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Abstract

For the vast majority of local algorithmic problems on graphs of small treewidth (where
by local we mean that a solution can be verified by checking the neighbourhood of each
vertex separately), standard dynamic programming techniques give ctw|V |O(1) time algo-
rithms, where tw is the treewidth of the input graph G = (V,E) and c is a constant. On the
other hand, for problems with a global requirement (usually connectivity) the best–known
algorithms were naive dynamic programming schemes running in at least twtw time.

In this dissertation we breach this gap by introducing a novel technique we named
Cut&Count that allows to produce ctw|V |O(1) time Monte Carlo algorithms for most
connectivity-type problems, including HAMILTONIAN CYCLE, STEINER TREE, FEED-
BACK VERTEX SET and CONNECTED VERTEX COVER.

These results have numerous consequences in various fields, like parameterized com-
plexity, exact and approximate algorithms on planar and H-minor-free graphs and exact
algorithms on graphs of bounded degree. In all these fields we are able to improve the best-
known results for some problems. Also, looking from a more theoretical perspective, our
results are surprising since the equivalence relation that partitions all partial solutions with
respect to extendability to global solutions consists of at least twtw equivalence classes for
all these problems.

In contrast to the problems aiming to minimize the number of connected components
that we solve using Cut&Count as mentioned above, we show that, assuming the Exponen-
tial Time Hypothesis, the aforementioned gap cannot be breached for some problems that
aim to maximize the number of connected components like CYCLE PACKING.

The constant c in our algorithms is in all cases small (at most 4 for undirected problems
and at most 6 for directed ones), and in several cases we are able to show that improving
those constants would cause the Strong Exponential Time Hypothesis to fail.

Keywords: treewidth, randomization, isolation lemma, parameterized algorithms, exact
exponential algorithms.

ACM Classification: F.2.2, G.2.1, G.2.2.





Streszczenie

Dla większości algorytmicznych problemów grafowych o charakterze lokalnym (w któ-
rych świadectwo rozwiązania może zostać zweryfikowane przez sprawdzenie sąsiedztwa
każdego z wierzchołków osobno) klasyczne techniki programowania dynamicznego pro-
wadzą do algorytmów o złożoności ctw|V |O(1), gdzie tw oznacza szerokość drzewiastą
danego grafu G = (V,E) a c jest pewną stałą. Natomiast dla problemów z globalnym
wymogiem dotyczącym całej struktury rozwiązania (takim jak spójność) najlepsze znane
do tej pory algorytmy mają w złożoności czynnik twtw.

W rozprawie prezentujemy nową technikę, którą nazwaliśmy „tnij i zliczaj”, która po-
zwala na uzyskanie algorytmów Monte Carlo o złożoności ctw|V |O(1) dla wielu problemów
z warunkiem spójności, takich jak cykl Hamiltona, drzewo Steinera, zbiór rozcyklający czy
też spójne pokrycie wierzchołkowe.

Przedstawione wyniki mają zastosowania w wielu poddziedzinach takich jak złożoność
parametryzowana, dokładne i aproksymacyjne algorytmy dla grafów planarnych oraz gra-
fów z zabronionym minorem jak również w dokładnych algorytmach wykładniczych dla
grafów o ograniczonym stopniu. We wszystkich wymienionych przykładach technika tnij
i zliczaj pozwala na poprawienie najlepszych istniejących wyników dla pewnych proble-
mów. Ponadto, z bardziej teoretycznego punktu widzenia, nasze wyniki są zaskakujące
gdyż relacja równoważności w zbiorze częściowych rozwiązań przechodzących przez se-
parator względem ich rozszerzalności do pełnego rozwiązania składa się z co najmniej
twtw klas równoważności dla wszystkich wymienionych problemów.

W przeciwieństwie do problemów, gdzie celem jest zminimalizowanie liczby spójnych
składowych rozwiązania, a które rozwiązujemy w czasie ctw|V |O(1) za pomocą techniki
tnij i zliczaj, pokazaliśmy że algorytmy o takiej złożoności nie istnieją dla problemów,
gdzie należy zmaksymalizować liczbę spójnych składowych rozwiązania (takich jak pro-
blem pakowania cykli), przy założeniu że nie istnieje algorytm podwykładniczy dla pro-
blemu spełnialności formuł.

Stała c we wszystkich naszych algorytmach jest niewielka, gdyż wynosi co najwyżej 4
dla grafów nieskierowanych oraz co najwyżej 6 dla grafów skierowanych. Co więcej dla
kilku z rozważanych problemów udowodniliśmy że poprawienie stałych wynikających z
użycia techniki tnij i zliczaj nie jest możliwe, przy bardzo silnych założeniach teoriozłożo-
nościowych.

Słowa kluczowe: szerokość drzewiasta, randomizatcja, lemat o izolacji, algorytmy para-
metryzowane, dokładne algorytmy wykładnicze.

Klasyfikacja tematyczna ACM: F.2.2, G.2.1, G.2.2.
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Chapter 1

Introduction

It is commonly believed that no NP-hard problem is solvable in polynomial time. However
it often happens that real-life instances have much more structure comparing to a general
instance specification from the mathematical problem definition. For this reason a concept
of parameterized complexity arose, where hardness of an instance does not depend solely
on its size. In the parameterized setting we assume that each instance is equipped with an
additional value k — a parameter which aims to reflect the instance complexity. The goal
is to provide an algorithm with f(k)nO(1) time complexity, where n is the instance size
and f is a function independent of n. Observe that such an algorithm is polynomial for
any constant value of k and moreover the degree of the polynomial is independent of the
parameter value. The main motivation of research in the parameterized complexity is that
practical instances happen to have small parameter values. As addressed in the textbook of
Downey and Fellows [36], it appears that many graphs occurring in real-life applications
have small treewidth, thus allowing efficient algorithms.

The notion of treewidth was introduced independently by Rose in 1974 [69] (under the
name of partial k-tree) and in 1984 by Robertson and Seymour [68] as a parameter which
is to estimate hardness of an instance by reflecting its resemblance to a tree. As an example
we present three graphs of treewidth at most 4 which illustrate the structure of bounded
treewidth graphs. The exact definition of treewidth is given in Section 2.2.

In many cases treewidth proved to be a good measure of the intrinsic difficulty of vari-
ous NP-hard problems on graphs, and a useful tool for attacking those problems. Many of
them can be efficiently solved through dynamic programming if we assume the input graph
to have bounded treewidth. For example, an expository algorithm to solve VERTEX COVER

7



8 CHAPTER 1. INTRODUCTION

and INDEPENDENT SET running in time 4tw(G)|V |O(1) is described in the algorithms text-
book by Kleinberg and Tardos [54], while the book of Niedermeier [64] on fixed-parameter
algorithms presents an algorithm with running time 2tw(G)|V |O(1).

The interest in algorithms for graphs of bounded treewidth stems from their utility:
such algorithms are used as sub-routines in a variety of settings. Amongst them prominent
are approximation algorithms [4, 13, 27, 37] and parametrized algorithms [31, 39] for a
vast number of problems on planar, bounded-genus and H-minor-free graphs, including
VERTEX COVER, DOMINATING SET and INDEPENDENT SET; there are applications for
parametrized algorithms in general graphs [61, 73] for problems like CONNECTED VER-
TEX COVER1 and CUTWIDTH; and exact algorithms [39, 76] such as MINIMUM MAXIMAL

MATCHING and DOMINATING SET.
In many cases, where the problem to be solved is “local” (loosely speaking this means

that the property of the object to be found can be verified by checking separately the
neighbourhood of each vertex), matching upper and lower bounds for the running time
of the optimal solution are known. Of course, these are not absolute lower bounds (as this
would imply P 6=NP), but they hold under the Strong Exponential Time Hypothesis (de-
fined in Section 2.4). For instance for the aforementioned 2tw(G)|V |O(1) time algorithm
for VERTEX COVER there is a matching lower bound — unless the Strong Exponential
Time Hypothesis fails, there is no algorithm for VERTEX COVER running faster than in
O((2 − ε)tw(G)|V |O(1)) time for any ε > 0. It is worth noting that it is not a universal
opinion that SETH holds, but nevertheless reducing a problem to the classic SAT problem
studied for several decades may be used as an evidence of hardness.

On the other hand, when the problem involves some sort of a “global” constraint —
e.g., connectivity — the best known algorithms usually have a running time on the order
of 2O(tw(G) log tw(G))|V |O(1). In these cases the typical dynamic programming routine has to
keep track of all the ways in which the solution can traverse the corresponding separator of
the tree decomposition, that is Ω(ll), where l is the size of the separator, i.e. treewidth. This
obviously implies weaker results in the applications mentioned above. This problem was
observed, for instance, by Dorn, Fomin and Thilikos [31, 32] and by Dorn et al. in [33],
and the question whether the known 2O(tw(G) log tw(G))|V |O(1) parametrized algorithms for
HAMILTONIAN PATH, CONNECTED VERTEX COVER and CONNECTED DOMINATING

SET are optimal was explicitly asked by Lokshtanov, Marx and Saurabh [59].

1.1 Our results

We introduce a technique we named “Cut&Count”. For most problems involving a global
constraint our technique gives a randomized algorithm with running time ctw(G)|V |O(1).
In particular we are able to give such algorithms for HAMILTONIAN PATH, CONNECTED

VERTEX COVER, CONNECTED DOMINATING SET (i.e. the three problems mentioned in
[59]), as well as for all the other sample problems mentioned in [32]: LONGEST PATH,
LONGEST CYCLE, FEEDBACK VERTEX SET, HAMILTONIAN CYCLE and GRAPH MET-
RIC TRAVELLING SALESMAN PROBLEM. Moreover, the constant c is in all cases well

1Definitions of all the problems mentioned in this dissertation are gathered in Appendix A
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defined and small. The randomization we mention comes from the usage of the Isolation
Lemma [63]. This gives us Monte Carlo algorithms with a one-sided error. The formal
statement of a typical result is as follows:

Theorem 1.1. There exists a randomized algorithm, which given a graph G = (V,E), a
tree decomposition of G of width t and a number k, in 3t|V |O(1) time either states that
there exists a connected vertex cover of size at most k in G, or that it could not verify this
hypothesis. If there indeed exists such a cover, the algorithm will return “unable to verify”
with probability at most 1/2.

If the algorithm from Theorem 1.1 returns the ”unable to verify” answer for a YES-
instance, we say it returned a false negative. Note that in order to decrease the probability
of a false negative to any small ε > 0 it suffices to repeat the algorithm log2(1

ε
) times. We

show similar results for a number of other global problems. As the exact value of c in the
ctw(G) expression is often important and highly non-trivial to obtain, we gather the results
in column A of Table 1.1.

The previously known 2O(tw(G) log tw(G)) dynamic programming routines for connectiv-
ity problems were thought to be optimal, because in these routines the dynamic program-
ming table reflects the whole information that needs to be memoized in order to continue
the computation. For every two distinct tables at some bag of the tree decomposition there
exists a possible future on which the algorithm should behave differently. This resembles
the notion of Myhill-Nerode equivalence classes [47], which, in a variety of settings, de-
fine the minimal automaton for a given problem. Hence, shrinking the size of the dynamic
programming table would be, in some sense, trying to reduce the size of the minimal au-
tomaton. From this point of view our results come as a significant surprise.

For a number of our results we have matching lower bounds, such as the following
theorem:

Theorem 1.2. Unless the Strong Exponential Time Hypothesis is false, for every constant
ε > 0 there is no algorithm that given an instance (G = (V,E), T, k) together with a
path decomposition of the graph G of width p solves the STEINER TREE problem in (3 −
ε)p|V |O(1) time.

Since each path decomposition is also a tree decomposition a lower bound for pathwidth
is at least as strong as for treewidth. We have such matching lower bounds for several other
problems presented in Column C of Table 1.1. We feel that the results for CONNECTED

VERTEX COVER, CONNECTED DOMINATING SET, CONNECTED FEEDBACK VERTEX

SET and CONNECTED ODD CYCLE TRANSVERSAL are of particular interest here and
should be compared to the algorithms and lower bounds for the analogous problems without
the connectivity requirement. For instance in the case of CONNECTED VERTEX COVER

the results show that the increase in running time to 3tw(G)|V |O(1) from the 2tw(G)|V |O(1)

algorithm of [64] for VERTEX COVER is not an artifact of the Cut&Count technique, but
rather an intrinsic characteristic of the problem. We see a similar increase of the base
constant by one for the other three mentioned problems.

We have found Cut&Count to fail for two maximization problems: CYCLE PACKING

and MAX CYCLE COVER. We believe this is an example of a more general phenomenon
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Problem name A B C
STEINER TREE 3t (3− ε)p
FEEDBACK VERTEX SET 3t (3− ε)p
CONNECTED VERTEX COVER 3t (3− ε)p
CONNECTED DOMINATING SET 4t (4− ε)p
CONNECTED FEEDBACK VERTEX SET 4t (4− ε)p
CONNECTED ODD CYCLE TRANSVERSAL 4t (4− ε)p
UNDIRECTED MIN CYCLE COVER 4t

DIRECTED MIN CYCLE COVER 6t

UNDIRECTED LONGEST PATH (CYCLE) 4t

DIRECTED LONGEST PATH (CYCLE) 6t

EXACT k-LEAF SPANNING TREE 4t (4− ε)p
EXACT k-LEAF OUTBRANCHING 6t

MAXIMUM FULL DEGREE SPANNING TREE 4t

GRAPH METRIC TRAVELLING SALESMAN PROBLEM 4t

(DIRECTED) CYCLE PACKING 2Ω(p log p)

(DIRECTED) MAX CYCLE COVER 2Ω(p log p)

MAXIMALLY DISCONNECTED DOMINATING SET 2Ω(p log p)

Table 1.1: Summary of our results. For the sake of presentation in each entry we skip the |V |O(1)

multiplicative term. Column A is devoted to time complexities of our algorithms for treewidth
(denoted by t) parametrization. For example, the entry at the third row represents Theorem 1.1.
Column B contains lower bounds showing problems that are not solvable in ct|V |O(1) time for any
constant c unless the Exponential Time Hypothesis fails. Column C presents lower bounds under
the Strong Exponential Time Hypothesis for pathwidth parametrization, which immediately imply
lower bounds with the same constant for the treewidth parametrization. All problems statements
can be found in Appendix A.

— problems that ask to maximize (instead of minimizing) the number of connected com-
ponents in the solution seem more difficult to solve than the problems that ask to minimize
(including problems where we demand that the solution forms a single connected compo-
nent). As an evidence we prove that ctw(G)|V |O(1) solutions of the two problems mentioned
above are unlikely (for Exponential Time Hypothesis definition see Section 2.4):

Theorem 1.3. Unless the Exponential Time Hypothesis is false, there does not exist a
2o(p log p)|V |O(1) algorithm solving CYCLE PACKING or MAX CYCLE COVER (either in
the directed and undirected setting). The parameter p denotes the width of a given path
decomposition of the input graph.

To further verify this intuition, we investigated an artificial problem (the MAXIMALLY

DISCONNECTED DOMINATING SET), in which we ask for a dominating set with the largest
possible number of connected components, and indeed we found a similar phenomenon.

Theorem 1.4. Unless the Exponential Time Hypothesis is false, there does not exist a
2o(p log p)|V |O(1) algorithm for solving MAXIMALLY DISCONNECTED DOMINATING SET.
The parameter p denotes the width of a given path decomposition of the input graph.
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1.2 Consequences of the Cut&Count technique

As already mentioned, algorithms for graphs with a bounded treewidth have a number of
applications in various branches of algorithmics. Thus, it is not a surprise that the results
obtained by our technique give a large number of corollaries. We do not explore all possible
applications, but only give sample applications in various directions since a reader can
easily obtain omitted by-products in an analogous manner.

We would like to emphasize that the strength of the Cut&Count technique shows not
only in the quality of the results obtained in various fields, which are frequently better than
the previously best known ones, achieved through a number of techniques and approaches,
but also in the ease in which new strong results can be obtained.

1.2.1 Parameterized algorithms on general graphs

Let us recall the definition of the FEEDBACK VERTEX SET problem:

FEEDBACK VERTEX SET Parameter: k
Input: An undirected graph G and an integer k
Question: Is it possible to remove k vertices from G so that the remaining vertices induce
a forest?

This problem is on Karp’s original list of 21 NP-complete problems [53]. It has also
been extensively studied from the parametrized complexity point of view. Let us recall that
in the fixed-parameter setting (FPT) the problem comes with a parameter k, and we are
looking for a solution with time complexity f(k)|V |O(1), where n is the input size and f is
some function (usually exponential in k). Thus, we seek to move the intractability of the
problem from the input size to the parameter.

There is a long sequence of FPT algorithms for FEEDBACK VERTEX SET [5, 11, 20,
26, 35, 36, 43, 52, 65, 66]. The best — so far — result in this series is the 3.83kk|V |2 result
of Cao, Chen and Liu [18]. Our technique gives an improvement of their result:

Theorem 1.5. There exists a Monte Carlo algorithm with constant one-sided error proba-
bility that solves the FEEDBACK VERTEX SET problem in a graphG = (V,E) in 3k|V |O(1)

time and polynomial space.

We give similar improvements for CONNECTED VERTEX COVER (from 2.4882k|V |O(1)

of [6] to 2k|V |O(1)) and CONNECTED FEEDBACK VERTEX SET (from 46.2k|V |O(1) of [60]
to 3k|V |O(1)).

Furthermore we show that under Strong Exponential Time Hypothesis one can not
count the parity of the number of connected vertex covers of size k in (2− ε)k|V |O(1) time
and our algorithm presented in Chapter 5 counts the parity of the number of connected
vertex covers in 2k|V |O(1) time. To the best of our knowledge this is the first algorithm
parameterized by the solution size for which an evidence of optimality is shown.

Details of the algorithms and lower bound for problems parameterized by the solution
size can be found in Chapter 5.
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1.2.2 Parameterized algorithms on H-minor-free graphs
A large branch of applications of algorithms parametrized by treewidth is the bidimension-
ality theory, used to find subexponential algorithms for various problems in H-minor-free
graphs. In this theory we use the theorem of Demaine et al. [28], which ensures that any
H-minor-free graph either has treewidth bounded by C

√
k, or a 2

√
k × 2

√
k lattice as a

minor. In the latter case we are assumed to be able to answer the problem in question
(for instance a 2

√
k × 2

√
k lattice as a minor guarantees that the graph does not have a

VERTEX COVER or CONNECTED VERTEX COVER smaller than k). Thus, we are left with
solving the problem with the assumption of bounded treewidth. In the case of, for instance,
VERTEX COVER a standard dynamic programming algorithm suffices, thus giving us a
2O(
√
k) algorithm to check whether a graph has a vertex cover no larger than k. In the case

of CONNECTED VERTEX COVER, however, the standard dynamic programming routine
gives a 2O(

√
k log k) complexity — thus, we lose a logarithmic factor in the exponent.

There were a number of attempts to deal with this problem, taking into account the
structure of the graph, and using it to deduce some properties of the tree decomposition un-
der consideration. The latest and most efficient of those approaches is due to Dorn, Fomin
and Thilikos [32], and exploits the so called Catalan structures. The approach deals with
most of the problems mentioned in our paper, and is probably applicable to the remaining
ones. Thus, the gain here is not in improving the running times (though our approach does
improve the constants hidden in the big-O notation which are rarely considered to be im-
portant in the bidimensionality theory), but rather in simplifying the proof — instead of
delving into the combinatorial structure of each particular problem, we are back to a sim-
ple framework of applying the Robertson-Seymour theorem and then following up with a
dynamic programming algorithm on the obtained tree decomposition.

The situation is more complicated in the case of problems on directed graphs. One of
the approaches is to mimic the bidimensionality approach, which again leads to solving a
problem on a graph of bounded treewidth — such an approach is taken by Dorn et al. in
[30] for MAXIMUM LEAF OUTBRANCHING to obtain a 2O(

√
k log k) algorithm. In this case,

a straightforward substitution of our 6tw(G)|V |O(1) algorithm for the dynamic algorithm
used by Dorn et al. will give the following improvement:

Theorem 1.6. There exists a Monte Carlo algorithm with constant one-sided error prob-
ability that solves the MAXIMUM LEAF OUTBRANCHING problem in 2O(

√
k)|V |O(1) time

for directed graphs for which the underlying undirected graph excludes a fixed graph H as
a minor.

1.2.3 Exact Algorithms on graphs of bounded degree
Another application of our methods can be found in the field of solving problems with a
global constraint in graphs of bounded degree. The problems that have been studied in
this setting are mostly local in nature (such as VERTEX COVER, see, e.g., [14]); however
global problems such as the TRAVELLING SALESMAN PROBLEM (TSP) and HAMILTO-
NIAN CYCLE have also received considerable attention [9, 38, 41, 50].

In what follows we let n denote the number of vertices of the given graph. The starting
point is the following theorem by Fomin et al. [39]:
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Theorem 1.7 ([39]). For any ε > 0 there exists an integer nε such that for any graph G
with n > nε vertices,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 + n≥6 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 5} and n≥6 is the
number of vertices of degree at least 6.

This theorem is constructive, and the corresponding path decomposition (and, conse-
quently, tree decomposition) can be found in polynomial time. Combining this theorem
with our results gives algorithms running in faster than 2n time for graphs of maximum
degree 3, 4 and (in the case of the 3tw(G) and 4tw(G) algorithms) 5, such as the following
one:

Corollary 1.8. There exists a Monte Carlo algorithm with constant one-sided error prob-
ability that solves the CONNECTED VERTEX COVER problem in O(1.201n) time for cubic
graphs, O(1.443n) for graphs of maximum degree 4 and O(1.61n) for graphs of maximum
degree 5.

Furthermore in Section 4.3.1 we improve the general 4tw(G)|V |O(1) algorithm for the
HAMILTONIAN CYCLE problem to 3pw(G)|V |O(1) in case of a path decomposition of cubic
graphs. Consequently we prove the following theorem which improves over previously best
results for the maximum degree three O(1.251n) algorithm of Iwama and Nakashima [50]
and for the degree four O(1.657n) algorithm of Björklund [7].

Corollary 1.9. There exists a Monte Carlo algorithm with constant one-sided error prob-
ability that solves the HAMILTONIAN CYCLE problem in O(1.201n) time for cubic graphs
and O(1.588n) for graphs of maximum degree 4.

1.2.4 Consequences for exact algorithms on planar graphs
Recall from the previous section that n denotes the number of vertices of the given graph.
Here we begin with a consequence of the work of Fomin and Thilikos [40]:

Proposition 1.10. For any planar graph G, tw(G) + 1 ≤ 3
2

√
4.5n ≤ 3.183

√
n. Moreover

a tree decomposition of such width can be found in polynomial time.

Using this we immediately obtainO(c
√
n) algorithms for solving problems with a global

constraint on planar graphs with good constants. For the HAMILTONIAN CYCLE problem
on planar graphs we obtain the following result:

Corollary 1.11. There exists a Monte Carlo algorithm with constant one-sided error prob-
ability that solves the HAMILTONIAN CYCLE problem on planar graphs in O(43.183

√
n) =

O(26.366
√
n) time.

To the best of our knowledge the best algorithm known so far was the O(26.903
√
n) of

Bodlaender et al. [33].
Similarly, we obtain an O(26.366

√
n) algorithm for LONGEST CYCLE on planar graphs

(compare to the O(27.223
√
n) of [33]), and — as in the previous sections — well-behaved

c
√
n algorithms for all mentioned problems.
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1.3 Previous work
The Cut&Count technique has two main ingredients. The first is an algebraic approach,
where we assure that objects we are not interested in are counted an even number of times,
and then do the calculations in Z2 (or in any other field of characteristic 2), which causes
them to disappear. This line of reasoning goes back to Tutte [74], and was recently used by
Björklund [7] and Björklund et. al [10].

The second is the idea of defining the connectivity requirement through cuts, which is
frequently used in approximation algorithms via linear programming relaxations. In par-
ticular cut based constraints were used in the Held and Karp relaxation for the TRAVEL-
LING SALESMAN PROBLEM problem from 1970 [44, 45] and appear up to now in the best
known approximation algorithms, for example in the recent algorithm for the STEINER

TREE problem by Byrka et al. [15]. To the best of our knowledge the idea of defining
problems through cuts was never used in the exact and parameterized settings.

A number of papers circumvent the problems stemming from the lack of single ex-
ponential algorithms parametrized by treewidth for connectivity–type problems. For in-
stance in the case of parametrized algorithms, sphere cuts [31, 33] (for planar and bounded
genus graphs) and Catalan structures [32] (for H-minor-free graphs) were used to obtain
2O(
√
k)|V |O(1) algorithms for a number of problems with connectivity requirements. To the

best of our knowledge, however, no attempt to attack the problem directly was published
before; indeed the non-existence of 2o(tw(G) log tw(G))|V |O(1) algorithms was deemed to be
more likely.

For classical graph problems the base of the exponent for treewidth parametrization was
improved a few times. For example Alber et al. [2] gave a 4tw(G)|V |O(1)-time algorithm
for DOMINATING SET, improving over the natural 9tw(G)|V |O(1) algorithm of Telle and
Proskurowski [72]. Recently, van Rooij et al. [75] observed that one could use fast subset
convolution [8] to improve the running time of algorithms on graphs of bounded treewidth.
Their results include a 3tw(G)|V |O(1) algorithm for DOMINATING SET. However to the best
of our knowledge our work is the first one where the time complexity is improved upon the
space bound of the naive approach.

1.4 Organization of the dissertation
In Chapter 2 we introduce notation and basic definitions, including treewidth, pathwidth,
the Isolation Lemma and the fast subset convolution together with related operators (some
of them are new) which are later used to obtain small constant in the time complexity of
our algorithms.

Chapter 3 is to present and demonstrate the Cut&Count technique by solving STEINER

TREE and DIRECTED MIN CYCLE COVER problems. Applications of the technique to a
number of different problems is described in Chapter 4.

In Chapter 5 we show a combination of Cut&Count technique and iterative compres-
sion which enables us to obtain faster than previously known algorithms for problems pa-
rameterized by the solution size, i.e., FEEDBACK VERTEX SET,CONNECTED VERTEX

COVER,CONNECTED FEEDBACK VERTEX SET. Furthermore in Section 5.4 we prove that
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under SETH there is no algorithm running in (2 − ε)k|V |O(1) which determines the parity
of the number of connected vertex covers of size k, which matches the time complexity of
the algorithm presented in the same chapter.

In Chapters 6 and 7 we present lower bounds of two different types. In Chapter 6
we prove that several problems, assuming the Exponential Time Hypothesis, do not ad-
mit an algorithm running in 2o(p log p)nO(1) time, where p denotes the pathwidth of the
input graph. The aim of this chapter is to show a substantial difference between prob-
lems maximizing and minimizing connectivity of a solution. In Chapter 7 we prove that,
assuming SETH, the base of the exponent in our algorithms for CONNECTED VERTEX

COVER, CONNECTED DOMINATING SET, CONNECTED FEEDBACK VERTEX SET, CON-
NECTED ODD CYCLE TRANSVERSAL, FEEDBACK VERTEX SET, STEINER TREE and
EXACT k-LEAF SPANNING TREE cannot be improved further. Consequently we show
that the Cut&Count technique not only allows us to obtain ctw(G)|V |O(1) time algorithms,
breaking the tw(G)Ω(tw(G))|V |O(1) barrier, but for at least some problems leads to optimum
values of the constant c.

We finish the dissertation with conclusions and open problems in Chapter 8. Finally
Appendix A contains statements of problems enumerated in Table 1.1 and it is followed by
Index.
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Chapter 2

Notation and Preliminaries

In this chapter we introduce notation and definitions used throughout the dissertation, in
particular we define the treewidth and the pathwidth of graphs. Furthermore in Section 2.3
we state the Isolation Lemma and present its proof for the sake of completeness. In Sec-
tion 2.4 we present the statement of the (Strong) Exponential Time Hypothesis.

In Section 2.5 we recall the fast subset convolution and related operators. We also
introduce some new operators: the generalized fast subset convolution and the Zp product.
These tools are used to speed-up the dynamic programming routines discussed in Chapter 4.
However, we believe that the new operators are of independent interest and will become
useful in other applications.

2.1 Notation
Let G = (V,E) be a graph (possibly directed). By V (G) and E(G) we denote the sets of
vertices and edges of G, respectively. For a vertex set X ⊆ V (G) by G[X] we denote the
subgraph induced by X . For an edge set X ⊆ E, we take V (X) to denote the set of the
endpoints of the edges of X , and by G[X] — the subgraph (V,X). Note that in the graph
G[X] for an edge set X the set of vertices remains the same as in the graph G.

For an undirected graph G = (V,E), the open neighbourhood of a vertex v, denoted
N(v), stands for {u ∈ V : uv ∈ E}, while the closed neighbourhood N [v] is N(v) ∪ {v}.
Similarly, for a set X ⊆ V (G) by N [X] we mean

⋃
v∈X N [v] and by N(x) we mean

N [X] \X .
By a cut of a set X ⊆ V we mean a pair (X1, X2), with X1 ∩X2 = ∅, X1 ∪X2 = X

(note that one of the sides of a cut might be empty). We refer to X1 and X2 as to the (left
and right) sides of the cut.

We denote the degree of a vertex v in a graph H by degH(v), or shortly deg(v) when it
is clear which graph it refers to. For X ⊆ V or X ⊆ E, degX(v) is a short for degG[X](v).
If G is a directed graph, we denote the in- and out-degree of v in G by indegG(v) and
outdegG(v) respectively. By a degree of a vertex in a directed graph we denote the sum of
its indegree and outdegree.

For an edge e = uv by subdividing it s times (for s > 0) we mean the follow-
ing operation: (1) remove the edge e, (2) add s vertices {xe,1, . . . , xe,s}, (3) add edges

17
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{uxe,1, xe,1xe,2, . . . , xe,k−1xe,s, xe,sv}.
In a directed graph G by weakly connected components we mean the connected com-

ponents of the underlying undirected graph. For a (directed) graph G, we let cc(G) denote
the number of (weakly) connected components of G.

For two nodes x, y of a rooted tree we say that y is a descendant of x if it is possible to
reach x when starting at y and going only up the tree. In particular x is its own descendant.

We denote the symmetric difference of two sets A and B by A4B. For two integers
a, b we use a ≡ b to indicate that a is even if and only if b is even. We use Iverson’s
bracket notation: if p is a predicate we let [p] be 1 if p if true and 0 otherwise. If ω : U →
{1, . . . , N}, we shorthand ω(S) =

∑
e∈S ω(e) for S ⊆ U .

For a function s by s[v → α] we denote the function s \ {(v, s(v))} ∪ {(v, α)}. Note
that this definition works regardless of whether v belongs to the domain of s or not (in the
latter case we extend the domain).

2.2 Treewidth and pathwidth

2.2.1 Tree Decompositions
Definition 2.1 (Tree Decomposition, [68]). A tree decomposition of a (undirected or di-
rected) graph G is a tree T in which each node x ∈ T has an assigned set of ver-
tices Bx ⊆ V (called a bag) such that

⋃
x∈TBx = V with the following properties:

• for any uv ∈ E, there exists an x ∈ T such that u, v ∈ Bx.

• if v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the path from x to y in T.

In what follows we identify nodes of T and the bags assigned to them. The width of a
tree decomposition T (denoted as width(T)) is the size of the largest bag of T minus one,
and the treewidth of a graph G is the minimum width over all possible tree decompositions
of G.

width(T) = max{|Xx| − 1 | x ∈ T}
tw(G) = min{width(T) | T a tree decomposition of G}

We note that the minus one in the definition exists to set the treewidth of trees to one.
Dynamic programming algorithms on tree decompositions are often presented on nice

tree decompositions which were introduced by Kloks [55]. We refer to the tree decompo-
sition definition given by Kloks as to a standard nice tree decomposition.

Definition 2.2. A standard nice tree decomposition is a tree decomposition where:

• every bag has at most two children,

• if a bag x has two children l, r, then Bx = Bl = Br,

• if a bag x has one child y, then either |Bx| = |By|+1 andBy ⊆ Bx or |Bx|+1 = |By|
and Bx ⊆ By.
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We present a slightly different definition of a nice tree decomposition.

Definition 2.3 (Nice Tree Decomposition). A nice tree decomposition is a tree decomposi-
tion with one special bag z called the root with Bz = ∅ and in which each bag is one of the
following types:

• Leaf bag: a leaf x of T with Bx = ∅.

• Introduce vertex bag: an internal node x of T with one child vertex y for which
Bx = By ∪ {v} for some v /∈ By. This bag is said to introduce v.

• Introduce edge bag: an internal node x of T labeled with an edge uv ∈ E with one
child bag y for which u, v ∈ Bx = By. This bag is said to introduce uv.

• Forget bag: an internal node x of T with one child bag y for which Bx = By \ {v}
for some v ∈ By. This bag is said to forget v.

• Join bag: an internal node x with two child vertices l and r with Bx = Br = Bl.

We additionally require that every edge in E is introduced exactly once.

We note that this definition is slightly different than usual. In our definition we have the
extra requirements that bags associated with the leafs and the root are empty. Moreover,
we added the introduce edge bags.

Given a tree decomposition, a standard nice tree decomposition of equal width can be
found in polynomial time [55] and in the same running time, it can easily be modified to
meet our extra requirements, as follows: add a series of forget bags to the old root, and add
a series of introduce vertex bags below old leaf bags that are nonempty; Finally, for every
edge uv ∈ E add an introduce edge bag above the first bag with respect to the in-order
traversal of T that contains u and v.

By fixing the root of T, we associate with each bag x in a tree decomposition T a
vertex set Vx ⊆ V where a vertex v belongs to Vx if and only if there is a bag y which is a
descendant of x in T with v ∈ By (recall that x is its own descendant). We also associate
with each bag x of T a subgraph of G as follows:

Gx =
(
Vx, Ex = {e|e is introduced in a descendant of x }

)
For an overview of tree decompositions and dynamic programming on tree decomposi-

tions see [12, 46].

2.2.2 Path Decompositions

A path decomposition is a tree decomposition that is a path. The pathwidth of a graph is the
minimum width of all path decompositions. Path decompositions can, similarly as above,
be transformed into nice path decompositions, these obviously contain no join bags.
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2.3 Isolation lemma
An ingredient of our algorithms is the Isolation Lemma:

Definition 2.4. A function ω : U → Z isolates a set family F ⊆ 2U if there is a unique
S ′ ∈ F with ω(S ′) = minS∈F ω(S).

Recall that for X ⊆ U , ω(X) denotes
∑

u∈X ω(u).

Lemma 2.5 (Isolation Lemma, [63]). Let F ⊆ 2U be a set family over a universe U
with |F| > 0. For each u ∈ U , choose a weight ω(u) ∈ {1, 2, . . . , N} uniformly and
independently at random. Then

Pr[ω isolates F ] ≥ 1− |U |
N

Proof from [63]. Consider an arbitrary element u ∈ U of the universe which appears in at
least one set of F and does not appear in at least one set of F (if such u does not exist then
|F| = 1 and the lemma obviously holds). Fix the weights of all elements except u. Define
the threshold for element u, to be an integer αu; such that if ω(u) ≤ αu then u is contained
in some minimum weight subset, and if ω(u) > αu then u is in no minimum weight subset.

Clearly, if ω(u) < αu, then the element u must be in every minimum weight subset of
F . Thus ambiguity about the element u occurs iff ω(u) = αu, since in this case there is a
minimum weight subset of F that contains u and another which does not. In this case we
shall say that the element u is singular.

We now make the crucial observation that the threshold, αu, was defined without ref-
erence to the weight, ω(u). It follows that αu is independent of ω(u). Since ω(u) is a
uniformly distributed integer in [1, N ], we have:

Pr[u is singular ] ≤ 1

N
.

Since if no element of the universe U is singular then ω isolates F the lemma follows
directly from the above formula and the union bound.

It is worth mentioning that in [19], a lemma using less random bits is shown: If |F| ≤
Z, then a scheme using O(log |U | + logZ) random bits to obtain a polynomially bounded
(in unary) weight function that isolates any set system with high probability is presented.

Consider a problem where the set of solutions is some family F of subsets of a universe
U (usually U is the set of vertices or edges of the input graph). Suppose that we know how
to obtain the parity of the number (that is |F| mod 2) of solutions for this problem and we
want to solve the decision variant, that is to verify whether there exists a solution or not.
It might be the case that the number of solutions is positive and even, hence we can not
assume that there is no solution solely based on the fact that the number of solutions is
even. However if we use the Isolation Lemma and there exists at least one solution, then
with high probability there exists some weight value w, for which the number of solutions
of weight w is equal to one, which is an odd number. Hence it is enough to count the parity
of the number of solutions of a prescribed weight. For this reason the Isolation Lemma has
found many applications [63].
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An alternative method to a similar end is obtained by using Polynomial Identity Testing
[29, 70, 79] over a field of characteristic two. This second method has been already used
in the field of exact and parameterized algorithms [7, 10, 56, 57, 77]. The two methods do
not have differ much in their consequences: Both use the same number of random bits (the
most randomness efficient algorithm are provided in [1, 19]). The challenge of giving a full
derandomization seems to be equally difficult for both methods [3, 51]. The usage of the
Isolation Lemma gives greater polynomial overheads, however we choose to use it because
in our opinion it makes the results less technical and hence easier to follow.

2.4 (Strong) Exponential Time Hypothesis
In this section we introduce the complexity assumptions defined by Impagliazzo and Pa-
turi [48].

The k-SAT problem is a restriction of SAT, where each clause in the input formula has
at most k literals. Let ck be the infimum of the set of the positive reals c that satisfy the
following condition: there exists an algorithm that solves k-SAT in time O(2cn), where n
denotes the number of variables in the input formula. The Exponential Time Hypothesis
(ETH for short), conjectured by Impagliazzo, Paturi and Zane [49], asserts that c3 > 0,
whereas the Strong Exponential Time Hypothesis defined by Impagliazzo and Paturi [48]
(SETH), asserts that limk→∞ ck = 1. It is well known that SETH implies ETH [48].

We would like to mention that SETH is not a commonly believed assumption, however
since SAT is a central problem of computational complexity and there was no algorithm
that would refute SETH for several decades, it makes sense to use it as an evidence that a
problem is hard.

2.5 Fast subset convolution
In this section we recall and generalize operators that we will use to efficiently handle join
bags of a nice tree decomposition in dynamic programming routines in Chapter 4. All
operators work on functions from a subset lattice (2B,⊆) for a finite set B where domain
of each function is some ring R. We start with a ζ-transform and µ-transform definition of
a function f : 2B → R.

Definition 2.6. The ζ-transform of a function f is defined as a function (ζf) : 2B → R as
follows:

(ζf)(T ) =
∑
T1⊆T

f(T1).

The µ-transform of a function f is defined as a function (µf) : 2B → R as follows:

(µf)(T ) =
∑
T1⊆T

(−1)|T\T1|f(T1).
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As observed in [8] we can efficiently compute both ζ-transform and µ-transform using
Yates’s method [78]. By computing a function h : 2B → R we mean determining h(T ) for
every T ⊆ B. For completeness we give a proof below.

Lemma 2.7. For a function f : 2B → R we can compute ζf and µf in O(|B|2|B|) ring
operations.

Proof. We present a proof for the ζ-transform since the proof for the µ-transform is anal-
ogous. We may assume B = {1, 2, . . . , |B|} and for 0 ≤ b < |B| and for every sequence
(s1, . . . , sb, tb+1, . . . , t|B|) ∈ {0, 1}B we define

fb(s1, s2, . . . , sb, tb+1, . . . , t|B|) =
∑

t′i∈{0,1},t′i≤ti for i=b+1,...,|B|

f(s1, s2, . . . , sb, t
′
b+1, . . . , t

′
|B|)

Observe that f0 = f̂ . We also set f|B| = f . Moreover for 0 < b ≤ |B| and for every
sequence (s1, . . . , sb−1, tb, . . . , t|B|) ∈ {0, 1}B

fb−1(s1, s2, . . . , sb−1, tb, . . . , t|B|) =
∑

t′b∈{0,1},t
′
b≤tb

fb(s1, s2, . . . , sb−1, t
′
b, tb+1, . . . , t|B|).

It follows that we can use dynamic programming to compute all functions fb (for decreasing
values of b ∈ {0, . . . , |B|}).

Now we recall the fast subset convolution (and its variants) [8].

Definition 2.8. For two functions f, g : 2B → R the subset convolution and covering
product of f and g are defined as functions f ∗ g, f ∗c g : 2B → R as follows:

(f ∗ g) (T ) =
∑

T1,T2⊆T

[T1 ∪ T2 = T ][T1 ∩ T2 = ∅]f(T1)g(T2),

(f ∗c g) (T ) =
∑

T1,T2⊆T

[T1 ∪ T2 = T ]f(T1)g(T2).

As observed in [8] we can compute the covering product by using ζ-transform, µ-
transform and the subset convolution. Again we present the proof for completeness.

