ if functions ι and δ can be
evaluated on any tuple of their arguments in time τ , and moreover for a given q ∈ Q it can be decided
whether q ∈ F in time τ . Note that we do not require the state space Q to be finite. In fact, in most of
our applications it will be infinite, but we will be able to efficiently represent and manipulate the states.

We will often run a tree decomposition automaton on a non-boundaried annotated tree decomposition
of a non-boundaried graph G. In such cases, we simply apply all the above definitions while treating G as
a boundaried graph with an empty boundary.

We will also use nondeterministic tree decomposition automata, which are defined just like in Def-
inition 10, except that ι and δ are the initial relation and the transition relation, instead of map-
pings. That is, ι is a relation consisting of pairs of the form (G, q), where G is a boundaried graph
on at most ` + 1 vertices, and q ∈ Q. Similarly, δ is a relation consisting of pairs of the form

3.7. DYNAMIC AUTOMATA 77

((B,X, Y, Z, J, q′, q′′), q), where (B,X, Y, Z, J, q′, q′′) is a 7-tuple like in the domain of the transition
mapping, and q ∈ Q. Then a run of a nondeterministic automaton A on a boundaried binary tree
decomposition (T, bag, edges) is a labeling ρ of the nodes of T with states such that (Gl, ρ(l)) ∈ ι for
every leaf l, ((bag(x), adh(x), adh(y), ∅, edges(x), ρ(y),⊥), ρ(x)) ∈ δ for every node x with one child y,
and ((bag(x), adh(x), adh(y), adh(z), edges(x), ρ(y), ρ(z)), ρ(x)) ∈ δ for every node x with two children y
and z. Note that a nondeterministic tree decomposition automaton may have multiple runs on a single
tree decomposition. We say that A accepts (T, bag, edges) if there is a run of A on (T, bag, edges) that is
accepting: the state associated with the root node is accepting.

In the context of nondeterministic automata, by evaluation time we mean the time needed to decide
whether a given pair belongs to any of the relations ι or δ, or to decide whether a given state is accepting.
Note that if A is a nondeterministic tree decomposition automaton with a finite state space Q, then we
can determinize it – find a deterministic automaton A′ that accepts the same tree decompositions – using
the standard powerset construction. Then the state space of A′ is 2Q. In the following, all automata are
deterministic unless explicitly stated.

3.7.2 Automata constructions

In subsequent sections we will use several automata. We now present four automata constructions that we
will use.

Tree decomposition properties automata. We first construct three very simple automata that are
used in Lemma 3.2.1 for maintaining properties of the tree decomposition itself.

Lemma 3.7.1. For every ` ∈ N there exists tree decomposition automata H`, S`, C`, each of width `,
with the following properties: For any graph G, annotated binary tree decomposition (T, bag, edges) of G
of width at most `, and any node x of T :

• ρH`(x) is equal to height(Tx),

• ρS`(x) is equal to |V (Tx)|, and

• ρC`(x) is equal to |cmp(x)|.

The evaluation times of H` and S` are O(1), and the evaluation time of C` is O(`).

Proof. The state sets of each of the automata are N. Let us define for all n ∈ N that max(n,⊥) = n and
n+⊥ = n. For the height automaton H`, the initial mapping and the transition mapping are defined as
follows (here denotes any input value):

ι() = 1

δ(, , , , , q′, q′′) = 1 + max(q′, q′′).

For the size automaton S`, the initial mapping and the transition mapping are defined as follows:

ι() = 1

δ(, , , , , q′, q′′) = 1 + q′ + q′′.

For the |cmp(x)| automaton C`, the initial mapping and the transition mapping are defined as follows:

ι(G) = |V (G) \ ∂G|
δ(B,X, , , , q′, q′′) = q′ + q′′ + |B \X|.

It is straightforward to see that these automata satisfy the required properties.

CMSO2-types automaton. The classic Courcelle’s theorem [Cou90] states that there is an algorithm
that given a CMSO2 sentence ϕ and an n-vertex graph G together with a tree decomposition of width at
most `, decides whether G |= ϕ in time f(`, ϕ) · n, where f is a computable function. One way of proving
Courcelle’s theorem is to construct a dynamic programming procedure that processes the provided tree
decomposition in a bottom-up fashion. This dynamic programming procedure can be understood as a
tree decomposition automaton in the sense of Definition 10, yielding the following result. The proof is a
completely standard application of the concept of CMSO2-types, hence we only sketch it.

78 CHAPTER 3. DYNAMIC TREEWIDTH

Lemma 3.7.2. For every integer ` and CMSO2 sentence ϕ there exists a tree decomposition automaton
A`,ϕ of width ` with the following property: For any graph G and its annotated binary tree decomposition
(T, bag, edges) of width at most `, A`,ϕ accepts (T, bag, edges) if and only if G |= ϕ. The evaluation time
is bounded by f(`, ϕ) for some computable function f .

Proof sketch. Let p be the rank of ϕ: the maximum among the quantifier rank of ϕ and the moduli of
modular predicates appearing in ϕ. Consider any finite X ⊆ Ω and let CMSO2(X) consists of all CMSO2

sentences that can additionally use elements of X as constants (formally, these are CMSO2 sentences
over the signature of graphs enriched by adding every x ∈ X as a constant). It is well-known (see
e.g. [Imm99, Exercise 6.11]) that for a given X as above, one can compute a set Sentencesp(X) consisting
of at most g(`, |X|) sentences of CMSO2(X), for some computable g, such that for every ψ ∈ CMSO2(X)
of rank at most p, there is ψ′ ∈ Sentencesp(X) that is equivalent to ψ in the sense of being satisfied in
exactly the same graphs containing X. Also, the mapping ψ 7→ ψ′ is computable.

For a given boundaried graph G with X = ∂G, we define the p-type of G as follows:

tpp(G) = {ψ ∈ Sentencesp(X) | G |= ψ}.

Now, we construct automaton A = A`,ϕ so that for every boundaried binary tree decomposition
(T, bags, edges) of a graph G, the run of A on (T, bags, edges) is as follows:

ρA(x) = tpp(Gx) for all x ∈ V (T).

When constructing A, the only nontrivial check is that one can define a suitable transition mapping δ.
For this, it suffices to show that for every node x of T with children y and z, given types tpp(Gy) and
tpp(Gz) together with the information about the bag of x (consisting of bag(x), adh(x), adh(y), adh(z),
and edges(x)), one can compute the type tpp(Gx); and same for nodes with one child. This follows from a
standard argument involving Ehrenfeucht-Fräısse games, cf. [GK09,Mak04].

Lemma 3.7.2 can also be adapted to handle optimization problems expressible by LinCMSO2 sentences.

Lemma 3.7.3. For every integer ` and LinCMSO2 sentence (ϕ, f) there exists a tree decomposition
automaton A = A`,(ϕ,f) of width ` with the following property: For any graph G and its annotated binary
tree decomposition (T, bag, edges) of width at most ` with root r, the value of (ϕ, f) in G can be uniquely
determined from ρA(r). The evaluation time is bounded by g(`, |(ϕ, f)|) for some computable function g.

Proof sketch. Fix a CMSO2 formula ϕ(X1, . . . , Xq) and an affine function f(x1, . . . , xq) = c0 + c1x1 + . . .+
cqxq that form a LinCMSO2 sentence (ϕ, f). Assume X1, . . . , Xq′ are vertex set variables and Xq′+1, . . . , Xq

are edge set variables. We adapt the proof of Lemma 3.7.2 as follows: Let CMSO2(X;X1, . . . , Xq) consist
of all CMSO2 sentences that can additionally use: elements of X as constants, and unary predicates
X1(·), . . . , Xq(·), where X1, . . . , Xq′ accept a single vertex as an argument, and Xq′+1, . . . , Xq accept
a single edge as an argument. In the same way, we can compute a set Sentencesp(X;X1, . . . , Xq) consisting
of at most g(`, |X|, q) sentences of CMSO2(X;X1, . . . , Xq) for some computable g so that for every
ψ ∈ CMSO2(X;X1, . . . , Xq) of rank at most p, there is ψ′ ∈ Sentencesp(X;X1, . . . , Xq) equivalent to ψ;
and the mapping ψ → ψ′ is computable. Next, given a boundaried graph G with X = ∂G, vertex sets
A1, . . . , Aq′ ⊆ V (G) and edge sets Aq′+1, . . . , Aq ⊆ E(G), define the p-type of (G,A1, . . . , Aq) as follows:

tpp(G;A1, . . . , Aq) = {ψ ∈ Sentencesp(X;X1, . . . , Xq) | (G,A1, . . . , Aq) |= ψ}.

Then we construct automaton A = A`,(ϕ,f) so that for every boundaried binary tree decomposition
(T, bags, edges) of a graph G, the run of A on (T, bags, edges) is as follows. For every node x of T , ρA(x)
is a function that maps every possible p-type τ ⊆ Sentencesp(G;X1, . . . , Xq) to the value

ρA(x)(τ) = max

{
c0 +

q∑
i=1

ci|Ai| | A1, . . . , Aq′ ⊆ V (Gx), Aq′+1, . . . , Aq ⊆ E(Gx), tpp(G;A1, . . . , Aq) = τ

}
,

where we place ρA(x)(ψ) = ⊥ if the set on the right-hand side of the equation above is empty.
As before, when constructing A, we must check that one can define a transition mapping δ. Again it

suffices to show that for every node x of T with children y and z, given ρA(y) and ρA(z) together with
the information about the bag of x (consisting of bag(x), adh(x), adh(y), adh(z), and edges(x)), one can
compute ρA(x); and same for nodes with one child. Here, we use the fact that the objective function is
affine in the following way. Suppose that the sets A1, . . . , Aq are optimal for the graph Gx and sentence
ψ ∈ tpp(G;A1, . . . , Aq), that is, A1, . . . , Aq′ ⊆ V (Gx), Aq′+1, . . . , Aq ⊆ E(Gx), (G,A1, . . . , Aq) |= ψ and
ρA(x)(ψ) = c0 +

∑q
i=1 ci|Ai|. Then, for each child c ∈ {y, z} of x, the sets Ac1, . . . , A

c
q, defined as follows:

Aci = Ai ∩ V (Gc) for i ∈ [q′] and Aci = Ai ∩ E(Gc) for i ∈ [q′ + 1, q] are optimal for the graph Gc. For
more details we refer to [ALS91].

3.7. DYNAMIC AUTOMATA 79

Bodlaender-Kloks automaton. In [BK96], Bodlaender and Kloks gave an algorithm that given a
graph G, a binary tree decomposition of G of width at most `, and a number k 6 `, decides whether
the treewidth of G is at most k in time 2O(k`2) · n, where n is the vertex count of G. This algorithm
proceeds by bottom-up dynamic programming on the provided tree decomposition of G, computing, for
every node x, a table consisting of 2O(k`2) boolean entries. Intuitively, each entry encodes the possibility
of constructing a partial tree decomposition of the subgraph induced by the subtree at x with a certain
“signature” on the adhesion of x; the number of possible signatures is 2O(k`2).

Inspecting the proof provided in [BK96] it is not hard to see that this dynamic programming can be
understood as a nondeterministic tree decomposition automaton. Thus, from the work of Bodlaender and
Kloks we can immediately deduce the following statement.

Lemma 3.7.4. For every pair of integers k 6 ` there is a nondeterministic tree decomposition automaton
BKk,` of width ` with the following property: For any graph G and its binary annotated tree decomposition
(T, bag, edges) of width at most `, BKk,` accepts (T, bag, edges) if and only if the treewidth of G is at most
k. The state space of BKk,` is of size 2O(k`2) and can be computed in time 2O(k`2). The evaluation time
of BKk,` is 2O(k`2) as well.

We remark that since the property of having treewidth at most k can be expressed in CMSO2
12,

Lemma 3.7.4 with an unspecified bound on the evaluation time also follows from Lemma 3.7.2. The reason
behind formulating Lemma 3.7.4 explicitly is to keep track of the evaluation time more precisely in further
arguments.

Closure automaton. Finally, we introduce automata for computing small closures within subtrees of
a tree decomposition. These will be used in the proof of Lemma 3.3.23. We first need a few definitions.

Let G be a boundaried graph. We say that two sets of non-boundary vertices Y,Z ⊆ V (G) \ ∂G are
torso-equivalent if there is an isomorphism between torsoG(Y ∪ ∂G) and torsoG(Z ∪ ∂G) that fixes every
vertex of ∂G. Note that being torso-equivalent is an equivalence relation and for every integer c, let ∼c,G
be the restriction of this equivalence relation to subsets of V (G) \ ∂G of cardinality at most c. Note ∼c,G
has at most 2O((c+|∂G|)2) equivalence classes.

Suppose further that T = (T, bag, edges) is a boundaried tree decomposition of G. We generalize the
depth function dT defined in Section 3.2 to boundaried tree decompositions as follows: Let dT : V (G)\∂G →
Z>0 be such that dT (u) is the depth of the top-most node of T whose bag contains u. In particular,
dT (u) depends on the vertex u and the tree decomposition (T, bag, edges). Further, for a set of vertices
Y ⊆ V (G) \ ∂G, we define dT (Y) =

∑
u∈Y dT (u). Recalling that there is a total order 4 on the vertices

of G inherited from Ω, subsets of V (G) \ ∂G can be compared as follows: For Y, Y ′ ⊆ V (G) \ ∂G, we set
Y 4T Y ′ if

• dT (Y) < dT (Y ′), or

• dT (Y) = dT (Y ′) and Y is lexicographically not larger than Y ′ with respect to 4.

For a nonempty set of subsets S of V (G) \ ∂G, we let minT S be the 4T -smallest element of S. This
allows us to define the c-small torso representatives as follows:

repsc(G, (T, bag, edges)) :=

{(dT (minT K), torsoG(minT K ∪ ∂G)) | K is an equivalence class of ∼c,G} .

Note that each member of an equivalence class of ∼c,G has the same size, so at this point we do
not optimize for the size even though it will later be needed for the proof of Lemma 3.3.23. The set
repsc(G, (T, bag, edges)) depends on both the boundaried graph G and its boundaried tree decomposition
(T, bag, edges). Also, the cardinality of repsc(G, (T, bag, edges)) is equal to the number of equivalence
classes of ∼c,G, which, as noted, is at most 2O((c+|∂G|)2).

The closure automata we are going to use are provided by the following statement.

Lemma 3.7.5. For every pair of integers c, ` there is a tree decomposition automaton R = Rc,` with the
following property: For any graph G and its annotated binary tree decomposition (T, bag, edges) of width
at most `, the run of R on (T, bag, edges) satisfies

ρR(x) = repsc(Gx, (Tx, bagx, edgesx)) for all x ∈ V (T).
12This can be done, for instance, by stating that the given graph does not contain any of the forbidden minor obstructions

for having treewidth at most k. It is known that the sizes of such obstructions are bounded by a doubly-exponential function
in k5, hence their number is at most triply-exponential in k5 [Lag98].

80 CHAPTER 3. DYNAMIC TREEWIDTH

The evaluation time of R is 2O((c+`)2).

Proof. For the state space Q of R we take the set of all sets of pairs of the form (p,H), where p ∈ N
and H is a graph on at most c+ `+ 1 vertices contained in Ω. The final states of R are immaterial for
the lemma statement, hence we can set F = ∅. As for the initial mapping ι, for a boundaried graph H
on at most `+ 1 vertices we can set ι(H) = repsc(H, (T0, bags0, edges0)), where (T0, bags0, edges0) is the
trivial one-node tree decomposition of H in which all vertices and edges are put in the root bag. It is
straightforward to see that ι(H) can be computed in time 2O((c+`)2) directly from the definition.

It remains to define the transition mapping δ. For this, it suffices to prove the following. Suppose
(T, bags, edges) is a boundaried tree decomposition of a boundaried graph G and x is a node of G with
children y and z. Then knowing

Ry := repsc(Gy, (Ty, bagsy, edgesy)), Rz := repsc(Gz, (Tz, bagsz, edgesz)),

as well as bag(x), edges(x), and adhesions of x, y, z, one can compute

Rx := repsc(Gx, (Tx, bagsx, edgesx))

in time 2O((c+`)2). Formally, we would also need such an argument for the case when x has only one child
y, but this follows from the argument for the case of two children by considering a dummy second child z
with an empty bag. So we focus only on the two-children case.

For any pair of sets Y ⊆ cmp(y) and Z ⊆ cmp(z), define Gx(Y, Z) to be the graph with vertex set
Y ∪ Z ∪ bag(x) and edge set consisting of the union of the edge sets of the following graphs:

torsoGy (Y ∪ adh(y)), torsoGz (Z ∪ adh(z)), and (bag(x), edges(x)).

The following claim is straightforward.

Claim 3.7.6. For any triple of sets X ⊆ bag(x) \ adh(x), Y ⊆ cmp(y) and Z ⊆ cmp(z), we have

torsoGx(X ∪ Y ∪ Z ∪ adh(x)) = torsoGx(Y,Z)(X ∪ Y ∪ Z ∪ adh(x)).

To compute Rx, we first construct a family of candidates C as follows. Consider every pair of
pairs (py, Hy) ∈ Ry and (pz, Hz) ∈ Rz, and every X ⊆ bag(x) \ adh(x). Let Y = V (Hy) \ adh(y) and
Z = V (Hz)\adh(z), and note that the graph Gx(Y, Z) is the union of graphs Hy, Hz, and (bag(x), edges(x)).
If |X ∪ Y ∪ Z| 6 c, then we add to C the pair

(py + pz + |Y |+ |Z|, torsoGx(Y,Z)(X ∪ Y ∪ Z ∪ adh(x))).

Otherwise, if |X ∪ Y ∪ Z| > c, no pair is added to C. The first coordinate of the pair added to C is equal
to dTx(X ∪Y ∪Z) because X ⊆ bag(x) and Y,Z ⊆ V (Gx) \ bag(x). By Claim 3.7.6, the second coordinate
of the pair added to C is equal to torsoGx(X ∪ Y ∪ Z ∪ adh(x))).

Further, we have
|C| 6 |Ry| · |Rz| · 2`+1 6 2O((c+`)2),

and C can be computed in time 2O((c+`)2).
Next, the candidates are filtered as follows. As long as in C there is are distinct pairs (p,H) and

(p′, H ′) such that H and H ′ are isomorphic by an isomorphism that fixes adh(x), we remove the pair
that has the larger first coordinate; if both pairs have the same first coordinate, remove the one where
the vertex set of the second coordinate is larger in 4. Clearly, this filtering procedure can be performed
exhaustively in time 2O((c+`)2).

Thus, after filtering, all second coordinates of the pairs in C are pairwise nonequivalent in ∼c,Gx . It is
now straightforward to see using a simple exchange argument that Rx is equal to C after the filtering.
This constitutes the definition and the algorithm computing the transition function δ.

3.7.3 Dynamic maintenance of automata runs

Having defined the automata we are going to use, we now show how to maintain their runs effectively
under prefix-rebuilding updates.

Lemma 3.7.7. Fix ` ∈ N and a tree decomposition automaton A = (Q,F, ι, δ) of width ` and evaluation
time τ . Then there exists an `-prefix-rebuilding data structure with overhead τ that additionally implements
the following operation:

3.7. DYNAMIC AUTOMATA 81

• Query(x): Given a node x of T , returns ρA(x). Runs in worst-case time O(1).

Proof. At every point in time, the data structure stores the decomposition (T, bag, edges), where every
node x is supplied with a pointer to its parent, a pair of pointers to its children, and the state ρA(x) in
the run of A on (T, bag, edges). This allows for answering queries in constant time, as requested.

For initialization, we just compute the run of A on (T, bag, edges) in a bottom-up manner: The states
for leaves are computed according to the initialization mapping, while the states for internal nodes are
computed according to the transition mapping bottom-up. This requires time τ per node, so O(τ · |V (T)|)
in total.

For applying a prefix-rebuilding update u = (Tpref , T
′
pref , T

?, bag?, edges?, π), the pointer structure
representing the decomposition can be easily rebuilt in time `O(1) · |u| by building the tree T ′pref and
reattaching all appendices of Tpref in T according to π, using a single pointer change per appendix. Observe
here that the information about the run of A on the reattached subtrees does not need to be altered,
except for the appendices of T ′pref , for which the run could have to be altered because their adhesions could
change. Hence, it remains to compute the states associated with the nodes of T ′pref ∪App(T ′pref) in the run
of A on the new decomposition (T ′, bag′, edges′). This can be done by processing T ′pref ∪ App(T ′pref) in a
bottom-up manner, and computing each consecutive state using either the initialization mapping ι (for
nodes in T ′pref that are leaves of T ′) or the transition mapping δ (for the other nodes in T ′pref), in total
time O(τ · |T ′pref ∪ App(T ′pref)|) 6 O(τ · |u|).

Now, Lemma 3.7.7 combined with Lemma 3.7.2 immediately implies Lemma 3.2.4. Similarly, an `-prefix-
rebuilding data structure implementing the three first operations of Lemma 3.2.1 follows immediately by
applying Lemma 3.7.7 to the automaton provided by Lemma 3.7.1. Let us here complete the proof of
Lemma 3.2.1.

Proof of Lemma 3.2.1. By above discussion, it suffices to implement an `-prefix-rebuilding data structure
with overhead O(1) that implements the operation Top(v), that given a vertex v ∈ V (G) returns
the unique highest node t of T such that v ∈ bag(t). Consider a prefix-rebuilding update changing
(T, bag, edges) to (T ′, bag′, edges′). Observe that a prefix-rebuilding update can change the highest node
where v occurs only if v ∈ bagsT (Tpref ∪ App(Tpref)), and in particular, in that case the highest node of
(T ′, bag′, edges′) where v occurs will be in T ′pref∪App(T ′pref). Both |Tpref∪App(Tpref)| and |T ′pref∪App(T ′pref)|
are linear in |u|, so we simply maintain the mapping Top(v) explicitly by recomputing it for all vertices
v ∈ bagsT (Tpref ∪ App(Tpref)).

3.7.4 Closures and blockages

We can now give a proof of Lemma 3.3.23. This will require more work, as apart from dynamically
maintaining relevant information we also need to implement methods for extracting a closure and
blockages.

Proof of Lemma 3.3.23. For the proof, we fix the following two automata:

• R = Rc,` is the closure automaton for parameters c and `, provided by Lemma 3.7.5.

• BK = BK2k+1,c+` is the Bodlaender-Kloks automaton for parameters 2k + 1 and c+ `, provided by
Lemma 3.7.4.

Let BK = (Q,F, ι, δ). Recall that BK is nondeterministic, |Q| 6 2O(k(c+`)2), Q can be computed in time
2O(k(c+`)2), and membership in F , ι, or δ for relevant objects can be decided in time 2O(k(c+`)2).

Our data structure just consists of the data structure provided by Lemma 3.7.7 for the automaton R.
Thus, the initialization time is 2O((c+`)2) · |V (T)| and the update time is 2O((c+`)2) · |u| as requested. It
remains to implement method Query(Tpref). For this, we may assume that the stored annotated tree
decomposition (T, bag, edges) is labeled with the run ρR of R on (T, bag, edges). This means that for every
x ∈ V (T), we have access to repsc(Tx, bagx, edgesx).

Consider a query Query(Tpref). We break answering this query into two steps. In the first step,
we compute a dT -minimal c-small k-closure X of bags(Tpref), together with torsoG(X). This will take
time 2O(k(c+`)2) · |Tpref |. In the second step, we find Blockages(Tpref , X). This will take time 2O((c+`)2) ·
|Exploration(Tpref , X)|.

82 CHAPTER 3. DYNAMIC TREEWIDTH

Step 1: Finding the closure and its torso. Let A be the set of appendices of Tpref . For a ∈ A, let

R(a) := repsc(Ta, baga, edgesa);

recall that R(a) is stored along with a in the data structure. Let Λ be the set of all mappings λ with
domain A such that λ(a) ∈ R(a) for all a. For λ ∈ Λ and a ∈ A, let dλ(a) and Hλ(a) be the first,
respectively the second coordinate of λ(a), and let sλ(a) = |V (Hλ(a)) \ adh(a)|. For x ∈ V (T) we denote
by dT (x) the depth of x in (T, bag, edges). For λ ∈ Λ we define

Hλ :=

(
bags(Tpref) ∪

⋃
a∈A

V (Hλ(a)), edges(Tpref) ∪
⋃
a∈A

E(Hλ(a))

)
,

sλ :=
∑
a∈A

sλ(a),

dλ :=
∑
a∈A

(
dλ(a) + dT (a) · sλ(a)

)
.

Note that by the definition of repsc, we have that

• Hλ = torsoG(V (Hλ)),

• sλ = |V (Hλ)| − |bags(Tpref)|, and

• dλ = dT (V (Hλ))− dT (bags(Tpref))

for all λ ∈ Λ.
Further, for each a ∈ A, the set R(a) comprises all possible nonisomorphic torsos that can be obtained

by picking at most c vertices within cmp(a), and with each possible torso R(a) stores a realization with
the least possible total depth. This immediately implies the following statement.

Claim 3.7.8. Let λ ∈ Λ be such that the treewidth of Hλ is at most 2k + 1 and, among such mappings
λ, sλ is minimum, and among those dλ is minimum. Then V (Hλ) is a dT -minimal c-small k-closure of
bags(Tpref). Further, if no λ as above exists, then there is no c-small k-closure of bags(Tpref).

So, by Claim 3.7.8, it suffices to find λ ∈ Λ that primarily minimizes sλ and secondarily dλ such that
Hλ has treewidth at most k, or conclude that no such λ exists. Indeed, then we can output X := V (Hλ)
and torsoG(X) = Hλ as the output to the query. Note here that once a mapping λ as above is found, one
can easily construct Hλ in time (`+ c)O(1) · |Tpref | right from the definition. Intuitively, to find a suitable
λ we analyze possible runs of the Bodlaender-Kloks automaton BK on the natural tree decomposition of
Hλ inherited from Tpref , for different choices of λ.

Let S = Tpref ∪A. For x ∈ S let Sx be the subset of S consisting of descendants of x and Ax = Sx ∩A,
and Λx be defined just like Λ, but for domain Ax instead of A. For x ∈ V (T), let Tpref,x ⊆ Tpref consist
of the nodes in Tpref that are descendants of x. For x, y ∈ V (T), let dT (x, y) denote their distance in T .
Further, for λ ∈ Λx, define

Hλ
x :=

(
bags(Tpref,x) ∪

⋃
a∈Ax

V (Hλ(a)), edges(Tpref,x) ∪
⋃
a∈Ax

E(Hλ(a)) \
(

adh(x)
2

))
,

sλx :=
∑
a∈Ax

sλ(a),

dλx :=
∑
a∈Ax

(
dλ(a) + dT (x, a) · sλ(a)

)
.

We treat Hλ
x as a boundaried graph with boundary adh(x). Then, Hλ

x has a boundaried tree decomposition
(Tλx , bagλx, edgesλx) naturally inherited from (T, bag, edges) as follows:

• Tλx = T [Sx];

• bagλx(y) = bag(y) for all y ∈ Tpref,x, and bagλx(a) = V (Hλ(a)) for all a ∈ Ax;

• edgesλx(y) = edges(y) ∪
⋃
a∈Ay E(Hλ(a)) ∩ (

(bag(y)
2

)
\
(adh(y)

2

)
) for all y ∈ Tpref,x, and edgesλx(a) =

E(Hλ(a)) \
(adh(a)

2

)
for all a ∈ Ax.

3.7. DYNAMIC AUTOMATA 83

Note that the width of this tree decomposition is at most c+ `.
Let Z denote the set of nonnegative integers together with +∞. Let us use a total order on pairs in

Z×Z where we first compare the first elements and if they are equal the second elements. In a bottom-up
fashion, for every x ∈ S we compute the mapping ζx : Q× 2(adh(x)

2) → Z× Z defined as follows: For q ∈ Q
and W ⊆

(adh(x)
2

)
, ζx(q,W) is the minimum value of (sλx, d

λ
x) among λ ∈ Λx such that

• BK has a run on (Tλx , bagλx, edgesλx) in which x is labeled with q; and

•
⋃
a∈Ax E(Hλ(a)) ∩

(adh(x)
2

)
= W .

In case there is no λ as above, we set ζx(q,W) = (+∞,+∞).
We now argue that the mappings ζx can be computed in a bottom-up manner. This follows from the

following rules, whose correctness is straightforward.

• For every a ∈ A, ζa(q,W) is the minimum pair (s, d) such that there is (d,H) ∈ R(a) with the

following properties:
(
H −

(adh(a)
2

)
, q
)
∈ ι, E(H) ∩

(adh(a)
2

)
= W , and |V (H) \ adh(a)| = s.

• For every x ∈ Tpref with no children, ζx(q,W) = (0, 0) if (Gx, q) ∈ ι and W = ∅, and ζx(q,W) =
(+∞,+∞) otherwise.

• For every x ∈ Tpref with one child y, ζx(q,W) is the minimum (s, d) such that the following holds:
There exist q′ ∈ Q and W ′ ⊆

(adh(y)
2

)
with (s′, d′) = ζy(q′,W ′) such that((

bag(x), adh(x), adh(y), ∅, edges(x) ∪W ′ \
(

adh(x)
2

)
, q′,⊥

)
, q

)
∈ δ,

W = W ′ ∩
(

adh(x)
2

)
,

s = s′, and

d = d′ + s′.

If there are no q′, q′′,W ′ as above, then ζx(q,W) = +∞.

• For every x ∈ Tpref with two children y and z, ζx(q,W) is the minimum (s, d) such that the following
holds: There exist q′, q′′ ∈ Q, W ′ ⊆

(adh(y)
2

)
, and W ′′ ⊆

(adh(z)
2

)
with (s′, d′) = ζy(q′,W ′) and

(s′′, d′′) = ζz(q′′,W ′′) such that((
bag(x), adh(x), adh(y), adh(z), edges(x) ∪W ′ ∪W ′′ \

(
adh(x)

2

)
, q′, q′′

)
, q

)
∈ δ,

W = (W ′ ∪W ′′) ∩
(

adh(x)
2

)
,

s = s′ + s′′, and

d = d′ + d′′ + s′ + s′′.

If there are no q′, q′′,W ′,W ′′ as above, then ζx(q,W) = +∞.

Using the rules above, all mappings ζx for x ∈ S can be computed in total time 2O(k(`+c)2) · |Tpref |, because
|Q| 6 2O(k(`+c)2) and the evaluation time of BK is 2O(k(`+c)2).

By the properties of BK asserted in Lemma 3.7.4, the minimum (sλ, dλ) among those λ ∈ Λ for which
Hλ has treewidth at most k is equal to minq∈F ζr(q, ∅), where r is the root of T . The latter minimum can
be computed in time 2O(k(`+c)2) knowing ζr. Finally, to find λ ∈ Λ witnessing the minimum, it suffices
to retrace the dynamic programming in the standard way. That is, when computing mappings ζx, for
every computed value of ζx(q,W) we memorize how this value was obtained. After finding q ∈ F that
minimizes ζr(q, ∅) we recursively retrace how the value of ζr(q, ∅) was obtained along S in a top-down
manner, up to values computed in the nodes of A; the ways in which these values were obtained give us
the mapping λ. This concludes the construction of the closure X = V (Hλ) and its torso Hλ.

84 CHAPTER 3. DYNAMIC TREEWIDTH

Step 2: Finding blockages. Having constructed X = V (Hλ) together with torsoG(X) = Hλ, we
proceed to finding the set Blockages(Tpref , X). We may assume that every vertex of X has been marked
as belonging to X (which can be done after computing X in time O(|X|) 6 (c+ `)O(1) · |Tpref |), hence
checking whether a given vertex belongs to X can be done in constant time.

First, we observe that for every node x ∈ V (T) \ Tpref , we can efficiently find out the information
about the behavior of X in the subtree rooted at x. Denote Xx := X ∩ cmp(x).

Claim 3.7.9. Given a node x ∈ V (T) \ Tpref , one can compute Xx and torsoGx(Xx ∪ adh(x)) in time
2O((c+`)2).

Proof. For every (d,H) ∈ repsc(Tx, bagx, edgesx), call H a candidate if V (H) \ adh(x) ⊆ X. Note that we
can find all candidates in time (c+ `)O(1) · |repsc(Tx, bagx, edgesx)| 6 2O((c+`)2) by inspecting all elements
of repsc(Tx, bagx, edgesx) one by one. Now, a simple exchange argument shows that Xx ∪ adh(x) is equal
to the largest (in terms of the number of vertices) candidate, and torsoGx(Xx ∪ adh(x)) is equal to this
candidate.

For technical purposes, we need to set up a simple data structure for checking adjacencies in Hλ. The
idea is based on the notion of degeneracy and can be considered folklore.

Claim 3.7.10. In time (c+ `)O(1) · |Tpref | one can set up a data structure that for given vertices u, v ∈ X,
can decide whether u and v are adjacent in Hλ time O(`).

Proof. The treewidth of Hλ is at most 2k + 1 = O(`), implying that we can in time O(k · |X|) compute a
total order 4 on X so that every vertex u ∈ X has only at most 2k + 1 neighbors that are earlier than u
in 4. Therefore, for every vertex u of X we construct a list L(u) consisting of all neighbors of u that are
earlier than u in 4. These lists can be constructed by examining the edges of Hλ one by one, and for
every next edge uv, either appending u to L(v) or v to L(u), depending whether u or v is earlier in 4.
Then whether given u and v are adjacent can be decided in time O(k) by checking whether u appears on
L(v) or v appears on L(u).

Next, for a node x ∈ V (T), we define profile(x) ⊆
(bag(x)

2

)
to be the set consisting of all pairs

{u, v} ⊆ bag(x) such that in G there is path connecting u and v that is internally disjoint with X. (Note
that this definition concerns u and v both belonging and not belonging to X.) Note that if x ∈ Tpref , we
have bag(x) ⊆ X and profile(x) consists of all edges of torsoG(X) = Hλ with both endpoints in bag(x).
Consequently, for such x we can compute profile(x) in time `O(1) using the data structure of Claim 3.7.10.

Next, we show that knowing the profile of a parent we can compute the profile of a child.

Claim 3.7.11. Suppose x is the parent of y in T and y /∈ Tpref . Then given profile(x), one can compute
profile(y) in time 2O((c+`)2).

Proof. Let J be the graph on vertex set bag(y) whose edge set is the union of
• edges(y);
• all edges present in profile(x) with both endpoints in adh(x); and
• all edges present in torsoGz (Xz ∪ adh(z)) that have both endpoints in adh(z), for every child z of y.

Note that J can be constructed in time 2O((c+`)2) using Claim 3.7.9. Now, it is straightforward to see
that profile(y) consists of all pairs {u, v} ⊆ bag(y) such that in J there is a path connecting u and v that
is internally disjoint with X ∩ bag(y). Using this observation, profile(y) can be now constructed in time
`O(1), because J has at most `+ 1 vertices.

Having established Claim 3.7.11, we can finally describe the procedure that finds blockages. The
procedure inspects the appendices a ∈ A one by one, and upon inspecting a it finds all blockages that are
descendants of a. To this end, we start a depth-first search in Ta from a. At all times, together with the
node x ∈ V (Ta) which is currently processed in the search, we also store profile(x). Initially, profile(a) can
be computed using Claim 3.7.11, where the profile of the parent of a – which belongs to Tpref – can be
computed in time `O(1), as argued. When the search enters a node y from its parent x, profile(y) can be
computed from profile(x) using Claim 3.7.11 again. Observe that knowing profile(x), it can be determined
in time (c+ `)O(1) whether x is a blockage:

• If bag(x) ⊆ X and profile(x) =
(bag(x)

2

)
, then x is a clique blockage.

• If bag(x)∩X 6= ∅ and there exists u ∈ bag(x)\X such that {u, v} ∈ profile(x) for all v ∈ bag(x)\{u},
then x is a component blockage.

3.8. PROOF OF Theorems 1.3.1 and 1.3.3 85

Consequently, if x is a blockage, we output x and do not pursue the search further. Otherwise, if x is not
a blockage, the search recurses to the children of x.

Clearly, the total number of nodes visited by the search is bounded by |Exploration(Tpref , X)|,
and for each node we use time 2O((c+`)2). Hence, the algorithm outputs all blockages in total time
2O((c+`)2)|Exploration(Tpref , X)|.

3.8 Proof of Theorems 1.3.1 and 1.3.3

In this section we complete the proof of Theorems 1.3.1 and 1.3.3.
Let us roughly sketch the proof of Theorem 1.3.1. Recall that by Lemma 3.2.5 there exists a data

structure that, for an initially empty dynamic graph G, updated by edge insertions and deletions, maintains
an annotated tree decomposition (T, bag, edges) of G of width at most 6k + 5 under the promise that
the treewidth of G never grows above k. Now we progressively improve the data structure to become
more resilient to queries causing tw(G) to exceed k, and then add support for testing arbitrary CMSO2

properties:

• The first improvement (Lemma 3.8.1) allows the data structure to detect the updates increasing the
treewidth of G above k, which enables us to reject them (i.e., refuse to perform such updates and leave
the state of the data structure intact). This is achieved by: (a) maintaining a dynamic graph G′, equal
to G after each update, and an additional instance of the data structure of Lemma 3.2.5 maintaining
a tree decomposition of G′ of width at most 6k + 11 under the promise that tw(G′) 6 k + 1; (b)
also maintaining the Bodlaender–Kloks automaton (Lemma 3.7.4) that, given the augmented tree
decomposition of G′ of width at most 6k + 11, verifies whether the treewidth of G is at most k; (c)
applying each update to G′ first, using the Bodlaender–Kloks automaton in order to verify whether
tw(G′) 6 k after the update, and, depending on whether this is the case, accepting or rejecting the
update.

• The next improvement (Lemma 3.8.3) allows the data structure to actually process the updates
that would increase tw(G) above k. At each point of time, the data structure will maintain the
information on whether tw(G) 6 k and an annotated tree decomposition of the most recent snapshot
of G of treewidth at most k. This is a fairly standard application of the technique of delaying
invariant-breaking insertions by Eppstein et al. [EGIS96]. This improvement resolves the former
assertion of Theorem 1.3.1.

• In order to resolve the latter assertion of the theorem (i.e., the maintenance of arbitrary CMSO2

properties), we use the data structure of Lemma 3.8.3 along with the prefix-rebuilding data structure
of Lemma 3.2.4.

All three steps should be considered standard and fairly straightforward; for instance, the first two
steps are used to perform an analogous improvement to the data structure of Majewski et al. [MPS23]
maintaining CMSO2 properties of graphs with bounded feedback vertex number.

Lemma 3.8.1. There is a data structure that for an integer k ∈ N, fixed upon initialization, and
a dynamic graph G, updated by edge insertions and deletions, maintains an annotated tree decomposition
(T, bag, edges) of G of width at most 6k + 5 using prefix-rebuilding updates, only accepting the updates
if the treewidth of the updated graph is at most k. More precisely, at every point in time the graph has
treewidth at most k and the data structure contains an annotated tree decomposition of G of width at most
6k + 5. The data structure can be initialized on k and an edgeless n-vertex graph G in time 2k

O(1) · n, and
then every update:

• takes amortized time 2k
O(1)·
√

logn log logn;

• if the treewidth of the graph after the update would be larger than k, then the update is rejected and
“Treewidth too large” is returned;

• otherwise, the update is accepted and the data structure returns a sequence of prefix-rebuilding
updates used to obtain the annotated tree decomposition of the new graph from (T, bag, edges).

Proof. We implement the required data structure by setting up three instances of already existing data
structures:

86 CHAPTER 3. DYNAMIC TREEWIDTH

• Dk: the data structure from Lemma 3.2.5 maintaining an annotated tree decomposition of a dynamic
graph Gk of width at most 6k+5 using prefix-rebuilding updates under the promise that tw(Gk) 6 k;

• Dk+1: an analogous data structure, maintaining an annotated tree decomposition of a dynamic
graph Gk+1 of width at most 6k + 11 using prefix-rebuilding updates under the promise that
tw(Gk+1) 6 k + 1;

• BK: a (6k + 11)-prefix-rebuilding data structure with overhead 2O(k3) maintaining whether the
dynamic graph maintained by an annotated tree decomposition has treewidth at most k; an existence
of such a data structure follows from the combination of Lemmas 3.7.4 and 3.7.7.

All the data structures are initialized with an edgeless graph on n vertices. Between the updates to
the data structure, we maintain the following invariant: All three data structures store the description
of the same dynamic graph of treewidth at most k; and moreover, the annotated tree decompositions
stored by Dk+1 and BK are identical – each prefix-rebuilding update performed by Dk+1 is also applied to
BK. On each successful update, the data structure returns all prefix-rebuilding updates applied on the
annotated tree decomposition stored in Dk.

It remains to show how the updates are handled.

• Assume an edge uv is removed from the graph. Note that edge removals cannot increase the treewidth
of the maintained graph, so the removal can be safely relayed to all data structures.

• When an edge uv is to be added to the graph, we first update Dk+1 by adding the edge. As the
addition of an edge to a graph may increase its treewidth by at most one, Dk+1 will handle this
update. If, after the update, BK confirms that the treewidth of the stored graph is still at most k,
we accept the update by adding uv also to the graph stored by Dk.

On the other hand, if BK returns that the treewidth of the graph after the update is larger then
k, then we reject the update: We update Dk+1 by removing uv from the stored graph and return
“Treewidth too large”.13

It is easy to show that the updates maintain the prescribed invariants and that on each query to the data
structure, Dk and Dk+1 are updated a constant number of times, so the required time complexity bounds
follow for these data structures. It also follows from Lemma 3.2.5 that the total size of prefix-rebuilding
updates performed by Dk+1 over the first q queries is 2k

O(1) · n + 2k
O(1)·
√

logn log logn · q. As each update
of Dk+1 is also applied to BK (a prefix-rebuilding data structure with overhead 2O(k3)), the first q updates

to the data structure are processed by BK in time 2k
O(1) · n + 2k

O(1)·
√

logn log logn · q. Thus, the amortized
time complexity of the data structure is proved.

We now strengthen the data structure from Lemma 3.8.1 so as to accept the edge insertions increasing
the treewidth of the graph above k. To this end, we use the aforementioned technique of postponing
invariant-breaking insertions. Here, we use a formulation of the technique by Chen et al. [CCD+20].

Suppose U is a universe. A family of subsets F ⊆ 2U is said to be downward closed if F ∈ F implies
E ∈ F for all E ⊆ F . Assume that F is a data structure maintaining a dynamic subset X ⊆ U under
insertions and removals of elements. We say that F:

• strongly supports F membership if F supports a boolean query Member() which returns whether
X ∈ F ;

• weakly supports F membership if F maintains an invariant that X ∈ F , rejecting the insertions that
would break the invariant.

Then, the following statement provides a way of turning weak support for F membership into the strong
support:

Lemma 3.8.2 ([CCD+20], Lemma 11.1). Suppose U is a universe and we have access to a dictionary L
on U . Let F ⊆ 2U be downward closed and suppose that there is a data structure D weakly supporting F
membership.

Then there is a data structure D′ strongly supporting F membership, where each Member() query takes
O(1) time and each update uses amortized O(1) time and amortized O(1) calls to operations on L and
D. Moreover, F′ maintains an instance of F and whenever Member() = true, then F stores the same set
X ∈ F as F′.
13Note that even though the update is rejected in this case and the graphs stored by Dk and Dk+1 do not change, the

annotated tree decomposition stored by Dk+1 may ultimately be modified by the update.

3.9. CONCLUSIONS 87

The last statement of Lemma 3.8.2 was not stated formally; however, it is immediate from the proof
in [CCD+20].

We proceed to show how Lemma 3.8.2 can be applied to the data structure of Lemma 3.8.1.

Lemma 3.8.3. There is a data structure that for an integer k ∈ N, fixed upon initialization, and a dynamic
graph G, updated by edge insertions and deletions, maintains:

• an annotated tree decomposition (T, bag, edges) of width at most 6k + 5 of the most recent snapshot
of G of treewidth at most k;

• a boolean information on whether tw(G) 6 k.

The data structure can be initialized on k and an edgeless n-vertex graph G in time 2k
O(1) · n, and then

every update:

• takes amortized time 2k
O(1)·
√

logn log logn;

• returns “Treewidth too large” if the treewidth of the graph after the update is larger than k; otherwise,
returns the sequence of prefix-rebuilding updates used to modify (T, bag, edges).

Proof. Following the notation of Chen et al., define the universe U :=
(
V (G)

2

)
. Moreover, define a family

F ⊆ 2U as follows: X ∈ F if and only if the graph H with V (H) = V (G) and E(H) = X has treewidth
at most k. It is immediate that F is downward closed. Let also F be the data structure of Lemma 3.8.1.
Observe that F weakly supports F : F handles edge additions and removals, accepting them exactly when
the treewidth of the graph after the update is at most k. Therefore, by Lemma 3.8.2, there exists a data
structure F′ strongly supporting F . Moreover, F′ maintains an instance of F and whenever the treewidth
of the maintained graph is at most k, then F stores the same graph as F′.

Now, our data structure maintains the instances of F and F′ as above and the sequence s of prefix-
rebuilding updates applied to F since the last time the treewidth of G was k or less. Each update is relayed
verbatim to F′; in turn, F′ updates F through edge insertions and deletions, causing F to rebuild its
annotated tree decomposition using a sequence of prefix-rebuilding updates. Such updates are appended
to s. If, after the update to our data structure, F′ returns Member() = false, then we return “Treewidth too
large”. Otherwise, we return the sequence s of prefix-rebuilding updates and clear s before the next query.

It is straightforward to show that the described data structure satisfies all the requirements of the
lemma.

The proof of Theorem 1.3.1 is now direct:

Proof of Theorem 1.3.1. The first part of the statement of the theorem is immediate from Lemma 3.8.3.
Now, assume we are given a CMSO2 formula ϕ and we are to verify whether G |= ϕ whenever tw(G) 6 k.
To this end, we invoke Lemma 3.2.4 and instantiate a (6k + 5)-prefix-rebuilding data structure M with
overhead Ok,ϕ(1) that can be queried whether G |= ϕ in worst-case time Ok,ϕ(1). Now, whenever the
data structure of Lemma 3.8.3 returns that tw(G) 6 k, it returns a sequence of prefix-rebuilding updates,
which we immediately forward to M. Then, we query M to verify whether G |= ϕ.

From Lemma 3.8.3 it immediately follows that the total size of all prefix-rebuilding updates over the
first q queries is at most 2k

O(1) · n + 2k
O(1)·
√

logn log logn · q. Hence, M processes the first q queries in
time Ok,ϕ(2k

O(1) · n + 2k
O(1)·
√

logn log logn · q), which satisfies the postulated amortized time complexity
bounds.

Also, Theorem 1.3.3 follows immediately by the same proof as above by additionally using a prefix-
rebuilding data structure for LinCMSO2 from Lemma 3.7.3.

3.9 Conclusions

We presented a data structure for the dynamic treewidth problem that achieves amortized update time
2Ok(
√

logn log logn). The obvious open question is to improve this complexity. It is plausible that some
optimization of the current approach could result in shaving off the

√
log log n factor in the exponent,

but complexity of the form 2Ok(
√

logn) seems inherent to the recursive approach presented in Section 3.5.
Nevertheless, we conjecture that it should be possible to achieve update time that is polylogarithmic in n
for every fixed k, that is, of the form logOk(1) n, or maybe even Ok(logc n) for some universal constant c.

88 CHAPTER 3. DYNAMIC TREEWIDTH

The ultimate goal would be to get closer to the O(log n) bound achieved by Bodlaender for the case
k = 2 [Bod93a].

Apart from the above, we hope that our result may open new directions in the design of parameterized
dynamic data structures. More precisely, dynamic programming on tree decompositions is used as a
building block in multiple different techniques in algorithm design, so Theorem 1.3.1 may be useful for
designing dynamic counterparts of those techniques. Here is a list some possible directions.

• Theorem 1.3.1 provides the dynamic variant of the most basic formulation of Courcelle’s Theorem.
It seems that dynamic variants of the optimization formulation and the counting formulation, due to
Arnborg et al. [ALS91], just follow from combining the data structure of Theorem 1.3.1 with suitably
constructed automata. It would be interesting to see whether Theorem 1.3.1 can be used also in the
context of more general problems concerning CMSO2 queries on graphs of bounded treewidth, for
instance the problem of query enumeration; see e.g. [Bag06,KS13].

• As mentioned in the Introduction, bidimensionality is a basic technique used in the design of
parameterized algorithms in planar graphs, or more generally, graphs excluding a fixed minor;
see [CFK+15, Section 7.7]. As it is based on solving the problem efficiently on graphs of bounded
treewidth, one could investigate whether a dynamic counterpart could be developed using Theo-
rem 1.3.1.

• Related to the point above, it would be interesting to see whether Theorem 1.3.1 could be used
to design a dynamic counterpart of Baker’s technique [Bak94]. This thesis already contains such
a counterpart (see Chapter 5 for the approximation schemes for Independent Set and Dominating
Set in planar and apex-minor-free classes of graphs), but interestingly, the framework of dynamic
treewidth is not used there at all. The complexity guarantees of the data structures in Chapter 5
are also worse than these promised by Theorem 1.3.1. Hence it would be interesting to understand
whether the concepts of dynamic treewidth could be used to improve the running times of these
approximation schemes.

• The irrelevant vertex technique is a classic principle in parameterized algorithms, based on iteratively
deleting vertices from a graph while not changing the answer to the problem, until the graph in
question has bounded treewidth and can be tackled directly using dynamic programming. A very
recent result of Korhonen, Pilipczuk, and Stamoulis [KPS24] heavily utilizes our data structure
for dynamic treewidth to efficiently implement this technique for the classical problems of Minor
Testing and Vertex Disjoint Paths: They can detect whether an n-vertex, m-edge (static)
graph contains a graph H as a minor in time OH(n1+ε), and they can solve a (static) instance of
Vertex Disjoint Paths with k terminal pairs in time Ok(m1+ε). Previously, the best known
algorithms for both problems had quadratic dependency on the number of vertices in the graph.

Still, while certainly challenging, it does not seem impossible to derive dynamic variants of some
of the algorithms obtained using the irrelevant vertex technique. A concrete candidate here would
be the Vertex Disjoint Paths problem on planar graphs, which admits a relatively simple and
well-understood irrelevant vertex rule [AKK+17].

• Meta-kernelization, due to Bodlaender et al. [BFL+16], is a powerful meta-technique for obtaining
small kernels for parameterized problems on topologically-constrained graphs. The fundamental
concept in meta-kernelization is protrusion: a portion of the graph in question that induces a
subgraph of bounded treewidth and communicates with the rest of the graph through a bounded-size
interface. Kernelization algorithms obtained through meta-kernelization use reduction rules based on
protrusion replacement: finding a large protrusion, understanding it using tree-decomposition-based
dynamic programming, and replacing it with a small gadget of the same functionality. It would
be interesting to see if in some basic settings, Theorem 1.3.1 could be applied in combination
with meta-kernelization to obtain data structures for maintaining small kernels in dynamic graphs.
Dominating Set on planar graphs would probably be the first problem to look into, as it admits a
simple kernelization algorithm that predates (and inspired) meta-kernelization [AFN04]. We remark
that dynamic kernelization has already been studied as a way to obtain dynamic parameterized data
structures [AMV20, IO14].

Chapter 4

Dynamic rankwidth

This chapter presents the results of our work on dynamic rank decompositions [KS24]. Our main goal is
the following result about computing rankwidth exactly. The result has been stated in the introductory
part of the thesis; for convenience, we restate it below.

Theorem 1.3.6 ([KS24]). There is an algorithm that, given an n-vertex m-edge graph G and an integer k,

in time Ok(n · 2
√

logn log logn) +O(m), either outputs a rank decomposition of G of width at most k or
determines that the rankwidth of G is larger than k. The algorithm also outputs a (2k+1 − 1)-expression
for cliquewidth of G within the same running time.

Moreover, every fixed graph problem that can be expressed in LinCMSO1 can be solved in time Ok(n ·
2
√

logn log logn) +O(m) on graphs of rankwidth k.

Theorem 1.3.6 improves upon the Ok(n2) time algorithm of Fomin and Korhonen [FK22], and is a

subpolynomial 2
√

logn log logn = no(1) factor away from concluding the long line of work on computing
rankwidth in the setting where k is bounded [OS06,OS07,CO07,Oum08a,HO08,JKO21,FK22]. Moreover,

if the average degree of the input graph is higher than f(k) · 2
√

logn log logn for the function f(k) hidden by
the Ok(·)-notation (which is a very natural case when we are interested in rankwidth), then our algorithm
works in truly linear O(m) time.

As both the main ingredient in proving Theorem 1.3.6 and a contribution of independent interest,
we give a data structure for efficiently maintaining rank decompositions of dynamic graphs under edge
insertions and deletions, under the promise that the rankwidth of the graph never grows above a given
parameter k. The data structure can also maintain any finite-state dynamic programming scheme on
the rank decomposition. We formalize this by stating that it can maintain the value of any LinCMSO1

sentence on the graph. In particular, we prove the following.

Theorem 1.3.4 ([KS24]). There is a data structure that is initialized with an integer k and an empty
n-vertex dynamic graph G, and maintains a rank decomposition of G of width at most 4k under edge
insertions and deletions, under the promise that the rankwidth of G never exceeds k. The initialization
time is Ok(n log2 n) and the amortized update time is 2Ok(

√
logn log logn).

Further, the data structure can be initialized with a LinCMSO1 sentence ϕ and it can maintain the
value of ϕ on G. In such a case, the initialization time of the data structure is Ok,ϕ(n log2 n) and the

amortized update time is 2Ok,ϕ(
√

logn log logn).

To prove Theorem 1.3.6, we use a bit more technical version of Theorem 1.3.4 where we assert that
the rank decomposition held by the data structure is represented as an “annotated rank decomposition”
(defined in Section 4.3). Even after this the proof of Theorem 1.3.6 requires nontrivial additional work.

As rankwidth generalizes treewidth, the high-level approach of our Theorem 1.3.4 is similar to the
high-level approach of the data structure of Chapter 3 (yielding a similar running time). However, making
the approach work for rankwidth requires developing an extensive amount of new machinery for rankwidth,
with several new algorithmic and structural insights. We provide a comparison between techniques in
Theorem 1.3.4 and in the result of Chapter 3 at the end of Section 4.1.1. We note that also formally
speaking, Theorem 1.3.4 is a generalization the result of Chapter 3: The setting of treewidth and CMSO2

logic can be reduced to the setting of rankwidth and CMSO1 logic by considering instead of a graph G
the graph G′ obtained by subdividing every edge of G once and adding two degree-1 vertices adjacent to
each non-subdivision vertex. Then every edge update of G can be simulated by two edge updates of G′,

89

90 CHAPTER 4. DYNAMIC RANKWIDTH

the rankwidth of G′ is at most the treewidth of G plus one, and every CMSO2 sentence about G can be
translated into a CMSO1 sentence about G′.

Recalling the framework of edge update sentences from Section 1.3.1, we generalize Theorem 1.3.4 to
support dense graph updates as follows:

Theorem 1.3.5 ([KS24]). The data structure of Theorem 1.3.4, when furthermore initialized with a given
integer d, can also support the following operations:

• Update(e): Given an edge update sentence e of length at most d, either returns that the graph
resulting from applying e to G would have rankwidth more than k, or applies e to update G. Runs in
|e| · 2Ok,d(

√
logn log logn) amortized time.

• LinCMSO1(ϕ,X1, . . . , Xp): Given a LinCMSO1 sentence ϕ of length at most d with p free set variables
and p vertex subsets X1, . . . , Xp ⊆ V (G), returns the value of ϕ on (G,X1, . . . , Xp). Runs in time

Od(1) if X1, . . . , Xp = ∅, and in time
∑p
i=1 |Xi| · 2Ok,d(

√
logn log logn) otherwise.

We discuss further extensions of Theorems 1.3.4 and 1.3.6 in Section 4.11.

Organization. We start by giving an overview of our proofs in Section 4.1. We discuss additional notation
and preliminary results in Section 4.2. Then, we give our framework of annotated rank decompositions and
prefix-rebuilding operations in Section 4.3 (compare it to the treewidth counterparts from Section 3.2).
In Section 4.4 we give the main tools for maintaining rank decompositions of dynamic graphs, although
delaying significant ingredients to Sections 4.8 and 4.9; here, we rely on the tools already implemented
for dynamic treewidth in Sections 3.3 to 3.5. In Section 4.5 we introduce rank decomposition automata
– a rankwidth variant of tree decomposition automata from Section 3.7 – and give results about them,
though deferring some standard results to Section 4.10. Then, in Section 4.6 we finish the proofs of
Theorems 1.3.4 and 1.3.5, and in Section 4.7 we prove Theorem 1.3.6.

In the following part of the chapter we establish several auxiliary results related to rank decompositions
that we use in the proofs of Theorems 1.3.4 to 1.3.6. In Section 4.8 we prove a result called the Dealternation
Lemma for rankwidth – which is an analog of the Dealternation Lemma for treewidth by Bojańczyk
and Pilipczuk ([BP22], see also Section 3.3.1) – and which is used in Section 4.4. In Section 4.9 we give
results related to computing exact rankwidth by dynamic programming, which are used in Sections 4.4,
4.6 and 4.7. We believe that the results in Sections 4.8 and 4.9 are of independent interest. In Section 4.10,
we show how rank decomposition automata can emulate cliquewidth decompositions (k-expressions) and
argue that our formalism of automata in Section 4.5 can solve CMSO1 verification and optimization
problems efficiently. Finally, we conclude in Section 4.11.

4.1 Overview

In this section we give an overview of our algorithms. We start by giving an overview of the proof of
Theorem 1.3.4 in Section 4.1.1. We omit many important ingredients, of which two major ones we overview
in Sections 4.1.2 and 4.1.3. We overview the proof of Theorem 1.3.6 in Section 4.1.4.

4.1.1 Dynamic rankwidth

Suppose we maintain a dynamic n-vertex graph G under edge insertions and deletions, and the rankwidth
of G is guaranteed to stay at most k. Our goal will be to maintain a rooted rank decomposition T = (T, λ)

of G of width at most 4k and height at most h = 2Ok(
√

logn log logn). Rooted rank decompositions are
defined like rank decompositions, except the tree T is a rooted binary tree. Even the existence of rank
decompositions with such parameters is not immediately obvious, but indeed Courcelle and Kanté [CK07]
show that a rank decomposition of width k can be turned into a rooted rank decomposition of width at
most 2k and height O(log n).

It is essential for our algorithm to also maintain dynamic programming schemes on the rank decom-
position. We need this to support both the LinCMSO1 queries and various internal operations of our
data structure. We will formalize dynamic programming as automata processing the tree T , so that the
state of a node can be computed in Ok(1) time from the states of its children. For this, we need to store
additional information about the graph G in the rank decomposition, for which we next define annotated
rank decompositions; compare this notion to annotated tree decompositions described in Section 3.2.

4.1. OVERVIEW 91

For an edge xy of the tree T , we denote by L(T)[~xy] ⊆ V (G) the vertices of G that are mapped to
leaves of T closer to x than y. If T has width 6 4k, there exists a set R ⊆ L(T)[~xy] with |R| 6 24k so that
for every v ∈ L(T)[~xy] exists r ∈ R so that N(r) \ L(T)[~xy] = N(v) \ L(T)[~xy]. We define that such R is
a representative of L(T)[~xy], and a minimal such R a minimal representative of L(T)[~xy]. An annotated
rank decomposition stores for every oriented edge ~xy of T a minimal representative R(~xy) of the set
L(T)[~xy]. It also stores for every edge xy of T the bipartite graph E(xy) = G[R(~xy),R(~yx)], encoding
the adjacencies between L(T)[~xy] and L(T)[~yx]. Furthermore, for every (oriented) path xyz of length
3 in T , it stores the function F(xyz) : R(~xy) → R(~yz), mapping each v ∈ R(~xy) to r ∈ R(~yz) so that
N(r) \ L(T)[~yz] = N(v) \ L(T)[~yz]. It can be shown that an annotated rank decomposition of G uniquely
defines the graph G. Indeed in our algorithm we do not store the graph G explicitly; we only maintain an
annotated rank decomposition of it.

Then, the slightly more formal definition of a rank decomposition automaton is that it is a tree
automaton working on T , where the state of a node x can be computed from the states of its children
and the annotations R, E ,F around x in Ok(1) time. Note that the total size of the annotations around
x is Ok(1). A significant part of our result is to show that various dynamic programming routines on
rank decompositions and cliquewidth expressions can be formulated as rank decomposition automata,
similar to how dynamic programming schemes on tree decompositions can be stated as tree decomposition
automata (Section 3.7). Formal definitions about annotated rank decompositions are in Section 4.3 and
about rank decomposition automata in Section 4.5.

After this detour to dynamic programming, let us return to the problem of dynamic maintenance of
an annotated rank decomposition T of G. Suppose T has width at most 4k and height at most h, and there
comes an update to insert or delete an edge between two vertices u and v, which turns G into G′. Let Tpref

be the minimal prefix of T that contains λ(u) and λ(v). We have that |Tpref | 6 2 · h 6 2Ok(
√

logn log logn).
Now, we can turn T into an annotated rank decomposition of G′ by only re-computing annotations inside
Tpref , which can be done in Ok(|Tpref |) time. The states of the maintained automata also need to be
re-computed only for nodes in Tpref , which also works in Ok(|Tpref |) time. Therefore, we manage to update
T in the desired time bound. The only issue is that the width of T could increase in this process.

We observe that the width of T can increase only by one, and moreover, only the widths of edges
of T inside Tpref can increase, so suppose now that T has width 4k + 1 and all edges of width 4k + 1
are inside Tpref . Since the edges of T incident to λ(u) and λ(v) have width at most 1 at all times, we
can now remove both λ(u) and λ(v) from Tpref and maintain that all edges of width 4k + 1 are inside
Tpref . To reduce the width, we design a refinement operation, that takes as input a prefix Tpref of T not
containing any leaves of T such that all edges incident to a vertex outside of Tpref have width at most 4k
and, in some sense, locally re-computes the decomposition for the prefix Tpref . More accurately, the goal
is that applying refinement to Tpref reduces the width back to at most 4k, assuming G has rankwidth at
most k, and runs in amortized time proportional to |Tpref |. The refinement can increase the height of T
by O(log n). To not allow the height of T to spiral out of control, we then use a height reduction scheme,
that by repeatedly applying refinement decreases the height back to at most h.

A keen reader may observe that the blueprint of the data structure above closely resembles the
implementation of the data structure for dynamic treewidth presented in Chapter 3. This intuition is,
of course, correct; in fact, we borrow the implementation of the height reduction scheme verbatim from
Section 3.5. On the other hand, the implementation of the refinement operation needs to be slightly
amended for dynamic rankwidth since tree and rank decompositions are structurally slightly different:
In a tree decomposition of a graph, each vertex of the original graph is placed in a connected subtree of
the decomposition, but in the case of rank decomposition, vertices are stored only in the leaves of the
decomposition. Hence some technical details – such as the definition of a closure or a refinement of a prefix
of the decomposition – must change to accommodate rank decompositions.

Then we delve into the details of the refinement operation. Let Tpref be the given prefix, and let us
define ~App(Tpref) as the set of oriented edges ~xy of T with x /∈ Tpref and y ∈ Tpref . Then we say that
a closure of Tpref is a partition C of V (G), so that for each C ∈ C there exists ~xy ∈ ~App(Tpref) with
C ⊆ L(T)[~xy]. A rank decomposition of a closure C is a pair T ? = (T ?, λ?), where T ? is a cubic tree
with |C| leaves and λ? is a bijection from C to the leaves of T ?. The width of T ? can be naturally defined
analogously to the definition for rank decompositions of graphs. Before giving any arguments about how
to find closures C with desirable properties, let us describe how the refinement operation uses a closure C
to transform T into a new annotated rank decomposition T ′.

Assume T ? is a rank decomposition of C of width at most 2k. We use the method of [CK07] to turn
T ? into a rooted rank decomposition T ?? of width at most 4k and height at most O(log n). Then, for
each C ∈ C, we construct from T a rooted rank decomposition T C with |C| leaves corresponding to C

92 CHAPTER 4. DYNAMIC RANKWIDTH

by repeatedly deleting all leaves not corresponding to vertices in C and contracting degree-2 nodes. In
particular, if T contains an edge xy with L(T)[~xy] ∩ C 6= ∅ and L(T)[~yx] ∩ C 6= ∅, then T C contains an
edge x′y′ with L(T)[~x′y′] = L(T)[~xy] ∩ C and L(T)[~y′x′] = L(T)[~yx] ∩ C (and all of edges of T C are
like that). Then we construct T ′ by taking T ?? and identifying the root of each T C with the leaf of T ??
corresponding to C. Without assuming anything about C, we can deduce that the height of T ′ is at most
O(log n) more than the height of T and all edges of T ′ corresponding to edges of T ?? have width at most
4k. However, we do not know anything about the widths of edges not in T ??, and we do not know how
this transformation could be implemented efficiently.

The first requirement for efficient implementation of this transformation is that |C| is not too large.
We prove the existence of a closure with an even stronger property. We say that C is a k-closure if the
rankwidth of C is at most 2k. We also say that C is c-small if for all ~xy ∈ ~App(Tpref) there are at most c
parts C ∈ C with C ⊆ L(T)[~xy]. We prove the following lemma in Section 4.4; compare it to the Small
Closure Lemma for treewidth (Lemma 3.3.2).

Lemma 4.1.1 (Lemma 4.4.2). For every k, ` ∈ N there exists c ∈ N so that if T has width at most ` and
G has rankwidth at most k, then for any prefix Tpref of T there exists a c-small k-closure C of Tpref .

As | ~App(Tpref)| 6 O(|Tpref |), this implies |C| 6 Ok(|Tpref |). In Section 4.1.2, we will highlight the main
tool we develop for proving Lemma 4.1.1 – the Dealternation Lemma for rankwidth, analogous to the
Dealternation Lemma for treewidth of Bojańczyk and Pilipczuk ([BP22], also cited in a slightly weaker
form in Lemma 3.3.3) – and overview its proof, which is fully presented in Section 4.8.

We then require one more property of C, which will be useful in both addressing the issue of the
widths of the edges of T ′ coming from the decompositions T C and in the efficient implementation of
the refinement. For a node x of T with parent p we denote L(T)[x] = L(T)[~xp], and when x is the root
L(T)[x] = V (G). We say that C cuts a node x of T if more than one part in C intersects L(T)[x], and
define cut(C) to be the set of nodes cut by C. Note that cut(C) is a prefix of T and Tpref ⊆ cut(C). We
define that C is a minimal c-small k-closure if among all c-small k-closures of Tpref , C primarily minimizes∑
C∈C cutrk(C) and secondarily minimizes |cut(C)|. Here, cutrk(C) denotes the rank of the |C|× |V (G)\C|

matrix describing adjacencies between C and V (G) \ C. We again encourage the reader to compare the
definition of minimal closures above to its treewidth analog in Section 3.3.2 (Definition 5).

We observe that if T has a node x ∈ V (T) \ Tpref and C ∈ C intersects L(T)[x], then in T ′ there is a
node xC with L(T ′)[xC] = L(T)[x] ∩ C, and moreover all nodes of T ′ coming from the decompositions
T C can be characterized like this. Therefore, to prove that T ′ has width at most 4k, it suffices to prove
that for all such x it holds that cutrk(L(T)[x] ∩ C) 6 4k. We prove the following stronger statement in
Section 4.4.

Lemma 4.1.2 (Lemmas 4.4.3 and 4.4.6). Let C be a minimal c-small k-closure of Tpref , C ∈ C, and
x ∈ V (T) \ Tpref with L(T)[x] ∩ C 6= ∅. Then cutrk(L(T)[x] ∩ C) 6 cutrk(L(T)[x]), with equality only if
L(T)[x] ⊆ C.

The statement above relates to the Closure Linkedness Lemma (Lemma 3.3.7) from dynamic treewidth.
As cutrk(L(T)[x]) 6 4k for x ∈ V (T) \ Tpref , this implies that T ′ has width at most 4k when C is

minimal. The proof of Lemma 4.1.2 makes use of the submodularity of the cutrk function. It can be
considered to be a rankwidth analog of the techniques developed for improving tree decompositions by
Korhonen and Lokshtanov [KL23]. Let us then assume that C is a minimal c-small k-closure.

We then use the fact that in Lemma 4.1.2 the equality holds only if L(T)[x] ⊆ C. The nodes of T can
be partitioned into three groups based on Tpref and C – those in Tpref , those in cut(C) \ Tpref , and those in
V (T) \ cut(C). If x ∈ V (T) \ cut(C), then there exists C ∈ C so that L(T)[x] ⊆ C. In this case the resulting
decomposition T ′ will contain the exactly same subtree rooted at x as T , so maximal such subtrees can
be copied from T to T ′ by changing just one pointer, copying also the annotations and the automata
states, and the number of them is O(|cut(C)|). If x ∈ cut(C) \ Tpref , then a node xC corresponding to x is
constructed for every C ∈ C that intersects L(T)[x]. Because C is c-small, there are at most c such nodes
xC , and by Lemma 4.1.2 for all of them it holds that cutrk(L(T ′)[xC]) < cutrk(L(T)[x]). Thus, we can
think that we replace each node in cut(C) \ Tpref by at most c nodes that each has smaller width (the
width of a node is the width of the edge between it and its parent), which motivates to use the following
potential function for amortized analysis:

Φ(T) =
∑

x∈V (T)

(2c)widthT (x) · heightT (x),

4.1. OVERVIEW 93

where heightT (x) denotes the height of x in T , i.e., the distance from x to the deepest leaf in its subtree.
Let us not focus on the height(x) factor at this point, but note that by the above discussion, the factor
(2c)widthT (x) achieves that for every x ∈ cut(C) \ Tpref ,∑

C∈C |L(T)[x]∩C 6=∅

(2c)widthT ′ (x
C) · heightT ′(x

C) < (2c)widthT (x) · heightT (x),

implying that the potential decreases proportionally to the number of nodes in cut(C) \ Tpref , which
justifies implementing the refinement operation in time proportional to |cut(C)|. Before going into more
analysis of the potential and the height reduction, let us discuss this implementation.

Given Tpref , we wish to find in time Ok(|cut(C)|) some representation of a minimal c-small k-closure
C of Tpref . We observe that for each oriented edge ~xy ∈ ~App(cut(C)), there is unique C ∈ C so that
L(T)[~xy] ⊆ C. Therefore, we define the appendix edge partition aep(C) of C to be the partition of
~App(cut(C)) into |C| parts naturally corresponding to C. As | ~App(cut(C))| 6 O(|cut(C)|), we can represent

aep(C) in O(|cut(C)|) space. Also, a rank decomposition T ? of C can be represented in O(|cut(C)|) space
by associating the leaves with the parts of aep(C). We compute these objects by the following lemma,
which we prove in Section 4.9 and overview in Section 4.1.3. This lemma resembles a similar statement we
have proved for dynamic treewidth (Lemma 3.3.23).

Lemma 4.1.3 (Informal statement of Lemma 4.4.7). By maintaining an automaton on T , we can
support an operation that given a prefix Tpref , in time Ok(|cut(C)|) returns cut(C), aep(C), and a rank
decomposition T ? of C of width at most 2k, for some minimal c-small k-closure C of Tpref , or concludes
that the rankwidth of G is more than k.

After turning T ? into a log-height decomposition T ??, we can compute based on T ?? and aep(C) a
“recipe” of size O(|cut(C)|) on how the subtrees of T hanging below edges ~xy ∈ ~App(cut(C)) should be
re-arranged to transform T into T ′. Even after this, the problem of turning T into an annotated rank
decomposition T ′ efficiently turns out to not be straightforward, as we need to compute the annotations
for T ′. In Section 4.3 we give a divide-and-conquer type algorithm for computing these annotations based
on the recipe in Ok(|cut(C)| log n) time (Lemmas 4.3.8 and 4.3.11). This concludes the overview on how T
is transformed into T ′ in Ok(|cut(C)| log n) time.

We then return to the potential function Φ(T). The main idea of the amortized analysis of our
algorithm is that each edge update can increase the potential by at most Ok(h2) (recall that h is the bound
on the height of T) and the refinement operation can increase the potential by at most Ok(h|Tpref | log n)
and decreases it proportionally to |cut(C) \ Tpref |. The fact that edge updates increase the potential by at
most Ok(h2) is straightforward from the facts that the update affects the widths of at most O(h) nodes,
and the contribution of each node to potential is at most Ok(h).

The analysis of the potential change caused by refinement is based on case-analysis of nodes of T ′: If
a node is in a subtree directly copied from T to T ′, then nothing changes. If a node is of type xC for
x ∈ cut(C) \ Tpref and C ∈ C, then its potential can be charged from the potential of the corresponding
node x as argued earlier, and this even decreases the potential proportionally to |cut(C) \ Tpref |. If a node
comes from T ??, then its height is initially O(log n), but can increase when we attach trees T C as its
descendants. We observe that each T C can increase the height of at most O(log n) such nodes, so the total
potential of such nodes is bounded by Ok(|T ??| log n) +

∑
C∈C Ok(height(T C) log n) 6 Ok(h|Tpref | log n)

(recall that |C| 6 Ok(|Tpref |)). These arguments imply that if the height of T stays at most h, then the
amortized running time of each update is Ok(h2 log2 n). It remains to give the height reduction scheme to
maintain this height bound.

Suppose the height of T increased above h by an application of the refinement operation. We wish to
argue that whenever the height is more than h, there is a prefix Tpref , so that if we apply the refinement
on Tpref , the potential Φ(T ′) of the resulting decomposition is smaller than Φ(T), and moreover, the
running time of the refinement operation is Ok((Φ(T)− Φ(T ′)) · log n). For this, we prove the following
more fine-grained bound on Φ(T ′):

Φ(T ′) 6 Φ(T)−
∑

x∈Tpref

heightT (x)− |cut(C)|+ log n · Ok

|Tpref |+
∑

~xy∈ ~App(Tpref)

heightT (x)

 .

This is not very hard to deduce from the construction of T ′ and the arguments for bounding the potential
change given earlier, but we omit giving a more detailed argument here. Then, it suffices to prove that if
T has height more than h, we can find a nonempty prefix Tpref so that according to the above formula,

94 CHAPTER 4. DYNAMIC RANKWIDTH

Φ(T ′) 6 Φ(T) − |cut(C)|. For this, we use the following result, which we have already proved for the
purposes of height reduction in the data structure for dynamic treewidth.

Lemma 3.5.2. Let c > 2 and T be a binary tree with at most N nodes. If the height of T is at least
2Ω(
√

logN log c), then there exists a nonempty prefix Tpref of T so that

c ·

|Tpref |+
∑

a∈App(Tpref)

heightT (a)

 6 ∑
x∈Tpref

heightT (x). (3.13)

Moreover, if we can access the height of each node of T in constant time, then such Tpref can be computed
in time O(|Tpref |).

By plugging in N = O(n) and c = f(k) log n for a suitable function f(k), the existence of a desired

prefix Tpref follows whenever height(T) > 2Ω(
√

logn log(f(k) logn)) > 2Ωk(
√

logn log logn), which is the claimed
bound for h. Then, the height-reduction scheme consists of applying refinement operations on such
prefixes Tpref until the height is decreased below h. As the running time is proportional to the potential
decrease, these operations are “free” from the viewpoint of amortized analysis – exactly the same way as
in Chapter 3. This concludes the overview of our dynamic algorithm, up to the Dealternation Lemma and
the proof of Lemma 4.1.3, which we will overview in Sections 4.1.2 and 4.1.3, respectively.

Comparison to dynamic treewidth. Our approach for dynamic rankwidth is inspired by the approach
for dynamic treewidth. In particular, we design a refinement operation with similar properties to the
refinement counterpart for treewidth, so that we can then use the height-reduction scheme encapsulated
in Lemma 3.5.2 to control the height of the decomposition. As the combinatorics of treewidth and
rankwidth are different, the definitions and structural results used for our refinement operation are
different from those of the refinement operation of treewidth. In particular, the concept of closures and
Lemmas 4.1.1 and 4.1.2, along with the Dealternation Lemma, are novel structural results about rankwidth.
Somewhat surprisingly, in the end our rankwidth version of the refinement operation turned out to be
more elegant than the treewidth version, which has a more complicated construction of the resulting
decomposition T ′, resulting also in a more complicated analysis of the potential. From the more low-level
side, manipulating rank decompositions and maintaining automata on them is much more complicated
and less researched task than that on tree decompositions. We consider the concept of annotated rank
decompositions, along with the efficient algorithms for manipulating them (particularly Lemma 4.3.8), an
important contribution of this result, which we will highlight further in Section 4.1.3.

An astute reader might have observed an interesting detail differentiating the statements of Theo-
rem 1.3.1 (the data structure for dynamic treewidth) and Theorem 1.3.6 (the data structure for dynamic
rankwidth): In the treewidth case, we are able to monitor whether the treewidth of the dynamic graph is
below k at any given point of time, and present a marker “Treewidth too large” instead of the approximate
tree decomposition whenever the treewidth exceeds k. This is expressly not the case for dynamic rankwidth
– we are forced to assume that the rankwidth of the dynamic graph stays below k after each update. This
disparity is caused by the limited power of the technique of postponing invariant-breaking insertions of
Eppstein et al. [EGIS96]. The details follow below.

In Section 3.8, we designed an efficient data structure (call it a rejecting data structure) that maintained
an approximate tree decomposition of a dynamic graph G of treewidth at most k, rejecting all updates
whose application would increase the treewidth of G above k. A data structure of Theorem 1.3.1 is then
implemented as follows: Observe crucially that edge insertions may only increase the treewidth of the
dynamic graph and edge removals may only decrease the treewidth. (In other words, the class of graphs
of treewidth at most k is subgraph-closed.) So we maintain a rejecting data structure for the treewidth
of G. Suppose now that we want to add an edge uv to the graph, and we detect that this insertion would
increase the treewidth of G above k (because the rejecting data structure prevents us from adding the
edge). We delay the insertion of the edge to the rejecting data structure by storing uv in a queue of
invariant-breaking insertions. We also expose the marker “Treewidth too large”. Now, the treewidth of
the graph with the edge uv added will not drop below k until some edge is removed from G. So, after
each removal of an edge from G (which our rejecting data structure can always apply successfully), we
process the queue, performing the delayed insertions until either we successfully insert all postponed
edges (in which case the treewidth of the graph has dropped below k and the marker “Treewidth too
large” can be replaced with the tree decomposition maintained by the rejecting data structure) or some
insertion fails (in which case we pause processing the delayed updates and conclude that the treewidth of

4.1. OVERVIEW 95

G is still above k). At all points of time: (i) the rejecting data structure maintains a tree decomposition
of width at most O(k), (ii) the treewidth of the current graph is at most k if and only if the queue of
invariant-breaking insertions is empty, and (iii) the tree decomposition in the rejecting data structure is
precisely a tree decomposition of G whenever the queue is empty. Hence Theorem 1.3.1 holds.

It turns out that it is straightforward to produce a counterpart of a rejecting data structure for
rankwidth. However, it is not the case anymore that the class of graphs of rankwidth at most k is
subgraph-closed – removing an edge from a graph may actually increase its rankwidth. Even worse, given
a dynamic graph G of rankwidth at most k and a sequence of edge insertions and removals in G whose
application ultimately produces another graph of rankwidth at most k, it is not clear whether there exists
an order of these insertions and removals that keeps the rankwidth of G below k or even O(k) at all times;
and in the case such a sequence exists, it is not clear how to determine such an order efficiently. Therefore,
the technique of [EGIS96] unfortunately does not apply to the setting of rankwidth.

4.1.2 Dealternation Lemma

We now overview a crucial combinatorial result regarding optimum-width rank decompositions that lies at
the heart of the dynamic rankwidth data structure: the Dealternation Lemma for rankwidth, proved in
Section 4.8. This variant of Dealternation Lemma is a natural variant of the Dealternation Lemma for
treewidth proved by Bojańczyk and Pilipczuk [BP22], which we use in the data structure for treewidth in
a slightly weaker form (Lemma 3.3.3). Later, we will sketch how the Dealternation Lemma is used in the
proof of Lemma 4.1.1.

Our Dealternation Lemma essentially states the following: Whenever T b is some rooted rank decompo-
sition of a graph G of unoptimal (but bounded) width, there exists a rank decomposition T of optimum
width in which every subtree L(T b)[x] ⊆ V (G) of T b can be decomposed into a bounded number of
“simple” pieces of T .

Formally, if T = (T, λ) is a rooted rank decomposition of G and F ⊆ V (G), we say that F is a tree
factor of T if F = L(T)[v] for some v ∈ V (T), and a context factor if F is nonempty and of the form
F1 \ F2, where both F1 and F2 are tree factors. Then the Dealternation Lemma reads as follows:

Lemma 4.1.4 (Lemma 4.4.1). There exists a function f(`) so that if G is a graph and T b = (T b, λb)
is a rooted rank decomposition of G of width `, then there exists a rooted rank decomposition T of G of
optimum width so that for every node x ∈ V (T b), the set L(T b)[x] can be partitioned into a disjoint union
of at most f(`) factors of T .

We invite the reader to compare the statement of the Dealternation Lemma above to its treewidth
counterpart in Lemma 3.3.3.

Subspace arrangements. In the following sections, we make heavy use of a generalization of the
notion of rankwidth to linear spaces over finite fields. Let F be a finite field; throughout this chapter we
assume F = GF(2). For two linear subspaces V1, V2 ⊆ Fd, let V1 + V2 denote their sum and V1 ∩ V2 denote
their intersection. For V ⊆ Fd, let dim(V) denote the dimension of V . Any family V = {V1, . . . , Vn} of
linear subspaces of Fd is called a subspace arrangement. For convenience, let 〈V〉 := V1 + . . .+ Vn. Let also
e1, . . . , ed denote the canonical basis of Fd.

A rank decomposition (or more properly, a branch decomposition) T = (T, λ) of V is defined as
for graphs or partitions, only that we assign subspaces Vi to the leaves of T . For an edge xy of T ,
let L(T)[~xy] ⊆ V denote the subfamily of linear subspaces assigned to the leaves of T closer to x
than y. If T is rooted, we define L(T)[x] analogously to Section 4.1.1. Then the width of an edge xy is
dim(〈L(T)[~xy]〉 ∩ 〈L(T)[~yx]〉), and then the width of T and the rankwidth of V are defined naturally. The
definitions of tree and context factors also lift naturally to the setting of rooted rank decompositions of
subspace arrangements.

As observed in [JKO17], any undirected graphG can be converted to an equivalent subspace arrangement
V as follows: Let V (G) = {v1, . . . , vn}. Then for i ∈ [n] define Vi to be the subspace of Fn spanned by
the two vectors ei and

∑
vj∈N(vi) ej , and set V = {V1, . . . , Vn}. Then, for any rank decomposition T of G

of width `, the isomorphic rank decomposition T ′ of V has width 2`. So the rankwidth of V is equal to
twice the rankwidth of G. Hence, the Dealternation Lemma can be rephrased in the language of subspace
arrangements:

Lemma 4.1.5 (Lemma 4.8.5). There exists a function f(`) so that if G is a graph and T b = (T b, λb)
is a rooted rank decomposition of G of width `, then there exists a rooted rank decomposition T of G of

96 CHAPTER 4. DYNAMIC RANKWIDTH

optimum width so that for every node x ∈ V (T b), the set L(T b)[x] can be partitioned into a disjoint union
of at most f(`) factors of T .

For convenience, we will henceforth write Vx as a shorthand for L(T b)[x]. From now on we will only
focus on the proof of Lemma 4.1.5.

Outline of the proof of the Dealternation Lemma. The proof of Lemma 4.1.5 is inspired by its
treewidth counterpart ([BP22], Lemma 3.3.3): Similarly to how their Dealternation Lemma can be viewed
as a purely combinatorial understanding of the treewidth algorithm by Bodlaender and Kloks [BK96], our
proof relies heavily on the combinatorial understanding of the rankwidth algorithm by Jeong, Kim and
Oum [JKO21]. In fact, as a starting point of the proof, we invoke their result:

Theorem 4.1.6 ([JKO21, Proposition 4.6]). Let T b = (T b, λb) be a rooted rank decomposition of a subspace
arrangement V. Then there exists a rooted rank decomposition T = (T, λ) of the same subspace arrangement
V of optimum width that is “totally pure” with respect to T b.

We delay the precise definition of “totally pure” to Section 4.8.1. Intuitively though, T is totally
pure with respect to T b if T excludes, for all x ∈ V (T b), specific local “complicated” patterns defined
in terms of Vx and V \ Vx. We now lift Theorem 4.1.6 to show that, in fact, for all x ∈ V (T b) the entire
decomposition T admits a simple and bounded-size description in terms of Vx and V \ Vx.

Let v ∈ V (T) and x ∈ V (T b). We say that v is: (i) x-full if L(T)[v] ⊆ Vx; (ii) x-empty if L(T)[v] is
disjoint from Vx; and (iii) x-mixed otherwise. Now, a nonleaf node v of T is an x-leaf point if one child of
v is x-empty and the other is x-full; and v is an x-branch point if both children of v are x-mixed. We
define the x-mixed skeleton of T as a (possibly empty) rooted tree TM with V (TM) comprising the x-leaf
points and the x-branch points of T , with two vertices u, v ∈ V (TM) connected by an edge if the simple
path between u and v in T is internally disjoint from V (TM) (see Figure 4.2). We then prove that:

Lemma 4.1.7 (Lemma 4.8.13). There exists a function f(`) so that if T b = (T b, λb) is a rooted rank
decomposition of V of width ` and T is an optimum-width decomposition of V that is totally pure with
respect to T b, then, for every x ∈ V (T b), the x-mixed skeleton of T has at most f(`) nodes.

We omit the proof in this overview; however, the proof proceeds by selecting any rank decomposition T
of V of optimum width that is totally pure with respect to T b (its existence is asserted by Theorem 4.1.6)
and verifying that it actually satisfies all the conditions of Lemma 4.1.7. However, the work is far from
done as T might not meet the requirements of the Dealternation Lemma.

Fix x ∈ V (T b). Observe that every x-full node v yields a tree factor L(T)[v] ⊆ Vx (and every tree
factor that is a subset of Vx is like this). On the other hand consider a vertical path v1v2 . . . vp+1 in T
without any x-leaf points or x-branch points such that vp+1 is x-mixed. For i ∈ [p], let v′i be the child of
vi different than vi+1. It can be shown that each node v′i is either x-full or x-empty. Also whenever, for
1 6 a 6 b 6 p, the nodes v′a, . . . , v

′
b are x-full, then L(T)[va] \ L(T)[vb+1] ⊆ Vx is a context factor (and

all context factors that are subsets of Vx are like this). This creates an issue: If, for example, L(T)[v′i]
is x-full for odd i ∈ [p] and x-empty for even i ∈ [p] (in other words, the sequence v′1, . . . , v

′
p alternates

between x-full and x-empty nodes), we will not be able to partition L(T b)[x] into fewer than p
2 −O(1)

factors. Hence our strategy is to improve the decomposition by dealternating all such heavily alternating
paths – that is, reorder the nodes along the path so as to bunch the x-full nodes v′i into a small number
of contiguous blocks, bounded by some constant c` > 1 dependent only on `. This reordering is highly
nontrivial – utmost care needs to be taken to avoid increasing the width of the decomposition – and its
implementation adapts to the setting of rankwidth the toolchain of [BP22], which in turn encapsulates
the technique of typical sequences of [BK96]. After this is done, we show that we can partition L(T b)[x]
into at most O(|V (TM)| · c`) factors of T , where TM is the x-mixed skeleton of T . Then we repeat the
process for each x ∈ V (T b). So for V (T b) = {x1, . . . , xn}, we perform n phases, where in the jth phase,
we perform the dealternation as above to produce a partition of L(T b)[xj] into a small number of factors
of T .

This strategy comes with nontrivial requirements: (1) dealternation should not increase the width of
the decomposition, (2) for 1 6 i < j 6 n, the reordering performed during the jth phase should preserve
all factors in the already constructed partition of L(T b)[xi], and (3) for 1 6 j < i 6 n, the jth phase
should not blow up the size of the xi-mixed skeleton of T . While it appears hard to ensure all these
conditions at once, this feat can fortunately be achieved. Hence, using our approach, we ultimately arrive
at the following improvement step:

4.1. OVERVIEW 97

Lemma 4.1.8 (Local Dealternation Lemma, Lemma 4.8.14). There exists a function f(t, `) such that the
following holds. Let x ∈ V (T b) and assume that the x-mixed skeleton of T has t nodes. Then there exists
a rooted rank decomposition T ′ of V of optimum width such that:

• the set L(T b)[x] is a disjoint union of at most f(t, `) factors of T ′;

• for every y ∈ V (T b), the y-mixed skeletons of T and T ′ are equal; and

• if y is not an ancestor of x and F ⊆ L(T b)[y] is a factor of T , then F is also a factor of T ′.

Lemma 4.1.8 is proved in Section 4.8.6. Then the Dealternation Lemma follows by sorting the nodes
of V (T b) in the order of nonincreasing distance from the root of T b and applying Lemma 4.1.8 for each
x ∈ V (T b) in this order.

Dealternation Lemma to Lemma 4.1.1. We now briefly describe how the Dealternation Lemma
implies Lemma 4.1.1; the description is inspired by the proof of the Small Closure Lemma for treewidth
(Lemma 3.3.2). Fix k, ` ∈ N and let c := f(`), where the function f is as in the statement of the
Dealternation Lemma. Let T be a rank decomposition of G of width ` and assume that G has width k. By
applying Lemma 4.1.4, let T ′ = (T ′, λ′) be a rooted rank decomposition of G of width k so that for every
node t ∈ V (T) the set L(T)[t] can be partitioned into a disjoint union of at most c factors of T ′. Then for
each a ∈ AppT (Tpref) let Ca be the partition of L(T)[a] into at most c parts that are factors of T ′, and
let C =

⋃
a∈AppT (Tpref) Ca. It remains to show that (G[C], C) has rankwidth at most 2k. The bound on the

rankwidth of (G[C], C) can be shown in several ways: For instance, one can construct a rank decomposition
T ′′ = (T ′′, λ′′) of C from T ′ by: (1) setting T ′′ := T ′, (2) choosing for every C ∈ C an arbitrary vertex
v ∈ C and assigning λ′′(C) := λ′(v), and (3) removing from T ′′ all leaves without any assigned parts of C
and contracting degree-2 vertices. It then can be proved that such a constructed T ′′ has width at most 2k.
Therefore, C is a k-closure of Tpref , and its c-smallness follows directly from the construction.

4.1.3 Automata for optimum-width decompositions

We then overview an algorithmic result displaying the strength of the model of rank decomposition
automata; namely that there exists a rank decomposition automaton computing the exact value of the
rankwidth of the underlying graph.

Lemma 4.1.9 (Informal). Fix integers k 6 `. Suppose T is an annotated rank decomposition of width
at most ` of a dynamic graph G. By maintaining an automaton on T , we can support an operation that
returns whether the rankwidth of G is at most k.

We will then use Lemma 4.1.9 to show that given an annotated rank decomposition of small (but
possibly unoptimal) width of a graph, we can efficiently construct a rank decomposition of this graph of
optimum width:

Lemma 4.1.10 (Lemma 4.9.12). There is an algorithm that, given as input an annotated rank decompo-
sition T of width ` of a graph G and an integer k, in time O`(|T |) either determines that G has rankwidth
larger than k, or outputs a (non-annotated) rank decomposition (T, λ) of G of width at most k. Moreover,
the resulting decomposition can be annotated in time O`(|T | log |T |).

Later, we will show how both Lemmas 4.1.9 and 4.1.10 are used in the proof of Lemma 4.1.3 announced
in Section 4.1.1, i.e., that we can maintain an automaton on T supporting the following operation: given
a prefix Tpref of T , find a minimal c-small k-closure C of Tpref . Moreover, Lemma 4.1.10 is crucially used
in the proof of Theorem 1.3.6; we overview that result in Section 4.1.4.

The results in this section build on (and improve upon) an algorithm of Jeong, Kim, and Oum [JKO21]
for computing rankwidth exactly in Ok(n3) time by using a dynamic programming procedure that can be
regarded as a rankwidth analog of the Bodlaender-Kloks dynamic programming for treewidth [BK96].
Lemma 4.1.10 showcases the strength of annotated rank decompositions, as the corresponding algorithm
for rank decompositions given in [JKO21] works in O`(|T |2) time.

