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Abstract ∗

Problems related to repetitions are central in the area of combinatorial algorithms
on strings. The main types of repetitions are squares (strings of the form zz) and
runs (also called maximal repetitions).

Denote by sq(w) the number of distinct squares and by ρ(w) the number of runs
in a given string w; denote also by sq(n) and ρ(n) the maximal number of distinct
squares and the maximal number of runs respectively in a string of the size n (we
slightly abuse the notation by using the same names, but the meaning will be clear
from the context). Despite a long research in this area the exact asymptotics of
sq(n) and ρ(n) are still unknown. Also the algorithms for e�cient calculation of
sq(w) and ρ(w) are very sophisticated for general class of words.

In the thesis we investigate these problems for a very special class S of strings
called the standard Sturmian words � one of the most investigated class of strings
in combinatorics on words. They have very compact representations in terms of
sequences of integers. For a sequence γ denote by Sw(γ) the standard word genera-
ted by γ. Usually the size of this word is exponential with respect to the size of γ,
hence we are dealing here with repetition problems in compressed strings, which
complicates the algorithms and proofs considerably. Standard words are the spe-
cial kind of cyclic shifts of Chrisfo�el words, which constitute another important
family of words with geometric applications.

Our main results are:

• the algorithm to compute ρ(w) for w ∈ S in linear time with respect to the
size of its (usually logarithmic) compact representation γ;

• the tight asymptotic bound: ρ(w) ≤ 0.8|w| for w ∈ S;
• the algorithmic construction of an in�nite sequence of standard words {wk}
achieving asymptotically ρ(wk) = 0.8|wk| − o(|wk|);

• the tight asymptotic bound sq(|w|) ≤ 0.9|w| for w ∈ S (S is the largest class
of words, for which we know the exact coe�cient in asymptotic formula, for
general words the best result is n ≤ sq(n) ≤ 2n and any progress is very
hard);

• the algorithmic construction of an in�nite sequence of standard words {wk}
achieving asymptotically sq(wk) = 0.8|wk| − o(|wk|);

• the investigation of the structure of compacted subword graphs of standard
words � these graphs have linear size with respect to |γ| and using them
we derive several e�cient algorithms for computing some important values
related to Sw(γ);

• the relation of subword graphs of standard words to certain numerations sys-
tems and a special type of �nite automata.

The results of the thesis were presented in [5], [6] and [61].

Keywords: combinatorics of words, Sturmian words, maximal repetitions, squares,
data compression, subword graphs, numeration systems

AMS Mathematical Subject Classi�cation: 68R15, 68P30, 68Q70.

∗The research supported by Ministry of Science and Higher Education of Poland, grant

N N206 258035



Streszczenie ∗

Badanie struktury powtórze« jest jednym z podstawowych problemów spotykanych
w kombinatoryce sªów. Najwa»niejszymi typami badanych powtórze« s¡ kwadraty
(powtórzenia postaci zz) oraz maksymalne powtórzenia.

Oznaczmy przez sq(w) liczb¦ parami ró»nych kwadratów, za± przez ρ(w) liczb¦
maksymalnych powtórze« w sªowie w; dodatkowo niech sq(n) oraz ρ(n) oznaczaj¡
odpowiednio maksymaln¡ liczb¦ kwadratów oraz maksymalnych powtórze« w sªo-
wach dªugo±ci n. Mimo wielu bada« w tej dziedzinie dokªadne asymptotyczne
oszacowanie dla sq(n) oraz ρ(n) nadal nie jest znane, za± algorytmy wyznaczania
sq(w) oraz ρ(w) s¡ skomplikowane.

W rozprawie zbadana zostaªa struktura wyst¡pie« powtórze« dla klasy standardo-
wych sªów Sturma S � jednej z intensywniej badanych klas w kombinatoryce sªów.
Posiadaj¡ one zwarte reprezentacje w postaci ci¡gów dodatnich liczb caªkowitych.
Sªowo standardowe generowane przez ci¡g γ oznaczamy Sw(γ). Dªugo±¢ Sw(γ)
jest zwykle wykªadniczo zale»na od dªugo±ci γ, mamy wi¦c do czynienia z bada-
niem struktury powtórze« w skompresowanej wersji sªów, co dodatkowo komplikuje
dowody i algorytmy. Sªowa standardowe s¡ szczególnym przypadkiem przesuni¦¢
cyklicznych sªów Christo�ela � stanowi¡cych kolejn¡ wa»n¡ klas¦ sªów maj¡c¡ wiele
zastosowa« geometrycznych.

Gªównymi wynikami rozprawy s¡:

• algorytm znajdowania ρ(w) dla w ∈ S w czasie liniowo zale»nym od jego
(zazwyczaj logarytmicznej) skompresowanej reprezentacji γ;

• asymptotyczna granica ρ(w) ≤ 0.8|w| dla w ∈ S;
• algorytmiczna konstrukcja niesko«czonego ci¡gu sªów standardowych {wk}
asymptotycznie osi¡gaj¡cego granic¦ ρ(wk) = 0.8|wk| − o(|wk|);

• asymptotyczna granica sq(|w|) ≤ 0.9|w| dla w ∈ S (S stanowi najwi¦ksz¡
klas¦ sªów, dla której znane jest dokªadne asymptotyczne oszacowanie, dla
ogólniejszych klas sªów najlepszym oszacowaniem jest n ≤ sq(n) ≤ 2n, a
uzyskanie dokªadniejszego ograniczenia jest bardzo trudne);

• algorytmiczna konstrukcja niesko«czonego ci¡gu sªów standardowych {wk}
asymptotycznie osi¡gaj¡cego granic¦ sq(wk) = 0.8|wk| − o(|wk|);

• zbadanie struktury skompresowanych grafów podsªów dla sªów standardo-
wych � rozmiar tych grafów jest liniowo zale»ny od γ, przy ich pomocy
uzyskano kilka efektywnych algorytmów zwi¡zanych z kombinatorycznymi
wªasno±ciami sªów standardowych;

• zwi¡zek mi¦dzy struktur¡ grafów podsªów sªów standardowych a pewnymi
systemami liczbowymi oraz pewn¡ szczególn¡ klas¡ automatów sko«czonych.

Wyniki prezentowane w rozprawie zostaªy opublikowane w pracach [5], [6] oraz [61].

Sªowa kluczowe: kombinatoryka sªów, sªowa Sturma, maksymalne powtórzenia,
kwadraty, kompresja danych, grafy podsªów, systemy liczbowe

Klasy�kacja tematyczna AMS: 68R15, 68P30, 68Q70.

∗Badania wspierane przez Ministerstwo Nauki i Szkolnictwa Wy»szego, grant

N N206 258035



Contents

Introduction 1

1 Standard Sturmian words 7

1.1 Standard words . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Christo�el words . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Morphic representation of standard words . . . . . . . . . . . 16
1.4 Continued fractions . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Algorithms related to subword graphs structure 23

2.1 Subword graphs of standard words . . . . . . . . . . . . . . . 24
2.2 The number of subwords . . . . . . . . . . . . . . . . . . . . . 30
2.3 The structure of occurrences of subwords . . . . . . . . . . . . 33
2.4 Critical factorization and maximal su�xes . . . . . . . . . . . 36

3 Maximal repetitions in standard words 41

3.1 Morphic reduction of standard words . . . . . . . . . . . . . . 43
3.2 Counting runs and repetition ratios . . . . . . . . . . . . . . . 46
3.3 The proof of the main theorem . . . . . . . . . . . . . . . . . 51

4 Squares in Sturmian words 61

4.1 Formulas for the number of squares . . . . . . . . . . . . . . . 62
4.2 Standard words with many squares . . . . . . . . . . . . . . . 65
4.3 Asymptotics of the number of squares . . . . . . . . . . . . . . 67
4.4 Squares vs. maximal repetitions . . . . . . . . . . . . . . . . . 75
4.5 Repetitions in Christo�el words . . . . . . . . . . . . . . . . . 77



5 Numeration systems related to Sturmian words 79
5.1 The Ostrowski numeration systems . . . . . . . . . . . . . . . 80
5.2 S-language and S-automaton . . . . . . . . . . . . . . . . . . . 83

Conclusions 85

Bibliography 86



Introduction

A sequence of symbols taken from a �nite alphabet is one of the simplest and
natural ways of information representation. Such a sequence is called a word
or a string. Words are central objects of any standard model of computing.
Even in cases when we compute on numbers, their representations of can be
seen as strings, hence it is natural to study algorithmic properties of words.

The theory of combinatorics on words was started at the beginning of the
XX-th century by A. Thue, see [73] (1906) and [74] (1912), but the no-
tion of a word can be found in several older mathematical works. During
the last three decades the research on combinatorial problems on words has
grown enormously and culminated with the books [50] (1983), [51] (2002)
and [52] (2005). Currently combinatorics on words has become a rich area,
with many connections to algorithms, number theory, symbolic dynamics,
and applications in biology and text processing.

Some examples of problems arising in combinatorics on words are:

String matching, also called pattern matching, is the problem of �nding
occurrences of one string called the pattern (or a �nite set of patterns) in some
larger text. It is the most thoroughly studied problem in combinatorics on
words. The main theoretical tools in string-matching algorithms are related
to the properties of regularities in strings, see [7], [23], [46].

Text compression is one of the basic problems in data storage, data trans-
mission, etc. Compression means reducing the representation of a text in
such a way that the original text can be easily recovered from its compressed
form. To achieve better compression ratios it is necessary to analyse the
data, hence the problem of detecting regularities in texts is very important.
For more information see [36], [58], [65], [69].
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Computational biology is a domain, where text algorithms appear in the
study of molecular sequences. For example the reconstruction of a whole
sequence from small segments can be seen as the shortest common superstring
problem (construction of the shortest text containing several given smaller
texts) and the alignment of two sequences of nucleotides � as the edit distance
problem (computation of the minimal number of edit operations transforming
one string into another). Because of the large amount of data involved the
e�ciency of the algorithms considered is necessary, see for example [34], [41].

Digital geometry can be seen as the geometry of a computer screen and
is related to computer graphics. Its main problem is digitization of geo-
metric objects, such as points, lines, polygons and so on, by �nding their
representation on a discrete plane ZxZ. It is done by selecting pixels that
are close enough to the object they approximate. An interesting example of
application is an approximation of a continuous curve by unit line segments
(horizontal, vertical or diagonal) and encoding each line segment by a letter
depending on its direction. These letters form a word and we can try to
derive some properties of the encoded curve by analysing the word structure.
More information and some recent results can be found in [13], [25], [45], [75].

For a detailed introduction to combinatorics on words, some historical back-
ground and more examples of applications we refer the reader to [10], [12],
[23], [44], [50], [51], [52] and references therein.

Basic de�nitions

This section provides a brief introduction to the concepts used in the following
chapters and �xes the general notations.

The symbols N, Z, Q and R denote the sets of nonnegative integer, integer,
rational and real numbers. By |X| we denote the cardinality of the set X.

Two positive integer numbers p and q are said to be relatively prime (denoted
by p ⊥ q) if 1 is the only positive integer that divides both p and q.

Let Σ be a �nite set called the alphabet. Elements of the alphabet are called
letters (symbols, characters). A �nite word over the alphabet Σ is a �nite
sequence of elements of Σ:

(a1, a2, . . . , an), ai ∈ Σ.

The set of all �nite words over Σ, denoted by Σ∗, is equipped with a binary
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associative operation · obtained by concatenating two sequences

(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1, a2, . . . , an, b1, b2, . . . , bn).

We identify the letter a ∈ Σ with the sequence (a) and for simplicity write a
word as

a1a2 . . . an

and usually omit the symbol of the concatenation. The length of a word is
equal to the number of its letters:

|a1a2 . . . an| = n.

For a letter a ∈ Σ and a word w we denote by |w|a the number of occurrences
of the letter a in w and the i-th letter of w is denoted by w[i]. An empty
sequence of letters, called an empty word and denoted by ε, is the neutral
element of concatenation, thus for any word w we have

ε · w = w · ε = w.

The set Σ∗ with the operation of concatenation and the empty word has a
monoid structure and is called the free monoid. The set Σ+ = Σ∗ − {ε} of
all nonempty words over Σ is called the free semigroup.

An in�nite word is a sequence of symbols indexed by nonnegative integers.
The set of all in�nite words over the alphabet Σ is denoted by ΣN. In�nite
words can be also de�ned as limits of in�nite sequences of �nite words. The
set of all �nite and in�nite words over Σ is denoted by Σ∞ = ΣN ∪ Σ∗.

A word u is called a factor or a subword of a word w if there exist words
x and y such that w = xuy. If y = ε then u is called a pre�x of w and if
x = ε then u is called a su�x of w. A factor is proper if xy 6= ε, a pre�x is
proper if y 6= ε and a su�x is proper if x 6= ε. For a word w = a1a2 . . . an
and 1 ≤ i, j ≤ n we denote by w[i..j] the factor of w of the form aiai+1 . . . aj.
The set of all factors of w is denoted by F (w).

A repetition is a word composed (as a concatenation) of several copies of
another word: w = vk. The exponent of a repetition is the number of such
copies. We can extend the notion of a repetition and allow the exponent to
be a rational number. In this case we have w = vku, where u is the proper
pre�x of v (possibly empty).

A word w ∈ Σ+ is called primitive if the equality w = un for some u ∈ Σ+

implies n = 1. A word w is called periodic if w = uk for some nonempty
word u. A word w is called eventually periodic if w = vuk for some words v
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and u (u � nonempty). A word w is called aperiodic if it is neither periodic
nor eventually periodic (no su�x of w is periodic).

Let w = a1a2 . . . an (ai ∈ Σ) be a word. A positive integer p is called a period
of w if ai = ai+p for 1 ≤ i ≤ n − p. The smallest period of w is called the
period of w and denoted period(w).

A reverse of a word w = a1a2 . . . an is the word wR = an . . . a2a1. A word w
is called a palindrome if w = x ·xR for a word x or w = x ·a ·xR for a word x
and a letter a. Denote also by w the word w without the last two letters.

A word w is called balanced if for any letter a and any two factors x, y of w,
such that |x| = |y|, we can state that∣∣∣|x|a − |y|a∣∣∣ ≤ 1.

The words x, y are called conjugate if there exist words u, v such that x = uv
and y = vu. Thus conjugate words are cyclic shifts of one another.

A function f : A∗ −→ B∗ is a morphism if we have

f(x · y) = f(x) · f(y)

for all x, y ∈ A∗. A morphism is uniquely determined by its values on the
alphabet and it is obvious that f maps the neutral element of A∗ into the
neutral element of B∗. A morphism is called literal if the image of a letter is
a letter and nonerasing if the image of a letter is always a nonempty word.

The set of words over a �nite alphabet Σ can be seen as a tree. Its vertices
are elements of Σ∗. The root is the empty word ε. The sons of a node w are
the words wa for a ∈ Σ. A word w can be also viewed as the path leading
from the root to the node w. A word x is a pre�x of a word y if it is its
ancestor in the tree.

Sometimes we need an order relation for words to be de�ned. The lexico-
graphic order, also called the alphabetic order, is de�ned as follows: given a
strict order on the alphabet for any two words x and y we have x < y if x is
a proper pre�x of y or there exist factorizations x = uav1, y = ubv2 where a,
b are letters and a < b.
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Outline of the thesis

In this thesis we investigate problems related to combinatorial structure and
repetitions in standard Sturmian words � one of the most investigated class
of strings in combinatorics on words. The thesis is organized as follows:

In the chapter 1 we de�ne the class S of standard Sturmian words � the
binary aperiodic words with minimal combinatorial complexity. We start
with a simple recurrent de�nition, which leads to an e�cient compressed
representation as a sequence of integer numbers with the size logarithmic with
respect to the size of the word. Next we de�ne them from the geometrical
point of view as discretizations of straight lines on a discrete plane and a
labeling of the edges of the Cayley graph of some �nite group connected to
the number of letters. We also present a simple morphic representation and
describe standard words in arithmetic form using continued fractions.

The main purpose of the chapter 2 is the investigation of the structure of
subword graphs of standard words in more detail than in previous works.
The special structure of those graphs (especially their compacted versions)
leads to simple alternative graph-based proofs of several known facts and
to special easy algorithms computing some properties of Sturmian words:
the number of subwords, the critical factorization point, lexicographically
maximal su�xes, occurrences of subwords of a �xed length and right special
factors. The algorithms presented here work in linear time with respect to
the size of the compressed representation of standard words.

The structure of subword graphs described in the chapter 2 implies a simple
characterization of the periods of runs (maximal repetitions) in standard
words. Using this characterization we derive in the chapter 3 an explicit
formula for the number ρ(w) of runs in words w ∈ S. This formula depends
only on the compressed representation of standard words and leads to the
algorithm computing ρ(w) for w ∈ S in linear time with respect to the size
of the compressed representation. We also show that

ρ(w)

|w|
≤ 4

5
for each w ∈ S,

and there is an in�nite sequence of strictly growing words wk ∈ S such that

lim
k→∞

ρ(wk)

|wk|
=

4

5
.

The complete understanding of the structure of maximal repetitions for a
large class S of complicated words is a step towards a better understanding
of this problem in general class of words.
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The chapter 4 continues the investigation of the structure of repetitions
started in the chapter 3. We use the results of [24], where exact (but not
closed) complicated formulas were given for the number sq(w) of squares in
standard words. We slightly improve those formulas and show that:

sq(w) ≤ 9

10
|w| for all w ∈ S

and there is an in�nite sequence of strictly growing words wk ∈ S such that

lim
k→∞

sq(wk)

|wk|
=

9

10
.