Lemma 2.9. For two functions f, g : 2B → R we have

f ∗c g = µ((ζf) · (ζg)) ,

where · is the elementwise product ((ζf) · (ζg))(T ) = ((ζf)(T ))((ζg)(T )).

Proof. Observe that

(µ((ζf) · (ζg)))(T ) =
∑
T1⊆T

(−1)|T\T1|
∑

A,B⊆T1

f(A)g(B) .

Moreover for each ordered pair (A,B) of subsets of T1 the coefficient of the term f(A)g(B)
is equal to

∑
(A∪B)⊆T1⊆T (−1)|T\T1| which is equal to one if A∪B = T and zero otherwise.
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Björklund et al. [8] proved that the subset convolution can be computed efficiently,
which combined with Lemmas 2.7, 2.9 gives the following theorem.

Theorem 2.10 ([8]). The subset convolution and the covering product of two given func-
tions can be computed in 2|B||B|O(1) ring operations.

Instead of presenting the proof of the above theorem we prove its slight generalization
as shown by Cygan and Pilipczuk in [25].

Definition 2.11. Let p ≥ 2 be an integer constant and let B be a finite set. For three func-
tions t1, t2, t ∈ {0, 1, . . . , p−1}B we say that t1+t2 = t iff t1(b)+t2(b) = t(b) for all b ∈ B.
For functions f, g : {0, 1, . . . , p− 1}B → R define the generalized subset convolution as a
function f ∗p g : {0, 1, . . . , p− 1}B → R such that for every t ∈ {0, 1, . . . , p− 1}B

(f ∗p g)(t) =
∑

t1+t2=t

f(t1)g(t2).

Note that here the addition is not evaluated in Zp but in Z and for p = 2 the operators
∗p and ∗ are equal. We show that when the ring R is equal to Z2 we can compute the
generalized subset convolution efficiently using the Fast Fourier Transform. In fact one
can prove the theorem for any ring R but then a more detailed analysis of the number of
precision bits needed by FFT is necessary and since we only use functions with values from
Z2 we focus on this particular ring.

Theorem 2.12. Let p ≥ 2 be an integer constant. For f, g : {0, 1, . . . , p− 1}B → Z2 their
generalized subset convolution can be computed in p|B||B|O(1) time.

Proof. We group tuples in {0, 1, . . . , p−1}B according to the sum of their coordinates, that
is let Sk = {(ai)|B|i=1 ∈ {0, 1, . . . , p− 1}B :

∑
i=1,...,|B| ai = k} for k = 0, . . . , (p− 1)|B|.

Furthermore we define a function fk : {0, 1, . . . , p− 1}B → Z2 such that fk(t) = f(t)
if t ∈ Sk and fk(t) = 0 otherwise (similarly we define gk for each k = 0, . . . , (p− 1)|B|).
Observe that

(f ∗p g)(t) =
∑

kf=0,...,(p−1)|B|

∑
kg=0,...,(p−1)|B|

(fkf ∗p gkg)(t) .

Thus by a cost of an O(|B|2) overhead it is sufficient to compute fkf ∗p gkg for fixed values
of kf and kg.

The Fast Fourier Transform is an efficient algorithm which computes the discrete Fourier
transform and its inverse [21]. To use FFT we need to look at our problem from a dif-
ferent angle. We treat each tuple t ∈ {0, 1, . . . , p − 1}B as a monomial xval(t), where
val : {0, 1, . . . , p− 1}B → [0, p|B| − 1] is a function such that val(t) is the value of t when
treated as a number written in base p.

Observation 2.13. Let t1 ∈ Skf , t2 ∈ Skg be two tuples of the form t1 = (a1, . . . , a|B|), t2 =
(b1, . . . , b|B|). Then for each i = 1, . . . , |B| we have ai + bi < p iff the sum of digits in the
p-ary representation of val(t1) + val(t2) is equal to kf + kg.
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Now we represent fkf and gkg as polynomials, that is

poly(fkf ) =
∑
t∈Skf

fkf (t)x
val(t) ,

poly(gkg) =
∑
t∈Skg

gkg(t)x
val(t) .

Let P be a polynomial over Z2 defined as the product of poly(fkf ) and poly(gkg). We can
compute P using the standard Fast Fourier Transform inO(p|B||B|O(1)) time (see e.g. [17]),
since operations in Z2 take constant time.

Finally, for each t ∈ {0, 1, . . . , p − 1}B, to obtain the value of (fkf ∗p gkg)(t) we
consider two cases. If t ∈ Skf+kg then we set (fkf ∗p gkg)(t) as the coefficient of the
monomial xval(t) in P , otherwise we set (fkf ∗p gkg)(t) = 0. The correctness follows from
Observation 2.13.

The last needed variant of the subset convolution follows.

Definition 2.14. Let p ≥ 2 be an integer constant and letB be a finite set. For t1, t2, t ∈ ZBp
we say that t1 + t2 = t if t1(b) + t2(b) ≡ t(b) (mod p) for all b ∈ B. For functions
f, g : ZBp → R define the Zp product as a function f ∗px g : ZBp → R such that for every
t ∈ ZBp

(f ∗px g)(t) =
∑

t1+t2=t

f(t1)g(t2).

In particular, for p = 2 we identify elements ZB2 with subsets of B and define for f, g :
2B → R the xor product as:

f ∗x g(T ) =
∑

T1,T2⊆B

[T14T2 = T ]f(T1)g(T2).

The xor product can be computed in time 2|B||B|O(1) using the well-known Walsh-
Hadamard transform. However, in our applications we need also the case p = 4, thus
we provide a proof for both cases below. We do not state here any general theorem for
arbitrary p, as in that case we would need to use fractional complex numbers during the
computations, which could lead to rounding problems.

Theorem 2.15. Let R = Z or R = Zq for some constant q. For p = 2 and p = 4 the Zp
product of two given functions f, g : ZBp → R can be computed in time p|B||B|O(1).

Proof. We will use a simplified version of the Fourier transform. Let us assume R = Z,
as otherwise we do calculations in Z and in the end we take all values modulo q. We use
values of order at most qO(1)pO(|B|), thus all arithmetical operations in Z take polynomial
time in |B| and log q.

Let us introduce some definitions. Consider the ring Z[i] = {a + bi : a, b ∈ Z} ⊆ C,
where the addition and multiplication operators are inherited from the complex field C. For
s, t ∈ ZBp define s · t as

∑
b∈B s(b)t(b) ∈ Z. Let ε be the degree-p root of 1 in Z[i], i.e.,

ε = −1 if p = 2 and ε = i if p = 4. Note that εp = 1 in Z[i]. We abuse the notation
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somewhat and for c ∈ Zp use the notation εc (taking it to mean εc′ , where c′ is any integer
congruent to c modulo p). For f : ZBp → Z define f̂ : ZBp → Z[i] as follows

f̂(s) =
∑
t∈ZBp

f(t)εs·t.

We first claim that f̂ can be computed in p|B||B|O(1) time using an adjusted Yates algo-
rithm [78]. We may assume B = {1, 2, . . . , |B|} and for 1 ≤ b ≤ |B| we define

fb(s1, s2, . . . , sb, tb+1, . . . , t|B|) =
∑

t1,t2,...,tb∈Zp

f(t1, t2, . . . , t|B|)ε
∑b
β=1 sβtβ .

Furthermore we set f0 = f . Note that f|B| = f̂ and for 0 ≤ b < |B|

fb+1(s1, s2, . . . , sb+1, tb+2, . . . , t|B|) =
∑

tb+1∈Zp

fb(s1, s2, . . . , sb, tb+1, . . . , t|B|)ε
sb+1tb+1 .

Thus, computing all fb for 0 ≤ b ≤ |B| takes p|B||B|O(1) time and the claim is proven.
Recall that by f ·g we denote the pointwise multiplication of functions, i.e. (f ·g)(t) =

f(t) · g(t). Observe that(̂̂
f · ĝ

)
(t) =

∑
s∈ZBp

(f̂ · ĝ)(s)εs·t

=
∑
s∈ZBp

∑
t1∈ZBp

f(t1)εt1·s

∑
t2∈ZBp

g(t2)εt2·s

 εs·t

=
∑

t1,t2∈ZBp

f(t1)g(t2)
∑
s∈ZBp

εs·(t1+t2+t)

=
∑

t1,t2∈ZBp

f(t1)g(t2)
∑
s∈ZBp

ε
∑
b∈B s(b)(t1(b)+t2(b)+t(b))

=
∑

t1,t2∈ZBp

f(t1)g(t2)
∑
s∈ZBp

∏
b∈B

(εt1(b)+t2(b)+t(b))s(b)

=
∑

t1,t2∈ZBp

f(t1)g(t2)
∏
b∈B

 ∑
s(b)∈Zp

(
εt1(b)+t2(b)+t(b)

)s(b)
by the fact that

∑
s(b)∈Zp

(ετ )s(b) = p if τ = 0 and otherwise
1− (ετ )p

1− ετ = 0


=

∑
t1,t2∈ZBp

f(t1)g(t2)
∏
b∈B

(p · [t1(b) + t2(b) + t(b) = 0])

=
∑

t1,t2∈ZBp

f(t1)g(t2)p|B|[t1 + t2 + t = 0]

= p|B| (f ∗px g) (−t)
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As ̂̂f · ĝ can be computed in time p|B||B|O(1), the theorem follows.



Chapter 3

Cut&Count: Illustration of the
technique

In this chapter we present the Cut&Count technique by demonstrating how it applies to
the STEINER TREE and DIRECTED MIN CYCLE COVER problems. We go through the
details in an expository manner, as we aim not only to show the solutions to these particular
problems, but also to show the general workings.

We have chosen STEINER TREE and DIRECTED MIN CYCLE COVER problems to
show that our technique can be applied both to vertex and edge selection problems, and both
to undirected and directed graphs and also that not only it allows for ensuring connectivity
but more generally it allows to minimize the number of connected components.

In the last section of this chapter we give an overview of the Cut&Count technique.

3.1 Steiner Tree

STEINER TREE

Input: An undirected graph G = (V,E), a set of terminals T ⊆ V and an integer k.
Question: Is there a set X ⊆ V of cardinality k such that T ⊆ X and G[X] is connected?

In what follows, any set X which we ask for in the STEINER TREE problem will be
called a solution. Let N = 2|V | and for each v ∈ V choose a weight ω(v) ∈ {1, . . . , N}
uniformly and independently at random. For each W ∈ {1, . . . , kN} let SW be the set of
solutions of weight W . Clearly, if there is no solution, then for every weight W we have
SW = ∅. However, if there is a solution then by the Isolation Lemma, with probability at
least 1/2 for some W ∈ {1, . . . , kN} we have |SW | = 1, and in particular |SW | is odd.
Hence, we reduced the decision problem to the problem of counting the number of weight
W solutions modulo 2. A method to perform this counting efficiently is described in two
parts: the Cut part and the Count part.

The main goal of the Cut part is to define a set CW such that (1) |CW | ≡ |SW | (mod 2)
and (2) |CW | can be computing using 2O(tw(G))|V |O(1) arithmetical operations. In the Count
part we prove that the set |CW | indeed has the desired properties.
The Cut part. In the Cut part we always start with defining a set of candidate solutions

27
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which is a superset of all solutions to the problem we are solving. Those candidate solutions
are local, in the sense that they are easy to control using standard dynamic programming
techniques on tree decompositions. In the STEINER TREE problem we look for a set X
of size k, containing all the terminals, such that G[X] is connected. The set of candidate
solutionsRW is obtained by dropping the connectivity constraint:

RW = {X ⊆ V : T ⊆ X ∧ ω(X) = W ∧ |X| = k} .

In this easy application of the Cut&Count method the only requirement that remains is that
the set of terminals is contained in the candidate solution.

Although the cardinality ofRW cab be easily computed within the desired time bound,
the parity of |RW | needs not match the parity of |SW |. In order to describe the required
set CW , we define a set of cuts, which are partitions of the set V into two sets (V1, V \ V1).
However to break the symmetry instead of considering all 2n cuts we consider only 2n−1

of them by selecting some vertex v1 (in most applications arbitrarily chosen) and assuring
that v1 ∈ V1. Then we define when a subgraph is consistent with a cut.

Definition 3.1. A cut (V1, V2) of an undirected graph G = (V,E) is consistent if u ∈ V1

and v ∈ V2 implies uv /∈ E. A consistently cut subgraph of G is a pair (X, (X1, X2)) such
that (X1, X2) is a consistent cut of G[X].

Let v1 be an arbitrary terminal. Define CW as

CW = {(X, (X1, X2)) : X ∈ RW ∧ (X1, X2) is a consistent cut of G[X] ∧ v1 ∈ X1} .

The Count part. The crucial part follows, which is to prove that in the set of candidate
solutions each solution of the problem is consistent with exactly one cut, whereas all other
candidate solutions are consistent with an even number of cuts.

Lemma 3.2. Let G = (V,E) be a graph and let X be a subset of vertices such that
v1 ∈ X ⊆ V . The number of consistently cut subgraphs (X, (X1, X2)) such that v1 ∈ X1

is equal to 2cc(G[X])−1.

Proof. By definition, we know for every consistently cut subgraph (X, (X1, X2)) and con-
nected componentC ofG[X] that eitherC ⊆ X1 orC ⊆ X2. For the connected component
containing v1, the choice is fixed, and for all cc(G[X])−1 other connected components we
are free to choose a side of a cut, which gives 2cc(G[X])−1 possibilities leading to different
consistently cut subgraphs.

Now it is easy to see that instead of calculating |SW | mod 2 directly, we can calculate
|CW | mod 2 instead.

Lemma 3.3. Let G,ω, CW and SW be as defined above. Then for every W , |SW | ≡ |CW |.

Proof. Let us fix W and omit the subscripts accordingly. By Lemma 3.2, we know that
|C| = ∑X∈R 2cc(G[X])−1. Thus |C| ≡

∣∣{X ∈ R|cc(G[X]) = 1}
∣∣ = |S|.

Now the only missing ingredient left is a sub-procedure CountC, which computes the
cardinality of CW modulo 2. It is a standard application of dynamic programming:
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Lemma 3.4. Given G = (V,E), T ⊆ V , an integer k, ω : V → {1, . . . , N} and a nice
tree decomposition T of width t, there exists an algorithm that can determine |CW | modulo
2 for every 0 ≤ W ≤ kN in 3tN2|V |O(1) time.

Proof. We use dynamic programming, but we first need some preliminary definitions. Re-
call that for a bag x ∈ T we denoted by Vx the set of vertices in bags of all descendants of
x, while by Gx we denoted the graph composed of vertices Vx and the edges Ex introduced
by the descendants of x. We now define “partial solutions”: For every bag x ∈ T, integers
i = 0, . . . , k, w = 0, . . . , kN and s ∈ {0,11,12}Bx define

Rx(i, w) =
{
X ⊆ Vx

∣∣ (T ∩ Vx) ⊆ X ∧ |X| = i ∧ ω(X) = w
}

Cx(i, w) =
{

(X, (X1, X2))
∣∣ X ∈ Rx(i, w) ∧ (X, (X1, X2)) is a consistently

cut subgraph of Gx ∧ (v1 ∈ Vx ⇒ v1 ∈ X1)
}

Ax(i, w, s) =
∣∣∣{(X, (X1, X2)) ∈ Cx(i, w)

∣∣ (s(v) = 1j ⇒ v ∈ Xj

)
∧
(
s(v) = 0⇒ v /∈ X

)}∣∣∣
The intuition behind these definitions is as follows: the set Rx(i, w) contains all sets
X ⊆ Vx that could potentially be extended to a candidate solution from R, subject to
an additional restriction that the cardinality and weight of the partial solution are equal to
i and w, respectively. Similarly, Cx(i, w) contains consistently cut subgraphs, which could
potentially be extended to elements of C, again with the cardinality and weight restrictions.
The number Ax(i, w, s) counts those elements of Cx(i, w) which additionally behave on
vertices of Bx in a fashion prescribed by the sequence s. 0,11 and 12 (we refer to them
as colours) describe the position of any particular vertex with respect to a set X with a
consistent cut (X1, X2) of G[X] — the vertex can either be outside X , in X1 or in X2. In
particular note that ∑

s∈{0,11,12}Bx

Ax(i, w, s) = |Cx(i, w)|

— the various choices of s describe all possible intersections of an element of C with
Bx. Observe that since we are interested in values |CW | modulo 2 it suffices to compute
values Ar(k,W, ∅) for all W (recall that r is the root of the tree decomposition), because
|CW | = |Cr(k,W )|.

We now give the recurrence for Ax(i, w, s) which is used by the dynamic program-
ming algorithm. In order to simplify the notation, let v denote the vertex introduced and
contained in an introduce bag, and let y, z denote the left and right children of x in T, if
present (if there is only one child, we denote it by y).

• Leaf bag x:
Ax(0, 0, ∅) = 1

All other values of Ax(i, w, s) are zeroes.
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• Introduce vertex v bag x: for i = 0, . . . , k, forw = 0, . . . , kN , for s ∈ {0,11,12}By

Ax(i, w, s[v → 0]) = [v 6∈ T ]Ay(i, w, s)

Ax(i, w, s[v → 11]) = Ay(i− 1, w − ω(v), s)

Ax(i, w, s[v → 12]) = [v 6= v1]Ay(i− 1, w − ω(v), s)

For the first case note that by definition v can not be coloured 0 if it is a terminal. For
the other cases, the accumulators i,w have to be updated and we have to make sure
we do not put s(v1) = 12.

• Introduce edge uv bag x: for i = 0, . . . , k, forw = 0, . . . , kN , for s ∈ {0,11,12}Bx

Ax(i, w, s) = [s(u) = 0 ∨ s(v) = 0 ∨ s(u) = s(v)]Ay(i, w, s)

Here we filter table entries inconsistent with the edge (u, v), i.e., table entries where
the endpoints are coloured 11 and 12.

• Forget vertex v bag x: for i = 0, . . . , k, for w = 0, . . . , kN , for s ∈ {0,11,12}Bx

Ax(i, w, s) =
∑

α∈{0,11,12}

Ay(i, w, s[v → α])

In the child bag the vertex v can have three states so we sum over all of them.

• Join bag: for i = 0, . . . , k, for w = 0, . . . , kN , for s ∈ {0,11,12}Bx

Ax(i, w, s) =
∑

i1+i2=i+|s−1({11,12})|

∑
w1+w2=w+ω(s−1({11,12}))

Ay(i1, w1, s)Az(i2, w2, s)

The only valid combinations to achieve the colouring s is to have the same colouring
in both children. Since vertices coloured 1j in Bx are accounted for in the accumu-
lated weights of both of the children, we add their contribution to the accumulators.

It is easy to see that the Lemma can now be obtained by combining the above recurrence
with dynamic programming. Note that as we perform all calculations modulo 2, we take
only constant time to perform any arithmetic operation.

We conclude this section with the following theorem.

Theorem 3.5. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves STEINER TREE in 3t|V |O(1) time. The algorithm cannot give false positives
and may give false negatives with probability at most 1/2.

Proof. Our algorithm is as follows. Set N = 2|V |. Using Lemma 3.4 calculate |CW |
modulo 2, for every W = 0, . . . , kN in 3t|V |O(1) time. If for some W we have |CW | ≡ 1,
then return yes. Otherwise return no.

To prove correctness use the Isolation Lemma (Lemma 2.5), where we substitute U
with V and F with S. We infer that if S 6= ∅, then with probability at least 1/2 there exists
an index W , for which |SW | = 1 and consequently by Lemma 3.3 we have |CW | ≡ 1.
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3.2 Directed Cycle Cover

DIRECTED MIN CYCLE COVER

Input: A directed graph D = (V,A), an integer k.
Question: Can the vertices of D be covered with at most k vertex disjoint directed cycles?

This problem is significantly different from the one considered in the previous section,
since the aim is to maximize connectivity in a more flexible way: in the previous section
the solution induced one connected component, while it may induce at most k weakly
connected components in the context of the current section. Note that with the Cut&Count
technique as introduced above, the solutions we are looking for cancel modulo 2.

We introduce a concept called markers. A set of solutions consists of pairs (X,M),
where X ⊆ A is a cycle cover and M ⊆ X, |M | = k is a set of marked arcs, such that each
cycle in X contains at least one marked arc. Since |M | = k, this ensures that for every
solution (X,M) the cycle cover X consists of at most k cycles. Note that distinguishing
two different sets of marked arcs of a single cycle cover is considered to induce two different
solutions. For this reason, with each arc of the graph we associate two random weights: the
first contributes to the weight of a solution, when an arc belongs to X , while the second
contributes additionally, when it belongs toM as well. When we relax the requirement that
in the pair (X,M) each cycle in X contains at least one vertex from M , we obtain a set of
candidate solutions. The objects we count are pairs consisting of (i) a pair (X,M), where
X ⊆ A is a cycle cover and M ⊆ X is a set of k markers, (ii) a cut consistent with D[X],
where all the marked arcs from M have both endpoints on the left side of the cut. We will
see that candidate solutions that contain a cycle without any marked arc cancel modulo 2.
Formal definition follows.
The Cut part. As said before, we assume that we are given a weight function ω : A ×
{X} ∪ A× {M} → {1, . . . , N}. The arguments A× {X} correspond to the contribution
of choosing an arc to belong to X , while A × {M} correspond to additional contribution
of choosing it to M as well.

Definition 3.6. For a directed graph D = (V,A) a cut (V1, V2) is consistent if (V1, V2) is
a consistent cut in the underlying undirected graph. A consistently cut subgraph of D is
a pair (X, (X1, X2)) such that (X1, X2) is a consistent cut of the underlying undirected
graph of D[X].

Definition 3.7. For an integer W we define:

1. RW to be the family of candidate solutions, that is, RW is the family of all pairs
(X,M), such that X ⊆ A is a cycle cover, i.e., outdegX(v) = indegX(v) = 1 for
every vertex v ∈ V ; M ⊆ X , |M | = k and ω(X × {X} ∪M × {M}) = W ;

2. SW to be the family of solutions, that is, SW is the family of all pairs (X,M), where
(X,M) ∈ RW and every cycle in X contains at least one arc from the set M ;

3. CW as all pairs ((X,M), (V1, V2)) such that (X,M) ∈ RW , (V1, V2) is a consistent
cut of D[X] and V (M) ⊆ V1.
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Observe that the graph D admits a cycle cover with at most k cycles if and only if there
exists W such that SW is nonempty.
The Count part. We proceed to the Count part by showing that candidate solutions that
contain an unmarked cycle cancel modulo 2.

Lemma 3.8. Let D,ω, CW and SW be defined as above. Then, for every W , |SW | ≡ |CW |.
Proof. For subsets M ⊆ X ⊆ A, let cc(M,X) denote the number of weakly connected
components of D[X] not containing any arc from M . Then,

|CW | =
∑

(X,M)∈RW

2cc(M,X).

To see this, note that for any ((X,M), (V1, V2)) ∈ CW and any vertex set C of a cycle from
X not containing arcs from M , we have ((X,M), (V14C, V24C)) ∈ CW — we can move
all the vertices of C to the other side of the cut, also obtaining a consistent cut. Thus, for
any set of choices of a side of the cut for every cycle not containing a marker, there is an
object in CW . Hence (analogously to Lemma 3.2) for any W and (M,X) ∈ RW there are
2cc(M,X) cuts (V1, V2) such that ((X,M), (V1, V2)) ∈ CW and the lemma follows, because:

|CW | ≡ |{((X,M), (V1, V2)) ∈ CW : cc(M,X) = 0}| = |SW |.

Now, it suffices to present a dynamic programming routine counting |CW | modulo 2 in
a bottom-up fashion. Since the proof for the LONGEST PATH problem is almost the same
we present an algorithm for those two problems at once in the next chapter.

Lemma 3.9. Given D = (V,A), an integer k, a weight function ω : A ∪ V → {1, . . . , N}
and a tree decomposition T of width t, there is an algorithm that can determine |CW |
modulo 2 for every 0 ≤ W ≤ (k + |V |)N in 6tN2|V |O(1) time.

Combining all the observations, we can conclude the following:

Theorem 3.10. There exists a Monte-Carlo algorithm that, given a tree decomposition of
width t, solves DIRECTED MIN CYCLE COVER in 6t|V |O(1) time. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.

Proof. The algorithm is as follows. Set U = A× {X} ∪ A× {M} and N = 2|U |. Using
Lemma 3.9 calculate |CW | modulo 2, for every W = 0, . . . , (k + |V |)N in 6t|V |O(1) time.
If for some W we have |CW | ≡ 1, then return yes. Otherwise return no.

The correctness follows from Lemma 3.8 and Isolation Lemma (Lemma 2.5).

3.3 General idea overview
The Cut&Count technique applies to problems with certain connectivity requirements. Let
S ⊆ 2U be a set of solutions (usually the universe U is the set of vertices or edges/arcs
of the input graph); we aim to decide whether it is empty. Conceptually, Cut&Count can
naturally be split in two parts:
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• The Cut part: Relax the connectivity requirement by considering the set R ⊇ S of
possibly disconnected candidate solutions. Furthermore, consider the set C of pairs
(X,C) where X ∈ R and C is a consistent cut of X .

• The Count part: Compute |C| modulo 2 using a sub-procedure. Non-connected
candidate solutions X ∈ R\S cancel since they are consistent with an even number
of cuts. Connected candidates x ∈ S remain.

Note that we need the number of solutions to be odd in order to make the counting part
work. For this we use the Isolation Lemma (Lemma 2.5): We introduce uniformly and
independently chosen weights ω(v) for every v ∈ U and compute |CW | modulo 2 for every
W , where CW = {(X,C) ∈ C|ω(X) = W}. If for some W we have |CW | ≡ 1, then return
yes. Otherwise return no. The general setup can thus be summarized as in Alg. 1:

1: for every v ∈ U do
2: Choose ω(v) ∈ {1, . . . , 2|U |} uniformly at random.
3: for every W ∈ {0, . . . , 2|U |2} do
4: if |{(X,C) ∈ C|ω(X) = W}| ≡ 1 then return yes
5: return no

Algorithm 1: Cut&Count general schema.

The following corollary that we use throughout the paper follows from Lemma 2.5 by
setting F = S and N = 2|U |:

Corollary 3.11. Let S ⊆ 2U and C ⊆ 2U × (2V × 2V ). Suppose that for every W ∈ Z:

|{(X,C) ∈ C|ω(X) = W}| ≡ |{X ∈ S|ω(X) = W}| .

Then Alg. 1 returns no if S is empty and yes with probability at least 1
2

otherwise.

When applying the technique, both the Cut and the Count part are non-trivial: In the
Cut part one has to find the proper relaxation of the solution set, and in the Count part one
has to show that the number of non-solutions is even for each W and provide an algorithm
which computes |CW | mod 2. Usually, the count part requires more explanation.
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Chapter 4

Cut&Count applied to several problems

In this chapter we describe in detail all the algorithms that appear in Column A of Table 1.1
except STEINER TREE which was already studied in the previous chapter. In particular we
present missing details for the DIRECTED MIN CYCLE COVER problem. Furthermore we
show that when we are given a path decomposition of a graph of maximum degree three
then for some problems we may improve the time complexity and consequently we prove
Corollary 1.9.

Subsequent sections in this chapter are independent hence a reader interested in a so-
lution for a single problem may jump to the appropriate section directly. However in all
sections we use notation and arguments described in details in the previous chapter hence
we assume that when reading a section from this chapter the reader is already familiar with
the previous chapter and tools from Section 2.5.

In all algorithms we assume that we are given a tree decomposition of the input graph
G of width t. The algorithms all start with constructing a nice tree decomposition, as in
Definition 2.3. In the dynamic programming descriptions we follow the notation from the
STEINER TREE example (see Lemma 3.4). Moreover we solve unweighted versions of all
the problems, however the algorithms can be easily extended to the weighted case when
weights are bounded by a polynomial in |V |.

4.1 Feedback Vertex Set
In this section we show an algorithm for a more general version of the FEEDBACK VERTEX

SET problem, where we are additionally given a set of vertices that have to belong to the
solution.

CONSTRAINED FEEDBACK VERTEX SET

Input: An undirected graph G = (V,E), a subset S ⊆ V and an integer k.
Question: Does there exist a set Y ⊆ V of cardinality k such that S ⊆ Y and G[V \ Y ] is
a forest?

This constrained version of the problem is useful when we want to obtain not only
binary output, but also in case of a positive answer the solution Y .

Here defining a solution candidate with a relaxed connectivity condition to work with
our technique is somewhat more tricky, as there is no explicit connectivity requirement

35



36 CHAPTER 4. CUT&COUNT APPLIED TO SEVERAL PROBLEMS

in the problem to begin with. We proceed by choosing the (presumed) forest left after
removing the candidate solution and using the following simple lemma:

Lemma 4.1. A graph G = (V,E) with n vertices and m edges is a forest iff it has at most
n−m connected components.

Proof. Let E = {e1, . . . , em}. Consider a graph G0 = (V, ∅) with the same set of vertices
and an empty set of edges. We add edges from the set E to the graph G0 one by one.
Observe that G is a forest iff after adding each edge from E to the graph G0 the number
of connected components of G0 decreases. Since initially G0 has n connected components
the lemma follows.

Theorem 4.2. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves the CONSTRAINED FEEDBACK VERTEX SET problem in 3t|V |O(1) time.
The algorithm cannot give false positives and may give false negatives with probability at
most 1/2.

Proof. We use the Cut&Count technique. As the universe we take the setU = V ×{F,M},
where V × {F} is used to assign weights to vertices from the chosen forest and V × {M}
for markers. As usual we assume that we are given a weight function ω : U → {1, ..., N},
where N = 2|U | = 4|V |.
The Cut part. For integers A,B,C,W we define:

1. RA,B,C
W to be the family of solution candidates: marked subgraphs excluding S of

size and weight prescribed by super-/sub-scripts, i.e., RA,B,C
W is the family of pairs

(X,M), where X ⊆ V \ S, |X| = A, G[X] contains exactly B edges, M ⊆ X ,
|M | = C and ω(X × {F}) + ω(M × {M}) = W ;

2. SA,B,CW to be the set of solutions: the family of pairs (X,M), where (X,M) ∈
RA,B,C
W and G[X] is a forest containing at least one marker from the set M in each

connected component;

3. CA,B,CW to be the family of pairs ((X,M), (X1, X2)), where (X,M) ∈ RA,B,C
W , M ⊆

X1, and (X1, X2) is a consistent cut of G[X].

Observe that by Lemma 4.1 the graph G admits a feedback vertex set of size k containing
S if and only if there exist integers B,W such that the set Sn−k,B,n−k−BW is nonempty.
The Count part. Similarly as in the case of MIN CYCLE COVER (analogously to
Lemma 3.8) note that for any A,B,C,W ,(X,M) ∈ RA,B,C

W , there are 2cc(M,G[X]) cuts
(X1, X2) such that ((X,M), (X1, X2)) ∈ CA,B,CW , where by cc(M,G[X]) we denote the
number of connected components of G[X] which do not contain any marker from the
set M . Hence by Lemma 4.1 for every A,B,C,W satisfying C ≤ A − B we have
|SA,B,CW | ≡ |CA,B,CW |.

Now we describe a procedure CountC(ω,A,B,C,W,T) that, given a nice tree decom-
position T, weight function ω and integers A,B,C,W , computes |CA,B,CW | modulo 2 using
dynamic programming.
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For every bag x ∈ T of the tree decomposition, integers 0 ≤ a ≤ |V |, 0 ≤ b < |V |,
0 ≤ c ≤ |V |, 0 ≤ w ≤ 2N |V | and s ∈ {0,11,12}Bx (called a colouring) define

Rx(a, b, c, w) =
{

(X,M)
∣∣ X ⊆ Vx \ S ∧ |X| = a ∧ |Ex ∩ E(G[X])| = b

∧ M ⊆ X \Bx ∧ |M | = c ∧ ω(X × {F}) + ω(M × {M}) = w
}

Cx(a, b, c, w) =
{

((X,M), (X1, X2))
∣∣ (X,M) ∈ Rx(a, b, c, w)

∧ M ⊆ X1 ∧ (X, (X1, X2)) is a consistently cut subgraph of Gx

}
Ax(a, b, c, w, s) =

∣∣∣{((X,M), (X1, X2)) ∈ Cx(a, b, c, w)
∣∣

(s(v) = 1j ⇒ v ∈ Xj) ∧ (s(v) = 0⇒ v 6∈ X)
}∣∣∣

Note that we assume b < |V | because otherwise an induced subgraph containing b edges is
definitely not a forest.

Similarly as in the case of STEINER TREE, s(v) = 0 means v /∈ X , whereas s(v) = 1j
corresponds to v ∈ Xj . The accumulators a,b,c and w keep track of the number of vertices
and edges in the subgraph induced by vertices fromX , number of markers already used and
the sum of weights of chosen vertices and markers. Hence Ax(a, b, c, w, s) is the number
of pairs from Cx(a, b, c, w) with a fixed interface on vertices from Bx. Note that we ensure
that no vertex from Bx is yet marked, because we decide whether to mark a vertex or not in
its forget bag. Recall that the tree decomposition is rooted in an empty bag hence for every
vertex there exists exactly one forget bag forgetting it.

The algorithm computes Ax(a, b, c, w, s) for all bags x ∈ T in a bottom-up fashion for
all reasonable values of a, b, c, w and s (defined above). We now give the recurrence for
Ax(a, b, c, w, s) that is used by the dynamic programming algorithm. In order to simplify
notation let v be the vertex introduced and contained in an introduce bag, uv the edge
introduced in an introduce edge bag, and let y, z stand for the left and right child of x in T
if present.

• Leaf bag:
Ax(0, 0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax(a, b, c, w, s[v → 0]) = Ay(a, b, c, w, s)

Ax(a, b, c, w, s[v → 1j]) = [v 6∈ S]Ay(a− 1, b, c, w − ω((v,F)), s)

• Introduce edge bag:

Ax(a, b, c, w, s) = [s(u) = 0 ∨ s(v) = 0 ∨ s(u) = s(v)]

· Ay(a, b− [s(u) = s(v) 6= 0], c, w, s)

Here we remove table entries not consistent with the edge uv, and update the accu-
mulator b storing the number of edges in the induced subgraph.
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• Forget bag:

Ax(a, b, c, w, s) = Ay(a, b, c− 1, w − ω((v,M)), s[v → 11]})
+

∑
α∈{0,11,12}

Ay(a, b, c, w, s[v → α]}))

If the vertex v was in X1 then we can mark it and update the accumulator c. If we
do not mark the vertex v then it can have any of the three states with no additional
requirements imposed.

• Join bag:

Ax(a, b, c, w, s) =
∑

a1+a2=a+|s−1({11,12})|

∑
b1+b2=b

∑
c1+c2=c∑

w1+w2=w+ω(s−1({11,12})×{F})

Ay(a1, b1, c1, w1, s)Az(a2, b2, c2, w2, s)

The only valid combinations to achieve the colouring s is to have the same colouring
in both children. Since vertices coloured 1j in Bx are accounted for in both tables of
the children, we add their contribution to the accumulators a and w.

Since |CA,B,CW | = Ar(A,B,C,W, ∅) the above recurrence leads to a dynamic program-
ming algorithm that computes the parity of |CA,B,CW | for all reasonable values of W,A,B,C
in 3t|V |O(1) time. Consequently we finish the proof of Theorem 4.2.

4.2 Non-connectivity problems with connectivity require-
ment

In this section we give details on algorithms for problems that are defined as standard “lo-
cal” problems with an additional constraint that the solution needs to induce a connected
subgraph. Problems described here are CONNECTED VERTEX COVER, CONNECTED

DOMINATING SET, CONNECTED ODD CYCLE TRANSVERSAL and CONNECTED FEED-
BACK VERTEX SET, but the approach here can be easily carried over to similar problems.

Let us start with a short informal description. Solving a problem CONNECTED X,
we simply run the well-known algorithm for X (or, in the case of CONNECTED FEEDBACK

VERTEX SET, we run the algorithm for FEEDBACK VERTEX SET from Section 4.1), but we
additionally keep a cut consistent with the solution, i.e., we count the number of solution-
cut pairs. Similarly as in the case of STEINER TREE, a solution to the problem X that
induces c connected components is consistent with 2c−1 cuts, thus all the disconnected
solutions cancel out modulo 2.

Similarly as in Section 4.1 we solve more general versions of problems where addi-
tionally as a part of the input we are given a set S ⊆ V which contains vertices that must
belong to a solution.
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Remark 4.3. In the algorithms we assume that the set S ⊆ V is nonempty, so we can
choose one fixed vertex v1 ∈ S that needs to be included in a fixed side of all considered
cuts (cf. algorithm for STEINER TREE in Section 3.1). To solve the problem where S = ∅,
we simply iterate over all possible choices of v1 ∈ V and put S = {v1}. Note that this does
not increase the probability that the (Monte-Carlo) algorithm gives a wrong answer. Our
algorithms can only give false negatives, so in the case of a YES-instance we only need a
single run, in which a solution can be found, to give a correct answer.

Let us now proceed with the formal arguments. For each problem, we start with a
problem definition and a formal statement of a result.

4.2.1 Connected Vertex Cover

CONSTRAINED CONNECTED VERTEX COVER

Input: An undirected graph G = (V,E), a subset S ⊆ V and an integer k
Question: Does there exist a subset X ⊆ V of cardinality k such that S ⊆ X , G[X] is
connected and each edge e ∈ E is incident with at least one vertex from X?

Theorem 4.4. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves CONSTRAINED CONNECTED VERTEX COVER in 3t|V |O(1) time. The al-
gorithm cannot give false positives and may give false negatives with probability at most
1/2.

There exists an easy proof of Theorem 4.4 by a reduction to the STEINER TREE prob-
lem — we subdivide all edges of the graphG using terminals and add the pendant terminals
to S. Such a transformation does not change the treewidth of the graph by more than one.
Nonetheless we prove the theorem by a direct application of the Cut&Count technique, in
a similar manner as for the STEINER TREE problem in Section 3.1. Our motivation for
choosing the second approach is that we need it to develop an algorithm for CONNECTED

VERTEX COVER parameterized by the solution size in Chapter 5 which relies on the algo-
rithm we describe in the proof.

Proof. We use the Cut&Count technique. As the universe for Algorithm 1 we take the ver-
tex set U = V . Recall that we generate a random weight function ω : U → {1, 2, . . . , N},
taking N = 2|U | = 2|V |. By Remark 4.3 we may assume that S 6= ∅ and we may choose
one fixed vertex v1 ∈ S.
The Cut part. For an integer W we define:

1. RW to be the family of solution candidates (vertex covers) of size k and weight W :
RW is the family of sets X ⊆ V such that S ⊆ X , |X| = k, ω(X) = W and X is a
vertex cover of G;

2. SW to be the family of solutions of size k and weight W , that is sets X ∈ RW such
that G[X] is connected;

3. CW to be the family of pairs (X, (X1, X2)), where X ∈ RW , v1 ∈ X1 and (X1, X2)
is a consistent cut of G[X].
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The Count part. By a similar argument as in Lemma 3.2 for each X ∈ RW there exist
2cc(G[X])−1 consistent cuts of G[X], thus for any W we have |SW | ≡ |CW |.

To finish the proof we need to describe a procedure CountC(ω,W,T) that, given a nice
tree decomposition T, weight function ω and an integer W , computes |CW | modulo 2.

For every bag x ∈ T of the tree decomposition, integers 0 ≤ i ≤ |V |, 0 ≤ w ≤ N |V |
and s ∈ {0,11,12}Bx define

Rx(i, w) =
{
X ⊆ Vx

∣∣ (S ∩ Vx) ⊆ X ∧ |X| = i ∧ ω(X) = w

∧ X is a vertex cover of Gx

}
Cx(i, w) =

{
(X, (X1, X2))

∣∣ X ∈ Rx(i, w) ∧ (X, (X1, X2)) is a consistently

cut subgraph of Gx ∧ (v1 ∈ Vx ⇒ v1 ∈ X1)
}

Ax(i, w, s) =
∣∣∣{(X, (X1, X2)) ∈ Cx(i, w)

∣∣ (s(v) = 1j ⇒ v ∈ Xj) ∧ (s(v) = 0⇒ v 6∈ X)
}∣∣∣

Similarly as in the case of STEINER TREE, s(v) = 0 means v /∈ X , whereas s(v) = 1j
corresponds to v ∈ Xj . The accumulators i and w keep track of the number of vertices in
the solution and their weights, respectively. Hence Ax(i, w, s) is the number of pairs from
C of candidate solutions and consistent cuts on Gx, with fixed size, weight and interface on
vertices from Bx.

