
Provable countermeasures against
Hardware Trojans

Małgorzata Gałązka
no. album: 277288

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

Dissertation
in the field of Natural Sciences

in the discipline of Computer and Information Sciences

Dissertation carried out under the supervision of
prof. dr hab. Stefan Dziembowski

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

Warsaw, April 2024

To my beloved Husband.

Funding

NCN (National Science Centre) OPUS Grant Blockchain wallets – cryptographic theory and applications
NCBiR POWER Grant Kartezjusz
FNP TEAM Grant Cryptographic Defence Against Malicious Hardware Manufacturers

Oświadczenie kierującego pracą

Oświadczam, że niniejsza praca została przygotowana pod moim kierunkiem i stwierdzam,
że spełnia ona warunki do przedstawienia jej w postępowaniu o nadanie stopnia dok-
tora w dziedzinie nauk ścisłych i przyrodniczych w dyscyplinie informatyka.

Data Podpis kierującego pracą

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza rozprawa doktorska
została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób
niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem
procedur związanych z uzyskaniem stopnia doktora w innej jednostce.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją
elektroniczną.

Data Podpis autora pracy

Contents

Abstract 9

Streszczenie1 11

1 Introduction 13
1.1 Countermeasures against Hardware Trojan Horses as a part of cryp-

tography . 15
1.2 What are Hardware Trojan Horses 16

1.2.1 What Hardware Trojan Horses are not 16
1.2.2 Hardware Trojan Horses – taxonomy 17
1.2.3 Hardware Trojan Horses – modus operandi 18

1.3 Countermeasures against HTHs and their limitations 19
1.3.1 Realistic HTH-resilience expectations 19
1.3.2 Circuit compiler . 20
1.3.3 Testing . 21
1.3.4 Industrial and heuristic solutions 22

1.4 The thesis organization and personal contribution 22

2 Modeling the Hardware Trojan Horses and the countermeasures
against them 24
2.1 Elements of the model . 24
2.2 Security scheme . 25
2.3 Definitions . 26

3 Efficient testability against restricted Hardware Trojan Horses 29
3.1 Introduction . 29

3.1.1 Tampering model – discussion 31
3.1.2 Results . 32
3.1.3 Methods . 34
3.1.4 Related works . 35

3.2 Notation . 36
3.2.1 General notation for circuits 36
3.2.2 Notation for tampering . 37

3.3 Covering circuits . 39
3.3.1 Compiling circuit into wire-covered circuit 40
3.3.2 Constructing small wire-covering sets for k-divisible circuits . 42
3.3.3 Compiling circuits into gate-covered circuits 45
3.3.4 Reducing high conductivity of the control wires 48

1streszczenie [strES
>
úSEñE] - abstract

3.4 L-scheme . 49
3.4.1 The trivial solution for 2-conductive circuits 49
3.4.2 Sufficiently tamper-resilient gadgets. 50
3.4.3 Intermidiate solution for 3-conductive circuits 52
3.4.4 The CL compiler construction 55
3.4.5 The main result . 58

3.5 R-scheme . 60
3.5.1 Information Loss in Gate-Covered Circuits 60
3.5.2 Routing the Information Loss in Gate-Covered Circuits. 62
3.5.3 Minimizing the Number of External Wires 64

3.5.3.1 Construction of One Layer Compression 65
3.5.3.2 Composing The Layers 67
3.5.3.3 Information Losing Tuples 68
3.5.3.4 Algebraic Values on the Wires 70
3.5.3.5 Information Loss Survival for Sd 71

3.5.4 The Compiler . 75
3.6 Summary and discussion . 76

4 Very Simple Compilers against Total Hardware Trojan Horses 79
4.1 Results and applications . 80

4.1.1 (Non)achievable security for Very Simple Schemes 80
4.1.2 Motivation and possible applications 82

4.2 Preliminaries . 83
4.2.1 Test and deployment . 83
4.2.2 Completeness . 83
4.2.3 Security of simple schemes . 84
4.2.4 Lower bounds . 85
4.2.5 Efficiency of lower bound vs. constructions 86
4.2.6 Our results and conjectures 88
4.2.7 Stateless Trojans . 89
4.2.8 History-independent Trojans 89
4.2.9 Proof outline . 90

4.3 An optimal Very Simple Compiler . 92
4.3.1 The Π12 scheme . 94
4.3.2 Security of Π12 . 96

Conclusions 103

References 104

Abstract
The thesis addresses the problem of countermeasures against Hardware Tro-

jan Horses (HTHs), understood as adversarial and permanent modifications of
computational devices. We focus on solutions that can be formally proven to
be secure. We model a computational device as a logical circuit and incorpo-
rate the possibility of malicious modification. The scope of such modification
varies – sometimes, the adversary can replace the circuit with another one, and
sometimes, the adversary needs to preserve the original topology. In any case,
the HTH is digital, by which we mean that it can use only official input/output
channels to communicate. We start with a short survey of prior solutions based
on cryptographic primitives such as Verifiable Computation, Multi-Party Com-
putation, and Interactive Coding. Then, we proceed to the main technical part
of this thesis, i.e., we propose and investigate in-depth novel countermeasures:
Very Simple Circuit Compilers and Efficiently Testable Circuits.

All of the protection schemes against HTHs (both already existing in the
literature and the ones presented in this thesis) consist of at least one of the
following two parts: (i) circuit compiler and (ii) testing procedure. Circuit
compiler is a procedure which, for a given circuit F which realizes functionality
F , outputs another circuit F̂ , which also realizes F . F̂ consists of parts the
adversary can modify – we say that they are HTH-infected – and, sometimes,
a simple trustfully manufactured part called a master module. Most of the
testing procedures work in the following way: the lifecycle of the circuit F̂ is
divided into two phases – lab phase and wild phase. Circuit F̂ during the lab
phase is given inputs (a) from an arbitrary set or (b) randomly chosen with a
particular distribution; its outputs are compared to reference values. If they
agree (i.e., the device passes the lab), it is released into the wild, where F̂ is
given inputs (a) chosen by the adversary or (b) from a particular distribution.
The lengths of these phases are measured in the number of invocations.

As the first result, we propose a protection scheme against HTHs which can
permanently tamper with F̂ . This scheme transforms every F into Efficiently
Testable Circuit F̂ and its test set T. The construction achieves convincing
parameters: security is granted with overwhelming or equal 1 probability for
the unbounded length of the wild phase; the overhead in the size of the compiled
circuit is linear with a factor less than 20; the size of the test set is constant
(or linear in the security parameter for more advanced setting). We use a
new notion of information loss in the security proof. It inherits a basic idea
from Shannon’s entropy but without relation to the probability measure. The
results are presented in papers [Bai+23a] Efficiently Testable Circuits. 2023,
[Bai+23b] Efficiently Testable Circuits without Conductivity. 2023.

The second original result is a notion of Very Simple Schemes. Here, the
compiled circuit F̂ consists of a master module and some untrusted instanti-

9

ations of F . This approach has two main objectives: simplifying the device’s
master module and minimal overhead in the size of the compiled circuit. We
show a construction that meets such schemes’ achievable security parameters.
This countermeasure thwarts HTHs, which can completely modify the circuit;
we do not allow the adversary to influence the input the circuit receives in the
wild. This result was presented in [Cha+21] Trojan-resilience without cryptog-
raphy. 2021.

Keywords: hardware trojans, tampering model, physical attacks on digital
hardware

10

Dowodliwe metody obrony przed sprzętowymi koniami1 trojańskimi

Streszczenie

Poniższa praca omawia problem środków zaradczych wobec sprzętowych
koni trojańskich (Hardware Trojan Horse, w skrócie HTH) rozumianych jako
złośliwe i permanentne modyfikacje urządzeń obliczeniowych. Skupiamy się na
rozwiązaniach, których bezpieczeństwo można formalnie wykazać. Urządzenia
obliczeniowe modelujemy jako obwody logiczne i uwzględniamy możliwość mo-
dyfikacji przez przeciwnika. Zakres tej modyfikacji różni się w zależności od
modelu – czasem przeciwnik może zastąpić układ innym, a czasem musi za-
chować jego pierwotną topologię. W każdym wypadku HTH jest cyfrowy, co
oznacza, że może używać tylko oficjalnych kanałów wejścia i wyjścia w komuni-
kacji ze światem zewnętrznym. Pracę rozpoczynamy od przeglądu istniejących
w literaturze środków zaradczych wykorzystujących takie narzędzia kryptogra-
ficzne, jak Verifiable Computation, Multi-Party Computation oraz Interactive
Coding. W pozostałej części pracy prezentujemy nowe metod obrony przez
HTH: Very Simple Compilers oraz Efficiently Testable Circuits.

Wszystkie metody obrony przed HTH zaprezentowane w pracy (zarówno ist-
niejące, jak i nowe) składają się z co najmniej jednego z następujących dwóch
elementów: (i) kompilatora obwodów, (ii) procedury testującej. Kompilator ob-
wodów to procedura, która dla danego obwodu F realizującego funkcjonalność
F , generuje obwód F̂ , który również realizuje F . F̂ składa się z części pro-
dukowanych w sposób niezaufany – mówimy, że są zainfekowane HTH – oraz,
czasami, prostego modułu produkowanego w sposób zaufany zwanego modu-
łem głównym. Procedura testowania działa zwykle w następujący sposób: życie
obwodu zostaje podzielone na dwie fazy – laboratoryjną oraz na wolności. Ob-
wód F̂ w fazie laboratoryjnej otrzymuje wejścia (a) z dowolnego zbioru lub (b)
losowo wybrane z określonego rozkładu; jego wyjścia są porównywane z warto-
ściami referencyjnymi. Jeśli się zgadzają (tj. urządzenie przechodzi test labo-
ratoryjny), rozpoczyna życie na wolności, gdzie otrzymuje wejścia (a) wybrane
przez przeciwnika lub (b) z określonego rozkładu. Długości tych faz mierzone
są w liczbie wywołań.

Jako pierwszy środek zaradczy prezentujemy schemat ochrony przed HTH,
który przekształca dowolny obwód F w obwód efektywnie testowalny (Effi-
ciently Testable Circuit) F̂ i jego zbiór testowy T. Zaproponowana przez nas
konstrukcja ma przekonujące parametry – bezpieczeństwo może zostać złamane
z zaniedbywalnym prawdopodobieństwem, nawet gdy długość fazy na wolności

1Zgodnie z opinią językoznawcy i leksykografa dra hab. Mirosława Bańko, prof. UW, koniami
jest poprawną formą nadrzędnika liczby mnogiej słowa koń w przypadku związku frazeologicznego
koń trojański odnoszącego się do złośliwego oprogramowania [Bań03].

11

jest nieograniczona; kompilacja układu zwiększa jego rozmiar w sposób liniowy
z czynnikiem mniejszym niż 20; wielkość zbioru testowego jest stała. W do-
wodzie bezpieczeństwa wykorzystujemy nowe pojęcie utraty informacji (infor-
mation loss). Wykorzystuje ono podstawową ideę entropii Shannona, ale bez
odniesienia do miary prawdopodobieństwa. Wyniki są przedstawione w pra-
cach [Bai+23a] Efficiently Testable Circuits. 2023, [Bai+23b] Efficiently Testa-
ble Circuits without Conductivity. 2023.

Jako drugi środek zaradczy prezentujemy Very Simple Schemes. W tym wy-
padku skompilowany układ F̂ składa się z modułu głównego oraz niezaufanych
instancji F . Głównym celem w tym wypadku jest maksymalne uproszczenie
modułu głównego urządzenia oraz minimalne zwiększenie wielkości skompilo-
wanego układu. Prezentujemy konstrukcję, która spełnia osiągalne parametry
bezpieczeństwa takich schematów. Ten środek przeciwdziała HTH, które mogą
całkowicie zmodyfikować układ; urządzenie na wolności otrzymuje losowe wej-
ścia. Ten wynik został przedstawiony w pracy [Cha+21] Trojan-resilience wi-
thout cryptography. 2021.

Słowa kluczowe: sprzętowe konie trojańskie, tamperowanie obwodów lo-
gicznych, ataki fizyczne

12

1 Introduction

In the present world, we do have conventional wars. Sadly. However, our real-life
security depends more and more on the results of battles that happen in cyberspace.
Let the numbers do the talking: the global budget spent on digital security is esti-
mated at 154 bln USD in 2022 and is expected to grow up to USD 425 bln in 2030,
which gives 13.8% of annual growth1[23]. This thesis is devoted to one of the as-
pects of digital security – the countermeasures against Hardware Trojan Horses. To
introduce this notion, we recall the story of the (antique) Trojan Horse. A wooden
structure of a horse given by the Greeks to the city of Troy was filled with soldiers
and allowed the Greek army to enter the attacked city. Who could accept such a
suspicious gift, one could ask? In the present world, it does not fundamentally differ
from assigning the production of computational devices to an untrusted party. Simi-
larly, a device received in such a process does not look harmful; nevertheless, the user
is unaware of its actual behavior and should remain cautious. Generally speaking, by
Hardware Trojan Horse (HTH), we understand an adversarially chosen inconsistency
between a computing device’s actual and promised functionality [BT18].

The possibility of dishonest production of computing devices is perfectly justified
in the modern world. In times of globalization and exorbitant optimization of most
economic decisions and processes, some economic schemes, such as outsourcing, are
gaining tremendous popularity. Many entities worldwide, e.g., electronic device man-
ufacturers and the army, are interested in the best existing solutions, particularly in
the field of circuits. At the same time, building a factory of the most advanced (the
fastest, smallest, least energy consuming) circuits is costly. Therefore, there are only
a dozen of them in existence [TSZ13]. They produce and sell the devices but should
not be considered trusted. Hence, a model that includes the existence of HTHs is
well-motivated.

The threats of HTH-infection had already become a reality. The press constantly
reports successful attacks based on HTHs. As examples, we can mention spying
on the citizens by the US government [Sch15], spying on key US entities by HTH-
infected Chinese motherboards [RR18], or spying on the crucial US infrastructure
by cranes made in China [Sha23]. We can speculate on how many such attacks were
not revealed to the public; remain undetected; and happen at this very moment. To
give a flavor of such an adversarial behavior and its consequences, we provide some
made-up exemplary threats both on a micro-scale – when an isolated device is used
– and on a macro-scale – when the untrusted devices form a network.

1Compared to the global military expenditure of USD 2240 bln in 2022 with 3.4% growth from
2021 [Luc22].

13

Micro-scale. Recall that cryptocurrencies are digital currencies protected by cryp-
tographic protocols against stealth or double-spend. In this context, we can think of
electronic wallets as exemplary devices vulnerable to micro-scale damage made by
HTHs. Having and spending, e.g., bitcoins, ether, or zerocoins, requires keeping some
private key trustworthy [Nak+08; Woo+14; Mie+13]. It is a fundamental aspect of
cryptocurrencies – in contrast to checkbook money, they have no bank guarantees,
so they cannot be recovered when stolen by a cyberattack. Because of this, a typical
participant in the cryptocurrency market does not want to store her private keys on
a laptop or smartphone – these devices are often connected to an untrusted network
or peripherals, which makes them vulnerable to malicious software. Trading on the
dedicated exchange markets is also considered potentially dangerous because of the
risk of going bankrupt1. To protect crypto assets, electronic wallets were proposed
[Bam+14]. These external, easily disconnectable physical devices store private keys
and allow the owners to perform some operations, such as financial transfers, when
plugged in. However, as long as an untrusted party performs their production pro-
cess, they should not be considered honest. An HTH-infected electronic wallet would
endanger its owner’s money by performing unauthorized operations, leaking the key,
or simply deleting it.

Macro-scale. To understand the threat made by HTHs on a macro-scale, we can
think of military weapons that receive physical signals from the environment by
radio. The adversary can trigger HTH-infected weapons, e.g., by a wave of predefined
frequency, and make them (a) deny service, (b) leak some information to her, or (c)
start fighting against their army. It is an obvious threat to the real-world security
on a battlefield, especially on a macro-scale, when such events happen massively in
a coordinated way. Many other systems, such as traffic control/electric networks or
smart homes/buildings, are also perfect targets for such an attack.

This thesis aims to propose and follow new research paths on the topic of provable
countermeasures against Hardware Trojan Horses and to put them into the context
of existing solutions to this problem. The provability aspect is essential; the industry
heuristic solutions to this problem are insufficient from a cryptographic perspective.
However, we do not want to overlook the engineering aspect of this topic. We strive to
make our research both formal and practical: the model’s development and analysis
are at least as crucial as novel, intelligent methods of preventing HTHs in circuits.

1Some examples from 2022: FTX, Blockfi, Celsius, and Voyager [Mad23].

14

1.1 Countermeasures against Hardware Trojan Horses as a
part of cryptography

How does the problem of countermeasures against Hardware Trojan Horses relate to
codes, passwords, ciphers, or other notions cryptography is known from? We must
always be aware that these are only important and easily understandable tools to
achieve its goal, which was perfectly stated almost twenty years ago in Foundations
of Cryptography [Gol+05]:

Modern cryptography is concerned with the construction of information
systems that are robust against malicious attempts to make these systems
deviate from their prescribed functionality.

Since the words above were written, the protected functionalities have continually
evolved and improved. Nowadays, humankind uses information systems that are im-
mensely complex in design, production, maintenance, reparation, and usage. Hence,
cryptography is challenged by problems that sometimes cannot even be formulated
in a simple language of secure communication or encryption scheme. Protection
against Hardware Trojan Horses is one of them.

Cryptographic schemes have two main areas vulnerable to attack: (i) functionality
and (ii) implementation; because of the nature of this field of science – it solves the
problems for (i) theoretical models of (ii) reality. Attacks on functionality happen
in the idealized world where honest users always follow the cryptographic protocol
and computing devices behave according to their specifications. In this world, we
can state and prove theorems. Therefore, attacks of such type happen mostly for
heuristic solutions. Attacks on implementation are possible since the reality strongly
differs from the model. For instance, some people choose easily breakable passwords,
or the army orders electronic components from manufacturers of a hostile country
that behave far from the specifications. The adversary is released from the prison
of the cryptographers’ presumptions about reality; she can break the security of a
theoretically secure system.

To preserve formal cryptographic guarantees, we need to incorporate possible
implementation attack scenarios into the model of reality and try to achieve some
provable security parameters. This is how, e.g., password-based cryptography was
born [BM92] – human habits are in contradiction with assumptions about uniformly
chosen random keys – these were replaced by passwords from good enough distri-
butions.1 In the real world, successful attacks usually focus on the implementation

1Here, the model and the reality met in the middle. Password-based cryptography gives up
uniformly distributed keys and relies on passwords drawn from a good enough distribution. Gen-

15

because if the security is provable (up to the factor of some complexity assumption),
then attacking the functionality works for negligible probability (or would require an
algorithm that is strongly believed not to exist).

Electronic devices are inherent in implementing the vast majority of modern in-
formation systems. As such, they are potential targets for the adversary, which
is far from any black-box model of computation. For example, the adversary can
passively measure some observable quantities (such as sound waves, power consump-
tion, and time delay) and reason about the secret key or actively attack the device
by inducing an electromagnetic field nearby. The adversarial behavior that uses
such methods is called physical attack. There exists a broad literature on this topic,
headed by papers reporting successful attacks bypassing the underlying theoretical
security [Koc96; KJJ99; QS01; GMO01; Pag02], and followed by papers proposing
theoretical [ISW03; Ish+06; DDF14; ADF16] and practical countermeasures against
them. In this context, HTH is an extreme example of a physical attack.

1.2 What are Hardware Trojan Horses

This section introduces how formal modeling Hardware Trojan Horses can be done.
As said before, by HTHs we understand adversarial modifications of the electronic
device unknown to the user. The model is parametrized by the scope of modification
done by HTH (see Section 1.2.2). In the context of HTHs, the device is modeled
by an algebraic/boolean circuit [Wah+16; Ish+06; DFS16] with some alterations
and parameters, such as the set of allowed gates (e.g., memory and random gates),
method of initialization, volatility, conductivity (see Section 3), etc.

1.2.1 What Hardware Trojan Horses are not

There are other notions similar to HTHs. Let us now explain the differences.

Unintentional errors. Errors are a normal part of the design/production process,
as well as their detection. Unlike HTHs, errors are introduced unintentionally, which

erally, a random variable X has a good enough distribution if its min-entropy is big enough, i.e.,
H∞(X) > λ. Typically, we assume λ > 512, but in the real world, every tenth real-world pass-
word is among the 25 most popular passwords, according to [Mas16]. Hence, new, more advanced
password requirements emerged – they must be long enough and consist of small and big letters,
digits, special signs, etc. These conditions make the real-world min-entropy of passwords higher.
This is how a bridge was created between the reality of weak passwords and the theory of uniformly
distributed keys.

16

has significant consequences. Generally, errors occur randomly or in areas especially
vulnerable to them – HTHs are introduced maliciously. Therefore, the methods of
error and HTHs detection must differ. In particular, the adversary aware of the
error detection methods used can find a way to compromise the security. Moreover,
the damage caused by the error is unpredictable to the user and the adversary. It
contrasts the devastation caused by HTHs, which can be precisely designed.

Software Trojan Horses (STHs). Modes of operation of STHs and HTHs are
similar. As an HTH pretends to be a different circuit, an STH imitates a different
software, such as some form or an advertisement. However, STHs are much easier to
remove from the hardware, while HTHs are the inherent part of the device, which
one cannot eliminate.

Physical Trojans. By physical Trojans, we understand the device modification,
which may consist of some unauthorized communication channels realized by, e.g., an
antenna, a clock, a sensor, or a transmitter. We strongly insist that HTH are digital
[Bai+23a], so as the circuit modification, they can influence only the input-output
behavior of the infected device, not the input/output by itself. In particular, HTH
cannot communicate side-channel with the outer world. In other words, the input
and the output of the HTH-infected circuit are according to specification, even if the
computation done by it is not1.

1.2.2 Hardware Trojan Horses – taxonomy

One approach to modeling the HTHs allows the adversary to replace the computing
device with whatever she wants, up to retaining the specified input/output channels.
This model is very challenging because of the role reversal. Usually, the device is
a black box to the adversary; here, it is a black box to the user. However, such
an approach is the most general and allows us to model every digital HTH that we
can imagine. This model (Total Hardware Trojan Horses – THTHs) is investigated
in the literature [DFS16; Wah+16] with successes in constructions and impossibility
results.

This thesis also considers a notion of constrained HTHs, inspired by [Ish+06].
The authors of [Ish+06] describe a method of preventing a physical attack where the
adversary can tamper with the circuit. By tampering, they mean that values taken
by some adversarially chosen wires of a Boolean circuit are (i) toggled (negated), (ii)
set to 0, or (iii) set to 1. It leads to questions about the countermeasures against

1Practitioners sometimes consider Physical Trojans to be Hardware Trojan Horses [BT18].

17

HTHs, which must preserve the topology of the circuit. Such a model is reasonable
from a practical point of view – the circuit’s topology is a fundamental property that
the adversary cannot arbitrarily change. This line of work is presented in [Bai+23a;
Bai+23b] and will be described in detail in Section 3.

Research on the HTHs, whose size strongly depends on the size of the original
circuit would be a well-motivated research topic since the size (and weight) is an
easily measurable characteristic of an electronic device. For instance, we could ask,
what damage can be done by a HTH which is only one, two, or three gates bigger
than the original circuit? Unfortunately, questions of this type for arbitrary circuits
take us to the land of NP-hard problems, as we informally argue below. Assume
that a circuit F is given. In the first place, (if P ̸= NP) there exists no efficient
compressing procedure to find a F ′ that computes the same function as F and is
minimal in the number of gates1. Therefore, the HTH-overhead in size cannot be
easily bounded – the protocol cannot efficiently compute the minimal size of a circuit
for arbitrary function, but at the same time, there can exist an adversary, who knows
the minimal circuit computing f .2 Even the existence of an efficient algorithm that
finds canonical circuit form for arbitrary function is an open problem [Gar+16]. To
our knowledge, there are neither positive nor negative results on countermeasures
against HTHs of this type. Still, it would be an exciting research topic at the
intersection of cryptography, complexity theory, and approximation algorithmics.

1.2.3 Hardware Trojan Horses – modus operandi

How could the Trojan Horse get to the protected city? As mentioned in the begin-
ning, producing circuits is now widely outsourced, and many problems with HTHs
start in this place. The way between an abstract functionality and a physical de-
vice that realizes it consists of a few steps, most vulnerable to adversarial behavior
[BT18]. For example, the design phase is often supported by optimizing programs
(algorithms), which are not trusted and can act maliciously, even if the designer
himself is honest. Moreover, during the fabrication process, some errors can uninten-
tionally occur, such as stuck-at-0 and stuck-at-1 errors, meaning that some wires in
the circuit always carry 0,1 values, respectively. Malicious manufacturers can inten-
tionally implement such errors and pretend they are a normal part of the production
process.

1We can recall Circuit Satisfiability Problem – given a circuit F decide if there exists an input,
such that its output is equal 1. If there were a compressing procedure, we could check if compressed
F ′ is a trivial circuit that always outputs 0

2The existence of such an adversary is not straightforward – recall The Five Worlds [Imp95].