At present S is the largest class of words, for which the exact coe�cient is
known.

In this chapter we have also performed the asymptotical analysis of the maxi-
mal number of distinct squares and the maximal number of runs for Christof-
fel words.

In the chapter 5 we use the structure of subword graphs of standard words
investigated in the chapter 2 to describe the dual Ostrowski numeration sys-
tem. It can be de�ned without any reference to those graphs, but representa-
tions of integer numbers in this numeration system have simple connections
to lengths of paths in a subword graph of some w ∈ S. We introduce also
a new concept related to standard words: the Ostrowski automata.

The maximal repetition ratio 0.8 and the distinct square ratio 0.9 have been
discovered by us doing experiments with very long standard Sturmian words.
Similarly, we were tuning many intermediate formulas from the chapters 3
and 4 with the assistance of the computer. Some useful applets related to
problems considered in this thesis can be found on the web site:

http://www.mat.umk.pl/~martinp/stringology/applets/



1
Standard Sturmian words

Sturmian words are in�nite words over a binary alphabet that for each k > 0
have exactly k+ 1 distinct factors of the length k. They can be equivalently
de�ned as balanced and aperiodic words with minimal combinatorial com-
plexity. These words form an interesting class of words and have been studied
by many researchers for their theoretical importance and their applications
to various �elds of science. They appear in many domains, such as: mathe-
matics, computer science, digital geometry, computational biology, physics,
astronomy and even music. Sturmian words can be found in literature under
several di�erent names: rotation sequences, cutting sequences, mechanical
sequences, Christo�el words, Beatty sequences, characteristic sequences, bal-
anced sequences and so on (see for example [1], [7], [9], [11], [51], [70], [71],
[75] and references therein).

The theory of Sturmian sequences was started in the late XVIII-th century,
see for instance [8] (1772), [15] (1875), [16] (1888), [72] (1786) and [56] (1882).
The name Sturmian, �rst used in 1940 (see [57]), goes after the Swiss-born
French mathematician Charles François Sturm (1803-1855), famous for his
rule to compute the roots of an algebraic equation and the Sturm-Liouville
problem � an eigenvalue problem in second order di�erential equations.

Suppose that u(x) is the solution of the linear homogeneous di�erential equa-
tion

y′′ + φ(x)y = 0,

where φ(x) is continuous function of period 1, and kn denotes the number of
zeroes of u(x) in the interval [n, n+ 1), then the in�nite word

w = bak0bak1bak2 . . .

is either Sturmian or eventually periodic (see [57] for more details).
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In this thesis we investigate Sturmian words from the algorithmic point of
view and therefore we focus on their �nite pre�xes � the standard words.
The number of applications of those words causes the existence of many
equivalent de�nitions. The aim of this chapter is to present some of them.

We start with a recurrent de�nition of standard words based on a sequence of
integer numbers and leading to an e�cient compressed representation. Then
we describe them from the geometrical point of view as discretizations of
straight lines on a discrete plane and a labeling of the edges of Cayley graph
of a �nite group connected to the number of letters in the word generated.
Next, we present a simple morphic representation of standard words and show
a fast algorithm for checking if a given word is standard. Finally, we show the
correspondence between the combinatorics on words and the number theory
by describing standard words in arithmetic form using continued fractions.

1.1 Standard words

In this section we describe the class S of standard words � �nite words that
are pre�xes of in�nite characteristic Sturmian words. We present a de�nition
based on recurrences, which leads to a grammar-based compression and very
useful compact representation of standard words by sequences of positive
integers. This will be the main de�nition used in the following chapters.

The directive sequence is the integer sequence: γ = (γ0, γ1, . . . , γn), where
γ0 ≥ 0 and γi > 0 for i = 1, 2, . . . , n. The standard word corresponding to γ,
denoted by Sw(γ), is described by the recurrences of the form:

x−1 = b, x0 = a,

x1 = xγ00 x−1, x2 = xγ11 x0,

...
...

xn = x
γn−1

n−1 xn−2, xn+1 = xγn
n xn−1,

(1.1)

where Sw(γ) = xn+1.

The sequence of words {xi}n+1
i=0 is called the standard sequence. Every word

occurring in a standard sequence is a standard word, and every standard
word occurs in some standard sequence. We assume that the standard word
given by the empty directive sequence is a and Sw(0) = b. The class of all
standard words is denoted by S.
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Example 1.2
Consider the directive sequence γ = (1, 2, 1, 3, 1). We have:

x−1 = b

x0 = a

x1 = (x0)
1 · x−1 = a · b

x2 = (x1)
2 · x0 = ab · ab · a

x3 = (x2)
1 · x1 = ababa · ab

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab

and �nally

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab. �

For γ0 > 0 we have standard words starting with the letter a and for
γ0 = 0 we have standard words starting with the letter b. In fact the word
Sw(0, γ1, . . . , γn) can be obtained from Sw(γ1, . . . , γn) by the mapping:

E :

{
a −→ b
b −→ a

. (1.3)

Example 1.4
Consider the directive sequence γ = (0, 1, 2, 1, 3, 1). We have:

x−1 = b

x0 = a

x1 = (x0)
0 · x−1 = ε · b

x2 = (x1)
1 · x0 = b · a

x3 = (x2)
2 · x1 = ba · ba · b

x4 = (x3)
1 · x2 = babab · ba

x5 = (x4)
3 · x3 = bababba · bababba · bababba · babab

x6 = (x5)
1 · x4 = bababbabababbabababbababab · bababba

and �nally

Sw(0, 1, 2, 1, 3, 1) = bababbabababbabababbabababbababba.

Compare with the word Sw(1, 2, 1, 3, 1) from Example 1.2. �

Observe that for even n > 0 the standard word xn has the su�x ba, and for
odd n > 0 it has the su�x ab. Moreover, every standard word consists either
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of repeated occurrences of the letter a separated by single occurrences of the
letter b or repeated occurrences of the letter b separated by single occurrences
of the letter a. Those letters are called the repeating letter and the single
letter, respectively. If the repeating letter is a (letter b respectively), the
word is called the Sturmian word of the type a (type b respectively), see the
de�nition 6.1.4 in [63] for comparison.

Remark 1.5
Without loss of generality we consider in this thesis the standard Sturmian
words of the type a, therefore we assume that γ0 > 0. The words of the
type b can be considered similarly and all the results hold.

Fact 1.6 (See [51])
Let p and q be relatively prime positive integers. There exist exactly two
standard words with p letters b and q letters a, namely: w · ab and w · ba.

Consider the directive sequences

γI = (γ0, γ1, . . . , γn, 1) and γII = (γ0, γ1, . . . , γn + 1).

By the equation (1.1) we have:

Sw(γI) = xγn
n · xn−1 · xn and Sw(γII) = xγn

n · xn · xn−1.

Simple induction shows that the word xn−1 · xn is the same as xn · xn−1 up
to the last two letters.

As a direct corollary from Fact 1.6 we know that the number of standard
words of the length n is 2·φ(n), where φ is the Euler's totient function de�ned
for n ≥ 1 as the number of positive integers less than n and relatively prime
to n, see corollary 2.2.16 in [51].

Example 1.7
Consider the directive sequence γ = (1, 2, 1, 4). By the equation (1.1) we
have:

x−1 = b

x0 = a

x1 = (x0)
1 · x−1 = a · b

x2 = (x1)
2 · x0 = ab · ab · a

x3 = (x2)
1 · x1 = ababa · ab

x4 = (x3)
4 · x2 = ababaab · ababaab · ababaab · ababaab · ababa

and �nally

Sw(1, 2, 1, 4) = ababaabababaabababaabababaabababa.
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Observe that Sw(1, 2, 1, 4) and Sw(1, 2, 1, 3, 1) from Example 1.2 di�er only
on the last two letters. In fact Sw(1, 2, 1, 4) and Sw(1, 2, 1, 3, 1) are the only
standard words having 19 letters a and 14 letters b. �

The number N = |Sw(γ)| is the (real) size of the word, while (n + 1) = |γ|
can be thought as the compressed size. Observe that, by the de�nition of
standard words, N is exponential with respect to n. Each directive sequence
corresponds to a grammar-based compression, which consists in describing a
given word by a context-free grammar G generating this (single) word. The
size of the grammar G is the total length of all productions of G. In our
case the size of the grammar is proportional to the length of the directive
sequence.

Standard words can be also de�ned by the set of standard pairs. Every
standard word, which is not a letter, is a product of two standard words,
which are components of some standard pair, see section 2.2.1 in [51] for
more details.

The following fact indicates the relation between �nite standard words and
in�nite characteristic Sturmian words (see section 2.2.2 of [51] for the proof).

Fact 1.8 (See [51])
Let Sw(γI) and Sw(γII) be standard words. If γI is a pre�x of γII then Sw(γI)
is a pre�x of Sw(γII). Therefore, every in�nite characteristic Sturmian word
can be seen as the limit of a sequence of �nite standard words.

Fibonacci words

Fibonacci words are a well known family of strings. They are formed by
repeated concatenation in the same way that the Fibonacci numbers are
formed by repeated addition. The n-th Fibonacci word Fn is given by the
recurrence:

F−1 = b, F0 = a, . . . , Fn+1 = Fn · Fn−1.

The lengths of Fibonacci words are given as the Fibonacci numbers:

F0 = a |F0| = 1
F1 = ab |F1| = 2
F2 = aba |F2| = 3
F3 = abaab |F3| = 5
F4 = abaababa |F4| = 8
F5 = abaababaabaab |F5| = 13

...
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By the de�nition Fibonacci words are standard words given by directive
sequences of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds
to a sequence of n ones).

These words satisfy a large number of interesting properties related to periods
and repetitions. For example they have no factor of the form v4, where v
is some nonempty word. For more information on the Fibonacci words and
their properties see for example [4], [28], [40], [51] and [67].

1.2 Christo�el words

In this section we de�ne the class of Christo�el words, which are the special
kind of cyclic shifts of standard words. We characterize them from the geo-
metrical point of view as the discretization of a line segment in the plane by
the path in the integer lattice ZxZ and as a labelling the edges of the Cayley
graph of some �nite group (see [9], [11] and [15]).

Let p and q be two relatively prime integers. The lower Christo�el path of
slope p

q
is the path in the discrete plane from the point (0, 0) to (p, q) that

consists of horizontal and vertical unit line segments and satis�es the follow-
ing conditions:

• the path lies below the line segment beginning at the point (0, 0) and
ending at (p, q),
• the region in the plane enclosed by the path and the line segment
contains no other points with integer coordinates besides those of the
path.

The upper Christo�el path is de�ned in the same manner above the line
segment. The lower Christo�el word and the upper Christo�el word are
determined from the lower and upper Christo�el paths by encoding every
horizontal line segment by the letter b and each vertical line segment by the
letter a, see Figure 1.1 for an example. The unmodi�ed term Christo�el word
always means the lower Christo�el word.

Example 1.9
Let p = 19 and q = 14. The lower Christo�el word of slope 19

14
is

cl = bababaabababaabababaabababaababaa,

and the upper Christo�el word of slope 19
14

is

cu = aababaabababaabababaabababaababab.
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The lower and upper Christo�el paths of slope 19
14

and the labeling corre-
sponding to cl and cu are depicted on Figure 1.1.

�

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 1.1: The lower and upper Christo�el words of slope 19
14

are
bababaabababaabababaabababaababaa, aababaabababaabababaabababaababab.

Recall the notion of the single and the repeating letter mentioned in the
previous section. Observe also that the Christo�el word of slope p

q
consists

of p letters a and q letters b. Therefore, if p > q then a is the repeating letter
and if p < q then b is the repeating letter. Recall also that we consider the
letter a to be the repeating letter (see Remark 1.5), hence assume p > q.
Christo�el words of slope less than one can be considered similarly. In fact
the morphism E from the equation (1.3) maps the lower Christo�el word of
slope x to the upper Christo�el word of slope 1

x
, see lemma 2.6 in [11].
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Since every positive rational number x can be uniquely expressed by the
fraction p

q
, where p and q are relatively primes, there are unique lower and

upper Christo�el words of slope x, hence containing exactly q letters a and
p letters b.

The relation between standard and Christo�el words is given by the following
fact (see Proposition 9 in [9]):

Fact 1.10 (See [9])
Let a, b ∈ Σ and w ∈ Σ∗. The following conditions are equivalent:

(1) wab is a standard word,

(2) wba is a standard word,

(3) bwa is a lower Christo�el word,

(4) awb is an upper Christo�el word.

Observe that the words from the points 1 an 3 (2 and 4 respectively) of
Fact 1.10 are conjugate.

Example 1.11
Let w = ababaabababaabababaabababaababa. We have:

• w · ab = ababaabababaabababaabababaababa · ab � is the standard word
given by the directive sequence γ = (1, 2, 1, 3, 1), see Example 1.2,

• w · ba = ababaabababaabababaabababaababa · ba � is the standard word
given by the directive sequence γ = (1, 2, 1, 4), see Example 1.7,

• b·w·a = b·ababaabababaabababaabababaababa·a � is the lower Christo�el
word of slope 19

14
, see Example 1.9,

• a·w·b = a·ababaabababaabababaabababaababa·b � is the upper Christof-
fel word of slope 19

14
, see Example 1.9.

�

The following observation will be useful in the subsequent chapters:

Remark 1.12
A standard word w without the last two letters (w) is a palindrome. Hence
every Christo�el word is of the form xuy, where x, y are letters and u is a
palindrome word. Those palindrome words are called the central words. See
proposition 4.2 in [11] and theorem 2.2.4 in [51] for the proof.
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Figure 1.2: The Cayley graph of the group Z/(14 + 19)Z with the gene-
rator 19. Reading labels of its edges clockwise starting from 0 we obtain the
lower Christo�el word of slope 19

14
: cl = bababaabababaabababaabababaababaa.

A Christo�el word of the slope p
q
can be equivalently de�ned by means of a

Cayley graph (Cayley diagram, group graph) of the group Z/(p + q)Z. For
a group G and a set of its generators S we de�ne a directed graph G, which
consists of the vertices corresponding to all elements of G. An edge (u, v) is
present in G if some generator from S transfers u into v. See [14], [53] and
[59] for more details.

Let p, q be positive relatively prime integers. Consider the group Z/(p+ q)Z
with the generator p. The Cayley graph of this group is the cycle C(p+q), with
vertices 0, p, 2p, 3p,. . . , q, 0 mod (p+ q). With every edge (s, t) we associate
the label: "b" if s < t and "a" if s > t. Those labels read consecutively
starting from the vertex 0 form the lower Christo�el word of the slope p

q
, see

Figure 1.2.

If we consider the group Z/(p+q)Z with the generator q instead of p and swap
the roles of a and b in the above de�nition, we obtain the upper Christo�el
word of the slope p

q
. Observe also, that if we start reading the labels of edges

from the edge labeled by the generator we obtain the standard word.
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Example 1.13
Let p = 19, q = 14 and consider the Cayley graph of the group Z/33Z with
the generator 19. Consecutive vertices of this graph are: 0, 19, 5, 24, 10,
29, 15, 1, 20, 6, 25, 11, 30, 16, 2, 21, 7, 26, 12, 31, 17, 3, 22, 8, 27, 13, 32,
18, 4, 23, 9, 28, 14, 0. The labeling of its edges is depicted on Figure 1.2.
By reading the edge labels clockwise (starting from 0) we obtain the lower
Christo�el word of the slope 19

14
:

cl = bababaabababaabababaabababaababaa.

Switching the generator and swapping the roles of a and b is the same as
reading the labels of the edges of the Cayley graph counterclockwise (starting
from 0). We then obtain the upper Christo�el word of the slope 19

14
:

cu = aababaabababaabababaabababaababab.

Compare with Example 1.9. �

Christo�el words have a natural generalization to in�nite sequences: we re-
place the de�ning line segment of slope p

q
with an in�nite ray of irrational

slope before building the lattice path. The resulting right in�nite word is
called a characteristic Sturmian word, see [1], [51] or [63] for more detailed
information.

1.3 Morphic representation of standard words

The recurrent de�nition of standard words from the section 1.1 leads to the
simple characterization by the composition of morphisms.

Let γ = (γ0, γ1, . . . , γn) be a directive sequence. We associate with γ a
sequence of morphisms {hi}ni=0, de�ned as

hi :

{
a −→ aγib

b −→ a
for 0 ≤ i ≤ n. (1.14)

Lemma 1.15
For 0 ≤ i ≤ n the morphism hi transforms a standard word into another
standard word, and we have:

Sw(γn) = hn(a),

Sw(γi, γi+1, . . . , γn) = hi
(
Sw(γi+1, γi+2, . . . , γn)

)
.
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Proof
The induction on the length of the directive sequence.

Recall that the standard word given by the empty directive sequence is a.
For |γ| = 1 we have, by de�nition of standard words and the morphism hn,

Sw(γn) = aγnb = hn(a).

Assume now that |γ| = k ≥ 2 and for directive sequences shorter than k the
thesis holds. We have then:

Sw(γi, . . . , γn) =
[
Sw(γi, . . . , γn−1)

]γn · Sw(γi, . . . , γn−2)

ind.
=

[
hi

(
Sw(γi+1, . . . , γn−1)

)]γn

· hi
(

Sw(γi+1, . . . , γn−2)
)

= hi

([
Sw(γi+1, . . . , γn−1)

]γn · Sw(γi+1, . . . , γn−2)
)

= hi

(
Sw(γi+1, . . . , γn)

)
,

which concludes the proof. �

As a direct conclusion from Lemma 1.15 we have that for the directive se-
quence γ = (γ0, γ1, . . . , γn)

Sw(γ0, γ1, . . . , γn) = h0 ◦ h1 ◦ . . . ◦ hn(a).

