
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Marcin Pilipczuk

New techniques applicable to selected

NP-hard problems
PhD dissertation

Supervisor

dr hab. �ukasz Kowalik

Institute of Informatics
University of Warsaw

September 2011

Author's declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by
legal means.

September 21, 2011 .
date Marcin Pilipczuk

Supervisor's declaration:
the dissertation is ready to be reviewed

September 21, 2011 .
date dr hab. �ukasz Kowalik

Streszczenie. Ka»dy NP-zupeªny problem mo»na rozwi¡za¢ w czasie wykªad-
niczym przez przejrzenie caªej przestrzeni mo»liwych rozwi¡za«. Dziedz-
ina algorytmów umiarkowanie wykªadniczych zajmuje si¦ poszukiwaniem
sposobów dokªadnego rozwi¡znywania problemów NP-zupeªnych asympto-
tycznie szybciej ni» stosuj¡c rozwi¡zania naiwne. Zaskakuj¡co cz¦sto takie
algorytmy istniej¡, a ich otrzymanie i analiza wymaga nowych, ciekawych
obserwacji dotycz¡cych rozwa»anego problemu.

W pierwszej cz¦±ci tej rozprawy podajemy algorytmy dla trzech prob-
lemów: Capacitated Dominating Set, Minimum Maximal Irredun-

dant Set i pewnego problemu szeregowania zada«. We wszystkich trzech
przypadkach istniej¡ proste rozwi¡zania dziaªaj¡ce w czasie O(2n) i nasze
algorytmy przeªamuj¡ t¦ naturaln¡ barier¦. Wszystkie te rezultaty s¡ oparte
o nowe obserwacje pozwalaj¡ce ograniczy¢ rozmiar przestrzeni rozwi¡za«.

W zªo»ono±ci parametryzowanej zakªadamy, »e z ka»dym egzemplarzem I
rozwa»anego (zazwyczaj NP-zupeªnego) problemu stowarzyszony jest parametr
k. Poszukujemy algorytmów (zwanych parametryzowanymi) dziaªaj¡cych w
czasie f(k)|I|O(1) dla pewnej obliczalnej funkcji f . Innymi sªowy, chcemy, aby
ponadwielomianowy czynnik w zªo»ono±ci czasowej, prawdopodobnie nieu-
nikniony w przypadku problemu NP-zupeªnego, zale»aª tylko od parametru
k. Szczególnym przypadkiem algorytmów parametryzowanych jest dziedzina
kernelizacji, która zajmuje si¦ poszukiwaniem i analiz¡ algorytmów przetwarza-
j¡cych dany egzemplarz problemu do równowa»nego, którego wielko±¢ zale»y
tylko od warto±ci parametru.

Druga cz¦±¢ tej rozprawy jest po±wi¦cona dwóm wynikom w dziedzinie
zªo»ono±ci parametryzowanej. Pokazujemy pierwszy znany algorytm parame-
tryzowany dla problemu Subset Feedback Vertex Set, blisko zwi¡zanego
z grafowymi problemami separacyjnymi, graj¡cymi obecnie kluczow¡ rol¦ w
zªo»ono±ci parametryzowanej. Ponadto dowodzimy, »e je»eli hierarchia wielo-
mianowa nie ustala si¦ na trzecim poziomie, wiele problemów grafowych
zawieraj¡cych wymóg spójno±ci nie posiada algorytmów kernelizacyjnych,
w których rozmiar wynikowego egzemplarza jest zale»ny wielomianowo od
parametru, nawet przy ograniczeniu si¦ do grafów o ograniczonej degener-
acji. Ten wynik pokazuje, »e znane algorytmy kernelizacyjne dla grafów o
wykluczonym minorze (b¦d¡cych podklas¡ grafów o ograniczonej degener-
acji) w istotny sposób wykorzystuj¡ topologiczne wªasno±ci tych klas grafów.
Sªowa kluczowe: algorytmy umiarkowanie wykªadnicze, algorytmy parame-
tryzowane, kernelizacja, bariera 2n, grafy o ograniczonej degeneracji.
Klasy�kacja tematyczna ACM: F.2.2, G.2.1, G.2.2.

3

Abstract. All NP-complete problems can be solved in exponential time
by enumerating the space of possible solutions. In the area of moderately-
exponential algorithms, we seek for exact algorithms for NP-complete prob-
lems that are faster than the naive ones. Surprisingly, often such results exist
and their development leads to a good insight into a considered problem.

In the �rst part of this dissertation we give algorithms for three problems:
Capacitated Dominating Set,Minimum Maximal Irredundant Set

and one job scheduling problem. In all cases there exists a simple O(2n)-time
algorithm, and our results break the natural 2n-barrier. All three results are
based on new observations on the considered problems that allow us to limit
the search space.

In the parameterized complexity setting we assume that a given instance
I (of a usually NP-complete problem) comes up with a parameter k. We seek
for algorithms (called �xed-parameter algorithms) working in time f(k)|I|O(1)

for some computable function f . In other words, we want the superpolyno-
mial factor in the time complexity, probably unavoidable for NP-complete
problems, to depend on the parameter only. A special case of �xed-parameter
algorithms is the �eld of kernelization, where one seeks for a polynomial-
time preprocessing algorithms that shrink a given instance to one with size
bounded by a function of the parameter k.

The second part of this dissertation is devoted to two results in this �elds.
First, we show the �rst known �xed-parameter algorithm for Subset Feed-
back Vertex Set, a problem closely related to graph-cutting problems that
are now central in parameterized complexity. Second, we prove that, unless
the polynomial hierarchy collapses up to its third level, many problems in-
volving connectivity requirement do not admit a kernelization algorithm with
polynomial (in the parameter) guarantee on the output size, even if the in-
put graph is restricted to be of bounded degeneracy. This proves that known
kernelization algorihtms for graphs excluding a �xed minor (being a subclass
of graphs of bounded degeneracy) indeed require the topological properties
of these graph classes.
Keywords: moderately-exponential algorithms, �xed-parameter algorithms,
kernelization, 2n-barrier, bounded degeneracy graphs.
ACM classi�cation: F.2.2, G.2.1, G.2.2.

4

Chapter 1

Introduction

Many real-life combinatorial problems turn out to be NP-hard, and thus
probably not solvable e�ciently, that is, in polynomial time. Since the dis-
covery of the NP-hardness phenomenon in late 1960s and early 1970s, re-
searchers were developing di�erent methods of coping with hard problems.
One of the classical approach are approximation algorithms, where one weak-
ens the requirement that the solution must be optimal and asks for one close
to the optimal. However, the discovery of the PCP theorem and subsequent
work show that many important problems are hard to approximate, including
the Clique problem [89].

Thus, in some applications, polynomial-time approximation is not su�-
cient and we may ask what we can gain by allowing superpolynomial time.
Naturally, all problems in NP can be solved in exponential time by trying
all possible solutions, whose sizes are bounded polynomially in the input
size. However, it turns out that in many cases there exist much faster (but
still superpolynomial) algorithms solving NP-hard problems optimally. We
call such algorithms moderately-exponential. One of the oldest examples is
the O(2nn2)-time dynamic programming algorithm of Held and Karp (1962)
solving Traveling Salesman Problem [94]. Moderately-exponential algorithms
attracted a lot of attention in the last decade, and the race for fastest al-
gorithms solving problems like Clique, Dominating Set, Chromatic
Number or Hamiltonian Cycle lead to the development of new tech-
niques such as Measure&Conquer [73], Fast Subset Convolution and usages
of the inclusion-exclusion principle [11, 13] or usages of the polynomial iden-
tity testing [10]. For more background of moderately-exponential algorithms
we refer the reader to the recent textbook of Fomin and Kratsch [75].

5

In the real-life applications the input instances are usually somewhat
speci�c and it turns out that many heuristic algorithms, even with horrendous
worst-case running time, behave reasonably. Parameterized complexity is a
mathematical framework that allows rigorous analysis of such algorithms.
For a given problem, each input instance x is accompanied with a parameter
k and we seek for algorithms (called �xed parameter algorithms) running
in time f(k)|x|O(1) for some computable (usually exponential) function f .
Intuitively, we try to encapsulate the exponential explosion in the running
time, probably unavoidable in NP-hard problems, in the function of only the
parameter, not the size of the input instance. Thus, if the parameter is small,
the algorithm runs quickly. Typical examples of parameters include solution
size (e.g., `is there a vertex cover of size at most k in the input graph G?'),
or some structural parameters of the input (e.g., `given a graph of treewidth
k, �nd a minimum vertex cover').

A very special way of obtaining parameterized algorithms is the idea of
kernelization. A kernelization algorithm reduces in polynomial time the input
instance x with parameter k to an equivalent one with the size bounded by
g(k) for some computable function g. Thus, kernelization can be seen as a
way of preprocessing and shrinking the input instance, so that the algorithms
applied later run faster. Note that if we solve the problem for the reduced
instance by an exhaustive search algorithm, we obtain a �xed-parameter
algorithm for any instance. We usually aim at polynomial kernels, that is,
with function g being a polynomial.

The parameterized complexity framework was very successful. As dis-
cussed in the introduction to the textbook of Downey and Fellows [56], it
turns out that many graphs appearing in real-life applications have small
treewidth, thus allowing e�cient dynamic programming algorithms on tree-
width decomposition. A lot of applications come from computational biology.
For example, the DNA samples form a graph close to an interval one, thus it
makes sense to parameterize by the edition distance to interval graphs. From
theoretical point of view, the research in parameterized complexity lead to
a development of many important techniques, including color coding [5], it-
erative compression [120] or bidimensionality [53, 77, 78]. The W -hierarchy,
discovered in 1990s, shows that some problems, including Clique and Dom-
inating Set parameterized by the solution size, probably do not admit �xed
parameter algorithms. In 2008, Fortnow and Santhanam [79] and Bodlaen-
der et al. [15] developed a way to show hardness of polynomial kernelization.
Today parameterized complexity is a big and active research area. For more

6

background we refer to the textbooks by Downey and Fellows [56], Flum and
Grohe [71] and Niedermeier [114].

In this dissertation we focus on results that all can be classi�ed as barrier-
crossing ones, where a new algorithm crosses some hardness barrier that
was considered tough or even unlikely to overcome. Such results are very
valuable in algorithmics, as usually they signi�cantly change the place of
the considered problem in the complexity hierarchy. This type of results
includes all proofs that a problem belongs to a certain (the smaller, the
better) well-known complexity class, such as LOGSPACE (problems that
admit logarithmic space algorithms) or FPT (problems that admit �xed-
parameter algorithms). However, in many cases also crossing some barrier
in the time or space complexity makes a small revolution, too. For example,
a recent O(n log log n)-time algorithm for �nding minimum cuts in planar
graphs [96] surprisingly improved upon O(n log n) algorithm by Reif [121]
from 1983. The Reif's result was previously considered optimal, as O(n log n)
complexity seems natural for this problem.

We would like to note that all hardness results in algorithmics can be
seen as statements that in a considered problem one particular barrier is
impossible (or very unlikely) to be overcome. Thus, the barrier-crossing
results can be seen as complementary to the hardness ones.

The �rst part of this dissertation is devoted to one speci�c barrier that
occurs in moderately-exponential algorithms. In many cases, a brute-force
or natural dynamic programming approach leads to an algorithm running
in time 2nnO(1) and it seems hard to break the 2n barrier, i.e., to obtain an
algorithm running in time O(cn) for some constant c < 2. A successful stories
in this line of research include Dominating Set [73] and Hamiltonian

Cycle in undirected graphs [10], but for many problems, including other
variants of Hamiltonian Cycle or TSP as well as Chromatic Number,
the question of the existence of an algorithm faster than 2nnO(1) remains
widely open. The hardness of one particular problem � the question of
satis�ability of boolean formulae on n variables � conjectured as Strong
Exponential Time Hypothesis by Impagliazzo and Paturi [95] � is used as
an argument that other problems are hard [41, 42, 108, 115].

In this dissertation we present algorithms that break the 2n barrier for
three problems: Capacitated Dominating Set,Minimum Maximal Ir-

redundant Set and a job scheduling problem, denoted 1|prec|
∑
Ci in the

Graham notation. In all cases, the algorithms are based on some interest-
ing and non-trivial observations that allow us to limit the size of the search

7

space. All algorithms, together with precise problem de�nitions, are gathered
in Chapter 2.

In the second part (Chapter 3) of this dissertation we present a few re-
sults from the area of parameterized complexity. The �rst and the main
one is a �xed-parameter algorithm for Subset Feedback Vertex Set, a
problem closely related to Feedback Vertex Set, Multiway Cut and
Multicut, three problems that play central roles in parameterized com-
plexity now. By this result we show that Subset Feedback Vertex Set

crosses the barrier of being �xed-parameter tractable. The second half of
Chapter 3 is devoted to hardness of polynomial kernelization for a few con-
nectivity problems on bounded degeneracy graphs. As discussed before, such
results show that in this case the barrier of admitting a polynomial kernel is
highly unlikely to be crossed.

The results in this dissertation are included in the following conference
and journal papers.

1. The algorithm solving Capacitated Dominating Set, described in
Section 2.2, was presented at SWAT 2010 [47]; the journal version is
published in Information Processing Letters [49].

2. The algorithm solving Minimum Maximal Irredundant Set, de-
scribed in Section 2.3, was presented at CIAC 2010 [48] and is included
in a joint journal paper with another group of researchers that solved
the problem independently [9].

3. The algorithm solving 1|prec|
∑
Ci, described in Section 2.4, was pre-

sented at ESA 2011 [44].

4. The �xed-parameter algorithm solving Subset Feedback Vertex

Set, described in Section 3.2, was presented at ICALP 2011 [45].

5. The proofs of the hardness of polynomial kernelization of connectivity
problems in degenerate graphs, described in Section 3.4, were presented
at WG 2010 [43].

Acknowledgements. I would like to thank my co-workers at University
of Warsaw, Marek Cygan, Michaª Pilipczuk and Jakub Onufry Wojtaszczyk,
for all the e�ort that lead to the results included in this dissertation. I would
also like to thank here Dominik Scheder for some useful discussions on the

8

1|prec|
∑
Ci problem during his stay in Warsaw in April 2011. Moreover,

I am extremely grateful to my advisor, �ukasz Kowalik, for many helpful
comments on presentation and write-up. Finally, I would like to thank my
family: without their support this dissertation would not be done in time.

1.1 Notation

All graphs in this dissertation are undirected and �nite and, unless otherwise
speci�ed, simple. For a graph G by V (G) and E(G) we denote the vertex and
the edge set, respectively. If the graph is clear from the context, we write only
V and E. Given a vertex v ∈ V (G), we de�ne its (open) neighbourhood by
NG(v) = {u : uv ∈ E(G)} and closed neighbourhood byNG[v] = NG(v)∪{v}.
We extend this notation to subsets of vertices: given X ⊆ V (G), we de�ne
NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \ X. We omit the subscript

whenever the graph is clear from the context. For a set of vertices X ⊆ V (G)
by G[X] we denote the subgraphs induced by X. For a set X of vertices or
edges, by G \ X we denote the graph obtained from G by removing the
vertices or edges of the set X. If X = {x}, we shorten the notation G \ {x}
to G\x. For F ⊆ E(G), by V (F) we denote the set of endpoints of the edges
in F . We say a vertex v ∈ V dominates u ∈ V if u = v or uv ∈ E (i.e., a
vertex dominates its closed neighbourhood). We say that a set W dominates
a vertex u if some vertex v ∈ W dominates u.

A cycle in G is a sequence of vertices v1v2 . . . vm ∈ V such that vivi+1 ∈ E
and vmv1 ∈ E. We say a cycle is simple if m > 2 and the vertices vi are
pairwise di�erent. If we consider multigraphs (i.e., graphs with multiple
edges and loops), a simple cycle can have two vertices if there is a multiple
edge between them, or a single vertex if there is a loop attached to it. We
call an edge vw ∈ E a bridge if in (V,E \ {vw}) the vertices v and w are
in di�erent connected components. Note that no simple cycle can contain a
bridge as one of its edges. Given subsets X, Y ⊆ V , by E(X, Y) we denote
the set of edges with one endpoint in X and the other in Y .

As we focus on exponential-time algorithms, we neglect the polynomial (in
the size of the input) terms in the time and space complexity. We introduce
the O? notation, which is the big-Oh notation with terms polynomial in the
input size suppressed, i.e., f(n) = O?(g(n)) when f(n) = O(g(n)nD) for some
constant D. For example, 2nn3 = O?(2n). Note that cnnD = O((c + ε)n)
for any constant c > 1, D > 0 and ε > 0. As the O? notation suppresses

9

terms polynomial in the input size, we can use it also in the context of �xed-
parameter algorithms, for example 2k

2
n3 = O?(2k

2
) where k is the parameter

and n is the number of vertices of the input graph.

10

Chapter 2

Moderately-exponential

algorithms

2.1 Introduction

Although all NP-hard problems are equivalent from the point of view of
polynomial-time transformations, the time complexity of fastest algorithms
that �nd optimal solutions can vary greatly. Moreover, as mentioned in the
introduction, in some cases polynomial-time approximation does not give
su�ciently good results and we simply need to �nd optimal solution. The
area of moderately-exponential algorithms seeks for fast, in many cases much
faster than the naive ones, algorithms that solve NP-hard problems optimally.

We would like to stress two other motivations for investigating exponen-
tial complexity of NP-hard problems. First, note that improving the time
complexity from cn1 to cn2 increases the size of the input for which computa-
tion is feasible by a multiplicative factor (of log c1/ log c2). This should be
compared to the addictive factor gained by an improvement of the speed of
the hardware.

The second motivation is of di�erent, theoretical type. The design of
moderately-exponential algorithms often reveals interesting structural prop-
erties of the considered problems that may be of independent interest. All
three algorithms presented in this chapter are very interesting from this point
of view: although the speed increase is in two cases really small, all algorithms
are based on some novel observations about respective problems.

Although moderately-exponential algorithms appear in the literature since

11

1960s (e.g., the classical dynamic programming algorithm of Held and Karp
for TSP [94]), it gained big interest and become an active area of research in
the last decade. The most interesting results include the algorithm for Band-
width of Feige [67], the Measure&Conquer technique and its application for
Clique and Dominating Set problem [73], Fast Subset Convolution and
its many applications [11, 12, 13, 127], as well as randomized algorithms
based on polynomial identity testing [10].

In case of many problems, the best known algorithm, usually brute-force
or simple dynamic programing, works in O?(2n) time, where n is some nat-
ural measure of the input size, in particular, in case of graph problems, n is
always the number of vertices. Going beyond this 2n barrier is fairly nontriv-
ial. This was the case of Dominating Set [73] or Hamiltonian Cycle in
undirected graphs [10], and currently a question of an algorithm for Chro-
matic Number or TSP faster than O?(2n) is a major open question in
the �eld. It is even conjectured that the satis�ability of boolean formulae
with n variables cannot be solved faster than an exhaustive search in O?(2n)
time [95] and this hypothesis is a starting point of a few hardness results
[41, 42, 108, 115].

In this dissertation we present algorithms that break the 2n barrier for
three problems:

1. In Section 2.2 we present an O(1.89n) algorithm that solves Capaci-
tated Dominating Set.

2. In Section 2.3 we present an O(1.999965n) algorithm that solves Min-
imum Maximal Irredundant Set.

3. In Section 2.4 we present an O((2− 5 · 10−16)n) algorithm that solves a
scheduling problem denoted by 1|prec|

∑
Ci in the Graham notation.

The value of our results is not in the speed increase � which is in the last two
cases admittedly small � but in the claim that the 2n-barrier can be crossed.
Moreover, the results give a new insight into the considered problems. In
particular, we would like to mention here the core observation and lemma
in the algorithm for 1|prec|

∑
Ci (Section 2.4.5) as an example of new ideas

developed while breaking the 2n barrier.

In a few places in this chapter we use the following simple bound on
binomial coe�cients.

12

Lemma 2.1. Let 0 < α < 1 be a constant. Then(
n

αn

)
= O?

((
1

αα(1− α)1−α

)n)
.

In particular, if α 6= 1/2 then there exists a constant cα < 2 that depends
only on α and (

n

αn

)
= O? (cnα) .

Proof. By Stirling's formula,

n! = Θ

(
nn
√
n

en

)
.

Thus (
n

αn

)
=

n!

(αn)!((1− α)n)!

= Θ

 nn
√
n

en

(αn)αn
√
αn

eαn
((1−α)n)(1−α)n

√
(1−α)n

e(1−α)n


= Θ

(
1

ααn(1− α)(1−α)n
√
n

)
= O?

((
1

αα(1− α)1−α

)n)
The second part of the lemma follows from the AM-GM inequality for values
1
α
and 1

1−α with weights α and (1− α), respectively:(
1

α

)α(
1

1− α

)1−α

≤ α · 1

α
+ (1− α) · 1

1− α
= 2.

Note that the equality in the AM-GM inequality holds if and only if 1
α

= 1
1−α ,

i.e., α = 1/2.

2.2 Capacitated domination

In a graph G, a set S ⊆ V is called a dominating set if it dominates the
whole V . The Dominating Set problem asks for the size of the smallest
dominating set of G, which we denote by γ(G).

13

The Dominating Set problem is one of the most intensively studied
problems in algorithmics. It is NP-complete to solve exactly and NP-hard to
approximate within a sublogarithmic factor, but a simple greedy algorithm
obtains a (1 + log |V |)-approximation. A straightforward algorithm solves
Dominating Set in O?(2n) time and at the beginning of this century it
was an important open problem in the moderately-exponential algorithm
community to break the 2n-barrier for this problem. This was independently
achieved by Grandoni [85], Fomin et al. [76] and Randerath and Schiermeyer
[122]. The search for faster algorithms for the Dominating Set problem led
to the discovery of the Measure&Conquer technique [72, 73]. This technique
helps in obtaining good bounds on the size of a search tree of backtracking
algorithms. The currently fastest algorithm solving Dominating Set is due
to Iwata [97].

From the graph-theoretical point of view, the graph invariant γ(G) � the
size of the minimum dominating set in G � is also intensively studied along
with its many variants. For example, the survey of Hedetniemi and Laskar
from 1990 [92] lists over 300 papers on domination in graphs. If we consider
the broader family of all covering problems, the list becomes even larger [90].

Let us mention here two examples of directions of research in the theory
of graph domination. It is easy to see that a connected graph G admits
a dominating set with at most |V (G)|/2 vertices: we simply take into the
dominating set every second layer of a spanning tree of G. A deep result
by Reed [119] improves this bound to 3|V (G)|/8 for graphs of minimum
degree at least three. It is conjectured that, maybe with some other mild
assumptions, such graphs should admit a dominating set of size |V (G)|/3.

A second example is a conjecture of Vizing from 1963 [128] that asserts
that a domination number of a cartesian product of two graphs is not smaller
than the product of the domination numbers of the ingredient graphs. Al-
though this conjecture has been settled for many subcases [7, 37], it seems
that we are still far away from obtaining a �nal answer [22].

In this and the next section we study the time complexity of determining
the values of two variants of the domination number γ(G) � namely, the Ca-
pacitated Dominating Set and theMinimum Maximal Irredundant

Set problems.
Let G = (V,E) be an undirected graph with n vertices. In the Capac-

itated Dominating Set problem each vertex v is additionally equipped
with a number c(v), called the capacity of v, which is the number of other
vertices this vertex can dominate. Formally, we say that a set S ⊆ V is a

14

capacitated dominating set if there exists fS : V \ S → S such that fS(v)
is a neighbour of v for each v ∈ V \ S and |f−1

S (v)| ≤ c(v) for each v ∈ S.
The function fS is called a dominating function for the set S. The Capac-
itated Dominating Set problem asks for the smallest possible size of a
capacitated dominating set.

Capacitated Dominating Set

Input: A graph G = (V,E) together with a function c : V → N.
Task: Find a smallest possible capacitated dominating set S ⊆ V .

Note that if we take c(v) to be the degree of v, we obtain the classical
Dominating Set problem. In the case of the Dominating Set problem,
checking whether a set S ⊆ V is a dominating set in G can be done in
linear time directly from the de�nition. In the case of the Capacitated
Dominating Set problem, this still can be done a polynomial time, but we
need max��ow or maximum matching techniques.

The problem of solving Capacitated Dominating Set faster than the
check-all-subsets O?(2n) time algorithm was posted by van Rooij in 2008 at
Dagstuhl seminar [74] and on IWPEC 2008 open problem list. At �rst glance
breaking O?(2n) barrier for the Capacitated Dominating Set problem
seems a hard task, since the backtracking approach with a Measure&Conquer
analysis [72] for the Dominating Set problem does not seem to extend to
the capacitated variant. This is caused by the fact that the backtracking
approach heavily relies on some local greedy decisions that can be performed
in the Dominating Set case, but are signi�cantly harder in the capacitated
version due to the existence of a dominating function fS. Even if the set S
is given, to compute a dominating function fS we need to use matching
or max��ow techniques, and a minor change to fS in one part of the graph
can in�uence the behaviour of fS in the whole graph. Thus, the backtracking
approach seems of little use in theCapacitated Dominating Set problem.

We provide an algorithm which solves the Capacitated Dominat-

ing Set problem in O(1.89n) and polynomial space. The algorithm con-
structs O?(

(
n
n/3

)
) = O(1.89n) reductions of the input graph into a Con-

strained Capacitated Dominating Set problem instance (de�ned in
Section 2.2.1), each solvable in polynomial time.

Our algorithm for Capacitated Dominating Set is somewhat similar
to one of the �rst algorithms to break O?(2n) for the classical Dominating
Set problem, namely the algorithm of Randerath and Schiermeyer [122].

15

Their algorithm also involves matching arguments and our algorithm, applied
to Dominating Set, can be viewed as a simpli�cation of their algorithm.
However we do not know whether their algorithm could be used to solve the
Capacitated Dominating Set problem.

2.2.1 Constrained Capacitated Dominating Set

In this section we introduce a constrained version of the Capacitated Dom-
inating Set problem, namely the Constrained Capacitated Domi-

nating Set problem, which can be solved in polynomial time.
The input of Constrained Capacitated Dominating Set is an

undirected graph G = (V,E), a set U ⊆ V and a capacity function c : V →
{0, . . . , n − 1}. We ask for a smallest capacitated dominating set S ⊆ V
containing U such that each vertex outside U dominates at most one other
vertex. Formally we ask for a dominating function fS satisfying

|f−1
S (v)| ≤ 1 for each v ∈ S \ U
|f−1
S (v)| ≤ c(v) for each v ∈ U (2.1)

LetG = (V,E) with U ⊆ V and a capacity function c : V → {0, . . . , n−1}
be a Constrained Capacitated Dominating Set instance. Consider
a new graph G′ = (V ′, E ′) which can be constructed as follows. We begin
with V ′ and E ′ empty.

• for any v ∈ V \ U add v to V ′;

• for any v ∈ U add c(v) copies v1, v2, . . . , vc(v) of v to V ′;

• for any v ∈ V \U and u ∈ U add an edge uiv to E ′ for all i i� uv ∈ E;

• for any v, w ∈ V \ U add vw to E ′ i� vw ∈ E and c(v) + c(w) > 0.