18

An HTH-infected device may work incorrectly. We do not expect that HTH de-
viate from the beginning for every input since some testing is usually a part of the
production process. Activation of HTH (by which we mean that it starts malfunc-
tioning) can be done randomly, by a cheat code, or by a timebomb. A cheat code
is a special input recognized by the HTH. This method is possible since we cannot
exclude the possibility that the adversary can influence or even control the inputs
given to the circuit (however, we sometimes assume that the inputs are random). A
time bomb activates the HTH after some predefined (by the adversary) number of
invocations of the circuit. Any combination of all these three methods is possible.

Once HTH is active, it starts misbehaving. By this, we can understand both:
Denial of Service attack and outputting wrong values. The exemplary consequences
of the latter are making the device (or the system it is a part of) deviate from the
original functionality or leaking secret from a stateful circuit (as its output).

1.3 Countermeasures against HTHs and their limitations

In this section, we present existing countermeasures against HTHs. We focus primar-
ily on provable solutions, but at the very end, we will also briefly present heuristics
and solutions coming from practitioners.

1.3.1 Realistic HTH-resilience expectations

The main purpose of research on countermeasures against HTHs is to find methods
that make the circuits resilient against this type of physical attack. HTH-resilience
combines security-based notions such as secrecy, robustness, and correctness in the
presence of HTH. Nevertheless, as said before, models with (Total) HTHs are very
difficult to work with. Therefore, it is unsurprising that standard cryptographic
notions, such as negligible probability of deviation, are sometimes relaxed. Such a
relaxation must be done in the case of Very Simple Compilers – a notion presented
in Section 4.

There is no hope for THTH-resilience if the circuit has no THTH-free parts. The
impossibility result from [DFS16] shows that no resilience can be granted if the device
is produced exclusively by an untrusted party who can infect it with THTH. They
showed even more that the circuit must perform some non-trivial computation to
have any hope for protection against THTH, even if it consists of some number of
subdevices produced by the adversary.

Involving the adversary in the device’s manufacturing process has significant im-
plications. We can expect this – one of the exciting results in cryptography is the

19

Figure 1: Possible game outcomes between the adversary and the user.

impossibility of general obfuscation [Bar+01a] (in contrast to the indistinguishabil-
ity obfuscation that is believed to exist). The authors show that the adversary with
access to the description of a circuit computing some F is much more potent than
an adversary with only oracle access to F . This has two-level consequences for the
problem of protection against HTHs. Firstly, we cannot hope for a generic compiler
that would hide the protected functionality from the adversary (who is a part of the
production process). Secondly, for similar reasons as in [Bar+01a], the adversary
can build an HTH which modifies F arbitrarily by using the circuit F as a building
block of an HTH. This allows the adversary, e.g., to use a cheat code based on the
output of F .

When relying on an untrusted party, sometimes nothing can be improved. In the
context of HTHs, we can achieve HTH-resilience, but for some adversaries, we can
never end up with a working device! We can elaborate on this a bit more closely.
There are two axes of possible scenarios. The first one depends on the adversary
– she can produce (i) honest or (ii) deviating devices. The second axis depends
on the result of the security scheme. The devices can be (a) accepted and used or
(b) rejected as potentially malicious. A dummy protocol that always chooses (b)
is perfectly secure; nevertheless, security is just a tool, or, in other words, just a
foundation for some actions that the user wants to perform. The protocol should not
reject honest devices. On the other hand, (b) is the only reasonable answer if the
adversary chooses (ii). In this case, the scheme cannot achieve correctness because
no (accepted) device exists. In other words, the reasonable HTH-resilient scheme
cannot accept (ii a) and should avoid (i b) – see Figure 1.

1.3.2 Circuit compiler

In the case of HTH, we focus on the physical modifications of the circuit, which makes
our considerations, perhaps surprisingly, simultaneously very abstract and low-level.
They are abstract because we model electronic devices as logical/arithmetic circuits.

20

They are low-level because we focus on the values carried by single wires (see Sec-
tion 3). Modeling physical attacks allows cryptographic researchers to focus on their
impact on the (abstract) circuit, not physical effects or industrial issues. On the other
hand, such considerations give great importance to low-level issues, such as the set of
allowed gates. Nevertheless, the most common way to achieve HTH-resilience is to
compile the functionality F . This line of research is widely used, i.e., in the context
of indistinguishability obfuscation [Bar+01b] or leakage-resilience [ISW03]1. It is
naturally continued also for other types of physical attacks, such as HTHs [Wah+16;
DFS16; Ish+06; Efr+22].

A circuit compiler is a procedure that, given an arbitrary functionality (identified
with a circuit), outputs a circuit that realizes it and, at the same time, is resilient
against some (prescribed) attack, in particular – HTH. The issue of efficiency is
a point to discuss – by this, we mean the overhead in running time, circuit size,
output, input, etc. The main benefit of this method is its generality – the designer
of HTH-resilient circuits is not interested in what the circuit does by itself; resilience
is granted for every input circuit whenever it computes encryption or a majority
function.

Many of the compilers invented to counteract possible HTH-infection use ad-
vanced cryptographic tools, such as Verifiable Computation [Wah+16], Multi-Party
Computation [DFS16], Secret Sharing Schemes [Ish+06], Interactive Coding [Efr+22],
etc. Another method of crypto-provenance used to achieve HTH-resilience is the se-
curity amplification [DFS16].

1.3.3 Testing

There is an interesting paradox – on the one hand, infection by HTH makes the device
entirely under the adversary’s control. On the other hand, HTH is very limited – it
must behave in the same way every time, not adaptively2. This observation brings
us to the idea of testing the devices – on a high level, it is possible since the deviation
is set once forever.

Electronic devices are tested by the circuit industry from the time they are pro-
duced. For instance, one can compare the outputs of two or more devices – this
method can detect the errors that occur independently and with low probability.
Unfortunately, it is not the case in the context of HTHs – the errors can be induced
in a coordinated way; for instance, all devices can be modified similarly.

1We do not even mention here the most natural ”compilers”, which, e.g., make the circuit layered
or bound fan-in or fan-out of its gates.

2In stateful circuits, we treat their inner state as a part of the input.

21

Much more general attempts to predict the future, which cannot be foreseen, are
given by statistics. Among all of its tools, it is worth mentioning the Kaplan-Meier
survival estimator [KM58], used to estimate the length of life of some entities, such as
people, marriages, animals, etc. Notably, the Kaplan-Meier survival estimator works
even if some of the elements of the observable set disappear as long as it happens
independently and randomly. We can see an analogous of it in testing the device a
random number of times before releasing it.

Testing in the presence of adversarial behavior was investigated in [DFS16], where
the lifetime of the device is divided into 2 phases: (i) lab phase (just after leaving
the conveyor belt), where the behavior of the circuit is compared to the expectation
by executing some number of tests on it and (ii) wild phase where the device is used.
If the device passes the tests, some guarantees about its behavior in the wild can
be given. This line of research was continued in [Cha+21; Bai+23a; Bai+23b] and
resulted in the notion of Testable Circuits, which topic will be presented in Sections 3,
4.

1.3.4 Industrial and heuristic solutions

As mentioned before, testing is a part of the standard circuit production process. The
tester looks most often for errors – which are unintentional. Industrial research on
preventing and detecting HTHs [BT18] uses techniques such as split manufacturing,
obfuscation- and power-based countermeasures, design-for-trust, etc. Side-channel
attacks also inspire a line of research – in this case, the side-channel effects are used
to improve the security of a system [HBM18]. Recently, a optical detection method
of HTHwas presented [Pus+22]. Nevertheless, these methods are heuristics or do
not work in our model, so we will not discuss them in detail.

1.4 The thesis organization and personal contribution

I will explain how this thesis is organized. Because of the formal requirements in
Poland to present a Ph.D. thesis, I will also describe in detail which parts of the
original results in joint papers are mine.

In Section 2, I present a template commonly used to protect a single device
from possible damage made by some HTH. I aim to give an easily understandable
description of a framework present in literature, and I go as formal as it is needed,
no further. The nature of this framework is synthethical, by which I mean it is not
established prior to the research; instead, I identified some parts of it in different
papers and gave a description that can contain the existing solutions.

22

Section 3 is based on papers [Bai+23a] Efficiently Testable Circuits, [Bai+23b]
Efficiently Testable Circuits without Conductivity. In the paper [Bai+23a] presented
at the 14th Innovations in Theoretical Computer Science conference, I proposed
the main ideas of construction, such as wire-covering sets, STRmOR, and STRmOR
gadgets definitions and their realiations. I also did most of the main proofs, including
the idea of information loss. In the paper [Bai+23b] presented at the Theory of
Cryptography Conference 2023, I developed the notions of information loss and gate-
covering sets. I gave the main contribution in the proof of Theorems 10. The sections
and statements mostly developed by the other authors are given for completeness
and explicitly marked with footnotes.

Section 4 is based on paper [Cha+21] Trojan-resilience without cryptography,
which was presented at the Theory of Cryptography Conference 2021. The authors
developed the general idea, motivation, and proofs jointly. I wrote down the Section
4.3 and resolved some mediocre and minor issues that arrived during that process.
Section 4.2 is cited for completeness.

23

2 Modeling the Hardware Trojan Horses and the
countermeasures against them

This section describes the template of the security scheme against HTH along with
the security definition. Every paper on countermeasures against HTHs gives precise
terminology and modeling. We do not insist on extreme formality here – it is unnec-
essary and would make things less clear. We want to synthesize existing proofs to
make the rest of this thesis more understandable.

Security games. Security games are widely used formal tools to show the security
of cryptographic schemes – we can think of them as thought experiments. More pre-
cisely, a security game is a procedure that can call the adversary, the algorithms that
are part of the security protocol, do some computation, draw random numbers, etc.
Ultimately, such a procedure outputs something, usually a bit, that we can interpret
as adversary loss/win or maintained/compromised security. When the protocol’s se-
curity is defined by a game, the security proof is a chain of security games – the first
corresponds to the original scheme and modeling. Every other game in the chain
is a hybrid game, which differs slightly from the previous in terms of how often the
adversary wins. The last one is a game, for which we can easily show or see that the
adversary cannot win with high probability.

Every template has some structure and parameters. In our case, some parameters
are not simple objects such as numbers or graphs but procedures.

2.1 Elements of the model

We can elaborate on the elements of the model we work with.

The set of allowed circuits C. First of all, the model consists of C – the set
of allowed circuits (corresponding to the abstract functionalities) that must be pro-
tectable against HTHs. Normally, we expect the scheme to operate on any circuit,
but still, the model must be precise if we allow memory/random gates; if wires of a
circuit are conductive (see Section 3); what is possible fan-in/fan-out of the gates;
etc.

Scope of modification done by A. The adversary A is described by the scope
of modification she can make in the part of the circuit under her control. The

24

compiled circuit F̂ consists of (i) parts assumed to be produced honestly and (ii)
parts the adversary A can modify. In this thesis, we work with two main models of
modification. The first one allows the adversary to replace her parts with whatever
she wants (see Section 4). These we call Total Hardware Trojan Horses. The second
one requires the adversary to preserve the topology of a circuit (see Section 3).

The compiler C and the security guarantess S it gives. The compiler C
compiles any circuit F from the set C into F̂ so that: (i) F̂ is functionally equivalent
to F , i.e., F̂ can easily emulate the input-output behavior of F ; (ii) F̂ is secure against
the adversary A in the sense of the security guarantees S. The security guarantees
include, e.g., the upper bound on the probability of deviation of the circuit F̂ in the
wild phase.

2.2 Security scheme

Now, we are ready to explain the steps of the security scheme.

1. The adversary A chooses a circuit F from the set of allowed circuits C.

2. The compiler C compiles some circuit F , and outputs a tuple (F̂ ,T), where F̂
is expected to be functionally equivalent to F .

3. The adversary chooses a modification τ of F̂

4. The infected F̂ τ is tested by the lab phase T.

5. If F̂ τ passes the lab phase T, some proven security guarantees S are given to
it in the wild phase.

To clarify the game, we discuss these steps in detail and show how it works in Figure
2.3.

The choice of functionality F . The adversary chooses F , because the compiler C
must work for every allowed circuit. We identify the circuits with their functionalities
here.

25

The output (F̂ ,T) of the compiler. The compiler provides a tuple (F̂ ,T) for
every circuit from C, in particular for the circuit chosen by the adversary. F̂ must be
functionally equivalent to F ; by this, we mean that the compiled circuit can easily
emulate the original circuit F behavior. For example, for F : Fn → Fm, F̂ : Fn+n′ →
Fm+m′ , we can say, that F̂ is functionally equivalent, if F̂ (X|0n′

) = F (X)|0m′ for
every input X (of length n), where "|" is a concatenation operator. It is indeed: the
circuit F̂ emulates the F behavior easily – to call F on input X, one can call F̂ on
input X|0n′ and output the first m bits of the result.

Description of F̂ also provides the information of which parts are produced hon-
estly and which (possibly) not – in other words, which parts can be modified by the
adversary.

Modification τ of the circuit. The adversary can choose the modification of the
parts of the circuits according to her limitations.

Description of and performing the lab phase T. The lab phase T describes the
testing procedure, such as the (possibly random) number of tests or the set of tests
to be performed. We usually assume access to a testing oracle – we can think of it as
a trusted software emulation of the circuit F̂ run on some trusted device (computer)
or simply the honest circuit F̂ . Recall that the motivation for investigating the
countermeasures against HTHs lies in optimizing the production process of circuits.
Therefore, the assumption that some (possibly inefficient) version of the circuit can
be produced honestly is not unrealistic. We usually say that F̂ τ passes the lab phase
if all of its outputs in this phase are correct, but there are possible other definitions
of passing the lab phase.

Security guarantees. Security granted by a specific protocol may differ in many
ways. We can ask, e.g., if the protocol is resilient against Denial of Service attacks,
if it compromises the secret key, what the length of the wild phase is, etc.

2.3 Definitions

Let us give a template definition of a circuit compiler being a countermeasure against
HTHs.

Definition 1 We say that C is a circuit compiler for a set of circuits C if for any
F ∈ C (corresponding to its abstract functionality F) it outputs a tuple (F̂ ,T). Here,

26

F̂ is an augmented description of the compiled circuit, and T is the lab (testing)
phase description.

Some issues, such as the lab phase, are most often understood directly from the
construction; for instance, we usually identify T with a set of tests given to the
compiled circuit.

Given all these, we can define the security granted by C.

Definition 2 We say, that C for a set of circuits C is S-resilient against A if the
tuple (F̂ ,T) = C(F) (where F ∈ C) meets the following conditions: whenever ˜̂F =

A(F̂) passes T, it achieves security guarantees S in the wild.

As mentioned, the proofs of HTH-resilience often use some security game as
a building block. In this case, the security guarantee is equivalent to a bounded
probability of winning some security game, parametrized by the setup, lab, and wild
phase. The winning condition is often simply an inconsistency between the outputs
of F̂ and F̂ τ on some inputs given to the circuit in the wild (see Figure 2.3).

27

Scheme parameters
set of allowed circuits C
adversary A
compiler C
security guarantees S

F̂

T, F

C
A

F

T

F̂ τ

reject

accept

F̂ τ
inputs outputs

wild phase

F̂ τ

F̂
=

lab phase

F̂
=

thought experiment

win/loss

setup phase

Figure 2: This figure shows the synthesis of protection schemes against HTH. Firstly,
there is a setup phase – choice of F and compilation. The adversary knows C, but it
can be randomized. Therefore, she is not assumed to get T. Secondly, there is the
lab phase. Testing compares the input’s actual and expected values defined by T.
If these values differ, the device is rejected; otherwise, it is accepted, and the wild
phase begins. In this phase, the untrusted device is getting some inputs that can be
controlled by A. The last part of the analysis is the thought experiment – in the
proofs, the actual and expected outputs of the device are compared. If the adversary
manages to make them different, she wins the game – the security is broken.

28

3 Efficient testability against restricted Hardware
Trojan Horses1

In this section, we investigate a restricted model of HTHs – the one where the topology
of the Boolean circuit is preserved. More precisely, we allow the adversary to modify
a circuit by tampering with its wires. Tampering is a notion extensively described in
[Ish+06]. In the model which we work in this section with, the adversary can apply to
every wire of the attacked circuit one of the following modifications: neg, one, zero.
By neg tampering, we understand that the value obtained from the preceding gate
is negated (another name for this operation is toggle). By zero and one tamperings,
we understand that the wire transmits 0 and 1, respectively, no matter what it gets
from the preceding gate. Some of the wires of the adversarial choice can remain
untampered.

Dummy tampering. Obviously, the adversary’s goal is to make a circuit mal-
function, not just to tamper. We can imagine a tampering of a circuit that does not
change its input-output behavior (see Figure 3). We do not insist on preventing such
dummy tampering attacks in this section.

3.1 Introduction

The protection schemes in this section fit perfectly into the template presented in
Section 2. Recall its structure and set the parameters.

The set of allowed circuits C. In this case, the set C consists of stateless circuits
with gates from the set {AND,OR,XOR,COPY,NOT} with bounded fan-in and fan-
out.

Scope of modif existication done by A. The adversary A can tamper with the
circuit F̂ , by which we mean assigning the wire tampering function τ to some of its
three possible wire tampering functions: neg, one, zero.

The compiler C and security guarantees S it gives. The design of the com-
pilers will be given in the next paragraphs and sections. For now, we can state

1Section based on papers [Bai+23a] Efficiently Testable Circuits, [Bai+23b] Efficiently Testable
Circuits without Conductivity.

29

neg

neg

00

01

10

11

0

1

1

0

input output

Figure 3: Dummy tampering on a circuit consisting of a single XOR gate. The truth
table for both circuits is the same. More about incorporating dummy tamperings
into a circuit, see Theorem 9.

30

the informal security guarantee they give: once the device passes the lab phase, it
deviates in the wild with negligible/zero probability.

Now, we describe the steps of the protection schemes.

1. Some functionality along with its circuit F is chosen (the theorems work for
every circuit and every adversary; therefore, we do not insist that the adversary
chooses F).

2. The compiler C compiles F into a tuple (F̂ ,T), where F̂ is functionally equiv-
alent to F , and the test set T simply consists of some number of tests.

3. The adversary A is given a circuit F̂ . She tampers with it by assigning to
some unbounded number of its wires the tampering functions from the set
{neg, one, zero}. Importantly, we do not assume any tamper-free parts.

4. The tampered circuit F̂ τ is tested on the test set T.

5. If F̂ τ passes the lab phase, it can be used in the wild with security guarantees S.

One factor that differs between the two solutions presented in [Bai+23a; Bai+23b]
is the issue of conductivity. We assume that every outcoming wire of some gate
(except the COPY gates) is tampered with in the same way. The COPY gates have
fan-out equal 2, and their outcoming wires can be tampered with different functions.

Conductivity. The n-conductivity of a circuit F means that every gate of F (ex-
cept the COPY gates) must have the same tampering on every outcoming wire, and
its fan-out is bounded by n. We say that 1-conductive circuits are non-conductive.
The assumption of n-conductivity is a model constraint – the higher the n, the
more limited the model is. The protection scheme presented in [Bai+23a] works
for 3-conductive circuits, and the protection scheme from [Bai+23b] works for non-
conductive circuits (so the latter is more general due to factor of conductivity ; the
advantages of the former will be presented later).

3.1.1 Tampering model – discussion

The tampering model we work with may look slightly artificial, but it meets the real
world. The process of circuit production consists of many steps; circuits are vulnera-
ble to stuck-at-0 and stuck-at-1 (unintentional) faults [Cha+98], which are function-
ally equivalent to zero and one (intentional) tamperings. The testing community
explores heuristic algorithms that guarantee high fault coverage [MT00], meaning

31

that a high percentage of the wires in the circuit are checked against such faults.
Since it is barely possible to perform all production processes in a trusted manner,
the possibility of attacks that mimic unintentional faults cannot be excluded. In
other words, the adversary can easily introduce zero and one tamperings during
fabrication, e.g., for wires examined by the heuristic algorithms against faults only
with a small probability. In contrast, the neg tampering does not mimic any produc-
tion error. Negation of values transmitted by wires sometimes happens temporarily
in the wild.1 Our model does not contain the possibility of temporary tampering,
but, as we see in the following paragraphs, the permanent neg wire modification is
also worth investigating.

A natural extension of a wire-tampering attack is a gate-tampering attack. By
this, we understand that an adversary can replace some gates in a circuit with any
gates with the same fan-in and fan-out, even if the model of computation does not
allow them to be used as a part of the untampered circuit. For instance, for NAND
circuits, the adversary can replace gates with any of 16 possible gates with fan-in
equal to 2 and fan-out equal to 1. The motivation for such a model is twofold.
Firstly, HTH, which does not change the circuit’s topology, seems easier to install
than more general HTHs. The adversary needs only to substitute gates, not redesign
the circuit, its topology, orientation in the space, etc. Secondly, such an attack is
more difficult to detect on the physical level because the topology of a circuit can be
verified with, e.g., optical methods.

The gate-tampering model is more general than the model of wire-tampering
attacks in the following sense: for every circuit F , every functionality F τ which can
be obtained by an adversary who tampers with the wires of F can be obtained by an
adversary who tampers with the gates of F . For example, an adversary can replace
its preceding gate with its negation function to simulate the toggle operation on some
internal wire. Figure 4 gives other examples of such simulations. In this context, the
neg tampering can be seen as an overture to the model, including the possibility of
gate-tampering.

3.1.2 Results

The protection schemes against tampering HTHs we refer to in this section use the
compilers that output a compiled circuit and its test set. We want the test set to be
exhaustive: if the device passes the lab phase, it is impossible or improbable that it
deviates on any input in the wild. This takes us to the notion of testability.

1This insight was given to us by Prof. Ingrid Verbauwhede (COSIC, KU Leuven).

32

neg

neg
input output

00

01

10

11

1

0

0

0

AND

NOR

Figure 4: Another example of wire-tampering simulated by gate-tampering. To
simulate the neg tampering on both input wires to the AND gate, the adversary
can substitute the AND gate with a NOR gate. The truth table of both functions is
identical.

Testable circuits. The center of our research on the tampering HTHs is the aspect
of testability. We say that a tuple of a circuit F , some functionally equivalent circuit
F̂ and some set of inputs T is a testable circuit if we are (almost) sure that if the
tampered F̂ τ perfectly mimics input-output behavior of F̂ for every input from T,
then F̂ τ is functionally equivalent to F (see Definition 5). We intentionally do not
describe the behavior of F̂ τ for every possible input it can get as a circuit - recall
that F̂ τ in the wild receives only the input of the form X|0m, where X is a possible
input to F .

We present two schemes that protect any circuit from C against damage done by
tampering HTH. They both achieve convincing parameters in security and size/time
overhead. The models in which they are proven secure differ slightly, which will be
discussed in detail in Section 3.6. The first protection scheme is denoted with L (see
[Bai+23a]), which comes from its construction based on Logical operations. We state
the achieved security informally here (see Section 3.4 and Theorem 8 for formality).

Theorem 1 (informal) Given any circuit F of input size s, output size t, size n
and depth d, and some small number L (think of 3, 4 or 5), the scheme L outputs a
tuple (F̂ ,T), such that

• F̂ is a small extension of F . More precisely, F̂ is a circuit with a few additional
input bits and several dozen additional output bits. The size of F̂ is bounded

33

by 12n, and its depth is bounded by d+O(n1/L).

• The size of the test set T is less than 150.

• The tuple (F, F̂ ,T) is a testable circuit.

The paper [Bai+23b] presents the scheme denoted with R, which comes from
Randomness used in constructing the test set. We can informally state achieved
security guarantees (for formality, see Section 3.5 and Theorem 11).

Theorem 2 (informal) Given any circuit F , the scheme R outputs a tuple (F̂ ,T),
such that

• F̂ is a small extension of F .

• The tuple (F, F̂ ,T) is a testable circuit with overwhelming (in |T|) probability.

We can see that the scheme R has a significant advantage over the scheme L – it
does not rely on the conductivity assumption. However, the scheme L also has its
quality – as we will see in Section 3.6, its testing procedure makes it more likely to
extend to stateful circuits.

3.1.3 Methods

The proofs of resilience against HTHs require using some dedicated tools. Let us
introduce them informally below. Their formal definitions will be presented later.

Wire- and gate-covering sets. Recall that the tampering on a wire is a function
of type F → F assigned to that wire. If any of the functions associated with wires
on the circuit is not the identity function, the circuit has been tampered with. So,
intuitively, every wire’s lab phase behavior must be verified for two cases: when it
should transfer the value 0 and when it should transfer the value 1. We define a
wire-covering set to work with this intuition. It is a set of inputs for the circuit for
which every wire would take values 0 and 1. Intuitively, the wire-covering sets are
the only reasonable testing sets. If the circuit were tested on a set of inputs that
do not form a wire-covering set, there would be a wire that would take only one
value for each test, say 0. Then, during the lab phase, the zero tampering on this
wire could not be detected. For technical reasons, we also define a gate-covering set,
an analog of a wire covering set. It is a set of inputs for which incoming wires to
every gate take all possible valuations. Section 3.3 presents more details on covering
circuits.