Exact rankwidth automaton. The automaton announced in the statement of Lemma 4.1.9 effectively
reimplements the subroutine of Branch-Width Compression from the cubic-time rankwidth algorithm
of Jeong, Kim and Oum [JKO21]: Given a subspace arrangement V, |V| = n, comprising subspaces of Fn
and a rank decomposition T b of V of width at most `, find a rank decomposition of V of width at most k

98 CHAPTER 4. DYNAMIC RANKWIDTH

if one exists. However, due to the fact that their algorithm operates on subspaces of n-dimensional linear
spaces explicitly, their subroutine works in time Ok(n2) – and even this complexity is only achieved after
a cubic-time preprocessing of V. In the restricted case of rankwidth of graphs, we are able to break the
quadratic time barrier by manipulating the implicit representations of these spaces and optimize the time
complexity of our implementation to linear, and even represent the algorithm as an automaton on T b.

We now give a short overview of Branch-Width Compression in [JKO21]. Recall that Vx = L(T b)[x]
for x ∈ V (T b). The boundary space at x is Bx := 〈Vx〉 ∩ (V \Vx); so we have ` = maxx∈V (T b) dim(Bx). Let
Bx be an ordered basis of Bx – any sequence of dim(Bx) vectors of Bx spanning Bx. Then any vector of
Bx can be uniquely represented in the basis Bx using dim(Bx) bits as a linear combination of vectors of
Bx, and any subspace of Bx can be represented using at most dim(Bx)2 bits as a span of at most dim(Bx)
vectors of Bx. If x is a nonleaf node with two children c1, c2, then we define B′x = Bx+Bc1+Bc2 , and we let
B′x to be an ordered basis of B′x whose prefix is Bx. In the algorithm, all subspaces of Bx are represented
in the basis Bx, and all subspaces of B′x are represented in the basis B′x. For any node x of T b with parent
p, let M ~xp be the transition matrix from the basis Bx to the basis B′p, i.e., the unique |B′p| × |Bx| matrix

such that, for every vector v ∈ Fdim(Bx), we have
∑dim(Bx)
i=1 vi(Bx)i =

∑dim(B′p)
i=1 (M ~xpv)i(B′p)i. Note that

M ~xp can be represented using dim(Bx) · dim(B′p) = O`(1) bits, even though Bx and B′p are subspaces of
a highly-dimensional space Fn.

In the algorithm the authors compute, for every x ∈ V (T b), the full set at x of width k with respect
to T b, denoted FSk(x), which is a family of objects representing heavily compressed versions of rank
decompositions of Vx that are totally pure with respect to T b.14 They show that:

• for a leaf l of T b, the set FSk(l) can be constructed in time O`(1) given only dim(Bl);
• for a nonleaf x of T b with two children c1, c2, the set FSk(x) can be constructed in time O`(1) given

FSk(c1), FSk(c2), the transition matrices M ~c1x, M ~c2x and the value dim(Bx);
• FSk(r) 6= ∅ for the root r of T b if and only if the rankwidth of V is at most k; and
• if FSk(r) 6= ∅, then a rank decomposition of V of width at most k can be reconstructed in time
O`(n) from the values FSk(x) for x ∈ V (T b) and the transition matrices M ~xp.

So, assuming access to the transition matrices M ~xp for all nonroot x ∈ V (T b) with parent p, the entire
Branch-Width Compression can be implemented in time O`(n). However, it seems quite hard to
determine these matrices efficiently from a general subspace arrangement V: [JKO21] determines the
ordered bases Bx, B′x explicitly and computes the transition matrices M ~xp from these bases afterwards.
This approach unfortunately requires Ω(n2) time and space since we need Ω(n2) bits of memory to simply
store all the ordered bases. However, in the setting of rank decompositions of graphs, we can work around
this issue using annotated rank decompositions. The following lemma (not proved here) encapsulates the
key technical idea of our approach.

Lemma 4.1.11 (informal statement of Lemma 4.9.6). Suppose T is a rooted annotated rank decomposition
of a graph G and T b is the isomorphic rank decomposition of the subspace arrangement V equivalent to G.
Then there exist two families of ordered bases {Bx}x∈V (T b), {B′x}x∈V (T b), such that for every x ∈ V (T b)
with parent p and children c1, c2, we can uniquely determine the transition matrices M ~c1x, M ~c2x and the
value dim(Bx) in time O`(1) from the annotations of T around x.

Recalling the model of rank decomposition automata defined before, observe that we can encode the
algorithm of Jeong, Kim and Oum as a rank decomposition automaton running on T :

Lemma 4.1.12 (informal statement of Lemma 4.9.11). There exists a rank decomposition automaton
such that, for any graph G with annotated rank decomposition T b of width `, the state of the automaton
at node x ∈ V (T b) is exactly FSk(x). Each state of the automaton can be evaluated in time O`(1).

This essentially resolves Lemma 4.1.9. With the help of the rank decomposition reconstruction
subroutine from [JKO21], our algorithm can also output a non-annotated rank decomposition of G of
width at most k in linear time, yielding the first part of Lemma 4.1.10. By Lemma 4.3.8, the output
decomposition of Lemma 4.1.10 can be annotated in O`(|T | log |T |) time using a divide-and-conquer type
algorithm.

Closure automaton. We then briefly sketch the proof of Lemma 4.1.3 as an application of Lemma 4.1.12:
Assuming we maintain appropriate automaton on a decomposition T , we can support an operation that
given a prefix Tpref , returns an encoding of a minimal c-small k-closure C of Tpref . The proof is ideologically
similar to that of Lemma 3.3.23, but with a different set of technical challenges.

14This mirrors an analogous definition of a full set in the work of Bodlaender and Kloks [BK96].

4.1. OVERVIEW 99

The automaton we will construct and maintain is a closure automaton. For fixed c and k it computes,
for all edges ~xy of T , the family repsc,k(~xy) of all partitions C ~xy of L(T)[~xy] into at most c parts that can
be extended to a minimal c-small k-closure of some prefix Tpref with ~xy ∈ ~App(Tpref). The main challenge
is how to represent C ~xy – storing the partition of L(T)[~xy] explicitly is obviously impractical, and even
storing aep(C ~xy) turns out to be too expensive in our algorithm. Instead, for every set C ∈ C ~xy we only
keep a carefully selected minimal representative of C. Then, with some extensive bookkeeping, we can
compute the family repsc,k(~xy) for all ~xy in time Oc,k(1).

Then, given a prefix Tpref , we want to find a closure C of Tpref such that: (i) for every ~xy ∈ ~App(Tpref),
(the representation of) the subfamily of C restricted to L(T)[~xy] belongs to repsc,k(~xy), (ii) the rankwidth
of C is at most 2k. This can be achieved in time Oc,k(|Tpref |) by using the exact rankwidth automaton
from Lemma 4.1.12 and applying on it standard dynamic programming techniques on automata. With
enough care, this dynamic programming allows us to find a minimal closure C. Then, restoring the objects
cut(C), aep(C) and the rank decomposition of C of width at most 2k are straightforward (even if technical)
tasks that can be done in total time Oc,k(|cut(C)|).

4.1.4 Almost-linear time algorithm for rankwidth

Then we show how to compute a rank decomposition of an n-vertex, m-edge graph G of width at most k
in time Ok(n · 2

√
logn log logn) +O(m), if such a decomposition exists (Theorem 1.3.6). The full exposition

of this algorithm can be found in Section 4.7.
In this section we assume that the input graph G is bipartite, with the bipartition V (G) = A ∪B; in

Section 4.7.2 we show that the general case can be reduced to the bipartite case by using a construction of
Courcelle [Cou06]. Also assume that G has rankwidth at most k. Let X4Y = (X ∪ Y) \ (X ∩ Y) denote
the symmetric difference of sets. We say that two vertices u, v ∈ V (G) are twins if N(u) = N(v), and
c-near-twins for c ∈ N if |N(u)4N(v)| 6 c. The main idea of our algorithm is to exploit the presence of
many twins and near-twins in bipartite graphs of small rankwidth.

Consider the following auxiliary problem, which we call Twin Flipping. As input we are given
an annotated rank decomposition T of width at most k of a bipartite graph G = (A,B,E), E ⊆ A×B;
a set X ⊆ A with the property that every vertex of X has a twin in A \X; and a set of pairs F ⊆ X ×B.
Let n = |A|+ |B| and assume |F | 6 Ok(n). The task is to construct an annotated rank decomposition of
G′ := (A,B,E4F) of width at most k, assuming it exists. Define a function T (n) with the property that
Twin Flipping can be solved in time Ok(T (n)). Then we have:

Lemma 4.1.13. T (n) 6 n · 2o(
√

logn log logn).

Sketch of the proof. Consider G to be a dynamic graph described by an annotated rank decomposition,
initially T , maintained by the dynamic rankwidth data structure of Theorem 1.3.4. Then for each (u, v) ∈ F
in the lexicographic order, flip the adjacency between u and v (add the edge uv to G if not present,
remove it otherwise). It can be shown that the rankwidth of the dynamic graph never grows above k + 1
during this process, so the data structure can perform the initialization and all the updates in time
n · 2Ok(

√
logn log logn) = Ok(n · 2o(

√
logn log logn))15, maintaining a 4-approximate decomposition, which

can be finally turned into optimal decomposition by Lemma 4.1.10.

We also define another auxiliary problem, Twin Detection: Construct an efficient data structure
that, when initialized with a bipartite graph G = (A,B,E) with B = {v1, . . . , v|B|}, supports the following
query: given a set X ⊆ A and a subinterval [`, r] of [1, |B|], return the partition of X into the equivalence
classes of twins in the induced subgraph G[X, {v`, . . . , vr}]. In Lemma 4.7.10 we propose such a data
structure with initialization time O(n + m) and query time O(|X| log n). The implementation uses as
a black box a linear-time suffix array construction algorithm of [KSB06].

In the third and final auxiliary problem, Near-Twin Pairing, we get as input an annotated rank
decomposition T of width at most k of a bipartite graph G = (A,B,E) with |B| > 2. On output we
should produce: (i) t = max(1, |B|Ok(1)) pairwise disjoint pairs of vertices (u1, v1), . . . , (ut, vt) of B such that

ui and vi are Ok(|A||B|)-near-twins for all i ∈ [t], and (ii) the sets N(ui)4N(vi) for each i ∈ [t]. We show in
Lemma 4.7.9 the solution of this problem in time Ok(n).

15The fact that the data structure can be efficiently initialized with an annotated rank decomposition T is not stated
explicitly in Theorem 1.3.4, but this follows readily from the discussion in Section 4.1.1 and we actually prove this in
Lemma 4.6.3.

100 CHAPTER 4. DYNAMIC RANKWIDTH

We also use the following straightforward fact: If T is an annotated rank decomposition of G of
width k, and a graph G? is created from G by cloning a vertex v (creating a new vertex v? such that
NG?(v?) = NG(v)), then T can be transformed into an annotated rank decomposition T ? of G? of the
same width in time O(1).

The main ingredient of our algorithm is the following result:

Lemma 4.1.14. A decomposition of G of width at most k can be found in time Ok(T (n) log2 n) +O(m).

Sketch of the proof. In time O(n+m), initialize the data structure for Twin Detection on the input
graph G = (A,B,E). Also suppose B = {v1, . . . , v|B|}. We now design a recursive algorithm that takes as
input a subset A′ ⊆ A and a subinterval [`, r] ⊆ [1, |B|], and returns an annotated rank decomposition of
width k of G[A′, B′], where B′ = {v`, . . . , vr}.

The base case is ` = r; then the graph is a forest and we can construct its rank decomposition of width
at most k in time O(|A′|). So suppose that ` < r. We resolve this case in several steps.

Step 1: Filter out the twins. We query the data structure for Twin Detection on X = A′ and the
interval [`, r] in time O(|A′| log n); the result of the query can be represented as a subset A′′ ⊆ A′ with no
twins in G[A′′, B′], and a mapping η : A′ → A′′ such that for every v ∈ A′ \ A′′, η(v) is a twin of v in
G[A′, B′]. Since A′′ has no twins in G[A′′, B′] and G[A′′, B′] has rankwidth at most k, we can show that
|A′′| 6 Ok(|B′|); this statement is proved as Lemma 4.7.8, but has appeared before in various forms and
generalizations [PP20,BFLP24]. Hence we will now only compute an annotated rank decomposition T of
G[A′′, B′] since it is straightforward to add the vertices of A′ \A′′ to T as soon as T is constructed.

Step 2: Recurse on B. Let δ ≈ 1
2 (`+ r) and let B1 = {v`, . . . , vδ} and B2 = {vδ+1, . . . , vr}. For each

i ∈ [2], we construct an annotated rank decomposition Ti of G[A′′, Bi] recursively.

Step 3: Merge the decompositions. The final step – merging T1 and T2 into an annotated rank
decomposition T of G[A′′, B1 ∪B2] – is quite nontrivial. In fact, we will perform this step recursively by
implementing a subroutine taking as input a subset B′2 ⊆ B2 and a rank decomposition T ′2 of G[A′′, B′2]
of width at most k and returning an analogous decomposition T ′ of G[A′′, B1 ∪B′2].

First, if |B′2| = 1, then we model the problem at hand as an instance of Twin Flipping as follows:
Assume B′2 = {v}. Choose an arbitrary vertex u ∈ B1 in G[A′′, B1] and clone it, naming the clone v.
Denote the updated graph G? and let T ? be an annotated rank decomposition of G?. Then T ′ is exactly
the result of the Twin Flipping problem for the graph G? with sides B1∪{v} and A′′, the decomposition
T ?, the set X = {v} and the set of edges F = {wv | w ∈ N(u)4N(v)}. We can easily see that the time
required to resolve case is Ok(T (|A′′|+ |B1|+ 1)) = Ok(T (|B′|)).

Now suppose |B′2| > 2. Then by Near-Twin Pairing applied to the decomposition T ′2 of G[A′′, B′2] we
get t = max(1, |B

′
2|

Ok(1)) pairwise disjoint pairs of vertices (ui, vi), . . . , (uv, vt) of B such that |N(ui)4N(vi)| 6
Ok(|A

′′|
|B′2|

) for each i ∈ [t]. Therefore,
∑t
i=1 |N(ui)4N(vi)| 6 Ok(|A′′|). Let Bdel

2 = B′2\{v1, . . . , vt} and T del
2

be the rank decomposition of G[A′′, Bdel
2], easily constructed from T ′2 . We run the subroutine recursively

for Bdel
2 ⊆ B2 and T del

2 and get the decomposition T del of G[A′′, B1 ∪Bdel
2]. Create a new graph G? from

G[A′′, B1 ∪ Bdel
2] by cloning, for each i ∈ [t], the vertex ui and naming the clone vi; let also T ? be the

decomposition of G?. Finally, let F = {wvi | i ∈ [t], w ∈ N(ui)4N(vi)} and apply Twin Flipping to the
graph G?, its decomposition T ?, the set X = {v1, . . . , vt} and the set of flipped edges F , resulting in the
sought decomposition T ′. Tracing all the steps described above, excluding the recursive call on the subset
Bdel

2 , we find that that these steps can be performed in total time Ok(T (|A′′|+ |B1|+ |B′2|)) = Ok(T (|B′|)).
Since each recursive call takes time Ok(T (|B′|)) and B′ decreases in size by a multiplicative factor of

1− 1
Ok(1) on each level of recursion, we get that the recursion terminates after Ok(log |B′|) levels and so

the entire decomposition-merging subroutine takes total time Ok(T (|B′|) log |B′|).

Summary. The recursive reconstruction of an annotated rank decomposition of G[A′, B′], where |B′| =
r−`+1, takes time Ok(T (|B′|) log |B′|), excluding the time spent in the two recursive calls for subsets of B′.
Thus, the total running time of the entire recursive scheme across all levels of recursion is Ok(T (n) log2 n).
Including the time required to instantiate the instance of Twin Detection, we get the final time
complexity of Ok(T (n) log2 n) +O(m).

So Theorem 1.3.6 holds by Lemmas 4.1.13 and 4.1.14. Moreover, an Ok(n logO(1) n) time algorithm
for Twin Flipping would immediately imply an improved Ok(n logO(1) n) +O(m) time algorithm for
finding rank decompositions of graphs of width at most k.

4.2. PRELIMINARY RESULTS FOR RANK DECOMPOSITIONS 101

4.2 Preliminary results for rank decompositions

In this section we lift the definition of rank decompositions to handle the so-called partitioned graphs.
Then we prove several additional preliminary results regarding tree decompositions.

Partitioned graphs and rank decompositions. A partitioned graph is a pair (G, C), where G is
a graph and C is a partition of V (G). A rank decomposition of a partitioned graph (G, C) is a pair
T = (T, λ), where T is a cubic tree and λ is a bijection λ : C → ~L(T). A rank decomposition of a graph
G is a rank decomposition of (G,TrivPart(V (G))), where TrivPart(V (G)) denotes the partition of V (G)
into sets of size 1. The bijection λ is called the leaf mapping. In the case of graphs, we may treat λ as a
function λ : V (G) → ~L(T). We define that there is no rank decomposition of a partitioned graph with
less than 2 parts or a graph with less than 2 vertices. For an oriented edge ~xy ∈ ~E(T), we denote by
L(T)[~xy] =

⋃
~lp∈~L(T)[~xy] λ

−1(~lp) the union of the parts of C that are mapped to leaf edges that are closer
to x than y. A rooted rank decomposition of a partitioned graph is defined like a rank decomposition,
but the tree T is a binary tree. When T is a rooted rank decomposition and t ∈ V (T), we denote by
L(T)[t] =

⋃
~lp∈~L(T)[t] λ

−1(~lp) the union of the parts of C that are mapped to descendants of t.

Let G be a graph and A ⊆ V (G). We denote A = V (G) \A. We denote by cutrkG(A) the rank of the
|A|×|A| 0-1-matrix over the binary field GF(2) describing adjacencies between vertices in A and vertices in
A in G. The width of an edge xy ∈ E(T) of a rank decomposition is cutrkG(L(T)[~xy]) = cutrkG(L(T)[~yx]),
and the width of a rank decomposition is the maximum width of its edge. The rankwidth of a graph is
the minimum width of a rank decomposition of it.

We will use the following properties of the cutrkG function.

Lemma 4.2.1 ([OS06]). For any graph G, the function cutrkG : 2V (G) → N is symmetric and submodular,
that is,

1. cutrkG(A) = cutrkG(A) for all A ⊆ V (G) and

2. for all A,B ⊆ V (G) it holds that cutrkG(A ∪B) + cutrkG(A ∩B) 6 cutrkG(A) + cutrkG(B).

We will refer to Item 1 as the symmetry of cutrk and to Item 2 as the submodularity of cutrk.
Let us also recall a known lemma that rank decompositions can be transformed into logarithmic

height without increasing the width much (see Lemma 2.4.1). This lemma was shown by Courcelle and
Kanté [CK07], but we reprove the result here in order to demonstrate the O(|V (T)| log |V (T)|) running
time and generalize it to the setting of rank decompositions of partitioned graphs.

Lemma 4.2.2. There is an algorithm that given a (rooted) rank decomposition (T, λ) of a partitioned
graph (G, C) of width k, in time O(|V (T)| log |V (T)|) returns a rooted rank decomposition of (G, C) of
height O(log |V (T)|) and width at most 2k.

Proof. We assume that the components C ∈ C in the representation of λ are represented as pointers so
that the representation of λ is of size O(|V (T)|). Let us also assume without loss of generality that (T, λ)
is unrooted.

We will construct a binary tree T ∗ of height O(log |V (T)|) so that

1. every node t ∈ V (T ∗) is labeled with a subtree δ(t) of T that contains at least one leaf of T ,

2. for each t ∈ V (T ∗) there are at most two edges of T that have one endpoint in V (δ(t)) and another
endpoint in V (T) \ V (δ(t)), and

3. if δ(t) contains at least two leaves of T , then t has two children c1 and c2 so that L(T) ∩ L(δ(t)) is
the disjoint union of L(T) ∩ L(δ(c1)) and L(T) ∩ L(δ(c2)).

Before giving the algorithm to construct T ∗, let us observe that T ∗ can be transformed into a rooted
rank decomposition (T ∗, λ∗) of (G, C) of height O(log |V (T)|) and width at most 2k: Note that for each leaf
l ∈ L(T ∗), the subtree δ(l) contains exactly one leaf of T , and these leaves of T are distinct for distinct leaves
of T ∗. Therefore, there is a natural bijection between L(T) and L(T ∗), so we construct λ∗ simply by following
this bijection. This construction can be implemented in O(|V (T)|) time. Then, Item 2 implies that for each
t ∈ V (T ∗) (except the root), it holds that L(T ∗)[t] = L(T)[~xy]∩L(T)[~zw] for some ~xy, ~zw ∈ ~E(T). Because
of submodularity of cutrkG, this implies that cutrkG(L(T ∗)[t]) 6 cutrkG(L(T)[~xy])+cutrkG(L(T)[~zw]) 6 2k,
which implies that (T ∗, λ∗) has width at most 2k.

102 CHAPTER 4. DYNAMIC RANKWIDTH

Then we describe an algorithm to construct such T ∗ in time O(|V (T)| log |V (T)|). The algorithm
constructs T ∗ recursively top-down, in particular, each recursive step takes a subtree δ(t) of T as an
input and if it contains at least two leaves of T , constructs the subtrees δ(c1) and δ(c2) of T for the
two children c1 and c2 of t, and recurses to c1 and c2. Alternatively, we can also construct subtrees
δ(c1), δ(c2), δ(c3), δ(c4) of T , where c1 and c2 will be the children of t, and c3 and c4 the children of c1,
and then recurse to c2, c3, and c4.

Denote X = L(T)∩L(δ(t)). If there is at most one edge of T that has an endpoint in both V (δ(t)) and
V (T)\V (δ(t)), we pick an edge xy ∈ E(δ(t)) so that |X∩L(δ(t))[~xy]| 6 2

3 |X| and |X∩L(δ(t))[~yx]| 6 2
3 |X|,

and let δ(c1) and δ(c2) be the two connected components of δ(t)− xy. Such xy can be shown to exist by
a simple walking argument on δ(t).

Then suppose there are two edges of T that have an endpoint in both V (δ(t)) and V (T) \ V (δ(t)). If
both of them are incident to the same node x of δ(t), we can set δ(t) := δ(t)− {x} and apply the case of
one edge. Therefore suppose one of them is incident to a node x of δ(t) and other to a node y 6= x of δ(t).
Note that both x and y have degree 2 in δ(t). Let x = z1, z2, . . . , z` = y be the unique path between x and
y in δ(t). Now, each node zi on this path is incident to exactly one oriented edge ~wizi ∈ ~E(δ(t)) so that
wi is not on the path, and moreover, the sets L(δ(t))[~wizi] form a partition of X. Let us pick the smallest
r so that

∑r
i=1 |L(δ(t))[~wizi]| > |X|

3 . First, if zr ∈ {x, y}, we let δ(c1) be the connected component of
δ(t)− {zr} that contains all vertices on the path except zr, and δ(c2) the connected component that is
disjoint with the path. It can be observed that both of them satisfy Item 2. Moreover, we observe that
δ(c1) contains at most 2

3 |X| leaves in X, and there is at most one edge of T that has endpoints in both
V (δ(c2)) and V (T)− V (δ(c2)), namely the edge wrzr.

It remains to consider the case zr /∈ {x, y}. We first let δ(c1) and δ(c2) be the two connected components
of δ(t)− zrzr+1, with x ∈ V (δ(c1)) and y ∈ V (δ(c2)). Then, we let δ(c3) and δ(c4) be the two connected
components of δ(c1)− {zr}, with x ∈ V (δ(c3)). We observe that each of the constructed subtrees satisfy
Item 2. Moreover, each of δ(c2) and δ(c3) contain at most 2

3 |X| leaves in X, and there is at most one edge
of T that has endpoints in both V (δ(c4)) and V (T)− V (δ(c4)), namely the edge wrzr.

Clearly, each recursive call of this algorithm can be implemented in O(|δ(t)|) time. To obtain both the
total time complexity O(|V (T)| log |V (T)|) and the O(log |V (T)|) height of T ∗, it remains to bound the
height of this recursion tree. We recall that if there is at most one edge that has endpoints in V (δ(t)) and
V (T)− V (δ(t)), then the size of X shrinks by at least a factor 1

3 when going to the children. Also, in the
other two cases, the only case when we recurse to a child where the size of X does not shrink by a factor
of 1

3 is when there is only one edge of T with endpoints in both the subtree of this child and outside of it.
We conclude that on any path of length 4 that goes from a node in T ∗ towards some leaf of T ∗, the size
of X must shrink by a factor of at least 1

3 , implying that the height of T ∗ is O(log |V (T)|).

Representatives. A representative of a set A ⊆ V (G) in a graph G is a set RA ⊆ A so that for every
a ∈ A there exists r ∈ RA with NG(a) \A = NG(r) \A. Such set RA is a minimal representative of A if
no subset of it is a representative of A. A cut of a graph G is a pair (A,B) so that V (G) is the disjoint
union of A and B. We say that vertices u, v ∈ A are twins over a cut (A,B) if N(u) ∩B = N(v) ∩B. A
representative graph of a cut (A,B) is a bipartite graph G[RA, RB], where RA is a representative of A
and RB a representative of B. A minimal representative graph of a cut is defined by requiring RA and
RB to be minimal representatives. We observe that cutrkG[RA,RB](RA) = cutrkG(A).

We will need the following lemma about how minimal representative graphs are isomorphic to each
other.

Lemma 4.2.3. Let (A,B) be a cut of a graph G, R1
A, R

2
A minimal representatives of A, and R1

B , R
2
B

minimal representatives of B. The graphs G[R1
A, R

1
B] and G[R2

A, R
2
B] are isomorphic to each other, and

moreover if R1
B = R2

B, then there is a unique isomorphism that is identity on R1
B = R2

B.

Proof. For every v ∈ R1
A there exists by definition exactly one u ∈ R2

A so that N(v) ∩B = N(u) ∩B, so
we can map such u and v to each other, and similarly for R1

B and R2
B. This is not necessarily the only

isomorphism because both sides can be permuted, e.g., when G is a perfect matching between A and B.
However, it becomes unique if we fix the mapping for one side.

We also recall the following well-known lemma, which allows to make use of rank decompositions in
dynamic programming.

Lemma 4.2.4. Let A ⊆ V (G) and RA a minimal representative of A. Then |RA| 6 2cutrkG(A).

Proof. Follows from the fact that a matrix of rank k over GF(2) can have at most 2k distinct rows.

4.3. ANNOTATED RANK DECOMPOSITIONS AND PREFIX REBUILDING 103

4.3 Annotated rank decompositions and prefix rebuilding

In this section we introduce our notion of annotated rank decompositions and the notion of prefix-rebuilding
updates to manipulate them. Definitions comprise a large part of this section, but we also give (slightly
nontrivial) proofs on the implementations of these manipulations.

4.3.1 Annotated rank decompositions

An annotated rank decomposition is a tuple T = (T,U,R, E ,F), where

• T is a cubic tree and U is a set,

• R is a function that maps each oriented edge ~xy ∈ ~E(T) to a nonempty set R(~xy) ⊆ U ,

• U is the disjoint union of the sets R(~lp) over the leaf edges ~lp ∈ ~L(T),

• E is a function that maps each edge xy ∈ E(T) to a bipartite graph E(xy) with bipartition
(R(~xy),R(~yx)) and with no twins over this bipartition, and

• F is a function that maps each path of length three xyz ∈ P3(T) to a representative map
F(xyz) : R(~xy)→ R(~yz).

For an oriented edge ~xy ∈ ~E(T), we denote by L(T)[~xy] =
⋃
~lp∈~L(T)[~xy]R(~lp) the union of the elements

of U on the leaf edges that are closer to x than y. Let (G, C) be a partitioned graph. We define that an
annotated rank decomposition T = (T,U,R, E ,F) encodes (G, C) if

1. C = {R(~lp) | ~lp ∈ ~L(T)}, and in particular V (G) = U ,

2. for all C ∈ C the graph G[C] is edgeless,

3. for all ~xy ∈ ~E(T) the set R(~xy) is a minimal representative of L(T)[~xy] in G and E(xy) =
G[R(~xy),R(~yx)], and

4. for all xyz ∈ P3(T) and u ∈ R(~xy) it holds that NG(u) ∩R(~zy) = NG(F(xyz)(u)) ∩R(~zy).

We will call these the properties ENC 1 to 4. Let us then prove that the partitioned graph encoded by
T is uniquely defined by T . The proof contains useful properties of annotated rank decompositions that
will be implicitly used later.

Lemma 4.3.1. If an annotated rank decomposition encodes a partitioned graph, then it uniquely determines
the partitioned graph it encodes.

Proof. Suppose T = (T,U,R, E ,F) encodes (G, C). The partition C = {R(~lp) | ~lp ∈ ~L(T)} is uniquely
defined by T by ENC 1. Let u, v be distinct vertices in V (G) = U . If u and v are in the same part of C
then by ENC 2 there is no edge between u and v.

Then suppose u ∈ R(~l1p1) and v ∈ R(~l2p2) with l1 6= l2. Let x1 = l1, x2, . . . , xt−1, xt = l2 be the
unique path in T between l1 and l2. For i ∈ [t− 2] let ui = F(xixi+1xi+2) ◦ . . . ◦ F(x1x2x3)(u), where ◦
denotes the function composition. Let us prove by induction that for every i ∈ [t− 2], it holds that

NG(u) ∩R(~xi+2xi+1) = NG(ui) ∩R(~xi+2xi+1). (4.1)

For i = 1 it holds by ENC 4. Then, for i > 2 we have by ENC 3 and induction assumption that

NG(u) ∩ L(T)[~xi+1xi] = NG(ui−1) ∩ L(T)[~xi+1xi],

which implies
NG(u) ∩R(~xi+2xi+1) = NG(ui−1) ∩R(~xi+2xi+1)

becauseR(~xi+2xi+1) ⊆ L(T)[~xi+1xi]. This yields Eq. (4.1) by ENC 4 by applying the function F(xixi+1xi+2)
to ui−1 ∈ R(~xixi+1).

Now, ut−2 ∈ R(~p2l2) and u is adjacent to v if and only if ut−2 is adjacent to v, and therefore by ENC 3
we have that uv ∈ E(G) if and only if ut−2v ∈ E(E(p2l2)).

104 CHAPTER 4. DYNAMIC RANKWIDTH

We say that an annotated rank decomposition encodes a graph G if it encodes the partitioned graph
(G,TrivPart(V (G))).

At this point, let us make a few remarks about the choices of these definitions. We note that it would
have been natural to require an additional property thatR(~xy) ⊆ R(~zx)∪R(~wx), where zxy,wxy ∈ P3(T).
However, this property turns out to be too strong in that in some cases we do not know if it could
be maintained efficiently. We also note that an equivalent alternative to storing the functions F(xyz)
would be to store the graphs G[R(~xy),R(~zy)]: The function F(xyz) can be computed given E(yz) and
G[R(~xy),R(~zy)], and conversely the graph G[R(~xy),R(~zy)] can be computed given F(xyz) and E(yz).
We choose to store F(xyz) because it is more explicit for the purpose of tracking representatives along
the decomposition.

We define |T | = |T |. The width of an annotated rank decomposition is the maximum of cutrkE(xy)(R(~xy)).
If the width of an annotated rank decomposition is `, then by Lemma 4.2.4 we have |R(~xy)| 6 2` for all
oriented edges ~xy. It follows that an annotated rank decomposition of width ` can be represented in space
2O(`)|T |.

Let T ′ = (T ′, λ) be a rank decomposition of (G, C). We say that an annotated rank decomposition
T = (T, V (G),R, E ,F) corresponds to T ′ if T = T ′ and for all ~lp ∈ ~L(T) it holds that R(~lp) = λ−1(~lp).
Note that there is a unique rank decomposition of (G, C) that the annotated rank decomposition T
corresponds to. We also observe that if T corresponds to T ′, then the widths of T and T ′ are equal.
When talking about annotated rank decompositions we sometimes use definitions that are defined for
rank decompositions but not explicitly for annotated rank decompositions, in which case these definitions
refer to the rank decomposition that the annotated rank decomposition corresponds to.

We define a rooted annotated rank decomposition in the same way as an annotated rank decomposition,
except the tree T is a binary tree instead of a cubic tree. If r ∈ V (T) is the root and x, y ∈ V (T) are its
two children, then we require that R(~xr) = R(~ry), R(~yr) = R(~rx), and the functions F(xry) and F(yrx)
are identity functions. We observe that an annotated rank decomposition of width ` can be turned in
O`(1) time into a corresponding rooted annotated rank decomposition, and vice versa.

We assume that the tree T of an annotated rank decomposition is represented by an adjacency list and
the functions R, E , F as tables. For rooted annotated rank decompositions the adjacency list furthermore
contains information on which adjacent node is the parent, and we also always store a pointer to the root
node. We also assume that the representation contains a table so that given u ∈ U we can find ~lp ∈ ~L(T)
so that u ∈ R(~lp) in constant time.

4.3.2 Prefix-rebuilding updates

We will maintain a rooted annotated rank decomposition that encodes the dynamic graph G we are
maintaining. All updates to the decomposition will be done via prefix-rebuilding updates, which informally
speaking change a prefix of a rooted annotated rank decomposition, but keep everything else intact.
The updates to the graph G will also be made via prefix-rebuilding updates to the decomposition. In
particular, we will not maintain G explicitly, but instead G will be represented by the decomposition we
are maintaining.

We then define prefix-rebuilding updates formally. An update that changes a rooted annotated rank de-
composition T = (T,U,R, E ,F) into another rooted annotated rank decomposition T ′ = (T ′, U,R′, E ′,F ′)
is a prefix-rebuilding update if there exists a leafless prefix Tpref of T and a leafless prefix T ′pref of T ′ so
that

• T − Tpref = T ′ − T ′pref ,

• for all ~xy ∈ ~E(T − Tpref) it holds that R(~xy) = R′(~xy),

• for all ~lp ∈ ~L(T) there exists p′ ∈ V (T ′) so that ~lp′ ∈ ~L(T ′) and R(~lp) = R′(~lp′),

• for all xy ∈ E(T − Tpref) it holds that E(xy) = E ′(xy), and

• for all xyz ∈ P3(T − Tpref) it holds that F(xyz) = F ′(xyz).

We say that such Tpref is the prefix of T associated with the update and T ′pref the prefix of T ′ associated
with the update. We observe that a prefix-rebuilding update never changes the partition of U associated
with the leaves of the decomposition. We also note that because both T and T ′ are binary trees with the
same number of leaves, |Tpref | = |T ′pref | must hold.

4.3. ANNOTATED RANK DECOMPOSITIONS AND PREFIX REBUILDING 105

The purpose of prefix-rebuilding updates will be to argue that such updates, along with re-computing
various auxiliary information stored in the decomposition, can be implemented in time proportional to
|Tpref | instead of time proportional to |V (T)|. For example, bottom-up dynamic programming on the
decomposition would need to be recomputed only for the nodes in T ′pref . Next we introduce some definitions
to more formally facilitate this.

We define the tuple of annotations of T ′ with respect to the prefix T ′pref to be the triple

Annot(T ′, T ′pref) = (R′|~E(T ′)\~E(T ′−T ′pref)
, E ′|E(T ′)\E(T ′−T ′pref),F

′|P3(T ′)\P3(T ′−Tpref)).

Then, we say that the description of the prefix-rebuilding update that changes T into T ′ is the triple

u = (Tpref , T
?,Annot(T ′, T ′pref)),

where Tpref and Annot(T ′, T ′pref) are as defined above, and T ? = T ′[T ′pref ∪ AppT ′(T
′
pref)]. Note that

T ′pref = V (T ?) \ L(T ?) and L(T ?) = AppT (Tpref) = AppT ′(T
′
pref) = AppT?(T

′
pref). We observe that

the resulting rooted annotated rank decomposition T ′ is uniquely determined by T and u. We denote
|u| = |Tpref | and observe that if T ′ has width `, then u can be represented in space O`(|u|).

Next we show that rooted annotated rank decompositions can be maintained efficiently under prefix-
rebuilding updates.

Lemma 4.3.2. Suppose a representation of a rooted annotated rank decomposition T is already stored.
Then, given a description u of a prefix-rebuilding update that changes T into T ′ of width `, the representation
of T can be turned into a representation of T ′ in time O`(|u|).

Proof. Let T = (T,U,R, E ,F), T ′ = (T ′, U,R′, E ′,F ′), and u = (Tpref , T
?,Annot(T ′, T ′pref)). We first use

T ? to compute for all a ∈ AppT (Tpref) the parent π(a) of a in T ?, which is also the parent of a in T ′.
Then, we construct T ′ by taking T ? and for each a ∈ AppT (Tpref) attaching the subtree of T rooted at a
as a child of π(a). This can be done by O(1) pointer changes for each such a, so we constructed T ′ in time
O(|Tpref |). In this process also the annotations in the subtrees below such appendices a are preserved,
so to construct the rest of the annotations of T ′ we just copy the annotations from Annot(T ′, T ′pref) in
O`(|Tpref |) time.

4.3.3 Prefix-rebuilding data structures

To formalize the notion of a rooted annotated rank decomposition that maintains some auxiliary information
under prefix-rebuilding updates, we define prefix-rebuilding data structures. For ` ∈ N, an `-prefix-rebuilding
data structure with overhead τ is a data structure that maintains a rooted annotated rank decomposition
T of width at most ` that encodes a dynamic graph G, and supports the following queries:

• Initialize(T): Initialize the data structure with the given rooted annotated rank decomposition T .
Assumes that T encodes a graph G and the width of T is at most `. Runs in time O(τ · |T |).

• Update(u): Given a description u of a prefix-rebuilding update that changes T into T ′, apply this
update to T . Assumes that T ′ encodes a graph G′ and the width of T ′ is at most `. Runs in time
O(τ · |u|).

Note that an `-prefix-rebuilding data structure with overhead τ = O`(1) supporting the two queries
mentioned above can be readily implemented by Lemma 4.3.2. The purpose of this definition is to give a
template for data structures that implement also other queries in addition to the aforementioned two.
As an immediate example, let us give a prefix-rebuilding data structure for maintaining the heightT (t)
function.

Lemma 4.3.3. Let ` ∈ N. There exists an `-prefix-rebuilding data structure with overhead O`(1) that
maintains a rooted annotated rank decomposition T = (T, V (G),R, E ,F) that encodes a dynamic graph G,
and additionally supports the following query:

• Height(t): Given a node t ∈ V (T), returns heightT (t) in time O(1).

Proof. In the Initialize(T) query we compute heightT (t) by bottom-up dynamic programming for every
node t ∈ V (T). This runs in O`(|T |) time. The Update(u) query is implemented by first using Lemma 4.3.2
to construct T ′ = (T ′, U,R′, E ′,F ′), and then computing heightT ′(t) for all t ∈ T ′pref by bottom-up
dynamic programming, where T ′pref is the prefix of T ′ associated with the update. This runs in O`(|u|)
time. Then the Height(t) query can be implemented by simply returning the already stored height of the
node t.

106 CHAPTER 4. DYNAMIC RANKWIDTH

Let us then clarify our assumptions about prefix-rebuilding data structures. We assume that the stored
decomposition T always encodes a graph. We also assume that the data structure explicitly represents
the current decomposition T at all times, so that we can access it and for example retrieve a copy of T in
O`(|T |) time.

As the final lemma of this subsection we give a prefix-rebuilding data structure for making certain
straightforward manipulations of descriptions of prefix-rebuilding updates.

Lemma 4.3.4. Let ` ∈ N. There exists an `-prefix-rebuilding data structure with overhead O`(1) that
maintains a rooted annotated rank decomposition T that encodes a dynamic graph G, and additionally
supports the following queries:

• Reverse(u): Given a description u of a prefix-rebuilding update that changes T into T ′, return a
description of a prefix-rebuilding update that changes T ′ into T . Runs in time O`(|u|).

• Compose(u1, u2): Given two descriptions of prefix-rebuilding updates, u1 and u2, so that u1 changes
T into T ′ and u2 changes T ′ into T ′′ and both T ′ and T ′′ have width at most `, return a description
of a prefix-rebuilding update that changes T into T ′′. Runs in time O`(|u1|+ |u2|).

Proof. We maintain T = (T, V (G),R, E ,F) by using Lemma 4.3.2.
The Reverse query is implemented as follows. Let u = (Tpref , T

?,Annot(T ′, T ′pref)), where T ′pref =
V (T ?) \ L(T ?). We observe that now

ur = (T ′pref , T [Tpref ∪ AppT (Tpref)],Annot(T , Tpref))

is a description of a prefix-rebuilding update that changes T ′ into T , and it can be computed from u and
T in O`(|u|) time.

The Compose query is implemented as follows. Let u1 = (T 1
pref , T

?
1 ,Annot(T ′, T 1′

pref)) and u2 =

(T 2
pref , T

?
2 ,Annot(T ′′, T 2′

pref)), where T i
′

pref = V (T ?i) \L(T ?i) for i ∈ [2]. Let T ◦pref = T 1
pref ∪ (T 2

pref \T ′1pref) and

T ◦
′

pref = T 2′
pref ∪ (T 1′

pref \ T 2
pref).

We use the Reverse query to compute a description ur1 that turns T ′ into T , then we use Lemma 4.3.2
to turn T into T ′, then again Reverse to compute a description ur2 that turns T ′′ into T ′, and then
Lemma 4.3.2 to turn T ′ into T ′′ = (T ′′, V (G),R′′, E ′′,F ′′). This runs in time O`(|u1|+ |u2|). Then, we
observe that

u◦ = (T ◦pref , T
′′[T ◦

′

pref ∪ AppT (T ◦
′

pref)],Annot(T ′′, T ◦
′

pref))

is a description of a prefix-rebuilding update that changes T into T ′′. We can compute u◦ from T ′′, u1,
and u2 in O`(|T ◦pref |+ |T ◦

′

pref |) = O`(|u1|+ |u2|) time. We return u◦ and finally turn T ′′ back into T with
ur1 and ur2.

4.3.4 Prefix-rearrangement descriptions

In our algorithm we wish to re-arrange rooted annotated rank decompositions by prefix-rebuilding updates
without worrying about the details on what happens to the annotations R, E , and F stored in them.
In this subsection we show that prefix-rebuilding updates that are described without the tuple of new
annotations and which do not change the graph encoded by the decomposition can be efficiently turned
into prefix-rebuilding updates with descriptions as defined in Section 4.3.2. In particular, we introduce
prefix-rearrangement descriptions as a more high-level versions of descriptions of prefix-rebuilding updates,
and show that they can be turned efficiently into descriptions of prefix-rebuilding updates.

Let T = (T,U,R, E ,F) be a rooted annotated rank decomposition that encodes a graph G. We define
that a prefix-rearrangement description is a pair u = (Tpref , T

?), where Tpref is a leafless prefix of T and
T ? is a binary tree with L(T ?) = AppT (Tpref). A prefix-rebuilding update corresponds to (Tpref , T

?) if it
changes T into a rooted annotated rank decomposition T ′ = (T ′, U,R′, E ′,F ′) so that

• T ′ encodes G,

• Tpref is the prefix of T associated with the update, and

• T ? = T ′[T ′pref ∪ AppT ′(T
′
pref)], where T ′pref is the prefix of T ′ associated with the update.

In other words, a prefix-rearrangement description is like a prefix-rebuilding description but it does
not contain the triple of new annotations, and it is required to maintain the graph G encoded by the
decomposition. It can be observed that T and the prefix-rearrangement description uniquely determine the

4.3. ANNOTATED RANK DECOMPOSITIONS AND PREFIX REBUILDING 107

resulting tree T ′, and in particular the rank decomposition to which T ′ corresponds, but not necessarily
the annotations in T ′.

We again denote |u| = |Tpref |. The rest of this subsection is devoted to showing that given a prefix-
rearrangement description u, a description of a prefix-rebuilding update that corresponds to u can be
computed in O`(|u| log |u|) time, where ` is the maximum of the widths of T and T ′. We start with several
auxiliary lemmas. In these lemmas we mostly manipulate unrooted annotated rank decompositions.

We first observe that we can efficiently remove leaves from an annotated rank decomposition.

Lemma 4.3.5. There is an algorithm that given an annotated rank decomposition T of width ` that
encodes a partitioned graph (G, C) and a subset C′ ⊆ C with |C′| > 2, in time O`(|T |) returns an annotated
rank decomposition of width at most ` that encodes (G[C′], C′).

Proof. Let T = (T, V (G),R, E ,F) and G′ = G[C′]. We will construct an annotated rank decomposition
T ′ that encodes (G′, C′) and has width at most `.

First we construct for all ~xy ∈ ~E(T) a set R′′′(~xy) ⊆ L(T)[~xy]∩V (G′) that is a minimal representative
of L(T)[~xy] ∩ V (G′) in G, along with functions φ(~xy) : R′′′(~xy)→ R(~xy) that satisfy NG(u) ∩R(~yx) =
NG(φ(~xy)(u)) ∩ R(~yx) for all u ∈ R′′′(~xy). These can be computed by dynamic programming that
follows the mapping F by two depth-first searches on T , first computing for edges pointing towards
an arbitrarily chosen root, and second for edges pointing away from the root. Then we construct the
graph E ′′′(xy) = G[R′′′(~xy),R′′′(~yx)] for each xy ∈ E(T) from E(xy) with the help of the functions
φ(~xy) and φ(~yx). Then, by using E ′′′(xy) we can compute for each ~xy a subset R′′(~xy) ⊆ R′′′(~xy) that
is a minimal representative of L(T)[~xy] ∩ V (G′) in G′ (instead of G). We also compute the graphs
E ′′(xy) = G[R′′(~xy),R′′(~yx)] for each xy ∈ E(T).

We also construct for all xyz ∈ P3(T) a function F ′′(xyz) : R′′(~xy)→ R′′(~yz) so that for all u ∈ R′′(~xy)
it holds that NG′(u) ∩R′′(~zy) = NG′(F(xyz)(u)) ∩R′′(~zy). This can be constructed by first using φ(~xy)
and F(xyz) to compute v ∈ R(~yz) so that NG(v)∩R(~zy) = NG(u)∩R(~zy) and then using v, E(yz), and
φ(~zy) to compute NG′(u) ∩R′′(~zy).

We observe that T ′′ = (T, V (G′),R′′, E ′′,F ′′) almost satisfies all the properties required to be an
annotated rank decomposition that encodes G′: the only issue is that some of the sets R′′(~xy) can be
empty. We construct T ′ from T ′′ by deleting all edges xy where either R′′(~xy) or R′′(~yx) is empty, deleting
all thus created isolated nodes, and finally contracting all degree-2 nodes. Note that the annotations can
be modified in a straightforward way when contracting.

Because E ′′(xy) is isomorphic to an induced subgraph of E(xy) for all xy ∈ E(T), the width of the
resulting decomposition is at most the width of T . Also, because |R(~xy)| 6 2` for all ~xy ∈ ~E(T), the
algorithm can be implemented in O`(|T |) time.

Then, we will observe that a certain type of induced subgraph finding problem can be solved by
dynamic programming on annotated rank decompositions. Let G and H be graphs, and γ a function
γ : V (G)→ 2V (H). We say that H is a labeled induced subgraph of (G, γ) if G has an induced subgraph
G[X] so that G[X] is isomorphic to H with an isomorphism φ : X → V (H) so that φ(x) ∈ γ(x) for all
x ∈ X. The pair (X,φ) will be called the witness of the labeled induced subgraph. The following lemma
will be proven in Section 4.10.3 by encoding the problem in CMSO1 logic.

Lemma 4.3.6. There is an algorithm that given an annotated rank decomposition T of width ` that
encodes a partitioned graph (G, C), a graph H, and a function γ : V (G)→ 2V (H), in time O`,H(|T |) either
returns a witness of H as a labeled induced subgraph of (G, γ) or returns that (G, γ) does not contain H
as a labeled induced subgraph.

Then we need an algorithm that, given an annotated rank decomposition that encodes a partitioned
graph (G, C) and a vertex v ∈ V (G), outputs NG(v).

Lemma 4.3.7. There is an algorithm that, given an annotated rank decomposition T of width ` that
encodes a partitioned graph (G, C) and a vertex v ∈ V (G), in time O`(|T |) returns NG(v).

Proof. We run a depth-first search that starts at the leaf edge ~lp ∈ ~L(T) with v ∈ R(~lp), and for each
successor ~xy of ~lp computes u ∈ R(~xy) that represents v by following the mapping F along the depth-first
search. After this, the neighbors of v can be determined from the graphs E(l′p′) of the leaf edges ~l′p′ ∈ ~L(T).
As |R(~xy)| 6 2` for all ~xy ∈ ~E(T), both steps take O`(|T |) time.

The following lemma will be the main lemma towards the main algorithm of this subsection. It performs
the update in the setting when the prefix-rearrangement description completely describes the new tree.
After that, we will reduce the general case to this.

108 CHAPTER 4. DYNAMIC RANKWIDTH

Lemma 4.3.8. There is an algorithm that given an annotated rank decomposition T ′ of width at most `
that encodes a partitioned graph (G, C) and a rank decomposition (T, λ) of (G, C) of width at most `, in
time O`(|V (T)| log |V (T)|) returns an annotated rank decomposition T that encodes (G, C) and corresponds
to (T, λ).

Proof. The idea of the algorithm will be to work recursively by picking an edge xy ∈ E(T) that corresponds
to a balanced cut between the leaves of T , then in time O`(|V (T)|) computing a minimal representative
of the cut (L(T, λ)[~xy],L(T, λ)[~yx]) of G, then recursively constructing annotated rank decompositions on
both sides of this cut, and finally combining them. To make this idea work, we need to keep the “boundary”
of the subtree of T that we are currently working on small, and explicitly encode all adjacencies from a
representative of the boundary to all other vertices.

More formally, we define a decomposition-boundary-pair : Let T ′ be an annotated rank decomposition
that encodes a partitioned graph (G′, C′), B a graph with V (G′) ⊆ V (B) so that B[V (G′)] is edgeless,
and B a partition of V (B) \V (G′) so that for all C ∈ B the graph B[C] is edgeless. We call the pair (B,B)
a boundary representation and the pair (T ′, (B,B)) a decomposition-boundary-pair. The pair (T ′, (B,B))
encodes a partitioned graph (G, C) where V (G) = V (B), E(G) = E(B) ∪ E(G′), and C = B ∪ C′. In
particular, the edges in the subgraph induced by V (G′) come from T ′, and the other edges come from B.
Note that we allow V (G′) = V (B), in which case B = ∅ and B is edgeless.

Then we give our algorithm. We will describe a recursive algorithm that takes as input

• an annotated rank decomposition T ′ of width at most ` and a boundary representation (B,B) with
|B| 6 4 and |C| 6 2` for all C ∈ B, so that the decomposition-boundary-pair (T ′, (B,B)) encodes a
partitioned graph (G, C), where |C| > 2, and

• a rank decomposition (T, λ) of (G, C) of width at most `,

and outputs

• an annotated rank decomposition T that encodes (G, C) and corresponds to (T, λ).

The base case is that |C| 6 3. In this case |V (G)| 6 3 · 2`, so we can first explicitly construct (G, C)
from (T ′, (B,B)), and then from (G, C) and (T, λ) construct an annotated rank decomposition T that
corresponds to (T, λ) in a straightforward way in time O`(1).

Then we consider the case when |C| > 4. Let us first pick the edge of T along which we do recursion.
We say that a leaf of T is a boundary leaf if it corresponds to a part of C that is in B. By our assumption
there are at most 4 boundary leaves. If there are exactly 4 boundary leaves, we pick xy ∈ E(T) so
that both L(T)[~xy] and L(T)[~yx] contain 2 boundary leaves (note that this can always be done by a
walking argument on the decomposition). Otherwise, we pick xy ∈ E(T) so that |L(T)[~xy]| 6 2

3 |L(T)|
and |L(T)[~yx]| 6 2

3 |L(T)| (this can also be done by a similar argument). In both of the cases, such xy can
be found in time O(|V (T)|).

Let (X,Y) = (L(T, λ)[~xy],L(T, λ)[~yx]) be the cut of G corresponding to xy. Next we compute a
minimal representative (RX , RY) of (X,Y). Such a representative corresponds to a largest set of vertices
R ⊆ V (G) so that in the graph G[R ∩X,R ∩ Y] there are no twins over the bipartition (R ∩X,R ∩ Y).
Because the width of (T, λ) is at most `, we have by Lemma 4.2.4 that |RX |, |RY | 6 2`. Therefore, we
compute such largest R by a combination of brute-force and Lemma 4.3.6: We guess a graph isomorphic
to G[R ∩X,R ∩ Y] and how the vertices in

⋃
B are mapped into this graph. Then we use the graph B

and the cut (X,Y) to compute for each vertex in V (G′) how it could be mapped to this graph so that
it is consistent with the already guessed mapping, and based on that construct an instance of labeled
induced subgraph and apply Lemma 4.3.6 with T ′ to find such R ⊆ V (G). Note that multiple such R
could exist, but we pick arbitrarily a single one found by this procedure. As |R| 6 2 · 2` and |

⋃
B| 6 4 · 2`,

the running time of this step is O`(|V (T)|).
Then we describe the recursive call. We describe the call only for the X-side of the cut, but it is

analogous for the side of Y , with notation using Y in the subscript instead of X. Let CX be the partition
obtained from C by first removing all parts that are subsets of Y , and then inserting the part RY . Let also
GX = G[X ∪RY]. Because X and Y are nonempty, we have that |CX | > 2. Then, a rank decomposition
(TX , λX) of (GX , CX) is obtained from (T, λ) by cutting along xy, taking the side with X in the leaves,
and mapping RY to the new leaf created by this cutting, and all other parts of CX to the same leaves
they were previously mapped. The new leaf to which RY is mapped will be called y, so TX is an induced
subgraph of T . (Similarly, TY is an induced subgraph of T , with V (TX) ∩ V (TY) = {x, y}.) Because RY
is a representative of Y it follows that the width of (TX , λX) is at most `. Both CX and (TX , λX) can be
constructed in O`(|V (T)|) time.

4.3. ANNOTATED RANK DECOMPOSITIONS AND PREFIX REBUILDING 109

We will recursively call the algorithm with (TX , λX), and for this we must construct a decomposition-
boundary-pair that encodes (GX , CX). To deal with technicalities, if |CX | 6 5, we actually do not apply a
recursive call but instead construct (GX , CX) explicitly in time O`(|V (T)|) by using Lemma 4.3.7, and
construct the annotations for (TX , λX) in a straightforward way in time O`(1). Then, assume |CX | > 6.
The new boundary representation (BX ,BX) is constructed by first removing all vertices in Y from B and
from all sets in B, then inserting to B the set RY as a new part, and then inserting to the graph B the
vertices RY and all edges between RY and X, which can be computed in time O`(|V (T)|) by Lemma 4.3.7
and the fact that |RY | 6 2`. The fact that |RY | 6 2` also implies that the assumption that all parts of
BX have size at most 2` holds. We also have to argue that |BX | 6 4. If |B| 6 3, this holds by the fact that
we inserted only one new part. If |B| = 4, then by the selection of xy there are two parts of B that are
subsets of Y , and in fact in this case we have |BX | 6 3. We will use this fact also later in the analysis of
the overall time complexity. The annotated rank decomposition T ′X of the decomposition-boundary-pair is
constructed from T ′ in O`(|V (T)|) time by applying Lemma 4.3.5, in particular, by deleting the parts that
are subsets of Y . Here we use |CX | > 6 to guarantee that T ′X has at least two leaves. We then observe that
(T ′X , (BX ,BX)) is a decomposition-boundary pair that encodes (GX , CX) and satisfies all assumptions
required by the recursion.

Then, let TX = (TX , V (GX),RX , EX ,FX) and TY = (TY , V (GY),RY , EY ,FY) be the annotated rank
decompositions obtained by the recursive calls. We describe the construction of the annotated rank
decomposition T = (T, V (G),R, E ,F). First, for every ~e ∈ ~E(TX) \ { ~xy} we set R(~e) := RX(~e), and for
every ~e ∈ ~E(TY) \ { ~yx} we set R(~e) := RY (~e). Observe that this sets representatives for all oriented edges
of T , and that R(~xy) = RX and R(~yx) = RY . Then, for every e ∈ E(TX) \ {xy} we set E(e) := EX(e) and
for every e ∈ E(TY) \ {xy} we set E(e) := EY (e). We set E(xy) := G[RX , RY], which can be computed in
time O`(|V (T)|) by Lemma 4.3.7.

At this point, we note that from the fact that (RX , RY) is a minimal representative of (X,Y), and by
induction on the recursion, it follows that for all ~ab ∈ ~E(T), the set R(~ab) is a minimal representative
of L(T)[~ab], and that for all ab ∈ E(T), E(ab) = G[R(~ab),R(~ba)]. In particular, T satisfies the property
ENC 3. Also the properties ENC 1 and 2 are clearly satisfied.

Then we construct F . First, for every abc ∈ P3(TX) so that c 6= y we have RX(~ab) = R(~ab) and
RX(~bc) = R(~bc), so we can set F(abc) := FX(abc). Analogously, for every abc ∈ P3(TY) so that c 6= x
we set F(abc) := FY (abc). Then consider txy ∈ P3(TX) for arbitrary such t ∈ V (TX). We have that
EX(xy) = G[RX(~xy), RY] and RX(~xy) is a minimal representative of L(T)[~xy]. By Lemma 4.2.3, EX(xy)
is isomorphic to G[RX , RY] with an isomorphism that is identity on on RY , and such an isomorphism
is unique. We find such isomorphism φ : RX(~xy) ∪ RY → RX ∪ RY in O`(1) time. Then we construct
F(txy) by letting F(txy)(r) = φ(FX(txy)(r)) for all r ∈ R(~tx). For tyx ∈ P3(TY) we construct F(tyx)
analogously.

It can be observed that this construction can be implemented in O`(|V (T)|) time. It remains to show
that the constructed annotated rank decomposition T indeed encodes (G, C) and corresponds to (T, λ).
We observe that by construction T corresponds to (T, λ). For showing that T encodes (G, C), it remains
to show ENC 4.

Claim 4.3.9. For all abc ∈ P3(T) and u ∈ R(~ab), we have NG(u) ∩R(~cb) = NG(F(abc)(u)) ∩R(~cb).

Proof of the claim. For all abc ∈ P3(T) except of form abc ∈ {txy, tyx} this holds because it holds for TX
and TY and the graphs GX and GY are induced subgraphs of G.

Then consider the case abc = txy. Recall that RY = R(~yx) = RX(~yx) and let φ be the unique
isomorphism from EX(xy) = G[RX(~xy), RY] to G[RX , RY] that is identity on RY . We have that

NG(u) ∩RY = NG(FX(txy)(u)) ∩RY (by ENC 4 on TX)

= NG(φ(FX(txy)(u))) ∩RY (by isomorphism)

= NG(F(txy)(u)) ∩RY (by construction)

The case of abc = tyx is similar. C

This concludes the proof that the output of the algorithm is as claimed.
Then we analyze the time complexity of the algorithm. We already analyzed that a single recursive

call takes O`(|V (T)|) time. It remains to observe that if |B| = 4, then in the child calls it holds that
|BX |, |BY | 6 3, and that if |B| 6 3, then in the child calls it holds that |L(TX)|, |L(TY)| 6 2

3 |L(T)|+ 1.
Because T is a cubic tree we have |V (T)| = O(|L(T)|), and therefore a standard analysis of divide-and-
conquer algorithms gives the total time complexity O`(|V (T)| log |V (T)|).

110 CHAPTER 4. DYNAMIC RANKWIDTH

Then we will present one more auxiliary lemma that will be used in reducing the general case to the
case of Lemma 4.3.8.

Let T = (T, V (G),R, E ,F) be a rooted annotated rank decomposition that encodes a partitioned
graph (G, C). Given a leafless connected node set Tconn ⊆ V (T)\L(T), we denote by RepPart(T , Tconn) the
partition {R(~ap) | ~ap ∈ ~AppT (Tconn)} naturally associated with the appendix edges of Tconn. Obtaining
an annotated rank decomposition of the partitioned graph (G[RepPart(T , Tconn)],RepPart(T , Tconn)) from
T is almost straightforward, but we have to deal with a technical issue arising from the fact that some
representatives in T inside the subtree T [Tconn] are not necessarily in

⋃
RepPart(T , Tconn).

Lemma 4.3.10. Let T = (T, V (G),R, E ,F) be a rooted annotated rank decomposition of width ` that
encodes (G, C) and whose representation is already stored. There is an algorithm that given a leafless
connected node set Tconn ⊆ V (T) \ L(T), in time O`(|Tconn|) returns an annotated rank decomposition of
width at most ` that encodes the partitioned graph (G[RepPart(T , Tconn)],RepPart(T , Tconn)).

Proof. We denote (G′, C) = (G[RepPart(T , Tconn)],RepPart(T , Tconn)).
Let T ′ = T [Tconn∪AppT (Tconn)] be the subtree of T induced by Tconn and its appendices. We construct

T ′ = (T ′, V (G′),R|~E(T ′), E|E(T ′),F|P3(T ′)) in a straightforward way in O`(|Tconn|) time. It can be observed
that T ′ is almost an annotated rank decomposition that encodes (G′, C): the only issue is that some
representatives are not from the set V (G′). This issue can be fixed by finding for every representative
u ∈ R(~xy) with u /∈ V (G′) a representative u′ ∈ V (G′) with N(u′) ∩ L(T)[~yx] = N(u) ∩ L(T)[~yx], and
replacing u with u′ in R(~xy), E(xy), and in the representative maps that concern the edge ~xy. This can
be done in O`(|Tconn|) time by a 2-phase dynamic programming that first finds such representatives u′ on
oriented edges pointing towards the root, and then on oriented edges pointing towards the leaves. Finally,
it is straightforward to turn the obtained rooted annotated rank decomposition into unrooted.

Then we give the main algorithm of this subsection.

Lemma 4.3.11. There exists an `-prefix-rebuilding data structure that maintains a rooted annotated rank
decomposition T and additionally supports the following query:

• Translate(Tpref , T
?): Given a prefix-rearrangement description (Tpref , T

?) on the decomposition T , in
time O`,`′(|Tpref | log |Tpref |) returns a description of a corresponding prefix-rebuilding update, where
`′ is the width of the resulting rooted annotated rank decomposition.

Proof. We maintain the rooted annotated rank decomposition T = (T, V (G),R, E ,F) that encodes a
graph G by making use of Lemma 4.3.2. It remains to describe how the Translate(Tpref , T

?) query is
implemented. Throughout the proof we will use π : ~AppT (Tpref) → ~L(T ?) to denote the bijection that
maps an appendix edge ~ap ∈ ~AppT (Tpref) to the corresponding edge ~ap′ ∈ ~L(T ?).

Consider the partitioned graph (G?, C?) = (G[RepPart(T , Tpref)],RepPart(T , Tpref)). By applying
Lemma 4.3.10, we obtain an annotated rank decomposition T ?? of width at most ` that encodes (G?, C?).
Then let λ? : C? → ~L(T ?) be the function that maps R(~ap) to π(~ap) for all appendix edges ~ap ∈
~AppT (Tpref). We observe that (T ?, λ?) is a rooted rank decomposition of (G?, C?) of width at most `′.

Then we apply Lemma 4.3.8 with T ?? and (T ?, λ?) to obtain a rooted annotated rank decomposition
T ? = (T ?, V (G?),R?, E?,F?) that encodes (G?, C?) and corresponds to (T ?, λ?). Note that even though
Lemma 4.3.8 works with unrooted decompositions, it is simple to make it work for rooted decompositions
by unrooting (T ?, λ?) before applying it and then rooting the returned decomposition at the corresponding
place. So far all the steps have taken O`,`′(|Tpref | log |Tpref |) time. It remains to attach the subtrees below
the appendices of Tpref to T ?.

We consider an annotated rank decomposition T ′ = (T ′, V (G),R′, E ′,F ′) that is constructed as follows.
We start with T ?, and then for every appendix edge ~ap ∈ ~AppT (Tpref), we attach the subtree of T below ~ap

to T ′ so that ~ap is identified with π(~ap) = ~ap′, and also copy all annotations associated to that subtree in
T to T ′. We do not copy the annotations on the edge ap, in particular, it will hold that R′(~p′a) = R?(~p′a)
and R′(~ap′) = R?(~ap′) = R(~ap).

The functions F ′(tap′) where ~ap′ = π(~ap) for ~ap ∈ ~AppT (Tpref) and t is a child of a can be copied from
T in the natural way, so it remains to construct the functions F ′(p′at). It holds that R(~ap) = R′(~ap′)
and both E(ap) and E ′(ap′) are representative graphs of (L(T)[~ap],L(T)[~pa]). Therefore, by Lemma 4.2.3
let φ : R′(~ap′) ∪R′(~p′a)→ R(~ap) ∪R(~pa) be the unique isomorphism between E ′(ap′) and E(ap) that is
identity on R′(~ap′) = R(~ap). Such φ can be computed in O`(1) time. We construct F ′(p′at) by setting
F ′(p′at)(u) := F(pat)(φ(u)) for all u ∈ R′(~p′a).

4.3. ANNOTATED RANK DECOMPOSITIONS AND PREFIX REBUILDING 111

Clearly, this construction of T ′ can be implemented by a prefix-rebuilding update that corresponds to
the given prefix-rearrangement description, and the description of this prefix-rebuilding update can be
computed according to the previous discussion in O`,`′(|Tpref | log |Tpref |) time. It remains to show that T ′
encodes G.

The properties ENC 1 and 2 obviously hold. Then we show ENC 3.

Claim 4.3.12. For all ~xy ∈ ~E(T ′) it holds that R′(~xy) is a minimal representative of L(T ′)[~xy] and
E ′(xy) = G[R′(~xy),R′(~yx)].

Proof of the claim. First, suppose that ~xy ∈ ~E(T ′) \ ~E(T ?). We have L(T ′)[~xy] = L(T)[~xy], R′(~xy) =
R(~xy), and E ′(xy) = E(xy), so the claim holds because T encodes G.

Then suppose ~xy ∈ ~E(T ?). Because T ? encodes (G?, C?), R′(~xy) is a minimal representative of
L(T ?)[~xy] in G? and E ′(xy) = G?[R′(~xy),R′(~yx)]. To obtain that R′(~xy) is a minimal representative
of L(T ′)[~xy] and E ′(xy) = G[R′(~xy),R′(~yx)], it suffices to argue that L(T ?)[~xy] is a representative of
L(T ′)[~xy] in G and G[L(T ?)[~xy],L(T ?)[~yx]] = G?[L(T ?)[~xy],L(T ?)[~yx]]. The former follows from the fact
that for each ~ap ∈ ~AppT (Tpref) the set R(~ap) = R′(π(~ap)) is a representative of L(T)[~ap] = L(T ′)[π(~ap)].
The latter follows from the definition of G? and the fact that for each ~ap ∈ ~AppT (Tpref) either R(~ap) ⊆
L(T ?)[~xy] or R(~ap) ⊆ L(T ?)[~yx]. C

The next claim will imply ENC 4.

Claim 4.3.13. For all xyz ∈ P3(T ′) and u ∈ R′(~xy), it holds that

NG(u) ∩R′(~zy) = NG(F ′(xyz)(u)) ∩R′(~zy).

Proof of the claim. When y /∈ V (T ?) or when xyz = tap′ for ~ap′ = π(~ap) with ~ap ∈ ~AppT (Tpref) this
holds by the property ENC 4 of T . Also when xyz ∈ P3(T ?) this holds by the property ENC 4 of T ?. It
remains to consider the case of xyz = p′at for ~ap′ = π(~ap) with ~ap ∈ ~AppT (Tpref).

Let φ be the unique isomorphism between E ′(ap′) and E(ap) that is identity on R′(~ap′) = R(~ap),
and recall that R′(~ta) = R(~ta). We have that NG(u) ∩R(~ap) = NG(φ(u)) ∩R(~ap). Because R(~ap) is a
representative of L(T)[~ap], this implies that NG(u) ∩ L(T)[~ap] = NG(φ(u)) ∩ L(T)[~ap]. Now, R′(~ta) ⊆
L(T)[~ta] ⊆ L(T)[~ap], so we get that

NG(u) ∩R′(~ta) = NG(φ(u)) ∩R′(~ta)

= NG(F(pat)(φ(u))) ∩R′(~ta) (by ENC 4 on T)

= NG(F ′(p′at)(u)) ∩R′(~ta). (by construction of F ′)

C

Hence the construction of T ′ is correct.

4.3.5 Edge update descriptions

The dynamic graph G in our algorithm is represented by an annotated rank decomposition that encodes
G, and therefore we use prefix-rebuilding updates to update G. In this section we give a higher-level
formalism for describing edge updates, and show that it can be translated to corresponding descriptions
of prefix-rebuilding updates efficiently.

Let T = (T,U,R, E ,F) be a rooted annotated rank decomposition that encodes a graph G. An edge
update description is a quadruple u = (W,Tpref ,R?, E?), where

• W ⊆ V (G),

• Tpref is a prefix of T so that if ~lp ∈ ~L(T) and R(~lp) ⊆W then l ∈ Tpref ,

• R? is a function that maps each ~xy ∈ ~E(T [Tpref]) to a nonempty set R?(~xy) ⊆ L(T)[~xy],

• E? is a function that maps each xy ∈ E(T [Tpref]) to a bipartite graph E?(xy) with biparti-
tion (R?(~xy),R?(~yx)), each xyz ∈ P3(T [Tpref]) to a bipartite graph E?(xyz) with bipartition
(R?(~xy),R?(~zy)), and each xyz ∈ P3(T) with x ∈ AppT (Tpref) and y, z ∈ Tpref to a bipartite graph
E?(xyz) with bipartition (R(~xy),R?(~zy)).

We say that u describes a graph G′ if

112 CHAPTER 4. DYNAMIC RANKWIDTH

• V (G′) = V (G),

• for all u, v ∈ V (G) with u /∈W or v /∈W we have uv ∈ E(G′) if and only if uv ∈ E(G),

• for all ~xy ∈ ~E(T [Tpref]) the set R?(~xy) is a representative of L(T)[~xy] in G′,

• for all xy ∈ E(T [Tpref]) it holds that E?(xy) = G′[R?(~xy),R?(~yx)],

• for all xyz ∈ P3(T [Tpref]) it holds that E?(xyz) = G′[R?(~xy),R?(~zy)], and

• for all xyz ∈ P3(T) with x ∈ AppT (Tpref) and y, z ∈ Tpref , E?(xyz) = G′[R(~xy),R?(~zy)].

Note that R?(~xy) is not required to be a minimal representative and the graphs in the image of E?
are allowed to have twins over the bipartition.

We observe that if u describes some graph G′, then G′ is uniquely determined by u and G. In particular,
by making use of the E?(xyz) = G′[R?(~xy),R?(~zy)] graphs, the description u can be turned into an
annotated rank decomposition that encodes G′[W]. We denote |u| = |Tpref |. We define that the width of u
is the maximum of cutrkE?(xy)(R?(~xy)) over all ~xy ∈ ~E(T [Tpref]). Note that if u has width ` then it can
be represented in space O`(|Tpref |).

We say that a prefix-rebuilding update corresponds to an edge update description u if u describes a
graph G′, the update turns T into a rooted annotated rank decomposition T ′ = (T ′, U ′,R′, E ′,F ′) so that
T ′ encodes G′ and T ′ = T , and the prefix of T associated with the update is Tpref \ L(T). Note that such
update can change the width of an edge xy ∈ E(T) only if W intersects both L(T)[~xy] and L(T)[~yx], in
particular, only if xy ∈ E(T [Tpref]). It follows that the width of T ′ is at most the maximum of the widths
of T and u.

We then give the algorithm to translate edge update descriptions into descriptions of prefix-rebuilding
updates.

Lemma 4.3.14. There exists an `-prefix-rebuilding data structure with overhead O`(1) that maintains a
rooted annotated rank decomposition T that encodes a dynamic graph G and additionally supports the
following query:

• Translate(u): Given an edge update description u of width `′ that describes a graph G′, in time
O`,`′(|u|) returns a description of a corresponding prefix-rebuilding update.

Proof. We maintain the rooted annotated rank decomposition T = (T, V (G),R, E ,F) that encodes G by
making use of Lemma 4.3.2. It remains to describe how the Translate(u) query is implemented.

Denote u = (W,Tpref ,R?, E?) and T = (T,U,R, E ,F). We construct T ′ = (T,U,R′, E ′,F ′) as follows.
First, for every ~xy ∈ ~E(T [Tpref]) we compute a set R??(~xy) ⊆ R?(~xy) so that R??(~xy) is a minimal
representative of L(T)[~xy] in G′. This can be computed in O`′(1) time by using E?(xy). We also compute
E??(xy) = E?[R??(~xy),R??(~yx)] for all xy ∈ E(T [Tpref]). Then we construct R′ by setting R′(~xy) =
R??(~xy) if ~xy ∈ ~E(T [Tpref]) and R′(~xy) = R(~xy) otherwise. We also construct E ′ by setting E ′(xy) =
E??(xy) if xy ∈ E(T [Tpref]) and E ′(xy) = E(xy) otherwise.

Because all edges xy so that both L(T)[~xy] and L(T)[~yx] intersect W are in E(T [Tpref]), T ′ satisfies
ENC 3. It remains to construct F ′.

When both xy and yz are not in E(T [Tpref]) we let F ′(xyz) = F(xyz). This satisfies ENC 4 because
R′(~xy) = R(~xy), R′(~yz) = R(~yz), E ′(xy) = E(xy), and E ′(yz) = E(yz). Let xyz ∈ P3(T [Tpref]) and let
u ∈ R′(~xy). By using E?(xyz) we can compute NG′(u) ∩ R??(~zy), and then find v ∈ R′(~yz) = R??(~yz)
so that NG′(u) ∩R??(~zy) = NG′(v) ∩R??(~zy) and set F(xyz)(u) = v. This clearly satisfies ENC 4. The
same idea works for computing F(xyz) when x or z is not in Tpref .

We observe that this construction can be implemented with a prefix-rebuilding update so that
Tpref \L(T) is the prefix of T associated with the update. Moreover, the description of the prefix-rebuilding
update can be computed in O`,`′(|Tpref |) time.

4.4 Refinement

In this section we introduce the refinement operation that will be used for improving the rank decomposition,
and give the height reduction scheme by using the refinement operation.

4.4. REFINEMENT 113

4.4.1 Closures

The main graph-theoretic ingredient of the refinement operation is the concept of closures.
Let T = (T, λ) be a rooted rank decomposition of a graph G, Tpref a leafless prefix of T , and k a

positive integer. A k-closure of Tpref is a partition C of V (G) so that

1. for each C ∈ C there exists a ∈ AppT (Tpref) so that C ⊆ L(T)[a], and

2. the partitioned graph (G[C], C) has rankwidth at most 2k.

We will show that if G has rankwidth at most k, then for any Tpref there exists a k-closure with specific
properties. This will be then used in the refinement operation.

Small closures. We say that a k-closure C is c-small for some integer c if for every a ∈ AppT (Tpref)
there exist at most c parts C ∈ C with C ⊆ L(T)[a]. In this subsection we show that if G has rankwidth
k and T has width `, then there exists a f(`)-small k-closure of any prefix Tpref of T . For this we will
first prove the Dealternation Lemma for rankwidth, which will be an analogue of a similar lemma for
treewidth given in [BP22]. We postpone the proof of this lemma to Section 4.8, but let us state it here.

We say that a set F ⊆ V (G) is a tree factor of T if F = L(T)[t] for some node t ∈ V (T). Similarly, we
say that F ⊆ V (G) is a context factor of T if it is not a tree factor but it can be written as F = F1 \ F2,
where F1 and F2 are tree factors of T . A set F ⊆ V (G) is a factor of T if it is either a tree factor or a
context factor of T .

Lemma 4.4.1. There exists a function f(`) so that if G is a graph of rankwidth k and T a rooted rank
decomposition of G of width `, then there exists a rooted rank decomposition T ′ of G of width k so that
for every node t ∈ V (T), the set L(T)[t] can be partitioned into a disjoint union of f(`) factors of T ′.

Next we use the Dealternation Lemma to prove the existence of f(`)-small k-closures.

Lemma 4.4.2. There exists a function f(`), so that if G is a graph of rankwidth k, T = (T, λ) is a
rooted rank decomposition of G of width `, and Tpref a leafless prefix of T , then there exists a f(`)-small
k-closure C of Tpref .

Proof. By applying Lemma 4.4.1, let T ′ = (T ′, λ′) be a rooted rank decomposition of G of width k so
that for every node t ∈ V (T) the set L(T)[t] can be partitioned into a disjoint union of f(`) factors of T ′.
Then for each a ∈ AppT (Tpref) let Ca be the partition of L(T)[a] into f(`) parts that are factors of T ′,
and let C =

⋃
a∈AppT (Tpref) Ca. It remains to show that (G[C], C) has rankwidth at most 2k.

Observe that if all factors in C would be tree factors, then we would directly get that (G[C], C) has
rankwidth at most k by using the same rank decomposition truncated to the roots of the factors. Therefore,
our goal is to change T ′ so that all factors in C become tree factors and the width increases to at most 2k.

Let us say that an edge ab ∈ E(T ′), where b is the parent of a in T ′, is processed if either of the
following conditions holds:

• there exists a tree factor F ∈ C that intersects both L(T ′)[~ab] and L(T ′)[~ba]; or

• L(T)[a] is a tree factor, and there is no context factor in T ′ of the form L(T)[g] \L(T)[a] for a strict
ancestor g of b.

Otherwise, ab is unprocessed. We will make changes to T ′ while maintaining an invariant that every
processed edge has width at most 2k and every unprocessed edge has width at most k. Suppose there is a
node x ∈ V (T ′) and a descendant y of x so that C = L(T ′)[x] \ L(T ′)[y] is a context factor C ∈ C. Note
that x is not y nor a child of y because otherwise C would be a tree factor. Let px be the parent of x
(or px = x if x is the root of T ′) and py be the parent of y in T ′. Note that all edges on the simple path
between px and y are unprocessed.

We will change T ′ into a new rooted rank decomposition T ′′ so that the number of context factors
decreases but the invariant is maintained. In particular, T ′′ is constructed by cutting off the subtree
rooted at y by cutting the edge between y and py, and putting it back so that x and y have the same
parent in the resulting decomposition. For this, the edge xpx will be subdivided, or if x is the root a new
root will be created so that x and y are its children. Let p′ be the new common parent of x and y. Also,
the degree-2 node py created by cutting the edge ypy is contracted (Figure 4.1).

We observe that C becomes a tree factor in T ′′, but no other factors change. This change affects only
the widths of edges ab ∈ E(T ′) that were on the path from py to px. Such edges ab were unprocessed, but

114 CHAPTER 4. DYNAMIC RANKWIDTH

→

Figure 4.1: A surgery on the rank decomposition for a context factor C = L(T ′)[x]\L(T ′)[y]. The subtrees
comprising C are marked gray.

the corresponding edges a′b′ in T ′′ become processed as C becomes a tree factor. Suppose b is the parent
of a. We have that L(T ′)[y] ⊆ L(T ′)[~ab], cutrk(L(T ′)[~ab]) 6 k, and cutrk(L(T ′)[y]) 6 k. The width of
the new edge a′b′ corresponding to ab will be cutrk(L(T ′′)[~a′b′]) = cutrk(L(T ′)[~ab] \ L(T ′)[y]), which by
symmetry and submodularity of the cutrk function is at most cutrk(L(T ′)[~ab]) + cutrk(L(T ′)[y]) 6 2k.

Therefore, the process decreases the number of context factors and maintains the invariant, and in the
end we obtain a rooted rank decomposition of G of width at most 2k so that all parts of C are tree factors
in the decomposition. Such decomposition can be easily turned into a rank decomposition of (G[C], C) of
width at most 2k.

Closure linkedness. Let A ⊆ B ⊆ V (G) be two sets of vertices. We say that A is linked into B if for
all sets S with A ⊆ S ⊆ B it holds that cutrk(A) 6 cutrk(S). We say that a set C ⊆ V (G) cuts a node
t ∈ V (T) if both L(T)[t]∩C and L(T)[t] \C are nonempty. Then we say that k-closure C of Tpref is linked
if for every C ∈ C with C ⊆ L(T)[a] for a ∈ AppT (Tpref) it holds that

1. C is linked into L(T)[a], and

2. if C cuts a descendant t of a, then cutrk(C ∪ L(T)[t]) > cutrk(C).

We say that a k-closure C cuts a node t ∈ V (T) if there is C ∈ C so that C cuts t, or equivalently, if
more than one part in C intersects L(T)[t]. Note that any k-closure of Tpref cuts all nodes in Tpref .

In our algorithm we will use closures that are linked. We will need to guarantee the existence of such
closures and to give a method for finding them. For this, the following definition will be useful. We say
that a c-small k-closure C of Tpref is minimal if among all c-small k-closures it

• primarily minimizes
∑
C∈C cutrk(C), and

• secondarily minimizes the number of nodes of T that it cuts.

Then, the following lemma guarantees the existence of linked c-small k-closures and provides a method
for finding them.

Lemma 4.4.3. Any minimal c-small k-closure of Tpref is linked.

Proof. Suppose C is a minimal c-small k-closure of Tpref that is not linked. Let C ∈ C be a part that
violates the linkedness condition, in particular, with C ⊆ L(T)[a] for some a ∈ AppT (Tpref) so that there
is a set S with C ⊆ S ⊆ L(T)[a] and either

1. cutrk(S) < cutrk(C), or

2. cutrk(S) = cutrk(C) and S = C ∪ L(T)[t] for some descendant t of a so that C cuts t.

Let us moreover fix such set S that minimizes cutrk(S). We will use the set S to construct a new c-small
k-closure C′ that will contradict the minimality of C.

We let C′ = {S} ∪ {D \ S | D ∈ C and D 6⊆ S}. Let us first show that if C′ is a k-closure then it
contradicts the minimality of C, and then show that it indeed is a k-closure. First, the facts that C ⊆ S
and this construction changes only parts that are subsets of L(T)[a] implies that C′ is c-small. In order to
bound

∑
C′∈C′ cutrk(C ′) we show the following.

4.4. REFINEMENT 115

Claim 4.4.4. For all D ∈ C \ {C} it holds that cutrk(D \ S) 6 cutrk(D).

Proof of the claim. Note that if D is a not subset of L(T)[a], then D is disjoint from S and this holds
trivially, so we can assume that D ⊆ L(T)[a]. Recall that for a set X we denote X = V (G) \X. First we
observe that

cutrk(S) 6 cutrk(D ∩ S) (4.2)

because C ⊆ D ∩ S ⊆ L(T)[a], but S minimizes cutrk(S) among such sets. Then,

cutrk(D \ S) = cutrk(D ∩ S) = cutrk(D ∪ S) (symmetry of cutrk)

6 cutrk(D) + cutrk(S)− cutrk(D ∩ S) (submodularity of cutrk)

6 cutrk(D) = cutrk(D). (Eq. (4.2) and symmetry)

C

Claim 4.4.4 and the fact that cutrk(S) 6 cutrk(C) imply that
∑
C′∈C′ cutrk(C ′) 6

∑
C∈C cutrk(C).

Moreover, if cutrk(S) < cutrk(C) then in fact
∑
C′∈C′ cutrk(C ′) <

∑
C∈C cutrk(C), so in the case of Item 1

we have already contradicted the minimality of C and do not need to consider the secondary minimization.
Then suppose we are in the case of Item 2. First we show that if C′ cuts some node x ∈ V (T), then

also C cuts x. If x is a descendant of t, then L(T)[x] ⊆ S, so C′ does not cut x. If L(T)[x] is disjoint from
L(T)[t], then D ∩ L(T)[x] = (D \ S) ∩ L(T)[x] for all D ∈ C \ {C} and C ∩ L(T)[x] = S ∩ L(T)[x], so C′
cuts x if and only if C cuts x. If x is an ancestor of t, then C cuts x because C cuts t. Then, the fact that
C cuts t but C′ does not cut t implies that C′ cuts fewer nodes of T than C.

Next we show that C′ is a k-closure of Tpref . Because S ⊆ L(T)[a], it holds that for all C ′ ∈ C′ there
exists a′ ∈ AppT (Tpref) with C ′ ⊆ L(T)[a′]. It remains to bound the rankwidth of (G[C′], C′).

Claim 4.4.5. The rankwidth of (G[C′], C′) is at most the rankwidth of (G[C], C).

Proof of the claim. Let T ∗ = (T ∗, λ∗) be an optimum-width rank decomposition of (G[C], C). We modify
T ∗ into a rank decomposition T ′ = (T ′, λ′) of (G[C′], C′) by simply mapping S ∈ C′ to the leaf to which
C was mapped, and for each D \ S ∈ C′ mapping D \ S to the leaf to which D was mapped. This could
create some leaves to which no parts of C′ are mapped, so finally we iteratively remove leaves with no
mapped parts and contract edges of degree 2.

Consider an edge x′y′ ∈ E(T ′), and suppose w.l.o.g. that S ⊆ L(T ′)[~x′y′]. Then there exists an oriented
edge ~xy ∈ ~E(T) so that C ⊆ L(T ∗)[~xy] and L(T ′)[~x′y′] = L(T ∗)[~xy] ∪ S. Therefore it suffices to show
that cutrk(L(T ∗)[~xy] ∪ S) 6 cutrk(L(T ∗)[~xy]). First, we note that

cutrk(S) 6 cutrk(L(T ∗)[~xy] ∩ S) (4.3)

because C ⊆ L(T ∗)[~xy] ∩ S ⊆ L(T ∗)[a], but S minimizes cutrk(S) among such sets. Then,

cutrk(L(T ∗)[~xy] ∪ S) 6 cutrk(L(T ∗)[~xy]) + cutrk(S)− cutrk(L(T ∗)[~xy] ∩ S) (submodularity)

6 cutrk(L(T ∗)[~xy]). (Eq. (4.3))

C

This finishes the proof that C′ is a c-small k-closure that contradicts the minimality of C.

We then observe the main consequence of closure linkedness.

Lemma 4.4.6. Let C be a k-closure of Tpref that is linked. If C ∈ C and C cuts a node t ∈ V (T) \ Tpref ,
then it holds that cutrk(C ∩ L(T)[t]) < cutrk(L(T)[t]).

Proof. Suppose cutrk(C ∩ L(T)[t]) > cutrk(L(T)[t]). Then from submodularity it follows that cutrk(C ∪
L(T)[t]) 6 cutrk(C), which contradicts that C is linked.

116 CHAPTER 4. DYNAMIC RANKWIDTH

Computing closures. For a k-closure C of Tpref , we denote by cutT (C) the set of nodes of T that
are cut by C. Note that cutT (C) is a prefix of T and Tpref ⊆ cutT (C). We wish to manipulate k-
closures in time proportional to |cutT (C)|. Let C ∈ C. The appendix edge set aesT (C) of C is the
set aesT (C) = { ~ap ∈ ~AppT (cutT (C)) | L(T)[~ap] ⊆ C} ⊆ ~AppT (cutT (C)) of appendix edges of cutT (C)
that correspond to C. Then, we define the appendix edge partition aepT (C) of C to be the partition
aepT (C) = {aesT (C) | C ∈ C} of ~AppT (cutT (C)). Note that | ~AppT (cutT (C))| = |cutT (C)| + 1, so the
appendix edge partition can be represented in space O(|cutT (C)|).

We will use the following prefix-rebuilding data structure for computing closures. We defer the proof
to Section 4.9, but the idea will be to adapt the dynamic programming of [JKO21] for computing optimal
rank decompositions to our setting.

Lemma 4.4.7. There is an `-prefix-rebuilding data structure that takes integer parameters c > 1 and
k 6 ` at initialization, has overhead Oc,`(1), maintains a rooted annotated rank decomposition T , and
additionally supports the following query:

• Closure(Tpref): Given a prefix Tpref of T , either in time O`(|Tpref |) returns that no c-small k-closure
of Tpref exists, or for a minimal c-small k-closure C of Tpref in time O`(|cutT (C)|) returns

– the sets cutT (C) and aepT (C), and

– a rooted rank decomposition (T ∗, λ∗) of (G[C], C) of width at most 2k, where λ∗ is represented
as a function λ : aepT (C)→ ~L(T ?).

4.4.2 Refinement operation

We start by introducing the potential function we use for the amortized analysis of the algorithm.
In a rooted rank decomposition T = (T, λ) of a graph G, let us say that the width of a node t ∈ V (T)

is the width of the edge between the node and the parent, and denote it by widthT ,G(t) = cutrkG(L(T)[t]).
The width of the root node is defined to be 0. Let f be the function from Lemma 4.4.2. Then we let the
`-potential of t with respect to G be

Φ`,T ,G(t) = (2 · f(`))widthT ,G(t) · heightT (t),

and the `-potential of T with respect to G be

Φ`,G(T) =
∑

t∈V (T)

Φ`,T ,G(t).

We will omit the graph G from the subscript in these notations if it is clear from the context.
For a set of nodes S ⊆ V (T) we will denote heightT (S) =

∑
t∈S heightT (t) and Φ`,T (S) =

∑
t∈S Φ`,T (t).

Then we give the refinement operation formulated as a prefix-rebuilding data structure.

Lemma 4.4.8. Let k ∈ N and ` > 4k+ 1. There exists an `-prefix-rebuilding data structure with overhead
O`(1) that maintains a rooted annotated rank decomposition T = (T, V (G),R, E ,F) that encodes a
dynamic graph G and supports the following operation:

• Refine(Tpref): Given a leafless prefix Tpref of T so that Tpref contains all nodes of width > 4k, returns
either that the rankwidth of G is greater than k, or a description u of a prefix-rebuilding update so
that the rooted rank decomposition T ′ to which T corresponds to after applying u has the following
properties:

1. T ′ encodes G,

2. T ′ has width at most 4k, and

3. the following inequality holds:

Φ`(T ′) 6 Φ`(T)− heightT (Tpref) + log |T | · O`(|Tpref |+ heightT (AppT (Tpref))).

In the former case, the running time of refine(Tpref) is O`(|Tpref |), and in the latter case the running
time and therefore also |u| is bounded by

log |T | · O`(Φ`(T)− Φ`(T ′) + log |T | · (|Tpref |+ heightT (AppT (Tpref)))).

4.4. REFINEMENT 117

Proof. We use Lemma 4.3.2 for maintaining a representation of T . Let c = f(`), where f is the function
from Lemma 4.4.2, in particular, so that if G has rankwidth at most k then there exists a c-small k-closure
of Tpref . We maintain the `-prefix-rebuilding data structure from Lemma 4.4.7 with these values of c and
k and the `-prefix-rebuilding data structure from Lemma 4.3.11, by simply relaying all prefix-rebuilding
updates also to these data structures. In particular, they will always store the exactly same rooted
annotated rank decomposition T .

Then we describe how the Refine(Tpref) operation is implemented. First we apply the Closure(Tpref)
operation of the data structure of Lemma 4.4.7. If it returns that no c-small k-closure of Tpref exists, then
by Lemma 4.4.2 the rankwidth of G is more than k and we can return immediately. Otherwise, it returns
a representation of a minimal c-small k-closure C of Tpref , containing in particular the sets cutT (C) and
aepT (C), and a rooted rank decomposition T ∗∗ = (T ∗∗, λ∗∗) of (G[C], C) of width at most 2k, where λ∗∗ is
represented as a function λ∗∗ : aepT (C)→ ~L(T ∗∗). We immediately use Lemma 4.2.2 to turn T ∗∗ into a
rooted rank decomposition T ∗ = (T ∗, λ∗) of width at most 4k and height at most O(log n).

Let us describe the construction of the rooted rank decomposition T ′ = (T ′, λ′). For this, we denote
by (T, λ) the rooted rank decomposition that T corresponds to.

First, for each part C ∈ C (represented by aesT (C) ∈ aepT (C)) we construct a rooted rank decomposition
TC = (TC , λC) as follows. The tree TC is obtained by first taking the subtree of T induced by nodes
t ∈ V (T) with L(T)[t] ∩ C 6= ∅ and iteratively contracting all resulting degree-2 nodes. Then we set
λC := λ|C . Now TC is a rooted rank decomposition of G[C] so that for every node t ∈ V (TC) there
exists a node t′ ∈ V (T) with L(TC)[t] = L(T)[t′] ∩ C. Then, the rooted rank decomposition T ′ = (T ′, λ′)
is constructed by taking T ∗ and for each C ∈ C attaching TC to T ∗ by identifying the root of TC
with the leaf λ∗(C) of T ∗. It can be observed that T ′ is a rooted rank decomposition of G, for every
t ∈ V (T ′) ∩ V (T ∗) it holds that L(T ′)[t] = L(T ∗)[t], and for every t ∈ V (T ′) ∩ V (TC) for C ∈ C it holds
that L(T ′)[t] = L(TC)[t].