Note that there are no edges of the form viwj or vivj for v, w ∈ U .
We show a correspondence between feasible solutions of Constrained

Capacitated Dominating Set in G and matchings in G′.

Lemma 2.2. Let (G, c, U) be an instance of the Constrained Capaci-

tated Dominating Set problem. For any feasible solution S ⊆ V with a
dominating function fS satisfying the condition (2.1), one may construct in
polynomial time a matching φ(S, fS) in G′ satisfying |φ(S, fS)| = |V | − |S|.

16

(D,2)(E,0) (F,0)

(A,2)(H,0) (B,3) (C,2)

(K,0)

(M,0) (L,1)

U={A,B,C}

H' E' D' F' K' M' L'

A′1 A′2 B′1 B′2 B′3 C ′1 C ′2

Figure 2.1: From the constrained capacitated dominating set {A,B,C,D, L}
(where U = {A,B,C}) to a matching. By a pair (X, i) we denote a vertex
X with its capacity c(X) = i.

Proof. Let us de�ne the matching φ(S, fS) as follows (see Figure 2.1 for an
illustration):

• for each v /∈ S such that fS(v) /∈ U add vfS(v) to φ(S, fS);

• for each v /∈ S such that u = fS(v) ∈ U add vui to φ(S, fS), where
ui is a copy of u in G′ and di�erent copies ui are chosen for di�erent
vertices v with fS(v) = u (note that |f−1

S (u)| ≤ c(u), so there are
enough vertices ui).

Note that every vertex v ∈ V \ S is an endvertex of an edge in the matching
φ(S, fS). The second endvertex is fS(v) (in the case fS(v) /∈ U) or a copy of
fS(v) in G′ (in the case fS(v) ∈ U). Note that by condition 2.1, every vertex
w ∈ S \U is an endvertex of at most one chosen edge, thus φ(S, fS) is indeed
a matching. Moreover, every edge in φ(S, fS) has exactly one endpoint in
V \ S. Therefore |φ(S, fS)| = |V | − |S|.

17

Lemma 2.3. For any matching M in the graph G′, one may construct in
polynomial time a feasible solution ψ(M) to the Constrained Capaci-

tated Dominating Set instance (G, c, U) with dominating function fψ(M)

satisfying |ψ(M)| = |V | − |M |.

Proof. Consider a capacitated dominating set ψ(M) with dominating func-
tion fψ(M), constructed as follows. We start with ψ(M) and fψ(M) empty.

• add all vertices of U to ψ(M);

• for u ∈ U and for each i such that uiv ∈M , set fψ(M)(v) = u;

• for any edge vw ∈M , where v, w 6∈ U one of the endpoints (say v) has
to satisfy c(v) > 0, add v to ψ(M) and set fψ(M)(w) = v;

• for any v 6∈ U which is not an endpoint of any edge in M , add v to
ψ(M).

It is easy to verify that the above procedure does indeed give a feasible
solution to Constrained Capacitated Dominating Set. We have
|ψ(M)| = |V | − |M | since for each edge in M , exactly one of its endpoints
does not belong to ψ(M).

We conclude this section with the following theorem.

Theorem 2.4. The Constrained Capacitated Dominating Set prob-
lem can be solved in polynomial time.

Proof. By Lemmata 2.2 and 2.3, in order to �nd the solution of the Con-

strained Capacitated Dominating Set problem it is enough to �nd
any maximum matching in G′, which can be done in polynomial time (see
e.g. [113]).

2.2.2 From Constrained Capacitated Dominating Set

to Capacitated Dominating Set

Let us start with the following simple observation. Let S be any capacitated
dominating set and let fS be a dominating function for S. Let

US = {v ∈ S : |f−1
S (v)| ≥ 2}.

18

Since every vertex is dominated by exactly one vertex, and each vertex in
Us dominates at least 3 vertices (including itself), so |US| ≤ n/3. Moreover,
S with the function fS is a feasible solution for the Constrained Ca-

pacitated Dominating Set instance with the graph G and the set US.
Therefore the following algorithm solves Capacitated Dominating Set:

1. For each U ⊆ V satisfying |U | ≤ n/3 solve the Constrained Ca-

pacitated Dominating Set instance with graph G and subset U .

2. Return the smallest capacitated dominating set from the constructed
Constrained Capacitated Dominating Set instances.

The Constrained Capacitated Dominating Set problem can be
solved in polynomial time and there are

dn/3e∑
k=0

(
n

k

)
= O?

((
n

dn/3e

))
.

possible sets U (i.e. sets of cardinality at most n/3). By Lemma 2.1

O?

((
n

dn/3e

))
= O?

 1(
1
3

) 1
3
(

2
3

) 2
3

n = O(1.8899n),

thus the whole algorithm works in O(1.89n) time.

2.3 Irredundant set

In this section we study a second variant of the dominating set, namely the
irredundant set. We say a set S ⊆ V is irredundant if for any v ∈ S there
exists a vertex u ∈ V such that v dominates u and S \{v} does not dominate
u. We call any such vertex u a private vertex for v. An irredundant set
is called (inclusion-wise) maximal if it is not a proper subset of any other
irredundant set. Note that an maximal irredundant set does not necessarily
have to dominate the whole vertex set of G as in Figure 2.2.

The upper irredundance number IR(G) is de�ned as the largest possible
cardinality of an irredundant set in G, whereas the lower irredundance num-
ber ir(G) is de�ned as the smallest possible cardinality of an (inclusion-wise)

19

v4

v7

v3

v6

v2 v5

v1

Figure 2.2: The smallest maximal irredundant set X = {v3, v4}. Note that
X is not a dominating set.

maximal irredundant set. The problems Minimum Maximal Irredun-

dant Set and Maximum Irredundant Set ask for ir(G) and IR(G)
respectively.

Minimum Maximal Irredundant Set

Input: An undirected graph G.
Task: Compute ir(G).

Maximum Irredundant Set

Input: An undirected graph G.
Task: Compute IR(G).

The irredundance numbers are interesting from the graph-theoretic point
of view due to their relation to numerous other graph parameters. These
relations has been established in around 100 research papers [66], e.g., [3, 19,
20, 28, 38, 40, 64, 65, 68, 91, 104].

Let us make an example of the aforementioned relations. It is easy to
relate ir(G) to the dominating number γ(G).

Proposition 2.5 ([39]). Any inclusion-wise minimal dominating set in a
graph G is an inclusion-wise maximal irredundant set in G, too.

Proof. Let S ⊆ V (G) be an inclusion-wise minimal dominating set in G. As
S is inclusion-wise minimal, for any v ∈ S the set S \ {v} does not dominate
V (G), thus there exists uv ∈ V (G) that is dominated by v, but not by S\{v}.
We infer that S is an irredundant set in G. To see that S is inclusion-wise
maximal, note that for any w ∈ V (G) \ S the set S ′ = S ∪ {w} is not
irredundant, as S = S ′ \ {w} dominates V (G) and thus w cannot have a
private vertex.

20

We infer that ir(G) ≤ γ(G). Let us recall that a set I ⊆ V (G) is indepen-
dent, if G[I] does not contain any edge. The graph invariant α(G) is de�ned
as the cardinality of the largest independent set in G. Note the following
simple fact.

Proposition 2.6. Let I be an independent set in G. Then I is an irredun-
dant set. Moreover, if I is inclusion-wise maximal, then I is a dominating
set in G.

Proof. To see that I is an irredundant set, note that for any v ∈ I, v can
serve as a private vertex for v. If I is not a dominating set in G, there exists
u ∈ V (G) \NG[I], I ∪ {u} is an independent set, and I is not inclusion-wise
maximal.

By the above reasonings we obtained the well-known domination chain:

ir(G) ≤ γ(G) ≤ α(G) ≤ IR(G).

Moreover, let us mention that it is known that ir(G) is always within a
constant factor of γ(G) [3, 19]:

γ(G)/2 < ir(G) ≤ γ(G) ≤ 2 · ir(G)− 1.

Verifying whether a set S ⊆ V (G) is an irredundant set in a graph G
can be done in linear time directly from the de�nition. Thus, both ir(G)
and IR(G) can be computed in O?(2n) time by an exhaustive enumera-
tion. The problems of solving the Minimum Maximal Irredundant

Set and Maximum Irredundant Set problems faster than this obvious
O?(2n) algorithms were posed by van Rooij in 2008 [74]. In this section we
present an algorithm that solves Minimum Maximal Irredundant Set

in O(1.999956n)time. In [48] we gave an O(1.9657n) algorithm for Maxi-
mum Irredundant Set, but, since it is a quite straightforward branching
algorithm with a bit tedious analysis, we do not include it in this dissertation.

Our algorithm for Minimum Maximal Irredundant Set is a simple
iterative backtracking algorithm working in polynomial space. The inter-
esting part is its analysis, where we prove some structural properties of the
considered problem. We would like to note that our techniques seem a bit
similar to those that lead to O?((2−ε)n)-time algorithms forDomatic Num-
ber and TSP in graphs of bounded degree [12]. We think it is interesting
and somewhat surprising that such techniques can be used in graphs without
any degree assumption.

We start with a simple observation on irredundant sets.

21

Proposition 2.7. Let G be a graph, S ⊆ V (G) be an irredundant set, and
v ∈ V (G) be a vertex in G. If N [v] ⊆ S, then v is an isolated vertex in G
(i.e., NG(v) = ∅).

Proof. If v is not an isolated vertex in G, then NG(v) ⊆ S \ {v} dominates
NG[v] and v cannot have a private vertex.

Let us now proceed to the description of the algorithm. W.l.o.g. we may
assume that G contains no isolated vertices, since they need to be included
in any maximal irredundant set.

Let Fk be the family of irredundant sets in G of size not greater than k.
Note that checking if a set is a (maximal) irredundant set can be done in poly-
nomial time. Moreover, the family of irredundant sets is closed under taking
subsets. Therefore Fk can be enumerated in O?(|Fk|) time and polynomial
space by a simple backtracking algorithm EnumerateIrredundantSets(G, k).

Function IrredundantSearch(G, k, S, Ŝ)
1: if S is an irredundant set in G then

2: output S
3: if |S| < k then

4: for all v ∈ V (G) \ (S ∪ Ŝ) do
5: IrredundantSearch(G, k, S ∪ {v}, Ŝ)
6: Ŝ := Ŝ ∪ {v}
Function EnumerateIrredundantSets(G, k)
7: IrredundantSearch(G, k, ∅, ∅)

To see that EnumerateIrredundantSets(G, k) works in O?(|Fk|) time note
that each call to the IrredundantSearch procedure takes polynomial time and
outputs a new irredundant set in G. The set Ŝ should be interpreted as the
set of vertices that were chosen not to be included in the currently constructed
irredundant set.

Consider a simple iterative backtracking algorithm that enumerates Fk
for k = 0, 1, 2, . . . , n until it �nds an (inclusion-wise) maximal irredundant
set. Now we prove that it works in O(1.999956n) time.

First, as a warm-up, let us show a O?((2− ε∆)n) time bound for graphs
with maximum degree bounded by ∆, where ε∆ depends on ∆. Construct
a set A ⊆ V as follows: repeatedly add any vertex v ∈ V to A and remove
from V all vertices distant by at most 2 from v. At each step, at most
1 + ∆ + ∆(∆−1) = 1 + ∆2 vertices are removed, therefore |A| ≥ n/(1 + ∆2).

22

The set A is an independent set; moreover, closed neighbourhoods {N [v] :
v ∈ A} are disjoint. If S in an irredundant set, then N [v] 6⊆ S (Proposition
2.7) and, therefore, for each v ∈ A we have at most 2|N [v]|− 1 possibilities to
choose S ∩N [v] instead of 2|N [v]|. As these neighbourhoods are disjoint, this
leads to the following bound:

|Fn| ≤ 2n
∏
v∈A

2|N [v]| − 1

2|N [v]| ≤ 2n
(

2∆+1 − 1

2∆+1

) n
1+∆2

= (2− ε∆)n,

and the time bound for the algorithm follows.

D

N [D] A1 A2

Figure 2.3: Notation in the proof of Lemma 2.8

Now we show how to bypass the maximum degree assumption. By Propo-
sition 2.5, if G admits a dominating set of size not greater than 149n/300,
then it admits an inclusion-wise maximal irredundant set of the same size
and the algorithm stops before or at the step k = b149n/300c and up to this
point consumes O?(

(
n

149n/300

)
) = O(1.999956n) time (Lemma 2.1). Therefore

we may consider only the case where every dominating set in G is of size
greater than 149n/300.

The following structural lemma is crucial for the analysis.

Lemma 2.8. Let G = (V,E) be a graph with n vertices that contains no
dominating set of cardinality smaller than 149n/300. Then there exists a set
A ⊆ V satisfying:

1. A is an independent set and the neighbourhoods {N [v] : v ∈ A} are
disjoint,

2. every vertex in A has degree at most 6,

23

3. |A| ≥ 41n/9800.

Proof. We construct a dominating set D greedily. Start with D = ∅. In a
single step, take any vertex v that adds at least 3 new vertices to N [D], i.e.
|N [D ∪ {v}] \ N [D]| ≥ 3, and add v to D. This algorithm stops at some
point and let A1 = V \N [D], i.e. the vertices not dominated by D. For every
vertex v we have |N [v] ∩ A1| ≤ 2, since D cannot be extended any more. In
particular, every vertex in G[A1] has degree at most 1, so G[A1] is a graph
of isolated vertices and isolated edges. Let A2 be any maximal independent
set in G[A1], i.e. A2 contains all isolated vertices of G[A1] and one endpoint
of every isolated edge (see Figure 2.3). The set A2 is an independent set in
G, too.

Let us now note that D ∪ A2 is a dominating set in G, since A2 domi-
nates A1. Therefore |D| + |A2| ≥ 149n/300. Note that, by the construction
procedure of D, we have |D| ≤ 1

3
|N [D]| = 1

3
|V \ A1|, so:

149/300 ≤ |D|+ |A2|
|V |

≤ 1

3
− |A1|

3|V |
+
|A2|
|V |
≤ 1

3
+

2

3
· |A2|
|V |

.

Therefore |A2| ≥ 49n/200.

Now recall that every vertex in V has at most two vertices from A1 in
its closed neighbourhood. Therefore, every vertex in V has at most two
neighbours in A2. Let n7 be the number of vertices in A2 with degree at least
7. By counting edge endpoints we obtain that 7n7 ≤ 2(n−|A2|) ≤ 151n/100
and n7 ≤ 151n/700. Let A3 ⊆ A2 be the set of vertices of degree at most 6.
Then |A3| ≥ 41n/1400.

Now construct A ⊆ A3 greedily. In a single step, add any v ∈ A3 to
A and remove from A3 the vertex v and all vertices that share a neighbour
with v (recall that A3 is an independent set). Since the vertices in A3 have
degree at most 6 and every vertex in V is a neighbour of at most two vertices
in A3, then at one step we remove at most 7 vertices from A3. Therefore
|A| ≥ 41n/9800.

The bound for our iterative-DFS algorithm is now straightforward. Note
that for every non�isolated vertex v at least one point from N [v] does not
belong to an irredundant set (Proposition 2.7). By Lemma 2.8 we obtain
41n/9800 disjoint sets {N [v] : v ∈ A}, such that all these sets are of size at
most 7 and no N [v] can be contained in an irredundant set. Therefore the

24

total number of irredundant sets is bounded by:

2n ·
(27 − 1

27

) 41n
9800

= O(1.99994n).

2.4 Scheduling jobs with precedences

The area of scheduling algorithms originates from practical questions regard-
ing scheduling jobs on single- or multiple-processor machines or scheduling
I/O requests. It has quickly become one of the most important areas in al-
gorithmics, with signi�cant in�uence on other branches of computer science.
For example, the research of the job-shop scheduling problem in 1960s re-
sulted in designing the competitive analysis [84], initiating the research of
online algorithms. Up to today, the scheduling literature consists of thou-
sands of research papers. We refer the reader to the classical textbook of
Brucker [23].

Among scheduling problems one may �nd a bunch of problems solvable
in polynomial time, as well as many NP-hard ones. For example, the afore-
mentioned job-shop problem is NP-complete on at least three machines [106],
but polynomial on two machines with unitary processing times [93].

Scheduling problems come in numerous variants. For example, one may
consider scheduling on one machine, or many uniform or non-uniform ma-
chines. The jobs can have di�erent attributes: they may arrive at di�erent
times, may have deadlines or precedence constraints, preemption may or
may not be allowed. There are also many objective functions, for example
the makespan of the computation, total completion time, total lateness (in
case of deadlines for jobs) etc.

Let us focus on the case of a single machine. Assume we are given a set
of jobs V , and each job v has its processing time t(v) ∈ (0,+∞). For a job
v, its completion time is the total amount of time that this job waited to
be �nished; formally, the completion time of a job v is de�ned as a sum of
processing times of v and all jobs scheduled earlier. If we are to minimize
the total completion time (i.e, the sum of completion times over all jobs), it
is clear that the jobs should be scheduling in order of increasing processing
times. The question of minimizing the makespan of the computation (i.e.,
maximum completion time) is obvious in this setting, but we note that min-
imizing makespan is polynomially solvable even if we are given a precedence
constraints on the jobs (i.e., a partial order on the set of jobs is given, and

25

a job cannot be scheduled before all its predecessors in the partial order are
�nished) and jobs arrive at di�erent times (i.e., each job has its arrival time,
before which it cannot be scheduled) [105].

Lenstra and Rinnooy Kan [107] in 1978 proved that the question of min-
imizing total completion time on one machine becomes NP-complete if we
are given precedence constraints on the set of jobs. To the best of our knowl-
edge the currently smallest approximation ratio for this case equals 2, due to
independently discovered algorithms by Chekuri and Motwani [30] as well as
Margot et al. [109]. The problem of minimizing total completion time on one
machine, given precedence constraints on the set of jobs can be solved by a
standard dynamic programming algorithm in time O?(2n), where n denotes
the number of jobs. The goal of this section is to break the 2n-barrier for
this problem.

Before we start, let us de�ne formally the considered problem. As in this
section we focus on a single scheduling problem, for brevity we denote it by
SCHED.

SCHED

Input: A partially ordered set (V,≤), (the elements of which are called
jobs) together with a function t : V → (0,+∞) (for a job v ∈ V the value
t(v) is called a processing time of v).
Task: Compute a bijection σ : V → {1, 2, . . . , |V |} (called an ordering)
that satis�es the precedence constraints (i.e., if u < v, then σ(u) < σ(v))
and minimizes the total completion time of all jobs de�ned as

T (σ) =
∑
v∈V

∑
u:σ(u)≤σ(v)

t(u) =
∑
v∈V

(|V | − σ(v) + 1)t(v).

If u < v for u, v ∈ V (i.e., u ≤ v and u 6= v), we say that u precedes v, u
is a predecessor or prerequisite of v, u is required for v or that v is a successor
of v. We denote |V | by n.

As discussed earlier, scheduling problems come in numerous variants and,
to keep track of all possibilities, Graham, Lawler, Lenstra and Rinnooy Kan
introduced the so-called Graham notation. In this notation each problem's
name consists of three parts: α|β|γ; α describes assumptions on machines
(e.g., one machine or uniform machines), β describes assumptions on jobs
(e.g., preemption allowed, precedences) and γ describes the objective function
(e.g., minimize makespan or total completion time). In this notation, the

26

SCHED problem is called 1|prec|
∑
Ci. Here, 1 stands for one machine, prec

indicates that we are given precedence constraints on the set of jobs, and∑
Ci denotes that we are to minimize total completion time (the sum of

completion times Ci).

SCHED is a special case of the precedence constrained Travelling Re-
pairman Problem (prec-TRP), de�ned as follows. A repairman needs to
visit all vertices of a (directed or undirected) graph G = (V,E) with dis-
tances d : E → [0,∞) on edges. At each vertex, the repairman is supposed
to repair a broken machine; a cost of a machine v is the time Cv that it
waited before being repaired. Thus, the goal is to minimize the total repair
time, that is,

∑
v∈V Cv. Additionally, in the precedence constrained case, we

are given a partial order (V,≤) on the set of vertices of G; a machine can
be repaired only if all its predecessors are already repaired. Note that, given
an instance (V,≤, t) of SCHED, we may construct equivalent prec-TRP in-
stance, by taking G to be a complete directed graph on the vertex set V ,
keeping the precedence constraints unmodi�ed, and setting d(u, v) = t(v).

The TRP problem is closely related to the Traveling Salesman Problem
(TSP). All these problems are NP-complete and solvable in O?(2n) time by
an easy application of the dynamic programming approach (here n stands for
the number of vertices in the input graph). In 2009, Björklund [10] discovered
a genuine way to solve probably the easiest NP-complete version of the TSP
problem � the question of deciding whether the input undirected graph is
Hamiltonian � in randomized O(1.66n) time. However, his approach does
not extend to directed graphs, not even mentioning graphs with distances
de�ned on edges.

Björklund's approach is based on purely graph-theoretical and combi-
natorial reasonings, and seem unable to cope with arbitrary (large, real)
weights (distances, processing times). This is also the case with many other
combinatorial approaches. Probably motivated by this, Woeginger at In-
ternational Workshop on Parameterized and Exact Computation (IWPEC)
in 2004 [129] has posed the question (repeated in 2008 [130]), whether it
is possible to construct an O((2 − ε)n) time algorithm for at the SCHED
problem1. This problem seems to be the easiest case of the aforementioned
family of TSP-related problems with arbitrary weights. In this section we
present such an algorithm, thus a�rmatively answering Woeginger's ques-

1Although Woeginger in his papers asks for an O(1.99n) algorithm, the intention is

clearly to ask for an O((2− ε)n) algorithm.

27

tion. Woeginger also asked [129, 130] whether an O((2− ε)n) time algorithm
for one of the problems TRP, TSP, prec-TRP, SCHED implies O((2− ε)n)
time algorithms for the other problems. This problem is still open.

The most important ingredient of our algorithm is a combinatorial lemma
(Lemma 2.13) which allows us to investigate the structure of the SCHED
problem. We heavily use the fact that we are solving the SCHED problem
and not its more general TSP related version, and for this reason we be-
lieve that obtaining O(2 − ε)n time algorithms for other problems listed by
Woeginger is much harder.

2.4.1 High-level overview � part 1

Let us recall that our task in the SCHED problem is to compute an ordering
σ : V → {1, 2, . . . , n} that satis�es the precedence constraints (i.e., if u < v
then σ(u) < σ(v)) and minimizes the total completion time of all jobs de�ned
as

T (σ) =
∑
v∈V

∑
u:σ(u)≤σ(v)

t(u) =
∑
v∈V

(n− σ(v) + 1)t(v).

We de�ne the cost of job v at position i to be T (v, i) = (n− i+ 1)t(v). Thus,
the total completion time is the total cost of all jobs at their respective
positions in the ordering σ.

We begin by describing the algorithm that solves SCHED in O?(2n) time,
which we call the DP algorithm � this will be the basis for our further work.
The idea � a standard dynamic programming over subsets � is that if we
decide that a particular set X ⊆ V will (in some order) form the pre�x of
our optimal σ, then the order in which we take the elements of X does not
a�ect the choices we make regarding the ordering of the remaining V \ X;
the only thing that matters are the precedence constraints imposed by X on
V \X. Thus, for each candidate set X ⊆ V to form a pre�x, the algorithm
computes a bijection σ[X] : X → {1, 2, . . . , |X|} that minimizes the cost of
jobs from X, i.e., it minimizes T (σ[X]) =

∑
v∈X T (v, σ[X](v)). The value of

T (σ[X]) is computed using the following easy to check recursive formula:

T (σ[X]) = min
v∈max(X)

[T (σ[X \ {v}]) + T (v, |X|)] . (2.2)

Here, by max(X) we mean the set of maximum elements of X � those
which do not precede any element of X. The bijection σ[X] is constructed
by prolonging σ[X \ {v}] by v, where v is the job at which the minimum is

28

attained. Notice that σ[V] is exactly the ordering we are looking for. We
calculate σ[V] recursively, using formula (2.2), storing all computed values
σ[X] in memory to avoid recomputation. Thus, as the computation of a
single σ[X] value given all the smaller values takes polynomial time, while
σ[X] for each X is computed at most once the whole algorithm indeed runs
in O?(2n) time.

The overall idea of our algorithm is to identify a family of setsX ⊆ V that
� for some reason � are not reasonable pre�x candidates, and we can skip
them in the computations of the DP algorithm; we will call these unfeasible
sets. If the number of feasible sets is not larger than cn for some c < 2, we
will be done � our recursion will visit only feasible sets, assuming T (σ[X]) to
be∞ for unfeasible X in formula (2.2), and the running time will be O?(cn).
This is formalized in the following proposition.

Proposition 2.9. Assume we are given a polynomial-time algorithm R that,
given a set X ⊆ V , either accepts it or rejects it. Moreover, assume that the
number of sets accepted by R is bounded by O(cn) for some constant c. Then
one can �nd in time O?(cn) an optimal ordering of the jobs in V among
those orderings σ where σ−1({1, 2, . . . , i}) is accepted by R for all 1 ≤ i ≤ n,
whenever such ordering exists.

Proof. As discussed before, calculate σ[V] recursively, using formula (2.2),
storing all computed values σ[X] in memory to avoid recomputation. When-
ever we access a value T (σ[X]) for a set X not accepted by R, we take
T (σ[X]) = ∞. As each application of the formula (2.2) gives at most n
recursive calls, the bound follows.

2.4.2 The large matching case

We begin by noticing that the DP algorithm needs to compute σ[X] only for
those X ⊆ V that are downward closed, i.e., if v ∈ X and u < v then u ∈ X.
If there are many constraints in our problem, this alone will su�ce to limit
the number of feasible sets considerably, as follows. Construct an undirected
graph G with the vertex set V and edge set E = {uv : u < v ∨ v < u}. Let
M be a maximum matching2 in G, which can be found in polynomial time
[113]. If X ⊆ V is downward closed, and uv ∈ M , u < v, then it is not
possible that u /∈ X and v ∈ X. Obviously checking if a subset is downward

2Even an inclusion-maximal matching, which can be found greedily, is enough.

29

closed can be performed in polynomial time, thus we can apply Proposition
2.9, accepting only downward closed subsets of V . This leads to the following
lemma:

Lemma 2.10. The number of downward closed subsets of V is bounded by
2n−2|M |3|M |. If |M | ≥ ε1n, then we can solve the SCHED problem in time

T1(n) = O?((3/4)ε1n2n).

Note that for any small positive constant ε1 the complexity T1(n) is of
required order, i.e., T1(n) = O(cn) for some c < 2 that depends on ε1. Thus,
we only have to deal with the case where |M | < ε1n.

Let us �x a maximum matching M , let W1 ⊆ V be the set of endpoints
of M , and let I1 = V \W1. Note that, as M is a maximum matching in G,
no two jobs in I1 are bound by a precedence constraint, and |W1| ≤ 2ε1n,
|I1| ≥ (1− 2ε1)n.