Example 1.16
Consider the directive sequence γ = (1, 2, 1, 3, 1).
We have:

Sw(1) = h4(a) = ab

Sw(3, 1) = h3

(
Sw(1)

)
= aaaba

Sw(1, 3, 1) = h2

(
Sw(3, 1)

)
= abababaab

Sw(2, 1, 3, 1) = h1

(
Sw(1, 3, 1)

)
= aabaaabaaabaaabaaba

Sw(1, 2, 1, 3, 1) = h0

(
Sw(2, 1, 3, 1)

)
= ababaabababaabababaabababaababaab.

Compare with Example 1.2. �

Recall the notion of the single and the repeating letter from the section 1.1.
This concept can be similarly considered for larger factors. Observe that
every standard word w can be divided into blocks of the form akb (k > 0),
that can not be extended to the left in w, and sometimes an additional
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letter a at the end of w. The blocks in w can be of the two types: akb (the
short block) and ak+1b (the long block). The word w can not include blocks
of any other type without loosing the balance property. Hence w consists of
repeated occurrences of the block of one type separated by single occurrences
of the block of the second type, called the repeating block and the single block
respectively (in the other case we have contradiction with aperiodicity and
balance property).

Assume that the repeating block is akb and the single block ak+1b (the other
case is similar) and consider the morphism g de�ned as:

g :

{
a −→ akb

b −→ ak+1b
.

The word w is Sturmian if and only if the word g−1(w) is Sturmian (the single
rightmost a can be omitted), see theorem 2.1 in [29]. This condition leads to
a simple algorithmic method that allows us to check whether a given (�nite)
word w is standard. The algorithm presented here is a slight modi�cation of
the algorithm from [29].

For a given �nite word w �nd out which block akb or ak+1b is the repeating
block, and then reduce w to the word g−1(w). If w is Sturmian then we get
the empty word after several steps, see [29] for more details.

Example 1.17
Consider the word from Example 1.2:

w0 = ab · ab · aab · ab · ab · aab · ab · ab · aab · ab · ab · aab · ab · aab.

Observe that the repeating block is ab and the single block is aab. We reduce
w0 to the word w1 by encoding every repeating block by the letter a and
every single block by the letter b:

w1 = aab · aab · aab · aab · ab.

In this case, by encoding the repeating block ab by a and the single block
aab by b, we reduce w1 to:

w2 = aaaab.

The word w2 consists of one single block, which is encoded by a. If we omit
the rightmost letter a we obtain w3 = ε, hence w0 is standard Sturmian word.

�

Some other interesting morphic representations of �nite and in�nite Sturmian
words can be found for example in [1], [43] and [51].
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1.4 Continued fractions

In this section we de�ne the class S of standard words from the number
theoretical point of view using the notion of continued fractions.

A �nite continued fraction is an expression of the form:

a0 +
1

a1 +
1

a2 +
1

a3 + . . .
1

an

,

which is denoted for simplicity as [a0; a1, a2, a3, . . . , an], and called the con-
tinued fraction expansion (or CF-expansion in short). The integer number a0

and the positive integer numbers a1, a2, . . . , an are called the partial quotients.

Every �nite continued fraction represents some rational number and every
rational number can be represented as a �nite continued fraction in two ways:

p

q
= [a0; a1, a2, a3, . . . , an] or

p

q
= [a0; a1, a2, a3, . . . , an − 1, 1].

The uniqueness of such a representation can be achieved by avoiding the
number 1 to be the last element of a CF-expansion (see [64]).

Observe that if a rational number p
q
has the CF-expansion [a0; a1, . . . , an] and

a0 > 0, then its inversion has the CF-expansion [0; a0, a1, . . . , an].

Example 1.18
Consider a rational number 19

14
. Using simple arithmetic operations we can

write it as

19

14
= 1 +

5

14
= 1 +

1

2 +
4

5

= 1 +
1

2 +
1

1 +
1

4

(1.19)

and we achieve its CF-expansion:

19

14
= [1; 2, 1, 4].
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The last component of the equation (1.19) can be written as

1 +
1

2 +
1

1 +
1

4

= 1 +
1

2 +
1

1 +
1

3 +
1

1

and we have an alternative CF-expansion

19

14
= [1; 2, 1, 3, 1].

The inverse of 19
14

can be written as

14

19
= 0 +

1

1 +
5

14

= 0 +
1

1 +
1

2 +
4

5

= 0 +
1

1 +
1

2 +
1

1 +
1

4

,

and �nally

14

19
= [0; 1, 2, 1, 4] or

14

19
= [0; 1, 2, 1, 3, 1].

�

The notion of continued fractions can be extended to in�nite CF-expansions,
which correspond to irrational numbers. The in�nite continued fraction is
de�ned as the limit of a sequence of �nite continued fractions:

[a0; a1, a2, a3, . . .] = lim
n→∞

[a0; a1, a2, a3, . . . , an].

Each rational number xn given by [a0; a1, a2, a3, . . . , an] is a rational appro-
ximation of an irrational number x given by [a0; a1, a2, a3, . . .]. The longer
�nite CF-expansions correspond to the better approximations of x.

To �nd a CF-expansion [a0; a1, a2, . . .] of a given number x (rational or irra-
tional) we can use a simple calculation:

y0 = x, an = bync and yn+1 =
1

yn − an
for (n ≥ 0).

If x is rational then the computation stops for some n, when we have yn = an,
and we obtain the �nite CF-expansion. For an irrational x the computation
never stops and we achieve the in�nite CF-expansion.
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For a more comprehensive study of continued fractions and its applications
see for example [3], [33], [37], [42] or [64].

The following fact indicates the relation between continued fractions, stan-
dard words and Christo�el words.

Fact 1.20 (See [11], [72])
Let x, y ∈ Σ and u ∈ Σ∗. A word w = xuy is a Christo�el word of the
slope p

q
with CF-expansion p

q
= [γ0; γ1, γ2, . . . , γn], if and only if uxy or uyx

is a standard word given by a directive sequence γ = (γ0, γ1, γ2, . . . , γn).

Example 1.21
Recall from Example 1.9 that

cl = b · ababaabababaabababaabababaababa · a

is the lower Christo�el word of the slope 19
14
.

The two equivalent CF-expansion of 19
14

(see Example 1.18) are

19

14
= [1; 2, 1, 3, 1] and

19

14
= [1; 2, 1, 4].

Recall also from Example 1.2 and Example 1.7 that

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababa · ab,
Sw(1, 2, 1, 4) = ababaabababaabababaabababaababa · ba.

�
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2
Algorithms related to subword graphs

structure

This chapter is devoted to the investigation of the subword graphs structure
of standard words in more detail than in previous works. The very special
structure of those graphs (especially their compacted versions) leads to simple
alternative graph-based proofs of several known facts and to special easy
algorithms for computing some properties of Sturmian words: the number of
subwords, the critical factorization point, lexicographically maximal su�xes,
occurrences of subwords of a �xed length, and right special factors.

The subword graph is a classical data structure representing all subwords
of a given word in a succinct manner. More precisely: the directed acyclic
subword graph (the dawg, in short) of the word w is the minimal deterministic
automaton (not necessarily complete) that accepts all su�xes of w. In this
automaton we don't mark the accepting states and ignore the transitions
leading to the dead-state (the rejecting state, in which the automaton loops).
The most important property of the dawg is that its size is linear with respect
to the length of the word w although the number of subwords of w can be
quadratic. Subword graphs are designed to give a fast access to all factor
of a string, and this is the reason why they have fairly large number of
applications in text processing. See Figure 2.1 for an example of a subword
graph and its compacted version.

For a more detailed study of this topic and online algorithms for constructing
subword graph of a given word we refer the reader to [23] and [52].
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Figure 2.1: The structure of the subword graph (dawg) and its compacted
version ( cdawg) of the word Sw(1, 2, 1, 3, 1). The nodes of dawg, which are
copied to cdawg, are marked with squares.

2.1 Subword graphs of standard words

For the words w and u denote by pw(u) the shortest pre�x of w having u as
its su�x. The smallest number of states of the dawg of w is |w|+ 1. We say
that w is simplistic if the dawg of w has exactly |w|+1 nodes. The simplistic
words have the simplest dawgs.

The following crucial fact describes the structure of the dawg of w.

Lemma 2.1 (See [70])
Let w be a standard Sturmian word. Then:

(1) The word w is simplistic.

(2) The nodes of dawg of w can be identi�ed with the pre�xes of w.

(3) Each edge of the dawg of w is of the form α
s−→ pw(α s), where

s ∈ {a, b} and α is a pre�x of w.

The compacted subword graph (the cdawg, in short) results from the subword
graph by removing all nodes of out-degree one and replacing each chain by
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a single edge with the label representing the path label of this chain. We
compact the chains of the dawg as much as possible but with the follow-
ing restriction: for each node v all incoming edges of v have the same label
(possibly long). This restriction implies that we can't fully compress the last
chain going into the sink node. This chain is a concatenation of some basic
subword yk and the two-letter word u (ab or ba). We split this chain into
two edges: the �rst labelled by yk and the second labelled by u and going
into the sink node. The internal nodes of dawg of out-degree two, which are
copied to cdawg, are called the fork nodes. For the example of the dawg and
cdawg see Figure 2.1.

Building blocks

We start by considering the relations between subwords, which are the buil-
ding blocks of the subword graph of a standard word. Recall that for a word w
the set of all nonempty factors of w is denoted by F (w) and w denotes its
reverse.

Let w be a standard word and xi's are as in the equation (1.1). Subwords
that are building blocks of the dawg and the cdawg of w are classi�ed as:

a special pre�x of w is a pre�x z of w such that za, zb ∈ F (w),

a basic pre�x of w is a proper nonempty pre�x of the type xjkxk−1, where
0 ≤ k ≤ n and 0 ≤ j ≤ γk.

a basic subword of w is a reverse of some xk, denote yk = xRk .

See Figure 2.2 for the building blocks structure of an example word.

ba b a b a ba a b a b a a b a b a b a a b a b a b a a b a b a a

ba b a b a ba a b a b a a b a b a b a a b a b a b a a b a b a a

y
4

y
3

y
3

y
3

y
2y1y1

y
0

BP

SP

Figure 2.2: The structure of basic pre�xes (BP ), special pre�xes (SP ) and
basic subwords of the word Sw(1, 2, 1, 3, 1).
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It follows directly from Lemma 2.1 that:

Fact 2.2
For a standard word w the nodes of the cdawg of w with out-degree 2 (all
except the last two nodes) correspond to the special pre�xes of w.

From the point of view of the compacted subword graphs of standard words
special pre�xes are the most important. On the other hand special pre�xes
are composed of basic subwords, and basic subwords are labels of the edges of
the compacted subword graph. Hence special pre�xes and basic subwords are
the main building blocks of the standard words. The importance of the third
type of factors � the basic pre�xes � is an implication of the fact that special
pre�xes are almost the same as basic pre�xes, and basic pre�xes correspond
more directly to the recurrences. They are the link between the directive
sequence and special pre�xes.

Denote by BP (w) the set of basic pre�xes of the word w and by SP (w) the
set of its special pre�xes. Recall also that ŵ is the pre�x of w of the length 2
and exceptionally de�ne ŷ0 = ab. The following lemma expresses the relation
between basic pre�xes and special pre�xes of standard words.

Lemma 2.3 (Building blocks)
Let γ = (γ0, γ1, . . . , γn) be a directive sequence and x−1, x0, . . . , xn+1 be the
sequence of standard words given by the recurrence from the equation (1.1).

(1) For i ≥ 1 we can represent the standard word xi as

xi = yγ00 y
γ1
1 . . . y

γi−2

i−2 y
γi−1−1
i−1 ŷi−1.

(2) Each special pre�x z of the word xn is of the the form z = yγ00 y
γ1
1 . . . yji ,

where 0 ≤ j ≤ γi for i < n− 1 and 0 ≤ j ≤ γi − 1 for i = n− 1.

(3) Each special pre�x of xn results by removing the last two letters from
the corresponding basic pre�x of xn.

Proof
We demonstrate each point separately.

Point (1).
Notice that for i ≥ 0 we have ŷi = ŷi+2 and yi+1 = yi−1 y

γi

i .

First, we show by induction on i that

yi = ŷi y
γ0
0 yγ11 . . . y

γi−1−1
i−1 . (2.4)
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For i = 1 we have
y1 = b aγ0 = ŷ1 y

γ0−1
0 .

Assume that for i ≤ n the equation (2.4) is true. We have

yn+1 = yn−1 · yγn
n

=
(
ŷn−1 y

γ0
0 yγ11 . . . y

γn−3

n−3 y
γn−2−1
n−2

)
·
(
yn−2 · yγn−1

n−1 · yγn−1
n

)
= ŷn+1 y

γ0
0 yγ11 . . . y

γn−2

n−1 y
γn−1

n−1 yγn−1
n .

Now we are ready to prove the equation from the point (1). We can do so
by induction on i.

For i = 1 we have:
x1 = xγ00 x−1 = yγ0−1

0 ŷ0.

Assume now that for i ≤ n equation from the point (1) is true. We have:

xn+1 = xγn
n xn−1

=
(
yγ00 . . . y

γn−2

n−2 y
γn−1−1
n−1 ŷn−1

)γn

· yγ00 . . . y
γn−2−1
n−2 ŷn−2

= yγ00 . . . y
γn−1−1
n−1 ·

(
ŷn−1 y

γ0
0 . . . y

γn−2−1
n−2︸ ︷︷ ︸

yn−1

)
·

·
[ yn︷ ︸︸ ︷(

yn−2 y
γn−1−1
n−1

)
·
(
ŷn−1 y

γ0
0 . . . y

γn−2−1
n−2︸ ︷︷ ︸

yn−1

)]γn−1

· ŷn

= yγ00 . . . y
γn−1

n−1 yγn−1
n ŷn.

Point (2).
First recall from Remark 1.12 that the standard word w without the last two
letters (denoted by w) is a palindrome.

Let xn = Sw(γ0, γ1, . . . , γn−1) and z = yγ00 y
γ1
1 . . . yji be a pre�x of xn. Due

to the point (1) we have 0 ≤ j ≤ γi for i < n − 1 and 0 ≤ j ≤ γi − 1 for
i = n− 1.

We can deduce that z = v for a word v = Sw(γ0, γ1, . . . , γi−1, j + 1), hence
it is a palindrome. Both xn and z are palindromes, moreover z is a pre�x
of xn, therefore z is also a su�x of xn.

Assume that i < n− 1 and i is odd. The case for even i is similar.

If 0 ≤ j < γi, then z is a pre�x of xi+2 and zb is also a pre�x of xi+2 (the
�rst letter of yi is b). We have xi+2 = xi+2 · ab and z is a su�x of xi+2, hence
za is also a subword of xi+2.
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If j = γi, then z is a pre�x of xi+3 and za is also a pre�x of xi+3 (the �rst
letter of yi+1 is a). We have xi+3 = xi+3 · ba and z is a su�x of xi+3, hence
zb is also a subword of xi+3.

Now assume that i = n − 1. For 0 ≤ j < γn−1 the proof is similar to the
previous case and, due to the point (1), it is obvious that j < γn−1.

Point (3).
Notice that for i ≥ 0 we have ŷi = ŷi+2 and yi+1 = yi−1 y

γi

i .

The point (1) implies that the basic pre�x xjkxk−1 equals:

xjkxk−1 =
(
yγ00 . . . y

γk−2

k−2 y
γk−1−1
k−1 ŷk−1

)j
· yγ00 . . . y

γk−3

k−3 y
γk−2−1
k−2 ŷk−2

= yγ00 . . . y
γk−1

k−1 yj−1
k ŷk.

From the point (2) we conclude that the basic pre�x xjkxk−1 with the last
two letters removed (ŷk) is a special pre�x.

�

Example 2.5
For Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab we have:

the set of the basic prefixes :

BP = {x0, x1, x1 x0, x2, x3, x3 x2, x
2
3 x2, x4},

where: x0 = a, x1 = ab, x2 = ababa, x3 = ababaab,

the set of the special prefixes :

SP = {y0, y0 y1, y0 y
2
1, y0 y

2
1 y2, y0 y

2
1 y2 y3, y0 y

2
1 y2 y

2
3},

where: y0 = a, y1 = ba, y2 = ababa, y3 = baababa.

and the decomposition of the word :

Sw(1, 2, 1, 3, 1) = a ba ba ababa baababa baababa baababa ab

= y0 y
2
1 y2 y

3
3 ŷ4.

�

The structure of the compacted dawg

The regularity of the structure of compacted subword graphs has been dis-
covered in [26]. The main point is that the cdawg is exponentially smaller
than the dawg for the standard word w. The following fact is an implication
of the results of [26], Lemma 2.1, Lemma 2.3 and our terminology.
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Fact 2.6
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word.

(1) The labels of the edges in the cdawg of w are basic subwords of w.

(2) The compacted subword graph of w has the structure as follows:

• each node corresponding to special pre�x yγ00 yγ11 · · · y
γi−1

i−1 yki ,
for 0 ≤ k < γi, has two outgoing edges:

� yγ00 y
γ1
1 · · · y

γi−1

i−1 y
k
i

yi . yγ00 y
γ1
1 · · · y

γi−1

i−1 y
k+1
i

� yγ00 y
γ1
1 · · · y

γi−1

i−1 y
k
i

yi+1 . yγ00 y
γ1
1 · · · y

γi−1

i−1 y
k
i yi+1

• each edge leading to the sink node has label ŷn (ab or ba),

• the last but one node doesn't correspond to special pre�x and has
out-degree 1

(see Figure 2.3).