Claim 4.4.9. A description u of a prefix-rebuilding update that turns T into a rooted annotated rank
decomposition that corresponds to T ′ can be computed in O`(|cutT (C)| log |T |) time.

Proof of the claim. We will show that such a prefix-rearrangement description can be computed in time
O`(|cutT (C)|). This then implies the claim by applying the Translate query of the prefix-rebuilding data
structure of Lemma 4.3.11.

Recall that for every t ∈ AppT (cutT (C)) we have that L(T)[t] ⊆ C for some C ∈ C, so the subtree
rooted at t can be copied verbatim from T to T ′. It follows that we can set the prefix of the prefix-
rearrangement description to be cutT (C). It remains to construct the tree T ? of the description. We
construct it by first taking T ∗, and then for every leaf of it that corresponds to a part C ∈ C constructing
the prefix of TC that is not copied verbatim. In particular, let C ⊆ L(T)[a] for a ∈ AppT (Tpref), and
denote by cutT,a(C) ⊆ cutT (C) the nodes that are cut by C and are descendants of a. By using the mapping
λ∗ : aepT (C) → ~L(T ∗) we can construct the prefix of TC that is not copied verbatim in O(|cutT,a(C)|)
time, also finding out how the subtrees that are copied verbatim are attached to the prefix. Because C is
c-small, the total time sums up to O(c · |cutT (C)|) = O`(|cutT (C)|). C

For bounding the width of T ′ and analyzing the potential, let us relate the nodes in each of the trees
TC to nodes in T . Let us denote by πC : V (TC)→ V (T) the mapping that maps each node t ∈ V (TC) to
a node t′ ∈ V (T) so that L(TC)[t] = L(T)[t′] ∩ C and t′ minimizes heightT (t′) under this condition (this
defines πC(t) uniquely). Note that πC is an injection, and if a ∈ AppT (Tpref) so that C ⊆ L(T)[a], then
πC(t) is a descendant of a for all t ∈ V (TC).

Claim 4.4.10. For all t ∈ V (TC) it holds that cutrkG(L(TC)[t]) 6 cutrkG(L(T)[πC(t)]), and moreover if
πC(t) ∈ cutT (C) then cutrkG(L(TC)[t]) < cutrkG(L(T)[πC(t)]).

Proof of the claim. First suppose that πC(t) /∈ cutT (C). In that case, L(TC)[t] = L(T)[πC(t)] because
C intersects L(T)[πC(t)] but does not cut πC(t). Then, if πC(t) ∈ cutT (C), Lemma 4.4.6 implies that
cutrkG(L(TC)[t]) < cutrkG(L(T)[πC(t)]) because C is linked because it is minimal. C

It follows that T ′ has width at most 4k: All nodes in V (T ∗) have width at most 4k, and for all
C ∈ C and t ∈ V (TC) we have that πC(t) /∈ Tpref implying cutrkG(L(T)[πC(t)]) 6 4k and therefore
cutrkG(L(T ′)[t]) 6 4k.

To bound Φ`(T ′), first note that

Φ`(T ′) = Φ`,T ′(V (T ∗) \ L(T ∗)) +
∑
C∈C

Φ`(TC).

118 CHAPTER 4. DYNAMIC RANKWIDTH

Let us first bound the latter term.

Claim 4.4.11. ∑
C∈C

Φ`(TC) 6 Φ`(T)− Φ`,T (Tpref)− |cutT (C) \ Tpref |

Proof of the claim. We observe that heightTC (t) 6 heightT (πC(t)) for all C ∈ C and t ∈ V (TC), which
implies Φ`,TC (t) 6 Φ`,T (πC(t)) for all such t, and moreover when πC(t) ∈ cutT (C) it holds that

Φ`,TC (t) = (2 · f(`))widthTC (t) · heightTC (t)

6 (2 · f(`))widthT (πC(t))−1 · heightT (πC(t))

6 Φ`,T (πC(t))/(2 · f(`)).

Then, for x ∈ V (T), let us denote by π−1(x) the set of nodes in
⋃
C∈C V (TC) that are mapped to x by

πC , i.e., π−1(x) = {t ∈ V (TC) | C ∈ C and πC(t) = x}. We observe that if x ∈ Tpref then π−1(x) = ∅, if
x ∈ cutT (C) \ Tpref then |π−1(x)| 6 f(`) because C is c-small for c = f(`), and if x ∈ V (T) \ cutT (C) then
|π−1(x)| = 1.

By putting these two observations together we obtain∑
C∈C

Φ`(TC) 6 Φ`,T (V (T) \ cutT (C)) +
∑

t∈cutT (C)\Tpref

f(`) · Φ`,T (t)/(2 · f(`))

6 Φ`,T (V (T) \ cutT (C)) + Φ`,T (cutT (C) \ Tpref)/2

6 Φ`(T)− Φ`,T (Tpref)− |cutT (C) \ Tpref |.

C

Then we bound the former term.

Claim 4.4.12.
Φ`,T ′(V (T ∗)) 6 log |T | · O`(|Tpref |+ heightT (AppT (Tpref)))

Proof of the claim. For each node t ∈ V (T ∗), let Γ(t) ∈ C be a part of C so that λ∗(Γ(t)) ∈ ~L(T ∗)[t], and
among such parts Γ(t) maximizes height(TΓ(t)). Such Γ(t) is not necessary unique, in which case we assign
some such Γ(t) arbitrarily. Because the height of T ∗ is at most O(log |C|) 6 O(log |T |), we have that
heightT ′(t) 6 O(log |T |) + height(TΓ(t)), implying that

heightT ′(V (T ∗)) 6 O(|V (T ∗)| log |T |) +
∑

t∈V (T∗)

height(TΓ(t)).

We observe that if Γ(t) ⊆ L(T)[a] for a ∈ AppT (Tpref), then height(TΓ(t)) 6 heightT (a). Because C is
c-small, for each a ∈ AppT (Tpref) there are at most c such sets Γ(t). Also, because T ∗ has height at most
O(log |T |), each C ∈ C can be the set Γ(t) for at most O(log |T |) nodes in V (T ∗). From these observations
it follows that ∑

t∈V (T∗)

height(TΓ(t)) 6
∑

a∈AppT (Tpref)

O(heightT (a) · c · log |T |)

6 O`(heightT (AppT (Tpref)) · log |T |)

Then the conclusion of the claim follows from |V (T ∗)| 6 2 · |C| 6 4c · |Tpref | 6 O`(|Tpref |). C

By putting Claims 4.4.11 and 4.4.12 together, we obtain

Φ`(T ′) 6 Φ`(T)− Φ`,T (Tpref)− |cutT (C) \ Tpref |
+ log |T | · O`(|Tpref |+ heightT (AppT (Tpref))), (4.4)

which by Φ`,T (Tpref) > heightT (Tpref) implies the desired potential bound of Item 3.
Let us then prove the running time bound of Refine(Tpref) in the lemma statement. The algorithm

consists of calling the data structure of Lemma 4.4.7, applying Lemma 4.2.2, and constructing the
description u of the prefix-rebuilding update, which by Claim 4.4.9 all take at most O`(|cutT (C)| log |T |)
time. We can rearrange Eq. (4.4) into

Φ`,T (Tpref) + |cutT (C) \ Tpref | 6 Φ`(T)− Φ`(T ′) + log |T | · O`(|Tpref |+ heightT (AppT (Tpref))),

4.4. REFINEMENT 119

which by |cutT (C)| 6 Φ`,T (Tpref) + |cutT (C) \ Tpref | implies

|cutT (C)| 6 Φ`(T)− Φ`(T ′) + log |T | · O`(|Tpref |+ heightT (AppT (Tpref))),

which yields the desired running time.

4.4.3 Height reduction

The main combinatorial ingredient for our height reduction scheme is the following lemma that we proved
in Chapter 3.

Lemma 3.5.2. Let c > 2 and T be a binary tree with at most N nodes. If the height of T is at least
2Ω(
√

logN log c), then there exists a nonempty prefix Tpref of T so that

c ·

|Tpref |+
∑

a∈App(Tpref)

heightT (a)

 6 ∑
x∈Tpref

heightT (x). (3.13)

Moreover, if we can access the height of each node of T in constant time, then such Tpref can be computed
in time O(|Tpref |).

Then, our height reduction scheme is formulated as a prefix-rebuilding data structure as follows.

Lemma 4.4.13. Let k ∈ N and ` > 4k + 1. There exists an `-prefix-rebuilding data structure with
overhead O`(1) that maintains a rooted annotated rank decomposition T = (T, V (G),R, E ,F) that encodes
a dynamic graph G of rankwidth at most k, supports the operation Refine(Tpref) from Lemma 4.4.8, and
additionally supports the following operation under the promise that the width of T is at most 4k:

• ImproveHeight(): Updates T through a sequence of prefix-rebuilding updates so that the resulting

annotated rank decomposition T ′ encodes G, has height 2O`(
√

logn log logn) and width at most 4k, and
returns the corresponding sequence of descriptions of prefix-rebuilding updates. All of the intermediate
decompositions also have width at most 4k. It holds that Φ`(T ′) 6 Φ`(T) and the running time of
ImproveHeight() is O`((Φ`(T)− Φ`(T ′)) log |T |).

Proof. We maintain a representation of T by Lemma 4.3.2, and additionally maintain the prefix-rebuilding
data structures Dheight given by Lemma 4.3.3 and Drefine given by Lemma 4.4.8, so that all prefix-rebuilding
updates that are applied to T are also relayed to Dheight and Drefine, in particular, so that they store the
exactly same rooted annotated rank decomposition T . The Refine(Tpref) operation is implemented by
using Drefine. It remains to implement the ImproveHeight() operation.

Let us choose c0 = O`(1) based on ` so that the inequality of Item 3 in Lemma 4.4.8 is true in the form

Φ`(T ′) 6 Φ`(T)− heightT (Tpref) +
c0
2
· log |T | · (|Tpref |+ heightT (AppT (Tpref))) . (4.5)

Let c = c0 · log |T |. First, if height(T) 6 2O(
√

logn log c) 6 2O`(
√

logn log logn), where the constant in the
O-notation depends on the constant in the Ω-notation in Lemma 3.5.2, then the height of T is already
small enough and we do not update T and return an empty sequence of descriptions of prefix-rebuilding
updates. Otherwise, we use the algorithm from Lemma 3.5.2 with the heightT (t) operation supplied from
Dheight to find a nonempty prefix Tpref of T so that

c0 · log |T | · (|Tpref |+ heightT (AppT (Tpref))) 6 heightT (Tpref). (4.6)

Then we apply the Refine operation with this Tpref and apply the resulting prefix-rebuilding update
to T , relaying it also to Dheight and Drefine. By putting Eqs. (4.5) and (4.6) together, we obtain that the
resulting decomposition T ′ satisfies

Φ`(T ′) 6 Φ`(T)− c0
2
· log |T | · (|Tpref |+ heightT (AppT (Tpref))) .

Because Tpref is nonempty, we have in particular Φ`(T ′) < Φ`(T). The time complexity of the application
of Lemma 3.5.2 is O(|Tpref |) = O(Φ`(T)− Φ`(T ′)). The time complexity of the application of the Refine
operation and the size of the description of the update is bounded by

log |T | · O`(Φ`(T)− Φ`(T ′) + log |T | · (|Tpref |+ heightT (AppT (Tpref))))

= O`((Φ`(T)− Φ`(T ′)) log |T |),

120 CHAPTER 4. DYNAMIC RANKWIDTH

which is also the time it takes to apply the prefix-rebuilding updates, implying that the total time complexity
is O`((Φ`(T)− Φ`(T ′)) log |T |). The width of T ′ is guaranteed to be at most 4k by Lemma 4.4.8.

Applying this update did not necessarily decrease the height of T , but we can run it again repeat-
edly until it decreases the height to 2O`(

√
logn log logn). Because Φ`(T ′) < Φ`(T), the number of such

iterations is bounded by Φ`(T), and moreover, as the running time of a single iteration is bounded
by O`((Φ`(T) − Φ`(T ′)) log |T |), the running time of any sequence of such iterations is bounded by
O`((Φ`(T) − Φ`(T ′′)) log |T |), where T ′′ is the final decomposition. Because all of the updates were
obtained from the Refine operation, all of the rank decompositions in the sequence of updates have width
at most 4k.

4.5 Automata

In this section we define rank decomposition automata in order to formalize and unify dynamic programming
working on rank decompositions. We give a prefix-rebuilding data structure to maintain the runs of rank
decomposition automata, give a construction of rank decomposition automata from CMSO1 sentences
(using the construction for cliquewidth by [CMR00] as a black-box), and finally give our framework for
performing edge updates using CMSO1.

4.5.1 Rank decomposition automata

We will define a rank decomposition automaton, which is an automaton that processes annotated rank
decompositions. Our definitions will be for unrooted annotated rank decompositions, in particular, so that
they are suited for computing dynamic programming tables directed in both directions on edges. While
these definitions allow annotated rank decompositions that encode partitioned graphs with nontrivial
partitions, they are usually used with annotated rank decompositions that encode graphs. Let us start
with some auxiliary definitions.

We say that a transition signature of width ` is a tuple τ = (Sτ , Uτ ,Rτ , Eτ ,Fτ), where

• Sτ is a tree with three leaf nodes and one nonleaf node,

• Uτ is a set of size at most 6 · 2`,

• Rτ is a function that maps each oriented edge ~xy ∈ ~E(Sτ) to a nonempty set Rτ (~xy) ⊆ Uτ ,

• Eτ is a function that maps each edge xy ∈ E(Sτ) to a bipartite graph Eτ (xy) with bipartition
(Rτ (~xy),Rτ (~yx)), with no twins over this bipartition, and with cutrkEτ (xy)(Rτ (~xy)) 6 `, and

• Fτ is a function that maps each path of length three xyz ∈ P3(Sτ) in Sτ to a function Fτ (xyz) :
Rτ (~xy)→ Rτ (~yz).

Let T = (T,U,R, E ,F) be an annotated rank decomposition and ~tp ∈ ~E(T) \ ~L(T) a nonleaf oriented
edge of T with children ~c1t and ~c2t. The transition signature of T at ~tp, denoted by τ(T , ~tp), is the
transition signature obtained by setting Sτ = T [{t, p, c1, c2}], Rτ = R|~E(Sτ), Eτ = E|E(Sτ), Fτ = F|P3(Sτ),

and Uτ =
⋃
~e∈~E(Sτ)Rτ (~e). We observe that the width of τ(T , ~tp) is at most the width of T .

Then we say that an edge signature of width ` is a tuple σ = (Raσ,Rbσ, Eσ), where

• Raσ and Rbσ are sets of size at most 2` and

• Eσ is a bipartite graph with bipartition (Raσ,Rbσ), with no twins over this bipartition, and with
cutrkEσ (Raσ) 6 `.

Let ~ab ∈ ~E(T). The edge signature of T at ~ab is σ(T , ~ab) = (R(~ab),R(~ba), E(ab)). Again, the width of
σ(T , ~ab) is at most the width of T .

A rank decomposition automaton of width ` is a tuple A = (Q,Γ, ι, δ, ε) that consists of

• a state set Q,

• a vertex label set Γ,

• an initial mapping ι that maps every pair of form (σ, γ), where σ = (Raσ,Rbσ, Eσ) is an edge signature
of width ` and γ is a function γ : Raσ → Γ, to a state ι(σ, γ) ∈ Q,

4.5. AUTOMATA 121

• a transition mapping δ that maps every triple of form (τ, q1, q2), where τ is a transition signature of
width ` and q1, q2 ∈ Q, to a state δ(τ, q1, q2) ∈ Q, and

• a final mapping ε that maps every triple of form (σ, q1, q2), where σ is an edge signature of width `
and q1, q2 ∈ Q, to a state ε(σ, q1, q2) ∈ Q.

The state set Q is allowed to be infinite. The evaluation time of a rank decomposition automaton is the
maximum running time to compute the functions ι(σ, γ), δ(τ, q1, q2), or ε(σ, q1, q2) given their arguments.

Let T = (T, V (G),R, E ,F) be an annotated rank decomposition of width at most ` that encodes a
partitioned graph (G, C), ~xy ∈ ~E(T) an oriented edge of T , and α : V (G)→ Γ a vertex-labeling of G with
Γ. Recall that predT (~xy) denotes the set of predecessor of ~xy. The run of A on the triple (T , ~xy, α) is the
unique mapping ρ : predT (~xy)→ Q so that

• for each leaf edge ~lp ∈ predT (~xy) ∩ ~L(T) it holds that ρ(~lp) = ι(σ(T , ~lp), α|R(~lp)), and

• for each nonleaf edge ~tp ∈ predT (~xy) \ ~L(T) with children ~c1t, ~c2t, where c1 < c2, it holds that
ρ(~tp) = δ(τ(T , ~tp), ρ(~c1t), ρ(~c2t)).

Then let a, b ∈ V (T) be two adjacent nodes of T . The run of A on the 4-tuple (T , a, b, α) is the unique
mapping ρ : predT (~ab) ∪ predT (~ba) ∪ ϑ→ Q so that

• ρ|predT (~ab) is the run of A on (T , ~ab, α),

• ρ|predT (~ba) is the run of A on (T , ~ba, α), and

• ρ(ϑ) = ε(σ(T , ~ab), ρ(~ab), ρ(~ba)).

The valuation of A on (T , a, b, α) is ρ(ϑ) and on (T , ~xy, α) is ρ(~xy). These definitions are adapted to
a rooted annotated rank decompositions with root r whose children are c1, c2 by setting ρ(~rc2) := ρ(~c1r)
and ρ(~rc1) := ρ(~c2r). Additionally, the run (resp. valuation) of A on (T , α) is defined as the run (resp.
valuation) of A on (T , c1, r, α), where c1 < c2.

If the valuation of A on (T , a, b, α) depends only on the partitioned graph (G, C) encoded by T and
the labeling α, then we say that A is decomposition-oblivious, and refer to this valuation as the valuation
of A on (G, C, α). When T encodes a graph G, we refer to this as the valuation of A on (G,α).

Next, if all runs of A on (T , a, b, α) are independent on the labeling α (in particular, the value of the
initial mapping ι only depends on the edge signature σ and not the function γ : Raσ → Γ), then we say
that A is label-oblivious. When defining label-oblivious automata, we will for convenience drop the vertex
label set Γ from the description of the automaton and consider ι to be a mapping from an edge signature
σ = (Raσ,Rbσ, Eσ) to a state ι(σ). We also define the runs on A on pairs (T , ~xy) and on triples (T , a, b) in
a natural way. If T is rooted, we also define the run of A on T naturally.

Then we give a prefix-rebuilding data structure for maintaining runs of rank decomposition automata.

Lemma 4.5.1. Let ` ∈ N and A = (Q,Γ, ι, δ, ε) a rank decomposition automaton of width ` with evaluation
time β. There exists an `-prefix-rebuilding data structure with overhead O`(1) + O(β) that maintains
a rooted annotated rank decomposition T = (T, V (G),R, E ,F) that encodes a dynamic graph G, and a
vertex-labeling α : V (G) → Γ whose initial values αinit are given at the initialization, and additionally
supports the following operations:

• Run(~xy): Given an oriented edge ~xy ∈ ~E(T) that is directed towards the root, in time O(1) returns
ρ(~xy), where ρ is the run of A on (T , ~xy, α).

• Valuation(): In time O(1) returns the valuation of A on (T , α).

• SetLabel(v, γ): Given a vertex v ∈ V (G) and a label γ ∈ Γ, in time O(height(T)·β) updates α(v) := γ.

Proof. We maintain a representation of T with Lemma 4.3.2. We also maintain the vertex labeling α
explicitly, and the runs of A on (T , ~c1r, α) and (T , ~c2r, α), where r is the root and c1 < c2 are the children
of r. Note that this stores exactly one state ρ(~xy) for each oriented edge ~xy of T directed towards the
root. We also maintain the valuation of A on (T , α), which is ε(σ(T , ~c1r), ρ(~c1r), ρ(~c2r)).

At initialization, we can compute the runs and the valuations in O(|T | · β) time. Then, consider a
prefix-rebuilding update that turns T into T ′ = (T ′, V (G),R′, E ′,F ′), where the prefix of T associated
with the update is Tpref and the prefix of T ′ is T ′pref . We observe that all edge signatures and transition

122 CHAPTER 4. DYNAMIC RANKWIDTH

signatures at edges directed towards the root in ~E(T) \ ~E(T [Tpref ∪ AppT (Tpref)]) stay the same in T ′.
Therefore, to recompute the runs and valuations, it suffices to recompute this information only for edges
directed towards the root in ~E(T ′[T ′pref ∪ AppT ′(T

′
pref)]), which takes O(|Tpref | · β) time.

Then consider the SetLabel operation. We observe that it can change the run on (T , ~xy, α) only if
v ∈ L(T)[~xy]. There are at most height(T) such edges ~xy directed towards the root, so we recompute the
runs on them in O(height(T) · β) time.

We explicitly maintain all information required to answer the Run and Valuation queries, so they can
be answered in O(1) time.

4.5.2 CMSO1

In this section we will show that rank decomposition automata permit us to verify the satisfaction of
formulas of the variant of monadic second-order logic called CMSO1 and evaluate the formulas of the
optimization variant of CMSO1 called LinCMSO1. We refer to Preliminaries (Section 2.6) for precise
definitions of these logic languages.

For simplicity, we assume in this chapter that all free variables of a CMSO1 sentence are set variables
(note that free single-element variables can be expressed as free set variables). The length of a CMSO1

sentence ϕ is the number of symbols appearing in it, and denoted by |ϕ|. We note that the length of ϕ is
at least the number of free variables of ϕ, and use the convention that the free variables are indexed by
consecutive integers 1, . . . , p.

Let ϕ be a CMSO1 sentence with p free variables and G a graph. A tuple (G,X1, . . . , Xp), where
Xi ⊆ V (G), satisfies ϕ, written as (G,X1, . . . , Xp) |= ϕ, if G together with the interpretations of the free
variables as X1, . . . , Xp satisfies ϕ. Let α : V (G)→ 2[p] be a vertex-labeling of G. We define that (G,α)
satisfies ϕ if (G,X1, . . . , Xp), where Xi = {v ∈ V (G) | i ∈ α(v)} satisfies ϕ.

We prove the following lemma in Section 4.10 by translating automata working on a cliquewidth
expressions given by Courcelle, Makowsky, and Rotics [CMR00] (see also [CE12, Section 6]) to rank
decomposition automata.

Lemma 4.5.2. There is an algorithm that given a CMSO1 sentence ϕ with p free set variables and ` ∈ N,
in time Oϕ,`(1) constructs a decomposition-oblivious rank decomposition automaton A = (Q,Γ, ι, δ, ε) of
width ` so that Γ = 2[p], the valuation of A on (G,α) is > ∈ Q if and only if (G,α) |= ϕ, the number of
states is |Q| 6 Oϕ,`(1), and the evaluation time is Oϕ,`(1).

Recall that a LinCMSO1 sentence with p free variables is a pair (ϕ, f), where ϕ is a CMSO1 sentence
with p + q free variables for q > 0, and f : Zq → Z a linear integer function defined by q + 1 integers
c0, . . . , cq so that f(x1, . . . , xq) = c0 + c1x1 + . . .+ cqxq. The value of (ϕ, f) on a tuple (G,X1, . . . , Xp) is
the maximum value of f(|Xp+1|, . . . , |Xp+q|), where Xp+1, . . . , Xp+q ⊆ V (G) and (G,X1, . . . , Xp+q) |= ϕ.
If no such sets Xp+1, . . . , Xp+q exist, then the value is ⊥.

Then, Lemma 4.5.2 extends to the following lemma. The proof is also in Section 4.10.

Lemma 4.5.3. There is an algorithm that given a LinCMSO1 sentence ϕ with p free set variables and ` ∈ N,
in time Oϕ,`(1) constructs a decomposition-oblivious rank decomposition automaton A = (Q,Γ, ι, δ, ε)
of width ` so that Γ = 2[p], the valuation of A on (G,α) is equal to the value of ϕ on (G,α), and the
evaluation time is Oϕ,`(1).

We note that the reason for having Lemma 4.5.2 and Lemma 4.5.3 as separate lemmas is that we
will use the fact that the number of states in the automaton constructed in Lemma 4.5.2 is Oϕ,`(1). We
also note that in both Lemmas 4.5.2 and 4.5.3 the constructed automaton works only on decompositions
encoding graphs, not partitioned graphs.

By putting together Lemmas 4.5.1 and 4.5.3, we obtain the following.

Lemma 4.5.4. Let w, ` ∈ N. There exists an `-prefix-rebuilding data structure with overhead O`,w(1) that
maintains a rooted annotated rank decomposition T that encodes a dynamic graph G, and additionally
supports the following query:

• LinCMSO1(ϕ,X1, . . . , Xp): Given a LinCMSO1 sentence ϕ of length at most w with p free variables
and p vertex subsets X1, . . . , Xp ⊆ V (G), returns the value of ϕ on (G,X1, . . . , Xp). Runs in time
Oϕ(1) if the sets are empty, and in O`,ϕ(

∑p
i=1 |Xi| · height(T)) time otherwise.

Proof. We enumerate all LinCMSO1 sentences ϕ of length at most w, and for each of them construct an
auxiliary `-prefix-rebuilding structure Dϕ as follows. Let p be the number of free variables in ϕ. We apply

4.5. AUTOMATA 123

Lemma 4.5.3 to obtain a rank decomposition automaton A = (Q,Γ, ι, δ, ε) of width ` so that Γ = 2[p],
the valuation of A on (G,α) is equal to the value of ϕ on (G,α), and the evaluation time of A is Oϕ,`(1).
Then we initialize an `-prefix-rebuilding data structure Dϕ of Lemma 4.5.1 with A. The overhead of Dϕ is
Oϕ,`(1). We initialize the labeling α held by Dϕ to be α(v) = ∅ for all v ∈ V (G).

Note that there are at most Ow(1) LinCMSO1 sentences of length at most w, so the initialization
works in O`,w(1) time. Then, all prefix-rebuilding updates to our data structures are relayed to all of the
auxiliary data structures Dϕ so that they also hold the decomposition T at all times, resulting in the
overhead O`,w(1).

The LinCMSO1(ϕ,X1, . . . , Xp) query is implemented as follows. We maintain that between the queries,
the labeling α held by Dϕ is α(v) = ∅ for all v ∈ V (G). Therefore, if the given sets X1, . . . , Xp are empty,
we can simply return the value given by the query Valuation() of Dϕ. This runs in Oϕ(1) time. If some
of the sets X1, . . . , Xp is nonempty, we compute X = X1 ∪ . . . ∪Xp, use the SetLabel query of Dϕ to set
α(v) = {i | v ∈ Xi} for all v ∈ X, and return the value given by the query Valuation() of Dϕ. Then, we
reset the labels α(v) of all v ∈ X to be ∅. This takes O`,ϕ(|X| · height(T)) = O`,ϕ(

∑p
i=1 |Xi| · height(T))

time.

4.5.3 Edge update sentences

Let G be a graph. An edge update sentence on G is a tuple e = (ϕ,X,X1, . . . , Xp), where ϕ is a CMSO1

sentence with p+ 1 free set variables, X ⊆ V (G), and Xi ⊆ X for all i ∈ [p]. The graph resulting from
applying e to G is the graph G′ with V (G′) = V (G), and with uv ∈ E(G′) for u 6= v if and only if either

• |{u, v} ∩X| 6 1 and uv ∈ E(G), or

• u, v ∈ X and (G, {u, v}, X1, . . . , Xp) |= ϕ.

In other words, the edges inside G[X] are defined by e, while other edges remain unchanged. We define
that size of e as |e| = |X| and that the length of e is the length of ϕ, i.e., |ϕ|.

Next we give our data structure to turn edge update sentences to edge update descriptions. We note
that while it is not immediately obvious that a rank decomposition of G of width ` would also be a rank
decomposition of G′ whose width is bounded by O`,|ϕ|(1), our proof implies this because the resulting
edge update description has width O`,|ϕ|(1).

Lemma 4.5.5. Let d, ` ∈ N. There exists an `-prefix-rebuilding data structure with overhead O`,d(1) that
maintains a rooted annotated rank decomposition T that encodes a dynamic graph G and additionally
supports the following query:

• EdgeUpdate(e): Given an edge update sentence e on G of length at most d, returns an edge update
description of width O`,d(1) that describes the graph G′ that results from applying e to G. Runs in
time O`,d(height(T) · |e|).

Proof. In the initialization we construct a set of auxiliary automata and prefix-rebuilding data structures
as follows. We enumerate all CMSO1 sentences of length at most d and at least one free set variable,
i.e., all CMSO1 sentences that could be in the edge update sentence given in EdgeUpdate(e). Let ϕ be
such sentence with p + 1 free variables Y,X1, . . . , Xp, where Y is the free variable that is supposed to
hold the endpoints of the potential edge. We construct a CMSO1 sentence ϕ′ with p + 2 free variables
Y,X,X1, . . . , Xp, so that (G, Y,X,X1, . . . , Xp) |= ϕ′ if and only if either

• Y ⊆ X, |Y | = 2, and (G, Y,X1, . . . , Xp) satisfies ϕ, or

• Y 6⊆ X and Y = {u, v} with uv ∈ E(G).

In particular, (G, Y,X,X1, . . . , Xp) |= ϕ′ if and only if Y = {u, v} corresponds to an edge in the graph G′

resulting from applying the edge update sentence (ϕ,X,X1, . . . , Xp). Such ϕ′ with |ϕ′| 6 O(|ϕ|) can be
constructed in time O(|ϕ|).

Then we use Lemma 4.5.2 to construct a rank decomposition automaton Aϕ′ = (Q,Γ, ι, δ, ε) of width
` so that Γ = 2[p+2], the valuation of Aϕ′ on (G,α) is > if and only if (G,α) |= ϕ′, |Q| 6 Oϕ,`(1), and
the evaluation time is Oϕ,`(1). We say that a labeling α : V (G)→ 2[p+2] corresponds to an edge update
sentence (ϕ,X,X1, . . . , Xp) if 2 ∈ α(v) if and only if v ∈ X, and 2 + i ∈ α(v) if and only if v ∈ Xi.

Let T = (T, V (G),R, E ,F) be an annotated rank decomposition that encodes G, and let α : V (G)→
2[p+2] be a labeling of G with 1 /∈ α(v) for all v ∈ V (G). Let us also denote by αv the labeling so that
αv(u) \ {1} = α(u) for all u ∈ V (G) and 1 ∈ αv(u) if and only if u = v. With an oriented edge ~xy ∈ ~E(T)
we associate a 4-tuple (q ~xy, f ~xy, g ~xy, h ~xy) so that

124 CHAPTER 4. DYNAMIC RANKWIDTH

• q ~xy is the valuation of Aϕ′ on (T , ~xy, α),

• f ~xy : Q → V (G) ∪ {⊥} is the function so that for every q ∈ Q the value f ~xy(q) is the vertex
v ∈ L(T)[~xy] with the smallest index so that the valuation of Aϕ′ on (T , ~xy, αv) is q, or ⊥ if no
such vertex v exists,

• g ~xy : R(~xy)→ V (G) is the function so that for every r ∈ R(~xy) the value g ~xy(r) is the smallest-index
vertex v ∈ L(T)[~xy] so that NG(v) ∩R(~yx) = NG(r) ∩R(~yx), and

• h ~xy : R(~xy)→ Q is the function so that h ~xy(r) is the valuation of Aϕ′ on (T , ~xy, αg ~xy(r)).

We construct a rank decomposition automaton A′ϕ′ of width ` so that the valuation of A′ϕ′ on (T , ~xy, α)
is the 4-tuple (q ~xy, f ~xy, g ~xy, h ~xy). Such automaton with evaluation time O`,ϕ(1) can be constructed as
follows: First, the state q ~xy can be maintained simply by simulating Aϕ′ . Then, we observe that f ~xy can
be computed from f ~c1x, f ~c2x, q ~c1x, and q ~c2x, where ~c1x and ~c2x are the child edges of ~xy, in particular

f ~xy(q) = min
{

min
q1∈Q|δ(τ(T , ~xy),q1,q ~c2x)=q

f ~c1x(q1), min
q2∈Q|δ(τ(T , ~xy),q ~c1x,q2)=q

f ~c2x(q2)
}
,

where ⊥ is regarded as larger than any vertex. For g ~xy and h ~xy, we first observe that if g ~xy(r) = v,
then there exists either r′ ∈ R(~c1x) with g ~c1x(r′) = v or r′ ∈ R(~c2x) with g ~c2x(r′) = v. With this
observation, g ~xy can be computed from g ~c1x and g ~c2x by using F(c1xy), F(c2xy), and E(xy), which
are stored in τ(T , ~xy). Then, if g ~xy(r) = v so that there exists r′ ∈ R(~c1x) with g ~c1x(r′) = v, we have
h ~xy(r) = δ(τ(T , ~xy), h ~c1x(r′), q ~c2x); and the other case is similar. This completes the construction of A′ϕ′ .

Then, we construct an `-prefix-rebuilding data structure Dϕ by invoking Lemma 4.5.1 with A′ϕ′ . All
prefix-rebuilding updates are relayed to Dϕ so that it always holds the same annotated rank decomposition
as the main prefix-rebuilding data structure of the lemma. The vertex labeling αϕ that Dϕ holds will
always be αϕ(v) = ∅ for all v ∈ V (G), except when we are processing the EdgeUpdate(e) query. Note that
because |ϕ| 6 d, the number of such prefix-rebuilding data structures Dϕ we maintain is Od(1).

This completes the description of the initialization and the handling of prefix-rebuilding updates. It
remains to describe how EdgeUpdate(e) is implemented.

Let e = (ϕ,X,X1, . . . , Xp). We first use the SetLabel(v, γ) query of Dϕ for all v ∈ X to set the labeling
α to correspond to e. This takes O`,ϕ(height(T) · |e|) time. Then, let Tpref be the unique smallest prefix of
T that contains all leaves l ∈ L(T) with R(~lp) ⊆ X. We have that |Tpref | 6 height(T) · |e|. The prefix Tpref

will be the prefix of the edge update description we output. With the help of Dϕ we compute the triples
(q ~xy, f ~xy, g ~xy) for all oriented edges ~xy ∈ ~E(T [Tpref ∪ AppT (Tpref)]) in O`,ϕ(|Tpref |) = O`,ϕ(height(T) · |e|)
time. In particular, such triples are directly given by Dϕ for all oriented edges directed towards the root,
and for oriented edges directed towards the leaves we can compute them with A′ϕ′ in a top-down manner.

Then, the purpose of the definition of f ~xy is to make the following hold.

Claim 4.5.6. Let ~xy ∈ ~E(T) and let G′ be the graph resulting from applying e to G. The set R ~xy =⋃
q∈Q{f ~xy(q)} \ {⊥} is a representative of L(T)[~xy] in G′, and given f ~xy and f ~yx the graph G′[R ~xy, R ~yx]

can be determined in Oϕ,`(1) time.

Proof of the claim. Let v ∈ L(T)[~xy] and u ∈ L(T)[~yx]. We observe that uv ∈ E(G′) if and only if the
valuation of Aϕ′ on (T , ~xy, αv) is q1, the valuation of Aϕ′ on (T , ~yx, αv) is q2, and ε(σ(T , ~xy), q1, q2) = >.
Therefore if r ∈ R ~xy and the valuations of Aϕ′ on (T , ~xy, αv) and (T , ~xy, αr) are the same, then
NG′(v) ∩ L(T)[~yx] = NG′(r) ∩ L(T)[~yx]. Because for every v ∈ L(T)[~xy] there exists such r ∈ R ~xy, we
have that R ~xy is a representative of L(T)[~xy] in G′. Then the graph G′[R ~xy, R ~yx] can be determined by
verifying whether ε(σ(T , ~xy), q1, q2) = > for all q1, q2 ∈ Q. C

In particular, by Claim 4.5.6 in the edge update description we can set R?(~xy) = R ~xy for all
~xy ∈ ~E(T [Tpref]). It also gives a way to compute the graphs E?(xy) = G′[R ~xy, R ~yx] for xy ∈ E(T [Tpref]).
For xyz ∈ P3(T [Tpref]), the graphs E?(xyz) = G′[R ~xy, R ~zy] can be computed as follows. Let v ∈ R ~xy and
u ∈ R ~zy, and let w be the neighbor of y that is not x or z. From f ~xy we know the valuation of Aϕ′ on
(T , ~xy, αv), from f ~zy we know the valuation of Aϕ′ on (T , ~zy, αu), and from q ~wy we know the valuation of
Aϕ′ on (T , ~wy, α). By combining these with O(1) transitions of Aϕ′ we find whether uv ∈ E(G′). This
takes Oϕ,`(1) time for each xyz ∈ P3(T [Tpref]), i.e., Oϕ,`(height(T) · |e|) time in total.

It remains to compute for xyz ∈ P3(T) with x ∈ AppT (Tpref) and y, z ∈ Tpref the graphs E?(xyz) =
G′[R(~xy),R?(~zy)]. For this, we recall that g ~xy stores for each r ∈ R(~xy) the smallest-index vertex
v ∈ L(T)[~xy] so that NG(v)∩L(T)[~yx] = NG(r)∩L(T)[~yx], and h ~xy stores for each r ∈ R(~xy) the valuation

4.6. DYNAMIC RANKWIDTH 125

of Aϕ′ on (T , ~xy, αg ~xy(r)). Now, because L(T)[~xy] is disjoint from X, we have that NG′(v) ∩ L(T)[~yx] =
NG′(r)∩L(T)[~yx]. Therefore, it suffices to find the adjacencies of such vertices v to R?(~zy) in G′. Because
we know the valuation of Aϕ′ on (T , ~xy, αv), we can do this in a similar manner as in the previous
paragraph.

This completes the description of the implementation of EdgeUpdate(e). All of the steps took
Oϕ,`(height(T) · |e|) = Od,`(height(T) · |e|) time.

4.6 Dynamic rankwidth

In this section we put together the material from the previous sections to give the final proof of our
dynamic data structure for rankwidth.

Let us first bound how much a prefix-rebuilding update resulting from an edge update description can
increase the potential of a rank decomposition.

Lemma 4.6.1. Let T be a rooted annotated rank decomposition that encodes a graph G, u an edge update
description that describes a graph G′, T ′ a rooted annotated rank decomposition that results from applying
to T a prefix-rebuilding update that corresponds to u, and ` an integer so that the widths of both T and T ′
are at most `. Then it holds that

Φ`,G′(T ′) 6 Φ`,G(T) +O`(|u| · height(T))

Proof. Recall that both graphs G and G′ share the same set of vertices and for both decompositions T
and T ′ the tree T and the sets R(~lp) on leaf edges ~lp are the same. Let Tpref be the prefix of T given in
the edge update description. We have that |Tpref | = |u| and the width of an edge can change only if it is
in T [Tpref]. Then, the conclusion follows directly from the definition of Φ.

Then we state a lemma about computing optimum-width rank decompositions by dynamic programming
on annotated rank decompositions, which will be proved in Section 4.9.1.

Lemma 4.6.2. Let k, ` > 0 be integers. There exists an algorithm that, given as input an annotated rank
decomposition T of width ` that encodes a partitioned graph (G, C), in time O`(|T | log |T |) either:

• correctly determines that (G, C) has rankwidth larger than k; or

• outputs an annotated rank decomposition that encodes (G, C) and has width at most k.

Next we give the main lemma giving the basic version of our data structure. In the statement it is
important that the decomposition T is maintained by prefix-rebuilding updates, as this implies that any
feature of T that can be maintained by a prefix-rebuilding data structure can be plugged in to the data
structure.

Lemma 4.6.3. Let k, d, n ∈ N. There is a data structure that using prefix-rebuilding updates maintains a
rooted annotated rank decomposition T that encodes a dynamic n-vertex graph G and has width at most
4k, under the promise that G has rankwidth at most k at all times, under the following operations:

• Init(T̃): Given a rooted annotated rank decomposition T̃ that encodes a graph G and has width at
most 4k, initializes the data structure to hold T := T̃ . Runs in amortized Ok,d(n log2 n) time.

• Update(e): Given an edge update sentence e of length at most d, either returns that the graph
resulting from applying e to G would have rankwidth more than k, or applies e to update G. Runs in
amortized |e| · 2Ok,d(

√
logn log logn) time.

Moreover, it is guaranteed that after each operation, the height of T is at most 2Ok,d(
√

logn log logn), even
though during the implementations of the operations the height of T can be greater.

Proof. We choose ` to be the smallest positive integer so that ` > 4k+1, ` > d, and ` is at least the largest
width of an edge update description that is returned by the EdgeUpdate(e) query of the 4k-prefix-rebuilding
data structure of Lemma 4.5.5 with the parameter d. Note that ` 6 Ok,d(1).

Then, the Init(T̃) query is implemented as follows. Given the decomposition T̃ that encodes G, we first
use Lemma 4.6.2 to compute a rank decomposition T̃ ′ of G of width at most k, then use Lemma 4.2.2 to
turn T̃ ′ into a rank decomposition T̃ ′′ of height O(log n) and width at most 2k, and then use Lemma 4.3.8
with T̃ and T̃ ′′ to compute an annotated rank decomposition T that encodes G and corresponds to T̃ ′′.

126 CHAPTER 4. DYNAMIC RANKWIDTH

This runs in Ok,d(n log n) = O`(n log n) time in total, and because the resulting decomposition T has width
at most 2k and height at most O(log n), its `-potential is Φ`,G(T) 6 O`(n log n). The first prefix-rebuilding
update is to update T̃ into T . Note that we can set its description to fully contain T in O`(n) time.

We then initialize the `-prefix-rebuilding data structures Dimprove of Lemma 4.4.13, Dtranslate of
Lemma 4.3.14, and Dprdsutil of Lemma 4.3.4 with T , and the 4k-prefix-rebuilding data structure Dupd

of Lemma 4.5.5 with T . Usually, these four data structures will hold the same current annotated rank
decomposition T of width at most 4k, but during the Update query the data structure Dimprove may hold
an annotated rank decomposition T ′ of width up to `. The initialization of these data structures takes
O`(n) time.

Let h = 2O`(
√

logn log logn) be so that the maximum height of T after applying the ImproveHeight()
operation of Dimprove is at most h. We will maintain the invariant that between the Update queries, the
height of T is at most h. During the Update query the height may grow unboundedly.

Then, the Update(e) query is implemented as follows. Let G′ be the graph resulting from applying e
to G. We first use the data structure Dupd to compute an edge update description u corresponding to e.
This runs in time Ok,d(height(T) · |e|) 6 O`(h · |e|), which is also an upper bound for |u|. By the choice of
`, the width of u is at most `, which is also an upper bound for the width of the decomposition resulting
from applying u to T . Then we use the data structure Dtranslate to translate u into a description u1 of a
prefix-rebuilding update. This runs in O`(|u|) = O`(h·|e|) time, which is also an upper bound for |u1|. Then,
we apply u1 to Dimprove (but not the other prefix-rebuilding data structures). Let T ′ = (T, V (G),R′, E ′,F ′)
be the decomposition resulting from applying u1 to T . We have that T ′ encodes G′ and by Lemma 4.6.1
the `-potential of T ′ is at most

Φ`,G′(T ′) 6 Φ`,G(T) +O`(h · |e|).

Let Tpref be the prefix of T ′ associated with u1. We note that all nodes of T ′ of width larger than 4k are
in Tpref , and apply the Refine(Tpref) operation of Dimprove. If it returns that the rankwidth of G′ is greater
than k, we use the Reverse operation of Dprdsutil to compute a description of a prefix-rebuilding operation
that turns T ′ back to T , apply it to Dimprove, and then return. In this case the time complexity is O`(h · |e|).
The other case is that the Refine(Tpref) operation returns a description u2 of a prefix-rebuilding update
that turns T ′ into a decomposition T ′′ that encodes G′, has width at most 4k, and satisfies

Φ`,G′(T ′′) 6 Φ`,G′(T ′)− heightT ′(Tpref) + log n · O`(|Tpref |+ heightT ′(AppT ′(Tpref)))

6 Φ`,G′(T ′) + log n · O`(h · |e|+ h2 · |e|)
6 Φ`,G(T) +O`(h2 · |e| · log n).

The running time of the operation and therefore also |u2| is

log n · O`(Φ`,G′(T ′)− Φ`,G′(T ′′) + log n · (|Tpref |+ heightT ′(AppT ′(Tpref))))

6 log n · O`(Φ`,G′(T ′)− Φ`,G′(T ′′)) +O`(h2 · |e| · log2 n)

6 log n · O`(Φ`,G′(T)− Φ`,G′(T ′′)) +O`(h2 · |e| · log2 n).

Then we use Dcompose to compute from u1 and u2 a description u◦ of a prefix-rebuilding update that turns
T into T ′′. We apply u◦ to Dtranslate, Dcompose, and Dupd, and then apply u2 to Dimprove. Now, all of these
data structures hold the same decomposition T ′′. This takes time O`(|u1|+ |u2|) 6 log n · O`(Φ`,G′(T)−
Φ`,G′(T ′′)) +O`(h2 · |e| · log2 n).

Then, we call the ImproveHeight() operation of Dimprove. This updates T ′′ through a series of prefix-
rebuilding updates into a decomposition T ′′′ that has height at most h and width at most 4k, and returns
the corresponding sequence of descriptions of prefix-rebuilding updates. We also apply the same sequence of
prefix-rebuilding updates to Dtranslate, Dcompose, and Dupd, noting that also the intermediate decompositions
in this sequence have width at most 4k. It holds that Φ`,G′(T ′′′) 6 Φ`,G′(T ′′) and the running time of
this is

log n · O`(Φ`,G′(T ′′)− Φ`,G′(T ′′′))
6 log n · O`(Φ`,G′(T)− Φ`,G′(T ′′′)) +O`(h2 · |e| · log2 n). (4.7)

Finally, T ′′′ is the decomposition that our data structure will hold after the Update operation. Note
that we updated T into T ′′′ by prefix-rebuilding operations so that all intermediate decompositions had
width at most 4k. As Φ`,G′(T ′′′) 6 Φ`,G′(T ′′), the total time complexity of the operation is bounded

4.7. ALMOST-LINEAR TIME ALGORITHM FOR RANKWIDTH 127

by log n · O`(Φ`,G′(T)− Φ`,G′(T ′′′)) +O`(h2 · |e| · log2 n). We also have that Φ`,G′(T ′′′) 6 Φ`,G′(T ′′) 6
Φ`,G(T) +O`(h2 · |e| · log n).

Then we analyze the amortized time complexity. Let us consider the sequence of t first Update
operations applied to the data structure, and let us denote by e1, . . . , et the edge update sentences given in
them and by T1, . . . , Tt the decompositions after each of the updates, and by T0 the initial decomposition.
By Eq. (4.7), the total time used in the first t Update operations is at most

t∑
i=1

(
O`(h2 · |ei| · log2 n) + log n · O`(Φ`(Ti−1)− Φ`(Ti))

)
.

Now, because Φ`(Ti) is always nonnegative, Φ`(T0) 6 O`(n log n), and Φ`(Ti) 6 Φ`(Ti−1)+O`(h2·|ei|·log n),
we have that

t∑
i=1

O`(Φ`(Ti−1)− Φ`(Ti)) 6 O`(n log n) +
t∑
i=1

O`(h2 · |ei| · log n).

This implies that the total running time of the first t operations is bounded by

O`(n log2 n) +
t∑
i=1

O`(h2 · |ei| · log2 n).

We conclude the claimed amortized running time by charging the O`(n log2 n) term from the Init operation
and for each i ∈ [t] theO`(h2·|ei|·log2 n) term from the ith Update operation. Note thatO`(h2·|ei|·log2 n) 6

|ei| · 2Ok,d(
√

logn log logn).

Then we add a couple of more features to the data structure of Lemma 4.6.3.

Lemma 4.6.4. Let k, d, n ∈ N. The data structure of Lemma 4.6.3 can furthermore support the following
operations:

• InitEmpty(): Initializes the data structure to hold the n-vertex edgeless graph G. Runs in amortized
Ok,d(n log2 n) time.

• LinCMSO1(ϕ,X1, . . . , Xp): Given a LinCMSO1 sentence ϕ of length at most d with p free set variables
and p vertex subsets X1, . . . , Xp ⊆ V (G), returns the value of ϕ on (G,X1, . . . , Xp). Runs in time

Od(1) if the sets X1, . . . , Xp are empty, and in time
∑p
i=1 |Xi| · 2Ok,d(

√
logn log logn) otherwise.

Proof. First, the InitEmpty() operation can implemented by the Init(T̃) operation of the data structure
of Lemma 4.6.3, as it is straightforward to construct an annotated rank decomposition of an n-vertex
edgeless graph in O(n) time. Then, to support the LinCMSO1(ϕ,X1, . . . , Xp) queries, we maintain the
4k-prefix-rebuilding data structure of Lemma 4.5.4 for w = d.

It is easy to see that Theorem 1.3.5 is a special case of Lemma 4.6.4: The operations to insert and
delete edges can be simulated by edge update sentences of constant length and size.

4.7 Almost-linear time algorithm for rankwidth

In this section we prove Theorem 1.3.6 by using Lemma 4.6.3. We prove in fact a bit more general statement,
showing that if the 2Ok(

√
logn log logn) factor in Lemma 4.6.3 could be improved to Ok(logO(1) n), then

the 2
√

logn log logn factor in Theorem 1.3.6 could be improved to logO(1) n.

4.7.1 The twin flipping problem

When G is a graph and F is a set of unordered pairs of vertices of G, we denote by G4F the graph
obtained from G by “flipping” adjacencies between every pair in F . In other words, V (G4F) = V (G)
and E(G4F) = E(G)4F . Recall that a vertex v is a twin of a vertex u if N(v) = N(u). Our interface
between Lemma 4.6.3 and Theorem 1.3.6 will be the following problem.

128 CHAPTER 4. DYNAMIC RANKWIDTH

Problem 4.7.1 (Twin Flipping). Given an annotated rank decomposition of width at most k that encodes
an n-vertex bipartite graph G with bipartition (A,B), two disjoint vertex sets X,Y ⊆ A so that every
vertex in X has a twin in Y , and a set F ⊆ X×B of size |F | 6 Ok(n), either determine that the rankwidth
of G4F is more than k, or return an annotated rank decomposition that encodes G4F and has width at
most k.

In this section we will show that algorithms for Problem 4.7.1 can be translated to algorithms
for computing rankwidth. Before showing that, let us give an algorithm for Twin Flipping by using
Lemma 4.6.3. The following basic observation is useful in this algorithm and later in this section.

Observation 4.7.2. Let G be a graph that contains twins u, v ∈ V (G). The rankwidth of G is at most
the rankwidth of G− {v}.

Proof. Observe that if A ⊆ V (G) \ {v} and u ∈ A, then cutrkG−{v}(A) = cutrkG(A ∪ {v}). Therefore, we
can construct a rank decomposition of G of equal width from a rank decomposition of G− {v} by adding
two children c1, c2 to the leaf corresponding to u, and mapping u to c1 and v to c2.

Then we give the algorithm for Twin Flipping.

Lemma 4.7.3. There is a n · 2Ok(
√

logn log logn) time algorithm for Problem 4.7.1.

Proof. Denote the vertices in X as X = {v1, . . . , v|X|}. Let G0 = G, and for each i ∈ [|X|] let Gi be the
bipartite graph with bipartition (A,B), so that for j 6 i it holds that NGi(vj) = NG4F (vj), for j > i it
holds that NGi(vj) = NG(vj), and for u ∈ A \X it holds that NGi(u) = NG(u) = NG4F (u). We have
that G|X| = G4F and because for each v ∈ X there exists u ∈ Y so that NG(v) = NG(u) = NG4F (u),
each Gi can be obtained from G4F by adding twins and deleting vertices, which by Observation 4.7.2
implies that if G4F has rankwidth at most k then also Gi for each i ∈ [|X|] has rankwidth at most k.

Now, for each vertex vi ∈ X, let Fi be the set of vertices Fi = {u ∈ B | viu ∈ F}. We can write an
edge update sentence ei of size |ei| = |Fi| + 1 and constant length that turns Gi−1 into Gi. Let T be
the given annotated rank decomposition that encodes the graph G. We initialize the data structure of
Lemma 4.6.3 with T and k, and the length bound d = O(1) of these edge update sentences, which takes
Ok(n log2 n) amortized time. We then apply the edge update sentences ei one by one to T . If the data
structure at any point returns that the rankwidth would become larger than k, we can return that the
rankwidth of G4F is more than k. This takes |F | · 2Ok(

√
logn log logn) amortized time in total.

Finally, we obtain an annotated rank decomposition T ′ that encodes G4F and has width at most 4k.
We then use Lemma 4.6.2 to obtain in time Ok(n log n) an annotated rank decomposition T ′′ that encodes
G4F and has width at most k or determine that G4F has rankwidth more than k, and then return T ′′.

The running time is Ok(n log2 n) + |F | · 2Ok(
√

logn log logn) = n · 2Ok(
√

logn log logn).

Then, the rest of this section will be devoted to showing that algorithms for Twin Flipping imply
algorithms for computing rankwidth, in particular, to proving the following lemma.

Lemma 4.7.4. Let T : N → N be a function so that there is a Ok(T (n)) time algorithm for Prob-
lem 4.7.1. Then there is an algorithm that given an n-vertex m-edge graph G and an integer k, in time
Ok(T (n) log2 n) +O(m) either returns that the rankwidth of G is more than k, or returns an annotated
rank decomposition that encodes G and has width at most k.

Putting Lemmas 4.7.3 and 4.7.4 together implies the first part of Theorem 1.3.6. In particular, as
n ·2Ok(

√
logn log logn) 6 Ok(n ·2

√
logn log logn/ log2 n), we can set T (n) = n ·2

√
logn log logn/ log2 n to obtain

an algorithm with a running time of Ok(n · 2
√

logn log logn) + O(m). Then, we prove in Section 4.10
(Lemma 4.10.4) that given an annotated rank decomposition of width k that encodes G, we can in Ok(n)
time output a (2k+1 − 1)-expression for cliquewidth of G. This gives the second part of Theorem 1.3.6.

We remark that in the proof of Lemma 4.7.4 we make the natural assumptions that T (n) > Ω(n) and
T (n) is increasing and convex.

4.7.2 Reduction to bipartite graphs

We will work on bipartite graphs in our algorithm, so the first step is to reduce the task of computing the
rankwidth of a graph to bipartite graphs. For this, we will use a reduction given by Courcelle [Cou06] and
further analyzed by Oum [Oum08a, Section 4.1].

Let G be a graph. We define B(G) to be the bipartite graph whose vertex set is V (B(G)) = V (G)× [4],
and edge set is defined so that

4.7. ALMOST-LINEAR TIME ALGORITHM FOR RANKWIDTH 129

1. if v ∈ V (G) and i ∈ [3], then (v, i) is adjacent to (v, i+ 1) in B(G) and

2. if uv ∈ E(G), then (u, 1) is adjacent to (v, 4) in B(G).

We observe that given an n-vertex m-edge graph G, we can compute B(G) in O(n+m) time. Oum
showed that the rankwidths of G and B(G) are tied to each other.

Lemma 4.7.5 ([Oum08a]). If the rankwidth of G is k, then the rankwidth of B(G) is at least k/4 and at
most max(2k, 1).

Even though Oum gives an explicit construction of a rank decomposition of G given a rank decomposi-
tion of G, it seems complicated to adapt to work in linear time with annotated rank decompositions. We
use an alternative approach by using edge update sentences.

Lemma 4.7.6. Let G be an n-vertex graph. There is an algorithm that given an annotated rank decompo-
sition T that encodes B(G) and has width k, in time Ok(n log n) returns an annotated rank decomposition
that encodes G and has optimum width.

Proof. Consider an edge update sentence e = (ϕ,X,X1, X2, X3, X4) that has X = V (B(G)), Xi =
V (G)× {i}, and ϕ(Y,X1, X2, X3, X4) =

∃u ∈ Y, v ∈ Y.(u 6= v ∧ ∀w ∈ Y.(u = w ∨ v = w)) ∧ u ∈ X1 ∧ v ∈ X1

∧(∃u2 ∈ X2, u3 ∈ X3, u4 ∈ X4.(E(u, u2) ∧ E(u2, u3) ∧ E(u3, u4) ∧ E(u4, v)).

Let G′ be the graph resulting from applying e to B(G). We observe that the subgraph of G′ induced by
V (G)× {1} is equal to G, after renaming every vertex of form (v, 1) to v.

Therefore we use our machinery built in previous sections as follows. First, we use Lemma 4.2.2 with
T to compute a rank decomposition T 1 of B(G) of width at most 2k and height O(log n). Then we
use Lemma 4.3.8 with T and T 1 to obtain an annotated rank decomposition T 2 that encodes B(G),
has width at most 2k, and height O(log n). These steps take Ok(n log n) time. Then we initialize the
2k-prefix-rebuilding data structure of Lemma 4.5.5 with T 2 and the parameter d (the bound on the
length of an edge update sentence) equal to the length of ϕ (which is constant), and then apply the
EdgeUpdate(e) query to obtain an edge update description u of width ` = Ok(1) that describes G′. This
takes Ok(n log n) time as the height of T 2 is O(log n). Then, we initialize the 2k-prefix-rebuilding data
structure of Lemma 4.3.14 with T 2, and translate u to a description u′ of a prefix-rebuilding update.
This takes Ok,`(n) = Ok(n) time. Then, we use Lemma 4.3.2 to apply u′ to T 2, turning T 2 into an
annotated rank decomposition T 3 that encodes G′ and has width at most max(k, `) = Ok(1). Then
we use Lemma 4.3.5 to turn T 3 into an annotated rank decomposition of the subgraph of G′ induced
by V (G)× {1}, and then by renaming vertices turn it into an annotated rank decomposition T 4 of G.
These steps take Ok(n) time. Finally we use Lemma 4.6.2 with T 4 to compute an optimum-width rank
decomposition that encodes G, and return it. This runs in time Ok(n log n).

Lemmas 4.7.5 and 4.7.6 and the fact that B(G) can be computed from G in O(n + m) time imply
that we can now focus on bipartite graphs.

4.7.3 Twins and near-twins

In this subsection we prove lemmas about finding twins and near-twins in graphs of small rankwidth. The
following lemma will be our main tool. Recall here from Section 4.4 that for a rooted rank decomposition
T = (T, λ) of a graph G, a set F ⊆ V (G) is a tree factor whenever F = L(T)[x] for some x ∈ V (T), and
a context factor whenever F is not a tree factor but F = F1 \ F2 for tree factors F1, F2. F is a factor if F
is a tree factor or a context factor.

Lemma 4.7.7. There is an algorithm that given a rooted rank decomposition T of an n-vertex graph G,
an integer ` > 1, and a set W ⊆ V (G) with |W | > 16`, in time O(n) outputs a set of at least |W |/(16`)
disjoint factors of T so that each of them contains at least ` vertices in W . The outputted tree factors are
represented by single nodes of T and context factors by pairs of nodes of T .

Proof. Let T = (T, λ). We say that a node x of T is important if |L(T)[x]∩W | > `. Let us denote the set
of important nodes of T by I ⊆ V (T). If a node is important, then also its parent is, so I is a prefix of T .
Note that the root of T is important. Let us furthermore say that a node is a junction if it is important,

130 CHAPTER 4. DYNAMIC RANKWIDTH

and also either has degree 1 or 3 in T [I] or is the root of T . We denote the set of junctions by J ⊆ I. Note
that if x, y ∈ J , then the lowest common ancestor of x and y is also in J .

Then we define a rooted tree T ′ so that V (T ′) = J , there is an edge between x, y ∈ J if there is a path
between x and y in T that avoids other nodes in J , and the root of T ′ is the root of T . Observe that T ′ is
a rooted tree where each node except the root has either 0 or 2 children, and the root has 1 or 2 children.
Now, V (G) can be partitioned into a disjoint union of factors of T as follows:

• for each leaf l of T ′ there is a tree factor L(T)[l],

• for each edge xp of T ′, where p is the parent of x in T ′ and c is the child of p on the path from p to
x in T there is a context factor L(T)[c] \ L(T)[x], and

• if c is a child of the root and is not in I, then there is a tree factor L(T)[c].

We consider cases based on |V (T ′)|. First, suppose that |V (T ′)| > |W |/(8`). This implies that T ′ has
at least |W |/(16`) leaves, so by outputting the leaves of T ′ we output at least |W |/(16`) tree factors that
each contains at least ` vertices in W .

Then, suppose |V (T ′)| 6 |W |/(8`). We note that each tree factor corresponding to a leaf of T ′ contains
at most 2`− 1 vertices in W , and the possible single tree factor corresponding to a child of the root not in
I contains at most `− 1 vertices in W , so therefore the context factors corresponding to the edges of T ′

contain at least

|W | − |V (T ′)| · (2`− 1)− (`− 1) > |W | − |W | · (2`− 1)
8`

− |W |
16
> |W |/2

vertices in W . Now, consider an edge xp of T ′, where p is the parent of x in T ′. This corresponds to
a path x, y1, . . . , yt, p in T . Then, for each i ∈ [t] let zi be the child of yi that is not on this path. We
observe that the context factor associated with xp is equal to

⋃t
i=1 L(T)[zi], and that for each i it holds

that |L(T)[zi] ∩W | < `. This implies that if this context factor contains w vertices in W , then it can be
further partitioned into at least b w2`c >

w
2` − 1 context factors that each contain at least ` vertices in W ,

plus at most one context factor that contains less than ` vertices in W . By performing this partitioning to
all |E(T ′)| 6 |W |/(8`) such context factors that in total contain at least |W |/2 vertices in W , we obtain
at least

|W |/2
2`

− |E(T ′)| > |W |/(8`)

context factors that each contain at least ` vertices in W . This procedure clearly can be implemented in
O(n) time given T .

Then we apply Lemma 4.7.7 to prove that bipartite graphs with small rankwidth and unbalanced
bipartition contain a lot of twins.

Lemma 4.7.8. There is a function f(k) ∈ 2O(k), so that if G is a bipartite graph with bipartition (A,B)
and rankwidth k, and |A| > f(k) · |B|, then there exist at least |A|/f(k) disjoint pairs of twins in A.

Proof. We will prove the lemma for f(k) = 32 · (22k + 1), so assume that |A| > f(k) · |B|. Let T be a
rank decomposition of G of width at most k, and let us apply Lemma 4.7.7 with ` = f(k)/32 and W = A.
This outputs at least 2|A|

f(k) disjoint factors of T so that each of them contains at least f(k)/32 = 22k + 1

vertices in A. Among them, there are at least 2|A|
f(k) − |B| > |A|/f(k) factors that contain no vertices in B.

It suffices to prove that each of these contains a pair of twins in A.
Consider a factor F of T with |F | > 22k + 1 and F ⊆ A. If F is a tree factor, then cutrkG(F) 6 k

by definition, and if F is a context factor, we can prove by symmetry and submodularity of cutrkG that
cutrkG(F) 6 2k. Now, Lemma 4.2.4 implies that F has a representative R of size |R| 6 22k. Because
|F | > 22k, there exists a vertex v ∈ F \R, and because R is a representative of F , there exists u ∈ R so
that N(v) \ F = N(u) \ F . Because F ⊆ A, the vertices u and v are twins.

We say that two vertices u and v of a graph G are q-near-twins if |N(u)4N(v)| 6 q. Next we use
Lemma 4.7.7 to give an algorithm for finding many near-twins in graphs of small rankwidth.

Lemma 4.7.9. There exists a function f ∈ 2O(k) so that there is an algorithm that given an annotated
rank decomposition T of width k that encodes an n-vertex graph G and a set W ⊆ V (G) such that
|W | > f(k), in time Ok(n) returns |W |/f(k) disjoint pairs of vertices (u1, v1), . . . , (ut, vt) in W , so that
ui and vi are (f(k) · n/|W |)-near-twins. The algorithm furthermore returns the sets N(ui)4N(vi) for all
i ∈ [t].

4.7. ALMOST-LINEAR TIME ALGORITHM FOR RANKWIDTH 131

Proof. The proof will use similar ideas to the proof of Lemma 4.7.8. We will prove the the lemma for
f(k) = 32 · (22k + 1). Let us root T = (T, V (G),R, E ,F) arbitrarily and apply Lemma 4.7.7 with T ,
` = f(k)/32, and the set W . This outputs at least 2|W |

f(k) disjoint factors of T so that each of them contains

at least f(k)/32 = 22k + 1 vertices in W . Let us say that a factor F ⊆ V (G) is big if |F | > f(k)n
|W | and

small otherwise. Because the factors are disjoint, there are at most |W |f(k) big factors, implying that there

are at least |W |f(k) small factors.
Now it suffices to output a single such pair (ui, vi) from each small factor. We observe that if F is

a small factor and u, v ∈ F ∩W are two vertices with N(u) \ F = N(v) \ F , then |N(u)4N(v)| 6 |F |,
implying that they are (f(k) · n/|W |)-near-twins. It remains to argue that we can find such u and v in
Ok(|F |) time for each small factor F .

First suppose that F is a tree factor, given as F = L(T)[x] for some x ∈ V (T), and let p be the
parent of x in T . In this case, the subtree below x in T has O(|F |) nodes. For each vertex v ∈ F there
exists a vertex w ∈ R(~xp) so that N(v) \ F = N(w) \ F , and given v we can find such vertex w in time
O(|F |) by following the mapping F of T . We iterate through vertices in F ∩W until we find two vertices
u, v ∈ F ∩W with the same such vertex w. This implies that N(u) \ F = N(v) \ F , so we can return
the pair (u, v). As |R(~xp)| 6 2k, finding such u and v takes at most 2k + 1 iterations of finding such w,
resulting in Ok(|F |) time, and we are guaranteed to find such u and v because |F ∩W | > 22k + 1. To
compute N(u)4N(v), we first compute N(u)∩F and N(v)∩F in Ok(|F |) time by modifying the method
of Lemma 4.3.7 so that we follow the mapping F only inside the subtree below x. Then, we can output
(N(u) ∩ F)4(N(v) ∩ F) = N(u)4N(v).

Then suppose F is a context factor, given as F = L(T)[x] \ L(T)[y] for some nodes x, y ∈ V (T), so
that y is a descendant of x. Let px be the parent of x and py the parent of y. We have that the subtree
of T consisting of the descendants of x minus the descendants of y has O(|F |) nodes. Again, for each
vertex v ∈ F there exists a vertex wx ∈ R(~xpx) so that N(v) \ L(T)[x] = N(wx) \ L(T)[x] and a vertex
wy ∈ R(~pyy) so that N(v)∩L(T)[y] = N(wy)∩L(T)[y], and we can find such wx and wy in O(|F |) time
given v by following the mapping F of T . Now, if we find two vertices u, v ∈ F ∩W with the same such
pair (wx, wy), then N(u) \ F = N(v) \ F . Because |R(~xpx)|, |R(~pyy)| 6 2k, there are at most 22k such
pairs, so we find such u, v within the first 22k + 1 iterations, resulting in Ok(|F |) time. The set N(u)4N(v)
can be computed in Ok(|F |) time by similar arguments as in the previous case.

Then we give a data structure for finding twins guaranteed by Lemma 4.7.8 efficiently in a certain
setting where we consider induced subgraphs defined by an interval. For a graph G and a vertex set
X ⊆ V (G), the twin-equivalence classes of X in G are the maximal sets X ′ ⊆ X so that any two vertices
in X ′ are twins in G.

Lemma 4.7.10. There is a data structure that is initialized with an n-vertex m-edge bipartite graph G
given with a bipartition (A,B), where B is indexed as B = {v1, . . . , v|B|}, and supports the following
query:

• Twins(X, `, r): Given a set X ⊆ A and two integers `, r with 1 6 ` 6 r 6 |B|, in time O(|X| log n)
returns the twin-equivalence classes of X in the graph G[X, {v`, . . . , vr}].

The initialization time of the data structure is O(n+m).

Proof. We will use tools from the theory of string algorithms: the suffix array and the LCP array. For a
string S = s1, . . . , st of length t, the suffix array of S is the array SA of length t that at position i ∈ [t]
stores the index SA[i] ∈ [t] so that the ith lexicographically smallest suffix of S starts at index SA[i] of
S. The LCP array associated with S and SA is the array LCP of length t− 1 that at position i ∈ [t− 1]
stores the length LCP[i] of the longest common prefix of the suffix of S starting at SA[i] and the suffix of
S starting at SA[i+ 1]. It is known that both the suffix array and the LCP array of a given string can be
computed in linear time [KSB06].

The initialization of our data structure works as follows. We consider the total order of the vertices
B = {v1, . . . , v|B|} so that vi < vj whenever i < j. First we use bucket sort to sort the neighborhoods N(a)
of each vertex a ∈ A into an ordered list, in total time O(n+m). Then we concatenate these lists into a
string S of length m, so that for each vertex a ∈ A, the neighborhood of a corresponds to a substring
S[La, Ra] = sLa , . . . , sRa of S, in which the neighbors of a occur in the sorted order. We store the indices
La and Ra of each a ∈ A. We then compute the suffix array SA and the LCP array LCP of S by using the
algorithm of [KSB06] in O(m) time. We also compute the inverse array of SA, in particular, the array
InvSA so that for each i ∈ [m] it holds that SA[InvSA[i]] = i. Finally, we compute a range minimum query

132 CHAPTER 4. DYNAMIC RANKWIDTH

data structure on the LCP array, in particular, a data structure that can answer queries that given indices
`, r ∈ [m], report mini∈[`,r] LCP[i]. Such data structure that answers queries in O(logm) = O(log n) time
can be computed by folklore techniques with binary trees in O(m) time. All together, the initialization
works in O(n+m) time.

Then the Twins(X, `, r) query is implemented as follows. Let us denote Y = {v`, . . . , vr}. First, for
each a ∈ X, we use binary search to compute the indices L′a, R

′
a so that the neighborhood N(a) ∩ Y of

a into Y corresponds to the substring S[L′a, R
′
a], or decide that the neighborhood of a into Y is empty.

This takes O(|X| log n) time. The first equivalence class is the vertices in X whose neighborhood into Y
is empty. Then, based on the computed indices L′a and R′a, we know for each a ∈ X the size |N(a) ∩ Y |.
We group the remaining vertices in X based on |N(a) ∩ Y |, which can be done in O(|X| log n) time. It
remains to consider the problem where given X ′ ⊆ X so that each a ∈ X ′ has exactly p > 1 neighbors in
Y , we have to compute the twin-equivalence classes of X ′ in G[X ′, Y].

Consider two vertices a, b ∈ X ′ and assume InvSA[L′a] < InvSA[L′b]; so the suffix of S starting at index
L′a is lexicographically smaller than the suffix starting at index L′b. Then N(a)∩Y = N(b)∩Y holds if and
only if these suffixes share a common prefix of length p, or equivalently p 6 mini∈[InvSA[L′a],InvSA[L′

b
]−1] LCP[i].

Therefore, to compute the twin-equivalence classes of X ′, we first sort X ′ based on the integers InvSA[L′a] in
time O(|X ′| log n), then assuming this sorted order of X ′ is a1, . . . , a|X′|, we compute for each i ∈ [|X ′|−1]
the integer zi = minj∈[InvSA[L′ai],InvSA[L′ai+1]−1] LCP[j] by using the range minimum query data structure in

O(|X ′| log n) time. Now we have that ai and aj with i < j have N(ai) ∩ Y = N(aj) ∩ Y if and only if
p 6 mink∈[i,j−1] zk, so with this information we can output the twin-equivalence classes of X ′ in O(|X ′|)
time. Therefore, the total time to answer the query is O(|X| log n).

Then we show that the method of adding twins to a rank decomposition discussed in Observation 4.7.2
can be efficiently implemented on annotated rank decompositions.

Lemma 4.7.11. Let G be a graph with twins u, v ∈ V (G). Suppose a representation of an annotated
rank decomposition T ′ that encodes G− {v} and has width k is already stored. Then, given u and v, the
representation of T ′ can in time O(1) be turned into a representation of an annotated rank decomposition
T that encodes G and has width k.

Proof. We implement the construction discussed in the proof of Observation 4.7.2. Denote the stored
decomposition by T ′ = (T ′, V (G) \ {v},R′, E ′,F ′) and let ~lp ∈ ~L(T ′) so that R′(~lp) = {u}. We construct
T = (T, V (G),R, E ,F) as follows. The tree T is created by adding two children c1 and c2 for the leaf
l of T ′. The annotations for edges of T that exist in T ′ are directly copied from T ′ to T . Then we set
R(~c1l) := {u}, R(~c2l) := {v}, and R(~lc1) := R(~lc2) := R′(~pl). We also set E(c1l) := E ′(lp) and obtain
E(c2l) by replacing u by v in E ′(lp). The functions F(c1lp) and F(c2lp) both map to the single vertex
u ∈ R(~lp).

We can verify that T is indeed an annotated rank decomposition that encodes G, and whose width is
at most the width of T ′. The construction can be implemented in O(1) time because |R′(~lp)| = 1 and
|R′(~pl)| 6 2.

4.7.4 Proof of Lemma 4.7.4

Before finally proving Lemma 4.7.4, let us give the crucial subroutine for which the algorithm for
Problem 4.7.1 is used.

Lemma 4.7.12. Let T : N→ N be a function so that there is a Ok(T (n)) time algorithm for Problem 4.7.1.
Let also G be a bipartite graph with bipartition (X,Y1 ∪ Y2), where Y1 and Y2 are disjoint. There is an
algorithm that given an annotated rank decomposition T1 of width at most k that encodes G[X,Y1] and
an annotated rank decomposition T2 of width at most k that encodes G[X,Y2], either returns that the
rankwidth of G is more than k, or returns an annotated rank decomposition that encodes G and has width
at most k. The algorithm runs in time Ok(T (n) log n), where n = |X|+ |Y1|+ |Y2|.

Proof. The algorithm is recursive. Let f be the function from Lemma 4.7.9.
We first consider the base case that |Y2| 6 f(k). If Y1 is empty, we can simply return T2. Otherwise,

let v be an arbitrary vertex in Y1. We use Lemma 4.7.11 to add to T1 for each vertex u ∈ Y2 two new
vertices u′ and u′′ as twins of v, and denote by Y ′2 the set of such vertices u′ and by Y ′′2 such vertices u′′.
Let G′ denote the resulting graph. The rankwidth of G′ is at most k because it is created from G[X,Y1]
by adding twins.

4.7. ALMOST-LINEAR TIME ALGORITHM FOR RANKWIDTH 133

We use Lemma 4.3.7 with T2 to compute for each u ∈ Y2 the neighborhood N(u), and with T1 to
compute N(v). Then, we compute F = {u′w | u′ ∈ Y ′2 , w ∈ N(u)4N(v)}. As |Y2| 6 f(k), this takes Ok(n)
time, which is also an upper bound for |F |. We observe that the graph G′4F is isomorphic to a graph
created from G[X,Y1 ∪ Y2] by adding a twin for each vertex in Y2. Then we apply the algorithm for Twin
Flipping (Problem 4.7.1) with the sets Y ′2 , Y ′′2 , and F , and the decomposition T1 to obtain either that the
rankwidth of G′4F is more than k, in which case we can return that the rankwidth of G[X,Y1∪Y2] is more
than k, or an annotated rank decomposition T ′ of G′4F of width at most k. This takes Ok(T (n)) time.
Then, T ′ can be turned into an annotated rank decomposition T of G[X,Y1 ∪ Y2] by using Lemma 4.3.5
to delete Y ′′2 and renaming all vertices u′ ∈ Y ′2 to u ∈ Y2. This takes Ok(n) time. This finishes the
description of the base case. The total running time in this case is Ok(n) +Ok(T (n)) = Ok(T (n)) (we
assume T (n) > Ω(n)).

Then consider the case that |Y2| > f(k). We first apply Lemma 4.7.9 with T2 and Y2 to find |Y2|/f(k)
disjoint pairs of vertices (u1, v1), . . . , (ut, vt) so that ui and vi are (f(k) · n/|Y2|)-near-twins, and the sets
N(ui)4N(vi). We let F =

⋃t
i=1{viw | w ∈ N(ui)4N(vi)}. This runs in Ok(n) time, which is also an upper

bound for |F |. Let Y ′2 = {u1, . . . , ut} and Y ′′2 = {v1, . . . , vt}. We use Lemma 4.3.5 to obtain an annotated
rank decomposition T ′2 that encodes G[X,Y2 \ Y ′′2], and call the algorithm recursively with T1 and T ′2 . If it
returns that the rankwidth of G[X,Y1 ∪ Y2 \ Y ′′2] is more than k, then we can return that the rankwidth
of G[X,Y1 ∪ Y2] is more than k. Otherwise, let T be the returned annotated rank decomposition that
encodes G[X,Y1 ∪ Y2 \ Y ′′2] and has width at most k. We insert the vertices Y ′′2 = {v1, . . . , vt} into T with
Lemma 4.7.11 so that vi is inserted as a twin of ui. Let G′ be the graph that the resulting decomposition
encodes. We have that G′4F = G[X,Y1 ∪ Y2], and we apply the algorithm for Problem 4.7.1 with this
decomposition and the sets Y ′2 , Y ′′2 , and F . This either returns that the rankwidth of G[X,Y1 ∪ Y2] is
more than k or an annotated rank decomposition of G[X,Y1 ∪ Y2] of width at most k. This finishes the
description of the recursive case. The total running time of also this case, not counting the time spent in
the recursive call, is also Ok(T (n)).

At each level of recursion the size of Y2 decreases by at least |Y2|/f(k), so the depth of the recursion is
Ok(log |Y2|). At each level the running time is Ok(T (n)), so the total running time is Ok(T (n) log |Y2|) =
Ok(T (n) log n).

Then we prove Lemma 4.7.4, which we restate here.

Lemma 4.7.4. Let T : N → N be a function so that there is a Ok(T (n)) time algorithm for Prob-
lem 4.7.1. Then there is an algorithm that given an n-vertex m-edge graph G and an integer k, in time
Ok(T (n) log2 n) +O(m) either returns that the rankwidth of G is more than k, or returns an annotated
rank decomposition that encodes G and has width at most k.

Proof. By Lemmas 4.7.5 and 4.7.6, proving the lemma under the assumption that G is bipartite implies
the lemma for general G. Therefore, we then assume that G is bipartite. Let us fix a bipartition (A,B) of
G and an indexing B = {v1, . . . , v|B|} of B, and initialize the data structure of Lemma 4.7.10 with these.
This takes O(n+m) time.

We will describe a recursive algorithm that takes as input

• a subset X ⊆ A and two integers `, r with 1 6 ` 6 r 6 |B|,

and outputs

• either an annotated rank decomposition of G[X, {v`, . . . , vr}] of width at most k, or that the graph
G[X, {v`, . . . , vr}] has rankwidth more than k.

We denote Y = {v`, . . . , vr}. If |Y | = 1, we compute an annotated rank decomposition of G[X,Y] of
width at most 1 in time O(|X|+ |Y |) and return it. Then assume |Y | > 2.

We first use the data structure of Lemma 4.7.10 to find the twin-equivalence classes of X in G[X,Y],
and then compute a set X ′ ⊆ X that contains exactly one vertex from each of the equivalence classes.
We also store for each vertex u ∈ X \X ′ a vertex ux ∈ X ′ so that NG[X,Y](u) = NG[X,Y](ux). This step
takes in total O(|X| log n) time. Let f(k) be the function from Lemma 4.7.8. The lemma implies that if
|X ′| > f(k) · |Y |, then the rankwidth of G[X ′, Y] (and thus also of G[X,Y]) is more than k. In this case
we can return immediately, Then assume |X ′| 6 Ok(|Y |).

We select t ∈ [`, r − 1] so that both Y1 = {v`, . . . , vt} and Y2 = {vt+1, . . . , vr} have size either b|Y |/2c
or d|Y |/2e. Then we make two recursive calls of the algorithm, one with X ′ and `, t, and another with X ′

and t+ 1, r. If either of the calls returns that the graph has rankwidth more than k, we can return that
the rankwidth of G[X,Y] is more than k. Otherwise, let T1 be the decomposition returned by the first call

134 CHAPTER 4. DYNAMIC RANKWIDTH

and T2 the decomposition returned by the second call. We apply the algorithm of Lemma 4.7.12 with these
decompositions to either conclude that the rankwidth of G[X,Y] is more than k, or to obtain an annotated
rank decomposition T of G[X ′, Y] of width at most k. This runs in Ok(T (|X ′|+ |Y |) log(|X ′|+ |Y |)) time.
Finally, we insert the vertices X \X ′ to the decomposition in O(|X \X ′|) time by using Lemma 4.7.11,
and return the resulting decomposition. This completes the description of the algorithm.

We observe that the running time of each recursive call, not counting the time spent in the subcalls, is
Ok(T (|X|+ |Y |) log n). The sum of the sizes of the sets Y over all such calls is O(n log n). On all calls
except the first, it is guaranteed that |X| 6 Ok(|Y |), so the sum of sizes of the sets X over all such calls is
Ok(n log n). Then, the facts that |X|+ |Y | 6 n in each call and the function T is convex imply that the
total running time past the initialization of the data structure of Lemma 4.7.10 is Ok(T (n) log2 n). This
concludes the proof since the data structure is initialized in O(n+m) time.

4.8 Dealternation Lemma

In this section, we prove the Dealternation Lemma announced in Lemma 4.4.1:

Lemma 4.4.1. There exists a function f(`) so that if G is a graph of rankwidth k and T a rooted rank
decomposition of G of width `, then there exists a rooted rank decomposition T ′ of G of width k so that
for every node t ∈ V (T), the set L(T)[t] can be partitioned into a disjoint union of f(`) factors of T ′.

We will actually prove a slightly more general result, showing an analog of the Dealternation Lemma
for subspace arrangements – structures described by families of linear spaces that generalize the notions of
graphs, hypergraphs and linear matroids.

We begin by introducing the concepts and notation used throughout the proof.

4.8.1 Section-specific preliminaries

Linear spaces. Let F be a fixed finite field; in this chapter we assume F = GF(2). The linear space
over F of dimension d is denoted by Fd. Given two linear subspaces V1, V2 of Fd, we denote by V1 + V2

their sum and by V1 ∩ V2 their intersection. By dim(V) we denote the dimension of the subspace V of Fd.
The following facts are standard.

Lemma 4.8.1. For any two linear subspaces V1, V2 of Fd, we have that

dim(V1) + dim(V2) = dim(V1 + V2) + dim(V1 ∩ V2).

Lemma 4.8.2 ([JKO17, Lemma 25]). For any four linear subspaces U1, U2, V1, V2 of Fd, we have that

dim((U1 + U2) ∩ (V1 + V2)) + dim(U1 ∩ U2) + dim(V1 ∩ V2)

= dim((U1 + V1) ∩ (U2 + V2)) + dim(U1 ∩ V1) + dim(U2 ∩ V2).

For any set of vectors A ⊆ Fd, we denote by 〈A〉 the subspace of Fd spanned by the vectors of A. If
dim(〈A〉) = |A|, then we say that A is a basis of 〈A〉. Then any permutation B of elements of A is called
an ordered basis of 〈A〉; for convenience, we define that 〈B〉 = 〈A〉. Letting B = (v1,v2, . . . ,vc), we have
that every vector u ∈ 〈B〉 can be uniquely represented as a linear combination u =

∑c
i=1 αivi. In this

chapter, whenever the ordered basis B of a vector space V is known from context, all vectors u ∈ V
will be implicitly represented as such a linear combination. Similarly, subspaces of V are then implicitly
represented as 〈{u1, . . . ,ud}〉, where u1, . . . ,ud ∈ V are implicitly represented as linear combinations of
vectors of B. Such a representation can be then stored using O(cd) elements of F.

Subspace arrangements and rank decompositions. Let d ∈ N and consider the linear space Fd.
Any family V = {V1, V2, . . . , Vn} of linear subspaces of Fd is called a subspace arrangement. For visual
clarity, let 〈V〉 =

∑n
i=1 Vi be the sum of all subspaces in the arrangement.

A rank decomposition of a subspace arrangement V is a pair T = (T, λ), where T is a cubic tree and λ
is a bijection λ : V → ~L(T). For an oriented edge ~uv ∈ ~E(T), we denote by L(T)[~uv] = {λ−1(~lp) | ~lp ∈
~L(T)[~uv]} the subfamily of V comprising all linear subspaces that are mapped to leaf edges that are closer
to u than v. The boundary space of an edge uv is defined as Buv = 〈L(T)[~uv]〉 ∩ 〈L(T)[~vu]〉.

A rooted rank decomposition is defined analogously to a rank decomposition, only that T is a binary
tree. Recall that a rank decomposition can be rooted by subdividing a single edge uv once – replacing it

4.8. DEALTERNATION LEMMA 135

with a path urv – and rooting the tree at r. The boundary space of a nonroot node v with parent p is
Bv = Bvp and the boundary space of the root r is Br = {0}. Also, we set L(T)[v] = L(T)[~vp] for v 6= r
and L(T)[r] = V.

The width of an edge uv ∈ E(T) is defined as dim(Buv). The width of a rank decomposition is the
maximum width of any edge of the decomposition. Thus, the width of a rooted rank decomposition is
equivalently the maximum value of dim(Bv) ranging over nonroot nodes v.

Rank decompositions of (partitioned) graphs can be transformed to equivalent rank decompositions of
subspace arrangements; the reduction is shown below, but it is also present in [JKO21].

Suppose G is a graph; for simplicity, assume V (G) = {1, . . . , |V (G)|}. Consider the vector space
GF(2)|V (G)| and its canonical basis {e1, e2, . . . , e|V (G)|}. To each vertex v ∈ V (G) assign the vector space
Av spanned by the vectors ev and

∑
u∈N(v) eu, which we will call the canonical subspace of v. Similarly,

for a set S ⊆ V (G), we assign to it the canonical subspace AS :=
∑
v∈S Av. It is then straightforward to

verify that:

Lemma 4.8.3 ([JKO17, Lemma 52]). For any set S ⊆ V (G), we have

dim
(
AS ∩AV (G)\S

)
= 2 · cutrk(S).

We then immediately have that:

Lemma 4.8.4. Let (G, C) be a partitioned graph with C = {S1, S2, . . . , Sn}. Let V = {V1, V2, . . . , Vn} be
a subspace arrangement over GF(2)|V (G)|, where Vi = ASi for each i ∈ [n]. Then V satisfies the following
property.

Let T be a cubic tree with leaves `1, . . . , `n. Define bijections λ1 : C → ~L(T) and λ2 : V → ~L(T) so
that for every i ∈ [n], both λ1(Si) and λ2(Vi) are assigned to the oriented edge incident to `i. Note that
T = (T, λ1) is a rank decomposition of (G, C) and T ′ = (T, λ2) is an (isomorphic) rank decomposition of
V. Then the width of T ′ is equal to twice the width of T .

We encourage the reader to check [JKO21] to find how rankwidth of subspace arrangement also
generalizes the notions of branchwidth of representable matroids, branchwidth of graphs and carving-width
of graphs.

We then generalize the statement of the Dealternation Lemma (Lemma 4.4.1) to the rank decompositions
of subspace arrangements. Mimicking the concepts defined for graphs, we say that a set F ⊆ V is a tree
factor of T = (T, λ) if F = L(T)[t] for some t ∈ V (T); and a context factor if it is not a tree factor, but a
set of the form F = F1 \ F2, where F1 and F2 are tree factors of T . F is a factor of T if it is either a tree
factor or a context factor of T . Then:

Lemma 4.8.5 (Dealternation Lemma for subspace arrangements). There exists a function f4.8.5 : N→ N
so that if V is a subspace arrangement and T b = (T b, λb) is a rooted rank decomposition of V of width
` > 0, then there exists a rooted rank decomposition T of V of optimum width so that for every node
t ∈ V (T b), the set L(T b)[t] can be partitioned into a disjoint union of at most f4.8.5(`) factors of T .

Note that Lemma 4.8.5 directly implies the Dealternation Lemma through Lemma 4.8.4. Hence, the
rest of this section will be devoted to the proof of Lemma 4.8.5.

Fullness, emptiness and mixedness of edges and nodes. Let V = {V1,V2, . . . ,Vn} be a subspace
arrangement and T b = (T b, λb) be a rooted rank decomposition of V (possibly of unoptimal width). We
introduce the ancestor-descendant relationship on the nodes of T b: we say x 6 y whenever x = y or x
is a descendant of y, and by x < y we mean x 6 y and x 6= y. Moreover, define Vx = L(T b)[x] as the
subfamily of V comprising those subspaces Vi that are mapped to the leaf edges ~lp with x > l. Note that
Vr = V if and only if r is the root of T b, and |Vl| = 1 if and only if l is a leaf of T b. We will then say that
each V ∈ Vx is in the subtree of T b rooted at x. We remark that if x, y ∈ V (T b) with x 6 y, then Vx ⊆ Vy;
and whenever x, y are not in the ancestor-descendant relationship in T b, then Vx ∩ Vy = ∅.

For the following description, consider a node x of T b. Let T = (T, λ) be a rank decomposition of V
(rooted or unrooted). Define Lx(T)[~uv] = L(T)[~uv] ∩ Vx as the family of linear spaces containing exactly
those linear spaces V ∈ V that:

• are in the subtree of (T b, λb) rooted at x; and

• in (T, λ), are mapped to a leaf edge closer to u than v.

136 CHAPTER 4. DYNAMIC RANKWIDTH

Similarly, we set Lx̄(T)[~uv] = L(T)[~uv] \ Vx = L(T)[~uv] \ Lx(T)[~uv]. Note that if an edge ~v1v2 is
a predecessor of an edge ~v3v4 in T , then Lx(T)[~v1v2] ⊆ Lx(T)[~v3v4] and Lx̄(T)[~v1v2] ⊆ Lx̄(T)[~v3v4].

We also say that a directed edge ~uv of T is:

• x-full if L(T)[~uv] ⊆ Vx; that is, for every leaf edge e of (T, λ) closer to u than v, e is mapped to
a space V ∈ V in the subtree of T b rooted at x;

• x-empty if L(T)[~uv] ∩ Vx = ∅, or equivalently, Lx(T)[~uv] = ∅;

• x-mixed otherwise.

Similarly, if T is rooted, then we additionally say that a node v ∈ V (T) is x-full (resp. x-empty or
x-mixed) if L(T)[v] ⊆ Vx (resp. L(T)[v]∩Vx = ∅ or L(T)[v]∩Vx /∈ {∅,L(T)[v]}). Equivalently for nonroot
nodes v, v is x-full (resp. x-empty, x-mixed) if and only if the directed edge ~vp is x-full (resp. x-empty,
x-mixed), where p is the parent of v in T .

The following observation shows how the notions of fullness, emptiness and mixedness of edges of T
are related for pairs of nodes of T b:

Observation 4.8.6. Let x, y ∈ V (T b) and ~uv ∈ ~E(T).

• If ~uv is x-empty and y 6 x, then ~uv is y-empty.

• If ~uv is x-mixed and y ≯ x, then ~uv is y-empty or y-mixed.

• If ~uv is x-mixed and y > x, then ~uv is y-mixed or y-full.

• If ~uv is x-full and y > x, then ~uv is y-full.

• If ~uv is x-full and x, y are not in the ancestor-descendant relationship, then ~uv is y-empty.

Naturally, Observation 4.8.6 directly translates to the fullness, emptiness and mixedness of nodes of T
whenever T is rooted.

Well-structured rank decompositions. In the proof we will use the result of Jeong, Kim and
Oum [JKO21] asserting the existence of well-structured rank decompositions of subspace arrangements of
optimum width, called totally pure rank decompositions. Intuitively, a rank decomposition T of a subspace
arrangement V is totally pure with respect to another rank decomposition T b if, for every x ∈ V (T b), T
excludes some small local patterns defined in terms of subspaces Lx(T)[~uv] for ~uv ∈ ~E(T). The formal
definition follows below; we mostly follow the notation of [JKO21].

Let T = (T, λ) be an unrooted rank decomposition and T b = (T b, λb) be rooted. Let also x ∈ V (T b).
We say that T is x-disjoint if either x is the root of T b, or T contains an edge uv such that L(T)[~uv] = Vx
(equivalently, ~uv is x-full and ~vu is x-empty).

Let Bx be the boundary space of x in T b, defined as Bx = 〈L(T b)[~xp]〉 ∩ 〈L(T b)[~px]〉, where p is the
parent of x in T b; observe that equivalently, Bx = 〈Vx〉 ∩ 〈V \ Vx〉. With this in mind, we say that an edge
uv of T is x-degenerate if the following linear space equality holds:

〈Lx(T)[~uv]〉 ∩Bx = 〈Lx(T)[~vu]〉 ∩Bx.