2.4.3 High-level overview � part 2

We are left in the situation where there is a small number of �special� elements
(W1), and the bulk remainder (I1), consisting of elements that are tied by
precedence constraints only to W1 and not to each other.

First notice that if W1 was empty, the problem would be trivial: with no
precedence constraints we should simply order the tasks from the shortest
to the longest. Now let us consider what would happen if all the constraints
between any u ∈ I1 and w ∈ W1 would be of the form u < w � that is,
if the jobs from I1 had no predecessors. For any pre�x set candidate X̃ we
consider X = X̃ ∩ I1. Now for any x ∈ X, y ∈ I1 \X we have an alternative
pre�x candidate: the set X̃ ′ = (X̃∪{y})\{x}. If t(y) < t(x), there has to be
a reason why X̃ ′ is not a strictly better pre�x candidate than X̃ � namely,
there has to exist w ∈ W1 such that x < w, but y 6< w.

A similar reasoning would hold even if not all of I1 had no predecessors,
but just some signi�cant fraction J of I � again, the only feasible pre�x
candidates would be those in which for every x ∈ X ∩ J and y ∈ J \X there
is a reason (either t(x) < t(y) or an element w ∈ W1 which requires x, but
not y) not to exchange them. It turns out that if |J | > ε2n, where ε2 > 2ε1,
this observation su�ces to prove that the number of possible intersections of

30

feasible sets with J is signi�cantly smaller than 2|J |. This is formalized and
proved in Lemma 2.13, and is the cornerstone of the whole result.

A typical application of this lemma is as follows: say we have a setK ⊆ I1

of cardinality |K| > 2j, while we know for some reason that all the prede-
cessors of elements of K appear on positions j and earlier. If K is large (a
constant fraction of n), this is enough to limit the number of feasible sets to
(2− ε)n. To this end it su�ces to show that there are signi�cantly less than
2|K| possible intersections of a feasible set with K. Each such intersection
consists of a set of at most j elements (that will be put on positions 1 through
j), and then a set in which every element has a reason not to be exchanged
with something from outside the set � and there are relatively few of those
by Lemma 2.13 � and when we do the calculations, it turns out the resulting
number of possibilities is signi�cantly smaller than 2|K|.

To apply this reasoning, we need to be able to tell that all the prerequisites
of a given element appear at some position or earlier. To achieve this, we
need to know the approximate positions of the elements in W1. We achieve
this by branching into 4|W1| cases, for each element w ∈ W1 choosing to which
of the four quarters of the set {1, . . . , n} will σopt(w) belong. This incurs a
multiplicative cost of 4|W1|, which will be o�set by the gains from applying
Lemma 2.13.

We will now repeatedly apply Lemma 2.13 to obtain information about
the positions of various elements of I1. We will repeatedly say that if �many�
elements (by which we always mean more than εn for some ε) do not satisfy
something, we can bound the number of feasible sets, and thus �nish the
algorithm. For instance, look at those elements of I1 which can appear in the
�rst quarter, i.e., none of their prerequisites appear in quarters two, three
and four. If there is signi�cantly more than n/2 of them, we can apply the
above reasoning for j = n/4 (Lemma 2.17). Subsequent lemmata bound
the number of feasible sets if there are many elements that cannot appear
in any of the two �rst quarters (Lemma 2.15), if signi�cantly less than n/2
elements can appear in the �rst quarter (Lemma 2.17) and if a signi�cant
number of elements in the second quarter could actually appear in the �rst
quarter (Lemma 2.18). We also apply similar reasoning to elements that can
or cannot appear in the last quarter.

We end up in a situation where we have four groups of elements, each of
size roughly n/4, split upon whether they can appear in the �rst quarter and
whether they can appear in the last one; moreover, those that can appear in
the �rst quarter will not appear in the second, and those that can appear in

31

the fourth will not appear in the third. This means that there are two pairs of
parts which do not interact, as the set of places in which they can appear are
disjoint. We use this independence of sorts to construct a di�erent algorithm
than the DP we used so far, which solves our problem in this speci�c case in
time O?(23n/4+ε) (Lemma 2.19).

As can be gathered from this overview, there are many technical details
we will have to navigate in the algorithm. This is made more precarious by
the need to carefully select all the epsilons. We decided to use symbolic values
for them in the main proof, describing their relationship appropriately, using
four constants εk, k = 1, 2, 3, 4. The constants εk are very small positive
reals, and additionally εk is signi�cantly smaller than εk+1 for k = 1, 2, 3. At
each step, we shortly discuss the existence of such constants. We discuss the
choice of optimal values of these constants in Section 2.4.9, although the value
we perceive in our algorithm lies rather in the existence of an O?((2 − ε)n)
algorithm than in the value of ε (which is admittedly very small).

2.4.4 Technical preliminaries

We start with a few simpli�cations. First, we add a few dummy jobs with
no precedence constraints and zero processing times, so that n is divisible by
four. Second, by slightly perturbing the jobs' processing times, we can assume
that all processing times are pairwise di�erent and, moreover, each ordering
has di�erent total completion time. This can be done, for instance, by replac-
ing time t(v) with a pair (t(v), (n + 1)π(v)−1), where π : V → {1, 2, . . . , n}
is an arbitrary numbering of V . The addition of pairs is performed coor-
dinatewise, whereas comparison is performed lexicographically. Note that
this in particular implies that the optimal solution is unique, we denote it
by σopt. Third, at the cost of an n2 multiplicative overhead, we guess the
jobs vbegin = σ−1

opt(1) and vend = σ−1
opt(n) and we add precedence constraints

vbegin < v < vend for each v 6= vbegin, vend. If vbegin or vend were not in W1 to
begin with, we add them there.

A number of times our algorithm branches into several subcases, in each
branch assuming some property of the optimal solution σopt. Formally speak-
ing, in each branch we seek the optimal ordering among those that satisfy the
assumed property. We somewhat abuse the notation and denote by σopt the
optimal solution in the currently considered subcase. Note that σopt is always
unique within any subcase, as each ordering has di�erent total completion
time.

32

For v ∈ V by pred(v) we denote the set {u ∈ V : u < v} of predecessors
of v, and by succ(v) we denote the set {u ∈ V : v < u} of successors of
v. We extend this notation to subsets of V : pred(U) =

⋃
v∈U pred(v) and

succ(U) =
⋃
v∈U succ(v). Note that for any set U ⊆ I1, both pred(U) and

succ(U) are subsets of W1.

2.4.5 The core lemma

We now formalize the idea of exchanges presented in Section 2.4.3.

De�nition 2.11. Consider some set K ⊆ I1, and its subset L ⊆ K. If there
exists u ∈ L such that for every w ∈ succ(u) we can �nd vw ∈ (K∩pred(w))\
L with t(vw) < t(u) then we say L is succ-exchangeable with respect to K,
otherwise we say L is non-succ-exchangeable with respect to K.

Similarly, if there exists v ∈ (K \ L) such that for every w ∈ pred(v) we
can �nd uw ∈ L ∩ succ(w) with t(uw) > t(v), we call L pred-exchangeable
with respect to K, otherwise we call it non-pred-exchangeable with respect
to K.

Whenever it is clear from the context, we omit the set K with respect to
which its subset is or is not pred- or succ-exchangeable.

The applicability of this de�nition is in the following observation:

Observation 2.12. Let K ⊆ I1. If for any v ∈ K,w ∈ pred(K) we have
that σopt(v) > σopt(w), then for any 1 ≤ i ≤ n the set K ∩ σ−1

opt({1, 2, . . . , i})
is non-succ-exchangeable with respect to K.

Similarly, if for any v ∈ K,w ∈ succ(K) we have σopt(v) < σopt(w), then
the sets K ∩ σ−1

opt({1, 2, . . . , i}) are non-pred-exchangeable with respect to K.

Proof. The proofs for the �rst and the second case are analogous. However,
to help the reader get intuition on exchangeable sets, we provide them both
in full detail. See Figure 2.4 for an illustration on the succ-exchangeable
case.

Non-succ-exchangeable sets. Assume, by contradiction, that for some i

the set L = K ∩ σ−1
opt({1, 2, . . . , i}) is succ-exchangeable. Let u ∈ L be a job

witnessing it. Let w be the successor of u with minimum σopt(w) (there exists
one, as vend ∈ succ(u)). By De�nition 2.11, we have vw ∈ (K ∩ pred(w)) \ L
with t(vw) < t(u). As vw ∈ K \ L, we have σopt(vw) > σopt(u). As vw ∈
pred(w), we have σopt(vw) < σopt(w).

33

Consider an ordering σ′ de�ned as σ′(u) = σopt(vw), σ′(vw) = σopt(u) and
σ′(x) = σopt(x) if x /∈ {u, vw}; in other words, we swap the positions of u
and vw in the ordering σopt. We claim that σ′ satis�es all the precedence
constraints. As σopt(u) < σopt(vw), σ′ may only violates constraints of the
form x < vw and u < y. However, if x < vw, then x ∈ pred(K) and
σ′(vw) = σopt(u) > σopt(x) = σ′(x) by the assumptions of the Observation.
If u < y, then σ′(y) = σopt(y) ≥ σopt(w) > σopt(vw) = σ′(u), by the choice of
w. Thus σ′ is a feasible solution to the considered SCHED instance. Since
t(vw) < t(u), we have T (σ′) < T (σopt), a contradiction.

Non-pred-exchangeable sets. Assume, by contradiction, that for some i

the set L = K∩σ−1
opt({1, 2, . . . , i}) is pred-exchangeable. Let v ∈ (K \L) be a

job witnessing it. Let w be the predecessor of v with maximum σopt(w) (there
exists one, as vbegin ∈ pred(v)). By De�nition 2.11, we have uw ∈ L∩succ(w)
with t(uw) > t(v). As uw ∈ L, we have σopt(uw) < σopt(v). As uw ∈ succ(w),
we have σopt(uw) > σopt(w).

Consider an ordering σ′ de�ned as σ′(v) = σopt(uw), σ′(uw) = σopt(v) and
σ′(x) = σopt(x) if x /∈ {v, uw}; in other words, we swap the positions of v
and uw in the ordering σopt. We claim that σ′ satis�es all the precedence
constraints. As σopt(uw) < σopt(v), σ′ may only violates constraints of the
form x > uw and v > y. However, if x > uw, then x ∈ succ(K) and
σ′(uw) = σopt(v) < σopt(x) = σ′(x) by the assumptions of the Observation.
If v > y, then σ′(y) = σopt(y) ≤ σopt(w) < σopt(uw) = σ′(v), by the choice of
w. Thus σ′ is a feasible solution to the considered SCHED instance. Since
t(uw) > t(v), we have T (σ′) < T (σopt), a contradiction.

iσopt(u) σopt(w)σopt(vw)

σopt(vbegin) σopt(vend)

Figure 2.4: Figure illustrating the succ-exchangeable case of Observation
2.12. Gray circles indicate positions of elements of K, black contour indicates
that an element is also in L. Black squares indicate positions of elements from
pred(K), and black circles � positions of other elements from W1.

34

Observation 2.12 means that if we manage to identify a set K satisfying
the assumptions of the observation, the only sets the DP algorithm has to
consider are the non-exchangeable ones. The following core lemma proves
that there are few of those (provided that K is big enough), and we can
identify them easily.

Lemma 2.13. For any set K ⊆ I1 the number of non-succ-exchangeable
(non-pred-exchangeable) subsets with regard to K is at most

∑
l≤|W1|

(|K|
l

)
.

Moreover, there exists an algorithm which checks whether a set is succ-
exchangeable (pred-exchangeable) in polynomial time.

The idea of the proof is to construct a function f that encodes each non-
exchangeable set by a subset of K no larger than W1. To show this encoding
is injective, we provide a decoding function g and show that g◦f is an identity
on non-exchangeable sets.

Proof. As in Observation 2.12, the proofs for succ- and pred-exchangeable
sets are analogous, but for the sake or clarity we include both proofs in full
detail.

Non-succ-exchangeable sets. For any set Y ⊆ K we de�ne the function
fY : W1 → K ∪ {nil} as follows: for any element w ∈ W1 we de�ne fY (w)
(the least expensive predecessor of w outside Y) to be the element of (K\Y)∩
pred(w) which has the smallest processing time, or nil if (K \Y)∩pred(w) is
empty. We now take f(Y) (the set of the least expensive predecessors outside
Y) to be the set {fY (w) : w ∈ W1} \ {nil}. We see that f(Y) is indeed a set
of cardinality at most |W1|.

Now we aim to prove that f is injective on the family of non-succ-
exchangeable sets. To this end we de�ne the reverse function g. For a
set Z ⊆ K (which we think of as the set of the least expensive predecessors
outside some Y) let g(Z) be the set of such elements v of K that there ex-
ists w ∈ succ(v) such that for any zw ∈ Z ∩ pred(w) we have t(zw) > t(v).
Notice, in particular, that g(Z) ∩ Z = ∅, as for v ∈ Z and w ∈ succ(v) we
have v ∈ Z ∩ pred(w).

First we prove g(f(Y)) ⊆ Y for any Y ⊆ K. Take any v ∈ K \ Y
and consider any w ∈ succ(v). Then fY (w) 6= nil and t(fY (w)) ≤ t(v), as
v ∈ (K \ Y) ∩ pred(w). Thus v /∈ g(f(Y)), as for any w ∈ succ(v) we can
take a witness zw = fY (w) in the de�nition of g(f(Y)).

In the other direction, let us assume that Y does not satisfy Y ⊆ g(f(Y)).
This means we have u ∈ Y \ g(f(Y)). Then we show that Y is succ-

35

exchangeable. Consider any w ∈ succ(u). As u /∈ g(f(Y)), there exists
zw ∈ f(Y)∩ pred(w) with t(zw) ≤ t(u). But f(Y)∩Y = ∅, while u ∈ Y ; and
as all the values of t are distinct, t(zw) < t(u) and zw satis�es the condition
for vw in the de�nition of succ-exchangeability.

Non-pred-exchangeable sets. For any set Y ⊆ K we de�ne the function
fY : W1 → K ∪ {nil} as follows: for any element w ∈ W1 we de�ne fY (w)
(the most expensive successor of w in Y) to be the element of Y ∩ succ(w)
which has the largest processing time, or nil if Y ∩ succ(w) is empty. We
now take f(Y) (the set of the most expensive successors in Y) to be the set
{fY (w) : w ∈ W1} \ {nil}. We see that f(Y) is indeed a set of cardinality at
most |W1|.

Now we aim to prove that f is injective on the family of non-pred-
exchangeable sets. To this end we de�ne the reverse function g. For a set
Z ⊆ K (which we think of as the set of most expensive successors in some
Y) let g(Z) be the set of such elements v of K that for any w ∈ pred(v)
there exists a zw ∈ Z ∩ succ(w) with t(zw) ≥ t(v). Notice, in particular, that
g(Z) ⊆ Z, as for v ∈ Z the job zw = v is a good witness for any w ∈ pred(v).

First we prove Y ⊆ g(f(Y)) for any Y ⊆ K. Take any v ∈ Y and consider
any w ∈ pred(v). Then fY (w) 6= nil and t(fY (w)) ≥ t(v), as v ∈ Y ∩succ(w).
Thus v ∈ g(f(Y)), as for any w ∈ pred(v) we can take zw = fY (w) in the
de�nition of g(f(Y)).

In the other direction, let us assume that Y does not satisfy g(f(Y)) ⊆
Y . This means we have v ∈ g(f(Y)) \ Y . Then we show that Y is pred-
exchangeable. Consider any w ∈ pred(v). As v ∈ g(f(Y)) there exists
zw ∈ f(Y) ∩ succ(w) with t(zw) ≥ t(v). But f(Y) ⊆ Y , while v 6∈ Y ; and as
all the values of t are distinct, t(zw) > t(v) and zw satis�es the condition for
uw in the de�nition of pred-exchangeability.

Thus, in both cases, if Y is non-exchangeable then g(f(Y)) = Y (in
fact it is possible to prove in both cases that Y is non-exchangeable i�
g(f(Y)) = Y). As there are

∑|W1|
l=0

(|K|
l

)
possible values of f(Y), the �rst

part of the lemma is proven. For the second, it su�ces to notice that succ-
and pred-exchangeability can be checked in time O(|K|2|W1|) directly from
the de�nition.

Example 2.14. To illustrate the applicability of Lemma 2.13, we analyze
the following very simple case: assume the whole set W1 \ {vbegin} succeeds
I1, i.e., for every w ∈ W1 \ {vbegin} and v ∈ I1 we have w 6< v. If ε1 is small,
then we can use the �rst case of Observation 2.12 for the whole set K = I1:

36

we have pred(K) = {vbegin} and we only look for orderings that put vbegin as
the �rst processed job. Thus, we can apply Proposition 2.9 with algorithm
R that rejects sets X ⊆ V where X ∩ I1 is succ-exchangeable with respect
to I1. By Lemma 2.13, the number of sets accepted by R is bounded by
2|W1|

∑
l≤|W1|

(|I1|
l

)
, which is small if |W1| ≤ ε1n.

2.4.6 Important jobs at n/2

As was already mentioned in the overview, the assumptions of Observation
2.12 are quite strict; therefore, we need to learn a bit more on how σopt
behaves on W1 in order to distinguish a suitable place for an application. As
|W1| ≤ 2ε1n, we can a�ord branching into few subcases for every job in W1.

Let A = {1, 2, . . . , n/4}, B = {n/4+1, . . . , n/2}, C = {n/2+1, . . . , 3n/4},
D = {3n/4 + 1, . . . , n}, i.e., we split {1, 2, . . . , n} into quarters. For each
w ∈ W1 \ {vbegin, vend} we branch into four cases: whether σopt(w) belongs
to A, B, C or D. This branching leads to 4|W1|−2 ≤ 24ε1n subcases, and
thus the same overhead in the time complexity. Of course, we already know
that σopt(vbegin) ∈ A and σopt(vend) ∈ D. We terminate all the branches such
that the guesses about alignment of jobs from W1 contradict precedence
constraints inside W1.

Now consider a �xed branch. For any Γ ∈ {A,B,C,D} let W Γ
1 be the

set of elements of W1 to be placed in Γ. Moreover let WAB
1 = WA

1 ∪WB
1 and

WCD
1 = WC

1 ∪WD
1 .

Let us now see what we can learn in a �xed branch about the behaviour
of σopt on I1. Let

WAB
2 =

{
v ∈ I1 : ∃w

(
w ∈ WAB

1 ∧ v < w
)}

WCD
2 =

{
v ∈ I1 : ∃w

(
w ∈ WCD

1 ∧ w < v
)}
,

that is WAB
2 (resp. WCD

2) are those elements of I1 which are forced into the
�rst (resp. second) half of σopt by the choices we made about W1. If one
of the W2 sets is signi�cantly larger than W1, we have obtained a gain �
by branching into 24ε1n branches we gained additional information about a
signi�cant number of other elements (and so we will be able to avoid consid-
ering a signi�cant number of sets in the DP algorithm). This is formalized
in the following lemma:

Lemma 2.15. Consider a �xed branch and let 0 < α < 1/2 be a �xed
constant. If WAB

2 or WCD
2 has at least ε2n elements, then the DP algorithm

37

can be augmented to solve the instance in the considered branch in time

T2(n) =

((
n

(1/2− αε2)n

)
+ 2(1−ε2)n

(
ε2n

αε2 · n

))
nO(1).

Proof. We describe here only the case |WAB
2 | ≥ ε2n. The second case is

symmetrical.
Recall that the set WAB

2 needs to be placed in A ∪ B by the optimal
ordering σopt. We use Proposition 2.9 with an algorithm R that accepts the
following sets X ⊆ V :

1. all sets X of size at most n/2−α|WAB
2 |, there are at most

(
n

(1/2−αε2)n

)
n

such sets;

2. among sets X of size n/2 − α|WAB
2 | ≤ |X| ≤ n/2, only those sets for

which |WAB
2 \ X| ≤ α|WAB

2 |, there are at most 2(1−ε2)n
(
ε2n
αε2·n

)
n such

sets;

3. among sets X of size at least n/2, only the sets containing WAB
2 , there

are at most 2(1−ε2)n such sets.

Moreover, the algorithm R tests if the set X conforms with the guessed sets
W Γ

1 for Γ ∈ {A,B,C,D}, i.e.:

|X| ≤ n/4⇒ (WB
1 ∪WC

1 ∪WD
1) ∩X = ∅

n/4 ≤ |X| ≤ n/2⇒ (WA
1 ⊆ X ∧ (WC

1 ∪WD
1) ∩X = ∅)

n/2 ≤ |X| ≤ 3n/4⇒ ((WA
1 ∪WB

1) ⊆ X ∧WD
1 ∩X = ∅)

3n/4 ≤ |X| ⇒ (WA
1 ∪WB

1 ∪WC
1) ⊆ X.

We now verify that σ−1
opt({1, 2, . . . , i}) is accepted by R for any 1 ≤ i ≤ n.

For i ≤ n/2− α|WAB
2 | it is obvious, and for i ≥ n/2 it follows from the fact

that WAB
2 is placed in A ∪ B by σopt. Finally, for n/2− α|WAB

2 | ≤ i ≤ n/2
we have

|WAB
2 \ σ−1

opt({1, 2, . . . , i})| ≤ n/2− i ≤ α|WAB
2 |.

The bound T2(n) is immediate from the discussion above.

Note that we have 24ε1n overhead so far, due to guessing placement of the
jobs from W1. By Lemma 2.1,

(
ε2n
αε2n

)
= O((2 − c(α))ε2n) and

(
n

(1/2−αε2)n

)
=

O((2− c(α, ε2))n), for some positive constants c(α) and c(α, ε2) that depend

38

only on α and only on α and ε2, respectively. Thus, for any small �xed
ε2 and any �xed 0 < α < 1/2 we can choose ε1 su�ciently small so that
24ε1nT2(n) = O(cn) for some c < 2. Note that 24ε1nT2(n) is an upper bound
on the total time spent on processing all the considered subcases.

Let W2 = WAB
2 ∪WCD

2 and I2 = I1 \W2. From this point we assume
that |WAB

2 |, |WCD
2 | ≤ ε2n, hence |W2| ≤ 2ε2n and |I2| ≥ (1 − 2ε1 − 2ε2)n.

For each v ∈ WAB
2 we branch into two subcases, whether σopt(v) belongs to

A or B. Similarly, for each v ∈ WCD
2 we guess whether σopt(v) belongs to

C or D. Again, we terminate branches which are trivially contradicting the
constraints. This step gives us an additional 2|W2| ≤ 22ε2n overhead in the
time complexity. We denote the set of elements of W2 assigned to quarter
Γ ∈ {A,B,C,D} by W Γ

2 .

2.4.7 Quarters and applications of the core lemma

In this section we try to apply Lemma 2.13 as follows: We look which ele-
ments of I2 can be placed in A (the set PA) and which cannot (the set P¬A).
Similarly we de�ne the set PD (can be placed in D) and P¬D (cannot be
placed in D). For each of these sets, we try to apply Lemma 2.13 to some
subset of it. If we fail, then in the next subsection we infer that the solutions
in the quarters are partially independent of each other, and we can solve the
problem in time roughly O(23n/4). Let us now proceed with a more detailed
argumentation.

We de�ne the following two partitions of I2:

P¬A =
{
v ∈ I2 : ∃w

(
w ∈ WB

1 ∧ w < v
)}
,

PA = I2 \ P¬A =
{
v ∈ I2 : ∀w

(
w < v ⇒ w ∈ WA

1

)}
,

P¬D =
{
v ∈ I2 : ∃w

(
w ∈ WC

1 ∧ w > v
)}
,

PD = I2 \ P¬D =
{
v ∈ I2 : ∀w

(
w > v ⇒ w ∈ WD

1

)}
.

In other words, the elements of P¬A cannot be placed in A because some
of their requirements are in WB

1 , and the elements of P¬D cannot be placed
in D because they are required by some elements of WC

1 . Note that these
de�nitions are independent of σopt, so sets P∆ for ∆ ∈ {A,¬A,¬D,D} can

39

be computed in polynomial time. Let

pA = |σopt(PA) ∩ A|,
pB = |σopt(P¬A) ∩B|,
pC = |σopt(P¬D) ∩ C|,
pD = |σopt(PD) ∩D|.

Note that pΓ ≤ n/4 for every Γ ∈ {A,B,C,D}. As pA = n/4−|WA
1 ∪WA

2 |,
pD = n/4−|WD

1 ∪WD
2 |, these values can be computed by the algorithm. We

branch into (1 + n/4)2 further subcases, guessing the (still unknown) values
pB and pC .

Let us focus on the quarter A and assume that pA is signi�cantly smaller
than |PA|/2. We claim that we can apply Lemma 2.13 as follows. While
computing σ[X], if |X| ≥ n/4, we can represent X ∩ PA as a disjoint sum
of two subsets XA

A , X
A
BCD ⊆ PA. The �rst one is of size pA, and represents

the elements of X ∩ PA placed in quarter A, and the second represents the
elements of X ∩PA placed in quarters B ∪C ∪D. Note that the elements of
XA
BCD have all predecessors in the quarter A, so by Observation 2.12 the set

XA
BCD has to be non-succ-exchangeable with respect to PA \XA

A ; therefore,
by Lemma 2.13, we can consider only a very narrow choice of XA

BCD. Thus,
the whole part X∩PA can be represented by its subset of cardinality at most
pA plus some small information about the rest. If pA is signi�cantly smaller
than |PA|/2, this representation is more concise than simply remembering a
subset of PA. Thus we obtain a better bound on the number of feasible sets.

A symmetric situation arises when pD is signi�cantly smaller than |PD|/2;
moreover, we can similarly use Lemma 2.13 if pB is signi�cantly smaller than
|P¬A|/2 or pC than |P¬D|/2. This is formalized by the following lemma.

Lemma 2.16. If pΓ < |P∆|/2 for some (Γ,∆) ∈ {(A,A), (B,¬A), (C,¬D),
(D,D)} and ε1 ≤ 1/4, then the DP algorithm can be augmented to solve the
remaining instance in time bounded by

Tp(n) = 2n−|P
∆|
(
|P∆|
pΓ

)(
n

|W1|

)
nO(1).

Proof. We describe here only the case ∆ = Γ = A, the other cases are
analogous.

On a high-level, we want to proceed as in Proposition 2.9, i.e., use the
standard DP algorithm described in Section 2.4.1, while terminating the

40

computation for some unfeasible subsets of V . However, in this case we need
to slightly modify the recursive formula used in the computations, and we
compute σ[X,L] for X ⊆ V , L ⊆ X ∩ PA. Intuitively, the set X plays the
same role as before, whereas L is the subset of X∩PA that was placed in the
quarter A. Formally, σ[X,L] is the ordering of X that attains the minimum
total cost among those orderings σ for which L = PA∩σ−1(A). Thus, in the
DP algorithm we use the following recursive formula:

T (σ[X,L]) =



minv∈max(X) [T (σ[X \ {v}, L \ {v}]) + T (v, |X|)]
if |X| ≤ n/4 and L = X ∩ PA,

+∞ if |X| ≤ n/4 and L 6= X ∩ PA,

minv∈max(X)\L [T (σ[X \ {v}, L]) + T (v, |X|)]
otherwise.

