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Abstract

In compressed data a single bit error propagates because of the corruption of the
decoder’s state. This work is a study of error resilience in compressed data and, in
particular, of the recovery of as much data as possible after a bit error. It is focused
on Huffman codes.
In a message encoded with a Huffman code a bit error causes the decoder to lose

synchronization with the coder. The error propagates because the codewords seen by
the decoder are misaligned. In case of most Huffman codes the decoder eventually
resynchronizes. Nevertheless, there is no a priori upper bound on the number of
incorrectly decoded symbols.
The work introduces two novel methods for limiting error propagation in Huffman

codes to not more than L bits, L being a parameter. In one method it is assumed
that the decoder knows its position in the encoded message, in the other, the position
of the decoder may be unknown. The methods are based on synchronization of
a decoder that starts at an arbitrary bit of the encoded data. They utilize the inherent
tendency of Huffman codes to synchronize spontaneously and do not introduce any
redundancy if such a synchronization takes place. Another new method for limiting
error propagation, presented in this dissertation, can be used in a wide class of codes.
The methods are applied to parallel decoding of Huffman data and are tested on Jpeg
compression. Additionally, an algorithm for finding correct codeword’s alignment by
a decoder that starts in the middle of a message encoded with normal Huffman coding
is presented.
Statistical synchronization of Huffman codes is related to synchronizing strings —

strings that always resynchronize the decoder. It is shown that finding a synchronizing
string for a code is equivalent to a finding a synchronizing string for some finite
automaton. Černý conjecture for this class of automata is discussed and an upper
bound on the length of the shortest synchronizing string is presented. It is supported
by an efficient algorithm that checks if a code has a synchronizing string and, if so,
constructs a synchronizing string achieving the bound. Two classes of codes with
a long shortest synchronizing string are shown with an exact length of the shortest
synchronizing string. Finally, two efficient algorithms for finding all the synchronizing
codewords — synchronizing strings that are codewords — of a Huffman code are
presented.

Keywords: Huffman code, synchronization, synchronization delay, guaranteed syn-
chronization, synchronizing string, synchronizing codeword, resynchronization mar-
ker, error resilience, strong synchronization.

ACM Classification: E.4, F.1.1.





Streszczenie

Błąd pojedynczego bitu w skompresowanych danych propaguje się, ponieważ zmie-
nia on stan dekodera. W pracy analizowana jest odporność na błędy w skompresowa-
nych danych, w szczególności problem odzyskania największej możliwej ilości danych
po wystąpieniu błędu. Praca dotyczy głównie kodów Huffmana.
W danych zakodowanych kodem Huffmana błąd bitowy powoduje, że dekoder

traci synchronizację z koderem. Błąd propaguje się, ponieważ granice słów kodowych
widziane przez dekoder nie pokrywają się z oryginalnymi granicami. W przypadku
większości kodów Huffmana dekoder w końcu zsynchronizuje się. Niemniej jednak nie
istnieje a priori ograniczenie górne na liczbę niepoprawnie zdekodowanych symboli.
Praca wprowadza dwie metody ograniczania propagacji błędów w kodach Huff-

mana do co najwyżej L bitów, gdzie L jest parametrem. W jednej metodzie zakłada
się, że dekoder zna numer bitu, który jest dekodowany, w drugiej pozycja dekodera
może być nieznana. Metody są oparte na synchronizacji dekodera, który startuje od
dowolnego bitu zakodowanych danych. Wykorzystują one immanentną tendencję ko-
dów Huffmana do spontanicznej synchronizacji i nie wprowadzają żadnej redundancji
jeśli taka synchronizacja zawsze zachodzi. Kolejna wprowadzona metoda ogranicza-
nia propagacji błędów może być użyta do szerokiej klasy kodów. Metody zostały
zastosowane do równoległej dekompresji danych skompresowanych kodami Huffmana,
a pomyślne testy zostały przeprowadzone na kompresji Jpeg. Dodatkowo przedsta-
wiony został efektywny algorytm znajdowania poprawnego ułożenia słów kodowych
przez dekoder zaczynający działanie w środku danych zakodowanych zwykłym kodem
Huffmana.
Statystyczna synchronizacja kodów Huffmana jest związana z ciągami synchro-

nizującymi — ciągami, które zawsze resynchronizują dekoder. Zostało pokazane, że
znajdowanie ciągu synchronizującego dla kodu Huffmana jest równoważne ze znalezie-
niem ciągu synchronizującego pewnego automatu skończonego. Przedyskutowana zo-
stała hipoteza Černý’ego dla tej klasy automatów. Wprowadzono ograniczenie górne
na długość najkrótszego ciągu synchronizującego. Ograniczenie to jest poparte efek-
tywnym algorytmem sprawdzającym czy dany kod ma ciąg synchronizujący, a w przy-
padku pozytywnym, konstruującym ciąg synchronizujący o długości mieszczącej się
w podanym ograniczeniu. Zostały znalezione dwie klasy kodów Huffmana z długim
najkrótszym ciągiem synchronizującym. Dla tych kodów policzona została dokładna
długość takiego ciągu. Praca zawiera również dwa efektywne algorytmy znajdujące
dla danego kodu wszystkie synchronizujące słowa kodowe, czyli słowa kodowe, które
są ciągami synchronizującymi.

Słowa kluczowe: kod Huffmana, synchronizacja, opóźnienie synchronizacji, gwaranto-
wana synchronizacja, ciąg synchronizujący, synchronizujące słowo kodowe, znacznik
synchronizujący, odporność na błędy, silna synchronizacja.

Klasyfikacja tematyczna ACM : E.4, F.1.1.
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Chapter 1

Introduction

1.1 Data compression

The goal of data compression is to convert an input data stream into one of a smaller
size [62]. A data stream may be, for instance, a file with an image, video, text, source
code, executable, etc., data transmitted through a network or an array in memory.
The operation can then be reversed to reproduce the original data. The main gain of
using data compression is the reduction of storage requirements. It can be directly
evaluated in terms of the number of discs required to store data, the amount of
memory needed for a program execution or the capacity of a music player needed
to store a collection of music. Any of these can be expressed in money savings. In
addition, data compression reduces time needed for transferring data, for instance,
over a network or from a disk to main memory.
Salomon [61] enumerates many different types of data compression, only a few of

them to be mentioned here. A nonadaptive compressor does not modify its opera-
tions, its parameters or its tables in response to the input data being compressed. In
contrast, in adaptive methods the parameters of the encoder are modified, depending
on the data read from the input stream. In lossy compression, it is allowed to lose
some information to achieve smaller size of the result. Lossy compression is used in-
tensively in image, audio and video compression. In these cases the distortion is either
beyond human perception or may be tolerated. On the other hand, lossless compres-
sion reproduces the input stream accurately. This is crucial for executable files, for
instance, where a single bit error may cause execution of an incorrect instruction by
the processor and failure of a program. Similarly, in text files an erroneous character
may change the meaning of a sentence. A popular technique of data compression is
called cascaded compression. The output from one decoder is an input for another
one, to produce an even smaller file.
The efficiency of data compression is characterized by the compression ratio, that

is the relative size of the compressed data:

compression ratio =
size of the compressed output

size of the uncompressed input
. (1.1)

We expect a compressor to achieve the compression ratio less than 1 for its typical

1



2 Chapter 1. Introduction

input streams. It should be noted that in lossless compression it is not possible to
achieve the compression ratio less than 1 for all input streams. Therefore, every
compression method is suited to a certain class of data.
Sayood [64] divides the process of data compression into source modeling and cod-

ing. The goal of source modeling is to extract the information about any redundancy
in the data, that is any unnecessary information that can be removed, and to model
it. Then, in the coding phase the information about the model and the information
describing the data are written to the output stream. The latter information may be,
for instance, a description of how the data differ from the model. As an example, in
audio compression raw data is modeled as a signal consisting of different frequencies.
The modeling phase transforms the time-domain signal to the frequency domain.
Then, in the coding phase, the most important frequencies are written to the output
stream using a certain code.
In many data compression algorithms it is assumed that the input stream, also

called the source or the source message, consists of characters, called symbols or
letters. Some methods investigate the correlation between symbols and existence of
patterns in data and use them to reduce the compression ratio, as in case of LZ-
like algorithms [64]. Other methods, called entropy coders, for example Huffman
codes or arithmetic coding, assume that the symbols are independent and identically
distributed random variables and use the knowledge about frequencies of symbols. In
the latter case, the amount of information in each character of a source S is measured
by its (binary) entropy, which is defined by:

H(S) = −
∑

i

pi log2 pi. (1.2)

The sum is extended over all possible values of a character, and pi is the probability
that a symbol is equal to the i-th character. The entropy of the n-symbol stream
is nH(S) and it is a lower bound on the average size of a compressed stream1 [64].
Entropy coders are often used in the final stage of cascaded compression schemes,
after data is transformed into a new string with little correlation between symbols.
A popular class of data compressors is based on variable-length codes [62] and is

used usually for entropy coding. In encoding, each symbol is replaced by some string,
called the codeword for the symbol. The codewords may be of different lengths, hence
the name: variable length codes. The set of codewords is designed in such a way
that the decoder is able to replace codewords with their corresponding symbols to
reconstruct the original stream. There are various procedures of choosing codewords
for the symbols.
Some variations of variable-length codes do not follow strictly this way of encoding.

For instance in Tunstall codes [62] each codeword corresponds to several symbols. In
redundancy feedback codes [62] each symbol has several codewords. In the latter
codes, only parts of codewords are written to the output stream.
Huffman codes [30] are variable length codes used for entropy coding. A certain

probability distribution is assumed on the input characters. Usually the distribution

1Under some natural assumptions on the decoder.



1.1. Data compression 3

is generated by counting occurrences of characters in the input stream. Codewords are
assigned to symbols in such a way that the weighted average codeword length,

∑

i pili,
is minimal. Here pi is the probability of the i-th character and li the length of its
codeword. Huffman codes are prefix-free (or prefix, for simplicity), which means that it
is not possible for a codeword to be a prefix of another codeword. In this dissertation
only binary Huffman codes are considered, i.e. codes where codewords are binary
strings. Binary Huffman codes are complete, which means that any binary string
longer than the longest codeword has some codeword as its prefix. As a consequence,
it is not possible to detect an error in Huffman-encoded data before the end of the
compressed stream.

Example 1.1: The following assignments of codewords to letters is a Huffman code,
hereinafter called C1:

a → 00
b → 01
c → 10
d → 110
e → 111

(1.3)

The code is prefix-free, because no 3-bit codeword starts with 00, 01 or 10.
The code is complete because any binary string of length 4 has some codeword
as its prefix. For instance, the string 0110 has the codeword 01 as a prefix.

The properties of being prefix-free and complete provide an easy way to decode
Huffman codes. Consecutive bits of the encoded stream are read until they form
a codeword. It will always happen, because the code is complete.

Huffman codes may be constructed using the Huffman algorithm [30]. The algo-
rithm takes probabilities of symbols as input and produces optimal code for the given
probability distribution. A clear description of the algorithm can be found in any
textbook on data compression [62, 61, 64] and will not be repeated here.

Optimal complete prefix codes are not unique. In the Huffman algorithm there is
always a possibility of interchanging the labels 0 and 1 when two parts of the code are
joined (see e.g. [64]). Any choice will result in an optimal code. Moreover, for some
probability distributions, there are optimal prefix codes that cannot be constructed
using the Huffman algorithm [62, 22, 46]. In this dissertation any complete binary
prefix code is called a Huffman code because it is an optimal code for some probability
distribution.

Example 1.2: The following code, C2, has codewords of the same length as code C1

from Example 1.1. It means that messages encoded with codes C1 and C2 are
of equal length.

a → 00
b → 10
c → 11
d → 010
e → 011

(1.4)
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Huffman codes nearly reach the entropy of the input stream. The bound on the
average length of an encoded character, l̄, is [64]:

H(S) ≤ l̄ ≤ H(S) + pmax + 0.086, (1.5)

where pmax is the probability of the most probable symbol.
A more recent entropy coding method is arithmetic coding [64]. This is not a vari-

able length code, but can rather be regarded as an assignment of a long codeword to
the entire input [64]. Arithmetic coding reaches the entropy even closer:

H(S) ≤ l̄A ≤ H(S) + 2
m

, (1.6)

where l̄A is the average number of bits per source symbol and m is the number of
symbols in the input stream. Nevertheless, because of the simplicity, robustness and
fast decoding, Huffman codes are of a great importance in data compression.

1.2 Error resilience in compressed data

1.2.1 Error resilience

Error resilience is the ability of data to keep information in the presence of errors.
Typically, the errors are the following:� bit-flip errors — a single bit changes its value from 0 to 1 or from 1 to 0,� bit insertion — an additional bit with an arbitrary value is inserted into data

at some place,� bit deletion — one bit is removed from data,� burst error — a number of consecutive bits are corrupted, i.e. their value
becomes random,� missing fragment — a fragment of data is missing.
In channel coding theory [42] a certain probability of errors is assumed. The

information may be encoded using error correcting codes. These codes add some
redundancy to data in such a way that the probability of a bit error after decoding
is less than a certain threshold.

Example 1.3: Consider encoding each bit of the source as three bits of the same
value. For the bit 0 the encoding is 000 and for the bit 1, it is 111. The
encoding for the message 0110 is 000 111 111 000 (spaces are inserted just for
readability). Now, let us consider a bit-flip error in the fifth bit of the encoded
message. The result is 000 101 111 000. The first, the third and the fourth
triple can be decoded normally as 0, 1 and 0, respectively. The second triple,
101, corresponds to neither 0 nor 1. This is an indication that a bit error has
occurred. If the bit errors are independent and occur with a small probability,
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it is more likely that the string 101 is the result of flipping the second bit of
111 than flipping the first and third bit of 000. The string 101 is decoded as 1
and the whole string is decoded correctly as 0110.
The redundancy of the code is 2, which means that there are two additional

bits per each coded bit. The code is resistant to at most one bit-flip error within
a codeword. It should be noted that there are error correcting codes with much
smaller redundancy and better error resilience.

Error correcting codes may be regarded as the opposite of data compression as
the latter removes redundancy. Compressed data is susceptible to bit errors because
there is no redundancy that could help to correct them. What is even worse, a single
bit error in compressed data may cause more errors after decompression. The data
read by the decoder influences the decoder’s state and, being in a corrupted state,
the decoder may misinterpret the remaining part of the data. The error will thus
propagate even till the end of the decoded stream.
As pointed out by Wen and Villasenor [72], in typical applications data already

contains error correcting codes. If an error is detected by these codes, the data is
retransmitted (or reread from disk). Nevertheless, in delay-constrained applications,
for example in audio or video streaming, retransmissions become problematic. Then,
the issue of how to use compressed data in error-prone environments becomes vital.
The goal is to ensure that after a bit error, even though some data is lost, as much
data as possible is recovered.

1.2.2 Error resilience of variable length codes

The following example reveals the influence of bit errors on data encoded with variable
length codes. It is assumed that the code has the prefix property, i.e. no codeword is
a prefix of another codeword.

Example 1.4: Huffman code C1 from Example 1.1 is considered below. Let the
source message be

M = ‘bbeaaebcec’. (1.7)

Let C1(M) be the result of encoding this message with the code C1. Assume
that the third bit of the encoded message was flipped, giving an erroneous
message, C1(M)e. The division into codewords for C1(M) and C1(M)e is
shown below. The flipped bit is marked in bold.

C1(M) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 1 1
︸ ︷︷ ︸

e

0 1
︸︷︷︸

b

1 0
︸︷︷︸

c

1 1 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

(1.8)

C1(M)e = 0 1
︸︷︷︸

b

1 1 1
︸ ︷︷ ︸

e

1 1 0
︸ ︷︷ ︸

d

0 0
︸︷︷︸

a

0 1
︸︷︷︸

b

1 1 0
︸ ︷︷ ︸

d

1 1 0
︸ ︷︷ ︸

d

1 1 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

(1.9)

The decoding of the erroneous message is bedabddec. The first letter, b, was
decoded correctly. The error occurred in the second codeword and the second
letter was decoded as e, instead of b. The next letter is also incorrect and the
error propagates until the last two letters.
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We can see that even a single bit error propagates because the codewords read
by the decoder after the error are not aligned with the original codewords. The bits
that form a decoded codeword of the erroneous string may be taken from a suffix of
some real codeword and a prefix of the next one. For instance, the third codeword,
110, was formed of a suffix of the codeword 111 and a prefix of the codeword 00. In
such case the decoder is called unsynchronized.
In Example 1.4 the decoder is unsynchronized from the third to the seventeenth

bit. It is interesting that some number of bits after the error the decoder resynchro-
nizes [22, 46], i.e. the codeword boundaries it uses are correct again. In Example 1.4
it happens after the eighteenth bit. From then on, the decoder decodes correct data
again, which means that such decoder is synchronized afterwards.
The loss of synchronization after a bit error is equivalent to the behavior of a de-

coder that starts at some arbitrary bit in the encoded stream. For instance, the
codewords of the erroneous message are the same as those decoded by a decoder that
started at the sixth bit of the error-free message. This property will often be used in
this dissertation.
The resynchronization seen in Example 1.4 is not a coincidence, but a general

property of Huffman codes. It is the main subject discussed in the dissertation.
There are various techniques that improve synchronization properties of Huffman
codes. The aim of these synchronization schemes, as pointed out by Perkins and
Smith [52], is not to recover all of the data but rather to ensure that after the loss of
some data due to error, the decoding of subsequent data is correct. Additionally, for
some applications it is important to deduce the position of the recovered data in the
data stream, which is called strong synchronization.

1.2.3 Synchronizing strings

Many Huffman codes have a synchronizing string — a string that always resynchro-
nizes a decoder that processes it. Such strings can be defined as follows:

s is a synchronizing string ⇔
for any bit string w
the string ws is a sequence of codewords

(1.10)

Example 1.5: The string 0110 is a synchronizing string for the code C1 from Ex-
ample 1.1. To see that, it is enough to check the right hand side of (1.10)
for all the strings w that are proper prefixes of codewords (other strings have
a codeword as a prefix), that is for the empty string, 0, 1, and 11. The division
of the strings ws (w followed by s) into codewords are 01 10, 00 110, 10 110
and 110 110, respectively, so these are sequences of codewords.

By taking s = ǫ (the empty string) in (1.10) it is vivid that a synchronizing string
is a sequence of codewords.
The distribution of codewords’ lengths for a code with a synchronizing string was

analyzed by Schützenberger [65]. It is obvious that if the greatest common divisor
(GCD) of codewords’ lengths is greater than 1, no synchronizing string for the code
exists. Indeed, if s was such a synchronizing string, and d > 1 was the GCD, the se-
quence 1s (the concatenation of 1 and s) should be a sequence of codewords. But this
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is not possible since the length of the string 1s is not divisible by d. Schützenberger
proved that if GCD of codewords’ lengths is 1, there exists a Huffman code with code-
words of the same lengths that has a synchronizing string. He also gave a method
for the construction of such a code. It should be noted that GCD equal 1 does not
imply that a particular code has a synchronizing string.

Berstel and Perrin [5] proved that if GCD of lengths of the codewords 0i and 1j ,
formed of all zeros and all ones, is 1 then the code has a synchronizing string. Their
book includes also a chapter devoted to, so called, biprefix codes. Such codes satisfy
the prefix condition, and also the suffix condition: no codeword is a suffix of another
codeword. It is easy to prove that such codes cannot have a synchronizing string.

Various authors considered the construction of codes with a short synchronizing
string. Rudner [60] gave a method for constructing codes with the shortest synchro-
nizing string possible if the shortest codeword is of length m = 1, 2, 3, 4. Although
the author does not state it explicitly, for m > 1 such a synchronizing string must be
a codeword, which is interesting itself. The work of Rudner has been later extended,
for instance in [19].

Capocelli et al. [12] analyzed statistical synchronizability of Huffman codes.
A code is statistically synchronizable if the probability of resynchronization tends to
1 with the number of decoded symbols going to infinity. They proved that a variable-
length code is statistically synchronizable if and only if it has a synchronizing string
(under the assumption of ǫ-guaranteed message source, see [12]). They also gave an
algorithm to test whether a code has a synchronizing string. The algorithm works
for all variable-length codes and an optimized version for prefix codes has complexity
O(N

∑
|wi|), where wi are codewords. (This dissertation contains an algorithm of

complexity O(
∑
|wi|).)

Codes that have a synchronizing string are not rare. Freiling et al. [24] proved that
almost all Huffman codes have a synchronizing string. Precisely, if we choose a Huff-
man code with N codewords at random, the probability that it has a synchronizing
string goes to one with N going to infinity.

There are, however, such distributions of codewords’ lengths that no code with
a synchronizing string exists. These are the distributions with GCD of codewords’
lengths grater than one. Capocelli et al. [13] proposed such a construction of subop-
timal codes with a synchronizing string that the average codeword length is increased
by at most pmin — the probability of the least probable symbol. The method first
modifies codewords’ lengths in order to get two codewords with GCD of their lengths
equal 1. Then, the code is rearranged so that these codewords are 0i and 1j. By the
result of Berstel and Perrin [5] such a code has a synchronizing string. The article
also describes a method for constructing suboptimal codes with a synchronizing string
that is a codeword (see also the next section).

Some properties of minimum redundancy codes with a synchronizing string were
also collected by Long et al. [41].
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1.2.4 Synchronizing codewords

It is rather surprising that a synchronizing string may also be a codeword. In this
case, it is called a synchronizing codeword. The study of synchronizing codewords was
pioneered Ferguson and Rabinowitz [22], however, before that, Rudner [60] presented
an algorithm for the construction of codes with a synchronizing string that, in fact,
was a codeword. Rudner proved that if the length of the shortest codeword is m >
1, the length of the shortest possible synchronizing string is at least m + 1. The
algorithm of Rudner constructed codes with a synchronizing string of length m + 1,
for m = 2, 3, 4, under some additional assumptions. Even though the article did not
mentioned it, such a synchronizing string must be a codeword. Indeed, it is a sequence
of codewords and there is no codeword of length 1 nor of length smaller than m.

If the probability of a codeword is p, the codeword appears, on average, at each
1
p
-th symbol. The existence of a synchronizing codeword in the code would limit the
synchronization delay, that is the number of symbols lost before resynchronization,
to 1

p
, on average. If there are more synchronizing codewords, with probabilities p1,

. . . pk, the average synchronization delay can be approximated by (
∑

i pi)
−1. This

is not a precise expression, since the synchronizing codewords may also appear as
suffixes of other codewords. In fact, the average synchronization delay is even lower.
This motivation for the research related to synchronizing codewords was presented
by Ferguson and Rabinowitz [22]. A more detailed analysis of the average synchroni-
zation delay for codes is given in [46].

The work of Ferguson and Rabinowitz [22] focused entirely on synchronizing code-
words. They gave a number of necessary and sufficient conditions for a code to have
a synchronizing codeword. Simultaneously, they presented a method for the con-
struction of an optimal code with a synchronizing codeword for some distributions of
codewords’ lengths. The method was applied to construct codes with a synchronizing
codeword for the probability distributions of letters in English and French languages.

Montgomery and Abrams [48] came up with an algorithm for the construction
of a suboptimal code with a synchronizing codeword. The redundancy is added by
extending the longest codeword by one bit. Their algorithm, as the one of Ferguson
and Rabinowitz [22], works only for some probability distributions.

Capocelli et al. [13] showed how to transform a code to a suboptimal one with
a synchronizing codeword. The redundancy per symbol is increased by at most 1

d
,

where d is the size of the target alphabet, 2 for binary codes. Their code is not
complete and in this case the definition of a synchronizing string is slightly different.
The reader is referred to [13] for more information.

Escott and Perkins [19] considered binary Huffman codes whose shortest codeword
is of length m > 1 and that contain a synchronizing codeword of length m + 1,
the shortest possible in this case. This was the continuation of Rudner’s [60] work,
that extended it in several cases. The authors created an algorithm for constructing
such codes for a given set of codeword lengths, provided that such code exist (in
contrast, Rudner’s algorithm works only for m = 1, 2, 3, 4). They also considered
the existence of synchronizing codewords of other lengths in these codes and proved
that for m ≥ 3 there must be at least one more codeword that is synchronizing. The
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authors discussed synchronization properties of their codes, measured, for instance,
in terms of the expected frequency of finding a synchronizing codeword (as in [22]).
Another approach was taken by Perkins and Escott in [51]. In contrast to their

previous work [19], they assumed that a certain string w is a synchronizing codeword
and from the properties of w they inferred some properties of the code. They described
the relationship between the length of the shortest codeword in a Huffman code and
the length and the structure of the synchronizing codeword. The analysis was not
restricted to binary codes, but complete prefix codes of any arity were considered
as well. The authors presented an algorithm that builds a code with a given string
as a synchronizing codeword (but the code is not built to follow a given probability
distribution on symbols). A tight upper bound on the length of the shortest codeword
in such a code was given, which led to an interesting result that if the length of the
shortest codeword, m, and of the longest codeword, M , are related by M < 2m − 1
then the code cannot have a synchronizing codeword.
Huang and Wu [29] extended both the work of Rudner [60] and of the work of

Escott and Perkins [19]. The authors proved that if the length of the shortest syn-
chronizing codeword is m + 1, where m > 1 is the length of the shortest codeword,
the shortest synchronizing codeword is either 01...11 of 01...10 or both (this is a re-
statement of the result originally given by Rudner [60]). They also gave necessary
conditions for the existence of a binary Huffman code with such shortest synchroniz-
ing codeword(s). Finally, they presented an algorithm for the construction of such
codes provided that all the necessary conditions have been met.

1.2.5 Average synchronization delay

Given a number of optimal codes for a certain probability distribution on symbols
it is important to be able to find the one with the best synchronization capabilities.
To do that, a good measure of such synchronization capabilities of codes is needed.
Ferguson and Rabinowitz [22] argued that the sum of probabilities of symbols whose
codewords are synchronizing reflects the tendency of the code to resynchronize. The
authors stressed that this is only an approximation. This approximation is useless,
however, if the code does not have a synchronizing codeword.
Maxted and Robinson [46] investigated the problem more profoundly. They used

a state diagram for the computation of the average synchronization delay for a code.
The average is taken over the probability distribution of source symbols. They as-
sumed that the letters are statistically independent identically distributed random
variables. The states of the diagram are prefixes of codewords and correspond to the
prefixes of codewords already read by a decoder when it is on an actual codeword
boundary. A synchronized decoder always sees the correct codeword boundaries so
the prefix is always the empty word. As finding the expected synchronization delay
is computational expensive, the authors also gave a simplified approximate method.
As a result of testing the average synchronization delays of codes, Maxted and

Robinson [46] identified two properties of codes that are important for good synchro-
nization capabilities. The first one is that the code contains many codewords that
differ by only one bit. In such a case a bit-flip error often does not cause a synchroni-
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zation loss. The other property is that there are many codewords that are suffixes of
other codewords. This allows for quick resynchronization after synchronization loss.
The authors stress that the second property seems to be more important. The article
also contains results of simulations of resynchronization after an error.
The work of Maxted and Robinson [46] was an inspiration for many other re-

searchers. The first extension, due to Monaco and Lawler [47], corrected a few mi-
nor (mostly computational) mistakes in [46]. It also introduced a method for the
calculation of the variance of the expected synchronization delay. Other articles
[66, 68, 67, 74], to be described shortly, simplified the way of computing the average
synchronization delay and its variance. Several methods for constructing codes with
good synchronization potential have been proposed [74, 73, 69].
Earlier, Rahman and Misbahuddin [57] considered transmission of a Huffman-

encoded message over a binary symmetric channel (BSC) with crossover probability
p (bit-flip errors occur independently, with probability p). They used a state diagram
similar to the one of Maxted and Robinson, but this time they included the possi-
bility of several errors in one codeword and the possibility of errors during the error
recovery process, before resynchronization occurs. The authors provided an approx-
imation for the calculation of the expected synchronization delay that seems to be
very close to the exact value, although no bound on the error was given. Also the
computational complexity of the method was not analyzed. The authors considered
only bit-flip errors, but the method can easily be extended to analyze other types of
errors. Additionally, they analyzed the influence of the BSC crossover probability, p,
on error recovery process and on the synchronization delay. In some cases the delay
is an increasing function of p, in other cases — decreasing. They also investigated
the dependence on p of the expected total number of symbols lost.
Al Soualhi and Hassan [66] improved the work of Maxted and Robinson [46]. They

showed another approximate method for the calculation of the expected synchroniza-
tion delay and its variance. Their method can be made as close to the exact solution
as needed.
Takishima et al. [68] analyzed error recovery of Huffman codes after a bit-flip error.

The authors, like Rahman and Misbahuddin [57] and unlike Maxted and Robinson
[46], also considered possible errors during the recovery phase. They gave a matrix
expression for the average synchronization delay. The authors discussed shortly the
measure of code synchronizability given by Ferguson and Rabinowitz [22]: the sum
of probabilities of synchronizing codewords. They gave an example of two codes,
where the code with larger probability of a synchronizing codeword has worse average
synchronization delay.
Takishima et al. [68] proposed an algorithm for rearranging the code to increase

the probability of resynchronization. It is based on the idea of the code being “suffix
rich” — having many codewords with other codewords as suffixes. This is the second
criterion of Maxted and Robinson [46]. The algorithm works as follows: the shortest
codeword is considered a seed, then other codewords are lined from the shortest ones
and their structure, whenever possible, is transformed in such a way that they end
with the seed. Then, all possible transformations of the seed, i.e. rearrangements of
the code so that the seed is any string of the fixed length, are tested. After that, the
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next shortest codeword is taken as the seed. Finally, the chosen code is the one with
the largest number of suffixes of codewords that equal the seed.
Swaszek and DiCicco [67] gave an algebraic formulation and an exact solution for

the problem of computing the expected synchronization delay and its variance. The
analysis is reduced to simple operation on matrices: inversion and multiplication and
the method can be used with software for symbolic computations, such as Maple. The
authors analyzed the average numbers of symbols lost due to a single bit error. They
proved that the probability of a character error is approximately equal to Lpµ, where
L is the average codeword length, µ is the mean error propagation length and p is
the probability of a bit-flip error (p is small). Thus, if the inverse of the compression
ratio is larger than the mean error propagation length, variable length encoding gives
less character errors than fixed length encoding.
Zhou and Zhang [74] derived a simple equation for the average synchronization de-

lay (called MEPL for mean error propagation length) and its variance (VEPL). They
also proposed two heuristic algorithms for finding Huffman codes with low MEPL
and VEPL. Performance comparison with other methods showed the superiority of
their heuristics (see also Sections 3.8.3 and 3.8.4).
Yang and Kumar [73] developed a method similar to one of the methods of Zhou

and Zhang [74]. The method is based on Rudner’s claim that the codes should be
suffix rich. Titchener [69] constructed codes that exhibit low synchronization delay.
He also estimated the expected synchronization delay for his codes. These codes only
exist for some probability distributions.
In their work on parallel Huffman decoding, Klein and Wiseman [38] provided

yet another measure of codes’ synchronization capabilities. It is based on counting
codewords’ suffixes that are sequences of codewords. They did not give any estimate
of how their measure compares to the expected synchronization delay. They argued
that canonical Huffman codes [35] have good synchronization capabilities. This is
obviously wrong in view of the results presented in this dissertation, in Section 3.8.

1.2.6 Strong synchronization

Even though the decoder of a Huffman code eventually resynchronizes in most cases,
the number of symbols it has decoded may be incorrect, as pointed out by Swaszek
and DiCicco [67]. The error further propagates, because following symbols are placed
at wrong positions in the decoded message. Many application rely on the positions
of bytes in the stream. Consider, for instance, a set or records in a file where the first
byte of each record holds its size. If there is a slippage in decoded data, the software
interprets some internal bytes of records as records’ sizes, which makes no sense.
Swaszek and DiCicco [67] developed a method for computing the probability of

any number of extra characters decoded due to errors. For comma codes (codes of the
form 1, 01, 001, . . . , 000 . . .01, 000 . . . 00), for instance, it is almost always one symbol
more or one symbol less. Calculations for another code can be found in [44]. In this
case the probability that after a bit error the decoder reads one symbol less is 10%,
one more — 6% and the probability of decoding the correct number of symbols is
84%.
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The problem of correcting symbols’ positions was investigated in a number of
papers. The ability of a decoder to not only resynchronize but also to place the
following symbols correctly is called strong synchronization or symbol synchronization,
and can be achieved by inserting additional markers into encoded message.
Lam and Kulkarni [40] introduced the concept of an extended synchronizing code-

word (ESC). After a decoder receives an ESC, it correctly knows that such a codeword
has been received (normal synchronizing codeword may be a suffix of other codewords,
so it may be received implicitly) and it may invoke an error concealment procedure.
The authors described a method for the construction of the ESC, done by first re-
arranging the code and then by extending the longest codeword by a few bits, so
that the ESC is not a substring of any concatenation of other codewords. The au-
thors computed the required number of bits that need to be appended to the longest
codeword to form the ESC, depending on the lengths of other codewords. They also
discussed the redundancy of codes with an ESC.
The authors pointed a number of ways for providing the decoder with strong

synchronization using an ESC. They proposed regular insertions of the ESC in the
encoded stream. In this case, provided that the ESCs themselves are not corrupted,
the decoder always knows the current symbol number after being resynchronized with
an ESC. Another method is to insert the ESC followed by a counter. The counter
gives the number of the current symbol or the number of the inserted ESC.
The construction of an ESC was generalized by Perkins and Escott [55]. They

allowed the ESC to be created by extending an arbitrary codeword in the code, not
only the longest one, as in [40]. This gives the possibility to create an ESC of a given
length. The length of the ESC should correspond to the expected frequency of its
insertions. The authors gave an exact lower bound on the length of the shortest ESC
created by extending a given codeword, and presented an algorithm that achieves this
bound.
The problem of providing the decoder with strong synchronization by inserting

counters, outlined in [40], was discussed in depth by Perkins and Smith [52]. The
authors analyzed a general scheme for strong synchronization. It is based on inserting
a number of distinct keywords into the message, at intervals. The keywords consist
of a synchronizing sequence and an explicit or implicit cyclic counter. The number
of encoded symbols between consecutive keywords, K, is constant. There are N
distinct keywords and they are inserted in fixed, cyclic order. Thus, if decoding of all
the keywords is successful, strong synchronization is achieved. Decoding a keyword
only gives the position in the stream modulo NK. An error in any keyword may cause
a slippage of ±N keywords, that is ±NK characters. The paper of Perkins and Smith
contains two algorithms for dealing with errors in keywords. The algorithms aim to
minimize the probability of strong synchronization loss while keeping the required
buffer size for the data low.
Perkins, et al. [54] presented a comparison of a number of strategies for strong

synchronization. They focused on environments with reasonably high error rates
and aimed to avoid permanent loss of strong synchronization when very large sets of
data are transmitted or stored. The strategies are based on inserting a synchronizing
keyword with a counter (explicit or implicit) after each N -th encoded symbol. The



1.2. Error resilience in compressed data 13

authors do not assume that the synchronizing keywords do not appear in the encoded
data. In case of such an occurrence, the string is falsely identified as a synchronizing
keyword and therefore causes an error, that may or may not be corrected. Such errors
appear even if no bit errors occurred in the data. The techniques analyzed in the
paper deal with such errors, and with errors caused by a flipped bit as well. The
authors compared the method with bitstuffing.
Bitstuffing is a technique that prevents occurrences of certain patterns in data. It

will be explained using the following example. Assume that the occurrences of the
string 111 in the message should be avoided. If 111 appears in the message, it is
encoded as 1101. On the other hand, if 110 appears, it will be replaced with 1100.
In such a way, the original message can always be recovered and the string 111 does
not appear in the new message.
Perkins, et al. [54] also analyzed the combination of their schemes with bitstuffing.