Such an edge is proper x-degenerate if at least one of the following conditions holds:

• either ~uv or ~vu is x-empty; or

• there exists y ∈ V (T b) with y < x such that: (a) there exists a y-degenerate edge in T (possibly
different than uv) that is not proper, and (b) neither ~uv nor ~vu is y-empty.

Even though the definition above is recursive, it is defined correctly and uniquely – the notion of proper
x-degeneracy only depends on the proper y-degeneracy of edges for y < x.

An x-degenerate edge that is not proper is called improper x-degenerate. If T contains an improper
x-degenerate edge, we say that T is x-degenerate.

Next, an edge ~uv of (T, λ) is x-guarding (or: uv x-guards its end u) if the following strict inclusion
holds:

〈Lx(T)[~uv]〉 ∩Bx (〈Lx(T)[~vu]〉 ∩Bx.

4.8. DEALTERNATION LEMMA 137

In this case, ~uv is improper x-guarding if all of the following conditions hold: deg(u) = 3; ~uv is x-mixed;
and if u1, u2 are the two neighbors of u other than v, then neither ~u1u nor ~u2u is x-empty. Otherwise, ~uv
is proper x-guarding.

Finally, a two-edge path uvw of (T, λ) is an x-blocking path if the following two equalities hold:

〈Lx(T)[~uv]〉 ∩Bx = 〈Lx(T)[~vw]〉 ∩Bx =: A1,

〈Lx(T)[~wv]〉 ∩Bx = 〈Lx(T)[~vu]〉 ∩Bx =: A2;

and moreover, neither A1 ⊆ A2 nor A2 ⊆ A1. (Note that this implies that dim(A1),dim(A2) > 0, so in
particular, neither ~uv nor ~wv is x-empty.) In this case, uvw is an improper x-blocking path if deg(v) = 3
and ~v′v is x-mixed, for the unique neighbor v′ of v other than u and w. Otherwise, uvw is proper x-blocking.

With this bag of definitions at hand, we say that T is x-pure if one of the following holds:

• T is x-degenerate and x-disjoint; or

• T is not x-degenerate, and every x-guarding edge ~uv and every x-guarding path uvw is proper.

Finally, T is totally pure with respect to T b if it is x-pure for all x ∈ V (T b).
Now, the structure theorem proven by Jeong, Kim and Oum reads as follows:

Lemma 4.8.7 ([JKO21, Proposition 4.6]). Let T b be a rooted rank decomposition of a subspace arrange-
ment V. Then there exists a rooted rank decomposition T of the same subspace arrangement V of optimum
width that is totally pure with respect to T b.

4.8.2 Mixed skeletons

Suppose again that V is a subspace arrangement, T b = (T b, λb) is a rooted rank decomposition of V , and
T = (T, λ) is a rooted rank decomposition of V. Let x ∈ V (T b) be a node of T b. We define the x-mixed
skeleton of T as a (possibly empty) rooted tree TM with V (TM) ⊆ V (T) constructed as follows. For
v ∈ V (T), we put v in V (TM) if v has two children and one of the following cases holds:

• one child is x-empty and the other is x-full; or

• both children are x-mixed.

In the first case we will say that v is an x-leaf point, and in the second – that v is an x-branch point. Then
two vertices u, v ∈ V (TM) are connected by an edge in TM if the path between u and v in T is internally
disjoint from V (TM) (Figure 4.2).

We will now show the correctness and the properties of this construction in a series of claims.

Lemma 4.8.8. Suppose v ∈ V (TM). Then every ancestor of v (including v) is x-mixed.

Proof. Follows from the straightforward verification with the definitions.

It is also easily verified that a “converse” statement also holds:

Lemma 4.8.9. Suppose v ∈ V (T) is x-mixed. Then some descendant of v in T is an x-leaf point in T .

From the following lemma it follows directly that TM indeed forms a rooted tree; in particular,
uv ∈ E(TM) implies that u and v are in the ancestor-descendant relationship in T :

Lemma 4.8.10. Suppose u, v ∈ V (TM). Then the lowest common ancestor of u and v belongs to TM.

Proof. Let w be the lowest common ancestor of u and v. if w ∈ {u, v}, then the lemma is trivial. Otherwise,
let wu and wv be the two children of w that are ancestors of u and w, respectively. By Lemma 4.8.8, both
wu and wv are x-mixed. Thus w is an x-branch point.

We continue with several properties of mixed skeletons:

Lemma 4.8.11. Suppose p, q ∈ V (TM) and let uv ∈ E(T) be an edge on the path between p and q in T .
Then both ~uv and ~vu are x-mixed.

138 CHAPTER 4. DYNAMIC RANKWIDTH

(a) (b)

Figure 4.2: (a) An example rooted rank decomposition T . All nodes of T that are not x-mixed are
contracted to rooted subtrees; white subtrees have x-empty roots, while the dark subtrees have x-full
roots. The x-leaf points of T are marked by •, while the x-branch points of T are marked by �. The
nodes that are x-mixed in T , but neither x-leaf points nor x-branch points, are marked by ◦. (b) The
x-mixed skeleton of T .

4.8. DEALTERNATION LEMMA 139

Proof. Suppose not. Without loss of generality assume that: pq ∈ E(TM), and in particular that p is
an ancestor of q in T ; and that in T , q is closer to u than v. Let q1, q2 be the two children of q in T and
p1, p2 be the two children of p in T ; without loss of generality, assume p1 is an ancestor of q. Note that by
Lemma 4.8.8, p1 is x-mixed; therefore, since p ∈ V (TM), we have that p2 is x-mixed as well.

First suppose that ~uv is x-full. Then it follows immediately that both q1 and q2 are x-full as well
(since both ~q1q and ~q2q are predecessors of ~uv), contradicting that q ∈ V (TM). A similar contradiction
follows when ~uv is x-empty. In the same way, observe that if ~vu is x-full (resp. x-empty), then p2 is x-full
(resp. x-empty) as well since ~p2p is a predecessor of ~vu. Therefore, both ~uv and ~vu must be x-mixed.

The following lemma implies that the x-mixed skeleton is a full binary tree.

Lemma 4.8.12. Every x-leaf point is a leaf of TM, and every x-branch point is an internal node of TM

with two children.

Proof. If v is an x-leaf point, then naturally every strict descendant of v in T is either x-full or x-empty.
Thus by Lemma 4.8.8, no strict descendant of v is in TM and therefore v is a leaf in TM.

Then let v be a x-branch point. Let v1, v2 be the children of v in T ; by definition, both v1 and v2 are
x-mixed. By Lemma 4.8.9, there exist x-leaf points u1, u2 ∈ V (TM) that are descendants of v1 and v2 in
T , respectively, which implies that v has at least two children in TM. The lemma follows by observing
from Lemma 4.8.10 that for each i ∈ {1, 2}, at most one vertex of V (TM) in the subtree of T rooted at vi
can be connected to v by a path internally disjoint from V (TM).

The main product of this subsection is the following statement asserting that there exists an optimum-
width rooted decomposition of V admitting small x-mixed skeletons for all x ∈ V (T b). In fact, any
decomposition that is totally pure with respect to T b fulfills the requirements of Lemma 4.8.13; we
will show that through a straightforward (though careful) analysis of the definition of a totally pure
decomposition.

Lemma 4.8.13. There exists a function f4.8.13 : N→ N such that the following holds. Let T b = (T b, λb)
be a rooted rank decomposition of V of width ` > 0. Then there exists a rooted rank decomposition T of V
of optimum width such that, for every x ∈ V (T b), the x-mixed skeleton of T contains at most f4.8.13(`)
nodes.

Proof. Let T = (T, λ) be a rooted optimum-width rank decomposition of V that is totally pure with
respect to T b; such a decomposition exists by Lemma 4.8.7. We claim that, for every x ∈ V (T b), the
height of the x-mixed skeleton of T is at most 2`+ 2. Since mixed skeletons are rooted binary trees, the
statement of the lemma will follow immediately.

Fix x ∈ V (T b) and let TM be the x-mixed skeleton of T . Assume for contradiction that there exists
a vertical path P = v0v1 . . . vp+1 in TM for some p > 2`+ 1, where for each i ∈ [p+ 1], the node vi−1 is
an ancestor of vi in T . For each i ∈ [p+ 1], define vLi as the parent of vi in T , and for each i ∈ [0, p], define
vRi as the unique child of vi in T on the simple path between vi and vi+1. For each i ∈ [p], let v′i be the
remaining child of vi in T . Note that for each i ∈ [p], the node vi is an x-branch point (Lemma 4.8.12), so

the edges ~vRi vi and ~v′ivi are x-mixed; moreover, the edge ~vLi vi is x-mixed by Lemma 4.8.11.
Recall that Bx = 〈Lx(T b)[~xp]〉 ∩ 〈Lx(T b)[~px]〉, where p is the parent of x in T b. Since T b has width

`, by definition we necessarily have that dim(Bx) 6 `. Consider the following vector spaces for each
i ∈ [p+ 1]:

Ai = 〈Lx(T)[~vivLi]〉 ∩Bx,

Bi = 〈Lx(T)[~vLi vi]〉 ∩Bx.

Note that ~vLi vi is a predecessor of ~vLi+1vi+1 for each i ∈ [p]. Therefore we have the following chains of
inclusions of vector spaces:

A1 ⊇ A2 ⊇ . . . ⊇ Ap+1,

B1 ⊆ B2 ⊆ . . . ⊆ Bp+1.

Each Ai and each Bi is a vector space of dimension at most ` since each is a subspace of Bx. Since p > 2`+1,
we find that there exists an index t ∈ [p] such that At = At+1 and Bt = Bt+1. Because 〈Lx(T)[~vt+1vLt+1]〉 ⊆

140 CHAPTER 4. DYNAMIC RANKWIDTH

〈Lx(T)[~vRt vt]〉 ⊆ 〈Lx(T)[~vtvLt]〉 and 〈Lx(T)[~vLt vt]〉 ⊆ 〈Lx(T)[~vtvRt]〉 ⊆ 〈Lx(T)[~vLt+1vt+1]〉, we have

〈Lx(T)[~vtvLt]〉 ∩Bx = 〈Lx(T)[~vRt vt]〉 ∩Bx = At and

〈Lx(T)[~vLt vt]〉 ∩Bx = 〈Lx(T)[~vtvRt]〉 ∩Bx = Bt.

We now consider several cases with regard to the containment relation between At and Bt.

• If At = Bt, then the edge e := vLt vt is by definition x-degenerate.

Suppose first e is improper. Then T is x-degenerate and so by the total purity of T , T is x-pure and
thus x-disjoint (i.e., either x is the root of T b and then Vx = V, or there exists an edge pq ∈ E(T)

such that L(T)[~pq] = Vx). However, by Lemma 4.8.11, the edges ~vLt vt and ~vtvLt are both x-mixed.
This is a contradiction as in an x-disjoint decomposition, there cannot exist an edge uv ∈ E(T) such
that both ~uv and ~vu are x-mixed.

Now assume that e is proper. Again by Lemma 4.8.11, the edges ~vLt vt and ~vtvLt are both x-mixed. By
the fact that e is proper, it must be the case that for some y ∈ V (T b) with y < x, the decomposition

T is y-degenerate and neither ~vLt vt nor ~vtvLt is y-empty. By the total purity of T , we have that T is

y-disjoint. As previously, it cannot be that both ~vLt vt and ~vtvLt are y-mixed. Therefore, one of the

edges ~vLt vt,
~vtvLt is y-full. So by Observation 4.8.6, that edge is x-full, too – a contradiction.

• If At (Bt, then the edge e := ~vtvLt is x-guarding by definition. But recall that the three edges ~vtvLt ,
~vRt vt and ~v′tvt are x-mixed. Hence e is improper x-guarding by definition, which contradicts the

assumption that T is totally pure with respect to T b.

• If Bt (At, the analogous argument follows, using the x-guarding edge ~vtvRt instead.

• If At 6⊆ Bt and Bt 6⊆ At, then the path vLt vtv
R
t is x-blocking by definition. But since ~v′tvt is x-mixed,

we get that vLt vtv
R
t is improperly x-blocking and thus T is not x-pure – a contradiction.

Since we reached a contradiction in each possible case, the proof of the lemma is complete.

4.8.3 Statement of the Local Dealternation Lemma

The strategy of the proof of the Dealternation Lemma for subspace arrangements (Lemma 4.8.5) will
be similar to that in the work of Bojańczyk and Pilipczuk [BP22]: Given as input a decomposition T b
of width ` > 0, we first create a decomposition T satisfying some strong structural properties and then
update T in a sequence of local improvement steps so as to produce the decomposition satisfying the
Dealternation Lemma, preserving the structural properties throughout the process. In our case of rank
decompositions of subspace arrangements, the property maintained throughout the process is precisely
admitting small x-mixed skeletons for all x ∈ V (T b). Now we define the local improvement step in the
form of the Local Dealternation Lemma.

Reusing the notation from the previous sections, assume that x ∈ V (T b). We say that a set F ⊆ V is
an x-factor (resp. x-tree factor, x-context factor) in T if it is a factor (resp. tree factor, context factor) in
T and moreover F ⊆ Vx.

Lemma 4.8.14 (Local Dealternation Lemma). There exists a function f4.8.14 : N → N so that the
following holds. Suppose T b is a rooted rank decomposition of V of width ` > 0, and T is a rooted rank
decomposition of V of optimum width. Moreover, let x ∈ V (T b) be such that the x-mixed skeleton of T has
at most f4.8.13(`) nodes. Then there exists a rooted rank decomposition T ′ of V of optimum width such
that:

• the set L(T b)[x] is a disjoint union of at most f4.8.14(`) x-factors of T ′;

• for every y ∈ V (T b), the y-mixed skeletons of T and T ′ are equal; and

• for every y ∈ V (T b) with y ≯ x, every y-factor of T is also a y-factor of T ′.

We proceed to show how the “global variant” of the Dealternation Lemma for subspace arrangements
(Lemma 4.8.5) follows from Lemma 4.8.14.

4.8. DEALTERNATION LEMMA 141

Proof of Lemma 4.8.5 from the Local Dealternation Lemma. Create an ordering x1, x2, x3, . . . , xn of the
nodes of T b consistent with the descendant-ancestor relationship <; that is, choose any ordering of the
nodes in which for every pair of nodes x, y such that x is a descendant of y, x precedes y in the ordering.
Throughout the proof, we will inductively create a sequence of rooted rank decompositions of V of optimum
width: T0, T1, . . . , Tn, such that for each t ∈ [0, n], the decomposition Tt satisfies the following properties:

• for every i ∈ [t], the set L(T b)[xi] is a disjoint union of at most f4.8.14(`) xi-factors of Tt; and

• for every i ∈ [n], the xi-mixed skeleton of Tt contains at most f4.8.13(`) nodes.

Then the decomposition Tn will witness the Dealternation Lemma for the subspace arrangement V, with
f4.8.5 = f4.8.14.

By Lemma 4.8.13, there exists a rank decomposition T0 of V of optimum width such that for every
x ∈ V (T b), the x-mixed skeleton of T0 contains at most f4.8.13(`) nodes. This verifies the inductive
assumption about T0.

Now assume that t ∈ [n], we are given a rank decomposition Tt−1 of optimum width satisfying the
inductive assumption, and we want to produce a rank decomposition Tt. Let us apply Lemma 4.8.14 with
the decomposition Tt−1 and x = xt, yielding the decomposition Tt. We are left to verify that Tt satisfies
the inductive assumptions.

First, for every i ∈ [t− 1], the set L(T b)[xi] is a disjoint union of at most f4.8.14(`) xi-factors of Tt−1.
Observe that xi ≯ xt by the construction of the order x1, . . . , xn. Thus by Lemma 4.8.14, each such factor
is also an xi-factor of Tt. Also, directly by Lemma 4.8.14 we have that L(T b)[xt] is a disjoint union of at
most f4.8.14(`) xt-factors of Tt.

Finally, let i ∈ [n] and recall that the xi-mixed skeleton of Tt−1 contains at most f4.8.13(`) nodes.
By Lemma 4.8.14, the xi-mixed skeletons of Tt and Tt−1 are equal, so the bound on the number of
nodes applies also to the xi-mixed skeleton of Tt. Thus the inductive step is correct and thus the sought
decomposition Tn exists.

The following sections will introduce operations implementing “local rearrangements” of rank de-
compositions that will be used in the proof of the Local Dealternation Lemma: tree swaps and block
shuffles.

4.8.4 Tree swaps

Again assume that T b = (T b, λb) and T = (T, λ) are rooted rank decompositions of V. Let T contain
a vertical path v0v1v2v3. We define a swap of T along the vertical path v0v1v2v3 as an update of the
decomposition replacing the path v0v1v2v3 with the (vertical) path v0v2v1v3 (Figure 4.3). It is easy to
see that after the swap, the resulting tree remains binary. Note also that swaps are invertible: Whenever
the swap of T along v0v1v2v3 produces a tree Tswap, the original decomposition T is a result of a swap of
Tswap along v0v2v1v3. Finally, we say that a swap of T along the vertical path v0v1v2v3 is an x-swap for
some x ∈ V (T b) if the following preconditions are met:

• v3 is x-mixed; and

• if v′1 and v′2 are the (unique) children of v1 and v2, respectively, outside of the path, then exactly
one of the nodes v′1, v

′
2 is x-empty and the other is x-full.

Observe that whenever T ′ is an x-swap of T along v0v1v2v3, then also T is an x-swap of T ′ along
v0v2v1v3.

The main product of this subsection is the following lemma, asserting that for any x ∈ V (T b), any
x-swap of T preserves the y-mixed skeletons of T for all y ∈ V (T b):

Lemma 4.8.15. Let x, y ∈ V (T b). Suppose Tswap is created from T by performing an x-swap along the
path v0v1v2v3. Then the y-mixed skeletons of T and Tswap are equal.

The rest of this section is dedicated to the proof of Lemma 4.8.15. The proof proceeds in two steps. First,
we phrase, in terms of y-emptiness, y-mixedness and y-fullness of nodes only, the structural properties of
a vertical path v0v1v2v3 in T which, when fulfilled by the path, implies the perseverance of the y-mixed
skeleton of T after the swap along v0v1v2v3. Then we show that whenever a swap of T along a path P
happens to be an x-swap for any x ∈ V (T b), then P fulfills this structural property for every y ∈ V (T b);
hence, such a swap will preserve all y-mixed skeletons for all y ∈ V (T b).

Let v0v1v2v3 be a vertical path in T , and v′1, v
′
2 be the neighbors of v1 and v2, respectively, outside of

the path. Let also y ∈ V (T b). We then say that the path satisfies:

142 CHAPTER 4. DYNAMIC RANKWIDTH

Figure 4.3: An example swap. The right decomposition is a swap of the left decomposition along v0v1v2v3.

• the y-empty property if at least one of v′1 and v′2 is y-empty, and v3 is either y-empty or y-mixed;
and

• the y-full property if at least one of v′1 and v′2 is y-full, and v3 is either y-full or y-mixed.

Lemma 4.8.16. Let y ∈ V (T b) and v0v1v2v3 be a vertical path in T satisfying either the y-empty property
or the y-full property. Suppose Tswap is created from T by performing a swap along v0v1v2v3. Then the
y-mixed skeletons of T and Tswap are equal.

Proof. In the proof, we assume the y-empty property; the proof for the y-full property is analogous (with
the roles of the y-emptiness and the y-fullness of nodes exchanged). For the course of the proof, let
Tswap = (Tswap, λswap), let TM be a y-mixed skeleton of T , and let TM

swap be a y-mixed skeleton of Tswap.
Let also v′1, v

′
2 be the children of v1 and v2, respectively, outside of the path v0v1v2v3 in T .

Our proof crucially relies on the following helper claim:

Claim 4.8.17. Suppose that V (TM
swap) = V (TM) and {v1, v2} 6⊆ V (TM). Then TM

swap = TM.

Proof of the claim. By Lemma 4.8.10, we find that TM
swap = TM if and only if V (TM

swap) = V (TM) and the
ancestor-descendant relationship is preserved on the pairs of vertices of V (TM) (i.e., u1 6 u2 holds in T
for some u1, u2 ∈ V (TM) if and only if u1 6 u2 holds in Tswap).

So suppose there exist u1, u2 ∈ V (TM) such that the relation u1 6 u2 holds in exactly one of the
trees T , Tswap. By the construction of Tswap, one of these two vertices (say, u1) either is equal to v1 or
is a descendant of v′1; and the other (say, u2) either is equal to v2 or is a descendant of v′2. The lowest
common ancestor of u1 and u2 is then v1 in T and v2 in Tswap. By Lemma 4.8.10 and V (TM

swap) = V (TM),
we have {v1, v2} ⊆ V (TM) – a contradiction. C

It is immediate that for every nonleaf node w /∈ {v1, v2}, both subtrees rooted at the children of w in
T contain the same set of nodes before and after the x-swap. Hence,

{L(Tswap)[w′] | w′ is a child of w in Tswap} = {L(T)[w′] | w′ is a child of w in T}.

Thus, each w /∈ {v1, v2} is a y-branch point (resp. a y-leaf point) in Tswap if and only if w is a y-branch
point (resp. a y-leaf point) in T . Moreover, it is easy to see that for each w /∈ {v1, v2}, w is y-empty
(resp. y-mixed, y-full) in T if and only if w is y-empty (resp. y-mixed, y-full) in Tswap.

Therefore, by Claim 4.8.17, for the equality of the y-mixed skeletons of T and Tswap it is enough to
prove that:

• for each w ∈ {v1, v2}, w ∈ V (TM
swap) if and only if w ∈ V (TM); and

• v1, v2 do not both belong to the y-mixed skeleton of T .

These conditions will follow immediately from the following series of claims.

Claim 4.8.18. Suppose v1 ∈ V (TM). Then v1 ∈ V (TM
swap).

Proof of the claim. If v′1 is y-empty in T , then v2 must be y-full in T (otherwise we would have v1 /∈
V (TM)); but this contradicts the assumption that v3 is y-empty or y-mixed. Therefore, it is v′2 that is
y-empty in T . We now consider cases depending on the type of v3 in T :

4.8. DEALTERNATION LEMMA 143

• If v3 is y-empty in T , then it follows that v2 is y-empty in T . Since v1 ∈ V (TM), we infer that v′1 is
y-full in T and v1 is a y-leaf point in T . Then, in Tswap, the two children of v1 (that is, v′1 and v3)
are y-full and y-empty, respectively. Thus v1 is also a y-leaf point in Tswap.

• If v3 is y-mixed in T , then so is v2. Since v1 ∈ V (TM), it must be the case that v′1 is also y-mixed
in T and v1 is a y-branch point in T . Hence in Tswap, both children of v1 (again, v′1 and v3) are
y-mixed, witnessing that v1 is a y-branch point also in Tswap. C

Claim 4.8.19. Suppose v2 ∈ V (TM). Then v2 ∈ V (TM
swap).

Proof of the claim. If v′2 is y-empty in T , then v3 must be y-full in T (otherwise v2 /∈ V (TM)) – a con-
tradiction with the y-empty property of v0v1v2v3 in T . So it is v′1 that is y-empty in T . Again, consider
cases depending on the type of v3 in T :

• If v3 is y-empty in T , then v2 ∈ V (TM) implies that v′2 is y-full in T . Then, in Tswap, v1 is y-empty
(since both children v′1, v3 are y-empty) and so v2 ∈ V (TM

swap) (since one child v′2 is y-full and the
other child v1 is y-empty).

• If v3 is y-mixed in T , then v2 ∈ V (TM) implies that v′2 is also y-mixed in T . Hence, in Tswap,
v1 is y-mixed (since a child v3 is y-mixed), and so v2 ∈ V (TM

swap) (since both children v′2, v1 are
y-mixed). C

Claim 4.8.20. If v1 ∈ V (TM
swap), then v1 ∈ V (TM). Similarly, if v2 ∈ V (TM

swap), then v2 ∈ V (TM).

Proof of the claim. Observe that the vertical path v0v2v1v3 satisfies the y-empty property in Tswap;
moreover, the swap of Tswap along this path produces the original decomposition T . Thus, by Claim 4.8.18,
v2 ∈ V (TM

swap) implies that v2 ∈ V (TM). Similarly, by Claim 4.8.19, v1 ∈ V (TM
swap) implies v1 ∈ V (TM). C

Claim 4.8.21. It cannot happen that v1, v2 ∈ V (TM).

Proof of the claim. If v3 is y-empty in T , then v′2 must be y-full (otherwise v2 /∈ V (TM)), and so v2 must
be y-mixed. But then from the y-empty property of v0v1v2v3, the node v′1 must be y-empty and thus
v1 /∈ V (TM) – a contradiction.

If v3 is y-mixed in T , then so is v′2 (or else v2 /∈ V (TM)), and v2 is y-mixed, too. But then again, v′1
must be y-empty from the y-empty property of v0v1v2v3, which contradicts that v1 ∈ V (TM). C

Claims 4.8.18 to 4.8.21 conclude the proof of the lemma.

We are now ready to give a proof of Lemma 4.8.15.

Proof of Lemma 4.8.15. We only show the proof in the case where v′1 is x-empty and v′2 is x-full in T ;
the proof for the symmetric case is analogous. Recall that v3 is x-mixed in T . We consider three cases,
depending on how x and y are related with respect to the ancestor-descendant relationship in T b.

Case 1: y > x (i.e., y is an ancestor of x in T b). Then by Observation 4.8.6, we have that v′2 is y-full
in T ; and v3 is y-mixed or y-full. So v0v1v2v3 satisfies the y-full property, hence Lemma 4.8.16 applies.

Case 2: y 6 x (i.e., y is a descendant of x in T b). Then by Observation 4.8.6, we have that in T ,
v′1 is y-empty and v3 is y-empty or y-mixed. Therefore, v0v1v2v3 satisfies the y-empty property and
Lemma 4.8.16 applies.

Case 3: y is not in the ancestor-descendant relationship with x in T b. Again by Observation 4.8.6, we
have that in T , v′2 is y-empty and v3 is y-empty or y-mixed. Hence we can apply Lemma 4.8.16 as the
path v0v1v2v3 satisfies the y-empty property.

4.8.5 Block shuffles

While the operation of swaps is quite strong in the sense that any x-swap preserves the y-mixed skeleton
for any x, y ∈ V (T b), this unfortunately is not the case for y-factors: It could happen that a y-factor
of T could cease to exist after performing an x-swap. We will resolve this issue by introducing a more
structured counterpart of a swap: a (boundary-preserving) block-shuffle.

Suppose that T contains a long vertical path v0v1 . . . vpvp+1, p > 0. For each i ∈ [p], let v′i be the
(unique) child of vi not on the path. Let also x ∈ V (T b) and consider the case that for each i ∈ [p], the
vertex v′i is either x-empty or x-full in T ; and that vp+1 is x-mixed in T . (This is equivalently the case

144 CHAPTER 4. DYNAMIC RANKWIDTH

where the x-mixed skeleton of T contains a vertex in the subtree rooted at vp+1, but none of the vertices
v1, . . . , vp are vertices of this skeleton.) Any such path will be called x-shuffleable from now on.

Now we say that an integer interval I = [`, r] ⊆ [1, p] is an x-empty block if all the vertices v′i for i ∈ I
are x-empty, and the interval cannot be extended from either side so as to preserve this property. We
similarly define x-full blocks. Then an x-block is either an x-empty block or an x-full block. Naturally,
x-blocks form a partition of [1, p] into intervals, and in this partition, x-empty blocks and x-full blocks
alternate. In the following description, we will sometimes identify x-blocks [`, r] with the sequences of
vertices (v′`, . . . , v

′
r) and (v`, . . . , vr).

For a permutation σ of {1, 2, . . . , p}, we say that the replacement of the vertical path v0v1 . . . vpvp+1

with the path v0vσ(1)vσ(2) . . . vσ(p)vp+1 is an x-block shuffle along v0 . . . vp+1 using σ if all the following
conditions hold:

• If i and i+ 1 belong to the same x-block, then σ−1(i+ 1) = σ−1(i) + 1 (i.e., the value i+ 1 appears
in the permutation immediately after i); and

• If 1 6 i < j 6 p and both v′i, v
′
j are x-empty (or both are x-full), then σ−1(i) < σ−1(j) (i.e., the

value j appears in the permutation later than i).

For convenience, we say that the permutation σ is the recipe of the block shuffle.
Intuitively, an x-block shuffle can be pictured as an arbitrary shuffle of vertices along the vertical

path that preserves the x-blocks of vertices along the path and never swaps two x-blocks of the same
kind. For our convenience, we extend σ to be a permutation of {0, . . . , p + 1} by setting σ(0) = 0 and
σ(p+ 1) = p+ 1. If additionally it holds that σ(1) = 1 and σ(p) = p, then we say that an x-block shuffle
is boundary-preserving ; equivalently, the first and the last x-blocks are preserved intact by the shuffle
(Figure 4.4).

The following fact is straightforward.

Lemma 4.8.22. An x-block shuffle of a rank decomposition is equivalent to a composition of x-swaps. In
other words, if T ′ is a result of an x-block shuffle along a vertical path of T , then T ′ can also be produced
from T by applying a sequence of x-swaps.

Together with Lemma 4.8.15, this immediately implies the following:

Lemma 4.8.23. Let x, y ∈ V (T b). Suppose T ′ is created from T by performing an x-block shuffle along
a vertical path. Then the y-mixed skeletons of T and T ′ are equal.

However, the structure introduced to x-block shuffles atop the x-swaps now allows us to reason about
the perseverance of y-factors in the modified rank decomposition:

Lemma 4.8.24. Let x, y ∈ V (T b) with y ≯ x. Suppose T ′ is created from T by performing a boundary-
preserving x-block shuffle along v0 . . . vp+1. Then every y-factor of T is also a y-factor of T ′.

Proof. Assume that T ′ 6= T , i.e., the performed block shuffle was nontrivial. Then v0v1 . . . vp+1 contains
at least four x-blocks; let [`1, r1], [`2, r2], . . . , [`t, rt] be the partition of [1, p] into x-blocks, with 1 = `1 6
r1 < `2 6 r2 < · · · < `t 6 rt = p and `i+1 = ri + 1 for all i ∈ [p − 1]. Let σ be the recipe of the
block shuffle. Since the block shuffle is boundary-preserving, we have σ(i) = i for i 6 r1 and i > `t.
Note that by the construction, L(T)[v] = L(T ′)[v] for every v ∈ V (T) \ {v`2 , v`2+1, . . . , vrt−1}. Moreover,
L(T)[v`2] = L(T ′)[vσ(`2)].

Let F ⊆ Vy be a y-factor of T . The following claim captures the essential property of y-factors for
y ≯ x that will be used in the current proof.

Claim 4.8.25. F ⊆ Vx or F is disjoint from Vx.

Proof of the claim. If y 6 x, then Vy ⊆ Vx and thus F ⊆ Vx. On the other hand, if y is incomparable
with x with respect to the ancestor-descendant relationship in T b, then Vy is disjoint from Vx, so also F
is disjoint from Vx. C

First suppose that F is a y-tree factor, i.e., F = L(T)[w] for some w ∈ V (T). Note that if w is
an ancestor of vrt−1 , then w is also an ancestor of both v′rt−1 and v′`t . But exactly one of the vertices
v′rt−1 , v

′
`t

is x-empty and the other is x-full. In other words, we have L(T)[v′rt−1]∪L(T)[v′`t] ⊆ F , but exactly
one of the sets L(T)[v′rt−1], L(T)[v′`t] is a subset of Vx and the other is disjoint from Vx. This, however,
contradicts Claim 4.8.25. Hence, w is not an ancestor of vrt−1 . But then w /∈ {v`2 , v`2+1, . . . , vrt−1}, so
L(T)[w] = L(T ′)[w] and thus F is also a y-factor of T ′.

Now consider the case where F is a y-context factor in T , that is, F = L(T)[w1] \ L(T)[w2] and w1 is
a strict ancestor of w2 in T .

4.8. DEALTERNATION LEMMA 145

(a)

(b)

Figure 4.4: (a) A sample x-shuffleable path. White subtrees have x-empty roots and dark subtrees have
x-full roots; the root v17 of the red subtree is x-mixed. The blocks of the path are indicated by boxes; the
two boundary blocks are colored yellow.
(b) An example boundary-preserving x-block shuffle of the path. The recipe of the block shuffle is
σ = (1, 2, 6, 9, 10, 11, 12, 3, 4, 5, 14, 7, 8, 13, 15, 16).

146 CHAPTER 4. DYNAMIC RANKWIDTH

Claim 4.8.26. It cannot happen that, for some i ∈ [t − 1], w1 is an ancestor of vri and w2 is not
an ancestor of v`i+1 = vri+1.

Proof of the claim. Proof by contradiction. First suppose that w2 is not in the ancestor-descendant
relationship with vri+2 in T . Since ri < `i+1 6 p, we get that L(T)[vp+1] is disjoint from L(T)[w2] and
thus L(T)[vp+1] ⊆ F . But vp+1 is x-mixed in T , so L(T)[vp+1] is neither a subset of Vx nor disjoint from
Vx. Hence contradiction with Claim 4.8.25.

Since w2 is not an ancestor of vri+1, it means that w2 is a descendant of vri+2 and so L(T)[v′ri] ∪
L(T)[v′ri+1] ⊆ F . However exactly one of L(T)[v′ri] and L(T)[v′ri+1] = L(T)[v′`i+1] is x-empty in T and
the other is x-full in T . So again L(T)[v′ri] ∪ L(T)[v′ri+1] is neither a subset of Vx nor disjoint from Vx –
a contradiction. C

If w1, w2 /∈ {v`2 , v`2+1, . . . , vrt−1}, then L(T)[w1] = L(T ′)[w1] and L(T)[w2] = L(T ′)[w2], so F is also
a y-context factor in T ′. Now suppose that at least one of w1, w2 is in {v`2 , v`2+1, . . . , vrt−1}. Since w1

is a (strict) ancestor of w2, we must have that w1 is also an ancestor of vrt−1 and w2 is a descendant
of v`2 . Let then j ∈ [t − 1] be the smallest positive integer such that w1 is an ancestor of vrj . So
by Claim 4.8.26, w2 is an ancestor of v`j+1 . If j = 1, then w2 = v`2 and w1 /∈ {v`2 , v`2+1, . . . , vrt−1}.
Hence F = L(T)[w1] \ L(T)[v`2] = L(T ′)[w1] \ L(T ′)[vσ(`2)] and F is a y-context factor in T ′. On
the other hand, assume j > 2. In this case, w2 is an ancestor of v`j+1 and w1 is an ancestor of w2,
but a descendant of v`j (by the definition of j). Let i1, i2 (with `j 6 i1 < i2 6 `j+1) be such that
w1 = vi1 and w2 = vi2 . Then, F =

⋃i2−1
i=i1 L(T)[v′i]. Since [i1, i2 − 1] is a part of an x-block of the path

v0v1 . . . vp+1, there exists some q ∈ N such that σ(q+ i) = i1 + i for all i ∈ [0, i2− i1−1]. We conclude that
F =

⋃i2−i1−1
i=0 L(T ′)[v′σ(q+i)] = L(T ′)[vσ(q)] \ L(T ′)[vσ(q+i2−i1)]. Hence also in this case, F is a y-context

factor of T ′. As all cases have been exhausted, this finishes the proof.

Observe that an x-block shuffle will never increase the number of x-blocks along the shuffled path; on
the other hand, the number of such x-blocks might decrease significantly if many x-blocks of the same
kind are placed one after another. We will now prove that it is indeed possible to perform such a shuffle
so as to decrease the number of x-blocks to a constant (depending only on the width of T b) without
increasing the width of T :

Lemma 4.8.27. There exists a function f4.8.27 : N→ N such that the following holds. Assume that the
width of T and T b is bounded by ` > 0 and let x ∈ V (T b). Suppose v0v1 . . . vp+1 is an x-shuffleable path
in T . Then there exists a boundary-preserving x-block shuffle of the path using a permutation σ such that:

• the decomposition T ′ after the shuffle has width not greater than the width of T ; and

• in T ′, the vertical path vσ(1) . . . vσ(p) contains at most f4.8.27(`) x-blocks.

In the remaining part of this section we will cover the proof of Lemma 4.8.27. We will call an x-shuffleable
vertical path v0v1 . . . vp+1:

• x-static if all of the following subspace equalities hold:

〈Lx(T)[~v1v0]〉 ∩Bx = 〈Lx(T)[~vp+1vp]〉 ∩Bx,
〈Lx̄(T)[~v1v0]〉 ∩Bx = 〈Lx̄(T)[~vp+1vp]〉 ∩Bx,
〈Lx(T)[~v0v1]〉 ∩Bx = 〈Lx(T)[~vpvp+1]〉 ∩Bx,
〈Lx̄(T)[~v0v1]〉 ∩Bx = 〈Lx̄(T)[~vpvp+1]〉 ∩Bx;

• x-separable if there exist integers c0, c1, . . . , cp ∈ Z such that the following holds. Suppose T ′ is
formed from T by performing a boundary-preserving x-block shuffle along v0v1 . . . vp+1 using σ.
Then, for every i ∈ [0, p], the width of the edge vσ(i)vσ(i+1) in T ′ is equal to cσ(0) + cσ(1) + . . .+ cσ(i).

The following lemma relates these notions:

Lemma 4.8.28. Every x-static path is x-separable.

Proof. Let v0v1 . . . vp+1 be an x-static path, and for i ∈ [p], let v′i be the unique child of vi outside of the path.
Let us partition the sequence of nodes v′1, v

′
2, . . . , v

′
p into those that are x-full and those that are x-empty.

Formally, let q be the number of x-full nodes among {v′1, . . . , v′p} and let 1 6 a+
1 < a+

2 < · · · < a+
q 6 p

denote the sequence of indices of x-full nodes v′
a+1
, . . . , v′

a+q
. Similarly define r as the number of x-empty

4.8. DEALTERNATION LEMMA 147

nodes among {v′1, . . . , v′r} and let 1 6 a−1 < a−2 < · · · < a−r 6 p denote the complementary sequence of
indices of x-empty nodes v′

a−1
, . . . , v′

a−r
.

Recall that x-block shuffles do not exchange the order of x-full nodes or the order of x-empty nodes;
that is, in every decomposition formed by an x-block shuffle, the order of the nodes va+1 , . . . , va+q along
the shuffled path is preserved, and so is the order of the nodes va−1 , . . . , va−r . Therefore, if we assume that
a rank decomposition T ′ is formed by performing an x-block shuffle using a permutation σ on T , then for
any i ∈ [0, p], the sets L(T ′)[~vσ(i)vσ(i+1)],L(T ′)[~vσ(i+1)vσ(i)] of vector spaces on either side of the edge of
the edge vσ(i)vσ(i+1) only depend on:

• the number i+ ∈ [0, q] of x-full nodes in the prefix v′σ(1), . . . , v
′
σ(i); and

• the number i− = i− i+ ∈ [0, r] of x-empty nodes in the prefix v′σ(1), . . . , v
′
σ(i).

Note that {v′σ(1), v
′
σ(2), . . . , v

′
σ(i)} = {v′

a+1
, . . . , va+

i+
, v′
a−1
, . . . , va−

i−
}. Next, define the following vector spaces:

XL = 〈Lx(T)[~v0v1]〉, YL = 〈Lx̄(T)[~v0v1]〉,
XR = 〈Lx(T)[~vp+1vp]〉, YR = 〈Lx̄(T)[~vp+1vp]〉,

Xi = 〈Lx(T)[~v′
a+
i

va+
i

]〉 = 〈L(T)[~v′
a+
i

va+
i

]〉, Yj = 〈Lx̄(T)[~v′
a−
j

va−
j

]〉 = 〈L(T)[~v′
a−
j

va−
j

]〉,

where i ∈ [q] and j ∈ [r], and

X6i = XL +X1 + . . .+Xi, Y6j = YL + Y1 + . . .+ Yj ,

X>i = Xi+1 + . . .+Xq +XR, Y>j = Yj+1 + . . .+ Yr + YR,

where i ∈ [0, q] and j ∈ [0, r]. Then

〈L(T ′)[~vσ(i)vσ(i+1)]〉 = X6i+ + Y6i− ,

〈L(T ′)[~vσ(i+1)vσ(i)]〉 = X>i+ + Y>i− .

Moreover, the property of the path being x-static can be equivalently restated as follows:

XL ∩Bx = X6q ∩Bx, YL ∩Bx = Y6r ∩Bx,
XR ∩Bx = X>0 ∩Bx, YR ∩Bx = Y>0 ∩Bx.

Note also that Bx = 〈Vx〉 ∩ 〈V \ Vx〉 = (XL +X1 + . . .+Xq +XR) ∩ (YL + Y1 + . . .+ Yr + YR).
We are interested in the width of the edge vσ(i)vσ(i+1), that is, the dimension di of the subspace

L(T ′)[~vσ(i)vσ(i+1)] ∩ L(T ′)[~vσ(i+1)vσ(i)] = (X6i+ + Y6i−) ∩ (X>i+ + Y>i−). Applying Lemma 4.8.2 with
U1 = X6i+ , U2 = Y6i− , V1 = X>i+ , V2 = Y>i− , we find that

dim((X6i+ + Y6i−) ∩ (X>i+ + Y>i−)) + dim(X6i+ ∩ Y6i−) + dim(X>i+ ∩ Y>i−) =

= dim((X6i+ +X>i+) ∩ (Y6i− + Y>i−)) + dim(X6i+ ∩X>i+) + dim(Y6i− ∩ Y>i−).
(4.8)

Since X6i+ +X>i+ = 〈Vx〉 and Y6i− + Y>i− = 〈V \ Vx〉, we have by definition

(X6i+ +X>i+) ∩ (Y6i− + Y>i−) = Bx. (4.9)

Now, X6i+ ⊆ 〈Vx〉 and Y6i− ⊆ 〈V \ Vx〉; since 〈Vx〉 ∩ 〈V \ Vx〉 = Bx, we see that X6i+ ∩ Y6i− ⊆ Bx.
Therefore,

X6i+ ∩ Y6i− = (X6i+ ∩Bx) ∩ (Y6i− ∩Bx).

But now, using the fact that the path v0v1 . . . vp+1 is x-static, we have

XL ∩Bx ⊆ X6i+ ∩Bx ⊆ X6q ∩Bx = XL ∩Bx,

so X6i+ ∩Bx = XL ∩Bx; similarly, we compute that Y6i+ ∩Bx = YL ∩Bx. Hence,

X6i+ ∩ Y6i− = (XL ∩Bx) ∩ (YL ∩Bx) = XL ∩ YL ∩Bx = XL ∩ YL, (4.10)

since once again, XL ∩ YL ⊆ Bx. By an analogous argument, we also deduce that

X>i+ ∩ Y>i− = XR ∩ YR. (4.11)

148 CHAPTER 4. DYNAMIC RANKWIDTH

Plugging in Eqs. (4.9) to (4.11) into Eq. (4.8), we conclude that

di = dim((X6i+ + Y6i−) ∩ (X>i+ + Y>i−)) =

= [dim(Bx)− dim(XL ∩ YL)− dim(XR ∩ YR)] + dim(X6i+ ∩X>i+) + dim(Y6i− ∩ Y>i−).

That is, setting α = dim(Bx) − dim(XL ∩ YL) − dim(XR ∩ YR) (a constant independent on i and σ),
βi+ = dim(X6i+∩X>i+) (a constant dependent only on i+, but not on i or σ), and γi− = dim(Y6i−∩Y>i−)
(a constant dependent only on i− and not on i or σ), we have that

di = α+ βi+ + γi− .

Now, set

c0 = α+ β0 + γ0,

ca+
i

= βi − βi−1 for i ∈ [q],

ca−
j

= γj − γj−1 for j ∈ [r].

It is now easy to verify that for every i ∈ [0, p], the width of the edge vσ(i)vσ(i+1) in T ′ is

dim(L(T ′)[~vσ(i)vσ(i+1)] ∩ L(T ′)[~vσ(i+1)vσ(i)]) =

= dim((X6i+ + Y6i−) ∩ (X>i+ + Y>i−)) =

= α+ βi+ + γi− =

= c0 + (ca+1 + ca+2
+ . . .+ ca+

i+
) + (ca−1 + ca−2

+ . . .+ ca−
i−

) =

= cσ(0) + cσ(1) + . . .+ cσ(i),

since σ(0) = 0 and {σ(1), . . . , σ(i)} = {a+
1 , . . . , a

+
i+
, a−1 , . . . , a

−
i−}.

We now show that Lemma 4.8.27 holds for x-separable paths (so, in turn, also for x-static paths).

Lemma 4.8.29. There exists a function f4.8.29 : N → N such that the following holds. Let x ∈ V (T b)
and assume that the width of T and T b is bounded by ` > 0. Suppose v0v1 . . . vp+1 is an x-separable path
in T . Then there exists a boundary-preserving x-block shuffle of the path using a permutation σ such that:

• the decomposition T ′ after the shuffle has width not greater than the width of T ; and

• in T ′, the vertical path vσ(1) . . . vσ(p) contains at most f4.8.29(`) x-blocks.

Proof. The lemma is a consequence of a similar statement from the work of Bojańczyk and Pilipczuk [BP22],
formulated for bichromatic words, which in turn captures the understanding of typical sequences from the
work of Bodlaender and Kloks [BK96]. Before we provide the statement of their lemma, we need to define
block shuffles for words. We mostly follow the exposition from [BP22], with the difference that their proof
concerns words over alphabet {−,+}, excluding 0 from the alphabet. However, it can be readily seen that
their proof also works in the setting below.

Fix the alphabet Σ = {0,−,+}. Given a word w ∈ Σ∗, define:

• sum(w), the sum of w, as the number of occurrences of + in w, minus the number of occurrences of
− in w;

• pmax(w), the prefix maximum of w, as the maximum sum of any prefix of w; and

• pmin(w), the prefix minimum of w, as the minimum sum of any prefix of w.

Suppose the characters in a word w are colored with one of two colors, say red and blue; in such an instance
we say that w is a bichromatic word. A block in such a word is a maximal subword comprising consecutive
letters of w of the same color. Then a block shuffle of w is any word w′ created from w by permuting the
blocks of w such that within each color, the order of the characters remains the same as in w. Then the
Dealternation Lemma for bichromatic words reads as follows:

Claim 4.8.30 ([BP22, Lemma 7.1]). Let w ∈ Σ∗ be a bichromatic word. Let a, b > 0 be two integers with
the following properties: pmax(w) 6 a, and if u is a word created from w by restricting it to all letters of the
same color, then pmin(u) > −b. Then there exists a block shuffle w′ of w such that pmax(w′) 6 pmax(w)
and w′ has at most a+ 4b+ 2 blocks in total.

4.8. DEALTERNATION LEMMA 149

Let f4.8.29(`) = 5` + 4. Consider an x-separable path v0v1 . . . vp+1 and let c0, c1, . . . , cp ∈ Z be the
constants associated with the path. If the path comprises at most 2 blocks, the lemma follows trivially –
we can choose T ′ = T and σ to be the identity permutation. Suppose now the path contains t > 3 blocks:
[`1, r1], [`2, r2], . . . , [`t, rt], where 1 = `1 < r1 < `2 < r2 < · · · < `t < rt = p and `i+1 = ri + 1 for i ∈ [t− 1].
Aiming to apply Claim 4.8.30, we construct a bichromatic word w as follows:

• For every i ∈ [`2, rt−1], define the word wi as follows:

wi =


+ci if ci > 0;
−|ci| if ci < 0;
0 if ci = 0.

Then we set w = w`2w`2+1 . . . wrt−1 .

• For every i ∈ [`2, rt−1], color the letters of wi in w red if i ∈ [`j , rj] for even j, and blue otherwise.
(That is, we color the subwords of w corresponding to different x-blocks of the vertical path
alternately; in other words, one color is allocated to the subwords corresponding to the x-empty
nodes v′i, and the other to the x-full nodes v′i).

It is easy to see that block shuffles w′ of w are in a natural bijection with boundary-preserving x-block
shuffles along v0v1 . . . vp+1: Any reordering of the blocks in w can be directly translated to a reordering
of the x-blocks of the path preserving the first and the last x-block, and vice versa. Such a boundary
preserving x-shuffle is said to be prescribed by w′.

The following claim about the prefix maximum of w follows straight from the definition.

Claim 4.8.31. pmax(w) = maxi∈[`2−1,rt−1](c`2 + c`2+1 + . . .+ ci).

Note that the width of the edge v`2−1v`2 in the original decomposition T is (trivially) at least 0; and
for every i ∈ [`2 − 1, rt−1], the width of the edge vivi+1 is (by our assumption) at most ` (i.e., it exceeds
the width of v`2−1v`2 by at most `). Thus, by the x-separability of the path v0v1 . . . vp+1 for the trivial
block shuffle using the identity permutation σ, we have c`2 + c`2+1 + . . .+ ci 6 ` for every i and hence
pmax(w) 6 ` by Claim 4.8.31.

Now, suppose we found a block shuffle w′ of w with a smaller or equal prefix maximum. Then the block
shuffle can be naturally translated to an x-block shuffle of T of width not greater than the width of T ′:

Claim 4.8.32. Suppose w′ is a block shuffle of w with pmax(w′) 6 pmax(w), and let T ′ be the decom-
position formed from T by performing a boundary-preserving x-block shuffle prescribed by w′. Then the
width of T ′ is at most the width of T .

Proof of the claim. Let σ be the recipe of the block shuffle prescribed by w′; note that for every i /∈
[`2, rt−1], it holds that σ(i) = i. By the same argument as in Claim 4.8.31, we have pmax(w′) =
maxi∈[`2−1,rt−1](cσ(`2) + cσ(`2+1) + · · ·+ cσ(i)).

None of the edges outside of the path v`2−1v`2 . . . vrt−1+1 are affected by a boundary-preserving x-block
shuffle; that is, for any edge e outside of this path, the x-block shuffle preserves the partition of the leaves of T
on either side of e. In particular, for every such edge e, the width of e remains unchanged. Hence it is enough
to verify the widths of each of the edges v`2−1vσ(`2) = vσ(`2−1)vσ(`2), vσ(`2)vσ(`2+1), . . . , vσ(rt−1)vσ(rt−1+1) =
vσ(rt−1)vrt−1+1.

Consider an edge e = vσ(i)vσ(i+1) for i ∈ [`2− 1, rt−1]. By the x-separability of v0v1 . . . vp+1, the width
of e is

cσ(0) + cσ(1) + . . .+ cσ(i) =
`2−1∑
j=0

cj +
i∑

j=`2

cσ(i) 6
`2−1∑
j=0

cj + pmax(w′) 6
`2−1∑
j=0

cj + pmax(w).

Let imax ∈ [`2 − 1, rt−1] be such that pmax(w) = c`2 + c`2+1 + . . .+ cimax . Then

cσ(0) + cσ(1) + . . .+ cσ(i) 6 c0 + c1 + . . .+ cimax ;

that is, by the x-separability, the width of e is upper-bounded by the width of the edge vimaxvimax+1 in
the original decomposition T , so in particular by the width of T . C

It remains to bound the prefix minima of the restrictions of w to all letters of a single color.

150 CHAPTER 4. DYNAMIC RANKWIDTH

Claim 4.8.33. Let u be a word created by restricting w to all letters of the same color. Then pmin(u) > −`.

Proof of the claim. Assume that u = wi1wi2 . . . wiz for i1 < i2 < . . . < iz ∈ [`2, rt−1] such that the
subwords wi1 , wi2 , . . . , wiz all have the same color in w; equivalently, {v′i1 , v

′
i2
, . . . , v′iz} is the subset of

{v′`2 , v
′
`2+1, . . . , v

′
rt−1} comprising exactly the set of x-empty nodes or exactly the set of x-full nodes in T .

By the construction of w, we have

pmin(u) = min
j∈[0,z]

(ci1 + ci2 + . . .+ cij).

Now construct:

• a block shuffle w′ of w by placing u at the front of w′ and all the blocks of the opposite color at the
back of w′, in the same order as in w;

• a boundary-preserving x-block shuffle T ′ of T along v0v1 . . . vp+1 prescribed by w′; let also σ be
the recipe of this shuffle. (In other words, T ′ is constructed by placing all non-boundary blocks
comprising x-empty (resp. x-full) nodes next to each other.)

By construction, we have σ(j) = j for all j ∈ [0, `2 − 1] and σ(`2 + j − 1) = ij for all j ∈ [z].
Obviously, the width of the edge v`2−1v`2 in T is not larger than `; and by the x-separability of the

vertical path v0v1 . . . vp+1 for the trivial block shuffle, it is equal to c0 + c1 + . . .+ c`2−1. On the other
hand, for every j ∈ [0, z], the width of the edge vσ(`2+j−1)vσ(`2+j) in T ′ is trivially at least 0; and by the
x-separability applied to the block shuffle along σ, it is equal to

`2+j−1∑
q=0

cσ(q) =
`2−1∑
q=0

cq +
j∑
q=1

ciq 6 `+
j∑
q=1

ciq .

Thus ci1 + ci2 + . . .+ cij > −` for every j ∈ [0, z]. Hence, pmin(u) > −`. C

The proof of the lemma follows now in a straightforward way: From Claims 4.8.31 and 4.8.33 it follows
that pmax(w) 6 ` and pmin(u) > −`, where u is the restriction of w to the letters of any chosen color.
Hence by Claim 4.8.30, there exists a block shuffle w′ of w such that pmax(w′) 6 pmax(w) and w′ has at
most 5`+ 2 blocks in total. Then by Claim 4.8.32, the boundary-preserving x-block shuffle of T prescribed
by w′ produces a decomposition T ′ of width upper-bounded by the width of T . Moreover, the path
vσ(0)vσ(1) . . . vσ(p+1) in T ′ after the shuffle has at most 5`+ 4 x-blocks: the two boundary x-blocks and
one additional x-block for each block of w′.

It remains to lift the result of Lemma 4.8.29 to general x-shuffleable paths:

Proof of Lemma 4.8.27. We will show that every x-shuffleable path can be partitioned into a small number
of x-static paths. Then the proof will follow from Lemmas 4.8.28 and 4.8.29.

Recall that in our setting, T and T b are rooted rank decompositions of V of width at most ` (` > 0)
and v0v1 . . . vp+1 is an x-shuffleable path in T .

Claim 4.8.34. There exists a partition of the interval [1, p] into t 6 8`+1 subintervals [`1, r1], [`2, r2], . . . ,
[`t, rt] such that, for every i ∈ [t], either `i = ri or the vertical path v`i−1v`iv`i+1 . . . vrivri+1 is x-static.
Moreover, any two subintervals with `i 6= ri are separated by a one-element subinterval.

Proof of the claim. For every i ∈ [0, p], define the profile of the edge vivi+1 in T as the quadruple of
integers (αi, βi, γi, δi), where

αi = dim(〈Lx(T)[~vivi+1]〉 ∩Bx),

βi = dim(〈Lx̄(T)[~vivi+1]〉 ∩Bx),

γi = dim(〈Lx(T)[~vi+1vi]〉 ∩Bx),

δi = dim(〈Lx̄(T)[~vi+1vi]〉 ∩Bx).

By construction, the sequences (αi)
p
i=0 and (βi)

p
i=0 are nondecreasing, while the sequences (γi)

p
i=0 and

(δi)
p
i=0 are nonincreasing; moreover, each of the values αi, βi, γi, δi range from 0 from ` since each value

describes the dimension of a subspace of Bx (and dim(Bx) 6 ` as T b has width at most `). Therefore,
there exist at most 4`+ 1 different profiles among all the edges vivi+1.

Say a vertex vi (i ∈ [p]) is a milestone if the edges vi−1vi and vivi+1 have different profiles; observe
that on the path v0v1 . . . vp+1, there are at most 4` milestones. We construct a partition of [1, p] into
subintervals by:

4.8. DEALTERNATION LEMMA 151

• creating, for each milestone vi, a one-element subinterval [i, i]; and

• adding to the partition all maximal subintervals of [1, p] not containing any milestones.

It is obvious that the partition contains at most 8` + 1 subintervals. Now, let [`, r] be some maximal
subinterval of [1, p] without any milestones. We claim that the path v`−1v` . . . vrvr+1 is x-static. Since
none of the vertices v`, . . . , vr are milestones, the profiles of the edges v`−1v` and vrvr+1 are equal. Since
α`−1 = αr and 〈Lx(T)[~vrvr+1]〉 ∩Bx ⊆ 〈Lx(T)[~v`−1v`]〉 ∩Bx, we conclude that 〈Lx(T)[~vrvr+1]〉 ∩Bx =
〈Lx(T)[~v`−1v`]〉 ∩Bx; this verifies one of the equalities required by the definition of x-static paths. The
remaining three equalities are proved analogously by analyzing the equalities β`−1 = βr, γ`−1 = γr and
δ`−1 = δr. C

Let [`1, r1], . . . , [`t, rt] be the partition of [1, p] given by Claim 4.8.34, and suppose that `1 6 r1 < `2 6
r2 < · · · < `t 6 rt. We inductively construct a sequence of rank decompositions T0 = T , T1, . . . , Tt with
the following invariants:

• for every 1 6 j 6 i 6 t, vertices v`j , . . . , vrj form – in some order – a path in Ti with at most
f4.8.29(`) x-blocks; and

• for every 0 6 i < j 6 t with `j 6= rj , the vertical path v`j−1v`j . . . vrjvrj+1 is x-static in Ti.

We construct this sequence as follows: Iterate the integers i = 1, . . . , t. If `i = ri, then set Ti =
Ti−1. Otherwise, since the vertical path v`i−1v`i . . . vrivri+1 is x-static in Ti−1, it is also x-separable
(Lemma 4.8.28); hence, we apply Lemma 4.8.29 to produce a boundary-preserving x-block shuffle Ti from
Ti−1, where the vertices v`i , v`i+1, . . . , vri form a vertical path with at most f4.8.29(`) x-blocks. Since each
boundary-preserving x-block only modifies the decomposition locally along the path v`i−1v`i . . . vrivri+1,
it can be easily verified that all the invariants are preserved by the update. Also, note that boundary-
preserving x-block shuffles of v`i−1v`i . . . vri+1 are also boundary-preserving x-block shuffles of v0v1 . . . vp+1

and a composition of (boundary-preserving) x-block shuffles is also a (boundary-preserving) x-block shuffle.
We thus conclude that Tt is a boundary-preserving x-block shuffle of T along the path v0v1 . . . vp+1.
Moreover, by the invariants, for every j ∈ [t], the vertices v`j , . . . , vrj form a vertical path in Tt with at
most f4.8.29(`) x-blocks. Since t 6 8` + 1, we find that the produced decomposition contains at most
f4.8.27(`) := (8` + 1)f4.8.29(`) x-blocks along the vertical path vσ(1) . . . vσ(p). Also the width of Tt is
upper-bounded by the width of T .

4.8.6 Proof of the Local Dealternation Lemma

With all the required tools at hand, we can prove the Local Dealternation Lemma (Lemma 4.8.14).

Proof of Lemma 4.8.14. Let TM be the x-mixed skeleton of T ; by our assumption, it has at most f4.8.13(`)
nodes. If the skeleton is an empty tree, then by Lemma 4.8.9, the root r of T either x-full or x-empty. In
either case, the lemma follows by setting T ′ = T , in which case the set L(T ′)[x] is a disjoint union of at
most one x-factor of T ′. From now on assume that the skeleton is nonempty.

The following observations are straightforward:

Claim 4.8.35. Let uv ∈ E(TM), where u is a parent of v in TM (i.e., u is an ancestor of v in T). Then
the simple vertical path between u and v in T is x-shuffleable.

Proof of the claim. Let w be an internal node of the path (so w /∈ V (TM)), w+ be the child of w on the
path and w′ be the child of w not on the path. By Lemma 4.8.11, the node w+ is x-mixed. Hence it
cannot be that w′ is x-mixed – otherwise, by definition, w would be an x-branch point. C

For the following observation, let r be the root of T and rM be the root of TM.

Claim 4.8.36. If r 6= rM, then the simple vertical path between r and rM in T is x-shuffleable.

Proof of the claim. Let w, w+ and w′ be defined as in Claim 4.8.35. Since w+ is an ancestor of rM, the
node w+ is x-mixed. As in the previous claim, we conclude that w′ cannot be x-mixed. C

152 CHAPTER 4. DYNAMIC RANKWIDTH

We now create a new rank decomposition T ′ of V as follows: For every uv ∈ E(TM) in arbitrary order,
perform on T a boundary-preserving x-block shuffle of the vertical path between u and v in T compliant
with the statement of Lemma 4.8.27. Also, when r 6= rM, apply an analogous boundary-preserving x-block
shuffle of the vertical path between r and rM in T . Let then T ′ be the decomposition after applying all
the x-block shuffles. We will now verify that T ′ satisfies all the requirements of the lemma.

First, by Lemma 4.8.15 and the fact that each x-block shuffle is a composition of x-swaps, it follows
that, for every y ∈ V (T b), the y-mixed skeletons of T and T ′ are equal; in particular, TM is the x-mixed
skeleton of T ′. Next, assume that y ∈ V (T b) with y ≯ x. That every y-factor of T is also a y-factor of T ′
follows immediately from Lemma 4.8.24. It remains to show that the set L(T b)[x] can be decomposed into
f4.8.14(`) x-factors of T ′, for some function f4.8.14 yet to be defined. To this end, we will use the following
simple claim:

Claim 4.8.37. Let v0v1 . . . vp+1 be an x-shuffleable path in T ′. Assume that the path v1 . . . vp is comprised
of n > 1 x-blocks. Then the set Lx(T ′)[v1] \ Lx(T ′)[vp+1] can be decomposed into at most n x-context
factors of T ′.

Proof of the claim. For every i ∈ [p], let v′i be the child of vi not on the path. Since v0v1 . . . vp+1 is
x-shuffleable, every node v′i is either x-empty or x-full. Moreover, each x-block [`, r] ⊆ [1, p] is either
an x-empty block (and then L(T)[v`] \ L(T)[vr+1] is disjoint from Vx) or an x-full block (and then
L(T)[v`]\L(T)[vr+1] ⊆ Vx; so in particular, L(T)[v`]\L(T)[vr+1] is an x-context factor of T ′). Therefore,
Lx(T)[v1] \Lx(T)[vp+1] = (L(T)[v1] \L(T)[vp+1])∩Vx is a disjoint union of x-context factors of the form
L(T)[v`] \ L(T)[vr+1], ranging over all x-full blocks [`, r] ⊆ [1, p]. C

Let r be the root of T ′, and rM be the root of TM. Observe that every leaf l of T ′ can be uniquely
assigned to one of the following groups:

• the group of leaves that are not descendants of rM (if r 6= rM);

• for every x-leaf point v ∈ V (TM), the group of leaves that are descendants of v;

• for every edge uv ∈ E(TM), where u is an ancestor of v in T , the group of leaves that are descendants
of w but not v, where w is the child of u on the path between u and v in T .

Thus, L(T b)[x] = Lx(T ′)[r] is the disjoint union of the following sets:

• Lx(T ′)[r] \ Lx(T ′)[rM] (if r 6= rM);

• for every x-leaf point v ∈ V (TM), the set Lx(T ′)[v];

• for every edge uv ∈ E(TM), where u is an ancestor of v in T , the set Lx(T ′)[w] \ Lx(T ′)[v], where
w is the child of u on the path between u and v in T .

If r 6= rM, then let r0r1 . . . rt be the vertical path between r and rM (r0 = r, rt = rM, t > 1). Since we
performed a boundary-preserving x-block shuffle along the vertical path r0r1 . . . rt, we get that the vertical
path r1 . . . rt−1 comprises at most f4.8.27(`) x-blocks; hence, by Claim 4.8.37, the set Lx(T ′)[r1]\Lx(T ′)[rM]
can be partitioned into at most f4.8.27(`) x-context factors of T ′. Let r′ be the child of r not on the path
from r to rM; then r′ is x-empty or x-full. If r′ is x-full, we add one additional tree factor L(T ′)[r′] to the
partition. So Lx(T ′)[r] \ Lx(T ′)[rM] = Lx(T ′)[r′] ∪

(
Lx(T ′)[r1] \ Lx(T ′)[rM]

)
can be partitioned into at

most f4.8.27(`) + 1 x-factors of T ′.
Next, for every edge uv ∈ V (TM), where u is an ancestor of v in T , let w be the child of u on the path

from u to v in T ′. Applying Claim 4.8.37, we get that the set Lx(T ′)[w] \ Lx(T ′)[v] can be partitioned
into f4.8.27(`) x-context factors of T ′. Finally, for every x-leaf point v in T ′, one child v+ of v is x-full and
the other child v− is x-empty. So Lx(T ′)[v] = L(T ′)[v+] and the set Lx(T ′)[v] is exactly an x-tree factor
of T ′.

Summing up, we can partition the set L(T b)[x] = Lx(T ′)[r] into at most

f4.8.27(`) · (|E(TM)|+ 1) + |V (TM)|+ 1 6 (f4.8.27(`) + 1)f4.8.13(`) + 1

x-factors of T ′. This finishes the proof of the Local Dealternation Lemma and it is enough to set
f4.8.14(`) = (f4.8.27(`) + 1)f4.8.13(`) + 1.

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 153

4.9 Using rank decomposition automata to compute closures

This section is dedicated to the proofs of Lemmas 4.6.2 and 4.4.7. Along the way, we produce two rank
decomposition automata that will be used by us heavily throughout the proof:

• the exact rankwidth automaton (Section 4.9.1) that for two fixed integers k, ` verifies, given an an-
notated rank decomposition of width ` encoding a partitioned graph (G, C), whether (G, C) has
rankwidth at most k; and

• the closure automaton (Section 4.9.2) that, roughly speaking, for an annotated tree decomposition
T encoding a graph G and a prefix Tpref of T , represents how a c-small k-closure of Tpref can look
like in each subtree rooted at an edge ~px ∈ ~AppT (Tpref).

The exact rankwidth automaton given in Section 4.9.1 will imply Lemma 4.6.2. Finally, in Section 4.9.4,
we will use both automata to produce a data structure for minimal closures of Lemma 4.4.7.

In this section, we rely on the concepts and notation defined in Section 4.8.1, in particular the subspace
arrangements of linear spaces and rank decompositions thereof.

4.9.1 Exact rankwidth automaton

In this subsection, we will present an implementation of the exact rankwidth automaton. As a consequence,
we will also show that for any pair of integers k, ` ∈ N, one can determine – in linear time with respect
to the size of the graph – whether a partitioned graph, encoded by an annotated rank decomposition of
width at most `, has rankwidth at most k. Moreover, in the positive case, in linear time we can recover
a rank decomposition of the partitioned graph of width at most k (or in near-linear time if we require
the output to be an annotated decomposition). The construction of the automaton crucially relies on the
understanding of the cubic-time algorithm of Jeong, Kim and Oum [JKO21] computing optimum-width
rank decompositions of graphs and, more generally, subspace arrangements. We proceed to give a summary
of this algorithm below.

Summary of the algorithm of Jeong, Kim and Oum [JKO21]. The O`(n3) algorithm of [JKO21]
for rankwidth of subspace arrangements uses at its core the following subroutine: given two integers k,
` with ` > k, a subspace arrangement V of subspaces of Fd, and a rank decomposition of V of width `,
determine whether a rank decomposition of V of width k exists; and if so, construct any such decomposition.
This subroutine is an analog of a similar linear-time algorithm for tree decompositions of graphs by
Bodlaender and Kloks [BK96]. Here, we provide a brief description of the subroutine in [JKO21].

Suppose T b = (T b, λb) is a rooted rank decomposition of V of width `. Ideally, we would wish to
compute, for every node x ∈ V (T b), the set of all possible (unrooted) rank decompositions of Vx of width
at most k. Such sets would be computed using a bottom-up dynamic programming scheme on T b – the
only slightly nontrivial part is understanding, for a node x ∈ V (T b) with two children c1, c2, how to find
the set of all rank decompositions of Vx of small width, given the corresponding sets of decompositions of
Vc1 and Vc2 . Obviously, this idea, while correct, is doomed to fail since a graph can (and usually will)
have an exponential number of valid rank decompositions of small width.

Thus, [JKO21] mimics the insight of Bodlaender and Kloks that, for each rank decomposition of Vx of
small width, we can record just essential information about it, which. Roughly speaking, this information
is a heavily compressed version of the rank decomposition, with the details irrelevant to the subspaces in
V \Vx stripped off. This information is named a compact B-namu in [JKO21].16 Precisely, given a subspace
B of Fd, we define a B-namu as a tuple (T, α,w, U), where: (i) T is a subcubic tree, possibly with some
degree-2 nodes, (ii) U is a subspace of B, (iii) every oriented edge ~uv ∈ ~E(T) is decorated with a subspace
α(~uv) ⊆ U , (iv) every edge uv ∈ E(T) is decorated with an integer w(uv) > 0. (There are a couple of
additional restrictions on the values of α(·) and w(·) – that is, we have α(~v1v2) ⊆ α(~v3v4) whenever ~v1v2

is a predecessor of ~v3v4 in T , and we have w(uv) > dim(α(~uv)∩ α(~vu)) for all uv ∈ E(T) – but these will
be unimportant for our purposes. Similarly, their definition of a B-namu includes additional objects that
can be uniquely deduced from (T, α,w, U).) The width of a B-namu is the maximum value of w(uv), or 0
if T is edgeless.

Note that there exists a natural way of turning a rank decomposition T = (T, λ) of V into a B-namu
(T, α,w, U): We define α(~uv) = B ∩〈L(T)[~uv]〉, w(uv) = dim(〈L(T)[~uv]〉∩ 〈L(T)[~vu]〉), and U = B ∩〈V〉.
16In [BK96], an analogous piece of information is called a characteristic.

154 CHAPTER 4. DYNAMIC RANKWIDTH

It is a straightforward exercise to verify that such a construction indeed produces a valid B-namu of width
equal to the width of T .

For the purposes of this summary we do not describe how to compress a B-namu into the equivalent
compact B-namu of equal width [JKO21, Section 3.2]. Here, we only present the most essential takeaway
of this process: Assuming bounded dim(B), compact B-namus of bounded width are small and all such
B-namus can be generated quickly. Henceforth, let Uk(B) denote the set of all compact B-namus of width
at most k. Next, for any ordered basis B = (v1, . . . ,v|B|) of B, let Uk(B) denote the same set of compact
B-namus, but where each subspace of B is represented in the basis B. (So in a B-namu represented in
the ordered basis B of B, every subspace A ⊆ B is encoded by a sequence of dim(A) · |B| bits cij for
i ∈ [dim(A)], j ∈ [|B|] as the subspace spanned by vectors

∑|B|
j=1 cijvj for i ∈ [dim(A)].) For t ∈ N, let U tk

denote the set of all possible encodings of compact B-namus of width at most k in an ordered basis of size
at most t. (So Uk(B) ⊆ U tk for every ordered basis B with |B| 6 t.) Then we have that:

Lemma 4.9.1 ([JKO21, Lemma 5.4]). There exist functions f4.9.1 : N2 → N and g4.9.1, h4.9.1 : N3 → N
such that the following holds. Assume dim(B) = ` > 0. If Γ = (T, α,w, U) is a compact B-namu of width
at most k, then |E(T)| 6 f4.9.1(k, `). Moreover, we have that |Uk(B)| 6 g4.9.1(k, `, |F|) and moreover, the
entire set U `k can be generated in time h4.9.1(k, `, |F|).

Now, given T b, Jeong, Kim and Oum aim to compute for each x ∈ V (T b) the full set at x of width k
with respect to T b: essentially, the set of compact Bx-namus of all possible totally pure unrooted rank
decompositions of Vx of width at most k.17 This full set is denoted FSk(x). Note that FSk(x) ⊆ Uk(Bx).
Since F = GF(2) and |Bx| 6 ` (since T b is a decomposition of width at most `), we see that |FSk(x)| 6
|Uk(Bx)| 6 g4.9.1(k, `, 2). Similarly, for an ordered basis Bx of Bx, let FSBx

k (x) ⊆ Uk(Bx) ⊆ U |Bx|
k denote

the set FSk(x), but where all subspaces of Bx are represented in the ordered basis Bx as described above.
In order to facilitate the efficient computation of the full sets, [JKO21] introduces the notion of

a transcript of T b. Recall that the boundary space of x is defined as Bx = 〈Vx〉 ∩ 〈V \ Vx〉. We now also
define the space B′x as follows:

B′x =

{
Bx if x is a leaf of T b,
Bx +Bc1 +Bc2 if x is an internal node of T b with children c1 and c2.

([JKO21] equivalently uses Bc1 +Bc2 in the second case, after having proved the inclusion Bx ⊆ Bc1 +Bc2 .)
Then a transcript of T b is formed from two sets of ordered bases {Bx}x∈V (T b) and {B′x}x∈V (T b) under
the following conditions for all x ∈ V (T b):

• Bx is an ordered basis of Bx and B′x is an ordered basis of B′x;

• Bx is a prefix of B′x.

Then, for any nonroot node x with parent y, we define the transition matrix of x as the unique |B′y|× |Bx|
matrix M ~xy over F with the following property: Suppose v is a vector in Bx and that v′ ∈ F|Bx| is the
(unique) representation of v in the ordered basis Bx, that is, v =

∑|Bx|
i=1 v′i · (Bx)i. Then M ~xyv′ is the

unique representation of v in the ordered basis B′y. Intuitively, M ~xy describes how the space Bx embeds
as a subspace in B′y. Notably, this description has bitsize bounded by O(`2) since |Bx| = dim(Bx) 6 `

and |B′y| = dim(B′y) 6 O(`), even though Bx and B′y are subspaces of the highly-dimensional space Fd.
This should be contrasted with the actual ordered bases Bx, B′y: The representation of each ordered
basis requires Ω(d) bits, and in our setting we will have d = n. Therefore, even storing the transcript
{Bx}x∈V (T b), {B′x}x∈V (T b) requires Ω(n2) bits of storage, so we cannot hope to compute it in subquadratic
time.

It is then proved that:

Lemma 4.9.2 (informal statement of [JKO21, Theorem 7.8]). Suppose that the subspace arrangement
V is suitably preprocessed and let n = |V|. Moreover, assume that each subspace in V has dimension
at most `. Then given a rooted rank decomposition T b of width at most `, we can compute a transcript
({Bx}x∈V (T b), {B′x}x∈V (T b)) and the set of transition matrices M ~xy in time O`(n2).

17The notion of totally pure decompositions is defined in Section 4.8.1, however the exact definition is not relevant here.
For this recap, it is enough to remember that a rank decomposition of V of width at most k exists if and only if a totally
pure rank decomposition of V of width at most k also exists (Lemma 4.8.7).

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 155

The quadratic dependency on the size of the subspace arrangement in Lemma 4.9.2 is a bottleneck of
the algorithm in [JKO21]. The reason the algorithm in Lemma 4.9.2 is inefficient is that it does determine
the transcript explicitly; it is, however, not clear at all how to avoid this step when processing general
subspace arrangements. Our contribution is to show that in the setting of rank decompositions of graphs,
the transition matrices of some fixed transcript of T b can be efficiently inferred from an annotated rank
decomposition that encodes a graph.

Finally, Jeong et al. prove the following claim. Note that this statement is not present explicitly in
their work, but it follows immediately from the analysis of their Algorithm 3.1 and their discussion of
Proposition 7.10 in Section 7.5.

Lemma 4.9.3 ([JKO21]). Suppose ({Bx}x∈V (T b), {B′x}x∈V (T b)) is a transcript of T b and for every
x ∈ V (T b) with parent y, M ~xy is the transition matrix of x with respect to the transcript. Then, for any
x ∈ V (T b):

• If x is a leaf of T b, then FSBx

k (x) contains exactly one Bx-namu that can be computed knowing only
the cardinality of Bx in time O`(1).

• If x is a nonleaf node of T b with two children c1, c2, then FSBx

k (x) can be computed from FS
Bc1
k (c1),

FS
Bc2
k (c2), M ~c1x, M ~c2x and |Bx| in time O`(1).

Finally, the authors show how to construct a rank decomposition of small width, having computed all
full sets:

Lemma 4.9.4 ([JKO21, Proposition 7.12]). Let r be the root of T b and let n = |V|. Then V admits
a rank decomposition of width at most k if and only if FSk(r) 6= ∅ (equivalently, FSBr

k (r) 6= ∅). If such
a decomposition exists, then a (rooted) rank decomposition of V of width at most k can be constructed
from the set of transition matrices M ~xy, where x ∈ V (T b) and y is the parent of x, and full sets FSBx

k (x)
for x ∈ V (T b) in time O`(n).

Transcript and transition matrices in annotated rank decompositions. Assume we are given
a rooted annotated rank decomposition T b = (T b, U b,Rb, Eb,Fb) of width ` encoding a partitioned graph
(G, C). Assume for convenience that the vertices of G are assigned integer labels from 1 to n := |V (G)|.
Recall from Section 4.8.1 that T b is isomorphic to a rank decomposition of the subspace arrangement
V = {AC}C∈C of width 2`, where for every C ∈ C, AC ⊆ GF(2)n is the canonical subspace of C, spanned
by the vectors ev and

∑
u∈N(v) eu for all v ∈ C. Henceforth, without worrying about confusion, we will

simultaneously treat T b as an annotated rank decomposition of (G, C) and as a rank decomposition of V.
Whenever we consider an edge xp ∈ E(T b), where p is the parent of x, by the width of xp we mean its
width q ∈ [0, `] in the decomposition of (G, C); so dim(Bx) = 2q.

Our current aim is to define a specific transcript of T b – which we shall name a canonical transcript of
T b – and then show that for any x ∈ V (T b) with parent p, the transition matrix M ~xp with respect to the
canonical transcript can be uniquely and efficiently deduced from the annotations around x in T b.

We begin with understanding the boundary space Bx for a node x ∈ V (T b). Recall that Bx =
〈Vx〉 ∩ 〈V \ Vx〉. For convenience, we introduce the following shorthand notation: eS :=

∑
u∈S eu for any

S ⊆ V (G).

Lemma 4.9.5. Let x be a nonroot node of T b and p the parent of x, and let q ∈ [0, `] be the width of the
edge xp in T b. Let also S = L(T b)[~xp] ⊆ V (G) be the set of vertices of G assigned to leaf edges in the
subtree of x in T b. Then:

• The subspace A ~xp := 〈{eN(v)\S | v ∈ Rb(~xp)}〉 of GF(2)n has dimension q;

• The subspace A ~px := 〈{eN(v)∩S | v ∈ Rb(~px)}〉 of GF(2)n has dimension q;

• Bx = A ~xp +A ~px and A ~xp ∩A ~px = {0}.

Proof. Recall that the rank q of the edge xp is defined as the rank of the 0-1-matrix M describing
adjacencies between vertices in S and vertices in S over GF(2). Supposing the rows of M are indexed by
S and the columns are indexed by S, we see that the row rank of M is exactly

dim(〈{eN(v)\S | v ∈ S}〉) = rk(M) = q.

156 CHAPTER 4. DYNAMIC RANKWIDTH

(This is because for any v ∈ S, the vth row of M is given exactly by the vector eN(v)\S , with the 0 entries
of the vector corresponding to the elements of S removed.) Since Rb(~xp) is a representative of S in G, we
immediately have that {eN(v)\S | v ∈ S} = {eN(v)\S | v ∈ Rb(~xp)} and the first statement of the lemma
follows. The second point is proved analogously, only that we consider the column rank of M instead.

For the final point, recall that

〈Vx〉 = 〈{ev | v ∈ S} ∪ {eN(v) | v ∈ S}〉.

For every v ∈ S, we subtract from eN(v) all vectors eu with u ∈ N(v) ∩ S; since such vectors belong to
〈Vx〉, this operation does not change the subspace spanned by vectors and thus

〈Vx〉 = 〈{ev | v ∈ S} ∪ {eN(v)\S | v ∈ Rb(~xp)}〉
= 〈{ev | v ∈ S}〉+ 〈{eN(v)\S | v ∈ Rb(~xp)}〉 = 〈{ev | v ∈ S}〉+A ~xp.

Similarly,

〈V \ Vx〉 = 〈{ev | v ∈ S}〉+ 〈{eN(v)∩S | v ∈ Rb(~px)}〉 = 〈{ev | v ∈ S}〉+A ~px.

Since A ~xp ⊆ 〈{ev | v ∈ S}〉, A ~px ⊆ 〈{ev | v ∈ S}〉, and 〈{ev | v ∈ S}〉 ∩ 〈{ev | v ∈ S}〉 = {0}, we conclude
that A ~xp ∩A ~px = {0} and Bx = 〈Vx〉 ∩ 〈V \ Vx〉 = A ~xp +A ~px.

Next, given a sequence of vectors (v1, . . . ,vm) of a linear space, define the lexicographically earliest
basis as the subsequence (vi1 , . . . ,vit) of (v1, . . . ,vm) that is an ordered basis of 〈{v1, . . . ,vm}〉 with the
property that the sequence (i1, . . . , it) is lexicographically smallest possible.

We now define the canonical transcript ({Bx}x∈V (T b), {B′x}x∈V (T b)) of T b.

• For every x ∈ V (T b), define the canonical ordered basis Bx of Bx as follows. If x is the root of T b,
then Bx is empty. Otherwise, let p be the parent of x in T b and q ∈ [0, `] be the rank of the edge
xp. Consider the sequence of vectors (eN(v)\S)v∈Rb(~xp) with indexes sorted by <; that is, eN(u)\S
appears before eN(v)\S if and only if u < v. Then let B ~xp be the lexicographically earliest basis of
this sequence (so B ~xp is an ordered basis of A ~xp). Also define the ordered basis B ~px of A ~px as the
lexicographically earliest basis of the analogous sequence of vectors (eN(v)∩S)v∈Rb(~px). Now define
Bx as the concatenation of B ~xp and B ~px.

• Then, for every x ∈ V (T b), define the canonical ordered basis B′x of B′x as follows. If x is a leaf
of T b, then B′x = Bx. Otherwise, let c1 < c2 be the two children of x in T b and set B′x to the
lexicographically earliest basis of the concatenation of the sequences Bx, Bc1 and Bc2 .

It is easy to verify that ({Bx}x∈V (T b), {B′x}x∈V (T b)) is indeed a transcript of T b. For all nonroot
nodes x of T b with parent p, define M ~xp as the transition matrix of x with respect to the canonical
transcript of T b. Our aim now is to show that each transition matrix M ~xp can be recovered from the
annotations around p in T . For the following statement, recall the definitions of the transition signature
and the edge signature from Section 4.5.

Lemma 4.9.6. Let x ∈ V (T b) be a nonroot node and p be the parent of x in T b. Then, in time O`(1),
one can construct M ~xp from:

• the transition signature τ(T b, ~pp′) if p is a nonroot node of T b with parent p′; or

• the edge signatures σ(T b, ~c1r), σ(T b, ~c2r) if p = r is the root of T b with children c1 < c2.

In the proof, we will use the following simple observation. We say that two sequences of vectors
of equal length v1, . . . ,vm ∈ Fd and v′1, . . . ,v

′
m ∈ Fd

′
are linearly equivalent if for every sequence of

coefficients a1, . . . , am ∈ F, we have that
∑m
i=1 aivi = 0 if and only if

∑m
i=1 aiv

′
i = 0. Note that in

this case, (vi1 , . . . ,vit) is the lexicographically earliest basis of (v1, . . . ,vm) if and only if (v′i1 , . . . ,v
′
it

)
is the lexicographically earliest basis of (v′1, . . . ,v

′
m). Moreover, if j ∈ [m] and a1, . . . , at ∈ F , then

vj =
∑t
k=1 akvik if and only if v′j =

∑t
k=1 akv

′
ik

. Then:

Observation 4.9.7. Let v1, . . . ,vm be vectors of the same vector space Fd and let a ∈ [d]. Suppose one
of the following conditions holds:

• (vi)a = 0 for every i ∈ [m], i.e., in all vectors, the ath entry is zero; or

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 157

• there exists a different index b ∈ [d] such that (vi)a = (vi)b for every i ∈ [m], i.e., in all vectors, the
ath entry and the bth entry coincide.

Let v′1,v
′
2, . . . ,v

′
m be the vectors of Fd−1 formed by dropping the ath coordinate from each vector vi. Then

the sequences (v1, . . . ,vm) and (v′1, . . . ,v
′
m) are linearly equivalent.

Also we will use the following algorithmic tool which is an easy application of Gaussian elimination:

Lemma 4.9.8. Let v1,v2, . . . ,vm be vectors of the same vector space Fd. Then in time O(md2) one can
compute:

• the lexicographically earliest basis (vi1 , . . . ,vit) of (v1, . . . ,vm), and

• for every j ∈ [m], the unique representation of vj in this basis (i.e., the coefficients aj,1, . . . , aj,t ∈ F
such that vj =

∑t
k=1 aj,kvik).

Therefore, we quickly get that:

Lemma 4.9.9. Let x ∈ V (T b) be a nonroot vertex of T b with parent p, and let S = L(T b)[~xp] ⊆ V (G)
and q ∈ [0, `] be the width of xp. Then, given the sets Rb(~xp),Rb(~px) and the bipartite graph Eb(xp), in
time Oq(1) one can compute the canonical ordered basis Bx, represented implicitly as two sequences of
vertices v ~xp1 , . . . , v ~xpq ∈ Rb(~xp) and v ~px1 , . . . , v ~pxq ∈ Rb(~px) such that

Bx = (e
N(v ~xp1)\S , . . . , e

N(v ~xpq)\S , e
N(v ~px1)∩S , . . . , e

N(v ~pxq)∩S).

Proof. Recall that Bx is the concatenation of B ~xp and B ~px. Here, we only show how to compute B ~xp; the
latter is determined analogously. LetRb(~xp) = {v1 < v2 < · · · < vm}, where m = |Rb(~xp)| 6 2q. Then B ~xp

is defined as the lexicographically earliest basis of the sequence (eN(v1)\S , . . . , eN(vm)\S). By a repeated
application of Observation 4.9.7, we produce a linearly equivalent sequence of vectors (u′1, . . . ,u

′
m) by

dropping from each vector of this sequence the coordinates corresponding to the vertices u ∈ V (G) such
that:

• u ∈ S (since (eN(vi)\S)u = 0 for all i ∈ [m]); or

• u /∈ S and u /∈ Rb(~px) (since then there exists a representative u′ ∈ Rb(~px) of u such that
N(u) ∩ S = N(u′) ∩ S, or equivalently, (eN(vi)\S)u = (eN(vi)\S)u′ for all i ∈ [m]).

In other words, let (u′1, . . . ,u
′
m) be the sequence of vectors in F|Rb(~px)|, where u′i is constructed from

eN(vi)\S by dropping all coordinates not corresponding to the vertices of Rb(~px). This sequence can be
constructed explicitly in time Oq(1) using Rb(~xp), Rb(~px) and Eb(xp). Using Lemma 4.9.8, we find the
lexicographically earliest basis (u′i1 , . . . ,u

′
iq

) of (u′1, . . . ,u
′
m). Then by Observation 4.9.7, we have that

B ~xp = (eN(vi1)\S , . . . , eN(viq)\S).

We are now ready to prove Lemma 4.9.6.

Proof of Lemma 4.9.6. First suppose that p is the parent of x and p′ is the parent of p in T b. Let also x?

be the sibling of x, i.e., the other child of p in T b. We showcase the proof in the case where x < x?, but
the case x > x? is analogous.

Recall that B′p is the lexicographically earliest basis of the concatenation of Bp, Bx and Bx? (where
Bp is the concatenation of B ~pp′ and B ~p′p; Bx is the concatenation of B ~xp and B ~px; and Bx? is the

concatenation of B ~x?p and B ~px?). Note that the transition signature τ(T b, ~pp′) contains the representative

sets Rb(~xp), Rb(~px), Rb(~x?p), Rb(~px?), Rb(~pp′), Rb(~p′p) and the bipartite graphs Eb(xp), Eb(x?p), Eb(pp′),
so we can use Lemma 4.9.9 to compute the implicit representations of each Bp,Bx,Bx? in time O`(1).
Let S be the concatenation of these ordered bases. Let also S′ be the sequence of vectors produced from
S by dropping all the coordinates corresponding to vertices outside of Rb(~xp) ∪Rb(~x?p) ∪Rb(~p′p).

Claim 4.9.10. S and S′ are linearly equivalent.

Proof of the claim. Note that V (G) is a disjoint union of L(T b)[~xp], L(T b)[~x?p] and L(T b)[~p′p]. First
suppose that u ∈ L(T b)[~xp], but u /∈ Rb(~xp). Then there exists a representative u′ ∈ Rb(~xp) such that
N(u) ∩ L(T b)[~px] = N(u′) ∩ L(T b)[~p′x]. We now claim that for every vector v ∈ S, we have vu = vu′ .

158 CHAPTER 4. DYNAMIC RANKWIDTH

• If v belongs to the ordered basis B ~xp (i.e., v is implicitly represented by a vertex of Rb(~xp)), then
by definition vs = 0 for all s ∈ L(T b)[~xp]. Hence vu = vu′ = 0.

• Similarly, if v belongs to B ~pp′ (resp. B ~px?), then the same argument follows from the fact that

L(T b)[~xp] is a subset of L(T b)[~pp′] (resp. L(T b)[~px?]). So vu = vu′ = 0.

• If v belongs to any of the ordered bases B ~px, B ~p′p or B ~x?p, then vu = vu′ follows from N(u) ∩
L(T b)[~px] = N(u′) ∩ L(T b)[~p′x] and the fact that L(T b)[~px] is a superset of both L(T b)[~p′p] and
L(T b)[~x?p].

By case exhaustion we conclude that vu = vu′ for all vectors v ∈ S, and so Observation 4.9.7 applies and
the coordinate corresponding to the vertex u can be removed from all vectors of S while maintaining the
linear equivalence. A symmetric proof for u ∈ L(T b)[~x?p] \ Rb(~x?p) and u ∈ L(T b)[~p′p] \ Rb(~p′p) settles
the claim. C

Now observe that S′ can be constructed explicitly in time O`(1): It is enough to determine, for each
e1 ∈ { ~xp, ~px, ~x?p, ~px?, ~pp′, ~p′p} and a vector u in Be1 (implicitly represented by a vertex u ∈ Rb(e1)), and
for each e2 ∈ { ~xp, ~x?p, ~p′p} and v ∈ Rb(e2), the value of uv. It can be easily observed that this value is
equal to 1 if and only if e1 and e2 point towards each other (i.e., e1 is a predecessor of e′2, where e′2 is the
edge e2 with its head and tail swapped), and uv ∈ E(G). Both of these conditions can be easily verified
using the transition signature of ~pp′ in T b.

We now run the algorithm of Lemma 4.9.8 to find the lexicographically earliest basis BS′ of S′ in
time O`(1); moreover, this algorithm provides, for each vector v ∈ S′, the representation of v in this
basis. Since S and S′ are linearly equivalent and B′p is the lexicographically earliest basis of S, we can
easily recover, for each vector v ∈ Bx, the representation of v in B′p. These representations form the
|B′p| × |Bx| transition matrix M ~xp.

We now briefly discuss the case where p = r is the root of T b with two children c1 < c2 (so that
x ∈ {c1, c2}). Note that Br = {0}, so Br is empty; moreover, Bc1 = Bc2 = 〈Vc1〉 ∩ 〈Vc2〉 and hence
B′r = Bc1 . The implicit representations of both Bc1 and Bc2 can be deduced from the edge signatures
σ(T b, ~c1r), σ(T b, ~c2r) in time O`(1) using Lemma 4.9.9. Thus both M ~c1r – the identity matrix of dimension
|Bc1 | – and M ~c2r – the transition matrix from the basis Bc2 to Bc1 – can be computed using only σ(T b, ~c1r)
and σ(T b, ~c2r) in time O`(1).

Construction of the rank decomposition automaton. We have now gathered enough tools to
prove the following statement.

Lemma 4.9.11. Let k, ` > 0 be integers with k 6 `. There exists a label-oblivious rank decomposition
automaton JKOk,` = (Q, ι, δ, ε) of width ` with evaluation time O`(1) and |Q| = Ok,`(1), called the exact
rankwidth automaton, with the following properties:

Suppose that T b is a rooted annotated rank decomposition of width at most ` that encodes a partitioned
graph (G, C). Let ρ be the run of A on T b. Then, for every x ∈ V (T b), the full set FSBx

k (x) at x of width
k with respect to T b is equal to:

• ρ(~xp) if x is not the root of T b and p is the parent of x; or

• ρ(ϑ) if x is the root of T b.