In the next paragraphs we describe a polynomial-time algorithm R that ac-
cepts or rejects pairs of subsets (X,L), X ⊆ V , L ⊆ X∩PA; we terminate the
computation on rejected pairs (X,L). As each single calculation of σ[X,L]
uses at most |X| recursive calls, the time complexity of the algorithm is
bounded by the number of accepted pairs, up to a polynomial multiplicative
factor. We now describe the algorithm R.

First, given a pair (X,L), we ensure that we ful�ll the guessed sets W Γ
k ,

Γ ∈ {A,B,C,D}, k = 1, 2. E.g., we require WB
k ⊆ X if |X| ≥ n/2 and

WB
k ∩X = ∅ if |X| ≤ n/4. We require similar conditions for other quarters

A, C and D (cf. proof of Lemma 2.15). Moreover, we require that X is
downward closed. Note that this implies X ∩ P¬A = ∅ if |X| ≤ n/4 and
P¬D ⊆ X if |X| ≥ 3n/4.

Second, we require the following:

1. If |X| ≤ n/4, we require that L = X∩PA and |L| ≤ pA; as pA ≤ |PA|/2,
there are at most 2n−|P

A|(|PA|
pA

)
n such pairs (X,L);

2. Otherwise, we require that |L| = pA and that the set X ∩ (PA \ L) is
non-succ-exchangeable with respect to PA \ L; by Lemma 2.13 there

are at most
∑

l≤|W1|
(|PA\L|

l

)
≤ n

(
n
|W1|

)
(since |W1| ≤ 2ε1n ≤ n/2) non-

succ-exchangeable sets with respect to PA \ L, thus there are at most

2n−|P
A|(|PA|

pA

)(
n
|W1|

)
n such pairs (X,L).

Let us now check the correctness of the above pruning. Let 0 ≤ i ≤ n
and let X = σ−1

opt({1, 2, . . . , i}) and L = σ−1
opt(A) ∩X ∩ PA. It is easy to see

41

that Observation 2.12 implies that in case i ≥ n/4 the set X ∩ (PA \ L) is
non-succ-exchangeable and the pair (X,L) is accepted.

The cases (Γ,∆) ∈ {(B,¬A), (C,¬D), (D,D)} are analogous: L corre-
sponds to jobs from P∆ scheduled to be done in segment Γ and we require that
X ∩ (P∆ \ L) is non-pred-exchangeable (instead of non-succ-exchangeable)
in case ∆ = ¬D,D. The recursive de�nition of T (σ[X,L]) should be also
adjusted.

Observe that if any of the sets P∆ for ∆ ∈ {A,¬A,¬D,D} is signi�cantly
larger than n/2, one of the situations in Lemma 2.16 indeed occurs, since
pΓ ≤ n/4 for Γ ∈ {A,B,C,D} and |W1| is small.

Lemma 2.17. If 2ε1 < 1/4 + ε3/2 and at least one of the sets PA, P¬A,
P¬D and PD is of size at least (1/2 + ε3)n, then the DP algorithm can be
augmented to solve the remaining instance in time bounded by

T3(n) = 2(1/2−ε3)n

(
(1/2 + ε3)n

n/4

)(
n

2ε1n

)
nO(1).

Proof. The claim is straightforward; note only that the term 2n−|P
∆|(|P∆|

pΓ

)
for pΓ < |P∆|/2 is a decreasing function of |P∆|.

Note that we have 2(4ε1+2ε2)nnO(1) overhead so far. As
(

(1/2+ε3)n
n/4

)
= O((2−

c(ε3))(1/2+ε3)n) for some constant c(ε3) > 0, for any small �xed ε3 we can
choose su�ciently small ε2 and ε1 to have 2(4ε1+2ε2)nnO(1)T3(n) = O(cn) for
some c < 2.

From this point we assume that |PA|, |P¬A|, |P¬D|, |PD| ≤ (1/2 + ε3)n.
As PA ∪P¬A = I2 = P¬D ∪PD and |I2| ≥ (1− 2ε1− 2ε2)n, this implies that
these four sets are of size at least (1/2 − 2ε1 − 2ε2 − ε3)n, i.e., they are of
size roughly n/2. Having bounded the sizes of the sets P∆ from below, we
are able to use Lemma 2.16 again: if any of the numbers pA, pB, pC , pD is
signi�cantly smaller than n/4, then it is also signi�cantly smaller than half
of the cardinality of the corresponding set P∆.

Lemma 2.18. Let ε123 = 2ε1 + 2ε2 + ε3. If at least one of the numbers p
A,

pB, pC and pD is smaller than (1/4 − ε4)n and ε4 > ε123/2, then the DP
algorithm can be augmented to solve the remaining instance in time bounded
by

T4(n) = 2(1/2+ε123)n

(
(1/2− ε123)n

(1/4− ε4)n

)(
n

2ε1n

)
nO(1).

42

Proof. As, before, the claim is a straightforward application of Lemma 2.16,

and the fact that the term 2n−|P
∆|(|P∆|

pΓ

)
for pΓ < |P∆|/2 is a decreasing

function of |P∆|.

So far we have 2(4ε1+2ε2)nnO(1) overhead. Similarly as before, for any
small �xed ε4 if we choose ε1, ε2, ε3 su�ciently small, we have

(
(1/2−ε123)n
(1/4−ε4)n

)
=

O((2− c(ε4))(1/2−ε123)n) and 2(4ε1+2ε2)nnO(1)T4(n) = O(cn) for some c < 2.
Thus we are left with the case when pA, pB, pC , pD ≥ (1/4− ε4)n.

2.4.8 The remaining case

In this subsection we infer that in the remaining case the quarters A, B,
C and D are somewhat independent, which allows us to develop a faster
algorithm. More precisely, note that pΓ ≥ (1/4 − ε4)n, Γ ∈ {A,B,C,D},
means that almost all elements that are placed in A by σopt belong to PA,
while almost all elements placed in B belong to P¬A. Similarly, almost all
elements placed in D belong to PD and almost all elements placed in C
belong to P¬D. As PA ∩ P¬A = ∅ and P¬D ∩ PD = ∅, this implies that
what happens in the quarters A and B, as well as C and D, is (almost)
independent. This key observation can be used to develop an algorithm that
solves this special case in time roughly O(23n/4).

Let WB
3 = I2 ∩ (σ−1

opt(B) \ P¬A) and WC
3 = I2 ∩ (σ−1

opt(C) \ P¬D). As
pB, pC ≥ (1/4 − ε4)n we have that |WB

3 |, |WC
3 | ≤ ε4n. We branch into at

most n2
(
n
ε4n

)2
subcases, guessing the setsWB

3 andWC
3 . LetW3 = WB

3 ∪WC
3 ,

I3 = I2 \W3, Q
∆ = P∆ \W3 for ∆ ∈ {A,¬A,¬D,D}. Moreover, let W Γ =

W Γ
1 ∪W Γ

2 ∪W Γ
3 for Γ ∈ {A,B,C,D}, using the convention WA

3 = WD
3 = ∅.

Note that in the current branch for any ordering and any Γ ∈ {A,B,C,D},
the segment Γ gets all the jobs from W Γ and qΓ = n/4− |W Γ| jobs from ap-
propriate Q∆ (∆ = A,¬A,¬D,D for Γ = A,B,C,D, respectively). Thus,
the behaviour of an ordering σ in A in�uences the behaviour of σ in C by
the choice of which elements of QA ∩Q¬D are placed in A, and which in C.
Similar dependencies are between A and D, B and C, as well as B and D
(see Figure 2.5). In particular, there are no dependencies between A and
B, as well as C and D, and we can compute the optimal arrangement by
keeping track of only three out of four dependencies at once, leading us to
an algorithm running in time roughly O(23n/4). This is formalized in the
following lemma:

43

Lemma 2.19. If 2ε1 + 2ε2 + ε4 < 1/4, the remaining case can be solved by
an algorithm running in time bounded by

T5(n) =

(
n

ε4n

)2

2(3/4+ε3)nnO(1).

A or C B or C

A or D B or D

QA Q¬A

QD

Q¬D
D B

CA

Q¬A ∩QD

QA ∩Q¬D

QA ∩QD Q¬A ∩Q¬D

Figure 2.5: Dependencies between quarters and sets Q∆. The left part of the
�gure illustrates where the jobs from Q∆1 ∩ Q∆2 may be placed. The right
part of the �gure illustrates the dependencies between the quarters.

Proof. Let (Γ,∆) ∈ {(A,A), (B,¬A), (C,¬D), (D,D)}. For each set Y ⊆
Q∆ of size qΓ, for each bijection (partial ordering) σΓ(Y) : Y ∪W Γ → Γ let
us de�ne its cost as

T (σΓ(Y)) =
∑

v∈Y ∪WΓ

T (v, σΓ(Y)(v)).

Let σΓ
opt(Y) be the partial ordering that minimizes the cost (recall that it

is unique due to the initial steps in Section 2.4.4). Note that if we de�ne
Y Γ
opt = σ−1

opt(Γ)∩Q∆ for (Γ,∆) ∈ {(A,A), (B,¬A), (C,¬D), (D,D)}, then the
ordering σopt consists of the partial orderings σ

Γ
opt(Y

Γ
opt).

We �rst compute the values σΓ
opt(Y) for all (Γ,∆) ∈ {(A,A), (B,¬A),

(C,¬D), (D,D)} and Y ⊆ Q∆, |Y | = qΓ, by a straightforward modi�cation
of the DP algorithm. For �xed pair (Γ,∆), the DP algorithm computes
σΓ
opt(Y) for all Y in time

2|W
Γ|+|Q∆|nO(1) ≤ 2(2ε1+2ε2+ε4)n+(1/2+ε3)nnO(1) = O(2(3/4+ε3)n).

44

The last inequality follows from the assumption 2ε1 + 2ε2 + ε4 < 1/4.
Let us focus on the sets QA ∩Q¬D, QA ∩QD, Q¬A ∩Q¬D and Q¬A ∩QD.

Without loss of generality we assume that QA ∩Q¬D is the smallest among
those. As they all are pairwise disjoint and sum up to I2, we have |QA ∩
Q¬D| ≤ n/4. We branch into at most 2|Q

A∩Q¬D|+|Q¬A∩QD| subcases, guessing
the sets

Y AC
opt = Y A

opt ∩ (QA ∩Q¬D) = (QA ∩Q¬D) \ Y C
opt and

Y BD
opt = Y B

opt ∩ (Q¬A ∩QD) = (Q¬A ∩QD) \ Y D
opt.

Then, we choose the set

Y AD
opt = Y A

opt ∩ (QA ∩QD) = (QA ∩QD) \ Y D
opt

that optimizes

T (σAopt(Y
AC
opt ∪ Y AD

opt)) + T (σDopt(Q
D \ (Y AD

opt ∪ Y BD
opt)).

Independently, we choose the set

Y BC
opt = Y B

opt ∩ (Q¬A ∩Q¬D) = (Q¬A ∩Q¬D) \ Y C
opt

that optimizes

T (σBopt(Y
BC
opt ∪ Y BD

opt)) + T (σCopt(Q
¬D \ (Y BC

opt ∪ Y AC
opt)).

To see the correctness of the above step, note that Y A
opt = Y AC

opt ∪ Y AD
opt , and

similarly for other quarters.
The time complexity of the above step is bounded by

2|Q
A∩Q¬D|+|Q¬A∩QD|

(
2|Q

A∩QD| + 2|Q
¬A∩Q¬D|

)
nO(1)

= 2|Q
A∩Q¬D|

(
2|Q

D| + 2|Q
¬A|
)
nO(1)

≤ 2(3/4+ε3)nnO(1)

and the bound T5(n) follows.

So far we have 2(4ε1+2ε2)nnO(1) overhead. For su�ciently small ε4 we have(
n
ε4n

)
= O(2n/16) and then for su�ciently small constants εk, k = 1, 2, 3 we

have 2(4ε1+2ε2)nnO(1)T5(n) = O(cn) for some c < 2.

45

2.4.9 Numerical values of the constants

Before we give the values of the constants εk and α (used in Lemma 2.15),
let us make a small optimization. Note that when invoking Lemma 2.15,
we only need to know how σopt splits the set W1 between halves A ∪ B and
C ∪ D, i.e., we need to know the sets WAB

1 and WCD
1 instead of the whole

quadruple W Γ
1 for Γ ∈ {A,B,C,D}. This leads to 22ε1n overhead (instead of

24ε1n) in front of the bound T2(n). Using this observation and the following
values of the constants:

ε1 = 9.98046875 · 10−16

ε2 = 0.000022460937500773876190185546875

ε3 = 0.007018430709839396687947213649749755859375

ε4 = 0.01652666037343616678841463726712390780448

α = 0.4976413249969482421875

we get that the running time of our algorithm is bounded by:

O
((

2− 5 · 10−16
)n)

.

46

Chapter 3

Fixed-parameter algorithms and

kernelization

3.1 Introduction

Let us start with the following motivating example, described in the textbook
of Downey and Fellows [56]. Assume we have collected many data points from
an experiment. However, it appears that some data points are contradicting
another. We want to select as small as possible number of data points such
that after discarding this set no contradictions remain. By replacing data
points with vertices, and pairs of contradicting data points by edges, we
arrive at the well-known Vertex Cover problem:

Vertex Cover

Input: An undirected graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there exist a set X ⊆ V of at most k vertices, such that
each edge in G has an endpoint in X?

Although Vertex Cover is NP-complete, the fact that the number of
data points to be discarded � the parameter k � is most probably very
small, makes our situation not totally hopeless. As we will see later in this
section, the Vertex Cover problem can be solved in O(n2k) time, feasible
for k around 20 − 30 and even very large n (the number of data points).
Note that this would not be the case with the naive brute-force algorithm
for Vertex Cover that runs in O(nk) time: even for k = 20, O(n20) is not
feasible for n > 10.

47

The aforementioned example is not a standalone one. If we are to solve
an NP-hard problem with parameter k that is assumed to be small (say,
around 20), there is a huge di�erence between an algorithm running in time
O(nck) and O(nk): the �rst one is feasible for almost arbitrarily large values
of n, when the second one is useless for n ∼ k. Following Downey [57],
let us illustrate this phenomenon by the example of the polynomial-time
approximation schemes (PTAS). A typical PTAS �nds an (1+ε)-approximate
solution in time O(nf(ε)) for some decreasing function f (e.g., f(ε) = 1/ε),
while some of them � called e�cient PTASes (EPTAS) � run in time
O(f(ε)nO(1)). As pointed out by Downey [57], the PTASes of the �rst type
are almost always not feasible for the allowed error of 20% (i.e., ε = 0.2),
whereas the EPTASes may be useful for much smaller values of ε.

The di�erence between O?(f(k)) and O(nk) algorithms is the main mo-
tivation for the study of parameterized complexity. Let us recall that in the
parameterized complexity setting, an instance comes with an integer param-
eter k � formally, a parameterized problem Q is a subset of Σ∗×N for some
�nite alphabet Σ. We say that a problem is �xed-parameter tractable (FPT)
if there exists an algorithm solving any instance (x, k) in time f(k)|x|O(1) for
some (usually exponential) computable function f . Intuitively, the parame-
ter k measures the hardness of the instance. Concluding the discussion on
the examples at the beginning of this section, we consider �xed-parameter
algorithms e�cient for small values of k, as opposed to ine�cient algorithms
of time complexity O(nf(k)).

Although over the last 20 years researchers developed a powerful toolbox
for designing �xed-parameter algorithms, a few problems eluded their e�orts.
The most prominent two wereClique andDominating Set, parameterized
by the solution size.

Clique

Input: An undirected graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there a subgraph of G that is isomorphic to a clique on
k vertices?

Dominating Set

Input: An undirected graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there exists a set of at most k vertices that dominates
all vertices of G?

48

The study of these two problems led to the development of the W -
hierarchy of the parameterized problems:

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [P] ⊆ XP.

It turned out that Clique is W [1]-complete, meaning that it is the hardest
problem that can be expressed as verifying an existential formula of length
bounded by a function of the parameter k. Similarly, Dominating Set is
W [2]-complete, which contains all the problems expressible as a Σ2 formula
of length bounded in a function of the parameter. It is widely believed that
FPT 6= W [1] and the whole W -hierarchy is proper, giving the researchers
tools to prove that some problems are not likely to admit a �xed-parameter
algorithm.

Recall that a kernelization algorithm reduces in polynomial time the input
instance x with parameter k to an equivalent one with the size bounded by
g(k) for some computable function g. We usually aim at polynomial kernels,
that is, with function g being a polynomial. Kernelization techniques can
be viewed as polynomial time preprocessing routines for tackling NP-hard
problems. In particular small (i.e. polynomial) kernels play an important
role, and there are numerous positive results showing small kernels for vari-
ous problems, including Vertex Cover [32] and Feedback Vertex Set

[126].
Note that if a problem Q admits a kernelization algorithm and is decid-

able, it is also �xed-parameter tractable: we may simply reduce an input
instance to a size bounded by a function of the parameter, and run a brute-
force algorithm. Consider now a problem Q that admits a �xed-parameter
algorithm with running time O(f(k)nc) for a constant c and a computable
function f . Consider the following kernelization algorithm for Q: if f(k) > n,
we do not alter the input instance; otherwise, the �xed-parameter algorithm
solves the problem in polynomial, i.e., O(nc+1), time. By this reasoning we
obtained one of the core results of parameterized complexity: a decidable
problem is FPT if and only if it is kernelizable.

It is sometimes convenient to consider problems with more than one pa-
rameter. In this case, we allow the function f in the de�nition of a �xed-
parameter algorithm, as well as the function g that bounds the size of a
kernel, to depend on all parameters. Note that, asymptotically, this is equiv-
alent to consider a parameterized problem in the classical single-parameter
setting where the single formal parameter is the sum of all parameters in the
multi-parameter setting.

49

Before we dive into the depths of parameterized complexity, let us extend
a bit the example of the Vertex Cover problem parameterized by the so-
lution size. Consider the following branching algorithm for Vertex Cover
(its idea can be traced back to Buss and Goldsmith [25]).

Function VertexCover(G, k)
1: if k < 0 then

2: return NO
3: if E(G) = ∅ then
4: return YES
5: let uv be an arbitrary edge of G
6: return VertexCover(G \ u, k − 1) ∨VertexCover(G \ v, k − 1)

At each step, if k ≥ 0 and G still contains some edges, it chooses an arbi-
trary one and branches into two subcases, taking into the solution one of the
endpoints of the chosen edge. As each recursive call of the VertexCover rou-
tine calls itself twice with the parameter decreased by one, the total running
time of this algorithm is O?(2k) (and even O(n2k), if we take some care in
the implementation). Thus the presented algorithm proves �xed-parameter
tractability of Vertex Cover parameterized by the solution size. Currently
the fastest parameterized algorithm for this problem, due to Chen et al. [33],
works in O?(1.2738k) time.

Let us now focus on the kernelization of Vertex Cover. Consider the
following kernelization algorithm due to Buss and Goldsmith [25]. The al-
gorithm consists of three reduction rules. Each reduction rule, if applicable,
takes an instance (G, k) as an input and replaces it with an equivalent in-
stance of smaller size. If no rule is applicable, we claim that the size of the
resulting instance is bounded by O(k2).

1. Isolated vertex rule. If the input graphG contains an isolated vertex,
remove it.

2. Large degree rule. If the input graph G contains a vertex of degree
at least k + 1, remove it and decrease k by one.

3. Finishing rule. If the large degree rule is not applicable and the graph
contains more than k2 edges, return a trivial NO-instance.

Let us �rst discuss the soundness of the above reduction rules. The �rst rule
is obviously correct, as isolated vertices are not included in any inclusion-
minimal vertex cover of G. If we have a vertex of degree at least k + 1, it

50

needs to be included in any vertex cover of size at most k, and the soundness
of the second rule follows. Finally, if every vertex has degree bounded by
k, a set of at most k vertices can cover at most k2 edges. This proves the
correctness of the last rule.

Note that if no rule is applicable, we have at most k2 edges in the graph
G and, since there are no isolated vertices, we have at most 2k2 vertices.
We infer that Vertex Cover, parameterized by the solution size, admits
a kernel of size O(k2). This bound was further improved and currently we
know that any Vertex Cover instance can be reduced to an instance with
at most 2k vertices [32].

After the above example, we are ready to present our results. In Sec-
tion 3.2 we show a �xed-parameter algorithm for the Subset Feedback

Vertex Set problem. Section 3.3 serves as a short introduction to the
framework of kernelization lower bounds. Finally, in Section 3.4 we show
our results on the hardness of polynomial kernelization of a few connectivity
problems in graphs of bounded degeneracy.

3.2 Subset Feedback Vertex Set

Feedback Vertex Set (FVS) is one of the long�studied problems in the
algorithms area. It can be stated as follows: given an undirected graph G
on n vertices and a parameter k decide if one can remove at most k vertices
from G so that the remaining graph does not contain a cycle, i.e., is a forest.
The problem of �nding feedback sets in undirected graphs arises in a variety
of applications in genetics, circuit testing, arti�cial intelligence, deadlock
resolution, and analysis of manufacturing processes [62].

Because of its importance the feedback vertex set problem was stud-
ied from the approximation algorithms perspective in di�erent variants and
generalisations including Directed Feedback Vertex Set and Subset
Feedback Vertex Set (see [61] and [63] for further references). In this
section we study the Subset Feedback Vertex Set problem from the
parametrized complexity perspective.

The long line of research concerning FVS in the parameterized complexity
setting contains [8, 14, 27, 31, 50, 58, 87, 98, 117]. Currently the fastest known
algorithm due to Cygan et al. works in O?(3k) time [42]. Thomassé [126] has
shown a quadratic kernel for this problem improving previous results [18, 24].
The directed version has been proved to be FPT in 2008 by Chen et al. [35],

51

closing a long-standing open problem in the parameterized complexity com-
munity. The natural question concerning the parameterized complexity of
the Subset Feedback Vertex Set problem was posed independently by
Kawarabayashi at the 4th workshop on Graph Classes, Optimization, and
Width Parameters (GROW 2009) and by Saurabh at the Dagstuhl semi-
nar `Parameterized complexity and approximation algorithms' (no. 09511,
2009) [52].

In the Subset Feedback Vertex Set problem (Subset-FVS) an
instance comes with a subset of vertices S, and we ask for a set of at most k
vertices that hits all simple cycles passing through S. It is easy to see that
Subset-FVS is a generalization of FVS by putting S = V . The weighted
version of Subset-FVS was introduced by Even et al. [62] as a generalization
of two problems: Feedback Vertex Set and Node Multiway Cut.
Even et al. motivate Subset-FVS problem by explaining its applicability
to genetic linkage.

Subset Feedback Vertex Set (Subset-FVS)
Input: An undirected graph G = (V,E), a set S ⊆ V and a positive
integer k.
Parameter: k.
Question: Does there exist a set T ⊆ V such that |T | ≤ k and no simple
cycle in G[V \ T] contains a vertex of S?

We also de�ne a variant of Subset-FVS, where the set S is a subset of
edges of G.

Edge Subset Feedback Vertex Set (Edge-Subset-FVS)
Input: An undirected graph G = (V,E), a set S ⊆ E and a positive
integer k.
Parameter: k.
Question: Does there exist a set T ⊆ V with |T | ≤ k, such that no
simple cycle in G[V \ T] contains an edge from S?

The two problems stated above are equivalent. To see this, note that if
(G,S, k) is an instance of Subset-FVS, we create an instance (G,S ′, k) of
Edge-Subset-FVS by selecting as S ′ all the edges incident to any vertex
of S. Then any simple cycle passing through a vertex of S has to pass
through an edge of S ′, and conversely, any cycle passing through an edge of
S ′ contains a vertex from S. In the other direction, if (G,S ′, k) is an instance
of Edge-Subset-FVS, obtain G′ by replacing each edge uv ∈ S ′ by a path

52

u−xuv− v of length 2, and solve the Subset-FVS instance (G′, S, k) where
S = {xe : e ∈ S ′}. Clearly both reductions work in polynomial time and
do not change the parameter. Thus, in the rest of this section we focus on
solving Edge Subset Feedback Vertex Set. A simple cycle containing
an edge from S is called an S�cycle.

It turns out that the Subset-FVS problem is very closely related to other
graph separation problems, including Node Multiway Cut and Node

Multicut.

Node Multiway Cut

Input: An undirected graph G = (V,E), a set of vertices T ⊆ V , called
terminals, and a positive integer k.
Parameter: k.
Question: Does there exist a set T ⊆ V of at most k non-terminals, such
that no two terminals are in the same connected component of G[V \T]?

Node Multicut

Input: An undirected graph G = (V,E), a set of pairs of vertices T ⊆
V × V , called terminal pairs, and a positive integer k.
Parameter: k.
Question: Does there exist a set T ⊆ V of at most k non-terminals,
such that no terminal pair is contained in one connected component of
G[V \ T]?

As observed by Even et al. [62] the weighted version of Subset-FVS is
a generalization of Node Multiway Cut. It is straightforward to adjust
their reduction to the unweighted parameterized case if we allow deletions
of terminals; for sake of completeness, we include the reduction in Section
3.2.4.

The graph separation problems became an important part of the �eld
of parameterized complexity after the discovery of the important separators
technique by Marx [110]. This technique, after being improved by Chen et al.
[34], is a core part of many �xed-parameter algorithms for various problems,
including Almost-2-SAT [118] and (very recent) Directed Multiway

Cut [36]. The �xed-parameter tractability forMulticut was independently
obtained in 2010 by Bousquet et al. [21] and by Marx and Razgon [111].

The question of polynomial kernels for the graph separating problems is
currently one of the most important open problems in the �eld of kerneliza-
tion. Very recently Kratsch and Wahlström [103] applied matroid tools to

53

obtain a randomized polynomial kernel for the Odd Cycle Transversal

problem. This result gives hope that the question of polynomial kernel of
Node Multiway Cut (and related problems) will be resolved positively in
the near future.

Let us now state the main result of this section.

Theorem 3.1. There exists a O?(2O(k log k))-time and polynomial space algo-
rithm for Edge-Subset-FVS (which implies an algorithm of the same time
complexity for Subset-FVS).

This result resolves the open problem posed by Kawarabayashi and by
Saurabh. To achieve this result we use several tools such as iterative com-
pression, the 2-Expansion Lemma, Menger's theorem, Gallai's theorem and
the algorithm for the Multiway Cut problem. Some of our ideas were in-
spired by previous FPT results: the algorithm for Multicut parameterized
by (|T |, k) by Guillemot [86], the O?(37.7k)�time algorithm for FVS by Guo
et al. [87] and the quadratic kernel for FVS by Thomassé [126].