The algorithm computes Ax(i, w, s) for all bags x ∈ T in a bottom-up fashion for all
reasonable values of i, w and s. We now give the recurrence for Ax(i, w, s) that is used by
the dynamic programming algorithm. In order to simplify notation denote by v the vertex
introduced and contained in an introduce bag, by uv the edge introduced in an introduce
edge bag, and let y, z be the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, ∅) = 1

• Introduce vertex bag:

Ax(i, w, s[v → 0]) = [v 6∈ S]Ay(i, w, s)

Ax(i, w, s[v → 11]) = Ay(i− 1, w − ω(v), s)

Ax(i, w, s[v → 12]) = [v 6= v1]Ay(i− 1, w − ω(v), s)

We take care of the restrictions imposed by the conditions (S∩Vx) ⊆ X and v1 ∈ X1.

• Introduce edge bag:

Ax(i, w, s) = [s(u) = s(v) 6= 0∨ (s(u) = 0∧s(v) 6= 0)∨ (s(u) 6= 0∧s(v) = 0)]Ay(i, w, s)

Here we remove table entries not consistent with the edge uv, i.e., table entries where
the endpoints are colored 11 and 12 (thus creating an inconsistent cut) or 0 and 0 (thus
leaving an edge that is not covered).
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• Forget bag:
Ax(i, w, s) =

∑
α∈{0,11,12}

Ay(i, w, s[v → α])

In the child bag the vertex v can have three states, and no additional requirements are
imposed, so we sum over all the three states.

• Join bag:

Ax(i, w, s) =
∑

i1+i2=i+|s−1({11,12})|

∑
w1+w2=w+ω(s−1({11,12}))

Ay(i1, w1, s)Az(i2, w2, s)

The only valid combination to achieve the colouring s is to have the same colouring
in both children. Since vertices coloured 1j in Bx are accounted for in both tables of
the children, we add their contribution to the accumulators.

It is easy to see that the above recurrence leads to a dynamic programming algorithm that
computes the parity of |SW | for all values ofW in 3t|V |O(1) time, since |CW | = Ar(k,W, ∅)
and |SW | ≡ |CW |. Moreover, as we count the parities and not the numbers Ax themselves,
all arithmetical operations can be done in constant time. Thus, the proof of Theorem 4.4 is
finished.

4.2.2 Connected Dominating Set

CONSTRAINED CONNECTED DOMINATING SET

Input: An undirected graph G = (V,E), a subset S ⊆ V and an integer k.
Question: Does there exist such a connected set S ⊆ X ⊆ V of cardinality at most k that
N [X] = V ?

Theorem 4.5. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves CONSTRAINED CONNECTED DOMINATING SET in 4t|V |O(1) time. The
algorithm cannot give false positives and may give false negatives with probability at most
1/2.

It is known that CONNECTED DOMINATING SET is equivalent to MAXIMUM LEAF

TREE [34], hence the algorithm for EXACT k-LEAF SPANNING TREE can be used to solve
CONNECTED DOMINATING SET. However, here the Cut&Count application is signifi-
cantly easier and more straightforward than in the EXACT k-LEAF SPANNING TREE algo-
rithm presented later. Thus we include the algorithm for CONNECTED DOMINATING SET

below.

Proof of Theorem 4.5. We use the Cut&Count technique. As the universe for Algorithm 1
we take the vertex set U = V . Recall that we generate a random weight function ω : U →
{1, 2, . . . , N}, taking N = 2|U | = 2|V |. By Remark 4.3 we may assume that S 6= ∅ and
we may choose one fixed vertex v1 ∈ S.
The Cut part. For an integer W we define:
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1. RW to be the family of solution candidates (dominating sets) of size k and weight
W : RW is the family of sets X ⊆ V such that S ⊆ X , |X| = k, ω(X) = W and
N [X] = V .

2. SW to be the family of solutions of size k and weight W , that is sets X ∈ RW such
that G[X] is connected;

3. CW to be the family of pairs (X, (X1, X2)), where X ∈ RW , and (X1, X2) is a
consistent cut of G[X].

The Count part. As before we note that by a similar argument as in Lemma 3.2 for
each X ∈ RW there exist 2cc(G[X])−1 consistent cuts of G[X], thus for any W we have
|SW | ≡ |CW |. What remains is to describe a procedure CountC(ω,W,T) that, given a nice
tree decomposition T, weight function ω and an integer W , computes |CW | modulo 2.

For every bag x ∈ T of the tree decomposition, integers 0 ≤ i ≤ |V |, 0 ≤ w ≤ N |V |
and s ∈ {0N ,0Y ,11,12}Bx define

Rx(i, w) =
{
X ⊆ Vx

∣∣ (S ∩ Vx) ⊆ X ∧ |X| = i ∧ ω(X) = w

∧ NGx [X] = Vx \ s−1(0N)
}

Cx(i, w) =
{

(X, (X1, X2))
∣∣ X ∈ Rx(i, w) ∧ (X, (X1, X2)) is a consistently

cut subgraph of Gx ∧ (v1 ∈ Vx ⇒ v1 ∈ X1)
}

Ax(i, w, s) =
∣∣∣{(X, (X1, X2)) ∈ Cx(i, w)

∣∣ (s(v) = 1j ⇒ v ∈ Xj)

∧ (s(v) = 0Y ⇒ v ∈ NGx(X)) ∧ (s(v) = 0N ⇒ v 6∈ NGx [X])
}∣∣∣

Here s(v) = 0Y means v /∈ X and v is dominated by X in Gx, s(v) = 0N means v /∈ X
and v is not dominated by X in Gx, whereas s(v) = 1j corresponds to v ∈ Xj . The
accumulators i and w keep track of the number of vertices in the solution and their weights,
respectively. Hence Ax(i, w, s) is the number of pairs from C of candidate solutions and
consistent cuts on Gx, with fixed size, weight and interface on vertices from Bx.

The algorithm computes Ax(i, w, s) for all bags x ∈ T in a bottom-up fashion for all
reasonable values of i, w and s. We now give the recurrence for Ax(i, w, s) that is used
by the dynamic programming algorithm. As usual, v denotes the vertex introduced and
contained in an introduce bag, uv the edge introduced in an introduce edge bag, while y
and z denote the left and right child of x in T, if present.

• Leaf bag:
Ax(0, 0, ∅) = 1

• Introduce vertex bag:

Ax(i, w, s[v → 0N ]) = [v 6∈ S]Ay(i, w, s)

Ax(i, w, s[v → 0Y ]) = 0

Ax(i, w, s[v → 11]) = Ay(i− 1, w − ω(v), s)

Ax(i, w, s[v → 12]) = [v 6= v1]Ay(i− 1, w − ω(v), s)



4.2. NON-CONNECTIVITY PROBLEMS WITH CONNECTIVITY REQUIREMENT 43

We take care of restrictions imposed by conditions (S ∩Vx) ⊆ X and v1 ∈ X1. Note
that at the moment of introducing v there are no edges incident to v in Gx, thus v
cannot dominated, but not chosen.

• Introduce edge bag:

Ax(i, w, s) = Ay(i, w, s) if s(v), s(u) ∈ {0N ,0Y }
Ax(i, w, s) = [s(v) = s(u)]Ay(i, w, s) if s(v), s(u) ∈ {11,12}
Ax(i, w, s) = 0 if s(v) = 1j ∧ s(u) = 0N

Ax(i, w, s) = 0 if s(v) = 0N ∧ s(u) = 1j

Ax(i, w, s) = Ay(i, w, s) + Ay(i, w, s[u→ 0N ]) if s(v) = 1j ∧ s(u) = 0Y

Ax(i, w, s) = Ay(i, w, s) + Ay(i, w, s[v → 0N ]) if s(v) = 0Y ∧ s(u) = 1j

Here we perform two operations. First, we filter out entries creating an inconsistent
cut, i.e., ones in which the endpoints are coloured 11 and 12. Second, if one of the
endpoints becomes dominated in Gx, its state could be changed from 0N to 0Y

• Forget bag:
Ax(i, w, s) =

∑
α∈{0Y ,11,12}

Ay(i, w, s[v → α])

In the child bag the vertex v can have four states, but the state where v is not dom-
inated (s(v) = 0N ) is forbidden (we will have no more chances to dominate this
vertex, but all vertices need to be dominated). Thus we sum over the three remaining
states.

• Join bag: For a colouring s ∈ {0N ,0Y ,11,12}Bx we define its precolouring ŝ ∈
{0,11,12}Bx as

ŝ(v) = s(v) if s(v) ∈ {11,12}
ŝ(v) = 0 if s(v) ∈ {0Y ,0N}

For a precolouring ŝ (or a colouring s) and set T ⊆ ŝ−1(0) we define a colouring
s[T ] as

s[T ](v) = ŝ(v) if ŝ(v) ∈ {11,12}
s[T ](v) = 0Y if v ∈ T
s[T ](v) = 0N if v ∈ ŝ−1(0) \ T

We can now write a recursive formula for join bags.

Ax(i, w, s) =
∑

i1+i2=i+|s−1({11,12})|

∑
w1+w2=w+ω(s−1({11,12}))∑

T1,T2⊆s−1({0N ,0Y })

[T1 ∪ T2 = s−1(0Y )]Ay(i1, w1, s[T1])Az(i2, w2, s[T2])
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To achieve the colouring s, the precolourings of children have to be the same. More-
over, the sets of vertices coloured 0Y in children have to sum up to s−1(0Y ). Since
vertices coloured 1j in Bx are accounted for both tables of the children, we add their
contribution to the accumulators.

To compute the recursive formula efficiently we need to use the fast evaluation of the
covering product. For accumulators i, w and a precolouring ŝwe define the following
functions on subsets of ŝ−1(0):

f i,w,ŝ(T ) = Ay(i, w, s[T ]),

gi,w,ŝ(T ) = Az(i, w, s[T ]).

Now note that

Ax(i, w, s) =
∑

i1+i2=i+|s−1({11,12})|

∑
w1+w2=w+ω(s−1({11,12}))

(f i1,w1,ŝ∗cgi2,w2,ŝ)(s−1(0Y )).

By Theorem 2.10, for fixed accumulators i1, w1, i2, w2 and a precolouring ŝ the term

(f i1,w1,ŝ ∗c gi2,w2,ŝ)(s−1(0Y ))

can be computed in time 2|ŝ
−1(0)||ŝ−1(0)|O(1) at once for all colourings s with pre-

colouring ŝ. Thus, the total time consumed by the evaluation of Ax is bounded by

|V |O(1)
∑

ŝ∈{0,11,12}Bx

2|ŝ
−1(0)| = 4|Bx||V |O(1).

It is easy to see that the above recurrence leads to a dynamic programming algorithm that
computes the parity of |SW | for all values ofW in 4t|V |O(1) time, since |CW | = Ar(k,W, ∅)
and |SW | ≡ |CW |. Moreover, as we count the parities and not the numbers Ax themselves,
all arithmetical operations (in particular, the ring operations in the convolutions used in join
bags) can be done in constant time. Thus, the proof of Theorem 4.5 is finished.

4.2.3 Connected Odd Cycle Transversal

CONSTRAINED CONNECTED ODD CYCLE TRANSVERSAL

Input: An undirected graph G = (V,E), a subset S ⊆ V and an integer k
Question: Does there exist a subset X ⊆ V of cardinality k, such that S ⊆ X , G[X] is
connected and G[V \X] is bipartite?

Theorem 4.6. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves CONSTRAINED CONNECTED ODD CYCLE TRANSVERSAL in 4t|V |O(1)

time. The algorithm cannot give false positives and may give false negatives with proba-
bility at most 1/2.
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Proof. We use the Cut&Count technique. As the universe for Algorithm 1 we take U =
V × {X,L}, i.e., for each vertex v ∈ V we generate two weights ω((v,X)) and ω((v,L)).
Recall that we generate a random weight function ω : U → {1, 2, . . . , N}, taking N =
2|U | = 4|V |. By Remark 4.3 we may assume that S 6= ∅ and we may choose one fixed
vertex v1 ∈ S.
The Cut part. To make use of the well-known algorithm for ODD CYCLE TRANSVERSAL

parameterized by treewidth, we need to define a solution not only as a set X , but we need
to add a proof that G[V \ X] is bipartite (i.e., a partition of V \ X into two independent
sets). Formally, for an integer W we define:

1. RW to be the family of pairs (X,L), where |X| = k, ω(X ×{X}∪L×{L}) = W ,
S ⊆ X , X ∩ L = ∅ and L and V \ (X ∪ L) are independent sets in G;

2. SW to be the family of pairs (X,L) ∈ RW such that G[X] is connected;

3. CW to be the family of pairs ((X,L), (X1, X2)), where (X,L) ∈ RW , v1 ∈ X1 and
(X1, X2) is a consistent cut of G[X].

Note that for a single set X ⊆ V there may exist many proofs L that G[V \X] is bipartite.
We consider all pairs (X,L) as different solutions and solution candidates. To compute
weight, each pair (X,L) is represented as X ×{X}∪L×{L} ⊆ U , thus each pair (X,L)
corresponds to a different subset of the weight domain U .
The Count part. By a similar argument as in Lemma 3.2 for each (X,L) ∈ RW there
exist 2cc(G[X])−1 consistent cuts of G[X], thus for any W we have |SW | ≡ |CW |.

To finish the proof we need to describe a procedure CountC(ω,W,T) that, given a nice
tree decomposition T, weight function ω and an integer W , computes |CW | modulo 2.

For every bag x ∈ T of the tree decomposition, integers 0 ≤ i ≤ |V |, 0 ≤ w ≤ N |V |
and s ∈ {0L,0R,11,12}Bx define

Rx(i, w) =
{

(X,L)
∣∣ X,L ⊆ Vx ∧ X ∩ L = ∅ ∧ (S ∩ Vx) ⊆ X ∧ |X| = i

∧ ω(X × {X} ∪ L× {L}) = w ∧ L and Vx \ (X ∪ L) are

independent sets in Gx

}
Cx(i, w) =

{
((X,L), (X1, X2))

∣∣ (X,L) ∈ Rx(i, w) ∧ (X, (X1, X2)) is a consistently

cut subgraph of Gx ∧ (v1 ∈ Vx ⇒ v1 ∈ X1)
}

Ax(i, w, s) =
∣∣∣{((X,L), (X1, X2)) ∈ Cx(i, w)

∣∣ (s(v) = 1j ⇒ v ∈ Xj)

∧ (s(v) = 0L ⇒ v ∈ L) ∧ (s(v) = 0R ⇒ v 6∈ X ∪ L)
}∣∣∣

Here we plan L and V \ (X ∪ L) to be a bipartition of G[V \X]; s(v) = 0L and 0R mean
v is on the left or right side of this bipartition, respectively, while s(v) = 1j means v is in
the odd cycle transversal, and on the appropriate side of the cut. The accumulators i and w
keep track of the number of vertices in X and the weight of the pair (X,L), respectively.
Hence Ax(i, w, s) is the number of pairs from C of candidate solutions and consistent cuts
on Gx, with fixed size, weight and interface on vertices from Bx.
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The algorithm computes Ax(i, w, s) for all bags x ∈ T in a bottom-up fashion for all
reasonable values of i, w and s. We now give the recurrence for Ax(i, w, s) that is used by
the dynamic programming algorithm. As always let v stand for the vertex introduced and
contained in an introduce bag, uv for the edge introduced in an introduce edge bag, and
y, z for the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, ∅) = 1

• Introduce vertex bag:

Ax(i, w, s[v → 0L]) = [v 6∈ S]Ay(i, w − ω((v,L)), s)

Ax(i, w, s[v → 0R]) = [v 6∈ S]Ay(i, w, s)

Ax(i, w, s[v → 11]) = Ay(i− 1, w − ω((v,X)), s)

Ax(i, w, s[v → 12]) = [v 6= v1]Ay(i− 1, w − ω((v,X)), s)

We take care of restrictions imposed by conditions (S ∩ Vx) ⊆ X and v1 ∈ X1.

• Introduce edge bag:

Ax(i, w, s) = 0 if {s(u), s(v)} = {11,12}
Ax(i, w, s) = 0 if s(u) = s(v) ∈ {0L,0R}
Ax(i, w, s) = Ay(i, w, s) otherwise

Here we remove table entries not consistent with the edge uv, i.e., table entries
where the endpoints are coloured 11 and 12 (thus creating an inconsistent cut) or
both coloured 0L or both coloured 0R (thus introducing an edge in Gx[L] or Gx[Vx \
(X ∪ L)]).

• Forget bag:
Ax(i, w, s) =

∑
α∈{0L,0R,11,12}

Ay(i, w, s[v → α])

In the child bag the vertex v can have four states, and no additional requirements are
imposed, so we sum over all the four states.

• Join bag:

Ax(i, w, s) =
∑

i1+i2=i+|s−1({11,12})|

∑
w1+w2=w+ω(Z)

Z=s−1({11,12})×{X}∪s−1(0L)×{L}

Ay(i1, w1, s)Az(i2, w2, s)

The only valid combinations to achieve the colouring s is to have the same colouring
in both children. Since vertices coloured 1j and 0L in Bx are accounted for in both
tables of the children, we add their contribution to the accumulators.

It is easy to see that the above recurrence leads to a dynamic programming algorithm that
computes the parity of |SW | for all values ofW in 4t|V |O(1) time, since |CW | = Ar(k,W, ∅)
and |SW | ≡ |CW |. Moreover, as we count the parities and not the numbers Ax themselves,
all arithmetical operations can be done in constant time. Thus, the proof of Theorem 4.6 is
finished.
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4.2.4 Connected Feedback Vertex Set

CONSTRAINED CONNECTED FEEDBACK VERTEX SET

Input: An undirected graph G = (V,E), a subset S ⊆ V and an integer k.
Question: Does there exist a set Y ⊆ V of cardinality k such that S ⊆ Y , G[Y ] is
connected and G[V \ Y ] is a forest?

Theorem 4.7. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves the CONSTRAINED CONNECTED FEEDBACK VERTEX SET problem in
4t|V |O(1) time. The algorithm cannot give false positives and may give false negatives
with probability at most 1/2.

Proof. We use the Cut&Count technique. The idea is as in the previous algorithms in this
subsection: we use the dynamic programming for FEEDBACK VERTEX SET, additionally
keeping a cut consistent with the solution Y . However, in the previous subsections the
base dynamic programming algorithms were the easy, naive ones. Here we need to use
the Cut&Count based algorithm from Section 4.1. Thus, we attach two cuts to a solution
candidate: one of G[Y ], and second of G[V \ Y ].

As a universe we take the setU = V ×{F,M}, where V ×{F} is used to assign weights
to vertices from the chosen forestG[V \Y ] and V ×{M} for markers. As usual we assume
that we are given a weight function ω : U → {1, ..., N}, where N = 2|U | = 4|V |. By
Remark 4.3 we assume S 6= ∅ and we fix one vertex v1 ∈ S.
The Cut part. For integers A,B,C,W we define:

1. RA,B,C
W to be the family of solution candidates, that is a marked subgraphs excluding

S of size and weight prescribed by super-/sub-scripts, i.e., RA,B,C
W is the family of

pairs (X,M), where X ⊆ V \S, |X| = A, G[X] contains exactly B edges, M ⊆ X ,
|M | = C and ω(X × {F}) + ω(M × {M}) = W ;

2. SA,B,CW to be the set of solutions, that is the family of pairs (X,M), where (X,M) ∈
RA,B,C
W , whereG[X] is a forest containing at least one marker from the setM in each

connected component and G[V \X] is connected;

3. CA,B,CW to be the family of triples ((X,M), (X1, X2), (Y1, Y2)), where (X,M) ∈
RA,B,C
W , M ⊆ X1, (X1, X2) is a consistent cut of G[X], v1 ∈ Y1 and (Y1, Y2) is

a consistent cut of G[V \X].

Observe that by Lemma 4.1 the graph G admits a connected feedback vertex set of size
k containing S if and only if there exist integers B,W such that the set Sn−k,B,n−k−BW is
nonempty.
The Count part. By a similar argument as in Lemma 3.2 for any A,B,C,W ,(X,M) ∈
RA,B,C
W , there exist 2cc(G[V \X])−1 cuts (Y1, Y2) that are consistent cuts of G[V \X] and v1 ∈

Y1. Moreover, similarly as in the case of MIN CYCLE COVER (analogously to Lemma 3.8)
note that there are 2cc(M,G[X]) cuts (X1, X2) that are consistent with G[X] and M ⊆ X1,
where by cc(M,G[X]) we denote the number of connected components of G[X] which
do not contain any marker from the set M . Thus for any A,B,C,W ,(X,M) ∈ RA,B,C

W ,
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there are 2cc(G[V \X])−1+cc(M,G[X]) triples ((X,M), (X1, X2), (Y1, Y2)) ∈ CA,B,CW . Hence by
Lemma 4.1 for every A,B,C,W satisfying C ≤ A−B we have |SA,B,CW | ≡ |CA,B,CW |.

Now we describe a procedure CountC(ω,A,B,C,W,T) that, given a nice tree decom-
position T, weight function ω and integers A,B,C,W , computes |CA,B,CW | modulo 2 using
dynamic programming.

For every bag x ∈ T of the tree decomposition, integers 0 ≤ a ≤ |V |, 0 ≤ b < |V |,
0 ≤ c ≤ |V |, 0 ≤ w ≤ 2N |V | and s ∈ {01,02,11,12}Bx define

Rx(a, b, c, w) =
{

(X,M)
∣∣ X ⊆ Vx \ S ∧ |X| = a ∧ |Ex ∩ E(G[X])| = b

∧ M ⊆ X \Bx ∧ |M | = c ∧ ω(X × {F}) + ω(M × {M}) = w
}

Cx(a, b, c, w) =
{

((X,M), (X1, X2), (Y1, Y2))
∣∣ (X,M) ∈ Rx(a, b, c, w)

∧ M ⊆ X1 ∧ (X, (X1, X2)) is a consistently cut subgraph of Gx

∧ (v1 ∈ Vx ⇒ v1 ∈ Y1) ∧ (Vx \X, (Y1, Y2)) is a consistently

cut subgraph of Gx

}
Ax(a, b, c, w, s) =

∣∣∣{((X,M), (X1, X2), (Y1, Y2)) ∈ Cx(a, b, c, w)
∣∣

(s(v) = 1j ⇒ v ∈ Xj) ∧ (s(v) = 0jv ∈ Yj)
}∣∣∣

Note that we assume b < |V | because otherwise an induced subgraph containing b edges is
definitely not a forest.

Similarly as in the case of STEINER TREE, s(v) = 0j means v ∈ Yj , whereas s(v) = 1j
corresponds to v ∈ Xj . The accumulators a,b,c and w keep track of the number of vertices
and edges in the subgraph induced by vertices fromX , number of markers already used and
the sum of weights of chosen vertices and markers. Hence Ax(a, b, c, w, s) is the number
of triples from Cx(a, b, c, w) with a fixed interface on vertices fromBx. Note that we ensure
that no vertex from Bx is yet marked, because we decide whether to mark a vertex or not
in its forget bag.

The algorithm computes Ax(a, b, c, w, s) for all bags x ∈ T in a bottom-up fashion for
all reasonable values of a, b, c, w and s. We now give the recurrence for Ax(a, b, c, w, s)
that is used by the dynamic programming algorithm. As in the previous sections by v we
denote the vertex introduced and contained in an introduce bag, by uv the edge introduced
in an introduce edge bag, and by y, z for the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax(a, b, c, w, s[v → 01]) = Ay(a, b, c, w, s)

Ax(a, b, c, w, s[v → 02]) = [v 6= v1]Ay(a, b, c, w, s)

Ax(a, b, c, w, s[v → 1j]) = [v 6∈ S]Ay(a− 1, b, c, w − ω((v,F)), s)

Here we take care of the constraints S ∩X = ∅ and v1 ∈ Y1.



4.3. LONGEST CYCLES, PATHS AND CYCLE COVERS 49

• Introduce edge bag:

Ax(a, b, c, w, s) = 0 if {s(v), s(u)} = {01,02}
Ax(a, b, c, w, s) = 0 if {s(v), s(u)} = {11,12}
Ax(a, b, c, w, s) = Ay(a, b− 1, c, w, s) if s(v) = s(u) ∈ {11,12}
Ax(a, b, c, w, s) = Ay(a, b, c, w, s) otherwise

Here we remove table entries not consistent with the edge uv (i.e., creating an in-
consistent cut, either (X1, X2) or (Y1, Y2)), and update the accumulator b storing the
number of edges in G[X].

• Forget bag:

Ax(a, b, c, w, s) = Ay(a, b, c− 1, w − ω((v,M)), s[v → 11])

+
∑

α∈{01,02,11,12}

Ay(a, b, c, w, s[v → α]))

If the vertex v was in X1 then we can mark it and update the accumulator c. If we
do not mark the vertex v then it can have any of the four states with no additional
requirements imposed.

• Join bag:

Ax(i, w, s) =
∑

a1+a2=a+|s−1({11,12})|

∑
b1+b2=b

∑
c1+c2=c∑

w1+w2=w+ω(s−1({11,12})×{F})

Ay(a1, b1, c1, w1, s)Az(a2, b2, c2, w2, s)

The only valid combinations to achieve the colouring s is to have the same colouring
in both children. Since vertices coloured 1j in Bx are accounted for in both tables of
the children, we add their contribution to the accumulators a and w.

Since |CA,B,CW | = Ar(A,B,C,W, ∅) the above recurrence leads to a dynamic program-
ming algorithm that computes the parity of |CA,B,CW | for all reasonable values of W,A,B,C
in 4tnO(1) time. Consequently we finish the proof of Theorem 4.7.

4.3 Longest Cycles, Paths and Cycle Covers
In this section we consider the following three problems, both in the directed and undirected
setting.

(DIRECTED) MIN CYCLE COVER

Input: An undirected graphG = (V,E) (or a directed graphD = (V,A)) and an integer k.
Question: Can the vertices of G (D) be covered with at most k vertex disjoint (directed)
cycles?
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(DIRECTED) LONGEST CYCLE

Input: An undirected graphG = (V,E) (or a directed graphD = (V,A)) and an integer k.
Question: Does there exist a (directed) simple cycle of length k in G (D)?

(DIRECTED) LONGEST PATH

Input: An undirected graphG = (V,E) (or a directed graphD = (V,A)) and an integer k.
Question: Does there exist a (directed) simple path of length k in G (D)?

We capture all three problems in the following artificial one.

(DIRECTED) PARTIAL CYCLE COVER

Input: An undirected graph G = (V,E) (or a directed graph D = (V,A)) and integers k
and `.
Question: Does there exist a family of at most k vertex disjoint (directed) cycles in G (D)
that cover exactly ` vertices?

Note that for k = 1 the above problem becomes LONGEST CYCLE, whereas for ` = |V |
it becomes MIN CYCLE COVER. The LONGEST PATH problem can be easily reduced
to LONGEST CYCLE, both in the directed and undirected setting. Given (DIRECTED)
LONGEST PATH instance (G, k) ((D, k)), we guess the endpoints s and t of the path in
question, attach a path of length |V | + 1 from t to s to the graph and ask for a cycle of
length |V |+1+k. Moreover, given a tree decomposition T of G (D), a tree decomposition
for the modified graph can be easily constructed by adding s and t to every bag and by
covering the attached path by a sequence of additional bags of size 3. The width of the new
decomposition is larger by a constant than the width of T.

We now show how to solve PARTIAL CYCLE COVER using the Cut&Count technique,
in time 4t|V |O(1) in the undirected case and in time 6t|V |O(1) in the directed case.

4.3.1 The undirected case

Theorem 4.8. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves PARTIAL CYCLE COVER in 4t|V |O(1) time. The algorithm cannot give false
positives and may give false negatives with probability at most 1/2.

Proof. We use the Cut&Count technique. To count the number of cycles we use markers.
However, in this application it is more convenient to take as markers edges instead of
vertices. The objects we count are subsets of edges, together with sets of marked edges,
thus we take U = E × {X,M}. As usual, we assume we are given a weight function
ω : U → {1, 2, . . . , N}, where N = 2|U | = 4|E|. We also assume k ≤ `.
The Cut part. For an integer W we define:

1. RW to be the family of pairs (X,M), where M ⊆ X ⊆ E, |X| = `, |M | = k,
ω(X × {X} ∪M × {M}) = W and each vertex v ∈ V (X) has degree 2 in G[X].

2. SW to be the family of pairs (X,M) ∈ RW , such that each connected component of
G[X] is either an isolated vertex or contains an edge from M .
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3. CW to be the family of pairs ((X,M), (X1, X2)), where (X,M) ∈ RW and (X1, X2)
is a consistent cut of the graph (V (X), X) with V (M) ⊆ X1.

Note that if |X| = ` and each vertex in V (X) has degree two, then |V (X)| = `. Thus
if (X,M) ∈ RW then X is a set of vertex disjoint cycles covering exactly ` vertices of
G. If (X,M) ∈ SW , then the number of cycles is bounded by |M | = k, and if we have
an X with at most k cycles, we can find a set of markers M so that (X,M) ∈ SW for
W = ω(X × {X} ∪M × {M}) by taking at least one edge from each cycle. Thus, we
need to check if SW 6= ∅ for some W .
The Count part. Let ((X,M), (X1, X2)) ∈ CW . Let cc(X,M) denote the number
of connected components of G[X] that are neither isolated vertices nor contain an edge
from M . If C ⊆ X is the set of edges of such a connected component of G[X], then
((X,M), (X14V (C), X24V (C))) ∈ CW , i.e., the connected component C can be on ei-
ther side of the cut (X1, X2). Thus there are 2cc(M,X) elements in CW that correspond to
any pair (X,M) ∈ RW , and we infer that |SW | ≡ |CW |.

To finish the proof we need to describe a procedure CountC(ω,W,T) that, given a nice
tree decomposition T, weight function ω and and an integer W , computes |CW | modulo 2.

Let Σ = {0,11,12,2}. For every bag x ∈ T of the tree decomposition, integers
0 ≤ i, b ≤ |V |, 0 ≤ w ≤ 2N |V | and s ∈ ΣBx define

Rx(i, b, w) =
{

(X,M)
∣∣M ⊆ X ⊆ Ex ∧ |M | = i ∧ |X| = b

∧ ω(X × {X} ∪M × {M}) = w ∧ (∀v∈V (X)\Bx degG[X](v) = 2)

∧ (∀v∈Bx degG[X](v) ≤ 2)
}

Cx(i, b, w) =
{

((X,M), (X1, X2))
∣∣ (X,M) ∈ Rx(i, b, w) ∧ V (M) ⊆ X1

∧ (X1, X2) is a consistent cut of the graph (V (X), X)
}

Ax(i, b, w, s) =
∣∣∣{((X,M), (X1, X2)) ∈ Cx(i, b, w)

∣∣ (s(v) = 0⇒ degG[X](v) = 0)

∧ (s(v) = 1j ⇒ (degG[X](v) = 1 ∧ v ∈ Xj))

∧ (s(v) = 2⇒ degG[X](v) = 2)
}∣∣∣

The value of s(v) denotes the degree of v in G[X] and, in case of degree one, s(v) also
stores information about the side of the cut v belongs to. We note that we do not need
to store the side of the cut for v if its degree is 0 and 2, since it is not yet or no more
needed. This is a somewhat non-trivial trick — the natural implementation of dynamic
programming would use 6 states for each vertex. For vertices of degree 0 this is necessary
— we do not want to count isolated vertices as separate connected components, so we do
not want to have a side of the cut defined for them. For vertices of degree 2 the situation is
more tricky. They are cut (that is, each such vertex is on some side of the cut in each counted
object in Cx(i, b, w)), but the information about the side of the cut will not be needed —
we have a guarantee that no new edges will be added to that vertex (as 2 is the maximum
degree). Note that the fact that we did remember the side of the cut previously ensures that
when we have a path in the currently constructed solution, both endpoints of the path are
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remembered to be on the same side of the cut, even though we no more remember sides for
the internal vertices of the path. The accumulators i, b and w keep track of the size of M ,
the size of X and the weight of (X,M), respectively.

Let us spend a moment discussing the choice we made to mark edges (as opposed to
vertices). If we marked vertices, as we did in the previous problems, we would have a
problem as to when to decide that a given vertex is a marker. The natural moment — in
the forget bag — is inapplicable in this case, as (to save on space and time) we do not
remember the side of the cut, so we do not know whether we can mark a vertex (remember,
the whole point of marking vertices is to break the symmetry between the sides of the cut,
so we have to mark only vertices that are on the left). The same problem applies to the
introduce bag, moreover a vertex is introduced more than once, so we could mark it more
than once (which would cause problems with the application of the Isolation Lemma). The
best choice would be to mark it when we introduce an edge incident to it, but still we could
mark it twice, if the introduce edge bags happen in two different branches of the tree. This
can be circumvented by extending the nice tree decomposition definition, but the way we
have chosen — to mark edges — is easier and cleaner. For edges we know that each edge
is introduced exactly once, so we have a natural place to mark the edge and assure it is
marked and counted exactly once.

The algorithm computes Ax(i, b, w, s) for all bags x ∈ T in a bottom-up fashion for
all reasonable values of i, b, w and s. We now give the recurrence for Ax(i, b, w, s) that
is used by the dynamic programming algorithm. In order to simplify notation denote by v
the vertex introduced and contained in an introduce bag, by uv the edge introduced in an
introduce edge bag, and by y, z the left and right child of x in T if present.

• Leaf bag:

Ax(0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax(i, b, w, s[v → 0]) = Ay(i, b, w, s)

The new vertex has degree zero and we do not impose any other constraints.

• Introduce edge bag: For the sake of simplicity of the recurrence formula let us
define a function subs : Σ→ 2Σ.

α ∈ Σ 0 11 12 2
subs(α) ∅ {0} {0} {11,12}

Intuitively, for a given state α ∈ Σ the value subs(α) is the set of possible states a
vertex of state α can have before adding an incident edge.
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We can now write the recurrence for the introduce edge bag.

Ax(i, b, w, s) = Ay(i, b, w, s) +
∑

αu∈subs(s(u))

∑
αv∈subs(s(v))

∑
j∈{1,2}

[(αu = 1j ∨ s(u) = 1j) ∧ (αv = 1j ∨ s(v) = 1j)](
Ay(i, b− 1, w − ω((uv,X)), s′)

+ [j = 1]Ay(i− 1, b− 1, w − ω((uv,X))− ω((uv,M)), s′)

)
In the above formula by s′ we denote s[u → αu, v → αv]. To see that all cases are
handled correctly, first notice that we can always choose not to use the introduced
edge. Observe that in order to add the edge uv by the definition of subs we need to
have αu ∈ subs(s(u)) and αv ∈ subs(s(v)). We use the integer j to iterate over two
sides of the cut the edge uv can be contained in. Finally we check whether j = 1
before we make uv a marker.

• Forget bag:

Ax(i, b, w, s) = Ay(i, b, w, s[v → 2]) + Ay(i, b, w, s[v → 0])

The forgotten vertex must have degree two or zero in G[X].

• Join bag: For colourings s1, s2, s ∈ {0,11,12,2}Bx we say that s1 + s2 = s if for
each v ∈ Bx at least one of the following holds:

s1(v) = 0 ∧ s(v) = s2(v)

s2(v) = 0 ∧ s(v) = s1(v)

s1(v) = s2(v) = 1j ∧ s(v) = 2

We can now write the recurrence for the join bags.

Ax(i, b, w, s) =
∑

i1+i2=i

∑
b1+b2=b

∑
w1+w2=w

∑
s1+s2=s

Ay(i1, b1, w1, s1)Az(i2, b2, w2, s2)

The accumulators in the children bags need to sum up to the accumulators in the
parent bag. Also the degrees need to sum up and the sides of the cut need to match,
which is ensured by the constraint s1 + s2 = s.

A straightforward computation of the above recurrence leads to 16t|V |O(1) time. We
now show how to use the Z4 product to obtain a better time complexity.

Let φ : {0,11,12,2} → Z4 be defined as

φ(0) = 0 φ(11) = 1 φ(12) = 3 φ(2) = 2

Let φ : {0,11,12,2}Bx → ZBx4 be obtained by extending φ in the natural way. Note
that φ is a bijection. Define ρ : {0,11,12,2} → Z as

ρ(0) = 0 ρ(11) = 1 ρ(12) = 1 ρ(2) = 2
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and let ρ(s) =
∑

v∈Bx ρ(s(v)) for colouring s, i.e., ρ(s) is the sum of degrees of all
vertices in Bx. Let

f i,b,wm (φ(s)) = [ρ(s) = m]Ay(i, b, w, s)

gi,b,wm (φ(s)) = [ρ(s) = m]Az(i, b, w, s)

hi,b,wm (φ(s)) =
∑

i1+i2=i

∑
b1+b2=b

∑
w1+w2=w

∑
m1+m2=m

(f i1,b1,w1
m1

∗4
x g

i2,b2,w2
m2

)(φ(s))

We claim that
Ax(i, b, w, s) = hi,b,wρ(s) (φ(s)).

First notice that the values of accumulators are divided among the children, and that
no vertex or edge is accounted for twice by the definition of Ax. Hence, it suffices
to prove that values in the expansion of hi,b,wρ(s) (φ(s)) corresponding to a choice of
s1, s2 and possibly having a contribution to Ax(i, b, w, s) are exactly those, for which
s1 + s2 = s holds. To see this, first note that

ρ(φ−1(φ(s1) + φ(s2))) ≤ ρ(s1) + ρ(s2).

Observe that for any s1, s2 such that φ(s1) + φ(s2) = φ(s) the above inequality is an
equality iff s1 + s2 = s. Thus when counting hi,b,wm (φ(s)) we sum non-zero values
only for such s1, s2 where s = s1 + s2. As the addition operator on colourings
corresponds to the addition operator in Z4, the claim follows.

By Theorem 2.15, the function hi,b,wm can be computed in 4t|V |O(1) time and the time
bound for the join bags follows.

It is easy to see that the above recurrence leads to a dynamic programming algorithm
that computes the parity of |SW | for all values of W in 4t|V |O(1) time, since |CW | =
Ar(k, `,W, ∅) and |SW | ≡ |CW |. Moreover, as we count the parities and not the num-
bers Ax themselves, all arithmetical operations can be done in constant time. Thus, the
proof of Theorem 4.8 is finished.

If we restrict the class of graphs that we consider to graphs of maximum degree three
which we call subcubic and assume that a path decomposition is given we may obtain a
better time complexity for the general PARTIAL CYCLE COVER problem. As discussed in
Section 1.2.3 and as a consequence obtain an O(1.201n) time algorithm for the HAMILTO-
NIAN PATH problem in subcubic graphs.

Theorem 4.9. There exists a Monte-Carlo algorithm that given a path decomposition of
width p of a subcubic graph solves PARTIAL CYCLE COVER in 3p|V |O(1) time. The al-
gorithm cannot give false positives and may give false negatives with probability at most
1/2.

Proof. The key difference from the proof Theorem 4.8 is that because the graph is subcubic
we may reduce the number of colours in the set Σ to Σ = {even,11,12}, which means that
we merge colours 0,2 into a single colour even. Observe that we can do this since in the
forget node we ensure that a vertex is of even degree and in subcubic graph if a vertex
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is of even degree then it is of degree zero or two. Since there are no join nodes in a
path decomposition we do not have problems with joining colour vectors from two bags
efficiently.

The rest of the proof of Theorem 4.8 remains.

4.3.2 The directed case

Theorem 4.10. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves DIRECTED PARTIAL CYCLE COVER in 6t|V |O(1) time. The algorithm can-
not give false positives and may give false negatives with probability at most 1/2.

Proof. We use the Cut&Count technique. To count the number of cycles we use markers.
As in the undirected case, in this application it is more convenient to take as markers arcs
instead of vertices. The objects we count are subsets of arcs, together with sets of marked
arcs, thus we take U = A× {X,M}. As usual, we assume we are given a weight function
ω : U → {1, 2, . . . , N}, where N = 2|U | = 4|A|. We also assume k ≤ `.
The Cut part. For an integer W we define:

1. RW to be the family of pairs (X,M), where M ⊆ X ⊆ A, |X| = `, |M | = k,
ω(X × {X} ∪ M × {M}) = W and each vertex v ∈ V (X) has indegree and
outdegree 1 in G[X].

2. SW to be the family of pairs (X,M) ∈ RW , such that each connected component of
G[X] is either an isolated vertex or contains an arc from M .

3. CW to be the family of pairs ((X,M), (X1, X2)), where (X,M) ∈ RW and (X1, X2)
is a consistent cut of the graph (V (X), X) with V (M) ⊆ X1.

Note that if |X| = ` and each vertex in V (X) has indegree and outdegree one, then
|V (X)| = `. Thus similarly as before we need to check if SW 6= ∅ for some W .
The Count part. Let ((X,M), (X1, X2)) ∈ CW . Let cc(X,M) denote the number of
weakly1 connected components of G[X] that are not isolated vertices and do not contain an
arc from M . If C ⊆ X is the set of arcs of such a weakly connected component of G[X],
then ((X,M), (X14V (C), X24V (C))) ∈ CW , i.e., the weakly connected component C
can be on either side of the cut (X1, X2). Thus there are 2cc(M,X) elements in CW that
correspond to any pair (X,M) ∈ RW , and we infer that |SW | ≡ |CW |.