Proof. Let Q = 2U
`
k , i.e., every state in Q is a subfamily of the family of all possible encodings of compact

B-namus of width at most k in an ordered basis of size at most `. Note that since T b has width at most
`, we get that for any node x ∈ V (T b) and any ordered basis Bx of the boundary space Bx, we have
FSBx

k (x) ⊆ U `k and so FSBx

k (x) ∈ Q.
We define the initial mapping ι so that, for any leaf edge ~lp ∈ ~L(T b), we have that ρ(~lp) = FSBl

k (l).
By Lemma 4.9.3, FSBl

k (l) only depends on the cardinality of Bl, which can be uniquely deduced from the
edge signature σ(T , ~lp). Since ι accepts a leaf edge signature as an argument, such an initial mapping can
be constructed.

The transition mapping δ is constructed as follows. Suppose x is not a leaf nor a root of T b and let p be
the parent of x in T b. Let also c1 < c2 be the two children of x in T b. Then, we compute ρ(~xp) = FSBx

k (x)

as follows. By Lemma 4.9.3, FSBx

k (x) can be deduced uniquely from FS
Bc1
k (c1), FS

Bc2
k (c2), M ~c1x, M ~c2x

and |Bx|. From Lemma 4.9.6 it follows that both M ~c1x and M ~c2x can be determined from the transition

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 159

signature τ(T b, ~xp). Also |Bx| can be quickly deduced from the transition signature. On the other hand,
FS

Bc1
k (c1) is simply ρ(~c1x) and FS

Bc2
k (c2) is ρ(~c2x). So we define the transition mapping δ so that

FSBx

k (x) = δ(τ(T b, ~xp), FS
Bc1
k (c1), FS

Bc2
k (c2)).

For the final mapping ε, let x = r be the root of T b with children c1 < c2. Our aim is to determine
ρ(ϑ) = FSBr

k (r) from ρ(~c1r) = FS
Bc1
k (c1), ρ(~rc1) = ρ(~c2r) = FS

Bc2
k (c2) and the edge signature σ(T b, ~c1r).

By the definitions of runs of automata on rooted trees, the edge signature σ(T b, ~c2r) is uniquely determined
by σ(T b, ~c1r). Again by Lemma 4.9.3, FSBr

k (r) can be deduced uniquely from FS
Bc1
k (c1), FS

Bc2
k (c2), M ~c1r,

M ~c2r and |Br| = 0. And by Lemma 4.9.6, M ~c1r and M ~c2r can be computed in O`(1) time given σ(T b, ~c1r)
and σ(T b, ~c2r). Thus we define ε so that FSBr

k (r) = ε(δ(T b, ~c1r),FS
Bc1
k (c1),FS

Bc2
k (c2)).

Since ι, δ and ε can be computed from its arguments in time Ok,`(1), the proof is complete.

Combining Lemma 4.9.11 with Lemma 4.9.4, we immediately obtain the following lemma.

Lemma 4.9.12. Let k, ` > 0 be integers. There exists an algorithm that, given as input an annotated
rank decomposition T of width ` that encodes a partitioned graph (G, C), in time O`(|T |) either:

• correctly determines that (G, C) has rankwidth larger than k; or

• outputs a (non-annotated) rank decomposition of (G, C) of width at most k.

Which then by combining with Lemma 4.3.8 implies Lemma 4.6.2, which we restate here.

Lemma 4.6.2. Let k, ` > 0 be integers. There exists an algorithm that, given as input an annotated rank
decomposition T of width ` that encodes a partitioned graph (G, C), in time O`(|T | log |T |) either:

• correctly determines that (G, C) has rankwidth larger than k; or

• outputs an annotated rank decomposition that encodes (G, C) and has width at most k.

4.9.2 Closure automaton

We move on to the description of another rank decomposition automaton – an automaton computing
possible small closures within the subtrees of a given rank decomposition. This automaton, together with
JKO from Lemma 4.9.11, will be used by us in the proof of Lemma 4.4.7. The description below should
be considered to be an analog of a similar closure automaton for treewidth (Section 3.7.2). However, this
construction of the automaton is noticeably more involved here: In the case of treewidth, it was enough to
maintain, for each subtree T of the decomposition, a bounded-size family of small subsets of V (G) (so the
description of each subtree T simply had bounded size and could be manipulated explicitly). Here, given
an annotated rank decomposition T of G, we will need to store, for each edge ~xp ∈ ~E(T), a bounded-size
family of partitions of V (T)[~xp] into a small number of subsets. Since we cannot store the partitions of
V (T)[~xp] explicitly in an efficient manner, we first need to roll out a way of encoding such partitions
succinctly. Intuitively, given a partition C of V (T)[~xp], we want to select from each set C ∈ C a minimal
representative RC of C and encode the connections between RC and C in G. The details follow below.

Let X be a nonempty finite set. We define an indexed partition of X as any sequence C = (X1, . . . , Xc)
of (possibly empty) pairwise disjoint subsets of X with X1 ∪ . . . ∪Xc = X. Then C is said to represent
the (non-indexed) partition C = {X1, . . . , Xc} \ {∅} of X.

Next, fix c ∈ N. We say that a triple H = ((V1, . . . , Vc), H, η) is a (c,X)-indexed graph if:

• H is an undirected graph,

• (V1, . . . , Vc) is an indexed partition of V (H);

• for every i ∈ [c], the subgraph H[Vi] is edgeless; and

• η : V (H)→ X is a labeling function.

Given a (c,X)-indexed graph H = ((V1, . . . , Vc), H, η), we define the derived partitioned graph (H,D) by
setting D = {V1, . . . , Vc} \ {∅}. Also, for convenience, define V (H) := V (H), E(H) := E(H), G(H) := H,
Vi(H) := Vi and η(H) := η.

Two (c,X)-indexed graphs H1 = ((V 1
1 , . . . , V

1
c), H1, η1), H2 = ((V 2

1 , . . . , V
2
c), H2, η2) are isomorphic

(denoted H1 ∼c,X H2) if there exists an isomorphism π : V (H1)→ V (H2) from H1 to H2 such that: (i)
π(V 1

i) = V 2
i for all i ∈ [c], and (ii) η1(v) = η2(π(v)) for all v ∈ V (H1).

160 CHAPTER 4. DYNAMIC RANKWIDTH

For s ∈ N, we say that H = ((V1, . . . , Vc), H, η) is s-small if for every i ∈ [c] and x ∈ X, we have
|Vi ∩ η−1(x)| 6 s; i.e., each subset Vi contains at most s vertices of any given label. Thus if H is an s-small
(c,X)-indexed graph, then |V (H)| 6 cs|X|. Note that the property of s-smallness of indexed graphs is
preserved by isomorphism. Hence we define ∼c,Xs as the restriction of ∼c,X to only the classes containing
s-small indexed graphs. It is easy to see that ∼c,Xs has Oc,|X|,s(1) distinct equivalence classes.

Now suppose that a graph G is encoded by an annotated rank decomposition T = (T,U,R, E ,F) of
width ` and let ~xp ∈ ~E(T). Recall that L(T)[~xp] comprises the vertices of G assigned to the leaf edges of
T that are closer to x than p, and that R(~xp) is a minimal representative of L(T)[~xp] in G. We say that
a (c,R(~xp))-indexed graph H = ((V1, . . . , Vc), H, η) respects T along ~xp if:

• H = G[{V1, . . . , Vc}]; and

• for each v ∈ V (H), the label η(v) is the unique vertex in R(~xp) so that NG(v) ∩ L(T)[~px] =
NG(η(v)) ∩ L(T)[~px].

Observe that if the graph G and the decomposition T is fixed, then both the graph H and the labeling
function η of an indexed graph respecting T along ~xp only depend on the choice of the sets V1, . . . , Vc.

Assuming H = ((V1, . . . , Vc), H, η) respects T along ~xp, we say that it encodes an indexed partition
C = (X1, . . . , Xc) of L(T)[~xp] if Vi is a minimal representative of Xi in G for each i ∈ [c]. It is
straightforward to see that all indexed graphs encoding C are pairwise isomorphic: For each i the collection
of neighborhoods {N(v) \Xi}v∈Xi is uniquely determined by Xi, so Vi contains one vertex v ∈ Xi for
each distinct neighborhood N(v) \Xi; and the resulting indexed graph is the same up to isomorphism
regardless of the choice of v. Also, we say that H encodes a partition C if H encodes some indexed partition
C representing C.

If C is a partition of L(T)[~xp], then we define its cost to be the number of nodes in the subtree rooted
at ~xp that are cut by C; i.e., the number of oriented edges ~e that are predecessors of ~xp in T such that
L(T)[~e] intersects more than one set of C. We similarly define the cost of indexed partitions of L(T)[~xp].

Finally, for every equivalence class K of ∼c,R(~xp)
s , let AK be the set of pairs (q,H), where H ∈ K is

an s-small (c,R(~xp))-indexed graph encoding some partition C of L(T)[~xp] of cost q. Then we say that
a set F is a set of (c, s)-small representatives of T along ~xp if, for every equivalence class K of ∼c,R(~xp)

s

with AK 6= ∅, F contains a single pair (q,H) ∈ AK with the minimum cost q. Note that the cardinality of
F is bounded by the number of equivalence classes ∼c,R(~xp)

s , which is bounded by Oc,s,`(1).
Our aim is now to prove that a rank decomposition automaton can compute, for each edge ~xp, some

set of (c, s)-small representatives of T along ~xp – which we will call repsc,s(T , ~xp) from now on – and
additional annotations allowing us to efficiently recover, for each (q,H) ∈ repsc,s(T , ~xp), an indexed
partition of L(T)[~xp] of cost q encoded by H.

Lemma 4.9.13. For every triple of nonnegative integers c, s, `, there exists a label-oblivious rank decom-
position automaton CR = CRc,s,` with evaluation time Oc,s,`(1) with the following property. Suppose G is
a graph encoded by an annotated rank decomposition T = (T,U,R, E ,F) of width at most `. Then the run
ρ of CR on T satisfies that for every ~xp ∈ ~E(T),

ρ(~xp) = (repsc,s(T , ~xp),Φ),

where repsc,s(T , ~xp) is a set of (c, s)-small representatives of T along ~xp, and Φ is a mapping from
repsc,s(T , ~xp) such that:

• if ~xp is a leaf oriented edge, then Φ maps each pair in repsc,s(T , ~xp) to ⊥; and

• if ~xp is a nonleaf oriented edge, where ~xp has two children ~y1x and ~y2x, then for every (q,H) ∈
repsc,s(T , ~xp), we have Φ((q,H)) = ((q1,H1), (q2,H2)) such that:

– (qt,Ht) ∈ repsc,s(T , ~ytx) for each t ∈ [2];

– for every indexed partition (X1
1 , . . . , X

1
c) of L(T)[~y1x] of cost q1 encoded by H1, and every

indexed partition (X2
1 , . . . , X

2
c) of L(T)[~y2x] of cost q2 encoded by H2, the indexed partition

(X1
1 ∪X2

1 , . . . , X
1
c ∪X2

c) of L(T)[~xp] has cost q and is encoded by H.

Proof. We need to implement the following two procedures:

• for a leaf oriented edge ~lp of T with edge signature σ(T , ~lp), determine repsc,s(T , ~lp); and

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 161

• for a nonleaf oriented edge ~xp of T where ~xp has two children ~y1x, ~y2x, find repsc,s(T , ~xp) and the
mapping Φ as in the statement of the lemma, given repsc,s(T , ~y1x), repsc,s(T , ~y2x) and the transition
signature τ(T , ~xp). Here we inductively assume that for t ∈ [2], repsc,s(T , ~ytx) is a set of (c, s)-small
representatives of T along ~ytx.

First, for a leaf edge ~lp, observe that |L(T)[~lp]| = 1 and the only vertex v ∈ L(T)[~lp] can be read
from the edge signature σ(T , ~lp). Thus there exist exactly c nonisomorphic (c,R(~lp))-indexed graphs
H1, . . . ,Hc respecting T along ~lp and encoding an indexed partition of L(T)[~lp]: For each i ∈ [c], the
indexed graph Hi is defined by the sequence of sets (V i1 , . . . , V

i
c), where V ii = {v} and V ij = ∅ for j 6= i.

Moreover, E(Hi) = ∅ and η(Hi)(v) = v. Naturally, each Hi encodes a partition of L(T)[~lp] of cost 0.
Hence repsc,s(T , ~lp) can be enumerated by brute force in time Oc,s,`(1).

Now assume ~xp is a nonleaf oriented edge and let ~y1x and ~y2x be the two children of ~xp. For convenience,
define S1 = L(T)[~y1x], S2 = L(T)[~y2x], and S = L(T)[~xp]; we have that S1 ∩ S2 = ∅ and S = S1 ∪ S2.

We now define a function Combine(H1,H2), taking as arguments a (c,R(~y1x))-indexed graph H1

respecting T along ~y1x, and a (c,R(~y2x))-indexed graph H2 respecting T along ~y2x and returning
a (c,R(~xp))-indexed graph H respecting T along ~xp as follows. Let us denote the input graphs by
H1 = ((V 1

1 , . . . , V
1
c), H1, η1) and H2 = ((V 2

1 , . . . , V
2
c), H2, η2). Note that V (H1) ∩ V (H2) = ∅. Define

an auxiliary (c,R(~xp))-indexed graph H′ = ((V ′1 , . . . , V
′
c), H ′, η′) as follows:

• V ′i = V 1
i ∪ V 2

i for each i ∈ [c];

• V (H ′) = V (H1) ∪ V (H2);

• H ′[V (H1)] = H1 and H ′[V (H2)] = H2;

• for u ∈ V (H1) and v ∈ V (H2), we have uv ∈ E(H ′) if and only if u, v do not belong to the same
set V ′i and moreover η1(u)η2(v) ∈ E(G); and

• for t ∈ [2] and v ∈ V (Ht), we have η′(v) = F(yixp)(η(v)).

A verification with the definitions shows that H′ respects T along ~xp. In particular, whenever i ∈ [c] and
u, v ∈ Vi(H′) with η′(u) = η′(v), we have thatNG(u)∩L(T)[~px] = NG(v)∩L(T)[~px]. Also, Combine(H1,H2)
can be constructed given H1 and H2 using only the transition signature τ(T , ~xp). In particular, for
u ∈ V (H1), v ∈ V (H2), we have η1(u) ∈ R(~y1x), η2(v) ∈ R(~y2x), so whether η1(u)η2(v) ∈ E(G) depends
only on τ(T , ~xp).

Then H is constructed from H′ as follows. We begin with H = H′. Whenever there is an index i ∈ [c]
and two vertices u, v ∈ Vi(H) such that NH′(u) = NH′(v) and η′(u) = η′(v), we remove one of the vertices
from Vi(H) (and therefore H).

We now prove a string of properties of Combine:

Claim 4.9.14. Whenever H1 encodes an indexed partition (X1
1 , . . . , X

1
c) of S1 and H2 encodes an indexed

partition (X2
1 , . . . , X

2
c) of S2, then Combine(H1,H2) encodes the indexed partition (X1

1 ∪X2
1 , . . . , X

1
c ∪X2

c)
of S.

Proof of the claim. Take H1 = ((V 1
1 , . . . , V

1
c), H1, η1), H2 = ((V 2

1 , . . . , V
2
c), H2, η2) and define H :=

Combine(H1,H2) = ((V1, . . . , Vc), H, η). Let also H′ = ((V ′1 , . . . , V
′
c), H ′, η′) be the auxiliary graph in

the definition of Combine. Since H′ respects T along ~xp and H is an induced subgraph of H′ (i.e., Vi ⊆ V ′i
for all i ∈ [c]), we find that also H respects T along ~xp. Finally define Xi = X1

i ∪X2
i for i ∈ [p].

First consider two vertices u, v ∈ V (H ′) with u ∈ V ′i , v ∈ V ′j and i 6= j. We will show that uv ∈ E(H ′)
if and only if uv ∈ E(G). If u ∈ V ti and v ∈ V tj for some t ∈ [2], this follows from the fact that
Ht respects T along ~ctx: We have Ht = G[{V t1 , . . . , V tc }], so uv ∈ E(Ht) if and only if uv ∈ E(G).
Then the statement follows from H ′[V (Ht)] = Ht. On the other hand, if u ∈ V 1

i and v ∈ V 2
j , then by

construction we have placed an edge uv ∈ E(H ′) if and only if η1(u)η2(v) ∈ E(G). Then observe that
η1(u) is defined so that NG(u) ∩ L(T)[~xy1] = NG(η1(u)) ∩ L(T)[~xy1], and η2(v) is defined similarly:
NG(v) ∩L(T)[~xy2] = NG(η2(v)) ∩L(T)[~xy2]. Since u, η1(u) ∈ L(T)[~xy2] and v, η2(v) ∈ L(T)[~xy1], we get
that uv ∈ E(G) if and only if η1(u)η2(v) ∈ E(G). The statement follows.

Then pick i ∈ [c]. We ought to show that Vi is a minimal representative of Xi in G. Let t ∈ [2] and v ∈ Xt
i .

Since Ht encodes an indexed partition (Xt
1, . . . , X

t
c) of St, there is u ∈ V ti with NG(v) \Xt

i = NG(u) \Xt
i ,

and u ∈ V ′i by construction. Also by construction, there exists u′ ∈ Vi such that η′(u) = η′(u′) and
NH′(u) = NH′(u′). We have:

162 CHAPTER 4. DYNAMIC RANKWIDTH

• NG(u) ∩ L(T)[~px] = NG(u′) ∩ L(T)[~px] (since η′(u) = η′(u′)),

• NG(u) ∩Xj = NG(u′) ∩Xj for all j 6= i: Let w ∈ Xj . Pick t′ ∈ [2] for which w ∈ Xt′

j . Since V t
′

j is
a minimal representative of Xt′

j in G, there is some w′ ∈ V t′j such that NG(w) \Xt′

j = NG(w′) \Xt′

j .
Since uw′ ∈ E(H ′) ⇔ u′w′ ∈ E(H ′), we have uw′ ∈ E(G) ⇔ u′w′ ∈ E(G) by the considerations
above. As u, u′ /∈ Xt′

j , we conclude that

uw ∈ E(G) ⇔ uw′ ∈ E(G) ⇔ u′w′ ∈ E(G) ⇔ u′w ∈ E(G).

So NG(u′)\Xi = NG(u)\Xi = NG(v)\Xi, where the last equality follows from NG(u)\Xt
i = NG(v)\Xt

i .
It follows that u′ ∈ Vi represents v in Xi. As v was arbitrary, we conclude that Vi is a representative of Xi.

For minimality, observe that if u, v ∈ V ′i with NG(u) \Xi = NG(v) \Xi, then also η′(u) = η′(v) (since
NG(u)∩L(T)[~xp] = NG(v)∩L(T)[~xp]) and NH′(u) = NH′(v) (since NG(u)∩Xj = NG(v)∩Xj for j 6= i).
Thus the construction of H from H′ would remove either u or v from the graph. C

Next, Combine preserves isomorphism in the following sense:

Claim 4.9.15. For each t ∈ [2], suppose that Ht and H?t are (c,R(~ytx))-indexed graphs respecting T
along ~ytx such that Ht ∼c,R(~ytx) H?t . Then Combine(H1,H2) ∼c,R(~xp) Combine(H?1,H?2).

Proof of the claim. Let H := Combine(H1,H2) and H′ be the auxiliary graph in the construction of H.
Likewise, let H? := Combine(H?1,H?2) and (H?)′ be the auxiliary graph in the construction of H?. Also
let π1 : V (H1)→ V (H?1), π2 : V (H2)→ V (H?2) be the isomorphisms promised by the statement of the
claim.

Observe that π′ : V (H′) → V ((H?)′) given by π′|V (H1) = π1 and π′|V (H2) = π2 is an isomor-
phism between H′ and (H?)′: This holds since for each i ∈ [c], we have π(Vi(H′)) = π(Vi(H1) ∪
Vi(H2)) = π1(Vi(H1)) ∪ π2(Vi(H2)) = Vi(H?1) ∪ Vi(H?2) = Vi((H?)′) and, for each v ∈ V (Ht) with t ∈ [2],
η(H′)(v) = F(ytxp) (η(Ht)(v)) = F(ytxp) (η(H?t)(πt(v))) = η((H?)′)(πt(v)). Also the same arguments as
in Claim 4.9.14 show that π′ gives an isomorphism of the graphs G(H′) and G((H?)′).

Since H′ and (H?)′ are isomorphic, it can be easily verified that the process of the construction of H
from H′ and H? from (H?)′ preserves isomorphism. This finishes the proof. C

The following claim follows from a simple application of Claim 4.9.14.

Claim 4.9.16. Suppose H encodes an indexed partition (X1, . . . , Xc) of S. Then there exists a (c,R(~y1x))-
indexed graph H1 and a (c,R(~y2x))-indexed graph H2 such that:

• for each t ∈ [2], Ht encodes the indexed partition (X1 ∩ St, . . . , Xc ∩ St) of St; and

• Combine(H1,H2) ∼c,R(~xp) H.

Proof of the claim. For t ∈ [2], let Ht be any (c,R(~ytx))-indexed graph encoding the indexed partition
(X1∩St, . . . , Xc∩St). Such an indexed graph must exist since it is enough to take Ht = (V t1 , . . . , V

t
c), Ht, ηt),

where for i ∈ [c], V ti is any minimal representative of Xi ∩ St in G, and the objects Ht, ηt are uniquely
deduced from V t1 , . . . , V

t
c .

By Claim 4.9.14, Combine(H1,H2) encodes (X1, . . . , Xc). Since indexed graphs encoding the same
indexed partition of S are isomorphic, we conclude that Combine(H1,H2) ∼c,R(~xp) H. C

We also notice the following claim binding the cost of an indexed partition of S to the costs of indexed
partitions of S1, S2:

Claim 4.9.17. Let H be a (c,R(~xp))-indexed graph encoding an indexed partition (X1, . . . , Xc) of S of
cost q ∈ N, and for each t ∈ [2], (X1 ∩ St, . . . , Xc ∩ St) be an indexed partition of St of cost qi ∈ N. Let
δ ∈ {0, 1} be the indicator equal to 1 if and only if H has at least two nonempty parts (equivalently, at
least two sets X1, . . . , Xc are nonempty). Then q = q1 + q2 + δ.

Proof of the claim. Recall that q is the number of oriented edges ~e that are predecessors of ~xp such that
L(T)[~e] intersects more than one set in (X1, . . . , Xc). Noting that the two edges ~y1x and ~y2x are the two
children of ~xp, we see that q is the sum of the following values:

• for each t ∈ [2], the number of predecessors ~e of ~ytx such that L(T)[~e] intersects at least two sets
in (X1, . . . , Xc). Since L(T)[~e] ⊆ St, this is equivalently the number of predecessors ~e of ~ytx with
L(T)[~e] intersecting at least two sets in (X1 ∩ St, . . . , Xc ∩ St), or exactly qt; and

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 163

• 1 if L(T)[~px] = S intersects at least two sets in (X1, . . . , Xc), or 0 otherwise; equivalently, this
indicator is equal to 1 if and only if at least two sets in (X1, . . . , Xc) are nonempty. Since for each
i ∈ [c], the set Xi is nonempty if and only if Vi(H) is nonempty, this indicator is equal to exactly δ.

Therefore, q = q1 + q2 + δ. C

Finally, the following claim will enable us to compute repsc,s(T , ~xp).

Claim 4.9.18. Let K be an equivalence class of ∼c,R(~xp)
s and suppose (q,H) ∈ AK has the minimum

possible cost q among all pairs in AK. Let δ ∈ {0, 1} be an indicator equal to 0 if H has at most one nonempty
part, and 1 otherwise. Then there exist pairs (q1,H1) ∈ repsc,s(T , ~y1x) and (q2,H2) ∈ repsc,s(T , ~y2x) such
that

q = q1 + q2 + δ,

H ∼c,R(~xp) Combine(H1,H2).

Proof of the claim. Let (q,H) and δ ∈ {0, 1} be as in the statement of the claim. By definition, H is
an s-small (c,R(~xp))-indexed graph and there exists an indexed partition (X1, . . . , Xc) of S of cost q
encoded by H. For t ∈ [2] and j ∈ [c], define Xt

j = Xj ∩ St, so that (Xt
1, . . . , X

t
c) is an indexed partition of

St; let then qt ∈ N be the cost of this partition. Then q = q1 + q2 + δ by Claim 4.9.17.
Let H1,H2 be (c,R(~y1x))-indexed and (c,R(~y2x))-indexed, respectively, graphs with the properties

that Combine(H1,H2) ∼c,R(~xp) H and for each t ∈ [2], Ht encodes (Xt
1, . . . , X

t
c). Note that such indexed

graphs exist by Claim 4.9.16. For each t ∈ [2], we claim that Ht is s-small. Suppose otherwise; let
Ht = ((V t1 , . . . , V

t
c), Ht, ηt) so that V tj is a minimal representative of Xt

j for all j ∈ [c]. Then there is some
index j ∈ [c] and s+ 1 vertices v1, . . . , vs+1 ∈ V tj such that:

• ηt(v1) = . . . = ηt(vs+1),

• the neighborhoods NG(v1) ∩Xt
j , . . . , NG(vs+1) ∩Xt

j are pairwise different.

From ηt(v1) = . . . = ηt(vs+1) and Ht respecting T along ~ytx, we also have NG(v1) ∩ St = . . . =
NG(vs+1)∩St. SinceXt

j ⊆ St, we infer that all the neighborhoodsNG(v1)∩(St\Xt
j), . . . , NG(vs+1)∩(St\Xt

j)
are pairwise different. So we have that:

• v1, . . . , vs+1 ∈ Xj ,

• NG(v1) ∩Xj , . . . , NG(vs+1) ∩Xj are pairwise different (since St \Xt
j ⊆ Xj), and

• η(v1) = . . . = η(vs+1) (since NG(v1) ∩ S = . . . = NG(vs+1) ∩ S).

Therefore, any minimal representative of Xj in G must contain at least s + 1 vertices with the same
neighborhood NG(v1)∩S in S. This implies that Vj(H) must contain at least s+ 1 vertices labeled η(v1) –
a contradiction since we assumed H is s-small. So Ht is indeed s-small.

For each t ∈ [2], Ht encodes the indexed partition (Xt
1, . . . , X

t
c) of cost qt. Thus there is a pair

(q?t ,H?t) ∈ repsc,s(T , ~y1x) and (q?2 ,H?2) ∈ repsc,s(T , ~y2x) such that q?t 6 qt and H?t ∼c,R(~xp) Ht for each
t ∈ [2]. Let also, for each t ∈ [2], (Y t1 , . . . , Y

t
c) be an indexed partition of St of cost q?t encoded by H?t .

Then take H? := Combine(H?1,H?2). By Claim 4.9.15, H? ∼c,R(~xp) H; in particular, H? has at most one
nonempty part if and only if H does. By Claim 4.9.14, H? encodes the indexed partition (Y1, . . . , Yc), where
Yi = Y 1

i ∪ Y 2
i for i ∈ [c]. This partition has cost q?1 + q?2 + δ by Claim 4.9.17, so (q?1 + q?2 + δ, H?) ∈ AK.

But since (q,H) has the minimum cost among all pairs in AK, we get

q 6 q?1 + q?2 + δ 6 q1 + q2 + δ = q.

Therefore, q?1 = q1 and q?2 = q2 and thus q = q1 + q2 + δ for (q1,H?1) ∈ repsc,s(T , ~y1x), (q2,H?2) ∈
repsc,s(T , ~y2x) and H ∼c,R(~xp) Combine(H?1,H?2). C

Therefore, we compute the set repsc,s(T , ~xp) as follows. We populate a set W comprising pairwise
different pairs containing a nonnegative integer and a (c,R(~xp))-indexed graph by:

• iterating all pairs (q1,H1) ∈ repsc,s(T , ~y1x) and (q2,H2) ∈ repsc,s(T , ~y2x),

• computing H = Combine(H1,H2) and q = q1 + q2 + δ, where δ = 1 if H contains at least two
nonempty parts, and δ = 0 otherwise, and

164 CHAPTER 4. DYNAMIC RANKWIDTH

• if H is s-small, adding a pair (q,H) to W.

Then we filter W as follows: whenever W contains pairs (q,H) and (q′,H′) such that q 6 q′ and
H ∼c,R(~xy) H′, we drop (q′,H′) from W. Naturally, this entire process (the construction of W and its
subsequent filtering) can be carried out in time Oc,s,`(1). We finally set repsc,s(T , ~xp) :=W ′. Naturally,
by Claim 4.9.18, W ′ is a set of (c, s)-small representatives of T along ~xp.

We conclude the proof by observing that, for every (q,H) ∈ repsc,s(T , ~xp), we can define the mapping
Φ((q,H)) as any pair ((q1,H1), (q2,H2)) for which q = q1 + q2 + δ and H = Combine(H1,H2), where δ = 1
if and only if H contains at least two nonempty parts. (Such a pair exists by the construction of W .) Then
Φ((q,H)) satisfies all the requirements of the lemma by Claims 4.9.14 and 4.9.17.

4.9.3 State optimization problem for rank decomposition automata

In this subsection, we introduce an optimization problem for rank decomposition automata that will be
used in the proof of Lemma 4.4.7. We will also show that this problem can be solved efficiently under the
reasonable assumptions on the automaton.

Let (S,+,6) be a totally ordered commutative semigroup, i.e., a commutative semigroup (S,+) with
a total order 6 with the property that, for any x, y, z ∈ S with x 6 y, we have x+ z 6 y + z. Assume
that + can be evaluated in time β.

Let also A = (Q, ι, δ, ε) be a label-oblivious rank decomposition automaton of width ` with evaluation
time β and a finite set of states. Suppose T = (T,U,R, E ,F) is an unrooted annotated rank decomposition
of width at most `. We will call any function κ : ~L(T)→ Q a leaf edge state mapping. Given a leaf edge
state mapping κ and an edge ~ab ∈ ~E(T), we define the κ-run of (A, a, b) as the function ρκ : predT (~ab) ∪
predT (~ba) ∪ {ϑ} → Q defined as follows:

• for each leaf edge ~lp ∈ ~L(T) it holds that ρκ(~lp) = κ(~lp);

• for each nonleaf edge ~tp of T with children ~c1t, ~c2t, where c1 < c2, it holds that ρκ(~tp) =
δ(τ(T , ~tp), ρκ(~c1t), ρκ(~c2t));

• ρκ(ϑ) = ε(δ(T , ~ab), ρκ(~ab), ρκ(~ba)).

So, in other words, a κ-run of an automaton is defined similarly to a run of an automaton, only that the
initial mapping ι of the automaton is ignored, and instead we fix the state ρκ(~lp) of each leaf edge ~lp to
κ(~lp).

Moreover, let c : ~L(T)×Q→ S be a cost function. Then the cost of a leaf edge state mapping κ is
defined as c(κ) :=

∑
e∈~L(T) c(e, κ(e)).

We now show that the optimization problem where, given a set F ⊆ Q of states, we are to find
a leaf edge state mapping κ of minimum cost for which ρκ(ϑ) ∈ F , can be solved efficiently. The proof is
a standard application of the dynamic programming technique.

Lemma 4.9.19. Given:

• a totally ordered commutative semigroup (S,+,6) with evaluation time β,

• a label-oblivious rank decomposition automaton A = (Q, ι, δ, ε) of width ` with evaluation time β
and a finite set Q of states,

• an annotated rank decomposition T = (T,U,R, E ,F) of width at most ` with n nodes,

• an edge ~ab ∈ ~E(T),

• a cost function c : ~L(T)×Q→ S, and

• a set F ⊆ Q of accepting states,

it is possible to determine in time O(|Q|2nβ), whether there exists a leaf edge state mapping κ such that
ρκ(ϑ) ∈ F . If such a mapping exists, then it is also possible to determine any such mapping minimizing
the value of c(κ).

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 165

Proof. Note that in the definition of ρκ before, the value ρκ(~uv) for an edge ~uv ∈ ~E(T) only depends
on the values of κ for ~lp ∈ predT (~uv). Therefore, without confusion we will write ρκ′(~uv) whenever κ′ is
a partial function defined on predT (~uv) ∩ ~L(T).

We want to compute, for every oriented edge ~uv ∈ predT (~ab) ∪ predT (~ba), the function best ~uv : Q→
S ∪ {⊥} with the following property for every f ∈ Q: Suppose K ~uv,f is the set of all partial valuations
κ′ : predT (~uv)∩ ~L(T)→ Q such that ρκ′(~uv) = f . Then best ~uv(f) = ⊥ if K ~uv,f = ∅; otherwise, best ~uv(f)
is equal to the minimum value of

∑
e∈predT (~uv)∩~L(T) c(e, κ′(e)) over all κ′ ∈ K ~uv,f . It is easy to observe

that:

• for a leaf edge ~lp ∈ ~L(T), we have best~lp(q) = c(~lp, f) for each f ∈ Q;

• for a nonleaf edge ~tp ∈ ~E(T) with children ~c1t and ~c2t with c1 < c2, we have, for every f ∈ Q,

best~tp(f) = min{best ~c1t(f1) + best ~c2t(f2) |

f1, f2 ∈ Q, best ~c1t(f1) 6= ⊥, best ~c2t(f2) 6= ⊥, f = δ(τ(T , ~tp), f1, f2)};
(4.12)

where we set best~tp(q) = ⊥ if the set on the right-hand side of Eq. (4.12) is empty. So given best ~c1t
and best ~c2t, we can compute best~tp in time O(|Q|2β).

Therefore, all functions best ~uv can be computed in time O(|Q|2nβ) by a simple bottom-up dynamic
programming on trees with a depth-first search on T . Similarly we define best : Q→ S ∪ {⊥} with the
following property for all f ∈ Q: let Kf be the set of valuations κ : ~L(T)→ Q such that ρκ(ϑ) = f . Then
best(f) = ⊥ if Kf = ∅, and otherwise best(f) is the minimum value of

∑
e∈~L(T) c(e, κ(e)) over all κ ∈ Kf .

As in Eq. (4.12), we get that

best(f) = min{best ~ab(f1) + best ~ba(f2) |

f1, f2 ∈ Q, best ~ab(f1) 6= ⊥, best ~ba(f2) 6= ⊥, f = ε(δ(T , ~ab), f1, f2)};
(4.13)

where best(f) = ⊥ is set if the set on the right-hand side of Eq. (4.13) is empty. Then best can be
computed in time O(|Q|2β) given best ~ab and best ~ba. Now, if best(f) = ⊥ for all f ∈ F , then we return
that no mapping κ with ρκ(ϑ) = q0 exists. Otherwise, such a mapping exists. Let f0 ∈ F be the argument
minimizing best(f0) among all f ∈ F with best(f) 6= ⊥. By retracing the optimum choices done by the
dynamic programming scheme using the top-bottom depth-first search on T , we fully recover a run ρκ for
some κ : ~L(T)→ Q such that ρκ(ϑ) = f0 and c(κ) is minimum possible; and we recover κ by observing
that for every ~lp ∈ ~L(T), it holds that κ(~lp) = ρκ(~lp).

Note that Lemma 4.9.19 can be easily generalized to the case where Q is an infinite set, but there
exists a bound q ∈ N>1 on the size of the set

{ρκ(x) | κ : ~L(T)→ Q}

for all x. Then it can be verified that the optimization problem stated above can be solved in time
O(q2nβ).

4.9.4 Prefix-rebuilding data structure for minimal closures

In this subsection, we finally give a proof of Lemma 4.4.7. Before we begin, we describe an operation of
gluing rank decompositions; a similar notion appears in the proof of Lemma 4.3.8.

Suppose we have two disjoint sets of vertices A,B and that RA ⊆ A, RB ⊆ B; we also have two
partitioned graphs (GA, CA), (GB , CB) with vertex sets A ∪ RB and B ∪ RA, respectively, such that
{RB} ∈ CA and {RA} ∈ CB. Suppose also TA = (TA, UA,RA, EA,FA) and TB = (TB , UB ,RB , EB ,FB)
are annotated rank decompositions encoding (GA, CA) and (GB , CB), with the following properties:
V (TA) ∩ V (TB) = {x, y} and there exists a leaf edge ~xy ∈ ~L(TA) and a leaf edge ~yx ∈ ~L(TB) such that:

• L(TA)[~xy] = RB and L(TB)[~yx] = RA,

• RA(~xy) = RB(~xy) = RB and RB(~yx) = RA(~yx) = RA, and

• EA(xy) = EB(xy).

166 CHAPTER 4. DYNAMIC RANKWIDTH

We then define the gluing of TA along xy with TB as the annotated rank decomposition T = (T,U,R, E ,F)
as follows:

• V (T) = V (TA) ∪ V (TB) and E(T) = E(TA) ∪ E(TB),

• U = UA ∪ UB = A ∪B,

• R|~E(TA) = RA and R|~E(TB) = RB ,

• E|E(TA) = EA and E|E(TB) = EB , and

• F|P3(TA) = FA and F|P3(TB) = FB .

It can be verified that T is an annotated rank decomposition encoding a partitioned graph (G, C), where
V (G) = A∪B, C = (CA \ {RB})∪ (CB \ {RA}), G[A] = GA, G[B] = GB and uv ∈ E(G) for u ∈ A, v ∈ B
if and only if u′v′ ∈ E(xy), where u′ ∈ RA is the (unique) vertex such that NGA(u)∩RB = NGA(u′)∩RB ,
and v′ ∈ RB is the unique vertex such that NGB (v) ∩RA = NGB (v′) ∩RA. Moreover, the width of T is
trivially the maximum of the widths of TA and TB .

We are now ready to prove Lemma 4.4.7, which we restate below for convenience.

Lemma 4.4.7. There is an `-prefix-rebuilding data structure that takes integer parameters c > 1 and
k 6 ` at initialization, has overhead Oc,`(1), maintains a rooted annotated rank decomposition T , and
additionally supports the following query:

• Closure(Tpref): Given a prefix Tpref of T , either in time O`(|Tpref |) returns that no c-small k-closure
of Tpref exists, or for a minimal c-small k-closure C of Tpref in time O`(|cutT (C)|) returns

– the sets cutT (C) and aepT (C), and

– a rooted rank decomposition (T ∗, λ∗) of (G[C], C) of width at most 2k, where λ∗ is represented
as a function λ : aepT (C)→ ~L(T ?).

Proof. For the course of the proof, fix s := 22k and the following label-oblivious rank decomposition
automata:

• the exact rankwidth automaton JKO = JKO2k, cs`+`, given by Lemma 4.9.11; and

• the closure automaton CR = CRc, s, ` of width `, given by Lemma 4.9.13.

Note that both JKO and CR have evaluation time Oc,`(1). Our data structure consists simply of
an instance of CR, maintained dynamically by the data structure of Lemma 4.5.1. Thus the initialization
time of the data structure on a rooted annotated rank decomposition T is Oc,`(|T |), each prefix-rebuilding
update u is applied to the decomposition and the automaton in time Oc,`(|u|), and each operation Run
and Valuation runs in time O(1).

It remains to implement Closure(Tpref). So suppose we are given as a query a leafless prefix Tpref of
T . Let A = ~AppT (Tpref) be the set of appendix edges of Tpref and let Cpref := {R(~xp) | ~xp ∈ A}. We first
perform a clean-up of the prefix Tpref of T by replacing all representatives on the annotations in Tpref

with elements of
⋃
Cpref :

Claim 4.9.20. In time O`(|Tpref |), one can produce a rooted annotated rank decomposition Tskel =
(Tskel, Uskel,Rskel, Eskel,Fskel) encoding the partitioned graph (G[Cpref], Cpref) such that: (i) Tskel = T [Tpref∪
AppT (Tpref)], (ii) for every ~xp ∈ A, we have L(Tskel)[~xp] = R(~xp) and Rskel(~xp) = R(~xp).

Proof of the claim. Follows immediately from Lemma 4.3.10 and its proof. C

Note that for each ~xp ∈ A, Rskel(~px) is a (minimal) representative of L(T)[~px] in G.

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 167

Auxiliary objects and definitions. For (q,H) ∈ repsc,s(T , ~xp), let the cut-rank cost of H with respect
to ~xp, denoted ccost(H, ~xp), be the value computed as follows. Let (H,D) be the partitioned graph derived
from H. Let also D = D ∪ {Rskel(~px)} and H = G[D]. Then ccost(H, ~xp) =

∑
C∈D cutrkH(C).

Consider Λ – the set of all mappings λ assigning to each edge ~xp ∈ A a member of repsc,s(T , ~xp).
For every ~xp ∈ A, define (qλ(~xp),Hλ(~xp)) := λ(~xp), i.e., qλ(~xp) and Hλ(~xp) are the first and the second
coordinate of λ(~xp). Let also (Hλ(~xp),Dλ(~xp)) denote the partitioned graph derived from Hλ(~xp). Also, let
Dλ(~xp) = Dλ(~xp)∪{Rskel(~px)} andHλ(~xp) = G[Dλ(~xp)]. Next, set rλ(~xp) =

∑
C∈Dλ(~xp) cutrkHλ(~xp)(C) =

ccost(Hλ(~xp), ~xp). Then, for any λ ∈ Λ, define:

• Dλ :=
⋃
~xp∈ADλ(~xp); equivalently, Dλ is the union of all nonempty parts in all indexed graphs

Hλ(~xp) for ~xp ∈ A;

• Gλ := G[Dλ];

• qλ :=
∑

~xp∈A qλ(~xp);

• rλ :=
∑

~xp∈A rλ(~xp).

Reduction from finding minimal closures to the optimization of λ. For any k-closure C of Tpref ,
we shall say that it is represented by a family D of nonempty disjoint sets of V (G) if |D| = |C| and for
every set C ∈ C, D contains a representative D of C in G. We will now prove the following claim, implying
that a representation of a minimal k-closure can be found by examining only families Cλ:

Claim 4.9.21. Let λ ∈ Λ be such that the rankwidth of (Gλ,Dλ) is at most 2k and, among all such
mappings λ, the value rλ is minimum; and among those, qλ is minimum. Then for every partition C
of V (G) defined as C =

⋃
~xp∈A C ~xp, where C ~xp is a partition of L(T)[~xp] into at most c sets encoded by

Hλ(~xp) and of cost qλ(~xp), C is a minimal c-small k-closure of Tpref represented by Dλ. In particular, Dλ
represents some minimal c-small k-closure of Tpref . Moreover, if no λ with the property above exists, then
no c-small k-closure of Tpref exists.

Proof of the claim. Fix λ ∈ Λ with the property that the rankwidth of (Gλ,Dλ) is at most 2k. For every
~xp ∈ A, let C ~xp be a partition of L(T)[~xp] into at most c sets encoded by Hλ(~xp) of cost qλ(~xp). Then
let C be the partition of V (G) =

⋃
~xp∈A L(T)[~xp] defined as C =

⋃
~xp∈A C ~xp. We claim that C is a c-small

k-closure of Tpref such that
∑
C∈C cutrkG(C) = rλ and the number of nodes of T cut by C is exactly

qλ + |Tpref |.

• C is a k-closure of Tpref : Let ~xp ∈ A. Since Hλ(~xp) encodes C ~xp, there exists a bijection χ ~xp : C ~xp →
Dλ(~xp) such that for every C ∈ C ~xp, χ ~xp(C) is a minimal representative of C in G. Thus there
exists a bijection χ : C → Dλ such that for every C ∈ C, χ(C) is a minimal representative of C in
G. Hence, the rankwidth of (G[C], C) is equal to the rankwidth of (Gλ,Dλ) = (G[Dλ],Dλ), which is
bounded from above by 2k. Moreover, by construction, for every C ∈ C we have C ⊆ L(T)[~xp] for
some ~xp ∈ A. Therefore, C is a k-closure of Tpref .

• C is c-small : For every ~xp ∈ A, C ~xp is the subfamily of C forming a partition of L(T)[~xp]. By
construction, |C ~xp| 6 c.

•
∑
C∈C cutrkG(C) = rλ: Choose C ∈ C and let ~xp ∈ A be such that C ∈ C ~xp. As noted before, the

bijection χ ~xp : C ~xp → Dλ(~xp) is such that for every C ∈ C ~xp, χ ~xp(C) is a minimal representative
of C in G. Let RC := χ ~xp(C). Also, Rskel(~px) is a minimal representative of L(T)[~px] in G. Since⋃
C ~xp ∪ L(T)[~px] = V (G), we find that

cutrkG(C) = cutrkG[
⋃
Dλ(~xp)∪{Rskel(~px)}](RC) = cutrkHλ(~xp)(RC).

The statement now follows by summing the equation above for all C ∈ C.

• C cuts exactly qλ + |Tpref | nodes of T : Each node of Tpref must obviously be cut by every closure of
Tpref . Then, for every ~xp ∈ A, the value qλ(~xp) denotes the cost of the partition C ~xp of L(T)[~xp],
i.e., the number of nodes cut by C ~xp (equivalently, C) in the subtree of T rooted at x. Therefore, C
cuts |Tpref |+

∑
~xp∈A qλ(~xp) = qλ + |Tpref | nodes of T .

168 CHAPTER 4. DYNAMIC RANKWIDTH

Conversely, let C be a c-small k-closure of Tpref and suppose that
∑
C∈C cutrkG(C) = r and that C

cuts q nodes of T . Our goal is to find a mapping λ ∈ Λ such that the rankwidth of (Gλ,Dλ) is at most 2k,
and rλ = r and qλ 6 q − |Tpref |. It is easy to see that the verification of this claim will finish the proof.

For every ~xp ∈ A, let C ~xp ⊆ C comprise the parts of C that are subsets of L(T)[~xp]. Since C is a c-small
closure of Tpref , we have C =

⋃
~xp∈A C ~xp and |C ~xp| 6 c for all ~xp ∈ A. Let q′~xp be the cost of C ~xp, i.e., the

number of the nodes in the subtree rooted at ~xp that are cut by C ~xp. As discussed earlier in the course of
the proof, we have q = |Tpref |+

∑
~xp∈A q

′
~xp.

For every C ∈ C ~xp, we have cutrkG(C) 6 2k as C is a k-closure of Tpref . So for every C ∈ C ~xp,
we can find a minimal representative RC of C in G of cardinality at most 22k = s. Thus, we can
define an s-small (c,R(~xp))-indexed graph H′~xp = ((V ~xp

1 , . . . , V ~xp
c), H ~xp, η ~xp) encoding C ~xp by setting

{V ~xp
1 , . . . , V ~xp

|C ~xp|} = {RC | C ∈ C ~xp}, V ~xp
|C ~xp|+1 = · · · = V ~xp

c = ∅, and choosing H ~xp and η ~xp so as to ensure

that H′~xp respects T along ~xp (as discussed before, such a choice is unique as soon as the sets V ~xp
1 , . . . , V ~xp

c

are determined). Now by definition of repsc,s(T , ~xp), there exists a pair (q ~xp,H ~xp) ∈ repsc,s(T ,R(~xp))
such that H ~xp ∼c,R(~xp) H′~xp and q ~xp 6 q′~xp. Define then the mapping λ ∈ Λ by setting λ(~xp) = (q ~xp,H ~xp)
for each ~xp ∈ A. We claim that λ satisfies the required conditions.

In the following arguments, let π ~xp : V (H ~xp) → V (H′~xp) be any isomorphism from H ~xp to H′~xp.
Let also π :

⋃
~xp∈A V (H ~xp) →

⋃
~xp∈A V (H′~xp) be defined by π|V (H ~xp) = π ~xp for each ~xp ∈ A. By the

properties of the isomorphism of indexed graphs, for every ~xp ∈ A and v ∈ V (H ~xp), it holds that
NG(v) ∩ L(T)[~px] = NG(π(v)) ∩ L(T)[~px].

Define D′λ := π(Dλ) = {π(C) | C ∈ Dλ} = {RC | C ∈ C}. We claim that G[D′λ] is isomorphic to Gλ,
with the isomorphism given by π. So let u, v ∈ V (Gλ), aiming to show that uv ∈ E(Gλ) if and only if
π(u)π(v) ∈ E(G[D′λ]).

• Naturally, if u and v belong to the same part of Dλ, then π(u) and π(v) belong to the same part of
D′λ and so uv /∈ E(Gλ) and π(u)π(v) /∈ E(G[D′λ]).

• Otherwise, if u, v ∈ V (H ~xp) for some ~xp ∈ A (but u, v belong to different parts), then uv ∈ E(H ~xp)
if and only if π(u)π(v) ∈ E(H′~xp), since π is an isomorphism from H ~xp to H′~xp. As both H ~xp and H′~xp
respect T along ~xp, we have that uv ∈ E(H ~xp) if and only if uv ∈ E(G); and that π(u)π(v) ∈ E(H′~xp)
if and only if π(u)π(v) ∈ E(G). This settles this case.

• Finally, suppose u ∈ V (H ~x1p1) and v ∈ V (H ~x2p2) for x1 6= x2. Then u, π(u) ∈ L(T)[~p2x2] and
v, π(v) ∈ L(T)[~p1x1]. From NG(u) ∩ L(T)[~p1x1] = NG(π(u)) ∩ L(T)[~p1x1] we find that uv ∈ E(G)
if and only if π(u)v ∈ E(G). And from NG(v) ∩ L(T)[~p2x2] = NG(π(v)) ∩ L(T)[~p2x2] we get that
π(u)v ∈ E(G) if and only if π(u)π(v) ∈ E(G) and we are done.

So G[D′λ] is isomorphic to Gλ. We now verify the conditions required from λ.

• (Gλ,Dλ) has rankwidth at most 2k: For each ~xp ∈ A, by the construction of H′~xp, each part of
H′~xp is a subset (in fact, a minimal representative) of a unique set in C ~xp. Hence D′λ is formed
from C by replacing each part C ∈ C with some minimal representative of C in G. Thus obviously,
since (G[C], C) has rankwidth at most 2k, then so does (G[D′λ],D′λ). As G[D′λ] = π(G[Dλ]) and
D′λ = π(Dλ), also (G[Dλ],Dλ) has rankwidth at most 2k.

• rλ = r: Let ~xp ∈ A. Let H
′
λ(~xp) = G[D′λ(~xp)], where D′λ(~xp) = {RC | C ∈ C ~xp}∪ {Rskel(~px)}. Since

RC is a representative of C in G for each C ∈ C ~xp and Rskel(~px) is a representative of L(T)[~px] in
G and

⋃
C ~xp ∪ L(T)[~px] = V (G), we have, for every C ∈ C ~xp,

cutrkG(C) = cutrk
H
′
λ(~xp)(RC).

But now observe that the partitioned graphs (Hλ(~xp),Dλ(~xp)) and (H
′
λ(~xp),D′λ(~xp)) are isomorphic,

with the isomorphism preserving Rskel(~px) and mapping each vertex v ∈
⋃
Dλ(~xp) = V (H ~xp) to

π(v). Therefore, for every C ∈ C ~xp,

cutrk
H
′
λ(~xp)(RC) = cutrkHλ(~xp)(π

−1(RC)).

Since Dλ(~xp) = {π−1(RC) | C ∈ C ~xp}, we conclude that∑
C∈C ~xp

cutrkG(C) =
∑
C∈C ~xp

cutrkHλ(~xp)(π
−1(RC))

=
∑

C∈Dλ(~xp)

cutrkHλ(~xp)(C) = ccost(Hλ(~xp), ~xp).
(4.14)

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 169

We get the required equality by summing Eq. (4.14) for all ~xp ∈ A and recalling that r =∑
C∈C cutrkG(C) and rλ =

∑
~xp∈A ccost(Hλ(~xp), ~xp).

• qλ 6 q − |Tpref |: This follows immediately from the facts that q = |Tpref | +
∑

~xp∈A q
′
~xp and that

q ~xp 6 q′~xp for each ~xp ∈ A.

Therefore, the proof is complete. C

Rank decompositions of partitioned graphs (Gλ,Dλ). We now show how, for any mapping λ ∈ Λ,
we produce a rank decomposition of the partitioned graph (Gλ,Dλ).

Consider an edge ~xp ∈ A and a pair (q,H) ∈ repsc,s(T , ~xp). For technical reasons, we will now rename
vertices of H so as to ensure that H contains all vertices of R(~xp). We construct a graph H? from H
as follows: For every vertex u ∈ R(~xp) such that u /∈ V (H), choose any vertex v ∈ V (H) such that
η(H)(v) = u (such a vertex exists since H encodes some partition of L(T)[~xp] and R(~xp) is a minimum
representative of L(T)[~xp]), and rename v to u. Let also πH be the isomorphism from H? to H prescribed
by the procedure above. Naturally, this construction ensures that H? is isomorphic to H (but we stress
that there could be u ∈ Vi(H?) and v ∈ Vj(H?) with i 6= j such that uv ∈ E(H?) 6⇔ uv ∈ E(G)). By the
properties of η(H), we have that, for every u ∈ R(~xp),

NG(u) ∩ L(T)[~px] = NG(πH(u)) ∩ L(T)[~px]. (4.15)

Given an edge ~xp ∈ A and a pair (q,H) ∈ repsc,s(T , ~xp), define now an annotated rank decomposition
derived from H?, denoted TH? , as follows. Recall that (H,D) is the partitioned graph derived from H
and D = D ∪ {Rskel(~px)}, and H = G[D]. Then define (H

?
,D?) as the partitioned graph created from

(H,D) by renaming each vertex v ∈ V (H) to π−1
H (v). Note that by the construction of H

?
, we have that

Rskel(~xp) ∪ Rskel(~px) ⊆ V (H
?
) and moreover Rskel(~px) ∈ D?. Then let TH? = (TH? , UH? ,RH? , EH? ,FH?)

be an arbitrary annotated rank decomposition of (H
?
,D?) with the following properties:

• V (TH?) ∩ V (Tskel) = {x, p} and ~px is a leaf edge of TH? ;

• L(TH?)[~px] = RH?(~px) = Rskel(~px) and RH?(~xp) = Rskel(~xp) = R(~xp).

It can be easily seen that such a decomposition exists and can be constructed from H and the annotations
on the edge xp of T in time Oc,`(1). Observe also that EH?(xp) = Eskel(xp): For any pair of vertices
u ∈ Rskel(~xp), v ∈ Rskel(~px) we have uv ∈ E(EH?(xp)) if and only if πH(u)v ∈ E(G) by the definition of H?.
But by Eq. (4.15), πH(u)v ∈ E(G) if and only if uv ∈ E(G), which holds if and only if uv ∈ E(Eskel(xp)).
Next, since |

⋃
D?| = |V (H?)|+ |Rskel(~px)| 6 cs`+ `, the width of TH? is bounded by cs`+ `. Let also TH

be the decomposition formed from TH? by renaming all vertices v ∈ V (H?) of the graph encoded by the
decomposition back to πH(v). Naturally, TH encodes (H,D) = (G[D],D).

Next, for any λ ∈ Λ, define the following rank decompositions:

• T ?λ – the decomposition formed by gluing Tskel along xp with each decomposition TH?
λ(~xp)

= (TH?
λ(~xp)

,

UH?
λ(~xp)

,RH?
λ(~xp)

, EH?
λ(~xp)

,FH?
λ(~xp)

) for ~xp ∈ A in arbitrary order; this gluing is possible since for every

~xp ∈ A, we have ~xp ∈ ~L(Tskel), ~px ∈ ~L(TH?), RH?
λ(~xp)

(~px) = Rskel(~px), RH?
λ(~xp)

(~xp) = Rskel(~xp) and
EH?

λ(~xp)
(xp) = Rskel(xp). It is easy to see that T ?λ encodes some partitioned graph with vertex set⋃

~xp∈A V (H?
λ(~xp)). Moreover, its width is bounded by cs`+ ` as discussed at the introduction of the

notion of gluing decompositions.

• Tλ – the decomposition formed from T ?λ by renaming every vertex v in the partitioned graph encoded
by T ?λ such that v ∈ V (H?

λ(~xp)) for ~xp ∈ A back to πHλ(~xp)(v). Of course, the width of Tλ is also
bounded by cs`+ `.

The following observation follows straight from the analysis of the construction of Tλ and T ?λ .

Observation 4.9.22. Tλ encodes the partitioned graph (Gλ,Dλ), and T ?λ encodes a partitioned graph
isomorphic to (Gλ,Dλ).

170 CHAPTER 4. DYNAMIC RANKWIDTH

Optimizing λ. At this point of time, we have reduced the problem to finding a mapping λ ∈ Λ with the
rankwidth of (Gλ,Dλ) bounded by 2k, such that the pair (rλ, qλ) is lexicographically minimum possible.
In the sequel, we will show how this can be done using the exact rankwidth automaton JKO = (Q, ι, δ, ε).

We now briefly sketch the idea. A brute-force search for an optimum λ would look as follows: Recall
that Tλ is an annotated rank decomposition of (Gλ,Dλ) of width cs` + `. Hence running JKO on Tλ
will correctly determine whether the rankwidth of the encoded partitioned graph (Gλ,Dλ) is at most
2k. Repeating this procedure for all possible λ ∈ Λ yields all viable mappings λ; for each of these, we
can easily compute the values rλ and qλ – each of these is of the form qλ =

∑
~xp∈A f ~xp(λ(~xp)) and

rλ =
∑

~xp∈A g ~xp(λ(~xp)) for some functions f ~xp, g ~xp that can be evaluated efficiently given λ(~xp). Thus we
can find the optimum mapping λ.

Note that in the description above, instead of the annotated decomposition Tλ encoding (Gλ,Dλ), we
could have used an annotated decomposition T ?λ encoding a partitioned graph isomorphic to (Gλ,Dλ).
Then JKO, when run on T ?λ , will return that the encoded partitioned graph has rankwidth at most 2k
if and only if it would do so when run on Tλ. This choice has an important consequence: All annotated
decompositions T ?λ have the same annotated prefix. Formally, given two annotated rank decompositions
T1 = (T1, U1,R1, E1,F1) and T2 = (T2, U2,R2, E2,F2) and a set S ⊆ V (T1) ∩ V (T2), we say that T1 and
T2 agree on S if

T1[S] = T2[S],

R1|~E(T1[S]) = R2|~E(T2[S]),

E1|E(T1[S]) = E2|E(T2[S]),

F1|P3(T1[S]) = F2|P3(T2[S]).

Then, for any λ1, λ2 ∈ Λ, the decompositions T ?λ1 and T ?λ2 agree on T ′pref := Tpref ∪ AppT (Tpref). This
observation will allow us to reuse the partial runs of JKO, which will enable us to find the optimum
mapping λ by means of a dynamic programming on the rooted subtree induced by T ′pref (precisely, using
Lemma 4.9.19). The details can be found below.

Let ~xp ∈ A and (q,H) ∈ repsc,s(T , ~xp). Define the state ξH? ∈ Q of JKO as follows. Recall that
~px is the unique leaf edge of TH? such that L(TH?)[~px] = Rskel(~px) (and so RH?(~px) = Rskel(~px) and
RH?(~xp) = Rskel(~xp)). Then let ρH? be the run of JKO on (TH? , x, p), and set ξH? := ρH?(~xp). Note that
ξH? can be determined in time Oc,`(1).

We now claim that in a run of JKO on T ?λ for some λ ∈ Λ, the partial runs on the glued decompositions
TH?

λ(~xp)
are exactly the recorded states ξH?

λ(~xp)
.

Claim 4.9.23. Let λ ∈ Λ and ~xp ∈ A. If ρ is the run of JKO on T ?λ , then ρ(~xp) = ξH?
λ(~xp)

.

Proof of the claim. Observe that the set B := V (TH?
λ(~xp)

) comprises exactly p and the set of descendants of
x in T ?λ . Moreover, by the construction of T ?λ (and the properties of gluing decompositions), we get that the
decompositions TH?

λ(~xp)
and T ?λ agree on B. We immediately infer that ρ(~xp) = ρH?

λ(~xp)
(~xp) = ξH?

λ(~xp)
. C

Aiming to use Lemma 4.9.19 in our case, let Z := Z∪{+∞} and define the totally ordered commutative
semigroup (S,+,6), where S = Z× Z, + is the coordinate-wise sum and 6 is the lexicographic order on
S. Then define the cost function c : A×Q→ S by setting, for every ~xp ∈ A and f ∈ Q, the value

c(~xp, f) = min{(ccost(H, ~xp), q) | (H, q) ∈ repsc,s(~xp), ξH? = f}; (4.16)

where we set c(~xp, f) = (+∞,+∞) if the set on the right-hand side of Eq. (4.16) is empty. Let also F ⊆ Q
be the set of states of JKO accepting that the input decomposition describes a partitioned graph of
rankwidth at most 2k; or equivalently, F is the set of states representing nonempty full sets of width 2k
at a root of an input decomposition.

We now show that the results of Lemma 4.9.19 will be enough to determine the existence of λ with
the rankwidth of (Gλ,Dλ) bounded by 2k, and in the case any such λ exists – to determine an optimum
mapping λ.

Claim 4.9.24. Suppose λ ∈ Λ is such that (Gλ,Dλ) has rankwidth at most 2k. Let κ : A → Q be
defined as κ(~xp) = ξH?

λ(~xp)
for each ~xp ∈ A, and let ρκ be the κ-run of A on Tskel. Then ρκ(ϑ) ∈ F and

c(κ) 6 (rλ, qλ).

4.9. USING RANK DECOMPOSITION AUTOMATA TO COMPUTE CLOSURES 171

Proof of the claim. Let also ρ be the run of JKO on T ?λ . By Claim 4.9.23, we have ρ(~xp) = ξH?
λ(~xp)

= κ(~xp).
Since T ?λ and Tskel agree on V (Tskel), we infer that ρκ(ϑ) = ρ(ϑ). Therefore, ρκ(ϑ) ∈ F if and only if
ρ(ϑ) ∈ F , which only holds when the full set of T ?λ at the root r of width at most 2k is nonempty (i.e.,
(Gλ,Dλ) has rankwidth at most 2k). So ρκ(ϑ) ∈ F . Since c(~xp, κ(~xp)) 6 (rλ(~xp), qλ(~xp)) for each ~xp ∈ A
(by Eq. (4.16)), c(κ) =

∑
~xp∈A c(~xp, κ(~xp)), rλ =

∑
~xp∈A rλ(~xp) and qλ =

∑
~xp∈A qλ(~xp), we conclude

that c(κ) 6 (rλ, qλ). C

Claim 4.9.25. Suppose there exists a leaf edge state mapping κ : A→ Q such that c(κ) 6= (+∞,+∞) and,
for the κ-run ρκ of A on (T skel, r1, r2), we have ρκ(ϑ) ∈ F . Then there exists λ ∈ Λ such that (Gλ,Dλ)
has rankwidth at most 2k and (rλ, qλ) = c(κ). Moreover, λ can be constructed in time Oc,`(|Tpref |).

Proof of the claim. Construct a valuation λ ∈ Λ as follows. For every ~xp ∈ A, choose λ(~xp) to be such
a pair (H, q) ∈ repsc,s(~xp) that ξH? = κ(~xp) and (ccost(H, ~xp), q) = c(~xp, κ(~xp)). Repeating the same
argument involving Claim 4.9.23 as before, we find that since ρκ(ϑ) ∈ F , we have that (Gλ,Dλ) has
rankwidth at most 2k. We also easily verify that c(κ) = (rλ, qλ). C

Apply now Lemma 4.9.19 for the automaton JKO, the semigroup (S,+,6), the decomposition Tskel,
the cost function c, and the set of accepting states F . The algorithm of Lemma 4.9.19 runs in time
Oc,`(|Tskel|) = Oc,`(|Tpref |) and returns one of the following:

• there is no mapping κ : A→ Q such that ρκ(ϑ) ∈ F where ρκ is the κ-run on Tskel, or the cost of
all such mappings is (+∞,+∞). Then by Claim 4.9.24 there exists no λ ∈ Λ with the property that
the rankwidth of (Gλ,Dλ) is at most 2k; hence we can return that Tpref has no c-small k-closure.

• κ : A→ Q is the minimum-cost mapping such that ρκ(ϑ) ∈ F where ρκ is the κ-run on Tskel, and
the cost of the mapping is finite. Then we reconstruct the mapping λ ∈ Λ in time Oc,`(|Tpref |) such
that (rλ, qλ) = c(κ) using Claim 4.9.25. By Claim 4.9.24, such a mapping has the minimum value of
rλ; and among all such optimal mappings, it also has the minimum possible value of qλ.

Finally, using Claim 4.9.21, we conclude that:

Corollary 4.9.26. In time Oc,`(|Tpref |), we can:

• correctly decide that Tpref has no c-small k-closure; or

• find a mapping λ ∈ Λ such that Dλ represents some minimal c-small k-closure of Tpref . Moreover,
for every partition C of V (G) defined as C =

⋃
~xp∈A C ~xp, where C ~xp is a partition of L(T)[~xp] into

at most c sets encoded by Hλ(~xp) and of cost qλ(~xp), C is a minimal c-small k-closure of Tpref .

Reconstructing the closure. Having found λ, we want now to reconstruct any minimal c-small k-
closure C of Tpref . Recall that, since we cannot afford to compute C explicitly (since a closure is essentially
an arbitrary partition of V (G)), we are required to return the closure in a compact form – precisely, the
sets cutT (C) and aepT (C), that is the prefix of T cut by C and the appendix edge partition of C. The
procedure should work in time Oc,`(|cutT (C)|).

Let ~xp ∈ A and recall that (qλ(~xp),Hλ(~xp)) = λ(~xp) ∈ repsc,s(T , ~xp). We will now present a subroutine
finding a partition C ~xp of L(T)[~xp], represented implicitly as aepT (C ~xp), so that C ~xp is of cost qλ(~xp) and
is encoded by Hλ(~xp).

At the start of the subroutine, we initialize a sequence of initially empty pairwise disjoint subsets
(V1, . . . , Vc) of L(T)[~xp]; eventually, (V1, . . . , Vc) will form an indexed partition of L(T)[~xp]. The sets
V1, . . . , Vc are represented implicitly by sets E1, . . . , Ec of oriented edges of T with the property that
Ei = aesT (Vi) for each i ∈ [c]. We now implement a recursive function Populate(~ab, q,H) that, under
the assumptions that ~ab is a predecessor of ~xp in T and (q,H) ∈ repsc,s(T , ~ab), adds to each set V1, . . . , Vc

a subset V ~ab
1 , . . . , V

~ab
c , respectively, so that (V ~ab

1 , . . . , V
~ab
c) is an indexed partition of L(T)[~ab] of cost q

encoded by H. (Note that such an indexed partition must exist by the assumptions.) In the implementation,
we consider two cases.

• If q = 0, then no node of the subtree of T rooted at ~ab may be cut by (V ~ab
1 , . . . , V

~ab
c). That is, the

entire subset L(T)[~ab] belongs to one of the sets V ~ab
j . Here, the value j can be found in constant

time since it is exactly the unique index j such that Vj(H) 6= ∅. So we add ~ab to Ej and we are done.

172 CHAPTER 4. DYNAMIC RANKWIDTH

• If q > 1, then some nodes of the subtree of T rooted at ~ab are cut by (V ~ab
1 , . . . , V

~ab
c); in particular,

one of these nodes must be a, and moreover, ~ab cannot be a leaf edge of T and so ~ab has two children
~y1a, ~y2a. In constant time (using the dynamic data structure of Lemma 4.5.1 maintaining CR on T

dynamically), we read the value ρ(~ab), where ρ is the run of CR on T . By Lemma 4.9.13, the value
ρ(~ab) contains a mapping Φ; let ((q1,H1), (q2,H2)) = Φ((q,H)) such that (q1,H1) ∈ repsc,s(T , ~y1a)
and (q2,H2) ∈ repsc,s(T , ~y2a). We then run Populate(~y1a, q1,H1) and Populate(~y2a, q2,H2) and
add a to cutT (C).

The two recursive calls add to the sets V1, . . . , Vc the subsets V ~y1a
1 , . . . , V ~y1a

c and V ~y2a
1 , . . . , V ~y2a

c ,
respectively, with the property that for each t ∈ [2], the sequence (V ~yta

1 , . . . , V ~yta
c) is an indexed

partition of L(T)[~yta] of cost qt encoded by Ht. So again by Lemma 4.9.13, the sequence V ~ab
1 , . . . , V

~ab
c

given by V ~ab
j = V ~y1a

j ∪ V ~y2a
j is an indexed partition of L(T)[~ab] of cost q encoded by H. Since the

recursive calls already added each set V ~ab
j to Vj , we are done.

Thus running Populate(~xp, qλ(~xp),Hλ(~xp)) will create an indexed partition (V1, . . . , Vc) of L(T)[~xp]
of cost qλ(~xp) encoded by Hλ(~xp); the partition is stored implicitly as sets E1, . . . , Ec. So letting C ~xp =
{V1, . . . , Vc} \ {∅}, the nonempty sets in E1, . . . , Ec form aepT (C ~xp). Tracing the execution of Populate,
it is easy to verify that this set aepT (C ~xp) can be computed in time Oc,`(|cut ~xp(C ~xp)|+ 1), where cut ~xp(C ~xp)
is the set of nodes of T that are children of ~xp that are cut by C ~xp.

Now let C :=
⋃
~xp∈A C ~xp, so that C is encoded by aepT (C) :=

⋃
~xp∈A aepT (C ~xp). Then by Corollary 4.9.26,

C is indeed a minimal c-small k-closure of Tpref . The set of nodes cut by C is exactly cutT (C) = Tpref ∪⋃
~xp∈A cut ~xp(C ~xp). The set aepT (C) can be found by invoking the function Populate(~xp, qλ(~xp),Hλ(~xp))

for each ~xp ∈ A separately and gathering the nonempty sets of edges after each call. The time complexity
of all recursive calls is bounded by

Oc,`(
∑
~xp∈A

|cut ~xp(C ~xp)|+ 1) 6 Oc,`(|Tpref |+
∑
~xp∈A

|cut ~xp(C ~xp)|) = Oc,`(|cutT (C)|),

since |A| = |Tpref |+ 1. This finishes the description of the effective reconstruction of cutT (C) and aepT (C).

Obtaining the decomposition of the closure. The final object we are required to return is a rank
decomposition (T ?, λ?) of (G[C], C) of width at most 2k. Remembering that the partition C reconstructed
a moment ago is represented by Dλ, we observe that the task at hand can be accomplished by:

• computing a rank decomposition (T�, λ�) of (Gλ,Dλ) of width at most 2k, and

• producing a rank decomposition (T ?, λ?) of (G[C], C) by setting T ? := T� and setting λ?(C) :=
λ�(RC) for every C ∈ C, where RC ∈ Cλ is a representative of C in G.

The former step is done by constructing the annotated decomposition Tλ of (Gλ,Dλ) (of width at most
cs`+ ` = Oc,`(1)) explicitly in time Oc,`(|Tpref |). Since the rankwidth of (Gλ,Dλ) – equal to the rankwidth
of (G[C], C) – is at most 2k, we apply Lemma 4.9.12 in time Oc,`(|Tpref |) and we are done. The latter step
can then be performed in time O(|Tpref |) as long as C is represented by aepT (C); or in other words, λ? is
represented as a function λ : aepT (C)→ ~L(T ?). This concludes the proof of Lemma 4.4.7.

4.10 Cliquewidth

In this section we recall the definition of cliquewidth, show that annotated rank decompositions can be
translated into cliquewidth expressions, show that automata working on cliquewidth expressions can be
translated into rank decomposition automata, and use this to translate known dynamic programming
algorithms on cliquewidth to rank decomposition automata.

4.10.1 Definition and k-expressions

Recall that a tuple G = (G,V1, . . . , Vk) is a k-graph if G is a graph and V1, . . . , Vk are (potentially empty)
disjoint subsets of V (G) whose union equals V (G). For two k-graphs G1 and G2 where G1 and G2 are
vertex-disjoint, we define the disjoint union G1 ⊕ G2. For a k-graph G = (G,V1, . . . , Vk) and i, j ∈ [k] with
i 6= j, we denote by η(i, j)(G) the k-graph obtained from G by adding a biclique between Vi and Vj . Also,

4.10. CLIQUEWIDTH 173

π(i, j)(G) for i, j ∈ [k] with i 6= j denotes the k-graph obtained from G by renaming i into j. Then a graph
has cliquewidth at most k if it can be constructed from single-vertex k-graphs by using these operations.

More formally, we let opk = {⊕}∪
⋃
i,j∈[k]|i6=j{η(i, j), π(i, j)} denote the set of operations on k-graphs.

We define that k-expression is a triple Expr = (T,U, µ), where T is a rooted tree whose every node has at
most two children and µ : V (T)→ U ∪ opk is a labeling of its nodes so that

• the restriction µ|L(T) of µ to the leaves of T is a bijection µ|L(T) : L(T)→ U ,

• every node t with one child is labeled with µ(t) ∈ opk \ (U ∪ {⊕}) for some i, j ∈ [k] with i 6= j, and

• every node t with two children is labeled with µ(t) = ⊕.

We recursively define that a node t ∈ V (T) encodes a k-graph ζ(t) = (G,V1, . . . , Vk) if

• t is a leaf, G is the graph with a single vertex µ(t), and V1 = V (G),

• t has one child c and ζ(t) = µ(t)(ζ(c)), or

• t has two children c1, c2 and ζ(t) = ζ(c1)⊕ ζ(c2).

We say that Expr encodes a graph G if its root encodes a k-graph (G,V1, . . . , Vk) for some V1, . . . , Vk.
We note that if Expr encodes G, then V (G) = U . Now the more formal definition of cliquewidth is that
the cliquewidth of G is the smallest k so that there exists a k-expression that encodes G.

Then we prove that an annotated rank decompositions of width k that encodes a graph G can be
turned in Ok(n) time to a (2k+1−1)-expression that encodes G. Our proof follows the original construction
of Oum and Seymour [OS06], but optimizes it to linear time in the case of annotated rank decompositions.
The definitions and auxiliary lemmas used for proving this will also be used in the next subsection for
translating automata working on k-expressions to automata working on annotated rank decompositions.
We will use some definitions that are introduced in Section 4.5.1.

Let T = (T, V (G),R, E ,F) be an annotated rank decomposition that encodes a graph G and has
width `. We start with an observation that allows to optimize the k of the expression by one.

Observation 4.10.1. Let ~xy ∈ ~E(T). There are at most 2` − 1 vertices v ∈ R(~xy) so that NE(xy)(v) is
nonempty.

Proof. Let M be the |R(~xy)| × |R(~yx)| matrix describing adjacencies of E(xy). We have that the rank of
M is at most `, so it has a row-basis of size `. All other rows can be written as linear combinations of this
row-basis with coefficients 0 and 1, so there are at most 2` − 1 different nonzero rows.

Then let k = 2 · 2` − 1. We define the k-graph associated with an oriented edge ~xy ∈ ~E(T) to be the
k-graph

G(~xy) = (G(~xy), V1(~xy), . . . , Vk(~xy)),

so thatG(~xy) = G[L(T)[~xy]] and where the sets V1(~xy), . . . , Vk(~xy) are defined as follows. Let ξ ~xy : R(~xy)→
[2`] be the injective function that maps each v ∈ R(~xy) to ξ ~xy(v) ∈ [2`] so that

• if NE(xy)(v) = ∅ then ξ ~xy(v) = 2`, and

• otherwise ξ ~xy(v) is the number i ∈ [2` − 1] so that there are exactly i− 1 vertices u ∈ R(~xy) with
u < v and NE(xy)(u) 6= ∅.

Let v ∈ V (G(~xy)). There exists unique rv ∈ R(~xy) so that NG(rv) ∩ L(T)[~yx] = NG(v) ∩ L(T)[~yx]. We
assign v to the set Vξ ~xy(rv). This concludes the definition of G(~xy). We observe that ξ ~xy can be computed
from R(~xy) and E(xy) in time O`(1).

Then we show that these graphs can be inductively constructed on the rank decomposition by operations
in opk.

Lemma 4.10.2. Let ~xy ∈ ~E(T) be a nonleaf oriented edge and ~c1x, ~c2x be the children of ~xy. The
k-graph G(~xy) can be produced by a sequence of O(k2) operations in opk from the k-graphs G(~c1x) and
G(~c2x). Moreover, this sequence of operations depends only on the transition signature τ(T , ~xy) and can
be computed given it in O`(1) time.

174 CHAPTER 4. DYNAMIC RANKWIDTH

Proof. We give the construction of G(~xy) from G(~c1x) and G(~c2x). Because |R(~cix)| 6 2`, the sets
V2`+1(~cix), . . . , V2·2`−1(~cix) are empty for both ci ∈ {c1, c2}. We start by applying the operations π(j, j+2`)
for all j ∈ [2` − 1] to the k-graph G(~c2x). Let G′(~c2x) be the resulting k-graph. Then, let G′′(~xy) =
G(~c1x) ⊕ G′(~c2x). For each u ∈ R(~c1x) and v ∈ R(~c2x), we know whether uv ∈ E(G) by inspecting
F(c1xc2) and E(xc2), and we know that uv /∈ E(G) if ξ ~c1x(u) = 2` or ξ ~c2x(v) = 2`. If uv ∈ E(G), we
apply the operation η(ξ ~c1x(u), ξ ~c2x(v) + 2`) to G′′(~xy).

It remains to rename the labels of the representatives. Assume ` > 1 since otherwise there is nothing
to do. We construct a function f : [k] → [2`] so that for each u ∈ R(~c1x) we have f(ξ ~c1x(u)) =
ξ ~xy(F(c1xy)(u))); and similarly, for each v ∈ R(~c2x) with ξ ~c2x(v) 6= 2` we have f(ξ ~c2x(v) + 2`) =
ξ ~xy(F(c2xy)(v))). Since k > 2`, it is straightforward to produce a sequence of O(k) operations π(·, ·) that,
in total, remaps each label i ∈ [k] to the label f(i).

We observe that this sequence of operations depends only on τ(T , ~xy) and can be computed from it in
O`(1) time. It remains to prove that it correctly produces the k-graph G(~xy). Let G∗ = (G∗, V ∗1 , . . . , V

∗
k)

denote the k-graph resulting from the operations. We prove that G∗ and G(~xy) are equal.
Let us first check that G∗ = G[L(T)[~xy]]. We have V (G∗) = V (G(~xy)) by construction. Let G′′(~xy) =

(G′′(~xy), V ′′1 , . . . , V
′′
k). We have V ′′1 ∪. . .∪V ′′2`−1 ⊆ L(T)[~c1x] and V ′′2`+1∪. . .∪V

′′
2·2`−1 ⊆ L(T)[~c2x]. Therefore,

our operations did not add edges between the pairs of vertices in L(T)[~c1x], nor between the pairs of vertices
in L(T)[~c2x], so we have that G∗[L(T)[~c1x]] = G(~xy)[L(T)[~c1x]] and G∗[L(T)[~c2x]] = G(~xy)[L(T)[~c2x]].
It remains to check edges between L(T)[~c1x] and L(T)[~c2x]. By our construction we have that edges
between u ∈ R(~c1x) and v ∈ R(~c2x) are as claimed. Suppose that v ∈ L(T)[~c1x] and rv ∈ R(~c1x) is the
node so that NG(rv) ∩ L(T)[~xc1] = NG(v) ∩ L(T)[~xc1]. We have that v and rv are in the same set V ′′l ,
and therefore NG∗(v) ∩ L(T)[~c2x] = NG∗(rv) ∩ L(T)[~c2x]. Therefore, because the neighborhood of rv to
L(T)[~c2x] is correct and L(T)[~c2x] ⊆ L(T)[~xc1], we deduce that the neighborhood of v to L(T)[~c2x] is
also correct.

Let us then check that V ∗j = Vj(~xy) for all j ∈ [k]. Consider v ∈ R(~c1x). By definitions of annotated
rank decompositions we have that NG(v)∩L(T)[~yx] = NG(F(c1xy)(v))∩L(T)[~yx], which readily implies
that v ∈ V ∗j if and only if v ∈ Vj(~xy). Then consider v ∈ L(T)[~c1x], and again let rv ∈ R(~c1x) be the node
so that NG(rv)∩L(T)[~xc1] = NG(v)∩L(T)[~xc1]. We have that v and rv are in the same set V ′′l , so they end
up in the same set V ∗j . Because L(T)[~yx] ⊆ L(T)[~xc1], we have that NG(rv)∩L(T)[~yx] = NG(v)∩L(T)[~yx],
so the correctness of v follows from the correctness of rv. The proof for v ∈ L(T)[~c2x] is similar.

Then, with similar arguments we can show that a k-graph representing G can be constructed from
G(~xy) and G(~yx) for some edge xy ∈ E(T). We omit the proof as it is similar to the proof of Lemma 4.10.2.

Lemma 4.10.3. Let xy ∈ E(T). The k-graph (G,V (G), ∅, . . . , ∅) can be produced by a sequence of O(k2)
operations in opk from the k-graphs G(~xy) and G(~yx). Moreover, this sequence of operations depends only
on the edge signature σ(T , ~xy).

Now we are ready to give the algorithm to translate annotated rank decompositions into k-expressions.

Lemma 4.10.4. There is an algorithm that given an annotated rank decomposition T of width ` that
encodes a graph G, in time O`(|T |) outputs a (2`+1 − 1)-expression that encodes G.

Proof. Let T = (T, V (G),R, E ,F) and k = (2`+1 − 1), and let us use the definitions introduced in this
subsection. We choose an arbitrary edge ab ∈ E(T). By using Lemma 4.10.2, we compute for each nonleaf
oriented edge ~xy ∈ predT (~ab) ∪ predT (~ba) a rooted tree with O(k2) nodes, so that the internal nodes are
labeled with operations in opk and the two leaves are labeled with the two child edges ~c1x and ~c2x of ~xy,
so that it corresponds to a sequence of operations in opk that turn G(~c1x) and G(~c2x) into G(~xy). We also
use Lemma 4.10.3 to compute the rooted tree with O(k2) nodes, so that the internal nodes are labeled
with operations in opk and the two leaves are labeled with a and b, so that it corresponds to a sequence
of operations in opk that turn G(~ab) and G(~ba) into (G,V (G), ∅, . . . , ∅). For each leaf edge ~lp ∈ ~L(T) we
compute the k-expression with at most one operation that turns the k-graph (G[R(~lp), V1, ∅, . . . , ∅]) into
G(~lp). Now, we observe that by gluing these O(|T |) trees we computed together, we obtain a k-expression
that encodes G. This takes in total O`(|T |) time.

4.10.2 Automata on k-expressions

We then define automata working on k-expressions. Our definitions do not strictly follow any literature as
they are geared to our notation and the goal of proving Lemma 4.10.5, but can be seen as equivalent to
definitions given by Courcelle and Engelfriet [CE12].

A k-expression automaton is a 6-tuple A = (Q,Γ, ι, χ, ψ, φ) that consists of

4.10. CLIQUEWIDTH 175

• a state set Q,

• a vertex label set Γ,

• an initial mapping ι that maps a single-vertex graph labeled with γ ∈ Γ to a state ι(γ) ∈ Q,

• a transition mapping ψ that maps every pair of form (µ, q), where µ ∈ opk \ {⊕} and q ∈ Q to a
state ψ(µ, q) ∈ Q,

• a transition mapping χ that maps every pair of states (q1, q2) ∈ Q×Q to a state χ(q1, q2) ∈ Q, and

• a final mapping φ that maps each state q ∈ Q to a state φ(q) ∈ Q.

The evaluation time of the automaton is the maximum running time to compute the functions ι, ψ, χ,
and φ given their arguments.

Let Expr = (T, V (G), µ) be a k-expression that encodes a graph G and α : V (G)→ Γ a vertex-labeling
of G with Γ. The run of A on the pair (Expr, α) is the unique mapping ρ : V (T)→ Q so that

• for each leaf l ∈ L(T) it holds that ρ(l) = ι(α(µ(t))),

• for each node t ∈ V (T) that has one child c it holds that ρ(t) = ψ(µ(t), ρ(c)), and

• for each node t ∈ V (T) that has two children c1, c2 with c1 < c2 it holds that ρ(t) = χ(ρ(c1), ρ(c2)).

The valuation of A on (Expr, α) is φ(ρ(r)), where r is the root of T . We say that A is expression-oblivious
if its valuation on (Expr, α) depends only on the graph G encoded by Expr and the labeling α. In that
case, we call this also the valuation of A on (G,α). The purpose of the final mapping φ in the definition is
to be able to make k-expression automata expression-oblivious, for example, if the purpose of A is to
decide whether G satisfies some graph property, then the image of φ could be just {⊥,>}, while Q could
be much larger in order to represent intermediate computations.

We are now ready to prove that k-expression automata can be translated into rank decomposition
automata. This is not surprising since the construction of (2`+1− 1)-expression from a rank decomposition
of width ` in Lemma 4.10.4 works in a local manner. The proof uses definitions of rank decomposition
automata from Section 4.5.1.

Lemma 4.10.5. Let ` ∈ N and k = 2`+1 − 1. Given an expression-oblivious k-expression automaton
Aex = (Q,Γ, ι, χ, ψ, φ) with evaluation time β, it is possible to construct a rank decomposition automaton
Ard = (Q,Γ, ι′, δ, ε) of width ` and evaluation time O`(β), so that if T = (T, V (G),R, E ,F) is an annotated
rank decomposition that encodes a graph G and has width at most `, α : V (G)→ Γ is a vertex-labeling of
G with Γ, and a, b ∈ V (T) is a pair of adjacent nodes in T , then the valuation of Ard on (T , a, b, α) is the
same as the valuation of Aex on (G,α).

Proof. We use the definitions of G(~xy) and ξ ~xy introduced in Section 4.10.1. By Lemma 4.10.2 we can
associate with each ~xy ∈ ~E(T) a k-expression Expr(~xy) = (T ex(~xy),L(T)[~xy], µ(~xy)) so that the root
of T ex(~xy) encodes G(~xy), and if ~xy is nonleaf then Expr(~xy) is constructed by combining Expr(~c1x)
and Expr(~c2x) by O`(1) operations in opk that depend only on τ(T , ~xy). In particular, if Tpref is the
prefix of T ex(~xy) so that the connected components of T ex(~xy)− Tpref are T ex(~c1x) and T ex(~c2x), then
the pair Expr(τ(T , ~xy)) = (T ex(~xy)[Tpref ∪ App(Tpref)], µ(~xy)|Tpref) depends only on τ(T , ~xy). The tree
T ex(~xy)[Tpref ∪App(Tpref)] has exactly two leaves that correspond to the roots of Expr(~c1x) and Expr(~c2x),
and we let names of these leaves be l1 and l2 so that li corresponds to ci (note that τ(T , ~xy) includes the
subtree T [{x, y, c1, c2}] so this is allowed). If ~xy is a leaf edge then T ex(~xy) is the k-expression consisting
of at most two nodes that encodes G(~xy).

Then we define the automaton Ard = (Q,Γ, ι′, δ, ε). Like indicated by the notation, the sets Q and
Γ are the same as for the automaton Aex = (Q,Γ, ι, χ, ψ, φ). The function ι′ is defined as follows: Let σ
be an edge signature σ = (Raσ,Rbσ, Eσ) and γ a function γ : Raσ → Γ. If Raσ is a set consisting of a single
vertex v, we set ι′(σ, γ) = ι(γ(v)). Otherwise, we set ι′(σ, γ) to be an arbitrary state in Q. Note that Ard

is required to work only on annotated rank decompositions that encode graphs, for which the latter case
never happens.

The mapping δ(τ, q1, q2), where τ is a transition signature and q1, q2 ∈ Q is defined as follows. We take
the pair Expr(τ) = (T ∗, µ∗) defined earlier in the course of the proof. Let L(T ∗) = {l1, l2}. Then we take
the run of Aex on (T ∗, µ∗), defined as a function ρ : V (T ∗)→ Q so that for the two leaves l1, l2 we have
ρ(l1) = q1 and ρ(l2) = q2, and for other nodes the run is defined as per the usual definition of a run of
Aex. Then, we set δ(τ, q1, q2) = ρ(r), where r is the root of T ∗. Before defining ε we can observe that the
following claim follows from our construction.

176 CHAPTER 4. DYNAMIC RANKWIDTH

Observation 4.10.6. Let ~xy ∈ ~E(T) and ρrd : predT (~xy)→ Q be the run of Ard on (T , ~xy, α). Let also
ρex : V (T ex(~xy))→ Q be the run of Aex on Expr(~xy). Then ρrd(~xy) = ρex(r(~xy)), where r(~xy) is the root
of T ex(~xy).

Next we define ε. By Lemma 4.10.2, the k-graph G = (G,V (G), ∅, . . . , ∅) can be constructed from the k-
graphs G(~xy) and G(~yx) by O`(1) applications of operations in opk that depend only on the edge signature
σ(T , ~xy). Therefore, we can similarly define a k-expression Expr(x, y) = (T ex(~xy),L(T)[~xy], µ(~xy)) that
encodes G and is constructed by combining Expr(~xy) and Expr(~yx) by O`(1) operations in opk that depend
only on σ(T , ~xy). We can also define a pair Expr(σ(T , ~xy)) to describe how exactly these k-expressions
should be combined.

Now, ε(σ, q1, q2) can be constructed from Expr(σ) similarly as δ was constructed from Expr(τ) and
finally applying the mapping φ, so that the valuation of Ard on (T , x, y, α) is the same as the valuation of
Aex on (Expr(x, y), α). Now because Aex is expression-oblivious, the valuation of Aex on (Expr(x, y), α) is
the valuation of Aex on (G,α), which concludes the correctness of the construction. In the constructions
of the functions δ and ε we apply the functions χ,ψ, and φ O`(1) times, so the evaluation time of Ard is
O`(β).

We note that the properties of Ard asserted in the statement of Lemma 4.10.5 imply that it is
decomposition-oblivious.

4.10.3 CMSO1

We use definitions of CMSO1 logic given in Section 4.5.2. The following theorem was given in [CMR00]
(see also [CE12, Section 6]).

Theorem 4.10.7 ([CMR00]). There is an algorithm that given a CMSO1 sentence ϕ with p free set
variables and k ∈ N, in time Oϕ,k(1) constructs an decomposition-oblivious k-expression automaton
A = (Q,Γ, ι, χ, ψ, φ) so that Γ = 2[p], the valuation of A on (G,α) is > ∈ Q if and only if (G,α) |= ϕ,
the number of states is |Q| 6 Oϕ,k(1), and the evaluation time is Oϕ,k(1).

By combining Lemma 4.10.5 and Theorem 4.10.7, we immediately obtain the following.

Lemma 4.5.2. There is an algorithm that given a CMSO1 sentence ϕ with p free set variables and ` ∈ N,
in time Oϕ,`(1) constructs a decomposition-oblivious rank decomposition automaton A = (Q,Γ, ι, δ, ε) of
width ` so that Γ = 2[p], the valuation of A on (G,α) is > ∈ Q if and only if (G,α) |= ϕ, the number of
states is |Q| 6 Oϕ,`(1), and the evaluation time is Oϕ,`(1).

Then we prove Lemma 4.5.3 by using Lemma 4.5.2.

Lemma 4.5.3. There is an algorithm that given a LinCMSO1 sentence ϕ with p free set variables and ` ∈ N,
in time Oϕ,`(1) constructs a decomposition-oblivious rank decomposition automaton A = (Q,Γ, ι, δ, ε)
of width ` so that Γ = 2[p], the valuation of A on (G,α) is equal to the value of ϕ on (G,α), and the
evaluation time is Oϕ,`(1).

Proof. Denote ϕ = (φ, f), where φ is a CMSO1 sentence with p+ q free variables, where p is the number
of free variables of ϕ. Let f(x1, . . . , xq) = c0 + c1x1 + . . .+ cqxq. We first use Lemma 4.5.2 to turn φ into
a rank decomposition automaton A′ = (Q′,Γ′, ι′, δ′, ε′) of width `.

Let T = (T, V (G),R, E ,F) be an annotated rank decomposition that encodes a graph G, Γ = 2[p], and
α : V (G)→ Γ a vertex-labeling of G. Then, for a set X ⊆ V (G) and a vertex labeling α′ : X → 2[p+1,p+q],
we define val(X,α′) = f(|X1|, . . . , |Xq|) where Xi = {v ∈ X | i+ p ∈ α′(v)}. We also denote by α|X ∪ α′
the function α|X ∪ α′ : X → 2[p+q] with (α|X ∪ α′)(v) = α|X(v) ∪ α′(v) for all v ∈ X. Then for every pair
(~xy, s) with ~xy ∈ ~E(T) and s ∈ Q′, we define maxval(~xy, s) to be the maximum value of val(L(T)[~xy], α′)
over all functions α′ : L(T)[~xy]→ 2[p+1,p+q] so that the valuation of A′ on (T , ~xy, α ∪ α′) is s, or −∞ if
no such α′ exists.