34

1 → 1

1 → 0

1 → 1

0 → 0

0 → 1

0 → 1

Figure 5: The pictures show the information loss on the circuit consisting of a single
OR gate. The second input to this gate is tampered by neg tampering (red wire).
The first circuit shows honest and tampered evaluation on input 11. The second one
shows the evaluation on input 00. Note that the information loss is observable on
the output wire (violet) and not on the tampered wire.

Information loss. Another interesting tool we developed is the concept of infor-
mation loss. It inherits a basic idea of Shannon’s entropy [Sha48], but its definition
does not need any probability measure. Recall that for any discrete random variable
X and any function f , it holds H(X) ≥ H(f(X)). In particular, the above inequality
is strict if and only if the function f restricted to the image of X is not injective. In-
formation loss can be defined for honest specification of some circuit F , its tampered
version F τ and some specific wire e. It also involves 2 circuit inputs. We say that
such a tuple forms an information-losing tuple if, for the original circuit, the wire e
gets two different evaluations, and in the tampered circuit, both evaluations are the
same. The denotation information loss comes from the idea that the wire e could
be used to distinguish two inputs in the original circuit, which is no longer true for
the tampered circuit. See Figure 5 for more explanations.

3.1.4 Related works

The idea of an adversary who modifies computation done by a circuit by zero, one,
and neg operations performed on the wires was investigated in [Ish+06]. The main
difference between our work and theirs is that the authors of [Ish+06] work with a
different model and achieve different security guarantees. First of all, in [Ish+06],
the adversary can tamper with a (bounded) number of wires for each call – the wires
tampered with in previous steps remain tampered; secondly, the circuit detects by
itself that the adversary is present, and the construction allows to keep the inner

35

state secret by self-destroying all inner values.
Other works addressing a similar problem are [KLR12; KLM97]. Here, the adver-

sary can modify the circuit differently – she can introduce short circuit errors, i.e.,
replace some of the gates by gates outputting one of its incoming values. According
to our terminology, they work with a restricted model of gate-tampering adversary.
The authors of [KLR12] propose a compiler that transforms arbitrary circuit F into
a circuit F̂ resilient to short-circuit errors. The proposed construction works as long
as the fraction of replaced gates does not exceed 1/51 in every path from input to
output. If the size of the original circuit is equal to n, then the size of the compiled
circuit F̂ is quasi-polynomial: nO(logn).

3.2 Notation

In this section, we define some useful notations for the Boolean circuits. We model
circuits as graphs and extensively use standard graph theory notation.

3.2.1 General notation for circuits

A circuit is modeled as a DAG (directed acyclic graph) Fγ = (V,E) where vertices
refer to gates and the directed edges refer to wires. Each wire transmits a bit from
F according to the wire’s direction. The circuit definition Fγ is parameterized by a
labeling function γ : V → G which assigns specific functions to the vertices, where
G = {AND,OR,XOR,COPY,NOT} ∪ {in,out}. The functions in,out are special
guard functions introduced for notation issues. We sometimes omit the parameter
γ since it is chosen when specifying the circuit and remains unchanged. For each
circuit gate v ∈ V , we denote the sets of its incoming and outcoming edges by
E−(v) = {(u, v) ∈ E} and E+(v) = {(v, u) ∈ E}, respectively. For each circuit wire
e = (u, v) ∈ E we denote its tail gate and head gate by V −(e) = u and V +(e) = v,
respectively.

Fan-Out and Conductivity. Each gate type in G has a specific number of in-
put/output wires, as indicated in Table 3.2.1. Each output wire is used as an input
to at least one other gate (if not, the gate is redundant and can be removed). An
output wire can lead to more than one input wire. The fan-out of an output wire
is the number of input wires it leads to. A circuit is k-conductive if no wire has a
fan-out greater than k; a 1-conductive circuit is also called non-conductive. Every
k-conductive circuit can be turned into a non-conductive one by using copy gates
COPY(x) = (x, x). However, this transformation does not preserve security against

36

wire tampering, as considered in this work, where tampering with a wire of fan-out
> 1 affects all the output wires the same way.

Gates Inputs Outputs
OR,XOR,AND 2 1
out 1 0
in 0 1
NOT 1 1
COPY 1 2

Table 1: number of inputs and outputs for the gates from G.

It is convenient to define two non-standard gates: the input and output gates
denoted in, out. We split the vertices into three sets V = I ∪ G ∪ O, where I =
{I1, I2, ..., Is} are vertices which are assigned to in, and O = {O1, O2, ..., Ot} are
these assigned to out. Given Fγ = (V,E) and an input X = (x1, ..., xs) ∈ Zs

2 we
define a valuation function

valFγ ,X : V ∪ E → F (1)

which assigns each input and inner gate the value it outputs and each wire the value
it carries when the circuit is evaluated on X. More formally the valuation function
for vertices v ∈ V and edges e ∈ E is defined as

valFγ ,X=(x1,x2,...,xs)(v) =

xi, if v = Ii,

valFγ ,X(E
−(v)) if v ∈ O,

γ(v)(valFγ ,X(E
−(v))) otherwise.

valFγ ,X(e) = valFγ ,X(V
−(e)).

We will sometimes write valX if the circuit considered is clear from the context. The
behavior of the circuit F can be associated with the function that it evaluates, i.e.,
F : Fs → Ft. We define this function as follows:

F (X) = (valF,X(O1), valF,X(O2), ..., valF,X(Ot)).

3.2.2 Notation for tampering

We consider an adversary who can tamper with every wire in the circuit. The
tampering of a wire is described by a function F → F from the class of the four

37

possible bit tamper functions T = {id,neg, one, zero}. The tampering of an entire
circuit F = (V,E) is defined by a function

τ : E → T ,

mapping each wire to a tampering function. We sometimes write τe to denote τ(e) for
convenience. Now, we can extend our notion of the valuation to also take tampering
into account to define the valuation

valτX : V ∪ E → F

of a tampered circuit. The only difference to the (non-tampered) valuation function
from eq.(1) is that we apply the tampering to each value of an edge after it is being
computed, formally:

valτFγ ,X=(x1,2,...,xs)(v) =

xi, if v = Ii,

valτFγ ,X(E
−(v)) if v ∈ O,

γ(v)(valτFγ ,X(E
−(v))) otherwise.

valτFγ ,X(e) = τe(val
τ
Fγ ,X(V

−(e))).

By F τ we can again understand a function that describes the input-output behavior
of the tampered circuit:

F τ (X) = (valτF,X(O1), val
τ
F,X(O2), ..., val

τ
F,X(Ot)).

Now, we are ready to state the definition of dummy tampering formally.

Definition 3 We say that the tampering τ of a circuit F is dummy iff τ does not
change the input-output behavior of F , i.e.,

∀XF (X) = F τ (X).

The tampering that is not dummy is called nontrivial.

We also define the honest tampering.

Definition 4 We say that the tampering τ of a circuit F is honest if it assigns the
id tampering to every wire. We say that τ is dishonest if it is not honest.

Note that every honest tampering is also dummy tampering. We can also formally
define the testability property.

Definition 5 The tuple (F, F̂ ,T) is a testable circuit iff

∀τ
((
∃X : F̂ τ (X|0m) ̸= F (X)

)
⇒

(
∃T∈T : F̂ τ (T) ̸= F̂ (T)

)
38

3.3 Covering circuits

As mentioned, essential building blocks of the protection schemes against HTHs are
wire- and gate-covering sets.

Wire-covering sets. Wire-covering set of a circuit F is a set of inputs, such that
if the circuit is called on all of these inputs, every wire transmits at least once all the
possible values (in our case, 0 and 1). We define it formally.

Definition 6 We say that a set of inputs Tw = {T1, ..., Tk} is a wire-covering set
for a circuit F if

∀ e∈E(F), b∈{0,1} ∃ i : valTi
(e) = b .

For many practical circuits, we expect that some number of random inputs form,
with a high probability, a wire-covering set for the majority of its wires –e.g., the
majority of wires in circuits computing pseudorandom values take random values
given random inputs. However, the general problem of finding or even deciding if a
circuit has a wire-covering set for an arbitrary circuit F is NP-hard. Let us argue
informally why this is the case. Consider the NP-complete Circuit Satisfiability
problem (CIRCUIT-SAT). It is a decision problem for a circuit F – we ask if there
exists an input X, such that F (X) = 1. Assume that we can solve the problem
of deciding if there exists a wire-covering set in polynomial time. If there exists a
wire-covering set for a circuit F , then F is satisfiable. The opposite implication does
not hold since the wire that cannot be covered is not necessarily the output wire;
however, the wires of F can be ordered in topological order, where the heads of the
wires are compared. Once the order is done, we can proceed with the circuit from
the first wire and add the next wire in every step. For such a subcircuit F ′, we check
if it has the wire tampering. If yes, we proceed further. If not, the wire not covered
is the last wire in F ′, say v. We check which value b is carried by v by evaluating
the circuit F ′ on any input. Then, we simplify the rest of F by replacing v with b,
deleting gates, etc. Then, we proceed further. In the last step, F = F ′, so we check if
the output wire of the original circuit F can be covered. Fortunately, there exists an
efficient compiler that transforms every circuit into a functionally equivalent circuit
with a covering set of constant size. We demonstrate it in Section 3.3.1.

Gate-covering sets. We also consider gate-covering sets, which are an inherent
part of the proof of Theorem 11. Gate-covering is an analog of wire-covering and can
be defined as a set of inputs for which the set of incoming wires to every gate take all
possible valuations. For instance, for a gate with a fan-in equal to 2, there are four

39

valuations on its incoming wires: 00, 01, 10, and 11. Therefore, any gate-covering
set of a circuit with gates of fan-in 2 has at least 4 elements. Again, we can state
the definition formally (for a linear gate XOR, the condition of covering all possible
input valuations is relaxed – we demand only 3 out of 4 possible input pairs).

Definition 7 Tg is a gate-covering set for a circuit F iff it meets all the following
conditions

• ∀v∈V (Cγ) : γ(v)∈{COPY,NOT,OUTPUT} : |{(valF,T (e))e∈E−(v) : T ∈ Tg}| = 2,

• ∀v∈V (Cγ) : γ(v)∈{AND,OR} : |{(valF,T (e))e∈E−(v) : T ∈ Tg}| = 4,

• ∀v∈V (Cγ) : γ(v)∈{XOR} : |{(valF,T (e))e∈E−(v) : T ∈ Tg}| ≥ 3.

As we can see, the gate-covering conditions are relaxed for XOR gates for two reasons.
Firstly, we introduce gate-covering to prove Theorem 11, and it turns out that partial
gate-covering for XOR gates is sufficient. Secondly, we do not know the compiler that
would transform every circuit into a functionally equivalent, every-gate-full-covered
circuit with a constant-size test set. The construction that achieves the gate-covering
described in Definition 7 will also be presented in Section 3.3.1.

Gate-covering vs. wire-covering. We can easily see that for non-degenerated
circuits1 a gate-covering set is also wire-covering. Indeed, every wire that is an input
wire to some gate is covered – for every gate except the XOR gate, it is trivial.
Wires from XOR gates are covered since there are no three different valuations on
its inputs, such that they are all the same for one of its elements. Since the circuit
is not degenerate, every output wire is output from some gate, and we assume that
gates with inputs are not constant. Therefore, the output wires are also covered.

3.3.1 Compiling circuit into wire-covered circuit

Our first main goal is to show the compiler that transforms any circuit F : Fs → Ft

into a circuit Fw : Fs+s′ → Ft with a wire-covering set Tw of a small size. The
new circuit Fw will be functionally equivalent to F (i.e., ∀X∈FsFw(X||0s

′
) = F (X)).

In the case of standard circuits with a maximum fan-in of the gates equal to 2, we
obtain a 4-element covering set.

1By degenerated circuits we understand here circuits which contain wires disconnected from any
gate – these wires are only transmitting a value from input to output – or circuits which contain
dummy gates, i.e., gates which output is independent of at least one of its inputs.

40

Figure 6: The picture visualises the properties of k-divisions introduced on a set of
wires of a circuit F . All wires output by the same gate must belong to the same
Wi. The output wires of a gate must belong to Wj, which is different from Wk of the
input wires to the gate.

Now, we present a brief description of the compiler. It starts the creation of the
wire-covering set by evaluating the circuit on input: T0 = 1s0s

′ . Next, we observe
that on this input each wire e ∈ E is evaluated to either 0 or 1 (i.e., it is evaluated
to some b = valF,T0(e)). Finally, the algorithm divides the wires in E from F into
a few subsets of wires Wi. Every subset proceeds in one step, in which the wires
from Wi are fixed (i.e., each wire e ∈ Wi now is evaluated to 1− b) by adding only 1
additional control bit at each step. All e ∈ Wi are fixed by XORing the new control
bit with the wires of input bits to V −(w) (an example is given in the Figure 7).
It is impossible to fix all the wires e ∈ Wi at once by inserting the required XOR
gates, since the valuations of the fixed wires may depend on each other. For this
reason, we process all wires from Wi in topological order. One needs to see that the
modifications introduced in the circuit, as gates are processed in topological order,
may already be sufficient to fix the outputs of the topologically subsequent gates.

k-divisible circuits. One of the steps of the algorithm above is dividing the circuit
wires into subsets. This is essential, since to fix a wire e the algorithm adds an XOR
gate on some wire e′ ∈ E−(V −(e)). It influences a value transmitted by e′ and can
possibly make it uncovered. Therefore, e and e′ must be processed in different steps.
We state it formally below.

Definition 8 For a circuit F we say that a function f : E → [k] is a k-dividing
function if all of the following conditions hold:

41

1. ∀v∈V |f(E+(v))| ≤ 1,

2. ∀v∈V f(E+(v)) ∩ F(E−(v)) = ∅.

The sets Wi = {e ∈ E : f(e) = i} for i ∈ [k] is a k-division of E. A circuit for which
exists a k-division is k-divisible.

The first condition means that for each gate, all of its outcoming wires belong to the
same subset. The second condition justifies the claim already mentioned – for each
gate, the outcoming wires must be processed in different steps than the incoming
wires. The properties of k-divisions are presented visually in Figure 6.

The algorithm k-Division constructs a k-division set for circuits with fan-in
bounded by k. We leave this statement without any proof - the algorithm is self-
explanatory.
Algorithm 1: (k)-Division
Data: F : Fs → Ft with fan-in ≤ k − 1
Result: k-division set W1, . . . ,Wk

/*Construction of (k)-dividing function f : E → [k] */
1 for v ∈ I do
2 f(E+(v)) = 1
3 end
4 for v ∈ V \I processed in topological order do
5 Let i ∈ [k]\f(E−(v)) /*The existence of such an index i is

granted by the bounded fan-in. */
6 for e ∈ E+(v) do
7 f(e) = i
8 end
9 end

10 return Wi = {e ∈ E : f(e) = i} for i ∈ [k]

Corollary 1 Every circuit with fan-in ≤ k − 1 is k-divisible.

3.3.2 Constructing small wire-covering sets for k-divisible circuits

Let F : Fs → Ft be a circuit and (W1, ...,Wk) be its k-division. The Algorithm 2
Wire-Covering constructs a circuit Fw : Fs+s′ → Ft with s′ = k that is functionally
equivalent to F and has a covering set Tw of size k+1. The algorithm works in steps
corresponding to parts Wi of the division. In every step, we try to fix the values taken
by the wires from the corresponding part, after which every e ∈ Wi is evaluated to

42

0, 1 1, 0

0, 0?

0, 1

1, 1

0, 1

0, 1
c

1, 0

Figure 7: An example showing how the output wire of an AND gate can be fixed
with a single control bit. Before fixing, it is always evaluated to 0. Therefore, in this
step, we add an XOR gate to one of the incoming wires to make the actual output
equal to 1. The righthand side input wire to the AND gate is covered, as we see in
the proof of Theorem 3.

both 0 and 1 on some inputs from the test set. As mentioned before, the fixing is
achieved by extending the input with a new input bit – called a control bit – and
adding to the test set a new input.

F (X) = Fw(X||0k).

Theorem 3 Let (Fw : Fs+k → Ft,Tw) = Wire-Covering(F : Fs → Ft). Then:

1. Tw is a covering set for Fw,

2. Fw is functionally equivalent to F .

Proof. To see that ∀X∈FsF (X) = Fw(X||0k), note that when control bits are
equal to 0, then the XOR gates that were added to Fw by the Wire-Covering do
not affect the behavior of its subcircuit F .

Now we show that Tw is a wire-covering set for Fw, i.e., every e ∈ E(Fw) takes
both values when Fw is called on the test inputs from the Tw. Note that the Algorithm
2 adds only a single XOR gate for every wire in the original circuit F because all
output wires from every gate are evaluated to the same value (see the details in
Section 3.2.1) and belong to the same subset of k-division (according to the definition
of k-division). Moreover, every new XOR gate refers to some Wi (a XOR gate refers
to Wi when it was made to fix one of the elements of Wi). Consider the following
cases, based on the gate v = V −(e) preceding the wire e:

43

Algorithm 2: Wire-Covering
Data: circuit Fγ = (V,E) : Fs → Ft

k-division W1, ...,Wk of E
Result: Fw : Fs+k → Ft,Tw

1 for e ∈ E do
2 C(e) = ∅; /*the table C is indexed with wires; the field C(e)

holds already covered values on the wire e */
3 end
4 Initialize T0 = 1s0k ; /*the first testing input */
5 for e ∈ E do
6 C[e] = {valF,T0(e)}
7 end
8 Initialize Fw = F ;
9 Initialize Tw = {T0} ;

10 for i ∈ [k] do
11 Ti = 0s+i−110k−i;
12 Tw = Tw ∪ {Ti};
13 Add i-th new control input wire Ci to Fw;
14 for v ∈ V (F) (processed in a topological order) do
15 if E+(v) ⊆ Wi ∧ b /∈ C[E+(v)] /*check if the output wire(s) of

v is to be fixed now (i.e., belongs to Wi) and if it
needs to be fixed now (i.e., is not covered yet) */

16 then
17 Set b : b /∈ C[E+(v)];
18 Update Fw by adding a XOR gate between the input wire Ci and

some of the E−(v) that sets EvalFw,Ti
(e) = b ; /*see Figure 7

*/
19 Append b to C[E+(v)];
20 end
21 end
22 end
23 return Fw,Tw;

44

• v is one of the input gate for Fw. Therefore, e either carries one of the first s
input bits or one of the new k control bits. In the first case, e takes the value
1 for the input T0 = 1s0k, and the value 0 for every other input from Tw of the
form Ti = 0s+i−110k−1. In the second case, we have v = Ci for some i ∈ [k].
Then e carries the value 0 for the input T0 = 1s0k and the value 1 for the input
Ti = 0s+i−110k−1.

• v is one of the inner gates of the original circuit F . In this case, e is evaluated
to b for T0. To see that it is also evaluated to 1− b, note that there exists some
i, such that e ∈ Wi. Then, during the fixing i-th step of the Algorithm 2, it is
assured to be evaluated to the bit 1− b on the test input with the i-th control
bit set to 1.

• v is one of the XOR gates added during the processing of the Algorithm 2. Let
e′, e′′ be its input wires – let the wire e′ transmit the i-th control bit. In this
case, e′′ transmits the output of some inner gate w of the original circuit F .
Therefore e′′ is wire-covered by Tw. Therefore, e is wire-covered by Tw if it
is wire-covered by these elements of Tw that evaluate on e′ to 0. These are
exactly the elements of the set T\iw = Tw \ {Ti}. Note that v is added to fix the
output wire f from the gate V +(e). The k-divisibility construction shows that
e and f belong to different division sets. Hence, e is wire-covered by T\iw .

There are no other wires in the circuit; therefore, Tw is a wire-covering set for Fw.
■

Corollary 2 A circuit F with fan-in at most 2 has a k-division of size 2 + 1 = 3.
Thus, the Algorithm 2 Wire-Covering on such an input produces a circuit Fw with
3 additional input bits and a wire-covering set Tw of size 1 + 3 = 4.

3.3.3 Compiling circuits into gate-covered circuits

The Algorithm 3 Gate-Covering describes a detailed procedure that compiles any
circuit F into a new functionally-equivalent circuit Fg along with its gate-covering
set Tg. We can now explain how it works. Firstly, it calls the Algorithm 2 Wire-
Covering to prepare a wire-covering tuple (Fw,Tw). Secondly, the algorithm per-
forms a step where multi-input gates of the intermediary circuit Fw are checked to
see if they are covered and, if not – fixed. Recall that every gate in the gate-covered
circuit must be evaluated for a sufficient number of input combinations (i.e., for XOR
gates – 3 input combinations, for the other gates – 4 combinations, see Definition 7).
Since the circuit Fw is wire-covered, we know that all multi-input gates are evaluated

45

AND

C = {00, 10}

input T : T ∈ Tg

AND

input T1 = 0s+k01, X1 = 11

0 0

XOR

C0

C = {00, 10, 01, 11}

XOR

XOR

0

C1

1

1

1

1 1

0

X1 = 11

AND

input T0 = 0s+k10, X0 = 01

0

XOR

C0

C = {00, 10, 01}

1 X0 = 01

1

0

0

Figure 8: Fixing of a single gate AND. For all elements of Tg, the input wires take
only two evaluations: 00, 10 (left-hand side). There are two evaluations left that we
must force to appear. The first one is X0 = 01, which is made with the control bit
C0 on the input T0 (in the middle). The second one is X1 = 11, which is made with
the second control bit C1. In this case, the XOR gates are added on both incoming
wires. They do not affect the previous evaluations on incoming wires because C1 = 0
for all inputs in Tg but T1.

for at least two different input combinations. Therefore, each multi-input gate needs
at least two more input combinations. The Algorithm 3 adds two additional control
input bits C0, C1 corresponding to two additional test inputs. Then, it proceeds
gate-by-gate in topological order. For each v and each input combination Xi that is
not taken by v, it fixes it by xoring some of the input wires to v with control bit Ci.
Figure 8 presents an exemplary fixing step.

Theorem 4 The Algorithm 3 Gate-Covering transforms a circuit F into a func-
tionally equivalent circuit Fg along with its gate-covering set Tg.

Proof. It is easy to see that the circuit Fg is functionally equivalent to F since
it does not add any new output bits to the circuit, and all the new gates are XOR
gates connected to the new control bits. Whenever these bits are set to 0, the new
XOR gates do not affect the behavior of the subcircuit F .

Note that after adding the new XOR gates, all of the wires connected directly
to the old gates of the circuit remain wire-covered by the old test set adjusted by
adding 00 to every input from Tw (see line 4 of the Algorithm 3). Moreover, the

46

Algorithm 3: Gate-Covering
Data: Fγ : Fs → Ft of fan-in ≤ k − 1
Result: Fg,Tg

1 Initialize W1, ...,Wk = Division(F)
2 Initialize (Fw,Tw) = Wire-Covering(F,W1, ...,Wk) /*Wire-covered

intermediary circuit */
3 Initialize Fg = Fw

4 Initialize Tg = {T : ∃T ′∈TwT = T ′|00}
5 T0 = 0s+k10
6 T1 = 0s+k01
7 Tg = Tg ∪ {T0, T1}
8 Add two control input wires C0, C1 to Fg /*these refer to the test

inputs T0, T1 */
9 for v ∈ V (Fg) : γ(v) ∈ {OR,AND,XOR} (processed in a topological order) do

10 C = {(valFg,T (e))e∈E−(v) : T ∈ Tg}
/*At this point |C| ≥ 2 */

11 for Xi ∈ {00, 01, 10, 11} \ C /*i can take 0, 1 or 2 values; it
takes values from the set {0, 1} */

12 do
13 Update Fg by adding the XOR gates on some of the input wires of v

to fix the incoming values to Xi (see Figure 8).
14 end
15 end
16 return Fg,Tg

47

new control bits wire-cover every new wire added to the circuit. This implies that
every gate from the set {COPY,NOT,OUTPUT} in the updated circuit is trivially
gate-covered (evaluated to both 0, 1 given some inputs from the test set).

When we go topologically through the gates from the set {OR,AND,XOR} of
the intermediary subcircuit Fw, we can see that since the input wires to the circuit
are wire-covered by the adjusted old test set, then these gates are partially covered
before and after adding new XOR gates to their input wires (i.e., {(valFg,T (e))e∈E−(v) :
T ∈ Tg} ≥ 2). In line 13 of the Algorithm, we add XOR gates connected to the new
control bits to cover at most two missing evaluation sequences.

The XOR gates added during the topological procedure are evaluated on two
distinct input sequences, given inputs from the adjusted old wire-covering set. The
third distinct input comes from setting their respective control bit to 1. ■

Corollary 3 For any circuit F with fan-in ≤ 2, number of gates n, the Algorithm 3
Gate-Covering creates a circuit with additional 5 input bits, a test set of size 6
and at most additional 6n gates.