Bitstuffing prevents errors caused by an occurrence of a synchronization keyword in
the original data. The advantage of the schemes presented in the paper is that
they impose few restrictions on the form of data compression used, so they may be
combined with many compression techniques. Perkins and Smith [53] applied the
same analysis to burst errors.
Kashyap [34] described a similar method for providing strong synchronization.

He proposed to insert a marker after every L-th codeword. The marker is 111..1
followed by a fixed-size integer — the marker number. Each sequence of L codewords
is bitstuffed so that the string 111..1 does not appear in it. Such a code is a special
case of the codes analyzed in [54]. The aim of Kashyap’s work was to maximize the
range of marker numbers for a given bit rate. The author gave the optimal length of
111..1 and the optimal value of L to achieve the largest range of marker numbers.
Fang and Jeong [21] analyzed the expected amount of data lost due to errors. In

their setting the message is divided into fixed-length packets with a synchronization
marker at the end. The authors assumed that if an error occurs inside a packet, all the
data from the erroneous bit to the end of the packet is lost. They found the packet
length that maximizes the number of bits correctly received. They also analyzed
reversible codes, that allow for decoding backwards (for instance biprefix Huffman
codes, see [23]). In this case, if the two resynchronization markers that delimit the
packet are free of errors, the bits from the beginning of the packet to the first error
and from the last error to the end of the packet are correct.

1.2.7 Application of error resilient variable length codes

There are several articles concerning application of synchronization and strong syn-
chronization to reduce the influence of errors. For instance Lam and Reibman [39]
applied extended synchronizing codewords to limit error propagation in Jpeg [64] im-
ages (actually this work preceded the work of Lam and Kulkarni [40], where ESCs were
presented closer). The ESC were placed in fixed position to control error propagation
due to synchronization slippage. The authors also developed an error concealment
procedure to further improve the quality of images with errors.
Hemami [28] applied the methods for synchronization of Huffman codes to Jpeg
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images and wavelet-coded images [64]. In her method, first a code with a synchro-
nizing codeword is created using the algorithm of Rudner [60]. If the constraints for
codeword lengths that are prerequisites for Rudner’s algorithm are not met, the code
is changed to a suboptimal one (for Jpeg images this is done by adjusting the quality
factor — the parameter that measures information loss during quantization). Then,
an extended synchronizing codeword is added to the code. The ESC is used as the
end-of-line symbol that replaces the end-of-block symbol at the last block of each
line. The existence of a synchronizing codeword in the code implies that the code
resynchronizes quickly. In addition, the ESC provides robust positional information.
Yang and Kumar [73] considered Huffman encoding of subband coefficients in

a wavelet-coded image and analyzed error detection and recovery. An error is detected
if the decoder receives a wrong number of symbols. Errors are repaired using inter-
subband correlation. The correlation coefficients are sent to the decoder together
with the message.
A survey of another approach to dealing with errors in image and video transmis-

sion was presented by Kang and Leou [31]. In this approach, additional pieces of data
are embedded in images or videos in order to use it in the error concealment proce-
dure. The embedded data is transparent to applications that do not use it, so the
schemes are compatible with existing software. The price for embedding additional
data is the lowered image or video quality, but the loss in quality should be almost
invisible for a human. In Jpeg images [64] the data may be, for instance, embedded
in the least significant bit of a quantized DCT coefficient. The information used for
error concealment may be, for instance, a downscaled version of the original image
or a description of similarities between parts of the image. The data is embedded in
a way that minimizes the probability of the loss of both a fragment of original data
and its error-correcting data.
Klein and Wiseman [38] developed a parallel version for the decoder of Huffman

codes. Each processor decodes its own fragment and also stores the position of the
first bit of each codeword. Of course, a processor may be unsynchronized at start,
but in most cases it resynchronizes quickly. After processor p finishes its block, it
decodes a prefix of the next fragment, the one that belongs to processor p + 1, until
the codeword boundaries stored by processor p + 1 indicate that processor p + 1 is in
synchronization with processor p. In case processor p + 1 does not synchronize until
the end of its block, processor p continues in block p + 2, and so on. In the worst
case, the whole message is decoded by the first processor, but this is extremely rare
for typical data.
The method of parallel Huffman decoding is applied in [38] to Jpeg [64] images

with good results. The most important problems with Jpeg images are that the de-
coder does not know where to place the decoded symbols (no strong synchronization)
and that the DC coefficient are coded using the DPCM technique (Differential Pulse
Coding Modulation: only differences from the previous value are stored [64]). The
first one is solved by placing the parts of the image at arbitrary positions and moving
them later. The other is solved by setting an arbitrary brightness by each processor
at start and readjusting it later.
Klein and Shapira [37] analyzed pattern matching directly in Huffman compressed
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messages. The pattern is first Huffman-encoded and then the result is matched to
the compressed data. This may result in many false-positives when the codewords
of the pattern are not aligned with codewords of the message. The authors present
estimations of the expected number of false positives for given Huffman code, message
and pattern.
The number of false-positives in the search is then reduced by using self-synchroni-

zation of Huffman codes. After a pattern has been found at index i of the encoded
stream, the algorithm jumps back by a constant, K, number of bits and starts de-
coding from there. If K is chosen large, it is highly probable that the decoder
resynchronizes before position i. It can be then decided, with a small probability
of a false-negative or a false-positive error, whether i corresponds to a real occurrence
of the pattern. The authors pointed out that because the decision whether a match
is correct is probabilistic, the best choice for the algorithm for matching the encoded
pattern to the encoded message is Karp and Rabin’s probabilistic pattern matching
[33].

1.2.8 Other methods for error resilient coding

Self synchronization is not the only way to improve the error resilience of Huffman
codes. Fraenkel, Klein [23] proposed decoding of Huffman-encoded messages both
from start and from the end. This increases error resilience, in particular a single bit
error, if located properly, only influences the codeword where it appeared. Huffman
codes cannot be easily decoded from the end, because one codeword may be a suffix
of another one (the suffix property does not hold). The authors proposed the usage of
biprefix [5] codes (called bidirectional in [23]) to facilitate the decoding. Additionally,
they gave an algorithm to decode normal Huffman codes backwards. In most cases
such decoding does not require much overhead. It should be noted that biprefix
codes are not self-synchronizing. In fact, if a decoder loses synchronization, it will
not resynchronize unless there is another error that puts it back in synchronization.
Wen and Villasenor [72] presented a construction of biprefix codes (called re-

versible variable length codes there) equivalent to the Rice-Golomb codes [26, 64]
and exponential Rice-Golomb codes [62, 72]. They performed an analysis of error de-
tecting features of the codes. Biprefix codes can detect more errors, because they do
not resynchronize when synchronization is lost. The indication of an error is when at
the end of the data stream there remain bits that do not form a complete codeword.
Not all errors are detected because some bit errors do not cause a loss of synchroni-
zation. Also another error may resynchronize the decoder. On the other hand, the
synchronization delay is larger, because they may only resynchronize after another
error. As a consequence, more data is lost. The codes described in their paper have
been adopted into ITU H.263+ video coding standard and served as the subject of
an MPEG-4 core experiment.
Neuman [50] considered variable length codes defined by finite automata with

output (Mealy machines [63]). The end of a codeword is defined by the occurrence of
a particular output value of the automaton to which the encoded message is presented
as input. For finite codes the construction always gives a complete binary prefix code,
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but the author focused on infinite codes. He identified a special class of such machines,
for which the output is a function of only the last encoded bit and the previous N bits,
where N is finite. Neuman showed that such characteristics implies that a bit error
destroys N− lmin+2 codewords at most (if only the value is greater than zero), where
lmin is the length of the shortest codeword. This is done without any redundancy, but
it should be kept in mind that the code is infinite. The author also proposed a method
for inserting redundancy that allows for error detection. Finally, he investigated the
problem of the construction of such a code for given symbols’ probabilities.
Even [20] considered suboptimal variable length codes. He defined synchronizable

codes of order N as codes for which the knowledge of the last N bits suffices to
determine the correct codewords alignment. He gave necessary condition for a code
to be synchronizable of a finite order and described an efficient algorithm to test it.
The method was formulated in as a graph problem and it can also be applied to finite
automata.
Another class of codes that synchronize quickly are prefix-synchronized codes,

proposed by Gilbert [25]. These are fixed length codes with codewords of length
N . A prefix of length A < N is shared by all the codewords. It is called a syn-
chronizing prefix. The remaining bits of the codewords are chosen in such a way
that the synchronizing prefix does not appear in any other place in any sequence
of codewords. This means that for a synchronizing prefix P = p1p2 . . . pA the code-
words are such sequences of bits p1 . . . pAx1 . . . xN−A that P is not a substring of
p2 . . . pAx1 . . . xN−Ap1 . . . pA−1. The prefix serves as a synchronization marker for the
decoder. Gilbert studied the number of possible codewords when N and A vary. For
fixed A, the prefix 11 . . . 1 is asymptotically the best. On the other hand, if N is fixed,
it is always better to choose the one bit longer prefix 11 . . . 10. It is conjectured that
for fixed N the prefix 1k0, with suitably chosen k is always the best in terms of the
number of codewords in the code. The number of codewords in this case is roughly
0.35N−12N , which gives the redundancy less than log N + 1.52 per codeword.
Guibas and Odlyzko [27] proved that the prefix-synchronized codes with 11 . . . 10

as the prefix are optimal in terms of size of the code, for sufficiently large N (codeword
length) for alphabet size equal 2, 3 and 4. They showed that the above conjecture is
false for alphabet size greater than 4. The prefixes s that maximize the size of the
code are the ones that are not self-correlated, i.e. no prefix of the string s is its suffix.
Morita et al. [49] described a procedure of mapping data sequences into code-

words of a prefix-synchronized code (see Gilbert [25]) as well as the inverse mapping.
They considered only maximal codes. Their algorithm works primarily for the prefix
11. . . . 10 and is extended for any prefixes that are not self-correlated. It has been
proved in [27] that such prefixes give codes of the same size as for the prefix 11. . . . 10.
The procedure does not require any lookup tables and the complexity of entire map-
ping is proportional to the length of codewords, so the decoding with the proposed
method is efficient.
Yet another method of coding resistant to bit errors is called EREC, for Error

Resilient Entropy Code, and was introduced by Redmill and Kingsbury [58]. This is
a general method for adapting existing schemes to increase resilience to random and
burst errors while maintaining high compression ratio. The method divides the data
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into variable-length blocks in such a way that bit errors do not cause synchronization
loss. It is assumed that the decoder knows when it finishes decoding a block. The
variable-length blocks are put into fixed-length slots of size equal to the average block
length. The part of a block that does not fit inside one slot is put into some other
slot that has some space left. After a few iterations all the data is put into the slots.
The slots are used in a fixed order so the decoder always knows where to find the
remaining data. The method is applied to image and video compression schemes.

Malinowski et al. [44] analyzed how the information about the length of the
encoded message may improve the error resilience of a variable length code. They
investigated soft decoding with length constraint — trellis decoding technique based
onmaximum a posteriori method [42]. The above-mentioned length constraint is used
to identify all decoded sequences having the number of symbols that differs from the
number of transmitted symbols. Let ∆S be a random variable that describes the
number of additional symbols decoded due to an error. It was proved in [44] that
with soft decoding, in order to choose the best code, it is better to consider the
probability of receiving an incorrect number of symbols, P(∆S 6= 0), and the entropy
of the random variable ∆S than to consider mean error propagation length and its
variance.

Malinowski et al. [43] used a state model, analogous to the one of Maxted and
Robinson [46], to compute the average error propagation and its variance for quasi-
arithmetic codes.

De Moura et al. [16] described a version of Huffman codes where codewords
assigned to input symbols are sequences of whole bytes. The target alphabet of the
Huffman code is of size 128 and the remaining bit in each byte is used as a tag to
signal the beginning of a codeword. These codes are called tagged Huffman codes.
Resynchronization with these codes is simple, because the decoder can always find
the beginning of a codeword by examining the tag. The authors applied the codes
to a fast compression and decompression scheme for natural language texts. The
scheme allowed for exact search for words and phrases in compressed data. What is
interesting, the authors claim that the search in such compressed data is faster than
in uncompressed text. It is due to the fact that compressed text is shorter.

The tagged Huffman codes were replaced by end-tagged dense codes in [11] and
by (s, c)-dense codes in [10]. Both of these codes consist of fixed codewords and do
not depend on the probability distribution on source letters. They are better than
tagged Huffman codes in terms of redundancy and provide the same synchronization
properties.

Similar property of marked beginning of a codeword is present in Fibonacci codes
[3]. The codewords in Fibonacci codes are also fixed. They are related to the rep-
resentation of integers as a sum of Fibonacci numbers. In the code of order m the
string of 1 consecutive ones may only appear as a suffix of a codeword. This property
helps to resynchronize the decoder after synchronization loss. The robustness and
other properties of Fibonacci codes were analyzed by Klein and Ben-Nissanin in [36].
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1.2.9 Huffman coding and arithmetic coding

Huffman codes have become very popular, mainly because of their simplicity and
little computational requirements. However, these codes do not always offer the best
compression ratio, losing with arithmetic coding. It may appear that Huffman codes
are thus obsolete.

Bookstein and Klein [9] presented a comparison between Huffman codes and arith-
metic coding. They argued that for many applications Huffman codes are still a better
choice. The authors analyzed the influence of dividing the code into blocks and also
the influence of the End-Of-Block symbol on the redundancy of arithmetic codes.
The division into blocks is important for separate decoding of data fragments and for
error resilience as well. The minimal block size at which arithmetic codes perform
better is around 400 characters, the overhead of Huffman codes over arithmetic cod-
ing is around 0.7% for large alphabets. Their conclusion was that the advantage of
arithmetic codes over Huffman codes is so small that it may often be negligible.

For small, for instance binary, source alphabets Huffman codes perform poorly —
they give 700% larger file sizes in comparison to arithmetic codes. But, in that case,
run length encoding [64] often improves the compression ratio. After remodeling of the
source, arithmetic codes are better than Huffman codes by only 0.5%. If probabilities
of letters are inaccurate, Huffman codes perform better — they are less sensitive to
such inaccuracies. Huffman codes are twice faster to compress and up to ten times
faster to decompress. Adaptive Huffman codes are comparable to arithmetic coding
in terms of compression speed, but they are four times faster to decompress. The
code itself is easier to communicate in case of Huffman codes. Huffman codes are also
more robust against errors. They resynchronize after an error and arithmetic codes
do not (or not easily).

Even though the decoding of Huffman codes is fast, at least in comparison with
arithmetic coding, there have been some research on ways to accelerate it. For in-
stance Klein [35] introduced a data structure for fast decoding of messages encoded
with canonical Huffman codes — codes in which longer codewords always precede
lexicographically shorter ones. His representation reduces storage requirements for
a code from O(N) to O(log2 N) if the longest codeword is of O(log N) length. The
reduction of the number of bit operations speeds up the decoding by about 50%.

1.3 Synchronization of finite automata

Automata synchronization is a research area in finite automata field. In this work syn-
chronization of Huffman codes is described as synchronization problem for a certain
class of automata.

A finite automaton A is a triple 〈Q, Σ, δ〉, where Q is the set of states of the
automaton, Σ is an alphabet used for transitions and δ : Q × Σ → Q is a transition
function. The automaton starts in a certain state q ∈ Q and reads consecutive letters
of an input word. The letters of the input word are elements of Σ. The automaton
in state q ∈ Q proceeds to state δ(q, a) upon reading letter a. After reading all the
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letters of the input word w the automaton is in a certain state q′ ∈ Q. We say that
the word w brings the automaton A from the state q to q′.
A synchronizing string for a finite automaton 〈Q, Σ, δ〉 is a string, s, that brings

all states to one particular state, that is δ(q1, s) = δ(q2, s) for any states q1, q2 ∈ Q.
An automaton is called synchronizing if it has a synchronizing string. The famous
Černý conjecture [14] states that a synchronizing finite automaton with N states has
a synchronizing string of length (N − 1)2. Černý, however, proved in [14] only an
exponential upper bound on the length of a synchronizing string.
Although there are proofs for certain classes of automata, for instance in [1, 32, 4],

the problem remains open (in September 2008). There are some rougher bounds on
the length of the shortest synchronizing string. For instance, Pin [56] proved that
1
6
(N3−N) is an upper bound. Some research has also been done to find automata with

long shortest synchronizing strings. Černý [14] constructed a series of automata with
the shortest synchronizing string of length (N − 1)2. Ananichev et al. [2] considered
how long a synchronizing string can be if there is a letter that reduces the number
of states by two. Trahtman [70] searched for worst-case automata by analyzing all
possible automata of a given size.
Eppstein [18] presented an algorithm for testing in O(N2) whether an automaton

with N states is synchronizing. He also presented an O(N3) algorithm for the con-
struction of a synchronizing string of length O(N3) for a synchronizing automaton.
The complexities given here are under condition that the alphabet is of constant size.
Eppstein proved that the problem of testing whether an automaton has a synchro-
nizing string of length less or equal m, for a given number m, is NP-complete.
An overview of the area of automata synchronization is given in [63, 45]. An

in-depth presentation of the state of the art of the field can be found in [59].

1.4 New results

The dissertation contains a number of new results and novel ideas, the overview of
which is presented in the next sections. Some of them were published in the following
papers:� M. T. Biskup, “Guaranteed synchronization of Huffman codes,” in Proc. 18th

IEEE Data Compression Conference (DCC’08), pp. 462–471, IEEE Computer
Society, (Los Alamos, CA, USA), 2008, [6].� M. T. Biskup, “A word that does not appear in the encoded message as a resyn-
chronization marker,” in Proceedings of the IEEE Information Theory Work-
shop, Porto, Portugal, 2008, [8].� M. T. Biskup, “Shortest Synchronizing Strings for Huffman Codes” in Mathe-
matical Foundations of Computer Science 2008, E. Ochmański and J. Tyszkie-
wicz, eds., Lecture Notes in Computer Science 5162, pp. 120–131, Springer,
2008, [7].� M. T. Biskup, “Synchronization of Huffman Codes,” 2008, unpublished.
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1.4.1 Guaranteed synchronization of Huffman codes

Statistical synchronization of Huffman codes does not give any bound on the syn-
chronization delay. Under certain conditions a decoder of even the best code remains
unsynchronized for arbitrary number of bits. Therefore, no assumption can be made
on the length of the propagation of a bit error, or on the number of incorrectly decoded
bits for a decoder that starts at an arbitrary bit of the encoded message.

For Huffman codes a bound on the synchronization delay can be easily enforced
with a synchronizing codeword (SC), by inserting it in regular intervals. This requires
that that the synchronizing codeword does not correspond to a letter of the source
alphabet and may be skipped by the decoder. Unfortunately, this assumption leads
to suboptimal codes and the existence of a synchronizing codeword often requires
a modification of the code and may introduce additional redundancy.

This dissertation introduces two variations of Huffman coding that guarantee syn-
chronization of a decoder after processing at most L bits, L being a parameter (Sec-
tions 3.4 and 3.6). The redundancy introduced by the algorithms depends on the
synchronization properties of the code and on the encoded data. It is equal zero if
the encoded data always cause a decoder to resynchronize spontaneously in about L
bits. The redundancy per encoded bit can also be made arbitrarily small by increasing
the number L.

For the first method (Section 3.4) it is necessary that the decoder always knows
the position of the bit being currently decoded. The method is simple and efficient.
The overhead over normal Huffman coding in terms of processing time is only about
20%. The other method (Section 3.6) does not require any positional knowledge in
the decoder, so it can also be used to limit propagation of bit-insertion or bit-deletion
errors. It is done for the cost of increased processing time.

Both methods are new. The problem of ensuring limited synchronization delay
for Huffman codes has been considered before [40, 28], but the codes used in other
work were suboptimal. The idea of utilizing statistical synchronization of Huffman
codes to reduce the inserted redundancy is also new.

The methods are asymptotically optimal in terms of computational complexity,
because the number of additional operations is proportional to the length of the
encoded message, independently of the code size. The methods are efficient and
rather simple to implement, so they can be used in practice. The first method was
applied to parallel Jpeg decompression.

1.4.2 Estimating the synchronization delay

The dissertation presents a method for a decoder that starts at an arbitrary bit
of a Huffman encoded message to find out when it is synchronized (Section 3.2).
This problem has not been considered before and the algorithm is also a novelty.
The method is worst-case time optimal and the estimation of the resynchronization
position cannot be improved without additional knowledge about data before the
start position of the decoder.
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1.4.3 Strong synchronization

Lam and Kulkarni [40] proposed insertions of an extended synchronizing codeword
(ESC) in regular intervals to guarantee the limited synchronization delay. Not only
does ESC allow a decoder to resynchronize, but also to realize that ESC has been
received.
They gave an algorithm for modifying a Huffman code to introduce an ESC. Their

modification, however, destroys the optimality of Huffman codes. The redundancy
introduced by their method is nonzero even if no ESC is inserted, and is proportional
to the length of the message.

In this dissertation, another way of choosing a bit string that has the same func-
tionality as ESC is presented. This string, called a resynchronization marker (RM),
can always be recognized by a decoder and then the decoder is able to recover syn-
chronization. The error propagation may then be controlled by RM’s insertions into
the encoded message, either in regular intervals or using other schemes. With the
method presented, the decoder is always aware of receiving the RM, unlike in case of
synchronizing codewords, so it may do some error concealment procedure to correct
the number of decoded symbols (see [40]). The method is general and works for any
variable length code, even for codes that are not statistically synchronizable. If no
markers are inserted, the redundancy grows only logarithmically with the length of
the message (in case of ESC, the redundancy grows linearly).
Even though this method solves the same problem as the extended synchronizing

codeword, introduced by Lam and Kulkarni [40], this solution is new.

1.4.4 Parallel Huffman decoding

In the era of multiprocessor personal computers it is important to decode compressed
data in parallel. For that, compressed data has to be split into parts, each of them
to be processed separately by a different CPU. In case of Huffman codes, decoding
a fragment of compressed data requires that the processor is synchronized at start of
the fragment.
Klein and Wiseman [38] developed a method for parallel decoding of Huffman

codes that was based on statistical synchronization (see also Section 1.2.7). Even
though the decoder may be unsynchronized at start of its fragment, after some bits
it resynchronizes and then it decodes correct data. The prefix decoded incorrectly is
later decoded by some other processor.

Even though the method works well in most cases, unfortunate conditions may
cause a processor not to recover synchronization before the end of its fragment. In
such case the work of this processor is wasted. It is therefore desirable to limit such
synchronization delay.
The new method of parallel Huffman decoding, introduced in this dissertation,

uses one of the techniques for guaranteed synchronization of decoders. For the price
of a little redundancy in encoded data, it assures that decoders always resynchronize
quickly, and, even in the worst case, only a little part of the work of each processor
is dropped. The method is compared with simple schemes of dividing Huffman data
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into blocks. Test show that the redundancy introduced by the new method is from
ten to a hundred times better than in case of the other techniques, depending on the
granularity of the division.

1.4.5 Bounds on the length of a synchronizing string

The equivalence of Huffman code synchronization and synchronization of certain finite
automata, called Huffman automata, is shown in this dissertation. Further, synchro-
nization properties of these automata are investigated, for instance an analysis of the
length of the shortest synchronizing string is conducted.
The problem of bounding the length of the shortest synchronizing string for finite

automata has been present for decades (see Section 1.3), in particular the famous
Černý conjecture still remains an open problem. Certain classes of automata have
been considered, and, for some of them, Černý conjecture has been proved. The class
of automata analyzed in this dissertation, to the author’s best knowledge, has not
been studied before. An upper bound on the length of the shortest synchronizing
string for this class of automata is presented. The bound is better than the best
known O(N3) bound (N is the number of states of the automaton, or, equivalently,
the number of codewords in the code). Even though Černý conjecture has not been
proved for all automata of this class, in most cases this bound is better.
This dissertation includes also an upper bound on the length of the shortest merg-

ing string for a set of two states of a Huffman automaton, one of them being the root
of the code’s tree. A merging string for a set of states is a string that brings all states
of the set to one particular state. The proof is constructive and provides an efficient
algorithm for the construction of the shortest merging string for such nodes.
An efficient algorithm for answering whether a code is synchronizing is presented.

Its complexity, O(
∑

i |wi|), where wi are codewords, is better than the complexity of
Eppstein’s algorithm [18], O(N2). Also an algorithm for the construction of a syn-
chronizing string for a Huffman automaton is introduced. Its complexity, roughly
O(

∑

i |wi| log2 N), is better than the complexity of the corresponding Eppstein’s al-
gorithm [18], O(N3), the best known at the moment.
The dissertation contains results of numerical search for worst-case codes in terms

of the length of the shortest synchronizing or merging string. Three interesting classes
of Huffman codes were found. For them, the exact lengths of the shortest synchro-
nizing and merging strings are given. These codes give a lower bound on the possible
upper bounds of the length of the shortest synchronizing or merging string. It is
conjectured (but, unfortunately, not proved) that these classes of codes are the worst-
case codes for any code size. It is interesting that the length of the synchronizing
and merging strings for the worst-case codes is much lower than the general bound
proved, which shows that this upper bound can still be improved. This problem
remains open.

1.4.6 Algorithms

There are a number novel and efficient algorithms presented in the dissertation:
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1. two algorithms for finding all the synchronizing codewords for a Huffman code,

2. an algorithm for testing whether a code has a synchronizing string,

3. an algorithm for finding a short synchronizing string for a code,

4. an algorithm for estimating the maximum synchronization delay of any decoder
in a Huffman-encoded message.

The problems 1 and 4, to the authors best knowledge, have not been considered
before. For the problem 2, there is the algorithm of Capocelli et al. [12] and the
algorithm of Eppstein [18]. The latter is more general than the one of Capocelli et
al. and has better complexity. For the problem 3, another algorithm of Eppstein [18]
can be used. The algorithms for problems 2 and 3 presented in this dissertation have
better complexity than the algorithms of Eppstein.

1.5 Thesis organization

Chapter 2 contains the definitions used throughout the dissertation. It introduces the
language used to describe results given in further chapters. Chapter 3 describes new
methods to limit synchronization delay for decoders of Huffman-encoded data. It also
contains results of tests of the methods and a description of their possible applica-
tions. Chapter 4 is dedicated to synchronizing strings and synchronizing codewords
of Huffman codes and their relation with automata synchronization. Chapters 3 and
4 are, with few exceptions, independent of each other.





Chapter 2

Definitions and notation

2.1 Words

An alphabet is a nonempty set. The elements of an alphabet are called letters. Al-
phabets are denoted by capital Greek letters, for example Σ. The size of an alphabet
Σ is the cardinality of the set Σ, denoted by |Σ|. In this work only finite alphabets
are considered.

Example 2.1: The alphabet Σb = {0, 1} is called the binary alphabet. It consists of
two letters: 0 and 1. The size of Σb is 2: |Σb| = 2. The elements of Σb are
called bits.

A word over an alphabet Σ is a finite sequence of letters of Σ. The empty word is
denoted by ǫ. The set of all words over Σ is denoted by Σ∗. The set of all nonempty
words over Σ is denoted by Σ+. It follows that Σ∗ = Σ+ ∪ {ǫ}.

A concatenation, v1v2, of two words v1 and v2 is a word that consists of the letters
of v1 followed by the letters of v2. For instance, if v1 = ‘abc’ and v2 = ‘de’ then v1v2

= ‘abcde’. A concatenation of n words w is denoted by wn, for example 13 = 111.

If w = v1v2 then v1 is called a prefix of w and v2 is called a suffix of w. A prefix
(suffix) v of w is called proper if v 6= w. |w| denotes the number of letters in w —
the length of w. If w = v1v2v3 then v2 is called a subword of w.

A word w is often written as w = w0w1 . . . wk−1 — the concatenation of letters.
Each letter has an associated index, counting from 0. Substrings of w will be referred
to using the following definition:

Definition 2.2. Position i in a word w is the space between the letters i − 1 and i
of w, counting from 0. Position 0 is before the 0-th letter.

The subword of a word w from position p to q is denoted by w[p..q). The suffix of
w that starts at position p is denoted by w[p..). The prefix of w that ends at position
p is denoted by w[..p).

Example 2.3: Let w=‘abc’ be a word over the alphabet Σ = {a, b, c}. The prefixes

25
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of w are:

w[..0) = w[0..0) = ǫ,

w[..1) = w[0..1) = ‘a’,

w[..2) = w[0..2) = ‘ab’,

w[..3) = w[0..3) = ‘abc’.

The marks “ ‘ ” and “ ’ ” will be omitted in most cases. The suffixes of w are:

w[3..) = w[3..3) = ǫ,

w[2..) = w[2..3) = c,

w[1..) = w[1..3) = bc,

w[0..) = w[0..3) = abc.

The only other subword of w is w[1..2)=‘b’.

2.2 Codes

Definition 2.4. Let Σ and Γ be two alphabets. A code is a set C ⊆ Γ+ of codewords
with a surjective mapping c : Σ→ C.

The set Σ is called the source alphabet, and Γ is called the destination alphabet.
If Γ = {0, 1}, C is called a binary code.
Both c and C are used to refer to the code. In some cases the mapping c is

unimportant and then the set C, alone, is called a code.
The size of the code, |C|, is denoted by NC , or just N if the code C is known from

the context.

Example 2.5: Let the source alphabet be Σ = {a, b, c} and the mapping c3 : Σ→ Σ+
b

be defined by

c3(a) = ‘10’, c3(b) = ‘01’, c3(c) = ’01’. (2.1)

This is a binary code. Note that the mapping c3 is not injective.

The mapping c of a code can be extended to strings of letters as

c(a0a1 . . . ak) = c(a0)c(a1) . . . c(ak−1) for ai ∈ Σ. (2.2)

Any word w over the source alphabet is called a source message. The word c(w),
which is a word over the destination alphabet, is called the message w encoded with
the code c, or just the encoded message in case the code and the source message
are known from the context. Usually the source message is denoted by M and the
encoded message by E .

Example 2.6: The string ‘100101’ is the message ‘abc’ encoded with the code c3.
But ‘100101’ is also the message ‘acb’ encoded with the code c3.
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Definition 2.7. A code c is uniquely decodable if the extended mapping (2.2), c :
Σ∗ → Γ∗, is injective.

Unique decodability means that having a code and a message encoded with that
code, one can always find the unique source message that produces the encoded
message. Note that not all strings over the destination alphabet have to be messages
encoded with a particular code, for instance, no message encoded with c3 produces
111.

Example 2.8: The following code C4 is uniquely decodable:

c4(a) = ‘00’, c4(b) = ‘01’, c4(c) = ’1’. (2.3)

Indeed, if we have a binary string, we can reconstruct the source message by
analyzing consecutive bits. If the string starts with 1, the first symbol must
be c. Otherwise we look at the second symbol. If it is 0 then the we decode a,
otherwise b. The remaining letters can be decoded in the same way.

A variable-length code is a code C that contains at least two codewords of different
length, that is the set {|w| : w ∈ C} has cardinality greater than 1. Otherwise a code
is called a fixed length code. The code c3 is a fixed length code while c4 is a variable
length code.

Note that we usually consider a class of codes that have the same properties or that
are created with a common algorithm. Such a class may contain both variable length
codes and fixed length codes. In this case, fixed length codes are special instances of
these codes. The codes will therefore be called “variable length codes”, even though
some of them may be fixed length. For instance, Huffman codes (see Section 2.5)
may be variable length or fixed length, but they will be called variable length codes,
because fixed length Huffman codes only exist under additional assumptions about
the number of letters in a code and about the probability distribution on letters.

Definition 2.9. A prefix code is a code such that no codeword is a prefix of another
codeword.

Prefix codes are always uniquely decodable [64]. The code c4 is a prefix code and
c3 is not, because c3(b) is a prefix of c3(c). The property described by Definition 2.9
is called the prefix property. Prefix codes are also called prefix-free.

Definition 2.10. A complete binary prefix code is a binary prefix code such that if w
is a proper prefix of some codeword then both w0 and w1 (concatenation) are prefixes
of some codewords.

Example 2.11: Let w = ‘10’ be a codeword of a complete binary prefix code. It has
two proper prefixes: ǫ and 1. Then w1 = 0, w2 = 1, w3 = 10 and w4 = 11 are
also prefixes of some codewords. This is obviously true for w2 and w3, as they
are prefixes of w.
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Figure 2.1: A complete binary tree

Example 2.12: The code c4 is a complete binary prefix code. The code c3 is not,
because it is not a prefix code. The code:

c5(a) = 00, c5(b) = 01, c5(c) = 11, (2.4)

is not a complete binary prefix code, because it is not complete. Indeed, the
word 1 is a prefix of the codeword 11, but the word 10 is not a prefix of any
codeword.