Now, the state set of A is the set of all functions g : Q′ → Z∪{−∞}, and we can define the transitions
of A so that the valuation of A on (T , ~xy, α) is the function g ~xy that maps each s ∈ Q′ to maxval(~xy, s).
In particular, for nonleaf edges ~xy with child edges ~c1x and ~c2x this can be done by setting for each
s ∈ Q′ the value g ~xy(s) to be the maximum of g ~c1x(s1) + g ~c2x(s2) − c0 so that δ(τ(T , ~xy), s1, s2) = s.
The construction of the initial mapping ι is straightforward. We observe that we can construct the final
mapping similarly, so that valuation of A on (G,α) is equal to the maximum value of val(V (G), α′) over
all functions α′ : V (G)→ 2[p+q] so that the valuation of A′ on (G,α ∪ α′) is >, and if no such α′ exists,
the valuation is ⊥. This gives evaluation time O(|Q′|2 · β), where β is the evaluation time of A′, resulting
in O`,ϕ(1) evaluation time.

4.11. CONCLUSIONS 177

Let us then also prove Lemma 4.3.6 here.

Lemma 4.3.6. There is an algorithm that given an annotated rank decomposition T of width ` that
encodes a partitioned graph (G, C), a graph H, and a function γ : V (G)→ 2V (H), in time O`,H(|T |) either
returns a witness of H as a labeled induced subgraph of (G, γ) or returns that (G, γ) does not contain H
as a labeled induced subgraph.

Proof. We first turn T into an annotated rank decomposition T ′ = (T ′, V (G),R′, E ′,F ′) that encodes the
graph G (instead of the partitioned graph (G, C)). This can be done in O`(|T |) time by adding a subtree
of size O`(1) below each leaf of T .

Let |V (H)| = p and let us index the vertices of H by u1, . . . , up. We write a CMSO1 sentence ϕ of
length |ϕ| 6 OH(1) with 2p free variables so that (G,X1, . . . , Xp, Y1, . . . , Yp) |= ϕ if and only if |Xi| = 1
and Xi ⊆ Yi for all i ∈ [p], and G[X1 ∪ . . . ∪ Xp] is isomorphic to H with an isomorphism that maps
the single vertex vi ∈ Xi to ui. We use Lemma 4.5.2 to construct a rank decomposition automaton
A = (Q,Γ, ι, δ, ε) so that for all adjacent nodes x, y ∈ V (T ′), the valuation of A on (T ′, x, y, α) is
> if and only if α : V (G) → 2[2p] is a vertex-labeling corresponding to X1, . . . , Xp, Y1, . . . , Yp so that
(G,X1, . . . , Xp, Y1, . . . , Yp) |= ϕ.

We construct labeling α : V (G)→ 2[2p] so that α(v) ∩ [p] = ∅ and p+ i ∈ α(v) if and only if ui ∈ γ(v).
Then, if f is a function f : [p] → V (G) ∪ {⊥}, we denote by α + f the function (α + f) : V (G) → 2[2p]

so that (α + f)(v) = α(v) ∪ {i | f(i) = v}. Now, for each oriented edge ~xy of T ′ denote by g ~xy the
function that maps each q ∈ Q to a function g ~xy(q) : [p]→ L(T ′)[~xy] ∪ {⊥} so that the valuation of A on
(T ′, ~xy, α+ g ~xy(q)) is q, or to ⊥ if no such function exists. Now we can construct an auxiliary automaton
A′ that computes g ~xy for each oriented edge ~xy of T ′ directed towards an arbitrarily chosen root, and
finally from that construct a function f : [p]→ V (G)∪{⊥} so that the valuation of A on (T ′, x, y, (α+ f))
is >, or find that no such f exists. By construction, such f corresponds to a witness of H as a labeled
induced subgraph of (G, γ).

4.11 Conclusions

We gave a data structure for maintaining bounded-width rank decompositions of dynamic graphs of
bounded rankwidth in subpolynomial time per update. We also used this data structure to give an almost-
linear time parameterized algorithm for computing an optimum-width rank decomposition of a given graph.
Along the way, we proved several auxiliary structural and algorithmic results for rankwidth. An important
conceptual contribution of our result appears to be the definition of annotated rank decompositions,
together with efficient algorithms for manipulating them and for translating dynamic programming from
other representations of rank decompositions to annotated rank decompositions. We then discuss future
research directions and make some additional remarks about our results.

As for dynamic treewidth, the obvious interesting open problem is to improve the dynamic algorithm
of Theorem 1.3.4 to work in Ok(logO(1) n) time per update, instead of the current 2Ok(

√
logn log logn) time.

This would also improve the algorithm of Theorem 1.3.6 to Ok(n logO(1) n)+O(m) time. The natural path
to solve it would be to first improve the dynamic treewidth algorithm presented in Chapter 3, and then
generalize the result to rankwidth. However, we note that the tools developed in Section 4.4 appear to give
a cleaner and more elegant framework for dynamic rankwidth than the framework for dynamic treewidth
from Chapter 3 is, so it could make sense to approach dynamic treewidth via dynamic rankwidth, or
perhaps via dynamic branchwidth.

In Theorem 1.3.5 we gave a framework for applying edge updates defined by CMSO1 sentences. In
this framework, the time required to apply the update is at least linear in the number of vertices incident
to the edges updated. It would be interesting to explore whether this limitation could be lifted for some
types of edge updates. In particular, would there exist a framework for updating many edges at once,
where the update time could be sublinear in the number of vertices incident to the edges updated?

Rankwidth of graphs is related to branchwidth of matroids, so it would be interesting to explore
whether our techniques could be extended into that setting. We note that by the connection proved by
Oum [Oum05], all rankwidth algorithms directly apply to branchwidth of binary matroids when the binary
matroid is represented by its fundamental graph, so Theorem 1.3.6 gives an improvement in this setting.
However, our techniques do not seem to directly apply to the more interesting setting of linear matroids
represented by matrices.

In Theorem 1.3.5 we support operations that take some partial vertex-labeling as an input. We note
that Theorems 1.3.4 and 1.3.5 can be easily extended to the setting where instead of a graph, we maintain

178 CHAPTER 4. DYNAMIC RANKWIDTH

a vertex-labeled graph with a bounded number of labels that can be accessed by the LinCMSO1 formulas.
This extension can be done simply by gadgeteering: We can add some number of degree-1 neighbors to
each vertex to encode the label of that vertex. These gadgeteering techniques also appear applicable for
extending our results to the setting of rankwidth/cliquewidth of more general binary relational structures,
with an approximation factor depending on the exact definition of rankwidth in that setting.

Lastly, we remark that our dynamic algorithm works in space Ok(n), and the algorithm of Theorem 1.3.6
in space Ok(n) +O(m). In particular, the dynamic algorithm could be interesting from the viewpoint
of models of computation with limited space, as its space complexity can be sublinear in the total size
n+m of the graph. In a similar vein, we could consider the complexity of computing rankwidth of dense
graphs (in which the number of edges is quadratic in the number of vertices) in the Word RAM model.
Since every n-vertex graph can be encoded in O(n2

logn) RAM words, it is potentially viable to compute

the rankwidth of an n-vertex graph in O(n2

logn) time, improving upon [FK22] and Theorem 1.3.6.

Chapter 5

Dynamic Baker’s technique

Baker’s technique, also known as shifting or layering and proposed by Baker in 1994 [Bak94], is the
most fundamental technique for designing efficient polynomial-time approximation schemes (EPTASes)
– approximation schemes with running time of the form f(ε) · nO(1) – for problems on planar graphs,
or more generally in topologically restricted graph classes. In terms of restrictions on the input graph,
the basic approach works as long as the considered class of graphs C has bounded local treewidth: The
treewidth of any connected G ∈ C is bounded by a function of the radius of G. This includes planar graphs
(with the function being 3 times the radius) and, as proved by Eppstein [Epp00], also all apex-minor-free
graph classes: classes that exclude a fixed apex graph – a graph that can be made planar by removing
one vertex – as a minor. However, further generalizations of the technique apply also in the setting
of H-minor-free graphs for any fixed H [Gro03], and even beyond [Dvo18, Dvo20, Dvo22]. In terms of
versatility, the range of applicability of Baker’s technique is surprisingly wide, and can be even captured
by meta-theorems concerning optimization problems expressible in first-order logic [DGKS06, Dvo22].
Importantly, the spectrum of applicability includes maximization problems of packing nature such as
Maximum Weight Independent Set – in a vertex-weighted graph G, find a set I of maximum possible
weight consisting of pairwise nonadjacent vertices – and minimization problems of covering nature such as
Minimum Weight Dominating Set – find a set of vertices D of minimum possible weight such that
every vertex outside of D has a neighbor in D.

During the last 30 years, the basic principle behind Baker’s technique has inspired countless important
developments in the area of approximation schemes, see e.g. [CPP19,EKM14,FKS19,KPR93] besides the
works mentioned above. It has also found multiple important applications in parameterized algorithms,
see e.g. the discussion in [CFK+15, Section 7.7.3].

Our contribution. In this chapter we investigate the following question: To what extent shifting – or
more precisely – Baker’s technique – can be applied in the context of dynamic algorithms? For the sake of
focus, we restrict attention to the aforementioned two basic problems: Maximum Weight Independent
Set and Minimum Weight Dominating Set.

Consider a fully dynamic graph data structure that maintains a graph G with nonnegative weights on
vertices under the following updates:

• AddEdge(u, v), RemoveEdge(u, v): Adds or removes an edge between vertices u, v; and

• UpdateWeight(u, α): Changes the weight of a vertex u to α ∈ R>0.

Recall from the Introduction that a data structure for dynamic graphs is C-restricted, for a graph class C,
if it works under the promise that at all times, the graph stored in the data structure belongs to C. With
these definitions in place, we can recall our main result from the Introduction:

Theorem 1.3.7 ([KNPS24]). Let C be a fixed apex-minor-free class of graphs and let ε > 0. Then there
exists a C-restricted fully dynamic graph data structure that in addition to maintaining a graph G ∈ C,
supports the following queries:

• QueryMWIS(): Outputs a nonnegative real p satisfying (1− ε)OPTIS 6 p 6 OPTIS, where OPTIS is
the maximum weight of an independent set in G; and

• QueryMWDS(): Outputs a nonnegative real p satisfying OPTDS 6 p 6 (1 + ε)OPTDS, where OPTDS

is the minimum weight of a dominating set in G. This query is supported only under the additional
assumption that at all times, the maximum degree of G is bounded by a constant ∆.

179

180 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

The initialization time on a given n-vertex graph G ∈ C is f(ε) · n1+o(1), and each update takes amortized
time f(ε) · no(1), where f(ε) is doubly-exponential in O(1/ε2). Each query takes O(1) time.

Note that in general graphs, Maximum Weight Independent Set and Minimum Weight Dom-
inating Set do not admit EPTASes in the static setting if P 6= NP, even with a restriction on the
maximum degree of a vertex of a graph [CC08, Tre01]. Hence a structural restriction of the class C in
Theorem 1.3.7 is necessary.

We also remark that for the unweighted Maximum Independent Set problem, where each vertex
carries a unit weight, there is a simple data structure with amortized update time 2O(1/ε) working as
follows. Once every εn/8 updates recompute a (1− ε/2)-approximate solution from scratch using Baker’s
technique. Between the recomputations, whenever an edge is added to the graph, remove any of its
endpoints from the solution provided both were included. This works because by the Four Color Theorem,
the optimum solution has always size at least n/4, and within εn/8 updates the value of the optimum
may change by at most εn/8. This is why we focus on the weighted variant of the problem, to make it
nontrivial.

Structure of the chapter. In Section 5.1, we present a technical overview of the techniques used in
the proof of Theorem 1.3.7. Next, in Section 5.2, we give preliminary results used in the proof of our
result. Then the proof of Theorem 1.3.7 follows. We present data structures for the considered problems
in separate sections: We show a dynamic data structure for Maximum Weight Independent Set in
Section 5.3, and we follow with a data structure for Minimum Weight Dominating Set in Section 5.4.
We conclude and discuss open problems in Section 5.5.

5.1 Overview

The main idea behind the proof of Theorem 1.3.7 is to maintain a tree of data structures, where each
data structure is responsible for some minor H of G and has O(1/ε) child data structures, responsible
for the O(1/ε) choices of offsets in the Baker scheme applied to H. While we eventually create a tree

of data structures with L = Θ
(
ε · log logn

log log logn

)
levels, let us explain the construction for L = 2 levels;

this corresponds to achieving amortized update time f(ε) · Õ(
√
n). Also, let us focus on the Maximum

Weight Independent Set problem.
Let k := d1/εe. There will be a parent data structure Dmain responsible for the whole graph G. Upon

the initialization of Dmain, we apply Baker’s scheme to G: We compute a partition V0, . . . , Vk−1 of the
vertex set of G so that Vi comprises vertices whose distance from some fixed vertex s is congruent to
i modulo k. (If G is disconnected, every connected component has its own source vertex s.) Standard
analysis of Baker’s technique yields that the treewidth of the graph Gi := G − Vi is at most 3k, so we
compute a tree decomposition Ti of Gi of width O(k) and depth O(log n) using classic results [BH98].
By dynamic programming on Ti, we can understand G− Vi completely. In particular, we may compute
the optimum weight of an independent set in Gi, so that the maximum among the computed values is a
(1− ε)-approximation of the maximum weight of an independent set in G.

At this point every graph Gi has treewidth at most 3k, but this may quickly cease to be the case
once some updates arrive. Therefore, for every i ∈ {0, 1, . . . , k − 1} we create a child data structure Di
that is responsible for handling the graph Gi. In the data structure Di, vertices of Gi are partitioned
into an initially empty stash Z, which contains all vertices involved in any updates made so far, and the
remaining vertices. We maintain the following invariant (F): Every connected component of Gi − Z has
neighborhood of size O(k). Data structure Di maintains the compressed graph Hi, which is a minor of Gi
obtained as follows: (i) contract every connected component of Gi − Z to a single vertex, and (ii) identify
all vertices corresponding to contracted components with the same neighborhood into single vertices. Since
Z is initially empty, Hi is initially a single-vertex graph. When an update affects Gi, say an insertion of
an edge uv, we add to Z both u and v together with the O(k log n) vertices contained in all the ancestor
bags18 of the top-most bags of Ti that contain u and v; this way we preserve invariant (F). Every addition
of a vertex to Z results in “uncompressing” a part of Hi, which can be done efficiently and adds only
O(k) new vertices to Hi.

The data structure Di maintains also an approximation of the maximum weight of an independent
set in Gi. This is done by maintaining an approximate optimum for an auxiliary maximization problem

18The actual presentation differs here in that we work with the notion of an elimination forest instead of a tree decomposition.
However, this would be the tree decomposition equivalent of this step.

5.2. ADDITIONAL PRELIMINARIES 181

on the compressed graph Hi, which we find convenient to phrase in the language of valued 2CSPs, and
which can be considered a “contracted” variant of Maximum Weight Independent Set. More precisely,
every vertex of Hi that is also a vertex of Gi has a domain consisting of two values – taken or not taken –
while every vertex that resulted from a contraction of some connected components of Gi − Z has a larger
domain, corresponding to possible interactions between those components and the rest of the graph. The
revenues provided by the contracted vertices for different elements of their domains reflect the maximum
weights of independent sets that can be achieved within contracted connected components for different
interactions with the rest of the graph. And these maximum weights can be read from the dynamic
programming tables in Ti computed upon the initialization of Dmain, because vertices of Gi − Z have not
yet been touched by updates. The approximate optimum to the constructed auxiliary instance of 2CSP is
computed from scratch upon every update in Hi, in time f(ε) · |V (Hi)| using Baker’s technique in Hi.

Thus, every update to G is relayed by Dmain to k data structures Di, and within each Di we apply
kO(1) log n updates to Hi, each consisting of running Baker’s scheme in time f(ε) · |V (Hi)|. The crucial
idea is to reset the data structure Dmain every

√
n updates, by reconstructing it from scratch in time

f(ε) · n, so that graphs Hi never grow too large. After every reconstruction of Dmain, all graphs Hi consist
of single vertices, so throughout the next

√
n updates they can grow to size at most kO(1)√n log n, because

every Hi grows by at most kO(1) log n vertices at each update. This means that running Baker’s scheme
upon every update to any Hi will take worst-case time f(ε) · Õ(

√
n), while the amortized time complexity

of resetting the data structure Dmain is f(ε) · Õ(
√
n) as well.

Our data structure for the Maximum Weight Independent Set problem implements the natural
generalization of the idea presented above to more than two levels. Specifically, we use L = Θ

(
ε · log logn

log log logn

)
levels, where every data structure D at level i gets reset every n1− i

L updates relayed to D. One technical
detail that requires attention are the domains in the auxiliary 2CSP instances: Every compression step
increases the maximum domain size from, say, ∆ to ∆O(k), so one needs to carefully choose the number of
layers L so that it is super-constant in n, but small enough so that the domain sizes are kept subpolynomial
in n.

The data structure for the Minimum Weight Dominating Set problem is similar in spirit. As
a matter of fact, the standard way of applying Baker’s technique to this problem, by allowing double-paying
in an ε-fraction of the layers, seems difficult to translate to the dynamic setting. Instead, we design
a different way of applying Baker’s technique toMinimum Weight Dominating Set, which interestingly
relies on under-approximating the minimum weight of a dominating set, rather than over-approximating.
There are several technical issues that arise when applying the approach presented above in the setting
of dominating sets: In particular when a vertex u is touched by an update within any constituent data
structure D, we need to update the suitable information about both u and the neighbors of u in the graph.
This is why in the result for Minimum Weight Dominating Set we resort to the regime of graphs
with bounded maximum degree.

Finally, let us remark that in the approach sketched above, the key properties kept by each of the
constituent data structures are the invariant (F) and the invariant that the removal of the stash breaks the
graph into connected components of treewidth O(k). This exactly means that each of those components
will be an O(k)-protrusion. Protrusion-based arguments are by now a standard methodology in the
design of parameterized and kernelization algorithms on planar and topologically-restricted graphs, see
e.g. [BFL+16,FLST20] or [FLSZ19, Chapter 15]. In this chapter we show how these ideas can be helpful
also in the setting of dynamic approximation algorithms.

5.2 Additional preliminaries

In this section we will list some additional preliminary definitions and results that will be useful in the
proof of Theorem 1.3.7.

Multigraphs. In the case of Dominating Set and its generalizations, it will be convenient to work with
multigraphs G = (V,E). We assume that in a multigraph, there may be multiple edges connecting the
same pair of vertices (also called parallel edges), but there are no self-loops. We distinguish different
edges connecting the same pair of vertices – for example, we can assume that the edges of the graph have
pairwise different labels.

For a vertex v ∈ V (G), let δ(v) denote the set of edges with one endpoint in v. We define the degree
of v as deg(v) = |δ(v)|. For two disjoint sets of vertices A,B ⊆ V (G), we use the notation E(A,B) to
denote the set of edges with one endpoint in A and the other in B. Given a set of vertices S, to collapse

182 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

S in V (G) is to identify all vertices of S to a single vertex vS , remove all edges with both endpoints in S,
and for all other edges with an endpoint in S, reroute the endpoint to vS . Note that this process might
produce a multigraph from a simple graph.

Apex graphs. We will use the result of Demaine and Hajiaghayi [DH04] that apex-minor-free classes of
graphs have linearly locally bounded treewidth, which improved upon the earlier work of Eppstein [Epp00].

Theorem 5.2.1 ([DH04]). For every apex-minor-free class C of graphs there exists a constant κC > 0
such that for every integer r > 1 and graph G ∈ C of radius at most r, we have tw(G) 6 κC · r.

Apex-minor-free classes of graphs (and more generally, minor-free classes) have a bounded ratio of
the number of edges to the number of vertices [Kos84]; that is, for any apex-minor-free class of graphs C,
there exists a constant ρC > 0 so that for every graph G ∈ C, it holds that |E(G)| 6 ρC · |V (G)|.

Additionally, the following facts from the theory of sparse graphs will prove useful for us. Since every
apex-minor-free class of graphs (and more generally, every minor-closed class excluding at least one graph)
has bounded expansion [NdM08], it has bounded neighborhood complexity :

Theorem 5.2.2 ([RVS19]). There exists a constant νC > 0 such that for every G ∈ C and nonempty
X ⊆ V (G), the number of different neighborhoods of vertices of G on X is bounded by νC · |X|. That is,

|{N(v) ∩X | v ∈ V (G)}| 6 νC · |X|.

Therefore, we have that:

Corollary 5.2.3. If C is apex-minor-free, G ∈ C and X ⊆ V (G) is nonempty, then

|{N(C) | C ∈ cc(G \X)}| 6 νC · |X|.

Proof. Produce a graph H ∈ C by contracting each connected component of G \X to a single vertex and
apply Theorem 5.2.2 to H and X.

Generalizing independent sets. In this chapter, we shall work with a generalization of the Max
Weight Independent Set problem that is most conveniently phrased in the language of weighted CSPs.
An instance I of Max Weight Nullary 2CSP consists of:

• a graph G, called the Gaifman graph;

• for every vertex u ∈ V (G), a finite domain Du and a revenue function revu : Du → R>0; and

• for every edge uv ∈ E(G), a constraint Cuv ⊆ Du ×Dv.

We require that each domain Du contains a special value 0 whose revenue is 0, that is, revu(0) = 0.
Moreover, the value 0 is always allowed in constraints: For every edge uv, we have {0} ×Dv ⊆ Cuv and
Du × {0} ⊆ Cuv. We can assume that at least one domain is of size at least two, as otherwise the problem
is trivial. We will concisely denote that I = (G,D, rev, C), where D is the set of all domains, rev is the set
of revenue functions and C is the set of all constraints.

A solution to a Max Weight Nullary 2CSP instance as above is a mapping φ that with each vertex
u of G associates a value φ(u) ∈ Du so that (φ(u), φ(v)) ∈ Cuv for every edge uv of G. Note that such a
solution always exists, as one can map every vertex u to 0 ∈ Du. The revenue of a solution φ is defined as

rev(φ) :=
∑

u∈V (G)

revu(φ(u)).

In Max Weight Nullary 2CSP one is asked to find a solution with the maximum possible revenue.
For our purposes, the domains Du can be assumed to be small (i.e., bounded in size by f(ε) · no(1) for

some function f). With this assumption in mind, in our time complexity analysis we will omit the time
required to store and manipulate the domains and the constraints of the CSP.

We may model the Max Weight Independent Set problem in the language of Max Weight
Nullary 2CSP. Let G be a graph and w : V (G)→ R>0 be a weight function on the vertices of G. Then
construct a Max Weight Nullary 2CSP instance with Gaifman graph G as follows:

• For every vertex u of G, we set Du = {0, 1}, revu(0) = 0, and revu(1) = w(u).

5.2. ADDITIONAL PRELIMINARIES 183

• For every edge uv of G, we set Cuv = {(0, 0), (0, 1), (1, 0)}.

It is straightforward to see that the maximum revenue of a solution to the instance described above is
equal to the maximum weight of an independent set in G.

For convenience, given an instance I = (G,D, rev, C) of Max Weight Nullary 2CSP and a vertex
subset Y ⊆ V (G), we denote by I[Y] the instance induced by Y . This is the instance obtained from I
by removing from G all vertices not in Y , and all constraints incident to a vertex outside of Y . Further,
denote I \ Y = I[V (G) \ Y]. Note that any solution to an induced instance can be lifted to a solution to
the original instance of the same revenue by mapping all the removed vertices to 0. Finally, we denote
V (I) := V (G) and E(I) := E(G).

Generalizing dominating sets. Similarly to the case of the Max Weight Independent Set, we
will work with a generalization of the Min Weight Dominating Set problem defined as follows. An
instance of Min Weight Generalized Domination consists of:

• a multigraph G, called the Gaifman graph; and

• for every vertex u, a finite domain Du, a cost function costu : Du → R>0 ∪ {+∞}, a supply function
supplyu : Du → 2δ(u) from the domain Du to the set of all subsets of edges with one endpoint in u,
and a demand function demandu : Du → 2δ(u).

We additionally require that every domain Du contains a state su with supplyu(su) = δ(u) and finite cost.
A solution to an instance as above is a mapping φ that with each vertex u of G associates a value

φ(u) ∈ Du, so that the following property holds. For every edge e ∈ E(G) with endpoints u and v, if
e ∈ demandu(φ(u)), then e ∈ supplyv(φ(v)); and conversely, if e ∈ demandv(φ(v)), then e ∈ supplyu(φ(u)).19

The cost of such a solution is defined as

cost(φ) =
∑

u∈V (G)

costu(φ(u)).

TheMin Weight Generalized Domination problem is to find a solution to the given instance with
the minimum possible cost. Observe that every instance of Min Weight Generalized Domination
has a finite-cost solution as a solution φ mapping every vertex u to the state su is valid.

The Min Weight Dominating Set problem can be modeled using Min Weight Generalized
Domination as follows. Given a simple graph G and a weight function w : V (G)→ R>0, we create an
instance I = (G,D, cost, supply, demand), where for every vertex u of G we define the domain Du : N [u]
as well as the following cost, supply, and demand functions:

costu(v) =

{
w(u) if u = v,

0 otherwise;

supplyu(v) =

{
δ(u) if u = v,

∅ otherwise;

demandu(v) =

{
∅ if u = v,

{uv} otherwise.

It is easy to see that the minimum weight of a solution in the instance of Min Weight Generalized
Domination defined above coincides with the minimum weight of a dominating set in G.

Abusing the notation, we will say that I ∈ C if G ∈ C. Also, we use V (I) and E(I) to mean the set of
vertices and the set of edges of G.

Next, we will say that a vertex u ∈ V (I) is:

• (s, d)-meager for s, d > 1 if |deg(u)| 6 s and |Du| 6 d;

• state-monotonous if for every ordered pair of states x1, x2 ∈ Du, there exists a state x, called the
combination of x1 with x2, such that

costu(x) 6 costu(x1) + costu(x2),

supplyu(x) = supplyu(x1) ∪ supplyu(x2),

demandu(x) ⊆ demandu(x1).
19We remark that it might be the case that in a valid solution, e belongs to both demandu(φ(u)) and demandv(φ(v)); in

this case, we require both supplyu(φ(u)) and supplyv(φ(v)) to contain e.

184 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

Note that the definition of the combination of states above is not commutative due to the fact that the
constraint on demandu(x) only depends on x1. Thus, the combination of x1 with x2 might be different
from the combination of x2 with x1.

We say that an instance of Min Weight Generalized Domination is (s, d)-decent if every vertex
of the instance is (s, d)-meager and state-monotonous. An easy verification of the definition shows that
every instance of Min Weight Generalized Domination created from Min Weight Dominating
Set on a graph of maximum degree ∆ is (∆,∆ + 1)-decent as all vertices of the resulting instance are
state-monotonous and (∆,∆ + 1)-meager. Our data structure will only operate on (s, d)-decent instances,
for some small, bounded values of s and d.

Next, for A ⊆ V (I) and a valuation φ ∈
∏
u∈ADu of vertices in A, we say that the valuation is

locally correct on A to I if, for every edge e with both endpoints u, v in A, if e ∈ demandu(φ(u)), then
e ∈ supplyv(φ(v)). Note that if φ is a correct solution to I, then φ|A is a locally correct solution on A to I.

Given an instance I of Min Weight Generalized Domination and a vertex u ∈ V (I), to relieve
u in I is to produce an instance I ′ by setting demandu(x)← ∅ for all x ∈ Du. In other words, relieving
marks u as a vertex that does not need to be dominated by a solution to I ′. Note that if there exists
a solution to I, then a solution to I ′ also exists and the minimum cost of such a solution is less than or
equal to the minimum cost of a solution to I.

Finally, given a set A ⊆ V (G), we define the A-cleared subinstance of I, denoted Clear(I;A), as the
instance produced from I by:

• removing all the edges whose both endpoints are in A, erasing them also from the corresponding
demand and supply sets;

• relieving each vertex of A in the resulting instance.

The following fact is straightforward.

Observation 5.2.4. If φ is a correct solution to I, then it is also a correct solution to Clear(I;A).

5.3 Maximum Weight Independent Set

In this section we give a data structure that implements the first query, QueryMWIS(), of Theorem 1.3.7.
As mentioned, we will actually solve a more general problem of Max Weight Nullary 2CSP (which
we will call 2CSP from now on for brevity). That is, we will maintain a dynamic instance of 2CSP
undergoing the following types of updates:

• AddVertex(u,Du, revu): Adds an isolated vertex u together with the domain Du and the revenue
function revu : Du → R>0;

• AddEdge(u, v, Cuv): Adds an edge uv together with the constraint Cuv ⊆ Du ×Dv;

• RemoveEdge(u, v): Removes an edge uv;

• UpdateRevenue(u, revu): Changes the revenue function of u to revu : Du → R>0.

After each update, the data structure should maintain an approximate optimum revenue to the currently
stored the instance I: a nonnegative real p satisfying (1 − ε)OPT 6 p 6 OPT, where OPT denotes the
optimum revenue for I. For technical reasons, we do not support removing vertices from the instance;
however, observe that the removal of a vertex can be emulated by removing all edges incident to the
vertex and replacing its revenue with the constant-zero function.

Note that the original dynamic instance of 2CSP constructed from Max Weight Independent
Set has a fixed n-element vertex set, so it will never be updated by AddVertex. However, the designed
data structure will create auxiliary dynamic instances of 2CSP that will be maintained using all four
types of updates.

Henceforth, we assume that a given apex-minor-free class of graphs C is fixed; that is, we consider all
constants depending only on C to be absolute constants. Moreover, throughout this section we denote by
ε > 0 the parameter ε fixed in the initialization of the data structure.

5.3. MAXIMUM WEIGHT INDEPENDENT SET 185

5.3.1 Introductory results

We begin by summarizing the Baker’s technique applied to 2CSP. In short, we show that if the Gaifman
graph has bounded treewidth, then we can solve 2CSP exactly using a standard dynamic programming
over the tree decomposition. On the other hand, if the Gaifman graph belongs to C, then we can solve the
instance approximately by a classical application of the Baker’s technique [Bak94].

First, the following lemma is obtained by dynamic programming on a tree decomposition.

Lemma 5.3.1. Let I = (G,D, rev, C) be an instance of 2CSP on n vertices and ∆ > 2 be the maximum
size of a domain of any vertex. Then, we can solve I in time n ·∆O(tw(G)).

Proof. First, we can use an algorithm computing a tree decomposition that is a 2-approximation of
an optimal one in time n · 2O(tw(G)) by Korhonen [Kor21]. Once we have that approximation, we use
standard dynamic programming over it that could be seen as a generalization of a similar algorithm solving
maximum independent set over graphs with bounded treewidth. For each bag of that decomposition it
suffices to have dynamic programming states indexed by all possible valuations of variables from that bag
and the transitions follow easily. That dynamic programming takes time n ·∆O(tw(G)), so as ∆ > 2, in
total this algorithm takes time n · 2O(tw(G)) + n ·∆O(tw(G)) = n ·∆O(tw(G)).

Next, the following claim shows how subinstances of small treewidth are constructed by Baker’s
technique:

Lemma 5.3.2. Let G ∈ C be a connected graph and fix s ∈ V (G). Then:

• For integers ` > 0, k > 1, we have tw(G[{v ∈ V (G) | ` 6 dist(s, v) < `+ k}]) 6 O(k);

• For integers k > i > 0, let Vi = {v ∈ V (G) | dist(s, v) ≡ i mod k}. Then tw(G \ Vi) 6 O(k).

Proof. For the first point, let G ∈ C be connected and fix s ∈ V (G), k > 1 and ` > 0. Let G′ be a minor
of G created by:

• discarding from G′ all vertices at distance at least `+ k from s;

• if ` > 0, contracting all vertices at distance strictly less than ` to s.

It can be readily verified that the radius of G′ is bounded from above by k since s is at distance at most k
from every vertex of G′. Thus by Theorem 5.2.1, we have tw(G′) 6 O(k). Since G[A] = G′[A], we conclude
that tw(G[A]) 6 tw(G′).

For the second point, choose integers i, k with 0 6 i < k. Observe that G \ Vi is a disjoint union of
the subgraphs induced by at most k − 1 consecutive BFS layers (i.e., for every pair of vertices in a single
component, their distance from s in G differs by at most k−1). Hence, the first point of the lemma applies,
implying that each of these subgraphs has treewidth at most O(k). Therefore, tw(G \ Vi) 6 O(k).

With these helper lemmas in hand, we can prove that:

Lemma 5.3.3. Let ε′ > 0 be a positive real number and I = (G,D, rev, C), G ∈ C, be an instance of
2CSP with n vertices, where the maximum size of a domain is ∆ > 2. One can compute a real p such
that (1− ε′)OPT 6 p 6 OPT in time n ·∆O(1/ε′), where OPT is the maximum revenue of a solution to I.

Proof. We solve Max Weight Nullary 2CSP by a classical use of the Baker’s technique. Let k =
⌈

1
ε′

⌉
.

We assume that G is connected (because we can solve each connected component separately), choose an
arbitrary root r, partition the graph into the BFS layers and group them into groups mod k. That is,
let Vi = {v | distG(r, v) ≡ i mod k} for i = 0, 1, . . . , k − 1. Then let Ii = I \ Vi. By Lemma 5.3.2, the
Gaifman graph of each Ii has treewidth at most O(k). Now, using Lemma 5.3.1, we compute an optimum
solution to each Ii; call it φi and set pi = rev(φi). We claim that it suffices to set p := maxipi.

For each i ∈ {0, . . . , k − 1}, we extend φi to a valid solution φ′i of I by placing value 0 on each
variable from Vi. If φ is an optimum solution to I, so that OPT = rev(φ), then φ|V (G)\Vi is a valid
solution to Ii, hence rev(φ|V (G)\Vi) 6 rev(φi). As V0, V1, . . . , Vk−1 form a partition of V (G), we have

that rev(φ|V0) + . . . + rev(φ|Vk−1) = rev(φ), so there exists some i such that rev(φ|Vi) 6
rev(φ)
k 6 ε′OPT.

Therefore, we have that p > rev(φi) > rev(φ|V (G)\Vi) = rev(φ)− rev(φ|Vi) > (1− ε′)OPT. As each φ′i is
a valid solution to I and we have that rev(φi) = rev(φ′i), we obviously have that p 6 OPT, which completes
the proof of the claim.

Solving each Ii requires time n ·∆O(k). As we solve k auxiliary instances, the total time complexity is
n · k ·∆O(k) = n ·∆O(1/ε′).

186 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

We then recall a useful technical tool allowing us to construct elimination forests graphs of small width
and height.

Lemma 2.3.4 ([KNPS24]). Let G be a graph on n vertices given together with a tree decomposition of
width w with O(n) nodes. Then, in time O(wn log n), one can compute an elimination forest F of G with
the following properties:

1. F has height O(w · log n);
2. for each u ∈ V (F), we have |ReachF (u)| = O(w);
3. for each u ∈ V (F), the graph G[descF [u]] is connected.

The following observation shows how property (3) of Lemma 2.3.4 can be exploited in algorithms
working with elimination forests.

Lemma 5.3.4. Assume F is an elimination forest of G such that for each u ∈ V (F), the graph G[descF [u]]
is connected. If u, v ∈ V (F) are nonroot vertices of F and parentF (u) 6= parentF (v), then it holds that
ReachF (u) 6= ReachF (v).

Proof. It is always the case that parentF (u) ∈ ReachF (u) as otherwise descF [parentF (u)] would not
be connected. Also, ReachF (u) ⊆ ancF [parentF (u)], hence parentF (u) is the (unique) deepest vertex of
ReachF (u). This finishes the proof.

5.3.2 Compressed instances

We now define the crucial notion of a compressed instance of 2CSP. Intuitively, compression of instances
provides us with a means of producing significantly smaller instances of 2CSP with the same maximum
revenue. We begin with the definition of a compressed graph:

Definition 11. Let G be a graph and Y be a subset of V (H). By G{Y } we denote the compressed graph
for G and Y , defined as follows:

V (G{Y }) = Y ∪ {N(C) | C ∈ cc(G \ Y)} ⊆ Y ∪ 2Y ,

E(G{Y }) = E(G[Y]) ∪ {vS | v ∈ S, S ∈ V (G{Y }) \ Y }.

In other words, we group the connected components of G \ Y by their neighborhoods and for each such
group we create one vertex connected to all vertices from the neighborhood of this group.

Next we say what it means to compress an instance.

Definition 12. Let I = (G,D, rev, C) be a 2CSP instance and Y a subset of V (G). We define the
compressed instance I{Y } = (G{Y }, D′, rev′, C ′) as follows.

• (Domains.) If v ∈ Y , then D′v = Dv. If S ∈ V (G{Y }) \ Y , then D′S = {0} ∪
∏
v∈S Dv.

• (Revenues.) If v ∈ Y , then rev′v = revv. Now assume S ∈ V (G{Y }) \ Y . For convenience, let
S = {u1, . . . , us} and let R be the union of all connected components of G \ Y whose neighborhood is
S. Let IS = I[R ∪ S]. Then rev′S(0) = 0, and rev′S(d1, . . . , ds) for di ∈ Dui is the maximum revenue
of rev(φ|R), where φ ranges over all valid solutions to IS such that φ(ui) = di for each 1 6 i 6 s. If
no such solutions exist, then we set rev′S(d1, . . . , ds) = 0.

• (Constraints.) If u, v ∈ Y , then C ′uv = Cuv. If S ∈ V (G{Y }) \ Y and u ∈ S, then

C ′uS = {(d, e) | d ∈ D′u and e ∈ D′S , d = 0 ∨ e = 0 ∨ e(u) = d}.

In other words, the constraint C ′uS permits the valuations φ of G{Y } for which φ(u) = 0 or φ(S) = 0,
or for which φ(S) ∈

∏
v∈S Dv and φ(S)(u) = φ(u).

It can be easily verified that for every I and every Y , I{Y } is a correct instance of Max Weight
Nullary 2CSP. Also, note that in the case of defining rev′S(d1, . . . , ds), no feasible φ exists if and only
if setting φ(ui) = di for each 1 6 i 6 s already violates some constraint, as we can always put φ as
a zero function on R.

In other words, given a 2CSP instance I and a set Y ⊆ V (I), we define the compression I{Y } by
contracting the connected components of G \ Y to single vertices, and identifying the contracted vertices
with the same neighborhood S in Y to the same vertex x. Then, for each possible valuation d ∈

∏
v∈S Dv

of vertices in S, we encode in x the maximum revenue of a partial solution for the connected components
assigned to x that is consistent with d. Note that after a valuation of vertices in S is fixed, the instances
of 2CSP induced by each connected component assigned to x are pairwise independent: there are no
constraints between the connected components of G \ Y . Therefore:

5.3. MAXIMUM WEIGHT INDEPENDENT SET 187

Observation 5.3.5. Let I = (G,D, rev, C) be a 2CSP instance and let Y ⊆ V (G). Let S ∈ V (G{Y })\Y ,
S = {u1, . . . , us}, and C1, C2, . . . , C` be the connected components of G \ Y whose neighborhood is S.
For each 1 6 i 6 `, let Ii = I[Ci ∪ S]. Let also d1 ∈ Du1 , . . . , ds ∈ Dus . Then, rev′S(d1, . . . , ds) =∑`

i=1 rev(φi|Ci), where φi is a solution to Ii maximizing rev(φi|Ci) under the assumption that φi(uj) = dj
for all 1 6 j 6 s, or rev′S(d1, . . . , ds) = 0 if setting φ(uj) = dj for all 1 6 j 6 s violates some constraint.

Having defined compressed graphs and instances, we now present a series of their properties. Namely:
C is closed under graph compressions and compressed instances have the same optimum revenues as the
original instances.

Lemma 5.3.6. Let G be a graph and Y be a subset of V (H). Then G ∈ C implies G{Y } ∈ C.

Proof. H{Y } can be obtained from H through a series of contractions (where we contract each connected
component of H \ Y into a single vertex) and vertex removals (we remove all but one vertices from each
group that has a particular neighborhood in Y). Hence, H{Y } is a minor of H. Since C is assumed to be
minor-closed, the claim follows.

Lemma 5.3.7. Let I = (G,D, rev, C) be a 2CSP instance, Y ⊆ V (G) and I{Y } = (G{Y }, D′, rev′, C ′)
be the compressed instance. Then, the optimum solutions of I and I{Y } have equal revenues.

Proof. Let OPT and OPT′ denote the revenues of optimum solutions to I and I{Y }.
Let φ be any solution to I. We shall define φ′ which will be a valid solution to I{Y }. We define

φ′ to agree with φ on Y . Then rev′(φ′|Y) = rev(φ|Y). Now choose S ∈ {N(E) | E ∈ cc(H \ Y)}. Let
S = {u1, . . . , us} and φ(u1) = d1, . . . , φ(us) = ds. We set φ′(S) := (d1, . . . , ds). It can be readily verified
that φ′ complies with all the constraints in C ′, so φ′ is valid. Now, if R is the union of all the connected
components of H \ Y whose neighborhood is equal to S, then rev′(φ′(S)) > rev(φ|R) from the definition of
rev′. By adding such inequalities for all possible pairs of S and R and the equality rev′(φ′|Y) = rev(φ|Y),
we conclude that rev′(φ′) > rev(φ), hence OPT′ > OPT.

On the other hand, let ψ′ be any solution to I{Y }. We shall define ψ – a valid solution to I.
We define ψ to agree with ψ′ on Y , hence rev(ψ|Y) = rev′(ψ′|Y). Now choose S ∈ V (H{Y }) \ Y
and assume that S = {u1, . . . , us}. Let R be the union of all the connected components of H \ Y
whose neighborhood is equal to S. If rev′(ψ′(S)) = 0, then we set ψ(v) := 0 for all v ∈ R. Otherwise,
rev′(ψ′(S)) > 0, so ψ′(S) ∈

∏
v∈S Dv. In this case, from the definition of C ′uiS , it has to be that

ψ′(S)(u1) = ψ′(u1) = ψ(u1), . . . , ψ′(S)(us) = ψ′(us) = ψ(us), and let IS = I[R∪S]. Since rev′(ψ′(S)) > 0,
there exists a solution ζ to IS such that ζ(ui) = ψ′(ui) = ψ(ui) for all 1 6 i 6 s. Let ζ be any such
maximum-revenue solution, and set ψ|R := ζ|R. Then rev(ψ|R) = rev′(ψ′(S)) by the definition of rev′. It is
also easy to verify that ψ is valid. It follows that rev(ψ) = rev′(ψ′), so OPT > OPT′.

5.3.3 Dynamic maintenance of compressed instances

We proceed to show how the notion of compressed instances can be used in the setting of the dynamic
maintenance of 2CSPs. Consider an instance I = (G,D, rev, C) of 2CSP, where G ∈ C and tw(G) 6 w for
some w ∈ N. The instance I undergoes a sequence of updates, so that at every point of time we have that
G ∈ C (but it might not necessarily be the case that tw(G) 6 w). Our goal is to maintain a much smaller
2CSP instance I? with the same value of optimum solution as I, so that at all points of time, the size of
I? is roughly proportional to the number of updates I has undergone so far. This is formalized by the
following lemma.

Lemma 5.3.8. Let w, n,∆ ∈ N, ∆ > 2. There is a data structure that supports the following operations:

• Initialize the data structure with an n-vertex 2CSP instance I = (G,D, rev, C), where G ∈ C,
tw(G) 6 w, and all vertices in I have domains not larger than ∆.

• Update the instance I using one of the following update types: AddVertex, AddEdge, RemoveEdge,
UpdateRevenue. It is guaranteed that after the update, we have that G ∈ C and all vertices in I have
domains not larger than ∆.

The initialization of the data structure is performed in time ∆O(w) · n log n. Afterwards, the data struc-
ture additionally maintains a 2CSP instance I? = (G?, D?, rev?, C?), updated by AddVertex, AddEdge,
RemoveEdge and UpdateRevenue, with the following properties:

(a) G? ∈ C;

188 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

(b) the maximum revenue of a solution to I? is equal to that of I;

(c) each vertex of I? has domain bounded in size by ∆O(w);

(d) after a sequence of t > 0 updates to I, we have |V (I?)| 6 t · wO(1) log n. Moreover, on each update
to I, the instance I? can be updated in time ∆O(w) log n and this causes at most wO(1) log n updates
to I?.

Proof. On initialization, we compute a tree decomposition of G of width at most O(w) in time 2O(w) · n,
for instance using the fixed-parameter algorithm of Korhonen [Kor21]. We then transform this tree
decomposition into an elimination forest F of G with V (F) = V (G) such that: (i) F has height O(w log n);
(ii) for each u ∈ V (F), we have |ReachF (u)| = O(w); and (iii) for each u ∈ V (F), the graph G[descF [u]] is
connected. This can be done in time O(w · n log n) by Lemma 2.3.4.

Moreover, we precompute multiple dynamic programming tables on F :

• For each u ∈ V (F) and for each possible valuation φ ∈
∏
s∈ReachF (u)Ds of vertices from ReachF (u),

compute T [u][φ]: the maximum possible revenue rev(ψ|descF [u]) over all solutions ψ to I[descF [u] ∪
ReachF (u)] agreeing with φ on ReachF (u), or 0 if no such solution exists. Note that |ReachF (u)| =
O(w), hence there are at most ∆O(w) possible valuations of φ on ReachF (u) for a given u. Also note
that for a vertex u with children c1, . . . , cs we have that ReachF (ci) ⊆ ReachF (u) ∪ {u}. Hence, we
can compute all values T [·][·] using a simple bottom-up dynamic programming in time n ·∆O(w).

• For each u ∈ V (F), compute the set Nu = {ReachF (c) | c is a child of u in F}. This can be
performed easily in time O(nw). Note that R ⊆ ReachF (u) ∪ {u} for all R ∈ Nu.

• For each u ∈ V (F), R ∈ Nu and valuation φ ∈
∏
s∈RDs of vertices from R, compute W [u][R][φ]:

the sum of T [c][φ] such that c is a child of u and ReachF (c) = R. This table can be computed in
time n ·∆O(w) as well: for each nonroot vertex c and each valuation φ of ReachF (c), the value T [c][φ]
is added to exactly one entry of W .

We remark that the dynamic programming tables above suffice to compute the maximum-revenue
solution for I at the time of the initialization: It is simply the sum over T [r][∅] ranging over all roots r of
trees of the elimination forest F .

Also initialize sets A = B = Z = ∅ and I? = I{∅}. We remark that I{∅} is a one-vertex instance of
2CSP with the same revenue of the optimum solution as I.

Let I init = (Ginit, Dinit, revinit, C init) be the initial instance of 2CSP. In the sequel, by Icur =
(Gcur, Dcur, revcur, Ccur) we denote the current snapshot of the instance in the data structure; initially,
Icur := I init. Note that V (I init) ⊆ V (Icur) at all times since vertices cannot be explicitly removed from I.
Instead, we emulate the removals of vertices from 2CSP by removing all the edges incident to the vertex
and setting the revenue of the vertex to the zero function. If two instances of 2CSP are isomorphic after
removing from both of them the sets of isolated vertices with zero revenues, we say that these instances
are equivalent.

Throughout the life of the data structure, we maintain the following invariants:

• A = V (Icur) \ V (I init) is the set of vertices added to I since the instantiation of the structure.

• B ⊆ V (Icur) is the set of vertices that were part of any update to I so far (i.e., v ∈ B if v was added
to I, the revenue of v was changed, or an edge incident to v was added or removed).

• Z = A ∪ ancF [B \A], i.e., Z contains A and all the ancestors in F of all vertices of B \A.

• I? is equivalent to Icur{Z}.

Note that it follows that A ⊆ B, V (Icur) = V (I init) ∪ A and B \ A ⊆ V (I init). Also, the invariants are
satisfied at the time of initialization. Moreover, the required properties (a), (b) and (c) follow from the
invariant: Since I? is equivalent to Icur{Z}, property (a) follows from Lemma 5.3.6, property (b) follows
from Lemma 5.3.7, and property (c) follows from the definition of a compressed instance and the fact that
the domain of each vertex of I has size bounded by ∆.

We envision Z as consisting of two parts – an “unordered cloud” of newly added vertices (which is A)
and a well-structured part that is the smallest prefix of F containing all vertices from V (I init) that were
part of any update. Note that for any vertex v /∈ Z, we have v /∈ B. Therefore, any v /∈ Z is not adjacent
to any vertex of A, and is adjacent to some vertex of Icur if and only if it is adjacent to this vertex in I init.
In other words, the neighborhood of v has stayed unchanged; that is, v /∈ Z ⇒ NGcur(v) = NGinit(v). The

5.3. MAXIMUM WEIGHT INDEPENDENT SET 189

main idea of our approach is that we treat Z as a possibly complicated part, whereas the behavior of the
vertices outside of Z can be well-understood through the preprocessed dynamic programming tables. Thus,
we can effectively compress the parts of the graph outside of Z and construct a concise instance of 2CSP
without changing the revenue of the optimum solution. We will prove that the size of the compressed
instance depends mainly on the size of Z – intuitively, we do not compress Z in any way, but the parts of
the graph outside of Z will be compressed heavily. Fortunately, the size of Z cannot increase too much
with a single update:

Claim 5.3.9. The set Z expands by at most O(w log n) vertices with each update to I.

Proof of the claim. Naturally, all sets A, B, Z can only expand after each update.
If the update to I is of type AddVertex(u,Du, revu), then sets A and B grow by one vertex u, and

ancF [B \A] does not change. Hence Z grows by exactly one vertex.
For our convenience, let Pu for a vertex u ∈ V (Gcur) be the empty set if u ∈ A and ancF [u] otherwise.

If the update is of type AddEdge(u, v, c) or RemoveEdge(u, v), then A does not change, B expands by u
and v (if these vertices were not part of B yet), and ancF [B \ A] grows by vertices that are contained
within Pu ∪ Pv. Since F is of height O(w log n), it follows that Z grows by O(w log n) vertices.

Finally, if the update is of type UpdateRevenue(v, rv), then A does not change, B additionally includes
v (if not in B yet), and ancF [B \A] grows by a set of vertices that is contained within Pv, which again is
of size O(w log n). C

Let us now understand the structure of the compressed instance Icur{Z}. Recall that for each
u ∈ V (F), it holds that descF [u] induces a connected graph in Ginit. Therefore, if u /∈ Z, then descF [u]
induces a connected subgraph of Gcur as well. If additionally parentF (u) ∈ Z, then NGcur(descF [u]) =
NGinit(descF [u]) = ReachF (u) ⊆ ancF (u) \ {u} ⊆ Z, so we conclude that descF [u] is actually a connected
component of Gcur \ Z. Hence, there exists a natural bijection between the connected components of
Gcur \ Z and the vertices u such that u /∈ Z, but parentF (u) ∈ Z (or u /∈ Z is the root of some tree in F).
We will call all such vertices u appendices of Z in F .

Observe that the revenues of the vertices in the compressed instance can be inferred from the entries of
the precomputed dynamic programming table T [·][·]. In the instance Icur{Z}, consider S ∈ V (G{Z}) \ Z
and let φ ∈

∏
s∈S Ds be a valuation of vertices in S. Then, revcur(S, φ) is by Observation 5.3.5 exactly the

sum of T [u][φ] over all appendices u of Z in F such that ReachF (u) = S.
It turns out that it is possible to maintain Gcur{Z} efficiently given the precomputed tables T and W .

To this end, we claim that G{Z} can be updated efficiently when an appendix of Z is added to Z.

Claim 5.3.10. Let two sets Z1, Z2 ⊆ V (Gcur) be such that A ⊆ Z1 ⊆ Z2 ⊆ V (Gcur), |Z2| = |Z1|+ 1 and
Z1 \A and Z2 \A are prefixes of F with Z2 − Z1 ⊆ V (F). Then, an instance equivalent to Icur{Z2} can
be obtained from an instance equivalent to Icur{Z1} through a sequence of wO(1) updates. Moreover, this
sequence can be computed in time ∆O(w).

Proof of the claim. Let z ∈ V (F) be such that Z2 = Z1 ∪ {z}. Let C1 be the set of connected components
of Gcur \ Z1, C2 be the set of connected components of Gcur \ Z2 and c1, . . . , ct be the set of children of z
in F . We have that C1 \ C2 = {Gcur[descF [z]]} and C2 \ C1 = {Gcur[descF [c1]], . . . , Gcur[descF [ct]]}.

Let S = ReachF (z). The compressed instance Icur{Z1} contains a vertex vS representing the union of
all connected components of Gcur \ Z1 whose neighborhoods are exactly S; and Gcur[descF [z]] is one of
such components. To obtain Icur{Z2} from Icur{Z1}, we need to:

1. Remove the contribution of Gcur[descF [z]] ∈ C1 \ C2 from the compressed instance. If descF [z] is
the only connected component of Gcur \ Z1 with neighborhood S, then the vertex vS should be
removed from the instance; this is emulated by removing all edges incident to vS and replacing the
revenue of vS with the zero function. Otherwise, the revenue of vS is updated by subtracting, for
each valuation φ ∈

∏
s∈S Ds of S, the entry T [v][φ] from the revenue of vertex vS in state φ. In both

cases, the compressed vertex vS has degree |ReachF (z)| 6 O(w), so in either case we apply at most
O(w) updates to the compressed instance.

2. Add the vertex z to the compressed instance. Since the set of neighbors of z in Z1 is exactly
ReachF (z), this requires one vertex addition and O(w) constraint additions.

3. Include the contribution of the connected components Gcur[descF [c1]], . . . , Gcur[descF [ct]] ∈ C2\C1 in
the compressed instance. Even though tmight possibly be large, the number of different neighborhoods
of the new connected components is bounded – this follows from NGcur(descF [ci]) = ReachF (ci) ⊆

190 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

ReachF (z) ∪ {z}. Since |ReachF (z)| 6 O(w), by Corollary 5.2.3 there exist at most O(w) distinct
neighborhoods of the new components; in other words, |Nz| 6 O(w). By Lemma 5.3.4, all these
neighborhoods actually correspond to new vertices in the compressed instance. Thus, for each
S′ ∈ Nz (equivalently, for each S′ ⊆ ReachF (z)∪{z} with at least one component descF [ci] with the
neighborhood equal to S′), we add to the compressed instance a new vertex vS′ . For each valuation
φ ∈

∏
s∈S′ Ds of vertices in S′, the revenue of vS′ in state φ is the sum over all T [ci][φ] for all

1 6 i 6 t such that ReachF (ci) = S′; this is exactly the preprocessed value W [z][S′][φ]. Each of the
new O(w) vertices has degree at most O(w), so the number of updates to the compressed instance is
O(w2). For each fresh vertex vS′ , we iterate over all ∆O(w) valuations of S′ to produce the revenues
for each state of vS′ . This can be done in total time O(w) ·∆O(w) = ∆O(w). C

Now the proof of the lemma follows easily from Claim 5.3.9 and Claim 5.3.10. If the update to Icur is
of type AddVertex(ru), then Z grows by one isolated vertex and we just pass that update to I?. Otherwise,
the set A does not change and Z grows by O(w log n) vertices from F that can be easily determined.
We process the additions to Z vertex by vertex, applying Claim 5.3.10 on each addition. Note that the
vertices should be added to Z in the order of the increasing distance from the root of F , so as to ensure
that Z \ A remains a prefix of F at all times. Finally, after all the required vertices are included in Z,
we relay the queried update of Icur to I?. Since the vertices involved in the update (the vertex whose
revenue is changed or both of the endpoints of an updated edge) are now in Z, this update can be passed
verbatim to I?. It is now easy to verify that all the stated invariants are preserved by the update.

We invoke Claim 5.3.10 at most O(w log n) times, so the total number of updates performed on I?

is (w log n) · wO(1) = wO(1) log n. Also, the total update time is ∆O(w) log n. This satisfies the required
property (d) of the described data structure and concludes the proof.

5.3.4 Full algorithm

We now describe the implementation of the data structure in detail. Recall that our aim is to maintain
an n-vertex dynamic instance Imain = (Gmain, Dmain, revmain, Cmain) of 2CSP in a data structure, updated
by AddEdge, RemoveEdge, and UpdateRevenue, that can be queried for an approximate optimum revenue
in the current snapshot of the instance: For a parameter ε > 0 fixed at the initialization, the data structure
should, when queried, return a nonnegative real p such that (1− ε)OPT 6 p 6 OPT. The initialization of
the data structure should take time f(ε) · n1+o(1) and each update should take amortized time f(ε) · no(1),
for some function f that is doubly-exponential in O(1/ε2).

We fix an integer L ∈ N, whose value will be determined later, and set k := dL/εe. We construct
a recursive, L-level data structure. That is, we will maintain a collection of auxiliary data structures,
each maintaining an instance of 2CSP and an approximate optimum revenue to the maintained instance.
Each auxiliary data structure will be assigned to one of the levels 1, . . . , L. At level L, we have a single
auxiliary data structure Dmain maintaining Imain. Next, consider an auxiliary data structure D at level
q ∈ {1, . . . , L}, and assume D maintains an instance I = (G,D, rev, C) of 2CSP. If q > 2, then D
maintains a collection of k data structures D0, . . . ,Dk−1 at level q − 1, called children of D, with each
child maintaining an instance derived from I. If q 6 L − 1, then D is maintained by exactly one data
structure at level q + 1, called the parent of D. Note that this way, the entire collection of auxiliary data
structures forms a rooted tree of height L and branching k, where the root is Dmain and the leaves are the
data structures at level 1. In particular, the total number of maintained data structures is O(kL).

Moreover, each auxiliary data structure D at level q preserves the following invariants:

(I1) G ∈ C and |V (G)| 6 nq/L;

(I2) for each v ∈ V (G), we have |Dv| 6 g(q) for some function g to be specified in Section 5.3.5;

(I3) D maintains a nonnegative real p satisfying (1− ε · qL)OPT 6 p 6 OPT, where OPT is the maximum
revenue of a solution to I.

Note that (I1) and (I2) are satisfied by Dmain with g(L) = 2. By (I3), upon query QueryMWIS(), the
data structure can just return the real p stored in Dmain.

Now, we explain the implementation of each data structure. First, let D be a data structure at level 1
maintaining an instance I of 2CSP. On each update to I, we update I by brute force: We recompute the
approximate solution from scratch using Lemma 5.3.3 with ε′ supplied to it equal to ε

L . Thus, processing
each update to I takes time |V (I)| · g(1)O(L/ε) 6 n1/L · g(1)O(L/ε). Thus each level-1 data structure
satisfies invariant (I3).

5.3. MAXIMUM WEIGHT INDEPENDENT SET 191

From that point on, let us fix some 2 6 q 6 L and describe the implementation of a data structure D
of level q, which maintains a Max Weight Nullary 2CSP instance I = (G,D, rev, C), assuming
invariants (I1) and (I2). Let Icur = (Gcur, Dcur, revcur, Ccur) denote the current snapshot of I. The lifetime
of D is partitioned into epochs: sequences of τq updates to I, with τq to be specified later. The first
epoch begins when D is initialized; and a new epoch begins each time D processes τq updates to I.
At the start of each epoch, we let Iold := Icur and we apply the Baker’s scheme to Iold. That is, let
Iold = (Gold, Dold, revold, Cold). We produce a partition of V (Iold) into layers V0, . . . , Vk−1 as follows.
Assume that Gold is connected; otherwise apply the scheme to each connected component of Gold, and
let the ith layer Vi be the union of the ith layers for each connected component of Gold. Now choose an
arbitrary vertex s as a root, run the breadth-first search (BFS) on Gold from s, partition the graph into
the BFS layers, and group them based on modulo k, getting sets Vi = {v | distGold(s, v) ≡ i mod k} for
i = 0, 1, . . . , k − 1.

Now, given sets V0, . . . , Vk−1, we define k dynamic instances of 2CSP: Icur
i = Icur \Vi, called universes.

At the start of the epoch, Icur
i = Iold \ Vi. Note that by Lemma 5.3.2, we have that tw(Gold

i) 6 O(k).
Thus, for each 0 6 i 6 k − 1, we can instantiate a data structure of Lemma 5.3.8 on each Icur

i , with
w = O(k) = O(L/ε) and ∆ = g(q). Since |V (Iold)| 6 nq/L, the initialization of each structure takes
time g(q)O(L/ε) · nq/L log n. After the initialization, the ith data structure maintains a compressed
instance I?i of 2CSP with the same revenue of the optimum solution as Icur

i , each initially containing
one vertex. Therefore, to finish the initialization, we recursively spawn a collection of k children auxiliary
data structures D0, . . . ,Dk−1 at level q − 1. Each Di stores the compressed instance I?i and maintains
a (1− ε q−1

L)-approximate optimum revenue to I?i (which is also the (1− ε q−1
L)-approximate optimum

revenue to Icur
i). Note that each of the children data structures recursively spawn k additional children

data structures at level q − 2, etc., until constructing kq−1 data structures at level 1 in total. Each of
these data structures is initialized with a one-vertex 2CSP instance.

Now, assuming we can maintain a good approximation pi of the maximum-revenue solution to each
Icur
i , we can also maintain such a fairly good approximation to I by simply keeping the maximum pi:

Lemma 5.3.11. Let OPTi be the optimum revenue of a solution in the instance Icur
i , and let pi be such

that (1 − ε q−1
L)OPTi 6 pi 6 OPTi. Let p = max(p0, . . . , pk−1). Then (1 − ε qL)OPT 6 p 6 OPT, where

OPT is the revenue of the optimum solution to Icur.

Proof. Recall that Gold is the Gaifman graph of Iold and Gcur is the Gaifman graph of Icur. Also, let A
be the set of vertices that were added to Icur since the beginning of the current epoch. Then, we have
that V (Gcur) = V (Gold)∪A. Let Gcur

i be the Gaifman graph of the universe Icur
i . Then Vi ⊆ V (Gcur) and

V (Gcur
i) = V (Gcur) \ Vi. Let φ, φ0, . . . , φk−1 be optimum solutions to the instances Icur, Icur

0 , . . . , Icur
k−1.

As V0, . . . , Vk−1 are disjoint, we have that rev(φ|V0) + . . .+ rev(φ|Vk−1) 6 rev(φ). Therefore, there exists
0 6 i 6 k − 1 such that rev(φ|Vi) 6

rev(φ)
k 6 rev(φ) · εL .

As φ|V (Gcur
i

) is a valid solution to Icur
i , we have that rev(φ|V (Gcur

i
)) 6 rev(φi) = OPTi. In turn, we

have (1 − ε
L)rev(φ) 6 rev(φ) − rev(φ|Vi) = rev(φ|V (Gcur)\Vi) = rev(φ|V (Gcur

i
)) 6 OPTi. By multiplying

both sides by 1− ε q−1
L , we get (1− ε

L)(1− ε q−1
L)OPT 6 (1− ε q−1

L)OPTi 6 pi 6 p, which implies that
p > OPT(1− ε

L)(1− ε q−1
L) > OPT(1− ε qL), as required. On the other hand, as any φj can be extended

to the solution of the full instance by putting zeros on Vj , we obviously get pj 6 OPTj 6 OPT for each
j = 0, . . . , k − 1, which in turn implies that p 6 OPT, as desired.

Each update to Icur is processed by D as follows: For each i ∈ {0, . . . , k − 1}, if the update involves
a vertex of Vi, then Icur

i remains unchanged by the update and no further action is required. Otherwise,
the update is relayed to Icur

i . The data structure from Lemma 5.3.8 produces a sequence of at most
kO(1) log n updates to I?i , which are then relayed to Di. After all children data structures process the
updates, D recomputes its approximate solution to Icur by querying each Di for the approximation of the
maximum revenue of a solution to I?i and returning the maximum value. Note that during one epoch,
the size of each I?i does not grow above τq · kO(1) log n (Lemma 5.3.8(d)). By choosing τq so that this
value is significantly less than n(q−1)/L, we ensure the satisfaction of invariant (I1) by the children data
structures (the fact that the Gaifman graph of I?i belongs to C follows from Lemma 5.3.8(a)). The invariant
(I2) is satisfied due to Lemma 5.3.8(c), provided we set g so that g(q − 1) > g(q)O(k). Also, since the
revenue of an optimum solution to I?i is equal to that of Icur

i (Lemma 5.3.8(b)), each child data structure
Di maintains a nonnegative real pi satisfying the preconditions of Lemma 5.3.11. Therefore, the value
p := max(p0, . . . , pk−1) is an (1− ε qL)-approximation of the optimum revenue in Icur, which proves the
satisfaction of invariant (I3) by D.

192 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

Finally, when an epoch in D ends, D is reinitialized with Iold := Icur and a new epoch starts. We
remark that this causes the destruction and the recursive reinitialization of the children data structures Di.

5.3.5 Setting the parameters and time complexity analysis

In this section, we are going to discuss the parameters whose specification was postponed: L, function g,
and epoch lengths. Finally, we analyze the amortized time complexity of the updates.

At first, we are going to bound the domain sizes.

Lemma 5.3.12. One can set function g so that invariant (I2) is satisfied for all the constructed data
structures and g(q) ∈ 2k

O(L)
for all q ∈ {1, . . . , L}.

Proof. Recall that invariant (I2) states that the domain sizes in instances stored by data structures at
level q are bounded by g(q). For q = L it suffices to set g(L) = 2. Next, for an instance within some data
structure at level q > 1 we create some number of universes, and instances created for those universes have
the same domains as the original one, say of size at most ∆. However, when compressing an instance and
recursing to the deeper level, the domain sizes increase to at most ∆Ck for some constant C. Indeed, recall
that for a compressed vertex S we had D′S = {0} ∪

∏
v∈S Dv, and due to the structure of F and Z we

know that such S is always of size O(k). It follows that we may set g(q − 1) = g(q)Ck. A straightforward
induction now shows that g(q) = 2(Ck)L−q , so in particular g(q) 6 2k

O(L)
for all q ∈ {1, . . . , L}.

We know that each instance at level q spawns k universes and each universe spawns one instance at
level q − 1; unless q = 1, in which case the instance in question is a leaf. Hence, there are at most kL

instances at level 1. We can proceed further with this reasoning to show the following.

Lemma 5.3.13. Each update to Dmain causes at most (k log n)O(L) updates throughout all data structures.

Proof. Recall that by Lemma 5.3.8(d), each update to a universe at level q > 1 causes at most (k log n)O(1)

updates propagated to instances at level q − 1. As each instance at level q > 1 has k universes associated
with it, each update to an instance at level q causes at most k · (k log n)O(1) = (k log n)O(1) updates
propagated to level q − 1. Hence, there are at most (k log n)O(L) updates throughout all data structures
per update to Dmain.

Lemma 5.3.14. The total time of updating all data structures for a single update to Dmain, excluding the
time of all reinitializations, can be bounded by n

1
L · 2(Lε)O(L)+O(L log logn).

Proof. Let us focus first on the time required to recompute the solutions to the instances at level 1 as
explained in Lemma 5.3.3, where ε′, n and ∆ from the statement of this lemma are equal to ε

L , n
1
L and

g(1) ∈ 2k
O(L)

, respectively. Each such recomputation uses time n
1
L ·
(

2k
O(L)

)O(dLε e)
= n

1
L · 2k

O(L)·dLε e. As

there are at most (k log n)O(L) updates by Lemma 5.3.13, the total time used for all such recomputations

can be bounded by (k log n)O(L) · n 1L · 2k
O(L)·dLε e.

All overheads coming from processing a single update to some D like indexing the tables or navigating
in F are of the form (k log n)O(1). Hence, based on that and Lemma 5.3.13, excluding the time required
for all hypothetical reinitializations, the total time needed for updating all the necessary information
is (k log n)O(L) + (k log n)O(L) · n 1L · 2k

O(L)·dLε e. Recall that we actually set k =
⌈
L
ε

⌉
, so we can do the

following simplifications: (k log n)O(L) = (
⌈
L
ε

⌉
log n)O(L) = 2O(L(log logn+log L

ε)), hence (k log n)O(L) · n 1L ·
2k
O(L)·dLε e = 2O(L(log logn+log L

ε)) · n 1L · 2(Lε)O(L) = n
1
L · 2(Lε)O(L)+O(L log logn).

As the next step, we are going to set epoch lengths and bound the amortized time of all reinitializations
per single update to Dmain. Let τq denote the epoch length for data structures on level q for some 2 6 q 6 L.
Recall that the epoch length for a data structure is measured in the number of updates to this particular
instance (as opposed to Dmain). Also recall Item (d) from Lemma 5.3.8, which asserts that each update to
D at level q generates (k log n)O(1) updates to its children structures. Let us be more specific and let c
be such a constant that this number is at most (k log n)c. Then, we set τq = n

q−1
L /(k log n)c. For such a

choice, it is indeed the case that the children data structures are passed at most n
q−1
L updates before they

are rebuilt, hence we maintain invariant (I1): instances at level q − 1 are of size at most n
q−1
L at all times.

Thus, we can bound the amortized time complexity of initializations and reinitializations.

5.3. MAXIMUM WEIGHT INDEPENDENT SET 193

Lemma 5.3.15. The amortized time of all initializations and reinitializations per single update to Dmain

is n
1
L · 2(Lε)O(L)+O(L log logn).

Proof. We view that a lifespan of a particular data structure D corresponds to one epoch of the parent data
structure (unless it is Dmain). If the parent data structure of D gets rebuilt, we trash D. Let t be the number of
started epochs of D throughout its whole lifetime. We note that when it is initialized, it is of a form I{∅} and
consists of a single vertex (unless it is the initialization of Dmain, which takes n ·2O(k) time). Hence, the first
initialization takes constant time. As guaranteed by Lemma 5.3.8 and Lemma 5.3.12, each reinitialization
of D = (G,D, rev, C) takes (|V (G)|+ |E(G)|) log |V (G)| · g(q)O(k) = (|V (G)|+ |E(G)|) log |V (G)| · 2kO(L)

time. Thanks to our invariants, we are guaranteed that |V (G)| 6 n
q
L and |E(G)| = O(|V (G)|), hence the

reinitialization time can be bounded as n
q
L log n · 2kO(L) .

Note that if t epochs were started, then the lifetime of D contained t − 1 full epochs. The number
of reinitializations will also be equal to t − 1. Hence, if u denotes the number of updates to D so far,
then the time required for all reinitializations of D can be bounded as (t − 1) · n

q
L log n · 2kO(L) 6

(t − 1) · τq · n
1
L · (k log n)c+1 · 2kO(L) 6 u · n 1L · (log n)O(1) · 2kO(L) . Hence, the amortized time required

for all reinitializations of D can be bounded as n
1
L · (log n)O(1) · 2kO(L) per an update to D. As each

update to Dmain causes (k log n)O(L) updates to all structures in total and there are at most kL data
structures, the total amortized time required for all reinitializations per a single update to Dmain is
n
1
L · (log n)O(L) · 2kO(L) · kO(L) = n

1
L · (log n)O(L) · 2(Lε)O(L) = n

1
L · 2(Lε)O(L)+O(L log logn).

With these lemmas, we can present the final complexity analysis:

Lemma 5.3.16. L may be set so that the amortized time of an update to Dmain is nO(log log lognlog logn·ε) = no(
1
ε).

Proof. As both Lemmas 5.3.14 and 5.3.15 guarantee n
1
L · 2(Lε)O(L)+O(L log logn) time for the corresponding

computations, we get that the amortized time of an update to Dmain is equal to n
1
L · 2(Lε)O(L)+O(L log logn)

as well.
Let us set L = log logn

log log logn · ε · δ for some absolute constant δ ∈ (0, 1) independent on ε. For such a

choice we have that O(L log log n) 6
(
L
ε

)O(L)
, so the final complexity can be bounded by

n
1
L · 2(Lε)O(L) = n

log log logn
log logn·ε·δ · 2(log logn

log log logn ·δ)
O(log logn
log log logn ·ε·δ)

= 2
logn·log log logn
log logn·ε·δ · 22O(log logn·ε·δ)

= 2
logn·log log logn
log logn·ε·δ · 2(logn)O(ε·δ) .

If δ is sufficiently small, then O(ε · δ) can be bounded from above by 1
2 . Then, the second factor will be

dominated by the first one and the final complexity is then bounded by nO(log log lognlog logn·ε) = no(
1
ε).

However, the time complexity of f(ε) · no(1) would be preferable over no(
1
ε), so as the last step, let us

explain how to arrive at it. We will distinguish two cases, based on whether n > 22
1
ε2 .

Case 1: n > 22
1
ε2 .

Then we have log log n > 1
ε2 ⇒ ε >

√
log log n, so nO(log log lognlog logn·ε) = n

O
(
log log logn√
log logn

)
= no(1).

Case 2: n 6 22
1
ε2 .

In this case, instead of using our final algorithm, after every single update we can simply use
a brute-force method provided by Lemma 5.3.3 and approximately solve the instance in time

n · 2O(1ε) = 22
O(1

ε2)
.

In any case, the time complexity of an update can be bounded as 22
O(1

ε2)
· n
O
(
log log logn√
log logn

)
= f(ε) · no(1).

Then, the initialization of the data structure on an n-vertex graph G ∈ C can be performed in time n1+o(1):
We create an instance of the data structure for an edgeless n-vertex graph and add edges to it one by one.
Since |E(G)| 6 O(n) for any G ∈ C, the bound on the initialization time follows. This concludes the proof
of Theorem 1.3.7 in the setting of Maximum Weight Independent Set.

194 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

5.4 Minimum Weight Dominating Set

In this section, we describe a dynamic approximation scheme for Minimum Weight Dominating Set.
As in the case of the Maximum Weight Independent Set, we assume that a given apex-minor-free
class of graphs C is fixed. Moreover, throughout this section we denote by ε > 0 the parameter ε fixed in
the initialization of the data structure.

Consider the dynamic setting of Min Weight Generalized Domination. We assume that a data
structure for Generalized Domination is initialized with integers s, d > 1 and a dynamic (s, d)-decent
instance of Min Weight Generalized Domination. We consider the following types of updates to
instances of Min Weight Generalized Domination:

• AddVertex(u,Du, costu): Adds an isolated vertex, say u, to the instance, together with a domain
Du of size at most d and a cost function costu : Du → R>0 ∪ {+∞}. For each state s ∈ Du, we
initialize supplyu(s) = ∅ and demandu(s) = ∅.

• AddEdge(u, v,Dsupply
u , Ddemand

u , Dsupply
v , Ddemand

v): Adds an edge e with endpoints u and v; for each
endpoint w ∈ {u, v}, the edge e is added to each set supplyw(x) for x ∈ Dsupply

w and to each set
demandw(x) for x ∈ Ddemand

w .

• RemoveEdge(e): Removes an edge e from the graph, removing it also from the corresponding demand
and supply sets.

• UpdateCost(u, cost′u): Replaces costu for a vertex u ∈ V (G) with a new function cost′u : Du →
R>0 ∪ {+∞}.

As in the case with the independent set, we do not support vertex removals.
We now adapt the statement of Theorem 1.3.7 to the language of instances of Min Weight Gener-

alized Domination.

Lemma 5.4.1. Let s, d ∈ N be absolute constants and choose δ > 0. Then there exists a data structure
storing a dynamic (s, d)-decent instance I = (G,D, cost, supply, demand) of Min Weight Generalized
Domination under the assumption that G ∈ C holds at every point of time. The data structure maintains
a nonnegative real p satisfying (1 − δ)OPT 6 p 6 OPT, where OPT is the minimum possible cost of
a solution to I. The data structure is initialized in time f(δ)·n1+o(1), and each update takes time f(δ)·no(1),
where f(δ) is doubly-exponential in O(1/δ2).

Counterintuitively, instead of trying approximate Min Weight Generalized Domination by
finding an approximate solution that would have a slightly higher cost than optimal, the data structure
of Lemma 5.4.1 will maintain a good lower bound on the minimum possible cost of an instance. This is,
however, still enough to show that the query QueryMWDS of Theorem 1.3.7 can be answered correctly:
Assume, for some absolute constant ∆ ∈ N that we are given a dynamic graph G with a bound ∆ on the
maximum degree of a vertex in G and ε > 0, and we wish to maintain a nonnegative real p′ such that
OPT 6 p′ 6 (1 + ε)OPT, where OPT is the minimum weight of a dominating set of G. Set δ := ε

1+ε and
instantiate the data structure of Lemma 5.4.1, initializing it with the (∆,∆ + 1)-decent instance I of
Min Weight Generalized Domination constructed from G and the parameter δ. Each update to
G is translated to the appropriate update to I and forwarded to the constructed data structure. Thus,
the data structure is created in time f(δ) · n1+o(1) and each update to G takes time f(δ) · no(1). Since
1/δ = 1 + 1/ε and f is doubly-exponential in O(1/δ2), f is also doubly-exponential in O(1/ε2).

The data structure from Lemma 5.4.1 maintains a nonnegative real p such that (1−δ)OPT 6 p 6 OPT.
Setting p′ := p

1−δ , we obtain that OPT 6 p′ 6 (1 − δ)−1OPT = (1 + ε)OPT. Thus our implementation
can return p′ as the over-approximation of the minimum weight of a dominating set of G that is at most
a factor of ε away from the optimum weight.

5.4.1 Static variant of Generalized Domination

Here, we show how to apply the Baker’s technique to decent instances of Min Weight Generalized
Domination.

Lemma 5.4.2. Let s, d, w > 1. Given on input an (s, d)-decent instance of Min Weight Generalized
Domination I = (G,D, cost, supply, demand) with n > 1 vertices with the property that tw(G) 6 w, we
can compute the minimum cost of a solution to I in worst-case time O(ns) · dO(w).

5.4. MINIMUM WEIGHT DOMINATING SET 195

Proof of Lemma 5.4.2. Compute a tree decomposition T of G of width O(w) in time n · 2O(w), e.g., using
the algorithm of Korhonen [Kor21]. Then the problem can be modeled by a straightforward dynamic
programming scheme on tree decompositions; here, we only give the states of the dynamic programming
process.

For every node t ∈ V (T) of the tree decomposition with a bag bag(t) ⊆ V (G), let Xt :=
∏
v∈bag(t)Dv.

For each t ∈ V (T) and x ∈ Xt, we compute the value P [t][x]: the minimum cost of a locally correct
valuation φ of the vertices of G in the subtree of t in T with the property that for every v ∈ bag(t), we
have that φ(v) = x(v).

For each node t ∈ V (T), there exist at most d|bag(t)| 6 dO(w) different dynamic programming states. It
is then straightforward to implement the entire dynamic programming scheme in time dO(w) · O(sn); here,
the additional factor O(s) in the time complexity comes from the need of the verification of the demands
and the supplies for each edge of the graph.

Lemma 5.4.3. Let s, d, k > 1. Consider an (s, d)-decent instance of Min Weight Generalized
Domination I = (G,D, cost, supply, demand) of optimum cost OPT. Let V0, . . . , Vk−1 ⊆ V (G) be so that
the sets NG[V0], NG[V1], . . . , NG[Vk−1] are pairwise disjoint. For each j ∈ {0, . . . , k − 1}, consider the
instance Ij := Clear(I;Vj). Then:

• for every j ∈ {0, . . . , k − 1}, Ij is (s, d)-decent and has a solution of cost at most OPT;

• there exists j ∈ {0, . . . , k−1} such that the minimum-cost solution to Ij has cost at least (1− 1
k)OPT.

Proof. By the properties of Vj-cleared instances, we immediately have that each Ij has a solution of cost
at most OPT. It remains to show that for some j ∈ {0, . . . , k − 1}, some subinstance Ij has the minimum
cost of a solution lower-bounded by (1− 1

k)OPT.
Let φ be some optimum solution to I. By the pigeonhole principle and the fact that the closed neighbor-

hoods of all sets Vj are pairwise disjoint, there exists some j ∈ {0, . . . , k−1} such that cost(φ|N [Vj]) 6
1
kOPT.

We claim that OPTj , the minimum cost of a solution of Ij , is at least (1− 1
k)OPT.

Suppose we have a solution ψj to Ij of cost strictly less than (1− 1
k)OPT. Recall that V (Ij) = V (I)

and that each ψj(v) for each v ∈ V (I) is also an element of the domain of v in I. With that in mind,
construct a valuation φ′ of V (I) as follows:

• if v ∈ Vj , set φ′(v) to the combination of the state φ(v) with ψj(v);

• if v ∈ N(Vj), set φ′(v) to the combination of the state ψj(v) with φ(v);

• otherwise, set φ′(v) := ψj(v).

We now show that the construction of φ′ contradicts our assumptions:

Claim 5.4.4. φ′ is a valid solution to I of cost strictly less than OPT.

Proof of the claim. Suppose φ′ is not a valid solution to I. Then there exists an edge e with endpoints
u, v such that e ∈ demandv(φ′(v)), but e /∈ supplyu(φ′(u)). By the definition, the edge cannot have one
endpoint in Vj and the other outside of N [Vj]. We now consider cases, depending on the location of u and
v with respect to Vj :

• Assume v ∈ Vj . By the state-monotonicity of v, we have demandv(φ′(v)) ⊆ demandv(φ(v)), so e ∈
demandv(φ(v)). Then also u ∈ N [Vj]. By the state-monotonicity of u, we have that supplyu(φ′(u)) ⊇
supplyu(φ(u)), so e /∈ supplyu(φ(u)). This is, however, a contradiction: e witnesses that φ was not
a valid solution to I in the first place.

• Assume v /∈ Vj . Then e ∈ demandv(ψj(v)): either v ∈ N(Vj) and then this follows from the state-
monotonicity of v (so demandv(φ′(v)) ⊆ demandv(ψj(v))), or v /∈ N [Vj] and then simply φ′(v) =
ψj(v). Also, from the state-monotonicity of u ∈ V (G) we have that supplyu(φ′(u)) ⊇ supplyu(ψj(u)),
so e /∈ demandu(ψj(u)). Since v /∈ Vj , we have e ∈ E(Ij), so this yields a contradiction: e witnesses
that ψj was not a valid solution to Ij in the first place.

Hence φ′ is a correct solution to I. By the state-monotonicity of vertices of I, and by the facts that
cost(φ|N [Vj]) 6

1
kOPT and ψj has cost less than (1− 1

k)OPT, we conclude that φ′ has cost strictly smaller
than OPT. C

Claim 5.4.4 yields a contradiction. Thus Ij has no solution of cost smaller than (1− 1
k)OPT.

196 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

Lemma 5.4.5. Let s, d > 1, δ > 0, and consider an (s, d)-decent instance of I ∈ C of Min Weight
Generalized Domination with n > 1 vertices and optimum solution cost OPT. Then we can compute
a nonnegative real p such that (1− δ)OPT 6 p 6 OPT in time O(ns) · dO(1/δ).

Proof. Assume without loss of generality that δ ∈ (0, 1), and set k :=
⌈

1
δ

⌉
. Assume that the instance I is

connected; otherwise, solve for each connected component separately and return the sum of the results.
Fix a vertex r ∈ V (I) and create in time O(n) the partition V (I) = A0 ∪ · · · ∪A4k−1, where Ai contains
vertices v such that dist(r, v) ≡ i mod 4k. Then, for each j ∈ {0, . . . , k − 1}, let Vj = A4j+1 ∪A4j+2 and
Ij = Clear(I;Vj). Note that N [Vj] ⊆ A4j ∪A4j+1 ∪A4j+2 ∪A4j+3, so the closed neighborhoods of the sets
Vj are pairwise vertex-disjoint and Lemma 5.4.3 applies. That is, if OPT is the minimum-cost solution to
I, then each Ij is (s, d)-decent and has a solution of cost at most OPT, and there exists a subinstance
with minimum cost of a solution at least (1− 1

k)OPT > (1− δ)OPT.
Observe that for each j ∈ {0, . . . , k − 1}, the Gaifman graph of Ij has bounded treewidth: Consider

a connected component C of the Gaifman graph. The component cannot simultaneously contain vertices
of A4j+1 and A4j+2, so the vertex set of C is contained within some 4k consecutive BFS layers. In other
words, for some ` > 0, we have that C ⊆ {v ∈ V (G) | ` 6 dist(s, v) 6 `+ 4k − 1}. Thus by Lemma 5.3.2,
G[C] has treewidth at most O(k), so also the Gaifman graph of Ij has treewidth at most O(k) = O(1

δ).
Let OPT be the minimum-cost solution to I. By Lemma 5.4.3, each Ij is (s, d)-decent, the treewidth

of the Gaifman graph of Ij is at most O(1
δ), all instances have solutions of cost at most OPT, and there

exists an instance with the minimum cost of a solution at least (1− 1
kOPT) > (1− δ)OPT. Now, we solve

each instance Ij optimally using the algorithm from Lemma 5.4.2. Let pj be the value returned by Ij and
let p = max(p0, . . . , pk−1); then p ∈ [(1− δ)OPT,OPT], so p is as required. It can be easily verified that
the algorithm runs in time n · s · dO(1/δ).

5.4.2 Compression for Generalized Domination

We proceed to show how to translate the process of instance compression to the setting of Min Weight
Generalized Domination.

We begin by presenting how to encode interactions between a set of vertices and its neighborhood in
a concise way. Consider an instance I = (G,D, cost, supply, demand) and a set of vertices R ⊆ V (I). Let
also S be the neighborhood of R, i.e., S = NG(R). For every valuation φ ∈

∏
u∈RDu of R, we define the

interaction of R with S:

interactionR,S(φ) ∈
(

2{Supply,Demand}
)E(R,S)

,

so that interactionR,S(φ) is a function x mapping each edge connecting R with S to a subset of
{Supply,Demand} as follows: Let e ∈ δ(S), e = uv, where u ∈ R and v ∈ S. Then we have Supply ∈ x(e)
if and only if e ∈ supplyu(φu)), and Demand ∈ x(e) if and only if e ∈ demandu(φ(u)).

In other words, we record, for every edge e connecting a vertex u ∈ R with a neighbor v ∈ S, whether
u provides supply on e (so that in any solution extending φ to I, v can safely demand that supply) and
whether u demands supply on e (so that in a solution extending φ to I, v has to provide that supply).
Intuitively, interactionR,S(φ) stores the entire interaction of R with the neighborhood in a concise way.
The following lemma formalizes this intuition:

Lemma 5.4.6. Let R ⊆ V (I) and S = N(R). Assume φ is a correct solution to I and ψ is a locally
correct solution on R so that interactionR,S(φ|R) = interactionR,S(ψ). Then, the following valuation φ′ of
V (I):

φ′(u) =

{
ψ(u) if u ∈ R,
φ(u) if u /∈ R

is also a correct solution to I.

Proof. Assume otherwise; in this case, there exists an edge e ∈ E(G) between u and v so that e ∈
demandv(φ′(v)), yet e /∈ supplyu(φ′(u)). It cannot be that u, v ∈ R since φ′|R = ψ is locally correct on R;
and also it cannot be that u, v /∈ R as φ′|V (I)\R = φ|V (I)\R and φ is a correct solution to I. Hence, exactly
one of the endpoints of e is in R.

If u ∈ R, then v ∈ S. Since φ′(u) = ψ(u), we have that e /∈ supplyu(ψ(u)) and therefore Supply /∈
interactionR,S(ψ)(e). So also Supply /∈ interactionR,S(φ|R)(e), implying e /∈ supplyu(φ(u)). But φ′(v) = φ(v),
so e ∈ demandv(φ′(v)) implies e ∈ demandv(φ(v)). This is a contradiction since e witnesses that φ was not
a correct solution to I in the first place.

5.4. MINIMUM WEIGHT DOMINATING SET 197

The other case is that v ∈ R and u ∈ S. From φ′(v) = ψ(v) we have e ∈ demandv(ψ(v)), so
Demand ∈ interactionR,S(ψ)(e), so Demand ∈ interactionR,S(φ|R)(e) and e ∈ demandv(φ(v)). Also, since
φ′(u) = φ(u), then we have e /∈ supplyu(φ(u)) – a contradiction as e witnesses that φ was not a correct
solution to I.

We are now ready to give the definition of a compressed instance.

Definition 13. Let I = (G,D, cost, supply, demand) be an (s, d)-decent instance of Min Weight Gen-
eralized Domination and Y ⊆ V (I). Then, we say that a compressed instance is an instance
I{Y } = (G′, D′, cost′, supply′, demand′) created from I by the following series of steps:

1. Enumerate all connected components C1, . . . , C` ∈ cc(G \ Y). Assume that, for some `1 ∈ {0, . . . , `},
the neighborhood of each component C1, . . . , C`1 intersects Y , and the neighborhood of each component
C`1+1, . . . , C` is disjoint from Y (that is, each C`1+1, . . . , C` is a connected component of G not
adjacent to Y).

2. For each i ∈ {1, . . . , `1}, let Si = N(Ci) ⊆ Y . Collapse Ci to a single vertex ui with the domain

Dui :=
(

2{Supply,Demand}
)E(Ci,Si)

.

For each x ∈ Dui , we set costui(x) to the minimum cost of a valuation φ ∈
∏
u∈Ci Du, locally correct

on Ci, so that x = interactionCi,Si(φ). If no such valuation exists, we set costui(x) = +∞.

Finally, set the supply and the demand of any given state x as follows:

supply′ui(x) = {e ∈ E(Ci, Si) | Supply ∈ x(e)},
demand′ui(x) = {e ∈ E(Ci, Si) | Demand ∈ x(e)}.

3. Collapse R := C`1+1 ∪ · · · ∪C` to a single isolated vertex u	 with the one-state domain Du	 = {	};
the cost costu	() is defined as the minimum-cost valuation of R that is locally correct on R (note
that a valuation locally correct on R with finite cost always exists).

Intuitively, each component Ci ∈ cc(G \ Y) with nonempty neighborhood S on Y is collapsed into
a single vertex ui; note that, in contrast to the compression for Independent Set, different components
with the same neighborhood S are collapsed to separate vertices. The collapsed vertex encodes in its
state all possible interactions of Ci with Si. Note that by Lemma 5.4.6, it is enough to record, for each
possible interaction, the minimum-cost valuation of Ci with this interaction on Si. On the other hand, the
components not adjacent to Y do not interact with Y in any way, so the union R of these components
can be replaced with a single vertex representing the minimum-cost locally correct valuation of R.

Observe that the construction above is correct in the sense that in I{Y }, every vertex u has a state su
with finite cost and full supply supplyu(su) = δ(u): For u ∈ Y ∪ {	} this is obvious. Then, for a vertex
ui with i ∈ {1, . . . , `1}, there exists a finite-cost valuation φi, locally correct on Ci, mapping each vertex
u ∈ Ci to su. Moreover, for this valuation, we have Supply ∈ interactionCi,Si(φi)(e) for all e ∈ E(Ci, Si).

We now prove a series of properties of compressed instances. We begin by proving that compression
does not change the minimum cost of an instance:

Lemma 5.4.7. For every instance I of Min Weight Generalized Domination and Y ⊆ V (I), the
instances I and I{Y } have the same minimum cost of a solution.

Proof. Let OPT be a minimum cost of a solution to I = (G,D, cost, supply, demand) and OPT′ be
a minimum cost of a solution to I{Y } = (G′, D′, cost′, supply′, demand′). Also let α : V (I) → V (I{Y })
be a function mapping vertices v ∈ V (I) onto elements of V (I{Y }) to which v was collapsed during the
compression. Note that α(v) = v for v ∈ Y .

Let φ be any minimum-cost solution to I. We construct a correct solution φ′ to I{Y } as follows.

• If u ∈ Y , then set φ′(u) := φ(u).

• If u /∈ Y and u 6= u	, then let C = α−1(u) ∈ cc(G \ Y), S = NG(C) ⊆ Y , and set φ′(u) :=
interactionC,S(φ|C).

• Set φ′(u) = 	.

198 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

The correctness of φ′ follows easily from the definition. Note that for every u ∈ Y , we naturally have
cost′u(ψ(u)) = costu(φ(u)). For u /∈ Y with u 6= u	, let C = α−1(u) ∈ cc(G \ Y) and S = NG(C). Since
φ|C is a locally correct valuation of C with interaction φ′(u) and cost′u(φ′(u)) is the minimum cost of such
a valuation, we have cost′u(ψ(u)) 6 costu(φ|C). By the same token, φ|α−1(u) is a locally correct valuation
of α−1(u) and cost′u	() is the minimum cost of such a valuation; thus, cost′u	() 6 costu(φ|α−1(u)).
Hence the cost of φ′ in I{Y } is at most equal to the cost of φ in I. Thus OPT′ 6 OPT.

Now let ψ′ be any minimum-cost solution to I{Y }. Recover a valid solution ψ to I as follows.

• If u ∈ Y , then set ψ(x) := ψ′(x).

• If u /∈ Y and u 6= u	, then let C = α−1(u) ∈ cc(G\Y) and S = N(C) ⊆ Y . Let ζC ∈
∏
v∈C Dv be the

minimum-cost locally correct valuation of C with interactionC,S(ζC) = ψ′(u), and set ψ(x) := ζC(x)
for x ∈ C.

• Similarly, if u = u	, then let R = α−1(u), and let ζR ∈
∏
v∈R be the minimum-cost locally correct

valuation of R; set ψ(x) := ζR(x) for x ∈ R.