To finish the proof we need to describe a procedure CountC(ω,W,T) that, given a nice
tree decomposition T, weight function ω and an integer W , computes |CW | modulo 2.

Let Σ = {00,011,012,101,102,11}. For every bag x ∈ T of the tree decomposition,

1We stress this for clarity: in G[X] weakly connected components are always strongly connected compo-
nents due to the requirements imposed on X .
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integers 0 ≤ i, b ≤ |V |, 0 ≤ w ≤ 2N |V | and s ∈ ΣBx define

Rx(i, b, w) =
{

(X,M)
∣∣M ⊆ X ⊆ Ex ∧ |M | = i ∧ |X| = b

∧ ω(X × {X} ∪M × {M}) = w

∧ (∀v∈V (X)\Bx indegG[X](v) = outdegG[X](v) = 1)

∧ (∀v∈Bx indegG[X](v), outdegG[X](v) ≤ 1)
}

Cx(i, b, w) =
{

((X,M), (X1, X2))
∣∣ (X,M) ∈ Rx(i, b, w) ∧ V (M) ⊆ X1

∧ (X1, X2) is a consistent cut of the graph(V (X), X)
}

Ax(i, b, w, s) =
∣∣∣{((X,M), (X1, X2)) ∈ Cx(i, b, w)

∣∣ (s(v) = ioj ⇒ v ∈ Xj)

∧ ((s(v) = io ∨ s(v) = ioj)⇒ (indegG[X](v) = i ∧ outdegG[X](v) = o))
}∣∣∣

The value of s(v) contains information about the indegree and outdegree of v and, in case
when the degree of v (as the sum of indegree and outdegree) is equal to one, s(v) also
stores information about the side of the cut v belongs to. We note that we do not need to
store the side of the cut for v if its degree is 0 and 2, since it is not yet or no more needed.
The accumulators i, b and w keep track of the size of M , the size of X and the weight of
(X,M), respectively.

The algorithm computes Ax(i, b, w, s) for all bags x ∈ T in a bottom-up fashion for all
reasonable values of i, b, w and s. We now give the recurrence for Ax(i, b, w, s) that is used
by the dynamic programming algorithm. In order to simplify notation let v be the vertex
introduced and contained in an introduce bag, (u, v) the arc introduced in an introduce edge
(arc) bag, and y, z the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax(i, b, w, s[v → 00]) = Ay(i, b, w, s)

The new vertex has indegree and outdegree zero.

• Introduce edge (arc) bag: For the sake of simplicity of the recurrence formula let
us define functions insubs, outsubs : Σ→ 2Σ.

α ∈ Σ 00 011 012 101 102 11
insubs(α) ∅ ∅ ∅ {00} {00} {011,012}

outsubs(α) ∅ {00} {00} ∅ ∅ {101,102}
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Intuitively, for a given state α ∈ Σ the values insubs(α) and outsubs(α) are the
sets of possible states a vertex of state α could have before adding an incoming and
respectively outgoing arc.

We can now write the recurrence for the introduce arc bag.

Ax(i, b, w, s) = Ay(i, b, w, s) +
∑

αu∈outsubs(s(u))

∑
αv∈insubs(s(v))

∑
j∈{1,2}

[(αu = 10j ∨ s(u) = 01j) ∧ (αv = 01j ∨ s(v) = 10j)](
Ay(i, b− 1, w − ω(((u, v),X)), s′)

+ [j = 1]Ay(i− 1, b− 1, w − ω((u, v),X)− ω((u, v),M), s′)

)
In the above formula by s′ we denote s[u → αu, v → αv]. To see that all cases are
handled correctly, first notice that we can always choose not to use the introduced arc.
Observe that in order to add the arc (u, v) by the definition of insubs and outsubs
we need to have αu ∈ outsubs(s(u)) and αv ∈ insubs(s(v)). We use the integer j to
iterate over two sides of the cut the arc (u, v) can be contained in. Finally we check
whether j = 1 before we make (u, v) a marker.

• Forget vertex v bag x:

Ax(i, b, w, s) = Ay(i, b, w, s[v → 11]) + Ay(i, b, w, s[v → 00])

The forgotten vertex must have either both indegree and outdegree zero or both inde-
gree and outdegree one.

• Join bag: We have two children y and z. Figure 4.1 shows how two individual states
of a vertex in By and Bz combine to a state of this vertex in Bx. XX indicates that
two states do not combine. The correctness of the table is easy to check.

00 011 012 102 101 11
00 00 011 012 102 101 11
011 011 XX XX XX 11 XX
012 012 XX XX 11 XX XX
102 102 XX 11 XX XX XX
101 101 11 XX XX XX XX
11 11 XX XX XX XX XX

Figure 4.1: The join table of DIRECTED PARTIAL CYCLE COVER where it is indicated
which states combine to which other states.

For colourings s1, s2, s ∈ ΣBx we say that s1 + s2 = s if for each vertex v ∈ Bx the
values of s1(v) and s2(v) combine into s(v) as in Figure 4.1. We can now write the
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recurrence formula for join bags.

Ax(i, b, w, s) =
∑

i1+i2=i

∑
b1+b2=b

∑
w1+w2=w

∑
s1+s2=s

Ay(i1, b1, w1, s1)Az(i2, b2, w2, s2)

A straightforward computation of the above formula leads to 36t|V |O(1) time com-
plexity. We now show how to use the Generalized Subset Convolution to obtain a
better time bound.

Let φ, ρ : Σ→ {0, 1, 2, 3, 4, 5} where

φ(00) = 0 φ(011) = 1 φ(012) = 2 φ(102) = 3 φ(101) = 4 φ(11) = 5

ρ(00) = 0 ρ(011) = 1 ρ(012) = 1 ρ(102) = 1 ρ(101) = 1 ρ(11) = 2

Let φ : ΣBx → {0, 1, 2, 3, 4, 5}Bx be obtained by extending φ in the natural way.
Define ρ : ΣBx → Z as ρ(s) =

∑
e∈Bx ρ(e). Hence ρ reflects the total number of 1’s

in a state s, i.e., the sum of all degrees of vertices in Bx. Then, define

f i,b,wm (φ(s)) = [ρ(s) = m]Ay(i, b, w, s)

gi,b,wm (φ(s)) = [ρ(s) = m]Az(i, b, w, s)

hi,b,wm (φ(s)) =
∑

i1+i2=i

∑
b1+b2=b

∑
w1+w2=w

∑
m1+m2=m

(f i1,b1,w1
m1

∗6 gi2,b2,w2
m2

)(φ(s))

We claim that
Ax(i, b, w, s) = hi,b,wρ(s) (φ(s))

To see this, first notice that the values of accumulators are divided among the chil-
dren, and that no vertex or edge is accounted for twice by the definition ofAx. Hence,
it suffices to prove that exactly all combinations of table entries from Ay and Az that
combine to state s according to Table 4.1 contribute to Ax(i, b, w, s). Notice that if
α, β ∈ Σ and γ = φ−1(φ(α)+φ(β)), then ρ(γ) ≤ ρ(α)+ρ(β). This implies that the
only pairs that contribute to hi,b,wm (φ(s)) are the pairs not leading to crosses in Table
4.1 since for the other pairs we have ρ(γ) < ρ(α) + ρ(β). Finally notice that for
every such pair we have that γ is the correct state, and hence correctness follows.

Finally we obtain that, by Theorem 2.12, the values Ax(i, b, w, s) for a join bag x can
be computed in time 6t|V |O(1).

It is easy to see that the above recurrence leads to a dynamic programming algorithm
that computes the parity of |SW | for all values of W in 6t|V |O(1) time, since |CW | =
Ar(k, `,W, ∅) and |SW | ≡ |CW |. Moreover, as we count the parities and not the num-
bers Ax themselves, all arithmetical operations can be done in constant time. Thus, the
proof of Theorem 4.10 is finished.

4.4 Spanning trees with a prescribed number of leaves
In this section we provide algorithms that solve EXACT k-LEAF SPANNING TREE and EX-
ACT k-LEAF OUTBRANCHING in time 4tnO(1) and 6tnO(1), respectively. The algorithms
are very similar and use the same tricks, thus we gather them together in this subsection.
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Both algorithms use almost the same Cut part that is very natural for the considered
problems. However, a quite straightforward realization of the accompanying Count part
would lead to running times 6tnO(1) and 8tnO(1), respectively. To obtain better time bounds
we need to count objects in a more ingenious way.

4.4.1 Exact k-Leaf Spanning Tree

EXACT k-LEAF SPANNING TREE

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exists a spanning tree of G with exactly k leaves?

Theorem 4.11. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves EXACT k-LEAF SPANNING TREE in 4t|V |O(1) time. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.

Proof. We assume that G is connected, as otherwise we can safely answer NO. We also
assume |V | ≥ 3, and therefore any spanning tree of G contains some internal nodes (i.e.,
vertices of degree at least 2). Using similar arguments as in Remark 4.3, we may assume
that we are given a vertex v1 ∈ V that is required to be an internal node of the spanning tree
in question. Thus, we can look for spanning trees of G that are rooted in the given vertex
v1.

We use the Cut&Count technique. Our solutions and solution candidates are subsets of
edges, thus we take U = E and generate a random weight function ω : U → {1, 2, . . . , N},
where N = 2|U | = 2|E|.
The Cut part. For integers W and k we define:

1. Rk
W to be the family of sets X ⊆ E, such that ω(X) = W , |X| = |V | − 1, G[X]

contains exactly k vertices of degree one, and the degree of v1 in G[X] is at least 2.

2. SkW to be the family of sets X ∈ Rk
W , such that G[X] is connected;

3. CkW to be the family of pairs (X, (X1, X2)), where X ∈ Rk
W and (X1, X2) is a

consistent cut of G[X] with v1 ∈ X1.

The condition that for X ∈ SkW the graph G[X] is connected, together with |X| = |V | − 1
gives us that each X ∈ SkW induces a spanning tree. Thus, SkW is indeed a family of
spanning trees of exactly k leaves with root v1 of degree at least 2.

Note that, unlike in other algorithms, we use the superscript k in the definitions. To
achieve claimed the running time we need to do computations for many values of k.
The Count part. To use Algorithm 1 we need to prove formally that for any W and k we
have |SkW | ≡ |CkW |. By a similar argument as in Lemma 3.2 for each X ∈ Rk

W there exist
2cc(G[X])−1 consistent cuts of G[X], and the claim follows.

To finish the proof we need to show how to compute |CkW | modulo 2 in time 4tnO(1). A
straightforward dynamic programming algorithm would lead to a 6tnO(1) time complexity
(we encourage the reader to sketch this algorithm to see why the steps introduced below
are needed), thus we need to be a bit more ingenious here.

Let us define the set C`W to be a family of triples (X,R, (Y1, Y2)) such that
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1. X ∈ ⋃|V |−1
k=0 Rk

W , (i.e., we do not impose any constraint on the number of vertices of
degree one in G[X]),

2. R ⊆ V \ {v1} and |R| = `,

3. Each vertex v ∈ R has degree one in G[X] and the unique neighbour of v in G[X] is
not an element ofR (i.e., G[X] does not contain a connected component that consists
of two vertices from R connected by an edge).

4. LetG(V \R,X) denote the graph with the vertex set V \R and the edge set consisting
of those edges of X that have both endpoints in V \R. Then we require that (Y1, Y2)
is a consistent cut of G(V \R,X) with v1 ∈ Y1.

Informally speaking, there are two differences between CkW and C`W . First, instead of re-
quiring a prescribed number of vertices of degree one, we distinguish a fixed number of
vertices that have to be of degree one, and we do not care about the degrees of the other
vertices. Second, we consider only consistent cuts of G(V \R,X), not of whole G[X].

We first note that the second difference is somewhat illusory. Let X ∈ Rk
W and R ⊆

V \ {v1} be as in the definition of C`W , i.e., |R| = `, each v ∈ R is of degree one in G[X]
and its unique neighbour in G[X] is not in R. If (X, (X1, X2)) ∈ CkW , then the cut (Y1, Y2)

where Yj = Xj \R is consistent with G(V \R,X) and (X,R, (Y1, Y2)) ∈ C`W . In the other
direction, observe that if (X,R, (Y1, Y2)) ∈ C`W , then there exists exactly one consistent cut
(X1, X2) of G[X], such that Y1 ⊆ X1 and Y2 ⊆ X2, namely Xj = Yj ∪ (NG[X](Yj) ∩ R).
Thus, in the analysis that follows we can assume that (Y1, Y2) induces a consistent cut
(Y1 ∪ (NG[X](Y1) ∩R), Y2 ∪ (NG[X](Y2) ∩R)) of G[X] with v1 ∈ Y1.

Let (X,R, (Y1, Y2)) ∈ C`W . As there exists 2cc(G[X])−1 consistent cuts ofG[X], for fixed
X andR we have (X,R,C) ∈ C`W for exactly 2cc(G[X])−1 cuts C. Thus, ifX /∈ ⋃|V |−1

k=0 SkW ,
all elements of C`W with X cancel out modulo 2.

Otherwise, if G[X] induces a spanning tree of G with root v1, there exists exactly one
cut (V, ∅) consistent withG[X], such that v1 is in the first set in the cut. Moreover, note that
there are no two adjacent vertices of degree one in G[X] (as |V | ≥ 3). Thus, if X ∈ SkW ,
then there exist

(
k
`

)
choices of the set R and one choice of a cut C = (V, ∅) such that

(X,R,C) ∈ C`W (we use the convention that
(
k
`

)
= 0 if k < `).

Summing up, we obtain that in Z2

|C`W | ≡
|V |−1∑
k=`

(
k

`

)
|SkW | ≡

|V |−1∑
k=`

(
k

`

)
|CkW |.

Note that, operating over the field Z2, we have obtained a linear operator that transforms a
vector (|CkW |)|V |−1

k=0 into a vector (|C`W |)|V |−1
`=0 . Moreover, the matrix of this operator can be

computed in polynomial time and is upper triangular with ones on the diagonal. Thus, this
operator can be easily inverted, and we can compute (in Z2) all values (|CkW |)|V |−1

k=0 knowing
all values (|C`W |)|V |−1

`=0 .
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To finish the proof we need to describe a procedure CountC(ω,W, `,T) that, given a
nice tree decomposition T, weight function ω and integers W and ` computes |C`W |modulo
2. Now we can use dynamic programming on the tree decomposition.

Recall that in the definition of C`W the cut (Y1, Y2) was a consistent cut of only G(V \
R,X). We make use of this fact to reduce the size of the table in the dynamic programming,
as we do not need to remember a side of the cut for vertices in R.

For every bag x ∈ T of the tree decomposition, integers 0 ≤ ` ≤ |V |, 0 ≤ w ≤ N |E|,
0 ≤ m, d < |V |, and s ∈ {11,12,00,01}Bx define

Rx(`, w,m, d) =
{

(X,R)
∣∣ X ⊆ Ex ∧ R ⊆ Vx ∧ |X| = m ∧ |R| = ` ∧ ω(X) = w

∧ degG[X](v1) = d ∧ (v ∈ R \Bx ⇒ degG[X](v) = 1)

∧ (v ∈ R ∩Bx ⇒ degG[X](v) ≤ 1)
}

Cx(`, w,m, d) =
{

(X,R, (Y1, Y2))
∣∣ (X,R) ∈ Rx(`, w,m, d) ∧ (v1 ∈ Vx ⇒ v1 ∈ Y1)

∧ (Y1, Y2) is a consistent cut of G(Vx \R,X)
}

Ax(`, w,m, d, s) =
∣∣∣{(X,R, (Y1, Y2)) ∈ Cx(`, w,m, d)

∣∣
(s(v) = 1j ⇒ v ∈ Yj) ∧ (s(v) = 0j ⇒ (v ∈ R ∧ degG[X](v) = j))

}∣∣∣
Here s(v) = 0j denotes that v ∈ R and degG[X](v) = j, whereas s(v) = 1j denotes that
v ∈ Yj (and thus v /∈ R). The accumulators `, m and w keep track of the size of R, size
of X and the weight of X , respectively. The accumulator d keeps track of the degree of
v1 in G[X], since we need to ensure that in the end it is at least 2. Hence Ax(`, w,m, d, s)
reflects the number of partial objects from C with fixed sizes of R, X , weight of X , degree
of v1 and interface on vertices from Bx.

The algorithm computes Ax(`, w,m, d, s) for all bags x ∈ T in a bottom-up fashion for
all reasonable values of `, w, m, d and the colouring s. We now give the recurrence for
Ax(`, w,m, d, s) that is used by the dynamic programming algorithm. In order to simplify
notation we denote by v the vertex introduced and contained in an introduce bag, by uv the
edge introduced in an introduce edge bag, and by y, z the left and right child of x in T if
present.

• Leaf bag:
Ax(0, 0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax(`, w,m, d, s[v → 00]) = [v 6= v1]Ay(`− 1, w,m, d, s)

Ax(`, w,m, d, s[v → 01]) = 0

Ax(`, w,m, d, s[v → 11]) = Ay(`, w,m, d, s)

Ax(`, w,m, d, s[v → 12]) = [v 6= v1]Ay(`, w,m, d, s)

If the new vertex is in R, it has degree zero and cannot be equal to v1. Otherwise, we
need to ensure that we do not put v1 into Y2.
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• Introduce edge bag:

Ax(`, w,m, d, s) = Ay(`, w,m, d, s)

+ [s(u) = s(v) = 1j]Ay(`, w − ω(uv),m− 1, d− [v1 = u ∨ v1 = v], s)

+ [s(v) = 01 ∧ s(u) = 1j]Ay(`, w − ω(uv),m− 1, d− [v1 = u], s[v → 00])

+ [s(v) = 1j ∧ s(u) = 01]Ay(`, w − ω(uv),m− 1, d− [v1 = v], s[u→ 00])

Here we consider adding uv to X . This is possible in two cases. First, if u, v /∈ R
and s(u) = s(v). Second, if exactly one of u and v is in R (recall that we forbid
edges connecting two vertices in R). In the second case we need to update the degree
of the vertex in R. In both cases we need to update the degree of v1, if needed.

• Forget bag:

Ax(`, w,m, d, s) = [d ≥ 2]Ay(`, w, d, s[v → 11]) if v = v1

Ax(`, w,m, d, s) =
∑

α∈{01,11,12}

Ay(`, w,m, d, s[v → α]) otherwise

If we forget v = v1, we require that its degree is at least two and v ∈ Y1. Otherwise,
we require only that if v ∈ R then degG[X](v) = 1.

• Join bag: We proceed similarly as in the case of join bags in the CONNECTED

DOMINATING SET problem. For a colouring s ∈ {00,01,11,12}Bx we define its
precolouring ŝ ∈ {0,11,12}Bx as

ŝ(v) = s(v) if s(v) ∈ {11,12}
ŝ(v) = 0 if s(v) ∈ {00,01}

For a precolouring ŝ (or a colouring s) and a set T ⊆ ŝ−1(0) we define the colouring
s[T ]

s[T ](v) = ŝ(v) if ŝ(v) ∈ {11,12}
s[T ](v) = 01 if v ∈ T
s[T ](v) = 00 if v ∈ ŝ−1(0) \ T

We can now write a recursive formula for the join bags.

Ax(`, w,m, d, s) =
∑

`1+`2=`+|s−1({00,01})|

∑
w1+w2=w

∑
m1+m2=m

∑
d1+d2=d

∑
T1,T2⊆s−1({00,01})

[T1 ∪ T2 = s−1(01)][T1 ∩ T2 = ∅]Ay(`1, w1,m1, d1, s[T1])Az(`2, w2,m2, d2, s[T2])

To achieve the colouring s, the precolourings of the children have to be the same.
Moreover, a vertex v ∈ R has degree one only if it has degree one in exactly one of
the children bags. Thus the sets of vertices coloured 01 in children have to be disjoint
and sum up to s−1(01). Since vertices coloured 0j in Bx are accounted for in both
tables of the children, we add their contribution to the accumulator `.
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To compute the recursive formula efficiently we need to use the fast subset convo-
lution. For accumulators `, w,m, d and a precolouring ŝ we define the following
functions on subsets of ŝ−1(0):

f `,w,m,d,ŝ(T ) = Ay(`, w,m, d, s[T ]),

g`,w,m,d,ŝ(T ) = Az(`, w,m, d, s[T ]).

Now note that

Ax(`, w,m, d, s) =
∑

`1+`2=`+|s−1({00,01})|

∑
w1+w2=w

∑
m1+m2=m

∑
d1+d2=d

(f `1,w1,m1,d1,ŝ ∗ g`2,w2,m2,d2,ŝ)(s−1(01)).

By Theorem 2.10, for fixed accumulators `1, w1,m1, d1, `2, w2,m2, d2 and a pre-
colouring ŝ the term

(f `1,w1,m1,d1,ŝ ∗ g`2,w2,m2,d2,ŝ)(s−1(01))

can be computed in time 2|ŝ
−1(0)||ŝ−1(0)|O(1) at once for all colourings s with pre-

colouring ŝ. Thus, the total time consumed by the evaluation of Ax is bounded by

|V |O(1)
∑

ŝ∈{0,11,12}Bx

2|ŝ
−1(0)| = 4|Bx||V |O(1).

It is easy to see that the above recurrence leads to a dynamic programming algorithm that
computes the parity of |C`W | for all values of W and ` in 4t|V |O(1) time, since |C`W | =∑

d≥2Ar(`,W, |V | − 1, d, ∅). Moreover, as we count the parities and not the numbers Ax
themselves, all arithmetical operations (in particular the ring operations in the fast subset
convolution) can be done in constant time. As discussed before, knowing in Z2 the values
of |C`W | for 0 ≤ ` ≤ |V | − 1 we can compute all values of |CkW | and |SkW | modulo 2. Thus,
the proof of Theorem 4.11 is finished.

4.4.2 Exact k-Leaf Outbranching
An arborescence is a directed graph in which, for a vertex r called the root and any other
vertex v, there is exactly one directed path from r to v. In other words, it is a directed,
rooted tree in which all edges point away from the root. A vertex of outdegree 0 in an
arborescence is called a leaf. A spanning arborescence of a directed graph is called an
outbranching (see Fig. 4.2 for an example).

EXACT k-LEAF OUTBRANCHING

Input: A directed graph D = (V,A) and an integer k, and a root r ∈ V .
Question: Does there exist an outbranching in D rooted at r with exactly k leaves?

Theorem 4.12. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves EXACT k-LEAF OUTBRANCHING in 6t|V |O(1) time. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.
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r r

Figure 4.2: A graph and one of its outbranchings rooted at r. The presented outbranching
has exactly 4 leaves.

Proof. We use the Cut&Count technique in a very similar manner as for the EXACT k-
LEAF SPANNING TREE problem. Our solutions and solution candidates are subsets of
arcs, thus we take U = A and generate a random weight function ω : U → {1, 2, . . . , N},
where N = 2|U | = 2|A|. We set v1 = r.
The Cut part. For integers W and k we define:

1. Rk
W to be the family of sets X ⊆ A, such that ω(X) = W , indegG[X](v1) = 0

and indegG[X](v) = 1 if v 6= v1, and G[X] contains exactly k vertices of outdegree
zero. Note that each weakly connected component of G[X] for X ∈ Rk

W is either a
directed unicyclic graph (a graph with exactly one cycle) or an arborescence rooted
at v1.

2. SkW to be the family of sets X ∈ Rk
W , such that G[X] is weakly connected;

3. CkW to be the family of pairs (X, (X1, X2)), where X ∈ SkW and (X1, X2) is a con-
sistent cut of G[X] with v1 ∈ X1.

The condition that for X ∈ SkW the graph G[X] is weakly connected, together with the
condition on the indegrees of vertices gives us that each X ∈ SkW is of size |V | − 1 and
induces a spanning arborescence of G rooted at v1.

As in the case of EXACT k-LEAF SPANNING TREE, we use the superscript k in the
definitions, since we perform a similar trick in the Count part and we do computations for
many values of k.
The Count part. To use Algorithm 1 we need to formally prove that for any W and k
we have |SkW | ≡ |CkW |. By a similar argument as in Lemma 3.2 for each X ∈ Rk

W there
exist 2cc(G[X])−1 consistent cuts of G[X], and the claim follows (here cc(G[X]) denotes the
number of weakly connected components of G[X]).

To finish the proof we need to show now to compute |CkW | modulo 2 in time 6tnO(1). A
straightforward dynamic programming algorithm would lead to 8tnO(1) time complexity,
thus again we need to be more careful.

Let us define the set C`W to be a family of triples (X,R, (Y1, Y2)) such that
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1. X ∈ ⋃|V |−1
k=0 Rk

W , (i.e., we do not impose any constraint on the number of outdegree
zero vertices in G[X]),

2. R ⊆ V and |R| = `,

3. each vertex v ∈ R has outdegree zero in G[X],

4. (Y1, Y2) is a consistent cut of G(V \ R,X) (defined as in the previous subsection)
with v1 /∈ Y2.

Note that, unlike the EXACT k-LEAF SPANNING TREE case, we do not need to require
that the vertices from R are not connected by edges from X , as this is guaranteed by the
outdegree condition. Moreover, we allow v1 ∈ R.

Informally speaking, there are two differences between CkW and C`W . First, instead of
requiring a prescribed number of vertices of outdegree zero, we distinguish a fixed number
of vertices that have to be of outdegree zero, and we do not care about the outdegrees of the
other vertices. Second, we consider only consistent cuts of G(V \R,X), not whole G[X].

We first note that (again) the second difference is only apparent. Let X ∈ Rk
W and

R ⊆ V be as in the definition of C`W , i.e., |R| = `, each v ∈ R is of outdegree zero inG[X].
If (X, (X1, X2)) ∈ CkW , then the cut (Y1, Y2) where Yj = Xj \ R is consistent with G(V \
R,X) and (X,R, (Y1, Y2)) ∈ C`W . In the other direction, observe that if (X,R, (Y1, Y2)) ∈
C`W , then there exists exactly one consistent cut (X1, X2) of G[X], such that v1 ∈ X1, Y1 ⊆
X1 and Y2 ⊆ X2, namelyX1 = Y1∪(NG[X](Y1)∩R)∪{v1} andX2 = Y2∪(NG[X](Y2)∩R)
(in particular, if v1 ∈ R, then v1 is isolated in G[X], and can be put safely to X1). Thus, in
the analysis that follows we can silently assume that (Y1, Y2) is in fact a consistent cut of
G[X] with v1 ∈ Y1.

Let (X, (X1, X2)) ∈ CkW . Note that we have exactly
(
k
`

)
choices of the set R, such that

(X,R, (X1 \R,X2 \R)) ∈ C`W , as any choice of ` vertices of outdegree zero in G[X] can
be used as R. Thus we have that modulo 2

|C`W | ≡
|V |−1∑
k=`

(
k

`

)
|SkW | ≡

|V |−1∑
k=`

(
k

`

)
|CkW |.

As in the case of EXACT k-LEAF SPANNING TREE, operating over the field Z2, we have
obtained a linear operator that transforms a vector (|CkW |)|V |−1

k=0 into a vector (|C`W |)|V |−1
`=0 .

Again the matrix of that operator can be computed in polynomial time and is easily inverted
(as it is upper triangular with ones on the diagonal). Thus we can compute (in Z2) all values
(|CkW |)|V |−1

k=0 knowing all values (|C`W |)|V |−1
`=0 .

To finish the proof we need to describe a procedure CountC(ω,W, `,T) that, given a
nice tree decomposition T, weight function ω and integers W and ` computes |C`W |modulo
2. Now we can use dynamic programming on the tree decomposition.

Recall that in the definition of C`W the cut (Y1, Y2) was a consistent cut of only G(V \
R,X). We make use of this fact to reduce the size of the table in the dynamic programming,
as we do not need to remember side of the cut for vertices in R.
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For every bag x ∈ T of the tree decomposition, integers 0 ≤ ` ≤ |V |, 0 ≤ w ≤ N |A|,
and s ∈ {11,12,0}Bx , sin ∈ {0,1}Bx define

Rx(`, w) =
{

(X,R)
∣∣ X ⊆ Ex ∧ R ⊆ Vx ∧ |R| = ` ∧ ω(X) = w

∧ (v ∈ Vx \Bx ⇒ indegG[X](v) = [v 6= v1]) ∧ (v ∈ Bx ⇒ indegG[X](v) ≤ [v 6= v1])

∧ (v ∈ R⇒ outdegG[X](v) = 0)
}

Cx(`, w) =
{

(X,R, (Y1, Y2))
∣∣ (X,R) ∈ Rx(`, w) ∧ v1 /∈ Y2

∧ (Y1, Y2) is a consistent cut of G(Vx \R,X)
}

Ax(`, w, s, sin) =
∣∣∣{(X,R, (Y1, Y2)) ∈ Cx(`, w)

∣∣ (s(v) = 1j ⇒ v ∈ Yj)

∧ (s(v) = 0⇒ v ∈ R) ∧ (∀v∈Bxsin(v) = indegG[X](v))
}∣∣∣

Here s(v) = 0 denotes that v ∈ R, whereas s(v) = 1j denotes that v ∈ Yj (and thus
v /∈ R). The value sin(v) denotes the indegree of v in G[X]. The accumulators ` and w
keep track of the size ofR and the weight ofX , respectively. Hence Ax(`, w, s, sin) reflects
the number of partial objects from C with fixed size of R, weight of X and interface on
vertices from Bx.

The algorithm computes Ax(`, w, s, sin) for all bags x ∈ T in a bottom-up fashion
for all reasonable values of `, w and colourings s, sin. We now give the recurrence for
Ax(`, w, s, sin) that is used by the dynamic programming algorithm. In order to simplify
notation we denote by v the vertex introduced and contained in an introduce bag, by (u, v)
the arc introduced in an introduce edge bag, and by y, z for the left and right child of x in
T if present.

• Leaf bag:
Ax(0, 0, ∅, ∅) = 1

• Introduce vertex bag:

Ax(`, w, s[v → α], sin[v → 1]) = 0

Ax(`, w, d, s[v → 0], sin[v → 0]) = Ay(`− 1, w, s, sin)

Ax(`, w, d, s[v → 11], sin[v → 0]) = Ay(`, w, s, sin)

Ax(`, w, d, s[v → 12], sin[v → 0]) = [v 6= v1]Ay(`, w, s, sin)

The new vertex has indegree zero and v1 cannot be put into Y2.

• Introduce edge bag:

Ax(`, w, s, sin) = Ay(`, w, s, sin) + Ay(`, w − ω((u, v)), s, sin[v → 0])

if (s(u) = s(v) = 1j ∨ (s(u) = 1j ∧ s(v) = 0)) ∧ v 6= v1 ∧ sin(v) = 1

Ax(`, w, s, sin) = Ay(`, w, s, sin) otherwise

Here we consider adding the arc (u, v) to X . First, we need that v 6= v1. Second, we
need that u, v ∈ Yj or u ∈ Yj and v ∈ R. Moreover, we need to update the indegree
of v and the accumulator keeping the weight of X .
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• Forget bag:

Ax(`, w, s, sin) =
∑

α∈{0,11}

Ay(`, w, s[v → α], sin[v → 0]) if v = v1

Ax(`, w, s, sin) =
∑

α∈{0,11,12}

Ay(`, w, s[v → α], sin[v → 1]) otherwise

If we forget v = v1, we require that its indegree is zero and v /∈ Y2. Otherwise, we
require that the indegree of the forgotten vertex is one.

• Join bag: Let us define for T ⊆ Bx a colouring sin[T ] as sin[T ](v) = 1 if v ∈ T and
sin[T ](v) = 0 otherwise. Then

Ax(`, w, s, sin) =
∑

`1+`2=`+|s−1(0)|

∑
w1+w2=w

∑
T1,T2⊆Bx

[T1 ∪ T2 = s−1
in (1)][T1 ∩ T2 = ∅]Ay(`1, w1, s, sin[T1])Az(`2, w2, s, sin[T2])

The colourings s in children need to be the same, whereas the colourings sin in the
children need to sum up to the colouring sin in the bag x, i.e., a vertex v has indegree
one only if it has indegree one in exactly one of the children bags. Since vertices
coloured 0 in Bx are accounted for in both tables of the children, we add their con-
tribution to the accumulator `.

To compute the recursive formula efficiently we need to use fast subset convolution.
For accumulators `, w and a colouring s we define the following functions on subsets
Bx

f `,w,s(T ) = Ay(`, w, s, sin[T ]),

g`,w,s(T ) = Az(`, w, s, sin[T ]).

Now note that

Ax(`, w, s, sin) =
∑

`1+`2=`+|s−1(0)|

∑
w1+w2=w

(f `1,w1,s ∗ g`2,w2,s)(s−1
in (1))

By Theorem 2.10, for fixed accumulators `1, w1, `2, w2 and a colouring s the term

(f `1,w1,s ∗ g`2,w2,s)(s−1
in (1))

can be computed in time 2ttO(1) at once for all colourings sin. Thus, the total time
consumed by the evaluation of Ax is bounded by 6tnO(1).

It is easy to see that the above recurrence leads to a dynamic programming algorithm that
computes the parity of |C`W | for all values of W and ` in 6t|V |O(1) time, since |C`W | =
Ar(`,W, ∅, ∅). Moreover, as we count the parities and not the numbers Ax themselves,
all arithmetical operations (in particular the ring operations in the fast subset convolution)
can be done in constant time. As discussed before, knowing in Z2 the values of |C`W | for
0 ≤ ` ≤ |V | − 1 we can compute all values of |CkW | and |SkW | modulo 2. Thus, the proof of
Theorem 4.12 is finished.
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4.5 Maximum Full Degree Spanning Tree

In this section we solve a bit more general version of MAXIMUM FULL DEGREE SPAN-
NING TREE where the tree in question needs to contain exactly the prescribed number of
vertices of full degree.

EXACT FULL DEGREE SPANNING TREE

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a spanning tree T of G for which there are exactly k vertices
satisfying degG(v) = degT (v)?

Theorem 4.13. There exists a Monte-Carlo algorithm that given a tree decomposition of
width t solves the EXACT FULL DEGREE SPANNING TREE problem in 4t|V |O(1) time. The
algorithm cannot give false positives and may give false negatives with probability at most
1/2.

Proof. We use the Cut&Count technique. As a universe we take the set of edges U = E.
As usual we assume that we are given a weight function ω : U → {1, ..., N}, where
N = 2|U | = 2|E|. Let v1 be an arbitrary vertex.
The Cut part. For an integer W we define:

1. RW to be the family of solution candidates of weight W , that is subsets of exactly
|V | − 1 edges X ⊆ E, |X| = |V | − 1, ω(X) = W , such that there are exactly k
vertices v satisfying degG(v) = degG[X](v),

2. SW to be the set of solutions, that is solution candidatesX ∈ RW such that the graph
G[X] is connected;

3. CW to be the family of pairs (X, (X1, X2)), where X ∈ RW , v1 ∈ X1, and (X1, X2)
is a consistent cut of the graph G[X].

Observe that for X ∈ RW the graph G[X] is connected iff G[X] is a tree, since |X| =
|V | − 1. Thus SW is indeed a family of solutions of weight W .
The Count part. To use Algorithm 1 we need to formally prove that for any W we have
|SW | ≡ |CW |. By a similar argument as in Lemma 3.2 for each X ∈ RW there exist
2cc(G[X])−1 consistent cuts of the graph G[X], and the claim follows.

To finish the proof we need to show how to compute |CW | modulo 2 in time 4tnO(1)

using dynamic programming. In a state we store the number of vertices that are already
forgotten and have all their incident edges chosen, the number of already chosen edges,
the sum of weights of already chosen edges, and moreover for each vertex of the bag we
remember the side of the cut and one bit of information whether there exists some already
introduced edge incident with that vertex that was not chosen. Formal definition follows.

For a bag x ∈ T of the tree decomposition, integers 0 ≤ i ≤ |V |, 0 ≤ b < |V |,
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0 ≤ w ≤ N(|V | − 1), scut ∈ {1,2}Bx and sdeg ∈ {0,1}Bx define

Rx(i, b, w) =
{
X ⊆ Ex

∣∣ |X| = b ∧ ω(X) = w

∧ |{v ∈ Vx \Bx : degGx(v) = degX(v)}| = i
}

Cx(i, b, w) =
{

(X, (X1, X2))
∣∣ X ∈ Rx(i, b, w)

∧ v1 ∈ X1 ∧ (X1, X2) is a consistent cut of (Vx, X)
}

Ax(i, b, w, scut, sdeg) =
∣∣∣{(X, (X1, X2)) ∈ Cx(i, b, w)

∣∣(v ∈ Xj ∩Bx ⇒ scut(v) = j)

∧ (sdeg(v) = 0⇒ degGx(v) = degX(v)) ∧ (sdeg(v) = 1⇒ degGx(v) > degX(v))
}∣∣∣

By scut(v) = j we denote v ∈ Xj , whereas sdeg(v) is equal to one iff there exists an
edge in Ex \X that is incident with v. Hence Ax(i, b, w, scut, sdeg) is the number of pairs
from Cx(i, b, w) with a fixed interface on vertices from Bx.

The algorithm computes Ax(i, b, w, scut, sdeg) for all bags x ∈ T in a bottom-up fash-
ion for all reasonable values of i, b, w, scut and sdeg. We now give the recurrence for
Ax(i, b, w, scut, sdeg) that is used by the dynamic programming algorithm. As usual v de-
notes the vertex introduced and contained in an introduce bag, uv the edge introduced in
an introduce edge bag, and y, z the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, 0, ∅, ∅) = 1

• Introduce vertex bag:

Ax(i, b, w, scut[v → 1], sdeg[v → 0]) = Ay(i, b, w, scut, sdeg)

Ax(i, b, w, scut[v → 2], sdeg[v → 0]) = [v 6= v1]Ay(i, b, w, scut, sdeg)

Ax(i, b, w, scut[v → α], sdeg[v → 1]) = 0

We make sure that v1 belongs to X1.

• Introduce edge bag:

Ax(i, b, w, scut, sdeg) = [scut(u) = scut(v)]Ay(i, b− 1, w − ω(uv), scut, sdeg)

+
∑

αu,αv∈{0,1}

Ay(i, b, w, scut, sdeg[u→ αu, v → αv])

if sdeg(u) = sdeg(v) = 1

Ax(i, b, w, scut, sdeg) = [scut(u) = scut(v)]Ay(i, b− 1, w − ω(uv), scut, sdeg)

otherwise

If sdeg(u) = sdeg(v) = 1 then we have an option of not taking the edge uv to the set
X . In this case, the previous values of sdeg(u) and sdeg(v) can be arbitrary.
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• Forget bag:

Ax(i, b, w, scut, sdeg) =
∑

j∈{1,2}

∑
α∈{0,1}

Ay(i− [α = 0], b, w, scut[v → j], sdeg[v → α])

If the vertex v had all incident edges chosen (α = 0) then we update the accumula-
tor i.

• Join bag:

The only valid combinations to achieve the colouring scut is to have the same colour-
ing in both children. However we have sdeg(v) = 1 in x if and only if sdeg(v) = 1
in y or in z. Hence we use a covering product. We somewhat abuse the notation and
identify a function sdeg with a subset s−1

deg(1) ⊆ Bx. Let us define

f i,b,w,scut(sdeg) = Ay(i, b, w, scut, sdeg)

gi,b,w,scut(sdeg) = Az(i, b, w, scut, sdeg)

hi,b,w,scut(sdeg) =
∑

i1+i2=i

∑
b1+b2=b

∑
w1+w2=w

(f i1,b1,w1,scut ∗c gi2,b2,w2,scut)(sdeg)

Consequently we have

Ax(i, b, w, scut, sdeg) = hi,b,w,scut(sdeg)

It is easy to see that we can combine the above recurrence with dynamic programming.
For each of the 2t|V |O(1) argument values of i,b,w and scut the covering product ∗c can be
computed in 2t|V |O(1) by Theorem 2.10. Note that as we perform all calculations modulo
2, we take only constant time to perform any arithmetic operation.

Since |CW | = Ar(k, |V |−1,W, ∅, ∅) the above recurrence leads to a dynamic program-
ming algorithm that computes the parity of |CW | (and thus of |SW | as well) for all reason-
able values ofW in 4t|V |O(1) time. Consequently we finish the proof of Theorem 4.13.

4.6 Graph Metric Travelling Salesman Problem
The GRAPH METRIC TRAVELLING SALESMAN PROBLEM is a special case of the TRAV-
ELLING SALESMAN PROBLEM where the metric is induced by shortest paths in an undi-
rected graph. Recently this problem received considerable attention [42, 62] due to two
independently obtained approximation algorithms that break the 3/2-approximation ratio
of the classical algorithm of Christofides.

GRAPH METRIC TRAVELLING SALESMAN PROBLEM

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a closed walk (possibly repeating edges and vertices) of length
at most k that visits each vertex of the graph at least once?
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Theorem 4.14. There exists a Monte-Carlo algorithm that given a tree decomposition
of width t solves the GRAPH METRIC TRAVELLING SALESMAN PROBLEM problem in
4t|V |O(1) time. The algorithm cannot give false positives and may give false negatives with
probability at most 1/2.