We do not analyze the value of the exponent in the term in the time
complexity that is polynomial in the input size (and hidden in the O? no-
tation), as in our algorithm it is far from being linear. The most important
reasons for this dependency is that the usage of Gallai's theorem requires
�nding a maximum matching in an auxiliary graph, and the use of iterative
compression gives additional multiplicative factor of |V |.

We note that an FPT algorithm for Subset-FVS was independently
discovered by Kawarabayashi and Kobayashi [100]. Their algorithm uses
signi�cantly di�erent techniques (minor theory) and its dependency on k in
the running time is worse than O?(2O(k log k)).

Outline of this section We start by showing (in Section 3.2.1) that Edge-
Subset-FVS is �xed-parameter tractable when parameterized by |S|. To
obtain �xed-parameter tractability for Edge-Subset-FVS parameterized
by k, in Section 3.2.2 we develop an algorithm that branches into O?(2k)
subinstances with the size of S bounded by O(k3). Thus, the results of
Sections 3.2.1 and 3.2.2 prove that Edge-Subset-FVS is �xed-parameter
tractable when parameterized by k.

Later, in Section 3.2.3, we improve the algorithm for Edge-Subset-FVS
parameterized by |S| so that it runs in O?(2O(k log |S|)) time. Our arguments in
this section closely follow the approach of Guillemot [86] forMulticut. This

54

enhanced algorithm allows us to improve the running time of the algorithm
for Edge-Subset-FVS to O?(2O(k log k)). Finally, for sake of completeness, in
Section 3.2.4 we include a reduction from Node Multiway Cut to Subset-
FVS in the parameterized setting.

3.2.1 A simple algorithm for Edge-Subset-FVS param-

eterized by |S|
In this section we concentrate on solving the Edge-Subset-FVS problem
parameterized by |S|, which means that our complexity function can be ex-
ponentially dependent on the number of edges in the set S. This is the �rst
step towards obtaining an FPT algorithm when parameterized by k. Observe
that we may assume k < |S| since otherwise we may delete one vertex from
each edge from the set S thus removing all edges from the set S from our
graph.

Let us �rst introduce some notation. For G = (V,E) denote GS = (V,E \
S). By a partition of a set Z we mean such a family P = {P1, . . . , Pm}, that
the Pis are pairwise disjoint and their union is Z. We say a partition P ′ is
a subpartition of P if every element of P ′ is contained in some element of P ,
in this case we call P a superpartition of P ′.

In this section we show an FPT algorithm which is easy to understand
and later (in Section 3.2.3) we present methods to improve the time com-
plexity. We use the fact that Node Multicut is FPT when parameterized
by (k, |T |) which was shown by Marx [110].

Theorem 3.2. There exists an algorithm solving the Edge Subset Feed-
back Vertex Set problem in O?(f(|S|)) time, for some computable func-
tion f .

Proof. Let T be some solution of Edge-Subset-FVS. Our new parametriza-
tion, by |S|, allows us to guess, by checking all possibilities, the subset
TS = T ∩ V (S) that is removed by the solution T . Moreover, our algorithm
guesses how the set V (S) \ TS is partitioned into connected components in
the graph GS[V \T]. Clearly both the number of subsets and of possible par-
titions are functions of |S|. For a partition P = {P1, . . . , Pm} of V (S) \ TS
we form a multigraph GP on the set {P1, . . . , Pm} by adding an edge PiPj
for every edge uv ∈ S, where u ∈ Pi, v ∈ Pj. Now we check whether there
exists an edge in GP which is not a bridge (in particular, a self-loop at one

55

vertex in GP is not a bridge). If that is the case we know that the partition
P does not correspond to any solution of Edge-Subset-FVS, as any simple
cycle in GP can be converted into a simple cycle in G � hence we skip this
partition. Otherwise we create a set of pairs T , containing all pairs of ver-
tices from the set V (S) \ TS that belong to di�erent sets in the partition P .
Formally T = {(vi, vj) : vi ∈ Pi′ , vj ∈ Pj′ , i′ 6= j′}. Because of the properties
of the multigraph GP it is su�cient to ensure that no pair from the set T
is contained in one connected component, hence in the last step we execute
the �xed-parameter algorithm for the Node Multicut problem [110] with
parameter k−|TS|. If the call returns a positive answer and a solution X, the
set TS∪X is a solution to Edge-Subset-FVS: the connected components of
GS[V \ (TS ∪X)] induce a partition of V (S) \ (TS ∪X) that is a subpartition
of P and thus all remaining edges of S are bridges in G[V \(TS∪X)]. In par-
ticular, as GP does not contain any self-loop, for any connected component C
of GS[V \ (TS ∪X)] with vertex set VC the graph G[VC] does not contain any
edge from S. Note that we do not require here that X ∩ V (S) = ∅ nor that
the induced partition of V (S) \ (TS ∪ X) is exactly the partition P (being
a subpartition is su�cient). On the other hand, if the answer to Edge-
Subset-FVS is positive, the Node Multicut call returns a solution for at
least one choice of TS and P , the one implied by the Edge-Subset-FVS
solution. Observe that |T | = O(|S|2) so the algorithm for Node Multicut
runs in O?(f(|S|, k)) time and we obtain an FPT algorithm for the Edge
Subset Feedback Vertex Set problem parameterized by |S|.

Function EdgeSubsetFeedbackVertexSet(G,S, k) {parameterized by (|S|)}
1: for all subsets TS ⊆ V (S), |TS | ≤ k do

2: for all partitions P = {P1, . . . , Pm} of V (S) \ TS do

3: form a multigraph GP on the set {P1, . . . , Pm} by adding an edge
PiPj for every edge uv ∈ S, u ∈ Pi, v ∈ Pj .

4: if all edges in GP are bridges then
5: let T = {(vi, vj) : vi ∈ Pi′ , vj ∈ Pj′ , i

′ 6= j′}
6: if MultiCut(GS [V \ TS], T , k − |TS |) returns (Y ES,X) then

7: return TS ∪X
8: return NO

3.2.2 Edge-Subset-FVS parameterized by k

In this section we show an FPT algorithm for Edge Subset Feedback

Vertex Set.

56

We begin by noting that, using standard arguments, one can show that
Edge-Subset-FVS is self-reducible � i.e., if we have an algorithm that
solves Edge-Subset-FVS, we can also �nd a witness: a set T of size at most
k that intersects all cycles passing through S. The procedure is standard:
Assume the answer is positive. For every vertex we check whether it can
be a part of a solution by removing it from the graph, decreasing k by one
and running our algorithm on the reduced instance. For at least one vertex
the answer has to be positive, so we greedily take any such vertex into the
solution and proceed inductively.

We now follow the idea of iterative compression proposed by Reed et
al. [120]. First, note that if V ′ ⊆ V and T is a feasible solution to
an Edge-Subset-FVS instance (G,S, k), then V ′ ∩ T is a feasible solu-
tion to the instance (G[V ′], S ′, k), where S ′ = S ∩ E(G[V ′]). Thus, if the
answer for (G[V ′], S ′, k) is negative, so is the answer for (G,S, k). Let
V = {v1, v2, . . . , vn} be an arbitrary ordering of the set of vertices of G.
We consecutively construct solutions to Edge-Subset-FVS for instances
Ii = (G[Vi], Si, k), where Vi = {v1, v2, . . . , vi} and Si = S ∩ E(G[Vi]). When
looking for a solution for graph G[Vi+1], we use the fact that if Ti is a solu-
tion for Ii, then Zi+1 = Ti ∪ {vi+1} is a solution for (G[Vi+1], Si+1, k + 1) �
a solution for our problem with the parameter increased by one.

We start with a standard branching into 2|Zi+1| subcases, guessing which
vertices from Zi+1 are taken into a solution to the instance Ii+1. Let us
focus on a �xed branch, where we decided to take TZ ⊆ Zi+1 into a solution
and denote Z = Zi+1 \ TZ . We delete TZ from the graph G, reduce S to
S ∩E(G \TZ), and decrease k by |TZ |, arriving at the following subproblem.

Disjoint Edge-Subset-FVS

Input: An Edge-Subset-FVS instance (G,S, k) together with a set
Z ⊆ V (G) that is a solution to the Edge-Subset-FVS instance
(G,S, |Z|).
Parameter: k and |Z|.
Question: Does there exist a solution to (G,S, k) that is disjoint with
Z?

However, we are not going to provide an algorithm that solves any Dis-
joint Edge-Subset-FVS instance, but only a maximal one. Informally
speaking, we are only interested in those of 2|Zi+1| branches, where the guessed
set TZ is (inclusion-wise) maximal. Formally:

De�nition 3.3. We say that a Disjoint Edge-Subset-FVS instance

57

(G,S, k, Z) is a maximal instance if every feasible solution to Edge-Subset-
FVS instance (G,S, k) is disjoint with Z.

We provide a set of reductions that reduce the size of S to polynomial in
k. However, we do not require that the reductions are sound with respect to
any Disjoint Edge-Subset-FVS instance, but only to the maximal ones.
Formally, we de�ne the reductions as follows.

De�nition 3.4. We say that a Disjoint Edge-Subset-FVS instance
(G′, S ′, k′, Z ′) is a properly reduced instance (G,S, k, Z) if the following holds:

1. |V (G′)| ≤ |V (G)| and k′ ≤ k;

2. if (G,S, k) is an Edge-Subset-FVS NO-instance, so is (G′, S ′, k′);

3. if (G,S, k, Z) is a maximal YES-instance of Disjoint Edge-Subset-
FVS, so is (G′, S ′, k′, Z ′).

We are now ready to state the main theorem of this section.

Theorem 3.5. There exists a polynomial-time algorithm R that, given a
Disjoint Edge-Subset-FVS instance (G,S, k, Z), either:

1. returns a properly reduced instance (G′, S ′, k′, Z ′) with k′ ≤ k, |Z ′| ≤
|Z| and |S ′| = O(k′|Z ′|2);

2. or returns IGNORE, in this case (G,S, k, Z) is not a maximal Dis-
joint Edge-Subset-FVS YES-instance.

We �rst show that Theorem 3.5 leads to the desired FPT algorithm for
Edge-Subset-FVS.

Theorem 3.6. There exists an algorithm solving the Edge Subset Feed-
back Vertex Set problem in O?(f(k)) time for some computable function
f .

Proof. In each step of the iterative compression, in each of 2|Zi+1| branches, we
run the algorithm R. If it gives the second answer, we ignore this branch. In
case of the �rst answer, we invoke the algorithm from Theorem 3.2 on Edge-
Subset-FVS instance (G′, S ′, k′), what results in running time O?(f(k)) for
some computable function f . Note that if (G′, S ′, k′) is an Edge-Subset-
FVS YES-instance, so is (G,S, k) (by the second property of De�nition 3.4),

58

and any solution (even not disjoint with Z) to (G,S, k) can be extended to a
solution of Ii+1 by taking its union with TZ . Thus if Ii+1 is a NO-instance,
the algorithm cannot �nd a solution. Otherwise, let T be a solution to Ii+1

with largest possible intersection with Zi+1. We claim that the algorithm
�nds a solution in the branch TZ = T ∩ Zi+1. Indeed, then (G,S, k, Z) is a
maximal YES-instance to Disjoint Edge-Subset-FVS and the algorithm
R cannot return IGNORE. Thus we obtain a Edge-Subset-FVS YES-
instance (G′, S ′, k′), and the algorithm from Theorem 3.2 �nds a solution.

In Section 3.2.3 we develop a faster version of the algorithm from Theo-
rem 3.2 so that the running time of the algorithm for Edge-Subset-FVS
becomes O?(2k log k).

The proof of Theorem 3.5 consists of a set of polynomial-time proper
reductions (in the sense of De�nition 3.4), each either decreasing |V (G)| or
decreasing |E(G)| while not changing |V (G)|. Some reductions may result
with an IGNORE answer, in which case the answer is immediately returned
from this branch. Note that in this case the last property of De�nition
3.4 implies that all Disjoint Edge-Subset-FVS instances in the current
sequence of reductions are not maximal YES-instances. We assume that at
each step, the lowest�numbered applicable reduction is used. If no reduction
is applicable, we claim that |S| = O(k|Z|2).

We start with an obvious reduction. Note that if it is not applicable,
every edge in S is contained in some simple cycle.

Reduction 1. Remove all bridges and all connected components not con-
taining any edge from S.

The outer�abundant lemma

In this section we consider an instance of Disjoint Edge-Subset-FVS

(G,S, k, Z), where G = (V,E). We assume that Reduction 1 is not applica-
ble, i.e., every edge in S belongs to some simple cycle. The approach here is
based on ideas from the quadratic kernel for the classical Feedback Ver-

tex Set problem [126], however, a few aspects need to be adjusted to better
�t our needs.

De�nition 3.7. A set F ⊆ V is called outer�abundant when:

(a) G[F] is connected,

59

(b) there are no edges from S in G[F],

(c) there at least 10k edges from S incident with F .

Lemma 3.8 (The outer�abundant lemma). Let F be an outer�abundant set.
If Reduction 1 is not applicable, then in polynomial time one can either:

• �nd a nonempty set X ⊆ V \F such that the following condition is sat-
is�ed: if there exists a solution A for Edge-Subset-FVS on (G,S, k)
such that A∩F = ∅, then there exists a solution A′ such that A′∩F = ∅
and X ⊆ A′;

• or correctly state that any solution for Edge-Subset-FVS on (G,S, k)
is not disjoint with F .

Before we start proving Lemma 3.8, let us recall a few tools used in the
quadratic kernel for Feedback Vertex Set [126]. First, we recall the
result of Gallai on �nding disjoint A�paths.

Theorem 3.9 (Gallai [81]). Let A be a subset of vertices of a graph G. A
path is called an A�path if its endpoints are di�erent vertices in A. If the
maximum number of vertex disjoint A�paths is at most k, there exists a set
of vertices B′ ⊆ V of size at most 2k intersecting every A�path.

Moreover, it follows from Schrijver's proof of the Gallai's theorem [123]
that Theorem 3.9 can be algorithmized: in polynomial time we can �nd either
k + 1 disjoint A�paths or the set B′.

The other theorem we need is the 2�Expansion Lemma (see Figure 3.1
for an illustration):

Theorem 3.10 (2�Expansion Lemma, Theorem 2.3 in [126]). Let H be a
nonempty bipartite graph on bipartition (X, Y) with |Y | ≥ 2|X| and such
that every vertex of Y has at least one neighbour. Then there exist nonempty
subsets X ′ ⊆ X, Y ′ ⊆ Y such that N(Y ′) ∩ X = X ′ and one can assign to
each x ∈ X ′ two private neighbours yx1 , y

x
2 ∈ Y ′ (i.e., each y ∈ Y ′ is assigned

to at most one x ∈ X ′). In addition, such pair of subsets X ′, Y ′ can be
computed in polynomial time in the size of H.

Proof of Lemma 3.8. An S�cycle is called important if it contains an edge
from S ∩ E(F, V \ F). A set of important cycles {C1, C2, . . . , Ct} such that
the sets of vertices Ci \ F are pairwise disjoint is called a t��ower.

60

x1 x2 x3

yx1
1 yx1

2 yx2
1 yx2

2 yx3
1 yx3

2Y ′Y

X ′X

Figure 3.1: Illustration of the 2�Expansion Lemma (Theorem 3.10).

Note that if there exists a vertex v ∈ V \ F such that |E({v}, F)| ≥ 2
and E({v}, F) ∩ S 6= ∅, then one can take X = {v}. Indeed, any solution
disjoint with F has to include v, since by connectivity of G[F] there is an
important cycle contained in G[F ∪ {v}] passing through v via at least one
edge from S. Thus we can assume that each vertex from V \ F is connected
to F by a number of edges (possibly zero) not belonging to S or by a single
edge from S.

Now we prove that in polynomial time we can �nd one of the following
structures: either a (k+1)��ower, or a set B of at most 3k vertices belonging
to V \F such that each important cycle passes through at least one of them
(further called a 3k�blocker).

Let C be the set of those important cycles, which contain exactly two
edges between F and V \ F (intuitively, visiting F only once). Note that
due to connectivity of G[F], a set is a 3k�blocker i� any cycle from C passes
through at least one of its elements. For C ∈ C let us examine its two edges
between F and V \ F . As C is important, one or two of them belong to S.
We say that such a cycle is of type I i� exactly one of these edges belong to
S and of type II otherwise.

Firstly, we sort out the type I cycles. We remove F from the graph and
replace it with two vertices s and t. Also we add edges incident with s and t
� for every vw ∈ E(F, V \F) with v ∈ F , we add edge sw if vw ∈ S and edge
wt otherwise. By a simple application of the vertex max��ow algorithm and
Menger's theorem one obtains either a vertex�disjoint set of paths between
s and t of cardinality k+ 1, or a set of at most k vertices such that each such
a path passes through at least one of them. Returning to the original graph

61

transforms each path between s and t into a type I cycle, so we have found
either a (k + 1)-�ower or a k-blocker of type I cycles.

Now, we deal with the type II cycles. Let J ⊆ V \F be the set of vertices
that are connected to F by an edge from S. We remove temporarily F from
the graph and apply Theorem 3.9 to the set J . Note that a set of k + 1
vertex�disjoint J�paths corresponds to a (k + 1)��ower, and the set B′ is a
2k�blocker of type II cycles.

Using both of these methods we obtain either a (k + 1)��ower or, by
taking a union of blockers, a 3k�blocker. Note that both algorithms run in
polynomial time.

The existence of a (k + 1)��ower immediately shows that a solution A
disjoint with F does not exist, as each cycle belonging to a �ower has to
include at least one vertex from A. Thus we are left only with the case of a
3k-blocker. Let us denote it by B.

Let us examine G[V \(F ∪B)]. Let H = (VH , EH) be any of its connected
components. Note that H is connected to F by a number of edges (possibly
zero) not belonging to S or by a single edge from S. Indeed, otherwise,
due to connectedness of H and of G[F], there would be an important cycle
contained in G[F ∪VH] not blocked by B. Using observation from the second
paragraph of this proof, we may assume that each vertex from B is connected
to F by at most one edge from S. So there are at most 3k edges from S
between B and F . As there are at least 10k edges from S between F and
V \F , we have at least 7k connected components of G[V \(F ∪B)] connected
to F by a single edge from S.

We call a component H easy if there is an S�cycle fully contained in
H. If the number of easy components is larger than k (what can be veri�ed
in polynomial time), there is more than k vertex�disjoint S�cycles, so A
does not exist. Thus we may assume that there are at least 6k non�easy
components connected to F by a single edge from S. We call them tough
components.

Let H = (VH , EH) be a tough component. Observe that N(VH)∩B 6= ∅.
Indeed, otherwise the only edge between VH and V \ VH would be the edge
from S connecting H with F and thus a bridge sorted out by Reduction 1.

Let T be the set of tough components. We construct a bipartite graph
(B ∪ T,Eexp) such that vH ∈ Eexp for v ∈ B, H ∈ T ′ i� v ∈ N(VH).
Note that due to observation in the previous paragraph, (B∪T,Eexp) satisfy
assumptions of Theorem 3.10, as |T | ≥ 6k = 2 · 3k ≥ 2|B|. So we have
nonempty sets X ⊆ B and Y ⊆ T such that for every v ∈ X there are two

62

private tough components Hv,1, Hv,2 ∈ Y with v ∈ N(VHv,i) for i = 1, 2 and
B ∩

⋃
H∈Y N(H) = X (see Figure 3.2).

F

XB a

Ha,1 Ha,2

b

Hb,1 Hb,2

c

Hc,1 Hc,2

Figure 3.2: Illustration of the application of the 2�Expansion Lemma to the
proof of Lemma 3.8. Dashed edges belong to the set S.

Let v ∈ X. Note that due to the connectedness of Hv,i and G[F], there
is an S�cycle Cv passing through v � it goes from v to Hv,1, then to F
through an edge from S, then to Hv,2 through an edge from S and back to
v. Assume that A is a solution to the Edge-Subset-FVS on (G,S, k) and
A∩F = ∅. We see that cycles Cv for v ∈ X form an |X|��ower, so there are
at least |X| vertices in A∩ (X ∪

⋃
H∈Y VH). On the other hand, each S�cycle

passing through any vertex from X ∪
⋃
H∈Y VH passes through a vertex from

X. Indeed, each H ∈ Y is connected to V \ VH with a single edge incident
with F and a number of edges incident with X. Hence each cycle passing
through a vertex from

⋃
H∈Y VH is fully contained in some H ∈ Y or goes

from some H ∈ Y to X. As each H ∈ Y is non�easy, cycles not incident
with X do not contain any edge from S.

These observations prove that if we construct

A′ =

(
A \

⋃
H∈Y

VH

)
∪X,

A′ will be still a solution to Edge-Subset-FVS. Thus the set X satis�es all
the required conditions.

Lemma 3.8 allows us to greedily assumeX is in the solution we are looking
for (after we ensure that it is disjoint with F), and either take it into the

63

solution (if X ∩ Z = ∅) or return IGNORE (if X ∩ Z 6= ∅). As a direct
application of Lemma 3.8, we obtain the following reduction rule. Note that
if it is not applicable, there are at most 10k|Z| edges from S incident with
Z.

Reduction 2. Let v ∈ Z be a vertex that is incident to at least 10k edges
from S. Apply Lemma 3.8 to the outer�abundant set F = {v}, If a set X is
returned and X ∩ Z = ∅, we remove X and decrease k by |X|, otherwise we
return IGNORE.

Bubbles

Recall that our goal is to reduce the size of S. After Reduction 2, there are
O(k|Z|) edges from S incident with Z. Thus, we need to care only about
S ∩ E(G[V \ Z]).

As Z is a feasible solution to Edge-Subset-FVS on (G,S, |Z|), every
edge from S ∩ E(G[V \ Z]) has to be a bridge in G[V \ Z]. After removing
those bridges G[V \Z] becomes a union of connected components not having
any edge from S. We call each such a component a bubble. Denote the set of
bubbles by D. On D we have a natural structure of a graph H = (D, ED),
where IJ ∈ ED i� components I and J are connected by an edge from S.
As Z is a solution, H is a forest and each I, J connected in H are connected
in G by a single edge from S.

Consider I ∈ D. Denote the set of vertices of I by VI . Note that if
at most one edge leaves I (that is, |E(VI , V \ VI)| ≤ 1) then VI would be
removed while processing Reduction 1. The following reduction sorts out
bubbles with exactly two outgoing edges and later we assume that for every
I ∈ D we have |E(VI , V \ VI)| ≥ 3.

Reduction 3. Let us assume that |E(VI , V \VI)| = 2 and let {u, v} = N(VI)
(possibly u = v). Each cycle passing through a vertex from VI is either fully
contained in I and thus non�S�cycle, or exits VI through u and v. We remove
VI from the graph and replace it with a single edge uv, belonging to S i� any
one of the two edges in E(VI , V \ VI) is in S.

If the addition of the edge uv lead to a multiple edge or a loop, we
immediately resolve it:

• If uv is a loop and uv /∈ S, we delete it.

64

• If uv is a loop and uv ∈ S, we return IGNORE, as the fact that Z is a
solution to (G,S, |Z|) implies that u ∈ Z.

• If uv is a multiple edge and no edge between u and v is from S, we
delete the new edge uv.

• If uv is a multiple edge and one of the edges between u and v is S, we
�rst note that, since Z is a solution to (G,S, |Z|), u or v is in Z. If
both are in Z, we return IGNORE, otherwise we delete {u, v}\Z from
the graph and decrease k by one.

Z

Figure 3.3: Set of vertices Z and a forest of bubbles. Ellipse-shaped bubbles
represent leaf bubbles, white squares represent edge bubbles and squares
�lled with gray represent inner bubbles. Dashed edges belong to the set S.

We are now left with bubbles that have at least three outgoing edges. We
classify those bubbles according to the number of edges that connect them
to other bubbles, that is degH(I).

De�nition 3.11. We say that a bubble I ∈ D is

(a) a solitary bubble if degH(I) = 0,

(b) a leaf bubble if degH(I) = 1,

(c) an edge bubble if degH(I) = 2,

(d) an inner bubble if degH(I) ≥ 3.

Denote by Ds,Dl,De,Di the sets of appropriate types of bubbles.

65

See also Figure 3.3 for an illustration.
We show that we can do some reductions to make following inequalities

hold:

|Dl| = O(k|Z|2), |Di| < |Dl|, |De| < 3(|Z|+ k) + |Di|+ |Dl|.

Note that these conditions imply that |D \ Ds| = O(k|Z|2). As edges of H
create a forest over D \ Ds, this bounds the number of edges from S not
incident with Z by O(k|Z|2), as desired.

Lemma 3.12. |Di| < |Dl|.

Proof. As H is a forest, then |ED| < |D|−|Ds| = |Di|+|De|+|Dl|. Moreover,
2|ED| =

∑
I∈D degH(I) ≥ 3|Di|+ 2|De|+ |Dl|. Therefore |Dl| > |Di|.

Reduction 4. If |De| ≥ 3(|Z|+ k) + |Di|+ |Dl|, then return IGNORE.

Lemma 3.13. Reduction 4 is a proper reduction.

Proof. We �rst show that the number of edge bubbles not adjacent to any
other edge bubble in H is at most |Di| + |Dl|. Let us root each connected
component of H in an arbitrary leaf and for any bubble I ∈ De let ϕ(I) be
the only child of I. Observe that this mapping is injective and maps the set
of edge bubbles isolated in H[De] into Di ∪ Dl.

We now prove by contradiction that if the reduction is applicable, then
every feasible solution of (G,S, k) contains a vertex from Z. As edge bubbles
have degree 2 in H, H[De] is a set of paths of non-zero length and isolated
vertices. There are at least 3(|Z|+k) vertices contained in the paths. LetM
be a maximum matching in H[De]. If a path contains l vertices (for l ≥ 2),
it has a matching of cardinality b l

2
c ≥ l

3
. Therefore, |M | ≥ |Z| + k. Let us

examine an arbitrary IJ ∈ M . Recall that at least three edges leave each
bubble. As each of VI , VJ is adjacent to two other bubbles by single edges, it
has to be connected to Z as well. Choose uI , uJ � vertices from Z such that
uI ∈ N(VI) and uJ ∈ N(VJ) (possibly uI = uJ). We see that there is a path
from uI to uJ passing through an edge from S: it goes from uI to I, then to
J through an edge from S, and then to uJ . As M is a matching, such paths
are vertex�disjoint for all IJ ∈M , except for endpoints uI and uJ .

Recall |M | ≥ |Z| + k. Hence, if we have a solution disjoint with Z of
cardinality at most k, there are at least |Z| pairs IJ ∈ M , where neither
I nor J contains a vertex from the solution. Now we construct a graph

66

P = (Z,EP) such that uIuJ ∈ EP if uI , uJ have been chosen for some
IJ ∈ M , where I and J are solution�free. We prove that P has to be a
forest. Indeed, otherwise there would be a cycle in P � and by replacing
each edge from it by associated path, we construct an S-cycle in G (as paths
from which edges from EP originated are vertex�disjoint). This cycle does
not contain any vertex from the solution, as it passes only through Z and
solution�free bubbles. Hence, P is indeed a forest. However, as |EP | ≥ |Z|,
P cannot be a forest; the contradiction ends the proof.