It can be verified through a straightforward case study that φ is a valid solution to I, and φ has the same
total cost as ψ in I{Y }. Therefore OPT 6 OPT′.

We proceed to show that, under suitable conditions, compressed instances are decent and belong to C
if the original instance belonged to C:

Lemma 5.4.8. If I ∈ C and Y ⊆ V (I), then I{Y } ∈ C.

Proof. As in Lemma 5.3.6, we can show that the Gaifman graph of I{Y } is a minor of the Gaifman graph
of I. Thus, I{Y } ∈ C.

Lemma 5.4.9. Let s, d, t > 1. Consider an (s, d)-decent instance I = (G,D, cost, supply, demand) and
Y ⊆ V (I). If for every connected component C ∈ cc(G \ Y), we have |N(C)| 6 t, then I{Y } =
(G′, D′, cost′, supply′, demand′) is (st, d+ 4st)-decent.

Proof. First observe that the set of edges incident to vertices of Y does not change under the compression;
thus (s, d)-meager vertices of Y remain (s, d)-meager. For the same reason, each state-monotonous vertex
of Y remains such.

Now consider a vertex u ∈ I{Y } \ (Y ∪ {u	}) created as a result of a collapse of a component
C ∈ cc(G \ Y) with neighborhood S ⊆ Y . By the definition of u, we see that |Du| = 4|E(C,S)|. Observe
that |E(C, S)| 6 |S| · s as every vertex of S is (s, d)-meager and thus is incident to at most s edges. Also,
|S| 6 t from the assumption. Hence, |Du| 6 4st. Also, it is easy to verify that the degree of u in I{Y } is
equal to |E(C, S)| 6 st.

It remains to verify that u is state-monotonous. Recall that D′u =
(
2{Supply,Demand})|E(C,S)|

. Consider
two states x1, x2 ∈ D′u, aiming to prove that there exists a combination x of x1 with x2. If cost′u(x1) +
cost′u(x2) = +∞, then it is enough to put as x the constant function always returning {Supply}; i.e.,
the state x for which supply′u(x) = δG′(u) and demand′u(x) = ∅. Otherwise, there exist locally correct
valuations φ1, φ2 of C, of cost exactly cost′u(x1) and cost′u(x2), respectively, so that interactionC,S(φ1) = x1

and interactionC,S(φ2) = x2. Construct a new valuation φ of C as follows: For each v ∈ C, let φ(v) be the
combination of φ(x1) with φ(x2), and let x := interactionC,S(φ). The following claims are straightforward
and follow from the verification with the definitions.

Claim 5.4.10. φ is locally correct on C and has cost at most cost′u(x1) + cost′u(x2).

Claim 5.4.11. Let e ∈ E(C, S). Then Supply ∈ x(e) if and only if Supply ∈ x1(e) or Supply ∈ x2(e).
Moreover, if Demand ∈ x(e), then Demand ∈ x1(e).

It follows that x is a combination of x1 with x2. Since x1, x2 were chosen arbitrarily, we conclude that
u is state-monotonous.

Finally, the vertex u	 is isolated and contains only one state in its domain; hence it is state-monotonous
and (1, 1)-decent.

5.4. MINIMUM WEIGHT DOMINATING SET 199

5.4.3 Dynamic maintenance of compressions

We now introduce the analog of Lemma 5.3.8 in the setting of Generalized Domination. Note that the
proof of the following lemma follows closely that of Lemma 5.3.8, however we provide it here in full for
completeness.

Lemma 5.4.12. Let w, n, s, d ∈ N. One can construct a data structure that supports the following
operations:

• Initialize the data structure with an n-vertex (s, d)-decent instance of Min Weight Generalized
Domination I = (G,D, cost, supply, demand), where G ∈ C and tw(G) 6 w.

• Update the instance I using one of the following update types: AddVertex, AddEdge, RemoveEdge,
UpdateCost. It is guaranteed that after the update, we have that G ∈ C and the instance I after the
update is (s, d)-decent.

The initialization of the data structure is performed in time 2O(sw) ·d ·n log n. Afterwards, the data structure
additionally maintains an instance I? = (G?, D?, cost?, supply?, demand?) of Min Weight Generalized
Domination with the following properties:

(a) G? ∈ C;

(b) the minimum cost of a solution to I? is equal to that of I;

(c) I? is (O(sw), d+ 4O(sw))-decent;

(d) after a sequence of t > 0 updates to I, we have |V (I?)| 6 t · s ·wO(1) log n. Moreover, on each update
to I, the instance I? can be updated in time 2O(sw) · log n and causes at most s · wO(1) log n updates
to I?.

Proof. As in the case of the independent set, preprocess G in time 2O(w) ·n log n and produce an elimination
forest F of G with V (F) = V (G) with the following properties:

• F has height O(w log n);

• for each u ∈ V (F), we have |ReachF (u)| = O(w);

• for each u ∈ V (F), the graph G[descF [u]] is connected.

For convenience, for each u ∈ V (G), let Cu = descF [u], Su = ReachF (u) = N(Cu) and Xu =(
2{Supply,Demand})E(Cu,Su)

. Observe that each element of interactionCu,Su is an element of Xu. Note that
|Su| 6 O(w) and I is (s, d)-decent, so |E(Cu, Su)| 6 O(sw) and therefore |Xu| 6 2O(sw).

Observe also that the nodes in the elimination forest have bounded degrees:

Claim 5.4.13. Every node u ∈ V (F) has at most O(sw) children in F .

Proof of the claim. Enumerate the children of u in F : c1, . . . , ct. For each ci, we have ReachF (ci) ⊆
ReachF (u) ∪ {u}. Each such ci is thus a neighbor of some vertex in ReachF (u) ∪ {u}. The claim follows
since each vertex of G has degree at most s and that |ReachF (u) ∪ {u}| 6 O(w). C

On initialization of the data structure, compute the following dynamic programming table:

• For each u ∈ V (F) and every interaction x ∈ Xu, compute T [u][x]: the minimum possible cost of
a locally correct partial solution φ ∈

∏
x∈Cu Dx such that interactionCu,Su(φ) = x; or +∞ if no such

partial solution exists.

The table T [·][·] has at most n · 2O(sw) states and can be computed in time nd · 2O(sw). Hence, the
total preprocessing time is upper-bounded by 2O(sw) · nd log n. Also observe that the table T [·][·] suffices
to compute the minimum-cost solution for I at the time of initialization: the cost is equal to the sum over
T [r][∅], ranging over all roots r of trees of F .

As before, in the beginning we set A = B = Z = ∅.
Let I init = (Ginit, Dinit, costinit, supplyinit, demandinit) be the initial instance of 2CSP. In the sequel, by
Icur = (Gcur, Dcur, costcur, supplycur, demandcur) we denote the current snapshot of the instance in the
data structure; initially, Icur := I init.

Recall from the setting of the Independent Set that throughout the life of the data structure, we
maintain the following invariants:

200 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

• A = V (Icur) \ V (I init) is the set of vertices added to I since the instantiation of the data structure.

• B ⊆ V (Icur) is the set of vertices that were part of any update to I so far (i.e., v ∈ B if v was added
to I, the cost of v was changed, or an edge incident to v was added or removed).

• Z = A ∪ ancF [B \ A]. In other words, Z contains all vertices of A and the ancestors in F of all
vertices of B \A.

• I? is equivalent to Icur{Z}.

Now, the costs of the vertices in the compressed instance can be inferred from the entries of T [·][·]:

• The connected components of Gcur \ Z adjacent to Z are exactly the components of the form
descF [y], where y /∈ Z is not a root of any tree in F and parentF (y) ∈ Z. In the compression, for
each y, we introduce one vertex uy ∈ I{Z} \ Z with the domain Duy = Xy and the cost function
costuy : Duy → R>0 ∪ {+∞}, where costuy (x) = T [y][x] for x ∈ Duy .

• The connected components of Gcur \ Z nonadjacent to Z are exactly the components of the form
descF [r], where r /∈ Z is a root of a tree in F . All these connected components are collapsed to
a single vertex uε with a single state ε, of cost that is the sum over T [r][∅] for all roots r /∈ Z of
trees in F .

Recall the following claim from the setting of the Independent Set. Note that since the sets A, B, Z
are constructed as in that setting, the claim also holds here.

Claim 5.4.14. On each update to I, the set Z grows by at most O(w log n) vertices.

Two instances I1, I2 of Min Weight Generalized Domination are equivalent if the instances are
isomorphic after the removal of all isolated vertices with the constant-zero cost function. We now sketch
a single update to Z – an addition of an appendix of Z.

Claim 5.4.15. Let two sets Z1, Z2 ⊆ V (Gcur) be such that A ⊆ Z1 ⊆ Z2 ⊆ V (Gcur), |Z2| = |Z1|+ 1 and
Z1 \A and Z2 \A are prefixes of F with Z2 − Z1 ⊆ V (F). Then, an instance equivalent to Icur{Z2} can
be obtained from an instance equivalent to Icur{Z1} through a sequence of swO(1) updates. Moreover, this
sequence can be computed in time 2O(sw).

Proof of the claim. Let z ∈ V (F) be such that Z2 = Z1 ∪ {z}. Let C1 be the set of connected components
of Gcur \ Z1, C2 be the set of connected components of Gcur \ Z2 and c1, . . . , ct be the set of children of z
in F . We have that C1 \ C2 = {Gcur[descF [z]]} and C2 \ C1 = {Gcur[descF [c1]], . . . , Gcur[descF [ct]]}.

Let S = ReachF (z). The compressed instance Icur{Z1} contains a vertex vS representing the union of
all connected components of Gcur \ Z1 whose neighborhoods are exactly S; and Gcur[descF [z]] is one of
such components. To obtain Icur{Z2} from Icur{Z1}, we need to:

1. Remove the contribution of Gcur[descF [z]] ∈ C1 \ C2 from the compressed instance. If z is nonroot,
then the vertex uz corresponding to the collapse of descF [z] should be removed from the instance;
this is emulated by removing all edges incident to uz and replacing the cost of uz with the zero
function; this can be done using O(w) updates to the compressed instance. Otherwise, descF [z] is
collapsed to the special vertex uε (possibly with other connected components nonadjacent to Z).
Then, uε has only one state ε, and its cost is adjusted by simply subtracting T [z][∅].

2. Add the vertex z to the compressed instance. Since the set of neighbors of z in Z1 is exactly
ReachF (z), this requires one vertex addition and O(w) edge additions.

3. Include the contribution of the connected components Gcur[descF [c1]], . . . , Gcur[descF [ct]] ∈ C2 \ C1

in the compressed instance. Since t 6 O(sw) by Claim 5.4.13, we simply iterate all components and
for each, we add the corresponding vertex uci to the instance (with the costs of the states sourced
from T), along with at most O(w) edges incident to each vertex. Thus, the number of updates to
the compressed instance is O(sw2). For each fresh vertex, we iterate over all |Xci | = 2O(sw) states
uci can attain, so the total time of the update is O(sw2) · 2O(sw) = 2O(sw). C

As before, the implementation of the data structure directly follows from Claims 5.4.14 and 5.4.15.
Since on each update to Icur, the set Z is updated O(w log n) times, the total number of updates performed
on I? is O(w log n) · swO(1) = swO(1) log n. Therefore, the total update time is 2O(sw) log n.

5.4. MINIMUM WEIGHT DOMINATING SET 201

5.4.4 Full algorithm

We are now ready to give the exposition of the data structure proving Lemma 5.4.1. The rest of this
section describes the data structure Dmain maintaining a (s, d)-decent dynamic instance of Min Weight
Generalized Domination Imain = (Gmain, Dmain, costmain, supplymain, demandmain). Similarly to the
case of Max Weight Nullary 2CSP, we fix an integer L ∈ N and set k := dL/δe. We construct
a recursive, L-level data structure comprised of auxiliary data structures maintaining subinstances of Min
Weight Generalized Domination; the only data structure at level L maintains Imain, and each data
structure D at level q ∈ {2, 3, . . . , L} stores a collection of k children data structures at level q − 1.

A data structure D at level q maintaining an instance I = (G,D, cost, supply, demand) preserves the
following invariants:

(I1) G ∈ C and |V (G)| 6 nq/L;

(I2) I is (ŝ(q), d̂(q))-decent, for some functions ŝ, d̂ to be exactly specified later;

(I3) D maintains a nonnegative real p satisfying (1− δ · qL)OPT 6 p 6 OPT, where OPT is the minimum
cost of a solution to I.

Each data structure at level 1 maintains an instance I of size at most n1/L and computes an approximate
lower bound on the cost of the solution within the δ

L fraction of OPT, by rerunning the Baker’s technique
on each update. By Lemma 5.4.5, each update to such a data structure takes time n1/L · ŝ(1) · d̂(1)O(L/δ).

Now consider a data structure D at level q > 2 maintaining a (ŝ(q), d̂(q))-decent instance I =
(G,D, cost, supply, demand) of Min Weight Generalized Domination. We define a variable Icur =
(Gcur, Dcur, costcur, supplycur, demandcur) tracking the current snapshot of I. The lifetime of D is partitioned
into epochs: sequences of τq updates to I, with τq to be specified later. The first epoch begins when D is
initialized; and a new epoch begins each time D processes τq updates to I.

Let Iold = (Gold, Dold, costold, supplyold, demandold) be the snapshot of I at the start of each epoch;
that is, at the start of an epoch, we set Iold := Icur. We partition V (Gold) into layers L0, . . . , L4k−1 as
follows: If Gold is connected, choose a vertex r ∈ V (G) and assigning a vertex v ∈ V (G) to Lj if and only
if distGold(r, v) ≡ j mod 4k. If Gold is disconnected, produce a partition into layers for each connected
components, and let Lj be the union over jth layers for each connected component.

We now define pairwise disjoint dynamic sets V0, . . . , Vk−1. For each i ∈ {0, . . . , k − 1}, let V old
i :=

L4i+1 ∪ L4i+2 be the initial contents of Vi. Thanks to this choice, all Vi-cleared subinstances of I have
small treewidth:

Lemma 5.4.16. For each i ∈ {0, . . . , k − 1}, the treewidth of the Gaifman graph of Clear(Iold;Vi) is
bounded by O(k).

Proof. Let C be a connected component of the Gaifman graph of Clear(Iold;Vi). Note that C cannot
simultaneously contain vertices at distance 4k`+ (4i+ 1) and 4k`+ (4i+ 2), for any ` ∈ N. Therefore, C
is contained within the set of vertices of Clear(I init;Vi) at distance at least ` and at most `+ 4k − 1, for
some ` ∈ N. By Lemma 5.3.2, C has treewidth bounded by O(k). Therefore, the entire Gaifman graph of
Clear(Iold;Vi) has treewidth bounded by O(k).

Note that the sets Vi are, contrary to the case of Max Weight Nullary 2CSP, dynamic – when
processing some updates, we may decide to shrink some of these sets. Given that, let i ∈ {0, . . . , k − 1},
let V cur

i track the current contents of Vi. We maintain the following invariants about each set V cur
i :

• For each i ∈ {0, . . . , k − 1}, we have that V cur
i ⊆ V old

i .

• The sets NGcur [V cur
0], . . . , NGcur [V cur

k−1] are pairwise disjoint.

By the construction of Vi, the invariants are satisfied at the time of the initialization: We have
Gcur = Ginit, so for each i ∈ {0, . . . , k − 1} it holds that NGcur [V cur

i] ⊆ L4i ∪ L4i+1 ∪ L4i+2 ∪ L4i+3. Note
that from the invariant it follows that the sets V cur

i are pairwise disjoint.
Next, we maintain k universes Icur

0 , . . . , Icur
k−1, where Icur

i = Clear(Icur;V cur
i). For each universe, we

initialize a data structure from Lemma 5.4.12, maintaining an instance I?i that is a compression of Icur
i

with the same minimum cost of a solution. Finally, we initialize k child data structures D0, . . . ,Dk−1 at
level q − 1, where each Di stores the compressed instance I?i and maintains a (1− δ q−1

L)-approximation
to the minimum cost of a solution to I?i . As previously, this initialization is recursive: Each child data

202 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

structure maintains another collection of k child data structures at level q− 2 each, etc., until construction
kq−1 data structures at level 1 in total.

Assume each child data structure Di maintains a good lower bound pi on the minimum cost of a solution
to Icur

i ; then we can also preserve a good lower bound on the minimum cost of a solution to I by keeping
the maximum of the lower bounds:

Lemma 5.4.17. Let OPTi be the minimum cost of a solution to the instance Icur
i , and let pi be so that

(1− δ q−1
L)OPTi 6 pi 6 OPTi. Let p = max(p0, . . . , pk−1). Then (1− δ qL)OPT 6 p 6 OPT, where OPT is

the minimum cost of a solution to I.

Proof. Recall that the closed neighborhoods of the sets V cur
0 , . . . , V cur

k−1 are pairwise disjoint. Thus,
Lemma 5.4.3 applies to the cleared subinstances Icur

0 , . . . , Icur
k−1 and we get that:

• for every j ∈ {0, . . . , k − 1}, we have that OPTj 6 OPT;

• there exists j ∈ {0, . . . , k − 1} such that OPTj > (1− 1
k)OPT.

Thus, by our assumptions, for every j ∈ {0, . . . , k−1} we have pj 6 OPT, so also p 6 OPT. Moreover, there
exists j ∈ {0, . . . , k − 1} with OPTj > (1− 1

k)OPT. For this value of j, we have pj > (1− δ q−1
L)OPTj , so

in total, pj > (1− δ q−1
L)(1− δ 1

L)OPT > (1− δ qL)OPT. As p > pj , we conclude that p > (1− δ qL)OPT.

We now show how the data structure is updated. First, we describe the removal of a vertex v ∈ V cur
i

from V cur
i . In this setting, the cleared subinstance Icur

i must be updated: Each of the edges of Icur with
one endpoint in v and the other endpoint in V cur

i \ {v} must be introduced to Icur
i . Moreover, since v

ceases to be relieved in Icur
i , the function demandv in Icur

i must be amended; this is done by removing
and reinserting all already existing edges incident to v with the updated demand sets. Since Icur is
(ŝ(q), d̂(q))-decent, the entire process involves O(ŝ(q)) updates to Icur

i . Each of these updates, in turn,
causes the data structure from Lemma 5.4.12 to apply a number of updates to I?i , which are then relayed
to Di.

Now, we implement an update to Icur (i.e, AddVertex, AddEdge, RemoveEdge, or UpdateCost). For
every vertex v involved in the update (a fresh vertex, an endpoint of an added or removed edge, or
a vertex with its cost updated), whenever v belongs to some set V cur

i , we first remove v from V cur
i as

described above. Afterwards, we apply the update to each subinstance Icur
i ; again, the data structure

from Lemma 5.4.12 then issues a number of updates to I?i , which we relay to Di. Finally, D recomputes
a lower bound on the minimum cost of a solution to Icur by querying each Di for the lower bound pi on
the minimum cost of a solution to I?i and returning the maximum value.

It remains to verify the satisfaction of the invariants. First, we verify the invariants regarding the
sets V cur

0 , . . . , V cur
k−1. The only nontrivial property is the preservation of the disjointness of the closed

neighborhoods of the sets after the addition of an edge to Icur:

Lemma 5.4.18. Let G be a graph and V0, . . . , Vk−1 ⊆ V (G) be so that NG[V0], . . . , NG[Vk−1] are pairwise
disjoint. Let also u, v ∈ V (G), and consider a graph G′ equal to G with an edge uv added, and V ′i = Vi\{u, v}
for i ∈ {0, . . . , k − 1}. Then NG′ [V ′0], . . . , NG′ [V ′k−1] are pairwise disjoint.

Proof. Let i ∈ {0, . . . , k − 1} and suppose there exists a vertex w ∈ NG′ [V ′i] \ NG[Vi]. Equivalently,
NG′ [w] intersects V ′i , but NG[w] is disjoint from Vi. If w /∈ {u, v}, then NG′ [w] = NG[w] and V ′i ⊆ Vi –
a contradiction. Now assume without loss of generality that w = u. Then NG′ [w] ⊆ NG[w] ∪ {v}, but
V ′i ⊆ Vi \ {v} – again a contradiction. We conclude that NG′ [V ′i] ⊆ NG[Vi] for every 0 6 i < k, so if the
sets NG[V0], . . . , NG[Vk−1] were pairwise disjoint, then so are NG′ [V ′0], . . . , NG′ [V ′k−1].

Since each update to Icur causes at most O(ŝ(q)) updates to each Icur
i , it follows that during one

epoch, the size of each I?i does not grow above τq · (ŝ(q) · k)O(1) log n (Lemma 5.4.12(d)). Later, we will
choose τq so that this value is significantly less than n(q−1)/L so as to ensure the satisfaction of invariant
(I1) by the children data structures; the fact that the Gaifman graph of I?i belongs to C follows from
Lemma 5.4.12(a). The invariant (I2) is satisfied due to Lemma 5.4.12(c), provided we set ŝ and d̂ according
to the bounds provided by Lemma 5.4.12. Also, since the revenue of an optimum solution to I?i is equal to
that of Icur

i (Lemma 5.4.12(b)), each child data structure Di maintains a nonnegative real pi satisfying the
preconditions of Lemma 5.4.17. Therefore, the value p := max(p0, . . . , pk−1) is an (1− δ qL)-approximation
of the optimum revenue in Icur, which proves the satisfaction of invariant (I3) by D. Finally, as previously,
when an epoch in D ends, D is reinitialized with Iold := Icur and a new epoch starts, causing the destruction
and the recursive reinitialization of the children data structures Di.

5.4. MINIMUM WEIGHT DOMINATING SET 203

5.4.5 Setting the parameters and time complexity analysis

Here, we perform the complexity analysis of the data structure for Min Weight Generalized Domina-
tion. That is, we prove the following statement:

Lemma 5.4.19. Suppose that the values s, d are absolute constants. Then the parameters L, ŝ(·), d̂(·)
and τ· can be chosen so that the data structure for Min Weight Generalized Domination performs
each update in time f(δ) · no(1), where f(δ) is doubly-exponential in O(1/δ2).

The proof is an adaptation of Section 5.3.5 to the setting ofMin Weight Generalized Domination
with slightly different bounds in several parts of the analysis.

Proof. Recall that all constants depending on C are absolute constants.
First, we bound the values of ŝ(·) and d̂(·).

Claim 5.4.20. One can set functions ŝ and d̂ so that the invariant (I2) is satisfied for all constructed
data structures, and moreover ŝ(q) ∈ kO(L) and d̂(q) ∈ 2k

O(L)
for all q ∈ {1, . . . , L}.

Proof of the claim. Recall that (c) states that the data structures at level q maintain (ŝ(q), d̂(q))-decent
instances of Min Weight Generalized Domination. By the assumptions, it is enough to set ŝ(L) = s

and d̂(L) = d, i.e., ŝ(L) and d̂(L) are absolute constants. Assuming that a given data structure D at level
q > 1 maintains a (ŝ(q), d̂(q))-decent instance I of Min Weight Generalized Domination, D stores
a collection of children data structures at level q − 1, each maintaining a compression of I produced by
Lemma 5.4.12; from Lemma 5.4.12(c) we infer that each such compression is (O(ŝ(q)w), d̂(q) + 4O(ŝ(q)w))-
decent, where w ∈ O(k). Choose an absolute constant C > 0 so that for every s′, d′ > 1, a compression
of a (s′, d′)-decent instance is (C · s′k, d′ + 4C·s

′k)-decent. Then it is enough to set ŝ(q − 1) = ŝ(q) · Ck
and d̂(q − 1) = d̂(q) + 4C ·̂s(q)k. A straightforward induction implies that ŝ(q) = s · (Ck)L−q. Therefore,
assuming k > 2, we have ŝ(q) ∈ kO(L) and d̂(q) ∈ 2k

O(L)
for all q ∈ {1, . . . , L}. C

Each auxiliary data structure at level q spawns k auxiliary data structures at level q− 1 for q > 2; and
each auxiliary data structure at level q = 1 is a leaf, i.e., it does not spawn any children data structures.
Hence, there are at most kL auxiliary data structures at level 1. Therefore:

Claim 5.4.21. Each update to Dmain causes at most kO(L2)(log n)O(L) updates throughout all data
structures.

Proof of the claim. By Lemma 5.4.12(d), each update to a universe Icur
i causes at most ŝ(q)wO(1) log n

updates propagated to instances at level q−1. Since each instance at level q > 1 has k associated universes
Icur
i and each update to Icur causes at most O(ŝ(q)) updates to each universe Icur

i , we conclude that
a single update to an instance maintained by a data structure at level q causes at most

ŝ(q)2wO(1) log n (5.1)

updates to be propagated to the children data structures at level q − 1. Recall that w ∈ O(k) and that by
Claim 5.4.20 we have ŝ(q) ∈ kO(L). Therefore, (5.1) is bounded by

kO(L) log n.

By straightforward induction, a single update to Dmain (the data structure at level L) causes at most

O
((

kO(L) log n
)L)

6 kO(L2)(log n)O(L).

updates to all data structures. C

Claim 5.4.22. The total time required to update all data structures for a single update to Dmain, excluding
the time of all required reinitializations, is bounded by n1/L · 2(Lδ)O(L)+O(L log logn).

Proof of the claim. Focus first on the time required to recompute the solutions to the instances at level 1.
Each data structure at level 1 recomputes the solution from scratch using Lemma 5.4.5 with an instance
with at most n1/L vertices, the bound on the maximum degree s = ŝ(1), the bound on the domain
size d = d̂(1) and the approximation guarantee δ

L . Therefore, each update at level 1 is processed in

204 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

time n1/L · ŝ(1) · d̂(1)O(L/δ) 6 n1/L · 2kO(L)·Lδ . At a data structure at level q > 1, it can be verified that
each update is processed in time 2O(ŝ(q)k) · (log n)O(1) (excluding the time spent at data structures at
lower levels). Since 2O(ŝ(q)k) · (log n)O(1) 6 2k

O(L) · (log n)O(1), we conclude that for any fixed auxiliary
data structure, every update is processed in time at most n1/L · (log n)O(1) · 2kO(L)·Lδ .

Using the bound from Claim 5.4.21 on the total number of updates to all data structures, we infer
that, for a single update to Dmain, the total recomputation time in the data structures is bounded
by kO(L2)(log n)O(L)n1/L(log n)O(1)2k

O(L)·Lδ . Recall that we set k =
⌈
L
δ

⌉
, so we have that kO(L2) =

2O(L2 log L
δ), (log n)O(L) = 2O(L log logn), and 2k

O(L)·Lδ = 2(Lδ)O(L) . Therefore, we can bound the total
update time, excluding the reinitializations, by

n1/L · 2O(L2 log L
δ +L log logn+(Lδ)O(L)) 6 n1/L · 2(Lδ)O(L)+O(L log logn).

C

Now we set the epoch lengths and bound the amortized time of all reinitializations per a single
update to Dmain. Let τq denote the epoch length for data structures on level q for some 2 6 q 6 L.
Recall that the epoch length for a data structure is measured in the number of updates to this particular
instance (as opposed to Dmain). Recall also from Item (d) of Lemma 5.4.12 that each update to a data
structure D at level q generates (ŝ(1)k log n)O(1) 6 kO(L)(log n)O(1) updates to the children structures.
Fix now a constant c > 0 such that this number of updates is actually bounded by (kL log n)c, and set
τq := n(q−1)/L/(kL log n)c. Then, Lemma 5.4.12(d) implies invariant (I1): Children data structures at level
q − 1 are guaranteed to maintain instances of size n(q−1)/L.

We now bound the amortized time complexity of initializations and reinitializations across all data
structures.

Claim 5.4.23. The amortized time of all initializations and reinitializations per a single update to Dmain

is bounded by n1/L · 2(Lδ)O(L)+O(L log logn).

Proof of the claim. Consider an initialization or a reinitialization of a data structure D, maintaining
an instance I of Min Weight Generalized Domination, at some level q > 2. The (re)initialization
takes time |V (I)| log |V (I)| · 2kO(L) by Lemma 5.4.12 and Claim 5.4.20. Thanks to the invariants, we have
|V (G)| 6 nq/L and |E(G)| = O(|V (G)|), hence the (re)initialization time is bounded by nq/L log n · 2kO(L) .
Note that the (re)initialization of D causes all children data structures to be destructed and reset to
constant-sized instances; however, this can be done in amortized constant time per instance.

Consider the state of D after some u updates; let t = du/τqe be the index of the current epoch of
D, so that the lifetime of D is assumed to contain t − 1 full epochs so far. Then, the total time of all
reinitializations of D so far is bounded by (t−1)·nq/L log n·2kO(L) 6 (t−1)·τq ·n1/L ·(kL log n)c+1 ·2kO(L) 6
u · n1/L(log n)O(1) · 2kO(L) . Hence, the amortized time for the reinitializations of D can be bounded by
n1/L · (log n)O(1) · 2kO(L) per an update to D.

As each update to Dmain causes kO(L2)(log n)O(L) updates to all auxiliary data structures in total and
there are at most kL auxiliary data structures, we conclude that the total amortized time required for all
reinitializations per a single update to Dmain is bounded by

kO(L2) · n1/L · (log n)O(L) · 2k
O(L)
6 n1/L(log n)O(L) · 2(Lδ)O(L) = n1/L · 2(Lδ)O(L)+O(L log logn).

C

Note that Claims 5.4.22 and 5.4.23 provide the same time complexity bounds as Lemmas 5.3.14
and 5.3.15 in the setting of Max Weight Nullary 2CSP. Therefore, the following final time complexity
analysis is shown by the same argument as Lemma 5.3.16, hence we omit its proof.

Claim 5.4.24. L may be set so that the amortized time of an update to Dmain is nO(log log lognlog logn·δ) = no(
1
δ).

Finally, as before, we use the following trick to separate δ from n in the final time complexity. If

log log n > 1
δ2 , then δ >

√
log log n, hence nO(log log lognlog logn·δ) = n

O
(
log log logn√
log logn

)
= no(1). In the opposite case,

we have n 6 221/δ
2

; in this case, on every update, we rerun the static algorithm from Lemma 5.4.5 in time

nsdO(1/δ) 6 22O(1/δ
2)

. In any case, the time complexity of an update is bounded by f(δ) · n
O
(
log log logn√
log logn

)
,

where f(δ) ∈ 22O(1/δ
2)

. This finishes the proof.

5.5. CONCLUSIONS 205

5.5 Conclusions

We presented dynamic approximation schemes for Maximum Weight Independent Set and Minimum
Weight Dominating Set in apex-minor-free classes of graphs. For both problems, we designed data
structures with amortized subpolynomial update time that maintain, for a fixed ε > 0, a (1 − ε)-
approximation of the maximum weight of an independent set in a dynamic graph; and a (1 + ε)-
approximation of the minimum weight of a dominating set in a dynamic graph under an additional
assumption that at all times, the maximum degree of the graph is bounded by a fixed constant. We remark
that the results of this chapter can be adapted in a straightforward way to also solve the more general
variants of Maximum Weight Independent Set and Minimum Weight Dominating Set introduced
in Section 5.2 – namely, Max Weight Nullary 2CSP and Min Weight Generalized Domination.
That is:

• For every fixed apex-minor-free class of graphs C, parameter ε > 0, and upper bound K on the
size of a domain of a vertex, we can maintain a fully dynamic nullary 2CSP I with a fixed set of n
vertices, each of which has a (possibly different) domain of size at most K. We require that after
each update, the Gaifman graph of I should belong to C. Then after each update, the data structure
can output a nonnegative real p satisfying (1− ε)OPTI 6 p 6 OPTI , where OPTI is the maximum
revenue of a solution to I.

• For every fixed apex-minor-free class of graphs C, parameter ε > 0, and integers s, d, we can maintain
a fully dynamic n-vertex (s, d)-decent instance I of Generalized Domination. We require that
after each update, the Gaifman graph of I should belong to C. Then after each update, the data
structure can output a nonnegative real p satisfying OPTI 6 p 6 (1 + ε)OPTI , where OPTI is the
minimum cost of a solution to I.

Tracing the time complexity analyses in Section 5.3.5 and Section 5.4.5, we can show that both data
structures process each update in amortized no(1) time.

To the best of our knowledge, Theorem 1.3.7 presents the first nontrivial data structure for approxima-
tion schemes on planar graphs in a fully dynamic setting. Hence, we hope that it may open multiple new
avenues for future research. Here are three questions that immediately come to mind:

• Theorem 1.3.7 applies only to apex-minor-free classes; can it be extended to H-minor-free classes
for any fixed H? The main obstacle here is that we are not aware of any approach that yields a
(static) EPTAS for the considered problems in H-minor-free graphs with a near-linear running time
dependency on graph size; and this would be implied by such an extension.

• Theorem 1.3.7 tackles only the Maximum Weight Independent Set and Minimum Weight
Dominating Set problems; can it be extended to other problems amenable to Baker’s technique,
for instance the first-order expressible optimization problems considered in [DGKS06,Dvo22]? As
the reader will see, the proof of Theorem 1.3.7 is considerably more difficult and delicate than that
of the basic Baker’s technique. At this point, even extending the result for Minimum Weight
Dominating Set beyond the regime of bounded-degree graphs seems unclear.

• The no(1) factor in the bound on the update time of our data structure is actually n
O
(
log log logn√
log logn

)
.

This means that the amortized update time is indeed subpolynomial, but barely. It would be
interesting to obtain better bounds – ideally polylogarithmic in n, but even an update time of the
form 2

√
logn(log logn)O(1) , similar to the bounds in Chapters 3 and 4, would be welcome.

Interestingly, in the proof of Theorem 1.3.7 we do not use the data structure for dynamic treewidth,
even though we extensively use various structural and algorithmic properties of tree decompositions
in our dynamic variant of Baker’s technique. It would be interesting to see if the approach presented
here can be combined with the advances of Chapter 3, possibly yielding improved guarantees on the
update time of the data structure.

• Deamortization of the presented data structures – that is, designing data structures for the problems
considered in this chapter with worst-case guarantees – is another interesting question. This is
subject of a work in progress.

206 CHAPTER 5. DYNAMIC BAKER’S TECHNIQUE

Part II

Twin-width

207

Chapter 6

Compact oracle for d-twin-ordered
matrices

In this chapter we design a compact representation for d-twin-ordered matrices that simultaneously
occupies Od(n) bits and offers query time Od(log log n). We recall this result below.

Theorem 1.3.8 ([PSZ22]). Let d ∈ N be a fixed constant. Then for a given binary n×n matrix M that is
d-twin-ordered one can construct a data structure that occupies Od(n) bits and can be queried for entries
of M in worst-case time O(log log n) per query. The construction time is Od(n log n log log n) in the Word
RAM model, assuming M is given by specifying ` = Od(n) rectangles R1, . . . , R` that form a partition of
symbols 1 in M .

Note that by Lemma 2.5.2, every d-twin-ordered n× n matrix can be represented as a union of Od(n)
rectangles that form a partition of symbols 1 in the matrix.

The proof of Theorem 1.3.8 proceeds roughly as follows. Consider a parameter m that divides n and a
partition of the given matrix M into (n/m)2 zones – square submatrices – each of which is induced by m
consecutive rows and m consecutive columns. Such a partition is called the regular (n/m)-division. Even
though the total number of zones in the regular (n/m)-division is (n/m)2, one can use the connections
between the notions of being twin-ordered and that of mixed minors (see the Preliminaries in Chapter 2),
to show that actually there will be only Od(n/m) different zones (Lemma 6.1.2), in the sense that zones
are considered equal if they have exactly the same values in corresponding entries.

Our data structure describes the zones in the regular (n/m)-divisions of M for m ranging over a
sequence of parameters m0 > m1 > . . . > m` for ` = O(log log n), where mj divides mi whenever i 6 j.
Roughly speaking, we set m0 = n and mi = m

2/3
i−1 for i > 1, though for technical reasons we resort to the

recursion mi = mi−1/2 once mi reaches the magnitude of log3 n. Each different zone present in the regular
(n/mi)-division is represented by a square matrix consisting of (mi/mi+1)2 pointers to representations
of its subzones in the regular (n/mi+1)-division. When we reach mi < cd · log n for some small constant
cd depending on d, we stop the construction and set ` = i. At this point the number of different zones
present in the regular (n/m`)-division of M is strongly sublinear in n, because we have such an upper
bound on the total number of different (cd log n) × (cd log n) binary matrices that are d-twin-ordered,
and n/m` 6 cd log n. Therefore, all those matrices can be stored in the representation explicitly within
bitsize Od(n).

The query algorithm is very simple: We follow appropriate pointers through the O(log log n) levels of
the data structure and read the relevant entry in a matrix stored explicitly in the last level. The analysis
of bitsize is somewhat more complicated, but crucially relies on the fact that in the ith level, it suffices to
represent only Od(n/mi) different matrices that are zones in the (n/mi)-division.

We remark that the idea of dividing the given matrix into a number of polynomially smaller zones,
and describing them recursively, is also the cornerstone of the approach used by Chan for the orthogonal
point location problem in [Cha13]. However, when it comes to details, his construction is quite different
and technically more complicated. For instance, in [Cha13] the recursion can be applied not only on
single zones, but also on wide or tall strips consisting of several zones, or even submatrices induced by
noncontiguous subsets of rows and columns. The conceptual simplification achieved here comes from the
strong properties implied by the assumption that the matrix is d-twin-ordered, which is stronger than the
assumption used by Chan that the symbols 1 in the matrix can be partitioned into O(n) rectangles.

209

210 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

Organization of the chapter. In Section 6.1, we prove several new structural properties of d-twin-
ordered matrices. These properties are exploited in Section 6.2 to derive an efficient and compact repre-
sentation of d-twin-ordered matrices, completing the nonconstructive part of Theorem 1.3.8. The efficient
algorithm for construction of the data structure is then given in Section 6.3.

At the end of the chapter, in Section 6.4, we sketch a noncompact analog of the data structure
of Theorem 1.3.8. We find that for every fixed ε > 0, we can construct a data structure representing
a d-twin-ordered n× n matrix that requires bitsize Od(n1+ε) and has worst-case query time O(1/ε).

6.1 Structural properties of divisions

Before we proceed to construct the promised compact representation, we need to describe some new
combinatorial properties of twin-ordered matrices. For the remainder of this section, we fix d ∈ N and
consider a matrix M that is d-twin-ordered. In particular, by Theorem 2.5.5, M is (2d+ 2)-mixed-free.

Strips. We begin by considering nonconstant vertical and horizontal zones of a given division of M .
We will show that these zones can be grouped into Od(t) strips that again are vertical or horizontal,
respectively. This partitioning is formalized as follows.

Definition 14. Let (R, C) be a division of a matrix M . A vertical strip in (R, C) is an inclusion-wise
maximal set of nonconstant vertical zones of D that are contained in the same column block of (R, C),
span a contiguous interval of row blocks, and whose union is again a vertical submatrix. Horizontal strips
are defined analogously.

1 1 1 1 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1

Figure 6.1: Strips in an example 4-division of a matrix. Horizontal strips are painted in shades of yellow.
Vertical strips are painted in shades of blue. Unpainted zones are constant or mixed.

Naturally, each nonconstant vertical zone belongs to exactly one vertical strip; and similarly, each
nonconstant horizontal zone belongs to exactly one horizontal strip.

We will now show an upper bound on the number of vertical and horizontal strips present in any
t-division of M .

Lemma 6.1.1. For every t ∈ N, the total number of vertical and horizontal strips in any t-division of M
is at most Od(t).

Proof. We focus on the bound for vertical strips only; the proof for horizontal strips is symmetric. Fix
some t-division (R, C) of M . Observe that each vertical strip S of the division either intersects the top
row of the matrix, or the top-most zone of S is adjacent from the top to another zone C such that adding
C to S yields a submatrix that is not vertical. (We say that C is adjacent to S from the top.) Thus, we
partition the family of vertical strips in the t-division of M into three types:

(I) strips intersecting the top row of M ;

(II) strips adjacent to a mixed zone C from the top; and

(III) strips adjacent to a nonmixed zone C from the top.

Obviously, there are at most t vertical strips of type (I). Next, each vertical strip of type (II) can be
assigned a private mixed zone C adjacent to it from the top. Hence, the number of vertical strips of this
type is upper bounded by the number of mixed zones in (R, C), which by Lemma 2.5.6 is bounded by
Od(t).

6.1. STRUCTURAL PROPERTIES OF DIVISIONS 211

Finally, let us consider vertical strips of type (III). Let S be a vertical strip of this type, D be its
top-most zone, and C be the nonmixed zone adjacent to D from the top. Since D is vertical, all rows of
D are repetitions of the same row vector vD. Since D is nonconstant, vD is nonconstant as well.

As C is nonmixed, it is either horizontal or vertical. If C is vertical, then all its rows are repetitions of
the same row vector vC . Observe that since strip S could not be extended by C, we have vC 6= vD. Now,
as vD is nonconstant, it follows that the union of the bottom-most row of C and the top-most row of
D contains a corner. On the other hand, if C is horizontal, then the bottom-most row of C is constant
and again there is a corner in the union of the (constant) bottom-most row of C and the (nonconstant)
top-most row of D.

So in both cases we conclude that C and D form a mixed cut. By Lemma 2.5.8, the total number
of mixed cuts in (R, C) is bounded by Od(t), so also there are at most Od(t) vertical strips of type (III).
This concludes the proof.

Regular divisions. We move our focus to a central notion of our data structure: regular divisions of
a matrix:

Definition 15. Given M and an integer s ∈ N, we define the s-regular division of M as the
⌈
n
s

⌉
-division

of M in which each row block (respectively, column block), possibly except the last one, contains s rows
(resp. columns). Precisely, if s - n, then the last row block and the last column block contain exactly
n mod s rows or columns, respectively.

In the data structure, given a square input matrix M , we will construct multiple regular divisions of
M of varying granularity (the value of s). Crucially, in order to ensure the space efficiency of the data
structure, we will require that the number of distinct zones in each such regular division of M should be
small. This is facilitated by the following definition:

Definition 16. For s ∈ N, the s-zone family of M , denoted Fs(M), is the set of all different zones
participating in the s-regular division of M .

Let us stress that we treat Fs(M) as a set of matrices and do not keep duplicates in it. That is, if
the regular s-division of M contains two or more isomorphic zones – with same dimensions and equal
corresponding entries – then these zones are represented in Fs(M) only once.

For the remainder of this section, we will prove good bounds on the cardinality of Fs(M). Trivially, the
cardinality of Fs(M) is bounded by

⌈
n
s

⌉2
(i.e., the number of zones in the s-regular division). Also, the

same cardinality is trivially bounded by 2O(s2) (i.e., the total number of distinct matrices with at most s
rows and columns). However, given that M is d-twin-ordered, both bounds can be improved dramatically.
First, the dependence on n

s in the former bound can be improved to linear:

Lemma 6.1.2. For every s ∈ {1, . . . , n}, the cardinality of Fs(M) is bounded by Od(ns).

Proof. First assume that s | n; hence, each zone in the s-regular division of M has s rows and s columns.
Then, the matrices in Fs(M) can be categorized into four types:

• Constant zones. There are at most 2 of them – constant 0 and constant 1.

• Mixed zones. Here, Lemma 2.5.6 applies directly: Since the considered division is an n
s -division of

M , there are at most Od(ns) mixed zones in M in total.

• Vertical zones. By Lemma 6.1.1, all vertical zones of the considered division can be partitioned into
Od(ns) vertical strips. As all zones have the same dimensions, the zones belonging to a single vertical
strip are pairwise isomorphic. From this we infer the Od(ns) upper bound on the number of different
vertical zones.

• Horizontal zones are handled symmetrically to vertical zones.

Finally, if s - n, then let M ′ be equal to M , truncated to the first n − (n mod s) rows and columns;
equivalently, M ′ is equal to M with all zones with fewer than s rows or columns removed. The argument
given above applies to M ′, yielding at most Od(ns) different s× s zones in M ′ (and equivalently in M).
The proof is concluded by the observation that M contains exactly 2

⌈
n
s

⌉
− 1 = O(ns) zones in its s-regular

division that have fewer than s rows or columns.

Second, from the works of Bonnet et al. [BGK+21a,BGdM+21] one can easily derive an upper bound
that is exponential in s rather than in s2:

212 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

Lemma 6.1.3. For every s ∈ {1, . . . , n}, the cardinality of Fs(M) is bounded by 2Od(s).

Proof. Observe that a submatrix of a d-twin-ordered matrix is also d-twin-ordered. Thus, it is only
necessary to upper bound the total number of different s× s matrices that are d-twin-ordered. To this
end, we use the notion of twin-width of ordered binary relational structures introduced in the work of
Bonnet et al. [BGdM+21]. This notion is more general than twin-orderedness in the following sense: Each
s× s matrix that is d-twin-ordered corresponds to a different ordered binary structure over s elements of
twin-width at most d. As proved in [BGdM+21], the number of different such structures is upper bounded
by 2Od(s). The claim follows.

While the bound postulated by Lemma 6.1.2 is more powerful for coarse regular divisions of M (i.e.,
s-regular divisions for large s), Lemma 6.1.3 yields a better bound for s 6 pd · log n, where pd > 0 is a
sufficiently small constant depending on d.

6.2 Data structure

In this section we present the data structure promised in Theorem 1.3.8. Recall that it should represent
a given binary n × n matrix M that is d-twin-ordered, and it should provide access to the following
query: For given (r, c) ∈ [n]2, return the entry M [r, c]. Here we focus only on the description of the data
structure, implementation of the query, and analysis of the bitsize. The construction algorithm promised
in Theorem 1.3.8 is given later, in Section 6.3.

Without loss of generality, we assume that n is a power of 2. Otherwise we enlarge M , so that its order
is the smallest power of 2 larger than n. We use dummy 0s to fill additional entries. It is straightforward
to see that the resulting matrix is (d+ 1)-twin-ordered. Similarly, in the analysis we may assume that n is
sufficiently large compared to any constants present in the context.

Description. Our data structure consists of ` + 1 layers: L0, . . . ,L`. Recall from Definition 16 that
Fs(M) is the family of pairwise different zones participating in the s-regular division of M . Each layer
Li in our data structure corresponds to Fmi(M) for a carefully chosen parameter mi. Let low(x) be the
largest power of 2 smaller or equal to x. We define parameters mi inductively as follows: Set m0 = n and
for i > 0,

mi+1 =

{
low(mi

2/3) if mi > log3 n

mi/2 if log n/(2βd) 6 mi < log3 n

where βd is the constant hidden in the Od(·) notation in Lemma 6.1.3, i.e., |Fs(M)| 6 2βd·s. The
construction stops when we reach mi satisfying mi < log n/(2βd), in which case we set ` = i. Note that
all parameters mi are powers of 2, so mj divides mi whenever i 6 j.

We also observe the following.

Claim 6.2.1. ` ∈ O(log log n).

Proof of the claim. Let k be the least index for which mk < log3 n. Observe that for i ∈ [1, k] we
have mi 6 n(2/3)i . So it must be that k 6 log3/2 log n + 1 ∈ O(log log n), for otherwise we would

have mk−1 6 n(2/3)log3/2 logn = n1/ logn = 2 < log3 n. Next, observe that for i ∈ [k + 1, `] we have
mi = mk/2i−k. Therefore, we must have ` − k 6 log(log3 n) + 1 ∈ O(log log n), for otherwise we have
m`−1 6 mk/2log log3 n < log3 n/ log3 n = 1. The claim follows. C

Layer L` is special and we describe it separately, so let us now describe the content of layer Li for
each i < `. Since n is divisible by mi, every Z ∈ Fmi(M) is a unique mi × mi matrix that appears
at least once as a zone in the (n/mi)-regular division of M . Such Z will be represented by an object
obj(Z) in Li. Each object obj(Z) stores (mi/mi+1)2 pointers to objects in Li+1; recall here that mi+1

divides mi. Consider the mi+1-regular division of Z. This division consists of (mi/mi+1)2 zones; index
them as subzoneZ(p, q) for p, q ∈ [mi/mi+1] naturally. Observe that for all p, q ∈ [mi/mi+1], it holds
that subzoneZ(p, q) ∈ Fmi+1(M). In our data structure, each object obj(Z) ∈ Li, corresponding to a
matrix Z ∈ Fmi(M), stores an array ptr of (mi/mi+1)2 pointers, where ptr[p, q] points to the address of
subzoneZ(p, q) for all p, q ∈ [mi/mi+1]. This concludes the description of layer Li for i < `.

We now describe layer L`. It is also a collection of objects, and for each matrix Z ∈ Fm`(M) there is
an object obj(Z) ∈ L`; these objects are pointed to by objects from L`−1. However, instead of storing

6.2. DATA STRUCTURE 213

further pointers, each object obj(Z) ∈ L` stores the entire matrix Z ∈ Fm`(M) as a binary matrix of
order m` ×m`, using m2

` bits. This concludes the description of L`.
Observe that in L0 there is only one object corresponding to the entire matrix M . We store a global

pointer ptrGlo to this object. Our data structure is accessed via ptrGlo upon each query.

Implementation of the query. The description of the data structure is now complete and we move
on to describing how the query is executed. The query is implemented as method entry(r, c) and returns
M [r, c]; see Algorithm 1 for the pseudocode (where ptrIt→ stands for dereference of a pointer ptrIt, i.e.,
the object pointed to by ptrIt). Given two integers r, c ∈ [n], the method starts with pointer ptrGlo, and
uses r and c and iterator pointer ptrIt to navigate via pointers down the layers, ending with a pointer
to an object in layer L`. Initially, the iterator ptrIt is set to ptrGlo and it points to obj(Z) for the only
matrix Z ∈ Fm0(M). Integers r, c are the positions of the desired entry with respect to zone Z. After
a number of iterations, ptrIt points to an object obj(Z) ∈ Li for a matrix Z ∈ Fmk(M), and maintains
current coordinates r and c. The invariant is that the desired output is the entry Z[r, c]. In one step of
the iteration, the algorithm finds the matrix Z ′ in Fmi+1(M) containing the desired entry Z[r, c], which
is the zone subzoneZ(r div mi+1, c div mi+1) ∈ Fmi+1(M), and moves the pointer ptrIt to obj(Z ′) ∈ Li+1.
The new coordinates of the desired entry with respect to Z ′ are (r mod mi+1) and (c mod mi+1), so r
and c are altered accordingly. Once the iteration reaches L`, the object pointed to by ptrIt contains the
entire zone explicitly, so it suffices to return the desired entry. Obviously, the running time of the query is
O(log log n), since the algorithm iterates through ` ∈ O(log log n) layers.

Algorithm 1: Query algorithm

Input : Integers r, c ∈ [n]
Output :M [r, c]

1 ptrIt← ptrGlo
2 for i← 0 to `− 1 do
3 ptrIt← (ptrIt→ ptr[r div mi+1, c div mi+1])
4 r ← r mod mi+1

5 c← c mod mi+1

6 return ptrIt→ Z[r, c]

Analysis of bitsize. We now analyze the number of bits occupied by the data structure. First note
that the total number of objects stored is bounded by the total number of submatrices of M , which is
polynomial in n. Hence, every pointer can be represented using O(log n) bits. Keeping this in mind, the
total bitsize occupied by the data structure is proportional to

`−1∑
i=0

|Fmi(M)|
(

mi

mi+1

)2

log n+ |Fm`(M)|m2
` , (6.1)

This is because for all layers Li for i < ` we store |Fmi(M)| objects, each storing
(

mi
mi+1

)2
pointers, and

in L` we store |Fm`(M)| objects, each storing a binary matrix of order m` ×m`.

We first bound the second term of Eq. (6.1). By Lemma 6.1.3, we have

|Fm`(M)|m2
` 6 2βd·m` ·m2

` 6 2βd·
logn
2βd ·

(
log n
2βd

)2

=
√
n ·
(

log n
2βd

)2

∈ o(n).

214 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

We move on to bounding the first term of Eq. (6.1). Let k be the least index for which mk < log3 n. We
can split the first term of Eq. (6.1) into two sums:

`−1∑
i=0

|Fmi(M)|
(

mi

mi+1

)2

log n =

=
k−1∑
i=0

|Fmi(M)|
(

mi

mi+1

)2

log n (6.2)

+
`−1∑
i=k

|Fmi(M)|
(

mi

mi+1

)2

log n. (6.3)

We first apply Lemma 6.1.2 to bound the sum (6.2). More precisely, if αd is the constant hidden in the
Od(·) notation in Lemma 6.1.2, we have

(6.2) 6 log n ·
k−1∑
i=0

αd
n

mi
· 4m2/3

i = 4αdn log n ·
k−1∑
i=0

1

m
1/3
i

. (6.4)

Since for i ∈ [k − 1] we have mi+1 = low(m2/3
i) and mi > log3 n, we have mi/mi+1 > 2. Therefore

mi > 2k−i−1mk−1 for i ∈ [0, k − 1], so we can continue bounding the last expression in Eq. (6.4):

(6.4) 6 αdn log n
k−1∑
i=0

· 1
(2k−i−1mk−1)1/3

6 αdn ·
log n

m
1/3
k−1

·
k−1∑
i=0

1
(2k−i−1)1/3

∈ Od(n).

It remains to bound sum (6.3). We use Lemma 6.1.2 similarly as above:

(6.3) = 4 log n ·
`−1∑
i=k

|Fmi(M)| 6 4αdn log n ·
`−1∑
i=k

1
mi
6 4αdn log n ·

∞∑
i=0

1

(logn
2βd

) · 2i
∈ Od(n).

By summing up all the bounds we infer that the total number of bits occupied by our data structure is
Od(n).

6.3 Construction algorithm

In this section we complete the proof of Theorem 1.3.8 by presenting an algorithm that constructs the
data structure described in Section 6.2 in time Od(n log n log log n). Here, we assume that the matrix M
is specified on input by a rectangle decomposition K satisfying |K| 6 Od(n). We remark that the our
construction algorithm will itself consume superlinear memory. In fact, even storing the input decomposition
K requires Ω(n log n) bits of memory. However, we stress that the data structure constructed by the
algorithm occupies only Od(n) bits.

The construction will proceed in three phases. First, in Section 6.3.1, we will set up a data structure that
given a submatrix S of M , returns the type of S; that is, verifies whether S is constant, vertical, horizontal,
or mixed. Next, in Section 6.3.2 we use the results of Section 6.3.1 to find an effective approximation
Gs(M) of the zone families Fs(M). Finally, these effective approximations will be used in the construction
of the data structure itself (Section 6.3.3).

6.3.1 Data structure for submatrix types

We will now define the announced subproblem formally. In Submatrix Types, we are given a rectangle
decomposition K of an n× n matrix M , and we are required to preprocess it so as to handle the following
queries efficiently: Given a submatrix S of M , return:

• constant c (c ∈ {0, 1}) if S is constant with c being the common entry;

• horizontal if S is nonconstant horizontal;

• vertical if S is nonconstant vertical; or

• mixed if S is mixed (i.e., neither horizontal nor vertical).

6.3. CONSTRUCTION ALGORITHM 215

In this section, we prove the following:

Lemma 6.3.1. Fix d ∈ N and assume M is a binary n × n matrix that is d-twin-ordered. Then there
is a data structure for Submatrix Types on M that supports queries in worst-case time Od(log log n)
in the word RAM model. The data structure can be constructed in time Od(n log log n), assuming M is
represented on input by a rectangle decomposition K with |K| 6 Od(n).

Observe that by restricting S to one-element matrices in Lemma 6.3.1, we will produce a data structure
testing contents of individual entries of M in doubly-logarithmic time – the same as in the compact
representation of M provided in Section 6.2. However, the data structure from Lemma 6.3.1 is by no
means compact – in fact, its bitsize is O(n log n log log n), which is even worse than the bitsize O(n log n)
achieved by the direct application of Chan’s data structure for orthogonal point location [Cha13]. Thus,
Submatrix Types can only be used as a building block of an algorithm constructing the compact
representation of M .

In order to implement the data structure for Submatrix Types, we shall first define three auxiliary
geometric problems. In each problem it can be assumed that each geometric object given on input has
integer coordinates between 0 and O(n).

In Orthogonal Point Location, we are given a set of O(n) horizontal and vertical segments, where
the segments may only intersect at their endpoints. The segments subdivide the plane into regions. In the
problem, it is required to preprocess the regions and construct a data structure that can can efficiently
locate the region containing a given query point. We will use the following data structure of Chan [Cha13]
for this problem.

Theorem 6.3.2 ([Cha13]). There is a data structure for Orthogonal Point Location that can
answer each query in worst-case time O(log log n) and can be constructed in time O(n log log n).

In Orthogonal Range Emptiness, we are given a set of O(n) points in the plane. It is required
to preprocess the points in order construct a data structure that can efficiently find whether a queried
axis-parallel rectangle contains any of the input points. In the positive case, it is not required to return any
points: a yes/no answer suffices. For this problem, we will use the data structure of Chan et al. [CLP11].

Theorem 6.3.3 ([CLP11]). There is a data structure for Orthogonal Range Emptiness that can
answer each query in worst-case time O(log log n) and can be constructed in time O(n log log n).

In Orthogonal Segment Intersection Emptiness, we are given a set of O(n) horizontal segments
in the plane. It is required to preprocess the segments in order to construct a data structure that can
efficiently decide whether a queried vertical segment intersects any of the horizontal segments. In the
positive case, it is not required to return any segments: a yes/no answer suffices.

Theorem 6.3.4. There is a data structure for Orthogonal Segment Intersection Emptiness that
can answer each query in worst-case time O(log log n) and can be constructed in time O(n log log n).

Proof. The problem admits a trivial reduction to the Vertical Ray Shooting problem, in which it
is required to preprocess O(n) horizontal segments in order to construct a data structure that can find,
for a given query point p, the lowest horizontal segment intersecting the vertical ray shooting upwards
from p. Namely, a vertical segment pq intersects some horizontal input segment if and only if the lowest
horizontal segment returned by an instance of Vertical Ray Shooting for query point p is different
than the segment returned for query point q. As shown by Chan [Cha13], Vertical Ray Shooting is
equivalent to Orthogonal Point Location, so we can use Theorem 6.3.2.

We are now ready to give the data structure for Submatrix Types.

Proof of Lemma 6.3.1. We interpret M geometrically by representing the matrix as an n× n square in
the plane, in which each entry corresponds to a single unit square. Let

A(M) :=
⋃
{[c− 1, c]× [r − 1, r] | M [r, c] = 1}

be the area covered by the 1 entries of M in this interpretation. We remark that A(M) is an orthogonal
subset of [0, n]2 ⊆ R2. Equivalently, A(M) can be defined as the (interior-disjoint) union of the rectangles
[c1 − 1, c2]× [r1 − 1, r2] for each submatrix M [r1 . . . r2, c1 . . . c2] ∈ K. The boundary ∂A(M) of A(M) can
be found in Od(n) time by observing that a unit segment s with integral coordinates is a subset of ∂A(M)
if and only if it belongs to the boundary of exactly one rectangle corresponding to a submatrix in K.

216 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

For convenience, let Â(M) denote the region A(M) with all coordinates doubled, and ∂Â(M) denote the
boundary of Â(M).

We now use Theorem 6.3.2 to set up a data structure IL for Orthogonal Point Location for
∂Â(M). Then, given access to IL, we can verify in O(log log n) time whether M [r, c] = 1 for given
(r, c) ∈ [n]2 by querying IL whether the point (2c − 1, 2r − 1) belongs to some region that is a part of
Â(M). This, in turn, enables us to locate all corners of M . Indeed, observe that if C is a corner in M ,
then at least one of the 4 entries of C is a corner of some submatrix in K. Hence, by iterating over
all submatrices M [r1 . . . r2, c1 . . . c2] ∈ K and examining the neighborhood of each of the cells (r1, c1),
(r1, c2), (r2, c1), (r2, c2) of M , we can find all corners in M . This takes Od(n) queries to IL, and results in
a maximum of Od(n) corners in M (reiterating the statement of Lemma 2.5.7). Henceforth, let B be the
set of those pairs (c, r) for which {M [r, c], M [r, c+ 1], M [r + 1, c], M [r + 1, c+ 1]} is a corner in M .

Finally, let us consider a query about the type of a submatrix S of M . Say that S = M [r1 . . . r2, c1 . . . c2],
that is, S spans the block of rows from r1 to r2, inclusive, and the block of columns from c1 to c2, inclusive
(1 6 r1 6 r2 6 n, 1 6 c1 6 c2 6 n).

We first focus on deciding whether S is mixed or not. Recall from Lemma 2.5.3 that S is mixed if
and only if it contains a corner. For this reason, we use Theorem 6.3.3 to set up a data structure IE for
Orthogonal Range Emptiness for B; this takes time Od(n log log n). Now, S is mixed if and only if
r1 < r2, c1 < c2, and the rectangle [c1, c2 − 1]× [r1, r2 − 1] ⊆ R2 covers any point in B. This condition
can be verified using IE in time Od(log log n).

From now on assume that S is not mixed. We will now decide whether S is vertical (possibly constant).
This can be easily done using the following observation:

Claim 6.3.5. Assume that S is not mixed. Then S is vertical if and only if the vertical segment s
connecting the points (2c1 − 1, 2r1 − 1) and (2c1 − 1, 2r2 − 1) intersects no horizontal segments of ∂Â(M).

Proof of the claim. (⇒) If S is vertical, then M [r1, c1] = M [r1 + 1, c1] = · · · = M [r2, c1]. Thus, the open
rectangle R := (2(c1− 1), 2c1)× (2(r1− 1), 2r2) is either fully contained within Â(M) (if M [r1, c1] = 1), or
is disjoint with Â(M) (otherwise). Hence, R is disjoint with ∂Â(M). Since s ⊆ R, the implication follows.

(⇐) Suppose S is not vertical. Hence, it is horizontal and nonconstant, so there exists r ∈ {r1, r1 +
1, . . . , r2−1} for which M [r, c1] 6= M [r+1, c1]. Define now the horizontal segment m connecting (2(c1−1), r)
with (2c1, r). By M [r, c1] 6= M [r + 1, c1] we have that m ⊆ ∂Â(M); thus, m is a part of some horizontal
segment m′ of ∂Â(M). Since m intersects s, so does m′. C

By Claim 6.3.5, we can determine whether S is vertical as follows. We use Theorem 6.3.4 to set up
a data structure IH for Orthogonal Segment Intersection Emptiness for the set of horizontal
segments of ∂Â(M). Since ∂Â(M) consists of Od(n) segments, IH can be constructed in Od(n log log n)
time. Then, verifying whether S is vertical can be reduced to a single query on IH , which takes Od(log log n)
time. Using a symmetric data structure for vertical segments of ∂Â(M), we can also verify whether S
is horizontal. If S is both vertical and horizontal, then it is constant; in this case, a single call to IL is
enough to determine whether S is constant 0 or constant 1.

Summing up, the construction of the data structure takes Od(n log log n) time, and each query requires
time Od(log log n) in the worst case. This concludes the proof.

6.3.2 Efficient approximation of zone families

In this section, we use the findings of Section 6.3.1 to construct a concise representation of a given family
of zones in the input matrix. Recall from Lemma 6.1.2 that for a d-twin-ordered n × n matrix M , its
s-zone family Fs(M), defined as the set of distinct zones in the s-regular division of M , contains at most
Od(ns) submatrices. We shall now generalize this result: Given s ∈ N and access to M via an oracle for
Submatrix Types, we will efficiently compute a subset Gs(M) of zones of the s-regular division of M
that represents the s-zone family Fs(M) in the following sense: We require that every submatrix in Fs(M)
should be represented by at least one zone in Gs(M) equal to this submatrix. The subset Gs(M) will
still contain at most Od(ns) submatrices; hence, it can be regarded as an efficient over-approximation of
Fs(M). Moreover, we will give an effective mapping ξ, sending any zone of the s-regular division of M
onto its representative in Gs(M).

Formally, assume that s | n. For p, q ∈
[
n
s

]
, by Zones(p, q) we mean the zone of the s-regular division

of M in the intersection of the p-th block of rows and the q-th block of columns of the division. Similarly,
let Zones([p1, p2], [q1, q2]) :=

⋃p2
p=p1

⋃q2
q=q1 Zones(p, q). We shall prove the following observation:

6.3. CONSTRUCTION ALGORITHM 217

Lemma 6.3.6. Assume that an n × n matrix M is d-twin-ordered for a fixed d ∈ N and is given
through an oracle T for Submatrix Types from Lemma 6.3.1. Then there exists an algorithm Zone
Approximation which, given an integer s | n, computes:

• a set Gs(M) ⊆
[
n
s

]2
of size Od(ns) and

• a mapping ξs :
[
n
s

]2 → Gs(M),

such that for each p, q ∈
[
n
s

]
, if (p′, q′) := ξ(p, q) then Zones(p, q) = Zones(p′, q′). Both Gs(M) and ξs are

constructed by Zone Approximation in time Od(ns log n
s log log n). For given (p, q) ∈

[
n
s

]2
, the value

ξs(p, q) can be computed in time Od(log log n).

The remainder of this section is devoted to the proof of Lemma 6.3.6.

Sketch of the algorithm. In Zone Approximation, we implement the following strategy. First,
create a partition U of the s-regular partition of M into Od(ns) contiguous rectangular submatrices, each
comprising pairwise equal zones. Then, form Gs(M) by picking one zone from each submatrix in U . For
the mapping ξs, we set up an instance of Orthogonal Point Location (Theorem 6.3.2). Given a query
(p, q), we locate the rectangular submatrix of U containing Zones(p, q), and return the representative of
this submatrix.

We consider the following submatrices for U :

• individual mixed zones;

• separate strips (horizontal and vertical); and

• constant submatrices of M .

We now sketch how U is populated. Roughly speaking, the algorithm traverses all zones Zones(p, q) of the
s-regular partition in the row-major order (in the increasing order of p, breaking ties in the increasing
order of q). The algorithm will repeatedly choose the zone Z = Zones(p, q) outside of

⋃
U that is the

earliest in the row-major order. Then, for some suitably chosen integers p′ > p, q′ > q, a new submatrix
Zones(p . . . p′, q . . . q′), disjoint with

⋃
U , will be created and added to U . The new submatrix will have Z

in its top-left corner.
Moreover, this process will at each step preserve the following invariant: Within each column block

of the s-partition, U covers a prefix of zones with respect to the row order. Formally, if Zones(p, q) is
a part of some submatrix of U for p > 2, then so is Zones(p− 1, q). Indeed, adding Zones([p, p′], [q, q′])
to U would break the invariant only if there existed an uncovered zone Zones(p̄, q̄) for some p̄ ∈ [p− 1],
q̄ ∈ [q, q′]. However, by the choice of (p, q), all such zones already belong to U .

Auxiliary data structure. In order to implement Zone Approximation, we first need to show
an efficient way to find the earliest zone in the row-major order that is disjoint with

⋃
U , under the

aforementioned updates of U :

Lemma 6.3.7. Given m ∈ N, we can construct a data structure maintaining an initially empty family U
of pairwise disjoint subsets of [m]2 under the following queries and updates:

• GetFirst(): Returns the lexicographically smallest pair of integers (p, q) ∈ [m]2 outside of
⋃
U , or ⊥

if no such pair exists;

• ExtendRight(): Let (p, q) := GetFirst(). Returns the largest integer q′ ∈ [q,m] such that all elements
(p, q), (p, q + 1), . . . , (p, q′) are disjoint from

⋃
U ;

• Cover(p′, q′): Let (p, q) := GetFirst(). Adds a rectangle [p, p′] × [q, q′] as a new subset of U ; it is
required that p′ > p, q′ > q, and the rectangle is disjoint with

⋃
U .

The data structure processes any query in time O(logm).

Proof. Consider an array H[1 . . .m], where H[p] (p ∈ [m]) is defined as the number of distinct q ∈ [m]
such that (p, q) ∈

⋃
U . By the invariant above, for any pair of integers p, q ∈ [m], we have that (p, q) ∈

⋃
U

if and only if q 6 H[p]. The array will be maintained implicitly using a set S of triples (h, `, r) of
integers, denoting the maximal intervals of equal values in H. Formally, (h, `, r) ∈ S if and only if ` 6 r,

218 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

H[`] = H[`+ 1] = . . . = H[r] = h, and H[`− 1] 6= h, H[r+ 1] 6= h (we assume that H[0] = H[m+ 1] =∞).
Initially, S = {(0, 1,m)}. The set also maintains the lexicographic order on the triples of integers, as well
as a linked list that links the elements of S in the natural order in [1 . . .m] (that is, by increasing second,
or equivalently third, coordinate). Thus, if S is implemented using a balanced binary search tree, such as
an AVL tree, we can perform any update or query on S in worst-case O(logm) time.

Given the representation of H through S, answering queries GetFirst() and ExtendRight() is easy
in O(logm) time: Let (h, `, r) be the lexicographically smallest element of S. If h = m, we return ⊥;
otherwise, GetFirst() = (h+ 1, `) and ExtendRight() = r. Now, consider Cover(p′, q′) for p′ > h+ 1, q′ > `.
We must have that q′ 6 r: By the choice of (h, `, r), we know that H[r + 1] > H[r], so the new rectangle
cannot extend past the rth column of [m]2. Hence, we can update H through S by:

• removing (h, `, r);

• adding (p′, `, q′) back to S; and if q′ < r, also inserting (h, q′ + 1, r) back to S; and

• merging (p′, `, q′) with the neighboring intervals in S if necessary, to ensure that S only keeps the
maximal intervals of equal values in H.

This involves O(1) updates to S. Thus, a single update requires O(logm) time.

We remark that Lemma 6.3.7 implements an auxiliary method ExtendRight(). This method is not
required to locate the earliest uncovered zone, but will be useful later in the algorithm.

Implementation of the algorithm. We now give the implementation of Zone Approximation. We
set up an instance P of the data structure from Lemma 6.3.7 for m = n

s . In P , each element (p, q) ∈ [m]2

will correspond to the zone Zones(p, q) of the s-regular division. Also, recall that T is an instance of
the data structure for Submatrix Types (Lemma 6.3.1) for the matrix M . We will populate U while
maintaining the following invariants:

(I) within each column block of the s-partition, U covers a prefix of zones with respect to the row order;
and

(II) each strip of the s-partition either is an element of U , or is disjoint with
⋃
U .

Note that we have already shown that invariant (I) is preserved throughout the algorithm.
Zone Approximation consists of a main loop which performs the following operations repeatedly:

Let (p, q) := GetFirst(). Depending on the type of Zones(p, q), we will create a new rectangular submatrix
S of M , disjoint with all elements of U so far, and add S to U by calling Cover(·, ·). The loop is repeated
until GetFirst() = ⊥.

Thus, assume that some submatrices have been already added to U , and let integers p, q, qmax be so
that (p, q) = GetFirst() and qmax = ExtendRight(). Let Z := Zones(p, q). We find the type of Z by a single
call to T . What we do next depends on the type of the zone:

• Mixed zone. In this case, we simply add Z to U by calling Cover(p, q) and proceed to the next
iteration of the loop.

• Nonconstant vertical zone. We perform a binary search to locate the largest integer p′ ∈ [p, ns] for
which the submatrix Z ′ := Zones([p, p′], q) is vertical. This requires O(log n

s) calls to T . Then we
add Z ′ to U by calling Cover(p′, q).

• Nonconstant horizontal zone. As above, use binary search to find the largest index q′ ∈ [q, qmax] for
which the submatrix Z ′ := Zones(p, [q, q′]) is horizontal. We add Z ′ to U by calling Cover(p, q′).

• Constant zone. We use the same binary search as in the vertical case to locate the largest index
p′ ∈ [p, ns] such that the submatrix Z ′ := Zones([p, p′], q) is constant. We then run another binary
search to find the largest index q′ ∈ [q, qmax] such that the submatrix Z ′′ := Zones([p, p′], [q, q′]) is
constant. Then, we add Z ′′ to U by calling Cover(p′, q′).

It is easy to see that invariants (I) and (II) ensure that the new submatrix is disjoint with
⋃
U . Then,

invariant (II) guarantees that the zone Z in the vertical and horizontal cases is the earliest zone in the
row-major order of the strip S containing Z, and S is disjoint with

⋃
U . Thus, by the definition of a strip

as a maximal vertical of horizontal submatrix, the presented binary search scheme will find the submatrix
Z ′ equal to S. Adding the strip to U maintains the invariant.

6.3. CONSTRUCTION ALGORITHM 219

After the main loop terminates, U is a partition of M into rectangular submatrices of M : mixed zones,
strips, and a number of constant submatrices. For each submatrix, we locate its earliest zone Zones(p, q)
in the row-major order, and we add (p, q) to Gs(M). Thus, |Gs(M)| = |U|. For ξs, observe that U is
isomorphic to a subdivision of the square [0, ns]2 ⊆ R2 into rectangular regions, each corresponding to
a single submatrix of U . Thus, we instantiate an instance IL of Orthogonal Point Location for
this set of rectangles. Each query ξs(p, q) is relayed to IL. The answer from IL can be translated into
a reference to the rectangular submatrix S of M containing Zones(p, q). The value of ξs(p, q) can then be
immediately deduced from S.

Analysis of the algorithm. First, we bound the number of iterations of the main loop:

Lemma 6.3.8. |U| 6 Od(ns).

Before we prove Lemma 6.3.8, let us verify that the time complexity of the algorithm Zone Approxi-
mation promised in the statement of Lemma 6.3.6 follows from it. The main loop of the algorithm runs
O(|U|) = Od(ns) times. Therefore, the oracle T is called Od(ns log n

s) times in our algorithm, requiring
Od(ns log n

s log log n) time in total. Next, the time complexity of all calls to P is bounded by Od(ns log n
s).

Finally, the time complexity of the construction of IL is bounded by Od(ns log log n
s), and each call to

ξs takes time O(log log n
s). Thus, the time complexity analysis of Zone Approximation is complete; it

remains to prove Lemma 6.3.8.

Proof of Lemma 6.3.8. In the regular s-division of M , there are at most Od(ns) mixed zones (Lemma 2.5.6)
and at most Od(ns) strips (Lemma 6.1.1). It remains to bound the number of constant submatrices in U
by Od(ns).

We say that a constant submatrix S = Zones([p1, p2], [q1, q2]) is guarded if S either touches the
boundary of M (i.e., at least one of the equalities p1 = 1, q1 = 1, p2 = n

s , or q2 = n
s holds), or the slightly

larger submatrix Zones([p1 − 1, p2 + 1], [q1 − 1, q2 + 1]), called the shell of S, is mixed.

Claim 6.3.9. Every constant submatrix in U is guarded.

Proof of the claim. Assume otherwise, and choose an unguarded constant submatrix S ∈ U . Then, S is
not incident to the boundary of M , and each zone adjacent to S (by a side or by a corner) is horizontal or
vertical.

Suppose S = Zones([p1, p2], [q1, q2]). Let Ŝ := Zones([p1 − 1, p2 + 1], [q1 − 1, q2 + 1]) be the shell of S.
Without loss of generality, let 0 be the common entry in S.

Let S �be the zone in the top left corner of S (i.e., the earliest zone of S in the row-major order), and
S � be the zone in the bottom left corner of S. We also consider the following zones in Ŝ: Y �, Y �, and Y �,
adjacent to S �from the top, top left, and left, respectively; and Y� and Y �, adjacent to S � from the
bottom and bottom left, respectively (Figure 6.2).

S �

S �

Y �Y �

Y �

Y � Y�

Figure 6.2: An example constant submatrix S (dark gray). The zones in Ŝ \ S are marked light gray. In
this figure, the first row block is at the top, and the first column block is on the left.

Consider the zone Y� . As Ŝ is not mixed, Y� is not mixed either. Moreover, by the construction of S,
the submatrix Zones([p1, p2 + 1], q1) is not constant, so the zone Y� is not constant 0. Also, Y� cannot be
nonconstant vertical; otherwise, a mixed cut would appear on the boundary between S � and Y� , and Ŝ
would be mixed. Hence, Y� is either nonconstant horizontal or constant 1. It can be now easily verified
that the entire shell Ŝ is nonconstant horizontal. It immediately follows that: Y �is constant 0; both Y �

220 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

and Y� are horizontal (but not constant 0) and repeat the same column vector; and both Y �and Y � are
horizontal (possibly constant) and also repeat the same column vector.

Since the elements of U are rectangular, either Y � or Y �must belong to a different element of U than
Y �. We perform a case analysis depending on whether Y �and Y �are in one submatrix.

Case 1: Y �is in a different submatrix A ∈ U than Y �. Then, Y �is the zone in the top-right corner of
A. Also, A is constant 0, since Y �is constant 0. Moreover, Y � is not constant 0 and thus remains outside
of A. Hence, the set of rows spanned by A is a subset of the set of rows spanned by S. But the top-left
zone of A is earlier in the row-major order than the top-left zone of S, so A must have been added to U
by the algorithm before S; and when A was being added to U , all zones of S were outside of U . Hence,
the binary search scheme would have extended A more to the right, in particular covering S �as a zone –
a contradiction since S �/∈ A.

Case 2: Y �and Y �are in the same submatrix A ∈ U . Then Y �is constant 0 (as Y �is constant 0), and
hence Y � is also constant 0 (as Ŝ is horizontal). Also, Y � is the bottom-left zone of a different submatrix
B ∈ U . But again, B would have been added to U by the algorithm before S, and B would have extended
downwards to cover S �– a contradiction.

Since all cases have been exhausted, we conclude that S must be guarded. C

Claim 6.3.10. U contains at most Od(ns) constant submatrices.

Proof of the claim. Obviously, there are at most 4 · ns different submatrices of U touching the bound-
ary of M . Consider then a constant submatrix S ∈ U that does not touch the boundary of M . Let
S = Zones([p1, p2], [q1, q2]), and let Ŝ := Zones([p1 − 1, p2 + 1], [q1 − 1, q2 + 1]) be the shell of S. By
Claim 6.3.9, Ŝ is mixed, so it contains a corner C. We consider three cases, depending on the location
of C.

• If C is fully contained within some (mixed) zone Z, we assign S to Z.

• If C is split in halves by some (mixed) cut µ, we assign S to µ.

• If C is split by the zone boundaries into four 1× 1 submatrices, we assign S to C.

As all submatrices of U are pairwise disjoint, each entry of M belongs to at most 9 shells of the submatrices
of U . In particular, each object (mixed zone, mixed cut or corner) belongs to at most 9 shells. It follows
that each such object may be assigned to at most O(1) guarded submatrices. Since the s-regular division
of M contains at most Od(ns) mixed zones (Lemma 2.5.6), Od(ns) mixed cuts (Lemma 2.5.8), and Od(ns)
split corners (also Lemma 2.5.8), we conclude that U contains at most Od(ns) constant submatrices. C

As discussed, with Claim 6.3.10 established, the statement of the lemma is immediate.

6.3.3 Construction algorithm for Theorem 1.3.8

We now combine the results of Sections 6.3.1 and 6.3.2 to construct the data structure described in
Section 6.2. As promised, the construction will take time Od(n log n log log n), provided that the input
matrix is given by specifying a rectangle decomposition K with |K| 6 Od(n). This will conclude the proof
of Theorem 1.3.8.

First, we set up an instance IT of the data structure for Submatrix Types on M . IT can be
instantiated in time Od(n log log n) from K (Lemma 6.3.1). Recall that each access to IT is realized in
worst-case time O(log log n). From now on, we assume that M is accessed only through IT .

Recap of the data structure. In Section 6.2 we defined parameters m0 > m1 > . . . > m` such that
m0 = n, m` ∈ Θd(log n), ` ∈ O(log log n), and mi+1 | mi and m2

i+1 > mi for each i ∈ {0, 1, . . . , ` − 1}.
The data structure consists of `+ 1 layers: L0, . . . ,L`. Each layer Li contains one object obj(Z) for each
element Z of the zone family Fmi . For i < `, each object obj(Z) in Li contains an mi

mi+1
× mi

mi+1
array ptr

of pointers to the objects in Li+1, corresponding to the elements of the regular mi+1-division of Z. For
i = `, each object obj(Z) in L` stores the entire submatrix Z using m2

` bits. By carefully choosing the
parameters, we guarantee that the data structure occupies Od(n) bits.

6.3. CONSTRUCTION ALGORITHM 221

Strategy. Assume that the suitable parameters m0, . . . ,m` have already been selected. We construct the
data structure bottom-up, starting from layer L`, and concluding with layer L0. For each i = `, `−1, . . . , 0,
we construct a set Gmi(M) of representative zones in the regular mi-division of M ; and a mapping

ξmi :
[
n
mi

]2
→ Gmi(M), sending any zone of the mi-regular division of M onto their representative

in Gmi(M). Since mi ∈ Ωd(log n), this construction will take time Od(n log log n) for each i. Moreover,
|Gmi(M)| ∈ Od(n

mi
), and the mapping ξmi can be evaluated on any zone in O(log log n) time. Next, we

construct Fmi(M) by filtering out identical matrices from Gmi(M); formally, we construct a surjection ψmi
mapping Gmi(M) onto the set of objects in Li such that ψi(p, q) = ψi(p′, q′) if and only if Zonemi(p, q) =
Zonemi(p

′, q′). For i = `, this will be done directly, by listing all entries in the zone; for i < `, this will
be done by taking all representative zones and comparing the subzones in their mi+1-regular divisions.
Finally, the pointers from Li to Li+1 will be derived from the mapping ξmi+1 .

The bottom layer L`. We begin by constructing L`. Using Lemma 6.3.6, we find Gm`(M) and
ξm` . Next, for each representative (p, q) ∈ Gm`(M), we examine each individual entry in Zones(p, q)
using m2

` queries to IL. This requires Od(n log n) queries in total for all elements of Gm`(M), resulting
in time Od(n log n log log n). Thus, each representative zone is now fully described by a bitvector of
length m2

` ∈ Od(log2 n); and two representative zones Zonem`(p, q), Zonem`(p
′, q′) are equal if and

only if their corresponding bitvectors are equal. The bitvectors can be sorted using radix sort in time
Od(n

logn · log2 n) = Od(n log n). Then, the zones can be grouped into equivalence classes with respect to
their equality; each such class corresponds to one zone in the zone family Fm`(M). Eventually, we pick
one matrix from each equivalence class and store it in its entirety as an object of L`.

This concludes the construction of L`. The time complexity is Od(n log n log log n), dominated by
querying IL for individual elements of M . The choice of a matrix from each class induces the surjection
ψm` .

Layers Li for i < `. Assume that the layer Li+1 has already been constructed, together with the auxiliary
set Gmi+1(M) and functions ξmi+1 and ψmi+1 . By Lemma 6.3.6, we find Gmi(M) and ξmi .

We enumerate the objects in Li+1 as A1, A2, . . . , As, where s = |Fmi+1(M)| ∈ Od(n
mi+1

). Recall that
each Aj corresponds to a different matrix in the zone family Fmi+1 . Then, take some (a, b) ∈ Gmi(M) and
let Z = Zonemi(a, b) denote the corresponding representative zone in M . We list all subzones subzoneZ(p, q)
(p, q ∈ [mi/mi+1]) in the regular mi+1-division of Z and interpret each of them as an element of Fmi+1(M).
Since subzoneZ(p, q) = Zonemi+1((a− 1) mi

mi+1
+ p, (b− 1) mi

mi+1
+ q), we can find the unique element j ∈ [s]

such that Aj = obj(subzoneZ(p, q)) inO(log log n) time by locating the representative zone of subzoneZ(p, q)
in the mi+1-regular division of M using ξmi+1 , and then using ψmi+1 to find the corresponding object in
Li+1. This way, we describe each representative zone Z of the regular mi-division of M as an mi

mi+1
× mi

mi+1

square matrix D(Z) of elements from 1 to s; again, two representative zones Z1, Z2 are equal to each
other if and only if their descriptions are equal. As |Gmi | ∈ Od(n

mi
) and we spend (mi/mi+1)2 calls to

ξmi+1 for each zone in Gmi , this in total requires time Od(n
mi
·
(

mi
mi+1

)2
· log log n), which by m2

i+1 > mi

is bounded by Od(n log log n).
We now filter the repeated occurrences of the descriptions of the representative zones in Gmi . We do it

by sorting the descriptions in the lexicographic row-major order using any comparison sort, where in each
comparison we simply compare two arrays of length (mi/mi+1)2, and then grouping equal descriptions.

This takes time Od(n
mi
· log n

mi
·
(

mi
mi+1

)2
), which is bounded by Od(n log n). Afterwards, we pick one

representative from each equivalence class and store it as an object in Li. Again, each object of Li
corresponds to a single zone in the zone family Fmi , and the construction above naturally gives rise to
the surjection ψmi . Given an object obj(Z) ∈ Li, the pointers from obj(Z) to the objects of Li+1 can be
immediately deduced from D(Z) and the sequence A1, A2, . . . , As.

Summary. We constructed the bottom-most layer L` in time Od(n log n log log n). For each i = ` −
1, ` − 2, . . . , 0, the construction of Li takes time Od(n log n), dominated by the comparison sort of the
descriptions of the zones. Since ` ∈ O(log log n), we conclude that the time complexity of the entire
construction is Od(n log n log log n). Therefore, the constructive part of Theorem 1.3.8 is proved.

222 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

6.4 Representation with bitsize O(n1+ε) and query time O(1/ε)

In this section we provide a brief sketch of another data structure representing twin-ordered matrices. For
any fixed ε > 0, we will construct a data structure that represents a given d-twin-ordered n× n matrix M
in bitsize O(n1+ε), and can be queried for entries of M in worst-case time O(1/ε) per query. Actually,
the data structure solves the Orthogonal Point Location problem within the same space and time
bounds, provided that the input is given as a set of orthogonal rectangles with pairwise disjoint interiors,
and with integer coordinates between 0 and n. As the set of 1 entries in any d-twin-ordered matrix M
admits a rectangle decomposition into Od(n) rectangles (Lemma 2.5.2), this also yields a data structure
representing M .

Notably, Chan [Cha13] observed that Orthogonal Point Location can be reduced to the static
variant of the Predecessor Search problem, even if the input coordinates are from 0 to O(n). Pǎtraşcu
and Thorup proved that each data structure for Predecessor Search with O(n logO(1) n) bitsize
necessarily requires Ω(log log n) query time, even in a much more powerful cell probe model [PT06].
Therefore, for general Orthogonal Point Location, one cannot expect to achieve constant query time
with bitsize significantly smaller than O(n1+ε).

Data structure for disjoint intervals. Consider integers k, h > 1, and let n = kh. We will first sketch
a data structure that maintains a set of disjoint integer intervals that are subintervals of [0, n− 1]. The
data structure shall allow adding or removing intervals in time O(kh) and querying whether a point is
contained in any interval in time O(h).

Consider a perfect k-ary tree of depth h. The tree has kh leaves, numbered from 0 to n−1 according to
the pre-order traversal of the tree. Each internal node at depth i ∈ {0, 1, . . . , h− 1} in the tree corresponds
to a contiguous interval of leaves of length kh−i. Each such interval is called a base interval. Each internal
node contains an array of k pointers to the children in the tree, allowing access to the j-th child in constant
time. Additionally, alongside each node v of the data structure, we store an additional bit bv, initially set
to 0.

Assume an interval [`, r] is to be inserted to the set. We traverse the tree recursively, starting from the
root, entering only nodes whose base intervals intersect [`, r], and cutting the recursion at nodes whose
base intervals are entirely within [`, r]. It can be shown that the recursion visits at most O(kh) nodes
and decomposes [`, r] into O(kh) disjoint base intervals. For each node v corresponding to such a base
interval, we set bv ← 1. Removing an interval from the set is analogous. Now, to verify whether an element
y belongs to the set, we descend recursively from the root of the tree to the y-th leaf of the tree and verify
if any of the visited nodes v has bv = 1. This requires time O(h).

Since each update and query to the data structure is essentially a recursive search from the root of
the tree, the data structure can be made persistent: On each update, we create a copy of each altered
node and each of their ancestors, and we reset the pointers in the copies accordingly. As O(kh) nodes are
updated at each query, and each internal node stores an array of O(k) pointers, the update time increases
to O(k2h) due to the copying of the nodes; and each update increases the bitsize of the data structure by
O(k2h log n). Thus, after Od(n) updates, the bitsize of the data structure is Od(nk2h log n). The query
time remains at O(h).

Orthogonal point location with small coordinates. Fix any ε > 0. Given a matrix M of order n,
we set h := d2/εe+ 1 and k :=

⌈
n1/h

⌉
. We instantiate a persistent k-ary tree of depth h as above. We

sweep the set of rectangles from the left of the right, maintaining a vertical sweep line. The tree maintains
an intersection of the sweep line with the union of rectangles as a set of disjoint intervals contained in
[0, n]. Hence, for each rectangle, the tree is updated twice: a vertical interval is added when the sweep line
reaches the left end of the rectangle, and is removed as soon as it reaches the right end of the rectangle.
At each x coordinate, we store the pointer verx to the root of the current version of the tree. After the
preprocessing, for each query (x, y), we fetch the pointer verx and check whether this version of the tree
contains y as an element.

Let us analyze the query time and the bitsize of the data structure. For convenience, let δ := 1/h. We
can see that 0 < δ < ε

2 . Each query is performed in time O(h) = O(1/ε). Storing pointers verx requires
bitsize O(n log n). Since we processed Od(n) rectangles, the persistent tree has bitsize Od(nk2h log n) =
Od(n1+2δ log n/ε) = Od(n1+ε).

6.5. CONCLUSIONS 223

6.5 Conclusions

We presented a compact data structure that can be queried for entries of a binary d-twin-ordered n× n
matrix in worst-case O(log log n) time. Below we discuss various generalizations and variants of the
problem, as well as present possible research directions related to the problem.

• Suppose we want to construct a compact adjacency oracle for a labeled graph of twin-width at
most d – a data structure that can be queried whether any given pair of vertices of the graph
is connected by an edge. For convenience assume that V (G) = [n]. By Observation 2.5.1 there
is a total order < of [n] such that the adjacency matrix of G, with rows and columns ordered
according to <, is (d+ 2)-twin-ordered; in particular, this is true whenever < is consistent with some
d-sequence (a contraction sequence of error value at most d). So if G has a d-sequence in which all
parts are intervals of [n], then the adjacency matrix of G, with rows and columns ordered according
to the natural order on [n], is (d+ 2)-twin-ordered. In such a case we can use the data structure
of Theorem 1.3.8 to store this adjacency matrix of G. This implies an adjacency oracle for G that
occupies Od(n) bits and that can be queried in worst-case time O(log log n) per query.

However, we cannot hope for an adjacency oracle occupying Od(n) for arbitrary labeled graphs of
bounded twin-width. Consider for instance the n-vertex path graph Pn for n > 2. We can assign
labels from [n] to the vertices of Pn in n!/2 nonisomorphic ways, and each such assignment produces
a labeled graph of twin-width at most 1. Adjacency oracles storing different labeled graphs must
have different representations in memory, so any adjacency oracle that can store any labeled n-vertex
path graph must necessarily occupy at least log(n!/2) ∈ Ω(n log n) bits.

• A similar lower bound applies to matrices of bounded twin-width: The class of permutation matrices
(square binary matrices containing exactly one entry 1 in each row and each column) has bounded
twin-width since the rows and the columns of each permutation matrix can be shuffled so as to
produce the identity matrix. However, there are precisely n! n×n permutation matrices, so an oracle
that can store any such matrix must occupy at least Ω(n log n) bits.

• It remains an interesting question whether the result of Observation 2.5.1 can be used to produce
an adjacency oracle for ordered graphs of bounded twin-width with bitsize Od(n) (see Section 1.1.3
for the definition of twin-width of ordered graphs), or an analogous oracle with bitsize Ok(n) for
k-mixed-free n× n matrices.

• Our result easily generalizes to the setting of d-twin-ordered matrices over a constant alphabet: Fix
a constant d ∈ N and a constant finite alphabet Σ. Then for a given n× n matrix M with entries
from Σ that is d-twin-ordered (the notion of d-twin-ordered matrices naturally lifts to nonbinary
matrices), we can construct a data structure that occupies Od,Σ(n) bits and that can be queried for
entries of M in worst-case time OΣ(log log n) per query. To observe this, note that for every c ∈ Σ,
the binary matrix Mc constructed from M by replacing all entries c with 1 and all the remaining
entries with 0 is also d-twin-ordered. Hence a compact oracle for M can be produced by constructing
compact oracles for each binary matrix Mc.

• As mentioned before, it is an open question whether the query time in Theorem 1.3.8 could be
improved to constant – Od(1) or perhaps even O(1). A promising approach that could yield such
an improvement is to use the notion of delayed decompositions of graphs of bounded twin-width of
Bourneuf and Thomassé [BT23], inspired by our research on χ-boundedness of graphs of bounded
twin-width (Chapter 7). In Section 7.5 we overview this notion, as well as briefly discuss how it
could be helpful in the design of compact oracles for d-twin-ordered matrices.