Proof. We use the Cut&Count technique. Observe that we may assume thatG is connected
and k ≤ 2(|V | − 1) because taking twice all edges of any spanning tree gives a solution
(in particular the value of k is polynomially bounded in |V |). Furthermore note that for a
yes-instance there exists a closed walk which uses each edge at most twice, since a solution
is an Eulerian subgraph and if an edge is used at least three times then we may use it two
times less while still obtaining a solution.

Since we want to distinguish the case when we take an edge once or twice to the solu-
tion, as a universe we take the set U = E×{1, 2}, where we use (e, 1) if an edge is chosen
once and (e, 2) in case we use e twice. As usual we assume that we are given a weight
function ω : U → {1, ..., N}, where N = 2|U | = 4|E|. Let v1 be an arbitrary vertex.
The Cut part. For integers i and W we define:

1. Ri
W to be the family of solution candidates of size i and weight W , that is functions

φ ∈ {0, 1, 2}E where
∑

e∈E φ(e) = i,
∑

e∈E,φ(e)>0 ω((e, φ(e))) = W , such that for
each vertex v ∈ V its degree is even, i.e., |{uv ∈ E : φ(e) = 1}| ≡ 0;

2. S iW to be the set of solutions, that is solution candidates φ ∈ Ri
W such that the graph

G[φ−1({1, 2})] is connected;

3. CiW to be the family of pairs (φ, (X1, X2)), where φ ∈ Ri
W , v1 ∈ X1, and (X1, X2)

is a consistent cut of the graph G[φ−1({1, 2})].
We want to check whether there exist numbers W and i ≤ k such that S iW 6= ∅.
The Count part. To use Algorithm 1 we need to formally prove that for any i and W we
have |S iW | ≡ |CiW |. By a similar argument as in Lemma 3.2 for each φ ∈ Ri

W there exist
2cc(G′)−1 consistent cuts of the graph G′ = G[φ−1({1, 2})], and the claim follows.

To finish the proof we need to show how to compute |CiW | modulo 2 in time 4tnO(1)

using dynamic programming.
For a bag x ∈ T of the tree decomposition, integers 0 ≤ i ≤ k, 0 ≤ w ≤ kN ,

scut ∈ {1,2}Bx and sdeg ∈ {0,1}Bx define

Rx(i, w) =
{
φ ∈ {0, 1, 2}Ex

∣∣ ∑
e∈Ex

φ(e) = i ∧
∑

e∈Ex,φ(e)>0

ω((e, φ(e))) = w

∧ ∀v∈Vx\Bx|{uv ∈ Ex : φ(uv) = 1}| mod 2 = 0
}

Cx(i, w) =
{

(φ, (X1, X2))
∣∣ φ ∈ Rx(i, w)

∧ v1 ∈ X1 ∧ (X1, X2) is a consistent cut of Gx[φ
−1({1, 2})]

}
Ax(i, w, scut, sdeg) =

∣∣∣{(φ, (X1, X2)) ∈ Cx(i, w)
∣∣(scut(v) = j ⇒ v ∈ Xj)

∧ ∀v∈Bxsdeg(v) ≡ |{uv ∈ Ex : φ(uv) = 1}|
}∣∣∣
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The accumulators i andw keep track of the number of edges chosen (with multiplicities)
and the appropriate sum of weights. In the sequence scut we store the information about the
side of the cut of each vertex from Bx, whereas sdeg is used to remember whether a vertex
has an odd or even degree in the multigraph induced by φ. Hence Ax(i, w, scut, sdeg) is the
number of pairs from Cx(i, w) with a fixed interface on vertices from Bx.

The algorithm computes Ax(i, w, scut, sdeg) for all bags x ∈ T in a bottom-up fash-
ion for all reasonable values of i, w, scut and sdeg. We now give the recurrence for
Ax(i, w, scut, sdeg) that is used by the dynamic programming algorithm. As usual let v
stand for the vertex introduced and contained in an introduce bag, uv for the edge intro-
duced in an introduce edge bag, and y, z for the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, ∅, ∅) = 1

• Introduce vertex bag:

Ax(i, w, scut[v → 1], sdeg[v → 0]) = Ay(i, w, scut, sdeg)

Ax(i, w, scut[v → 2], sdeg[v → 0]) = [v 6= v1]Ay(i, w, scut, sdeg)

We make sure that v1 belongs to X1.

• Introduce edge bag:

Ax(i, w, scut, sdeg) = Ay(i, w, scut, sdeg)+

[scut(u) = scut(v)]Ay(i− 1, w − ω((uv, 1)), scut, s
′
deg)+

[scut(u) = scut(v)]Ay(i− 2, w − ω((uv, 2)), scut, sdeg)

where by s′deg we denote sdeg with changed values for u and v, formally

s′deg = sdeg[u→ 1− sdeg(u), v → 1− sdeg(v)].

We can either not take an edge or take it once or twice.

• Forget bag:

Ax(i, w, scut, sdeg) =
∑

j∈{1,2}

Ay(i, w, scut[v → j], sdeg[v → 0])

We simply check the parity of the degree of the vertex which we are about to forget.
Both sides of the cut are allowed.

• Join bag:

The only valid combinations to achieve the colouring scut is to have the same colour-
ing in both children. However for sdeg we have to calculate the xor product of sdeg(v)
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for y and z. We somewhat abuse the notation and identify a function sdeg with a sub-
set s−1

deg(1) ⊆ Bx. Let us define

f i,w,scut(sdeg) = Ay(i, w, scut, sdeg)

gi,w,scut(sdeg) = Az(i, w, scut, sdeg)

hi,w,scut(sdeg) =
∑

i1+i2=i

∑
w1+w2=w

(f i1,w1,scut ∗x gi2,w2,scut)(sdeg)

Consequently we have

Ax(i, w, scut, sdeg) = hi,w,scut(sdeg)

It is easy to see that we can combine the above recurrence with dynamic programming.
For each of the 2t|V |O(1) argument values of i,w and scut the xor product can be computed
in 2t|V |O(1) by Theorem 2.15. Note that as we perform all calculations modulo 2, we take
only constant time to perform any arithmetic operation.

Since for each i we have |CiW | = Ar(i,W, ∅, ∅) the above recurrence leads to a dynamic
programming algorithm that computes the parity of |CiW | (and thus of |S iW | as well) for
all reasonable values of W and i in 4t|V |O(1) time. Consequently we finish the proof of
Theorem 4.14.
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Chapter 5

Solution size parametrization

In this chapter we show how the Cut&Count technique may be used to obtain FPT al-
gorithms when parameterized by the solution size. We study vertex deletion problems in
which the remaining graph has to be of constant treewidth. These problems are FEEDBACK

VERTEX SET, CONNECTED VERTEX COVER and CONNECTED FEEDBACK VERTEX SET

and improve the best known FPT algorithms for all three problems. The main idea behind
the new results is the combination of the iterative compression technique, developed by
Reed et al. [67], and the Cut&Count technique.

In the last section of this chapter we give an evidence that it is hard to improve the algo-
rithm for CONNECTED VERTEX COVER, that is we show that unless Strong Exponential
Time Hypothesis fails there does not exist an algorithm with (2− ε)k|V |O(1) running time
which computes the parity of the number of connected vertex covers of size k in a given
graph G = (V,E). To the best of our knowledge this is the first example of a problem
parameterized by the solution size where there exists some evidence showing that it might
be optimal.

5.1 Feedback Vertex Set

We begin with the FEEDBACK VERTEX SET problem, as it was exhaustively studied by
the parameterized complexity community. Let us recall that previously best algorithm, due
Cao, Chen and Liu, runs in 3.83knO(1) time [18].

Theorem 5.1 (Theorem 1.5, restated). There exists a Monte-Carlo algorithm for the FEED-
BACK VERTEX SET problem in a graph with n vertices in 3knO(1) time and polynomial
space. The algorithm cannot give false positives and may give false negatives with proba-
bility at most 1/2.

Proof. Let v1, v2, . . . , vn be an arbitrary ordering of the vertices of the given graph G =
(V,E). Let us denote Gi = G[{v1, v2, . . . , vi}] for all 1 ≤ i ≤ n. Observe that if G admits
a feedback vertex set of size at most k, i.e. there is a set A ⊆ V, |A| ≤ k such that G[V \A]
is a forest, then so do all the graphs Gi, because Gi[{v1, v2, . . . , vi} \ A] is a forest as well
and |A ∩ {v1, v2, . . . , vi}| ≤ |A| ≤ k.

75
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We construct feedback vertex sets A1, A2, . . . , An of size at most k consecutively in
G1, G2, . . . , Gn = G. If at any step the algorithm finds out that the set we seek does not
exist (with high probability), we answer NO. We begin with A1 = ∅, which is a feasible
solution in graph G1 (we ignore the trivial case k = 0). The idea of iterative compression
is that when we are to construct the set Ai+1, we can use the previously constructed set Ai.
Let Bi+1 = Ai ∪ {vi+1}. Observe that Bi+1 is a feedback vertex set in Gi+1. If |Bi+1| ≤ k,
then we takeAi+1 = Bi+1. Thus we are left with the case in which, given a feedback vertex
set, call it B, of size k + 1, we need to construct a feedback vertex set of size at most k or
determine that none such exists.

As B is a feedback vertex set, the graph induced by the rest of the vertices is a forest.
Thus we can construct a tree decomposition of the graph Gi+1 of width at most k + 2 by
creating a tree decomposition of the forest of width 1 and adding the whole set B to each
bag. To begin with, we test whether Gi+1 admits a feedback vertex set of size at most k.
We apply (using the tree decomposition obtained above as the input) the dynamic program-
ming algorithm described in Section 4.1, running in 3knO(1) time, which tests whether the
graph admits a feedback vertex set of size at most k. Observe that this algorithm, as de-
scribed in the proof of Theorem 4.2, uses exponential space. However, in each step when
computing Ax(a, b, c, w, s) the algorithm refers only to values Ay(a′, b′, c′, w′, s′), where
s′ = s on the intersection of the domains of s and s′. In our case the intersection of every
two bags of the tree decomposition contains B. Therefore we can reorder the computation
in the following manner: for every evaluation s : B → {0,11,12} we fix it as the „core”
evaluation for every bag in the decomposition and run the algorithm to compute all the val-
ues Ax(a, b, c, w, s), where s|B = s. Such a computation takes polynomial time and space.
As there are 3k+1 such possible evaluations s, the algorithm runs in 3knO(1) time and in
polynomial space. We make n independent runs of the algorithm in order to assure that the
probability of a false negative is at most 1

2n
.

Once we have done this, we already tested with high probability whether the desired
feedback vertex set exists or not. If the answer is negative, we answer NO. Otherwise we
need to explicitly construct the set Ai+1 in order to use it in the next step of the iterative
compression. We make use of the algorithm for CONSTRAINED FEEDBACK VERTEX SET,
given by Theorem 4.2. The algorithm considers the vertices of Gi+1 one by one, building
a set K which at the end will be the set Ai+1 we want to construct. We begin with K = ∅
and preserve an invariant that at each step there is a feedback vertex set of size at most k
containing the set K. When considering the vertex v, we test in 3knO(1) time whether the
graph admits a constrained feedback vertex set of size at most k with S = K∪{v}, making
n independent runs of the algorithm given by Theorem 4.2 in order to reduce the probability
of a false negative to at most 1

2n
. If the answer is positive, we can safely add v to K as we

know that there is a feedback vertex set of size at most k containing K ∪ {v} (recall our
algorithms do not return false positives). Otherwise we simply proceed to the next vertex.
The computation terminates when K is already a feedback vertex set or when we have
exhausted all vertices. Observe that if Gi+1 admits a feedback vertex set of size at most k,
this construction will terminate building a feedback vertex set Ai+1 of size at most k unless
there was an error in at least one of the tests. If we exhaust all vertices, we answer NO, as an
error has occurred. Note that in each run of the algorithm for CONSTRAINED FEEDBACK

VERTEX SET we can reorder the computation in the same way as in the previous paragraph
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to reduce space usage to polynomial.
Observe that the described algorithm at most n2 + n times makes n independent runs

of the algorithm from Theorem 4.2 as a subroutine: at most n + 1 times in each of the n
steps of the iterative compression. Each of these groups of runs has the probability of a
false negative bounded by 1

2n
, thus the probability of a false negative is bounded by n2+n

2n
,

which is lower than 1
2

for n large enough.

5.2 Connected Vertex Cover
Now we proceed to the algorithm for CONNECTED VERTEX COVER. The previously best
FPT algorithm is due to Binkele-Raible [6], and runs in 2.4882knO(1) time complexity. The
following algorithm is also an application of iterative compression, however we make use
of the connectivity requirement in order to reduce the complexity from 3knO(1) down to
2knO(1).

Theorem 5.2. There exists a Monte-Carlo algorithm for the CONNECTED VERTEX COVER

problem in a graph with n vertices in 2knO(1) time and polynomial space. The algorithm
cannot give false positives and may give false negatives with probability at most 1/2.

Proof. Firstly observe that the CONNECTED VERTEX COVER problem is contraction–
closed. This means that if a graph H admits a connected vertex cover A of size at most k,
then H ′ obtained from H by contracting an edge of H (and reducing possible multiedges
to simple edges) also admits a connected vertex cover A′ of size at most k. Indeed, the
contracted edge uv needs to be covered by A, so u ∈ A or v ∈ A. Thus we can construct
A′ by removing u and v from A and adding the vertex obtained from the contracted edge.
It can be easily seen that A′ is a connected vertex cover of H ′ of size at most k.

Therefore, we can consider a sequence of graphs G1, G2, . . . , Gn = G (G is the con-
nected graph given in the input), where Gi is obtained from Gi+1 by contracting any edge
and reducing possible multiedges to simple edges, and G1 is a graph composed of a single
vertex. The argument from the previous paragraph ensures that we can proceed as in the
proof of Theorem 5.1, namely construct connected vertex covers for G1, G2, . . . , Gn con-
secutively, and the only thing we have to show is how to construct a connected vertex cover
of size k in Gi+1 given a connected vertex cover Ai of size k in Gi, or determine that none
exists.

Let Gi be constructed from Gi+1 by contracting an edge uv. We construct a set B
from Ai by removing the vertex obtained in the contraction (if it was contained in Ai) and
inserting both u and v. Observe that B is of size at most k + 2 and it is a vertex cover
of Gi+1. As V (Gi+1) \ B is an independent set, we can construct a path decomposition
of Gi+1 of width at most k + 2: for every vertex from V (Gi+1) \ B we introduce a bag,
connect the bags in any order and then add the set B to every bag.

Now we are going to test whether Gi+1 admits a connected vertex cover of size at
most k. We could apply the algorithm from Theorem 4.4. As in the proof of Theorem
5.1, also this dynamic programming algorithm during the computation of Ax(i, w, s) refers
only to values Ay(i′, w′, s′) for s′ such that s = s′ on the intersection of domains of s
and s′. Therefore, similarly as before, we would iterate through all possible evaluations
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s : B → {0,11,12}, each time computing all the values Ax(i,W, s) such that s|B = s in
polynomial time, thus using only polynomial space in the whole algorithm. Unfortunately,
the algorithm given by Theorem 4.4 runs in 3knO(1) time.

We can, however, reduce the complexity by bounding the number of reasonable evalu-
ations s : B → {0,11,12} by 33 · 2k−1. The set B induces in Gi+1 a graph consisting of a
single large connected component (coming from Ai), and at most two additional vertices.
Take any spanning tree of the large component and root it at some vertex r. We present
the evaluation s in the following manner. For the root r and the two additional vertices we
choose any value from {0,11,12} for s, giving 33 choices in total. Now consider the rest of
the tree (containing all the remaining vertices from B) in a top–down manner. Observe that
every vertex v from the tree has only two possible evaluations, depending on the evaluation
of its parent u:

• if s(u) = 0, the two possible options are 11,12, as otherwise the edge connecting v
with its parent would not be covered;

• if s(u) = 1j , the two possible options are 0 and 1j , as otherwise the evaluation s
would not describe any consistent cut.

Thus each of k + 2 elements of B has only two options, except from the starting 3, which
have 3 options each. This means we only need to consider 33 · 2k−1 possible „core” evalu-
ations s, which yields an algorithm with running time 2knO(1), using polynomial space. As
previously, we make n independent runs of the algorithm in order to reduce the probability
of a false negative to at most 1

2n
.

Once we have tested whether Gi+1 admits a connected vertex cover of size at most k,
we can construct it explicitly similarly as in the proof of Theorem 5.1 using the algorithm
for CONSTRAINED CONNECTED VERTEX COVER. We consider vertices one by one, each
time determining whether the vertex can be inserted into the connected vertex cover we
are constructing by running the algorithm from Theorem 4.4 n times. Observe that all
these runs can be done in 2knO(1) time and polynomial space complexity using the same
technique as in the testing. Thus we succeed in constructing Ai+1 unless at least one of the
tests returns a false negative.

The algorithm makes at most n2 + n groups of n independent runs of algorithm from
Theorem 4.4. Therefore the probability of a false negative is bounded by n2+n

2n
which is

less than 1
2

for n large enough.

5.3 Connected Feedback Vertex Set
Finally, we use a similar technique to obtain an algorithm for CONNECTED FEEDBACK

VERTEX SET. The previously best FPT algorithm is due to Misra et al. [60], and runs in
46.2knO(1) time complexity.

Theorem 5.3. There exists a Monte-Carlo algorithm solving the CONNECTED FEEDBACK

VERTEX SET problem in a graph with n vertices in 3knO(1) time and polynomial space.
The algorithm cannot give false positives and may give false negatives with probability at
most 1/2.
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Proof. Similarly as in the proof of Theorem 5.2, the CONNECTED FEEDBACK VERTEX

SET problem is also contraction–closed. Consider any graph H and obtain H ′ by contract-
ing an edge uv into a vertex w. Consider a connected feedback vertex set A of a graph H
of size at most k and construct a set A′ ⊆ V (H ′) as following:

• if u, v /∈ A then A′ = A;

• otherwise A′ = (A ∪ {w}) \ {u, v}.

It can be easily seen that A′ is a connected feedback vertex set of H ′ of size at most k.
This observation enables us to use iterative compression approach, similarly as in the

proof of Theorem 5.2. Namely we consider a sequence of graphsG1, G2, . . . , Gn = G (G is
the connected graph given in the input), whereGi is obtained fromGi+1 by contracting any
edge and reducing possible multiedges to simple edges. For every Gi we try to construct
a connected feedback vertex set Ai in a consecutive manner and if at any step we fail, we
can safely answer NO. Thus we need to show a way of constructing a connected feedback
vertex set of size k in Gi+1 given a connected feedback vertex set Ai of size k in Gi, or
determining that none exists.

Let Gi be constructed from Gi+1 by contracting an edge uv. We construct a set B
from Ai by removing the vertex obtained in the contraction (if it was included in Ai) and
inserting both u and v. Observe that B is a feedback vertex set of Gi+1 of size at most k+2
containing a connected component of size at least |B| − 2. Therefore, we can construct a
tree decomposition of graph Gi+1 of width k+ 3 by constructing the tree decomposition of
width 1 of the forest Gi+1 \B and including B into every bag.

Now we are going to test whether Gi+1 admits a connected feedback vertex set of size
at most k. A straightforward application of the algorithm from Theorem 4.7 would yield
an algorithm with running time 4knO(1). Once again this algorithm, has the property of
referring only to previously computed values with the same evaluation on the intersection
of the domains, so we can also apply the method already used in proofs of Theorems 5.1
and 5.2 to reduce the space usage to polynomial.

Once again, using the special structure of the set B we can also reduce the time com-
plexity down to 3knO(1) by bounding the number of reasonable evaluations s : B →
{01,02,11,12} by 433k−1. The graph G[B] consists of a large connected component and at
most two additional vertices. Take any spanning tree of the connected component and root
it in a vertex r. Each reasonable evaluation s can be coded in the following manner: vertex
r and the two possible additional vertices have 4 possibilities of the value in s, but every
other vertex in the tree has only three possibilities, depending on the value s(u), where u
denotes the parent of v:

• if s(u) = 0j , the possibilities are 11, 12 and 0j;

• if s(u) = 1j , the possibilities are 01, 02 and 1j;

as otherwise the cut could not be consistent. Thus every vertex from B has only 3 pos-
sibilities, apart from at most 3, which have 4 possibilities. So the number of reasonable
evaluations s is bounded by 433k−1, thus the testing algorithm runs in time complexity
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3knO(1) and uses polynomial space. Again we make n independent runs of the algorithm
in order to reduce the probability of a false negative to at most 1

2n
.

The idea of reconstructing the solution is the same as in the proofs of Theorems 5.1 and
5.2. We consider vertices one by one iteratively constructing a connected feedback vertex
set. At each step we determine whether the considered vertex can or cannot be taken as the
next vertex of the so far built part of the solution, using the algorithm for CONSTRAINED

CONNECTED FEEDBACK VERTEX SET obtained in Theorem 4.7. If it can, we take it,
otherwise we just proceed to the next vertex. At each step we make n independent runs to
reduce the probability of a false negative to at most 1

2n
. If the graph admitted a connected

feedback vertex set of size at most k, we will construct it in this manner unless at least
one test gives a false negative. Again, using previous observations the computation in each
of the runs can be reordered so that the running time is 3knO(1) and the space usage is
polynomial.

Again, by the union bound the probability of obtaining a false negative in any of the
tests is bounded by n2+n

2n
which for large enough n is lower than 1

2
, as we make at most

n2 + n groups of n independent runs of the algorithm from Theorem 4.7.

5.4 CVC as hard as CNF-SAT
In this section we present a chain of reductions showing that it is not possible to determine
the parity of the number of connected vertex covers of size k in (2−ε)k|V |O(1) time for any
ε > 0 unless the Strong Exponential Time Hypothesis fails. To the best of our knowledge
this is the first evidence that an existing algorithm for a problem parameterized by the
solution size is the fastest possible.

5.4.1 From CNF-Sat to Hitting Set

Let us begin by recalling the following result of Calabro et al [16].

k-UNIQUE-CNF-SAT

Input: A CNF formula Φ consisting of m clauses of size at most k on n variables having
at most one satisfying assignment.
Question: Is there a satisfying assignment for Φ?

Theorem 5.4 ([16]). If there exists ε > 0 such that for any positive integer k there exists
an algorithm for the k-UNIQUE-CNF-SAT problem running in (2− ε)nnO(1) time then the
Strong Exponential Time Hypothesis fails.

We will also use the Sparsification Lemma proved by Impagliazzo et al [49].

Lemma 5.5 (Sparsification Lemma, Theorem 1 and Corollary 1 of [49]). For every ε > 0
and positive integer k, there is a constant C so that any k-CNF-SAT formula Φ with n
variables can be expressed as Φ =

∨t
i=1 Ψi, where t ≤ 2εn and each Ψi is a k-CNF-SAT

formula with at most Cn clauses and at most n variables.
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Moreover, this disjunction can be computed by an algorithm running in time 2εnnO(1)

and the number of satisfying assignments for each Ψi is not greater than the number of
satisfying assignments of Φ.

We define the following variant of the satisfiability problem.

(k1, k2)-⊕CNF-SAT

Input: A CNF formula Φ consisting of m clauses of size at most k1 on n variables, where
m ≤ k2n.
Question: Is the number of satisfying assignments for Φ odd?

Using Sparsification Lemma we prove the following theorem.

Theorem 5.6. If there exists ε > 0 such that for any positive integers k1, k2 there exists an
algorithm for the (k1, k2)-⊕CNF-SAT problem running in (2 − ε)nnO(1) time then there
exists ε2 > 0 such that for any positive integer k there exists an algorithm for the k-
UNIQUE-CNF-SAT problem running in (2− ε2)nnO(1) time.

Proof. Let k be any positive integer and let Φ be a formula of k-UNIQUE-CNF-SAT. Set
ε′ so that (2 − ε)2ε′ = 2 − ε2 for some ε2 > 0. Now use the Sparsification Lemma on the
formula Φ with ε′. As a result in time 2ε

′nnO(1) we obtain a set {Ψi : 1 ≤ i ≤ t} of at most
2ε
′n k-CNF-SAT formulas with at most Cn clauses each. Moreover by the property of

the Sparsification Lemma that ensures that the number of satisfying assignments does not
increase we infer that each Ψi is satisfiable iff it has an odd number of solutions. Therefore
for each Ψi we can use the (2− ε)nnO(1) time algorithm.

The total running time is 2ε
′nnO(1) + 2ε

′n(2 − ε)nnO(1) which is upper bounded by
(2− ε2)nnO(1) and the theorem follows.

Now we present a reduction from (k1, k2)-⊕CNF-SAT to (p1, p2)-⊕HITTING SET.

(p1, p2)-⊕HITTING SET

Input: A set system F ⊆ 2U where |F| = m,|U | = n, for every S ∈ F , |S| ≤ p1 and
m ≤ p2n.
Question: Is the number of X ⊆ U , with X ∩ S 6= ∅ for each S ∈ F , odd?

Theorem 5.7. If there exists ε > 0 such that for any positive integers p1, p2 there exists
an algorithm for the (p1, p2)-⊕HITTING SET problem running in (2 − ε)nnO(1) time then
there exists ε2 > 0 such that for any positive integers k1, k2 there exists an algorithm for
the (k1, k2)-⊕CNF-SAT problem running in (2− ε2)nnO(1) time.

Proof. Consider some positive integers k1, k2. Let us define the following procedure trans-
forming an instance of (k1, k2)-⊕CNF-SAT (that is a formula Φ) into a set system.

Assume Φ = C1∧ . . .∧Cm over n variables v1, . . . , vn where each Ci is a clause of size
at most k1. Let p be a positive odd integer such that (2 − ε)1+(2dlog pe+1)/p = (2 − ε2) for
some ε2 > 0. Note that p is a constant. W.l.o.g. we assume that p divides n since otherwise
we can add dummy variables together with clauses ensuring that the added variables are
false in any satisfying assignment. Let us denote g = n/p. Create the set system F ⊆ 2U

as follows.
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1. Let p′ = p + 2dlog pe be an odd integer (recall that p is odd) and
let U = {u1, . . . , un′ , e1, . . . , eg} with n′ = p′ · g.

2. Partition the set of variables {v1, . . . , vn} of Φ into g blocks Vi of size p, i.e. Vi =
{vpi+1, . . . , vp(i+1)}.

3. Partition the set {u1, . . . , un′} into g blocksUi of size p′, i.e. Ui = {up′i+1, . . . , up′(i+1)}.

4. For each block Ui arbitrarily choose an injective function ψi : 2Vi →
(

Ui
dp′/2e

)
. This

exists since∣∣∣∣( Ui
dp′/2e

)∣∣∣∣ =

(
p′

dp′/2e

)
≥ 2p

′

p′
≥ 2pp2

p+ 2dlog pe ≥ 2p =
∣∣2Vi∣∣ .

We think of ψi as a mapping that given an assignment to the variables of Vi associates
with it a subset of Ui of size dp′/2e.

5. For each block Ui, for each X ∈
(

Ui
dp′/2e

)
add the set X to F .

6. For each block Ui, for each X ∈
(

Ui
bp′/2c

)
such that ψ−1

i ({Ui \ X}) = ∅, add the set
X to F .

7. For every clause C of Φ, do the following:

• Let I = {1 ≤ j ≤ g | C contains a variable of block Vj};
• For every i ∈ I , define Ai as the set{

X ∈
(

Ui
bp′/2c

) ∣∣∣∣ψ−1
i ({Ui \X}) contains an assignment of Vi not satisfying C

}
;

• For every tuple (Ai)i∈I with Ai ∈ Ai, add the set
⋃
i∈I Ai to F .

8. For every block Ui for every X ∈
(

Ui
bp′/2c

)
, add the set X ∪ {ei} to the set family.

Let R ⊆ 2U be the family containing all sets X ⊆ U , such that X contains exactly
dp′/2e elements from each block Ui (note that a set in R may contain some elements
from {e1, . . . , eg}). Moreover let H ⊆ 2U be the family of hitting sets of F and denote
H0 = H \R andH1 = H ∩R.

Lemma 5.8. We have |H0| ≡ 0 (mod 2).

Proof. For every hitting set X ∈ H and block Ui, we know that |X ∩ Ui| ≥ dp′/2e since
otherwise a subset of the set Ui \X added in Step 5 is not hit by X .

Assume that X 6∈ R is a hitting set of F . Let I ⊆ {1, . . . , g} be the set of indices i
such that X contains at least least dp′/2e+ 1 elements from the block Ui. Note that I 6= ∅.

Assume that H0 6= ∅ (otherwise the lemma obviously follows). We construct a fixed
point free involution π : H0 → H0 defined as π(X) = X4{ei : i ∈ I} (recall that the
operator 4 denotes the symmetric difference of two sets). The function π is fixed point



5.4. CVC AS HARD AS CNF-SAT 83

free since I 6= ∅. Moreover π(X) ∈ H0 since from each block Ui for i ∈ I the set X
contains enough elements to hit all the sets in F containing the element ei added in Step 8.
Finally π(π(X)) = X and consequently π is a fixed point free involution, and therefore
|H0| is even.

Lemma 5.9. The number of satisfying assignments of Φ is equal to |H1|.
Proof. Define ψ : 2V → 2U as ψ(A) =

⋃g
i=1 ψi(A ∩ Vi) ∪ {e1, . . . , eg}. Note that ψ is

injective, since for every i, ψi is injective. Furthermore ψ(2V ) ⊆ R since for each A ∈ 2V

the set ψ(A) contains exactly dp′
2
e elements from each block Ui.

Hence to prove the lemma, it is sufficient to prove that (1) A is a satisfying assignment
iff ψ(A) ∈ H1, and (2) for each set X ∈ H1 we have ψ−1(X) 6= ∅.

For the forward direction of (1), note that the sets added in Step 5 are hit by the pigeon-
hole principle since |ψi(A ∩ Vi)| = dp′

2
e. For the sets added in Step 6, consider the fol-

lowing. The set X of size bp′/2c is added because for some i, ψ−1
i ({Ui \X}) = ∅. Thus

ψi(A ∩ Vi) automatically hits X . For the sets added in Step 7, for every clause C the
added sets

⋃
i∈I Ai are hit by ψi(A ∩ Vi) where Vi is a group of variables satisfying C in

assignment A (and this exists since A is a satisfying assignment). Finally since for each
i = 1, . . . , g we have ei ∈ X all the sets added in Step 8 are hit by X . Therefore X is a
hitting set and by the definition ofR we have X ∈ R.

For the reverse direction of (1), let A be an assignment such that ψ(A) is a hitting
set from H1. We show that A is a satisfying assignment of Φ. Suppose for the sake of
contradiction that a clause C is not satisfied by A, and let I be as defined in Step 7 for
this C. Since ψ(A) is a hitting set, |ψ(A) ∩ Ui| ≥ dp

′

2
e for every i because it hits all sets

added in Step 5. Even more precise, |ψ(A) ∩ Ui| = dp′
2
e because ψ(A) ∈ R. Therefore,

|Ui \ ψ(A)| = bp′
2
c, and so Ui ∩ ψ(A) = Ui \ (Ui \ ψ(A)) is a member of Ai for every i.

This means that in Step 7 the set
⋃
i∈I Ai with Ai = Ui \ ψ(A) was added, but this set is

not hit by ψ(A). So it contradicts that ψ(A) is a hitting set.
For (2), let X ∈ H1. Note that X contains exactly dp′

2
e elements from each block by

the definition of H1. Assume that there is no assignment A ⊆ V such that ψ(A) = X .
Recall that X is a hitting set. Since X hits all the sets added in Step 6, we infer that
ψ−1
i ({X ∩Ui}) 6= ∅ for each i. However, this contradicts the non-existence of A ⊆ V such

that ψ(A) = X .

To finish the proof of Theorem 5.7 we note that each set inF is of size at most k1p
′. Fur-

thermore the cardinality of F is at most 2p
′
n/p+k22k1p

′
n. Thus F ⊆ 2U is a valid instance

of (k1p
′, d2p′/p+ k22k1p

′e)-⊕HITTING SET and by Lemmas 5.8 and 5.9 the number of hit-
ting sets of F is odd iff the number of satisfying assignments of Φ is odd. Finally note that
our reduction works in polynomial time and since |U | = n′+ g = n(1 + (2dlog pe+ 1)/p)
by the definition of ε2 the running time needed to solve the hitting set instance F is upper
bounded by (2− ε2)nnO(1).

5.4.2 From Hitting Set to Set Cover
In this subsection we show a reduction from the (p1, p2)-⊕HITTING SET problem to the
following variant of SET COVER.
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(p1, p2)-⊕SET COVER

Input: A set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ p1 and
m ≤ p2n.
Question: Is the number of C ⊆ F with

⋃
S∈C S = U odd?

Now we prove the following simple, but surprising lemma, which we think is of inde-
pendent interest.

Lemma 5.10. In any bipartite graph G = (A ∪ B,E) the number of independent sets is
congruent to |{X ⊆ A : N(X) = B}| modulo 2.

Proof. Grouping on their intersection with A, the number of independent sets of G is equal
to ∑

X⊆A

2|B\N(X)| ≡
∑
X⊆A

|B\N(X)|=0

20 = |{X ⊆ A : N(X) = B}|

and the lemma follows.

Corollary 5.11. For any set family F ⊆ 2U the parity of the number of set covers is equal
to the parity of the number of hitting sets.

Proof. LetG = (F∪U,E) be the bipartite graph where (S, x) ∈ E iff x ∈ S. Note that the
number of hitting sets of F is equal to |{X ⊆ U : N(X) = F}|. Then by Lemma 5.10, the
number of hitting sets is congruent to the number of independent sets of G modulo 2. And
similarly, since the lemma is symmetric with respect to the two color classes of the bipartite
graph, the number of set covers of F is also congruent to the number of independent sets
of G modulo 2.

The above corollary gives us the following theorem.

Theorem 5.12. If there exists ε > 0 such that for any positive integers p1, p2 there exists
an algorithm for the (p1, p2)-⊕SET COVER problem running in (2 − ε)nnO(1) time then
for any positive integers p1, p2 there exists an algorithm for the (p1, p2)-⊕HITTING SET

problem running in (2− ε)nnO(1) time.

5.4.3 From Set Cover to Connected Vertex Cover
First for any α > 0 we define an intermediate problem p-⊕SET COVERα, that is, (p1, p2)-
⊕SET COVER with the solution size bounded by αn and without the constraint on the
number of sets in the family F . Next we show that for every α > 0 the p-⊕SET COVERα
problem is at least as hard as (p1, p2)-⊕SET COVER. Once we have this intermediate result,
the reduction to CONNECTED VERTEX COVER follows easily.
p-⊕SET COVERα
Input: An integer t and a set system F ⊆ 2U where |F| = m, |U | = n, t ≤ αn, for every
S ∈ F , |S| ≤ p.
Question: Is the number of C ⊆ F with |C| = t such that

⋃
S∈C S = U odd?
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Theorem 5.13. If there exist α, ε > 0 such that for any positive integer p there exists
an algorithm for the p-⊕SET COVERα problem running in (2 − ε)nnO(1) time, then there
exists ε2 > 0 such that for any positive integers p1, p2 there exists an algorithm for the
(p1, p2)-⊕SET COVER problem running in (2− ε2)nnO(1) time.

Proof. As a proof we present a reduction which for fixed α transforms an instance (F ′, U ′)
of (p1, p2)-⊕SET COVER into polynomially many instances of the p-⊕SET COVERα prob-
lem, for some positive integer p.

In order to find the parity of the number of all set covers of the instance (F ′, U ′) we
find the parity of the number of set covers of a particular size. That is we iterate over all
possible sizes of a set cover j = 1, . . . , |F|′. Let us assume that we want to find the parity
of the number of set covers of size j and for each positive integer j′ < j we know the
parity of the number of set covers of (F ′, U ′) of size j′. Let q be the smallest power of
two satisfying |F

′|
q

+ 2 ≤ α|U ′|. We assume that α|U ′| ≥ 3 since otherwise the instance is
small and we can solve it by brute force (recall that α is a given constant). Observe that q
is upper bounded by a constant independent of n since |F ′| ≤ p2n.

We create a temporary set system (F0, U0) to ensure that the size of the set covers we
are looking for is divisible by q. Let r = j mod q. We make (F0, U0) by taking the set
system (F ′, U ′) and adding q− r new elements to the universe U0 and also q− r singleton
sets of the new elements to the family F0. Now we are looking for the parity of the number
of set covers of size j0 = j + (q − r) in (F0, U0). Observe that for each j′ < j0 we know
the parity of the number of set covers of size j′ in (F0, U0) since it is equal to the parity of
set covers of (F ′, U ′) of size j′ − (q − r) < j which we already know.

To obtain a p-⊕SET COVERα instance we set U∗ = U0 and we form a family F∗ of all
unions of exactly q sets from F0, that is for each of

(|F0|
q

)
choices of q sets S1, . . . , Sq ∈ F0

we add to F∗ the set
⋃q
i=1 Si (note that F0 might be a multiset). Finally we set t∗ =

j0/q which is an integer since j + (q − r) is divisible by q. Observe that t∗ ≤ j
q

+ 1 ≤
α|U | − 1, by the definition of q, however (F∗, U∗, t∗) might not be a proper instance of
p1q-⊕SET COVERα, since F∗ could be a multiset. Note that each subset of U∗ appears in
F∗ at most (2qp1)q = 2q

2p1 times, since F0 has no duplicates and each set in F∗ is a union
of exactly q sets from F0. To overcome this technical obstacle we make a new instance
(F , U, t), where as U we take U∗ with z = 1+q2p1 elements added, U = U∗∪{e1, . . . , ez}.
We use elements {e1, . . . , ez−1} to make sets from F∗ different in F by taking a different
subset of {e1, . . . , ez−1} for duplicates. Additionally we add one set {e1, . . . , ez} to the
family F and set t = t∗ + 1. In this way we obtain (F , U, t), that is a proper (qp1 + z)-
⊕SET COVERα instance since t = t∗ + 1 ≤ α|U |∗ ≤ α|U |. Observe that in the final
instance we have |U | ≤ n + q + z and |F| ≤ (p2n + q)q + 1, which is a polynomial since
p1, p2, q and z are constants.

To summarize the reduction, we have taken an instance of (p1, p2)-⊕SET COVER and
iterated over the size of solution. Next we made the size divisible by q by adding additional
elements to the universe and created a multiset family F∗ which we made a set family
by differentiating equal sets using additional elements of the universe. Our goal was to
decide whether the p-⊕SET COVER instance (F ′, U ′) (for p = qp1 + z) has odd number
of set covers, which means that we want to control the correspondence between the parity
of the number of solutions in each part of the construction. Observe that the only step
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of the construction which has nontrivial correspondence between the number of solutions
of the former and the latter instance is the grouping step where we transform an instance
(F0, U0, j0) into a multiset instance (F∗, U∗, t∗).

Hence we assume that we know the parity of the number of set covers of size t∗ = j0/q
in (F∗, U∗) as well as the parity of the number of set covers of size j′ for each j′ < j0
in (F0, U0). Our objective is to compute the parity of the number of set covers of size
j0 in (F0, U0) in polynomial time and for this reason we introduce a few definitions and
lemmas. Recall that each set in F∗ corresponds to a union of exactly q sets in F0 and let
Γ : F∗ → 2F0 be a function that for each set in F∗ assigns a set of exactly q sets from F0

that it was made of. Moreover let S∗ ⊆ 2F
∗ be the set of set covers of size t∗ in (F∗, U∗)

and let S0 ⊆ 2F0 be the set of set covers of size at most j0 in (F0, U0). We construct a
mapping Φ : S∗ → S0 which maps each set cover A ∈ S∗ to a set cover A0 ∈ S0 such
that A0 is exactly the set of sets from F0 used in the t∗ unions of q sets from F0, that is
Φ(A) =

⋃
X∈A Γ(X). In the following lemma we prove that for a set cover A0 ∈ S0 the

size of Φ−1(A0) depends solely on the size of A0.

Lemma 5.14. Let A0, B0 ∈ S0 such that |A0| = |B0|. Then |Φ−1(A0)| = |Φ−1(B0)|.
Proof. Let A0 = {X1, . . . , Xa} be a set from S0, where each Xi ∈ F0. Observe that for
any A ∈ S we have Φ(A) = A0 if and only if

⋃a
i=1 Γ(Xi) = A. Consequently |Φ−1(A0)| is

equal to the number of set covers of size t∗ in the set system (
(
A0

q

)
, A0) and hence |Φ−1(A0)|

depends only on the size of A0.

Now we prove that for each set cover A0 ∈ S0 of size j0 an odd number of set covers
from S∗ is mapped by Φ to A0.