Complete binary prefix codes will be referred to as Huffman codes in this dis-
sertation. They can also be described in terms of complete binary trees, which are
introduced in the next section.

Definition 2.13. A Huffman code is a complete binary prefix code.

2.3 Trees

A complete binary tree is a tree with each node being either an internal node with
two children, or a leaf node with no children. Each left outgoing edge is labeled with
0 (0-edge) and each right outgoing edge is labeled with 1 (1-edge). The root of a tree
is denoted by ε.

Definition 2.14. The label of a node n in a complete binary tree is the string π(n)
formed of edge labels on the path from the root to n.

Labels of nodes in a given tree are unique and they will be used to refer to the
nodes. We have π(ε) = ǫ, the label of the left child of the root is 0 and the label of
the right child of the root is 1.
The height of a tree T is denoted by hT . In most cases, the tree T will be known

from the context and the subscript will be omitted.

Example 2.15: A complete binary tree is presented in Figure 2.1. The labels, π(n),
for leafs of the tree are (from left to right) 00, 01 and 1. These are exactly
the elements of the Huffman code C4 from Example 2.8. It will be shown later
that there is one-to-one correspondence between complete binary trees and
Huffman codes.

2.4 Automata

Definition 2.16. A finite automaton is a triple 〈Q, Σ, δ〉, where Q is a finite set of
states, Σ is an alphabet and δ : Q× Σ→ Q is called the transition function.
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A

B C

0

1
1

0

0
1

Figure 2.2: A finite automaton.

A finite automaton is always in some state q ∈ Q. It takes a word w ∈ Σ∗ as
its input and makes transitions to other states, according to the transition function.
The automaton in state p proceeds to state δ(p, a) upon reading letter a.
The above definition, contrary to common definition, omits the initial and final

states because they are unimportant in this work.

Example 2.17: Figure 2.2 shows a finite automaton 〈Q, Σ, δ〉 with Q = {A, B, C},
Σ = {0, 1} and the transition function δ defined by:

δ(A, 0) = A, δ(B, 0) = C, δ(C, 0) = A,

δ(A, 1) = B, δ(B, 1) = A, δ(C, 1) = A.

The transition function δ can be extended by induction to δ∗, that describes
transitions for finite binary strings:

δ∗(q, b0 . . . bk−2bk−1) = δ(δ∗(q, b0 . . . bk−2), bk−1), (2.5)

δ∗(q, ǫ) = q. (2.6)

Example 2.18: For the Example 2.17 automaton the following holds:

δ∗(A, 010) = C,

δ∗(A, 101) = A.

We say that a word w brings a state n to a state n′ if n′ = δ∗(n, w). We also say
that n′ is the result of applying w to n.
For the set S of states of an automaton we denote,

δ(S, a) = {δ(q, a)|q ∈ S}. (2.7)

The same convention is used for δ∗.

Definition 2.19. Let A = (Q, Σ, δ) be a finite automaton. A synchronizing string
for A is a word w such that |δ∗(Q, w)| = 1.

Definition 2.20. An automaton is synchronizing if it has a synchronizing string.

Definition 2.21. Let A = (Q, Σ, δ) be a finite automaton and let R be a set of states
for A. A merging string for R is a word w such that |δ∗(R, w)| = 1.
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The definition of a synchronizing and merging strings are closely related. A syn-
chronizing string is a merging string for any nonempty set of states. A word w is
a synchronizing string if and only if it is a merging string for the set of all states.

Example 2.22: The string 00 is a synchronizing string for the Example 2.17 automa-
ton. The string 1 is a merging string for the states B and C of this automaton.
The string 00 is also a merging string for these states.

The set of all subsets of a set S is denoted as P(S).

Definition 2.23. Let A = (Q, Σ, δ) be a finite automaton. The power automaton for
A, denoted as P(A), is the automaton (P(Q), Σ, δP) such that δP(S, a) = δ(S, a)
for S ∈ P(Q).

The states of the power automatonP(A), that is sets of states of the automaton
A, are called configurations.
Operation of the power automatonP(A) can be seen as movements of coins that

lie on some states of the automaton A. If the power automaton is in a state S ⊆ Q
(in configuration S), the coins lie on the states q ∈ S. Then, if the power automaton
makes a transition by a letter a, the coins move accordingly to the transition function
δ for the automaton A — a coin on a state p moves onto the state δ(p, a). If more
than one coin goes to the same state only one of them is kept.
It easy to see that after applying letter a to configuration S, the set of states with

coins is exactly δP(S, a). This analogy helps to visualize the operation of a power
automaton and gives some intuition. For instance, the string w is synchronizing if
and only if applying w to the automaton A with a coin on each state results in just
one coin remaining.

2.5 Huffman codes

Lemma 2.24 (folklore). Let T be a complete binary tree. Let

C(T ) = {π(n)|n is a leaf of the tree T}. (2.8)

The set C(T ) is a Huffman code.

The codewords of the code C(T ) are leaf labels for the tree T . Also, for each
Huffman code C there is a complete binary tree T such that C = C(T ).

Definition 2.25. The Huffman tree TC for a Huffman code C is a binary tree such
that

C = C(TC) = {π(n)|n is a leaf of the tree TC}. (2.9)

The subscript C in TC will usually be omitted.
Let c−1 be the inverse for the code mapping c. It maps codewords of C to letters

(see Definition 2.4). We can associate the source letter c−1(π(n)) with each leaf
n of a Huffman tree TC . With these characters the Huffman tree contains all the
information about the Huffman code.
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a → 00
b → 01
c → 10
d → 110
e → 111

(a) Huffman code C1

ed

cba

(b) Huffman tree for the code C1

Figure 2.3: Huffman code C1 from Example 1.1 and its Huffman tree.

Example 2.26: Huffman code C1 from Example 1.1 and its Huffman tree are shown
in Figure 2.3. The code transforms the 5-element source alphabet {a, b, c, d, e}
into binary strings. The labels on the edges of the tree are omitted.

The encoding with a Huffman code C for a source messageM can be computed
by substituting eachM’s letter x by its codeword c(x).

Example 2.27: Let us consider the Huffman code C1, presented in Figure 2.3, and
let the source message be

M = ‘bbeaaebcec’. (2.10)

The result of encoding this message with the code C1 is:

E = c1(M) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 1 1
︸ ︷︷ ︸

e

0 1
︸︷︷︸

b

1 0
︸︷︷︸

c

1 1 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

. (2.11)

The bits that form codewords are grouped together.

A sequence encoded with a Huffman code can be decoded using the Huffman tree
for the code. We start in the root and read consecutive bits. If the bit is 0, we descend
to the left child. If the bit is one, we descend to the right child. When we reach a leaf
we output the letter from the leaf and restart from the root.
This procedure can be seen as transitions of a finite automaton that, in addition,

outputs some data. We can formalize the decoding process by introducing Huffman
automata.

Definition 2.28. A Huffman tree automaton for a Huffman code C is a finite au-
tomaton formed of all the nodes in the Huffman tree for the code C. The transition
function δT (n, b), b ∈ {0, 1}, brings the automaton from the node n to the b-edge
child of n. The automaton finishes its operation upon reaching a leaf.

Note that the function δT is not a total function, because it is not defined for leaves.
This is irrelevant to the operation of the Huffman tree automaton as it finishes upon
reaching a leaf.
The above description of decoding can be expressed in terms of the Huffman tree

automaton. The automaton starts in ε and reads consecutive bits of the input, until
it reaches a leaf. Then it outputs the letter from the leaf and restarts in ε.
If the decoded letters are irrelevant and only the state of the decoder is important,

the following definition may be used:



32 Chapter 2. Definitions and notation

ε

0

00 01

1

10 11

110 111

0 1

0 1 0 1

0 1

(a) Huffman tree automaton for the code C1

ε

0 1

11

0
1

0,1

0

1

0,1

(b) Huffman automaton for C1

Figure 2.4: Huffman automaton for the code C1 from Figure 2.3.

Definition 2.29. A Huffman automaton TC for a Huffman code C is the Huffman
tree automaton for C with all the leaves merged with the root.

This means that whenever there is a transition from a node n to a leaf in the
Huffman tree automaton, there is a transition from n to ε in the Huffman automaton.
The leaves are not present in the Huffman automaton.

It is important to note that the values of δT are all the nodes of the tree but ε.
On the other hand, the transition function δT of the Huffman automaton gives only
internal nodes of the tree as values.

The subscript C in T will usually be omitted. Also δT will usually be denoted
simply by δ.

We say that w brings a node n to the root if δ∗(n, w) = ε. We also say that w
brings a node n to a leaf if δ∗(n, w) = ε and w is not empty. This is so because leaves
are equivalent to the root in the Huffman automaton. We say that w brings a node
n to n′ without loops (we also say “without passing through a leaf”) if none of the
nodes

δ∗(n, w[..1)), δ∗(n, w[..2)), . . . , δ∗(n, w[..|w| − 2)) (2.12)

is the root.

Example 2.30: Huffman tree automaton for the code C1 is presented in Figure
2.4(a). It has the same shape as the Figure 2.3(b) tree. The corresponding
Huffman automaton is presented in Figure 2.4(b).

To decode the sequence c1(M) from (2.11), the tree automaton starts in
the root (the node ε). The first bit of c1(M) is 0, so the automaton moves
to the node 0, accordingly to the transition function. The next bit, 1, forces
a move to the leaf node 01, that corresponds to letter b (see Figure 2.3(b)),
thus b is decoded and the automaton starts again from the root. The next two
bits, 01, decode b again. Next, 111 makes the automaton reach the leaf 111
and decode letter e. As we can see, whenever the automaton starts processing
a new codeword it is in the state ε.
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2.6 Synchronization modeling

Bit errors may influence the operation of a decoder and may put it into an incorrect
state. This results in error propagation.

Example 2.31: Let us see what happens if decoding starts from the second bit
of c1(M) from Example 2.27. The second and third bit of c1(M), ‘10’, are
decoded as the letter c, then the bits 111 as e, 10 as c, etc. This results in the
following decoding (the superscripts denote the position number):

c1(M) = 00 1 0
︸︷︷︸

c

1 1 5 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

0 0
︸︷︷︸

a

10 0 1
︸︷︷︸

b

1 1 0
︸ ︷︷ ︸

d

15 1 1 0
︸ ︷︷ ︸

d

18 1 1 20 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

. (2.13)

The decoded string is ‘cecabddec’ (compare with the source message (2.10):
‘bbeaaebcec’ ). As we can see, the decoder works incorrectly until the last two
codewords. From position 1 to 18 the state of the decoder is different than
the state of the decoder that would have started at the first bit. For instance,
at position 3, the state of the above decoder is ε, while the state of the latter
decoder would be 0. This incorrect state causes the incorrect decoding of the
source message.
At position 18, the decoder is in the state ε. This is the same state as the

state of the decoder that starts form the first bit of the message (we noted
in Example 2.30 that a decoder is in ε each time it starts processing a new
codeword). As the decoders are in the same state, the remaining bits will be
decoded in the same way.

Example 2.31 shows that if a decoder starts inside a codeword, not only does it
decode this particular codeword incorrectly, but also a number of following codewords.
It may, however, happen that a decoder resynchronizes at some point. Then the error
propagation is stopped and, from then on, the decoded symbols are correct. Such
synchronization is a general property of most Huffman codes and will be discussed in
depth.
We can formalize what was said in Example 2.31 with the following definitions.

Definition 2.32. A decoder, Dp, for a code C and an encoded message E , starting
at position p, is the Huffman automaton of the code C that uses the word E [p..) as
its input.

We assume that the encoded message E and the code C are always known from
the context, thus they are omitted in the notation for Dp.

Definition 2.33. The correct decoder is the decoder starting at position 0 in E , i.e.
decoder D0.

The correct decoder decodes the original source message. As seen in Example 2.31,
decoders that start in any other position may fail to decode the message correctly.

Definition 2.34. DecoderDp at position p′ is synchronized if its state at p′ is the same
as the state of the correct decoder at p′. Otherwise, decoder Dp is unsynchronized.
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Formally, decoder Dp is synchronized if:

δ∗(ε, E [p, p′)) = δ∗(ε, E [..p′)). (2.14)

A decoder that is synchronized at p′ is synchronized at all p′′ ≥ p′. A synchronized
decoder will continue decoding the same sequence of letters as the correct decoder.

Definition 2.35. Decoder Dp resynchronizes at position p′ if it is unsynchronized at
any position q, p ≤ q < p′, and at position p′ it is synchronized.

Note that when the decoder resynchronizes it is always in the state ε.

Definition 2.36. The synchronization delay for a decoder Dp is the number of bits
read by Dp until it resynchronizes.

If Dp resynchronizes at p′ then its synchronization delay is p′ − p.

Example 2.37: The decoder in Example 2.31 is a D1 decoder. The codewords
decoded by this decoder are shown in (2.13). The codewords seen by the
correct decoder, D0, are shown in (2.11). It is easy to verify that the state of
the decoder D1 is different from the state of the decoder D0 until position 18.
The synchronization delay of D1 is 18−1 = 17. Decoder D1 is unsynchronized
at positions 1 to 17, resynchronizes at position 18 and is synchronized at
positions 18 to 23, inclusive.

Note that in Chapter 1 the synchronization delay was expressed in terms of the
number of symbols lost before resynchronization. From now on, we focus on the
number of bits in the encoded message.
Now, let us consider the influence of a bit-flip error on the decoded string.

Example 2.38: Assume that the third bit of the message c1(M) from Example 2.27
was flipped giving message c1(M)e. The string c1(M)e and its division into
codewords is the following (the flipped bit is marked in bold):

c1(M)e = 0 0 1
︸︷︷︸

b

1 1 1
︸ ︷︷ ︸

e

5 1 1 0
︸ ︷︷ ︸

d

0 0
︸︷︷︸

a

10 0 1
︸︷︷︸

b

1 1 0
︸ ︷︷ ︸

d

15 1 1 0
︸ ︷︷ ︸

d

18 1 1 20 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

(2.15)

The decoded message is bedabddec (compare with the source message (2.10):
‘bbeaaebcec’ ). The first letter, b, was decoded correctly. The error occurred in
the second codeword and instead of b, the second decoded letter was e. The
next letter is also wrong and the error propagates again until position 18. The
decoder at positions from 3 to 17 is unsynchronized with respect to the correct
decoder of the original message c1(M).
Note that there are two different messages, both processed by aD0 decoder.

We can see that even a single bit error propagates, because it causes the decoder
to lose synchronization.

Synchronization recovery after a bit error proceeds in the same way as synchroni-
zation recovery for a decoder that started at some non-zero position in the original
message. In Example 2.38, when the decoder of c1(M)e is at position 6, it is in the
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state ε and its further operation is equivalent to the decoder D6 of c1(M)e. Since the
suffix c1(M)e[6..) is the same as c1(M)[6..), the resynchronization of c1(M)e-decoder
D0 is equivalent to resynchronization of c1(M)-decoder D6. In general, a decoder for
an erroneous message is equivalent to Dx on the error-free message, for x being the
first bit after the first incorrectly decoded codeword.

In the presence of errors the term synchronization delay means the number of er-
roneously decoded bits (sometimes erroneous characters). These are the bits starting
at the beginning of the codeword where the error appeared until resynchronization.

2.7 Synchronizing strings and synchronizing code-

words

Some Huffman codes have, so called, synchronizing strings. Such strings, when en-
countered by a decoder, always put it into synchronization.

Definition 2.39 ([65]). A string ws is a synchronizing string for a Huffman code C
if and only if wws is a sequence of codewords of C for any binary word w.

Definition 2.40. A synchronizing Huffman code is a Huffman code for which a syn-
chronizing string exists.

An equivalent description of a synchronizing string is the following:

Lemma 2.41. A string ws is a synchronizing string for a Huffman code C if and
only if:

∀n∈Q δ∗(n, ws) = ε, (2.16)

where Q is the set of states of the Huffman automaton TC and δ is the transition
function for TC.

A string ws satisfying the condition from Lemma 2.41 indeed puts any decoder
into synchronization. By (2.16), a decoder always ends in the state ε, no matter what
its state was before processing ws. Since the correct decoder also finishes in the state
ε, the state of the two decoders is the same, so the decoder is synchronized. The
details of the proof are left to the reader.

Example 2.42: The string ws = 0110 is a synchronizing string for the code C1 from
Example 1.1. In Examples 2.31 and 2.38 the string 0110 appeared just before
the last two codewords (from position 14 to 18) and, indeed, it synchronized
the decoders in each case.

To prove 0110 is synchronizing we have to consider the transitions of the
Huffman automaton from any possible state by the word ws. The resulting
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state should always be ε. By inspection:

ε
01
−→ ε

10
−→ ε (2.17)

0
0
−→ ε

110
−→ ε (2.18)

1
0
−→ ε

110
−→ ε (2.19)

11
0
−→ ε

110
−→ ε (2.20)

(2.21)

This proves that 0110 is a synchronizing string.

By taking w = ǫ in Definition 2.39, we can see that a synchronizing string is
a sequence of codewords.
Existence of a synchronizing string is a desired property of codes. Each time

a synchronizing string appears in the message, all the previous synchronization errors
are corrected.

Example 2.43: Let us consider sending a telegram — a short text message encoded
with a Huffman code. Assume that the encoding for the word ‘STOP’ is
a synchronizing string. Each appearance of this word stops propagation of
previous errors. Therefore, if the word ‘STOP’ is sent instead of a period at
the end of each sentence, any error that occurs within a sentence does not
influence any other sentences.

Definition 2.44. A synchronizing codeword is a synchronizing string that is a code-
word.

Example 2.45: The code C1 from Example 1.1, does not have a synchronizing code-
word. The codewords 00 and 10 are not synchronizing because 00 and 10 bring
the state 0 to 0, rather than ε. 111 and 01 are not synchronizing, because they
bring 1 to 1 (and not to ε). Finally 110 is not synchronizing, because it brings
1 to 0.

Example 2.46: The code C2, Figure 2.5, has two synchronizing codewords: 010 and
011. The target state for the transition of the Huffman automaton for C2 from
any state by either 010 and 011 is ε.

Example 2.47: Synchronizing codewords improve the synchronization properties of
a code. Assume that in Example 2.43 the code has a synchronizing codeword,
and that it is the encoding of the ‘.’ (period) character. Then, instead of
the four-letter word STOP one can use just one character ‘.’ to limit error
propagation.

Example 2.48: The code C6, Figure 2.6, does not have a synchronizing string at
all. The codewords of C6 are of length 2 or 4, so if the decoder is in a state 1
or 3 edges away from the root, any codeword brings it to another state 1 or 3
edges away from the root. As ws is a string of codewords, it cannot bring such
a node to the root.
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a → 00
b → 10
c → 11
d → 010
e → 011

(a) Huffman code C2

cb

ed

a

(b) Huffman tree for C2

Figure 2.5: Huffman code C2 from Example 1.2 and its and Huffman tree.

a → 00
b → 10
c → 11
d → 0100
e → 0101
f → 0110
g → 0111

(a) Huffman code C6

cb

gfed

a

(b) Huffman tree for C6

Figure 2.6: Huffman code C6 and its Huffman tree.

As seen in Example 2.48, there are Huffman codes that are not synchronizing.
A subclass of these codes is described by the following lemma:

Lemma 2.49 (folklore, e.g. [22]). If the greatest common divisor of the codewords’
lengths is greater than 1, the code does not have a synchronizing string.

The reverse is not true. There are codes without a synchronizing string for which
the greatest common divisor of codewords’ lengths is 1. Nevertheless, Schützenberger
[65] proved that in this case there always exists a code with the same codewords’
lengths that has a synchronizing string.

Definition 2.50 ([5]). A biprefix code is a prefix code that also meets the suffix
condition: no codeword is a suffix of another codeword.

Example 2.51: The code C7, Figure 2.7, is a biprefix code. By inspection:� the codewords for letters f , g, h and i cannot be suffixes of other code-
words because there are no codewords of length greater than 4;� no codeword other than 10 ends with 10, so the codeword for a is not
a suffix of another codeword;� no codeword of length 4 ends with 11, so the codewords of d and e are
not suffixes;� finally, the codewords for b and c are not suffixes of the codewords f , g,
h and i.
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a → 10
b → 000
c → 001
d → 011
e → 111
f → 0100
g → 0101
h → 1100
i → 1101

(a) Huffman code C7

e

ih

a

d

gf

cb

(b) Huffman tree for C7

Figure 2.7: Biprefix Huffman code C7 and its Huffman tree.

It can be verified that the code C7 does not have a synchronizing string,
even though it has codewords of lengths 2, 3 and 4 and GCD(2, 3, 4) = 1.

Theorem 2.52 (folklore). No complete binary biprefix code of size greater than 2 has
a synchronizing string.

Proof. Let us assume the contrary, that ws is a synchronizing string for such a code,
that is any state is brought to ε by ws. Let us consider a decoder in a state q0 other
than ε (there is such a state, because the code has at least three codewords, so there
must be an at least 2-long codeword). Let ws = w1w2 . . . wk, where wi are codewords.
Let q1 be target state for q0 after applying w1, q2 — after w1w2, etc. It must be
ql = ε and ql−1 6= ε for some l ≤ k. Then wl brings the node ql−1 to ε and the string
π(ql−1)wl is a sequence of codewords. Let w be the last codeword in this sequence.
Then either w is a suffix of wl or wl is a suffix of w, or w is equal wl. None of these
is possible.

Synchronizing strings for Huffman codes are closely related to synchronizing strings
of automata. The following theorem follows Lemma 2.41.

Theorem 2.53. A synchronizing string for a Huffman code C is a synchronizing
string for the Huffman automaton TC . A synchronizing string ws for the Huffman
automaton TC, such that ws brings all nodes to the root, is a synchronizing string for
the Huffman code.

Corollary 2.54. A Huffman code is synchronizing if and only if its Huffman au-
tomaton is synchronizing.

2.8 Notation

The logarithms in this work are of base 2 unless explicitly stated otherwise.
The values T , T , δ, δ∗, δT , N , h, ε, π depend on the code C. We assume that it

is always clear from the context which code (or, equivalently, which Huffman tree) is
being considered.
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Guaranteed Sychronization of Huffman
Codes

3.1 Overview

In Huffman-encoded data a bit error propagates because the decoder loses synchro-
nization with the coder. For many codes the decoder resynchronizes quickly in most
cases. If a code has a synchronizing string or a synchronizing codeword, the decoder
is always resynchronized after having processed such a string. Unfortunately, the
existence of a synchronizing string or a synchronizing codeword does not guarantee
that error propagation is limited to some fixed number of bits.

Example 3.1: In Example 2.47 the period corresponds to a synchronizing codeword.
The decoder always resynchronizes after reading a period so the error propa-
gation is always limited to one sentence. But without any a priori knowledge
of the encoded message, one cannot assume anything about the length of sen-
tences. Even if most of sentences in the message are short, there may be a long
sentence, for instance occupying half of the message.

The situation is even worse in Example 2.43, where the encoding of the word
STOP was a synchronizing string. It cannot be assumed that this word appears
in the encoded message at all. To guarantee a limit on error propagation
one can explicitly insert the synchronizing strings, the encodings of ‘.’ or
‘STOP’, into the message. This, however, requires special handling, because
the inserted strings have to be removed by the decoder. These strings also
increase the length of the encoded message.

In Example 3.1 a simplification is made, because reading a synchronizing string is
not a necessary condition for synchronization of a decoder. Nevertheless, sequences
of bits with infinite synchronization delay are easy to construct.

Example 3.2: The following example is due to Takishima et al. [68]. Let us consider
the probability distribution on letters a, b, c, d and e equal 0.3, 0.3, 0.2, 0.1 and
0.1, respectively. It is easy to see that the code C1, Figure 2.3, is an optimal
code for this probability distribution. In the message M = baecacbdba the
frequencies of letters follow exactly the probability distribution. The encoding

39
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of this message is the following:

c1(M) = 0 1
︸︷︷︸

b

0 0
︸︷︷︸

a

1 1 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

0 0
︸︷︷︸

a

1 0
︸︷︷︸

c

0 1
︸︷︷︸

b

1 1 0
︸ ︷︷ ︸

d

0 1
︸︷︷︸

b

0 0
︸︷︷︸

a

(3.1)

If the message is decoded from the second bit, the result is:

c1(M) = 0 1 0
︸︷︷︸

c

0 1
︸︷︷︸

b

1 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 1
︸︷︷︸

b

0 0
︸︷︷︸

a

1 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

1 0
︸︷︷︸

b

0 (3.2)

If M is repeated infinite number of times, the decoder that starts from the
second bit of the infinite message will never resynchronize and the decoded
sequence will be totally wrong. For instance, the letter d does not appear in
the incorrectly decoded message at all.

For a decoder that starts in the middle of a message it is important to know
whether or not it has already resynchronized, to know if the decoded symbols are
correct. In this chapter a method to achieve this goal is described (Section 3.2).
Then, we study synchronization properties of Huffman codes (Section 3.3), for in-

stance the existence of a synchronizing string, and of messages encoded with Huffman
codes (Section 3.5), for instance the maximum synchronization delay of some decoder.
We present two methods for setting an upper bound on the synchronization delay of
any decoder of a Huffman-encoded message, for the price of a small redundancy and
increased processing time (Sections 3.4 and 3.6). The methods exploit the inherent
tendency of Huffman codes to resynchronize and the additional bits are inserted only
if the synchronization delay of some decoder would exceed the bound. In particular,
if all decoders resynchronize quickly enough, the redundancy is zero.
Neither statistical synchronization of Huffman codes nor the two methods for

guaranteed synchronization can provide the decoder with strong synchronization.
A novel method for this problem is shown in Section 3.7.
All the methods described here are tested numerically and the results are presented

in Section 3.8. Applications for methods from this chapter are discussed in Section
3.9, in particular limiting error propagation and parallel Huffman decoding. The
latter is tested on Jpeg files (Section 3.10). The chapter is concluded in Section 3.11.

3.2 Estimating the synchronization delay

A decoder that starts at position p inside an encoded message E may be synchronized
or unsynchronized at start. To see if the decoder is synchronized one has to decode
the message from the beginning and check if the start position, p, is at a codeword
boundary. In many cases the cost of decoding the whole prefix of the message is too
high. It may also happen that the prefix is missing. It will be shown that in most
cases the decoder can recover the correct codeword boundaries after having read only
a small part of the message, starting at position p.
As mentioned before, the synchronization state of a decoder Dp depends on

whether position p is a codeword boundary. This information is unknown at start.
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Algorithm 3.1: Estimation of the synchronization delay.

Input: E — encoded message, p — decoder’s start position.
Output: A position where decoder Dp is synchronized.
S ← ∅, i← p;1

while i < p + h do2

S ← δ(S ∪ {ε}, E [i]);3

i← i + 1;4

while |S| > 1 and i < |E| do5

S ← δ(S, E [i]);6

i← i + 1;7

return i8

Nevertheless, the largest codeword’s length is h, so at least one of the decoders
Dp, Dp+1, . . . , Dp+h−1 starts at a codeword boundary and is synchronized at start.
It is enough to analyze the states of these h decoders at consecutive position in E .
When, at some position, all of them are found in the same state, they must all be
synchronized.

The method is formalized in Algorithm 3.1. In lines 2 to 4, a set S with the
current states of the h decoders is created while reading the first h bits. Then, in
lines 5 to 7, transitions by consecutive bits are made until S reduces to just one state.
At that moment, decoder Dp is synchronized and the algorithm returns the current
position. Note that the algorithm accesses only the bits of E after position p.

DecoderDp resynchronizes no later then at the position returned by the algorithm.
It means that the algorithm returns an upper estimate of the synchronization delay
for Dp. In some cases the algorithm may not detect the resynchronization until the
end of the message. Tests show (Section 3.8), however, that such cases are rare and
typically the algorithm stops after just a few tens of bits.

The worst-case time complexity for Algorithm 3.1 is O(hd), where d is the length
of the estimation of the synchronization delay found (d = i− p, with the notation of
Algorithm 3.1).

The state transitions for decoders in the set S can, however, be computed more
efficiently. The simplest optimization is to compute transitions by entire codewords,
that is to use δ∗ for codewords instead of δ for individual bits. With such optimization
the computational complexity for Algorithm 3.1 is reduced to O(hc) where c is the
number of analyzed letters (decoded using the given code) before the algorithm fin-
ishes. The next section describes a method for precomputing in O(N2) the function
δ∗ for all codewords.

The worst-case time complexity for Algorithm 3.1 can still be improved. In Section
3.5.2 it is shown how the transition function for all the decoders from the set S by
a single bit can be computed in constant time. It reduces the time complexity for this
algorithm to O(d). With such complexity, the algorithm is asymptotically optimal.
Moreover, the returned position is also optimal if there is no a priori knowledge about
the missing prefix of the encoded message.
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3.3 The synchronization graph

In Algorithm 3.1 the transitions of the Huffman automaton were computed using
a single bit at a time. To speed up computations, it is useful to know the transitions
the Huffman automaton makes on reading whole codewords. We are interested in the
values of δ∗(q, wi) for each state q of the Huffman automaton and for each codeword
wi. This information will also be used to derive some properties of the code.

Definition 3.3. A synchronization graph for a Huffman code C is a directed graph,
GC , whose vertices are internal nodes of the Huffman tree TC and edges are labeled
with codewords (or, equivalently, with letters of the source alphabet). There is an
edge p

wi→ q in GC if and only if δ
∗(p, wi) = q.

Note that instead of the codewords wi it is preferable to use the corresponding
letters c−1(wi) to label edges of GC . With such a representation the amount of data
associated with a single edge is constant. For simplification, the codewords wi are
sometimes marked on edges, but the reader should be aware that, in fact, it is enough
to store just the letters c−1(wi). It is easy to see that there are exactly N −1 vertices
in the graph, and exactly N edges go out of each vertex. The total size of the
synchronization graph is O(N2).

Example 3.4: Huffman code C2 and its synchronization graph are shown in Figure
3.1. Figure 3.1(a) presents the code, its Huffman tree is shown in Figure 3.1(b),
the Huffman automaton is shown in Figure 3.1(c) and the synchronization
graph is shown in Figure 3.1(d).

The most straightforward approach to compute the synchronization graph is to
traverse the Huffman automaton from each state using each codeword. This takes
time proportional to O(N

∑
|wi|), where wi are codewords. Although

∑
|wi| may be

of the order N log N , in the worst case it is Θ(N2), so the total processing time is
O(N3).

It is clear that this approach is not optimal. Let two codewords, w1 and w2,
share a common prefix v: w1 = vv1 and w2 = vv2. Then, for a node n, δ∗(n, w1) =
δ∗(δ∗(n, v), v1) and δ∗(n, w2) = δ∗(δ∗(n, v), v2). It is enough to compute δ∗(n, v) once
and use this value to compute δ(n, w1) and δ(n, w2). There is a place for improvement
because the codewords form a complete binary tree, so they share many common
prefixes.

This optimization is used in Algorithm 3.2. For each node v of a Huffman tree T
procedure SearchTransitions is called from the main loop in line 11. It computes
the targets for edges going out of vertex v using the optimization described. The last
argument of SearchTransitions is the vertex for which the transitions are being
computed. The first one is the current node in the Huffman tree traversal and it is
set to v at start. The second argument, y, determines the common prefix, π(y), of
codewords that has just been used in the traversal of the tree. Procedure Search-
Transitions recursively extends this prefix by 0 and by 1 in lines 8 and 9. The
fields left and right for a node x give the 0-child and the 1-child of x, respectively.
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a → 00
b → 10
c → 11
d → 010
e → 011

(a) Huffman code

cb

ed

a

(b) Huffman tree

ε

0 1

01

0 1

1

0 0,1

0,1

(c) Huffman automaton

ε

0 1

01

a, b, c, d, e

a

b, c, d, e

a, b
c

d, e

a, b c
d, e

(d) Huffman synchronization graph

Figure 3.1: Huffman code C2, its Huffman tree, Huffman automaton and synchronization
graph.

Algorithm 3.2: Construction of the synchronization graph.

Input: T — Huffman tree.
Output: Transitions δ∗(q, w) for any state q and any codeword w.
procedure SearchTransitions(x, y, x0);1

if x is a leaf then2

SearchTransitions(ε, y, x0);3

else4

if y is a leaf then5

add edge [x0
π(y)
→ x] to the graph (i.e. set: δ∗(x0, π(y))← x);6

else7

SearchTransitions(x.left, y.left, x0);8

SearchTransitions(x.right, y.right, x0);9

end procedure;10

forall internal node v ∈ T do11

SearchTransitions(v, ε, v);12
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The cost of Algorithm 3.2 is O(N2) because procedure SearchTransitions is
called N − 1 times from the algorithm’s body and each such call is a DFS traversal
of the Huffman tree given in the second parameter and thus takes O(N) operations.
The synchronization graph can be used to find various properties of the code, such

as the existence of a synchronizing string or the set of all synchronizing codewords.

Theorem 3.5. A word w is a synchronizing codeword for a Huffman code if for any
node n of the synchronization graph there is an edge n

w
→ ε.

Example 3.6: In the synchronization graph for the code C2, Figure 3.1(d), all the
edges labeled with d and e end in ε. Their corresponding codewords, 010 and
011, are synchronizing. Edges labeled with other letters do not always point
to ε, so their codewords are not synchronizing.

With a synchronization graph we are able to find all the synchronizing codewords
in O(N2) operations. More efficient methods for finding all synchronizing codewords
without building the synchronization graph explicitly are shown in Chapter 4.

Theorem 3.7. A Huffman code has a synchronizing string if and only if from any
node n of its synchronization graph there is a path to the root.