224 CHAPTER 6. COMPACT ORACLE FOR D-TWIN-ORDERED MATRICES

Chapter 7

Twin-width and χ-boundedness

In this chapter we present a proof that classes of graphs of bounded twin-width are quasi-polynomially
χ-bounded, improving upon the exponential bound by Bonnet et al. [BGK+21b]. We recall the statement
of the result below:

Theorem 1.3.10 ([PS23]). For every d ∈ N there exists a constant γd ∈ N such that for every graph G
of twin-width at most d and clique number ω, we have

χ(G) 6 2γd·log4d+3 ω.

This result makes a significant progress towards resolving the question in [BGK+21b], who asked
whether the classes of graphs of bounded twin-width are polynomially χ-bounded. In fact, our techniques
have been subsequently refined by Bourneuf and Thomassé [BT23], who finally resolved the question
positively.

Let us briefly comment on the key conceptual differences between the proof of (exponential) χ-
boundedness of Bonnet et al. [BGK+21b] and our proof of Theorem 1.3.10. The proof of Bonnet et al.
applies a standard strategy in the area of χ-boundedness. Namely, they show that one can partition the
vertex set of a graph of twin-width t into t+ 2 subsets so that each subset induces a subgraph with the
clique number smaller by at least 1. Then induction is applied to each of these subgraphs, with the clique
number being the progress measure in the induction. Without modifications, this strategy inherently leads
to an exponential bound on the χ-bounding function. In our proof, we use two different induction steps:

• In one step, we induct on induced subgraphs in which the clique number drops significantly: at least
by a constant fraction.

• In the second step, we induct on graphs that may possibly have even larger clique number (but
bounded polynomially in the original one), but in which an auxiliary progress measure – the largest
size of an almost mixed minor – drops by at least one. This auxiliary measure is bounded in terms of
the twin-width, so this step can be applied only a constant number of times, provided the twin-width
is originally bounded by a constant.

In the first step, after we partition the graph into induced subgraphs with significantly smaller clique
numbers, we employ a variant of the bucketing scheme from the proof by Chudnovsky et al. [CPST13]
that polynomial χ-boundedness is preserved under closure by the substitution operation. That is, we
assign the induced subgraphs to a number of buckets – where each bucket contains subgraphs with similar
clique numbers – and we use a separate palette of colors for each bucket in a proper coloring of the graph.
More details can be found in Section 7.2.4.

The auxiliary progress measure used in the second step is expressed through the nonexistence of
certain structures in the adjacency matrix of the graph. For this reason, the entire reasoning needs to be
conducted in the matrix setting.

7.1 Almost mixed minors

We begin by explaining the central progress measure behind our proof of quasi-polynomial χ-boundedness
– almost mixed minors. On the technical level, this detail is somewhat analogous to the choice of working
with the notion of quasi-index in [GPT21].

225

226 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

A d-division D of a matrix M is a d-almost mixed minor if for each pair of indices i, j ∈ [d] with i 6= j,
the zone D[i, j] is mixed. A matrix is d-almost mixed-free if it admits no d-almost mixed minors.

Almost mixed minors differ from mixed minors in that it is not required that the “diagonal” zones are
mixed. This variant of mixed minors will prove useful as a technical tool in several key lemmas where we
will be unable to reason about the mixedness of these zones.

Clearly, every d-almost mixed-free matrix is also d-mixed-free. On the other hand, every d-mixed-free
matrix is 2d-almost mixed-free. To see that, note that if there was a 2d-almost mixed minor, then its
first d row blocks and last d column blocks would induce a submatrix with a d-mixed minor. Also, note
that any submatrix of a d-(almost) mixed-free matrix is also d-(almost) mixed-free; we will often use this
fact implicitly.

7.2 Obtaining the recurrence

In this section we provide the main step towards the proof of Theorem 1.3.10, which is a recursive upper
bound on the χ-bounding function of graphs admitting a d-almost mixed-free adjacency matrix. After
giving some preliminary tools in Section 7.2.1, we formulate this main step in Lemma 7.2.7 in Section 7.2.2,
and devote the remainder of Section 7.2 to the proof of this lemma.

7.2.1 Compressions

We start with some auxiliary results on horizontal and vertical compressions of matrices. These will be
later used for handling recursive steps that apply to submatrices with smaller excluded almost mixed
minors.

Call a matrix M graphic if it is symmetric, has all entries in {0, 1}, and all entries on the diagonal of
M are 0. In other words, M is graphic if it is the adjacency matrix of some graph (with respect to some
vertex ordering).

Definition 17. Let D be a symmetric s-division of a graphic matrix M . We define the horizontal
compression GH

D as the graph over vertex set [s] where for any 1 6 i < j 6 s, we have ij ∈ E(GH
D) if

and only if the zone D[i, j] is nonzero horizontal (equivalently, D[j, i] is nonzero vertical). We define the
vertical compression GV

D symmetrically. The mixed compression GM
D is defined analogously, but we put an

edge ij whenever i 6= j and the zone D[i, j] is mixed.

Let MH
D, MV

D, and MM
D be the adjacency matrices of GH

D, GV
D, and GM

D respectively, with respect to
the natural vertex orderings inherited from M .

We first note that thanks to the Marcus-Tardos Theorem (Theorem 2.5.4), the mixed compression of a
d-mixed-free matrix is always sparse, and hence colorable with few colors.

Lemma 7.2.1. For every d ∈ N there exists a constant Cd such that the following holds. Let M be a
d-mixed-free graphic matrix and D be a symmetric division of M . Then χ(GM

D) 6 Cd.

Proof. Let k be the number of row blocks (equivalently, of column blocks) of D. By Theorem 2.5.4 and the
fact that d-mixed-freeness is closed under taking submatrices, there exists a constant cd > 0 depending
only on d such that for every subset S ⊆ [k], there are at most cd|S| pairs i, j ∈ S, i < j, such that the
zone D[i, j] is mixed. Thus, |E(GM

D[S])| 6 cd|S|. Since S was chosen arbitrarily, it follows that GM
D is

2cd-degenerate, and hence χ(GM
D) 6 2cd + 1. So we may set Cd := 2cd + 1.

We next observe that almost mixed minors in MH
D lift to almost mixed minors in M .

Lemma 7.2.2. Let M be a graphic matrix and D be a symmetric division of M . Suppose MH
D contains

a d-almost mixed minor E for some d > 2. (Note that E is not necessarily symmetric.) Then M contains
a d-almost mixed minor L such that:

• L is a coarsening of D (that is, each row block of L is the union of some convex subset of row blocks
of D, and the same applies for column blocks); and

• each zone of L is formed by an intersection of at least two row blocks of D and at least two column
blocks of D.

Proof. We lift E to a d-almost mixed division L of M naturally as follows. For i ∈ [d], if the ith row block
of E spans rows r1 . . . r2 of MH

D, then we set the ith row block of L to be the union of row blocks of E

7.2. OBTAINING THE RECURRENCE 227

from the r1th to the r2th. Similarly for column blocks. Thus, if i, j ∈ [d] and E [i, j] is the intersection of
rows r1, . . . , r2 and columns c1, . . . , c2 of MH

D, then

L[i, j] = D[[r1, r2], [c1, c2]].

Clearly, L is a coarsening of D. Furthermore, since d > 2 and E is a d-almost mixed minor of MH
D, it is

easy to see that each row block and each column block of L has to span at least two blocks of D, for
otherwise no corner in MH

D would fit into this block. So it remains to show that each zone L[i, j] with
i, j ∈ [d], i 6= j, is mixed.

Fix some i, j ∈ [d] with i 6= j. Assume that E [i, j] is formed by the intersection of rows r1, . . . , r2 and
columns c1, . . . , c2 of MH

D. Since E [i, j] is mixed, there is a corner C = MH
D[[r, r + 1], [c, c+ 1]] for some

r1 6 r < r2 and c1 6 c < c2. It is then enough to show that the submatrix A := D[[r, r + 1], [c, c + 1]]
of M is mixed. Indeed, since A is a submatrix of L[i, j] = D[[r1, r2], [c1, c2]], it will follow that L[i, j] is
mixed as well.

We perform a case study, depending on the value of c− r (which intuitively signifies how close C is to
the diagonal of MH

D):

Case 1a: c > r + 2. Then C is strictly above the diagonal of MH
D. So for each i ∈ {r, r + 1} and

j ∈ {c, c + 1}, we have MH
D[i, j] = 1 if and only if D[i, j] is nonzero horizontal. If A were horizontal,

then for each i ∈ {r, r + 1} we would have MH
D[i, c] = MH

D[i, c + 1], and C would be horizontal; a
contradiction with C being a corner. Similarly, if A were vertical, then for each j ∈ {c, c+ 1} we would
have MH

D[r, j] = MH
D[r + 1, j] and C would be vertical; again a contradiction with C being a corner. So A

must be mixed.

Case 1b: c 6 r − 2. Then C is strictly below the diagonal of MH
D. So for each i ∈ {r, r + 1} and

j ∈ {c, c+ 1}, we have MH
D[i, j] = 1 if and only if D[i, j] is nonzero vertical. Hence, the proof is symmetric

to Case 1a.

Case 2a: c = r + 1. Then C intersects the diagonal of MH
D at entry MH

D[r + 1, c], while the remaining
entries are above the diagonal. Observe that D[r + 1, c] is graphic, and thus either constant 0 or mixed.
If it is mixed, then A is already mixed as well. So from now on assume that D[r + 1, c] is constant 0.
Consequently, MH

D[r + 1, c] = 0.
First, assume that A is horizontal. Then, D[r+1, c+1] is constant 0 as well and thus MH

D[r+1, c+1] = 0.
Moreover, D[{r}, [c, c + 1]] is horizontal, implying that MH

D[r, c] = MH
D[r, c + 1]. (Note that both these

entries are equal to 1 if and only if D[r, c] is nonzero, or equivalently if D[r, c+ 1] is nonzero.) So C cannot
be a corner in MH

D, a contradiction.
Next, assume that A is vertical. Analogously, D[r, c] is constant 0, hence MH

D[r, c] = 0, while D[[r, r +
1], {c+ 1}] is vertical, implying that MH

D[r, c+ 1] = MH
D[r+ 1, c+ 1]. So again, we conclude that C cannot

be a corner, a contradiction.

Case 2b: c = r − 1. This case is symmetric to Case 2a.

Case 3: c = r. That is, C intersects the diagonal of MH
D at MH

D[r, c] and MH
D[r + 1, c + 1], while

MH
D[r + 1, c] is below the diagonal and MH

D[r, c+ 1] is above the diagonal. As in Case 2a, each of D[r, c]
and D[r + 1, c+ 1] is either mixed or constant 0. If any of them is mixed, then A is mixed as well and we
are done; so assume that that both D[r, c] and D[r + 1, c+ 1] are constant 0. Now, if A were horizontal
or vertical, then both D[r + 1, c] and D[r, c+ 1] would be constant 0 as well, implying that C would be
constant 0. This is a contradiction with C being a corner.

This finishes the proof.

Naturally, a statement symmetric to Lemma 7.2.2 applies to MV
D. Thus:

Corollary 7.2.3. Suppose M is a graphic matrix that is d-almost mixed-free for some d > 2, and D is a
symmetric division of M . Then both MH

D and MV
D are d-almost mixed-free.

The next lemma is the main outcome of this section. It shows that if M is the adjacency matrix of a
graph G (with respect to some vertex ordering) and M has no large almost mixed minor, then the clique
numbers of the compressions of M are controlled in terms of the clique number of G.

Lemma 7.2.4. Let G be a graph and denote ω = ω(G). Let M be the adjacency matrix of G in some
vertex ordering and let D be a symmetric division of M . Suppose M has no d-almost mixed minor that is
a coarsening of D, for some d > 1. Then

ω(GH
D) < 2

(
ω + d− 2
d− 1

)
6 2ωd−1.

228 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

Proof. Let

µ(ω, d) = 2
(
ω + d− 2
d− 1

)
− 1.

It can be easily verified that µ(ω, d) satisfies the following recursive definition:
• µ(1, ·) = µ(·, 1) = 1; and
• µ(ω, d) = µ(ω − 1, d) + µ(ω, d− 1) + 1 for ω, d > 2.

We now show that ω(GH
D) 6 µ(ω, d) by induction on ω and d.

If ω = 1, then G must be edgeless. So GH
D is edgeless as well, implying that ω(GH

D) 6 1. There are
no 1-almost mixed-free matrices, so ω(GH

D) 6 1 is vacuously true for d = 1. This resolves the base of the
induction, so from now on assume that d, ω > 2.

Assume for contradiction that ω(GH
D) > µ(ω, d). By restricting G to a suitable induced subgraph,

without loss of generality, we may assume that GH
D is a complete graph with k := µ(ω, d) + 1 vertices.

Note that this means that for each 1 6 i < j 6 k, the zone D[i, j] is nonzero horizontal. Since we assume
that D is a symmetric division, D yields a partition of V (G) into k subsets V1, V2, . . . , Vk. These subsets
are convex in the vertex ordering used in the construction of M , and are indexed naturally according to
this vertex ordering.

Let ` := µ(ω, d− 1) + 1 and

Y := V1 ∪ V2 ∪ · · · ∪ V` and Z := V (G) \ Y.

Note that k = µ(ω, d) + 1 = µ(ω, d− 1) +µ(ω− 1, d) + 2, hence Y is the union of ` = µ(ω, d− 1) + 1 parts
Vi and Z is the union of µ(ω − 1, d) + 1 parts Vi.

Claim 7.2.5. ω(G[Z]) = ω.

Proof. Let DZ be the restriction of the division D restricted to blocks corresponding to the vertices of Z.
By construction, we have that ω(G[Z]HDZ) > µ(ω−1, d) + 1. Therefore, by induction assumption applied to
the graph G[Z] with division DZ , we infer that either ω(G[Z]) > ω − 1 or M has a d-almost mixed minor
that is a coarsening of DZ . The latter case leads to the contradiction (such an almost mixed minor would
lift to a d-almost mixed minor that is a coarsening of D), so it is indeed the case that ω(G[Z]) > ω−1.

Claim 7.2.5 implies that there is no vertex v ∈ Y that would be complete towards Z (i.e., adjacent to
every vertex of Z). Indeed, if this were the case, then v together with the largest clique in G[Z] would
form a clique in G of size at least ω + 1, a contradiction.

Since no vertex of Y is complete towards Z, for every i ∈ [`] one can find j(i) > ` such that the zone
D[i, j(i)] in M is not constant 1. However, as MH

D[i, j(i)] = 1, we know that D[i, j(i)] is nonzero horizontal.
Hence, D[i, j(i)] is nonconstant horizontal.

For every i ∈ [`], consider the submatrix

Ri := D[{i}, [`+ 1, k]].

Note that Ri contains the zone D[i, j(i)]. This means that Ri cannot be vertical, as its zone D[i, j(i)] is
nonconstant horizontal. It also cannot be horizontal, as then there would exist a vertex v ∈ Vi ⊆ Y that
would be complete towards Z. Therefore, Ri is mixed. By symmetry, the submatrix Si := D[[`+ 1, k], {i}]
is mixed as well (Figure 7.1a).

Let
M ′ := D[[1, `], [1, `]]

be the adjacency matrix of G[Y] in the vertex ordering inherited from G. We observe that M ′ cannot contain
any (d− 1)-almost mixed minor E that would be a coarsening of D (restricted to blocks corresponding to
the vertices of Y). Indeed, otherwise we could form a d-almost mixed minor E ′ of M by adding to E one
column block, spanning the suffix of columns of M corresponding to the vertices of Z, and one row block,
spanning the suffix of rows of M corresponding to the vertices of Z (Figure 7.1b). By the mixedness of Ri
and Si for each i ∈ [`], we see that for each j ∈ [d− 1], the zones E ′[d, j] and E ′[j, d] would be mixed. So
E ′ would be a d-almost mixed minor in M that would be coarsening of D, a contradiction.

As ` = µ(ω, d− 1) + 1, we may now apply the induction assumption to the graph G[Y] with division
D restricted to blocks corresponding to the vertices of Y . Analogously to the proof of Claim 7.2.5, we
infer that

ω(G[Y]) > ω.

As G[Y] is an induced subgraph of G, this is a contradiction that finishes the proof.

We remark that a symmetric reasoning shows that the same conclusion applies also to GV
D: Under the

assumptions of Lemma 7.2.4, we also have ω(GV
D) 6 2ωd−1.

7.2. OBTAINING THE RECURRENCE 229

Y

Y

Z

Z

(a)

Y

Y

Z

Z

(b)

Figure 7.1: Setup in the proof of Lemma 7.2.4.
(a) A symmetric division D of matrix M (dotted). Each red horizontal strip (Ri) and each red vertical
strip (Si) is mixed.
(b) Each (d − 1)-almost mixed minor of M ′ that is a coarsening of D (dark red) can be extended to
a d-almost mixed minor of M by adding Z as the final row and column block.

7.2.2 Statement of the main lemma

With auxiliary tools prepared, we can proceed to the main result of this section. Let fd : Z>0 → Z>0 be
defined as follows: For ω ∈ N, fd(ω) is the maximum chromatic number among graphs of clique number
at most ω that admit a vertex ordering yielding a d-almost mixed-free adjacency matrix. Note that
by Theorem 2.5.5 and [BGK+21b, Theorem 4], fd(ω) is finite for all ω ∈ N. We have the following easy
observation.

Lemma 7.2.6. Every graph of twin-width at most t and clique number ω has chromatic number at
most f4t+4(ω).

Proof. Every graph of twin-width at most t has a vertex ordering that yields a (2t+2)-mixed-free adjacency
matrix (Theorem 2.5.5), and every (2t+ 2)-mixed-free matrix is also (4t+ 4)-almost mixed-free. Given
this, the claim follows from the definition of f4t+4(ω).

For convenience, let us extend the domain of fd to R>0 by setting fd(x) = fd(dxe) for every positive
noninteger x. The main step towards a better bound on fd is the recurrence provided by the following
lemma.

Lemma 7.2.7. Let d, ω, k be integers satisfying d > 3, ω > 5, and 1 6 k < ω/4. Then there exists a
constant Cd depending only on d such that

fd(ω) 6 fd(ω − k) + Cd

fd(ω − k) + 8Cdf2
d−1(2ωd−1) ·

blog2 kc∑
u=0

fd(2u+1) · fd
(

2k
2u

+ 1
) . (7.1)

The remainder of this section is devoted to the proof of Lemma 7.2.7. For this, fix d, ω, k as in the
premise of Lemma 7.2.7, as well as a graph G that, under some vertex ordering 6, admits a d-almost
mixed-free adjacency matrix M . Our goal is to construct a proper coloring of G with the number of colors
bounded by the right hand side of Eq. (7.1). The construction is obtained by a sequence of coloring steps,
each of which constructs a part of the coloring and reduces the remaining task to a simpler one.

For simplicity we may assume that V (G) = [n] and 6 is the standard order on [n], so that vertices are
equal to the indices of their rows and columns in M .

7.2.3 Forming blobs and simplifying connections

The first step of the construction is to partition the vertex set of G into parts, called blobs, which are
significantly simpler in terms of the clique number. Formally, we construct blobs B1, B2, . . . , Bm+1 by

230 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

an inductive procedure as follows. Supposing B1, . . . , Bi−1 are already defined for some i > 1, we let Bi be
the smallest prefix of V (G) \

⋃i−1
j=1Bj in the ordering 6 that satisfies ω(G[Bi]) > ω − k. If no such prefix

exists, we finish the construction by setting m := i− 1 and Bm+1 := V (G) \
⋃i−1
j=1Bj . Since adding one

vertex can increase the clique number by at most 1, it is easy to see that the blobs satisfy the following
assertions:

• Blobs B1, . . . , Bm+1 form a partition of V (G).
• Blobs B1, . . . , Bm are nonempty.
• Each blob is convex in the ordering 6, that is, its vertices form an interval in 6. Moreover, the blobs

are ordered by 6 in according to their indices: if 1 6 i < j 6 m+ 1, then u < v for all u ∈ Bi and
v ∈ Bj .

• For each i ∈ [m] we have ω(G[Bi]) = ω − k.
• We have ω(G[Bm+1]) < ω − k.
The first step in constructing a coloring of G is to resolve the part G[Bm+1].

Coloring Step 1. Color G[Bm+1] using a separate palette of fd(ω − k) colors; such a proper coloring
exists due to ω(G[Bm+1]) 6 ω − k. From now on, we may disregard Bm+1 from further considerations.
That is, our goal is to properly color G[B1 ∪B2 ∪ · · · ∪Bm] using

Cd

fd(ω − k) + 8Cdf2
d−1(2ωd−1) ·

blog2 kc∑
u=0

fd(2u+1) · fd
(

2k
2u

+ 1
) colors.

For a subset of rows X and a subset of columns Y , by M [X,Y] we denote the matrix obtained from M
by deleting all rows not belonging to X and all columns not belonging to Y . We sometimes call M [X,Y]
the connection between X and Y . The next goal is to resolve mixed connections between the blobs. This
is easy thanks to Lemma 7.2.1.

Lemma 7.2.8. Let Cd be the constant provided by Lemma 7.2.1. Then there exists an integer ` 6 Cd
and a partition of [m] into (not necessarily convex) subsets A1, A2, . . . , A` so that for any given i ∈ [`]
and a pair b, c ∈ Ai with b 6= c, the matrix M [Bb, Bc] is not mixed.

Proof. It suffices to apply Lemma 7.2.1 to the mixed compression of the matrix M [
⋃m
i=1Bi,

⋃m
i=1Bi]

along its division into blobs B1, . . . , Bm.

Coloring Step 2. Let [m] = A1 ∪A2 ∪ · · · ∪A` be the partition provided by Lemma 7.2.8 (with ` 6 Cd).
Assign a separate palette of colors to each set Ai, i ∈ [`]. That is, supposing we properly color each graph
G[
⋃
a∈Ai Ba] using

fd(ω − k) + 8Cdf2
d−1(2ωd−1) ·

blog2 kc∑
u=0

fd(2u+1) · fd
(

2k
2u

+ 1
)

colors, (7.2)

we may construct a proper coloring of G[B1∪· · ·∪Bm] by taking the union of the colorings of G[
⋃
a∈Ai Ba],

i ∈ [m], on disjoint palettes.

For the simplicity of presentation, from now on we focus on a single set Ai. That is, by restricting
attention to the induced subgraph G[

⋃
a∈Ai Ba] with vertex ordering inherited from G, we may assume

that V (G) = B1 ∪ · · · ∪Bm and there are no mixed connections between any pair of different blobs. Then
our goal is to properly color G using the number of colors given by Eq. (7.2).

Let D be the symmetric m-division of M given by the partition into blobs. Thus, D has no mixed
zones outside of the main diagonal, so for i, j ∈ [m], i 6= j, the connection D[i, j] = M [Bi, Bj] is of one of
the following types:

• Empty if D[i, j] is constant 0.

• Nonconstant horizontal if D[i, j] is horizontal but not constant. In graph-theoretic terms, this means
that Bi is semi-pure towards Bj . (Recall that this means that each vertex v ∈ Bi is either complete
or anti-complete towards Bj .)

• Nonconstant vertical if D[i, j] is vertical but not constant. Again, in graph-theoretic terms this
means that Bj is semi-pure towards Bi.

7.2. OBTAINING THE RECURRENCE 231

Here, note that the connection D[i, j] cannot be constant 1. This is because then the pair Bi, Bj would be
complete, implying that

ω(G) > ω(G[Bi]) + ω(G[Bj]) > 2(ω − k) > ω,

a contradiction.
Given a vertex v, say v ∈ Bi for some i ∈ [m], we say that v is rich if there exists a blob Bj , j 6= i,

such that v is complete towards Bj . Otherwise, we say that v is poor. We next observe that poor vertices
can be only adjacent within single blobs.

Lemma 7.2.9. Suppose u and v are poor vertices such that u ∈ Bi and v ∈ Bj for some i 6= j. Then u
and v are nonadjacent.

Proof. Assume otherwise. Then M [u, v] = M [v, u] = 1. Thus, the zone D[i, j] is not constant 0 due to
containing M [u, v]. If it was horizontal, then u would be pure towards the entire blob Bj , so u would be
rich. Symmetrically, if D[i, j] was vertical, then v would be rich. Since both u and v are assumed to be
poor, we have a contradiction.

Let Z be the set of all poor vertices. By Lemma 7.2.9, we see that G[Z] is the disjoint union of graphs
G[Z ∩B1], . . . , G[Z ∩Bm]. It follows that ω(G[Z]) 6 ω − k.

Coloring Step 3. Color Z using a separate palette of fd(ω−k) colors; this can be done due to ω(G[Z]) 6
ω − k. It remains to properly color the graph G− Z using

8Cdf2
d−1(2ωd−1) ·

blog2 kc∑
u=0

fd(2u+1) · fd
(

2k
2u

+ 1
)

colors.

For each i ∈ [m], let B′i := Bi \ Z. Intuitively, our next goals are to first construct a proper coloring of
each subgraph G[B′i] separately, and then use the coloring of the vertices within the blobs to resolve the
semi-pure interblob connections.

7.2.4 Forming and analyzing subblobs

Fix i ∈ [m] and consider the set B′i with the ordering inherited from G. We now want to find a proper
coloring of G[B′i]. We partition B′i into four (not necessarily convex) subsets B′i,x,y with x, y ∈ {0, 1}. We
put each v ∈ B′i into B′i,x,y for (x, y) defined as follows:

• x = M [v, first], where first = 1 is the first vertex of G in the ordering 6; and

• y = M [v, last], where last = |V (G)| is the last vertex of G in the ordering 6.

Now, fix x, y ∈ {0, 1} for a moment. We partition B′i,x,y into sets I1
i,x,y ∪ I2

i,x,y ∪ · · · ∪ Iti,x,y, called
subblobs, by induction as follows. Assuming I1

i,x,y, . . . , I
j−1
i,x,y are already defined, Iji,x,y is the largest prefix

of 6 restricted to B′i,x,y \
⋃j−1
s=1 I

s
i,x,y with the following property: All vertices of Iji,x,y are twins with respect

to V (G) \ Bi (that is, in G they have exactly the same neighborhood in V (G) \ Bi). The construction
finishes when every vertex of B′i,x,y is placed in a subblob. Note that subblobs Iji,x,y are not necessarily
convex in 6, but they are convex in 6 restricted to B′i,x,y, and they are ordered naturally by 6: w < w′

for all w ∈ Iji,x,y and w′ ∈ Ij
′

i,x,y with j < j′ (Figure 7.2). Note that we require that the vertices within
every subblob are twins with respect to all blobs different than Bi in the entire graph G (where G contains
both rich and poor vertices).

We observe that every subblob induces a graph of small clique number.

Lemma 7.2.10. For each j ∈ [t], we have ω(G[Iji,x,y]) 6 k.

Proof. Since Iji,x,y consists of rich twins with respect to G − Bi, it follows that there exists some blob

Bi′ , i′ 6= i, such that the pair Iji,x,y, Bi′ is complete. But we have ω(G[Bi′]) = ω − k, so it follows that

ω(G[Iji,x,y]) 6 ω − (ω − k) = k.

We now divide the subblobs into a logarithmic number of buckets according to the clique number
of the subgraphs induced by them. We remark that this bucketing approach is inspired by the proof of
Chudnovsky et al. [CPST13] that polynomial χ-boundedness is preserved under closure by the substitution
operation. Intuitively, the idea is to capture the tradeoff between the heaviness of the subblobs in terms

232 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

000001111000011110000111 000000000000000000000000
000001111000011110000111 000000000000000000000000
111111111111111111111111 111111111111111100000000
000001111000011110000111 000000000000000000000000
111111111111111111111111 111111111111111100000000
000000000000000000000000 111111111111111100000000
111111111111111111111111 111111111111111100000000
111111111111111111111111 000000000000000011111100
111111111111111111111111 000000000000000011111100
000000000000000000000000 010101010101010101010100
000000000000000000000000 010101010101010101010100
111111111111111111111111 000000000000000011111100

L

L

L

R

R

B

Figure 7.2: A blob B with 12 rich vertices and its partition into the subblobs. For simplicity, each vertex
of B has y = 0 (i.e., no vertices of B are connected to last).
The subblobs containing vertices with x = 0 are marked with different shades of red, and the subblobs
containing vertices with x = 1 are marked with different shades of blue. For each subblob, its type
z ∈ {L,R} is marked on the right of the matrix.

of their clique number, and the sparseness of the graph of connections between the subblobs. These
two quantities are respectively represented by the terms fd(2u+1) and fd

(
2k
2u + 1

)
in the right hand side

of Eq. (7.1), and clearly these two terms “play against each other”.
Let ` := blog kc. We partition the subblobs I1

i,x,y, . . . , I
t
i,x,y into 2(`+ 1) buckets Si,x,y,z,u for z ∈ {L,R}

and u ∈ {0, 1, . . . , `} using the following process. For every j ∈ [t], let vj be any vertex of Iji,x,y. We put

Iji,x,y into the bucket Si,x,y,z,u for (z, u) defined as follows:

• If j = 1 then z = L. Otherwise, that is for j > 2, we know that there exists a vertex a ∈ Bi′ with
i′ 6= i such that M [vj , a] 6= M [vj−1, a]. Pick any such vertex. If i′ < i, then we put z = L; otherwise,
put z = R (Figure 7.2).

• u is such that 2u 6 ω(G[Iji,x,y]) < 2u+1.

Observe that Lemma 7.2.10 ensures that every subblob is placed in a bucket.
If a subblob Iji,x,y ⊆ B′i,x,y belongs to the bucket Si,x,y,z,u, we call Iji,x,y an (x, y, z, u)-subblob. Let

Wx,y,z,u be the union of all (x, y, z, u)-subblobs in G, that is,

Wx,y,z,u =
m⋃
i=1

⋃
Si,x,y,z,u.

The idea is to assign a separate palette to every choice of (x, y, z, u) as above.

Coloring Step 4. For each quadruple of parameters (x, y, z, u) ∈ {0, 1}2 × {L,R} × {0, 1, . . . , `}, we
assign a separate palette for coloring the subgraph G[Wx,y,z,u] with

Cd · f2
d−1(2ωd−1) · fd(2u+1) · fd

(
2k
2u

+ 1
)

colors. (7.3)

That is provided we properly color every subgraph G[Wx,y,z,u] with that many colors, we can color the
whole graph G using the union of those coloring on separate palettes.

Therefore, from now on we fix a quadruple (x, y, z, u) ∈ {0, 1}2 × {L,R} × {0, 1, . . . , `} and focus on
coloring G[Wx,y,z,u] using as many colors as specified in Eq. (7.3). Denote W := Wx,y,z,u for brevity.

First, we construct a coloring that at least deals with edges within subblobs.

Coloring Step 5. For each (x, y, z, u)-subblob I, properly color the subgraph G[I] using fd(2u+1) colors;
this is possible due to ω(G[I]) 6 2u+1. Take the union of these colorings using the same palette of fd(2u+1)
colors. This is a coloring of W with the property that every two adjacent vertices of W belonging to the
same subblob receive different colors. Call this coloring λ1.

7.2. OBTAINING THE RECURRENCE 233

Coloring λ1 defined above already properly colors all the edges within subblobs. Our next goal is to
refine λ1 to a coloring that also properly color edges connecting vertices from different subblobs. These
come in two different types: The subblobs may be either contained in the same blob, or be contained in
different blobs. Consequently, the refinement is done in two steps corresponding to the two types.

Let us fix i ∈ [m] and enumerate the bucket Si,x,y,z,u as {Ij(1)
i,x,y, I

j(2)
i,x,y, . . . , I

j(α)
i,x,y}, where α := |Si,x,y,z,u|

and j(1) < j(2) < · · · < j(α). Recall that for each subblob, we have previously chosen an arbitrary vertex
vj(b) ∈ I

j(b)
i,x,y. We observe the following.

Lemma 7.2.11. For every c ∈ {2, 3, . . . , α}, we have the following.

• If z = L, then the submatrix M [{w | vj(c−1) 6 w 6 vj(c)},
⋃
i′<iBi′] is mixed;

• If z = R, then the submatrix M [{w | vj(c−1) 6 w 6 vj(c)},
⋃
i′>iBi′] is mixed.

Proof. Assume that z = L. The proof for z = R is symmetric, so we omit it.
Since Ij(c)i,x,y ∈ Si,x,y,z,u, the vertices vj(c) and vj(c)−1 have different neighborhoods in the set

⋃
i′<iBi′ .

That is, there is a vertex a ∈
⋃
i′<iBi′ such that M [vj(c)−1, a] 6= M [vj(c), a]. Note that the existence

of a implies that i > 1, so in particular first /∈ Bi. By the construction, we have M [vj(c)−1, first] =
M [vj(c), first] = x. It follows that M [{vj(c−1), . . . , vj(c)},

⋃
i′<iBi′] contains a mixed 2 × 2 submatrix

M [{vj(c)−1, vj(c)}, {first, a}], so it is mixed as well.

Let Gi := G[
⋃
Si,x,y,z,u], and let Mi := M [

⋃
Si,x,y,z,u,

⋃
Si,x,y,z,u] be its adjacency matrix in the order

inherited from G. Let also Di be the (symmetric) α-division of Mi according to the boundaries of subblobs
in Si,x,y,z,u.

Naturally, for each p < q, if the zone Di[p, q] is nonzero, then it is of at least one of the following
types: mixed (type M), nonzero horizontal (type H) or nonzero vertical (type V). Our goal is to construct
three colorings of the subblobs in Si that respectively take care of these three types of connections;
these will be called φM, φH, and φV, respectively. Hence, it is natural to define GH

i to be the horizontal
compression of Mi along its division Di, and similarly let GV

i and GM
i be the corresponding vertical and

mixed compressions. So φM, φH, and φV should be just proper colorings of GM
i , GH

i , and GV
i , respectively.

Obtaining φM is easy. Namely, by Lemma 7.2.1, the graph GM
i admits a proper coloring φM with at

most Cd colors; here, Cd is the constant provided by Lemma 7.2.1.
We now show how to obtain colorings φH and φV. Let MH

i and MV
i be the adjacency matrices of GH

i

and GV
i , respectively, in the natural order inherited from G. The next lemma is the key conceptual step:

We observe that the complexity of the matrices MH
i and MV

i has dropped.

Lemma 7.2.12. MH
i is (d− 1)-almost mixed-free.

Proof. We only prove the lemma for z = L. For z = R the proof is analogous, so we omit it.
Aiming towards a contradiction, suppose that MH

i contains a (d− 1)-almost mixed minor E . Since we
assume that d > 3 (see the statement of Lemma 7.2.7), Lemma 7.2.2 applies, and there exists a (d− 1)-
almost mixed minor L of Mi which is a coarsening of Di, and each (row or column) block of L spans
at least two (row or column) blocks of Di. We now construct a d-almost mixed minor L′ of M in the
following way:

• the first row block of L′ spans rows of
⋃
i′<iBi′ of M ;

• the first column block of L′ spans columns of
⋃
i′<iBi′ of M ;

• the ith row block of L′ (i ∈ {2, 3, . . . , d}) spans all rows in M that are spanned by the (i− 1)st row
block of L in Mi; analogously for the ith column block.

There is a technical detail here: As defined above, formally L′ is a division of a submatrix of M induced
by rows and columns of

⋃
i′<iBi′ ∪ V (Gi). This can be easily fixed by expanding row and column blocks

of L′ in any convex way so that they cover all of rows and columns of M . This way the zones can only get
larger.

It remains to show that L′ is indeed a d-almost mixed minor of M . Naturally, each L′[p, q] for p, q > 2,
p 6= q, is mixed due to the mixedness of L[p− 1, q − 1]. Also, L′[p, 1] is mixed for p > 2 for the following
reason: The (p− 1)st row block of L contains the rows corresponding to the vertices vj(c−1), vj(c) for some
c ∈ {2, 3, . . . , α}, and then, by Lemma 7.2.11, the submatrix M [{w | vj(c−1) 6 w 6 vj(c)},

⋃
i′<iBi′] is

mixed. This submatrix is also a submatrix of the zone L′[p, 1], so this zone is mixed as well. That L′[1, q]
is mixed for every q > 2 follows from a symmetric argument. Thus, L′ is indeed a d-almost mixed minor
of M ; a contradiction.

234 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

A symmetric proof shows that MV
i is also (d − 1)-almost mixed-free. By Lemma 7.2.4, we have

ω(GH
i) 6 2ωd−1, so by we conclude that GH

i admits a proper coloring φH using at most fd−1(2ωd−1) colors.
By a symmetric reasoning, GV

i also admits a proper coloring φV using at most fd−1(2ωd−1) colors.

Coloring Step 6. For every i ∈ [m], construct a coloring λi2 of V (Gi) as follows: For every subblob
I ∈ Si,x,y,z,u and v ∈ I, we let

λi2(v) = (λ1(v), φM(I), φH(I), φV(I)),

where φM, φH, and φV are constructed as above. Let λ2 be the union of colorings λi2 for i ∈ [m] using
the same palette of Cd · fd(2u+1) · fd−1(2ωd−1)2 colors. Thus, λ2 is a coloring of W using at most
Cd · fd(2u+1) · f2

d−1(2ωd−1) colors that satisfies the following property: For every pair of adjacent vertices
w,w′ ∈W that belong to the same blob, we have λ2(w) 6= λ2(w′).

Denote Λ := Cd · fd(2u+1) · f2
d−1(2ωd−1). Let F t for t ∈ [Λ] be the color classes of λ2. Clearly, each F t

is a subset of W such that F t ∩Bi is an independent set for each i ∈ [m]. We observe that sets F t induce
subgraphs with relatively small clique numbers.

Lemma 7.2.13. For each t ∈ [Λ], we have ω(G[F t]) 6 2
⌊
k
2u
⌋

+ 1.

Proof. Denote β :=
⌊
k
2u
⌋

for brevity. Suppose that G[F t] contains a clique K of size 2β + 2. As the
intersection of a blob and F t is an independent set, every vertex of K comes from a different blob. For
v ∈ K, let B(v) be the blob containing v.

Construct a digraph T on vertex set K as follows: For distinct v, v′ ∈ K, add an arc (v, v′) to T if
B(v) is semi-pure towards B(v′). Since the division D induced by blobs is assumed to have no mixed
zones (as a result of Coloring Step 2), T is semi-complete, that is, for all distinct v, v′ ∈ K at least one of
the arcs (v, v′) and (v′, v) is present. It follows that there exists w ∈ K whose indegree in T is at least
β + 1. In other words, there are vertices v1, . . . , vβ+1 ∈ K, different from w, such that B(vi) is semi-pure
towards B(w) for each i ∈ [β + 1]. In particular, since viw ∈ E(G), this implies that each vi is complete
towards B(w).

Let R be a maximum clique in the blob B(w); recall that |R| = ω − k. Next, for each p ∈ [β + 1], let
Ip be the subblob of B(vp) containing vp, and Sp be a maximum clique in G[Ip]; note that Sp might not
necessarily contain vp. Recall also that 2u 6 |Sp| < 2u+1. Finally, let

L := R ∪ S1 ∪ · · · ∪ Sβ+1.

Observe that

|L| > 2u ·
(⌊

k

2u

⌋
+ 1
)

+ (ω − k) > ω.

So to reach a contradiction, it remains to show that L is a clique in G. To this end, pick two different
vertices a, b ∈ L. If a and b come from the same blob, then, by the construction, they are adjacent.
Otherwise, we consider two cases:

• a ∈ Sp and b ∈ Sq for two different p, q ∈ [β + 1]. Since a and vp are in the same (x, y, z, u)-subblob,
we get that a and vp are twins with respect to the blob B(vq). In particular, a and vp are both
adjacent or both nonadjacent to b, or equivalently M [a, b] = M [vp, b]. Similarly, b and vq are twins
with respect to the blob B(vp), implying M [vp, b] = M [vp, vq]. But vp and vq are adjacent due to
belonging to the clique K, so M [a, b] = M [vp, vq] = 1. Hence a and b are adjacent as well.

• a ∈ Sp and b ∈ R for some p ∈ [β + 1]. As above, we have M [a, b] = M [vp, b]. But since the blob
B(vp) is semi-pure towards B(w), and b ∈ B(w), we have M [vp, b] = M [vp, w]. But vp and w are
adjacent due to belonging to the clique K, so M [a, b] = M [vp, w] = 1. Hence again, a and b are
adjacent.

We can now finalize the construction as follows.

Coloring Step 7. For each t ∈ [Λ], properly color G[F t] using a separate palette of

fd

(
2
⌊
k

2u

⌋
+ 1
)
6 fd

(
2k
2u

+ 1
)

colors.

This is possible by Lemma 7.2.13.

Thus, we have obtained a proper coloring of G[W] = G[Wx,y,z,u] using Λ · fd
(

2k
2u + 1

)
colors, which

fulfills the task set out in Coloring Step 4. So this concludes the proof of Lemma 7.2.7.

7.3. SOLVING THE RECURRENCE 235

7.3 Solving the recurrence

Our goal in this section is to prove the following statement, which will be later combined with Lemma 7.2.7.

Lemma 7.3.1. Suppose f2, f3, . . . are functions from Z>0 to Z>0 satisfying the following:
• f2(n) 6 n for all integers n > 1;
• fd(1) = 1 for all integers d > 2; and
• for every integer d > 3 there exists αd ∈ N such that for every integer n > 8,

fd(n) 6 αd

fd(d7n/8e) + f2
d−1(2nd−1) ·

blognc−3∑
u=0

fd(2u+1) · fd
(⌈ n

2u+1

⌉
+ 1
) . (7.4)

Then for every integer d > 2 there exists a constant βd ∈ N such that

fd(n) 6 2βd logd−1 n for all n ∈ Z>0. (7.5)

Proof. We proceed by induction on d. Clearly, for d = 2 we may choose β2 = 1.
In the induction step for d > 3, we choose βd to be large enough so that the following inequalities are

satisfied:

2βd > fd(i) for all i ∈ {1, . . . , 216 − 1}, (7.6)

βd ·
d− 1
2d+1 > 3βd−1d

d−2, (7.7)

2βd > 2αd. (7.8)

We now verify Eq. (7.5) by induction on n. The base cases n ∈ {1, 2, . . . , 216 − 1} hold trivially thanks
to Eq. (7.6), so from now on let us assume that n > 216.

Let
gd(x) := 2βd logd−1 x

and denote the right-hand side of Eq. (7.4) by RHS. Using both induction assumptions, we have

RHS 6 αd

gd(d7n/8e) + g2
d−1(2nd−1) ·

blognc−3∑
u=0

gd(2u+1) · gd
(⌈ n

2u+1

⌉
+ 1
) . (7.9)

In order to estimate each summand of the form gd(2u+1) · gd
(⌈

n
2u+1

⌉
+ 1
)
, we use the following fact:

Claim 7.3.2. For all reals a, b > 2, we have

gd(a) · gd(b) 6 gd(2) · gd(ab/2).

Proof. Assume without loss of generality that a 6 b. Define the following values: x1 := log 2 = 1,
x2 := log a, x3 := log b, x4 := log(ab/2). Then 0 < x1 6 x2 6 x3 6 x4 and x1 + x4 = x2 + x3. By the
convexity of the function x 7→ xd−1 on R>0, we have that20 xd−1

1 + xd−1
4 > xd−1

2 + xd−1
3 , or equivalently:

logd−1(ab/2) + logd−1 2 > logd−1 a+ logd−1 b.

Therefore log gd(a) + log gd(b) 6 log gd(2) + log gd(ab/2), as required.

Applying Claim 7.3.2 for u ∈ {0, 1, . . . , blog nc − 3}, we find that

gd(2u+1) · gd
(⌈ n

2u+1

⌉
+ 1
)
6 2βd · gd

(
2u
⌈ n

2u+1

⌉
+ 2u

)
6 2βd · gd

(
n/2 + 2u+1) 6 2βd · gd(3n/4).

By combining this with Eq. (7.9) and observing that for n > 216 we have d7n/8e 6 15n/16, we conclude
that

RHS 6 αd
[
gd(15n/16) + g2

d−1(2nd−1) · n · 2βd · gd(3n/4)
]
. (7.10)

In the estimation of the right hand side of Eq. (7.10) we will need the following simple claim.

20This follows e.g. from Karamata’s inequality [Kar32].

236 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

Claim 7.3.3. For all reals ε ∈ [0, 1/2] we have

(1− ε)d−1 6 1− d− 1
2d−2 · ε.

Proof. Let h(t) = (1 + t)d−1 − d−1
2d−2 · t− 1. Observe that for t ∈ [−1/2, 0], we have

h′(t) = (d− 1)(1 + t)d−2 − d− 1
2d−2 >

d− 1
2d−2 −

d− 1
2d−2 = 0.

Since h(0) = 0, it follows that h(t) 6 0 for t ∈ [−1/2, 0]; this is equivalent to the claim. C

First, let
ν := gd(15n/16).

Observe that, by Claim 7.3.3,

log ν = βd(log n− log 16/15)d−1 = βd logd−1 n

(
1− log 16/15

log n

)d−1

(7.11)

6 βd logd−1 n

(
1− (d− 1) log 16/15

2d−2 · 1
log n

)
6 βd logd−1 n− (d− 1)βd

2d+2 logd−2 n.

Next, let
µ := g2

d−1(2nd−1) · n · 2βd · gd(3n/4).

Observe that

logµ = 2βd−1 logd−2(2nd−1) + log n+ βd + βd logd−1(3n/4)

6 2βd−1d
d−2 logd−2 n+ log n+ βd + βd(log n− log 4/3)d−1

6 3βd−1d
d−2 logd−2 n+ βd + βd(log n− log 4/3)d−1.

By Claim 7.3.3, we have

(log n− log 4/3)d−1 = logd−1 n ·
(

1− log 4/3
log n

)d−1

6 logd−1 n ·
(

1− (d− 1) log 4/3
2d−2 · 1

log n

)
6 logd−1 n− d− 1

2d
· logd−2 n.

Therefore,

logµ 6 βd logd−1 n+ βd + logd−2 n ·
(

3βd−1d
d−2 − βd ·

d− 1
2d

)
6 βd logd−1 n+ βd −

(d− 1)βd
2d+1 logd−2 n,

where in the last inequality we used Eq. (7.7). Furthermore, since n > 216 and d > 3, we have

d− 1
2d+1 logd−2 n >

(d− 1) · 16d−2

2d+1 >
2 · 24d−8

2d+1 = 23d−8 > 2,

hence

logµ 6 βd logd−1 n− (d− 1)βd
2d+2 logd−2 n. (7.12)

We now combine Eqs. (7.11) and (7.12) with Eq. (7.10), thus obtaining:

RHS 6 αd
[
2log ν + 2log µ]

6 αd · 2βd logd−1 n ·
[
2−

(d−1)βd
2d+2

logd−2 n + 2−
(d−1)βd
2d+2

logd−2 n
]

= 2βd logd−1 n · 2αd

2
(d−1)βd
2d+2

logd−2 n
6 2βd logd−1 n · 2αd

2
(d−1)βd
2d+2

16d−2

6 2βd logd−1 n · 2αd
2βd·23d−9

6 2βd logd−1 n · 2αd
2βd
6 2βd logd−1 n = gd(n),

where the last inequality follows from Eq. (7.8). As fd(n) 6 RHS, this concludes the proof.

7.4. WRAPPING UP THE PROOF 237

7.4 Wrapping up the proof

In this section we combine Lemmas 7.3.1 and 7.2.7 to obtain a proof of Theorem 1.3.10. However, since
the statement of Lemma 7.2.7 assumes d > 3, we need to consider the base case d = 2 separately. This is
provided by the following lemma. Recall here that a cograph is a P4-free graph [CLB81], that is, a graph
that does not contain the path on 4 vertices as an induced subgraph.

Lemma 7.4.1. Let G be a graph that admits, under some vertex ordering, a 2-almost mixed-free adjacency
matrix. Then G is a cograph.

Proof. By contraposition and the fact that 2-almost mixed-freeness is preserved under taking submatrices,
it suffices to show that no vertex ordering of a P4 yields a 2-almost mixed-free adjacency matrix. Observe
that if one partitions the vertex set of a P4 into two parts of size 2, then regardless of the choice of
the partition, no part will be semi-pure towards the other. Therefore, for every vertex ordering of a P4,
dividing the corresponding adjacency matrix into four 2× 2 matrices yields a 2-almost mixed minor.

It is well known that cographs are perfect, that is, χ(G) = ω(G) whenever G is a cograph. Hence, from
Lemma 7.4.1 we conclude that

f2(ω) 6 ω for all ω ∈ Z>0.

Furthermore, we clearly have fd(1) = 1 for every d > 2, since graphs of clique number 1 are edgeless.
Finally, applying Lemma 7.2.7 for k = bω/8c yields that for all ω > 8, fd(ω) is upper bounded by

fd(d7ω/8e) + Cd

fd(d7ω/8e) + 8Cdf2
d−1(2ωd−1) ·

blog2 ω/8c∑
u=0

fd(2u+1) · fd
(⌈ ω

2u+2

⌉
+ 1
)

6 8Cd(Cd + 1) ·

fd(d7ω/8e) + f2
d−1(2ωd−1) ·

blogωc−3∑
u=0

fd(2u+1) · fd
(⌈ ω

2u+1

⌉
+ 1
) .

We may now apply Lemma 7.3.1 to functions f2, f3, . . . to conclude the following.

Theorem 7.4.2. For every integer d > 2 there is a constant βd ∈ N such that fd(ω) 6 2βd·logd−1 ω for
every ω ∈ Z>0. In other words, for every graph G that has clique number ω and admits a d-almost
mixed-free adjacency matrix under some vertex ordering, we have χ(G) 6 2βd·logd−1 ω.

Theorem 1.3.10 now follows from combining Theorem 7.4.2 with Lemma 7.2.6.

7.5 Conclusions

In this chapter we showed that every class of graphs of bounded twin-width is quasi-polynomially χ-
bounded. This result has raised a natural question – whether the χ-bounding function for any class of
graphs of bounded twin-width could be optimized to polynomial. This question has since been resolved
positively by Bourneuf and Thomassé [BT23].

7.5.1 Polynomial χ-boundedness

We now follow with an overview of the proof of polynomial χ-boundedness of classes of graphs of bounded
twin-width by Bourneuf and Thomassé [BT23] and compare their arguments to our techniques.

The authors borrow our idea of performing the structural induction on the size of the largest almost
mixed minor in the adjacency matrix of the graph. As in our setting, given a graph G of twin-width t,
they fix an ordering v1, . . . , vn of vertices of the graph so that the adjacency matrix M of G, with rows
and columns arranged according to this ordering, is d-almost mixed-free for d := 4t+ 4.

Next, we construct a decomposition tree T , called the delayed decomposition of G, as a rooted tree
whose nonleaf nodes are identified with intervals of V (G), i.e., sets of the form {vi, . . . , vj} for i 6 j,
and whose set of leaf nodes is precisely V (G). The root of the decomposition is a nonleaf node identified
with the interval V (G) = {v1, . . . , vn}. Then, recursively, given a nonleaf node x ∈ V (T), identified with
an interval I = {v`, . . . , vr}:

• If I = {vi} is a singleton, we put vi as the only child of x.

238 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

• Otherwise, if is identified with an interval I = {v`, . . . , vr} that is a module in G (i.e., N(u) \ I =
N(v) \ I for all u, v ∈ I), we split I into two roughly equal parts. That is, we set m :=

⌊
`+r

2

⌋
and

create two children y1, y2 of x identified with intervals {v`, . . . , vm} and {vm+1, . . . , vr}, respectively.

• Otherwise, let P (I) be the partition of I into the maximal intervals of vertices with the same
neighborhood in V (G) \ I. We create |P (I)| children of x identified with respective elements of P (I).

Observe that the construction above guarantees the following property: Suppose two nodes z, z′ of T –
identified with subsets Iz, Iz′ of V (G), respectively – are cousins – i.e., they share their grandparent, but
not their parent. Then the pair Iz, Iz′ is pure in V (G). Therefore, we can encode the edges of G in the
delayed decomposition T by additionally specifying a function g that assigns to each nonleaf node x ∈ V (T)
a graph Gx with vertex set equal to the set of grandchildren of x in T . In Gx, two cousins z, z′ – identified
with intervals Iz, Iz′ of V (G) – are connected by an edge if the pair Iz, Iz′ is complete. If z, z′ have the
same parent, we define that there is no edge between z and z′ in Gx. It follows from our discussion that G
uniquely determines a pair (T, g), which we will call the augmented delayed decomposition. Conversely, as
long as some graph is consistent with an augmented delayed decomposition (T, g), such a graph is unique:
Let u, v ∈ V (G) be two different vertices of G and let x be the lowest common ancestor of u and v in T .
By construction, x is not a parent of either u and v, so let zu and zv be the grandchildren of x that are
ancestors of u and v, respectively. Then zu and zv are cousins in T and the adjacency between u and v in
G can be determined by testing whether zuzv ∈ E(Gx).

The last case in the construction of T above – the partitioning of an interval I of vertices into maximal
intervals of twins with respect to I – is inspired by our partitioning of blobs into subblobs. This is not
coincidental: In our proof, we have shown that the graphs representing the interactions between subblobs
in a blob are structurally simpler (see Lemma 7.2.12). In turns out that an analog of this property also
holds in delayed decompositions.

Proposition 7.5.1 (Implicit in [BT23]). Suppose the adjacency matrix M of G is d-almost mixed-free
with d > 3. Let G = {v1, . . . , vn} and (T, g) be the augmented delayed decomposition of G. Let x be
a nonleaf node of T with children y1, . . . , yk, identified with intervals I1, . . . , Ik of V (G), respectively. Let
Gx = g(x). Define the graphs GM

x , GH
x , GV

x with vertex set {y1, . . . , yk} such that, for 1 6 i < j 6 k:
• vivj ∈ E(GM

x) if the connection between Ii and Ij in G is mixed, i.e., M [Ii][Ij] is mixed;
• vivj ∈ E(GH

x) if Ii, Ij is nonempty and Ii is semi-pure towards Ij , i.e., M [Ii][Ij] is nonzero horizontal;
• vivj ∈ E(GV

x) if Ii, Ij is nonempty and Ij is semi-pure towards Ii, i.e., M [Ii][Ij] is nonzero vertical.
Then GM

x is Od(1)-colorable, and both GH
x and GV

x can be vertex-partitioned into Od(1) induced subgraphs
whose adjacency matrices are (d− 1)-almost mixed-free. Moreover, ω(GH

x), ω(GV
x) 6 ω(Gx)d.

Sketch of the proof. The claim for GM
x is immediate from the Marcus–Tardos theorem. The properties

of GH
x , GV

x are proved similarly to Lemma 7.2.4 and Lemma 7.2.12, only that the proofs in [BT23] are
streamlined and presented in a more general setting of right extensions of classes of graphs.

The main idea behind delayed decompositions of graphs is that, in contrast to our approach, a graph is
decomposed into smaller pieces recursively until it is ultimately split into one-vertex subgraphs. Crucially,
polynomial χ-boundedness is preserved by delayed decompositions in the following sense:

Proposition 7.5.2 ([BT23]). For a hereditary class C of graphs, define the delayed extension Cd of C as
the hereditary class of graphs consisting of graphs G admitting a delayed decomposition (T, g) such that
every graph in g belongs to C. If C is polynomially χ-bounded, then so is Cd.

The proof of Proposition 7.5.2 actually shows the following statement: Every graph G ∈ Cd is an edge-
sum of two graphs in the substitution closure Cs of C. It is proved by Chudnovsky, Penev, Scott, and
Trotignon [CPST13] that the polynomial χ-boundedness of C implies the polynomial χ-boundedness of Cs;
hence in such a case, Cd is also polynomially χ-bounded.

The polynomial χ-boundedness of classes of graphs of bounded twin-width now follows straightforwardly
from Propositions 7.5.1 and 7.5.2:

Corollary 7.5.3 ([BT23]). Let Ad, d > 2, be the class of graphs whose adjacency matrix is d-almost
mixed-free. Then Ad is polynomially χ-bounded.

Proof. For d > 2, let fd(ω) be the χ-bounding function ofAd. Every graph inA2 is a cograph (Lemma 7.4.1),
so A2 is a class of perfect graphs.

For d > 3, let Bd be the class of graphs containing every graph g(x) for the delayed decomposition (T, g)
of any graph G ∈ Ad and any nonleaf node x ∈ V (T). Observe that every graph in Bd can be properly

7.5. CONCLUSIONS 239

colored using fd−1(ω)Od(1) colors: Let H ∈ Bd and let H = g(x) for the delayed decomposition (T, g) of
a graph G ∈ Ad and a nonleaf node x ∈ V (T). Let y1, . . . , yk be the children of x in T , and Z1, . . . , Zk
be the sets of children of y1, . . . , yk in T , respectively. By construction, each induced subgraph H[Zi]
is edgeless. For t ∈ {M,H,V}, let φt be the proper coloring of Gtx, where GM

x , G
H
x , G

V
x are defined as in

Proposition 7.5.1. Observe now that the coloring of H that assigns to every node z ∈ Zi the product coloring
(φM(yi), φH(yi), φV(yi)) is proper. Hence χ(H) 6 χ(GM

x)χ(GH
x)χ(GV

x). But now from Proposition 7.5.1
we have that χ(GM

x) 6 Od(1), χ(GH
x) 6 Od(1) · fd−1(ω(GH

x)) and χ(GV
x) 6 Od(1) · fd−1(ω(GV

x)); hence
χ(H) 6 fd−1(ω(H))O(d) by induction and the fact that ω(GH

x), ω(GV
x) 6 ω(H)d. Hence Bd is polynomially

χ-bounded. But then Ad is also polynomially χ-bounded thanks to Proposition 7.5.2.

7.5.2 Algorithmic application: Decomposing pattern-free permutations

We now briefly describe the algorithmic result of Bonnet, Bourneuf, Geniet, and Thomassé [BBGT24]
inspired by the notion of delayed decompositions of graphs: Pattern-free permutations can be decomposed
into a bounded number of simple pieces.

For a permutation π of {1, . . . , n}, we define the permutation graph Gπ of π as the graph with vertex set
{1, . . . , n}, where ij ∈ E(Gπ) for i < j if i, j are swapped by π, i.e., π(i) > π(j). Let also Mπ – called the
adjacency matrix of π – be the adjacency matrix of Gπ with the natural order of rows and columns. Then
a permutation π is d-almost mixed-free if Mπ is d-almost mixed free. Next, a permutation π is separable if
it excludes two permutations (2, 4, 1, 3) and (3, 1, 4, 2) as subpatterns; equivalently, π is separable if its
permutation graph is a cograph. It can be shown that every 2-almost mixed free permutation is separable;
however, converse is not necessarily true, since (2, 3, 1, 4) is separable but not 2-almost mixed free.

We then state the result of Bonnet et al. below:

Theorem 7.5.4 ([BBGT24], stronger form of Theorem 1.3.12). Let σ be a fixed pattern that is a permu-
tation of {1, . . . , k}. Then there exists an integer ck ∈ N such that every permutation π of {1, . . . , n} that
excludes σ as a subpattern is a product of at most ck permutations that are 2-almost mixed-free. Moreover,
this product can be found in time Ok(n).

The proof of Theorem 7.5.4 again involves structural induction on the size of the largest almost
mixed minor in a matrix; this time, the adjacency matrix of a permutation is considered. Unfortunately,
it may happen that an adjacency matrix of a pattern-free permutation has a very large almost mixed
minor: Take for example even-odd shuffles π1, π2, . . ., where πn is the permutation of {1, . . . , 2n} defined as
πn = (1, 3, . . . , 2n−1, 2, 4, . . . , 2n). Then it can be shown that all even-odd shuffles exclude the permutation
(3, 2, 1) as a subpattern, but the adjacency matrix of σn contains a

⌊
n
2

⌋
-mixed minor. Fortunately, pattern-

free permutations can be represented as a product of two almost mixed-free permutations:

Lemma 7.5.5 ([BBGT24]). Fix a pattern σ of {1, . . . , k}. Then every permutation π excluding σ as
a subpattern can be represented as a product π = π1 ◦ π2, where each πi is 2O(k)-almost mixed-free.
Moreover, given π on input, we can find π1, π2 in time Ok(|π|).

Now the proof of Theorem 7.5.4 proceeds roughly as follows: We decompose each π1, π2 separately.
Given a permutation π whose adjacency matrix is d-almost mixed-free (d > 3), we construct an augmented
delayed decomposition (T, g) of Gπ; this is easy to do in time |π|O(1) by simply following the definition
of (T, g), but the construction time can be nontrivially optimized to O(|π|) by exploiting structural
properties of Gπ. Then, by analyzing the properties of delayed decompositions of permutation graphs (in
particular, using properties similar to Proposition 7.5.1), we can prove that each such π can be represented
as a product of dO(1) permutations, each of which is (d− 1)-almost mixed free.

Theorem 7.5.4 is interesting from the point of view of compact data structures for twin-width since it
provides a “succinct” representation of pattern-free permutations as products of very simple 2-almost
mixed-free permutations. It is thus natural to claim that:

Conjecture 7.5.6 (Compact data structure for pattern-free permutations). Let σ be a fixed pattern
that is a permutation of {1, . . . , k}. One can construct a data structure representing a permutation π of
{1, . . . , n} excluding σ as a subpattern that occupies Ok(n) bits. The data structure can be queried for the
values of π in worst-case time Ok(1). The construction time of the data structure is Ok(n).

Note that it is enough to show that Conjecture 7.5.6 holds just for 2-almost mixed-free permutations;
then Conjecture 7.5.6 will quickly follow from Theorem 7.5.4. This subject of a work in progress. After
proving Conjecture 7.5.6, a natural next step would be to generalize the result to provide a compact data
structure with constant query time for arbitrary matrices of bounded twin-width:

240 CHAPTER 7. TWIN-WIDTH AND χ-BOUNDEDNESS

Conjecture 7.5.7. Let d ∈ N be a fixed constant. Then for a given binary n × n matrix M that is
d-twin-ordered one can construct a data structure that occupies Od(n) bits and can be queried for entries
of M in worst-case time Od(1) per query.

When proven, Conjecture 7.5.7 would improve upon our previous result Theorem 1.3.8 proved in
Chapter 6.

Bibliography

[ABF+02] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier.
Fixed Parameter Algorithms for dominating set and Related Problems on Planar Graphs.
Algorithmica, 33(4):461–493, 2002.

[ABMN18] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on
trees with tractable combined complexity and efficient updates. CoRR, abs/1812.09519,
2018.

[ABMN19] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on
trees with tractable combined complexity and efficient updates. In 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, pages 89–103.
ACM, 2019.

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest
paths with worst-case update-time revisited. In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 440–452. SIAM, 2017.

[ACP87] Stefan Arnborg, Derek C. Corneil, and Andrzej Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[AFN04] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for
dominating set. J. ACM, 51(3):363–384, 2004.

[AHdLT05] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264,
2005.

[AKK+17] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket
Saurabh, and Dimitrios M. Thilikos. Irrelevant vertices for the planar Disjoint Paths Problem.
J. Comb. Theory, Ser. B, 122:815–843, 2017.

[ALS91] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy Problems for Tree-Decomposable
Graphs. J. Algorithms, 12(2):308–340, 1991.

[AMV20] Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized
problems and algorithms. ACM Trans. Algorithms, 16(4):45:1–45:46, 2020.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discret. Appl. Math., 23(1):11–24, 1989.

[Arn85] Stefan Arnborg. Efficient Algorithms for Combinatorial Problems with Bounded Decompos-
ability - A survey. BIT, 25(1):1–23, 1985.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[Bag06] Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In 20th International Workshop on Computer Science Logic, CSL 2006, volume 4207
of Lecture Notes in Computer Science, pages 167–181. Springer, 2006.

[Bak94] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41(1):153–180, 1994.

241

242 BIBLIOGRAPHY

[BB73] Umberto Bertelè and Francesco Brioschi. On Non-serial Dynamic Programming. J. Comb.
Theory, Ser. A, 14(2):137–148, 1973.

[BBD22] Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is
NP-Complete. In Mikolaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[BBGT24] Édouard Bonnet, Romain Bourneuf, Colin Geniet, and Stéphan Thomassé. Factoring Pattern-
Free Permutations into Separable ones. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 752–779, 2024.

[BBL13] Hans L. Bodlaender, Paul Bonsma, and Daniel Lokshtanov. The fine details of fast dynamic
programming over tree decompositions. In Gregory Gutin and Stefan Szeider, editors,
Parameterized and Exact Computation, pages 41–53, Cham, 2013. Springer International
Publishing.

[BCK+22] Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé. Twin-width VIII: delineation and win-wins. In Holger Dell and Jesper
Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation,
IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 9:1–9:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[BD02] Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions.
Comb. Probab. Comput., 11(6):541–547, 2002.

[BDD+16] Hans L. Bodlaender, P̊al Grøn̊as Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016.

[BF99] Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representation of sparse graphs. In
Algorithms and Data Structures, 6th International Workshop, WADS, volume 1663 of Lecture
Notes in Computer Science, pages 342–351. Springer, 1999.

[BFL+16] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016.

[BFLP24] Édouard Bonnet, Florent Foucaud, Tuomo Lehtilä, and Aline Parreau. Neighbourhood
complexity of graphs of bounded twin-width. Eur. J. Comb., 115:103772, 2024.

[BG91] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within p. In Christian Choffrut
and Matthias Jantzen, editors, STACS 91, pages 348–359, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg.

[BGdM+21] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117,
2021.

[BGK+21a] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, pages 1977–1996. SIAM, 2021.

[BGK+21b] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In 48th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of
LIPIcs, pages 35:1–35:20. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2021.

[BGR24] Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing Twin-Width Parameterized
by the Feedback Edge Number. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna
Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoretical
Aspects of Computer Science (STACS 2024), volume 289 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 7:1–7:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

BIBLIOGRAPHY 243

[BH98] Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput., 27(6):1725–1746, 1998.

[BH21] Jakub Balabán and Petr Hlinený. Twin-width is linear in the poset width. In Proceedings of
the 16th International Symposium on Parameterized and Exact Computation, IPEC 2021,
volume 214 of LIPIcs, pages 6:1–6:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik,
2021.

[BK96] Hans L. Bodlaender and Ton Kloks. Efficient and Constructive Algorithms for the Pathwidth
and Treewidth of Graphs. J. Algorithms, 21(2):358–402, 1996.

[BKR+21] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. CoRR, abs/2107.02882, 2021.

[BKTW20] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In IEEE 61st Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 601–612. IEEE Computer Society, 2020.

[BKW22] Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858,
2022.

[Bod93a] Hans L. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In 19th International
Workshop on Graph-Theoretic Concepts in Computer Science, , WG 1993, volume 790 of
Lecture Notes in Computer Science, pages 112–124. Springer, 1993.

[Bod93b] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[BP20] Marthe Bonamy and Michał Pilipczuk. Graphs of bounded cliquewidth are polynomially
χ-bounded. Advances in Combinatorics, (2020:8), 2020.

[BP22] Mikołaj Bojańczyk and Michał Pilipczuk. Optimizing tree decompositions in MSO. Log.
Methods Comput. Sci., 18(1), 2022.

[BT23] Romain Bourneuf and Stéphan Thomassé. Bounded twin-width graphs are polynomially
χ-bounded. CoRR, abs/2303.11231, 2023.

[BTV10] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. H-join decomposable graphs and
algorithms with runtime single exponential in rankwidth. Discret. Appl. Math., 158(7):809–
819, 2010.

[CC08] Miroslav Chleb́ık and Janka Chleb́ıková. Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput., 206(11):1264–1275, 2008.

[CCD+20] Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. CoRR, abs/2006.00571, 2020. Full version of the SODA
2021 paper.

[CCD+21] Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. In 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 796–809. SIAM, 2021.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic — A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

[CER93] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-Rewriting Hypergraph
Grammars. J. Comput. Syst. Sci., 46(2):218–270, 1993.

244 BIBLIOGRAPHY

[CFK+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[Cha13] Timothy M. Chan. Persistent Predecessor Search and Orthogonal Point Location on the
Word RAM. ACM Trans. Algorithms, 9(3):22:1–22:22, 2013.

[CJ03] Liming Cai and David W. Juedes. On the existence of subexponential parameterized
algorithms. J. Comput. Syst. Sci., 67(4):789–807, 2003.

[CK07] Bruno Courcelle and Mamadou Moustapha Kanté. Graph Operations Characterizing Rank-
Width and Balanced Graph Expressions. In 33rd International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2007, volume 4769 of Lecture Notes in Computer Science,
pages 66–75. Springer, 2007.

[CK19] Josef Cibulka and Jan Kynčl. Better upper bounds on the Füredi-Hajnal limits of permuta-
tions, 2019.

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010.

[CLB81] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. Complement reducible graphs. Discrete
Applied Mathematics, 3(3):163–174, 1981.

[CLP11] Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal Range Searching
on the RAM, Revisited. In 27th ACM Symposium on Computational Geometry, SoCG 2011,
pages 1–10. ACM, 2011.

[CMR00] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width. Theory Comput. Syst., 33(2):125–150, 2000.

[CMR01] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discret. Appl. Math.,
108(1-2):23–52, 2001.

[CNP+22] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth
in Single Exponential Time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022.

[CO07] Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a
conjecture by Seese. J. Comb. Theory, Ser. B, 97(1):91–126, 2007.

[CO21] Wojciech Czerwiński and Łukasz Orlikowski. Reachability in Vector Addition Systems
is Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New
York, NY, USA, 1971. Association for Computing Machinery.

[Cou90] Bruno Courcelle. The Monadic Second-Order Logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

[Cou95] Bruno Courcelle. The monadic second-order logic of graphs VIII: Orientations. Ann. Pure
Appl. Log., 72(2):103–143, 1995.

[Cou06] Bruno Courcelle. The monadic second-order logic of graphs XV: On a conjecture by D. Seese.
J. Appl. Log., 4(1):79–114, 2006.

[CPP19] Vincent Cohen-Addad, Michał Pilipczuk, and Marcin Pilipczuk. A polynomial-time approxi-
mation scheme for Facility Location on planar graphs. In David Zuckerman, editor, 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 560–581.
IEEE Computer Society, 2019.

[CPST13] Maria Chudnovsky, Irena Penev, Alex Scott, and Nicolas Trotignon. Substitution and
χ-boundedness. Journal of Combinatorial Theory, Series B, 103(5):567–586, 2013.

BIBLIOGRAPHY 245

[CSTV93] Robert F. Cohen, Sairam Sairam, Roberto Tamassia, and Jeffrey Scott Vitter. Dynamic
algorithms for optimization problems in bounded tree-width graphs. In 3rd Conference on
Integer Programming and Combinatorial Optimization Conference, IPCO 1993, pages 99–112.
CIACO, 1993.

[CW21] Parinya Chalermsook and Bartosz Walczak. Coloring and Maximum Weight Independent Set
of Rectangles. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 860–868.
SIAM, 2021.

[Dav22] James Davies. Improved bounds for colouring circle graphs. Proceedings of the American
Mathematical Society, 150:5121–5135, 07 2022.

[DEM+23] Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and
Szymon Toruńczyk. First-order model checking on monadically stable graph classes, 2023.

[DF95] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness
I: Basic Results. SIAM J. Comput., 24(4):873–921, 1995.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[DFHT05] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005.

[DGKS06] Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Approximation
schemes for first-order definable optimisation problems. In 21th IEEE Symposium on Logic
in Computer Science, LICS 2006, pages 411–420. IEEE Computer Society, 2006.

[DH04] Erik D. Demaine and Mohammad Taghi Hajiaghayi. Equivalence of local treewidth and linear
local treewidth and its algorithmic applications. In 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2004, pages 840–849. SIAM, 2004.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[Dir61] Gabriel Andrew Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, 25:71–76, 1961.

[DKT14] Zdenek Dvořák, Martin Kupec, and Vojtech Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In 22th Annual European Symposium on
Algorithms, ESA 2014, volume 8737 of Lecture Notes in Computer Science, pages 334–345.
Springer, 2014.

[DM88] Alessandro D’Atri and Marina Moscarini. Distance-hereditary graphs, steiner trees, and
connected domination. SIAM Journal on Computing, 17(3):521–538, 1988.

[DMS23] Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In Barna Saha and Rocco A. Servedio, editors, Proceedings
of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pages 567–580. ACM, 2023.

[DT13] Zdenek Dvořák and Vojtech Tůma. A dynamic data structure for counting subgraphs in
sparse graphs. In 13th International Symposium on Algorithms and Data Structures, WADS
2013, volume 8037 of Lecture Notes in Computer Science, pages 304–315. Springer, 2013.

[Dvo18] Zdenek Dvořák. Thin graph classes and polynomial-time approximation schemes. In 29th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1685–1701.
SIAM, 2018.

246 BIBLIOGRAPHY

[Dvo20] Zdenek Dvořák. Baker game and polynomial-time approximation schemes. In 31st Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2227–2240. SIAM, 2020.

[Dvo22] Zdenek Dvořák. Approximation metatheorems for classes with bounded expansion. In 18th
Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2022, volume 227 of
LIPIcs, pages 22:1–22:17. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2022.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[EGIS96] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. I. Planary testing and minimum spanning trees. J. Comput. Syst. Sci.,
52(1):3–27, 1996.

[EIT+92] David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a Minimum Spanning Forest in a Dynamic
Plane Graph. J. Algorithms, 13(1):33–54, 1992.

[EKM14] David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximating k-center in planar
graphs. In 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages
617–627. SIAM, 2014.

[Epp00] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000.

[FG01] Jörg Flum and Martin Grohe. Fixed-Parameter Tractability, Definability, and Model-
Checking. SIAM Journal on Computing, 31(1):113–145, 2001.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[FK22] Fedor V. Fomin and Tuukka Korhonen. Fast FPT-approximation of branchwidth. In 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 22, pages 886–899. ACM,
2022.

[FKS19] Eli Fox-Epstein, Philip N. Klein, and Aaron Schild. Embedding planar graphs into low-
treewidth graphs with applications to efficient approximation schemes for metric problems. In
30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 1069–1088.
SIAM, 2019.

[FL81] Aviezri S Fraenkel and David Lichtenstein. Computing a perfect strategy for n × n chess
requires time exponential in n. Journal of Combinatorial Theory, Series A, 31(2):199–214,
1981.

[FLM+08] Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph Layout Problems Parameterized by Vertex Cover. In Seok-Hee Hong, Hiroshi
Nagamochi, and Takuro Fukunaga, editors, Algorithms and Computation, 19th International
Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings, volume
5369 of Lecture Notes in Computer Science, pages 294–305. Springer, 2008.

[FLMT18] Fedor V. Fomin, Mathieu Liedloff, Pedro Montealegre, and Ioan Todinca. Algorithms
Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques.
Algorithmica, 80(4):1146–1169, 2018.

[FLP+18] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Long directed (s,t)-path: Fpt algorithm. Information Processing Letters, 140:8–12, 2018.

[FLPS16] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient Computa-
tion of Representative Families with Applications in Parameterized and Exact Algorithms.
J. ACM, 63(4):29:1–29:60, 2016.

[FLPS17] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
Families of Product Families. ACM Trans. Algorithms, 13(3):36:1–36:29, 2017.

BIBLIOGRAPHY 247

[FLST20] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. SIAM J. Comput., 49(6):1397–1422, 2020.

[FLSZ19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019.

[Fre85] Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985.

[Fre98] Greg N. Frederickson. Maintaining regular properties dynamically in k-terminal graphs.
Algorithmica, 22(3):330–350, 1998.

[FRRS09] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-Width is
NP-Complete. SIAM J. Discret. Math., 23(2):909–939, 2009.

[FW90] Michael L. Fredman and Dan E. Willard. Blasting through the information theoretic barrier
with fusion trees. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 1–7. ACM,
1990.

[FY17] Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory Comput. Syst., 61(2):283–304, 2017.

[Gas19] William I. Gasarch. Guest Column: The Third P=?NP Poll. SIGACT News, 50(1):38–59,
mar 2019.

[GH10] Robert Ganian and Petr Hlinený. On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discret. Appl. Math., 158(7):851–867, 2010.

[GHL+15] Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, Sebastian Ordyniak, M. S.
Ramanujan, and Saket Saurabh. FO Model Checking on Posets of Bounded Width. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 963–974. IEEE
Computer Society, 2015.

[GK09] Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In Martin
Grohe and Johann A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics

— AMS-ASL Joint Special Session, volume 558 of Contemporary Mathematics, pages 181–206.
American Mathematical Society, 2009.

[GKKT15] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.

[GLS84] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial Algorithms for Perfect
Graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs, volume 88 of
North-Holland Mathematics Studies, pages 325–356. North-Holland, 1984.

[GM14] Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.
In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
82–101. SIAM, 2014.

[GMP+22] Alejandro Grez, Filip Mazowiecki, Michał Pilipczuk, Gabriele Puppis, and Cristian Riveros.
Dynamic data structures for timed automata acceptance. Algorithmica, 84(11):3223–3245,
2022.

[GPT21] Jakub Gajarský, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded
twin-width. CoRR, abs/2107.03711, 2021.

[Gro03] Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Combina-
torica, 23(4):613–632, 2003.

[GRST21] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, pages 2212–2228. SIAM, 2021.

248 BIBLIOGRAPHY

[GW20] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-Dynamic All-Pairs Shortest
Paths: Improved Worst-Case Time and Space Bounds. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 2562–2574. SIAM, 2020.

[Gyá87] András Gyárfás. Problems from the world surrounding perfect graphs. Applicationes
Mathematicae, 19(3-4):413–441, 1987.

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[HdLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, jul 2001.

[HHHK02] Sun-yuan Hsieh, Chin-wen Ho, Tsan-sheng Hsu, and Ming-tat Ko. Efficient algorithms for the
hamiltonian problem on distance-hereditary graphs. In Oscar H. Ibarra and Louxin Zhang,
editors, Computing and Combinatorics, pages 77–86, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[HHK+23] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Fully
Dynamic Connectivity in O(log n(log log n)2) Amortized Expected Time. TheoretiCS, 2,
2023.

[HJ23] Petr Hlinený and Jan Jedelský. Twin-width of planar graphs is at most 8, and at most 6
when bipartite planar. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 75:1–75:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023.

[HJL+23] Meike Hatzel, Lars Jaffke, Paloma T. Lima, Tomás Masaŕık, Marcin Pilipczuk, Roohani
Sharma, and Manuel Sorge. Fixed-parameter tractability of Directed Multicut with three
terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
3229–3244. SIAM, 2023.

[HK99] Monika Rauch Henzinger and Valerie King. Randomized Fully Dynamic Graph Algorithms
with Polylogarithmic Time per Operation. J. ACM, 46(4):502–516, 1999.

[HO08] Petr Hlinený and Sang-il Oum. Finding Branch-Decompositions and Rank-Decompositions.
SIAM J. Computing, 38(3):1012–1032, 2008.

[How77] Edward Howorka. A Characterization of Distance-Hereditary Graphs. The Quarterly Journal
of Mathematics, 28(4):417–420, 12 1977.

[HR20a] Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 167–180. ACM, 2020.

[HR20b] Jacob Holm and Eva Rotenberg. Worst-Case Polylog Incremental SPQR-trees: Embeddings,
Planarity, and Triconnectivity. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8,
2020, pages 2378–2397. SIAM, 2020.

[HRT18] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic Bridge-Finding in Õ(log2 n)
Amortized Time. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 35–52. SIAM, 2018.

[HRW15] Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum
spanning forest. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, pages
742–753, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

BIBLIOGRAPHY 249

[HS65] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions
of the American Mathematical Society, 117:285–306, 1965.

[HvR23] Jacob Holm, Ivor van der Hoog, and Eva Rotenberg. Worst-case deterministic fully-dynamic
biconnectivity in changeable planar embeddings. In Erin W. Chambers and Joachim Gud-
mundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023,
June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 40:1–40:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.

[IO14] Yoichi Iwata and Keigo Oka. Fast dynamic graph algorithms for parameterized problems. In
14th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014, volume
8503 of Lecture Notes in Computer Science, pages 241–252. Springer, 2014.

[JKO17] Jisu Jeong, Eun Jung Kim, and Sang-il Oum. The “Art of Trellis Decoding” Is Fixed-
Parameter Tractable. IEEE Trans. Inf. Theory, 63(11):7178–7205, 2017.

[JKO21] Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Finding Branch-Decompositions of Matroids,
Hypergraphs, and More. SIAM J. Discret. Math., 35(4):2544–2617, 2021.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9(3):256–278, 1974.

[JP22] Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs,
planar graphs, and bipartite graphs. In Michael A. Bekos and Michael Kaufmann, editors,
Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022,
Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture
Notes in Computer Science, pages 287–299. Springer, 2022.

[Jun78] H.A Jung. On a class of posets and the corresponding comparability graphs. Journal of
Combinatorial Theory, Series B, 24(2):125–133, 1978.

[Kam18] Shahin Kamali. Compact representation of graphs of small clique-width. Algorithmica,
80(7):2106–2131, 2018.

[Kar32] Jovan Karamata. Sur une inégalité rélative aux fonctions convexes. Publ. Math. Univ.
Belgrade, 1:145–148, 1932.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972.

[Kin99] Valerie King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 81–91. IEEE Computer
Society, 1999.

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1131–1142. SIAM, 2013.

[KKR12] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012.

[KL22] Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for
treewidth. CoRR, abs/2211.07154, 2022. Full version of the STOC 2023 paper.

[KL23] Tuukka Korhonen and Daniel Lokshtanov. An Improved Parameterized Algorithm for
Treewidth. In 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages
528–541. ACM, 2023.

[KMN+23] Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michal Pilipczuk, and Marek
Sokołowski. Dynamic treewidth. In 64th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1734–
1744. IEEE, 2023.

250 BIBLIOGRAPHY

[KNPS24] Tuukka Korhonen, Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski. Fully dynamic
approximation schemes on planar and apex-minor-free graphs. In Proceedings of the 2024
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 296–313, 2024.

[Kor21] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pages
184–192. IEEE, 2021.

[Kos84] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica, 4(4):307–316, 1984.

[KPR93] Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In 25th Annual ACM Symposium on Theory of Computing, STOC
1993, pages 682–690. ACM, 1993.

[KPS24] Tuukka Korhonen, Michał Pilipczuk, and Giannos Stamoulis. Minor Containment and
Disjoint Paths in almost-linear time, 2024.

[Kre12] Stephan Kreutzer. On the parameterized intractability of monadic second-order logic. Log.
Methods Comput. Sci., 8(1), 2012.

[KS13] Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.
ACM Trans. Comput. Log., 14(4):25:1–25:12, 2013.

[KS24] Tuukka Korhonen and Marek Sokołowski. Almost-linear time parameterized algorithm for
rankwidth via dynamic rankwidth. CoRR, abs/2402.12364, 2024. Accepted for presentation
at STOC 2024.

[KSB06] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006.

[KT10] Stephan Kreutzer and Siamak Tazari. On Brambles, Grid-Like Minors, and Parameter-
ized Intractability of Monadic Second-Order Logic. In Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, pages 354–364. SIAM, 2010.

[KT16] Yasuaki Kobayashi and Hisao Tamaki. Treedepth Parameterized by Vertex Cover Number.
In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of
LIPIcs, pages 18:1–18:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[Lag98] Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,
Ser. B, 73(1):7–40, 1998.

[Lam20] Michael Lampis. Finer Tight Bounds for Coloring on Clique-Width. SIAM J. Discret. Math.,
34(3):1538–1558, 2020.

[Lev73] Leonid A. Levin. Universal Sequential Search Problems. Probl. Peredachi Inf., 9:115–116,
1973.

[LP84] Andrea S. Lapaugh and Christos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4):507–513, 1984.

[LPPS22] Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Fixed-parameter
tractability of graph isomorphism in graphs with an excluded minor. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 914–923,
New York, NY, USA, 2022. Association for Computing Machinery.

[Mak04] Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl.
Log., 126(1-3):159–213, 2004.

[Mao23] Xiao Mao. Fully-Dynamic All-Pairs Shortest Paths: Likely Optimal Worst-Case Update
Time. CoRR, abs/2306.02662, 2023. Accepted for presentation at STOC 2024.

[MN93] Haiko Müller and Falk Nicolai. Polynomial time algorithms for hamiltonian problems on
bipartite distance-hereditary graphs. Information Processing Letters, 46(5):225–230, 1993.

BIBLIOGRAPHY 251

[MPS23] Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski. Maintaining CMSO2 properties
on dynamic structures with bounded feedback vertex number. In 40th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2023, volume 254 of LIPIcs,
pages 46:1–46:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2023.

[MPZ24] Konrad Majewski, Michał Pilipczuk, and Anna Zych-Pawlewicz. Parameterized dynamic
data structure for Split Completion. CoRR, abs/2402.08816, 2024.

[MS12] Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012.

[MT92] Jiŕı Matousek and Robin Thomas. On the complexity of finding iso- and other morphisms
for partial k-trees. Discret. Math., 108(1-3):343–364, 1992.

[MT04] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley–Wilf
conjecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004.

[NdM08] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
I. Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.

[NdMRS21] Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian Siebertz.
Classes of graphs with low complexity: The case of classes with bounded linear rankwidth.
Eur. J. Comb., 91:103223, 2021.

[Ned99] Zhivko Prodanov Nedev. Finding an even simple path in a directed planar graph. SIAM
Journal on Computing, 29(2):685–695, 1999.

[Nie18] Matthias Niewerth. MSO queries on trees: Enumerating answers under updates using forest
algebras. In 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
pages 769–778. ACM, 2018.

[NPSW23] Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamil-
tonian Cycle Parameterized by Treedepth in Single Exponential Time and Polynomial Space.
SIAM J. Discret. Math., 37(3):1566–1586, 2023.

[NS17] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case
update time: adaptive, Las Vegas, and O(n1/2−ε)-time. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 1122–1129, New
York, NY, USA, 2017. Association for Computing Machinery.

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 950–961. IEEE Computer Society, 2017.

[OPR+23] Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-
Pawlewicz. Dynamic data structures for parameterized string problems. In 40th International
Symposium on Theoretical Aspects of Computer Science, STACS 2023, volume 254 of LIPIcs,
pages 50:1–50:22. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2023.

[OS06] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B, 96(4):514–528, 2006.

[OS07] Sang-il Oum and Paul D. Seymour. Testing branch-width. J. Combinatorial Theory Ser. B,
97(3):385–393, 2007.

[Oum05] Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100, 2005.

[Oum08a] Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, 2008.

[Oum08b] Sang-il Oum. Rank-width is less than or equal to branch-width. J. Graph Theory, 57(3):239–
244, 2008.

252 BIBLIOGRAPHY

[Oum17] Sang-il Oum. Rank-width: Algorithmic and structural results. Discret. Appl. Math., 231:15–24,
2017.

[Par78] T. D. Parsons. Pursuit-evasion in a graph. In Yousef Alavi and Don R. Lick, editors,
Theory and Applications of Graphs, pages 426–441, Berlin, Heidelberg, 1978. Springer Berlin
Heidelberg.

[PD06] Mihai Pătraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006.

[Pil20] Michał Pilipczuk. Computing tree decompositions. In Fedor V. Fomin, Stefan Kratsch, and
Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms — Essays Dedicated to
Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in
Computer Science, pages 189–213. Springer, 2020.

[PP20] Adam Paszke and Michał Pilipczuk. VC Density of Set Systems Definable in Tree-Like
Graphs. In Javier Esparza and Daniel Král’, editors, 45th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague,
Czech Republic, volume 170 of LIPIcs, pages 78:1–78:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[PS23] Michał Pilipczuk and Marek Sokołowski. Graphs of bounded twin-width are quasi-
polynomially χ-bounded. J. Comb. Theory, Ser. B, 161:382–406, 2023.

[PSS19] Richard Peng, Bryce Sandlund, and Daniel Dominic Sleator. Optimal Offline Dynamic 2,
3-Edge/Vertex Connectivity. In Zachary Friggstad, Jörg-Rüdiger Sack, and Mohammad R.
Salavatipour, editors, Algorithms and Data Structures - 16th International Symposium,
WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume 11646 of
Lecture Notes in Computer Science, pages 553–565. Springer, 2019.

[PSZ22] Michał Pilipczuk, Marek Sokołowski, and Anna Zych-Pawlewicz. Compact Representation
for Matrices of Bounded Twin-Width. In Petra Berenbrink and Benjamin Monmege, editors,
39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022,
March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages
52:1–52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[PT06] Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In 38th
Annual ACM Symposium on Theory of Computing, STOC 2006, pages 232–240. ACM, 2006.

[PW18] Michal Pilipczuk and Marcin Wrochna. On Space Efficiency of Algorithms Working on
Structural Decompositions of Graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018.

[Rin65] Gerhard Ringel. Das Geschlecht des vollständigen paaren Graphen. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 28:139–150, 1965.

[Rob83] John Robson. The complexity of go. volume 9, pages 413–417, 01 1983.

[RS84] Neil Robertson and Paul D. Seymour. Graph Minors. III. Planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984.

[RS86a] Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic aspects of tree-width.
J. Algorithms, 7(3):309–322, 1986.

[RS86b] Neil Robertson and Paul D. Seymour. Graph Minors. V. Excluding a planar graph. J. Comb.
Theory, Ser. B, 41(1):92–114, 1986.

[RS95] Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

[RVS19] Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos Stavropoulos. Characterising
bounded expansion by neighbourhood complexity. European Journal of Combinatorics,
75:152–168, 2019.

[SE81] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. J. ACM, 28(1):1–4, jan
1981.

BIBLIOGRAPHY 253

[See91] Detlef Seese. The Structure of Models of Decidable Monadic Theories of Graphs. Ann. Pure
Appl. Log., 53(2):169–195, 1991.

[Sei74] D Seinsche. On a property of the class of n-colorable graphs. Journal of Combinatorial
Theory, Series B, 16(2):191–193, 1974.

[SS20] Alex Scott and Paul D. Seymour. A survey of χ-boundedness. J. Graph Theory, 95(3):473–504,
2020.

[ST83] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983.

[Tar75] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, apr 1975.

[Tho90] Robin Thomas. A Menger-like Property of Tree-Width: The Finite Case. J. Comb. Theory,
Ser. B, 48(1):67–76, 1990.

[Tho04] Mikkel Thorup. Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative
Cycles. In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004,
9th Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004,
Proceedings, volume 3111 of Lecture Notes in Computer Science, pages 384–396. Springer,
2004.

[TP93] Jan Arne Telle and Andrzej Proskurowski. Practical Algorithms on Partial k-Trees with
an Application to Domination-like Problems. In Frank K. H. A. Dehne, Jörg-Rüdiger
Sack, Nicola Santoro, and Sue Whitesides, editors, Algorithms and Data Structures, Third
Workshop, WADS ’93, Montréal, Canada, August 11-13, 1993, Proceedings, volume 709 of
Lecture Notes in Computer Science, pages 610–621. Springer, 1993.

[Tre01] Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceed-
ings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion,
Crete, Greece, pages 453–461. ACM, 2001.

[vRBR09] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter
Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer
Science, pages 566–577. Springer, 2009.

[WAPL14] Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of treewidth and
related problems. J. Artif. Intell. Res., 49:569–600, 2014.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1130–1143. ACM, 2017.

	Introduction
	An introduction to graph width parameters
	Research objectives
	Our results
	Organization of the thesis

	Preliminaries
	Notation
	Parameterized and dynamic problems
	Treewidth
	Rankwidth and cliquewidth
	Twin-width
	Logic

	I Treewidth and rankwidth
	Dynamic treewidth
	Overview
	Dynamic tree decompositions
	Closures
	Refinement data structure
	Height improvement
	Proof of Lemma 3.2.5
	Dynamic automata
	Proof of Theorems 1.3.1 and 1.3.3
	Conclusions

	Dynamic rankwidth
	Overview
	Preliminary results for rank decompositions
	Annotated rank decompositions and prefix rebuilding
	Refinement
	Automata
	Dynamic rankwidth
	Almost-linear time algorithm for rankwidth
	Dealternation Lemma
	Using rank decomposition automata to compute closures
	Cliquewidth
	Conclusions

	Dynamic Baker's technique
	Overview
	Additional preliminaries
	Maximum Weight Independent Set
	Minimum Weight Dominating Set
	Conclusions

	II Twin-width
	Compact oracle for d-twin-ordered matrices
	Structural properties of divisions
	Data structure
	Construction algorithm
	Representation with bitsize O(n^{1+eps}) and query time O(1/eps)
	Conclusions

	Twin-width and chi-boundedness
	Almost mixed minors
	Obtaining the recurrence
	Solving the recurrence
	Wrapping up the proof
	Conclusions