Proof. The Algorithm 2 compiles F into a circuit with additional 3 input bits,
a test set of size 4 and adds at most n XOR gates and n COPY gates. Algorithm 3
adds 2 input bits and 2 test inputs to the test set, and at most 2n XOR gates and
2n COPY gates during the iteration, which concludes the result. ■

3.3.4 Reducing high conductivity of the control wires

Since in any k-division W1, . . . ,Wk of a set of wires E of a circuit F , all wires
going out of a single gate must belong to the same Wi, the size of Wi is bounded
by the number of gates of the circuit n = |V (F)|. The i-th control bit in the
Algorithm 2 can be thus used even as many as n times. Similarly, every control bit in
Algorithm 3 can be used 2n times. This means that the circuit specification requires
the implementation of highly conductive control wires. The following corollary states
that we can reduce this requirement by reapplying COPY gates to the control wires
added by the Algorithms 2, 3.

Corollary 4 (F ′w : Fs+k → Ft,Tw) and (F ′g : Fs+l → Ft,Tg) created by running the
Algorithms 2, 3, respectively, on F : Fs → Ft and replacing every highly conductive
control wire of the intermediary wire with a log-depth tree of copy gates is a pair such
that:

1. Tw,Tg is a wire-, gate-covering set for F ′w, F
′
g, respectively;

48

2. ∀X∈FsF (X) = F ′w(X||0k) = F ′g(X||0l).

Proof. Note that replacing every highly conductive control wire with a construction
of copy gates creates a set of wires which are all evaluated to bit b whenever the i-th
control input is set to b. ■

3.4 L-scheme

In this section, we show an efficient scheme L against tampering HTHs that protects
an arbitrary 3-conductive circuit. The compiled circuit F̂ consists of F as a subcir-
cuit and has a small number of auxiliary control input and output bits. The scheme
L does not rely on tamper-free components, randomness gates, etc. Moreover, the
testing procedure is deterministic and consists of approximately 150 tests (for prac-
tical reasons, this number can be higher; see Section 3.6). The consistency check
in the lab requires only comparing the output on the control bits, not the original
output bits.

The only restriction we put on the tampering for this construction is that the
compiled circuit F̂ is 3-conductive, i.e., all but COPY gates can output up to 3
wires, and the tampering must be done in the same way for all of them. In our
graph notation, this means that for every v ∈ V and e, e′ ∈ E+(v) we have τ(e) =
τ(e′).. The only exception is the COPY gate, as it has two output wires that can
be tampered with with different functions (note that without this restriction, the
practical conductivity of the circuit would be unbounded).

As a warm-up, we present two impractical (but educative) solutions: they make
the I/O size or the depth of the compiled circuit linear in the size of the original
circuit. The final solution is built on these basic ideas.

3.4.1 The trivial solution for 2-conductive circuits

Let Fw be a circuit wire-covered by Tw. A trivial circuit compiler C, when given Fw,
outputs a 2-conductive F̂ that outputs all internal values on wires of Fw. For this, the
compiler C increases the fan-out of every inner gate of Fw by one and connects each
wire to new output gates Ot+1, Ot+2, ..., Ot+n. In the lab phase, the scheme works as
follows: the consistency on Ot+1, Ot+2, ..., Ot+n is checked when F̂ τ is given inputs
from Tw. Assume that the tampering τ is dishonest. Since the circuit is a DAG,
there always exists a topologically first tampered wire. The output value related to
this wire must show an inconsistency for some element of the wire-covering set.

We must stress that the above construction is totally impractical. Although
the circuit size only doubles, it massively increases the number of output wires.

49

This not only makes testing the correctness of the outputs impractical but is also
unimplementable. In practice, circuit pins (input/output wires) are expensive and
should only constitute a tiny fraction of the circuit size as they are large and must be
placed at the border. More precisely, the number of the external wires next is limited
by some function of the number nint of the internal ones. It can be easily seen if we
realize that the external wires are typically on the border of a square which contains
internal wires [BT18; BA04]. Therefore, quite a convincing relation between these
numbers can be given by

n2
ext

nint

≈ c,

where c is some constant.
In the rest of Section 3.4, we show how to compress these extra outputs so that

detection of dishonest tampering is still possible. By compression, we mean the
number of additional output/input wires must remain relatively small to the size of
the circuit. The main challenge is to achieve this goal without tamper-free parts of
the circuit. In particular, the adversary is allowed to tamper with the compressing
gadget, i.e., the part of the circuit responsible for compression.

3.4.2 Sufficiently tamper-resilient gadgets.

The scheme L uses gadgets (circuits) that compute multi-input OR (mOR) and multi-
input AND (mAND) functions and are tamper-resilient to some extent. We will show
their construction a bit later. For now, we only need to define their properties. In
general, the gadget has normal and additional inputs. It should compute OR/AND
functions on its input and allow to detect of some class of tampering on some subset
of the input wires.

Definition 9 (Sufficiently Tamper Resilient mOR) A circuit FOR with input
wires I1, ..., Im, I

′ and output wire O, is a sufficiently tamper-resilient multi-input
OR gadget (STRmOR) if:

1. It computes OR on its inputs, i.e., FOR(X) = 0 iff X = 0m+1.

2. If the tampering τ changes some 0 to 1 among on one of the input wires
I1, ..., Im, i.e., τ(Ii) ∈ {neg, one} for some i ∈ [m], then

F τ
OR(0

m+1) = F τ
OR(0

m1).

We define Sufficiently Tamper Resilient mAND similarly.

50

yc

x1 x2 xm

Figure 9: Construction of the ChainMultiOR. The actual inputs are on the bottom.

Definition 10 (Sufficiently Tamper Resilient mAND) A circuit FAND with in-
put wires I1, ..., Im, I ′ and output wire O, is a sufficiently tamper-resilient multi-input
AND gadget (STRmAND) if:

1. It computes AND on its inputs, i.e., FAND(X) = 1 iff X = 1m+1.

2. If the tampering τ changes some 1 to 0 among on one of the input wires
I1, ..., Im, i.e., τ(Ii) ∈ {neg, zero} for some i ∈ [m], then

F τ
AND(0

m+1) = F τ
AND(0

m1).

At first sight, the definition says nothing about the inconsistency between the
tampered and untampered version of the gadget. However, since STRmOR,
STRmAND computes the general OR, AND function, the following holds for un-
tampered versions of the gadgets:

valSTRmOR,0m+1(y) ̸= valSTRmOR,0m1(y),

valSTRmAND,1m+1(y) ̸= valSTRmAND,1m0(y).

Thus, there is an inconsistency between the outputs of the untampered circuit and
its tampered version, which can be easily verified on the input sets {0m+1, 0m1},
{1m+1, 1m0}. We can understand it in terms of information loss introduced before.
Informally, whenever x1, ..., xm = 1, the output wire from STRmAND should keep
the information about the value of the control bit c. However, any tampering that
changes any of the other inputs from 1 to 0 makes it blind. In other words, let the
tampering τ assign any of the tamperings {neg, zero} to any of the input wires to the
STRmAND gadget – then 1m+1, 1m0 and STRmAND, STRmANDτ form an information
loosing tuple.

The STRmOR can be realized by the ChainMultiOR gadget, presented in Figure 9.
To simulate the mOR function with m inputs, we would need only m simple OR gates.

51

c

0 → 1

constant

Figure 10: For any tampering on the input wire, which would change the value from
0 to 1, the output becomes blind to everything that happened before. In particular,
the output does not depend on c.

yc

x1 x2 xm

Figure 11: Construction of the ChainMultiAND. The actual inputs are on the bottom.

Theorem 5 ChainMultiOR is a STRmOR.

Proof. The first condition holds obviously (from the associative property of the
OR operator). Let τ be tampering that applies to some wire Ii a tampering function
changing 0 to 1. Consider the function f(c) := ChainMultiORτ (00...0c). Then the
OR gate, which takes Ii as input, is unaffected by the second input (see Figure 10)
since the value 1 on the wire Ii completely determines the output of OR. Therefore,
any change in the value of c cannot change the value of the output of this gadget, so
f(c) is a constant. ■

Corollary 5 ChainMultiAND (see Figure 11) is a sufficiently tamper resilient mAND.

3.4.3 Intermidiate solution for 3-conductive circuits

Now we can present a bit more practical solution. For this, we assume not 2-, but
3-conductivity. Every internal wire of the original circuit is branched into three wires
along with its tampering. One continues into the circuit as before, and two others
are used for the testing. Note that for wire-covered circuit Fw, we have that for each
e ∈ E(Fw), we can choose two test inputs from Tw: one for the value 0, and the
second one for the value 1. Recall that it is essential to make any reasonable testing.

52

Definition 11 Let Fw be a circuit wire-covered by a set Tw = {T1, ..., Tk}. We say,
that a function ib : E(Fw)→ [k] is an indexb function for (Fw,Tw) iff

∀e∈E(Fw)valTib(e)
(e) = b.

Definition 12 Let Fw be a circuit and let Tw = {T1, ..., Tk} be its wire-covering set.
Let ib be some indexb function for (Fw,Tw). We say that a set W b

i is an b-testing for
Ti and ib iff

W b
i := {e ∈ E(Fw) : ib = i}.

Intuitively, W b
i consists of all the wires that will be checked for tampering that

changes the value from b to 1− b on them using the input Ti. To make Fw testable,
we extend it by adding an input gate, Is+1, and 2k similar gadgets. More precisely,
for every i ∈ [k] we add to the original circuit Fw the gadgets STRmORi, STRmANDi

with inputs from the sets W 0
i ∪ {Is+1},W 1

i ∪ {Is+1}, respectively. Intuitively, e.g.,
the gadget STRmORi is used to check if there exists any tampering on wires from
W 0

i that change value from 0 to 1. Such a construction makes a circuit testable. We
now state it more formally.

Theorem 6 Let Fw be wire-covered by Tw = {T1, ..., Tk}. Let i0, i1 be some index0,
index1 functions for (Fw,Tw). For b = 0, 1, j ∈ [k] let W b

j be a b-testing for Tj, ib.
Let F̂ be Fw extended by:

• a single input gate Is+1;

• STRmORj gadget with inputs from the set W 0
j ∪ {Is+1} that outputs OmOR

j for
j ∈ [k];

• STRmANDj gadget with inputs from the set W 1
j ∪ {Is+1} that outputs OmAND

j

for j ∈ [k].

For j ∈ [k] let T 0
j := Tj||0, T 1

j := Tj||1. Let T := {T b
j }b=0,1;j=1,...,k. The tuple (F̂ ,T)

is a testable circuit.

Proof. Assume that F̂ τ is tampered dishonestly. Thus, at least one wire in the
original subcircuit Fw is tampered with a function from {one, zero,neg}. Take the
topologically first tampered wire e ∈ E(Fw). Assume WLOG that the τ tampering
changes on e the value 0 to the value 1 (i.e, τ(e) ∈ {one,neg}). We will show that
the output of gadget STRmORi0(e) enables to detect the tampering on F̂ τ in the lab
phase. Consider the tests T 0

i0(e)
, T 1

i0(e)
. Since the STRmORi0(e) gadget is sufficiently

53

Ti

1

1

0

Is+1

0

0

1

0

1

F

OOR
iOAND

i

STRmORi

STRmANDi

Figure 12: The picture shows the extension of Fw for a single test input Ti. It
contains gadgets STRmORi, STRmANDi that take as input a copy of Is+1 and the
elements of W 0

i ,W
1
i , respectively (in the picture represented in green and blue).

54

tamper-resilient, and at least one of the incoming wires is tampered with from 0 to
1, the inconsistency will be detected in the lab phase on its output (for tampering
that changes 1 to 0 we would consider the output of the STRmANDi1(e) gadget). ■

The solution presented above has a major drawback – it makes the depth of the
compiled circuit linear in the size of the original circuit, which is unacceptable for
many practical applications. Fortunately, this can be resolved, as we will see in the
next section.

3.4.4 The CL compiler construction

We are now ready to present a solution with a small I/O size and a low depth. The
starting point is the naive solution from Section 3.4.1. Recall that it simply outputs
the values of all internal wires. The compiler CL adds a gadget that compresses it
layer by layer. Each layer reduces the number of additional output bits by the factor
n1/L/2, where L is the number of layers. For each layer, the additional output bits
are divided into groups of n

1
L and every group is compressed using the chain gadget

from Section 3.4.2 to 2 output bits. A fragment of the construction of a single layer
is presented in Figure 13.

Theorem 7 Let (Fw,Tw) be a wire-covered circuit of conductivity 1, size n, depth d,
input size s+ k and output size t. Then (F̂ ,T) = CompressL(Fw,Tw) is a testable
circuit of conductivity 3, depth < d + l · n 1

L + log(n), input size s + l, output size
t+ 2L and |T| = 2L|Tw|.

Proof. First, we prove that (F̂ ,T) is a testable circuit. Let τ be some nontrivial
tampering over F . Consider the topologically first tampered e along with associated
gate Oe. Then for some b ∈ F we have

τ(e)(b) = 1− b.

Let ib = ib(e) for b ∈ {0, 1}. The algorithm collects Oe by 2 chain gadgets. For
b = 0, 1 the output of ChainMultiOR, ChainMultiAND, respectively, is constant (along
with test Tib). For the next step of the algorithm (i.e., l = 2), this constant value
is collected by another pair of ChainMultiOR/ChainMultiAND gadgets, so it works
just like the tampering on the inputs to these gadgets. For one of the gadgets, this
tampering meets the requirement for STRmOR/STRmAND (see Definition 9). By
induction, we obtain, that for some q ∈ [2L], X ∈ FL−1

valτ
F̂ ,Tib(e)

X0
(Ot+q) = valτ

F̂ ,Tib(e)
X1

(Ot+q),

55

Algorithm 4: CompressL
Data: wire-covered circuit Fw : Fs → Ft,Tw = {T1, ..., Tk}
Result: F̂ ,T

1 Initialize F̂ := Fw;
2 for e ∈ E(F̂) do
3 Append Oe as the output gate to F̂
4 end
5 for b = 0, 1; j = 1, ..., |Tw| do
6 make b-testing sets W b

j out from (Oe)e∈E(Fw) gates for some indexb

functions ib and Tj;
7 end
8 for l = 1, ..., L do
9 Append Is+l gate to F̂ ;

10 for j = 1, ..., |Tw| do
11 Divide the set W b

j into the subsets W b
j,i of the size n

1
L ;

12 for i=1,... do
13 Append to F̂ the ChainMultiOR gadget with inputs from

W 0
j,i ∪ Is+l with V 0

i as the output;
14 Append to F̂ the ChainMultiAND gadget with inputs from

W 1
j,i ∪ Is+l with V 1

i as the output;
15 end
16 W b

j =
⋃

i{V b
i }

17 end
18 end
19 T :=

⋃
T∈Tw,X∈FL{T ||X} ;

20 return F̂ ,T ;

56

Figure 13: A fragment of the subcircuit produced by Algorithm 4. We assume
the chain length parameter w1/L = 3. The picture shows a construction fragment
starting with the inputs of the Layer i− 1 ≥ 1 organized into groups of 3. They are
then processed by mOR gates connected to a single control bit Ci−1. The outputs
from these gates (indicated with green, blue, and brown lines) are then connected
to new gates mOR and mAND, which are again connected to new mOR and mAND
gates connected to a single control bit Ci. The STRmOR and STRmAND gates are
implemented with ChainMultiOR and ChainMultiAND gadgets.

57

where for the untampered F̂ , these 2 values should be different. Therefore, the
inconsistency will be detected when F̂ is tested on all the elements of T. So, the pair
(F̂ ,T) is a testable circuit.

Next, we must prove that the algorithm CompressL achieves the desired param-
eters. It is not difficult; we can observe that the algorithm adds L layers. Each of
them:

• adds a single input gate;

• multiplies the number of additional output wires by the factor 2

n
1
L

• makes the depth of the circuit higher by n
1
L .

Moreover, the conductivity of the internal wires must be 3, and of the rest of the
wires – at most 2. Every test from the original test set is duplicated 2L times (by
adding a sequence of 0, 1 of length L). ■

3.4.5 The main result

Finally, we can collect partial results from the previous sections and define a complete
circuit compiler. The Algorithm 5 TestableCircuitCompiler takes as param-
eters a circuit F : Fs → Ft and a number L ∈ N+. It first transforms the circuit
F into a circuit Fw with a covering set Tw, using the Wire-Covering procedure.
Then, it transforms the intermediary circuit into a testable circuit with an extended
test set using the procedure CompressL.

Algorithm 5: TestableCircuitCompiler
Data: circuit (F : Fs → Ft of fan-in ≤ k − 1
number of layers L
Result: (F̂ ,T)
; /*A testable circuit F̂ : Fs+3+L → Ft+2L and its test set T */

1 W1, ...Wk ← k-Division(F) (Fw,Tw)←Wire-Covering(F,W1, ...,Wk) ;
2 (F̂ ,T)← CompressL(Fw,Tw);
3 return (F̂ ,T);

Theorem 8 Given any circuit F : Fs → Ft (of size n, depth d), and a number
L ∈ N+, the procedure TestableCircuitCompiler(F,L) outputs a pair (F̂ ,T)
such that:

58

• F̂ is a circuit with additional 3 + L input bits and additional 2L output bits,
i.e. F̂ : Fs+3+L → Ft+2L. The size of F̂ is bounded by 12n, and its depth is
bounded by d+ log(n) + L · (3n)1/L. The size of the test set T is 4 · 2L;

• F̂ is functionally equivalent to F , i.e., ∀X∈Fs : F̂|t(X||03+L) = F (X)

Proof. The testability and functional equivalence of the circuit F̂ follows directly
from the Theorems 3, 5, and 7.

Below, we discuss the parameters of our compiler. We assume that after each
subprocedure, the number of wires w is approximately the same as the number of
gates n in the circuit. The first subprocedure of the algorithm produces a circuit Fw

with depth d′ ≤ d+log(n), size n′ ≤ n+n+n, and its wire-covering set of size k′ = 4.
What is more the intermediary circuit has added only 3 control bits to the input,
i.e.: Fw : Fs+3 → Ft. By applying the Algorithm CompressL, we can calculate the
following parameters of the output circuit:

• its modified input and output size – F̂ : Fs+3+L → Ft+2L ,

• its modified circuit size is the number of the gates n′ of the circuit Fw plus
the number of gates used for each layer. In the construction with L layers, the
algorithm chains of length w′1/L are used. The first layer adds w′1/L w′

w′1/L = w′

new gates and gives w′

w′1/L output wires), the second layer adds 2 w′

w′1/L gates build
upon w′

w′1/L output bits from the first layer, the i-th layer adds 2i−1 w′

w′(i−1)/L gates.
Finally, a linear number of copy gates is added to deliver i-th control bit to
chains in each layer. In general:

n′′ ≤ n′ +
L∑
i=1

2i−1
w′

w′(i−1)/L
+

L∑
i=1

2i−1
w′

w′i/L
=

n′ +
w′1/L(w′ − 2L)

w′1/L − 2
+

w′ − 2L

w′1/L − 2
≤

n′ + 2w′ + w′ ≤ 3n+ 3 · 3n

• its modified circuit depth d′′ ≤ d′ +
∑

i∈{1,...,L}w
′1/L,

i.e. d̂ ≤ d+ log(n) + L · (n′)1/L = d+ log(n) + L · [3n]1/L,

• the new size of the test set k′′ = 4 · 2L.

■

59

3.5 R-scheme

We now present the R-scheme, a different way of compiling circuits to make them
tamper-resilient. It achieves a little bit different properties compared to L-scheme.

3.5.1 Information Loss in Gate-Covered Circuits1

In this section, we define information loss and show that it is easily trackable in any
Fg with a gate-covering set Tg. For any such circuit, we show the following property:
for any tampering applied to the wires of the Fg, either we observe an information
loss on one of the output wires of the multi-input gates AND,OR,XOR (given only
the inputs from the gate-covering set Tg), or the output wires of the circuit are always
set to a constant value or always toggled or always correctly evaluated.

Theorem 9 For any circuit Fg : Fs → Ft with gate-covering set Tg, for any tam-
pering function τ applied to the circuit then at least one of the following holds:

• Information loss on multi-input gates

∃X0,X1∈Tg, v∈V (Fg) : γ(v)∈{AND,OR,XOR} :(
valX0,Fg(v) = 0 ∧ valX1,Fg(v) = 1

)
∧
(
valτX0,Fg

(v) = valτX1,Fg
(v)
)

• Constant output
∃i∈[t],b∈{0,1}∀X ∈ Fs : F τ

g (X)[i] = b

• At most toggled output

∃T∈{0,1}t∀X∈FsF τ
g (X) = Fg(X) + T

Proof. The proof follows a modular argument. For this, we introduce the concept
of Topological Layers of Computation on any circuit Fγ. In the definition below,
we say that a wire e is connected to a gate v in a circuit Fγ described with a DAG
(denoted by predicate connectedFγ (g, e) holds) if and only if there exists a direct
connection or connection going through a path of COPY or NOT gates between g
and the predecessor of e in the circuit.

Definition 13 (Topological Layers of Computation) For any circuit F , we re-
cursively define its Topological Layers of Computation:

1cited from [Bai+23b] for completeness

60

• 0th-layer of Computation L0 = I(F)

• ith-layer of Computation Li = {v ∈ V (Fγ) : ∀e∈E−(v) : connectedFγ (v
′, e)

for some v′ ∈ L0 ∪ . . . ∪ Li−1 and γ(v) ∈ {XOR,AND,OR}}.

By Gi(F), we denote a subgraph induced by the layers L0, . . . ,Li of the circuit.
Below we consider F = Fg. We run an experiment that evaluates layer by layer

the tampered F (assuming F has L + 1 layers). In the i-th layer, either there is an
information loss, and we stop the experiment, or the output of the layer is at most
toggled [see event E2 below], and the experiment proceeds to the next layer. We
define the following predicates for a gate v in layer Li:

• E1(v, i) holds if v ∈ Li ∧ ∃X0,X1∈TgvalX0,F (v) = 0 ∧ valX1,F (v) = 1 ∧
valτX0,F

(v) = valτX1,F
(v),

• E2(v, i) holds if v ∈ Li ∧ ∀X∈Fs : valτX,F (v) = valX,F (v) + f
[
τ(e) : e ∈

E(Gi(F))
]
.

In the 0th-layer of the circuit, by definition of the tampering function, for any node
v ∈ L0(F): X ∈ Fs : valτX,F (v) = valX,F (v). This implies event E2(v, 0) on any gate
from this layer. We prove the following for the tampered circuit F :

∀τ(F),i∈{1,...,L} : ∀j∈{0,...,i−1},v′∈Lj : E2(v′, j) =⇒ ∀v∈Li(F) : E1(v, i) ∨ E2(v, i)

We first study the gates of the first layer:

• The AND gate in the 1st-layer is connected to the input gates only via a sequence
of COPY and NOT gates. The computation on this gate can be described as
Pv(a, b) = a · b. The tampered output of the gate is P̃v(a, b) = ã · b̃, where
ã ∈ {a, a+1, 0, 1}, b̃ ∈ {b, b+1, 0, 1}. The tampering of a wire a is set to 1 or 0
whenever there is constant tampering on its path from the 0thlayer, a+1 or b+1
whenever on the path there is an odd number of toggle tamperings, and a or b
whenever there is an even number of toggle tamperings on the path. Whenever
ã = 0 ∨ b̃ = 0, then P̃v(a, 1) = 0 and P (a, 1) = a, we get an information loss.
Now, since by the construction of the Algorithm 6, the wire P is connected via
a COPY to the output, the event E1(v, 1) occurs.

In other cases:

– if ã = 1 (or b̃ = 1), P (a, 1) = a and P̃ (a, 1) = const. (resp. P (b, 1) = b
and P̃ (b, 1) = const.) [E1(v, 1) occurs],

61

– when ã = a + 1 (or b̃ = b + 1), then P (1, b) = b and P̃ (1, b) = 0 (resp.
P (1, a) = 1 and P̃ (a, 1) = 0) [E1(v, 1) occurs],

– otherwise P̃ (a, b) = ab [E2(v, 1) occurs].

• A similar argument as above applies for the OR gate,

• The input wires of the XOR gate are also connected only via a sequence of
COPY and NOT gates to the input. We observe that Pv(a, b) = a+ b, and the
tampered output P̃v(a, b) = ã+ b̃, where ã ∈ {a, a+1, 0, 1}, b̃ ∈ {b, b+1, 0, 1}.

– if ã = const. (or b̃ = const.), P (a, 0) = a and P̃ (a, 0) = const. (resp.
P (0, b) = b and P̃ (0, b) = const.) [E1(v, 1) occurs],

– when ã = a+ ca, b̃ = b+ cb, then P (a, b) = a+ b, P̃ (a, b) = a+ b+ ca + cb
[E2(v, 1) occurs].

In the i-th layer, the inputs to all of the gates are, again, connected to the gates of the
previous layers only via a sequence of COPY, NOT gates. Now, once the induction
assumption holds in the layers {1, . . . , i − 1}, the event E2 on all gates assures that
the case analysis from the first layer may be repeated, but the tampered wires ã, b̃
will now get a constant tampering 0 or 1, or a toggle bit depending on the tamperings
chosen on the edges of the graph induced by layers from the set {0, . . . , i}.