(a)

y1 y1 y1 y1
y

2
y

2
y

2
y

2
y

2
y0 y0 y0 y0

y
2

y
3y1

y
n−1

y
n−1

y
n−1y

n−1

γ
2

γ
1

γ
0

γ
n−1

a b

a b

(b)

y1 y1 y1 y1
y

2
y

2
y

2
y

2
y

2
y0 y0 y0 y0

y
3y1

y
2

y
n

y
n

y
n

y
n

γ
2

γ
1

γ
0

γ
n−1

b a

b a

Figure 2.3: The compacted subword graphs of the standard words
(a): Sw(γ0, γ1, γ2, . . . , γn) and (b): Sw(γ0, γ1, γ2, . . . , γn−1, 1) are isomorphic
(in the sense of the graph structure).
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Remark 2.7
Recall that standard words Sw(γ0, . . . , γn) and Sw(γ0, . . . , γn − 1, 1) are the
same up to the last two letters and observe that due to Lemma 2.3 we have

Sw(γ0, . . . , γn) = yγ00 yγ11 . . . y
γn−1

n−q y
γn−1
n ŷn,

Sw(γ0, . . . , γn − 1, 1) = yγ00 yγ11 . . . y
γn−1

n−q y
γn−1
n ŷn+1,

since y0
n+1 = ε. Therefore, Fact 2.6 implies that the compacted subword

graphs of those words are isomorphic in the sense of graph structure, see
Figure 2.3 for comparison.

2.2 The number of subwords

Recall that F (w) denotes the set of factors of the word w and Fn the n-th
Fibonacci word. The number of distinct subwords in Fn is (see [67]):∣∣F (Fn+1)

∣∣ = |Fn| · |Fn−1|+ 2 · |Fn| − 1.

Surprisingly, we have similar result for the standard words.

Fact 2.8
Let xn+1 = Sw(γ0, γ1, . . . , γn) be a standard word and let γn = 1. The number
of distinct factors of xn+1 is given by the formula∣∣F (xn+1)

∣∣ = |xn| · |xn−1|+ 2 · |xn| − 1.

Proof
Let G be the compacted subword graph of the word xn+1, v0 the source node
of G and tk = |xk|. In the graph G we de�ne mult(v) � the multiplicity of
the vertex v � as the number of paths v0  v and the weight of an edge
as the length of the corresponding label-string of this edge. For a vertex v
denote by edges(v) the sum of the weights of all edges outgoing from v. See
Figure 2.4 for edge-lengths and node-multiplicities structure in the cdawg of
the example word.

Claim 2.9
Let w = Sw(γ0, γ1, . . . , γn). Then:∣∣F (w)

∣∣ =
∑
v∈G

mult(v) · edges(v). (2.10)
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1 1 2 2 5 7 7

72

2

2

2

7

5

5

7 7 7 25221

Figure 2.4: The structure of the edge-lengths and the multiplicities of the
nodes in the cdawg of Sw(1, 2, 1, 3, 1). According to Fact 2.8 (and to the
graph above) there are |x4| · |x3| + 2 · |x4| − 1 = 26 · 7 + 2 · 26 − 1 = 233
subwords in our example word.

We partition the set of edges of the graph G into chunks G0, G1,. . . ,Gn−1.
The �rst chunk G0 consists of the �rst γ0 consecutive vertices (starting from
the source node v0), the second chunk G1 contains the next γ1 vertices, and
so on. Only the last chunk Gn−1 slightly di�ers.

The contribution of k-th internal chunk in the sum from the equation (2.10) is(
tk−1 + (γk − 1)tk

)
· (tk + tk+1) = t2k+1 − t2k,

where t−1 = 1, see Figure 2.5 for details.

t k−1 t k t k t kt k t k t k+1

t k t k t k t k t k

t k+1t k+1
t k+1

t k+1

t k+1

t k+1

u v

Figure 2.5: The k-th internal chunk Gk of the subword graph consists of γk
nodes from u to v (excluding u), and their outgoing edges. The multiplicity
(the number of paths leading from v0) of each node is written within the
box corresponding to the node. The weight of the edges are the lengths of
corresponding words in the cdawg.

The contribution of the last chunk is in the sum from the equation (2.10) is

(tn−1 + 2)(tn − tn−1) + 2tn−1,

see Figure 2.6 for details.
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Altogether, the number of subwords is

n−2∑
k=0

(
t2k+1 − t2k

)
+ (tn−1 + 2)(tn − tn−1) + 2 · tn−1 = tn · tn−1 + 2 · tn − 1.

This completes the proof, since by the de�nition tk = |xk|.
�

t
n−2

t
n−1

t
n−1

t
n−1

t
n−1

t
n−1

t
n−1

t
n−1

t
n−1

t
n−1

t
n−1

u v
2

2

2

2

2

2

Figure 2.6: The �nal chunk Gn−1 of the subword graph consists of γn−1

nodes from u to v, and their outgoing edges.

The result from Fact 2.8 can be easily extended to the case γn > 1.

Fact 2.11
Let Sw(γ0, . . . , γn) be a standard word and let γn > 1. Then∣∣F(Sw(γ0, γ1, . . . , γn)

)∣∣ =
∣∣F(Sw(γ0, γ1, . . . , γn − 1, 1)

)∣∣.
Proof
Recall from Remark 2.7 that the compacted subword graphs of the words
Sw(γ0, γ1, . . . , γn) and Sw(γ0, γ1, . . . , γn− 1, 1) are isomorphic in the sense of
the graph structure (see Figure 2.3).

For a word w the set F (w) of its factors corresponds to its subword graph
structure. Therefore, both sets

F
(
Sw(γ0, γ1, . . . , γn)

)
and F

(
Sw(γ0, γ1, . . . , γn − 1, 1)

)
have the same cardinality and the thesis holds.

�
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2.3 The structure of occurrences of subwords

In this section we are interested in the structure of the �rst occurrences of
the factors of a given length. One type of such subwords is particularly
interesting � the right special factors.

Right special factors

A right special factor of the word w ∈ {a, b}∗ is any word x such that both
xa and xb are subwords of w.

For each k > 0 there is at most one right special factor of the length k of a
given standard word. Moreover, every right special factor of a standard word
is either its special pre�x or a su�x of some its special pre�x.

Fact 2.12
Let w = Sw(γ0, . . . , γn) be a standard word. Then:

(1) For a given k > 0 the right special factor of w of the length k has the
grammar-based representation of the size O

(
|γ|
)
.

(2) The compressed representation of the right special factor of w of the
length k can be computed in time O

(
|γ|
)
.

Proof
Let π be a path in the compacted subword graph of the word w. De�ne its
value as the word created by concatenation of the labels of the edges in π.

Let v be a fork node in the cdawg of w (whichever except the last two nodes),
π be a path leading to v from some other node v1, and zπ be the value of π.
It is clear that zπ is a subword of w.

The node v has two outgoing edges: one with the label starting with the
letter a and the second with the label starting with the letter b. Consequently
zπa and zπb are also subwords of w and therefore zπ is a right special factor
of the word w.

Observe that the value of every path in the cdawg of w, which ends in some
fork node v, is the su�x of the value of the longest path from the root to v.
Moreover, the value of this longest path from the root to v is the pre�x of w,
hence the special pre�x of w. This implies that every right special factor
of w is a su�x of some its special pre�x.
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Every right special factor of the word w is the concatenation of some its
basic subwords. It follows easily from Lemma 2.3 that every right special
factor of w has the grammar-based representation of the size O

(
|γ|
)
, which

can be computed in linear time with respect to the length of the directive
sequence γ.

�

Example 2.13
Let w = Sw(1, 2, 1, 3, 1) be a standard word. We have then

w = ababaabababaabababaabababaababaab

and
y0 = a, y1 = ba, y2 = ababa, y3 = baababa.

The right special factors of the word w with their lengths are (the special
pre�xes are marked in bold):

1 y0

2 y1

3 y0y1

4 y2
1

5 y0y
2
1

6 y0y2

7 y1y2

8 y0y1y2

9 y2
1y2

10 y0y
2
1y2

11 y2
1y3

12 y2y3

13 y0y2y3

14 y1y2y3

15 y0y1y2y3

16 y2
1y2y3

17 y0y
2
1y2y3

18 y2
1y

2
3

19 y2y
2
3

20 y0y2y
2
3

21 y1y2y
2
3

22 y0y1y2y
2
3

23 y2
1y2y

2
3

24 y0y
2
1y2y

2
3

Compare with the graph on Figure 2.1.
�

The structure of the dawg of Sw(γ0, γ1, . . . , γn) implies the following fact.

Fact 2.14
Let w = Sw(γ0, . . . , γn) be a standard word. Every factor v of w has the
unique decomposition into subwords

v = yi1 yi2 . . . yik ỹik+1
,

where i1 ∈ {0, 1}, ik+1 ∈ {ik, ik + 1, ik + 2} and ỹik+1
is a pre�x (possibly the

whole word) of yik+1
.

Remark 2.15
As a direct consequence of Fact 2.14 we obtain the easy linear algorithm for
checking if v is a subword of Sw(γ0, . . . , γn), since the next factor of the above
decomposition is determined by the next scanning letter.
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Final positions of the �rst occurrences of subwords

For the words w and u we de�ne �rst-�n(u,w) as the position of the last
symbol of u in its �rst occurrence in the word w.

For k ≥ 1 we de�ne also the set

FIN(k, w) =
{
�rst-�n(u,w) : u is a subword of w of the length k

}
.

See Figure 2.7 for an example.

k

1

16

17

15

14

13

12

11

10

9

8

7

6

5

4

3

2

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

b b

a

a
a

a

a

Figure 2.7: The subword graph of the word w = Sw(1, 2, 1, 3, 1) and the
structure of the set FIN(k, w).

The following fact describes the structure of the set FIN(k, w) for the stan-
dard word w.

Fact 2.16
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then:

(1) The set FIN(k, w) consists of a single interval or two disjoint intervals.

(2) For a given k ≥ 1 we can compute the intervals representing FIN(k, w)
in linear time with respect to the size of the directive sequence.
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Proof
The structure of the set FIN(k, w) easily follows from the way the paths of
the length k − 1 in the subword graph of the word w are extended into the
paths of the length k. Only the fork nodes i ∈ FIN(k − 1, w) generate two
elements of the set FIN(k, w). Each other node i ∈ FIN(k−1, w) generates
a single element i+ 1 in FIN(k, w) (see Figure 2.7).

It is clear that the set FIN(k+1, w) results from FIN(k, w) by shifting each
position by one to the right and adding an extra position for each fork node.
Hence the thesis follows from the structure of subword graphs of a standard
Sturmian words.

�

2.4 Critical factorization and maximal su�xes

The minimal local period in a word w at the position k is the positive in-
teger p (minimal having this property) such that w[i− p] = w[i] for every
k < i ≤ k + p, whenever w[i] and w[i−p] are de�ned. If either w[i] or w[i−p]
is not de�ned, we consider that the equality needed is true. In other words
the minimal local period in a word w at the position k is the length of the
shortest subword of w that ends at the position k and repeats directly after
this position.

The critical factorization point in a word w is the position k in w, for which
the minimal local period at k equals the (global) minimal period of w. We
refer the reader to [23] for the more detailed de�nition.

Example 2.17
Let w = Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
Minimal local periods of w are as follows:

i

p(i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ······

a b a b a a b a b a b a a b a b a ······

1 2 2 2 5 1 7 2 2 2 2 7 1 7 2 2 2 2······

i

p(i)

······ 18 19 20 21 22 23 24 25
∣∣∣∣ 26 27 28 29 30 31 32 33

······ b a a b a b a b

∣∣∣∣ a a b a b a a b

······2 7 1 7 2 2 2 4 33 1 5 2 2 5 1 3 1
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where i denotes the position in the word w and p(i) � the minimal local
period at the position i.

The critical factorization point in w is at the position i = 25, where the
minimal local period equals the length of w.

�

The following nontrivial fact has been shown by Crochemore and Perrin in [21].

Fact 2.18 (See [21])
The critical factorization point of the word w is given as the starting position
of a lexicographically maximal su�x of w, maximized over two reversed orders
of the alphabet.

The above fact has an interesting interpretation in terms of the subword
graphs structure of standard words.

Let w be a standard word. In the subword graph of w we de�ne the path πa(w)
leading from the root to the sink, in which we use the letter a whenever we
have a choice (in every fork node). The path πb(w) is de�ned in a similar
way. The only di�erence is that the letter a is replaced by the letter b. Both
πa(w) and πb(w) can be also de�ned in the compacted subword graph of w.
In this case, in every fork node we choose the edge with the label starting
with the letter a or b, respectively. The length of the path π, denoted by |π|,
is de�ned as the length of the word given by π.

It is easily seen that the lexicographically maximal su�x of the word w
with respect to the letter ordering ′′a < b′′ is given by the path πb(w) and
the lexicographically maximal su�x of w with respect to the letter ordering
′′a > b′′ is given by the path πa(w).

The structure of the paths πa(w) and πb(w) is given by the following lemma.

Lemma 2.19
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word and πa(w), πb(w) be
de�ned as above. Then:

πa(w) = yγ00 yγ22 · · · yαk ŷn,

πb(w) = yγ11 y
γ3
3 · · · y

β
l ŷn,

where{
k = n, α = γn − 1, l = n− 1, β = γn−1 for even n

k = n− 1, α = γn−1, l = n, β = γn − 1 for odd n
.
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Proof
It follows by the de�nition of basic subwords that yi starts with the letter a
for even i and with the letter b for odd i.

We are constructing the path πa(w) in the cdawg of w by choosing the edge
with the label starting with the letter a whenever it is possible. The structure
of the cdawg of a standard Sturmian word (see Figure 2.3) implies that every
fork node has two outgoing edges: one with the label y2i (starting with the
letter a) and the second with the label y2i+1 (starting with the letter b).

In order to construct πa(w) we have to choose γ0 times the edge with the
label y0, then γ2 times the edge with the label y2, and so on. Depending
on the parity of n we end either with yn taken γn − 1 times (for even n) or
with yn−1 taken γn−1 times (for odd n). Finally, by Lemma 2.3, it su�ces to
add ŷn � the last two letters of w (ab or ba respectively).

The structure of the path πb(w) could be proved by a similar reasoning.
�

The following fact is a conclusion from Fact 2.18 and the construction of the
paths πa(w) and πb(w).

Fact 2.20
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then:

(1) The critical factorization point of w is at the position

k = |w| − min
{
|πa(w)|, |πb(w)|

}
.

(2) The critical factorization point of w can be computed in linear time with
respect to the size of the directive sequence.

Proof
Recall that πa(w) and πb(w) correspond to lexicographically maximal su�xes
of w with respect to the letter orderings ′′a > b′′ and ′′a < b′′ respectively.
The thesis is a direct consequence of Fact 2.18 and Fact 2.19.

�

Example 2.21
Let w = Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
See Figure 2.1 for its subword graph structure. We have:

πa(w) = y0y2ab = a ababa ab,

πb(w) = y2
1y

3
3ab = ba ba baababa baababa baababa ab.
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Hence the position

i = |w| − |y0 y2 ab| = 33− 8 = 25

is the critical factorization point of w (compare with Example 2.17).
�

Similar computations have been given in [35] and [67] for Fibonacci words.

The paths πa(w) and πb(w) de�ned above have a very regular structure,
consequently the words represented by them are well compressible. This
results with the following fact.

Fact 2.22
Let w = Sw(γ) be a standard Sturmian word. Then:

(1) The lexicographically maximal su�x of w has a grammar-based repre-
sentation of the size O

(
|γ|
)
.

(2) The compressed representation of the lexicographically maximal su�x
of w can be computed in time O

(
|γ|
)
.

Proof
Recall that the lexicographically maximal su�x of a standard Sturmian
word w is given either by the path πa(w) (for the letter ordering ′′b < a′′) or
by the path πb(w) (for the letter ordering ′′a < b′′). The thesis follows di-
rectly from the construction of the paths πa(w) and πb(w) (see Lemma 2.19)
and the structure of the subword graph of w (see Fact 2.6).

�
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3
Maximal repetitions in standard words

A run (a maximal repetition) is a non-extendable (with the same period) pe-
riodic segment in a string, in which the period repeats at least twice. Runs
are important in combinatorics on words and many practical applications:
data compression, computational biology, pattern-matching and so on. The
structure of repetitions is almost completely understood for the class of Fi-
bonacci words, see [48], [67], [40]. In this chapter we investigate the structure
of runs in class S of standard Sturmian words and give the exact formula
and the tight asymptotic bound for the number of maximal repetitions.

We continue here the work of [29], where it was shown how to compute
the number of runs for block-complete Sturmian words (not all standard
Sturmian words have this property) in linear time with respect to the size
of the whole word. We show the algorithm, which computes the number
of runs in any standard word in linear time with respect to the size of its
compressed representation � the directive sequence � hence in logarithmic
time with respect to the length of the word.

Recall that a number i is a period of the word w if w[j] = w[i + j] for all
i with i+ j ≤ |w|. The minimal period of w will be denoted by period(w).
We say that a word w is periodic if period(w) ≤ |w|

2
. A word w is said to be

primitive if w is not of the form zk, where z is a �nite word and k ≥ 2 is a
natural number.