The leaf bubble reduction

We are left with the leaf bubbles and we need to show reductions that lead
to |Dl| = O(k|Z|2). We do this by a single large reduction described in
this subsection. It proceeds in a number of steps. Each step either returns
IGNORE (thus ending the reduction) or � after, possibly, modifying G �
passes to the next step. Each step is not a standalone reduction, as it may
increase |E(G)|. However, if the reduction below is fully applied, it either
returns IGNORE or reduces |V (G)|.

Let I be a leaf bubble. As there are at least three edges leaving I, each
leaf bubble is connected to Z by at least two edges. We begin with a bit of
preprocessing:

Step 1. As long as there are two vertices v, v′ in Z with vv′ /∈ E, and at
least k + 1 bubbles, each connected to both v and v′ by edges not in S, we
add an edge vv′ to E (but not to S).

Lemma 3.14. The output (G′, S, k) of Step 1 and the input (G,S, k), as
Edge-Subset-FVS instances, have equal sets of feasible solutions.

Proof. Obviously any solution to (G′, S, k) is a solution to (G,S, k), as we
only added edges (and thus only added potential S�cycles). On the other
hand, suppose we have a solution T to (G,S, k) which is not a solution to
(G′, S, k). Then there is some S�cycle C in (G′, S, k) not passing through
any vertex of T . C has to pass through the edge vv′ (otherwise it would also
be an S�cycle in (G,S, k)).

As |T | ≤ k, among the bubbles required by Step 1 there is at least
one bubble Ij which is disjoint with T . Thus we can �nd a simple path P
connecting v and v′, the interior vertices of which are all in Ij. Note that as
Ij is a bubble and the edges to v and v′ were not in S, P does not contain any

67

edge from S. Consider the cycle C ′ (not necessarily simple) in G which is
formed by replacing the edge vv′ in C by the path P . As C was an S�cycle,
there is some edge e ∈ S ∩ C. This edge is visited by C ′ exactly once � as
we took out vv′ /∈ S and added edges from P , which is disjoint with S. If we
consider the graph spanned by edges from C ′, the edge e is not a bridge in
this graph, as the endpoints of e are connected by C ′ \ {e}. Therefore, e lies
on some simple cycle contained in C ′, a contradiction.

Now for each bubble I with vertex set VI we choose arbitrarily two of
the edges connecting it to Z: eI and e′I . Additionally assume that if S ∩
E(VI , Z) 6= ∅ then eI ∈ S. Let vI and v′I be the endpoints of eI and e′I in Z
(possibly vI = v′I). We say that a bubble I is associated with vertices vI , v

′
I .

If two leaf bubbles I1, I2 are connected in H (form a K2 in H), by an edge
eI1I2 ∈ S, we call them a bubble�bar. The proofs of the following lemmata
proceed along lines similar to the proof of correctness for Reduction 4 (see
Figure 3.4 for an illustration):

Lemma 3.15. If there are at least |Z|2(k+2) leaf bubbles I such that eI ∈ S
then every feasible solution of Edge-Subset-FVS on (G,S, k) contains a
vertex from Z.

Proof. By the Pigeonhole Principle, there exist v, v′ ∈ Z associated with at
least k + 2 of the considered leaf bubbles. If v = v′, there are k + 2 S�cycles
sharing only v, each constructed from a di�erent bubble I by closing a path
contained in I with edges eI and e′I . Therefore, v needs to be part of any
feasible solution. If v 6= v′, for each of the k + 2 bubbles one can similarly
choose a path between v and v′ which contains an edge from S. These k+ 2
paths are vertex�disjoint apart from v and v′, so any feasible solution disjoint
with Z leaves at least two of them solution�free. These two paths can be
arranged into an S�cycle, so any feasible solution contains v or v′.

Lemma 3.16. If there are at least |Z|2(k+1) leaf bubbles I such that vIv
′
I ∈

S, then every feasible solution of Edge-Subset-FVS on (G,S, k) contains
a vertex from Z.

Proof. As before, there exist v, v′ ∈ Z associated with at least k+1 considered
leaf bubbles. These bubbles generate at least k+1 S�cycles, which are vertex�
disjoint apart from v, v′. Therefore, any feasible solution needs to include v
or v′.

68

Lemma 3.17. If there are at least |Z|2(k+ 2) bubble�bars, then any feasible
solution of Edge-Subset-FVS on (G,S, k) contains a vertex from Z.

Proof. By the Pigeonhole Principle, there exist v, v′ ∈ Z such that there exist
at least k + 2 bubble�bars (I1, I2) with vI1 = v and vI2 = v′. If v = v′, there
are k+ 2 S�cycles having only v in common (one through each bubble�bar),
so any feasible solution has to contain v. If v 6= v′, there are k + 2 paths
connecting v and v′ and sharing only v and v′. Any solution disjoint with Z
would leave at least two of them solution�free. Then these two paths could
be arranged into a solution�free S�cycle.

Z

I

Z

I

Z

I J

Figure 3.4: Situations that trigger Lemmata 3.15, 3.16 and 3.17. Dashed
edges belong to the set S.

The above lemmata justify our next step.

Step 2. If any of the situations from Lemmata 3.15, 3.16 and 3.17 occur,
return IGNORE.

Summing all the obtained bounds, we can count almost all the leaf bub-
bles (possibly more than once) and bound their number by O(k|Z|2). In
the end of this section we will show that the ones that are left satisfy the
following de�nition (see Figure 3.5 for an illustration):

De�nition 3.18. A leaf bubble I satisfying the following three conditions
is called a clique bubble:

(a) G[N(VI) ∩ Z] is a clique not containing any edge from S,

(b) I is connected to Z by edges not belonging to S,

(c) I is connected to a non�leaf bubble.

69

Z

I J

Figure 3.5: A clique bubble I. The dashed edge belongs to S. The bubble J
is and an edge bubble or an inner bubble.

Denote the only edge from S connecting a given clique bubble I with its
neighbour bubble by wIw

′
I , with wI ∈ VI .

Lemma 3.19. If there exists a feasible solution T for Edge-Subset-FVS
on (G,S, k), then there exists a feasible solution T ′, which is disjoint from
all clique bubbles in G. Moreover, if T is disjoint with Z, so is T ′.

Proof. Let I be a clique bubble. Assume we have a feasible solution T , with
T ∩ VI 6= ∅. We show T ′ = (T \ VI) ∪ {w′I} is also a feasible solution.
Consider any S�cycle C in G[V \ T ′]. This cycle has to pass through VI
(possibly multiple times), or it would be an S�cycle in G[V \ T], contrary to
the assumption that T was a feasible solution. Note that C has to enter and
exit VI through N(VI) ∩ Z, as the only vertex in N(VI) \ Z is w′I , which is
removed by T ′. But then C can be shortened to C ′ by replacing every part
contained in VI by a single edge in Z (as N(VI) ∩ Z is a clique). Now C ′ is
disjoint from VI and is an S�cycle due to the de�nition of the clique bubble.
So C ′ is an S�cycle in G[V \ T], a contradiction.

Note that the only vertex we added to T was w′I , which does not belong
to a clique bubble (it does not belong even to a leaf bubble, from property
(c) in the de�nition of clique bubbles). Thus we can apply this procedure
inductively, at each step reducing the number of vertices in T contained in
clique bubbles, until none are left.

Assume there is a vertex v ∈ Z such that v ∈ N(VIj) for some distinct

clique�bubbles I1, I2, . . . , I10k. We show that the set F = {v} ∪
⋃10k
j=1 VIj is

outer�abundant in G. Indeed, it is connected and due to the de�nition of
bubbles and properties of the clique bubble de�nition, the subgraph G[F]

70

does not contain edges from S. Moreover, there are at least 10k edges from
S incident with G[F] � these are the edges connecting bubbles Ij with other
bubbles, not contained in F as they are non�leaf ones due to property (c).
This enables us to formulate the key step:

Step 3. If there is a vertex v ∈ Z which is adjacent to at least 10k clique
bubbles, we apply Lemma 3.8 to the set F = {v} ∪

⋃10k
j=1 VIj . If a set X is

returned and X ∩ Z = ∅, we remove X from the graph and decrease k by
|X|, otherwise we return IGNORE.

Suppose there is a feasible solution T to (G,S, k). Due to Lemma 3.19
we may assume T is disjoint with F \ {v}. Thus either T contains v, or it
is disjoint with F , and by Lemma 3.8 there exists a solution containing X.
This justi�es the correctness of Step 3.

Now we summarize the steps made in this section to show clearly that
the number of leaf bubbles is bounded by O(k|Z|2).

Assume no reduction is applicable. Note that in the last run, the last
reduction may add some edges in Step 1. Let G′ denote the modi�ed graph.
Let us check that the graph G′ indeed has O(k|Z|2) edges from S:

1. The decomposition of V (G) \Z into bubbles is the same as the decom-
position of V (G′) \ Z and bubbles that were inner or edge bubbles in
G are, respectively, inner or edge bubbles in G′;

2. If Step 2 is not applicable, there are at most |Z|2(k+2)−1 leaf bubbles
connected to Z by an edge from S by Lemma 3.15, at most |Z|2(k+1)−1
leaf bubbles associated with a pair of vertices connected with an edge
from S by Lemma 3.16, and at most 2|Z|2(k+2) leaf bubbles connected
to other leaf bubbles by Lemma 3.17.

3. If Step 1 is not applicable, for any pair v, v′ of vertices in Z with vv′ /∈ E
there are at most k leaf bubbles adjacent to both vertices of that pair
through edges not in S.

4. If a leaf bubble is not a clique bubble, it either has an edge from S
between some two of its neighbours in Z (property (a)), has some two
neighbours in Z not connected by an edge (property (a)), is connected
to Z by an edge in S (property (b)), or is connected to a leaf bubble,
forming a bubble�bar (property (c)). The number of such bubbles in
all four cases was estimated above. Thus, in total, there are at most
O(k|Z|2) bubbles which are not clique bubbles.

71

5. Finally, if Step 3 is not applicable, there are at most (10k−1)|Z| clique
bubbles.

6. Thus |Dl| = O(k|Z|2), moreover |Di| ≤ |Dl| by Lemma 3.12 and |De| ≤
3(|Z| + k) + |Di| + |Dl| by Reduction 4 � thus the number of edges
in S not incident with Z is bounded by O(k|Z|2). We added no new
edges to S, and, since Reduction 2 was not applicable, the number of
edges in S incident to Z was bounded by O(k|Z|) in the input graph,
thus in the output graph there are O(k|Z|2) edges from S, as desired.

Thus we managed to reach the state when the number of leaf bubbles
is bounded by O(k|Z|2). As we modi�ed only the subgraph G[Z], the sets
Di, De, Dl remain the same after modi�cations and we obtain a graph with
|S| = O(k|Z|2). Hence the proof of Theorem 3.5 is �nished.

3.2.3 Improving the time complexity of Edge-Subset-

FVS parameterized by |S|
The goal of this section is to improve the time complexity of the algorithm
for Edge Subset Feedback Vertex Set parameterized by |S| (Theorem
3.2). Our main result in this section is the following:

Theorem 3.20. There exists an algorithm solving the Edge Subset Feed-
back Vertex Set problem in O?(2O(k log |S|)) time.

We �rst prove Theorem 3.1 using Theorem 3.20.

Proof of Theorem 3.1. We proceed as in the proof of Theorem 3.6, but we
use the algorithm from Theorem 3.20 instead of the algorithm from Theorem
3.2. Recall that in the proof of Theorem 3.6, in each step of the iterative
compression, in each of the O(2k) branches, we reduce the instance using
Theorem 3.5 so that |S| = O(k3). We note that on such instances the
algorithm from Theorem 3.20 runs in O?(2k log k) time. This concludes the
proof of Theorem 3.1.

Let us now proceed to the proof of Theorem 3.20. Our whole approach
is closely based on the arguments of Guillemot [86] for Multicut. We
�rst recall that Node Multiway Cut is �xed-parameter tractable when
parameterized by the solution size k, and currently the fastest algorithm
runs in O?(2k) time and polynomial space [46].

72

Proof of Theorem 3.20. Assume we are given a Edge Subset Feedback

Vertex Set instance (G,S, k), where G = (V,E). The algorithm works
in three phases. In the �rst two phases we aim to partition the set of all
endpoints of edges from S into a family of subsets. More formally, the �rst
two phases generate a set of pairs of the form (P , R) (called partition pairs),
where:

1. R ⊆ V and P = {P1, P2, . . . , Pm} is a partition of V (S) \ R (i.e.,
Pi ∩ Pj = ∅ for i 6= j and

⋃m
i=1 Pi = V (S) \R);

2. for any set T ⊆ V of size at most k there exists a generated partition
pair (P , R) such that T ∩ V (S) ⊆ R ⊆ T and the partition that the
connected components of GS[V \ T] induce on V (S) \R is exactly P .

In the third phase, for each generated partition pair (P , R) we check whether
it is possible to remove a set T ⊇ R of at most k vertices so that the partition
induced by the connected components of GS[V \ T] on V (S) \ R equals P
and whether the generated partition pair (P , R) implies that we removed
all cycles passing through S from G. In what follows we �rst describe the
three-phase algorithm in detail and then we show its correctness.

Initialize R = ∅. The �rst phase works as follows:

1. Select a spanning forest F of GS[V \ R], let U = V (S) \ R be the set
of endpoints of edges from S outside R;

2. If k = |R| proceed directly to phase two;

3. As long as F contains isolated vertices not from U or leaves not from
U in F , remove them from F ;

4. As long as F contains vertices of degree 2 not from U in F , remove
them from F , and connect the two neighbours of the removed vertex
with an edge in F ;

5. Branch out � one branch passes the resulting forest F and sets U and
R to the second phase. In other |F | branches we select a vertex from
F , add it to R and go back to Point 1.

Note that after the �rst four steps of phase one F has at most 2|V (S)|
vertices (as all its vertices of degree at most 2 are from U ⊆ V (S)). Thus in
the �fth step we have at most 2|V (S)| + 1 branches. As we can branch out

73

into phase one at most k times due to steps 2 and 5, this assures we have
at most (2|V (S)| + 1)k entries into phase two from phase one. The internal
workings of the �rst phase are obviously polynomial�time.

The second phase is somewhat more complicated, and aims at arriving at
a partition of the set U = V (S)\R, based on the forest F received from phase
one. Informally speaking, the set R is to be included in the solution and in
the second phase we choose a subgraph of F that corresponds to connected
components of GS[V \ T].

Let P = {P1, . . . , Pm} be the partition of U given by phase one � that is if
we denote the connected components of F by C1, C2, . . . , Cm, then Pi = Ci∩U
for 1 ≤ i ≤ m. Note that the Pis are non�empty, since if some connected
component of F contained no vertex from U , then it would be removed from
F completely during the third step of phase one. Now we proceed as follows:

1. Branch into all possible selections of at most k − |R| edges from F ;

2. Let P ′ denote the partition of U given (as above) by F with the selected
edges removed;

3. For each partition P ′′ of U being at the same time a subpartition of
P and a superpartition of P ′, start phase three with partition pair
(P ′′, R).

We want to check how many times each application of phase two enters
phase three. As F has at most 2|U | ≤ 2|V (S)| edges, we have at most
(2|V (S)|)k choices in the �rst step. Now, consider a connected component Ci
of F , from which we removed si edges. There are at most si+1 elements of P ′
which are subsets of Ci. The number of ways to combine these elements into
a partition of Ci∩U is at most the (si+1)�st Bell number Bsi+1 ≤ (si+1)si+1.
The product of these is bounded by∏

i

Bsi+1 ≤
∏
i

(si + 1)si+1 = exp

(∑
i

(si + 1) log(si + 1)

)

≤ exp

((
1 +

∑
i

si

)
log

(
1 +

∑
i

si

))
= (1 + k)1+k,

where the last inequality follows from the standard Jensen's inequality corol-
lary f(

∑
i xi) ≥

∑
i f(xi) for a convex function f with f(0) = 0 and non�

negative xi applied for f(x) = (1 + x) log(1 + x). Thus for each execution of
phase two, phase three is executed at most (2|V (S)|)k(k + 1)k+1 times.

74

Phase three works as follows:

1. Take the partition pair (P ′′, R) (i.e., R ⊆ V and P ′′ is a partition
of U = V (S) \ R) given by phase two, form a multigraph on the set
{P1, P2, . . . , Pm} by adding an edge PiPj for every edge uv ∈ S, where
u ∈ Pi, v ∈ Pj. If any of these edges is not a bridge in the multigraph,
return a negative answer from this branch;

2. Otherwise create a graph G′ by adding to G a vertex wi for every
Pi ∈ P ′′, i ≥ 1 and adding edges connecting wi to uj for each uj ∈ Pi;
let W = {wi}mi=1;

3. Apply Node Multiway Cut to (G′S[(V ∪ W) \ R],W, k − |R|). If
it returns a negative answer, we return a negative answer from this
branch, otherwise we return Q ∪ R as a solution, where Q is the set
returned by Node Multiway Cut.

The execution of this phase takesO?(2k) time [46]. Thus, as the �rst phase
branches out into at most (2|V (S)|+ 1)k executions of phase two, phase two
branches out into at most (2|V (S)|)k(k+ 1)k+1 instances of phase three, and
phase three executes in O?(2k), the running time of the whole algorithm is at
most O?(2O(k log |V (S)|)) (we may assume k ≤ |V (S)| � otherwise, removing
V (S) from V gives a trivial positive solution).

Now we prove the correctness of this algorithm. First assume the algo-
rithm returns a solution. It was then found by phase three. That is, for
some partition pair (P ′′, R) the Node Multiway Cut instance (G′S[(V ∪
W) \ R],W, k − |R|) has a solution Q ⊆ V \ R, |Q| ≤ k − |R|. We claim
that Q∪R is a solution to the initial Edge-Subset-FVS instance (G,S, k).
Clearly |Q∪R| = |Q|+ |R| ≤ k. We prove there are no simple cycles through
edges of S in G′[(V ∪W) \ (Q∪R)], which implies the same for its subgraph
G[V \ (Q ∪R)].

Let Ci be a connected component of G′S[(V ∪W) \ (Q∪R)] that contains
wi. As Q is a solution to the Node Multiway Cut instance (G′S[(V ∪
W) \ R],W, k − |R|), Ci 6= Cj for i 6= j and, by construction of the set W ,
(Pi \Q) = V (Ci) ∩ S. Let uv ∈ S be an edge of G′[(V ∪W) \ (Q ∪R)], i.e.,
u, v /∈ Q ∪ R. As u, v ∈ V (S) \ R, u ∈ Pi and v ∈ Pj for some 1 ≤ i, j ≤ m
(recall that P = {P1, P2, . . . , Pm}). If i = j, the edge uv ∈ S would create
a self-loop at vertex Pi in the multigraph considered in phase three and the
partition pair (P ′′, R) would be rejected. We infer that i 6= j, and uv connects
Ci and Cj.

75

By contradiction, assume that there is an S-cycle C in G′[(V ∪W) \ (Q∪
R)]. The cycle C consists of edges from S, that connect di�erent components
Ci, and edges not from S, that have both endpoints in the same connected
component of G′S[(V ∪W) \ (Q∪R)]. The cycle C contains at least one edge
from S, and the edges of S are exactly these edges of G′[(V ∪W)\(Q∪R)] that
have endpoints in di�erent connected components of G′S[(V ∪W) \ (Q∪R)].
We infer that C contains vertices only from the connected components Ci for
1 ≤ i ≤ m, and visits at least two such components. Thus the edges from
S on C form a cycle in the multigraph considered in phase three, and the
partition pair (P ′′, R) would be rejected. We infer that any solution found
by our algorithm is indeed a solution of the Edge-Subset-FVS problem.

On the other hand, assume there exists some solution T of the Edge-
Subset-FVS problem. We show how our algorithm arrives at a positive
answer in this case. In the �rst phase, if any vertex t ∈ T remains in the
forest F constructed in this phase in Point 4, we select the branch that adds
t to R. If no vertex from T remains in F at some iteration of the �rst phase,
we branch out to the second phase. Note that R ⊆ T . In the �rst step of
the second phase, we choose the edges into which the vertices from T were
contracted in Point 4 of the �rst Phase (if some were dropped due to being
leaves or isolated vertices in F , we simply choose fewer edges). Now consider
the partition P ′′ of U = V (S) \R given by the relation of being in the same
connected component of GS[V \ T]. It is a subpartition of P , as P is simply
the partition given by GS[V \R], and R ⊆ T . It is also a superpartition of P ′,
as P ′ is given by removing the whole T and all the edges which are not edges
of the forest F . Thus P ′′ is one of the partitions considered in the second
phase, and thus enters the third phase. Now for this partition the edges of
S are bridges in the sense of the �rst step of phase three, as the vertices of
the graph considered there correspond exactly to connected components of
GS[V \ T], and G[V \ T] has no simple cycles through edges in S. Moreover,
T \R is a solution for the Node Multiway Cut problem by its de�nition.
Thus Node Multiway Cut returns some positive answer (not necessarily
T \R) in this branch, and thus the algorithm gives the correct answer.

76

3.2.4 The relationship of Subset-FVS and terminal sep-

aration

It is known (e.g. [63]) that in the weighted case the Node Multiway Cut

problem with deletable terminals (i.e., the solution set may include some ter-
minals) can be reduced to weighted Subset-FVS by adding a vertex s (with
in�nite weight) to the graph and connecting it to all the terminals, where
S = {s}. Here we present a modi�ed version, adjusted to the unweighted
parameterized setting. Both the node and edge versions of the Multiway
Cut problem are known to be FPT since 2004 [110].

Theorem 3.21. An instance (G, T , k) of the Node Multiway Cut prob-
lem with deletable terminals can be transformed in polynomial time into an
equivalent instance
(G′, S, k) of the Edge Subset Feedback Vertex Set problem.

Proof. Let T = {v1, . . . , vt}. We add a set T ′ = v′1, . . . , v
′
t of t vertices to the

graph G. Together with the vertices from the set T ′ we add a set of edges
S = {viv′i : 1 ≤ i ≤ t}. Moreover, we add an edge between every pair of
vertices from the set T ′ so that G[T ′] becomes a clique. Denote the resulting
graph by G′. Assume that (G, T , k) is a YES-instance of Node Multiway
Cut where T ⊆ V is a solution. Clearly T is a solution for the instance
(G′, S, k) of Edge-Subset-FVS since an S-cycle in G′[(V ∪T ′) \ T] implies
a path between terminals in G[V \ T] (see Figure 3.6).

In the other direction, assume that (G′, S, k) is a YES-instance of Edge-
Subset-FVS where T ⊆ V is a set of removed vertices. Let T ′ = T \T ′∪{vi :
v′i ∈ T}. We now prove that T ′ is a solution for the Node Multiway Cut

instance (G, T , k). Clearly |T ′| ≤ |T | ≤ k. Assume that there exists a path
P in G[V \ T ′] between terminals vi1 and vi2 . In particular, this means that
vi1 , vi2 /∈ T ′, so vi1 , vi2 , v′i1 , v

′
i2
/∈ T . Thus the path P together with the path

vi1v
′
i1
v′i2vi2 forms an S-cycle that is not hit by T , a contradiction.

3.3 Lower bounds in kernelization

Up to 2007, many kernelization algorithms with good guarantees on the out-
put size have been discovered. However, many problems, including Longest
Path, eluded e�orts of the researchers, and it was conjectured that such algo-
rithm might not exist. As pointed out in the survey of Guo and Niedermeier

77

clique T ′

G
T

Figure 3.6: Reduction used in Theorem 3.21.
.

from 2007 [88], the �eld of kernelization was lacking a framework for proving
lower bounds, in particular, for excluding the existence of polynomial kernels.

Such a framework was discovered in 2008 by Fortnow and Santhanam
[79] and Bodlaender et al. [15]. The key idea is the following de�nition of a
composition algorithm (in this section we follow the notation from [55]):

De�nition 3.22 (Composition [15, 55]). A composition algorithm for a pa-
rameterized problem Q ⊆ Σ∗ × N is an algorithm that receives as input a
sequence (x1, k), (x2, k), . . ., (xt, k) with (xi, k) ∈ Σ∗ ×N for each 1 ≤ i ≤ t,
uses polynomial time in

∑t
i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ × N with

(y, k′) ∈ Q i� ∃1≤i≤t(xi, k) ∈ Q and k′ is polynomial in k. A parameterized
problem is called compositional if there is a composition algorithm for it.

Let us now make an example of the Longest Path problem, one of the
�rst problems proven to be hard to polynomially kernelize (the example is
based on the work of Bodlaender et al. [15]).

Longest Path

Input: An undirected graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there exist a simple path of length k in G?

Longest Path has trivial composition algorithm: given instances (G1, k),
(G2, k), . . ., (Gt, k), output an instance (G, k), where G is a disjoint union of
the graphs Gi. Clearly, G contains a simple path of length k if and only if
one of the input graphs contains it, too.

Assume now that Longest Path admits a kernelization algorithm that
reduces the size of the instance to a one represented by at most g(k) bits,
where g is a polynomial. If t > g(k), then in the output there is less than
one bit per an input instance. Thus, in some sense, the kernelization al-
gorithm needs to solve large part of the input instances (Gi, k), which, for

78

NP -complete problem Longest Path, should be impossible. This intu-
ition, given by Bodlaender et al. [15], was proved to be true by Fortnow and
Santhanam [79].

Before we state formally the aforementioned result, let us introduce one
more notation: given a parameterized problem Q ⊆ Σ∗ × N, its unparame-
terized version is a language Q̃ = {x#1k : (x, k) ∈ Q}, i.e., we append the
parameter written in unary.

Theorem 3.23 ([15, 79]). Let Q be a compositional parameterized prob-
lem whose unparameterized version Q̃ is NP-complete. Then, unless NP ⊆
coNP/poly, there is no polynomial kernel for Q.

We note that NP ⊆ coNP/poly causes a collapse of the polynomial hier-
archy up to its third level [26, 131].

To prove the non-existence of a polynomial kernel for some parameterized
problem, it is not necessary to go through Theorem 3.23. As in the case of
NP-complete problems, we can use reductions instead (�rst used in [17]).

De�nition 3.24 ([17, 55]). Let P and Q be parameterized problems. We
say that P is polynomial parameter reducible to Q, written P ≤Ptp Q, if
there exists a polynomial time computable function f : Σ∗ × N → Σ∗ × N
and a polynomial p, such that for all (x, k) ∈ Σ∗ × N the following holds:
(x, k) ∈ P i� (x′, k′) = f(x, k) ∈ Q and k′ ≤ p(k). The function f is called a
polynomial parameter transformation.

Theorem 3.25 ([17, 55]). Let P and Q be parameterized problems and P̃
and Q̃ be the unparameterized versions of P and Q respectively. Suppose
that P̃ is NP-hard and Q̃ is in NP. Assume there is a polynomial parameter
transformation from P to Q. Then if Q admits a polynomial kernel, so does
P .