This implies that on multi-input gates of the circuit, we either get event E1 or
E2. Whenever the event E1 occurs, the information loss on one of the multi-input
gates of the circuit occurs. Otherwise, only the event E2 on these gates may occur.
The OUTPUT gates of the circuit are connected via a sequence of COPY and NOT
gates to the gates of the Topological Layers of Computation of the circuit. If, on
their paths, one finds a constant tampering, then some output bit is set as constant;
if only toggles are found there, the output bits are at most toggled. ■

3.5.2 Routing the Information Loss in Gate-Covered Circuits.1

In this section, we show that any gate-covered circuit can be converted to another
gate-covered circuit for which any information loss that appears on its multi-input
gates is routed to the output of the circuit. We present Algorithm 6 that adds a
COPY gate to the output wires of the multi-input gates in the gate-covered circuit.
The added COPY gates forward one copy of the original wires to their previous
destinations and another copy directly to the output (Figure 14).

1cited from [Bai+23b] for completeness

62

a b a b

COPY

P P

Figure 14: Adding a COPY gate to the wire P in the Algorithm 6. This creates
two wires; the left one is connected to the previous successor of the wire P , and the
right one is sent to the circuit output. Algorithm 6 considers only the wires P which
originate at AND,OR,XOR gates in the original circuit.

Proposition 1 The Algorithm 6 transforms a gate-covered circuit Fg : Fs → Ft

with gate-covering set Tg into another gate-covered circuit Ft,0 : Fs → Ft+t0 with
additional output bits and the same gate-covering set, T0 = Tg, where one observes
for any tampering τ of the circuit Ft,0 at least one of the following holds:

• Information loss on output: ∃b ∈ {0, 1}, X0, X1 ∈ T0, i ∈ {1, . . . , t + t0} such
that

valX0(Ft,0)[i] = 0, valX1(Ft,0)[i] = 1, valτX0
(Ft,0)[i] = valτX1

(Ft,0)[i] = b

• At most toggled output

∃B∈{0,1}t∀X ∈ Fs ∃Y ∈ Ft0 : F τ
t,0(X) = Fg(X)∥Y +B||0t0

Proof. It is easy to see that the same test set T0 = Tg is a gate covering set for
the transformed Ft,0. Now, according to Theorem 9 on the transformed circuit, the
following cases may follow:

1. Information-loss on one of the multi-input gates of Ft,0: in this case, one of
the output wires of Ft,0 is connected via a COPY gate to the output of the
multi-input gate and the information loss is propagated to this wire.

2. One of the output wires of Ft,0 constantly evaluates to a constant value: in
this case, we observe an information loss on this wire because it is wire-covered
according to the gate-covering set T0 definition.

63

Algorithm 6: Algorithm for Routing the Information Loss in a Gate-
Covered F
Data: Fg : Fs → Ft,Tg

Result: Ft,0,T0

1 Initialize Ft,0 = Fg, T0 = Tg

2 for v ∈ V (Fg) do
3 if γ(v) ∈ {AND,OR,XOR}∧ e = E+(v) is not an output wire of Ft,0 then
4 Insert to Ft,0 a COPY gate between v and V +(e).
5 One of the output wires of the new gate should go to V +(e); the

other one should be left as an additional output wire of the modified
circuit.

6 end
7 end
8 return Ft,0,T0

3. At most, toggled output on the circuit.

■

3.5.3 Minimizing the Number of External Wires

In the previous sections, we introduced the notion of information loss, and we showed
that without limitations on the number of additional input/output wires, the tamper-
resilience can be achieved for 1-conductive circuits. As in the case of 3-conductive
circuits, such a solution is impractical. The rest of this section is devoted to demon-
strating the compressing gadget Gn,λ,d that works for nonconductive circuits even if
the adversary tampers with it.

The gadget Gn,λ,d will compress an input of length n. It will comprise λ layers
of smaller sub-gadgets, each of which will need d additional wires with uniformly
random bits as input. The gadget Gn,λ,d will take λ · d additional input wires and
will have a limited number of output wires (much lower than the number of its input
wires - see Figure 15). We will show that even if the adversary tampers with the
compressing gadget Gn,λ,d, the information loss on any of its input wires will survive
through it and can be detected on the output of the gadget with sufficiently high
probability. In practice, we can keep λ at most 5.

64

AND OR

AND

z1

z3

z2

z5

z6

x1 x2 x3 x4 c1 c2

y1

z4

AND OR

AND

z3

z2

z5

z6

x1 x2 x3 x4 c1 c2

y1

z4

G

r1 r2

p1 p2

Figure 15: To reduce the number of external wires, we add a compressing gadget
Gn,λ,d.

3.5.3.1 Construction of One Layer Compression

The Gn,λ,d gadget consists of λ layers that we define as subgadgets Sm,d (with varying
parameter m). The single-layer compression gadget Sm,d compresses m bit input into⌈
m
d

⌉
bit output (using d additional input wires which will be uniformly random bits

during the testing procedure). For ease of analysis, we can consider m to be a
multiple of d (otherwise, we can add m−

⌊
m
d

⌋
spare input wires set to 0 to the Sm,d

single-layer gadget). Sometimes, we refer to Sm,d as simply Sd when m is clear from
the context.

The Sm,d gadget takes m+ d wires as input, where d are additional inputs com-
posed of uniformly random bits, and outputs m

d
wires. First, Sm,d divides the input

sequence that it receives (say z1, z2, . . . , zm) into m
d

blocks of length d(
(z1, . . . , zd), (zd+1, . . . , z2d), . . . , (z(m

d
−1)d+1, . . . z(m

d
−1)d+d)

)
.

Then, using the additional sequence of d input bits r1, ..., rd, it outputs the value of
the inner product of each length d block of z′s and the additional sequence. More
formally, for Sm,d given input wires (z1, ..., zm) and additional input wires (r1, ..., rd),
Sm,d outputs m

d
bits:

Sm,d ((zi)i=1,...,m, (ri)i=1,...,d) =

(∑
j=1,...,d

zid+j · rj

)
i=0,...,m

d
−1

.

65

r1

z′1

z′2

z1
...
zd

zd+1

rd

z2d

z′k

...

...

· · ·
· · ·

...

...

...

· · ·

...

z(k−1)d+1

zn
...

COPY COPY

XOR

XOR

XOR

...

...

...

Figure 16: Construction of the Sm,d gadget. The dotted red triangle represents the
copying tree, △k. The dotted green triangle represents the xoring tree ▷d.

The construction of Sm,d is shown in Figure 16. An instantiation with m = 8, d =
4 is shown in Figure 18. Construction of Sm,d needs as building blocks two types
of gadgets: copying tree (with fan-in 1, but high fan-out) consisting of COPY gates
and xoring tree (with high fan-in, but fan-out 1) consisting of XOR gates. They are
realized by tree-like gadgets that we denote with the following symbols - △m′ ,▷d

(see Figure 17).
The copying tree, △m′ , takes a single wire as input and outputs m′ wires, which,

as the name suggests, are copies of the input in untampered computation. This
is achieved by a complete binary tree with m′ leaves where the root is the input,
the leaves are the output, and all internal nodes are COPY gates. The direction of
computation is from the root to the leaves.

The xoring tree, ▷d takes d wires as input and outputs 1 wire, which in the
untampered circuit is the xor of all the inputs. It achieves this by a complete binary
tree with d leaves, where leaves are the input, the root is the output, and all nodes
are XOR gates. The direction of computation is from the leaves to the root. From
the construction above, we obtain the following properties of Sm,d.

Lemma 1 For the Sm,d gadget with m input wires and additional d input wires for
randomness (Figure 16), the following holds: (1) The number of output wires is m

d
,

(2) The depth is less than log m
d
+ log d + 1 = logm + 1, (3) The total number of

66

...

i1

i2

id−1

id

... · · ·

· · ·

...

· · ·

r

Figure 17: The gadgets △,▷ are realized by complete binary trees with COPY,XOR
in nodes, respectively.

gates is less than d · m
d
+ n+ m

d
· d = 3m (number of gates in the copying trees, plus

the number of multiplication gates plus number of gates in the xoring trees).

3.5.3.2 Composing The Layers

We are ready to present the complete construction of Gn,λ,d. This is achieved by
simply adding λ layers of Sm,d gadgets, with varying parameter m depending on the
layer (see Figure 19). The first layer of S takes as input the input wires to the gadget
G; the next layer takes as input the output of the previous layer, and so on. We
change the parameter m of inputs to Sm,d in each layer accordingly. The output of
the last layer is the output of the G. Every layer reduces the number of output wires
d times. Every layer is given d extra input wires, which would be uniformly random
bits.

Intuition: In Proposition 1, it was shown that any non-trivial tampering implies
an error on the standard output wires or an information loss on the auxiliary output
wires (which are input wires to the compressing gadget G). Here, we focus on the
second case. We can conclude that if there is any error on the input wire corre-
sponding to the value zi (what is implied by the information loss), we may hope
it to survive through λ of the Sd layers - sometimes the value on this particular
wire will be changing the value of the respective inner product, and sometimes not,
independent of everything else except the value of some rj.

67

r2 r3r1

z′1

z′2

z1
z2
z3
z4

z5
z6

r4

z7z8

Figure 18: A single layer of compression - Sm,d (in this case m = 8, d = 4). Trapezi-
ums represent copy gates. The dotted red triangle represents the copying tree, △2.
The dotted green triangle represents the xoring tree, ▷4.

From the construction above, we obtain the following.

Lemma 2 Let Gn,λ,d receive a sequence of length n = m · dλ as an input to be
compressed. Then the following statements are true: (1) Gn,λ,d outputs m bits. (2)
It needs λ·d auxiliary random bits. (3) The depth of Gn,λ,d is bounded by λ·(log n+1).
(4) The total number of its gates is not greater than

∑λ−1
i=0

(
3 n
di

)
= 3nd−d1−λ

d−1 .

3.5.3.3 Information Losing Tuples

Recall that in Proposition 1, we show that any meaningful computation error will
result in an information loss on one of the output wires of the precompiled circuit.
In the following Sections, we will describe that the Gn,λ,d gadget propagates the
information loss on some of its input wires to one of its output wires with reasonable
probability. The reason that we focus on the propagation of the information loss,
not a single error on computation, is that the values of the input the Gn,λ,d gadget
and the tamperings may be adversarially chosen in a way that the error vanishes.

68

S16,2

z1

z16

S8,2 S4,2

r1,1 r1,2 r2,1 r2,2 r3,1 r3,2

Figure 19: The compressing gadget Gn,λ,d consists of λ layers of the compression sub-
gadgets Sm,d, where the number of input wires m decreases layer by layer. Example
parameters are n = 16, λ = 3, d = 2.

For instance, imagine a wire in Gn,λ,d that is (almost) always evaluated to 0 on
the test inputs in an untampered evaluation, and the adversarial tampering flips the
value of this wire to 1, given some specific inputs. Then, the adversary may undo the
wrong evaluation on this wire with another constant tampering. In general, it is easy
for an adversary to undo the (almost) always correct or (almost) always incorrect
evaluations. Thus, we will use the information loss - a pair of evaluations on a single
wire that ensures that this wire evaluates to both 0 and 1, and an error occurs on
one of these evaluations.

We introduce the notion of information-losing tuples, which separates the idea of
information loss from the evaluation process of the whole circuit. In the definition
below, the n-ary vectors over Z2 denoted with Xi denote honest evaluations of n
wires, and the vectors denoted with Yi denote tampered evaluations of the same
wires of some circuit F .

Definition 14 We say that (X1, ..., Xm;Y1, ..., Ym) - a tuple of n-ary vectors over Z2

- is an information-losing tuple if ∃i,j,k ((Xi[k] ̸= Xj[k]) ∧ (Yi[k] = Yj[k])) . The triple
(i, j, k) is called an information-losing witness for (X1, ..., Xm;Y1, ..., Ym)

Recall Proposition 1. Let (Xi), (Yi) denote the values on the output wires of
Fg, F

τ
g for the gate covering set Tg = {Ti}i. Then information loss on the out-

put means that ((Xi), (Yi)) forms an information-losing tuple if the information loss
occurs on the output of the circuit.

69

3.5.3.4 Algebraic Values on the Wires

Now we analyze what the (parameterized by the input) possible values on wires in
tampered realization of Gn,λ,d are. We will use an algebraic notation for the evalu-
ation of the circuit. We make the following extension – the circuit wires carry not
only the elements of Z2 but elements of a ring of multivariate polynomials over Z2.
The indeterminates of this ring for a single circuit will be associated with its input
wires and denoted with lowercase letters; sometimes, we will be using auxiliary inde-
terminates. To compute the results of the val function, we extrapolate the functions
from G to the ring. From now on, whenever we refer to value on the wire, we allow
the value to be an element of the ring.

In this setting, how does the wire tampering affect its value? It works the same
way as before - toggling is simply adding 1 to the polynomial, and setting 0/1 is
setting the polynomial equal to 0/1 without indeterminates. Therefore, we can make
some observations on the gadgets ▷,△ (from Figure 17) and the output of the
multiplication gates in Sd.

Proposition 2 (Output of the copying trees) Let △τ be given r as input, and
r′ be any of its output. Then r′ ∈ {0, 1, r, r + 1}.

Every output of a copying tree is either constant, toggled, or the original value of its
single input wire, depending on the number of toggling or constant tamperings on
the path from the root of the copying tree to the output wire.

Proposition 3 (Output of the xoring trees) Let a1, ..., ad be the input values to
▷τ and p be its output. Then p = β +

∑
i=1,...,d αiai, where αi, β ∈ {0, 1}.

The single output of the xoring tree is a linear combination of its input. If there is
constant tampering on a path from some input wire to the output wire, the coefficient
αi of the input value ai is set to 0, the coefficient β depends on the number of toggling
tamperings and values of the constant tamperings.

Proposition 4 (Output of the multiplication gates) Let (zi, ri) be a pair of in-
put wires to some multiplication gate in Sτ and let multi denote the output value of
this multiplication gate. Then multi = αi(zi)ri + βi(zi), where αi, βi are linear func-
tions over F for all i’s.

Given that for any fixed τ on Sτ , tamp(zi) ∈ {0, 1, zi, zi+1}, tamp(ri) ∈ {0, 1, ri, ri+
1}, we can set multi = tamp(zi) ·tamp(ri). The above Proposition states that for the
fixed tampering τ , the output value of the multiplication gate mi can be described
as a linear function of ri.

70

Proposition 5 (Output of the one layer compression gagdet) Let pm be the
output value of the gadget ▷τ from the construction of Sτ

d which takes as input values
zmd+1, zmd+2, ..., zmd+d, r1, r2, ..., rd. Then

pm = β(zmd+1, ..., zmd+d) +
∑

i=1,...,d

αi(zmd+i)ri,

where αi and βi are linear (multilinear) functions over F.

Given the Propositions 2, 3, 4, in Proposition 5 we can conclude on the output values
of Sm′d,d given values z1, ..., zm′d; r1, ..., rd as input in the above statement.

3.5.3.5 Information Loss Survival for Sd

Now, we will prove that information loss survives a single-layer computation Sd with
probability at least 1

2
. Since the complete compression gadget Gn,λ,d is built using λ

layers of Sd gadgets, this result will lead us to the conclusion that Gn,λ,d compresses
the size of the output and propagates the information loss to the output with a
probability at least 1/2λ.

We are given an information-losing tuple (X1, ..., Xz;X
τ
1 , ..., X

τ
z) which represents

z different (untampered and tampered) evaluation vectors of input wires to the single
layer compressing gadget Sd. Given z uniformly random pairs of randomness vectors
Ri, Qi, each evaluation vector Xi will be used twice as the input to the gadget Sd.
This will suffice to propagate the information loss to the gadget’s output with good
probability.

Theorem 10 (Information loss through one layer) Let (X1, ..., Xz;X
τ
1 , ..., X

τ
z)

be an information-losing tuple. Let Ri, Qi for i = 1, ..., z be vectors in Zd
2 chosen in-

dependently and uniformly at random. Let

Yi = Sd(Xi|Ri), Yi+z = Sd(Xi|Qi), Y τ
i = Sτ

d (X
τ
i |Ri), Y τ

i+z = Sτ
d (X

τ
i |Qi),

for i = 1, ..., z. Then (Y1, ..., Y2z;Y
τ
1 , ..., Y

τ
2z) is an information-losing tuple with prob-

ability at least 1
2
.

Proof. Let (i, j, k) be a information-loss witness for (X1, ..., Xz;X
τ
1 , ..., X

τ
z). Then

(Xi[k] ̸= Xj[k]) ∧
(
Xτ

i [k] = Xτ
j [k]

)
. (2)

Denote the input to Sd by U = (x1, ..., xd, r1, ..., rd). Let Os be the s’th output
wire of S, which is possibly affected by the value of xk. Obviously s = ⌈k

d
⌉, and

71

k = sd + k′ where k′ ∈ [d]. Then the value of the selected output wire in the
untampered Sd is:

valU(Os) =
∑

t=1,...,d

xsd+trt =
∑

t=1,...,d

γt(xsd+t)rt, (3)

where γt is the identity function. From Proposition 5, we know that the tampered
value of the selected output wire can be described with the following expression:

valτU(Os) =
∑

t=1,...,d

αt (xsd+t) rt + βt (xsd+t) , (4)

where αi and βi are linear (multilinear) functions over F.
Now we can instantiate (x1, ..., xz) four times, with Xi, Xj, X

′
iX
′
j. In every such

case αt(·), βt(·), γt(·) are evaluated to some elements of Z2. Let us denote these
elements with β

X′
i

t = βt(X
′
i[sd + t]). Since (i, j, k) is the witness of information

loss, we know, that γXi

k′ ̸= γ
Xj

k′ , α
X′

i

k′ = α
X′

j

k′ . WLOG let γXi

k′ ̸= α
X′

i

k′ . Moreover, the
evaluations 3, 4 are simply linear/affine combinations of r1, ...rd over Z2, respectively.
Consider,

DIFFi(r1, ..., rt) := valXi|r1,...,rd(Os)− valτX′
i|r1,...,rd

(Os) = rk′ +
∑

t=1,...,d;t̸=t′

δtrt+ ϵi, (5)

for some ϵi, δt ∈ Z2.
Now let instantiate (r1, ..., rd) with uniform random variable R over Zd

2. Firstly,
observe that Pr[DIFFi(R) = 1] = 1

2
This means that for the pair Xi, X

′
i for exactly

half of the choices of R, an error will occur on the Os - i.e., the expected and
actual values will differ. Since DIFFj(r1, ..., rt) = valXj |r1,...,rd(Os)−valτX′

j |r1,...,rd
(Os) =∑

t=1,...,d κtrt + ϵj, for some ϵj, κt ∈ Z2, we know that Pr[DIFFj(R) = 1] ∈
{
0, 1

2
, 1
}
.

Thus, for the pair Xj, X
′
j, there is an error never or always, or for half of the choices

of R. Finally,{
1

2

}
⊆
{
Pr[valXi|R(Os) = 0],Pr[valXj |R(Os) = 0]

}
⊆
{
0,

1

2

}
. (6)

The first inclusion is true since 1 ∈ {γXi

k′ , γ
Xj

k′ }. The second inclusion is true, since
valXi|R(Os), valXj |R(Os) are linear combinations of rt’s.

Let us denote x1(R) = S(Xi|R)[k′], x2(R) = S(Xj|R)[k′], y1(R) = Sτ (Xτ
i |R)[k′],

y2(R) = Sτ (Xτ
j |R)[k′]. Informally speaking, for independent and uniformly random

Ri, Rj, Qi, Qj the tuple

V = (x1(Ri), x1(Qi), x2(Rj), x2(Qj); y1(Ri), y1(Qi), y2(Rj), y2(Qj))

72

contains a tampered evaluation y1 that has an error with probability 1/2 with respect
to its correct evaluation x1 and at least one evaluation x1 or x2 that is correctly eval-
uated to 1. Now, we can use Lemma 3 below to prove the above informal statement
and say that given uniformly random Ri, Rj, Qi, Qj, the tuple V is an information-
losing tuple with a probability of at least 1/2.

Thus we conclude that (Y1, ..., Y2z;Y
τ
1 , ..., Y

τ
2z) is an information-losing tuple with

at least one of (i, j, k′), (i, j + z, k′), (i + z, j, k′), (i + z, j + z, k′) as a witness with
probability at least 1/2.

■

Finally, we formulate the Lemma which lets us conclude that the information loss
survives a single layer of compression Sd with probability at least 1/2.

Lemma 3 Let x1, x2, y1, y2 be functions from Zd
2 to Z2, and let R be a random vari-

able over Zd
2, such that:

Pr[x1(R) = y1(R)] =
1

2
, (7)

Pr[x2(R) = y2(R)] ∈
{
0,

1

2
, 1

}
, (8){

1

2

}
⊆ {Pr[x1(R) = 0],Pr[x2(R) = 0]} ⊆

{
1

2
, 1

}
, (9)

Then for independent and uniformly random R1, R2, Q1, Q2 the tuple

(x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2))

is information losing with probability ≥ 1
2
.

Proof. 1 We want to show that for any constraints with probability ≥ 1
2

the tuple
(x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2)) has some two x′s dif-
ferent and corresponding y′s being equal. Consider any four tuples (a, a′), (b, b′),
(c, c′) and (d, d′) where a, b, c, d, a′, b′, c′, d′ ∈ {0, 1}. First, we claim that (a, b, c, d;
a′, b′, c′, d′) forms an information-losing tuple if and only if none of the following
is true: (1) a = b = c = d, (2) (a = a′) ∧ (b = b′) ∧ (c = c′) ∧ (d = d′), (3)
(a = 1− a′) ∧ (b = 1− b′) ∧ (c = 1− c′) ∧ (d = 1− d′).

If any of the above conditions is true, then (a, b, c, d; a′, b′, c′, d′) is not information-
losing. For the reverse, assume none of the conditions is true. Without loss of
generality, let a = 1, b = 0. Without loss of generality we have two cases c = 1, d = 1

1This statement was originally proved by me by computer-aided considering several dozen cases;
one of the collaborators simplified it, and here is his proof.

73

or c = 1, d = 0. In the first case, if b′ = 0, at least one of a′, c′, d′ must be 0.
Otherwise, condition 2 above would hold. WLOG let a′ = 0. Thus, a ̸= b but
a′ = b′ and we get information loss. Similarly, if b′ = 1 using condition 3, we will
find information loss. In the second case of a = 1, b = 0, c = 1, d = 0, if a′ ̸= c′, then
b′ = a′ or c′ hence information loss. If a′ = c′, we get information loss if either b′ or
d′ equals a′. The only way for neither b′ nor d′ to equal a′ is for one of conditions 2
or 3 to hold, but this would be a contradiction.

Thus we define three events corresponding to the three conditions above:

E1: x1(R1) = x1(Q1) = x2(R2) = x2(Q2)

E2: (x1(R1) = y1(R1))∧(x1(Q1) = y1(Q1))∧(x2(R2) = y2(R2))∧(x2(Q2) = y2(Q2))

E3: (x1(R1) = 1−y1(R1))∧(x1(Q1) = 1−y1(Q1))∧(x2(R2) = 1−y2(R2))∧(x2(Q2) =
1− y2(Q2))

Thus given a tuple of evaluations

V = (x1(R1), x1(Q1), x2(R2), x2(Q2); y1(R1), y1(Q1), y2(R2), y2(Q2)),

we get that Pr[V is information losing] = 1− Pr[E1 ∨ E2 ∨ E3].
We will bound Pr[E1 ∨ E2 ∨ E3] ≤ 1

2
, thus proving the desired result. For this

we first use union bound to get Pr[E1 ∨ E2 ∨ E3] ≤ Pr[E1] + Pr[E2 ∨ E3]. Now for
Pr[E1], we have that at either Pr[x1 = 0] = 1

2
or Pr[x2 = 0] = 1

2
(eq. 9). Thus

Pr[x1(R1) = x1(Q1) = x2(R2) = x2(Q2)] ≤ 1
4
.

For Pr[E2 ∨ E3] ≤ Pr[E2] + Pr[E3]. We have three cases by Equation 8:

1. Pr[x2(R) = y2(R)] = 0: In this case Pr[E2] = 0. Additionally using eq. 7 we
get that Pr[E3] =

1
4
. Hence, Pr[E2 ∨ E3] =

1
4

2. Pr[x2(R) = y2(R)] = 1: In this case Pr[E3] = 0. Additionally using eq. 7 we
get that Pr[E2] =

1
4
. Hence, Pr[E2 ∨ E3] =

1
4

3. Pr[x2(R) = y2(R)] = 1
2
: Additionally using eq. 7 we get Pr[E2] = Pr[E3] =

1
16

.
Hence, Pr[E2 ∨ E3] ≤ 1

8

We get Pr[E1∨E2∨E3] ≤ 1
2
, and the probability of information loss at least 1

2
.■

74

3.5.4 The Compiler

Finally, building upon results from the previous sections, we define a compiler that
compiles any circuit F : Fs → Ft into another functionally equivalent circuit Ft,λ :
Fs+s′ → Ft+t′ such that for any non-trivial tampering of the circuit Ft,λ, running
the testing procedure on the tampered Ft,λ, one always detects an error with high
probability.