Proof. Let us assume that in the synchronization graph there is a path from any node
n to ε and let vn be the binary string formed of codewords on consecutive edges of
such a path. The proof is constructive and gives an algorithm for the construction of
a synchronizing string by concatenation of the strings vn.
Let the constructed string s be initialized as ε. We will maintain a set U of nodes

that are not brought by s to the root. At start, U is the set of all nodes of the
synchronization graph but the root.
At each step i a vertex ni is picked from U , vni

is appended to s and U is trans-
formed to δ∗(U, vni

) \ {ε}. When the set U is empty, the string s is a synchronizing
string for the Huffman code. This proves one implication of the theorem.
On the other hand, if a code has a synchronizing string s then s is a sequence of

codewords. Transitions by consecutive codewords of the string s bring any vertex n
of the graph to the root, so it gives a path from n to ε.

Example 3.8: In the synchronization graph for the code C2, Figure 3.1(d), for any
node there is a path to the root. This means that the code C2 has a synchroniz-
ing string. To construct such a string let us start with the set U0 = {0, 01, 1}.
Let us pick the node 0 from from U0. An example path to the root is labeled
with b, which corresponds to the binary string 10. The transformed set U is
U1 = {0} (0 goes to the root and 01 and 1 go to 0; then the root is removed).
The only node in U1 is 0 and, again, we take the letter b— the string 10. Now
the transformation of U1 with this string results in the empty set. The synchro-
nizing string found is 1010. Note that this is not the shortest synchronizing
string as 010 and 011 are shorter.

The time needed to check if there is a synchronizing string for a code is propor-
tional to the size of the synchronization graph, that is O(N2). Chapter 4 contains a
faster algorithm for the same problem.
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The construction of a synchronizing string given the proof of Theorem 3.7 requires
O(N3) operations and the constructed string is of length O(N3) bits. To see that, let
us first observe that there is always a path from a node n to ε that consists of at most
N−1 edges. We can precompute such paths using, for instance, Dijkstra’s algorithm.
Such path corresponds to a string of source letters of length at most N − 1 and is
equivalent to a binary string of length at most (N − 1)h. The algorithm performs
at most N − 2 steps, because each step reduces the size of U by one. Each step
requires applying a string of letters of length at most N − 1 to each node in U , which
takes (N − 1)|U |. After summing up all the steps, the total number of operations is
bounded by O(N3).
The synchronizing string is a concatenation of at most N − 2 strings of length

at most (N − 1)h each, so its length is O(N3), as h = O(N). Again, Chapter 4
contains a faster algorithm for the construction of a synchronizing string. Also the
synchronizing string constructed by that algorithm is shorter.

3.4 Limited synchronization delay with known start

position

In this section we present a modification of Huffman coding to limit the synchroniza-
tion delay to at most a given number of bits. It is assumed that the decoder starts at
an arbitrary bit in the encoded message, but it knows the position of this bit. The
redundancy introduced by the method depends on the synchronization properties of
the code. It is not required that the code has a synchronizing codeword or a synchro-
nizing string. The method works for any code, but for non-synchronizing codes the
introduced redundancy is larger.
The limited synchronization delay will be assured by inserting some additional

strings, called resynchronization markers, in the encoded message. There are two
main design goals for the algorithm:� The code must remain optimal so that the redundancy depends only on the

number of insertions of the resynchronization marker. The redundancy can be
made arbitrarily small if the markers are inserted rarely.� The resynchronization markers are inserted only if necessary. Huffman codes
resynchronize spontaneously after a synchronization loss, so, in most cases,
explicit insertion of a resynchronization marker is not necessary.

Note that if a suboptimal code is used, the redundancy is nonzero even if no
markers are inserted. In such case, the redundancy is roughly proportional to the
length of the encoded message.
It is expected that the number of decoders whose synchronization delay would

exceed the given threshold is low, therefore, because of the second requirement, few
markers are inserted.
Both these requirements are a novelty. Any other method for synchronizing coding

uses suboptimal codes [3, 10, 11, 16, 20, 25, 28, 39, 40] or the markers are inserted in
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regular intervals and the tendency of Huffman codes to resynchronize spontaneously
is not explored [21, 34, 52, 54].

The new method, presented in this section, uses a parameter K, which will be
related to the maximum synchronization delay. From now on it is assumed that the
decoder starts at a position iK, i ∈ N in the encoded message. A decoder that starts
at a different place has to skip until the next position iK. It can always be done as
the start position of the decoder is known.

The method inserts a resynchronization marker if the synchronization delay of the
decoder starting at position iK exceeds K. The decoder will resynchronize after read-
ing the marker. Synchronized decoders are able to detect other marker’s insertions
and ignore them. The markers are based on the following definition.

Definition 3.9. A leaf string for a node n of a Huffman tree, denoted by L(n), is
(any) shortest string that brings n to a leaf. An exception for ε is made and it is
assumed that L(ε) = ǫ.

Lemma 3.10. |L(q)| ≤ ⌊log N⌋ for any state q.

Proof. The size of the subtree of q is at most N , so there must be a leaf that is no
farther than ⌊log N⌋ edges away from q.

The operation of the encoder is the following. At each first codeword boundary
at of after position (i + 1)K, for each i ∈ N, the encoder computes the current
state, qiK , of decoder DiK . If qiK = ε then DiK is in synchronization and nothing is
done. Otherwise, the leaf string for qiK is inserted there, which brings decoder DiK

to synchronization.

It has to be assumed that K ≥ h + ⌊log N⌋, and then decoder DiK always resyn-
chronizes after at most K + h + ⌊log N⌋ − 1 < 2K bits, counting from position iK,
where it started. The encoder has to keep track of the state of each decoder DiK for at
most K + h bits and it is done during the encoding of the message. The method will
be called knownStartPosition and steps performed by the encoder are presented
in Algorithm 3.3.

Example 3.11: Let us consider the following message, E , encoded with code C1 from
Figure 2.3:

E = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 1 1
︸ ︷︷ ︸

e

0 1
︸︷︷︸

b

1 0
︸︷︷︸

c

1 1 1
︸ ︷︷ ︸

e

1 0
︸︷︷︸

c

1 0
︸︷︷︸

c

. (3.3)

This message will be encoded again with the method knownStartPosition
for K = 6. In the following equations the positions iK are marked with bullets
and with the position number.

The first letters are encoded normally.

E(0) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

(3.4)
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Algorithm 3.3: Encoder for the method knownStartPosition.

Input: M — source message; K — parameter.
i← 0; ⊳ i is used only for the description of the algorithm1

p← 0; ⊳ the current position relative to the bit iK (the position of DiK)2

q ← ε; ⊳ the state of decoder DiK at the current position3

while (a←M.nextSymbol()) 6= null do4

output c(a); ⊳ encode the symbol normally5

q ← δ∗(q, c(a)); ⊳ update the state of DiK6

p← p + |c(a)|; ⊳ update the current position of DiK7

if p ≥ K then ⊳ make sure DiK is in sync and start with D(i+1)K8

s← suffix of c(a) of length p−K; ⊳ the overflow from the K-bit span9

output L(q); ⊳ synchronize DiK ; recall that L(ε) = ǫ10

q ← δ∗(ε, sL(q)); ⊳ the state of D(i+1)K at the current position11

p← |sL(q)|; ⊳ the number of bits processed by D(i+1)K12

i++; ⊳ proceed to the next K-bit span13

The next letters, until the next iK position, are also encoded normally, but
now the encoder follows the state transitions for decoder D6, that starts at the
first bullet.

E(1) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 •12 1 1
︸ ︷︷ ︸

e

(3.5)

The current position, 14, is the first codeword boundary at or after position
12. Decoder D6 is now in the state 11, after decoding the codewords 10, 00,
01 and the prefix 11. D6 is not synchronized, so the leaf string L(11), in this
case 0 or 1, has to be inserted.

E(2) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 •12 1 1
︸ ︷︷ ︸

e

0
︸︷︷︸

×

(3.6)

The leaf string is marked with the sign ×.
The encoding continues until the next iK boundary.

E(3) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 •12 1 1
︸ ︷︷ ︸

e

0
︸︷︷︸

×

0 1
︸︷︷︸

b

1 •18 0
︸ ︷︷ ︸

c

(3.7)

At this point, decoder D12 is synchronized, so there is no need to insert any
leaf string. The encoding continues.

E(4) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 •12 1 1
︸ ︷︷ ︸

e

0
︸︷︷︸

×

0 1
︸︷︷︸

b

1 •18 0
︸ ︷︷ ︸

c

1 1 1
︸ ︷︷ ︸

e

1 0 •24
︸ ︷︷ ︸

c

(3.8)

Now, decoder D18 is in the state 0, so the leaf string 0 is inserted before
proceeding with the encoding. The final message is the following.

E(5) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 •12 1 1
︸ ︷︷ ︸

e

0
︸︷︷︸

×

0 1
︸︷︷︸

b

1 •18 0
︸ ︷︷ ︸

c

1 1 1
︸ ︷︷ ︸

e

1 0•24
︸ ︷︷ ︸

c

0
︸︷︷︸

×

1 0
︸︷︷︸

c

(3.9)
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Algorithm 3.4: Decoding algorithm for the method knownStartPosition.

Input: E — encoded message; K — parameter.
i← (start position)/K; ⊳ i is used only for the description of the algorithm1

p← 0; ⊳ the current position relative to the bit iK (the position of DiK)2

q ← ε; ⊳ the state of decoder DiK at the current position3

while (a← E .decodeNextSymbol()) 6= null do4

output a; ⊳ decode the symbol normally5

q ← δ∗(q, c(a)); ⊳ update the state of DiK6

p← p + |c(a)|; ⊳ update the current position of DiK7

if p ≥ K then ⊳ make sure DiK is in sync and start with D(i+1)K8

s← suffix of c(a) of length p−K; ⊳ the overflow from the K-bit span9

skip L(q) in E ; ⊳ skip the synchronization marker for DiK10

q ← δ∗(ε, sL(q)); ⊳ the state of D(i+1)K at the current position11

p← |sL(q)|; ⊳ the number of bits processed by D(i+1)K12

i++; ⊳ proceed to the next K-bit span13

On decoding a message encoded with knownStartPosition method, the leaf
string for decoder DjK has to be skipped by all decoders DiK , i < j. On the other
hand, decoder DjK must process the leaf string as normal input to be put into syn-
chronization.

It was mentioned before that decoder DiK is always synchronized at position
(i + 2)K. In particular, it knows the correct codewords’ boundaries at positions
(i+2)K, (i+3)K and so on. The decoding algorithm for DiK simulates each decoder
DjK , j > i, to know whether or not it resynchronizes before the first codeword
boundary at or after position (j + 1)K. At such a position it just compares the state
of Djk to its own, because the latter is correct. If the state is different, a leaf string
must have been inserted for DjK and it has to be skipped by DiK .

Note that the decoder and the decoding algorithm are distinguished here. The
decoder is a Huffman automaton and the decoding algorithm additionally tracks the
state of decoders DiK and skips the leaf strings. The decoding algorithm that starts at
position p is called the decoding algorithm for Dp. Sometimes, when it does not cause
any confusion, the word decoder will also be used to refer to the decoding algorithm.

The algorithm for the decoder, Algorithm 3.4, is similar to the one for the encoder.
It only differs in lines 1, 4, 5 and 10.

Example 3.12: Let us see how the message from Example 3.11 can be decoded. The
message is the following.

E(5) = 0 1
︸︷︷︸

b

0 1
︸︷︷︸

b

1 1 •6 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 •12 1 1
︸ ︷︷ ︸

e

0
︸︷︷︸

×

0 1
︸︷︷︸

b

1 •18 0
︸ ︷︷ ︸

c

1 1 1
︸ ︷︷ ︸

e

1 0 •24
︸ ︷︷ ︸

c

0
︸︷︷︸

×

1 0
︸︷︷︸

c

(3.10)
Let us consider the decoding algorithm for D0 first. It initially decodes the
first three letters, bbe. Then, it decodes aae, but it also computes the state
of decoder D6. At position 14, after D0 decoded bbeaae, decoder D6 is in
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the state 11, because it would decode 10, 00, 10 and the prefix 11. As D6 is
not synchronized at the current position, the decoding algorithm knows that
a leaf string for 11 must have been inserted by the encoded. The next bit, the
leaf string 0, is skipped. Then decoding continues and D0 decodes bc. At the
current position, 19, decoder D12 is synchronized, so no leaf string has been
inserted at this position. The decoding algorithm continues with decoding ec.
Now, at position 24, decoder D18 is not synchronized, so the leaf string 0 for
the state 0 is skipped. Finally, the letter c is decoded.
Let us consider now the decoding algorithm for D6, which starts at the

first bullet. D6 is not synchronized at start. First, it decodes the bits 10,
00, 01 and 110 as the string cabd. Note that the last codeword 110 included
the leaf string 0 as the last bit. Now the decoder is synchronized and the
decoding algorithm continues with decoding bc. At position 19 the decoding
algorithm crosses a 6-bit block boundary, so it has to check if decoder D12 is
synchronized. Note that D6 is synchronized at this position, so the correct
state is known. Moreover, the decoding algorithm for D6 can access all the
bits that are read by D12.
The decoding algorithm verifies that D12 is synchronized at position 19,

so the decoding continues and ec is decoded. Now, decoder D18 is not syn-
chronized, so the leaf string 0 is skipped and finally c is decoded. The string
decoded by the decoder is cabdbcecc. The four initial characters are wrong,
because the decoder was not synchronized when they were decoded.
Decoder D12, starting at the second bullet, decodes first the codeword 110

as d. Then it is synchronized and decodes bcec. Afterwards, it skips the leaf
string 0, inserted for decoder D18, and decodes c.

Theorem 3.13. The redundancy introduced by Algorithm 3.3 is at most ⌊log N⌋
K−⌊log N⌋

bits per bit of the unmodified encoded message. The redundancy is zero if all decoders
starting at positions iK, i ≥ 0, synchronize in at most K bits.

Proof. By Theorem 3.10, the number of inserted bits is at most ⌊log N⌋ for every K
bits. The remaining bits, at least K−⌊log N⌋, are the bits of the unmodified encoded
message.
If any decoder starting at positions iK, i ≥ 0, synchronize in at most K bits, no

leaf string is ever inserted, so the redundancy is zero.

Note that even though the redundancy is bounded by ⌊log N⌋
K−⌊log N⌋

in the worst case,
the redundancy is much smaller if the code has good statistical synchronization ca-
pabilities, in particular, if K is much larger than the average synchronization delay
of the code.

Example 3.14: The redundancy in the message from Example 3.12 is 2 bits and
length of the original message is 25 bits. This gives the redundancy of 0.08
bits per bit of the unmodified encoded message. The bound from Theorem
3.13 is ⌊log 5⌋

6−⌊log 5⌋
= 2

6−2
= 0.5. Note that in typical applications the value of K

is much larger than log N , so the bound is smaller.
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For the computation of the complexity for the algorithm we consider only its
overhead over normal Huffman coding, therefore the cost of line 5 is considered to
be zero. The speed of the algorithm (both the encoder and the decoder) depends
on the time needed for executing line 6, that is for the instruction q ← δ∗(q, c(a)).
If the function δ∗ is precomputed for all the (q, a) pairs, the time is constant. In
this case the overhead over normal Huffman coding is O(R + |M|), where R is the
number of inserted bits, and it is sublinear in the length of the encoded message. The
preprocessing, Algorithm 3.2, requires O(N2) time.
The preprocessing time, O(N2), is negligible only if the code is small in comparison

to |E|. If, however, the size of the code is O(
√

|E|), it is preferable to reduce the
precomputation time, even at the cost of increased processing complexity. Without
preprocessing the computation in line 6 requires O(|c(a|)) operations and the total
time overhead of Algorithm 3.3 over normal Huffman coding is O(R + |E|), which is
linear in the length of the encoded message.
In both cases this is the worst-case complexity. Both the encoder and the decoder

may be optimized. Indeed, line 6 does not have to be executed if the state q is ε.
The resynchronization properties of the method can be summarized as follows:

Theorem 3.15. The decoder that starts at a position iK of a message encoded with
Algorithm 3.3 and that executes Algorithm 3.4 resynchronizes after at most K + h−
1 + ⌊log N⌋ bits.

Proof. Let us look at the decoder at the first codeword boundary at or after position
(i+1)K. This has to be before position K +h−1, because the longest codeword is of
length h. If DiK is synchronized then the theorem is proved. Otherwise, the encoder
must have inserted a leaf string for the current state of DiK . The length of the leaf
string, by Theorem 3.10, is at most ⌊log N⌋ bits and the decoder is synchronized upon
reading these bits.

Example 3.16: Let us look at the message from Example 3.12. Decoder D0 syn-
chronized immediately, decoder D6 after 9 bits, D12 after 3 bits and D18 after
7 bits. The bound from Theorem 3.15 is 6 + 3 − 1 + 2 = 10. In fact, for the
code C1 no leaf string is longer than 1, so the bound can be improved to 9.

Theorem 3.17. A decoding algorithm that starts at a known position p of a message
encoded with Algorithm 3.3 resynchronizes after at most 2K + h− 2 + ⌊log N⌋ bits.

Proof. The decoder first skips (p mod K) bits, which is at most K − 1. Then, it
is at a position iK and may execute Algorithm 3.4. By Theorem 3.15, the decoder
synchronizes after the next K + h− 1 + ⌊log N⌋ bits, which proves the bound.

An important application of the method is limiting the propagation of bit-flip
errors. Let us consider an error at position p with iK ≤ p < (i + 1)K. Any decoder
that started before p may be corrupted. Decoder D(i+1)K is not influenced by the
error and it resynchronizes in K +h−1+ ⌊log N⌋ bits. Decoder DiK can then adjust
its state at position (i+2)K +h−1+ ⌊log N⌋ to be the same as the state of D(i+1)K .
Therefore, the error propagates for at most 2K + h − 1 + ⌊log N⌋ bits. Note that
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Position resynchronized unsynchronized

0 0 null

2 2 1

5 5 1

7 1 3

9 9 3

Table 3.1: The information about synchronized and unsynchronized decoders

the method cannot be used when bit insertion or bit deletion errors occur, because it
assumes that the decoder always knows its exact position in E .

3.5 Tracking decoders

In this section it is assumed that the whole source message, M, and its encoding,
E , are available. Let us consider the problem of finding at each position p that is a
codeword boundary the minimal start position of a decoder that:� resynchronizes at p — this piece of information is called resynchronized(p),� is not synchronized at p — called unsynchronized(p).

This information can be used, for instance, to compute the largest synchronization
delay of any decoder or to limit the synchronization delay by inserting some resyn-
chronization markers at positions where the synchronization delay of some decoder is
too large. The latter application will be discussed in Section 3.6.

Example 3.18: Let us consider the following message, E , encoded with the code C1.

E = 0 0 1
︸︷︷︸

b

2 1 1 1
︸ ︷︷ ︸

e

5 1 0
︸︷︷︸

c

7 0 1
︸︷︷︸

b

9. (3.11)

The positions between codewords are numbered. The information we are look-
ing for is the following. At position 0 the decoder that resynchronizes is decoder
D0. There is no decoder that is unsynchronized at position 0. At position 2,
decoder D2 resynchronizes, decoder D1 is unsynchronized and decoder D0 was
already synchronized at position 0. The minimal start position of a decoder
that is unsynchronized is 1, and of a decoder that resynchronizes is 2.
The information at other positions is presented in Table 3.1. The differ-

ence of columns “resynchronized” and “Position” gives the synchronization
delay for a decoder that resynchronized at the given position. The largest
synchronization delay is 6 for decoder D1. Note that decoder D3 is not syn-
chronized at the end of the message.

Two methods for computing resynchronized(p) and unsynchronized(p) for
all codeword boundaries p are presented in the next subsections. The first one is very
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simple, yet, in most cases, efficient. It uses O(h) operations per encoded codeword.
The other one is asymptotically optimal, as an algorithm that works on the encoded
message, because the amortized amount of computations per encoded bit is constant.

3.5.1 O(h) per codeword

To find the values of resynchronized and unsynchronized at each position, each
decoder of E has to be analyzed to find the exact place where it resynchronizes (and
not only the upper bound, as in Section 3.2). Let us consider decoder Dp. Position p
is inside of some encoded codeword w0 and it determines some proper suffix, possibly
empty, w′

0 of w0. We will look into state transitions of the Huffman automaton Dp.
At the end of w0 decoder Dp is in the state q0 = δ∗(ε, w′

0). If q0 6= ε the decoder is not
synchronized. After each next codeword wi the decoder moves to qi = δ∗(qi−1, wi).
Recall that the correct decoder is always in the state ε on codeword boundaries.

Note also that ε is the only state of the Huffman automaton where states of two
decoders can merge. It follows that the first index i such that qi = ε determines
exactly the resynchronization position for Dp (this may also happen for q0).
This observation gives an algorithm for determining the synchronization delay

for a decoder starting at a particular position in E . To compute it for all decoders,
instead of making several passes through the message, it is preferable to analyze the
synchronization delays while encodingM, with just one pass.
At each position p that is a codeword boundary we maintain the set S of decoders

that started before p and are not synchronized at p. For each such decoder its state
at p is kept. After encoding a codeword wi, each decoder of the set S makes a
transition from its state, q, to q′ = δ∗(q, wi). If q

′ happens to be the root, the decoder
resynchronizes and is removed from S. The information about the resynchronization
and also about the decoder with the largest synchronization delay so far is memorized.
Next, all |wi| − 1 decoders that start inside wi and that are unsynchronized at the
end of it are added to S.
It is enough to keep in S only decoders that are in different states. Indeed, if Dp1

and Dp2
, p1 < p2, are at position p in a common state q, their state always remains

common. It follows that they resynchronize at the same position, so it is enough to
consider only the decoder with larger synchronization delay, namely Dp1

.

Example 3.19: Let us consider the message E from Example 3.18 encoded with the
code C1.

E = 0 0 1
︸︷︷︸

b

2 1 1 1
︸ ︷︷ ︸

e

5 1 0
︸︷︷︸

c

7 0 1
︸︷︷︸

b

9. (3.12)

The contents of the set S on codewords boundaries is presented in Table 3.2.
The set S is initially empty. At position 2, decoder D1 in the state 1 is added.
At position 5, decoder D1 proceeds to the state δ∗(1, 111) = 1. Then, decoders
D3 and D4 in states 11 and 1, respectively, are added to S. But D4 is in the
state 1, the same as D1, so it is removed immediately. At position 7 decoder
D1 resynchronizes and is removed from S. Decoder D3 proceeds to the state
0. Decoder D6 is not added to S because its state is the same as the state of
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Position The set S: decoder (state)

0 ∅

2 D1 (1)

5 D1 (1), D3 (11)

7 D3 (0)

9 D3 (1)

Table 3.2: The set S at codeword boundaries for the message from Example 3.18.

D3 and D3 started earlier. At position 9 decoder D3 moves to 1 and D8 is not
added, because its state is the same as the state of D3, which is already in S.

Algorithm 3.5 formalizes the ideas described above. The set S stores (state, posi-
tion) pairs, where position identifies a decoder and state is the state of this decoder at
the current position. It is assumed that the operation S.add(q, p0) checks if there is
another (q, p′0) already present in S and, if so, always leaves in S only (q, min(p0, p

′
0))

of the two.
The set S is initially empty. In the loop of line 4, consecutive letters of M are

analyzed. This involves taking a decoder Dp0
out of the set S and computing its next

state, after processing the current letter. If the state is ε, the decoder resynchronizes.
Otherwise, it is added to S ′ — the working copy of S.
After all decoders from S have been processed, new decoders, that started inside

the current codeword, are added in the loop in line 16. The list suffixes(w), for a
codeword w, contains decoders of w that start inside of w and are not synchronized
at the end of w. As in the set S, with the state of a decoder we store also its start
position, relative to the start of the codeword w. If there are two decoders in the
same state at the end of w, only the decoder that started earlier is kept. In addition,
the values minSynchronized(w) and minUnsynchronized(w), used in lines 18
and 19, contain the minimal start position of a decoder that starts inside of w and,
respectively, is synchronized and unsynchronized at the end of w.

Example 3.20: Table 3.3 contains the list suffixes and the values of minSyn-
chronized and minUnsynchronized for the code C1.

The information being computed by Algorithm 3.5, that is the values of resyn-
chronized and unsynchronized at the current position, is memorized in lines 21
and 22.
The time complexity for the algorithm depends on the size of the set S. It is easy

to see that |S| < N − 1, because all the decoders in S are in different states. This
bound can be improved using the following Lemma.

Lemma 3.21. If Dp0
is in state q at position p in E then π(q) is a suffix of E [..p).

Proof. At position p decoder Dp0
is in the state q = δ∗(ε, E [p0..p)). Let t be the

longest prefix of E [p0..p) such that δ∗(ε, t) = ε, and let E [p0..p) = tt′. Then t′ = π(q)
and it is a suffix of E [p0..p) and also of E [..p).
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Algorithm 3.5: Decoder tracking for computing the synchronization delay.

Input: M — source message.
Output: The values of resynchronized(p) and unsynchronized(p) at

each codeword boundary p.
S ← ∅; ⊳ the set of unsynchronized decoders1

S ′ ← ∅; ⊳ a working copy of the set S2

p← 0; ⊳ the current position in the E3

foreach letter l inM do4

w ← c(l); ⊳ the codeword for l5

ss ← +∞; ⊳ minimal start position of a synchronized decoder (temporary)6

su ← +∞; ⊳ minimal start position of an unsynchronized decoder (temporary)7

while S 6= ∅ do ⊳ process all decoders from S8

(q, p0)← S.removeAny(); ⊳ get a decoder9

q′ ← δ∗(q, w); ⊳ compute its new state10

if q′ 6= ε then ⊳ not synchronized11

S ′.add(q′, p0);12

su ← min(su, p0);13

else ⊳ resynchronized14

ss ← min(ss, p0);15

foreach (q, n) ∈ suffixes(w) do ⊳ add new decoders that started inside w16

S ′.add(q, p + n);17

su ← min(su, p +minUnsynchronized(w));18

ss ← min(ss, p +minSynchronized(w));19

p← p + |w|; ⊳ advance to the next codeword20

if ss < +∞ then resynchronized(p)← ss;21

if su < +∞ then unsynchronized(p)← su;22

(S, S ′)← (S ′, ∅); ⊳ swap the sets S and S′ (S is already empty)23

Codeword suffixes minSynchronized minUnsynchronized

00 D1 (0) 2 1

01 D1 (1) 2 1

10 D1 (0) 2 1

110 D2 (0) 1 2

111 D1 (11), D2 (1) 3 1

Table 3.3: The values suffixes, minSynchronized and minUnsynchronized for the
code C1.
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Algorithm 3.6: Computation of the lists suffixes.

Input: T — Huffman tree.
Output: The contents of the list suffixes(w) for each codeword w.
procedure SearchSuffixes(x, y, k);1

if x is a leaf then2

SearchSuffixes(ε, y, k);3

else4

if y is a leaf then5

suffixes(π(y)).add(x, k);6

else7

SearchSuffixes(x.left, y.left, k + 1);8

SearchSuffixes(x.right, y.right, k + 1);9

end procedure;10

forall internal node v ∈ T do11

SearchSuffixes(ε, v, 0);12

Example 3.22: Let us look at the message E from Example 3.18, encoded with the
code C1. At position 3 decoder D1 is in the state 11, which is indeed a suffix
of 011 — the prefix of E of length 3. Similarly, at position 7 decoder D5 is in
the state ε. Trivially, ε is a suffix of 0111110.

Lemma 3.23. The size of the set S is less or equal h.

Proof. It is enough to prove that all the decoders from S are in states of different
distance from the root, because the maximum distance from the root is h− 1. This
is indeed the case. If there were two decoders in S in states q1, q2, with |π(q1)| =
|π(q2)| then, by Lemma 3.21, π(q1) and π(q2) are two suffixes of E [..p). But they are
of the same length so they must be equal and q1 = q2.

Example 3.24: It is easy to see that the size of the set S from Table 3.2, for the
message E from Example 3.18, is never larger than 3.

Efficient implementation of Algorithm 3.5 requires precomputing the values of
δ∗(q, w) (line 10) for any state q and any codeword w. This is equivalent to the
synchronization graph (Section 3.3) and requires O(N2) operations (Algorithm 3.2).
It remains to be shown how to compute the lists suffixes and the values minSyn-

chronized and minUnsynchronized. In a näıve approach, the lists suffixes can
be computed for each codeword wi by processing all its suffixes. Processing a suffix,
v, requires O(|v|) operations, so the total processing time is O(

∑
|wi|

2) = O(N3).
Algorithm 3.6 computes the lists suffixes with fewer operations. It achieves its

O(
∑
|wi|) time complexity by modifying the order in which the suffixes are analyzed,

and by reusing some computations. The main loop of the algorithm goes over all
internal nodes of the Huffman tree. Each node corresponds to the set of codewords’
suffixes that start at that node. Algorithm 3.6 analyses all such suffixes at one stroke.
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Algorithm 3.7: Computation of the lists suffixes — optimized version.

Input: T — Huffman tree.
Output: The contents of the list suffixes(w) for each codeword w.
procedure SearchSuffixes(x, y, k);1

if x is a leaf then2

N [y]← max(N [y], k);3

else4

if y is a leaf then5

suffixes(π(y)).add(x, k);6

else7

SearchSuffixes(x.left, y.left, k + 1);8

SearchSuffixes(x.right, y.right, k + 1);9

end procedure;10

forall internal node v ∈ T do11

N [v]← 0;12

forall internal node v ∈ T in BFS order do13

SearchSuffixes(ε, v, N [v]);14

Processing an internal node, n, is analogous to Algorithm 3.2 — computations
for common prefixes of the suffixes starting at n are reused. It is assumed that the
operation add(q, n) has the same properties as in Algorithm 3.5 — it checks if there
is another (q, n′) already present in the set and, if so, always leaves in the set only
(q, min(n, n′)) of the two.

The number of operations needed to process a single internal node, n, is propor-
tional to the size of the subtree rooted at n. The total cost of this algorithm for a tree
T is proportional to the sum of sizes of all subtrees of T , denoted ST , which is, by
Lemma 4.2, O(

∑
|wi|).

The property of the operation add can be used to introduce yet another opti-
mization to Algorithm 3.6. Let us consider a suffix v′ of some codeword v. The word
v′ may be either a prefix of some codeword or v′ = wv′′, where w is a codeword. In
the first case, the suffix v′ is processed normally, as in Algorithm 3.6. In the latter
case, the decoder that processes either wv′′ or v′′ finishes in the same state q, so it
is enough to process v′′ only once. The processing of v′ = wv′′ may stop after w and
the length of w may be stored for later use. In the set suffixes(w) only the pair
(q, |v| − |v′|) = (q, |v| − |v′′| − |w|) is kept, because it corresponds to a lower start
position than the pair (q, |v| − |v′′|). When the suffix v′′ is processed, the value |w|,
memorized earlier, is subtracted from |v|− |v′′|, the start position of the decoder that
processes v′′, to get the value |v| − |v′′| − |w|.

The optimized version of Algorithm 3.6 is presented in Algorithm 3.7. The infor-
mation about the processed prefixes of suffixes of codewords is kept in the array N [v],
indexed with internal nodes v of the Huffman tree. When the function SearchSuf-
fixes is called from the main loop with the node v as its second parameter, the value
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of N [v] is the length of the longest suffix of π(v) that is a sequence of codewords. The
array N [v] is initialized to 0 at start. Despite the additional optimization, the time
complexity for Algorithm 3.7 is still O(

∑
|wi|).

Modifications of Algorithms 3.6 and 3.7 for the computation of the values min-
Synchronized and minUnsynchronized are left to the reader. The complexity
for Algorithm 3.5 is summarized in the following theorem:

Theorem 3.25. Algorithm 3.5 requires O(h) operations per encoded codeword with
O(N2) preprocessing time and O(N2) preprocessing memory.

Note that this is the worst-case setting. On average the size of the set S will be
smaller than h, especially for codes with unbalanced Huffman trees.

Example 3.26: Let us consider the message E from Example 3.18, encoded with
the code C1 from Figure 2.3, to see how Algorithm 3.5 works. First the set
S is empty. The first letter of the message is b, which corresponds to 01.
The decoders from the list suffixes(01) are added to S with their position
increased by the value of the current position, which is 0. Therefore the set S
contains only the pair (1, 1), which is decoder D1 in the state 1. The value
of resynchronized is equal 2 and of unsynchronized — 1. These are the
values of minSynchronized and minUnsynchronized for the codeword 01.
After processing the next codeword, 111, the decoder D1 from S makes

a transition to δ∗(1, 111) = 1. Now, the set S contains the pair (11, 1). The
minimal start position of an unsynchronized decoder, su, is 1. Then, the
decoders of suffixes(111) are added to S, with their position increased by
2. In fact, the decoder that starts from the last bit of 111 is skipped, because
it is in the same state as D1, which is already in S. For the other decoder,
the pair (11, 3) is added to S. The value of su is not changed. The minimal
value of an synchronized decoder is 2 +minSynchronized(111) = 2 + 3 = 5
(compare with Table 3.1).
The next codeword is 10. The decoder D1 from S moves to the state ε and

is removed. The minimal position of a resynchronized decoder is set to 1. Next,
the decoder D3 from S moves to 0. The only decoder on the list suffixes(10)
is the decoder that starts from the second bit. Its target state is also 0, so it
is not added to S. The minimal start position of a resynchronized decoder is
equal 1 and for an unsynchronized decoder is equal 3.
The last codeword is 01. Decoder D3 moves to the state 1. The only

decoder of the list suffixes(01) is also in the state 1, so it is ignored. No
decoder resynchronizes apart from the one that starts at position 9. The
decoder with the largest synchronization delay is D3, the only decoder that
remains in S.