Proof. Let AQ be a kernelization algorithm for the language Q with poly-
nomial (in the parameter) guarantee on the size of the output. Assume we
are given an instance (xP , kP) of the problem P . Consider the following
kernelization algorithm.

1. Use the assumed polynomial parameter transformation from P to Q,
to obtain an instance (xQ, kQ) of problem Q, equivalent to (xP , kP) and
with kQ bounded polynomially in kP .

79

2. Apply the algorithm AQ to the instance (xQ, kQ) to obtain an equiva-
lent instance (x′Q, k

′
Q). Note that now both |x′Q| and k′Q are bounded

polynomially in kP .

3. As P̃ is NP-hard, and Q̃ is in NP, there exists a Karp reduction from
Q̃ to P̃ . Use it on the unparameterized version of (x′Q, k

′
Q) to obtain an

unparameterized version of an instance (x′P , k
′
P), equivalent to (x′Q, k

′
Q).

Note that, again, both |x′P | and k′P are bounded polynomially in kP ,
and we have the desired kernelization algorithm for P .

The result of Fortnow and Santhanam [79] was further improved by Dell
and van Melkebeek [51] to allow excluding polynomial kernels of particular
exponent: for example, they show that Vertex Cover does not admit a
kernel with O(k2−ε) edges for any ε > 0 (unless NP ⊆ coNP/poly). More-
over, the idea of composition was later improved to a more robust cross-
composition [16]. However, in the following section the standard de�nition
of composition presented above is su�cient for our needs.

It is worth noting that, as pointed out by Kratsch [102], the frame-
work of composition algorithms is a bit stronger than what was required:
the existence of a composition algorithm rules out not only deterministic
polynomial-time kernelization, but also a co-nondeterministic one. (A co-
nondeterministic kernel is a nondeterministic polynomial-time algorithm that
outputs a NO-instance on at least one computation path if and only if the
input instance is a NO-instance.) However, up to today we do not know
any example of an (important and motivated) problem that admits a co-
nondeterministic kernel, but eludes attempts to construct a deterministic
one.

A composition algorithm (De�nition 3.22) is often called an OR-composition
in literature, as opposed to an AND-composition, where the output instance
is required to be a YES-instance if and only all input instances are YES-
instances. Basing on the same intuition as described in this section, an
NP-complete problem should not admit both a polynomial kernel and an
AND-composition. However, it is now a major open problem in the �eld
of kernelization to support this claim with a proof based on some widely-
believed complexity assumption.

80

3.4 Lower bounds on kernelization of connec-

tivity problems in degenerate graphs

One of the most seminal discoveries in parameterized complexity in the last
decade was that many problems which are hard in general graphs � i.e.
without a polynomial kernel or even not FPT � have small kernels in sparse
graph classes, such as planar graphs, bounded genus graphs, apex-minor-free
graphs or H-minor-free graphs. The �rst result of this type was a linear
kernel for Dominating Set in planar graphs, due to Alber et al. [2]. Their
idea of a region decomposition turned out to be very robust, and applicable
not only to di�erent problems, but also to wider graph classes than the
planar ones. Recent results include linear kernels for Dominating Set

and Connected Dominating Set in apex-minor-free graphs and linear
kernels for Feedback Vertex Set and Connected Vertex Cover in
H-minor-free graphs [78].

One should note that all the aforementioned results are applicable to
problems, where the solution is in some sense dense in the input graph (e.g.,
every vertex of a graph is at distance at most one from a dominating set
in a graph). Currently it is an open problem to show a polynomial kernel
for Directed Feedback Vertex Set (delete k vertices from a directed
graph to obtain an acyclic graph), even in planar graphs.

Sparse graph classes are also important from the point of view of �xed-
parameter algorithms, not only kernels. The theory of bidimensionality [54]
allows to construct algorithms subexponential in k on planar, bounded genus
or H-minor-free graphs for many important problems, including Dominat-
ing Set, Feedback Vertex Set or Independent Set. The core part of
this approach is the grid-minor theorem of Robertson and Seymour, which,
for sparse graph classes, gives a linear dependency between the treewidth of
a graph and the size of the largest grid that the graph contains as a minor.
We also note that evaluation of �rst-order formulas in sparse graphs is �xed-
parameter tractable when parameterized by the length of the formula; this
holds even for graph classes strictly larger than those excluding a �xed minor
[60].

The aforementioned results use the topological structure of the considered
graph classes. However, sometimes an even weaker assumption on the graph
class leads to signi�cantly better algorithms and kernels than in the general
case. One may, for instance, consider the class of d-degenerate graphs. A

81

graph is called d-degenerate if its every induced subgraph contains a vertex
of degree at most d1. For instance, the class of 1-degenerate graphs is the
class of forests, and all planar graphs are 5-degenerate. Moreover, every
H-minor-free graph is d-degenerate, where the constant d depends on the
minor [101, 124, 125]. On the other hand, if we take an arbitrary graph and
subdivide every its edge, we obtain a 2-degenerate graph. Thus, bounded
degeneracy graphs exhibit the same properties with respect to degrees of
vertices as H-minor-free graphs, but do not have any topological properties.

Alon and Gutner [4] followed by Golovach and Villanger [83] proved that
Dominating Set and Connected Dominating Set, which are W [2]-
complete (i.e., very unlikely to be FPT) in general graphs [56], become FPT
when the input graph is d-degenerate. Recently, Philip et al. [116] proved
that Dominating Set is FPT and admits a polynomial kernel in a larger
class of graphs: graphs excluding the biclique Ki,j as a subgraph (note that
a d-degenerate graph cannot contain Kd+1,d+1 as a subgraph). This result
generalizes all previously known �xed-parameter algorithms forDominating
Set (one of the core problems in parameterized complexity and perhaps the
most natural of the W [2]-complete problems) in di�erent graph classes.

A natural question arises: since we were so successful with the H-minor-
free graph classes, does the bounded degeneracy assumption help in the ker-
nelization of more problems? In particular, the question of �nding a poly-
nomial kernel for Connected Dominating Set in d-degenerated graphs
was posed at the 1st Workshop on Kernels (WORKER'09, Bergen, Norway).
We note that problems involving connectivity requirement, such as Con-
nected Dominating Set or Connected Vertex Cover, are usually
much more di�cult to kernelize to than their non-connected counterparts,
as many greedy reduction rules are not applicable due to the connectivity
requirement. For example, when solving the Vertex Cover problem, we
can forget about vertices, whose all incident edges were already covered; in
the Connected Vertex Cover problem, where we additionally require
that the solution induces a connected subgraph, such a vertex may be used
to ensure connectivity.

In this section we provide a few negative answers to questions about
the existence of polynomial kernels for connectivity problems in graphs of

1In literature, the de�nition of a d-degenerate graph is sometimes a bit di�erent: it is

required that all subgraphs have a vertex of degree at most d, not only the induced ones.

However, it is easy to see that these two de�nitions are equivalent.

82

bounded degeneracy. Note that this is in sharp contrast with the existence
of the linear kernel for Connected Dominating Set in apex-minor-free
graphs [78].

Similarly as when showing that a problem is NP-hard, when proving
kernelization lower bounds the main di�culty is to use a convenient interme-
diate problem. The main contribution in this section is the idea to use the
Colourful Graph Motif problem, which, intuitively, encapsulates the
hardness of the connectivity requirement.

Colourful Graph Motif

Input: A graph G = (V,E), an integer k and a function f : V →
{1, 2, . . . , k}.
Parameter: k.
Question: Does there exist a connected set S ⊆ V of cardinality k, such
that f |S is bijective?

We think of the function f to be a colouring of V � each number from
{1, 2, . . . , k} corresponds to a single colour � and we ask whether it is pos-
sible to choose a connected set containing exactly one vertex of each colour.

Fellows et al. [69] have shown that, surprisingly, this problem is NP-hard
even in the class of trees of maximum degree 3. We extend this analysis
by showing NP-hardness and nonexistence of a polynomial kernel (unless
NP ⊆ coNP/poly) for Colourful Graph Motif in comb graphs, a sub-
class of trees of maximum degree three (see De�nition 3.31). A signi�cantly
deeper discussion on the hardness of Colourful Graph Motif problem
in di�erent classes of trees can be found in a subsequent work by Ambalath
et al. [6].

The Colourful Graph Motif problem is simple enough to admit a
(polynomial parameter) reduction to Connected Dominating Set in 2-
degenerate graphs. As a by-product of this analysis, we obtain an alternative
proof that Steiner Tree does not admit a polynomial kernel in arbitrary
graphs. The original proof, via reduction from Red Blue Dominating Set

(aka Set Cover) is due to Dom et al. [55]. We analyze Colourful Graph
Motif in Section 3.4.2 and apply it to Connected Dominating Set to
show that Connected Dominating Set does not admit a polynomial
kernel in 2-degenerate graphs. In Section 3.4.2 we also show the reduction
from Colourful Graph Motif to Steiner Tree.

As a warmup, in Section 3.4.1 by easy reductions and using already known
results we show that Steiner Tree, Connected Feedback Vertex Set

83

and Connected Odd Cycle Transversal do not admit polynomial
kernels in 2-degenerate graphs. All discussed problems are parameterized by
the solution size, except for Steiner Tree, which is parameterized both
by the solution size and the size of the terminal set. Precise de�nitions
of considered problems can be found in appropriate sections. For a graph
problem Q, by d�deg�Q we denote the problem Q with input restricted to
d-degenerate graphs.

3.4.1 Easy cases

We begin by showing that, unless NP ⊆ coNP/poly, no polynomial kernel ex-
ists even for 2-degenerate graphs for three problems: Steiner Tree, Con-
nected Feedback Vertex Set andConnected Odd Cycle Transver-
sal. We use the results of Dom et al. [55], where the authors show that
Steiner Tree and Connected Vertex Cover do not admit a polyno-
mial kernel in the class of all graphs.

Theorem 3.26 (Dom et al. [55]). The Steiner Tree problem, parameter-
ized by the solution size and the size of the terminal set, and the Connected
Vertex Cover problems, parameterized by the solution size, do not admit
polynomial kernels unless NP ⊆ coNP/poly.

We use these two problems as starting points for our reductions, making
use of Theorem 3.25. The presented constructions are adjustments of re-
ductions made for Connected Feedback Vertex Set in general graphs
[112].

First, let us recall precise de�nitions of considered problems.

Steiner Tree (ST)
Input: A graph G = (V,E), a set of terminals T ⊆ V and an integer k.
Parameter: t := |T | and k.
Question: Does there exist S ⊆ V , such that G[S ∪T] is connected and
|S| ≤ k?

Connected Feedback Vertex Set (CFVS)
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there exist a set S ⊆ V of cardinality at most k, such
that G[S] is connected and G[V \ S] contains no cycles?

84

Connected Odd Cycle Transversal

Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there exist a set S ⊆ V of cardinality at most k, such
that G[S] is connected and G[V \ S] is bipartite (that is, contains no
cycles of odd length)?

Connected Vertex Cover

Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Does there exist a set S ⊆ V of cardinality at most k, such
that G[S] is connected and every edge e ∈ E has at least one endpoint
in S?

Now let us note the following simple observation.

Lemma 3.27. Assume that in a graph G every edge has an endpoint of
degree at most 2. Then G is 2-degenerate.

Proof. Consider an induced subgraph of G. If it does not contain any edge,
there is nothing to prove. Otherwise, it has at least one edge, which by
assumption admits at least one endpoint of degree at most two in G. The
claim follows from the fact that the degree of a vertex does not increase in
taking induced subgraphs.

We now show reductions to each of the three aforementioned problems.

Proposition 3.28. There exists a polynomial parameter transformation from
Connected Vertex Cover (in general graphs) to 2�deg�Connected
Feedback Vertex Set, as well as from Connected Vertex Cover to
2�deg�Connected Odd Cycle Transversal.

Proof. Consider any instance (G, k) of Connected Vertex Cover. We
create a graph G′ = (V ′, E ′). We take V ′ = V ∪E1∪E2∪E3 � the vertices of
G′ are the vertices of G plus three new vertices e1, e2, e3 for each edge e of G.
For each edge e = uv ∈ E we add �ve edges to E ′: ue1, e1v, ve2, e2e3 and e3u.
This means we transform each edge of G into a cycle of length 5, where the
original vertices are not adjacent on the cycle. Lemma 3.27 implies that G′

is 2-degenerate. We claim that the Connected Vertex Cover instance
(G, k), a 2�deg�Connected Feedback Vertex Set instance (G′, 2k−1)
and a 2�deg�Connected Odd Cycle Transversal instance (G′, 2k−1)

85

are equivalent. We prove this by showing three implications which form a
cycle.

First, let us assume that the answer to the Connected Vertex Cover
instance (G, k) is positive and let S be a connected vertex cover of G of size
at most k. As S is connected, we can create a spanning tree T in G[S], that
consists of at most k − 1 edges ES ⊆ E. Let E ′S = {e1 : e ∈ ES} � that
is, for each edge e ∈ ES we take into E ′S the vertex in V ′ corresponding to e
that is adjacent in G′ to both endpoints of e in G. Let S ′ = S ∪ E ′S. Note
that G′[S ′] is isomorphic to a graph obtained from T by subdividing every
edge once, thus it is connected. We claim that G′[V ′ \S ′] contains no cycles.
Assume that C is a cycle in G′[V ′ \ S ′]. C cannot consist only of elements
of V (since V is independent in G′), thus C contains some element ei. As
for each e ∈ E the vertices e1, e2 and e3 are of degree two, and e2e3 ∈ E ′, C
also has to contain both vertices from V which the corresponding edge e ∈ E
connects. This, however, means in particular that neither of these vertices
was in S, which is a contradiction with the assumption that S was a vertex
cover of G, as the edge e is not covered. We infer that the answer to the
Connected Feedback Vertex Set instance (G′, 2k − 1) is positive.

Clearly, any connected feedback vertex set is also a connected odd cy-
cle transversal. Thus, if the answer to the 2�deg�Connected Feedback

Vertex Set instance (G′, 2k− 1) is positive, so is the answer to the 2�deg�
Connected Odd Cycle Transversal instance (G′, 2k − 1).

Now assume we have a minimum connected odd cycle transversal S ⊆ V ′

in G′ of cardinality at most 2k − 1. Assume |S| ≥ 2 (the case |S| = 1
is trivial). Notice that |S ∩ V | ≤ k � if we have more than k vertices
from V , they form at least k + 1 connected components, and each vertex
from E1 ∪ E2 ∪ E3 connects at most two of them � thus S would not be
connected. We claim S ∩ V forms a connected vertex cover of G. First note
that G[S ∩ V] is connected: if v, v′ ∈ S ∩ V are connected in G′[S] by a path
P , the vertices from V on P form a path connecting v and v′ in G[S ∩ V].
Furthermore, consider any edge e = uv in E and the corresponding cycle
(u, e1, v, e2, e3) in G′. As S is an odd cycle transversal in G′, at least one of
these �ve vertices must belong to S. As |S| ≥ 2 and S is connected, unless
S = {e2, e3}, at least one of u, v is in S � and thus e is covered in G by
S ∩ V . In the case S = {e2, e3}, note that {e2} is also a connected odd cycle
transversal of G′, contradicting the minimality of S.

Corollary 3.29. For all d ≥ 2, the problems d�deg�Connected Feed-

86

back Vertex Set and d�deg�Connected Odd Cycle Transversal

do not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. As the unparameterized version of the Connected Vertex Cover
problem in general graphs is NP-complete [82], by Proposition 3.28 and The-
orem 3.25, a polynomial kernel for d�deg�Connected Feedback Vertex
Set or d�deg�Connected Odd Cycle Transversal would imply a poly-
nomial kernel for Connected Vertex Cover in general graphs. By the
result of Dom et al. [55] (Theorem 3.26), this would imply NP ⊆ coNP/poly
and a collapse of the polynomial hierarchy up to its third level.

The last reduction to degenerate graphs from previously known results is
for 2-deg-Steiner Tree. The alternative proof of the kernelization hardness
of 2-deg-Steiner Tree, via reduction from Colourful Graph Motif,
can be found in Section 3.4.2.

Proposition 3.30. These is a polynomial parameter transformation from
Steiner Tree to 2-deg-Steiner Tree, and d-deg-Steiner Tree for all
d ≥ 2 admits no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Take a general instance (G, k, T) of Steiner Tree. Create a new
graph G′ by subdividing each edge � formally, let V ′ = V ∪ E and ve ∈ E ′
if v is an endpoint of e in G. The graph G′ is 2�degenerate by Lemma 3.27.

We claim that the answer for (G, k, T) is the same as the answer for
(G′, 2k+|T |−1, T). Assume we have a solution S of (G, k, T). Then G[S∪T]
is connected. Take any spanning tree of G[S ∪ T] and let F be the set of
its edges. We have |F | ≤ k + |T | − 1. Note that F ∪ S is a solution in
(G′, 2k + |T | − 1, T). In the other direction, if we have a solution S ′ in
(G′, 2k+ |T |−1, T), we consider S = S ′∩V . Note that S∪T has cardinality
at most k+ |T | � since |S ′ ∪ T | ≤ 2k+ 2|T | − 1, S ∪ T is isolated in G′, and
adding a single vertex from E connects at most two components of the set.
Thus S has a cardinality at most k, and G[S ∪T] is connected (for otherwise
S ′ ∪ T could not be connected in G′).

Hence we proved that there is a polynomial parameter transformation
from Steiner Tree to 2�deg�Steiner Tree. The second part of the
claim follows similarly as in the proof of Corollary 3.29.

87

3.4.2 From Colourful Graph Motif to Connected Dom-

inating Set

The Connected Vertex Cover problem is, in a number of cases, too
speci�c to allow easy reductions. The Colourful Graph Motif problem
turned out to be very handy in our case.

Fellows et al. [69] have shown that Colourful Graph Motif in the
class of trees of maximum degree 3 is already NP-complete. We extend this
analysis by showing that Colourful Graph Motif is NP-complete in
comb graphs.

De�nition 3.31. A graph G = (V,E) is called a comb graph if it is a tree,
all vertices are of degree at most 3, and all the vertices of degree 3 lie on a
single simple path. Any such path is called a spine of a comb graph.

See Figure 3.7 for an example of a comb graph.

Figure 3.7: An example of a comb graph.

Proposition 3.32. The unparameterized version of the Colourful Graph
Motif problem in comb graphs is NP�complete.

Proof. Being in NP is obvious. For hardness, we reduce the CNF�SAT prob-
lem to Colourful Graph Motif in a comb graph. Let us consider an
instance C1 ∧ C2 ∧ . . . ∧ Cm of CNF�SAT with variables x1, x2, . . . , xn. We
create a comb graph G = (V,E). For each clause Cr = (lr1 ∨ lr2 ∨ . . . ∨ lrkr)
we add 4kr vertices to G: v(Cr, l

r
i , j) for 1 ≤ i ≤ kr and j = 1, 2, 3, 4. Also,

for each variable x we add four vertices: v(x, j) and v(¬x, j) for j = 0, 1.
Finally, we add two vertices s and t. The edges are as follows (see Figure 3.8
for an illustration):

88

v(C,α, 3)

v(C,α, 2)

v(C,α, 1)

v(C, β, 3)

v(C, β, 2)

v(C, β, 1)

v(C, γ, 3)

v(C, γ, 2)

v(C, γ, 1). v(¬α, 0) v(α, 0)

...

v(C,α, 4)

...

v(α, 1)

...

...

...

v(¬α, 1)

Figure 3.8: Part of the constructed comb illustrating vertices added for clause
C = (α ∨ β ∨ γ) and their interaction with paths arranged for literals α and
¬α.

• For any Cr and any l
r
i in Cr we arrange the vertices v(Cr, l

r
i , 1), v(Cr, l

r
i , 2)

and v(Cr, l
r
i , 3) into a path, in this order. By Pclause we denote the set

of all such paths constructed for all clauses Cr and literals lri .

• For any variable x of the CNF-formula, for each of the two literals l = x
or l = ¬x, we arrange the two vertices v(l, j) and all the vertices of the
form v(Cr, l

r
i , 4) where lri = l into a single path, such that v(l, 0) and

v(l, 1) lie on the ends of this path. By Pliteral we denote the set of all
such paths constructed for all literals l.

• We arrange the vertices s, t, v(l, 0) for all literals l and v(Cr, l
r
i , 1) for

all clauses Cr and literals lri in Cr into a single path, where s and t are
the ends of this path. This path, denoted by Pspine, is a spine of the
comb.

It is easy to see that the resulting graph is a comb.
Now we create a colouring function f . We set f(v(Cr, l

r
i , 2)) = f(v(Cr, l

r
i , 4))

for any literal lri in any clause Cr, for each clause Cr we set all f(v(Cr, l
r
i , 3))

equal for i = 1, . . . , kr and we set f(v(x, 1)) = f(v(¬x, 1)) for any variable
x. All function values of f not stated to be equal are di�erent.

Now let us see how a satisfying assignment of the CNF-formula variables
corresponds to a connected set S in G. Assume we have a satisfying assign-
ment φ for the formula C1 ∧ C2 ∧ . . . ∧ Cm. We choose S as follows:

• We take all the vertices on the spine of G to be in S.

89

• For each variable x, if φ(x) is true, we choose v(¬x, 1) ∈ S, and other-
wise we choose v(x, 1) ∈ S. In each case, we also take the whole path
from v(¬x, 0) to v(¬x, 1) or respectively from v(x, 0) to v(x, 1) to be
in S.

• If the literal lri occurs in the clause Cr and was assigned to be true, we
choose the vertex v(Cr, l

r
i , 2) to be in S.

• Since the assignment satis�ed all the clauses then for each clause Cr at
least one of the vertices v(Cr, l

r
i , 2) was chosen to be in S. Therefore,

we choose one of the corresponding vertices v(Cr, l
r
i , 3) to be in S.

A direct check shows that the set thus chosen is connected and contains
exactly one vertex of each colour � thus S is a solution to the Colourful
Graph Motif problem on graph G. The correspondence holds also in the
reverse direction � if S is a solution of Colourful Graph Motif on
G then we construct a satisfying assignment φ of the formula as follows.
Observe that:

• s, t ∈ S (as they are the only vertices of their respective colours), thus
the whole spine of G is a subset of S by the connectivity of S;

• for each variable x exactly one of v(x, 1) or v(¬x, 1) is in S. If it is
v(x, 1), we assign φ(x) to be false, otherwise we assign φ(x) to be true.

• by the connectivity of S all the vertices v(Cr, l
r
i , 4) are in S if lri is

assigned to be false;

• for any clause Cr one of the vertices v(Cr, l
r
i , 3) is in S, and thus the

appropriate v(Cr, l
r
i , 2) is in S;

• as all vertices of S are of a di�erent colour, if v(Cr, l
r
i , 2) ∈ S, then

v(Cr, l
r
i , 4) 6∈ S, which means lri was assigned to be true, and thus Cr

is satis�ed by our assignment.

As CNF�SAT is NP�hard and the unparameterized Colourful Graph
Motif problem is created in polynomial (even linear) time with respect to
the size of the CNF�SAT problem we started with, the unparameterized
Colourful Graph Motif problem in combs is NP�complete.

90

We now prove the hardness of kernelization of Colourful Graph Mo-
tif in comb graphs. First, note that a simple composition algorithm yields
the following result.

Corollary 3.33. The problem Colourful Graph Motif, when the input
graph is restricted to graphs being a disjoint union of combs, does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We use Theorem 3.23 and take the disjoint union of graphs and the
union of the respective colouring functions as the composition algorithm.
Note that any feasible solution in the resulting graph is required to induce a
connected subgraph and therefore it needs to be contained in one connected
component of the input graphs. In the other direction, clearly a solution to
one of the input instances induces a solution of the output instance.

We �nish the analysis with a reduction from a disjoint union of combs to
a single comb. A similar result was independently obtained by Ambalath et
al. [6].

Proposition 3.34. There exists a polynomial parameter transformation from
Colourful Graph Motif in a disjoint union of combs to Colourful
Graph Motif in combs, and Colourful Graph Motif in the class of
comb graphs does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. Assume we have an instance of Colourful Graph Motif in a dis-
joint union of combs G, with k colours. Assume k ≥ 3 (if k ≤ 2, Colourful
Graph Motif can be trivially solved in polynomial time and hence we cre-
ate a trivial output instance). We create a single comb with k colours. Let
G1, G2, . . . , Gl be the connected components (combs) of G. Let ui and vi be
the endpoints of the spine of Gi. We create the graph G′ as follows:

• All Gis are subgraphs of G
′

• For each i we add vertices u′i and v
′
i to G

′

• We add edges uiu
′
i, viv

′
i for each i = 1, 2, . . . , l and an edge v′iu

′
i+1 for

each i = 1, 2, . . . , l − 1

• f(u′i) = f(ui), f(v′i) = f(vi).

91

The graph G′ is a comb graph with the spine consisting of all the spines of Gis
and all the added vertices. Any solution of Colourful Graph Motif in
(G, k, f) has to be contained in a single Gi, as it is connected, and thus can be
used without changes in G′. On the other hand no solution of Colourful
Graph Motif in G′ contains u′i or v

′
i � since if it contained one of them,

say v′i, then it could not contain vi (as f(vi) = f(v′i)), it cannot contain ui+1

(since it would have to pass through u′i+1, which is of the same colour) �
thus, due to connectivity, it would contain at most two vertices, while we
assumed k ≥ 3. This implies that a solution to Colourful Graph Motif
in G′ is contained in one of the Gis, and thus can be used as a solution in
G.

Corollary 3.35. 1�deg�Colourful Graph Motif does not admit a poly-
nomial kernel unless NP ⊆ coNP/poly.

Proof. We use Theorem 3.25. The unparameterized version of the problem
Colourful Graph Motif with the input graphs restricted to combs is
NP-complete, and the unparameterized version of the problem Colourful

Graph Motif with the input graphs restricted to forests (i.e., 1-degenerate
graphs) is in NP. As any instance of Colourful Graph Motif with
the input graphs restricted to combs can be treated as an instance of 1�
deg�Colourful Graph Motif, this gives us trivially that Colourful
Graph Motif in combs ≤Ptp 1�deg�Colourful Graph Motif and the
proof is �nished.

Reductions

We propose Colourful Graph Motif as a simple tool to prove that
various other problems do not admit a polynomial kernel unless NP ⊆
coNP/poly. Firstly, to give some intuition on Colourful Graph Motif,
let us note that Colourful Graph Motif is a special case of Group
Steiner Tree parameterized by the number of groups.

Group Steiner Tree

Input: A graph G = (V,E), sets of vertices T1, . . . , Tk ⊆ V and an
integer p.
Parameter: k.
Question: Does there exist S ⊆ V , such that G[S] is connected, |S| = p
and S ∩ Ti 6= ∅ for i = 1, . . . , k?

92

Proposition 3.36. There exists a polynomial parameter transformation from
d�deg�Colourful Graph Motif to d�deg�Group Steiner Tree.