Algorithm 7: RandomnessCompiler
Data: F : Fs → Ft, λ
Result: Ft,λ,Tg

1 Compile circuit F into a gate-covered Fg : Fs+sg → Ft,Tg, by running
Algorithm 3 on it

2 Add the COPY gates that route the information loss in the gate-covered
circuit to the testing gadget by running Algorithm 6 on the pair Fg,Tg.
This procedure gives a circuit with additional t0 output bits -
Ft,0 : Fs+sg → Ft+t0 along with a test set Tg

3 Append the Gn,λ,d gadget to the t0 wires added in the previous step, where

d = ⌈t
1

λ+1

0 ⌉. This step adds sλ wires to the input of the circuit but replaces
the t0 output bits created in the previous step with λ new output bits,
producing a circuit Ft,λ : Fs+sg+sλ → Ft+tλ

4 return Ft,λ,Tg

Theorem 11 (Testing Probability of Final Circuit) On input circuit F : Fs →
Ft along with parameter λ, Algorithm 7 outputs a circuit Ft,λ : Fs+sg+sλ → Ft+tλ such
that for any tampering τ of Ft,λ if

∃X ∈ Fs : F τ
t,λ(X||0sg+sλ) ̸= Ft,λ(X||0sg+sλ)

then when observing behaviour of the circuit Ft,λ on its test set Tt:

• Either the output is wrong:

∃X ∈ Tt : F
τ
t,λ(X||0sλ) ̸= Ft,λ(X||0sλ),

• or the testing gadget detects an inconsistency:

∃X ∈ Tt : Pr
R←Fsλ

[
F τ
t,λ(X||R) ̸= Ft,λ(X||R)

]
≥ 1

22λ
.

75

Proof. By the Proposition 1 we know that either we observe an information
loss on the first t bits of the intermediary circuit Ft,0 or its output is toggled, or
we observe information loss on t0 wires added during Step 2 of the Algorithm 7,
or the output is always correct. Any error on the first t bits of the circuit will
be detected on at least one query from (T0 ⊆ Tt is the gate-covering set of the
Ft,0 (Proposition 1)). Next, when we append the gadget Gn,λ,d to the remaining t0
wires of the construction. Theorem 10 shows that the information loss on these wires
survives with probability 1/2 in each layer when queried with fresh randomness twice.
Hence, the information loss would survive with probability 1/2λ if we query with two
fresh randomness vectors in each layer. Thus, if we query with only one random
string, the probability of information loss surviving and hence the error showing up
on the output is 1

2λ
/2λ = 1/22λ. ■

Testing Procedure. Given any circuit F τ
t,λ with any tampering τ on its wires

we test it by querying it on all the test inputs in Tg along with uniform random
R ∈ Fsλ . We can repeat the testing procedure κ times with fresh randomness to get
the probability of catching an error 1− (1− 1/22λ)κ

Circuit Parameters. For any circuit F : Fs → Ft with n gates, using the Algo-
rithm 7 with parameter λ. The first step of the Algorithm produces a gate-covered
circuit Fg with 5 new input bits and a test set of size 6 and creates a circuit of size
≈ 7n gates . The second step of the algorithm adds XOR and COPY gate to every
nonlinear gate of the circuit, adding ≈ 2 ·4n gates and roughly ≈ 4n output wires (in
the previous estimation at least 3n out of 7n gates are the COPY gates). The third
step of the algorithm replaces the 4n intermediary wires with ≈ L · λ+1

√
4n input bits

and ≈ λ+1
√
4n output bits.

3.6 Summary and discussion

We described two schemes against tampering HTHs – the L-scheme and the R-
scheme. Their basic properties are compared in Figure 3.6.

Conductivity. The R-scheme grants resilience against HTHs in a much more gen-
eral model of non-conductive wires. This model is closer to reality- no reason exists
for the adversary not to tamper with a few output wires from a single gate differ-
ently. The main reason the L-scheme does not work in this model is the definition of
STRmOR, STRmAND gadgets. For instance, for the STRmOR gadget, the adversary

76

F F̂ , L ∈ N+ (L-scheme) Ft,λ, λ ∈ N+ (R-scheme)
Number of gates n ≤ 12n ≤ 23n+ o(n)

Input size s s+ 3 + L ≤ s+ 5 + λ · λ+1
√
4n

Output size t t+ 2L ≤ t+ λ+1
√
4n

Cover/Test size 4 · 2L |Tt| ≤ 6
Probability that adversary wins 0 2−2λ

Randomness (bits) 0 λ · λ+1
√
4n

Table 2: Summary of the efficiency parameters of the schemes L and R.

could tamper with input wires I1, ..., Im by zero function so that there would be no
information loss on the output wire O (see Definition 9).

Stateful circuits. The solutions we just presented work in the model of stateless
circuits. Obviously, stateful circuits have great interest in cryptography since they
can, e.g., store a private key. We could model stateful circuits as directed graphs with
cycles – contrary to DAGs – where every cycle contains at least one memory cell. In
this model, the solution from L looks more promising - recall that the consistency
in the lab phase is checked only for auxiliary output wires. In the testing context,
we can understand stateful circuits as stateful circuits but with restricted access to
some part of its output – the part that goes to the memory gates.

Test set. The two schemes presented in this section also differ in the construction
of the test set. Recall that the topology of the circuit F̂ strongly depends on the
wire-covering set Tw. More precisely, the STRmORi and STRmANDi gadgets take as
input some subsets of the internal wires of the original circuit Fw, depending on the
index functions. The test set is small, and the testing procedure is deterministic.
The test set in R-scheme requires randomness.

Derandomization. Note that the construction from R-scheme can be easily de-
randomized, affecting a huge (but tractable) test set. For the number of layers of
compression λ = log2 n, where n is the number of internal wires, the length of the
random vector R is 2 log2 n. In this case, a random vector for each layer has length
2. For each T ∈ Tg the lab phase can check the consistency for all n2 possible values
of R. Our preliminary calculations show that for each layer, it is sufficient to check
not all 4 but only 3 arbitrary values of random vectors to ensure that the tampering

77

applied to the circuit was dummy.

Industrial issues. There are some industrial issues we want to comment on, even
though this thesis is theoretical. Firstly, the resilience proofs for the presented
schemes do not rely on the topology of the auxiliary subcircuits we defined – we
mean copying and coring trees. They can be realized in a more practically effi-
cient way. Secondly, the subsets of wires taken as input to the STRmOR, STRmAND
gadgets can be arbitrary. We can even produce more such gadgets because of the
geometry of the circuit, which affects a small growth of the number of output wires
(one additional bit for each gadget). Thirdly, we believe that the notion of wire-
covering and gate-covering sets may be interesting from the perspective of testing
devices against unintentional faults.

78

4 Very Simple Compilers against Total Hardware
Trojan Horses1

This section is devoted to countermeasures against Total Hardware Trojan Horses
that significantly differ from all the others in terms of the specification of the compiled
circuit. Recall that a circuit compiler C against THTHs for a given circuit F outputs
a tuple (F̂ ,T) consisting of the description of a compiled circuit and a characteriza-
tion of a lab phase (see Section 2). The circuit description F̂ consists of a trusted
(master) module and some untrusted modules F1,F2, ...,Fn, whose specification can
significantly differ from the input circuit [DFS16; Wah+16]. The dissimilarity in
the functionality of the original F and the untrusted submodules F1,F2, ...,Fn can
be easily understood – the existing solutions use cryptographic primitives such as
Multi-Party Computation or Verifiable Computation. For instance, the untrusted
and trusted components of the compiled circuit in [Wah+16] play the Prover and
Verifier roles of some Verifiable Computation Protocol for original functionality F .
We suspect the research objective in [Wah+16; DFS16] was to obtain the best secu-
rity parameters for a possibly broad class of adversaries. In this section, the starting
point of the research is different – we investigate the (reasonably) simplest compilers
and prove how secure they can and cannot be.

The starting point of the research on Very Simple Compilers is a rigorous division
of the computation between the trusted and untrusted components of the device to
be protected. Recall that the very first motivation for using the devices produced
by untrusted parties is that the ones produced honestly are less efficient. Therefore,
we expect the trusted module to perform very few operations. However, to achieve
meaningful security guarantees, the master module must perform some nontrivial
computations according to impossibility results from [DFS16]. We can think of
equality check as the most fundamental nontrivial operation that can be performed on
some two objects. It is blind to any properties, structures, or built-in functionalities
of the compared entities. The concept of Very Simple Compilers is based on this
observation. More precisely, we focus on a well-defined class of compilers, such that
untrusted subcircuits Fi are expected to behave exactly as the input circuit F . The
trusted module treats them in the wild as oracles, i.e., it sends input to some of them
and checks if the received outputs are equal. If so, it outputs the received output; if
not – it stops. The untrusted oracles are independently tested in the lab phase. The
inputs in the wild and lab phases come from a uniformly random distribution – the

1This section is based on the paper [Cha+21], which was presented at the Theory of Cryptog-
raphy Conference 2021. Section 4.2 is cited for completeness.

79

adversary that controls the input stream in the wild would be able to activate the
THTH with a cheatcode. All formal definitions will be given later.

The organization of this section is as follows: firstly, in Section 4.1, we present
the result on this topic from [Cha+21] and the possible application of achieved se-
curity guarantees. Secondly, in Section 4.2, we cite useful definitions, lemmas, and
impossibility results from [Cha+21]. Finally, in Section 4.3, we cite the construction
that achieves the best possible security parameters for Very Simple Compilers, along
with all the needed proofs. The general idea of the compiler, motivation, and proofs
was developed jointly by the authors of [Cha+21]. I wrote down Section 4.3 and
resolved some mediocre and minor issues that arrived during that process.

4.1 Results and applications

Here, we want to briefly present both negative and positive results in the field of
Very Simple Compilers and possible applications of such security schemes.

4.1.1 (Non)achievable security for Very Simple Schemes

Throughout this section, we work with security defined in terms of a security game
TrojanGame(Π, T,Q), which will be formally defined later in Section 4.2. For now, we
need to know that T and Q refer to the length of the lab and wild phase, respectively.
The achievable security guarantees for Very Simple Compilers are far from making
this scheme a black-box building block for arbitrary application. To see that, we need
to understand the concept of resilience against THTHs parametrized by real numbers
win and wrng. Informally, we call a compiler (like our simple schemes) (win,wrng)-
Trojan resilient, or simply (win,wrng)-secure, if for every Trojan, the probability
that it causes the master to output ≥ wrng fraction of wrong outputs without being
detected is at most win. The detection of the Trojan can happen in the lab phase
(if it does not pass some of the tests) or in the wild phase (to be explained later).
In the formal definition, win and wrng are allowed to be a function of the number of
test queries T .

Definition 15 ((win,wrng)-Trojan resilience) For win,wrng ∈ [0, 1] an adversary
(win,wrng)-wins in TrojanGame(Π, T,Q) if the master module outputs more than a
wrng fraction of wrong values without the Trojans being detected with probability
greater than win, i.e.

Pr
TrojanGame(Π,T,Q)

[(detect = false) ∧ (Y/Q ≥ wrng)] ≥ win.

80

For win : N → [0, 1],wrng : N → [0, 1], q : N → N, we say that Π is (win(T),
wrng(T), q(T))-Trojan-resilient (or simply secure) if there exists a constant T0,
such that for all T ≥ T0 and Q ≥ q(T) no adversary (win(T),wrng(T))-wins
in TrojanGame(Π, T,Q).

We say Π is (win(T),wrng(T))-Trojan-resilient if it is (win(T),wrng(T), q(T))-
Trojan-resilient for some (sufficiently large) polynomial q(T) ∈ poly(T).

The paper [Cha+21] presents a discussion on possible meaningful values of the param-
eters win,wrng. The paper also gives positive and negative results on the achievable
(win,wrng)-Trojan-resilience. Here, we first describe the impossibility results. Very
Simple Schemes for the maximal number of tests ≤ T allow the adversary to make
the device produce Ω(1/T) ·Q wrong outputs in the wild with noticeable probability.
It is easy to see if we think of F1 = F2 = ... that deviate on the 1/T fraction of
inputs. More precisely1:

Fi(x) =

{
F (x) + 1 if X < |F|s/T ,
F (x) otherwise.

We state it as a lemma below. Its formal proof will be given later, but we can
informally argue on it here. Firstly, for uniformly random inputs in the lab phase of
length < T , the probability of catching the device deviating is ≤ 1 − (1 − 1/T)T ≈
1 − 1/e. Secondly, approximately Q/T outputs will be incorrect in the wild for
uniformly random inputs.

Lemma 4 (Lower bound for simple schemes) For any c > 0 and m ∈ N there
exists a constant c′ = c′(c,m) > 0 such that no m-redundant simple scheme Πm is
(c, c′/T)-Trojan-resilient.

We showed that the above bound is tight. Figure 21 presents a construction for
which we prove the theorem below.

Theorem 12 (Optimal security of Π12) For any constant c > 0 there is a con-
stant c′ such that the simple construction Π12 from Figure 21 is (c, c

′

T
)-Trojan re-

silient.
1Note that the inputs in this section are denoted with lowercase letters, unlike in the case of

tampering HTHs; this is because, in the case of THTHs we never focus on particular bits of the
input.

81

4.1.2 Motivation and possible applications

Very Simple Compilers have many desired properties. First, the trusted module is
extremely simple – it only distributes inputs and compares outputs. Secondly, the
overhead in the running time is tiny. And lastly, the compiler can use devices that
already exist. It is an interesting example of when the security of the existing devices
can be improved after changing the model.

At the same time, Very Simple Compilers can offer only limited security guaran-
tees, so we must consider whether they have any convincing applications other than
improving the security of existing devices. The original motivation for investigating
this type of construction was to make it a building block for more advanced ones.
To understand one example of such a construction, we must recall the definition
of weak Pseudo Random Function (weak PRF) - these are Pseudorandom functions
that receive random inputs (in particular, their inputs are not controlled by the
adversary).

We can think of the following construction of the THTH-resilient weak PRF: it
consists of a super master module that xores the outputs of λ instances of (c, c′

T
)-

Trojan-resilient weak PRFs. We need to recall a basic fact from probability theory to
introduce the intuition behind this idea. Let X, Y be independent random variables
over a finite field F such that X is uniform – then also X + Y is uniform1. We can
hope that since for each weak PRF, only a tiny fraction of its outputs is wrong, it
is unlikely that all of them are wrong; the correct outputs, indistinguishable from
random, would mask the incorrect ones, and the output of the whole device would be
pseudorandom for random input, even if not correct. Unfortunately, this intuition is
neither complete nor entirely accurate. Firstly, the security definition Definition 15
lower-bounds the probability of the average number of errors in the wild phase. We
would need a more robust notion, where the error probability is lower-bounded for
every single output. Secondly, the correct outputs from a single subdevice may be,
surprisingly, distinguishable from random with noticeable probability. For example,
we can think of circuits that deviate for 1/T smallest outputs and output 0. Then,
correct outputs will never be small, which can be easily distinguished from random
by a computationally bounded adversary. Both problems seem to be resolvable, and
the manuscript on them is being prepared.

1This fact is responsible for the security of the one-time pad encryption.

82

4.2 Preliminaries1

Here, we identify the original circuit F with the desired functionality F . For m ∈ N,
an m-redundant simple construction Πm = (T∗,M∗) is specified by a master circuit
M∗ : X → Y ∪ {abort} and a test setup T∗ : N→ {fail, pass}.2 The ∗ indicates that
they expect access to some oracles. The following oracles will be used:

F1, . . . ,Fm — the Trojan circuits that presumably implement the functionality F :
X → Y ,

F — a trusted implementation of F or the original circuit F (only available in the
test phase), and

$ — a source of random bits (sometimes we will provide the randomness as input
instead),

4.2.1 Test and deployment

The construction Πm, which implements F in a Trojan-resilient way using the un-
trusted F1, . . . ,Fm, is tested and deployed as follows.

Lab Phase (test): In this first phase we execute {pass, fail} ← TF1,...,Fm,F,$(T). The
input T specifies that each Fi may be queried at most T times. If the output
is fail, a Trojan was detected. Otherwise (i.e., the output is pass), we move to
the next phase.

Wild Phase (deployment): If the test outputs pass, the Fi’s are embedded into the
master to get a circuit MF1,...,Fm,$: X → Y ∪ abort.

4.2.2 Completeness

The completeness requirement states that if every Fi correctly implements F , then
the test phase outputs pass with probability 1, and the master truthfully implements
the functionality F . That is, for every sequence x1, x2, . . . , xq (of arbitrary length
and potentially with repetitions), we have

Pr[∀i ∈ [q] : yi = F(xi)] = 1 where for i = 1 to q : yi := MF1,...,Fm,$(xi)

1For completeness, we will cite some definitions, intuitions, and theorems from [Cha+21].
2We consider much stronger M∗,T∗ for the lower bounds compared to what we require in the

constructions as discussed in Sec. 4.2.5

83

The reason we define completeness this way and not simply for all x we have
Pr[MF1,...,Fm,$(x) = F(x)] is that the Trojan Fi can be stateful, so the order in which
queries are made does matter.

4.2.3 Security of simple schemes

We consider a security game TrojanGame(Π, T,Q) where, for some T,Q ∈ Z, an
adversary A can choose the functionality F and the Trojan circuits F1, . . . ,Fm. We
first run the test phase τ ← TF1,...,Fm,F,$(T). We then run the wild phase by querying
the master on Q iid inputs x1, . . . , xQ.

for i = 1, . . . , Q : yi ← MF1,...,Fm,$(xi).

The goal of the adversary is two-fold:

1. They do not want to be caught, if either τ = fail or yi = abort for some i ∈ [Q]
we say the adversary was detected and define the predicate

detect = false ⇐⇒ (τ = pass) ∧ (∀i ∈ [Q] : yi ̸= abort)

2. They want the master to output as many wrong outputs as possible. We denote
the number of wrong outputs by Y

def
= |{i : yi ̸= F(xi)}|.

We can define generic simple schemes.

Definition 16 (Generic Simple Scheme) A generic simple scheme (T∗,M∗)
treats the outputs of the Fi (and for T∗ additionally F) oracles like variables. Con-
cretely, two or more oracles can be queried on the same input, and then one checks
if the outputs are identical. Moreover, the master can use the output of an Fi as its
output.

In all our simple constructions, the test and master only use the outputs of the Fi

(and for the test also F) oracles to check for equivalence. This fact will allow us
to consider somewhat restricted adversaries in the security proof. By the following
lemma, to prove the security of generic simple schemes, it will be sufficient to consider
restricted adversaries that always choose to attack the trivial functionality F(x) = 0
and where the output range of the Trojans is a bit.

Lemma 5 For any generic simple scheme Πm, assume an adversary A exists that
(win,wrng)-wins in TrojanGame(Πm, T,Q) and let F : X → Y , F1, . . . ,Fm : X →
Y denote its choices for the attack. Then there exists an adversary A′ who also
(win,wrng)-wins in TrojanGame(Πm, T,Q) and chooses F ′ : X → {0, 1} , F′1, . . . ,F′m :
X → {0, 1} where moreover ∀x ∈ X : F ′(x) = 0.

84

Proof. A′ firstly runs A to learn (i) the functionality F : X → Y which it wants
to attack and (ii) its Trojans F1, . . . ,Fm. It then outputs (as its choice of function
to attack) an F ′ where ∀x ∈ X : F ′(x) = 0 and, for every i ∈ [m], it chooses the
Trojan F′i to output 0 if Fi would output the correct value, and 1 otherwise. More
formally, F′i(x) invokes the original Trojan y ← Fi(x) and outputs 0 if F(x) = y and
1 otherwise.

By construction, whenever one of the F′i deviates (i.e., outputs 1), the original Fi

would also deviate. And whenever the test or master detects an inconsistency in the
new construction, they would also have detected an inconsistency with the original
F and Fi.1 ■

4.2.4 Lower bounds

By definition, (win,wrng)-security implies (win′,wrng′)-security for any win′ ≥ win,
wrng′ ≥ wrng. The completeness property implies that no scheme is (1, 0)-secure (as
by behaving honestly, an adversary can (1, 0)-win). And also no scheme is (0, 1)-
secure (as Pr[E] ≥ 0 holds for every event E). Thus our (win,wrng)-security notion
is only interesting if both, win and wrng are > 0. Now we can prove the lower bound
from Lemma 4.

Proof (of Lemma 4). A chooses the constant functionality F(x) = 0 with a
sufficiently large input domain |X | ≫ (m · T)2 (so that sampling m · T elements at
random from X with or without repetition is basically the same). Now A samples a
random subset X ′ ⊂ X , |X ′|/|X | = 1.1 · c′/T (for c′ to be determined) and then
defines Trojans which deviate on inputs from X ′

∀i ∈ [m] : Fi(x) =

{
1 if x ∈ X ′ (deviate)
0 if x ̸∈ X ′ (correct)

Should the test pass, the master will deviate on each input with probability 1.1 ·c′/T .
If we set the number of queries Q large enough, the fraction of wrong outputs will
be close to its expectation 1.1 · c′/T , and thus almost certainly larger than c′/T .

It remains to prove that the test passes with probability ≥ c. By correctness,
the testing procedure TF1,...,Fm,F,$ must output pass unless one of the total ≤ m · T
queries it made to the Fis falls into the random subset X ′. The probability that no
such query is made is at least

(1− 1.1 · c′T)m·T

1Let us mention that the opposite is not true (it’s possible that for some i ̸= j we have F′
i(x) =

F′
j(x) = 1, while Fi(x) ̸= Fj(x)). It captures the observation that an adversary who wants to deviate

as often as possible without being detected can always deviate to the same value without loss of
generality .

85

and this expression goes to 1 as c′ goes to 0. We now choose c′ > 0 sufficiently
small so the expression becomes > c. To get a quantitative bound, one can use the
well-known inequality limT→∞(1− 1/T)T = 1/e ≈ 0.367879. ■

The (proof of) the previous lemma also implies the following.

Corollary 6 If a simple scheme Πm is (win(T),wrng(T)) secure with

1. win(T) ∈ 1− o(1) then wrng(T) ∈ o(1/T).

2. wrng(T) ∈ ω(1/T) then win(T) ∈ o(1).

The first item means that if A wants to ensure the Trojan is only detected with sub-
constant probability, then he can only force the master to output a o(1/T) fraction
of wrong outputs during deployment. The second item means that if A wants to
deviate on an asymptotically larger than 1/T fraction of outputs, it will be detected
with a probability going to 1.

Not interesting security for 1-redundant schemes. For m = 1 redundant
circuits a much stronger lower bound compared to Lemma 4 holds. The following
Lemma implies that no 1-redundant scheme is (ϵ(T), δ(T))-Trojan-resilient for any
ϵ(T) > 0 and δ(T) = 1/poly(T) (say ϵ(T) = 2−T , δ(T) = T−100).

Lemma 6 (Lower bound for m = 1) For any 1-redundant scheme Π1 and any
polynomial p(T) > 0, there is an adversary that (1, 1 − 1/p(T))-wins in the
TrojanGame(Π1, T,Q) game for Q ≥ p(T) · T .

Proof. Consider an adversary who chooses a “time bomb” Trojan F1 which correctly
outputs F(x) for the first T queries and also stores those queries, so it can output
the correct value if one of those queries is repeated in the future. From query T +1,
the Trojan outputs wrong values unless given one of the first T queries as input,
in which case it outputs the correct value. This Trojan will pass any test, making
at most T invocations, while the master will deviate on almost all queries, i.e., all
except the first T .

To see why we store the first T queries and do not deviate on them when they
repeat in the future, consider a master that stores the outputs it observes on the first
T queries so it can later detect inconsistencies. ■

4.2.5 Efficiency of lower bound vs. constructions

For the lower bounds in the previous section, the only restriction on the
test TF1,...,Fm,F,$(T) is that each Fi can only be queried at most T times. There

86

F1

Test Phase
TF1,F2(T)

sample ∆←$ [T − 1]0
xi ←$ X for i ∈ [∆]

F

?
=

xi (for i = 1 . . .∆)

Output pass if all outputs
= 1, output fail otherwise.

F1 F2

xi

?
=

Wild Phase
MF1,F2

{
1 if y = z
0 if y 6= z

?
=

y z

y z

?
={

y if y = z
abort if y 6= z

Test (trusted)

Manufactured (not trusted)

Master (trusted)

Figure 20: Construction Π⋆
2 (discussed in Sec. 4.2.8), which is (c, c′/T) secure for

history-independent Trojans.

are no restrictions on the master MF1,...,Fm,$(·) at all. In particular, it can be stateful,
computationally unbounded, use an arbitrary amount of randomness, and query the
Fis on an unbounded number of inputs (as the Trojan Fis can be stateful, this is not
the same as learning the function table of the Fi’s).

While the lack of any restrictions strengthens the lower bound, we want our upper
bounds, i.e., the actual constructions, to be as efficient (in terms of computational,
query, and randomness complexity) and simple as possible, and they will indeed be
very simple.

Let us stress that one thing the definition does not allow is the test to pass a
message to the master. If we allowed a message of unbounded length to be passed this
way, no non-trivial lower bound would hold as T could send the entire function table
of F to M, which then could perfectly implement F . Of course, such a “construction”
would go against the motivation for simple schemes where M∗ should be much simpler
and independent of F . Still, constructions where the test phase sends a short message
to the master (say, a few correct input/output pairs of F , which the master could
later use to “audit” the Trojans), could be an exciting relaxation to be considered.