3.5.2 O(1) per bit

There are two drawbacks of using Algorithm 3.5 for tracking decoders. Firstly, the
preprocessing time is quadratic in the size of the code. For small codes and long
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Node bord leaf nonLeaf

ε null null null

0 ε null ε

1 ε null ε

00 0 null 0

01 1 null 1

10 0 null 0

11 1 null 1

110 10 10 0

111 11 null 11

Table 3.4: The values bord, leaf and nonLeaf for the code C1.

encoded messages the preprocessing time is negligible, but if the code is large, the
preprocessing may dominate the total execution time, degrading the performance. As
will soon be shown, it is possible to achieve the goals of Algorithm 3.5 using a different
approach. The new algorithm tracks all decoders in O(1) amortized time per encoded
bit. Unlike Algorithm 3.5, the new algorithm processes codewords bit by bit and does
not use the synchronization graph. The preprocessing is reduced to linear time in the
size of the code.
The following information is needed for each node, v, of the Huffman tree for the

code:� v.bord — the lowest node v′ such that π(v′) is a proper suffix of π(v),� v.leaf — the lowest leaf node v′ such that π(v′) is a proper suffix of π(v),� v.nonLeaf — the lowest non-leaf node v′ such that π(v′) is a proper suffix of
π(v).

By the lowest node it is meant the node with the largest distance from the root. If
no node fulfilling the properties exists, the value is null.

Example 3.27: The values bord, leaf and nonLeaf for the code C1 from Figure
2.3 are shown in Table 3.4.

Algorithm 3.8 computes the values of bord, leaf and nonLeaf for all nodes of
a given Huffman tree. It first initializes the values at the root. Then, it computes the
values at each node v using values for v’s predecessors, which were computed before v
is considered. As the processing time for each vertex is constant, the algorithm works
in O(N) time.
The new algorithm for tracking decoders is Algorithm 3.9. As before, the algo-

rithm maintains the set S of states of unsynchronized decoders that process E , but
this time the set S is updated at each position in E , an not only at codeword bound-
aries. We keep the restriction that of two decoders in the same state, only the one
with lower start position is stored.
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Algorithm 3.8: Computation of the fields bord, leaf and nonLeaf.

Input: T — Huffman tree.
Output: The fields bord, leaf and nonLeaf for each node v of T .
ε.bord← null;1

ε.leaf← null;2

ε.nonLeaf← null;3

foreach node v of T , other than ε, in BFS order do4

t← v.parent;5

z ← t.nonLeaf;6

b← bit such that v is the b-child of t;7

if z 6= null then8

v.bord← δT (z, b);9

else10

v.bord← ε;11

if v.bord is a leaf then12

v.nonLeaf← v.bord.nonLeaf;13

v.leaf← v.bord;14

else15

v.nonLeaf← v.bord;16

v.leaf← v.bord.leaf;17

Example 3.28: The set S of unsynchronized decoders at each position in the message
from Example 3.18 is shown in Table 3.5. Its construction is described below.
The set S is initially empty. At position 1 decoder D1 in the state ε is

added. At position 2 decoder D1 proceeds to the state 1 and no new decoders
are added. At position 3 decoder D1 proceeds to the state 11 and decoder D3

is added with the state ε. At position 4 decoder D1 moves to ε and decoder
D3 moves to 1. Decoder D4 is not added to the set, because decoder D1 in the
state ε is already present there. This procedure continues until the last bit of
the message.

By Lemma 3.21, a decoder in a state q corresponds to the suffix π(q) of E [0..p).
The longest such suffix, π(ql), determines the possible states of all other decoders at
position p. Their states correspond to suffixes w of π(ql) such that w brings ε to
δ∗(ε, w) without passing through a leaf, formally: δ∗(ε, w′) 6= ε for any nonempty
prefix w′ of w. Hence, all the states are in the set

{ql, ql.nonLeaf, ql.nonLeaf.nonLeaf, . . .}. (3.13)

After a transition by a bit b, the state ql becomes q′l = δ(ql, b) if it is not a leaf, or it
becomes q′l = δ(ql, b).nonLeaf otherwise.

Example 3.29: At position 5 in the message from Example 3.18 the state ql = 11
of the decoder D3, is of the largest distance from the root. The set

{ql, ql.nonLeaf, ql.nonLeaf.nonLeaf, . . .}
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Algorithm 3.9: Decoder tracking in O(1) per bit.

Input: E — encoded message.
Output: The values of resynchronized(p) and unsynchronized(p) at

each codeword boundary p.
p← 0;1

ql ← ε;2

foreach letter l ofM do3

w ← c(l);4

foreach bit b in w do5

p++;6

q′l ← δT (ql, b);7

Shift the array A by one;8

if q′l is a leaf then9

ql ← q′l.nonLeaf;10

else11

ql ← q′l;12

q′l ← q′l.leaf;13

x← the state q ∈ {q′l, q
′
l.leaf, q

′
l.leaf.leaf, . . .} with max. A[|π(q)|];14

Delete all (q′l, q
′
l.leaf, q

′
l.leaf.leaf, . . .) from A and L but x;15

if x 6= null then16

move x from A[|π(x)|] to A[0];17

else18

insert decoder Dp at A[0] and at the head of L;19

resynchronized(p)← A[0];20

delete A[0] from A and L;21

unsynchronized(p)← the last element of L;22

Position The set S: decoder (state)

0

1 D1 (ε)

2 D1 (1)

3 D1 (11), D3 (ε)

4 D1 (ε), D3 (1)

5 D1 (1), D3 (11)

6 D1 (11), D3 (ε)

7 D3 (0)

8 D3 (ε)

9 D3 (1)

Table 3.5: The set S for the message from Example 3.18.
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position ql A[0] A[1] A[2]

0 ε null null null

1 0 D1 null null

2 1 null D1 null

3 11 D3 null D1

4 11 D1 D3 null

5 11 null D1 D3

6 11 D3 null D1

7 0 null D3 null

8 0 D3 null null

9 1 null D3 null

Table 3.6: The array A from Example 3.30.

consists of the states 11, 1 and ε and gives all possible states of other decoders
in S. Indeed, decoder D1 is in the state 1 and D3 is in 11. The decoder in the
state ε is synchronized at that position, so it is not in S.
Similarly, at position 6 the decoder with the lowest state is D1 in the state

11. Now the decoder in the state 1 is synchronized, so it is not present in S.
The decoder in the state ε is decoder D3.

This representation of decoders’ states is used to maintain the set S of unsyn-
chronized decoders. The start position for a decoder being in a state q is stored in
an array A[0..h − 1] of integers, at index |π(q)|. The value A[i] is null if the suffix
of E of length i does not correspond to any decoder’s state, or if such a decoder is
synchronized.

Example 3.30: Table 3.6 shows how the array A changes while processing the mes-
sage from Example 3.18. Compare these values with Tables 3.1 and 3.5.

Let us consider decoder Dp to see how processing a single bit b influences this
representation of S. Let q be the state of Dp before processing the bit b. It follows
that A[|π(q)|] = p. After processing b, the state turns into δ(q, b) if it is not a leaf,
or into ε otherwise. In the first case A[|π(q)| + 1] is set to p, which means that the
contents of A is shifted by one element. In the second case the value of A[|π(q)|+ 1]
is set to null and p is put into A[0]. In the latter case the state of Dp is ε, so if the
current position is a codeword boundary, Dp is removed from S and A[0] is set to
null.
To apply the changes to all decoders, first the array A has to be shifted by one.

This can be done in constant time by adding an cyclic-shift offset at each access
to A. Then, all decoders that ended up in a leaf have to be removed from A. Let
q′l = δ(ql, b). The decoders that appeared in leaves are q′l.leaf, q′l.leaf.leaf, . . .,
plus additionally q′l if it is a leaf itself. The removed decoders are now in the state ε,
so they should appear at A[0]. The final value of A[0] is the minimum start position
of the removed decoders, if there were any. Otherwise, it is the current position (after
the bit b). Finally, if the current position is the codeword boundary, the value of A[0]
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is set to null, which means that the corresponding decoder resynchronized.

Example 3.31: Let us analyze how array A and the state ql in Example 3.30 change
while encoding consecutive bits.
At start, ql is equal ε. At position 1, after the first bit, 0, the state ql

changes to 0. The value of ql.leaf is null, so no decoders are moved to the
root. Position 1 is not a codeword boundary, so decoder D1 is added to A at
the index 0.
The second bit forces the transition of ql by the bit 1. The result state, 01,

is a leaf, so the next value of ql is 01.nonLeaf, which is equal 1. The array A
is shifted by one, so decoder D1 ends up in A[1].
Next, the bit 1 moves ql to 11. The decoder from A[1] moves to A[2] and

a new decoder, D3, is added at A[0].
At position 4, the state ql changes to 111, which is a leaf, so it is replaced by

111.nonLeaf = 11. Array A has to be shifted, so decoder D1 moves to A[3]
and D3 to A[1]. The decoder from A[|111|], D1, (and only this one, because
111.leaf is null) is moved to A[0]. No decoder is added in A[0], because
decoder D1 is already there.
We skip the description of changes after the fifth and sixth bit. The changes

at position 7 are similar to the ones at position 4, because decoder D1 moves
to a leaf and is placed in A[0]. But position 7 is a codeword boundary, so the
decoder is removed from A[0] afterwards.

Lemma 3.32. The amortized cost of updating A after encoding a bit is constant.

Proof. The proof utilizes the credit method. At each position two credits are used.
The first one is spent for adding a new decoder at A[0]. The other one is given to the
decoder at A[0]. In this way all the decoders in A always have one credit. The credit
is used when the decoder moves to a leaf and is removed.

With this representation of the set S the problem of finding in S the decoder with
the largest synchronization delay in constant time is not trivial. For this purpose we
maintain a double-linked list, L, with all the decoders from S, sorted by their start
position. The array A is changed to keep elements of that list instead of just the
start positions of decoders. Thus, elements of the array A are structures containing
the start position of the decoder and pointers to the previous (larger p) and the next
(smaller p) structure on the list L. The shift of A works as before. In order to remove
decoders that moved into a leaf, the one of them with the lowest start position, Dp′,
has to be found first, using A. Then, all other decoders are removed from both L
and A. Finally, the structure for Dp′ is moved to A[0] without changing its position
in L. This guarantees that L remains sorted. If there were no decoders that moved
to a leaf, the structure for the new decoder at A[0] is placed at the head of the list L.

Theorem 3.33. The amortized cost of Algorithm 3.9 is O(1) per analyzed bit.

Proof. By Lemma 3.32, the amortized cost of line 15 is constant. The cost of the line
14 can be included in the cost of line 15, because it requires proportional amount of
time. The rest of operations require constant time per bit.
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3.6 Limited synchronization delay with unknown

start position

This section contains another method for limiting the synchronization delay of a
decoder that starts at an arbitrary position in the encoded message. The two design
goals stated in Section 3.4 are still of our interest, but this time the assumption that
the decoder knows its position in the encoded message is released.
Let us assume for a moment that the code used for encoding has a synchroniz-

ing codeword, ws, and that ws is ignored by decoders (it is decoded to an empty
character). The string ws will be used as a resynchronization marker, denoted by R.
It is important to note that the assumptions that R is a codeword that is decoded

to an empty character implies that the code is not optimal. However, this assumption
is not necessary and is introduced only to simplify the presentation. A method to
avoid it will soon be discussed. Moreover, as will soon be shown, the method works
for all synchronizing Huffman codes, and not only for the ones with a synchronizing
codeword.
The limited synchronization delay can be provided by inserting R at some po-

sitions in E , between two codewords. Each decoder that started before an inserted
synchronizing codeword synchronizes at the end of it. It further ignores all occur-
rences of the marker and thus decodes the same letters as in the source message
M.
A näıve approach to provide limited synchronization delay is to insert the marker

in regular intervals, each time the number of bits from the beginning of the last
insertion of R exceeds K, where K is a parameter. Then, each decoder that started
at the second bit of R or farther resynchronizes in the worst case at the next insertion
of the marker, that is no later than afterK + h + |R| bits (h is added because markers
are inserted only between codewords and the last codeword before the K-th bit may
exceed the K bits boundary by at most h). The redundancy introduced by such

insertions of the synchronizing codeword is at most |R|
K−|R|

additional bits per encoded
bit. Note that suboptimality of the code itself is not counted here.
Such an algorithm does not exploit the tendency of Huffman codes to resynchro-

nize spontaneously. If K is much larger than the average synchronization delay, it is
unlikely that the synchronization delay exceeds K in many cases. This means that
most of the inserted markers can be removed.
Let us call an insertion of a marker at a position y (y is a codeword boundary)

necessary if there is a position p in E such that Dp does not resynchronize before
position y, with y − p > K, and there are no necessary markers between the bits p
and y. In order to see where the markers are necessary, the synchronization delay
for every decoder Dp has to be examined. We already know from Section 3.5 two
algorithms that track all possible decoders of a Huffman-encoded message and, after
each codeword, they are able to tell the largest synchronization delay (so far) of a
decoder that is not synchronized at the moment.
The algorithm for inserting only necessary markers is called unknownStartPo-

sition and is presented as Algorithm 3.10.
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Algorithm 3.10: The encoder for the method unknownStartPosition.

Input: K — the synchronization delay parameter (K > max(h,R)),M —
source message, R — the resynchronization marker

Output: Encoded Message with synchronization markers
p← 0;1

foreach letter l inM do2

output c(l);3

p← p + |c(l)|;4

process l with decoderTracking;5

pmin ← unsynchronized(p); ⊳ computed by decoderTraking6

if p− pmin > K then7

output R;8

p← p + |R|;9

process R with decoderTracking;10

Example 3.34: Let us consider the following message encoded with the code C2 of
Figure 3.1.

E = C2(M) = 0 1 0
︸ ︷︷ ︸

d

3 1 1
︸︷︷︸

c

5 1 0
︸︷︷︸

b

7 0 0
︸︷︷︸

a

9 0 0
︸︷︷︸

a

11 1 0
︸︷︷︸

b

13 0 1 0
︸ ︷︷ ︸

d

16. (3.14)

The positions of codeword boundaries are numbered. This message will be
encoded with the method unknownStartPosition for K = 4. The code
C2 contains two synchronizing codewords, c(d) = 010 and c(e) = 011 (see
Example 2.46). The latter will be used as the resynchronization marker, as it
does not appear in the messageM.
The first decoder with the synchronization delay exceeding K = 4 is de-

coder D4. It is unsynchronized at position 9, so the marker, 011, is inserted
there. The beginning of the message is:

E(1) = 0 1 0
︸ ︷︷ ︸

d

1 1
︸︷︷︸

c

1 0
︸︷︷︸

b

0 0
︸︷︷︸

a

0 1 1
︸ ︷︷ ︸

e

. (3.15)

Now, all decoders that have started before the synchronizing codeword 011 are
synchronized. In particular, decoder D4 is synchronized there. Its synchroni-
zation delay is 5 + 3 = 8. The rest of the codewords are encoded normally,
because no synchronization delay of any decoder at a codeword boundary ex-
ceeds 4. The result message is the following.

E(1) = 0 1 0
︸ ︷︷ ︸

d

1 1
︸︷︷︸

c

1 0
︸︷︷︸

b

0 0
︸︷︷︸

a

0 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

1 0
︸︷︷︸

b

0 1 0
︸ ︷︷ ︸

d

. (3.16)

On decoding, if the codeword 011 is encountered, it is just ignored. In this
way the original message is recovered.



3.6. Limited synchronization delay with unknown start position 65

Theorem 3.35. The method unknownStartPosition enforces resynchronization
for any decoder after at most L = K +h+ |R| bits. The redundancy introduced by the

insertions of R is at most |R|
K−|R|

additional bits per encoded bit, but the exact value
depends on the synchronization properties of the code and on the source messageM.

Example 3.36: The largest synchronization delay of any decoder in the message
from Example 3.34 with inserted markers is 8. This is the decoder D4. The
bound on the synchronization delay from Theorem 3.35 is L = 4 + 2 + 3 = 9.
The redundancy of inserting the marker in Example 3.34 is 3

16
. Note that

it is much smaller than the bound of Theorem 3.35, 3
4−1
, because most of the

decoders resynchronize before their synchronization delay reaches 4.

Note that the redundancy introduced by having a dedicated codeword for the
resynchronization marker is not counted in Theorem 3.35. It will be shown that this
redundancy can be eliminated.

Example 3.37: Character e does not appear in the message from Example 3.34. If
this character is eliminated from the code, the codeword for the letter d may
be shortened to 01. The message (3.14) encoded with the new code is:

E = 0 1
︸︷︷︸

d

1 1
︸︷︷︸

c

1 0
︸︷︷︸

b

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 0
︸︷︷︸

b

0 1
︸︷︷︸

d

. (3.17)

The length of the message is reduced by two bits.

Now, a new scheme will be shown, in which the encoder uses any synchronizing
string as the resynchronization marker R. The synchronizing string may also appear
in the encoded message as encoding of source symbols. The encoding algorithm is
exactly the same as previously (Algorithm 3.10), but this time R is any synchronizing
string. The decoding algorithm has to decide whether an encountered marker R
should be ignored or should be decoded as a sequence of letters. It will be shown that
this is possible.
The key point of the method is that the decoding algorithm can mimic exactly

the operations of the encoder, including the computations of synchronization delays
(Algorithm 3.5 or 3.9). The decoding algorithm thus knows when to expect an inserted
marker in the encoded message and is able to ignore it. At start, the decoder does
not know the synchronization delays of the decoders that started before. It will be
shown, however, that after a limited number of bits the decoder has all the necessary
information. The decoding algorithm is presented in Algorithm 3.11.

Example 3.38: Let us consider the message from Example 3.34 with c(e) = 011
appended at the end:

E = 0 1 0
︸ ︷︷ ︸

d

1 1
︸︷︷︸

c

1 0
︸︷︷︸

b

0 0
︸︷︷︸

a

0 0
︸︷︷︸

a

1 0
︸︷︷︸

b

0 1 0
︸ ︷︷ ︸

d

0 1 1
︸ ︷︷ ︸

e

. (3.18)

Now every codeword appears at least once in the encoded message. Let the
marker R be again c(e) = 011. The message encoded with the method un-
knownStartPosition is:

E = 0 1 0
︸ ︷︷ ︸

d

1 1
︸︷︷︸

c

1 0
︸︷︷︸

b

0 0
︸︷︷︸

a

0 1 1
︸ ︷︷ ︸

e

0 0
︸︷︷︸

a

1 0
︸︷︷︸

b

0 1 0
︸ ︷︷ ︸

d

0 1 1
︸ ︷︷ ︸

e

(3.19)



66 Chapter 3. Guaranteed Sychronization of Huffman Codes

Algorithm 3.11: Decoding algorithm for the method unknownStartPosi-
tion.
Input: K – synchronization delay parameter, E – message encoded with the

method unknownStartPosition, L — the letters c−1(R)
p← 0;1

while there are bits on the input do2

decode the next letter l;3

output l;4

p← p + |c(l)|;5

process l with decoderTracking;6

pmin ← unsynchronized(p);7

if p− pmin > K then8

for i = 0 to |L| − 1 do9

decode the next letter l;10

if L[i] 6= l then unread(l) and break;11

process l with decoderTracking;12

Note that the letter e appears in the message twice: once as the resynchro-
nization marker, and this occurrence has to be removed, and once as a part of
the source message, and this occurrence should be kept.

Theorem 3.39. Let R be any synchronizing string for a Huffman code C. Let E be a
message encoded with C using Algorithm 3.10 with R as a resynchronization marker
and the parameter K > h + 3|R|. Algorithm 3.11 used for decoding E [p..) will be
decoding correct data after having processed at most L = K + h + 3|R| bits.

Proof. Recall that a decoder just transforms the bits of E into codewords and the
decoding algorithm, in addition, skips the inserted markers. Decoder Dp will be
considered. First, it will be proven that there is a position p′ on a codeword boundary
in E such that:� p′ − p ≤ K + h + |R|,� decoder Dp is synchronized at p′,� the content of the set S of the decoding algorithm is the same as the content of

S of the encoder at the same position p′.

Let us consider a position pc in E that is the first codeword boundary farther than
K bits from p. It must be pc ≤ p + K + h. We are considering the state of both the
encoding and the decoding algorithm at pc. There are three cases.

1. There is a decoder in the encoder’s set S that has been unsynchronized for more
than K bits and the encoder will now start inserting R.

2. There are no decoders in the encoder’s set S that have been unsynchronized for
more than K bits and the encoder is not inserting R now.
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3. The coder is in the middle of inserting R for a decoder that had been unsyn-
chronized for more than K bits before position pc.

In the first and third cases, decoder Dp will be synchronized after receiving R, as R
resynchronizes any decoder. This happens not later than at position p′ = pc + |R| ≤
p + K + h + |R|. The sets S of both the coder and the decoding algorithm at p′

contain only the decoders that started inside the inserted marker, so they are equal.
In the second case, the set S of the encoder at pc cannot contain any decoder that

started before position pc −K > p. It follows that Dp is not there and thus Dp must
already in synchronization. The set S of the decoding algorithm is equal to the one
of the encoder. In this case p′ = pc.
To complete the proof it is necessary to show that the decoder is able to distinguish

letters of the inserted markers from letters ofM. This is not trivial because R may
also appear as a part of the messageM and, in this case, must not be removed during
decoding.
If the decoding algorithm is at position p′ or farther in E and determines correctly

that one codeword corresponds to a letter of M, the rest of the data is decoded
correctly. We consider the three cases again. In cases 1 and 3, after the encoder
finishes inserting a marker it will not insert another one in the next K − |R| > |R|
bits. At p′ the decoding algorithm may be in the middle of skipping a marker in the
loop in line 9. After less than |R| bits it finishes and decodes correctly at least one
letter of M. In these cases the decoder will be decoding correct data after having
processed at most K + h + 2|R| letters, which is better by |R| than needed.
In case 2, the encoding algorithm at p′ = pc encodes a letter of M, but the

decoding algorithm may be in the middle of skipping a marker (the loop in line 9).
When it finishes, either by skipping all the letters of R or by executing the break
instruction in line 11, it has to decode at least least one letter of M (line 3). At
this position the encoder may either encode a normal letter or a letter of an inserted
marker. In the former case the theorem is proved as the decoder decodes correctly
a letter ofM. In the latter case the situation is equivalent to either case 1 or 3, but
the decoding algorithm is at most |R| bits farther now. The bound for these two
cases was better by |R| bits then needed so the theorem is proved.

Example 3.40: Let us consider the decoding of the message (3.19) from Example
3.38 (note that the value of K = 4 does not meet the requirements of The-
orem 3.39, but the decoding will still work well in this case). Let us start
with decoder D0. After decoding the first codeword, the value of the largest
synchronization delay is equal 1. Then, after the second and third codeword,
it is equal 1 and 3, respectively. After the next codeword, 00, the synchro-
nization delay is 5, so the decoder has to skip the inserted resynchronization
marker. The next codeword, 011, is indeed a resynchronization marker and
it is ignored. The decoding continues. Before the last letter, e, the largest
synchronization delay of a decoder is 1, so the codeword is decoded as a source
letter.
Now let us consider decoder D1. It resynchronizes after reading the first

two bits and from then on it operates in the same way as decoder D0. Decoder
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D2 is in synchronization immediately. Decoder D3 resynchronizes at position
5 and then it operates as D0.
The situation is different for decoder D4. This is the decoder that is un-

synchronized for too long and is synchronized with a synchronizing codeword.
First, it decodes incorrectly three codewords, 11, 00 and 00. Then it notices
that decoder D4+1, that is the decoder that starts at position 1 with respect
to the start position of D4, has been unsynchronized with respect to D1 for 5
bits. Decoder D4 is now trying to skip the resynchronization marker. When
it reads the next codeword, 11, it sees that it is not a part of the marker and
decodes it as a normal symbol, c. Now, it is in synchronization and operates
as D0.
The operation of decoder D5 is also differs from the operation of D0. Even

though D5 is synchronized at start, at position 9 the decoder with the largest
synchronization delay isD5+1, which has been unsynchronized for 3 bits. SoD5

does not expect a synchronizing codeword and decodes the next bits, 011, as
a source letter, incorrectly. After that, its information about unsynchronized
decoders is the same as what D0 knows, and both decoders work in the same
way. Note that resynchronization in this case occurred after 7 bits, which is
less than the bound of Theorem 3.39: 4 + 3 + 9 = 16.

There is a way to reduce slightly the redundancy inserted by the encoder. In
the set S there are at most h decoders that have to be synchronized (Lemma 3.23).
Instead of inserting a synchronizing string for the code, it is enough to insert a merging
string for the at most h decoders that are currently in S. Such a string may be shorter
than a synchronizing string.
The contents of the set S is fully determined by the lowest node ql (see Section

3.5.2), so there are at most N − 1 possible values for S. The merging string for each
of these N −1 sets can be precomputed. Nevertheless, as the following lemma states,
the gain of using this optimization is not substantial.

Lemma 3.41. Let W be a set of states that is a possible contents of the set S for
Algorithm 3.10, after processing at least h bits. Let s be the shortest synchronizing
string for the Huffman automaton T used for encoding, and let sW be the shortest
merging string for W . Then

|sW | ≤ |s| ≤ |sW |+ h. (3.20)

Proof. The first inequality follows from the definitions of a synchronizing string and
a merging string. For the second inequality, let w be the last h bits processed by
Algorithm 3.10 before the contents of S became W . From δ∗(Q, w) = W follows that
wsW is a synchronizing string.

Now, it will be shown that any bit error propagates for a limited number of bits.
Let us consider a decoder in synchronization. A bit error may desynchronize the
decoder and may also influence the contents of the set S. Let De be the erroneous
decoder. Decoder De is always in the same state as decoder Dp1

, that started when
De completed the codeword that contained the error. Position p1 is at most h − 1
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bits after the error. If decoder Dp1
does not resynchronize in about K bits, the

encoder inserts a synchronizing string. Such string resynchronizes the decoder no
later than at position p1 + K + h + |R|. By repeating the argumentation from the
proof of Theorem 3.39, at this position decoder De will have the same content of the
set S as the encoder. Then, again by the arguments from the proof of Theorem 3.39,
after at most 2|R| more bits decoder De will decode correct symbols. This may be
summarized as follows.

Theorem 3.42. Let R be the synchronizing string for the method unknownStart-
Position with parameter K > h + 3|R|. Any bit error in a message encoded with
this method influences the decoding for at most L = K + 2h + 3|R| bits.

Note that if an error occurs during the resynchronization process, it may also
propagate for the same number of bits.

3.7 No-subword resynchronization marker

The methods knownStartPosition and unknownStartPosition, described in
Sections 3.4 and 3.6, assure that any decoder resynchronizes after a limited number of
bits. Nevertheless, a decoder that loses synchronization after a bit error may decode a
wrong number of symbols. In many applications placing following symbols at wrong
positions still is unacceptable.
In this section we are interested in strong synchronization (see Section 1.2.6),

which allows for placing decoded symbols at correct positions. It will be provided by
insertions of some resynchronization marker (RM), called a no-subword resynchroniza-
tion marker (no-subword RM) for the method used for its construction. The marker
is constructed in such a way that the decoder always recognizes any of such insertions.
In contrast, in the methods knownStartPosition and unknownStartPosition
the resynchronization string was received implicitly by the decoder and an unsyn-
chronized decoder was not able to find out which bits corresponded to the string that
resynchronized it.
The goal that the decoder is always able to recognize any insertion of the resyn-

chronization marker is the same as in case of the extended synchronizing codeword
(ESC) [40, 55] (see also Section 1.2.6). Both methods solve exactly the same problem
but using a different approach. This is why the results will later be compared with
ESC.
Strong synchronization can be achieved by providing some positional information

together with each no-subword RM. The form of the additional information was
discussed in depth in other work (see Section 1.2.6 for references). Nevertheless, for
completeness, two examples are outlined below.
The simplest method to assure strong synchronization of the decoded data is to

insert the no-subword RM at some intervals, followed by the position of the current
symbol. A decoder can always recognize each inserted marker, so it knows where to
find the positional information that was encoded. Then, it is able place the following
symbols correctly. Note that this method also allows for the decoding of a message
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starting from an arbitrary bit. Indeed, the decoder skips bits until a marker is found,
then it reads the current symbol’s position and the following symbols are placed
correctly.
Another approach to provide the decoder with symbols’ positions is to place the

marker in E after each K-th codeword. Then, assuming for simplicity that there
is no bit error in any marker, the decoder can count the number of occurrences of
the marker. It then knows the number of symbols encoded so far and this gives the
position of the next symbol. This method does not give the correct symbol’s position
to a decoder that starts at an arbitrary bit in the encoded message.
Let us discuss the design goals from Section 3.4 too see how they apply to the

new method. The first goal was to keep the code optimal. This will indeed be the
case, but the resynchronization marker itself will have to be transmitted explicitly to
the decoder. The length of the marker grows only logarithmically with the length of
the encoded message. On the other hand, any suboptimality of the code, like in case
of ESC, introduces redundancy that grows linearly with message’s length.
The second goal was to make use of spontaneous synchronization of Huffman

codes. This time the goal cannot be achieved because strong synchronization of
Huffman codes is not recovered spontaneously.
Let us consider a source messageM and its encoding E . The no-subword resyn-

chronization marker will depend on E and will be constructed from a word w0 that
is not a subword of E .

Definition 3.43. A no-subword for an encoded message E is a word that is not
a subword of E .

Lemma 3.44. There exists a no-subword w0 for E such that |w0| ≤ ⌈log |E|⌉.

Proof. Let |E| = L. The message, E , has less than L subwords of lengthM = ⌈log L⌉.
The number of different bit sequences of length M is 2M = 2⌈log L⌉ ≥ L. Thus, there
is a string w0 of length M that does not appear in E .

It is tempting to use any no-subword as a resynchronization marker, but it can
be used only under certain conditions. If a no-subword w0 has a proper prefix w′

0 6= ǫ
that is also a suffix of w0, i.e. w0 = w′

0ws and w0 = wpw
′
0, it cannot be used as a

resynchronization marker. In such case, spurious occurrences of w0 may appear in E .
If w0, as the marker, was inserted just after an occurrence of wp in the message, the
message would contain a subword wpw

′
0ws, which can be decoded in two ways, either

correctly as wp(w
′
0ws) = wpw0 or incorrectly as (wpw

′
0)ws = w0ws.

Example 3.45: Let us consider a no-subword 01001 for the encoded message 11010110.
Let the no-subword be inserted after the fifth bit of the message. The result
will be the following:

E = 1 1 0 1 0
︸ ︷︷ ︸

msg

0 1 0 0 1
︸ ︷︷ ︸

marker

1 1 0
︸ ︷︷ ︸

msg

. (3.21)

The decoder will detect an insertion of the marker at position 2:

E = 1 1
︸︷︷︸

msg

0 1 0 0 1
︸ ︷︷ ︸

marker

0 0 1 1 1 0
︸ ︷︷ ︸

msg

, (3.22)
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which is incorrect.

The following definition describes the construction of a proper marker.

Definition 3.46. A no-subword resynchronization marker for an encoded message E
is a word R = w0v such that w0 is a no-subword for E , and v is such a string that no
proper prefix p of R of length |p| > |v| is a suffix of R.

The construction of a no-subword resynchronization marker is based on the fol-
lowing theorem, which is proved in the Appendix.

Theorem 3.47. For any binary word w there is a binary word v, |v| ≤ ⌊log log |w|⌋+
1, such that if wv = xp, where x is any word and p is a prefix of wv, then either
x = ǫ or |x| ≥ |w|.

Example 3.48: For the marker 01001 from Example 3.45 the extension is 1. Indeed,
in the word 010011 no suffix is a prefix.
The extension for the word 01110 is 0, even though the suffix of the ex-

tended word 011100 of length 1 is a prefix of 011100. This is is correct, because
the suffix is not longer than the extension.

From Lemma 3.44 and Theorem 3.47 follows directly the bound on the length of
the shortest no-subword resynchronization marker.

Corollary 3.49. For any encoded message E of length L there is a no-subword resyn-
chronization marker of length at most ⌈log L⌉+ ⌊log log⌈log L⌉⌋ + 1.