A maximal repetition (a run, in short) in a word w is an interval α = [i..j]
such that w[i..j] = ukv (k ≥ 2) is a nonempty periodic subword of w, where
u is of the minimal length and v is a proper pre�x (possibly empty) of u,
that can not be extended (neither w[i− 1..j] nor w[i..j+ 1] is a run with the
period |u|).
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A run α can be properly included as an interval in another run β, but in
this case period(α) < period(β). The value of the run α = [i...j] is the
factor val(α) = w[i...j]. When it creates no ambiguity we identify sometimes
run with its value and the period of the run α = [i...j] with the subword
w[i..period(w)] � called also the generator of the repetition. The meaning will
be clear from the context. Observe that two di�erent runs could correspond
to the identical subwords, if we disregard their positions. Hence runs are also
called the maximal positioned repetitions.

a b a b a a b a b a b a a b a b a b a a b a ab b a a b a b a a b

a b a b a a b a b a b a a b a b a b a a b a ab b a a b a b a a b

a b a b a a b a b a b a a b a b a b a a b a ab b a a b a b a a b

a b a b a a b a b a b a a b a b a b a a b a ab b a a b a b a a b

Figure 3.1: The structure of runs in the word Sw(1, 2, 1, 3, 1). There are
19 runs including: 10 short runs (periods 1 and 2), 8 medium runs (periods
3 and 5) and 1 large run (period 7).

Example 3.1
Let w = ababaabababaabababaabababaababaab.
There are 5 runs with the period |a|:

w[5..6] = a2, w[12..13] = a2, w[19..20] = a2,

w[26..27] = a2, w[31..32] = a2,

5 runs with the period |ab|:

w[1..5] = (ab)2a, w[6..12] = (ab)3a, w[13..19] = (ab)3a,

w[20..26] = (ab)3a, w[27..31] = (ab)2a,

4 runs with the period |aba|:

w[3..8] = (aba)2, w[10..15] = (aba)2,

w[17..22] = (aba)2, w[24..29] = (aba)2,
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4 runs with the period |ababa|:

w[1..10] = (ababa)2, w[8..17] = (ababa)2,

w[15..24] = (ababa)2, w[22..33] = (ababa)2ab,

and 1 run with the period |ababaab|:

w[1..31] = (ababaab)4aba.

All together we have 19 runs, see Figure 3.1 for comparison. �

Denote by ρ(w) the number of runs in the word w and by ρ(n) the maximal
number of runs in the words of length n. The most interesting and open
conjecture about maximal repetitions is:

ρ(n) < n.

In 1999 Kolpakov and Kucherov (see [47]) showed that the number ρ(w) of
runs in a string w is O

(
|w|
)
, but the exact multiplicative constant coe�cient

is still unknown. The best known results related to the value of ρ(n) are

0.944542 n ≤ ρ(n) ≤ 1.048 n.

The upper bound is by [18], [20] and the lower bound is by [30], [31], [49].
See Table 3.1 for the maximal number of runs and the repetition ratio in the
words over a binary alphabet for the small values of n.

3.1 Morphic reduction of standard words

In this section we introduce a reduction sequence that allows us to reduce
the computation of runs in the word Sw(γ0, γ1, . . . , γn) to the computation
in Sw(γ1, γ2, . . . , γn). The relation between the words Sw(γ0, γ1, . . . , γn) and
Sw(γ1, γ2, . . . , γn) is described in terms of the morphism transforming one of
them to the other. Our concept is similar to the one shown in [29], but is
closely related to the combinatorial structure of standard words.

Recall form the section 1.3 that for a directive sequence γ = (γ0, γ1, . . . , γn)
we de�ne the sequence of morphisms {hi}ni=0, where:

hi :

{
a −→ aγib

b −→ a
for 0 ≤ i ≤ n. (3.2)
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n ρ(n) ρ(n)/n Example word
10 6 0.6 aabaabbaab
11 7 0.636364 aabaabbaabb
12 8 0.666667 aabaabbaabaa
13 8 0.615385 aaabaabbaabaa
14 10 0,714286 aabaabbaabaabb
15 10 0.666667 aaabaabbaabaabb
16 11 0.6875 aabaabbaabaabbaa
17 12 0.705882 aabaababbabaababb
18 13 0.722222 aabaabbaabaabbaabb
19 14 0.736842 aabaabbaabaabbaabaa
20 15 0.75 aababaababbabaababaa
21 15 0.714286 aaababaababbabaababaa
22 16 0.727273 aabaababaababbabaababb
23 17 0.73913 aabaababaababbabaababaa
24 18 0.75 aabaabbaabaabbabbaabbabb
25 19 0.76 aabaabbaabaaabaabbaabaabb
26 20 0.769231 aababaababbabaababaababbab
27 21 0.777778 aabaababaababbabaababaababb
28 22 0.785714 aababaababbabaababaababbabaa
29 23 0.793103 aababaababbabaababaababbababb
30 24 0.8 aababbabaababbababbabaababbaba
31 25 0.806457 aababaababbabaababaababbabaabab

Table 3.1: The maximal number of runs and the repetition ratio for the
binary words of the given length.

Due to Lemma 1.15, we have

Sw(γi, γi+1, . . . , γn) = hi
(
Sw(γi+1, γi+2, . . . , γn)

)
.

The inverse morphism h−1
i can be seen as a reduction of the word Sw(γi, . . . , γn)

to Sw(γi+1, . . . , γn).

Recall that |w|a denotes the number of occurrences of the letters a in the
word w. In the rest of this chapter we use the following notation:

Nγ(k) =
∣∣S(γk, γk+1, . . . , γn)

∣∣
a
,

Mγ(k) =
∣∣S(γk, γk+1, . . . , γn)

∣∣
b
,

(3.3)

which enables us to simplify the formulas for the number of runs.
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Remark 3.4
As a direct conclusion from the above de�nition, the equation (1.1) and the
equation (3.2) we have that the numbers Nγ(k) and Mγ(k) satisfy:

Nγ(k) = γk Nγ(k + 1) +Nγ(k + 2),

Mγ(k) = Nγ(k + 1).
(3.5)

Remark 3.6
Recall form the section 1.1 that the n-th Fibonacci word is de�ned as

Fn = Sw(1, 1, . . . , 1).

Observe that the number of the letters a in the word Fn equals the length of
the word Fn−1, and therefore

Nγ(k) = |Fn−k−1| and Mγ(k) = |Fn−k−2|.

Example 3.7
Let γ = (1, 2, 1, 3, 1) be a directive sequence. We have then

Sw(1) = ab Nγ(4) = 1

Sw(3, 1) = aaaba Nγ(3) = 4

Sw(1, 3, 1) = abababaab Nγ(2) = 5

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba Nγ(1) = 14

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab Nγ(0) = 19

�

The following lemma enables us to express the length of any standard word
in terms of the numbers Nγ(k) and Mγ(k).

Lemma 3.8
Let w = Sw(γ0, γ1, . . . , γn), A = Nγ(2) and B = Nγ(3). Then

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B.

Proof
By the de�nition of Nγ(k) and Mγ(k) we have

|w| = Nγ(0) +Mγ(0) and Mγ(0) = Nγ(1).



46 3. Maximal repetitions in standard words

By repeated application of the formulas from the equation (3.3) we obtain:

|w| = Nγ(0) +Nγ(1)

= (γ0 + 1) Nγ(1) +Nγ(2)

=
(
(γ0 + 1) γ1 + 1) Nγ(2) + (γ0 + 1) Nγ(3)

=
(
(γ0 + 1) γ1 + 1) A+ (γ0 + 1) B

and the proof is complete. �

3.2 Counting runs and repetition ratios

In this section we present the formula for the number of runs in standard
Sturmian words and investigate its asymptotic behaviour. The proof of its
correctness is the aim of the section 3.3.

We begin with the de�nition of some useful zero-one functions for testing the
parity of a nonnegative integer i:

even(i) =

{
1 for even i
0 for odd i

and odd(i) =

{
1 for odd i
0 for even i

and for testing if a positive integer i equals 1:

unary(i) =

{
1 for i = 1
0 for i > 1

.

These functions will be used to simplify the formula for the number of runs
in standard words.

Theorem 3.9 (Formula for the number of runs)
Let γ = (γ0, . . . , γn) be a directive sequence and n ≥ 3. The number of runs
in a standard word w = Sw(γ0, . . . , γn) is given by the following formula:

ρ(w) =


2A+ 2B + ∆(γ)− 1 for γ0 = γ1 = 1

(γ1 + 2)A+B + ∆(γ)− odd(n) for γ0 = 1; γ1 > 1

2A+ 3B + ∆(γ)− even(n) for γ0 > 1; γ1 = 1

(2γ1 + 1)A+ 2B + ∆(γ) for γ0 > 1; γ1 > 1

, (3.10)

where:
A = Nγ(2) = |S(γ2, γ3, . . . , γn)|a,
B = Nγ(3) = |S(γ3, γ4, . . . , γn)|a,

∆(γ) = n− 1− (γ1 + . . .+ γn)− unary(γn).
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The detailed proof of the above theorem is shown in the section 3.3. Now
we can use the formula from the equation (3.10) to compute the number of
runs in some example standard words.

Example 3.11
Let γ = (1, 2, 1, 3, 1) be a directive sequence. We have n = 4 and

Sw(γ) = ababaabababaabababaabababaababaab.

In this case

A = Nγ(2) = 5, B = Nγ(3) = 4, ∆ = (4− 1)− 7− 1 = −5, odd(4) = 0.

Theorem 3.9 implies:

ρ(w) = (γ1 + 2) A+B + ∆− odd(4)

= 4 A+B − 5

= 4 · 5 + 4− 5

= 19,

see Figure 3.1 and Example 3.1 for comparison. �

The number of runs in the n-th Fibonacci word is given by the formula

ρ(Fn) = 2 Fn−2 + 3,

see [48] for the proof. As the next example we derive the same formula using
the results from Theorem 3.9.

Example 3.12
Recall that Fn = Sw(1, 1, . . . 1) (n ones) and in this case Nγ(k) = Fn−k−1.
According to the formula from the equation (3.10) we have:

ρ(Fn) = 2 Nγ(2) + 2 Nγ(3) + n− 1− n− 1− 1

= 2 Fn−3 + 2 Fn−4 − 3

= 2 Fn−2 − 3.

�

The following lemma gives us the bound for the number of runs in standard
words described by the directive sequences of the length at most 2.

Lemma 3.13
Let γ = (γ0, . . . , γn) be a directive sequence, w = Sw(γ) and n ≤ 2. Then

ρ(w) <
4

5
|w|.
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Proof
Recall that the standard word given by the empty directive sequence is a and
does not include any repetition. Therefore, we have to consider two cases:
|γ| = 1 and |γ| = 2.

First assume that |γ| = 1. Then

w = Sw(γ0) = aγ0b and |w| = γ0 + 1.

There is one run for γ0 > 1, no run for γ0 = 1 and obviously ρ(w) < 4
5
|w|.

Assume now that |γ| = 2. We have

w = Sw(γ0, γ1) =
(
aγ0b

)γ1a and |w| = (γ0 + 1)γ1 + 1.

The number of runs in w depends on the values of γ0 and γ1 as follows:

ρ(w) =


0 for γ0 = 1, γ1 = 1

1 for γ0 > 1, γ1 = 1

1 for γ0 = 1, γ1 > 1

γ1 + 1 for γ0 > 1, γ1 > 1

.

In each case we have

ρ(w) <
4

5

(
(γ0 + 1)γ1 + 1

)
=

4

5
|w|

and the proof is complete. �

Now we are ready to estimate the asymptotic bound for the number of runs
in all standard Sturmian words.

Theorem 3.14
For each standard Sturmian word w we have ρ(w) ≤ 4

5
|w|.

Proof
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, ..., γn) be a
standard word. Recall the formula (3.10) from Theorem 3.9 and observe
that ∆(γ) ≤ 0.

The case when n ≤ 2 follows from the lemma 3.13. It is su�cient to prove
the thesis for n ≥ 3. We consider the four cases depending on the values
of γ0 and γ1.
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Case 1: γ0 = γ1 = 1.

We have, due to Lemma 3.8 and the equation (3.10):

|w| = 3A+ 2B and ρ(w) ≤ 2 A+ 2 B.

Hence
ρ(w)

|w|
≤ 2A+ 2B

3A+ 2B
≤ 4

5
,

due to inequalities A ≥ B ≥ 1. This completes the proof of this case.

Case 2: γ0 = 1; γ1 > 1.

We have, due to Lemma 3.8 and the equation (3.10):

|w| = (2 γ1 + 1) A+ 2B and ρ(w) ≤ (γ1 + 2) A+B.

Consequently:
ρ(w)

|w|
≤ (γ1 + 2) A+B

(2 γ1 + 1) A+ 2B
≤ 4

5
,

because γ1 ≥ 2 and γ1+2
2 γ1+1

≤ 4
5
.

Case 3: γ0 > 1; γ1 = 1.

Due to the equation (3.10) and Lemma 3.8, we have:

ρ(w) ≤ 2A+ 3B,

|w| =
(

(γ0 + 2) A+ (γ0 + 1) B
)
≥ 4A+ 3B,

and consequently:

ρ(w)

|w|
≤ 2A+ 3B

4A+ 3B
≤ 3A+ 2B

4A+ 3B
≤ 3

4
<

4

5
.

Case 4: γ0 > 1; γ1 > 1.

In this case, due to the equation (3.10) and Lemma 3.8, we have:

ρ(w) ≤ (2 γ1 + 1) A + 2 B,

|w| =
(
(γ0 + 1) γ1 + 1

)
A + (γ0 + 1) B,

and consequently

ρ(w)

|w|
≤ (2 γ1 + 1) A + 2 B(

(γ0 + 1) γ1 + 1
)
A + (γ0 + 1) B

≤ (2 γ1 + 1) A + 2 B

(3 γ1 + 1) A + 3 B
≤ 4

5
,



50 3. Maximal repetitions in standard words

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a

Figure 3.2: The structure of runs in the word Sw(1, 2, k, k) for k = 3.
There are 4k2 − k + 3 = 36 runs.

because
2 γ1 + 1

3 γ1 + 1
≤ 4

5
.

This completes the proof of the theorem. �

The above results give us the asymptotic bound for the number of runs in
standard words. Below we construct a strictly growing sequence of standard
words to show that this estimation is tight.

Theorem 3.15
For the class S of standard words we have:

sup

{
ρ(w)

|w|
: w ∈ S

}
= 0.8.

Proof
Let γ = (1, 2, k, k) and wk = Sw(1, 2, k, k). By the de�nition we have

wk =
(

(ababa)k ab
)k
ababa and |wk| = 5k2 + 2k + 5,

and due to the equation (3.10):∣∣ρ(wk)
∣∣ = 4k2 − k + 3,

see Figure 3.2 for the case k = 3. Consequently

lim
k→∞

ρ(wk)

|wk|
= lim

k→∞

4k2 − k + 3

5k2 + 2k + 5
= 0.8,

which completes the proof. �
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The formula from the equation (3.10) leads to a simple and fast algorithm
to compute the number of runs in standard words.

Theorem 3.16
We can count the number of runs in any standard word Sw(γ0, . . . , γn) in
linear time with respect to the length of the directive sequence |γ|.

Proof
The formula for the number of runs in standard words from Theorem 3.9
depends directly on the components of the directive sequence γ and the
numbers Nγ(2) and Nγ(3). It is su�cient to prove that we can compute the
numbers Nγ(k) for k = 1, 2, 3 in time O(n). For this purpose we can iterate
the equation (1.1) from the section 1.1:

Algorithm to compute Nγ(k)

Input: γ = (γ0, . . . , γn)
Output: Nγ(k)

x← 1
y ← 0
for i = n downto k do
x← γi · x+ y
y ← x

end for
return x

Using the above algorithm and applying the formula from the equation (3.10)
we can count the number of runs in any standard word in linear time with
respect to the size of the directive sequence (logarithmic with respect to the
length of the whole word). �

3.3 The proof of the main theorem

This section is devoted to the proof of Theorem 3.9. We begin with the
characterization of the structure of the possible periods of the maximal rep-
etitions in standard words. Recall their recurrent de�nition given by the
equation (1.1) and the words xi de�ned there.

The following lemma is the consequence of the structure of subword graphs
of standard words, see Lemma 2.3 comparison.



52 3. Maximal repetitions in standard words

Lemma 3.17 (Structural Lemma)
The period of each run in the word Sw(γ0, γ1, . . . , γn) is of the form xjixi−1,
where 0 ≤ j < γi.

To prove the above lemma it is su�cient to show that no factor of the word
Sw(γ0, . . . , γn), that does not satisfy the condition given there, could be the
generator of some repetition, see the proof of Theorem 1 in [24] for details.

The main idea of the proof of the correctness of the formula given in the
equation (3.10) is the partition of the set of the maximal repetitions in the
word Sw(γ0, . . . , γn) into three separate categories depending on the length
of their periods. We say that a run is:

short � if the length of its period does not exceed |x1|,
large � if the length of its period exceeds |x2|,
medium � otherwise.

Denote by ρS(w), ρM(w) and ρL(w) the number of short, medium and large
runs in the word w, respectively.

Example 3.18
Recall the word w = Sw(1, 2, 1, 3, 1) from Example 3.1 and the set of its
maximal repetitions. In this case we have:

• 10 short runs (periods a and ab),

• 8 medium runs (periods aba and ababa),

• 1 large run (the period ababaab),

see Figure 3.1 for comparison. �

Counting short runs

We start with the computation of the number of the short runs. These are
the runs with the periods of the form a or a+b. Their number depends on
the value of γ0 and γ1.