87

Fj

Test Phase
TF1,...,F12,F,$(T)

sample ∆←$ [T − 1]0
xi ←$ X for i ∈ [∆]

F

?
=

Output pass if all ∆ outputs
= 1, output fail otherwise.

For i ∈ [∆]
j ∈ {1, 4, 5, 8, 9, 12}

xi

Wild Phase MF1,...,F12,$(x)
set x1 := x and sample

x2, x3 ←$ X
sample b←$ {0, 1}

F1 F2 F3 F4

x1 x2

b

b

?
=

?
=

F5 F6 F7 F8

x1 x2 x3

b

?
=

?
=

b b b

Master outputs y1 = F1(x) if all output ok and outputs
abort otherwise

y1

F9 F10 F11 F12

x1 x2 x3

b

?
=

?
=

b bb

?
=

y7 y10

?
=

y3 y11

?
=

y2 y6

y2

y6

y3

y7y11y10

Π12 = (T∗,M∗)

Test (trusted)

Manufactured (not trusted)

Master (trusted)

x0 x1

b ∈ {0, 1}

xb x1−b

y z

?
={

ok if y = z
abort if y 6= z

{
1 if y = z
0 if y 6= z

?
=

y z

?
=

Figure 21: Construction Π12 for which we prove optimal Trojan-resilience as stated in
Theorem 12. Very informally, the security proof is by contradiction: via a sequence
of hybrids, an attack against Π12 is shown to imply an attack where the yellow part
corresponds to Π⋆

2 with two history-independent circuits. This attack contradicts the
security of Π⋆

2 as stated in Theorem 13.

4.2.6 Our results and conjectures
Our main technical result is Theorem 12 – construction of a simple scheme that
matches the lower bound from Lemma 4. Of course, for any constant c > 0, the
constant c′ in the theorem below must be larger than in Lemma 4, so there is no
contradiction.

Let us shortly compare the security we achieve with the more costly solutions
based on verifiable computation (VC) [Wah+16; Ate+18] and multiparty compu-
tation (MPC) [DFS16] discussed in the introduction. We can consider (win,wrng)-
security as in Definition 15 also, for the VC and MPC construction, here one would
need to change the TrojanGame(Π, T,Q) from Section 4.2.3 to allow the Trojans Fi to

88

implement a different functionality than the target F (for VC, one needs to compute
an extra succinct proof, for MPC, the Trojans implement the players in an MPC
computation). For VC, there is no test (so T = 0) and only one m = 1 Trojan, and
for MPC and VC, we can drop the requirement that the inputs are iid.

4.2.7 Stateless Trojans

In our security definition, we put no restriction on the Trojans Fi provided by the ad-
versary (other than being digital hardware Trojans as discussed in the introduction);
in particular, the Fi’s can have arbitrary complex evolving state while honestly man-
ufactured circuits could be stateless. For the following few paragraphs, we consider
a variant of our security definition (Def. 15) where the adversary is only allowed to
choose stateless Trojan circuits Fi. Note that the lower bound from Lemma 4 still
holds because we only considered stateless Fi’s to prove it. An extremely simple 1-
redundant construction matches the lower bound when the adversary is only allowed
to choose stateless Trojans.

Consider a construction Π1 = (T∗,M∗) where the master is the simplest imagin-
able: it just forwards inputs/outputs to/from its oracle; if F1 is stateless, this means
MF1(·) = F1(·). The test TF1,F,$(T) queries F1 and the trusted F on T random inputs
and outputs fail iff there is a mismatch.

Claim 1 (Optimal security for 1-redundant scheme for stateless Trojans)
For any constant c > 0, there is a constant c′ > 0 such that Π1 is (c, c′/T)-Trojan
resilient if the adversary is additionally restricted to choose a stateless Trojan.

Proof. If wrng′ denotes the fraction of inputs on which the Trojan F1 differs from the
specification F (both chosen by an adversary A, note that wrng′ is only well defined
here as F1 is stateless), then wrng′ must satisfy c > (1 − wrng′)T if the adversary
wants to (c,wrng)-win for any wrng, as otherwise already the test catches the Trojan
with probability (1 − wrng′)T > c. For c > (1 − wrng′)T to hold wrng′ ∈ Ω(1/T), in
particular, wrng′ ≥ c′/T for some c′ > 0. ■

4.2.8 History-independent Trojans

A notion of in-between general (stateful) Trojans and stateless Trojans will play a
central role in our security proof. We say a trojan Fi is history-independent if its only
state is a counter which is incremented by one on every invocation, so its answer to
the i’th query can depend on the current index i, but not on any inputs it saw in
the past.

89

We observe that Lemma 6 stating that no 1-redundant simple scheme can be
secure still holds if we restrict the choice of the adversary to history-independent
Trojans as the “time-bomb” Trojan used in the proof is history-independent. We will
show a 2-redundant construction Π⋆

2 that achieves optimal security against history-
independent Trojans.

Theorem 13 (History-Independent Security of Π⋆
2) For any constant c > 0,

there is a constant c′ = c′(c) > 0 such that Π⋆
2 from Figure 20 is (c, c′/T)-Trojan

resilient if the adversary is additionally restricted to choose a history-independent
Trojans.

The technical Lemma 7 we prove and which implies this theorem, actually implies a
stronger statement: for any positive integer k, the above holds even if we relax the
security notion and declare the adversary a winner as long a Trojan is detected by
the test or master at most k − 1 times. Note that this notion coincides with the
standard notion for k = 1.

Lemma 7 For any constant c > 0 and positive integer k, there exists a constant c′,
and integer T0 and polynomial q(.) such that no adversary A exists that only chooses
history-independent Trojans and that for any

T ≥ T0 , Q ≥ q(T)

can (c, c′/T)-k-win TrojanGame(Π⋆
2, T,Q).

4.2.9 Proof outline

The proof of our main Theorem 12 stating that Π12 is optimally Trojan-resilient is
done in two steps. As just discussed, we first prove the security of Π⋆

2 against history-
independent Trojans. In a second step, we reduce the security of Π12 against general
Trojans to the security of Π⋆

2 against history-independent Trojans. We outline the
main ideas of the two parts below.

Part 1: security of Π⋆
2 against history-independent Trojans (Theorem 13,

Lemma 7). Π⋆
2 is a very simple scheme where the test TF1,F2,F,$ just queries F1 on

a random number ∆, 0 ≤ ∆ < T of inputs and checks if they are correct (the test
ignores F2). The master MF1,F2,$(x) queries y ← F1(x) and y′ ← F2(x) on x and
aborts if they disagree.

In the proof of Lemma 7 we define pi and qi as the probability that F1 and F2

outputs a wrong value in the ith query on a random input, respectively. As F1,F2

90

are history independent, this is well defined as this probability only depends on i
(but not previous queries).

Let the variable Φ∆ denote the number of times the Trojans will be detected,
conditioned on the random number of test queries ∆. Note that

E[Φ∆] =

Q+∆∑
i=1

|pi − qi−∆|, (10)

where Q is the number of queries to the master, and we use the convention qi = 0
for i < 0. In this sum, the first ∆ terms account for the test and the last Q terms
for the wild-phase. Moreover, let Y∆ denote the number of times F1 deviates (and
thus the master outputs a wrong value); its expectation is

E[Y∆] =

Q+∆∑
i=∆+1

pi

To prove Trojan-resilience of Π⋆
2 as stated in Lemma 7 boils down to proving that,

for most ∆, whenever the probability of Φ∆ = 0 (i.e., the Trojan is not detected) is
constant, the fraction of wrong outputs Y∆/Q must be “small” (concretely, O(1/T)).

The core technical result establishing this fact is Lemma 8.

Lemma 8 For any q1, . . . , qz ∈ [0, 1], (defining qi = 0 for i ≤ 0) and integers ∆′, τ
where 0 ≥ ∆′, τ ≥ 0, if p1 = p2 = . . . = pτ = 0 then

∑
∆∈{∆′,∆′+τ}

z∑
i=1

|pi − qi−∆| ≥ τ · p̄ (11)

Unfortunately, this Lemma only establishes this fact for the expectation, i.e., when-
ever E[Φ∆] is small, also E[Y∆] is small. Here is where we use the fact that the F1,F2

are history independent: in the history independent case Φ∆ and Y∆ can be written
as the sum of independent boolean variables, so using a Chernoff bound, it follows
that their actual value will be close to their expectation with high probability.

It is instructive to see why, for example, setting pi = qi = δ for some fixed δ > 0
does not contradict Theorem 13. To contradict it, the fraction of wrong outputs
(which here is δ) must be ω(1/T). In this case, E[Φ∆] = ∆ · δ = ω(∆/T), which
to contradict the lemma must be at least constant, which in turn means ∆ ∈ o(T)
must hold. As ∆, 0 ≥ ∆ < T is uniform, it’s o(T) with o(1) probability, but for a
contradiction, we also need this probability to be constant.

91

Part 2: reducing the security of Π12 against general Trojans to the security
of Π⋆

2 against history independent Trojans (Theorem 12). While the ran-
dom shift ∆ makes Π⋆

2 secure against history-independent attacks (like time-bombs,
where a Trojan starts deviating after some fixed number of queries), it succumbs to
cheat codes: as the master always queries F1,F2 on the same inputs, a Trojan can
specify some set of trigger inputs, and after receiving such a trigger the Trojans will
deviate forever. The Trojans will likely not be detected during testing by making the
fraction of triggers’ inputs sparse (a 1/T fraction will survive testing with constant
probability).

To prevent such coordination via the inputs, for the construction Π12 inputs are
somewhat randomly assigned to the different Trojans. In particular, as emphasized
in the yellow area in Figure 21, the F1 is always queried on the input x, and then the
random bit b determines whether F2 or F3 are queried on x. If an input x were to
trigger the Trojans always to deviate, F1 and one of F2 and F3 would be triggered,
say it’s F2. But now, as soon as F3 is queried in a future round, the master will abort
as F1 will deviate, but F3 will not (except if this query also happens to be a trigger,
which is unlikely as triggers must be sparse to survive the testing phase).

The observations above show why a particular attack does not work on Π12. But
we want proof of security against all possible Trojans. Our proof proceeds by a
sequence of hybrids, where we start with assuming a successful attack on Π12, and
then, by carefully switching some circuits and redefining them by hard-coding “fake
histories”, we arrive at a hybrid game where there is still a successful attack, but now
the circuits in the yellow area correspond to two the Π⋆

2 construction instantiated
with history-independent Trojans, but such an attack contradicts our security proof
for Π⋆

2 as stated in Lemma 7.

4.3 An optimal Very Simple Compiler

In this section, we define a scheme Π12 and show that the lower bound for achievable
security for very simple schemes (shown in Lemma 4) is asymptotically tight. Our
proof is constructive – the analysis of our Π12 construction shows that it is (c, c

′

T
)-

Trojan resilient for suitable constants.
Our Π12 scheme operates with three independent input streams and one indepen-

dent bit stream. Every circuit in Π12 on each query receives one of the three inputs
and produces an output. The master circuit then checks the consistency of the out-
puts, i.e., verifies if there is no mismatch between any pair of circuits receiving the
same input.

Digital Trojans mainly employ two strategies: time bombs (where time is mea-

92

F F F F

b = 0

x x′

?
=

?
=

F F F F

b = 1

x x′

?
=

?
=

x, x′ ←$ X , b←$ {0, 1}

Figure 22: In a given group of circuits, depending on the value of b, the leftmost
and rightmost circuits (outer circuits) are paired with the circuits in the middle
(inner circuits). Circuits in a pairing are given the same input, and their outputs are
checked for equivalence.

sured in the number of usages) and cheat codes (as a part of the input). To counter
these strategies, Π12 desynchronizes the circuits in two ways. First, some circuits
are tested in the test phase for a randomly chosen time (already employed in the Π∗2
scheme). This effectively makes it difficult for the time bomb THTHs to coordinate
the time in which they start deviating. In Π12, half of the circuits are tested for ∆
times where ∆ is a random variable with uniform distribution on {0, 1, 2, ..., T − 1}.

The second method of desynchronization involves using the value of the input
mentioned above bit to alternate the way inputs are distributed among the circuits.
Consequently, cheat code THTHs are rendered ineffective as only a subset of the
circuits shares the same input. Moreover, at any given time, a circuit never knows
which alternating state it is in (i.e., it does not know whether its output would be
compared with deviating circuits or not).

The main building block of the Π12-scheme is a group of four circuits: two outer
ones and two inner ones (see Figure 22). On each query, every group of circuits
receives two inputs – the first is given to the outer circuit on the left and the second
to the outer circuit on the right. Additionally, a fresh decision/alternation bit b is
sampled in every step. According to its value, these two inputs are given to the inner
circuits. Π12 consists of three such groups. Crosschecks are performed whenever two
distinct circuits receive the same input (both within a group and among groups).

The proof that the construction Π12 is Trojan-resilient starts by assuming that
it is not secure, goes via a hybrid argument, and leads to a contradiction with the

93

security of Π∗2 construction. We change the construction slightly in every hybrid
by swapping some pairs of circuits, arguing that the adversary’s advantage does
not change much between successive hybrids. For the final hybrid, we show that
the modified construction contains Π⋆

2 as a sub-construction. It turns out that any
adversary who wins with reasonable good probability in the final hybrid can be used
to build an adversary who breaks the security of Π⋆

2, which is a contradiction with
Theorem 13.

4.3.1 The Π12 scheme

We will now define our Π12 construction. It is illustrated in Figure 21 (see page 88).
We view our 12-circuit construction as three groups of four circuits each. Group 1
consists of circuits F1, . . . ,F4, group 2 consists of F5, . . . ,F8, and group 3 consists of
F9, . . . ,F12. In the beginning, the three independent and identically distributed se-
quences of inputs are sampled. Moreover, an independent sequence of bits is sampled
(it is used to alternate the inputs’ distribution in the wild). For every query in the
wild, the construction performs two steps: (i) the querying step, where the inputs
are distributed to all the 12 circuits depending on the value of the corresponding bit,
and (ii) the cross-checking step, where the master circuit checks the consistency of
the outputs of the circuits who receive the same inputs.

Now, we can take a closer look at our construction. There are three pairs of
circuits that share the same input throughout the game regardless of the value of
the random bit (see Figure 21). For instance, the circuit pairs (F2,F6), (F3,F11) and
(F7,F10) share the exact same inputs throughout the game. The outer two circuits
within each circuit group (circuits Fi for i ≡ 0, 1 mod 4) are uniquely paired with
exactly one of the middle circuits, i.e., given the same input, depending on the value
of the random bit bi sampled by the master circuit at each step of the game. For
instance, in circuit group 1, if bi = 0, F1 is paired with F2 and both circuits are
given x1

i as input, and F4 is paired with F3 and both are given x2
i as input. After

the querying phase, the master cross-checks the circuits’ output that share the same
input streams. If any cross-checks in any round fail, then the master aborts and the
adversary loses.

We now provide a more detailed description of the construction as follows:

test: In the test phase, TF1,··· ,F12,F(T) queries F1,F4,F5,F8,F9 and F12 on ∆ random
and independent inputs x1

i , x
4
i , x

5
i , x

8
i , x

9
i and x12

i respectively and checks if the
outputs of the corresponding circuits are correct by comparing them with the
trusted F (recall that ∆ is random and uniform on {0, 1, ..., T − 1}).

94

master: The master samples three independent input streams x⃗1 = (x1
1, x

1
2, x

1
3,

· · ·), x⃗2 = (x2
1, x

2
2, x

2
3, · · ·), x⃗3 = (x3

1, x
3
2, x

3
3, · · · .) and an independent bit string

b⃗ = (b1, b2, · · ·). The operation of the master circuit is split into two phases:
(i) the querying phase and (ii) the cross-checking phase.

Querying step. For all i ∈ [Q], it queries the functions F1,F2 · · · ,F12 as follows:

1. If bi = 0,

• The functions F1,F2,F5,F6 get x1
i as input,

• The functions F3,F4,F11,F12 get x2
i as input,

• The functions F7,F8,F9,F10 get x3
i as input.

2. if bi = 1,

• The functions F1,F3,F9,F11 get x1
i as input,

• The functions F2,F4,F6,F8 get x2
i as input,

• The functions F5,F7,F10,F12 get x3
i as input

Cross-checking step. For all i ∈ [Q], the master circuit pairwise compares the
outputs of the circuits that receive the same inputs as follows:

• if bi = 0, check if

– F1(x
1
i)

?
= F2(x

1
i), F5(x

1
i)

?
= F6(x

1
i), and F2(x

1
i)

?
= F6(x

1
i).

– F3(x
2
i)

?
= F4(x

2
i), F11(x

2
i)

?
= F12(x

2
i), and F3(x

2
i)

?
= F11(x

2
i),

– F7(x
3
i)

?
= F8(x

3
i), F9(x

3
i)

?
= F10(x

3
i), and F7(x

3
i)

?
= F10(x

3
i),

• if bi = 1, check if

– F1(x
i
1)

?
= F3(x

1
i), F9(x

1
i)

?
= F11(x

1
i), and F3(x

1
i)

?
= F11(x

1
i).

– F2(x
2
i)

?
= F4(x

2
i), F6(x

2
i)

?
= F8(x

2
i), and F2(x

2
i)

?
= F6(x

2
i),

– F5(x
3
i)

?
= F7(x

3
i), F10(x

3
i)

?
= F12(x

3
i), and F7(x

3
i)

?
= F10(x

3
i),

If, at any round, any of the checks fail, the master outputs abort, and the
adversary loses.

Output. If all the checks succeed in the cross-checking phase, the master out-
puts the output of the circuit F1, i.e., y⃗ = F1(x⃗1) as the output of Π12.

95

4.3.2 Security of Π12

In this section, we prove Theorem 12, which states that the construction presented
in Sec. 4.3.1 is (c, c

′

T
)-secure for an appropriate choice of constants c and c′. More

precisely, we show that the security of the 2-circuit construction from Sec. 4.2.8 can
be reduced to the security of the 12-circuit construction presented above. Before
proceeding with the proof, we introduce some useful definitions and notations.

History hardcoded circuits and plaits. We observe that the notation F(x) for
stateful circuits is ambiguous since its value also depends on the history of queries
to F (which is not provided as a parameter). We can thus assume that each F is
associated with some stream x = (x1, x2, ...) and that F(xi) := F(xi|x1, x2, ..., xi−1).
This notation uniquely describes the i-th query to F given the stream x.

However, for our proof, we will need a slightly different notion called history-
hardcoded circuits. Given any stateful circuit F and two arbitrary streams x =
(x1, x2, x3, ...) and w = (w1, w2, w3, ...), we say Fx is an x-history-hardcoded circuit
if at the i-th query it hardcodes the stream values x1, . . . , xi−1 as its history and
takes wi from the stream w as the input to query i. Thus Fx on the i-th query with
input wi returns the value: Fx,i(wi) = F(wi|x1, x2, ..., xi−1) and on the i+ 1-th query
returns Fx,i+1(wi+1) = F(wi+1|x1, x2, ..., xi−1, xi). We call the stream x the hardcoded
history stream and w the input stream.

For a random variable X which takes values from {X1, X2, ...} and a circuit F we
define another random variable FX as follows. Its value for X = x is simply Fx. We
will call this random variable an X-history-hardcoded circuit. Note that as long as
FX receives inputs from a stream W independent from X, we can say that Fx is a
history-independent circuit.

We emphasize that when the hardcoded history stream equals the actual input
stream, the history-hardcoded circuit returns the same results as the original stateful
circuit receiving the same input stream. In other words:

F(Xi) = FX,i(Xi), (12)

for all i ∈ N with probability 1.
Another idea exploited in our construction is the concept of alternating inputs

depending on the values of random bits. We will express this idea using the notion
of b-plaits, where b is a stream of random bits. A b-plait of two streams a0 and a1

is a new stream (a0a1)b, where its i-th value is either a0i from stream a0 or a1i from
stream a1 depending on the i-th value of the decision stream b. More precisely:

(a0a1)b = (ab11 , a
b2
2 , a

b3
3 , ...)

96

In our construction, only one decision stream used for every plait; therefore, the b
will be omitted for simplicity. Thus, to express the plait of two streams a0, a1, we
will simply write a0a1. A plait of two identical streams of, say, s will be written as
s rather than ss.

Similarly to b-plaits of streams, we can define the plaits of history-hardcoded cir-
cuits. Let Gx0

0 be an x0-history-hardcoded circuit and Gx1

1 be an x1-history-hardcoded
circuit. We say (Gx0

0 Gx1

1)b is b-plait for Gx0

0 ,Gx1

1 iff

(Gx0

0 Gx1

1)ib(x) = Gxbi ,i
bi

(x). (13)

Note that the plaited circuit (Gx0

0 Gx1

1)b can be expressed as a function of G0,G1 and
streams x0,x1. Looking ahead, this notion of plaited circuits will be crucial in our
final reduction of the security of Π12 to Π⋆

2

Finally, we define an operation on history-hardcoded circuits in the context of
our construction:
Swap(Fx,Gt): Given two history hardcoded circuits Fx and Gt in our construction,
this operation physically exchanges the positions of both circuits. That is, that Ft

physically replaces Gx and vice versa. Swapped circuits keep their histories, but since
they change their place in the construction, they now receive potentially different
inputs and are crosschecked with different circuits.

An important notion related to the Swap operation, which we will exploit in a
proof, is a red edge. We say there is a red edge in the k-th query between two
history hardcoded circuits Fx and Gt iff after performing the Swap(F,G) operation
there is a change in either of the outputs of the swapped circuits on the k-th query
compared to the outputs of the circuits if the Swap operation was not performed. The
notion of swaps and red edges would be used in our proof to show that modifying
the original Π12 construction by some Swap operations does not change much the
security parameters.

Now, given these definitions, we are ready to present an intuition that lies behind
our construction. The readers can ask the authors, "But why 12 circuits?". The rea-
son is that it is hard to perform any direct proof for history-dependent circuits; things
become too complicated. However, we have Theorem 13 for 2 history-independent
circuits. Therefore, we must find a reduction between these two cases. The main
goal is to design the crosscheck for history-dependent circuits so that when the ad-
versary makes the Trojans more history-dependent, the construction becomes more
secure. For our Π12 construction, this statement looks valid – thanks to the alter-
nating random bit, you never know which of some two circuits will receive specific
input. If these two circuits are, informally speaking, very history-dependent and

97

have independent histories, there is a high probability that, on the given input, they
would answer differently. Thanks to crosschecks, the master may detect such incon-
sistency with high probability. To make a practical advantage of this remark, we
need to perform many Swap operations and analyze the behavior of various param-
eters describing our construction. We were able to handle such design and analysis
for 12-circuit construction.

Now, we will give a more detailed description of intuition. As written a few lines
before, the main idea of the proof is to reduce the construction, which consists of
(possibly) history-dependent circuits, to Π⋆

2. Π⋆
2 consists of 2 history-independent

circuits (alternatively speaking – pairs of circuits with different hardcoded histories,
independent of the inputs they receive). The Swap operation Swap(Fx,Gt) is legit
whenever either one of the conditions holds – the circuits F and G are engaged in
the cross-checking process as pictured in the Figure 22 (e.g. circuits F1 and F4 or
circuits F6 and F7 in the Figure 23 (Hyb0) or the circuits received the same inputs
before performing any swaps (e.g. circuits F2 and F7 swapped in Hyb2 which are
placed at the positions of F2 and F6 from Hyb0 in the Figure 23). Now, the main
idea of the proof is that by performing a series of Swap operations on the setting
with 3 rows of 4-circuit groups, we can end up with a setting Hyb2 that contains 2
pairs of history-independent circuits at the place of cross-checked circuit pairs (F1,
F2) and (F3, F4). We need just 1 Swap operation in the middle row to have history-
independent circuits in the place of F1 and F4, but for F2 (and F2), we will need an
additional input stream that goes with a new row. We are now ready to proceed to
the proof of Theorem 12.

Proof of Theorem 12. The proof of Theorem 12 proceeds in two parts. We ulti-
mately want to prove a reduction from the security of Π12 to that of Π⋆

2. Nevertheless,
recall in Lemma 7 the security of Π⋆

2 crucially depends on history-independent cir-
cuits. Thus, the first part of our proof constructs a sequence of three hybrids, Hyb0,
Hyb1, Hyb2, to get a pair of history-independent circuits, F2

4 and F3
7F

3
10, in the final

hybrid. Hyb0 is the original construction. To get from Hyb0 to Hyb1, we perform the
Swap operation on the following pairs of circuits in Hyb0: (F1

1 ,F
2
4); (F

12
6 ,F3

7); (F
3
10,F

21
11).