Assume that a no-subword resynchronization marker R = w0v, where w0 is a no-
subword, is known to both the coder and the decoder. Let us consider the message
E ′ that is E with inserted markers R. We assume that the number of bits between
each insertion of R is at least |R|. It will be shown that any insertion of R can be
detected correctly by the decoder.
Let us consider a decoder starting at an arbitrary bit of E ′. We assume that

the decoder does not start inside of an insertion of R (such a case would make the
recognition of this particular insertion of the marker impossible, but the decoder
would synchronize at the next one). Let us study the first occurrence of R in the
fragment of E ’ processed by the decoder. Let this occurrence of R be denoted by R.
It is enough to show that R is an inserted no-subword resynchronization marker.
This is indeed the case. No inserted marker can appear before R, because this is

the first occurrence of R in E ′. An inserted marker has to have at least one common
bit with R, because otherwise R would appear in E , which would contradict the
definition of a no-subword resynchronization marker. R may be formed of a part of
E , the original encoded message, and of a prefix of another R inserted, i.e. R = xp,
where p is a prefix of R and x appears in E . But this contradicts Definition 3.46.
On one hand |x| < |w0| since w0 cannot appear in E , on the other hand |x| ≥ |w0|
because |p| is a proper prefix of R. This proves that R is an insertion of R.
Let us now consider a decoder that starts inside an inserted R. It may happen

that a suffix, v′, of the extension v forms R with the bits of E that follow it (note that
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v′ is allowed to be a prefix of R). In such a case, this particular marker is recognized
incorrectly, but the decoder will recognize correctly the next insertion of R.
A decoder can detect the inserted markers by executing any string-matching algo-

rithm, e.g. KMP, see [15], to find the first occurrence of R in E ′. Then, the insertion
is removed and the string matching algorithm is run again on the remaining fragment
of E ’. This process may be done at the time of decoding E ’.
Note that the no-subword resynchronization marker may be used instead of a syn-

chronizing string in the method unknownStartPosition, Algorithm 3.10. An
important advantage in this case is that the decoder does not have to execute the
lengthy algorithm for decoder tracking, as it is always able to detect any insertions
of the resynchronization marker using a string matching algorithm.
A disadvantage of the method is the process of finding a short no-subword. An

algorithm for this problem may be the following. First, create a bit array indexed
with all possible strings of a fixed length L = ⌈log |E|⌉. Then, read the message
E and mark in the array the occurrences of any string of length L by setting the
corresponding bit. At the end, return some index with an unset bit. Lemma 3.44
guarantees that at least one such index exists.
In real applications there may not be enough memory for all the 2L ≥ |E| strings

of length L. In spite of that, an iterative approach may be used to find a no-subword.
It involves the following steps. First, count the number of zeros, n0, and ones, n1, in
the binary message E . The total number of bits is |E|, so one of the numbers is less
or equal ⌊|E|/2⌋. Let us assume that it is n0. In the second pass, count the number
of subwords 00, n00, and 01, n01. The sum of these two numbers is at most n0 (at
most, because the last bit does not have a pair), so at least one of them is less or
equal ⌊n0/2⌋ ≤ ⌊|E|/4⌋. This process can be continued to find a no-subword in at
most ⌈log |E|⌉ steps.
The process above can be improved by counting longer strings of bits. For instance,

in the first pass the number of occurrences of each 8-bit binary string can be counted.
Then, the string w1, with least occurrences is chosen and the 16-bit binary strings
starting with w1 are counted, and so on.
In typical applications, 16-bit strings can easily be counted in one pass (this

requires 65536 words of memory, which is 256kB with 32-bit integers). In this case, a
no-subword may be found with two passes in messages of size not exceeding 4 billion
bits (512 MB).
It may be expected that there is a no-subword that is shorter than the bound

from Lemma 3.44 (see also Section 3.8.5 for numerical tests). If the number of bits
is set to a larger value, for instance 20, it may be expected that the no-subword is
found in the first pass, even if the upper bound on the minimal length is, for instance,
24. Only if the no-subword is not found in the first pass, the second pass is applied.
Unfortunately, these methods have the drawback that the no-subword they give is
not necessarily the shortest one. However, the increase in size is just a few bits.
The necessity to preprocess the data to construct a no-subword may be regarded as

unrealistic for real applications. It should be pointed out, however, that preprocessing
the input is also present when frequencies of letters are counted for creating a Huffman
code. Thus, more passes through the data may often be tolerable.
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File name File description Type Size [MB]

dickens Collected works of Charles Dickens English text 9.72

mozilla Tarred execs of Mozilla 1.0 (Tru64 UNIX ed.) exe 48.85

mr Medical magnetic resonance image picture 9.51

nci Chemical database of structures database 5.87

ooffice A dll from Open Office.org 1.01 exe 5.87

osdb Sample database in MySQL format database 9.62

reymont Text of the book Chłopi by Władysław Reymont Polish pdf 6.32

samba Tarred source code of Samba 2-2.3 src 20.61

sao The SAO star catalog bin data 6.92

webster The 1913 Webster Unabridged Dictionary html 39.54

x-ray X-ray medical picture picture 8.08

xml Collected XML files html 5.10

Table 3.7: Files from the Silesia corpus.

3.8 Results of numerical tests

This section contains the result of numerical tests for the algorithms presented in
former sections.

3.8.1 Test files

The algorithms introduced in this chapter were tested on files from the Silesia Corpus
[17]. Silesia Corpus is a set of 12 files that covers typical data types used nowadays.
The files are between 6 MB and 51 MB long. Their description is presented in Table
3.7.

The files were compressed using a few different settings. Firstly, they were com-
pressed using bytes of the files as source letters. Secondly, the files were first com-
pressed with the LZW algorithm [71] with dictionary of size 4096 and then the output
(12-bit words) was compressed with a Huffman code. The dictionary was fixed after
it filled up. The Huffman codes’ sizes were, in these cases, close to 4096. The latter
tests are important because Huffman coding is often used in cascaded compression
with other algorithms, for instance with dictionary methods. It is also important to
see how the algorithms behave for small and large codes.

Two Huffman codes were used: canonical Huffman codes, in which longer code-
words always lexicographically precede shorter ones, and codes constructed using the
fixed order method of Zhou and Zhang [74]. The former codes are used for faster
decompression and smaller overhead for code’s transmission. The latter, hereinafter
called fixed-order codes, exhibit very low average synchronization delay.

General properties of Huffman codes for each of the test files are presented in
Table 3.8. Note that these values are the same for any Huffman code for a given file.
Table 3.9 contains the numbers of codewords of length 1, 2, . . . (the length vectors)
in Huffman codes for these files. The first value of each list in the right column is



74 Chapter 3. Guaranteed Sychronization of Huffman Codes

File name
Without LZW With LZW

|M| [MB] N h |E| [MB] |M| [MB] N h |E| [MB]

dickens 9.72 100 23 5.56 5.39 3773 22 4.55

mozilla 48.85 256 11 38.12 49.36 3940 25 35.11

mr 9.51 256 11 4.41 6.11 2978 22 3.89

nci 32.00 62 20 9.75 5.25 3773 22 4.34

ooffice 5.87 256 12 4.89 5.47 3704 22 4.26

osdb 9.62 256 12 7.76 8.05 3985 22 6.78

reymont 6.32 256 16 3.84 2.51 3798 21 2.16

samba 20.61 256 12 15.78 18.71 4013 24 13.60

sao 6.92 256 9 6.53 7.70 3964 22 5.71

webster 39.54 98 21 24.73 33.15 3738 24 21.44

x-ray 8.08 256 10 6.70 9.27 3931 23 6.67

xml 5.10 104 22 3.54 4.85 2978 22 2.98

Table 3.8: Huffman codes for files from the Silesia corpus.

the number of codewords of length 1, the second — of length 2, and so on. This
information is also independent of a particular Huffman code
Although some of the length vectors presented in Table 3.9 are gapless, that is

there is no zero after the first nonzero entry, there are no gapless length vectors with
2 as the minimal codeword length. These two conditions, that is being gapless and
having the shortest codeword of length 2, are prerequisites for the method of Ferguson
and Rabinowitz [22] for the construction of codes with a synchronizing codeword (see
also Section 1.2.4). It follows that their method cannot be used for any of our test
files, so, in general, their method is rather of theoretical interest only.

The greatest common divisor of the codewords’ lengths is in each case equal 1,
so by the main theorem of [65], a code with a synchronizing string can always be
constructed for these length vectors.

3.8.2 Estimating the synchronization delay

Figure 3.2 presents a histogram of the synchronization delay’s estimates found by
Algorithm 3.1. The tests were performed on the file mozilla. The file was compressed
with the four compression methods described in Section 3.8.1.

Algorithm 3.1 was executed for each start position in the encoded message of the
form (100 · i), i = 0, 1, . . . , ⌊|E|/i⌋. The results were grouped into bins with ranges
shown on the x-axis in Figure 3.2. The fixed-order codes have good synchronization
properties so the number of bits before resynchronization found by Algorithm 3.1 is
lower than for canonical Huffman codes.

Although the delay found by Algorithm 3.1 is in almost all cases small, of the
order of tens of bits, the maximum synchronization delay over all start positions (not
only the ones of the form 100 · i) is large and equals 16460, 3112, 22921 and 6351
bits for the four cases of Figure 3.2, in the same order as the legend. Note that these
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File name Length Vector

dickens [0, 0, 2, 6, 4, 12, 4, 1, 5, 10, 11, 7, 2, 4, 4, 5, 3, 2, 5, 4, 1, 4, 4]

mozilla [0, 1, 0, 0, 1, 7, 29, 42, 58, 98, 20]

mr [1, 0, 1, 0, 0, 10, 4, 5, 10, 79, 146]

nci [1, 1, 0, 0, 4, 4, 5, 1, 3, 7, 6, 14, 2, 2, 3, 1, 0, 1, 5, 2]

ooffice [0, 0, 1, 1, 4, 11, 17, 45, 62, 63, 48, 4]

osdb [0, 0, 0, 1, 7, 9, 58, 3, 5, 63, 62, 48]

reymont [0, 0, 2, 4, 6, 10, 13, 9, 2, 5, 3, 15, 4, 1, 150, 32]

samba [0, 0, 1, 1, 9, 11, 26, 21, 10, 11, 14, 152]

sao [0, 0, 0, 0, 3, 9, 23, 79, 142]

webster [0, 0, 1, 5, 11, 8, 4, 5, 11, 16, 5, 8, 9, 5, 1, 1, 1, 0, 2, 3, 2]

x-ray [0, 0, 1, 2, 9, 0, 1, 1, 226, 16]

xml [0, 0, 0, 4, 10, 15, 15, 12, 15, 6, 5, 5, 0, 2, 1, 4, 3, 1, 1, 0, 3, 2]

dickens.lzw [0, 0, 0, 0, 0, 1, 6, 38, 104, 207, 358, 446, 472, 378, 338, 341, 292, 337, 112, 92, 69, 182]

mozilla.lzw [0, 0, 0, 0, 0, 12, 24, 45, 109, 128, 45, 117, 174, 288, 362, 353, 397, 398, 296, 237, 244, 219, 172,

88, 232]

mr.lzw [0, 0, 2, 0, 0, 4, 5, 26, 139, 107, 192, 163, 134, 146, 159, 207, 336, 237, 120, 152, 127, 722]

nci.lzw [0, 0, 0, 0, 0, 0, 11, 26, 150, 199, 315, 377, 414, 316, 199, 113, 102, 94, 86, 92, 129, 1150]

ooffice.lzw [0, 0, 0, 0, 0, 3, 15, 65, 111, 134, 189, 246, 291, 441, 312, 354, 328, 348, 254, 245, 140, 228]

osdb.lzw [0, 0, 0, 0, 0, 0, 20, 50, 21, 95, 358, 970, 509, 287, 672, 85, 53, 123, 193, 192, 259, 98]

reymont.lzw [0, 0, 0, 0, 0, 0, 3, 23, 108, 288, 406, 386, 557, 354, 210, 230, 166, 159, 111, 143, 654]

samba.lzw [0, 0, 0, 1, 0, 13, 17, 36, 46, 79, 301, 225, 334, 399, 473, 460, 440, 355, 254, 181, 130, 76, 47,

146]

sao.lzw [0, 0, 0, 0, 2, 1, 8, 78, 196, 45, 88, 124, 110, 194, 192, 548, 1869, 183, 59, 61, 86, 120]

webster.lzw [0, 0, 2, 0, 2, 5, 15, 23, 30, 72, 191, 308, 469, 449, 387, 329, 246, 222, 213, 221, 254, 60, 64,

176]

x-ray.lzw [0, 0, 0, 2, 6, 2, 1, 4, 121, 146, 90, 303, 743, 427, 382, 285, 210, 199, 221, 304, 208, 123, 154]

xml.lzw [0, 0, 0, 1, 3, 12, 33, 37, 62, 57, 66, 69, 93, 103, 148, 180, 183, 193, 193, 174, 196, 1736]

Table 3.9: The length vectors of Huffman codes for the files from the Silesia corpus.
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Figure 3.2: Histogram of the number of bits before resynchronization found by Algorithm
3.1 for the file mozilla with four different codes.

Redundancy for: Canonical HC Fixed order HC [74]

File compr. size h K = 100 200 500 K = 100 200 500

dickens 5.6MB 23 32 0 0 0 0 0

mozilla 38.1MB 11 63506 4359 431 552 80 11

samba 15.8MB 12 16758 1349 55 1107 128 3

xml 3.5MB 22 395 5 0 0 0 0

dickens.lzw 4.54MB 22 39571 4397 21 625 4 0

mozilla.lzw 35.1MB 25 189982 20824 1180 2114 269 62

samba.lzw 13.6MB 24 101483 13315 484 672 106 10

xml.lzw 3.0MB 22 10340 884 9 8 0 0

Table 3.10: The number bits inserted by Algorithm 3.3 (knownStartPosition) for se-
lected files from the Silesia Corpus.

results are real delays and not the delay’s estimates found by Algorithm 3.1, which
are, in most cases, longer.

3.8.3 Known start position

Table 3.10 presents the redundancy, in bits, introduced by Algorithm 3.3 for K equal
100, 200 and 500. The second column gives the size in mega bytes of each file after
compression. The third column is the length, in bits, of the longest codeword. Table
3.10 shows that the inserted redundancy is negligible even if the parameter K is only
10-20 times the length of the longest codeword. The redundancy is much smaller if
the code itself synchronizes well, as in the case of the fixed-order codes.
The time overhead of Algorithm 3.3 over normal Huffman coding was in case of

direct Huffman coding (without LZW) on average 16% for the sublinear implemen-
tation with precomputed synchronization graph, and 60% for the linear implemen-
tation with transitions by single bits. The codes contained less than 256 elements,
so the quadratic preprocessing time was irrelevant. The codes’ sizes for the LZW-
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File size compr. h |R| max del. [b] redun. [�] A3.5 A3.9
dickens 9.7MB 5.6MB 23 10 / 5 226/ 106 0.0 /0.0 5.4 4.7

mozilla 48.8MB 38.1MB 11 13 / 7 16460/ 3112 .05 /0.02 6.8 4.8

samba 20.6MB 15.8MB 12 13 / 8 14419/ 1107 0.15 /0.05 7.2 5.0

xml 5.1MB 3.5MB 22 9 / 6 331/ 141 0.002/0.0 6.4 4.8

dickens.lzw 5.4MB 4.54MB 22 20 / 8 934/ 306 0.06 /0.003 12.8 6.0

mozilla.lzw 49.3MB 35.1MB 25 21 / 8 6351/ 1433 0.3 /0.06 8.4 4.8

samba.lzw 18.7MB 13.6MB 24 20 / 8 12485/12388 0.4 /0.06 9.3 5.0

xml.lzw 4.8MB 3.0MB 22 17 /10 2773/ 287 0.05 /0.0 9.9 4.6

Table 3.11: Performance of Huffman coding with unknownStartPosition method.

precompressed files were around 212 and the preprocessing in O(N2) turned out to
be too slow. The total overhead was in this case on average 300% for the sublinear
implementation and 65% for the linear implementation. For long files, however, such
as mozilla, the overhead for the sublinear implementation was only 60% — the same
as in case of the linear implementation.

3.8.4 Unknown start position

The results for the method unknownStartPosition are shown in Table 3.11. The
first four rows are files compressed directly with a Huffman code, the other rows are
files precompressed with LZW. The four first columns of Table 3.11 are the file name,
the size before Huffman compression, the size after Huffman compression (the size of
the Huffman code’s representation was not counted) and the height of the Huffman
tree.
Each file was tested with a canonical Huffman codes and with a fixed-order code,

so the next three columns contain two values, the result for the former code on the
left-hand side and for the latter code on the right-had side. The column |R| is the
length of the shortest synchronizing string for the two codes — this string was used
as the resynchronization marker. The next column is the maximum synchronization
delay in E without any marker’s insertions. The column redun. gives the redundancy
(in per mil) introduced by the method unknownStartPosition, for the two codes.
The parameter K was chosen to be 30|R| and is different for each file and code.
Fixed-order codes have better synchronization properties so the redundancy added
by the algorithm is lower.
Finally, the last two columns give the ratio of the execution time for unknown-

StartPosition to normal Huffman coding. Tests were done with Algorithm 3.5
(column A3.5) and with Algorithm 3.9 (column A3.9) used for tracking decoders.
Table 3.11 shows that even if the shortest synchronizing string is short and the code

has good synchronization capabilities, the synchronization delay may be large. This is
possible even for fixed-order codes — in the file samba.lzw the largest synchronization
delay is 1500 times the length of the shortest synchronizing string.
The results show that with little additional redundancy one can guarantee an
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upper bound on the synchronization delay. The method does not introduce any re-
dundancy if decoders of the encoded message synchronize spontaneously, for instance
for the file dickens. The price for the synchronization is the processing time increased
by, on average, 7-8 times in case of Algorithm 3.5 and 5 times in case of Algorithm 3.9.
Unlike in case of Algorithm 3.9, the time needed for Algorithm 3.5 depends on the
code size and increases with larger codes. This is mainly due to long preprocessing
time, which for the lzw files was a fraction of 27%, 5.7%, 14% and 43% of the total
time (in the same order as in Table 3.11). In other cases the preprocessing time was
negligible.

3.8.5 No-subword resynchronization marker

In the tests of the no-subword resynchronization marker method, the length of the
no-subword RM was compared to the length of the extended synchronizing codeword
[40, 55]. Tests were performed, as before, on the files from the Silesia Corpus [17]
encoded with and without LZW compression. This time only canonical Huffman
codes were used for encoding.
The results are presented in Table 3.12. The first column is the file name. The

second one is the upper bound on the length of the shortest no-subword, given in
Lemma 3.44. This value turned out to be the same for the encodings with both
small (no LZW — 8-bit) and large (with LZW — 12-bit) codes. Next, the results
for small (8-bit) and large (12-bit) codes are presented. The column h is the length
of the longest codeword. If the marker is going to appear rarely in the encoded
message, this codeword is the best choice for the base of the extended synchronizing
codeword of [40, 55]. The columns [40] and [55] present the lengths of the ESC of
the corresponding reference, done by extending the longest codeword. Finally, |R|
is the length of the no-subword RM. In most cases it was enough to extend the no-
subword by one bit (see Lemma 3.44 and Theorem 3.47). In two cases no extension
was necessary and in six cases two bits were needed.
Table 3.12 shows that, on average, the no-subword RM method gives noticeably

shorter markers than ESC of [40] and [55]. Both referenced methods also require
that the code has one more codeword than the number of letters in the alphabet.
The additional codeword is extended to create an ESC. Such an approach introduces
additional redundancy to the code. This kind of redundancy is not present in the
no-subword RM method.
One should be aware that the method of [55] allows for using a shorter codeword

and not necessarily the longest one, as in Table 3.12, as the base for the ESC. The
price for this is increased redundancy in the code. Such approach may be preferable
if the insertions of the marker are frequent.

3.9 Applications

The methods presented in this chapter can be used to allow for decoding a Huffman-
encoded message from an arbitrary position. This application is important, for in-
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File |w0|
8 bit 12 bit

h [40] [55] |R| h [40] [55] |R|

dickens 24 23 27 26 14 22 31 28 20

mozilla 26 11 17 16 18 25 34 31 20

mr 24 11 19 15 13 22 32 27 15

nci 25 20 24 23 9 22 33 29 16

ooffice 23 12 18 16 18 22 31 28 20

osdb 24 12 18 16 17 22 32 29 20

reymont 23 16 23 20 10 21 31 28 18

samba 25 12 20 16 17 24 33 29 19

sao 23 9 17 14 20 22 32 27 21

webster 26 21 25 24 13 24 33 28 13

x-ray 24 10 17 15 15 23 33 28 18

xml 23 22 26 26 13 22 33 26 16

Average: 20.9 18.9 14.8 32.3 28.2 18.0

Table 3.12: The length of a no-subword RM for files from the Silesia Corpus.

stance, in information retrieval system, where a large piece of data is compressed with
a Huffman code. It allows the decoder to decompress only a fragment of the data.

The method for estimating the synchronization delay (Algorithm 3.1 from Section
3.2) may be used for such decoding of normal Huffman data. The decoder starts some
number of bits before the desired fragment. As resynchronization of Huffman codes
is quick, in most cases the synchronization will be detected before the beginning of
the fragment. If not, the decoder moves some number of bits backwards and restarts
the process.

Although this approach to decoding a fragment of Huffman-encoded data works
well in most cases, there is no guarantee that the decoder does not have to go back
to the beginning of the data. To have such a warranty, a method for guaranteed
synchronization, either knownStartPosition or unknownStartPosition, has
to be used.

The method knownStartPosition can only be applied if the decoder knows
the position where it starts. In most applications of this kind this indeed can be
assumed. Otherwise, the method unknownStartPosition can be used. Even
though the latter method is more general, the first method has the advantage of
being much simpler and faster. Also the introduced redundancy is lower.

The method of estimating the synchronization delay can also be used for direct
pattern matching in Huffman-compressed data. To avoid decompression, the pattern
can be compressed and then matched to compressed data. Of course, many of the
matches are false-positives, because the match may be misaligned with codewords.

To confirm or reject such a match, the method for estimating the synchronization
delay can be started a few bits before the match and it can check whether synchro-
nization is acquired before the beginning of the match. If so, it can be answered
with 100% accuracy whether or not the match is aligned correctly. Otherwise, the
algorithm can restart a number of bits earlier. In most cases the synchronization
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will occur in the first iteration, even if only a few tens of bits before the match are
analyzed.
A similar approach was suggested by Klein and Shapira [37]. They also moved the

decoder a number of bits before the match, in order to synchronize it. However, unlike
here, they did not use any method to confirm that such a decoder is synchronized at
start of the match and they assumed that it always is. Their method, although in
most cases correct, gives some false-positives and false-negatives. On the contrary,
the above-mentioned method answers with 100% accuracy.
Even if the number of backward jumps is limited to one, as in [37], this new method

is certain in most cases (note that the method of [37] is never certain). In other cases,
when the synchronization cannot be confirmed, the answer is still uncertain, but the
number of uncertain answers is much lower.
Another application for the methods from this chapter is recovery of compressed

data when a prefix is missing (note that the code itself must be available). The de-
coder can skip some initial bits before it is synchronized. The synchronization can
be detected using Algorithm 3.1, if normal Huffman coding was used for encoding, or
is guaranteed after a certain number of bits, if the method knownStartPosition
or unknownStartPosition was used. In this application it is more likely that the
number of missing bits is also unknown and then only the method unknownStart-
Position is suitable.
The methods for estimating the synchronization delay can be used together with

the methods for guaranteed synchronization. In guaranteed synchronization it is
assumed that the decoders resynchronize in most cases before the limit on the syn-
chronization delay. This means that there is no need to throw away all the bits before
the synchronization is guaranteed (Theorems 3.15, 3.17 and 3.39).
The decoder may detect resynchronization faster, with use of Algorithm 3.1. If the

algorithm answers that the decoder is synchronized at a bit number p < K, where K
is the parameter of appropriate algorithm, the decoder further decodes correct data.
However, if the method knownStartPosition is used, one has to take into account
in Algorithm 3.1 that leaf strings are not codewords. Therefore, the first h + log N
should be skipped.
Klein and Wiseman [38] presented a method for parallel Huffman decoding. It

is based on dividing E into several blocks and decoding each block by a different
processor. Due to the spontaneous synchronization of Huffman codes, the incorrectly
decoded fragment at the beginning of a block (hereinafter called the block number
B) is small. This fragment is decoded again by the processor that decoded the block
B − 1. In case the previous processor has not synchronized by the end of its block,
the processor B − 2 decodes the whole block B − 1 and the beginning of block B,
until it reaches the fragment, where the processor B has synchronized.
A disadvantage of this method is that in the worst case (no spontaneous synchro-

nization) the work of all processors but the first one is wasted. The methods for
guaranteed synchronization can be used in this case to guarantee that any decoder
synchronizes quickly. This application will be discussed in Section 3.10.
The methods for guaranteed synchronization may be used to limit bit error prop-

agation. If there are no insertion or deletion errors, the decoder always knows the
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position of the currently decoded bits. The synchronization delay can thus be limited
with the method knownStartPosition. It has the advantage over the method un-
knownStartPosition of being simpler and faster. On the other hand, if insertions
or deletions occur, only the method anyStartPosition is appropriate.
Both methods for guaranteed synchronization do not guarantee strong synchroni-

zation. A decoder that starts from an arbitrary bit in E does not know which symbol
of M it is decoding and does not know where to place the decoded symbols. The
same problem appears when after a bit error wrong number of source symbols are de-
coded before the decoder resynchronizes. The following symbols are placed at wrong
positions inM and, in some sense, the whole decoded message is corrupted.
To introduce strong synchronization one has to place some additional positional

markers into the data. Such markers can be embedded for instance into M. An
advantage of introducing such markers inM, instead of doing it on the level of E , is
that the markers are also compressed using a Huffman code, so their length is optimal.
Strong synchronization may also be achieved with the no-subword resynchro-

nization marker, Section 3.7. The positional markers can be placed just after the
no-subword markers. The decoder can correctly recognize all the insertions of the
no-subword marker, so the positional markers following it are always correctly inter-
preted.
It should be noted that none of the methods presented here requires any modifica-

tion of the Huffman code itself. The code remains optimal and there is no redundancy
if no markers are inserted (but recall that in case of the no-subword resynchronization
marker the marker itself has to be transmitted). The methods are thus particularly
useful if markers are inserted rarely into the encoded message.

3.10 Applications to parallel decompression

As the number of CPUs in a personal computer is constantly increasing, it is getting
more and more important to parallelize as much operation as possible. To decode
compressed data in parallel the data has to be split into fragments, each of them to
be processed separately. In such a division the following forces have to be taken into
account:� The amount of work in each fragment is not strictly proportional to the frag-

ment’s size. Some parts of data may be better compressed so more time is
needed to decompress them, in particular to write the result.� In a real computer system there is no guarantee that each processing thread
gets equal amount of processor’s time. Some threads may execute faster than
others.

It follows that splitting compressed data into equal parts does not assure good
load balancing and 100% utilization of all CPUs. A better approach is to divide the
data into smaller parts and to create a pool of jobs with the number of jobs a few
times greater than the number of processors. The more parts the data is split into,
the better load balancing can be achieved.
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Unfortunately, more parts require more time for coordination of work, which de-
creases the overall performance. To have both large fragments and good load bal-
ancing a dynamic approach to fragmenting can be used. In such an approach the
fragments at the beginning of the data are large and are getting smaller and smaller
as decoding proceeds towards the end. It should be noted that the number of parts
and their size depend also on the number of CPUs used for decompression.

In most cases it is not possible to decode only a fragment of compressed data, so
splitting compressed data into fragments has to be supported at the encoder. In case
of Huffman codes, decoding a fragment of compressed data requires that the decoder
is synchronized at the beginning of the fragment. With normal Huffman coding
there is no bound on the synchronization delay, so some means of resynchronization
inserted into the encoded message are desired ([38] presents a method for parallel
decoding without guaranteed synchronization; see also Sections 1.2.7 and 3.9 for
discussion). A few methods for the division of Huffman data into blocks with decoder
synchronization are analyzed below.

The easiest method, hereinafter called wholeCodewords, is to assume a fixed
block length, fill each block with as many codewords as possible, and pad the remain-
ing space in each block with some extra bits. The easiest choice for the extra bits is
a prefix of the next codeword, the one that did not fit entirely into the current block.
A codeword that does not cross a block boundary is encoded normally. If a block
boundary divides a codeword w into w = w′w′′, the encoder encodes w′ first, to close
the previous block, and then encodes entire w in the new block.

This method uses at most h − 1 redundant bits per block, but in most cases the
encoded codewords are shorter than h. It may be expected that the average redun-
dancy is of the order of the average codeword length, averaged over the probability
distribution of codewords1. With this method a processor can start decoding at the
beginning of each block without any additional operations.

A little more involved method, hereinafter called logH, is to place ⌈log h⌉ bits
at the beginning of each block. The bits tell the relative position of the beginning
of the first codeword in the block. When a codeword w is to be encoded as w′w′′,
where w′ fits at the end of some block and w′′ is the remaining part, the encoder
first outputs w′, closing the block, then |w′′| in ⌈log h⌉ bits, and finally it outputs
w′′. Other codewords are encoded normally. The method uses a constant number,
⌈log h⌉, of redundant bits per block. The decoder at start of a block reads the first
⌈log h⌉ bits to get a value n, then skips the next n bits and continues normally.

Finally, the methods for guaranteed synchronization can be used for splitting
Huffman-encoded data into blocks. The encoder simply uses the methods for guar-
anteed synchronization with synchronization delay’s bound equal K. The decoder
has to start K bits before the beginning of a block. Then, at start of the block, it is
synchronized and is able to decode correct data. The best choice for the method of
guaranteed synchronization is knownStartPosition, because it is faster than the
method unknownStartPosition and the position of each block is known to the

1This is just a guess, but there is no need to analyze the expected redundancy of wholeCode-
words as the method knownStartPosition, to be introduced shortly, performs much better.
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decoder.
Note that in each of the three methods the actual parts processed by CPUs may

be larger than one block. Blocks are smaller to increase the granularity of the division
of work between CPUs. The granularity is important because the optimal fragment
sizes are chosen dynamically by the decoder, and they are a function of the number
of CPUs present and of the amount of data left.
Parallel decoding was tested on Jpeg compression. Jpeg is one of the most popular

compression schemes that use Huffman codes. In Jpeg compression a codeword of a
Huffman code is always followed by some number of bits that is determined by the
encoded codeword. Such a code can be transformed into a larger Huffman code by
attaching a full binary tree to each leaf of the initial Huffman tree. The height of the
tree attached to a leaf is equal to the number of bits that follow the codeword of the
leaf.
Jpeg files may contain a custom Huffman code, but in most cases the code being

used is the one recommended by the standard. This code was also used for conducting
the tests. The extended Huffman tree for the code of Jpeg is of height 26 and has
about 32 thousand leafs. The code has 56 synchronizing codewords and the shortest
synchronizing string is of length 18.
The tests were conducted on 10 grayscale images of size 3872x2592 — the typical

size of pictures from modern digital cameras (10 MPix). The tests were run twice,
for two values of the Jpeg quality factor, Q, which determines the compression ratio
and the loss of quality. For Q = 1, which is the typical setting, the compressed files
were of size about 0.5 MB. For Q = 10 the size was around 1.5 MB.
In case of Jpeg files, the processing time needed for decoding Huffman data is

about an order of magnitude lower than the time needed for other stages of com-
pression (e.g. DCT), so the tests focused on the redundancy introduced by the three
methods of dividing encoded data into blocks. For large block sizes, B, the re-
dundancy introduced by any of the three methods is negligible, so none of them is
preferable.
The tests focused on very small block sizes, B = 50, 100, 200, 500 and 10000 bits,

where the last one was much greater than the other ones in order to investigate
how the methods behave if the block size is large. The choice of such a small block
size is supported by the argumentation concerning the granularity of block division,
presented before. It is also supported by the increasing number of processors in a
personal computer. It is not unexpected that the number of CPUs in a PC raises to
100 in a decade.
The average redundancy introduced in the ten compressed files by each of the

methods is shown in Table 3.13. The results for logH and wholeCodewords
are about the same. WholeCodewords performs slightly worse for Q = 10 than
for Q = 1 because a file compressed with such a quality factor contains more long
codewords. The method logH, as expected, is insensitive to changes of Q.
The method knownStartPosition performs an order of magnitude better for

B = 50 than the other two methods and two orders of magnitude better for B = 200.
For B = 10000 and Q = 1 knownStartPosition needs exactly zero redundant bits
for all ten images. For B = 10000 and Q = 10 only one image had a few bits inserted.
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B
Q = 1 Q = 10

KSP LogH WC KSP LogH WC

50 0.91% 11.07% 10.72% 0.84% 11.33% 13.29%

100 0.19% 5.24% 4.78% 0.11% 5.32% 6.30%

200 0.03% 2.56% 2.52% 0.01% 2.58% 3.03%

500 0.005% 1.01% 0.92% 0.001% 1.01% 1.18%

10000 0.000% 0.05% 0.04% 0.000% 0.05% 0.06%

Table 3.13: The redundancy introduced by dividing an encoded message into blocks of size
B for the methods knownStartPosion (KSP), logH and wholeCodewords (WC).
The results presented were computed for two values of the quality factor, Q.

No. CPUs 4-core 2-core

1 4.8 5.5

2 2.9 3.7

3 2.2 N/A

4 1.9 N/A

Table 3.14: Parallel decoding time is seconds for a Jpeg image encoded with knownStart-
Position method, with 1, 2, 3 and 4 CPUs, tested on two different computers.

The advantages of the method knownStartPosition are clear. There are a few
drawbacks concerning the overhead of this method terms of processing speed. It was
presented in Section 3.8.3 that the overhead of knownStartPosition is from 16%,
for small codes, to 60%, for large codes. The code in Jpeg is certainly large, but it
has a particular structure, namely full subtrees attached to some internal nodes of
the tree. This structure opens ways for optimizations.
Another disadvantage is that for each fragment the additional B+h−1+⌊log h⌋ =

B + 39 bits have to be processed (see Theorem 3.15). If block sizes are small in
comparison to fragments assigned to processors, the overhead is negligible, but for
small fragments the overhead may be significant.
Parallel Jpeg decompression was also tested in terms of scalability with different

number of processors used for decompression. The results are shown in table 3.14.
The image was encoded with the knownStartPosition method with K = 200. For
decoding, it was divided into 100 fragments of the same size. The decompression time
is given in seconds and is an average from 10 runs. The tests were run on two different
computers: the 4-core CPU was an Intel Core 2 Quad Q9300 processor (2.5GHz) and
the 2-Core CPU was an Intel Core 2 Duo T7300 (2GHz).
The test should be seen as proof-of-concept of the method for parallel decoding

rather than actual performance and scalability tests. The CPU utilization when
running on 4 cores was about 75%, so the scalability may still be greatly improved.
The compressed images have also been tested for the maximum length of the

synchronization delay. The results are presented in Table 3.15. In most cases the
maximum synchronization delay is about 500-2000 bits, but for two files it exceeded
10,000. To protect the decoder from such synchronization delays, methods for guar-
anteed synchronization are desirable.
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max delay for Q = 1 max delay for Q = 10

File 1 1160 510

File 2 16687 1955

File 3 849 475

File 4 909 500

File 5 2269 1705

File 6 1159 557

File 7 1205 1592

File 8 1360 522

File 9 2595 603

File 10 7005 12390

Average 3520 2081

Table 3.15: Maximum synchronization delay, in bits, for the ten test Jpeg images for two
values of the quality factor Q.

3.11 Conclusions

Important results of this chapter are the two novel methods for guaranteed synchro-
nization of Huffman codes. The methods limit the delay of a decoder that starts at
an arbitrary position in the encoded message. The first method, knownStartPo-
sition (Section 3.4), requires that the decoder knows the position number of the bits
being decoded. The other one, anyStartPosition (Section 3.6), does not.

Both methods do not require any modification of the Huffman code itself, so the
code remains optimal. The methods provide any decoder with limited synchronization
delay by inserting some markers into the message. The redundancy inserted depends
on the synchronization properties of the code and on the message itself. It is much
lower for codes with good synchronization properties. The redundancy is zero if
spontaneous synchronization occurs fast enough because no markers are inserted in
this case and also the code is optimal. Test have shown that the redundancy is of the
order 0.01% for the synchronization delay bound equal approximately 500 bits. The
methods can be applied, for instance, for limiting bit error propagation in encoded
messages or for decoding a fragment of a Huffman encoded message.