Lemma 5.15. For any nonnegative integers a, b such that b ≤ a the binomial coefficient(
a
b

)
is odd iff ones(b) ⊆ ones(a), where ones(x) is the set of indices containing ones in the

binary representation of x.

Proof. For a nonnegative integer x by f(x) let us denote the greatest integer i such that x!
is divisible by 2i, that is

f(x) =
∑
i≥1

⌊ x
2i
⌋

= (
∑
i≥1

x

2i
)− 1

2
· |{i ≥ 1 :

⌊ x

2i−1

⌋
is odd}|

= (
∑
i≥1

x

2i
)− |ones(x)|

2

Since
(
a
b

)
= a!

b!(a−b)! we infer that
(
a
b

)
is odd iff f(a) = f(b) + f(a − b), which by

the above formula is equivalent to |ones(a)| = |ones(b)| + |ones(a − b)|. However for
any nonnegative integers x, y we have ones(x + y) ≤ ones(x) + ones(y) and moreover
ones(x + y) = ones(x) + ones(y) iff there are no carry-operations when adding x to y,
which is equivalent to ones(x) ∩ ones(y) = ∅.

Therefore by setting x = b and y = a− b we infer that
(
a
b

)
is odd iff ones(b)∩ones(a−

b) = ∅ which is equivalent to ones(b) ⊆ ones(a) and the lemma follows.
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Lemma 5.16. Let A0 ∈ S0 such that |A0| = j0 then |Φ−1(A0)| is odd.

Proof. Since |Φ−1(A0)| is equal to the number set covers of size t∗ in the set system
(
(
A0

q

)
, A0) and |A0| = j0 = t∗q we infer that |Φ−1(A0)| is equal to the number of unordered

partitions of A0 into sets of size q. Hence |Φ−1(A0)| = ∏t∗−1
i=0

(
j0−1−iq
q−1

)
. Since j0 is divisi-

ble by q and q is a power of two using Lemma 5.15 we have |Φ−1(A0)| ≡ 1(mod2).

For j = 1, . . . , j0 by sj let us denote the parity of the number of set covers of (F0, U0)
of size j modulo 2. Recall that we know the value of sj for each j < j0 and we want to
compute sj0 knowing also |S∗| mod 2. By Lemma 5.14 we can define dj for j = 1, . . . , j0,
that is the value of |Φ−1(A0)| mod 2 for a set A0 ∈ S0 of size j. By Lemma 5.16 we know
that dj0 equals one. Thus we have the following congruence modulo 2.

|S∗| =
∑
A0∈S0

|Φ−1(A0)| ≡
j0∑
j=1

sjdj = sj0 +

j0−1∑
j=1

sjdj .

Hence knowing |S∗| mod 2 and all values sj for j < j0 in order to compute sj0 it is enough
to compute all the values dj , what we can do in polynomial time thanks to the following
lemma.

Lemma 5.17. For each j = 1, . . . , j0 we can calculate the value of dj in polynomial time.

Proof. Again we use that fact that for a set A0 ∈ S0 we have that |Φ−1(A0)| is equal to
the number set covers of size t∗ in the set system (

(
A0

q

)
, A0). Using the inclusion-exclusion

principle modulo two we obtain the following formula when |A0| = j.

|Φ−1(A0)| ≡
∑
X⊆A0

∣∣∣∣{H ⊆ (Xq
)∣∣∣|H| = t∗

}∣∣∣∣ =

j∑
i=0

(
j

i

)((i
q

)
t∗

)
,

Where the second equality follows by grouping all summands X ⊆ A0 with |X| = i for
every 0 ≤ i ≤ |A0|.

Consequently by solving a polynomial of n number of instances of the ⊕SET COVERα
problem with universe size bounded by n + q + z and set family size bounded by (p2n +
q)q + 1 we verify whether the initial formula φ has a satisfying assignment, which finishes
the prove of Theorem 5.13.

We can now obtain the following result.

Theorem 5.18. If there exists ε > 0 and an algorithm running in (2 − ε)k|V |O(1) time
determining the parity of the number of connected vertex covers of size k, then there exists
ε2 > 0 such that for any positive integer p one can solve the p-⊕SET COVERα problem in
(2− ε2)nnO(1) time.
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Proof. For a set system (F , U) by an incidence graph we denote a bipartite graphG = (F∪
U,E) where in the setE we have all the edges between a set fromF and its elements. Given
an instance (F , U) of p-⊕SET COVERα, we create an instance of the counting modulo 2
variant of the CONNECTED VERTEX COVER problem with G being obtained from the
incidence graph of (F , U) by adding a vertex s adjacent to all vertices corresponding to
sets and adding pendant vertices for every element of U ∪ {s}.

It is easy to see that for every i, there exists a set cover of (F , U) of size i ≤ αn iff
there exists a connected vertex cover of G of size at most i + |U | + 1 ≤ |U |(1 + α) + 1
since without loss of optimality we can take all vertices having a pendant vertex, and then
connecting these vertices is equivalent to covering all elements of U with sets in F .

Now let us study the number of connected vertex covers of size j of G for every j.
Note that for any connected vertex cover C, C ∩ F must be a set cover of (F , U) by the
connectivity requirement. Hence we group all connected vertex covers in G depending on
which set cover in (F , U) their intersection with F is. Let cj be the number of connected
vertex covers of G of size j and si be the number of set covers of size i in (F , U), then:

cj =

j−|U |−1∑
i=1

si

( |U |+ 1

j − i− |U | − 1

)
It is not hard to see that si modulo 2 can be determined in polynomial time once
(c1, . . . , ci+|U |+1) modulo 2 are computed by recovering s1 up to si in increasing order
of i, since for i = j − |U | − 1 we have

( |U |+1
j−i−|U |−1

)
= 1.

By Theorems 5.4, 5.6, 5.7, 5.12, 5.13, and 5.18 we prove the main theorem of this
section.

Theorem 5.19. There is no algorithm running in (2−ε)k|V |O(1) time determining the parity
of the number of connected vertex covers of size k for ε > 0 unless the Strong Exponential
Time Hypothesis is false.



Chapter 6

Maximizing disconnectivity is hard
under ETH

In Chapter 4 we have shown that a lot of well-known algorithms running in 2O(tw(G))|V |O(1)

time can be turned into algorithms that keep track of the connectivity issues, with only small
loss in the base of the exponent. The problems solved in that manner include CONNECTED

VERTEX COVER, CONNECTED DOMINATING SET, CONNECTED FEEDBACK VERTEX

SET and CONNECTED ODD CYCLE TRANSVERSAL. Note that using the markers tech-
nique introduced in Section 3.2 we can solve similarly the following artificial generaliza-
tions: given a graph G and an integer r, what is the minimum size of a vertex cover (dom-
inating set, feedback vertex set, odd cycle transversal) that induces at most r connected
components?

In this chapter we provide an evidence that problems in which we would ask to maxi-
mize (instead of minimizing) the number of connected components are harder: they proba-
bly do not admit algorithms running in time 2o(p log p)|V |O(1), where p denotes the width of
a given path decomposition of the input graph (note that pw(G) ≥ tw(G) for every graph
G). More precisely, we show that assuming ETH there do not exist algorithms for CYCLE

PACKING, MAX CYCLE COVER and MAXIMALLY DISCONNECTED DOMINATING SET

running in time 2o(p log p)|V |O(1) and consequently prove Theorems 1.3 and 1.4.

6.1 On maximizing the number of connected components
Let us recall formal problem definitions. The first two problems have undirected and di-
rected versions.

CYCLE PACKING

Input: A (directed or undirected) graph G = (V,E) and an integer `
Question: Does G contain ` vertex-disjoint cycles?

MAX CYCLE COVER

Input: A (directed or undirected) graph G = (V,E) and an integer `
Question: Does G contain a set of at least ` vertex-disjoint cycles such that each vertex of
G is contained in exactly one cycle?

89
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MAXIMALLY DISCONNECTED DOMINATING SET

Input: An undirected graph G = (V,E) and integers ` and r
Question: Does G contain a dominating set of size at most ` that induces at least r con-
nected components?

We prove the following theorem.

Theorem 6.1 (Theorems 1.3 and 1.4 restated). Assuming ETH, there is no 2o(p log p)|V |O(1)

time algorithm for CYCLE PACKING, MAX CYCLE COVER (both in the directed and undi-
rected setting) nor for MAXIMALLY DISCONNECTED DOMINATING SET. The parameter
p denotes the width of a given path decomposition of the input graph.

We start our reductions from k × k HITTING SET and k × k PERMUTATION HITTING

SET problems. Te problems were introduced and analyzed by Lokshtanov et al. [59]. We
denote [k] = {1, 2, . . . , k}. In the set [k]× [k] a row is a set {i} × [k] and a column is a set
[k]× {i} (for some i ∈ [k]). Let us recall the definitions of those problems.

k × k HITTING SET

Input: A family of sets S1, S2 . . . Sm ⊆ [k] × [k], such that each set contains at most one
element from each row of [k]× [k].
Question: Is there a set S containing exactly one element from each row such that S∩Si 6=
∅ for any 1 ≤ i ≤ m?

k × k PERMUTATION HITTING SET

Input: A family of sets S1, S2 . . . Sm ⊆ [k] × [k], such that each set contains at most one
element from each row of [k]× [k].
Question: Is there a set S containing exactly one element from each row and exactly one
element from each column such that S ∩ Si 6= ∅ for any 1 ≤ i ≤ m?

Theorem 6.2 ([59], Theorem 2.4). Assuming ETH, there is no 2o(k log k)mO(1) time algo-
rithm for k × k HITTING SET nor for k × k PERMUTATION HITTING SET.

We first prove the bound for MAXIMALLY DISCONNECTED DOMINATING SET by a
quite simple reduction from k × k HITTING SET. This is done in Section 6.2. Then,
in Section 6.3 we prove the bound for undirected CYCLE PACKING, by quite involved
reduction from k×k PERMUTATION HITTING SET. In Section 6.4 we provide a reduction
to directed CYCLE PACKING and in Section 6.5 we provide a reduction to MAX CYCLE

COVER in both variants.

6.2 Maximally Disconnected Dominating Set
In this section we provide a reduction from k×k HITTING SET to MAXIMALLY DISCON-
NECTED DOMINATING SET. We are given an instance (k, S1, . . . , Sm) of k × k HITTING

SET, called the initial instance, and we are to construct an equivalent instance (G, `, r) of
MAXIMALLY DISCONNECTED DOMINATING SET.

We first set ` := 3k +m and r := k.
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6.2.1 Gadgets

v

V

`+ 1

X
V

`+ 1

Figure 6.1: Force gadget and one-in-many gadget.

We introduce a few simple gadgets used repeatedly in the construction. In all definitions
H = (V,E) is an undirected graph, and the parameters ` and r are fixed.

Definition 6.3. By adding a force gadget for vertex v ∈ V we mean the following construc-
tion: we introduce `+ 1 new vertices of degree one, adjacent to v (see Fig. 6.1).

Lemma 6.4. If graph G is constructed from graph H = (V,E) by adding a force gadget
to vertex v ∈ V , then v is contained in each dominating set in G of size at most `.

Proof. If D is a dominating set in G, and v /∈ D, then all new vertices added in the force
gadget need to be included in D. Thus |D| ≥ `+ 1.

Definition 6.5. By adding a one-in-many gadget to vertex set X ⊆ V we mean the follow-
ing construction: we introduce `+ 1 new vertices of degree |X|, adjacent to all vertices in
X (see Fig. 6.1).

Lemma 6.6. If graph G is constructed from graph H = (V,E) by adding a one-in-many
gadget to vertex set X ⊆ V , then each dominating set in G of size at most ` contains a
vertex from X .

Proof. If D is a dominating set in G, and X ∩ D = ∅, then all new vertices added in the
one-in-many gadget need to be included in D. Thus |D| ≥ `+ 1.

We conclude with the pathwidth bound.

Lemma 6.7. LetG be a graph and letG′ be a graph constructed fromG by adding multiple
force and one-in-many gadgets. Assume we are given a path decomposition of G of width
p with the following property: for each one-in-many gadget, attached to vertex set X , there
exists a bag in the path decomposition that contains X . Then, in polynomial time, we can
construct a path decomposition of G′ of width at most p+ 1.
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Proof. Let w be a vertex in G′, but not in G, i.e., a vertex added in one of the gadgets. By
the assumptions of the lemma, there exists a bag Vw in the path decomposition of G that
contains N(w). For each such vertex w, we introduce a new bag V ′w = Vw ∪ {w} and we
insert it into the path decomposition after the bag Vw. If Vw is multiplied for many vertices
w, we insert all the new bags after Vw in an arbitrary order.

It is easy to see that the new path decomposition is a proper path decomposition of G′,
as V ′w covers all edges incident to w. Moreover, we increased the maximum size of bags by
at most one, thus the width of the new decomposition is at most p+ 1.

6.2.2 Construction
Let Srow

i = {i} × [k] be the set containing all elements in the i-th row in the set [k] × [k].
We denote S = {Ss : 1 ≤ s ≤ m} ∪ {Srow

i : 1 ≤ i ≤ k}. Note that for each A ∈ S we
have |A| ≤ k, as each set Si contains at most one element from each row.

First let us define the graph H . We start by introducing vertices pLi for 1 ≤ i ≤ k and
vertices pRj for 1 ≤ j ≤ k. Then, for each set A ∈ S we introduce vertices xAi,j for all
(i, j) ∈ A and edges pLi x

A
i,j and pRj x

A
i,j . Let XA = {xAi,j : (i, j) ∈ A}.

To construct graph G, we attach the following gadgets to graph H . For each 1 ≤ i ≤ k
and 1 ≤ j ≤ k we attach force gadgets to vertices pLi and pRj . Moreover, for each A ∈ S
we attach one-in-many gadget to the set XA.

We now provide a pathwidth bound on the graph G.

Lemma 6.8. The pathwidth of G is at most 3k.

Proof. First consider the following path decomposition of H . For each A ∈ S we create a
bag

VA = {pLi : 1 ≤ i ≤ k} ∪ {pRj : 1 ≤ j ≤ k} ∪ {xAi,j : (i, j) ∈ A}.
The path decomposition of H consists of all bags VA for A ∈ S in an arbitrary order. Note
that the above path decomposition is a proper path decomposition of H of width at most
3k − 1 (as |A| ≤ k for each A ∈ S). The lemma follows by Lemma 6.7.

6.2.3 From hitting set to dominating set
Lemma 6.9. If the initial k × k HITTING SET instance was a YES-instance, then there
exists a dominating set D in the graph G, such that |D| = ` and D induces exactly r
connected components.

Proof. Let S be a solution to the initial k × k HITTING SET instance (k, S1, . . . , Sm). For
each A ∈ S fix an element (iA, jA) ∈ S ∩ A. Recall that S contains exactly one element
from each row, thus S ∩ A 6= ∅ for all sets A ∈ S. Let us define:

D = {pLi : 1 ≤ i ≤ k} ∪ {pRj : 1 ≤ j ≤ k} ∪ {xAiA,jA : A ∈ S}.

First note that |D| = 3k+m, as there are k vertices pLi , k vertices pRj , and |S| = k+m,
since S consists of m sets Ss and k sets Srow

i .
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Let us now check whetherD is a dominating set inG. Vertices pLi and pRj for 1 ≤ i, j ≤
k dominate all vertices of the graph H and all vertices added in the attached force gadgets.
Moreover, D ∩ XA = {xAiA,jA} for each A ∈ S , thus D dominates all vertices added in
one-in-many gadgets attached to sets XA.

We now prove that G[D] contains exactly r = k connected components. Let us define
for each 1 ≤ j ≤ k:

Dj = {pRj } ∪ {pLi : (i, j) ∈ S} ∪ {xAiA,jA : A ∈ S, jA = j}.

Note that Dj is a partition of D into k pairwise disjoint sets, since S contains exactly one
element from each row. Moreover, observe that G[Dj] is connected and, since S contains
exactly one element from each row, no vertices from Dj and Dj′ are adjacent, for j 6= j′.
This finishes the proof of the lemma.

6.2.4 From dominating set to hitting set
Lemma 6.10. If there exists a dominating set D in the graph G, such that |D| ≤ ` and D
induces at least r connected components, then the initial k× k HITTING SET instance was
a YES-instance.

Proof. By the properties of the force gadget, D needs to include all forced vertices, i.e.,
vertices pLi and pRj for 1 ≤ i, j ≤ k. There are 2k forced vertices, thus we have at most
`− 2k = k +m vertices of D left.

By the properties of one-in-many gadgets, D needs to include at least one vertex from
each set XA, A ∈ S. But |S| = k+m and sets XA are pairwise disjoint. Thus, D consists
of all forced vertices and exactly one vertex from each set XA, A ∈ S.

For each 1 ≤ i ≤ k let xS
row
i

i,f(i) be the unique vertex in D ∩ XSrowi . Let S = {(i, f(i)) :

1 ≤ i ≤ k}. We claim that S is a solution to the initial k × k HITTING SET instance. It
clearly contains exactly one element from each row, and hence if suffices to show that S
intersects each of the sets Sj for j = 1, . . . ,m.

Let Dj be the vertex set of the connected component of G[D] that contains pRj . Note
that pLi ∈ Dj whenever j = f(i), i.e., (i, j) ∈ S, sinceG[D] contains the edges pRj x

Srowi
i,j and

x
Srowi
i,j pLi . This implies that

⋃k
j=1 Dj contains all vertices pLi . Moreover, as each vertex inXA

for A ∈ S is adjacent to some vertex pRj , the sets Dj are the only connected components of
G[D]. As G[D] contains at least r = k connected components, Dj 6= Dj′ for j 6= j′.

Let 1 ≤ s ≤ m and let us focus on the set Ss ∈ S. Let xSsi,j be the unique vertex in
D ∩ XSs . Note that xSsi,j connects pLi ∈ Df(i) with pRj ∈ Dj . As sets Dj are pairwise
distinct, this implies that j = f(i) and (i, j) ∈ S ∩ Ss.

6.3 Undirected Cycle Packing

6.3.1 Proof overview and preliminaries
First note that for CYCLE PACKING, we can assume that the input graph may be a multi-
graph, i.e., it may contain multiple edges and loops. The following lemma summarizes this
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observation.

Lemma 6.11. Let (G, `) be an instance of (directed or undirected) CYCLE PACKING,
where G may contain multiple edges and loops. Then we can construct in polynomial
time an equivalent (directed or undirected, respectively) instance (G′, `), such that G′ does
not contain multiple edges nor loops. Moreover, given a path decomposition of G of width
p, we can construct in polynomial time a path decomposition of G′ of width at most p+ 2.

Proof. To construct G′, we replace each edge e ∈ E(G) with a path of length three, i.e.,
we insert vertices u1

e and u2
e in the middle of edge e. Clearly G is a simple graph and

vertex-disjoint cycle families in G and G′ naturally translates into each other.
We are left with the pathwidth bound. Assume we have a path decomposition of G of

width p. For each edge e ∈ E(G) we fix a bag Ve that covers e. We introduce a new bag
V ′e = Ve∪{u1

e, u
2
e} and insert V ′e near the bag Ve in the path decomposition. It is easy to see

that the new decomposition is a proper path decomposition of G′ and its width is at most
p+ 2.

Let us introduce some extra notation. We say that a vertex is covered by a cycle (or a
family of cycles) if the vertex belongs to the cycle (or belongs to at least one cycle in the
family). A graph is covered by a cycle family if every its vertex is covered by the family.
By (v1, . . . , vr) we denote a path (or a cycle) consisting of vertices v1, v2, . . . , vr in this
order.

We now present an overview of the proof of Theorem 6.1 for undirected CYCLE PACK-
ING. We provide a construction that, given an instance (k, S1, S2, . . . , Sm) of k × k PER-
MUTATION HITTING SET (called an initial instance), produces in polynomial time an undi-
rected graph G, an integer ` and a path decomposition of G with the following properties:

1. The path decomposition of G has width O(k).

2. If the initial instance of k× k PERMUTATION HITTING SET is a YES-instance, then
there exists a family of ` vertex-disjoint cycles in G. In other words, (G, `) is a
YES-instance of undirected CYCLE PACKING.

3. If there exist a family of ` vertex-disjoint cycles in G, then the initial k × k PERMU-
TATION HITTING SET instance is a YES-instance.

In Section 6.3.2 we describe the r-in-many gadget, a tool used widely in the construc-
tion. In Section 6.3.3 we give the construction of the graph G and show the pathwidth
bound, i.e., Point 1. Points 2 and 3 are proven in Sections 6.3.4 and 6.3.5 respectively.
Reductions to directed CYCLE PACKING and to MAX CYCLE COVER are in Sections 6.4
and 6.5 respectively.

6.3.2 r-in-many gadget
In this section we describe the r-in-many gadget, a tool used in further sections. Informally
speaking, the r-in-many gadget attached to vertex set X ensures that at most r vertices
from X are used in a solution (a family of cycles).
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Definition 6.12. Let H be a multigraph and X be an arbitrary subset of vertices of H . By
an r-in-many gadget attached to X (1 ≤ r < |X|) we mean the following construction: we
introduce (|X| − r) new vertices {ui : 1 ≤ i ≤ |X| − r} and for each 1 ≤ i ≤ |X| − r and
x ∈ X we add two edges xui. In other words, we introduce |X| − r vertices connected to
the set X via double edges. The set X is called an attaching point of the gadget. A cycle of
length two, consisting of two edges xui for some 1 ≤ i ≤ |X| − r and x ∈ X , is called a
gadget short cycle.

Definition 6.13. Let H be a multigraph, let X1, . . . , Xd be pairwise disjoint subsets of
vertices of H and let r1, . . . , rd be integers satisfying 1 ≤ ri < |Xi| for 1 ≤ i ≤ d. Let
G be a multigraph constructed from H by attaching to Xi a ri-in-many gadget, for all
1 ≤ i ≤ d. We say that G is a gadget extension of H . The maximum number of gadget
short cycles that can be packed in G is denoted by `G, i.e., `G :=

∑d
i=1 |Xi| − ri.

Definition 6.14. Let G be a gadget extension of H , and let Xi and ri be as in Definition
6.13. If CH is a family of vertex-disjoint cycles in H satisfying the following property: for
each 1 ≤ i ≤ d at most ri vertices from Xi are covered by CH , then we say that CH is
gadget safe in H . If CG is a family of vertex-disjoint cycles in G containing `G gadget short
cycles, then we say that CG is gadget safe in G.

. . .
u1 u|X|−r

X

Figure 6.2: The r-in-many gadget attached to set X .

The following lemma shows how the r-in-many gadget is intended to be used.

Lemma 6.15. Let G be a gadget extension of H , and let Xi and ri be as in Definition 6.13.
Let CH be a family of cycles that is gadget safe in H . Then CH can be extended to gadget
safe in G family CG of size |CH |+ `G

Proof. For each 1 ≤ i ≤ d, let Yi ⊆ Xi be a set of (arbitrarily chosen) |Xi| − ri vertices
not covered by CH . Assign CG := CH . For each 1 ≤ i ≤ d we add to CG a set of |Xi| − ri
gadget short cycles, each consisting of one vertex in Yi and one vertex uj from the gadget
attached to Xi.

The next lemma shows that we can safely assume that the r-in-many gadgets are used
as in the proof of Lemma 6.15.
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Lemma 6.16. Let G be a gadget extension of H , and let Xi and ri be as in Definition 6.13.
Let ` be the maximum possible cardinality of a family of vertex-disjoint cycles in G. Then
there exists a gadget safe in G family C of size `. Moreover, after removing from C all `G
gadget short cycles, we obtain a gadget safe in H family of cycles.

Proof. Let C be a family of vertex-disjoint cycles in G of size ` that maximizes the number
of gadget short cycles. By contradiction, assume that C is not gadget safe in G. That means
it contains less than

∑d
i=1 |Xi| − ri gadget short cycles, i.e., there exists 1 ≤ i ≤ d, such

that less than |Xi| − ri gadget short cycles in the gadget attached to Xi are in C.
Let u be a vertex in the gadget attached to Xi that does not lie on a gadget short cycle

in C. If u is covered by a cycle C ∈ C, then there exists x ∈ Xi also covered by C. We can
replace C with a gadget short cycle (u, x), increasing the number of gadget short cycles in
C, a contradiction.

Thus, u is not covered in C. Let x ∈ Xi be a vertex that is not covered by a gadget
short cycle in C (there exists, as ri < |Xi| and sets Xi are pairwise disjoint). If x is not
covered by C, we can add gadget short cycle (u, x) to C, increasing its size, a contradiction.
Otherwise, we can replace the cycle with x with gadget short cycle (u, x), a contradiction
too. Thus, C contains `G =

∑d
i=1 |Xi| − ri gadget short cycles. It is a straightforward

corollary from the definitions that after removing these `G cycles, we obtain a gadget safe
in H family of cycles.

Finally, we show that attaching a r-in-many gadget may not influence much the path-
width of the graph.

Lemma 6.17. Let G be a gadget extension of H , and let Xi and ri be as in Definition
6.13. Assume that we are given a path decomposition of H of width p, such that for each
1 ≤ i ≤ d there exists a bag Vi that contains the whole Xi. Then in polynomial time we
can construct a path decomposition of G of width at most p+ 1.

Proof. Let 1 ≤ i ≤ d and let Vi be a bag containing Xi. We introduce bags V j
i , 1 ≤ j ≤

|Xi| − ri, taking V j
i = Vi ∪ {uj}. We insert the newly created bags V j

i near the bag Vi
in the path decomposition. As all bags V j

i contain Vi, this modification does not spoil the
properties of the path decomposition of H . Bag V j

i covers all edges incident to uj . Thus,
the new path decomposition is a proper path decomposition of G and has width at most
p+ 1, as |V j

i | = |Vi|+ 1.

6.3.3 Construction
Let (k, S1, S2, . . . , Sm) be an instance of k× k PERMUTATION HITTING SET. W.l.o.g. we
may assume that each set Si is nonempty. We first construct a graph H as follows:

1. The vertex set V (H) consists of

(a) vertices pZi , p
R
i , q

Z
i , q

R
i for 1 ≤ i ≤ k;

(b) vertices pCi,j, q
C
i,j for 1 ≤ i, j ≤ k; for each 1 ≤ i ≤ k we denote Xp

i = {pCi,j :
1 ≤ j ≤ k} and Xq

i = {qCi,j : 1 ≤ j ≤ k};
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(c) vertices xLi,s, x
R
i,s, y

L
i,s, y

R
i,s for 1 ≤ i ≤ k and 1 ≤ s ≤ m;

(d) and vertices xCi,s, y
C
i,s, x

Z
i,s, y

Z
i,s, z

C
i,s for 1 ≤ s ≤ m and (i, j) ∈ Ss (recall that

there is at most one element in each row in Ss); we denote Xx
s = {xCi,s : (i, j) ∈

Ss}, Xy
s = {yCi,s : (i, j) ∈ Ss} and Xz

s = {zCi,s : (i, j) ∈ Ss}.

The vertex set is partitioned into four parts L, R, C and Z, according to the super-
scripts (the first three are acronyms for left, right and centre, the last one should be
seen as an important separator between left and centre).

2. Vertices pZi and pRj are connected into full bipartite graph with vertices pCi,j inserted
into the middle of each edge, i.e., for all 1 ≤ i, j ≤ k we add edges pZi p

C
i,j and pCi,jp

R
j .

Similar construction is performed for vertices qZi , qRj and qCi,j , i.e., for all 1 ≤ i, j ≤ k
we add edges qZi q

C
i,j and qCi,jq

R
j .

3. For each 1 ≤ i ≤ k, vertices xLi,s and yLi,s are arranged into path from pZi to qZi , i.e.,
xLi,sy

L
i,s ∈ E for 1 ≤ s ≤ m, yLi,sx

L
i,s+1 ∈ E for 1 ≤ s < m and qZi y

L
i,m, p

Z
i x

L
i,1 ∈ E.

By PLi we denote the path from pZi to qZi

4. For each 1 ≤ i ≤ k, vertices xRi,s and yRi,s are arranged into path from pRi to qRi , i.e.,
xRi,sy

R
i,s for 1 ≤ s ≤ m, yRi,sx

R
i,s+1 ∈ E for 1 ≤ s < m and pRi x

R
i,1, q

R
i y

R
i,m ∈ E. By PRi

we denote the path from pRi to qRi .

5. For each 1 ≤ s ≤ m, if (i, j) ∈ Ss, we add a path (xLi,s, x
Z
i,s, x

C
i,s, x

R
j,s).

6. Similarly, for each 1 ≤ s ≤ m, if (i, j) ∈ Ss, we add a path (yLi,s, y
Z
i,s, y

C
i,s, y

R
j,s).

7. Moreover, for each 1 ≤ s ≤ m and (i, j) ∈ Ss we add a cycle (xZi,s, z
C
i,s, y

Z
i,s).

The graph G is defined as a gadget extension of H by attaching to H the following r-in-
many gadgets:

1. to vertex sets Xp
i and Xq

i for 1 ≤ i ≤ k we attach 1-in-many gadgets;

2. to vertex sets Xx
s and Xy

s for 1 ≤ s ≤ m we attach 1-in-many gadgets;

3. for 1 ≤ s ≤ m we attach a (|Xz
s | − 1)-in-many gadget to Xz

s .

Clearly, the above construction can be done in polynomial time. Note that we can pack
the following number of gadget short cycles in G:

`G :=
k∑
i=1

(|Xp
i | − 1 + |Xq

i | − 1) +
m∑
s=1

(|Xx
s | − 1 + |Xy

s | − 1 + |Xz
s | − (|Xz

s | − 1))

= 2k2 − 2k −m+ 2
m∑
s=1

|Ss|.

We take ` := k +
∑m

s=1 |Ss|+ `G, i.e., we ask for ` vertex-disjoint cycles in G.
The following lemma shows the pathwidth bound of G, i.e., proves Point 1.
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j,2

xR
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Figure 6.3: The part of the graph H with the main frame and the part for an element
(i, j) ∈ Ss. Recall that the gadget safe in H family may cover at most one element of Xp

i ,
Xq
i , Xx

s and Xy
s and cannot cover whole Xz

s .
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Lemma 6.18. In polynomial time we can construct a path decomposition of G of width
11k.

Proof. By Lemma 6.17, it is sufficient to show a path decomposition ofH of width 11k−1
such that each set Xp

i , Xq
i , Xx

s , Xy
s , Xz

s is contained in some bag.
The path decomposition consists of bags V p

i for 1 ≤ i ≤ k, Vs for 0 ≤ s ≤ m and V q
i

for 1 ≤ i ≤ k, arranged in a path in this order. We define:

1. V p
i = {pZj , pRj , pCi,j : 1 ≤ j ≤ k} for 1 ≤ i ≤ k.

2. V0 = {pZi , pRi , xLi,1, xRi,1 : 1 ≤ i ≤ k}.

3. Vs = {xLi,s, xRi,s, yLi,s, yRi,s, xLi,s+1, x
R
i,s+1 : 1 ≤ i ≤ k}∪{xCi,s, yCi,s, xZi,s, yZi,s, zCi,s : (i, j) ∈

Ss} for 1 ≤ s < m.

4. Vm = {xLi,m, xRi,m, yLi,m, yRi,m, qZi , qRi : 1 ≤ i ≤ k} ∪ {xCi,m, yCi,m, xZi,m, yZi,m, zCi,m :
(i, j) ∈ Sm}.

5. V q
i = {qZj , qRj , qCi,j : 1 ≤ j ≤ k} for 1 ≤ i ≤ k.

It is easy to see that this is a proper path decomposition of the graph H . Moreover, Xp
i ⊆

V p
i , Xq

i ⊆ V q
i and Xx

s , X
y
s , X

z
s ⊆ Vs. As for the size bound, note that |V p

i | = |V q
i | = 3k

for 1 ≤ i ≤ k, |V0| = 4k and |Vs| ≤ 11k for 1 ≤ s ≤ m.

Let us note that the above bound is not optimal, but we need only O(k) bound.

6.3.4 From hitting set to disjoint cycles
We prove Point 2 by the following lemma:

Lemma 6.19. If the initial k×k PERMUTATION HITTING SET instance is a YES-instance,
then the graph G contains ` vertex-disjoint cycles.

Proof. Let S = {(i, f(i)) : 1 ≤ i ≤ k} be the solution to the k × k PERMUTATION

HITTING SET instance. Recall that S contains exactly one element from each row and
exactly one element from each column, thus f is a permutation of [k].

By Lemma 6.15, it is sufficient to show a family of cycles C in H that is gadget safe in
H and is of size k +

∑m
s=1 |Ss|.

For each 1 ≤ s ≤ m, fix an index 1 ≤ is ≤ k, such that (is, f(is)) ∈ S ∩ Ss. Let

C1 = {(xZi,s, yZi,s, zCi,s) : 1 ≤ s ≤ m, 1 ≤ i ≤ k, i 6= is}.

Note that C1 is a family of
∑m

s=1(|Ss|−1) vertex-disjoint cycles, thus we need to find k+m
more.

Fix i, 1 ≤ i ≤ k, and let {1 ≤ s ≤ m : is = i} = {s1, s2, . . . , sh(i)} and s1 < s2 <
. . . < sh(i). Consider the following family of h(i) + 1 cycles {C(i, j) : 0 ≤ j ≤ h(i)}:

1. C(i, 0) consists of the path (pZi , p
C
i,f(i), p

R
f(i)), the subpath ofPRf(i) from pRf(i) to xRf(i),s1

,
the path (xRf(i),s1

, xCi,s1 , x
Z
i,s1
, xLi,s1) and the subpath of PLi from xLi,s1 to pZi ;
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2. C(i, j) for 1 ≤ j < h(i) consists of the path (yLi,sj , y
Z
i,sj
, yCi,sj , y

R
f(i),sj

), the subpath
of PRf(i) from yRf(i),sj

to xRf(i),sj+1
, the path (xRf(i),sj+1

, xCi,sj+1
, xZi,sj+1

, xLi,sj+1
) and the

subpath of PLi from xLi,sj+1
to yLi,sj ;

3. C(i, h(i)) consists of the path (yLi,sh(i) , y
Z
i,sh(i)

, yCi,sh(i) , y
R
f(i),sh(i)

), the subpath of PRf(i)

from yRf(i),sj
to qRf(i), the path (qRf(i), q

C
i,f(i), q

Z
i ) and the subpath of PLi from qZi to

yLi,sh(i) .

Note that
C2 = {C(i, j) : 1 ≤ i ≤ k, 0 ≤ j ≤ h(i)}

is a family of k + m vertex-disjoint cycles in H and they are disjoint with C1. Moreover,
C := C1 ∪ C2 does not cover:

1. Xp
i \ {pCi,f(i)} and Xq

i \ {qCi,f(i)} for 1 ≤ i ≤ k;

2. Xx
s \ {xCis,s} and Xy

s \ {yCis,s} for 1 ≤ s ≤ m;

3. zCis,s ∈ Xz
s for 1 ≤ s ≤ m.

Thus C is gadget safe in H . An example showing packing of three cycles for (i, f(i)) ∈ S
and h(i) = 2 can be found in Fig. 6.4.

6.3.5 From disjoint cycles to hitting set
In this section we prove Point 3 by the following lemma:

Lemma 6.20. If the graph G contains at least ` vertex-disjoint cycles, then the initial k×k
PERMUTATION HITTING SET instance is a YES-instance.

Proof. Let CG be a family of vertex-disjoint cycles in G with maximum possible number
of cycles. By the assumption, |CG| ≥ `. By Lemma 6.16 we can assume that CG is gadget
safe in G and let C ⊆ CG be the gadget safe in H family of size |CG|− `G ≥ k+

∑m
s=1 |Ss|,

i.e., C consists of those cycles in CG that are not gadget short cycles.
We now analyze the family C. Informally speaking, we are going to show that C can be

placed only in the way as in the proof of Lemma 6.19.
First let us analyze subgraphH[L∪R∪C]. Note that this subgraph is a forest containing:

1. k paths PLi for 1 ≤ i ≤ k without the endpoints, i.e., without pZi and qZi ;

2. k trees consisting of pathsPRj (1 ≤ j ≤ k) with attached leaves pCi,j , q
C
i,j for 1 ≤ i ≤ k

and xCi,s, y
C
i,s for 1 ≤ s ≤ m, (i, j) ∈ Ss.

3.
∑m

s=1 |Ss| isolated vertices zCi,s, 1 ≤ s ≤ m, (i, j) ∈ Ss.

Consider now a subgraph of H induced by L ∪ R ∪ C ∪ {a}, where a is an arbitrary
vertex in Z. Note that this graph is a forest. Indeed, each vertex in Z has at most one edge
incident to each connected component of H[L ∪R ∪ C]:
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qZi

yLi,m

...

qRi

yRf(i),m

...

qCi,f(i) ∈ Xq
i

pZi

xL
i,1

pRf(i)

xR
f(i),1

pCi,f(i) ∈ Xp
i

xL
i,s1

yLi,s1

xR
f(i),s1

yRf(i),s1

...
...

zCi,s1 ∈ Xz
s1

yZi,s1

xZ
i,s1

yCi,s1 ∈ Xy
s1

xC
i,s1

∈ Xx
s1

xL
i,s2

yLi,s2

xR
f(i),s2

yRf(i),s2

...
...

zCi,s2 ∈ Xz
s2

yZi,s2

xZ
i,s2

yCi,s2 ∈ Xy
s2

xC
i,s2

∈ Xx
s2

Figure 6.4: An example how to pack three cycles for (i, f(i)) ∈ S and h(i) = 2.
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1. for 1 ≤ i ≤ k the vertex pZi is adjacent to xLi,1 on path PLi and vertices pCi,j for
1 ≤ j ≤ k;

2. similarly for 1 ≤ i ≤ k the vertex qZi is adjacent to yLi,m on path PLi and vertices qCi,j
for 1 ≤ j ≤ k;

3. for 1 ≤ s ≤ m, (i, j) ∈ Ss the vertex xZi,s is adjacent to zCi,s, x
L
i,s and xCi,s;

4. similarly for 1 ≤ s ≤ m, (i, j) ∈ Ss the vertex yZi,s is adjacent to zCi,s, y
L
i,s and yCi,s.

Thus, each cycle from C contains at least two vertices fromZ. But, |Z| = 2k+2
∑m

s=1 |Ss| =
2|C|. Thus, each cycle in C contains exactly two vertices from Z and C covers Z.

Let Ci ∈ C be the cycle that covers pZi . The vertex pZi has neighbours xLi,1 and Xp
i .

As we are allowed to choose only one vertex from Xp
i , the cycle Ci contains a path

(xLi,1, p
Z
i , p

C
i,f(i), p

R
f(i)) for some 1 ≤ f(i) ≤ k. If the cycle Ci contains the edge pRf(i)p

C
j,f(i)

for j 6= i, it contains also pZj and xLj,1. But xLj,1 and xLi,1 are in different connected compo-
nents of H[L ∪R ∪C], thus Ci needs to contain a third vertex in Z, a contradiction. Thus,
Ci contains the path (xLi,1, p

Z
i , p

C
i,f(i), p

R
f(i), x

R
f(i),1). Note that this in particular implies that f

is a permutation of [k].
We claim that S = {(i, f(i)) : 1 ≤ i ≤ k} is a hitting set in the initial k × k PERMU-

TATION HITTING SET instance. It clearly contains exactly one element from each row and
from each column. We now show that S ∩ Ss 6= ∅ for each 1 ≤ s ≤ m.

Let
Zs = {pZi : 1 ≤ i ≤ k} ∪ {xZi,t, yZi,t : 1 ≤ t ≤ s, (i, j) ∈ St} ⊆ Z

for 0 ≤ s ≤ m and let

Es = {yLi,sxLi,s+1 : 1 ≤ i ≤ k} ∪ {yRj,sxRj,s+1 : 1 ≤ j ≤ k} ⊆ E(H)

for 1 ≤ s < m and let

E0 = {pZi xLi,1 : 1 ≤ i ≤ k} ∪ {pRj xRj,1 : 1 ≤ i ≤ k} ⊆ E(H).

Note that for 0 ≤ s < m the set Es is a set of 2k edges that separate Zs from Z \ Zs.
We now select cycles C(i, s) ∈ C for 1 ≤ i ≤ k and 0 ≤ s ≤ m with the following

property: for 1 ≤ i ≤ k and 1 ≤ s < m the edges yLi,sx
L
i,s+1 and yRf(i),sx

R
f(i),s+1 lie on

C(i, s) and for 1 ≤ i ≤ k the edges pLi x
L
i,1 and pRf(i)x

R
f(i),1 lie on C(i, 0). Note that cycles

C(i, 0) = Ci satisfy the above property. We select cyclesC(i, s) by an induction on s and in
the s-th step of the induction we prove that there exists 1 ≤ i ≤ k such that (i, f(i)) ∈ Ss.