Lemma 3.19 (Short Runs)
Let w = Sw(γ0, . . . , γn) be a standard word. The number of short runs in w
is given by the formula:

ρS(w) =


Nγ(2) +Nγ(3)− 1 for γ0 = 1, γ1 = 1

2Nγ(2)− odd(n) for γ0 = 1, γ1 > 1

Nγ(1) +Nγ(3)− even(n) for γ0 > 1, γ1 = 1

Nγ(1) +Nγ(2) for γ0 > 1, γ1 > 1

.
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Proof
Short runs are the runs with the periods of the form a or akb. We estimate
the number of runs with the periods of each type separately.

Case 1: runs with the periods of the form a.

First assume that γ0 > 0. Every run with the period a in Sw(γ0, . . . , γn)
equals aγ0 or aγ0+1 and is followed by the single letter b. Due to Lemma 1.15,
every such run in Sw(γ0, . . . , γn) corresponds to the letter a in Sw(γ1, . . . , γn).
Hence in this case we have Nγ(1) runs with the period a.

Assume now that γ0 = 1. In this case the word Sw(γ0, . . . , γn) consists of
the blocks of the two types: ab or aab and only the blocks of the second
type include the runs with the period a. Due to Lemma 1.15, every such
run in Sw(γ0, . . . , γn) corresponds to the letter b followed by the letter a in
Sw(γ1, . . . , γn), hence the number of such runs equals the number of blocks
ba in Sw(γ1, . . . , γn).

Recall that for an even length of the directive sequence |(γ1, . . . , γn)| (n is
even) the word Sw(γ1, . . . , γn) ends with ba and in this case the number of
runs with the period a in in Sw(γ1, . . . , γn) equals the number of the letters b
in Sw(γ1, . . . , γn), hence Nγ(2). For an odd length of the directive sequence
|(γ1, . . . , γn)| (n is odd) the word Sw(γ1, . . . , γn) ends with ab and the last
letter b does not correspond to a run in Sw(γ0, . . . , γn). In this case, the
number of runs with the period a in Sw(γ0, . . . , γn) is one less than the
number of the letters b in Sw(γ1, . . . , γn), hence Nγ(2)−1. Finally the whole
case can be summarized as:

{
Nγ(2)− odd(n) for γ0 = 1

Nγ(1) for γ0 > 1
.

Case 2: runs with the periods of the form akb.

Notice that, due to the equation (1.14) and Lemma 1.15, the runs with the
periods aγ0b and aγ0+1b in in the word Sw(γ0, . . . , γn) correspond to the runs
with the periods a in the word Sw(γ1, . . . , γn). Similar reasoning as above
shows that the number of such in the word Sw(γ0, . . . , γn) equals;{

Nγ(3)− even(n) for γ1 = 1

Nγ(2) for γ1 > 1
.

Combining the results from the two above cases we conclude the thesis of the
lemma. �
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Counting medium runs

Recall that medium runs are the maximal repetitions with the periods xk1x0

for 0 < k < γ1 and x2, where xi are as in the equation (1.1). Observe that
the medium runs appear in the standard words generated by the directive
sequences of the length at least 3. We have to consider two cases: the
directive sequences of the length 3 and the longer directive sequences. The
value of γ0 does not a�ect the number of the medium runs, hence to simplify
the calculations we assume in further proofs that γ0 = 1. We start with
counting the medium runs in the standard words generated by the directive
sequences of the length greater than 3.

Lemma 3.20 (Medium runs, n ≥ 3)
Let w = Sw(γ0, . . . , γn) be a standard word and n ≥ 3. The number of
medium runs in w is given by the formula:

ρM(w) = Nγ(1)−Nγ(2)− γ1 + 1.

The thesis of the lemma is the consequence of the following stronger claim:

Claim 3.21
Let w = Sw(γ0, . . . , γn) be a standard word. There are:

(1) Nγ(2)− 1 runs with the period xi1x0 for each 0 < i < γ1.

(2) Nγ(3) runs with the period x2.

Proof
Point (1)
The word Sw(γ0, . . . , γn) has the form:

(ab)α1a(ab)α2a . . . (ab)αsa ab or (ab)α1a(ab)α2a . . . (ab)αsa,

where 0 < αi ≤ (γ1 + 1) and s = Nγ(2), because, due to Lemma 1.15, every
factor (ab)αia in Sw(γ0, . . . , γn) corresponds to the letter a in Sw(γ2, . . . , γn).
For example, see Figure 3.3, the word Sw(1, 4, 2, 2) has the form

Sw(1, 4, 2, 2) = (ab)4a(ab)4a(ab)5a(ab)4a(ab)5a.

Each pair of neighboring factors: (ab)αia · (ab)αi+1a produces γ1−1 runs with
the period (ab)ka for each 0 < k < γ1. In the word Sw(γ0, . . . , γn) we have
Nγ(2)−1 such pairs and therefore (Nγ(2)−1)(γ1−1) medium runs with the
periods xk1x0 for 0 < k < γ1.
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Point (2)
The word Sw(γ0, . . . , γn) can be represented as a sequence of concatenated
words x1 and x2 and has the form:

(a) : xα1
2 x1x

α2
2 x1 . . . x

αs
2 x1x2 or (b) : xβ1

2 x1x
β2

2 x1 . . . x
βs

2 x1.

For example the word Sw(1, 4, 2, 2) has the decomposition x2
2x1x

2
2x1x2, see

Figure 3.3.

First assume the case (a). Each run with the period x2 has the form xk2x1. By
the de�nition of standard words the factor x1x2 has x2 as a pre�x. Therefore,
the number of such runs in Sw(γ0, . . . , γn) equals the number of factors x1 in
the decomposition mentioned above, which, due to Lemma 1.15, corresponds
to the number of the letters b in Sw(γ2, . . . , γn), namely Nγ(3).

Assume now the case (b). The word Sw(γ0, . . . , γn) has the su�x x1 but in
this case we have βs ≥ 2. Hence the number of runs with the period x2 is
the same as in the case (a). �

a b a b a b a b a a b a b a b a b a a b a b a b a b a b a a b a b a b a b a a b a b a b a b a b a

a b a b a b a b a a b a b a b a b a a b a b a b a b a b a a b a b a b a b a a b a b a b a b a b a

x
2 x

2
x

2
x

2 x1 x1

x1x1x1x1
x1

x1x1x1
x1x1

x1x1
x1x1x1

x1x1
x1x1x1x1

x
0 x

0 x
0

x
0

x
0x1

x
2

a a b a a b a

Figure 3.3: The structure of runs with the periods |x1| < p < |x2| for the
word Sw(1, 4, 2, 2) and its decomposition into words x1, x2 and x0, x1.

Proof of Lemma 3.20
Summing up the formulas from the points (1) and (2) of Claim 3.21 we
obtain:

ρM =
(
Nγ(2)− 1

)
(γ1 − 1) +Nγ(3)

=
(
γ1Nγ(2) +Nγ(3)

)
− Nγ(2)− γ1 + 1

= Nγ(1)−Nγ(2)− γ1 + 1

and this completes the proof of the lemma. �
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The structure of the medium runs in standard words de�ned by the directive
sequences of the length 3 is slightly di�erent.

Lemma 3.22 (Medium runs, n=2)
Let w = Sw(γ0, γ1, γ2) be a standard word. The number of medium runs in
w is given by the formula:

ρM(w) = Nγ(1)−Nγ(2)− γ1 + 1− unary(γ2)

Proof
The proof for the case γ2 > 1 follows the same argumentation as the one for
Lemma 3.20.

In the case γ2 = 1 the word Sw(γ0, γ1, γ2) has the decomposition

Sw(γ0, γ1, γ2) =
(
aγ0b

)
a · aγ0b = x2 · x1.

There is no run with the period x2, and we have to subtract 1 from the
number of the factors x1 in this case. �

The recurrence for large runs

Recall that the run is called large if it has the period of the length greater
than |x2|, where x2 is as in the equation (1.1). We reduce the problem of
counting the large runs to the one for counting the medium runs, using the
morphic representation of the standard words introduced in the section 1.3.

Let h be a morphism and let v = a1a2 . . . ak be the word of the length k.
The morphism h de�nes the partition of the word w = h(v) into segments
h(a1), h(a2),. . . , h(at). These segments are called the h-blocks. We say that
a factor x of the word w is synchronized with the morphism h in w if and
only if each occurrence of x in w starts at the beginning of some h-block
and ends at the end of some h-block. Observe that every factor in w that is
synchronized with h corresponds to some factor in v, hence the morphism h
preserves the structure of the factors that are synchronized with it.

Example 3.23
Let w = Sw(1, 2, 1, 3, 1) and v = Sw(2, 1, 3, 1) be standard words and h0 be
the morphism de�ned as:

h0 :

{
a −→ ab

b −→ a
.
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Recall that

Sw(1, 2, 1, 3, 1) = h0

(
Sw(2, 1, 3, 1)

)
,

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab,

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba.

The factors w[6..8] = aba and w[13..17] = abaab are not synchronized with
the morphism h0, because both of them ends in the middle some h0-block.
The factor w[22..28] starts at the beginning of some h0-block and ends at the
end of some h0-block, hence is synchronized with the morphism h0. Moreover
it corresponds with the factor v[13..16] = aaba, see Figure 3.4 for comparison.

�

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

a a a a a a a a a a a a a ab b b b b

a b a a b a b a a b a b a a b

h
0

a a b a

Figure 3.4: The periods of the medium runs x1x0 = aba and x2 = ababa do
not synchronize with the morphism h0 in the word Sw(1, 2, 1, 3, 1), while the
period of the large run x3 = ababaab is synchronized with h0 and corresponds
to the medium run with the period x1x0 = aaba in the word Sw(2, 1, 3, 1).

Lemma 3.24 (Synchronization Lemma)
The periods of the large runs in the word Sw(γ0, . . . , γn) are synchronized
with the morphism h0.

Proof
Let h0 be the morphism de�ned as

h0 :

{
a −→ aγ0b

b −→ a
.

Due to Lemma 1.15, we have

Sw(γ0, . . . , γn) = h0

(
Sw(γ1, . . . , γn)

)
.

Moreover, h0 determines the partition of Sw(γ0, . . . , γn) into h0-blocks of the
form aγ0b and a, see Figure 3.4 for the partition of Sw(1, 2, 1, 3, 1).
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Recall that the period of each large run in the word Sw(γ0, . . . , γn) is of the
form xki xi−1, where 0 ≤ k < γi and i ≥ 2. By the de�nition of standard words
the factor xki xi−1 starts with aγ0b, hence at the beginning of some h0-block.

For even i ≥ 2 the subword xki xi−1 ends with x1 = aγ0b, hence at the end of
some h0-block, and is obviously synchronized with h0.

For odd i ≥ 2 the factor xki xi−1 ends with

x3 · x2 = xγ22 x1 · xγ11 x0 = xγ22 · (aγ0b)γ1+1a.

First assume that xki xi−1 is followed by the block aγ0b. The single letter a at
the end of xki xi−1 is then the whole h0-block and xki xi−1 is synchronized with
the morphism h0.

Assume now that xki xi−1 ends with (aγ0b)γ1+1a and is followed by (aγ0−1b),
namely it ends in the middle of some h0-block. In this case we have the
occurrence of the factor (aγ0b)γ1+2 in Sw(γ0, . . . , γn), which is reduced by the
morphism h−1

0 to the factor aγ1+2b in Sw(γ1, . . . , γn). By the de�nition the
standard word Sw(γ1, . . . , γn) can include only the blocks of the two types:
the short block � aγ1b and the long block � aγ1+1b (see the section 1.1), hence
we have the contradiction and the proof is complete. �

The following lemma, which is a direct conclusion from Synchronization
lemma, allows us to reduce the problem of counting the large runs in the
word Sw(γ0, . . . , γn) to those in Sw(γ1, . . . , γn).

Lemma 3.25 (Recurrence Lemma)
Let w = Sw(γ0, . . . , γn) and v = Sw(γ1, . . . , γn) be standard words. The
number of large runs in w is given by the recurrence

ρL(w) = ρL(v) + ρM(v).

Proof
The synchronization lemma implies that the morphism de�ned as in the equa-
tion (3.2) preserve the structure of the long runs in standard words. Recall
that Sw(γ0, . . . , γn) is reduced by h−1

0 to Sw(γ1, . . . , γn). Therefore, every
large run α in Sw(γ0, . . . , γn) corresponds to some run β in Sw(γ1, . . . , γn).

Due to Lemma 3.17, the period of the run α is of the form xki x−1, where
0 < k ≤ γi and i ≥ 2. The corresponding run β is either large (for i = 2) or
medium (for i = 2). Hence to compute all large runs in Sw(γ0, . . . , γn) it is
su�cient to compute all large and medium runs in Sw(γ1, . . . , γn). �

The thesis of the next lemma gives us the compact formula for the number
of the medium and the large runs in standard words.



3. Maximal repetitions in standard words 59

Lemma 3.26 (Large Runs)
Let w = Sw(γ0, . . . , γn) be a standard word. We have

ρL(w) + ρM(w) = Nγ(1) + n− 1 − (γ1 + . . .+ γn) − unary(γn).

Proof
Due to the formulas from Lemma 3.20 and Lemma 3.22 and the recurrence
from Lemma 3.25 we have

ρL(w) + ρM(w) =
n−2∑
i=0

ρM
(
Sw(γi, . . . , γn)

)
=

(
Nγ(1)−Nγ(2)− γ1 + 1

)
+

...(
Nγ(n− 2)−Nγ(n− 1)− γn−2 + 1

)
+(

Nγ(n− 1)−Nγ(n)− γn−1 + 1− unary(γn)
)
.

Taking into account that Nγ(n) = γn the above formula can be written as

ρL(w) + ρM(w) = Nγ(1) + (n− 1) − (γ1 + . . .+ γn) − unary(γn),

which concludes the thesis. �

Now we are ready to prove the formula for the number of runs in standard
words given by the equation (3.10).

Proof of Theorem 3.9
To obtain the formula from the equation (3.10) it is su�cient to combine the
formulas from Lemma 3.19 and Lemma 3.26. �
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4
Squares in Sturmian words

A square in a string is a subword of the form ww, where w (called the period
or the generator) is nonempty. Squares are the simplest forms of repetitions,
but despite the simple formulation many combinatorial problems related to
squares are not well understood. The subject of computing the number of
distinct squares and other types of repetitions in words is one of the funda-
mental topics in combinatorics on words as well as it is important in other
areas: lossless compression, word representation, computational biology, etc.
See for instance [10], [44], [52], [73].

Denote by sq(w) the number of distinct squares in the word w and by sq(n)
the maximal number of distinct squares in words of length n. The behaviour
of the function sq(n) is not well understood, although the subject has been
studied by many authors, see for example [22], [23] and [40]. The best known
results related to the value of sq(n) are:

n−O(n) ≤ sq(n) ≤ 2n−O(log n),

compare with the results in [27], [38] and [39]. See Table 4.1 for the maximal
number of squares and the square ratio in words over a binary alphabet for
small values of n. In this chapter we concentrate on the asymptotic behaviour
of the maximal number of distinct squares in standard Sturmian words and
give the thigh asymptotic bound for sq(n) for this class of strings.

There are known e�cient algorithms for the computation of integer powers
in words, see [2], [17], [24], [54], [55]. The powers in words are related to
maximal repetitions, also called runs, see the chapter 3 for more information.
It is surprising that the known bounds for the number of runs are much tighter
than for squares, which is due to the work of many people [5], [19], [20], [32],
[47], [48], [62], [66], [68].
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One of the interesting questions related to squares is the relation of their
number to the number of runs. In case of Fibonacci words the numbers of
squares and runs di�er only by 1 and have the same asymptotic behaviour,
see [28], [48]. The analysis of such relation for standard word is done in the
section 4.4.

n sq(n) sq(n)/n Example word
10 6 0.6 abbabbabaa
11 7 0.636364 bababbabbaa
12 7 0.583333 abbabbabaaaa
13 8 0.615385 bababbabbaaaa
14 9 0.642857 ababaababaabaa
15 10 0.666667 aababaababaabaa
16 11 0.6875 baabaababaababaa
17 12 0.705882 bbaabaababaababaa
18 12 0.666667 baabaababaababaaaa
19 13 0.684211 bbaabaababaababaaaa
20 13 0.65 baabaababaababaaaaaa
21 14 0.666667 bbaabaababaababaaaaaa
22 15 0.681818 aaabaabaaabaabaaabaaaa
23 16 0.695652 baaabaaabaabaaabaabaaaa
24 17 0.708333 bbaaabaaabaabaaabaabaaaa
25 18 0.72 abaabaababaabaababaababaa
26 19 0.730769 babaabaababaabaababaababaa
27 20 0.740741 bbabaabaababaabaababaababaa
28 20 0.714286 aabaabaaabaaaabaaabaaaabaaaa
29 21 0.724138 ababaabaaabaaaabaaabaaaabaaaa
30 22 0.733333 bbaaaabaaabaaaabaaabaaaabaabaa
31 23 0.741935 ababaaabaaaabaaabaaaabaaabaabaa

Table 4.1: The maximal number of distinct squares and the square ratio for
the binary words of the given length.