Another new technique for improving error resilience of compressed data is the
noSubword method for ensuring strong synchronization (Section 3.7). The method
deals with the same problem as the extended synchronizing codeword [40], but it is
in certain aspects superior. For instance, if no resynchronization markers are inserted
into the message, the redundancy increases only logarithmically with the message size.
In comparison, for ESC the growth is linear. Tests have shown that the resynchro-
nization marker proposed here is, in most cases, shorter than ESC. The noSubword
method is general enough to be applied to compression schemes other then Huffman
codes.

Several results that help to understand better the spontaneous synchronization of
Huffman codes have been presented. An important result of this kind is the method
for tracking the state of several decoders at the same time. This topic has not been
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considered before. Two algorithms were presented. The first one requires O(h) op-
eration per encoded symbol in the worst case. It is expected that on average, for
typical codes, the time complexity is proportional to the length of the encoded mes-
sage. The main advantage of the algorithm is its simplicity and the main drawback
is the quadratic preprocessing time.
The other algorithm is more involved, but its time complexity is proportional to

the length of the encoded message, in the worst case. The algorithms were used in
the method for guaranteed synchronization with unknown start position. They can
also be applied to computing the maximum synchronization delay for a decoder of a
given message.
A synchronization graph for a Huffman code has been introduced. The graph can

be used for testing whether a code has a synchronizing string, for the construction
of a synchronizing string and for finding all synchronizing codewords of a code. It
should be noted that the methods using the synchronization graph are not optimal,
but are easy to understand. Better, but more involved methods are put forward in
Chapter 4.
A very simple, yet practical result is the method for recognizing resynchronization

by a decoder that started at some bit of the encoded message. This algorithm is also
a novelty.
Applications of the new methods were discussed, in particular application to paral-

lel decoding of Huffman-encoded data. Tests of such parallel decoding were performed
on Jpeg images.



Chapter 4

Synchronizing strings for Huffman Codes

In this chapter topics related to synchronizing strings and codewords for Huffman
codes are studied. In particular, several bounds on the length of the shortest syn-
chronizing string for a synchronizing Huffman code are presented. Also, efficient
algorithms for computing a short synchronizing string and for computing all the syn-
chronizing codewords are introduced.

4.1 Merging string for a pair of states

Theorem 4.1. Let C be a synchronizing Huffman code of size N , let T and T be,
respectively, the Huffman tree and the Huffman automaton for C. For any node n of
T there is a merging string sn for the set {n, ε} (ε is the root of T ), with

|sn| ≤
∑

p∈Q(T )\{ε}

hp, (4.1)

where Q(T ) is the set of the internal nodes of T and hp is the height of the subtree of
T rooted at p.

Proof. C is synchronizing so T has a synchronizing string sT . Let us consider a merg-
ing string sn for n and ε of minimal length. It exists, because sT merges ε and n, but
it need not be unique. The string sn brings both nodes to the root, because otherwise
we could remove the last letter of sn and the result would still merge n and ε.
Let {ni, mi} be the unordered pairs of nodes that appear when consecutive prefixes

of sn are applied to the initial configuration {n, ε}:

{ni, mi} = δ∗ ({n, ε}, sn[..i)) , i = 0, . . . , |sn|. (4.2)

In particular, {n0, m0} = {n, ε} and {n|sn|, m|sn|} = {ε} (a singleton is also considered
as a pair).
Let us consider the subsequence {nik , ε}, k = 0, . . . , l, of this sequence, formed of

pairs containing the root. Each node p, appears in this subsequence as the partner of
ε at most once, because pairs do not repeat in {ni, mi} (otherwise we could shorten
the string sn). The string sn[ik, ik+1), that brings {nik , ε} to {nik+1

, ε}, is a string that

87
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either brings the node nik to a leaf without loops or that brings ε to a leaf without
loops. In either case the length of sn[ik, ik+1) is at most hnik

(note that in the second
case the node nik+1

is in the subtree of nik , unless nik+1
= ε). It follows that

|sn| =
l−1∑

k=0

|sn[ik, ik+1)| ≤
l−1∑

k=0

hnik
≤

∑

p∈Q(T )\{ε}

hp. (4.3)

The last inequality follows from the fact that nik are different nodes of T . The value
of hε is not counted in the sum because the set {ε} appears only as the last element
of the sequence {nik , ε}.

Let HT be the value of the bound in Theorem 4.1. HT is the sum of heights of all
the nontrivial subtrees of T apart from the whole tree. We will compare HT with ΠT

— the sum of depths of all the internal nodes, with WT — the sum of depths of all
the leaves of T (that is the sum of codewords’ lengths), and with ST — the sum of
sizes of all subtrees of T . The proof of Theorem 4.1 can be easily modified to prove
that |sn| does not exceed ΠT , WT and ST . It turns out that the bound |sn| ≤ HT is
the best of the four.

Lemma 4.2. Let T be a complete binary tree, let Q(T ) be the set of the internal nodes
of T , let L(T ) be the set of leaves of T , let hn and Nn be, respectively, the height and
the number of leaves in the subtree rooted at the node n of T , let |π(n)| be the distance
from the root to n and let NT be the number of leaves in T . Let us define:

HT =
∑

n∈Q(T )\{ε}

hn, ΠT =
∑

n∈Q(T )

|π(n)|, (4.4)

WT =
∑

n∈L(T )

|π(n)|, ST =
∑

n∈Q(T )∪L(T )

Nn. (4.5)

Then the following holds:

ΠT = WT − 2NT + 2, (4.6)

WT = ST −NT , (4.7)

HT ≤ ΠT ≤WT ≤ ST . (4.8)

Proof. We prove the equations and the inequalities by induction. For a tree that
consist of just the root node the values HT , ΠT and WT are equal 0, ST and NT is
equal 1 and (4.6), (4.7), (4.8) are correct. If the tree T consists of two subtrees T1

and T2 joined in a common root, the following recurrences hold:

HT = HT1
+ HT2

+ hT1
+ hT2

, (4.9)

ΠT = ΠT1
+ ΠT2

+ (NT1
− 1) + (NT2

− 1), (4.10)

WT = WT1
+ WT2

+ NT1
+ NT2

, (4.11)

NT = NT1
+ NT2

, (4.12)

ST = ST1
+ ST2

+ NT1
+ NT2

, (4.13)
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where hTi
is the height of the tree Ti.

Equation (4.6) can be proved by induction, by substituting the induction hypoth-
esis (4.6) for ΠT1

and ΠT2
to (4.10) and using (4.11) and (4.12):

ΠT = ΠT1
+ ΠT2

+ NT1
+ NT2

− 2

= (WT1
− 2NT1

+ 2) + (WT2
− 2NT2

+ 2) + NT1
+ NT2

− 2

= (WT1
+ WT2

+ NT1
+ NT2

)− 2(NT1
+ NT2

) + 2

= WT − 2NT + 2.

The recurrences for WT and ST −NT are identical:

ST −NT = (ST1
−NT1

) + (ST2
−NT2

) + NT1
+ NT2

(4.14)

and the value of (ST −NT ) for the tree with one node is 0, so ST −NT = WT holds for
all trees. The inequality hT ≤ NT − 1 together with the recurrences (4.9) and (4.10)
prove the first inequality of (4.8). Other inequalities follow from (4.6) and (4.7).

Corollary 4.3. Let wi be all the codewords of a Huffman code. Then

|sn| ≤
∑

i

|wi| and |sn| ≤ (N − 2)(h− 1). (4.15)

The result of Theorem 4.1 can be improved if we notice that the sequence {nik , ε},
defined in the proof of Theorem 4.1, cannot contain two nodes nik and nik′

that are
roots of identical subtrees of T . Indeed, otherwise we could shorten the string sn in
the same way as before. This gives the following result:

Corollary 4.4. The bound of Theorem 4.1 can be improved to:

|sn| ≤
∑

t∈T (T )\{T}

ht, (4.16)

where T (T ) is the set all distinct subtrees of T and ht is the height of the tree t.

Example 4.5: Let us consider the tree for the code C1 from Figure 2.3. It has two
distinct subtrees other than the whole tree: one of height 1 and one of height
2. It follows that for each node n there is a merging string with ε of length at
most 3. For instance, for the node 0 the merging string is 110.
The tree for the code C2 from Figure 2.5, has exactly the same subtrees,

so the bound on the length of its merging strings is the same. In this case the
node 01 requires a merging string of length at least 3, for instance 011.
Note that the bound is not sharp and for some trees all nodes have shorter

merging strings. For instance, each node of the tree from Figure 4.1 can be
merged with the root using a string of length 1 (the string ‘1’). The bound
from Corollary 4.4 for this tree is 3.

The idea of identifying common subtrees can be formalized by introducing the
minimized Huffman automaton. Although this does not give here a better estimate
of the length of the shortest merging string for the set {n, ε}, it is interesting in itself.
This construction will also be used later in this chapter.
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Figure 4.1: A tree for which 1 is a merging string for any set of nodes.
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(a) Huffman tree automaton for the
code C2.
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(b) Minimized Huffman automaton for the code C2.
The states ‘1’ and ‘01’ were merged into the state 01.

Figure 4.2: A Huffman automaton and its minimized version.

Definition 4.6. A minimized Huffman automaton for a Huffman code C is an au-
tomaton made of the Huffman automaton for C by merging the states that are roots
of identical subtrees of the Huffman tree T for C.

It is easy to see that minimized Huffman automata have exactly two edges, labeled
with 0 and 1, going out of each node, thus their transition function is indeed a function.
Examples of minimized Huffman automata are presented in Figures 4.2(b) and 4.3(b).

We will say that a set V of states of a Huffman automaton T corresponds to the
set Vm of states of the minimized Huffman automaton Tm if Vm is the smallest set
satisfying: if q ∈ V and q is merged to a state q′ of Tm then q′ ∈ Vm.

(a) Huffman tree

ε

0

00

000

1

11

0 1

0,1

0,1

0,1
1

0

0

1

(b) Minimized Huffman automaton

Figure 4.3: A Huffman tree and its minimized Huffman automaton.
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Theorem 4.7. Let C be a synchronizing Huffman code, let T be the Huffman au-
tomaton for C and let Tm be the minimized Huffman automaton for C. Let V be a set
of states of T and let Vm be the corresponding set of states of Tm. If s is a merging
string for V then s is a merging string for Vm. If s

′ is a merging string for Vm that
brings all nodes of Vm to the root then s′ is a merging string for V .

Proof. Let us consider coins on the states of the automata T and Tm. Moving coins
according to a string w and then merging the states of T to get its minimized version
(with removing duplicate coins on the same state) is equivalent to merging the states
first and then moving coins. This observation proves the theorem. Indeed, applying
s to V leaves only one coin. Then merging the states does not multiply the coins.
Applying s′ to Vm leaves only the coin in the root. Thus, applying s′ to V may leave
a coin only in the root of A, because no other state was merged with the root of T
to be the root of Tm.

Note that the minimized Huffman automaton is implicitly used in Corollary 4.4,
where we consider all non-identical subtrees of a Huffman tree. The roots of such
subtrees are states of the minimized Huffman automaton.
Theorem 4.1 leads to an algorithm for finding the shortest merging string for a set

{n0, ε}, where n0 is any state of T . First a graph G = (V, E) is created. The vertices
of G are unordered pairs {n, ε}, where n is a state of T . The edges of G are weighted;
{n1, ε} → {n2, ε} is an edge if there is a string w that brings {n1, ε} to {n2, ε} without
passing through any other pair {n, ε}. The weight of the edge is the length of the
shortest such string w (note that the string w need not be unique).
Such a string w is also the label of the edge {n1, ε} → {n2, ε}, although it will

not be stored explicitly. Instead, for retrieving the label w, we will store a mark M .
The mark will depend on the target pair of the edge. If the target is a pair {n2, ε}
with n2 6= ε, the mark is equal to either n1 if n2 = δ(n1, w), or to ε if n2 = δ(ε, w).
In either case n2 = δ(M, w), the node n2 is in the subtree of the node M and w is
formed of labels on the path from M to n2. If the target of an edge is a singleton
{ε}, that is n2 = ε, the mark M is the leaf δ(ε, w). In this case the word w is formed
of labels on the path from ε to M .
The construction of the graph requires DFS-traversing the Huffman tree with

a pair of nodes {n1, n2}, starting at {n, ε} and applying transitions of the Huffman
automaton to both nodes of the pair. The traversal goes forward until a set {n′, m}
is reached, with m being a leaf. Then, the edge {n, ε} → {n′, ε} is added to the graph
with the number of steps from {n, ε} to {n′, m} as its weight. If such an edge has
been added before, only the weight is updated to be the minimum of the previous
weight and the new one. Finally, the mark M of the edge is set appropriately.
The cost of processing each pair {n, ε} during the construction of the graph G

is proportional to the size of the subtree rooted at n, because the DFS traversal
is limited to the subtree of n. It follows that the construction of G uses the time
proportional to the sum of sizes of the subtrees of T , ST . By Lemma 4.2, this is
O(

∑
|wi|), where wi are the codewords given by the tree T . The number of vertices

in the graph is |V | = N − 1. The number of edges is bounded by the sum of sizes of
all the subtrees of the tree, that is |E| = O(

∑
|wi|).
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(a) Huffman tree for the code C1

{0, ε} {1, ε}

{11, ε}

{ε}

0 (ε)
1 (M = ε)

0 (ε)

11 (ε)

10 (10)

0 (ε)
1 (ε)

(b) The graph from the algorithm for finding the shortest
merging strings for the code C1; the mark M is given in
parenthesis

Figure 4.4: Illustration for the algorithm for finding the shortest merging strings.

The shortest merging string for a set {n, ε} is given by the lightest path from
{n, ε} to {ε} in the graph G. The tree of the lightest paths from any node to {ε} can
be constructed using Dijkstra’s algorithm in O(|E|+ |V | log |V |). Since |V | = O(N),
|E| = O(

∑
|wi|) and

∑
|wi| ≥ N log N , the lightest paths’ tree can be computed in

O(
∑
|wi|).
To print out the shortest merging string for a set {n, ε} it is necessary to recon-

struct the labels of each edge. For an edge {n, ε} → {n′, ε}, where n′ 6= ε, we may
traverse the tree up from n′ until we reach the node M (the mark of the edge). The
string w is formed of labels on the path that goes from M down to n′. The word can
be computed in the time proportional to its length. For an edge {n, ε} → {ε} we do
the same, but we traverse the tree from M up to ε.

The description of the algorithm can be summarized as follows.

Theorem 4.8. Let T be a Huffman automaton. The algorithm for computing the
shortest merging string for a set {n, ε}, where n is any state of T , requires O(

∑

i |wi|)
preprocessing time. Then, the shortest merging string for each {n, ε} pair can be
found in time proportional to the length of the merging string.

Example 4.9: Let us see how the algorithm works for the code C1 from Figure 2.3.
Figure 4.4 presents the graph for this code. There are four internal nodes
in the tree, so there are four nodes in the graph. Each edge in the graph is
marked with the word w that brings a state to the other one, and also with
the mark M , in parenthesis. Shortest merging strings can easily be read from
the graph. For the set {0, ε} it is 110, for {1, ε} — 10, and for {11, ε} — 110.

4.2 Length of a synchronizing string

In this section we give an upper bound on the length of the shortest synchronizing
string for any synchronizing Huffman code. We begin with a lemma that helps to
prove the main theorem of this section (Theorem 4.12).
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Lemma 4.10. Let T be a complete binary tree with N leaves. There exists a string
w of length at most ⌈log N⌉ such that for each node n of T some prefix of w labels
a path from n to a leaf.

Proof. Let us assume the contrary: for any string w of length |w| = ⌈log N⌉, there is
a node nw such that no prefix of w brings it to a leaf. Let mw = δ(nw, w). Then mw

is an internal node of the tree and w is a suffix of π(mw).
For two strings, w1 6= w2, of length ⌈log N⌉ the nodes mw1

and mw2
are different.

Indeed, the suffixes of π(mw1
) and π(mw2

) of length ⌈log N⌉ are different as they
are equal w1 and w2, respectively. But there are N − 1 internal nodes of T and at
least 2⌈log N⌉ ≥ N strings w. The contradiction proves that the initial assumption is
wrong.

Example 4.11: Lemma 4.10 states that there is a string of length at most ⌈log 5⌉ = 3
that moves each node of the tree for the code C1 (Figure 4.4(a)) through a leaf.
Indeed, the string 00 is such a string.

Theorem 4.12. For any synchronizing Huffman code of size N the length of the
shortest synchronizing string s is at most

|s| ≤ ⌈log N⌉+ (⌈log N⌉ − 1)X = O(Nh log N), (4.17)

where h is the length of the longest codeword, and

X =
∑

t∈T (T )\{T}

ht, (4.18)

and T (T ) is the set all different subtrees of T , and ht is the height of the tree t.

Proof. Let us consider the Huffman automaton T for the code. T is synchronizing
because the Huffman code is synchronizing. We will look at the power automaton for
T by considering coins on the states of T . Let Q be the set of all states of T . Initially,
there is a coin on every state of Q. A synchronizing string is a string that brings all
the coins to the same state. Such a string, s, will be constructed by concatenating
some words.
Let a coin c be on an internal node n of the tree and let a string w be applied to

c. If c passes through a leaf, its path can be split into three parts: w = w1w2w3;� w1: going down the tree until c reaches a leaf,� w2: going several times from the root down to a leaf and reappearing in the
root,� w3: going down the tree from the root without passing through a leaf,

where w2 and w3 may be empty. Formally, w1 is a nonempty suffix of some codeword,
w2 is a string of codewords, and w3 is a proper prefix of some codeword. The word
w3 is also a proper suffix of w. The final position of c is fully determined by the part
w3, which, on the other hand, is fully determined by w and the length of w3.



94 Chapter 4. Synchronizing strings for Huffman Codes

The first part of the synchronizing string is the word w given by Lemma 4.10.
We have |w| ≤ ⌈log N⌉ and after applying w any coin will pass through a leaf. The
final position of any coin corresponds to some proper suffix of w. There are at most
⌈log N⌉ proper suffixes, because |w| ≤ ⌈log N⌉. The set A = δ(Q, w) contains nodes
that have a coin after applying w to the initial configuration, Q. Then |A| ≤ ⌈log N⌉.
We may further assume that ε ∈ A, because otherwise we can shorten the string w
and get a set of the same size.
The automaton T is synchronizing, so, by Corollary 4.4, for each node n there

is a string wn of length at most X that merges ε and n. The final part of the
synchronizing string for the code will be constructed from the strings wn. Let

U0 = A \ {ε}. (4.19)

Let n1 be any node from U0. Let

U1 = δ(U0, wn1
) \ {ε}. (4.20)

Then |U1| ≤ |U0|−1, because δ(n1, wn1
) = ε and ε is removed from U1. Let us choose

any n2 from U1 and let
U2 = δ(U1, wn2

) \ {ε}. (4.21)

We can continue this process by setting

Uj = δ(Uj−1, wnj
) \ {ε}, for j > 0. (4.22)

In each step the size of Uj decreases by at least one. The process has to end at some k
with Uk = ∅. Then k ≤ |U0| ≤ ⌈log N⌉−1. It easy to verify that s = wwn1

wn2
. . . wnk

brings any coin to the root, which means that it synchronizes the automaton T . The
bound on the length of s can be computed by estimating the length of each of its
parts and the number of words wni

:

|s| ≤ ⌈log N⌉+ (⌈log N⌉ − 1)X. (4.23)

Finally, the value of X is O(Nh) because the sum has at most N terms and each
term is less than h.

The proof of Theorem 4.12 is constructive and gives an algorithm for the construc-
tion of a synchronizing string for a Huffman code. The algorithm works as follows.
First, a string w from Lemma 4.10 is found. It is done by checking all the O(N)

strings of length less or equal ⌈log N⌉ in the following way. For each node n of T , its
subtree is DFS-traversed. Each time a node m that is not farther than ⌈log N⌉ steps
below n is reached, the string w on the path from n to m is marked as bad. This
means that no prefix of w brings n to a leaf. The set of all strings of length less or
equal ⌈log N⌉ can be stored in a full binary tree of height ⌈log N⌉
After the traversal, the strings that have not been marked as bad bring any node

through a leaf. By Lemma 4.10, there is at least one such a string of length ⌈log N⌉
or less. In fact, with this approach the shortest such string is found. The cost of this
phase is proportional to the sum of sizes of all subtrees of T , ST , which is O(

∑

i |wi|).
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(a) A tree

⋆

⋆

⋆

⋆

⋆

⋆

(b) Strings of length ≤ 3 presented on a full
binary tree; the strings that do not bring all
nodes of the tree from Figure 4.5(a) through
a leaf are marked with a star

⋆

⋆

(c) The result of applying
the string 00 to the set of
all states of the tree

Figure 4.5: Illustration for the algorithm of finding a synchronizing string for a code.

After finding the string w we can apply it to the set of all internal nodes of
T . This takes O(N log N) time. Then, at most log N merging strings for {n, ε},
with some node n, suffice to build a synchronizing string. Computing the merging
strings requires O(

∑

i |wi|) preprocessing time and then any string can be read in the
time proportional to its length (Theorem 4.8). The length of each merging string is
bounded by X and there are at most log N vertices that have to be moved using each
such string. Thus the total cost of the algorithm is O(X log2 N +

∑

i |wi|).

Theorem 4.13. Let C be a Huffman code of size N . The time complexity for the
algorithm that computes a synchronizing string for C is

O(X log2 N +
∑

i

|wi|), (4.24)

where X is defined as in Theorem 4.12 and wi are codewords of C.

Example 4.14: Let us consider the tree from Figure 4.5(a). There should be a string
of length at most 3 that brings all nodes through a leaf. Such a string can
be found with the algorithm just described. Figure 4.5(b) shows the tree of
strings of length at most 3. The strings that were marked as bad are starred.
The shortest nodes that are not starred are 00 and 10. Both strings bring all
nodes through a leaf. Let us chose 00.

Figure 4.5(c) shows the coins that remain after applying the string 00 to the
tree with coins on all states. These two nodes with coins can be merged with
a string of length at most 6, according to Corollary 4.4. In fact, the string 10 is
the shortest merging string for these two nodes. The synchronizing string for
the tree found by the algorithm is 0010. This is not the shortest synchronizing
string, for instance 010 is a shorter synchronizing string for this tree.

From the proof of Theorem 4.12 it follows that if for each pair {n, ε} there is
a merging string then the code has a synchronizing string. This also gives an algorithm
to test whether a synchronizing string for a code exists, because the existence of the
merging strings can be checked with the algorithm of Section 4.1.

Theorem 4.15. The complexity for the algorithm for testing if a code has a synchro-
nizing string is O(

∑

i |wi|).
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4.3 Worst-case trees

Numerical search was performed to find:� the worst-case trees in terms of the length of the shortest synchronizing string,� the worst-case trees in terms of the length of the shortest merging strings for a
pair {n, ε}, where n is an internal node of the tree.

All trees of sizes, N , from 3 to 20 were analyzed first. Then the procedure was
repeated for all trees of heights, h, from 2 to 5.

4.3.1 Long synchronizing string

The worst-case trees for a fixed number of nodes, N , for N = 3 . . . 12, are shown in
Figure 4.6.
In most of the tested cases the worst-case trees for fixed N , were unique up to

the reflection across the y axis (relabeling 0-edges to 1-edges and 1-edges to 0-edges).
The exceptions were the trees with 7 nodes — three nonequivalent trees, 10 nodes
— 5 trees, and 12 nodes — 2 trees. For trees with 9, 11 and from 13 to 20 nodes
the unique worst-case tree corresponds to one of the codes Ck, defined below. The
codes Ck also form one of the worst-case trees with 7, 10 and 12 nodes. They can be
described by the following set of codewords:

Ck = {00, 010, 011, 110, 111}∪ {10i1|i = 1, 2, . . . , k − 1} ∪ {10k}, k ≥ 1. (4.25)

The size of the code Ck is k+5. The structure of these trees is shown in Figure 4.7(a)
and examples can be found in Figures 4.6(g), 4.6(i), 4.6(m), 4.6(o), 4.6(p).

Theorem 4.16. The shortest synchronizing string for the tree Ck, k ≥ 1, is s0 =
0k10k for odd k (even number of codewords) and s1 = 0k1010k or s2 = 0k1110k for
even k (odd number of codewords). The length of the shortest synchronizing string is
2N − 9 for even code size, N , and 2N − 7 for odd code size.

Proof. We will first find a merging string for the set of nodes A = {ǫ, 1, 11}. We will
look at the power automaton by placing coins on states of the automaton T for the
code. Assume for a moment that k > 3. The transitions of coins under the letters 0
and 1 for selected three-coin configurations are presented in Figure 4.8. Configuration
A is the initial configuration. All strings that lead to a configuration with less than
two coins have to pass through the configurations B, C and E. The first configuration
with two coins that may appear after starting from A is L = {ǫ, 0}. The shortest
string leading from A to L is 0k and it is unique.
Figure 4.9 shows a fragment of the power automaton with two-coin configurations.

The strings that reduce the number of coins to one have to pass through either N,
for odd k, or through P, for even k.
The shortest string leading from L to N is 1000 and it is unique. Then, for odd

k, the word 0k−3 merges the two coins of the configuration N. The shortest merging
string for the configuration A is then s0 = 0k10k.
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(a) N=3, s=0 (b) N=4, s=00 (c) N=5, s=0110 (d) N=6, s=011100

(e) N=7, s=11041 (f) N=7, s=0011010 (g) N=7, s=0010100 (h) N=8, s=001041

(i) N=9, s=0410104 (j) N=10, s=0(11100)2 (k) N=10, s=001104110

(l) N=10, s=11041103 (m) N=10, s=05105 (n) N=10, s=101041010

(o) N=11, s=0610106 (p) N=12, s=07107 (q) N=12, s=014031403

Figure 4.6: Trees with longest synchronizing string for a given number of nodes, N . The
synchronizing string is denoted by s.
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(a) A tree Ck (b) N=9, s=0410104 (c) N=10, s=05105

Figure 4.7: The class Ck, of the worst-case trees in terms of the length of the shortest
synchronizing string for a given number of nodes, N . The synchronizing string is denoted
by s. The triangle denotes a code {1, 01, 001, . . . , 0i1, 0i0}, i = 0, 1, . . ..
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Figure 4.8: A fragment of the power automaton for the trees Ck. The coins on nodes of the
automaton are marked with a star. Only selected three-state configurations are shown.

There are two shortest strings from L to P: 11100 and 10100. Then, for even k,
the two coins of P can be merged with 0k−2. The shortest merging strings for the
configuration A are, in this case, s1 = 0k1010k and s2 = 0k1110k.
The proof is correct so far for k > 3, but it is easy to verify that s0 is the shortest

merging string for the configuration A for k = 1 and k = 3, and that s1 and s2 are
the shortest merging strings for A if k = 2.
To finish the proof it is necessary to show that s0 is a synchronizing string for Ck

if k is even, and that s1 and s2 are synchronizing strings for Ck if k is odd. It is easy
to see that applying 0k, which is a prefix of each of the strings s0, s1 and s2, to the
configuration with coins on all states always results in the configuration L, no matter
if k is even of odd. This is the same as applying 0k to A, so these strings synchronize
Ck.
The length of the synchronizing string follows easily from its form and from k =

N − 5.

The worst-case trees for fixed height, h, with h = 2, 3, 4 and 5, are shown in
Figures 4.10(a), 4.10(b), 4.10(c) and 4.10(d). These are full binary trees with two
edges in the lower-right corner removed. They can be described by the following set
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Figure 4.9: A fragment of the power automaton for the trees Ck. Coins are marked with
a star. Only selected two-coin configurations are shown.
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⋆

(a) h=2 , s=1

⋆

(b) h=3 , s=120312

⋆⋆⋆

(c) h=4 , s=1304130413

⋆

(d) h=5 , s=14051405140514 (e) The scheme for Dh

Figure 4.10: Trees with the worst-case length of a synchronizing and merging string among
trees of fixed height, h, for h = 2, 3, 4, 5, and a scheme of these trees. The nodes n with the
longest merging string for {n, ε} are marked with a star.

of codewords:

Dh =
(

{0, 1}h \ {1h−11, 1h−10}
)

∪ {1h−1}, h ≥ 2. (4.26)

The general scheme for the trees Dh is depicted in Figure 4.10(e). The number of
codewords in the code Dh is 2h − 1. The trees Dh are unique worst-case trees up to
the reflection across the y axis.

Theorem 4.17. The shortest synchronizing string for the tree Dh, h ≥ 2, is

s = (1h−10h)h−21h−1, (4.27)

with |s| = 2h2 − 4h + 1 (however, the shortest synchronizing string is not unique).

The proof of Theorem 4.17 is long and will be split into several steps.

First, we will find the shortest merging string sLh
for the set of nodes on the

leftmost path of the tree, i.e. for the set Lh = {ǫ, 0, 00, . . . , 0h−1}. No synchronizing
string for the tree Dh can be shorter than sLh

. We will later show that sLh
is also

a synchronizing string for Dh.

Let Fh be the minimized Huffman automaton for Dh, constructed from the au-
tomaton for Dh by merging states with the same subtrees. Let L

′
h be the set of states

of Fh that corresponds to Lh. From Lemma 4.17 we know that if s is a merging string
for the set L′

h in the automaton Fh and if s moves the coins to the root, it is also
a merging string for the set Lh in the automaton Dh.

The automaton F5 for the tree D5 is depicted in Figure 4.11 (see also Figure
4.10(d)).

It is easy to see that the general automaton Fh, h ≥ 3, has nodes R, A1, . . . , Ah−1

and B1, . . . , Bh−2 (see Figure 4.11) and its transitions are similar to the ones of F5.
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Figure 4.11: The automaton F5 equivalent to the tree D5.

The nodes of Fh correspond to the following nodes of the Huffman tree.

R→ {ǫ}

A1 → {0}

A2 → {00, 01, 10}

. . .

Ai → {0 + 1}i \ {1i}, (i = 1 . . . , h− 1)

. . .

B1 → {1}

B2 → {11}

. . .

Bj → {1
j}, (j = 1, . . . , h− 2),

. . .

The set L′
h is equal {R, A1, A2, . . . , Ah−1}.

Let us fix h. Let the sets (configurations) βi of states of Fh be defined by:

βi = δ∗Fh
(L′

h, 1
i), i = 0, 1, . . . , h− 1, (4.28)

where δFh
is the transition function for the automaton Fh. The sets β0, . . . , β4 for the

automaton F5 are shown in Figure 4.12. We see that

δFh
(βi, 1) = βi+1 for i = 0, . . . , h− 2, (4.29)

δFh
(βh−1, 1) = βh−1. (4.30)

Also δFh
(βi, 0) ⊆ β0 for any i < h (for i < h− 1 it is even δFh

(βi, 0) = β0). Let us
consider a configuration S. If S ⊆ βi for some i then both δFh

(S, 0) and δFh
(S, 1) are
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Figure 4.12: The configurations βi for the automaton F5.

subsets of some βj and βk. By induction, for all strings s, δFh
(L′

h, s) ⊆ βi for some i
(but i need not be unique).

Now, let us consider a merging string sh for the set L
′
h of Fh. If sh has a substring

01i0 with i < h−1, this substring can be substituted by 00i0 and the resulting string
is still merging for L′

h. Indeed, after a 0 the automaton is in a configuration C that
is a subset of β0. Then the strings 1i0 and 0i0 both bring it to exactly the same
configuration C ′ ⊆ β0. If we denote A0 = R, the coin from Ak goes in both cases to
A(k+i+1) mod h (see also Figures 4.11 and 4.12).

As a result, if s is a merging string for the set L′
h of Fh then there is a merging

string s′ for L′
h of the same length with no substrings of the form 01i0, i < h− 1. We

may also assume that the string s′ does not start with 1i0, i < h− 1 either.

The following operations form the strings s′ (the cost of each operation, i.e. the
number of letters that form the operation, is also given):

1. From a subset of β0, the string 1h−1 brings the automaton to a configuration
that is a subset of βh−1. The coins from R and A1 are moved to R and from
Ai, i > 1, to Bi−1 (Figure 4.13(a)). The cost of this operation is h− 1.

2. From a subset of β0, the letter 0 brings the automaton to another subset of β0.
The coins from Ai move to Ai+1 for i = 1, . . . , h− 2. The coin from R goes to
A1 and from Ah−1 to R (Figure 4.13(b)). The cost of this operation is 1.

3. From a subset of βh−1, the letter 1 brings the automaton to another subset of
βh−1. The coins from Bi move to Bi+1 for i = 1, . . . , h − 3. The coin from R
moves to B1 and from Bh−2 to R (Figure 4.13(c)). The cost of this operation
is 1.

4. From a subset of βh−1, the letter 0 brings the automaton to a subset of β0.
The coins from Bi, i = 1, . . . , h− 2, go to Ai+1. The coin from R moves to A1

(Figure 4.13(d)). The cost of this operation is 1.
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Figure 4.13: Movements of coins under the operations 1-4.
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(b) C2: h− 1 positions

Figure 4.14: An automaton equivalent to F5.

With these operations we may forget about the sets β1, . . . , βh−2 and consider only
β0 and βh−1. The sets β0 and βh−1 can be visualized as circles with marked positions
R, A1, . . . , Ah−1, for β0 (let us call it circle C1), and R, B1, . . . , Bh−2, for βh−1 (let us
call it circle C2), as in Figure 4.14. Operations 2 and 3 move all the coins in the
clockwise direction on circle C1 and C2, respectively. Operation 1 transforms the
circle C1 (Figure 4.14(a)), to the circle C2 (Figure 4.14(b)). This is done by merging
R and A1 in the new position R and then renaming Ai to Bi−1 for 0 < i < h. The
operation 4 does the reverse. It first renames Bi to Ai+1, then renames R to A1 and
finally inserts a new empty position R between Ah−1 and A1.

The initial configuration, L′
h, is the circle C1 with coins on all positions. Now, the

goal is to find a sequence of the operations 1-4 that merges the initial configuration,
such that the total cost of the operations is minimal (the lightest merging sequence).
It is easy to see that any such sequence moves all the coins to R.