To get from Hyb1 to Hyb2, we perform the Swap operation on the following pairs of
circuits in Hyb1: (F12

2 ,F3
7); (F

21
3 ,F3

10) (refer to Figure 23). Note that in the final hy-
brid Hyb2, it is crucial that F2

4 and F3
7F

3
10 are not just history independent, but also

take in the same inputs from input stream 1 regardless of the value of the random
bit (F3

7F
3
10 takes inputs from stream 1 due to the definition of the plaited circuit in

(13)). This will be necessary for the second part of our proof which uses F2
4 and

F3
7F

3
10 in the final hybrid as the two history independent circuits needed for the Π⋆

2

98

Hyb0

F5 F6 F7 F8

F1 F2 F3 F4

13

13

12

12

3

3

32

32

1

1

12

12

21

21

2

2

F9 F10 F11 F12
31

31

3

3

21

21

23

23

Hyb1

F5 F8

F4 F2 F3

13

13

32

32

1

2

12

12

21

21

F9 F12
31

31

23

23

Hyb2

F5 F6 F8

F4 F1

13

13

3

12

32

32

1

2

2

1

F9 F11 F12
31

31

3

21

23

23

F1
2

1

F7
12

3 F6
3

12

F11
3

21 F10
21

3

F2
12

12

F7
12

3 F10
21

3

F3
21

21

Figure 23: Hybrids with the circuits and corresponding plaited hardcoded history
and input streams (above and below each circuit in black, respectively). In Hyb2, F2

4

and the plaited circuit F3
7F

3
10 (in red) are history independent.

construction and uses the Π⋆
2 construction with these circuits as a subroutine.

Proof. For a given F1, ...,F12, we can define some random variables as follows. Let
ϕFA

j ;B be the total number of queries, where FA
j gets input from a stream B and has

a mismatch with any other circuit getting input from the same stream in this query.
We will refer to random variables related to the i-th hybrid by adding a superscript
i. For example, ϕ0

F1
1 ;2

= 0, since in Hyb0 no crosschecks are made between F1
1 and the

circuits receiving inputs from stream 2 . Let Φ be the total number of mismatches
detected by the master circuit. Recall from Sec. 4.2.3 that Y is the total number of
mistakes the master circuit makes. The probability space of these random variables
is the set of all choices of a stream of random bits b and streams of random inputs
1,2,3 and a number of tests ∆.

We prove our statement by contradiction. To this end, we assume that

∃c>0∀c′>0,T0∈N,q∈poly∃T>T0,Q>q(T)∃A such that

A
(
c, c

′

T

)
−wins TrojanGame(Π12, T,Q)

(14)

Therefore for some c and for all c′ there exists an infinite set T ⊂ N such that
for every t ∈ T there exists an infinite set Qt ⊂ N such that for every t ∈ T , z ∈ Qt

there exists an adversary A = A(c, c′, z, t) such that the following formula is true:

Pr
[
Φ0 = 0 and Y 0 ≥ c′ ·

(z
t

)]
≥ c. (15)

Now we will look what happens to inequality (15) as we move through each hybrid:

Hyb0 : Hybrid 0 corresponds to the original construction due to equality (12). Hence,
the probability that the adversary A(c, c′, z, t) wins in this hybrid is precisely that

99

in Equation (15).

Hyb1: In this hybrid we simply perform three Swap operations on the following pairs
of circuits: (F1

1 ,F
2
4); (F

12
6 ,F3

7); (F
3
10,F

21
11).

Claim 2 Pr
[
ϕ1
F2
4 ,1

, ϕ1
F3
7 ,12

, ϕ1
F3
10,21
≤ k ∧ Φ0 = 0 ∧ Y 1 ≥ c′ · (z

t
)− 3k

]
≥ c− 3 · 2−k.

Proof. After the first two swaps, two disjoint events may occur: either the
number of the red edges exceeds some value k, or it stays small. We study these two
cases below:

• Hugek–any number of red edges between (F1
1 ,F

2
4), (F12

6 ,F3
7), (F

3
10,F

21
11) is greater

than k. We would like to show that

Pr
[
Hugek ∧ (Φ0 = 0)

]
≤ 3 · 2−k. (16)

We will firstly consider the red edges between F1
1 ,F

2
4 . For this purpose, we

define an event hugek indicating that the number of red edges between F1
1 ,F

2
4

is greater than k. We consider the following game that shows that, in this
case, the A is easily caught cheating. G lasts for z steps with a player P : at
the beginning streams 1′,2′,b are sampled uniformly and independently from
X z,X z, {0, 1}z, respectively. The i-th step has the following substeps:

1. 1′i,2
′
i are sampled uniformly and independently from X and revealed to

P .
2. P decides if this step is red, i.e. if she wants to make a guess.
3. If this step is red, P makes a guess, i.e. outputs a bit di.
4. bi is sampled uniformly and independently from {0, 1} and revealed to P .
5. If P made a guess, we say P is correct iff di = bi.

P wins, if she made at least k guesses and all of them were correct.

Obviously, the probability of winning is not greater than 2−k for any P . On the
other hand, we can analyze what happens if the adversary employs the circuits
F1,F4 from the original experiment to play the game for him.

The strategy of the player P in game G is following: F12
2 ,F21

3 in the i-th step
get inputs 1′i,2

′
i, respectively. The step is red if there is a red edge in the

original experiment, i.e., if:

F1
1(1
′
i) ̸= F2

4(1
′
i) ∨ F1

1(2
′
i) ̸= F2

4(2
′
i).

100

We do not analyze the way di is chosen, since Pr
[
di = bi

]
= 1

2
. For such

a strategy P wins the game with probability at least Pr [hugek ∧ (Φ0 = 0)],
therefore

Pr
[
hugek ∧ (Φ0 = 0)

]
≤ 2−k.

The same conclusion works for pairs (F12
6 ,F3

7), (F
3
10,F

21
11), therefore by the bound

on the sum of the probabilities we can conclude that the inequality (16) holds.

• Tinyk–in this case every number of red edges between (F1
1 ,F

2
4), (F12

6 ,F3
7), (F

3
10,F

21
11)

is not greater than k. 3 Swap operations performed in Hyb1 will not change the
value Y 1 by more than 3k and the behavior of e.g. F2

4 differs from F1
1 only on

up to k queries, i.e.
ϕ1
F2
4 ,1

, ϕ1
F3
7 ,12

, ϕ1
F3
10,21
≤ k (17)

|Y 0 − Y 1| ≤ 3k. (18)

Now we can transform inequality (15)

c− 3 · 2−k ≤ Pr
[
Φ0 = 0 ∧ Y 0 ≥ c′ · (z

t
)
]
− 2−(k+1) =

= Pr
[
Tinyk ∧ Φ0 = 0 ∧ Y0 ≥ c′ · (z

t
)
]
+

+Pr
[
Hugek ∧ Φ0 = 0 ∧ Y0 ≥ c′ · (z

t
)
]
− 2−(k+1) ≤

≤ Pr
[
Tinyk ∧ Φ0 = 0 ∧ Y0 ≥ c′ · (z

t
)
]
≤

≤ Pr
[
ϕ1
F2
4 ,1

, ϕ1
F3
7 ,12

, ϕ1
F3
10,21
≤ k ∧ Φ0 = 0 ∧ Y 1 ≥ c′ · (z

t
)− 3k

]
.

□
Hyb2 : In this hybrid we simply perform two Swap operations on the following pairs
of circuits: (F12

2 ,F3
7); (F

21
3 ,F3

10).

Claim 3
Pr
[
(ϕ2

F2
4 ,1
≤ 3k) ∧ (Y 2 ≥ c′(

z

t
)− 5k)

]
≥ c− 3 · 2−k. (19)

Proof. Every Swap operation performed in Hyb2 changes the value of Y 2, ϕ2
F2
4 ,1

by at most k (since inequality (17) holds). The inequality is explicit. □

Claim 4 For every k ∈ N and every adversary A who (c, c
′

t
)-wins (Π12, T,Q) −

TrojanGame there exists an adversary A′ who (c− 3 · 2−k, c′
t
− 5k

z
)-(3k + 1)-wins the

game TrojanGame(Π⋆
2, T,Q).

101

We want to conclude that the above statement contradicts Lemma 7. So we want
to show, that our construction implies this incorrect statement.

∃c̃>0∀c̃′>0,T0∈N,q∈poly∃T>T0,Q>q(T)∃Ã such that

Ã (c̃, c̃
′

T
)−wins TrojanGame(Π⋆

2, T,Q).
(20)

Let k = 2 + log(1
c
) and c̃ = c − 3 · 2−k = c

4
> 0. Choose c̃′ arbitrarily and let

c′ = ·c̃′. Let T̃ = T . Let

Q̃t = {z ∈ Qt : z > t

(
5k

c̃′
+ 1

)
}.

Obviously Q̃t is infinite. As a result, for every q ∈ poly, there exists z ∈ Q̃t such
that z > q(t).

Now we can construct the adversary Ã, which would break the security of Π⋆
2,

which leads us to contradiction. Thanks to the analysis of the hybrids, we know that
for A the inequality (19) holds. Define the circuits F̃1, F̃2 given to Ã in the following
way:

F̃1 = F2
4 , F̃2 = F3

7F
3
10,

where the latter is a b-plait (as defined in Equation (13)). Actual values of streams
2,3,b are sampled uniformly and independently by Ã, and hardcoded in F̃1, F̃2.
Obviously F̃1, F̃2 are history independent, therefore Ã meets the requirements for the
Π⋆

2 scheme.
Now we can bound a random variable Φ̃ – the number of queries in a (Π⋆

2, T,Q)−
TrojanGame where the adversary is caught on deviating. If ϕ2

F2
4 ,1
≤ 3k, then Φ̃ ≤ 3k,

since if in the i-th query there was any inconsistency between F̃1, F̃2, there must had
been a mismatch between F3

4 and any other circuit receiving the same input. Which
concludes with:

c̃ = c− 3 · 2−k ≤ Pr
[
(ϕ2

F2
4 ,1
≤ 3k) ∧ (Y 2 ≥ c′(z

t
)− 5k)

]
≤ Pr

[
Φ̃ ≤ 3k ∧ (Ỹ ≥ c′(z

t
)− 5k)

]
≤

≤ Pr
[
Φ̃ ≤ 3k ∧ (Ỹ ≥ c̃′(5k

c̃′
+ 1)− 5k = c̃′)

]
.

Note that Ỹ is the number of mistakes made by the master circuit
in the TrojanGame(Π⋆

2, T,Q), and the last inequality comes from z > t
(
5k
c′
+ 1
)
.

We conclude, that that there exists c̃, such that for every c̃′ there exists Ã who
(c̃, c̃

′

t
)-(3k + 1)-wins TrojanGame(Π⋆

2, T,Q). It contradicts Lemma 7, which ends the
proof. ■

102

Conclusions

The natural approach to real-world digital security problems is to review exist-
ing advanced, well-known, or simply efficient cryptographic tools and adjust one of
them. In the context of Hardware Trojan Horses, we can observe it, e.g., in paper
[Wah+16] where authors use Verifiable Computation Protocol CMT [CMT12] – to
protect the functionality F , the trusted module performs the actions of the Verifier,
and the untrusted module performs the actions of the Prover. The CMT protocol
was chosen because it does not require the Prover to perform any cryptographic
or non-local operations, unlike many other verifiable computation protocols. The
authors of [Wah+16] admit that the efficiency of their solution is based on a vast
technological gap between trusted and untrusted manufacturers because the Verifier
needs to perform approximately 105-107 times more operations than simply evaluat-
ing the original functionality to be protected. This case is a perfect example of the
main problem when using well-founded cryptographic tools as building blocks for
HTH-resilience schemes – many are too heavy. Recall that the primary motivation
for research on countermeasures on HTHs is the real-world economic scheme where
production is more profitable when outsourced. Therefore, the overhead size or ef-
ficiency of the HTH-resilince scheme must remain small; the trusted module should
be especially simple – if it performs advanced operations to protect F , why do not
simply ask it to compute F?

However, cryptography does not fail in the presence of Hardware Trojan Horses,
and we believe this thesis makes it evident. Challenged by real-life digital security
problems, we did not ask what cryptography could do for us but what we could do for
cryptography. Therefore, our research was focused on developing new techniques and
ideas, such as wire- and gate-covering sets, information loss, and history-hardcoded
circuits. We also went in-depth with understanding the damage that can be done by
constrained (tampering) HTHs, and we did not hesitate to make our consideration
low-level and focus on single gates and wires of the infected circuit. Last but not
least, we always considered the original real-world motivation for our research, so we
investigated lightweight solutions, keeping our results provable, not only theoretical.

103

References

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. “Cir-
cuit Compilers with O (1/\log (n)) O (1/log (n)) Leakage Rate”. In:
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35. Springer.
2016, pp. 586–615.

[Ate+18] Giuseppe Ateniese, Aggelos Kiayias, Bernardo Magri, Yiannis Tselekou-
nis, and Daniele Venturi. “Secure Outsourcing of Cryptographic Circuits
Manufacturing”. In: ProvSec. Ed. by Joonsang Baek, Willy Susilo, and
Jongkil Kim. Vol. 11192. Lecture Notes in Computer Science. Springer,
2018, pp. 75–93. doi: 10.1007/978-3-030-01446-9_5. url: https:
//doi.org/10.1007/978-3-030-01446-9_5.

[Bai+23a] Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Mał-
gorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak. “Efficiently
Testable Circuits”. In: ITCS - Innovations in Theoretical Computer Sci-
ence. 2023.

[Bai+23b] Mirza Ahad Baig, Suvradip Chakraborty, Stefan Dziembowski, Mał-
gorzata Gałązka, Tomasz Lizurej, and Krzysztof Pietrzak. Efficiently
Testable Circuits without Conductivity. 2023.

[Bam+14] Tobias Bamert, Christian Decker, Roger Wattenhofer, and Samuel Wel-
ten. “Bluewallet: The secure bitcoin wallet”. In: Security and Trust Man-
agement: 10th International Workshop, STM 2014, Wroclaw, Poland,
September 10-11, 2014. Proceedings 10. Springer. 2014, pp. 65–80.

[Bań03] Mirosław Bańko. Już koniami czy jeszcze końmi. https://sjp.pwn.pl/
poradnia/haslo/Juz-koniami-czy-jeszcze-konmi;4729.html.
Access: 15.04.2023. 2003.

[Bar+01a] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. “On the (im) possibility of obfuscat-
ing programs”. In: Advances in Cryptology—CRYPTO 2001: 21st An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 19–23, 2001 Proceedings. Springer. 2001, pp. 1–18.

[Bar+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. “On the (Im)possibility of Obfus-
cating Programs”. In: 2001, pp. 1–18. doi: 10.1007/3-540-44647-8_1.

104

https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/3-540-44647-8_1

[BM92] Steven Michael Bellovin and Michael Merritt. “Encrypted key exchange:
Password-based protocols secure against dictionary attacks”. In: (1992).

[BT18] Swarup Bhunia and M Tehranipoor. “The Hardware Trojan War”. In:
Cham„ Switzerland: Springer (2018).

[BA04] Michael Bushnell and Vishwani Agrawal. Essentials of electronic testing
for digital, memory and mixed-signal VLSI circuits. Vol. 17. Springer
Science & Business Media, 2004.

[Cha+21] Suvradip Chakraborty, Stefan Dziembowski, Małgorzata Gałązka, Tomasz
Lizurej, Krzysztof Pietrzak, and Michelle Yeo. “Trojan-resilience with-
out cryptography”. In: Theory of Cryptography Conference. Springer.
2021, pp. 397–428.

[Cha+98] JT-Y Chang, Chao-Wen Tseng, C-MJ Li, Mike Purtell, and Edward J
McCluskey. “Analysis of pattern-dependent and timing-dependent fail-
ures in an experimental test chip”. In: Proceedings International Test
Conference 1998 (IEEE Cat. No. 98CH36270). IEEE. 1998, pp. 184–
193.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. “Practi-
cal verified computation with streaming interactive proofs”. In: Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference.
2012, pp. 90–112.

[23] Cyber security Market. https://www.fortunebusinessinsights.com/industry-
reports/cyber-security-market-101165. Access: 04.06.2023. 2023.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. “Unifying
leakage models: from probing attacks to noisy leakage.” In: Advances in
Cryptology–EUROCRYPT 2014: 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings 33. Springer. 2014, pp. 423–
440.

[DFS16] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert.
“Private Circuits III: Hardware Trojan-Resilience via Testing Amplifi-
cation”. In: ACM CCS. Ed. by Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi. ACM, 2016,
pp. 142–153. doi: 10.1145/2976749.2978419.

105

https://doi.org/10.1145/2976749.2978419

[Efr+22] Klim Efremenko, Bernhard Haeupler, Yael Tauman Kalai, Pritish Ka-
math, Gillat Kol, Nicolas Resch, and Raghuvansh R. Saxena. “Circuits
Resilient to Short-Circuit Errors”. In: Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing. STOC 2022. Rome,
Italy: Association for Computing Machinery, 2022, pp. 582–594. isbn:
9781450392648. doi: 10.1145/3519935.3520007. url: https://doi.
org/10.1145/3519935.3520007.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electro-
magnetic analysis: Concrete results”. In: Cryptographic Hardware and
Embedded Systems—CHES 2001: Third International Workshop Paris,
France, May 14–16, 2001 Proceedings 3. Springer. 2001, pp. 251–261.

[Gar+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. “Candidate indistinguishability obfuscation and
functional encryption for all circuits”. In: SIAM Journal on Computing
45.3 (2016), pp. 882–929.

[Gol+05] Oded Goldreich et al. “Foundations of cryptography–a primer”. In: Foun-
dations and Trends® in Theoretical Computer Science 1.1 (2005), pp. 1–
116.

[HBM18] Yuanwen Huang, Swarup Bhunia, and Prabhat Mishra. “Scalable test
generation for Trojan detection using side channel analysis”. In: IEEE
Transactions on Information Forensics and Security 13.11 (2018), pp. 2746–
2760.

[Imp95] Russell Impagliazzo. “A personal view of average-case complexity”. In:
Proceedings of Structure in Complexity Theory. Tenth Annual IEEE
Conference. IEEE. 1995, pp. 134–147.

[Ish+06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner.
“Private Circuits II: Keeping Secrets in Tamperable Circuits”. In: EU-
ROCRYPT. Ed. by Serge Vaudenay. Vol. 4004. Lecture Notes in Com-
puter Science. Springer, 2006, pp. 308–327. doi: 10.1007/11761679\
_19. url: https://doi.org/10.1007/11761679_19.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. “Private Circuits: Se-
curing Hardware against Probing Attacks”. In: CRYPTO. Ed. by Dan
Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, 2003,
pp. 463–481. doi: 10.1007/978-3-540-45146-4_27. url: https:
//doi.org/10.1007/978-3-540-45146-4_27.

106

https://doi.org/10.1145/3519935.3520007
https://doi.org/10.1145/3519935.3520007
https://doi.org/10.1145/3519935.3520007
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27

[KLR12] Yael Tauman Kalai, Allison B. Lewko, and Anup Rao. “Formulas Re-
silient to Short-Circuit Errors”. In: 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012. IEEE Computer Society, 2012, pp. 490–499.
doi: 10.1109/FOCS.2012.69. url: https://doi.org/10.1109/FOCS.
2012.69.

[KM58] Edward L Kaplan and Paul Meier. “Nonparametric estimation from in-
complete observations”. In: Journal of the American statistical associa-
tion 53.282 (1958), pp. 457–481.

[KLM97] Dan Kleitman, Tom Leighton, and Yuan Ma. “On the design of reliable
Boolean circuits that contain partially unreliable gates”. In: Journal of
Computer and System Sciences 55.3 (1997), pp. 385–401.

[Koc96] Paul C Kocher. “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems”. In: Advances in Cryptology—CRYPTO’96:
16th Annual International Cryptology Conference Santa Barbara, Cali-
fornia, USA August 18–22, 1996 Proceedings 16. Springer. 1996, pp. 104–
113.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: CRYPTO. Ed. by Michael J. Wiener. Vol. 1666. Lecture
Notes in Computer Science. Springer, 1999, pp. 388–397. doi: 10.1007/
3-540-48405-1_25. url: https://doi.org/10.1007/3-540-48405-
1_25.

[Luc22] Nan Tian Lucie Béraud-Sudreau Ana Assis. “Trends in World Military
Expenditure”. In: (2022).

[Mad23] Chisom Maduonuorah. “Crypto Bankruptcies”. In: Milkroad.com (2023).

[Mas16] B. Mastroianni. These were the 25 worst passwords of 2015.
https://www.cbsnews.com/news/these-were-the-25-worst-passwords-of-
2015/. Access: 16.12.2023. 2016.

[MT00] Edward J McCluskey and Chao-Wen Tseng. “Stuck-fault tests vs. actual
defects”. In: Proceedings International Test Conference 2000 (IEEE Cat.
No. 00CH37159). IEEE. 2000, pp. 336–342.

[Mie+13] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin.
“Zerocoin: Anonymous distributed e-cash from bitcoin”. In: 2013 IEEE
Symposium on Security and Privacy. IEEE. 2013, pp. 397–411.

107

https://doi.org/10.1109/FOCS.2012.69
https://doi.org/10.1109/FOCS.2012.69
https://doi.org/10.1109/FOCS.2012.69
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25

[Nak+08] Satoshi Nakamoto et al. “Bitcoin”. In: A peer-to-peer electronic cash
system 21260 (2008).

[Pag02] Dan Page. “Theoretical use of cache memory as a cryptanalytic side-
channel”. In: Cryptology ePrint Archive (2002).

[Pus+22] Endres Puschner, Thorben Moos, Steffen Becker, Christian Kison, Amir
Moradi, and Christof Paar. “Red Team vs. Blue Team: A Real-World
Hardware Trojan Detection Case Study Across Four Modern CMOS
Technology Generations”. In: 2023 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society. 2022, pp. 763–781.

[QS01] Jean-Jacques Quisquater and David Samyde. “Electromagnetic analy-
sis (ema): Measures and counter-measures for smart cards”. In: Smart
Card Programming and Security: International Conference on Research
in Smart Cards, E-smart 2001 Cannes, France, September 19–21, 2001
Proceedings. Springer. 2001, pp. 200–210.

[RR18] Jordan Robertson and Michael Riley. “The Big Hack: How China Used
a Tiny Chip to Infiltrate U.S. Companies”. In: Bloomberg (2018).

[Sch15] Bruce Schneier. “What’s Next in Government Surveillance”. In: The At-
lantic (2015).

[Sha48] Claude Elwood Shannon. “A mathematical theory of communication”.
In: The Bell system technical journal 27.3 (1948), pp. 379–423.

[Sha23] Anurakti Sharma. “Spy, trojan horse, or lift: Why US is in panic mode
over giant Chinese cargo cranes”. In: Times Now (2023).

[TSZ13] Mohammad Tehranipoor, Hassan Salmani, and Xuehui Zhang. Inte-
grated Circuit Authentication: Hardware Trojans and Counterfeit Detec-
tion. Springer Publishing Company, Incorporated, 2013. isbn: 3319008153,
9783319008158.

[Wah+16] Riad S. Wahby, Max Howald, Siddharth Garg, Abhi Shelat, and Michael
Walfish. “Verifiable ASICs”. In: IEEE SP. IEEE Computer Society, 2016,
pp. 759–778. doi: 10.1109/SP.2016.51.

[Woo+14] Gavin Wood et al. “Ethereum: A secure decentralised generalised trans-
action ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–
32.

108

https://doi.org/10.1109/SP.2016.51

	Abstract
	Streszczeniestreszczenie [strESʈSEɲE] - abstract
	Introduction
	Countermeasures against Hardware Trojan Horses as a part of cryptography
	What are Hardware Trojan Horses
	What Hardware Trojan Horses are not
	Hardware Trojan Horses – taxonomy
	Hardware Trojan Horses – modus operandi

	Countermeasures against HTHs and their limitations
	Realistic HTH-resilience expectations
	Circuit compiler
	Testing
	Industrial and heuristic solutions

	The thesis organization and personal contribution

	Modeling the Hardware Trojan Horses and the countermeasures against them
	Elements of the model
	Security scheme
	Definitions

	Efficient testability against restricted Hardware Trojan Horses
	Introduction
	Tampering model – discussion
	Results
	Methods
	Related works

	Notation
	General notation for circuits
	Notation for tampering

	Covering circuits
	Compiling circuit into wire-covered circuit
	Constructing small wire-covering sets for k-divisible circuits
	Compiling circuits into gate-covered circuits
	Reducing high conductivity of the control wires

	L-scheme
	The trivial solution for 2-conductive circuits
	Sufficiently tamper-resilient gadgets.
	Intermidiate solution for 3-conductive circuits
	The CL compiler construction
	The main result

	R-scheme
	Information Loss in Gate-Covered Circuits
	Routing the Information Loss in Gate-Covered Circuits.
	Minimizing the Number of External Wires
	Construction of One Layer Compression
	Composing The Layers
	Information Losing Tuples
	Algebraic Values on the Wires
	Information Loss Survival for Sd

	The Compiler

	Summary and discussion

	Very Simple Compilers against Total Hardware Trojan Horses
	Results and applications
	(Non)achievable security for Very Simple Schemes
	Motivation and possible applications

	Preliminaries
	Test and deployment
	Completeness
	Security of simple schemes
	Lower bounds
	Efficiency of lower bound vs. constructions
	Our results and conjectures
	Stateless Trojans
	History-independent Trojans
	Proof outline

	An optimal Very Simple Compiler
	The 12 scheme
	Security of 12

	Conclusions
	References