4.1 Formulas for the number of squares

The exact formulas for the number of distinct squares in standard Sturmian
words were given by Damanik and Lenz in [24]. In this section we reformu-
late their equations to have compact version more suitable for the asymptotic
analysis. The formulas are rather complicated and such an analysis is non-
trivial. It is the matter of the section 4.3.
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Denote qi = |xi|, where xi are as in the equation (1.1). We have then

q−1 = q0 = 1 and qi+1 = γiqi + qi−1. (4.1)

The following lemma characterize the possible lengths of the periods of
squares in Sturmian words.

Lemma 4.2 (See [24])
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Each primitive
period of a square in w has the length kqi for 1 ≤ k ≤ γi or kqi + qi−1 for
1 ≤ k < γi.

The squares in the standard Sturmian word w with the period of the length kqi,
for 1 ≤ k ≤ γi, or kqi + qi−1, for 1 ≤ k < γi, are said to be of the type i. The
squares with the period of the form a+ are said to be of the type 0.

ba b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a

ba b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a
2 0

1
1

3

2

3

Figure 4.1: The squares in the word Sw(1, 2, 1, 3, 1) with their types.

Example 4.3
Consider the word: Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.

We have: one square of type 0: a·a,
three squares of type 1 (periods 2, 3): ab·ab, ba·ba, aba·aba,
three squares of type 2 (period 5): ababa·ababa, babaab·babaab, abaab·abaab,
and eleven squares of type 3 (periods 7, 14):

ababaab·ababaab, babaaba·babaaba, abaabab·abaabab,
baababa·baababa, aababab·aababab, abababa·abababa,
bababaa·bababaa,
ababaabababaab·ababaabababaab, babaabababaaba·babaabababaaba,
abaabababaabab·abaabababaabab, baabababaababa·baabababaababa,

see Figure 4.1 for comparison. �
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For a standard word w = Sw(γ0, γ1, . . . , γn) denote by sq(γ0, γ1, ..., γn) the
number of distinct squares in w and by sqi(γ0, γ1, . . . , γn) the number of
distinct squares of the type i in w (for 0 ≤ i ≤ n).

We count all squares in w by counting separately the squares of each type:

sq(γ0, γ1, . . . , γn) =
n∑
i=0

sqi(γ0, γ1, . . . , γn).

For a directive sequence γ = (γ0, γ1, . . . , γn) and 1 ≤ i ≤ n denote:

d(0) =
⌊
γ0+1

2

⌋
,

d1(i) =

{ γi

2
qi + qi−1 − 1 for even γi

γi

2
qi + 1

2
qi for odd γi

,

d(i) = d1(i) + γi qi − qi − γi + 1,

(4.4)

where qi are as in the equation (4.1).

The number of distinct squares sq(γ0, . . . , γn) is determined as follows, see [24]:

Summation formulas:

(1) sq(γ0, γ1, . . . , γn) =
∑n

i=0 sqi(γ0, γ1, . . . , γn).

(2) (0 ≤ i ≤ n− 3) or (i = n− 2 & γn ≥ 2) ⇒ sqi(γ) = d(i).

(3) γn = 1 ⇒ sqn−2(γ) =

{
d(n− 2)− qn−3 + 1 for even γn−2

d(n− 2)− qn−2 + qn−3 + 1 otherwise

(4) γn = 1 ⇒ sqn−1(γ) =

{
d1(n− 1)− qn−2 + 1 for even γn−1

d1(n− 1)− qn−1 + qn−2 − 1 otherwise

(5) γn > 1 ⇒ sqn−1(γ) =

{
d(n− 1)− qn−2 + 1 for even γn−1

d(n− 1)− qn−1 + qn−2 − 1 otherwise

(6) sqn(γ) =

{
d1(n)− qn + 2 for even γn

d1(n)− qn otherwise
(4.5)
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4.2 Standard words with many squares

In this section we present and analyze the sequence {wk} of strictly growing
standard words achieving asymptotically maximal ratio of the number of
distinct squares to the length of the word:

lim
k→∞

|wk| = ∞ and lim
k→∞

sq(wk)

|wk|
=

9

10
.

Recall that the squares with the periods of the length kqi, for 1 ≤ k ≤ γi,
or kqi + qi−1, for 1 ≤ k < γi, where qi are as in the equation (4.1), are said
to be of the type i and the squares with the periods of the form a+ � the
type 0.

Consider a directive sequence γk = (k, k, 2, 1, 1) and a sequence of words
wk = Sw(k, k, 2, 1, 1), where k > 0.

Example 4.6
We have:

w1 = Sw(1, 1, 2, 1, 1) = (aba)2ab(aba)3ab,

w2 = Sw(2, 2, 2, 1, 1) =
(

(aab)2a
)2

aab
(

(aab)2a
)3

aab,

w3 = Sw(3, 3, 2, 1, 1) =
(

(aaab)3a
)2

aaab
(

(aaab)3a
)3

aaab,

...

wk = Sw(k, k, 2, 1, 1) =
((
akb
)k
a
)2

akb
((
akb
)k
a
)3

akb.

See Figure 4.2 for the structure of the distinct squares in Sw(3, 3, 2, 1, 1).
�

a a a ba a a ba a a ba a a a ba a a ba a a ba a a a ba a a ba a a ba a a ba a a a ba a a ba a a ba a a a ba a a ba a a ba a a a b

1 1 0

1 1 0

2

3

2

Figure 4.2: The squares in the standard word Sw(3, 3, 2, 1, 1) with their
shifts and types.
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Theorem 4.7
For the standard word Sw(k, k, 2, 1, 1) we have

sq(k, k, 2, 1, 1) −→ 9

10
·
∣∣Sw(k, k, 2, 1, 1)

∣∣,
for k −→ ∞.

Proof
Let γk = (k, k, 2, 1, 1). We have:

Sw(γk) =
(

(akb)ka
)2

akb
(

(akb)ka
)3

akb

and
|Sw(γk)| = 5k2 + 7k + 7.

We compute separately the number of distinct squares of each type sqi(γk)
for 0 ≤ i ≤ 4 in the word wk.

There are two cases depending on the parity of the parameter k. We are
interested in the asymptotic behaviour of the number of distinct squares,
hence there is no loss of generality in assuming that k > 1.

Case 1: k is odd.

We have (according to formulas (1-6) from the equation (4.5) ):

sq0(γk) =
1

2

(
k + 1

)
,

sq1(γk) =
1

2

(
3k2 + 1

)
,

sq2(γk) = 2k2 + 2k + 1,

sq3(γk) = k2 + k,

sq4(γk) = 0.

Summing altogether we obtain:

sq(γk) =
1

2

(
9k2 + 7k + 4

)
,

and �nally

lim
k→∞

sq(γk)

|Sw(γk)|
= lim

k→∞

9k2 + 7k + 4

10k2 + 14k + 14
=

9

10
.
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Case 2: k is even.

We have (according to formulas (1-6) from the equation (4.5) ):

sq0(γk) =
1

2
k,

sq1(γk) =
1

2

(
3k2 − k

)
,

sq2(γk) = 2k2 + 2k + 1,

sq3(γk) = k2 + k,

sq4(γk) = 0.

Summing altogether we obtain:

sq(γk) =
1

2

(
9k2 + 6k + 2

)
,

and �nally

lim
k→∞

sq(γk)

|Sw(γk)|
= lim

k→∞

9k2 + 6k + 2

10k2 + 14k + 14
=

9

10
.

�

4.3 Asymptotics of the number of squares

The formulas (1�6) from the equation (4.5) give us the value of sq(γ0, . . . , γn),
however there is no close simple formula. Therefore, the tight asymptotic
estimations are nontrivial.

We start with the two lemmas that allow us to restrict the value of the last
two elements of the directive sequence γ = (γ0, γ1, . . . , γn) in the asymptotic
estimation of the maximal number of distinct squares in Sw(γ0, . . . , γn).

Lemma 4.8 (Reduction of γn)
Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. If γn > 1 then

sq(γ0, . . . , γn−1, γn) ≤ sq(γ0, . . . , γn−1, γn − 1, 1) + 2.

Proof
Recall from the section 1.1 that the standard words w1 = Sw(γ0, . . . , γn) and
w2 = Sw(γ0, . . . , γn − 1, 1) di�er only in the last two letters � ab or ba.
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The squares of the types 0, 1, . . . , n− 1 and short squares of the type n are
the same for w1 and w2 (see Figure 4.3). The di�erence is possible only for
the longest squares of the type n. Exchanging the last two letters enables
(or disables respectively) the shift of the longest square of the type n by one
and two positions (see the squares marked in bold on Figure 4.3). In w2 we
have γn+1 = 1 and, due to formulas (1-6) from the equation (4.5), there is
no square of the type n + 1. Therefore, the di�erence between the numbers
of squares in w1 and w2 is not greater than 2, what follows the thesis.

�

a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a a b

a b a b a a b a b a a b a b a a b a b a b a

a b a b a a b a b a a b a b a a b a b a a b

0

01 1

11

2

2

2

2

(2)

(1)

Figure 4.3: The squares in the standard words (1): Sw(1, 2, 3, 1) and
(2): Sw(1, 2, 4). Two additional squares of the type 2 are marked in bold.

Lemma 4.9 (Reduction of γn−1)
Let w = Sw(γ0, . . . , γn−2, γn−1, 1), w1 = Sw(γ0, . . . , γn−2, 1, 1) and
w2 = Sw(γ0, . . . , γn−2, 2, 1) be standard words. If the inequalities

sq(w1) ≤ 0.9 |w1| − 2 and sq(w2) ≤ 0.9 |w2| − 2

are satis�ed then
sq(w) ≤ 0.9 |w| − 2.

Proof
If γn−1 is odd then let ∆ = γn−1 − 1 otherwise let ∆ = γn−1 − 2.

Consider what happens when we change γn−1 by the quantity ∆ (see the
formula(4) from the equation (4.5)). The increase of the number of distinct
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squares is 1
2

∆ qn−1, while the increase of the length of the word is ∆ qn−1.
The increase of the number of squares is amortized by half of the increase
of the length of the word. Therefore, we can subtract ∆ from γn−1 and the
thesis follows.

�

Now we are ready to estimate the number of distinct squares in the standard
words de�ned by short directive sequences.

Lemma 4.10 (Short γ)
If n < 3 then

sq(γ0, . . . , γn) ≤ 9

10

∣∣Sw(γ0, . . . , γn)
∣∣.

Proof
There are three types of short directive sequences: γI = (γ0), γII = (γ0, γ1)
and γIII = (γ0, γ1, γ2). We consider each of them separately.

Case 1: γI = (γ0).
We have (due to formulas (1-6) from the equation (4.5)):

sq
(
γI
)
≤ 1

2

(
γ0 + 1

)
and

∣∣Sw
(
γI
)∣∣ = γ0 + 1.

Therefore,

sq
(
γI
)
≤ 1

2

∣∣∣Sw
(
γI
)∣∣∣ <

9

10

∣∣∣Sw
(
γI
)∣∣∣.

Case 2: γII = (γ0, γ1).
We have (due to formulas (1-6) from the equation (4.5)):∣∣Sw

(
γII
)∣∣ =

(
γ0 + 1

)
γ1 + 1,

sq
(
γII
)

= sq0
(
γII
)

+ sq1
(
γII
)
,

sq0
(
γII
)
≤ 1

2

(
γ0 + 1

)
.

There are two cases depending on the value of γ1.

I: If γ1 = 1 then sq1
(
γII
)

= 0 and we have:

sq
(
γI
)
≤ 1

2

(
γ0 + 1

)
,

and consequently

sq
(
γII
)∣∣Sw

(
γII
)∣∣ ≤ 1

2
− 3

2γ0 + 4
≤ 9

10
.
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II: If γ1 > 1 then

sq1
(
γII
)
≤ 1

2

(
γ0 + 1

)(
γ1 − 1

)
+ 2.

We have:

sq
(
γII
)
≤ 1

2

(
γ0 + 1

)
γ1 + 2,

and �nally

sq
(
γII
)∣∣Sw

(
γII
)∣∣ ≤ 1

2
+

3

2
(
γ0 + 1

)
γ1 + 2

≤ 9

10
.

Case 3: γIII = (γ0, γ1, γ2).
There are two cases depending on the value of γ2.

I: If γ2 = 1 then we have (due to formulas (1-6) from the equation (4.5)):∣∣Sw
(
γIII

)∣∣ =
(
γ0 + 1

)(
γ1 + 1

)
+ 1,

sq
(
γIII

)
= sq0

(
γIII

)
+ sq1

(
γIII

)
+ sq2

(
γIII

)
,

sq0
(
γIII

)
≤ 1

2

(
γ0 + 1

)
,

sq1
(
γIII

)
≤ 1

2

(
γ0 + 1

)(
γ1 + 1

)
,

sq2
(
γIII

)
= 0.

Therefore,

sq(γ0, γ1, 1) ≤ 1

2

(
γ0 + 1

)(
γ1 + 2

)
,

and �nally

sq
(
γIII

)∣∣Sw
(
γIII

)∣∣ ≤ 1

2
+

γ0

2
(
γ0 + 1

)(
γ1 + 1

)
+ 2

≤ 9

10
.

II: If γ2 > 1 then we have (due to Lemma 4.8)

sq(γ0, γ1, γ2) ≤ sq(γ0, γ1, γ2 − 1, 1) + 2,

and the proof is similar to the proof of Theorem 4.14.
�
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The next two facts will be useful in the estimation of the number of distinct
squares in standard words de�ned by longer directive sequences.

Remark 4.11
Let d(i) be as in the equation (4.4). We have

d(i) ≤



(
3

2
γi − 1

)
qi + qi−1 − 1 for even γi(

3

2
γi −

1

2

)
qi for odd γi

.

Lemma 4.12
For 0 ≤ r ≤ n− 3 we have

r∑
i=0

d(i) <
3

2
qr+1 + qr − 2.

Proof
Recall that qi = |xi| (see the equation (1.1) and (4.1)). According to the
observation above and the implication

γi ≥ 2 ⇒ qi − qi+1 < −
1

2
qi+1,

we have:

d(i) ≤ 3

2
γi qi −

1

2
qi.

Observe now that γi qi = qi+1 − qi−1. Therefore,
r∑
i=0

γi qi = qr+1 + qr − q0 − q−1

= qr+1 + qr − 2.

Consequently
r∑
i=0

d(i) <
3

2

r∑
i=0

γi qi −
1

2
qr

≤ 3

2

(
qr+1 + qr − 2

)
− 1

2
qr (4.13)

≤ 3

2
qr+1 + qr − 2.

This completes the proof. �
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Now we are ready to prove the tight bound for the number of distinct squares
in the class S of standard Sturmian words.

Theorem 4.14
Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then

sq(γ0, γ1, . . . , γn) ≤ 9

10
·
∣∣Sw(γ0, γ1, . . . , γn)

∣∣.
Proof
If n < 3 then the thesis follows from Lemma 4.10. Therefore, we can assume
that n ≥ 3.

We start with the assumption that:

γn = 1 and γn−1 ∈ {1, 2}.

Let us shorten the notation and denote:

A = qn−2, B = qn−3, α = γn−2.

Claim 4.15
Recall that qi = |xi|. Due the equation (1.1) we have A > B and the values
of A and B increase exponentially. The smallest growth of A and B we have
for the Fibonacci words, where A and B are consecutive Fibonacci numbers.
For other standard Sturmian words the growth of A and B is signi�cantly
larger and the di�erence between A and B is bigger.

Lemma 4.12 can be rewritten in terms of A and B as follows:

Claim 4.16

n−3∑
i=0

sqi(γ) =
n−3∑
i=0

d(i) ≤ 3

2
A+B − 2.

This, together with the fact that sqn(γ0, γ1, . . . , γn−1, 1) = 0, implies:

Claim 4.17

sq(γ) ≤ Φ(γ)
def
=

3

2
A+B − 2 + sqn−1(γ) + sqn−2(γ).

Our goal is to prove the inequality

Φ(γ) ≤ 9

10
|w| − 2. (4.18)
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Using our terminology we can write:

(a)
∣∣Sw(γ)

∣∣ =

{
2 α A+ A+ 2B for γn−1 = 1
3 α A+ A+ 3B for γn−1 = 2

,

(b) sqn−2(γ) ≤

{
3
2
α A− A for even γn−2

3
2
α A− 3

2
A+B + 1 for odd γn−2

,

(c) sqn−1(γ) ≤
{
α A+B for γn−1 = 2
A− 1 for γn−1 = 1

.

We have to consider 4 cases depending on the value of γn−1 ∈ {1, 2} and the
parity of α.

Case 1: (γn−1 = 1, α is even)

In this case the inequality Φ(γ) ≤ 9
10
|w| reduces to:

3

2

(
α + 1

)
A+B ≤ 9

10

(
(2 α + 1) A+ 2 B

)
.

This reduces to:
(3α− 6)A+ 8B ≥ 0,

which obviously holds for α ≥ 2.

This completes the proof of this case.

Case 2: (γn−1 = 1, α is odd)

In this case the inequality Φ(γ) ≤ 9
10
|w| − 2 reduces to:(

3

2
α + 1

)
A+ 2 B ≤ 9

10

(
(2 α + 1) A+ 2 B

)
.

This reduces to
(3α− 1)A ≥ 2B,

which holds since α ≥ 1 and due to Claim 4.15.

This completes the proof of this case.
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Case 3: (γn−1 = 2, α is even)

In this case

Φ(γ) ≤

(
5

2
α +

1

2

)
A+ 2 B − 2.

Consequently, the inequality Φ(γ) ≤ 9
10
|w| − 2 reduces to:(

5

2
α +

1

2

)
A+ 2 B ≤ 9

10

(
3 α A+ A+ 3B

)
.