Let us fix s, 0 ≤ s < m. We show some more properties of cycles {C(i, s) : 1 ≤ i ≤ k}
that we use in the induction step. Note that each cycle C(i, s) contains two edges from Es
and each edge from Es is contained in some C(i, s). Moreover, each edge in Es is in
different connected component of H[L ∪ R ∪ C]. Thus, each cycle C(i, s) contains: a
subpath of PLi , a subpath of the connected component of H[L ∪ R ∪ C] containing PRf(i),
a vertex in Zs and a vertex in Z \ Zs. This in particular implies that cycles {C(i, s) : 1 ≤
i ≤ k} are pairwise different. As Es separates Zs from Z \ Zs, each cycle in C \ {C(i, s) :
1 ≤ i ≤ k} contains either two vertices in Zs, or two vertices in Z \ Zs.
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We now perform an induction step. Let 1 ≤ s ≤ m and assume that we have selected
cycles C(i, s− 1) for 1 ≤ i ≤ k.

Let zCi,s be a (arbitrarily chosen) vertex not covered by C, where (i, j) ∈ Ss. Let us focus
on the vertex xZi,s. It has three neighbours apart from zCi,s: vertices xLi,s, x

C
i,s and yZi,s. The

vertex xCi,s has degree two, and the other neighbour is xRj,s. As xLi,s ∈ C(i, s− 1) and xRj,s ∈
C(f−1(j), s−1), the vertex xZi,s lies onC(i, s−1) orC(f−1(j), s−1). BothC(i, s−1) and
C(f−1(j), s−1) are not allowed to cover two vertices from Z\Zs−1, thus xZi,s and yZi,s lie on
different cycles in C. But this means that C(i, s− 1) or C(f−1(j), s− 1) contains the path
(xLi,s, x

Z
i,s, x

C
i,s, x

R
j,s), thus C(i, s− 1) = C(f−1(j), s− 1). Since {C(i, s− 1) : 1 ≤ i ≤ k}

are pairwise different, j = f(i) and (i, f(i)) ∈ Ss.
Now focus on vertex yZi,s. The vertex xZi,s is used on cycle C(i, s− 1), yZi,s /∈ C(i, s− 1)

and we assumed the vertex zCi,s is not covered by C. Thus, yZi,s lies on a cycle C with
path (yLi,s, y

Z
i,s, y

C
i,s, y

R
f(i),s). As xLi,s, x

R
f(i),s ∈ C(i, s − 1), and we are allowed to cover only

one vertex from Xy
s , C contains a path (xLi,s+1, y

L
i,s, y

Z
i,s, y

C
i,s, y

R
f(i),s, y

R
f(i),s+1) (if s < m) or

(qZi , y
L
i,s, y

Z
i,s, y

C
i,s, y

R
f(i),s, q

R
f(i)) (if s = m).

Now focus on vertices xZi′,s for i′ 6= i. As xCi,s is covered by C, the vertex xCi′,s cannot
be covered too. Thus, xZi′,s and yZi′,s lie on the same cycle, say Ci′ . As C(i′, s − 1) is
not allowed to cover two vertices from Z \ Zs−1, the vertex xLi′,s does not lie on Ci′ , thus
Ci′ = (xZi′,s, y

Z
i′,s, z

C
i′,s).

As vertices xZi′,s and yZi′,s are covered by the cycle (xZi′,s, z
C
i′,s, y

Z
i′,s), the cycle C(i′, s−1)

contains the path (xLi′,s, y
L
i′,s, x

L
i′,s+1) (if s < m) or (xLi′,s, y

L
i′,s, q

Z
i′ ) (if s = m). As vertices

xCi,s and yCi,s are covered by cycles C(i, s − 1) and C, the cycle C(i′, s − 1) contains path
(xRf(i′),s, y

R
f(i′),s, x

R
f(i′),s+1) (if s < m) or (xRf(i′),s, y

R
f(i′),s, q

R
f(i′)) (if s = m).

Thus we can put C(i, s) = C and C(i′, s) = C(i′, s − 1) for i′ 6= i and the induction
step is performed. As we maintain the induction step up to s = m, for each 1 ≤ s ≤ m we
prove that (i, f(i)) ∈ Ss, thus the initial k × k PERMUTATION HITTING SET instance is a
YES-instance.

6.4 From undirected to directed Cycle Packing

In this section we provide a reduction from undirected to directed CYCLE PACKING, prov-
ing Theorem 6.1 for directed CYCLE PACKING.

Lemma 6.21. Let (G, `) be an instance of undirected CYCLE PACKING. Then we can
construct in polynomial time an equivalent instance (G′, `′) of directed CYCLE PACKING.
Moreover, given a path decomposition ofG of width p, in polynomial time we can construct
a path decomposition of G′ of width at most p+ 3.

Proof. In many problems, a reduction from an undirected version to a directed one is per-
formed by simply changing each edge uv into pair of arcs (u, v) and (v, u). However, in
the case of CYCLE PACKING, such a reduction introduces many 2-cycles (u, v) that do not
have a counterpart in the original undirected graph. We circumvent this problem by adding
a directed version of 1-in-many gadget.
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To construct graph G′, for each edge e = uv ∈ E(G) we introduce three extra vertices
xuve , xvue and ze, and we replace the edge e with three cycles: (u, xuve , v, x

vu
e ), (xuve , ze)

and (xvue , ze). In graph G′ we ask for `′ := ` + |E(G)| vertex-disjoint cycles. The cycles
(xuve , ze) and (xvue , ze) are called short cycles.

u

v

u

v

xuv
e xvu

e

ze

Figure 6.5: The construction of the gadget replacing edge uv.

First assume that we have a family C of ` vertex-disjoint cycles in G. For each cycle
C ∈ C, we orient it in an arbitrary way, and translate it into a cycle C ′ in G′ (i.e., if C goes
from u to v via edge e = uv, then in G′ the cycle C ′ uses arcs (u, xuve ) and (xuve , v)). In this
way we create a family C ′ of ` vertex-disjoint cycles in G′. This family has a property that
for each e ∈ E(G) at least one vertex xuve and xvue is not covered. Thus we can add a cycle
(xuve , ze) or (xvue , ze) to C ′, obtaining a family of `′ cycles.

In the other direction, let C ′ be a family of vertex-disjoint cycles in G′ that contains
maximum possible number of short cycles among families of vertex-disjoint cycles of max-
imum possible size. Assume |C ′| ≥ `′.

We claim that C ′ contains |E(G)| short cycles. As there are |E(G)| vertices ze, it may
not contain more. Assume that it contains less than |E(G)| short cycles. Let e = uv be an
edge, such that ze is not covered by a short cycle. If ze is not covered by C ′, we can add
the short cycle (xuve , ze) to C ′, possibly deleting a cycle covering xuve . Otherwise, if ze is
covered by a cycle C, then xuve or xvue (say xuve ) also belongs to C. But then we can replace
C with the cycle (ze, x

uv
e ). In both cases, we increase the number of short cycles in C ′ while

not decreasing its size, a contradiction.
Let C be the set of the other ` cycles in C ′ that are not short cycles. Each such cycle C ′

does not cover vertices ze, thus if it covers xuve , it contains a subpath (u, xuve , v). Moreover,
either xuve or xvue is covered by a short cycle in C ′. Thus C ′ translates into a cycle C inG, by
taking an edge e for each vertex xuve visited by C ′. In this way we obtain ` vertex-disjoint
cycles in G.

We are left with the pathwidth bound. Assume we have a path decomposition of G
of width p. We construct a path decomposition of G′ in the following way. For each
e ∈ E(G), we pick a bag Ve that covers e. We create a new bag V ′e := Ve ∪ {xuve , xvue , ze}
and insert it into the path decomposition near Ve. It is easy to see that this is a proper path
decomposition of G′ and its width is at most p+ 3.
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6.5 From Cycle Packing to Max Cycle Cover
In this section we provide a reduction from CYCLE PACKING to MAX CYCLE COVER

that proves Theorem 6.1 for MAX CYCLE COVER, both in directed and undirected setting.
Formally, we prove the following lemma

Lemma 6.22. Let (G, `) be an instance of (directed or undirected) CYCLE PACKING. Then
we can construct in polynomial time an equivalent instance (G′, `′) of (directed or undi-
rected, respectively) MAX CYCLE COVER. Moreover, given a path decomposition of G of
width p, in polynomial time we can construct a path decomposition of G of width at most
p+ 3.

Proof. To construct G′, we take G and for each v ∈ V (G) we introduce three new vertices
av, bv and cv and five new arcs (av, bv), (bv, cv), (cv, av), (cv, v) and (v, av) (in the undi-
rected setting, these arcs are edges without direction). We ask for a cycle cover with at least
`′ := `+ |V (G)| cycles.

Figure 6.6: An example of the reduction from CYCLE PACKING to MAX CYCLE COVER

in the directed setting, together with the conversion of cycle families.

Let C be a set of ` vertex-disjoint cycles in G. To construct a cycle cover of size
`′ = ` + |V (G)| in G′, we take the cycles in C and for each vertex v ∈ V (G): if v is
covered by C, we take the cycle (av, bv, cv), and otherwise we take the cycle (av, bv, cv, v).

In the other direction, let C ′ be a cycle cover of G′ with at least `′ cycles. For each
v ∈ V (G) let Cv be the cycle that covers bv. Note that av, cv ∈ Cv and Cv ⊆ {av, bv, cv, v}.
Thus C ′ \ {Cv : v ∈ V (G)} is a family of at least `′ − |V (G)| = ` vertex-disjoint cycles in
G.

We are left with the pathwidth bound. Assume we have a path decomposition of the
graph G of width p. For each vertex v ∈ V (G), we pick a single bag Vv that contains v. We
introduce a new bag V ′v = Vv ∪ {av, bv, cv} and insert it near Vv in the path decomposition.
It is easy to see that this is a proper path decomposition of G′ and its width is at most
p+ 3.
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Chapter 7

Tightness of the Cut&Count technique
under SETH

Following the framework introduced by Lokshtanov et al. [58], we prove that an improve-
ment in the base of the exponent in a number of our algorithms would contradict SETH. In
other words in this chapter we prove lower bounds gathered in Column C of Table 1.1.

Note that VERTEX COVER (without a connectivity requirement) admits a 2t|V |O(1) al-
gorithm whereas DOMINATING SET, FEEDBACK VERTEX SET and ODD CYCLE TRANSVER-
SAL admit 3t|V |O(1) algorithms and those algorithms are optimal (assuming SETH) [58].
To use the Cut&Count technique for the connected versions of these problems we need
to increase the base of the exponent by one to keep the side of the cut for vertices in the
solution. Our lower bounds show that this is not an artifact of the Cut&Count technique,
but rather an intrinsic characteristic of these problems.

In this chapter we provide reductions in the spirit of [58] that prove the following run-
ning time lower bounds for arbitrary ε > 0:

• (3− ε)p|V |O(1) for CONNECTED VERTEX COVER,

• (4− ε)p|V |O(1) for CONNECTED DOMINATING SET,

• (4− ε)p|V |O(1) for CONNECTED FEEDBACK VERTEX SET,

• (4− ε)p|V |O(1) for CONNECTED ODD CYCLE TRANSVERSAL,

• (3− ε)p|V |O(1) for FEEDBACK VERTEX SET.

As a consequence we obtain two additional lower bounds. The (4 − ε)p|V |O(1) lower
bound for EXACT k-LEAF SPANNING TREE is immediate from the result for CONNECTED

DOMINATING SET, as CONNECTED DOMINATING SET is equivalent to MAXIMUM LEAF

TREE [34]. The (3 − ε)p|V |O(1) lower bound for STEINER TREE follows from the simple
observation that a CONNECTED VERTEX COVER instance can be turned into a STEINER

TREE instance by subdividing each edge with a terminal.

107
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7.1 Overview
In the proofs we follow the same approach as Lokshtanov et al. [58] in the lower bounds for
problems without the connectivity requirement. We mostly base on the VERTEX COVER

and DOMINATING SET lower bounds of [58], however our gadgets are adjusted to the
considered problems. For each problem we show a polynomial-time construction that,
given a SAT instance with n variables, constructs an equivalent instance of the considered
problem, together with a path decomposition of the underlying graph of width roughly
log3(2n) = n/ log 3 in the case of CONNECTED VERTEX COVER and FEEDBACK VERTEX

SET and of width roughly log4(2n) = n/2 in the case of the other problems. Thus, each of
the following sections consists of three parts. First, we give a construction procedure that,
given a SAT formula Φ, produces an instance of the considered problem. Second, we prove
that the constructed instance is equivalent to the formula Φ. Finally, we show the claimed
pathwidth bound.

Similarly as in [58], we prove pathwidth bounds for the constructed graphs using mixed
search game. Let us recall the informal definition from [58].

Definition 7.1 ([71, 58]). In a mixed search game, a graph G is considered as a system
of tunnels. Initially, all edges are contaminated by a gas. An edge is cleared by placing
searchers at both its end-points simultaneously or by sliding a searcher along the edge. A
cleared edge is re-contaminated if there is a path from an uncleared edge to the cleared
edge without any searchers on its vertices or edges. A search is a sequence of operations
that can be of the following types: (a) placement of a new searcher on a vertex; (b) removal
of a searcher from a vertex; (c) sliding a searcher on a vertex along an incident edge and
placing the searcher on the other end. A search strategy is winning if after its termination
all edges are cleared. The mixed search number of a graph G, denoted ms(G), is the
minimum number of searchers required for a winning strategy of mixed searching on G.

Proposition 7.2 ([71]). For a graph G, pw(G) ≤ ms(G) ≤ pw(G) + 1.

Moreover, in each case considered by us, the presented cleaning strategy easily yield a
polynomial time algorithm that constructs a path decomposition of G of width not greater
than the number of searchers used.

7.2 Connected Vertex Cover
Theorem 7.3. Assuming SETH, for every constant ε > 0 there is no algorithm that given
an instance (G = (V,E), k) together with a path decomposition of the graph G of width p
solves the CONNECTED VERTEX COVER problem in (3− ε)p|V |O(1) time.

Construction Given ε > 0 and an instance Φ of SAT with n variables and m clauses we
construct a graph G as follows. We first choose a constant integer η, which value depends
on ε only. The exact formula for η is presented later. We partition variables of Φ into
groups F1, . . . , Fn′ , each of size at most β = blog 3ηc, hence n′ = dn/βe. Note that now
ηn′ ∼ n/ log 3. The pathwidth of G will be roughly ηn′.
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First, we add to the graphG two vertices r and r∗, connected by an edge. In the graphG
the vertex r∗ will be of degree one, thus any connected vertex cover of G needs to include
r. The vertex r is called a root.

Second, we take a = m(2ηn′ + 1) and for each 1 ≤ t ≤ n′ and 1 ≤ ` ≤ η we create
a path Pt,` consisting of 2a vertices vαt,`,k, 0 ≤ k < a and 1 ≤ α ≤ 2, arranged in the
following order:

v1
t,`,0, v

2
t,`,0, v

1
t,`,1, . . . , v

1
t,`,a−1, v

2
t,`,a−1.

Furthermore we connect all vertices v2
t,`,k (0 ≤ k < a) and v1

t,`,0 to the root r. To simplify
further notation we denote v1

t,`,a = r. Let V be the set of all vertices on all paths Pt,`.
We now provide a description of a group gadget Bt,k, which will enable us to encode

2β possible assignments of one group of β variables. Fix a block Ft, 1 ≤ t ≤ n′, and a
position k, 0 ≤ k < a. For each 1 ≤ ` ≤ η we create three vertices hαt,`,k, 1 ≤ α ≤ 3 that
are pairwise adjacent and all are adjacent to the root r. Moreover, we add edges h1

t,`,kv
1
t,`,k,

h2
t,`,kv

2
t,`,k and h3

t,`,kv
1
t,`,k+1. Let Ht,`,k = {hαt,`,k : 1 ≤ α ≤ 3}, Ht,k =

⋃η
`=1Ht,`,k. and

H =
⋃n′

t=1

⋃a−1
k=0Ht,k. Note that each (connected) vertex cover in G needs to include at

least two out of three vertices from each setHt,`,k.
In order to encode 2β assignments we consider subsets of Ht,k that contain exactly one

vertex out of each set Ht,`,k. For a sequence S = (s1, . . . , sη) ∈ {1, 2, 3}η by S(Ht,k) we
denote the set {hs`t,`,k : 1 ≤ ` ≤ η}. For each sequence S ∈ {1, 2, 3}η we add three vertices
xSt,k, xS∗t,k and ySt,k, where xSt,k is also adjacent to all the vertices of S(Ht,k) (recall that η
and β are constants depending only on ε). We add edges xSt,kx

S∗
t,k, xSt,ky

S
t,k and ySt,kr. In the

graph G the vertices xS∗t,k are of degree one, thus any connected vertex cover in G needs to
include all vertices xSt,k. Let Yt,k = {ySt,k : S ∈ {1, 2, 3}η} for 1 ≤ t ≤ n′, 0 ≤ k < a and
Y =

⋃n′

t=1

⋃a−1
k=0 Yt,k.

Additionally we add two adjacent vertices zt,k and z∗t,k and connect zt,k to vertices ySt,k
for all S ∈ {1, 2, 3}η. Again, the vertex z∗t,k is of degree one in G and forces zt,k to be
included in any connected vertex cover of G.

The above step finishes the construction of the group gadgets needed to encode an
assignment and now we add vertices used to check the satisfiability of the formula Φ.
Observe that for a group of variables Ft there are at most 2β possible assignments and there
are 3η ≥ 2β vertices xSt,k for sequences S from the set {1, 2, 3}η in each group gadget Bt,k,
hence we can assign a unique sequence S to each assignment. Let C0, . . . , Cm−1 be the
clauses of the formula Φ. For each clause Ci we create (2ηn′+ 1) pairs of adjacent vertices
ci,j and c∗i,j , one for each 0 ≤ j < (2ηn′ + 1). The vertex c∗i,j is of degree one in G and
therefore forces any connected vertex cover of G to include ci,j . The vertex ci,j can only be
connected to gadgets Bt,mj+i for 1 ≤ t ≤ n′. For each group of variables Ft we consider
all sequences S ∈ {1, 2, 3}η that correspond to an assignment of Ft satisfying the clause
Ci (i.e., one of the variables of Ft is assigned a value such that Ci is already satisfied). For
each such sequence S and for each 0 ≤ j < (2ηn′ + 1) we add an edge ySt,mj+ici,j .

We can view the whole construction as a matrix of group gadgets, where each row
corresponds to some group of variables Ft and each column is devoted to some clause in
such a way that each clause gets (2ηn′ + 1) private columns (but not consecutive) of the
group gadget matrix, as in Figure 7.2.
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zt,k

x
(3,3,2)
t,k

y
(3,3,2)
t,k

v1t,1,k v2t,1,k v1t,1,k+1

h1
t,1,k

h2
t,1,k

h3
t,1,k

v1t,2,k v2t,2,k v1t,2,k+1

h1
t,2,k

h2
t,2,k

h3
t,2,k

v1t,3,k v2t,3,k v1t,3,k+1

h1
t,3,k

h2
t,3,k

h3
t,3,k

Figure 7.1: Group gadget Bt,k for η = 3. Dashed edges are connecting a vertex with
the root r. Vertices that have a pendant neighbour and thus need to be included in any
connected vertex cover of G are presented as squares.

Finally, let K = ηn′ · 3a + (3η + 2)n′a + a + 1 be the size of the vertex cover we ask
for.

Correctness

Lemma 7.4. If Φ has a satisfying assignment, then there exists a connected vertex cover in
G of size K.

Proof. Given a satisfying assignment φ of the formula Φ we construct a connected vertex
cover X ⊆ V as follows. Let Xforce be the set of vertices that are forced to be in any
connected vertex cover of G, that is r, ci,j for 0 ≤ i < m, 0 ≤ j < (2ηn′ + 1), xSt,k for 1 ≤
t ≤ n′, 0 ≤ k < m(2ηn′+1), S ∈ {1, 2, 3}η and zt,k for 1 ≤ t ≤ n′, 0 ≤ k < m(2ηn′+1).
Note that |Xforce| = 1 + a+ (3η + 1)n′a.

For each group of variables Ft we consider the sequence St ∈ {1, 2, 3}η which corre-
sponds to the restriction of the assignment φ to the variables of Ft. Let

Xh =
n′⋃
t=1

a−1⋃
k=0

η⋃
`=1

{hαt,`,k : α 6= St(`)}.

The set Xh includes exactly two vertices out of each set Ht,`,k, thus |Xh| = ηn′ · 2a.
Moreover, we define the set Xv to contain all vertices v2

t,`,k if St(`) = 2, and all vertices
v1
t,`,k otherwise (1 ≤ t ≤ n′, 1 ≤ ` ≤ η, 0 ≤ k < a). The set Xv includes every other

vertex on each path Pt,`, thus |Xv| = ηn′a.
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r

Bn′,0 Bn′,a−1

B1,0 B1,a−1

ci,j

Figure 7.2: Gray rectangles represent group gadgets. Dashed edges connect have the root
vertex r as one of the endpoints. Vertices that have a pendant neighbour and thus need to
be included in any connected vertex cover of G are presented as squares.
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Finally, let us define the set Xy to be the set of all vertices yStt,k for all 1 ≤ t ≤ n′ and
0 ≤ k < a. Let X = Xforce ∪Xh ∪Xv ∪Xy. Note that as |Xy| = n′a we have |X| = K.
We now verify that X is a connected vertex cover of G.

First, we verify that G \X is an edgeless graph.

1. The vertices r∗, c∗i,j , x
S∗
t,k and z∗t,k are isolated in G \X , as their single neighbours in

G are included in Xforce.

2. The vertices vαt,`,k that are not in X are isolated in G \X , as Xv contains every other
vertex on each path Pt,` and we chose α in such a manner that the neighbours of vαt,`,k
fromH are in Xh.

3. The vertices hSt(`)t,`,k are isolated in G \X , since their single neighbours on paths Pt,`
are in Xv and all other neighbours of hSt(`)t,`,k are in Xforce and in Xh.

4. Finally, the vertices ySt,k are isolated in G \ X since their neighbourhoods are con-
tained in Xforce.

To finish the proof we need to verify that G[X] is connected. We ensure it by showing
that in G[X] each vertex in X is connected to the root r.

1. The claim is obvious for Xh and Xy, as they are contained in the neighbourhood of
r.

2. If vertices v2
t,`,k belong to Xv, they are connected to r by direct edges. Otherwise,

the vertices v1
t,`,k are connected via vertices h1

t,`,k or h3
t,`,k−1 (with the exception of

vertices v1
t,`,0 that are connected directly).

3. Each vertex xSt,k for S 6= St is connected to r via any vertex hS(`)
t,`,k for which S(`) 6=

St(`).

4. Vertices xStt,k and zt,k are connected to r via yStt,k.

5. Finally, each vertex ci,k is connected to r via any vertex yStt,k for which the assignment
φ on variables from Ft satisfies the clause Ci.

Lemma 7.5. If there exists a connected vertex cover X of size at most K in the graph G,
then Φ has a satisfying assignment.

Proof. As in the previous lemma, let Xforce be the set of vertices that are forced to be in
any connected vertex cover of G, that is r, ci,j for 1 ≤ i ≤ m, 0 ≤ j < (2ηn′ + 1),
xSt,k for 1 ≤ t ≤ n′, 0 ≤ k < m(2ηn′ + 1), S ∈ {1, 2, 3}η and zt,k for 1 ≤ t ≤ n′,
0 ≤ k < m(2ηn′ + 1). Note that |Xforce| = 1 + a+ (3η + 1)n′a and Xforce ⊆ X .

Let Xv = X ∩ V , Xh = X ∩H and Xy = X ∩ Y . Note that

1. Xv needs to include at least a vertices from each path Pt,`, thus |Xv| ≥ ηn′a.
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2. Xh needs to include at least two vertices out of each setHt,`,k, thus |Xh| ≥ ηn′ · 2a.

3. Xy needs to include at least one vertex ySt,k for each 1 ≤ t ≤ n′ and 0 ≤ k < a to
ensure that the vertex zt,k is connected to the root r in G[X]. Thus |Xy| ≥ n′a.

As |X| ≤ K, we have |Xv| = ηn′a, |Xh| = ηn′ · 2a, |Xy| = n′a and |X| = K.
As |Xh| = ηn′ · 2a, for each 1 ≤ t ≤ n′, 1 ≤ ` ≤ η and 0 ≤ k < a we have

|Xh ∩Ht,`,k| = 2. This allows us to define a sequence St,k ∈ {1, 2, 3}η satisfying hSt,k(`)

t,`,k /∈
Xh for 1 ≤ ` ≤ η.

Note that the vertex xSt,kt,k ∈ Xforce does not have a neighbour in Xh, thus, to connect it
to the root r, we need to have ySt,kt,k ∈ Xy. As |Xy| = n′a, we infer that |Yt,k ∩X| = 1 for
all 1 ≤ t ≤ n′ and 0 ≤ k < a, i.e., ySt,k ∈ X if and only if S = St,k.

We now show that for fixed t the sequences St,k cannot differ much for 0 ≤ k < a. As
|Xv| = ηn′a, for each 1 ≤ t ≤ n′, 1 ≤ ` ≤ η and 0 ≤ k ≤ a we have that |Xv ∩ {vαt,`,k :

1 ≤ α ≤ 2}| = 1. Let α(t, `, k) be such that vα(t,`,k)
t,`,k ∈ Xv. Now note that for 1 ≤ t ≤ n′,

1 ≤ ` ≤ η and 0 ≤ k < a− 1:

1. If St,k(`) = 3, then α(t, `, k + 1) = 1, as otherwise the edge v1
t,`,k+1h

3
t,`,k is not

covered by X . Moreover, h1
t,`,k+1 ∈ Xh, as otherwise v1

t,`,k+1 is isolated in G[X],
and h2

t,`,k+1 ∈ Xh, as otherwise the edge v2
t,`,k+1h

2
t,`,k+1 is not covered by X . Thus

St,k+1(`) = 3 as well.

2. If St,k(`) = 1 then α(t, `, k) = 1, as otherwise the edge v1
t,`,kh

1
t,`,k is not covered by

X . Thus α(t, `, k + 1) = 1, as otherwise the edge v2
t,`,kv

1
t,`,k+1 is not covered by X ,

and St,k+1(`) 6= 2, as otherwise the edge v2
t,`,k+1h

2
t,`,k+1 is not covered by X .

For fixed 1 ≤ t ≤ n′ and 1 ≤ ` ≤ η define the sequence Ŝt,`(k) = St,k(`). From
the above arguments we infer that the sequence Ŝt,`(k) cannot change more than twice. As
a = m(2ηn′ + 1), we conclude that there exists an index 0 ≤ j < (2ηn′ + 1) such that for
all 1 ≤ t ≤ n′, 1 ≤ ` ≤ η the sequence Ŝt,`(mj + i) is constant for 0 ≤ i < m.

We create now an assignment φ by taking, for each group of variables Ft, an assignment
corresponding to the sequence St,mj . Now we prove that φ satisfies Φ. Take any clause Ci,
0 ≤ i < m, and focus on the vertex ci,j ∈ Xforce. The vertex ci,j needs to be connected to
the root r in G[X], thus for some 1 ≤ t ≤ n′ and S ∈ {1, 2, 3}η we have ySt,mj+i ∈ X and
the assignment of Ft that corresponds to S satisfiesCi. However, we know that ySt,mj+i ∈ X
implies that S = St,mj+i, and thus φ satisfies Ci.

Pathwidth bound

Lemma 7.6. Pathwidth of the graph G is at most ηn′+O(3η). Moreover a path decompo-
sition of such width can be found in polynomial time.

Proof. We give a mixed search strategy to clean the graph with ηn′+O(3η) searchers. First
we put a searcher in the vertex r∗ and slide it to the root r. This searcher remains there till
the end of the cleaning process.
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For a gadget Bt,k we call the vertices v1
t,`,k and v1

t,`,k+1, 1 ≤ ` ≤ η, as entry vertices
and exit vertices respectively. We search the graph in a = m(2ηn′ + 1) rounds. At the
beginning of round k (0 ≤ k < a) there are searchers on the entry vertices of the gadget
Bt,k for every 1 ≤ t ≤ n′. Let 0 ≤ i < m and 0 ≤ j < (2ηn′ + 1) be integers such that
k = i + mj. We place a searcher on c∗i,j and slide it to ci,j . Then, for each 1 ≤ t ≤ n′ in
turn we:

• put O(3η) searchers on all vertices of the group gadget Bt,k,

• put 2η searchers on all vertices v2
t,`,k and v1

t,`,k+1, 1 ≤ ` ≤ η,

• remove searchers from all vertices of the group gadget Bt,k and vαt,`,k for 1 ≤ ` ≤ η
and 1 ≤ α ≤ 2.

The last step of the round is removing a searcher from the vertex ci,j . After the last round
the whole graph G is cleaned. Since we reuse O(3η) searchers for cleaning group gadgets,
ηn′ +O(3η) searchers suffice to clean the graph.

Using the above graph cleaning process a path decomposition of width ηn′+O(3η) can
be constructed in polynomial time.

Proof of Theorem 7.3. Suppose CONNECTED VERTEX COVER can be solved in (3−ε)p|V |O(1)

time provided that we are given a path decomposition of G of width p. Let λ = log3(3 −
ε) < 1. We choose η large enough such that log 3η

blog 3ηc <
1
λ

. Given an instance of SAT we
construct an instance of CONNECTED VERTEX COVER using the above construction and
the chosen value of η. Next we solve CONNECTED VERTEX COVER using the 3λp|V |O(1)

time algorithm. Lemmata 7.4, 7.5 ensure correctness, whereas Lemma 7.6 implies that
running time of our algorithm is 3ληn

′ |V |O(1), however we have

3ληn
′
= 2ληn

′ log 3 = 2λn
′ log 3η ≤ 2C · 2λn log 3η/blog 3ηc = 2C · 2λ′n

for some λ′ < 1 and C = λ log 3η. This concludes the proof.

7.3 Connected Dominating Set
Theorem 7.7. Assuming SETH, for every constant ε > 0 there is no algorithm that given
an instance (G = (V,E), k) together with a path decomposition of the graph G of width p
solves the CONNECTED DOMINATING SET problem in (4− ε)p|V |O(1) time.

Construction Given ε > 0 and an instance Φ of SAT with n variables and m clauses we
construct a graphG as follows. We assume that the number of variables n is even, otherwise
we add a single dummy variable. We partition variables of Φ into groups F1, . . . , Fn′ , each
of size two, hence n′ = n/2. The pathwidth of G will be roughly n′.

First, we add to the graph G two vertices r and r∗, connected by an edge. In the graph
G the vertex r∗ is of degree one, thus any connected dominating set of G needs to include
r. The vertex r is called a root.
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Second, we take a = m(n+ 1) and for each 1 ≤ t ≤ n′ we create a path Pt consisting
of 4a vertices vαt,k and hαt,k, 0 ≤ k < a and 1 ≤ α ≤ 2. On the path Pt the vertices are
arranged in the following order:

v1
t,0, h

1
t,0, v

2
t,0, h

2
t,0, v

1
t,1, . . . , h

2
t,a−1.

Let V and H be the sets of all vertices vαt,k and hαt,k (1 ≤ t ≤ n′, 0 ≤ k < a, 1 ≤ α ≤ 2),
respectively. We connect vertices v1

t,0 and all vertices inH to the root r. To simplify further
notation we denote v1

t,a = r, note that h2
t,a−1v

1
t,a ∈ E.

Third, for each 1 ≤ t ≤ n′ and 0 ≤ k < a we introduce guard vertices p1
t,k, p2

t,k and
qt,k. Each guard vertex is of degree two in G, namely p1

t,k is adjacent to v1
t,k and v2

t,k, p2
t,k

is adjacent to v2
t,k and v1

t,k+1 and qt,k is adjacent to h1
t,k and h2

t,k. Thus, each guard vertex
ensures that at least one of its neighbours is contained in any connected dominating set in
G.

The intuition of the construction made so far is as follows. For each two-variable block
Ft we encode any assignment of the variables in Ft as a choice whether to take v1

t,k or v2
t,k

and h1
t,k or h2

t,k to the connected dominating set in G.
We have finished the part of the construction needed to encode an assignment and now

we add vertices used to check the satisfiability of the formula Φ. Let C0, . . . , Cm−1 be the
clauses of the formula Φ. For each clause Ci we create (n + 1) vertices ci,j , one for each
0 ≤ j < n + 1. Consider a clause Ci and a group of variables Ft = {x1

t , x
2
t}. If x1

t occurs
positively in Ci then we connect ci,j with v1

t,mj+i and if x1
t occurs negatively in Ci then

we connect ci,j with v2
t,mj+i. Similarly if x2

t occurs positively in Ci then we connect ci,j
with h1

t,mj+i and if x2
t occurs negatively in Ci then we connect ci,j with h2

t,mj+i. Intuitively
taking the vertex v1

t,mj+i into a connected dominating set corresponds to setting x1
t to true,

whereas taking the vertex h1
t,mj+i into a connected dominating set corresponds to setting x2

t

to true.
We can view the whole construction as a matrix, where each row corresponds to some

group of variables Ft and each column is devoted to some clause in such a way that each
clause gets (n+ 1) private columns (but not consecutive) of the matrix.

Finally, let K = 1 + n′ · 2a be the size of the connected dominating set we ask for.

Correctness

Lemma 7.8. If Φ has a satisfying assignment, then there exists a connected dominating set
X in the graph G of size K.

Proof. Given a satisfying assignment φ of the formula Φ we construct a connected domi-
nating set X as follows. For each block Ft = {x1

t , x
2
t} and for each 0 ≤ k < a we include

into X:

1. the vertex v1
t,k if φ(x1

t ) is true, and v2
t,k otherwise;

2. the vertex h1
t,k if φ(x2

t ) is true, and h2
t,k otherwise.

Finally, we put r into X . Note that |X| = 1 + n′ · 2a = K. We now verify that X is a
connected dominating set in G. First, we verify that X dominates all vertices in G.
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2,0q2,0

p12,0 p22,0
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v11,4

v12,4

c1,0

Figure 7.3: Part of the construction for CONNECTED DOMINATING SET. Dashed edges
are connecting a vertex with the root r. Empty circles represent guard vertices.

1. r∗ and all vertices inH are dominated by the root r.

2. All guards p1
t,k, p2

t,k and q1
t,k are dominated byX∩(H∪V) (with the possible exception

of p2
t,a−1 that is dominated by r).

3. All vertices in V are dominated by X ∩H (with the possible exception of v1
t,0 that is

dominated by r).

4. Finally, each clause vertex ci,j is dominated by any vertex vαt,mj+i or hαt,mj+i that
corresponds to a variable that satisfies Ci in the assignment φ.

To finish the proof we need to ensure thatG[X] is connected. We prove this by showing
that each vertex in X is connected to the root r in G[X]. This is obvious for vertices in
X ∩H, asH ⊆ NG(r). Moreover, for each 1 ≤ t ≤ n′ and 0 ≤ k < a:

1. if v1
t,k ∈ X , then v1

t,k is connected to the root via h2
t,k−1 or h1

t,k, with the exception of
v1
t,0, that is connected to r directly;

2. if v2
t,k ∈ X , then v2

t,k is connected to the root via h1
t,k or h2

t,k.

Lemma 7.9. If there exists a connected dominating set X of size at most K in the graph
G, then Φ has a satisfying assignment.

Proof. First note that the vertex r∗ ensures that r ∈ X . Moreover, the guard vertices p1
t,k

and qt,k ensure that for each 1 ≤ t ≤ n′ and 0 ≤ k < a at least one vertex vαt,k and at
least one vertex hαt,k (1 ≤ α ≤ 2) belongs to X . As |X| ≤ 1 + n′ · 2a and we have
n′ · 2a aforementioned guards with disjoint neighbourhoods, for each 1 ≤ t ≤ n′ and



7.3. CONNECTED DOMINATING SET 117

0 ≤ k < a exactly one vertex vαt,k and exactly one vertex hαt,k belongs to X . Moreover,
X ⊆ {r} ∪ V ∪ H.

For each 0 ≤ k < a we construct an assignment φk as follows. For each block Ft =
{x1

t , x
2
t} we define:

1. φk(x1
t ) to be true if v1

t,k ∈ X and false if v2
t,k ∈ X;

2. φk(x2
t ) to be true if h1

t,k ∈ X and false if h2
t,k ∈ X .

We now show that the assignments φk cannot differ much for all indices 0 ≤ k < a.
Note that for each block Ft = {x1

t , x
2
t} and 0 ≤ k < a− 1:

1. if φk(x1
t ) is true, then φk+1(x1

t ) is also true, as otherwise v2
t,k, v

1
t,k+1 /∈ X and the

guard p2
t,k is not dominated by X;

2. if φk(x2
t ) is true, then φk+1(x2

t ) is also true, as otherwise h2
t,k, h

1
t,k+1 /∈ X and the

vertex v2
t,k is either not dominated byX (if v2

t,k /∈ X) or isolated inG[X] (if v2
t,k ∈ X).

For each variable x we define a sequence φ̂x(k) = φk(x), 0 ≤ k < a. From the reasoning
above we infer that for each variable x the sequence φ̂x(k) can change its value at most
once, from false to true. Thus, as a = m(n+1), we conclude that there exists 0 ≤ j < n+1
such that for all 0 ≤ i < m the assignments φmj+i are equal.

We claim that the assignment φ = φmj satisfies Φ. Consider a clause Ci and focus on
the vertex ci,j . It is not contained in X , thus one of its neighbour is contained in X . As
this neighbour corresponds to an assignment of one variable that both satisfies Ci (by the
construction process) and is consistent with φmj+i = φ (by the definition of φmj+i), the
assignment φ satisfies Ci and the proof is finished.

Pathwidth bound

Lemma 7.10. Pathwidth of the graph G is at most n′ + O(1). Moreover a path decompo-
sition of such width can found in polynomial time.

Proof. We give a mixed search strategy to clean the graph with n′ + 9 searchers. First we
put a searcher in the vertex r∗ and slide it to the root r. This searcher remains there till the
end of the cleaning process.

We search the graph in a = m(n+ 1) rounds. At the beginning of round k (0 ≤ k < a)
there are searchers on all vertices v1

t,k for 1 ≤ t ≤ n′. Let 0 ≤ i < m and 0 ≤ j < n + 1
be integers such that k = i+mj. We place a searcher on ci,j . Then, for each 1 ≤ t ≤ n′ in
turn we put 7 searchers on vertices p1

t,k, v2
t,k, p2

t,k, v1
t,k+1, h1

t,k, h2
t,k and qt,k, and then remove

7 searchers from vertices v1
t,k, p1

t,k, v2
t,k, p2

t,k, h1
t,k, h2

t,k and qt,k. The last step of the round is
removing a searcher from the vertex ci,j . After the last round the whole graph G is cleaned.
Since we reuse 8 searchers in the cleaning process, n′ + 9 searchers suffice to clean the
graph.

Using the above graph cleaning process a path decomposition of width n′ + O(1) can
be constructed in polynomial time.
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Proof of Theorem 7.7. Suppose CONNECTED DOMINATING SET can be solved in (4 −
ε)p|V |O(1) time provided that we are given a path decomposition of G of width p. Given
an instance of SAT we construct an instance of CONNECTED DOMINATING SET using the
above construction and solve it using the (4 − ε)p|V |O(1) time algorithm. Lemmata 7.8,
7.9 ensure correctness, whereas Lemma 7.10 implies that running time of our algorithm
is (4 − ε)n/2|V |O(1), however we have (4 − ε)n/2 = (

√
4− ε)n and

√
4− ε < 2. This

concludes the proof.

7.4 Connected FVS and Connected OCT
Theorem 7.11. Assuming SETH, for every constant ε > 0 there is no algorithm that given
an instance (G = (V,E), k) together with a path decomposition of the graph G of width p
solves the CONNECTED FEEDBACK VERTEX SET problem in (4− ε)p|V |O(1) time.

Theorem 7.12. Assuming SETH, for every constant ε > 0 there is no algorithm that given
an instance (G = (V,E), k) together with a path decomposition of the graph G of width p
solves the CONNECTED ODD CYCLE TRANSVERSAL problem in (4− ε)p|V |O(1) time.

In this section we prove Theorems 7.11 and 7.12 at once. That is, we provide a single
reduction that, given an instance Φ of SAT with n variables and m clauses, produces a
graph G together with path decomposition of width roughly n/2 and integer K, such that
(1) if Φ is satisfiable then G admits a connected feedback vertex set of size at most K (2) if
G admits a connected odd cycle transversal of size at most K, then Φ is satisfiable. As any
connected feedback vertex set is a connected odd cycle transversal as well, this is sufficient
to prove lower bounds for CONNECTED FEEDBACK VERTEX SET and CONNECTED ODD

CYCLE TRANSVERSAL.

Construction Before we start, let us introduce one small gadget. By introducing a pen-
tagon edge vw we mean the following construction: we add three new vertices u1

vw, u
2
vw, u

3
vw

and edges vu1
vw, u1

vww, vu2
vw, u2

vwu
3
vw, u3

vww. In the graph G the vertices uαvw are of de-
gree two and thus the created pentagon ensures that any connected feedback vertex set or
connected odd cycle transversal of G includes v or w. We call uαvw guard vertices.