Proof. Assume we have an instance (G, k, f) of d�deg�Colourful Graph
Motif. We create an instance of d�deg�Group Steiner Tree as follows:
we keep the graph G, we let p = k and take Ti = f−1(i). Now the problem
Group Steiner Tree asks whether there exists a connected set S of car-
dinality p = k which has a non�empty intersection with each Ti. As p = k,
we infer that the intersection with each Ti is to contain exactly one element.
This is exactly the question in Colourful Graph Motif, thus the an-
swer to Colourful Graph Motif in (G, f, k) is the same as the answer
to Group Steiner Tree in (G, {Ti}ki=1, p, k).

Corollary 3.37. Colourful Graph Motif can be solved in 2knO(1) time
and polynomial space.

Proof. We reduce Colourful Graph Motif to Group Steiner Tree

as in the proof of Proposition 3.36 and use 2knO(1)-time algorithm described
in [112].

Our original motivation for analyzing Colourful Graph Motif was
the Connected Dominating Set problem.

Connected Dominating Set

Input: A graph G = (V,E) and an integer k
Parameter: k.
Question: Does there exist a set S ⊆ V of cardinality at most k, such
that G[S] is connected and S is a dominating set of G?

Proposition 3.38. For all d ≥ 2, there exists a polynomial parameter
transformation from (d − 1)�deg�Colourful Graph Motif to d�deg�
Connected Dominating Set, and d�deg�Connected Dominating Set
admits no polynomial kernel unless NP ⊆ coNP/poly.

Proof. We begin with an instance (G, k, f) of (d−1)�deg�Colourful Graph
Motif. By Corollary 3.37, we may assume k ≥ 2, otherwise we can solve
the input instance in polynomial time. We create a graph G′ = (V ′, E ′) as
follows (see Figure 3.9 for an illustration):

• We begin with V ′ = V and E ′ = E;

93

• for each colour l ∈ {1, 2, . . . , k} we add two vertices vl and v
′
l to V

′;

• for each colour l ∈ {1, 2, . . . , k} we add an edge vlv
′
l to E

′;

• for each vertex v ∈ V we add an edge vvf(v) to E
′.

G
f−1(1)

v1

v′1

f−1(2)

v2

v′2

f−1(k)

vk

v′k

. . .

. . .

. . .

Figure 3.9: Illustration of the reduction from (d − 1)�deg�Colourful
Graph Motif to d�deg�Connected Dominating Set (Proposition
3.38).

Firstly, we prove G′ is d�degenerate. Consider any S ⊆ V ′. If S ⊆ V ′ \V
then every vertex in G′[S] is of degree at most 1. Otherwise S ∩ V is non�
empty and G[S ∩ V] contains a vertex v, which had degree at most (d − 1)
in G, so it has degree at most d in G′ (as we added one edge to each vertex
of V).

Now we prove that the answer toColourful Graph Motif for (G, k, f)
is the same as the answer to Connected Dominating Set for (G′, 2k).
Assume k > 1. If we have a solution S of Colourful Graph Motif

in G, we create a solution of Connected Dominating Set by putting
S ′ = S ∪ {v1, v2, . . . , vk}. S ′ is a dominating set in G′, because each vertex
v′l is a neighbour of vl and each vertex v ∈ V is a neighbour of vf(v). G

′[S ′]
is connected because G[S] is connected and each vl is adjacent to the vertex
of colour l in S. On the other hand, any solution S ′ to Connected Dom-

inating Set in G′ has to contain all the vertices vl (there are two ways to
dominate v′l � either we take vl, or we take v′l, but in the second case we
have to take vl anyway for connectivity). To ensure connectivity we have to
take at least one neighbour ul of each vl (ul 6= v′l). As the sets of neighbours
of vls are disjoint and |S ′| ≤ 2k, we infer that exactly one neighbour of each
vl is in S

′, i.e., S ′ contains exactly one vertex of each colour. In G′[S ′] the
vertices vl are of degree 1 (they are not adjacent to each other, and are not

94

adjacent to uj for j 6= l), thus G′[S ′ \ {v1, v2, . . . , vk}] is connected as G′[S ′]
is connected. We infer that S ′ \ {v1, v2, . . . , vk} is a solution to Colourful
Graph Motif in G.

As a �nal example of the technique we show how to prove that the
Steiner Tree problem admits no polynomial kernel in 2-degenerate graphs.
The problem was studied in [55], where Steiner Tree was shown to ad-
mit no polynomial kernel in general graphs, and a simple reduction to 2-
degenerate graphs was shown in Section 3.4.1. We now show a self�contained
proof to demonstrate again the applicability of Colourful Graph Motif.

Proposition 3.39. For all d ≥ 2, here exists a polynomial parameter trans-
formation from (d−1)�deg�Colourful Graph Motif to d�deg�Steiner
Tree, and d�deg�Steiner Tree admits no polynomial kernel unless NP ⊆
coNP/poly.

Proof. Assume we have an instance (G, k, f) of (d − 1)-deg-Colourful
Graph Motif. We create an instance (G′, T, k) of d-deg-Steiner Tree

as follows: we keep the graph G as the set of non�terminals. Additionally
for each colour i ∈ {1, 2, . . . , k} we add a vertex ti and edges vti for all
v ∈ f−1(i). We ask for a Steiner tree of cardinality k in G′ connecting all
vertices from T = {t1, t2, . . . , tk} (see Figure 3.10 for an illustration).

G
f−1(1)

t1

f−1(2)

t2

f−1(k)

tk

. . .

. . .

Figure 3.10: Illustration of the reduction from (d − 1)�deg�Colourful
Graph Motif to d�deg�Steiner Tree (Proposition 3.39).

First note G′ is d-degenerate. As in the previous proof, the terminals T
form an independent set, while to each non�terminal fromG we added exactly
one edge. Let S be the solution to Steiner Tree in G′. Note that S has to
contain exactly one vertex of each colour � if some colour was excluded, the
corresponding terminal could not be connected, and the number of colours is
at least |S|. Moreover, S has to be connected in G′[V] = G, as there is only

95

one vertex of each colour, each terminal is a leaf in the solution, so removing
a terminal does not change the connectivity of the solution. On the other
hand, it can be also easily seen that any solution of Colourful Graph
Motif in G is a solution of Steiner Tree in G′.

96

Bibliography

[1] 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE
Computer Society, 2010.

[2] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-
time data reduction for dominating set. J. ACM, 51(3):363�384, 2004.

[3] R. B. Allan and R. Laskar. On domination and independent domination
numbers of a graph. Discrete Mathematics, 23(2):73�76, 1978.

[4] Noga Alon and Shai Gutner. Linear time algorithms for �nding a domi-
nating set of �xed size in degenerated graphs. Algorithmica, 54(4):544�
556, 2009.

[5] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,
42(4):844�856, 1995.

[6] Abhimanyu M. Ambalath, Radheshyam Balasundaram, Chintan Rao
H., Venkata Koppula, Neeldhara Misra, Geevarghese Philip, and M. S.
Ramanujan. On the kernelization complexity of colorful motifs. In
Venkatesh Raman and Saket Saurabh, editors, IPEC, volume 6478 of
Lecture Notes in Computer Science, pages 14�25. Springer, 2010.

[7] A. M. Barcalkin and L. F. German. The external stability number of
the cartesian product of graphs. Bul. Akad. Stiinte RSS Moldoven.,
1:5�8, 1979.

[8] Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized al-
gorithms for the loop cutset problem. J. Artif. Intell. Res. (JAIR),
12:219�234, 2000.

97

[9] Daniel Binkele-Raible, Ljiljana Brankovic, Marek Cygan, Henning
Fernau, Joachim Kneis, Dieter Kratsch, Alexander Langer, Mathieu
Liedlo�, Marcin Pilipczuk, Peter Rossmanith, and Jakub Onufry Woj-
taszczyk. Breaking the 2n-barrier for irredundance: Two lines of attack.
J. Discrete Algorithms, 9(3):214�230, 2011.

[10] Andreas Björklund. Determinant sums for undirected hamiltonicity. In
FOCS [1], pages 173�182.

[11] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.
Fourier meets möbius: fast subset convolution. In David S. Johnson
and Uriel Feige, editors, STOC, pages 67�74. ACM, 2007.

[12] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.
Trimmed moebius inversion and graphs of bounded degree. Theory
Comput. Syst., 47(3):637�654, 2010.

[13] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partition-
ing via inclusion-exclusion. SIAM J. Comput., 39(2):546�563, 2009.

[14] Hans L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci.,
5(1):59�68, 1994.

[15] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and
Danny Hermelin. On problems without polynomial kernels. J. Comput.
Syst. Sci., 75(8):423�434, 2009.

[16] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-
composition: A new technique for kernelization lower bounds. In
Thomas Schwentick and Christoph Dürr, editors, STACS, volume 9
of LIPIcs, pages 165�176. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2011.

[17] Hans L. Bodlaender, S. Thomasse, and A. Yeo. Analysis of data reduc-
tion: Transformations give evidence for non-existence of polynomial
kernels, 2008. Technical Report UU-CS-2008-030, Institute of Infor-
mation and Computing Sciences, Utrecht University, Netherlands.

[18] Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feed-
back vertex set and loop cutset. Theory Comput. Syst., 46(3):566�597,
2010.

98

[19] B. Bollobás and E. J. Cockayne. Graph-theoretic parameters concern-
ing domination, independence, and irredundance. Journal of Graph
Theory, 3:241�250, 1979.

[20] B. Bollobás and E. J. Cockayne. On the irredundance number and
maximum degree of a graph. Discrete Mathematics, 49:197�199, 1984.

[21] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is
FPT. In Fortnow and Vadhan [80], pages 459�468.

[22] Bo²tjan Bre²ar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell,
Michael A. Henning, Sandi Klavºar, and Douglas F. Rall. Vizing's
conjecture: a survey and recent results. Journal of Graph Theory,
pages n/a�n/a, 2011.

[23] Peter Brucker. Scheduling Algorithms. Springer, Heidelberg, 2 edition,
1998.

[24] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows,
Michael A. Langston, Shev Mac, and Frances A. Rosamond. The undi-
rected feedback vertex set problem has a poly(k) kernel. In Hans L.
Bodlaender and Michael A. Langston, editors, IWPEC, volume 4169
of Lecture Notes in Computer Science, pages 192�202. Springer, 2006.

[25] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P.
SIAM J. Comput., 22(3):560�572, 1993.

[26] J. Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and
Mitsunori Ogihara. Competing provers yield improved Karp-Lipton
collapse results. Inf. Comput., 198(1):1�23, 2005.

[27] Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set new
measure and new structures. In Kaplan [99], pages 93�104.

[28] M.-S. Chang, P. Nagavamsi, and C. Pandu Rangan. Weighted irre-
dundance of interval graphs. Information Processing Letters, 66:65�70,
1998.

[29] Moses Charikar, editor. Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010. SIAM, 2010.

99

[30] Chandra Chekuri and Rajeev Motwani. Precedence constrained
scheduling to minimize sum of weighted completion times on a single
machine. Discrete Applied Mathematics, 98(1-2):29�38, 1999.

[31] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Vil-
langer. Improved algorithms for feedback vertex set problems. J. Com-
put. Syst. Sci., 74(7):1188�1198, 2008.

[32] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further
observations and further improvements. J. Algorithms, 41(2):280�301,
2001.

[33] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for
vertex cover. Theor. Comput. Sci., 411(40-42):3736�3756, 2010.

[34] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized
algorithm for the minimum node multiway cut problem. Algorithmica,
55(1):1�13, 2009.

[35] Jianer Chen, Yang Liu, Songjian Lu, Barry O'Sullivan, and Igor Raz-
gon. A �xed-parameter algorithm for the directed feedback vertex set
problem. In Cynthia Dwork, editor, STOC, pages 177�186. ACM, 2008.

[36] Rajesh Chitnis, Mohammadtaghi Hajiaghayi, and Dániel Marx. Fixed-
parameter tractability of directed multiway cut parameterized by the
size of the cutset. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, page to appear, 2012.

[37] W. E. Clark and S. Suen. An inequality related to vizing's conjecture.
Electron. J. Combin., 7(Note 4, 3):(electronic), 2000.

[38] E. J. Cockayne, P. J. P. Grobler, S. T. Hedetniemi, and A. A. McRae.
What makes an irredundant set maximal? Journal of Combinatorial
Mathematics and Combinatorial Computing, 25:213�224, 1997.

[39] E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller. Properties of
hereditary hypergraphs and middle graphs. Canadian Mathematical
Bulletin, 21(4):461�468, 1978.

100

[40] E. J. Cockayne and C. M. Mynhardt. Irredundance and maximum
degree in graphs. Combinatorics, Probability and Computing, 6:153�
157, 1997.

[41] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper
Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and
Magnus Wahlström. On problems as hard as CNF-SAT. Manuscript,
2011.

[42] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk,
Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solv-
ing connectivity problems parameterized by treewidth in single
exponential time. In FOCS (to appear), 2011. Available at
http://arxiv.org/abs/1103.0534.

[43] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry
Wojtaszczyk. Kernelization hardness of connectivity problems in d-
degenerate graphs. In Dimitrios M. Thilikos, editor, WG, volume 6410
of Lecture Notes in Computer Science, pages 147�158, 2010.

[44] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry
Wojtaszczyk. Scheduling partially ordered jobs faster than 2n. In Camil
Demetrescu and Magnús M. Halldórsson, editors, ESA, volume 6942 of
Lecture Notes in Computer Science, pages 299�310. Springer, 2011.

[45] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry
Wojtaszczyk. Subset feedback vertex set is �xed-parameter tractable.
In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP (1),
volume 6755 of Lecture Notes in Computer Science, pages 449�461.
Springer, 2011.

[46] Marek Cygan, Marcin Pilipczuk, Michaª Pilipczuk, and Jakub Onufry
Wojtaszczyk. On multiway cut parameterized above lower bounds. In
IPEC (to appear), 2011. Available at http://arxiv.org/abs/1107.1585.

[47] Marek Cygan, Marcin Pilipczuk, and Jakub Onufry Wojtaszczyk. Ca-
pacitated domination faster than O(2n). In Kaplan [99], pages 74�80.

[48] Marek Cygan, Marcin Pilipczuk, and Jakub Onufry Wojtaszczyk. Irre-
dundant set faster than O(2n). In Tiziana Calamoneri and Josep Díaz,

101

editors, CIAC, volume 6078 of Lecture Notes in Computer Science,
pages 288�298. Springer, 2010.

[49] Marek Cygan, Marcin Pilipczuk, and Jakub Onufry Wojtaszczyk. Ca-
pacitated domination faster than O(2n). volume 111, pages 1099�1103,
2011.

[50] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston,
Frances A. Rosamond, and Kim Stevens. An O(2O(k)n3) FPT algo-
rithm for the undirected feedback vertex set problem. Theory Comput.
Syst., 41(3):479�492, 2007.

[51] Holger Dell and Dieter van Melkebeek. Satis�ability allows no non-
trivial sparsi�cation unless the polynomial-time hierarchy collapses. In
Leonard J. Schulman, editor, STOC, pages 251�260. ACM, 2010.

[52] Eric D. Demaine, Mohammad Taghi Hajiaghayi, and Dániel Marx.
Open problems from dagstuhl seminar 09511, 2009.

[53] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and
Dimitrios M. Thilikos. Subexponential parameterized algorithms on
bounded-genus graphs and -minor-free graphs. J. ACM, 52(6):866�
893, 2005.

[54] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and
Dimitrios M. Thilikos. Subexponential parameterized algorithms on
bounded-genus graphs and h-minor-free graphs. J. ACM, 52(6):866�
893, 2005.

[55] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibil-
ity through colors and ids. In Susanne Albers, Alberto Marchetti-
Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang
Thomas, editors, ICALP (1), volume 5555 of Lecture Notes in Com-
puter Science, pages 378�389. Springer, 2009.

[56] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[57] Rod Downey. Parameterized complexity for the skeptic. In In Proc.
18th IEEE Annual Conference on Computational Complexity, pages
147�169, 2003.

102

[58] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractabil-
ity and completeness. In Complexity Theory: Current Research, pages
191�225, 1992.

[59] Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne, edi-
tors. Parameterized and Exact Computation, First International Work-
shop, IWPEC 2004, Bergen, Norway, September 14-17, 2004, Proceed-
ings, volume 3162 of Lecture Notes in Computer Science. Springer,
2004.

[60] Zdenek Dvorak, Daniel Král, and Robin Thomas. Deciding �rst-order
properties for sparse graphs. In FOCS [1], pages 133�142.

[61] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Ap-
proximating minimum feedback sets and multicuts in directed graphs.
Algorithmica, 20(2):151�174, 1998.

[62] Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin. Ap-
proximating minimum subset feedback sets in undirected graphs with
applications. SIAM J. Discrete Math, 13(2):255�267, 2000.

[63] Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algo-
rithm for the subset feedback vertex set problem. SIAM J. Comput.,
30(4):1231�1252, 2000.

[64] O. Favaron. Two relations between the parameters of independence
and irredundance. Discrete Mathematics, 70(1):17�20, 1988.

[65] O. Favaron. A note on the irredundance number after vertex deletion.
Discrete Mathematics, 121(1-3):51�54, 1993.

[66] O. Favaron, T. W. Haynes, S. T. Hedetniemi, M. A. Henning, and
D. J. Knisley. Total irredundance in graphs. Discrete Mathematics,
256(1-2):115�127, 2002.

[67] Uriel Feige. Coping with the NP-hardness of the graph bandwidth
problem. In Magnús M. Halldórsson, editor, SWAT, volume 1851 of
Lecture Notes in Computer Science, pages 10�19. Springer, 2000.

[68] M. R. Fellows, G. Fricke, S. T. Hedetniemi, and D. P. Jacobs. The pri-
vate neighbor cube. SIAM Journal on Discrete Mathematics, 7(1):41�
47, 1994.

103

[69] Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane
Vialette. Sharp tractability borderlines for �nding connected motifs in
vertex-colored graphs. In Lars Arge, Christian Cachin, Tomasz Jur-
dzinski, and Andrzej Tarlecki, editors, ICALP, volume 4596 of Lecture
Notes in Computer Science, pages 340�351. Springer, 2007.

[70] Amos Fiat and Peter Sanders, editors. Algorithms - ESA 2009, 17th
Annual European Symposium, Copenhagen, Denmark, September 7-9,
2009. Proceedings, volume 5757 of Lecture Notes in Computer Science.
Springer, 2009.

[71] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 1 edition,
March 2006.

[72] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and
conquer: Domination - a case study. In Luís Caires, Giuseppe F. Ital-
iano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP, volume 3580 of Lecture Notes in Computer Science, pages 191�
203. Springer, 2005.

[73] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure &
conquer approach for the analysis of exact algorithms. J. ACM, 56(5),
2009.

[74] Fedor V. Fomin, Kazuo Iwama, and Dieter Kratsch. Moderately expo-
nential time algorithms, Dagstuhl seminar, 2008.

[75] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1
edition, 2010.

[76] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact
(exponential) algorithms for the dominating set problem. In Juraj
Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, WG,
volume 3353 of Lecture Notes in Computer Science, pages 245�256.
Springer, 2004.

[77] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket
Saurabh. Bidimensionality and EPTAS. In Charikar [29], pages 748�
759.

104

[78] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M.
Thilikos. Bidimensionality and kernels. In Charikar [29], pages 503�
510.

[79] Lance Fortnow and Rahul Santhanam. Infeasibility of instance com-
pression and succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91�
106, 2011.

[80] Lance Fortnow and Salil P. Vadhan, editors. Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011. ACM, 2011.

[81] Tibor Gallai. Maximum�minimum sätze und verallgemeinerte Fak-
torem von Graphen. Acta. Math. Acad. Sci. Hungaricae, 2:131�173,
1961.

[82] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[83] Petr A. Golovach and Yngve Villanger. Parameterized complexity for
domination problems on degenerate graphs. In Hajo Broersma, Thomas
Erlebach, Tom Friedetzky, and Daniël Paulusma, editors, WG, volume
5344 of Lecture Notes in Computer Science, pages 195�205, 2008.

[84] R. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45:1563�1581, 1966.

[85] Fabrizio Grandoni. A note on the complexity of minimum dominating
set. J. Discrete Algorithms, 4(2):209�214, 2006.

[86] Sylvain Guillemot. FPT algorithms for path-transversal and cycle-
transversal problems. Discrete Optimization, 8(1):61�71, 2011.

[87] Jiong Guo, Jens Gramm, Falk Hü�ner, Rolf Niedermeier, and Sebastian
Wernicke. Compression-based �xed-parameter algorithms for feedback
vertex set and edge bipartization. J. Comput. Syst. Sci., 72(8):1386�
1396, 2006.

[88] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and
problem kernelization. SIGACT News, 38(1):31�45, 2007.

105

[89] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Math-
ematica, 182:105�142, 1999.

[90] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of
domination in graphs. Marcel Dekker Inc., 1998.

[91] S. T. Hedetniemi, R. Laskar, and J. Pfa�. Irredundance in graphs: a
survey. Congressus Numerantium, 48:183�193, 1985.

[92] Stephen T. Hedetniemi and Renu C. Laskar. Bibliography on domi-
nation in graphs and some basic de�nitions of domination parameters.
Discrete Mathematics, 86(1-3):257�277, 1990.

[93] N. Hefetz and I. Adiri. An e�cient optimal algorithm for the two-
machines unit-time jobshop schedule-length problem. Mathematics of
Operations Research, 7:354�360, 1982.

[94] Michael Held and Richard M. Karp. A dynamic programming approach
to sequencing problems. Journal of SIAM, 10:196�210, 1962.

[95] Russell Impagliazzo and Ramamohan Paturi. On the complexity of
k-SAT. J. Comput. Syst. Sci., 62(2):367�375, 2001.

[96] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Chris-
tian Wul�-Nilsen. Improved algorithms for min cut and max �ow in
undirected planar graphs. In Fortnow and Vadhan [80], pages 313�322.

[97] Yoichi Iwata. A faster algorithm for dominating set analyzed by the
potential method. In IPEC (to appear), 2011.

[98] Iyad A. Kanj, Michael J. Pelsmajer, and Marcus Schaefer. Parameter-
ized algorithms for feedback vertex set. In Downey et al. [59], pages
235�247.

[99] Haim Kaplan, editor. Algorithm Theory - SWAT 2010, 12th Scandi-
navian Symposium and Workshops on Algorithm Theory, Bergen, Nor-
way, June 21-23, 2010. Proceedings, volume 6139 of Lecture Notes in
Computer Science. Springer, 2010.

[100] K. Kawarabayashi and Y. Kobayashi. Fixed-parameter tractability
for the subset feedback set problem and the S-cycle packing problem
(manuscript), 2010.

106

[101] Alexandr V. Kostochka. Lower bound of the hadwiger number of graphs
by their average degree. Combinatorica, 4(4):307�316, 1984.

[102] Stefan Kratsch. Co-nondeterminism in compositions: A kernelization
lower bound for a ramsey-type problem. CoRR, abs/1107.3704, 2011.

[103] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A
randomized polynomial kernel for odd cycle transversal. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, page to
appear, 2012.

[104] R. Laskar and J. Pfa�. Domination and irredundance in graphs. Tech-
nical Report 434, Clemson Univ., Dept. of Math. SC., 1983.

[105] E. L. Lawler. Optimal sequencing of a single machine subject to prece-
dence constraints. Management Sci., 19:544�546, 1973.

[106] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of
machine scheduling problems. Annals of Discrete Mathematics, 1:343�
362, 1977.

[107] J. K. Lenstra and A.H.G. Rinnooy Kan. Complexity of scheduling
under precedence constraints. Operations Research, 26:22�35, 1978.

[108] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algo-
rithms on graphs on bounded treewidth are probably optimal. In Dana
Randall, editor, SODA, pages 777�789. SIAM, 2011.

[109] François Margot, Maurice Queyranne, and Yaoguang Wang. Decom-
positions, network �ows, and a precedence constrained single-machine
scheduling problem. Operations Research, 51(6):981�992, 2003.

[110] Dániel Marx. Parameterized graph separation problems. Theor. Com-
put. Sci., 351(3):394�406, 2006.

[111] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut
parameterized by the size of the cutset. In Fortnow and Vadhan [80],
pages 469�478.

107

[112] Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket
Saurabh, and Somnath Sikdar. FPT algorithms for connected feed-
back vertex set. In Md. Saidur Rahman and Satoshi Fujita, editors,
WALCOM, volume 5942 of Lecture Notes in Computer Science, pages
269�280. Springer, 2010.

[113] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian
elimination. In FOCS, pages 248�255. IEEE Computer Society, 2004.

[114] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford
Lecture Series in Mathematics and Its Applications). Oxford University
Press, USA, March 2006.

[115] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT
algorithms. In Charikar [29], pages 1065�1075.

[116] Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Solving
dominating set in larger classes of graphs: FPT algorithms and poly-
nomial kernels. In Fiat and Sanders [70], pages 694�705.

[117] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster
�xed parameter tractable algorithms for �nding feedback vertex sets.
ACM Transactions on Algorithms, 2(3):403�415, 2006.

[118] Igor Razgon and Barry O'Sullivan. Almost 2-sat is �xed-parameter
tractable. J. Comput. Syst. Sci., 75(8):435�450, 2009.

[119] Bruce A. Reed. Paths, stars and the number three. Combinatorics,
Probability & Computing, 5:277�295, 1996.

[120] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle
transversals. Oper. Res. Lett., 32(4):299�301, 2004.

[121] John H. Reif. Minimum s-t cut of a planar undirected network in
O(nlog2(n)) time. SIAM J. Comput., 12(1):71�81, 1983.

[122] Ingo Schiermeyer. E�ciency in exponential time for domination-type
problems. Discrete Applied Mathematics, 156(17):3291�3297, 2008.

[123] Alexander Schrijver. A short proof of Mader's sigma-paths theorem.
J. Comb. Theory, Ser. B, 82(2):319�321, 2001.

108

[124] Andrew Thomason. An extremal function for contractions of graphs.
Math. Proc. Cambridge Philos. Soc., 95(2):261�265, 1984.

[125] Andrew Thomason. The extremal function for complete minors. J.
Comb. Theory, Ser. B, 81(2):318�338, 2001.

[126] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans-
actions on Algorithms, 6(2), 2010.

[127] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith.
Dynamic programming on tree decompositions using generalised fast
subset convolution. In Fiat and Sanders [70], pages 566�577.

[128] Vadim G. Vizing. Some unsolved problems in graph theory. Uspehi
Mat. Nauk, 23(6 (144)):117�134, 1968.

[129] Gerhard J. Woeginger. Space and time complexity of exact algorithms:
Some open problems (invited talk). In Downey et al. [59], pages 281�
290.

[130] Gerhard J. Woeginger. Open problems around exact algorithms. Dis-
crete Applied Mathematics, 156(3):397�405, 2008.

[131] Chee-Keng Yap. Some consequences of non-uniform conditions on uni-
form classes. Theor. Comput. Sci., 26:287�300, 1983.

109