This reduces to
(2α + 4)A+ 7B ≥ 0

and holds since α ≥ 2, A > B > 0.

Case 4: (γn−1 = 2, α is odd)

In this case

Φ(γ) ≤ 5

2
α A+ 3 B − 1.

Now the inequality Φ(γ) ≤ 9
10
|w| − 2 reduces to:

5

2
α A+ 3 B + 1 ≤ 9

10

(
3 α A+ A+ 3B

)
.

This reduces to
3B + 10 ≤ (2α + 9)A,

which holds since α ≥ 1 and due to Claim 4.15.

We have proved that

sq(γ0, γ1, . . . , γn−2, 1, 1) ≤ 9

10
|Sw(γ0, γ1, . . . , γn−2, 1, 1)| − 2

and

sq(γ0, γ1, . . . , γn−2, 2, 1) ≤ 9

10
|Sw(γ0, γ1, . . . , γn−2, 2, 1)| − 2.

Due to Lemma 4.8 and Lemma 4.9 we have

sq(γ0, γ1, . . . , γn) ≤ 9

10
|Sw(γ0, γ1, . . . , γn)|,

which completes the proof of the theorem.
�
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4.4 Squares vs. maximal repetitions

Recall form the chapter 3 that the maximal repetition (the run in short) in
a word w is a nonempty subword w[i..j] = ukv (k ≥ 2), where u is of the
minimal length and v is a proper pre�x (possibly empty) of u, that can not
be extended (neither w[i− 1..j] nor w[i..j + 1] is a run with the period |u|).

Let ρ(w) be the number of runs in the word w. For the n-th Fibonacci
word Fn we have:

sq(Fn) = 2|Fn−2| − 2,

ρ(Fn) = 2|Fn−2| − 3,

hence sq(Fn) = ρ(fn) + 1 and consequently sq(Fn)
|Fn| and ρ(Fn)

|Fn| have the same
asymptotic behaviour, see [28], [48].

For standard Sturmian words the situation is quite di�erent. We have:

ρ(w)

|w|
−→ 0.8 and

sq(w)

|w|
−→ 0.9,

see the chapter 3 for details. Below we will investigate 3 di�erent sequences of
standard Sturmian words to see that the number of squares and the number
of runs are not so closely related as in case of Fibonacci words.

Case 1: wk = Sw(k, k, 2, 1, 1).
The word wk has the form:

wk =
(

(akb)ka
)2

akb
(

(akb)ka
)3

akb

and length
|wk| = 5k2 + 7k + 7.

In the section 4 we have computed the number of squares for the word wk,
and we have seen that

sq(wk)

|wk|
−→ 9

10
.

Now we compute the number of runs in wk using the formula from the equa-
tion (3.10). We have:

ρ(wk) = 9k + 7

and therefore
ρ(wk)

|wk|
−→ 0.

We can see that wk is an example of a word that is rich in squares and at
the same time has a very small number of runs.
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Case 2: vk = Sw(1, 2, k, k).
The word vk has the form

vk =
(

(ababa)kab
)k
ababa,

and length
|vk| = 5k2 + 2k + 5.

Using the formula from the equation (3.10) we obtain

ρ(vk) = 4k2 − k + 3,

hence
ρ(vk)

|vk|
−→ 8

10
.

Using the formulas (1-6) from the equation (4.5) we have:

sq(vk) =

{
5
2
k2 + 5

2
k + 4 for even k

5
2
k2 + 5k − 5

2
for odd k

and consequently
sq(vk)

|vk|
−→ 1

2
.

We can see that vk is an example of a word, for which the number of squares
is signi�cantly smaller than the number of runs.

Case 3: zk = Sw(1, 2, k, k, 2, 1, 1).
The word zk has the form

zk =
[(

(ababa)kab
)k
ababa

]2
(ababa)kab

[(
(ababa)kab

)k
ababa

]3
(ababa)kab

and length
|zk| = 25k2 + 20k + 29.

Using the formulas (1-6) from the equation (4.5) we compute the number of
squares:

sq(zk) =

{
45
2
k2 + 19

2
k + 17 for even k

45
2
k2 + 12k + 31

2
for odd k

and consequently
sq(zk)

|zk|
−→ 9

10
.
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Using the formula from the equation (3.10) we compute the number of runs

ρ(zk) = 20k2 + 11k + 20,

hence
ρ(zk)

|zk|
−→ 8

10
.

We can see that zk is an example of a word, for which both the number of
distinct squares and the number of runs are high.

The results above show that the maximal number of squares and the maximal
number of runs for standard Sturmian words are not closely related. The
asymptotic limits are close, but for di�erent types of words the number of
squares and the number of runs could have di�erent asymptotic behaviour.

4.5 Repetitions in Christo�el words

Recall the geometric de�nition of the class of Christo�el words presented in
the section 1.2. These words are strongly related to standard words. Due to
Fact 1.10, every Christo�el word is the cyclic shift of some standard word of
the one position. Therefore, the results related to the number of runs from
the chapter 3 and to the number of distinct squares from the chapter 4 could
be simply extended to the class of Christo�el words.

Lemma 4.19
Let w be a Christo�el word of the length n.

(1) We have ρ(w) ≤ 0.8 n+ log(n).

(2) There is an in�nite sequence {wk} of strictly growing Christo�el words,
such that

lim
k→∞

|wk| = ∞ and lim
k→∞

ρ(wk)

|wk|
= 0.8.

(3) We have sq(w) ≤ 0.9 n+ log(n).

(4) There is an in�nite sequence {vk} of strictly growing Christo�el words,
such that

lim
k→∞

|vk| = ∞ and lim
k→∞

sq(vk)

|vk|
= 0.9.
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Proof
For each position i in a word w there is a logarithmic number of runs that
begins (respectively ends) at the position i in w.

Let wS be a standard word. The corresponding Christo�el word wC is formed
from wS by moving its last letter from the end to the begin of the word.

The removing of the last letter of wS causes the possible disappearance of
the logarithmic number of runs (squares respectively) in wC ending at this
position. On the other hand, the new letter at the beginning of the word wC
can be the starting position of the logarithmic number of new runs (squares
respectively).

The construction of the strictly growing sequences of Christo�el words that
achieve asymptotically the maximal ratio of the number of runs (squares
respectively) to the length of the word could be done in similar way as for
the standard words.

�



5
Numeration systems related to Sturmian

words

In this chapter we will consider the numeration systems connected to the
structure of compacted subword graphs of standard words (see the chapter 2).

A numeration system is a way of expressing numbers as a sequences of digits.
Therefore, numbers can be seen as �nite words over an alphabet of digits and
are �eld of interest of combinatorics on words.

More formally, let B ≥ 2 be an integer number called the base. The B-ary
representation of the integer number N ≥ 0 is the �nite word dk . . . d0 over
the alphabet A = {0, 1, . . . , B − 1}, such that

N =
k∑
i=0

diB
i.

If we omit the leading zeroes such a representation is unique. The set of
all representations of the positive integers equals A∗. An example of such a
representation is the decimal numerations system � the most natural way of
representing integers.

The notion of a numeration system can be generalized by replacing the base
by the in�nite strictly increasing sequence of integers Q = (qn)n≥0, with
q0 = 1, called the base sequence. A representation of an integer number N
in this system is the �nite sequence of integers (d0, . . . , dk), where

N =
k∑
i=0

diq
i.

The representation of the number 0 is the empty word ε.
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Example 5.1
Let Q = {2n : n ≥ 0} be the base sequence. The representation of a
number N in the system de�ned by Q is simply its binary representation.

�

For more information on numeration system see for instance the chapter 7
of [51] or the chapter 3 of [1].

5.1 The Ostrowski numeration systems

The dual Fibonacci numeration system has been introduced in [67], where its
relation to the subword structure of Fibonacci words has been investigated.
We extend these results to standard Sturmian words.

For an in�nite directive sequence γ = (γ0, γ1, . . .) we introduce [∗]γ-numeration
system: a version of the Ostrowski's numeration system described in [1],
which is a generalization of the Fibonacci numeration system. Let us de�ne
the base sequence as:

Q = (q0, q1, . . .) =
(
|x0|, |x1|, ...

)
,

where xi's are standard words given by the equation (1.1).

The base sequence Q can be de�ned without any reference to standard words
as follows:

q−1 = q0 = 1, and qi+1 = qi · γi + qi−1 for i > 0.

Example 5.2
For γ = (1, 2, 1, 2, . . .) the base sequence is Q = (1, 2, 5, 7, 19, . . .).
For γ = (1, 2, 1, 1, 1, . . .) the base sequence is Q = (1, 2, 5, 7, 12, 19, . . .).

�

The representation of an integer N in the Ostrowski numeration system is
de�ned as:

[N ]γ = (d0, d1, . . . , dn),

where we require:

(1) N = d0 · q0 + d1 · q1 + . . .+ dn · qn,

(2) ∀0≤j≤n dj ≤ γj,

(3) dj+1 = γj+1 =⇒ dj = 0.
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In other words, in the representation of a number N , for each k we take at
most γk numbers |xk|, and if we take exactly γk numbers |xk|, then we take
zero numbers |xk−1|.

The uniqueness of the representation in the Ostrowski numeration system
has been proved in [1].

Example 5.3
Let γ = (1, 2, 1, 3, 1, . . .). In this case the base sequence is

q =
(
|x0|, |x1|, ...

)
= (1, 2, 5, 7, 26, 33, . . .).

We have [16]γ = (0, 1, 0, 2), because 16 = 0 · 1 + 1 · 2 + 0 · 5 + 2 · 7.
We have [29]γ = (1, 1, 0, 0, 1), because 29 = 1 · 1 + 1 · 2 + 0 · 5 + 0 · 7 + 1 · 26.

�

The representation of the numberN in the dual Ostrowski numeration system
is de�ned as:

ˆ[N ]γ = (d0, d1, . . . , dn),

where we require:

(1) N = d0 · q0 + d1 · q1 + . . .+ dn · qn,

(2) ∀0≤j≤n dj ≤ γj,

(3)
(
dj < γj and ∃(i>j) di > 0

)
=⇒ dj+1 > 0.

In other words, in the representation of a numberN in the numeration system
de�ned above, for each k, we take at most γk numbers |xk| and if we take
dk < γk numbers |xk| and dk is not the last component of this representation,
then we must take at least one number |xk+1|.

For the proof of the uniqueness of the representation in the dual Ostrowski
numeration system we refer the reader to [26].

Example 5.4
Let γ = (1, 2, 1, 3, 1, . . .). In this case the base sequence is

q =
(
|x0|, |x1|, ...

)
= (1, 2, 5, 7, 26, 33, . . .).

We have ˆ[16]γ = (0, 2, 1, 1), because 16 = 0 · 1 + 2 · 2 + 1 · 5 + 1 · 7.
We have ˆ[29]γ = (1, 1, 1, 3), because 29 = 1 · 1 + 1 · 2 + 1 · 5 + 3 · 7.

�
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The relation to subword graphs of standard words

Let G∞ be the in�nite compacted subword graph of the standard word given
by the in�nite directive sequence γ = (γ0, γ1, . . .). Let π be a path from the
root to another node of G∞ and let rep(π) = (h0, h1, . . .), where hi is the
number of the edges of the weight qi on the path π.

The following fact is the interpretation of the corresponding result from [26]
in terms of the dual Ostrowski numeration system.

Fact 5.5
Let the directive sequence γ, the graph G∞, the path π and the sequence rep(π)
be de�ned as above.

(1) The sequence rep(π) is the representation of the length of the path π in
the dual Ostrowski numeration system corresponding to γ.

(2) For each k > 1 there is exactly one fork-path of the length k in G∞.

q3 q3 q3 q4q1 q2 q3

q1 q3

q2 q4

0q 0q 0q 0q 0q q1 q1 q1 q1 q1 q2 q2 q2 q3 q3

Figure 5.1: The illustration of the point (1) of Fact 5.5. In this case the
representation of the length of the path π in the dual Ostrowski numeration
system is given by: rep(π) = (1, 4, 3, 2) and |π| = 1·|q0|+4·|q1|+3·|q2|+2·|q3|.

Proof
Point (1)
Let π be a path from the root to some internal node v in G∞ � an in�nite
compacted subword graph corresponding to the standard word given by the
directive sequence γ = (γ0, γ1, γ2, . . .), and let rep(π) = (h0, h1, . . .) be de�ned
as above. It is su�cient to prove that all requirements of the de�nition of
the dual Ostrowski numeration system are satis�ed.

The construction of the path π implies that

|π| = h0 · q0 + h1 · q1 + h2 · q2 + . . . and ∀i 0 ≤ hi ≤ γi.
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Moreover, from the structure of G∞ (see Figure 5.1), it is obvious that if for
some i there is hi < γi (we have taken qi less than γi times) and hi is not
the last non zero component of rep(π) then hi+1 > 0 (we must take at least
one qi+1 to continue the construction of the path π). This concludes the
proof of the point (1).

Point (2)
The thesis follows directly from the point (1) and the uniqueness of the
representation in the dual Ostrowski numeration system. �

5.2 S-language and S-automaton

The S-language and the S-automaton are ideas related to the dual Ostrowski
numeration system discussed in the previous section, but can be also de�ned
independently. These objects were for the �rst time described in [6].

Recall that |w|a denotes the number of occurrences of the letter a in the
word w. For a directive sequence γ = (γ0, γ1, . . . , γn) and the alphabet
A = {a0, . . . , an} we de�ne the S-language L = S-lan(γ) as follows:

• if γn = 1 then L is the set of all subsequences u of the word aγ00 a
γ1
1 . . . aγn

n ,
which satisfy:

� |u|an = 1,

� ∀0<i<n |u|ai
< γi =⇒ |u|ai+1

> 0,

• if γn > 1 then L = S-lan(γ0, γ1, . . . γn−1, γn − 1, 1).

The S-automaton, denoted by S-aut(γ), is de�ned as the minimal determin-
istic automaton accepting the language S-lan(γ). In the automaton S-aut(γ)
we exclude the dead state � the nonaccepting state, which loops itself (each
transition from this state goes back to itself). The missing edges in the graph
of the automaton are assumed to go to the dead state.

Recall that a word z ∈ {a, b}∗ is a special pre�x of a word w ∈ {a, b}∗ if
both za and zb are subwords of w. Recall also the structure of compacted
subword graphs of standard words (see the chapter 2). The following fact is
a direct implication of Fact 2.2.

Fact 5.6
The minimal S-automaton (without the dead state) for a directive sequence γ
is isomorphic as a graph with the compacted directed acyclic subword graph
of the standard Sturmian word Sw(γ).
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a1a1a0

a1

a2 a3 a3 a3 a4

a4

a4
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a3
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Figure 5.2: The S-automaton (the minimal deterministic automaton, with-
out the dead state) S-aut(1, 2, 1, 3, 1). The only accepting state is the sink
node.

A pre�x u of a word w is called maximal if u is not a proper pre�x of another
pre�x of w. Recall that the basic subword yk is de�ned as the reverse of xk,
where xk is as in the equation (1.1), and ŵ � as the pre�x of w of the size 2.

For the directive sequence γ = (γ0, . . . , γn) and the alphabet A = {a0, . . . , an}
we de�ne the following morphism hγ:

• If γn = 1 then hγ(ai) = yi, for 0 ≤ i < n and hγ(an) = ŷn.

• If γn > 1 then hγ(ai) = yi, for 0 ≤ i ≤ n, and hγ(an+1) = ŷn+1.

The morphic image of a language is meant in the usual sense and the morphic
image of an automaton results by changing the label of each edge of this
automaton using this morphism.

The following results are implied by Fact 2.2 and Fact 2.6.

Fact 5.7
Let γ be a directive sequence and Sw(γ) be a standard word.

(1) The set of maximal pre�xes of Sw(γ) equals hγ
(
S-lan(γ)

)
(it is the

morphic image of the S-language for γ).

(2) The compacted subword graph of Sw(γ) is the image of the S-automaton
S-aut(γ) under the morphism hγ.



Conclusions and �nal remarks

The aim of the thesis was to study some problems related to repetitions and
the combinatorial structure for one of the most thoroughly investigated class
of strings in combinatorics on words � the standard Sturmian words.

The detailed analysis of the subword graphs structure of those words, done in
the chapter 2, leads to simple alternative graph-based proofs of several known
facts and to special easy algorithms computing some properties of standard
words. It also implies an interesting interpretation of the representation of
integer numbers in the dual Ostrowski numeration system.

The matter of the chapters 3 and 4 was the investigation of the structure
of repetitions in standard words. We have presented the formulas for the
numbers of runs and distinct squares along with the detailed analysis of their
asymptotic behaviour. The complete understanding of their combinatorial
structure for a large class of complicated words is a step towards a better
understanding of this problem in general.

The maximal repetition ratio 0.8 and the square ratio 0.9 for standard words
has been �rst discovered by us doing experiments with very long strings.
Similarly, we were tuning many intermediate formulas with the assistance of
the computer. Our algorithms for computing the number of runs and and
the number of distinct squares in standard words are examples of the very
fast computation on highly compressed texts in linear time with respect to
the size of their compressed representation.

For the Fibonacci words the number of distinct squares is only one more than
the number of runs. The results of this thesis show that those numbers are
not so closely related in general. In case of well structured words (Sturmian
words) the density ratio of the distinct squares (the asymptotic quotient of the
maximal number of squares by the length of the string) and the density ratio
of the maximal repetitions are close, however both limits could be reached
for di�erent types of words.
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