Let the distance between two positions, X and Y , of the circle Ci (i = 1, 2),
d(X, Y ), be the number of hops from X to Y in clockwise direction. The distance



104 Chapter 4. Synchronizing strings for Huffman Codes

R

A4

A3 A2

A1

⋆
x

⋆
fc

⋆ c

(a) Coins on C1

R

B3

B2

B1

⋆
x
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(b) Coins on C2

Figure 4.15: Example of coins on circles C1 and C2 for h = 5.

between two coins is the distance between their positions. The distance between a coin
c and a position X is the distance between the position of c and X, and similarly for
the distance between a position and a coin. We assume that d(X, X) = 0.
Let the value of a coin c, dc, be the largest distance to any other coin. The coin

with the largest distance from c is denoted by fc. We say that a coin (or a position)
is between the coins (or positions) A and B if it is on the path from A to B in the
clockwise direction, but it is neither on A nor on B.

Example 4.18: In Figure 4.15(a) there are three coins on the circle C1. We have
d(c, R) = d(c, x) = 1, d(c, fc) = 3 and fc is the farthest coin from c. The
position R is between c and fc, but is not between fc and c (only A3 is between
fc and c).

For each coin, c, we define a function, Pc, called the potential of c. It depends on
the position of the coin c and positions of other coins. It also depends on whether
the coins are in the circle C1 or C2.
The potential of a coin c in a configuration is defined for any configuration with

at least two coins by:
Pc = P0c + P ′

c, (4.31)

where:
P0c = (dc − 1)(2h− 1), (4.32)

and

P ′
c =







(i) : d(c, R) if the coins are on C1,

(ii) : d(c, Bh−2) + 2 if the coins are on C2

and R is between fc and c or c is on R,

(iii) : d(c, Bh−2) + h + 1 if the coins are on C2

and R is between c and fc or fc is on R.
(4.33)

The definition is valid if there are at least two coins. The value of P ′
c is in {0 . . . h−

1} in case (i), in {2 . . . h} in case (ii), and in {h + 1 . . . 2h− 1} in case (iii).
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Example 4.19: In Figure 4.15(a) the potentials are the following.

Pc = (d(c, fc)− 1) · (2h− 1) + d(c, R) = 2 · 9 + 1 = 19

Px = (d(x, c)− 1) · (2h− 1) + d(x, R) = 3 · 9 + 0 = 27

Pfc
= (d(fc, x)− 1) · (2h− 1) + d(fc, R) = 2 · 9 + 3 = 21

In Figure 4.15(b) the potentials are the following.

Pc = (d(c, fc)− 1) · (2h− 1) + d(c, B3) + h + 1

= 1 · 9 + 0 + 5 + 1 = 15 (case (iii))

Px = (d(x, c)− 1) · (2h− 1) + d(x, B3) + 2

= 2 · 9 + 3 + 2 = 23 (case (ii))

Pfc
= (d(fc, x)− 1) · (2h− 1) + d(fc, B3) + h + 1

= 2 · 9 + f2 + 5 + 1 = 26 (case (iii))

Let the leader be the coin with the lowest potential (we do not assume that
the leader is unique, but we will later see that it is the case). The potential of
a configuration is the potential of its leader.
In Figure 4.15(a) the coin c is the leader. The potential of this configuration

is equal 19. In Figure 4.15(b) also the coin c is the leader. The potential of this
configuration is now equal 15.

Lemma 4.20. If c has minimal potential of all the coins in a given configuration
then it also has minimal value dc. Moreover, if two coins c1 and c2 have the same
potential then they have the same value: dc1 = dc2.

Proof. If the configuration is on C1 then 0 ≤ P ′
c ≤ h−1. If the configuration is on C2

then 2 ≤ P ′
c ≤ 2h− 1. In both cases the range of values of P ′

c is less than 2h− 1 and
2h− 1 is the least difference in potential if dc differs. This proves both statements of
the Lemma.

Lemma 4.21. Each coin in a fixed configuration has a different potential.

Proof. Let us assume the contrary, that there are two coins c1 and c2 with the same
potential. From Lemma 4.20 we know that dc1 = dc2, so P ′

c1 = P ′
c2. If the configuration

is on C1 then P ′
ci
is described by (i) and the coins have to be at the same position

on the circle, which contradicts the assumption that they are different. The same
happens if both P ′

c1
and P ′

c2
are defined by (ii) or both of them are defined by (iii).

On the other hand, the ranges of P ′
c for cases (ii) and (iii) of (4.33) are disjoint, so

no other choice is possible.

Lemma 4.22. After each operation 1-4, assuming that there are at least two coins
after the operations, the potential of a configuration decreases by at most the cost of
the operation. Moreover, in each configuration there is an operation that decreases
the potential of the configuration by exactly the cost of the operation, as long as after
each operation there are at least two coins.
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Proof. Each possible operation will be considered separately. We will first show that
the potential of any coin c decreases by at most the cost of the operation. Then,
for any coin c we will find an operation Oc (not necessarily unique) that decreases
the potential of c by exactly the cost of Oc. This will prove the lemma, because the
potential of the leader cL may decrease by the cost of OcL

. The leader will also be the
leader after the operation OcL

because the potential of no other coin can decrease by
a larger value after applying OcL

and the leader had the lowest potential before the
operation.
Let us consider the circle C1 first:� Operation 1: If dc does not change then P ′

c cannot decrease by more than h−1.
Otherwise, dc decreases by exactly one. We have to show that in this case P ′

c

increases by at least h. Before the operation we had P ′
c = d(c, R). As the

distance between c and fc decreased after the operation, there are two cases.

The first one is that c is on R before the operation. Then it stays on R after
the operation as well. The new value of P ′

c is described by (ii) of (4.33), which
means that it increased from 0 to d(R, Bh−2) + 2 = h.

The second case is that c is not on R before the operation. As the distance, dc,
decreased, fc must have been between R and c. Thus, after the operation fc

is between R and c or fc is on R. The new value of the potential is described
by (iii) of (4.33): P ′

c = d(c, Bh−2) + h + 1. Since c is not on R, d(c, Bh−2) =
d(c, R)− 1 and P ′

c increases by exactly h.� Operation 2: The potential of a coin c either decreases by one, if c is not on R,
or increases by h− 1, if c is on R. Thus, in both cases the potential decreases
by at most one.

If the coin c is not on R, operation 2 decreases the potential of c by 1. Otherwise,
i.e. if c is on R, operation 1 decreases the potential of c by h− 1.
For the circle C2:� Operation 3: If P ′

c before and after the operation are both described by the
same part (ii) or (iii) of (4.33) then the potential decreases by at most one. If
before the operation the potential is described by (ii) and afterwards by (iii),
it can only increase (note that h ≥ 3). Finally, if the potential before the
operation is described by (iii) and afterwards by (ii) then at start c is on Bh−2

and afterwards c is on R. Then the difference in the potential is:

{P ′
c}after − {P

′
c}before = d(R, Bh−2) + 2− d(Bh−2, Bh−2)− h− 1

= h− 2 + 2− 0− h− 1 = −1, (4.34)

which is correct.� Operation 4: If dc increases after applying the operation then Pc increases as
well. Otherwise initially c is on R or R is between fc and c. In both cases
P ′

c is described by part (ii) of (4.33). At start P ′
c = d(c, Bh−2) + 2. After the
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operation: P ′
c = d(c, R) (case (i) of (4.33)). As c cannot be on R after the

operation, {d(c, Bh−2)}before = {d(c, R)}after − 1, and

{P ′
c}after−{P

′
c}before = {d(c, R)}after−{d(c, Bh−2)}before−2 = −1, (4.35)

thus the potential decreased by exactly one.

Operation 4 decreases the potential of c by one if the potential is described by the
part (ii) of the equation. Otherwise, operation 3 decreases the potential of c by 1.
Note that in many cases the operation mentioned in the lemma is not unique.

Proof of Theorem 4.17. The length of the shortest merging sequence s for the set L′
h

of states of Fh is the cost of the lightest merging sequence so of operations 1-4 for
L′

h. The sequence s can be obtained from so by substituting the operations by their
corresponding string. We have already stated that such a sequence s also merges the
set Lh of states of Dh.
Operation 1 is the only one that reduces the number of coins. So the last operation

of so is operation 1, that merges the coins in R and A1. The cost of this final operation
is h − 1. Let us call the configuration with coins just in R and A1 the configuration
C.
By Lemma 4.22 it is always possible to decrease the potential of a configuration

by the cost of an operation as long as the final configuration has at least two coins.
The only configuration that may lead from a configuration with at least two coins
to a configuration with just one coin is the configuration C and C has the lowest
potential of all configurations with at least two coins. It is then always possible to
reach the configuration C starting from any configuration with at least two coins and
using only optimal operations, i.e. the operations that have the cost equal to the
drop in the potential.
The potential of the initial configuration is

P0 = 0 + (h− 2)(2h− 1) = 2h2 − 5h + 2. (4.36)

The potential of the configuration C is P1 = 0. There is a sequence so of operations
1-4 of cost P0 − P1 that leads from the initial configuration to the configuration C.
No sequence leading from the initial configuration to the configuration C can have
lower cost. Thus, the length of the shortest merging string s for the set L′

h of Fh is

|s| = P0 − P1 + h− 1 = 2h2 − 4h + 1. (4.37)

The sequence s is also a synchronizing sequence for the automaton Fh. Indeed,
any shortest merging string for the set L′

h has to start with 1h−1. The application
of 1h−1 to either the set of all states of Fh or to the set L′

h results in the same
configuration: the coins on the states R, B1, . . . , Bh−2.
Finally, by Theorem 4.7, the synchronizing string for Fh we found is also a syn-

chronizing string for Dh. Dh cannot have any shorter synchronizing string, because it
would also be a merging string for the set L′

h of states of Fh, which is impossible.
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⋆

(a) A tree Gk

⋆

(b) G4, s = 04

⋆

(c) C4, s = 11104 or s = 10104

Figure 4.16: The nodes with the longest merging string for the two families Ck and Gk.

The minimized Huffman automaton for Dh has K = 2(h−1) nodes. Even though
it contains a letter that reduces the number of coins by h − 2 = K

2
− 1 (a letter of

deficiency K
2
−1), its shortest synchronizing string is of length 2h2−4h+1 = K2

2
−1,

which is quadratic in K. This makes the automata Dh interesting in themselves.

The results of the search allow us to state the following conjecture.

Conjecture 4.23. The length of the shortest synchronizing string s for a code with
N codewords, N ≥ 9, with h being the length of the longest codeword, is at most:

|s| ≤ min(2N − a, 2h2 − 4h + 1), (4.38)

where a is 7 for odd N and 9 for even N .

4.3.2 Long merging string

For trees of fixed size, N , the length of the shortest merging string for {n, ε} in the
worst case is equal N−2, for N = 3, . . . , 20, apart from N = 6. For N = 6 the worst-
case length is equal N − 1 = 5. Two families of trees have the worst-case shortest
merging strings. The first one corresponds to the code

Gk = {0, 10k} ∪ {10i1|i < k}, k ≥ 1, (4.39)

and gives the worst-case trees for N from 3 to 20, apart from N = 6. The size of
the tree Gk is N = k + 2. The merging string for the set {1, ε} is of length N − 2.
The structure of these trees is shown in Figure 4.16(a). The tree G4 is shown in
Figure 4.16(b). These figures also indicate the node whose merging string with ε is
the longest.

The other family of trees is the family Ck (see (4.25) and Figure 4.7(a)) with even
k (odd number of codewords). The merging string for the set {0, ε} is of length N−2
and this is the worst case for N = 7, 9, 11, . . .19. The node with the longest merging
string with ε is 0 (Figure 4.16(c)).

There are also additional worst-case trees for N = 5, 6, 7, 9, 10, 12. They corre-
spond to neither the trees Ck nor Gk. They are presented in Figure 4.17. The nodes
with the longest merging string with the root are marked with a star.

The worst-case trees among trees of fixed height, h, are the trees Dh (Equation
(4.26) and Figure 4.10).
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Figure 4.17: Worst case trees in terms the length of the shortest merging string. The nodes
that require a merging string of the worst-case length are marked with a star. The trees of
the families Ck and Gk are omitted.

Theorem 4.24. The upper bound on the length of the shortest merging string for
any pair {n, ε}, where n is a state of Dh, is ⌈h

2 − 3
2
h⌉. For odd h it is achieved by

the pair {0(h−1)/2, ε}. For even h it is achieved by pairs {x, ε}, where x is any binary
string of length h

2
containing at least one 0.

Proof. The length of the shortest merging string is given by the potential of the
position plus h − 1 (see the proof of Theorem 4.17). It is enough to find a two-coin
configuration with one coin on R that has the largest potential.

For even h, the maximum of the minimal distance between the two coins is h/2
and it is possible only in the circle C1. The second coin is then on Ah/2. In this
configuration the coin with minimal potential is the one on R. The length of the
shortest merging string is:

|s| = PR + (h− 1) = P0R + P ′
R + (h− 1)

= (dR − 1)(2h− 1) + d(R, R) + (h− 1)

= (h
2
− 1)(2h− 1) + 0 + (h− 1)

= h2 − 3
2
h.

For odd h, the maximum of the minimal distance between coins is (h − 1)/2.
Such a configuration is possible on either the circle C1 and C2. Let us assume for
a moment that the coins are in C2. The second coin must be B(h−1)/2 to get the
distance (h− 1)/2 between the coins. The coin with minimal potential is the one on
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R. The length of the shortest merging string is:

|s| = PR + (h− 1) = P0R + P ′
R + (h− 1)

= (dR − 1)(2h− 1) + d(R, Bh−2) + 2

=
(

h−1
2
− 1

)

(2h− 1) + (h− 2) + 2 + (h− 1)

= h2 − 3
2
h + 1

2

No potential of any position on C1 can be higher, because the value of P
′
c on the circle

C1 never exceeds h− 1 (it is equal h in the position on C2 analyzed above).

The results of the search allow us to state the following conjecture.

Conjecture 4.25. For any Huffman automaton, T , corresponding to a code with N
codewords, with h being the length of the longest codeword, the length of the shortest
merging string, sn, for a set {n, ε}, where n is any state of T is bounded by:

|s| ≤ min(N − 2, ⌈h2 − 3
2
h⌉), (4.40)

if N 6= 6, and |s| ≤ 5 for N = 6.

4.4 Synchronizing codewords

This section presents two algorithms for finding all synchronizing codewords in a Huff-
man code. Both algorithms work in the time proportional to the sum of codewords’
lengths. The first one is very simple and also efficient. The other one is more in-
volved but, additionally, after preprocessing in O(N), it is able to answer in O(|w|)
if a codeword w is synchronizing.

4.4.1 Simple algorithm

To check if a particular codeword w is synchronizing one can traverse the Huffman
tree from each node using the string w and check whether the final node is always
the root. Direct implementation of this method requires O(N |w|) operations for each
codeword w. This gives the total O(N

∑
|wi|) operations to find all synchronizing

codewords in a code.
The time complexity can be improved by changing the order of the computations.

We can first chose a node n of the Huffman tree and then check which codewords
synchronize n. The codewords form a complete binary tree, so they share many
common prefixes. Checking which codewords synchronize the node n can be done in
one DFS traversal of the tree of codewords. The number of operations for each node
is only O(N), so O(N2) operations suffice to find all synchronizing codewords. In the
worst case, i.e. when

∑
|wi| = O(N2), this is by factor N better than before.

Algorithm 4.1 is based on the idea just described with an additional optimiza-
tion, to be explained later. The call searchSync(ε, v) in the body of the algo-
rithm marks the nodes that do not synchronize the vertex v. The first parameter
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Algorithm 4.1: Simple Algorithm.

Input: T — a Huffman tree.
Output: For each node v, the field v.sync set to true iff π(v) is a

synchronizing codeword.
procedure searchSync(x, y)1

if x is a leaf then2

if y is not a leaf then x.sync ← false;3

else4

if y is a leaf then5

if not x.processed then6

x.processed ← true;7

y ← ε;8

else return;9

searchSync(x.left, y.left);10

searchSync(x.right, y.right);11

end procedure12

forall node v of T do13

v.sync← true;14

v.processed← false;15

forall node v of T do16

searchSync(ε, v); ⊳ Check which codewords do not synchronize v17

in searchSync(x, y), x, is the node that determines the prefix π(x) of a codeword
being analyzed. The second parameter, y, is the result of traversing the tree from the
initial node v using the word π(x). If the node x is a leaf then the algorithm checks
whether the codeword π(x) synchronized the node v. This holds if and only if the
node y is also a leaf.
Algorithm 4.1 uses an optimization that prunes computations that have already

been done during algorithm’s execution. Lines 6, 7 and 9 prune the calls to search-
Sync for pairs (x, y = ε) that have been processed before. With this optimization the
number of operations is proportional to ST — the sum of the sizes of all the subtrees
of the code tree T , which is O(

∑
|wi|) by Lemma 4.2.

The properties of the algorithm can be summarized as follows.

Theorem 4.26. After the execution of Algorithm 4.1 on a Huffman tree T , the field
l.sync for a leaf l ∈ T is true if and only if π(l) is a synchronizing codeword for
the Huffman code C(T ). The time complexity for Algorithm 4.1 is O(

∑

i |wi|), where
wi are codewords of the code C(T ).

4.4.2 Improved algorithm

The new method (Algorithms 4.2 and 4.3) requires O(N) operations for preprocessing
and then it is able to answer in O(|w|) time whether a codeword w is synchronizing.
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For the problem of finding all the synchronizing codewords this does not give a better
complexity than Algorithm 4.1. Nevertheless, the new method can be used to check in
O(N) time if a particular codeword is synchronizing. It is not possible with Algorithm
4.1. The method is based on the following theorem:

Theorem 4.27. A codeword w is synchronizing if and only if the two conditions are
met:

1. There is no codeword w′ in the code such that w′ = awb, where both a and b are
nonempty words (i.e. w is a subword of w′ that is not a prefix nor a suffix; w
will be called here a proper subword of w′).

2. Let w = w′′w′ be such a word that there is a node v of the Huffman tree such
that δ∗(v, w′′) = ε and for no proper prefix p of w′′ δ∗(v, p) = ε. Then w′ is
a string of codewords.

Proof. It is easy to see that for a synchronizing codeword both conditions are met.
To see the reverse, let us take an internal node v 6= ε and let us traverse the tree from
v using w. We cannot finish before reaching a leaf because that would contradict 1, so
we end up in a leaf after a prefix w′′, with w = w′′w′. Then, by the second condition,
w′ is a string of codewords and the further traversal ends in the root. It follows that
w synchronizes any vertex v.

For each node v of the Huffman tree the following values will be used in the
algorithms:� v.bord — the lowest node v′ such that π(v′) is a proper suffix of π(v),� v.leaf — the lowest leaf node v′ such that π(v′) is a proper suffix of π(v),� v.nonLeaf — the lowest non-leaf node v′ such that π(v′) is a proper suffix of

π(v),� v.depth — the distance from the root (we have ε.depth = 0).

By the lowest node it is meant the node with the largest depth. If no node fulfilling
the properties exists, the value is null. These pieces of information can be computed
with O(N) operations (see Algorithm 3.8).
The method uses two algorithms. Algorithm 4.2 finds all codewords that do not

satisfy statement 1 of Theorem 4.27, i.e. the codewords that are proper subwords
of other codewords. It marks the corresponding leaf nodes, x, with x.subword ←
true. This is done in lines 5 and 6. These lines are based on the observation that
the field v.leaf for non-leave nodes v gives a codeword w that is a proper subword of
another codeword w′. Any suffix of such a proper subword is also a proper subword,
so the target of the field v.leaf for such a codeword is set as subword too.
Algorithm 4.2 also computes all the possible prefixes w′′ defined in Condition 2 of

Theorem 4.27. Line 8 sets the flag v.inLeaf for each vertex v such that π(v) is such
a prefix w′′. These values will be used in Algorithm 4.3. The complexity of Algorithm
4.2 is O(N).
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Algorithm 4.2: Computing subword and preprocessing for Algorithm 4.3.

Input: T — a Huffman tree.
Output: The fields subword and inLeaf for each node of the tree.
forall node v of T do1

v.subword ← false;2

v.inLeaf ← false;3

forall node v of T in reversed BFS order do4

if v is not a leaf or v.subword = true then5

if v.leaf is not null then v.leaf.subword ← true;6

if v is a leaf or v.inLeaf then7

if v.bord is not null then v.bord.inLeaf ← true;8

The second algorithm of the method, Algorithm 4.3, answers in O(|w|) whether
a codeword w is synchronizing. It uses the information x.subword and x.inLeaf
computed by Algorithm 4.2. First, the codeword is rejected if it is a proper subword
of another codeword. Otherwise, Algorithm 4.3 processes the word w bit by bit and
analyzes the decoders of w that start at each marked suffix of w, i.e. at the nodes v
with v.inLeaf set to true. The array T keeps track of which decoders are active.
A decoder becomes active when it starts at some position k1. Then the value T [k1] is
set to true (line 14). The decoder becomes inactive when it reaches a leaf at some
position k2. Then T [k1] is set to false (line 11). But each decoder that reaches a
leaf reappears in the root (see Chapter 2). This is equivalent to activating some other
decoder at T [k2], which is done in line 12.
It can be shown that the states of decoders that may have appeared in a leaf can

be found on the list {v.leaf, v.leaf.leaf, . . .} (line 9; see Section 3.5.2 for details).
The field x.depth for such a state gives the number of bits processed by the decoder.
The bit number where the decoder started is k1 = i−x.depth, where i is the number
of the current bit of w. The number k1 is the index to the array T , where it can be
checked whether the decoder is active and, if so, deactivate it.
At the end, Algorithm 4.3 checks if there is an active decoder different from the

one that has just started. If so, the codeword w is not synchronizing, because the
sufix processed by this decoder is not a sequence of codewords and condition 1 from
Theorem 4.27 does not hold.

Theorem 4.28. Algorithm 4.3 uses O(|w|) operations.

Proof. It is enough to prove that each element of the array T is accessed in line 10 at
most once. Suppose the contrary, an element k of T is accessed twice, for i = i1 and
for i = i2, i1 < i2. Then, there are two leaves, x1 and x2, with k = i1−x1.depth and
k = i2 − x2.depth. The strings π(x1) and π(x2) are codewords and they are suffixes
of w[0..i1) and w[0..i2) of length i1− k and i2 − k, respectively. Thus, the position of
wl in w, l = 1, 2, is il − (il − k) = k. This means that w1 is a prefix of w2, which is a
contradiction since the code is prefix-free.
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Algorithm 4.3: Checking in O(|w|) if a codeword w is synchronizing.

Input: T — a Huffman tree, w — a codeword of the corresponding Huffman
code.

Output: w.sync set to true iff w is a synchronizing codeword.
if v.subword = true then1

w.sync← false;2

else3

w.sync← true;4

v ← ε; ⊳ current node on the path corresponding to w5

for i← 1 to |w| do6

v ← δT (v, w[i− 1]); ⊳ v = δ∗T (ε,w[0..i))7

T [i]←false;8

forall x in (v.leaf, v.leaf.leaf, . . .) do9

if T [i− x.depth] = true then10

T [i− x.depth]← false; ⊳ the decoder reached a leaf11

T [i]← true; ⊳ and restarts from the root12

if v.inLeaf = true then13

T [i]← true ⊳ a new decoder starts here14

if some T [i], i = 1 . . . (|w| − 1) is true then15

w.sync← false;16

If processing all the codewords is needed, Algorithm 4.3 may be improved. Instead
of analyzing each codeword separately, it may analyze all the codewords at the same
time, reusing the computations for common prefixes. This optimization decreases the
overall number of operations, but unfortunately it does not decrease the worst-case
complexity, because the time needed for Algorithm 4.3 for processing each bit is not
constant. Nevertheless, experiments have shown that with this trick the number of
operations is reduced by about three times for the tested trees.
It should be noted that both algorithms for finding all the synchronizing codewords

for a code are practical. They give instantly the results even for codes with thousands
of codewords. They were tested, in particular, on the extended Huffman code for Jpeg
compression, defined in Section 3.10, which contains about 32 thousand codewords.
On the other hand, the methods that use the synchronization graph, presented in
Section 3.3, are impractical for such codes.

4.5 Conclusions

In this chapter we analyzed the relation between Huffman codes and a certain class
of finite automata. An upper bound of the shortest merging string for a pair of states
of these automata was shown. This result was then used to prove an upper bound on
the length of the shortest synchronizing string for any synchronizing Huffman code.
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The proof was constructive and an algorithm that constructs a synchronizing string
achieving the bound was given. The algorithm is faster than the general algorithm of
Eppstein [18], the best known at the moment. It also constructs shorter synchronizing
strings. Also an algorithm for testing whether a Huffman code is synchronizing was
presented. This algorithm is also faster than the one of Eppstein [18].
We tested the lengths of the shortest merging string and of the shortest synchro-

nizing string on all codes of size from 3 to 20 and on all codes with the length of the
longest codeword from 2 to 5. Three classes of worst-case codes were found. Two
of them corresponded to the worst-case length of a synchronizing string. For these
codes, the exact length of the shortest synchronizing strings was computed. This
allowed us to formulate conjectures that these codes are the worst for any code size.
It is interesting that the length of the shortest synchronizing strings for the worst-

case codes is much lower than the bound proven. Improvement of the bounds remains
an open problem.
Finally, two efficient algorithms for finding all synchronizing codewords of a Huff-

man code were presented. The algorithms are fast and simple to implement, so they
are of practical interest. They may be applied for searching for codes with the best
synchronization properties, expressed in the number of synchronizing codewords and
their lengths. Low complexity of the algorithms increase the number of codes that
can be analyzed efficiently.





Appendix A

Proof of Theorem 3.47

The theorem will be proved in several steps. Let us denote:

w = a0a1 . . . an−1, (A.1)

where ai ∈ Σ. Thus, |w| = n.
Let us define Pw ⊆ {0, . . . , n− 1} as

k ∈ Pw ⇐⇒ akak+1 . . . an−1 = a0a1 . . . an−k−1. (A.2)

The set Pw corresponds to the set of suffixes of w that are its prefixes.

Lemma A.1. Pw has the following properties, for any k, l ∈ Pw, k ≤ l, and for any
i ≥ 0:

k + l < n⇒ k + l ∈ Pw, (A.3)

i · k < n⇒ i · k ∈ Pw, (A.4)

k + (l − k)i < n⇒ k + (l − k)i ∈ Pw. (A.5)

Proof. For (A.3) we have from (A.1) and (A.2) for (k + l) < n:

ak+lak+l+1 . . . an−1 = alal+1 . . . an−k−1

= a0a1 . . . an−k−l−1, (A.6)

so (k + l) ∈ Pw.
Equation (A.4) can be proved by induction. It is true for i = 0 and i = 1. Then,

assuming that (A.4) is true for i− 1 and 1, we have (i− 1)k ∈ Pw and k ∈ Pw thus
from (A.3) also i · k ∈ Pw if only i · k < n.
Finally, for Equation (A.5), let v = ak . . . an−1. Then (l − k) ∈ Pv. From (A.4),

(l − k)i ∈ Pv for i ≥ 0 such that (l − k)i < n − k. It follows that (l − k)i + k ∈ Pw

for the same values of i.

Definition A.2. m ∈ Pw is a secondary appearance in Pw if it follows from the
property (A.5) of Pw, i.e.

∃k,l∈Pw,0≤k<l∃i≥2(m = k + (l − k)i) (A.7)

The number l in (A.7) will be called a parent of the appearance p; p will be called a
child of the appearance l.
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Note that an appearance may have zero or more children and a secondary appear-
ance has one or more parents.

Definition A.3. m ∈ Pw is a primary appearance in Pw if it is not a secondary
appearance of m ∈ Pw.

Primary appearances are the elements that do not have a parent.

Definition A.4. An interval, D(p), of a primary appearance p ∈ Pw, is the smallest
x > 0 such that for all i > 0, (p + x · i) ∈ Pw if only (p + x · i) < n. In particular x
may be such that p + x > n.

Lemma A.5. The number of primary appearances in Pw is less or equal ⌊log n⌋+ 1.

Proof. Let p1, p2, . . . be all the primary appearances in Pw in increasing order. We
will show that their distances decrease exponentially.
The appearance p1 = 0 corresponds to the whole word w and D(p1) ≤ n. For any

pk we have (pk + iD(pk)) ∈ Pw for i ≥ 0. It follows that for some i ≥ 0:

pk + iD(pk) ≤ pk+1 < pk + (i + 1)D(pk). (A.8)

Then either
pk+1 − (pk + iD(pk)) ≤ D(pk)/2 (A.9)

or
(pk + (i + 1)D(pk))− pk+1 ≤ D(pk)/2 (A.10)

(otherwise after adding (A.9) and (A.10) we get D(pk) > D(pk)). Hence, from (A.5)
we get D(pk+1) ≤ D(pk)/2. From D(pk) ≥ 1 follows the Lemma.

In the proof of Theorem 3.47 we will add new bits at the end of w to remove as
many primary appearances as possible. We will also analyze how removing a primary
appearance influences secondary appearances by looking at the parent-child relations.

Definition A.6. The blocking bit for k ∈ Pw is a letter B(k) such that k /∈ PwB(k).

It is easy to see that B(k) is an−k, the negation of the bit an−k.

Lemma A.7. If b is a blocking bit for an appearance l then it is a blocking bit for all
its descendants (the children of l, the children of the children of l, etc.).

Proof. It is enough to prove that b is a blocking bit for any child of l. The proof for
the other descendants follows by induction.
Let m ∈ Pw be a secondary appearance and let l be its parent. Then we have

some k ∈ Pw and i ≥ 2 such that m = k + (l − k)i. If b is a blocking bit for l then
b = an−l. However, (l−k) is a period of the word a0a1 . . . an−k−1, i.e. aj+(l−k) = aj for
any j ≥ 0 such that j +(l−k) < n−k, i.e. j < n− l (it follows from aj = al+j = ak+j

for l + j < n as k, l ∈ Pw). Then

an−m = an−k−(l−k)i = an−k−(l−k)(i−1)

= . . . = an−k−(l−k)·1 = an−l, (A.11)

so b is also the blocking bit for m.
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Note that in the proof of Lemma A.7 the blocking bit for k may not necessarily
be the blocking bit for m, because the chain of equalities (A.11) cannot be further
extended to an−l = an−l+(l−k) = an−k, since the condition j < n − l is not fulfilled
(here j = n− l and j + (l − k) = n− k).
By Lemma A.7, it is enough to focus on removing the appearances that have no

parent, which are the primary appearances.

Lemma A.8. Let Q ⊆ Pw, 0 /∈ Q. There exist a word v, |v| ≤ ⌊log |Q|⌋ + 1, such
that Pwv ∩Q = ∅.

Proof. We will construct the words v0 = ǫ, v1, v2, . . ., vm = v, |vi| = i and vi+1 = vibi,
where bi is a single bit. Let Qi = Pwvi

∩Q. We have Q0 = Q. The bit bi will be chosen
in the following way. The elements of Qi will be divided into two groups, depending
on their blocking bit in Pwvi

. Then, bi will be the blocking bit that corresponds to
the larger group. We always have |Qi+1| ≤ |Qi|/2. So after m ≤ ⌊log |Q|⌋ + 1 steps
we get Q(m) = ∅. We will prove that vm is the word v from the Lemma. Indeed, let
us assume that k ∈ Q was in the chosen group that determined the bit bi. Then the
(n + i)-th bit in wv is bi and the (n− k + i)-th bit in wv is bi . Thus k /∈ Pwv.

Proof of Theorem 3.47. Let us take Q as the set of all primary appearances of Pw

other than 0. From Lemma A.5: |Q| ≤ ⌊log n⌋. Thus, applying Lemma A.8 to Q we
get a word v with |v| ≤ ⌊log log n⌋ + 1 such that Pwv ∩ Q = ∅. We will show that v
is the word whose existence is stated in the theorem.
Indeed, if we had wv = xp and |x| = k with 0 < k < n then k ∈ Pwv and also

k ∈ Pw (see (A.2)). But k cannot be a primary appearance in Pw, because otherwise
k ∈ Q and then k /∈ Pwv. By Lemma A.7, it cannot be a secondary appearances in Pw

either because by blocking the primary appearances their descendants were blocked
as well, so k /∈ Pwv.

In Theorem 3.47 one cannot assume that it is possible to find such a short suffix
to achieve |x| = 0 (i.e. no |x| ≥ n is allowed either). Indeed, the counterexample is:

w = 0 11 . . .1
︸ ︷︷ ︸

n−2

0. (A.12)

The shortest extension w′ of w such that no proper prefix of w′ is its suffix is:

w′ = 0 11 . . .1
︸ ︷︷ ︸

n−2

0 11 . . .1
︸ ︷︷ ︸

n−1

(A.13)

(the last letter must be a 1; then to eliminate n − 1 from Pw′, w′ needs to have at
least n− 1 ones after the last zero).
The theorem is true also for any larger alphabet Σ, but the result can be improved.

For instance, in Lemma A.8 we would have v ≤ ⌊log|Σ| |Q|⌋+ 1.
The construction given in the proof can be used as an algorithm for finding such

extensions of words. However, one may also try all possible suffixes of length ≤
⌊log log n⌋+ 1, as for n < 216 the length of such a suffix is at most 4.





Bibliography

[1] D. S. Ananichev and M. V. Volkov. Synchronizing generalized monotonic au-
tomata. Theor. Comput. Sci., 330(1):3–13, 2005.

[2] D. S. Ananichev, M. V. Volkov, and Yu. I. Zaks. Synchronizing automata with
a letter of deficiency 2. Theor. Comput. Sci., 376(1-2):30–41, 2007.

[3] A. Apostolico and A. S. Fraenkel. Robust transmission of unbounded strings
using Fibonacci representations. IEEE Trans. Inf. Theor., 33(2):238–245, 1987.

[4] Marie-Pierre Béal. A note on Černý conjecture and rational series. Preprint
Institute Gaspard-Monge, Université de Marne-la-Vallé, January” 2003.
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