Given ε > 0 and an instance Φ of SAT with n variables and m clauses we construct a
graph G as follows. We assume that the number of variables n is even, otherwise we add
a single dummy variable. We partition variables of Φ into groups F1, . . . , Fn′ , each of size
two, hence n′ = n/2. The pathwidth of G will be roughly n′.

First, we add to the graph G five vertices r1, r2, r, r∗ and r∗∗ and edges r1r2, rr∗, r∗r∗∗

and r∗∗r. In the graph G the vertices r∗ and r∗∗ are of degree two, thus any connected
feedback vertex set or connected odd cycle transversal of G needs to include r. The vertex
r is called a root.

Second, we take a = m(n+ 1) and for each 1 ≤ t ≤ n′ we create a path Pt consisting
of 4a vertices vαt,k and hαt,k, 0 ≤ k < a and 1 ≤ α ≤ 2. On the path Pt the vertices are
arranged in the following order:

v1
t,0, h

1
t,0, v

2
t,0, h

2
t,0, v

1
t,1, . . . , h

2
t,a−1.
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Let V and H be the sets of all vertices vαt,k and hαt,k (1 ≤ t ≤ n′, 0 ≤ k < a, 1 ≤ α ≤ 2),
respectively. We connect vertices v1

t,0 and all vertices in H to the root r. Moreover, we
connect all vertices hαt,k (1 ≤ t ≤ n′, 0 ≤ k < a, 1 ≤ α ≤ 2) to the vertex rα. To simplify
further notation we denote v1

t,a = r, note that h2
t,a−1v

1
t,a ∈ E.

Third, for each 1 ≤ t ≤ n′ and 0 ≤ k < a we introduce pentagon edges v1
t,kv

2
t,k,

v2
t,kv

1
t,k+1 and h1

t,kh
2
t,k.

The intuition of the construction made so far is as follows. For each two-variable block
Ft we encode any assignment of the variables in Ft as a choice whether to take v1

t,k or v2
t,k

and h1
t,k or h2

t,k to the connected feedback vertex set or connected odd cycle transversal in
G.

We have finished the part of the construction needed to encode an assignment and now
we add vertices used to check the satisfiability of the formula Φ. Let C0, . . . , Cm−1 be the
clauses of the formula Φ. For each clause Ci we create (n + 1) triples of vertices ci,j , c∗i,j ,
c∗∗i,j , one for each 0 ≤ j < n+ 1. Each such triple is connected into a triangle. The vertices
c∗i,j and c∗∗i,j are of degree two in G, thus they ensure that each vertex ci,j is contained in any
connected feedback vertex set or connected odd cycle transversal in G. Let C be the set of
all vertices ci,j , |C| = a.

Consider a clause Ci and a group of variables Ft = {x1
t , x

2
t}. If x1

t occurs positively
in Ci then we connect ci,j with v1

t,mj+i via a path of length two, that is we add a ver-
tex cvi,j,t,1 and edges v1

t,mj+ic
v
i,j,t,1,cvi,j,t,1ci,j . If x1

t occurs negatively in Ci then we con-
nect ci,j with v2

t,mj+i via a path of length two, that is we add a vertex cvi,j,t,2 and edges
v2
t,mj+ic

v
i,j,t,2,cvi,j,t,2ci,j . Similarly if x2

t occurs positively in Ci then we connect ci,j with
h1
t,mj+i via a path of length two, that is we add a vertex chi,j,t,1 and edges h1

t,mj+ic
h
i,j,t,1,chi,j,t,1ci,j .

If x2
t occurs negatively in Ci then we connect ci,j with h2

t,mj+i via a path of length two, that
is we add a vertex chi,j,t,2 and edges h2

t,mj+ic
h
i,j,t,2,chi,j,t,2ci,j .

Intuitively, taking the vertex v1
t,mj+i into a connected feedback vertex set or connected

odd cycle transversal corresponds to setting x1
t to true, whereas taking the vertex h1

t,mj+i

corresponds to setting x2
t to true.

We can view the whole construction as a matrix, where each row corresponds to some
group of variables Ft and each column is devoted to some clause in such a way that each
clause gets (n+ 1) private columns (but not consecutive) of the matrix.

Finally, let K = 1 + 2a+n′ · 2a be the size of the connected dominating set we ask for.

Correctness

Lemma 7.13. If Φ has a satisfying assignment, then there exists a connected feedback
vertex set X in the graph G of size K.

Proof. Given a satisfying assignment φ of the formula Φ we construct a connected feedback
vertex set X as follows. For each block Ft = {x1

t , x
2
t} and for each 0 ≤ k < a we include

into X:

1. the vertex v1
t,k if φ(x1

t ) is true, and v2
t,k otherwise;

2. the vertex h1
t,k if φ(x2

t ) is true, and h2
t,k otherwise.
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Figure 7.4: Part of the construction for CONNECTED FEEDBACK VERTEX SET and CON-
NECTED ODD CYCLE TRANSVERSAL. Dashed edges have one endpoint r, r1 or r2. Empty
circles represent guard vertices in the pentagon edges.

Moreover, we put r and all vertices in C into X . Finally, for each clause Ci let xαt ∈ Ft be
any fixed variable satisfying Ci in the assignment φ. For each 0 ≤ j < n+ 1 we add to the
set X exactly one neighbour of ci,j , namely we add the vertex cγi,j,t,β , where γ = v if α = 1
and γ = h otherwise, whereas β = 1 if φ(xαt ) is true and β = 2 otherwise.

Note that |X| = 1 + 2a + n′ · 2a = K. We now verify that X is a connected feedback
vertex set in G. First, we verify that G \X is a forest.

1. r∗, r∗∗, c∗i,j , c
∗∗
i,j, c

γ
i,j,t,β (0 ≤ i < m, 0 ≤ j < n + 1, 1 ≤ t ≤ n′, 1 ≤ β ≤ 2,

γ ∈ {v, h}) are either contained in X or of degree one in G \X .

2. Each guard vertex in G \ X is either of degree at most one or is of degree two and
has a leaf as a neighbour, as X includes at least one endpoint of each pentagon edge.

3. In G \X the vertices from V \X are connected to guard vertices, vertices cγi,j,t,β , and
at most one vertex fromH \X .

4. In G \X the vertices fromH \X are connected to guard vertices, vertices cγi,j,t,β , at
most one vertex from V \X , and exactly one vertex from the set {r1, r2}.

5. In G \ X the vertices r1 and r2 are connected to each other and to some vertices in
H \X , but no vertex in H \X can reach both r1 and r2 in G \X without using the
edge r1r2.
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To finish the proof we need to ensure thatG[X] is connected. We prove this by showing
that each vertex in X is connected to the root r in G[X]. This is obvious for vertices in
X ∩H, asH ⊆ NG(r). For each 1 ≤ t ≤ n′ and 0 ≤ k < a:

1. if v1
t,k ∈ X , then v1

t,k is connected to root via h2
t,k−1 or h1

t,k, with the exception of v1
t,0,

that is connected to r directly;

2. if v2
t,k ∈ X , then v2

t,k is connected to root via h1
t,k or h2

t,k.

We are left with the vertices ci,j and their neighbours chosen to X for 0 ≤ i < m, 0 ≤ j <
n + 1. However, by the definition of X the only neighbour of ci,j chosen to X connects it
to a vertex w ∈ V ∪ H corresponding to a choice of the value φ(x) for some variable x.
Therefore w ∈ X , so ci,j along with its only neighbour from X are also connected to the
root.

Lemma 7.14. If there exists a connected odd cycle transversal X of size at most K in the
graph G, then Φ has a satisfying assignment.

Proof. First note that r ∈ X and C ⊆ X . Moreover, X needs to contain at least one
endpoint of each pentagon edge h1

t,kh
2
t,k and v1

t,kv
2
t,k (1 ≤ t ≤ n′, 0 ≤ k < a) and these

pentagon edges are pairwise disjoint. Furthermore, each vertex in C needs to have a neigh-
bour in X , but C is an independent set and the neighbourhoods of vertices from C are
pairwise disjoint and disjoint from H ∪ V ∪ {r}. So far we have one vertex r, a vertices
in C, n′ · 2a endpoints of pentagon edges and a neighbours of vertices from C, thus, as
|X| ≤ K = 1 + 2a+ n′ · 2a, X contains r, C, exactly one endpoint of each pentagon edge,
exactly one neighbour of each vertex from C and nothing more. In particular, r1, r2 /∈ X .

For each 0 ≤ k < a we construct an assignment φk as follows. For each block Ft =
{x1

t , x
2
t} we define:

1. φk(x1
t ) to be true if v1

t,k ∈ X and false if v2
t,k ∈ X;

2. φk(x2
t ) to be true if h1

t,k ∈ X and false if h2
t,k ∈ X .

We now show that the assignments φk cannot differ much for all indices 0 ≤ k < a.
Note that for each block Ft = {x1

t , x
2
t} and 0 ≤ k < a− 1:

1. if φk(x1
t ) is true, then φk+1(x1

t ) is also true, as otherwise X contains no endpoint of
the pentagon edge v2

t,kv
1
t,k+1.

2. if φk(x2
t ) is true, then φk+1(x2

t ) is also true, as otherwise h2
t,k, h

1
t,k+1 /∈ X and either

the vertex v2
t,k is not connected to the root in G[X] (if v2

t,k ∈ X , since vertices from
C are leaves in G[X]) or G \X contains a cycle of length five consisting of vertices
v2
t,k, h2

t,k, r2, r1 and h1
t,k+1 (if v2

t,k /∈ X).

For each variable x we define a sequence φ̂x(k) = φk(x), 0 ≤ k < a. From the reasoning
above we infer that for each variable x the sequence φ̂x(k) can change its value at most
once, from false to true. Thus, as a = m(n+1), we conclude that there exists 0 ≤ j < n+1
such that for all 0 ≤ i < m the assignments φmj+i are equal.
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We claim that the assignment φ = φmj satisfies Φ. Consider a clause Ci and focus on
the vertex ci,j ∈ X . As G[X] is connected, there exists a vertex x in the set N(N(ci,j))
that belongs to X ∩ (V ∪ H). This vertex x corresponds to an assignment of one variable
that both satisfies Ci (by the construction process) and is consistent with φmj+i = φ (by the
definition of φmj+i). Thus the assignment φ satisfies Ci and the proof is finished.

Pathwidth bound

Lemma 7.15. Pathwidth of the graph G is at most n′ + O(1). Moreover, a path decompo-
sition of such width can found in polynomial time.

Proof. We give a mixed search strategy to clean the graph with n′ + O(1) searchers. First
we put five searchers on the vertices r1, r2, r, r∗ and r∗∗ and then remove the searchers
from the vertices r∗ and r∗∗. The searchers on the vertices r1, r2 and r remain till the end
of the cleaning process.

We search the graph in a = m(n+ 1) rounds. At the beginning of round k (0 ≤ k < a)
there are searchers on all vertices v1

t,k for 1 ≤ t ≤ n′. Let 0 ≤ i < m and 0 ≤ j < n + 1
be integers such that k = i + mj. We first place three searchers on ci,j , c∗i,j and c∗∗i,j and
afterwards we remove the searchers from c∗i,j and c∗∗i,j .

Then, for each 1 ≤ t ≤ n′ in turn we put O(1) searchers on vertices v2
t,k, v1

t,k+1, h1
t,k,

h2
t,k, the guard vertices of pentagon edges v1

t,kv
2
t,k, v2

t,kv
1
t,k+1,h1

t,kh
2
t,k, and all vertices cγi,j,t,β ,

and then remove searchers from the vertices v1
t,k, v2

t,k, h1
t,k, h2

t,k, all aforementioned guard
vertices and vertices cγi,j,t,β . The last step of the round is removing a searcher from the
vertex ci,j . After the last round the whole graph G is cleaned. Since we reuse searchers in
the cleaning process, n′ +O(1) searchers suffice to clean the graph.

Using the above graph cleaning process a path decomposition of width n′ + O(1) can
be constructed in polynomial time.

Proof of Theorems 7.11 and 7.12. Suppose CONNECTED FEEDBACK VERTEX SET or CON-
NECTED ODD CYCLE TRANSVERSAL can be solved in (4 − ε)p|V |O(1) provided that
we are given a path decomposition of G of width p. Given an instance of SAT we con-
struct an instance of CONNECTED FEEDBACK VERTEX SET or CONNECTED ODD CY-
CLE TRANSVERSAL using the above construction and solve it using the (4 − ε)p|V |O(1)

time algorithm. Lemmata 7.13, 7.14, together with an observation that any connected feed-
back vertex set is also a connected odd cycle transversal in G, ensure correctness, whereas
Lemma 7.15 implies that running time of our algorithm is (4 − ε)n/2|V |O(1), however we
have (4− ε)n/2 = (

√
4− ε)n and

√
4− ε < 2. This concludes the proof.

7.5 Feedback Vertex Set

Theorem 7.16. Assuming SETH, for every constant ε > 0 there is no algorithm that given
an instance (G = (V,E), k) together with a path decomposition of the graph G of width p
solves the FEEDBACK VERTEX SET problem in (3− ε)p|V |O(1) time.
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Construction The construction here is a bit different than in the previous subsections, as
we do not have a constraint that the solution needs to induce a connected subgraph. As one
may notice, this connectivity constraint is used intensively in the previous subsections, in
particular, it gives quite an easy way to verify the correctness of the assignment encoded
in the solution. In the case of FEEDBACK VERTEX SET we need to do it in a different and
more complicated way. Parts of the construction here resembles the lower bound proof for
ODD CYCLE TRANSVERSAL by Lokshtanov, Marx and Saurabh [58].

Before we start, let us introduce one small gadget, used already in the proof of the
lower bounds for CONNECTED FEEDBACK VERTEX SET and CONNECTED ODD CYCLE

TRANSVERSAL. By introducing a triangle edge vw we mean the following construction:
we add a new vertex uvw and edges vw, vuvw, wuvw. We call uvw a guard vertex and in
the graph G its degree equals two. Note that any feedback vertex set X in G needs to
intersect the triangle composed of vertices {v, w, uvw} and, moreover, if uvw ∈ X then
X \ {uvw} ∪ {v} is also a feedback vertex set in G of not greater size. Thus we may focus
only on feedback vertex sets in G that do not contain guard vertices. Each such feedback
vertex set needs to include at least one endpoint of each triangle edge.

Given ε > 0 and an instance Φ of SAT with n variables and m clauses we construct
a graph G as follows. We first choose a constant integer η, which value depends on ε
only. The exact formula for η is presented later. We partition variables of Φ into groups
F1, . . . , Fn′ , each of size at most β = blog 3ηc, hence n′ = dn/βe. Note that now ηn′ ∼
n/ log 3, the pathwidth of G will be roughly ηn′.

First, we add to the graph G a vertex r, called a root.
Second, we take a = m(2ηn′ + 1) and for each 1 ≤ t ≤ n′ and 1 ≤ ` ≤ η we create

a path Pt,` consisting of 3a vertices vαt,`,k, 0 ≤ k < a and 1 ≤ α ≤ 3, arranged in the
following order:

v1
t,`,0, v

2
t,`,0, v

3
t,`,0, v

1
t,`,1, . . . , v

1
t,`,a−1, v

2
t,`,a−1, v

3
t,`,a−1.

Let Vt,`,k = {vαt,`,k : 1 ≤ α ≤ 3}, Vt,k =
⋃η
`=1 Vt,`,k and V =

⋃n′

t=1

⋃a−1
k=0 Vt,k.

Third, for each two consecutive vertices vαt,`,k, vα′t,`,k′ on the path Pt,` we introduce ver-
tices hα,1t,`,k and hα,2t,`,k connected by a triangle edge. Furthermore, we add edges hα,1t,`,kv

α
t,`,k,

hα,1t,`,kr, h
α,2
t,`,kv

α′
t,`,k′ , h

α,2
t,`,kr. LetH be the set of all vertices hα,γt,`,k.

We now provide a description of a group gadget Bt,k, which will enable us to encode
2β possible assignments of one group of β variables. Fix a block Ft, 1 ≤ t ≤ n′, and a
position k, 0 ≤ k < a. The group gadget Bt,k includes (already created) vertices vαt,`,k,
hα,γt,`,k (1 ≤ ` ≤ η, 1 ≤ α ≤ 3, 1 ≤ γ ≤ 2) and all guard vertices in the triangle edges
between them. Moreover, we perform the following construction.

For each 1 ≤ ` ≤ η we introduce three vertices pαt,`,k (1 ≤ α ≤ 3), pairwise connected
by triangle edges. Moreover, for each 1 ≤ α ≤ 3 we connect pαt,`,k and vαt,`,k by a triangle
edge. Let P be the set of all vertices pαt,`,k in the whole graph G.

In order to encode 2β assignments we consider subsets of Vt,k that contain exactly one
vertex out of each set Vt,`,k. For each sequence S = (s1, . . . , sη) ∈ {1, 2, 3}η we perform
the following construction. First, for each 1 ≤ ` ≤ η we introduce three vertices qS,αt,`,k
(1 ≤ α ≤ 3), pairwise connected by triangle edges. Second, we connect qS,αt,`,k with vαt,`,k
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(1 ≤ α ≤ 3) with a triangle edge. Third, we introduce a vertex xSt,k and connect all vertices
qS,s`t,`,k (1 ≤ ` ≤ η) and the vertex xSt,k into a cycle QSt,k. Fourth, we connect all vertices xSt,k
for S ∈ {1, 2, 3}η into a cycle Xt,k. Finally, for each S ∈ {1, 2, 3}η we introduce two new
vertices ySt,k and zSt,k and triangle edges xSt,ky

S
t,k and ySt,kz

S
t,k. Let X , Y and Z be the sets

of all vertices xSt,k, ySt,k and zSt,k, respectively. This finishes the construction of the group
gadget Bt,k.

We add vertices used to check the satisfiability of the formula Φ. Observe that for a
group of variables Ft there are at most 2β possible assignments and there are 3η ≥ 2β

vertices xSt,k for sequences S from the set {1, 2, 3}η in each group gadget Bt,k, hence we
can assign a unique sequence S to each assignment. Let C0, . . . , Cm−1 be the clauses of
the formula Φ. For each clause Ci and for each 0 ≤ j < 2ηn′+1 we perform the following
construction that uses gadgets Bt,mj+i for 1 ≤ t ≤ n′. For each group of variables Ft we
consider the set St,i of all sequences S ∈ {1, 2, 3}η that correspond to an assignment of Ft
satisfying the clause Ci (i.e., one of the variables of Ft is assigned a value such that Ci is
already satisfied). We connect all vertices zSt,mj+i for 1 ≤ t ≤ n′, S ∈ St,i into a cycle Ci,j .
The vertices on the cycle Ci,j are sorted in the order of increasing value of t.

We can view the whole construction as a matrix of group gadgets, where each row
corresponds to some group of variables Ft and each column is devoted to some clause in
such a way that each clause gets (2ηn′ + 1) private columns (but not consecutive) of the
group gadget matrix, as in Figure 7.6.

Finally, we define the size of the feedback vertex set we are looking for as K = Kh +
Kv +Kp +Kq +Kx +Ky, where

Kh = ηn′(3a− 1) Kv = ηn′a Kp = ηn′ · 2a
Kq = ηn′ · 2a3η Kx = n′a Ky = n′a3η.

Correctness

Lemma 7.17. If Φ has a satisfying assignment, then there exists a feedback vertex set in G
of size K.

Proof. Given a satisfying assignment φ of the formula Φ we construct a feedback vertex
set X ⊆ V as follows.

For each group of variables Ft we consider the sequence St ∈ {1, 2, 3}η which corre-
sponds to the restriction of the assignment φ to the variables of Ft. Let

Xv = {vSt(`)t,`,k : 1 ≤ t ≤ n′, 1 ≤ ` ≤ η, 0 ≤ k < a}
Xp = {pαt,`,k : 1 ≤ t ≤ n′, 1 ≤ ` ≤ η, 0 ≤ k < a, 1 ≤ α ≤ 3, α 6= St(`)}
Xq = {qS,αt,`,k : 1 ≤ t ≤ n′, 1 ≤ ` ≤ η, 0 ≤ k < a, S ∈ {1, 2, 3}η, 1 ≤ α ≤ 3, α 6= St(`)}
Xx = {xStt,k : 1 ≤ t ≤ n′, 0 ≤ k < a}
Xy = {ySt,k : 1 ≤ t ≤ n′, 0 ≤ k < a, S ∈ {1, 2, 3}η, S 6= St}
Xz = {zStt,k : 1 ≤ t ≤ n′, 0 ≤ k < a}

Moreover, we define the set Xh ⊆ H to contain, for each 1 ≤ t ≤ n′, 1 ≤ ` ≤ η,
0 ≤ k < a, 1 ≤ α ≤ 3 and (k, α) 6= (a − 1, 3), the vertex hα,1t,`,k if vαt,`,k /∈ Xv and
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Figure 7.5: Part of the construction around group gadget Bt,k for η = 3. Dashed edges are
connecting a vertex with the root r. Empty circles represent guard vertices.
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Figure 7.6: The arrangement of the group gadgets in G.
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the vertex hα,2t,`,k otherwise. Note that |Xv| = Kv, |Xp| = Kp, |Xq| = Kq, |Xx| = Kx,
|Xy|+ |Xz| = Ky and |Xh| = Kh. Thus a set X = Xv ∪Xp ∪Xq ∪Xx ∪Xy ∪Xz ∪Xh

is of size K.
To finish the proof we need to verify that X is a feedback vertex set of G. First, we

ensure that X includes at least one endpoint of every triangle edge in G.

1. X includes one vertex from each pair hα,1t,`,k and hα,2t,`,k.

2. X includes two out of three vertices in each triple pαt,`,k, 1 ≤ α ≤ 3, and in each triple
qS,αt,`,k, 1 ≤ α ≤ 3.

3. If pαt,`,k /∈ X or qS,αt,`,k /∈ X , then vαt,`,k ∈ X .

4. If ySt,k /∈ X then both xSt,k and zSt,k are in X .

Let G0 be the graph G with deleted guard vertices. We have just shown that each guard
vertex in G \X is of degree zero or one. Thus if G0 \X is a forest, then G \X is a forest
too.

Now note that Xp∪Xq∪Xv separates ({r}∪V ∪H)\X from the rest of the graph G0.
To see this recall that if pαt,`,k /∈ X or qS,αt,`,k /∈ X , then vαt,`,k ∈ X . LetG1 = G0[{r}∪V∪H].
We now show that G1 \X is a forest. Note that in G1 \Xh each cycle contains at least one
vertex from V . Recall that the setXv contains every third vertex on each path Vt,`. Let vαt,`,k
and vα′t,`,k′ be any two consecutive vertices on Vt,` that are not in Xv. It is straightforward to
check that that in the set of at most 4 neighbours of these two vertices in H, at most one is
not in Xh. Thus, the vertices in V \Xv do not take part in any cycle in G1 \X , and G1 \X
is a forest.

Now note that Xv ∪ Xq ∪ Xx ∪ Xy separates (Q ∪ X ) \ X from the rest of the graph
G0. To see this recall that if pαt,`,k /∈ X or qS,αt,`,k /∈ X , then vt,`,k ∈ X and if xSt,k /∈ X

then ySt,k ∈ X . Let G2 = G0[Q ∪ X ]. We now show that G2 \X is a forest. The vertices
in Q ∪ X from different group gadgets are not adjacent, thus we focus on a single group
gadget Bt,k. Let S ∈ {1, 2, 3}η. Note that in G2 \ X the vertices from QSt,k \ X are of
degree at most two, except for the vertex xSt,k. If S 6= St, then for any 1 ≤ ` ≤ η such that
S(`) 6= St(`) we have qS,S(`)

t,`,k ∈ Xq and the cycle QSt,k is intersected by X . On the other
hand, if S = St, then xSt,k ∈ Xx. Thus, the vertices Q \ X are not contained in any cycle
in G2 \X . Moreover, on each cycle Xt,k we have xStt,k ∈ Xx and we infer that G2 \X is a
forest.

As for Y , note that if ySt,k /∈ X then S = St and xSt,k, z
S
t,k ∈ X , and ySt,k is isolated in

G0 \X .
We are left with Z . The graph G3 = G0[Z] consists of a cycles Ci,j , 0 ≤ i < m,

0 ≤ j < 2ηn′ + 1. Consider a clause Ci and an index 0 ≤ j < 2ηn′ + 1. As φ satisfies
Ci, there exists a block Ft, such that a variable from this block satisfies Ci. Then zStt,mi+j is
both on the cycle Ci,j and in X , and G3 \X is a forest, too.

Lemma 7.18. If there exists a feedback vertex set X of size at most K in the graph G, then
Φ has a satisfying assignment.
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Proof. As it is discussed at the beginning of the construction process, we may assume that
no guard vertex is inX . LetXh = X∩H, similarly we defineXv, Xp, Xq, Xx, Xy andXz.
Furthermore, we assume that, among all feedback vertex sets of size at most K in G that
do not contain any guard vertex, the set X is such a one that |Xp| is the smallest possible.

We now lower bound the sizes of the sets Xh, Xv, Xp, Xq, Xx, Xy and Xz.

1. For each 1 ≤ t ≤ n′, 0 ≤ k < a, S ∈ {1, 2, 3}η, at least one of the vertices ySt,k and
zSt,k is inX (as they are connected by a triangle edge), thus |Xy|+|Xz| ≥ n′a3η = Ky.

2. For each 1 ≤ t ≤ n′ and 0 ≤ k < a at least one vertex of the set X needs to hit the
cycle Xt,k, to |Xx| ≥ n′a = Kx.

3. For each 1 ≤ t ≤ n′, 0 ≤ k < a, 1 ≤ ` ≤ η and S ∈ {1, 2, 3}η at least two
vertices out of the triple {qS,αt,`,k : 1 ≤ α ≤ 3} need to be included in X , thus |Xq| ≥
ηn′ · 2a3η = Kq.

4. For each 1 ≤ t ≤ n′, 0 ≤ k < a, 1 ≤ ` ≤ η at least two vertices out of the triple
{pαt,`,k : 1 ≤ α ≤ 3} need to be included in X . Moreover, if pαt,`,k /∈ X for some
1 ≤ α ≤ 3, then vαt,`,k ∈ X , as otherwise the triangle edge vαt,`,kp

α
t,`,k is not covered

by X . Thus |Xp|+ |Xv| ≥ ηn′ · 3a = Kp +Kv.

5. For each 1 ≤ t ≤ n′, 0 ≤ k < a, 1 ≤ ` ≤ η, 1 ≤ α ≤ 3, such that (k, α) 6= (a−1, 3),
at least one endpoint of the triangle edge hα,1t,`,kh

α,2
t,`,k needs to be included in X . Thus

|Xh| ≥ ηn′(3a− 1) = Kh.

As |X| ≤ K = Kh + Kv + Kp + Kq + Kx + Ky, we infer that in all aforementioned
inequalities we have equalities, and r /∈ X .

Recall that we have assumed that |Xp| is the smallest possible. Let 1 ≤ t ≤ n′,
0 ≤ k < a, 1 ≤ ` ≤ η and focus on the triple {pαt,`,k : 1 ≤ α ≤ 3}. If it is wholly contained
in X , then X \ {p1

t,`,k} ∪ {v1
t,`,k} is also a feedback vertex set of G, of not greater size, not

containing any guard vertex, and with smaller size of |Xp|. Thus X contains exactly two
vertices out of each such triple, |Xp| = Kp, |Xv| = Kv and Xv contains exactly one vertex
out of each triple {vαt,`,k : 1 ≤ α ≤ 3}.

We strengthen the above observation by showing the following claim: for any 1 ≤ t ≤
n′, 1 ≤ ` ≤ η and any three consecutive vertices vA, vB, vC on the path

⋃a−1
k=0 Vt,`,k, at least

one of these vertices is in Xv. By contradiction, assume that vA, vB, vC /∈ X . Recall that
the graph G contains vertices h1

A, h2
A, h1

B, h2
B, edges rh1

A, rh2
A, rh1

B, rh2
B, h1

AvA, h2
AvB,

h1
BvB, h2

BvC and triangle edges h1
Ah

2
A, h1

Bh
2
B. Note that |{h1

A, h
2
A, h

1
B, h

2
B} \ X| = 2, as

|Xh| = Kh andXh contains exactly one vertex from each pair connected by a triangle edge.
These two vertices in H \X , together with vA, vB, vC and the root r induce a subgraph of
G \X with 6 vertices and 6 edges, a contradiction.

For 1 ≤ t ≤ n′ and 1 ≤ ` ≤ η let us define a sequence st,`(k), 0 ≤ k < a, such
that vαt,`,k ∈ Xv iff α = st,`(k). By the observation made in the previous paragraph we
infer that the sequence st,` cannot increase, thus its value can change at most twice. As
a = m(2ηn′ + 1), we infer that there exists an index 0 ≤ j < 2ηn′ + 1 such that for all
1 ≤ t ≤ n′, 1 ≤ ` ≤ η we have st,`(mj) = st,`(mj + i) for all 0 ≤ i < m. For each block
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Ft, let St = (st,`(mj))
η
`=1 ∈ {1, 2, 3}η and let φ be an assignment that corresponds to the

sequence St for each block Ft. We claim that φ satisfies Φ.
Take any clause Ci, 0 ≤ i < m. Take any block Ft. As |Xq| = Kq, the set Xq

includes exactly two vertices out of each triple {qS,αt,`,mj+i : 1 ≤ α ≤ 3} for 1 ≤ ` ≤ η,
S ∈ {1, 2, 3}η. As qS,αt,`,mj+i is connected to vαt,`,mj+i by a triangle edge, we infer that
qS,αt,`,mj+i /∈ X iff vαt,`,mj+i ∈ X , which is equivalent to St(`) = α. Thus xStt,mj+i ∈ X , as
otherwise the cycle QStt,mj+i is disjoint with X . As |Xx| = Kx, the set Xx contains exactly
one vertex out of each cycle Xt,k, and we infer that xSt,mj+i /∈ X for S 6= St. Recall that
xSt,mj+i and ySt,mj+i are connected by a triangle edge, thus ySt,mj+i ∈ X for S 6= St. As
|Xy| + |Xz| = Ky, we know that the set X contains exactly one endpoint out of each
triangle edge ySt,mj+iz

S
t,mj+i, and we infer that if zSt,mj+i ∈ X then S = St. Finally, if X is a

feedback vertex set in G, X hits the cycle Ci,j , thus there exists a block Ft and a sequence
S ∈ {1, 2, 3, }η such that zSt,mj+i ∈ X and the assignment of the variables of the block
Ft that corresponds to S satisfies Ci. However, we have proven that zSt,mj+i ∈ X implies
S = St, thus φ satisfies Ci and the proof is finished.

Pathwidth bound

Lemma 7.19. Pathwidth of the graph G is at most ηn′+O(η3η). Moreover a path decom-
position of such width can found in polynomial time.

Proof. We give a mixed search strategy to clean the graph with ηn′ + O(η3η) searchers.
First we put a searcher in the root r. This searcher remains there till the end of the cleaning
process.

For a gadget Bt,k we call the vertices v1
t,`,k for 1 ≤ ` ≤ η, as entry vertices. We search

the graph in a = m(2ηn′ + 1) rounds. In the beginning of round k (0 ≤ k < a) there are
searchers on the entry vertices of the gadget Bt,k for every 1 ≤ t ≤ n′. Let 0 ≤ i < m and
0 ≤ j < 2ηn′ + 1 be integers such that k = i+mj. We place a searcher on the last vertex
of the cycle Ci,j (recall that the vertices on Ci,j are sorted by the block number). Then, for
each 1 ≤ t ≤ n′ in turn we:

• put O(η3η) searchers on all vertices of the group gadget Bt,k,

• put η searchers on entry vertices of the group gadget Bt,k+1 (except for the last
round),

• put a searcher in the first vertex after the vertices of Bt,k ∩ Z on the cycle Ci,j ,

• remove searchers from all vertices of the group gadget Bt,k.

The last step of the round is removing the remaining searcher on the cycle Ci,j . After the
last round the whole graph G is cleaned. Since we reuse O(η3η) searchers for cleaning
group gadgets, ηn′ +O(η3η) searchers suffice to clean the graph.

Using the above graph cleaning process a path decomposition of width ηn′ + O(η3η)
can be constructed in polynomial time.
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Proof of Theorem 7.16. Suppose FEEDBACK VERTEX SET can be solved in (3−ε)p|V |O(1)

time provided that we are given a path decomposition of G of width p. Let λ = log3(3 −
ε) < 1. We choose η large enough such that log 3η

blog 3ηc <
1
λ

. Given an instance of SAT we con-
struct an instance of FEEDBACK VERTEX SET using the above construction and the chosen
value of η. Next we solve FEEDBACK VERTEX SET using the 3λp|V |O(1) time algorithm.
Lemmata 7.17, 7.18 ensure correctness, whereas Lemma 7.19 implies that running time of
our algorithm is 3ληn

′|V |O(1), however we have

3ληn
′
= 2ληn

′ log 3 = 2λn
′ log 3η ≤ 2C · 2λn log 3η/blog 3ηc = 2C · 2λ′n

for some λ′ < 1 and C = λ log 3η. This concludes the proof.



Chapter 8

Conclusions and open problems

For several years it was known that most of the local problems (where by local we mean
that a solution can be verified by checking separately the neighbourhood of each vertex),
standard dynamic programming techniques give ctw|V |O(1) time algorithms for a constant
c. The main consequence of the Cut&Count technique as presented in this dissertation is
that problems which can be formulated as a local constraint with an additional upper bound
on the number of connected components also admit ctw|V |O(1) time algorithms. Moreover,
many problems cannot be solved faster unless the Strong Exponential Time Hypothesis
fails. We have chosen not to pursue a general theorem in the above spirit, as the techniques
required to get optimal constants seem varied and depend on the particular problem.

We have also shown that several problems in which one aims to maximize the number
of connected components are not solvable in 2o(p log p)|V |O(1) unless the Exponential Time
Hypothesis fails. Hence, assuming the Exponential Time Hypothesis, there is a marked
difference between the minimization and maximization of the number of connected com-
ponents in this context.

Finally, we leave the reader with some interesting open questions:

• Can Cut&Count be derandomized? For example, can CONNECTED VERTEX COVER

be solved deterministically in ct|V |O(1) on graphs of treewidth t for some constant c?

• Since derandomization for treewidth parametrizations seems hard, we ask whether
it is possible to derandomize the presented FPT algorithms parameterized by the
solution size for FEEDBACK VERTEX SET, CONNECTED VERTEX COVER or CON-
NECTED FEEDBACK VERTEX SET? Note that the tree decomposition considered in
these algorithms is of a very specific type, which could potentially make this problem
easier than the previous one.

• Do there exist algorithms running in time ct|V |O(1) on graphs of treewidth t that solve
counting or weighted variants? For example can the number of Hamiltonian paths
be determined, or the Traveling Salesman Problem solved in ct|V |O(1) on graphs of
treewidth t?

• Can exact exponential time algorithms be improved using Cut&Count (for exam-
ple for CONNECTED DOMINATING SET, STEINER TREE and FEEDBACK VERTEX

SET)?

131
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• All our algorithms for directed graphs run in time 6t|V |O(1). Can the constant 6 be
improved? Or maybe it is optimal (again, assuming SETH)?
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Appendix A

Problem definitions

(k1, k2)-⊕CNF-SAT

Input: A CNF formula Φ consisting of m clauses of size at most k1 on n variables, where
m ≤ k2n.
Question: Is the number of satisfying assignments for Φ odd?

CONNECTED DOMINATING SET

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a subset X ⊆ V of cardinality at most k such that G[X] is
connected and N [X] = V ?

CONNECTED FEEDBACK VERTEX SET

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a set X ⊆ V of cardinality at most k such that G[X] is con-
nected and G[V \X] is a forest?

CONNECTED ODD CYCLE TRANSVERSAL

Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a subset X ⊆ V of cardinality at most k such that G[X] is
connected and G[V \X] is bipartite?

CONNECTED VERTEX COVER

Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a subset X ⊆ V of cardinality at most k such that G[X] is
connected and each edge e ∈ E is incident with at least one vertex from X?

CYCLE PACKING

Input: A (directed or undirected) graph G = (V,E) and an integer k
Question: Does G contain k vertex-disjoint cycles?

EXACT FULL DEGREE SPANNING TREE

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a spanning tree T of G for which there are exactly k vertices
satisfying degG(v) = degT (v)?
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EXACT k-LEAF OUTBRANCHING

Input: A directed graph D = (V,A), an integer k and a root r ∈ V .
Question: Does there exist a spanning tree of D with all edges directed away from r with
exactly k leaves?

EXACT k-LEAF SPANNING TREE

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exists a spanning tree of G with exactly k leaves?

FEEDBACK VERTEX SET

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a set feedback vertex set Y ⊆ V (i.e. G[V \ Y ] is a forest) of
size at most k?

GRAPH METRIC TRAVELLING SALESMAN PROBLEM

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exist a closed walk (possibly repeating edges and vertices) of length
at most k that visits each vertex of the graph at least once?

(p1, p2)-⊕HITTING SET

Input: A set system F ⊆ 2U where |F| = m,|U | = n, for every S ∈ F , |S| ≤ p1 and
m ≤ p2n.
Question: Is the number of X ⊆ U , with X ∩ S 6= ∅ for each S ∈ F , odd?

k × k PERMUTATION HITTING SET

Input: A family of sets S1, S2 . . . Sm ⊆ [k] × [k], such that each set contains at most one
element from each row of [k]× [k].
Question: Is there a set S containing exactly one element from each row and exactly one
element from each column such that S ∩ Si 6= ∅ for any 1 ≤ i ≤ m?

(DIRECTED) LONGEST PATH

Input: An undirected graph G = (V,E) (or a directed graph D = (V,A)) and an integer
k.
Question: Does there exist a (directed) simple path of length k in G (D)?

(DIRECTED) LONGEST CYCLE

Input: An undirected graph G = (V,E) (or a directed graph D = (V,A)) and an integer
k.
Question: Does there exist a (directed) simple cycle of length k in G (D)?

MAX CYCLE COVER

Input: An undirected graph G = (V,E) (or a directed graph D = (V,A)) and an integer k
Question: Does G (D) contain a set of at least k vertex-disjoint cycles such that each
vertex of G (D) is contained in exactly one (directed) cycle?
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MAXIMUM LEAF TREE

Input: An undirected graph G = (V,E) and an integer k.
Question: Does there exists a spanning tree of G with at least k leaves?

MAXIMUM LEAF OUTBRANCHING

Input: A directed graph D = (V,A), an integer k and a root r ∈ V .
Question: Does there exist a spanning tree of D with all edges directed away from r with
at least k leaves?

MAXIMALLY DISCONNECTED DOMINATING SET

Input: An undirected graph G = (V,E) and integers k and r
Question: Does G contain a dominating set of size at most k that induces at least r con-
nected components?

(DIRECTED) MIN CYCLE COVER

Input: An undirected graph G = (V,E) (or a directed graph D = (V,A)) and an integer
k.
Question: Can the vertices of G (D) be covered with at most k vertex disjoint (directed)
cycles?

(DIRECTED) PARTIAL CYCLE COVER

Input: An undirected graph G = (V,E) (or a directed graph D = (V,A)) and integers k
and `.
Question: Does there exist a family of at most k vertex disjoint (directed) cycles in G (D)
that cover exactly ` vertices?

k × k HITTING SET

Input: A family of sets S1, S2 . . . Sm ⊆ [k] × [k], such that each set contains at most one
element from each row of [k]× [k].
Question: Is there a set S containing exactly one element from each row such that S∩Si 6=
∅ for any 1 ≤ i ≤ m?

(p1, p2)-⊕SET COVER

Input: A set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ p1 and
m ≤ p2n.
Question: Is the number of C ⊆ F with

⋃
S∈C S = U odd?

p-⊕SET COVERα
Input: An integer t and a set system F ⊆ 2U where |F| = m, |U | = n, t ≤ αn, for every
S ∈ F , |S| ≤ p.
Question: Is the number of C ⊆ F with |C| = t such that

⋃
S∈C S = U odd?

STEINER TREE

Input: An undirected graph G = (V,E), a set of terminals T ⊆ V and an integer k.
Question: Is there a set X ⊆ V of cardinality k such that T ⊆ X and G[X] is connected?
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k-UNIQUE-CNF-SAT

Input: A CNF formula Φ consisting of m clauses of size at most k on n variables having
at most one satisfying assignment.
Question: Is there a satisfying assignment for Φ?

WEIGHTED STEINER TREE

Input: An undirected graph G = (V,E) together with a weight function c : E → Z+ , a
set of terminals T ⊆ V and an integer K
Question: Does there exist a tree inG that contains all terminals T and the sum of its edges
is at most K?
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